Seminars in

RADIATION
_ONCOLOGY.

Automated Radiation Treatment Planning .

for Cervical Cancer

Check for
updates

Dong Joo Rhee, MS,* Anuja Jhingran, MD," Kelly Kisling, PhD, Carlos Cardenas, PhD,*
Hannah Simonds, MD, PhD,’ and Laurence Court, PhD*

The radiation treatment-planning process includes contouring, planning, and reviewing the
final plan, and each component requires substantial time and effort from multiple experts.
Automation of treatment planning can save time and reduce the cost of radiation treatment,
and potentially provides more consistent and better quality plans. With the recent break-
throughs in computer hardware and artificial intelligence technology, automation methods
for radiation treatment planning have achieved a clinically acceptable level of performance
in general. At the same time, the automation process should be developed and evaluated
independently for different disease sites and treatment techniques as they are unique from
each other. In this article, we will discuss the current status of automated radiation treat-
ment planning for cervical cancer for simple and complex plans and corresponding auto-
mated quality assurance methods. Furthermore, we will introduce Radiation Planning
Assistant, a web-based system designed to fully automate treatment planning for cervical
cancer and other treatment sites.
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Introduction

Treatment planning for radiation therapy is an extremely
complex process that involves many different tasks per-
formed by a team of highly trained and experienced people
(Fig. 1). Even simple tasks typically involve many button
clicks by a radiation oncologist or treatment planner. As such,
radiation therapy treatment planning is a time-consuming,
inefficient, and expensive process. Furthermore, individual
team members’ preferences and skills can lead to much vari-
ability in the performance of individual tasks (eg, contouring,
plan optimization).' > Fortunately, automation, which is the
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use of technology to perform a process or procedure with min-
imal human assistance, may significantly enhance the unifor-
mity, efficiency, and speed of the radiation therapy-planning
process. In fact, almost all of the tasks listed in Figure 1 are
candidates for automation except for taking a computed
tomography (CT) scan and administering treatment.

The potential benefits of automating the radiation therapy
treatment-planning process are:

¢ Improved efficiency. After patients receive their radia-
tion therapy-planning CT scan, they often have to wait
a week or more before starting treatment. Automation
of the treatment-planning workflow could enable
patients to start treatment shortly after their CT scan.
This would bring many benefits, including significant
cost savings for the patient.

® Improved quality and consistency of treatment plans.
Researchers have shown that plans of poor quality can
negatively impact patient outcomes. 2078

¢ Improved safety. Hand-offs between staff are known to
be a risk point, with miscommunication between staff
members potentially impacting the safety of radiation
therapy.”” "’ Automation of multiple tasks (rather than
individual tasks) can reduce the number of hand-offs
between staff.
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Figure 1 Flow chart of the radiation therapy-planning process. Abbreviations: CT, computed tomography; MD, doctor

of medicine; QA, quality assurance.

® Increased access to high-quality radiation therapy
across the world. Access to radiation therapy is severely
lacking across the world, partially because of a lack of
appropriate staff.'* Automation can make planning eas-
ier, thus enabling existing staff to spend more time on
other important tasks.

In this review, we describe how automation has been used to
develop simple and complex external beam radiation treat-
ment plans for cervical cancer.

Automation of Simple Plans
(Four-Field Box Treatments)

Four-field box treatments use 4 orthogonal radiation fields.
Each field shape is based on the location of bony landmarks
or soft tissue structures. This treatment approach is simple
and effective and is recommended for treatment of invasive
cervical cancer in low-resource settings.''® Kisling et al'’
developed an automated approach to determining beam
apertures based on bony landmarks (Fig. 2). First, the bony
pelvis, femoral heads, sacrum, and fourth and fifth lumbar
vertebral bodies (L4 and L5, respectively) are automatically
contoured. The bony structures are then projected into each
beam’s eye view; several landmarks, such as the widest extent
of the pelvic inlet, are identified; and the beam apertures are
determined according to a set of predefined rules. More
recently, the same research group replaced the multi-atlas
segmentation approach with a deep learning approach,
which increased the success rate for auto-planning from
90% to above 95%.

Alternative approaches to the method developed by Kis-
ling et al are proposed in the literature. For example, Carde-
nas et al'” recently described the use of a convolutional
neural network (CNN) approach to predicting field

apertures. They used digitally reconstructed radiographs as
inputs and physician-approved beam apertures as the
ground truth. In this work, they found that using the projec-
tion images alone was prone to error in some uncommon sit-
uations, such as patients with metal hardware (eg, from spine
reconstruction) or excessive contrast in the bowel.

The manual tasks involved in planning a simple four-field
box are all straightforward. However, the challenge is that
the tasks are many, and they are performed by various staff
members, meaning that the entire process is subject to delays
caused by hand-offs between staff. Thus, although the auto-
mation of the field shape has only modest potential for time
savings (given the simplicity of the field shapes), the real
benefit comes when this task is combined with other auto-
mated tasks such as dose calculation and the optimization of
field weights to achieve homogeneous dose distributions.
Kisling et al'” described such an approach, which included
optimizing beam weights to minimize dose heterogeneity.
Full automation means that treatment plans can be ready for
final physician review within a few minutes (rather than a
few days, which is currently typical without automation),
potentially enabling patients to start treatment the same day
that they receive their CT scans.

Automation of Complex Plans

Volumetric modulated arc therapy (VMAT) is the most
advanced beam-delivery technique for treating invasive cer-
vical cancer. Unlike the optimization process for the simple
plan described above, the optimization process for VMAT
requires precisely defined soft tissue contours. Therefore,
development of a fully automated contouring system is
essential for an automated process. These contours can then
be used as input to advanced automated inverse treatment-
planning approaches.
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Figure 2 An automated approach to determining the field shapes for simple cervical cancer treatment. Abbreviations:
3D, three-dimensional; 2D, two-dimensional; BEV, beam’s eye view (from Kisling et al'n.

Automated Contouring

Over the past few decades, atlas-based auto-contouring
methods have been among the most advanced such meth-
ods,'””*” and researchers have successfully used them in the
development of auto-contouring tools for some of the critical
organs in the female pelvis. As described above, Kisling et
al’ developed a deformable, multi-atlas technique for auto-
matic segmentation that can auto-contour the bony pelvis,
femoral heads, sacrum, and fourth and fifth lumbar vertebral
bodies. Young et al”* used atlas-based segmentation to auto-
matically generate endometrial cancer nodal clinical target
volumes (CTVs); this led to a 26% time savings for the clini-
cians and increased the accuracy of the nodal CTV contours
by 2% as per Dice similarity coefficient calculations. Further-
more, Bondar et al’” automatically generated cervix-uterus
contours on daily CT scans acquired with a CT-on-rails sys-
tem. This involved deformable registration and manually
drawing of contours on patients’ pretreatment CT scans.

On the other hand, atlas-based auto-contouring methods
may be suboptimal for contouring soft-tissue organs in the
female pelvis because the shape and relative positions of the
organs differ substantially among individuals and are there-
fore unpredictable. However, recent developments in deep
learning techniques—specifically, CNN-based image seg-
mentation techniques”®” *"—overcame this limitation of
atlas-based auto-contouring methods. The performance of
CNN-based models improves as the number of training data
sets increases:*® in contrast, atlas-based models are opti-
mized with 10-20 training data sets.””*""’! Training the
CNN-based models with various data sets enables the mod-
els to “understand” the general features of the soft-tissue
organs in the female pelvis; thus, the models become more
suitable for identifying patterns in patient-specific features.

Because of these advantages, researchers have investigated
the possibility of auto-contouring organs using CNN-based
segmentation models for multiple body sites. The auto-con-
touring studies of patients with prostate or rectal cancer that
used CNN-based models showed that automatically gener-
ated bladder, rectal, and femur contours on CT images have
an accuracy equivalent to the interobserver variabilities
among different radiation oncologists.”””” Liu et al’”

developed the CNN-based auto-segmentation tool to seg-
ment 7 organs-at-risk (bladder, bone marrow, left and right
femurs, small intestine, and spinal cord) in cervical cancer
CT images and achieved clinically acceptable outcomes. Our
group has been developing a CNN-based auto-contouring
method for primary and nodal CTVs and 6 normal structures
(bladder, bowel space, left and right femurs, rectum, and spi-
nal cord) that will automate cervical VMAT planning as
shown in Figure 3. Most of the contours were clinically
acceptable on test data.

Automated Planning

Knowledge-based planning (KBP) can automate both IMRT
and VMAT-planning processes. KBP software programs,
such as RapidPlan (Varian Medical Systems, Palo Alto, CA)
and Erasmus-iCycle (Elekta AB, Stockholm, Sweden), are
commercially available, and the performance of KBP models
created using the software has been validated in many
research studies. In regard to cervical cancer KBP models,
Ma et al’” tested an IMRT RapidPlan model for postopera-
tive cervical cancer patients and showed that planning tar-
get volume coverage was within 1% and critical organ dose
metrics were within 4% of manual plan results. Also, Li
et al’® and Tinoco et al’’ showed that IMRT and VMAT
RapidPlan models for cervical cancer patients are better
than or equal to clinical plans. Sharfo et al’® showed that,
for patients with cervical cancer, their dual-arc VMAT Eras-
mus-iCycle model created plans that were equivalent to or
better than manually generated dual-arc VMAT and 9-beam
IMRT. Thus, an automatically generated IMRT or VMAT
plan for cervical cancer made using KBP techniques will be
clinically acceptable if the user can provide high-quality
plans for model training.

Automated Quality Assurance

Once the treatment plan is complete, standard-of-care
requires that it is carefully reviewed prior to treatment. This
treatment plan review process is an important part of
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Figure 3 Unpublished recent results from our work on autocontouring. The images are of 2 patients. In the upper
images, the primary CTV (red), bladder (yellow), rectum (green), and femurs (pink) are shown. In the lower images,
the primary CTV (red), nodal CTV (blue), and bowel space (brown) are shown. (Color version of figure is available

online.)

radiation therapy planning. It has several different compo-
nents, all of which help maintain quality, consistency, and
safety:

® Peer review. This is a review of the proposed treatment
approach by radiation oncologists and other clinical
staff. It includes a review of the treatment plan and may
include a review of the contours used in the plan.

® Physics plan check. This is primarily a review of the
technical aspects of the plan, such as the dose-calcula-
tion accuracy, but the check can also include a second
review of the clinical aspects of the plan.

® Therapists’ check. Therapists typically review the plan
for completeness and “treatability.”

Aspects of the physics plan check and therapists’ check, such
as recalculation of the radiation dose, detection of elements
of the plans which cannot be carried through, and verifica-
tion of correct data transfer from the planning system to the
oncology information system, have been automated for
many years. However, less attention has been paid to auto-
mation of the quality assurance process for simple and com-
plex treatment plans for cervical cancer. In particular,
automating tasks that are part of the peer-review process has
received less attention than has automating other aspects of
treatment planning.

Automated Quality Assurance for Simple
Plans

For simple cervical cancer treatment plans, 2 quality assur-
ance tasks determine the quality of a patient’s treatment:

confirmation of the shapes of the treatment apertures and
verification of the radiation dose. Verifying the dose calcula-
tion in a treatment plan by recalculating the same plan using
independent software is a routine clinical practice. Although
older software required extensive manual entry, this is no
longer the case, and many clinics have implemented auto-
mated dose-calculation verification.

As with dose verification, the automated beam aperture
quality assurance is possible using 2 independent beam aper-
ture-prediction algorithms. This was first demonstrated by Kis-
ling et al,”” who used the 2 methods summarized above—a
deep learning approach and an automatic algorithm from auto-
matically generated bone contours. The comparison of 2 algo-
rithms can be used to verify the field apertures. For most
patients, both algorithms agree (generally meaning that the
aperture is clinically acceptable). On occasion, however, 1 algo-
rithm fails. In such instances, the cases are flagged for the algo-
rithm user to indicate that additional review by a physician is
needed.

Figure 4 shows how 2 independent beam aperture-pre-
diction algorithms can be compared to verify field apertures.
The histogram in Figure 4 shows the mean surface distance
between the 2 algorithms for a set of apertures that had been
scored by a radiation oncologist as acceptable or unaccept-
able. This example illustrates that this approach can identify
the majority of patients for whom the automatically gener-
ated apertures would have been inappropriate. The main
advantage of these automated quality assurance techniques is
that the radiation oncologist may not have to review the plan
until the final plan is ready — rather than the more usual sit-
uation where they have to be involved to draw the initial
field apertures, and then again to review the final plan.
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Figure 4 Automatic quality assurance process for simple plans using the 2 independent beam aperture-prediction algo-
rithms. Red solid lines and yellow dashed lines indicate the primary and verification techniques, respectively. (Color

version of figure is available online.)

Automated Quality Assurance for Complex
Plans

Contour Quality Assurance

Although manual reviews of automatically generated con-
tours should be conducted before the contours are used for
clinical purposes, automated contouring quality assurance
tools can still be beneficial as a means of avoiding potential
mistakes. Most automatic contouring error-detection techni-
ques use machine-learning algorithms to identify irregulari-
ties in extracted features and/or geometric locations of
contours. McIntosh et al*™” identified errors in contours by
extracting the geometric and intensity features of contours
and analyzing the features with a conditional random forests
model. Chen et al*' developed a geometric attribute distribu-
tion model that uses relative geometric positions between
organs to detect contouring errors. Most of these feature-
and location-based algorithms assume that the tested organs
always have similar features and relative geometries. These
assumptions are valid for bony anatomies or for the organs
in static region, such as the head and neck. However,
because most of the critical organs in the female pelvis vary
in size, shape, and position—even in the same patient at dif-
ferent time points—most feature- and location-based algo-
rithms are not suitable for patients with cervical cancer. In
contrast to this, Rhee et al’'s approach™ involves calculating
the volume overlap between 2 contours created from 2 inde-
pendent auto-contouring algorithms to identify errors in the
reference contours. Because no prior assumptions are made
when identifying contouring errors, this approach would be
the more appropriate means of detecting contouring errors
for the organs in the female pelvis.

Plan Quality Assurance

Automatic verification of the accuracy, quality, and safety of
planned dose distributions can be achieved in a variety of
ways. First, the dose-calculation accuracy can be verified
using independent software, as discussed above. The overall
plan quality can be verified in a peer-review process in which
each treatment plan is reviewed by other radiation oncolo-
gists and clinical staff. This is the verification procedure fol-
lowed in many clinical practices and clinical trials. It
involves not a review of the details of the dose calculation or
other plan parameters, which are checked as part of physics
checks, but rather a review of the overall suitability of the
plan for a specific patient.

This peer-review process is extremely time-consuming, and
therefore researchers have invested much work in the develop-
ment of automated peer-review processes. These include the
use of scorecards to assess whether the plan meets expected
dose metrics and the prediction of dose distributions (or dose-
volume histograms) by matching a patient’s anatomy with ana-
tomical data from a library of patients or with machine-learn-
ing data based on the geometry and dose prescriptions of
previous patients.43 ~* More recently, groups of researchers
have extended these ideas to predict the likely dose distribu-
tion for a patient using deep learning approaches.
Although not yet in widespread clinical use, these automated
plan checks all have the potential to help clinical team mem-
bers, especially dosimetrists, determine whether they have
achieved the optimal plan for their patients. These automated
plan quality assurance techniques are probably of particular
use to clinical teams at centers that are transitioning to com-
plex plans and have limited experience in assessing the quality
of individual treatment plans.
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Safe Clinical Use of Automated
Treatment Planning

Automated contouring and treatment planning will likely bring
increased consistency and improved efficiency to radiation
therapy treatment planning. An important point to realize,
however, is that even with automated techniques that appear
to be very robust, errors will occasionally happen. These may
be caused by algorithm errors (eg, incorrect automatic contour-
ing) or by human error (eg, entering an inappropriate prescrip-
tion). Also, errors that are less likely to be detected with
automated processes than with manual planning may occur.
One example of this is the use of an incorrect CT field of view,
which gives a circular edge to the patient in the CT images.
This circular edge is immediately obvious to a human planner
but may not be identified in an automated process (unless the
program is specifically trained to identify such scenarios).
Thus, although automation has many potential advantages, the
risks must be carefully considered and mitigated when intro-
ducing automation to clinical practice.

A failure mode and effects analysis of the deployment of
fully automated treatment planning for cervical cancer iden-
tified 3 components required for patient safety”:

® User training. Carefully designed user training is essen-
tial, not only for the planners (to prevent error modes
in automatically generated plans), but also for the staff
involved in plan quality assurance (as new error modes
that they are not used to checking for may appear).

® Manual plan checks by radiation oncologists, physi-
cists, and other clinical team members. The active par-
ticipation of experienced clinical staff is essential to the
safe deployment of automated planning approaches.

® Automated plan verification (quality assurance). Wher-
ever possible, automated solutions should be incorpo-
rated into plan verification.

The Radiation Planning Assistant
Project

There are many examples of the development and clinical
use of partially automated tasks in radiation therapy, but full
automation has, until recently, been reasonably rare. The
University of Texas MD Anderson Cancer Center’s Radiation
Planning Assistant (RPA) project is an early example of a sys-
tem designed to fully automate the contouring and treat-
ment-planning processes. The RPA, which is not yet in
clinical use, was developed as a web-based service (http:/
rpa.mdanderson.org) and was started specifically to serve
clinics in low- and middle-income countries where staffing is
insufficient. The local user will upload a CT scan of a patient
and a detailed plan order. Next, the RPA will automatically
generate contours and/or a treatment plan that the user will
then download to their own treatment-planning system.
Finally, the user will recalculate the radiation dose (for their
own local treatment linear accelerator) before making edits
to and approving the final plan.

Initial efforts regarding the RPA have focused on treat-
ment plans for cervical cancer (four-field box), breast cancer
(postmastectomy, tangents, and supraclavicular fields), and
head and neck cancer (VMAT), although further develop-
ment for other anatomies is ongoing. The RPA is likely to be
one of the first fully automated systems in clinical use, and
additional fully automated tools soon will be available for
use with common commercial treatment-planning systems
or though other hospital-led development efforts.

Conclusions

Automation of radiotherapy treatment planning can provide
improvements in efficiency, safety, and quality. The majority
of tasks for external beam radiation therapy treatment plan-
ning for patients with cervical cancer, including the determi-
nation of field borders (four-field box), contouring, and
complex planning (VMAT), have been automated. Although
these tools are not all available clinically at this point, they
likely will be available within the next year and widely avail-
able within 3-5 years.
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