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Abstract 

Title                          :  Fermentation, stability and degradability of whole-crop oat silage 

   ensiled with a commercial inoculant 

 
Name                      :  Johanni Pienaar 
 
Supervisor              :  Prof. C.W. Cruywagen and Dr. R. Meeske 
 
Institution                :  Department of Animal Science, Stellenbosch University 
 
Degree                   :  MScAgric.                      
 

South Africa is well-known for periodic dry periods and uncertain rainfall. Ensiling of 

crops is a method of preserving forage and ensures feed availability during periods when 

the supply of good quality forage is low.  Cereal-based silages, especially in the Western 

Cape, South Africa, represent a significant proportion of feed consumed by ruminant 

animals, particularly high-producyion dairy cattle.  However, farmers are still concerned 

about the technical challenges of ensiling cereal crops.  Previous research done on lactic 

acid bacteria (LAB) inoculants used on cereal based silage has indicated a potential for 

improving silage fermentation, stability and degradability, thus enhancing feed 

conversion and production by ruminants.     

 

Two experiments were conducted to determine the effects of inoculating whole-crop oat 

silage with Lalsil® Cereal Lactobacilli (Lactobacillus buchneri (NCIMB 40788) and 

Pediococcus acidilactici (CNCM MA 18/5M)) LAB on  

(1) silage fermentation,  

(2) aerobic stability and  

(3) nutritional value of silage ensiled  under  

a.  micro-silos conditions and       

b.  in a bunker under outdoor conditions of a Mediterranean summer. 
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Oats (Avena sativa, cv SSH 405) were planted on 60 ha under dryland conditions at 

Elsenburg in the Western Cape province, South Africa.  Whole-crop oats were harvested 

at the soft dough stage and length of the chopped material was 9 mm (Day of ensiling – 

Day 0). 

 

Chopped whole-crop oats were sampled, mixed thoroughly and divided into two portions.  

The Inoculant (Lalsil® Cereal) was applied to one portion to provide 5.79 x 109 colony 

forming units (CFU) of LAB per gram of fresh material.  In the first experiment twenty -

four glass silos (1.5 L glass jars) (WECK, GmbH u.Co., Wehr-Ofligen, W. Germany) 

were filled for each of the control and inoculant treatments.  The glass silos were stored 

in a dark room in the laboratory at ambient temperature.  Three glass silos were opened 

for each treatment on days 1, 2, 4, 8, 15, 30, 60 and 102 post-ensiling to determine 

fermentation dynamics. 

 

A parallel study was done with the same chopped whole-crop oats using the buried bag 

technique in a bunker silo.  Whole-crop oats were ensiled in six net bags per treatment 

buried in a bunker filled with the same untreated whole crop oats.  Bags, attached with 

nylon lines (3 m lengths) for easy retrieval were buried at 1m and 2 m depths in the same 

bunker.  The net bags in the bunker were retrieved after 186 days of ensiling.   

 

Dry matter (DM), organic matter (OM), neutral detergent fibre (NDF), crude protein 

(CP), lactic acid levels, pH, water soluble carbohydrates (WSC) and in vitro organic 

matter degradability (IVOMD) for both studies were determined.  Silage of both 

experiments was exposed to aerobic conditions for ten days to determine aerobic 

stability. It is concluded that the inoculant Lalsil® Cereal had the effect of reducing the 

rate of consumption of WSC during the anaerobic phase and aerobic exposure for both 
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experiments.  Silage spoilage due to yeasts and moulds was however more evident with 

the inoculated silage due the presence of sugars in the micro-silos experiment.  

(Key words: Whole-crop oat silage, inoculant, micro-silos, buried bag techniques, water 

soluble carbohydrates (WSC), in vitro organic matter degradability (IVOMD)) 
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Suid-Afrika is bekend vir droë periodes en wisselvallige reënval.  Die inkuiling van 

gewasse is ‘n goeie manier om ruvoer te voorsien in tye van droogtes of tekorte.  

Kleingraan kuilvoer is veral bekend in die Wes-Kaap, Suid-Afrika en maak ‘n groot deel 

uit van die melkkoei se rantsoen.  Landbouers is nog steeds bekommerd oor die tegniese 

aspekte wanneer dit kom by die inkuil van gewasse.  Vorige navorsing het getoon dat die 

gebruik van ‘n melksuurbakteriese inokulant saam met die inkuiling van gewasse 

moontlik die potensiaal het om fermentasie, stabiliteit en degradering te verbeter en 

sodoende voeromset te verbeter. 

 

Twee eksperimente is uitgevoer om die effek van die inkuiling van hawerkuilvoer met 

Lalsil® Cereal Lactobacilli (Lactobacillus buchneri (NCIMB 40788) en Pediococcus 

acidilactici (CNCM MA 18/5M)) LAB te bepaal op 

(1) kuilvoer fermentasie,  

(2) aërobiese stabiliteit en  

(3) nutriëntwaarde van die kuilvoer ingekuil in  

a.   mikrosilo’s en 

b.   in ‘n bunker in die buitelug. 
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Hawer (Avena sativa, cv SSH 405) is op 60 ha droë land geplant op Elsenburg in die 

Wes-Kaap, Suid-Afrika.  Die hawer is ingekuil tydens die sagte deeg stadium en die 

gekapte materiaal was ongeveer 9 mm lank. 

 

Gekapte material was deeglik gemeng en in twee gedeel.  Die inokulant (Lalsil® Cereal) 

is op die een gedeelte gesproei om 5.79 x 109 kolonie-vormende eenhede (KVE) 

melksuurbakterieë per gram vars materiaal te voorsien.  Tydens die eerste eksperiment is 

24 mikrosilo’s (1.5 L glas silo) (WECK, GmbH u.Co., Wehr-Ofligen, W. Duitsland) vir 

elke behandeling vol kuilvoer gemaak.  Hierdie mikrosilo’s is gestoor in ‘n donker kamer 

teen kamertemperatuur.  Drie mikrosilo’s is per behandeling oopgemaak op dag 1, 4, 8, 

15, 30, 60 en 102 na inkuiling om die fermentasie-dinamika te bepaal. 

 

‘n Parallelle studie is gedoen met dieselfde materiaal ingekuil in netsakke binne die 

bunker.  Die materiaal was ingekuil in ses netsakke vir elke behandeling.  Nylon toue (3 

m) is aan die sakke vasgemaak om die uithaal daarvan op latere stadium te vergemaklik.  

Hierdie sakke is ingekuil op verskillende dieptes, 1 m en 2 m in dieselfde bunker.  Die 

sakke is na 186 dae weer uitgehaal. 

 

Droë materiaal (DM), organiese materiaal (OM), neutraal bestande vesel (NBV), 

ruproteïen (RP), melksuurvlakke, pH, water oplosbare koolhidrate (WOK) en in vitro 

organiese materiaal verteerbaarheid (IVOMV) vir beide studies is bepaal. Kuilvoer van 

beide eksperimente is ook blootgestel aan aërobiese toestande vir 10 dae aan aërobiese 

toestande blootgestel om aërobiese stabiliteit te bepaal.  Daar is bepaal dat die inokulant 

Lalsil® Cereal het die tempo van WOK verbruik verminder gedurende die anaërobies 

fase sowel as die aërobiese fase vir beide eksperimente.  Kuilvoer wat bederf het as 
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gevolg van giste en swamme was meer sigbaar by die inokulant behandelde kuilvoer as 

gevolg van die teenwoordigheid van suikers in die mikrosilo’s. 

 

(Sleutelwoorde: hawerkuilvoer, inokulant, mikrosilo’s, water oplosbare koolhidrate 

(WOK), in vitro organiese materiaal verteerbaarheid (IVOMV)) 
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CHAPTER 1 
 

INTRODUCTION 

 

Forage conservation by ensiling ensures feed availability during periods when supply of good 

quality forage is low (McDonald et al., 1991).  McDonald et al. (2002) defined the process of 

forage fermentation as ensiling.  Cereal-based silages represent a significant proportion of feed 

consumed by ruminant animals, particularly high-production dairy cattle.  Farmers are however, 

concerned about technical challenges of ensiling cereal crops (Wilkinson, 2005). 

Silage is made from a large variety of cereals such as maize (Zea mays), oats (Avena 

sativa), and barley (Hordeum vulgare); legumes (lucerne; Medicago sativa) and tropical grasses 

such as Napier grass (Penisetum purpureum) and sugar cane (Saccharum officinarum).  Maize is 

the most common cereal crop conserved as silage and large areas are cultivated under maize for this 

purpose in many parts of the world.  Maize is relatively high in dry matter (DM) content, has a low 

buffering capacity and contains relatively high levels of water soluble carbohydrates (WSC) for 

satisfactory fermentation to lactic acid (McDonald et al., 1991).  However, the increase in 

utilization of maize as biofuel particularly in developed countries and also in South Africa 

necessitates a shift toward use of alternative crops such as oats (Van den berg & Rademakers, 

2007).  Oats are utilised as silage especially in temperate and Mediterranean climate zones.   

Crops preserved as silage should have relatively high amounts of WSC, a low buffering 

capacity and a DM content above 200 g/kg; a pH of about 4.0 is optimum to form stable silages 

(McDonald et al., 1991).  External factors such as additives are also essential in enhancing crop 

fermentation.  Several additives have been developed over the past years for promoting and 

stabilizing ensiled crops.  Silage additives can be classified according to two main types: (1) 

fermentation stimulants, such as sugars, inoculants and enzymes, which encourage growth of lactic 

acid producing bacteria; and (2) fermentation inhibitors, such as acids and formalin, which partially 
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or completely inhibit microbial growth (McDonald et al., 2002).  Efficiency of inoculants is 

however affected by levels and different types of microflora present on the crop at the time of 

ensiling.  If the number of lactic acid bacteria (LAB) present on a crop before ensiling is low, 

fermentation of WSC may be poor resulting in poor silage (Meeske et al., 2002).  

Filya et al. (2002) found that whole-crop wheat ensiled with LAB inoculants (Lactobacillus 

plantarum + Enterococcus faecium and Lactobacillus pentosus), had lower amounts of carbon 

dioxide (CO2) in the wilted silages, 6.1 g/kg DM and 1.1 g/kg DM, respectively, compared with un-

inoculated silage that resulted in about 9.2 g/kg DM.  Lower CO2 production is an indicator of 

reduced carbohydrate breakdown.  Meeske et al. (2002) found that whole-crop oats ensiled with an 

inoculant containing Lactobacillus plantarum, Streptococcus faecium and Pediococcus acidilactici 

increased feed intake by 0.6 kg DM/cow/day, and milk production increased by 6 %. 

Inoculants such as Lalsil® Cereal containing Lactobacillus buchneri and P. acidilactici are 

still being tested for their use on whole-crop oats and other cereals.  The aim of this study was 

therefore to determine the effects of a Lalsil® Cereal containing inoculant on fermentation of 

whole-crop oats in the bunker and in micro-silos on  

(1) fermentation characteristics,  

(2) aerobic stability and  

(3) nutritional value of the silage. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 
2.1 Introduction 

 

Silage is important forage and a source of energy for ruminants reared under intensive management 

conditions.  It is one of the oldest methods of preserving forage and could be defined as follows: it 

is material produced by controlled fermentation of a crop of high moisture content (McDonald et 

al., 2002).  However, silage spoilage is a major source of concern resulting in significant forage and 

energy loss (McCullough, 1978). 

Preservation is important in achieving consistency in feed supply in those seasons when 

forage availability is a major source of concern.  Almost any crop can be preserved as silage, but 

the popular crops are grasses, legumes and whole cereals, especially wheat and maize (McDonald 

et al., 2002).  Crops that make excellent silage have relatively high levels of WSC, relatively low 

buffering capacity and DM content above 200 g kg-1.  According to McDonald et al. (1991) crops 

for ensiling should have a physical structure that will allow for effortless compaction. 

In Northern Europe, grass has been ensiled in Sweden and in the Baltic provinces of Russia 

since the beginning of the eighteenth century, while beet tops and leaves were ensiled in Northern 

Germany at the beginning of the nineteenth century.  

Maize silage is an excellent source of energy and contains 40% to 50% grain (DM basis).  

Dairy cows (low producers, dry cows and heifers) fed maize silage ad libitum can get too fat and 

this could lead to ketosis or low milk production the following lactation  Maize silage should not 

exceed 55% of the diet (DM basis), especially for lactating cows (Staples, 2003) 
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2.2 Forage conservation systems 

 

Although there is notable variation in forage conservation systems, the primary methods involve 

either the harvest of dry hay or silage.  To produce dry hay, the crop is mowed and dried in the field 

to a moisture level that allows stable storage, normally 150-200 g kg-1 moisture.  Hay at this 

moisture can be stored for many months.  Higher-moisture forage, 500-850 g kg-1 can be stored as 

silage (Barnes et al., 1995). 

Each forage conservation method offers advantages and disadvantages (Boeke et al., 1991): 

 

2.2.1 Advantages of haymaking 
 

• Transportation costs of hay are significantly lower because most of the moisture has been 

removed. 

• High-quality hay enhances a desirable DM intake by animals and a better growth potential. 

• Seasonal surpluses of hay in production can be conserved for utilization during periods of 

feed shortage. 

 

2.2.2 Disadvantages of haymaking 
 

• Tractor operations result in soil compaction and reduce water penetration and can thus 

reduce future pasture production.  It may be necessary to periodically break the soil crust to 

facilitate water and fertiliser penetration. 

• The energy value of hay may be too low and may necessitate the supplementation with 

extra feed. 

• Hay does not keep for an indefinite period of time whereas silage can be stored for more 

than a year. 

• Hay can easily be destroyed by fire. 
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• Haymaking requires optimum weather conditions without any rain which could precipitate 

the development of moulds. 

• Feeding losses can be as high as 30% if proper “feeding out” facilities are not provided. 

 
The advantages and disadvantages of silage (Engelbrecht, 1999): 
 

2.2.3 Advantages of silage 
 

• Ensiling of crops decrease loss of material during periods when there is an oversupply of 

forage. 

• Good quality feed is available during periods of forage scarcity. 

• Well-covered silage is not susceptible to spoilage due to variable weather conditions. 

 

2.2.4 Disadvantages of silage 
 

• Poor management and knowledge of silage could lead to major losses of the crop. 

• Marketing of silage is limited and transportation is difficult due to bulkiness.  

• Fresh silage is required daily otherwise secondary fermentation would result in crop spoilage. 

The estimated global production of silage is 250 million tonnes of DM per year (Wilkins et al., 

1999). Estimated figures of silage and hay DM produced in Western Europe are shown in Figure 

2.1.  There was a steady increase in silage production since 1975.  Production of hay however 

declined slightly.  Since 1994, the production of hay and silage has remained more or less stable.  

The total amount of silage made in Western Europe in 2000, in terms of fresh weight, was about 

500 million tonnes (Wilkinson, 2005).  Utilization of maize silage is high in South Africa, 

especially in the provinces where the geography allows the production of maize, namely the Free 

State, North West, Gauteng, Mpumalanga and Limpopo.   
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Figure 2.1 Estimated production values of silage and hay DM in Western Europe: 1975 to 2000 

(Wilkinson, 2005). 

 

2.3 Principles of ensiling 

 

The main objective of ensiling is to achieve anaerobic conditions as soon as possible, thereby 

providing an environment under which natural fermentation can take place.  Compacting the 

material and sealing the silo prevents re-entry of air.  Air that is left in the forage is quickly 

removed by crop respiratory enzymes.  Oxygen causes aerobic spoilage as a result of respiration 

and material decays to worthless, toxic products (McDonald et al., 1991).  Finer chopping of 

harvested plant material is one of the strategies for improving compaction and fermentation of 

silages.  This improves palatability and intake of silage (Apolant & Chesnutt, 1985). 

The second objective is to discourage undesirable micro-organisms such as clostridia and 

enterobacteria.  Clostridia are found on harvested forage and soil in the form of spores and increase 

rapidly under anaerobic conditions producing butyric acid. Clostridia cause proteolysis resulting in 

low quality silage.  Enterobacteria are non-spore-forming, facultative anaerobes, which ferment 

sugars to acetic acid and have the ability to degrade amino acids (McDonald et al., 1991).  Growth 

of these undesirable micro-organisms is inhibited by lactic acid fermentation.  The pH at which 
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growth of clostridia and enterobacteria is inhibited depends on the moisture content and 

temperature.  The wetter the material, the lower the critical pH drops.  The ideal pH at which most 

of the acid tolerant clostridia will be inhibited is at a pH just below 5 (Jonsson, 1991).  

Growth of clostridia can be inhibited by reducing the moisture content by wilting prior to 

ensiling.  Lactic acid bacteria have a high tolerance to low moisture conditions and are able to 

dominate the fermentation of high DM crops (McDonald et al., 1991).   

 

2.3.1 Factors affecting silage quality 
 

Crop dry matter content 

Silage microbes need water in order to increase and multiply.  The amount of water is important in 

determining which microbes grow the best (Ranjit et al., 2002). 
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Figure 2.2    Moisture and silage fermentation (Ranjit et al., 2002). 
 

Dry matter less than 25% and low pH (<4.5) would result in bad quality silage. Dry matter, 

preferably less than 40% and an average pH of 5.5, would result in good quality silage. Undesirable 

bacteria favour wetter conditions in the silo.  Therefore silage with high DM content decreases the 

risk of poor quality fermentation.  The sugar content of the crop is relatively high if it is harvested 

at high DM content (Wilkinson, 2005). High DM content could be achieved by delaying harvest 

until the crop is relatively mature, and leaving the crop to wilt before harvesting.  Results of DM 

concentration on silage fermentation can be seen in Table 2.1 for grass ensiled without additive 

(Wilkinson, 2005). 

Silage with high DM content does not pack well and thus it is therefore difficult to exclude 

all of the oxygen from the forage mass.  As the DM content increases, growth of LAB is limited 

and the rate and of fermentation is reduced (acidification occurs at a slower rate and the amount of 

total acid produced is less).  It is better to wilt forages with a DM content above 30% to 35% prior 
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to ensiling (Wilkinson, 2005).  The pH needed for preservation depends on the DM value of the 

silage and can be determined as follows (ED d’H d’ Yvoy & Meeske, 1999): 

pH = 0.00359 x DM (g kg-1) + 3.44 
DM = 15%   pH =3.98 
DM = 45%   pH = 5.06 
 

Table 2.1    Effect of dry matter content on fermentation (McDonald,1976). 
 
  Unwilted Wilted 
  1 day  2 days 
    
Dry matter (g/kg fresh weight) 159 336 469 
pH 3.7 4.1 4.9 
Ammonia nitrogen (g/kg total N) 69 59 43 
Water soluble carbohydrates (WSC) (g/kg DM) 17 117 164 
Lactic acid (g/kg DM) 121 54 17 
Acetic acid (g/kg DM) 36 21 12 
Butyric acid (g/kg DM) 0 0 0 
Lactic acid (g/kg total acids) 770 720 590 

 

 

There are several effects of increasing the DM content of the crop on the composition of the silage: 

• Limited fermentation. 

• Decline in the proportion of fermentation acids present as lactic acid. 

• Enhancement of the quantity of residual sugars  in the silage. 

Crops that are greatly wilted (>500 g DM/kg fresh weight) are susceptible to moulds.  Crops 

exposed to wilting over extended periods lose WSC and have low digestibility (Wilkinson, 2005).  
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2.3.2 Effect of sugar content  
 

Sugars in herbage are mainly glucose and fructose that are fermented to energy (McCullough, 

1978). 

If the sugar (WSC) concentration of a crop is quite high, the chances are fair of achieving 

excellent fermentation and a well-preserved product.  This is particularly true if the crop is 

harvested with a short period of field wilting (Wilkinson, 2005). 

The above statement is illustrated in Table 2.2 for two different crops harvested at the same 

DM and ensiled without an additive. 

 

Table 2.2      Typical dry matter and water soluble carbohydrate concentration of different crops 
(Wilkinson, 2005). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Crop       DM* 
Water soluble   
carbohydrates 

     (g/kg FW)   (g/kg FW) 
   
Maize (Zea mays) 300 70 
   
Italian ryegrass (Lolium multiflorum) 220 50 
   
Perennial ryegrass (Lolium perenne) 200 35 
   
Tall fescue (Festuca arundinacea) 190 20 
   
Cocksfoot (Dactylis glomerata) 170 20 
   
Red Clover (Trifolium pratense) 130 15 
   
White clover (Trifolium repens) 120 10 
   
Lucerne (Medicago sativa) 150 9 
 
* Unwilted, dry weather, FW = Fresh weight 
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Water soluble carbohydrates are the primary fermentation substrate.  In temperate grass forages, 

glucose, fructose, sucrose and fructans are the primary WSC (Downing et al., 2008). 

 

2.3.3 Silage pH  
 

A crucial aspect of silage fermentation is acidification.  The initial decrease in pH produced by 

primary fermentation depends on the extent to which plant cells are ruptured by the chopping 

process, and on the buffering capacity or resistance to the acidification of the crop.  If the decline in 

pH drop is not enough (pH 3-4) to prevent the development of coliform and clostridial bacteria, the 

pH could rise again.  A rise in pH reflects the fermentation of lactic acid to weaker acids such as 

acetic and butyric acid.  Extensive degradation of proteins and amino acids to amines, amides and 

ammonia may also occur.  In such situations of extensive protein degradation, fermentation acids 

are present as ammonium salts to a level similar to that at the outset (Wilkinson, 2005).  For 

example, the buffering content of the forage could have an effect on the silage fermentation.  

Alfalfa has a high buffering capacity in comparison to maize, thus it takes more acid production to 

lower the pH in alfalfa than in maize silage resulting in alfalfa being more difficult to ensile. 

Plant material in the field can range from a pH of about 5 to 6 and decrease to a pH of 3.6 to 

4.5 

 

2.4 Chemistry of silage fermentation 
 

2.4.1 Cutting and early stages of ensiling 
 

Ensiling occurs in two different phases namely: (1) the aerobic phase and (2) the anaerobic phase.  

Respiration takes place during the aerobic phase until all the available oxygen is consumed.  

Respiration is the oxidative degradation of organic compounds such as carbohydrates to yield 

usable energy as shown in the equation below (McDonald et al., 2002).  

The equation of Respiration:  
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C6H12O6 + 6O2 ⇒ 6CO2 + H2O + Energy 

After forage chopping, plant respiration continues for several hours and plant enzymes (e.g. 

proteases) are active until all the available oxygen is depleted.  Rapid removal of oxygen is vital 

because it prevents the growth of unwanted aerobic bacteria, yeast and moulds that compete with 

beneficial bacteria for substrate.  If oxygen is not rapidly removed, high temperatures and 

prolonged heating ensue (Kung, 2001). 

Carbohydrates are the major respiratory source in particular hexose sugars, which undergo 

glycolysis and subsequent oxidation via the tricarboxylic acid cycle to CO2 and water.  In the 

harvested plant, biosynthetic reactions are restricted and almost all the energy in the hexose is 

converted into heat.  In the plant this heat energy would disappear into the atmosphere, but in the 

silo or bunker the heat is retained in the mass of herbage, causing an increase in temperature.  The 

loss of soluble carbohydrates through respiration is a wasteful process and could result in a 

depletion of substrate that may adversely affect subsequent fermentation (McDonald et al., 2002).  

The length of respiration plays an important role: the longer the period of respiration, the more 

WSC are consumed, resulting in a rise in temperature in the bunker (Zietsman, 1978). 

Oxygen can be eliminated by wilting the plant material to the recommended DM for the 

specific crop – maize silage at 35% DM, alfalfa at 35-45% DM, grasses at 35-45% DM and small 

grains at 30 to 40% DM (Kung, 1998),  chopping forage to a correct length (about 9.5 to 12.7  mm 

(Kung, 1998),  quick packing and good compacting,  even distribution of forage in the storage 

structure, and immediate sealing of the silo (Kung, 2001). 

 

 

2.4.2 Silage fermentation 
 

This is the anaerobic phase during which organic compounds and sugars are broken down to short-

chain volatile fatty acids, mainly lactic acid, butyric acid and acetic acid.  Lactic acid bacteria use 

WSC to produce lactic acid which is the primary acid responsible for decreasing the pH in silage.  
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A quick decrease in pH value will help to limit the breakdown of protein in the bunker by 

inactivating plant proteases and inhibiting the growth of undesirable anaerobic micro-organisms 

such as enterobacteria and clostridia (Kung, 2001). 

Good silage will remain stable and will not change in composition or heat once the air is 

eliminated and it has achieved a low pH.  However, the primary micro-organisms that cause 

aerobic spoilage and heating are yeasts and not moulds.  When yeasts are exposed to oxygen, they 

metabolize lactic acid and this causes the pH of silage to increase hence allowing other bacteria to 

grow and further spoil the mass.  Figure 2.3 is an illustration of the silage fermentation process.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 The three major events that make good silage and factors that can affect the silage 

fermentation process (Kung, 2001). 
 
 

Undesirable bacteria (clostridia) tend to thrive in wet silage and can result in excessive protein 

degradation, DM losses and production of toxins.  One more fact that may affect the ensiling 

process is the amount of WSC present for good fermentation to take place. 

The biochemistry processes are shown in Table 2.3.  Table 2.4 shows the end-products of 

silage fermentation while Table 2.5 illustrates variations in the amount of end-productions.  
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Table 2.3    Fermentation pathways in ensilage (McDonald et al., 2002). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lactic acid bacteria 
 
Homofermentative: 
     Glucose →2 Lactic acid 
     Fructose → 2 Lactic acid 
     Pentose → Lactic acid + Acetic acid 
 
Heterofermentative: 
Glucose → Lactic acid + Ethanol + CO2 
     3 Fructose → Lactic acid + 2 Mannitol + Acetic acid + 
CO2 
     Pentose →Lactic acid + Acetic acid 
 
Clostridia 
 
Saccharolytic: 
      2 Lactic acid → Butyric acid + 2 CO2 + 2 H2 
 
Proteolytic 
      Deamination 
      Glutamic acid → Acetic acid + Pyruvic acid + NH3 
      Lysine → Acetic acid + Butyric acid + 2 NH3 
 
Decarboxylation 
     Arginine → Putrescine + CO2  
     Glutamic acid → γ ~ Aminobutyric acid + CO2 
     Histidine → Histamine + CO2 
     Lysine → Cadaverine + CO2 
 
Oxidation/ reduction (Stickland) 
     Alanine + 2 Glycine → 3 Acetic acid + 3 NH3 + CO2 
 
Enterobacteria 
     Glucose → Acetic acid + Ethanol + 2 CO2 + 2H2 
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Table 2.4    Common end-products of silage fermentation (McDonald et al., 1991). 

 
 

Table 2.5    Amounts of common fermentation end-products in various silages   (McDonald et al., 
1991). 

Item  Positive or Negative  Actions 
                
      
pH  +  Low pH inhibits bacterial activity. 
     
Lactic acid  +  Inhibits bacterial activity by lowering pH. 
      
Acetic acid  -  Associated with undesirable fermentations. 

  +  
Inhibits yeasts responsible for aerobic 
spoilage. 

         

Butyric acid  -  
Associated with protein degradation, toxin 
formation, and large losses of DM 

     and energy. 
         

Ethanol  -  
Indicator of undesirable yeast fermentation and  
high DM losses 

      

Ammonia  -  
High levels indicate excessive protein 
breakdown 

      

Acid Detergent  -  
High levels indicate heat-damaged protein and 
low energy content. 

Insoluble Nitrogen      
(ADIN)         

Item Alfalfa Silage Alfalfa Silage Grass Silage Maize Silage High Moisture Maize 
  30-35% DM 45-55% DM 25-35% DM 35-40% DM 70-73% DM 
      
pH 4.3 - 4.5 4.7 - 5.0 4.3 - 4.7 3.7 - 4.2 4.0 - 4.5 
      
Lactic acid % 7 – 8 2 – 4 6 - 10 4 – 7 0.5 - 2.0 
      
Acetic acid % 2 – 3 0.5 - 2.0 1 - 3 1 – 3 < 0.5 
      
Propionic acid 
% < 0.5 < 0.1 < 0.1 < 0.1 < 0.1 
      
Butyric acid % < 0.5 0 < 0.5 0 0 
   
Ethanol % 0.5 - 1.0 0.5 0.5 - 1.0 1 – 3 0.2 - 2.0 
      
Ammonia-N, 10 – 15 <12 8 - 12 5 – 7 < 10 
% of CP      
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2.5 Micro-organisms 
 

2.5.1 Lactic acid bacteria 

 

Lactic acid bacteria are crucial for good and stable silage production.  There are several types of 

lactic acid producing bacteria; these are shown in Table 2.6.  Lactic acid bacteria can be classified 

according to two different types, namely homofermentative and heterofermentative.  These differ in 

their products of fermentation and their efficiency as producers of lactate.  Even though LAB seem 

to coexist with plants, their role on the plant surface is still unknown (McDonald et al., 1991). 

 
Table 2.6 Some lactic acid bacteria of importance during ensiling (Adapted from McDonald et 

al., 1991). 

Genus Glucose fermentation Morphology
 

Species 
       
Lactobacillus Homofermentative Rod L. acidophilus 
     L. casei  
     L. coryniformis 
     L. curvatus 
     L. plantarum 
     L. salivarius 
       
 Heterofermentative Rod L. brevis  
     L. buchneri 
     L. fermentum 
     L. viridescens 
       
Pediococcus Homofermentative Coccus P. acidilactici 
     P. damnosus 
     (cerevisiae) 
     P. pentosaceus 
       
Enterococcus Homofermentative Coccus E. faecalis 
     E. faecium 
       
Lactococcus Homofermentative Coccus L. Lactis  
       
Streptococcus Homofermentative Coccus S. bovis  
       
Leuconostoc Heterofermentative Coccus L. mesenteroides 
              

*About 15 to 20% of the total lactic acid is the L (+) isomer. 



 18 

 

2.5.2 Clostridia 

 

Clostridia (Clostridium butyricum and Clostridium tyrobutyricum) bacteria are found on forage.  

These bacteria use forage carbohydrates, proteins and lactic acid as their energy source and ferment 

it to butyric acid resulting in a rise of pH.  Butyric acid is an indicator of rotten or putrefied silage.   

 
2 Lactate + ADP + Pi → Butyrate + 2 CO2 + 2 H2 + ATP + H2O  
(Wilkinson, 2005) 

 

Clostridia bacteria are promoted in situations where there are insufficient forage carbohydrate 

levels (for instance when it rains while the forage is wilting) or an extended respiration period due 

to poor packing and seepage as a result of extreme forage moisture (Wilkinson, 2005).  High 

humidity during wilting and poor silage packing promotes Clostridia growth. 

 
Table 2.7    Clostridia of importance during ensiling (McDonald et al., 1991). 

Lactate fermenters 
Amino acid 
fermenters Others 

     
C. butyricum C. bifermentans C. perfringens 
C. paraputrificum C. sporogenes C. sphenoides 
C. tyrobutyricum    
          

 

2.5.3 Yeasts and moulds 

 

Yeasts are present in silages, and although relatively inactive during ensilage, can become very 

dynamic under aerobic conditions, following the opening of the silo or removal of the silage 

(Wilkinson, 2005). 
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Table 2.8    Yeasts found during ensiling (McDonald et al., 1991). 

  Fermentation Assimilation Crop 
  Glucose sugars DL - lactate   
     
Candida     
    Albican + (M) +/- Grass 
   Bimundalis (+)  + Grass 
   Famata +/-  + Maize 
   Holmii + (S,G) +/- Maize 
   Krusei +  + Grass/maize 
   Lambica +  + Grass/maize 
  Melinii -  + Grass/maize 
  Silivicola + (G) - lucerne/wheat
          

 

2.5.4 Fermentation of proteins 

 

Rapid proteolysis takes place after harvesting the crop.  After a few days of wilting the protein 

content could decline as much as 50%.  The amount of protein degradation varies depending on 

plant species, DM content and temperature.  When the material is ensiled, proteolysis is prolonged 

but the activity declines as the pH value lowers.  Products of proteolysis are amino acids and 

peptides of different chain lengths.  Additional breakdown of amino acid occurs as a result of plant 

enzyme activity, but this is considered to be limited (McDonald et al., 2002). 

 

2.6 Silage additives  

 

Additives are important in enhancing fermentation of silage material.  They promote growth of 

lactic acid producing bacteria (Lactobacilli) and ultimately reduce DM losses during storage and 

improve the feeding value of silage (Bolsen & Heidker, 1985).  The effects of additives vary 

depending on the type of additive and the crop-specific nature thereof.  However, good 

management of the ensiling process is crucial in quality control.  

The concept of adding a microbial inoculant to silage was to add fast growing LAB in order 

to dominate the fermentation process resulting in higher quality and palatable silage.  Some of the 
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familiar homolactic acid bacteria used in silage inoculants include the following species: L. 

plantarum, Lactobacillus acidophilus, P. acidilactici, Pediococcus pentacaceus and E. faecium.  

Most of the time microbial inoculants contain one or more of these bacteria mentioned above and 

have been selected for their ability to dominate fermentation.  The motivation for multiple 

organisms comes from the potential of synergistic actions, such as the faster growth rate in 

Enterococcus > Pediococcus > Lactobacillus.  Another illustration is that Pediococcus strains are 

more tolerant of high DM conditions than are Lactobacillus and have a wider range of optimal 

temperature and pH for the growth.  Frequent and experimental microbes that have been studied as 

silage inoculants are listed in Table 2.9 (Kung, 2001). 

 
 

Table 2.9 Some of the more common bacteria used as silage inoculants and some reasons for 
their use (Kung, 2001). 

Organisms Type of organism General Reasons for Addition 
Primary End-

products 
       
Lactobacillus plantarum Lactic acid bacteria -rapid production of lactic acid Lactic acid 
 Homolactic relatively acid tolerant  
     
Pediococcus Lactic acid bacteria -rapid production of lactic acid Lactic acid 
    acidilactici, cerevisae Homolactic -faster growing than Lactobacillus  
  -some strains show good growth    
    at  cooler temperatures   
  -some strains have good osmotolerance   
     
Enterococcus faecium Lactic acid bacteria -rapid production of lactic acid Lactic acid 
 Homolactic -faster growing than Lactobacillus   
       

Propionibacterium Propionibacteria -production of antifungal compounds 
Propionic and acetic 
acids 

    shermanii, jensenii   
CO2 
 

                        

Lactobacillus buchneri Lactic acid bacteria -production of antifungal compounds 
Lactic and acetic 
acids 

 Heterolactic  Propanediol 
      CO2 
  

Lalsil® Cereal contains both L. buchneri and P. acidilactici, promoting beter fermentation.  Silage 

additives are normally classified in five different categories.  The first two categories of Table 2.10, 

namely fermentation stimulants and fermentation inhibitors, are concerned with fermentation 

control and act either by encouraging lactic acid fermentation or by inhibiting microbial growth 
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partially or completely.  The third group’s aim is mainly to control the deterioration of silage upon 

exposure of oxygen.  The nutrients category is added to crops at the time of ensiling in order to 

improve the nutritional value of the silage.  The second last group (absorbents) is added to low DM 

crops to reduce loss of nutrients and pollution of water courses by runoff (McDonald et al., 1991) 

 

Table 2.10 Classification of silage additives (McDonald et al.,1991). 

*Most substances listed under carbohydrate sources can also be listed under nutrients. 
 
 

According to Weinberg et al. (2007) inoculants are used as silage additives to help with 

preservation efficiency and because they utilize WSC efficiently.   

 

2.6.1 Silage additives on the market in South Africa 

 

In South Africa the two main companies selling additives are Alltech (Pty) Ltd and Vitam 

International.  Some of Vitam International's products are Lalsil Fresh, Lalsil Dry and Lalsil Cana.  

Fermentation    Fermentation   Aerobic   Nutrients*   Absorbents 

stimulants  inhibitors  deterioration     

               inhibitors     
             

Bacterial  Carbohydrate  Acids  Others       

Cultures  sources*                     
             

Lactic acid  Glucose  Mineral acids Formaldehyde Lactic acid  Urea  Barley 

Bacteria  Sucrose  Formic acid Paraformaldehyde    bacteria  Ammonia  Straw 

  Molasses  Acetic acid Glutaraldehyde Propionic acid  Biuret  Sugar beet 

  Cereals  Lactic acid  Sodium nitrite Caproic acid  Minerals      pulp 

  Whey  Benzoic acid  Sulphur dioxide Sorbic acid    Polymers 

  Beet pulp  Acrylic acid Sodium metabisulphite Pimaricin    Bentonite 

  Citrus pulp  Glycollic acid Ammonium bisulphate Ammonia     

  Potatoes  Sulphamic acid Sodium Chloride      

  Cell Wall  Citric acid  Antibiotics      

    degrading  Sorbic acid  Carbon dioxide      

    enzymes    Carbon bisulphide      

      Hexamethylenetetramine      

      Bronopol       

      Sodium hydroxide      
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Alltech has one inoculant on the market in South Africa namely Sill-All 4X4.  These companies 

sell their products directly to users.   

 

2.7 Impact of additives on animal production 
 

2.7.1 Silage in dairy cattle production 

 

The effectiveness of silage inoculants and preservation have been assessed through measurement of 

feed intake, live weight gain, feed efficiency and milk production.  The outcomes varied however, 

with some notable improvements observed in some studies. Improvements of these parameters 

ranged from 5 to 11% (Muck, 1993; Kung et al., 2003).  In many cases where an inoculant was 

used, the idea was to have an expected effect on animal performance, but in some case studies it did 

not have a significant effect (Weinberg et al., 2007).  

In South Africa a study was done to determine the effect of adding an enzyme containing 

lactic acid bacterial inoculant to big round bale silage on intake, milk production and the milk 

composition of Jersey cows.  The outcome was that milk production of cows fed inoculated silage 

was higher than the cows receiving the control silage.  DM intakes were 4.5% and 4.9% of live 

weight for the control and inoculated silage diets.  The adding of the inoculant had a lowering 

effect on the milk urea nitrogen (MUN) content of the milk produced (Meeske et al., 2002). 

According to Gordon (1989) and Kung et al. (1993), small cereal grain crops and alfalfa 

have responded well to a microbial inoculant with homofermentative LAB.  Maize with high 

moisture content has also been improved with homofermentative LAB.  However, 

homofermentative LAB microbial inoculation of maize silage has resulted in less reliable results.  

For example, of 14 published (peer-reviewed) studies in North America where maize silage was 

treated with homofermentative LAB, improvements in animal performance were found in only 

three instances and changes in fermentation end-products were small (Kung, 2001).   
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Bolsen et al. (1992) reported on 19 surveys carried out at the University of Kansas State 

where maize silage inoculated with homofermentative LAB had 1.3% unit higher DM recovery, 

supported 1.8% more efficient gain and produced 1.6 kg more gain per ton of crop ensiled with 

beef cattle.  In some case studies (Gordon, 1989; Kung et al., 1993), increased animal responses 

have been observed with inoculation, even though there was little effect on the end-products of 

fermentation. 

 

2.8 Conclusion 

 

Forage conservation by ensiling ensures feed availability during periods when supply of good 

quality forage is low (McDonald et al, 1991).  Cereal-based silages represent a significant 

proportion of feed consumed by ruminant animals, particularly high production dairy cattle in 

South Africa.   

The above review therefore points to a need for continued evaluation of silage inoculants.  

The environment, crops and microbes are constantly changing due to internal and external 

pressures.  Hence the aim of the present study was to determine the effect of a new silage inoculant, 

Lalsil® Cereal on the fermentation dynamics, aerobic stability and nutritional value of whole-crop 

oat silage grown in a Mediterranean climate.  



 24 

 

References 

 

Apolant, S.M. & Chestnutt, D.M.B., 1985.  The effect of mechanical treatment of silage on intake 

and animal performance. Animal Production, 40: 287-296. 

 

Barnes, F.B., Miller, D.A. & Nelson, C.J., 1995. Forages, volume 1: An introduction to grassland 

agriculture. Fifth edition. Iowa State University Press, Ames, Iowa, USA. 

 

Boeke, E.N., Bartholowmew, P.E., Macdonald, C.I. & Du Plessis T.M., 1991. Pastures in 

KwaZulu-Natal, Pasture Utilisation.  Natal Pastures 3, 11. 

 

Bolsen, K.K.& Heidker, J.I., 1985.  Silage additives USA. Chalcombe Publications. 

 

Bolsen, K. K., R. N. Sonon, B. Dalke, R. Pope, J. G. Riley & A. Laytimi. 1992.  Evaluation of 

inoculant and NPN silage additives.  A summary of 26 trials and 65 farm-scale silages. Rept. 

of Prog. Kansas State Univ. 

 

Downing, T.W., Buyseriem, A., Gamroth, M. & French, P., 2008. Effect of water soluble 

carbohydrates on fermentation: Characteristics of ensiled perennial ryegrass. 

 

ED d’H d’ Yvoy & Meeske, R., 1999. Fermentasieprosesse tydens inkuiling. Kuilvoer handleiding, 

saamgestel deur die Kuilvoerbelangegroep, Elsenburg. 

 

Engelbrecht, A.M., 1999. Kuilvoer en beplanning by die maak van kuilvoer, Kuilvoer Handleiding, 

Kuilvoerbelangegrope, Elsenburg. 

 



 25 

 

Gordon, F. J. 1989. A further study on the evaluation through lactating cattle of a bacterial inoculant as 

an additive for grass silage. Grass and Forage Sci. 44:353. 

 

Jonsson, A., 1991. Growth of Clostridium tyrobutyricum during fermentation and aerobic 

deterioration of grass silage. J. Sci. Food Agric., 54, 557-568. 

 

Kung, L., 1998. A review on silage additives and enzymes. 59th Minneapolis Nutrition Conference, 

Minneapolis, MN. 

 

Kung, L., Jr., J. H. Chen, E. M. Creck, and K. Knusten. 1993. Effect of microbial inoculants on the 

nutritive value of corn silage for lactating dairy cows. J. Dairy Sci. 76:3763–3770 

 

Kung, L., 2001. Silage fermentation and additives.  Direct-fed Microbial, Enzyme & Forage 

Additive Compendium, Miller Publishing Co., Minnetonka, MN. 

 

Kung, Jr., L.M., Stokes, M.R. & Lin, C.J., 2003. Silage additives. In: Silage Science and 

Technology. Buxton, D.R., Muck, R.E. & Harrison, J.H. (Eds.) Am. Soc. Agron., Madison, 

WI, pp 305-360. 

 

McCullough, M. E., 1978. Fermentation of Silage – A Review. Editor: McCullough, M.E., NFIA.  

West Des Moines, Iowa. 

 

McDonald, P., 1976. Trends in silage making.  In: Microbiology in Agriculture, Fisheries and Food 

Academic Press, London. 

 



 26 

 

McDonald, P., Henderson, A.R., & Heron, S.J.E., 1991. The biochemistry of silage. Second 

edition. Chalcombe Publications, Marlow, Bucks, UK. 

 

McDonald, P., Edwards, R.A., Greenhalgh, J.F.D. & Morgan, C.A., 2002. Animal nutrition. Sixth 

edition. Pearson, Prentice Hall, England. 

 

Meeske, R., Van der Merwe, G.D., Greyling, J.F. & Cruywagen, C.W., 2002. The effect of adding 

an enzyme containing lactic acid bacterial inoculant to big round bale oat silage on intake, 

milk production and milk composition of Jersey cows. Anim. Feed Sci. Technol., 97, 159-

167. 

 

Muck, R.E. 1993. The role of silage additives in making high quality silage. In: Silage Production 

from Seed to Animal. NRAES-67. Northeast Reg. Agric. Eng. Serv., Syracuse, NY, pp 106-

116. 

 

Ranjit, N.K., Taylor, C.C., & Kung, L. 2002. Grass and Forage Science; 7, 33-81. 

 

Staples, R.C., 2003. Corn silage for dairy cows. DS21, Animal Science Department, Florida 

Cooperative Extension Service, Institute of Food and Agricultural. 

 

Weinberg, Z. G., Shatz, O., Chen, Y., Yosef, E., Nikbahat, M., Ben-Ghedalia, D. & Miron, J., 

2007. Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn 

silages. J. Dairy Sci., 90, 4754-4762. 

 

Wilkins, R.J., Syrjala-Qvist, L. & Bolsen, K.K., 1999. The future role of silage in sustainable 

animal production. In: Proceedings of the 12th International Silage Conference held from 5 



 27 

 

July to 7 July at Uppsala, Sweden. T Pauly and conference scientific committee (Eds.) 

Swedish University of Agricultural Sciences, 23-40. 

 

Wilkinson, J.M., 2005. Silage. Chalcombe Publications, Lincoln, UK. 

 

Zietsman, P. L., 1978.  'n Ondersoek na die voedingswaarde van hawer as kuilvoer of hooi.  MSc 

(Agric) tesis, Universiteit van Stellenbosch, Suid-Afrika. 



 28 

 

CHAPTER 3 
 

CHEMICAL COMPOSITION, STABILITY AND DEGRADABILITY OF 

WHOLE-CROP OAT SILAGE INOCULATED WITH A COMMERCIAL 

INOCULANT AND ENSILED IN MICRO-SILOS 
 

ABSTRACT 

A study was done to determine the effects of inoculating whole-crop oat silage with Lalsil® Cereal 

Lactobacilli (Lactobacillus buchneri (NCIMB 40788) and Pediococcus acidilactici (CNCM MA 

18/5M)) LAB on silage fermentation, aerobic stability and  nutritional value under micro-silo 

conditions.  Dry matter (DM), organic matter (OM), neutral detergent fibre (NDF), crude protein 

(CP), lactic acid levels, pH, water soluble carbohydrates (WSC) and in vitro organic matter 

degradability (IVOMD) of silage were determined at 0,60 and 102 days of fermentation.  A portion 

of the silage was exposed to air for 10 days after 60 days of ensiling and a second portion was 

exposed after 102 days of ensiling to determine aerobic stability of silage.  

At harvesting (day 0) the forage had an average CP content of 9.7%, NDF of 58.2%, DM of 

42.9%, pH 6, lactic acid 0.27% and IVOMD of about 54.2%.  At day 60 there was a sharp decline 

in pH from 6 (day 0) to 3.7.  Water soluble carbohydrates were higher in the inoculated silage 

6.95% compared to 2.28% in the control batch whilst lactic acid was higher in tthe control 7.21% 

than that of the treated silage 6.14%.  After 102 days of fermentation the WSC declined sharply, 

but still remained higher than the inoculant-treated silage.  The levels of ammonia nitrogen (% of 

total nitrogen) in the oat silage were low (≈ 3.4%).   

During the aerobic phase (60 to 70 days) WSC of untreated silage was almost consumed, 

but remained significant (P<0.01) in the treated silage.  During the aerobic phase of 102-112 days 

lactic acid levels declined sharply; WSC in treated silage decreased by 40% and CO2 levels were 

higher compared to the control.  It is concluded that the inoculant Lalsil® Cereal had the effect of 

reducing the rate of consumption of WSC during the anaerobic phase and aerobic exposure. Silage 
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spoilage due to yeasts and moulds was however more evident with the inoculated silage due the 

presence of sugars.  Silage spoilage due to yeasts and moulds was however more evident with the 

inoculated silage due to the presence of sugars. 

 

3.1 Introduction 

 

There is a high level of oat production in the Western Cape region of South Africa that could be 

utilised for silage.  However, large variations in weather conditions and fluctuating wet and dry 

conditions are conducive to silage deterioration due to mould contamination and yeasts (Wyss & 

Jans, 1993).  Over the past years several additives have been developed to promote and stabilize the 

fermentation of ensiled crops.  Nevertheless, efficiency of inoculants is affected by levels of 

microflora present on the crop at the time of ensiling.  If the number of LAB present on a crop 

before ensiling is low, fermentation of WSC may be poor, resulting in poor silage (Meeske et al., 

2002). 

Inoculants, such as Lalsil® Cereal that contain L. buchneri and P.  acidilactici, are still 

being evaluated for use on cereal crops and other forages in both bunkers and micro-silos.  Micro-

silos are a more practical method of assessing silage fermentation kinetics (Cherney et al., 2006) as 

fermentation occurs under more controlled conditions. 

The aim of this study was therefore to determine the effects of Lalsil® Cereal, an inoculant 

containing L. buchneri (NCIMB 40788) and P. acidilactici (CNCM MA 18/5M) LAB, on  

(1) fermentation of whole-crop oats (in micro-silos 1.5 L glass jars),  

(2) aerobic stability and  

(3) nutritional value of the silage. 
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3.2 Materials and methods 

 

Study Site 

The study to evaluate the effect of fermentation, stability and digestibility of whole-crop oat silage 

inoculated with Lalsil® Cereal was conducted at Elsenburg (33º 50´ 32.51"S, 18º 49´ 51.56"E) and 

Stellenbosch University (33º 55´ 53.62"S, 18º 52´ 03.39"E, Western Cape, South Africa. 

 

3.2.1 Cropping and harvesting 

 

Oats (Avena sativa, cv SSH 405) were planted on 30 May 2006 on 60 ha under dryland conditions 

at Elsenburg (33°51,485′ S, 018° 50,188′ E) in the Western Cape province of South Africa.  Soil 

pH was 5.9; calcium (Ca) 2.7 cmol(+)/kg, magnesium (Mg) 0.2 cmol(+)/kg and potassium (K) 37.0 

mg/kg.  At planting 200 kg of fertilizer (15% nitrogen (N), 10% phosphorus (P) and 5% potassium 

(K) were applied per hectare.  Oats were planted with a 3 m Piket planter at 120 kg/ha.  Thirty days 

after planting a top dressing of fertilizer (18% N and 18% K) was applied at 200 kg/ha and after 60 

days potassium ammonia nitrogen (28%) was applied at 100 kg/ha.  At 123 days the crop was 

harvested at soft dough stage and length of the chopped material was 9 mm. 

 

3.2.2 Silage preparation - ensiling whole-crop oats 

 

At day 0 (day of ensiling) 60 kg of fresh chopped material was collected and thoroughly mixed on 

a sterile plastic sheet (sterilized with ethanol).  The material was divided in two portions of 30 kg 

each, which were randomly allocated to either the control or the inoculant treatment.  The 

inoculant, Lalsil® Cereal containing L. buchneri (NCIMB 40788) and P. acidilactici (CNCM MA 

18/5M), was sprayed onto one batch (30 kg of chop) to provide about 5.79 x 109 colony forming 
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units (CFU) of LAB per gram of fresh material.  After the inoculation, the silage was mixed 

thoroughly for ensiling in micro-silos (1.5 L glass jars) (WECK, GmbH u. Co., Wehr-Oflingen, W. 

Germany). 

Forty-eight micro-silos were randomly divided into two groups (control and inoculant).  

Approximately 670 g of the chopped material was ensiled in each of the 24 glass jars for each 

treatment.  All the jars were stored at ambient temperature in a dark room provided for light-

sensitive microbes. 

 

3.2.3 Sample collection 

 

Three micro-silos were opened for each treatment on days 1, 2, 4, 8, 15, 30, 60 and 102 post-

ensiling.  At these days gaseous losses were also determined by weighing the jars before and after 

removing the lid.  Samples were also collected for chemical analysis.  A portion (± 200 g) from 

each sample was vacuum-packed and frozen at -20 °C pending analysis for lactic acid, WSC, 

volatile fatty acids (VFA) and ammonia nitrogen.  Another portion (± 180 g) was dried in a 

conventional oven at 60 °C for 72 hours and milled through a 1 mm screen using a hammer mill 

(Scientific RSA, Hammer mill, Ser No 372), pending chemical analyses for IVOMD, NDF, CP and 

OM.  A third portion (± 25 g) was oven-dried at 100 °C for 48 hours to determine DM. 

 

3.2.4 Aerobic stability 

 

Determination of aerobic stability was done according to the method describe by Ashbell et al. 

(1991).  After 60 and 102 days, temperature changes and CO2 production in silage were monitored 

using a data logger system (MCS 120) over a period of 10 days.  Silage (± 280 g) was loosely 

placed in the upper part of a system and a temperature sensor was placed in the material.  The 

system consisted of two parts.  An upper part, which was made out of a 2 L polyethylene 
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terephthalate bottle and a lower part made out of a honey jar.  Three holes, 1 cm in diameter were 

drilled in the bottom of bottle (2 L polyethylene terephthalate bottle) and another hole was drilled 

through the cap of the bottle.  The latter was covered with nets to ensure that silage would not fall 

out of the bottle.  The base of the bottle was cut and served as a lid.  The hole through the cap 

enabled air circulation.  The lower part of the unit was filled with 150 ml of 20% potassium 

hydroxide (KOH) to absorb CO2.  After 5 days the 20% KOH solution was changed with a new 

refill.  The solution 20% KOH was titrated with 1 N HCl to expel the CO2.  The amount of CO2 

(g/kg DM) released was calculated according to Ashbell et al. (1991) as shown in the equation 

below:  

CO2 (g/kg DM) = ( ) ( )[ ]100/%/1001044.0 DMFmAVT ××××××  
where: 

T = volume (ml) of 1 N HCl used in titration (ml) 
V = total volume (ml) of 20% KOH (ml) 
A = volume (ml) of KOH used in determination (ml) 
Fm = mass (kg) of fresh material (kg) 
DM = fraction of dry matter 
 

3.2.5 Chemical analysis 

 

Determination of dry matter was done according the method of AOAC International (2002), AOAC 

Official method number 934.01.  About 180 g material was dried in a conventional oven at 60 °C 

for 72 hours and milled through a 1 mm screen using a hammer mill (Scientific RSA, Hammer 

Mill, Ser No 372).  A second portion ± 25 g was oven-dried at 100 °C for 48 hours to determine 

DM.  Determination of organic matter was done according to AOAC International (2002), AOAC 

Official Method 942.05.  Approximately 2 g of dry sample was placed in a crucible and incinerated 

for 6 hours with a muffle furnace at 500 °C.  Crude protein was analyzed using a Dumas-type 

nitrogen analyzer (Leco FP-528, Leco Corporation, St. Joseph, MI).  This is based on the method of 

AOAC International (2002), Official Method 968.06.  About 0.1 g dried sample was used.  Neutral 

detergent fibre was determined according to the method of Van Soest et al. (1991).  Determination 
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of NDF was done with Ankom 220 Fibre Analyzer (Ankom Technologies, Fairport, NY).  Heat 

stable α-amylase was used in the analysis and 20 g sodium-sulphite was added to each batch of 

samples. 

 

3.2.6 Lactic acid determination 

 

Lactic acid was determined according to the colorimetric method of Pryce (1969), which is a 

modification of the Barker & Summerson (1941) method for the determination of lactic acid.  

Lactic acid was determined in a 20 ml diluted solution.  The dilute was prepared as follows: 50 g 

frozen silage diluted with 250 ml distilled water.  This mixture was shaken by hand for about 3 

minutes and stored in a fridge (5 °C) for up to 24 hours.  During the cooling period, the mixture 

was shaken twice for about 3 minutes.  After cooling down, the diluent was filtrated through 

Whatman no 4 paper to remove the plant matter.  The supernatant was transferred to bottles and 

kept refrigerated until the samples were sent to the Agricultural Research Council  at Irene, Pretoria 

for lactic analysis. 

 

3.2.7 Water soluble carbohydrates 

 

Water soluble carbohydrates were determined based on the phenol-sulphuric acid method of 

Dubois et al. (1956).  The WSC were determined on 40 g of frozen sample diluted with 360 ml of 

distilled water which was homogenized for 4 minutes with a bamix and filtrated through a 

Whatman no 1 to remove the plant material.  The pH of the supernatant was measured using a pH 

measurer. 

A 1 ml supernatant was diluted with 9 ml distilled water (solution A).  Exactly 1 ml of 

solution A was pipetted and diluted with 9 ml distilled water (solution B), giving a 1:1000 solution.  

One ml of solution B was placed in a test-tube as well as 1 ml distilled water in another test-tube, 

which served as the blank.  Phenol (80%) 0.15 ml was pipetted to the 1 ml of solution B and 
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vortexed 10 seconds.  A 5 ml sulphuric acid 98% (H2SO4) was placed in the middle of the latter 

solution and vortexed another 10 seconds. It was read on the spectrophotometer after a waiting 

period of 30 minutes.  The amount of WSC was determined by referring to a standard curve which 

was constructed for the particular sugar under examination.   

 

3.2.8 Volatile fatty acids 

 

Volatile fatty acids were determined at Nutrilab, University of Pretoria, South Africa, using a Gas 

Chromatograph (Varian 3300 FID Detector Gas Chromatograph, Varian Associates, Inc. 1985, 

United States of America, Column: CP Wax 58 (FFAP)CB Cat no 7654 25 m, 0.53 mm, 2.0 µm) 

according to the method of Webb et al. (1994) and Suzuki & Lund (1980).  About 50 g of sample 

was used and diluted with 200 ml distilled water.  This mixture was shaken on a horizontal shaker 

at 180 rpm for 6 hours and filtrated through four layers of cheesecloth to remove the plant matter.  

The supernatant was transferred to bottles and centrifuged at 4500 rpm for 20 minutes in a cooled 

chamber and filtrated through a Cameo 30 (0.45 µm) filter.  About 1 µl sample was injected into 

the gas chromatograph and the standard was repeatedly injected until consecutive results were 

comparable.  The following conditions were maintained for the gas chromatograph: 

Initial column temperature 50 °C; initial column hold time 2.00 °C; final column temp 190 

°C; column rate in °/min 15; end time 16.33 min; injector temperature 250 ºC; detector temperature 

260 ºC. 

 

 

3.2.9 Ammonia nitrogen 

 

Ammonia nitrogen (NH3-N) of silage was determined by homogenizing 50 g of silage in 250 ml of 

0.1 N H2SO4 solution for three minutes with a bamix.  The homogenate was filtrated through a 

Whatman no 4 filter paper.  The ammonia content in the filtrate was determined by distillation 
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using a Buchi 342 apparatus and a Metröhm 655 Dosimat with an E526 titrator in accordance with 

Pearson & Muslemuddin (1968). 

 

3.2.10 Yeasts and moulds 

 

The number of CFU of yeast and moulds were done by the Department of Microbiology, 

Stellenbosch University.  About 40 g silage was used and diluted with 360 ml distilled water per 

sample.  This is a 1:10 dilution.  The dilution was spread out on three different agars namely: yeast 

morphological media, 1/2 potato dextrose agar and potato dextrose agar.  After 10 days the yeast 

and moulds were counted. 

 

3.2.11 In vitro degradability  

 

In vitro degradability was done according the method of Van Soest & Robertson (1985).  Dried 

silage samples that were milled through a 1 mm screen (Scientific RSA, Hammer mill, Ser No 372) 

were weighed into F57 Ankom bags.  About 0.5 g of material was weighed into each bag and heat-

sealed.   

A medium containing distilled water, macro-mineral solution, buffer solution, tryptose, 

micro-mineral solution and rezasurin was prepared and warmed to about 39 °C in a water bath.  

Reducing solution containing distilled water, potassium hydroxide pellets, cysteine-HCL and 

sodium sulphite nonahydrate was prepared prior to rumen fluid collection.   

Rumen fluid was collected in the morning (09:30 am) from two cannulated Holstein cows 

that were fed a diet of oat hay, lucerne, wheat straw and 19% protein concentrate mixture twice a 

day in the morning at 07:30 am and in the afternoon at 17:00 pm.  Rumen fluid was collected and 

squeezed through two layers of pre-warmed cheese cloth into warmed 39 °C thermo flasks.  Rumen 

fluid pH was measured before and after blending was done at low speed for 15-20 seconds.  
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Blended rumen fluid was strained twice through two layers of pre-warmed cheese cloth into a 

thermos flask while gassing with CO2. 

About 1 076 ml of medium (macro-minerals + buffer + micro-mineral + rezasurin) and 54 

ml reducing solution were transferred into each incubation vessel while 

 gassing with CO2 and placed in an incubator (Daisy II, Ankom technology, Fairport, New York) 

set at 39 °C.  When the medium was fully reduced (cleared), about 270 ml of rumen fluid was 

added to each incubation vessel and CO2 was used maintaining anaerobic conditions.  Samples 

were added into each vessel.  The incubation period was 48 hours.  Afterwards incubation samples 

were rinsed in cold water and air-dried.  NDF analysis (Van Soest et al., 1991) was done on air-

dried samples; the samples were subsequently ashed in a muffle furnace at 500 °C for 6 hours to 

determine ash content. 

 

3.3 Experimental design 

 

The experiment was a complete randomized design with one treatment: Inoculant Lalsil® Cereal 

(LAB) was the only factor.  Material for ensiling was divided into two groups and one group was 

randomly selected for treatment with Lalsil® Cereal.  No inoculant was added to the control crop. 

 

3.4 Statistical analysis 

 

Data were analysed using a one-way ANOVA in SAS statistical software, SAS Institute, Inc. 

(1999), SAS/STAT User's Guide, Version 9, 1st printing, Volume 2. (SAS Institute Inc, SAS 

Campus Drive, Cary, North Carolina 27513.)  Difference between means was tested using GLM 

procedure Least squares means. 
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3.5 Results and discussion 

 
Aerobic Phase 

3.5.1 Chemical composition of harvested whole-crop oats at day 0 

 

The chemical composition, pH levels and IVOMD of whole-crop oats harvested for silage are 

presented in Table 3.1.   

 
Table 3.1 Chemical profile and degradability of whole-crop oats at the start of fermentation 

(day 0). 
  Day 0 

 Control Inoculant SEM P-Value 
Descriptive parameters     
     
Dry matter (g/kg)   429.0      429.0 1.90 0.853 
Organic matter (g/kg DM)   960.0      959.0 0.90 0.738 
aNDFom (g/kg DM)   578.0      586.0 4.60 0.248 
Crude Protein (g/kg DM)     99.0        95.0 2.00 0.241 
     
Fermentation and degradability     
 
pH       5.98          6.01 0.024 0.481 
Lactic acid (% DM)       0.27          0.27 0.014 0.872 
WSC (% DM)       9.26        11.36 2.940 0.639 
In vitro organic matter degradability (%)     54.40        53.90 0.760 0.641 

SEM = Standard Error of Means; WSC = Water Soluble Carbohydrates; NDFOM = Neutral 
detergent fibre in Organic Matter* 
 

The dry matter content of harvested oats was about 43%.  Dry matter of less than 25% and pH 

lower than 4.5, would result in poor quality silage (Wilkinson, 2005).  Dry matter of 40% and an 

average pH of 5.5 are preferable at ensiling because undesirable bacteria favour more moist 

conditions in the silo.  Herbage with high DM content has low risk of spoiling (Wilkinson, 2005).  

The initial CP content of the ensiled material (control and inoculant) is above the minimum 

requirement of 7.5 % (Ørskov, 1992) which indicate there is enough protein for the microbial 

bacteria.   
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There was no significant difference between the WSC levels of the control and inoculation-

treated material. 

In vitro degradable organic matter values of oat silage were 54.4% and 53.9% respectively 

for the control and inoculated material.  Digestibility of oat silage was less than 60% comparable to 

that of mature tropical grasses such as Penisetum clandestinum.  The average IVOMD values of 

maize are 67% (Garcia-Rodriguez et al., 2005).  Maize silage is more digestible because of the high 

WSC content (McDonald et al., 1991).   

 

3.5.2 Chemical composition, fermentation and in vitro degradability at 60 days  
 
The chemical composition of oat silage ensiled in micro-silos for 60 days is given in Table 3.2. 
 
Table 3.2 Chemical profile, organic matter and degradability of Lalsil-treated silage at day 60 

of ensiling. 
  Day 60 

 Control Inoculant SEM P-Value 
Descriptive parameters     
     
Dry matter (g/kg)    429.0     424.0   1.20   0.043 
Organic matter (g/kg DM)    957.0     957.0   1.10   0.852 
aNDFom (g/kg DM)    589.0     588.0 14.90   0.980 
Crude protein (g/kg DM)    101.0     100.0   1.30   0.470 
     
Fermentation and degradability     
 
pH       3.69         3.71   0.012   0.305 
Lactic acid (% DM)       7.21         6.14   0.089 <0.01 
WSC (% DM)       2.28         6.95   0.931   0.024 
Volatile fatty acids (% DM)      1.09         1.00   0.029   0.098 
Acetic acid (% DM)      1.06         0.97   0.028   0.089 
Propionic acid (% DM)      0.02         0.03   0.002   0.116 
Ammonia nitrogen (% of total nitrogen)      3.87         3.28   0.761   0.611 
In vitro organic matter degradability (%)    52.80       53.10   0.610   0.741 

SEM = Standard Error of Means; WSC = Water Soluble Carbohydrates; NDFOM = Neutral 
detergent fibre in Organic Matter * 
 

Dry matter content was relatively unchanged over the 60 days (averaged 42.5 %).  There was a 

sharp decline in pH from 6.00 (day 0) to about 3.7 after 60 days of ensiling; although there were no 
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significant differences between treated silage and control.  There was an inverse relationship 

between lactic acid and WSC content.  Lactic acid content increased with fermentation as WSC 

were consumed by anaerobic microbes.  The WSC of Lalsil® Cereal inoculated silage were almost 

three times the amount detected in the control silage.  The Lactic acid content of treated material 

was significantly lower than the control silage.  We can conclude that the Lalsil treatment had the 

effect of reducing WSC consumption during ensiling.  There was, however, no improvement in 

vitro degradability, which supports the view that low WSC in grass silage can contribute to the 

poor efficiency with which silage-N is used by ruminants (Davies et al., 2005).  Energy in grass is 

usually in short supply thereby reducing microbial efficiency (Clark et al., 1992). 

 

3.5.3 Chemical composition, fermentation and in vitro degradability at 102 days  

The chemical composition, fermentation and in vitro degradability of oat silage ensiled in micro-

silos for 102 days are given in Table 3.3. 

 
Table 3.3 Chemical composition, volatile fatty acids, ammonia nitrogen and digestibility of 

whole-crop oats at 102 days of ensiling. 
  Day 102 

 Control Inoculant SEM P-Value 
Descriptive parameters     
     
Dry matter (g/kg)   430.0     424.0    1.40    0.034 
Organic matter (g/kg DM)   957.0     955.0    0.30    0.035 
aNDFom (g/kg DM)   595.0     586.0    1.50    0.012 
Crude protein (g/kg DM)   101.0     103.0    2.00    0.572 
     
Fermentation and degradability     
 
pH      3.67        3.74    0.011     0.013 
Lactic acid (% DM)      7.42        6.48    0.113 <0.01 
WSC (% DM)      1.62        5.44    0.342 <0.01 
Volatile fatty acids (% DM)      1.07        1.35    0.035 <0.01 
Acetic acid (% DM)      1.06        1.32    0.034 <0.01 
Propionic acid (% DM)      0.016        0.023    0.003   0.230 
Ammonia nitrogen (% of total nitrogen)      3.21        3.60    0.226   0.289 
In vitro organic matter degradability (%)    53.90      53.10    0.670   0.419 
Yeast and moulds (g DM) 999    432  302   0.255 

SEM = Standard Error of Means; WSC = Water Soluble Carbohydrates; NDFOM = Neutral 
detergent fibre in Organic Matter* 
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Although content of WSC declined from day 60 to 102, it however remained higher for the 

inoculant-treated silage.  The inoculant reduced the rate of WSC fermentation; also confirmed by 

the low levels of lactic acid  in treated silage.  This indicates the high levels of lactic acid.  The 

lactic acid production is a vital factor in inhibiting the growth of undesirable bacteria and in 

reducing fermentation losses (McDonald et al., 1991).  The levels of ammonia nitrogen (% of total 

nitrogen) in oat silage were low (≈ 3.4%) compared to that normally reported for maize silage 

(6.31%) (Borreani et al., 2007).  This may indicate that proteolysis did not occur that much in oat 

silage.  Borreani et al. (2007) reported that maize silage had an acetic acid content of 2.7%; this 

was double the amount that was observed in our silage. 

Figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 illustrate changes in WSC, pH and lactic acid contents 

of inoculated and control silages at 102 days of fermentation in micro-silos. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 The change in water soluble carbohydrates of oat silage ensiled with or without a 

lactic acid bacterial inoculant after 60 days of ensiling 
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Figure 3.2 The change in water soluble carbohydrates of oat silage ensiled with or without a 

lactic acid bacterial inoculant after 102 days of ensiling    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 The change in pH of oat silage ensiled with or without a lactic acid bacterial 

inoculant at 60 days of ensiling  
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The pH of both silages was less than 4 and were well preserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 The change in pH of oat silage ensiled with or without a lactic acid bacterial 

inoculant at 102 days of ensiling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5 The change in lactic acid of oat silage ensiled with or without a lactic acid bacterial 

inoculant at 60 days of ensiling 
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Figure 3.6 The change in lactic acid of oat silage ensiled with or without a lactic acid bacterial 

inoculant at 102 days of ensiling 
 
 
 
 
Aerobic Study 

3.5.4 Aerobic stability at 60 days 

 

The chemical composition of whole-crop oat silage exposed to aerobic conditions for ten days after 

being ensiled for 60 days is given in Table 3.4. 
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Table 3.4 Composition of whole-crop oat silage exposed to aerobic conditions during the 

period 60-70 days and organic matter and neutral detergent fibre disappearance. 
  Day 70 

 Control Inoculant SEM P-Value 
Descriptive parameters     
     
Dry matter (g/kg) 424.0    418.0 2.60   0.181 
Organic matter (g/kg DM) 954.0    956.0 0.80   0.183 
aNDFom (g/kg DM) 597.0    619.0 7.10   0.091 
     
Fermentation and degradability     
 
pH     4.09        4.56 0.365   0.415 
Lactic acid (% DM)     5.54        4.05 0.756   0.237 
WSC (% DM)     0.74        7.92 0.248 <0.01 
In vitro organic matter degradability (%)   53.30      51.70 0.420   0.056 
Carbon dioxide (g/kg DM)    6.45        3.90 2.248   0.468 

SEM = Standard Error of Means; WSC = water soluble carbohydrates; NDFOM = Neutral detergent 
fibre in Organic Matter * 
 

In vitro organic matter degradability was anomalously and significantly lower for the treated silage 

compared to the control.  The pH was 4.1 and 4.6 for control and treated silage, respectively.  Water 

soluble carbohydrates of the control silage were almost totally entirely consumed but content in the 

treated silage was significantly higher; WSC in the treated silage was 10.7 times more than the 

control. Carbon dioxide was 6.45 g/kg DM in the control and it could be an indicator of sugars 

being metabolised by aerobic microbes that yield CO2 as by-product.  This silage was unstable 

under aerobic conditions - there was an increase of pH and CO2 content and the lactic acid 

concentration dropped.  Consumption of lactate by yeast, fungi and Bacillus spp during the aerobic 

phase decrease the potential stability of silage as lactate is converted to acetate or degraded to 

butyric resulting in a pH rise (Lindgren et al., 1985, Kung Jr., 2001).  Aerobic stability is 

determined from the time the silage is exposed to aerobic conditions till the temperature of the 

silage rise by 2 ºC above the ambient temperature (Kung, Jr, 2001).   
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Figure 3.7 Changes in temperature for control and inoculated oat silage during the first 120 

hours of aerobic exposure after 60 days of ensiling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8 Changes in temperature for control and inoculated oat silage during the last 120 

hours of aerobic exposure after 60 days of ensiling. 
 
 



 46 

 

3.5.5 Aerobic stability at 102 days 

 

The chemical composition of whole-crop oat silage exposed to aerobic conditions for ten days after 

being ensiled for 102 days is given in Table 3.5. 

 
Table 3.5 Profile of whole-crop oat silage exposed to aerobic conditions for 10 days after an 

ensiling period of 102 days. 
SEM = 
Standa
rd 
Error 
of 
Means; 
WSC = 
Water 
Solubl
e 
Carboh
ydrates
; 
NDFO

M = Neutral detergent fibre in Organic Matter* 
 

The lactic acid level dropped as silage was exposed to aerobic conditions indicating a decrease in 

population of lactic acid microbes.  Water soluble carbohydrates decreased by 40% in the 

inoculated silage as sugars were metabolized for energy and CO2 production.  The inoculated silage 

had higher CO2 production due to the high content of WSC in the silage compared to the control 

group.  Inoculated silage had 5.44% WSC which declined to 3.66% after ten days of aerobic 

exposure.  The WSC in the control silage were almost consumed by 102 days of ensiling.  Yeast 

and mould counts could be suspected of the high WSC content. 

  Day 112 

 Control Inoculant SEM P-Value 
Descriptive parameters     
     
Dry matter (g/kg) 443.0 442.0  3.10 0.827 
Organic matter (g/kg DM) 955.0  956.0   0.70 0.456 
aDFom (g/kg DM) 599.0  601.0   2.80 0.739 
     
Fermentation and degradability     
pH      3.95     3.92   0.020 0.481 
Lactic acid (% DM)      5.79     5.61   0.230 0.596 
WSC (% DM)      2.73     3.66   0.430 0.206 
In vitro organic matter degradability (%)    52.40   51.70   0.410 0.263 
Carbon dioxide (g/kg DM)      5.73   17.30   7.700 0.348 

Yeast and moulds (g DM) 
     
4.3x108     2.3x109   3.5x108 0.018 
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Figure 3.9 Changes in temperature for control and inoculated oat silage during the first 120 

hours of aerobic exposure after 102 days of ensiling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.10 Changes in temperature for control and inoculated oat silage during the last 120 

hours of aerobic exposure after 102 days of ensiling. 
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3.6 Conclusion 

 

The inoculant Lalsil®Cereal reduced consumption of WSC during the anaerobic phase and aerobic 

exposure.  Silage spoilage due to yeasts and moulds was however more evident with the inoculated 

silage due to the presence of sugars.  However there was significant differences between lactic acid 

values.  There is potential for improving oat silage preservation with Lalsil® Cereal. 
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CHAPTER 4 
 

CHEMICAL COMPOSITION, STABILITY AND DEGRADABILITY OF 

WHOLE-CROP OAT SILAGE INOCULATED WITH A LACTOBACILLI-

BASED INOCULANT AND ENSILED IN A BUNKER 
 

ABSTRACT 

A study was done to determine the effects of inoculating whole-crop oat silage with Lalsil® Cereal 

Lactobacilli (Lactobacillus buchneri (NCIMB 40788) and Pediococcus acidilactici (CNCM MA 

18/5M)) LAB on silage fermentation, aerobic stability and  nutritional value of silage ensiled in a 

bunker under outdoor conditions of a Mediterranean summer.  Dry matter (DM), organic matter 

(OM), neutral detergent fibre (NDF), crude protein (CP), lactic acid levels, pH, water soluble 

carbohydrates (WSC) and in vitro organic matter degradability (IVOMD) of silage were 

determined at 0, 186 and 196 days of fermentation.  A portion of the silage was exposed to aerobic 

conditions after opening the bunker from day 186-196 to determine aerobic stability. 

At harvesting (day 0) the forage had an average crude protein content of 9.8%, NDF of 

55.2%, DM of 45.8%, pH 5.81, lactic acid 0.27% and IVOMD of 56.6%.  After 186 days of 

fermentation the WSC declined with ≈ 37%, but still remained higher for the inoculant-treated 

silage.  During the aerobic phase (186 to 196 days) WSC of untreated silage was almost consumed, 

but remained significantly higher (P<0.01) in the treated silage compared to the control batch.  

Lactic acid content of inoculum-treated silage dropped (P>0.05) from 4.49 to 4.24 and CO2 levels 

were lower compared to the control.  It is concluded that the inoculant Lalsil® Cereal had the effect 

of reducing the rate of consumption of WSC during the anaerobic phase and aerobic exposure. 
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4.1 Introduction 

 

Several additives have been developed over the past years to promote and stabilize ensiled crops.  

Efficiency of inoculants is however affected by levels of microflora present on the crop at the time 

of ensiling.  If the numbers of LAB present on a crop before ensiling are low, fermentation of WSC 

may be poor resulting in poor silage (Meeske et al., 2002). 

Inoculants such as Lalsil® Cereal that containing L. buchneri and P. acidilactici are still 

being tested for their use on whole-crop oats and other cereals.  The aim of this study was to 

determine the effects of a Lalsil® Cereal inoculant containing L. buchneri (NCIMB 40788) and P. 

acidilactici (CNCM MA 18/5M) on fermentation of whole-crop oats ensiled in a bunker silo on  

(1) fermentation characteristics,  

(2) aerobic stability and  

(3) nutritional value of the silage. 

 

4.2 Materials and methods 

 

Study site 

The study to evaluate the effect of fermentation, stability and digestibility of whole-crop oat silage 

inoculated with Lalsil® Cereal was conducted at Stellenbosch University, South Africa. 

 

4.2.1 Cropping and harvesting 

 

Oats (Avena sativa, cv SSH 405) were planted on 30 May 2006 on 60 ha under dryland conditions 

at Elsenburg (33°51,485′ S, 018° 50,188′ E) in the Western Cape province of South Africa.  Soil 

pH was 5.9; calcium (Ca) 2.7 cmol(+)/kg, magnesium (Mg) 0.2 cmol(+)/kg and potassium (K) 37.0 

mg/kg.  At planting 200 kg of fertilizer (15% nitrogen (N), 10% phosphorus (P) and 5% potassium 
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(K)) was applied per hectare.  Oats were planted with a 3 m Piket planter at 120 kg/ha.  Thirty days 

after planting a top dressing of fertilizer (18% N and 18% K) was applied at 200 kg/ha and after 60 

days potassium ammonia nitrogen (28%) was applied at 100 kg/ha.  At 123 days the crop was 

harvested at soft dough stage and chopped to a length of 9 mm.  The silage was compacted in the 

bunker with a Landini 8500, kW 63 tractor; and the bunker was closed with a plastic sheet, 200 µm 

thick. 

 

4.2.2 Silage preparation - Ensiling whole-crop oats 

 

Whole-crop oats were packed in net bags and placed in a bunker (4 m x 68 m x 3 m) according to 

the buried bag technique (Allred et al., 1955).  About 80 kg of chopped oats (chop length ≈ 9 mm) 

were sampled from the harvested material, mixed and divided into two portions (on a sterile plastic 

sheet, cleaned with ethanol).  The inoculant (Lalsil® Cereal) containing L. buchneri (NCIMB 

40788) and P. acidilactici (CNCM MA 18/5M) was applied to one portion (40 kg of chop) to 

provide 5.79 x 109 CFU of LAB per gram of fresh material.  After inoculation, silage was mixed 

thoroughly and packed into net bags.  Six bags per treatment were weighed and buried at 1 m and 2 

m depths in the same bunker.  White (control) and yellow (inoculant) nylon lines (3 m lengths) 

were attached to each bag and stretched out towards the front end of the bunker for easy retrieval of 

bags after 186 days.  On day 186 all the 12 bags were retrieved and weighed before opening to 

determine changes in bag weight between day 0 and day 186. 
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4.2.3 Sample collection 

 

Before ensiling, samples (400 g) were collected from each bag and frozen at -20 ºC pending further 

analyses.  After 186 days of ensiling the samples were collected from each bag for chemical 

analyses.  A portion (approximately 200 g) of each sample was vacuum-packed and frozen at -20 

°C pending chemical analysis for lactic acid, WSC, VFA and ammonia nitrogen.   

A second portion (± 180 g) of the sampled material was dried in a conventional oven at 60 

°C for 72 hours and subsequently milled through a 1 mm (Scientific RSA, Hammer mill, Ser No 

372) screen, pending determination of IVOMD and NDF digestibility, CP and OM content.  A third 

portion (about 25 g) was oven-dried at 100 °C for 48 hours to determine dry matter content. 

 

4.2.4 Aerobic stability 

 

Determination of aerobic stability was done according to the method describe by Ashbell et al. 

(1991).  After 184 days, temperature changes and CO2 production in silage were monitored using a 

data logger system (MCS 120) over a period of 10 days.  Aerobic stability was done in a 

temperature controlled room with the temperature set at 24 °C.  Silage (± 280 g) was loosely placed 

in the upper part of a system and a temperature sensor was placed in the material.  The system 

consisted out of two parts.  An upper part, which was made out of a 2 L polyethylene terephthalate 

bottle and a lower part made out of a honey jar.  Three holes, 1 cm in diameter were drilled in the 

bottom of the bottle (2 L polyethylene terephthalate bottle) and another hole was drilled through the 

cap of the bottle.  The latter was covered with nets to ensure that silage would not fall out of the 

bottle.  The base of the bottle was cut and served as a lid.  The hole through the cap enabled air 

circulation.  The lower part of the unit was filled with 150 ml of 20% potassium hydroxide (KOH) 

to absorb CO2.  After 5 days the 20% KOH solution was changed with a new refill.  The solution 
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20% KOH was titrated with 1 N HCl to expel the CO2.  The amount of CO2 (g/kg DM) released 

was calculated according to Ashbell et al. (1991) as shown in the equation below:   

CO2 (g/kg DM) = ( ) ( )[ ]100/%/1001044.0 DMFmAVT ××××××  
where: 

T = volume (ml) of 1 N HCl used in titration (ml) 
V = total volume (ml) of 20% KOH (ml) 
A = volume (ml) of KOH used in determination (ml) 
Fm = mass (kg) of fresh material (kg) 
DM = fraction of dry matter 

 

4.2.5 Chemical analysis 

 

Determination of DM was done according to the method of AOAC International (2002), AOAC 

Official method number 934.01.  About 180 g material was dried in a conventional oven at 60 °C 

for 72 hours and milled through a 1 mm screen using a hammer mill (Scientific RSA, Hammer 

Mill, Ser No 372).  A second portion ± 25 g was oven-dried at 100 °C for 48 hours to determine 

DM.  Determination of OM was done according AOAC International (2002), AOAC Official 

Method 942.05.  Approximately 2 g of dry sample was placed in a crucible and incinerated for 6 

hours with a muffle furnace at 500 °C.  Crude protein was analyzed using a Dumas-type nitrogen 

analyzer (Leco FP-528, Leco Corporation, St. Joseph, MI).  This is based on the method of AOAC 

International (1990), Official Method 968.06.  About 0.1 g dried sample was used.  NDF was 

determined according the method of Van Soest et al. (1991).  Determination of NDF was done with 

Ankom 220 Fibre Analyzer (Ankom Technologies, Fairport, NY).  Heat stable α-amylase was used 

in the analysis and 20 g sodium-sulphite was added to each batch of samples. 

 

4.2.6 Lactic acid determination 

 

Lactic acid was determined according to the colorimetric method of Pryce (1969), which is a 

modification of the Barker & Summerson (1941) method for the determination of lactic acid.  
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Lactic acid was determined in a 20 ml diluted solution.  The dilute was prepared as follows: 50 g 

frozen silage diluted with 250 ml distilled water.  This mixture was shaken by hand for about 3 

minutes and stored in a fridge (5 °C) for up to 24 hours.  During the cooling period, the mixture 

was shaken twice for about 3 minutes.  After cooling down, the diluent was filtrated through 

Whatman no 4 paper to remove the plant matter.  The supernatant was transferred to bottles and 

kept refrigerated until the samples were sent to the Agricultural Research Council at Irene, Pretoria 

for lactic analysis. 

 

4.2.7 Water soluble carbohydrates 

 

Water soluble carbohydrates were determined based on the phenol-sulphuric acid method of 

Dubois et al. (1956).  The WSC were determined on 40 g of frozen sample diluted with 360 ml of 

distilled water which was homogenized for 4 minutes with a bamix and filtrated through a 

Whatman no 1 to remove the plant material.  The pH of the supernatant was measured. 

A 1 ml supernatant was diluted with 9 ml distilled water (solution A).  Exactly 1 ml of 

solution A was pipetted and diluted with 9 ml distilled water (solution B), giving a 1:1000 solution.  

One ml of solution B was placed in a test-tube as well as 1 ml distilled water in another test-tube, 

which served as the blanko.  Phenol (80%) 0.15 ml was pipetted to the 1 ml of solution B and 

vortexed 10 seconds.  A 5 ml sulphuric acid 98% (H2SO4) was placed in the middle of the latter 

solution and vortexed another 10 seconds. It was read on the spectrophotometer after a waiting 

period of 30 minutes.  The amount of WSC was determined by referring to a standard curve which 

was constructed for the particular sugar under examination.   

 

4.2.8 Volatile fatty acids 

 

Volatile fatty acids were determined at Nutrilab, University of Pretoria, South Africa, using a Gas 

Chromatograph (Varian 3300 FID Detector Gas Chromatograph, Varian Associates, Inc. 1985, 
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United States of America, Column: CP Wax 58 (FFAP)CB Cat no 7654 25 m, 0.53 mm, 2.0 µm) 

according to the method of Webb et al. (1994) and Suzuki & Lund (1980).  About 50 g of sample 

was used and diluted with 200 ml distilled water.  This mixture was shaken on a horizontal shaker 

at 180 rpm for 6 hours and filtrated through four layers of cheesecloth to remove the plant matter.  

The supernatant was transferred to bottles and centrifuged at 4500 rpm for 20 minutes in a cooled 

chamber and filtrated through a Cameo 30 (0.45 µm) filters.  About 1 µl sample was injected into 

the gas chromatograph and the standard was repeatedly injected until consecutive results were 

comparable.  The following conditions were maintained for the gas chromatograph: 

Initial column temperature 50 °C; initial column hold time 2.00 °C; final column temp 

190°C; column rate in °/min 15; end time 16.33 min; injector temperature 250 ºC; detector 

temperature 260 ºC. 

 

4.2.9 Ammonia nitrogen 

 

Ammonia nitrogen of silage was determined by homogenizing 50 g of silage in 250 ml of 0.1 N 

H2SO4 solution for three minutes with a bamix.  The homogenate was filtrated through a Whatman 

no 4 filter paper.  The ammonia content in the filtrate was determined by distillation using a Buchi 

342 apparatus and a Metröhm 655 Dosimat with an E526 titrator according to Pearson & 

Muslemuddin (1968). 
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4.2.10 Measurement of yeasts and moulds 

 

Measurement of yeast and moulds were done by the Department of Microbiology, University of 

Stellenbosch.  About 40 g silage was used and diluted with 360 ml distilled water per sample.  This 

is a 1:10 dilution.  The dilution was spread out on three different agars namely: yeast 

morphological media, 1/2 potato dextrose agar and potato dextrose agar.  After 10 days the yeast 

and moulds were counted. 

 

4.2.11 In vitro degradability  

 

In vitro degradability was done according the method of Van Soest & Robertson (1985).  Dried 

silage samples that were milled through a 1 mm screen (Scientific RSA, Hammer mill, Ser No 372) 

were weighed into F57 Ankom bags.  About 0.5 g of material was weighed into each bag and heat-

sealed.   

A medium containing distilled water, macro-mineral solution, buffer solution, tryptose, 

micro-mineral solution and rezasurin was prepared and warmed to about 39 °C in a water bath.  

Reducing solution containing distilled water, potassium hydroxide pellets, cysteine-HCL and 

sodium sulphite nonahydrate was prepared prior to rumen collection.   

Rumen fluid was collected in the morning (09:30 am) from two cannulated Holstein cows 

that were fed a diet of oat hay, lucerne, wheat straw and 19% protein concentrate mixture twice a 

day in the morning at 07:30 am and in the afternoon at 17:00 pm.  Rumen fluid was collected and 

squeezed through two layers of pre-warmed cheese cloth into warmed 39 °C thermo flasks.  Rumen 

fluid pH was measured before and after blending was done at low speed for 15-20 seconds.  

Blended rumen fluid was strained twice through two layers of pre-warmed cheese cloth into a 

thermos flask while gassing with CO2. 
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About 1 076 ml of medium (macro-minerals + buffer + micro-mineral + rezasurin) and 54 

ml reducing solution were transferred into each incubation vessel while gassing with CO2 and 

placed in an incubator (Daisy II, Ankom technology, Fairport, New York) set at 39 °C.  When the 

medium was fully reduced (cleared), about 270 ml of rumen fluid was added to each incubation 

vessel and CO2 was used maintaining anaerobic conditions.  Samples were added into each vessel.  

The incubation period was 48 hours.  Afterwards incubation samples were rinsed in cold water and 

air-dried.  NDF analysis (Van Soest et al., 1991) was done on air-dried samples; the samples were 

subsequently ashed in a muffle furnace at 500 °C for 6 hours to determine ash content. 

 

4.3 Experimental design 

 

The experiment was a complete randomized design with one treatment: Inoculant Lalsil® Cereal 

(L. buchneri (NCIMB 40788) and P. acidilactici (CNCM MA 18/5M)) was the only factor.  

Material for ensiling was divided into two groups and one group was randomly allocated for 

treatment.  No inoculant was added to the control crop. 

 

4.4 Statistical analysis 

 

Data were analysed using a one-way ANOVA in SAS statistical software, SAS Institute, Inc. 

(1999), SAS/STAT User's Guide, Version 9, 1st printing, Volume 2. (SAS Institute Inc, SAS 

Campus Drive, Cary, North Carolina 27513.)  Difference between means was tested using GLM 

procedure Least squares means. 
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4.5 Results and discussion 

 

Anaerobic Phase 

4.5.1 Chemical composition of harvested whole-crop oats at day 0 of ensiling 

 

The chemical composition, pH levels and in vitro degradability of whole-crop oats and ensiled in 

the bunker are presented in Table 4.1. 

 
Table 4.1 Chemical profile and degradability of whole-crop oats at point of ensiling (day 0). 

  Day 0 
 Control Inoculant SEM P-Value 
Descriptive parameters     
     
Dry matter (g/kg) 461.0     455.0 3.30 0.320 
Organic matter (g/kg DM) 964.0     963.0 0.60 0.201 
aNDFom (g/kg DM) 551.0     553.0 2.60 0.658 
Crude protein (g/kg DM)   96.8       99.3 1.40 0.293 
     
Fermentation and degradability     
 
pH     5.80         5.82 0.024 0.593 
WSC (% DM)     9.26       11.36 2.940 0.639 
Lactic acid (% DM)     0.27         0.27 0.014 0.872 
In vitro organic matter degradability (%)   56.70       56.40 0.300 0.628 

SEM = Standard Error of Means; WSC = Water Soluble Carbohydrates; aNDFOM = Neutral 
detergent fibre in Organic Matter* 
 

The DM content of harvested oats was about 46% and hence had low risk of spoiling.  Initial CP 

contents of the ensiled material were 96.8 g/kg and 99.3 g/kg for control and inoculant-treated 

silage, respectively.  There was a difference between the WSC levels of the control and inoculated 

material, though not significant probably due to inconsistency in the sampled material.  In vitro 

degradability of oat silage was less than 60% but comparable to that of mature tropical grasses such 

as Pennisetum clandestinum.  
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4.5.2 Chemical composition, fermentation and in vitro degradability at 186 days 

 

The chemical composition, fermentation and in vitro degradability of oat silage ensiled in the 

bunker for 186 days are given in Table 4.2. 

 
Table 4.2 Chemical composition, volatile fatty acids, ammonia nitrogen and digestibility of 

whole-crop oats at 186 days of ensiling. 
  Day 186 

 Control Inoculant SEM P-Value 
Descriptive parameters     
     
Dry matter (g/kg)  430.0  442.0 2.60   0.007 
Organic matter (g/kg DM)  958.0  961.0 1.60   0.258 
aNDFom (g/kg DM)  577.0  540.0 6.60   0.003 
Crude protein (g/kg DM)  108.0  109.0 0.90   0.420 
     
Fermentation and degradability     
 
pH      4.03       3.91 0.007 <0.01 
Lactic acid (% DM)      4.44       4.49 0.180   0.853 
WSC (% DM)      6.09       6.77 0.696   0.504 
Volatile fatty acids (% DM)      1.76       0.93 0.048 <0.01 
Acetic acid (% DM)      1.74       0.91 0.047 <0.01 
Propionic acid (% DM)      0.018       0.012 0.048 <0.01 
Ammonia nitrogen (% of total nitrogen)      5.65       5.39 0.389   0.651 
In vitro organic matter degradability (%)    58.70     59.00 0.900   0.795 

SEM = Standard Error of Means; WSC = Water Soluble Carbohydrates; NDFOM = Neutral 
detergent fibre in Organic Matter* 
 

The pH value for both the control and inoculant silage dropped significantly from a pH value of 5.8 

to 4.0 from day 0 to day 186 of ensiling. This indicates that LAB fermented carbohydrates to lactic 

acid.  Lactic acid increases hydrogen ion (H+) concentration inhibiting growth of undesirable 

bacteria such as C. butyricum, C. tyrobutyricum, Escherichia coli and Erwinia herbicola 

(McDonald et al., 2002) and is therefore desirable as a silage preservative.  Clostridia are present 

on harvested forage in the form of spores and start to multiply as soon as conditions in the silo 

become anaerobic.  The growth of these organisms is undesirable; they produce butyric acid and 

degrade amino acids to a variety of products which degrade the quality of silage (McDonald et al., 
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1991).  Optimal pH for preservation however depends on the DM content of the silage; at 44% DM 

content pH of 5.02 would be optimal for silage preservation (ED d’H d’ Yvoy & Meeske, 1999). 

The pH at 186 days of ensiling averaged 4.0 in treated and untreated silage.  The pH level of silage 

was less than the optimal value of five and could have a negative effect on palatability.  Dry matter 

content was 43.0% and 44.2% for control and treated silage, respectively. 

The CP content at day 186 of ensiling averaged 109 g/kg DM, a minimum of 75 g/kg DM 

CP is required for meeting ruminal microbial requirements (Ørskov, 1992).  The drop in WSC of 

untreated silage was 3.2% units (about 30% WSC consumption) compared to 5% unit drop in 

inoculum-treated silage (50% WSC consumption). These results are anomalous. Levels of 

ammonia nitrogen (% of total nitrogen) in the oat silage were almost the same (≈ 5.5%), which is 

lower compared to that normally reported for maize silage (≈ 6.31%) (Borreani et al., 2007).  This 

indicates less protein degradation, which is desirable. 

Figures 4.1, 4.2 and 4.3 illustrate changes in WSC, pH and lactic acid contents of 

inoculated and control silage between 186 days of ensiling and ten days of aerobic exposure.  
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Figure 4.1 The change in water soluble carbohydrates of oat silage ensiled with or without a 

lactic acid bacterial inoculant after 186 days of ensiling. 
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Figure 4.2 The change in pH of oat silage ensiled with or without a lactic acid bacterial 
inoculant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 The change in lactic acid of oat silage ensiled with or without a lactic acid bacterial 

inoculant. 
 
Aerobic Study 

4.5.3 Aerobic stability at 196 days 

 

The chemical composition of whole-crop oat silage exposed to aerobic conditions for ten days after 

being ensiled for 186 days is given in Table 4.3. 
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Table 4.3 Profile of whole-crop oat silage exposed to aerobic conditions for 10 days after 

ensiling, period of 186 days. 
  Day 196 

 Control Inoculant SEM P-Value 
Descriptive parameters     
     
Dry matter (g/kg)  487.0 487.0 7.60 0.957 
Organic matter (g/kg DM)  959.0 960.0 1.40 0.588 
aNDFom (g/kg DM)  562.0 548.0 8.20 0.237 
     
Fermentation and degradability     
 
pH      4.00     4.00 0.010 0.932 
Lactic acid (% DM)      3.79     4.24 0.110 0.024 
WSC (% DM)      2.29     5.94 0.660 0.003 
In vitro organic matter degradability (%)    58.10    58.30 1.570 0.935 
Carbon dioxide (g/kg DM)      0.47      0.40 0.140 0.719 

SEM = Standard Error of Means; WSC = Water Soluble Carbohydrates; NDFOM = Neutral 
detergent fibre in Organic Matter* 
 

After ten days of aerobic exposure the moisture content of silage decreased slightly upon aerobic 

exposure (P>0.05). The pH of inoculant-treated silage increased slightly after aerobic exposure (Fig 

4.1); indicating that the treated silage was not stable with a greater portion of the WSC degrading to 

lactic acid (P>0.05).  Depletion of lactate by fungi, yeast and Bacillus during the aerobic phase 

reduces the potential stability of silage as lactate is converted to acetate or butyric acid with a 

consequent pH rise (Lindgren et al., 1985).  Water soluble carbohydrates of the control silage 

dropped significantly after 10 days of aerobic exposure but remained the same for inoculant-treated 

silage, which means the inoculant could probably have an effect. Carbon dioxide was high in the 

control crop, although not significantly different.  This indicates that the sugars are being 

metabolised by aerobic microbes that yield CO2 as by-product.  Lactic acid concentration for both 

control and inoculant-treated silage dropped slightly, which points to a reduction in growth and 

activity of lactic acid microbes, hence keeping the silage stable. 

Reviews on silage additives (McDonald et al., 1991; Lindgren, 1999; Weinberg & Muck, 

1996; Vilela, 1998) show that effectiveness of inoculums varies with forage type and ensiling 



 68 

 

21

22

23

24

25

26

27

1 25 49 73 97

Hours of aerobic exposure

Te
m

pe
ra

tu
re

 C

Control
Inoculant
Standard

conditions. Coan et al. (2001) found that enzymatic-bacterial inoculants did not improve the 

quality, fermentation and nutritional characteristics of different guinea grass (Pannicum 

maximimum) varieties (Tanzania or Mombaca) and the effect of the regrowth stage (45 or 60 days) 

was not significant.  Nussio et al., (2001) evaluated the use of enzymatic-bacterial inoculant in 

Tifton 85 (Cynodon dactylon) silage varying in DM content (25 to 65%) and they reported positive 

results from the use of inoculant in silage of higher DM content (>45%).   

It seems that the inoculated (Lalsil® Cereal) silage made in micro silo’s was more stable 

under aerobic conditions compared to inoculated silage made in a bunker due to the fact that the 

environment in the micro-silos was easier to control. 

 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 4.4 Changes in temperature for control and inoculated oat silage during the first 114 

hours of aerobic exposure after 186 days of ensiling. 
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Figure 4.5 Changes in temperature for control and inoculated oat silage during the last 114 

hours of aerobic exposure after 186 days of ensiling. 

 

4.6 Conclusion 

 

Both inoculated and control silage batches were well preserved, control pH of 4.03 and inoculant 

pH of 3.91.  Lalsil® Cereal however, reduced the consumption of WSC during the aerobic 

exposure confirming the results reported in Chapter 3.  This indicates that the silage was well 

preserved and that the inoculant could not improve the silage quality.  Further studies are 

recommended to confirm these findings. Research using other inoculants such as Lalsil Dry® is 

also recommended for ensiling forages that have a lower moisture content. 
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CHAPTER 5 
 

GENERAL CONCLUSION 
 

Oat silage is an important source of fibre and energy for dairy cows especially in the Western Cape, 

South Africa.  Successful ensiling depends mainly on the quantity of fermentable WSC available 

and DM content.  High WSC content of oats (in particular before grain formation) allows the 

making of good quality silage, particularly in combination with preliminary wilting.  However, 

silage spoilage is a major source of concern resulting in significant forage and energy loss.  

Preservation is important in achieving consistency in feed supply in those seasons when forage 

availability is a major source of concern especially in the summer months when outdoor 

temperatures range between 30 ˚C and 40 ˚C.  

Both the control and inoculated silages were well preserved as indicated by a low pH.  Dry 

matter content of ensiled material was high (43%).  Adding a LAB containing inoculant (Lalsil® 

Cereal) did not appear to improve the quality of silage.  Although on the fermentation side the drop 

of pH from day 0 of ensiling to 186 days of ensiling in the bunker was significant for the inoculant.  

The inoculant Lalsil® Cereal reduced consumption of WSC during the anaerobic phase and aerobic 

exposure for both studies, as sugars were metabolized for energy and CO2 production.  When the 

silage was exposed to aerobic conditions for 10 days lactic acid levels dropped from day 102 of 

fermentation to day 112 of fermentation indicating a decrease in population of LAB.  We can 

conclude that the inoculant Lalsil® Cereal was not effective as a silage additive on oat silage with a 

high DM content in this particular study.  

Adding a different inoculant (Lalsil® Dry specific for dry silage) could have a positive 

effect on silage quality.  The concentration of Lalsil®Cereal used on the silage was medium, but 

using higher concentration levels could have a positive effect. 

Further studies are recommended on the same inoculant but with different DM levels. 


