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Abstract

Positive Weighted Koopman Semigroups on Banach lattice
modules

Tobi David OLABIYI
Department of Mathematical Sciences,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

March 2023

In this thesis, we introduce the notion of a positive weighted semigroup 
representation on a Banach lattice module over a group representation on 
a commutative Banach lattice algebra. One main theme of this work is 
the following: for topological dynamics, we obtain the abstract represen-
tation of the lattice of continuous sections vanishing at infinity of a  topolog-
ical Banach lattice bundle (over a locally compact space Ω) as a structure 
which we call an AM m-lattice module over C0(Ω) on which every positive 
weighted semigroup representation over the Koopman group representa-
tion on C0(Ω) is isomorphic to a positive weighted Koopman semigroup 
representation induced by a unique positive semiflow o n  t h e underlying 
topological Banach lattice bundle (over the continuous flow on the base space 
Ω). And as a result, every positive dynamical Banach lattice bundle can 
be assigned uniquely to a certain positive dynamical m-lattice module and 
vice versa, which is the Gelfand-type theorem that we proved. In order 
to do this, we, in particular, establish the following two categories of (i) Ba-
nach lattice modules and their dynamics; and (ii) Banach lattice bundles and 
their dynamics. We pay special attention to the case of a topological positive 
R+-dynamical Banach lattice bundle by which we obtain the correspond-
ing C0-semigroup of positive weighted Koopman operators, and using the
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ABSTRACT iii

theory of strongly continuous semigroup of positive operators, we obtain
results pertaining to properties of the generator, and spectral theory of this
positive semigroup.
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Uittreksel

Positive Weighted Koopman Semigroups on Banach lattice
modules

(“ Positive Weighted Koopman Semigroups on Banach lattice modules ”)

Tobi David OLABIYI
Departement Wiskundige Wetenskappe,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc

March 2023

In hierdie tesis stel ons die idee van ’n positiewe geweegde halfgroepvoor-
stelling op ’n Banach-roostermodule oor die groepvoorstelling op ’n kom-
mutatiewe Banach-roosteralgebra bekend. Een hooftema van hierdie tesis 
is die volgende: vir topologiese dinamika verkry ons die abstrakte voor-
stelling van die rooster van kontinue snitte wat verdwyn by oneindig van 
’n topologiese Banach-roosterbundel (oor ’n lokaal-kompakte ruimte Ω ) as 
’n struktuur wat ons ’n AM-m-roostermodule oor C0(Ω) noem, waarop 
elke positiewe geweegde halfgroepvoorstelling oor die Koopman-groep-
voorstelling op C0(Ω) isomorfies i s a an ’ n p ositiewe g eweegde Koopman-
halfgroepvoorstelling geïnduseer deur ’n unieke positiewe halfvloei op die 
onderliggende topologiese Banach-roosterbundel (oor die kontinue vloei op 
die basisruimte Ω). Gevolglik kan elke positiewe dinamiese Banach-rooster-
bundel uniek aan ’n sekere positiewe dinamiese m-roostermodule toegeken 
word en omgekeerd, wat die Gelfand-tipe stelling is wat ons bewys het. 
Om dit te doen, stel ons veral die volgende twee kategorieë van (i) Banach-
roostermodules en hul dinamika; en (ii) Banach-roosterbundels en hul di-
namika bekend. Ons gee besondere aandag aan die geval van ’n topolo-
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UITTREKSEL v

giese positiewe R+-dinamiese Banach-roosterbundel waardeur ons die oor-
eenstemmende C0-halfgroep van positiewe geweegde Koopman-operatore
verkry en deur die teorie van sterk-kontinue halfgroepe van positiewe ope-
ratore te gebruik, verkry ons resultate wat betrekking het op eienskappe
van die generator, en spektraalteorie van hierdie positiewe halfgroep.
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Notation

Ω A locally compact (Hausdorff) topological space.

G A locally compact (Hausdorff) topological group with neutral element e.

K A compact (Hausdorff) topological space.

K The field of real R or complex C scalars.

X A complete σ-finite positive measure space X = (ΩX, ΣX, µX).

C0(Ω) The lattice algebra of continuous K-valued functions vanishing at infinity.

L∞(X) The (quotient) lattice algebra of essentially-bounded measurable K-valued functions.

L (Z) The algebra of bounded (linear) operators on a Banach space Z.

σ(T) The spectrum of a bounded (linear) operator T on a Banach space.

σp(T) The point spectrum of a bounded (linear) operator T on a Banach space.

σap(T) The approximate point spectrum of a bounded (linear) operator T on a Banach space.

r(T) The spectral radius of a bounded (linear) operator T on a Banach space.

IdQ The identity map on any space Q.

Γ0(Ω, E) The lattice of continuous sections vanishing at infinity of a topological

Banach lattice bundle E over Ω.

Γ1(X, E) The (quotient) lattice of integrable measurable sections of a measurable

Banach lattice bundle E over X.

lin {W} The linear span of a set of vectors W.

WLOG Without Loss Of Generality.

B+ The positive cone of an ordered Banach space B.

IntB+ The interior of the positive cone B+ of an ordered Banach space B.

Z(Z) The lattice algebra of central operators of a Banach lattice Z.
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Introduction

This thesis is about positive weighted Koopman semigroups on a Banach
lattice module. This work was inspired by Sita Siewert’s PhD dissertation
([29]), where the notion of weighted Koopman semigroups for topological
or measurable dynamics were studied. Therefore, this thesis forms part
of the broader field named "Operator Theoretic Aspects of Ergodic theory"
([10]).
The idea comes from assigning to a nonlinear cocycle on a (topological
or measurable) state space the corresponding linear operators, now called
weighted Koopman operators, on an observable space, i.e., a linear space
of vector-valued functions on the state space. A semigroup consisting of
weighted Koopman operators is called a weighted Koopman semigroup. A
typical discrete-time instance of this concept, for topological dynamics, is
the following:

Consider a continuous cocycle {ϕ(x) ∈ L (Z) : x ∈ K} associated with a home-
omorphism φ : K −→ K on a compact space K with Banach space Z, i.e.,

ϕ0(x) = IdZ for x ∈ K;

ϕn+m(x) = ϕn(φm(x))ϕm(x) for x ∈ K and n, m ∈N; and

K× Z −→ Z; (x, v) 7→ ϕ(x)v is continuous,

and the Koopman operator Tφ : C(K) −→ C(K); f 7→ f ◦ φ−1.

Then, the continuous cocycle induces a weighted Koopman operator

Tϕ : C(K, Z) −→ C(K, Z); s 7→ ϕ(φ−1(·)) ◦ s ◦ φ−1

i.e., Tϕ ∈ L (C(K, Z)) and Tϕ f s = Tφ fTϕs for f ∈ C(K) and s ∈ C(K, Z)
with ( f s)(x) := f (x)s(x) for all x ∈ K.

xii
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INTRODUCTION xiii

The generalisation of these concepts, as treated in the paper [21] by H.
Kreidler and S. Siewert, is the introduction of non-linear dynamics on the
so-called (topological or measurable) Banach bundle E over a dynamical
base space (i.e., topological dynamics for a locally compact space Ω or mea-
surable dynamics for a complete σ-finite measure space X) and consider
the corresponding weighted Koopman operators (now, linear dynamics) on
the observable space, i.e., the Banach space Γ0(Ω, E) of continuous sections
of E vanishing at infinity for topological dynamics or the (quotient) Ba-
nach space Γ1(X, E) of integrable measurable sections of E for measurable
dynamics. The following is of importance: (i) the observable spaces, i.e.,
the Banach spaces Γ0(Ω, E) and Γ1(X, E), are, in addition, Banach modules
over commutative Banach algebras C0(Ω) and L∞(X) respectively, and (ii)
a weighted Koopman semigroup is an instance of the (general) notions of
weighted semigroup representations on these Banach modules, i.e., dynam-
ical Banach modules.

These weighted Koopman semigroups arise naturally in many applications,
for example when modelling a dynamical system using an evolution semi-
group or in smooth ergodic theory. On the one hand, we note that the no-
tion of a cocycle over a (continuous) flow, giving rise to a certain evolu-
tion semigroup, has become a useful tool: (i) in modelling non-autonomous
problems, e.g., dissipative partial differential equations, in particular, the
Navier-Stokes equation; (ii) as an abstract framework for the study of ran-
dom dynamical systems; (iii) in the general theory of ideal fluid dynamics;
(iv) in detecting the existence of the so-called exponential dichotomy (or hy-
perbolicity), which is of practical importance; and (v) in the generalisation
of the classical notion of a two-parameter evolution family ([1, 26]). On the
other hand, see [29, Chapter 6] - an example from differential geometry - for
a systematic treatment of smooth ergodic theory associated with the space
of continuous sections of the tangent bundle of a compact smooth mani-
fold. Moreover, these kinds of evolution operators, which we call weighted
Koopman operators, are also known in the literature as weighted composi-
tion or weighted shift operators in general operator theory, as transfer op-
erators in dynamical systems theory, and as push-forward operators in the
theory of differentiable manifolds. We refer to the monographs [5] and [11]
and the references therein for the general theory of evolution equations.
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Now as it has been said, In many concrete problems solvable by semigroups, there
is a natural notion of "positivity" and only "positive" solutions make sense [12,
Chapter VI, first paragraph, p.205]. So, in our work, we study the scenario
where each weighted Koopman operator is, in addition, a positive operator,
which of course requires additional lattice structure on the space of sections
in our consideration. This led us, in an attempt to adapt these concepts and
standardise terminologies, to introduce the notion of a positive weighted
semigroup representation on a Banach lattice module over a group repre-
sentation on a commutative Banach lattice algebra. For the general theory
of positive operators and positive operator semigroups on Banach lattices,
we refer to the monographs [28] and [2].

We now briefly discuss the structure of the present thesis and refer to each
of the chapters for a detailed introduction.

In Chapter 1, we motivate the notion of a positive weighted Koopman op-
erator on a certain Banach lattice as a functional-analytic approach to the
study of a certain continuous linear skew-product, associated with a posi-
tive continuous cocycle, on the trivial topological Banach lattice bundle.

Chapter 2 consists of our introduction and contributions to the notion of a
Banach lattice module over a commutative Banach lattice algebra. We find
that, in particular, our definition of a Banach lattice module (see Definition
2.2.1.1) can be seen to be a generalisation of a certain Banach lattice L∞(G)-
module as defined by K-T. Eisele and S. Taieb (see [9, Definition 5.3(iii),
p.531-532]). In Section 2.3, we introduce the concept of a (positive) weighted
semigroup representation on a Banach lattice module (BLM) over a commu-
tative Banach lattice algebra (BLA). In doing so, we, in particular, establish
the category of Banach lattice modules and their dynamics. In Section 2.4,
inspired by the work of H. Kreidler and S. Siewert (see [21, Section 4, p.15
and Section 5, p.20]) about AM-modules and AL-modules over the Banach
algebra C0(Ω), we introduce in a natural way the analogous concepts of an
AM m-lattice module (see Definition 2.4.1.2) and an AL m-lattice module (see
Definition 2.4.2.2) over an m-Banach lattice algebra C0(Ω), respectively. In
the last Section 2.5, we further our consideration on Banach lattice modules
wherein we introduce, with examples, several concepts, many of which are
proven useful in this thesis. Such concepts include: a Banach sub-lattice alge-
bra (see Definition 2.5.1.1), a closed lattice algebra ideal (see Definition 2.5.1.2),
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a Banach lattice submodule (see Definition 2.5.2.1), a closed ideal submodule (see
Definition 2.5.2.3); and a dual Banach lattice module (see Section 2.5.4).

In Chapter 3, we consider positive semiflows on topological Banach lattice
bundles. We introduce the concepts of a (positive) topological dynamical
Banach lattice bundle and the so-called (positive) weighted Koopman semi-
group on the Banach lattice of continuous sections vanishing at infinity (see
Definition 3.4.0.5 and Remark 3.5.0.1(v)). More importantly, we present our
first Gelfand-type theorem for dynamical AM m-lattice modules (see The-
orem 3.5.0.11 and Corollary 3.5.0.12). In addition, we further our consider-
ation, by introducing several notions in the last Section 3.6 on the Banach
lattice of continuous sections (vanishing at infinity) associated with a topo-
logical Banach lattice bundle over a (locally) compact space which yields
interesting results of which many are subsequently needed. Such notions
include: a Banach lattice subbundle (see Definition 3.6.1.1), a closed ideal sub-
bundle (see Definition 3.6.3.1), the direct sum of Banach lattice bundles (see Sub-
section 3.6.2); and the direct sum of positive weighted Koopman semigroups (see
Subsection 3.6.4). Other considerations are the characterisations of certain
order structures (see Subsection 3.6.5) and the so-called centre (see Subsec-
tion 3.6.6) of this Banach lattice, which are also of independent interest.

Chapter 4 is about one-parameter C0-semigroups of positive weighted Koop-
man operators. In particular, we consider some order structures of an AM
m-lattice module (see Section 4.2), the lattice C0-semigroup of weighted
Koopman operators (see Section 4.3) and the positive C0-semigroup of weighted
Koopman operators (see Section 4.4) associated to a topological Banach lat-
tice bundle over a compact space. Based on certain assumptions on the Ba-
nach lattice of continuous sections concerning its order structures, we obtain
some results related to the generation problem of (positive) weighted Koop-
man semigroups (see Proposition 4.3.0.3, Corollary 4.3.0.4, Remark 4.3.0.5
and Proposition 4.4.0.3). Moreover, in Section 4.5, we present certain spec-
tral properties of a positive C0-semigroup of weighted Koopman operators
(see Proposition 4.5.0.4).

In Appendix A we recall the definition and concept of a Banach lattice al-
gebra as presented by Wickstead ([31]). In Appendix B, we recall certain
definitions and concepts about an ordered Banach space as presented by O.
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Bratteli, et. al ([4]) and the conditions under which it becomes a Banach
lattice.

We also include more of our work which is added for the sake of compre-
hensiveness, but put in the appendices C, D, E and F because the scope of
this thesis has become very large.

In Appendix C, we consider positive semiflows on measurable Banach lattice
bundles. We introduce the concepts of (positive) measurable dynamical Ba-
nach lattice bundles and the so-called (positive) weighted Koopman semi-
group on the (quotient) Banach lattice of integrable measurable sections (see
Definition C.4.0.5 and Remark C.5.0.1(v)). More important, we present our
second Gelfand-type theorem for dynamical separable L1(X)-normed m-
lattice modules (see Theorem C.5.0.9 and Corollary C.5.0.10).

In Appendix D, we present one central theme of our study: "When is a
positive weighted semigroup representation on a Banach lattice module a
(or isomorphic to) positive weighted Koopman semigroup representation?"

In Appendix E, we consider asymptotics of positive weighted Koopman
semigroups associated with a topological Banach lattice bundle over a com-
pact space. We, in particular, investigate irreducibility in Section E.2 and
exponential dichotomy in Section E.3 of positive weighted Koopman semi-
groups. Moreover, based on some results already obtained in Chapter 3
(Section 3.6), we obtain several correspondences and characterisations of
the asymptotic behaviour under consideration (see Propositions E.2.0.4 and
E.3.0.4).

In Appendix F, we introduce the Markovian weighted Koopman group as-
sociated with a Banach lattice of continuous sections whose positive cone
has a non-empty interior. In Section F.3, we introduce the concept of a
Markovian weighted Koopman operator (see Definition F.3.0.1) and we show
that every bijective Markovian weighted Koopman operator (resp. Marko-
vian weighted Koopman group) is isomorphic to a bijective Koopman oper-
ator (resp. Koopman group) which extends the original bijective Koopman
operator (resp. Koopman group) (see Proposition F.3.0.6, resp. Proposition
F.3.0.7). This result, in particular, generalises the situation in [29, Example
3.11, p.65](iv) which is also included. That is, a C0-group of weighted Koop-
man operators is isomorphic to an extended Koopman group if and only if it
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is Markovian in our sense. Furthermore, under this identification, we study
the spectral property of an invertible Markovian weighted Koopman oper-
ator and extend the result to the Markovian weighted Koopman group in
Section F.4.
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Chapter 1

On the trivial topological Banach
lattice bundle

In this chapter, we set the scene for our study of positive weighted Koopman
operators using the example of the trivial topological Banach lattice bundle.
Moreover, to keep the reading flow without distraction, we try to avoid a lot
of definitions and several concepts at this stage; and we also consider only
discrete-time dynamics.

Throughout, we take K to be a compact space, which we assume to be Haus-
dorff by definition. Z will be a Banach lattice, which we can assume to be
real WLOG.

1.1 The trivial topological Banach lattice bundle
and its lattice of continuous sections

By a trivial topological Banach lattice bundle over K, we mean the product
space E := K × Z together with the natural projection p : E −→ K onto
the first factor, identifying each fiber p−1(x) with the Banach lattice Z for all
x ∈ K.

As such, there is a one-to-one correspondence between the Banach lattice
C(K, Z) of continuous Z-valued functions, equipped with the sup-norm,
and the corresponding lattice of continuous sections of the trivial topological
Banach lattice bundle E = K × Z. One thing that is important here is that

1
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CHAPTER 1. ON THE TRIVIAL TOPOLOGICAL BANACH LATTICE BUNDLE 2

the (bilinear) pairing

C(K)× C(K, Z) −→ C(K, Z); ( f , s) 7→ f s := [x 7→ f (x)s(x)]

turns the Banach lattice C(K, Z) into a Banach module over the commuta-
tive Banach lattice algebra C(K), i.e., it is a C(K)-module such that || f s|| ≤
|| f ||||s|| for all f ∈ C(K), s ∈ C(K, Z), since

|| f s|| = sup
x∈K
|| f (x)s(x)||Z

≤ sup
x∈K
| f (x)| sup

x∈K
||s(x)||Z

= || f ||||s||.

Observing, in addition, that | f s| = | f ||s| for all f ∈ C(K), s ∈ C(K, Z),
since | f s|(x) = | f (x)s(x)| = | f |(x)|s|(x) for all x ∈ K, we see that we
have obtained an example of such Banach lattices which we later refer to as
a Banach lattice module, and in particular an m-Banach lattice module over
C(K) in this case.

1.2 Positive cocycles, skew-products on the
trivial Banach lattice bundle and positive
weighted Koopman operators

From now on, by a trivial Banach lattice bundle, we mean a trivial topological
Banach lattice bundle as introduced in Section 1.1 above.

Consider a positive continuous cocycle {ϕ(x) : Z −→ Z positive operator | x ∈ K}
associated with a homeomorphism φ : K −→ K, i.e.,

ϕ(x) is a positive linear operator for x ∈ K;

ϕ0(x) = IdZ for x ∈ K;

ϕn+m(x) = ϕn(φm(x))ϕm(x) for x ∈ K and n, m ∈N; and

K× Z −→ Z; (x, v) 7→ ϕ(x)v is continuous,

and the Koopman operator Tφ : C(K) −→ C(K); f 7→ f ◦ φ−1.
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CHAPTER 1. ON THE TRIVIAL TOPOLOGICAL BANACH LATTICE BUNDLE 3

Then, the positive continuous cocycle induces a positive weighted operator

Tϕ : C(K, Z) −→ C(K, Z); s 7→ ϕ(φ−1(·)) ◦ s ◦ φ−1

i.e., (Tϕs)(x) := ϕ(φ−1(x))s(φ−1(x)) for s ∈ C(K, Z), x ∈ K

over the Koopman operator Tφ : C(K) −→ C(K), which we call a positive
weighted Koopman operator. By this, we mean that

(i) Tϕ is a positive operator, since

|Tϕs|(x) = |ϕ(φ−1(x))s(φ−1(x))|

≤ ϕ(φ−1(x))|s|(φ−1(x))

= TΦ|s|(x)

for all x ∈ K and each s ∈ C(K, Z); and

(ii) Tϕ f s = Tφ fTϕs, since

Tϕ f s(x) = ϕ(φ−1(x)) f (φ−1(x))s(φ−1(x))

= f (φ−1(x))ϕ(φ−1(x))s(φ−1(x))

= Tφ f (x)Tϕs(x)

for f ∈ C(K), s ∈ C(K, Z) and all x ∈ K.

As we said in Section 1.1 above, there is a one-to-one correspondence be-
tween the Banach lattice C(K, Z) and the lattice of continuous sections of
the trivial Banach lattice bundle E = K × Z, denoted as Γ(K, E). Though,
this will be introduced later in general, but in this case Γ(K, E) is comprised
of functions s̃ : K −→ E; x 7→ (x, s(x)) where s ∈ C(K, Z), and thus s̃ is
uniquely determined by s. Therefore, the corresponding positive weighted
Koopman operator is defined by

TΦ : Γ(K, E) −→ Γ(K, E); s̃ 7→ Φ ◦ s̃ ◦ φ−1

i.e., (TΦ s̃)(x) := Φ(φ−1(x), s(φ−1(x))) for s ∈ C(K, Z), x ∈ K

where
Φ : E −→ E; (x, v) 7→ (φ(x), ϕ(x)v)
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is the continuous skew-product on the trivial Banach lattice bundle E = K×
Z associated with the positive cocycle. We note that ( f s̃)(x) := (x, ( f s)(x))
for all x ∈ K, f ∈ C(K) and s ∈ C(K, Z) defines the lattice module structure
such that Γ(K, E) ∼= C(K, Z) in this case.

We note that if we define ||Φ|| := supx∈K ||ϕ(x)||L (Z), then ||Φ|| < ∞. More
so, Tϕ being positive implies that it is also bounded, i.e., Tϕ ∈ L (C(K, Z)).
And in fact, it follows that ||Φ|| = ||TΦ||, where ||TΦ|| := ||Tϕ||, i.e.,

||Φ|| = sup
x∈K
||ϕ(x)||L (Z)

= sup
x∈K

sup {||ϕ(x)s(x)||Z : s ∈ C(K, Z), ||s(x)||Z ≤ 1}

= sup
x∈K

sup
{
||ϕ(φ−1(x))s(φ−1(x))||Z : s ∈ C(K, Z), ||s(φ−1(x))||Z ≤ 1

}
= sup

x∈K
sup

{
||Tϕs(x)||Z : s ∈ C(K, Z), ||s(φ−1(x))||Z ≤ 1

}
= sup

{
sup
x∈K
||Tϕs(x)||Z : s ∈ C(K, Z), ||s|| ≤ 1

}
= sup

{
||Tϕs|| : s ∈ C(K, Z), ||s|| ≤ 1

}
= ||Tϕ||.

By the cocycle property, we see that Φn(x, v) = (φn(x), ϕn(x)v) for all (x, v) ∈
K × Z = E, and n ∈ N0. As such, the positive cocycle induces certain
N0-dynamics {Φn : E −→ E| n ∈N0} on the trivial Banach lattice bundle
E = K× Z over the Z-dynamics {φn : K −→ K| n ∈ Z}. And such positive
dynamics is what we later call positive N0-dynamical Banach lattice bun-
dle on E = K× Z over that of Z-dynamical on K. And in particular, we call
(Φn)n∈N0 a positive semiflow on E = K× Z over the flow (φn)n∈Z on K. By
this, we mean that

(i) φn ◦ p = p ◦Φn for each n ∈N0 i.e., the following diagram commutes,

E = K× Z K× Z = E

K K

p

Φn

p

φn
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(ii) Φn|Z := ϕn(x) : Z −→ Z are positive operators for x ∈ K and each
n ∈N0, and

(iii) ||Φn|| := supx∈K ||ϕn(x)||L (Z) < ∞ for each n ∈N0.

On the side of the trivial Banach lattice bundle, we have seen certain positive
dynamics from above. On the other side, i.e., on the Banach lattice module
Γ(K, E) ∼= C(K, Z) over C(K), one also obtain the corresponding positive
weighted dynamics as follows.

We note that T n
Φ = TΦn , since T n

Φ s̃ = Φn ◦ s̃ ◦ φ−n = TΦn s̃ for s ∈ C(K, Z)
and each n ∈ N0. More so, T n

Φ f s̃ = Tn
φ fT n

Φ s̃ for f ∈ C(K), s ∈ C(K, Z)
where Tn

φ f = f ◦ φ−n = Tφn f for f ∈ C(K) and each n ∈ N0. As such, an
N0-dynamics

{
T n

Φ : Γ(K, E) −→ Γ(K, E)| n ∈N0
}

is induced by the posi-
tive weighted Koopman operator TΦ on the Banach lattice module Γ(K, E)
over the Z-dynamics

{
Tn

φ : C(K) −→ C(K)| n ∈ Z
}

. And such positive dy-
namics give rise to what we later call positive N0-dynamical Banach lattice
module on Γ(K, E) over that of Z-dynamical on C(K). And in particular, we
call (T n

Φ )n∈N0 a positive weighted Koopman semigroup on Γ(K, E) over the
Koopman group (Tn

φ)n∈Z on C(K). And by this, we mean that

(i) T n
Φ : Γ(K, E) −→ Γ(K, E) is a positive operator for each n ∈N0, and

(ii) T n
Φ f s̃ = Tn

φ fT n
Φ s̃ for f ∈ C(K), s ∈ C(K, Z) and each n ∈N0.

1.3 Is every positive weighted operator induced
by a positive cocycle on the trivial Banach
lattice bundle?

What we have seen so far is that positive cocycle and the corresponding
linear skew-product on the trivial Banach lattice bundle E = K× Z induces
a certain positive weighted Koopman operator on the Banach lattice module
Γ(K, E) ∼= C(K, Z) over C(K). And what is important is that this assignment
provides a functional-analytic toolbox for the study of this positive cocycle.
And as such, it may be interesting to ask the following question.
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Question 1.3.0.1. Is every positive weighted operator on Γ(K, E) over the Koop-
man operator induced by a unique positive cocycle?

In other word, given a homeomorphism φ : K −→ K, and the Koopman operator
Tφ : C(K) −→ C(K); f 7→ f ◦ φ−1. If T : Γ(K, E) −→ Γ(K, E) is a linear map
such that

(i) T : Γ(K, E) −→ Γ(K, E) is a positive operator, and

(ii) T f s̃ = Tφ fT s̃ for f ∈ C(K), s ∈ C(K, Z),

then, can we find a unique positive cocycle {ϕ(x) : Z −→ Z positive operator | x ∈ K}
such that T = TΦ, where Φ : E −→ E denoted the corresponding continuous lin-
ear skew-product on the trivial Banach lattice bundle E = K× Z?

We give a positive answer to this question as we close this chapter. The idea
is that, there is a correspondence between the skew-product and the cocycle,
which one could take note of.

To start with, for each x ∈ K, we let ex : Γ(K, E) −→ Z; s̃ 7→ s(x) for
s ∈ C(K, Z) be the evaluation map, which immediately can be seen to be a
quotient lattice homomorphism.

Now, let T : Γ(K, E) −→ Γ(K, E) be a positive weighted operator over the
Koopman operator Tφ : C(K) −→ C(K), i.e., satisfying the two conditions
stated in the above question. Then, we claim that the collection of mappings
{ϕ(x) : Z −→ Z | x ∈ K} for which the following diagram

Γ(K, E) Γ(K, E)

Z Z

ex

s̃ 7→T s̃

eφ(x)

ϕ(x)

commutes, for each x ∈ K, are precisely the operators that define the re-
quired positive cocycle.

That is, the linear operators

ϕ(x) : Z −→ Z; ex(s̃) 7→ eφ(x)(T s̃) x ∈ K, for all s ∈ C(K, Z)
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is the continuous positive cocycle over the homeomorphism φ : K −→ K
such that ex(T s̃) = ϕ(φ−1(x))s(φ−1(x)); and so T s̃ = Φ ◦ s̃ ◦ φ−1 = TΦ s̃
where

Φ : E −→ E; (x, s(x)) 7→ (φ(x), ϕ(x)s(x)) for all s ∈ C(K, Z)

denote the continuous linear skew-product on E = K × Z associated with
the positive cocycle. We sketch the following outline from which the claim
immediately follows:

First we note that, by definition, ϕ(x)s(x) = eφ(x)(T s̃) implies that
ϕ(φ−1(x))s(φ−1(x)) = ex(T s̃) for each s ∈ C(K, Z) and all x ∈ K.

(i) ϕ(x) is linear for each x ∈ K.

(ii) ϕ(x) is positive for each x ∈ K.

(iii) K× Z −→ Z; (x, s(x)) 7→ ϕ(x)s(x) is continuous for all s ∈ C(K, Z).

(iv) {ϕ(x) : Z −→ Z | x ∈ K} satisfy the cocycle rule, i.e., ϕ0(x) = IdZ and
ϕn+m(x) = ϕn(φm(x))ϕm(x) for x ∈ K and n, m ∈N.
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Chapter 2

On Banach lattice modules over a
Banach lattice algebra

2.1 Introduction

In this chapter, we introduce a mathematical object, namely a Banach lattice
module over a commutative Banach lattice algebra. In particular, our def-
inition of a Banach lattice module can be seen to be a generalisation of a
certain Banach lattice L∞(G)-module as defined by K-T. Eisele and S. Taieb
(see [9, Definition 5.3(iii), p.531-532]). They consider this in their context of
representation theorems for conditional and multi-period risk measures in
stochastic analysis. Moreover, this chapter consists of our contributions to
the notion of an m-Banach lattice module over a commutative m-Banach lattice
algebra.

In Section 2.2, we propose a definition for a Banach lattice module (see Def-
inition 2.2.1.1) and identify some examples of these mathematical objects
(see Example 2.2.1.4). Moreover, we introduce a special class of Banach lat-
tice algebras, namely m-Banach lattice algebras (see Definition 2.2.2.1) and
some examples (see Remark 2.2.2.2(i)). Consequently, we also introduce a
special class of Banach lattice modules over a commutative m-Banach lattice
algebra, namely m-Banach lattice modules (see Definition 2.2.2.4) and identify
some examples (see Example 2.2.2.6).

In Section 2.3, we introduce the concept of a (positive) weighted semigroup
representation on a Banach lattice module (BLM) over a commutative Ba-

8
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nach lattice algebra (BLA). In doing so and by answering question 2.3.0.1,
we, in particular, establish the category of Banach lattice modules and their
dynamics.

In Section 2.4, inspired by the work of H. Kreidler and S. Siewert (see [21,
Section 4, p.15 and Section 5, p.20]) about AM-modules and AL-modules
over the Banach algebra C0(Ω), we introduce, in a natural way, the analo-
gous concepts of an AM m-lattice module (see Definition 2.4.1.2) and of an
AL m-lattice module (see Definition 2.4.2.2), respectively, over the m-Banach
lattice algebra C0(Ω).

It is known that, for a topological Banach bundle E over a locally compact
space Ω, the Banach space Γ0(Ω, E) of its continuous sections vanishing at
infinity is an AM-module (equivalently U0(Ω)-normed module) over the
Banach algebra C0(Ω) (see [21, Example 4.4, p.16, and Example 5.2, p.21]).
We obtain, in our situation, that for a topological Banach lattice bundle E
over a locally compact space Ω, the Banach lattice Γ0(Ω, E) of its continu-
ous sections vanishing at infinity is an AM m-lattice module (equivalently
U0(Ω)-normed m-lattice module) over the Banach lattice algebra C0(Ω) (see
Examples 2.4.1.4 and 2.4.1.11).

Analogously, it is known that, for a measurable Banach bundle E over a
complete σ-finite positive measure space X, the (quotient) Banach space
Γ1(X, E) of its integrable measurable sections is an AL-module (equiva-
lently L∞(X)′-normed module) over the Banach algebra L∞(X) (see [21, Ex-
ample 4.14, p.20, and second paragraph on p.24]) and in particular Γ1(X, E)
is an L1(X)-normed module (see [21, Definition 5.11, p.24]). We obtain, in
our situation, that for a measurable Banach lattice bundle E over a complete
σ-finite positive measure space X, the (quotient) Banach lattice Γ1(X, E) of
its integrable measurable sections is an AL m-lattice module (equivalently
L∞(X)′-normed m-lattice module) over the Banach lattice algebra L∞(X)

(see Examples 2.4.2.5 and 2.4.2.12) and in particular Γ1(X, E) is an L1(X)-
normed m-lattice module (see Definition 2.4.2.15).

In the last Section 2.5, we further our consideration on Banach lattice mod-
ules. We start with a commutative Banach lattice algebra L, and introduce
the notions of a sub-lattice algebra (see Definition 2.5.1.1) and a lattice algebra
ideal (see Definition 2.5.1.2) in a natural way. Moreover, for a Banach lattice
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module Γ over the commutative Banach lattice algebra L, we introduce the
notions of N-lattice submodule (see Definition 2.5.2.1) and N-ideal submod-
ule (see Definition 2.5.2.3) over a subspace N ⊆ L. In Propositions 2.5.1.4
and 2.5.2.5 we note special instances of these concepts, which are also very
important for our study. In Subsection 2.5.3, we identify certain quotient
spaces of a Banach lattice module Γ over a commutative Banach lattice al-
gebra L, which give rise to special (quotient) Banach lattice modules over
(quotient) lattice algebras (see Corollary 2.5.3.2). We study, in Subsection
2.5.4, the Banach dual Γ′ of a Banach lattice module Γ over L = C0(Ω),
and obtain that the Banach dual Γ′ is, in particular, an order complete Banach
lattice module over C0(Ω) which we call the dual Banach lattice module (see
Proposition 2.5.4.1). By this, we state certain duality results (see Proposi-
tion 2.5.4.3) between AM- and AL- lattice modules over C0(Ω) similar to
those of (general) Banach modules ([21, Proposition 4.17, p.21]). Other con-
cepts considered include: Banach lattice modules and lattice isomorphisms (see
Subsection 2.5.5) and Banach lattice modules and lattice ideals (see Subsection
2.5.6).

2.2 Banach lattice modules

Definition 2.2.0.1. (Banach module) [29, Definition 2.1, p.23] Let A be a com-
mutative Banach algebra. Then a Banach module over A is a Banach space Γ
which is also an A-module such that the outer norm is sub-multiplicative, i.e.,
|| f · s|| ≤ || f ||||s|| for all f ∈ A and s ∈ Γ.

On the other hand, we refer to Appendix A (see e.g., Definition A.1.0.3 for
the definition of a Banach lattice algebra) for the concept of a Banach lattice
algebra (BLA), including examples. Moreover, we consider commutative
Banach lattice algebras.

Next, we need to clarify what a Banach lattice module is.

2.2.1 What is a Banach lattice module?

Since there does not seem to be a concise concept of a Banach lattice be-
ing a Banach module over a commutative Banach lattice algebra (BLA), we
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propose the following definition. Moreover, our definition can be seen to
be a generalisation of a certain Banach lattice L∞(G)-modules as defined by
K-T. Eisele and S. Taieb ([9]) viz: Let G be a sub-σ-algebra of some proba-
bility space. An ordered L∞(G)-module is a (Banach) L∞(G)-module Γ with
a partial order (≤) such that for s, s2, s2 ∈ Γ and f ∈ L∞(G) (i) s1 ≤ s2 im-
plies s1 + s ≤ s2 + s; and (ii) 0 ≤ s, 0 ≤ f implies 0 ≤ f · s. A normed
lattice L∞(G)-module is an ordered L∞(G)-module Γ whose partial order is,
in particular, a lattice ordering and equipped with a lattice norm. Finally, a
normed lattice L∞(G)-module Γ which is (topologically) complete is called
a Banach lattice L∞(G)-module (see [9, Definition 5.3(iii), p.531-532]).

Definition 2.2.1.1. Let L be a commutative BLA. We call a Banach lattice Γ which
is also an L-module a Banach lattice module (BLM) if the outer norm is sub-
multiplicative and the "module" product of positive elements is positive. Moreover,
in the complex case, we require that the "module" product of real elements is real.

In other words, a BLM is a Banach lattice Γ which is also a Banach module over
L, such that L+ · Γ+ ⊆ Γ+ and LR · ΓR ⊆ ΓR, i.e., f ∈ L+, and s ∈ Γ+ always
implies f · s ∈ Γ+. Moreover, in the complex case, f ∈ LR, and s ∈ ΓR always
implies f · s ∈ ΓR.

Note 2.2.1.2. We can also deduce that if Γ is a Banach lattice module over the BLA
L, then we have that | f · s|≤ | f |·|s| for all f ∈ L and s ∈ Γ. This can also be
taken as a characterisation of a Banach lattice module by the following proposition,
since the other implication would be trivial. That is, if L is a commutative BLA,
then a Banach lattice Γ which is also a Banach module over L is a "Banach lattice
module" if and only if | f · s|≤ | f |·|s| for all f ∈ L and s ∈ Γ.

Proposition 2.2.1.3. Let Γ be a Banach lattice module over a commutative Banach
lattice algebra L. Then | f · s|≤ | f |·|s| for all f ∈ L and s ∈ Γ.

Proof. WLOG, we will assume both Γ and L are real Banach lattices. It is,
therefore, sufficient to show that ±( f · s) ≤ | f |·|s| for all f ∈ L and
s ∈ Γ. Now, for every f ∈ L and s ∈ Γ, we note first that

f · s = f+ · s+ − f+ · s− + f− · s− − f− · s+, and

| f | · |s| = f+ · s+ + f+ · s− + f− · s− + f− · s+.
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Therefore,

| f | · |s| + f · s = 2( f+ · s+ + f− · s−) ≥ 0, and

| f | · |s|− f · s = 2( f+ · s− + f− · s+) ≥ 0.

We identify the following examples of Banach lattice modules.

Example 2.2.1.4. (i) Let L be a commutative Banach lattice algebra. Then, the
(bilinear) algebra paring L× L −→ L; ( f , g) 7→ f · g := f ⋆ g turns L into
a Banach lattice module over itself. Indeed, for all f , g1, g2 ∈ L;

(a) f · (g1 + g2) = f ⋆ (g1 + g2) = f ⋆ g1 + f ⋆ g2 = f · g1 + f · g2

(b) (g1 + g2) · f = (g1 + g2) ⋆ f = g1 ⋆ f + g2 ⋆ f = g1 · f + g2 · f

(c) (g1 ⋆ g2) · f = (g1 ⋆ g2) ⋆ f = g1 ⋆ (g2 ⋆ f ) = g1 · (g2 · f )

(d) ||g1 · g2|| = ||g1 ⋆ g2|| ≤ ||g1||||g2||

imply that L is a Banach module over itself. In addition,

(e) |g1 · g2| = |g1 ⋆ g2| ≤ |g1| ⋆ |g2| = |g1| · |g2|

implies the "module" product of positive elements is again positive. Hence L
is a Banach lattice module over itself.

We note that, in this case, the (closed) ideal submodules of L (see Definition
2.5.2.3) correspond to (closed) lattice algebra ideals of L, as introduced in
Definition 2.5.1.2.

(ii) As in Appendix A [Example A.1.0.4(iii)], let Γ be a Banach lattice, and L :=
Z(Γ) its center. Then, the (bilinear) paring L× Γ −→ Γ; (T, s) 7→ T · s :=
Ts turns Γ into a Banach lattice module over L.

We note that, in this case, the (closed) ideal submodules of Γ (see Definition
2.5.2.3) correspond to (closed) lattice ideals of Γ.

(iii) As in Appendix A [Example A.1.0.4(vi)], let Γ be an (order complete) Banach
lattice, and L a uniformly bounded closed lattice algebra of (commuting) reg-
ular operators on Γ. Then, the (bilinear) paring L × Γ −→ Γ; (T, s) 7→
T · s := Ts turns Γ into a Banach lattice module over L.

We note that, in this case, the (closed) ideal submodules of Γ (see Definition
2.5.2.3) correspond to (closed) lattice ideals of Γ which are L-invariant.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. ON BANACH LATTICE MODULES OVER A BANACH LATTICE
ALGEBRA 13

2.2.2 m-Banach lattice modules over m-Banach lattice
algebras

Here, we first introduce a special class of Banach lattice algebras in which
the lattice structure is multiplicative, namely m-Banach lattice algebras (see
Definition 2.2.2.1). Consequently, we also introduce a special class of Banach
lattice modules over commutative m-Banach lattice algebra in which the
module structure is "lattice multiplicative", namely m-Banach lattice modules
(see Definition 2.2.2.4).

2.2.2.1 m-Banach lattice algebras

Here we introduce a special class of Banach lattice algebras in which the
lattice structure is multiplicative.

Definition 2.2.2.1. We call a Banach lattice L with an associative algebraic struc-
ture, multiplication ⋆ and lattice modulus |·|, an m-Banach lattice algebra (m-
BLA) if the following hold for all f , g ∈ L;

(i) | f ⋆ g|= | f |⋆|g| and f ⋆ g = f ⋆ g, and

(ii) || f ⋆ g|| ≤ || f ||||g||.

It is clear from our definition that an m-Banach lattice algebra (m-BLA) is
also a Banach lattice algebra (BLA) (see Appendix A, Note A.1.0.2 and Def-
inition A.1.0.3) . The second property in (i) above is essentially required if L
is a complex Banach lattice which, in particular, implies that the multiplica-
tion of real elements is again a real element.

Remark 2.2.2.2.

(i) Typical examples of commutative m-BLAs are Examples A.1.0.4 (i), (ii) and (iii)
in Appendix A.

(ii) Moreover, by the classical theorems of Gelfand or Kakutani; it follows that if a
BLA is either a ∗-algebra with unit or an AM-space with unit, then it must be of
the form C(Q) for some compact space Q.

(iii) There are interesting properties of our m-BLA which follow by definition. For
instance, if L is m-BLA, then for all f ∈ L+ and g, g1, g2 ∈ LR we have that

(a) f ⋆ (g1 ∨ g2) = ( f ⋆ g1) ∨ ( f ⋆ g2),
(b) f ⋆ (g1 ∧ g2) = ( f ⋆ g1) ∧ ( f ⋆ g2),
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(c) f ⋆ g+ = ( f ⋆ g)+, and
(d) f ⋆ g− = ( f ⋆ g)−.

Moreover, we have that || f ⋆ |g||| = || f ⋆ g|| = || f ⋆ g|| for all f , g ∈ L.

For this class of Banach lattice algebras we can answer the following ques-
tion raised by Wickstead ([31]).

Question 2.2.2.3. [31, Question 2.3 , p.807] If a Banach lattice algebra has an
approximate identity (ei) with all ||ei|| ≤ 1, must it have an approximate identity
composed of positive elements?

If L is a (commutative) m-BLA, by setting setting bi := |ei|, then (bi) is an
approximate identity for L+ composed of positive elements, since for each
f ∈ L,

lim
i

ei ⋆ f = f = lim
i

f ⋆ ei

implies
lim

i
bi ⋆ | f | = | f | = lim

i
| f | ⋆ bi.

2.2.2.2 m-Banach lattice module

Next, we introduce a special class of Banach lattice modules over a commu-
tative m-BLA in which the module structure is "lattice multiplicative".

Definition 2.2.2.4. Let L be a commutative m-BLA. A Banach lattice Γ which
is also an L-module is called an m-Banach lattice module (m-BLM) over L if the
following hold for all f ∈ L and s ∈ Γ:

(i) | f · s|= | f |·|s| and f · s = f · s; and

(ii) || f · s|| ≤ || f ||||s||.

Remark 2.2.2.5.

(i) It is clear from our definition that an m-Banach lattice module is also a Banach
lattice module (see Definition 2.2.1.1 and Note 2.2.1.2). The second property in (i)
in the above definition is essentially required if either L or Γ is a complex Banach
lattice which, in particular, implies that the "module" product of real elements is
again a real element.
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(ii) There are interesting properties of our m-Banach lattice module Γ over the m-
BLA L which are immediate from the definition. For instance, for any f ∈ L and
s, s1, s2 ∈ Γ:

(a) | f · s| = | f | · s if s ∈ Γ+,
(b) | f · s| = f · |s| if f ∈ L+.
So, in the real case, we even have:
(c) f · (s1 ∨ s2) = ( f · s1) ∨ ( f · s2) if f ∈ L+,
(d) f · (s1 ∧ s2) = ( f · s1) ∧ ( f · s2) if f ∈ L+,
(e) ( f · s)+ = f · s+ if f ∈ L+,
(f) ( f · s)+ = f+ · s if s ∈ Γ+.

(iii) Another immediate, and very important, observation about our m-Banach lat-
tice module is that, for any f ∈ L, and s ∈ Γ, we have

|| f · |s||| = || f · s|| = || f · s||.

The following examples of m-Banach lattice modules serve as motivation
for our definition.

Example 2.2.2.6. (i) Let L be a commutative m-Banach lattice algebra (see Def-
inition 2.2.2.1). Then, L is an m-Banach lattice module over itself. Indeed, as
in Example 2.2.1.4(i), the (bilinear) algebra paring L× L −→ L; ( f , g) 7→
f · g := f ⋆ g turns L into Banach lattice module over itself. Moreover, by
definition, for any f , g ∈ L,

(a) | f · g| = | f ⋆ g| = | f | ⋆ |g| = | f |·|g|; and

(b) f · g = f ⋆ g = f ⋆ g = f · g
imply that L is an m-Banach lattice module over itself.

(ii) Let Γ be any Banach lattice, and L := Z(Γ) its center (see Example 2.2.1.4(ii)).
Then, Γ is an m-Banach lattice module over L. That is, in fact, every Banach
lattice is an m-Banach lattice module over its center.

(iii) Let E be a topological Banach lattice bundle over a locally compact space Ω,
then the lattice of its continuous sections Γ0(Ω, E) vanishing at infinity is
an m-Banach lattice module over C0(Ω) (see Chapter 3, Remark 3.5.0.1(i)).

(iv) Let E be a measurable Banach lattice bundle over a measure space X, then
the (quotient) lattice of its integrable measurable sections Γ1(X, E) is an m-
Banach lattice module over L∞(X) (see Appendix C, Remark C.5.0.1(i)) .
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2.2.3 Banach lattice modules with property (m+)

As a result of the above observation in Remark 2.2.2.5(iii), and to give room
for a wide range of the so-called Banach lattice modules, we introduce the
following class which generalises our m-Banach lattice modules.

Definition 2.2.3.1. Let L be a commutative m-Banach lattice algebra (m-BLA).
Then we say a Banach lattice module Γ over L "satisfies property (m+)" if the
following holds for all f ∈ L+, and s ∈ Γ,

|| f · |s||| = || f · s|| = || f · s||.

2.2.4 Non-degenerate Banach lattice modules

Definition 2.2.4.1. (Non-degenerate Banach lattice module) Let L be a commu-
tative Banach lattice algebra. A Banach lattice module Γ over L is called non-
degenerate if Γ = lin { f s : f ∈ L, s ∈ Γ}1, in other words, the submodule
lin { f s : f ∈ L, s ∈ Γ} is norm-dense in Γ.

In our study, we assume that any Banach lattice module Γ over a commuta-
tive Banach lattice algebra L is non-degenerate. Furthermore, in the context
of the work of W. Paravicini ([25]), this type of Banach lattice module would
be called a C0(Ω)-Banach lattice in the particular case when L = C0(Ω) for
a locally compact space Ω.

We also note that if either L is, in addition, a C∗- algebra (over C) or con-
sidering its self-adjoint part (over R), then Γ is non-degenerate if and only
if limi eis = s for every s ∈ Γ, where (ei) represents an approximate unit (or
identity) of L. (cf. [29, note after Definition 2.1, p.23-24] ).

In the case where L is an m-Banach lattice algebra with approximate unit
(ei), since we obtain a positive approximate unit (bi) of L+ by setting bi :=
|ei| for each i (see Question 2.2.2.3) non-degeneracy of an m-Banach lattice
module Γ over L also implies Γ+ is non-degenerate over L+. That is, Γ+ =

lin { f s : f ∈ L+, s ∈ Γ+}which is the case if and only if limi bis = s for every
s ∈ Γ+. Indeed, for any s ∈ Γ;

lim
i

ei · s = s

1 lin {W} denotes the norm-closure of the linear span lin {W} of the set of vectors W.
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implies
lim

i
bi · |s| = |s|.

Remark 2.2.4.2. In the case where L is a 1-Banach lattice algebra (i.e., there exists
an identity e ∈ L with ||e|| = 1) and e · s = s for all s ∈ Γ, we call Banach lattice
module Γ over L "unitary".

Immediate examples of unitary Banach lattice modules are:

(i) all 1-Banach lattice algebras (see Example 2.2.1.4(i));

(ii) Examples 2.2.1.4(ii) and (iii); and

(iii) Example 2.2.2.6(ii) if Ω = K is compact.

Moreover, a unitary Banach lattice module is necesarilly non-degenerate. So, one
can assume WLOG that every Banach lattice module is non-degenerate, as we have
done.

Throughout our study, by an m-BLM over L, we always mean an m-Banach
lattice module over a commutative m-BLA L.

Furthermore, as in above, we will use juxtaposition for the algebra multipli-
cation ⋆ in L and the "module" product · in Γ if no confusion arises.

2.3 Positive weighted semigroup representations
on Banach lattice modules

In this Section, we introduce the concept of a (positive) weighted semigroup
representation on a Banach lattice module (BLM) over a commutative Ba-
nach lattice algebra (BLA). Classical examples are the motivation for this
abstract construction. See [29, Definition 2.12, p.28] for the case of Banach
modules over commutative Banach algebras which inspired this work.

We note that, in this Section, we establish the category of Banach lattice
modules and their dynamics.
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More important, we seek to answer, in this Section, the following questions
in a systematic manner.

We will see that each notion describes a certain dynamical system on the
underlying space.

Question 2.3.0.1. (i) What are morphisms and isomorphisms of BLAs?

(ii) What are (positive) morphisms, isomorphisms and (positive) weighted mor-
phisms of BLMs over a fixed commutative BLA?

(iii) What is a group representation on a commutative BLA?

(iv) What is a positive weighted semigroup representation on a BLM?

(v) What are homomorphisms and isomorphisms between positive weighted semi-
group representations on BLMs?

2.3.1 Morphisms and isomorphisms of BLAs

First, we introduce morphisms and isomorphisms of BLAs (Banach lattice
algebras), most naturally, by combining the notions of algebra homomor-
phisms and lattice homomorphisms.

Definition 2.3.1.1. Let L and M be BLAs. A linear map T : L −→ M is called a
morphism if the following hold for all f , g ∈ L:

(i) T f g = T f · Tg, and

(ii) |T f | = T| f |.

Since by (ii), T is a lattice homomorphism, it is necessarily bounded; and hence
T ∈ L (L, M) is also an algebra homomorphism.

A morphism T : L −→ M of BLAs is an isomorphism if T is bijective; hence
T−1 : M −→ L is also a morphism; i.e., T−1pq = T−1p · T−1q, and |T−1p|
= T−1|p| for all p, q ∈ M. The group of self-isomorphisms (automorphisms)
T : L −→ L of a BLA L will be denoted by Aut(L).
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Remark 2.3.1.2. It should be noted that a BLA is simultaneously a Banach
algebra and a Banach lattice; and so in the category of BLAs, morphisms are
linear maps which are simultaneously algebra homomorphisms and lattice
homomorphisms.

A motivation for this definition arises from the following examples.

Example 2.3.1.3. (i) Let φ : Ω −→ Ω be a homeomorphism of a locally com-
pact space Ω. Then the Koopman operator Tφ : C0(Ω) −→ C0(Ω); f 7→
f ◦ φ−1 is a self-isomorphism of the BLA C0(Ω), and hence an automor-
phism.

(ii) Let φ : X −→ X be an automorphism of the measure space X. Then
the Koopman operator Tφ : L∞(X) −→ L∞(X); f 7→ f ◦ φ−1 is a self-
isomorphism of the BLA L∞(X), and hence an automorphism.

2.3.2 (Positive) Morphisms, isomorphisms and (positive)
weighted morphisms of BLMs

Next, we introduce the concept of a (positive) morphism between Banach
lattice modules (BLMs) over a fixed BLA L. This we do naturally by com-
bining the notions of Banach module homomorphisms (see [29, paragraph
after Definition 2.1, p.23]) over a commutative Banach algebra with that of
positivity and lattice homomorphisms in the Banach lattice setting.
Moreover, for important examples of a Banach lattice module Γ over a com-
mutative Banach lattice algebra L (see Examples 2.2.1.4 and 2.2.2.6).

Definition 2.3.2.1. Let Γ and Λ be BLMs over a commutative BLA L. A linear
map T : Γ −→ Λ is called

(i) a positive module homomorphism (i.e., positive morphism) if:

(a) T is positive, i.e., |T s| ≤ T |s|; and

(b) T f s = f · T s

for all f ∈ L and s ∈ Γ.
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(ii) a lattice module homomorphism (i.e., morphism) if:

(a) T is a lattice homomorphism, i.e., |T s| = T |s|; and

(b) T f s = f · T s

for all f ∈ L and s ∈ Γ.

A (positive) morphism T : Γ −→ Λ is called a (positive) isometry if T ∈ L (Γ, Λ)

is isometric.

Remark 2.3.2.2. (i) First, we note that T being positive implies that T ∈
L (Γ, Λ); and hence each positive module homomorphism is also a Banach
module homomorphism (see [29, paragraph after Definition 2.1, p.23]). More-
over, we note that every lattice module homomorphism is also a positive one.

(ii) In the category of BLMs over a (fixed) commutative BLA L, morphisms are
linear operators which are simultaneously module homomorphisms and lat-
tice homomorphisms.

(iii) Furthermore, two Banach lattice modules Γ and Λ over L are said to be iso-
metrically isomorphic, denoted by Γ ∼= Λ, if there exists a surjective isometric
morphism (i.e., a surjective and isometric lattice module homomorphism) be-
tween them.

We are interested in (positive) weighted morphisms, and so we introduce
the following definitions. See [29, Definition 2.5, p.25] for the case of Banach
modules over a commutative Banach algebra. Moreover, we note that every
positive T-homomorphism over a commutative Banach lattice algebra L is,
in particular, a T-homomorphism over a commutative Banach algebra L, in
this situation.

Definition 2.3.2.3. Let L be a commutative BLA, and T : L −→ L a morphism
on L. Moreover, let Γ and Λ be BLMs over L. A linear map T : Γ −→ Λ is called

(i) a positive T-homomorphism (i.e., a positive weighted morphism) if:

(a) T is positive, i.e., |T s| ≤ T |s|; and

(b) T f s = T f · T s

for all f ∈ L and s ∈ Γ.
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(ii) a lattice T-homomorphism (i.e., a weighted morphism) if:

(a) T is a lattice homomorphism, i.e |T s| = T |s|; and

(b) T f s = T f · T s

for all f ∈ L and s ∈ Γ.

A positive T-homomorphism T : Γ −→ Λ is called a positive isometry if T ∈
L (Γ, Λ) is an isometry. Similarly, a lattice T-homomorphism T : Γ −→ Λ is
called an isometry if T ∈ L (Γ, Λ) is an isometry.

The following two examples are the motivation for the above definitions
(see Chapter 3, Remark 3.5.0.1(iv) and Appendix C, Remark C.5.0.1(iii)).

Example 2.3.2.4. (i) Let φ : Ω −→ Ω be a homeomorphism of a locally com-
pact space Ω, and

Tφ : C0(Ω) −→ C0(Ω); f 7→ f ◦ φ−1

the Koopman operator on C0(Ω). Moreover, let E be a topological Banach
lattice bundle over Ω (see Chapter 3, Definition 3.2.0.1), and Φ : E −→ E a
(positive) Banach lattice bundle morphism over φ (see Chapter 3, Definition
3.4.0.1). The Banach lattice Γ0(Ω, E) of continuous sections of E vanishing
at infinity is an m-Banach lattice module over C0(Ω) (see Chapter 3, Remark
3.5.0.1(i)); and the induced operator given by

TΦ : Γ0(Ω, E) −→ Γ0(Ω, E); s 7→ Φ ◦ s ◦ φ−1

is a (positive) lattice Tφ-homomorphism on Γ0(Ω, E) over C0(Ω). We will
call TΦ a (positive) weighted Koopman operator on Γ0(Ω, E) over Tφ.

(ii) Let φ : X −→ X be an automorphism of a measure space X, and

Tφ : L∞(X) −→ L∞(X); f 7→ f ◦ φ−1

the Koopman operator on L∞(X). Moreover, let E be a measurable Banach
lattice bundle over X (see Appendix C, Definition C.2.0.1), and Φ : E −→ E
a (positive) Banach lattice bundle morphism over φ (see Appendix C Defini-
tion C.4.0.2). The (quotient) Banach lattice Γ1(X, E) of integrable measur-
able sections of E is an m-Banach lattice module over L∞(X) (see Appendix
C, Remark C.5.0.1(ii)); and the induced operator given by

TΦ : Γ1(X, E) −→ Γ1(X, E); s 7→ Φ ◦ s ◦ φ−1
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is a (positive) lattice Tφ-homomorphism on Γ1(X, E) over L∞(X). We will
call TΦ a (positive) weighted Koopman operator on Γ1(X, E) over Tφ.

2.3.3 Group Representations on Banach lattice algebras

We introduce the concept of a group representation on a commutative Ba-
nach lattice algebra L; and give a special type of this notion, the so-called
Koopman group representation on L (where L ∈ {C0(Ω), L∞(X)}). See, for
instance, [29, second paragraph on p.28] for the case of a dynamical Banach
algebra. We note that every group representation on a Banach lattice alge-
bra L is, in particular, a group representation on the Banach algebra L, in
this situation.

Note 2.3.3.1. In the sequel, we will use the following notation.

(i) We let G be a locally compact group, and S a closed subsemigroup of G con-
taining the neutral element e, i.e., a closed "submonoid" of G. For instance,
we can take G = R, S = R≥0 or G = Z, S = N0.

(ii) We let L be a commutative Banach lattice algebra, for instance C0(Ω) and
L∞(X) where Ω is a locally compact space and X := (ΩX, ΣX, µX) is a
complete positive σ-finite measure space, respectively. For other examples of
Banach lattice algebras (see Appendix A, Example A.1.0.4).

(iii) We let Aut(L) be the group of automorphisms on L, i.e., T ∈ Aut(L) if and
only if T ∈ L (L) is a bijective morphism of BLAs, and so T−1 is also a
morphism of BLAs (see Definition 2.3.1.1).

Definition 2.3.3.2. (G-dynamical Banach lattice algebra )
A G-dynamical BLA is a pair (L, T) where

T : G −→ Aut(L), g 7→ Tg

defines a strongly continuous2 group action on the Banach lattice algebra L. Such
a pair (L, T) will be called a group representation on L, and T = (Tg)g∈G a flow
on L.

2 i.e., G −→ L; g 7→ Tg f is continuous for each f ∈ L.
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The following two examples motivate this definition, which naturally ex-
tends situations in Example 2.3.1.3 to group actions. These are well-known
and always our starting points for topological and measurable dynamics,
respectively.

Example 2.3.3.3. (i) Let (Ω, (φg)g∈G) be a topological G-dynamical system over
a locally compact space Ω (i.e., (φg)g∈G is a continuous flow on Ω 3), then
the group representation given by

Tφ : G −→ Aut(C0(Ω)), g 7→ Tφ(g) :=
[

f 7→ f ◦ φg−1
]

is a strongly continuous group action on C0(Ω). Hence (C0(Ω), Tφ) is
a G-dynamical system of an m-Banach lattice algebra, and we call Tφ =

(Tφ(g))g∈G the Koopman group representation on C0(Ω).

(ii) Let (X, (φg)g∈G) be a G-dynamical measure-preserving system over a mea-
sure space X (i.e., (φg)g∈G is a measurable flow on X 4) and G is discrete;
then the group representation given by

Tφ : G −→ Aut(L∞(X)), g 7→ Tφ(g) :=
[

f 7→ f ◦ φg−1
]

is a strongly continuous group action on L∞(X). Hence (L∞(X), Tφ) is
a G-dynamical system of an m-Banach lattice algebra, and we call Tφ =

(Tφ(g))g∈G the Koopman group representation on L∞(X).

2.3.4 Positive Weighted Semigroup Representations on
Banach lattice modules

We now introduce the concept of a positive weighted semigroup repre-
sentation on a Banach lattice module Γ over a fixed group representation
T = (Tg)g∈G on L. See [29, Definition 2.12, p.28] for the case of a weighted
semigroup representation on a Banach module. We note that every posi-
tive S-dynamical BLM over (L, T) is, in particular, an S-dynamical Banach
module over (L, T) in this situation.

3 i.e., φ : G −→ Aut(Ω); g 7→ φg is a continuous group homomorphism, where Aut(Ω)
denotes the group of automorphisms (homeomorphisms) on Ω.

4 i.e., φ : G −→ Aut(X); g 7→ φg is a group homomorphism, where Aut(X) denotes the
group of automorphisms on X (see also Appendix C, Definition C.4.0.1 and Note C.4.0.4 )
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In what follows, for a commutative BLA L, we fix a group representation
(L, T) on L, i.e., T = (Tg)g∈G is a flow on L (see Definition 2.3.3.2).

Definition 2.3.4.1. (Positive S-dynamical Banach lattice module)
A positive S-dynamical BLM over (L, T) is a pair (Γ,T ) consisting of a Banach
lattice module Γ over L and a monoid representation5

T : S −→ ΓΓ; g 7→ T (g)

such that

(i) T (g) : Γ −→ Γ is a positive Tg-homomorphism for each g ∈ S; and

(ii) T is strongly continuous, i.e.,

S −→ Γ, g 7→ T (g)s

is continuous for every s ∈ Γ.

We call T = (T (g))g∈S a positive weighted semigroup representation on Γ over
(L, T) (or simply over T = (Tg)g∈G on L).
If S = G, then we have a positive G-dynamical BLM over (L, T); and we call
T = (T (g))g∈G a positive weighted group representation on Γ over T = (Tg)g∈G

on L.

In the following remark, we mention additional properties of a positive S-
dynamical BLM (Γ,T ) over (L, T) from Definition 2.3.4.1 above.

Remark 2.3.4.2. (i) If T (g) is a positive isometry for all g ∈ S, then we call
T = (T (g))g∈S a positive isometry.

(ii) If T (g) is a lattice Tg-homomorphism for all g ∈ S, then we have an S-
dynamical BLM over (L, T); and we call T = (T (g))g∈S a weighted semi-
group representation on Γ over (L, T).

(iii) If T (g) is an isometric lattice Tg-homomorphism for all g ∈ S, then we call
T = (T (g))g∈S an isometry.

5 i.e., T (gh) = T (g)T (h) for all g, h ∈ S and T (e) = IdΓ for the neutral element e ∈ S.
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It is clear that every S-dynamical BLM (Γ,T ) is also a positive S-dynamical
BLM over (L, T), since every lattice T-homomorphism is also a positive T-
homomorphism. Moreover, by the above remark, if S = G, we can also
speak of a G-dynamical BLM and a weighted group representation on Γ
over (L, T); and being an isometry.

The following two special examples are the motivation for the above formu-
lations, which naturally extend the situations in Example 2.3.2.4 to group ac-
tions over to those of Example 2.3.3.3 (see also Chapter 3, Remark 3.5.0.1(v)
and Appendix C, Remark C.5.0.1(iv)).

Example 2.3.4.3. (i) Let (Ω, (φg)g∈G) be a topological G-dynamical system over
a locally compact space Ω, and let (E, Φ) be a (positive) S-dynamical topo-
logical Banach lattice bundle over (Ω, (φg)g∈G) (see Chapter 3, Definition
3.4.0.5). The monoid representation given by

TΦ : S −→ L (Γ0(Ω, E)), g 7→ TΦ(g) :=
[
s 7→ Φg ◦ s ◦ φg−1

]
defines a (positive) S-dynamical BLM (Γ0(Ω, E), TΦ) over the Koopman
group representation (C0(Ω), Tφ); and we call TΦ(g)g∈S the (positive) weighted
Koopman semigroup representation on Γ0(Ω, E) over (Tφ(g))g∈G induced
by (E, Φ).

(ii) Let (X, (φg)g∈G) be a (discrete) G-dynamical measure-preserving system over
a measure space X, and a let (E, Φ) be a (positive) S-dynamical measurable
separable Banach lattice bundle over (X, (φg)g∈G) (see Appendix C, Defini-
tion C.4.0.5). The monoid representation given by

TΦ : S −→ L (Γ1(X, E)), g 7→ TΦ(g) :=
[
s 7→ Φg ◦ s ◦ φg−1

]
defines a (positive) S-dynamical BLM (Γ1(X, E), TΦ) over the Koopman group
representation (L∞(X), Tφ); and we call TΦ(g)g∈S the (positive) weighted
Koopman semigroup representation on Γ1(X, E) over (Tφ(g))g∈G induced
by (E, Φ).
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2.3.5 Homomorphisms and isomorphisms between
positive weighted semigroup representations on
BLMs

In what follows we introduce the concept of homomorphism between pos-
itive S-dynamical BLMs over a fixed (L, T).

Definition 2.3.5.1. A homomorphism from a positive S-dynamical BLM (Γ,T )

over (L, T) to a positive S-dynamical BLM (Λ,S) over (L, T) is a lattice module
homomorphism (see Definition 2.3.2.1(ii))

Θ : Γ −→ Λ

such that the diagram

Γ Λ

Γ Λ

T (g)

Θ

S(g)

Θ

commutes for all g ∈ S, i.e., Θ ◦ T (g) = S(g) ◦Θ for all g ∈ S.
It is called a positive isometry if Θ ∈ L (Γ, Λ) is isometric.

Remark 2.3.5.2. (i) We note that a homomorphism between S-dynamical BLMs
over (L, T) can be defined similarly. It will be called an isometry if Θ is an
isometry.

(ii) In the category of positive S-dynamical BLMs over (L, T); an isometric ho-
momorphism here is just a positive isometry. So, we can speak of, for instance,
unique up to positive isometry for an isometry in the category. We choose this
terminology and reserve the word "isometry" for S-dynamical BLMs over
(L, T).

(iii) Furthermore, two positive S-dynamical BLMs (Γ,T ) and (Λ,S) over (L, T)
are said to be isomorphic if there exists a surjective positive isometry (i.e.,
a surjective isometric homomorphism) between them. In this situation, we
write T = (T (g))g∈S

∼= (S(g))g∈S = S on Γ ∼= Λ.
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2.4 AM- and AL- lattice modules

Inspired by the work of S. Siewert ([29, Section 2.1, p.31], see also [21, Sec-
tion 4, p.15 and Section 5, p.20]), we now introduce the concepts of AM
lattice modules and AL lattice modules over the commutative Banach lat-
tice algebra C0(Ω). We do so in a natural way by combining the notions of
AM-modules and AL-modules in the Banach module setting with the lattice
structure.

2.4.1 AM lattice modules

This type of Banach lattice module is based on the concept of an AM-space
in the Banach module setting as introduced in [29, Definition 2.18, p.33].
Before introducing this, we recall certain results.

In [29, Proposition 2.17, p.31], it was shown that if Γ is a Banach module
over C0(Ω), then for each s ∈ Γ, the closed submodule Γs := C0(Ω) · s is a
Banach lattice. More important, we take note of the following lemma.

Lemma 2.4.1.1. [29, Definition 2.18, and Remark 2.19, p. 33] Let Γ be a Banach
module over C0(Ω). Then the following are equivalent.

(i) Γ is an AM-module, i.e., the submodule Γs = C0(Ω) · s is an AM-space for
each s ∈ Γ.

(ii) ||( f ∨ g)s|| = max(|| f s||, ||gs||) for all f , g ∈ C0(Ω)+ and s ∈ Γ.

We note that AM-modules over C0(Ω) are also called locally convex Banach
C0(Ω)-modules (see [29, Remark 2.21 (i), p.33]); and for further characteri-
sations of these locally convex Banach C0(Ω)-modules, we refer to works of
F. Cunningham ([6, Theorem 2, p.618]) and W. Paravicini ([25, Proposition
2.1, p.272]). Using these concepts, we introduce the following natural def-
inition, namely an AM lattice module over C0(Ω) which can, therefore, also
be called a locally convex Banach C0(Ω)-lattice module.

Definition 2.4.1.2. Let Γ be a Banach lattice module over C0(Ω). We call Γ an
AM lattice module if Γ is an AM-module, i.e., the submodule Γs = C0(Ω) · s is an
AM-space for each s ∈ Γ.
If, in addition, Γ is an m-Banach lattice module, we call it an AM m-lattice module
over C0(Ω).
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The following is an immediate corollary using Lemma 2.4.1.1 from above.

Corollary 2.4.1.3. Let Γ be a Banach lattice module over C0(Ω). If Γ has property
(m+), then Γ|s| is an AM-space if and only if Γs is an AM-space if and only if Γs is
an AM-space for every s ∈ Γ.

Proof. Since Γ is a Banach lattice module over C0(Ω) with property (m+)

(see Definition 2.2.3.1), the following holds for all f ∈ C0(Ω)+ and s ∈ Γ:

|| f · |s||| = || f · s|| = || f · s||.

This implies that for all f , g ∈ C0(Ω)+ and s ∈ Γ

(i) ||( f ∨ g)s|| = ||( f ∨ g)|s||| = ||( f ∨ g)s||; and

(ii) max(|| f s||, ||gs||) = max(|| f |s|||, ||g|s|||) = max(|| f s||, ||gs||).

Hence, the assertion follows from Lemma 2.4.1.1.

The following is an example of such AM m-lattice modules serving as mo-
tivation for our formation.

Example 2.4.1.4. If E is a topological Banach lattice bundle over Ω, then the Ba-
nach lattice Γ0(Ω, E) of its continuous sections vanishing at infinity is an AM
m-lattice module over C0(Ω) (see also Example 2.4.1.11).

2.4.1.1 U0(Ω)-normed lattice module

It is known that an AM-module over C0(Ω) admits an additional lattice
norm structure; namely, an AM- module over C0(Ω) is also a U0(Ω)-normed
module (see [29, Section 2.2.1., p.39-40]). We recall these results and intro-
duce an analogous definition for the case of Banach lattice modules.

For a locally compact space Ω, we write;
U(Ω) := {g : Ω −→ R | g is upper semicontinuous} ,
U0(Ω) := {g ∈ U(Ω) | ∀ε > 0 ∃K ⊆ Ω compact with |g(x)| ≤ ε ∀x /∈ K} , and
U0(Ω)+ := {g ∈ U0(Ω) | g ≥ 0} .
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Definition 2.4.1.5. (U0(Ω)-normed module) [29, Definition 2.34, p. 39] Let Ω be
a locally compact space and Γ a Banach module over C0(Ω). A mapping

| · | : Γ −→ U0(Ω)+

is a U0(Ω)-valued norm if:

(i) |||s||| = ||s||;

(ii) | f s| = | f | · |s|; and

(iii) |s1 + s2| ≤ |s1|+ |s2| for all s, s1, s2 ∈ Γ and f ∈ C0(Ω).

A Banach module over C0(Ω) together with a U0(Ω)-valued norm is called a
U0(Ω)-normed module.

It readily follows that a U0(Ω)-normed module is an AM-module over C0(Ω).
A more important result about a U0(Ω)-normed module is that the converse
also holds, as the following lemma shows.

Lemma 2.4.1.6. [29, Proposition 2.36, p.40] Let Ω be a locally compact space. For
a Banach module Γ over C0(Ω), the following are equivalent.

(i) Γ is an AM-module over C0(Ω).

(ii) Γ is a U0(Ω)-normed module.

Moreover, if these assertions hold, then the U0(Ω)-valued norm is unique and given
by

|s|(x) := inf {|| f s|| : f ∈ C0(Ω)+ with f (x) = 1} (x ∈ Ω, s ∈ Γ).

Remark 2.4.1.7. (i) For a topological Banach bundle E over a locally compact
space Ω, setting |s|(x) := ||s(x)|| for x ∈ Ω and s ∈ Γ0(Ω, E) turns
Γ0(Ω, E) into a U0(Ω)-normed module (see also [29, Example 2.35, p.40]).

(ii) However, for a topological Banach lattice bundle E over Ω, since |||s(x)||| =
||s(x)|| = ||s(x)|| for x ∈ Ω and s ∈ Γ0(Ω, E), we see that the U0(Ω)-
valued norm "agrees" with the "lattice" structure on Γ0(Ω, E). Inspired by
this, we introduce the concept of a U0(Ω)-normed m-lattice module in the
next definition.
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Definition 2.4.1.8. Let Ω be a locally compact space and Γ a Banach lattice module
over C0(Ω). A mapping

| · | : Γ −→ U0(Ω)+

is a lattice U0(Ω)-valued norm if:

(i) ||s|| = |s| = |s|;

(ii) |||s||| = ||s||;

(iii) | f s| = | f | · |s|; and

(iv) |s1 + s2| ≤ |s1|+ |s2| for all s, s1, s2 ∈ Γ and f ∈ C0(Ω).

A Banach lattice module over C0(Ω) together with a lattice U0(Ω)-valued norm
is called a U0(Ω)-normed lattice module. If Γ is, in addition, an m-Banach lattice
module, we call it a U0(Ω)-normed m-lattice module.

By the definition above, it is clear that a U0(Ω)-normed lattice module neces-
sarily satisfies property (m+). Furthermore, using Lemma 2.4.1.6, we obtain
the following equivalence.

Proposition 2.4.1.9. Let Ω be a locally compact space. For a Banach lattice module
Γ over C0(Ω), the following are equivalent.

(i) Γ is an AM lattice module over C0(Ω) with property (m+).

(ii) Γ is a U0(Ω)-normed lattice module.

Moreover, if this assertion holds, then the lattice U0(Ω)-valued norm is unique and
given by

|s|(x) := inf {|| f s|| : f ∈ C0(Ω)+ with f (x) = 1} (x ∈ Ω, s ∈ Γ).

Proof. (ii) =⇒ (i): That a U0(Ω)-normed lattice module Γ is an AM
lattice module readily follows from definition. Indeed, for all f , g ∈
C0(Ω)+ and s ∈ Γ we have that

|( f ∨ g)s| = | f ∨ g| · |s|
= f |s| ∨ g|s|.
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Furthermore, since C0(Ω) ⊆ U0(Ω) is an AM-space, it follows that for
all f , g ∈ C0(Ω)+ and s ∈ Γ

||( f ∨ g)s|| = || f |s| ∨ g|s|||
= max(|| f s||, ||gs||),

and the first assertion follows from Lemma 2.4.1.1.

Moreover, Γ satisfies property (m+) (see Definition 2.2.3.1). Indeed,
by the definition of the lattice U0(Ω)-valued norm, we see that if f ∈
C0(Ω)+ and s ∈ Γ, then

| f |s|| = f |s| = | f s| and | f s| = f |s| = | f s|.

And so, for all f ∈ C0(Ω)+ and s ∈ Γ we have that

|| f · |s||| = || f · s|| = || f · s||.

(i) =⇒ (ii): Since an AM-module admits a U0(Ω)-valued norm (by
Lemma 2.4.1.6) given by

|s|(x) = inf {|| f s|| : f ∈ C0(Ω)+ with f (x) = 1} (x ∈ Ω, s ∈ Γ),

it suffices to show this U0(Ω)-valued norm "agrees" with the "lattice"
structure on Γ.

Now, since Γ is a Banach lattice module over C0(Ω) with property
(m+) (see Definition 2.2.3.1), we have that, for all f ∈ C0(Ω)+ and
s ∈ Γ,

|| f · |s||| = || f · s|| = || f · s||.

In particular, this implies that, for every s ∈ Γ and x ∈ Ω,

Ws := {|| f s|| : f ∈ C0(Ω)+ with f (x) = 1} = W|s| = Ws

and so, we have that inf W|s| = inf Ws = inf Ws for all s ∈ Γ and
x ∈ Ω. This proves the assertion.

The following is an immediate corollary from the above Proposition 2.4.1.9.
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Corollary 2.4.1.10. Let Ω be a locally compact space. For a Banach lattice module
Γ over C0(Ω), the following are equivalent.

(i) Γ is an AM m-lattice module over C0(Ω).

(ii) Γ is a U0(Ω)-normed m-lattice module.

Moreover, if these assertions hold, then the lattice U0(Ω)-valued norm is unique
and given by

|s|(x) := inf {|| f s|| : f ∈ C0(Ω)+ with f (x) = 1} (x ∈ Ω, s ∈ Γ).

Now, we can state an example of such a U0(Ω)-normed m-lattice module
serving as motivation.

Example 2.4.1.11. For a topological Banach lattice bundle E over Ω, setting |s|(x) :=
||s(x)|| for x ∈ Ω and s ∈ Γ0(Ω, E) turns Γ0(Ω, E) into a U0(Ω)-normed m-
lattice module (see also Example 2.4.1.4).

2.4.2 AL lattice modules

This type of Banach lattice module is based on the concept of an AL-space
in the Banach module setting as introduced in [29, Definition 2.28, p.38].
Before introducing this, we also recall certain results.

The following lemma, which states an equivalent definition of an AL-module
over C0(Ω), will be useful.

Lemma 2.4.2.1. [29, Definition 2.28, and Remark 2.29, p. 38] Let Γ be a Banach
module over C0(Ω), then the following are equivalent.

(i) Γ is an AL-module i.e., the submodule Γs = C0(Ω) · s is an AL-space for
each s ∈ Γ.

(ii) ||( f + g)s|| = || f s||+ ||gs|| for all f , g ∈ C0(Ω)+ and s ∈ Γ.

Using these concepts, we introduce the following natural definition.
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Definition 2.4.2.2. Let Γ be a Banach lattice module over C0(Ω). We call Γ an
AL lattice module if Γ is an AL-module, i.e., the submodule Γs = C0(Ω) · s is an
AL-space for each s ∈ Γ.
If Γ is, in addition, an m-Banach lattice module, we call it an AL m-lattice module.

Analogous to Corollary 2.4.1.3, the following corollary is immediate using
Lemma 2.4.2.1 from above.

Corollary 2.4.2.3. Let Γ be a Banach lattice module over C0(Ω). If Γ has property
(m+), then Γ|s| is an AL-space if and only if Γs is an AL-space if and only if Γs is
an AL-space for every s ∈ Γ.

Remark 2.4.2.4. (i) As in the work of H. Kreidler and S. Siewert, see [21, sec-
ond paragraph on p.20], the space L∞(X) can be identified (as a Banach lat-
tice algebra) with C0(Ω) for some locally compact space Ω. Indeed, L∞(X)

can be seen as a commutative C∗-algebra and WLOG as a Banach lattice with
IntL∞(X)+ ̸= ∅; hence by classical theorems of Gelfand([7, Theorem 1.4.1,
p.11]) and Kakutani (see Appendix B, Theorem B.0.0.6), we can obtain this
representation.

(ii) So, as in their work, we can also speak of an AM lattice module or an AL
lattice module over L∞(X). In this direction, the following is an example of
such an AL m-lattice module serving as motivation for obtaining our repre-
sentation.

Example 2.4.2.5. If E is a measurable Banach lattice bundle over X, then the (quo-
tient) Banach lattice Γ1(X, E) of its integrable measurable sections is an AL m-
lattice module over L∞(X) (see also Example 2.4.2.12).

2.4.2.1 C0(Ω)′-normed lattice module

It is known that an AL-module over C0(Ω) admits an additional lattice
norm structure; namely, an AL-module over C0(Ω) is also a C0(Ω)′-normed
module (see [29, Section 2.2.2., p.42]). We recall these results and introduce
an analogous definition for the case of Banach lattice modules.
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Definition 2.4.2.6. (C0(Ω)′-normed module) [29, Definition 2.41, p. 43] Let Ω
be a locally compact space and Γ a Banach module over C0(Ω). A mapping

| · | : Γ −→ C0(Ω)′+

is a C0(Ω)′-valued norm if:

(i) |||s||| = ||s||;

(ii) | f s| = | f | · |s|; and

(iii) |s1 + s2| ≤ |s1|+ |s2| for all s, s1, s2 ∈ Γ and f ∈ C0(Ω).

A Banach module over C0(Ω) together with a C0(Ω)′-valued norm is called a
C0(Ω)′-normed module.

Since C0(Ω)′ is an AL-space, it readily follows that a C0(Ω)′-normed mod-
ule is an AL- module over C0(Ω). A more important result about a C0(Ω)′-
normed module is that the converse also holds, as the following lemma
shows.

Lemma 2.4.2.7. [29, Proposition 2.42, p.43] Let Ω be a locally compact space. For
a Banach module Γ over C0(Ω), the following are equivalent.

(i) Γ is an AL-module over C0(Ω).

(ii) Γ is a C0(Ω)′-normed module.

Moreover, if these assertions hold, then the C0(Ω)′-valued norm is unique and
given by

|s|( f ) := || f s|| ( f ∈ C0(Ω)+, s ∈ Γ).

Remark 2.4.2.8. (i) For a measurable Banach bundle E over Ω, setting | · | :
Γ1(X, E) −→ L1(X); s 7→ ||s(·)|| turns Γ1(X, E) into a L∞(X)′-normed
module. Here we note that this is so since L1(X) is canonically embedded in
L∞(X)′ (see also [29, paragraph two, p.44]).

(ii) However, for a measurable Banach lattice bundle E over Ω, since |||s(·)||| =
||s(·)|| = ||s(·)|| for all s ∈ Γ1(X, E); we see that the L∞(X)′-valued norm
"agrees" with the "lattice" structure on Γ1(X, E). Inspired by this, we intro-
duce the concept that gives rise to what we call an L∞(X)′-normed m-lattice
module in the next definition.
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Definition 2.4.2.9. Let Ω be a locally compact space and Γ a Banach lattice module
over C0(Ω). A mapping

| · | : Γ −→ C0(Ω)′+

is a lattice C0(Ω)′-valued norm if:

(i) ||s|| = |s| = |s|;

(ii) |||s||| = ||s||;

(iii) | f s| = | f | · |s|; and

(iv) |s1 + s2| ≤ |s1|+ |s2| for all s, s1, s2 ∈ Γ and f ∈ C0(Ω).

A Banach lattice module over C0(Ω) together with a lattice C0(Ω)′-valued norm
is called a C0(Ω)′-normed lattice module. And if Γ is, in addition, an m-Banach
lattice module, we call it C0(Ω)′-normed m-lattice module.

By definition, it follows that a C0(Ω)′-normed lattice module necessarily satis-
fies property (m+), and using Lemma 2.4.2.7, we also obtain the following
equivalence.

Proposition 2.4.2.10. Let Ω be a locally compact space. For a Banach lattice mod-
ule Γ over C0(Ω), the following are equivalent.

(i) Γ is an AL lattice module over C0(Ω) with property (m+).

(ii) Γ is a C0(Ω)′-normed lattice module.

Moreover, if these assertions hold, then the lattice C0(Ω)′-valued norm is unique
and given by

|s|( f ) := || f s|| ( f ∈ C0(Ω)+, s ∈ Γ).

Proof. (ii) =⇒ (i): That a C0(Ω)′-normed lattice module Γ is an
AL module over C0(Ω) readily follows from the definition of a lattice
C0(Ω)′-valued norm. Indeed, for all f , g ∈ C0(Ω)+ and s ∈ Γ we have
that

|( f + g)s| = | f + g| · |s|
= f |s|+ g|s|.
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And since C0(Ω)′ is an AL-space, it follows that for all f , g ∈ C0(Ω)+

and s ∈ Γ
||( f + g)s|| = || f |s|+ g|s|||

= || f s||+ ||gs||.
So, the first assertion follows from Lemma 2.4.2.1.

Moreover, Γ satisfies property (m+). Indeed, by the definition of the
lattice C0(Ω)′-valued norm, we see that if f ∈ C0(Ω)+ and s ∈ Γ, then

| f |s|| = f |s| = | f s| and | f s| = f |s| = | f s|.

So, for all f ∈ C0(Ω)+ and s ∈ Γ we have that

|| f · |s||| = || f · s|| = || f · s||.

(i) =⇒ (ii): Since an AL-module admits a C0(Ω)′-valued norm (by
Lemma 2.4.2.7) given by

|s|( f ) := || f s|| ( f ∈ C0(Ω)+, s ∈ Γ),

it suffices to show this C0(Ω)′-valued norm "agrees" with the "lattice"
structure on Γ.

Now, since Γ is a Banach lattice module over C0(Ω) with property
(m+) (see Definition 2.2.3.1), we have that, for all f ∈ C0(Ω)+ and
s ∈ Γ,

|| f · |s||| = || f · s|| = || f · s||

which proves the assertion.

The following is an immediate corollary from Proposition 2.4.2.10 above.

Corollary 2.4.2.11. Let Ω be a locally compact space. For a Banach lattice module
Γ over C0(Ω), the following are equivalent.

(i) Γ is an AL m-lattice module over C0(Ω).

(ii) Γ is a C0(Ω)′-normed m-lattice module.

Moreover, if these assertions hold, then the lattice C0(Ω)′-valued norm is unique
and given by

|s|( f ) := || f s|| ( f ∈ C0(Ω)+, s ∈ Γ).
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Now, we can state an important example serving as motivation.

Example 2.4.2.12. For a measurable Banach lattice bundle E over X, setting | · | :
Γ1(X, E) −→ L1(X); s 7→ ||s(·)|| turns the Banach lattice Γ1(X, E) into an
L∞(X)′-normed m-lattice module. Here, we note again that, this is so since L1(X)

is embedded in L∞(X)′ (see also Example 2.4.2.5).

2.4.2.2 L1(X)-normed lattice modules

Remark 2.4.2.13. As noted in [29, paragraph after Proposition 2.42, p.43]
(see also [21, Example 5.10 p.24]), an AL-module over L∞(X) can only be
isometrically isomorphic to Γ1(X, E) for some measurable Banach bundle E
over a measure space X if the L∞(X)′-valued norm takes values in (the
canonical image of) L1(X). This observation leads to the following definition.

Definition 2.4.2.14. (L1(X)-normed module) [29, Definition 2.44, p.45] Let X be
a measure space. An L∞(X)′-normed module Γ is called an L1(X)-normed module
if |s| ∈ L1(X) for every s ∈ Γ.

Since, for a measurable Banach bundle E over the measure space X, the
Banach space Γ1(X, E) is actually an L1(X)-normed module with respect to
the above definition, we introduce the following natural definition for the
case of a measurable Banach lattice bundle.

Definition 2.4.2.15. Let X be a measure space. An L∞(X)′-normed lattice module
Γ is called an L1(X)-normed lattice module if |s| ∈ L1(X) for every s ∈ Γ.
If Γ is, in addition, an m-Banach lattice module, then we call it an L1(X)-normed
m-lattice module.

An immediate example is the following serving as motivation.

Example 2.4.2.16. For a measurable Banach lattice bundle E over X, setting | · | :
Γ1(X, E) −→ L1(X); s 7→ ||s(·)|| turns the Banach lattice Γ1(X, E) into an
L1(X)-normed m-lattice module.
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Similar to [21, Definition 5.8, p.23] in the case of Banach modules; we make
the following definition in order to capture the general notion of C0(Ω)′-
normed lattice module which we introduce in Definition 2.4.2.9.

Definition 2.4.2.17. Let Γ be a Banach lattice module over a commutative Banach
lattice algebra L. Moreover, let L′+ be the positive cone of the Banach dual L′ of L.
A mapping

n : Γ −→ L′+

is a lattice L′-valued norm if:

(i) n(|s|) = n(s) = n(s);

(ii) ||n(s)|| = ||s||;

(iii) n( f · s) = | f | · n(s); and

(iv) n(s1 + s2) ≤ n(s1) + n(s2) for all s, s1, s2 ∈ Γ and f ∈ L.

A Banach lattice module over L together with a lattice L′-valued norm will
be called an L′-normed lattice module. And if Γ is, in addition, m-Banach
lattice module, we call it an L′-normed m-lattice module.

2.5 More on Banach lattice modules over a
Banach lattice algebra

In this Section, we introduce and consider several notions about a Banach
lattice module over a Banach lattice algebra. Many of these notions which
are also important for our study include: Sub-lattice algebras and lattice al-
gebra ideals (see Subsection 2.5.1), Lattice submodules and Ideal submodules
(see Subsection 2.5.2), Quotient spaces of Banach lattice module (see Subsection
2.5.3), Dual Banach lattice modules (see Subsection 2.5.4), Banach lattice mod-
ules and lattice isomorphisms (see Subsection 2.5.5), and Banach lattice modules
and lattice ideals (see Subsection 2.5.6).

Throughout this Section, by a Banach lattice algebra L, we mean a commu-
tative Banach lattice algebra, Ω a locally compact space, K will be a com-
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pact space and X := (ΩX, ΣX, µX) will be a complete positive σ-finite mea-
sure space. As always, by m-Banach lattice module over L, we mean an
m-Banach lattice module over the m-BLA L (see Definition 2.2.2.4).

2.5.1 Sub-lattice algebras and lattice algebra ideals

In this Subsection, we introduce the notions of a sub-lattice algebra and a
lattice algebra ideal of L, a Banach lattice algebra (BLA).

Definition 2.5.1.1. Let L be a Banach lattice algebra. A subspace M ⊆ L will be
called a sub-lattice algebra if the following hold; for all f , g ∈ M

(i) f g ∈ M, and

(ii) | f |, f ∈ M.

It is clear that a sub-lattice algebra is both a subalgebra and a sublattice. Moreover
M is again a BLA if and only if M ⊆ L is a closed subspace; and in that case, we
call M a Banach sub-lattice algebra of L.

Definition 2.5.1.2. Let L be a Banach lattice algebra. A subspace N ⊆ L will be
called a lattice algebra ideal if the following hold; for all f ∈ N, and m ∈ L

(i) m f ∈ N, and

(ii) |m| ≤ | f | =⇒ m ∈ N.

Also, we see here that a lattice algebra ideal is both an algebra ideal and a
lattice ideal. Furthermore, in the case where N ⊆ L is closed, we call N a
closed lattice algebra ideal of L.

Example 2.5.1.3. (i) If L = C(K); we know that every closed lattice ideal is
precisely a closed algebra ideal, i.e., of the form IA :=

{
f ∈ C(K) : f|A ≡ 0

}
for some closed subspace A ⊆ K (see [10, Remark 7.11 (iii), p.124]).

(ii) If L = L∞(X); a set of the form

IA := { f ∈ L∞(X) : 1A ∧ | f | = 0 ⇐⇒ | f |∧ 1 ≤ 1Ac ⇐⇒ A ⊆ [ f = 0]}

for some A ∈ ΣX is a closed lattice algebra ideal. However, it should be noted
that even a lattice ideal in L∞(X) is not always of this form, unless L∞(X)

is finite-dimensional (see [10, Remark 7.11 (i), p.124]).
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In the following proposition, we note an instance of a closed lattice algebra
ideal when L = C0(Ω).

Proposition 2.5.1.4. Let L = C0(Ω). For each x ∈ Ω, the set of the form

Ax := { f ∈ C0(Ω) : f (x) = 0}

is a Banach sub-lattice algebra. In particular, Ax is a closed lattice algebra ideal of
C0(Ω).

Proof. Let x ∈ Ω be fixed. Since {x} is closed in Ω, by Example 2.5.1.3(i),
it follows that Ax is a closed lattice ideal and closed algebra ideal of C0(Ω),
hence the assertion holds. Indeed, clearly Ax is a closed sublattice and sub-
algebra and for all g ∈ C0(Ω) and f ∈ Ax; we have that

(i) g f ∈ Ax since (g f )(x) = g(x) f (x) = 0, and

(ii) |g| ≤ | f | =⇒ g ∈ Ax since |g|(x) ≤ | f |(x) = 0.

2.5.2 Lattice submodules and Ideal submodules

In this Subsection, we introduce the concept of lattice submodules and ideal
submodules of a Banach lattice module Γ over a subspace of a Banach lattice
algebra L.

Definition 2.5.2.1. Let N ⊆ L be a subspace. A lattice submodule over N is a
subspace Λ ⊆ Γ such that the following hold: for all f ∈ N and s ∈ Λ

(i) f s ∈ Λ, and

(ii) |s|, s ∈ Λ.

A lattice submodule over N will also be called an N-lattice submodule of Γ. More-
over, in the case where N = L and Λ ⊆ Γ is a closed subspace, Λ is called a Banach
lattice submodule of Γ.

Remark 2.5.2.2. (i) It is clear that, if Λ is a Banach lattice submodule of Γ, then
it is a Banach lattice module over L.

(ii) Furthermore, if N is a Banach sub-lattice algebra, then a closed N-lattice
submodule of Γ is also a Banach lattice module over N.
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Definition 2.5.2.3. Let N ⊆ L be a subspace. An ideal submodule over N is a
subspace IΓ ⊆ Γ such that the following holds. For all f ∈ N, s ∈ IΓ and r ∈ Γ,

(i) f s ∈ IΓ, and

(ii) |r| ≤ |s| =⇒ r ∈ IΓ.

An ideal submodule over N will also be called an N-ideal submodule of Γ. More-
over, in the case where N = L, and IΓ ⊆ Γ is a closed subspace, IΓ is called a closed
ideal submodule of Γ.

Remark 2.5.2.4. (i) We note here that, since every lattice ideal is also a sublat-
tice, if IΓ is an N-ideal submodule of Γ, then it is, in particular, an N-lattice
submodule of Γ.

(ii) So, every closed ideal submodule of Γ is also a Banach lattice submodule of Γ.

We note an instance of a Banach lattice submodule of Γ in the following
proposition in the case where L = C0(Ω).

Proposition 2.5.2.5. Let Γ be an m-BLM over C0(Ω) and let x ∈ Ω be fixed.
Then, the following hold.

(A) The set of the form

Jx := lin { f s : f ∈ C0(Ω) with f (x) = 0 and s ∈ Γ}

is a Banach lattice submodule of Γ. In particular, Jx is Ax-lattice submodule
of Γ and Jx = lin { f s : f ∈ Ax and s ∈ Γ}where Ax := { f ∈ C0(Ω) : f (x) = 0}.

(B) If, in addition, Γ is a U0(Ω)-normed lattice module, then the set of the form

Γx := {s ∈ Γ : |s|(x) = 0}

is a closed ideal submodule of Γ. In this case, Jx ⊆ Γx and Γx is, in particular,
an Ax-ideal submodule of Γ.

Proof. (A) For fixed x ∈ Ω, if we take Ax := { f ∈ C0(Ω) : f (x) = 0} as in
Proposition 2.5.1.4, we first show that Jx is a lattice submodule over
the Banach lattice algebra Ax, i.e., for any g ∈ Ax and r ∈ Jx, we have
that gr ∈ Jx and r, |r| ∈ Jx. Indeed, if, WLOG, r = f s for some
f ∈ Ax, and s ∈ Γ, we have that

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. ON BANACH LATTICE MODULES OVER A BANACH LATTICE
ALGEBRA 42

(i) gr = (g f )s ∈ Jx since g f ∈ Ax, and

(ii) |r| = | f s| = | f ||s| ∈ Jx and r = f s ∈ Jx since | f |, f ∈ Ax.

This shows that Jx is a closed lattice submodule over Ax, since Jx is
closed by definition. Moreover, Jx = lin { f s : f ∈ Ax and s ∈ Γ} also
by definition.

Now, since Ax is, in particular, a closed lattice algebra ideal of C0(Ω),
we can conclude that Jx is a Banach lattice submodule of Γ.

(B) If, in addition, Γ is a U0(Ω)-normed lattice module (see Definition
2.4.1.8), i.e., Γ is a U0(Ω)-normed m-lattice module, we first show that
Γx is lattice submodule over C0(Ω). Indeed, Γx is a subspace of Γ, and
for any f ∈ C0(Ω) and s ∈ Γx, we have that

(i) f s ∈ Γx since | f s|(x) = | f |(x)|s|(x) = 0, and

(ii) |s|, s ∈ Γx, since ||s||(x) = |s|(x) = |s|(x) = 0.

Moreover, Γx is a closed subspace of Γ. Indeed, if (sn)n∈N ⊆ Γx

is a sequence converging to s ∈ Γ, which is the case if and only if
the sequence (|sn|)n∈N ⊆ U0(Ω)+ converges to |s| ∈ U0(Ω)+, then
|sn|(x) = 0 for all n ∈N implies that |s|(x) = 0, i.e., s ∈ Γx.

Next, we show that Γx is a lattice ideal of Γ. Indeed, if so ∈ Γ and
s ∈ Γx, then |so| ≤ |s| implies that |so|(x) = ||s0||(x) ≤ ||s||(x) =
|s|(x) = 0, i.e., so ∈ Γx.

Thus, Γx is a closed ideal submodule of Γ.

Finally, if, WLOG, r = f s ∈ Jx for some f ∈ Ax, and s ∈ Γ, then
|r|(x) = | f |(x)|s|(x) = 0 implies that r ∈ Γx. Hence, Jx ⊆ Γx and the
assertion is proved.

2.5.3 Quotient Spaces of a Banach lattice module

In this Subsection, we identify certain quotient spaces of a Banach lattice
module Γ over a commutative BLA L.

Proposition 2.5.3.1. Let N ⊆ L be a closed algebra ideal, and Λ ⊆ Γ a closed
N-submodule of Γ. Then the following hold.
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(i) The Banach space Γ/Λ is a Banach module over the quotient algebra L/N;
where the action of L/N on Γ/Λ is characterised by the identity

( f + N) · (s + Λ) := f s + Λ

for all f ∈ L and s ∈ Γ.

(ii) The Banach module Γ/Λ over L/N is a Banach lattice module over the quo-
tient lattice algebra L/N if, in addition, N and Λ are lattice ideals of L and
Γ respectively, i.e., N ⊆ L is a closed lattice algebra ideal, and Λ is a closed
N-ideal submodule of Γ.

In this case, the quotient maps p : L −→ L/N and q : Γ −→ Γ/Λ are
lattice homomorphisms. In addition, p f = p f and qs = qs for all f ∈ L and
s ∈ Γ.

Moreover, if Γ is an m-Banach lattice module over L, then Γ/Λ is also an
m-Banach lattice module over L/N,

Proof. (i) Since Γ is non-degenerate (see Subsection 2.2.4) we have that
Λ = lin { f s : f ∈ N and s ∈ Λ}. By [20, Proposition 2.2, p.144] we ob-
tain that the Banach space Γ/Λ is a Banach module over the quotient
algebra L/N as claimed. This, in particular, implies that

|| f s + Λ|| ≤ || f + N||||s + Λ||

for all f ∈ L and s ∈ Γ.

(ii) Since N and Λ are lattice ideals of L and Γ, respectively; the quo-
tient lattices L/N and Γ/Λ are, in addition, Banach lattices, where
the lattice structures are defined canonically such that quotient maps
p : L −→ L/N and q : Γ −→ Γ/Λ are lattice homomorphisms and
p f = p f , and qs = qs for all f ∈ L and s ∈ Γ (cf. [28, Proposition 5.4,
p.85]). That is, we have that

| f + N| := | f | + N and f + N := f + N, and

|s + Λ| := |s| + Λ and s + Λ := s + Λ

for all f ∈ L and s ∈ Γ.
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It follows immediately that L/N is a Banach lattice algebra, since

|( f + N)(g + N)| = | f g| + N ≤ | f ||g| + N = | f + N||g + N|

for all f , g ∈ L (see Appendix A, Note A.1.0.2 and Definition A.1.0.3).
Moreover, Γ/Λ is a Banach lattice module over the Banach lattice al-
gebra L/N, since

|( f + N) · (s + Λ)| = | f s| + Λ ≤ | f ||s| + Λ = | f + N| · |s + Λ|

for all f ∈ L and s ∈ Γ (see Definition 2.2.1.1 and Note 2.2.1.2).

Finally, from the above consideration, it follows that Γ/Λ is an m-
Banach lattice module over L/N if Γ is an m-Banach lattice module
over L.

Combining Propositions 2.5.2.5, 2.5.3.1 and 2.4.1.10 we have the following.

Corollary 2.5.3.2. Let Γ be an m-BLM over C0(Ω) and let x ∈ Ω be fixed. Then
the following hold.

(A) Let Jx := lin { f s : f ∈ Ax and s ∈ Γ}where Ax := { f ∈ C0(Ω) : f (x) = 0}.
Then, the Banach space Γ/Jx is a Banach module over the quotient algebra
C0(Ω)/Ax; where the action of C0(Ω)/Ax on Γ/Jx is given by the identity

( f + Ax) · (s + Jx) := f s + Jx

for all f ∈ C0(Ω) and s ∈ Γ.

Moreover, || f s + Jx|| ≤ || f + Ax||||s + Jx|| and || f + Ax|| = | f |(x) for all
f ∈ C0(Ω) and s ∈ Γ.

(B) If, in addition, Γ is a U0(Ω)-normed lattice module, and

Γx := {s ∈ Γ : |s|(x) = 0} ,

then the quotient lattice Γ/Γx is an m-Banach lattice module over the quo-
tient lattice algebra C0(Ω)/Ax.

Moreover, the quotient maps px : C0(Ω) −→ C0(Ω)/Ax and qx : Γ −→
Γ/Γx are lattice homomorphisms, and px f = px f and qxs = qxs for all
f ∈ C0(Ω) and s ∈ Γ.
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In this case, ||s + Γx|| = |s|(x) = ||s + Jx|| for all s ∈ Γ, and the mapping

πx : Γ/Jx −→ Γ/Γx; s + Jx 7→ s + Γx

is a surjective isometry of Banach modules over C0(Ω)/Ax.

Proof. (A) By Proposition 2.5.2.5(A), Jx is, in particular, an Ax-lattice sub-
module of Γ. Since Ax is a closed algebra ideal of C0(Ω), by Proposi-
tion 2.5.3.1(i), we obtain that the Banach space Γ/Jx is a Banach mod-
ule over the quotient algebra C0(Ω)/Ax; where the action of C0(Ω)/Ax

on Γ/Jx is given by the identity

( f + Ax) · (s + Jx) := f s + Jx

which implies that || f s + Jx|| ≤ || f + Ax||||s + Jx|| for all f ∈ C0(Ω)

and s ∈ Γ. Finally, since Ax is the kernel of dirac functional δx :
C0(Ω) −→ K; f 7→ f (x), by [20, Lemma 1.3, p.139], we have that
|| f + Ax|| = | f |(x) for all f ∈ C0(Ω).

(B) By Proposition 2.5.2.5(B), Γx is, in particular, a closed Ax-ideal sub-
module of Γ. Since Ax is a closed lattice algebra ideal of C0(Ω), by
Proposition 2.5.3.1(ii), we obtain that the Banach module Γ/Γx over
the quotient lattice algebra C0(Ω)/Ax is an m-Banach lattice module
over C0(Ω)/Ax. It follows that the quotient maps px : C0(Ω) −→
C0(Ω)/Ax and qx : Γ −→ Γ/Γx are lattice homomorphisms. More-
over, px f = px f and qxs = qxs for all f ∈ C0(Ω) and s ∈ Γ.

To prove the last assertion, we proceed in the following manner. We
first note that Jx ⊆ Γx (see Proposition 2.5.2.5(B)).

(a) The mapping πx : Γ/Jx −→ Γ/Γx; s + Jx 7→ s + Γx is a surjec-
tive C0(Ω)/Ax-module homomorphism. Indeed, we first show that it
is well-defined. For s1, s2 ∈ Γ, s1 + Jx = s2 + Jx ⇐⇒ s2− s1 ∈ Jx ⊆ Γx

implies that s1 + Γx = s2 + Γx as required. Moreover, it is clearly
a surjective and linear mapping, and we have that πx( f s + Jx) =

( f + Ax) · πx(s + Jx) for all f ∈ C0(Ω), and s ∈ Γ.

(b) We claim that for each s ∈ Γ, |s|(x) = ||s + Γx||. Indeed, for
each s ∈ Γ, we have that

|s|(x) ≤ inf

{
sup
y∈Ω
|s + r|(y) : r ∈ Γx

}
= inf {||s + r|| : r ∈ Γx} = ||s+Γx||
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which implies that |s|(x) = 0 if and only if ||s + Γx|| = 0. Hence, the
assertion holds.

(c) Finally, we claim that ||s + Γx|| = ||s + Jx|| for each s ∈ Γ.
Indeed, since

(i) lin { f so : f ∈ Ax and so ∈ Γ} ⊆ Jx ⊆ Γx, and

(ii) {||gs|| : g ∈ C0(Ω)+, g(x) = 1} ⊆ {||s + f so|| : f ∈ Ax, so ∈ Γ}
for each s ∈ Γ, we have that

|s|(x) = ||s + Γx||
= inf {||s + r|| : r ∈ Γx}
≤ inf {||s + r|| : r ∈ Jx}
= ||s + Jx||
≤ inf {||s + f so|| : f ∈ Ax and so ∈ Γ}
≤ inf {||gs|| : g ∈ C0(Ω)+, with g(x) = 1}

for each s ∈ Γ, which, by the uniqueness of lattice U0(Ω)-normed
value (see Proposition 2.4.1.10) implies that

|s|(x) = ||s + Γx|| = ||s + Jx||.

Thus, the mapping πx : Γ/Jx −→ Γ/Γx; s + Jx 7→ s + Γx is a surjective
isometry of Banach modules over C0(Ω)/Ax.

2.5.4 Dual Banach lattice modules

We seek here to obtain a certain duality between a Banach lattice module
Γ over C0(Ω) and the corresponding dual Banach lattice module Γ′ over
C0(Ω) analogous to the situation in [21, Proposition 4.17, p.21] for Banach
modules over C0(Ω). In this direction, we first show that the continuous Ba-
nach dual space Γ′ of a Banach lattice module over C0(Ω) is again a Banach
lattice module over C0(Ω) (see Proposition 2.5.4.1) which we call the dual
Banach lattice module.

Furthermore, using their result (see Lemma 2.5.4.2), we obtain certain du-
ality results between a Banach lattice module Γ over C0(Ω) and its dual
Banach lattice module Γ′ over C0(Ω) (see Proposition 2.5.4.3).
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2.5.4.1 Dual Banach lattice module over C0(Ω)

Here, we consider the continuous Banach dual space Γ′ of a Banach lattice
module Γ over C0(Ω). We use the notation BΓ to represent the unit ball of a
Banach space Γ. (c.f. [2, C.I. 3, p.238-239] ; [29, Definition 2.32, p.39] ; [28, II.
Section 11, p.133-137]).
We now list a few observations.

(A) Since Γ is a Banach lattice, Γ′ coincides with its order dual which is
an (order complete) Banach lattice with positive cone (consisting of
positive continuous functionals)

Γ′+ :=
{

s′ ∈ Γ′ : s′ ≥ 0
de f⇐⇒ s′(s) ≥ 0 ∀s ∈ Γ+

}
.

In the real case, for any s′ ∈ Γ′, its absolute value |s′|∈ Γ′+ is defined
as

|s′|(s) := sup
{

s′(h) : |h| ≤ s, h ∈ Γ
}

(s ∈ Γ+).

Moreover, if Γ = ΓR ⊕ iΓR is complex, then we can identify Γ′ =
Γ′R⊕ iΓ′R with the real ordered closed subspace (consisting of real con-
tinuous functionals )

Γ′R :=
{

s′ ∈ Γ′ : s′ is real
de f⇐⇒ s′(s) ∈ R ∀s ∈ ΓR

}
.

Now, for any s′ ∈ Γ′, its modulus |s′|∈ Γ′+ can be defined as

|s′|(s) := sup
{
|s′(h)| : |h| ≤ s, h ∈ Γ

}
(s ∈ Γ+).

More important, we can observe the following ’duality’;

(i) Γ+ = {s ∈ Γ : s′(s) ≥ 0 ∀ s′ ∈ Γ′+}, and

(ii ) ΓR = {s ∈ Γ : s′(s) ∈ R ∀ s′ ∈ Γ′R}.

(B) Since Γ is a Banach module over C0(Ω), the Banach lattice Γ′ can
canonically be turned into a module over C0(Ω), via

C0(Ω)× Γ′ −→ Γ′; ( f , s′) 7→ f · s′ :=
[
s 7→ s′( f · s)

]
.
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It is clear that Γ′ is a C0(Ω)- module. Moreover, || f · s|| ≤ || f ||||s|| for
all f ∈ C0(Ω) and s ∈ Γ implies that if s ∈ BΓ, then f · s ∈ || f ||BΓ; so
that

|| f · s′|| = sup
s∈BΓ

||s′( f · s)|| ≤ sup
s∈|| f ||BΓ

||s′(s)|| ≤ || f ||||s′||.

Hence, Γ′ is also a Banach module over C0(Ω).

(C) Now, since Γ is a Banach lattice module over C0(Ω), we claim that
Γ′ is also a Banach lattice module over C0(Ω). This can be seen by
observing the following.

(i) If f ∈ C0(Ω)+ and s′ ∈ Γ′+, then ( f · s′)(s) = s′( f · s) ≥ 0 for all
s ∈ Γ+ since f · s ∈ Γ+. This implies f · s′ ∈ Γ′+, i.e., module ’product’
of positive elements is again positive.

(ii) If f ∈ C0(Ω, R) and s′ ∈ Γ′R, then ( f · s′)(s) = s′( f · s) ∈ R

for all s ∈ ΓR since f · s ∈ ΓR. And this also implies f · s′ ∈ Γ′R, i.e.,
module ’product’ of real elements is again real.

Hence, Γ′ is a Banach lattice module over C0(Ω) (see Definition 2.2.1.1).

We put all the preceding information together in the following proposition.

Proposition 2.5.4.1. Let Γ be a Banach lattice module over C0(Ω). Then the
following hold.

(i) The Banach dual Γ′ is an (order complete) Banach lattice with positive cone
(consisting of positive continuous functionals)

Γ′+ :=
{

s′ ∈ Γ′ : s′ ≥ 0
de f⇐⇒ s′(s) ≥ 0 ∀s ∈ Γ+

}
.

(ii) The Banach lattice Γ′ becomes a Banach module over C0(Ω) under the canon-
ical mapping ( f · s′)(s) := s′( f · s) for all f ∈ C0(Ω), s ∈ Γ and s′ ∈ Γ′.

(iii) f ∈ C0(Ω)+ and s′ ∈ Γ′+ implies f · s′ ∈ Γ′+; and also, f ∈ C0(Ω, R) and
s′ ∈ Γ′R implies f · s′ ∈ Γ′R.

In particular, the Banach dual Γ′ is an order complete Banach lattice module over
C0(Ω), called the dual Banach lattice module.
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Proof. Assertions (i), (ii) and (iii) follow from preceding considerations (A),
(B) and (C), respectively, of Subsection 2.5.4.1, which conclusively implies
that the Banach dual Γ′ is an order complete Banach lattice and also a Banach
lattice module over C0(Ω), which we call the dual Banach lattice module.

2.5.4.2 Duality between AM- and AL- lattice modules over C0(Ω)

The following lemma will be important for this consideration (see also [6,
Theorem 5, p.622]).

Lemma 2.5.4.2. [21, Proposition 4.17, p.21] Let Ω be a locally compact space and
Γ a Banach module over C0(Ω). Furthermore, let Γ′ be the dual Banach module
over C0(Ω). Then the following hold.

(i) Γ is an AM-module if and only if Γ′ is an AL-module.

(ii) Γ is an AL-module if and only if Γ′ is an AM-module.

Combining Proposition 2.5.4.1, Lemma 2.5.4.2 with Definitions 2.4.1.2 and
2.4.2.2, we present our duality results.

Proposition 2.5.4.3. Let Ω be a locally compact space and Γ a Banach lattice mod-
ule over C0(Ω). Furthermore, let Γ′ be the dual Banach lattice module over C0(Ω).
Then the following hold.

(A) The following are equivalent:

(i) Γ is an AM lattice module.

(ii) Γ′ is an order complete AL lattice module.

(B) The following are equivalent:

(i) Γ is an AL lattice module.

(ii) Γ′ is an order complete AM lattice module.

Proof. (A) Since, by Proposition 2.5.4.1, the dual Banach lattice module Γ′

is always an order complete Banach lattice, the equivalence (i)⇔ (ii)
follows from Lemma 2.5.4.2(i).

(B) Similar to (A) above, by Lemma 2.5.4.2(ii), the equivalence (i) ⇔ (ii)
follows .
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2.5.5 Banach lattice modules and lattice isomorphisms

In this Subsection, we consider lattice isomorphisms of a Banach lattice
module Γ over C0(Ω) with Ω a locally compact space. In particular, we
claim that every lattice isomorphism determines a unique lattice module
isomorphism in the following way.

Proposition 2.5.5.1. Let Γ be a Banach lattice module over C0(Ω). Furthermore,
let Λ be an arbitrary Banach lattice. Then, the following are equivalent:

(i) i : Γ −→ Λ is an isomorphism of Banach lattices.

(ii) i : Γ −→ Λ is an isomorphism of Banach lattice modules over C0(Ω).

Moreover, if this assertion holds, Γ is an m-Banach lattice module over C0(Ω) if
and only if Λ is an m-Banach lattice module over C0(Ω).

Proof.

Clearly (ii) =⇒ (i) (see Remark 2.3.2.2(iii)).

Now assume (i) holds. We claim that Λ can canonically be turned into a
Banach module over C0(Ω) for which i : Γ −→ Λ becomes module isomor-
phism. To do this, we consider the following.

(a) Since i : Γ −→ Λ is a bijection; for each s ∈ Γ, the pairing

C0(Ω)×Λ −→ Λ; ( f , is) 7→ f · is := i( f · s)

turn Λ into C0(Ω)-module, and i : Γ −→ Λ into module homomor-
phism.

(b) Since i : Γ −→ Λ is a surjective isometry, for every f ∈ C0(Ω) and
s ∈ Γ,

|| f · is|| = ||i( f · s)|| = || f · s|| ≤ || f ||||s|| = || f ||||is||

implies that Λ is a Banach module over C0(Ω).
(c) Since the restriction i : Γ+ −→ Λ+ is also a bijection, it follows that if

f ∈ C0(Ω)+ and s ∈ Γ+, then f · is = i( f · s) ∈ Λ+, i.e., the module
’product’ of positive elements is again positive. In the complex case,
since the restriction i : ΓR −→ ΛR is again a bijection, it follows that
if f ∈ C0(Ω, R) and s ∈ ΓR, then f · is = i( f · s) ∈ ΛR, i.e., the
module ’product’ of real elements is again real.
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Hence, Λ is a Banach lattice module over C0(Ω) (see Definition 2.2.1.1). This
implies (ii).

Moreover, since i : Γ −→ Λ is a lattice module isomorphism, and observing
that, for each f ∈ C0(Ω) and s ∈ Γ,

| f · is| = | f | · |is| ⇐⇒ | f · s| = | f | · |s|

implies that the last assertion holds.

From the last assertion of the above proposition, the following is an immedi-
ate corollary. That is, our concept of an m-Banach lattice module is invariant
under lattice module isomorphism.

Corollary 2.5.5.2. Let Γ and Λ be Banach lattice modules over C0(Ω). If i : Γ −→
Λ is lattice module isomorphism, then Γ is an m-Banach lattice module over C0(Ω)

if and only if Λ is an m-Banach lattice module over C0(Ω).

Using the above result in Proposition 2.5.5.1 and the duality between AM-
spaces with unit and AL-spaces (see [28, Proposition 9.1 p.121]), we obtain
the following result.

Proposition 2.5.5.3. Let Γ be a unitary Banach lattice module over C(K) with K
compact, and Γ′ the dual Banach lattice module over C(K). Then, the following are
equivalent.

(i) The interior IntΓ+ is non-empty.

(ii) Γ is isometrically lattice module isomorphic to C(Q) for some compact space
Q.

(iii) Γ′ is isometrically lattice module isomorphic to L1(Y) for some σ-finite mea-
sure space Y.

Proof. (i) =⇒ (ii): Assume the interior IntΓ+ ̸= ∅. By Appendix
B (Theorem B.0.0.6), WLOG we can find a compact space Q such that
i : Γ −→ C(Q) is an isomorphism of Banach lattices. Furthermore,
by Proposition 2.5.5.1, we obtain that C(Q) is a Banach lattice module
over C(K), and i : Γ −→ C(Q) is an isomorphism of Banach lattice
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modules over C(K). In particular, i : Γ −→ C(Q) is an isometric lattice
module isomorphism.

(ii) =⇒ (iii): That Γ ∼= C(Q) as Banach lattices, in particular, implies
that Γ is an AM-space with unit. As such the dual Banach lattice Γ′ is
an AL-space, i.e., ||s′+ r′|| = ||s′||+ ||r′|| for every s′, r′ ∈ Γ′+. Now, by
the representation theorem of AL-space (see [28, , Theorem 8.5, p.114])
we can find a σ-finite measure space Y, such that j : Γ′ −→ L1(Y) is an
isomorphism of Banach lattices. By Proposition 2.5.5.1, we obtain that
L1(Y) is a Banach lattice module over C(K), and j : Γ′ −→ L1(Y) is an
isomorphism of Banach lattice modules over C(K). Thus, j : Γ′ −→
L1(Y) is an isometric lattice module isomorphism.

(iii) =⇒ (i): That Γ′ ∼= L1(Y) as Banach lattices, in particular, implies
that Γ′ is an AL-space. As such, the double dual Banach lattice Γ′′ is
an AM-space with unit. Since Γ ↪→ Γ′′ is an isometry embedding, it
necessarily follows that Γ is also an AM-space with unit. Hence, the
interior IntΓ+ is non-empty.

2.5.6 Banach lattice modules and lattice ideals

In this Subsection, we consider lattice ideals of a unitary m-Banach lattice
module Γ over C(K) with K compact (see Remark 2.2.4.2). In particular, we
claim that, every (closed) lattice ideal of Γ is a (closed) ideal submodule of
Γ in the next proposition. To this end, the following lemma will be useful.

Lemma 2.5.6.1. Let Γ be an m-BLM over L. Then, the following hold, for any
f , g ∈ L+ and s, r ∈ Γ+.

(i) f ≤ g implies f s ≤ gs.

(ii) s ≤ r implies f s ≤ f r.

(iii) f ≤ g and s ≤ r implies f s ≤ gr.

Proof. (i) Considering |gs− f s| = |(g− f )s|= |g− f |s, it follows that
gs− f s ≥ 0 if g− f ≥ 0.
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(ii) Similarly, considering | f r− f s| = | f (r− s)|= f|r− s|, it also follows
that f r− f s ≥ 0 if r− s ≥ 0.

(iii) Combining (i) and (ii), it follows that f s ≤ gs ≤ gr.

Proposition 2.5.6.2. Let Γ be a unitary m-Banach lattice module over C(K) with
K compact. Then, the following are equivalent.

(i) IΓ ⊆ Γ is a (closed) lattice ideal of Γ.

(ii) IΓ ⊆ Γ is a (closed) ideal submodule of Γ .

Proof. Clearly (ii) =⇒ (i) by definition (see Definition 2.5.2.3).

Now assume (i) holds. We claim that f s ∈ IΓ for all f ∈ C(K) and
s ∈ IΓ. Indeed, for any f ∈ C(K) and s ∈ IΓ,

| f | ≤ || f ||1K implies that | f s| = | f ||s| ≤ || f ||1K|s| by Lemma
2.5.6.1. Now, since Γ is unitary (see Remark 2.2.4.2) and IΓ is a lattice
ideal,

| f s| ≤ || f |||s| ∈ IΓ implies that f s ∈ IΓ as required.
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Chapter 3

Positive semiflows on topological
Banach lattice bundles

3.1 Introduction

In this chapter, we introduce the notions of topological Banach lattice bundles
(see Section 3.2), the spaces of their continuous sections (see Section 3.3),
morphisms of these Banach lattice bundles (see Section 3.4), and their rep-
resentation theories (see Section 3.5). Moreover, in Section 3.6, we further
our consideration on the Banach lattice of continuous sections vanishing
at infinity associated with a topological Banach lattice bundle over a locally
compact space.

We start in Section 3.2 with our definition of a topological Banach lattice bun-
dle E over a locally compact space Ω (see Definition 3.2.0.1). In Section 3.3,
we study the Banach space Γ0(Ω, E) of its continuous sections vanishing at
infinity, which becomes a Banach lattice (see Proposition 3.3.0.2).

In Section 3.4, we introduce two notions of morphisms between two Banach
lattice bundles E and F over Ω: namely, a positive Banach lattice bundle
morphism over a continuous map φ : Ω −→ Ω (see Definition 3.4.0.1) and
a Banach lattice bundle morphism over a continuous map φ : Ω −→ Ω (see
Remark 3.4.0.3(iii)). In (Definition 3.4.0.5) Remark 3.4.0.6(iii), we introduce
the notion of a (positive) S-dynamical Banach lattice bundle (E, Φ) over a
topological G-dynamical system (Ω, φ), and we call Φ = (Φg)g∈S a (positive)
semiflow on E over the flow φ = (φg)g∈G on Ω.

54
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In Section 3.5, we obtain that every (positive) S-dynamical topological Ba-
nach lattice bundle (E, Φ) ove a G-dynamical system (Ω, φ) induces a (pos-
itive) S-dynamical Banach lattice module (Γ0(Ω, E), TΦ) over the Koopman
group representation (C0(Ω),Tφ) (see Remark 3.5.0.1(v) and also Chapter 2,
Example 2.3.4.3(i)). We call TΦ = TΦ(g)g∈S the (positive) weighted Koop-
man semigroup representation on Γ0(Ω, E) over the Koopman group Tφ =

(Tφ(g))g∈G induced by (E, Φ). Moreover, we obtain the abstract represen-
tation of the Banach lattice Γ0(Ω, E) of continuous sections vanishing at in-
finity of a topological Banach lattice bundle E over a locally compact space
Ω as what we call an AM m-lattice module over the Banach lattice algebra
C0(Ω) (see Appendix D, Question D.1.0.2, Remark 3.5.0.1(ii) and Proposi-
tion 3.5.0.9). Moreover, as one major result of our study, every (positive)
S-dynamical AM m-lattice module over the Koopman group (C0(Ω),Tφ)
can be assigned uniquely to a (positive) S-dynamical topological Banach lat-
tice bundle (E, Φ) over a G-dynamical system (Ω, φ) and vice versa (see
also Appendix D Proposition D.1.0.3). This is our Gelfand-type theorem
for dynamical AM m-lattice modules (see Theorem 3.5.0.11 and Corollary
3.5.0.12).

In the last Section 3.6, we further our consideration on the Banach lattice
Γ0(Ω, E) of continuous sections (vanishing at infinity) of a topological Ba-
nach lattice bundle E over a (locally) compact space Ω. We introduce the
notions of a (Banach) lattice subbundle and a (closed) ideal subbundle of E
(see Definitions 3.6.1.1 and 3.6.3.1 respectively). As major results, we obtain
a certain correspondence between the notions of Banach lattice subbundles
of E and Banach lattice submodules of Γ(K, E) (see Proposition 3.6.1.3) and
as well as a correspondence between the notions of closed ideal subbundles
of E and closed ideal submodules of Γ(K, E) (see Corollary 3.6.3.4). In Sub-
section 3.6.4, we introduce and obtain a certain correspondence between the
notions of direct sums (see Subsection 3.6.2) and decompositions of positive
semiflows on two topological Banach lattice bundles E and F over a compact
space K, and the direct sum of two positive weighted Koopman semigroups
on the direct sum of the two AM m-lattice modules Γ(K, E) and Γ(K, F).
These concepts, in particular, are proven very useful in our consideration
of asymptotics of positive weighted Koopman semigroups treated in Ap-
pendix E. We conclude the Section with two other considerations. One is
about certain order structures: namely, non-emptiness of the positive cone,
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(σ-) order completeness, and order continuity of the norm of the Banach
lattice Γ0(Ω, E) in Subsection 3.6.5, which also appeared in Chapter 4; and
the other, which is also of independent interest, is the characterisation of the
so-called centre of this Banach lattice (see Subsection 3.6.6).

3.2 Topological Banach lattice bundles

In this Section, we introduce our definition of a topological Banach lattice
bundle. Every locally compact space is assumed to be Hausdorff. See [29,
Chapter 1; Section 1.1, p.11-12] for the notion of a topological Banach bundle.
See also [16, note on p.299]1 and [23, Section 1 and 2, p.41-42].

Definition 3.2.0.1. Let E be a topological space (the total space), Ω a locally com-
pact space (the base space), and pE : E −→ Ω a continuous, open, and surjective
mapping (bundle projection). Then the triple (E, Ω, pE), denoted by pE : E −→ Ω,
is called a topological Banach lattice bundle over Ω if the following conditions are
satisfied.

(i) For each x ∈ Ω, the fiber Ex := p−1
E (x) is a Banach lattice.

(ii) The mappings

+ : E×Ω E −→ E, (u, v) 7→ u +EpE(v)
v,

· : K× E −→ E, (λ, v) 7→ λ.EpE(v)
v

are continuous where E×Ω E := ∪x∈ΩEx × Ex ⊆ E× E is equipped with
the subspace topology.

(iii) The mapping (bundle norm)

|| · || : E −→ R+, v 7→ ||v||EpE(v)

is upper semicontinuous.
1We note that there is a slight difference in their definition (of a topological bundle of

Banach lattices, which we call a topological Banach lattice bundle for brevity) to ours, but
each of our Banach lattice bundles canonically defines a topological bundle of Banach lattices
according to their definition having the same space of continuous sections.
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(iv) The mapping (bundle modulus)

|·| : E −→ E, v 7→ |v|EpE(v)

is continuous.

(v) For each x ∈ Ω and each open set W ⊆ E containing zero 0x ∈ Ex, there
exist ε > 0 and an open set U ⊆ Ω such that{

v ∈ p−1
E (U) | ||v||EpE(v)

≤ ε
}
⊆W.

If, in addition, the bundle norm || · || in (iii) above is continuous, then pE : E −→
Ω is called a continuous topological Banach lattice bundle over Ω.

Note 3.2.0.2. (i) If no confusion arises, we say E is a topological Banach lattice
bundle over Ω, while we mean pE : E −→ Ω or simply p : E −→ Ω.

(ii) Moreover, the only additional properties we added to the definition of a topo-
logical Banach bundle as defined in [29, Chapter 1, Definition 1.1, p.11] in
our setting of topological Banach lattice bundle is that:

(a) each fiber is a Banach lattice instead of a Banach space; and

(b) the continuity of the "bundle modulus".

Thus every topological Banach lattice bundle is, in particular, a topological
Banach bundle in our situation.

3.3 The space of continuous sections

A topological Banach lattice bundle induces a natural ordered vector space.

Definition 3.3.0.1. Let pE : E −→ Ω be a topological Banach lattice bundle over
Ω. The vector space of its continuous sections is given by

Γ(Ω, E) := {s : Ω −→ E | pE ◦ s = IdΩ, s is continuous}

endowed with pointwise addition and pointwise scalar multiplication. Now, con-
sider its linear subspace of continuous sections vanishing at infinity, defined by

Γ0(Ω, E) := { s ∈ Γ(Ω, E)| ∀ ε > 0, ∃ compact subset Kε ⊆ Ω

such that ||s(x)||Ex < ε ∀ x ∈ Ω \ Kε }
which becomes a Banach space when equipped with the sup-norm
|| · || : Γ0(Ω, E) −→ R+; s 7→ supx∈Ω ||s(x)||Ex .
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Defining for each s ∈ Γ0(Ω, E) the mapping

|s| : Ω −→ E; x 7→ |s(x)|E+
x

it follows from the continuity of the "bundle modulus" that this mapping is
continuous, and hence it is a continuous section. Moreover, it easily follows
that |||s||| = ||s|| for any s ∈ Γ0(Ω, E).

If K = R, by defining the set

Γ0(Ω, E)+ :=
{

s ∈ Γ0(Ω, E) : s ≥ 0
de f⇐⇒ |s| = s

}
we obtain a partial order on Γ0(Ω, E) by saying s1 ≤ s2

de f⇐⇒ s2 − s1 ≥ 0.
If K = C, defining the set

Γ0(Ω, E)R := {s ∈ Γ0(Ω, E) : Re s = s}

we obtain a natural ordering on Γ0(Ω, E)R as above.

More importantly, we claim the following.

Proposition 3.3.0.2. For a topological Banach lattice bundle E over a locally com-
pact space Ω; we have the following properties on the Banach space Γ0(Ω, E) of its
continuous sections vanishing at infinity.

(i) If K = R, then Γ0(Ω, E) is an ordered Banach space with normal positive
cone Γ0(Ω, E)+.

(ii) If K = C, then Γ0(Ω, E)R is an ordered closed subspace of Γ0(Ω, E).

In particular, Γ0(Ω, E) is a Banach lattice such that:

(a) if K = R, then Γ0(Ω, E) = Γ0(Ω, E)+−Γ0(Ω, E)+ is a real Banach
lattice, and

(b) if K = C, then Γ0(Ω, E) = Γ0(Ω, E)R ⊕ iΓ0(Ω, E)R is a complex
Banach lattice.

For the proof of Proposition 3.3.0.2, we will require some more results. We
include its proof in the proof of Proposition 3.3.0.5.

In the following lemma, we state certain important properties associated
with a (general) topological Banach bundle over Ω.
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Lemma 3.3.0.3. Let E be a Banach bundle over Ω. Then, the following hold.

(A) Let f1 : E ×Ω E −→ E; (u, v) 7→ f1(u, v)EpE(v)
and f2 : E ×Ω E −→

E; (u, v) 7→ f2(u, v)EpE(v)
be mappings. Then,

(i) the mappings fa : E −→ E; u 7→ f1(u, v)EpE(v)
and fb : E −→

E; v 7→ f1(u, v)EpE(v)
, for each fixed v ∈ E and u ∈ E respectively, are both

continuous if f1 is continuous.

(ii) the mapping f1 + f2 : E ×Ω E −→ E; (u, v) 7→ f1(u, v)EpE(v)
+

f2(u, v)EpE(v)
is continuous if f1 and f2 are both continuous.

(B) Let h : K× E −→ E; (λ, v) 7→ h(λ, v)EpE(v)
be mapping. Then,

the mappings ha : E −→ E; v 7→ h(λ, v)EpE(v)
and hb : K −→ E; λ 7→

h(λ, v)EpE(v)
, for each fixed λ ∈ K and v ∈ E respectively, are both continu-

ous if h is continuous.

(C) Let g1 : E −→ E; v 7→ g1(v)EpE(v)
and g2 : E −→ E; v 7→ g2(v)EpE(v)

be
mappings. Then,

(i) the mapping λga : K× E −→ E; (λ, v) 7→ λg1(v)EpE(v)
is continu-

ous if g1 is continuous.

(ii) the mapping g1 + g2 : E −→ E; v 7→ g1(v)EpE(v)
+ g2(v)EpE(v)

is
continuous if g1 and g2 are both continuous.

Proof. (A) (i) Let π1 : E ×Ω E −→ E; (u, v)EpE(v)
7→ u and π2 : E ×Ω

E −→ E; (u, v)EpE(v)
7→ v be projections onto the first and second factor

respectively, and consider the following commutative diagrams.

E×Ω E E

E×Ω E E

π1

(u,v) 7→( f1(u,v),v) f1

(u,v)EpE(v)
← [u

fa

E×Ω E E

E×Ω E E

π2

(u,v) 7→(u, f1(u,v)) f1

(u,v)EpE(v)
← [v

fb
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Since E×Ω E =
⋃

x∈Ω Ex×Ex ⊆ E×E is equipped with the (subspace)
product topology, it follows that if f1 is continuous, then fa and fb are
both continuous.

This is because the projections π1 and π2 are both continuous (surjec-
tive open) mappings.

(ii) Consider the following commutative diagram.

E×Ω E E×Ω E

E
f1+ f2

(u,v)
f7−→( f1(u,v), f2(u,v))

(u,v) 7→u+EpE(v)
v

It follows that f1 + f2 is continuous if f is continuous if f1 and f2 are
both continuous.

(B) Let πE : K × E −→ E; (λ, v)EpE(v)
7→ v be a projection onto the

second factor, and consider the following commutative diagrams.

K× E E

K× E E

πE

(λ,v) 7→(λ,h(λ,v)) h

(λ,v)EpE(v)
← [v

ha

K× E E

K× E K

πE

(λ,v) 7→(λ,h(λ,v)) h

(λ,v)EpE(v)
← [λ

hb

Since K× E is equipped with the product topology, πE is a continuous
(surjective open) mapping, and so it follows that if h is continuous,
then ha and hb are both continuous.

(C) (i) Consider the following commutative diagram.
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K× E E

K× E E

(λ,u) 7→λEpE(v)
v

(λ,v) 7→(λ,g1(v)) λga

(λ,v)EpE(v)
← [v

g1

We see that if g1 is continuous, then λga is continuous.

(ii) Consider the following commutative diagram.

E×Ω E E

E×Ω E

(u,v) 7→u+EpE(v)
v

(u,v) 7→(g1(v),g2(v)) q

It follows that if g1 and g2 are both continuous, then q is continuous.
From (A)(i) above we see that if q is continuous, then, in particular,
the mapping E −→ E; v 7→ q(v, v) is continuous. And since q(v, v) =
g1(v) + g2(v) the assertion follows.

In what follows, by a Banach lattice bundle over Ω, we always mean a topo-
logical Banach lattice bundle over a locally compact space Ω.

Using the above Lemma 3.3.0.3, we can now state and prove the following
properties of a topological Banach lattice bundle.

Proposition 3.3.0.4. Let E be a Banach lattice bundle over Ω. Then the following
hold.

(A) If K = R, i.e., Ex is a real Banach lattice for all x ∈ Ω, then

(i) the mappings (bundle join, bundle meet)

E×Ω E −→ E; (u, v) 7→ u ∨EpE(v)
v,

E×Ω E −→ E; (u, v) 7→ u ∧EpE(v)
v

are continuous; and

(ii) the mappings
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E −→ E; v 7→ v+EpE(v)
,

E −→ E; v 7→ v−EpE(v)

are continuous.

In addition, the set E+ :=
{

v ∈ E : |v|EpE(v)
= v

}
is a closed subspace of E.

(B) If K = C, i.e., Ex = ER
x ⊕ iER

x is complex Banach lattice for all x ∈ Ω, then

(i) the mappings

E −→ E; v 7→ Re vEpE(v)
,

E −→ E; v 7→ Im vEpE(v)
,

E −→ E; v 7→ vEpE(v)

are continuous; and

(ii) the mappings

E×Ω E −→ E; (u, v) 7→ u ∨EpE(v)
v,

E×Ω E −→ E; (u, v) 7→ u ∧EpE(v)
v

are continuous.

Moreover, the set ER :=
{

v ∈ E : Re vEpE(v)
= v

}
is a closed subspace of E.

Proof. (A) (i) By defining the mappings f1, f2 : E×Ω E −→ E; f1(u, v) =
1
2(u + v)EpE(v)

and f2(u, v) = 1
2|u− v|EpE(v)

, we see that u ∨EpE(v)
v =

f1(u, v)+ f2(u, v) and u∧EpE(v)
v = f1(u, v)− f2(u, v). Hence, by Lemma

3.3.0.3 A(ii), it suffices to show that both f1 and f2 are continuous.

That f1 is continuous is immediate, and for f2 consider the following
commutative diagram.

E×Ω E E

E
f2

(u,v)EpE(v)
7→u−v

vEpE(v)
7→ 1

2 |v|

And we see that f2 is a composition of two continuous mappings, and
hence continuous.
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(ii) By setting o := oEpE(v)
, it follows from (i) above that the map-

pings E×Ω E −→ E; (o, v)EpE(v)
7→ v∨ o and E×Ω E −→ E; (o, v)EpE(v)

7→
v∧ o are both continuous. By Lemma 3.3.0.3 A(i) and C(i), this, in par-
ticular, implies that the mappings (with λ = −1)

E −→ E; vEpE(v)
7→ v ∨ o and E −→ E; vEpE(v)

7→ −(v ∧ o) are both
continuous. Since v+EpE(v)

= v ∨ o and v−EpE(v)
= −(v ∧ o), the assertion

follows.

Moreover, by setting Ec
+ :=

{
v ∈ E : |v| ̸= vEpE(v)

}
, the complement

of E+, it suffices to show that Ec
+ is an open subspace. Indeed, for

v ∈ Ec
+, since v ̸= oEpE(v)

we can find an open set U ⊆ Ω containing
pE(v) and ε > 0 (small enough) such that the open set

S(s, U, ε) :=
{

w ∈ p−1
E (U) : ||w− s(pE(w))||EpE(w)

< ε
}
⊆ Ec

+,
for all/some s ∈ Γ0(Ω, E) with s(pE(v)) = v.

This is the case since the set of the form S(s, U, ε) forms a base for the
topology on E. (cf. [29, Lemma 1.4, p.13]).

From here, it is clear that for each v ∈ E+, the set of the form S(s, U, ε)+ :=
{w ∈ S(s, U, ε) : w ∈ E+} for some open set U ⊆ Ω containing pE(v)
and ε > 0, is a base for a topology on E+; which coincides with its
subspace topology from E.

(B) (i) Since for v ∈ EpE(v), Re v = (Re v)+ − (Re v)−, we can infer
from (A) (ii) above that the mappings E −→ E; Re v 7→ (Re v)+ and
E −→ E; Re v 7→ (Re v)− are both continuous.

Now, setting g1 : E −→ E; vEpE(v)
7→ (Re v)+ and g2 : E −→ E; vEpE(v)

7→
(Re v)−; by Lemma 3.3.0.3 C(ii), it suffices to show that g1 and g2 are
both continuous, since g1(v) + g2(v) = Re v.

As a result, we will only show that g1 is continuous, since the proof
would be essentially the same for g2.

For v ∈ E, let W ⊆ E be an open set containing (Re v)+. We can choose
an open set W0 ⊆ E containing |v| = supt∈Q

{
Re eπitv

}
which also

contains the set{
(Re eπitv)+ : for some/all t ∈ [0, δ] ∩Q and small δ > 0

}
.
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In this way W0 ∩W ̸= ∅, and by the continuity of the mappings E −→
E; vEpE(v)

7→ |v| and E −→ E; Re v 7→ (Re v)+, we can find an open
set W1 ⊆ E containing v, such that the set{
(Re eπitw)+ : ∀w ∈W1 for some/all t ∈ [0, δ] ∩Q and small δ > 0

}
⊆

W0 ∩W.

In particular, |w| ∈W0 and (Re w)+ ∈W for all w ∈W1.

By a similar argument, we can show that the mapping E −→ E; v 7→
Im vEpE(v)

is continuous. So, by Lemma 3.3.0.3B and C(i), it follows
that the mapping (with λ = i)

E −→ E; vEpE(v)
7→ iIm v

is continuous. Hence, by Lemma 3.3.0.3 C(ii), the mapping

E −→ E; vEpE(v)
7→ v = Re v− iIm v

is continuous.

(ii) The continuity of the two mappings follows immediately from
A(i) above, since "join" and "meet" are always meant for the real parts
in a complex vector lattice.

Moreover, similar to the case of E+ in (A) above, by setting Ec
R :={

v ∈ E : Re v ̸= vEpE(v)

}
, the complement of ER, it suffices to show

that Ec
R is an open subspace. Indeed, for v ∈ Ec

R, we can find an open
set U ⊆ Ω containing pE(v) and ε > 0 (small enough) such that the
open set

S(s, U, ε) :=
{

w ∈ p−1
E (U) : ||w− s(pE(w))||EpE(w)

< ε
}
⊆ Ec

R,
for all/some s ∈ Γ0(Ω, E) with s(pE(v)) = v.

Similarly, we can infer that, for v ∈ ER the set of the form S(s, U, ε)R :=
{w ∈ S(s, U, ε) : w ∈ ER} for some open set U ⊆ Ω containing pE(v)
and ε > 0 is a base for a topology on ER, which coincides with its
subspace topology of E.

Using the above result in Proposition 3.3.0.4 we claim the following, which,
in particular, proves Proposition 3.3.0.2.

Proposition 3.3.0.5. Let E be a Banach lattice bundle over Ω, and Γ0(Ω, E) the
Banach space of its continuous sections vanishing at infinity.
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(A) If K = R, then we have the following.

(i) For s1, s2 ∈ Γ0(Ω, E), the mappings

s1 ∨ s2 : Ω −→ E; x 7→ s1(x) ∨Ex s2(x),

s1 ∧ s2 : Ω −→ E; x 7→ s1(x) ∧Ex s2(x)

are continuous.

(ii) The set

Γ0(Ω, E)+ =

{
s ∈ Γ0(Ω, E) : s ≥ 0

de f⇐⇒ |s| = s
}

satisfies the following:

(a) Γ0(Ω, E)+ is norm-closed in Γ0(Ω, E),

(b) Γ0(Ω, E)+ + Γ0(Ω, E)+ ⊆ Γ0(Ω, E)+,

(c) Γ0(Ω, E)+ ∩
(
− Γ0(Ω, E)+

)
= {0},

(d) λΓ0(Ω, E)+ ⊆ Γ0(Ω, E)+ for all 0 ≤ λ ∈ R, and

(e) for s1, s2 ∈ Γ0(Ω, E)+; 0 ≤ s1 ≤ s2 implies that ||s1|| ≤ ||s2||.

In particular, Γ0(Ω, E)+ is a normal convex cone of Γ0(Ω, E), and Γ0(Ω, E) =
Γ0(Ω, E)+ − Γ0(Ω, E)+ is a real Banach lattice.

(B) If K = C, then we have the following.

(i) For each s ∈ Γ0(Ω, E), the mappings

Re s : Ω −→ E; x 7→ Re s(x)Ex ,

Im s : Ω −→ E; x 7→ Im s(x)Ex ,

s : Ω −→ E; x 7→ s(x)Ex

are continuous.

(ii) The set

Γ0(Ω, E)R := {s ∈ Γ0(Ω, E) : Re s = s}

is a closed subspace of Γ0(Ω, E), such that

(a) Γ0(Ω, E)R = Γ0(Ω, E)+R − Γ0(Ω, E)+R is a real vector lattice, and
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(b) the set

Γ0(Ω, E)+R := {s ∈ Γ0(Ω, E)R : |s| = s}

is the positive cone for Γ0(Ω, E).

In particular, Γ0(Ω, E)R is a real Banach lattice, and Γ0(Ω, E) = Γ0(Ω, E)R⊕
iΓ0(Ω, E)R is a complex Banach lattice.

Proof. (A) (i) For s1, s2 ∈ Γ0(Ω, E), by considering the following com-
mutative diagram,

E×Ω E E E×Ω E

Ω Ω

(u,v) 7→u∨EpE(v)
v u∧EpE(v)

v ← [(u,v)

x 7→(s1(x),s2(x))
s1∨s2 s1∧s2

x 7→(s1(x),s2(x))

it follows from Proposition 3.3.0.4 A(i) that both s1 ∧ s2 and s1 ∧ s2 are
continuous sections. Hence s1 ∧ s2, s1 ∨ s2 ∈ Γ0(Ω, E).

(ii) It is clear, by definition, that the set Γ0(Ω, E)+ consists of posi-
tive continuous sections, i.e., s ∈ Γ0(Ω, E)+ ⇐⇒ s ∈ Γ0(Ω, E) and 0x ≤
s(x) ∈ E+

x for all x ∈ Ω.

In this case it follows, from (i) above, or even by Proposition 3.3.0.4
A(ii), that for any s ∈ Γ0(Ω, E), setting s+ := s ∧ 0 and s− := −(s ∧
0) we have that s+, s− ∈ Γ0(Ω, E)+ and s = s+ − s− is the unique
representation as a difference of two positive continuous sections with
modulus |s| = s+ + s−.

(a) Since E+ ⊆ E is a closed subspace by Proposition 3.3.0.4 A,
we can immediately conclude that Γ0(Ω, E)+ is norm-closed in Γ0(Ω, E).
Equivalently, if

(
sn
)

n∈N
⊆ Γ0(Ω, E)+ is a sequence of positive contin-

uous sections converging to a continuous section s ∈ Γ0(Ω, E); this,
in particular, implies that the sequence

(
sn(x)

)
n∈N
⊆ E+

x converges to
s(x) ∈ Ex for each x ∈ Ω. Now, since E+

x ⊆ Ex is norm-closed for each
x ∈ Ω, we have that s(x) ∈ E+

x for each x ∈ Ω, hence s ∈ Γ0(Ω, E)+ as
required.

Assertions (b), (c), and (d) immediately follow, since E+
x + E+

x ⊆ E+
x ,

E+
x ∩ (−E+

x ) = {0x} and λE+
x ⊆ E+

x for each x ∈ Ω, 0 ≤ λ ∈ R.
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From here, using even only (ii)(a - d), we can conclude that Γ0(Ω, E)
is an ordered Banach space with positive cone Γ0(Ω, E)+ as defined in
[4] (see Appendix B, Definition B.0.0.1).

(e) For s1, s2 ∈ Γ0(Ω, E)+, 0 ≤ s1 ≤ s2 implies 0x ≤ s1(x) ≤ s2(x)
for each x ∈ Ω. Thus ||s1(x)||Ex ≤ ||s2(x)||Ex for each x ∈ Ω, which
also implies that ||s1|| ≤ ||s2||.

From here, using (i) and (ii)(a - e) and the fact that ||s|| = |||s||| for
any s ∈ Γ0(Ω, E), we can conlude that Γ0(Ω, E)+ is a normal posi-
tive cone (see Appendix B, Proposition B.0.0.2)(by taking β = 1) for
Γ0(Ω, E), and in addition Γ0(Ω, E) = Γ0(Ω, E)+ − Γ0(Ω, E)+ is a real
Banach lattice (see also Appendix B, Proposition B.0.0.5).

(B) (i) For s ∈ Γ0(Ω, E), by considering the following commutative
diagram,

E E E

Ω Ω

v 7→Re vEpE(v)
Im vEpE(v)

← [v

x 7→s(x)
Re s Im s

x 7→s(x)

it follows from Proposition 3.3.0.4 B(i) that both Re s and Im s are con-
tinuous sections. Hence Re s, iIm s ∈ Γ0(Ω, E), which also implies that
the conjugate s = Re s− iIm s is also a continuous section.

(ii) We note that, by definition, the set Γ0(Ω, E)R consists of real
continuous sections, i.e., s ∈ Γ0(Ω, E)R ⇐⇒ s ∈ Γ0(Ω, E) and s(x) ∈
ER

x for all x ∈ Ω.

Since ER ⊆ E is a closed subspace by Proposition 3.3.0.4 B, we can
immediately conclude that Γ0(Ω, E)R is a closed subspace of Γ0(Ω, E).
Equivalently, if

(
sn
)

n∈N
⊆ Γ0(Ω, E)R is a sequence of real continu-

ous sections converging to a continuous section s ∈ Γ0(Ω, E), this,
in particular, implies that the sequence

(
sn(x)

)
n∈N

⊆ ER
x converges

to s(x) ∈ Ex for each x ∈ Ω. And since ER
x ⊆ Ex is a closed sub-

space for each x ∈ Ω, we have that s(x) ∈ ER
x for each x ∈ Ω, hence,

s ∈ Γ0(Ω, E)R as required.

For assertions (a) and (b), by the argument in (A) above, we can con-
clude that Γ0(Ω, E)R is a real Banach lattice with positive cone
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Γ0(Ω, E)+R := {s ∈ Γ0(Ω, E)R : |s| = s}.

In this situation, for any s ∈ Γ0(Ω, E), it follows that Re s, Im s ∈
Γ0(Ω, E)R, and s = Re s + iIm s is the unique representation of each
complex continuous section. Hence, Γ0(Ω, E) = Γ0(Ω, E)R⊕ iΓ0(Ω, E)R

is a complex Banach lattice.

The following are two important examples of Banach lattice bundles serving
as motivation. See [29, Examples 1.5, p.13] for the case of a Banach bundle.

Example 3.3.0.6. (i) Let Z be a Banach lattice and Ω a locally compact space.
Then E := Ω× Z is a continuous Banach lattice bundle over Ω, which we
call the trivial topological Banach lattice bundle with fiber Z if p : E −→ Ω
is the projection onto the first component and E is equipped with the product
topology. Here, the space Γ0(Ω, E) is lattice isomorphic to C0(Ω, Z) the
Banach lattice of continuous functions s : Ω −→ Z vanishing at infinity
(see also Chapter 1, Section 1.1).

(ii) Let π : L −→ K be a continuous surjection between the compact spaces L
and K. For each k ∈ K, let Lk := π−1(k) be the associated fiber. We define

E :=
⋃̇

k∈K
C(Lk)

p : E −→ K,v ∈ C(Lk) 7→ k

and endow E with the topology generated by the sets

W(s, U, ε) :=
{

v ∈ p−1(U) | ||v− s|Lp(v)
||C(Lp(v))

< ε
}

where U ⊆ K is open, s ∈ C(L), and ε > 0. Then, E is a Banach lattice
bundle over K and the corresponding lattice of continuous sections Γ(K, E)
is lattice isomorphic to C(L). We refer to Appendix F, and in particular to
Proposition F.2.0.1 for a certain generalisation of this situation.

Moreover, E is a continuous Banach lattice bundle if and only if π is an open
map.
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3.4 Morphisms of topological Banach lattice
bundles

Here, we investigate the notion of a (positive) Banach lattice bundle mor-
phism between Banach lattice bundles over Ω, and their dynamics. We also
establish the category of topological Banach lattice bundles and their dynam-
ics.

Once again, if no confusion arises, by a Banach lattice bundle over Ω, we
always mean a topological Banach lattice bundle over a locally compact space
Ω (see Definition 3.3.0.2).

Definition 3.4.0.1. Let pE : E −→ Ω and pF : F −→ Ω be Banach lattice bundles
over Ω, and φ : Ω −→ Ω continuous. A continuous mapping Φ : E −→ F is
called a positive Banach lattice bundle morphism over φ if:

(i) φ ◦ pE = pF ◦Φ, i.e., the following diagram commutes,

E F

Ω Ω

pE

Φ

pF

φ

(ii) Φ(x) := Φ|Ex : Ex −→ Fφ(x) is a positive operator for each x ∈ Ω, and

(iii) ||Φ|| := supx∈Ω ||Φ(x)||L(Ex,Fφ(x))
< ∞.

Remark 3.4.0.2. (i) It should be noted that a positive operator between two
Banach lattices N and M is a linear operator T : N −→ M such that
TN+ ⊆ M+, i.e., n ≥ 0 in N always implies that Tn ≥ 0 in M for all
n ∈ N; or, equivalently, |Tn| ≤ T|n| for all n ∈ N. Moreover, positive
operators are always bounded and C-linear (see [10, Lemma 7.5, p.121]).

(ii) Furthermore, a linear operator T : N −→ M between two Banach lattices
N and M is a called lattice homomorphism if |Tn| = T|n| for all n ∈
N. It follows that a lattice homomorphism is positive, and hence bounded.
Furthermore, T(n ∨ m) = Tn ∨ Tm and T(n ∧ m) = Tn ∧ Tm for all
n, m ∈ NR (see [10, Lemma 7.5, p.121 and paragraph afterwards]).
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Remark 3.4.0.3. From Definition 3.4.0.1, we identify the following additional
properties of a positive Banach lattice bundle morphism Φ over φ .

(i) If Φ(x) is an isometry for each x ∈ Ω, we call Φ a positive isometry.

(ii) If Φ(x) is an isometric lattice homomorphism for each x ∈ Ω, we call Φ an
isometry.

(iii) If Φ(x) is a lattice homomorphism for each x ∈ Ω, we call Φ a Banach lattice
bundle morphism over φ.

(iv) If φ = IdΩ, we call Φ a positive Banach lattice bundle morphism.

(v) If φ = IdΩ, and Φ(x) is a lattice homomorphism for each x ∈ Ω, we call Φ
a Banach lattice bundle morphism.

We are interested in positive dynamical Banach lattice bundles over a topo-
logical system induced by groups. And so, we introduce the notion of a
positive S-dynamical Banach lattice bundle in the next definition. See [29,
Definition 1.8, p.15] for the case of a dynamical Banach bundle. Moreover,
we note that every positive S-dynamical Banach lattice bundle is, in partic-
ular, an S-dynamical Banach bundle.

Note 3.4.0.4. In the sequel, we will use the following notation.

1. We let G be a locally compact group, and S a closed subsemigroup of G con-
taining the neutral element e, i.e., a closed "submonoid" of G. For instance,
we can take G = R, S = R or G = Z, S = N0.

2. We let (Ω, φ) be a topological G-dynamical system over a locally compact
space Ω, i.e., φ = (φg)g∈G defines a continuous group action2, called a
continuous flow on Ω.

2 i.e., φ : G −→ Aut(Ω); g 7→ φg is a continuous group homomorphism, where Aut(Ω)
denotes the group of automorphisms (homeomorphisms) on Ω.
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Definition 3.4.0.5. A positive S-dynamical Banach lattice bundle over (Ω, φ) is a
pair (E, Φ) of a Banach lattice bundle E over Ω, and a monoid representation3

Φ : S −→ EE, g 7→ Φg

such that

(i) Φg : E −→ E is a positive Banach lattice bundle morphism over φg for each
g ∈ S,

(ii) Φ is jointly continuous, i.e., the mapping

S× E −→ E, (g, v) 7→ Φgv

is continuous, and

(iii) Φ is locally bounded, i.e., supg∈K ||Φg|| < ∞ whenever K ⊆ S is compact.

We call Φ = (Φg)g∈S a positive semiflow on E over the flow (φg)g∈G. If S = G,
then we call Φ = (Φg)g∈G a positive flow on E over the flow (φg)g∈G, and (E, Φ)
a positive G-dynamical Banach lattice bundle over (Ω, φ).

Remark 3.4.0.6. From Definition 3.4.0.5 above we identify the following addi-
tional properties of a positive S-dynamical Banach lattice bundle (E, Φ) over (Ω, φ)
using Remark 3.4.0.3.

(i) If Φg is a positive isometry for each g ∈ S, we call Φ a positive isometry.

(ii) If Φg is an isometry for each g ∈ S, we call Φ an isometry.

(iii) If Φg is a Banach lattice bundle morphism over φg for each g ∈ S, we call
(E, Φ) an S-dynamical Banach lattice bundle over (Ω, φ); and Φ = (Φg)g∈G

a semiflow on E over the flow (φg)g∈G.

3 i.e., Φgh = Φh ◦Φg, ∀g, h ∈ S and Φe = IdE, the identity on EE

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. POSITIVE SEMIFLOWS ON TOPOLOGICAL BANACH LATTICE
BUNDLES 72

Remark 3.4.0.7. As in [29, Remark 1.9, p.16], and as is evident in Example
3.4.0.8(i) below, we note here that our concept of a positive dynamical Banach lattice
bundle is closely related to the notions of positive cocycles and linear skew-product
flows, as motivated in Chapter 1. In fact, if (E, Φ) is a positive S-dynamical Banach
lattice bundle over (Ω, φ), then the family of positive operators (Φg(x))x∈Ω for
g ∈ S, satisfies the so-called cocycle rule, i.e.,

Φg1g2(x) = Φg1(φg2(x)) ◦Φg2(x)

for all g1, g2 ∈ S and x ∈ Ω, where Φg(x) := Φg|Ex
∈ L (Ex, Eφg(x)). Indeed,

since Φg1g2 = Φg1 ◦Φg2 for all g1, g2 ∈ S, it follows that, for x ∈ Ω,

Φg1g2(x) := Φg1g2 |Ex

= Φg1 ◦ (Φg2 |Ex)

= Φg1 |Eφg2 (x)
◦Φg2 |Ex

=: Φg1(φg2(x)) ◦Φg2(x).

Now, we introduce instances of (positive) S-dynamical Banach lattice bun-
dles in Examples 3.3.0.6 (i) and (ii). See [29, Examples 1.12, p.16] for ex-
amples of S-dynamical Banach bundles. Moreover, we note that every (pos-
itive) S-dynamical Banach lattice bundle is, in particular, an S-dynamical
Banach bundle.

Example 3.4.0.8. (i) Assume that G = R, S = R+, Z a Banach lattice, and
E = Ω× Z the corresponding trivial Banach lattice bundle. Moreover, let
φ = (φt)t∈R be a continuous flow on Ω.
Now, suppose that

{
Φt(x) : Z −→ Z a positive operator | x ∈ Ω, t ≥ 0

}
is

a positive strongly continuous exponentially bounded cocycle over (φt)t∈R,
meaning that:

(a) Φt(x)Z+ ⊆ Z+ for all t ≥ 0, x ∈ Ω,

(b) Φt+r(x) = Φt(φr(x)) ◦ Φr(x) and Φ0(x) = IdZ for all t, r ≥ 0,
x ∈ Ω,

(c) the mapping R+ ×Ω −→ Z; (t, x) 7→ Φt(x)v is continuous for all
v ∈ Z, and

(d) for each w ∈ R, there exist M ≥ 1 such that ||Φt(x)|| ≤ Mewt for
all t ≥ 0 and x ∈ Ω.
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Then the continuous skew-product (linear) flow Φt : Ω × Z −→ Ω × Z
given by

Φt(x, v) := (φt(x), Φt(x)v)

for x ∈ Ω, v ∈ Z, and t ≥ 0 defines a positive R+-dynamical Banach lattice
bundle (E, Φ) over (Ω, φ), i.e., Φ = (Φt)t≥0 is a positive semiflow on E
over (φt)t∈R on Ω.

Conversely, every positive R+-dynamical Banach lattice bundle (Ω× Z, Φ)

over (Ω, φ) defines a positive strongly continuous cocycle over (φt)t∈R by
setting

Φt(x)v := Pr2(Φt(x, v))

for each x ∈ Ω, v ∈ Z and t ≥ 0, where Pr2 : Ω×Z −→ Z is the projection
onto the second factor. We note that Chapter 1 (Section 1.2) is a discrete-time
instance of the above situation.

(ii) Assume Ω = K and L are compact, and π : (L, ψ) −→ (K, φ) is an ex-
tension of topological G-dynamical systems, i.e., (ψg)g∈G and (φg)g∈G are
continuous flows on L and K, respectively; and π : L −→ K is a continuous
surjection such that the diagram

L L

K K

π

ψg

π

φg

commutes for each g ∈ G, i.e., π ◦ ψg = φg ◦ π for all g ∈ G. Also assume
that E is the Banach lattice bundle over K as defined in Example 3.3.0.6 (ii).
For each g ∈ G, consider the mapping

Φg : E −→ E; v ∈ C(Lk) 7→ v ◦ ψg−1 ∈ C(Lφg(k)).

This defines a (positive) G-dynamical Banach lattice bundle (E, Φ) over (K, φ).
So, Φ = (Φg)g∈G is a (positive) flow on E over the flow φ = (φg)g∈G on K.

We refer to Appendix F, and in particular to Proposition F.3.0.7 for a certain
generalisation of this situation for the case where G = R.

Next, we introduce morphisms between positive S-dynamical Banach lat-
tice bundles over (Ω, φ).
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Definition 3.4.0.9. A morphism from a positive S-dynamical Banach lattice bun-
dle (E, Φ) over (Ω, φ) to a positive S-dynamical Banach lattice bundle (F, Ψ) over
(Ω, φ) is a Banach lattice bundle morphism (see Remark 3.4.0.3 (v))

Θ : E −→ F

such that the diagram

E F

E F

Φg

Θ

Ψg

Θ

commutes for each g ∈ S, i.e., Θ ◦Φg = Ψg ◦Θ for each g ∈ S.
It is called a positive isometry if Θ is an isometry.

Remark 3.4.0.10. (i) We note that, similarly, a morphism between S-dynamical
Banach lattice bundles over (Ω, φ) can be defined. It will be called isometry
if Θ is an isometry.

(ii) It is clear that in the category of positive S-dynamical Banach lattice bundles
over (Ω, φ), an isometric morphism is just a positive isometry. We choose
this terminology and reserve the word "isometry" for S-dynamical Banach
lattice bundles over (Ω, φ).

(iii) Furthermore, two positive S-dynamical Banach lattice bundles (E, Φ) and
(F, Ψ) over (Ω, φ) are said to be isomorphic if there exists a homeomorphic
positive isometry (i.e., a homeomorphic isometric morphism) between them.
In this situation, we write Φ = (Φg)g∈S

∼= (Ψg)g∈S = Ψ on E ∼= F.

3.5 On a representation of the space of
continuous sections

Throughout this Section, by Banach lattice bundle E over Ω, we always
mean a topological Banach lattice bundle pE : E −→ Ω over a locally compact
space Ω (see Definition 3.2.0.1).
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Remark 3.5.0.1. (i) Let E be a Banach lattice bundle over Ω. Then, the Ba-
nach space Γ0(Ω, E) of its continuous sections vanishing at infinity is an
m-Banach lattice module over C0(Ω). Indeed, Γ0(Ω, E) is a Banach lattice
(see Proposition 3.3.0.2); and also a C0(Ω)-module given by

C0(Ω)× Γ0(Ω, E) −→ Γ0(Ω, E); ( f , s) 7→ f · s :=
[
x 7→ f (x)s(x)

]
and, for all f ∈ C0(Ω) and s ∈ Γ0(Ω, E), we have that

(a) | f · s|= | f |·|s|, since | f · s|(x) = | f (x)s(x)| = (| f | ·
|s|)(x) for each x ∈ Ω;

(b) f · s = f · s, since f · s(x) = f (x)s(x) = ( f · s)(x) for each x ∈ Ω;
and

(c) || f · s|| ≤ || f ||||s||, since || f · s|| = supx∈Ω || f (x)s(x)|| ≤
supx∈Ω | f (x)| supx∈Ω ||s(x)|| = || f ||||s||.

(ii) In particular, if E is a Banach lattice bundle over Ω, then the m-Banach lat-
tice module Γ0(Ω, E) is a U0(Ω)-normed m-lattice module, or, equivalently,
an AM m-lattice module over C0(Ω) (see Chapter 2, Example 2.4.1.4, Propo-
sition 2.4.1.9 and Example 2.4.1.11).

(iii) Let E be a Banach lattice bundle over Ω. For each x ∈ Ω, the evaluation
(quotient) map ex : Γ0(Ω, E) −→ Ex; s 7→ s(x) is a lattice homomorphism,
i.e., |exs| = ex|s| for all s ∈ Γ0(Ω, E) and x ∈ Ω. Moreover, exs = exs
for all s ∈ Γ0(Ω, E) and x ∈ Ω. In addition, ex : Γ(K, E) −→ Ex is order
continuous, i.e., sγ ↓ 0 in Γ(K, E) implies sγ(x) ↓ 0x in Ex for all x ∈ Ω.

(iv) Let E be a Banach lattice bundle over Ω. For each (positive) Banach lattice
bundle morphism Φ : E −→ E over a homeomorphism φ : Ω −→ Ω, we
define an operator

TΦ : Γ0(Ω, E) −→ Γ0(Ω, E); s 7→ Φ ◦ s ◦ φ−1

called the (positive) weighted Koopman operator over the Koopman operator
Tφ : C0(Ω) −→ C0(Ω); f 7→ f ◦ φ−1 induced by Φ. It follows immediately
that the (positive) weighted Koopman operator TΦ is a (positive) lattice Tφ-
homomorphism (see also Chapter 2 (Example 2.3.2.4)). We show this in (a)
and (b) below.

(a) If Φ : E −→ E is a positive Banach lattice bundle morphism over a
homeomorphism φ : Ω −→ Ω (see Definition 3.4.0.1), then it must be that
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|Φ ◦ s| ≤ Φ ◦ |s| for each s ∈ Γ0(Ω, E). So, |TΦs| = |Φ ◦ s ◦ φ−1| ≤
Φ ◦ |s| ◦ φ−1 = TΦ|s| for each s ∈ Γ0(Ω, E), i.e., TΦ : Γ0(Ω, E) −→
Γ0(Ω, E) is a positive operator.

Moreover, TΦ f s = Φ ◦ f s ◦ φ−1 = Φ ◦ [ f ◦ φ−1 · s ◦ φ−1] = f ◦ φ−1 ·Φ ◦
s ◦ φ−1 = Tφ f · TΦs for every f ∈ C0(Ω) and s ∈ Γ0(Ω, E) implies that
TΦ : Γ0(Ω, E) −→ Γ0(Ω, E) is, in addition, a module homomorphism.

(b) If Φ : E −→ E is a Banach lattice bundle morphism over a home-
omorphism φ : Ω −→ Ω (see Remark 3.4.0.3(iii)), then it must be that
|Φ ◦ s| = Φ ◦ |s| for each s ∈ Γ0(Ω, E). So, |TΦs| = |Φ ◦ s ◦ φ−1| =

Φ ◦ |s| ◦ φ−1 = TΦ|s| for each s ∈ Γ0(Ω, E), i.e., TΦ : Γ0(Ω, E) −→
Γ0(Ω, E) is a lattice homomorphism.

Moreover, by the above argument, TΦ : Γ0(Ω, E) −→ Γ0(Ω, E) is, in addi-
tion, a module homomorphism.

Hence, the assertion holds (see Chapter 2 (Definition 2.3.2.3)).

(v) Now, a (positive) S-dynamical Banach lattice bundle (E, Φ) over a G-dynamical
system (Ω, φ), induces a (positive) S-dynamical m-Banach lattice module
(Γ0(Ω, E), TΦ) over the Koopman group representation (C0(Ω),Tφ) (see
also Chapter 2, Example 2.3.4.3 (i)). We show this in (a) and (b) below.

(a) Suppose that (E, Φ) is a positive S-dynamical Banach lattice bundle
over a G-dynamical system (Ω, φ) (see Definition 3.4.0.5), i.e., Φ = (Φg)g∈S

is a positive semiflow on E over the flow (φg)g∈G on Ω. By [29, Proposi-
tion 2.14 (i), p.29], we obtain that TΦ = (TΦ(g))g∈S is a weighted semi-
group representation on Γ0(Ω, E) over the Koopman group representation
(C0(Ω),Tφ) in the sense of S-dynamical Banach module (see [29, Definition
2.5, p.25]).

Since by (iv) above, TΦ(g) : Γ0(Ω, E) −→ Γ0(Ω, E) is, in addition, a pos-
itive operator for each g ∈ S, the assertion holds (see Chapter 2, Definition
2.3.4.1).

(b) Suppose that (E, Φ) is an S-dynamical Banach lattice bundle over a
G-dynamical system (Ω, φ) (see Remark 3.4.0.6(iii)), i.e., Φ = (Φg)g∈S is
a semiflow on E over the flow (φg)g∈G on Ω. It follows from (a) above and
since TΦ(g) : Γ0(Ω, E) −→ Γ0(Ω, E) is, in addition, a lattice homomor-
phism for each g ∈ S, that TΦ = (TΦ(g))g∈S is a weighted semigroup rep-
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resentation on the Banach lattice module Γ0(Ω, E) over the Koopman group
representation (C0(Ω),Tφ) (see Chapter 2, Remark 2.3.4.2(ii)).

The following simple observation about a Banach lattice bundle over Ω will
be useful. See [29, Lemma 2.23, p.34] for the case of a Banach bundle.

Lemma 3.5.0.2. Let Ω be a locally compact space, φ : Ω −→ Ω a homeomorphism,
and pE : E −→ Ω a Banach lattice bundle. Then pφ : Eφ −→ Ω with Eφ := E
and pφ := φ−1 ◦ PE is a Banach lattice bundle over Ω which has the following
properties.

(i) The identity mapping IdE : E −→ Eφ is a Banach lattice bundle morphism
over φ−1.

(ii) If pF : F −→ Ω is a Banach lattice bundle over Ω, then a mapping Φ :
F −→ E is a (positive) Banach lattice bundle morphism over φ if and only if
Φ : F −→ Eφ is a (positive) Banach lattice bundle morphism over IdΩ.

Proof. It is clear that pφ : Eφ −→ Ω is a Banach lattice bundle over Ω,
with fiber p−1

φ (x) = p−1
E (φ(x)) = Eφ(x) for each x ∈ Ω.

(i) Now, IdE : E −→ Eφ satisfies the following commutative dia-
gram

E Eφ

Ω Ω

pE

IdE

pφ

φ−1

since pφ ◦ IdE = pφ = φ−1 ◦ PE.

In addition, Ex = Eφ−1(φ(x)) and IdE(x) := IdE|Ex
: Ex −→ Ex is a

lattice homomorphism, from which it follows that IdE : E −→ Eφ is
indeed a Banach lattice bundle morphism over φ−1.

(ii) For a mapping Φ : F −→ E; we see that φ ◦ pF = pE ◦Φ if and
only if IdΩ ◦ PF = pφ ◦Φ, i.e., the diagram

F E

Ω Ω

pF

Φ

pE

φ

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. POSITIVE SEMIFLOWS ON TOPOLOGICAL BANACH LATTICE
BUNDLES 78

commutes if and only if the diagram

F Eφ

Ω Ω

pF

Φ

pφ

IdΩ

commutes.

Moreover, in either case observing that Φ(x) = Φ|Fx
: Fx −→ Eφ(x) is a

mapping proves the assertion.

In the following lemma and its corollary, we prove that every (positive) lat-
tice Tφ-homomorphism on the lattice of continuous sections is equal to a
unique (positive) weighted Koopman operator over Tφ. See [29, Lemma
2.24, p.34-35] for the case of Banach bundles.

Lemma 3.5.0.3. Let E and F be Banach lattice bundles over Ω. Moreover, let
φ : Ω −→ Ω be a homeomorphism and an operator T : Γ0(Ω, E) −→ Γ0(Ω, F) a
lattice Tφ-homomorphism. Then,

there exists a unique Banach lattice bundle morphism Φ : E −→ F over φ

with T = TΦ.

Moreover, ||Φ|| = ||T || and T is an isometry if and only if Φ is an isometry.

Proof. We follow the proof of [29, Lemma 2.24, p.34-35] which is for the case
of Banach bundles. So, WLOG, we can assume Ω = K is compact. Consider
the Banach lattice bundle Fφ induced by φ as in Lemma 3.5.0.2 above.

(i) The operator V : Γ(K, F) −→ Γ(K, Fφ) defined by Vs = s ◦ φ is
an isometric and surjective lattice Tφ−1-homomorphism. Indeed, for
s1, s2 ∈ Γ(K, F) and λ ∈ K we have

V(s1 + s2) = (s1 + s2) ◦ φ

= s1 ◦ φ + s2 ◦ φ

= Vs1 + Vs2

and
V(λs1) = (λs1) ◦ φ

= λ(s1 ◦ φ)

= λVs1
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i.e., V is K-linear.

Moreover, for s ∈ Γ(K, F),

|Vs| = |s ◦ φ|

= |s| ◦ φ

= V|s|,

i.e., V is a lattice homomorphism, and hence V ∈ L (Γ(K, F), Γ(K, Fφ)).

Now, for r ∈ Γ(K, Fφ), r(x) ∈ Fφ(x) for all x ∈ K; and since φ is surjec-
tive, we can find s ∈ Γ(K, F) such that s(φ(x)) = r(x) for all x ∈ K.
This implies that Vs = s ◦ φ = r, i.e., V is surjective.

Since φ is bijective, we have that

||Vs|| = sup
x∈K
||s(φ(x))||

= sup
y∈K
||s(y)||

= ||s||,

i.e., V is an isometry.

Moreover, for f ∈ C(K), and s ∈ Γ(K, F), we have

V f s = f s ◦ φ

= f ◦ φ · s ◦ φ

= Tφ−1 ·Vs,

i.e., V is Tφ−1- module homomorphism.

(ii) The operator VT : Γ(K, E) −→ Γ(K, Fφ) is a homomorphism of Ba-
nach lattice modules (i.e., lattice module homomorphism) over C(K).
Indeed, for s1, s2 ∈ Γ(K, E) and λ ∈ K,

VT (s1 + s2) = T (s1 + s2) ◦ φ

= T s1 ◦ φ + T s2 ◦ φ

= VT s1 + VT s2

and
VT (λs1) = (T λs1) ◦ φ

= λT s1 ◦ φ

= λVT s1,
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i.e., VT is K-linear.

Moreover, for s ∈ Γ(K, E) and f ∈ C(K),

|VT s| = |T s ◦ φ|

= |T s| ◦ φ

= T |s| ◦ φ

= VT |s|

and
VT ( f s) = T f s ◦ φ

= Tφ f · T s ◦ φ

= f · T s ◦ φ

= f ·VT s,

which implies that VT is a lattice module homomorphism.

(iii) As in [29, Lemma 2.24, p.34-35], we obtain a unique Banach bundle
morphism Φ : E −→ Fφ over IdK with

VT s = Φ ◦ s

for each s ∈ Γ(K, E). That is, the mapping Φ : E −→ Fφ given by
Φ(x) := Φ|Ex

: Ex −→ Fφ(x); s(x) 7→ VT s(x) := T s(φ(x)) for every
s ∈ Γ(K, E), x ∈ K defines a (bounded) Banach bundle morphism. See
[29, Definition 1.6, p.14].

We claim that Φ is the unique Banach lattice bundle morphism over
IdK. Indeed, for s ∈ Γ(K, E) the equality

|Φ ◦ s| = |VT s|

= VT |s|

= Φ ◦ |s|

implies that Φ(x) : Ex −→ Fφ(x) is a lattice homomorphism for each
x ∈ K. Hence, by Lemma 3.5.0.2 above, Φ : E −→ F is the unique
Banach lattice bundle morphism over φ, with

T s = V−1(Φ ◦ s) = Φ ◦ s ◦ φ−1

for every s ∈ Γ(K, E), i.e., T = TΦ.
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(iv) Moreover, we have that ||Φ|| = ||VT || = ||T ||. Indeed, V being an
isometry implies that ||VT s|| = ||T s|| for all s ∈ Γ(K, E). Moreover,
VT s = Φ ◦ s implies that ||VT s|| = ||Φ ◦ s||, so that

||T || = sup {||T s|| : s ∈ Γ(K, E), ||s|| ≤ 1}
= sup {||VT s|| : s ∈ Γ(K, E), ||s|| ≤ 1}
= sup {||Φ ◦ s|| : s ∈ Γ(K, E), ||s|| ≤ 1}
= ||Φ||.

From this, it follows that Φ is an isometry if and only if VT is an isom-
etry if and only if T is an isometry. The case where Ω is locally com-
pact readily follows, but which we omit the details (see [29, Remark
1.2, p.12] and [21, Lemma 3.11, p.12]).

The following is an immediate corollary of the above Lemma 3.5.0.3. We
note that this also answers Question 1.3.0.1 in Chapter 1 in a more general
sense.

Corollary 3.5.0.4. Let E and F be Banach lattice bundles over Ω. Moreover, let
φ : Ω −→ Ω be a homeomorphism and an operator T : Γ0(Ω, E) −→ Γ0(Ω, F) a
positive Tφ-homomorphism. Then,

(i) there exists a unique positive Banach lattice bundle morphism Φ : E −→ F
over φ with T = TΦ.

(ii) Moreover, ||Φ|| = ||T || and T is a positive isometry if and only if Φ is a
positive isometry.

In the following proposition, we represent every (positive) S-dynamical m-
Banach lattice module on Γ0(Ω, E) over the Koopman group (C0(Ω),Tφ)

as a (positive) weighted Koopman semigroup representation induced by a
unique (positive) S-dynamical Banach lattice bundle over the G-dynamical
system (Ω, φ). This is due to [29, Lemma 2.25, p.35] for the case of Banach
bundles.
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Proposition 3.5.0.5. Let G be a locally compact group, S ⊆ G a closed submonoid,
and (Ω, φ) a topological G-dynamical system. Moreover, let E be a Banach lattice
bundle over Ω and let

T : S −→ Γ0(Ω, E)Γ0(Ω,E); g 7→ T (g)

be a strongly continuous representation such that (Γ0(Ω, E),T ) is a (positive)
S-dynamical m-Banach lattice module over (C0(Ω),Tφ). Then there is a unique
(positive) S-dynamical Banach lattice bundle (E, Φ) over (Ω, φ) such that TΦ =

T .
Moreover, ||T (g)|| = ||Φg|| for each g ∈ S, and T is a (positive) isometry if and
only if Φ is a (positive) isometry.

Proof. We follow the proof of [29, Lemma 2.25, p.35] which is for the case
of Banach bundles. Since every S-dynamical m-Banach lattice module on
Γ0(Ω, E) over (C0(Ω), Tφ) defines an S-dynamical Banach module over (C0(Ω), Tφ)

for the Banach bundle E; we obtain a unique S-dynamical Banach bundle
(E, Φ) over (Ω, φ) such that TΦ = T in the sense of a dynamical Banach
module (see [29, Definition 2.12, p. 28]).

We claim that (E, Φ) is the unique (positive) S-dynamical Banach lattice
bundle over (Ω, φ).
In particular :

(i) Φg is a (positive) Banach lattice bundle morphism over φg for each
g ∈ S. Indeed, for each g ∈ S, T (g) : Γ0(Ω, E) −→ Γ0(Ω, E) is a (pos-
itive) lattice Tφ(g)-homomorphism; and by (Corollary 3.5.0.4) Lemma
3.5.0.3, it follows that for each g ∈ S, Φg : E −→ E is the unique
(positive) Banach lattice bundle morphism over φg; and

(ii) T is a (positive) isometry if and only if Φ is a (positive) isometry. In-
deed, also by (Corollary 3.5.0.4) Lemma 3.5.0.3 we have that

||T (g)|| = ||Φg||

and so for each g ∈ S, T (g) is a (positive) isometry if and only if Φg

is an (positive) isometry.
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As noted in Remark 3.5.0.1(v) and from above Proposition 3.5.0.5, each (pos-
itive) S-dynamical Banach lattice bundle (E, Φ) over a G-dynamical system
(Ω, φ) induces a (positive) S-dynamical m-Banach lattice module (Γ0(Ω, E), TΦ)

via
TΦ : S −→ L (Γ0(Ω, E)); g 7→ TΦ(g) :=

[
s 7→ Φg ◦ s ◦ φg−1

]
over (C0(Ω),Tφ), the Koopman group representation on C0(Ω). We call
(TΦ(g))g∈S a (positive) weighted Koopman semigroup representation on
Γ0(Ω, E) over the Koopman group representation (Tφ(g))g∈G on C0(Ω).

By the following lemma and its corollaries, we show that, for a fixed G-
dynamical system (Ω, φ), a morphism of (positive) S-dynamical Banach
lattice bundles (see Definition 3.4.0.9) is uniquely determined by the homo-
morphism of the corresponding induced (positive) S-dynamical m-Banach
lattice modules (see Chapter 2, Definition 2.3.5.1).

Lemma 3.5.0.6. Let (Ω, φ) be a G-dynamical system. Moreover, let (E, Φ) and
(F, Ψ) be S-dynamical Banach lattice bundles over (Ω, φ). Furthermore, let (Γ0(Ω, E), TΦ)

and (Γ0(Ω, F), TΨ) be S-dynamical m-Banach lattice modules over the Koopman
group (C0(Ω),Tφ) induced by (E, Φ) and(F, Ψ), respectively.
Then, for a mapping Θ : E −→ F, the following are equivalent.

(i) Θ : E −→ F is a morphism between (E, Φ) and(F, Ψ).

(ii) VΘ : Γ0(Ω, E) −→ Γ0(Ω, F); s 7→ Θ ◦ s is a homomorphism between
(Γ0(Ω, E), TΦ) and (Γ0(Ω, E), Ψ).

Moreover, if these assertions hold, then ||Θ|| = ||VΘ||, and Θ is an isometry
if and only if VΘ is an isometry.

Proof. (a) First, we observe that the diagram

E F

E F

Φg

Θ

Ψg

Θ

commutes for each g ∈ S if and only if the diagram
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Γ0(Ω, E) Γ0(Ω, F)

Γ0(Ω, E) Γ0(Ω, F)

TΦ(g)

VΘ

TΨ(g)

VΘ

commutes for each g ∈ S. Indeed, for each g ∈ S,

Ψ(g) ◦Θ = Θ ◦Φ(g)

⇐⇒ Ψ(g) ◦Θ ◦ s = Θ ◦Φ(g) ◦ s ∀s ∈ Γ0(Ω, E)

⇐⇒ Ψ(g) ◦Θ ◦ s ◦ φg−1 = Θ ◦Φ(g) ◦ s ◦ φg−1 ∀s ∈ Γ0(Ω, E)

⇐⇒ TΨ(g)VΘs = VΘTΦ(g)s ∀s ∈ Γ0(Ω, E)

⇐⇒ TΨ(g) ◦VΘ = VΘ ◦ TΦ(g).

(b) In addition, Θ : E −→ F is a Banach lattice bundle morphism if and
only if VΘ : Γ0(Ω, E) −→ Γ0(Ω, F) is a lattice module homomorphism.
Indeed, for each s ∈ Γ0(Ω, E)

|Θ ◦ s| = Θ ◦ |s| ⇐⇒ |VΘs| = VΘ|s|.

Hence, the assertion (i)⇔ (ii) is proved.
Moreover, by Lemma 3.5.0.3, VΘ : Γ0(Ω, E) −→ Γ0(Ω, F) being a Banach lat-
tice module homomorphism implies that Θ : E −→ F is the unique Banach
bundle morphism over IdΩ, such that ||Θ|| = ||VΘ||, and Θ is an isometry
if and only if VΘ is an isometry.

By Lemma 3.5.0.3, we immediately obtain the following corollary, which
states that the converse result of Lemma 3.5.0.6 above holds.

Corollary 3.5.0.7. Let (Ω, φ) be a G-dynamical system. Moreover, let (E, Φ)
and (F, Ψ) be S-dynamical Banach lattice bundles over (Ω, φ). Furthermore, let
(Γ0(Ω, E), TΦ) and (Γ0(Ω, F), TΨ) be S-dynamical m-Banach lattice modules over
the Koopman group (C0(Ω),Tφ) induced by (E, Φ) and (F, Ψ), respectively.
Then for a mapping V : Γ0(Ω, E) −→ Γ0(Ω, F) the following are equivalent.

(i) V : Γ0(Ω, E) −→ Γ0(Ω, F) is a homomorphism between (Γ0(Ω, E), TΦ)

and (Γ0(Ω, F), TΨ).
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(ii) There exists a unique morphism Θ : E −→ F between (E, Φ) and (F, Ψ)
such that V = VΘ.

Moreover, if these assertions hold, then ||Θ|| = ||V||, and Θ is an isometry
if and only if V is an isometry.

The following is also an immediate corollary which is obtained by combin-
ing Lemma 3.5.0.6 and Corollary 3.5.0.4 above.

Corollary 3.5.0.8. Let (Ω, φ) be a G-dynamical system. Moreover, let (E, Φ) and
(F, Ψ) be positive S-dynamical Banach lattice bundles over (Ω, φ), respectively.
Furthermore, let (Γ0(Ω, E), TΦ) and (Γ0(Ω, F), TΨ) be positive S-dynamical m-
Banach lattice modules over the Koopman group (C0(Ω),Tφ) induced by (E, Φ)
and (F, Ψ), respectively.
Then, for a mapping V : Γ0(Ω, E) −→ Γ0(Ω, F), the following are equivalent.

(i) V : Γ0(Ω, E) −→ Γ0(Ω, F) is a homomorphism between (Γ0(Ω, E), TΦ)

and (Γ0(Ω, E), TΨ).

(ii) There exists a unique morphism Θ : E −→ F between (E, Φ) and (F, Ψ)
such that V = VΘ.

Moreover, if this assertion holds, ||Θ|| = ||V||, and Θ is a positive isometry
if and only if V is a positive isometry.

In the following proposition, we represent the lattice of continuous sections
vanishing at infinity of a Banach lattice bundle as an AM m-lattice module
or, equivalently, a U0(Ω)-normed m-lattice module (see Chapter 2, Corol-
lary 2.4.1.10). This is essentially due to [21, Proposition 4.10, p.19], in the
case of Banach bundles. See also [15, Corollary 7.28, p.78-79]. By this, we
also answer Question D.1.0.2 raised in Appendix D.

Proposition 3.5.0.9. Let Ω be a locally compact space and Γ an AM m-lattice
module over C0(Ω). Then,

there is a Banach lattice bundle E over Ω such that Γ0(Ω, E) is isometrically
isomorphic to Γ as m-Banach lattice modules over C0(Ω).

Moreover, this Banach lattice bundle is unique up to isometric isomorphism.
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Proof. We follow the proof of [21, Proposition 4.10, p.19-21] which is for
the case of Banach bundles. Since Γ is, in particular, an AM-module over
C0(Ω), we obtain a unique Banach bundle F over Ω such that the Banach
space Γ0(Ω, F) of its continuous sections vanishing at infinity is isometri-
cally isomorphic to Γ as Banach modules over C0(Ω). That is, there exists
an operator P ∈ L (Γ, Γ0(Ω, F)) such that P is an isometric and surjective
module homomorphism.
Hence, it suffices to show that F is a Banach lattice bundle over Ω; the op-
erator P is a lattice isomorphism; and that F is unique up to isometric iso-
morphism.

We thus, claim the following:

(i) F is isometrically embedded in a bundle of Banach lattices. Indeed,
by their proof, we see that F :=

⋃̇
x∈ΩFx , where, for each x ∈ Ω, we

define the Banach space Fx := Γ/Jx with

Jx := lin { f s : f ∈ C0(Ω) with f (x) = 0 and s ∈ Γ} .

Now, we define a new bundle E :=
⋃̇

x∈ΩEx over Ω, by setting

Ex := Γ/Γx

with

Γx :=
{

s ∈ Γ : inf {|| f s|| : f ∈ C0(Ω)+ with f (x) = 1} = 0
}

.

By the uniqueness of the lattice U0(Ω)-normed value (see Chapter 2,
Corollary 2.4.1.10), we have that Γx = {s ∈ Γ : |s|(x) = 0} which im-
plies, by Chapter 2 (Corollary 2.5.3.2), that Ex is, in particular, a Banach
lattice and Fx ∼= Ex (isomorphic Banach spaces) for each x ∈ Ω.

Thus, the assertion holds as we obtain that F ∼= E is an isomorphism
of Banach bundles over Ω, and Γ0(Ω, F) ∼= Γ0(Ω, E) is an isometric
isomorphism of Banach modules over C0(Ω).

(ii) The bundle modulus

E −→ E; vEpE(v)
7→ |v|
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is continuous. Indeed, this is derived from the continuity of the mod-
ulus Γ −→ Γ; s 7→ |s| which "descends"4 to the quotient lattice
Ex = Γ/Γx for each x ∈ Ω.

This shows that E is a Banach lattice bundle over Ω, and hence the
Banach space Γ0(Ω, E) is, in particular, a Banach lattice (see Definition
3.2.0.1 and Proposition 3.3.0.2).

(iii) There exists a lattice isomorphism T : Γ −→ Γ0(Ω, E). Indeed, by
defining the (linear) bijection T : Γ −→ Γ0(Ω, E) such that T s(x) =

s + Γx for each x ∈ Ω, let ex : Γ0(Ω, E) −→ Ex be the evaluation map
and Ix : Γ/Γx −→ Ex be the identity map; and consider the following
commutative diagram.

Γ Γ0(Ω, E)

Γ/Γx Ex

qx

s 7→T s
T −1r← [r

ex

Ix

This implies that, for each s ∈ Γ, and x ∈ Ω,

(a) T s(x) = ex(T s) = qx(s); and

(b) |T s(x)| = ex|T s| = qx|s| = exT |s| = T |s|(x)

since ex and qx are both lattice homomorphisms for each x ∈ Ω.

So, for each s ∈ Γ, the canonical mapping

|T s| : Ω −→ E; x 7→ |T s(x)|

is a continuous section vanishing at infinity, which coincides with T |s|
for each s ∈ Γ. This shows that T is a lattice homomorphism, and since
T is a bijection, it follows that T −1 : Γ0(Ω, E) −→ Γ is also a lattice
homomorphism; and hence the assertion holds.

This shows that Γ ∼= Γ0(Ω, E) as m-Banach lattice modules over C0(Ω).

(iv) E is unique up to isometric isomorphism of Banach lattice bundles
over Ω. This follows from Lemma 3.5.0.3. Indeed, suppose H is an-
other Banach lattice bundle over Ω, such that the Banach lattice Γ0(Ω, H)

4 i.e., implies Γ −→ Ex; s 7→ |s| + Γx is continuous for each x ∈ Ω.
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of its continuous sections vanishing at infinity is isometrically isomor-
phic to Γ as m-Banach lattice modules over C0(Ω), i.e., there exists an
operator S : Γ −→ Γ0(Ω, H) such that S is an isometric and surjective
lattice module homomorphism.

Then, the operator S ◦ T −1 : Γ0(Ω, E) −→ Γ0(Ω, H) is an isometric
and surjective lattice module homomorphism. So, by Lemma 3.5.0.3,
we obtain a unique isometric and surjective Banach lattice bundle mor-
phism Φ1 : E −→ H over IdΩ such that

S ◦ T −1s = Φ1 ◦ s

for all s ∈ Γ0(Ω, E). This, in particular, implies that the Banach lattices
Ex and Hx are isometrically lattice isomorphic for each x ∈ Ω.

Moreover, the inverse operator T ◦ S−1 : Γ0(Ω, H) −→ Γ0(Ω, E) is
also an isometric lattice module homomorphism. Similarly, by Lemma
3.5.0.3, we also obtain a unique isometric and surjective Banach lattice
bundle morphism Φ2 : H −→ E over IdΩ such that

T ◦ S−1r = Φ2 ◦ r

for all r ∈ Γ0(Ω, H). It then follows that

Φ2 ◦Φ1 = IdE and Φ1 ◦Φ2 = IdH

and
Φ−1

2 = Φ1 and Φ−1
1 = Φ2,

i.e., E and H are isomorphic (=homeomorphic).

Remark 3.5.0.10. We note, in particular, that, if Γ is a complex AM m-lattice mod-
ule over the complex Banach algebra C0(Ω), then each fiber Ex of the constructed
Banach lattice bundle E over Ω is a complex Banach lattice for each x ∈ Ω, and the
isomorphism Γ ∼= Γ0(Ω, E) can be seen to be C-linear.
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We are now able to state our first representation result for dynamical m-
Banach lattice modules. See [29, Theorem 2.22, p.34] for the case of dy-
namical Banach modules. This is our Gelfand-type theorem for dynamical
AM m-lattice modules over C0(Ω). We note that its corollary and remark,
in particular, proves Proposition D.1.0.3 stated in Appendix D.

Theorem 3.5.0.11. Let G be a locally compact group, S ⊆ G a closed submonoid,
and (Ω, φ) a topological G-dynamical system. Then the assignments

(E, Φ) 7−→ (Γ0(Ω, E), TΦ)

Θ 7−→ VΘ

define an essentially surjective, fully faithful functor from the category of S-dynamical
topological Banach lattice bundles over (Ω, φ) to the category of S-dynamical AM
m-lattice modules over (C0(Ω),Tφ).

Proof. Combining Proposition 3.5.0.9 and Corollary 3.5.0.7 proves the theo-
rem.

The following is an immediate corollary of the above theorem.

Corollary 3.5.0.12. Let G be a locally compact group, S ⊆ G a closed submonoid,
and (Ω, φ) a topological G-dynamical system. Then the assignments

(E, Φ) 7−→ (Γ0(Ω, E), TΦ)

Θ 7−→ VΘ

define an essentially surjective, fully faithful functor from the category of positive S-
dynamical topological Banach lattice bundles over (Ω, φ) to the category of positive
S-dynamical AM m-lattice modules over (C0(Ω),Tφ).

Proof. Combining Proposition 3.5.0.9 and Corollary 3.5.0.8 proves the asser-
tion.
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In the following remark, we note how the unique positive semiflow Φ =

(Φg)g∈S can be obtained canonically on the Banach lattice bundle E associ-
ated with a positive S-dynamical AM m-lattice module (Γ,T ). By this, we
construct the inverse functors for the above theorems (see also [29, Remark
3.9, p.64]).

Remark 3.5.0.13. For an AM m-lattice module Γ over C0(Ω), let E :=
⋃̇

x∈ΩEx,
with Ex := Γ/Γx for each x ∈ Ω, be the unique (up to isometric isomorphism)
topological Banach lattice bundle such that Γ ∼= Γ0(Ω, E) as in the proof of Propo-
sition 3.5.0.9.
Now, let (Ω, (φg)g∈G) be a topological G-dynamical system and T = (T (g))g∈S

a positive weighted semigroup representation on Γ over the Koopman group (C0(Ω),Tφ).
Moreover, for each x ∈ Ω, let qx : Γ −→ Ex be the corresponding (quotient) lattice
homomorphism. Then, for each g ∈ S, the positive operators Φg(x) := Φg|Ex :
Ex −→ Eφg(x) are precisely the operators for which the diagram

Γ Γ

Ex Eφg(x)

qx

s 7→T (g)s

qφg(x)

Φg(x)

commutes for all x ∈ Ω. That is, for each g ∈ S, the mappings Φg(x) : Ex −→
Eφg(x); s + Γx 7→ T (g)s + Γφg(x) for all x ∈ Ω and s ∈ Γ (uniquely) defines a
positive morphism Φg : E −→ E over φg. From these observations, we have that

(T (g))g∈S
∼= (TΦ(g))g∈S on Γ ∼= Γ0(Ω, E).

3.6 More on the Banach lattice of continuous
sections

In this Section, given a topological Banach lattice bundle E over a locally com-
pact space Ω, we introduce and consider several notions about the Banach
lattice Γ0(Ω, E) of its continuous sections vanishing at infinity. While many
of these concepts are proven very useful in this thesis, we note that, others
will become handy for further studies.
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3.6.1 On lattice subbundles and lattice submodules

Inspired by the work of S. Siewert [29, A.1, p.109-112], we now introduce
the notions of Banach lattice subbundles, and we seek to obtain similar dual-
ity with Banach lattice submodules as introduced in Chapter 2 (Subsection
2.5.2).

Throughout, we take Ω = K to be a compact space, and p : E −→ K a
Banach lattice bundle over K.

Definition 3.6.1.1. A subspace F ⊆ E is called a lattice subbundle if the following
properties are satisfied.

(i) For each x ∈ K, the set Fx := p−1(x) ∩ F is a sublattice of the fiber Ex, i.e.,
Fx ⊆ Ex is a subspace such that v ∈ Fx implies |v|, v ∈ Fx; and

(ii) the restriction of the bundle projection p|F : F −→ K is open.

If, in addition, Fx ⊆ Ex is a closed subspace for each x ∈ K, then we call F ⊆ E a
Banach lattice subbundle.

More importantly, we claim the following.

Proposition 3.6.1.2. A Banach lattice subbundle F ⊆ E is a Banach lattice bundle
over K with the bundle projection, bundle norm, and bundle modulus restricted to
F.
Moreover, F induces an AM m-lattice module Γ(K, F) over C(K) which is also a
Banach lattice submodule of Γ(K, E).

Proof. By [29, Proposition A.2, p.110], we obtain that p|F : F −→ K is a Ba-
nach bundle over K with the bundle projection and bundle norm restricted
to F. Since, by definition, Fx is a Banach lattice for each x ∈ K, it is sufficient
to show that the restriction of the bundle modulus

|·|F : F −→ F; v 7→ |v|Fp|F(v)

is continuous. Indeed, for v ∈ F, if W ⊆ F is an an open set containing |v|,
then we find an open set W0 ⊆ E containing v such that |w0| ∈ U for all
w0 ∈ W0. It follows that W1 := F ∩W0 is also an open set in F containing v
such that |w| ∈W for all w ∈W1.
Hence, the first assertion is proved.
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Since, F is a Banach lattice bundle over K, the lattice of its continuous sec-
tions Γ(K, F) is also an AM m-lattice module over C(K) (see Remark 3.5.0.1(ii)).
The fact that Γ(K, F) ⊆ Γ(K, E) is a Banach lattice submodule follows read-
ily.

Now, if Γ ⊆ Γ(K, E) is a Banach lattice submodule, it readily follows that Γ
is also an AM m-lattice module over C(K). So, by Proposition 3.5.0.9, there
exists, up to isometric isomorphism, a unique Banach lattice bundle F over
K such that Γ is isometrically isomorphic to Γ(K, F).
We claim this Banach lattice bundle F can be identified with a Banach lattice
subbundle of E. More so, we also obtain a correspondence between Banach
lattice subbundles and Banach lattice submodules. See [29, Proposition A.4,
p.110] for the case of Banach subbundles and Banach submodules.

Proposition 3.6.1.3. The following statements hold true.

(i) For each Banach lattice subbundle F ⊆ E, the induced AM m-lattice module
Γ(K, F) is a Banach lattice submodule of Γ(K, F).

(ii) For each Banach lattice submodule Γ ⊆ Γ(K, E), the induced Banach lattice
bundle F :=

⋃
x∈K ex(Γ) over K is a Banach lattice subbundle of E, where

ex : Γ −→ Ex; s 7→ s(x), x ∈ K is the evaluation map.

Moreover, the assignment F 7→ Γ(K, F) is a bijection of Banach lattice sub-
bundles and Banach lattice submodules. The inverse is given by Γ 7→ ⋃

x∈K ex(Γ).

Proof. (i) This follows from Proposition 3.6.1.2 from above.

(ii) By [29, Proposition A.4 (ii), p.110], we obtain that F :=
⋃

x∈K ex(Γ) is
a Banach bundle over E, such that F ⊆ E is also a Banach subbundle.

We claim that F is the unique Banach lattice bundle over E.

In particular:

(a) ex(Γ) ⊆ Ex is a Banach sublattice for every x ∈ K. Indeed, by
Remark 3.5.0.1(iii), we note that the evaluation map ex : Γ −→ Ex; s 7→
s(x), x ∈ K is a lattice homomorphism, and moreover exs = exs for all
s ∈ Γ and x ∈ K. This implies that the closed subspace ex(Γ) ⊆ Ex is a
sublattice for every x ∈ K.
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(b) The restriction of the bundle modulus to F is continuous. In-
deed, this immediately follows from the proof of Proposition 3.6.1.2.

Hence, F ⊆ E is a Banach lattice subbundle, and again by Proposition
3.6.1.2, it is a Banach lattice bundle over K.

Moreover, it is clear that, the assignment F 7→ Γ(K, F) is an injective
map of Banach lattice subbundles of E and Banach lattice submod-
ules of Γ(K, E). Now, to show surjectivity, suppose Γ ⊆ Γ(K, E) is a
Banach lattice submodule such that Γ ∼= Γ(K, F1) defines an isomet-
ric Banach lattice module isomorphism for a (unique up to isometric
isomorphism) Banach lattice bundle F1 over K. Since, by the proof of
Proposition 3.5.0.9, each fiber F1x, x ∈ K can be identified with a quo-
tient space of Γ, it follows that F1x ⊆ Ex is Banach sublattice for every
x ∈ K. Hence, from (ii) above, we can conclude that F1x = ex(Γ) for ev-
ery x ∈ K, and F1 =

⋃
x∈K ex(Γ) is the unique Banach lattice subbundle

of E.

As in [29, Remark A.5. p.110], for the case of Banach modules, we also note
the following properties concerning the kernel and the image of a lattice
module homomorphism of Banach lattice modules.

Proposition 3.6.1.4. Let T : Γ(K, E1) −→ Γ(K, E2) be a lattice module homo-
morphism. Then Ker T ⊆ Γ(K, E1) and the closure of rg T ⊆ Γ(K, E2) are Banach
lattice submodules.
Moreover, KerT is a closed ideal submodule of Γ(K, E1).

Proof. (i) Let s ∈ KerT . Then T f · s = f · T s = 0 for any f ∈ C(K)
implies that KerT is a Banach submodule. Now, s ∈ KerT also implies
that T |s| = |T s| = 0, i.e., |s|∈ KerT .

In the complex case, since T is C-linear; s ∈ KerT implies that Re s, Im s ∈
KerT . So, we can conclude that s ∈ KerT .

Moreover, if s ∈ KerT , r ∈ Γ(K, E1), with |r| ≤ |s|, then |T r| ≤
|T s| = 0 implies that r ∈ KerT .

Hence, KerT is a closed ideal submodule of Γ(K, E1), and, in particu-
lar, a Banach lattice submodule.
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(ii) Let s ∈ rgT . Then f · s = T ( f · r) for some r ∈ Γ(K, E1) with T r = s,
for any f ∈ C(K), implies that the closure of rgT is a Banach submod-
ule. Now, s ∈ rgT also implies |s| = T |r| for some r ∈ Γ(K, E1) with
T r = s, i.e., |s|∈ rgT .

Furthermore, in the complex case, since T is C-linear, s ∈ rgT implies
that Re s = T (Re r) and Im s = T (Re r) for for some r ∈ Γ(K, E1) with
T r = s, i.e., Re s, Im s ∈ rgT . So, we can also conclude that s ∈ rgT .

Hence, the closure of rg T ⊆ Γ(K, E2) is a Banach lattice submodule.

3.6.2 Direct sum of Banach lattice bundles and Banach
lattice modules

Following the discussion as in [29, A.2, p.111-112], we now consider the
direct sum of two Banach lattice bundles E and F over the compact space K,
as well as the direct sum of their lattices of continuous sections.

For each x ∈ K, let Ex ⊕ Fx be the direct sum of Banach spaces Ex and Fx

equipped canonically with the lattice structure |(u, v)| := (|u|, |v|) and
(u, v) := (u, v); and norm ||(u, v)|| := max(||u||, ||v||) for (u, v) ∈ Ex ⊕ Fx,
which induces the product topology of Ex and Fx on Ex ⊕ Fx as a Banach
lattice with natural ordering.
We then endow the direct sum

E⊕ F :=
⋃

k∈K

Ex ⊕ Fx ⊆ E× F

with the subspace topology induced by the product topology on E× F.

Equipped with the canonical projection, addition, scalar multiplication and
modulus, the direct sum E ⊕ F of two Banach lattice bundles E and F is,
again, a Banach lattice bundle over K.
Indeed, by [29, Construction A.6, p.111], we obtain that E⊕ F is a Banach
bundle over K, but each fiber Ex ⊕ Fx is a Banach lattice for x ∈ K. Hence, it
suffices to show that the bundle modulus

|(·, ·)| : E⊕ F −→ E⊕ F; (u, v) 7→ (|u|, |v|)Ex⊕Fx
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is continuous. This follows immediately, since E⊕ F is equipped with the
product topology.

Now, for two AM m-lattice modules Γ(K, E) and Γ(K, F) over C(K) we
equip the Banach space direct sum Γ(K, E) ⊕ Γ(K, F) canonically with the
lattice structure |(s1, s2)| := (|s1|, |s2|) and (s1, s2) := (s1, s2); C(K)-
module structure f (s1, s2) := ( f s1, f s2) and norm ||(s1, s2)|| := max(||s1||, ||s2||)
for s1 ∈ Γ(K, E), s2 ∈ Γ(K, F), f ∈ C(K); which induces the product topol-
ogy of Γ(K, E) and Γ(K, F) on Γ(K, E)⊕ Γ(K, F) as a Banach lattice module
with natural ordering.

From this construction, we also claim that the direct sum Γ(K, E)⊕ Γ(K, F)
of two AM m-lattice modules Γ(K, E) and Γ(K, F) over C(K) is, again, an
AM m-lattice module over C(K).

Proposition 3.6.2.1. In the situation above, the mapping

Γ(K, E)⊕ Γ(K, F) −→ Γ(K, E⊕ F); (s1, s2) 7→ s1 ⊕ s2

with (s1 ⊕ s2)(x) := (s1(x), s2(x)), s1 ∈ Γ(K, E), s2 ∈ Γ(K, F), and x ∈ K de-
fines an isometric isomorphism of AM m-lattice modules (see Chapter 2, Definition
2.3.2.1 and Remark 2.3.2.2).

Proof. (i) First we note that, since E⊕ F is a Banach lattice bundle over K,
its lattice of continuous sections Γ(K, E⊕ F) is an AM m-lattice module
over C(K).

(ii) The Banach lattice module Γ(K, E)⊕ Γ(K, F) over C(K) is an m-Banach
lattice module. Indeed, for any f ∈ C(K), s1 ∈ Γ(K, E), s2 ∈ Γ(K, F),
we have that

| f (s1, s2)| = (| f s1|, | f s2|) = (| f ||s1|, | f ||s2|) = | f ||(s1, s2)|.

(iii) Now, the fact that the mapping Γ(K, E)⊕Γ(K, F) −→ Γ(K, E⊕ F); (s1, s2) 7→
s1 ⊕ s2 is a lattice module isomorphism is clear. Indeed,

(a) p ∈ Γ(K, E⊕ F) if and only if p(x) ∈ Ex ⊕ Fx for every x ∈ K if
and only p(x) = (s1(x), s2(x)) for every x ∈ K and s1 ∈ Γ(K, E), s2 ∈
Γ(K, F) if and only if p = s1 ⊕ s2. That is, the mapping is surjective.
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(b) For s1, r1 ∈ Γ(K, E), s2, r2 ∈ Γ(K, F), we have that s1 ⊕ s2 =

r1 ⊕ r2 if and only if (s1(x), s2(x)) = (r1(x), r2(x)) for all x ∈ K if and
only if (s1, s2) = (r1, r2). That is, the mapping is injective.

(c) For every f ∈ C(K), s1 ∈ Γ(K, E), s2 ∈ Γ(K, F), we have that

( f s1 ⊕ f s2)(x) = ( f (x)s1(x), f (x)s2(x)) = f (x)(s1 ⊕ s2)(x)

for all x ∈ K. That is, the mapping is a module homomorphism.

(d) For every s1 ∈ Γ(K, E), s2 ∈ Γ(K, F), we have that

|(s1 ⊕ s2)|(x) = (|s1(x)|, |s2(x)|) = (|s1|⊕ |s2|)(x)

for all x ∈ K. That is, the mapping is a lattice homomorphism.

Furthermore, since the mapping is a bijection, it is also a module iso-
morphism and a lattice isomorphism. Hence, the assertion follows.

(iv) The mapping Γ(K, E)⊕ Γ(K, F) −→ Γ(K, E⊕ F); (s1, s2) 7→ s1 ⊕ s2 is
an isometry. Indeed, for s1 ∈ Γ(K, E), s2 ∈ Γ(K, F) we have that

||(s1 ⊕ s2)|| = sup
x∈K

(max(||s1(x)||, ||s2(x)||))

= max(sup
x∈K
||s1(x)||, sup

x∈K
||s2(x)||)

= max(||s1||, ||s2||)
= ||(s1, s2)||

Finally, by the isometry, we obtain that the Banach m-lattice module Γ(K, E)⊕
Γ(K, F) over C(K) is an AM m-lattice module, i.e.,

||( f ∨ g)(s1, s2)|| = max(|| f (s1, s2)||, ||g(s1, s2)||)

for all f , g ∈ C(K)+, s1 ∈ Γ(K, E), s2 ∈ Γ(K, F).

The result above yields a correspondence between decompositions of Ba-
nach lattice bundles and decompositions of AM m-lattice modules. See [29,
Proposition A.8, p.112] for the case of Banach bundles and AM-modules.

Proposition 3.6.2.2. Let E be a Banach lattice bundle over K and Γ(K, E) the
corresponding AM m-lattice module over C(K). Then, the following hold.
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(i) If there are two non-trivial Banach lattice subbundles E1, E2 ⊆ E such that
E ∼= E1 ⊕ E2, then we have that Γ(K, E1) and Γ(K, E2) are non-trivial Ba-
nach lattice submodules of Γ(K, E) and Γ(K, E) ∼= Γ(K, E1)⊕ Γ(K, E2).

(ii) If there are two non-trivial Banach lattice submodules Γ1, Γ2 ⊆ Γ(K, E)
such that Γ(K, E) ∼= Γ1 ⊕ Γ2, then there are two non-trivial Banach lat-
tice subbundles E1, E2 ⊆ E such that E ∼= E1 ⊕ E2 and Γ1

∼= Γ(K, E1) and
Γ2
∼= Γ(K, E2).

Proof. (i) Since E1, E2 ⊆ E are non-trivial Banach lattice subbundles and
E ∼= E1 ⊕ E2, we can assume that there is a nontrivial decomposition
of the Banach lattice Ex = E(1,x) ⊕ E(2,x) for every x ∈ K. It follows
immediately from Proposition 3.6.1.2 that the induced AM m-lattice
modules Γ(K, E1) and Γ(K, E2) over C(K) are non-trivial Banach lattice
submodules of Γ(K, E). Hence, by Proposition 3.6.2.1, the mappings

Γ(K, E1)⊕ Γ(K, E2) −→Γ(K, E1 ⊕ E2) −→ Γ(K, E)

(s1, s2) 7−→s1 ⊕ s2 7−→ s1 ⊕ s2

define isometric isomorphisms of AM m-lattice modules.

(ii) Since Γ1, Γ2 ⊆ Γ(K, E) are non-trivial Banach lattice submodules, by
Proposition 3.6.1.3, we can find two non-trivial Banach lattice subbun-
dles E1, E2 ⊆ E such that Γ1

∼= Γ(K, E1) and Γ2
∼= Γ(K, E2).

So, by Proposition 3.6.2.1, we obtain that

Γ(K, E) ∼= Γ1 ⊕ Γ2
∼= Γ(K, E1)⊕ Γ(K, E2) ∼= Γ(K, E1 ⊕ E2)

are isometric isomorphic AM m-lattice modules. Hence, we can con-
clude that E ∼= E1 ⊕ E2.

3.6.3 On ideal subbundles and ideal submodules

Inspired by Proposition 3.6.1.3, obtained in Section 3.6.1, which gives us
a correspondence between Banach lattice subbundles and Banach lattice
modules, one is prompted naturally to expect a similar result for ideal sub-
modules (see Chapter 2, Definition 2.5.2.3) and what we now call "ideal
subbundles".
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We give the definition of an ideal subbundle below, which is analogous to
the definition of a lattice subbundle (see Definition 3.6.1.1) and we seek to
obtain similar correspondence.

As before, K is compact and p : E −→ K a Banach lattice bundle over K.

Definition 3.6.3.1. A subspace IE ⊆ E is called an ideal subbundle if the following
properties are satisfied.

(i) For each x ∈ K, the set IEx := p−1(x) ∩ IE is a lattice ideal of the fiber Ex,
i.e., IEx ⊆ Ex is a subspace such that if v ∈ IEx, w ∈ Ex then |w| ≤ |v|
implies w ∈ IEx.

(ii) The restriction of the bundle projection p|IE : IE −→ K is open.

If, in addition, IEx ⊆ Ex is a closed subspace for each x ∈ K, then we call IE ⊆ E a
closed ideal subbundle.

Remark 3.6.3.2. (i) Since every lattice ideal is a sublattice, it follows that if
IE ⊆ E is an ideal subbundle, then it is also a lattice subbundle.

(ii) So, if IE ⊆ E is a closed ideal subbundle, then it is also a Banach lattice
subbundle.

The following is an immediate corollary of Proposition 3.6.1.2 and the defi-
nition above.

Corollary 3.6.3.3. A closed ideal subbundle IE ⊆ E is a Banach lattice bundle over
K with the bundle projection, bundle norm, and bundle modulus restricted to F.
Moreover, IE induces an AM m-lattice module Γ(K, IE) over C(K) which is also a
closed ideal submodule of Γ(K, E).

Proof. Since IE ⊆ is a closed ideal subbundle, it is, in particular, a Banach lat-
tice subbundle; and it follows from Proposition 3.6.1.2 that p|IF : IF −→ K is
a Banach lattice bundle over K. Moreover, the lattice of its continuous sec-
tions Γ(K, IE) is an AM m-lattice module over C(K), which is also a Banach
lattice submodule of Γ(K, E).

So, it suffices to show that Γ(K, IE) is a lattice ideal of Γ(K, E). Now, let
s ∈ Γ(K, IE) and r ∈ Γ(K, E) be such that |r| ≤ |s|. This implies that, for
every x ∈ K,

|r(x)|Ex
≤ |s(x)|IEx

.
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Now, since IEx ⊆ Ex is a lattice ideal for every x ∈ K, it follows that r(x) ∈
IEx for every x ∈ K. Hence, r ∈ Γ(K, IE).
This shows that Γ(K, IE) is also a closed ideal submodule of Γ(K, E).

Now, if IΓ ⊆ Γ(K, E) is a closed ideal submodule, it readily follows that IΓ

is also an AM m-lattice module over C(K). So, by Proposition 3.5.0.9, there
exists, up to isometric isomorphism, a unique Banach lattice bundle F over
K such that IΓ is isometrically isomorphic to Γ(K, F).
We claim this Banach lattice bundle F can be identified with a closed ideal
subbundle of E. Moreover, we also obtain a correspondence between closed
ideal subbundles and closed ideal submodules.

This can be seen as a corollary of Proposition 3.6.1.3 for the case of Banach
lattice subbundle and Banach lattice submodule.

Corollary 3.6.3.4. The following statements hold true.

(i) For each closed ideal subbundle IE ⊆ E the induced AM m-lattice module
Γ(K, IE) is a closed ideal submodule of Γ(K, E).

(ii) For each closed ideal submodule IΓ ⊆ Γ(K, E), the induced Banach lattice
bundle IE :=

⋃
x∈K ex(IΓ) over K is a closed ideal subbundle of E, where

ex : IΓ −→ Ex; s 7→ s(x), x ∈ K is the evaluation map.

Moreover, the assignment IE 7→ Γ(K, IE) is a bijection of closed ideal subbun-
dles and closed ideal submodules. The inverse is given by IΓ 7→

⋃
x∈K ex(IΓ).

Proof. (i) This follows from Corollary 3.6.3.3 above.

(ii) Since IΓ ⊆ Γ(K, E) is a closed ideal submodule it is, in particular, a Ba-
nach lattice submodule, and so by Proposition 3.6.1.3 (ii) the induced
Banach lattice bundle IE :=

⋃
x∈K ex(IΓ) over K is a Banach subbundle

of E.

So, it suffices to show that for each (fixed) x ∈ K, IEx = ex(IΓ) ⊆ Ex is
a lattice ideal. Now, let v ∈ IEx and w ∈ Ex be such that |w| ≤ |v|.
Since IΓ ⊆ Γ(K, E) is lattice ideal, and ex : Γ(K, E) −→ Ex is a quotient
map, we can find s ∈ IΓ, r ∈ Γ(K, E) with |r| ≤ |s| such that ex(r) =
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w and ex(s) = v, which implies that r ∈ IΓ and w = ex(r) ∈ IEx . See
also [28, Proposition 3.1, p.65].

This implies that IE =
⋃

x∈K ex(IΓ) is a closed ideal subbundle of E.

Moreover, the fact that the assignment IE 7→ Γ(K, IE) is a bijective
map from closed ideal subbundles of E to closed ideal submodules
of Γ(K, E) immediately follows from Proposition 3.6.1.3 by a similar
argument as in the proof of the conclusion.

3.6.4 Direct sum of positive semiflows and positive
weighted Koopman semigroups

In Subsection 3.6.2, we introduced the concepts of the direct sum E ⊕ F
of two Banach lattice bundles E and F over K, as well as the direct sum
Γ(K, E)⊕ Γ(K, F) of the two AM m-lattice modules Γ(K, E) and Γ(K, F) over
the Banach lattice algebra C(K). In particular, E⊕ F is again a Banach lat-
tice bundle over K, and Γ(K, E) ⊕ Γ(K, F) ∼= Γ(K, E ⊕ F) is again an AM
m-lattice module over C(K), see Proposition 3.6.2.1.

Moreover, earlier in Subsection 3.6.1, we introduced the concepts of Ba-
nach lattice subbundles and we obtained a correspondence between Banach
lattice subbundles and Banach lattice submodules (see Proposition 3.6.1.3).
Again, in Section 3.6.2, we also obtained a correspondence between decom-
positions of Banach lattice bundles and decompositions of spaces of contin-
uous sections (see Proposition 3.6.2.2).

In this direction, following [29, Section 5.2 , p.87-90], we will also introduce
the concepts of direct sums of (positive) semiflows on Banach lattice bun-
dles and as well as direct sums of (positive) weighted Koopman semigroups
on the spaces of continuous sections.

As before, K is compact and (φt)t∈R is a flow on K.

We take two (positive) semiflows (Φt)t≥0 over (φt)t∈R on a Banach lattice
bundle E over K, and (Ψt)t≥0 over (φt)t∈R on Banach lattice bundle F over
K. We claim that, setting

(Φ⊕Ψ)t(u, v) := (Φtu, Ψtv) for all t ≥ 0, (u, v) ∈ E⊕ F,
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defines a (positive) semiflow (Φ⊕Ψ)t≥0 over (φt)t∈R on the Banach lattice
bundle E ⊕ F over K. Indeed, since E ⊕ F is equipped with the product
topology, we obtain that the mapping

Φ⊕Ψ : R+ −→ E⊕ FE⊕F; t 7→ (Φ⊕Ψ)t

is a monoid representation which is jointly continuous, locally bounded,

E⊕ F E⊕ F

K K

pE⊕F

(Φ⊕Ψ)t

pE⊕F

φt

and the diagram above commutes for each t ≥ 0, where pE⊕F : E⊕ F −→
K is the natural associated projection map (see also Definitions 3.4.0.1 and
3.4.0.5). Hence, it suffices to show that the mapping (Φ⊕ Ψ)t : E⊕ F −→
E ⊕ F; (u, v)E⊕F 7→ (Φtu, Ψtv) is a (positive) morphism of Banach lattice
bundles over φt for each t ≥ 0. This follows from (i) and (ii) below.

(i) If (Φt)t≥0 and (Ψt)t≥0 are semiflows over (φt)t∈R on E and F, respec-
tively, then

|(Φ⊕Ψ)t(x)(u, v)| = |(Φt(x)u, Ψt(x)v)| = (Φt(x)|u|, Ψt(x)|v|) =
(Φ⊕ Ψ)t(x)|(u, v)| for all x ∈ K, (u, v) ∈ Ex ⊕ Fx, t ≥ 0 and where
(Φ ⊕ Ψ)t(x) := (Φ ⊕ Ψ)t|Ex⊕Fx

: Ex ⊕ Fx −→ Eφt(x) ⊕ Fφt(x) are the
restriction maps on the fibers Ex ⊕ Fx.

Hence, (Φ⊕Ψ)t≥0 is a semiflow on E⊕ F over (φt)t∈R on K.

(ii) If (Φt)t≥0 and (Ψt)t≥0 are positive semiflows over (φt)t∈R on E and F,
respectively, then it follows from the argument in (i) above that (Φ⊕
Ψ)t≥0 is a positive semiflow on E⊕ F over (φt)t∈R on K.

Now, if (Φt)t≥0 and (Ψt)t≥0 are two (positive) semiflows over (φt)t∈R on
E and F, respectively, then we consider the two (positive) weighted Koop-
man semigroups (TΦ(t))t≥0 on Γ(K, E) over the Koopman group Tφ(t)t∈R

on C(K) and (TΨ(t))t≥0 on Γ(K, F) over the Koopman group Tφ(t)t∈R on
C(K). We claim that setting

(TΦ ⊕ TΨ)(t) := TΦ(t)⊕ TΨ(t) for all t ≥ 0
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defines a (positive) weighted Koopman semigroup (TΦ(t))t≥0⊕ (TΨ)(t))t≥0

on Γ(K, E) ⊕ Γ(K, F) over the Koopman group Tφ(t)t∈R on C(K). Indeed,
since Γ(K, E)⊕ Γ(K, F) is equipped with product topology, we obtain that
the mapping

TΦ ⊕ TΨ : R+ −→ Γ(K, E)⊕ Γ(K, F)Γ(K,E)⊕Γ(K,F); t 7→ TΦ(t)⊕ TΨ(t)

is a strongly continuous semigroup representation on Γ(K, E)⊕ Γ(K, F) (see
also Chapter 2 (Definition 2.3.4.1)) such that (TΦ⊕TΨ)(t) f (s1, s2) = Tφ(t) f ·
(TΦ ⊕ TΨ)(s1, s2) for all t ≥ 0, f ∈ C(K), s1 ∈ Γ(K, E), s2 ∈ Γ(K, F). Hence,
it suffices to show that the mapping (TΦ ⊕ TΨ)(t) : Γ(K, E)⊕ Γ(K, F) −→
Γ(K, E)⊕ Γ(K, F); (s1, s2)Γ(K,E)⊕Γ(K,F) 7→ TΦ(t)⊕ TΨ(t)(s1, s2) is a (positive)
lattice Tφ(t)-homomorphism for every t ≥ 0. This follows from (i) and (ii)
below.

(i) If (TΦ(t))t≥0 and (TΨ(t))t≥0 are weighted Koopman semigroups over
Tφ(t)t∈R on Γ(K, E) and Γ(K, F), respectively, which is the case if and
only if (Φt)t≥0 and (Ψt)t≥0 are semiflows over (φt)t∈R on E and F,
respectively, then

|(TΦ ⊕ TΨ)(t)(s1, s2)| = |(TΦ(t)s1, TΨ(t)s2)| = (TΦ(t)|s1|, TΨ(t)|s2|) =
(TΦ ⊕ TΨ)(t)|(s1, s2)| for all t ≥ 0, s1 ∈ Γ(K, E), s2 ∈ Γ(K, F).

Hence, (TΦ(t))t≥0 ⊕ (TΨ)(t))t≥0 is a weighted Koopman semigroup
on Γ(K, E)⊕ Γ(K, F) over the Koopman group Tφ(t)t∈R on C(K).

(ii) If (TΦ(t))t≥0 and (TΨ(t))t≥0 are positive weighted Koopman semi-
groups over Tφ(t)t∈R on Γ(K, E) and Γ(K, F), respectively, which is
the case if and only if (Φt)t≥0 and (Ψt)t≥0 are positive semiflows over
(φt)t∈R on E and F, respectively, then it follows from the argument
in (i) above that (TΦ(t))t≥0⊕ (TΨ)(t))t≥0 is a positive weighted Koop-
man semigroup on Γ(K, E)⊕Γ(K, F) over the Koopman group Tφ(t)t∈R

on C(K).

With the construction above, and using Proposition 3.6.2.1, we also claim
that the direct sum (TΦ(t))t≥0⊕ (TΨ(t))t≥0 on Γ(K, E)⊕ Γ(K, F) of two (pos-
itive) weighted Koopman semigroups (TΦ(t))t≥0 and (TΨ(t))t≥0 over Tφ(t)t∈R

on Γ(K, E) and Γ(K, F), respectively, can uniquely be identified with the
(positive) weighted Koopman semigroup (TΦ⊕Ψ(t))t≥0 on Γ(K, E⊕ F) over
Tφ(t)t∈R on C(K).
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Proposition 3.6.4.1. In the situation above, if (Φt)t≥0 and (Ψt)t≥0 are (positive)
semiflows over (φt)t∈R on E and F, respectively, then

(TΦ(t))t≥0 ⊕ (TΨ)(t))t≥0
∼= (TΦ⊕Ψ(t))t≥0.

In particular, the mapping

Θ : Γ(K, E)⊕ Γ(K, F) −→ Γ(K, E⊕ F); (s1, s2) 7→ s1 ⊕ s2

with (s1 ⊕ s2)(x) := (s1(x), s2(x)) s1,∈ Γ(K, E), s2 ∈ Γ(K, F), and x ∈ K
is an isometric isomorphism of (positive) R+-dynamical AM m-lattice modules
(Γ(K, E)⊕ Γ(K, F), TΦ ⊕ TΨ) and (Γ(K, E⊕ F), TΦ⊕Ψ) over Tφ(t)t∈R on C(K)
(see Chapter 2, Definition 2.3.5.1 and Remark 2.3.5.2).

Moreover, ||(TΦ ⊕ TΨ)(t)|| = ||TΦ⊕Ψ(t)|| = ||(Φ⊕Ψ)(t)|| for all t ≥ 0.

Proof. (i) First, we note that, by Proposition 3.6.2.1, Θ : Γ(K, E)⊕Γ(K, F) −→
Γ(K, E⊕ F) is an isometric lattice module isomorphism, i.e., Γ(K, E)⊕
Γ(K, F) ∼= Γ(K, E⊕ F) as AM m-lattice modules over C(K).

(ii) If (Φt)t≥0 and (Ψt)t≥0 are (positive) semiflows over (φt)t∈R on E and
F, respectively, then the direct sum (Φ ⊕ Ψ)t≥0 is a (positive) semi-
flow on E⊕ F over (φt)t∈R on K. So, the induced weighted semigroup
(TΦ⊕Ψ(t))t≥0 on Γ(K, E⊕ F) is a (positive) weighted Koopman semi-
group over Tφ(t)t∈R on C(K).

(iii) Also, if (Φt)t≥0 and (Ψt)t≥0 are (positive) semiflows over (φt)t∈R on
E and F, respectively, then the direct sum (TΦ(t))t≥0 ⊕ (TΨ)(t))t≥0 on
Γ(K, E)⊕ Γ(K, F) of the induced (positive) weighted Koopman semi-
groups (TΦ(t))t≥0 and (TΨ(t))t≥0 over Tφ(t)t∈R on Γ(K, E) and Γ(K, F),
respectively, is a (positive) weighted Koopman semigroup on Γ(K, E)⊕
Γ(K, F) over Tφ(t)t∈R.

(iv) Hence, in either case (i.e., positive or lattice homomorphism) it suffices
to show that the diagram

Γ(K, E)⊕ Γ(K, F) Γ(K, E⊕ F)

Γ(K, E)⊕ Γ(K, F) Γ(K, E⊕ F)

(TΦ⊕TΨ)(t)

Θ

TΦ⊕Ψ(t)

Θ
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commutes for all t ≥ 0. This follows immediately, since

Θ(TΦ ⊕ TΨ)(t)(s1, s2) = Θ(TΦ(t)s1, TΨ(t)s2)

= TΦ(t)s1 ⊕ TΨ(t)s2

=TΦ⊕Ψ(t)(s1 ⊕ s2)

=TΦ⊕Ψ(t)Θ((s1, s2))

for all t ≥ 0, s1 ∈ Γ(K, E), s2 ∈ Γ(K, F).

This shows that (TΦ(t))t≥0 ⊕ (TΨ)(t))t≥0
∼= (TΦ⊕Ψ(t))t≥0.

(v) Moreover, by Proposition 3.5.0.5, we have that ||TΦ⊕Ψ(t)|| = ||(Φ ⊕
Ψ)(t)|| for all t ≥ 0, and since Θ : Γ(K, E)⊕ Γ(K, F) −→ Γ(K, E⊕ F) is
a surjective-isometry, by (iv) above it follows that ||(TΦ ⊕ TΨ)(t)|| =
||TΦ⊕Ψ(t)|| = ||(Φ⊕Ψ)(t)|| for all t ≥ 0.

The result above in Proposition 3.6.4.1 combined with Proposition 3.6.2.2,
yields a correspondence between the decomposition of (positive) semiflows
on a Banach lattice bundle and the decomposition of the corresponding
(positive) weighted Koopman semigroups on the lattice of continuous sec-
tions.

Proposition 3.6.4.2. Let E be Banach lattice bundle over K and Γ(K, E) the cor-
responding AM m-lattice module over C(K). Moreover, let (Φt)t≥0 be a positive
semiflow on E over (φt)t∈R on K, and (TΦ(t))t≥0 the associated positive weighted
Koopman semigroup on Γ(K, E) over Tφ(t)t∈R on C(K). Then, the following hold
true.

(i) If there are two non-trivial Banach lattice subbundles E1, E2 ⊆ E and two
positive semiflows (Φ1

t )t≥0 on E1 and (Φ2
t )t≥0 on E2 over (φt)t∈R on K such

that
(Φt)t≥0

∼= (Φ1
t )t≥0 ⊕ (Φ2

t )t≥0 on E ∼= E1 ⊕ E2,

then Γ(K, E1) and Γ(K, E2) are non-trivial Banach lattice submodules of
Γ(K, E), and

(TΦ(t))t≥0
∼= (TΦ1(t))t≥0⊕ (TΦ2(t)) on Γ(K, E) ∼= Γ(K, E1)⊕Γ(K, E2).

Moreover, ||Φ1
t || = ||TΦ1(t)|| and ||Φ2

t || = ||TΦ2(t)|| for all t ≥ 0.
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(ii) If there are two non-trivial Banach lattice submodules Γ1, Γ2 ⊆ Γ(K, E), and
two positive weighted semigroups (T1(t))t≥0 on Γ1 and (T2(t))t≥0 on Γ2

over Tφ(t)t∈R on C(K) such that

(TΦ(t))t≥0
∼= (T1(t))t≥0 ⊕ (T2(t))t≥0 on Γ(K, E) ∼= Γ1 ⊕ Γ2,

then there are two non-trivial Banach lattice subbundles E1, E2 ⊆ E and two
positive semiflows (Φ1

t )t≥0 on E1 and (Φ2
t )t≥0 on E2 over (φt)t∈R on K such

that
(Φt)t≥0

∼= (Φ1
t )t≥0 ⊕ (Φ2

t )t≥0 on E ∼= E1 ⊕ E2.

Moreover, ||T1(t)|| = ||Φ1
t || and ||T2(t)|| = ||Φ2

t || for all t ≥ 0.

Proof. (i) By Proposition 3.6.2.2 (i), if E1, E2 ⊆ E are two non-trivial Ba-
nach lattice subbundles such that E ∼= E1 ⊕ E2, it follows that Γ(K, E1)

and Γ(K, E2) are two non-trivial Banach lattice submodules of Γ(K, E)
such that Γ(K, E) ∼= Γ(K, E1)⊕ Γ(K, E2).

Since, E1 and E2 are also Banach lattice bundles over K, if (Φ1
t )t≥0 and

(Φ2
t )t≥0 are positive semiflows over (φt)t∈R on E1 and E2, respectively,

such that (Φt)t≥0
∼= (Φ1

t )t≥0 ⊕ (Φ2
t )t≥0, it follows from Proposition

3.6.4.1 that

(TΦ(t))t≥0
∼= (TΦ1(t))t≥0⊕ (TΦ2(t)) on Γ(K, E) ∼= Γ(K, E1)⊕Γ(K, E2).

Moreover, by Proposition 3.5.0.5, we have that ||Φ1
t || = ||TΦ1(t)|| and

||Φ2
t || = ||TΦ2(t)|| for all t ≥ 0.

(ii) By Proposition 3.6.2.2 (ii), if Γ1, Γ2 ⊆ Γ(K, E) are two non-trivial Ba-
nach lattice submodules such that Γ(K, E) ∼= Γ1⊕ Γ2, then we can find
two non-trivial lattice subbundles E1, E2 ⊆ E such that E ∼= E1 ⊕ E2,
Γ1
∼= Γ(K, E1) and Γ2

∼= Γ(K, E2).

Since Γ1
∼= Γ(K, E1) and Γ2

∼= Γ(K, E2) are also AM m-lattice modules
over C(K), if (T1(t))t≥0 and (T2(t))t≥0 are positive weighted semi-
groups over Tφ(t)t∈R on Γ1 and on Γ2, respectively, by Proposition
3.5.0.5, we obtain unique (up to isometric isomorphism) positive semi-
flows (Φ1

t )t≥0 on E1 and (Φ2
t )t≥0 on E2 over (φt)t∈R on K

such that

(T1(t))t≥0
∼= (TΦ1(t))t≥0 on Γ1

∼= Γ(K, E1), and
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(T2(t))t≥0
∼= (TΦ2(t))t≥0 on Γ2

∼= Γ(K, E2).

Therefore, since (TΦ(t))t≥0
∼= (T1(t))t≥0 ⊕ (T2(t))t≥0 on Γ(K, E) ∼=

Γ1 ⊕ Γ2 by assumption, it follows that

(TΦ(t))t≥0
∼= (T1(t))t≥0 ⊕ (T2(t))t≥0 on Γ(K, E) ∼= Γ1 ⊕ Γ2

∼= (TΦ1(t))t≥0 ⊕ (TΦ2(t))t≥0 on Γ(K, E) ∼= Γ(K, E1)⊕ Γ(K, E2)

∼= (TΦ1⊕Φ2(t))t≥0 on Γ(K, E) ∼= Γ(K, E1 ⊕ E2)

where we have used Proposition 3.6.4.1 in the last step above.

Therefore, we can uniquely (up to isometric isomorphism) identify the
positive semiflows (Φt)t≥0

∼= (Φ1
t )t≥0 ⊕ (Φ2

t )t≥0 on the Banach lattice
bundles E ∼= E1 ⊕ E2.

Moreover, by Proposition 3.5.0.5, we have that ||T1(t)|| = ||Φ1
t || and

||T2(t)|| = ||Φ2
t || for all t ≥ 0.

3.6.5 Banach lattices of continuous sections and order
structures

In this Subsection, we consider certain order structures of the Banach lattice
Γ0(Ω, E) of continuous sections vanishing at infinity of a topological Banach
lattice bundle E over a locally compact space Ω. The order structures under
consideration are; non-emptiness of the positive cone, (σ-) order complete-
ness, and order continuity of the norm. We note that, by Proposition 3.5.0.9,
we are actually considering these order structures for an AM m-lattice mod-
ule over C0(Ω) (see Chapter 4, Section 4.2).

We start with the special situation of Example 3.3.0.6(i). That is, given a lo-
cally compact space Ω and a Banach lattice Z, under what conditions does
the Banach lattice C0(Ω, Z) satisfy any of the order structures under consid-
eration? In this direction, we collect the following results due to Ercan and
Wickstead ([13]).

Proposition 3.6.5.1. Let Z be a Banach lattice, Ω a locally compact space, and
E := Ω×Z the so-called trivial Banach lattice bundle in Example 3.3.0.6(i). More-
over, let Γ0(Ω, E) ∼= C0(Ω, Z) be the associated AM m-lattice module over C0(Ω).
Then we have the following.
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(A) Consider the following statements.

(i) The interior IntC0(Ω, Z)+ ̸= ∅.

(ii) Ω = K is compact and the interior IntZ+ ̸= ∅.

Then (i) ⇐⇒ (ii).

(B) Consider the following statements.

(i) C0(Ω, Z) is σ-order complete.

(ii) Ω is discrete and Z is σ-order complete.

(iii) C0(Ω) is σ-order complete and Z has compact order intervals.

(iv) Ω = K is infinite, compact, and C(K, Z) is σ-order complete.

(v) Z has compact order intervals.

(vi) If U ⊆ K is an open Fσ subset and s : U −→ Z is a continuous
order bounded function then s has a continuous extension, s : K −→ Z.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii). Moreover, if K is totally disconnected (i.e.,
quasi-Stonian), then (iv) ⇐⇒ (v) ⇐⇒ (vi).

(C) Consider the following statements.

(i) C0(Ω, Z) is order complete.

(ii) Ω is discrete and Z is order complete.

(iii) C0(Ω) is order complete and Z has compact order intervals.

(iv) Ω = K is infinite, compact, and C(K, Z) is order complete.

(v) Z has compact order intervals.

(vi) If U ⊆ K is an open subset and s : U −→ Z is a continuous order
bounded function then s has a continuous extension, s : K −→ Z.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii). Moreover, if K is extremally disconnected
(i.e., Stonian), then (iv) ⇐⇒ (v) ⇐⇒ (vi).

(D) The following are equivalent.

(i) C0(Ω, Z) has order continuous norm.

(ii) Ω is discrete and Z has order continuous norm.

Proof. We note again that, throughout our study, a locally compact space is
assumed to be Hausdorff by definition.
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(A) By [13, Proposition 2.1, p.123], we obtain that: the mapping C0(Ω) −→
C0(Ω, Z); f 7→ f ⊗ z, for each (fixed) positive element z ∈ Z+, and the
mapping Z −→ C0(Ω, Z); z 7→ f ⊗ z, for each (fixed) positive function
f ∈ C0(Ω), respectively, are order continuous lattice homomorphisms,
with f ⊗ z(x) := f (x)z.

So, if z0 ∈ Z+ is a (fixed) positive element such that ||z0|| = 1, then the
mapping C0(Ω) −→ C0(Ω, Z); f 7→ f ⊗ z0 is, in addition, an isometry
since || f ⊗ z0|| = supx∈Ω || f (x)z0|| = supx∈Ω | f (x)| = || f || for all
f ∈ C0(Ω). Similarly, if f0 ∈ C0(Ω) is a (fixed) positive function such
that || f0|| = 1, the mapping Z −→ C0(Ω, Z); z 7→ f0 ⊗ z is also an
isometry.

From these identifications, it follows that if the interior IntC0(Ω, Z)+ ̸=
∅, then it follows necessarily that the interior IntC0(Ω)+ ̸= ∅ which is
the case only if Ω = K is compact (see Appendix B, Theorem B.0.0.6);
and also the interior IntZ+ ̸= ∅. Thus, (i) =⇒ (ii).

Now, assume (ii) holds. WLOG, we identify Z = C(M) for some com-
pact space M (see also Appendix B, Theorem B.0.0.6), and define the
mapping T : C(K, C(M)) −→ C(K × M); s 7→ Ts(x, q) := s(x)q for
(x, q) ∈ K ×M. It is clearly linear, and since |Ts|(x, q) = |s(x)q| =

|s|(x)q = T|s|(x, q) for all (x, q) ∈ K×M and s ∈ C(K, C(M)), it is
a lattice homomorphism. Moreover, it is an isometry, since

||s|| = sup
x∈K
||s(x)|| = sup

x∈K
sup
q∈M
|s(x)q| = sup

(x,q)∈K×M
|s(x)q| = ||Ts||

for each s ∈ C(K, C(M)). To show surjectivity, suppose w ∈ C(K ×
M), i.e., the mapping K × M −→ K; (x, q) 7→ w(x, q) is continuous.
For each x ∈ K, we can define the continuous mapping wx : M −→
K; q 7→ w(x, q), and choose a mapping s ∈ C(K, C(M)) such that
s(x) = wx for each x ∈ K. It follows that Ts(x, q) = wx(q) = w(x, q)
for (x, q) ∈ K×M. Thus, T : C(K, C(M)) −→ C(K×M) is an isomet-
ric lattice isomorphism which implies the interior IntC(K, Z)+ ̸= ∅.

(B) The equivalence of (i), (ii) and (iii) follows from [13, Theorem 3.2,
p.126]. Moreover, the equivalence of (iv), (v) and (vi) follows also from
[13, Theorem 5.13, p.133].
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(C) The equivalence of (i), (ii) and (iii) follows from [13, Theorem 3.3,
p.126]. Moreover, the equivalence of (iv), (v) and (vi) follows also from
[13, Theorem 5.12, p.133].

(D) Similarly, by [13, Theorem 4.1, p.126] this equivalence holds.

Proposition 3.6.5.1 has provided the necessary conditions for the order struc-
tures under consideration. Using these results and some of their arguments,
we extend the result to the general case of Banach lattices of continuous
sections in the next proposition. To this end, the following lemma will be
useful.

Lemma 3.6.5.2. Let E be a topological Banach lattice bundle over a locally compact
space Ω, and Γ0(Ω, E) the associated AM m-lattice module over C0(Ω).

(i) For each (fixed) positive continuous section s ∈ Γ0(Ω, E)+, the linear map-
ping

C0(Ω) −→ Γ0(Ω, E); f 7→ f · s := [ x 7→ f (x)s(x)]

is an order continuous lattice homomorphism.

(ii) Moreover, if Ω = K is compact, and we choose a (fixed) positive continuous
section s ∈ Γ(K, E)+ with ||s(x)||Ex = 1 for all x ∈ K, then the mapping
in (i) above is, in addition, an isometry, i.e., || f · s|| = || f || for all f ∈ C(K).

Proof. (i) It is clear that the linear mapping is a lattice homomorphism,
since | f · s| = | f | · s for all f ∈ C0(Ω). Now, we show that it is order
continuous. By [13, Proposition 2.1, p.123], as in the proof of Proposi-
tion 3.6.5.1 A(i), for x ∈ Ω, the mapping, C0(Ω) −→ C0(Ω, Ex); f 7→
f ⊗ vx for each (fixed) positive element vx ∈ E+

x is an order continuous
lattice homomorphism, with f ⊗ vx(x) := f (x)vx.

Now, suppose fγ ↓ 0 in C0(Ω). By setting vx := s(x), it follows from
the above that fγ ⊗ s(x) ↓ 0 in C0(Ω, Ex), for each x ∈ Ω, which then
implies fγ · s ↓ 0 in Γ0(Ω, E) as claimed.
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(ii) Observing that, for any f ∈ C(K),

|| f · s|| = sup
x∈K
|| f (x)s(x)||Ex = sup

x∈K
| f (x)| = || f |, |

proves the assertion.

Proposition 3.6.5.3. Let E be a topological Banach lattice bundle over a locally
compact space Ω, and Γ0(Ω, E) the associated AM m-lattice module over C0(Ω).
Then we have the following.

(A) Consider the following statements.

(i) The interior IntΓ0(Ω, E)+ ̸= ∅.

(ii) Ω = K is compact and the interior IntE+
x ̸= ∅ for each x ∈ K.

Then (i) =⇒ (ii).

(B) Consider the following statements.

(i) Γ0(Ω, E) is σ-order complete.

(ii) Ω is discrete and Ex is σ-order complete for each x ∈ Ω .

(iii) C0(Ω) is σ-order complete and Ex has compact order intervals for
each x ∈ Ω.

(iv) Ω = K is infinite, compact, and Γ(K, E) is σ-order complete.

(v) Ex has compact order intervals for each x ∈ K.

(vi) If U ⊆ K is an open Fσ-subset and s : U −→ E is a continuous
order bounded local section, i.e., s : U −→ E is a continuous local section
with ±s ≤ so |U for some so ∈ Γ(K, E)+, then s has a continuous extension,
s : K −→ E.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii). Moreover, if K is totally disconnected (i.e.,
quasi-Stonian), then (iv) ⇐⇒ (v) =⇒ (vi).

(C) Consider the following statements.

(i) Γ0(Ω, E) is order complete.

(ii) Ω is discrete and Ex is order complete for each x ∈ Ω .

(iii) C0(Ω) is order complete and Ex has compact order intervals for each
x ∈ Ω.
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(iv) Ω = K is infinite, compact, and Γ(K, E) is order complete.

(v) Ex has compact order intervals for each x ∈ K.

(vi) If U ⊆ K is an open subset and s : U −→ E is a continuous order
bounded local section then s has a continuous extension, s : K −→ E.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii). Moreover, if K is extremally disconnected
(i.e., Stonian), then (iv) ⇐⇒ (v) =⇒ (vi).

(D) The following are equivalent.

(i) Γ0(Ω, E) has order continuous norm.

(ii) Ω is discrete and Ex has order continuous norm for each x ∈ Ω.

Proof. (A) (i) ⇒ (ii): This implication follows from Proposition 3.6.5.1(A)
and Lemma 3.6.5.2. Indeed, assume r ∈IntΓ0(Ω, E)+, and, on the con-
trary, suppose there exists x0 ∈ Ω such that the interior IntE+

x0
is empty.

Since r(x0) ∈ E+
x0

, it follows that, for all open sets U ⊆ Ω containing
x0, and for all ε > 0, the set difference S(s, U, ε)+ \ r(x0) ⊈ E+

x0
, for all

s ∈ Γ(K, E)+ with s(x0) = r(x0). This is the case, since, by Proposition
3.3.0.4, the sets of the form S(s, U, ε)+ form a base for the subspace
topology on the set of positive elements E+ of E. This is, however, a
contradiction to the assumption.

(B) By Proposition 3.6.5.1(B), the argument here is essentially similar to
(C) below.

(C) Combining Lemma 3.6.5.2 and Proposition 3.6.5.1(C), the equivalent
conditions (ii) and (iii) necessarily hold whenever (i) holds. Thus, it
suffices to show that (ii) implies (i) for the first part of the assertion.

Now assume (ii) holds. Let A ⊆ Γ0(Ω, E) be an order bounded sub-
set, i.e., A ⊆ [s1, s2] := {s ∈ Γ0(Ω, E) : s1 ≤ s ≤ s2} for some s1, s2 ∈
Γ0(Ω, E). Since, for each x ∈ Ω, the (quotient) evaluation map ex :
Γ0(Ω, E) −→ Ex is an order continuous lattice homomorphism (see
Remark 3.5.0.1(iii)), we have that

ex(A) := {s(x) : s ∈ A} ⊆ [s1(x), s2(x)] := {v ∈ Ex : s1(x) ≤ v ≤ s2(x)} .

Given that Ex is order complete for each x ∈ Ω, we can find vx ∈ Ex

such that sup ex(A) = vx ∈ [s1(x), s2(x)], and define a section

so : Ω −→ E; x 7→ vx
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which is continuous since Ω is discrete. It thus follows that so ∈
Γ0(Ω, E) and supA = so ∈ [s1, s2], as required.

We now assume that Ω = K is an infinite compact Stonian space. Since
this, in particular, implies that C0(Ω) = C(K) is order complete, the
equivalence of conditions (iv) and (v) holds by equivalent condition
(iii). Thus, it suffices to show that (iv) implies (vi) for the second part
of the assertion.

WLOG, let s : U −→ E be a continuous local section with 0 ≤ s ≤ so |U
for some so ∈ Γ(K, E)+ and U ⊆ K an open subset. If we take a
maximal family (Uγ)γ∈I of disjoint open and closed subsets of U, and
define sections sγ : K −→ E by

sγ(x) :=

s(x) if x ∈ Uγ

0x if x /∈ Uγ,

then {sγ : γ ∈ I} is a subset of Γ(K, E) which is bounded above by,
say so ∈ Γ(K, E)+. Since Γ(K, E) is order complete, we can find a
continuous section s : K −→ E such that supγ∈I sγ = s ≤ so. Then
we must have that s|U = s, and s : K −→ E can thus be seen to be the
desired extension.

(D) As in (C) above; combining Lemma 3.6.5.2 and Proposition 3.6.5.1(C)
ascertains the necessity of equivalent conditions (ii) and (iii) whenever
(i) holds. Thus, it suffices also to show that (ii) implies (i).

Now assume (ii) holds. Since order continuity of the norm of Ex also
implies it is order complete, for each x ∈ Ω, (C) above implies that
Γ0(Ω, E) is order complete. Hence, as in the proof of Proposition
3.6.5.1(D) in [13, Theorem 4.1, p.126], it suffices to show that every or-
der bounded disjoint sequence 5 of positive continuous sections must
converge in norm to zero.

Therefore, let (sn)n∈N ⊆ Γ0(Ω, E) be a disjoint sequence of positive
continuous sections with 0 ≤ sn ≤ s for some s ∈ Γ0(Ω, E). Given
ε > 0, for each n ∈N, we have that the set

{x ∈ Ω : ε ≤ ||sn(x)||Ex} ⊆ {x ∈ Ω : ε ≤ ||s(x)||Ex} = {x1, · · · , xk}
5 a sequence (sn)n∈N of pairwise lattice disjoint elements, i.e., sn ⊥ sm ∀n ̸= m.
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is compact in Ω, and hence finite, for some k ∈N, since Ω is discrete.

For each 1 ≤ j ≤ k, it follows that ((sn)(xj))n∈N ⊆ Exj is a disjoint
sequence of positive elements which is bounded above by s(xj) ∈ Exj .
Since Ex has order continuous norm for each x ∈ Ω, we have that,
for each 1 ≤ j ≤ k, ||(sn)(xj)||Exj

→ 0 as n → ∞. We can choose
nj ∈ N such that ||(sn)(xj)||Exj

< ε whenever n > nj, and set n0 :=
max {n1, · · · , nk} .

Now, for each x ∈ Ω, either x /∈ {x1, · · · , xk} in which case we have
that ||sn(x)||Ex < ε for all n ∈ N, or x ∈ {x1, · · · , xk} which also
implies ||sn(x)||Ex < ε whenever n > n0. As a result, we have that
||sn|| < ε for all n > n0, and thus Γ0(Ω, E) has order continuous norm.

3.6.6 Banach lattices of continuous sections and their
centres

In this Subsection, we characterise the space Z(Γ0(Ω, E)) of central opera-
tors (see Appendix A, Example A.1.0.4(iii)) of the Banach lattice Γ0(Ω, E) of
continuous sections vanishing at infinity of a topological Banach lattice bun-
dle E over a locally compact space Ω. We also note that, by Proposition
3.5.0.9, we are actually characterising the centre of an AM m-lattice module
over C0(Ω). Although this is of independent interest, it will be a useful tool
in the study of the so-called multiplication operators on these Banach lat-
tices.

We also start with the special situation of Example 3.3.0.6(i). That is, given a
locally compact space Ω and a Banach lattice Z, how can we characterise the
centre Z(C0(Ω, Z)) of the Banach lattice C0(Ω, Z)? In this direction, we also
collect certain results due to Ercan and Wickstead ([13]). We, in particular,
claim that its centre Z(C0(Ω, Z)) is again an AM m-lattice module over the
centre Z(C0(Ω)) ∼= Cb(Ω).

Proposition 3.6.6.1. Let Z be a Banach lattice, Ω a locally compact space, E :=
Ω× Z the trivial Banach lattice bundle in Example 3.3.0.6(i), and let Γ0(Ω, E) ∼=
C0(Ω, Z) be the associated AM m-lattice module over C0(Ω). Furthermore, if we
endow the centre Z(Z) ⊆ L (Z) of Z by the strong operator topology and denote
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it by Z(Z)s, we let Ez := Ω×Z(Z)s be the trivial Banach lattice bundle with
fiber Z(Z).

Then, we have the following.

(A) The mapping Cb(Ω,Z(Z)s) −→ Z(C0(Ω, Z)); ϕ 7→ Tϕ defined by

Tϕs := ϕ ◦ s,

i.e., Tϕs(x) = ϕ(x)s(x) for all x ∈ Ω, ϕ ∈ Cb(Ω,Z(Z)s) and s ∈ C0(Ω, Z),

is an isomorphism of commutative 1-Banach lattice algebras.

(B) Moreover, the mapping Cb(Ω,Z(Z)s) −→ Γb(Ω, Ez); ϕ 7→ ϕ̃ defined by

ϕ̃(x) := (x, ϕ(x)) for all x ∈ Ω, and ϕ ∈ Cb(Ω,Z(Z)s)

is:

(i) an isomorphism of AM m-lattice modules over Cb(Ω) ; and

(ii) an isomorphism of commutative 1-Banach lattice algebras

from Cb(Ω,Z(Z)s) onto the Banach lattice of bounded continuous sections
Γb(Ω, Ez) associated with Ez.

Proof. (A) This follows immediately from [13, Theorem 6.2, p.135].

(B) We proceed in the following manner (a) - (b) by which we prove (i)
and then (ii) afterwards.

(a) First, we note that, the (bilinear) pairing

Cb(Ω)×Cb(Ω,Z(Z)s) −→ Cb(Ω,Z(Z)s); ( f , ϕ) 7→ f ·ϕ := [x 7→ f (x)ϕ(x)]

turns Cb(Ω,Z(Z)s) into a Banach module over Cb(Ω), since

|| f ·ϕ|| = sup
x∈Ω
|| f (x)ϕ(x)||L (Z) ≤ sup

x∈Ω
| f (x)| sup

x∈Ω
||ϕ(x)||L (Z) = || f ||||ϕ||

for all f ∈ Cb(Ω) and ϕ ∈ Cb(Ω,Z(Z)s). Moreover, for any f ∈
Cb(Ω) and ϕ ∈ Cb(Ω,Z(Z)s),

| f · ϕ|(x) = | f (x)||ϕ(x)| = (| f | · |ϕ|)(x)
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for all x ∈ Ω, which implies that | f · ϕ| = (| f | ·|ϕ|), so that Cb(Ω,Z(Z)s)

is indeed an m-Banach lattice module over the commutative m-Banach
lattice algebra Cb(Ω) (see also Chapter 2, Definition 2.2.2.4).

Similarly, since pz : Ez −→ Ω is a trivial topological Banach lattice
bundle, with fiber p−1

z (x) := Z(Z) for all x ∈ Ω, the Banach lattice of
its bounded continuous sections

Γb(Ω, Ez) := {s : Ω −→ Ez continuous , pz ◦ s = IdΩ

and ||s|| := sup
x∈Ω
||s(x)||L (Z) < ∞

}
is, in particular, a Banach lattice. Moreover, by our consideration as
above, Γb(Ω, Ez) is also an m-Banach lattice module over Cb(Ω).

(b) It is clear from (a) above that the mapping ϕ 7→ ϕ̃ from Cb(Ω,Z(Z)s)

into Γb(Ω, Ez) is linear and bijective, i.e., s ∈ Γb(Ω, Ez) if and only if
there exists a unique ϕ ∈ Cb(Ω,Z(Z)s) such that s(x) = (x, ϕ(x)) =

ϕ̃(x) for all x ∈ Ω.

Since |ϕ̃|(x) = (x, |ϕ(x)|) = (x, |ϕ|(x)) = ˜|ϕ|(x) for all x ∈ Ω
and ϕ ∈ Cb(Ω,Z(Z)s), the mapping ϕ 7→ ϕ̃ is also a lattice homomor-
phism. Moreover, it is a Cb(Ω)-module homomorphism, since, for any
f ∈ Cb(Ω) and ϕ ∈ Cb(Ω,Z(Z)s),

˜f ϕ(x) = (x, f (x)ϕ(x)) = ( f · ϕ̃)(x)

for all x ∈ Ω.

Finally, the lattice module homomorphism ϕ 7→ ϕ̃ is an isometry, since

||ϕ̃|| = sup
x∈Ω
||ϕ(x)||L (Z) = ||ϕ||

for all ϕ ∈ Cb(Ω,Z(Z)s).

Hence, we obtain that Cb(Ω,Z(Z)s) ∼= Γb(Ω, Ez) is an isomorphism of
AM m-lattice modules over Cb(Ω) (see Chapter 2, Remark 2.3.2.2(iii)
and also Proposition 3.5.0.9). This proves (B)(i).

To prove (B)(ii), we note that pz : Ez −→ Ω is, in addition, a topolog-
ical bundle of commutative unital Banach algebras with (fixed) fiber
p−1

z (x) = Z(Z) for all x ∈ Ω, which we can call trivial (see [20, Propo-
sition 1.1, p.136]). As such, its space of bounded continuous sections
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Γb(Ω, Ez) is, in addition, a commutative unital Banach algebra. In-
deed, we have that the mapping (bundle product)

Ez ∨Ω Ez −→ Ez; (q1, q2)Z(Z) 7→ q1 ◦ q2

is continuous, where Ez ∨Ω Ez := {(q1, q2) ∈ Z(Z)×Z(Z)} ⊆ Ez ×
Ez is equipped with the subspace topology.

Moreover, ϕ1 ◦ϕ2 = ϕ2 ◦ϕ1 ∈ Cb(Ω,Z(Z) for any ϕ1, ϕ2 ∈ Cb(Ω,Z(Z)
if and only if ϕ̃2 ◦ ϕ̃2 = ϕ̃2 ◦ ϕ̃1 ∈ Γb(Ω, Ez) implies that Γb(Ω, Ez) is
indeed a commutative unital Banach algebra, and the mapping ϕ 7→ ϕ̃

is, in particular, a bijective morphism of Banach lattice algebras pre-
serving the units.

Proposition 3.6.6.1 has provided necessary indications for the characterisa-
tion of the centre of a (general) AM m-lattice module, by obtaining proper-
ties of the centre for the case where the AM m-lattice module is obtained by
starting with the trivial Banach lattice bundle. Using these results and some
of their arguments, we extend to the general AM m-lattice modules in the
next proposition.

Proposition 3.6.6.2. Let E be a topological Banach lattice bundle over a locally
compact space Ω, Γ0(Ω, E) the associated AM m-lattice module over C0(Ω), and
Z(Γ0(Ω, E)) the centre of the Banach lattice Γ0(Ω, E). Furthermore, for each
x ∈ Ω, let Z(Ex)s ⊆ L (Ex) be the centre of the Banach lattice Ex equipped with
the strong operator topology. Then we have the following.

(A) For each x ∈ Ω, the mapping qx : Z(Γ0(Ω, E)) −→ Z(Ex); T 7→ qx(T )
defined by

qx(T )s(x) := T s(x) for all s ∈ Γ0(Ω, E)

is a morphism of Banach lattice algebras (see Chapter 2, Definition 2.3.1.1).
In particular,

(i) qx(I) = Ix , where I ∈ Z(Γ0(Ω, E)) and Ix ∈ Z(Ex) denote the
respective identity operators; and

(ii) supx∈Ω ||qx(T )||L (Ex) = ||T || for every T ∈ Z(Γ0(Ω, E)).
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(B) Keeping the notation introduced in (A) above, let

Ez :=
⋃̇

x∈Ω
Z(Ex)s,

pz : Ez −→ Ω, v ∈ Z(Ex)s 7→ x,

and endow Ez with the topology generated by the sets

S(T , U, ε) :=
{

v ∈ p−1
z (U) | ||v− qpz(v)(T )||L (Epz(v))

< ε
}

where U ⊆ Ω is open, T ∈ Z(Γ0(Ω, E)), and ε > 0.

Then pz : Ez −→ Ω is the (unique up to isometric isomorphism) topological
bundle of commutative 1-Banach lattice algebras over Ω, such that

the mapping Γb(Ω, Ez) −→ Z(Γ0(Ω, E)); ϕ 7→ Tϕ defined by

Tϕs := ϕ ◦ s

i.e., Tϕs(x) = ϕ(x)s(x) for all x ∈ Ω, ϕ ∈ Γb(Ω, Ez) and s ∈ Γ0(Ω, E)

is:

(i) an isomorphism of commutative 1-Banach lattice algebras; and

(ii) an isomorphism of AM m-lattice modules over Cb(Ω)

from Γb(Ω, Ez), the Banach lattice of bounded continuous sections associated
with Ez onto the centre Z(Γ0(Ω, E)).

Proof. (A) First, we note that, if T : Γ0(Ω, E) −→ Γ0(Ω, E) is a bounded
operator, then T ∈ Z(Γ0(Ω, E)) if and only if ±T ≤ ||T ||I which
is the case if and only if |T s| ≤ ||T |||s| for all s ∈ Γ0(Ω, E). Now
let x ∈ Ω be fixed, and identify Ex with a quotient lattice of Γ0(Ω, E).
Then, for each T ∈ Z(Γ0(Ω, E)), |T s(x)| ≤ ||T |||s(x)| for all s ∈
Γ0(Ω, E), which implies that the mapping

qx(T ) : Ex −→ Ex; s(x) 7→ T s(x) for all s ∈ Γ0(Ω, E)

is well-defined and linear. Moreover, |qx(T )s(x)| = |T s(x)| ≤
||T |||s(x)| for all s ∈ Γ0(Ω, E) which implies that qx(T ) ∈ Z(Ex)

and

||qx(T )||L (Ex) = sup {||T s(x)||Ex : s ∈ Γ0(Ω, E), ||s(x)||Ex = 1} ≤ ||T ||.
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Now we show that the linear mapping T 7→ qx(T ) is a morphism of
Banach lattice algebra (see Chapter 2, Definition 2.3.1.1), i.e., qx(T1T2) =

qx(T1)qx(T2) and |qx(T )| = qx(|T |) for every T , T1, T2 ∈ Z(Γ0(Ω, E)).
Indeed,

qx(T1T2)s(x) = (T1T2)s(x) = T1(T2s(x)) = qx(T1)qx(T2)s(x)

for every s ∈ Γ0(Ω, E), which implies that qx(T1T2) = qx(T1)qx(T2) ∈
Z(Ex) for every T1, T2 ∈ Z(Γ0(Ω, E)). Similarly, for every s ∈ Γ0(Ω, E)+,

|qx(T )|s(x) = sup {qx(T )|r(x)| : r ∈ Γ0(Ω, E), |r(x)| ≤ s(x)}
= sup {T |r(x)| : r ∈ Γ0(Ω, E), |r(x)| ≤ s(x)}
= sup {T |r| : r ∈ Γ0(Ω, E), |r| ≤ s} (x)

= qx(|T |)s(x),

which implies that |qx(T )| = qx(|T |) for every T ∈ Z(Γ0(Ω, E)).

(i) It is clear that, if I ∈ Z(Γ0(Ω, E)) is the identity operator on
Γ0(Ω, E), then the central operator qx(I) : Ex −→ Ex; s(x) 7→ s(x),
for all s ∈ Γ0(Ω, E), coincides with the identity operator Ix : Ex −→
Ex; w 7→ w on Ex, for each x ∈ Ω.

(ii) Since, from the preceding argument, if T ∈ Z(Γ0(Ω, E)), then
||qx(T )||L (Ex) ≤ ||T || for each x ∈ Ω, it follows that

sup
x∈Ω
||qx(T )||L (Ex) ≤ ||T ||

for every T ∈ Z(Γ0(Ω, E)).

On the other hand, for every T ∈ Z(Γ0(Ω, E)),

||T || = sup {||T s|| : s ∈ Γ0(Ω, E), ||s|| ≤ 1}

= sup

{
sup
x∈Ω
||T s(x)||Ex : s ∈ Γ0(Ω, E), ||s(x)||Ex ≤ 1

}
≤ sup

x∈Ω
sup {||T s(x)||Ex : s ∈ Γ0(Ω, E), ||s(x)||Ex ≤ 1}

= sup
x∈Ω
||qx(T )||L (Ex).

Hence, supx∈Ω ||qx(T )||L (Ex) = ||T || for every T ∈ Z(Γ0(Ω, E)).
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(B) To prove the uniqueness of Ez, it suffices to show that the commutative
1-Banach lattice algebra Z(Γ0(Ω, E)) can be represented uniquely as
the space of bounded continuous sections of some topological bundle
pF : F −→ Ω of commutative 1-Banach lattice algebras which is iso-
metrically embedded in Ez. We first show this in (a)-(e) below. Then
we will show that (i) and (ii) hold.

(a) For x ∈ Ω, let Qx := {T ∈ Z(Γ0(Ω, E)) : qx(T ) = 0x ∈ Ex} =
Ker qx. That is, for each T ∈ Z(Γ0(Ω, E)), ||qx(T )||L (Ex) = 0 if and
only if T ∈ Qx. Now, since, qx : Z(Γ0(Ω, E)) −→ Z(Ex); T 7→ qx(T )
is a morphism of 1-Banach lattice algebras, it follows that {Qx : x ∈ Ω}
is a family of closed lattice algebra ideals of Z(Γ0(Ω, E) (see Chapter
2, Definition 2.5.1.2).

(b) From (a) above, it follows that the quotient space Z(Γ0(Ω, E))/Qx,
equipped with the quotient norm is a commutative 1-Banach lattice al-
gebra for each x ∈ Ω. Moreover, for x ∈ Ω, ||T + Qx|| = 0 if and only
if T ∈ Qx for every T ∈ Z(Γ0(Ω, E)) implies that

||T + Qx|| = ||qx(T )||L (Ex) for every T ∈ Z(Γ0(Ω, E)).

From this we obtain that Z(Γ0(Ω, E))/Qx ↪→ Z(Ex) is an isometric
morphism of commutative 1-Banach lattice algebras, for each x ∈ Ω.

(c) We claim that the mapping Ω −→ R≥0; x 7→ ||T + Qx|| =
||qx(T )||L (Ex) is upper semicontinuous for every T ∈ Z(Γ0(Ω, E)).
Indeed, since the mapping Ω −→ R≥0; x 7→ ||s(x)||Ex is upper semi-
continuous for every s ∈ Γ0(Ω, E), and Z(Γ0(Ω, E) is equipped with
the strong operator topology, it follows that the mapping Ω −→ R≥0; x 7→
||T s(x)||Ex , and hence the mapping Ω −→ R≥0; x 7→ ||qx(T )||L (Ex) =

sup {||T s(x)||Ex : s ∈ Γ0(Ω, E), ||s(x)||Ex ≤ 1} is upper semicontinu-
ous for every T ∈ Z(Γ0(Ω, E)).

(d) Consider the bundle F :=
⋃̇

x∈ΩFx, with Fx := Z(Γ0(Ω, E))/Qx

and x ∈ Ω. Note that each T̃ ∈ Γb(Ω, F), its bounded continuous
sections, is given by a unique T ∈ Z(Γ0(Ω, E)) such that T̃ (x) =

T + Qx for every x ∈ Ω, so that

Γb(Ω, F) := { T̃ : Ω −→ F continuous , pF ◦ T̃ = IdΩ

and ||T̃ || := sup
x∈Ω
||T + Qx|| < ∞ } .
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By combining [19, Proposition 1, p.817] and [20, Proposition 1.2, p.137],
we obtain that the bundle F is the unique topological bundle pF : F −→
Ω of commutative 1-Banach lattice algebras such that the space of its
bounded continuous sections, Γb(Ω, F), is isometrically isomorphic to
the centre Z(Γ0(Ω, E)) as commutative 1-Banach lattice algebras.

(e) Since Fx = Z(Γ0(Ω, E))/Qx ↪→ Z(Ex) for each x ∈ Ω, we
may thus conclude that F ↪→ Ez, and consequently Z(Γ0(Ω, E)) ∼=
Γb(Ω, F) ↪→ Γb(Ω, Ez).

Now, we can show that the mapping Γb(Ω, Ez) −→ Z(Γ0(Ω, E)); ϕ 7→ Tϕ

defined by
Tϕs := ϕ ◦ s,

i.e., Tϕs(x) = ϕ(x)s(x) for all x ∈ Ω, ϕ ∈ Γb(Ω, Ez) and s ∈ Γ0(Ω, E),

satisfies assertions (i) and (ii). The fact that Ez is unique with these proper-
ties then follows immediately.

(i) Since for ϕ ∈ Γb(Ω, Ez) and every s ∈ Γ0(Ω, E),

|Tϕs(x)| = |ϕ(x)s(x)|

≤ ||ϕ(x)||L (Ex)|s(x)|

≤ ||ϕ|||s(x)|,

for all x ∈ Ω, which implies that |Tϕs| ≤ ||ϕ|||s| for every s ∈
Γ0(Ω, E), it follows that Tϕ ∈ Z(Γ0(Ω, E)). Moreover, it is linear and
an isometry, since clearly ||Tϕ|| ≤ ||ϕ||, and

||ϕ|| = sup
x∈Ω
||ϕ(x)||L (Ex)

= sup
x∈Ω

sup {||ϕ(x)s(x)||Ex : s ∈ Γ0(Ω, E), ||s(x)||Ex ≤ 1}

≤ sup
{
||Tϕs|| : s ∈ Γ0(Ω, E), ||s|| ≤ 1

}
= ||Tϕ||

for every ϕ ∈ Γb(Ω, Ez). Furthermore, it easy to see that Tϕ1◦ϕ2 =

Tϕ1 ◦ Tϕ2 and T|ϕ| = |Tϕ| for every ϕ, ϕ1, ϕ2 ∈ Γb(Ω, Ez). In partic-
ular, the identity bounded continuous section e : Ω −→ Ez; x 7→ Ix

corresponds to the identity operator I : Γ0(Ω, E) −→ Γ0(Ω, E); s 7→ s,
i.e., Te = I .
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Thus, it suffices to show that the mapping ϕ 7→ Tϕ is surjective. In-
deed, if T ∈ Z(Γ0(Ω, E)), then as in part (A) above, we can define a
section ϕ : Ω −→ Ez by setting

ϕ(x) := qx(T ) for every x ∈ Ω,

which can immediately be seen to be continuous and bounded. This
implies that ϕ(x)s(x) = qx(T )s(x) = T s(x) for all x ∈ Ω and every
s ∈ Γ0(Ω, E), so that T = Tϕ as claimed.

(ii) It is clear that the (bilinear) pairing

Cb(Ω)× Γb(Ω, Ez) −→ Γb(Ω, Ez); ( f , ϕ) 7→ f · ϕ := [x 7→ f (x)ϕ(x)]

turns Γb(Ω, Ez) into an m-Banach lattice module, and, in particular,
an AM m-lattice module over Cb(Ω). This implies that | f | · |ϕ| =

| f · ϕ| and ( f · ϕ) ◦ s = ϕ ◦ f s for all f ∈ Cb(Ω), ϕ ∈ Γb(Ω, Ez) and
every s ∈ Γ0(Ω, E).

As a result, the (bilinear) pairing

Cb(Ω)×Z(Γ0(Ω, E)) −→ Z(Γ0(Ω, E)); ( f , Tϕ) 7→ f ·Tϕ := [s 7→ Tϕ( f s)]

also turns Z(Γ0(Ω, E) into an m-Banach lattice module over Cb(Ω).
Indeed, for any f ∈ Cb(Ω) and ϕ ∈ Γb(Ω, Ez),

|( f · Tϕ)s(x)| = |(ϕ ◦ f s)(x)|

= |( f · ϕ)(x)s(x)|

≤ || f · ϕ|||s(x)|

for all x ∈ Ω and every s ∈ Γ0(Ω, E), which implies that f · Tϕ ∈
Z(Γ0(Ω, E)) and || f · Tϕ|| ≤ || f · ϕ|| ≤ || f ||||ϕ|| = || f ||||Tϕ||. More-
over, for any f ∈ Cb(Ω) and ϕ ∈ Γb(Ω, Ez),

Tf ·ϕs = ( f · ϕ) ◦ s = ϕ ◦ f s = ( f · Tϕ)s

for every s ∈ Γ0(Ω, E), which implies that f · Tϕ = Tf ·ϕ. It folllows that
|| f · Tϕ|| = ||Tf ·ϕ|| = || f · ϕ|| for any f ∈ Cb(Ω) and ϕ ∈ Γb(Ω, Ez),
and

| f · Tϕ| = |Tf ·ϕ| = T| f · ϕ| = T| f |·|ϕ| = | f | · T|ϕ| = | f | · |Tϕ|,
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which implies that Z(Γ0(Ω, E)) is indeed an m-Banach lattice module
over Cb(Ω).

Finally, the consideration above implies that the isometric lattice iso-
morphism ϕ 7→ Tϕ is, in addition, a Cb(Ω)-module homomorphism.
Thus, we obtain that

Γb(Ω, Ez) ∼= Z(Γ0(Ω, E)),

given by an isomorphism of AM m-lattice modules over Cb(Ω), as
claimed (see Chapter 2, Remark 2.3.2.2(iii) and also Proposition 3.5.0.9).
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Chapter 4

One-parameter C0-semigroups of
positive weighted Koopman
operators

4.1 Introduction

In this chapter, we consider the order structure of an AM m-lattice mod-
ule (see Section 4.2), lattice C0-semigroups of weighted Koopman operators
(see Section 4.3) and positive C0-semigroups of weighted Koopman opera-
tors (see Section 4.4). Moreover, in Section 4.5, we consider certain spectral
properties of a positive C0-semigroup of weighted Koopman operators.

In Section 4.2, we first state our general characterisation of an AM m-lattice
module (see Proposition 4.2.0.1). We further identify and characterise im-
plications of some of its order structures: namely, non-emptiness of the pos-
itive cone, (σ-) order completeness, and order continuity of the norm (see
Proposition 4.2.0.2).

We consider, in Section 4.3, the lattice C0-semigroup induced by a semi-
flow (Φt)t≥0 on a topological Banach lattice bundle E over a flow (φt)t∈R on
a compact space K. We give certain properties of this lattice C0-semigroup
(TΦ(t))t≥0 of weighted Koopman operators on Γ(K, E), with generator (A, D(A))
a local δ-derivation, over the Koopman group Tφ(t)t∈R on C(K) with its gen-
erator (δ, D(δ)) (see Proposition 4.3.0.1 and Remark 4.3.0.2). Furthermore,
under the assumption that the Banach lattice of continuous sections Γ(K, E)

123
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has order continuous norm, we obtain a complete characterisation of a lat-
tice C0-semigroup of weighted Koopman operators through its generator
(A, D(A)) as what we call a Kato δ-derivation (see Proposition 4.3.0.3, Corol-
lary 4.3.0.4 and Remark 4.3.0.5).

In Section 4.4, we turn our attention to the notion of a positive C0-semigroup
induced by a positive semiflow (Φt)t≥0 on E over the flow (φt)t∈R on a com-
pact space K. In Proposition 4.4.0.1, we give certain properties of this pos-
itive C0-semigroup (TΦ(t))t≥0 of weighted Koopman operators on Γ(K, E).
Moreover, under the assumption that Γ(K, E) is a real σ-order complete
Banach lattice, we obtain a characterisation of a positive C0-semigroup of
weighted Koopman operators through its generator in certain sense (see
Proposition 4.4.0.3).

Finally, in Section 4.5, we consider certain spectral properties of a posi-
tive weighted Koopman semigroup (TΦ(t))t≥0 on Γ(K, E) with generator
(A, D(A)). Based on certain assumptions, we obtain that the boundary
spectrum σb(A) of the generator (A, D(A)) is an imaginary additively cyclic
set (see Proposition 4.5.0.4).

4.2 The order structure of an AM m-lattice
module over C0(Ω)

In this Section, we consider some order structures of an AM m-lattice mod-
ule over C0(Ω) where Ω is a locally compact space. To this end, we first
restate our general characterisation of an AM m-lattice module over C0(Ω)

(see Chapter 2, Corollary 2.4.1.10 and Chapter 3, Proposition 3.5.0.9).

Proposition 4.2.0.1. Let Γ be a Banach lattice module over the Banach lattice al-
gebra C0(Ω). Then the following are equivalent.

(i) Γ is an AM m-lattice module.

(ii) Γ is a U0(Ω)-normed m-lattice module.

(iii) Γ is isometrically isomorphic to the Banach lattice Γ0(Ω, E) of continuous
sections vanishing at infinity of a (unique up to isometric isomorphism) topo-
logical Banach lattice bundle E over Ω.
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Moreover, if these assertions hold, then the lattice U0(Ω)-valued norm is unique
and given by

|s|(x) := inf {|| f s|| : f ∈ C0(Ω)+ with f (x) = 1} (x ∈ Ω, s ∈ Γ).

We identify, in the next proposition, implications of some order structures
of an AM m-lattice module over C0(Ω): namely, non-emptiness of the pos-
itive cone, (σ-) order completeness, and order continuity of the norm (see
also Chapter 3, Subsection 3.6.5). Throughout, Ω is a locally compact space,
which we assume to be Hausdorff by definition.

Proposition 4.2.0.2. Let Γ be an AM m-lattice module over the Banach lattice
algebra C0(Ω). Furthermore, let E be the unique (up to isometric isomorphism)
Banach lattice bundle over Ω such that Γ ∼= Γ0(Ω, E) as an isomorphism of m-
Banach lattice modules over C0(Ω). Then we have the following.

(A) Consider the following statements.

(i) The interior IntΓ+ is non-empty.

(ii) Ω = K is compact and the interior IntE+
x is non-empty for each

x ∈ K.

Then (i) =⇒ (ii).

(B) Consider the following statements.

(i) Γ is σ-order complete.

(ii) Ω is discrete and Ex is σ-order complete for each x ∈ Ω .

(iii) C0(Ω) is σ-order complete and Ex has compact order intervals for
each x ∈ Ω.

(iv) Ω = K is infinite, compact, and Γ is σ-order complete.

(v) Ex has compact order intervals for each x ∈ K.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii). Moreover, if K is totally disconnected (i.e.,
quasi-Stonian), then (iv) ⇐⇒ (v).

(C) Consider the following statements.

(i) Γ is order complete.

(ii) Ω is discrete and Ex is order complete for each x ∈ Ω .
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(iii) C0(Ω) is order complete and Ex has compact order intervals for each
x ∈ Ω.

(iv) Ω = K is infinite, compact, and Γ is order complete.

(v) Ex has compact order intervals for each x ∈ K.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii). Moreover, if K is extremally disconnected
(i.e., Stonian), then (iv) ⇐⇒ (v).

(D) The following are equivalent.

(i) Γ has order continuous norm.

(ii) Ω is discrete and Ex has order continuous norm for each x ∈ Ω.

Proof. First, we note that for each x ∈ Ω, the Banach lattice Ex can be iden-
tified uniquely with a quotient lattice of Γ0(Ω, E) via the evaluation map
ex : Γ0(Ω, E) −→ Ex; s 7→ s(x), which is a surjective and order continu-
ous lattice homomorphism (see also Chapter 3, Remark 3.5.0.1(iii)). From
this observation, the assertions readily follow from Chapter 3 (Proposition
3.6.5.3).

(A) Suppose the interior IntΓ+ ̸= ∅ (see Appendix B(Proposition B.0.0.3)).
Since this is the case if and only if the interior IntΓ0(Ω, E)+ ̸= ∅, then
the assertion follows from Chapter 3[Proposition 3.6.5.3(A)].

In this situation, if u ∈ IntΓ(K, E)+, i.e., u is an order unit, then
ex(u) = u(x) ∈ IntE+

x is an order unit for each x ∈ K.

(B) Similarly, since Γ is σ-order complete (see [28, Definition 1.8, p.54]) if
and only if Γ0(Ω, E) is σ-order complete, by Chapter 3 [Proposition
3.6.5.3(B)] the assertion follows.

(C) Moreover, if Γ is order complete (see [28, Definition 1.8, p.54]) which
is the case if and only if Γ0(Ω, E) is order complete, then the assertion
follows from Chapter 3 [Proposition 3.6.5.3(C)].

(D) Finally, since Γ has order continuous norm (see [28, Definition 5.12,
p.92]) if and only if Γ0(Ω, E) has order continuous norm, by Chapter 3
[Proposition 3.6.5.3(D)] the assertion follows (see also [28, Section 11.1
Corollary, p.209]).
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Remark 4.2.0.3. (i) We note that a locally compact space Ω is discrete if and
only if the Banach lattice C0(Ω) has order continuous norm. So, by Propo-
sition 4.2.0.2(B) above, whenever AM m-lattice module Γ0(Ω, E) is σ-order
complete, the Banach lattice algebra C0(Ω) will always have order continu-
ous norm unless Ω = K is infinite, compact and quasi-Stonian.

(ii) If E is a topological Banach lattice bundle over a discrete space Ω, then ev-
ery mapping Ω −→ E is continuous. So, every section s : Ω −→ E is
continuous, and s ∈ Γ0(Ω, E) if and only if for every ε > 0, the set

{x ∈ Ω : ε ≤ ||s(x)||Ex}

is compact, and hence finite, since Ω is discrete. In addition, for each s ∈
Γ0(Ω, E), the mapping

Ω −→ R≥0 : x
|s|7−→ ||s(x)||Ex

is always continuous as Ω is discrete. This is so, since U0(Ω) ⊆ C0(Ω).

Hence, E is a continuous Banach lattice bundle over a locally compact space
Ω, see Chapter 3(Definition 3.2.0.1), whenever AM m-lattice module Γ0(Ω, E)
is (σ-) order complete unless maybe Ω = K is infinite, compact and Stonian
(see also [29, Proposition 3.2(iii), p.59]).

(iii) Moreover, we note that Ω = K is a compact discrete space if and only if K is
finite.

4.3 Lattice C0-semigroups of weighted Koopman
operators

In what follows, we set G = R, S = R≥0 and Ω = K where K is a compact
space. Furthermore, we let (Φt)t≥0 be a semiflow on Banach lattice bundle
E over the flow (φt)t∈R on K (see Chapter 3, Remark 3.4.0.6(iii)).

First, we note that the Koopman group representation (C(K), Tφ) induces
a Markovian lattice C0-group Tφ(t)t∈R on C(K) (see [2, Part B-II Definition
3.3, p.144]), and its generator (δ, D(δ)) which is a derivation on C(K) (see
[29, Theorem 3.1, p.58]). For a generalisation of this Markovian group, we
refer to the work of W. M. Priestley ([27]).
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Moreover, the induced weighted Koopman semigroup (TΦ(t))t≥0 on Γ(K, E)
over the Koopman group (C(K), Tφ) is a lattice C0-semigroup. We collect
this information in the following proposition, which immediately follows
from combining [29, Proposition 3.6, p.61] with Remark 3.5.0.1(v) in Chap-
ter 3.

Proposition 4.3.0.1. Let (Φt)t≥0 be a a semiflow on Banach lattice bundle E
over the flow (φt)t∈R on K, and (TΦ(t))t≥0 the induced weighted Koopman semi-
group on Γ(K, E). Moreover, let (δ, D(δ)) be the generator of the Koopman group
Tφ(t)t∈R on C(K). Then the following hold.

(i) The family (TΦ(t))t≥0 is a lattice C0-semigroup on Γ(K, E).

(ii) Each TΦ(t) is a lattice Tφ(t)-homomorphism for each t ≥ 0.

(iii) The generator (A, D(A)) of (TΦ(t))t≥0 is a δ-derivation on Γ(K, E), i.e.,
D(A) is a D(δ)-submodule of Γ(K, E) and

A( f s) = δ f · s + f · As

for all f ∈ D(δ) and s ∈ D(A).

(iv) (A, D(A)) is a local operator i.e., s ⊥ r implies As ⊥ r for all s ∈ D(A)

and r ∈ Γ(K, E).

Proof. Since (Φt)t≥0 is a semiflow on E over the flow (φt)t∈R, we have
that, for each t ≥ 0, the induced weighted Koopman operator TΦ(t) is,
in particular, a lattice homomorphism, i.e., |TΦ(t)s| = TΦ(t)|s| for
all s ∈ Γ(K, E) and t ≥ 0 (see also Chapter 3, Remark 3.5.0.1(v)).

(i) By [29, Proposition 3.6, p.61](i), we obtain that (TΦ(t))t≥0 is a C0-
semigroup on Γ(K, E). That is,

lim
t↓0
TΦ(t)s− s = lim

t↓0
Φt ◦ s ◦ φ−t − s = 0

for all s ∈ Γ(K, E). Hence, it is a C0-semigroup on Γ(K, E) comprised
of lattice homomorphisms, i.e., a lattice C0-semigroup.

(ii) Since, for each t ≥ 0, TΦ(t) f s = Tφ(t) f · TΦ(t)s for all f ∈ C(K) and
s ∈ Γ(K, E), the assertion follows.
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(iii) This immediately follows from [29, Proposition 3.6, p.61](iii), since the
operator (A, D(A)) is, in particular, a generator of a weighted Koop-
man semigroup on the Banach module Γ(K, E) in this situation. That
is,

lim
t↓0

TΦ(t)( f s)− f s
t

= lim
t↓0

Tφ(t) f − f
t

· TΦ(t)s + lim
t↓0

f · TΦ(t)s− s
t

= δ f · s + f · As

for all f ∈ D(δ) and s ∈ D(A).

(iv) Since, for all t ≥ 0, the lattice homomorphisms TΦ(t) are also disjointness-
preserving, i.e., s1 ⊥ s2 implies TΦ(t)s1 ⊥ TΦ(t)s2 for all s1, s2 ∈
Γ(K, E) and t ≥ 0, then [2, Proposition 5.4, p.282] implies that (A, D(A))
is a local operator, i.e., s ⊥ r implies As ⊥ r for all s ∈ D(A) and
r ∈ Γ(K, E).

Remark 4.3.0.2. (i) We will call a generator (A, D(A)) of an arbitrary C0-
semigroup on the AM m-lattice module Γ(K, E) a "local δ-derivation" if it
satisfies conditions (iii) and (iv) of Proposition 4.3.0.1.

(ii) In general, as evident in the previous Proposition 4.3.0.1, nothing more can
be said concerning the generator (A, D(A)) of a lattice C0-semigroup of
weighted Koopman operators on Γ(K, E) other than being a local δ-derivation.
However, under the assumption that the Banach lattice of continuous sections
Γ(K, E) has order continuous norm, we can give a complete characterisation.

Proposition 4.3.0.3. Let T (t)t≥0 be a C0-semigroup on Γ(K, E) with generator
(A, D(A)). Now, consider the following statements.

(i) T (t) is a lattice Tφ(t)-homomorphism for every t ≥ 0.

(ii) There exists a unique semiflow (Φt)t≥0 on the Banach lattice bundle E over
the flow (φt)t∈R on K such that T (t) = TΦ(t) for every t ≥ 0.

(iii) D(A) is a D(δ)-lattice submodule of Γ(K, E) such that

(a) A( f s) = δ f · s + f · As, and

(b) Re((sign s)As) = A|s|

for all f ∈ D(δ) and s ∈ D(A).
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Then (i) ⇐⇒ (ii). If the complex Banach lattice Γ(K, E) has order continuous
norm (see Chapter 3, Proposition 3.6.5.3(D)), then (i) ⇐⇒ (ii) ⇐⇒ (iii).

Moreover, if these assertions hold, then the semiflow (Φt)t≥0 in (ii) is unique, sat-
isfies ||TΦ(t)|| = ||Φt|| for all t ≥ 0, and (TΦ(t))t≥0 is an isometry if and only if
(Φt)t≥0 is an isometry.

Proof. The equivalence (i) ⇐⇒ (ii) readily follows from Chapter 3
(Proposition 3.5.0.5).

Now, assume that the complex Banach lattice Γ(K, E) has order con-
tinuous norm.

(i) =⇒ (iii): First, since the C0-semigroup T (t)t≥0 is, in particular,
a lattice C0-semigroup on Γ(K, E), and the Banach lattice Γ(K, E) has
order continuous norm, then [2, Corollary 5.8, p.285] implies that its
generator (A, D(A)) must satisfy the so-called Kato’s equality. That
is,

s ∈ D(A) implies |s|, s ∈ D(A) and Re((sign s)As) = A|s|

where, for each s ∈ Γ(K, E), the mapping (sign s) : Γ(K, E) −→
Γ(K, E) is the (unique) associated signum linear operator such that
that (sign s)s = |s| (see also [2, Proposition 2.1, p.256-257]).

Furthermore, for f ∈ D(δ) and s ∈ D(A),

lim
t↓0

T (t)( f s)− f s
t

= lim
t↓0

Tφ(t) f − f
t

· T (t)s + lim
t↓0

f · T (t)s− s
t

= δ f · s + f · As

implies that the generator (A, D(A)) is, in addition, a δ-derivation on
Γ(K, E). That is, D(A) is a D(δ)-submodule of Γ(K, E) and

A( f s) = δ f · s + f · As

for all f ∈ D(δ) and s ∈ D(A).

Combining these two results we obtain that D(A) is a D(δ)-lattice sub-
module (see Chapter 2, Definition 2.5.2.1) satisfying the stated proper-
ties (a) and (b).
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(iii) =⇒ (i): Since the generator (A, D(A)), in particular, satisfies
the Kato’s equality, then [2, Corollary 5.8, p.285] implies it is a genera-
tor of a lattice C0-semigroup on Γ(K, E). Furthermore, since (A, D(A))
is also a δ-derivation on Γ(K, E), it follows from [29, Theorem 3.8,
p.63] that T (t) is a lattice Tφ(t)-homomorphism for every t ≥ 0.

Moreover, the last claim follows from Chapter 3(Proposition 3.5.0.5).

In the real case, that is Γ(K, E) and hence Ex is a real Banach lattice for each
x ∈ K, we can reformulate the above characterisation in Proposition 4.3.0.3.

Corollary 4.3.0.4. Let T (t)t≥0 be a C0-semigroup on Γ(K, E) with generator
(A, D(A)). Now, consider the following statements.

(i) T (t) is a lattice Tφ(t)-homomorphism for every t ≥ 0.

(ii) There exists a unique semiflow (Φt)t≥0 on Banach lattice bundle E over the
flow (φt)t∈R on K such that T (t) = TΦ(t) for every t ≥ 0.

(iii) D(A) is a D(δ)-lattice submodule of Γ(K, E) such that

(a) A( f s) = δ f · s + f · As for all f ∈ D(δ) and s ∈ D(A), and

(b) (A, D(A)) is a local operator.

Then (i) ⇐⇒ (ii). If the real Banach lattice Γ(K, E) has order continuous norm
(see Chapter 3, Proposition 3.6.5.3(D)), then (i) ⇐⇒ (ii) ⇐⇒ (iii).

Moreover, if these assertions hold, then the semiflow (Φt)t≥0 in (ii) is unique, sat-
isfies ||TΦ(t)|| = ||Φt|| for all t ≥ 0, and (TΦ(t))t≥0 is an isometry if and only if
(Φt)t≥0 is an isometry.

Proof. The result follows from combining [2, Corollary 5.9, p.285] with the
previous Proposition 4.3.0.3.

Remark 4.3.0.5. (i) We will call a generator (A, D(A)) of an arbitrary C0-
semigroup on the AM m-lattice module Γ(K, E) satisfying condition (iii) in
either Proposition 4.3.0.3 (in complex case) or Corollary 4.3.0.4 (in real case)
a "Kato δ-derivation" on Γ(K, E).
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(ii) Now, our result implies that, if an AM m-lattice module Γ over C(K) has
order continuous norm (see Proposition 4.2.0.2(D)), then there is a one-to-
one correspondence between:

(a) C0-semigroups of weighted morphisms over the Koopman group Tφ(t)t∈R;
and

(b) Kato δ-derivations on Γ.

4.4 Positive C0-semigroups of weighted
Koopman operators

In this Section, we let (Φt)t≥0 be a positive semiflow on a topological Ba-
nach lattice bundle E over the flow (φt)t∈R on K (see Chapter 3, Definition
3.4.0.5). Now, consider the induced family (TΦ(t))t≥0 of positive weighted
Koopman operators on the AM m-lattice module Γ(K, E) which gives rise
to a positive C0-semigroup. We collect this information in the following
proposition which follows from [29, Proposition 3.6, p.61] as well as from
Proposition 4.3.0.1.

Proposition 4.4.0.1. Let (Φt)t≥0 be a positive semiflow on Banach lattice bun-
dle E over the flow (φt)t∈R on K, and (TΦ(t))t≥0 the induced positive weighted
Koopman semigroup on Γ(K, E). Moreover, let (δ, D(δ)) be the generator of the
Koopman group Tφ(t)t∈R on C(K). Then the following hold.

(i) The family (TΦ(t))t≥0 is a positive C0-semigroup on Γ(K, E).

(ii) Each TΦ(t) is a positive Tφ(t)-homomorphism for each t ≥ 0.

(iii) The generator (A, D(A)) of (TΦ(t))t≥0 is a δ-derivation on Γ(K, E), i.e.,
D(A) is a D(δ)-submodule of Γ(K, E) and

A( f s) = δ f · s + f · As

for all f ∈ D(δ) and s ∈ D(A).

Proof. Since (Φt)t≥0 is a positive semiflow on E over the flow (φt)t∈R,
we have that, for each t ≥ 0, the induced weighted Koopman operator
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TΦ(t) is, in particular, a positive operator, i.e., |TΦ(t)s| ≤ TΦ(t)|s|
for all s ∈ Γ(K, E) and t ≥ 0 (see also Chapter 3, Remark 3.5.0.1(v)).

From this observation, assertions (i), (ii) and (iii) follow from Proposi-
tion 4.3.0.1.

Remark 4.4.0.2. (i) Unlike the case of a lattice C0-semigroup of weighted Koop-
man operators (see Proposition 4.3.0.1), we could not provide direct proper-
ties of a generator (A, D(A)) of a positive C0-semigroup of weighted Koop-
man operators other than being a δ-derivation on Γ(K, E). However, we can
collect the following (additional) information associated with a generator of a
positive C0-semigroup on certain Banach lattices.

(a) If Γ(K, E) is σ-order complete (see Chapter 3, Proposition 3.6.5.3(B)),
then, by [2, Theorem 2.4, p.258], (A, D(A)) satisfies the so-called Kato’s
inequality. That is,

<<< Re(sign s)As, s′ >>>≤<<< |s|,A′s′ >>> (s ∈ D(A), 0 ≤ s′ ∈ D(A′))

where (A′, D(A′)) is the adjoint operator (of generator A) on the dual Ba-
nach lattice module Γ(K, E)′ (see Chapter 2, Subsection 2.5.4), and<<< s, s′ >>>:=
s′(s) is a paring of (s, s′) ∈ Γ(K, E)× Γ(K, E)′.

(b) If Γ(K, E) is real Banach lattice, then by [2, Proposition 3.5, p.261]
there exists a strictly positive non-empty subset M′ ⊆ Γ(K, E)′ of subeigen-
vectors of (A′, D(A′)). See [2, Definition 3.2, and Definition 3.4, p.261] for
concepts of strictly positive set and subeigenvectors.

(ii) With the setup in (i) above, we can, to some extent, give a characterisation
of a positive C0-semigroup of weighted Koopman operators, through its gen-
erator, under the assumption that the real Banach lattice Γ(K, E) is σ-order
complete.

Proposition 4.4.0.3. Let T (t)t≥0 be a C0-semigroup on Γ(K, E) with generator
(A, D(A)). Now, consider the following statements.

(i) T (t) is a positive Tφ(t)-homomorphism for every t ≥ 0.

(ii) There exists a unique positive semiflow (Φt)t≥0 on the Banach lattice bundle
E over the flow (φt)t∈R on K such that T (t) = TΦ(t) for every t ≥ 0.
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(iii) There exists a core (A, Do) of the generator (A, D(A)) which is a D(δ)-
submodule of Γ(K, E) and a strictly positive non-empty subset M′ ⊆ Γ(K, E)′

of subeigenvectors of (A′, D(A′)) such that

(a) A( f s) = δ f · s + f · As, and

(b) <<< Re(sign s)As, s′ >>> ≤<<< |s|,A′s′ >>>

for all f ∈ D(δ), s ∈ Do and s′ ∈ M′.

Then (i) ⇐⇒ (ii). If the real Banach lattice Γ(K, E) is σ-order complete (see
Chapter 3, Proposition 3.6.5.3(B)), then (i) ⇐⇒ (ii) ⇐⇒ (iii).

Moreover, if these assertions hold, then the positive semiflow (Φt)t≥0 in (ii) is
unique, satisfies ||TΦ(t)|| = ||Φt|| for all t ≥ 0, and (TΦ(t))t≥0 is a positive
isometry if and only if (Φt)t≥0 is a positive isometry.

Proof. The equivalence (i) ⇐⇒ (ii) readily follows from Chapter 3
(Proposition 3.5.0.5).

Now, assume that the real Banach lattice Γ(K, E) is σ-order complete.

(i) =⇒ (iii): First, since T (t)t≥0 is, in particular, a positive C0-
semigroup on real Banach lattice Γ(K, E) which is σ-order complete,
our consideration in Remark 4.4.0.2(i) implies that its generator (A, D(A))
satisfies the Kato’s inequality for which there exists a strictly positive
non-empty subset M′ ⊆ Γ(K, E)′ of subeigenvectors of the adjoint op-
erator (A′, D(A′)). This, in particular, implies that

<<< Re(sign s)As, s′ >>> ≤<<< |s|,A′s′ >>> for all s ∈ Do, and s′ ∈ M′

for any core (A, Do) of the generator (A, D(A)) and any positive sub-
set M′ of D(A′).

Futhermore, T (t) being a Tφ(t)-homomorphism for every t ≥ 0 im-
plies that, (A, D(A)) is, in addition, a δ-derivation Γ(K, E), i.e., it is a
D(δ)-submodule of Γ(K, E) andA( f s) = δ f · s+ f ·As for all f ∈ D(δ)

and s ∈ D(A); a property which must trivially hold for any core
(A, Do) of generator (A, D(A)).

Hence, assertion (iii) holds by combining these two results.

(iii) =⇒ (i): Since the generator (A, D(A)) satisfies the following
condition:
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there exists a core (A, Do) of the generator (A, D(A)) and a strictly
positive non-empty subset M′ ⊆ Γ(K, E)′ of subeigenvectors of

(A′, D(A′)) such that

<<< Re(sign s)As, s′ >>> ≤<<< |s|,A′s′ >>> for all s ∈ Do, and s′ ∈ M′,

we see that [2, Theorem 3.8, p.262] implies that it is a generator of a
positive C0-semigroup on Γ(K, E). Moreover, since (A, D(A)) is also
a δ-derivation on its core (A, Do), we can conclude that (A, D(A)) is,
in addition, a δ-derivation on Γ(K, E) by which [29, Theorem 3.8, p.63]
implies that T (t) is a positive Tφ(t)-homomorphism for every t ≥ 0.

Furthermore, the last assertion follows from Chapter 3 (Proposition
3.5.0.5).

4.5 Spectral theory for Positive C0-semigroups of
weighted Koopman operators

The spectral theory for non-weighted Koopman operators Tφ(t)t∈R on C(K)
induced by a unique flow (φt)t∈R on K has been described, for instance, in
[29, Section 4.1, p.72-75], and also its generator (δ, D(δ)). Furthermore, in
[29, Section 4.2, p.72-75] the spectral theory of weighted Koopman operators
on an AM-module with its generator was investigated, and sufficient con-
ditions for their spectral mapping theorems were obtained (see [29, Propo-
sition 4.6, p.75] and [29, Theorem 4.13, p.79]).

In our situation of a positive weighted Koopman semigroup (TΦ(t))t≥0 on
an AM m-lattice module Γ(K, E) over the Koopman group Tφ(t)t∈R on C(K),
we build on these existing results and provide further implications for the
positivity.

To start, we recall certain definitions and concepts of periodicity and (strictly)
aperiodicity of a flow on a compact space (see Remark 4.5.0.1). Moreover,
we collect certain results in Lemma 4.5.0.2 which are important for our con-
sideration.
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Remark 4.5.0.1. ([29, Definition 4.2, p.73] and [29, Definition 4.5, p.74])

(i) Let φ : K −→ K be a homeomorphism on a compact space K. We call a point
x ∈ K a periodic point if there exists n ∈ N such that φn(x) = x. It is
called aperiodic if φn(x) ̸= x for all n ∈ N. We consider the prime function
v : K −→N∪ {∞} of φ defined by

v(x) :=

inf {n ∈N | φn(x) = x} , x periodic

∞, x aperiodic

and the set B(K) := {x ∈ K | v is bounded in some neighbourhood of x}.

The homeomorphism φ is called aperiodic if B(K) = ∅. It is called strictly
aperiodic if each point x ∈ K is aperiodic. If v(x) < ∞ for all x ∈ K, then φ

is called periodic.

(ii) Let (φt)t∈R be a continuous flow on a compact space K. We call a point
x ∈ K periodic point if there exists t > 0 such that φt(x) = x. It is called an
aperiodic point if φt(x) ̸= x for all t > 0. We consider the prime function
v : K −→ [0, ∞] of (φt)t∈R defined by

v(x) :=

inf {t > 0 | φt(x) = x} , x periodic

∞, x aperiodic

and the set B(K) := {x ∈ K | v is bounded in some neighbourhood of x}.

The flow (φt)t∈R is called aperiodic if B(K) = ∅. It is called strictly ape-
riodic if each point x ∈ K is aperiodic. If v(x) < ∞ for all x ∈ K, then
(φt)t∈R is called periodic.

Lemma 4.5.0.2. ([29, Proposition 4.3, p.73], [29, Proposition 4.4, p.74] and [29,
Proposition 4.7, p.75] )

(A) Let φ : K −→ K be a homeomorphism of the compact space K, and Tφ :
C(K) −→ C(K) the associated invertible Koopman operator.

(i) If φ is aperiodic, we have that σ(Tφ) = σap(Tφ) = T.

(ii) If φ is periodic, i.e., v(x) < ∞ for all x ∈ K, then

σ(Tφ) =
⋃

x∈K
Pv(x),
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where Pn := {z ∈ C | zn = 1} is the group of n-roots of unity for n ∈N.

If v(x) = n for all x ∈ K and a fixed n ∈N, then σ(Tφ) = Pn.

(B) Let (φt)t∈R be a flow on the compact space K, and Tφ(t)t∈R the associated
Koopman group on C(K) with generator (δ, D(δ)). For each t ≥ 0,

σ(Tφ(t)) = σap(Tφ(t)) ⊆ T

is the union of subgroups of T. Furthermore,

σ(δ) = σap(δ) ⊆ iR

is the union of additive subgroups of iR.

(C) Let (φt)t∈R be a flow on compact space K, and Tφ(t)t∈R the associated Koop-
man group on C(K) with generator (δ, D(δ)).

(i) If the flow is aperiodic, then

σ(Tφ(t)) = T for all t ∈ R; and

σ(δ) = iR.

Moreover, the spectral mapping theorem holds, i.e.,

σ(Tφ(t)) = etσ(δ) for all t ∈ R.

(ii) If the flow is periodic with 0 < v(x) < ∞ for all x ∈ K, then the
weak spectral mapping theorem holds, i.e.,

σ(Tφ(t)) = etσ(δ) for all t ∈ R.

In the following, we consider a (general) Banach bundle E over a compact
space K, and the Banach space of its continuous sections Γ(K, E), the associ-
ated AM-module over C(K) (see [29, Proposition 3.2, p.59]).

Lemma 4.5.0.3. ([29, Proposition 4.10, p.78] and [29, Theorem 4.13, p.79] )

(A) Let φ : K −→ K be a homeomorphism, and T : Γ(K, E) −→ Γ(K, E) a
Tφ-homomorphism. Assume that one of the following conditions holds.

(i) φ is aperiodic and E is a continuous Banach bundle.

(ii) φ strictly aperiodic.

Then,T · σap(T ) ⊆ σap(T ) andT · σ(T ) ⊆ σ(T ). Thus σ(T ) is invariant
under rotation by a complex number of modulus one.
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(B) Let (φt)t∈R be a flow on K, and (T (t))t≥0 a weighted Koopman semigroup
on AM module Γ(K, E) with generator (A, D(A)). Assume that one of the
following conditions holds.

(i) (φt)t∈R is aperiodic and E is a continuous Banach bundle.

(ii) (φt)t∈R strictly aperiodic.

Then, the spectral mapping theorem holds, i.e.,

σ(T (t)) \ {0} = etσ(A) for each t ≥ 0

Moreover, σ(A) = σ(A) + iR, and σ(T (t)) = T · σ(T (t)), t ≥ 0.

Using the above result in Lemma 4.5.0.3, we claim the following additional
properties hold in our setting. We now consider a Banach lattice bundle E
over a compact space K, and the Banach lattice of its continuous sections
Γ(K, E), the associated AM m-lattice module over Banach lattice algebra
C(K) (see also Chapter 3, Remark 3.5.0.1(ii)).

Proposition 4.5.0.4. (A) Let φ : K −→ K be a homeomorphism, and T :
Γ(K, E) −→ Γ(K, E) a positive Tφ-homomorphism. Assume that one of
the following conditions holds.

(i) φ is aperiodic and E is a continuous Banach lattice bundle.

(ii) φ strictly aperiodic.

Then, T · σap(T ) ⊆ σap(T ) and T · σ(T ) ⊆ σ(T ).

Moreover, T · Perσ(T ) ⊆ Perσ(T ). That is, the peripheral spectrum
Perσ(T ) := {λ ∈ σ(T ) : |λ| = r(T )} is invariant under rotation by a
complex number of modulus one.

(B) Let (φt)t∈R be a flow on K, and (T (t))t≥0 a positive weighted Koopman
semigroup on AM m-lattice module Γ(K, E) with generator (A, D(A)). As-
sume that one of the following conditions holds.

(i) (φt)t∈R is aperiodic and E is a continuous Banach lattice bundle..

(ii) (φt)t∈R strictly aperiodic.

Then, the spectral mapping theorem holds, i.e.,

σ(T (t)) \ {0} = etσ(A) for each t ≥ 0.
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Moreover, σ(A) = σ(A) + iR and σ(T (t)) = T · σ(T (t)), t ≥ 0.

In addition:

(a) The growth bound w0 of (T (t))t≥0 coincides with the spectral
bound s(A) := sup {Re µ : µ ∈ σ(A)} of the generator (A, D(A)).

(b) σb(A) + iR ⊆ σb(A). That is, the boundary spectrum σb(A) :=
{µ ∈ σ(A) : Re µ = s(A)} is an imaginary additively cyclic subset of C.

Proof. (A) By Lemma 4.5.0.3(A), it suffices to show that the peripheral spec-
trum Perσ(T ) is rotation invariant by T. This, however, follows since
the peripheral spectrum of a positive operator is contained in its ap-
proximate point spectrum σap(T ). Indeed, since σ(T ) is a compact
subset of C, we have that there exists λ ∈ σ(T ) such that |λ| = r(T ).
Now, since σ(T ) is rotation invariant by T, we see that r(T ) ∈ σ(T ).

(B) Similarly, by Lemma 4.5.0.3(B), it suffices to show the additional prop-
erties (a) and (b).

(a) We note that, in general, we have that s(A) ≤ w0 and r(T (t)) =
ewot for all t ≥ 0 for any generator of a C0-semigroup (see [12, V.
Proposition 1.22, p.168]). Since, in our case, r(T (t)) ∈ σ(T (t)) for
each t ≥ 0, the spectral mapping theorem implies that ewot ∈ etσ(A)

for each t > 0 and w0 ∈ σ(A) whenever r(T (1)) ̸= 0. Moreover,
since (A, D(A)) is a generator of positive C0-semigroup, we have that
s(A) ∈ σ(A) (see [2, Corollary 1.4, p.294]).

Combining these results, it follows that ewo ≤ es(A) ∈ eσ(A) and conse-
quently, s(A) = w0 since s(A) < w0 is not possible in σ(A).

(b) We note that, σ(A) = σ(A)+ iR, in particular, implies σap(A)+
iR ⊆ σap(A) for the approximate point spectrum of the generator
(A, D(A)). Now, since the boundary spectrum σb(A) of a genera-
tor of positive C0-semigroup is always contained in σap(A), the asser-
tion follows. Indeed, if µ ∈ σb(A), then µ + iλ ∈ µ + iR ⊆ σ(A)
for any λ ∈ R, which implies that µ + iλ ∈ µ + iR ⊆ σb(A) since
Re(µ + iλ) = Re µ = s(A).

Thus, σb(A) is an imaginary additively cyclic subset of C as claimed.
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4.6 Note

We refer to the Bonus Chapters:

(i) C for Positive semiflows on measurable Banach lattice bundles,

(ii) D for Positive weighted Koopman semigroup everywhere,

(iii) E for Asymptotics of positive weighted Koopman semigroup, and

(iv) F for Markovian weighted Koopman group,

which are added for the sake of comprehensiveness, but put in the appen-
dices because the scope of this thesis has become very large.
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Appendix A

Banach lattice algebras

A.1 What is a Banach lattice algebra?

We observe, as reported by Wickstead ([31]), that there does not appear to
be a consensus on a definition of this mathematical object.
However, from [31, p. 805-806], we note the following about a Banach lattice
algebra.

Remark A.1.0.1. (i) What is agreed is that a Banach lattice algebra should be a
Banach lattice, an associative algebra with a sub-multiplicative norm and the
product of positive elements should be positive.

(ii) To cover as wide a range of examples as possible and in an effort to standardise
terminology we propose that a Banach lattice algebra simply be at the same
time a Banach lattice, an associative algebra with sub-multiplicative norm
and with the product of positive elements being positive. If there is an identity
which has norm one we call it a 1-Banach lattice algebra.

(iii) [31, Proposition 2.1] In any Banach lattice algebra L (whether real or com-
plex), with multiplication ⋆, | f ⋆ g| ≤ | f | ⋆ |g| for all f , g ∈ L.

Note A.1.0.2. We note that condition (iii) of Remark A.1.0.1 above can precisely
be taken to be a characterisation of the so-called Banach lattice algebra. That is, a
Banach lattice (L, | · |) which is also a Banach algebra (L, ⋆) is a "Banach lattice
algebra" (L, | · |, ⋆) if and only if | f ⋆ g| ≤ | f | ⋆ |g| for all f , g ∈ L.

142
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Definition A.1.0.3. A Banach lattice algebra (L, | · |, ⋆) is a Banach lattice (L, | ·
|) which is also a Banach algebra (L, ⋆) such that | f ⋆ g| ≤ | f | ⋆ |g| for all
f , g ∈ L.

We list here some examples of Banach lattice algebras, and refer to [31, Ex-
ample 1.1 p.804] for some details.

Example A.1.0.4. (i) Let Ω be a locally compact space, then the Banach space
C0(Ω) is a commutative Banach lattice algebra. Moreover, C0(Ω) is a 1-
Banach lattice algebra if and only if Ω = K is compact.

(ii) Let X := (ΩX, ΣX, µX) be a complete σ-finite (positive) measure space, then
the Banach space L∞(X) is a commutative Banach lattice algebra.

(iii) Let E be a Banach lattice, then the space

Z(E) := {T ∈ L (E) : ∃ λ > 0 such that |T f | ≤ λ| f | ∀ f ∈ E}

of central operators, the so-called centre of E equipped with the operator
norm, is a commutative 1-Banach lattice algebra.

(iv) Let G be a locally compact topological group, and µ the left Haar measure on
G, then the Banach space L1(G) of integrable K-valued functions is a Banach
lattice algebra. L1(G) is a 1-Banach lattice algebra if and only if G is discrete.
Moreover, L1(G) is commutative if and only if G is abelian.

(v) Let G be a locally compact topological group, then the Banach space M(G) of
bounded regular Borel measures on G is a Banach lattice algebra.

(vi) Let E be an order complete Banach lattice (i.e., a Dedekind complete Banach
lattice), then the space Lr(E) of regular operators, equipped with regular-
norm, is a 1-Banach lattice algebra.

Throughout we will use "BLA" to mean a Banach lattice algebra, if no con-
fusion arises.
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Ordered Banach spaces

Here, we recall certain definitions and concepts about an ordered Banach
space as presented by O. Bratteli et al ([4]) and the conditions under which
it becomes a Banach lattice (see [4, Section 1, p.372-376]).

Definition B.0.0.1. Let B be a real Banach space. A subset ”B+” of B is defined to
be a proper closed convex cone in B if:

(i) B+ is norm closed;

(ii) B+ + B+ ⊆ B+;

(iii) λB+ ⊆ B+ for all λ ≥ 0; and

(iv) B+ ∩ (−B+) = {0}.

Each B+ determines a partial order≥ on B by defining b ≥ c whenever b− c ∈ B+.
Thus b ≥ 0 is equivalent to b ∈ B+. Elements of B+ are referred to as positive
elements of B.
Then B is said to be an ordered Banach space, with positive cone B+.

The following lemma states the equivalence of the ’normality’ of a positive
cone of an ordered Banach space.

Proposition B.0.0.2. For a positive cone B+ of B, the following are equivalent.

(i) B+ is normal, i.e., there exists an α > 0 such that α ≤ ||b + c|| for all
b, c ∈ B+ with ||b|| = 1 = ||c||.

(ii) There exists β > 0 such that 0 ≤ b ≤ c always implies β||b|| ≤ ||c|| for all
b, c ∈ B+.

144
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(iii) There exists a γ > 0 such that b ≤ c ≤ d always implies γ||b|| ≤ ||c|| ∨
||d|| for all b, c, d ∈ B.

The following states the equivalence for a positive cone of an ordered Ba-
nach space having a non-empty ’interior’.

Proposition B.0.0.3. For a positive cone B+ of B, the following are equivalent.

(i) u ∈ B+ is an interior point of B+, i.e., there exists an ε > 0 such that
{b : ||u− b|| ≤ ε} ⊂ B+.

(ii) u ∈ B+ is an order unit, i.e., for each b ∈ B, there is a λ ≥ 0 such that
b ≤ λu.

(iii) B = Bu, where Bu := {b ∈ B : −δu ≤ b ≤ δu for some δ ≥ 0}.

There are some connections between normality, interior of a positive cone
IntB+ and ’topologies’ on an ordered Banach space.

Proposition B.0.0.4. For a positive cone B+ of B, let b(B) and o(B) represent the
norm-bounded and order-bounded sets in B respectively. Then the following hold.

(i) B+ is normal implies o(B) ⊆ b(B).

(ii) IntB+ ̸= ∅ if and only if b(B) ⊆ o(B).

(iii) If IntB+ ̸= ∅, then B+ is normal if and only if o(B) = b(B).

Therefore, B+ is normal and IntB+ ̸= ∅ if and only if o(B) = b(B).

The following is a comment on when an ordered Banach space B with posi-
tive cone B+ becomes a Banach lattice.

Proposition B.0.0.5. For a positive cone B+ of B, if:

(i) the partial order ≥ associated with B+ is a lattice ordering, i.e., each pair
b, c ∈ B, has a least upper bound b ∨ c and a greatest lower bound b ∧ c; and

(ii) the norm on B is a lattice norm, i.e., for b, c ∈ B, |||b||| = ||b|| and 0 ≤
b ≤ c always implies ||b|| ≤ ||c||, where |b| := b+ + b− is the ’modulus’
of b and b± := (±b) ∨ 0 represent the positive/negative part of b,

then (B, || · ||) is a Banach lattice.
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The following theorem is essentially due to the theorem of Kakutani which
represents an AM-space with unit as a space of scalar-valued continuous
functions on some compact space.

Theorem B.0.0.6. For a Banach lattice (B, || · ||), the following are equivalent.

(i) IntB+ ̸= ∅

(ii) B is isometrically lattice isomorphic to C(Q) for some compact space Q.

Proof. That (ii) =⇒ (i) is evident.
(i) =⇒ (ii): Take u ∈ IntB+. Since B = Bu (see Proposition B.0.0.2), the
norm || · ||u associated with u ∈ B+, defined as ||b||u := max {Nu(b), Nu(−b)}
for any b ∈ Bu = B, where Nu(b) := inf {λ ≥ 0 : b ≤ λu}, is a lattice norm
on B.
Observing that ||b ∨ c||u = max(||b||u, ||c||u) for any b, c ∈ B+ implies that
(B, || · ||u) is an AM-space with order unit u ∈ B+. And since the two norms
|| · ||u and || · || are equivalent, we see that (B, || · ||) is also an AM-space
with order unit. By Kakutani’s theorem (see [28, Theorem 7.4, p.104]), it
follows that the Banach lattice (B, || · ||) is isometrically lattice isomorphic
to (C(Q), || · ||∞) for some compact space Q.
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Bonus Chapter: Positive semiflows
on measurable Banach lattice
bundles

C.1 Introduction

In this chapter, we introduce the notions of measurable Banach lattice bun-
dles (see Section C.2), the vector lattices of measurable sections (see Section
C.3), morphisms of these measurable Banach lattice bundles (see Section C.4)
and their representation theories (see Section C.5).

We start in Section C.2 with our definition of a measurable Banach lattice
bundle E over a complete σ-finite measure space X (see Definition C.2.0.1).
In Section C.3, we consider the vector lattice ME of measurable sections
of E and obtain that, the (quotient) vector lattices Γ∞(X, E) and Γ1(X, E)
of essentially-bounded and integrable measurable sections are, respectively,
m-Banach lattice modules over the commutative Banach lattice algebra L∞(X)

(see Corollary C.3.0.7). Moreover, if E is separable over a separable measure
space X, then Γ1(X, E) is, in addition, a separable Banach lattice (see Propo-
sition C.3.0.8(iv)).

In Section C.4, we introduce two notions of morphisms between two mea-
surable Banach lattice bundles E and F over a measure space X: namely, a
positive morphism of measurable Banach lattice bundles over φ : X −→ X, a
morphism of measure space X (see Definition C.4.0.2) and a morphism of
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measurable Banach lattice bundles over a morphism φ : X −→ X (see
Remark C.4.0.3(iii)). In (Definition C.4.0.5) Remark C.4.0.6(iii), we intro-
duce the notion of a (positive) S-dynamical measurable Banach lattice bun-
dle (E, Φ) over a measure-preserving G-dynamical system (X, φ), and we call
Φ = (Φg)g∈S a (positive) semiflow on E over the flow φ = (φg)g∈G on X.

In the last Section C.5, we obtain that, for a discrete group G, every (pos-
itive) S-dynamical measurable Banach lattice bundle (E, Φ) over a measure-
preserving G-dynamical system (X, φ) induces a (positive) S-dynamical Ba-
nach lattice module (Γ1(X, E), TΦ) over the Koopman group representation
(L∞(X),Tφ) (see Remark C.5.0.1(v), and also Chapter 2, Example 2.3.4.3(ii)).
Furthermore, we call TΦ = TΦ(g)g∈S the (positive) weighted Koopman
semigroup representation on Γ1(X, E) over the Koopman group Tφ = (Tφ(g))g∈G

induced by (E, Φ). Moreover, we obtain the abstract representation of the
(quotient) vector lattice Γ1(X, E) of integrable measurable sections of a sep-
arable measurable Banach lattice bundle E over a separable measure space
X as what we call a separable L1(X)-normed m-lattice module over L∞(X)

(see Appendix D Question D.2.0.2), Remark C.5.0.1(ii) and Proposition C.5.0.8(ii).

As one major result of our study, for a discrete group G, every (positive) S-
dynamical separable L1(X)-normed m-lattice module over the Koopman
group (L∞(X),Tφ) can be assigned uniquely to a separable (positive) S-
dynamical measurable Banach lattice bundle (E, Φ) over a measure-preserving
G-dynamical system (X, φ) with X separable and vice versa (see also Ap-
pendix D, Proposition D.2.0.3). This is our Gelfand-type theorem for dy-
namical separable L1(X)-normed m-lattice modules (see Theorem C.5.0.9
and Corollary C.5.0.10).

C.2 Measurable Banach lattice bundles

In this Section, we introduce the notion of a measurable Banach lattice bun-
dle.

Here, any measure space X := (ΩX, ΣX, µX) is assumed to be complete1 and
1 i.e., subsets of null sets are measurable.
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with a positive σ-finite measure. See [29, Chapter 1, Section 1.2, p.18-21] for
the case of measurable Banach bundle.

Definition C.2.0.1. Let E be a set (total space), X a measure space (base space),
and pE : E −→ ΩX a surjective mapping (bundle projection). Then the triple
(E, pE,ME) is called a measurable Banach lattice bundle over X, where ME is
a vector sublattice of SE :=

{
s : ΩX −→ E | pE ◦ s = IdΩX

}
, if the following

conditions are satisfied.

(i) For each x ∈ ΩX, the fiber Ex := p−1
E (x) is a Banach lattice.

(ii) If f : ΩX −→ K is measurable and s ∈ ME, then f s ∈ ME, where f s is
defined pointwisely.

(iii) For each s ∈ ME the mapping

|s| : ΩX −→ R+, x 7→ ||s(x)||Ex

is measurable.

(iv) If
(
sn
)

n∈N
∈ ME is a sequence converging almost everywhere to s ∈ SE,

then s ∈ ME.

Elements of SE are called sections while that ofME are measurable sections
of the measurable Banach lattice bundle (E, pE,ME).

And if, in addition,

(v) there exists a sequence
(
sn
)

n∈N
∈ ME such that the linear span lin{sn(x) | n ∈N}

is dense in Ex for almost every x ∈ ΩX. then (E, pE,ME) is said to be sep-
arable.

Note C.2.0.2. (i) If no confusion arises, we will say E is a measurable Banach
lattice bundle over X, while we mean (E, pE,ME).

(ii) We note that, in our setting of a measurable Banach lattice bundle (which may
as well be called a measurable bundle of Banach lattices), the only additional
property we added to the definition of measurable Banach bundle as defined
in [29, Definition 1.12 p.18] is that

(a) each fiber is a Banach lattice instead of a Banach space; and

(b) we choose a vector sublattice as the space of its measurable sections in-
stead of a vector subspace.
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And so every (separable) measurable Banach lattice bundle is, in particular,
a (separable) measurable Banach bundle in this situation.

We mention here a situation whereby a measurable Banach lattice bundle
can be generated. See [29, Remark 1.14, p.18] for the case measurable Ba-
nach bundle.

Remark C.2.0.3. Let X be a measure space and (E, p) is a pair of a set E and a
surjective map p : E −→ ΩX satisfying condition (i) of Definition C.2.0.1 above.
For any vector sublatticeME of SE :=

{
s : ΩX −→ E | p ◦ s = IdΩX

}
satisfying

condition (iv) of Definition C.2.0.1, we have that

(i) ME generates a measurable Banach lattice bundle i.e., there exists a small-
est vector sublattice M̃E of SE containing ME such that (E, p,M̃E) is a
measurable Banach lattice bundle over X, and, moreover,

(ii) M̃E consists precisely of all almost everywhere limits of sequences in

lin{1As |A ∈ ΣX, s ∈ ME}.

Similar to the case of a measurable Banach bundle (see [29, Example 1.16,
p.19]) we identify the following two important examples of measurable Ba-
nach lattice bundles.

Example C.2.0.4.

(i) Let Z be a Banach lattice and X a measure space. Consider E := ΩX× Z and the
projection p : E −→ ΩX onto the first factor. The space of sections SE is identified
with the space of all functions s : ΩX −→ Z. The set of all strongly measurable
functions then defines a subset ME of SE which turns E into a measurable Ba-
nach lattice bundle called the trivial Banach lattice bundle with fiber Z. Moreover,
this coincides with the measurable Banach lattice bundle generated by constant sec-
tions, i.e., ME consists precisely of all almost everywhere limits of sequences in
lin{1As |A ∈ ΣX, s(x) = z ∈ Z for all x ∈ ΩX}.

(ii) Let E be a topological Banach lattice bundle over a locally compact space Ω, µ a
σ-finite regular Borel measure on Ω, and B(Ω) the Borel σ-algebra of Ω. Then the
vector lattice Γ0(Ω, E) generates a measurable Banach lattice bundle Eµ over the
completion of the measure space (Ω, B(Ω), µ). We say Eµ is the induced measur-
able Banach lattice bundle over a measure space induced by Ω.
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C.3 The space of measurable sections

A measurable Banach lattice bundle (E, pE,ME) over a measure space X
induces a natural ordered vector space.
Indeed, on the space of sections SE :=

{
s : ΩX −→ E | pE ◦ s = IdΩX

}
, we

have for each s ∈ SE, a "modulus" map

SE −→ SE; s 7→ |s| :=
[
x 7→ |s(x)|

]
.

If K = R, defining the set

S+E :=
{

s ∈ SE : s ≥ 0
de f⇐⇒ |s| = s

}
,

we obtain a partial order on SE by saying s1 ≤ s2
de f⇐⇒ s2 − s1 ≥ 0.

And if K = C, defining the set

SR
E := {s ∈ SE : Re s = s} ,

we obtain a partial order on SR
E as above.

The following lemma will be useful, which states important order structures
associated with a measurable Banach lattice bundle.

Lemma C.3.0.1. Let E be a measurable Banach lattice bundle over X. Then the
following hold on the space of its sections SE.

(A) If K = R, then SE is a real vector lattice where S+E denotes the sets of its
positive elements such that

(i) if
(
sn
)

n∈N
∈ S+E is a sequence converging (almost everywhere) to

s ∈ SE, then s ∈ S+E (almost everywhere),

(ii) S+E ∩ (−S+E ) = {0},

(iii) S+E + S+E ⊆ S
+
E ,

(iv) λS+E ⊆ S
+
E for any λ ≥ 0, and

(v) For s1, s2 ∈ S+E , 0 ≤ s1 ≤ s2 =⇒ ||s1(x)||Ex ≤ ||s2(x)||Ex for all
x ∈ ΩX.
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(B) If K = C, then SR
E is a real vector lattice where

S+E :=
{

r ∈ SR
E : r ≥ 0

de f⇐⇒ |r| = r
}

denotes the set of its positive elements such that

(i) if
(
sn
)

n∈N
∈ SR

E is a sequence converging (almost everywhere) to
s ∈ SE, then s ∈ SR

E (almost everywhere), and

(ii) SE = SR
E ⊕ iSR

E is a complex vector lattice.

Proof. (A) If K = R, i.e., Ex is a real Banach lattice for each x ∈ ΩX. In
this situation, the lattice operations in SE are defined pointwise via
(s1 ∧ s2)(x) = s1(x) ∧ s2(x) and (s1 ∨ s2)(x) = s1(x) ∨ s2(x) for any
s1, s2 ∈ SE and every x ∈ ΩX. Moreover, for any s ∈ SE setting s+ :=
s ∨ 0 and s− := −(s ∧ 0), it follows that s+, s− ∈ S+E and s = s+ − s−

is the unique representation as a difference of positive sections with
modulus |s| = s+ + s−.

It is clear that, SE is a real vector lattice, with positive sections S+E .
That is s ∈ S+E ⇐⇒ s ∈ SE and 0x ≤ s(x) ∈ E+

x for each x ∈ ΩX.

(i) Let (sn)n∈N ⊆ S+E be a sequence of positive sections converg-
ing (almost everywhere) to a section s ∈ SE. This, in particular, im-
plies that (sn(x))n∈N ⊆ E+

x is a sequence converging to s(x) ∈ Ex for
(almost) every x ∈ ΩX. And since E+

x ⊆ Ex is norm-closed for each
x ∈ ΩX; then we have that s(x) ∈ E+

x for (almost) every x ∈ ΩX.

Assertions (ii), (iii) and (iv) follow, respectively, since E+
x + E+

x ⊆ E+
x ,

E+
x ∩ (−E+

x ) = {0x} and λE+
x ⊆ E+

x for each x ∈ ΩX, 0 ≤ λ ∈ R.

(v) For s1, s2 ∈ S+E , 0 ≤ s1 ≤ s2 implies that 0x ≤ s1(x) ≤ s2(x) for
each x ∈ ΩX. And this also implies that ||s1(x)||Ex ≤ ||s2(x)||Ex for all
x ∈ ΩX.

(B) If K = C, i.e., Ex = ER
x ⊕ iER

x is a complex Banach lattice for each
x ∈ ΩX, then we see that SR

E is the set of real sections, i.e., s ∈ SR
E ⇐⇒

s ∈ SE and s(x) ∈ ER
x for each x ∈ ΩX. And as in (A) above we obtain

that SR
E is a real vector lattice.

(i) Let (sn)n∈N ⊆ SR
E be a sequence of real sections converging

(almost everywhere) to a section s ∈ SE. This, in particular, implies
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that (sn(x))n∈N ⊆ ER
x is a sequence converging to s(x) ∈ Ex for (al-

most) every x ∈ ΩX. And since ER
x ⊆ Ex is a closed subspace for each

x ∈ ΩX, we have that s(x) ∈ ER
x for (almost) every x ∈ ΩX.

(ii) Moreover, for any s ∈ SE, we see that the mappings Re s :
ΩX −→ E; x 7→ Re s(x) and Im s : ΩX −→ E; x 7→ Im s(x) are real
sections, i.e., Re s, Im s ∈ SR

E , and so s = Re s+ iIm s is the unique rep-
resentation of complex section with modulus |s| = supt∈Q

{
Re eπits

}
.

It thus follows that SE = SR
E ⊕ iSR

E is a complex vector lattice.

The following is an immediate corollary of Lemma C.3.0.1 above combined
with condition (iv) of Definition C.2.0.1.

Corollary C.3.0.2. Let E be a measurable Banach lattice bundle over X. Then the
following hold, on the space of its measurable sectionsME.

(A) If K = R, thenME is a real vector lattice whereM+
E := S+E ∩ME denotes

the sets of its positive elements such that

(i) M+
E is (sequentially) closed in SE in the sense that, if

(
sn
)

n∈N
∈

M+
E is a sequence converging almost everywhere to s ∈ SE, then s ∈ M+

E ,

(ii)M+
E ∩ (−M+

E ) = {0},

(iii)M+
E +M+

E ⊆M
+
E ,

(iv) λM+
E ⊆M

+
E for any λ ≥ 0, and

(v) For s1, s2 ∈ M+
E , 0 ≤ s1 ≤ s2 =⇒ ||s1(x)||Ex ≤ ||s2(x)||Ex for

all x ∈ ΩX.

(B) If K = C, then MR
E := SR

E ∩ME is a real vector lattice where M+
E :=

S+E ∩MR
E denotes the set of its positive elements, such that

(i) MR
E is (sequentially) closed in SE in the sense that, if

(
sn
)

n∈N
∈

MR
E is a sequence converging almost everywhere to s ∈ SE, then s ∈ MR

E ,
and

(ii)ME =MR
E ⊕ iMR

E is a complex vector lattice.

To be able to state further results, we first recall some important properties
of (quotient) spaces of measurable sections in the (general) case of measur-
able Banach bundle (see also [29, Example 2.4., p.24]).
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Remark C.3.0.3. Let (E, pE,ME) be a measurable Banach bundle over X. Then,
the following hold.

(i) Let Γ0(X, E) := ME/∼ be the space of equivalence classes of measurable
sections which coincide almost everywhere, i.e., s ∼ r if s(x) = r(x) for
a.e. x ∈ ΩX. Under the natural operation, Γ0(X, E) is a vector space, and
with the (lattice)-norm ||s|| := |s| ∈ L0(X) for some (hence for all) s ∈ s;
Γ0(X, E) is a LNS (lattice normed space) over L0(X). In particular Γ0(X, E)
is a module over the commutative ring L0(X).

(ii) Let Γ∞(X, E) :=
{

s ∈ Γ0(X, E) | |s| ∈ L∞(X)
}

, the (quotient) space of es-
sentially bounded measurable sections. It follows that under the natural op-
erations, Γ∞(X, E) is a Banach module over the commutative Banach algebra
L∞(X).

(iii) Let Γ1(X, E) :=
{

s ∈ Γ∞(X, E) : |s| ∈ L1(X)
}

the (quotient) space of inte-
grable measurable sections. Then, Γ1(X, E) is also a Banach module over the
commutative Banach algebra L∞(X).

In what follows, as in Remark C.3.0.3 above, we identify an equivalence
class of measurable section in Γ∞(X, E) or Γ1(X, E) with its representative
inME, and we speak of just measurable sections if no confusion arises.

Using this Corollary C.3.0.2 and Remark C.3.0.3, we claim the following
results.

Proposition C.3.0.4. For a measurable Banach lattice bundle E over a measure
space X; we have the following properties on the Banach space Γ∞(X, E) of its
essentially-bounded measurable sections.

(i) If K = R, then Γ∞(X, E) is an ordered Banach space with normal positive
cone Γ∞(X, E)+ :=

{
s ∈ Γ∞(X, E) : s ∈ M+

E
}

.

(ii) If K = C, then Γ∞(X, E)R :=
{

s ∈ Γ∞(X, E) : s ∈ SR
E
}

is an ordered
closed subspace of Γ∞(X, E).

In particular, Γ∞(X, E) is a Banach lattice such that

(a) if K = R, then Γ∞(X, E) = Γ∞(X, E)+ − Γ∞(X, E)+ is a real
Banach lattice, and
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(b) if K = C, then Γ∞(X, E) = Γ∞(X, E)R ⊕ iΓ∞(X, E)R is a complex
Banach lattice.

Proof.

(i) In the case where K = R, i.e., Ex is a real Banach lattice for each x ∈ ΩX,
it follows from Corollary C.3.0.2 (A) that the set Γ∞(X, E)+ of essentially-
bounded positive measurable sections satisfies the following properties:

(a) Γ∞(X, E)+ is norm-closed in Γ∞(X, E),
(b) Γ∞(X, E)+ ∩ (−Γ∞(X, E)+) = {0},
(c) Γ∞(X, E)+ + Γ∞(X, E)+ ⊆ Γ∞(X, E)+, and
(d) for s1, s2 ∈ Γ∞(X, E)+, 0 ≤ s1 ≤ s2 =⇒ ||s1|| ≤ ||s2||.

Hence, Γ∞(X, E)+ is normal positive cone (see Appendix B, Proposition
B.0.0.2) (by taking β = 1) of ordered Banach space Γ∞(X, E). And
since, ME and hence Γ∞(X, E) is a real vector lattice and the fact
that ||s|| = |||s||| for any s ∈ Γ∞(X, E), we can conclude that
Γ∞(X, E) = Γ∞(X, E)+ − Γ∞(X, E)+ is a real Banach lattice (see also
Appendix B, Proposition B.0.0.5).

(ii) Similarly, in the case where K = C, i.e., Ex is a complex Banach lattice
for each x ∈ ΩX, it follows from Corollary C.3.0.2 (B) and the ar-
gument in (i) above that the set Γ∞(X, E)R of essentially-bounded
real measurable sections is a real Banach lattice. And since, ME

and hence Γ∞(X, E) is a complex vector lattice, we can conclude
that Γ∞(X, E) = Γ∞(X, E)R ⊕ iΓ∞(X, E)R is a complex Banach lat-
tice.

The following is an immediate corollary of Proposition C.3.0.4 above.

Corollary C.3.0.5. For a measurable Banach lattice bundle E over a measure space
X, we have the following properties on the Banach space Γ1(X, E) of its integrable
measurable sections.

(i) If K = R, then Γ1(X, E) is an ordered Banach space with normal positive
cone Γ1(X, E)+ := Γ∞(X, E)+ ∩ Γ1(X, E).

(ii) If K = C, then Γ1(X, E)R := Γ∞(X, E)R ∩ Γ1(X, E) is an ordered closed
subspace of Γ1(X, E).

In particular, Γ1(X, E) is a Banach lattice such that
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(a) if K = R, then Γ1(X, E) = Γ1(X, E)+− Γ1(X, E)+ is a real Banach
lattice, and

(b) if K = C, then Γ1(X, E) = Γ1(X, E)R ⊕ iΓ1(X, E)R is a complex
Banach lattice.

The following is an important observation about the vector lattice SE of
sections of a measurable Banach lattice bundle.

Proposition C.3.0.6. Let E be a measurable Banach lattice bundle over X. Then
the following holds for the vector lattice of its sections SE.
For any function f : ΩX −→ K, and section s ∈ SE, we have that

(i) | f s| = | f ||s|, and

(ii) f s = f s.

Proof. In the case where K = R, which implies Ex is a real Banach lat-
tice for each x ∈ ΩX, the assertion follows since | f s|(x)= | f (x)s(x)|=
| f |(x)|s|(x) for all x ∈ ΩX.
Now suppose K = C, which implies Ex is a complex Banach lattice for each
x ∈ ΩX. Here |s| = supt∈Q

{
Re eπits

}
, which is defined pointwise. And so

for a function f : ΩX −→ C , and s ∈ SE we have that

| f s|(x) = sup
t∈Q

{
Re eπit f s(x)

}
= sup

t∈Q

{
Re eπit f (x)s(x)

}
= | f |(x) sup

t∈Q

{
Re eπits(x)

}
= | f |(x)|s|(x)

for all x ∈ ΩX. And this proves assertion (i).
Moreover, f s(x) = f (x)s(x) = f (x)s(x) for all x ∈ ΩX proves assertion (ii).

The following is an immediate corollary combining Propositions C.3.0.6 and
C.3.0.4 with Remark C.3.0.3.
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Corollary C.3.0.7. For a measurable Banach lattice bundle E over a measure space
X; we have the following properties on the Banach lattices Γ∞(X, E) and Γ1(X, E)
of its essentially-bounded and integrable measurable sections respectively.

(i) If K = R, then Γ∞(X, E) and hence Γ1(X, E) is a real Banach lattice module
over L∞(X).

(ii) If K = C, then Γ∞(X, E) and hence Γ1(X, E) is a complex Banach lattice
module over L∞(X).

In particular, Γ∞(X, E) and hence Γ1(X, E) is an m-Banach lattice module
over L∞(X).

In the following proposition, we state several results about a separable mea-
surable Banach lattice bundle. Moreover, if the measure space X = (ΩX, ΣX, µX)

is separable, then the (quotient) lattice of its integrable measurable sections
is, in particular, a separable Banach lattice. This is essentially due to [29,
Lemma 2.48, p.46 and Lemma 4.46, p.45] in the case of separable measurable
Banach bundle.

Proposition C.3.0.8. For a separable measurable Banach lattice bundle E over a
measure space X, let

(
sn
)

n∈N
∈ ME be sequence such that lin{sn(x) | n ∈N} is

dense in Ex for almost every x ∈ ΩX. Then the following hold.

(i) There exists a sequence
(
s+n

)
n∈N

∈ M+
E such that lin{s+n | n ∈N} gen-

erates E+ :=
{

v ∈ E : v ∈ |v| = vEpE(v)

}
, i.e., every s+ ∈ M+

E is almost
everywhere limit of a sequence in lin{1As+n | A ∈ ΣX, n ∈N}.

(ii) There exists a sequence
(
s+n

)
n∈N
∈ M+

E such that

(a) lin{s+n (x) | n ∈N} is dense in the positive cone E+
x for almost every

x ∈ ΩX,

(b) µX({|s+n | ̸= 0}) < ∞ for every n ∈N, and

(c) |s+n | = 1{|s+n |̸=0} almost everywhere for every n ∈N.

(iii) If
(
s+n

)
n∈N
∈ M+

E is a sequence satisfying conditions (ii) (a) and (b) above
then

lin
{
1As+n | A ∈ ΣX, n ∈N

}
⊆ Γ1(X, E)+

is dense in Γ1(X, E)+.
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(iv) If X is a separable measure space, i.e., there is a sequence (An)n∈N of mea-
surable subsets of ΩX such that for every B ∈ ΣX and ε > 0 there is an
n ∈ N with µX(An∆B) < ε; then Γ1(X, E)+ is separable. In particular,
Γ1(X, E) is a separable Banach lattice.

Proof. As the vector space lin{sn(x) | n ∈N} is dense in Ex for almost every
x ∈ ΩX, we may assume that it is a vector sublattice for almost every x ∈
ΩX, i.e., v ∈ lin {sn(x) | n ∈N} implies that |v|, v ∈ lin {sn(x) | n ∈N}
for almost every x ∈ ΩX.

(i) Since E is, in particular, a separable Banach bundle over X, by [29,
Lemma 2.47, p.45], it follows that lin{sn | n ∈N} generates E, i.e., ev-
ery s ∈ ME is almost everywhere limit of a sequence in lin{1Asn | A ∈ ΣX, n ∈N}.
Now, we may also assume WLOG that lin{sn | n ∈N} ⊆ ME is a vec-
tor sublattice, i.e., r ∈ lin {sn | n ∈N} implies that |r|, r ∈ lin {sn | n ∈N}.
And as such, we can set s+n := |sn| for each n ∈ N. And observing
that, for each s ∈ ME, if(

rn
)

n∈N
∈ lin {1Asn | A ∈ ΣX, n ∈N}

is a sequence converging almost everywhere to s ∈ ME, then(
|rn|

)
n∈N
∈ lin

{
1As+n | A ∈ ΣX, n ∈N

}
⊆M+

E

is a sequence converging almost everywhere to |s| ∈ M+
E proves the

assertion.

(ii) Similarly, since E is also a separable Banach bundle over X, we can
choose a sequence

(
sn
)

n∈N
∈ ME as in [29, Lemma 2.48, p.46]. And

as in (i) above, setting s+n := |sn| for each n ∈N, we may also assume
that lin{s+n (x) | n ∈N} ⊆ M+

E is a vector sublattice, and thus the
assertions [(a) to (c)] follows again by [29, Lemma 2.48, p.46][(i) to
(iii)] .

(iii) With the same consideration as in (ii) above, if
(
s+n

)
n∈N

∈ M+
E is a

sequence satisfying conditions (ii) (a) and (b) it satisfies conditions (i)
and (ii) of [29, Lemma 2.48, p. 46] and again realising lin{s+n (x) | n ∈N} ⊆
M+

E as a vector sublattice implies that

lin
{
1As+n | A ∈ ΣX, n ∈N

}
⊆ Γ1(X, E)+

is also a vector sublattice which is dense in Γ1(X, E)+.
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(iv) Let X be a separable measure space. By choosing a sequence
(
s+n

)
n∈N
∈

M+
E satisfying conditions (ii) (a) and (b) from above, and by realising

{1Am s+n | n, m ∈N} ⊆ Γ1(X, E)+ as a vector sublattice, it follows from
the proof of [29, Lemma 2.46, p. 47 ] that{

1Am s+n | n, m ∈N
}
⊆ Γ1(X, E)+

is total in Γ1(X, E)+.

Now, if K = R, it immediately follows that Γ1(X, E) is a separable
Banach lattice.

In the case K = C, it follows from the above consideration that if the
vector lattice lin{sn | n ∈N} generates E, then by setting sr

n := Re sn

for each n ∈N we obtain that lin{sr
n | n ∈N} generates

ER :=
{

v ∈ E : Re v = vEpE(v)

}
, i.e., every sr ∈ MR

E is almost every-
where limit of a sequence in lin{1Asr

n | A ∈ ΣX, n ∈N}. Moreover,
if we choose

(
sn
)

n∈N
∈ ME as in [29, Lemma 2.48, p.46], setting

sr
n := Re sn for each n ∈ N implies that

(
sr

n
)

n∈N
∈ MR

E is a sequence
satisfying again conditions (i) and (ii) of [29, Lemma 2.48, p.46] and so
we obtain that

lin {1Asr
n | A ∈ ΣX, n ∈N} ⊆ Γ1(X, E)R

is also a vector sublattice which is dense in Γ1(X, E)R. And if X is
a separable measure space, we also obtain, again by the proof of [29,
Lemma 2.46, p.47], that

{1Am sr
n | n, m ∈N} ⊆ Γ1(X, E)R

is total in Γ1(X, E)R.

Thus, Γ1(X, E) = Γ1(X, E)R⊕ iΓ1(X, E)R is a separable Banach lattice.

C.4 Morphisms of measurable Banach lattice
bundles

Here, we introduce the concept of (positive) semiflows on measurable Ba-
nach lattice bundles and their dynamics. We essentially follow the work of
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S. Siewert ([29]) for the case of measurable Banach bundles (see [29, Section
1.2., p.17-21]). We note that, in this Section, we establish the category of
measurable Banach lattice bundles and their dynamics.

Before introducing dynamics on measurable Banach lattice bundles, we re-
call the definitions of a morphism and an automorphism of measure spaces.

Definition C.4.0.1. (Morphism of Measure spaces)
Let X and Y be two measure spaces; a premorphism φ : X −→ Y is a measurable
and measure-preserving mapping φ : ΩX −→ ΩY. And for any two premorphisms
φ and ψ, setting φ ∼ ψ if φ(x) = ψ(x) for almost every x ∈ ΩX defines an
equivalence relation on the set of premorphisms from X to Y. An equivalence class
[φ] is called a morphism from X to Y, which will be denoted by φ again.

If φ : X −→ Y is a morphism such that φ−1 : Y −→ X is also a morphism with
φ ◦ φ−1 = IdΩY and φ−1 ◦ φ = IdΩX , then φ is called an isomorphism. The set of
automorphisms (i.e., self-isomorphisms) from X to X will be denoted as Aut(X).

Definition C.4.0.2. (Positive morphism of Measurable Banach lattice bundle)
Let φ : X −→ X be a morphism on a measure space X; while (E, pE,ME) and
(F, pF,MF) are measurable Banach lattice bundles over X. A positive premor-
phism Φ from E to F over φ is a mapping Φ : E −→ F such that

(i) Φ ◦ME ⊆MF ◦ φ,

(ii) pF ◦Φ = φ ◦ pE almost everywhere, i.e., the diagram

E F

ΩX ΩX

pE

Φ

pF

φ

commutes almost everywhere,

(iii) Φx := Φ|Ex : Ex −→ Fφ(x) is a positive operator for almost every x ∈ ΩX,
and

(iv) Φ is essentially bounded, i.e., ||Φ|| := ess supx∈ΩX
||Φx||L (Ex,Fφ(x))

< ∞.
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As in the case of morphism of measurable Banach bundle, we also identify positive
premorphisms that agree up to a null set.
So, let pPremorφ(E, F) := {Φ : E −→ F is a positive premorphism over φ}, and

Nφ(E, F) :=
{

Φ ∈ pPremorφ(E, F)| Φ = 0 almost everywhere
}

,
An equivalence class [Φ] ∈ Morφ(E, F) := pPremorφ(E, F)/Nφ(E, F) is called a
positive morphism from E to F over φ, which we denote as Φ again.

Remark C.4.0.3. From above, as in the case of topological Banach lattice bundles
(see Chapter 3, Remark 3.4.0.3), we also identify the following additional properties
of a positive morphism Φ of measurable Banach lattice bundles over morphism φ

on X.

(i) If Φx is an isometry for almost every x ∈ ΩX, then we call Φ a positive
isometry.

(ii) If Φx is an isometric lattice homomorphism for almost every x ∈ ΩX, then
we call Φ an isometry.

(iii) If Φx is a lattice homomorphism for almost every x ∈ ΩX, we call Φ a
morphism of measurable Banach lattice bundle over φ.

(iv) If φ = IdΩX , we call Φ a positive morphism of measurable Banach lattice
bundle.

(v) If φ = IdΩX , and Φx is a lattice homomorphism for almost every x ∈ ΩX,
we call Φ a morphism of measurable Banach lattice bundle.

Next, we introduce positive dynamical measurable Banach lattice bundles
over a measure-preserving dynamical system induced by groups.
From now on, by a Banach lattice bundle over X, we always mean a mea-
surable Banach lattice bundle over a measure space X. And by a (positive)
morphism over a morphism φ on X, we always mean a (positive) morphism
of measurable Banach lattice bundle over φ, if no confusion arises.

Note C.4.0.4. In the remainder of this appendix, we will use the following notation.

(i) We let G be a locally compact group, and S a closed subsemigroup of G con-
taining the neutral element e, i.e., a closed "submonoid" of G. For instance,
we can take G = R, S = R+ or G = Z, S = N0.
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(ii) We let (X, φ) be a measure-preserving G-dynamical system over a measure
space X, i.e., φ = (φg)g∈G defines a group action2 on X, called a (measur-
able) flow on X.

Definition C.4.0.5. A positive S- dynamical Banach lattice bundle over the measure-
preserving G-dynamical system (X, φ) is a pair (E, Φ) of a measurable Banach
lattice bundle E over X and a monoid representation3

Φ : S −→ EE, g 7→ Φg

such that
Φg : E −→ E is a positive morphism over φg for each g ∈ S.

We call Φ = (Φg)g∈S a positive semiflow on E over the flow (φg)g∈G on X. If
S = G, then we call Φ = (Φg)g∈S a positive flow on E over the flow (φg)g∈G on
X, and (E, Φ) a positive G-dynamical Banach lattice bundle over (X, φ).

And if E is, in addition, separable, then (E, Φ) is called separable.

Remark C.4.0.6. From Definition C.4.0.5 above, using Remark C.4.0.3, we also
identify the following additional properties of a positive S-dynamical Banach lattice
bundle (E, Φ) over (X, φ).

(i) If Φg is a positive isometry for each g ∈ S, we call Φ a positive isometry.

(ii) If Φg is an isometry for each g ∈ S, we call Φ an isometry.

(iii) If Φg is a morphism over φg for each g ∈ S, we call (E, Φ) an S-dynamical
Banach lattice bundle over (X, φ); and Φ = (Φg)g∈S a semiflow on E over
the flow (φg)g∈G on X.

Now, we introduce instances of (positive) S-dynamical measurable Banach
lattice bundles on Examples C.2.0.4 (i) and (ii). See [29, Example 1.19, p.21]
for the case of dynamical measurable Banach bundles.

2 i.e., φ : G −→ Aut(X); g 7→ φg is a group homomorphism, where Aut(X) denote the
group of automorphisms on X.

3 Φgh = Φh ◦Φg, ∀g, h ∈ S and Φe = IdE, the identity on EE.
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Example C.4.0.7. (i) Let X be a measure space, Z a Banach lattice and E =

ΩX × Z the trivial Banach lattice bundle with fiber Z. Moreover, let φ =

(φg)g∈G be a (measurable) flow on X. Then a positive S-dynamical mea-
surable Banach lattice bundle (E, Φ ) corresponds to a positive measurable
cocycle, i.e., a mapping

ϕϕϕ : S×ΩX −→ ZZ; (g, x) 7→ ϕϕϕ(g, x) := ϕg(x)

such that

(a) ϕg(x) : Z −→ Z is a positive operator for almost every x ∈ ΩX and
for all g ∈ S,

(b) ϕgh(x) = ϕg(φh(x)) ◦ ϕh(x) for almost every x ∈ ΩX and for all
g, h ∈ S,

(c) ϕe(x) = IdZ for almost every x ∈ ΩX,

(d) for every g ∈ S, the mapping ΩX −→ Z; x 7→ ϕg(x)v is strongly
measurable for all v ∈ Z, and

(e) for every g ∈ S, ||ϕg|| := ess supx∈ΩX
||ϕg(x)||Z < ∞.

In this situation, we may identify Φg(x, v) = (φg(x), ϕg(x)v) for all g ∈ S
and (x, v) ∈ ΩX × Z = E.

(ii) Let G be a (discrete) group, (E, Φ) a topological S-dynamical Banach lattice
bundle over a topological G-dynamical system (Ω, φ) and µ be a σ-finite
regular Borel measure on Ω. Moreover, let Eµ be the induced measurable
Banach lattice bundle. Then (Eµ, Φ) is an S-dynamical measurable Banach
lattice bundle over the measure-preserving G-dynamical system induced by
(Ω, φ).

Next, we introduce morphism between positive S-dynamical measurable Ba-
nach lattice bundles over a G-dynamical measure-preserving system (X, φ).

Definition C.4.0.8. A morphism from a positive S-dynamical measurable Banach
lattice bundle (E, Φ) over (X, φ) to a positive S-dynamical measurable Banach lat-
tice bundle (F, Ψ) over (X, φ) is a morphism (see Remark C.4.0.3 (v))

Θ : E −→ F

such that the following diagram
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E F

E F

Φg

Θ

Ψg

Θ

commutes for each g ∈ S, i.e., Θ ◦ Φg = Ψg ◦ Θ for each g ∈ S. It is called a
positive isometry if Θ is a positive isometry.

Just as the case in the topological setting (see Chapter 3, Remark 3.4.0.10),
we also note the following.

Remark C.4.0.9. (i) In a similar manner, a morphism between S-dynamical
measurable Banach lattice bundles over (X, φ) can be defined. It will be
called an isometry if Θ is an isometry.

(ii) In the category of positive S-dynamical measurable Banach lattice bundles
over (X, φ); an isometric morphism is just a positive isometry. We choose this
terminology and reserve the word "isometry" for S-dynamical measurable
Banach lattice bundles over (X, φ).

(iii) Furthermore, two positive S-dynamical measurable Banach lattice bundles
(E, Φ) and (F, Ψ) over (X, φ) are said to be isomorphic if there exists a sur-
jective positive isometry (i.e., a surjective isometric morphism) between them.
In this situation, we write Φ = (Φg)g∈S

∼= (Ψg)g∈S = Ψ on E ∼= F.

C.5 On a representation of the space of
integrable measurable sections

Throughout this Section, by a Banach lattice bundle E over X, we mean a
measurable Banach lattice bundle pE : E −→ ΩX over a measure space X (see
Definition C.2.0.1). And by a (positive) morphism over a morphism φ on X,
we mean a (positive) morphism of measurable Banach lattice bundle over
φ, if no confusion arises (see Definition C.4.0.2 and Remark C.4.0.3).

Remark C.5.0.1. (i) Let E be a Banach lattice bundle over a measure space X.
Then the (quotient) lattices Γ∞(X, E) and Γ1(X, E) of its essentially bounded
and integrable measurable sections are, respectively, m-Banach lattice mod-
ules over commutative Banach lattice algebra L∞(X) (see Corollary C.3.0.7).
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(ii) In particular, if E is a Banach lattice bundle over a measure space X, then
the m-Banach lattice module Γ1(X, E) is an L1(X)-normed m-lattice mod-
ule over L∞(X) (see Chapter 2, Definition 2.4.2.15 and Example 2.4.2.16).
And if E is separable over a separable measure space X, then by Proposition
C.3.0.8(iv), Γ1(X, E) is, in addition, a separable Banach lattice.

(iii) Let E be a Banach lattice bundle over a measure space X. With a (positive)
morphism Φ : E −→ E of Banach lattice bundle over an automorphism
φ : X −→ X; we associate a map

TΦ : Γ1(X, E) −→ Γ1(X, E); s 7→ Φ ◦ s ◦ φ−1

called the (positive) weighted Koopman operator over the Koopman opera-
tor Tφ : L∞(X) −→ L∞(X); f 7→ f ◦ φ−1 induced by Φ. It immedi-
ately follows that the (positive) weighted Koopman operator TΦ is a (positive)
lattice Tφ-homomorphism (see Chapter 2, Definition 2.3.2.3 and Example
2.3.2.4(ii)).

(iv) And so, if G is a discrete group, a pair (E, Φ) of (positive) S-dynamical Ba-
nach lattice bundle over a measure-preserving G-dynamical system (X, φ)
(see Definition C.4.0.5) induces a (positive) S-dynamical m-Banach lattice
module (Γ1(X, E), TΦ) over the Koopman group representation (L∞(X),Tφ)
(see also Chapter 2, Example 2.3.4.3 (ii)). And we call TΦ = TΦ(g)g∈S

the (positive) weighted Koopman semigroup representation on Γ1(X, E) over
Tφ = (Tφ(g))g∈G induced by (E, Φ).

The following lemma will be useful, which gives a certain characterisation
of the weighted Koopman operator on the space of integrable sections over
the Koopman operator Tφ on L∞(X) in the (general) case of measurable
Banach bundle over a measure space X (see [29, Proposition 2.49, p.47]).

Lemma C.5.0.2. Let X be a measure space and φ : X −→ X an automor-
phism. Moreover, let E and F be measurable Banach bundles over X, and T :
Γ1(X, E) −→ Γ1(X, F) be a bounded operator. If E is separable, the following are
equivalent.

(a) T is a Tφ-homomorphism, i.e., T f s = Tφ f · T s for all f ∈ L∞(X) and
s ∈ Γ1(X, E).
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(b) |T s| ≤ ||T || · Tφ|s| for every s ∈ Γ1(X, E).

(c) There exists a unique measurable bundle morphism Φ : E −→ F over φ such
that T = TΦ.

Moreover, if this assertion holds we have the following.

(i) |Φ| : ΩX −→ [0, ∞); x 7→ ||Φx|| defines an element of L∞(X).

(ii) sup {|TΦs| : s ∈ Γ∞(X, E) with |s| ≤ 1} = Tφ|Φ| ∈ L∞(X).

(iii) ||Φ|| = ||TΦ||Γ∞(X,E) = ||TΦ||Γ1(X,E).

(iv) Φ is an isometry if and only if TΦ is an isometry.

Using Lemma C.5.0.2 above, we, in particular, claim the following result in
our setting.

Proposition C.5.0.3. Let X be a measure space and φ : X −→ X an automor-
phism. Moreover, let E and F be measurable Banach lattice bundles over X, and
T : Γ1(X, E) −→ Γ1(X, F) a lattice homomorphism. If E is separable, the follow-
ing are equivalent.

(i) T is a lattice Tφ-homomorphism, i.e., T f s = Tφ f · T s for all f ∈ L∞(X)

and s ∈ Γ1(X, E).

(ii) There exists a unique morphism Φ : E −→ F of Banach lattice bundles over
φ such that T = TΦ.

Moreover, ||Φ|| = ||T || and Φ is an isometry if and only if T is an isometry.

Proof. That (ii) =⇒ (i) immediately follows from definition. Indeed,
for all f ∈ L∞(X) and s ∈ Γ1(X, E), we have that

TΦ f s = Φ ◦ f s ◦ φ−1

= Φ ◦ [ f ◦ φ−1 · s ◦ φ−1]

= f ◦ φ−1 ·Φ ◦ s ◦ φ−1

= Tφ f · TΦs.

(i) =⇒ (ii): Since T : Γ1(X, E) −→ Γ1(X, F) is, in particular, a
bounded operator, by Lemma C.5.0.2 we obtain a unique morphism
Φ : E −→ F of measurable Banach bundles over φ such that T = TΦ.
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We claim that Φ : E −→ F is the unique morphism of Banach lattice
bundles over φ.

To this end, we follow the proof of Lemma C.5.0.2[(b) =⇒ (c)] as in
[29, Proposition 2.49, p.47] by which Φ is obtained.

(a) Since E is a separable Banach lattice bundle over X, if
(
sn
)

n∈N
∈

ME is a sequence satisfying [29, Lemma 2.48, p.46], by our considera-
tion as in the proof of Proposition C.3.0.8, we obtain that the Q-vector
space

Hx := linQ {sk(x) | k ∈N} ⊆ Ex

is a Q-vector lattice for each x ∈ ΩX, where Q = Q if K = R or
Q = Q + iQ if K = C, i.e., for each x ∈ ΩX, v ∈ Hx implies |v|,
v ∈ Hx.

(b) And since T is a lattice homomorphism, if
(
rn
)

n∈N
∈ MF is

a representative of
(
T sn

)
n∈N

∈ Γ1(X, F), then
(
|rn|

)
n∈N

∈ MF can
be taken as a representative of

(
T |sn|

)
n∈N

∈ Γ1(X, F). And so the
Q-linear map Φx : Hx −→ Fφ(x) given by

Φx(sn(x)) := (rn)(φ(x))

for every n ∈ N is a Q-vector lattice homomorphism for every x ∈
ΩX. Indeed, for each x ∈ ΩX, we have that

|Φx(sn(x))| = |(rn)(φ(x))|

= (|rn|)(φ(x))

= Φx|(sn(x))|

for every n ∈ N. And this implies that for each x ∈ ΩX, |Φxv| =

Φx|v| for every v ∈ Hx.

(c) And so, the unique extension of Φx : Hx −→ Fφ(x) to Φx :
Ex −→ Fφ(x) is a lattice homomorphism for almost every x ∈ ΩX.

And since Φx := 0 : Ex −→ Fφ(x), which is trivially a lattice homo-
morphism, was set for the remaining points x ∈ ΩX, we can conclude
that, the obtained mapping

Φ : E −→ F; v 7→ ΦEpE(v)
v

is the unique morphism of measurable Banach lattice bundles over φ.
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Moreover, by Lemma C.5.0.2, we have that ||Φ|| = ||TΦ|| = ||T || and
so Φ is an isometry if and only if T is an isometry.

The following is an immediate corollary of Proposition C.5.0.3 above.

Corollary C.5.0.4. Let X be a measure space, φ : X −→ X an automorphism.
Moreover, let E and F be measurable Banach lattice bundles over X, and T :
Γ1(X, E) −→ Γ1(X, F) be a linear operator. If E is separable, the following are
equivalent.

(i) T is a positive Tφ-homomorphism, i.e., |T s| ≤ T |s| and T f s = Tφ f · T s
for all f ∈ L∞(X) and s ∈ Γ1(X, E).

(ii) There exists a unique positive morphism Φ : E −→ F of Banach lattice
bundles over φ such that T = TΦ.

Moreover, ||Φ|| = ||T || and Φ is a positive isometry if and only if T is a
positive isometry.

The following proposition is a consequence of Proposition C.5.0.3, by which
we represent every (positive) S-dynamical m-Banach lattice module on Γ1(X, E)
over the Koopman group (L∞(X),Tφ) as (positive) weighted Koopman semi-
group representation induced by a unique (positive) S-dynamical measur-
able Banach lattice bundle over a measure-preserving G-dynamical system
(X, φ). See [29, Corollary 2.50, p.51] for the case of measurable Banach bun-
dle.

Proposition C.5.0.5. Let G be a (discrete) group, S ⊆ G a submonoid, and (X, φ)

a measure-preserving G-dynamical system. Moreover, let E be a separable measur-
able Banach lattice bundle over X, and let

T : S −→ Γ1(X, E)Γ1(X,E); g 7→ T (g)

be a strongly continuous representation such that (Γ1(X, E),T ) is an (positive)
S-dynamical m-Banach lattice module over (L∞(X),Tφ). Then, there is a unique
(positive) S-dynamical Banach lattice bundle (E, Φ) over (X, φ) such that TΦ =

T .
Moreover, ||T (g)|| = ||Φg|| for each g ∈ S and so, T = T (g)g∈S is an (positive)
isometry if and only if Φ = (Φg)g∈S is an (positive) isometry.
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Proof. We follow the proof of [29, Corollary 2.50, p.51] in the case of mea-
surable Banach bundle. And since every (positive) S-dynamical m-Banach
lattice module on Γ1(X, E) over (L∞(X),Tφ) defines S-dynamical Banach
module over (L∞(X),Tφ), we obtain a unique S-dynamical Banach bun-
dle (E, Φ) over (X, φ) such that TΦ = T in the sense of dynamical Banach
module (see [29, Definition 2.12, p. 28]).

We claim that (E, Φ) is the unique (positive) S-dynamical Banach lattice
bundle over (X, φ).
In particular :

(i) Φg is a (positive) Banach lattice bundle morphism over φg for each g ∈
S. Indeed, for each g ∈ S, T (g) : Γ1(X, E) −→ Γ1(X, E) is a (positive)
lattice Tφ(g)-homomorphism; and by Proposition C.5.0.3(CorollaryC.5.0.4),
it follows that, Φg : E −→ E is the unique (positive) Banach lattice
bundle morphism over φg for each g ∈ S.

(ii) T is an (positive) isometry if and only if Φ is an (positive) isometry.
Indeed, also by Proposition C.5.0.3(CorollaryC.5.0.4) we have that

||T (g)|| = ||Φg||

and so for each g ∈ S, T (g) is an (positive) isometry if and only if Φg

is an (positive) isometry.

As noted in Remark C.5.0.1(iv) and also from Proposition C.5.0.5 above, if
G is a discrete group, each separable (positive) S-dynamical Banach lattice
bundle (E, Φ) over a measure-preserving G-dynamical system (X, φ) induces
a (positive) S-dynamical m-Banach lattice module (Γ1(X, E), TΦ) via

TΦ : S −→ L (Γ1(X, E)), g 7→ TΦ(g) :=
[
s 7→ Φg ◦ s ◦ φg−1

]
over (L∞(X),Tφ), the Koopman group representation on L∞(X). And we
call (TΦ(g))g∈S a (positive) weighted Koopman semigroup representation
on Γ1(X, E) over the Koopman group representation (Tφ(g))g∈G on L∞(X).
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The following lemma shows that, for a fixed measure-preserving G-dynamical
system (X, φ), a morphism of separable (positive) S-dynamical Banach lat-
tice bundles (see Definition C.4.0.8) is uniquely determined by a homomor-
phism of the corresponding induced (positive) S-dynamical m-Banach lat-
tice modules (see Chapter 2, Definition 2.3.5.1).

Lemma C.5.0.6. Let G be a (discrete) group, S ⊆ G a submonoid, and (X, φ) a
measure-preserving G-dynamical system. Moreover, let (E, Φ) and (F, Ψ) be sepa-
rable S-dynamical Banach lattice bundles over (X, φ). Furthermore, let (Γ1(X, E), TΦ)

and (Γ1(X, F), TΨ) be S-dynamical m-Banach lattice modules over the Koopman
group (L∞(X),Tφ) induced by (E, Φ) and (F, Ψ), respectively.
Then, we have the following.

(A) For a mapping Θ : E −→ F the following are equivalent.

(i) Θ : E −→ F is a morphism between (E, Φ) and (F, Ψ).

(ii) VΘ : Γ1(X, E) −→ Γ1(X, F); s 7→ Θ ◦ s is an homomorphism be-
tween (Γ1(X, E), TΦ) and (Γ1(X, F), TΨ).

Moreover, if this assertion holds, ||Θ|| = ||VΘ||, and Θ is an isometry if and
only if VΘ is an isometry.

(B) For a mapping V : Γ1(X, E) −→ Γ1(X, F) the following are equivalent.

(i) V : Γ1(X, E) −→ Γ1(X, F) is an homomorphism between (Γ1(X, E), TΦ)

and (Γ1(X, F), TΨ).

(ii) There exists a unique morphism Θ : E −→ F between (E, Φ) and
(F, Ψ) such that V = VΘ.

Moreover, if this assertion holds, ||Θ|| = ||V||, and Θ is an isometry if and
only if V is an isometry.

Proof. (A) (i)⇔ (ii):

(a) First, we observe that the diagram

E F

E F

Φg

Θ

Ψg

Θ

commutes for each g ∈ S if and only if the diagram
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Γ1(X, E) Γ1(X, F)

Γ1(X, E) Γ1(X, F)

TΦ(g)

VΘ

TΨ(g)

VΘ

commutes for each g ∈ S. Indeed, for each g ∈ S

Ψ(g) ◦Θ = Θ ◦Φ(g)

⇐⇒ Ψ(g) ◦Θ ◦ s = Θ ◦Φ(g) ◦ s ∀s ∈ Γ1(X, E)

⇐⇒ Ψ(g) ◦Θ ◦ s ◦ φg−1 = Θ ◦Φ(g) ◦ s ◦ φg−1 ∀s ∈ Γ1(X, E)

⇐⇒ TΨ(g)VΘs = VΘTΦ(g)s ∀s ∈ Γ1(X, E)

⇐⇒ TΨ(g) ◦VΘ = VΘ ◦ TΦ(g).

(b) Moreover, Θ : E −→ F is a morphism of measurable Banach lattice
bundles if and only if VΘ : Γ0(Ω, E) −→ Γ0(Ω, F) is a lattice module
homomorphism. Indeed, for each s ∈ Γ1(X, E)

|Θ ◦ s| = Θ ◦ |s| ⇐⇒ |VΘs| = VΘ|s|

Hence, the assertion is proved.

Moreover, since VΘ : Γ1(X, E) −→ Γ1(X, F) is a lattice module homo-
morphism, Proposition C.5.0.3 implies that Θ : E −→ F is the unique
morphism over IdΩX such that ||Θ|| = ||VΘ||, and Θ is an isometry if
and only if VΘ is an isometry.

(B) That (ii) =⇒ (i) follows immediately from (A) above.

(i) =⇒ (ii): Since V : Γ1(X, E) −→ Γ1(X, F) is a lattice module
homomorphism by Proposition C.5.0.3, we obtain a unique morphism
Θ : E −→ F of Banach lattice bundle over IdΩX such that Vs = Θ ◦ s
for all s ∈ Γ1(X, E), i.e., V = VΘ.

Moreover, ||Θ|| = ||VΘ|| = ||V||, implies Θ is an isometry if and only
if V is an isometry.

The following is an immediate corollary of the above Lemma C.5.0.6 com-
bined with Corollary C.5.0.4.
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Corollary C.5.0.7. Let G be a (discrete) group, S ⊆ G a submonoid, and (Ω, φ) a
measure-preserving G-dynamical system. Moreover, let (E, Φ) and (F, Ψ) be sep-
arable positive S-dynamical Banach lattice bundles over (X, φ). Furthermore, let
(Γ1(X, E), TΦ) and (Γ1(X, F), TΨ) be positive S-dynamical m-Banach lattice mod-
ules over the Koopman group (L∞(X),Tφ) induced by (E, Φ) and (F, Ψ), respec-
tively. Then the following are equivalent.

(i) V : Γ1(X, E) −→ Γ1(X, F) is a homomorphism between (Γ1(X, E), TΦ)

and (Γ1(X, F), TΨ).

(ii) There exists a unique morphism Θ : E −→ F between (E, Φ) and (F, Ψ)
such that V = VΘ.

Moreover, if this assertion holds, ||Θ|| = ||V||, and Θ is a positive isometry
if and only if V is a positive isometry.

In the following proposition, we obtain a representation of the (quotient) lat-
tice of integrable measurable sections of a measurable Banach lattice bundle
as what we call an L1(X)-normed m-lattice module (see Chapter 2, Defini-
tion 2.4.2.15). This is analogous to [29, Proposition 2.51, p.51] for the case
of L1(X)-normed modules. And by this, we, in particular, answer Question
D.2.0.2 raised in Appendix D.

Proposition C.5.0.8. Let X be a measure space and Γ an L1(X)-normed m-lattice
module. The following assertions hold.

(i) There is a measurable Banach lattice bundle E over X such that Γ1(X, E) is
isometrically isomorphic to Γ as L1(X)-normed m-lattice modules.

(ii) If Γ is a separable Banach lattice, then there is a separable Banach lattice bun-
dle E over X such that Γ1(X, E) is isometrically isomorphic to Γ as L1(X)-
normed m-lattice modules. Moreover, this separable Banach lattice bundle is
unique up to isometric isomorphism.

Proof. (i) As in the proof of [29, Proposition 2.51, p.51], in the real case
and considering Γ just as L1(X)-normed module, we obtain that Γ is a
Banach-Kantorivich space over L1(X). Now since Γ is, in particular, a
Banach lattice, Γ is a Banach-Kantorovich lattice (see [22, Remark 2.25,
p.788]). And as a result due to Ganiev ([14]), as stated in [22, Theorem
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2.9., p.789], we find a measurable Banach lattice bundle4 E such that
the (quotient) lattice of its integrable measurable sections Γ1(X, E) is
isometrically lattice isomorphic to Γ as lattice normed space.

If we start with a complex L1(X)-normed m-lattice module, we can
also conclude that the constructed Banach lattice bundle E is canon-
ically a measurable bundle of complex Banach lattices for which the
isomorphism of Γ and Γ1(X, E) can be seen to be C-linear.

Now, let T : Γ −→ Γ1(X, E) be the K-linear isometric isomorphism
of Banach-Kantorovich lattices over L1(X) (see [22, Definition 4.5,
p793]). Since both Γ and Γ1(X, E) are L1(X)-normed modules and
|T s| = |s| for every s ∈ Γ, by [29, Proposition 2.49, p.47] equiva-
lences [(a) ⇔ (b) ⇔ (c)], we obtain that T : Γ −→ Γ1(X, E) is a
module homomorphism. Hence, T : Γ −→ Γ1(X, E) is an isometric
lattice module isomorphism.

(ii) Now assume Γ and hence Γ1(X, E) is a separable Banach lattice. Let(
sn
)

n∈N
∈ Γ1(X, E) be a sequence such that lin{sn | n ∈N} is dense

in Γ1(X, E). By our consideration as in the proof of Proposition C.3.0.8,
we may assume WLOG that lin{sn | n ∈N} is a vector sublattice, and
choose a representative in ME for each sn which we also denote as
sn. By realising lin {sn(x) | n ∈N} ⊆ Ex as a vector sublattice for
every x ∈ ΩX, we define a new measurable Banach lattice bundle
F :=

⋃
x∈ΩX

Fx over X, by setting

Fx := lin {sn(x) | n ∈N}

for every x ∈ ΩX and

MF := {s ∈ ME | s(x) ∈ Fx for every x ∈ ΩX} .

It then follows that, the mapping

V : Γ1(X, F) −→ Γ1(X, E); s 7→ s

is an isometric lattice module isomorphism. Moreover, F is a separable
Banach lattice bundle over X by its definition.

4We note that the definition of a measurable bundle of Banach lattices by Ganiev, as in
[22, Definition 2.2, p.787], slightly differs from ours. However, every measurable bundle of
Banach lattices in sense of Ganiev canonically defines a measurable Banach lattice bundle
in our sense having the same (quotient) lattice of integrable measurable sections Γ1(X, E).
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From this construction, F is unique up to isometric isomorphism.

Indeed, suppose F1 is another separable Banach lattice bundle over
X, such that V1 : Γ1(X, F1) −→ Γ1(X, E) is also an isometric lattice
module isomorphism. Then, the operator V−1 ◦ V1 : Γ1(X, F1) −→
Γ1(X, F) is an isometric lattice module isomorphism. And by Propo-
sition C.5.0.3, we obtain a unique isometry and surjective morphism
Θ : F1 −→ F of Banach lattice bundles over IdΩX such that V−1 ◦V1s =
Θ ◦ s for all s ∈ Γ1(X, F1). This, in particular, implies that the Banach
lattices F1x and Fx are isometrically lattice isomorphic for almost every
x ∈ ΩX. Furthermore Θ : F1 −→ F is surjective implies that F1 and F
are essentially isomorphic (=bijective).

We are now able to state our second representation result for separable dy-
namical m-Banach lattice modules. See [29, Theorem 2.45, p.45] for the case
of separable dynamical Banach modules. This is our Gelfand-type theorem
for dynamical separable L1(X)-normed m-lattice modules over L∞(X). We
note that its corollary and remark, in particular, prove Proposition D.2.0.3
stated in Appendix D.

Theorem C.5.0.9. Let G be a (discrete) group, S ⊆ G a submonoid, and (X, φ) a
measure-preserving G-dynamical system with X separable. Then the assignments

(E, Φ) 7−→ (Γ1(X, E), TΦ)

Θ 7−→ VΘ

define an essentially surjective, fully faithful functor from the category of S-dynamical
separable measurable Banach lattice bundles over (X, φ) to the category of S-dynamical
separable L1(X)-normed m-lattice modules over (L∞(X),Tφ).

Proof. Combining Proposition C.3.0.8(iv), Proposition C.5.0.8(ii) and Lemma
C.5.0.6 proves the theorem.

The following is an immediate corollary of the above theorem.

Corollary C.5.0.10. Let G be a (discrete) group, S ⊆ G a submonoid, and (X, φ) a
measure-preserving G-dynamical system with X separable. Then the assignments

(E, Φ) 7−→ (Γ1(X, E), TΦ)

Stellenbosch University https://scholar.sun.ac.za



APPENDIX C. BONUS CHAPTER: POSITIVE SEMIFLOWS ON MEASURABLE
BANACH LATTICE BUNDLES 175

Θ 7−→ VΘ

define an essentially surjective, fully faithful functor from the category of posi-
tive S-dynamical separable measurable Banach lattice bundles over (X, φ) to the
category of positive S-dynamical separable L1(X)-normed m-lattice modules over
(L∞(X),Tφ).

Proof. Combining Proposition C.3.0.8(iv), Proposition C.5.0.8(ii) and Corol-
lary C.5.0.7 proves the assertion.

In the following remark, we note how the unique positive semiflow Φ =

(Φg)g∈S can be 5 (canonically) obtained on the separable measurable Ba-
nach lattice bundle E associated to a positive S-dynamical separable L1(X)-
normed m-lattice module (Γ,T ). By this, we construct the inverse functor
for the above theorems.

Remark C.5.0.11. For Γ a separable L1(X)-normed m-lattice module over L∞(X)

with lin {sn ∈ Γ | n ∈N} = Γ, let E :=
⋃

x∈ΩX
Ex be the unique (up to isometric

isomorphism) separable measurable Banach lattice bundle such that Γ
i∼= Γ1(X, E)

as in proof of Proposition C.5.0.8(ii).

Now, with G a discrete group, let (X, (φg)g∈G) be measure-preserving G-dynamical
system and T = (T (g))g∈S a positive weighted semigroup representation on Γ
over the Koopman group (L∞(X),Tφ). Moreover, for almost every x ∈ ΩX, let
qx : Γ −→ Ex; s 7→ is(x) be the corresponding (quotient) lattice homomorphism.
Then, for each g ∈ S, the positive operators Φg(x) := Φg|Ex : Ex −→ Eφg(x) are
precisely the unique extensions of operators for which the following diagram

Γ Γ

Ex Eφg(x)

qx

sn 7→T (g)sn

qφg(x)

Φg(x)

5In contrast to the topological setting, the representing separable measurable Banach
lattice bundle constructed is not canonical and involves choices. See also [21, Remark 5.19,
p.31].
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commutes for all n ∈N and almost every x ∈ ΩX.
That is, for each g ∈ S, Φg(x) : Ex −→ Eφg(x); isn(x) 7→ iT (g)sn(φg(x))
for all n ∈ N and almost every x ∈ ΩX extends uniquely to positive morphism
Φg : E −→ E over φg. From these, we have that

(T (g))g∈S
∼= (TΦ(g))g∈S on Γ

i∼= Γ1(X, E).
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Appendix D

Bonus Chapter: Positive weighted
Koopman semigroups everywhere

Here, we present one central theme of our study. That is, the following
question.

Question D.0.0.1. When is a positive weighted semigroup representation on a
Banach lattice module a (or isomorphic to) positive weighted Koopman semigroup
representation?

D.1 In topological dynamics

In this Section, we motivate and present an answer to question D.0.0.1 above
in topological dynamics.

Resulting from Chapter 3 [see Remark 3.5.0.1(v) and Proposition 3.5.0.5],
each pair (E, Φ) comprising a positive S-dynamical Banach lattice bundle
over a G-dynamical system (Ω, (φg)g∈G) induces a positive S-dynamical
m-Banach lattice module (Γ0(Ω, E), TΦ); the positive weighted Koopman
semigroup representation on AM m-lattice module Γ0(Ω, E) over the Koop-
man group (C0(Ω), Tφ).

By an AM m-lattice module Γ over C0(Ω) (see also Chapter 2, Defini-
tion 2.4.1.2) we mean the following:

(a) Γ is an m-BLM over C0(Ω); and

(b) For each s ∈ Γ, the closed submodule Γs := C0(Ω) · s of Γ is an
AM-space (represented) as a Banach lattice.

177

Stellenbosch University https://scholar.sun.ac.za



APPENDIX D. BONUS CHAPTER: POSITIVE WEIGHTED KOOPMAN
SEMIGROUPS EVERYWHERE 178

We present the following situation, which in particular implies that, every
positive S-dynamical topological Banach lattice bundle can be uniquely as-
signed to a certain positive S-dynamical AM m-lattice module and vice-
versa.

Fix (Ω, (φg)g∈G) a topological G-dynamical system over a locally compact
space Ω, and (C0(Ω), Tφ) the associated Koopman group representation
(see also Chapter 2, Example 2.3.3.3 (i)).

We start with the classical situation of an AM m-lattice module over C0(Ω),
i.e., the Banach lattice Γ0(Ω, E) of continuous sections vanishing at infinity
of a topological Banach lattice bundle E over a locally compact space Ω (see
Chapter 3, Remark 3.5.0.1(iii)). In this situation, every positive weighted
semigroup representation on Γ0(Ω, E) over the Koopman group represen-
tation Tφ = Tφ(g)g∈G on C0(Ω) is a positive weighted Koopman semigroup
over Tφ = Tφ(g)g∈G on C0(Ω). We restate this result (see Chapter 3, Propo-
sition 3.5.0.5) in the present situation.

Proposition D.1.0.1. Let E be a topological Banach lattice bundle over a locally
compact space Ω, and Γ0(Ω, E) the associated AM m-lattice module over C0(Ω).
Then, the following are equivalent.

(i) T = (T (g))g∈S is a positive weighted semigroup representation on Γ0(Ω, E)
over (C0(Ω), Tφ).

(ii) There exists a unique pair (E, Φ) comprising a positive S-dynamical topolog-
ical Banach lattice bundle over (Ω, (φg)g∈G) , such that T (g) = TΦ(g) and
||T (g)|| = ||Φg|| for all g ∈ S.

Thus, T = (T (g))g∈S is a positive isometry if and only if Φ = (Φg)g∈S is a
positive isometry.

By the work of H. Kreidler and S. Siewert (see [21, Theorem 4.10, p.19]),
while using result essentially due to Dupré and Gillete ([8]), it is shown
that an AM-module Γ over C0(Ω) is isometrically isomorphic to the Banach
space Γ0(Ω, E) of continuous sections vanishing at infinity of a (unique up
to isometric isomorphism) topological Banach bundle E over Ω.
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A natural question arises.

Question D.1.0.2. Is an AM m-lattice module over C0(Ω) isometrically isomor-
phic to the Banach lattice Γ0(Ω, E) of continuous sections vanishing at infinity of
a (unique up to isometric isomorphism) topological Banach lattice bundle E over Ω
?

We give a positive answer to this question (see Chapter 3, Proposition 3.5.0.9)
by showing that, starting with an AM m-lattice module over C0(Ω), each
fiber obtained in this process is canonically a Banach lattice, and that an
isometric isomorphism will be an isometric isomorphism in the setting of
topological Banach lattice bundles. This abstract representation of the lat-
tice of continuous sections of a topological Banach lattice bundle is what is
obtained in Chapter 3 (Section 3.5).

Using this abstract representation, the following result immediately follows,
which is a generalisation of Proposition D.1.0.1 above. We refer to Chapter
3 (Corollary 3.5.0.12) for the (functorial) proof (see also Chapter 3, Remark
3.5.0.13).

Proposition D.1.0.3. Let Γ be an AM m-lattice module over C0(Ω), then any pos-
itive weighted semigroup representation T = (T (g))g∈S on Γ over (C0(Ω), Tφ)

is (unique up to isometric isomorphism) a positive weighted Koopman semigroup
representation over (C0(Ω), Tφ).
More precisely, there exists a unique (up to isometric isomorphism) pair (E, Φ)
comprising a positive S-dynamical topological Banach lattice bundle over (Ω, (φg)g∈G)
such that

(T (g))g∈S
∼= (TΦ(g))g∈S on Γ ∼= Γ0(Ω, E).

Moreover, T = (T (g))g∈S is a positive isometry if and only if Φ = (Φg)g∈S is a
positive isometry.

D.2 In measurable dynamics

In this Section, similar to the case of topological dynamics (see Section D.1),
we present an answer to question D.0.0.1 for measurable dynamics.

With G a discrete group, by Appendix C [see Remark C.5.0.1(iv) and Propo-
sition C.5.0.5], every pair (E, Φ) comprising a separable positive S-dynamical
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Banach lattice bundle over a measure-preserving G-dynamical system (X, (φg)g∈G)

induces a positive S-dynamical m-Banach lattice module (Γ1(X, E), TΦ); the
positive weighted Koopman semigroup representation on L1(X)-normed
m-lattice module Γ1(X, E) over the Koopman group (L∞(X), Tφ).

By a separable L1(X)-normed m-lattice module Γ over L∞(X) (see also
Chapter 2, Definition 2.4.2.15) we mean the following:

(a) Γ is a separable m-BLM over L∞(X); and

(b) Γ is an L∞(X)′-normed space such that |s| ∈ L1(X) for all s ∈ Γ.

We also present the following situation, which in particular implies that,
every separable positive S-dynamical measurable Banach lattice bundle (over
a separable measure space) can be uniquely assigned to a certain positive S-
dynamical separable L1(X)-normed m-lattice module and vice-versa.

Here, we fix a measure-preserving G-dynamical system (X, (φg)g∈G) over a
separable measure space X, and (L∞(X), Tφ) the associated Koopman group
representation, where G is discrete (see also Chapter 2, Example 2.3.3.3 (ii)).

We also start with the classical situation of a separable L1(X)-normed m-
lattice module over L∞(X), i.e., the (quotient) Banach lattice Γ1(X, E) of inte-
grable measurable sections of a separable measurable Banach lattice bundle
E over a separable measure space X (see Appendix C, Remark C.5.0.1(ii)). In
this situation, every positive weighted semigroup representation on Γ1(X, E)
over the Koopman group representation Tφ = Tφ(g)g∈G on L∞(X) is a
positive weighted Koopman semigroup over Tφ = Tφ(g)g∈G on L∞(X).
We restate this result in the present situation (see Appendix C, Proposition
C.5.0.5).

Proposition D.2.0.1. Let E be a separable measurable Banach lattice bundle over
a separable measure space X, and Γ1(X, E) the associated separable L1(X)-normed
m-lattice module over L∞(X). Then, the following are equivalent.

(i) T = (T (g))g∈S is a positive weighted semigroup representation on Γ1(X, E)
over (L∞(X), Tφ).
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(ii) There exists a unique pair (E, Φ) comprising a positive S-dynamical measur-
able Banach lattice bundle over (X, (φg)g∈G), such that T (g) = TΦ(g) and
||T (g)|| = ||Φg|| for all g ∈ S.

Thus, T = (T (g))g∈S is a positive isometry if and only if Φ = (Φg)g∈S is a
positive isometry.

On the other hand, by the work of H. Kreidler and S. Siewert (see [21,
Proposition 5.18 (ii), p.30]), while using results essentially due to Gutmann
([17, 18]), it is shown that a separable L1(X)-normed module over L∞(X)

is isometrically isomorphic to the (quotient) Banach space Γ1(X, E) of inte-
grable measurable sections of a (unique up to isometric isomorphism) sep-
arable measurable Banach bundle E over the measure space X.

Similarly, a natural question arises.

Question D.2.0.2. Is a separable L1(X)-normed m-lattice module over L∞(X) iso-
metrically isomorphic to the (quotient) Banach lattice Γ1(X, E) of integrable mea-
surable sections of a (unique up to isometric isomorphism) separable measurable
Banach lattice bundle E over the measure space X ?

We also give a positive answer to this question (see Appendix C, Proposition
C.5.0.8 (ii)), while we make use of the result essentially due to Ganiev ([14])
as stated in [22, Theorem 2.9., p.789]. Appendix C (Section C.5) is devoted
to this abstract representation of the (quotient) lattice of integrable sections
of a measurable Banach lattice bundle.

By this abstract representation, the following result follows which can also
be seen as a generalisation of Proposition D.2.0.1 above. We refer to Ap-
pendix C (Corollary C.5.0.10) for the (functorial) proof (see also Appendix
C, Remark C.5.0.11). We recall that G is discrete, in this situation.

Proposition D.2.0.3. Let Γ be a separable L1(X)-normed m-lattice module over
L∞(X), then any positive weighted semigroup representation T = (T (g))g∈S on
Γ over (L∞(X), Tφ) is (unique up to isometric isomorphism) a positive weighted
Koopman semigroup representation over (L∞(X), Tφ).
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More precisely, there exists a unique (up to isometric isomorphism) pair (E, Φ)
comprising a separable positive S-dynamical measurable Banach lattice bundle over
(X, (φg)g∈G) such that

(T (g))g∈S
∼= (TΦ(g))g∈S on Γ ∼= Γ1(X, E).

Moreover, T = (T (g))g∈S is a positive isometry if and only if Φ = (Φg)g∈S is a
positive isometry.
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Appendix E

Bonus Chapter: Asymptotics of
positive weighted Koopman
semigroups

E.1 Introduction

In this chapter, we investigate certain long-term behaviour types: namely,
irreducibility in Section E.2 and exponential dichotomy in Section E.3 of
a positive weighted Koopman semigroup (TΦ(t))t≥0 on the Banach lattice
of continuous sections Γ(K, E) over the Koopman group Tφ(t)t∈R on C(K)
induced by the unique positive semiflow (Φt)t≥0 on a topological Banach
lattice bundle E over the flow (φt)t∈R on K.

In particular, using our results in Chapter 3 (Section 3.6), the correspon-
dence between closed ideal subbundles of E and closed ideal submodules
of Γ(K, E) (see Chapter 3, Corollary 3.6.3.4); and the correspondence be-
tween decompositions of positive semiflow (Φt)t≥0 on E and decomposi-
tions of positive weighted Koopman semigroup (TΦ(t))t≥0 on Γ(K, E) (see
Chapter 3, Proposition 3.6.4.2), we obtain equivalence of the concepts of ir-
reducibility of positive semiflow (Φt)t≥0 on E and irreducibility of the pos-
itive weighted Koopman semigroup (TΦ(t))t≥0 on Γ(K, E) (see Proposition
E.2.0.4) and as well as equivalence of exponential dichotomy of the positive
semiflow (Φt)t≥0 on E and exponential dichotomy of the positive weighted
Koopman semigroup (TΦ(t))t≥0 on Γ(K, E) (see Proposition E.3.0.4).
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Furthermore, in both cases, under the assumption that the Banach lattice of
continuous sections Γ(K, E) is either σ-order complete or has order contin-
uous norm, we give further geometric characterisations.

E.2 Irreducibility of positive weighted Koopman
semigroups

In this Section, we introduce the concepts of irreducibility of positive semi-
flows on a Banach lattice bundle, and that of positive weighted Koopman
semigroups on the lattice of continuous sections. Furthermore, we seek to
obtain a certain correspondence between these concepts.

As before, K is compact, E a Banach lattice bundle over K and Γ(K, E) the
associated AM m-lattice module over C(K). Moreover, (φt)t∈R is a flow on
K, and Tφ(t)t∈R the Koopman group on C(K).

Definition E.2.0.1. A positive semiflow (Φt)t≥0 on E over (φt)t∈R on K is said
to be irreducible (or ergodic) if E contains no non-trivial (Φt)t≥0- invariant closed
ideal subbundle; i.e.,
if IE ⊆ E is a closed ideal subbundle (see Chapter 3, Definition 3.6.3.1) and Φt IE ⊆
IE for all t ≥ 0, then either IE = ∅ or IE = E.

Remark E.2.0.2. (i) From above definition, it follows that if (Φt)t≥0 is an irre-
ducible positive semiflow on E over (φt)t∈R on K, then the associated positive
weighted Koopman semigroup (TΦ(t))t≥0 satisfies the property that,

if IE ⊆ E is a non-empty closed ideal subbundle, then

TΦ(t)Γ(K, IE) ⊆ Γ(K, IE) for all t ≥ 0 implies that Γ(K, IE) = Γ(K, E),
i.e., the positive weighted Koopman semigroup is not invariant under any
closed ideal submodule of the form Γ(K, IE).

(ii) Inspired by the above result in (i), we introduce the concept of irreducibility
(or ergodicity) of a positive weighted Koopman semigroup (TΦ(t))t≥0 on the
lattice of continuous sections Γ(K, E) in the next definition.
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Definition E.2.0.3. A positive weighted Koopman semigroup (TΦ(t))t≥0 on Γ(K, E)
over the Koopman group Tφ(t)t∈R on C(K) is said to be irreducible (or ergodic) if
Γ(K, E) contains no non-trivial (TΦ(t))t≥0- invariant closed ideal submodule; i.e.,
if IΓ ⊆ Γ(K, E) is a closed ideal submodule (see Chapter 2, Definition 2.5.2.3) and
TΦ(t)IΓ ⊆ IΓ for all t ≥ 0, then either IΓ = {0} or IΓ = Γ(K, E).

Using Corollary 3.6.3.4 in Chapter 3, we obtain equivalence of irreducibility
(or ergodicity) of positive semiflows and that of positive weighted Koop-
man semigroups. Moreover, under the assumption that the Banach lattice
Γ(K, E) is either σ-order complete or has order continuous norm, we give a
further geometric characterisation.

Proposition E.2.0.4. Let (Φt)t≥0 be a positive semiflow on E over (φt)t∈R on K,
and (TΦ(t))t≥0 the associated positive weighted Koopman semigroup on Γ(K, E)
over Tφ(t)t∈R on C(K). Now, consider the following statements.

(i) (Φt)t≥0 is an irreducible positive semiflow over (φt)t∈R.

(ii) (TΦ(t))t≥0 is an irreducible positive weighted Koopman semigroup over Tφ(t)t∈R.

(iii) For every band projection P : Γ(K, E) −→ Γ(K, E) such that

(a) the restriction P|rgP : rgP −→ rgP is a module homomorphism, and

(b) the restrictions TΦ(t)|rgP : rgP −→ Γ(K, E) commutes with P for
all t ≥ 0,

we have that, either P = 0 or P = I .

(iv) For every positive projection P : Γ(K, E) −→ Γ(K, E) such that

(a) the restriction P|rgP : rgP −→ rgP is a module homomorphism, i.e.,
P fPs = f · Ps for all f ∈ C(K); s ∈ Γ(K, E), and

(b) the restrictions TΦ(t)|rgP : rgP −→ Γ(K, E) commutes with P for
all t ≥ 0, i.e., PTΦ(t)P = TΦ(t)P for every t ≥ 0,

we have that, either P = 0 or P = I .

Then (i) ⇐⇒ (ii). If the Banach lattice Γ(K, E) is σ-order complete (see Chapter
3, Proposition 3.6.5.3(B)), then (i) ⇐⇒ (ii) ⇐⇒ (iii).
Moreover, if the Banach lattice Γ(K, E) has order continuous norm (see Chapter 3,
Proposition 3.6.5.3(D)), then (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).
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Proof. (i) ⇒ (ii): Let IΓ ⊆ Γ(K, E) be a non-zero (TΦ(t))t≥0-invariant
closed ideal submodule.

By Chapter 3 [Corollary 3.6.3.4(ii)], we find a non-empty closed ideal
subbundle IE ⊆ E, such that IΓ

∼= Γ(K, IE). We claim that, IE is
(Φt)t≥0-invariant. Indeed, TΦ(t)IΓ ⊆ IΓ for all t ≥ 0, if and only if
TΦ(t)s ∈ Γ(K, IE) for all s ∈ Γ(K, IE) and t ≥ 0, implies that Φt IE ⊆ IE

for all t ≥ 0.

And by the irreducibility of the positive semiflow (Φt)t≥0, we have
that IE = E, i.e., IΓ

∼= Γ(K, IE) = Γ(K, E). Hence, the positive weighted
Koopman semigroup (TΦ(t))t≥0 is irreducible.

(ii) ⇒ (i): Let IE ⊆ E be a non-empty (Φt)t≥0-invariant closed ideal
subbundle.

By Chapter 3 [Corollary 3.6.3.4(i)] Γ(K, IE) is a non-zero closed ideal
submodule of Γ(K, E). We claim that, this closed ideal is (TΦ(t))t≥0-
invariant. Indeed, Φt IE ⊆ IE for all t ≥ 0 implies that Φt(x)v ⊆ IEφt(x)

for all v ∈ IEx x ∈ K and t ≥ 0, where Φt(x) := Φt|Ex . And as such it
follows that TΦ(t)s = Φt ◦ s ◦ φ−t ∈ Γ(K, IE) for all s ∈ Γ(K, IE) and
t ≥ 0.

And by the irreducibility of the positive weighted Koopman semi-
group (TΦ(t))t≥0, we have that Γ(K, IE) = Γ(K, E). Hence, IE = E,
i.e., the positive semiflow (Φt)t≥0 is irreducible.

(iii)⇒ (ii): Let IΓ ⊆ Γ(K, E) be a non-zero (TΦ(t))t≥0-invariant closed
ideal submodule.

As we assumed that the Banach lattice Γ(K, E) is σ-order complete,
WLOG, we may identify every of its closed lattice ideal with the range
of a band projection. Indeed, setting IB := I⊥⊥Γ , i.e., IB is the (projec-
tion) band generated by closed ideal submodule IΓ, we can find its as-
sociated band projection P : Γ(K, E) −→ Γ(K, E) such that the range
rgP = IB (see also [28, Theorem 2.10 p.62]).

And since the band projection is necessarily positive (see [28, Proposi-
tion 2.7, p.61]) and satisfies conditions (a) and (b), the assertion follows
from similar argument as in the implication (iv)⇒ (ii) below.
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(ii) ⇒ (iii): Since, every band projection is necessarily positive, the
assertion follows from a similar argument as in the implication (ii)⇒
(iv) below.

(ii) ⇒ (iv): We assumed that the Banach lattice Γ(K, E) has order
continuous norm. By [28, Proposition 11.1, p.208], this is the case
if and only if each closed ideal of Γ(K, E) is the range of a positive
projection.

Now let P : Γ(K, E) −→ Γ(K, E) be a positive projection as in the
hypothesis. We claim that the range rgP ⊆ Γ(K, E) is (TΦ(t))t≥0-
invariant closed ideal submodule. Indeed, property (iv) (a) implies
that the range rgP is a closed ideal submodule, i.e., rgP ⊆ Γ(K, E) is
a closed ideal such that f · r ∈ rgP for all f ∈ C(K) and r ∈ rgP . Fur-
thermore, property (iv) (b) implies that the range rgP is (TΦ(t))t≥0-
invariant, i.e., TΦ(t)r ∈ rgP whenever r ∈ rgP , and for all t ≥ 0.

Hence, by the irreducibility of the positive weighted Koopman semi-
group (TΦ(t))t≥0, we have either rgP = {0} or rgP = Γ(K, E).

And so, we have that, either P = 0 or P = I as required.

(iv)⇒ (ii): Let IΓ ⊆ Γ(K, E) be a non-zero (TΦ(t))t≥0-invariant closed
ideal submodule.

We will show that IΓ is a range of a non-zero positive projection satis-
fying the hypothesis in (iv).

Since, the Banach lattice Γ(K, E) has order continuous norm, by [28,
Proposition 11.1, p.208], we find a non-zero positive projection P :
Γ(K, E) −→ Γ(K, E) such that rgP = IΓ.

And since, the range rgP = IΓ is a submodule; i.e., f r ∈ rgP for all
f ∈ C(K); r ∈ rgP , it follows that P fPs = f · Ps for all f ∈ C(K)
and s ∈ Γ(K, E). Thus, the restriction P|rgP : rgP −→ rgP is a module
homomorphism.

Furthermore, since the range rgP = IΓ is (TΦ(t))t≥0-invariant, i.e.,
TΦ(t)r ⊆ rgP for all r ∈ rgP and t ≥ 0, it follows that PTΦ(t)Ps =

TΦ(t)Ps for all s ∈ Γ(K, E) and t ≥ 0. Thus, the restrictions TΦ(t)|rgP :
rgP −→ Γ(K, E) commutes with P for all t ≥ 0.
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Hence, as P ̸= 0, we have that P = I which implies IΓ = rgP =

Γ(K, E), i.e., the positive weighted Koopman semigroup (TΦ(t))t≥0 is
irreducible.

We can apply the result in the previous Proposition E.2.0.4, in particular, to
the situation in Chapter 3 [Example 3.4.0.8(i)].

Example E.2.0.5. Let Z be a Banach lattice, and E = K × Z the trivial
Banach lattice bundle. Moreover, let (φt)t∈R be a continuous flow on K,
and

{
Φt(x) : x ∈ K, t ≥ 0

}
of positive operators comprising a strongly con-

tinuous exponentially bounded cocycle on Z over (φt)t∈R, as in Example
3.4.0.8(i) in Chapter 3.

Furthermore, let (TΦ(t))t≥0 be the associated positive weighted Koopman
semigroup on Γ(K, E) ∼= C(K, Z) over the Koopman group Tφ(t)t∈R on
C(K) induced by the continuous skew-product (linear) flow (Φt)t≥0 on E
over the flow (φt)t∈R on K, which we can call positive evolution semigroup
on C(K, Z) in our situation (see [29, Example 3.11(ii), p.65]). Then, any of
the following two equivalent conditions implies irreducibility of the continu-
ous skew-product (linear) flow (Φt)t≥0 on E.

(i) The positive cocycle
{

Φt(x) : x ∈ K, t ≥ 0
}

satisfies the condition;

Φt(x)IZ ⊆ IZ for all x ∈ K and t ≥ 0 implies either

IZ = {0} or IZ = Z for every closed lattice ideal IZ of Z.

(ii) The positive evolution semigroup (TΦ(t))t≥0 satisfies the condition;

TΦ(t)IΓ ⊆ IΓ for all t ≥ 0 implies either IΓ = {0} or IΓ = C(K, Z)

for every closed ideal submodule IΓ of C(K, Z)

where TΦ(t)s(x) = Φt(φ−t(x))s(φ−t(x)) for every s ∈ C(K, Z), t ≥
0 and x ∈ K.

(iii) If the Banach lattice C(K, Z) is σ-order complete (see Chapter 3, Propo-
sition 3.6.5.1(B)), then (ii) is equivalent to;

P fPs = f · Ps and PTΦ(t)P = TΦ(t)P
∀ f ∈ C(K), s ∈ C(K, Z) and t ≥ 0 implies either P = 0 or P = I
for every band projection P : C(K, Z) −→ C(K, Z).
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(iv) If the Banach lattice C(K, Z) has order continuous norm (see Chapter
3, Proposition 3.6.5.1(D)), then (ii) is equivalent to;

P fPs = f · Ps and PTΦ(t)P = TΦ(t)P
∀ f ∈ C(K), s ∈ C(K, Z) and t ≥ 0 implies either P = 0 or P = I
for every positive projection P : C(K, Z) −→ C(K, Z).

E.3 Exponential dichotomy of positive weighted
Koopman semigroups

Following the consideration in [29, Section 5.3, p.89-92] about exponential
dichotomy (or hyperbolicity) of weighted Koopman semigroup on Banach
modules and that of the exponential dichotomy of semiflows on Banach
bundles; we introduce here the analogous scenario for the case of a posi-
tive weighted Koopman semigroup on a Banach lattice module and posi-
tive semiflows on a Banach lattice bundle. More importantly, we also seek
to obtain similar correspondence in this setting.

As before, K is compact, E a Banach lattice bundle over K and Γ(K, E) the
associated AM m-lattice module over C(K). Moreover, (φt)t∈R is a flow on
K, and Tφ(t)t∈R the Koopman group on C(K).

Definition E.3.0.1. A positive semiflow (Φt)t≥0 on E over (φt)t∈R on K is said to
have exponential dichotomy if there are (Φt)t≥0-invariant closed ideal subbundles
Is
E, Iu

E ⊆ E such that
E = Is

E ⊕ Iu
E

and the restricted positive semiflows (Φs
t)t≥0 on Is

E and (Φu
t )t≥0 on Iu

E satisfy the
following.

(i) The positive semiflow (Φs
t)t≥0 is uniformly exponentially stable on Is

E, i.e.,
there are constants M ≥ 1, ε > 0 such that ||Φs

t || ≤ Me−εt for all t ≥ 0.

(ii) The positive semiflow (Φu
t )t≥0 extends to a positive flow (Φu

t )t∈R on Iu
E, such

that (Φu
−t)t≥0 is uniformly exponentially stable on Iu

E.

We call Is
E the stable closed ideal subbundle and Iu

E the unstable closed ideal subbun-
dle of E under (Φt)t≥0 while (Φs

t)t≥0 is the stable part and (Φu
t )t≥0 the unstable

part of (Φt)t≥0.
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Remark E.3.0.2. (i) From the above definition, if (Φt)t≥0 is an exponential di-
chotomic positive semiflow on E over the flow (φt)t∈R on K, it immediately
follows that the associated positive weighted Koopman semigroup (TΦ(t))t≥0

on Γ(K, E) over the Koopman group Tφ(t)t∈R on C(K) satisfies the follow-
ing.

(a) the restricted positive weighted Koopman semigroup (TΦs(t))t≥0 on
(its invariant) closed ideal submodule Γ(K, Is

E) is uniformly exponentially
stable, since ||TΦs(t)|| = ||Φs

t || for each t ≥ 0.

(b) the restricted positive weighted Koopman semigroup (TΦu(t))t≥0 ex-
tends to a positive group (TΦu(t))t∈R on (its invariant) closed ideal submod-
ule Γ(K, Iu

E) such that (TΦu(−t))t≥0 is uniformly exponentially stable, since
||TΦu(−t)|| = ||Φu

−t|| for each t ≥ 0.

(c) Moreover, we have that (TΦ(t))t≥0
∼= (TΦs(t))t≥0⊕ (TΦu(t))t≥0 on

Γ(K, E) ∼= Γ(K, Is
E)⊕ Γ(K, Iu

E) (see also Chapter 3, Proposition 3.6.4.2(i)).

(ii) Inspired by the result above in (i), we introduce the concept of exponen-
tial dichotomy (or hyperbolicity) of positive weighted Koopman semigroup
(TΦ(t))t≥0 on lattice of continuous sections Γ(K, E) in the next definition.

Definition E.3.0.3. A positive weighted Koopman semigroup (TΦ(t))t≥0 on Γ(K, E)
over the Koopman group Tφ(t)t∈R on C(K) is said to have exponential dichotomy
(or is hyperbolic) if there are (TΦ(t))t≥0-invariant closed ideal submodules Is

Γ, Iu
Γ ⊆

Γ(K, E) such that
Γ(K, E) = Is

Γ ⊕ Iu
Γ

and the restricted positive weighted semigroups (Ts(t))t≥0 on Is
Γ and (Tu(t))t≥0

on Iu
Γ satisfy the following.

(i) The positive semigroup (Ts(t))t≥0 is uniformly exponentially stable on Is
Γ,

i.e., there are constants M ≥ 1, ε > 0 such that ||Ts(t)|| ≤ Me−εt for all
t ≥ 0.

(ii) Each positive Tφ(t)-homomorphism Tu(t) is invertible and the positive semi-
group (Tu(−t))t≥0 is uniformly exponentially stable on Iu

Γ .

We call Is
Γ the stable closed ideal submodule and Iu

Γ the unstable closed ideal sub-
module of Γ(K, E) under (TΦ(t))t≥0 while (Ts(t))t≥0 is the stable part and (Tu(t))t≥0

the unstable part of (TΦ(t))t≥0.

Stellenbosch University https://scholar.sun.ac.za



APPENDIX E. BONUS CHAPTER: ASYMPTOTICS OF POSITIVE WEIGHTED
KOOPMAN SEMIGROUPS 191

Combining Corollary 3.6.3.4 and Proposition 3.6.4.2 in Chapter 3, we obtain
equivalence between the exponential dichotomy of positive semiflows and
the exponential dichotomy (or hyperbolicity) of positive weighted Koop-
man semigroups. Moreover, under the assumption that the Banach lattice
Γ(K, E) is either σ-order complete or has order continuous norm, we give a
further geometric characterisation.

Proposition E.3.0.4. Let (Φt)t≥0 be a positive semiflow on E over (φt)t∈R on K,
and (TΦ(t))t≥0 the associated positive weighted Koopman semigroup on Γ(K, E)
over Tφ(t)t∈R on C(K). Consider the following statements.

(i) (Φt)t≥0 has exponential dichotomy.

(ii) (TΦ(t))t≥0 has exponential dichotomy.

(iii) There exists a band projectionP : Γ(K, E) −→ Γ(K, E), which is also a mod-
ule homomorphism, commuting with (TΦ(t))t≥0 and TΦ(t)KerP = KerP ;
and there are constants M ≥ 1, ε > 0 such that

(a) ||TΦ(t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ rgP , and

(b) ||TΦ(t)s|| ≥ 1
M e+εt||s|| for all t ≥ 0, s ∈ KerP .

(iv) There exists a positive module homomorphism projection1 P : Γ(K, E) −→
Γ(K, E) commuting2 with (TΦ(t))t≥0 and TΦ(t)KerP = KerP ; and there
are constants M ≥ 1, ε > 0 such that

(a) ||TΦ(t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ rgP , and

(b) ||TΦ(t)s|| ≥ 1
M e+εt||s|| for all t ≥ 0, s ∈ KerP .

(v) σ(TΦ(t)) ∩T = ∅ for one/all t > 0.

Then (i) ⇐⇒ (ii). If the Banach lattice Γ(K, E) is σ-order complete (see Chapter
3, Proposition 3.6.5.3(B)), then (i) ⇐⇒ (ii) ⇐⇒ (iii).
Moreover, if the Banach lattice Γ(K, E) has order continuous norm (see Chapter 3,
Proposition 3.6.5.3(D)), then (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v).

1i.e., P : Γ(K, E) −→ Γ(K, E) is a positive projection such that P f s = f · Ps for every
f ∈ C(K) and s ∈ Γ(K, E)

2i.e., PTΦ(t) = TΦ(t)P for every t ≥ 0
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Proof. (i) ⇒ (ii): If the positive semiflow (Φt)t≥0 on E over the flow
(φt)t∈R on K has exponential dichotomy, as in consideration of Re-
mark E.3.0.2, it follows that, the associated positive weighted Koop-
man semigroup (TΦ(t))t≥0 has exponential dichotomy. Indeed, by
setting Is

Γ := Γ(K, Is
E), Iu

Γ := Γ(K, Iu
E), (Ts(t))t≥0 := (TΦs(t))t≥0 and

(Tu(t))t≥0 := (TΦu(t))t≥0 we have that Γ(K, E) ∼= Is
Γ ⊕ Iu

Γ and

(a) Is
Γ is a (TΦ(t))t≥0-invariant closed ideal submodule, and the

positive weighted semigroup (Ts(t))t≥0 is uniformly exponentially sta-
ble on Is

Γ since ||Ts(t)||| = ||TΦs(t)|| = ||Φs
t || for each t ≥ 0.

(b) Iu
Γ is a (TΦ(t))t≥0-invariant closed ideal submodule, and since

(Φu
t )t≥0 extends to a group (Φu

t )t∈R on Iu
E, each positive Tφ(t)-homo-

morphism Tu(t) is invertible for each t ∈ R. Moreover, the positive
weighted semigroup (Tu(−t))t≥0 is uniformly exponentially stable on
Iu
Γ since ||Tu(−t)||| = ||TΦu(−t)|| = ||Φu

−t|| for each t ≥ 0.

(ii)⇒ (i): Assume the positive weighted Koopman semigroup (TΦ(t))t≥0

has exponential dichotomy. By Corollary 3.6.3.4(ii) and Proposition
3.6.4.2(ii) in Chapter 3, we find two (Φt)t≥0-invariant closed ideal sub-
bundles Is

E, Iu
E ⊆ E and two positive semiflows (Φs

t)t≥0 and (Φu
t )t≥0

over (φt)t∈R on Is
E and Iu

E respectively, such that

(Φt)t≥0
∼= (Φs

t)t≥0 ⊕ (Φu
t )t≥0 on E ∼= Is

E ⊕ Iu
E

(Ts(t))t≥0
∼= (TΦs(t))t≥0 on Is

Γ
∼= Γ(K, Is

E)

(Tu(t))t≥0
∼= (TΦu(t))t≥0 on Iu

Γ
∼= Γ(K, Iu

E)

Moreover,

(a) ||Φs
t || = ||Ts(t)|| for each t ≥ 0, implies that the positive semi-

flow (Φs
t)t≥0 is uniformly exponentially stable on Is

E.

(b) that each positive Tφ(t)-homomorphism Tu(t) is invertible on
Iu
Γ
∼= Γ(K, Iu

E) for each t ∈ R, implies that each Φu
t is invertible (i.e.,

homeomorphic) on Iu
E over φt for each t ∈ R, so that the positive

semiflow (Φu
t )t≥0 extends to a positive flow (Φu

t )t∈R on Iu
E. Moreover,

||Φu
−t|| = ||Tu(−t)|| for each t ≥ 0, implies that the positive semiflow

(Φu
−t)t≥0 is uniformly exponentially stable on Iu

E.
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(ii)⇒ (iii): Similar to the situation in the proof of implication (iii)⇒
(ii) in Proposition E.2.0.4 above, as the Banach lattice Γ(K, E) is as-
sumed to be σ-order complete, we may identify every of its closed lat-
tice ideal with the range of a band projection. And since the band pro-
jection is necessarily positive (see [28, Proposition 2.7, p.61]), the asser-
tion follows from the same argument as in the implication (ii) ⇒ (iv)
below.

(ii) ⇒ (iv): We assumed the Banach lattice Γ(K, E) has order con-
tinuous norm, and by the proof of [28, Proposition 11.1, p.208] ev-
ery closed ideal of Γ(K, E) is a projection band (see also [28, Theorem
5.14 p.94]). So, starting with closed ideal Is

Γ, we can find its associated
band projection, i.e., there exists a positive projection P : Γ(K, E) −→
Γ(K, E) such that

Γ(K, E) = rgP ⊕ KerP and rgP = Is
Γ

as decomposition into closed ideals of Γ(K, E).

It follows immediately that we can identify KerP = Iu
Γ as a closed

ideal of Γ(K, E).

Now let Q := I − P , i.e., rgQ = KerP . Then, we have Ps +Qs = s ∈
Γ(K, E) as the unique representation.

(a) We claim that P : Γ(K, E) −→ Γ(K, E) is a module homomor-
phism. Indeed, since both rgP = Is

Γ and rgQ = Iu
Γ are submodule, i.e.,

fPs ∈ rgP and fQs ∈ rgQ for every f ∈ C(K) and s ∈ Γ(K, E), we
have that

f s = fPs + fQs

= P fPs +Q fQs

for every f ∈ C(K) and s ∈ Γ(K, E). So that

P f s = P fPs + P fQs

= P fPs + PQ fQs

= fPs

for every f ∈ C(K) and s ∈ Γ(K, E).

Stellenbosch University https://scholar.sun.ac.za



APPENDIX E. BONUS CHAPTER: ASYMPTOTICS OF POSITIVE WEIGHTED
KOOPMAN SEMIGROUPS 194

(b) We claim thatP : Γ(K, E) −→ Γ(K, E) commutes with (TΦ(t))t≥0.
Indeed, since both rgP = Is

Γ and rgQ = Iu
Γ are (TΦ(t))t≥0-invariant,

i.e., TΦ(t)Ps ∈ rgP and TΦ(t)Qs ∈ rgQ for every t ≥ 0, s ∈ Γ(K, E),
we have that

TΦ(t)s = TΦ(t)Ps + TΦ(t)Qs

= PTΦ(t)Ps +QTΦ(t)Qs

for every t ≥ 0, s ∈ Γ(K, E). So that

PTΦ(t)s = PTΦ(t)Ps + PTΦ(t)Qs

= PTΦ(t)Ps + PQTΦ(t)Qs

= TΦ(t)Ps

for every t ≥ 0, s ∈ Γ(K, E).

(c) We claim that TΦ(t)KerP = KerP , i.e., TΦ(t)rgQ = rgQ for
each t ≥ 0. Indeed, clearly TΦ(t)rgQ ⊆ rgQ for each t ≥ 0. And
since each positive Tφ(t)-homomorphism Tu(t) is invertible on rgQ
for each t ∈ R, it follows that for any r := Qs ∈ rgQ, setting so :=
Tu(−t)r ∈ rgQ we have that TΦ(t)so = r ∈ rgQ, for each t ≥ 0 and
some s ∈ Γ(K, E). Hence, rgQ ⊆ TΦ(t)rgQ.

(d) Finally, since the positive weighted semigroups (Ts(t))t≥0 and
(Tu(−t))t≥0 are uniformly exponentially stable on rgP = Is

Γ and rgQ =

KerP = Iu
Γ respectively, we find constants M1, M2 ≥ 1 and ε1, ε2 > 0

such that

||TΦ(t)s|| = ||Ts(t)s|| ≤ M1e−ε1t||s|| for all t ≥ 0, s ∈ rgP

and

||T −1
Φ (t)s|| = ||Tu(−t)s|| ≤ M2e−ε2t||s|| for all t ≥ 0, s ∈ rgQ = KerP .

Setting M := max {M1, M2} and ε := min {ε1, ε2}, and since ||Tu(t)|| ≥
||Tu(−t)||−1 for t ≥ 0; it immediately follows that M ≥ 1 and ε > 0
are constants such that

||TΦ(t)s|| = ||Ts(t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ rgP

and

||TΦ(t)s|| = ||Tu(t)s|| ≥
1
M

e+εt||s|| for all t ≥ 0, s ∈ rgQ = KerP .
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(iii) ⇒ (ii): Since, every band projection is necessarily positive, the
assertion follows from a similar argument as in the implication (iv)⇒
(ii) below.

(iv) ⇒ (ii): Let P : Γ(K, E) −→ Γ(K, E) be a positive module homo-
morphism projection as in the hypothesis. We claim that the positive
weighted Koopman semigroup (TΦ(t))t≥0 has exponential dichotomy.

(a) Since the Banach lattice Γ(K, E) has order continuous norm, by
the proof of [28, Proposition 11.1, p.208], the range of positive projec-
tion rgP is a closed ideal of Γ(K, E), and WLOG we may assume that
it is a projection band (with P the associated band projection) (see also
[28, Theorem 2.10 p.62] and [28, Theorem 5.14 p.94]). And as such, we
have complementary decomposition into closed ideals

Γ(K, E) = rgP ⊕ KerP .

Now, let Q := I − P , i.e., rgQ = KerP .

(b) Since P : Γ(K, E) −→ Γ(K, E) is a module homomorphism, i.e.,
P f s = fPs for all f ∈ C(K), s ∈ Γ(K, E); we also have that Q f s =

fQs for all f ∈ C(K), s ∈ Γ(K, E). This implies that both rgP and
rgQ = KerP are closed ideal submodules.

(c) Since P : Γ(K, E) −→ Γ(K, E) commutes with (TΦ(t))t≥0, i.e.,
PTΦ(t) = TΦ(t)P for every t ≥ 0; we also have that QTΦ(t) =

TΦ(t)Q for every t ≥ 0. This implies that both rgP and rgQ = KerP
are (TΦ(t))t≥0-invariant closed ideal submodules of Γ(K, E).

(d) Since TΦ(t)KerP = KerP for each t ≥ 0, i.e., for any r :=
Qs ∈ rgQ = KerP there exists a unique so ∈ rgQ such that TΦ(t)so =

r ∈ rgQ for each t ≥ 0 and some s ∈ Γ(K, E). This implies that each
positive Tφ(t)-homomorphism TΦ(t)|rgQ : rgQ −→ rgQ is invertible
for each t ∈ R.

(e) Finally, given there are constants M ≥ 1, ε > 0 such that

||TΦ(t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ rgP

and

||TΦ(t)s|| ≥
1
M

e+εt||s|| for all t ≥ 0, s ∈ KerP = rgQ,
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and since ||T −1
Φ (t)|| ≥ ||TΦ(t)||−1 on rgQ = KerP , it follows im-

mediately that Is
Γ, Iu

Γ ⊆ Γ(K, E) are (TΦ(t))t≥0-invariant closed ideal
submodules such that

Γ(K, E) = Is
Γ ⊕ Iu

Γ

||Ts(t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ Is
Γ

and
||T −1

u (t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ Iu
Γ

by setting Is
Γ := rgP , Iu

Γ := KerP , (Ts(t))t≥0 := (TΦ(t)|rgP )t≥0 and
(Tu(t))t≥0 := (TΦ(t)|KerP )t≥0.

(iv) =⇒ (v): Clearly, (iv), in particular, implies that (TΦ(t))t≥0 is
a hyperbolic C0- semigroup of bounded operators on Banach space
Γ(K, E), which is if and only if σ(TΦ(t)) ∩T = ∅ for one/all t > 0. (
c.f. [29, Proposition 1.3 p.87] ).

(v) =⇒ (iv): Assume σ(TΦ(t0)) ∩T = ∅ for some t0 > 0. We follow
the proof of [29, Theorem 3.8, p.90][(c)⇒ (a) ], for the case of Banach
bundle; and as such we find a spectral projection P : Γ(K, E) −→
Γ(K, E) which is also a module homomorphism associated to the de-
composition of the spectrum σ(TΦ(t0)) := K1∪̇K2 with

K1 := σ(TΦ(t0) ∩ {z ∈ C : |z| < 1}

K2 := σ(TΦ(t0) ∩ {z ∈ C : |z| > 1}

such that P commutes with (TΦ(t))t≥0 ; TΦ(t)KerP = KerP and there
are constants M ≥ 1, ε > 0 such that

(a) ||TΦ(t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ rgP ;

(b) ||TΦ(t)s|| ≥ 1
M e+εt||s|| for all t ≥ 0, s ∈ KerP .

Hence, it suffices to show that P : Γ(K, E) −→ Γ(K, E) is, in addition,
a positive operator. This, however, immediately follow, since P is, in
particular, a spectral projection associated with a decomposition of the
spectrum of a positive operator TΦ(t0).
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Similar to the situation in Example E.2.0.5, we can also apply the result in the
previous Proposition E.3.0.4 to the continuous skew-product (linear) flow in
Chapter 3 [Example 3.4.0.8(i)].

Example E.3.0.5. Let Z be a Banach lattice, and E = K × Z the trivial
Banach lattice bundle. Moreover, let (φt)t∈R be a continuous flow on K, and{

Φt(x) : x ∈ K, t ≥ 0
}

a family of positive operators comprising a strongly
continuous exponentially bounded cocycle on Z over (φt)t∈R as in Example
3.4.0.8(i) in Chapter 3.

Furthermore, let (TΦ(t))t≥0 be the associated positive weighted Koopman
semigroup on Γ(K, E) ∼= C(K, Z) over the Koopman group Tφ(t)t∈R on
C(K) induced by the continuous skew-product (linear) flow (Φt)t≥0 on E
over the flow (φt)t∈R on K, which we also call positive evolution semigroup
on C(K, Z). Then, any of the following two equivalent conditions implies
exponential dichotomy of the continuous skew-product (linear) flow (Φt)t≥0

on E.

(i) The positive cocycle
{

Φt(x) : x ∈ K, t ≥ 0
}

satisfies the condition;

there exist two closed lattice ideals IZ1 and IZ2 of Z with Z = IZ1 ⊕ IZ2 ,
Φt(x)IZi ⊆ IZi for all t ≥ 0, x ∈ K, i = 1, 2 ; and there are constants
Mi ≥ 1, εi > 0, i = 1, 2 such that

(a) ||Φt(x)v|| ≤ M1e−ε1t||v|| for all t ≥ 0, v ∈ IZ1 , x ∈ K, and

(b) Φt(x) is invertible on IZ2 for each t ≥ 0 and x ∈ K; and

||Φ−t(x)v|| ≤ M2e−ε2t||v|| for all t ≥ 0, v ∈ IZ2 , x ∈ K.

(ii) The positive evolution semigroup (TΦ(t))t≥0 satisfies the condition:

there are two closed ideal submodules IΓ1 and IΓ2 of C(K, Z) with C(K, Z) =
IΓ1 ⊕ IΓ2 , TΦ(t)IΓi ⊆ IΓi for all t ≥ 0, i = 1, 2 ; and there are constants
Mi ≥ 1, εi > 0, such that (Ti(t))t≥0 := (TΦ(t)|IΓi

)t≥0, i = 1, 2 im-

plies

(a) ||T1(t)s|| ≤ M1e−ε1t||s|| for all t ≥ 0, s ∈ IΓ1 , and

(b) T2(t) is invertible on IΓ2 for each t ≥ 0; and ||T2(−t)s|| ≤
M2e−ε2t||s|| for all t ≥ 0, s ∈ IΓ2 .
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If the Banach lattice C(K, Z) is σ-order complete (see Chapter 3, Proposition
3.6.5.1(B)), then the (i) and (ii) are equivalent to the condition;

(iii ) there exists a band projection P : C(K, Z) −→ C(K, Z), which is also
a module homomorphism commuting with (TΦ(t))t≥0 , TΦ(t)KerP =

KerP ; and there are constants M ≥ 1, ε > 0 such that

(a) ||TΦ(t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ rgP
(b) ||TΦ(t)s|| ≥ 1

M e+εt||s|| for all t ≥ 0, s ∈ KerP .

If the Banach lattice C(K, Z) has order continuous norm (see Chapter 3,
Proposition 3.6.5.1(D)), then the (i), (ii) and (iii) are equivalent to any of
the conditions:

(iv ) There exists a positive module homomorphism projectionP : C(K, Z) −→
C(K, Z) commuting with (TΦ(t))t≥0 , TΦ(t)KerP = KerP ; and there
are constants M ≥ 1, ε > 0 such that

(a) ||TΦ(t)s|| ≤ Me−εt||s|| for all t ≥ 0, s ∈ rgP , and

(b) ||TΦ(t)s|| ≥ 1
M e+εt||s|| for all t ≥ 0, s ∈ KerP .

(v ) σ(TΦ(t)) ∩T = ∅ for one/all t > 0.
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Appendix F

Bonus Chapter: Markovian
weighted Koopman groups

F.1 Introduction

In this chapter, we are particularly interested in an AM m-lattice module
Γ over the 1-Banach lattice algebra C(K) whose positive cone Γ+ has a
non-empty interior, i.e., the Banach lattice Γ(K, E) of continuous sections
of a topological Banach lattice bundle E over a compact space K, such that
Γ(K, E)+ has order unit (see also Chapter 4, Proposition 4.2.0.2(A)).

In Section F.2, we specialise this situation and show that for a Banach lattice
bundle E, the Banach lattice Γ(K, E) of its continuous sections has order unit
only if it is a bundle of AM-spaces with order units (see Proposition F.2.0.1).
This result, in particular, verifies and generalises the situation in Chapter 3
[Example 3.3.0.6 (ii)].

In Section F.3, we introduce a special class of weighted Koopman operators
on Γ(K, E), namely, Markovian (positive) weighted Koopman operators (see
Remark F.3.0.2(i)), and then Markovian (positive) morphisms on E (see Def-
inition F.3.0.3), and we obtain a certain correspondence between these con-
cepts (see Proposition F.3.0.5). In this direction, we show that every bijective
Markovian weighted Koopman operator (resp. Markovian weighted Koop-
man group) is isomorphic to a bijective Koopman operator (resp. Koopman
group) which extends the original bijective Koopman operator (resp. Koop-
man group) (see Proposition F.3.0.6, resp. Proposition F.3.0.7). This result,
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in particular, generalises the situation in [29, Example 3.11, p.65](iv), which
is also included. That is, a C0-group of weighted Koopman operators is iso-
morphic to an extended Koopman group if and only if it is Markovian in
our sense.

As a by-product, every Markovian flow on such a Banach lattice bundle can
be assigned uniquely to an extended Koopman group and vice versa. Under
this identification, we study the spectral property of an invertible Marko-
vian weighted Koopman operator and extend the result to the Markovian
weighted Koopman group in Section F.4.

F.2 Banach lattice of continuous sections with
order unit

Throughout this chapter, by a Banach lattice bundle E over K, we mean a
topological Banach lattice bundle p : E −→ K over a compact space K (see
Chapter 3, Definition 3.2.0.1), and Γ(K, E) the Banach lattice of its continu-
ous sections.

The result in the next proposition, in particular, verifies and generalises the
lattice isomorphism obtained in Chapter 3 [Example 3.3.0.6 (ii)] on the lat-
tice of its continuous sections, while we use the result obtained in Chapter
2 (Proposition 2.5.5.3).

Proposition F.2.0.1. Let p : E −→ K be a Banach lattice bundle over a compact
space K, and Γ(K, E) the Banach lattice of its continuous sections.

(A) The following are equivalent.

(i) The interior IntΓ(K, E)+ is non-empty.

(ii) Γ(K, E) is isometrically lattice module isomorphic to C(Q) for some
compact space Q.

Moreover, if this assertion holds, we have the following:

(a) for each x ∈ K, the Banach lattice Ex is isometrically lattice isomor-
phic to C(Qx), for some compact space Qx; and
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(b) there is a continuous surjection π : Q −→ K such that the fiber
π−1(x) ∼= Qx for each x ∈ K.

(B) Conversely, in the situation above, let π−1(x) := Qx for each x ∈ K;

F :=
⋃̇

x∈K
C(Qx)

p̃ : F −→ K, v ∈ C(Qx) 7→ x

and endow F with the topology generated by the sets

S(s̃, U, ε) :=
{

v ∈ p̃−1(U) | ||v− s̃|Qp̃(v)
||C(Q p̃(v))

< ε

}
where U ⊆ K is open, s̃ ∈ C(Q), and ε > 0.

Then p̃ : F −→ K is a Banach lattice bundle over K, and the Banach lattice
Γ(K, F) of its continuous sections satisfies the following.

(i) The interior IntΓ(K, F)+ is non-empty.

(ii) Γ(K, F) is isometrically lattice module isomorphic to C(Q).

Either way Γ(K, E) ∼= C(Q) ∼= Γ(K, F) as AM m-lattice modules over C(K), and
E ∼= F as Banach lattice bundles over K.

Proof. (A)

The equivalence (ii) ⇐⇒ (i) follows immediately by Chapter 2

(Proposition 2.5.5.3). In this situation, we write Γ(K, E)
i∼= C(Q), and

WLOG, we identify iu = 1Q ∈ C(Q)+, where u ∈ IntΓ(K, E)+ ̸= ∅ is
the order unit. More generally, we write is = s̃ ∈ C(Q) for a unique
s ∈ Γ(K, E).

(a) As also in Chapter 4 [Proposition 4.2.0.2(A)], we have that ex(u) =
u(x) ∈ IntE+

x ̸= ∅, where ex : Γ(K, E) −→ Ex; s 7→ s(x) denotes the
(quotient) evaluation map for each x ∈ K. As such by Appendix B
(Theorem B.0.0.6), we find, for each x ∈ K, a compact space Qx such

that Ex
ix∼= C(Qx) as Banach lattices, i.e., ix : Ex −→ C(Qx) is an iso-

metric lattice isomorphism for each x ∈ K. In this situation, we also
identify ixu(x) = 1Qx ∈ C(Qx)+ for each x ∈ K.
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(b) Setting, for each x ∈ K, ẽx := ixexi−1, it follows from the fol-
lowing commutative diagram

Γ(K, E) Ex

C(Q) C(Qx)

i

ex

i−1
xi−1

ẽx

ix

that the evaluation ẽx : C(Q) −→ C(Qx); s̃ 7→ ẽx(s̃) is a quotient map.
Moreover, we see that |ẽx s̃| = ẽx|s̃|, i.e., ẽx : C(Q) −→ C(Qx) is also
a lattice homomorphism for each x ∈ K, and more so, ẽx1Q = 1Qx ,
for each x ∈ K. Now, for each x ∈ K, that ẽx : C(Q) −→ C(Qx) is a
surjective lattice homomorphism satisfying ẽx1Q = 1Qx implies that,
there exists a unique injective continuous mapping πx : Qx −→ Q
such that ẽx(s̃) = s̃ ◦ πx for all s̃ ∈ C(Q) ( cf. [28, Theorem 9.1, p.195];
[10, Lemma 4.14, p.55] ).

Thus, for each x ∈ K, by [10, Proposition A.4, p.486], we obtain that
Qx ∼= πx(Qx) is an homeomorphism of compact spaces, which also

implies that
⋃̇

x∈KQx
m∼=

⋃̇
x∈Kπx(Qx) as disjoint unions of compact

spaces; where the dense subspace
⋃̇

x∈Kπx(Qx) ⊆ Q is equipped with
the subspace topology.

We obtain, naturally, a continuous injective mapping w :
⋃̇

x∈KQx −→
Q with w|Qx = πx for each x ∈ K; and similarly a continuous surjective
mapping k :

⋃̇
x∈KQx −→ K by setting k(q) := x for all q ∈ Qx. This

yields a continuous surjective mapping π :
⋃̇

x∈Kπx(Qx) −→ K such
that π|πx(Qx)

∼= k|Qx for each x ∈ K. All of this can be illustrated by the
following commutative diagram.

K
⋃̇

x∈KQx Q

⋃̇
x∈Kπx(Qx)

k(Qx)={x}

m

w(Qx)=πx(Qx)

π(πx(Qx))={x} m−1

As a result due to Taı̆mov ([30]), as stated in [3, Theorem 1A, p.355],
the continuous surjective mapping π :

⋃̇
x∈Kπx(Qx) −→ K extends
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continuously to a (unique) continuous surjective mapping π : Q −→
K such that π−1(x) = πx(Qx) ∼= Qx for each x ∈ K.

(B) Conversely, we first note that p̃ : F −→ K is a Banach bundle over
K (see [29, Example 1.5(iii), p.13]). And in the situation above, if s̃ ∈
C(Q), then for each x ∈ K, the restriction s̃|Qx

∈ C(Qx) coincides with
the value of the evaluation map ẽx : C(Q) −→ C(Qx).

And since C(Q) is a Banach lattice, the continuity of its modulus s̃ 7→
|s̃| induces the continuity of the "bundle modulus"

|·| : F −→ F; vC(Q p̃(v))
7→ |v|

by the following commutative diagram,

C(Q) C(Q)

C(Qx) C(Qx)

ẽx

s̃ 7−→|s̃|

ẽx

s̃|Qx
7−→|s̃||Qx

for every x ∈ K. Indeed, for x ∈ K, if v = s̃o |Qx
∈ C(Qx) for some

s̃o ∈ C(Q), and W ⊆ F is an open set containing the modulus |v| =

|s̃o||Qx
. Then by the topology on F, we find an ε > 0 and an open set

U ⊆ K containing x ∈ K, such that the open set

S(s̃o, U, ε) =
{

w ∈ p̃−1(U) | ||w− |s̃o||Qx
||C(Qx) < ε

}
⊆W

for some s̃o ∈ C(Q). It then follows immediately that |w| ∈W for all
w ∈ S(s̃o, U, ε) for some s̃o ∈ C(Q).

Hence, p̃ : F −→ K is a Banach lattice bundle over K.

Every s̃ ∈ C(Q) can uniquely be identified with the continuous section
x 7−→ s̃|Qx

in Γ(K, F), the Banach lattice of continuous sections of F. It
follows immediately that this assignment is a surjective isometry of
normed lattices.

The order unit 1Q ∈ C(Q)+ is identified with the continuous section
x 7−→ 1Qx in Γ(K, F)+, which can immediately be seen to be the or-
der unit. Hence, the interior IntΓ(K, F)+ is non-empty, and we obtain
Γ(K, F) ∼= C(Q) as an isomorphism of Banach lattices. Furthermore,
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by the first part of (A) above, we obtain that Γ(K, F) ∼= C(Q) is an
isomorphism of AM m-lattice module.

Hence, in either way Γ(K, E) ∼= C(Q) ∼= Γ(K, F) as AM m-lattice mod-
ules over C(K), and E ∼= F as Banach lattice bundles over K by the
consideration from above.

F.3 Markovian weighted Koopman group on
Banach lattice of continuous sections with
order unit

In this Section, we introduce a special class of (positive) weighted Koopman
operators, namely Markovian (positive) weighted Koopman operators (see
Remark F.3.0.2). Moreover, we will show that, in this situation, every bi-
jective Markovian weighted Koopman operator is isomorphic to a bijective
Koopman operator which is an extension of the original Koopman operator
(see Proposition F.3.0.6). Furthermore, we extend this result to show that,
in this situation, every Markovian weighted Koopman group is isomorphic
to a Koopman group which is an extension of the original Koopman group
(see Proposition F.3.0.7).

Definition F.3.0.1. Let p : E −→ K be a Banach lattice bundle over K, and
Γ(K, E) the Banach lattice of its continuous sections. Furthermore assume u ∈
IntΓ(K, E)+ ̸= ∅. For a homeomorphism φ : K −→ K, we call an operator
T : Γ(K, E) −→ Γ(K, E) Markovian (positive) Tφ-homomorphism if:

(i) T is (positive) lattice Tφ-homomorphism; and

(ii) T u = u.

And if φ = IdK, we simply call T a Markovian (positive) module homomorphism.
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Remark F.3.0.2. (a) From the above definition we see that, if T is a Markovian
(positive) Tφ-homomorphism on Γ(K, E); (i) implies that T is a (positive)
weighted operator on Γ(K, E) over the Koopman operator Tφ on C(K). And
as such, by Lemma 3.5.0.3 (Corollary 3.5.0.4) in Chapter 3, we find a unique
(positive) morphism Φ : E −→ E of a Banach lattice bundle over φ, such
that T = TΦ, and ||T || = ||Φ||. In this situation, we will also say the
(positive) weighted Koopman operator TΦ on Γ(K, E) over Tφ is Markovian.

(b) By (ii) we have Φ ◦ u = u ◦ φ, which also implies that, for each x ∈ K, the
(positive operator) lattice homomorphism Φ(x) : Ex −→ Eφ(x) satisfies

Φ(x)u(x) = u(φ(x)) where Φ(x) := Φ|Ex
.

Since u(x) ∈ IntE+
x ̸= ∅ for each x ∈ K, this implies that the associated

(positive) morphism Φ : E −→ E "sends order unit to order unit over φ".
This observation led us to introduce the following class of (positive) morphism
on a Banach lattice bundle, namely Markovian (positive) morphism.

Definition F.3.0.3. Let p : E −→ K be Banach lattice bundle over K. Furthermore
assume ux ∈ IntE+

x ̸= ∅ for each x ∈ K. For a continuous map φ : K −→ K, we
call a map Φ : E −→ E a Markovian (positive) morphism over φ if:

(i) Φ is a (positive) morphism of Banach lattice bundle over φ; and

(ii) for each x ∈ K, the (positive operator) lattice homomorphism Φ(x) : Ex −→
Eφ(x) satisfies

Φ(x)ux = uφ(x) where Φ(x) := Φ|Ex
.

And if φ = IdK, we simply call Φ a Markovian (positive) morphism.

Remark F.3.0.4. (i) Similarly, if Φ : E −→ E is a Markovian (positive) mor-
phism over φ, we will also say the (positive) morphism Φ over φ is Marko-
vian.

(ii) Now, one would expect certain correspondence between Markovian (positive)
morphism and Markovian (positive) weighted Koopman operator. We clarify
this in the next proposition in certain sense.
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Proposition F.3.0.5. Let p : E −→ K be a Banach lattice bundle over K, and
Γ(K, E) the Banach lattice of its continuous sections. Furthermore assume u ∈
IntΓ(K, E)+ ̸= ∅. For a homeomorphism φ : K −→ K, the following are equiva-
lent.

(i) T : Γ(K, E) −→ Γ(K, E) is a Markovian (positive) Tφ-homomorphism.

(ii) There exists a unique Markovian (positive) morphism Φ : E −→ E over φ,
such that T = TΦ, and ||T || = ||Φ||.

In this situation, a (positive) weighted Koopman operator TΦ is Markovian
over Tφ if and only if the (positive) morphism Φ : E −→ E is Markovian
over φ.

Proof. (i) =⇒ (ii): By Remark F.3.0.2, it follows that the unique as-
sociated (positive) morphism Φ : E −→ E over φ for which T = TΦ,
and ||T || = ||Φ|| is Markovian. That is, if a (positive) weighted Koop-
man operator TΦ is Markovian over Tφ, then the associated (positive)
morphism Φ is necessarily Markovian over φ.

(ii) =⇒ (i): First we note that u ∈ IntΓ(K, E)+ ̸= ∅ implies that
u(x) ∈ IntE+

x ̸= ∅ for each x ∈ K. And so if Φ : E −→ E is a
Markovian (positive) morphism over φ, we have that, for each x ∈ K,
the (positive operator) lattice homomorphism Φ(x) : Ex −→ Eφ(x)

satisfies

Φ(x)u(x) = u(φ(x)) where Φ(x) := Φ|Ex
.

This, in particular, implies that Φ ◦ u = u ◦ φ, and hence TΦu = Φ ◦
u ◦ φ−1 = u, i.e., the (positive) weighted Koopman operator TΦ on
Γ(K, E) over Tφ is Markovian.

The last assertion is just the conclusion of the equivalence (i) ⇐⇒
(ii).

In the next proposition, we demonstrate that an invertible weighted Koop-
man operator is isomorphic to a bijective Koopman operator if and only if
it is Markovian in our sense (see Definition F.3.0.1). Moreover, we see that
the newly obtained Koopman operator is necessarily an extension of the
original one.
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Proposition F.3.0.6. Let p : E −→ K be a Banach lattice bundle over K, and
Γ(K, E) the Banach lattice of its continuous sections. Furthermore assume IntΓ(K, E)+ ̸=
∅, and φ : K −→ K is a homeomorphism. The following are equivalent for a map-
ping T : Γ(K, E) −→ Γ(K, E).

(i) T is a bijective Markovian Tφ-homomorphism.

(ii) T is a bijective Markovian weighted Koopman operator over Tφ, i.e., there
exists a unique homeomorphic Markovian morphism Φ : E −→ E over φ

such that T = TΦ, and ||T || = ||Φ||.

(iii) There exists a unique homeomorphism ψ : Q −→ Q on a compact space Q,
and a continuous surjection π : Q −→ K with π ◦ ψ = φ ◦ π such that

T ∼= Tψ on Γ(K, E) ∼= C(Q)

where Tψ s̃ = s̃ ◦ ψ−1 for each s̃ ∈ C(Q).

Moreover, if this assertion holds, the mapping iπ : (C(K), Tφ) −→ (C(Q), Tψ); f ∈
C(K) 7→ f ◦ π ∈ C(Q) is an isometric embedding, in the sense that it is a contin-
uous linear map such that iπ ◦ Tφ = Tψ ◦ iπ and ||iπ f || = || f || for all f ∈ C(K).

Proof. We will use notation essentially as in the proof of Proposition F.2.0.1.

The equivalence (i) ⇐⇒ (ii) follows immediately from Proposition
F.3.0.5.

(i) ⇐⇒ (iii): We systematically prove this equivalence.

(a) As in Proposition F.2.0.1(A), we find a compact space Q, and a
continuous surjection π : Q −→ K with π−1(x) ∼= Qx for each x ∈ K

such that Γ(K, E)
i∼= C(Q). Moreover, we identify iu = 1Q ∈ C(Q)+

where u ∈ Γ(K, E)+ is the order unit, and Ex
ix∼= C(Qx) with ixu(x) =

1Qx ∈ C(Qx)+. More generally we write is = s̃ ∈ C(Q) for a unique
s ∈ Γ(K, E). Furthermore, for each x ∈ K, ẽx : C(Q) −→ C(Qx); s̃ 7→
s̃ ◦ πx denote the corresponding quotient map, where πx : Qx −→ Q
is the unique continuous injection such that π−1(x) = πx(Qx) ∼= Qx

for each x ∈ K.

(b) Now, since Γ(K, E)
i∼= C(Q) is an isometric lattice module iso-

morphism, it follows that a mapping T : Γ(K, E) −→ Γ(K, E) is a
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lattice Tφ-homomorphism if and only if the mapping T̃ := iT i−1 :
C(Q) −→ C(Q) is a lattice Tφ-homomorphism, as the following com-
mutative diagram shows.

Γ(K, E) Γ(K, E)

C(Q) C(Q)

i

s 7→T s

i−1i−1

s̃ 7→T̃ s̃

i

This, in particular, implies that for s̃ ∈ C(Q) and each x ∈ K, we have
that

s̃ ◦ πx ∈ C(Qx) 7−→ T̃ s̃ ◦ πφ(x) ∈ C(Qφ(x))

for every x ∈ K.

That is, for each x ∈ K, the diagram

Γ(K, E) Γ(K, E)

Ex Eφt(x)

ex

s 7→T s

eφ(x)

Φ(x)

commutes if and only if the corresponding diagram

C(Q) C(Q)

C(Qx) C(Qφ(x))

ẽx

s̃ 7→T̃ s̃

ẽφ(x)

Φ̃(x)

commutes for each x ∈ K, where Φ(x) := Φ|Ex
: Ex −→ Eφ(x) is

the unique invertible lattice homomorphism in (ii), corresponding to
Φ̃(x) := iφ(x)Φ(x)i−1

x : C(Qx) −→ C(Qφ(x)) for each x ∈ K.

(c) And also T is bijective and Markovian over Tφ if and only if
T̃ is, in particular, a bijective Markov lattice homomorphism on C(Q).
As such we find a unique homeomorphism ψ : Q −→ Q such that
T̃ s̃ = s̃ ◦ ψ−1 for each s̃ ∈ C(Q) (cf. [28, Theorem 9.1, p.195]; [10,
Lemma 4.14, p.55]). So, if T̃ s̃ = s̃ ◦ ψ−1 for every s̃ ∈ C(Q) and unique
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homeomorphism ψ : Q −→ Q, it follows from (b) above that for s̃ ∈
C(Q) and each x ∈ K,

s̃ ◦ πx ∈ C(Qx) 7−→ T̃ s̃ ◦ πφ(x) = s̃ ◦ ψ−1 ◦ πφ(x) ∈ C(Qφ(x)) · · ·L.H.S

⇐⇒
π ◦ ψ = φ ◦ π. · · ·R.H.S

Indeed, since s̃ ∈ C(Q) is arbitrary, the L.H.S holds if and only if πx =

ψ−1 ◦ πφ(x) for every x ∈ K, which is the case if and only if π−1(x) =
πx(Qx) = ψ−1(πφ(x)(Qφ(x))) = ψ−1(π−1(φ(x))) for every x ∈ K,
which is the case if and only if π−1 ◦ φ−1 = ψ−1 ◦ π−1, which is true if
and only if the R.H.S holds. That is, the diagram

Q K

Q K

ψ

π

φ

π

necessarily commutes. Thus, π : (Q, ψ) −→ (K, φ) is an extension of
invertible topological dynamical systems1 (see [24, Definition 1.2.1 (a)
p.51]).

(d) Finally setting Tψ := T̃ , we have that T ∼= Tψ on Γ(K, E) ∼=
C(Q) if and only if T is a bijective Markovian Tφ-homomorphism.

Moreover, since π : (Q, ψ) −→ (K, φ) is an extension of invertible topologi-
cal dynamical systems, it follows immediately that (C(K), Tφ) is a Koopman
subsytem of the invertible Koopman system (C(Q), Tψ) given by the map-
ping iπ : C(K) −→ C(Q); f 7→ f ◦ π (see [24, Theorem 12.4 (a), p.54]).
That is, the mapping iπ : (C(K), Tφ) −→ (C(Q), Tψ); f ∈ C(K) 7→ f ◦ π ∈
C(Q) is continuous, iπ ◦ Tφ = Tψ ◦ iπ, i.e., the diagram

C(K) C(Q)

C(K) C(K)

Tψ

iπ

Tφ

iπ

commutes, and is an isometry, i.e., ||iπ f || = || f || for all f ∈ C(K).

1discrete-time
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We can extend the previous result in Proposition F.3.0.6 to group actions. In
particular, this implies that a weighted Koopman group is isomorphic to a
Koopman group if and only if it is Markovian in our sense. Moreover, the
newly obtained Koopman group is an extension of the original Koopman
group. This result verifies and generalises the result stated in [29, Example
3.11, p.65](iv), which we can take as a corollary. We, however, add this as
part (B) for the sake of completeness.

For a given flow (φt)t∈R on K, Tφ(t)t∈R as always will denote the Koopman
group on 1-Banach lattice algebra C(K). And by a Markovian flow (Φt)t∈R

on Banach lattice bundle E over the flow (φt)t∈R on K we mean (Φt)t∈R is a
flow on E such that Φt is Markovian over φt for every t ∈ R (see Definition
F.3.0.3).

Combining Propositions F.2.0.1 and F.3.0.6 we obtain the following.

Proposition F.3.0.7. Let p : E −→ K be a Banach lattice bundle over K, and
Γ(K, E) the Banach lattice of its continuous sections. Furthermore, assume IntΓ(K, E)+ ̸=
∅, and (φt)t∈R is a flow on K.

(A) The following are equivalent for a C0-group T (t)t∈R on Γ(K, E).

(i) T (t)t∈R is a Markovian weighted group representation over Tφ(t)t∈R,
i.e., T (t) is a Markovian Tφ(t)-homomorphism for every t ∈ R.

(ii) T (t)t∈R is a Markovian weighted Koopman group over Tφ(t)t∈R,
i.e., there exists a unique Markovian flow (Φt)t∈R on E over the flow (φt)t∈R

on K, such that T (t) = TΦ(t) and ||T (t)|| = ||Φt|| for every t ∈ R.

(iii) There exists a unique flow (ψt)t∈R on compact space Q, and π :
(Q, (ψt)t∈R) −→ (K, (φt)t∈R) an extension of topological R-dynamical
systems, i.e., π : Q −→ K is a continuous surjection with π ◦ ψt = φt ◦ π

for every t ∈ R; such that

T (t)t∈R
∼= Tψ(t)t∈R on Γ(K, E) ∼= C(Q)

where Tψ(t)t∈R denotes the Koopman group on C(Q) associated with the
flow (ψt)t∈R on Q.

(B) Conversely, in the situation above, let π−1(x) := Qx for each x ∈ K;

F :=
⋃̇

x∈K
C(Qx)
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p̃ : F −→ K, v ∈ C(Qx) 7→ x;

and endow F with the topology generated by the sets

S(s̃, U, ε) :=
{

v ∈ p̃−1(U) | ||v− s̃|Qp̃(v)
||C(Q p̃(v))

< ε

}
where U ⊆ K is open, s̃ ∈ C(Q), and ε > 0. Then, we have the following.

(i) p̃ : F −→ K is a Banach lattice bundle over K, and Γ(K, F) the Ba-
nach lattice of its continuous sections is such that the interior IntΓ(K, F)+ ̸=
∅ and Γ(K, F) ∼= C(Q).

(ii) For each t ∈ R, the mapping

Φ̃t : F −→ F, v ∈ C(Qx) 7→ v ◦ ψ−t ∈ C(Qφt(x))

defines a Markovian flow (Φ̃t)t∈R on F over the flow (φt)t∈R on K, such that

TΦ̃(t)t∈R
∼= Tψ(t)t∈R on Γ(K, F) ∼= C(Q)

where TΦ̃(t)t∈R
denote the Markovian weighted Koopman group over Tφ(t)t∈R

induced by (Φ̃t)t∈R on F.

Either way, we have that

TΦ(t)t∈R
∼= Tψ(t)t∈R

∼= TΦ̃(t)t∈R
on Γ(K, E) ∼= C(Q) ∼= Γ(K, F)

(Φt)t∈R
∼= (Φ̃t)t∈R on E ∼= F

and the mapping iπ : (C(K), Tφ(t)t∈R) −→ (C(Q), Tψ(t)t∈R); f ∈ C(K) 7→
f ◦ π ∈ C(Q) is an isometric embedding of Koopman group, in the sense that it
is a continuous linear map such that iπ ◦ Tφ(t) = Tψ(t) ◦ iπ for each t ∈ R and
||iπ f || = || f || for all f ∈ C(K).

Proof. (A) The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) follow immedi-
ately from Proposition F.3.0.6.

(B) The assertion (i) follows from Proposition F.2.0.1 (B). To prove asser-
tion (ii), we note first that (Φ̃t)t∈R is a flow on F over the flow (φt)t∈R

on K as in Chapter 3 [Example 3.4.0.8(ii)]. And since, for each x ∈ K,
the lattice homomorphism Φ̃t(x) : C(Qx) −→ C(Qφt(x)) satisfies

Φ̃t(x)1Qx = 1Qφt(x)
that is 1Qx ◦ψ−t = 1Qφt(x)

, where Φ̃t(x) := Φ̃t|C(Qx)
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for every t ∈ R, it follows that Φ̃t is a Markovian morphism over φt

(see Definition F.3.0.3) for each t ∈ R. Hence, (Φ̃t)t∈R is a Markovian
flow on F over the flow (φt)t∈R on K.

And since the interior IntΓ(K, F)+ ̸= ∅, it follows from Part (A) above
that the induced weighted Koopman group TΦ̃(t)t∈R

is Markovian on
Γ(K, F) over Tφ(t)t∈R.

Finally, since Γ(K, F) ∼= C(Q), it follows immediately that (ψt)t∈R is
the unique flow on the compact space Q such that

TΦ̃(t)t∈R
∼= Tψ(t)t∈R

∼= TΦ(t)t∈R on Γ(K, F) ∼= C(Q) ∼= Γ(K, E)

(Φt)t∈R
∼= (Φ̃t)t∈R on E ∼= F.

And so, the remaining assertions follow by the conclusion of Proposi-
tions F.2.0.1 and F.3.0.6.

F.4 Spectral theory for Markovian weighted
Koopman groups on Banach lattices of
continuous sections with order unit

In Section F.2, we demonstrated that if Γ is an AM m-lattice module over
the 1-Banach lattice algebra C(K) such that the interior IntΓ+ ̸= ∅, then it
must be isomorphic to a Banach lattice of continuous sections of a bundle
of AM-spaces with order units (see Proposition F.2.0.1). Moreover, in this
situation, we introduce the concept of a Markovian weighted Koopman op-
erator (see Definition F.3.0.1), and we show that every bijective Markovian
weighted Koopman operator (resp. Markovian weighted Koopman group)
is isomorphic to a bijective Koopman operator (resp. Koopman group) with
extends the original bijective Koopman operator (resp. Koopman group)
(see Proposition F.3.0.6, resp. Proposition F.3.0.7).

In this situation, every spectral property, say, of a bijective Markovian weighted
Koopman operator can be characterised by that of the representing extended
bijective Koopman operator. We start with the spectral properties of a single
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bijective Markovian weighted Koopman operator and extend the results to
the Markovian weighted Koopman group. We essentially make use of re-
sults in [29, Section 4.1.1. p.72-73] and [29, Section 4.1.2 , p.74-75] and we
refer to Chapter 4 (Remark 4.5.0.1) for concepts related to aperiodic homeo-
morphisms and aperiodic flows on a compact space.

Throughout, p : E −→ K is a Banach lattice bundle over K, and Γ(K, E)
is the Banach lattice of its continuous sections. Furthermore, we assume
u ∈ IntΓ(K, E)+ ̸= ∅, and so we can make use of results (and notation) as
in Propositions F.2.0.1 and F.3.0.6 as needed.

F.4.1 Bijective Markovian weighted Koopman operators

We start with a homeomorphism φ : K −→ K, and consider a bijective
Markovian Tφ-homomorphism T : Γ(K, E) −→ Γ(K, E) on Γ(K, E).

Proposition F.4.1.1. The spectral radius r(T ) = 1, even 1 ∈ σp(T ), and the spec-
trum σ(T ) ⊆ D := {λ ∈ C : |λ| ≤ 1}. In fact, the whole spectrum σ(T ), the
point spectrum σp(T ), the approximate point spectrum σap(T ) and the peripheral
spectrum Perσ(T ) := {λ ∈ σ(T ) : |λ| = r(T )} are cyclic, i.e.,

λ = |λ|γ ∈ σ(T ) =⇒ |λ|γk ∈ σ(T ) for k ∈ Z,

λ = |λ|γ ∈ σp(T ) =⇒ |λ|γk ∈ σp(T ) for k ∈ Z,

λ = |λ|γ ∈ σap(T ) =⇒ |λ|γk ∈ σap(T ) for k ∈ Z,

λ = |λ|γ ∈ Perσ(T ) =⇒ |λ|γk ∈ Perσ(T ) for k ∈ Z.

And as T is bijective we have

Perσ(T ) = σ(T ) = σap(T ) ⊆ T.

Furthermore, as T is bijective if we, in particular, identify T ∼= Tψ on Γ(K, E) ∼=
C(Q), where ψ : Q −→ Q is the unique homeomorphism with π ◦ ψ = φ ◦ π,
then we have the following.
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(a) σp(T ) ⊆ T is a group and the fixed space f ix(T ) is one-dimesional if ψ :
Q −→ Q is topologically ergodic, i.e., the fixed space f ix(Tψ) ⊆ C(Q) is
one-dimesional. This is the case, for instance, if ψ : Q −→ Q is minimal2.

In this situation, the homeomorphism φ : K −→ K is also topologically
ergodic, i.e., the fixed space f ix(Tφ) ⊆ C(K) is one-dimensional, and so the
point spectrum σp(Tφ) ⊆ T is a group. Moreover, f ix(T ) is the closed
vector-lattice generated by lin{ f u : f ∈ C1K} ⊆ Γ(K, E).

(b) σ(T ) = T if ψ : Q −→ Q is an aperiodic homeomorphism.

In this situation, the homeomorphism φ : K −→ K is also aperiodic, and
σap(Tφ) = σ(Tφ) = T.

Proof. We identify T ∼= T on Γ(K, E) ∼= C(Q), and as such T is, in
particular, a bijective Markov lattice homomorphism on C(Q). So, all
the spectral properties of bijective Markov lattice homomorphism T
transfer directly to that of T , since for instance, ||T || = ||T|| = 1
and, for λ ∈ C, the operator λ− T is invertible (injective, surjective)
on Γ(K, E) if and only if the operator λ − T is invertible (injective,
surjective) on C(Q), i.e., σ(T ) = σ(T), and as well as all other parts of
the spectrum. And so the spetral radii coincide, i.e., r(T ) = r(T) = 1.

And even 1 ∈ σp(T ) = σp(T), which implies that, σ(T ) = σ(T) ⊆
D := {λ ∈ C : |λ| ≤ 1}.

Now, the cyclicity of the spectrum (and its respective subsets) of T
follows from that of the bijective Markov lattice homomorphism T on
C(Q). We note that the peripheral spectrum Perσ(T ) = {λ ∈ σ(T) : |λ| = 1},
and as T is bijective, we even have Perσ(T) = σ(T) = σap(T) ⊆ T.
(c.f. [29, Section 4.1.1. p.72 ] ).

(a) We note that f ix(T ) ∼= f ix(Tψ) on Γ(K, E) ∼= C(Q). And so,
WLOG, if we assume ψ : Q −→ Q is minimal, then σp(T ) = σp(Tψ) ⊆
T is a group and f ix(Tψ) is one-dimensional, also implies that f ix(T )
is also one-dimensional.

Since π : (Q, ψ) −→ (K, φ) is an extension, ψ : Q −→ Q is mini-
mal, implies that φ : K −→ K is also minimal, so that the fix space
f ix(Tφ) ⊆ C(K) is one-dimensional, and the point spectrum σp(Tφ) ⊆

2i.e., Q contains no non-trivial ψ-invariant closed subset.
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T is a group. Alternatively, since the mapping iπ : (C(K), Tφ) −→
(C(Q), Tψ); f ∈ C(K) 7→ f ◦ π ∈ C(Q) is an isometric embedding, it
follows that iπ( f ix(Tφ)) ⊆ f ix(Tψ), so that if f ix(Tψ) ⊆ C(Q) is one
dimensional, then necessarily f ix(Tφ) ⊆ C(K) is also one-dimensional.

Moreover, if s ∈ f ix(T ) ⊆ Γ(K, E), then T f s = Tφ f s = f s if and
only if f ∈ f ix(Tφ) = C1K. This implies that f ix(T ) is the closed
vector-lattice generated by lin{ f u : f ∈ C1K} ⊆ Γ(K, E) which is one-
dimensional.

(b) If ψ : Q −→ Q is an aperiodic homeomorphism, then σap(Tψ) =

σ(Tψ) = T, which also implies that σ(T ) = σ(Tψ) = T (see also Chap-
ter 4, Lemma 4.5.0.2(A)).

Since π : (Q, ψ) −→ (K, φ) is an extension, ψ : Q −→ Q being aperi-
odic implies that φ : K −→ K is also an aperiodic homeomorphism, so
that σap(Tφ) = σ(Tφ) = T. (c.f. [29, Proposition 4.3. p.73] ).

F.4.2 Markovian weighted Koopman groups

As in above, p : E −→ K is a Banach lattice bundle over K, and Γ(K, E) the
Banach lattice of its continuous sections is such that u ∈ IntΓ(K, E)+ ̸= ∅.
Moreover, for a given flow (φt)t∈R on K, Tφ(t)t∈R will denote the associated
Koopman group on C(K) with generator (δ, D(δ)).

Now, we consider a Markovian weighted Koopman group T (t)t∈R on Γ(K, E)
over Tφ(t)t∈R with generator (A, D(A)).

Proposition F.4.2.1. For the generator (A, D(A)) of Markovian weighted Koop-
man group T (t)t∈R we have the following;
The spectral bound s(A) = 0. Moreover, the whole spectrum σ(A), the approx-
imate point spectrum σap(A), the point spectrum σp(A) and the boundary spec-
trum σb(A) := {λ ∈ σ(A) : Reλ = s(A)} are imaginary additively cyclic sub-
sets of C; i.e.,

λ ∈ σ(A) =⇒ Reλ + ikImλ ∈ σ(A) for k ∈ Z,
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λ ∈ σap(A) =⇒ Reλ + ikImλ ∈ σap(A) for k ∈ Z,

λ ∈ σp(A) =⇒ Reλ + ikImλ ∈ σp(A) for k ∈ Z,

λ ∈ σb(A) =⇒ Reλ + ikImλ ∈ σb(A) for k ∈ Z.

As each T (t) is bijective, we even have σ(A) ⊆ iR and

σb(A) = σap(A) = σ(A).

Furthermore, if we, in particular, identify T (t)t∈R
∼= Tψ(t)t∈R on Γ(K, E) ∼=

C(Q) for a unique flow (ψt)t∈R on Q with π : (Q, (ψt)t∈R) −→ (K, (φt)t∈R) an
extension of topological R-dynamical systems such that,

(A, D(A)) ∼= (Ã, D(Ã))

where (Ã, D(Ã)) is the generator of the Koopman group Tψ(t)t∈R on C(Q), then

σ(A) = iR if (ψt)t∈R is an aperiodic flow on Q.

In this situation, the flow (φt)t∈R on K is also aperiodic, and σ(δ) = iR.

Moreover, σ(Tφ(t)) = σ(T (t)) = T for each t ∈ R, and the spectral
mapping theorems holds i.e.,

σ(T (t)) = etσ(A) and σ(Tφ(t)) = etσ(δ) for all t ∈ R.

Proof. By identifying A ∼= Ã, i.e., Ã := iAi−1 so that D(Ã) :={
s̃ ∈ C(Q) : i−1s̃ = s ∈ D(A)

}
where Γ(K, E)

i∼= C(Q), it follows im-
mediately that (Ã, D(Ã)) is the generator of a unique Markovian lat-
tice C0-group T(t)t∈R on C(Q) such that T (t)t∈R

∼= T(t)t∈R.

So all spectral properties of Ã transfer directly to that of A, since for
instance, σ(A) = σ(Ã) and as well all other parts of the spectrum
coincide; and more so the spectral bounds coincide i.e., s(A) = s(Ã).
And since T(t)t∈R is, in particular, C0-group of isometries, we have
that the spectral bound s(A) = s(Ã) = 0.

Now, the additive cyclicity of the spectrum of A (and its respective
subsets) follows from that of Ã. We note that the boundary spectrum
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σb(A) = σb(Ã) =
{

λ ∈ σ(Ã) : Reλ = 0
}

, and as each T(t) is bijective,
we even have σb(Ã) = σap(Ã) = σ(Ã) ⊆ iR. (cf. [29, Section 4.1.2 ,
p.74] ).

Thus, σb(A) = σap(A) = σ(A) ⊆ iR.

Now, we identify T (t)t∈R
∼= Tψ(t)t∈R on Γ(K, E) ∼= C(Q) as in

above, for a unique flow (ψt)t∈R on Q with π : (Q, (ψt)t∈R) −→
(K, (φt)t∈R) an extension of topological R-dynamical systems.

If (ψt)t∈R is an aperiodic flow on Q, then we have that σ(A) =

σ(Ã) = iR and σ(T (t)) = σ(Tψ(t)) = T for each t ∈ R (see also
Chapter 4, Lemma 4.5.0.2(C)).

And since, π : (Q, (ψt)t∈R) −→ (K, (φt)t∈R) is an extension of topo-
logical R-dynamical systems, it follows that the flow (φt)t∈R on K is
also aperiodic. And so, we have σ(δ) = iR and σ(Tφ(t)) = T for each
t ∈ R.

Hence, in this situation, the spectral mapping theorems hold, i.e.,

σ(T (t)) = etσ(A) and σ(Tφ(t)) = etσ(δ) for all t ∈ R.

(c.f [29, Proposition 4.6, p.75]).
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