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SYNOPSIS

Computer simulation programs were developed for the amalysis of dry-cooling systems for power
plant applications. Both forced draft direct condensing air-cooled condensers and hyperbolic natural
draft indirect dry-cooling towers are considered.

The results of a considerable amount of theoretical and experimental work are taken into account to
model all the physical phenomena of these systems, to formulate the problems in formal mathematical
terms and to design and apply suitable computational algorithms to solve these problems effectively
and reliably. |

The dry-cooling systems are characterized by equation-based models. These equations are
simultaneously solved by a specially designed constrained nonlinear least squares algorithm to
determine the performance characteristics of the dry-cooling systems under fixed prescribed
operating conditions, or under varying operating conditions when coupled to a turbo-generator set.

The solution procedure is very fast and effective.

A capital and operating cost estimation procedure, based on information obtained from dry-cooling
system component manufacturers and the literature, is proposed. Analytical functions express the

annual cost in terms of the various geometrical and operating parameters of the dry-cooling systems.

The simulation and the cost estimation procedures were coupled to a constrained nonlinear
programming code which enable the design of minimum cost dry-cooling systems at fixed prescribed
operating conditions, or dry-cooling systems which minimize the ratio of total annual cost to the
annual net power output of the corresponding turbo-generator set. Since prevailing atmospheric
conditions, especially the ambient temperature, mfluence the performance of dry-cooling systems,
wide fluctuations in turbine back pressure occur. Therefore, in the latter case the optimal design is

based on the annual mean hourly frequency of ambient temperatures, rather than a fixed value.

The equation-based models and the optimization problems are simultaneously solved along an
infeasible path (infeasible path integrated approach). The optimization model takes into
consideration all the parameters that may affect the capital and operating cost of the dry-cooling
systems and does not prescribe any limits, other than those absolutely essential due to practical
limitations and to simulate the systems effectively. The influence that changes of the constraint limits

and some problem parameters have on the optimum solution, are evaluated (sensitivity analysis).
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The Sequential Quadratic Programming (SQP) method is used as the basis in implementing nonlinear
optimization techniques to solve the cost minimization problems. A stable dual active set algorithm
for convex quadratic programming (QP) problems is implemented that makes use of the special
features of the QP subproblems associated with the SQP methods. This QP algorithm is also used as
part of the algorithm that solves the constrained nonlinear least squares problem. This particular
implementation of the SQP method proved to be very reliable and efficient when applied to the

optimization problems based on the infeasible path integrated approach.

However, as the nonlinear optimization problems become large, storage requirements for the Hessian
matrix and computational expense of solving large quadratic programming (QP) subproblems
become prohibitive. To overcome these difficulties, a reduced Hessian SQP decomposition strategy
with coordinate bases was implemented. This method exploits the low dimensionality of the
subspace of independent decision variables. The performance of this SQP decomposition is further
improved by exploiting the mathematical structure of the engineering model, for example the block
diagonal structure of the Jacobian matrix. Reductions of between 50-90% in the total CPU time are
obtained compared to conventional SQP optimization methods. However, more function and

gradient evaluations are used by this decomposition strategy.

The computer programs were extensively tested on various optimization problems and provide fast
and effective means to determine practical trends in the manufacturing and construction of cost-
optimal dry-cooling systems, as well as their optimal performance and operating conditions in power
plant applications.

The dissertation shows that, through the proper application of powerful optimization strategies and
careful tailoring of the well constructed optimization model, direct optimization of complex models

does not need to be time consuming and difficult.

Recommendations for further research are made.

KEYWORDS

Dry-cooling; Power plants; Engineering optimization; Computer simulation; Cost estimation;
Sequential Quadratic Programming; Quadratic Programming; Nonlinear Least Squares; Sensitivity

analysis.
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OPSOMMING

Rekenaar simulasie programme is ontwikkel vir die analise van droéverkoelingstelsels soos aangetref
in die kragstasienywerheid. Beide geforseerde trek direkte lugverkoelde kondensors en hiperboliese

natuurlike trek indirekte koeltorings word beskou.

Die resultate van ‘n groot hoeveelheid teoretiese en eksperimentele werk word in ag geneem om die
fisiese gedrag van die stelsel te modelleer, die probleme wiskundig korrek te formuleer en om

geskikte algoritmes te ontwikkel en toe te pas vir die effektiewe oplossing van die probleme.

<

Droéverkoelingstelsels word gekarakteriseer deur vergelyking-gebaseerde wiskundige modelle. ‘n
Beperkte nie-lineére kleinste kwadrate algoritme is ontwikkel om hierdie vergelykings gelyktydig op
te los. Met hierdie metode kan die werkverrigting van droéverkoélingstelsels tydens vaste, sowel as
veranderlike bedryfstoestande bepaal word. Laasgenoemde geval kom voor tydens die koppeling

van die droéverkoelingstelsel met ‘n turbogenerator eenheid.

‘n Kapitaal- en bedryfskoste beramingsmetode, gebaseer op inligting uit die droéverkoelings-
nywerheid en literatuur, word voorgestel. Analitiese funksies druk die jaarlikse koste in terme van

die verskillende geometriese- en bedryfs parameters van die droéverkoelingstelsels uit.

Die simulasie en kosteberamingsmetodes word gekoppel aan ‘n nie-lineére optimeringskode vir die
ontwerp van minimum koste droéverkoelingstelsels tydens vaste bedryfstoestande, of vir die ontwerp
van stelsels om die verhouding van totale jaarlikse koste tot netto jaarlikse energie uitset van die
turbogenerator eenheid waaraan die verkoelingstelsel gekoppel is, te minimeer. Aangesien heersende
atmosferigse toestande, veral die omgewingstemperatuur, die werkverrigting van die
droéverkoelingstelsels beinvioed, fluktueer die terugdruk van die turbine oor ‘n wye gebied.
Gevolglik word die optimum ontwerp in hierdie geval gebaseer op die jaarlikse gemiddelde uurlikse

frekwensie van die omgewingstemperatuur en nie op ‘n vaste waarde nie.

Die wiskundige modelle en die optimeringsprobleme word gelyktydig opgelos langs ‘n nie-
toelaatbare pad (nie-toelaatbare pad geintegreerde benadering). Die optimeringsprosedure neem al
die veranderlikes in ag wat die kapitaal- en bedryfskoste beinvlioed en skryf geen gremse voor,
behalwe die wat absoluut noodsaaklik is weens praktiese oorwegings. Die invioed wat die
versteuring van die grense van beperkings en sommige probleemparameters het op die optimum

oplossing, word ook ondesoek (sensitiwiteitsanalise).
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Die “Sequential Quadratic Programming” (SQP) metode word gebruik as die basis vir die
implementering van die nie-line€re optimeringstegnieke om die minimum koste probleme op te los.
‘n Stabiele duale aktiewe basis algoritme vir konvekse kwadratiese programmerings probleme word
geimplimenteer. Hierdie algoritme maak gebruik van die spesiale kenmerke van die SQP-metode se
kwadratiese subprobleme en word ook gebruik as deel van die oplosmetode vir die beperkte nie-
lineére kleinste kwadrate probleem. Die SQP-metode is baie betroubaar en effektief tydens die

oplossing van die optimerinsprobleme gebaseer op die nie-toelaatbare pad geintegreerde benadering.

Die verlangde storingskapasiteit vir die Hessiaan matriks en die berekeningskoste vir die oplos van
die kwadratiese subprobleme word egter onaanvaarbaar hoog soos die dimensie van die optimerings-
probleme toeneem. Hierdie probleme word oorkom deur die implementering van ‘n gereduseerde
Hessiaan SQP dekomposisie strategie wat gebruik maak van kodrdinaat basisse. Die metode benut
die lae dimensie van die subruimte van onathanklike veranderlikes. Die werkverrigting van die
metode word verder verbeter deur die benutting van die Wiskundige struktuur van die simulasie
model, byvoorbeeld die blokdiagonale struktuur van die Jakobiaan matriks. ‘n Vermindering van
tussen 50-90% in die totale berekeningstyd, in vergelyking met konvensionele SQP-metodes, word
ondervind. Die SQP dekomposisie strategie maak egter van meer iterasies en funksie evaluasies

gebruik.

Die rekenaarprogramme is deeglik getoets op ‘n verskeidenheid van optimeringsprobleme en
voorsien ‘n baie effektiewe metode om tendense vas te stel vir die ontwerp en vervaardiging van
minimum koste droéverkoelingstelsels. Die optimale werkverrigting en bedryfstoestande vir die

stelsels, wanneer toegepas in die kragstasienywerheid, kan ook bepaal word.

Die proefskrif toon aan dat die effektiewe toepassing van kragtige optimeringstegnieke en die
benutting van die wiskundige struktuur van die optimeringsprobleem tot gevolg het dat komplekse
probleme nie noodwendig moeilik hoef te wees en ‘n groot hoeveelheid tyd in beslag hoef te neem
nie.

Aanbevelings vir vedere navorsing word gemaak.

TREFWOORDE

Droéverkoeling; Kragstasie; Ingenieursoptimering; Rekenaar simulasie; Kosteberaming; “Sequential
Quadratic Programming”; Kwadratiese programmering; Nie-lineére kleinste kwadrate; Sensitiwiteits-

analise.
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NOMENCLATURE

Area, m?

Set of active constraints

Matrix, matrix of constraint normals, Jacobian matrix
Coefficient, or constant

Vector (usually a column vector)
Approximation for the Hessian matrix (B = G)
Coefficient, or constant

Vector
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Constraint functions

Vector of constraint functions
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Escalation rate, %, effectiveness, or constant
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Correction factor, or force, N
Objective function
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Objective function

Vector function

Mass velocity, kg/ sm?

Hessian matrix, or matrix
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i
g Gravitational acceleration, m/ sz, or constant

g(x) Gradient vector

H Height, m

H Approximate inverse of the Hessian matrix (H = G'l)
h Heat transfer coefficient, W/ mzK, or step length

h Error ( x® . x*)

h(x) Equality constraint

h(x) Vector of equality constraints, or vector

1 "Unit matrix

i Interest rate, %

ify Latent heat, J/kg

J(x) Jacobian matrix
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K Convex set

k Thermal conductivity, W/mK, or iteration counter

L Length, m |

L(x,A) Lagrange function

/n log,

M Mass per unit length, kg/m, or Molecular weight, kg/mole
m Mass flow rate, kg/s, or number of constraints

N Revolutions per second, s

Ny Characteristic heat transfer parameter, m ™

n Number of variables, or number

P Pitch, m, or power, W

P(g(x),0) Penalty function

P Matrix

P Pressure, N/ m?

Ap Pressure differential, N/m”
Q Heat transfer rate, W

Q Orthogonal matrix

Q(x) Quadratic form

q Heat flux, W/m*
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Quadratic function
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Search direction
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Vector of variables
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Co-ordinate

Set
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0 Zero vector

\Y First derivative operator (0/0x;)
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XV
T Pi=3.1415926535...
Density, kg/m3, or constant
c Area ratio
c Penalty parameter
z Summation
T Time, s
¢ Angle, °
d(x) y = O(x)
Y(x) Merit function
DIMENSIONLESS GROUPS
Frp Densimetric Froude number, pv* / (ApLg)
Re Reynolds number, pvL/y or pvd/p for a tube
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SUBSCRIPTS
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Effective

Electric motor
Equality constraints
Fan

Fin, or fuel, or friction
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Fan drive system
Fixed

Fin leading edge

Fan rows

Frontal

Fin tip, or finned tube
Gross, or galvanizing
General

Hydraulic, or hub, or header
Heat exchanger
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Ideal

Independent variables
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s Static, or screen, or shell, or steam, or steel
sd Steam duct

st Speed reducer

t Throat, or tube, or transversal, or total, or turbine, or tower, or tip
T Temperature

tb Tubes per bundle

tg Turbo-generator

tge Turbo-generator-condenser

ts Tower support, or tube cross-section
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up Upstream

v Vapor
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DFP Davidon-Fletcher-Powell method
FCR Fixed charge rate
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LP Linear programming

max Maximum

NFEVAL Number of function and gradient evaluations

NITER Number of major SQP iterations

NLP Nonlinear programming
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QP Quadratic programming
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1.1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

All the engineering disciplines are increasingly using some form of optimization to comply with the
demands in the planning, design, analysis and control of projects. Financial pressures towards cost-
effectiveness are increasing, resources are becoming limited and the restrictions imposed by social,
environmental and technological requirements are much more stringent today. The recognition that
optimization can be of invaluable assistance in aiding the intuition, skill and experience of the

engineer in these actions can be widely seen in the present-day literature.

During the last twenty five years considerable numerical work has been done to show that nonlinear
programming (optimization) methods can be used to optimize various engineering problems. Most
optimization problems are so large and complex that efficient solution methods are essential in
solving these problems. Engmeering applications, like other practical areas, make special demands
on optimization codes. As a direct result, various new optimization techniques and modifications to

existing techniques have been developed to satisfy these needs.

A great step forward has been the development of Sequential Quadratic Programming (SQP)
methods, which solve a sequence of simplified quadratic subproblems containing linearizations of the
nonlinear constraints, yet capturing the essential features of the original problem. For optimization
of complex, computationally intensive models with a small to moderate number of variables, SQP
consistently requires fewer function evaluations to complete the optimization per iteration than other
nonlinear optimization algorithms. SQP methods have been very successfully applied to various

engineering and scientific problems.

In engineering applications the particular model to be optimized may possess a special structure. By
adapting the basic SQP algorithm to exploit this model structure, a tailored SQP algorithm is
obtained which performs (computationally) significantly better than the original method. Thus,
through the application of powerful optimization strategies and careful tailoring of the model,

engineering optimization problems can be efficiently solved.
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1.2
1.2 THE DRY-COOLING SYSTEM OPTIMIZATION PROBLEM

Most industrial processes require the rejection of low-quality waste heat. In particular, steam-
electric plants reject heat at approximately twice the rate at which electricity is generated. For a long
time designers found once-through and evaporative cooling (open-cycle cooling systems) an efficient
means to reject waste heat at a low cost. However, water shortages and stringent environmental
regulations forced designers to consider less efficient and more expensive air-cooling, or dry-cooling
as it is often termed (closed-cycle cooling systems). Dry-cooled plants offer potential economic
advantages due to plant siting flexibility. Both natural draft and mechanical draft dry-cooling towers,

equipped with air-cooled heat exchangers (extended airside surface area), are used.

The cooling system is a significant cost item in the power plant and affects the performance of the
entire power cycle. If the cooling system does not provide adequate cooling, the overall plant
efficiency decreases with serious economic consequences (e.g. decreased electricity production), i.e.
a cost-performance trade-off exists. The selection of waste heat rejection systems for steam-electric
power plants involves a trade-off among environmental, energy and water conservation, and

economic factors, while achieving the required cooling rate.

The heat rejection performance of the dry-cooling tower and the thermodynamic performance of the
turbine are the two most significant factors in the operation of a dry-cooling system. The complex
relationships which exist between the condensing system and the turbine must be determined in order
to predict the performance of a combination of the turbo-generator-condenser system. Since the
performance of a particular dry-cooling system and the turbine which it serves are so closely related
the complete condensing system and the turbine can best be considered as one integral unit in studies

of economic comparisons for various combinations of dry-cooling towers and turbines.

It is therefore necessary to simulate and evaluate the performance and costs of dry-cooling systems
at specified operating conditions and when coupled to a turbo-generator set. To remain competitive,
the performance and design of these cooling systems should be optimized. In the present study two
types of nonlinear optimization problems, related to natural draft indirect dry-cooling towers and
forced draft direct air-cooled condensers as found in steam-electric power plant applications will be

addressed:

(1) Design a dry-cooling system that satisfies the prescribed operating conditions at the minimum

annual cost (combination of capital and operating cost).
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(2) Design a dry-cooling system at a particular location for the minimum ratio of annual cost
(combination of capital, fuel and operating cost) to annual net energy output of the turbo-

generator set it is coupled to.

The SQP method is used as the basis in implementing optimization techniques to minimize the
objective functions (annual cost or annual cost/kWh electricity generated) in the design of dry-

cooling systems for steam-electric power plants.

1.3 SCOPE OF THE WORK

In order to apply numerical solution techniques of optimization theory to engineering problems, it is

necessary to cover the following steps:

(1) Formulate the problem to be optimized in terms of the decision variables, objective function
and the imposed constrants. The decision variables characterize the possible designs or
operating conditions of the system. The objective function provides a criterion on the basis of
which the performance or design of the system can be evaluated to select the optimum
outcome. The constraints represent all the restrictions placed on the design or performance of

the system.

(2) Construct the mathematical representation of the real system, called the model. The model
consists of all the elements that must be considered in calculating a design or in predicting the
performance of an engineering system. It describes the manner in which the problem variables

are related and the way in which the objective function is influenced by the decision variables.

(3) Select a suitable optimization algorithm that will effectively and reliably solve the problem.
The basic algorithm can be modified to satisfy specific needs. Choose or prepare an efficient

computer implementation of this algorithm. Prepare the problem for solution and perform the
computer runs to obtain numerical answers.

(4) Examine the solution and perform a post-optimality (sensitivity) analysis to critically evaluate

the solution behavior to changes in model parameters, assumptions and constraints.

The different chapters and the corresponding appendices follow the general procedure outlined
‘above and illustrate how each step is performed on the engineering optimization problems

investigated in this dissertation.

Chapter 2 contains a comprehensive survey of literature on topics such as the basic fundamental

concepts from optimization theory, basic solution techniques for unconstrained and constrained
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optimization, the application of optimization in engineering and the optimal design of air-cooled heat

exchangers and dry-cooling systems.

Chapter 3 describes the process of formulating and modeling an engineering optimization problem
and apply these techniques to dry-cooling systems for use in power plants. The results of a
considerable amount of theoretical and experimental work from various sources are included in this
study (Appendices A, B, C, D) to model all the physical phenomena of these systems and to

formulate these problems in formal mathematical terms.

Chapter 4 contains the dry-cooling system economic analysis as well as the capital and operating cost
estimating techniques that are used to set up the objective function required by the economic

optimization. Appendix E contains the proposed dry-cooling system cost estimation model.

The methods for solving the dry-cooling system performance evaluation and optimization problems
as well as the post-optimality analyses are described in Chapter 5. Detailed discussions, derivations
and modifications of these algorithms are described in Appendices F, G, H, I and J. Different
solution strategies are derived, investigated and implemented in order to improve the efficiency of
the solution process when applied to engineering problems. These methods are tailored to take

advantage of the special features of the problems.

Chapter 6 describes the different computer programs that were developed to implement all the
lprocedures described in the above chapters and appendices. These programs deal with both forced
draft direct air-cooled condensers and natural draft indirect dry-cooling towers with particular
reference to power plant applications. The programs are capable of performing performance

evaluation, design, cost and optimization calculations.

Chapter 7 illustrates the performance of the different computational algorithms described in Chapter
5 and implemented in the various computer programs discussed in Chapter 6. Two interesting
examples on dry-cooling system performance evaluation, cost estimation, design and performance
optimization are formulated and solved to illustrate the various capabilities of the programs and to
compare the performance of the solution techniques. Printouts of program input and output are
listed in Appendices K and L. The program results and performance of the solution methods are

interpreted and discussed.

The dissertation concludes with Chapter 8. Conclusion and recommendations are summarized to
emphasize what has been learned from this investigation and how this study can be extended for

future applications.
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1.4 CLOSING REMARKS

In this dissertation we mvestigate and apply the methodology applicable to the efficient solution of
engineering optimization problems, as well as the computational and mathematical techniques that

will expedite the solution of application problems.

One of the goals of the study is to demonstrate the applicability of optimization methodology to
engineering problems and to introduce the powerful tool of mathematical optimization techniques
which can be applied to the various éngineering practices. Although similar motivation underlies
optimization algorithms for almost all problems, it is very efficient to exploit the specialized

properties of a particular problem, as shown in this dissertation.

The other goal is to perform a detailed economic optimization study on dry-cooling systems as found
in power plants. The aim of this study is to develop computer programs which enable the user to
very effectively obtain certain trends in the manufacturing and construction of cost-optimal dry-
cooling systems, as well as their optimal performance and operating conditions. The results of these

programs are strongly dependent on the quality of the input data.

The optimum engineering solution must not be confused with the ultimate minimum cost solution,
for the ultimate answer may be that which provides significant non-quantifiable benefits of an

engineering or socio-economic nature.

This study forms an integral part of an on-going research program on dry-cooling performed in the
Department of Mechanical Engineering at the University of Stellenbosch.
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CHAPTER 2

'SURVEY OF LITERATURE

2.1 INTRODUCTION

This chapter evolves around the topic of the engineering application of numerical optimization
techniques. It is not the aim to discuss all the different applications of the optimization concepts and
techniques in this chapter. However, by discussing the fundamental principles and the basic
techniques that can be used, the powerful tool of optimization is introduced which can be applied to

various engineering practices.

In the first section the basic concepts from optimization theory are reviewed. Various definitions and
solution techniques to the unconstrained and constrained optimization problems are described.
These concepts provide the mathematical basis for the understanding of some algorithms to be
discussed in later chapters. The rest of the chapter contains a literature survey on the appiication of
optimization in engineering. A general overview of this topic is presented first to identify some
problems where optimization has been used effectively. Thereafter, the discussion is limited to the
optimal design of dry-cooling towers and air-cooled heat exchangers to review the concepts used
and to gain some insight into these problem formulations and solutions. These literature surveys will

provide valuable background for the investigation to be conducted.

2.2 MATHEMATICAL OPTIMIZATION: AN OVERVIEW

Introduction

The primary purpose of this section is to give a general overview of the mathematics involved in the
process of optimization and to gain a basic knowledge of the many underlying principles involved in
this field of study. It is not the purpose of this discussion to present a detailed analysis of all the
methods and to discuss all the possible variations and refinements; references are cited for this

purpose. Results from optimization theory are stated without formal proofs of the relevant

theorems.
General problem statement

The general form of a mathematical optimization (programming) problem may be written as

([81GI1m, 83MC1m, 84LU1m, 87FL1m])
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Minjgnize £(x) objective function
subject to the constraints
ci(x)=0, i=1...,m equality constraints (2.1
ci(x)20, i=mg+1,...,m inequality constraints

where x = (xl,xz, ey xn) is a vector of variables, called the decision variables.

The functions f{x) and c;(x),i=1,...,m are real-valued functions used to formulate the problem in
terms of the decision variables.  Note that simple bounds on the variables such as
X3 £x;£%;,,1=1,...,n, are included in the inequality constraints of problem (2.1). These bounds
can also be treated separately in order to gain algorithmic advantages. The solution of this problem,
referred to as x*, is found when the objective function is minimized and the constraints are satisfied.
If any point x satisfies all the constraints stated in problem (2.1) it is said to be a feasible point and
the set of all such points is referred to as the feasible region. Some problems may not have any
constraints (m = 0) and are called unconstrained optimization problems in contrast with the
constrained optimization problem stated above. The entire decision space is feasible for

unconstrained optimization problems.

The above form of stating the optimization problem is not unique and various other statements
equivalent to this are presented in the literature [87FL1m]. For example, maximization problems are

easily handled by the transformation

maximum f(x)=- miniinum(—f(x)) (2.2)

The objective and the constraint functions may be linear or nonlinear functions of the variable x and
these functions may be implicit or explicit in x. Ifthe objective and the constraint functions are linear
in the variables x, then the problem is called a linear programming problem. It any of these functions
are nonlinear the problem is called a nonlinear programming problem. However, except for special
classes of problems (non-smooth optimization) it is required that these functions are smooth, that is
contmuous and twice continuously differentiable in x [87FL1m]. The general problem formulation
covers most types of problems having continuous decision variables, real valued constraint functions
and a single real valued objective function. The condition that some variables x; take only discrete

values are not covered. This type of condition is covered in integer programming [81GIlm,
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87FL1m, 89NE1m]. Practical procedures to treat problems with discrete or integer variables are

discussed in [81GI1m, 89ARI1e].

The existence of a general problem statement does not imply that all distinctions among problems
should be ignored. It is highly advantageous to determine the special problem characteristics that
allow it to be solved more efficiently by a specific solution method. The most obvious distinctions
between problems involve variations in the mathematical characteristics of the objective and the

constraint functions. Significant algorithmic advantage can be taken of these characteristics.
The following important points should be noted about the general problem statement:

(1) The number of independent equality constraints must be less than or equal to the number of
variables, ie. mg, <n. When m, > n the system of equations is over-determined; either
there are some redundant equality constraints or the formulation is inconsistent. If m,, <nan

optimum solution of the problem is possible. When m,, = n no optimization of the problem is

necessary because solutions of the system of equality constraints are the only candidates for the

optimum.

(2) There is no restriction on the number of independent inequality constraints. Some inequality
constraints may be strictly satisfied (as equalities) at the optimal solution and are referred to as
active constraints. The inactive constraints remain as strict inequalities at the optimal solution.
The total number of active constraints (equality and active inequality constraints) at the optimal
solution is usually less than or at least equal to the number of variables as mentioned
previously. The active inequality constraints at the optimal solution are not known beforehand
and are determined during the optimization process. A constraint is said to be violated if it is
not satisfied. Furthermore, the theory used to solve these problems requires linear

independence of the gradients of the active constraints at the optimum point.

(3) The objective function can be scaled by a positive constant or a constant can be added to it
without changing the optimum solution point x*. The value of the objective function will,
however, change. Similarly the constraints can be scaled by any positive constant without

affecting the feasible region and the optimum solution.

Fundamental concepts

A thorough knowledge of linear algebra (vector and matrix operations) and basic calculus is essential

mathematical background for optimization theory. Therefore, some of the most important



Stellenbosch University https://scholar.sun.ac.za

2.4

fundamental concepts will be stated. In general it will be assumed that the problem functions, i.e.

f{x) and c;(x), are twice continuously differentiable.

(1) Global and local minima [81GI1m, 84LU1m, 87FL1m, 89AR1e]

A function f{x) has a global (absolute) minimum at x* if f{x*) < f{x) for all x in the feasible region.

A function f{x) has a local (relative) minimum at x* if f{x*) < f{x) for all x in some small

neighborhood of x* in the feasible region.

(2) Gradient vector [81GI1m, 84LU1lm, 87FL1m, 89AR1e]

The gradient of f{x) at any point x is defined as the vector of first partial derivatives

OF (x) Bf(x) &(x)}T o)

Vf(‘)z[ o o ox

(2.3)

where the superscript T denotes transpose of the row vector. Geometrically, the gradient vector is
normal to the tangent plane at x and points in the direction of maximum increase in the function.

Points satisfying Vf(x) = 0 are called stationary points.
(3) Hessian matrix [81GIlm, 84LU1m, 87FL1m, 89AR]e]

If f{x) is twice continuously differentiable, then there exists a matrix of second partial derivatives, the

Hessian matrix, defined as

o°f (x)
0x;0x

sz(x)=[ :|=G(x) i=1,...,n and j=1...,n | (2.4)

This matrix is square and symmetric.

(4) Jacobian matrix [83DE1m, 84LU1lm, 87FL1m]
Iff(x) = (fl(x),fz(x), ,fm(x))T, the Jacobian matrix of the vector function is defined as
VE(x) = [VE (%), VE (%), ..., Vi, (x)] = 3(x) (2.5)

and is a n x m matrix, the colummns of which are the gradient vectors of f;.

(5) Taylor series expansion [81GIlm, 84LUlm, 87FL1m, 89AR1e]

The Taylor series expansion of a smooth function in the neighborhood of any point x is

(x) = £(xo) + V(xo) " (x—x0)+0.5(x—xo) " V2(xg) (x—x0) ++-- 2.6)
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Most methods for optimizing nonlinear differentiable functions of continuous variables rely heavily
upon Taylor series expansions. When only the first two terms on the right hand side of equation
(2.6) are used and the higher order terms are neglected, a linear approximation to the function is

obtained. Similarly the first three terms on the right hand side represent a quadratic approximation.
(6) Form and definiteness of a matrix [81GI1m, 84LU1lm, 87FL1m, 89AR1e]

For a symmetric matrix A, a quadratic form may be defined as Q(x) = TAx. Quadratic forms may

be either positive, negative or zero for any fixed x.
Q(x) is positive definite when x'Ax > 0 for all x = 0.
Q(x) is positive semidefinite when X Ax > 0 for all x , and Q(x) = 0 for at least one x # 0.

Similar definitions for negative definite and negative semidefinite are obtained by reversing the sense
of the inequality. A quadratic form which is positive for some vectors x and negative for others is

called indefinite.

A symmetric matrix A is often referred to as positive definite, positive semidefinite, negative definite,
negative semidefinite or indefinite if the quadratic form associated with A is positive definite, positive
semidefinite, negative definite, negative semidefinite or indefinite, respectively. Methods for

checking definiteness are discussed in the above-mentioned references.

These concepts are the keys to the necessary and sufficient optimality conditions discussed in the
next section.

Optimality conditions

It is possible to check mathematically if x* is a local minimum point of problem (2.1). The
conditions that must be satisfied at the optimum point are called the necessary conditions. However,
there can be non-optimum points that also satisfy the necessary conditions. The sufficient conditions

provide a means to distinguish between optimum and non-optimum points. The necessary and

sufficient conditions for unconstrained and constrained optimization are as follows:
(1) Unconstrained optimization [81GI1m, 83MClm, 84LU1m, 87FL1m, 89AR1e, 89DE1m]

The location of a local minimum point for an unconstrained optimization problem is determined by
the nature of the objective function. The first order necessary condition states that if f{x) has a local
minimum at x*, the gradient vector is zero, i.e. Vi{x*) = 0. The second order necessary condition
states that if f{x) has a local minimum at x*, then the Hessian matrix is positive semidefinite or

positive definite at x*. If the Hessian matrix is positive semidefinite it is necessary to examine higher
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order derivatives to determine whether x* is a local minimizer or not. The second-order sufficient
condition states that if the Hessian matrix is positive definite at the stationary point x*, then x* is a

local minimum point for the function f{x).

The above-mentioned necessary and sufficient conditions characterize a local minimum point and are
obviously not sufficient to verify a global minimum point. In order to find the global optimum point
of an unconstrained objective function, one first has to solve for all the local optimum points and
then choose the best solution amongst these local optima. Additional assumptions, such as
convexity, on the objective function are necessary to guarantee a global solution. Only a few
solution methods for global optimization have been developed thus far and there is still a lot to be
done before this field of study is complete. For a detailed discussion on this subject consult
[89RI1m] and the references given therein. Simple practical advice to obtain a global solution is to
solve the problem from different starting points and take the best local solution that is obtained
[84VAle, 87FL1m].

(2) Counstrained optimization [81GI1m, 83MC1lm, 84LU1m, 87FL1m, 89AR1e, 89GI1m]

Both the nature of the objective function and the constraints play a prominent role in determining the
optimum solution of a constrained optimization problem. Of fundamental importance for nonlinear
programming theory and the development of constrained optimization algorithms is the Lagrange

function, i.e.
L(x,A) = f(x) - i?»ici(x) ' (2.7)
i=1

where A = (?»1,7»2, ,Xm) are the Lagrange multipliers associated with the constraints of problem
(2.1).

Before we can state the necessary conditions for a constrained optimum point, we need to define
what is meant by a regular point of the feasible region. A point x* satisfying the constraints is called
a regular point of the feasible region if the gradient vectors of all the active constraints are linearly

independent. Linear independence means that no two gradients are parallel to each other, and no

gradient can be expressed as a linear combination of the others.

The first order necessary conditions, often referred to as the Kuhn-Tucker conditions, can be stated

as follows:
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If x* is a local minimizer of problem (2.1) and if x* is a regular point for the feasible region thereof]
then there exist Lagrange multipliers A* such that x* and A* satisfy the following system of

equations when (x, A) = (x*, A*):

m
V,L(x,A) =0 or Vf(x) = > A;Vc;(x)
i=1

ci(x)=0, i=1,...,mg
ci(x)20, i=mg +1,...,m (2.8)
}\‘i 20, i=meq

Aici(x)=0, i=1...,m

+1,...,m

From the conditions stated in equation (2.8), it can be seen that at x* the gradient vector of the
objective function is a linear combination of the gradients of the constraints with the Lagrange
multipliers as the scalar parameters of the linear combination. Furthermore, the Lagrange multipliers
of the active inequality constraints must be greater than or equal to zero. The Lagrange multipliers

of the equality constraints have no sign restriction.

The constraint and objective function curvature play an important role in evaluating the second order

conditions. The second order necessary conditions can be stated as follows:

Let x* satisfy the first order necessary conditions stated in equation (2.8). The Hessian matrix of the
Lagrange function at (3*,A*) is
m
VIL(x*, A*) = VZ£(x*) - 3 a* Ve (x %) (2.9)
i=1
A feasible direction, s, is defined as follows: Vc;r(x *)s =0, i€A. Thus, for a small move in this
direction all the active constraints (equality and active inequality constraints) are not violated.

The second order necessary condition for a local minimizer is that
s VIL(x*,A*¥)s20 | (2.10)

for all non-zero feasible directions at any feasible point x*. This condition states that the Lagrange
function must have non-negative curvature for all feasible directions at x*. Any point that does not

satisfy the second order necessary conditions cannot be a local minimum point.
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The second order sufficient conditions can be stated as follows: Let x* satisfy the first order
necessary conditions stated in equation (2.8). The Hessian matrix of the Lagrange function at x* is

defined by equation (2.9). Let there be a non-zero direction, s, satisfying

Vel (x¥)s=0 fori=1,..., m,,

VciT (x*)s=0 fori= Mg *1,..., mwith A; > 0 (active inequality constraints)
Also let
Vc;r(x *) s20 fori= m *1,..., m with 4; = 0 (inactive inequality constraints)
If it is found that
s VaL(x*,A%)s> 0 (2.11)

for all such vectors s, then x* is an isolated local minimum point (isolated means that there are no
other minimum points in the neighborhood of x*). Thus, if the Hessian of the Lagrange function is
positive definite, the sufficiency conditions for an isolated local minimum point are satisfied. The
second order sufficient condition should be interpreted in the sense that the Lagrange function

projected on the subspace of the binding constraints is locally convex.

To treat the subject of global optimality for constrained optimization problems one needs to consider
the topics of convexity and convex programming problems. The first fundamental concept is that of
a convex set. A convex set X is a collection of points (vectors x) defined by the property that for all

Xy, X; € K, it follows that for any scalar A € [0,1], the point
Xy, =(l—>\.)X0 +}\.X1 (212)

is also contained in X. The other fundamental idea is that of a convex function. A convex function
f{x) is defined on a convex set X, i.e. the independent variables must lie in a convex set. A convex
function f{x) is defined by the condition that for any x,, X, € X, and any scalar A € [0,1], it follows
that

£(xy) < (1= M)f(x,) +1£(xy) (2.13)

It can be proved that a function f{x) defined on a convex set X is convex if and only if the Hessian
matrix of the function is positive semidefinite or positive definite at all the points in the set K. A
strictly convex function is one for which the Hessian matrix is positive definite for all the points in

the set K. A concave function is defined as one for which —f{x) is convex.
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A convex programming problem is an optimization problem of the form shown in equation (2.1) in
which f{x) is convex, the equality constraints are linear, and the inequality constraints are concave. It
can be shown that the set defined by the constraints is a convex set. Examples of convex
programming problems are linear programming (LP) and quadratic programming (QP) problems (the
Hessian of the latter must at least be positive semidefinite). A fundamental property of a convex
programming problem is that any local minimum x* is a global minimum; furthermore, if Vf (x) is
positive definite, x* is unique. Another very useful property of the convex programming problem is
that if f{x) is a convex objective function defined on a convex feasible region, the first order (Kuhn-

Tucker) conditions are necessary as well as sufficient to characterize a global minimum point.

The analytical methods discussed in the preceding section are sometimes very cumbersome to use in
practical applications. In practice one is not given a point and asked to check if the’optimality
conditions are satisfied. However, a thorough knowledge of optimality conditions is important to
understand the performance and implementation of various numerical solution methods discussed in
the next section. Optimality conditions are not algorithms; they are used to motivate algorithms and

the corresponding convergence proofs.

Solution methods

Numerical methods to solve nonlinear optimization problems are of an iterative nature. An initiai
estimate for the optimum point is chosen and the estimate is improved in an iterative manner until,
either some user-supplied convergence criteria become satisfied or the optimality conditions are
satisfied. Almost all iterative optimization algorithms have the following main steps [84VAle,
87FL1m, 89ARIe]: |

(1) Determine a search direction. This process can involve function and gradient evaluatios, the
solution of a set of linear equations, or the solution of linear or quadratic programming

subproblems.
(2) Solution of the subproblem. Several methods are available to solve the subproblem.

(3) A step size along the search direction. This usually involves evaluation of functions along the

search direction.

The basic underlying principle in solving a nonlinear programming problem is that of replacing a
difficult problem by an easier, solvable one. This leads to the formulation and solution of a sequence
of subproblems, each of which is related to the original problem in a known way. The subproblems

are based on local models of the objective and constraint functions (if present). The most common
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model functions originate from the Taylor series expansions of these nonlinear functions. Linear or
quadratic models are used; the latter is the most frequent choice for the objective functions since it
has attractive properties; near the optimum point every problem is approximately quadratic
[87FL1m]. The subproblem is solved to obtain a search direction and a step length is chosen in

order to ensure a decrease in a quantity that measures progress towards the solution.

Many iterative methods are based on the following iterative equation to generate a sequence of

points {x(k)} [87FL1m]
xED = x® L 000 L 012, (2.14)

(k)

where the superscript k represents an iteration counter, o' ’is a positive scalar called the step size

and s is the direction of search that depends on the local behavior of the objective and constraint

functions at x®. A variety of computational algorithms exist, based on the way s and o™ are

(k)

calculated. The vector s*’ is usually a direction of descent for a function that is used to monitor

progress towards the minimum point and is called the descent or merit function W(x) [89GI1m], i.e.
‘I’(x(k+l)) < ‘{’(x(k)) (2.15)

The descent function also has the property that its minimum value is the same as that of the original

() is chosen to ensure (2.15). The descent function is used to

).

objective function. The step size o

find the step size and is thus transformed into a one dimensional function of the scalar variable o
For unconstrained optimization the objective function serves as the descent function. For
constrained optimization several descent functions have been used and it is usually constructed from

both the objective function and the constraints.

The numerical algorithms usually work well in the vicinity of the local solution point. Most of the
effort spent in algorithms is to come close enough to a local solution from a poor starting point, in
order that the algorithm can take advantage of the local convergence properties. Furthermore, the
models derived from the Taylor series expansion neglect higher order terms and are therefore only
valid in a neighborhood of unknown size of the current point. Trust region and line search methods
are used to overcome these problems. Trust region methods are used to restrict the domain in which
the model function is considered reliable. Line search methods are used to obtam the best choice of
o along the direction of descent for the merit function. Both line search and trust region methods
are used in optimization algorithms to ensure global convergence from poor starting points

[81GI1m, 83DE1m, 87FL1m, 89DE1m].
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An algorithm is said to be convergent if it approaches a minimum point starting from a given starting

point x(0. Convergence to a local minimum point irrespective of the starting point is called global
convergence. A convergent algorithm usually has a descent function that monitors progress towards
the minimum. The rate of convergence of an algorithm is usually measured by the number of

iterations and function evaluations, or the CPU time taken to obtain an acceptable solution.

Most optimization methods are iterative and generate a sequence of estimates of the optimum point

x*. The rate at which this sequence converges can be defined in terms of the error

h® =(x(k) —x*) (2.16)
h® 50 (convergence) and the errors behave according to [87FL1m, 89DE1m]

]/ <v, vzo 2.17)

then the order of convergence is defined to be p-th order. The most important cases are p = 1 (first
order or linear convergence) and p = 2 (second order or quadratic convergence). In practice local
(k)

quadratic convergence is quite fast as it implies that the number of significant digits in x*~ as an

approximation to x* roughly doubles at each iteration once x® is near x*. Linear convergence can
be quite slow and much better results can be obtained when the rate constant, v, tends to zero. This
is known as superlinear convergence and algorithms with this property are also quickly convergent in

practice.

Another important feature of an algorithm is the convergence test which is required to terminate the
iterations. These tests have a major effect on the efficiency and reliability of the optimization
process. Some of the termination criteria that are used, are the maximum number of iterations or
function evaluations, the absolute or relative change in the objective function or decision variables,

or satisfaction of the optimality conditions [84VAle, 87FL1m].

In practical problems it may often be cumbersome to calculate the derivatives of a complex function
analytically. In such cases it is possible to approximate the gradient vector or the Hessian matrix of a
function by means of finite differences (forward difference, central difference, backward difference)
[81GI1m, 83DE1m, 87FL1m, 89AR1e, 89DE1m)]. The finite difference steps must be chosen large
enough in order to minimize the finite precision cancellation errors, as well as small enough to ensure
that the difference produce a good approximation to the derivative. If step sizes are properly
selected, then finite difference methods give reliable results. The main disadvantage of these

derivative approximations is the computational effort in evaluating them if the function evaluations
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are expensive. However, finite differences will not require more computational effort if the analytical

derivatives of a complicated function require the same effort to evaluate as the function itself.

Some of the most important solution methods for unconstrained and constrained nonlinear

programming will now be discussed.

(1) Unconstramed optimization

The early methods of optimization required the use of function values only (zero order methods) and
were very reliable, easy to program and can often deal effectively with discontinuous functions and
discrete values of the decision variables. However, these methods require many function
evaluations, even for simple problems. The main difficulty in the formulation of these methods is
how to search effectively for the optimum point. The different methods perform their searches in a
random or in an ordered manner. Various methods are discussed and referred to in [83REle,
84VAle, 87FL1m, 88EDle]. The rest of the section will deal with techniques that use the
mathematical nature of the problem in order to make the search for the optimum point as efficient as

possible.

Iterative methods are composed of a search direction subproblem and a step size calculation, also
referred to as the one dimensional line search problem. The line search involves the reduction of a
multiple variable function to a function of one variable, the step size, and then finding the minimum

point of the one dimensional problem, i.e.

Minimize ‘I’(x(k) +a s(k)) = ‘P(x(k) +a(k)s(k)) (2.18)
oL

where a'® is the step length and s is the search direction. If we assume that a search direction
s® is known at the current point x(k), the descent function reduces to a function of one variable.
This function ¥(a) = ‘I’(x(k) +a s(k)) is assumed to be unimodal, i.e. its minimum exists and is

unique in the interval of interest [87FL1m, 89AR1e]. Analytical methods can be used to determine
the value o* that minimizes ¥ (o). However, analytical methods may become cumbersome and

therefore we rather turn to numerical methods which are in themselves iterative. The line search

problem involves the finding of the interval [O,E(k)] in which the required o* lies, and then the

() is reached. These methods can

reduction of this interval until the desired accuracy for locating o
be grouped into polynomial approximations (use function values and derivative information) and
those which require function evaluations only [87FL1m]. The latter methods contam interval

searches like the golden section search and the Fibonnaci section search. Any continuous function
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can be closely approximated by passing a polynomial of sufficient order through it and its minimum
can be found explicitty. The minimum point of the approximating polynomial is often a good
estimate of the exact minimum of (o) (equation (2.18)). Accurate line searches are very expensive
to carry out and researchers developed a set of conditions for terminating the line search which
would allow low accuracy line searches whilst still forcing global convergence [83DE1m, 87FL1m].

The line search thus aims to find a step o which gives a significant reduction in ¥(a) on each

iteration and which is not close to the extremes of the interval [0,& (k)].

In the following paragraphs various algorithms are presented for calculating the search direction, s.

These methods are categorized as first order methods and second order methods.

First order methods utilize gradient information, supplied either analytically or by finite difference
computations. The steepest descent method [81GIlm, 84LU1lm, 87FL1m, 89AR1e] is the simplest
and probably the best known method for unconstrained optimization. In this method the search

k k
® =),

direction, s(k), is taken as the negative of the gradient of the objective function, i.e. s
and presents the direction of maximum decrease in f{x). The convergence rate of this method is very
poor due to the fact that the method does not utilize information from previous iterations. The
steepest descent directions are also orthogonal to each other. This method is therefore not
recommended for general applications and its principal importance is that it usually forms the

starting point for more sophisticated first order methods.

The conjugate gradient [81GI1m, 83MClm, 84LU1m, 87FL1m, 89AR1e] method requires a simple
modification to the steepest descent algorithm that substantially improves its rate of convergence
compared to the steepest descent method. The conjugate gradient directions, however, are not
orthogonal to each other, but tend to cut diagonally through the orthogonal steepest descent
 directions. The initial search vector is the steepest descent vector and afterwards the conjugate

direction is defined as.

SO _ ‘g(x(k+l)) PFONCY (2.19)

g(x(k+l))T g(x(k+1))

g(x(k))Tg(x(k))

Information about previous iterations is carried forward in the optimization process by 3. The

with ¥ = 0 and g =

conjugate gradient algorithm finds the minimum of a positive definite quadratic function having n

variables in n iterations. For general functions it is recommended that the iterative process is
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restarted every (n+1) iterations if the minimum has not been found by then. This method is based on

the calculation of both f{x) and g(x) and only requires storage of n-dimensional vectors (no n’-
dimensional arrays). This property makes the method very useful for computation of large

dimensional problems.

Second order methods make use of the second derivatives of the objective function. Newton's
method is the classical second order method [81GIlm, 83DElm, 83MClm, 84LUIm, 87FL1m,
89AR1e, 89DE1m]. The idea behind this method is that the function f{x) to be minimized, is

approximated locally by a quadratic function and this approximate function is minimized exactly.

Near x(k), the function ﬂx(k)) can be approximated by the second order Taylor series expansion

given in a slightly different form
T
f(x(k) + s(k)) ~ f(x(k)) + g(x(k)) s® 105 s(k)TG(x(k)) s® (2.20)

This method requires first and second order derivatives of f{x) at any point. Equation (2.20) has a

unique minimizer if G(x(k)) is positive definite and Newton’s method is only well defined in these
circumstances. By applying the first order necessary condition to equation (2.20), the k-th iteration

of Newton's method can be written as

‘Solve G(x(k))s(k) +g(x(k)) =0 for s

Set xUHD =50 4 (2.21)

This involves the solution of a n x n system of linear e(iuations. Considerable computational effort is
usually needed to calculate the Hessian matrix. The classical method uses a step size of one in the
search direction. For a true convex quadratic function this method will find the solution in only one

Ky »

iteration. Since G(x(k)) may not be positive definite when x*/ is far from the solution, the classical

method is not suitable as a general purpose algorithm. IfG(x(k)) is positive definite, the method can

be made globally convergent when Newton's method is used in combination with a line search. The
main difficulty, however, is in modifying this algorithm when G(x(k)) is not positive definite. A
multiple of a unit matrix can be added to G(x®) to make it positive definite [44LE1m, 63MA1m],

thus giving the search direction a bias towards the steepest descent vector -g(x(k)). The search

direction is then computed from

(G(x(k)) + x(k)l)s(k) +g(x(k)) =0, WMo (2.22)
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When the scalar A% is large the effect of G(x(k)) essentially gets neglected and s is essentially
the steepest descent direction. As the iterative process proceeds, A is reduced. When A% becomes
sufficiently small the Newton direction is obtained. If s does not reduce the descent function,

A is increased and the direction is recomputed.

Line search and trust region methods are used to make Newton’s method globally convergent while
retaining its excellent local convergence properties [81GI1m, 83DE1m, 87FL1m, 89DE1m]. In line

search methods the quadratic model is used to compute the search direction and then a step length is

chosen. In a trust region method a trial step length 1™ is chosen and then the quadratic model is

used to select a step of at most this length, i.e.
s <a® (2.23)

The trial step length is considered an estimate of the region of validity of the Taylor series expansion.
These methods are generally applicable and globally convergent and retain the convergence rate of

Newton's method. Trust region methods are characterized by solving equation (2.22) in order to

determine s*). The scalars h® and A are related to each other. Such methods were first
suggested by Levenberg [44LE1m] and Marquardt [63MA1m] in the context of nonlinear least
squares problems. The trust region can be adjusted during the iterations and should be as large as
possible subject to a certain measure of agreement between the actual and approximated function.
Both trust region and line search methods appear in modern software and neither appears to be

consistently superior to the other in practice.

The main disadvantage of Newton's method, even when modified to ensure global convergence, is
that the second derivative matrix, G(x(k)), must be evaluated. Furthermore, Newton's method does
not use information from previous iterations. A class of methods that overcomes these
disadvantages is the quasi-Newton (variable metric) methods [81GIlm, 83DElm, 83MClm,
84LUlm 84VAle, 87FL1m, 89AR1e, 89DE1m]. They require only first derivatives and previously
calculated information to approximate the Hessian matrix or its inverse during each iteration. This
approximation is updated during each iteration and these methods have convergence characteristics
similar to second order methods. During updating, the properties of positive definiteness and
symmetry are preserved. The initial matrix can be any positive definite matrix and is usually chosen

as the unit matrix . Two of the most popular methods are the Davidon-Fletcher-Powell method
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(DFP) and the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) [87FL1m]. The DFP method

builds up the approximate inverse of the Hessian (H = G™1) of f(x) using only first derivatives.

sRIMT g0, (9 (ITEO

Hi =H© + + (2.24)
KT (k KT (k) (k
51T, () Y()H()Y()
where
5§10 _ W0 _ (k+D) _ (k) (2.25)
k k k :
y® = gx®*D) —gx®) (2.26)
In the BFGS method the Hessian rather than its inverse is updated at every iteration
), (T pk)s k) sKTpk)
X k B 6V 8V B
Bra) =B® + LT (2.27)

OTg® ~ T

where 8 and y(k) are defined by equation (2.25) and (2.26) respectively. The BFGS method has
been found to work well in practice. Certain conditions must be complied with, in order to keep the

updates positive definite [87FL1m)].

If f(x) is the sum of squares of nonlinear functions, special advantages can be taken of the problem

structure to find the minimum solution [74LAlm, 81GIim, 83DE1m, 87FL1m, 89DE1m]. The

objective function of this so-called nonlinear least squares problem is written as

F(x) = 053 (x)? = £(x) 71 x) - (2.28)
i=1 _
and its derivatives are given by
g(x) = I(x)f (x) (2.29)
G(x) = J(X)J(X)T + ifi(x)szi(x) (2.30)

i=1

Problems of this type occur in nonlinear parameter estimation when fitting model functions to data.
When m > n, least squares solutions to over-determined systems of equations are computed by
minimizing (2.28). Exact solutions can be obtained for well-determined problems if m = n. Equation
(2.29) can be used with quasi-Newton methodé or both equations (2.29) and (2.30) can be used with
a modified Newton method. A good approximation to G(x) can be obtained by assuming that the

last term on the right hand side of equation (2.30) is small (small residual problem), i.e.
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G(x) = J(x)J(x)T g (2.31)

Whereas a quasi-Newton method might take n iterations to estimate G(x) satisfactorily, here the
approximation is immediately available. The basic Newton method becomes the Gauss-Newton

method when (2.31) is used to approximate G(x). The k-th iteration of the basic Gauss-Newton

method can be written as
T
Solve J(x(k)).](x(k)) s(k) +J(x(k))f(x(k)) =0 for s(k)
Set xD = x® 40O (2.32)

The basic Gauss-Newton method is not necessarily globally convergent or sometimes not even
locally convergent on problems that are very nonlinear or on large residual problems. This algorithm
can be improved in two ways to make it locally and globally convergent, i.e. using it with line search
(damped Gauss-Newton) or with a trust region strategy (refer to equation (2.22)). The trust region
method is usually referred to as the Levenberg-Marquardt method [44LE1m, 63MA1m].

Unconstrained optimization methods can also be used to solve nonlinear constrained problems
[81GIlm, 83MClm, 83REle, 84LUIm, 84VAle, 87FL1m, 89AR1e, 89GI1m]. The basic idea is to
construct a composite function using the objective and the constraint functions. This composite
function also contains penalty parameters that penalize it for constraint violations. Mathematically

the problem can be stated as

er @(x,0) = £(x) +P(c(x),0) (2.33)

where ¢ is the penalty parameter and P is a real valued function (penalty function) whose form

depends on the method used.

The composite function is constructed for a set of penalty parameters and solved using any of the
unconstrained optimization techniques. The penalty parameters are then adjusted, the composite
function is redefined and then minimized. The process is continued until no improvement in the
estimated optimum point is obtained; thus the term sequential unconstrained minimizing techniques
identifies these methods. These methods are often called transformation methods because a
constrained problem is transformed into an unconstrained one. Examples of these methods are the
penalty (exterior) and barrier (interior) function methods as well as the multiplier (augmented

Lagrangian) methods.
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The transformation methods conclude the discussion of the most important classes of unconstrained
optimization solution methods. The techniques used in solving constrained problems rely heavily on

the techniques for solving unconstrained problems.

(2) Constrained optimization

In this section methods used for directly solving the original constrained problem (primal methods)
will be discussed. The algorithms for unconstrained and constrained optimization are based on the
same iterative philosophy. There is one important difference for constrained problems however;
constraints must be taken into account while determining the search direction as Well as the step size.
Furthermore, the starting point may be feasible or non-feasible with regard to the constraints.

Different procedures for treating these issues give rise to different optimization algorithms.

An important concept that should be addressed is the status of the inequality constraints at the
optimum solution. Active inequality constraints can be treated as equality constraints and the
remaining inequality constraints can be ignored (locally). These mactive constraints can be perturbed

by small amounts without affecting the local solution. Equality constraints must be exactly satisfied

at the solution. Active constraints at any point x® are defined by the index set
A% = 4(x®) = {ie(x®) = o} - | | (2.34)

() is on the boundary

called the active set (working set), so that any constraint is active at x®) if x
of its feasible region [87FL1m]. Equality constraints are always present in the active set. If 4* is
known, the problem can be solved as an equality constrained problem. When inequality constraints
are present the active set 4* is unknown and must be predicted by some strategy in the solution
method. The predicted A® is used to compute the search direction and to change the active set as

the iterations proceed. A® usually changes during each iteration, except when x® is near x*. It
should be remembered that the constraints active at the solution are significant in the optimality
conditions and that an algorithm will only succeed if the correct active set is identified. An active set
strategy is easier to define for problems with linear constraints than those with nonlinear constraints
(refer to [81GI1lm]) and only the basic ideas involved in problems with linear constraints will be

discussed. Linear constraints are of the form
T . .
ci(x) =a;x—b; (2.35)

Assume that a feasible point x® and a predicted active A% set are known. Next, the search

() can be computed. Two situations are now possible:

-
7

direction s
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(1) The point x®0 45 may violate a constraint, or several of them, not currently in the active
set. Thus A® is not the correct active set and to remain feasible, a step length 0 < a® <1is
determined such that o is the largest step that retains feasibility. A constraint that becomes
exactly satisfied at x® 1@ is added to the active set and 4® is enlarged. A new search

direction is computed with this modified active set.

(2) The feasible point x® +5® s the minimizer of the objective function and A® i treated as a
set of equality constraints. The Lagrange multipliers of the active inequality constraints are
then calculated to determine if the solution is a Kuhn-Tucker point. If the minimum of these
multipliers is greater than or equal to zero, a feasible solution is found. Otherwise, the
mequality constraint with the smallest Lagrange multiplier is removed from the active set
(A(k)is reduced) and thus becomes inactive. A new search direction is computed with this

modified active set.

For linearly constrained problems, the largest step size a® to retain feasibility during iteration k is

obtained from solving
gl )
a® = min[l; min b—l—Tilaf)— , 1 esA(k)] (2.36)
a;rs(k)<0 a;s

Fo® <1is obtained, then a new constraint becomes active and its index is added to the active set

A® . Various matrices must be updated during the adding and dropping of constraints from the

active set [84GI1m].

This description outlines the strategies mvolved in a primal active set method for quadratic
programming, because only feasible iterates are allowed. Dual active set methods are also used
where it is not required to satisfy primal feasibility during each iteration [83GOlm, 85PO1m,
87FL1m]. For more detail regarding active set methods (e.g. the conditions under which the correct
active set will be predicted), the reader should consult Gill, Murray and Wright [81GI1m, 89GI1m]

and Fletcher [87FL1m] as well as the references stated therein.

Constrained optimization can be categorized into two parts, ie. nonlinear or linear objective
functions with linear constraints and linear or nonlinear objective functions with nonlinear
constraints. The simplest type of constrained optimization is the linear programming (LP) problem.
This subject is quite well developed and several textbooks and journal articles on the topic are

available, e.g. [81GIlm, 84LUlm, 84VAle, 87FL1m, 89AR1e, 89GO1lm]. LP problems are the
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most thoroughly developed and understood optimization problems. Many optimization problems of
practical interest are not of this form and linear programming is often overlooked in favor of the
nonlinear programming optimization methods. However, linear programming techniques often form
the basis for the development of more complex nonlinear programming algorithms and sometimes it
is even possible to simplify a nonlinear programming problem by means of linearization and solve it

with linear programming techniques [87FL1m, 89GI1m].

The simplex method is the earliest method for solving LP problems. The basic idea of this method is
to proceed from one basic feasible solution to another in such a way as to continually decrease the
value of the objective function until a minimum is reached. This method is still used today but in
more sophisticated forms, e.g. the revised simplex method [84LUlm]. A LP problem is an example
of a convex programming problem and if an optimum solution exists, it is also the global solution.
The optimum solution will always lie on the boundary of a feasible region, i.e. there are always some

constraints active at the solution. LP problems can always be solved in a finite number of steps.

The quadratic programming (QP) problem involves the minimization of a quadratic objective
function subject to linear constraints. QP is of great interest in its own right, and also plays an
important role in the solution of general nonlinear programming problems as a direction finding
subproblem. A QP problem may be stated as follows [81GI1m, 87FL1m, 89GI1m]:

Minimize q(x) = 0.5XTGX + ng quadratic objective function
X

subject to the linear constraints

aiT x=b;, i=1...,m, (Aqu = b) linear equality constraints (2.37)
aiT x2b;, 1=mg+L....m (A;eqx 2 b) linear inequality constraints

where G is symmetric, Vq(x) = Gx + g and qu(x) = G. If the Hessian matrix G is positive
semidefinite and the active constraints are linearly independent, x* is the global solution, and if G is
positive definite, x* is also unique (convex programming problem). When G is indefinite, then local
solutions which are not global can occur. QP problems can always be solved in a finite number of

steps.

Equality constrained QP problems can be solved, mainly by using matrix manipulations and
computations. The most straightforward method is to use the equality constraints to eliminate
variables and then to minimize the resulting quadratic function. Fletcher [87FL1m] also presents a

generalized elimination method with its various variations for solving these kinds of problems.
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Elimination methods reduce the constrained problem to an unconstrained problem that must be
solved for a minimizer. By using the feasibility and optimality conditions for problem (2.37), one is
able to derive the solution x* and the associated Lagrange multipliers A* by the method of Lagrange
multipliers for equality constraint problems (refer to equation (2.8)). This method is discussed in
detail in Fletcher [87FL1m] and Gill et al. [89GI1m] and may be implemented either by null space or

the range space methods.

QP problems contaming inequality constraints are usually solved by active set methods as previously
discussed (refer to [81GI1m, 83GO1m, 85PO1m, 87FL1m, 89GI1m]). The direction of movement
is towards the solution of the corresponding equality constrained problem. The main difficulty in
these methods is the prediction of the correct active set of constraints at the solution. If the correct
active set is identified, the problem is solved as an equality constrained Quadratic problem that
mmvolves many matrix calculations. It is therefore important to find an effective means of updating
the relevant matrices when the set of active constraints changes [81GI1lm]. A number of solution
methods for QP problems that are extensions of the simplex method for linear programming have

also been suggested [87FL1m, 89AR1e].

Another class of linearly constrained problems are those in which the objective function is general.

These problems can in general no longer be solved finitely like linear and quadratic programming

problems and the solution is obtained in the limit of some iterative sequence {x(k)}. The equality
constrained problem can be handled by generalized elimination methods as discussed for quadratic

programming. Inequality constrained problems can be handled by means of active set methods. In

quadratic programming the point x® either solves the equality constrained problem or a previously
mactive constraint becomes active. In the more general case the solution of the equality constrained
problem is only located in the limit of a sequence of iterations with the same active set. The line
search procedure is also more complicated and the step length must not exceed an upper limit in
order to retain feasibility. More detail of the general linearly constrained optimization problem can

be found in Fletcher [87FL1m].

Nonlinear programming (NLP) problems arise when both the objective function and the constraints
are nonlinear and is the most difficult of all the smooth optimization problems. The earliest methods
used in solving these problems were the sequential minimization methods or transformation methods
discussed in the section covering the topic of unconstrained optimization. NLP problems can also be
solved by using exact penalty functions in which the minimizer of the penalty function and the

solution of the NLP problem coincide. Sequential processes are not necessary to find the minimizer
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of this exact penalty function. The most popular exact penalty function is the non-smooth or non-
differentiable L,-penalty function [87FL1m, 89GIlm]. Smooth exact penalty functions are also

possible.

NLP problems can also be solved by methods based directly on the first order optimality conditions
stated in equation (2.8) [81GI1m, 84LU1lm, 84VAle, 87FL1m, 89AR1e, 89GI1lm]. These methods
perform well in the neighborhood of the solution. The idea of a quadratic model is very important in
the most successful methods for unconstrained optimization. In constrained optimization the
curvature of the Lagrange function should be considered and a quadratic model constructed thereof.
The original nonlinear constraints are approximated as linear constraints (linearization by means of a

(¥

Taylor series expansion). A sequence of approximations x*’ and A® to the optimum solution

vector, x*, and the optimum Lagrange multipliers, A*, are generated in the process.

For the derivation of the quadratic subproblem, only the equality constrained problem will be
considered. Inequality constraints can be easily incorporated into the subproblem. The subproblem
is derived by writing the first order necessary conditions for the equality constrained problem and
then it is solved by Newton's method for nonlinear equations. Each iteration of Newton's method
can then be interpreted as the solution of a quadratic subproblem. We assume in the following
derivations that all the functions are twice continuously differentiable and gradients of all the

constraints are linearly independent.
The Kuhn-Tucker condition of the equality constrained problem states that
Veal{x*,A%) =0 (2.38)

where derivatives are evaluated both with regard to x and A. A linear Taylor series expansion of VL

about x® and A® gives rise to the system

k k
W —AD |Tex® ] _|-g™ +AlA® 239)
SAST g |[5A® o

where Aglé) is the Jacobian matrix of the equality constraint normals evaluated at x(k), w® is the
Hessian matrix of the Lagrange function, AED 2 A0 L 5A® g xED - x® 1550 Equation

(2.39) can be converted into a slightly different form to solve for A¥*D and 5x®

k k
W( ) _qu) Sx(k) - —g(k) (240)
_AS;)T 0 A(k+l) C(k)
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Initial approximations of x® and A® are required and the iterative procedure is continued until the
convergence criteria are satisfied. Just as with Newton's method for unconstrained optimization it is
possible to restate the problem in terms of one in which the subproblem involves the minimization of

a quadratic function, defined as

Minimize ¢ (8x®) = 0.5 5x ™ TWgx ¥ 1 g®T5x ) 4 ¢
5x

subject to the linearized constraints
ABTex® 1™ =0 (2.41)

The Kuhn-Tucker conditions of problem (2.41) are given by equation (2.40). If the Hessian matrix

of the Lagrange function is positive definite on the subspace defined by {SX: Agz)TSX(k) = O} , then

5x minimizes equation (2.41). The QP subproblem for the general nonlinear constrained problem

can thus be defined as

Minimize q®(6x) = 055x T OWBx® 4 o Tox® 4 KO
X

subject to the linearized constraints

ADTex® 1™ =0 (2.42)
Agggfix(k) +e® >0

For given initial estimates x and A®, problem (2.42) can be solved to obtain 8x(k), and A®™ s

M A _ o)

the vector of Lagrange multipliers of the linear constraints. Update x*’ according to x

5x® and continue this iterative process until convergence is reached. Thus, the nonlinear
programming problem as defined by equation (2.1) can be solved by iteratively solving the quadratic
subproblem defined by equation (2.42). This method of solving the nonlinear constrained
programming problem is known as the sequential/successive quadratic programming (SQP) method

or recursive quadratic programming (RQP) method.

A major disadvantage of the method is that second order derivatives of all the constraints and the
objective function must be evaluated to construct the Hessian matrix of the Lagrange function.
However, a major breakthrough was made when it was discovered that this matrix can be
approximated by using only first order information [76HA1m, 77HA1m, 78PO1m, 78PO3m]. The

idea is similar to that used for Hessian matrix updating in the quasi-Newton methods for
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unconstrained optimization. Both the DFP and the BFGS updating methods have been suggested. It
is sometimes preferred to use the direct updating method given by the BFGS method. It is important
to note that the updated Hessian should be kept positive definite, because then the resulting
quadratic subproblem remains strictly convex. The standard BFGS updating method can lead to an
indefinite or smngular Hessian. Powell [78PO1m] suggested a modification to the standard formula
to overcome this difficulty so that the solution to the subproblem is always well defined.

The derivation of QP based methods is based on conditions that hold only in a small neighborhood of
the optimum and hence the significance of the quadratic subproblem is questionable when the current

iterate is far from x* (A is far from A*). SQP methods converges locally at second order. In order

(k+1)

to ensure that x is a better point than x(k), the solution of the quadratic subproblem can be

interpreted as a search direction. The next iterate is defined by equation (2.14), where s® is the
solution to the quadratic subproblem and a®isa step length chosen to yield a sufficient decrease in
a merit function ¥ that measures progress towards x*. Typically, a merit function is a combination
of the objective and the constraint functions. Several different choices of merit functions have been
used, namely quadratic penalty functions, exact penalty functions, and augmented Lagrangian
functions [81GI1m, 87FL1m, 89GI1m]. The most successful implementations of the SQP methods
use é modified BFGS updating method and either the L;-exact penalty function or the augmented
Lagrangian function. SQP methods are widely regarded as the most effective general methods of
solving constrained NLP problems. These methods perform well in practice, even on problems that

were formerly regarded as difficult.

Sequential linear constrained methods [89GI1m] minimize the Lagrange function subject to the
linearization of the nonlinear constraints. A quadratic model of the Lagrange function is not
constructed as in the case of the SQP methods, but the objective function is a general approximation
to the Lagrange function. Thus, the subproblem involves the minimization of a general nonlinear
function subject to linear constraints. These methods are widely used for large scale problems,
because general purpose techniques for solving large scale linear constrained problems are better
developed than general methods for large scale quadratic problems. However, issues like global
convergence proofs, the definition of the objective function, the use of merit functions and the

detection of inefficient computations are not yet satisfactorily solved.

There exist other methods to solve NLP problems as well. Sequential linear programming (SLP)
methods [81GI1lm, 84VAle, 89AR1e] are based on the idea of linearizing (Taylor series) both the

objective and the constraint functions about the current x® and then to solve the resulting LP
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subproblem by means of efficient LP methods. This process is repeated until the optimum solution is
achieved. The main difficulty of this method is that the solution of the LP subproblem will lie at a
vertex of the linearized constraint set. This method can also give rise to non-feasible solutions and is
recommended only when the curvature effects are negligible. For highly nonlinear programming
problems these methods converge slowly and become unreliable. It is therefore recommended to

rather use SQP methods that contain curvature information and possess excellent convergence

properties.

Feasible direction methods [81GIlm, 84LUlm, 84VAle, 87FL1m, 89ARIle] are based on the
concept of moving from one feasible solution to an improved feasible solution. The feasible search
direction that is calculated from the solution of a linear or quadratic programming subproblem
reduces the value of the objective function and remains strictly feasible for a small step size. The
disadvantages of this method are that a feasible starting point must be known and equality constraints

are not easily implemented. However, these methods will work well in interactive mode [85BEle].

Gradient projection [81GIlm, 84LUlm, 84VAle, 87FL1m, 89AR1e] methods were developed in
order to calculate the search direction without solving a linear or quadratic subproblem. The search
direction vector is obtained from an explicit expression and is much easier to compute than in the
case of the feasible direction methods. Non-feasible points are corrected by a series of correction
steps to move back into the feasible region. Numerically, the method does not perform well and can

be very inefficient, but is well suited for an interactive process [85BEle, 89AR1e].

Reduced gradient methods [81GI1m, 84LUIm, 84VA1é, 87FL1m, 89AR1e] are based on variable
elimination in that some variables are eliminated by using the constraints currently satisfied as
equalities. The problem then becomes unconstrained in the remaining variables. The search
direction is found, such that for any small move the current active constraints remain precisely active.
If some active constraints are not precisely satisfied due to the nonlinearity of these functions, the
Newton-Raphson method is used to return to the constraint boundary. Both equality and inequality
nonlinear constraints can be treated. There is a definite relationship between reduced gradient
methods and gradient projection methods [81GIlm, 85BEle]. Special algorithms must be used to
handle arbitrary starting points to obtain a feasible starting point in the feasible direction, gradient

projection and the reduced gradient methods.

There are many other types of optimization solution techniques that were developed to address

certain problem characteristics. Here are some examples:
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(1) Integer programming is the study of optimization problems in which some of the variables are

required to take on integer values.

(2) Network programming treats network flow problems such as encountered in many real life

physical processes.

(3) Geometric programming is a nonlinear programming technique that deals with problems whose
functions are all generalized polynomials. Its development was stimulated by the development

of minimization techniques for engineering design.

(4) Non-differentiable optimiZation optimizes a function which fails to have derivatives for some
values of the variables. Standard differentiable calculus must be replaced by methods that treat

these problems effectively.
(5) Multiobjective (multicriterion) optimization deals with multiple criteria optimization problems.

(6) Stochastic programming considers problems in which some degree of uncertainty exists about

the values assigned to certain parameters and these are given a probabilistic representation.

These special classes of problems will not be discussed in detail and the interested reader can consult
Fletcher [87FL1m] and Nembhauser et al. [B9NE1m] and the numerous references therein to obtain
further information. ’

Duality

The concept of duality occurs widely in constrained mathematical programming [84LU1lm, 84VAle,
~ 87FL1m]. The purpose of duality is to provide an‘ alternative formulation of a mathematical
programming problem which either has computational advantages or theoretical significance. Dual
methods do not attack the original constrained problem, referred to as the primal problem, directly
but instead attack an alternate problem, the dual problem, whose unknowns are the Lagrange
multipliers. At the dual solution point the values of the multiplier vector A* are associated with the
solution of the primal problem, x*. The dual problem is thus related to the optimality conditions of
the primal problem. The objective function used in the dual methods are related to the Lagrangian
 function (equation (2.7)).

Any function f{x,y) is said to have a saddle point at (x*,y*) if the following condition holds:
f(x*, y) < f(x*,y*) < f(x,y*) for all (x,y) (2.43)

The function f{x,y) exhibits a minimum with respect to x and a maximoum with respect to y. In the

case of the Lagrangian function, the point (x*,A*) is known to be a saddle point represehting a



Stellenbosch University https://scholar.sun.ac.za

227

minimum with respect to x and a maximum with respect to A. Ifit is assumed that the Hessian of the
Lagrangian function is positive definite at the solution of the primal problem, x can be expressed in

terms of A in the neighborhood of (x* A*). Thus we can define the Lagrangian function in terms of

A alone as

L(A) = min L(x,A) ~ (2.44)

for a fixed A and subject to no constraints. But I:(A) < d for A m the neighborhood of A* where d
is the minimum of the primal problem stated in equation (2.1). Thus, A* is the solution of the

problem

maximize L(x, A)
A

subject to (2.45)
VXL(X,A) =0and A; 20, i=my, +1,...m

This formulation is known as the dual optimization problem and the simple bounds on the variables
make it easier to solve. In the case of the QP problem stated in equation (2.37), its dual can be
written as (A contains the constraint normals of both the equality and the inequality constraints)

Maximize 0.5x Gx + ng - AT(ATX - b)
XA

subject to
Gx+g—-AA=0 (2.46)

?»120, i=meq+l,...,m
or

Maximize ~05AT(ATG™'A)A+AT(AT6 g +b)-05¢"G g

subject to (2.47)

220, i=mg+1...,m

Furthermore, the minimum of the primal and the maximum of the dual function values are equal at
(x*,A*). If one is able to solve the primal problem, then the dual variables A* can be retrieved.
Similarly, it may be possible in some cases to solve the dual problem and then retrieve the optimum
primal solution, x*. The theory regarding duality is locally as well as globally (convex programming

problems) applicable. Duality cannot be used as a general purpose solution technique and great care
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must be exercised, because in some cases the dual problem may have a solution from which one is
not able to retrieve the primal solution. Dual methods have been used extensively in LP problems as

a very efficient solution technique and are also used in QP and general NLP problems.
Closing remarks

Many methods and their variations for constrained optimization have been developed and evaluated.
References such as Gill et al. [81GI1m], Dennis and Schnabel [83DE1m], Luenberger [84LU1m],
and Fletcher [87FL1m] should be consulted.

The preceding discussion attempts to give a general overview of the basic mathematical
programming techniques (optimization) and the theory involved in order to develop some
understanding for the relative merits of the methods. The reader is referred to the references stated
for more information on the theoretical development as well as the various modifications and

refinements to ensure efficiency and numerical stability of these methods for practical use.

There is no one optimization technique that will solve all problems satisfactorily. Various methods
exist which have all been modified in some or other way to take advantage of some problem
characteristic or to avoid some unacceptable behavior in order to create more efficient solution
techniques. Optimization problems can be categorized into different standard problem types.
Solution algorithms can be formulated for each of these. It is the user's task to determine into which
category his/her problem fits, and then to apply the appropriate optimization subroutine. Therefore

one must have a basic understanding of the underlying principles of the various methods available.
2.3 APPLICATION OF OPTIMIZATION IN ENGINEERING

Many scientific and engineering problems can be posed in terms of optimization, ie. seeking the
optimum value of an objective function by varying some parameters. The regular use of optimization
to solve practical problems started during and after World War II and was made possible by the
creation of computer technology and the development of the simplex method to solve LP problems.
LP is still one of the most widely used optimization techniques.

With the development of the computer technology, researchers were able to solve problems that
were previously regarded as theoretically interesting, because of the amount of computational power
necessary to solve them. Enormous progress has been made over the years in developing efficient
optimization algorithms for solving nonlinear optimization problems and to enhance the performance
of existing ones. Furthermore, these developments have led to the solution of real-world problems

that were previously regarded as “unsolvable”. The quasi-Newton methods for unconstrained
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optimization problems and the SQP methods for nonlinear optimization problems form part of the
success story. In spite of all these developments, there are still problems that are intractable and

cannot realistically be solved today [91WRI1m].

As more and more of the optimization algorithms became known to the engineering and scientific
communities, they were applied or adapted to exploit the structure of particular problems. The
successful solution of real-world problems motivates problem formulators to seek and solve larger
and more complicated problems in the same or closely related areas. The application of optimization
in engineering is a very dynamic and relevant research topic as will be subsequently discussed.
Several publications cover the theoretical development and the applications of optimization
algorithms, for example, Mathematical Programming, Journal of Optimization Theory and
Applications, SIAM Journal on Control and Optimization, Engineering Optimization, International
Journal for Numerical Methods in Engineering, Journal of the Operations Research Society,

Computers and Chemical Engineering, and many more.
Engineering versus mathematical optimization

Engineers and mathematicians view optimization in different ways. Mathematical optimization
assumes that a problem can be formulated in formal mathematical terms and much of the theoretical
and algorithmic development concentrates on methods for locating the solution as accurately and
efficiently as possible. Engineers look from a very problem orientated viewpoint in which they
require sensible, reliable and economic designs or plans to fulfill functional requirements. Engineers
often experience difficulties in formulating the real-world problems in precise mathematical terms
(equation (2.1) refers). The proper formulation (mathematical transcription) of a problem is an
important step in the optimization of any system. The pfoblem formulation process requires
identification of the decision variables, an objective function and the constraints of the system for its
reliable performance. It is critically important to formulate a problem by properly modeling the
physical system. If the model of the system is inaccurate or its formulation is incorrect, the

optimization process can lead to strange results, or no results at all.

Once the problem is transcribed into the form stated in equation (2.1), it can be solved by means of
the numerical optimization methods available. Even if this is possible, it may sometimes occur that
the problem formulation does not fit into one of the categories studied by mathematicians. The
engineer is more than willing to accept a good approximation for the optimum as long as it can be
obtamed without too much effort. To perform engineering optimization in a very effective way, the

engineer needs a solid background in engineering fundamentals, matrix algebra, a basic knowledge of
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numerical optimization algorithms (underlying principles) and computer programming. Textbooks,
like those published by Leitmann [62LEle, 67LEle], Fox [71FOle], Haug and Arora [79HA2e],
Reklaitis et al. [83REle], Vanderplaats [84VAle], Edgar and Himmelblau [88EDIle], Arora
[89AR1e], provide valuable background on the principles that govern engineering optimization. The
formulation of the optimization problem and the scrutinizing (verifying) of the results are the links

between mathematical optimization and engineering.

The application of optimization in engineering is not limited to specific numerical optimization
methods, but covers the whole spectrum of linear programming, constrained and unconstrained
nonlinear programming, network programming, integer programming, multiobjective optimization,
geometric programming, and stochastic programming just to name a few. Although engineering
optimization is basically concemed with the application of existing techniques, new techniques have
been developed that originate directly from the physical sciences, e.g. geometric programming
[80EC1e, 85RIle]. Optimization methods are fundamentally interdisciplinary in nature and one
cannot in general dedicate a specific method to a specific engineering discipline. Some methods,

however, are better suited to specific problems than others.

Engineers are sometimes confronted with problems or decisions in which more than one objective
must be satisfied [83CL1e]. Multiobjective optimization methods are used to make the right
decision in these conflicting situations. The theory and application of multiobjective optimization
and decision making are discussed in detail in Osyczka [840Sle] and Reeves and Lawrence
[92REle]. Due to its relevance, multiobjective optimization and decision making is a very active
research topic and the interested reader should consult the above-mentioned references and the

references contained therein for further information.

Numerical optimization techniques have been applied widely to solve a great number of different

engineering problems in the various application fields of design, planning and control.
Optimal design

Engineering design has emerged as a major field of application for numerical optimization
techniques. Numerical optimization is to provide a computer tool to aid the designer in his/her task.
In the past the conventional design process has more than once lead to uneconomical designs. The
designer was able to freely use his experience and intuition in making decisions. The optimum design
process forces the designer to identify a set of design variables, an objective function to be
optimized, and constraint functions for the system and as such gain a better understanding of the

problem. Human interaction is an essential part of the optimum design process and it is performed in
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a more formal and organized way than in the conventional design process. The design process is
more organized, using trend information in a very systematized way. Computers play a very
important role in the optimal design process, introducing more accuracy, efficiency and allow us to

understand the behavior of complex systems.

The basic principles of optimal design are discussed in, for example, Avriel et al. [73AVle],
Vanderplaats [84VAle], Arora and Thanedar [86AR2e] and Arora [89AR1e] and various design
applications are illustrated. Major contributions in the field of optimum design originate from
structural optimization, process equipment design, and mechanical design. A wide variety of design
applications (in various engineering disciplines) to illustrate the integration of optimization as part of
the design process can be found in, for example [71FOle, 73AV1e, 78WIle, 79AV1e, 79HA2e,
83REle, 84BEle, 84VAle, 85BEle, 85GEle, 86AR1le, 86AR2e, 86LIle, 86THle, 88ARI1e,
88ED1e, 88TS1e, 89AR1e, 91PEle, 92BIle]. The articles and textbooks give useful hints to assist
the designer when faced with a practical design optimization problems. It is clearly illustrated that an
efficient design process should allow for the designer’s experience, intuition and creativity to go

hand in hand with the optimization technique.

Optimal control

The optimal control problem is to find a time dependent feedback control function that assures
optimal behavior of a system during its dynamic performance. The system has active elements that
sense change in the output and the system controls get automatically adjusted to correct the situation
and optimize a measure of performance. On the other hand, optimal design concems the design of a
system and its elements in order to optimize an objective function; the system then remains fixed for
its entire life. The solution of optimal control problems relies heavily on the theory of calculus of
variations and optimal control theory [62LEle, 67LEle, 79HA2e, 87FR1e]. Optimal control theory

considers problems that cannot be solved by the calculus of variations.

Optimal control problems can also be transformed into optimum design methods and solved by the
same numerical optimization methods [89AR1e, 92BIle]. Control problems can be found in all the
different engineering disciplines and were particularly relevant in many of the complex military and
space programs that were initiated during the 1960’s [87FRle]. Optimal control problems are
experienced in aerospace systems (e.g. trajectory optimization) [62LEle, 67LEle, 87HA2e,
93BEle], process engineering (e.g. reactor design and nonsteady-state processing) [92BIle],

Operations Research and Economics (e.g. economical planning) [87FR1e], and the dynamic response
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control of both mechanical and structural systems (e.g. precision control of machines, control of

structures under wind loads and earthquakes etc.) [79HAZ2e, 89AR1e].
Optimal planning

Optimization techniques play a vital role in effective planning, scheduling, and control of projects and
production processes. The processes of planning, control and scheduling are in themselves
optimum-seeking processes. The efficient use and proper scheduling of expensive human resources
and equipment results in creating more with less input, resulting in great economical benefit
[91GL1le]. Plant layout, plant and warehouse location, product distribution, operations planning,
production and working schedules are just a few examples of the problems that can be addressed.
Special numerical techniques have been developed to aid management to perform planning and
control tasks in a more effective manner [92HO1le]. The role that optimization plays in these
activities is illustrated both theoretically and practically in [87FR1e, 91HUle, 92HOle]. Clearly, the
logical approach of mathematical optimization is very useful when applied to the many rational

problems in decision-making.
Algorithms and software

The application of optimization in engineering needs efficient and robust algorithms. Researchers in
the area of mathematical programming are constantly working on this aspect to develop and
implement new algorithms and to improve old omes. Both general-purpose and specialized
algorithms (and software) are needed to aid engineers in performing optimal design, control and
planning. Software development for engineering applications is, however, lagging behind the

mainstream of mathematical programming development.

Special-purpose algorithms and software are mostly needed to solve real-world problems. The
various engineering disciplines have specialized software to address their specific needs [84VAle,
88EDle, 89AR1e]. Some general purpose design optimization software is becoming available, e.g.
ADS (Automated Design Synthesis - Vanderplaats [86VAle]) and IDESIGN (Interactive Design
Optimization of Engineering Systems - Arora [88AR1e, 89AR1e]). Some other codes are discussed
by Reklaitis et al. [83REle], Belegundu and Arora [85BE1le], and Edgar and Himmelblau [88ED1e].

Software that implements the various optimization algorithms discussed in section 2.2 is readily
available. Some general-purpose libraries are available that contain subroutines implementing these.
Examples are the NAG-library, IMSL-library and the Harwell-library. Furthermore, these libraries
also contain the implementation of various other mathematical routines, e.g. linear algebra. The use

of the general-purpose libraries is the only resort when specialized software to perform the task is
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not available. The user is responsible for the proper interaction between engineering problem
formulation and modeling and the mathematical solution process. The main program and the other
routines written by the user can become very complex and are prone to errors, so extreme care must
be exercised during program development. This method of applying optimization to engineering
requires that the user has some knéwledge of the algorithm in use. Guide-lines on use of general-

purpose software are discussed in Arora [§9ARI1e].

Artificial intelligence .

The use of artificial intelligence (AI) in engineering design, planning and control is a fairly new
development. Artificial intelligence concentrates on emulating human reasoning in order to solve
problems. Al algorithms analyze the methodology of how a human being solves a problem and
translates the thought process to the computer. The computer then approaches the human reasoning
process to solve the problem in contrast to executing an ordered set of instructions as found in
traditional computer programming. Expert systems (knowledge-based systems), neural networks,
and fuzzy logic are alternative approaches within the artificial intelligence field. Artificial intelligence
can couple the reasoning and judgment of the human mind with the power, 'speed and memory of the
computer to solve various engineering problems. The general application of artificial intelligence to
engineering problems is discussed in Arora and Baenziger [86AR1e], Winstanley [91WIle], Gero
[92GEle], Rowe [92RO1e] and the references cited therein. The application of artificial intelligence-
in engineering is of great importance, especially the fact that the decision-making power of an expert

can be emulated to perform optimal tasks.

Closing remarks

The various numerical optimization techniques present the engineer with a means to determine the
best possible solution on a theoretical basis. Intangible factors and practical considerations méy'
change the final recommendation to other than the calculated optimum. It is up to the engineer to
apply proper judgment to take into account these practical factors. Thus, theoreticél_ and economic

principles must be combined with the understanding of the practical problems that will arise.

The preceding discussion presents just a few examples to illustrate how optimization techniques can
be implemented in the engineers’ never-ending search for improved ways of doing things. The
references cited in this section are intended to serve as an introduction into the field of the
application of optimization in the different engineering disciplines. Substantial literature exists for

future education in this topic and more research and knowledge than presented here is required to
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fully understand these topics . The references contained in these books and articles can be used as

further sources of information.

2.4 OPTIMAL DESIGN OF DRY-COOLING SYSTEMS AND AIR-COOLED HEAT
EXCHANGERS

In this section literature relevant to the optimal design of dry-cooling systems and air-cooled heat
exchangers are reviewed. The discussion on dry-cooling system optimization will be cast primarily in
the context of power plant cooling to coincide with the illustration of the engineering optimization

application of the present investigation.
Irreversibility and Thermoeconomic design optimization of heat exchangers

The second law of Thermodynamics involves the fact that real processes proceed in a certain
direction and not in the opposite direction due to the thermodynamic irreversibilities that exist.
London [821L.01e] gives a list of irreversibilities that exist in energy conversion systems. The second
law further leads to a property, called entropy, which enables us to treat it quantitatively in terms of
"the operating conditions for processes. Bejan [89BEle] states that if we are serious about
constructing efficient energy systems and conserving energy, we have no other choice but to design

for less and less entropy production.

The basic design problem is to determine the thermodynamically optimum size or operating regime
of a certain engineering system, where by optimum we mean the condition in which the system
destroys the least exergy (useful energy) while still performing its fundamental engineering function
[87BE1le, 89BEle]. The destruction of exergy is intimately tied to the generation of entropy in the
various components of a system. The loss of exergy, or irreversibility, provides a generally
applicable quantitative measure of process inefficiency. Analyzing a multi-component plant indicates
the total plant irreversibility distribution and interaction among the plant components, pinpointing
those contributing most to overall plant mefficiency [85KOle, 87BEle, 89TSle]. A solid
understanding of the mechanism of entropy generation in each of the systems components is essential

in setting out a strategy for decreasing entropy generation by the entire system [89BE]le].

Different criteria based on the exergy concept are commonly used for the performance evaluation of
heat exchangers. These include irreversibility generation minimization analysis [82BEle, 87BEle,
89AC1le, 89RA2e] and thermoeconomic analysis [82LO1le, 83LO2e, 85KO1le, 89RA2e, 89TSle].
These criteria are used to define objective functions used for optimization of heat exchangers. The
traditional irreversibility generation based objective function is simply expressed in terms of the

irreversibilities occurring in the heat exchanger, while the thermoeconomic objective function is
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obtained by combining the pricing of the penalties of the thermodynamic irreversibilities with the

capital costs.

The irreversibility of any heat exchanger is basically due to two factors, namely the transfer of heat
across a stream-to-stream temperature difference and the pressure drop that accompanies the
circulation of fluid through the apparatus [78BEle, 82BEle, 85KOle, 89ACle, 89RA2¢]. The
above-mentioned irreversibilities can systematically be reduced by slowing down the movement of
the fluid through the heat exchanger. This technique is synonymous with employing larger heat
exchangers. Thus, in order to build thermodynamically efficient heat exchangers, one has to build
large units. Large heat exchangers, however, require large amounts of materials that, in order even
to be produced, require large amounts of exergy for consumption during the manufacturing process.
It is clear that an optimization program must include the exergy losses associated with both the

operation of the heat exchanger and those invested (capital) in the hardware [8§2BE1e].

The thermoeconomic objective function is a combination of the capital cost and the costs associated
with the heat exchanger irreversibilities (running/operating costs). The purpose of thermoeconomic
optimiéation is to achieve, within a given system structure, a balance between expenditure on capital
costs and exergy costs which will give a minimum cost of the plant product [85KOle]. This
objective function is preferred for commercial heat exchanger design and the global optimum yields a

realistic result of a finite area heat exchanger.

Conventional heat exchanger optimization seeks the optimum trade-off between the capital costs and
the operating costs for the entire system. Most thermoeconomic methods simplify the search for an
optimum by making these trade-offs at system component level. The fundamental idea that justifies
the irreversibility minimization at system component level is that the overall entropy generation'rate
of a system is the sum of all the system’s components contributions [87BE1le]. The conventional
design process can be seen as thermoeconomic optimization on a global scalé, because the objective
function tries to minimize the combination of capital and operation costs (minimum material
consumption, minimum enefgy consumption). Contrary to thermoeconomic optimization, the real
causes and sources of costs due to exergy destruction are not as clearly defined through the
conventional design optimization process. Thermoeconomic design optimization indicates the
optimal thermodynamic efficiency of a component from a cost viewpoint and therefore helps the

designer to create improvements, both thermodynamically and economically.
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Air-cooled heat exchanger optimization

Air cooling made a strong bid for application in the refining, petrochemical and natural gas industries
during the 1950°s when it was realized that air can be a more economical coolant, even in locations
where water is plentiful. The design of air-cooled heat exchangers, especially during the 1950’s and
the 1960’s, was mainly based on rules of thumb obtained from the recorded operating experience of
existing installations or designers’ intuition. For example, the average design face velocity for air-
cooled heat exchangers was regarded as between 2 m/s and 3.5 m/s, and heat exchangers were
usually equipped with four tube rows [S9KEle, 60RUle, 66L.Ole, 661.O2e]. However, it was
realized that by changing the traditional design configurations and operating conditions, great
economical advantages were possible due to the trade-off that exist between capital and operating

costs [S9KEle, 59NAle, 66LO1e, 66L02e, 66SCle, 66SC2e].

Commercially available equipment (e.g. finned tubes, fans) were often used in the search for the
optimum air-cooled heat exchanger. As a result of this practice, the dimensions of the equipment
were not optimized, but the configuration instead [661.01e, 66L.02e]. The use of this commercially
available equipment simplified the optimization process to a great extent. The techniques used in the
search for the optimal heat exchanger design were mamly mathematical techniques (e.g. differential
calculus - setting the first derivative equal to zero) [S7FAle, 59KE1le] or graphical presentations of
the trade-off between heat transfer and fluid flow relations [S9NAle, 66LOle, 66L.02¢, 66SC2e,
69JEle] . Schoonman [66SCle] presented a more advanced approach by using a computer program
to perform a cyclic variation of three variables, namely number of tube rows, fin spacing and fan
power, through several combinations to find the optimum design. Although these approaches tend
to limit the number of relevant parameters due to practical considerations or in order to simplify the
problem, they can be seen as the forerunner of the more modern and complex optimal analyses that

followed.

More sophisticated search techniques were used to locate optimal heat exchanger designs. Peters
and Nicole [72PEle] discuss the use of factorial searches of all the possible combinations of
variables and come to the conclusion that they become unsatisfactory as the number of variables
increases. Due to the large number of discrete variables encountered in air-cooled heat exchanger
design (due to the use of commercially available equipment), they favored the use of heuristic
algorithms (starting close to the optimum) to perform the optimal design process, specific to the
equipment under consideration. Palen et al. [74PAle] propose the application of the Box Complex
Method [65BO1le] of systematic search for the optimal design of heat exchangers. Various aspects
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of optimal heat exchanger design (e.g. the criteria for the objective function and design variables) are
discussed. Previously, the investment was related to the heat exchanger area only, but Palen et al.
[74PAle] proposed the calculation of the investment from the dimensions of the component parts
and the manufacturing costs. Fontein and Groot Wassink [78FO1le] utilized the Simplex Method
[65NE1le] and a steepest decent method to optimize a shell and tube heat exchanger by using the
NTU-method (number of transfer units) [86HO1¢].

Shah et al. [78SH1e, 81SH2e] recognize the heat exchanger optimization problem as one suitable for
nonlinear programming (optimization) techniques. Several numerical optimization techniques (e.g.
conjugate gradient methods, penalty function methods) are referred to in the paper as they have been
developed specifically for computer application and are thus suitable for implementation on these
design problems. Once the problem is transcribed into formal mathematical terms, the optimization
method most suited to the specific problem formulation can be used. The authors suggest that a
computer program containing several optimization methods and a heat exchanger performance
analysis routine should be used for design purposes, as no single optimization method will be well-
suited to all the problems. A heat exchanger optimization methodology is outlined and the process is
illustrated by means of an example (also refer to [81SH1e, 88SHle]). This paper is indeed a very
valuable contribution to promote the use of nonlinear programming techniques in optimal heat

exchanger design.

Kroger [79KR1e] presents a method to determine the cost optimized dimensions and operating
conditions for circular finned heat exchanger tubes by maximizing the performance over cost ratio.
The general practice in the previous optimal design processes of air-cooled heat exchanger was to
choose a surface (described by its tube pitch, fin pitch, fin diameter, outside tube diameter and fin
thickness) beforehand and use its experimentally obtained performance correlations. Krdger,
however, uses the general relations for the heat transfer and pressure drop during flow across finned
tube arrangements, expressed in terms of the various geometrical and flow parameters, as found in
literature [45JAle, 63BR1e, 66ROle, 66VAle, 74MI2¢e]. The optimization procedure takes into
consideration all the parameters that may affect the capital and operating cost of the heat exchanger
- and does not prescribe any limits, other than those absolutely essential due to practical limitations. A
specific capital and operation cost structure for the finned tubes is assumed and an analytic objective
function is obtained that expresses the performance over cost ratio in terms of the various
geometrical and operating parameters. The design method is illustrated with a practical example and
the objective function maximization is performed by computer. The results of this study show that

the optimum design and operating conditions differ considerably from conventional designs. For
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example, the fin thickness is found to be much less than that found in practice. Similarly, the stream
velocities are also lower than those found in industrial applications. In part this is due to the cost
structure chosen. However, the method illustrates trends in the search for optimum geometrical and

operating parameters.

A similar procedure (refer to [79KR1e]) is proposed by Kroger [83KR 1e] for the optimal design and
operating conditions of a plate fin air-oil heat exchanger with tape inserts inside the tubes. Literature
correlations are also used for the heat transfer and pressure drop calculations. An industrial air-oil
heat exchanger is tested experimentally in order to verify the accuracy of the heat transfer and
pressure drop equations employed and for the purposes of comparison. The results of the
performance over cost ratio maximization again indicate geometrical and operating parameters that

differ from those found in industrial applications.

Hedderich et al. [SOHEle, 82HEle] developed a computer code for analysis of air-cooled heat
exchangers and coupled it to a numerical optimization program (constrained function minimization)
to obtain an air-cooled heat exchanger optimization and design procedure. The optimization
program is based upon the method of feasible directions and the Augmented Lagrangian Multiplier
Method [84VAle] that can be used for different optimization applications. They used the heat
transfer and pressure drop correlations provided by Briggs and Young [63BR1e] and Robinson and
Briggs [66RO1e] which enabled them to vary the finned tube geometrical parameters in order to find
the optimum heat transfer surface. The developed code has the capability to design for nine different
configurations of triangular pitch banks of finned tubes. Air-cooled heat exchangers can be
optimized according to the following objective functions: minimum volume, minimum heat transfer
surface area, minimum fan power, minimum airside pressure drop, and minimum tubeside pressure

drop. No economically based objective functions were considered in this study.

Pribis [81PR1e] describes the combination of heat exchanger design programs and optimization
routines. The optimization routines are based on gradient search methods. Various surfaces can be
accommodated in the program, e.g. bare tubes, plate fins, spine fins, and helical wound fins. The
author stresses the fact that the heat exchanger must not be modeled on its own, but must be

modeled in the system to get realistic optimization results.

Heat exchangers are used in essentially all the process industries and play a vital role in process
design considerations. In their textbooks, Edgar and Himmelblau [88EDle], and Peters and
Timmerhaus [91PE1e] extensively treat the topic of optimal economic design of equipment as found

in the chemical process industries. These books gives a clear concept of the important principles of
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design and economics from a practical point of view. The material presented will help the engineer
in heat transfer equipment selection, design and optimization and various examples are given to

illustrate the methodology used.

Computer programs for the design, performance evaluation and economic optimization of heat
exchangers are extremely useful engineering tools. Most of the more complex optimal heat
exchanger designs discussed in this section were obtained in this way. Breber [88BR1e] discuss the
main features, such as program capabilities, data input, result output and program logic, required in
these type of programs to perform reliable analyses. An overview of currently available programs is
piesented to aid the engineer in choosing a program for his/her specific requirements. The author
concludes that computer programs cannot substitute engineering judgment which is needed in
problem formulation and scrutinizing of the results. Taborek [91TAle] discusses the use of expert

systems in heat exchanger design which aims to establish more user interaction during the design

optimization process.

Optimum industrial heat exchanger design differs from the thermodynamic design in that several
additional criteria, such as demands and restrictions imposed by the interrelated design
considerations, must be satisfied. The heat exchanger designer must obtain a global optimum within
all the demands and restrictions with respect to initial and operating cost, reliability,

manufacturability, and maintenance ease.

The literature cited in the survey above are by no means complete and aim to give an overview of the
different optimization algorithms and analyses models used in the design of optimal air-cooled heat

exchangers.
Dry-cooling system optimization

Between 1970 and 1980 major engineering economic studies of dry-cooled electrical generating
plants were conducted in the USA with the object of minimizing the cost of electricity generation
when dry-cooling towers are coupled to a turbo-generator [70ROle, 75MlIle, 76Fva.e,v 78RO1e,
79CH2e, 79HAle, 79NAle]. Factors that affect the design and optimization of dry-cpoled power
plants are discussed in Miliaras [74MIle]. Both natural and mechanical draft indirect dry-cooling
towers are considered in these studies. At that time dry-cooling was successfully utilized in a
number of steam-electric generating plants in Europe and the concept was relatively new to the USA
electric generating plants [70RO1le]. Up to then, dry-cooling in the USA was extensively used in the
process industries. The need for an alternative means of cooling was to promote water conservation

through the industrial use of dry-cooling and to conform with the environmental regulations. Most
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of the studies compared dry-cooled steam-electric plants to wet-cooled plants in terms of the
increased power generation costs. Dry-cooling towers have the inherent characteristic of
performance degradation during high ambient temperature and subsequently the plant will suffer
production losses during these conditions (lost performance ). In the USA most of the electricity
generating plants are privately owned and thus cannot afford production losses. The concept of lost
performance is discussed in detail in section 4.7. Dry-cooling received a bad reputation and was

sometimes severely penalized as a result of this inherent characteristic.

Due to the complexity of dry-cooling system economics, several assumptions are introduced into the
reviewed studies to simplify the optimization problem. The optimization of some plant and cooling
System operating parameters and/or the general cooling system is conducted. However, in most of
the studies, optimization consists of matching components effectively. These particular studies are
for stafe-of-the-art cooling systems and therefore use vendor data and fixed designs for the available
dry-cooling tower equipment. This approach results in the use of = 4-6 decision variables for the
optimization process. Ard et al. [76AR1e] developed detailed costs and cost algorithms for dry-
cooling systems. The equipment cost are expressed in terms of their dimensions or operating
variables. These cost relationships present a means of varying equipment dimensions contmuously
and not discretely as is permitted by the use of standard equipment. Choi and Glicksman [79CH2e]
used these cost algorithms in their optimization study. |

In the above-mentioned studies, the basic underlying principle of the optimization process is the
same. First, a plant location (weather data), a turbo-generator (performance characteristics) and an
initial temperature difference (difference between the steam and the inlet ambient air temperature to
the cooling tower) are chosen. The dry-cooling tower, that minimizes the cost of electricity
generation throughout the year, is determined by varying the different decision variables that describe
its geometry and operation. The cost of electricity generation is made up of the capital cost,
operating cost (including fuel cost), and the cost due to lost performance. The process is repeated
for all the initial temperature differences to be considered in the analysis. Thus, for each initial
temperature difference an optimum dry-cooling system is calculated and the global optimum dry-
cooling system is selected from these. Computer programs were written to perform the economic
optimum designs. This method of optimization is quite a lengthy process and will not be adequate
when many variables enter the optimization process. The Box Complex Method [65BO1e], double-
shotgun-and-search method [72AN1e] are just two of the optimization techniques used [78ROle,
79CH2e]. |
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The goals of these reports were to reduce the cost of state-of-the-art dry-cooling systems and to try
and develop new concepts with lower costs (refer to [79HAle]). They differ mainly in the following
aspects: the assumptions made to facilitate the analysis, the treatment of lost performance, cooling
system design, plant type, plant location, turbine type, cost modeling, physical modeling,
optimization procedure used, and parameters optimized. Most studies have shown that if dry-
cooling is used, the cost of electricity will be 10% to 20% higher than when wet-cooling towers are
used. The cost is higher due to the higher investment cost (extensive finned tube heat transfer area
required) and the poorer plant thermal efficiency (higher turbine backpressure). Valuable
information, regarding the advantages and disadvantages of dry-cooling and process modeling, is
presented in these reports. The results present general tendencies rather than specific values. The
reports indicate that dry-cooling systems require special turbines that can operate at higher back
pressure than the conventional turbines that are found in applications where wet-cooling is used.
Although the extended surface heat exchanger is the heart of any dry-cooling system, no author tries
to optimize it in a rigorous manner. It is not clear from the above-mentioned studies if dry-cooling
system equipment has been optimized, either by the vendors or by the studies performed. The
coupled effects between the economic approaches, the underlying assumptions, the detailed designs
and the overall system designs are not well defined in many respects. A summary of cooling tower

selection and optimization as covered by these reports can be found in [85MAle].

Hauser et al. [71HAle] discuss the economic optimization of turbine and cooling system
combinations. The object of the paper is to describe briefly the parameters and input to be
considered during optimization and their effects on the overall system performance. The authors
suggest that improved performance, coupled with lower costs, can be obtained in the cooling system
design by using techniques to optimize the turbine and cooling system as an entity. The basic

requirements for the optimum selection of a turbine and cooling system combination are:
(1)  Accurate cost data for equipment, installation, system operation and deficiencies;
(2) Accurate determination of the system performance throughout its entire life;

(3) A comprehensive evaluating technique which can merge cost and performance factors into a
single figure of merit, e.g. present worth of the total revenue requirements for a given system

over its entire operating life.

An extensive list of input data that is required to perform such an integrated optimization is given
and discussed. A sample turbine-cooling system optimization study is presented to illustrate the

above principles.
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Moore [72MOle, 72MO2e, 73MO1e, 73MO2¢] presents a series of reports on the minimum size of
large dry-cooling towers. An analytical minimum size function is presented that relates the flow
areas, tower height and fan power to parameters of the heat exchanger, assuming one dimensional
flow through the tower. This was done with a large power plant in mind, with a view to minimize
the size of a natural draft tower shell, and hence its visual impact and cost; or the fan power of a
mechanical draft tower, and hence its cost and noise impact. The results show the importance of
heat exchanger design on tower size and various requirements for minimum tower size are directly
revealed by the size function (e.g. a very shallow heat exchanger). However, it is not obvious how

such requirements could economically and practically be met.

Johnson and Dickinson [73JO1e] perform a similar study for forced draft dry-cooling towers as the
one presented by Moore [72MOle, 72MO2e, 73MOle, 73MO2e]. Although no cost factors are
considered in this analysis, an interrelationship of the parameters that will contribute most
significantly in an optimum design is derived. The influence of these parameters on the minimum size

and the heat exchanger frontal area is determined.

Andeen and Glicksman [72AN1e] describe a cost optimization procedure to design a dry-cooling
tower. They state that the important cost to be optimized is the incremental increase in the cost of
power generation, resulting from the use of a dry-cooling tower, over a plant operating at 40%
efficiency. The incremental cost is derived from the capital and operating costs of the plant. The
optimization problem is reduced to heat transfer and cost equations containing 6 variables and the
double shot-gun method is used to solve the problem. The authors state that in order to make dry-
cooling towers more economical, their cost must be minimized by optimizing the entire plant.
Furthermore, the authors realize that the optimization must not be restricted to the adaptation of
predesigned heat exchanger modules, because the module design may not be anywhere near its

optimum.

Ecker and Wiebking [78EC1e] investigate the optimal economic design of a natural draft dry-cooling
tower with a vertical heat exchanger bundle arrangement. The optimization model is developed by
using the relevant physical laws and engineering design relations and transcribing them into the
objective function that minimizes the annual cost (fixed charges and operating cost). The problem is
then reformulated as a geometric programming problem according to the special mathematical
formulation required by this method. The paper is concluded with a numerical example to illustrate
the method. Geometric programming is also used in the design and performance optimization of a

condenser and wet cooling tower combination as described by Stuart and Amold [86ST1e].
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A design method for optimal economical dry-cooling towers, using the existing literature and
standard sourcebooks on heat exchanger design and performance, is presented by Vangala and Eaton
[78VAle]. The combination of all the different information is explained by means of flow diagrams

and the method seems very cumbersome.

Montakhab [80MO1le, 80MO2e] published two papers that deal with the factors that affect the size
and cost of dry cooling towers and the related heat transfer equipment. He aims to reduce the heat
exchanger surface area, the tower size and the pumping power requirements by investigating a means
to define suitable heat exchanger geometries and surfaces for application in dry-cooling tower

applications.

Li and Priddy [85LI1e] published a textbook on the topic of power plant systemvdesign and discuss
all the power plant components, economic aspects and design concepts. The topic of mathematical
design optimization is also treated and illustrated with an example covering a turbine-cooling system

combination. Three phases are identified for a proper optimization study, namely:

(1) System configuration design (specify the different configurations and combinations to obtain

the iitial costs);

(2) System simulation (determine the performance characteristics and the operating costs for the

different conﬁgurations/combindtions);

(3) Comparative economic evaluations (compare the different configurations/combinations to find

the minimum cost).

The methodology presented in the above-mentioned textbook is also discussed and illustrated in the

paper by Li and Sadiq [85L12e].

Electricity generation costs, i.e. capital costs and operation costs, can form a largé part of thé total
electricity cost and therefore emphasizes the importance of optimizing power plant design. Veck and
Rubbers [87VEle] discuss the important role that the cooling system plays in this optimization
process and outlines the important choices that have to be made in order to perform an economic
evaluation. The economics of evaluating cooling systems are closely related to the characteristics of
the demand for electricity. A methodology is presented to determine the optimum size and type of
cooling system based on the amount of net energy produced annually. The cooling system must be
designed to maintain the turbine backpressure as close as possible to its maximum efficiency, where

the electrical output is the maximum.
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Buys and Kroger [89BUle, 89BU2e] use a constrained variable metric method (SQP-method) to
perform cost-optimal designs of new or existing (retrofit of heat exchanger bundles) natural draft
dry-cooling towers. The SQP method is preferred to other algorithms due to its computational
efficiency. Heat transfer and fluid flow relations, expressed in terms of the various geometrical
parameters, are used to simulate the performance of the dry-cooling towers. A prescribed cost
structure and practical constraints are employed in the problem formulation. The finned tube
performance correlations of Briggs and Young [63BR1e] and Robinson and Briggs [66ROle] are
used to simulate the influence of finned tube geometrical parameter variation on their performance.
Both articles are accompanied by a numerical example. Sensitivity analyses have also been
performed to investigate the influence of the fixed parameters and design correlations on the
optimum design. Although the results show geometrical parameters that differ from those usually
found in practice, they provide certain trends in the manufacturing and construction of cost-optimal

dry-cooling systems.

The optimal sizing of indirect natural draft dry-cooling towers for combined cycle power plants that
corresponds to the minimum cost of electricity generation is discussed by Lovino et al. [90LOle].
The authors identify the strong interaction between the turbine and the cooling system as one of the
main reasons for such an optimization study to be performed. Simplified design criteria and cost
evaluation techniques are employed, originating from preliminary design data. By considering all
possible combinations of the tower heat exchanger and condenser geometry and steam turbine
design, the optimization has been performed by a step by step variation of the cooling tower range
and approach. Sensitivity analyses have been performed to investigate the influence on the optimal
solution of different hypotheses concerning the tower investment and fuel cost. The results show

that the optimum dry-cooling tower design is strongly influenced by the turbine characteristics.

Closing remarks

The application of optimization techniques in dry-cooling tower design has been reviewed in this
section. Many different methodologies have been discussed; some of them are generally applicable,
while others are confined to a specific application under consideration. One of the most important
conclusions that can be drawn from this review is that the cooling system has a significant effect on
the overall plant economics. The effect on both the investment cost and the plant overall
thermodynamic efficiency make it necessary to perform optimization analyses that take the strong
interaction between the cooling system and turbine into account (in the case of power plants). The

matching between the performance characteristics of the dry-cooling tower type, i.e. natural draft
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indirect system or mechanical draft direct system, and the performance characteristics of the specific
turbine type (differences in blade design and exit area), needs careful consideration [81MOle,
87KN1e, 87TR1e, 87VEle, 91SZ1e]. This requires the simulation of the interaction by means of a

computer model.
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CHAPTER 3

FORMULATION AND MODELING OF THE PERFORMANCE
EVALUATION AND OPTIMIZATION PROBLEMS

3.1 INTRODUCTION

Formulation of an optimization problem involves transcribing a verbal description of the problem
into a well-defined mathematical statement. The optimum problem formulation process requires the
identification of the design variables, an objective function and the constraints imposed on the system
for its reliable performance. It is very important to formulate a design problem by proper modeling
of the physical system. If the model of the system is inaccurate or the formulation is incorrect, the
mathematics of optimization can lead to strange results, or no results at all. Thus, the solution is

only as good as the problem formulation and modeling.

The concepts of problem formulation and modeling will subsequently be discussed and applied to the
performance evaluation and optimal design of both natural and forced draft dry-cooling towers.

3.2 PROBLEM FORMULATION

The formulation process can be broken down into three well-defined steps [83REle, 88EDle,
89AR1e], ie.

(1) Identification of the decision variables;
(2) Identification of the objective and expressing it as a function of the decision variables;

(3) Identification of all the constraints and expressing them as functions of the decision variables in

order to be transcribed into mathematical expressions.
Each of these steps will subsequently be discussed.

Decision variables

The decision variables describe the system under consideration. There is a minimum number of
variables required to formulate the problem properly, otherwise the formulation is incorrect or not
possible at all. It should be kept in mind that these variables must be independent of each other as

far as possible. Once these variables are assigned numerical values, the design of the system is
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known. The specified values of these variables must satisfy the imposed constraints in order to

arrive at a feasible solution.
Objective function

An objective function is required to represent some criterion to compare the different designs. The
objective function must depend on the decision variables (in an implicit or explicit way) that can be
varied to achieve its optimum value. The selection of a proper objective function is a very important
decision in any design process. The minimum value of single-objective functions will be determined
in this study.
Constraints

All the restrictions placed on a design are called constraints. Each of the constraints must be
influenced by the decision variables in an implicit or explicit way. Furthermore, these constraints
must be independent of each other. Engineering problems may have equality or inequality
constraints. Linear programming problems have only linear constraints, whereas general problems
have nonlinear constraint functions as well. Both linear and nonlinear constraints are considered in

this study.

A feasible design must satisfy all the equality constraints. In some designs, it is possible for some of
the inequality constraints to be satisfied as equalities (active inequality constraints), while others
remain as inequalities (inactive equality constraints). Although engineering problems have large
numbers of inequality constraints, the majority of them are not active at the optimum. Inactive
constraints have no influence on the optimum point. The set of active constraints at the optimum
point is not known beforehand and must be determined as part of the solution process. The number
of independent equality constraints must be less than or equal to the number of decision variables.

There is, however, no restriction on the number of independent inactive inequality constraints.

Infeasible problems can be the result of conflicting requirements or inconsistent constraints. When
too many constraints are considered, it may happen that there is no feasible solution. Therefore, one
must be very careful in formulating a problem. A general mathematical model for optimum problem
formulation is discussed in section 2.2. The construction of the mathematical model for a specific
engineering problem is not easy in general. It involves a good understanding of the engineering
system and reasonable skills in mathematics. Setting up the problem to the point where it can be
solved, requires a major part of the total effort involved. Once the problems have been transcribed
into mathematical statements using the standard notation, they all look alike. General guidelines for
the proper formulation of design problems are described in Arora [86AR2e, 89AR1e]. The problem
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formulation concepts are illustrated by means of practical examples in, for example Reklaitis et al.

[83REle], Vanderplaats [84VAle], Edgar and Himmelblau [88ED]e], and Arora [89ARle¢].

3.3 PROBLEM MODELING (SIMULATION)

A major component of any optimization study is system modeling or simulation. System modeling is
the process in which the system performance characteristics are determined under various operating
conditions. Modeling of the system enable designers to carry out economic and optimization
analyses throughout the operating range and life. Existing systems can be improved in this way and a

computer simulation of the system will provide the mformation needed for certain decisions to be

made.

A system usually consists of one or more components related to each other to perform one particular
task. Before a system modeling or simulation can be performed, a model for each of the components
must be available. This model will define the output for a given set of input values. The model can
be analytical or determined by suitable experiments. In the analytical approach the physical laws
(e.g. conservation principles) are used to develop an analytical equation or a set of equations that
will uniquely define the outputs for a set of input values. This is referred to as the equation-based
approach. These equations must have certain features, for example differentiability, to be used in
conjunction with optimization methods. Otherwise, simplification of these equations will be
necessary by means of physical or mathematical approximations. The simultaneous solution of these
linear or nonlinear equations can be direct or by means of an iterative procedure. Experimental
investigations are usually used to obtain expressions (regression analysis) when the analytical model
is complex and cannot be simplified or changed into a desirable form. The analytical approach is

frequently used in engineering simulation.

As stated previously, system simulation is the process in which the system performance
characteristics are determine under various operating conditions. Each of the system components
must be modeled and these models must be combined into an integrated unit. In operation, these
components will affect each other in performance. The purpose of the system simulation is to
determine the performance of each component in the system environment and the performance of the
system as an integrated unit. Most of the simulations encountered in real world problems are of the
simultaneous type, characterized by the physical coupling of the various components in the system.
In mathematical terms this means that a set of equations must be solved simultaneously. In order to
prevent meaningless or misleading results, proper care must be exercised to take all the restrictions

placed on the system into account. Restrictions placed on each component of the system are also
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restricting the system. The system model is simulated by solving the component equations and the
related coupling equations. The solution methods will vary from case to case. Some engineering
problems require very large analysis models for accuracy in prediction of response. Therefore the

evaluation of the objective and constraint functions can require enormous calculational effort.
3.4 APPLICATION OF PROBLEM FORMULATION AND MODELING

The concepts discussed thus far are now applied to the performance evaluation and the optimum

design of both natural draft and forced draft dry-cooling systems for use in steam-electric plants.

A mathematical structural characteristic of the performance evaluation and optimization problems
considered in this study, is that it involves two distinct classes of variables: the geometric or
independent variables and the operating or dependent variables. The geometric variables represent
the physical dimensions of the dry-cooling systems, while the operating variables represent operating
conditions such as temperatures and flow rates. The performance evaluation calculations determine
the operating variables for a fixed geometry dry-cooling system. On the other hand, the optimization
calculations determine the combination of geometric and operating variables that best satisfy the

required objective.

An equation-based model, consisting of energy-balance equations, mass-balance equations,
momentum-balance equations and engineering design relations, is used to model the dry-cooling
systems. These equations can be evaluated for selected values of the independent variables. The
equation-orientated models describe the system behavior using basic engineering principles. The
equation-orientated models are most conveniently treated by the conventional nonlinear

programming techniques.
Performance evaluation

The performance evaluation of dry-cooling systems rely heavily on the ability to model the physical
phenomena of the system. A considerable amount of theoretical and experimental work is given in
the form of correlations and equations in Appendices C and D (sections C.3, C.4, C.5, D.3, D.5) to
describe the performance of these systems and to model the different system components. The
formulation of the performance evaluation model is based on the calculation of the heat transfer rate
and pressure drops (airside and process fluid side) occurring in the system. The heat rejected by the
process fluid must be equal to the heat absorbed by the air (energy equation balance), and the
pressure differential external to the cooling tower must equal the internal pressure differential (draft
equation balance). The combination of the heat transfer and draft equations are used to simulate the

dry-cooling system under various operating conditions. Two methods of dry-cooling tower
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performance evaluation are distinguished, namely operating point calculations and the interaction of

a turbo-generator and dry-cooling system.
(1) Operating point calculations (sections C.6 and D.5)

The operating point (ability to reject heat) of the fixed geometry dry-cooling system is defined as that
combination of operating variables (e.g. air mass flow rate, air outlet temperature) that will
simultaneously satisfy the draft and heat transfer (energy) equations for fixed process fluid inlet and
ambient air conditions. The operating variables that are varied until this requirement is satisfied, are

identified in sections C.6 and D.5 for the forced and natural draft dry-cooling systems respectively.

These operating variables are subjected to certain bounds which prevent the violation of some
physical laws inherent to the problem under consideration (feasibility inequalities). These inequality
constraints will not be active at the operating point. The number of operating variables is equal to
the number of equations to be satisfied (balances), in which case the system of equations is said to be
well-determined and an exact solution can be expected. Stated in this form, the operating point of

the dry-cooling system can be determined by the simuitaneous solution of the balance equations.

(2) Power generation (sections C.7 and D.6)

The characteristics of a turbo-generator, i.e. the power generated and the heat to be rejected are
expressed as functions of the turbine exhaust pressure or the corresponding saturated steam
temperature. The dry-cooling system must be able to reject the required waste heat for a given
turbine back pressure. Atmospheric conditions influence the performance of the dry-cooling
systems, resulting in a wide fluctuation of turbine back pressure (and the corresponding steam
temperature). Changes in the ambient temperatures are the most important reason for this. The
mean annual hourly frequency of ambient air temperatures is considered to investigate the mteraction

between the dry-cooling system and the turbo-generator performance characteristics.

The operating point of the turbo-generator is determined by matching the operating point of the dry-
cooling system and the performance characteristics of the turbo-generator at a specific ambient air
temperature selected from the annual ambient temperature frequency set. This calculation involves
the selection of turbine exhaust conditions such that the heat to be rejected by the heat exchanger
after the turbb-generator, equals the heat absorbed by the air (heat rejected by the dry-cooling
system), while satisfying the draft equation. The power generation problem is formulated as a

sequence of operating point calculations.
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At this point the power requirement of the fans (forced draft direct system) or cooling water pumps
(natural draft indirect system) as well as the generator power output are known. By subtracting the
total power consumed by the fans or pumps from the generator power output, the net power output
of the plant is obtained. The net power output is multiplied by the corresponding number of
operating hours to give the net energy output for this period. These calculations are repeated for
each of the ambient temperatures listed and the results are added to obtain the total net annual

energy output.

The operating variables, the bounds on these variables and the equations to be satisfied, are identified
in sections C.7 and D.6 for the forced and natural draft dry-cooling systems respectively. A new set
of operating variables with bounds are used to determine the turbo-generator’s operating point for
each ambient temperature in the frequency data set. The comments stated for the operating point

calculations do also apply in this case.

The cooling system affects the performance of the entire power cycle in steam-generating plants, i.e.
if the cooling system does not provide adequate cooling, the overall plant efficiency decreases with
serious economic consequences. Since the performance of the dry-cooling system and the turbo-
generator which it serves are so closely related, the selection, design and matching of these

components are of the utmost importance in order to achieve effective operation and power output.

Performance evaluation of the dry-cooling system is required in order to obtain an initial feasible
starting design point for the optimum design calculation. Furthermore, performance evaluation
calculations are also used to perform detailed simulations of existing systems, to quickly investigate
the effect of parameter adjustments on the overall system and to aid in decision-making regarding the

components and the integrated system performance characteristics.

Optimization

The objective of the optimization process is to design a dry-cooling system that will perform its task
effectively at the lowest possible annual cost, while satisfying all the imposed constraints. The
derivation of the objective function in terms of the decision variables will be performed in Chapter 4
and in Appendix E. The optimal design of dry-cooling systems hinges on the performance evaluation

calculations discussed above and in Appendices C and D. The optimization procedure takes into

account all the parameters that will affect the capital and operating cost of the system.

Two distinct approaches can be used to optimize dry-cooling systems, namely a sequential approach

or an integrated approach [85BIle, 85BI2¢, 86AR2e, 93SClel:
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(1) Sequential approach (feasible path method)

In the sequential approach the independent variables are defined and fixed at some initial value. This
allows the system of equations, given by the performance evaluation requirements, to be solved. The
independent variables are then updated by a suitable objective function. The procedure is repeated
until optimality is achieved. The sequential approach thus requires that the model equations be
solved at each iteration; therefore, it is also referred to as a feasible path method. The simulation and

optimization processes are thus performed sequentially.
(2) Integrated approach (infeasible path method)

With the integrated model, the performance evaluation model is included directly as a set of equality
constraints in the problem formulation and the operating variables are also considered as decision
variables. The model’s equality constraints are required to be satisfied only at the optimal solution.
All the variables are adjusted simultaneously and no solution satisfies the equations and constraints
until the optimal solution is reached. Since optimization and simulation are simultaneously
~ performed along an infeasible path, it leads to much more efficient computational performance. The
dimensionality of the problem is substantially increased in this way and little information is

recoverable if the solution algorithm fails.

The mtegrated approach will be used in this study, i.e. the operating variables with their bounds, as
well as the balance equations will be formulated as part of the optimization process. The infeasible
path integrated approach has superior performance over the sequential approach. The operating
variables are dependent on the geometrical variables. This means of problem formulation tends to
disguise the dependence of the operating variables on the geometrical variables. The results of the

sequential and integrated methods will be the same.

The optimization of dry-cooling systems for steam electric power plants can be divided into the
following categories:

(1) Operating point optimization (sections C.8 and D.7)

The operating point optimization involves the computational process of finding the combination of
process and geometrical variables that will minimize the total annual cost of the dry-cooling system

subject to fixed process fluid inlet and ambient air conditions and a specified heat transfer rate. All

the imposed constraints must be satisfied. The objective function can be expressed as

Ctotal = Coperating +C maintenance T Crcr  ($/annum) (.1
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The optimization (decision) variables, the various constraints and the objective function are discussed
in sections C.8 and D.7. The operating variables, the equality (e.g. balance equations) and inequality
constraints (e.g. bounds on the operating variables) introduced by the performance evaluation model
must always be present during the optimization process. The operating variables cannot assume
constant values, but are required to be variable. The other geometrical variables can either be
variable or fixed at a constant value during the optimization process. The corresponding geometrical
constraints can either be applicable or completely ignored. Various practically orientated
geometrical constraints are prescribed. It should be noted that variations of the operating variables
will only affect the operating constraints and not the geometrical constramnts, whereas variations of
the geometrical variables influence al the constraints. A minimum number of optimization variables
can be considered, depending on the number of equality constraints. The feasibility inequality
constraints introduced by the operating variables (bounds), will not be active at the optimum

solution.

Both circular finned tubes and finned tubes with any fixed geometry are comsidered in the
optimization. The performance correlations of these finned tubes are described in Appendix B. The
limitations imposed on the heat transfer and pressure drop equations for circular finned tubes
discussed in section B.1 are not used as constraints. The performance correlations for the circular
finned tubes are explicit expressions for the airside heat transfer coefficient and airside pressure drop
in terms of the geometrical and layout parameters. It is thus possible to vary these parameters during
the optimization process in order to obtain the optimum dimensions and layout. For more
sophisticated designs the experimentally obtained correlations for fixed geometry and layout can be

used (section B.2).

Four different cases of operating point optimizations are investigated for the natural draft indirect
dry-cooling system: (i) the mass flow rate and the temperature of the water that enters the cooling
tower are fixed at some specified values; (ii) the temperature of the water that enters the cooling
tower are fixed at some specified value; (iii) a constant waterside pressure drop is maintained when
the existing bundles are replaced by optimally dimensioned ones (retrofit); (iv) and the condenser
design is considered to be constant (constant thermal conductance). These cases are discussed in

detail in section D.7.

In the case of the forced draft direct condensing air-cooled condenser, separate performance
calculations are performed for each tube row. A maximum number of two tube rows are considered

in the optimization study.
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Various geometrical parameters are linked to the geometrical decision variables used in the
optimization process. The assumptions and relations that are used to obtain these values are shown
m sections C.8 and D.7. Several parameters are also considered to be constant during the
optimization process and can be fixed beforehand. The sensitivity of the optimum design to variation

in some of these parameters will be investigated.

The operating point optimization is useful when a minimum cost dry-cooling system has to be
designed for a specified heat transfer rate and some fixed operating parameters. It also provides the

necessary insight into the problem formulation and characteristics that are needed to extend the

problem as discussed in the following section.
(2) Minimization of power generation cost (sections C.9 and D.8)

The minimization of the power generation cost attributed to the dry-cooling system’s performance
for the given temperature frequency data set, involves the variation of the dry-cooling tower
operating and geometrical variables that will minimize the ratio of its total annual cost to the net
energy output of the turbo-generator set it is coupled to. Thus, minimize the unit cost of generated
electricity that is directly related to the performance of the dry-cooling system. The objective

function is

Cpower =Ctotal/ Epe ($/kWh) . . (3.2)

The calculated values of the different variables must satisfy all the relevant constraints. Only one
forced draft or natural draft dry-cooling tower must be designed to perform this task as effectively as
possible. The optimization procedure takes into account all the parameters that will affect the capital

and operating cost of the system.

The optimization (decision) variables, the various constraints and the objective function are discussed
in sections C.9 and D.8. For each temperature data set there is a corresponding set of operating
variables, equality and imequality constraints (operating constraints). These constraint sets must
always be satisfied and the operating variables must always be present during the optimization
process. The operating variables of a specific temperature data set effect the operating constraints
belonging to the same temperature data set only. The operating variables do not effect the
geometrical constraints. However, the geometrical variables effect all the operating constraints of
the different temperature data sets. It is important to take advantage of this problem structure in

performing the optimization process. Only one set of geometrical variables and constraints are
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defined in this case. The same comments regarding the variables and equations as previously

discussed for the operating point optimization are applicable here.
The special structure of this problem formulation can be exploited in the following ways:

(i) When an operating variable belonging to a particular temperature frequency data set is
changed, only the equality and inequality constraints (operating constraints) corresponding to
the temperature data set under consideration, need to be evaluated. All the operating
constraints belonging to the other temperature data sets, as well as the geometrical constraints,

can be ignored.

(i) When the constraints are differentiated in terms of an operating variable belonging to a
particular temperature frequency data set, the differentiation only needs to be performed on the
equality and inequality constraints (operating constraints) corresponding to the temperature
data set under consideration. All the other derivatives can be set equal to zero and need not to

be calculated.

(iii) The model simulation equations for each temperature data set can be used to exploit the
distinction between the dependent (operating) and independent (geometric) variables. The
combination of a suitable infeasible path integrated approach with a decomposition technique

will result in great computational advantages (e.g. reduction of problem dimensionality).

The influence of the variation in a certain geometrical variable may be confined to one or a few
geometrical constraints. However, this structure is not exploited due to relatively small number of
geometrical variables and constraints in comparison to the number of operating variables and

constraints.
3.5 CLOSING REMARKS

The existence of an optimum solution to an engineering model depends on its formulation. For
example, no feasible solution may be obtained if the constraints are too restrictive. The mathematics
of optimization methods can easily give rise to situations that are absurd or violate the laws of
physics. So, to transcribe a physical problem correctly into a mathematical model, extreme care must
be exercised. General guidelines regarding problem formulation, simulation, preparation and
implementation can be found in [83RE1le, 84VAle, 88ED1e, 89ARI1e].

The performance evaluation and the optimization calculations are based on the problem formulation
and the modeling equations stated in Appendices B, C, D and E. From these appendices it is evident

that these problems have certain features that can be exploited during the solution phase.
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CHAPTER 4

DRY~-COOLING SYSTEM ECONOMIC AND COST ANALYSIS:
DEFINITION OF THE OBJECTIVE FUNCTION

4.1 INTRODUCTION

Optimization requires the formulation of an objective function that must be minimized or maximized.
In an economic analysis the objective is usually the minimum cost or maximum profit. To set up a
cost function is not a trivial task and forms an integral part of any attempted economic optimization
study. Various methods of estimating costs and the necessary economic concepts to perform an

economic analysis are described.

A prime criterion for the selection of a power plant type or unit size is the production of electricity at
the minimum cost. The cooling system is a significant cost item at a power plant and affects the
performance of the entire power cycle. A simplified economic and cost analysis, based on all costs
which will affect the choice of the optimum cooling tower to perform a certain duty, is presented in
this chapter. Various cost components are discussed, namely the capital costs, operating and

maintenance costs and the cost of lost performance as found in dry-cooling systems.

4.2 ECONOMIC CONCEPTS

Capital costs are incurred at the beginning of the project and concluded during completion of the
entire project or during completion of a part of it. Each year during the life of a plant there may be
different or variable operating costs. Since these expenditures take place over different periods in
time, and since money has time value, it must be brought to a common reference. Engineering
economy analysis provides a suitable means to bring the capital and operating costs to-a common
reference by applying certain engineering economy formulae. A summary of the most important“
compound interest formulae that find application in this study is presented below. A detailed analysis
and derivation of these formulae is beyond the scope of this study and the reader is referred to Blank
and Tarquin [83BL1e] or Stoll [89ST1e] for further information regarding the fundamental concepts

that form the basis of engineering economic analysis. The nomenclature that will be used in these

formulae is;
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P = Present worth
F = Future worth
A = Uniform annual series
D = Cost in the first year
U = Uniform levelized annual equivalent of an escalating series
n = Number of years considered
i = Interest rate
e = Escalation rate
Single-payment factor
F=P(1+i)" (4.1)

Uniform series factors
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Escalating series factors
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4.3 COST ESTIMATING

i#e (4.5)

The engineering profession is also governed by economic principles, especially during decision
making, as is the rest of the business community. One of the basic economic skills that engineers
often need, is to make cost estimates for the design, construction and manufacturing processes.
Accurate cost estimating is essential if a firm is to stay in business. Unfortunately, cost estimating is
not an exact science and in the best of circumstances will only provide an approximation of the cost

that will actually be incurred. It is thus essential that the various tools available for this task be
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understood and be applied so that the degree of approximation will be minimized. A wide variety of

topics concerned with cost accounting that provide valuable background can be found in Davidson

and Weil [78DA le] and Nicks [92NIle].

Estimating concepts

Cost estimates are produced for various reasons such as whether or not to produce a newly designed
product, to assist in make-or-buy decisions, to determine the selling price of a product and to check
vendors’ quotations. Estimates are developed according to the purpose of the estimate, the amount
of time available and the complexity of what is being estimated. A variety of estimating methods do
exist and their use depends on the amount of mnformation known by the estimator. Some cost
estimates rely on the estimator’s experience and judgment when little detail is known. New
estimates can also be based on past history and estimating information found in the literature.
Depending on the risk and the amount of money involved in an estimate, the estimator will vary the
amount of detail used in the estimating process. Detailed estimates for machinery operations, for
example, would include calculations for speeds, feeds, cutting times, load and unload times and even
machine manipulation. These time values are usually caloulated from standard time tables and
adjusted with an efficiency factor to predict the actual performance or from measured values.
Parametric estimation is also widely used as a preliminary estimating method and statistical
estimating is a special form of this. Parametric estimating formulas can be as simple as multipliers or
as complex as regression models and are developed by relating cost data to the factors on which it
depends. Project estimating is by far the most complex of all the estimating tasks and needs very
careful planning, especially if the project spans a number of years. Inflation and risk analysis affect

project estimating and must be carefully examined to quantify their effect on the estimation process.

In most companies the elements of the cost details that make up the estimating are obtained from the
accounting department. The major cost elements are classified as direct labor, indirect labor, direct
materials, indirect materials, and overheads. The direct costs are the costs that can be traced to a
specific product whereas indirect costs are those costs that are considered not being traceable to a
product, but are still required to run the company. Overhead costs usually includes salary and
management cost and all the other costs elements such as insurance, machinery cost, office expenses,
and other miscellaneous expenses not considered to be directly related to the product. Overhead

costs are usually expressed as a percentage of direct labor or direct material cost for cost estimating

purposes.
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Estimators make use of standard time data to develop consistent estimates of the manual effort
involved in performing specific tasks. These data can be obtained from past history or actual
performance on jobs, time and motion studies or predetermined time standards. Experience has
shown that it is easier to develop standard data for machining operations than for the manual effort
required in most fabrication operations. Material cost can be estimated to a high degree of accuracy
compared to the labor content in an estimate that is subjected to more error. If there is a bill of
materials available from a detailed drawing, decisions must be made about what will be made or what
will be purchased. For those items that are decided upon to. be made, the estimator must determine
the cost of the product by using his/her best judgment. The shop’s actual performance will be
compared to the estimated cost. The cost of the purchased components can be obtained from the
vendors or catalogues. The estimation process is usually aided by sketches, line drawings or
complete drawings. Nowadays computers are satisfactorily used in the estimating process and many
different programs are available. The major advantage of computer estimating is the flexibility the
programs offer the estimator to manipulate data once the problem has been specified. However, it
should be realized that no one program can satisfy everyone’s needs and as such the source codes

should be customizable.

A very important component of the estimating process is a good feedback system that will permit the
estimator to compare the actual and the estimated costs. This cost comparison enables the estimator
to review the estimating process and improve the estimating accuracy. A good estimator will heavily
rely on skills and intuition in making an estimate. The basic skills like cost accounting and the
different estimating methods can be taught, but intuition comes only with experience and the

feedback system.

Costs can be categorized into two major categories, namely capital cost and operation and

maintenance cost.
Capital cost

Cépital cost estimates may vary from predesign estimates based on very little information to a
detailed estimate prepared from complete drawings and specifications. Between these two extremes
there are various other estimates which vary in accuracy depending on the stage of development of
the project. The American Association of Cost Engineers (AACE) uses the following five categories
for describing the various estimate types at different stages of evaluation, design and procurement

[83NOle, 89GAle, 91PEle]:
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(1) Order-of-magnitude estimate (ratio estimate) based on similar previous cost information and

estimating charts; probable accuracy of estimate + 40%.

(2) Study estimate (factored estimate) based on knowledge of major items of equipment,

estimating charts and some vendor quotations; probable accuracy of estimate 1 25%.

(3) Preliminary estimate (budget authorization estimate, scope estimate) based on sufficient data to

permit the estimate to be budgeted (detailed vendor quotes, recent experiences); probable

accuracy of estimate + 12%.

(4) Definite estimate (project control estimate) based on almost complete data but before

completion of drawings and specifications (detailed quotes, labor, material estimates); probable

accuracy of estimate * 6%.

(5) Detailed estimate (firm estimate, contractor's estimate) based on complete engineering

drawings, competitive vendor quotes, specifications, and site surveys; probable accuracy of

estimate * 3%.

As soon as the final design stage is completed, it becomes possible to make accurate cost estimations
because detailed information is then available. No design project should proceed to the final stages
before costs are considered and costs estimates should be made throughout the early stages of the
design even when complete specifications are not available and revised as the project progresses.
Predesign cost estimation (defined as order-of-magnitude, study, and preliminary estimates) provides
company management a basis to decide if further capital should be invested in the project and to
compare alternative designs. The validity of any cost estimation can only be tested when the
completed project becomes operational. It should also be noted that the distinction between
predesign and firm estimates gradually disappears as more detail is included in the estimate. A good
cost estimator will be able to make remarkably accurate cost estimations even before the final project
design is completed. Furthermore, the cost estimator must keep up to date on factors effecting
mvestment and production costs, i.e. sources of equipment or services, price fluctuations, company

policies, operating time and production rate, and government regulations.

Various methods of predesign capital cost and product cost estimation are used in the process
mdustry (chemical engineering) and consist of labor and material indexes, standard cost ratios,
estimating charts and special multiplication factors [64BAle, 74GUle, 740S1e, 74ZAle, 79CHle,
83HOl1e, 84CHle, 88KHle, 89GAle, 91PEle]. Capital costs are of two types, i.e. direct costs and

indirect costs. Direct costs can be traced to the material and labor involved in the actual installation
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of the facility (e.g. equipment, installation, land), while indirect costs are the expenses which are not
directly involved in the material and labor of the actual installation of the facility (e.g. engineering,
supervision, contingencies). Direct capital costs are 70-85% of the capital investment and indirect
cost 15-30% for chemical plants [91PEle]. Major equipment costs (e.g. reactors, storage tanks,
separators) play an important part in detailed plant cost estimates. Predesign cost estimates can be

categorized according to the following basic principles:
(1) Inflation cost indexes

Most cost data which are available for use in a predesign estimate are based on conditions in the
past. Due to the changes in the economic conditions some means of updating these costs, to be
representative of conditions at a later time, must be used. This can be done by the use of inflation

cost indexes.

Index value at present time )

Present cost = Original cost[ - — -
gn Index value at time when original cost was obtained

(4.6)

Many different types of cost indexes are published regularly, e.g. Marshall and Swift all-industry and
process industry equipment indexes, Engineering News-Record construction index [89GAle,
91PEle]. Some of these can be used for estimating equipment costs and others apply specifically to
labor, construction, material and other specialized fields. These indexes are artificial and two indexes
covering the same types of projects may give results that differ considerably. The most that any
index can hope to do is to reflect average changes and great caution must be exercised when using

these indexes [91PEle].
(2) Cost factors

The cost of purchased equipment is the basis of several predesign methods for estimating capital
investment. Sources of equipment prices, methods of adjusting equipment prices for capacity, and
methods of estimating auxiliary process equipment are therefore essential to the estimator in making

reliable cost estimates.

The most accurate method for determining equipment costs is to obtain quotations from the
manufacturer. Often, fabricators can supply quick estimates which will be very close to bid price but
will not involve too much time. Cost values from past purchases, corrected to current cost indexes,
can also be used. The cost of one size of equipment can also be used to predict the cost of another

size by using the following exponential scaling relationship
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Size of a

Exponent
e ofa] @“7)
Size of b

Cost of equipment size a = Cost of equipment size b(

Good results can be obtained by using the six-tenths-factor-rule, i.e. replacing the value of the
exponent in equation (4.7) by 0.6. However, the application of this rule of thumb is an
oversimplification and the value of the exponent can vary from less than 0.2 to greater than 1.0 for
different pieces of equipment [89GAle, 91PEle]. The 0.6 factor should only be used in the absence
of other information. This concept should not be used beyond a tenfold range of capacity and only
directly comparable pieces of equipment should be scaled.

The installation of the purchased equipment involves cost for labor, foundations, supports, platforms,
construction and other factors directly related to the erection of purchased equipment and getting it
to function properly. These costs are presented as a percentage of the purchased equipment costs
[89GAle, 91PEle]. Garrett [89GAle] states an average equipment installation factor of 63% of the

equipment cost for chemical plants.

Once individual equipment costs are known from either manufacturer's price quotations or the
estimating methods discussed, they can be used to form preliminary total plant cost estimates. These
plant costs, such as piping, electrical, instrumentation and controls, land, buildings, utilities,
engineering, supervision, contingencies etc. can be expressed either as a percentage of the total
capital investment or as a percentage of the purchased equipment costs [79CHle, 84CHle, 89GAle,
91PEle].

Operation and maintenance costs

Operation and maintenance costs estimates are just as important as capital cost estimates. These |
estimates predict the expenses incurred in operating and maintaining the infrastructure to produce
products or services. These costs occur over the life of the plant being operated and maintamed and

usually increase with time.

The total product cost can be divided into two major classes, namely the direct and the indirect
product cost. The direct costs include the costs directly related to the manufacturing operation and
consist, for example, of the cost of material, direct operating labor, operating supplies and utilities.
Indirect costs include the costs not directly related to the manufacturing operation and include
indirect material and labor cost, factory burden, machinery cost, general and administrative cost.
These costs are usually classified as overhead costs. Overhead costs are usually defined to include
the management cost, salary cost and other general expenses that are involved in the company’s

operation but not directly related to the manufacturing process. Overhead costs such as payroll
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overheads (e.g. pension funds, medical schemes etc.) and general plant overheads (e.g. general
maintenance, office supplies, services, building, plant superintendence etc.) are always present if the
complete plant is to function efficiently. Fixed charges are expenses which remain practically

constant over the plant lifetime like depreciation, taxes, nterest and insurance.

The direct costs are easier to predict than the indirect costs and definite estimates of the former are
used to predict the indirect cost. Labor related indirect costs can be expressed as a percentage of the
direct labor cost, capital related costs can be expressed as a percentage of the plant capital cost and
sales related costs can be expressed as a percentage of the sales. Another useful source of
mformation for use in the total product cost estimate is the use of data from similar or identical
projects contained in the company records. Adjustments must however be made to relate the cost
differences due to inflation, plant site and the geographical location. In the absence of detailed
information, indexes and charts with information regarding the specific process under consideration
can be consulted to obtain quick estimates [89GAle, 91PEle]. Detailed operating cost estimates are
also possible and require the gathering of exact data on all the factors that influence the total product

cost. The overhead costs must be assigned to a specific action in a more precise manner.

The maintenance required for any plant is a function of factors like the operating environment, the
plant age, the management’s maintenance policy and the original decision made in what type of
equipment to use. Labor and material cost are the main contributors to make up maintenance
expenses, the former being the main cost contributor. Maintenance expenses can vary widely and are
usually between 2% and 10% of the total plant cost per year. Maintenance is very much part of the
management policy and when properly managed, it can bring about major advantages for the
company like, for example, significant cost savings. Nowadays, maintenance is far more than the
frenetic rush to repair broken equipment, it also mvolves the art and science of preventative
maintenance and reliability. Companies must keep performance and cost records of the various
equipment used to be able to plan preventative maintenance, equipment replacement and to gauge
reliability. A properly planned and administrated maintenance plan can also assist in the future

decisions of replacing equipment.

The most widely used method to estimate maintenance cost is to express it as a percentage of the
capital cost per year. As previously stated, the major cost components are those for labor and
materials. Material cost estimates can be done more accurately than the labor cost estimates.
Detailed estimates can be performed based on information stated in performance records, industry

averages or ratios, and comparative and specific job standards. Good judgment on the side of the
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estimator also forms an essential ingredient in the maintenance cost estimating process. The
accuracy of such an estimate will depend on the quality of the data available and the experience of
the estimator. The interested reader is referred to Higgins [88HI1e] for a complete covering of the

topic of maintenance engineering.

When labor costs constitute a major portion of the manufacturing cost it makes sense to use labor
cost as the basis for allocating overhead costs. But m some highly automated manufacturing
facilities labor cost makes up a small percentage of the total cost, whereas overhead costs will
greatly contribute to the cost of goods sold due to the high cost of automation. Therefore it makes
no sense to allocate overhead costs on the basis of labor cost. A solution to this problem is to
analyze all the activities that make up the overhead cost and then to allocate these costs to the
products to the extent that the products make use of these activities. This concept is known as
activity based costing (ABC). In activity based costing the cost of the product or service equals the
cost of the materials plus the sum of all the costs of every activity used to produce the product or
service. In that way activity based costing is different from traditional costing which uses arbitrary
allocation methods to estimate the overhead cost. The major objective of activity based costing is
thus to relate the costs that are classified as overhead in the traditional cost estimating models
directly to the products. Firstly, one identifies all the support activities needed for production and
then determine how the product actually consumes these activities. Furthermore, this methods
provide one with the ability to distinguish between non-value-added activities and value-added
activities in order to eliminate or minimize non-value-added activities and reduce manufacturing

costs. A detail discussion on activity based costing can be found in McCormick [92MCle].

The cost to prepare cost estimates is difficult to predict and the estimate becomes more expensive as
the amount of detail involved in the estimate increases. A detailed cost estimate can amount up to
5% of the total project cost. Realistic and accurate cost estimating is not a trivial task and requires a
detailed analysis of all the different actions involved and material requirements for a specific project.
After the completion of each design stage the cost estimate can be refined until a detailed analysis is
performed. The skills needed to be a good cost estimator are a mix of business, finance, engineering,
technical, manufacturing, planning, management and marketing skills [82ST1e, 92NIle]. The quality
of these combinations of skills has a great bearing in the overall credibility, accuracy, and
completeness of the resulting cost estimate. These skills need to be combined with intuition that can
only come from first hand experience. Over the last decade there have been significant technological

advances in the design, manufacturing and service industries that require costing systems to
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correspond with these changes. In the past, cost estimating was mainly the task of cost accountants,

but industry has since realized how well industrial engineers are equipped to fulfill the task.
4.4 DRY-COOLING SYSTEM COST ESTIMATION

The previous section discussed various detailed and approximate cost estimation methods. In the
following sections a cost structure based on these principles, as well as cost information obtained
from dry-cooling system component manufacturers, will be presented to estimate the cost of a dry-

cooling system during the optimal design process.

The time value of money requires that costs should be brought to a common reference. Two
methods can be used to comply with this requirement and are found in Literature regarding power
generation, namely the present worth of lifetime evaluated costs [71HAle, 75CRle, 80GUle,
85LI1e, 85LI2e, 87VEle] and the annualized cost method [70ROle, 72AN1e, 78ROle, 79CH2e,
79NAle, 85LIle, 89BUle, 89BU2e]. The annualized cost method will be used in the economic

analysis and requires that all the costs are evaluated on an annual basis.

If current costs are used in selecting equipment that will be purchased three to four years later, an
escalation factor must be applied to make the cost estimates more realistic. Also, after the
equipment has been purchased, it takes time to install the various components (construction takes a
few years to complete). During this time an additional cost is incurred because the investment is not
yielding a return. The factor for this cost is known as interest during construction [71HAle, 85LI1e,
86HIle]. Once the plant becomes operational, the fixed charge rate can be applied to the capital
costs to give the annual expenditure required for the entire life of the plant. A detailed discussion of
power plant system economics can be found in Li and Priddy [85LI1e].

Various engineering economic studies of dry-cooled electrical generating plants were conducted in
the seventies with the major aim of minimizing the increased power generating cost attributed to dry-
cooling (mostly indirect natural draft and mechanical draft systems) [70ROle, 75Mlle, 76FR1e,
78R0O1e]. These studies were extended to investigate the advantages of combined wet/dry-cooling
systems for power plants [75CRle, 76CRle, 76ZAle, 78LA2e, 79CH2e, 80GUle]. In these
references, detailed cost breakdowns of the optimization results for the utility power plants
(conventional fossil fuel and nuclear power plants) considered, are given. Cost estimation is usually
based on vendors’ cost data or manufacturers’ quotations and simplified generalized cost functions
based on these data are used. Most of the equipment used in the cooling systems are predesigned
vendor-offered equipment and thus have a fixed geometry. The optimization consists of varying the

amount of standard equipment and components used, rather than their geometry. The results from
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these studies are not conclusive due to the many assumptions used and the simplified manner m
which the complex optimization process is often performed (+5 variables are used to describe the
cooling system). It cannot be concluded from these studies whether the dry-cooling equipment

offered by the industry is near optimum.

Ard et al. [76AR1e] developed detailed cost algorithms (empirical predictions) for the components
used i the indirect dry-cooling system with mechanical draft and surface condenser that make it
possible to investigate the variation of cost with component dimensions. For an optimization study it
is necessary to use component manufacturing cost models in evaluating system design and material
alternatives. The components that are included in the study are the heat exchanger bundles,
mechanical draft equipment, circulation system, condenser, tower structure, water quality control
and the electrical system. Cost information was obtained from manufacturers and suppliers of
equipment and materials as well as estimates by persons knowledgeable in the field. Some of the
cost relations are based on trends experienced in a specific field by plotting cost against some

controlling parameter.

We will try to present a similar cost structure that will adequately cover all the major cost
components as far as possible. As we mtend to change the component dimensions during the
optimization calculations it is very important that such a model reflects the actual case as realistically
as possible. Standardized component sizes will not be used in the analysis. In real life there is a
definite relationship between product cost and product volume. However, we shall ignore such a

relationship for the purpose of the optimization process.

Cost functions are proposed for the various capital cost and operating and maintenance cost items.
Because some of the variables (e.g. tube dimensions) come in standard sizes the cost function tends
to be highly discontinuous. However, classical optimization techniques require an objective function
that must be continuous and differentiable. In this analysis all the variables used in the optimization
process (defining the cost function) will be regarded as continuous and practical constraints are

introduced to ensure realistic results.

Cost weighting factors are introduced on several occasion in the proposed cost structure to take into

consideration estimation uncertainties, overheads and other related costs.
4.5 DRY-COOLING SYSTEM CAPITAL COST ESTIMATION

The capital cost of the dry-cooling system includes the equipment and construction cost of the

cooling towers, water circulation system and air moving system and the indirect costs related to it.
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Indirect costs are assumed to be 20% to 25% of the direct capital costs for the cooling tower
[79CH2e, 79NAle, 80GUle].

For more accurate costing the capital cost is broken up into its individual components and the cost of

each component is estimated.
Heat exchanger bundle cost

Various methods have been used to assign costs to heat exchanger bundles, the most simple of which
is to base the cost on the heat exchanger area [SOKE1le, 59NAle, 89KOle, 90LOle]. Approximate
costs are often quoted on the basis of cost per square meter of outside bare tube surface [83NO2e].
These rough approximations can be somewhat refined by using cost-multipliers to account for

factors such as the number of tube rows, tube length, fin pitch and extended surface type.

Tube elements are the most significant cost factors of the air-cooled heat exchanger system. For this
reason the choice of fin and tube material, the finned tube geometrical parameters and the method of
finning should be carefully chosen to yield the maximum economy commensurate with an adequate
and satisfactory life. One of the most important steps that can be taken to reduce cost of equipment
is to design it so that it can be fabricated, assembled and tested in the shop rather than in the field
[86HI1e].

The capital investment is calculated from the material cost (component dimensions) and the
manufacturing cost. Material costs are divided according to the major cost contributors, e.g. tubes,
fins and headers and defined in terms of the component dimensions [74PAle, 78FOle, 83PUle].
This is the method that will be used in estimating the heat exchanger bundle costs. Some of the more

useful heat exchanger bundle cost estimates that appear in the literature will now be discussed.

The report of Ard et al. [76AR1e] placed special emphasis on the development of cost algorithms for
heat exchanger bundles. The heat exchanger bundle analysis covered the following major cost
components, namely the heat transfer elements, heat exchanger bundle headers, heat exchanger
bundle frames, bundle assembly, louvers and hail screens. The total heat exchanger bundle cost
consists of these major cost components and are based on the manufacturer’s material, labor,
equipment and job overhead costs. The manufacturer’s general overheads and profit are added as a

fixed percentage. The reader is referred to the report for a detailed description of the cost estimates.

Buys and Kroger [89BU1e, 89BU2e] modeled the cost of the heat exchanger bundles by assuming a

certain cost structure related to the material cost and other costs incurred by the manufacturer.
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Based on the above-mentioned methods, the total heat exchanger bundle cost, C;,, can be expressed

as
Che = (CftLtntb +Cy +Cy, )Whe ($/bundle) (4.8)
The components that make up the total heat exchanger bundle cost are discussed in Appendix E.

Fan system capital cost

The fan system cost consists basically of the fan, inlet bell, fan shroud, inlet safety screen, electric

motor, gearbox or belt drive and the electrical and control equipment cost.

Axial flow fans are usually used with diameters ranging from 1.2 m to 9.9 m. The number of blades
range between 3 and 9. The fan blades are usually either cast aluminum, glass fiber reinforced
polyester or epoxy laminates. The blades are fixed to a hub where the blade angle can be manually
or automatically adjusted. Low noise blades are also available. Fan speed adjustment is performed

by using multispeed motors and result in a stepped variation in the air flow.

The fan system is usually costed on a $/kW basis plus a $/m? of fan blade swept area [72ANle,
76FR1e]. Ard et al. [76AR1e] developed a detailed model to describe the fan system cost which is
also used by Choi and Glicksman [79CH2e]. They used the fan size and power requirements to
develop a cost structure for the fan, fan equipment, fan plenum and fan velocity recovery stacks.

Their fan cost algorithms are given below.

The fan cost, Cy, depends primarily on the fan diameter, number of blades and whether the fan has

manual or auto-variable pitch control and the hub and seal cost.
Cr = ngy(dpCry + Crpu) + Crp (4.9)

where Cp, is the cost per fan blade, Cyy, is the fan blade added unit cost and Cg, is the hub cost.
These costs were developed from a fan manufacturer's price list. The fan equipment cost, Cgg,
consists of the electric motor cost, C,,,, speed reducer cost, C, (either gear drives or belt drives),
shaft, bearings and mountings costs ,Cg,, and is dependent on the fan power requirement measured

m Watt, P,.
15
Crg = P,(Cy +Com) + P +Cipy (4.10)

The fan plenum type depends on whether the system is forced or induced draft and the cost is -
derived from the plenum and fan ring material weight used during the manufacturing process. Both

horizontal and vertical plenums are investigated and the results are not applicable to the A-frame
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arrangement. Velocity recovery stacks are used to recover some of the kinetic energy at the
discharge of induced draft fans and their cost depends mainly on the material used in the

manufacturing process. The total fan system cost is the sum of all the above mentioned costs.

In this study it is assumed that dp, = 1.005dg, dg, = 0.165dg, the height of the fan casing is
0.1dg,, the inlet bell height is 0.15d g, and the mlet bell diameter is 1.2dg.. Based on the above-

mentioned methods, the total fan system cost, Cy;, can be expressed as
Cpp =(Cp +Cpe +Cpg+Cop +Co +Cre) W ($/fan) (4.11)
The components that make up the total fan system cost are discussed in Appendix E.

Forced draft cooling tower structure

The structural components must be adequate to support the tube bundles, the heat exchanger bundle
structure, ducting, fluid load, fans and the fan drive equipment under a variety of conditions.
Furthermore, the height of the fan platform above the ground level must be selected with due
consideration of the total cooling air flow of all the fans, without exceeding the average air access

velocity [83SHle, 87KNT1e, 94SAle].

Ard et al. [76AR1e] developed cost algorithms for both round and rectangular mechanical draft dry-
cooling towers. Initial cost estimates were based on commercial designs. A base cost was thus
established from which costs could be derived for towers which were larger, smaller, or for which
the load to be supported varied. For the rectangular tower with horizontal heat exchanger bundles,
the structure cost per square meter of heat exchanger frontal area is expressed as a linear function of

the load to be supported, Mg, i.e.
Cg=a+bMg ($/m?) (4.12)

For the round tower the steel cost is expressed as a function of the tower volume and roof loading
and the foundation cost as a function of the heat exchanger bundle weight and the tower area. The
same correlations are employed by Choi and Glicksman [79CH2e]. Haberski and Bentz [79HAle]

use preliminary design layout drawings to estimate the construction and structural costs.

In this study it is proposed to express the structure, foundation and the land area requirement costs

as a function of the heat exchanger bundles’ plot area and the structure height.

The total construction cost, C_, can be expressed as

Co =(Cy+CoHs + Cryt)ApuWe (5) (4.13)
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The components that make up the total construction cost are discussed in Appendix E.

Natural draft cooling tower shell (Hyperbolic reinforced concrete)

The shape of the meridian curve of the cooling tower shell is a hyperbola described by [84ZE1e]

(z) =1, +242% +b? (4.14)

b

where a and b are constant values depending on the geometry, r, is the offset between the
hyperbolic axis and the cooling tower axis (axis of rotation). In most cooling tower designs more
than one hyperbolic function is required to describe the meridian curve of the shell. Therefore, two
hyperbolic functions are used as generating functions, one above and the other below the throat.

The constants a and b can be calculated from the tower geometry.

If t,(z) is the thickness of the shell at height z (t, =200 mm [83SIle]), and if C (z) is the
construction cost per unit volume of shell as a function of height z, then the total cost of the shell

may be approximated by [75REle] (refer to figure D.2)

H,—H,

C, = J 2 (2) 1+(%1J2tct(zl)cc(zl)dzl

0 ; '
., (4.15)

¥ J 215y(2,) 1+(§Z%J2tct(z2)cc(zz)dzz

The above equation cannot be given in closed form and must be solved numerically.

The mlet and overall height, base diameter and the outlet diameter of the concrete shell of a cooling
tower are determined mainly by thermal considerations, whereas the shape of the tower is primarily a
function of strength and cost. The assessment of the cost of the hyperbolic concrete shell is thus a
function of the concrete and steel reinforcement quantities used, which in turn are govemed by the
structural design. Due to the fact that we are only interested in thermal parameters, a detailed
structural design optimization is outside the scope of the present study. We must therefore find a
more simplified way of expressing the cost of the cooling tower shell. The cost information obtained

in the literature is subsequently discussed.

Furzer [72FUle] expressed the cooling tower shell cost as

Cor = CoisSd sty (Hs — H;) (4.16)
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where S is a shape factor depending on the hyperbolic contour and has the value 0.6667.
Ecker and Wiebking [78EC]1e] considered a cylindrical tower shell and expressed the cost as
Ce = Coeed st o (Hs — Hy) (4.17)
In both the above expressions the shell cost, C, is proportional to the volume of renforced
concrete i the shell.

Buys and Kréger [89BU2e] approximated the cooling tower shell as a conical frustum and express

its cost as a function of the cooling tower shell area, i.e.

Car = 0.57C,qe(d5 + ) (Hs — ) +0.25(d5 - ds)"‘]o‘5 (4.18)

where C_,. is the cooling tower construction cost per square meter of shell area.
Lovino et al. [90LO1e] expressed the cooling tower cost as
b
Ci=ad; (4.19)

where a and b have been derived from preliminary proposals for several similar cooling tower

designs.

A simplified method is proposed to estimate the costs involved in the cooling tower construction.
The hyperbolic concrete cooling tower has a relatively thin shell of varying thickness which is
greatest at the base. The use of stiffening rings can reduce the volume of reinforced concrete as the

towers get larger [80ZEle, 83SIle]. However, it is not our intention to perform a structural design

and optimization on the shell and therefore the construction cost will be presented as $/m> of
concrete used, assuming a constant mean shell thickness. The cooling tower shell will be

approximated by means of two conical frustums, one above and the other below the throat.

The total construction cost, C, can be expressed as
Co =(C1+Coq +Cpp +CosJW, (9 (4.20)
The components that make up the total construction cost are discussed in Appendix E.

Steam/condensate distribution system costs

The steam/condensate distribution system cost (air-cooled condenser), C 4, is expressed as a

function of the total heat exchanger bundle and fan system costs as follows

Coa = (Cho +Cre)Wyq (9) - (4.21)
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The components that make up the total heat exchanger bundle and fan system costs are discussed in

Appendix E.
Circulation system costs

The circulation system design is a function of the particular plant layout and requirements. The only
way to determine the actual cost of building a large piping system would be to obtain bids with a
detailed piping design [76AR1e] or to use a preliminary design layout to obtain costs [79HA1e].

Ard et al. [76AR1e] present a detailed piping model to define the cost of the optimized piping system
for a 1000 MWe plant. Two cooling tower arrangeménts were considered for indirect dry-cooling
systems: circular towers and rectilinear towers. Although an actual design will differ from the
presented designs, the authors expect the model to be representative of the actual costs. They
further conclude that the costs are not greatly dependent on the piping layout. A piping design and
cost algorithm is also presented. Extensive tables with cost coefficients, obtained from catalogues
and contractors, for calculating installed steel pipe and pipe fittings are provided (also refer to
[79CH2e]). The installed cost is basically a function of the welding, material and other installation
costs. Choi and Glicksman [79CH2e] illustrate the economic trade-off between the capital cost of

piping and the cost of pumping power.

A linear relationship between pipe diameter and installed piping cost was developed [76ARle,
79CH2e, 79NAle, 80GUle], i.e.

Cp=a+bd, | (4.22)
Most of the piping cost models are based on the model of Ard et al. [76AR1e].

A distance of approximately 150 m between the condenser and the cooling tower is usually assumed
and the optimum pipe velocity varies between 2.75 m/s and 3.7 m/s [79CH2e, 79NAle, 80GUle].
For large natural draft dry-cooling towers the pipe velocity may be as low as 1.75 m/s [85ES]e].
The literature cited are for the indirect dry-cooling tower system with water as the fluid.

An investigation into the optimum results of various reports ([70ROle, 75Mlle, 77SUle, 7 8LA1e,
78RO1e, 79CH2e, 79HAle, 79NAle, 80GUle, 91SZ1e]) show a vast amount of cost data for the
different designs (indirect dry-cooling towers, both natural and mechanical draft). The circulation
system cost, including the piping, pumps, pipe fittings and other equipment can however be
expressed as a percentage of the cooling tower cost including the heat exchanger bundles. The

percenthges vary from as high as 50% to as low as 15%.
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The pump cost is a function of the power requirement as governed by the water flow rate and the
total pressure drop in the cooling system. Various authors expressed the pump cost as a linear

function of the pumping power [79CH2e, 79NAle, 80GUle, 90LOle], i.e.

Coump =2 +D P, | (4.23)

Crowley et al. [75CR1e] express the capital cost of the pump and piping as a function of the total

water flow rate.

Buys and Kroger [89BU2e] express the capital cost of the pump and piping as a percentage of the

sum of the cooling tower construction and the heat exchanger bundles capital cost.

For better part load performance it is preferable to divide circulating pump capacity between two
50%-duty units. Sometimes three 50%-duty pumps are installed so as to have a stand-by unit in
emergencies; this solution makes it possible to bring in the third pump to assist the cooling effect
under conditions of high ambient air temperatures [71HE1le, 87TR1e, 91SZ1le]. Two 50%-duty
pump units will be considered in this analysis.

The total pump system cost, C,q, can be expressed as

Cpst ={ Cpump + Com +CousWps (9) (4.24)

The piping and valves cost, C_,, can be expressed as

pv>
Cpv = Creny Wy ($) _ (4.25)
The components that make up the total pump, piping and valves costs are discussed in Appendix E.

4.6 DRY-COOLING SYSTEM OPERATING COST ESTIMATION

The operating -costs that will be considered in this analysis are the fuel cost, the auxiliary power
requirement cost of the fans and pumps, the fixed charges and the maintenance costs. These costs
may be variable during each year of the life of the plant and are usually expressed on an annual basis.
Levelized values (over the plant lifetime) of these variable cost factors are usually computed in order

to simplify the calculations [85LI1e].

Auxiliary power requirements, such as the fan and pumping power, are calculated as the product of
electricity cost and the equipment power requirements. The operating or running costs of pumps
and fans are sometimes expressed in terms of fuel requirement by dividing the total mput power

requirements of the pumps and the fans by the plant efficiency [75CR1e, 85L12¢].
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The cost of electricity, C,, and the cost of fuel, C¢, will not remain constant over the operating
lifetime of the plant. It is mostly preferred to work with the average value over the operating lifetime
of the plant, C_,, [81SMle, 83KR1e] and Cg,, [85LI12¢]. If it is known at which rate the initial
costs, C, and Cgq, will escalate over the plant operating lifetime, the average values can be

determined according to equation (4.5).

Fuel cost

Fuel costs are a major portion of the cost of power generation, running at about half the total cost
for coal-fired plants [86HI1e] and are therefore the largest operating expense. Fuel cost varies with
the plant’s efficiency, the unit fuel cost and the amount of electricity produced. The cooling system
plays a major role in the efficient conversion of fuel to electricity. The turbine heat rate, defined as
the ratio of heat supplied by the boiler to the turbine output (kJ/kWh), will increase with decreasing
cooling tower performance during high ambient temperatures, thus wasting valuable fuel. The
selection of a cooling system affects the overall plant performance, e.g. a large cooling system will
result in a lower turbine back pressure and the plant will use less fuel than in the opposite case. It is
for this reason that the plant fuel cost must be taken into consideration in the cooling system

optimization.

The ratio of the heat supplied by the boiler per hour to the turbo-generator output (the heat rate) in

kJ/kWh can be approximated as follows:

(P, +Q)3600 o

= (4.26)
Pg MNplant

Heat rate ~

where P, is the gross power output of the turbo-generator and Q is the heat to be rejected by the

cooling system. The unit cost of the fuel, Cg,,, can be expressed in $/kJ which is derived from the
fuel cost per kilogram ($/kg) and its calorific value (kJ/kg). The total annual fuel cost can be
expressed as [85L1I1e] '

-1
Ca= CfavnplantPgT (4.27)

where 7 is the number of operating hours (refer to Appendix E).

Fan operating cost

In mechanical draft air-cooled heat exchangers, either forced or induced draft, the required air flow is
assured by fans. Axial flow fans are normally used. The operating point of the cooling system is

where the system resistance curve intersects the fan characteristic curve at a specific air mass flow
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rate, i.€. ADgystem = Apps. System resistance includes the various flow resistances encountered,

atmospheric conditions, heat exchanger dimensions and the heat exchanger bundle characteristics.
Variation of the amount of air flow can be obtained by adjusting either the fan blade angle or the

speed of rotation.

The operating cost of the fan is related to the required input electrical power to move the volume of
air to properly cool the process fluid inside the heat exchanger bundles. It can be expressed as

[80MO1e]

VA
p, = ~E-DEs (4.28)

NrNFd
The annual operating cost of the fan can be expressed as [80GU1e]

Cpo = Cou Pt ‘ (4.29)

eav—e
where 1 is the number of operating hours (refer to Appendix E).

Various means of fan control that can aid in saving fan operating cost are possible [77SCle,
80HE2e, 81KOle]. However, expensive control equipment is needed to perform the control

properly [85MO1e, 85MO2¢, 93AD1e].
Pump operating cost

The rumning costs of the indirect dry-cooling system arises from the circulating pumps’ power
requirements and the fan power if mechanical draft is used. The pumping system provides the
necessary pumping head to overcome the hydraulic pressure drops i the cooling system's
distribution network. The total pumping power requirement is governed by the water flow rate and
the total pressure drop of the cooling system's distribution network. For the indirect cooling system
the total pressure drop is the sum of the pressure drop in the condenser, distribution piping and the
heat exchanger bundles. The pressure loés i pipe fittings is believed to be 30% to 45% of the
pressure drop in the pipes [79CH2e].

The total pressure drop in the cooling system can be expressed as [S0OMO1le]

L
Apy = 05F,p,, —fv%v (4.30)
1

where L, is the total equivalent length based on the heat exchanger tube geometry. The required

pumping power is
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p = DwlPw (4.31)
NpMmPw ‘
The ratio L., / (ntbnbLt) is always greater then one due to the resistances of the pipes, headers, and

fittings [80MO1le]. The annual operating cost of the pump is [66SC2e, 80GUle, 89BU2e, 90LO1e]
Cpo = P.CoqyT (4.32)

Pumping power requirements for the direct contact jet condensers are higher than those for surface

condensers.
Fixed charges

The concept of fixed charge rates (FCR) is widely used in the utility industry [70ROle, 71HAle,
75Mlle, 76FR1e, 76ZAle, 78R0O1le, 79CH2e, 79NAle, 80GUle, 85LIle, 89STle]. The electric
utility must charge the lowest electric rates possible consistent with providing an acceptable rate of
return on its mvestment and an acceptable quality of electric service. Fixed charge rate is defined as
the annual owning costs of an investment as the percent of the investment. Once the plant becomes
operational, the fixed charge rate can be applied to the capital costs to give the annual expenditure

required for the entire life of the plant. It includes the following:
(1) Interest or cost of money

(2) Depreciation or amortization

(3) Insurance and taxes

(4) Interim replacements

The fixed charge rate has a yearly variation: it is largest when the plant is first installed and decreases
as the plant ages. A uniform annual levelized fixed charge rate is often calculated, which is the
present-worth levelized average value of the fixed charge rate (refer to equation (21.5)). For most
economic analyses, the levelized annual (or average) fixed charge rate is much easier to apply
because only one number is carried in the calculations. The levelized fixed charge rate will provide
the same answer as the varying annual fixed charge rate (refer to Appendix E). A detailed analysis of
the concept of fixed charge rate can be found in Stoll [89ST1e] and Li and Priddy [85LI1e].

Maintenance costs

Maintenance is defined as the activity/expenditure that keeps the operation and performance of
equipment at the original as-built level. The operation (other than those for auxiliary power) and
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maintenance cost of the power plants vary substantially with both the size of the individual units and
the number of units in the plant. The biggest cost is for personnel [86HI1e]. For the cooling system,
the annual operating maintenance charge is estimated as a fixed percentage of its capital costs and a
figure of 1% is generally quoted in literature [66SCle, 70ROle, 72ANle, 72PEle, 76FRle,
79NAle, 85MAle].

Routine anticipated operation and maintenance costs would appear to be relatively easy to define.
However the actual operation and maintenance costs would appear difficult to define exactly until
several years of widespread use of dry-cooling have been logged. Furthermore, maintenance cost is
also a function of plant life and generally becomes higher as the plant becomes older. The yearly
variation in these costs can also be accounted for by using a levelized value over the plant lifetime
[85LIle]. Planned or umplanned (forced) outages can occur which can lead to either a complete
shutdown or derating of a unit. When a component is being repaired as a result of an unscheduled
outage, both direct and indirect costs are involved. The direct costs are those costs associated with
the maintenance labor and the repaired or new parts. The indirect costs, however, are usually much
larger than the direct costs. Purchased power to replace the power that the unit would have
produced or the loss in income due to unit derating are examples of indirect costs [85LIle,
91GUle]. It is evident from the above that it is not easy to predict the operation and maintenance

costs accurately.

In this study the maintenance cost of a specific component is assumed to be equal to the product of
the component’s capital cost and a specified maintenance cost weighting factor. The maintenance
cost weighting factors are assumed to be levelized values over the operating lifetime of the plant.

The maintenance costs of the different dry-cooling system components are discussed in Appendix E.
4.7 COST OF LOST PERFORMANCE

The economics of evaluating cooling systems for power plants are closely related to the
characteristics of the demand for electricity, e.g. summer peak demand, winter peak demand or

utility system.

Ideally, most power stations would prefer to produce a constant maximum power output (base load)
without regard to the changes in the ambient conditions. The cooling system has a dominant effect
on whether this goal can be realized or not. Once through cooling can provide essentially constant
turbine back pressure since there are relatively small swings in the temperature of the water bodies
used for cooling. Evaporative cooling can approximately provide a constant turbine back pressure

except for combinations of both high drybulb and wetbulb temperatures. On the other hand, dry-
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cooling is very sensitive to variations of the ambient drybulb temperature. With increasing ambient
temperature the dry-cooling system provides less cooling, causing the turbine back pressure to rise,
thus reducing the plant efficiency and the plant performance. This is an inherent characteristic of
dry-cooling systems and can be treated as such, or can be used to penalize these systems in

optimization studies as will be subsequently discussed.

If there is a fixed demand that must be met, any deficit between the net power output and this
demand must be provided by another power generating source. This deficit is defined as lost
performance and is of relevance in the utility power industry [70ROle, 71HAle, 76FR1e 78ROle,
79HAle, 80GUle, 85MAle].

Lost performance is usually made up of two portions, namely back pressure effects and auxiliary
power requirements. Larger more costly dry-cooling systems will reduce lost performance. There
exists a tradeoff between capital cost and the cost of lost performance. Therefore one must try to
determine the most cost effective manner to operate the dry-cooled plant within the utility system
(tradeoff between excess cooling capacity on cold days and inadequate cooling capacity on hot
days). |

The costs involved in lost performance are determined both by how the capacity and energy losses
are evaluated and by how their replacement is provided. Computationally, the output at any hour is
calculated as a function of ambient conditions and cooling system and plant performance and then

compared to the output of a reference base plant. Fryer [76FR1e] identifies the following methods
for defining the base line:

(1) Fixed demand with a fixed heat source
(2) Fixed demand with scaleable steam supply and scaleable plant
(3) Negotiable demand with a fixed heat source

The following means can be employed to make up the lost capacity during high ambient
temperatures [76FR1e, 78RO1e]:

(1) Gas turbine peaking unit
(2) Enlarged base units
(3) Purchase power from a power pool

The added generating facility requires both capital expenditure and operating revenues. These costs
are, respectively, referred to as the penalty cost due to loss of generating capability and the penalty
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cost due to the loss of energy generation. The capability penalty is the amount paid for each kW of
additional capacity when the unit is unable to produce its required capability and is considered as a
capital cost item ($/kWe). The energy penalty is the amount paid for each kWh of additional energy
when the unit is unable to produce its required capability and is considered as an operating cost

($/kWh).

Rozenman et al. {78RO1e] state the most commonly used rules to calculate the temperatures above

which penalties are considered:

(1) 10 hour rule - the hottest 10 hours of the years are ignored and the highest temperature which

is exceeded during this 10 hours is used.
(2) 1% rule - use 1% of the four hottest months which corresponds to 29 hours.
(3) 2.5% rule - use 2.5% of the four hottest months which corresponds to 72 hours.

Choi and Glicksman [79CH2e] concluded that the optimization is very sensitive to the methods of
making up lost capacity and state that it is very important to have an accurate representation of the
possible methods. The method available to make up lost capacity caused by the dry-cooling towers
is very much dependent on the particular condition of a utility and generalizations are not valid

without detailed examinations of these conditions.

The power requirements for the circulating pumps and the cooling tower fans present a loss in
generating capability from the plant output to the grid and this cost is considered as an additional
penalty cost. There are two ways whereby the auxiliary power required to power the fans and the
circulating pumps [78RO1e] can be suppiemented, namely:

(1) Consider the auxiliary power to be a loss similar to the loss of generating capability at high
ambient back pressures. Thus the auxiliary power can be drawn from the same source as the
loss in capability at high ambient temperature with the corresponding capacity loss and the
energy usage charges [78RO1e, 79HAle, 80GU1e, 85L12¢].

(2) Recognize that the auxiliary power will always be needed through the entire plant life and
choose base plant capacity accordingly. Use base plant cost factors to charge capacity and

energy.

In the present study we will not employ the methods (penalties) used by the utility systems to ensure
constant power output, but rather recognize the inherent characteristics of the dry-cooling system

over its operating range when designing a cost-optimal dry-cooled power generation system.
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Auxiliary power (e.g. fans or pumps) is assumed to be purchased from the grid. It is further assumed
that the plant’s gross power output is designed to take these power requirements into account,
because they are an integral part of the dry-cooling system. Gross power is defined as the power
generated less all the station auxiliary power, except that of the cooling tower fans and/or the

cooling tower pumps.
48 TOTAL COST
The total annual cost of the dry-cooling system is:
Ciotal = Coperating + Cmaintenance + Crcr  ($/annum) (4.33)

The cost of power generation (attributed to the dry-cooling system) is:

power —

C _ Ctotal ($/kWh) : (4.34)
Enet

where E . is the net annual power output.
These annual costs present the required objective functions in terms of the geometrical and operating
variables. Equation (4.33) is used for the operating point optimization, whereas equation (4.34) is

used for the minimization of power generation cost.
4.9 CLOSING REMARKS

In this chapter scalar valued objective functions are derived in terms of the geometrical and operating
variables of the dry-cooling systems under consideration. These functions are nonlinear and twice

continuously differentiable.

Various aspects of cost estimating, as found in practice, are discussed and a cost estimation model
for the dry-cooling systems is derived, based on these principles. Although this cost estimation
structure is an approximation to the real-world problem, it will be considered adequate for the
purposes of this study. It was not an easy task to obtain cost information from the industry, mainly
due to the confidentiality of the matter. These procedures can still further be improved with the co-

operation of dry-cooling system equipment manufacturers, vendors and cost and design engineers.
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CHAPTER 5

COMPUTATIONAL ALGORITHMS TO SOLVE THE PERFORMANCE
EVALUATION AND OPTIMIZATION PROBLEMS

5.1 INTRODUCTION

Engineering optimization is usually concerned with the application of existing techniques (“black
box” approach). Realistic engineering design problems have special characteristics that are often not
considered while developing strategies for numerical optimization and solution techniques. As a
result the development of new techniques and the modification of existing ones are encouraged to

make efficient and robust optimization methodology available to engineers.

In this chapter we discuss the computational algorithms used to solve the engineering problems
formulated in Chapter 3. Various computational methods do exist for solving these problems (refer
to Chapter 2). However, it will be extremely inefficient to choose a method without considering the
features of the problem that allow it to be solved more efficiently. The most obvious distinctions
between problems involve variations in the mathematical characteristics of the objective and the
constraint functions. No one method will solve all problems satisfactorily, which further underlines
the advantage of exploiting specialized properties of a particular mstance rather than using a “black

box” approach.

We shall exploit the specialized properties of the dry-cooling system performance evaluation and
optiniization problems in order to design efficient computational algorithms for solving these
problems. The different computational algorithms will subsequently be discussed.

5.2 PERFORMANCE EVALUATION
The performance evaluation problem can mathematically be expressed as

Solve fj(x)= fj(xl,xz,...,xn) =0, j=1...n

subject to the constraints 5.1

T .
a;x2b,, i=1l...,m

where x presents the operating variables, f j(x), j=1,...,n are the model simulation equations

(balances) to be satisfied at the operating point and the linear inequality constraints are the
infeasibility inequalities. The infeasibility inequalities usually actually reflect physical bounds which,
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if violated, may cause numerical difficulties. They will, however, not be satisfied as equalities at the
solution point. The solution of the performance evaluation problems (operating point and power
generation calculations) can thus be found by the simultaneous solution of n nonlinear equations in n

variables.

The performance evaluation problem’s structure makes it suitable to be solved as a nonlinear least
squares (NLS) problem. However, a strategy has to be developed to incorporate the feasibility
inequalities into the nonlinear least squares solution strategy. With this in mind, problem (5.1) can be

reformulated as a nonlinear least squares problem as follows:

] _
Solve ?(x) = O.SZ f (x)2 =0.5f (x)Tf (x) =0

j=1
subject to the constraints (5.2)

T - }
aiXZbi s 1=1,...,m

NLS problems have a special structure that can be effectively exploited during the solution process
of problem (5.2). The development of a constrained nonlinear least squares algorithm for solving
systems of nonlinear equations subjected to linear inequality constraints will subsequently be

discussed.

Solution of systems of nonlinear equations by using a constrained nonlinear least squares

approach

In Appendix F, section F.2, we investigate the solution of the standard NLS problem by considering
an approach closely related to solving systems of nonlinear equations, i.e. the Gauss-Newton
method. The Gauss-Newton method is only locally convergent and can fail or converge slowly from
a poor starting point. There are however, two ways of improving the Gauss-Newton method, i.e.
using it with a line search or with a trust region strategy. These two approaches lead to two
algorithms that are used in practice, i.e. the damped Gauss-Newton method (line search) and the
Levenberg-Marquardt method (trust region) [83DE1m]. When applying the Gauss-Newton method
for NLS, the trust region method appears to be more robust and efficient than the line search
methods [83DE1m, 89DE 1m)].

We develop an algorithm for the simultaneous solution of the nonlinear equations that is based on
the combination of the Levenberg-Marquardt and the damped Gauss-Newton methods for solving
NLS problems. Both these methods are used in the same computational algorithm to overcome the

difficulties experienced by the basic Gauss-Newton method. The computational algorithm and its
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implementation are discussed i detail in Appendix F, sections F.3 and F.4. Only the underlying
principles of the algorithm will be stated here.
Levenberg-Marquardt methods are characterized by solving the following system of equations at

some stage to determine the search direction, s® [87FL1m]
T
[J(x(k))J(x(k)) + x‘k)l]s(“ +J(x(k))f(x(k)) =0, ®xo (53)

where J(x) is the nxn Jacobian matrix, the columns of which are the first derivative vectors Vf; of

the components of f. A5 changed during the course of the iterations in order for
J(x(k) )J(x(k) )T + A9 to remain positive definite.

By making use of equation (5.3), problem (5.2) can be rewritten as a quadratic programming (QP)

problem in order to deal with the imposed linear inequality constraints, i.e.

T T
Minimize O.5s(k)T|:J(x(k))J(x(k)) +k(k)1}s(k)+(J(x(k))f(x(k))) s(k)

subject to the linear inequality constraints (5.4)

aiTs(k) 2 b, —aiTx(k) i= 1,...,m

2

The resulting QP can be solved by means of any active set method. We use the dual active set QP
algorithm in Appendix G (refer to section 5.3). This QP algorithm will also be used to solve the QP

subproblems that result from the solution method of the nonlinear constrained optimization problem.

A% is decreased by a constant factor if a suitable search direction s® is found which causes a
reduction in the objective function. Otherwise A s increased by some factor until the required

reduction in the objective function is achieved. Under certain conditions A% can become very
large, resulting in slow convergence or no convergence at all (bias towards the steepest descent

search direction). In these cases we introduce a line search procedure to find a new point

x & = x® 4 o ®s® that causes the objective function to decrease.

5.3 OPTIMIZATION

Realistic optimization models can be quite large and complex and the evaluation of the objective and
constraint functions can require substantial calculation. The optimum design process is iterative,
needing the same calculations to be performed during each iteration. Thus, the number of function

evaluations is a measure of efficiency for an optimization algorithm for engineering problems.
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The cost minimization problems considered in this study can all be classified as nonlinear constrained
optimization problems. The computation of the objective and constramnt equations as well as the
physical modeling of the system involves a large number of numerical operations, thus requiring the

inherent characteristics of the problem, as discussed in section 3.4, to be exploited.

The structure of the dry-cooling system optimization problems make them suitable to be optimized
without repeatedly converging the performance evaluation model equations, i.e. the simulation model

will be formulated as part of the optimization problem (infeasible path integrated approach).

The nonlinear programming (optimization) problem to be solved is formulated as [87FL1m]

Minimize f(X)=f(X1,X2,...,xn)
X

subject to the constraints (5.5)

¢i(x)=0, i= L,...,Meq

¢i(x)20, i= M, +1,...,m

where x=(x1,x2,...,xn) is a vector of decision variables (including both the dependent and

independent variables). f{x) is the objective function and ¢(x) is the vector of constraint functions
which includes the model’s simulation equations. It is assumed that the bounds on the variables are

incorporated into the inequality constraints.

In dry-cooling system design and performance optimization for power plants applications, typical
examples of the objective function are minimum annual cost (capital and operational costs) and
minimum cost of power generation (refer to Appendix E). The constraint equations on the other
hand, usually include the equations describing the conservation of energy, momentum, bounds on the
variables, design constraints, and others (refer to Appendices C and D). This formulation tends to
disguise the dependence of the operating variables on the geometric variables. The optimization
problem is solved in such a way that the equality constraints describing the physical model are only
satisfied at the final iteration. In other words, during the intermediate iterations no dry-cooling

system exists that will satisfy any operating point.

Problem (5.5) will be solved by means of the Successive Quadratic Programming (SQP) method,
because the SQP method has been recognized as one of the most efficient algorithms for solving
small to moderately sized nonlinear constrained optimization problems [81HO1m, 83REle]. In a
computational environment where one function evaluation can correspond to a full simulation, the

number of function evaluations is critical for a successful method. It is also known that SQP
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methods are in general favored in such modeling environments due to the fewer function and

gradient evaluations required.
Successive quadratic programming algorithm

The SQP method is derived in section 2.2 as a Newton method for solving the optimality conditions
of problem (5.5). The most basic step of the SQP method is the formulation and solution of a

sequence of successive QP subproblems to find a search direction, s , and to provide estimates to

the Lagrange multipliers, A® | The QP subproblem has the form

T
Minimize Vf(x(k)) s® 1 05s@TggM0
S
subject to the linearized constraints

T (5.6)
ci<x(k))+Vci(x(k)) s(k)=0, i=1,...,my

T
ci(x(k))+Vci(x(k)) s(k)ZO, i=meq+1,...,m

where B is an approximation to the Hessian matrix of the Lagrange function of problem (5.5).
SQP methods have very desirable computational properties:

(1) they are globally convergent since the search direction has descent for a suitable line search
objective function;

(2) near the solution point they converge superlinearly for a step length of one, because the

Hessian of the Lagrange function contains curvature information about the problem function;
(3) only first order information is used;

(4) and they are suited to inequality as well as equality constraints because a general QP problem

can be solved during each iteration.

With the use of proper numerical procedures these methods have the potential of solving complex

nonlinear constrained engineering optimization problems.

Although quite a few SQP algorithms have been proposed, only a few of those have been coded and
are generally available for distribution [86THle, 88EDle]. When a computational philosophy is
implemented via different numerical schemes, different performances may result in practice. There
are several numerical aspects in which the different SQP codes differ that sometimes result in great

computational inefficiencies [86TH]1e, 87KI1e].
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We will use Powell’s implementation of the SQP algorithm, subroutine VMCWD, as a basis for the
implementation of the SQP method [82PO1m, 82PO2m]. The details of the implementation of this
SQP algorithm are described in Appendix H. Several modifications were made to the VMCWD to

address its computational inefficiencies as briefly outlined below:

(1) The most significant change to Powell’s implementation is the change in the algorithm to solve
the QP subproblem. Powell used a feasible point primal QP algorithm with his SQP
implementation. We replace this algorithm by a suitably tailored dual QP algorithm for use
with SQP methods (for strictly convex QP problems). This QP algorithm is derived in
Appendix G and will be discussed in a subsequent section.

(2) The implementation of VMCWD requires that the gradients of the objective and constraint
functions are calculated even during line search iterations, which is unnecessary. A
modification was made so that these functions and their corresponding gradients are only

calculated when required.

(3) VMCWD requires that the user provides routine for the calculation of the objective and
constraint functions as well as their corresponding gradients. The natural structure of the
optimization problem, as discussed in section 3.4, are exploited in these routines. An

extremely efficient function and gradient evaluation procedure is obtained as a result.

(4) When the size of the nonlinear constrained optimization problem becomes large, the cost of the
optimization is dominated by the computational overhead and storage requirements of solving
the QP subproblems. The optimization problem that results from considering the minimum
cost of power generation, falls into this category. Although the infeasible path integrated
approach solves this problem satisfactorily, it consumes a large amount of computational time.
A reduced Hessian SQP decomposition strategy is implemented to solve this problem. The
treatment of large-scale SQP problems will subsequently be discussed.

Section H.3 contains a detailed discussion of all the modifications to VMCWD.
Decomposition of large-scale successive quadratic programming problems

When the number of variables is large, there are basically two ways to apply SQP methods: either
decomposition techniques can be used or the natural problem structure can be exploited. The natural
problem structure has been exploited to a certain degree in the infeasible path integrated approach.
However, the reasons for advocating decomposition are that the QP subproblems can be very

expensive to solve, the storage requirements can become quite large and the problems have a small
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number of degrees of freedom (difference between the number of variables and the number of active
constraints). Decomposition techniques use the equality constraints to eliminate the dependent
variables and reduce the size of the QP subproblem that must be solved at each iteration. The QP

subproblem is formulated in the independent variables only.

Equation (5.5) can be reformulated by separating the dependent and independent variables as well as

the model simulation equations and the general equality constraints:

Minimize f(x,Y)
%Y

subject to the constraints

ci(x,y)=0, i=1...,mg 5.7
ci(x,y)20, i=mg +1,...,m,
h(x,y)=0

where

f objective function (e.g. cost function)

X vector of independent variables (e.g. geometricai variables) .

y  vector of dependent variables (e.g. operating variables)

general constraints (e.g. geometric and/or physical constraints)

h  vector of equality constraints (e.g. equations needed for model simulation)

number of equality constraints
m, total number of general constraints

n total number of variables

For fixed x values (independent variables), the values of y (dependent variables) can be determined
by solving the equality constraints, h(x, y) =0 (feasible path approach). The reduced problem
formulation (the dependent variables are expressed in terms of the independent variables) can be
stated as follows: |

Let

h(x,y)=0 (5.8)
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Solve for
y=2(x) (5.9)

where ®(x) denotes implicit functions that define the dependent variables in terms of the

independent variables. With the dependent variables, y, known, one is able to formulate the reduced

problem in terms of x (independent variables) only, i.e.
Minimize F(x) = f (x,@(x))
X
subject to the constraints
Ci(x)= ci(x,d)(x)) =0, i=1...,m
Ci(x) =c;(x, ®(x)) 20, i=my+1,...,m,

(5.10)

Problem (5.10) has the édvantage of reducing the number of variables in problem (5.7).

Studies have shown that performing an optimizatic'm study while repeatedly simulating the physical
model requires prohibitive computational effort [85B12e, 93SCle]. The derivation of the reduced
problem is based on the assumption that equations (5.8) can be satisfactorily solved at each iteration
(feasible path approach). However, this is not always the case as combinations of independent
variables can be found that do not correspond to a practical system, i.e. one is unable to solve for the
dependent variables [83TAle]. It can thus be expected that the method will perform well near the
optimum solution and will most probably run mto the above-mentioned difficulty far from the

optimum point.

Due to the fact that the solution of the system of equations in (5.8) is an iterative process, a great
degree of inaccuracy will be introduced if the derivatives of the objective and constraint functions
with respect to the dependent variables are determined numerically. Gill et al. [85GI2m] warmn
against the defining of problem functions that are the result of some iterative procedure. The
solution of the subproblems to full machine precision will require considerable computational effort,

making the optimization process very inefficient.

The sequential approach (feasible path) discussed above is thus a very primitive and inefficient way
to take advantage of the problem structure [93SCle]. However, this approach forms the basis of

more advanced decomposition techniques.

In the infeasible path integrated approach the optimization problem and the physical model are
converged simultaneously. This gives rise to a much better-behaved problem. A potentially

advantageous method is to combine the infeasible path integrated approach with a suitable
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decomposition technique in order to reduce the size and computational overheads of the resulting

QP subproblems. The solution of the QP subproblems is usually the most time consuming step in

conventional SQP methods.

In Appendix I a coordinate bases decomposition strategy is constructed that is well suited to take
advantage of the underlying mathematical structure of the optimization problem. This method is
based on Powell’s original SQP implementation [78PO1m]. The bases are formulations based on a
partitioning of the variables. The dependent variables are “eliminated” by using the model simulation
equations. A much smaller QP subproblem with a reduced Hessian matrix of order equal to the
number of independent variables is obtained as a result. The resulting reduced Hessian SQP method
is solved in the independent variable space only, while the move in the dependent variable space is
obtained directly from a Newton step for the solution of the model equations. Consequently the
structure of the Jacobian matrix and any tailored procedure to calculate the Newton steps are fully

exploited. The model equations are not exactly solved during each iteration, but an approximation to

their solution is computed.

The merit function (L; — penalty function) of the SQP method is constructed to include the general
constraints as well as the equations needed for model simulation (all the constraints in problem
(5.7)). The construction of the merit function in this particular way ensures that the dependent
variables are taken into account during the optimization process and converged together with the‘
independent variables. A suitable line search step length parameter is found that scales the search
direction in both the dependent and independent variable space. A step in the direction of the
solution is given such that convergence of the model equations and the optimization problem will be
reached simultaneously. The convergence criterion also includes contributions of both the dependent

and independent variable spaces in order to force simultaneous convergence.
Dual active set algorithm for convex quadratic programming problems

The solution of the strictly convex (positive definite) QP subproblem is a major calculation in SQP
methods and can affect their overall efficiency. Several numerical procedures can be used to solve
the QP subproblem. Most implementations of SQP currently employ QP routines that are based on
primal active set strategies. Considerable effort is expended in determining an initial feasible point
for the QP. However, we will use the dual method for solving strictly convex QP problems which is
particularly suitable for use with SQP methods for nonlinearly constrained optimization calculations
[82GO1m]. The most obvious advantage of the dual method is that the unconstrained minimum of

the QP objective function provides an initial feasible solution.
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In this section we describe the dual quadratic programming algorithm for convex QP problems

subject to general linear equality/inequality constraints, i.e. problems of the form

Minimize ¢(x) = 0.5x"Gx +ng
X

subject to the constraints
(5.11)

alx=b;, i=1l,...,my (A;x =b)

T

T
meqx > b)

a:x>b

h i, 1=mg +1...,m (A

where G is required to be positive definite. In this case, a unique x solves the problem or the
constraints are inconsistent. This new QP solution technique is based on the original algorithm by
Goldfarb and Idnani [83GO1m], but substantially modified to account for the fact that the QP is only
a subproblem of the SQP algorithm. This new QP algorithm is also used in the solution of the
constrained nonlinear least squares problem discussed m section 5.2 and Appendix F. The dual QP
method and its implementation, as well as the corresponding dual QP algorithm are described in
Appendix G.

It is highly recommended to implement a specialized QP algorithm that make use of the featufes of
the QP subproblems associated with the SQP methods. The modifications to the basic QP algorithm
stated in Appendix G focus mainly on efficient procedures to treat the active constraint set that will

change from one iteration to the next.

Efficient and stable updating procedures are used to modify the corresponding matrix factorizations
used within the dual algorithm when a constraint is deleted from or added to the current set of active
constraints. The computational penalty in dropping constraints can be considerable and care must be
taken to minimize the number of incorrect constraints added to the active set. Powell [85PO1m]
reports that the original implementation of the QP algorithm [83GO1m] can become unstable under
certain conditions. As a result, we have decided not to implement the matrix updating schemes

described by Goldfarb and Idnani [83GO1ml].

The first few iterations of the SQP method is generally marked by considerable changes in the
constraint active set from one iteration to the next. However, once the correct active set of the
nonlinear programming problem has been identified, the work per iteration can be reduced by using
the constraints active at the previous iteration as an initial guess for the current iteration. This is

referred to as a “warm start” option.

Powell [83P02m, 85PO1m] implemented the algorithm proposed by Goldfarb and Idnani [83GO1m]
m a subroutine called ZQPCVX. ZQPCVX will also be used as a ‘“black box” to solve the QP



Stellenbosch University https://scholar.sun.ac.za

5.11

subproblems of the SQP method as well as the constrained NLS problem. The major advantages of

the current QP algorithm over ZQPCVX will be discussed later.

Post-optimality analysis

Calculation of the change in the value of the optimal solution in response to changes in coefficients in
the objective functions or constraints is known as post-optimality or sensitivity analysis. Information
concerning the sensitivity of the optimum to changes or variations in a parameter is very important;
sometimes more important than the solution itself The status of the solution cannot be fully

understood without such information.

Sensitivity information can be obtained from the optimal solution without actually recomputing the
problem. The Lagrange multiplier for a given constraint indicates how much the objective function
will change for a differential change in the constraint constant (limit) [84LUlm, 89AR1e]. The
sensitivity of the objective function with respect to some parameter is obtained by evaluating the

partial derivative of the optimum Lagrange function with respect to the parameter [83FI1m].

The post-optimality analysis as applied in the current investigation is described in detail in section
J.3. A scale-mvariant measure of sensitivity is derived such that sensitivity results can be directly

compared.
5.4 SCALING

It is well known that properly scaled variables and constraints can dramatically improve the
efficiency and the accuracy of optimization methods. Variables of the scaled problem should be of
similar magnitude and of order unity in the region of interest. The constraints should also be scaled

such that the value of deviations from zero are of the same order of magnitude.

The implementation of all the above-mentioned computational algorithms are based on properly
scaled variables and constraints. We use information about the problem to scale the variables and the
constraints. The topic of scaling and its application in the computational procedures are discussed in

detail in section J.2.

5.5 CLOSING REMARKS

In this chapter various computational algorithms for solving the engineering optimization problems
and model simulations are brieﬂy' discussed. The reader is referred to the corresponding appendices
for detailed discussions, derivations and modifications. The basic algorithms are modified by

employing practical modifications found in the literature or by exploiting the problem structure.
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A global solution to an optimization problem depends on the comvexity of the objective and
constraint functions. Most of the engineering optimization problems are not convex or convexity is
very difficult to prove. Thus global optimality of local solutions cannot be guaranteed and there are
usually multiple local optimum solutions. From a practical standpoint, the optimization process must
be started from various initial points to see if a consistent optimum is obtained. One can then be

reasonably assured that this is the true optimum.

Gill et al. [81GI1lm, 85GI2m] discuss basic modeling principles that influence the performance of
optimization methods. These principles enable one to construct a well-behaved mathematical model
and give insight into the formulation of robust algorithms. The algorithms are implemented by
following these principles. A good optimization algorithm must be reliable, general, efficient, easy to
use and must be properly implemented [86AR2e]. The various algorithms have also been tested on
some of the test problems found in the literature (e.g. [81HO1m, 81MOIlm]) and performed

satisfactorily.

The next chapter will describe the computer codes that were developed to perform the optimization

and performance evaluation calculations of the problems formulated in Chapter 3.
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CHAPTER 6

COMPUTER PROGRAMS

6.1 INTRODUCTION

This chapter discusses the computer programs developed to implement the procedures described m
the previous chapters. These programs deal with both forced draft direct air-cooled condensers and
natural draft indirect dry-cooling towers with particular reference to power plant applications. The
program listings are too long to be included in this dissertation (£10000 lines per program). The

experimental results and theoretical work included in Appendices A-L provide all the detail included

in the different computer programs.

The programs were written in double precision FORTRAN 77 and developed on the VAX 6000-410
and ALPHA 3000-800 computers of the University of Stellenbosch. The programs can also be
implemented on 486-based IBM personal computers with at least 16 Mb RAM and a FORTRAN

compiler that can access the extended memory.
6.2 PROGRAM STRUCTURE AND IMPLEMENTATION

The main program structure is shown in figure 6.1 and consists of a main program and various
subroutines and functions to execute the performance evaluation and optimization calculations. The
subroutines are used to perform operations that logically belong together, while the functions are
used to calculate values that are used throughout the program. Most of the subroutines describe the
problem and provide an interface between the user and the solution techniques. The programs are

menu-driven and the main programs control interactive communication with the user.

The input data can be entered from the keyboard or extracted from previously stored data files,
examined and changed, and saved in unique input files. The results can be displayed on the screen or
saved in unique output files. Examples of the format of the input and result files are given in

Appendices K and L.

Apart from the input data needed to describe and formulate the problem (Appendices C, D, E refer),
the user must also specify internal parameters such as the convergence criterion (tolerance), the
maximum number of function evaluations, and the finite difference step size used in the numerical

differentiation. The number of variables, equality and inequality constraints are specified within or
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calculated by the program. The user can also choose between using round or non-round finned
tubes, the type of fin material (Aluminum, Copper, Steel, Galvanized steel) and which finned tube

performance correlations to use (refer to Appendix B).

Input data such as the fan performance characteristics and the turbo-generator characteristics are
entered as polynomial regression functions. The user must supply the coefficients of a third or fourth
order polynomial that best fit the corresponding data points.

All the input data are entered, either in SI base units or derived units. For example millimeters or
meters are used for length measurements, depending on which is the most convenient in the specific
application. The derived units are automatically converted to SI base units before any computations

are performed.

Input, examine and store data:
- Enter input data

- Examine and change input data
- Write input data to file

Performance evaluation and cost calculations:

Z - p 2

- Calculate operating point and annual cost

- Calculate the net annual power generation and cost
- Display the results on the screen
- Write input data and results to file

Optimization (minimum cost) calculations:
- Operating point optimization
- Minimization of power generation cost

- Post-optimality analysis
- Display the results on the screen
- Write input data and results to file

2> RFQ O R~

Exit program:

- Return to operating system

Figure 6.1: Main program structure.

In performing the numerical calculations, it is necessary to scale the decision variables, objective
functions and the constraint functions. Using scaling, the efficiency of the solution processes will be
enhanced. The programs are implemented in such a way that the solution algorithms only work with
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the scaled problem. Some scale factors are derived from the problem parameters internal to the
program, while others are entered as input (lower and upper bounds on the variables). The rescaled
parameters are used to generate the output results. Upper and lower bounds on some geometrical
(independent) decision variables and geometrical constraints are also entered as input. These bounds

provide the user with some control over the geometrical constraints imposed on the problem.

The computational procedures are of an iterative nature and thus require iitial values for the
decision variables. The choice of these initial values can have a substantial impact on the rate of
convergence of an algorithm. In many practical applications a good starting point is available or can
be obtained from some preliminary analyses. In the programs we have implemented a strategy to
start with an initial feasible point, because this can substantially reduce the computational effort.
Feasibility inequalities are also introduced to prevent the violation of the physical laws and the

application region of the equations that influence the dry-cooling system simulation process.

Various error and warning messages are included to effectively guide the user during program
execution. These messages are displayed on the screen. The input data are checked for obvious
errors. If numerical difficulties are experienced by the solution techniques during program execution,
error messages are displayed. This enables the user to take the required actions in order to continue
with the computations. The warning messages guard against poor design practices that may occur,

e.g. when the actual fan volume flow rate is less than its optimum value.

On completion of the optimization calculations, the following information, regarding the
performance of the SQP solution method, is displayed: the total elapsed time, the total CPU time, the
total CPU time consumed by the QP subproblems, the total number of iterations and the total
number of function calls (objective function, constraint and gradient evaluations). This information

is used to compare the performance of the different SQP and QP implementations with each other.

The user has the choice to create a convergence history data file in order to inspect the path followed
by the solution technique to obtain convergence. Possible difficulties, such as poor scaling or

solution technique inefficiencies, can be identified in this way.

6.3 PERFORMANCE EVALUATION

The performance evaluation of the dry-cooling systems consist of the following:
(1) operating point calculations;

(2) power generation calculations;

(3) annual cost estimation.
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These calculations are performed by combining the following building-blocks in a logical way:

(1) the dry-cooling system simulation models, cost analysis and the corresponding input data to
describe the problem (refer to Appendices A, B, C, D, E, K and L);

(2) the solution methods and scaling principles (refer to Appendices F, G, and J);
(3) output routines to display or store the computational results (refer to Appendices K and L).

The user-supplied input data must contain initial estimates for the final values of operating variables.
An initial feasible point with regard to all the feasibility inequality constraints are determined before

the main iterations are commenced.

The performance evaluation calculations can be used to investigate the effect on the dry-cooling
systems performance by manually changing certain variables. This procedure is particularly suited to
variables that take on discrete or integer variables, because the optimization process assumes all the
variables to be continuous. The performance evaluation and optimization procedures are therefore

interrelated.

6.4 OPTIMIZATION

The optimization calculations of the dry-cooling systems consist of the following:

(1) operating point optimization (minimum annual cbst);

(2) minimum annual cost of power generation;

(3) post-optimality analysis.

These calculations are performed by combining the following building-blocks in a logical way:

(1) the dry-cooling system simulation models, cost analysis and the corresponding input data to
describe the problem (refer to Appendices A, B, C, D, E, K and L);

(2) the optimization solution methods, post-optimality analysis and scaling principles (refer to

Appendices G, H, I and J);
(3) output routines to display or store the computational results (refer to Appendices K and L).

The initial requirements before the operating point optimization and the minimization of power
generation cost can be executed, are the completion of operating point and power generation
calculations respectively. Thus the optimization calculations are started from an initial feasible

starting point.



Stellenbosch University https://scholar.sun.ac.za

6.5

The optimization calculations are performed by following the infeasible path integrated approach.
Both the modified SQP method (Appendix H) and the reduced Hessian SQP decomposition
technique for large-scale problems (Appendix I) are implemented in separate programs. The
decomposition technique is only applied to the problem about minimization of the power generation
cost, because it can be classified as a large-scale optimization problem. Relatively little advantage
will be obtained by applying the decomposition technique in the case of the operating point

optimization problem.

The decision variables for the optimization calculations can be divided into dependent and
imdependent variables. The dependent or operating variables are always present during the
optimization process, whereas the independent or geometrical variables can be fixed at some value or
varied during the optimization process. The fixing of independent variables can also result in
disregarding some inequality constraints for a particular instance. Typical upper and lower limits on
the decision variables are required for scaling purposes. The constraints are scaled by multiplication
with a suitable constant. Upper and lower limits on some independent decision variables are also

supplied as mput in order to prevent unrealistic results.

The objective and constraint functions used in this study are continuous and differentiable. If a
function is not continuous or differentiable then conventional optimization theory is not adequate.
The constraints are also carefully formulated to eliminate the possibility of linear dependence,

conflicting requirements and inconsistent constraint equations (infeasible problem).

In nonlinear programming (optimization) problems, the decision variables are often assumed to be
continuous. In practice, however, discrete and integer variables often arise. The suggested
procedure is to solve the problem assuming continuous decision variables. Then the nearest
discrete/integer values are assigned to the variables. They are then held fixed and the optimization is
performed again. This procedure is repeated until all the variables have proper values in order to
obtain a feasible solution. Although this method requires additional computational effort, it is
straightforward and does not require any additional software. In our case only the number of tubes
per heat exchanger bundle assumes an integer value and the procedure is implemented satisfactorily.
It is important to evaluate all the possible combinations when more than one variable assume integer

or discrete values.
6.5 COMPUTER PROGRAMS

The computer programs that are described below are based on the theory and algorithms presented
in Appendices A-J. All the different implementations require the same input data and produce the
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same output. The objective function, constraint and gradient evaluations as well as the model
simulations are performed similarly. They only differ in the computational algorithms used to solve
the performance evaluation and optimization problems. Each program is given a unique name which
is used m all the following discussions. The following acronyms are used in the program names: FD
denotes forced draft, while ND denotes natural draft. The differences between the program

implementations are shown in table 6.1.

Table 6.1: Computer programs.

Program Performance Optimization Remarks
name evaluation algorithms
algorithms

FDOPT1 NLS - Appendix F SQP - Appendix H | Performance evaluation: Constrained
NDOPT]1 QP - Appendix G [82PO1m, 82PO2m] | NLS approach

QP - Appendix G Optimization: Infeasible path
integrated approach

FDOPT2 NLS - Appendix F SQP - Appendix H | Performance evaluation: Constrained
NDOPT2 QP - ZQPCVX [82PO1m, 82PO2m] | NLS approach

[83PO2m, 85PO1m] | QP - ZQPCVX Optimization: Infeasible path
[83PO2m, 85PO1m] | integrated approach

FDOPT3 NLS - Appendix F SQP - Appendix H, 1 | Performance evaluation: Constrained
NDOPT3 QP - Appendix G [78PO1m, 82P0O2m] | NLS approach

QP - Appendix G Optimization: Infeasible path
integrated approach, large-scale

decomposition, improved coordinate
bases algorithm [93SCle]

FDOPT4 NLS - Appendix F SQP - Appendix H, I | Performance evaluation: Constramed
NDOPT4 QP - Appendix G [78PO1m, 82PO2m] | NLS approach

QP - Appendix G Optimization: Infeasible path
integrated approach, large-scale

decomposition, standard coordinate
bases algorithm [83L.O1e]

Powell’s original SQP method [78PO1m] is implemented in such a way that both general NLP
problems and large-scale NLP problems can be solved in the same program. In FDOPT3, FDOPT4,
NDOPT3 and NDOPT4 the operating point optimization computations use Powell’s original SQP
implementation (Appendix H), while the minimization of the power generation cost problems use the

large-scale SQP decomposition method based on this particular SQP implementation (Appendix I).
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The term ZTBYSY is included in FDOPT3 and NDOPT3 (improved coordinate bases algorithm),
whereas it is ignored in FDOPT4 and NDOPT4 (standard coordinate bases algorithm).

6.6 CLOSING REMARKS

The computer programs are implemented to perform the dry-cooling system performance evaluation,
cost estimation and optimization calculations as efficiently as possible. The programs are capable of
designing, costing and optimizing dry-cooling systems with particular reference to power plants.

Various options are available to the user to facilitate decision making.

It is beyond the scope of this dissertation to provide a full description of the computer programs with
specific reference to the functions and subroutines; all the relevant information is discussed
throughout the dissertation. The solution techniques are easy to use, and implemented to perform
efficiently and robustly on the application problems. These techniques exploit the mathematical

structure of the problems to be solved.

The programs listed in table 6.1 were run on a set of test problems and the results are discussed in

the next chapter.
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CHAPTER 7

NUMERICAL RESULTS AND DISCUSSION

7.1 INTRODUCTION

In this chapter we present a numerical illustration of the computational algorithms discussed in
Chapter 5 and implemented in the computer programs listed in table 6.1. The various programs are
evaluated by solving two example problems and the results as well as their performance are
compared. The example problems include performance evaluation and optimization problems on
both forced draft direct air-cooled condensers and natural draft indirect dry-cooling towers.
Evaluation criteria such as accuracy, efficiency and reliability are used to evaluate program
performance. A discussion of the program results and the performance of the solution methods

concludes the chapter.
7.2 NUMERICAL EXAMPLES AND RESULTS

Typical examples of both forced draft direct air-cooled condensers and natural draft indirect dry-
cooling towers were chosen to illustrate the capabilities and compare the performance of the
computer programs listed in table 6.1. Although the computational algorithms were also extensively
tested on various mathematical programming problems stated in the literature (e.g. 81HOI1m,
81IMOI1m, 83DE1m, 85NO1m) and dry-cooling system problems, the results will not be given in this

dissertation.

The implementation of the solution methods and the principles followed during program execution
are similar for the forced draft direct air-cooled condensers and natural draft indirect dry-cooling
towers. The results depend strongly on the proposed dry-cooling system cost estimation procedure

and the values allocated to the various cost coefficients (refer to Appendix E).
The following numerical calculations are performed:

(1) Operating point and annual cost calculations;

(2) Net annual power generation and cost calculations;

(3) Operating point optimization (minimum annual cost) and the corresponding post-optimality

analyses;

(4) Minimization of power generation cost and the corresponding post-optimality analyses.
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Evaluation criteria

The evaluation criteria that have been used in this dissertation to analyze the performance of the

solution techniques are as follows:

(1) Accuracy: All the computations are performed in double precision and it is required that all the

programs give the same results when applied to the same problem. The convergence criteria

for both the performance evaluation and optimization computations are set to 1077, All the

gradient calculations in this study have been done numerically (forward differences); a step

length scaling parameter of 107 was used [83DEIm]. The same variable and constraint

scaling methods and parameters were also employed in all the programs.

(2) Reliability: A reliable program implementation is expected to give a feasible and accurate
solution of the problem under consideration. A failure to do so gives rise to an unreliable
program.

(3) Efficiency: This criterion gives a measure of the convergence speed of the program
implementation. The number of objective function, constraint and their corresponding gradient

evaluations as well as the total computing (CPU) time are used to measure efficiency.
The following acronyms and definitions are introduced to measure efficiency:
(1) TOTCPU: The total CPU time (in seconds) used until the required convergence is reached.

(2) QPCPU: The total CPU time (in seconds) used to solve the QP subproblems of the SQP

methods.

The difference between TOTCPU and QPCPU gives an indication of the total CPU time used
to set up the optimization problem, perform function and gradient evaluations, Hessian

updating, etc.

(3) NFEVAL: The number of objective function, constraint and their corresponding gradient
evaluations performed during program execution. NFEVAL corresponds to the number of

complete system simulations.

When a line search is performed during optimization (SQP method), the resulting increase in
NFEVAL corresponds to objective function and constraint evaluations. The corresponding
gradient evaluations are only performed once the line search has been successfully completed

(refer to Appendix H).

(4) NITER: Number of major SQP iterations. NITER is always less than NFEVAL.
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The maximum number of iterations for both performance evaluation and optimization problems can
be set by the user and was not used to limit program execution. No CPU times are measured in the
case of the performance evaluation computations, because the solution methods are only applied to

small dimensional problems that consume very little CPU time.

Examples

Example 1: Forced draft direct air-cooled condensers

A forced draft direct air-cooled condenser consists of an array of 5x6 = 30 A-frame units as shown
schematically in figure C.2. FEach unit has a 9.145 m diameter axial flow fan. The fan drive is
supported by a bridge structure, while a safety screen protects the inlet to the fan. The non-
freestanding fan platform, supported by a steel and concrete structure, is 25 m above the ground
level. Walkways of 0.4 m width are located between adjacent A-frames and the condenser is

surrounded by windwalls.

The condenser consists of 2 rows of extruded bimetallic (steel tube, aluminum fins) round finned
tubes with an equilateral triangular tube layout. The finned tube geometric details are listed in table
K.1. The tubes are inclined at an angle of 60° with the horizontal and are 10 m long. Each tube
row has different performance characteristics such that approximately the same amount of steam
condenses in each tube row to ensure that noncondensables are not trapped in the condenser.
Saturated steam at a design temperature of 60°C is supplied to the condenser by means of a steam
header with an effective diameter of 1.25 m. The heat transfer and pressure drop correlations of

Ganguli, Tung and Taborek [85GAle] are used to evaluate the performance of the round tubes.

The condenser unit operates under ambient conditions where the design atmospheric pressure is

86400 N/m?* and the 'corresponding design air temperature is 15.6°C. The other geometric and
operating details of this condenser, as well as initial approximations to the final values of the
unknown operating variables (e.g. the air outlet temperatures) are listed in table K.1. The values of
the different cost coefficients for the cost estimation procedure given in Appendix E can also be
found there. The coefficients of polynomial curve fits for the fan performance characteristics are
listed in table K.2 (refer to figure C.5).

The condenser forms part of a power plant that is erected at the location corresponding to the design
atmospheric pressure stated above. The corresponding yearly temperature distribution (drybulb and
wetbulb temperatures) is listed in table K.3 (refer to figure C.7). The air-cooled condenser is
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coupled to a turbo-generator set. The coefficients of polynomial curve fits for the turbo-generator

performance characteristics can be found in table K.4 (refer to figure C.6).

With the above specifications and performance characteristics known, the following performance

evaluation, cost and optimization calculations are performed:

(1) Operating point and annual cost calculations: Determine the operating point and annual cost of

the air-cooled condenser at the design atmospheric and steam inlet conditions.

(2) Net annual power generation and cost calculations: Determine the annual net power output
and the corresponding annual cost if the turbo-generator set is coupled to this air-cooled

condenser. The fans rotate at a fixed speed of 100 rpm.

(3) Operating point optimization and the corresponding post-optimality analyses: Find the
combination of operating and geometrical variables that will minimize the total annual cost of
the air-cooled condenser that operates under the specified design operating conditions and
rejects the same amount of heat as at the operating point. Determine the scale-invariant
sensitivity of the optimal solution to variations in the cost coefficients, prescribed parameters

and the geometrical constraints.

The following geometrical variables are varied during the optimization calculations (refer to

table C.1): Hs, dg, O, NF, Dpmax)> Lt> O, Ao, L, tr, de, te, Pry, Pro, By

(4) Minimization of power generation cost and the corresponding post-optimality analyses: Find
the combination of operating and geometrical variables that will minimize the ratio of the total
annual cost of the air-cooled condenser to the annual net energy output of the turbo-generator
set it is coupled to. Determine the scale-invariant sensitivity of the optimal solution to

variations in the cost coefficients, prescribed parameters and the geometrical constraints.

The following geometrical variables are varied during the optimization calculations:

H3, dF, 91:, NF, ntb(max), Lt’ Ob, d0> te,t,, df, ts, Pfl? sz, Pt (refer to table C. 1) Variable

speed drives are used to find the most economical fan operating speed for each temperature

data set.

Example 2: Natural draft indirect dry-cooling towers

A natural draft hyperbolic concrete cooling tower, as shown schematicaliy m figure D.2, has the
following dimension: Hs=120m, Hy =13.67m,ds =58 mand d; =82.958 m. The tower shell is
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supported by 60 tower supports of 0.5 m diameter. It is further assumed that the tower shell has an
uniform thickness of 0.25 m.

142 heat exchanger bundles are arranged radially in the form of V-arrays at 30.75° bundle semi-apex
angles in the base of the tower shell. Due to geometrical considerations, only 52.4 % of the tower
inlet cross-sectional area is covered with heat exchanger bundles. Each bundle consists of 4 rows of
finned tubes, 15 m long and with an effective width of 2.262 m. The headers are designed to allow
two water passes through the 4 tube rows. Extruded bimetallic (steel tube, aluminum fins) round
finned tubes with an equilateral triangular tube layout are used. The finned tube geometric details
are listed i table L.1. The heat transfer and pressure drop correlations of Robinson, Briggs and

Young [63BR1e, 66RO1e] are used to evaluate the performance of the round tubes.

Hot water at a mass flow rate of 4390 kg/s is pumped through the finned tubes. The design inlet

water temperature is 61.45°C, while the design atmospheric pressure is 86400 N/m” and the
corresponding design air temperature is 15.6°C. The other geometric and operating details of this
cooling tower, as well as initial approximations to the final values of the unknown operating
variables (e.g. the air outlet temperature) are listed in table L.1. The values of the different cost

coefficients for the cost estimation procedure given in Appendix E can also be found there.

The cooling tower forms part of a power plant that is erected at the location corresponding to the
design atmospheric pressure stated above. The corresponding yearly temperature distribution
(drybulb and wetbulb temperatures) is listed in table L.2 (refer to figure D.4). The cooling tower is
coupled to a turbo-generator set. The coefficients of polynomial curve fits for the turbo-generator

performance characteristics can be found in table L.3 (refer to figure D.3).

With the above specifications and performance characteristics known, the following performance

evaluation, cost and optimization calculations are performed:

(1) Operating point and annual cost calculations: Determine the operating point and annual cost of

the cooling tower at the design atmospheric and water inlet conditions.

(2) Net annual power generation and cost calculations: Determine the annual net power output

and the corresponding annual cost if the turbo-generator set is coupled to this cooling tower.

(3) Operating point optimization and the corresponding post-optimality analyses: Find the
combination of operating and geometrical variables that will minimize the total annual cost of
the cooling tower that operates under the specified design operating conditions and rejects the

same amount of heat as at the operating point. Determine the scale-invariant sensitivity of the
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optimal solution to wvariations in the cost coefficients, prescribed parameters and the

geometrical constraints.

The following geometrical variables are varied during the optimization calculations (refer to

table D.1): Hs, H3, ds, d3, gyimax)» Lt> 065 dos te, tr, df, te, Pr, Py This example corresponds
to case 1 (m,, and T; fixed) described in section D.7. The other cases can also be illustrated

i a similar manner.

Minimization of power generation cost and the corresponding post-optimality analyses: Find
the combination of operating and geometrical variables that will minimize the ratio of the total
annual cost of the cooling tower to the annual net energy output of the turbo-generator set it is
coupled to. Determine the scale-invariant sensitivity of the optimal solution to variations in the

cost coefficients, prescribed parameters and the geometrical constraints.

The following geometrical variables are varied during the optimization calculations: (refer to

table Dl) H5, H3, d5, d3, ntb(max)’ Lt,Gb, do>tt: t;, df, ts, Pf, Pt .

Results

All the computations were performed on the ALPHA 3000-800 in double precision arithmetic (i.e.

nearly 16 digits of accuracy) at the University of Stellenbosch. The input data and results of

examples 1 and 2 are listed in Appendices K and L respectively.

(D

@)

Operating point and annual cost calculations:

Example 1: The same results are obtained from FDOPT1 and FDOPT2. The results are listed
in table K.5.

Example 2: The same results are obtained from NDOPT1 and NDOPT?2. The results are listed
in table L.4.

The solution methods usually require between 1 and 10 iterations to successfully determine the

operating point of the particular dry-cooling system.
Net annual power generation and cost calculations:

Example 1: The same results are obtained from FDOPT1 and FDOPT2. The results are listed
in table K.6.

Example 2: The same results are obtained from NDOPT1 and NDOPT2. The results are listed
in table L.5.
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The solution methods usually require between 5 and 10 iterations per temperature data set to
successfully determine the operating point of the particular dry-cooling and turbo-generator

system.

The operating variables determined for a specific temperature data set are used as the initial

approximations to the final values of the operating variables for the next temperature data set.
Operating point optimization and the corresponding post-optimality analyses:

Example 1: The same results are obtained from FDOPT1, FDOPT2 and FDOPT3. The results
are listed in tables K.7 and K.8.

For this example, find n, = 21 and m, = 38. The performance of the different optimization

algorithms to reach convergence are shown in table 7.1.

Table 7.1: Performance of optimization algorithms (example 1).

Program name NITER NFEVAL TOTCPU [s] QPCPU [s]
FDOPT1 46 48 1.28 0.72
FDOPT2 46 48 1.05 0.48
FDOPT3 46 48 1.35 0.75

Example 2: The same results aré obtained from NDOPT1, NDOPT2 and NDOPT3. The
results are listed in tables L.6 and L.7.

For this example, find n, = 17 and m, = 26. The performance of the different optimization

algorithms to reach convergence are shown in table 7.2.

Table 7.2: Performance of optimization algorithms (example 2).

Program name NITER NFEVAL TOTCPU [s] QPCPU [s]
NDOPT1 36 40 0.45 0.23
NDOPT2 36 41 0.38 0.16
NDOPT3 50 52 0.65 0.40

The operating point calculation performed in (1) serve as the initial feasible starting point for

the optimization calculations.

Minimization of power generation cost and the corresponding post-optimality analyses:

Example 1: The same results are obtained from FDOPT1, FDOPT2, FDOPT3 and FDOPT4.
The results are listed in tables K.9, K.10 and K. 11.
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For this example, the number of independent variables is njqe, =48 and the corresponding
number of general constraints m=462. The number of dependent variables is nge =238,

while the number of corresponding model simulation equations is m,, = 238. These equations
are used to solve for the dependent variables. Thus, n; =286and m; =700. The

performance of the different optimization algorithms to reach convergence are shown in table

7.3.

Table 7.3: Performance of optimization algorithms (example 1).

Program name NITER NFEVAL TOTCPU [s] QPCPU [s]
FDOPT1 164 167 6094.8 5613.3
FDOPT2 141 147 4066.4 3638.1
FDOPT3 259 261 2261.9 11.36
FDOPT4 267 269 1234.5 12.32

Example 2: The same results are obtained from NDOPT1, NDOPT2, NDOPT3 and NDOPT4.
The results are listed in tables L.8, L.9 and L. 10.

For this example, the number of independent variables is Djp4e, =14 and the corresponding
number of general constraints m=355. The number of dependent variables is nge, =136,

while the number of corresponding model simulation equations is m,, = 136. These equations
are used to solve for the dependent variables. Thus, n, =150 and m; =491. The performance

of the different optimization algorithms to reach convergence are shown in table 7.4.

Table 7.4: Performance of optimization algorithms (example 2).

Program name NITER NFEVAL TOTCPU [s] QPCPU [s]
NDOPT1 83 89 339.33 272.66
NDOPT2 78 81 321.87 259.45
NDOPT3 143 145 264.82 1.17
NDOPT4 148 150 141.5 1.22

The net annual power generation calculations performed in (2) serve as the initial feasible

starting point for the optimization calculations.

the integer variables (e.g. the number of finned tubes) as explained in section 6.4.

The values in all the above tables correspond to the total effort required to obtain proper values for
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7.3 DISCUSSION
Dry-cooling systems

The following discussions are strongly based on the proposed cost estimation model and the
corresponding cost coefficients. However, this model is assumed to be adequate for the purpose of
illustrating the programs’ capabilities. The experimental and theoretical information needed to

generate these results are contained in all the appendices.

The sensitivity of the optimal cost with respect to changes in the cost coefficients, prescn'béd
parameters and the inequality constraints limits are presented in scale-invariant form in Appendices K
and L. The sensitivity of the cost coefficients and prescribed parameters can be directly compared to
each other. A 1% change in a cost coefficient or prescribed parameter, will result in a percentage
change in the objective function equal to the particular sensitivity coefficient. A positive sensitivity
coefficient indicates an increase in the objective function for an increase in the cost coefficient or
prescribed parameter under consideration, while the opposite is true for a negative sensitivity

coefficient.

Similarly, the sensitivity of changes in the constraint limits can be directly compared to each other.
The sensitivity of the inequality constraints are directly linked to their corresponding Lagrange
multipliers and must therefore always be greater than or equal to zero. A zero value indicates an
inactive constraint satisfied as an nequality or a weakly active constraint, whereas a positive value
indicates an active inequality constraint satisfied as an equality. Expanding the feasible region by
relaxing an inequality constraint, will result in a decrease in the objective function, while contracting
the feasible region by tightening an inequality constraint, will result in an increase in the objective
fimction. By examining the inequality constraints it will be evident whether a positive constraint limit

perturbation will increase or decrease the objective function.

Example 1: Forced draft direct air-cooled condensérs

Table K.5 presents detailed airside and steamside information of the fixed geometry air-cooled
condenser performing under specified atmospheric and steam inlet conditions. The total annual cost
is broken down into its various components. Table K.6 presents the net annual power generation

and cost calculations. The results listed in tables K.5 and K.6 are used as the reference case for the

optimization computations that follow.

Comparison of the total costs listed in tables K.7 (operating point optimization) and K.5 indicate that

the optimum air-cooled condenser consumes much less fan power, while its capital cost has
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increased. A 28% reduction in total annual cost is achieved as a result. The reduced operating cost
is mainly a result of the reductions in both the fan operating speed and fan blade angle as well as the
increase in fan system effectiveness. The increased capital cost can be attributed to the increased
airside area of the finned tubes, the larger fan diameter, the higher fan platform and larger ground
surface area requirement. The optimum finned tube has a realistic outside diameter and wall
thickness, but a larger fin diameter and a slightly thinner fin than those usually found in practice. The
fin pitches for the two tube rows are also smaller than those in the reference case. Approximately

the same amount of steam condenses in each tube row.

From table K.8 it can be seen that an increase in the steam temperature will result in the largest
reduction in the annual cost. Increasing the steam temperature results in an increased temperature
difference between the steam and ambient air. A lower air mass flow rate is needed to reject heat to
the atmosphere at the specified rate. Further significant cost decreases can also be achieved by
increasing the fan drive system efficiency and operating the condenser at a lower altitude. The
biggest cost increase is caused by an increase in the ambient air temperature, because of the
reduction in the temperature potential between the steam and ambient air. Thus, operating
conditions must be chosen with extreme care, because they have a pronounced effect on the optimal

solution.

The optimal solution is also negatively influenced by increases in the interest parameters and the
different cost coefficients. The negative sensitivity coefficient of the interest rate can clearly be

explained by equation (4.5).

An increase in the constraint limits (lower limits) of the constraints numbered 1, 3, 6, 15, 16 and 18
m table K.8, will all contract the feasible region and thus result in an increase in the optimal cost and
vice versa. An increase in the upper limit of the bundle semi-apex angle (constraint no. 11) will
expand the feasible region and thus reduce the optimal cost and vice versa. Changes in constraint

no. 3 will have the largest influence on the optimal solution.

Tables K.9 and K.10 show the results of the minimization of the power generation cost. The
optimum geometry and performance characteristics of the air-cooled condenser ensure that the
turbine performs in a very efficient region of its performance characteristics. When compared to
table K.6, the results show an enormous decrease in the fan power consumption cost, an increase in
the capital cost, while the total fuel cost remains almost constant. The total annual cost is slightly
reduced by 1.5%, while the annual net power output is increased by 1%. These results give rise to a

2.5% reduction in the generated electricity cost. The optimum fan operating speed for each
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temperature data set can also be seen in table K. 10. The same comments regarding the operating

point optimization results (table K.7) are also applicable here.

Table K.11 shows that the optimal solution is very sensitive to changes in the fuel cost and its
escalation rate. The positive effect that an increase in the interest rate has on the optimal solution
can also clearly be seen from equation (4.5). The variation of the other cost coefficients and
prescribed parameter will all have more or less the same influence on the optimal solution. The
constraint sensitivity results show similar trends as those experienced during the operating point

optimization.

The optimum geometries of the air-cooled condensers listed in tables K.7 and K.9 do not differ
significantly from each other. For this particular instance, the operating cost optimization provides a
reasonable approximation of the air-cooled condenser obtained by the minimization of power
generation cost. However, this will not generally be true, because the operating point optimization is
based on the assumption that a fixed ambient and a fixed steam temperature occur for all the
operating hours throughout the year. No fuel cost, ambient and steam temperature variations or
turbo-generator performance‘characteﬁstics are taken into account when performing the operating

point optimization.

Example 2: Natural draft indirect dry-cooling towers

Table L.4 presents detailed airside and waterside information of the fixed geometry dry-cooling
tower performing under specified atmospheric and inlet water conditions. The total annual cost is
broken down into its various components. Table L.5 presents the net annual power generation and
cost calculations. The results listed in tables L.4 and L.5 are used as the reference case for the

optimization computations that follow.

The operating pomt optimization (table L.6) reduces both the pump operating cost and the capital
cost when compared to the results generated for the reference case in table L.4. A 30% reduction in
total annual cost is achieved. The reduced capital cost can be attributed to the reduction in the heat
exchanger bundle and circulation system cost. The cooling tower structural and construction cost
have, however, increased due to larger cooling tower shell dimensions and ground area requirement.
The reduction in the operating cost is caused by the combination of a larger finned tube inside

diameter and shorter tube length.

The optimum finned tube has a realistic outside diameter and wall thickness, but a larger fin diameter
and a slightly thinner fin than those usually found in practice. The fin pitch is also smaller than the



Stellenbosch University https://scholar.sun.ac.za

7.12

reference case. The transversal tube pitch allows a rather wide gap of about 6.85 mm between the

fin tips of the finned tubes. The bundle width is at its upper limit of 3 m.

The operating point optimizations performed by Buys and Kroger [89BUle, 89BU2e] found the
optimum fin thickness to be impractically thin. The present study uses a more extensive simulation

model and cost estimation procedure which contribute to differences in the optimal solution.

From table L.7 it can be seen that an increase in the water inlet temperature will result in the largest
reduction in the annual cost. Increasing the water mlet temperature at a constant water mass flow
rate will require a smaller dry-cooling tower system to reject a constant amount of heat to the
atmosphere. Further significant cost decreases can also be achieved by increasing the fraction of the
tower base covered by bundles, the water mass flow rate and operating the cooling tower at a lower
altitude. The biggest cost increase will be caused by an increase in the ambient air temperature
(reduction in the temperature potential). The optimal solution is also negatively influenced by
increases in the interest parameters and the different cost coefficients. The negative sensitivity

coefficient of the interest rate can be explained by equation (4.5).

An increase in the constraint limits (lower limits) of the constraints numbered 6, 8 and 9 in table L.7,
will all contract the feasible region and thus result in an increase in the optimal cost and vice versa.
An increase in the upper limit of the bundle width and semi-apex angle (constraint no. 13 and 15
respectively) will expand the feasible region and thus reduce the optimal cost and vice versa.

Constraint no. 8 will have the biggest influence on the optimal solution.

Tables L.8 and L.9 show the results of the minimization of the power generation cost. The optimum
geometry and performance characteristics of the dry-cooling tower and the approximate halving of
the pumping power requirements ensure that the turbine performs very effectively throughout the
year. When compared to table L.5, the results show that the pumping power cost is approximately
halved, the capital cost and maintenance costs are reduced, while the total fuel cost remains almost
constant. The total annual cost is slightly reduced by 0.6%, while the annual net power output is

increased by about 0.5%. These results give rise to a 1% reduction in the generated electricity cost.

The finned tube dimensions correspond fairly well to those found in practice, apart from the
deviations in fin diameter and fin thickness. The gap between the fin tips is about 5 mm. The bundle

width and bundle semi-apex angle are at their respective upper limits.

Table 1..10 shows that the optimal solution is very sensitive to changes in the fuel cost and its
escalation rate. The positive effect that an increase in the interest rate has on the optimal solution

can also clearly be seen from equation (4.5). The variation of the other cost coefficients and
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prescribed parameter will all have more or less the same influence on the optimal solution. The
constraint sensitivity results show similar trends as those experienced during the operating point

optimization.

The optimum geometries of the dry-cooling tower systems listed in tables L.6 and L.8 do not differ
significantly from each other. The cooling tower is slightly larger in the latter case, while the finned
tube geometry and layout is more or less the same. Table L.8 shows that the heat exchanger bundles
has more tubes of a longer length per row, and more heat exchanger bundles in the tower base.
Smaller pumps are also used. The results in table 1.8 correspond to a varation in water inlet and

ambient air temperatures, the specified turbo-generator performance characteristics and fuel cost.

When suitable cost coefficients are available, the performance and annual costs of the optimal forced
draft direct air-cooled condenser and the natural draft indirect dry-cooling tower can be directly
compared to each other. For these particular examples, the natural draft indirect dry-cooling tower
presents the preferred solution. It should, however, be kept in mind that the indirect system still
requires an intermediate surface condenser that will increase the capital cost of the corresponding

system. The surface condenser cost is not considered in this study.

The above examples illustrate that the operating point calculations provide the feature to generate
detailed information of the air- and process side as well as the performance of the dry-cooling
systems. The mput data for these calculations can be obtained from the results of the power

generation and optimization calculations. The operating point calculations thus forms an essential

part of the optimization analyses.

In this study we recognize the fact that the performance of dry-cooling systems decrease at high
ambient temperatures. Furthermore, we also take into account the power consumed by the axial
flow fans and cooling water pumps. We use fixed turbo-generator-condenser characteristics in the
case of an indirect dry-cooling system and fixed turbo-generator characteristics in the case of the
direct dry-cooling system and find the cost optimal dry-cooling tower that causes the cheapest power
to be produced for a given annual frequency of ambient temperatures, while taking the above-
mentioned dry-cooling system characteristics into account. This can be viewed as a system
optimization, because the interaction of the dry-cooling system and the turbo-generator unit forms an
integral part of the optimization process. Designing a dry-cooling system in this way is different
from the conventional means of design that is purely based on fixed ambient and process fluid
conditions. Finding the best design over a range of operating conditions will definitely result in a

more realistic design.
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A practically similar procedure was followed in the design of the indirect dry-cooling system of the
Kendal Power Station [87TR1e]. Previous dry-cooling system designs were based on a fixed
operating point [76VAle]. In the case of Kendal, the cooling system had to be dimensioned so that
after taking the turbo-generator-condenser characteristics, the annual frequency of ambient air
temperatures, the planned number of operating hours into account and having deducted the values
for internal consumption, a certain net power output is achieved. The authors state that this method
of design involves a considerable amount of computation but is the only correct way to compare

different cooling systems and assess them from an economic point of view.
Solution methods

Based on the results presented above, the relative performance of the different computational
algorithms are now discussed. The comparison is based on the accuracy of their solutions, reliability
and efficiency. The CPU times measured in seconds should be considered as only approximations
because they can vary depending on the operating system, programming habits, number of users and

other factors.

Performance evaluation calculations

The performance evaluation calculations are performed by a specially designed constrained nonlinear
least squares method. This method is applied to both the operating point and power generation
calculations. Two different QP algorithms are used to solve the constrained subproblems: the
algorithm in Appendix G (FDOPT1, NDOPT1) and ZQPCVX [83PO2m] (FDOPT2, NDOPT2).
Both implementations have shown very good overall performance on various dry-cooling system

performance evaluation calculations and are very easy to implement.

Exactly the same solutions are obtained when the different solution methods are applied to the same
problem. These methods are very accurate and will solve well-formulated problems in 1 to 10
iterations only. The addition of the feasibility inequality constraints ensures that feasible solutions
will be obtained, because the simulation equations will not be evaluated outside their application

regions. None of these constraints will be active at the solution.

Failure of the solution methods to find solutions have occurred in a few mstances. The main cause
of this unreliable performance is created by a combination of variables that result in very large
residual problems during the solution process (refer to Appendix F). The solution process then
terminates prematurely and displays the reason for termination on the screen. These deficiencies can
simply be overcome by resetting the operating parameters to different values and then restart the

solution procedure.
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ZQPCVX has failed to solve the resulting QP subproblems on quite a few occasions, whereas the QP
algorithm listed in Appendix G experienced no difficulties when applied to the same problems. A

possible explanation for this behavior is the fact that more stable matrix updating methods are used in

the latter case than in ZQPCVX.

The process to find an initial feasible point that satisfies the feasibility inequalities must not be seen as
a cure for the computational inefficiencies related to a poor starting point. The user must evaluate
his/her initial choice of the approximation to the final values of the operating variables, as well as the
combination of the different components. It is very important to make sure that the combination of
geometrical and performance specifications will result in a practicable outcome. In most cases an
experienced designer can select a much better starting design and obtain a solution more efficiently.
The method of obtaining the initial approximations for the operating variables in the case of the
power generation calculations performs very satisfactorily.

The solution process can be regarded as efficient because the results are obtained in very little
computing time. Good global convergence is exhibited by the fact that both trust region and line
search methods are used to force a decrease in the merit function. The line search procedure is only
used in the case of potential difficulties. The performance of these solution techmiques is very

accurate, reasonably reliable and very efficient.

Optimization calculations

The methods of obtaining well-formulated and well-scaled initial feasible starting designs give rise to

very satisfactory performance of the optimization algorithms.

(1) Operating point optimization

The operating point optimization was performed by using the three different computational algorithm”
combinations as implemented i the different programs listed in tables 7.1 and 7.2. These

implementations have shown very good overall performance on various dry-cooling system operating

point optimization calculations.

All the methods give the same solution when applied to the same dry-cooling system operating point
optimization problem. Accurate and feasible solutions can be obtained in very little computing time.
More or less the same number of iterations and function evaluations are used to obtain convergence
on a specific problem. Tables 7.1 and 7.2 show differences in the TOTCPU and QPCPU values.
FDOPT2 and NDOPT?2 appear to be the most effective programs due to the smaller amount of time
required to solve the QP subproblems. This in mainly due to the implementation of ZQPCVX
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[83PO2m]. ZQPCVX uses very efficient, but unstable matrix updating schemes. Due to the smali
amount of computing time needed to solve the different optimization problems to a high degree of
accuracy, the number of function and gradient evaluations are a more convenient means of measuring

efficiency.

Failure of these optimization methods to find solutions have occurred in a few instances. Cause for
this unreliable behavior can be traced to improper constraint and variable scaling, termination of the
SQP method after 5 consecutive line search calls and failure of the QP algorithm to solve the
resulting subproblem. The solution process then terminates prematurely and displays the reason for
termination on the screen. These deficiencies can most of the time be overcome by changing the
scaling parameters or some of the decision variables and then restart the optimization procedure.
ZQPCVX has failed to solve the resulting QP subproblems on a few problems, whereas the QP
algorithm listed in Appendix G experienced no difficulties.

The performance of these modified SQP algorithms in combination with the different QP algorithms
are thus very accurate, reasonably reliable and very efficient to perform the operating point

optimization calculations.
(2) Minimization of power generation cost

All the different programs listed in table 6.1 were used to minimize the power generation cost when a
particular dry-cooling system is coupled to a specified turbo-generator set. All these programs are
based on the imfeasible path integrated approach to solve the optimization problem. The
minimization of the power generation cost can be classified as a large-scale optimization problem. In
FDOPT1, FDOPT2, NDOPT1 and NDOPT2 the conventional SQP method is implemented, while in
FDOPT3, FDOPT4, NDOPT3 and NDOPT4 a reduced Hessian SQP decomposition strategy is
implemented to reduce the size of the optimization problem. These implementations have shown

very good overall performance on various power generation cost minimization calculations.

All the methods give nearly similar solutions when applied to the same optimization problem. The
slight differences in these solutions can be attributed to computer rounding. The infeasible path
approach ensures that a feasible solution is obtained when convergence is reached at the final

iteration. Little information is recoverable if the algorithm fails to converge to a solution.

Failure of these optimization methods to find solutions can be attributed to the same reason already
discussed above. Proper formulation and scaling of the optimization problem can reduce the

potential of algorithmic failure.
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The performance of the different methods on the two example problems are shown in tables 7.3 and

7.4. The efficiency trends observed in these tables can be explained as follows:

)

(1)

(i)

(v)

FDOPT1 and NDOPT1: The optimization problems are solved in the total decision variable
(dependent and independent) space and require the solution of large QP subproblems. The
order of the Hessian of the Lagrange function is equal to the total number of decision
variables. Large computational overhead and storage are need to solve these optimization

problems. The solution of the QP subproblems consumes most of the CPU time required to

solve the problem.

FDOPT2 and NDOPT2: These programs are similarly implemented as described above
(see (1)), except for the different QP algorithm. FDOPT2 and NDOPT2 perform more
efficiently than FDOPT1 and NDOPT1, partly due to the more efficient QP implementation.
Although the QP algorithm employed in FDOPT1 and NDOPT]1 is slower than ZQPCVX it is

more reliable.

FDOPT3 and NDOPT3: The optimization problems are solved in the independent variable
space and significantly reduce the size of the QP subproblems. The order of the corresponding
reduced Hessian matrix is equal to the number of independent variables. The computational
overhead needed to solve the QP subproblems is drastically reduced. The solution of the QP
subproblems requires between 100 and 500 times less CPU time than the programs using the
conventional SQP implementation (refer to (i) and (ii)). Similar trends have been observed by
[88VAle, 93SCle]. These drastic reductions in QPCPU indicate that little can be done to
further improve the QP algorithm’s performance.

Almost all the CPU time is consumed by the function and gradients evaluations as well as the

computation of the term ZTBYsY which requires an extra gradient evaluation at each SQP

iteration. More SQP iterations and function and gradient evaluations are needed than in the
conventional case. Although the order of the Hessian matrix is enormously reduced, additional
storage is required for the vectors and matrices used in this decomposition method. The
significant improvements that the reduced Hessian SQP method has over the original SQP
methods illustrate the benefit of tailoring the solution algorithm to take advantage of the

mathematical structure of the model.

FDOPT4 and NDOPT4: These programs are similarly implemented as described above
(see (iii)), except for omission of the term ZTBYsy. Although QPCPU is slightly more than
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those recorded in (iii), TOTCPU is almost halved, because the extra term does not need to be
evaluated. The maximum number of iterations and function evaluations are obtained in this
case, because ZTBYsY will tend to increase the convergence rate and lower these values

[93SCle]. In general, FDOPT4 and NDOPT4 requires between 2 and 10 times less total CPU
time when compared to the programs using the conventional SQP implementations (refer to (i)
and (ii)) and the improved coordinate bases method (refer to (iii)). Similar trends have been
observed by [88VAle, 93SCle]. Accurate and feasible solutions can be obtained in very little

computing time when compared to the other programs.

Schmid and Biegler [93SCle] included the ZTBYsY term to improve the convergence and reduce
the dependence on variable partitioning of the original coordinate bases method [83LOle]. The

above results indicate that the optimization problems can be solved more efficiently by simply
omitting Z'BYsy. The coordinate bases method is thus not semsitive to the particular variable
partitioning. The computation of this term was implemented via a finite difference scheme

[93S8Cle]. More elegant ways of implementing ZTBYSY are discussed in [93SCle, 94BIle].

The effect of the term, ZTBYsy, was investigated on various dry-cooling systems and general
optimization problems. The inclusion of ZTBYsY usually results in an increase in TOTCPU, and
decreases in QPCPU, NITER and NFEVAL. None of the test problems failed when ZTBYsY was

omitted. Whether the omission of ZTBYsY will have significant advantageous, will definitely
depend on the type of problem to be solved, as well as the particular variable partitioning. The
performance of these reduced Hessian SQP algorithms are thus very accurate, reliable and very

efficient.

The post-optimality analyses are very important in implementing a solution on a real system. In many
cases, detailed post-optimality analyses are as valuable as the optimal solution itself. The post-
optimality analyses performed in this study supply detailed information to critically evaluate the
optimal solution behavior to changes in model parameters, constraints and assumptions. These

analyses are very straightforward and quick to perform.

It is possible that the algorithms may achieve acceptable low cost designs, from an engineering point

of view, in much less iterations than that required to satisfy the prescribed mathematical convergence

criterion of 1077, The strict convergence criterion is introduced to ensure that the engineering



Stellenbosch University https://scholar.sun.ac.za

7.19

model’s equations are properly satisfied at the optimum solution, because an infeasible path

integrated approach is used.
7.4 CLOSING REMARKS

In this chapter two examples are studied to illustrate the various capabilities of the different
computer programs. The illustration is by no means complete and the programs can be used in a
variety of other applications conceming performance evaluation, cost and optimization calculations.
In both examples, fairly realistic and practical results were obtained. It should again be stressed that

realistic results depend very strongly on a realistic cost estimation model and cost coefficient values.

It is worthwhile to consider an approach that takes advantage of the problem structure during its
solution, because of the potential to outperform the conventional approaches. The resulting tailored
solution procedures are very effective for performing rather sophisticated performance evaluation

and optimization computations in a relatively short time.

The degree of optimization that is ultimately achieved in such an economic optimization analysis and
its value to a design engineer, are functions of the sophistication of the design program, the expertise

of the user, the cost estimating procedure and the quality of the input data.

The next chapter contains the conclusions and recommendations of the performed study on

engineering optimization.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 INTRODUCTION

In the preceding chapters we have concentrated on the analysis and solution of small to large-scale
engineering optimization problems, with particular reference to dry-cooled power plants. The
objective of these optimization studies was to obtain cost-optimal performance and designs of dry-

cooling systems.

The basis of this study provide general information on the methodology to obtain an engineering
solution in an efficient manner. The steps and considerations followed in conducting this study are:
the definition of the optimization problem, the preparation for solution, the selection of suitable
solution (optimization) algorithms, choosing or preparing efficient computer implementations of
these algorithms, the execution of various computer runs, and after having obtained a reliable and

feasible solution, the interpretation of this solution in terms of the real system and its implementation.

Dry-cooling systems are an environmentally sound alternative to wet cooling systems. However, due
to their high capital and operating costs, it is justified to optimize their design and performance

taking practical limitations into consideration as far as possible.

The conclusions and recommendations listed below serve to emphasize not only what has been

learned, but what benefit could be achieved from additional effort in the future.
8.2 SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

In this study we develop and implement computational procedures which are very efficient and
practical when applied to sophisticated design, performance evaluation and economic optimization
computations of dry-cooling systems as found in power plant applications. The computer programs
were extensively tested on a variety of dry-cooling system problems and provide a reliable practical

tool with which realistic answers and trend information can be obtained.

Cost-optimal designs can be performed in the conventional way (fixed ambient and process fluid
conditions), as well as for cases where the dry-cooling system is coupled to a specified turbo-
generator set at a particular location. The latter method takes the dry-cooling system’s inherent

characteristics into account and will give a more realistic design over its operating range throughout
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the year. Although the latter method of optimal design involves a considerable amount of
computation, the efficient computational algorithms developed in this study ensure that this

procedure is not excessively time consuming.

The optimization process is found to be very sensitive to the cost estimation procedures. Realistic
optimization results can only be obtained if the cost estimating procedure represents realistic

operating and capital cost structures. The proposed cost estimation procedure and the |
corresponding cost coefficients adequately illustrate the various capabilities of the optimal design

techniques.

These procedures can still further be refined with the co-operation of dry-cooling system equipment
manufacturers, vendors or cost engineers. Since it is easy to modify the proposed cost estimation
procedure to meet the requirements of a specific client, the cost-optimal design procedure is of great
practical usefulness. An optimal design can be obtained using the proposed cost structure.
Afterwards the results can be studied and the cost structure can be improved if necessary. The
optimal design process can be repeated, the results studied and the cost structure improved. By
continuing in this iterative manner it will be possible to arrive at a meaningful solution using an

approximate cost structure.

“The equation-based models of the dry-cooling systems have particular mathematical structures that
are exploited by the computational algorithms. Our constrained NLS method is particularly well-
suited for solving these equation-based models subject to feasibility inequalities and exhibits good |
global convergence properties. The simultaneous solution of the equation-based mddels and the
optimization problems along an infeasible path proved to be very efficient and reliable. The excellent

| performance of these solution strategies can be mainly ascribed to the following modeling principles:

(1) - Proper problem formulation and scaling of the objective function, variables and constraints are
essential to obtain a reliable solution. A well constructed mathematical model minimizes the

effects of ill-conditioning, degeneracy and inconsistent constraints.

(2) . The method of obtaining initial feasible starting points guarantee good algorithmic performance
far from the optimal solution. A good starting design will enhance the convergence of the

solution procedure.

(3) The introduction of feasibility inequalities ensures that the model equations are not evaluated

outside their limits and prevents the violation of physical laws.
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(4) The overall performance of the computational algorithms will depend directly on their proper

mplementation. Attributes like reliability, efficiency, accuracy and ease of use are pursued in
this study.

The performance evaluation and optimization problems are characterized by a nonlinear nature.
Hence, failure to comply with the above requirements may result in the slow convergence or could

cause the computational algorithms to experience numerical difficulties.

SQP methods have great potential for routinely solving complex engineering optimization problems.
The infeasible path integrated approach was very reliable and efficient when applied to the
optimization problems in this study. The modifications to Powell’s SQP implementation, VMCWD
[82PO2m], i.e. the new QP routine, more efficient derivative evaluation and the partial exploiting of
the problem structure in the auxiliary routines all improved the performance of VMCWD. This
modified version of VMCWD pérformed efficiently on dry-cooling system optimization problems

with a small to moderate number of variables.

For larger optimization problems the storage requirements for the Hessian matrix as well as the
computational expense involved in solving QP subproblems can become prohibitive. In this study we
overcome these problems by developing and implementing both the original and improved coordinate
bases SQP decomposition strategies. These decomposition strategies are particularly suited to take
advantage of the block diagonal structure of the Jacobian matrix. VMCWD is modified to solve the
resulting optimization problem in the independent decision variable space only. Numerical
comparisons based on the solution of a number of dry-cooling system optimization problems
demonstrate the effectiveness of the reduced SQP decomposition strategies, compared to
conventional SQP implementations. Although more function and gfadient evaluations are used by

these decomposition strategies, the total CPU time is significantly reduced.

The original coordinate bases algorithm has a very superior performance effectiveness when
compared to all the other SQP methods used in this study and suffers no ill-effects related to the
fixed variable partitioning implemented in the dry-cooling system optimization problems. Although
several authors claim that this method can give inconsistent results [88VAle, 93SCle, 94Blle], it

solves our large-scale optimization problems very accurately, efficiently and reliably.

The dual active set algorithm for convex QP problems implemented in this study, performs
effectively and reliably in solving the QP subproblems of both the constrained NLS method and the
SQP method. Matrix modifications are performed by stable matrix updating schemes. This QP
algorithm is tailored to take advantage of the special features of the QP subproblems.
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The optimization is not complete when the solution is obtained; in fact the solution only serves as the
basis of the most important parts of the study: solution validation and sensitivity analysis. The
information about the state of the system in the neighborhood of the solution provides key insights
into the following important factors: the constraints active at the solution that limit further
improvement of the system, the dominant cost terms that should be refined, and the prescribed

parameters that can be improved.

In the interests of continued economic development, the cost of producing electricity should be kept
to a minimum by rationalizing the utilization of both water and fuel resources. The optimal results
and trends that one is able to obtain by means of the computational procedures developed in this
dissertation, pose a challenge and establish new design and performance practices to designers,

manufacturers and operators.

Finally, Varvarezos et al. [94VAle] propose a new decomposition method for solving multiperiod
design optimization problems based on SQP. The optimization problem concerning the minimization
of power generation cost can be classified accordingly. The special mathematical structure of the
multiperiod model can be effectively exploited. The authors state that the method is very efficient
and robust when compared to the conventional SQP methods. A worthwhile future exercise will be
to evaluate this method and compare its performance to the coordinate bases algorithms.
Multiperiod design optimization will also be able to address topics like part-load performance of the

turbo-generator unit according to a specified load plan.
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APPENDIX A

PROPERTIES OF FLUIDS

A.1 THE THERMOPHYSICAL PROPERTIES OF DRY AIR FROM 220 K TO 380 K

Density

P, =pa/(RT), kg/m’ (A1)
where R = 287.08 J/kgK

Specific heat
Cpa =2 +bT+cT? +dT°, T/kgK
a=1045356x 10
b=-3161783x107" (A.2)
c=7.083814x107*
d=-2705209x 10~

Dynamic viscosity

L, =a+bT+cT> +dT°, kg/ms

a=2287973x107°

b=6259793x 1072 (A.3)
c=-3131956x1071

d=8150380x107"°

Thermal conductivity
k, =a+bT+cT? +dT°, W/mK
a=-4937787x107*
b=1018087x10~* (A4)
¢=-4.627937x107
d=1250603x 10"
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A.2 THE THERMOPHYSICAL PROPERTIES OF SATURATED WATER VAPOR
FROM 273.15S K TO 365 K

Vapor pressure

py =aexp(-b/T), N/m’
a=1020472843x 10'! (A.5)
b = 5149.6889682
Specific heat
Cpy =a+bT+cT’ +dT°, J/keK
a=13605x10"
b=231334 (A.6) -
c=-2.46784x1071°
d=591332x107"
Dynamic viscosity
wy=a+bT+cT2+dT°, kg/ms
2=2562435x107°
b=1816683x10"° (A7)

¢ =2579066 x 1011
d=-1067299 x 10~ 14

Thermal conductivity
k,=a+bT+cT? +dT°, W/mK
a=130460x 107
b=-3756191x10" | (A.8)
c= 2217964 x10"
d=-1111562x1071°

Vapor density

py=a+bT+cT? +dT° +eT* +T°, kg/m®
a = —4,062329056
b= 010277044

c=-9.76300388x 107" (A.9)
d =4.475240795x 107

e=-1004596894 x 107

£=89154895x 1012
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A3
A3 THE THERMOPHYSICAL PROPERTIES OF MIXTURES OF DRY AIR AND
WATER VAPOR

Density
Pay = (1+W)[1-w/(w+0.62198)|(p,s/RT), kg/m’ a0
where R = 287.08 /kgK |

Specific heat
Cpav = (Cpa + W cpv)/(1+ W), T/keK (A.11)

Dynamic viscosity

Hay = (XaaM2® + X, MO} [(X,M0° +X,MY°), kg/ms (A.12)

Thermal conductivity

ke =(Xoe MO + X,k MO /X, M2P +X,M3P), W/mK (A.13)

where
M, =28.97 kg/mole
M, =18.016 kg/mole

X, = 1/(1+1.608w)
X, = w/(w+0.622)

Humidity ratio

~ ( 25016 —2.3263(T,, — 273.15) ) ( 0.62509D )
25016 +1.8577(Ty, —273.15) - 4.184(Tp, —27315)) \ paps — LOOS Pt

(A.14)

B ( 100416(Ty, — Ty )
25016 +18577(Ty, —273.15) - 4.184(T,,,, —273.15)

) , kg/kg
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A4
A4 THE THERMOPHYSICAL PROPERTIES OF SATURATED WATER LIQUID
FROM 273.15 K TO 380 K

Density
-1
pw=(a+bT+cT2+dT6) , kg/m3

a=149343x107
b=-37164x107° | (A.15)
c=7.09782x107°

=-190321x107%°

Specific heat

Cpw =a+bT+cT? +dT°, J/kgK

a=815599 x 10°
b=-2.80627 x 10 (A.16)

c=511283x107°
d=-217582x1071

Dynamic viscosity

b/(T—c)

U, =alo , kg/ms

a=2414x10" (A17)
b=2478
c=140

Thermal conductivity
ky =a+bT+cT? +dT*, W/mK
=-6.14255x 107}
b=69962x107 (A.18)

c=-101075x10"
d=474737x10712

Latent heat of vaporization
ig =a+bT+cT°+dT°, J/kg
a=34831814 x 10°

b =-58627703x10° (A.19)
¢=12139568x 10

=_140290431x 1072
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B.1

APPENDIX B

PERFORMANCE CHARACTERISTICS OF FINNED TUBES

B.1 HEAT TRANSFER AND PRESSURE DROP CORRELATIONS

Several investigators have studied the air-side heat transfer and pressure drop characteristics of
circular finned tube bundles. All the resulting correlations are empirical (based on multiple
regression analysis) and attempt to define a power law dependence of the geometrical parameters
and the basic nondimensional groups such as Reynolds and Prandtl numbers. Such correlations must
account for the five geometric parameters, which mnclude the tube outside diameter, d,, the fin
parameters, t¢, (de —d,)/2, Py and the tube layout, P, and P;. Typical dimensions of an extruded
bimetallic finned tube are shown in figure B.1. Being empirical, the range of validity of such
correlations is strictly dependent on the range of data from which the correlations were developed.

A good correlation must maintain its accuracy when tested against a truly representative data set.

A Section A-A

Figure B.1: Extruded finned tube.

In order to have the optimization program play a significant role in the selection of the optimum
- surface for a finned tube heat exchanger, explicit expressions for the airside heat transfer coefficient
and the airside pressure drop in terms of the geometric and layout parameters are a neceséity. The
presented correlations fulfill this requirement to a greater or lesser extent. It is important not to

exceed the limits of applicability of the different correlations.

When a more sophisticated analysis is required, laboratory tests must be conducted on a bundle of

the particular finned tubes under consideration. Laboratory tests, if conducted with extreme care,



Stellenbosch University https://scholar.sun.ac.za

B2

present the most accurate and reliable way to correlate performance data. For finned tube heat
exchanger bundles, the heat transfer to the air stream is dependent upon so many factors that reliable

rating and performance information for any specific bundle design should be verified by actual tests.

The correlations that will subsequently be presented are not necessarily better than the others in the
literature, but present a wide spectrum of data and have been applied in the design of practical
systems. They are valid for a staggered, equilateral, circular finned tube arrangement (P, = 0.866P, ).
The thermophysical properties used in these equations are evaluated at the mean air temperature

unless specified otherwise.
Heat transfer correlations

(1) Briggs and Young [63BR1e]

0.2 0.1134
2(Pe -t -
h, = 0134Re% %1 pr233 Ka iy (Pf tf) (B.1)
d,| de—d, tg

where Re, = G.d, /|,

This correlation is valid for an equilateral, triangular tube layout with 6 tube rows within the
following limits:

1000 < Re, < 18000

1113 mm <d, <40.89 mm

1935 mm < ds <69.85mm

142 mm < (d¢ —d,)/2 <1657 mm
033 mm <ty <2.02 mm

13 mm < P; <4.06 mm
2449 mm <P, <111 mm

013 <2(P; —t¢)/(ds —d,) <063
L01 < (P —tg)/ty <6.62

To take the row effect into account during heat transfer, the equation of Giagnolia and Cuti

[81Glle] is proposed:

by, /by = [1 +v,/ (nf)]—m (B.2)
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(2) Ganguli, Tung and Taborek [85GAle]
h, = 038Re; ™ Pr; %% G o, (A, /A,) P (B.3)

where Re, = G.d,/u,

A, /A, =1+ (ds P‘ d) I:l+ (d¢ - dé)/ 2 “f} (Finning factor)
f r

Ar = TCdrPf
22
A, =05 n(df - dr) +7dety +7tdr(Pf - tf)

This correlation is valid for an equilateral, triangular tube layout with more than 3 tube rows within

the following limits:

1<A, /A, <~50

1800 < Re, <100000,190000

11176 mm < d, <50.8 mm, 114.554mm

5842 mm < (d¢ - d,)/2 <19.05 mm, 22.987 mm
23 mm <Py <3.629 mm, 618 mm

0254 mm < t; <0.559 mm, 1.524 mm

27432 mm <P, <98.552 mm,17145 mm

(3) Nir [9INTle]

ha = Gccpa Pra—0.667 RCE?A W_0.266RI0.4K11 : (B.4)

where Rey, = Gdp /1, = 4Gdg /1, W = 4Rey /W

Pf-l[OSTC(dtz- - d?) +7€dftft + TCdr(Pf - tf)]

W = |
(df—d )(1-tg/Pc)+P, —dg

(4= )1-te/B) + R~y
(df - dr)(l“tf/Pf)

z{[o.zs(pt Jaef + (e faef -1+](de -0, )i . /2] /df}

Ry = P,/d¢ —1+[(dg —d,)(1-t¢/Pr)] /d¢
K} = Row correction factor for heat transfer

n, =2, Ky =09

n, =3, K, =095

n, >4, K, =1
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This correlation is valid for an equilateral, triangular tube layout with 2-8 tube rows within the
following limits:

300 < Rey, <10000
116 <W <683

I<R;<3

1<R, <46
9.65mm<d, <508 mm
219 mm<d; <1016 mm
2.242 mm < Py <4.95 mm

Pressure drop correlations

(1) Robinson and Briggs [66ROle]

2 -0.927 0515
Ap, =1893n, Re;*>® 9—{3) (—Pl) (B.5)
Pa \d; Py

where Re, = G.d,/u,

2 2 0.5 . .
P, =[(1>t /2)* +(P) ] (diagonal pitch)

This correlation is valid for an equilateral, triangular tube layout with 6 tube rows within the
following limits:

2000 < Re, <50000

18.64 mm <d, <40.89 mm

39.68 mm < ds < 69.85 mm

1052 mm < (dg —d,)/2 <1448 mm
04 mm <ty <0.6 mm

231mm <P <322 mm

4285 mm <P, <1143 mm

186 <P, /d, <4.6

P /Py =~1

(2) Ganguli, Tung and Taborek [85GAle]

2
Ap, = 28K [0.021+ 272 | 0'2092J (B.6)
Pa Reeﬁ‘ Reeﬁ«



Stellenbosch University https://scholar.sun.ac.za

B.5

where Re 4 = (ch,/lla)[o-5 (de - d;)/(P; - tf)]—l

K=1+ 2 d exp[—O.ZS(Pt - df)/dr]

1+(Pt —df)/ r

This correlation is valid for an equilateral, triangular tube layout with more than 3 tube rows. The

correlation is based on the literature data of Webb [80WEle]. The following geometrical limit is

imposed:

25<(dg —d,)/[2(P; —t¢)] <125

(3) Nir [91NIle]
-0. .4
Ap, =106Rez* P WO K 1,G? Jp, (B.7)

where Rey = Gedp, /1, =4Gcdg /u,W = 4Reg /W

Pf_l[OSR(d% - df)+ ﬂ:dftﬁ +7Cdr(Pf —'tf)J
W=

(df —d, )(1-t¢/P;)+P, —ds
df - dr)(l— tf/Pf)+ Pt - df
(de —d )(1-t¢/Pr)

2{[0-25(3 /de ) +(Py /df)z]o'5 ~1+[(dg - d, )(1-t¢/Pr)] /df}
R, = ,

2 P, /dg ~1+[(d —d, )(1—te /)] fde

K, = Row correction factor for pressure drop
K, =2.08-083R,, 1<R;<13
K,=1, R,>13

-

This correlation is valid for an equilateral, triangular tube layout with 2-8 tube rows within the
following limits:

400 < Rey, < 30000

85<W<574

9.65mm <d,; <508 mm

1935mm<de <1143 mm
2217 mm < P <8475 mm

The correlations presented by Ganguli et al. {85GAle] and Nir [91NIle] are based on original and
published experimental data, whereas those presented by Briggs, Young and Robinson [63BRIe,
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66RO1¢] are based on their own experimental data. It is difficult to recommend a single correlation.
However, the Briggs and Young [63BR1e] (heat transfer) and the Robinson and Briggs [66RO1e]
(pressure drop) correlations are widely used. The correlations by Ganguli et al. [85GAle] and Nir
[91NIle] are included because they are based on a very wide range of data and therefore are

assumed to give more accurate heat transfer and pressure drop correlations.

The arrangement (staggered vs. inline) of the finned tubes in the heat exchanger as well as the tube
and fin geometry (tube pitch, fin pitch, fin height, fin thickness, number of tube rows) affect both the
heat transfer and pressure drop. The interested reader is referred to the following literature for a
detailed discussion on these topics [45JAle, 59WAle, 63BRle, 66ROle, 66VAle, 74Ml2e,
76RO01le, 80WEle, 81Glle, 81SH3e, 85ECle, 85GAle, 88STle, 88ZUle, 89RA1le]. There exists a
substantial amount of test data in the published literature. However, careful examination of the data
and the method of experimentation is needed in each specific case to establish their usefulness in
design. The few correlations that are listed present a wide spectrum of data and have been applied in

the design of practical systems.

In the optimization process, one can vary the geometrical parameters of the finned tubes and the tube
layout in the ranges of applicability. However, the optimum design/layout is done according to
economic criteria and may not necessarily present those required for optimum performanée. In any
industrial application the selection of finned tubes is dictated by the combination of the operating and
capital costs as well as a variety of technical constraints. For a finned tube module, the capital cost is
primarily related to the size and layout of the tube bundle, whereas the operating cost is primarily
related to the fan and/or the pumping power.

B.2 HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS PRESENTED IN
DIMENSIONAL FORM

A method for presenting the experimentally obtained performance data of industrial finned tubes is
evaluated by Kem [80KEle] and modified by Kroger [86KRle]. The method presents the
performance characteristics of finned tube bundles in the form of dimensional heat transfer and
pressure drop parameters. This form of data presentation eliminates uncertainties inherent in the
evaluation of the airside heat transfer coefficient, fin efficiency, thermal contact resistance fouling

and other thermal resistances.

Finned tube performance correlations contain Nusselt and Reynolds numbers. Both these numbers
contain an equivalent or hydraulic diameter. Because of the relatively arbitrary nature of the

defmition of this quantity for finned surfaces, different definitions are found in the literature. In
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practice this often leads to confusion and makes any comparison of performance characteristics of
different types of finned surface meaningless. The method of which a summarized derivation is

presented below, eliminates potential sources of error in well conducted experiments.

In general, the overall heat transfer coefficient can be expressed as

( A AR
Ua=| R S O y (B.8)
haef thw n An

where the summation term represents all the thermal resistances other than the airside and waterside

values. The heat transfer rate can be expressed in terms of the overall heat transfer coefficient and

the logarithmic mean temperature difference as follows:
Q=U,A,FrATy, (B.9)
where Fr is the cross flow temperature correction factor [86HO1le]. Substitute equation (B.9) into

(B.8) and find

-1
- FidTy 1 Ry
ha—|:ean[ R— %Anj:l (B.10)

Rearrange equation (B.10) and define the effective heat transfer coefficient, h,,,based on the airside

surface area as follows

-1 __l
h, A, = ! +Z& = (FTATlm - j - (B.11)
h,efA, A Q huA,

n n

The value of h, A, can be determined experimentally.

According to Colburn [33COle] the heat transfer coefficient under conditions of forced convection

through finned surfaces may be expressed in terms of dimensionless parameters as

Nua b 0.33
=flRe,) or Nu, =a;Re,'Pr, ‘ (B.12)
Re, Pr;)'33 ( a) a” Tl T

In the absence of the equivalent diameter, equation (B.12) may be written as

hae b
—2 = 3,Ry™” (B.13)
pm 2N

where Ry =m, / (Afr ua) (characteristic flow parameter)
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The effective finned surface area and the heat exchanger frontal area play a major role in comparing
and optimizing heat exchangers. These geometric parameters may be introduced into equation

(B.13) such that

hoeAAs

=33 = aNyRbey (characteristic heat transfer parameter) (B.14)
Afrka Pra

Ny

All the physical properties are evaluated at the arithmetic mean temperature.

The pressure drop across a finned tube heat exchanger during isothermal flow conditions may also be

expressed in dimensionless form based on the free stream conditions as
2 b
I':‘:uiso = Apiso/pava =ag Re™ (B.15)
If the equivalent diameter is not included in this equation it may be written as
EViso = PaAPiso / ug =agy Re’™ = EuisoRy2 (characteristic pressure drop parameter) (B.16)

A corresponding pressure loss coefficient based on the total pressure difference across the heat

exchanger can be defined as

Ap, b
K. = =aRy ¥ B.17
he 05 pavz KRY ( )
The performance correlations presented in equations (B.14) and (B.17) are determined
experimentally. These correlations enable one to compare different finned surfaces (of any
geometry) directly and can be used in optimization studies where fixed finned surfaces are

considered. The finned tube geometrical parameters are subsumed in the constants a and b.

It should however be stressed that to date no correlation exists that accurately predicts the
performance over a wide spectrum of finned tube geometries and operating conditions.
Discrepancies do exist in literature correlations [86KR1e]. Therefore, the final design of a costly air-
cooled heat exchanger system cannot be based on approximate correlations. In such cases specific

performance tests should be conducted on the finned tubes to be used.
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APPENDIX C

FORCED DRAFT DIRECT AIR-COOLED CONDENSERS

C.1 INTRODUCTION

The performance prediction of air-cooled condensers are based on two sets of governing equations,
ie. the draft equation and the heat transfer equations. The governing heat transfer and draft
equations will be derived in this appendix (also refer to [83SIle, 91CO1le]). The coupling of the air-
cooled condenser to a turbo-generator unit, as found in power plants, is also discussed. The results
of a considerable amount of experimental and theoretical work are taken into account to model all
the physical phenomena of such a system. The search for economically viable air-cooled condenser
operation requires the proper formulation and modeling of the system. The variables and constraints

required to perform this task are defined and discussed.
C.2 DESCRIPTION OF THE DIRECT AIR-COOLED CONDENSER

In the direct condensing air-cooled heat exchanger (ACHE), also referred to as air-cooled
condensers (ACC), the process fluid (low pressure turbine exhaust steam in the case of power plants)
is channeled directly to the air-cooled heat exchanger bundles, as shown in figure C.1. The heat
exchanger bundles can consist of one or more rows of finned tubes. The steam pressure inside the
exhaust duct and the ACC is lower than atmospheric pressure. The turbine exhaust steém duct has a
large diameter and is required to be as short as possible to minimize pressure losses. In very large
ACHESs the finned tube bundles are usually sloped at some angle with the horizontal (A-frame
arrangement) m order to reduce the plot area. This arrangement is also frequently used in condensing

plants due to good condensate discharge. Horizontal finned tube arrangements are also found in

many industrial applications.

Steam enters the top of the air-cooled heat exchanger bundles (finned tubes) and condenses as it
flows downward with the steam and the condensate flowing in the same direction. In actual
installations, provisions are made for the removal of noncondensable gasses and air (dephlegmator)
and for the prevention of freezing during cold weather (airflow control) [77SCle, 77SU1e, 78LAle,
80RUle, 81KOle, 83PAle, 83SHle, 85MOle, 85MO2e, 870S1e]. The airflow across the heat

exchangers is created by means of axial flow fans, i.e. the steam is condensed by forced convection
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of air flowing over the heat exchanger bundles. The condensate that collects in the condensate tank

is pumped back to the boiler feedwater circuit.

Exhaust steam
VAN duct
Steam turbine Supply header
Heat exchanger
bundles
_— Condensate
header
Condensate
Condensate
Condensate storage tank
| pump
—o0—O

Figure C.1: Forced draft direct air-cooled condenser (A-frame arrangement).

C.3 HEAT TRANSFER AND PRESSURE DROP DURING CONDENSATION

The finned tube elements are the heart of any air-cooled condensing plant. The air-cooled heat
exchanger may consist of one or more rows of finned tubes, each row having a different fin pitch.

The transfer of heat from the process fluid to the air is influenced by a number of variables:
(1) The temperature difference between the process fluid and the air.

(2) The design and surface arrangement of the finned tube bundles.

(3) The velocity of the air flowing across the finned tubes.

(4) The velocity and physical properties of the process fluid.

Consider the forced draft air-cooled condenser shown schematically in figure C.2. In this
configuration the heat exchanger bundles are arranged in the form of an A-frame to drain the
condensate effectively, reduce the steam duct lengths and minimize the required ground surface area.

A windwall is provided to reduce recirculation of the hot plume air.

The amount of heat transferred from the condensing process fluid to the air stream can be expressed

as

Q,= macpam(Ta6 - TaS) = mcifg =Q, . (C. 1)
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Subcooling of the condensate is neglected in the above relation and it is assumed that all the steam
entering the finned tubes is condensed. The thermophysical properties of the air will be determined

at the mean temperature and atmospheric pressure at ground level

s~ Steam header

8]

Windwall ————— |

Heat exchanger

Condensate drain —

Wallway —————__

I

.................... NN
hd / L Fan
Safety screen

VAN
Supports ———// ~

Figure C.2: Air-cooled condenser unit

If the geometry of the finned tubes changes in consecutive rows and performance data is available for

the individual rows, the heat transfer equation may be written as

n, n
Q, = Zmacpam(i)(Tao(i) _Tai(i)) = zmc(i)ifg(i) , (C.2)
i=1 i=1 . '

Furthermore, the effectiveness of the condenser bundle or each tube row can be expressed as

[86HO1e]
&) =1-exp [_(UA)(i) /(macpam(i))] (C.3)

With this expression the heat transfer rate becomes

n, .
Quc = D M, Chami) (Tvm(i) - ai(i))e(i) (C.4)
i=1



Stellenbosch University https://scholar.sun.ac.za

C4

The product of the overall heat transfer coefficient and area for each tube row can be expressed as

-1

(1 1
(UA)(i) =L + J (C.5)
haeiyAacy  BeiyBeq)
where
0333

hoeiyAaciy = Kam(i) Plam) A £ NY () (ntb(i) / ntb(max)) (C.6)
and

Ry =m, / (uam(i)Afr i)/ ntb(max)) (C.7)
for any finned tube geometry, and

-
hoA =( L, Glde/d) | fd/do) ) (C.8)
W70 hygyeeiyBay 27k Linggyny  27mkeLinggyny

for radially finned tubes. The frontal area of the heat exchanger bundle corresponds to the area
covered by the maximum number of tubes per row in a multiple tube arrangement. Ry is corrected
for this effect. Furthermore, Ny is based on heat exchanger bundle tests in which the maximum
number of finned tubes are installed in the bundle. In actual heat exchanger bundles it is not practical

to install half-tubes and a correction is made when determining the effective heat transfer coefficient.

The effectiveness of the circular finned surface is expressed in terms of the fin efficiency, i.e.
ey = 1= Ag) (1 Nt )/ AL (C.9)

According to Schmidt [46SCle], the fin efficiency for radial fins of uniform thickness can be

determined approximately from

tanh(bd, ©/2),,
(bd, @/2)

NGy = (C.10)

05
where q)(l) = (df/dr - 1)[1+035€11(df/dr)] and b(l) = [(2 ha(i))/(tfkf)] .
For galvanized steel fins, the fin thickness can be expressed as tr =2t; +t; and the thermal

conductivity of the fin can be expressed as k¢ = (Ztgkg +tsks) / te .

The performance characteristics of the finned tubes are discussed in Appendix B and correlations are

stated to determine the airside heat transfer coefficient and the characteristic heat transfer parameter.
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The pressure losses in the turbine exhaust steam duct and at the inlet to the finned tubes are

expressed as
2 2
Apgq = O-Spvi(l)vvi(l) (l—cc +K +st) (C.11)

where o, is the tube inlet contraction area ratio and the contraction loss coefficient, K ~ 0.6 (sharp
mlet). K4 is the loss coefficient for the steam duct system. The mean saturation pressure of the
steam at the inlet of the finned tubes, p;, is calculated by subtracting Apyy (equation (C.11)) from
the mean saturation steam pressure at the turbine outlet. The mean steam temperature at the inlet of
the finned tubes, T,;, is obtained from equation (A.5). The inlet conditions (thermophysical

properties) of all the tube rows are thus assumed to be equal.

Due to pressure changes along the finned tube and in the direction of air flow, the condensation
process will not take place at a constant temperature. The mean static pressure in the finned tubes

can be determined from the correlations given by Groenewald and Kroger [94GR1e].

01582p2L, (

2.75 175,22
3 026731(1) Revi(i)+0.36482(i) Revi(i))+— pvini(i) (C 12)
pvide Reyicy

Pvm(i) = Pvi ™ 3

The coefficients a; and a, are functions of the suction Reynolds number, Re,,. For round tubes,

these coefficients are

a1y = L0046+ 1719x 107 Re iy~ 9.7746x 10 ° Rl iy

) (C.13)
a5y = 574.3115+24.2891Re ;) +18515Rel, )
and the suction Reynolds number is expressed as
PviVvicydi d; d; (C.14)

_ — i
Revn(i) = i 4L, = Revi(i) al,

1

For non-round tubes (elliptical or flattened tubes or ducts) with a high aspect ratio, these coefficients

are

a1y = 10649 +10411x 107 Reyy gy~ 2.011x 1077 Redy ;)

o 3 (C.15)
ayi) =290.1479 +59.3153Re ;) + 15995 10~ Reyy gy
and the suction Reynolds number is expressed as
pvivvi(i)de W, W,
Re iy =Reyn s |0 Reyy) £40 (C.16)
vn(i) Ly 2L, vi(i) 2L, ( vn(i) )
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It is assumed that condensation occurs at the mean steam temperature, T,p,;), corresponding to the
mean steam pressure inside the tubes (refer to equation (A.5)).
It should be noted that the pressure drop in the different tube rows is usually not identical, with the

result that backflow of steam will occur [78LAle]. To avoid this and the corresponding

accumulation of noncondensables, a dephlegmator is usually installed after the condenser.
For non-round tubes (elliptical or flattened tubes or ducts) the correlation of Groenewald [93GR 1¢]
is employed to determine the mean condensation heat transfer coefficient, i.e.

: 0.333
L k3 2 0° 9 i
tKem(i)Pem(i)8 cos(9 b )lfg(i)

Hem(i)Ma1Cpam(i) (Tvm(i) - Tai(i))[l —exp {— (Uc(i)HtLt) / (malcpam(i))}]

by = 09245 (C.17)

By neglecting the thermal resistance of the condensate film, the approximate overall heat transfer

coefficient based on the condensation surface area can be expressed as

UcyHeLy = (hae(i)Aa(i)) / (zntb(i)nb) . (C.18)
The air mass flow rate flowing on one side of the finned tube is

m,; = ma/(Zntb(i)nb) (C.19)

For round tubes, the mean condensation heat transfer coefficient for inclined tubes according to

Schulenburg [69SCle] is used, i.e.

0.5 '
hc(i) - 1197(Sineb)0.175 cdm(l) (pcm(l)uvm(l)] Re(‘),li’EiZ)S (C.ZO)
i \Pvm(i)Hem(i)

This equation is valid within the following ranges: 5° <0, <90° (angle of inclination with respect to
the vertical), 10950 < Re,, = Re,;/2 < 14150 and 6525N/m” <p,  <8085N/m>.

Ay, referred to in equation (C.5), is the inside tube area of tube row (i) exposed to the condensing

Steam.

The energy balance for the forced draft air-cooled condenser thus requires that the following

relationships be satisfied for each tube row:

macpam(i)(Tao(i) - Tai(i)) = Meglifg(i) = macpam(i)(Tvm(i) - Tai(i)) &) (C.21)
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C.4 DERIVATION OF THE DRAFT EQUATION FOR A FORCED DRAFT AIR-
COOLED CONDENSER

The draft equation describes the relation between the various flow resistances encountered, the
atmospheric conditions, heat exchanger dimensions, the heat exchanger bundle performance
characteristics and the fan performance characteristics at a given flow rate. The draft equation is

derived similarly to the procedure described in Kroger [94KR2e]

Significant changes in the ambient air temperature occur near the ground level during any 24-hour
period [94KR1e]. During the day, a temperature lapse rate of -0.00975 K/m, also known as the dry
adiabatic lapse rate (DALR), is observed in the region of the surface boundary layer (SBL). For this
analysis, the specified ambient air temperature at any elevation z, will be assumed to be given by the

equation

T,, =T, —0.00975z (C.22)

a

To derive the draft equation, consider the variation with elevation of the pressure in the atmosphere

external to the air-cooled condenser in a gravity field, i.e.
dpa = —pagdz ‘ (C23)

Substitute equations (C.22) and (A.1), the perfect gas law, nto equation (C.23) and integrate to find
the pressure difference between point 1 and a point at elevation z external to the air-cooled

condenser (refer to figure C.2)
Pal~Pay = pal[l— (1-0.009752/T,,) **° 64g/R] ~ pal[l—(l— 0.009752/T,;)*>’ ] (C.24)

According to equation (C.22), the approximate air temperature before the fan can be expressed as
T,3 = T,; —0.00975H;, (C.25)

The approximate temperature at the inlet to the heat exchanger bundle can be derived from the first
law of Thermodynamics (conservation of energy) and can be expressed as [94KR1e, 94KR2e]

Tas = Ty ~ 0.00975Hy +Pg /(m,cpa1) (C.26)

where H; ~ H is the mean heat exchanger height above the ground level.

Stagnant ambient air at 1 accelerates and flows across the heat exchanger supports at 2 before
- reaching the fan at section 3, where upstream obstacles such as structural supports or a safety screen

may be located. After leaving the fan at 4 where further downstream obstacles may be located, the
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flow experiences losses in the plenum before entering the heat exchanger bundle at 5 and exiting at 6.
Additional flow losses are encountered due to the inclined flow approaching and leaving the heat

exchanger bundles.

Taking into consideration all the flow losses, the pressure difference between sections 1 and 7 can be

expressed as [94KR2e]

Pal ~Pa7 = pal[l_ (1 - 0'00975H6/Tal)3.5] +Kts (ma /A2)2 /(2[332)
+Kup (ma /AS)Z/(ZpaB) ~Pa3 PF/ma +Kdo (ma /A4)2/(2pa4)
+ Kpl (ma /AFC)Z/(2p34) + Ket (ma /Afr)z/(zpa56)

+p36|:1— {1-0.00975(H, - H6)/Tal}3'5]

(C.27)

When evaluating the effective frontal area, Ay, , obstructions like straps or stiffening beams located
up against the finned surface and thus impeding flow through it, must be taken into consideration. In
all the heat transfer and pressure drop calculations, the effective finned tube length, L., is used as a
result.

Fan performance characteristics incorporated in the p,; Pz/m, term are obtained from standard

installation tests. According to Venter [90VEle], the total dynamic component afier the fan is
dissipated in the plenum when the fan is operating in its application range. For this configuration,

K, = o and it follows that

pl =

—Pa3 Pp /ma +Kp1 (ma /AFc)2 /(2934) ~ —KFs (ma /AFc)z/(ZPaZS) (C.28)

where the fan static coefficient is defined as

2 2 4,2 3
Kps = 2Apg; pa3/(ma /AFc) = 2PFpa3AFc/Ina (C.29)

Ag, is the fan casing cross-sectional area and the fan static pressure, Apg,, is obtained from fan

performance tests conducted according to certain test codes [94KR1e, 94KR2¢e].

If the ambient air far from the heat exchanger is dry and the temperature distribution is according to
the DALR, the difference in pressure between 1 and 8 is according to equation (C.24)

Pal1 ~Pag =Pa1 ~Pa7 = (pal _Pa6)+(pa6 _pa7)

C.30
~ pal[l ~(1-0.00975Hs/ T31)3'5]+ pas[l ~ {1-000975(H; - Hg)/T,, ) il (€30)
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where the ambient air temperature at elevation 6 is assumed to be approximately equal to T,;.
Although the air temperature distribution near ground level generally deviates considerably from the
DALR, the error introduced by this assumption in equation (C.30) is small for large units.

Substitute equation (C.30) into equation (C.27) and find with equation (C.29) the draft equation for

the air-cooled condenser shown in figure C.2 (H, = Hy)

Pal[{l" 0.00975(Hy ~ He)/ Ty} - {1~ 000975(H; — Hy) /T,y ) J
= Kis (1 /A2)" /(2001) + Kup (4 /AFe)’ /(2025)~ Ks (ma /Arc)” /(2003) (C.31)

+Kgo (m, /AFe)2 /(20a3) + K (m, /Afr)2 /(Zpasé)

where it is assumed that p,, = p,;, P,4 = P,z and p,7 ® p,. Furthermore, the area on which the
upstream and downstream flow obstacles are based is defined as Ap, =A;=A, =(Ap, —Ap,),

where Ag. and A, are the fan casing and hub cross-sectional areas respectively.

The approximate air density at section 3 is

Pa3 = Par/(RT,3) (C.32)
The density of the air immediately after the heat exchanger is
Pas ~ pal/(RTa6) (C-33)

and the harmonic mean density through the heat exchanger is given by

Pase = 2Pal/[R(TaS +Ta6)] (C.34)

In the above equations the thermophysical properties of dry air (Appendix A) are usually employed

since the influence of moisture is a negligible factor in determining the forced draft air-cooled heat

exchanger’s draft.

The loss coefficient of the air-cooled condenser supports, K,,, is based on the drag coefficient of

these supports, i.e.

Cots = 2 Fpus (ParvioA ) (C.35)

The effective pressure drop across the air-cooled condenser supports is given by

2
Apas = ntsFDts/AZ =05p,1va) CptsLisdis nts/AZ (C.36)
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where L is the support length and d is its effective diameter or width, and n,, is the number of
supports, while A, is the corresponding free flow area into the air-cooled condenser. The

corresponding loss coefficient based on these conditions at section 2 is

2
K =2 Apats/(paIVaZ) = CpsLisdis 0es /A2 (C.37)

The loss coefficients due to the flow obstacles at both the fan suction (upstream) and discharge
(downstream) sides are obtained from the bulk method proposed by Venter and Kroger [91VEle].
The bulk method [85VEle] is related to the total blockage area of the different flow distorting
componénts, as well as the distance between the fan rotor and the respective components. These

loss coefficients are obtained from figures C.3 and C.4 (copied from [85VEle])).

The pressure loss across the heat exchanger bundles and the kinetic energy losses at the outlet
elevation (section 7) are derived by Van Aarde and Kroger [93VAle] for an A-frame heat exchanger
array. For non-isothermal oblique flow through an A-frame heat exchanger bundle, the loss

coeflicient is
2 - 1 1 2 1
Kot = Kpeiso +7(p35 pa(,) +( . —1)( . —1+2K2‘5) (—pL)T
G Pas +Pas Smem Smem Pas tPa¢ (o]
Pas +pa6

where o is the ratio of the minimum free flow area through the heat exchanger bundle to the free

(C.38)

stream flow (frontal) area and oy is the ratio of the fin leading edge frontal area to the free stream

flow area.

The heat exchanger loss coefficient under normal non-isothermal flow conditions, including inlet-,
frictional-, and exit losses as well as acceleration effects (due to heating), is defined as (refer to

' Appendix B)

Ky, = ag Ry +—27(M) (C.39)
G~ \Pas tPag

for finned tube bundles with any finned tube geometry. For radially finned tubes the heat exchanger

loss coefficient under normal non-isothermal flow conditions can, in general, be expressed as

[86KR le]
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Ky = ..2_2_ Eu+[—pa5 _paéj = iz Apagam +(pa5 "pa"’J (C.40)
G Pas T Pas ) Gc Pas tPas

The Euler number can be obtained from the pressure drop correlations discussed in Appendix B.

14 | | | |
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Figure C.3: Loss coefficients for flow obstacles at the fan suction side (upstream).
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Figure C.4: Loss coefficients for flow obstacles at the fan discharge side (downstream).
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The second term on the right hand side of equation (C.38) represents the loss due to acceleration
effects during non-isothermal operation. The third term represents the loss due to the oblique flow
at the inlet to the bundle. The entrance contraction loss coefficient, K, is according to Kays

[50KAle]

[1(1
K, =[— —- J (C.41)
621 \O¢
where 6,; = ( P; - tf) / P; is the ratio of the flow area between the fins to the free stream flow area at
the inlet to the finned tube bundles. The contraction coefficient, G, for flow between parallel plates
is given by
G, = 06144517 +0.045664936,, — 0.33665 103, + 0408274303, +2.67204163,

] - (C.42)
—-5.963 169021 + 3558944021

For round and elliptical fins a value of K = 0.05 is assumed.

When the finned tube bundles are arranged in the form of A-frames, the curvature of the downstream
flow patterns cause the actual mean flow incidence angle to differ from the heat exchanger bundle

semi-apex angle 6,. An empirical correlation for the mean flow incidence angle is presented by

Kotzé et al. [86KOle], i.e.
6., = 0001967 +091336, —3.1558 (C.43)

K4 is the downstream loss coefficient that consists of two components, namely the turning and

jetting losses in the V-region, Ky, and the loss of kinetic energy into the atmosphere, K,. The

following empirical correlations for these losses are obtained from Van Aarde and Kréger [93VAle]

K F 28919 29329( ) I 0, — b lrl 05dg /LI
4 = L L, + L, JLsm b 2Lt J l_ sin 0, +Lw/LtJ
281" ) 2 \\05
XLG_} +(exp(236987 + 5.8601x 1020, ~33797x10762)) (C.44)
N _

~ _1)2
| 05dy /L, }"'5[1 . L } !
1 sin®y, +Ly, /L, L, sinf,

and
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2 3
K = [—2.89188514-2.93291(5&) Ml— 05dgn /Ly } +19874

° L, L, sin@, +L,, /L,

2
~3.02783| — 05dg /Ly +2.0817| — 05dsn /Ly (C.45)
sinfy, +L,, /L, sin@y +L,, /L, _

-2
x[sineb - +L—W}

2L, L,

where L., is the half-width of the walkway between the A-frames. Thus, Ky = K4 +K,. Both

equations (C.44) and (C.45) are valid within the following limits:

20° <9, <35°

0< 05dg, /L,
sinOy, +L,, /L,

0<L, /L, <009033

0<dg/L, <0303 forL, =0

Ky 230 (uniform normal velocity distribution)

<0.17886

If performance correlations from oblique flow experiments are available, the pressure loss coefficient

for the heat exchanger bundle under non-isothermal flow conditions has the following form

b 2 - |
Ket = aKeRy K8 +;—2-(%—::%‘1§) (C46)
a a

Equation (C.31) is known as the draft equation for a forced draft air-cooled heat exchanger where
the heat exchanger bundles are arranged in the formation of A-frames. This equation can be
rewritten with all the loss coefficients based on the heat exchanger frontal area and the mean

harmonic air density through the heat exchanger bundle.  Multiply equation (C.31) by

2;)356(Afr /m, )2 to obtain

2p4s6(Ag /m, )Zpal[{l— 0.00975(EL; — Hg)/Te ' ~ {1-000975(H; - H) /T, } ]
=Kis(Ax/A2) (Pase/ Pa1) +Kyp(Ag/ AFe)2 (Pas6/Pa3) ~ Krs(A s /Agc) (Pass/Paz) (C.47)
+Kyo(Ag/ AFe)2 (Pass/Pa3) + Kot

By means of equation (C.47) it is possible to compare the magnitude of the loss coefficients directly.
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C.5 FAN PERFORMANCE CHARACTERISTICS

The choice of a suitable axial flow fan must be such that it will efficiently deliver a cooling air flow
rate that will guarantee the desired heat transfer rate. In ACHE systems, the design of the fan system
is as important as the heat exchanger. In order to achieve this, a series of resistances must be
overcome [94KR2e]. It is, however, possible to rearrange the draft equation and obtain the system
resistance curve as a function of the air mass flow rate. The poimnt where the system resistance curve

meets the fan performance curve at the desired air mass flow rate, defines the fan operating point.

The performance characteristics of an axial flow fan are determined experimentally according to
certain fan performance test codes, e.g. the British Standards Institution BS848 [80BSie]. Fans
should be tested according to the method most closely representing the actual performance

conditions. Fan test results are presented in the form of a performance curve as shown in figure C.5.

L 300 220
& B —
Z 250 ~ \\ 210

2 =

=
g 200 // I A\ 200
o \ ¥"‘> A
2 150 Fan diameter = 9.145 m Y 190 &
=S Blade angle = 16 \\ 2
g 100 Air density = 1.2 kg/n® \\ 180 =
5 Speed = 125 rpm \\ >
2 50 170
o

0 160

200 300 400 500 600 700 800 900

Volume flow rate, Vg, m’/s

Figure C.5: Performance of an axial flow fan.

The fan static efficiency can be defined as

- ApesVe (C.48)

NFs P

In practice, it is preferred that the actual air volume flow rate, corresponding to the fan operating

point, is larger than the volume flow rate at the optimum fan static efficiency. A decrease in air
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volume flow rate will thus result in an increase in fan static efficiency rather than a decrease in fan

static efficiency.

The total electrical power requirement of the fans can be calculated as follows:

P = Pg /g4 (C.49)

Model tests may be conducted if it is impractical to conduct full scale tests. The model must be
geometrically similar to the actual fan in all the parts which affect the air flow and its dimensions
must not exceed those of the actual fan. The actual full size fan may be expected to show a slight
mprovement in efficiency. However, no allowance is made for this effect [66VD1e, 80BSle]. The
model test results can be scaled, according to the fan laws [80BSle], to obtain the prototype

performance characteristics. The fan laws are as follows (for a fixed fan blade angle):

(1) Volume flow rate

3
Vr =( Ng j( dg J . (C.50)
VEm  \Npy A\dpm
(2) Fan static pressure rise
2 2 |
Apgs :(NF)(dFj(p}?) (C.51)
Astm NFm dFm PFm
(3) Power consumption
3 5
)l €
PFm NFm dFm PFm

The tip clearance of the prototype fan which results in the same fan static efficiency as measured for

the model fan is presented by the VDI fan test code [66VD1e] as

0.1 0.8
S| APFm dg
- (C.53)
SFm APF dFm )

According to this equation the tip clearance ratio sg/d; for the prototype fan is required to be

smaller than the corresponding ratio for the model to ensure similar operating conditions. In
practice, a small tolerance between the fan casing and the fan blade is difficult to guarantee due to
the material properties and construction methods of the blades and fan casing. As a result, typical
values for tip clearances of 0.5% to 1% of the fan diameter are employed by the manufacturers.
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Performance curves for large fans are generally obtained under ideal conditions. However, in actual
installations the efficiencies are alwa};s lower than those obtained under the ideal test conditions.
The reduction can be ascribed to a number of reasons, such as a high air approach velocity when the
fan is located too close to the ground level and distorted inlet flow conditions. In large cooling
plants covering a considerable area and including numerous fans, some of the fans may be subjected
to significant cross-flow which tends to distort inlet conditions to the fan, resulting in a
corresponding reduction in performance. Flow separation at the inlet to the fan can be avoided by
attaching a well designed inlet bell to the fan housing [85VEle]. The effect of the inlet losses is
correlated by Salta and Kroger [94SAle] for more than two fan rows as a volumetric effectiveness,
ie.

1+45/n)H;
VF 0.985—exp —(——E)—{ =ey (C.54)
- 635d;

where n = ng, for a freestanding fan platform and n =2 ng, for a non-freestanding fan platform. This
correlation is applicable for Hy/dp =019 and Wg/dp =127, where H, is the height of the
bellmouth fan inlet from the fan platform and Wy is the fan pitch. np, is the number of fan rows
(number of fans per bay), ng, is the number of fan bays and the total number of fans are

D =g N, Vp/Vpg correlates the effect of the inlet losses on the whole fan system and states

that ngm, will be less than ngm, ;4. When using this correlation, the layout of the fan platform

must be fixed beforehand.

The actual airside heat transfer rate can be obtained by multiplying the maximum ideal airside heat

transfer rate by the fan volumetric effectiveness, ey;. Thus, equation (C.21) changes to

macpam(i)(Tao(i) - Tai(i)) ey = Me(pyify(i) = macpam(i)(Tvm(i) - ai(i)) eiHev (C.55)

The fan motor must be selected to handle the maximum load, which will occur during operation at
low ambient air temperatures (due to the higher air density). The fan motor must be oversized by
25-30% for fans that are not autovariable and 15% otherwise [83PAle]. In large mechanical draft
dry-cooling towers incorporating axial flow fans, it is essential that the required fan power be kept as
low as possible. Ambient air is a coolant which exhibits large temperature fluctuations. Constant
speed fan drives may result in a much higher air mass flow rate than needed at low ambient air
temperatures, which can result in freezing (in the ACC) or throttling of the steam flow (in the turbine
exit) when coupled to a steam turbine. At high ambient air temperatures the constant speed drives

may result in an air mass flow rate that is inadequate to meet the cooling demands. Thus, it seems
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that the fan energy costs can be minimized by harmonizing the fan operating conditions with the

external ambient air temperatures, and the turbine performance characteristics when applicable.

The variation of the air mass flow rate can be achieved by varying the fan blade angle during
operation, the fan motor speed during operation (refer to the fan laws) or by means of louvers
[77SCle, 81KOle, 81STle, 83PAle, 85MOle, 85MO2e, 93ADle]. Automatically variable pitch
(fan blade angle) fans are limited in diameter (up to *+ 6 m) and automatically variable speed drives
are expensive, although in some applications they may present a more cost effective proposition than
other methods of flow control. The most common means of flow control is to switch single-speed
electric motors on (full speed) or off, or to have two-speed electric motors that allow the fans to
operate at full speed, half speed or to be switched off Fan speed is usually limited by noise
restrictions, available gear ratios, or the manufacturer’s practice. To meet noise requirements, the

rule of thumb is to limit the fan tip speed to 60 m/s [83SH1e].
C.6 OPERATING POINT CALCULATION

The operating point (ability to reject heat) of the fixed geometry ACC is defined as the combination
of operating variables that will simultaneously satisfy the draft and heat transfer (energy) equations

for specified turbine exhaust and ambient air conditions. This point is obtained from the intersection

of the system resistance line and the fan performance curve.
Definition of the operating variables, operating constraints and equations to be satisfied
For a specified air-cooled condenser system geometry, specified turbine outlet conditions (T, Prv)

and specified ambient air conditions (Ty,, T, P,) the following variables, constraints and equaitions

(balances) can be defined for the simultaneous solution of the operating point conditions:
(1) One tube row
The operating variables are: m,, Tyo(1y, Tyi, Mcqy

These variables must satisfy the following feasibility inequality constraints (bounds):

m, >my, +g, (C.56)
-m, 2-m,, +¢&; (C.57)
My 2 € (C.58)

(C.59)

Taoq) 2 Tair) +€3
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~Taoqy 2 ~Tyi +¢3
-T2 -1y +24
The following equations must be satisfied by the operating variables:
Q. = Qe
Qaqy = Qucqyy
T = T(pwi)
APsystem = APFs

(2) Two tube rows

The operating variables are: m,, Too(1), Tao(2)> Tvis Me(1y> Me(2)

These variables must satisfy the following feasibility mequality constraints (bounds):

m, 2m, +¢;
~m, 2-m,, +&;
Mgy 2€y
mcy) 2 €y
Taoqy 2 Taiqry +€3
~Taoq) Z ~Tao(2) T€3
~Too2) 2 - Tyi +&3
=T, 2-Ty +&4

The following equations must be satisfied by the operating variables:
Qay = Ay
Qa2) = Qc(2)
Qaqr) = Qac(

Qa2) = Qac2)

(C.60)

(C.61)

(C.62)
(C.63)

(C.64)

(C.65)

(C.66)
(C.67)

(C.68)
(C.69)
(C.70)
(C.71)
(C.72)

(C.73)

(C.74)
(C.75)
(C.76)

(C.77)
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T; =T(p;) (C.78)

Apsys’(em = ApFs (C.79)

¢; are small constants and are used to introduce the > sign in the feasibility inequalities. The bounds
on the operating variables are introduced to safeguard against the violation of the physical laws. The
upper and lower limits on the air mass flow rate can be obtained from the fan performance

characteristic curve.
C.7 POWER GENERATION

The turbo-generator characteristics of the direct condensing system, i.e. the heat to be rejected and
the power output of the turbo-generator, are expressed in terms of the turbine back pressure, p,, or
the corresponding saturated vapor temperature, T,,. The performance characteristics of an example
of such a system is shown in figure C.6. It is assumed that the power needed for the boiler
feedpumps and other auxiliaries, excluding the fan operating power, is already subtracted from the

generated power.
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Turbine exhaust saturated steam temperature, Tiw, °C

Figure C.6: Performance characteristics of a turbo-generator.

Atmospheric conditions influence the performance of air-cooled condensers, resulting in a wide
fluctuation of turbine back pressure (and the corresponding saturated steam temperature). Changes
in the ambient temperature are the most important reason for this, although other environmental
effects such as wind, inversions, solar radiation, and rain all contribute to this behavior. The mean

hourly frequency of ambient temperatures over a period of one year is normally supplied in tabulated
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or graphical form. An example of the frequency of the dry- and wetbulb temperatures 2m above the
ground level at a particular location is shown in figure C.7. It should be noted that the air entering
the air-cooled condenser may deviate considerably from these measured values and more detailed
mformation on the actual ambient temperature distribution would be preferred for more sophisticated

designs [94KR 1¢].
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Figure C.7: Frequency of ambient dry- and wetbulb air temperatures.

The operating point of the turbo-generator is determined by matching the operating point of the air-
cooled condenser and the performance characteristics of the turbo-generator (Figure C.6) at a
specific ambient air temperature selected from Figure C.7. This calculation involves the selection of
turbine exhaust conditions such that the heat to be rejected by the turbo-generator, equals the heat

absorbed by the air (heat rejected by the air-cooled condenser), i.e.

n, n,
np Z M, Cham(i) (Tao(i) - Tai(i)) ey =1 ) MeGig)

1=1 i=1

nr
= 0F ) M, Cpam(i) (Tvm(i) = Taici) ) eiev (C.80)
=1

= Qy
At this point the power requirement of the fans as well as the generator power output are known.
Subtract the total power consumed by the fans from the generator power output to find the net

power output of the plant. The net power output is multiplied by the corresponding number of
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operating hours to give the net energy output for this period. These calculations are repeated for

each of the ambient temperatures listed to obtain the total annual net energy output.

In the cases when very low ambient temperatures are experienced, it is possible that the air-cooled
condenser can dissipate more heat than the amount required by the turbo-generator characteristic at
its bottom limit. As the turbine back pressure decreases, more power can be generated due to the
more complete expansion of steam through the turbine. The ACC will tend to lower the turbine
exhaust pressure under these conditions, thus giving rise the a phenomenon called “choking”
[71HAle, 71HEle, 91SZ1e]. No further advantages are obtained by lowering the turbine back
pressure and turbine losses inay become excessive due to high steam velocities. As performance of
the air-cooled condenser deteriorates with increasing ambient air temperatures, the turbine back
pressure increases, resulting in a decrease in power generation. The maximum allowable turbine
exhaust pressure is such that flow induced vibration of the turbine blades will not occur for lower
values [91SZ1e]. When reaching the upper limit of the characteristic curve, the turbine load must be
reduced. The variation of air mass flow rate, as discussed in section C.5, should be considered to
overcome these difficulties and to give optimum utilization of the fans (auxiliary power needed) and
the cooling demands to be met during annual operation [77SCle, 81KOle]. Air humidification can
also be used as a means to increase the cooling capacity during high ambient air temperatures

[83PAle, 94KR1e].
Definition of the operating variables, operating constraints and equations to be satisfied

For a fixed air-cooled condenser system geometry, a fixed turbo-generator characteristic curve and
an annual frequency of ambient temperatures (at a constant p, ), the following variables, constraints
and equations (balances) can be defined for the simultaneous solution of the operating point

conditions during the annual operation:
(1) One tube row
The operating variables are: m,, T,o(1)> Tvi> Me(r)s Tiv
'Iheée variables must satisfy the following constraints (bounds):
Equations (C.56), (C.57), (C.58), (C.59), (C.60), (C.61), as well as
Ty 2Ty +25 ' (C.81)
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The upper and lower limit§ on the turbine exhaust steam temperature can be obtained from the

turbo-generator characteristic curve.
The following equations must be satisfied by the operating variables:
Equations (C.62), (C.63), (C.64), (C.65) as well as
ngQ,(1y = Qg : (C.83)
(2) Two tube rows
The operating variables are: m,, Too(1), Tao(2)> Tvi> Me(ly> Me(2y> Tiv
These variables must satisfy the following constraints (bounds):
Equations (C.66), (C.67), (C.68), (C.69), (C.70), (C.71), (C.72), (C.73) as well as
T, =Ty +&s | (C.84)
~T,y, = =Ty +&5 (C.85)
The following equations must be satisfied by the operating variables:

Equations (C.74), (C.75), (C.76), (C.77), (C.78), (C.79) as well as
np (Qa(l) + Qa(2)) =Qy (C.86)

With the turbo-generator’s operating point known, the net power output of the plant at that specific

condition is calculated as follows:
For each temperature data set (consisting of a drybulb air temperature, a wetbulb air temperature and

the annual duration of these temperatures), a new set of operating variables with bounds are defined

and used to determine the turbo-generator’s operating point. The net annual energy output of the
g P P gy

plant is thus
n
Enet = Z Pnet(i)T(i) (CSS)
i=1

where n is the number of temperature frequency data sets and 1 is the duration of these temperatures.

When the ambient conditions are such that the air-cooled condenser can dissipate more heat than
required by the turbo-generator characteristic, fans are switched off to control the air mass flow rate

in order to achieve the desired cooling capacity.
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C.8 OPERATING POINT OPTIMIZATION

Operating point optimization involves the process of finding the combination of operating and

geometrical variables that will minimize the total annual cost (capital and operating) of the ACC for
specified turbine exhaust conditions (T, py, ), specified ambient air conditions (Ty,, Tpp,p,) and

specified heat transfer rate Q ¢, while satisfying all the imposed constraints.

Optimization variables

Table C.1: Optimization variables (v'= applicable; ¥= not applicable)

Number | Variable | Round tubes | Finned tubes
with circular | with fixed
fins geometry

1 m, v v
2 Lo v v
3 Tao(2) v v
4 Ty v v
5 me ) v v
6 mgy) v v
7 Ty v v
8 H, v v
9 dg v v
10 Oy v v
11 Ng v v
12 ny v v
13 Tt (max) v v
14 L, v v
15 0y v v
16 d, v x
17 ty v x
18 t, v x
19 ds v *
20 te v *
21 tg v x
22 Pf(l) v x
23 Pr2) v x
24 P, v x

The optimization variables defined for the round tubes with circular fins use the airside performance

correlations specified in Appendix B.1, while the variables defined for finned tubes with any
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geometry use the performance correlations defined in Appendix B.2. The optimization variables are
defined for finned tube bundles having one or two tube rows. The operating variables are also
considered as optimization variables because the ACC model is included as equality and inequality
constraints (balances and bounds) in the minimization problem formulation (integrated approach).
The operating variables (numbers 1-6) are, as a result, always present during optimization, whereas
the geometrical variables (numbers 8-24) can be kept constant or varied during the optimization

process.
Objective function

The objective function requires that the total annual cost be minimized. The construction of the
objective function from its various capital and operating cost components is discussed in Appendix

E. The total annual cost is

Ctotal = Coperating + Cmaintenance +CFCR ($/annum) (C-89)

Constraints

(1) One tube row

The following equality constraints must always be satisfied:

Equations (C.62), (C.63), (C.64), (C.65) as well as
1¥Qa(1 = Qacc (C.90)

The following inequality constraints must always be satisfied:

Equations (C.56), (C.57), (C.58), (C.59), (C.60), (C.61), as well as

~Vyi) Z —120 (The steam velocity at the tube inlet must be less than 120 m/s.) (C.91)

(2) Two tube rows

The following equality constraints must always be satisfied:

Equations (C.74), (C.75), (C.76), (C.77), (C.78), (C.79) as well as
nF(Qa(l) + Qa(Z)) =Qacc | - (C92)

The following inequality constraints must always be satisfied:

Equations (C.66), (C.67), (C.68), (C.69), (C.70), (C.71), (C.72), (C.73) as well as

_VVi(l) >-120 (C93)
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—Vvi(z) 2 -120 (C94)

The following general inequality constraints (geometrical constraints) must be satisfied, depending

on whether or not the relevant optimization variables are varied during the optimization process:

The ratio of the fan unit’s width and the fan unit’s length to the fan diameter must be kept within
practical limits to assure a reasonable heat exchanger normal approach velocity (2 to 4 m/s). The

ratio of the total heat exchanger frontal area to the fan casing area usually ranges from 1.8 to 2.6.

2L, sinBy —12dp 20 (C.95)
15dg ~ 2L, sin6, >0 (C.96)
050, W, —12d5 2 0 | (C.97)
15dp —0.50,W, 20 (C.98)

The fan blade angle must lie within the limits imposed by the fan performance characteristics.

Or —Opmin =0 _ | (C.99)

OFmax —OF 20 (C.100)
The heat exchanger bundle width is limited by transport requirements.

Wiy - W, 20 (C.101)
The tip speed of the fan blade is usually limited to 60 m/s to control noise.

Ve - TdENE 20 - (C.102)

The correlations of the downstream loss, K, are valid within the following limits:

0, —20°20 | (C.103)

35°-0, 20 . (C.104)

0.17886 — — 03ds/Le , (C.105)
sinfy +L,, /L,

0.09033-L,, /L, >0 (C.106)

0303-dg /L, 20 (L, =0) (C.107)

For round tubes with circular fins, the following inequality constraints are imposed (refer to

Appendix B.1):
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The finned tubes must be kept from touching.
P,—d¢>0 | (C.108)
The fin diameter must exceed the fin root diameter (extended airside surface area is required).
de—d, 20 - (C.109)

Due to structural considerations, the fin root thickness and the tube thickness must exceed their

lower limits.
t, -ty 20 (C.110)

For effective cleaning and where airside fouling is of significance, the fin pitch must exceed the

imposed lower limit.
Py —Pg 20 (C.112)
P2~ Pg 20 (C.113)

The galvanizing thickness must lie within practical limits.
tg—tg1 20 (C.114)
>0 (C.115)

The fin thickness is limited by the manufacturing processes.

te—tq 20 (C.116)
The fin pitch must exceed the fin thickness.

Prpy —te 2 0 (C.117)

P2y —tr 20 (C.118)
The application limits of the finned tube performance correlations, as discussed in Appendix B
(section B.1), are not used as constraints during the optimization of circular finned tubes.

The following assumptions and relations are used to obtain values for the geometrical parameters

linked to the optimization variables:

Dp(1) = Dip(maxy for 1 tube row
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Nyp(2) = ntb(mHXS for 2 tube rows
Wy = Dep(maxyPr  (bundle width)
dg. =L005dg (fan casing diameter)
dp, =0165dp (fan hub diameter)
Hg. =01dg, (fan casing height)
Hy =015dp, (bellmouth height)
dy, =12dg, (bellmouth diameter)
H,, =L;cosB, +0.3dg, (windwall height)
P, =0.866 P, (longitudinal tube pitch for circular finned tubes)

d.

i =d, —2t; (round tube inside diameter)

[s]

d, =d, +2t, (root diameter of circular finned tube)
The following parameters are assumed to be constant during the optimization process:
Lw, K, dgn» Ksg Kup, Kgo, 5 BFy, DFr, MFds s o

C.9 MINIMIZATION OF POWER GENERATION COST

The minimization of the power generation cost attributed to the ACC performance for the given
temperature frequency data set, involves the variation of the ACC operating and geometrical
variables that will minimize the ratio of its total annual cost to the annual net power output of the

turbo-generator set it is coupled to. The calculated values of the different variables must satisfy all

the relevant constraints.
Optimization variables

The optimization variables are defined in Table C.1. Different operating variables (numbers 1-7) are
defined for each temperature data set and they are always present during optimization. When
variable speed fan drives are considered (for airflow control), a new fan operating speed, Ny, is also

calculated for each temperature data set. The other geometrical variables can be varied or remain

constant.
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Objective function

The objective function requires that the ratio of the total annual cost of the ACC to the net energy

produced by the turbo-generator be minimized, i.e.

Cpower = Ctotal/Enet ($/kWh) (C.119)

The construction of the total annual cost from its various cost components is discussed in Appendix

E, while the topic of power generation is treated in section C.7.
Constraints
(1) One tube row

The following equality constraints must always be satisfied:

Equations (C.62), (C.63), (C.64), (C.65), (C.83)

The following inequality constraints must always be satisfied:

Equations (C.56), (C.57), (C.58), (C.59), (C.60), (C.61), (C.81), (C.82), (C.91)

(2) Two tube rows

The following equality constraints must always be satisfied:
Equations (C.74), (C.75), (C.76), (C.77), (C.78), (C.79, (C.86)

The following mmequality constraints must always be satisfied:

Equations (C.66), (C.67), (C.68), (C.69), (C.70), (C.71), (C.72), (C.73), (C.84), (C.85), (C.93),
(C.94)

The following general inequality constraints (geometrical constraints) must be satisfied, depending

on whether or not the relevant optimization variables are varied during the optimization process:

Equations (C.95), (C.96), (C.97), (C.98), (C.99), (C.100), (C.101), (C.102), (C.103), (C.104),
(C.105), (C.106), (C.107), (C.108), (C.109), (C.110), (C.111), (C.112), (C.113), (C.114),
(C.115), (C.116), (C.117), (C.118)

When variable speed fan drives are considered (for airflow control), equation (C.102) must be

satisfied for each temperature data set.

For each temperature data set there is a corresponding set of operating variables, equality and
inequality constraints (operating constraints). These constraint sets must always be satisfied. The

operating variables of a specific temperature data set effect the operating constraints belonging to the
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same temperature data set only. The operating variables do not effect the geometrical constramts.
However, the geometrical variables effect all the operating constraints of the different temperature

data sets.
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APPENDIX D

NATURAL DRAFT INDIRECT DRY-COOLING TOWERS

D.1 INTRODUCTION

The performance prediction of dry-cooling towers are based on two sets of governing equations, i.e.
the draft equation and the heat transfer equations. The governing heat transfer and draft equations
will be derived in this appendix. The coupling of the indirect dry-cooling tower to a turbo-generator
unit, as found in power plants, is also discussed. The results of a considerable amount of
experimental and theoretical work are taken into account to model all the physical phenomena of
such a system. The search for economically viable dry-cooling tower operation requires the proper
formulation and modeling of the system. The variables and constraints required to perform this task

are defined and discussed.
D.2 DESCRIPTION OF THE INDIRECT DRY-COOLING TOWER

Indirect dry-cooling systems make use, either of surface (conventional) condensers or spray (jet)
condensers to condense the process fluid (steam). The secondary fluid (water) that is used to
condense the process fluid is cooled by the cooling tower. Only the indirect dry-cooling system
employing a surface condenser and water as the secondary cooling fluid will be considered in this
study. As shown in figure D.1, cold water flows through the tubes of the condenser and removes
heat from the steam passing over them. This heated water is pumped through the finned tubes of the
heat exchanger bundles arranged in the natural draft cooling tower. This water is cooled by natural
convection of air flowing over the extended surface heat exchanger bundles. The density of the
heated air inside the tower shell is less than that of the atmosphere outside the tower, with the result
that the pressure inside the tower is less than the external pressure at the same elevation. The
pressure differential causes air to flow through the tower at a rate which is dependent on the various

flow resistances encountered, the cooling tower dimensions and the heat exchanger characteristics.
D.3 HEAT TRANSFER AND PRESSURE DROP CALCULATION

The finned tube elements are the heart of any the indirect dry-cooling system. The air-cooled heat
exchanger bundles may consist of one or more rows of finned tubes. Various heat exchanger bundle
arrangements do exist, i.e. the cooling deltas can, for example, be installed either horizontally,

conically or vertically at the tower’s inlet section. For the purpose of this study the heat exchanger
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bundles are located horizontally at the inlet section of the hyperbolic natural draft dry-cooling tower

shown schematically in figure D.2.

Natural draft
cooling tower

_———Steam turbine

Heat exchanger

Recooled fluid bundles

Process fluid (water)
(steam) \
Surface ) I N Airflow
condenser . é / ~ g
Condensate ————— Q ~—— Heated fluid

. ~- Y (water)

() “\— Circulating pump

—/

T Circulating pump

Figure D.1: Natural draft dry-cooling tower with surface condenser (indirect system).

d,
o r I
=
| —— Tower sheil
H; | d,
Ht
A Heat exchanger
L
3 I%IIIIIIIIIIIIIHHH bundles
3 \\
Tower support J \_ —
columns

Figure D.2: Natural draft dry-cooling tower with horizontal heat exchanger.

The amount of heat transferred from the condenser cooling water to the air stream can be expressed
as
UA FI‘[(wa - T214) - (Tw - TaB)]

% = (T~ )= L T () =0 O
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The thermophysical properties of the air and water will be determined at their respective mean

temperatures.

The product of the overall heat transfer coefficient and area can be expressed as

UA=( ! .+ ! )_1 (D.2)
h,c,A, hy Ay .
where

BaeAy = Kop Plaa AerY(ntb(actual) / ntb(max)) (D.3)
and

Ry =m, /(uamAﬁ) (D.4)

for any finned tube geometry, and

-1 ‘
L ¢n(d, /d;) .\ En(d?/do)j D.5)
haean 21tktLtntbnb 21tkat11tbllb

haeAa =(

for radially finned tubes. Ny is based on heat exchanger bundle tests in which the maximum number
of finned tubes are installed in the bundle. In the actual cooling tower bundle it is not practical to

install half-tubes at the bundle ends and a correction is made when determining the effective heat

transfer coefficient.

The effectiveness of the circular finned surface is expressed in terms of the fin efficiency, i.e.
er =1-Ac(1-ng)/A, (D.6)

According to Schmidt [46SCle], the fin efficiency for radial fins of uniform thickness can be

determined approximately from

_ tanh(bd, /2) .
Ne = (bdl. @/2) (D7)

where @ =(d¢/d, - 1)[1+o.35en(d'f /d,)] and b= [(zha)/(tfkf)]"‘5 :
For galvanized steel fins, the fin thickness can be expressed as tf =2t, +t; and the thermal

conductivity of the fin can be expressed as k¢ = (Ztgkg +tsks) / te.
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The performance characteristics of the finned tubes are discussed in Appendix B and correlations are

stated to determine the airside heat transfer coefficient and the characteristic heat transfer parameter.

The Reynolds number of the water flowing inside the heat exchanger tubes is

Re,, = Pom¥ude __Mwiwpde (D.8)
Hwm Atsntbnbuwm
The corresponding average water velocity in the heat exchanger tubes is
m,,n
Ve = — Y WP (D.9)

v Atsntbnbpw
The friction factor inside the tube for £¢/d, > 107 is, according to Haaland [83HAle]

-2
111
69 (&g/d
fir, = 0.3086|1 ———+(—f—£) D.10
Dw [ Ogm{Rew 37 H ( )

The frictional pressure drop inside the tubes per unit length is
2

PwmV
Apgw = fpw (D.11)
2d,

The total water pumping power is

Py = AsAPswVolw/(Npem) (D.12)

where L, is the total equivalent length, based on the heat exchanger tubing geometry, to make
provision for additional flow resistances (e.g. bends, headers, valves). The ratio L, /(ngn,L,) =€

is always greater than one.

The waterside heat transfer coefficient is, according to Gnielinski [75GN1e]

kwm(wa /8)(Rew— 1000) Prwm[l + (de/Lt)0.67]

de[1+ 127 (£ /8)0-5(prgg7- 1)]

w

(D.13)

and A, is the total waterside surface area.

According to Roetzel [84RO1e], the logarithmic mean temperature difference correction factor for

crossflow conditions can be expressed as
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4 4 .
Fr=1-)" Y ay(1- ®;)" sin[2iarctan(®, /D, )| (D.14)
i=1k=1
where

L= Twi - Two

Tvvi - Tai

- Tao - Tai

Twi — Tai

D, -,

@3 = T ;
tnf(1- @2)/(1- )]
The values of ay are individual to each heat exchanger configuration [75RO1e].

The energy balance for the natural draft indirect dry cooling tower requires that the heat rejected by

the cooling water must be absorbed by the air flowing over the heat exchanger bundles (equation

(D.1) must be satisfied).

D.4 DERIVATION OF THE DRAFT EQUATION FOR A NATURAL DRAFT INDIRECT
DRY-COOLING TOWER

The draft equation describes the relation between the various flow resistances encountered, the

atmospheric conditions, cooling tower dimensions, and the heat exchanger bundle performance

characteristics at a given flow rate.

Significant changes in the ambient air temperature occur near the ground level during any 24-hour

period [94KR1e]. During the day, a temperature lapse rate of -0.00975 K/m, also known as the dry

adiabatic lapse rate (DALR), is observed in the region of the surface boundary layer (SBL).

Significant deviations do however occur at ground level, which, if not taken into consideration, may

lead to erroneous design specifications or the incorrect interpretation of cooling tower acceptance

test data.
For this analysis, the specified ambient air temperature at any elevation z, will be assumed to be
given by the equation '

T, =T,; —0.00975z2 (D.15)

a:
where T, is the temperature at ground level, obtained by extrapolating the measured DALR to that
elevation. T,; will usually differ from the actual temperature measured at ground level. At elevation

6, which corresponds to the top of the cooling tower, the temperature of the ambient air is thus
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T, = T,; — 0.00975 Hj (D.16)

The approximate temperature at the inlet to the heat exchanger bundles can be derived from the first
law of Thermodynamics (conservation of energy) in the absence of work interaction, and can be

expressed as [94KR1e]

T,

a

5 =T, - 000975 H,4 (D.17)

To derive the draft equation, consider the variation with elevation of the pressure in the atmosphere

external to the dry-cooling tower in a gravity field, i.e.
dp, =-p,gdz (D.18)

Substitute equatioﬁs (D.15) and (A.1), the perfect gas law, into equation (D.18) and integrate to find

the pressure difference between point 1 and a point at elevation z external to the cooling tower (refer

to figure D.2)

Pal= Doy = pal[l— (1-0.009752/T,,)'****¥ R] - pal[l ~(1-0.009752/T,))*’ ] (D.19)
The pressure external to the tower at section 6 is

Pas = Pay(1-0.00975H; /T, )™ (D.20)

where Hy = Hy is the tower height.

Stagnant ambient air at 1 accelerates and flows across the tower supports at 2 before flowing
through the heat exchanger bundles from 3 to 4. The flow is essentially isentropic from 4 to 5. In
most practical towers, the change in kinetic energy between sections 4 and 5 is normally
approximately an order of magnitude smaller than the corresponding change in potential energy. A
total pressure balance between 1 and 5 yields [94KR1e]:

Pa1 — [PaS +0les (ma /A5)2 /(2p35)]
= (Kts + Ky +Kege +Khe + Kcte)he (ma /Afr)2 /(2pa34)
+pall:l— {1-000975(H, +H,)/(2T,)} ]

+Pa4[1“ {1— 0.00975(H5 -H;/2- H4/2)/Ta4 }3.5]

(D.21) -

All the loss coefficients, K, are based on the frontal area of the heat exchanger and the mean air
density through it. This form of the equation is useful for comparing the relative magnitudes of the

flow losses. The frontal area is the projection of the effective finned surface as viewed from the
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upstream side. Stiffening beams, straps or other obstructions located up against the finned surface,
thereby impeding flow through the heat exchanger must be considered when evaluating the effective

frontal area, Ag. The last two terms on the right hand side of equation (D.21) take into

consideration static pressure differentials due to elevation between ground level and the mean heat

exchanger elevation and the latter between the ground level and the tower outlet respectively.

Du Preez and Kréger [94DUl1e] studied the velocity and pressure distribution in the outlet plane of
hyperbolic natural draft cooling towers. They find that for 1/Frp <3, the velocity distribution is
almost uniform, i.e. a5 =1 for dry-cooling towers where the heat exchangers are located in the
cross-section near the base of the tower. The mean pressure at the outlet plane is found to be

slightly less than that of the ambient air at the same elevation, i.e.

Pas = Pa6 T APase = Pas + Kio (ma /A5)2/(2 paS) (D.22) .

For a hyperbolic tower with a cylindrical outlet the loss coefficient is given by

2 - -1
K = APasa/ (paSVa25 / 2) =2Pas APasa/ (m, /As)* = —028Frp' +0.04Frp " (D.23)

where Frp =(ma/A5)2/[Pas(Pa6“Pas)gd5]. This equation is valid for 0.5<ds/d; <085 and

5<Kp, <40,

The approximate temperature at the tower can be derived from the first law of thermodynamics

(conservation of energy) in the absence of work interaction, and can be expressed as [94KR1e]

T,

a

s~ T,4—0.00975(Hs - H,) : (D.24)
From the perfect gas relation it thus follows for p,s = p,¢, the density at the outlet of the tower is
Pas = Pas/[R{Tas — 0.00975(H; - H4)}]  (D.25)

The density of the ambient air at elevation 6 is

Pas = pa6/RTa6 (D.26)
If dynamic effects are neglected, an approximate expression for p,, may similarly obtained.
3.5
Pas ~ Par[1-0.00975(H; +H,)/(2T,
14 =Pl 000975 (11 +,)(21,) o2

- (Kts + Ko + Ko + Kje + Kcte)he (ma /Aﬁ')2 /(29334)

Substitute equations (D.20), (D.22) and (D.27) into equation (D.21) and find with o5 =1
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Da 1[{1 ~0.00975(H; +H,) /(2"1;,1)}3'5 {1-0.00975(Hs ~ H3/2- H, /2)/T,4 }3'5 ‘

~(1-0.00975H. /T,,)>°
( s/Ta) ] (D.28)

= (Kts +Kct +Kctc +Khe '*'I(cte)he (ma /Afr)z/(zpa34)

x[1-0.00975(H; ~ Hy /2~ Hy /2)/ T,y ] +(1+ Ky ) (m, /As) /(20,5)

This equation is known as the draft equation for a natural draft dry-cooling tower where the heat
exchangers are arranged horizontally in the base of the tower. Thus, the left hand side of the draft

equation, Apypys, must equal the right hand side of the equation, Appyg. If the heat exchangers are

arranged in the form of A-frames or V-arrays, K;,. (non-isothermal) is replaced by Kg; .

In determining the dry air density after the heat exchanger, the specified pressure at ground level can

be employed in the perfect gas relation, i.e.

Pag = pal/ (RTa4) (D.29)

The approximate air density at section 3 is

Pa3 ~ Pa1/(RT,3) (D.30)

The harmonic mean density through the heat exchanger is given by

Pa34 % 2Pa1/ [R(Ta3 +Ta4)] (D.31)
The loss coefficient of the tower supports, K, is based on the drag coefficient of these supports, i.e.

: 2

Cots =2 Fpes/(parvizAv) (D32)

The effective pressure drop across the dry-cooling tower supports is given by
/ _ 2
Apats = 04sFpes/ Ay = 050,1Va) CpysLisdys s/ (nd3Hs) (D.33)

where L, is the support length and d, is its effective diameter or width, and n is the number of

supports. The corresponding loss coefficient based on these conditions at section 2 is
2
Ky =2 Apats/(palvaz) = CprsLisds nts/(nd3H3) (D.34)

For substitution into equation (D.28), this loss coefficient is required to be based on conditions at the

heat exchanger, i.e.
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: 2
2 Pu34CpetsLtsdisnicA
Ktshe=2Apatspa34/(ma/Afr) = Ladd D b s ;s = (D.35)
Pa1(nd;H;)

It is assumed that the air density and the velocity distribution through the supports is uniform. Since
the distance between the tower supports is finite, the above approach tends to underestimate the

magnitude of the loss coefficient.

Due to separation at the lower edge of the tower shell and distorted inlet flow pattemns, a cooling

tower loss coefficient K, based on the tower cross-sectional area at 3, can be defined to take these
effects into consideration. For dry-cooling towers where K. >30 and 5<d;/H;<10,

Geldenhuys and Kroger [86GE1e] recommend the following expression
Ko = 0.072(d3/H; )" —034(dy /Hs) +17 (D.36)
The cooling tower inlet loss coefficient based on conditions at the heat exchanger is

Kethe = Kot (Pa3a/Paz )(Ag/ A3)2 ‘ (D.37)

Depending on the heat exchanger bundle arrangement in the cooling tower base, only a portion of
the available area is effectively covered due to the rectangular shape of the bundles. The reduction in
effective flow area results in contraction, and subsequent expansion losses. The contraction losses

can be approximated by loss coefficients based on the effective reduced flow area A_; [S0KAle]
2
Kete =1_2/cc +1/Gc ' (D.38)
The contraction coefficient, G, is given by

6. = 0.6144517 +0.04566493G 3 — 033665102 +0.408274352; +2.6720410 (0.39)

~596316902; +3.558944 65,
The expansion losses can be approximated by
2 2
Kee = (1-Ae3/A3)” =(1-0e3) -~ (D.40)

The effective area, A.;, corresponds to the frontal area of the heat exchanger bundles if they are
installed horizontally. In the case of an array of A-frames, A .; = A, sin6, and thus corresponds to
the projected frontal area of the bundles. Because of the essentially porous nature of the bundles, the

actual contraction loss coefficient will be less than the value given by the above equation.

Based on the conditions at the heat exchanger, the above expressions become
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Ketcne = Kete(Paza/Pa3 f(Ag / Ae3)2 (D.41)
and
Ketehe = Kcte(pa34 /pa4)(Afr/Ae3)2 (D.42)

For non-isothermal oblique flow through an array of V-bundles, the following relation holds for the

loss coefficient [86KOle]:

2 - 1
Kot = Kpeiso +_2(pa3 pa4) +( = 1)[ , — 1+2K2'5J (—2%'—]
6" \Pa3 tPa4 sulem Slnem Pa3 T Pa4
2
Pa3 tPaq

where o is the ratio of the minimum free flow area through the heat exchanger bundle to the free

(D.43)

stream flow (frontal) area.

The heat exchanger loss coefficient under normal non-isothermal flow conditions, including inlet-,
frictional-, and exit losses as well as acceleration effects (due to heating), is defined as (refer to

Appendix B)

(o |
K, = a Ry +_2(p33 pa4) (D.44)
G \Pa3 +Paq

for finned tube bundles with any finned tube geometry. For radially finned tubes the heat exchanger

loss coefficient under normal non-isothermal flow conditions can, in general, be expressed as

[86KR 1e]

Khe =__25_|3Eu+(pa3—pa4) =_2_2 Apaf;am +(pa3—pa4) (D.45)
c Pa3 +Pa4 o G_ Pa3 TPa4q

The Euler number can be obtained from the pressure drop correlations discussed in Appendix B.

The second term on the right hand side of equation (D.43) represents the loss due to acceleration
effects during non-isothermal operation. The third term represents the loss due to the oblique flow
at the inlet to the bundle. The entrance contraction loss coefficient, K, is according to Kays

[50KAle]

1
Aol o
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where 0, = (Pf - tf) / P; is the ratio of the flow area between the fins to the free stream flow area at
the inlet to the finned tube bundles. The contraction coefficient, o, is given by equation (D.39),

with 6, replacing 6 .;. For round and elliptical fins a value of K, = 0.05 is assumed.

When the finned tube bundles are arranged in the form of A-frames, the curvature of the downstream
flow patterns cause the actual mean flow incidence angle to differ from the heat exchanger bundle

semi-apex angle 8,. An empirical correlation for the mean flow incidence angle is presented by

Kotzé et al. [86KO1e], i.e.

0. =0001962 +0.91336, —3.1558 D.47
m b b

Kd is the downstream loss coefficient that includes the jetting and kinetic energy losses, and can be

expressed in terms of the following relation [86KO1e]

K, = exp (5.488405 ~0.21312096,, +3.533265x 10702 - 0.2901016 x 10“49?,) | (D.48)

If performance correlations from oblique flow experiments are available, the pressure loss coefficient

for the heat exchanger bundle under non-isothermal flow conditions has the following form

Kg; = aggRy ™ +—-2-2-(M) (D.49)
G \Pas +Pa6

Natural draft cooling towers are prone to the inflow of cold air at the upper edge of the tower shell.
Significant performance degradation is observed under these conditions. According to Richter
[69RIle], small disturbances may cause flow instabilities in cooling towers, resulting in cold air

inflow under the following conditions
1/Frp < 3.05 | (D.50)

Equation (D.50) will be employed in the design of natural draft dry-cooling towers as a safeguard
against cold inflow.

In most of the hyperbolic cooling towers found in practice, the following typical relationships

between the tower dimensions can be observed:

0.05<H;/Hs <015
0.64<d;/(Hs-H;)<113
137<d;/d5 <177
008<H;/d;<016
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D.S OPERATING POINT CALCULATION

The operating point (ability to reject heat) of the fixed geometry dry-cooling tower is defined as the
combination of operating variables that will simultaneously satisfy the draft and heat transfer

(energy) equations for specified condenser outlet and ambient air conditions
Definition of the operating variables, operating constraints and equations to be satisfied

For a specified hyperbolic dry-cooling system geometry, specified condenser outlet conditions
(T.;)and specified ambient air conditions (Ty,, Ty, P,) the following variables, constraints and

equations (balances) can be defined for the simultaneous solution of the operating point conditions:
The operating variables are: m,, T4, Ty,

These variables must satisfy the following feasibility inequality constraints (bounds):

m, ¢, (D.51)
Ta2T,+e, (D.52)
~T,4 >-T,; +¢, | (D.53)
Too 2 Ty +23 | _ (D.54)
~Tyo = ~Tpi +€3 | (D.55)
Tog +Tpp 2 T,y + Ty +£4 (D.56)

g; are small constants and are used to introduce the > sign in the feasibility inequalities. Equation

(D.56) is introduced to prevent the logarithmic temperature difference of being undefined. The
bounds on the operating variables are introduced to safeguard against the violation of the physical

laws.

The following equations must be satisfied by the operating variables:

Q. =Qrmm (D.57)
Qa =Qy (D.58)
Aprus = APRrus (D.59)

D.6 POWER GENERATION

The turbo-generator-condenser characteristics of the indirect condensing system, i.e. the heat to be

rejected by the condenser and the power output of the turbo-generator, are expressed in terms of the
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turbine back pressure, p,,, or the corresponding vapor temperature, T,,.

The performance

characteristics of an example of such a system is shown in figure D.3. It is assumed that the power

needed for the auxiliaries, excluding the cooling water pumping power, is already subtracted from

the generated power.

The temperature of the heated water that leaves the surface condenser is not equal to the steam

temperature. The temperature difference that exists between the condensing steam and the water

leaving the condenser is known as the terminal temperature difference (TTD). Typical values for

TTD range from 2°Cto4°C. The relation between the heat rejection rate and the TTD can be

approximated as follows:
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Figure D.3: Performance characteristics of a turbo-generator.
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For a fixed condenser design the water mass flow rate , m,,, the heat transfer area, A, and the

overall heat transfer coefficient, U, are constant. Thus,

(Ttv - Two) - (Ttv - TWi)
#0[(Toy = To) /(Tov — Toi)|

= Inwcpwm(Twi - Two)

Q=UA

By rearranging equation (D.60), find
En[(Ttv ~Too )/ (Toy = TM)] = UA/ (mwcpwm) ~ constant

or

(D.60)
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To = Too = (T ~Twi) - (D61

where c; is a constant. Equation (D.61) can be simplified by using the equation for the water heat

transfer rate, i.e.
T = T = TTD = ¢, Q/(my,Cpum (D.62)

where ¢, = —(1- cl)—l.
For the design pomt, find

TTD esign = 2 Quesign /(M Cpum) | (D.63)
For off-design conditions, find

TID = ¢; Q/(myCpum) | (D.64)
From equations (D.63) and (D.64), find

TTD » TTD gesign Q/ Qesign ’ - (D.69)

With the aid of equation (D.65), the temperature of the water leaving the condenser (entering the

cooling tower) can be calculated.

Atmospheric conditions influence the performance of indirect dry-cooling tower, resulting in a wide
fluctuation of turbine back pressure (and the corresponding steam temperature). Changes in the
ambient temperature are the most important reason for this, although other environmental effects
such as wind, inversions and humidity must also be considered. The mean hourly frequency of
ambient temperatures over a peried of one year is normally supplied in tabulated or graphical form.
An example of the frequency of the dry- and wetbulb temperatures 2m above the ground level at a
particular location is shown i figure D.4. It should be noted that the air entering the dry-cooling
tower may deviate considerably from these measured values and more detailed information on the
actual ambient temperature distribution would be preferred for more sophisticated designs
[94KR1e].

The operating point of the turbo-generator-condenser is determined by matching the operating point
of the indirect dry-cooling tower and the performance characteristics of the turbo-generator-
condenser (Figure D.3) at a specific ambient air temperature selected from Figure D.4. This
calculation involves the selection of turbine exhaust conditions such that the heat to be rejected by
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the turbo-generator-condenser, equals the heat absorbed by the air (heat rejected by the dry-cooling

tower), i.e.
Qs = Qw = Qv = Qe (D.66)

At this point the power requirement of the cooling water pumps as well as the generator power
output are known. Subtract the total power consumed by the pump from the generator power
output to find the net power output of the plant. The net power output is multiplied by the
corresponding number of operating hours to give the net energy output for this period. These
calculations are repeated for each of the ambient temperatures listed to obtain the total annual net

energy output.
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Figure D.4: Frequency of ambient dry- and wetbulb air temperatures.

In the cases when very low ambient temperatures are experienced, it is possible that the @-cooﬁﬁg
tower can dissipate more heat than the amount required by the turbo-generator characteristic at its
bottom limit. As the turbine back pressure decreases, more power can be generated due to the ﬁmre
complete expansion of steam through the turbine. The dry-cooling tower will tend to lower the
turbine exhaust pressure under these conditions, thus giving rise the a phenomenon called “choking”
[71HAle, 71HEle, 91SZ1e]. No further advantages are obtained by lowering the turbine back
pressure and turbine losses may become excessive due to high steam velocities. As performanée of
the dry-cooling tower deteriorates with increasing ambient air temperatures, the turbine back
pressure increases, resulting in a decrease in power generation. The maximum allowable turbine

exhaust pressure is such that flow induced vibration of the turbine blades will not occur for lower
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values [91SZ1e]. When reaching the upper limit of the characteristic curve, the turbine load must be
reduced. Air humidification can also be used as a means to increase the cooling capacity during high

ambient air temperatures [83PAle, 91CO2e, 94KR1e].

For better part load performance it is preferable to divide circulating pump capacity between two
50%-duty units. Sometimes three 50%-duty pumps are installed so as to have a stand-by unit in
emergencies; this solution makes it possible to bring in the third pump to assist the cooling effect
under conditions of high ambient air temperatures [71HE1e, 87TR1e, 91SZ1e].

Definition of the operating variables, operating constraints and equations to be satisfied

For a fixed hyperbolic dry-cooling tower system geometry, a fixed turbo-generator-condenser

characteristic curve and an annual frequency of ambient temperatures (at a constant p,), the

following variables, constraints and equations (balances) can be defined for the simultaneous solution

of the operating point conditions during the annual operation:
The operating variables are: m,, T, 4, To, Tty
These variaBles must satisfy the following constraints (bounds):
'Equations (D.51), (D.52), (D.53), (D.54), (D.55), (D.56), as well as
Ty 2 Ty +E5 ' (D.67)
~Tyy = ~Teu +&5 (D.68)

The upper and lower lLimits on the- turbine exhaust steam temperature can be obtained from the

turbo-generator characteristic curve.
The following equations must be satisfied by the operating variables:
Equations (D.57), (D.58), (D.59), (D.66)

With the turbo-generator-condenser operating point known, the net power output of the plant at that

specific conditions is calculated as follows:

Poot = Pge — Py, (D.69)

For each temperature data set (consisting of a drybulb air temperature, a wetbulb air temperature and
the annual duration of these temperatures), a new set of operating variables with bounds are defined
and used to determine the turbo-generator-condenser operating point. The net annual energy output

of the plant is thus
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n
Epet = 2 Pocti) (i) (D.70)
i=1

where n is the number of temperature frequency data sets and 1 is the duration of these temperatures.

D.7 OPERATING POINT OPTIMIZATION

Operating point optimization involves the process of finding the combination of operating and

geometrical variables that will minimize the total annual cost (capital and operating) of the dry-
cooling tower for specified operating conditions, specified ambient air conditions (Tdb, Tob>P a) and
specified heat transfer rate Q, , while satisfying all the imposed constraints.

Four different cases of operating point optimization calculations are investigated:

(1) Casel: m, and T, fixed

The mass flow rate and the temperature of the water that enters the dry-cooling tower are fixed at
some specified values, while m,, T, 4, and T,,,, are variable. '
(2) Case2: T,; fixed

The temperature of the water that enters the dry-cooling tower is fixed at a specified value, while
m,, T4, T, and m,, are variable..
(3) Case 3: Maintaining a constant waterside pressure drop (and pumping power) [89BU1e]

The replacement of ineffective finned tube bundles of an existing natural draft dry-cooling tower by
optimally dimensioned units is investigated in this optimization study. No changes are allowed to the
bundle base support, the water pipe layout, the water flow rate and the pressure drop through the
heat exchanger bundles (i.e. the pumping power remains unchanged). Only round tubes with circular

fins are considered in this investigation.
Equation (D.12) can be rewritten for round tubes as

Py =m,, Awai/(T]pﬂemem) : (D'71) .

Hence, if all the parameters on the right hand side of the above equation remain constant, so will P, .

For a constant total pressure drop in a tube, find

2 2.3
4m,n 8 Mg, L

2 wp = 7 52 2
2Ppwmd; | mdingny T Pwmd; 0Dy
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Assuming that my,, L;, pym,and n, remain constant, find

3

iy
¥ - constant = ¢,
djng
or
wanzvp 0.2
d; = =d, -2t, (D.73)
Colly,

The bundle base length must be kept constant, i.e.

W, sin 0, = constant (original value) (D.74)
and
n P, cosO,, = constant (original value) (D.75)

The constants c; and c, are determined from the original specifications. The optimization is
performed by keeping the variables that describe the tower geometry, d;,ds, H; and Hs, as well as
My, Toi, Ly, 0y, 0, Wy sin8y and n, Py cosB, at constant values, while m,,T,,,and T,, are
variable. The number of water passes, Iy, , can be varied in consideration with the number of tube

TOWS, to get a realistic heat exchanger bundle configuration.

(4) Case 4: Fixed condenser design ((UA)con = constant) [89BU2e]

When the dry-cooling tower is coupled to a condenser having a specified thermal conductance,

(UA)Con , the following relations can be derived for the specified cooling rate:

(Ttv - Two) - (Ttv - Twi)

R (P MV ) R
(UA) o Cme (D.76)
(T = Too) /(T = Twi)] T

where TTD =T, - T,;. Assume that both (UA)__ and TTD are constant at their initial specified

con

values. my,, T,; and T, are variable. In order to achieve the specified cooling capacity, the water

mass flow rate must be calculated from:
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(UA)con / Cpwm

Mw = 2a[1+(T, - To)/TTD]

Optimization variables

D.19

The optimization variables are shown in table D.1.

Table D.1: Optimization variables (v'= applicable; %= not applicable)

Number | Variable | Round tubes | Finned tubes
with circular | with fixed
fins geometry

1 m, v v
2 T4 4 v
3 Too v v
4 my, v v
5 | T v v
6 Ty v v
7 | H; % %
8 | Hy % 7
9 4, v v
10 ds v 4
11 D th(max) V. v
12 L, v v
13 0y v v
14 d, v x
15 ty v x
16 t, v x
17 ds v x
18 te v x
19 ty v x
20 P; v x
21 P, v x

(D.77)

The optimization variables defined for the round tubes with circular fins use the airside performance

correlations specified in Appendix B.1, while the variables defined for finned tubes with any

geometry use the performance correlations defined in Appendix B.2. The operating variables are

also considered as optimization variables because the dry-cooling tower model is included as equality

and inequality constraints (balances and bounds) in the minimization problem formulation (integrated

approach). The geometrical variables (numbers 7-21) can be kept constant or varied during the

optimization process.
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Objective function

The objective function requires that the total annual cost be minimized. The construction of the
objective function from its various capital and operating cost components is discussed in Appendix

E. The total annual cost is

Ciotal = Coperating + Cmaintalance +Crcr ($/annum) (D.78)

Constraints

The following equality constraints must always be satisfied:

Equations (D.57), (D.58), (D.59) as well as
Q. =Q« =Qw =Quvmp (D.79)

The following inequality constraints must always be satisfied:

Equations (D.51), (D.52), (D.53), (D.54), (D.55), (D.56)

To prevent cold inflow, equation (D.50) is also a prescribed constraint. The velocity of the water
flowing inside the tube can be specified as a fixed value and thus presented as an equality constraint,

ie.
Vw = Vafix | (D.80)

In order to prevent fouling caused by a low water velocity inside the tubes, a lower velocity limit can

also be specified and formulated by means of an inequality constant, i.e.

Ve 2 Vi (D.81)
Considering case 2, the following limit is introduced:

m,, > &g (D.82)
Considering case 3, the following equality constraints are introduced:

Equations (D.73), (D.74), (D.75)
Considering case 4, the following limits are introduced:

Toi = Tyl +€7 (D.83)

~Ty; = Ty +€7 (D.84)

The following general inequality constraints (geometrical constraints) must be satisfied, depending

on whether or not the relevant optimization variables are varied during the optimization process:
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The relationship between the hyperbolic cooling tower dimensions are limited to the practical values

stated i section D.4.

H;/ H, 2 0.05
-H; /H5 2-015
d;/(Hs -H;3)>0.64
—d;/(Hs—H;3)2-113
d3/ds 2137
~ds/dg2-177
The heat exchanger bundle width is limited by transport requirements.
Wy, - W, 20
The finned tube length is limited by structural, transport and construction requirements.
Ly-L 20
The bundle semi-apex angle cannot exceed 90°.

90° -6, > 0

(D.85)
(D.86)
(D.87)
(D.88)
(D.89)

(D.90)

(D.91)

(D.92)

(D.93)

For round tubes with circular fins, the following inequality constraints are imposed (refer to

Appendix B.1):
The finned tubes must be kept from touching.

The fin diameter must exceed the fin root diameter (extended airside surface area is required).

de—d, >0

(D.94)

(D.95)

Due to structural considerations, the fin root thickness and the tube thickness must exceed their

lower limits.
t,—ty20

(D.96)

(D.97)
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For effective cleaning and where airside fouling is of significance, the fin pitch must exceed the

imposed lower limit.

P;-Py 20 (D.98)
The galvanizing thickness must lie within practical limits.

tg—tg 20 (D.99)

tyy —t, =0 (D.100)

gu g

The fin thickness is limited by the manufacturing processes.

te—tg 20 (D.101)
The fin pitch must exceed the fin thickness.

Pr—t; 20 (D.102)

The application limits of the finned tube performance correlations, as discussed in Appendix B

(section B.1), are not used as constraints during the optimization of circular finned tubes.

The following assumptions and relations are used to obtain values for the geometrical parameters

linked to the optimization variables:

The number of finned tube bundles is obtained from
ny = occtndg/[4Lt(Wb sinfy +n,P coseb)]

where o is the fraction of the tower area covered by heat exchanger bundles.
Ny = ep(maxyly —0;/2  (total number of tubes per bundle)
Wy = Dip(mayPr  (bundle width)
P, =0.866 P, (longitudinal tube pitch for circular finned tubes)
d; =d, —2t, (round tube inside diameter)

d, =d, +2t, (root diameter of circular finned tube)
The following parameters are assumed to be constant during the optimization process:

d)b: CDts: dts:ntsa t(:ts:r acta nr: 8f’§
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D.8 MINIMIZATION OF POWER GENERATION COST

The minimization of the power generation cost attributed to the dry-cooling tower performance for
the given temperature frequency data set, involves the variation of the dry-cooling tower operating
and geometrical variables that will minimize the ratio of its total annual cost to the annual net power

output of the turbo-generator-condenser set it is coupled to. The calculated values of the different
variables must satisfy all the relevant constraints.
Optimization variables

The optimization variables are defined in Table D.1. Different operating variables (numbers 1,2,3
and 6) are defined for each temperature data set and they are always present during optimization.

The water mass flow rate remains constant and the cooling tower inlet water temperature, T,,;, is
calculated from equations (D.62) and (D.65). The other geometrical variables can be varied or

remain constant.
Objective function

The objective function requires that the ratio of the total annual cost of the dry-cooling tower to the

net energy produced by the turbo-generator be minimized, i.e.
Cpower = Ciotal / Epe ($/kWh) (D.103)

The construction of the total annual cost from its various cost components is discussed in Appendix

E, while the topic of power generation is treated in section D.6.

Constraints

The following equality constraints must always be satisfied:
Equations (D.57), (D.58), (D.59), (D.66)

The following inequality constraints must always be satisfied:

Equations (D.50), (D.51), (D.52), (D.53), (D.54), (D.55), (D.55), (D.67), (D.68), (D.81)

The following general inequality constraints (geometrical constraints) must be satisfied, depending

on whether or not the relevant optimization variables are varied during the optimization process:

Equations (D.85), (-D.86), (D.87), (D.88), (D.89), (D.90), (D.91), (D.92), (D.93), (D.94), (D.95),
(D.96), (D.97), (D.98), (D.99), (D.100), (D.101), (D.102)

For each temperature data set there is a corresponding set of operating variables, equality and

mequality constraints (operating constraints). These constraint sets must always be satisfied. The
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operating variables of a specific temperature data set effect the operating constraints belonging to the
same temperature data set only. The operating variables do not effect the geometrical constraints.
However, the geometrical variables effect all the operating constraints of the different temperature

data sets.
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APPENDIX E

DRY-COOLING SYSTEM COST ESTIMATION

E.1 INTRODUCTION

In this appendix the cost components needed to define the objective functions are described. The

objective functions to be minimized are the annual cost of the dry-cooling system under prescribed

conditions or the annual cost of electricity production that is attributed to the dry-cooling system

when coupled to a turbo-generator unit. Capital and operating cost estimation methods, based on

the methods discussed in Chapter 4, are proposed for both forced draft and natural draft dry-cooling

systems.

E.2 COOLING SYSTEM CAPITAL COST ESTIMATION

Heat exchanger bundle cost

(1

(2

€)

Tube cost per unit tube length, C,

C;=CuM;+C,, ($/m)

M, is the tube mass per unit tube length (kg/m)

C,y, is the tube added unit cost ($/m)

C ., 1s the tube material cost ($/kg)

Cost of fins per unit tube length, C;
Ce=CenM¢+CqLgy ($/m)

Cy, is the fin material added unit cost per unit tube length ($/m)
Cs,, is the fin material cost ($/kg)

M is the fin material mass per unit tube length (kg/m)
Ly, is the length of fin strip per unit tube length (m/m)
Surface coating cost per unit tube length, C,

CSC = C MSC + CscuAa ($/m)

scm

Cycm 1s the surface coating material unit cost ($/kg)

(E.1)

(E.2)

(E.3)



4

(5)

(6)

(7

Stellenbosch University https://scholar.sun.ac.za

E2
C.q 1s the surface coating added unit cost ($/ m? )

M., is the mass of the surface coating material per unit tube length (kg/m)

A, is the air side surface area per unit tube length (m2 /m)
Total finned tube cost per unit tube length, Cq

Cq =(Cy+C¢+C )Wy ($/m)

Wy, is the finned tube cost weighting factor

Heat exchanger bundle header and frame cost, Cy,

C, =CaLiny Wy, ($/bundle)

W,, is the header and frame cost weighting factor
Bundle assembly cost, Cy,

Cpa = Cpaly, ($/bundle)

Cpat is the assembly cost per finned tube ($/finned tube)
Total heat exchanger bundle cost, Cy,

Cpe = (CaLing, +Cy +Cpy )Wy, ($/bundle)

W, is the heat exchanger bundle cost weighting factor (installation)

Fan system capital cost

(E.4)

(E.5)

(E.6)

(E.7)

It is assumed that dg, =~ 1.005dy, dp, =~ 0.165dg, the height of the fan casing is 0.1dg,, the inlet
bell height is 0.15d g, and the inlet bell diameter is 1.2d ..

(1)

Fan capital cost, Cg
CF = CFuAF +CFf ($/fan)
Cg, is the fan unit cost ($/m?)

Cys is the fan fixed cost ($/fan)

Ay is the fan sweep area (mz)

(E.8)
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(2) Fan casing and inlet bell cost, Cg,
Cre =(Apc +Agy)Crop ($/fam) (E.9)
Cg.p is the fan casing and inlet bell unit cost ($/ mz)
Ay, is the fan casing circumference area (mz)
Ay, is the inlet bell circumference area, approximated by a conical frustum (mz)

Ag, =0lrnds, (m?)

Agy, % Llndpc1/0.0225d2, —0.01d2, = 0122984rnd3, (m?)
(3) Fan safety screen cost, Cp
Crs = CpAps ($/fan) (E.10)
Cp, is the safety screen cost ($/ m? )

. 2
A, is the safety screen area (m”)

A, =0257(12dg,)* = 036nd2, (m?)
(4) Electric motor cost, C,,,
Cem = Coms +SemCemuP, ($/motor) . (E.11)
C.pr is the electric motor fixed cost ($/motor)
Cemu 18 the electric motor unit cost ($/kW)
P, is the electric power input to the electric motor (kW)
A safety factor, s,,,,, against electric motor undersizing is also introduced.
(5) Speed reducer cost, C,
C, = (CF +Cem)WSr ($/speed reducer) - (E12)
W, is the speed reducer cost weighting factor

(6) Electric wiring and switching cost, C,,

Cas = CenWys  ($/fan) : (E.13)
W, is the wiring and switching cost weighting factor
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(7) Total fan system cost, Cg,
Cpp =(Cp +Cpe +Cpg+Cop +Cyp +Cos)Wp  (8/fam) (E.14)
Wrp is the fan system cost weighting factor

Forced draft cooling tower structure

(1) Cost of land, excavation, foundations and construction, C,
Ce = (€1 +CoyHs +Crp JApa W, (5) (E.15)
C, is the land, excavation and foundation cost ($/ mz)
C., is the construction unit cost ($/ m’)

Cgpy is the fan platform cost (§/m?)

A gp1 is the fan platform area (mz)
W, is the construction cost weighting factor

Natural draft cooling tower shell (Hyperbolic reinforced concrete)

The cooling tower shell will be approximated by means of two conical frustums, one above and the
other below the throat. A constant shell thickness is assumed. The volume of the conical frustum

can be calculated as follows:
Vit = 0.083333n(Hs - H, )(d? +d,ds +d2) +0.083333(H, - H;)(d? +d,d5 +d3) (E.16)

with Hs - H, = 0.25(H; - H,), H, - H; = 0.75(Hs - H;) and d5 =1.05d,. These relationships are
typical in most of the existing hyperbolic cooling towers found in practice. The volume of concrete

in the tower shell can be calculated with the aid of equation (E.16). It is further assumed that the
tower base angle, ¢y, is fixed at 70° (which is the minimum limit for construction [84ALle]) and

that the tower support length can be expressed as L, = H; /sin(¢,,)

(1) Cost of land, excavation and foundation, C;
C =CpAy (9) : (E.17)
C,, is the land, excavation and foundation cost ($/ mz) |

A is the tower base area (mz)
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Ay =0257(d; +2Hs/tan )’ (E.18)

(2) Cost of the tower shell, C
Cot =CoteVis (8) | (E.19)

C.,, is the cost of the reinforced concrete used in the shell ($/ m3)

cte

Vi is the volume of reinforced concrete in the tower shell (m3)

(3) Cost of the heat exchanger bundle platform, Cyep
Chept = ConAnept ($) | o (E.20)
Co is the platform unit cost ($/ mz)

A pep is the heat exchanger platform area (mz)

(4) Cost of the tower supports, C,
Cts = Crsulsdisttes ($) (E.21)
C is the tower support unit cost ($/ m3)

(5) Total construction cost, C,
Ce = (€1 +Cg +Chg +CisWe (9) (E.22)
W, is the structural maintenance cost weighting factor

Steam/condensate distribution system costs (ACC)

(1) Distribution system cost, C 4
Coa =(Cho +Cre)Woq (9) C (E23)
W4 is the steam/condensate distribution system cost weighting factor |

Circulation system costs

Two 50%-duty pump units will be considered in this analysis.
(1) Pump capital cost, Cpymp

Coump =2(Cpt +CpuiPu) () (E.24)
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Cpr is the pump fixed cost ($/pump)
Cou is the pump unit cost ($/kW)
P, is the required pumping power (kW)
(2) Electric motor cost, C,,
Com = 2Comt +SemComPu) (9)
C o is the electric motor fixed cost ($/motor)

C ey 18 the electric motor unit cost ($/kW)

emu

A safety factor, s_, against electric motor undersizing is also introduced.

em>
(3) Electric wiring and switching cost, C,,,
Cas = CemWas ($)

W,

ws 18 the wiring and switching cost weighting factor

(4) Total pump system cost, Cpq

Cpét = (Cpump + Cam +Cove)Wps ()
W, is the pumip system cost weighting factor
(5) Piping and valves cost, Cy,
Cov = CretyWyy  ($)
W, is the piping and valves cost weighting factor
E.3 COOLING SYSTEM OPERATION COST ESTIMATION
Fuel cost
The total annual fuel cost ,Cg,can be expressed as
Ca = CravNplant Py
Nplant 1S the overall plant efficiency
P, is the gross power output of the turbo-generator (MW)

Ctay» levelized unit cost of the fuel ($/MJ)

(E.25)

(E.26)

(E.27)

(E.28)

(E.29)



Stellenbosch University https://scholar.sun.ac.za

E.7

7 is the number of operating hours (h)

Fan operating cost

The annual operating cost of the fan, Cg,, can be expressed as

CFo = CeaVPe‘c (E.30)
C_.y levelized electricity cost ($/kWh)

eav

P, is the input power to the fans (kW)
7 is the number of operating hours (h)
Pump operating cost
The annual operating cost of the pump, C,,, can be expressed as
Cpo = PeCeayT ‘ : (E.31)
C.ay levelized electricity cost ($/kWh)
P, is the mput power to the pumps (kW)
7 is the number of operatmg hours (h)

Fixed charges

The cost of the fixed charges, Cgcg ,can be expressed as
Crcr = FCR Cgpital ' (E.32)
FCR is the levelized fixed charge rate
Capital 1s the total capital cost ($)

Maintenance costs

The maintenance cost weighting factors are assumed to be levelized values over the operating

lifetime of the plant.

(1) Heat exchanger bundle maintenance cost, Cy,,
Chem = WhemChe ($/bu11dle) (E-33)

Wiem 1S the heat exchanger bundle maintenance cost weighting factor



)

()

(4)

()

(6)
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Fan system maintenance cost, Cg,
Cem = CpWg,, ($/fan)
W, is the fan system maintenance cost weighting factor
Structural maintenance cost, C
Cm=CW., (§)
W_,,, is the structural maintenance cost weighting factor
Distribution system maintenance cost, C 4,
Csim = CsaWeam (3)

\

«dm 1S the steam/condensate distribution system maintenance cost weighting factor

Pump system maintenance cost, C,p,

Cpm = Cpst“/vpm %

W is the pump system maintenance cost weighting factor

Piping maintenance cost, C,y,
vam = vawpvm (%
p

W, um is the piping and valves maintenance cost weighting factor

TOTAL COSTS

The total annual cost of the cooling system is:

Cotal = Copemﬁng +C maintenance T Crcr  ($/annum)

The cost of power generation (attributed to the cooling system) is:

C

power —

= ——%"‘a‘ ($/kWh)

net

where E_ is the net annual power output.

(E.34)

(E.35)

(E.36)

(E.37)

(E.38)

(E.39)

(E.40)

_Equations (E.39) and (E.40) present the required objective functions for the operating point

optimization and the minimization of power generation cost respectively.



Stellenbosch University https://scholar.sun.ac.za

F.1

APPENDIX F

SOLUTION OF SYSTEMS OF NONLINEAR EQUATIONS BY USING A
CONSTRAINED NONLINEAR LEAST SQUARES APPROACH

F.1 INTRODUCTION

The solution methods for unconstrained optimization and the nonlinear equations problem
(simultaneous solution of n nonlinear equations in n unknowns) are closely related. Newton’s
method is the basic method for solving both these types of problems [83DE1m, 89DEIm]. A
significant percentage of real-world unconstrained optimization problems in science and engineering
arise from fitting model functions to data, i.e. nonlinear parameter estimation. Usually the number of
data points, m, is greater than the number of independent variables, n, and it is not possible to obtain
an exact solution. This gives rise to a special class of unconstrained optimization problems with a
special structure, the so-called nonlinear least squares (NLS) problems where the objective function

is a sum of squares.

In this section we consider the special case of the NLS problem where m =n. Such problems can be
viewed as an attempt to obtain the simultaneous solution of n nonlinear equations in n unknowns. A
globally convergent solution technique (convergence to a local minimizer from a poor starting point)
for these problems will be explained. The problem is extended to include inequality constraints and
bounds on the variables. The implementation of the modified NLS problem is presented by stating

its algorithmic representation.
F.2 THE NONLINEAR LEAST SQUARES PROBLEM

If f(x) is the sum of squares of nonlinear functions, the objective function of the nonlinear least
squares problem is written as [74LLA1m, 81GI1m, 83DE1m, 87FL1m, 89DE1m]

F(x) = 0.521}(1:)2 - 05£(x)(x) F1)

where x is an n-vector. fi(x) =0, i=1...,m can be viewed as a system of m nonlinear equations.
When m > n, least squares solutions to over-determined systems of equations are computed by
minimizing expression (F.1).

The derivatives of the objective function are given by
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g(x) = J(x)f (x) (F.2)
and
6(x) = JX)IE)" + 3£ (x)V2H (5) (3)
i=1

where J(x) is the nxm Jacobian matrix, the columns of which are the first derivative vectors Vf; of

the components of f. We observe that the Hessian of the NLS objective function consists of a
combination of first- and second-order information. Most solution methods assume that the second
term on the right hand side of equation (F.3) is small compared to the first term, and it is simply
omitted. The resulting problem is referred to as a small residual problem. Large residual problems
do exist, but will not be considered in this analysis (refer to [81GI1lm, 83DE1m, 89DE1m] for more
information). Note that the linear least squares and zero residual problem is a special case of the

above formulation.

A good approximation to the Hessian of the objective function, G(x), can be obtained by assuming

that the residual is small, i.e.

G(x) = I(D)I(x)T . (F.4)

Special purpose NLS solution techniques make use of the spécial problem structure. For example,
equations (F.1), (F.2) and (F.4) can be used with Newton’s basic method or with a quasi-Newton
method. Whereas a quasi-Newton method might take n iterations to estimate G(x) satisfactorily,

here the approximation is immediately available. The basic Newton method (equation (2.21))

becomes the Gauss-Newton method when (F.4) is used to approximate G(x_(k)). The Gauss-

Newton direction, s® , is based on the minimization of the following quadratic model at iteration

(k):
T T
Minimize 0.5 s(k)TG(x(k))s(k) +g(x(k)) s® +f(x(k)) f(x(k)) (E.5)
S
The k-th iteration of the basic Gauss-Newton method can thus be written as

sove e 40 () -0 s

Set x& =x® 4

(F.6)

Gauss-Newton methods perform better on zero and small residual problems that are not too

nonlinear than on large residual problems. Convergence of this method is slowed as the problem
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nonlinearity or the relative residual size increases; if either of these is too large, the method may not

converge at all [83DE1m]. The Gauss-Newton method is also not necessarily globally convergent.

The Gauss-Newton method’s global convergence and performance characteristics can be improved
in two ways: using it with a line search or with a trust region strategy [83DEIlm, 87FL1m]. The
basic idea of both line search and trust region methods, is that they use the properties of the quickly
convergent local methods (e.g. Newton’s method) when the estimated solution is close to a
minimizer, and when a solution estimate lies outside the convergence region of these methods, some

reliable approach is used that gets them closer to the region where the local methods will work.

The k-th iteration of the Gauss-Newton method that incorporates a line search is simply

T
Solve J(x(k))J(x(k)) s(k)+J(x(k))f(x(k))=O for s(k)

Set x*D = x® 4 o ®sE)

(F.7)

where the step length o™ is chosen by a line search procedure (see Dennis and Schnabel [83DE1m]
or Fletcher [87FL1m]). We will refer to equation (F.7) as the damped Gauss-Newton method.

(k+D)

The idea of a line search algorithm is simply to calculate an acceptable point x , given a descent

direction, s , and a positive step length o, High accuracy line searches are very expensive to
carry out and researchers have developed some conditions for low accuracy line searches while still
obtaining global convergence [83DE1m, 87FL1m]. They have shown that line search methods can

be globally convergent if each step size satisfies two simple conditions:
(1) The average rate of decrease from f(x(k)) to ?(x(kﬂ)) must be at least some prescribed

fraction of the initial rate of decrease in that direction; i.e. we pick an A € (0, 0.5) that satisfies

f(x(k+l)) < ’f(x(?‘)) +a %, g(x(k))T s | (E.8)
(2) The steps must not be too short, i.e. we pick a e(k,l) that satisfies

g(x<k+l))Ts(k) >p g(x(k))Tsao | F9)

Typical line search algorithms set A = 107 and B between 0.7 and 0.9 [83DE1m, 89DE1m]. These

two conditions, when incorporated into a line search algorithm, lead to a practical and globally
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convergent method. In practice, equation (F.9) is generally not needed, because backtracking will

avoid small steps being taken.

The common procedure is to try and use a® =10 as the first step, and when it fails, backtracking

is performed in a systematic way along the direction of search until an acceptable x® 4o Ws®g
found. The backtracking strategy as well as line search algorithms that employ the concepts above
are described in Dennis and Schnabel [83DE1m] and Fletcher [87FL1m].

Since the damped Gauss-Newton method always takes descent steps that satisfy the line search
criteria, it is usually globally convergent on almost all NLS problems, including large residual and
very nonlinear problems. However, it may still be slowly convergent or fail on the problems that the

Gauss-Newton method had trouble with.

The other modification to the Gauss-Newton method is the use of globally convergent trust region

strategies by solving the system (refer to chapter 2, section 2.2)
T
[J(x(k))J(x(k)) + x(k)l]s“‘) +I(x®)e(x®) =0, 2920 (F.10)

This formulation was first suggested by Levenberg [44LE1m] and Marquardt [63MA1m] and is
known as the Levenberg-Marquardt method. A i changed during the course of the iterations in

order for J(x(k))J(x(k) )T +2A 91 to remain positive definite. Many versions of this algorithm do
exist; some control the iterations using A0 directly, while others use the radius 1™ and choose

AL o satisfy “s(k)ush(k) [83DE1m]. The local convergence properties of the Levenberg-

Marquardt method are similar to those of the Gauss-Newton method. The Levenberg-Marquardt
method may still find difficulty in solving some large residual or very nonlinear problems. There are,
however, certam factors that make Levenberg-Marquardt methods preferable to damped Gauss-
Newton methods on many problems, e.g. when the Gauss-Newton step is too long, the Levenberg-
Marquardt step is close to being the steepest descent direction, and is often superior to the damped
Gauss-Newton step [83DE1m, 89DE1m].

When m = n in the above analysis, the NLS problem can also be interpreted as the simultaneous
solution of n nonlinear equations in n unknowns, i.e. fi(x) =0, i=1,...,n. The minimum of the

well-determined NLS problem corresponds to the solution of the system of n nonlinear equations in

n unknowns. The gradient of the NLS objective function vanishes when f(x) is zero. The Newton-

Raphson method that is usually used to solve systems of nonlinear equations is equivalent to the
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basic Gauss-Newton method [81GI1m, 83DE1m]. Global strategies for solving systems of nonlinear
equations are obtained from the global strategies of unconstrained optimization. Thus, the line

search or trust region strategies can be used to ensure global convergence of this solution technique.
F.3 SIMULTANEOUS SOLUTION OF A SYSTEM OF NONLINEAR EQUATIONS

We have shown that exploiting the special form of the NLS problem can lead to substantial
improvements over using standard solution methods for unconstrained minimization problems.
Furthermore, this method can also be used to solve systems of nonlinear equations due to its
efficiency. In this section a procedure based on the Levenberg-Marquardt method will be

implemented to solve the system of nonlinear equations subject to linear inequality constraints.
The problem to be solved is

Solve fj(x)=0, j=L...,n
subject to the constraints . (F.11)

T .
a;x>b;, i=1....m

where the constraints are feasibility inequalities, i.e. lower and upper bounds on the variables as’well
as linear relationships between the variables. These constraints are not expected to be satisfied as
equalities at the solution, but rather define the feasible region for the iterative solution method.
Problem (F.11) can also be int'erpreted as a minimization of a NLS problem where the minimum of

the objective function is known to be equal to zero, i.e.

n
Solve f(x) =053 f;(x)* = 0.5f(x) f(x)=0
j=1
subject to the constraints (F.12)

aiTXZbi , 1=1....m
Holt and Fletcher [79HO1m] describe an algorithm for constrained NLS probleni with special

constraints for specific application in data fitting problems.

The Levenberg-Marquardt step is obtained by solving the system of equations stated in (F.10). A

quadratic function of the following form presents a solution to this system of equations subject to the

constraints:
Miimize. 05507 (< (s ) 2 OI0 +3{x 0] 5
S .
subject to the linear inequality constraints (F.13)

aiTs(k) > b; —aiTx(k) , i=1...,m
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The NLS problem is thus rewritten as a quadratic programming (QP) problem that can deal with the
imposed linear inequality constraints. This QP problem can be solved by means of any active set
method, although none of the constraints will be active at the solution. We use the dual active set

QP algorithm explained in Appendix G.

We shall form the approximation to the Hessian matrix of the objective function,
J (x(k))J (x(k))T +A001 , directly and not by means of QR factorizations, because the problems to be
considered are not large-dimensional (typically n <10). QR factorizations can result in considerable

savings if calculations with several values of A% are required and also introduce computational

stability (refer to [87FL1m]).

The Levenberg-Marquardt method uses the trust region strategy to obtain global convergence. The

parameter A% s decreased by a constant factor if a suitable search direction s® is found which

satisfies the following condition [83DE 1m]
~ ~ ~ T
Fx® ) = Fx® +50) < F{x®) +10g(x®) s® (F.14)

Otherwise A% is increased by some factor and inner iterations are performed with this value.
Subsequent nner iterations with consequent further increases m A may follow until condition

(F.14) is satisfied. However, under certain conditions, A% can become very large, resulting in slow
convergence or no convergence at all (steepest descent search direction). In these cases, we

&+ = x® 4 g ®O5® hat satisfies equation

introduce a line search procedure to find a new point x
(F.14). Previously, either the damped Gauss-Newton method or the Levenberg-Marquardt method
was used to overcome some of the difficulties in the basic Gauss-Newton method. Here, we use a
combination of both improvement schemes to obtain a reliable solution method for a system of

nonlinear equations subject to linear inequality constraints.

The line search procedure using a backtracking procedure, as implemented by Dennis and Schnabel

[83DE1m], is used. The line search fails if a point x&+D sufficiently distinct from x® cannot be
found. A user-supplied maximum step length is also imposed to ensure feasibility in the domain of

interest.

Due to the presence of constraints, the largest step size a® to retain feasibility during iteration k is

obtained from solving [87FL1m]
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—(k) ) . b;- aiTx(k) ) (k)
'’ =min| min ———, i¢4 (F.15)
aiTs(k)<0 a’irs(k)

If ' < 1 is obtained (move towards a constraint), then a new constraint becomes active and ot

is used as an upper limit for the step size in the line search. This procedure must be executed before

the line search is performed in order to retain constraint feasibility during the lme search procedure.

An initial feasible point is required for the algorithm because of the feasibility inequalities (e.g.
physical laws) to be satisfied at each iteration. Such a point can be found by minimizing the distance

between the given point, x,, and the nearest feasible point. This problem can be stated

mathematically as a QP problem, i.e.

Minimize O.5||x—x0||2 = Minimize 0.5”s”2 =05s"1s

X s
subject to the linear inequality constraints (F. 16)
a;r(XO'*'S)Zbi, i=l,...,m

This problem can be solved, for example by the active set QP method explained in Appendix G. The

®

mnitial feasible point is then calculated as x*~ =xg +S.

F.4 ALGORITHM

The algorithm given below implements a modified NLS method for the solution of a system of
nonlinear equations where the variables are subjected to feasibility inequality constraints. The

algorithm is based on the Levenberg-Marquardt method with line search.
Step 0: Initialization

(i) Choose a starting point x.

() Compute the constraints at the given point, x, (equation (F.16)).

(iii) Solve the QP problem (F.16) and find s that satisfies the imposed constraints (refer to
Appendix G). If the QP algorithm fails, the problem was not properly set up. Go to step 6.

(0)

Otherwise, determine the initial feasible starting point X~ =x, +5

(iv) Initialize the Levenberg-Marquardt parameter, AO (typically 1.0).

Initialize the factors by which A% will increase (typically 3.0) and decrease ( typically 5.0).
Set the iteration counter k to 0

Specify a convergence tolerance, €
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Step 1: Solve the system of nonlinear equations subject to the imposed feasibility constraints

(i) Evaluate the objective function ?(x(k)) (equation (F.12)).

(i) Calculate the Jacobian matrix, J(x(k)), the gradient vector, J(x(k))f(x(k)), and the

. v
approximate Hessian matrix J(x(k))J(x(k)) of the objective function (equations (F.2) and

(F.4) respectively). These first-order derivatives are calculated by means of the finite
difference derivative approximations outlined in Dennis and Schnabel [83DE1m].

~

(i) Set the iteration counter for the case when the objective function increases, k, to zero.

(iv) Set up the constraints aiTs(k) >b; - aiTx(k) , 1=1,...,m (equation (F.13)).
T
(v) Adjust the diagonal elements of the Hessian matrix, i.e. compute J (x(k))J(x(k) ) +2®r

. (vi) Solve problem (F.13) to obtain the new search direction, s® (refer to Appendix G). If the
QP algorithm fails to find a solution, go to step 6.

T
(vil) Calculate the new pomnt xED = x® 1 8 and the directional derivative g(x(k)) s&

(viii) Evaluate the objective function f(x(k+l)) (equation (f. 12)).
Step 2. Test if the objective function increases or decreases

G If f(x(kﬂ)) < f(x(k)) + 10_4g(x(k))Ts(k) , go to step 5.

(i) If f(x(k“)) > ?(x(k)) +107* g(x(k))Ts(k) , 0 to step 3.
Step 3: Increase A , because the objective function has increased.
() TIfk=4or A% >500, goto step 4.

) Set A =302® and k=k+1. If k>3, set A =1525.

(ii) Go to step 1 (v).

Step 4: Line search procedure (refer to [83DE1m] for details)
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(i) Determine the maximum allowable step length, &™) to remain feasible with regard to the
constraints (an inactive constraints become active). If none of the constraints become active,

the maximum allowable step length is set to a positive constant (typically 10.0).

(ii) Perform a line search and determine a® <ag® such that the objective function decreases

(k+1)

(conditions (F.8) and (F.9) are satisfied). Set x*™ =x® +o®s®  Go to step 5.

If the line search fails to find a point, x(k+l), sufficiently distinct from x® which satisfies
conditions (F.8) and (F.9), an error return occurs. Go to step 6.

. Step 5: Test for convergence

(i) Determine the maximum component of the objective function and the maximum relative

change in x .

_ 2

fhax = max fi(x(k+1)) and Ax,,,, = max (xfkﬂ) —xi(k)) /Ixi(k) , i=1...,n
1 i

() Setk=k+1.

(iii) If the convergence tolerance is satisfied, ie. f,,, <€, a feasible solution to the system of

nonlinear equations has been found. Go to step 6.
(iv) If Axp,, >¢€ and k=0, set A = K(k)/S.O and go to step 1 (ii).
If Ax,,, >¢€ and k=0, keep A constant and go to step 1 (ii).

If Ax,, <e for 3 consecutive iterations, negligible changes in x® has occurred (very slow

convergence). Go to step 6.
Step 6: Return to caller program

(i)  Stop, return to the caller program and indicate the reason for the return. The following cases
can occur: |
(a) Successful completion of calculations.
(b) Modified nonlinear least squares algorithm failed to find a solution.
(c) Variables changed less than ¢ for three consecutive iterations.
(d) Line search failed to locate new point sufficiently distinct from the original point.
(e) QP algdrithm failed to find a solution (refer to Appendix G for explanation).
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APPENDIX G

DUAL ACTIVE SET ALGORITHM FOR CONVEX QUADRATIC
PROGRAMMING PROBLEMS

G.1 INTRODUCTION

The quadratic programming (QP) problem involves the minimization of a quadratic objective
function subject to linear constraints. QP methods can be used as an optimizing technique on its own
and also play an important role in the solution of general nonlinear programming problems. In the
latter case a series of QP problems (with different constraint sets) may be posed to approximate the

actual problem behavior.

QP problems can contain linear equality and/or inequality constraints. The major difference between
QP problems subject to only equality constraints and those subject to some inequality constraints is
that the set of constraints active at the solution is unknown in the latter case. Therefore, QP
algorithms must include a procedure, termed an active set strategy, that determines the correct set of
active constraints at the solution. This is usually done by maintaining a working set that estimates
the final active set. QP problems containing some inequality constraints are solved as a sequence of

problems in which the constraints in the working set are treated as equalities.

The major difference among QP methods arise from the numerical procedures for solving the
associated linear equations and the strategies that control the changes in the working set. Three

methods for selecting the constraints for the working set can be identified, namely :

(1) primal active set methods allowing only feasible iterates (refer to chapter 2, section 2.2)

[81GI1m, 85GI2m, 87FL1m, 89GI1m];

(2) dual active set methods (for convex QP) where it is not required to satisfy primal feasibility

during each iteration [83GO1m, 85GI2m, 87FL1m];
(3) primal-dual active set methods (for convex QP) which allows both primal and dual
mfeasibilities [87FL1m].

In this appendix a dual active set method for convex QP problems that is based on the method
proposed by Goldfarb and Idnani [83GO1m] will be developed. General QP problems containing
both equality and inequality constraints will be considered. This method will primarily be used as an
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efficient QP subproblem minimization technique for the SQP method. Its secondary use will be as a
part of a general solution technique for the NLS problem.

G.2 DUAL ACTIVE SET QUADRATIC PROGRAMMING METHOD

Currently, most implementations of SQP employ QP routines that are based on primal active set
strategies. Considerable effort is expended in determining an initial feasible point for the primal QP
solution. The most obvious advantage of the dual method is that the unconstrained minimum of the
of the QP objective function provides an initial feasible solution. The dual algorithm then iterates
until primal feasibility (i.e. dual optimality) is achieved, while maintaining the primal optimality of the
mtermediate sﬁbproblems (i.e. dual feasibility). This procedure is equivalent to solving the dual
problem by a primal method [83GO1m, 87FL1m]. Some further advantages of the dual algorithm
over feasible point methods are discussed in Goldfarb [82GO1m], Powell [85PO1m] and Fletcher
[87FL1m].

The concept of duality is discussed in chapter 2 (section 2.2). The transformation of the primal
quadratic programming problem into its dual is repeated here for convenience. The primal QP can

be written as

Minixmize q(x) =05x"Gx +ng

subject to the constraints

G.1
a;rx=bi , 1=L...,mg (A;x=b) (G1)
aiTx?_bi , 1=mg +L...,m (AEICqXZb)

whefe G is required to be positive definite. The dual of problem (G.1) can be written as (A contains
the constraint normals of both the equality and the inequality constraints)

Maximize 0.5x Gx + ng AT (ATx - b)

x,A
subject to the constraints (G.2)
Gx+g—AA=0

)“i ZO, i=meq+1,...,m
or

Maximize —0.5 AT(ATG_IA)A + AT(ATG_lg + b) —05¢"G™'g
A
subject to the constraints (G.3)

7\'i20> i=meq+1,...,m
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where the constraints are used to solve for x, i.e. x=G 'AA - G_lg and A;, i=1,...,m4 haveno

sign restriction. Problem (G.3) has only simple constraints on the dual variables (Lagrange
multipliers). The Kuhn-Tucker condition for the primal problem state (refer to equation (2.8)):

xi(afx—bi)=o, i=1..m (G.4)

Similarly, the Kuhn-Tucker conditions for the dual problem state:
ui?»i=0, i=meq+l,...,m (GS)

where u; are the Lagrange multipliers of the dual problem. Thus, the values of the Lagrange

- multipliers of the dual problem, u;, correspond to the values (aiT X —bi) , 1=mgq +1,...,m of the
primal problem. (It should be noted, however, that this is not a formal proof.) The following poiﬁts
should be noted about the relationship between equations (G.4) and (G.5):

(1) u=0,i=p and the corresponding element of A; is greater than zero, it indicates that the
primal inequality constraint corresponding to the value of A; is active. If u; =0, i=p and the
corresponding element of A; is equal to zero (weakly active), it indicates that constraint p is
superfluous. -

(2) Ifu;>0, i=p, then the corresponding element of A; is equal to zero which indicates that the
primal inequality constraint corresponding to the value of A; is inactive.

In the dual active set method, x® is not primal feasible (some of the constraints are not satisfied),

but the Lagrange milltipliers are dual feasible, ie. A;20, i=mg +1,...,m. Cﬁanges in the

working set are performed to maintain non-negative Lagrange multipliers while moving to satisfy the

violated constraints, i.e. obtain primal feasibility.

The dual active set strategy can be explained from a primal point of view as follows:

(1) Solve the unconstrained QP problem to obtain xU. This provides an initial feasible solution
for the dual problem. All the Lagrange multipliers are equal to zero. Setk = 1.

(2) Test the linear constraints for primal feasibility. If the current point x® satisfies all the

constraints, a feasible solution is found; terminate with x* = x® Otherwise, the most or any

violated constraint not in the current active set is added, i.e. AD s enlarged.
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(3) Store the current values of the Lagrange multipliers of the inequality constraints,

=2, i=meg+L...,m. Setk=k+1.
(4) Solve the QP to obtain new values for x® and ?»(ik), i=L...,m.

(5) Test the mequality constraints for dual feasibility, i.e. X(ik) 20, i=mg +1,...,m. If the

Lagrange multipliers of the inequality constraints are dual feasible, go to step 2. Otherwise

one or more of the new Lagrange multipliers of the inequality constraints contained in the

current active set is negative (dual infeasibility). Thus, A® is not the correct active set. In

order to remain dual feasible, a search direction,

8}V(ik) = ?»(ik) —Xi, i e[{meq +1,...,m}mA(k)]

and the largest possible step length, 0<a™ <1, are determined such that the Lagrange

multipliers of the inequality constraints in the current active set satisfy dual feasibility, i.e.
ry k k)4 (k . k
A= k(i ) 4ol )8}\.(i )20, i e[{meq +1,...,m}r'\ Al )]

The inequality constraint corresponding to the first Lagrange multiplier that becomes zero is

dropped from the active set and A® is reduced (inequality constraint becomes inactive). Go

to step 4.

The largest step size o™ to retain dual feasibility during iteration k is obtained from solving

, . .02

o® = min| min —}3—, ie[{meq+1,...,m}mA(k)] (G.6)
5 <0 Sk(ik)

During the course of the QP solution the active set will change from one iteration to the next.

Therefore, as constraints are added to and deleted from the active set, various matrices need to be

updated, rather than recomputed.
G.3 SOLUTION OF THE EQUALITY CONSTRAINED QP PROBLEM

Equality constrained QP subproblems occur within many active set methods for general QP problems
as well as in SQP methods. A variety of methods are available for solving these problems, e.g.
[81GI1m, .87FL1m, 89GIim]. The method that will subsequently be derived are based on the
procedures proposed by Gill et al. [84GI1m] and Betts [SOBE1m, 80BE2m].
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Calculation of the search direction and the Lagrange multipliers

In this section a procedure is developed for solving the QP problem by means of an orthogonal

decomposition of the constraint matrix. We shall be concermned with the numerical solution of the

following QP problem:

Minimize g(x)= 0.5x Gx +ng

X
subject to the equality constraints (G.7)
ATx=b

where AT is an m x n matrix with rank(A) = m, G an n x n positive definite symmetric matrix, g is

an n-vector, b is an m-vector and x is an n-vector and n > m.
Let Q be an orthogonal n x n matrix ( Q'Q=1 ), and
ATQ=[0 ! T] (G.3)
where T is an m x m reversed lower-triangular nonsingular matrix.
Let Q be partitioned as
Q=[z : Y] | - (G9)

where Z is an n x (n-m) and Y is an n x m matrix respectively. Substitute equation (G.9) into

equation (G.8) and find

ATQ=[ATZ : ATY]=[O P 1] (G.10)
hence

ATZ=0 and ATY=T - (G.11)
The equality constraints can be rewritten as |
ATQQ'x=b = [0 : T]Q"x=b . (G.12)

Define the n-vector p as

p=QTx=| .- |=] .- (G.13)
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where py is an (n-m)-vector and py is an m-vector. Substitute equation (G.13) into equation

(G.12) and find
Pz
[0 ¢ T]|---|=b = Tpy=b (G.14)
Py

Since T is nonsingular, the m-vector py can be solved by means of back substitution. Call the
solution py,ie. py =T 'b.
Now, if

x=Qp=Zp; +Ypy (G.15)

then problem (G.7) can be written as an unconstrained problem, i.e.

q(x) = 05(Zpz + Ypy) G(Zpz +Ypy)+g (Zpz +Yhy)

I ) " (G.16)
-05pY2 GZp, +(ZTGYf)Y +ZTg) py +05pSYTGYp, +g  Ypy
q(x) is minimized when p satisfies (gradient of equation (G.16) is set equal to zero)
4 (ZTGZ)f)Z =-Z"(GYpy +g)
The solution of problem (G.7) can be calculated from
The Lagrange multipliers A = (A1,)5,...,Ap) can be obtained as follows:
AA=Gi+g  (VL()=0) (G.18)
or
0
Q'AA=0Q"G:+Q"g = | - |[A=0Q0"GQp+0Q’g (G.19)
T
Now
y A 72'¢z : 7'GY
Q'GQ=| - G[z : Y]=| - - - (G.20)
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hence
T'A=Y'GZp, +Y GYpy +Y'g (G.21)
and A is determined by back substitution.

The original constrained problem is replaced by a lower dimensional unconstrained problem in the

variables p; after choosing the variables py to satisfy the constraints. A unique solution to the
equality constrained QP problem will exist due the positive definite restriction placed on G.
Changes in the working set

Unless the correct active set is known a priori, the working set must be modified during execution of
an active set method by adding and deleting constraints. The corresponding matrix factorizations
will be updated accordingly, because computing them ab initio would be too expensive. Numerically
stable updating methods of a matrix when it is modified by adding or deleting a row are weﬂ known
[74GIlm]. In oﬁr updating procedures we make use of Givens rotations. Sequences of plane
rotations (Givens rotations) are used to introduce zeros into the appropriate positions of a vector or
matrix [74GI1m, 84GI1m]. Basic linear algebra manipulations are then used to perform the matrix

modifications (updates).

Before the changes in the working set are discussed, we define the following matrices and vectors

and assume that they are available:

() Matrices Q and T such that Q is an orthogonal n x n matrix, i.e. QTQ =],and Tisanm x m
reversed lower-triangular nonsingular matrix. ATQ = [O : T] and Q is partitioned as
Q=[Z ! Y| (Zisannx (n-m)and Y is an n x m matrix).

(i) Matrices U, Gyy and Gy , where
(a) Uis an (n-m) x (n-m) upper triangular matrix, v'v=2"Gz
(b) Gyy is an m x m matrix, Gyy = Y GY
(¢) Gzy isan (n-m) x m, G,y =Z GY

z' 2'g| [e2

(i) Vectorgg, ann x 1 vector such that gQ=QTg= e lg=] e =
Y'| (Y]
g gy

The partitioning of gq is such that g7 is an (n-m)-vector and gy is an m-vector.
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The following should also be noted:
() Whenm=0,let Q=1,Z=1 gq =g and U the Cholesky factor of G (G - UTU). T, Y,
Gy and G4y are empty matrices.

(i) The storage required for the following matrices are:
(a) Q (nxn)

U'U 1 Gy
() Gg=| -+ - - | (@xn)

Gyy
Gy is symmetric so only its upper triangular part is stored (refer to equation (G.20)).

() T (m x m)

(1) Adding a constraint

When a constraint is added to the working set, its index can simply be placed at the end of the list of

constraint indices of the working set. Therefore we assume that the new constraint is added at the

last row of AT.

Suppose Q, T ,U, Gyy,Gzy and gq corresponding to the constrans ATx=b are available and

that the constraint a; 4aX=by, is added to the set of constraints. Furthermore,

Am+l

T
Q,T,U, Gyy, Gzy and g, correspond toA " =[ “; }

(a) Updating Q and T:

Let w' = a,TnHQ , then

— ATo |: 0 T }
ATQ= =
|:a’£1+1Q:| W; Wg

where wg and WE{ represent the partitioning of the new row that is added. We see that a new

matrix Q can be obtained by applying a sequence of plane rotations (Givens rotations) on the right



Stellenbosch University https://scholar.sun.ac.za

G.9

of Q to transform wg to suitable form. The sequence of rotations take linear combinations of the
elements of w% to reduce it to a multiple (say y) of a column of the identity matrix.

Let Q be an orthogonal matrix formed by the product of rotations in the planes (1,2), (2,3),

(3,4),..., (n-m-1,n-m) such that the effect of the transformation can be expressed as

_T~{OEOT} L= _[OT}
A QQ= . T =[O : T],whereT= Tl

0 : v wy Y Wy
Then Q=QQ and KT6=[0 T].

P : 0
Note, however, that Q has the form |- --- ---| with Pan (n—-m)x(n—-m) matrix; hence the
0 : I

rotations affect only the first (n-m) columns of Q so that the last m columns of Q are identical to
those of Q. The first (n-m) columns of Q are linear combinations of the first (n-m) columns of Q.

Q can be expressed as

P o0
Q=[Z i Y] - l=[zP P Y]=[Z iy i Y]|=[Z
0 ix

where ZP = [Z : y] and Y=[y i Y] (thelast column of Z becomes the first column of Y).

(b) Updating U, Gyy and Gy :
The matrix QTGQ can be expressed as
z'cz : 7Z'cy| [U'U : Gp

GQ=QTGQ= O P B
Y'GZ ! Y'GY| |GLy | Gyy

The matrix Q GQ can be expressed as

T . . . T . T
P’ i o||UTU ! G |[P it o] |PTUTUP : PGy
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The matrix —QT GQ must be repartitioned, because m increases by 1 and (n-m) decreases by 1.

o't ¢ UM Gy
R Ty T T _
Let UP=[U : |, then P'UTUP=| -+ . - |and P'Gpy =
iU ! uu hyy
alu gy

Furthermore —@ZY=[I~ITE : aZY] and "GYY=
hy | Gyy

U should satisfy UT0=U0"0=U"P"PU where P is an orthogonal matrix chosen to triangularize
U (upper triangular form). U has subdiagonal elements (introduced by the plane rotations applied to

Z) that must be eliminated. P is a product of rotations (Givens rotations) in the planes (1,2),
(2,3),..., (m-1,m-1).

The following procedure must be performed to update G :

U : Gy
IfGQ:: e cen ’then
L Gy
Gzy
(i) Compute [I~I : ﬁ]=UP and [ --- =PTGZY
iy
(i) Compute v=U"% and 9 =10
[ A\ : éZY—
Gzy
(i) Form| --- [=] & E%Y (Both Gyy and Gy are symmetric matrices)
Gyy
lhzy i Gyy)

(iv) Form U =PU where P triangularizes U .

T : Ggy
™) Gg=|-
Gyy
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Z'cz : Z'GY
It can be shown that Q°GQ=| - .-~ - | to illustrate that the repartitioning procedure
Y'6Z : Y'GY
is correct.
(c) Updating gq:
T T _
P 0llgz| |Pgz| |8
_ AT AT
0 I8y gy gy

where g7 is an (n-m-1) vector and gy is an (m+1) vector. Hence, compute PTgZ and repartition.

(d) Linear dependent constraints

A linear dependent constraint can be expressed as a linear combination of all the other constraints in

the active set.

Suppose that the current equality constraints are ATx=b. If the new constraint, a; aX=b.,
that is added to the active set is linear dependent on the other constraints, then a,,, can be
expressed in terms of the other constraint normals as
m
am+l=§riai =Ar, r=[f 1, -- rm]T.
i=

where r is the vector of coefficients expressing the linear dependence.

It is known that
0
QfA =] .-
!
hence
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Let

WZ 0
— T —— —
W= Q aga={ " |=
Wy TTr

Thus w; =0 and r can be determined from solving the following system of equations:

TTr=wy.

(2) Deleting a constraint

When a constraint is deleted from the working set, the row dimension of AT and the dimension of T

are decreased by one, while the column dimension of Z is increased by one.

Suppose Q, T ,U, Gyy,Gzy and gq corresponding to the constraints A'x=b are available and

that the constraint aiT x = b, is deleted from the active set of constraints. Let the new set of active

constraints be XTX =b.

(a) Updating Q and T:

XTQ =[O : S], where S is an (m-1) x m matrix such that rows 1 to (i-1) are in the reverse
triangular form and the remaining rows have one extra element above the reverse diagonal. In order
to reduce these colurns of S to the desired triangular form of T, a sequence of plane rotations
(Givens rotations) are applied on the right of S.
Let Q be an orthogonal matrix formed by the product of rotations in the planes (m-i+1,m-i),...,
(2,1) such that SP =T , where T is in the reverse lower-triangular form.

I : 0

Note, however, that Q has the form |--- --- ---| with P an m x m matrix ; hence the rotations
o : P

affect only the last m columns of Q so that the first m columns of Q = QQ are identical to those of
Q. Then

XTQ('j:[o P T



Stellenbosch University https://scholar.sun.ac.za

G.13
Q can be expressed as
I : 0
6=Q(~2=[Z Y] =[Z : YP]
o : P
where YP=[z ?] and Z=[Z

z is a linear combination of the relevant columns of Y.

(b) Updating U,Gyy and Ggy:
The matrix QTGQ can be expressed as
Go=Q'6Q=| - - .. =
Y'ez :
The matrix Q" GQ can be expressed as
. T .
I ¢ 0 ({jUU : Gg (I

Q0'GQ =/ e e
o : PllgL : @ 0
. Y . YY

z i Y|=[Z i Y]

z] (the first column of YP becomes the last column of Z).

Gzy
Gyy
0 Uy} GuP
p| |PTGL PTGy P

The matrix Q" GQ must be repartitioned, because m decreases by 1 and (n-m) increases by 1, and

U must be retriangularized.

Let
S
= T
GzyP=[v i Gzy|and P'GyyP=
hyy
It then follows that
Gzy
—G—ZY =
hyy

and U should satisfy
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Suppose that the Cholesky factor can be defined as

U ! u
U=
0o : »p
then
v'u Ul
UiU=
wU  uTu+p?

Hence choose Ulu=v and u'u +p2 =3 and solve foruand p. (If § < uTu, G cannot be positive

definite.)

The following procedure must be performed to update Gq :

U ! Gy
If Gg = =+ - |, then
. : GY_Y
] i v ézy-
G P
(i) Compute = 8 ’HST(Y
P GyyP

(i) Solve UTu=v for u and calculate p=v3 ~u'lu

U : u
(iii) Form the new Cholesky factor U =/|---
0 : p
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Z2'6Z : Z'GY
It can again be shown that GTG_Q =| - which indicates that the repartitioning

Y'GZ : Y'GY

procedure is correct.

(c) Updating gq:

gaj
o
|
Ql
=
]
1l
=)
-
o
oQ
I
I
|

where g7 is an (n-m+1) vector and gy is an (m-1) vector. Hence, compute PTgY and repartition.

Computational algorithm

The computational algorithm to find the solution (i,f\) of an equality constrained QP is explained

below.

Step 0: Preliminaries

() Whenm=0,letQ=LZ=1 gq =g and U the Cholesky factor of G, ie. G=U'U. T, Y,
Gy and Gy are empty matrices. Go to step 3.

(i) When a constraint is added to the active set, update Q, T ,U, Gyy,Gzy and gq -
(i) When a constraint is deleted from the active set, update Q, T ,U, Gyy, Gzy and gq .

(iv) Test for linear dependence of the constraints in the active set. If the constraints are linearly
independent, go to step 2. Otherwise, calculate the coefficients, r, that express the linear

dependence. Go to step 9.
Step 1: Initialization
(i) Check for errors in the input dimensions. Go to step 9 if an error is encountered.
Step 2: Solve for py
() Solve Tpy =b for py.

(1) Ifm=n, go to step 5.
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Step 3: Compute Gzypy +87
() Let g=Gzypy +8z.
Step 4: Solve for py
(i) Solve (UTU)pZ =-g for p;.
(Note: When m = 0, solve Gx =-g for X .)
Step 5: Compute G;Yf)z + szYf)Y +gy
i) Ifm=0,gotostep 7.
() Let d=Gzyps +GyyPy +8y
Step 6: Solve for the Lagrange multipliers A
(i) Solve TTA=d for A
Step 7: Solve for x
(i) Ifitis not necessary to calculate X, go to step 8.
(i) Calculate % = Qp = Zp, + Yy
Step 8: Calculate the objective function q(X )
(i) Calculate q(x)=0.5 (fxf{d +g£f)) = O.S(g;ﬁz +(gY + d)Tf)Y)
Step 9: Exit subroutine
(i) Stop.

G.4 DUAL ACTIVE SET ALGORITHM

The algorithm given below follows the dual approach described in the previous sections for convex
quadratic programming problems (refer to Goldfarb and Idnani [83GO1m] and Powell [83PO2m,
85PO1m]).

Step 0: Initialization
(i)  Check for errors in the input dimensions (e.g. meq >n)

(i) Find the reciprocals of the lengths of the constraint normals. Go to step 9 if a constraint is

infeasible due to a zero normal.



(i)
)
W)
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Store the original G-matrix and the g-vector.
Form the Cholesky decomposition of G. If G is not positive definite, go to step 9.

Find the unconstrained minimum of problem (G.1). Go to step 5.

Step 1: Solve the equality constrained QP problem (section G.3)

)
(1)

(1)
()

| Solve problem (G.7), the equality constrained QP problem.

If an error occurs in the input dimensions of the routine that solves the equality constrained QP

problem, go to 9.
If the constraints in the active set are linearly dependent, go to step 7.

If the calculation is successful, go to step 2.

Step 2: Test for dual feasibility

(¥

(i)

If all the Lagrange multipliers of the inequality constraints contained in the current active

(working) set are greater than or equal to zero, dual feasibility is achieved. Go to step 5.

If one or more of the Lagrange multipliers contained in the current active set is negative, go to

step 3.

Step 3: Determine the largest step size to retain dual feasibility (partial step)

@

(i)

Perform a line search with the Lagrange multipliers of the inequality constraints contained in
the current active set and determine the first inequality constraint to become inactive (Lagrange

multiplier equals zero, refer to equation (G.6)).

Calculate the new Lagrange multipliers with the partial step taken in the dual space.

Step 4: Drop the inactive inequality constraint from the active set

(M)

(i1)

(i)

Drop the inequality constraint which becomes inactive (Lagrange multiplier equals zero) from

the current active set (reduce the active set).

Store the values of the Lagrange multipliers of the inequality constraints in the reduced active

set.

Go to step 1.

Step 5: Test for primal feasibility

®

If the number of constraints in the active set equals the total number of constraints, the current

solution is both feasible and optimal. Go to step 8.



(i1)
(ii)

(v)
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Test all the inactive constraints for feasibility.

If no constraint violations occur, the current solution is both feasible and optimal. Go to step

8.

If one or more of the constraints is violated, a feasible solution has not yet be found. Store the

index of the most violated constraint and go to step 6.

Step 6: Add the violated constraint to the active set

(®)
(1)
(iif)

(v)

Add the violated constraint to the active set (enlarge the active set).
Set the Lagrange multiplier of this constraint equal to zero.

Store the values of the Lagrange multipliers of the inequality constraints in the enlarged active

set.

Go to step 1.

Step 7: Linear dependent active set

®

(ii)

(i)

(v)

V)

If a violated equality constraint in the current active set is linear dependent on the other

" constraints in the active set, the QP problem is infeasible. (An equality constraint, once added

to the active set, can never be dropped.) Go to step 9.

If the constraint violation and the coefficient expressing the linear dependence of the

constraints have similar signs (refer to [83GO1m], theorem 2). The QP problem is thus

_ infeasible. Go to step 9.

Drop the inequality constraint with the largest coefficient expressing the linear dependence

from the current active set i.e. reduce the active set (step in the dual space).

Store the values of the Lagrange multipliers of the inequality constraints in the reduced active

set.

Go to step 1.

Step 8: Store the Lagrange multipliers

(©)

Store the Lagrange multipliers of the active constraints. The inactive constraints have zero

Lagrange multipliers.

Step 9: Return to caller program

(¥

Stop, return to the caller program and indicate the reason for the return. The following cases

can occur:
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(a) Successful completion of calculations
(b) Error in input dimensions

(c) Inconsistent constraints

(d) Infeasible QP problem

(e) Matrix G is not positive definite

G.5 EXTENSIONS TO THE DUAL ACTIVE SET ALGORITHM

The dual algorithm described in the previous section is modified in several ways which result in

computational advantageous for application with the SQP method and as a general solution

technique. Gill et al. [85GIlm, 86GI1Im] discuss the benefits (e.g. reduction in Linear algebra

computations) of designing and implementing a specialized QP algorithm intended for use within

SQP methods. These developments are motivated by the special features of the QP subproblems

associated with the SQP methods. A specialized QP algorithm can also be used on general problems

with equal success. The modifications are:

(D

2)

The x-values are only calculated when necessary. The Lagrange multipliers are used as the

decision variables in the dual active set algorithm and the x-values are only needed for testing
primal feasibility. '

Goldfarb and Idnani [83GO1m] remarked that the active set at the optimal solution of the QP
subproblem in Powell’s SQP method [82PO2m] tends not to change very much from one
iteration to the nexf. This means that a good estimate of the active set of the QP _subproblem
will often be available before the QP subproblem is solved. The major work within a general

QP algorithm is to identify the correct active set.

To take advantage of this, the dual algorithm is executed in two passes on every iteration of
the SQP algorithm. An active set, containing only the equality constraints are assumed for the
first iteration of the SQP method (initialization). In the first pass all the active constraints of
the previous iteration of the SQP method are considered when testing for primal feasibility.
The first violated (normalized violation), rather than the most violated constraint is added to
the current active set. In the second pass all the inactive constraints are tested for primal
feasibility and the dual algorithm is started from the optimal solution obtained in the first pass.
The most violated constraint (normalized violation) is added to the active set in the second

pass. The indices of the active constraints of the previous SQP iteration must thus be available

for its next iteration.
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This procedure where the active set at the solution of eacp QP subproblem is used as a
prediction of the working set of the next, is referred to as the “warm start” procedure. Since
the active sets eventually do not change, the effect of the warm start procedure is that later QP
subproblems reach optimality in only one iteration. Using warm starts can greatly reduce the

QP problem solution time [78GI1m, 83GO1m, 85BIle, 85GI1m, 86GI1m].

(3) All the constraint equations are scaled to a magnitude of about unity by using some typical
values of problem parameters. With this approach it is easier to check for linear dependence of
the constraint gradients during the solution process. The QP subproblem is also solved in
terms of the dual variables. These schemes make the QP problems well scaled and numerically
stable. The normalized constraint violations, rather than the unscaled constraint violations, are

compared with each other in order to determine which constraint to add to the active set.

(4) The constraint updating formulae use stable and efficient updating procedures (also refer to
[94KAle]). Givens rotations are used to introduce zeros in the required positions of the
matrices to be updated when the active set changes from one iteration to the next. Powell
[85PO1m] states that the Goldfarb and Idnani [83GO1m] implementation of the dual algorithm
can become unstable under certain conditions. Powell [83PO2m, 85PO1m] implemented this
dual QP algorithm for convex quadratic programming calculations.

Schmid and Biegler [94SC1le] discuss several modifications made to the dual algorithm of Goldfarb
and Idoani [83GO1m] when it is used with reduced Hessian SQP methods. These modifications
include, for example, a warm start option, the special treatment of the doubly-bounded constraints

(e.g. variable bounds) and the handling of infeasible QP problems.

The dual QP algorithm explained in this appendix and ZQPCVX [83PO2m, 85PO1m] will be used in
the computational procedures. The major difference between the two algorithms are the updating
methods used to account for the addition to and removal of constraints from the active set. Our
algorithm employs the methods proposed by Gill et al. [84GI1m], while ZQPCVX uses the methods
of Goldfarb and Idnani [83GOlm)]. Furthermore, ZQPCVX will be treated as a “black box”,
whereas our algorithm makes use of the special features of the QP subproblems associated with SQP
methods. It is expected that ZQPCVX will be faster than our algorithm due to the matrix updating
and transformation methods used. However, our implementation, using orthogonal transformations,
will be more stable. ZQPCVX does not employ any of the modifications to the dual QP algorithm as

discussed above.
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APPENDIX H

SUCCESSIVE QUADRATIC PROGRAMMING ALGORITHM

H.1 INTRODUCTION

A variety of successive quadratic programming (SQP) methods have been developed and used for
solving nonlinear programming problems, e.g. [63WIlm, 72BI1lm, 76HAlm, 78PO1m, 85NO1m].
SQP methods usually require fewer function and gradient evaluations when compared to other
nonlinear programming methods. Varous different numerical implementations of the SQP algorithm
can be found, e.g. [78PO1m, 82P0O2m, 86LIle, 86SClm]. The fundamental differences between
these algorithms and the numerical implementations based thereon, are the definition of the QP
subproblem to be solved at | each iteration and the descent function used during the step size
calculation. The performances of these algorithms are mainly influenced by the implementation and
execution of the above-meﬁtidned differences. In this section we will discuss the numerical
implementation of the SQP method as proposed by Powell [78PO1m, 82PO1m, 82PO2m]. Both
implementations of Pow_ell are used in this study: [78PO1m] for the reduced Hessian or general SQP
methods and [82PO2m] for the general SQP method only.

H.2 ALGORITHM

Powell has written two FORTRAN subroutines VF02AD [78PO1m] and VMCWD [82PO1m,
82PO2m] that implement the Wilson, Han and Powell SQP algorithm. VMCWD is basically an
extension of VF02AD to overcome the algorithmic disadvantages of cycling and the Maratos effect
[79CH1m, 82CH1m, 82PO1m]. The SQP algorithm can be outlined as follows:

The nonlinear programming (optimization) problem to be solved is formulated as [87FL1m]

Minimize f(x)=£(x;,%;,...,%,)
X

subject to the constraints , - (H.1)
¢;(x)=0, i=1...,m,

ci(x)20, i=mg+1,...,m

where x = (xl,xz,...,xn) is a vector of variables, called the decision variables. It is assumed that

the bounds on the variables are incorporated into the inequality constraints. The Lagrange function

of the problem stated above has the form
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L(x,A) = f(x)—ékici(x) (H2)

where A= (?\,1,7»2,...,?»,]1) are the Lagrange multipliers (Kuhn-Tucker multipliers) of the

constraints. The gradient of the Lagrange function is given by
m
V,L(x,A) =V f(x)- Z} AV ici(x) (H.3)
i=
The Hessian of this Lagrange function is given by
V2L(x,A) = V2E(x) = 3" 2,v2c, (x) (HL4)
i=1
We are now able to state Powell’s implementations of the SQP algorithm (VF02AD and VMCWD):
Step 0:  Initialization
Set the iteration counter k to 0
Initialize the approximation to the Hessian of the Lagrange function of the nonlinear programming
problem, B® =1

Choose a starting point x = x©

Choose a convergence tolerance, €
Step 1:  Compute the objective function and its gradient, the constraints, and the Jacobian matrix
Evaluate £ . v s ¢ , ve® at x®
Ifk < 1 go to step 3; otherwise go to step 2.
Step 2:  Update the approximation to the Hessian of the Lagrange function
The BFGS quasi-Newton update formula with Powell’s positive definite correction is used to

update B [78PO1m]. The BFGS update builds the approximation to ViL(x,A) directly using

only first order information. On the first iteration this matrix is initialized to the identity matrix.

Thereafter, the following formula is used:

k1) (k—1) < (k-1 T (k— K. (KT
50 _ ey BEDBEDEDTRAD | @0 ®
5 (DT g(k-D)5 (k=D 5T, )

where
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k = the iteration counter
5&-D _ (00 _ (kD) _ (k=D (k=D

0 quxaq, A(kf1>) _ VXL(x““D, A(k—l))

n® =y ® +(10-0)B* V5D
8=10 if 8% DTy ® > o35k DTglk-Dgk-1)
085K DTgG-Dg k=D

9=
5 DTgkDg (D _5(-DT, ®)

otherwise

Step 3:  Solve the QP subproblem and evaluate the Lagrange multipliers

Powell proposes the following QP subproblem to be solved at each iteration:

T
Minimize VE{x) s® +05 s M
S
subject to the linearized constraints

T
ci(x(k))+Vci(x(k)) s& =0, i=1,...,my

T
ci(x(k))+Vci(x(k)) s(k)ZO, i=my +1,....m

(k)

The solution of the QP subproblem gives the search direction at the current iteration, s* ', and

the Lagrange multipliers, A®  Powell’s SQP implementations used a primal quadratic

programming package contained in the Harwell subroutine library.

Powell observed that the linearized constraints can be inconsistent, even if the nonlinear
constraints of the original problem are consistent and define a feasible region and a solution.
Powell has recommended the introduction of a dummy (feasibility) variable, &, such that the QP
subproblem becomes:

T
Minilanize Vf(x(k)) s 1 0.5s00TglogM0 _ ag
S’

subject to the linearized constraints

. T
F,ci(x(k)) + Vci(x(k)) s& = 0, i=1,...,my

k 0\l (& :
é’;ici(x( ))+Vci(x( )) s¢ )20, i=mg +1,...,m

0<E<1

where a is set to a large positive number (106, for example). &; =1 for the inequality constraints

that are satisfied, and &; =& otherwise. & is made as large as possible within the range 0<£ <1
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by setting the gradient of the objective function with respect to & to a large negative number. The
elements in the extra column and row of B for £ are set to zero. If & = 1, the original problem is
obtained. Ifno solution is found for the QP, & < 1 will allow additional freedom to find a search
direction to the modified problem. Ifno solution can be found with & > 0, then the algorithm fails,

jie. £=0=>s® =0.

Step 4:  Check for convergence

+

T
If the convergence criterion is satisfied, i.e. [lVf(x(k)) s

gkici(x(k))

}Ss, set x*=x®

and A*=A® . Goto step 6.

Step 5: Calculate the line search step length parameter

Perform a line search along the search direction, s , to determine the value of o e[O,l] such

that the chosen merit function satisfies the following inequality:

‘I’(x(k) +a(k>s(k),i(k)) S\F(x(k),X(k)) +01a®p®

where B(k) is an approximation to (%\E) (B(k) & ‘P(x(k) + s(k), X(k)) - ‘P(x(k),x(k))).

O/ =0

In the line search a step length of one is tried mitially, but it is reduced if the above inequality is
not satisfied.” A quadratic approximation of the merit function using two function values and its

slope at the current point is constructed. A suitable value of a® s obtained by means of
quadratic interpolation and its value is not reduced by more than 10% per line search. If five step
length reductions are insufficient, there is an error return from the subroutine. The line search

uses a L, -exact penalty function as a merit function, i.e.
- . Meq _ m
lI’(X, 7&) = f(X) + Z kilci(x)‘ + z xi‘max[o,— Ci(X)]I
i=1 i=tq +1

where Xi are the constraint weighting factors which are functions of the Lagrange multipliers at
the solution of the QP. On the first iteration, they are set equal to the absolute value of the

Lagrange or Kuhn-Tucker multipliers, i.e. Xi = Iki

, i=1,...,m. After the first iteration,

Xi“‘) = max{ Xi(k)

; O.S(Xi(k_l) +‘li(k)’)}
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The requirement of a decrease in the merit function at every iteration may sometimes inhibit the
superlinear rate of convergence of the SQP method. This phenomenon is also known as the
Maratos effect and causes slow convergence. Furthermore, the technique for adjusting the
constraint weighting factors during line search may give rise to cycling. Powell [82CHlm,
82PO1m, 82PO2m] implemented the watchdog technique in VMCWD to remedy these
disadvantages. Here the step size is chosen by reducing either the Lagrange function or the line
search objective function during the line search. This technique allows the line search objective
function to increase on some iterations. However, the line search objective function must be
reduced every t iterations (t > 2); otherwise a restart is required from the previous point if no

reduction occurs.

The choice and adjustment of the constraint weighting factors, X, are also done according to
different prescribed conditions in VMCWD: Before the first iteration all the values of A are given

tiny positive values, in case the objective function is constant. If the search direction s® of an

iteration satisfies the condition

s(“>TVf(x(k>) +05s0TgM) < g

then no change is made to A8 Otherwise we require the inequality

&k k = =~(k O\ <k K kf K
Z"i( )ci(x( ))‘+ Zkf )max[O,—ci(x( ))]—Zkg ).ci(x( ))+s( ) Vci(x( ))>
i=1 i=m,, +1 =1

m o~
W max[O, - ci(x(k)) - s(k)TVci(x(k))] > B(k)ls(k)TVf(x(k))'

i=mgq+1
to hold, where B(k) is a positive constant. If the A& that is set at the beginning of the iteration
satisfies this condition when B(k) =15, then 2% is not altered. Otherwise the fo]lowing
procedure is used to obtain a value of X(k)_ such that the above inequality holds for B(k-) =20.

The increase in B(k) ensures that at least one component of AW s multiplied by a number that

exceeds 1.333.
Fori=1,...,m we let A; be the Lagrange multiplier of the i-th constraint at the solution of the QP
subproblem that determines s® . For each i we leave Xi unchanged if increasing its value would

not increase the left hand side of the above inequality. Otherwise Xi is given the value
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M|

where the positive parameter v, which is independent of i, is determined by the condition that the

Mitnew) = max{)"i(old) Y

above inequality is satisfied as an equation when B(k) =20.

(k+1)

After a suitable choice of o™ , the next point, x , is calculated from

LD 00 B0

Increment the iteration counter k, i.e. k=k + 1
Go to step 1 and repeat the calculations.
Step 6:  Return to the caller program

Stop, return to the caller program and indicate the reason for the return. The following cases can
occur:

(a) Optimization completed suécessfu]ly

(b) Maximum number of function calls reached

(c) Line search required 5 function calls

(d) Uphill search direction calculated

(e) Constraints seem to be inconsistent

(f) Not enough working space reserved

(g) QP algorithm failed to find a solution

Augxiliary subroutines

The user must provide a subroutine called CALCFG to define the objective and constraint functions
and their gradients for any vector of variables. The user can also provide his/her own QP subroutine
to solve the subproblems at each iteration. Powell’s original SQP implementation uses a primal QP
method from the Harwell library.

H.3 MODIFICATIONS TO THE SQP ALGORITHM

Several modifications were made to Powell’s SQP algorithm, VMCWD [82PO2m], which will be

discussed below.
(1) Quadratic programming routine

The solution of the QP subproblem is a major calculation in SQP methods and can affect the overall

efficiency of the SQP method. SQP methods require the solution of strictly convex QP subproblems
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to determine the direction of search at each iteration. Powell [82PO2m] noted that a more accurate,

efficient and reliable QP algorithm is desirable for solving the subproblems.

The most significant change to Powell’s implementation is the change in the algorithm to solve the
QP subproblem. The feasible point primal QP algorithm normally used with Powell’s SQP
implementation is replaced by a dual QP algorithm for convex quadratic problems based on the
method of Goldfarb and Idnani [83GO1m] (refer to Appendix G). The dual QP subproblem has only
simple constraints on the dual variables (Lagrange multipliers). The active set seems not to change |

very much from one iteration to the next iteration [83GO1m].

Gill et al. [85GIlm, 86GIlm] state that substantial gains in efficiency of the linear algebra
calculations can result from a suitably tailored QP algorithm for use with SQP methods. The dual
QP algorithm explained in Appendix G is extended and includes special features such as the warm
start procedure. Since the iterations of a QP method are essentially a search for the correct active
set, it is computationally highly desirable to exploit this information. Further discussions on
specialized QP algorithms for SQP methods can be found in Gill et al. [85GI1m, 86GI1m].

(2) Evaluation of derivatives

VMCWD requires that the gradients of the objective and constraint functions be calculated even
during line search iterations. Since this information is only required on the last line search point (the
new point), a modification was made so that the values of the objective function and the constraints

and their corresponding gradients can be calculated only when required.

(3) Modification of the objective function

The dual QP algorithm requires a strictly convex objective function. Therefore, the term —10°¢
added to the objective function in Powell’s original code is replaced by 0.5x 106&_2 —-20 X 106.§ as
suggested by Goldfarb and Idnani [83GO1m]. The elements in the extra column and row of B fof <
are set to zero, except for the last element in this column and row which becomes 10§. :

(4) QP algorithm failed to find a solution

When the QP algorithm fails to find a solution, an error return from VMCWD occurs to enable the

user to modify some input parameters and restart the optimization process.



Stellenbosch University https://scholar.sun.ac.za

H.8
(5) Auxiliary subroutines

The user is responsible for the calculation of the objective and constraint functions, as well as their
gradients. Therefore, the problem structure should be exploited to perform these calculations as
efficiently as possible and the corresponding subroutine should be developed with this goal in mind.

The first-order derivatives that are needed by the SQP method are calculated by means of the finite

difference derivative approximations outlined in Dennis and Schnabel [83DE 1m].
(6) Large-scale nonlinear optimization problems

Although the SQP method performs very effectively on small to moderately sized problems, the
computational and storage requirement can become quite excessive for large sized problems. The
SQP method however, can be extended to solve large-scale problems by means of reduced Hessiaﬁ
SQP decomposition methods. The structure and implementation of VMCWD make it too difficult to
adjust and use with the reduced Hessian SQP decomposition methods. All the modifications to
VF02AD, e.g. the watchdog technique etc., were removed from VMCWD to obtain a representation
of Powell’s original SQP implementation [78PO1m]. The resulting subroutine is used as the basis
for the implementation of the reduced Hessian SQP decomposition methods. All the modifications
discussed above are also contained in this SQP algorithm. Reduced Hessian SQP decomposition
methods are treated in detail in Appendix L |

Arora [86AR2e, 89AR1e] and Thanedar et al. [86TH1e] discuss a potential constraint sfrafegy n
whi-ch only a subset of the original constraints is used to define the QP subproblem. This strategy is

motivated by the fact that only a subset of the total number of constraints is active at the optimum.
| Such a strategy only requires gradient computations of those constraints that play a role in deciding
the optimum solution. The number of constraints used to define the QP subproblem to be solved at
each iteration are drastically reduced when compared to the original problem. These authors state
that certain large-scale engineering optimization problems cannot be solved without a potential
constraint strategy. This modification is not implemented mn the current study, but may prove to be
worthwhile for large-scale engineering optimization problems containing very large numbers of

mequality constraints.

SQP methods usually requiré fewer function and gradient evaluations when compared to other
nonlinear programming solution techniques. They have desirable properties such as, for example
global convergence and only first order information is used in updating the Hessian of the Lagrange
function. However, SQP methods must be computationally properly implemented, to enable one to

fully exploit their advantages over other solution methods.
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APPENDIX 1

DECOMPOSITION OF LARGE-SCALE SUCCESSIVE QUADRATIC
PROGRAMMING PROBLEMS

I.1 INTRODUCTION

The successive quadratic programming (SQP) method has emerged as the preferred algorithm for
solving nonlinear programming (optimization) problems with a small to moderate number of
variables. It consistently requires fewer function evaluations per iteration than other solution
methods (e.g. reduced gradient methods). The basic step in the SQP algorithm is the formulation
and solution of a quadratic programming (QP) problem. Aside from the effort required for function
and gradient evaluations, this is the most time consuming step for the algorithm. This operation
requires the storage and updating of the Hessian matrix of the Lagrange function of the original
nonlinear programming problem at each iteration, which is of the order of the number of decision
variables. Therefore, when the size of the nonlinear programming problem becomes large,
considerable storage and computational overhead are required. To extend SQP to large systems,
two approaches have emerged recently, i.e. either exploiting the natural problem structure or
decomposition techniques [80BEle, 82GA1lm, 83LOle, 85NOIm, 88VAle, 89GUlm, 90LU1é,
90VAle, 92BIle, 93SCle]. |

In the first approach, advantage has been taken of the quasi-Newton updates so that they are stored
and evaluated in an efficient manner. The QP methods have also been tailored to take advantage of
the system sparsity. The second approach exploits the fact that while the optimization problem with
m active constraints and n variables can be very large, few degrees of freedom are generally present.
Thus, decomposition strategies can be applied to reduce the size (dimensionality) of the quadratic
subproblem. This approach considers a much smaller QP problem with a reduced Hessian matrix in
the reduced space, where the number of variables is equal to the degrees of freedom of the problem,
n—-m. The reduced Hessian is expected to be positive definite at the solution and can consequently

be approximated by positive definite Quasi-Newton formulae, such as BFGS [87FL1m].

This study will concentrate on decomposition strategies since they are better suited to general-

purpose problems than the first approach. Powell’s implementation of the SQP method [78PO1m]
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will be used as the basis for the implementation of the reduced Hessian SQP decomposition

strategies.
L2 DECOMPOSITION STRATEGIES FOR SQP

Several SQP decomposition algorithms have been proposed that reduce the size of the QP
subproblem by eliminating dependent variables and equality constraints. Berna et al. [80BE1le] and
Locke et al. [83LOle] proposed decomposition strategies that are modifications of Powell’s SQP
algorithm [78PO1m]. The decomposition of Bema et al. [S0BE1e] is difficult to implement and still
requires a large amount of storage. The decomposition strategy of Locke et al. [83LOle]
overcomes these difficulties. The variables are partitioned into dependent and independent (decision)
variables. The equality constraints are used to “eliminate” the dependent variables and the QP
problem is solved in the decision variable space only. Thus the algorithm is similar to the generalized
reduced gradient algorithm [87FL1m], which also eliminates the dependent variables and the equality
constraints from the optimization problem. Unlike this method, the algorithm proposed by Locke et
al. [83LO1e] does not converge the constraints before eliminating them. Rather, it “eliminates” the
constraints based on a linear approximation of the constraints, thus performing one Newton-Raphson
iteration towards converging the constraints. The decrease in the number of variables in the QP
subproblem results in substantial savings in the storage requirements for the approximate Hessian
matrix and in the computation time for updating the approximate Hessian matrix.  This
décomposition strategy uses coordinate bases matrices. While this decomposition method is in itself
efficient, it frequently requires more iterations than the full SQP method and in some instances leads
to inconsistent convergence results [88VAle, 93SCle]. The algorithm of Locke et al. [83LOl1e] is

also very sensitive to variable partitioning.

Vasantharajan and Biegler [88VAle] proposed a decomposition strategy using orthogonal bases
representations to remedy this difficulty. Although the computational effort per iteration is higher in
this case, especially as the number of degrees of freedom increases, the resulting SQP performs
better. However, orthogonal projections are not always easy to adapt to the mathematical structure
of the model under consideration [93SCle]. Coordinate bases decomposition strategies are the best
suited to take advantage of the underlying mathematical structure of the model. Schmid and Biegler
[93SCle] improved the coordinate bases decomposition strategy of Locke et al. [83LOle] to

guarantee consistent convergence results and reduce its dependence on variable partitioning.
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1.3 COORDINATE BASES DECOMPOSITION METHOD

The improved coordinate bases decomposition algorithm will subsequently be explained (refer to

[88VAle, 93SCle)).
The nonlinear optimization problem to be solved can be formulated as
Minimize f(X,Y)
Xy

subject to the constraints

ci(x,y)=0, i=1...,mg 1)
ci(x,¥)20, i=mg +1...,m,
h(x,y)=0

where

f objective function (e.g. cost function)

X (n-r)-component vector of independent variables (e.g. geometrical variables) |
y  r-component vector of dependent variables (e.g. operating variables)

general constraints (e.g. geometric constraints or feasibility inequalities)

h  r-component vector of equality constraints (e.g. balance equations)

T number of equality constraints, h

m,, number of general equality constraints

&q

m, total number of general constraints

n total number of variables
It is assumed that the problem is formulated in such a way that, for fixed x values, it is possible to
determine y (r-component vector) by solving the equality constraints, h(x,y) =0, that describe the

physical model to be optimized. This procedure is known as the sequential or feasible path method.
However, we use the infeasible path integrated approach where x and y are adjusted simultaneously
and all the equations need only to be satisfied at the final solution. It is assumed that any bounds on

the variables are incorporated into the inequality constraints.

The Lagrange function of the problem stated above has the form

L(x, y,u, v) = f(x,y) - uTc(x,y) - vTh(x, y) (L2)
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where v and u are the Lagrange multipliers (Kuhn-Tucker multipliers) of the equality and general
constraints respectively. SQP is motivated by a Newton method for the solution of the Kuhn-Tucker
optimality conditions. This can be shown to be equivalent to the solution of a séquence of QP

subproblems. At each major SQP iteration the values of (x,y) are fixed and the resulting QP

subproblem has the form:

Minimize V£(x,y) s+05s Bs

subj esct to the linearized constraints

ci(xy)+Vei(x,y) s=0, i=1,...,my (L3)
ci(%y)+Vei(x,y) 520, i=mg +1,...,m

h(x, y) + Vh(x, y)Ts =0

where s is the search direction and B is an approximation to the Hessian of the Lagrange function

(equation (1.2)). Convexity of problem (I1.3) is guaranteed by calculating B using the BFGS matrix
update formula with Powell damping [78PO1m]. The Lagrange function of this QP subproblem is

L(s,,9) = V{(x, y)Ts +05s Bs— ﬁT[c(x, ¥)+Ve(x, y)T s]

: ‘ . L4

T [h(x, y) + Vh(x, y) s]

where v and u are the Lagrange multipliers of the equality and general constraints respectively.

These Lagrange multipliers approximate the values of v and u during the SQP iterations. At the

optimal solution the Lagrange multipliers of the subproblem, v and u, are exactly equal to the

Lagrange multipliers of the original problem, v and u.

At each iteration, the following first-order Kuhn-Tucker optimality conditions for equation (1.3) (QP
subproblem) must be satisfied:
VE(x,y)+Bs—Ve(x,y) i - Vh(x,y)v=0
ci(x,y)+Vci(x,y)Ts =0, ied
ﬁi[ci(x, y)+ Vci(x,y)Ts] =0, i=mg+l...,m (L5)
U; 20, i=mg+1L...,m

h(x,y)+Vh(x,y) s =0

where A is set of general constraints which are active at the current iteration (satisfied as equalities).

The active set consists of m general active constraints. Let ¢, present the vector of general active
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constraints at each iteration. The above first order necessary conditions for the QP subproblem can

be presented in matrix form as follows:

B -Ve, -Vh][s] [-vf
Ve, 0 0 ||a|=] c, (16)
-vh 0 0 ||v h

where Ve 4 and Vh are n x m and n x r matrices respectively. B is a dense n x n matrix that must be

updated, factored and stored at each iteration. As the size of the nonlinear programming problem in
equation (I.1) increases, the solution of the QP subproblem becomes increasingly expensive. The
performance of this method can be considerably improved through a suitable change of bases
representation [88VAle, 93SCle]. The new bases vectors are obtained by partitioning the search

space into two subspaces which are spanned by the columns of matrices Z and Y, respectively,
where Z is chosen so that its columns span the null space of Vh(x,y)T , Le. Vh(x,y)TZ =0 (where
Z is a nx(n-r) matrix and Y is a nxr matrix). It is assumed that the rank of Vh(x,y)T isr. Several

distinct choices of the bases matrices, Z and Y, can be made such that [Y Z] is non-singular (spans

the entire search space). These choices include orthonormal, orthogonal and coordinate bases
[93SCle]. After the decomposition, the matrix to be updated is a projection of B onto a space
whose dimension is given by the number of 'degrees of freedom of the problem. The actual projected

Hessian matrix is expected to be positive definite at the solution, which is sufficient to guarantee

optimality.
The variables are partitioned into the dependent variables, y e R*, and the independent variables, -

x eR®™ . The decomposition method that corresponds to the coordinate bases method is obtained
when the following choice is made for Z and Y (Z represents the influence of h(x,y) = 0 in the
reduced QP subproblem):

Z=[ TI‘1 le Y=[O} - (L7)
~{v,bT) VT | I | | .

The search direction, s, can be expressed as the sum of its components in the two subspabes, Le.
s= YSY +ZSZ (18)

Let Q be a non-singular matrix of order (n + m + r) given by
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YZO0O
Q={0 010 (19)
000TI

Premultiplying equation (1.6) by QT and substituting for s (equation (1.8)) yields:

Y'BY Y'BZ -Y'Ve, -Y'Vh|[sy]| [-Y'Vf
'8y 72'BZ -7z've, o ||sz| |-Z'Vf L10)
—vely -veiz 0 0 u 4 ‘

—vhly o 0 0 h

<)

The Lagrange multipliers of the equality constraints, v, can be obtained from the solution of (the
first row of equation (1.10)):

Y'BYsy +Y ' BZs, -Y'Ve, i-Y'VhV =-Y'VE (L11)

Exact values of these multipliers are only required at the solution of the nonlinear programming

problem. As the algorithm converges, s — 0 and equation (I.11) can be simplified to
~Y'Vhy=-Y'VE+Y Ve, i (1.12)
The second and third rows of equation (I1.10), namely

2"BZs, +(ZTBYSY + zTVf) ~Z2'Ve ;i=0
(113)
N +Vc£YsY +Vc£ZsZ =0

are the optimality conditions of the following reduced QP subproblem to be solved at each iteration:

. T Toe) ! T,T
Minimize |Z BYsy +Z Vf| s; +05s;Z BZs,
Sz

subject to the constraints " (114)
C; +VciT(ZsZ +YsY) =0, i=1L...,my

C; +VC?(ZSZ +YSY) =0, i= meq +1,.. .,y
where sy is obtained from the last row of equation (I.10):
T —1
Sy = —(Vh Y) h (L15)

The search direction for the dependent variables satisfies the set of linearized equality constraints.

Problem (I.14) may be solved to obtain s; and u (Lagrange multipliers of the general constraints).
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The Jacobian matrix of the equality constraints, h, can be written as

V,h
Vh = [ } (116)

V,h

Due to the particular choice of Y, Y'Vh is now simply equal to Vyh. Any sparsity and structure

of the equations that describe the model is thus maintained and it is thus straightforward to tailor this
algorithm to take advantage of the particular structure of certain problems classes which can greatly
improve the performance of SQP. An additional benefit is that coordnate bases require less

computational effort per iteration than the other decomposition methods.
Equation (I.12) now simplifies to

~Vyhv =-V,f+Vye u v(I. 17)
and equation (1.15) simplifies to
\-1
sy =—(Vyh") b (L18)

The coordinate bases decomposition strategy is computationally the cheapest decomposition method
and allows us to exploit the particular structure of the model when calculating sy [93SCle].. This

method is therefore preferred for large-scale optimization problems.

The matrix Z BY contained in the objective function (equation (I.14)) can become too large to
store or to compute when r becomes large. The term ZTBYsY can usually be neglected in the
objective function when orthonormal or orthogonal bases are used [88VAle, 93SCle]. The original |
algorithm proposed by Locke et al. [83LOle] also did not include this term. However, the
performance of the coordinate bases method using an objective function for the QP subproblem that
omits this term, depends to a large extent on the partitioning of the variables and can lead to
inconsistent performance of the algorithm [87KIle, 88VAle, 93SCle].

Schmid and Biegler [93SCle] propose an improved coordinate bases SQP algorithm which
constructs an approximation of the term ZTBYSY to enhance the performance of the original
algorithm. Three different approaches are considered, ie. the finite difference correction, the

Broyden update correction and the limited memory Broyden update correction. The finite difference

correction method yields the most consistent results, while the Broyden updates are computationally
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cheaper. Schmid and Biegler [93SCle] propose an update criterion which allows the algorithm to

determine at which iteration it requires the finite difference correction or the Broyden update.

The finite difference correction method will be considered in this study. A first order approximation

of ZTBYsY is given by a Taylor series expansion about the current point x:

Z'BYsy ~ Z7V?L(x,y,u,v)Ysy

~ Z VL(x,y +sy,u,v) - ZTVL(x,y,u,v) 1
where
VL(x,y,u,v) = VL(x,y,8,9) = V£(x,y) - Ve(x,y) i - Vh(x,y) v (1.20)
Since Z lies in the null space of Vh? , equation (1.19) becomes
Z"BYsy ~ZTVE(x,y+sy) -2 VE(x,y) - [Z7Ve(x,y +5y) - ZVe(x.y)|a wan

~Z Vh(x,y +sy)¥

This correction improves the convergence rate of the coordinate bases method. A disadvantage of

this correction method is the additional gradient evaluation to be performed at each iteration.

The Hessian matrix of the reduced QP subproblem, 7'BZ , can be approximated by means of the

BFGS quasi-Newton update formula as proposed by Powell [78PO1m, 83LO1le, 88VAle]. 7Z'BZ
is of much smaller dimension than the original full Hessian matrix B. This matrix is initialized to the

identity matrix and updated at each iteration.

The BFGS quasi-Newton update formula with Powell’s positive definite correction is used to update

)(0)

7'BZ [78PO1m]. On the first iteration, (ZTBZ = I. Thereafter,

[ VN (k-1)
(k=1) (ZTBZ) 5Dk l)T(ZTBZ) n(k)n(k)T
- 1.22)

(ZTBZ) w©_ (ZTBZ) +
50D (2Tpz) "5 st Ty(®

where (k) is the iteration counter and
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gD _ (0 _ (k-1 _ a(k_l)s(zk_l)
y® = (ZTBYsY +ZTVf)(k) _ (ZTVCA>(k)ﬁ(k‘l)
~(z7BYsy +ZTVf)(k_D +z"ve Aﬁ)(k—l)
n® = Oy o 4 (1L.0-6) (ZTnz)(k_l) 5D

0=10 if s& DTy 50, 8(“‘1>T(ZTBZ)(k—D5(k‘D

_ k-1 _
085k 1ﬂ(zﬁzz) 5k
0= otherwise

T (ke k=D _ - -
6(k l)T(ZTBZ) sD _ gk l)Ty(k)

The line search step length parameter, o, is selected from o™ €[0,1] such that the chosen merit

function satisfies the following inequality [78PO1m] (refer to Appendix H):

\P(x(k“),y“‘“’,ﬁ(k),v“") < lp(x<k)’y(k>’ﬁ(k),v(k)) +0100p® (123)

where (k) is the iteration counter,

(k+1) (%) ) s '
X X o (k) _| X (X) z '
= +o s = +a -1 (124)
L(ku)} L(k)] L(k)} sg«)_(vyh(m) v hTgo

and B(k) ~ ‘P(x(k) +s0 ’X(k)) - ly(x(k)";:(k))

The merit function has the form [78PO1m]
r T Meq m, N o
P(x,y,U,7) = f(x,y)+ > V; ‘hj(x, y)‘ +>° ﬁi|ci(x,y)| + > ﬁi‘max[O, -c(x, y)]| (L25)
j=l i=1 i=me,+1 - -

where U and V are the constraint weighting factors. On the first iteration, they are set equal to the

absolute value of the Lagrange or Kuhn-Tucker multipliers, i.e. V=|v|and W =[u|. After the first

iteration,
a® = max{{ﬁ“"‘, o.5(a‘k“> +a® ])}
(1.26)
7 = max{{v“) , o,s(v““‘) + v“"‘)}
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where (k) is the iteration counter. A value of a®=1is tried initially and it is reduced in an ordered

manner if the mequality (equation (1.23)) is not satisfied.

All the equality and inequality constraints are included in the merit function, equation (1.25), of the

L that scales the search direction in both x

nonlinear programming problem, because a suitable o
and y (satisfy equation (1.23)) must be found. A step in the direction of the solution is given such
that convergence of the model equations and the optimization problem will be reached

simultaneously.
L4 APPLICATION TO PRACTICAL PROBLEM

The problem formulation presented in equation (I.1) can be classified as the infeasible path integrated
approach, where the simulation (performance evaluation) model is included directly as a set of
equality constraints, h(x,y) =0, m the problem formulation and the operating variables, y, are
considered as decision variables [93SCle]. These model equations are then solved as part of the

optimization process. The operating variables, y, depend on the independent geometrical variables,

x. This formulation tends to disguise the variable dependence.

For the particular practical application under consideration (minimization of the power generation

cost), the vector of operating variables can be expanded as follows:

Y
Y2 1 I \ T

y = : = [yg ) s ygq) y(z ) vee y(zq) cee yg) ) e ygq) » (127)
¥p

where q is the number of variables contained in each vector, y;, j=1,...,p and pxq=r. The

partitioning of the variables into dependent and independent variables is also fixed in this particular
practical application. The performance evaluation model’s equality constraints can be expanded as

follows:
T T
h=[h1 h, - hp] =[h§l) - b® nd ... w® .. hg) h;q)] (128)

The structure of the performance evaluation model is such that h i j=L...,p, is a function of

(x, y j) only. This can be mathematically expressed as:

H (2 :
hj(x,yj)=0, or hgv)(x,yg),yg ),...,ygq))=0, j=L..,p; v=1...,q (1.29)
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Equation (I.1) can thus be reformulated as
Minimize £(X,Y1,¥2.--»¥p)
X,Y1»--Yp
subject to the constraints
ci(x,yl,yz,...,yp)=0, i=1...,mg
ci(x,yl,yz,...,yp)ZO, i=mg +1,...,m,
hj(X,yJ‘)=O, jzla"')p
Equation (I.16) can now be rewritten as
Vh _ _Vxh} _ I:Vxhl Vxhz e Vxhp}
_Vyh Vyhy Vyh, - Vih,
Vih;  Vih, Vih, Vb,  V.h,
Vy b Vy by yip Vi 0
= Vy?hl Vyz.hz Vy,bhy|=| O Vy,hy
_Vyphl Vyphz Vyphp_ I 0 0
and
Vyhy 0 0
0 V,.h 0
YiVh=vh=| ., 77 )
0 0 Vyphp

Furthermore, sy can be obtained by solving the following systems of equations

[ T
Vyhi 0 5P h,
0 V,h, 0 |[sP|_ |k
T (')
i 0 0 Vyphpj sY h,

which decomposes into p smaller systems: Vyihing) =-h

i

Z can be determined by solving (VyhT) A

(130)
Vih, ]
0 (L31)
0
Yy, |
(132)
(1.33)

i=1...,p.

-1
~V,h" for A=~(V,hT) Von' e
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vyhi 0 0 [[A] [v.n]]
0 V,h, - 0 [|A; V. h)
. 72 . =R (134)
: b »
0 0o - Vyphp_ A, | Vh, |
Thus,
.
Al
Z=|A, (L35)
_AP_

The above problem simplifications are possible due to the specific structure of the -original
engineering optimization problem. The block diagonal structure in equations (I1.33) and (1.34)

provide great computational advantages (e.g. solution techniques and storage requirements).
L5 ALGORITHM

The SQP algorithm of Powell with its modifications ([78PO1m], also refer to Appendix H), is used
as the basis for the implementation of the coordinate bases method. We are now able to state the

coordinate bases algorithm:
Step 0:  Initialization

Set the jteration counter k to 0

®
Initialize the projected Hessian (ZTBZ) =1

(0
Set (ZTBYSY) =0

Choose a starting point X = x(o), y= y(o)

Choose a convergence tolerance, €

Step 1:  Compute the objective function, constraints, Jacobian matrices, coordinate bases matrices,

and the range space search direction

Increment the iteration counter k, i.e. k=k + 1

Evaluate f(k) ] Vf(k) 3 h(k) 9 Vh(k) > c(k), Vc(k) at (x(k) >y(k))
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-1
Sotve (V,h®T) A% = -7, 0™ for A® = (v h®T) v, mOT

I 0
Set Z® = , Y=

Solve (Vyh(k)T) sg}( )= —n® for sg}(). The above two systems of equations can be solved

simultaneously by performing only one LU-decomposition of the augmented matrix

. k
[vyh(m i —vh®T 1 g )]

Step 2:  Evaluate the reduced gradients

Evaluate the reduced gradient: 2Ty - Vf ) 4 A(k)TVyf (k)
Evaluate Ve®TZ®) . v ®Tz® - ch(k)T +Vyc(k)TA(k)

Evaluate Vc(k)TY(k) : Vc(k)TY(k) = Vyc(k)T

Step 3: Evaluate the finite difference correction and update the approximate Hessian of the
Lagrange function

Ifk <2 go to step 4.

(k)
Evaluate (ZTBYsY) by making use of equation (L21).

()
Update (ZTBZ) by making use of equation (1.22).

Step 4:  Solve the reduced QP subproblem and evaluate the Lagrange multipliers

Solve the reduced QP subproblem, equation (I.14), to obtain the null space component of the
(k (k).

search direction, s ), and the Lagrange multipliers of the general constraints, u
i Toy|® (0 W0Tge®) (0, 05 ®OT(7Tpr)|© (©
Minjmize |(Z BY) s +Z20Tve® | sP +05sT(2BZ) s
Sz
subject to the constraints

cfk) + chk)T(ZsZ + YSY)(k) =0, i=1...,my

ka) +VC§R)T(ZSZ + YSY)(k) 20, i= Meqy +1:“‘7mt

Calculate the search direction, s10.
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(k)
(¥) (k) ) Sz
s =(ZLsz) T+ (Ysy) =
(25)™ +(¥sy) L@M(k)sg)]

Step 5:  Calculate the line search step length parameter

Solve equation (1.17) to obtain the Lagrange multipliers of the equality constraints, 7 ,Le.

Va0 = v 1901y (Pa®)

Perform a line search along the search direction, s(k), to determine the value of o™ e[O,I]
which minimizes the merit function according to the procedure described in equations (1.23),

(1.24), (1.25), and (1.26). With a suitable choice of o0 , increment x® and y(k) as follows:

(k+1) (k) (k) (I
X I S P CO MO e I (.Y Sz
y(k+1) y(k) y(k) sg) " A(k)s(zk)

Step 6:  Check for convergence

If the convergence criterion is satisfied, i.e. [’Vf (k)Ts(k)I +’ﬁ(k)Tc(k)l +lV(k)Th(k)l ]S €, stop.

Otherwise, go to step 1 and repeat the calculations.

In problem (1.30) the variable partitioning is fixed and its effect on the performance of the original
coordinate bases algorithm is unknown. As a result, the algorithm stated above is implemented in

(¥)
such a way that the term Z'BYs can be included or ignored during the computational
Y

process. The inclusion of this term will improve the convergence rate of the algorithm, but increases

its computational overhead.
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APPENDIX J

SCALING AND POST-OPTIMALITY ANALYSIS

J.1 INTRODUCTION

Suitable scaling of variables and constraints can dramatically improve the efficiency and accuracy of
optimization methods. The scale of a problem is the measure of the relative importance of the
variables and constraints. In a properly scaled problem, equal weight will be assigned to each
variable or constraint and as such, the implicit definitions of “large” and “small” are based on similar
grounds. The discussion of scaling in this section will be restricted to simple transformations of the

variables and constraints.

Post-optimality or sensitivity analysis is the study of the variation in the optimum solution as some of
the original problem parameters are changed. This analysis is helpful to estimate the effect of
parameter variation and changes in the constraint limits on the optimum solution without actually
solving the optimization problem again. The effects that changes of the constraint limits and some

problem parameters have on the optimum objective function will be discussed.

J.2 SCALING

In real world problems the dependent or independent variables may. differ greatly in magnitude.
Scaling of the variables by means of variable transformation to convert them to similar magnitudes
may enhance the efficiency and the reliability of the numerical optimization procedures. A badly
scaled problem is essentially an ill-conditioned problem. Badly scaled variables lead to ill-
conditioned Hessian matrices, while badly scaled constraints give rise to near singular Jacobian

matrices.

If typical values of all the variables are known, the variables are usually scaled to the order of unity in
the region of interest, thus giving them equal “weight” during the optimization process. Variables
can be scaled by means of a linear transformation of the form x = Dy, where x are the original
variables, y are the transformed variables and D is a constant diagonal matrix [81GI1m, 83DE1m)].
Unfortunately, this simple type of transformation has the disadvantages that some accuracy may be
lost during scaling and that the magnitude of the variables may vary significantly during optimization,
making the scaling harmful [81GI1m]. These disadvantages can be overcome if we know a realistic
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range of values that a variable is likely to assume during optimization. Suppose that the variable x;

will always lie in the range a; < x; <b;. A new variable y; can be defined as [81GI1m]

' Xy — O.S(ai +bi)
yi=
0.5(b; — a;)

, 1=L...,n J.1)

This transformation guarantees that —1<y; <1 for all i, regardless of the value of x; in the interval

[ai , bl-]. Transformation (J.1) can be written in matrix form as
x=Dy+c (J.2)

where D is a diagonal matrix and ¢ a vector. The values of the derivatives of the objective function

are also affected by this scaling method. Let g, and VGy denote the gradient vector and Hessian

matrix of the transformed problem’s objective function respectively. The derivatives of the original

and transformed problems are then related by [81GI1lm, 87FL 1m]
gy =Dg and G, =DGD (J.3)

Once the variables are transformed, the optimization can proceed in the scaled space. Once the
optimization is complete, the variables are unscaled to provide the final solution in terms of the

original variables.

The scaling of constraints has severalb effects on the computation of the solution and the
interpretation of the results. For example, the Lagrange multiplier estimates are dependent on the
* condition number of the Jacobian matrix of the active constraints. Furthermore, scaling also plays a
vital role in the choice of constraints to be added to, or deleted from the current active set.

Constraints should thus have equal weight in the solution process.

Linear constraints can be defined, either in terms of scaled variables or i terms of the original

variables. When using scaled variables to define the constraints, it should be noted that the different
variables in the same constraint function should be scaled within the same limits, [ai,bi]. When

using the original variables to define the constraint functions, the constraint functions can be divided

by suitable constants to scale them to the order of unity.

The objective function can also be scaled easily by choosing an appropriate constant with which it is
multiplied. As mentioned previously, scaling of the objective function and the constraints do not
alter the solution. The values of the Lagrange multipliers for constrained optimization will be
affected by these transformations. Consider the mathematical programming problem stated in

equation (2.1). The Lagrange function of problem (2.1) at the optimum point is
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m
L(x*, A %) = f(x*)- 3 A*c(x*) (1.4)
i=1

where A*=(A*,A,*,..., A ) are the Lagrange multipliers associated with the constraints.

When the objective function is multiplied by a constant, the Lagrange multipliers also get multiplied
by the same constant, i.e.

Replace f(x*) with a f(x*)

AEk gk G
AF=ad¥, 1=1..m

(1.5)

where Xi* is the optimum Lagrange multiplier of the scaled problem. When a constraint is

multiplied by a constant, its Lagrange multiplier gets divided by the same constant, i.e.

Replace ¢;(x*) with g;c;(x*)

. J.6)
A¥=A*/g, i=1...m

When both the objective and constraint functions are scaled, the values of the Lagrange multipliers of

the original unscaled problem can be obtained from
A¥=A*g/a, i=1...,m 37

In practice, the objective function, constraints and their derivatives are usually calculated m the
unscaled space and the optimization calculations performed in the scaled space. The above practicés
of variable and constraint scaling are used in the present study. The advantages, disadvantages and
the pitfalls involved in the scaling of the variables, objective and constraint functions are discussed in

detail in Gill et al. [81GI1m], Dennis and Schnabel [83DE1m] and Luenberger {84LU1m)].
J.3 POST-OPTIMALITY OR SENSITIVITY ANALYSIS

In this section we consider methods of estimating the approximate effect that some changes in the

problem parameters and constraints have on the optimum solution.
(1) The effect of variations of constraint limits on the optimum objective function

The Lagrange multipliers at the optimum solution can be used to investigate the effect of changing
the constraint limits on the optimum objective function value. Thus the multipliers can be used to
study the benefit of relaxing a constraint or the penalty of tightening it; relaxation enlarges the

feasible region (constraint set), while tightening contracts it. Coxsider the modified problem
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Minimize f(x) = f(xl,xz, ,xn)
subject to the constraints
ci(x)=b;, i=1...,m, (1.8)

ci(x)2e, i=m+1...,m

where b; and e; are small variations in the neighborhood of zero. The optimum solution of this
perturbed problem depends on the vectors b and e, i.e. x = x*(b,e). The optimum objective function
will also depend on these vectors. However, the explicit dependence in this case is not known. The

constraint variation sensitivity theorem states that [83FI1m, 84LU1m, 89AR1¢]

ofx*{0,0 .
_(_W(i_nzxi* i=1...,m, J.9)
of(x*(0,0
(xa( 0) =0 i=mg+L..,m (3.10)
€

and thus provides a means of calculating changes in the optimum objective function as b; and e; are
changed. Using this theorem, one can estimate changes in the objective function if one decides to

adjust the right-hand side of the constraints in the neighborhood of zero, i.e.

. meq m
A=A+ D A*e (J.11)
i=1 : ~i=meq+1 :

The magnitude of the optimum ILagrange multipliers (corresponding to the original unscaled
problem) of the active constraints can also be compared with each other. The multipliers with the
relatively larger values will have the most significant effect on the optimum objective function value

if the corresponding constraint parameters are changed.

For inequality constraint right hand side perturbations ( Ae; ), the sensitivity S;, i=1,...,m for the

unscaled problem is
%
Si = )"i* = af (J12)
Ae;

1

A scale-invariant measure of the sensitivity, §i , 1=1,...,m, for inequality constraint right hand

side perturbations ( Ae; ) can be defined as the relative change in the objective function divided by the

relative change in the constraint right hand side, i.e.
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. * .
g g 8 Af /Ael - (J.13)

€

For problems where both the objective function and the constraints are scaled, scale-invariant

measure of the sensitivity is

_ Fx 8 — a. .e. .
S = Aff* /Ael =N %_ik.* 8iCi _ 5 x G (J.14)
€ f :

Hence, for i=1,...,m

* . £* _ As.
Af e Af Ag (1.15)

If Ae; <0 the feasible region will expand (relax constraints), resulting in a lower objective function
value. If Ae; > 0 the feasible region will contract (tighten constraints), resulting in a higher objective
function value. Information about the sensitivity of the constraints is often very useful because
constraints may not be rigidly defined within the context of the problem to be optimized [81GI1lm,
89ARIe].

(2) The effect of variations of problem parameters on the optimum objective function

Parameter sensitivity enables one to determine the relative importance of specifying certain
parameters in the problem statement. The theory regarding the sensitivity of the optimal solution

with respect to the variation of some problem parameters are discussed in detail by Fiacco [83FI1ml].

Mathematically the sensitivity of the objective function with respect to some parameter o, is obtained
by evaluating the partial derivative of the objective function with respect to a. If the optimal
solution of the problem is known, and the minimum value of the objective function as a vﬁmct-iox_l ofa
parameter o is denoted by £*(a), then it is shown by Fiacco [83F11m] that

of*(a)  AL(x*,A%)
da  da (3.16)

where L(x*,A*) is the optimum Lagrange function. Once the optimal solution is known, it is a
simple matter using equation (J.16) to calculate the sensitivity of the objective function with respect
to the specified parameter. The scale-invariant measure of sensitivity can be expressed as

~ —_

da £* f£*

S=

or
f* a f* a

* * * %k -
of* a Af /é_oizAL Aa AL Aa (31.17)
o
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We use equation (J.17) to calculate the scale-invariant measure of sensitivity when some problem
parameters are perturbed from their original values. Furthermore, we consider only positive
perturbations of o, i.e. Ao >0. A positive value of S corresponds to an increase in the optimum

value of the objective function, while a negative value of S corresponds to a decrease in the

objective function.
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APPENDIX K

FORCED DRAFT DIRECT AIR-COOLED CONDENSERS:
PROGRAM INPUT AND OUTPUT

K.1 PROGRAM INPUT DATA

Table K.1: General input data

FAN INSTALLATION SPECIFICATIONS

H3
nfr
nfb
free
df
dfc
dfh
Kos
Kod

THETE :

RPM

Lsw
Kts
Hw

ETAfd:

: Height of fan platform above ground level
Number of fan rows (No. of fans per bay)
Number of fan bays e
Freestanding fan platform (No O Yes=1)
Fan diameter

Fan casing dlameter

Fan hub diameter .

Loss coeff. for flow obstacles (suctlon)
Loss coeff. for flow obst. (discharge)
Fan blade angle

Fan operating speed

Efficiency of fan drive system .
Half-width of walkway between A- frames

: ACC installation support loss coefficient

Height of wind wall

ACC OPERATING CHARACTERISTICS

"pal
Tal
Twb
g :

Taol:

Tao2:

Ts :

Tacc:
ma
mcl
mc2
dsh
Ksd

FINNED
nb
nr
ntrl
ntr2
Lt
Wb
THETDb:

PC
AKhe:
BKhe:
ANyl:
ANy2:
BNy1l:
BNy2:

Barometric pressure at ground level.
Dry bulb air temperature at ground level
Wet bulb air temperature at ground level
Gravitational acceleration

Air outlet temperature (row 1)

Air outlet temperature (row 2)

Saturated steam supply temperature
Saturated steam temperature at ACC inlet

: Air mass flow rate

Condensate mass flow rate (row 1)
Condensate mass flow rate (row 2)
Effective steam header diameter
Mean steam ducting loss coefficient
TUBE BUNDLE SPECIFICATIONS

No. of heat exchanger bundles above fan

: Number of tube rows (maximum 2)
: Number of tubes per row - row 1 ..
: Number of tubes per row - row 2 (max1mum)

Effective finned tube length

: Width of heat exchanger bundle

Bundle semi-apex angle

EXPERIMENTAL PERFORMANCE CHARACTERISTICS

Correlation(normal flow=0,inclined flow=1)
Constant in Khe correlation

Exponent in Khe correlation

Constant in Ny correlation - row
Constant in Ny correlation - row
Exponent in Ny correlation - row
Exponent in Ny correlation - row

N = NP

0.

0
0

0

0.

0.

OO OO0 OoO OO0

30.000
5.0000
6.0000
00000E+00
9.1450
9.1700
1.4000
.29693
.39080
16.000
100.00
90.000
.20000
1.5000
8.2700

84600. -
15.600
00000E+00
9.8000
23.375
30.605
60.000
59.545
665.94
2.0396
1.8935
1.2500
60000

2.0000
2.0000
152.00
153.00
10.000
11.659
30.000

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00C000E+00
.00000E+00

deg



FINNED
tt

tf

tg
Pf1i
pf2
Pt :
Pl
FINNED
do

tr

daf
FINNED
Peri
de

Ht
Wtn
Atcs
Ati
Af1l
Af2
Arl
Ar2
Vil
viE2

SIGMf1l:

SIGM21
SIGM
FINNED
RHOL :
RHOf :
RHOg:
kt
kf

kg
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TURE DIMENSIONS: GENERAL
Tube thickness e e e e
Fin thickness (mean - core material)
Thickness of galvanizing material (mean)
Fin pitch - row 1
Fin pitch - row 2 .
Transversal tube pitch
Longitudinal tube pitch
TUBE DIMENSIONS: ROUND TUBES
Tube outside diameter
Fin root thickness
Fin diameter
TUBE DIMENSIONS: NON ROUND TUBES
Fin perimeter form (Ellip=1, Rect=2)
Tube hydraulic diameter . . . .
Inside height of tube
Inside width of tube
Tube cross-sectional area
Tube inside perimeter length
Surface area of one fin - row 1
Surface area of one fin - row 2
Surface area of exposed root - row 1
Surface area of exposed root - row 2
Material volume of one fin - row 1
: Material volume of one fin - row 2
Fin leading edge fr. area/HE fr. area
: HE inlet contraction area ratio
: Minimum HE free flow area/HE fr. area
TUBE PROPERTIES
Density of tube material
Density of fin material . . . . . . .
Density of galvanizing material .
Thermal conductivity of tube material
Thermal conductivity of fin material . .
Thermal conductivity of galv. material

COST FACTORS: GENERAL INFORMATION

Ce
ese
ct
esf

i

NY
FCR
Tau
FINNED
Cb1l :
Cb2 :
Cb3 :
Ch4 :
Cbs5 :
Cbé6 :
Cb7 :
Cb8
Cbs :
Cb10:
Cbl1l:

Present electricity cost (self-generated)
Electricity cost escalation rate . . .
Present fuel cost .

Fuel cost escalation rate

Interest rate e e e e e e e e
Capital repayment perlod (plant life). . .
Levelized fixed charge rate

Running hours per annum

TUBE BUNDLE COSTS

Tube material unit cost . . . . . . .
Tubing fixed cost . . . . . . . . . .

Fin material unit cost

Finning fixed cost . . . . e e e
Galvanizing material unit cost

Surface coating fixed cost . ..
Finned tube cost weighting factor . . . .
Bundle frame and header cost factor

Tube assembly and end preparation cost
Bundle cost weighting factor

Bundle maintenance cost factor

FAN SYSTEM COSTS

Cf1
Cf2
Cf3

Fan fixed cost
Fan unit cost . .
Fan casing and inlet bell unlt cost

1.5000
0.35000
0.000C0E+00

3.6300

2.5400

76.200

65.991

38.100
1.1000
69.900

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

OO OO O0COOO0OO0OO00OOO0O oo

7850.0
2707.0
0.00000E+00
50.000
204.00
0.00000E+00

5.0000
7.5000
0.25000E-02
8.5000
10.000
30.000
20.000
8760.0

0.80000
2.0000
4.0000

0.20000

0.00000E+00

0.00000E+00
1.3000

0.20000
25.000
1.3000

0.10000E-01

650.00
110.00
10.000

mm
mm
mm
mm
mm
mm
mm

mm
mm
mm

kg/m*3
kg/m*3
kg/m*3
W/mC
W/mC
W/mC

c/kWh

$/MJ

o\°

o\

years

o0

$/kg

$/kg
$/m
$/kg
$/m*2

$/FT

$/F
$/m*2
$/m*2



Cfa
Cf5
Cfe6
Ct7
Cfs8
Cf9 :
Cf10:
Cfl1l:
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Fan safety screen unit cost

Electric motor fixed cost

Electric motor unit cost e e e e
Electric motor safety factor (undersizing)
Speed reducer cost multiplier

Electric wiring/switching cost multlpller
Fan system cost weighting factor

Fan system maintenance cost factor

STRUCTURAL AND CONSTRUCTION COSTS

Cs1
Cs2
Cs3
Cs4
Cs5

Land, excavation and foundation unit cost
Structural material/installation unit cost
Fan platform unit cost

Structural cost weighting factor
Structural maintenance cost factor

STEAM/CONDENSATE DISTRIBUTION COSTS

cd1
cdaz

Distribution system cost factor
Distribution system maintenance cost fact

FIN MATERIAL PROPERTIES

RHOal:
RHOcu:
RHOst :
RHOzn:

kal
kcu
kst
kzn

Density of aluminum .

Density of copper

Density of steel

Density of zinc e e e
Thermal conductivity of aluminum

: Thermal conductivity of copper

Thermal conductivity of steel
Thermal conductivity of zinc

PARAMETERS FOR SUBROUTINE SOLVE

H
ACCS

ITMAX:
IPRNT:

Step length for numerical differentiation
Stopping accuracy for SOLVE

Maximum no. of iterations for SOLVE
Controls intermediate printing of SOLVE

PARAMETERS FOR SUBROUTINE OPTIM

IPRNT

Controls intermediate printing of OPTIM

MAXFUN: Maximum no. of function evaluations

ACCO
H

Stopping accuracy for OPTIM
Step length for numerical dlfferentlatlon

ALL FINNED TUBE TYPES: CONSTANT VALUES(=0.0)

H3
daf

THETE :

RPM
nb
ntr
Lt

THETDb:

Height of fans above ground level
Fan diameter

Fan blade angle

Fan cperating speed .

: No. of heat exchanger bundles above fan
: Number of tubes per row

Length of finned tubes
Bundle semi-apex angle

ALL FINNED TUBE TYPES: LOWER VALUES

H3
df

THETE :

RPM
nb
ntr
Lt

THETD:

Height of fans above ground level
Fan diameter

Fan blade angle

Fan operating speed .

: No. of heat exchanger bundles above fan .
: Number of tubes per row

Length of finned tubes
Bundle semi-apex angle

ALL FINNED TUBE TYPES: UPPER VALUES

H3
df

RPM
nb

THETE :

: Height of fans above ground level

Fan diameter

Fan blade angle

Fan operating speed . .

No. of heat exchanger bundles above fan

2.5000
400.00
120.00
1.2500
0.40000
0.10000
1.2500
0.30000E-01

15.000
17.500
75.000
1.2500
0.50000E-03

0.35000
0.50000E-02

2707.
8954.
7850.
7144.0
204.00
386.00
50.000
116.00

O O o

0.10000E-07

0.10000E-06
50.000
1.0000

1.0000

500.00
0.10000E-06
0.10000E-07

1.0000
1.0000
1.0000
1.0000

0.00000E+00

1.0000
1.0000
1.0000

10.000
5.0000
10.000
30.000
2.0000
100.00
5.0000
20.000

60.000
12.000
30.000
150.00
10.000

$/m*2
$/EM
$/kW

$/m*2
$/m"3
$/m"2

kg/m"3
kg/m*3
kg/m*3
kg/m*3
W/mC
W/mC
W/mC
W/mC

deg
rpm

deg

deg
rpm
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ntr : Number of tubes per row 250.00

Lt : Length of finned tubes 20.000
THETb: Bundle semi-apex angle 35.000
ROUND TUBES: CONSTANT VALUES (=0.0)

do : Tube outside diameter 1.0000

tt : Tube thickness 1.0000

tr : Fin root thickness 1.0000

df : Fin diameter 1.0000

tf : Fin thickness . . 1.0000

tg : Thickness of galvanlzlng materlal 0.00000E+00
Pfl : Fin pitch (row 1). 1.0000

Pf2 : Fin pitch (row 2) 1.0000

Pt : Transversal tube pitch 1.0000
ROUND TUBES: LOWER VALUES

do : Tube outside diameter 10.000

tt : Tube thickness 1.0000

tr : Fin root thickness 1.0000

df. : Fin diameter 20.000

tf : Fin thickness . .. 0.50000E-01
tg : Thickness of galvanlzlng materlal 0.30000E-01
Pfl1 : Fin pitch (row 1) 1.0000

Pf2 : Fin pitch (row 2) 1.0000

Pt : Transversal tube pitch 20.000
ROUND TUBES: UPPER VALUES

do : Tube outside diameter 90.000

tt -: Tube thickness 2.0000

tr : Fin root thickness 2.0000

df : Fin diameter . . . . 120.00

tf : Fin thickness e e e e . 1.0000

tg : Thickness of galvan1z1ng material 0.70000E-01
Pfl : Fin pitch (row 1) 5.0000

Pf2 : Fin pitch (row 2) } 5.0000

Pt Transversal tube pitch . . 8 120.00
OPTIMIZATION VARIABLES: GENERAL INFORMATION

trL : Lower bound for tr 1.0000

ttL : Lower bound for tt 1.2000

tfl, : Lower bound for tf . 0.50000E-01
tgL : Lower bound for tg . . . . . 0.30000E-04
tgU : Upper bound for tg . . . . . 0.70000E-04
PfL : Lower bound for Pf 1.7500

WbU : Upper bound for Wb . . . . . . . . . . . 15.000

WFL : Lower bound for fan unit width ratio . . 1.2000

WFU Upper bound for fan unit width ratio . . 1.3500

LFL Lower bound for fan unit length ratio . . 1.2000

LFU Upper bound for fan unit length ratio . . 1.3500
THbL : Lower bound for bundle semi-apex angle . 20.000
THbU : Upper bound for bundle semi-apex angle . 35.000
vbtU : Upper bound for fan blade tip speed . . . 60.000
Qacc : ACC specified heat transfer rate . . . . 331.10
CHOICE OF CORRELATIONS AND FORMULAE
Finned tube type . 1.0

1 Round tubes (extruded flns)

2 Non-round tubes
Round tube performance correlations . . . . : 3.0

1 Ny vs. Ry and Khe vs. Ry

2 Briggs, Young, Robinson

3 Ganguli, Tung, Taborek

4 Nir
Non-round tube performance correlations . . : 1.0

1 Ny vs. Ry and Khe vs. Ry

deg

mm
mm
mm
mm
mm
mm
mm
mm
mm

mm
mm
mm
mm
mm
mm
mm

mm

mm

mm
mm
mm
mm
mm
mm

deg
deg
m/s
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Fin material . . . . . . . . . . . . . . . . 1.0

1 Aluminum

2 Copper

3 Steel

4 Galvanized fin (steel core)

Table K.2: Fan performance characteristics

FAN PERFORMANCE CHARACTERISTICS

nbs : Number of fan curves {(maximum 5) . . . . 5.0000
RHOrf: Reference air density for characteristics 1.2000

dfm : Fan diameter for characteristics . . . . 9.1450

Nfm : Fan rotational speed for characteristics 125.00

SPD : Speed drive: Constant=0, Variable=1 . . . 1.0000
FAN PERFORMANCE CURVE No. 1

THETf: Fan blade angle . . . e e e e 12.000
Vsmin: Minimum air volume flow rate . . . . . . 150.00
Vsmax: Maximum air volume flow rate . . . 770.00
FAN STATIC PRESSURE [N/m”*2] wvs. AIR VOLUME FLOW RATE (m*3/s]
Cspf0: Constant ccefficient . . . . . . . . . . 316.06
Cspfl: First degree coefficient . . . . . . . . -0.28085
Cspf2: Second degree coefficient . . . . . . . . 0.33046E-03
Cspf3: Third degree coefficient . . . . . . . . -0.63900E-06
Cspf4: Fourth degree coefficient . . . .o 0.00000E+00
FAN SHAFT POWER [kW] wvs. AIR VOLUME FLOW RATE [m*3/s]

Cpf0 : Constant coefficient . . . . . . . . . . 135.04
Cpfl : First degree coefficient . . . . . . . . -0.25995E-02
Cpf2 : Second degree coefficient . . . . . . . . 0.33536E-03
Cpf3 : Third degree coefficient . . . . . . . . -0.49629E-06
Cpf4 Fourth degree coefficient . . . . . . . . 0.00000E+00
FAN PERFORMANCE CURVE No. 2

THETf: Fan blade angle . . . . e e e e e 14.000
Vsmin: Minimum air volume flow rate e e e e 150.00
Vsmax: Maximum air volume flow rate . . . .o 825.00
FAN STATIC PRESSURE [N/m”*2] wvs. AIR VOLUME FLOW RATE [m*3/s]
Cspf0: Constant ccefficient . . . . . . . . . . 310.99
Cspfl: First degree coefficient . . . . . . . . -0.20930
Cspf2: Second degree coefficient . . . . . . . . 0.27940E-03
Cspf3: Third degree coefficient . . . . . . . . -0.57410E-06
Cspf4: Fourth degree coefficient . . . .. 0.00000E+0Q0
FAN SHAFT POWER (kW] wvs. AIR VOLUME FLOW RATE [m*3/s]

Cpf0 : Constant coefficient . . . . . . . . . . 165.90
Cpfl : First degree coefficient . . . . . . . . -0.64406E-01
Cpf2 : Second degree coefficient . . . . . . . . 0.45685E-03
Cpf3 : Third degree coefficient . . . . . . . . =-0.52120E-06
Cpf4 : Fourth degree coefficient . . . . . . . . 0.00000E+00
FAN PERFORMANCE CURVE No. 3

THETf: Fan blade angle . . . . e e e e 16.000
Vsmin: Minimum air volume flow rate e e e e e 150.00
Vsmax: Maximum air volume flow rate . . . - . 870.00

FAN STATIC PRESSURE [N/m*2] wvs. AIR VOLUME FLOW RATE [m"3/s]
Cspf0: Constant coefficient . . . . . . . . . . 320.05
Cspfl: First degree coefficient . . . . . . . . =-0.29752
Cspf2: Second degree coefficient . . . . . . . . 0.63515E-03
Cspf3: Third degree coefficient . . . . . . . . -0.81400E-06

Cspf4: Fourth degree coefficient . . . . . . . . 0.00000E+00

kg/m"™3

rpm

deg
m*3/s
m*3/s

deg
m"3/s
m*3/s

deg
m*3/s
m*3/s
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FAN SHAFT POWER (kW] vs. AIR VOLUME FLOW RATE [m”™3/s]

Cpf0 : Constant coefficient . . . . . . . . . . 186.65
Cpfl : First degree coefficient . . . . . . . . -0.59414E-01
Cpf2 : Second degree coefficient . . . . . . . . 0.47617E-03
Cpf3 : Third degree coefficient . . . . . . . . -0.50831E-06
Cpf4 : Fourth degree coefficient . . . . . . . . 0.00000E+0Q0
FAN PERFORMANCE CURVE No. 4

THETf: Fan blade angle . . . . e e e e e 18.000
Vsmin: Minimum air wvolume flow rate Ce e e e 150.00
Vsmax: Maximum air volume flow rate . . . .. 940.00

FAN STATIC PRESSURE [N/m"2] wvs. AIR VOLUME FLOW RATE [m"3/s]
Cspf0: Constant coefficient . . . . . . . . . . 305.12
Cspfl: First degree coefficient . . . . . . . . -0.87519E-01
Cspf2: Second degree coefficient . . . . . . . . 0.14541E-03
Cspf3: Third degree coefficient . . . . . . . . -0.42190E-06
Cspf4: Fourth degree coefficient . . . .o 0.00000E+00
FAN SHAFT POWER (kW] wvs. AIR VOLUME FLOW RATE (m*3/s]

Cpf0 : Constant coefficient . . . . . . . . . . 211.03
Cpfl : First degree coefficient . . . . . . . . =-0.75730E-01
Cpf2 : Second degree coefficient . . . . . . . . 0.47561E-03
Cpf3 : Third degree coefficient . . . . . . . . ~-0.45873E-06
Cpf4 Fourth degree coefficient . . . . . . . . 0.00000E+00
FAN PERFORMANCE CURVE No. 5

THETf: Fan blade angle . . . . Ce e e e e 20.000
Vsmin: Minimum air volume flow rate . . . . . . 150.00
Vsmax: Maximum air volume flow rate . . . .. 980.00

FAN STATIC PRESSURE ([N/m*2] vs. AIR VOLUME FLOW RATE [m"3/s]
Cspf0: Constant coefficient . . . . . . . . . . 279.09
Cspfl: First degree coefficient . . . . . . . . 0.48486E-01
Cspf2: Second degree coefficient . . . . . . . . -0.25045E-04
Cspf3: Third degree coefficient . . . . . . . . -0.29590E-06
Cspf4: Fourth degree coefficient . . . .. 0.00000E+00
FAN SHAFT POWER (kW] wvs. AIR VOLUME FLOW RATE {m*3/s]

Cpf0 : Constant coefficient . . . . . . . . . . 248.36
Cpfl : First degree coefficient . . . . . . . . -0.11954
Cpf2 : Second degree coefficient . . . . . . . . 0.52012E-03
Cpf3 : Third degree coefficient . . . . . . . . ~-0.42960E-0C6
Cpf4 Fourth degree coefficient . . . . . . . . 0.00000E+0Q0
FAN SPEEDS FOR VARIABLE SPEED DRIVES

No Speed [rpm] No Speed [rpm]

1 100.00 11 100.00

2 100.00 12 100.00

3 100.00 13 100.00

4 100.00 14 100.00

5 100.00 15 100.00

6 100.00 16 100.00

7 100.00 17 100.00

8 100.00 18 100.00

9 100.00 19 100.00

10 100.00 20 100.00

21 100.00 31 100.00

22 100.00 32 100.00

23 100.00 33 100.00

24 100.00 34 100.00

25 100.00 35 100.00

26 100.00 36 100.00

27 100.00 37 100.00

28 100.00 38 100.00

29 100.00 39 100.00

30 100.00 40 100.00

deg
m*3/s
m*3/s

deg
m*3/s
m*3/s
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Table K.3: Frequency of dry- and wetbulb temperatures

MEAN HOURLY FREQUENCY OF AMBIENT TEMPERATURES
Number of data sets
Dry bulb temperature at ground level
: Wet bulb temperature at ground level
: Annual duration of these temperatures [h/al
Tdb [ CI

Tdb
wa
h

2
@ N ONU W N QO

WWwWwwwNDNNNMNNMNONNNDNRERRRRRBRP R P
W NEFEOWDLIOM R WD OWITOU D WNREROW

Table K.4: Turbo-generator-condenser characteristic curves

-
[\V]
w

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

®© 300 WP O

S R R e I R
NP OW®OIAU R WNNREOW

W W whNNDNDNDN
N O WY U v

Twb

O N0 WP OOO OO

Xe]

10
10
11
12
12
13
13

14.
.500

14

14.
.200
.500
.700
.900
16.
.400
.800
.400

15
15
15
15

16
16
17

18.

(maximum 40) :

[ C]
.000
.000
.000
.000
.900
.900
.900
.800
.600
.400
.300
.100
.800
.600
.400
.200
.900
.600
.200
.700
.200
.700

100

900

100

000

34

h [h/al

4
10.
26.
43
59.
82.

112
152.
201.
254.
312.
371
434.
506.
578
656.
738.
764.
655.
553.
459.
381.
320.
265.
219.
177.
140.
105.
76.
51.
30.
15.
8.
4.

.000

000
000

.000

000
000

.000

000
000
000
000

.000

000
000

.000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

[cl]
(cl]

TURBO-GENERATOR -CONDENSER PERFORMANCE CHARACTERISTICS
Tsmin: Minimum saturated steam temperature
Tsmax: Maximum saturated steam temperature

HEAT TO BE REJECTED [MW] vs.

Cqgo
Cqgl
Cg2
Cg3
Ca4
Cg5s

Constant coefficient

First degree coefficient
Second degree coefficient
Third degree coefficient
Fourth degree coefficient
Fifth degree coefficient

O OO oo

42.000
94.610

SATURATED STEAM TEMPERATURE [C]

336.40
.18223
.16010E-01
.17753E-03
.00000E+0QO0
.00000E+00
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GENERATOR POWER OUTPUT [MW] wvs. SATURATED STEAM TEMPERATURE (C]
Cp0 : Constant coefficient . . . . . . . . . . 225.83
Cpl : First degree coefficient . . . . . . . . -0.42994E-02
Cp2 : Second degree coefficient . . . . . . . . 0.13317E-01
Cp3 : Third degree coefficient . . . . . . . . =-0.16257E-03
Cp4 : Fourth degree coefficient . . . . . . . . 0.00000E+00
Cp5 : Fifth degree coefficient . . . . . . . . 0.00000E+00

K.2 PROGRAM OUTPUT
Operating point calculations

Table K.5: Operating point output and cost data

COMPLETE OUTPUT DATA SET:

AIRSIDE DATA:
Air temperature:
At inlet of fan, Tsa3 = 15.308 C

At inlet of heat exchangers, Tsa5 = 15.432 C

At outlet of heat exchangers, Tsaé = 37.302 C
Mean temperature (Row 1), Tsam = 21.049 C

Mean temperature (Row 2), Tsam = 31.984 C
Humidity ratio, w = 0.0000000 kg moisture/kg dry air

Air properties (evaluated at ground level air pressure):

At fan inlet temperature:

Density, RHOsa3 = 1.021611 kg/m”3

Specific heat, cpsa3l = 1006.601792 J/kgkK
At HE inlet temperature: ‘

Density, RHOsaS - = 1.021169 kg/m"3
At HE outlet temperature:

Density, RHOsaé6 = 0.949234 kg/m"*3

At mean bundle temperature:
Harmonic mean density, RHOsa56

]

0.983888 kg/m”3
Viscosity , MUsas5é6 = 0.000018 kg/ms

Air properties (evaluated at ground level air pressure):

At mean HE temperature (Row 1):
Density, RHOsam
Viscosity, MUsam
Specific heat, cpsam 1006.760748 J/kgK
Thermal conductivity, ksam 0.025771 W/mK
Prandtl number, PRAsam = 0.711030

At mean HE temperature (Row 2):
Density, RHOsam = .965776 kg/m"*3
Viscosity, MUsam = 0.000019 kg/ms

1.001672 kg/m”*3
0.000018 kg/ms

o

t
(=]

Specific heat, cpsam = 1007.148846 J/kgkK
Thermal conductivity, ksam = 0.026618 W/mK
Prandtl number, PRAsam = 0.707717
Air flow data:

Air mass flow rate per fan, msa = 540.821
Air volume flow rate per fan, VsSF = 529.381
Mean axial fan inlet wvelocity, vsnF = 8.016
HE normal approach velocity, vshen = 2.271

kg/s
m*3/s
m/s
m/s
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Fan performance data:
Fan blade angle, THETsF = 16.000 deg
Fan operating speed, NsF = 100.000 rpm
Air volume flow rate per fan, VsF = 529.381 m™3/s
Fan static pressure, DpsFs = 90.137 N/m"2
Fan coefficient, KsF = 2.746
Fan power consumption, PsF = 90.906 kW
Electrical power input, Pse = 101.007 kW
Fan static efficiency, ETAsF = 52.490 %
Optimum fan static efficiency, ETAso = 55.051 %
Optimum air volume flow rate, VsFo = 454,480 m"3/s

HEAT TRANSFER AND PRESSURE DROP CORRELATIONS:
Correlation: Ganguli, Tung, Taborek
Heat transfer (Row 1):

Coefficient asHA = 0.261050

Exponent bsHA = -0.400000

Equivalent diameter, de = 40.3000 mm

Air side Reynolds number, Re = 11919.9

Air gide heat transfer coeff., hsa = 41.5858 W/m*2K

Fin efficiency, ETAsf = 0.894320

Surface effectiveness, EPSIsf = 0.902135

Effective heat transfer coeff., hAsae = 173376. W/K
Pressure drop (Row 1):

Coefficient askEU = 0.486208

Exponent bsEU = 0.000000E+00

Equivalent diameter, de = 40.3000 mm

Air Reynolds number, Re = 11919.9

Euler number, Eu = 0.486208

Pressure loss ceoefficient, Kshe = 5.37343
Heat transfer (Row 2):

Coefficient asHA = 0.248362
Exponent bsHA = -0.400000
Equivalent diameter, de = 40.3000 mm
Air side Reynolds number, Re = 11966.9 -

. Air side heat transfer coeff., hsa = 40.8973 W/m*2K
Fin efficiency, ETAsf = 0.895852
Surface effectiveness, EPSIsf = 0.901124

Effective heat transfer coeff., hAsae = 237458. W/K
Pressure drop (Row 2): .

Coefficient askiEU = 0.539793
Exponent bsEU = 0.000000E+00
Equivalent diameter, de = 40.3000 mm -
Air Reynolds number, Re = 11966.9
Euler number, Eu = 0.539793
Pressure loss coefficient, Kshe = 6.39047
Total bundle loss coefficient, Kshet = 23.9768
EFFECTIVE QUTSIDE HEAT TRANSFER COEFFICIENTS:
Row 1
Effective outside heat transfer coeff.
based on the inside area, hsaeff = 517.1992 W/m*2K
Row 2
Effective outside heat transfer coeff.
based on the inside area, hsaeff = 703.7329 W/m*2K

PRESSURE LOSS COEFFICIENTS (based on HE frontal area and mean air density):
Fan pressure rise coefficient, KsFs = 32.970
ACHE support loss coefficient, Ksts = 1.445
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Obstacle loss coeff. (fan suction), Ksos = 3
Obstacle loss coeff. (fan discharge), Ksod = 4
HE inlet loss coefficient, Kshi = 2
HE normal flow loss coefficient, Kshe = 11
HE outlet kinetic energy loss coeff., Kso = 7.
HE outlet jetting loss coeff., Ksdj = 2

PRESSURE LOSS TERMS (based on HE frontal area and mean

Fan pressure rise , dpsFs = 90.
ACHE support pressure loss , dpsts = 3.
Obstacle press. loss (fan suction), dpsos = 10
Obstacle press. loss (fan discharge), dpsod= 13
HE inlet press. loss, dpshi = 5
HE normal flow pressure loss, dpshe = 32.
HE outlet kinetic energy press. loss, dpso = 21
HE outlet jetting pressure loss, dpsdj = 5

DRAFT EQUATION:
Draft equation LHS

3.025 N/m*2

Draft equation RHS = 3.025 N/m*2

STEAMSIDE DATA:

Steam temperatures and pressures:
Turbine outlet steam temp., Tss
Turbine ocutlet steam pres., pss
ACC inlet steam temp., Tsvi
ACC inlet steam pres., psvi =

]

60.000 C

.737
.918
. 145
.764
993
.075

137
951
.216
.445
.863
161
.852
.674

19754.440 N/m"2

59.372 C

19185.831 N/m”

Steam properties at ACC inlet temperature:
Density, RHOsvi _ = 0.126715 kg/m"3
Viscosity, MUsvi = 0.000011 kg/ms

Specific heat, cpsvi
Thermal conductivity, ksvi

1925.844202 J/kgK
0.020993 W/mK

Water properties at mean steam temperature (Row 1):

Mean condensation temp., Tsvm
Mean condensation pressure, psvm
Density, RHOsw

Viscosity, MUsw

Specific heat, cpsw

Thermal conductivity, ksw

Latent heat of vaporization, isfg
Prandtl number, PRAsw

59.121807

2

18963.649381 N/m"2

983.676422
0.000469
4183.534441
0.652337
2360765.792716
3.010293

Water properties at mean steam temperature (Row 2):

Mean condensation temp., Tsvm
Mean condensation pressure, psvm
Density, RHOsw

Viscosity, MUsw

‘Specific heat, cpsw

Thermal conductivity, ksw

Latent heat of vaporization, isfg
Prandtl number, PRAsw

59.143239
18982.615384
983.665265
0.000469
4183.547882
0.652358
2360713.451617
3.009211

Pressure and temperature drop parameters (Row 1) :

Steam inlet wvelocity, vsvi

Steam inlet Reynolds number, Resvi
Normal flow Reynolds number, Resvn
Constant al

Constant a2

64.414289
25634.918538
22.725272
1.038617
2082.472784

kg/m”
kg/ms

air density):

N/m*2
N/m"*2
N/m"*2
N/m”*2
N/m*2
N/m"*2
N/m*2
N/m*2

3

J/kgkK

W/mK
J/kg

N/m*2
kg/m"*
kg/ms

3

J/kgk

W/mK
J/kg

m/s
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Pressure and temperature drop parameters (Row 2):

Steam inlet velocity, vsvi = 60.606801 m/s
Steam inlet Reynolds number, Resvi = 24140.781771
Normal flow Reynolds number, Resvn = 21.381995
Constant al = 1.036887
Constant a2z ) = 1940.147696
Condensation data (Row 1):
Condensation heat transfer coeff., hsc = 7258.309 W/m*2K
Condensate mass flow rate, msc = 2.400981 kg/s
Condensation data (Row 2):
Condensation heat transfer coeff., hsc = 7116.270 W/m”2K
Condensate mass flow rate, msc = 2.273923 kg/s
Condensate mass flow rate per fan, msc = 4.6749 kg/s
SYSTEM DATA: _
System data (Row 1):
Overall heat transfer coeff., UA = 161843.4 W/K
Heat exchanger effectiveness, e = 25.71382 %
Airside heat transfer rate, Qsa = 5668155. W
Steamside heat transfer rate, Qsw 5668155. W
Heat transfer rate based on UA, Qsu = 5668155. W
System data (Row 2):
Overall heat transfer coeff., UA = 216088.6 W/K
Heat exchanger effectiveness, e = 32.74778 %
Airside heat transfer rate, Qsa = 5368081. W
Steamside heat transfer rate, Qsw = 5368081. W
Heat transfer rate based on UA, Qsu = 5368081. W
Heat transfer rate per fan, Q = 0.1103624E+08 W
TOTAL SYSTEM DATA:
Number of fans in operation, nsF = 30.00000
Air mass flow rate, msat = 16224 .64 kg/s
Air volume flow rate, VsSFt = 15881.42 m*3/s
Fan power consumption, PsFt = 2727.176 kw
Electrical power input to fans, Pset = 3030.195 kw
Mass flow rate steam condensed, mswt = 140.2471 kg/s
Fan system effectiveness, esfs = 92.66538 %
Heat transfer rate, Qst = 0.3310871E+09 W
HEAT EXCHANGER BUNDLE COST:
Cost of tubes, Cstm = 564213.372 $
Cost of fins, Csfm = 2414586.86 $
Cost of galvanizing, Csgm = 0.000000000E+00 $
Cost of finned tubes, Csft = 3872440.30 $
Cost of bundle frames/headers, Csbf = 774488.060 $
Cost of bundle assembly, Csba = 457500.000 $
Total HE bundle cost, Cshe = 6635756.87 $
FAN SYSTEM COST:
Cost of fans, Csfanc = 236256.056 $
Cost of fan casing/inlet bell, Csfc= 17671.8837 $
Cost of fan safety screen, Csfsc = 7132.67293 $
Cost of electric motor, Csem = . 466529.295 $
Cost of speed reducer, Cssr = 281114.140 $
Cost of electric wiring, Csew = 46652.9295 $
= 1319196.23 $

Total fan system cost, Csfant
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STRUCTURAL, CONSTRUCTION AND DISTRIBUTION COSTS:
Cost of land, structure, construction, Csc= 1888693.20

Cost of fan platform ,Csfp

Total structural/construction cost, Cssc

Total steam/cond. distribution cost,

OPERATING AND MAINTENANCE COSTS:
Operating cost of fans, Csfo
HE bundles maintenance cost, Cshem
Fan system maintenance cost, Csfsm
Structural maintenance cost, Cssm
Distribution system maint. cost, Csdm
Fuel cost, Csfuel

TOTAL COSTS:

= 262318.500
= 2688764.63

Csdis= 2784233.58

2806057.52
66357.5687
39575.8869
1344.38231
13921.1679

Total power consumption cost = 2806057.52 $/a
Total maintenance cost = 121199.006 $/a
Total fuel cost = 0.000000000E+00 $/a
Total capital cost = 13427951.3 $

Total annual cost = 5612846.78 $/a

Power generation calculations

Table K.6: Power generation output and cost data

RESULTS OF NET ANNUAL POWER OUTPUT

No Tdb Twb h Ts ps Q
fcil [Cl [h/al [C] [kPal  [MW]
1 -1.00 0.00 4 44 .42 9.26 328.46
2 0.00 0.00 10 45.18 9.62 328.33
3 1.00 0.00 26 45.96 10.01 328.19
4 2.00 0.00 43 46.77 10.42 328.06
5 3.00 0.90 59 47.60 10.87 327.95
6 4.00 1.90 82 48.45 11.34 327.84
7 5.00 2.90 112 49.32 11.84 327.74
8 6.00 3.80 152 50.22 12.38 327.66
9 7.00 4.60 201 51.13 12.94 327.59
10 8.00 5.40 254 52.06 13.54 327.54
11 9.00 6.30 312 53.00 14.18 327.52
12 10.00 7.10 371 53.96 14.85 327.51
13 11.00 7.80 434 54.94 15.56 327.53
14 12.00 8.60 506 55.93 16.32 327.57
15 13.00 9.40 578 56.93 17.11 327.64
16 14.00 10.20 656 57.95 17.95 327.74
17 15.00 10.90 738 58.98 18.84 327.88
18 16.00 11.60 764 60.02 19.78 328.05
19 '17.00 12.20 655 61.08 20.77 328.26
20 18.00 12.70 553 62.15 21.81 328.50
21 19.00 13.20 459 63.22 22.91 328.79
22 20.00 13.70 381 64.31 24.07 329.12
23 21.00 14.10 320 65.41 25.29 329.51
24 22.00 14.50 265 66.53 26.59 329.94
25 23.00 14.90 219 67.65 27.95 330.42
26 24.00 15.20 177 68.79 29.39 330.96
27 25.00 15.50 140 69.94 30.91 331.56
28 26.00 15.70 105 71.10 32.51 332.23

$/a
$/a
$/a
$/a
$/a

0.000000000E+00 $/a

Pg PF Pn
(MW] (MW] {MW]
237.67 3.203 234.46
237.83 3.193 234.63
237.98 3.182 234.80
238.13 3.171 234.96
238.27 3.159 235.11
238.39 3.147 235.25
238.51 3.135 235.37
238.61 3.124 235.49
238.69 3.112 235.58
238.76 3.101 235.66
238.81 3.089 235.72
238.83 3.078 235.75
238.83 3.066 235.76
238.80 3.055 235.75
238.75 3.044 235.71
238.66 3.033 235.63
238.55 3.022 235.53
238.39 3.011 235.38
238.20 3.000 235.20
237.98 2.989 234.99
237.70 2.979 234.73
237.39 2.969 234.42
237.03 2.959 234.07
236.62 2.949 233.67
236.15 2.939 233.21
235.63 2.%29 232.70
235.05 2.919 232.14
234.42 2.910 231.51

Uy Uy Uy A

nsF

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

FOS
[rpm]

100.
100.
100.
100.
100.
100.

100

100

100

100
100
100
100

100.
100.

100
100

100

100
100

00
00
00
00
00
00

.00
100.

00

.00
100.
100.

00
00

.00
100.
100.

00
00

.00
.00
.00
.00

00
00

.00
.00
100.

00

.00
100.

00

.00
.00
100.

00
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04
.21
29
.29
.21

$/a
$/a
$/a
$/a
$/a
$/a
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29 27.00 15.90 76 72.27 34.21 332.96 233.71 2.901 230
30 28.00 16.10 51 73.45 36.00 333.76 232.94 2.891 230.
31 29.00 16.4¢ 30 74.65 37.89 334.64 232.09 2.882 229
32 30.00 16.80 15 75.87 39.89 335.60 231.16 2.872 228.
33 31.00 17.40 8 77.09 42.01 336.64 230.16 2.862 227
34 32.00 18.00 4 78.34 44.25 337.77 229.06 2.852 226
NET ANNUAL POWER OUTPUT = 2058.351 GWh
ANNUAL HEAT DISSIPATED = 2877.138 GWh
HEAT EXCHANGER BUNDLE COST:
Cost of tubes, Cstm = 564213.372 $
Cost of fins, Csfm = 2414586.86 $
Cost of galvanizing, Csgm = 0.000000000E+00 $
Cost of finned tubes, Csft = 3872440.30 S
Cost of bundle frames/headers, Csbf = 774488.060 $
Cost of bundle assembly, Csba = 457500.000 S
Total HE bundle cost, Cshe = 6635756.87 $
FAN SYSTEM COST:
Cost of fans, Csfanc = 236256.056 3
Cost of fan casing/inlet bell, Csfc= 17671.8897 $
Cost of fan safety screen, Csfsc = 7132.67293 $
Cost of electric motor, Csem 465100.503 $
Cost of speed reducer, Cssr = 280542.624 S
Cost of electric wiring, Csew 46510.0503 $
Total fan system cost, Csfant = 1316517.25 S
STRUCTURAL, CONSTRUCTION AND DISTRIBUTION COSTS:
Cost of land, structure, construction, Csc= 1888693.20
Cost of fan platform ,Csfp = 262318.500
Total structural/construction cost, Cssc = 2688764.63
Total steam/cond. distribution cost, Csdis= 27832355.94
OPERATING AND MAINTENANCE COSTS:
Operating cost of fans, Csfo = 2797236.81
HE bundles maintenance cost, Cshem = 66357.5687
Fan system maintenance cost, Csfsm = 39495.5174
Structural maintenance cost, Cssm = 1344.38231
Distribution system maint. cost, Csdm= 13916.4797
Fuel cost, Csfuel = 106623684.
TOTAL COSTS:
Total power consumption cost = 2797236.81 $/a
Total maintenance cost = 121113.948 $/a
Total fuel cost = 106623684, $/a
Total capital cost = 13424334.7 $
Total annual cost = 112226902. $/a

Operating point optimization

Table K.7: Optimization output and cost data

OPTIMIZATION OUTPUT DATA SET:

FINNED TUBE TYPE: Round tubes
CORRELATION: Ganguli,
OPERATING POINT OPTIMIZATION

Tung

(extruded fins)
, Taborek

30
30
30
30
30
30

“ur O i n

100.
100.
100.
100.
100.
.00

100

00
00
00
00
00
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VARIABLES FOR OPTIMIZATION:
ma Taol Tao2 Tacc mwl mw2 H3 dfan THETF rpm Lt ntr THETB
do tt tr df tf Pfl Pf2 Pt

FAN INSTALLATION

H3 : Height of fans above ground levels= 35.3768
nf : Total number of fans = 30.0000
df : Fan diameter = 10.1350
THETF: Fan blade angle = 12.0000
rpm : Fan operating speed = 63.0471
Qacc: Spec1f1ed heat transfer rate = 0.331100E+09
Q : Calculated heat transfer rate = 0.331100E+09

FINNED TUBES

do : Tube outside diameter = 37.9285
tt : Tube thickness = 1.20000
tr : Fin root thickness = 1.00000
df : Fin diameter = 92.0346
tf : Fin thickness (core) = 0.222671
Pfl: Fin pitch (row 1) = 3.19237
Pf2: Fin pitch (row 2) = . 1.75000
Pt : Transversal tube pitch = 93.5534
Pl : Longitudinal tube pitch = 81.0173

HEAT EXCHANGER BUNDLE

nr : Number of tube rows = 2.00000
ntrl : Number of tubes per row (row 1) = 129.000
ntr2 : Number of tubes per row (row 2) = 130.000

nb : Number of heat exchanger bundles = 2.00000

Lt : Length of finned tubes = 10.6019
THETb: Bundle semi-apex angle = 35.0000

Wb : Width of heat exchanger bundle = 12.1619
HEAT EXCHANGER BUNDLE COST:

Cost of tubes, Cstm = 472766.073 $
Cost of fins, Csfm = 2998530.58 $
Cost of galvanizing, Csgm = 0.000000000E+00 $
Cost of finned tubes, Csft = 4512685.65 $
Cost of bundle frames/headers, Csbf = 902537.131 $
Cost of bundle assembly, Csba = 388500.000 $
Total HE bundle cost, Cshe = 7544839.62 S
FAN SYSTEM COST:

Cost of fans, Csfanc = 285724.149 $
Cost of fan casing/inlet bell, Csfc= 21803.1915 $
Cost of fan safety screen, Csfsc = 8800.13607 $
Cost of electric motor, Csem = 147886.368 S
Cost of speed reducer, Cssr = 173444.207 $
Cost of electric wiring, Csew = 14788.6368 $
Total fan system cost, Csfant = 815558.359 3

STRUCTURAL, CONSTRUCTION AND DISTRIBUTION COSTS:

Cost of land, structure, construction, Csc= 2813720.04
Cost of fan platform ,Csfp 332804.076
Total structural/construction cost, Cssc = 3933155.15
Total steam/cond. distribution cost, Csdis= 2926139.29

OPERATING AND MAINTENANCE COSTS:
Operating cost of fans, Csfo 838900.745
HE bundles maintenance cost, Cshem = 75448.3962

m

m
deg
rpm
W
W

mm
mm
mm
mm
mm
mm
mm
mm
mm

deg

$/a
$/a

v W
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FAN SYSTEM COSTS

Cf1 Fan fixed cost

Cf2 Fan unit cost

C£3 Fan casing and inlet bell unit cost
Cf4 Fan safety screen unit cost

Cf5 Electric motor fixed cost

Cfe Electric motor unit cost

CE£7 Electric motor safety factor

Cf8 Speed reducer cost multiplier

Cf9 : Electric wiring/switching cost multiplier
Cf10: Fan system cost weighting factor
Cf1l: Fan system maintenance cost factor

STRUCTURAL AND CONSTRUCTION COSTS

[ elolelNoNeNe e e No e

Csl Land, excavation and foundation unit cost
Cs2 Structural material/installation unit cost
Cs3 Fan platform unit cost

Cs4 Structural cost weighting factor

Cs5 Structural maintenance cost factor

K.15
Fan system maintenance cost, Csfsm = 24466.7508 $/a
Structural maintenance cost, Cssm = 1966.57758 s/a
Distribution system maint. cost, Csdm= 14630.6965 $/a
Fuel cost, Csfuel = 0.000000000E+00 $/a
TOTAL COSTS:
Total power consumption cost = 838900.745 $/a
Total maintenance cost = 116512.421 $/a
Total fuel cost = 0.000000000E+00 S$/a
Total capital cost = 15219692.4 $
Total annual cost = 3999351.65 $/a
Table K.8: Post-optimality analysis
SCALE-INVARIANT MEASURE OF SENSITIVITY
GENERAL COST FACTORS
Ce Present electricity cost (self-generated) 0.209759
ere: Electricity cost escalation rate 0.187191
Ct Present fuel cost 0.000000E+00
erf: Fuel cost escalation rate 0.000000E+00
i : Interest rate -0.880034E-01
FCR: Levelized fixed charge rate 0.761108
Tau: Running hours per annum 0.209759
FINNED TUBE BUNDLE COST
Cb1l Tube material unit cost 0.204677E-01
Cb2 Tubing fixed cost 0.470766E-01
Cb3 Fin material unit cost 0.166896
Cb4 Finning fixed cost 0.261505
Cb5s Galvanizing material unit cost 0.000000E+00
Cb6 Surface coating fixed cost 0.000000E+0O
Cb7 Finned tube cost weighting factor 0.495946
Cbs Bundle frame and header cost factor 0.826576E-01
Cb9 : Tube assembly and end preparation cost 0.355802E-01
Cb10: Bundle cost weighting factor 0.531526
Cb1ll: Bundle maintenance cost factor 0.188652E-01

.257472E-02
.351515E-01
.205631E-02
.829957E-03
.169761E-02
.192236E-01
.192236E-01
.16357%E-01
.139475E-02
.615337E-01
.611768E-02

O O O oo

.417113E-02
.172155
.208556E-01
.187181
.491714E-03
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STEAM/CONDENSATE DISTRIBUTION COSTS

cd1
cdz

Distribution system cost factor
Distribution system maintenance cost fact.

PRESCRIBED PARAMETERS

Kos
Kod :
ETAfd:
Lsw =
Kts
pal
dsh
Ksd
Ts

Tal

Loss coeff. for flow obstacles (suction)
Loss coeff. for flow cbst. (discharge)
Efficiency of fan drive system
Half-width of walkway between A-frames

: ACC installation support loss coefficient

Barometric pressure at ground level
Effective steam header diameter

: Mean steam ducting loss coefficient

Saturated steam supply temperature

: Alr temperature at ground level

GEOMETRIC CONSTRAINT VARIATION SENSITIVITY
CONSTRAINTS: ROUND TUBES

1 (2*LT*SIN(THETB)/DFAN-WFL)
2 (WFU-2*LT*SIN(THETB) /DFAN)
3  (0.5*NB*WB/DFAN-LFL)

4 (LFU-0.5*NB*WB/DFAN)

5 (1.0-WB/WRBU)

6 (THETF-THETFMIN)

7 (THETFMAX-THETF)

8 (1.0-PI*DFAN*RPM/60/VBTU)
9 (0.09033-LSW/LT)

10 (THETB/THBL-1.0)

11 (1.0-THETB/THBU)

12 (0.17886- (DSH/LT)/(2* (DSIN(THETB) +LSW/LT) ) )
13 (PT/DF-1.0)

14 (DF/DR-1.0)

15 (TR/TRL-1.0)

16 (TT/TTL-1.0)

17 (PF(1)/PFL-1.0)

18 (PF(2)/PFL-1.0)

19 (TF/TFL-1.0)
20 (PF(1) /TFIN-1.0)
21 (PF(2) /TFIN-1.0)

Minimization of power generation cost

Table K.9: Optimization output and cost data

OPTIMIZATION OQUTPUT DATA SET:
FINNED TUBE TYPE: Round tubes (extruded fins)
CORRELATION: Ganguli, Tung, Taborek

ANNUAL NET POWER OUTPUT OPTIMIZATION

VARIABLES FOR OPTIMIZATION:

ma Taol

Tao2 Tacc mwl mw2 Ts rpm H3 dfan THETF Lt

do tt tr 4df tf Pf1 Pf2 Pt

FAN INSTALLATION

H3
nf
df

Height of fans above ground level= 35.
Total number of fans = 30.
Fan diameter = 10.

0.149989
0.365826E-02

0.197513E-01
0.259953E-01
-0.228983
-0.529491E-02
0.943268E-02
-0.500096
0.184559E-02
0.574610E-02
-8.62346
7.38966

0.661276E-01
0.000000E+00
0.666161E-01
0.000000E+00
0.000000E+00
0.301764E-01
.000000E+00
.000000E+00
.000000E+0Q0Q
.000000E+0Q0
.269489E-01
.000000E+00
.000000E+00
.000000E+00
.380751E-01
.379985E-01
.000000E+00
.612912E-02
.000000E+0Q0
.000000E+00
.000000E+QQ

(@}

[« el elNeNeNoelNe No oo e NoNeo Nl o]

ntr THETB

9088 m
0000
4918 m
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THETF: Fan blade angle = 12.0000
FINNED TUBES

do : Tube outside diameter = 36.8049
tt : Tube thickness = 1.20000
tr : Fin root thickness = 1.00000
df : Fin diameter = 92.3285
tf : Fin thickness (core) = 0.215643
Pfl: Fin pitch (row 1) = 3.06108
Pf2: Fin pitch (row 2) = 1.75000
Pt : Transversal tube pitch = 96.1082
Pl : Longitudinal tube pitch = 83.2297

HEAT EXCHANGER BUNDLE

nr : Number of tube rows = 2.00000
ntrl : Number of tubes per row (row 1) = 130.000
ntr2 : Number of tubes per row (row 2) = 131.000

nb : Number of heat exchanger bundles = 2.00000

Lt : Length of finned tubes = 10.9752
THETb: Bundle semi-apex angle = 35.0000

Wb : Width of heat exchanger bundle = 12.5902
HEAT EXCHANGER BUNDLE COST:

Cost of tubes, Cstm = 488620.069 $
Cost of fins, Csfm = 3099237.82 S
Cost of galvanizing, Csgm = 0.000000000E+00 3
Cost of finned tubes, Csft = 4664215.25 ]
Cost of bundle frames/headers, Csbf = 932843.050 $
Cost of bundle assembly, Csba = 391500.000 $
Total HE bundle cost, Cshe = 7785125.79 S
FAN SYSTEM COST:

Cost of fans, Csfanc = 304802.242 S
Cost of fan casing/inlet bell, Csfc= 23365.6468 $
Cost of fan safety screen, Csfsc = 9430.76941 ]
Cost of electric motor, Csem = 107933.618 $
Cost of speed reducer, Cssr = 165094.344 3
Cost of electric wiring, Csew = 10793.3618 $
Total fan system cost, Csfant = 776774.979 $

STRUCTURAL, CONSTRUCTION AND DISTRIBUTION COSTS:
Cost of land, structure, construction, Csc= 3059628.50
Cost of fan platform ,Csfp 356653.405
Total structural/construction cost, Cssc = 4270352.39
Total steam/cond. distribution cost, Csdis= 2996665.27

OPERATING AND MAINTENANCE COSTS:

Operating cost of fans, Csfo = 592250.607
HE bundles maintenance cost, Cshem = 77851.2579
Fan system maintenance cost, Csfsm = 23303.2494
Structural maintenance cost, Cssm = 2135.17619
Distribution system maint. cost, Csdm= 14983.3263

Fuel cost, Csfuel = 106630383.

TOTAL COSTS:

Tctal power consumption cost = 592250.607 $/a -
Total maintenance cost = 118273.010 $/a
Total fuel cost = 106630383. $/a
Total capital cost = 15828918.4 $

Total annual cost = 110506690. $/a

deg

mm
mm
mm

mm
mm
mm
mm
mm

m
deg
m

$/a
$/a
$/a
$/a
$/a
$/a

v N w
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NET ANNUAL POWER OUTPUT
Net annual power output
Annual heat dissipated

Cost per kWh

Table K.10: Power generation output

K.18

2079.41
2877.25

RESULTS OF NET ANNUAL POWER OUTPUT

No

@ 30N U bW

0

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Tdb
[cl

@ 9N U0 WNHE O

[\e}

10.
11.
12.
13.
14.
15.

16

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27

28.
© 29

30

31.
32.

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
00
00
00
00
00
.00
00
00
00
00
00
00
00
00
00
00
.00
00
.00
.00
00
00

Twb
(C]

O I Nk WNDMNH OO O OO

e e
R WWNNEH OOV

15

15.
15.
15.
l6.
.40
.80
.40
18.

16
16
17

.00
.00
.00
.00
.90
.90
.90
.80
.60
.40
.30
.10
.80
.60
.40
.20
.90
.60
.20
.70
.20
.70
.10
.50
14.
.20

90

50
70
90
10

00

NET ANNUAL POWER
ANNUAL HEAT DISSIPATED

h
[h/al

10

26

43

59

82
112
152
201
254
312
371
434
506
578
656
738
764
655
553
459
381
320
265
219
177
140
105

76

51

30

15

OUTPUT

Ts

[c]

53
56
57

56.
.36

57

57.
.89
.08

57
58

58.
.66

58

58.
.30
.63
.00

59
59
60

60.
60.
61.
61.
62.
.54

62

63.
.56

63

64.
.61

64

65.
.74

65

66.
66.

67
68
68
69

70.
70.

.77
.38
.28

91

58

37

97

38
77
19
62
07

03

06

17

29
93

.51
.22
.71
.88

34
02

2877.253 GWh

ps

[kPa]

14
16.
17
17.
17
17
17
18
18
18
18.
19.
19
19
20.
20
20
21
21
22
22
23
23
24
25
25
26
27
27
28
29
30
31
31.

2079.

72

67

.39

10

.46
.64
.90
.06
.31
.56

83
12

.42
.75

11

.48
.87
.29
.73
.20
.71
.26
.79
.39
.02
.66
.31
.07
.77
.67
.28
.83
.46

02

Q

(MW]

327
327
327
327
327
327

327.
327.
327.

327

327.

327

327.
328.
328.
328.

328
328
328
328
328

328.
329.

329
329
329

329.

330
330
330
330

331.
331.

331

.51
.60
.67
.64
.68
.70
74
76
79
.83
88
.93
98
04
11
19
.28
.38
.48
.60
.74
89
04
.22
.42
.63
84
.11
.36
.69
.92
53
79
.61

407 GWh

GWh
GWh

Pg
(MW

238
238
238
238
238.
238
238
238.
238
238
238.
238
238
238
238
238
238.
238.
237.
237.
237
237.
237.
237
237.
236.
236
236
236.
235.
235.
235
234
235.

0.531434E-01 $/kWh

]

.83
.78
.72
.75

72

.70
.67

65

.62
.59

55

.50
.46
.40
.33
.26

18
09
99
88

.76

61
47

.30

11
91

.71
.45

21
90
67

.09
.84

01

PF

[Mw]

HHRMEFRPRPHEBEREPFPFROOOODOOODOOOODOOODOODOOODOOOOOO

.254
.210
.212
.244
.258
.279
.300
.325
.350
.376
.404
.433
.465
.497
.531
.567
.605
.644
.685
.729
.773
.817
.868
.917
.969
.024
.084
.138
.205
.257
.347
.335
.436
.698

Pn

[MW]

238
238

238
238

238
238

237

237
237
237
237
237

236
236

235
235
235
235

234
233
233
233

.57
.57
238.
238.

51
51

.46
.42
238.
238.

37
33

.27
.21
238.
238.
.99
237.
.80
.70
.58
.45
.31
237.
236.
.79
.60
236.
236.
.89
.62
.32
.01
234.
.32
.75
.40
.31

14
07

90

15
98

38
14

64

nsF

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

FOS
(rpm]

36.

36
36

38

44

45.

46
47

51
52
53
54
55
56

57.
.23
60.
.57
.78
64.
65.
.50
.51
69.
69.
.81
74 .

59

61
62

66
67

70

07

.27
.40
38.
.88
39.
40.
42.
43.

15

94
91
09
15

.24

35

.46

.60

48.
49,
.02
.18
.34
.51
.69
.85

73
86

98

40

06
17

16
02

97
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Table K.11: Post-optimality analysis

SCALE-INVARIANT MEASURE OF SENSITIVITY

GENERAL COST FACTORS
Ce Present electricity cost (self-generated)
ere: Electricity cost escalation rate
Ct Present fuel cost
erf: Fuel cost escalation rate
i : Interest rate
FCR: Levelized fixed charge rate

FINNED TUBE BUNDLE COST

Cb1l
Cb2
Cb3 :
Cbh4 :
Cbs :
Cbé
Cb7
Chs
Cbg :
Cb10:
Cbll:

Tube material unit cost

Tubing fixed cost

Fin material unit cost

Finning fixed cost

Galvanizing material unit cost
Surface coating fixed cost

Finned tube cost weighting factor
Bundle frame and header cost factor
Tube assembly and end preparation cost
Bundle cost weighting factor

Bundle maintenance cost factor

FAN SYSTEM COSTS

Cf1 :
cf2
CE3
Cf4
Cf5
Cte
Ct£7
Cfs8
Cf9 :
Cfi0:
Cfil:

Fan fixed cost

Fan unit cost

Fan casing and inlet bell unit cost
Fan safety screen unit cost
Electric motor fixed cost

Electric motor unit cost

Electric motor safety factor

Speed reducer cost multiplier

ool eleNeoNeNeNeoNeNelNo)

Electric wiring/switching cost multiplier

Fan system cost weighting factor
Fan system maintenance cost factor

STRUCTURAL AND CONSTRUCTION COSTS

Csl
Cs2
Cs3
Cs4
Cs5

Land,

Fan platform unit cost
Structural cost weighting factor
Structural maintenance cost factor

STEAM/CONDENSATE DISTRIBUTION COSTS

Cd1l
Caz

Distribution system cost factor

Distribution system maintenance cost fact.

PRESCRIBED PARAMETERS

Kos
Kod :
ETAfd:
Lsw
Kts
pal
dsh
Ksd

Loss coeff. for flow obstacles
Loss coeff. for flow obst. (discharge)
Efficiency of fan drive system

Half-width of walkway between A-frames

ACC installation support loss coefficient

Barometric pressure at ground level
Effective steam header diameter
Mean steam ducting loss coefficient

excavation and foundation unit cost
Structural material/installation unit cost

(suction)

0.535940E-02

0.478279E-02
0.964922
1.01856
-0.466996

0.286479E-01

.749104E-03
.177735E-02
.628484E-02
.974015E-02
.00C000E+00
.000000E+00
.185515E-01
.309190E-02
.129762E-02
.198491E-01
.704481E-03

0.931743E-04
0.136334E-02
0.797371E-04
0.321890E-04
0.614365E-04
0.491158E-03
0.491158E-03
0.563491E-03
0.368352E-04
0.212105E-02
0.210866E-03

0.161764E-03
0.677734E-02
0.808870E-03
0.774800E-02
0.193201E-04

0.555909E-02
0.135575E-03

0.759359E-03
0.999419E-03
-0.854487E-02
-0.197914E-03
0.362630E-03
-0.192358E-01
0.676723E-04
0.208786E-03
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GEOMETRIC CONSTRAINT VARIATION SENSITIVITY
CONSTRAINTS: ROUND TUBES

(2*LT*SIN (THETB) /DFAN-WFL)

(WFU-2*LT*SIN(THETB) /DFAN)

(0.5*NB*WB/DFAN-LFL)

(LFU-0.5*NB*WB/DFAN)

o o0 Uk WN

S e el e el
CWVW®DVIOU P WNHOW

(1.0-WB/WBU)

(THETF - THETFMIN)
(THETFMAX - THETF)
(0.09033-LSW/LT)
(THETB/THBL-1.0)
(1.0-THETB/THBU)

(0.17886- (DSH/LT) / (2* (DSIN (THETB) +LSW/LT) ) )

(PT/DF-1.0)
(DF/DR-1.0)
(TR/TRL-1.0)
(TT/TTL-1.0)
(PF(1) /PFL-1.0)
(PF(2) /PFL-1.0)
(TF/TFL-1.0)
(PF(1) /TFIN-1.0)
(PF(2) /TFIN-1.0)

ol eleleNeNeNeolNoNele e lNeNe Noe o NoNoNeoNo e

.247300E-02
.0C0000E+00
.283731E-02
.000000E+00
.000000E+00
.109201E-02
.000000E+00
.000000E+00
.000000E+00
.724287E-03
.000000E+00
.000000E+0Q0
.000000E+00
.140311E-02
.139961E-02
.000000E+00
.213565E-03
.000000E+0Q0
.000000E+00
.000000E+00
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L.1

APPENDIX L

NATURAL DRAFT INDIRECT DRY-COOLING TOWERS

PROGRAM INPUT AND OUTPUT

L.1 PROGRAM INPUT DATA

Table L.1: General mput data

COOLING TOWER DIMENSIONS

H5
H3
ds
ds

CDts
Lts
dts
nts
tcts
ALPH

pal
Tal
Twb
g
Ta4
Twi
Two
ma
maL
malU
mw
mwL
mwU :
FINNED
nb
ntb
nt/r:
nr
nwp :
Lt :
Wb
THET:
Ke :

PHIsDb:

Tower overall height

Tower inlet height

Tower diameter at outlet

Tower diameter at inlet

Tower base angle .

Tower support drag coeff1c1ent

Tower support length . . . e e e
Tower support diameter/width . . . . .
Number of tower supports

Tower shell thickness

120.00
13.670
58.000
82.958
70.000
2.0000
14.547
0.50000
60.000
0.25000

Fraction of tower area covered by bundles 0.52379
COOLING TOWER OPERATING CHARACTERISTICS

Barometric pressure at ground level.

Dry bulb air temperature at ground level
Wet bulb air temperature at ground level
Gravitational acceleration

: Air outlet temperature . . . . . . . . .

Water inlet temperature . . . . .
Water outlet temperature

: Alr mass flow rate

Lower bound for air mass flow rate
Upper bound for air mass flow rate . .
Water mass flow rate .

Lower bound for water mass flow rate
Upper bound for water mass flow rate . .
TUBE BUNDLE SPECIFICATIONS

Number of heat exchanger bundles .
Number of tubes per bundle . . . . . . .
Number of tubes per row (maximum) . . .
Number of tube rows . . . . . . . . . .
Number of water passes e e e
Length of finned tubes . . . e e
width of heat exchanger bundle

Bundle semi-apex angle . . . . -
Total flow resistance length ratio

EXPERIMENTAL PERFORMANCE CHARACTERISTICS

PC :
AKhe:
BKhe:
ANy
BNy :
FINNED
tt

tf

tg

Correlation(normal flow=0,inclined flow=1)

Constant in Khe correlation . . . . .
Exponent in Khe correlation

Constant in Ny correlation

Exponent in Ny correlation

TUBE DIMENSIONS: GENERAL

Tube thickness . . . . . . . . . . . . .
Fin thickness (mean - core material)
Thickness of galvanizing material {(mean)

84600.
15.600
0.00000E+00
9.8000
45.475
61.450
43.097
11203.
5000.0
20000.
4390.0
2000.0
7000.0

142.00
154.00
39.000
4.0000
2.0000
15.000
2.2620
30.750
2.0000

0.00000E+0Q0
0.00000E+0C
0.00000E+00
0.00000E+00
0.00000E+00

1.9000
0.50000
0.00000E+00

o3 3 3 3

€g

3

N/m*2

C

c
m/s*2

c

C

C
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s

deg

mm
mm
mrm
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L2

Pf : Fin pitch .o

Pt : Transversal tube pltch

Pl : Longitudinal tube pitch

EPS : Tube inside surface roughness
FINNED TUBE DIMENSIONS: ROUND TUBES

do : Tube outside diameter .
tr : Fin root thickness

df : Fin diameter .
FINNED TUBE DIMENSIONS: NON ROUND TUBES

Peri : Fin perimeter form (Ellip=1, Rect=2)

de : Tube hydraulic diameter .
Atcs : Tube cross-sectional area N

Ati : Tube inside surface area/unit length
Af1 : Surface area of one fin . .
Aal : Surface area of one fin and exposed root
vEl : Material volume of one fin .

SIGMfl: Fin leading edge fr. area/HE fr.

SIGM21: HE inlet contraction area ratio

SIGM : Minimum HE free flow area/HE fr.

FINNED TUBE PROPERTIES

RHOt: Density of tube material

RHOf: Density of fin material

RHOg: Density of galvanizing material

kt : Thermal conductivity of tube material

kf : Thermal conductivity of fin material

kg : Thermal conductivity of galv. material
COST FACTORS: GENERAL INFORMATION

Ce : Present electricity cost (self-generated)
ese : Electricity cost escalation rate

Cf : Present fuel cost .

esf : Fuel cost escalation rate

i : Interest rate . .

NY : Capital repayment perlod .

FCR : Fixed charge rate . . . . .

Tau : Running hours per annum

FINNED TUBE BUNDLE COSTS

Cbl : Tube material unit cost

Cb2 : Tubing fixed cost Co. .
Cb3 : Fin material unit cost . . . .
Cb4 : Finning fixed cost . . . . .
Cb5 : Galvanizing material unit cost .
Cb6 : Surface coating fixed cost

Cb7 : Finned tube cost weighting factor
Cb8 : Bundle frame and header cost factor
Cb9 : Tube assembly and end preparation cost

Cb10: Bundle cost weighting factor .
Cb1l: Bundle maintenance cost factor .
CIRCULATION SYSTEM COSTS

Cpl : Pump fixed cost .

Cp2 : Pump unit cost . . .

Cp3 : Electric motor fixed cost

Cp4 : Electric motor unit cost

Cp5 : Electric motor safety factor (undersizing)
Cp6 : Electric wiring/switching cost multiplier

Cp7 : Pump system cost multiplier

Cp8 : Pump system maintenance cost factor

Cp9 : Piping and valves cost factor

Cplo Piping and valves maintenance cost factor

2.8000

58.000

50.220
0.11500E-01

25.400
1.1000
57.200

0.00000E+00
0.00000E+00
0.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00C
.00000E+00
.00000E+00

O OO O oo Oo

7850.0
2707.0
0.00C00E+00
50.000
204.00
0.00000E+00

5.0000
7.5000
0.25000E-02
8.5000
10.000
30.000
20.000
8760.0

0.80000
2.0000
4.0000

0.20000

0.00000E+00

0.00000E+00
1.2000

0.20000
25.000
1.2000

0.10000E-01

2300.0
180.00
400.00
120.00
1.2500
0.10000
1.2500
0.30000E-01
0.25000
0.50000E-02

mm
mm
mm
mm

mm
mm
mm

mm
mm”* 2
mm

mm*2
mm™2
mm* 3

$/kg
$/m
$/kg
$/m”2

$/FT

$/P

$/kW
$/EM
$/kW
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COOLING TOWER CONSTRUCTION COSTS
Csl : Land, excavation and foundation unit cost 70.000

Cs2 : Cooling tower shell cost . . . . . . . . . 250.00

Cs3 : HE Bundle support platform cost . . . . . 100.00

Cs4 : Cooling tower support cost . . . . . . . . 175.00

Cs5 : Construction cost multiplier . . . . . . . 1.2500

Cs6 : Maintenance cost factor . . . . . . . . . 0.50000E-03
FIN MATERIAL PROPERTIES

RHOal: Density of aluminium . . . . . . . . . . 2707.0
RHOcu: Density of copper . . . . . . . . . . . . 8954.0
RHOst: Density of steel . . . . . . . . . . . . 7850.0
RHOzn: Density of zinc . . . e e e e e e o .. 71440

kal : Thermal conductivity of aluminium . . . . 204.00

kcu : Thermal conductivity of copper . . . . . 386.00

kst : Thermal conductivity of steel . . . . . . 50.000

kzn Thermal conductivity of zinc . . . . . . 116.00
PARAMETERS FOR SUBROUTINE SOLVE

H : Step length for numerical differentiation 0.10000E-07
ACCS : Stopping accuracy for SOLVE . . . . . . . 0.10000E-06
ITMAX: Maximum no. of iterations for SOLVE . . . 50.000
IPRNT: Controls intermediate printing of SOLVE . 1.0000

PARAMETERS FOR SUBROUTINE OPTIM
IPRNT : Controls intermediate printing of QOPTIM 1.0000

MAXFUN: Maximum no. of function evaluations . . 250.00
ACCO : Stopping accuracy for OPTIM . . . . . . 0.10000E-06
H : Step length for numerical differentiation 0.10000E-07
ALL FINNED TUBE TYPES: CONSTANT VALUES (=0.0)
H5 : Tower overall height . . . . . . . . . . . 1.0000
H3 : Tower inlet height . . . . . . . . . . . . 1.0000
d5 : Tower diameter at outlet . . . . . . . . . 1.0000
d3 : Tower diameter at inlet 1.0000
nt/r: Number of tubes per row . . . . . . . . 1.0000
Lt : Length of finned tubes . 1.0000
THET: Bundle semi-apex angle . . . . . . . . . 1.0000
ALL FINNED TUBE TYPES: LOWER VALUES
H5 : Tower overall height . . . . . . . . . . . 80.000
H3 : Tower inlet height . . . . . . . . . . . . 5.0000
ds : Tower diameter at outlet . . . . . . . . . 40.000
d3 : Tower diameter at inlet . . . . . . . . . 45.000
nt/r: Number of tubes per row . . . . . . . . . 10.000
Lt : Length of finned tubes . . . . . . . . . . 5.0000
THET: Bundle semi-apex angle . . . . . . . . . . 10.000
ALL FINNED TUBE TYPES: UPPER VALUES
H5 : Tower overall height . . . . . . . . . . . 200.00
H3 : Tower inlet height . . . . . . . . . . . . 25.000
ds : Tower diameter at outlet . . . . . . . . . 100.00
d3 : Tower diameter at inlet . . . . . . . . . 150.00
nt/r: Number of tubes per row . . . . . . . . . 100.00
Lt : Length of finned tubes . . . . . . . . . . 20.000
THET Bundle semi-apex angle . . . . . . . . . . 80.000
ROUND TUBES: CONSTANT VALUES (=0.0)
do : Tube outside diameter . 1.0000
tt : Tube thickness . . . . . . . . . . . . . 1.0000
tr : Fin root thickness 1.0000
df : Fin diameter 1.0000
tf : Fin thickness . . . . . . l.0000
tg : Thickness of galvanlzlng materlal . . . . 0.00000E+00
Pf : Fin pitch . . . . e« « < « « « « « . 1.0000

Pt : Transversal tube pltch e e -« « « <« . . . 1.0000

$/m"2
$/m”3
$/m*2
$/m*3

kg/m”*3
kg/m*3
kg/m*3
kg/m”3
W/mC
W/mC
W/mC
W/mC

3333

3

eg

338233

deg
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ROUND TUBES: LOWER VALUES

do : Tube outside diameter

tt : Tube thickness

tr : Fin root thickness

df : Fin diameter

tf : Fin thickness .

tg : Thickness of galvanlzlng materlal

Pf : Fin pitch

Pt : Transversal tube pltch

ROUND TUBES UPPER VALUES

do : Tube outside diameter

tt : Tube thickness

tr : Fin root thickness

df : Fin diameter

tf : Fin thickness . . . .

tg : Thickness of galvanlzlng materlal

Pf : Fin pitch . . . .
Pt : Transversal tube pltch
OPTIMIZATION: GENERAL INFORMATION

txrL : Lower bound for tr . .

ttL : Lower bound for tt

tfL : Lower bound for tf

tgL : Lower bound for tg

tgU : Upper bound for tg

PfL : Lower bound for Pf . . . .

LcU : Upper bound for Lt . . . .

WhU : Upper bound for Wb . . . . .

HirlL : Lower bound for H3/HS5-ratio

HirU : Upper bound for H3/HS-ratio

DirL : Lower bound for d3/(H5-H3)-ratio . . .
DirU : Upper bound for d3/(H5-H3)-ratio .
DrL : Lower bound for d3/d5-ratio .
DxU : Upper bound for d3/ds-ratio .
THbU : Upper bound for bundle semi-apex angle
OPTIMIZATION: GENERAL INFORMATION

vwL : Lower bound for vw . . . . . . . .
vwix : Fix vw at this value, 0 otherwise
Qct : Tower heat transfer rate

UAc : Condenser thermal conductance .o
TTDc : Cond. terminal temperature difference
TsU : Upper steam temperature limit .
TsL Lower steam temperature limit

CHOICE OF CORRELATIONS AND FORMULAE
Finned tube type . . .
1 Round tubes (round flns)
2 Non-round tubes
Round tubes performance correlations .
1 Ny vs. Ry and Khe vs. Ry
2 Briggs, Young, Robinson
3 Ganguli, Tung, Taborek
4 Nir

Non-round tubes performance correlations

1 Ny vs. Ry and Khe vs. Ry
Fin material . .

1 Aluminium

2 Copper

3 Steel

4 Galvanized fin (steel core)

10.000
1.0000
1.0000
20.000
0.50000E-01
0.30000E-01
1.0000
20.000

80.000
2.0000
2.0000
100.00
1.0000
0.70000E-01
5.0000
120.00

1.0000.
1.2000
0.50000E-01
0.20000E-01
0.10000
2.0000
25.000
3.0000
0.50000E-01
0.15000
0.64000
1.1300
1.3700
1.7700
60.000

1.0000
0.00000E+00Q
331.10
0.38480E+08
2.5000
90.000
30.000

mm
mm
mm
mm
mm
mm
mm
mm

mm
mm
mm
mm
mm
mm
mm
mm

mm
mm

mm
mm

deg

m/s
m/s
MW
W/K
o

C

C



Optimization model
1 Constant water pressure drop
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(Operating point)

2 Constant condenser design

3 Fixed mw and Twi

4 Fixed Twi

L.5

Table 1..2: Frequency of dry- and wetbulb temperatures

MEAN HOURLY FREQUENCY OF AMBIENT TEMPERATURES

Number of data sets
Dry bulb temperature at ground level

Wet bulb temperature at ground level

: Annual duration of these temperatures
Twb [ C]
.000
.000
.000
.000
.900
.900
.900
.800
.600
.400
.300
.100
.800
.600
.400
.200
.900
.600
.200
.700
.200
.700
.100
.500
.900
.200
.500
.700
.900
.100
.400
.800
.400
.000

Tdb
Twb
h

=
W I U S W= O

WWWWWNNONNNROONNONNDER PR B e P e
BPWNDHFOWVWOIAU RN WNHOW®®JAU R WN RO W

Table L.3: Turbo-generator-condenser characteristic curves

Tdb [ C]
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

OV O®IAU B WN H O P

WWWNNNROMNUONONNREBEHRSR R B 3 43
NHOWVWOLNOOU B WNREFOW®IAU G WN MO

(maximum 40) :

WO N0 WNHEHOOoOOOO

HERERRERRRPRRBRERBRBERRRRPB B B B op
OOV U UUE R WWNNE OO

34

h [h/a]

4.
.000

26.

43.

59.

82.
112.
152.
201.
254.
312.
371.
.000
506.
578.
656.
738.
.000

10

434

764

655.
553.
459.
381.
.000
.000

320
265

219.
177.
140.
105.
76.
51.
30.
15.
.000

8

4.

000

0oo
0oo
000
000
000
000
000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
e
000
000
000
000

000

[cl
(cl

TURBO-GENERATOR-CONDENSER PERFORMANCE CHARACTERISTICS
Minimum saturated steam temperature
Maximum saturated steam temperature

Tsmin:
Tsmax:
Qdes
TTDd

Heat to be rejected at the design point
Design point terminal temp. difference

42.000
94.610
327.63
2.5000

MW
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HEAT TO BE REJECTED [MW] vs. SATURATED STEAM TEMPERATURE [C]
Cg0 : Constant coefficient . . . . . . . . . . 336.40

Cgl : First degree coefficient . . . . . . . . 0.18223

Cg2 : Second degree coefficient . . . . . . . .-0.16010E-01
Cg3 : Third degree coefficient . . . . . . . . 0.17753E-03
Cg4 : Fourth degree coefficient . . . . . . . . 0.00000E+00
Cg5 : Fifth degree coefficient . . . . . . . . 0.00000E+00
GENERATOR POWER OUTPUT [MW] vs. SATURATED STEAM TEMPERATURE [C]
Cp0 : Constant coefficient . . . . . . . . . . 225.83

Cpl : First degree coefficient . . . . . . . .-0.42994E-02
Cp2 : Second degree coefficient . . . . . . . . 0.13317E-01
Cp3 : Third degree coefficient . . . . . . . .-0.16257E-03
Cp4 : Fourth degree coefficient . . . . . . . . 0.00000E+00
Cp5 : Fifth degree coefficient . . . . . . . . 0.00000E+0Q0

L.2 PROGRAM OUTPUT
Operating point calculations

Table L.4;: Operating point output and cost data

COMPLETE OUTPUT DATA SET:

AIRSIDE DATA:
Air temperature:

At inlet of heat exchangers, Tsa3 = 15.46672 C
At outlet of heat exchangers, Tsa4 = 45.29730 C
Mean HE temperature, Tsam = 30.38201 C
Humidity ratio, w = 0.0000000 kg moisture/kg dry air

Air properties (evaluated at ground level air pressure):
At HE inlet temperature:
Density, RHOsa3
At mean HE temperature:

1.021047 kg/m”3

Density, RHOsa = 0.970874 kg/m*3
Viscosity, MUsa = 0.186308E-04 kg/ms
Specific heat, cpsa = 1007.09 J/kgK
Thermal conductivity, ksa = 0.264944E-01 W/mK
Prandtl number, PRAsa =-0.708183

At HE outlet temperature:
Density, RHOsa4

At cooling tower outlet:
Air temperature, Tsa5b = 44.27954 C
Density, RHOsa5 = 0.915264 kg/m"3
Air pressure, psa5 83405.872 N/m"2

0.925401 kg/m"3

Air flow data:
Air mass flow rate, msa 11020.0 kg/s
Characteristic flow parameter, Ry 122766. m*-1
Effective heat transfer coeff., hAsae = 0.178831E+08 W/K

i

1/Densimetric Froude number, 1/FrsD = 2.84087
WATERSIDE DATA:
Water temperature:
At inlet of cooling tower, Tswi = @}.45000 C
At outlet of cooling tower, Tswo = 43.40813 C
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Mean CT temperature, Tswnm = 52.42907 C

Water properties at mean CT temperature:
At mean CT temperature: ~

Density, RHOsw = 987.010 kg/m”3
Viscosity, MUsw = 0.522417E-03 kg/ms
Specific heat, cpsw = 4179.89 J/kgkK
Thermal conductivity, ksw = 0.645492 W/mK
Prandtl number, PRAsw = 3.38292
Water flow data:
Water mass flow rate, msw = 4390.00 kg/s
Water mass velocity, Gsw = 1095.69 kg/sm*2
Water velocity inside tubes, vw = 1.11011 m/s
Bundle tube Reynolds number, Resw = 45302.8
Tube friction factor, fsw = (0.227298E-01
Pressure drop per unit length, dpsw = 639.979 N/m*3
Total water pumping power, Psw = 211503. W
Waterside heat transf coeff., hsw = 6969.06 W/m*2K
SYSTEM DATA:
Overall heat transfer coeff., UA = 0.160346E+08 W/K
Log. mean temperature diff., LMTD = 21.5114 C
Cross-flow correction factor, Fst = 0.959809
Airside heat transfer rate, Qsa = 0.331063E+09 W
Waterside heat transfer rate, Qsw = 0.331063E+09 W
Heat transfer rate based on IMTD, Qsu = 0.331063E+09 W
DRAFT EQUATION:
Draft equation LHS = 97.785 N/m*2
Draft equation RHS = 97.785 N/m*2
HEAT EXCHANGER GECOMETRIC DETAILS:
Total tube length, Lstt = 328020. m
Total waterside surface area, Aswt = 22258.9 m*2
Total fin surface area, Asft = 472428, - m*2
Total air side surface area, Asat = 495791. m*2
Total frontal bundle area, Asfr = 4818.06 m*2
Min. HE flow area/frontal area, SIGM = 0.433005
HEAT TRANSFER AND PRESSURE DROP CORRELATIONS:
Correlation: Briggs, Young, Robinson
Heat transfer:
Coefficient asHA = 0.109788
Exponent bsHA = 0.681000
Equivalent diameter, de = 27.6000 mm
Air side Reynolds number, Re = 7825.19
Air side heat transfer coeff., hsa = 40.4130 W/m”*2K
Fin efficiency, ETAsE = 0.917840
Surface effectiveness, EPSIsf = 0.921711
Pressure drop:
Coefficient askEU = 9.51000
Exponent bsEU = -0.316000
Equivalent diameter, de = 27.6000 mm
Air Reynolds number, Re = 7825.19
Euler number, Eu = 2.23819
Total bundle loss coefficient, Kshet = 30.7376

PRESSURE LOSS COEFFICIENTS (based on HE frontal area and mean air density):
Tower support loss coefficient, Ksts = .42625
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Tower inlet loss coefficient, Ksct = 1.7289
" Contraction loss coefficient, Kscon = 1.2131
HE inlet loss coefficient, Kshi = 1.9442
HE normal flow loss coefficient, Kshe = 24.399
HE downstream loss coefficient, Ksd = 4.,3944
Expansion loss coefficient, Ksexp = 1.1887
Tower outlet loss coefficient, Kso = 1.3972

PRESSURE LOSS TERMS (based on HE frontal area and mean air density):

Tower support pressure loss, dpsts = 1.1484 N/m*2
Tower inlet pressure loss, dpsct = 4.6579 N/m”*2
Tower contraction press. loss, dpscon = 3.2683 N/m"*2
HE inlet pressure loss, dpshi = 5.2380 N/m”2
HE normal flow pressure loss, dpshe = 65.736 N/m*2
HE downstream pressure loss, dpsd = 11.839 N/m*2
Tower expansion pressure loss, dpsexp = 3.2026 N/m*2
Tower outlet pressure loss, dpso = 3.7643 N/m*2
HEAT EXCHANGER BUNDLE COST:
Cost of tubes, Cstm = 944995.725 S
Cost of fins, Csfm = 3607200.59 $
Cost of galvanizing, Csgm = 0.000000000E+0C0 $
Cost of finned tubes, Csft = 5462635.58 $
Cost of bundle frames/headers, Csbf = 1092527.12 $
Cost of bundle assembly, Csba = 546700.000 $
Total HE bundle cost, Cshe = 8522235.23 S

CIRCULATION SYSTEM COST:

Cost of pumps, Cspc = 80741.1488 $
Cost of electric motors, Csem = 32525.4787 $
Cost of electric wiring, Csew = 3252.54787 S
Total pumping system cost, Cspt = 145648.969 $
Cost of piping and valves, Cspv = 2130558.81 S

COOLING TOWER STRUCTURAL AND CONSTRUCTION COSTS:

Cost of land, excavation, foundation, Csle= 474572.960 S
Cost of cooling tower shell, Cscts = 1382704.24 S
Cost of HE bundle platform, Cspl = 540513.354 $
Cost of cooling tower supports, Csts = 38186.6891 $
Total structural, construction cost, Cssc = 3044971.56 S
OPERATING AND MAINTENANCE COSTS:
Operating cost of pumps, Cspo = 195858.702 $/a
HE bundles maintenance cost, Cshem = 85222.3523 $/a
Pump system maintenance cost, Cspsm = 4369.46907 S$/a
Piping and valves maint. cost, Cspvm = 10652.7940 $/a
Cooling tower struct. maint. cost, Cssm = 1522.48578 $/a
Fuel cost, Csfuel = 0.000000000E+00 $/a

TOTAL COSTS:

Total operating cost = 195858.702 $/a
Total maintenance cost = 101767.101 $/a
Total fuel cost = 0.000000000E+00 $/a
Total capital cost = 13843414.6 $

Total annual cost

3066308.72 $/a
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Power generation calculations

Table L.5: Power generation output and cost data

L.9

RESULTS OF NET ANNUAL POWER OUTPUT

No Tdb
(Cl]
1 -1.00
2 0.00
3 1.00
4 2.00
5 3.00
6 4.00
7 5.00
8 6.00
9 7.00
10 8.00
11 9.00
12 10.00
13 11.00
14 12.00
15 13.00
16 14.00
17 15.00
18 16.00
19 17.00
20 18.00
21 19.00
22 20.00
23 21.00
24 22.00
25 23.00
26 24.00
27 25.00
28 26.00
29 27.00
30 28.00
31 29.00
32 30.00
33 31.00
34 32.00
NET ANNUAL

Twb

[C

H
CVW®IJIOUddWNRPRPLOOODOO

L e sl el
B W W NN R o

14
15.
15.
15.
15.
16.
le6.
16
17.
18.

POW

]

.00
.00
.00
.00
.90
.90
.90
.80
.60
.40
.30
.10
.80
.60
.40
.20
.90
.60
.20
.70
.20
.70
.10
.50
.90

20
50
70
90
10
40

.80

40
00

ER

h Tw
[h/al [C
4 43
10 44
26 45
43 46
59 47
82 48
112 49
152 50.
201 51
254 52.
312 53.
371 55.
434 56.
506 57
578 58
656 59
738 60
764 61
655 62
553 63.
459 65.
381 ¢66.
320 67
265 68.
219 69
177 70
140 71.
105 73.
76 74
51 75.
30 76
15 77
8 79
4 80

OUTPUT =

ANNUAL HEAT DISSIPATED =

i

]

.36
.41
.46
.52
.58
.64
.70

77

.84

91
99
07
16

.25
.35
.45
.55
.67
.78

91
04
17

.32

47

.63
.79

97
15

.35

55

.76
.98
.22
.47

2886.389 GWh

HEAT EXCHANGER BUNDLE COST:
tubes,
fins,
galvanizing,
finned tubes,

Cost
Cost
Cost
Cost
Cost
Cost

of
of
of
of
of
of

bundle frames/headers,

Cstm
Csfm

Two Ts
(c] [C]
25.47 45.87
26.52 46.91
27.58 47.96
28.64 49.02
29.71 50.08
30.77 51.14
31.84 52.20
32.90 53.26
33.98 54.34
35.05 55.41
36.12 56.49
37.20 57.57
38.28 ©58.66
.39.37 59.75
40.45 60.85
41.54 61.95
42 .64 63.06
43.73 64.18
44.83 65.30
45.93 66.43
47.04 67.56
48.15 68.70
49.27 69.85
50.38 71.00
51.51 72.17
52.63 73.34
53.76 74.52
54.90 75.71
56.04 76.91
57.19 78.12
58.34 79.35
59.50 80.58
60.67 81.82
61.84 83.08

2074.337 GWh

Csgm
Cst

t

bundle assembly, Csba

Total HE bundle cost,

CIRCULATION SYSTEM COST:
Cost of pumps,
Cost of electric motors,

Cspc

Csh

e

Csem

Csbf

Q Pg Pp
[MW] [MW] (MW]
328.21 237.96 0.221
328.04 238.15 0.221
327.90 238.32 0.220
327.77 238.47 0.219
327.67 238.59 0.219
327.59 238.69 0.218
327.54 238.77 0.217
327.51 238.82 0.217
327.51 238.83 0.216
327.54 238.82 0.215
327.61 238.78 0.215
327.70 238.70 0.214
327.83 238.59 0.214
328.00 238.44 0.213
328.21 238.25 0.213
328.45 238.02 0.212
328.75 237.75 0.212
329.08 237.43 0.211
329.46 237.07 0.211
329.90 236.66 0.211
330.38 236.19 0.210
330.92 235.67 0.210
331.52 235.10 0.209
332.17 234.47 0.209
332.90 233.77 0.209
333.68 233.01 0.208
334.54 232.19 0.208
335.47 231.29 0.208
336.48 230.31 0.207
337.57 229.26 0.207
338.75 228.12 0.207
340.01 226.89 0.207
341.38 225.58 0.206
342.84 224.16 0.206

= 944995.725

= 3607200.59

= 0.000000000E+00 "

= 5462635.58

= 1092527.12

= 546700.000

= 8522235.23
78781.4240 $
31708.9267 $

“r v nnn

Pn
[MW]

237.
237.
238.
238.
238.
.48
.55
.60

238
238
238

238.
.61
238.
.49
.37

238

238
238

238.
.04

238

237.
237.
.22
.86
.45

237
236
236

235.
.47

235

234.
.26

234

233.
.80

232

231.
.08
230.
229.
227.
.69
.37

231

226
225

223.

74
93
10
25
38

62

56

22

81
54

98

89

56

98

10

05
91

96
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Cost of electric wiring,
Total pumping sSystem cost,
Cost of piping and valves,

L.10
Csew = 3170.89267 S
Cspt = 142076.554 S
Cspv = 2130558.81 S

G TOWER STRUCTURAL AND CONSTRUCTION COSTS:

Cost of land, excavation,

foundation,

Cost of cooling tower shell,
Cost of HE bundle platform, Cspl
Cost of cooling tower supports, Csts

Total structural,

OPERATING AND MAINTENANCE COSTS:

TOTAL

Operating cost of pumps,

Cspo

HE bundles maintenance cost,
Pump system maintenance cost, Cspsm
Piping and valves maint. cost,

Cooling tower struct. maint. cost,

Fuel cost, Csfuel

COSTS::

Total operating cost
Total maintenance cost

Total fuel cost
Total capital cost
Total annual cost

Operating point optimization

Table 1.6: Optimization output and cost data

OPTIMIZATION OUTPUT DATA SET:

Cscts

construction cost,

Cshem

Cspvm

Cssc

Cssm

Csle=

]

196280.725
101659.929
106637256.
13839842.2
109703165.

FINNED TUBE TYPE: Round tubes (round fins)

CORRE

LATION: Briggs, Young,

Robinson

OPERATING POINT OPTIMIZATION: Fixed mw and Twi

VARIABLES FOR OPTIMIZATION:
ma Ta4 Two H5 H3 d5 d3 Lt nt/r THET do tt tr df tf Pf Pt

Coo
HS
H3
ds
d3
Lt
nt
Qc
Q
1/

LING TOWER
: Tower overall height =
: Tower inlet height =
Tower diameter at outlet =
Tower diameter at inlet =
s : Tower support length =
s : Number of tower supports =
t : Specified heat transfer rate =

: Calculated heat transfer rate
FrsD: 1/Densimetric Froude number

FINNED TUBES

do
tt
Lr
df
tf
Pf

: Tube outside diameter

Tube thickness

Fin root thickness

Fin diameter
Fin thickness
Fin pitch

(core)

i1

it

27.2636
1.20000
1.00000
86.2928
0.206700
2.22286

127.857

17
67
92

18.
60.

474572.960
1382704 .24
540513.354
38186.6891
3044971.56

196280.725
85222.3523
4262.29662
10652.7940
1522.48578
106637256.

$/a
$/a
$/a
$

$/a

.7755
.3921
.3271
9163
0000

33333

0.331100E+09 W
0.331100E+09 W
2.30787

mm

mm
mm
mm
mm

L i A

$/a
$/a
$/a
$/a
$/a
$/a
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Pt : Transversal tube pitch = 100.000 mm
Pl : Longitudinal tube pitch = 86.6000 mm
HEAT EXCHANGER BUNDLE
nt/r: Number of tubes per row = 30.0000
ntb : Number of tubes per bundle = 118.000
nb : Number of heat exchanger bundles = 138.203
nr : Number of tube rows = 4.00000
nwp : Number of water passes = 2.00000
Lt : Length of finned tubes = 9.15604 m
THET: Bundle semi-apex angle = 60.0000 deg
Wb : Width of heat exchanger bundle = 3.00000 m
vw : Water wvelocity inside tubes = 1.12345 m/s
HEAT EXCHANGER BUNDLE COST:
Cost of tubes, Cstm = 390769.862 $
Cost of fins, Csfm = 2156819.00 S
Cost of galvanizing, Csgm = 0.000000000E+00 s
Cost of finned tubes, Csft = 3057106.63 $
Cost of bundle frames/headers, Csbf = 611421.329 S
Cost of bundle assembly, Csba = 407699.886 S
Total HE bundle cost, Cshe = 4891473.42° S
CIRCULATION SYSTEM COST:
Cost of pumps, Cspc = 44495.3310 $
Cost of electric motors, Csem = 17423.0546 $
Cost of electric wiring, Csew = 1742.30546 $
Total pumping system cost, Cspt = 79575.8638 $
Cost of piping and valves, Cspv = 1222868.35 $
COOLING TOWER STRUCTURAL AND CONSTRUCTION COSTS:
Cost of land, excavation, foundation, Csle= 609213.602 $
Cost of cooling tower shell, Cscts = 1629478.63 $
Cost of HE bundle platform, Cspl = 669497.010 $
Cost of cooling tower supports, Csts = 49655.3150 S
Total structural, construction cost, Cssc = 3697305.69 $
OPERATING AND MAINTENANCE COSTS:
Operating cost of pumps, Cspo = 102623.192 $/a
HE bundles maintenance cost, Cshem = 48914.7342 s/a
Pump system maintenance cost, Cspsm = 2387.27591 $/a
Piping and valves maint. cost, Cspvm = 6114.34177 $/a
Cooling tower struct. maint. cost, Cssm = 1848.65285 4$/a
Fuel cost, Csfuel : = 0.000000000E+00 $/a
TOTAL COSTS:
Total operating cost = 102623.192 $/a
Total maintenance cost = 59265.0047 $/a
Total fuel cost = 0.000000000E+00 $/a
Total capital cost = 9891223.33 $

Total annual cost = 2140132.86 $/a
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Table L.7: Post-optimality analvysis

SCALE-INVARIANT MEASURE OF SENSITIVITY

GENERAL COST FACTORS

(self-generated)

Electricity cost escalation rate

Levelized fixed charge rate

Galvanizing material unit cost

: Surface coating fixed cost
: Finned tube cost weighting factor
Bundle frame and header cost factor

Tube assembly and end preparation cost
Bundle cost weighting factor

Ce Present electricity cost

ere:

Ct Present fuel cost

erf: Fuel cost escalation rate

i : Interest rate

FCR:

Tau: Running hours per annum
FINNED TUBE BUNDLE COST

Cbl Tube material unit cost

Cb2 Tubing fixed cost

Cb3 Fin material unit cost

Cbh4 Finning fixed cost

Cb5

Cbé

Cb7

Cb8

Cb9g :

Cb10:

Cbi1l:

Bundle maintenance cost factor

CIRCULATION SYSTEM COSTS
: Pump fixed cost
Pump unit cost
Electric motor fixed cost
Electric motor unit cost

Cpl
Cp2
Cp3
Cp4
CpS
Cpé
Cp7
Cp8
Cp9

Cpl0:

COOLING

Csl
Cs2
Cs3
Cs4
Cs5S
Csé6

PRESCRIBED PARAMETERS

dts

ALPH:

pal
Twi
mw
Ke
Tal

Electric motor safety factor (undersizing)

0.
.629938E-01

0
0

0.

0.

0.

0.000000E+0O0
-0.

0.

0.

479518E-01
427927E-01
000000E+00

201179E-01
924356
479518E-01

194353E-01

1954427

0.260533

0

[l e ool N

Electric wiring/switching cost multiplier

Pump system cost multiplier

Pump system maintenance cost factor
: Piping and valves cost factor

Land,

TOWER CONSTRUCTION COSTS
excavation and foundation unit cost

Cooling tower shell cost
HE Bundle support platform cost
Cooling tower support cost
Construction cost multiplier

: Maintenance cost factor

Tower support diameter/width

Barometric pressure at ground level

Water inlet temperature

Water mass flow rate

Total flow resistance length ratio
: Air temperature at ground level

GEOMETRIC CONSTRAINT VARIATION SENSITIVITY
CONSTRAINTS: ROUND TUBES

1
2

(HIRU-H3/HS)
(H3/HS-HIRL)

Piping and valves maintenance cost factor

.000000E+00
.000000E+00
.537389

.895648E-01
.597224E-01
.597111

.228559E-01

0.617972E-03
0.535945E-02
0.118237E-03
0.245643E-02
0.245643E-02
0.234087E-03
0.855203E-02
0.11154%E-02
0.117137

0.285700E-02

0.713433E-01
0.190824
0.784030E-01
0.581501E-02
0.346385
0.863804E-03

0.140626E-01

Fraction of tower area covered by bundles -0.182248

-0.414740
-9.45551
-0.192260
0.557677E-01
8.37099

0.000000E+00
0.000000E+0Q0
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(DIRU-D3/ (H5-H3))
(D3/(H5-H3) -DIRL)

(DRU-D3/D5)
(D3/D5-DRL)
(DF/DR-1.0)

(TT/TTL-1.0)
(TR/TRL-1.0)

(PT/DF-1.0)

(TF/TFL-1.0)
(PF/PFL-1.0)
(1.0-WB/WBU)
(1.0-LT/LTU)
(1.0-THTE/THBU)

Minimization of power generation cost

Table L.8: Optimization output and cost data

OPTIMIZATION OUTPUT DATA SET:
FINNED TUBE TYPE: Round tubes (round fins)

CORRELATION: Briggs,

Young, Robinson

ANNUAL NET POWER OUTPUT OPTIMIZATION

+

VARIABLES FOR OPTIMIZATION:

FINNED
: Tube ocutside diameter

ma Ta4 Two Ts H5 H3 d5 d3 Lt nt/r THET

COOLING TOWER

HS5
H3
ds
ds
Lt
nt

do
tt
tr
df
tf
Pf
Pt
Pl

: Tower overall height

Tower
Tower

inlet height
diameter at outlet

Tower diameter at inlet

s : Tower
S

TUBES

support length
: Number of tower supports

Tube thickness =
Fin root thickness =

Fin diameter
Fin thickness (core)

Fin pitch

Transversal tube pitch
Longitudinal tube pitch

HEAT EXCHANGER BUNDLE

nt/r: Number
ntb : Number
nb : Number
nr : Number
nwp : Number
Lt : Length
THET: Bundle
Wb

: Width of heat exchanger bundle

of
of
of
of
of
of

tubes per row
tubes per bundle

heat exchanger bundles

tube rows
water passes
finned tubes

semi-apex angle

HEAT EXCHANGER BUNDLE COST:

Cost of tubes,

Cost of fins,

Cstm
Csfm

27.2587
1.20000
1.00000
86.6256
0.205304
2.22441
96.7742
83.8065

136.398
18.8443
70.7988
97.6356
20.0537
60.0000
mm
mm
mm
mm
mm
mm
mm
mm
31.0000
122.000
148.991
4.00000
2.00000
9.51700
60.0000
3.00000
452703.627
2498644.72

ool eNeNoNeNeNoeNoNe oo ol

.000000E+00
.000000E+00
.000000E+00
.288041E-02
.000000E+00
.535095E-01
.461663E-01
.000000E+00
.000000E+00
.000000E+00
.159110E-01
.000000E+00
.230760E-01

do tt tr df tf Pf Pt

33333

deg
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Cost of galvanizing, Csgm = 0.000000000E+00 S
Cost of finned tubes, Csft = 3541618.02 S
Cost of bundle frames/headers, Csbf = 708323.605 $
Cost of bundle assembly, Csba = 454422.277 S
Total HE bundle cost, Cshe = 5645236.68 S
CIRCULATION SYSTEM COST:
Cost of pumps, Cspc = 39007.2483 S
Cost of electric motors, Csem = 15136.3535 $
Cost of electric wiring, Csew = 1513.63535 S
Total pumping system cost, Cspt = 69571.5464 $
Cost of piping and valves, Cspv = 1411309.17 $
COOLING TOWER STRUCTURAL AND CONSTRUCTION COSTS:
Cost of land, excavation, foundation, Csle= 681699.380 $
Cost of cooling tower shell, Cscts = 1833304.29 S
Cost of HE bundle platform, Cspl = 748697.217 S
Cost of cooling tower supports, Csts = 52641.0144 S
Total structural, construction cost, Cssc = 4145427.38 S
OPERATING AND MAINTENANCE COSTS:
Operating cost of pumps, Cspo = 88506.1374 $/a
HE bundles maintenance cost, Cshem 56452.3668 $/a
Pump system maintenance cost, Cspsm = 2087.14639 $/a
Piping and valves maint. cost, Cspvm = 7056.54585 $/a
Cooling tower struct. maint. cost, Cssm = 2072.71369 $/a
Fuel cost, Csfuel = 106623742. $/a
TOTAL COSTS:
Total operating cost = 88506.1374 $/a
Total maintenance cost = 67668.7727 $/a
Total fuel cost = 106623742. $/a
Total capital cost = 11271544.8 $
Total annual cost = 109034226. $/a
NET ANNUAL POWER OUTPUT
Net annual power output = 2083.90 GWh
Annual heat dissipated = 2877.21 GWh
Cost per kWh = 0.523222E-01 $/kWh
Table L.9: Power generation output
RESULTS OF NET ANNUAL POWER OUTPUT
No Tdb Twb h Twi Two Ts Q Pg Pp Pn
{ci (C] [h/al [C] [C] {c] [MW] (MW] [MW] {MW]
1 -1.00 0.00 4 40.50 22.58 43.01 328.75 237.35 0.100 237
2 0.00 0.00 10 41.49 23.57 43.99 328.55 237.57 0.100 237.
3 1.00 0.00 26 42.47 24.57 44.98 328.36 237.78 0.089 237
4 2.00 0.00 43 43.46 25.57 45.97 328.19 237.98 0.0%9 237
5 3.00 0.90 59 44.46 26.57 46.96 328.04 238.16 0.099 238.
6 4.00 1.90 82 45.46 27.57 47.96 327.90 238.32 0.098 238
7 5.00 2.90 112 46.45 28.58 48.96 327.78 238.46 0.098 238.
8 6.00 3.80 152 47.46 29.58 49.96 327.68 238.58 0.098 238
9 7.00 4.60 201 48.46 30.59 50.96 327.60 238.68 0.098 238
10 8.00 5.40 254 49.47 31.61 51.97 327.55 238.76 0.097 238
11 9.00 6.30 312 50.48 32.62 52.98 327.52 238.81 0.097 238

.25

47

.69
.88

06

.22

36

.48
.58
.66
.71
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12 10.00 7.10 371 51.50 33.64 54.00 327
13 11.00 7.80 434 52.52 34.65 55.01 327
14 12.00 8.60 506 53.54 35.68 56.04 327
15 13.00 9.40 578 54.57 36.70 57.07 327
16 14.00 10.20 656 55.60 37.73 58.10 327
17 15.00 10.90 738 56.63 38.76 59.13 327.
18 16.00 11.60 764 57.67 39.79 60.18 328
19 17.00 12.20 655 58.72 40.82 61.22 328
20 18.00 12.70 553 59.77 41.86 62.27 328
21 19.00 13.20 459 60.82 42.90 63.33 328.
22 20.00 13.70 381 61.88 43.94 64.39 329.
23 21.00 14.10 320 62.94 44.99 65.46 329
24 22.00 14.50 265 64.01 46.04 66.53 329.
25 23.00 14.90 219 65.09 47.09 67.61 330
26 24.00 15.20 177 66.17 48.15 68.70 330.
27 25.00 15.50 140 67.26 49.21 69.79 331
28 26.00 15.70 105 68.35 50.27 70.89 332.
29° 27.00 15.90 76 69.45 51.34 71.99 332
30 28.00 16.10 51 70.56 52.41 73.11 333
31 29.00 16.40 30 71.68 53.48 74.23 334
32 30.00 16.80 15 72.80 54.56 75.36 335.
33 31.00 17.40 8 73.93 55.65 76.50 336.
34 32.00 18.00 4 75.07 56.74 77.65 337.
NET ANNUAL POWER OUTPUT = 2083.902 GWh

ANNUAL HEAT DISSIPATED = 2877.214 GWh

Table L.10: Post-optimality analysis

SCALE-INVARIANT MEASURE OF SENSITIVITY

GENERAL COST FACTORS
Present electricity cost (self-generated)

Ce
ere
Ctf

erf:

i

FCR:

FINNED

Cbl
Cb2
Cb3
Cb4
Cbs
Cbé
Cb7
Cbs
Cb9
Cb1l
Cbl

0:
1:

Electricity cost escalation rate
Present fuel cost

Fuel cost escalation rate
Interest rate

Levelized fixed charge rate

TUBE BUNDLE COST

Tube material unit cost

Tubing fixed cost

Fin material unit cost

Finning fixed cost

Galvanizing material unit cost
Surface coating fixed cost

Finned tube cost weighting factor
Bundle frame and header cost factor
Tube assembly and end preparation cost
Bundle cost weighting factor

Bundle maintenance cost factor

CIRCULATION SYSTEM COSTS

Cpl
Cp2
Cp3
Cp4
Cp5

Pump fixed cost
Pump unit cost
Electric motor fixed cost
Electric motor unit cost

Electric motor safety factor (undersizing)

.51
.53
.58
.65
.76

90

.08
.29
.53

82
15

.52

94

.40

92

.48

10

.78
.52
.32

19
12
13

238.83
238.83
238.80
238.74
238.65
238.53
238.37
238.18
237.95
237.68
237.37
237.01
236.61
236.17
235.68
235.13
234.53
233.88
233.17
232.40
231.56
230.66
229.68

OO OO0 O0OO0ODLDOODOO0ODODDODOODOOOOO0OOOO

.097
.096
.096
.096
.096
.096
.095
.095
.095
.095
.094
.094
.094
.094
.094
.094
.093
.093
.093
.093
.093
.093
.093

0.811736E-03
0.724399E-03

0.977892
1.03225
-0.471335

0.206753E-01

.441881E-03
.143249E-02
.442586E-02
.591942E-02
.000000E+00
.000000E+00
0.122196E-01
0.203662E-02
0.130658E-02
0.135262E-01
0.517760E-03

[eolelNelNoelNolNel

0.121373E
0.907324E
0.232560E
0.415892E
0.415892E

-04
-04
-05
-04
-04

238.
.73
.70
.64
.55
.43
.27

238
238
238
238
238
238

238.
.85
.58
.27
236.
236.
236.
235.
235.
234.
.79

237
237
237

233

233.
.30
.47

232
231

230.
.59

229

73

08

92
52
08
58
04
44

08

56



Cpé
Cp7
Cp8
Cp9

Cpl0: Piping and valves maintenance cost factor

COOLING

Csl
Cs2
Cs3
Cs4
Cs5
Csé

PRESCRIBED PARAMETERS

dts

ALPH:

pal
Ke
mw

TTD

GEOMETRIC CONSTRAINT VARIATION SENSITIVITY

Qdes:

Electric wiring/switching cost multiplier
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Pump system cost multiplier

Pump system maintenance cost factor

Piping and valves cost factor

TOWER CONSTRUCTION COSTS
Land, excavation and foundation unit cost

Cocoling tower shell cost

HE Bundle support platform cost
Cooling tower support cost
Construction cost multiplier
Maintenance cost factor

Tower support diameter/width

: Water mass flow rate

Design point heat rejection
Design point terminal temp. difference

CONSTRAINTS: ROUND TUBES

@ 30 U W

I e
U W R ow

(HIRU-H3 /H5)
(H3/H5-HIRL)

(DIRU-D3/ (H5-H3))
(D3/ (H5-H3) -DIRL)

({DRU-D3/D5)
(D3/D5-DRL)
(DF/DR-1.0)
(TT/TTL-1.0)
(TR/TRL-1.0)
(PT/DF-1.0)
(TF/TFL-1.0)
(PF/PFL-1.0)
(1.0-WB/WBU)
(1.0-LT/LTU)

(1.0-THTE/THBU)

0.398917E-05
0.146767E-03
0.191480E-04
0.265348E-02
0.647264E-04

.156695E-02
.421402E-02
.172096E-02
.120999E-03
.762291E-02
.190122E-04

0.289878E-03

Fraction of tower area covered by bundles -0.401616E-02
Barometric pressure at ground level
Total flow resistance length ratio

-0.912144E-02

0.134576E-02
-0.609977E-02
-0.185092E-02

0.185088E-02

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.121021E-02
0.104727E-02
0.000000E+00
0.000000E+00
0.000000E+00
0.236809E-03
0.000000E+00
0.350549E-03





