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ABSTRACT: 
 
 

Nitric oxide (NO) is a major signaling molecule in the heart with various biological 

effects. The putative role of NO as a cardioprotective agent against ischaemia-

reperfusion injury and in ischaemic preconditioning (IP) has made it one of the fastest 

growing fields in basic cardiovascular research. However, NO may also be 

associated with harmful effects, especially when released in excessive amounts. 

Little is known about the relative contributions to NO-production by the cardiac 

microvascular endothelial cells (CMECs) and the adjacent cardiomyocytes. 

Furthermore, the respective roles of endothelial NOS (eNOS) and inducible NOS 

(iNOS) are not well characterized in these cell types, particularly in hypoxia. In order 

to gain a better understanding of the role of NO in the hypoxic/ischaemic heart, the 

aims of this study were to: (1) develop an isolated cardiomyocyte model in which 

hypoxia and early IP can be induced and the role of NO assessed; (2) measure NO-

production in cardiomyocytes and CMECs under baseline and hypoxic conditions; 

and (3) evaluate the expression, regulation and activation of eNOS and iNOS in 

cardiomyocytes and CMECs (baseline and hypoxia) and establish the relationship 

with NO-production under these conditions. Cardiomyocytes isolated from adult rat 

hearts and commercially purchased rat CMECs were used as cell models.   

 

Results showed that: (1) Sustained hypoxia exerted significant cellular damage in 

isolated cardiomyocytes (viability of control cells: 100% vs. hypoxia: 46.2%). 

Although IP protected the cells against sustained hypoxia (viability of hypoxic cells: 

46.2±1.8% vs. IP: 71.3±2.6%), a beneficial role for NO as trigger or mediator of 

protection could not be demonstrated. In view of these observations, the main focus 
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of further studies was aimed at the effects of hypoxia on the cardiomyocyte. (2) A 

novel method of direct intracellular NO-detection was developed (analysis of DAF-

2/DA fluorescence by flow cytometry). Using this method, we demonstrated that 

CMECs produced ~26-fold more baseline NO per cell than cardiomyocytes and 

although hypoxia stimulated NO-generation in both cell types (increase in NO-

production compared to control: cardiomyocytes: 1.6-fold;  CMECs: 3.3-fold), CMECs 

were shown to produce ~52-fold more NO in hypoxia. Baseline peroxynitrite (ONOO-) 

production was 2.2-fold higher in CMECs than cardiomyocytes; however there was a 

decrease in ONOO- production in both cell types during hypoxia. (3) Baseline eNOS 

expression was demonstrated in both cell types and CMECs expressed ~22-fold 

more baseline eNOS protein than cardiomyocytes; however, iNOS was detected in 

cardiomyocytes only. In hypoxic CMECs, eNOS was upregulated (18h ↓PO2 hypoxia 

in cultured CMECs: 2.1-fold increase; 60min mineral oil hypoxia in trypsinized 

CMECs: 1.8-fold increase) and activated (phosphorylation at Ser1177) (18h ↓PO2 

hypoxia in cultured CMECs: 4.9-fold increase; 60min mineral oil hypoxia in 

trypsinized CMECs: 3-fold increase), which was closely linked to the hypoxia-induced 

NO-production. In the cardiomyocytes, eNOS regulation depended on the duration of 

hypoxia: exposure to longer periods of hypoxia and thus increased cellular injury 

caused a loss of eNOS protein; however, activated eNOS levels were unaffected and 

NO-production increased significantly; exposure to shorter hypoxia periods (↓cellular 

injury), had no effect on eNOS expression but increased its activation. Thus, hypoxia-

induced NO-generation in these cells was closely linked to eNOS activation. 

Preliminary data from mixed-cell investigations showed that intracellular NO levels in 

cardiomyocytes increased by 13-20% (p < 0.05 vs. myocytes only) when they were 
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co-incubated with CMECs under oxygenated conditions. This trend was also 

observed in hypoxia studies. 

 

Summary and conclusions: Our findings show that IP exerted protection in a model 

of isolated cardiomyocytes, but that NO did not trigger or mediate protection. In fact, 

NO was harmful to the hypoxic myocyte. Direct NO-measurements showed that 

CMECs produced significantly more NO than cardiomyocytes during baseline and 

hypoxia. Hypoxia upregulated and activated eNOS in the CMECs, which seemed to 

be the predominant NOS-isoform in these cells. In cardiomyocytes, our data suggest 

that NO-production induced by longer hypoxic periods involved non-eNOS sources 

such as iNOS; however during shorter hypoxia, NO-production was closely linked to 

eNOS activation. Data from mixed-cell suspensions suggest that spillover diffusion of 

NO occurs from CMECs to the adjacent cardiomyocytes.  

 

In conclusion, in this study cellular models of isolated cardiomyocytes and CMECs 

were successfully established. Furthermore, we developed and adapted several 

techniques for the evaluation of cell viability in both cell models. In view of a lack of 

direct NO-detection methods, a technique that directly measures intracellular NO 

generation in cardiomyocytes and CMECs was developed, viz. flow cytometric 

analysis of DAF-2/DA fluorescence. This detection technique allowed for new 

insights in the generation of NO by these cell types. Results suggest that eNOS was 

the main NOS isoform involved as source of the observed increases in hypoxia-

induced NO levels, although there may be a role for iNOS in hypoxic myocytes. The 

ability of CMECs to produce more NO than the myocytes may have implications for 
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the in vivo scenario (e.g. possible spill-over diffusion into the myocytes), and future 

co-culture studies may shed more light on this possibility. 
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OPSOMMING: 

 

Stikstofoksied (NO) is ‘n belangrike boodskapper in die hart met verskeie biologiese 

effekte. Die moontlikheid dat NO die hart teen isgemie-herperfusie skade kan 

beskerm (hetsy direk of indirek via isgemiese prekondisionering (IP)) het daartoe 

gelei dat dit ‘n snel ontwikkelende navorsingsveld in basiese kardiovaskulêre 

wetenskappe geword het. NO, wanneer in oormatige hoeveelhede afgeskei, kan 

egter skadelik wees. Onsekerheid bestaan oor die relatiewe bydraes van die kardiale 

mikrovaskulêre endoteelselle (CMECs) en die naburige kardiomiosiete tot NO-

produksie. Verder is die relatiewe bydraes van endoteliale NOS (eNOS) en 

induseerbare NOS (iNOS) nie goed in hierdie seltipes gekarakteriseer nie, veral nie 

tydens hipoksie nie. Ten einde ‘n beter begrip van die rol van NO in die 

hipoksiese/isgemiese hart te verkry, het dié studie die volgende ten doel gehad: (1) 

ontwikkeling van ‘n geïsoleerde kardiomiosiet model waarin hipoksie en vroeë IP 

geïnduseer en die rol van NO-produksie evalueer kan word; (2) meting van NO-

produksie in kardiomiosiete en CMECs tydens basislyn en hipoksiese 

omstandighede; en (3) evaluering van die uitdrukking, regulering en aktivering van 

eNOS en iNOS in kardiomiosiete en CMECs (basislyn en hipoksie) en bepaling van 

die verband met NO-produksie onder hierdie omstandighede. Kardiomiosiete, 

geïsoleer uit volwasse rotharte, en kommersiële rot CMEC kulture is as sel-modelle 

in die studie gebruik. Die uitslae het aangetoon dat: (1) Volgehoue hipoksie 

veroorsaak betekenisvolle sellulêre skade in geïsoleerde kardiomiosiete. Hoewel IP 

die selle teen volgehoue hipoksie beskerm het, kon ‘n voordelige rol vir NO as sneller 

en mediator van beskerming nie aangedui word nie. (2) ‘n Nuwe metode van direkte 

intrasellulêre NO-meting is ontwikkel (analise van DAF-2/DA fluoressensie m.b.v. 
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vloeisitometrie). Met hierdie tegniek kon gedemonstreer word dat CMECs ~26-voudig 

meer basislyn NO per sel as kardiomiosiete produseer en hoewel hipoksie NO-

produksie in albei seltipes gestimuleer het, het die CMECs ~52-voudig meer NO 

tydens hipoksie gegenereer. Basislyn peroksinitriet (ONOO-) produksie was hoër in 

CMECs as kardiomiosiete; daar was egter ‘n daling in ONOO- produksie in beide 

seltipes tydens hipoksie. (3) Basislyn eNOS uitdrukking was teenwoordig in albei 

seltipes met ‘n ~22-voudig hoër uitdrukking in die CMECs; iNOS kon egter slegs in 

kardiomiosiete aangetoon word. eNOS was opgereguleer en geaktiveer (fosforilering 

op Ser1177) in CMECs tydens hipoksie en dit was nou geassosieer met hipoksie-

geïnduseerde NO-produksie. In die kardiomiosiete was eNOS-regulering van die 

duur van hipoksie afhanklik: blootstelling aan langer hipoksie periodes met gevolglike 

verhoogde sellulêre skade het tot eNOS proteïen verlies gelei terwyl die geaktiveerde 

eNOS vlakke onveranderd gebly en NO-produksie betekenisvol toegeneem het; 

blootstelling aan korter periodes van hipoksie (minder sellulêre skade) het egter geen 

effek op eNOS uitdrukking gehad nie, terwyl die aktivering wel verhoog is. Dus: 

hipoksie-geïnduseerde NO-produksie was nou met eNOS-aktivering in hierdie selle 

geassosieer. Opsommend wys ons uitslae daarop dat IP beskerming in ‘n 

geïsoleerde kardiomiosiet-model uitgelok het, maar dat NO nie as sneller of mediator 

van beskerming opgetree het nie. NO was in der waarheid skadelik vir die hipoksiese 

kardiomiosiet. Direkte NO-bepalings het aangetoon dat CMECs betekenisvol meer 

NO as kardiomiosiete geproduseer het tydens basislyn en hipoksiese toestande. 

eNOS in die CMECs is deur hipoksie opgereguleer en geaktiveer en dit wil voorkom 

asof eNOS die oorheersende NOS-isoform in hierdie seltipe is. In die kardiomiosiete 

dui ons data daarop dat die verhoogde NO-produksie tydens langer hipoksie 

afkomstig van nie-eNOS bronne soos iNOS, is; tydens korter hipoksie is daar egter ‘n 
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noue verband met eNOS aktivering. Uitslae van die gemengde seleksperimente dui 

daarop dat oorloop diffusie van NO van die CMECs na die naburige kardiomiosiete 

wel plaasvind. Ten slotte: ‘n beskermende rol vir NO kon nie in ons geïsoleerde 

kardiomiosiet-model aangetoon word nie, ten spyte van oortuigende bewyse tot die 

teendeel in die literatuur. Die ontwikkeling van die DAF-2/DA NO-bepaling tegniek 

het tot nuwe insigte in die produksie van NO deur kardiomiosiete en CMECs, en die 

verband daarvan met eNOS en iNOS, gelei. 
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eNOS   endothelium-derived nitric oxide synthase 
ERK   extracellular-regulated kinase 
ET   endothelin 
ETC   electron transport chain 
FACS    fluorescence-activated cell sorting 
FAD    flavin adenine dinucleotide 
FBS    fetal bovine serum 
FMN    flavin mononucleotide  
Gi   inhibitory G-protein 
GPCR   G-protein coupled receptor 
GSH   reduced glutathione 
GSNO   s-nitroglutathione 
GTP   guanosine triphosphate 
5-HD    5-hydroxy-decanoate 
HEPES  N-2-hydroxyethylpiperazine-N'-2-ethansulphonic acid 
HIF    hypoxia inducible factor 
His   histidine 
H2O2   hydrogen peroxide   
Hsp90   heat shock protein 90 
HRP   horseradish peroxidase 
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IHD    ischaemic heart disease 
iNOS    inducible nitric oxide synthase  
IP    ischaemic preconditioning 
JAK   Janus kinase 
JNK   c-Jun NH2-terminal protein kinase 
KATP channel   ATP-sensitive potassium channel 
KCl   potassium chloride 
KCN   potassium cyanide 
KHB    Krebs-Henseleit buffer 
LCCA    left circumflex coronary artery 
LDH    lactate dehydrogenase 
LDL    low density lipoprotein 
L-NA   N-nitro-L-arginine 
L-NAME   NW-nitro-L-arginine methyl ester  
L-NMMA  NG-methyl-L-arginine 
L-NNA   N-nitro-L-arginine 
MAPK   mitogen-activated kinase 
M-chol  muscarinic cholinergic receptor 
MgSO4  magnesium sulphate 
MI    myocardial infarction 
MPG    N-(2-mercapto-propionyl) glycine 
MPTP   mitochondrial permeability transition pore 
MtNOS   mitochondrial nitric oxide synthase 
MTT    3-4,5-di-methylthiazol-2-yl-2,5-diphenyltetrazolium bromide 
NAC    n-acetyl-cysteine 
NaCl   sodium chloride 
Na2HPO4  disodium phosphate 
NaH2PO4  sodium dihydrogen phosphate 
NCX   Na+ / Ca2+ exchanger 
NF-κB   nuclear factor κB 
NHE   Na+ / H+ exchanger 
nNOS   neuronal nitric oxide synthase 
NO    nitric oxide 
NO-   nitroxyl anion 
NO+   nitrosonium cation    
NO2

-   nitrite 
NO3

-   nitrous oxide 
Non-IP  non ischaemic preconditioning 
NOS    nitric oxide synthase 
NOx    nitrates + nitrites 
NTG   nitroglycerine 
O2   oxygen 
OH·   hydroxyl radical 
ONOO-   peroxynitrite 
P38 MAPK  p38 mitogen-activated protein kinase 
PDE    phosphodiesterase 
PI    propidium iodide 
PIA   R(-)N6-(2-phenylisopropyl)-adenosine     
PI3-K    phosphatidylinositol-3-kinase 
PKA    protein kinase A 
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PKB    protein kinase B 
PKC    protein kinase C 
PKG    protein kinase G 
PLC   phospholipase C 
PMSF   phenyl methyl sulfonyl fluoride 
PO2    partial pressure of oxygen 
PPi   inorganic pyrophosphate 
PTK   protein tyrosine kinase 
RNS    reactive nitrogen species 
ROS    reactive oxygen species 
RyR    ryanodine receptor 
Ser    serine 
SDS   sodium dodecylsulphate 
sGC    soluble guanylate cyclase 
SMT    S-methylisothiourea 
SNAP   S-nitroso-N-acetylpenicillamine 
SNO   s-nitrosothiols 
SNP    sodium nitroprusside 
SOD    superoxide dismutase 
SPT   8-(p-sulfo-phenyl)theophylline 
SR    sarcoplasmic reticulum 
SWOP   second window of protection 
TBE:    trypan blue exclusion 
TCA   trichloroecetic acid 
THB4    tetrahydrobiopterin 
Thr    threonine 
TNF-α   tumor necrosis factor alpha 
TnT    troponin T 
Tris   tris(hydroxymethyl)amino methane 
VCAM-1  vascular cell adhesion molecule 1 
VDAC   voltage-dependent anion channel 
VDCC   voltage-dependent calcium channel 
VEGF   vascular endothelial growth factor 
VF   ventricular fibrillation 
XO   xanthine oxidase 
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A. Myocardial ischaemia, reperfusion and cardioprotection 
 
A.1.1 Introduction to myocardial ischaemia, reperfusion and cardioprotection 
 

In order to gain a better understanding of the role of nitric oxide (NO) in the heart 

during ischaemia / hypoxia, it is necessary to give a brief introduction to the concepts 

of myocardial ischaemia, reperfusion and cardioprotection.  

  

(i) Epidemiology 

 

Ischaemic heart disease (IHD) is a major cause of death worldwide. This is also 

evident in South Africa, with latest statistics showing that IHD is the third most 

common overall cause of death, accounting for 5.6% of deaths. In the Western Cape, 

IHD is the leading cause of death accounting for 12% of the deaths (fig. 1.1). [South 

African National Burden of Disease Study 2000: Estimates of Provincial Mortality; 

MRC; South Africa; www.mrc.ac.za/bod/estimates.htm]. 

 

(ii) Myocardial ischaemia and infarction 

 

Myocardial ischaemia is essentially an oxygen supply/demand imbalance that results 

from an impaired blood supply to the myocardium due to coronary artery occlusion 

typically triggered by atherosclerotic coronary artery disease [Opie 2004]. Short term 

effects of ischaemia are associated with the onset of tissue hypoxia, which induces 

adaptational changes in the myocardium aiming to decrease oxygen demand by 

reducing contractility and increasing glycolysis.  

http://www.mrc.ac.za/bod/estimates.htm
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Fig. 1.1 Mortality statistics of the Western Cape Province, South Africa.  (A) Causes of death 

in males and females ranked according to disease categories. (B) Single leading causes of 

death. (Source: South African Burden of Disease Study 2000: Estimates of Provincial 

Mortality; MRC of South Africa May 2005) 
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Fig. 1.2 Pathophysiological progress from myocardial ischaemia to infarction. (Modified 

from Opie 2004) 
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Severe ischaemia results in increased intracellular calcium, tissue acidosis and 

clinically a marked reduction in left ventricular performance. In irreversible ischaemic 

damage, cell death, which can be necrosis and/or apoptosis, and myocardial 

infarction, will follow (See fig. 1.2). 

 

(iii) Cardioprotective therapy 

 

The morbidity and mortality associated with acute myocardial infarction (AMI) has 

necessitated an increasing need for effective cardioprotective treatment. In the 

clinical setting, cardioprotection can be defined as the reduction of necrosis (i.e. 

myocardial infarct size), as well as AMI-associated complications such as heart 

failure and ventricular arrhythmias [Kloner & Rezkella 2004]. It is widely accepted 

that early reperfusion (before 3 h of coronary artery occlusion) of the infarcted 

myocardium has been the best strategy thus far to limit infarct size. Early reperfusion 

strategies include mechanical reversal of coronary artery occlusion (percutaneous 

transluminal coronary angioplasty; stents; urgent coronary bypass), and 

pharmacological reperfusion therapy with thrombolytic agents such as streptokinase 

and low-molecular-weight heparin [Opie 2004; Kloner & Rezkella 2004]. Despite the 

benefits associated with early reperfusion, harmful side effects are often observed 

when coronary blood flow is restituted, the so-called phenomenon of reperfusion 

injury (incl. stunning, reperfusion arrhythmias, microvascular damage, and 

accelerated death of severely damaged cells) [Opie 2004]. Myocardial stunning is a 

well described reperfusion injury event, and can be defined as the persistence of 

mechanical myocardial dysfunction after reperfusion, despite the absence of 
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irreversible damage and the return of normal or near-normal reperfusion [Kloner et al 

1998].  

 

Coronary artery bypass graft surgery (CABG) is a common treatment strategy used 

in patients with chronic IHD. However, the incidence of perioperative complications 

(mainly myocardial stunning and myocardial infarction [Ghosh 2003]) is relatively 

high, ranging from 3% - 30% [Kloner & Rezkella 2004]. In light of the complications 

associated with CABG, recent investigations have focused on new techniques and 

drugs that could achieve cardioprotection during surgery. One study in which high 

doses of adenosine were added to cold blood cardioplegia showed a reduction in the 

incidence of perioperative MI (fig. 1.3) [Mentzer et al 1999].  

 

The quest for novel strategies in the treatment of surgical ischaemia-reperfusion 

injury has led clinicians to investigate a cardioprotective laboratory phenomenon first 

described in dog hearts, called ischaemic preconditioning (IP) [Murry et al 1986]. IP 

has been shown to be cardioprotective during ischaemia by prior conditioning of the 

heart with alternating pulses of ischaemia and reperfusion. In this regard, recent 

studies in human patients undergoing bypass surgery demonstrated that IP resulted 

in attenuated release of troponin T (an indicator of ischaemic damage) (Fig. 1.4) 

[Ghosh 2003; Yellon & Downey 2003]. These are two of a relatively small number of 

human studies that could successfully mimic IP-protection as observed in other 

animal models by direct application of the ischaemia-reperfusion protocol. IP will be 

discussed in more detail in the next chapter. 
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(iv) Summary 

 

The incidence of cardiac ischaemia and myocardial infarction is increasing 

worldwide, and the morbidity and mortality associated with these conditions 

necessitate ongoing investigations in search of new and more effective modes of 

cardioprotective therapy. Currently, early reperfusion of the ischaemic / infarcted 

myocardium and cardiac bypass surgery are the two most effective cardioprotective 

therapies available to clinicians in the prevention and / or treatment of acute and 

chronic IHD respectively, supported by several adjunctive pharmacological agents. 

Unfortunately, both early reperfusion and CABG present with potentially harmful side 

effects. Early reperfusion (the best therapeutic option currently available to reduce 

AMI-derived necrosis) has been associated with myocardial stunning amongst 

others, whereas cardiac bypass surgery often manifests with complications such as 

perioperative MI and stunning. IP is a laboratory phenomenon with huge potential as 

a cardioprotective therapy, yet its direct application has had limited success in 

protecting the human heart in the clinical setting; most of the promising findings with 

IP have been observed in the context of CABG.  
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Fig. 1.3 Effects of adenosine treatment of patients undergoing coronary artery bypass 

grafting on postoperative complications. Patients received 500 µM (low adenosine) or 2 mM 

(high adenosine) adenosine administration intra-operatively. The high adenosine group was 

associated with significantly fewer adverse events (death, myocardial infarction, insertion of 

intra-aortic balloon, high-dose dopamine, or epinephrine use).  *: P=0.006 vs. placebo. See 

text for further details. (Modified from: Mentzer et al 1999). 
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Fig. 1.4 Protective effect of ischaemic preconditioning in the human heart. (A) The time 

course of release of plasma cardiac troponin T (TnT) in preconditioned and control hearts in 

patients undergoing coronary artery bypass grafting without cardiopulmonary bypass. A 

reduction in cardiac TnT concentrations was observed in the preconditioned group. See text 

for details. (Modified from Ghosh 2003) (B) In another study, an IP-protocol of two 3min 

periods of aortic cross-clamping with 2min intervening reperfusion in patients undergoing 

CABG, exerted significant attenuation of serum TnT release in the IP group. (Modified from 

Yellon & Downey 2003). 

B. 
* p < 0.05 vs. control 

IP Control Pre-bypass 

A. 
IP

Control

Pre-op 



 36

A.1.2 Ischaemic preconditioning (IP) 
 

(i) Background and context 

 

Although reperfusion therapy has significantly reduced the mortality related to AMI, 

the functional recovery of reperfused hearts has been hampered by the harmful 

complications associated with the restitution of blood supply, resulting in an increase 

in the incidence of ischaemic heart failure [Sanada & Kitakaze 2004]. Clinicians are 

therefore constantly searching for novel and effective preventative or therapeutic 

strategies. In 1986, Murry and co-workers described an exciting, novel and very 

powerful form of cardioprotection in dog hearts, which they termed ischaemic 

preconditioning (IP) [Murry et al 1986]. In fact, its protective effect has proven to be 

so powerful, that IP has been referred to as “the most potent form of protection 

against myocardial necrosis yet described" [Lawson & Downey 1993]. At the time, 

the seemingly paradoxical contention that one could in effect exploit brief ischaemic 

insults to protect the heart from subsequent prolonged ischaemic injury was 

fascinating, and a promising proposition as a future clinical tool.  

 

There has been a plethora of studies on IP since its discovery in the 1980’s (a 

Pubmed search would typically produce between 4000 and 6000 hits). However, 

several excellent review articles have appeared covering all aspects of IP in detail 

[Dekker 1998; Cohen et al 2000; Bolli 2001; Yellon & Downey 2003; Sanada & 

Kitakaze 2004; Eisen et al 2004]. For the purposes of this dissertation therefore, only 

a few relevant aspects will be discussed. In order to understand the concept of IP, it 

is useful to revisit the protocol originally developed by Murry and co-workers (fig. 

1.5A) [Murry et al 1986]. They opted for an open-chest canine model, in which the left 
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coronary circumflex artery (LCCA) was ligated for four 5 min periods, each separated 

by 5 min of reperfusion. Subsequently, the LCCA was occluded for a sustained 

period of 40 min. At the completion of the experiments, the ligation was removed to 

restore coronary blood flow, chest wounds were closed, and the animals allowed to 

survive for 4 days at which point they were sacrificed and their hearts removed for 

measurements. The results were astonishing, showing that IP reduced the infarct 

size (as a % of area at risk) from 29.4±4.4% (control hearts: 40 min ischaemia only) 

to 7.3±2.1% (fig. 1.5 B). Interestingly, the protection observed seemed to be time-

dependent, since hearts subjected to 180 min of sustained ischaemia were not 

protected, leading the authors to believe that the protective properties of IP were to 

be found in its ability to delay the onset of, but not completely abolish, necrosis (fig. 

1.5 C). This interpretation of the findings led King and Opie in a critical review of IP 

ten years later to suggest that IP “buys time, but does not cheat death”. [King & Opie 

1996]. In summary therefore, IP can be defined as an adaptation of the heart to brief 

sublethal ischaemia (or hypoxia), characterized by a shift to a preconditioned 

(defensive) phenotype [Stein et al 2004]. 

 

The study by Murry and co-workers was the first intervention other than revasculari-

zation that unequivocally limited MI. Consequently, in the two decades that followed, 

IP has been researched extensively, and has been shown to be a highly reproducible 

phenomenon across a wide spectrum of animal species (incl. rats, rabbits and pigs) 

and experimental models (in vivo, isolated hearts and isolated cells). However, a 

direct application of the IP protocol in humans has been hampered mainly by ethical  
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Fig. 1.5 Ischaemic preconditioning in in situ dog hearts by Murry et al. (A) The original IP 

protocol consisted of four 5 min periods of ischaemia each followed by 5 min of reperfusion 

prior to a sustained ischaemia period of 40 min. Coronary ligations were then removed and 

reperfusion allowed to continue for 4 days before measurements. (B) IP caused a significant 

reduction in infarct size in hearts subjected to 40 min of sustained ischaemia (bar chart left) 

with no difference in collateral blood flow between the groups (bar chart right). (C) IP had no 

effect on infarct size in hearts subjected to 180 min of sustained ischaemia (bar chart left) 

and no differences in collateral blood flow were observed (bar chart right). (Modified from 

Murry et al 1986) 
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and practical considerations [Cohen et al 2000], despite some attempts (fig. 1.3 and 

1.4). Since the induction of myocardial ischaemia is not a feasible treatment option in 

human patients, researchers have rather shifted their focus on the cellular 

mechanisms of action of IP [Sanada & Kitakaze 2004] as a possible springboard for 

therapeutic design. Knowledge of the triggers, mediators and end-effectors of IP, 

could help researchers and clinicians to design other, more feasible cardioprotective 

therapies that mimic IP-protection.  

 

(ii) Early (classical) IP-protection vs. second window (late) protection 

 

The IP protocol and protective effects as described by Murry et al above, has been 

termed “early” or “classical” preconditioning, or “first window of IP-protection” [Yellon 

& Downey 2003]. In this first phase of IP-protection, the initial protection appears 

soon after the IP stimulus, and is robust but short-lived (1-2 hours) [Yellon & Downey 

2003].  Subsequent to the early phase, a second, delayed phase of protection (late 

IP; second window of protection, “SWOP”) develops 12-24 hours after the initial 

stimulus; protection in this phase is less robust but lasts 3 to 4 days [Yellon & 

Downey 2003; Stein et al 2004] (fig. 1.6). For the purposes of this study, we will focus 

on early IP. 
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Fig. 1.6 Bi-phasic protection elicited by IP. Early protection within hours (“classical IP”) and 

late protection (“SWOP”, or second window of protection). (Modified from Yellon & Downey 

2003) 
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(iii) The role of the adenine nucleotides and adenosine in early IP 

 

In their seminal IP study, Murry et al attributed the protection by IP to, amongst 

others, reduced ATP depletion. This finding was supported by a separate study from 

the same laboratory on dog hearts [Reimer et al 1986]. Subsequently, the same 

group repeated their IP investigations in canine hearts, and measured myocardial 

ATP at different time-points during a 40 min sustained ischaemia period [Murry et al 

1990]. Their results showed that IP slowed the rate of ATP-depletion after 10 min of 

sustained ischaemia compared to control. However, after 40 min of ischaemia, there 

was no difference in the ATP levels between the groups. They concluded that the 

ATP preservation observed in the early stages of sustained ischaemia in 

preconditioned hearts was due to reduced ATP consumption and not increased 

production. ATP preservation (and therefore reduced myocardial energy demand 

during ischaemia) as a putative cellular mechanism of IP protection was a plausible 

hypothesis, however, it subsequently proved not to be a ubiquitous finding. 

 

In a separate study in rat hearts, sustained global ischaemia preceded by an IP-

protocol did not reduce ATP depletion compared to control hearts [Headrick 1996].  

The reduced ATP-depletion hypothesis could also not be demonstrated in another 

study on perfused rat hearts [Kolocassides et al 1996]. Despite the controversial 

findings surrounding relative ATP levels in preconditioned hearts, it is widely 

accepted that myocardial ischaemia per se causes ATP breakdown to ADP, AMP 

and eventually the final, bioactive metabolite, adenosine [Cohen et al 2000]. In fact, 

adenosine is released from the heart during any form of reduced oxygen supply or 

increased demand, including ischaemia and hypoxia [Hori & Kitakaze 1991]. The role 
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of adenosine as a major trigger of IP-induced protection has received much attention 

since 1991, when it was first discovered in rabbit hearts that pretreatment with A1 

adenosine receptor antagonists abolished IP-protection as measured by infarct size 

[Liu et al 1991]. In addition, the group could also mimic IP-protection by substituting 

the brief IP ischaemia with intracoronary infusion of adenosine (fig. 1.7).  

 

(iv) The Gi-coupled receptors as triggers of early IP-protection 

 

Since the discovery of adenosine as an important trigger of IP-protection, it became 

clear that the Gi-coupled receptor activation is a common denominator in many of the 

protective pathways [Yellon & Downey 2003]. In fact, it is now accepted that any Gi-

coupled receptor can trigger IP-protection via activation of Gi protein. Many triggers 

released during the brief IP ischaemia act in this way, viz. adenosine, norepinephrine 

[Banerjee et al 1993], bradykinin [Goto et al 1995] and the opioids [Schultz et al 

1997]. Other triggers, whose release is not necessarily induced by ischaemia, can 

also act via the Gi-coupled receptor response, such as angiotensin (AT1 receptor), 

endothelin (ET1 receptor), and muscarinic receptor stimulation [Cohen et al 2000]. 

 

(v) Non-receptor triggered protection 

 

Several triggers of IP-protection exist that do not act via a receptor-mediated 

process. Important examples of such triggers include free radicals and reactive 

oxygen species (ROS) [Tritto et al 1997; Altug et al 2000; Lebuffe et al 2003]; brief  
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Fig. 1.7 Adenosine as a trigger of IP-protection. Pharmacological manipulation of the A1 

adenosine receptor in the in situ rabbit heart demonstrates (A) the abolishment of IP-

protection with A1 adenosine receptor antagonism; and (B) mimicking of protection by A1 

adenosine receptor agonists. Abbreviations: SPT, 8-(p-sulfo-phenyl) theophylline; PIA,  

R(-)N6-(2-phenylisopropyl) adenosine. (Reproduced from Liu GS et al 1991)  
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periods of elevated coronary Ca2+ levels [Miyawaki et al 1996]; hyperthermia 

[Yamashita et al 1998]; ethanol [Krenz et al 2001], etc. One non-receptor-mediated 

trigger of IP that is of particular importance to the present study, is nitric oxide (NO) 

[Rakhit et al 2000; Lebuffe et al 2003; Lochner et al 2000]. The role of NO in IP will 

be discussed later in more detail. 

 

(vi) Intracellular signal transduction in early IP 

 

The intracellular signaling pathways through which IP exerts its protective actions are 

complex, multiple and crosstalk often occurs between the various pathways. For 

many years, the adenosine – protein kinase C (PKC) pathway has been considered 

to be the golden standard signaling pathway in early IP [Sanada & Kitakaze 2004; 

Yellon & Downey 2003]. It has since become clear that many other pathways are 

involved. Despite more than a decade of research into the mechanisms of IP-

protection, the identification of a final effector pathway remains unresolved. The role 

of PKC as a mediator of early IP was suggested for the first time in 1994 when 

rabbits were treated with PKC antagonists prior to ischaemia - reperfusion in the 

presence or absence of a preceding IP protocol. Results demonstrated that the PKC 

inhibitors blocked IP-protection. In addition, they found that the administration of a 

PKC activator mimicked IP-protection [Ytrehus et al 1994]. Since these initial studies, 

several PKC isoforms have been described, but it is thought that the α [Wang & 

Ashraf 1998], δ [Zhao et al 1998] and ε [Liu GS et al 1999] isoforms are involved in 

IP-protection. Until now, the exact downstream intracellular targets of PKC have not 

been established [Yellon & Downey 2003].   
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Other protein kinase pathways have also been suggested to act as mediators of IP-

protection. Our own laboratory investigated the role of the ß-adrenergic pathway in IP 

in isolated perfused rat hearts [Lochner et al 1999]. While activation of this pathway 

was regarded as trigger, attenuation of cAMP generation and subsequent PKA 

activation during sustained ischaemia was found to be essential for protection. A 

protective role for attenuation of PKA activation was later also demonstrated in a 

study on dog hearts, which additionally indicated that a third protein kinase cascade, 

namely the p38 mitogen-activated kinase (MAPK) family may be involved in IP 

[Sanada & Kitakaze 2001] (see fig. 1.8 for schematic diagram of the MAPK family). 

Our own investigations on isolated rat hearts demonstrated that IP-protection was 

associated with a transient increase in activated p38 levels during the brief ischaemic 

episodes and attenuation during sustained ischaemia [Marais et al 2001]. The 

findings also suggested that in the absence of IP, p38 activation was increased 

during sustained ischaemia, thereby suggestive of a harmful role for p38. These 

conclusions were supported by another study, this time in canine hearts, in which 

brief periods of ischaemia and reperfusion (IP) also resulted in strong activation of 

p38, whilst its activation was attenuated during sustained ischaemia [Sanada & 

Kitakaze 2001] (fig. 1.9). The role of protein kinase G (PKG) and its activation by NO 

will be discussed later. 

 

Recent studies have also identified the phosphatidylinositol-3-kinase (PI3-K) – 

protein kinase B (PKB) pathway as an important mediator of IP-protection in isolated 

rat hearts, using contractile dysfunction [Tong et al 2000] and infarct size [Mocanu et 

al 2002] as end-points respectively. In both studies IP-protection was abolished in the 

presence of PI3-K inhibitors.  
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Fig. 1.8 The mitogen-activated protein kinase (MAPK) family. The two stress activated 

kinases (p38 and JNK) have been implicated in IP. (Reproduced from Cohen et al 2000) 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.9 Phasic activity of p38MAPK in control (non-IP) and IP hearts (Reproduced from 

Sanada & Kitakaze 2004). 
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(vii) Possible end-effectors of early IP 

 

The nature of the end-effector (-s) ultimately responsible for the protection elicited by 

IP remains elusive [Cohen et al 2000]. For many years the cardiomyocyte KATP 

channel was the preferred candidate end-effector; initially the sarcolemmal KATP 

channel, and more recently the mitochondrial KATP channel, have been thought to be 

the final intracellular site onto which protective pathways converge causing the 

channels to open [Gross & Fryer 1999; Cohen et al 2000; Yellon & Downey 2003]. 

Mitochondrial KATP channel activation was shown to be cardioprotective in rat hearts 

exposed to ischaemia-reperfusion injury when the putative KATP channel opener, 

diazoxide, significantly improved heart function compared to untreated hearts [Garlid 

et al 1997]. The protection observed with diazoxide was subsequently completely 

abolished in the presence of the KATP channel blockers, glibenclamide and 5-

hydroxy-decanoate (5-HD). Similar findings were obtained in rabbit cardiomyocytes 

[Liu Y et al 1998], and in situ rabbit hearts [Ockaili et al 1999]. See fig. 1.10 for a 

summary of the mechanisms thought to be involved in the activation of the 

mitochondrial KATP channel. 

 

Opening of the mitochondrial KATP channel as a plausible end-effector and principal 

mediator of IP-protection is increasingly being questioned. One such concern is the 

bioenergetic effect of net K+ influx into the mitochondria when the channel opens, 

resulting in mitochondrial swelling [Garlid 2000]. Another problem regarding the 

investigation of mitochondrial KATP channels is the nature of their localization, which 

makes them difficult to study; in fact they have not yet been cloned in contrast to the 

sarcolemmal channel [Hanley & Daut 2005].  
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Fig. 1.10 The sarcolemmal and mitochondrial KATP channels. The most important activators 

and blockers of the KATP channels are shown here. Abbreviations: R, receptor; G, G-protein; 

PLC, phospholipase C, PKC, protein kinase C; ETC, electron transport chain. (Reproduced 

from Hanley & Daut 2005) 
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Questions surrounding the proposed mitochondrial KATP channel hypothesis of IP-

protection have led experts in the field to explore alternative options as end-effectors, 

namely: ROS production [Hanley & Daut 2005; Oldenburg et al 2003]; changes in 

fatty acid metabolism [Hanley & Daut 2005] and the mitochondrial permeability 

transition pore (MPTP) [Hanley & Daut 2005; Hausenloy et al 2004]. The most 

promising current hypothesis implicates an IP-induced mechanism that ultimately 

leads to maintenance of the closed state of the MPTP [Hausenloy et al 2004] (fig. 

1.11). From the results of this study, it is proposed that IP induces changes in 

mitochondrial function involving opening of the KATP channel resulting in attenuated 

matrix Ca2+ loading, improved energy production and decreased ROS release during 

reperfusion. As a result of the opening of the KATP channel and its sequelae, the 

opening probability of the MPTP is reduced, which in its turn prevents the release of 

the pro-apoptotic cytochrome C and uncontrolled influx of water and solutes into the 

mitochondria. Despite a plethora of investigations, we still do not know the exact 

nature of a final, common pathway through which IP-protection is exerted. 

 

A summary of intracellular pathways and events elicited by IP based on current 

knowledge is shown in fig. 1.12 and 1.13. 
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Fig. 1.11 Scheme illustrating proposed protective mechanism of MPTP in IP. (A) Events 

during ischaemia-reperfusion without IP: ROS and Ca2+ result in opening of MPTP and inflow 

of water. Rupture of the outer mitochondrial membrane and loss of cytochrome C to the 

cytosol follows. (B) Inhibition of MPTP opening in IP in response to KATP channel opening 

and reduced Ca2+ and ROS production. (Reproduced from Hausenloy et al 2004) 
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Fig. 1.12  Summary of the triggers, mediators, intracellular signaling pathways and proposed 

end-effectors of early IP-protection. Triggers such as bradykinin, the opioids, adenosine, 

norepinephrine and isoproterenol bind to receptors, activating several protein kinase 

pathways, including PKC, PKA, PI3-K and p38MAPK. Important examples of triggers and 

mediators that do not act via the conventional protein kinase pathways are ROS and NO. 

Putative end-effectors of protection are the mitochondrial KATP channels and the 

mitochondrial permeability transition pore (“MTP” on the diagram).  Abbreviations: NHE, Na+ / 

H+ exchanger; NCX, Na+ / Ca2+ exchanger; Ach, acetylcholine; GPCR, G-protein coupled 

receptors; MTP, mitochondrial transition pore. (Modified from Sanada & Kitakaze 2004) 

 

 

 

 

 

 

 

 

Fig. 1.13 Simplified scheme depicting the 
mechanism of early IP. (Modified from 
Riksen et al 2004) 
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(viii) Late preconditioning (second window of protection) 

 

In contrast to early IP, the second phase of protection in IP lasts much longer (early 

IP: 1-2 hours vs. late IP: 3-4 days), and although less robust, protects against 

myocardial infarction as well as stunning [Stein et al 2004; Bolli 1996]. The stimuli, 

triggers, pathways and mediators of late IP-protection are summarized in fig. 1.14. 

Late IP typically involves activation of cardioprotective genes and synthesis of new 

proteins (as opposed to activation of existing proteins) that are cardioprotective. NO, 

and its generating enzyme NO synthase (NOS) play a crucial role in the mechanism 

of late IP [Bolli 2001]. Of particular importance is the de novo synthesis of the 

inducible isoform of NOS (iNOS) [Stein et al 2004]. It seems as if NO plays a dual 

role in the pathophysiology of late IP by initially acting as a trigger (eNOS-derived) 

and subsequently as a mediator (iNOS-derived) of late protection [Stein et al 2004; 

Jones & Bolli 2006] (see fig. 1.14). The role of NO in IP will be discussed in more 

detail later. 
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Fig. 1.14 Schematic diagram depicting the underlying cellular mechanisms of late IP. 

(Reproduced from Stein et al 2004) 
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B. Nitric oxide (NO) and its role in the heart 
 
(i) The biochemistry of NO 

 

NO (structural formula: N=O) is a simple, diatomic gas and free radical that was 

originally regarded only as an atmospheric pollutant present in exhaust fumes and 

cigarette smoke [Singh & Evans 1997]. The possibility that NO could also be 

endogenously produced in the body was not considered until the existence of so-

called “nitrovasodilators” or guanylyl cyclase activators resulting in smooth muscle 

cell relaxation was proposed in the early 80’s [Furchgott & Zawadski 1980; Review 

by Murad 1998]. The ability of endothelial cells to produce a so-called endothelium-

derived relaxant factor (EDRF) leading to arterial smooth muscle cell relaxation was 

also demonstrated [Furchgott & Zawadski 1980]. In 1987 it was discovered that, 

based on the significant similarity between their actions, EDRF was in fact NO 

[Ignarro et al 1987; Palmer RM et al 1987]. Since then, the progress in understanding 

the biological role of NO has been remarkable, culminating in the Nobel Prize for 

Medicine and Physiology awarded to Murad, Ignarro and Furchgott in 1998 for their 

discoveries concerning NO as a signaling molecule in the cardiovascular system 

[Official website of the Nobel Foundation: 

http://nobelprize.org/nobel_prizes/medicine/laureates/1998/]. 

 

The half-life of NO at physiological concentration is short (seconds) and it 

decomposes to nitrite (NO2
-) and nitrous oxide (NO3

-) in aqueous solutions, a 

reaction catalyzed by transition metals such as iron [Singh & Evans 1997].  

It is therefore no wonder that NO is inactivated by haemoglobin in a reaction that 

forms methaemoglobin, NO2
- and NO3

-. Due to its distinct chemical properties, NO is 

http://nobelprize.org/nobel_prizes/medicine/laureates/1998/
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able to participate in a wide range of nitrogen-based biological reactions [Gow & 

Ischiropoulos 2001]. The nature of these reactions is mainly determined by the 

presence of an unpaired electron (i.e. NO as a free radical), or the existence of 

nitrogen in a variety of oxidation states (reminiscent of oxygen). Therefore, nitrogen 

can exist as a stable, fully reduced molecular nitrogen form, or fully oxidized as 

nitrate. However, nitrogen can also exist in several partially reduced states, viz. 

nitroxyl anion (NO-); nitric oxide (NO); nitrosonium cation (NO+); or as nitrite (NO2
-). 

Each of the partially reduced forms of nitrogen, also referred to as reactive nitrogen 

species (RNS), has distinct reactivity properties. It is the existence of such a variety 

in reactivity that explains much of the biochemical behaviour of NO [Gow & 

Ischiropoulos 2001]. One of the most significant properties of NO with regards to its 

biological effects is its ability to react with a number of molecules in the body. Indeed, 

NO and other RNS have been shown to react with proteins, nucleic acids, lipids and 

sugars [Brune & Lapetina 1995; O’Donnell et al 1999; Yermilov et al 1995]. For the 

purposes of this study, we will focus on the reactions of NO with proteins, which can 

be divided into 3 broad categories, namely reaction with metal-containing proteins, 

thiol-containing proteins and oxides [Gow & Ischiropoulos 2001].  

 

The discovery that NO reacts with, and activates, soluble guanylate cyclase (sGC) 

[Ignarro et al 1987; Murad 1994; Murad 1998] was the first known physiological 

interaction described for NO. In fact, the reaction between NO and the heme 

prosthetic group of sGC is the trigger of the signaling cascade that leads to smooth  

 

 

 



 56

 

 

 

 

 

 

 

 

 

Fig. 1.15 The NO-sGC-cGMP pathway. (Modified from Friebe & Koesling 2003). 

 

 
Fig 1.16 The NO-sGC reaction and activation of sGC. (Modified from Denninger & Marletta 

1999) 
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muscle relaxation, and sGC is generally viewed as the most important receptor for 

NO [Friebe & Koesling 2003]. The NO-sGC interaction is an example of NO’s ability 

to react with metals, since it binds to the iron within the heme group, which leads to 

conformational changes in the protein and ultimately enzyme activation [Murad 

1994]. Stimulation of sGC by NO results in a profound 200-fold increase in the 

guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP) 

conversion rate [Denninger & Marletta 1999; Friebe & Koesling 2003] (fig. 1.15 and 

1.16). Soluble GC has a very high affinity for NO; in fact the EC50 value for sGC is as 

low as 2 nM NO; which explains why NO, released at relatively low physiological 

concentrations in cells, is able to function as a signaling molecule since most of its 

biological effects are via sGC activation [Friebe & Koesling 2003]. The mechanism of 

sGC activation by NO is thought to be a 2-step process: (a) NO-binding to heme 

results in formation of a NO-Fe2
+-His-complex; (b) subsequently, breakage of the 

histidine-to-iron bond occurs, which initiates conformational changes and enzyme 

activation [Friebe & Koesling 2003]. In addition to sGC, NO also reacts with other 

metal-containing protein molecules including hemoglobin, myoglobin and cytochrome 

P450 [Gow  & Ischiropoulos 2001]. 

 

A second class of NO-sensitive proteins is the thiol-containing proteins. NO’s reaction 

with these proteins leads to the formation of so-called S-nitrosothiols (SNOs) [Gow & 

Ischiropoulos 2001]. Proteins that have been shown to be S-nitrosylated (leading to 

either activation or inhibition) by NO include p21 ras [Lander et al 1996], hemoglobin 

[Jia et al 1996] and caspase-3 [Kim et al 1997]. One of the most significant S-

nitrosylation reactions is between NO and the signaling protein, p21 ras, which leads 
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to the activation of the latter [Gow & Ischiropoulos 2001], and as a result, activation 

of various intracellular signaling pathways.  

 

Reaction of NO with oxides includes the well-known oxidation of NO by molecular 

oxygen [Gow & Ischiropoulos 2001] with formation of the ultimate final product, 

nitrite. In addition, due to NO’s free radical nature, it also readily reacts with 

superoxide to form the highly reactive peroxynitrite, with a wide range of (often 

harmful) effects.  

 

In summary, in view of NO’s gaseous nature and its high degree of reactivity, it is 

clear that there is potentially a huge number of biological reactions in which NO can 

participate. Generally, the degree of exposure to NO, availability of target molecules 

and structure of target proteins determine the reaction route taken by NO in a cell.  

Exposure to NO is determined by a combination of intracellular production (via NOS) 

and external sources (from other cells or in plasma) of NO. Indeed, NO’s reactions 

with thiol-containing proteins, superoxide and molecular oxygen are critically 

dependent on the flux of NO (from inside the cell and / or external sources) relative to 

the concentrations of these target molecules [Gow & Ischiropoulos 2001]. A good 

example of a protein that is structurally suited for reaction with NO, is sGC, which not 

only contains the heme-iron moiety for NO binding, but also cysteine residues 

making it susceptible to S-nitrosylation. 

 

The reaction of NO with superoxide to form peroxynitrite (ONOO-) deserves special 

mention. It is known to be the fastest biological reaction in which NO is involved [Gow 

& Ischiropoulos 2001]. In physiological conditions, superoxide generation is kept 
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within an acceptable range by its scavenger enzyme, superoxide dismutase (SOD) 

[Singh & Evans 1997]. The rate of reaction of superoxide with SOD is 2 x 109 M-1  

sec-1, whereas the rate of reaction of superoxide with NO is 6-10 x 109 M-1 sec –1 

[Estevez & Jordan 2002]. As a result, NO combines at least 3 times faster with 

superoxide than SOD, which has important biological implications. Therefore, should 

a situation develop where SOD is ineffective in scavenging superoxide, or where 

there is excess NO generation, the reaction will be directed towards ONOO- 

formation [Singh & Evans 1997; Estevez & Jordan 2002; Ferdinandy & Schulz 2003]. 

Refer to Table 1.2 for a summary of the molecular mechanisms, targets and 

biological effects of NO. 

 

Compared to ONOO-, NO is a relatively stable and non-reactive free radical [Estevez 

& Jordan 2002]. However, ONOO-
 on the other hand is an unstable, pro-oxidant 

species that exerts toxic effects on many molecules, including nucleic acids, lipids 

and proteins [Singh & Evans 1997]. It is thought that many of NO’s harmful effects 

are in fact mediated by ONOO- and not by NO itself [Ferdinandy & Schulz 2003], 

particularly when NO occurs in excess concentrations (such as generation by 

inducible NOS) [Singh & Evans 1997]. See figures 1.17 and 1.18 for schematic 

representations of the biologically important interaction between superoxide, NO and 

ONOO-. 
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Fig. 1.17 The cellular interactions between superoxide, NO and ONOO-. Although NO is not 

harmful by itself under physiological conditions, it becomes detrimental when the critical 

balance between cellular concentrations of NO, superoxide and SOD is disturbed leading to 

ONOO- generation (e.g. during ischaemia-reperfusion injury). Sources of superoxide in the 

body include NAD(P)H oxidases, xanthine oxidases (XOR) and mitochondrial electron 

transport activity. Detoxification of superoxide occurs when it is converted to H2O2 by its 

scavenger, SOD. ONOO- is detoxified when it combines with reduced glutathione (GSH) to 

form s-nitroglutathione (GSNO). ONOO- further decomposes to other highly reactive oxidants 

such as hydroxyl radical (OH•) leading to tissue damage. (Modified from Ferdinandy & Schulz 

2003) 

 

 

Fig. 1.18 Generation of harmful reactive nitrogen and oxygen species resulting from NO’s 

reaction with superoxide. (Reproduced from Singh & Evans 1997) 
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(ii) Enzymatic generation of NO in the heart 

 

The enzymes responsible for endogenous NO-generation in the body are called the 

NO synthases (NOS) [Schulz et al 2004]. NO is unique amongst the signaling 

molecules of the body, since it is a diffusable gas that can easily penetrate cell 

membranes [Bredt 2003]. Therefore, unlike conventional biological mediators, NO is 

not stored in vesicles, which means that NO release and signaling specificity must be 

controlled at the level of synthesis. Indeed, it has been suggested that the NOS 

enzymes are amongst the most tightly controlled in the body [Bredt 2003]. Currently, 

three main NOS isoforms have been described [Balligand & Cannon 1997]. Neuronal 

NOS (nNOS or NOS1) was originally described in the brain [Bredt et al 1991]; 

inducible NOS (iNOS or NOS2) in macrophages [Xie QW et al 1992] and endothelial 

NOS (eNOS or NOS3) in endothelial cells [Lamas et al 1992]. NOS is widely 

distributed throughout the body [Balligand & Cannon 1997]: neuronal NOS is 

expressed in neurons, cardiac conduction tissue, nerve terminals, epithelial cells, and 

skeletal muscle; iNOS in macrophages, endothelial cells, vascular smooth muscle 

cells, fibroblasts, and cardiomyocytes and eNOS in endothelial cells, kidney epithelial 

cells, hippocampal pyramidal neurons, skeletal myocytes, and cardiomyocytes 

[Balligand & Cannon 1997].  

 

All three NOS isoforms share a common structure [Balligand & Cannon 1997] (fig. 

1.19). The enzyme consists of two functionally complementary portions (connected 

by a calmodulin-binding domain in the middle): a carboxyl-terminal reductase domain 

and an amino-terminal oxygenase domain. The latter contains binding sites for heme, 

L-arginine and tetrahydrobiopterin (THB4). Upon activation of the enzyme, NADPH 
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releases electrons that are transferred from flavin adenine dinucleotide (FAD) or 

flavin mononucleotide (FMN) (in the carboxyl-terminal) to heme iron, which is 

subsequently activated to bind oxygen. The electron transfer from the flavins to heme 

is calmodulin-dependent. The activated heme iron, in the presence of oxygen and the 

substrate L-arginine, finally catalyzes the synthesis of NO and L-citrulline [Balligand 

& Cannon 1997] (fig. 1.20). Neuronal NOS and eNOS require the presence of 

physiological concentrations of calcium for calmodulin-binding and the transfer of 

electrons to heme [Bredt & Snyder 1990], whereas in iNOS, calmodulin-binding 

seems to be calcium-independent [Balligand & Cannon 1997].  

 

Neuronal NOS and eNOS are both constitutively expressed in cells with a result that 

they are generally associated with the generation of limited amounts of NO [Ziolo & 

Bers 2003]. In fact, eNOS is thought to be the source of continuous NO production 

under baseline, physiological conditions [Singh & Evans 1997]. Inducible NOS is 

normally not constitutively expressed, but has to be synthesized upon induction by 

factors such as cytokines [Balligand & Cannon 1997]. Inducible NOS is associated 

with high-output NO production and produces up to 1000-fold more NO than eNOS 

[Singh & Evans 1997]. 
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Fig. 1.19 Schematic representation of 

NOS, its co-factors, substrates and 

products (see text for details). Upon 

activation and calmodulin-binding, L-

arginine is catalyzed to NO and citrulline 

in the presence of oxygen. 

Fig. 1.20 Chemical reactions involved in 

the synthesis of NO.  (Reproduced from 

Singh & Evans 1997) 
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The heart expresses all three NOS isoforms [Balligand & Cannon 1997]. Neuronal 

NOS is expressed in cardiac sympathetic nerve terminals [Balligand & Cannon 1997; 

Schwarz et al 1995], conduction tissue [Balligand & Cannon 1997] and 

cardiomyocytes [Danson et al 2005]; iNOS has been demonstrated in 

cardiomyocytes [Balligand et al 1994; Buchwalow et al 2001], vascular smooth 

muscle cells [Balligand & Cannon 1997], cardiac endothelial cells [Balligand et al 

1995(a)], and cardiac fibroblasts [Balligand & Cannon 1997]; and eNOS in 

cardiomyocytes [Balligand et al 1995(b)] and cardiac endothelial cells [Balligand & 

Cannon 1997]. Recently, the expression of another calcium-dependent NOS enzyme 

has been described, viz. mitochondrial NOS (mtNOS) [Haynes et al 2004]. 

Transcripts of mtNOS mRNA have subsequently been identified in heart tissue 

[Gonzales et al 2005]. The exact nature of the mtNOS enzyme is still unclear; in the 

liver it has been identified as an isoform of nNOS [Haynes et al 2004], however this 

was disputed by another group who could not demonstrate the presence of any of 

the known NOS isoforms (nNOS, eNOS or iNOS) in liver mitochondria [Lacza et al 

2003]. The strategic location of NO-generating enzymes within an organelle that 

plays such a crucial role in the mechanism of cardioprotection, makes further 

investigations into the biological effects of mtNOS imperative. 

 

The location of NOS enzymes in specific subcellular domains plays an important role 

in their ability to be activated by calcium, to ensure proximity to the downstream 

targets of NO [Bredt 2003] and ultimately, in determining the cellular effects of NO 

[Ziolo & Bers 2003]. eNOS enzymes are specifically targeted to the Golgi complex 

and to flask-shape invaginations of the plasma membrane called caveolae [Bredt 

2003; Schulz et al 2004; Gratton et al 2000]. Caveolae are localized hubs of signaling 
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activity within the cell and many signaling molecules are associated with caveolae, 

including G-protein-coupled receptors, ion channels and pumps (especially those 

involved in the regulation of intracellular calcium) [Bredt 2003]. In fact, in endothelial 

cells, caveolae have been described as the major plasmalemmal vesicle structure as 

opposed to clathrin-coated vesicles [Gratton et al 2000]. The distinct location of 

eNOS enables the enzyme to interact with ß-adrenoceptors and L-type calcium 

channels [Schulz et al 2004]. (See fig. 1.21) 

 

Furthermore, the regulation of eNOS activity and exposure to external stimuli is the 

result of various protein interactions within the caveolae [Bredt 2003]. One of the 

major regulatory interactions with eNOS is with the most important protein in 

caveolae: caveolin-1 in endothelial cells and caveolin-3 in cardiomyocytes [Massion 

et al 2003], which results in eNOS inhibition [Bredt 2003; Ziolo & Bers 2003]. 

Inhibition of eNOS by caveolin is thought to be abolished by calmodulin since the 

latter causes displacement of caveolin from eNOS [Bredt 2003], a process that is 

further enhanced by binding of heat shock protein 90 (Hsp90) to eNOS [Gratton et al 

2000].  
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Fig 1.21 eNOS is localized in caveolae where it is regulated locally. The enzyme is targeted 

to the caveolus by myristoylation and palmitoylation (jagged lines). Upon an activating 

stimulus such as shear stress, Hsp90 is recruited, which in its turn recruits calmodulin, and 

activates eNOS. Additional activation of eNOS by Akt phosphorylation is also possible. 

(Reproduced from Bredt 2003) 
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Neuronal NOS is localized to the sarcoplasmic reticulum (SR) and is thought to 

associate with ryanodine receptors [Ziolo & Bers 2003], thereby increasing calcium 

release from the SR [Schulz et al 2004]. In the cardiomyocyte, the distinct subcellular 

localization of eNOS and nNOS has important consequences in the regulation of 

heart contraction [Bredt 2003]. In the caveolae, eNOS activation will lead to inhibition 

of the L-type voltage-dependent calcium channels, whereas nNOS (associated with 

the SR) will bind the ryanodine receptor, leading to calcium-release from the SR into 

the cytosol (see fig. 1.22). Inducible NOS, in contrast to eNOS and nNOS, is not 

believed to be localized or compartmentalized, and therefore occurs as a cytosolic 

enzyme [Ziolo & Bers 2003]. However, in a study that described the first 

immunocytochemical identification of iNOS in neonatal and adult cardiomyocytes, it 

was found that the enzyme was associated predominantly with the particulate 

component, i.e. the mitochondria, contractile fibres, plasma membrane and T-tubules 

[Buchwalow et al 2001]. They also demonstrated a constitutive expression of iNOS in 

the myocytes, which is in contrast to the commonly accepted view. It was speculated 

that based on the close association of iNOS with mitochondria and contractile fibers 

in their myocyte model, there may be a relationship between iNOS-derived NO, 

energy production, and contractile function in cardiac muscle. 
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Fig 1.22 Opposing effects of eNOS and nNOS in the regulation of cardiomyocyte 

contraction. eNOS activation leads to an attenuation of calcium influx through the L-type 

voltage-dependent calcium channel (VDCC), whereas nNOS activation results in stimulation 

of the ryanodine receptor (RyR) and increased calcium release from the SR into the cytosol. 

Therefore, eNOS activation leads to negative inotropic effects and nNOS to positive inotropic 

effects. (Reproduced from Bredt 2003) 
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The precise nature and effects of the subcellular localization and distribution of nNOS 

and eNOS in cardiac cells are not well understood yet, and investigations often 

produce paradoxical findings. The proposed opposite effects exerted by nNOS and 

eNOS on calcium-levels are not necessarily a conclusion shared by all researchers 

[Ziolo & Bers 2003; Massion et al 2003]. A case in point relates to the localization of 

nNOS: in addition to being associated with the ryanodine receptors (RyR) as 

described above [Bredt 2003], nNOS also colocalizes with the L-type calcium 

channels, which could, upon nNOS activation, lead to subsequent inhibition of the 

channels and therefore decreased NO-levels [Ziolo & Bers 2003]. In such a case, 

nNOS would result in two opposite effects on myocyte contractility. The effects of 

endogenous NOS and NO in cardiac cells, and the different hypotheses will be 

discussed later. 

 

(iii) Regulation of NOS in the heart 

 

The primary regulatory mechanism of eNOS and nNOS activity is increased 

intracellular calcium, without which calmodulin cannot bind to the enzymes [Bredt 

2003]. Furthermore, as discussed in the preceding section, the subcellular 

localization of eNOS and nNOS is a crucial component of NOS regulation. In the 

case of eNOS, caveolin (the primary coating protein of the eNOS-containing 

caveolae) acts as a negative regulator of the enzyme [Massion et al 2003], in 

addition to its role as a scaffolding protein. Caveolin’s eNOS regulating role has been 

described in both cardiomyocytes [Feron et al 1998], and endothelium [Bucci et al 

2000].  
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The eNOS-caveolin interaction can therefore be regarded two-fold:  

(1) regulation of basal NO production, and (2) localization of eNOS in specific 

subcellular areas where it is available for agonist activation [Massion et al 2003]. 

 

Reference has previously been made of the role of Hsp90 as an activator of eNOS 

by promoting eNOS-caveolin dissociation. Furthermore, increased Hsp90-eNOS 

interaction is observed in the presence of vascular endothelial growth factor (VEGF) 

stimulation, histamine or shear stress [Brouet et al 2001]. In addition to this, Hsp90 

promotes the recruitment of other eNOS-activating proteins, most notably that of the 

protein kinase PBK / Akt, which activates eNOS by phosphorylation on serine 1177 

[Brouet et al 2001]. Indeed, serine 1177 is the best-characterized phosphorylation 

(and activation) residue of eNOS [Massion et al 2003; Dimmeler et al 1999], and  

PI3-K / Akt phosphorylation of serine 1177 results in a 15-20-fold increase in eNOS 

activity [Bredt 2003]. Other factors that are thought to activate eNOS by serine 1177 

phosphorylation include shear stress, isometric vessel contraction, insulin [Bredt 

2003] and cardiac muscle stretch [Massion et al 2003]. Ischaemia has also been 

shown to activate eNOS within minutes [Depre et al 1997]; however prolonged 

ischaemia associated with increased tissue acidosis attenuates eNOS activity 

[Giraldez et al 1997].  

 

It is interesting to note that eNOS must be targeted to membranes (intracellular or 

peripheral) in order to be phosphorylated by Akt [Massion et al 2003]. The fate of 

eNOS after serine 1177 phosphorylation is still disputed, but is thought to be either 

translocated to the cytosol or moved within membrane structures [Massion et al 

2003]. Four other phosphorylatable residues have been identified, namely Ser116, 
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Thr495, Ser615 and Ser633 [Massion et al 2003]. Phosphorylation of Thr495 by 

AMP-activated kinase or PKC has been shown to inactivate eNOS [Schulz et al 

2004]. Although eNOS is a constitutive enzyme, its protein expression levels can be 

altered by various factors [Shah & MacCarthy 2000, Schulz et al 2004]. Angiotensin II 

(increased levels observed during myocardial ischaemia) has been shown to 

upregulate eNOS expression [Noda et al 1993], whereas TNF-α (also rapidly 

released in the ischaemic myocardium) decreases eNOS protein expression [de 

Frutos et al 2001]. In macrovascular endothelial cells, chronic fluid shear stress, 

exposure to transforming growth factor (TGF)-ß, cell proliferation, chronic exercise, 

and pregnancy have been shown to upregulate eNOS expression [Shah & 

MacCarthy 2000]. Treatment with the Gi-protein inhibitor, pertussis toxin, has been 

shown to both upregulate and activate eNOS in perfused rat hearts [Hare et al 1998]. 

In cardiomyocytes, 24 h elevation of cAMP levels have resulted in downregulation of 

eNOS, as did treatment of animals with the PDE inhibitor, milrinone [Shah & 

MacCarthy 2000].  

 

The regulation of iNOS is predominantly driven by modulation on transcription level 

[Massion et al 2003], although it is generally believed that this enzyme does not 

require the fine regulation of the calcium-dependent NOS enzymes. However, 

recently at least four proteins have been described that interact with iNOS, including 

caveolin-3 and Rac2 [Massion et al 2003].  Regulation of nNOS has not been 

researched as extensively as the other NOS isoforms, however, it has been shown to 

be expressed in cardiomyocytes [Bredt 2003] where chronic hypoxia exposure is 

thought to reduce nNOS expression [Mohan RM et al 2001]. Please refer to Table 

1.1 for a summary of the regulation of eNOS, nNOS and iNOS in the heart. 
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Table 1.1: Regulation of NOS protein expression and activity in the heart. Abbreviations: +, 

stimulation;  -, inhibition (Modified from Massion et al 2003) 
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(iv) The physiological effects of NO in the heart 

 

NO-sGC-cGMP signaling 

 

Originally, the effects of NO were mainly associated with its role in the regulation of 

the resting vascular tone, i.e. activation of the NO-sGC-cGMP-PKG pathway, which 

results in vasodilation via inhibition of the voltage-gated calcium channels [Schulz et 

al 2004]. In addition to the direct hemodynamic effects of endothelium-derived NO, it 

also exerts several other vascular actions. These include inhibition of platelet 

adhesion, activation and aggregation [Singh & Evans 1997], reduction of monocyte 

adhesion to the endothelium [Bath et al 1991], and induction of vascular cell 

adhesion molecule (VCAM)-1 [Marui et al 1993], thus making NO an important 

antithrombotic and anti-inflammatory role-player in the endothelium.  However, the 

realization that all three NOS isoforms are expressed in the cardiomyocytes 

themselves, led researchers to believe that NO may indeed also have direct 

myocardial effects [Massion et al 2003]. 

 

The NO-sGC-cGMP pathway is regarded as the predominant molecular mechanism 

of NO actions [Balligand & Cannon 1997]. Activation of the NO-sensitive sGC results 

in the conversion of guanosine triphosphate (GTP) to the second messenger cGMP 

(fig. 1.23), which activates two cGMP-dependent protein kinases (PKG I and PKG II) 

[Schulz et al 2004]. A second class of molecular targets of cGMP is the 

phosphodiesterases (cGMP activates PDE II and inhibits PDE III) [Schulz et al 2004]. 

cGMP has also been shown to modulate the activity of cGMP-regulated ion channels  
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Fig 1.23 The NO-sGC-cGMP pathway (Reproduced from Friebe & Koesling 2003) 
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[Friebe & Koesling 2003]. Collectively, these effectors are involved in the regulation 

of several physiological functions in the cardiovascular system. In summary, cGMP-

associated myocardial effects include (1) modulation of sarcolemmal calcium influx, 

(2) attenuated myofilament sensitivity for calcium, (3) altered SR function, (4) 

changes in the action potential, (5) cell volume modulation, and (6) reduction in 

oxygen consumption [Shah & MacCarthy 2000]. Several NO actions on the heart are 

mediated through cGMP-independent mechanisms [Shah & MacCarthy 2000; 

Balligand & Cannon 1997]. These include direct NO reactions with (1) proteins 

(amino, thiol, diazo and tyrosyl residues), (2) heme, (3) iron (Fe2+) and (4) adenylyl 

cyclase (AC) in cardiomyocytes [Shah & MacCarthy 2000]. It is thought that cGMP-

independent actions are particularly relevant when the high-output NO generating 

iNOS isoform is induced [Shah & MacCarthy 2000]. 

 

Effects on myocardial contractility: inotropic and lusitropic actions 

 

In 1991, the first study appeared that demonstrated a direct link between NO and 

effects on myocardial contractile function [Smith et al 1991]. It has since become 

clear that NO has several, but often contradictory effects in the heart [Shah & 

MacCarthy 2000]. The role of the NOS isoforms and subcellular localization in the 

diversity of NO-actions has been discussed earlier. Other factors in the 

microenvironment that could account for the modulation of the biological effects of 

NO include: (1) the cellular source of NO (e.g. endothelial cells produce more NO 

than cardiomyocytes), (2) the amount of NO produced (e.g. high-output iNOS-derived 

NO vs. low-output eNOS), (3) the number and availability of molecular targets within 

diffusion distance from NOS, (4) prevailing redox balance and antioxidant status, (5) 

interactions with neurohormonal and other stimuli, (6) the presence of disease, and 
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(7) species and methodological differences in the experimental context [Balligand & 

Cannon 1997; Shah & MacCarthy 2000]. 

 

Modulation of the ß-adrenergic pathway in cardiomyocytes is an important 

mechanism underlying the effects of NO on myocardial contractility [Balligand & 

Cannon 1997; Balligand 1999] (see fig. 1.24). The ß-adrenergic-adenylyl cyclase 

(AC)-cAMP-PKA pathway results in phosphorylation (opening) of L-type calcium 

channels, increased intracellular calcium concentration, and ultimately the 

enhancement of myofibrillar contraction [Balligand & Cannon 1997]. Simultaneous 

increases in NO-production and cGMP levels may either activate phosphodiesterase 

(PDE) II or inhibit PDE III [Schulz et al 2004]. PDE II activation leads to increased 

cAMP breakdown and thus attenuated calcium-inflow and cardiomyocyte contraction. 

Conversely, cGMP-dependent PDE III inhibition potentiates ß-adrenergic-cAMP 

stimulatory effects [Balligand & Cannon 1997]. A third possible mechanism that can 

explain NO modulation of ß-adrenergic effects is direct L-type channel inhibition by 

PKG, thus potentiating the effects of the cGMP-PDE II attenuation of cAMP 

[Balligand & Cannon 1997].  

 

Given the above opposing effects of NO on myocardial contraction, as well as the 

previously described differences in eNOS- and nNOS-derived NO actions, it is clear 

that the modulatory effects of NO on contractile function are complex and 

contradictory [Massion et al 2003]. The original discovery that the NO-cGMP pathway 

exerts effects of NO on myocardial contraction under basal (unstressed) conditions 

was regarded as a novel concept in cardiac function regulation at the time [Mohan et 

al 1995].  
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Fig. 1.24 Modulation of ß-adrenergic signaling in cardiomyocytes by NO. Refer to text for 

details. Abbreviation: M-chol, muscarinic cholinergic receptor. (Reproduced from Balligand & 

Cannon 1997) 
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From this study, it was suggested that basal, tonic release of endogenous NO under 

physiological conditions led to a preservation of myocardial function [Mohan et al 

1995]. The NO effects followed bimodal pattern: at low (submicromolar NO doses), a 

small positive inotropic effect was observed, and at high (micromolar or above doses) 

a negative inotropic effect [Mohan et al 1995; Shah & MacCarthy 2000]. In a study on 

isolated rat cardiomyocytes, it was shown that NO donors (SNAP and DEA/NO) 

exerted a negative inotropic effect independent of cGMP-elevation [Sandirasegarane 

& Diamond 1999]. Another study on cultured rat cardiomyocytes showed that iNOS-

derived-NO resulted in attenuated cAMP levels in ß-adrenergic stimulated cells, 

which was partly mediated by a cGMP-dependent mechanism [Joe et al 1998]. The 

conclusion from these findings was that NO generated by iNOS might participate in 

cardiac contractile depression in this manner, particularly in situations of iNOS 

induction such as cytokine exposure.  

 

Although most studies have focused on the inotropic effects of NO, others have 

demonstrated a significant role for NO in myocardial relaxation and diastolic 

properties (lusitropic effects) [Shah et al 1994; Paulus et al 1994]. In these studies 

treatment with cGMP analogues (in isolated cardiomyocytes), endothelium-

dependent agonists (in papillary muscle) and NO donors (in isolated hearts) resulted 

in the induction of earlier isotonic twitch relaxation, increased diastolic cell length and 

premature LV relaxation [Shah & MacCarthy 2000]. In isolated cardiomyocytes, NO 

was found to result in a negative chronotropic effect by decreasing the rate of 

spontaneous beating [Feron et al 1998]. Currently, it is thought that NO derived from 

nNOS (in cardiac ganglia) and eNOS (in cardiomyocytes) act to potentiate 

parasympathetic (vagal) inhibition of heart rate [Massion et al 2003].  
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Metabolic effects of NO 

 

NO does not only affect myocardial contractile function. NO (endogenous and 

exogenous) has also been shown to exert metabolic effects on the myocardium 

[Brutsaert 2003]. These include decreased myocardial oxygen consumption 

(Brutsaert 2003; Loke et al 1999; Trochu et al 2000], the regulation of mitochondrial 

metabolism by direct inhibition of the respiratory chain [Stumpe et al 2001], as well as 

utilization of energy substrates by reducing myocardial glucose uptake [Tada et al 

2000]. These effects are suggestive of a putative cardioprotective mechanism for NO 

[Brutsaert 2003]. NO has also been shown to inhibit electron transfer in the 

mitochondria [Cleeter et al 1994]. In addition, NO has recently been shown to directly 

activate the mitochondrial KATP channels [Sasaki et al 2000], which led researchers at 

the time to believe that NO might play a crucial role in what was then regarded as the 

candidate end-effector of IP-protection. Furthermore, a possible role for NO derived 

from iNOS in the induction of apoptosis has been shown in neonatal mouse 

cardiomyocytes treated with the cytokine TNF-α [Song et al 2000]. 

 

See Table 1.2 for a summary of molecular mechanisms and targets of NO, and fig. 

1.25 for a schematic representation of the biological effects of low and high NO 

concentrations in the cardiovascular system. 
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MECHANISMS TARGET MOLECULES FUNCTIONAL EFFECTS 
1. Interaction with Heme 
proteins 

Guanylyl Cyclase cGMP generation 

 Hemoglobin, myoglobin Inactivation of NO 
 Cyclo-oxygenase 2 Activation of prostaglandin 

and thromboxane 
generation 

 NOS Inhibition of NO production 
   
2. S-Nitrosation of thiols NADPH oxidase Enzyme inhibition 
 Glutathione Depletion of intracellular 

stores 
 Hemoglobin Exchange of NO to other 

acceptors 
 Tissue plasminogen 

activator 
Activates vasodilatation 
and anti-platelet effects 

   
3. Binding to non-heme 
iron 

Mitochondrial electron 
transport chain 
(complexes I, II and IV) 

Inhibition of high-energy 
phosphate metabolism 

 Ribonucleotide reductase Inhibition of DNA synthesis
 Aconitases In mitochondria: inhibition 

of Krebs Cycle; In Cytosol: 
regulation of iron 
metabolism 

   
5. Oxidation DNA strand breaks Depletion of cell energy 

stores; contractile 
dysfunction 

   
6. Tyrosine nitration Cytoskeletal proteins, 

contractile filaments 
Contractile dysfunction? 

 
 
Table 1.2: Molecular mechanisms and targets and effects of NO relevant to cardiovascular 

biology.  Please see text for detail. (Modified from Balligand & Cannon 1997) 
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Fig 1.25 Effects of low (eNOS- or nNOS-derived) or high (iNOS-derived) NO concentrations 

in the cardiovascular system. (Modified from Schulz et al 2004) 
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(v) NO in myocardial hypoxia, ischaemia and ischaemia-reperfusion 

 

Evidence for production of NO during hypoxia and ischaemia / reperfusion 

 

NO (or the lack thereof) affects various aspects of hypoxia, ischaemia and 

ischaemia-reperfusion in the heart [Shah & MacCarthy 2000]. A role for NO under 

pathophysiological conditions in which oxygen availability is compromised has been 

demonstrated in a variety of experimental models and animals [Node et al 1995; 

Komarov et al 1997; Depré et al 1997; Pohl & Busse 1989; Kitakaze et al 1995]. It is 

generally accepted that ischaemia and hypoxia (in the absence of reperfusion or 

reoxygenation) result in increased levels of NO in the myocardium [Shah & 

MacCarthy 2000], however this seems to depend on the duration of ischaemia / 

hypoxia (within ∼ 30 min) [Shah & MacCarthy 2000; Schulz et al 2004].  

 

In canine hearts, increased levels of nitrates + nitrites (NOx; metabolic end products 

of NO) were measured in the coronary blood during ischaemia [Node et al 1995]. In 

another study on isolated rat hearts, 40 min of global ischaemia also resulted in 

increased NO-production [Komarov et al 1997]. The same trend was observed in 

isolated perfused rabbit hearts subjected to different periods of low-flow ischaemia 

[Depré et al 1997]. In this study, using the L-citrulline assay as an indicator of NOS 

activity, increased activity was observed, which disappeared after the onset of 

reperfusion (fig. 1.26). In 1989, hypoxia (as opposed to ischaemia) was also shown 

to be an important stimulus for increased NO-production in a study on femoral artery 

segments [Pohl & Busse 1989]. Subsequently, it was demonstrated that hypoxia   
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Fig. 1.26 NOS activity in isolated rabbit hearts during ischaemia (30 min – 90 min) and 

reperfusion (90 min – 105 min). An increase in NOS activity, as measured by the L-citrulline 

assay, was observed rapidly after the onset of low-flow ischaemia and started decreasing 

again after 30 min of ischaemia and during reperfusion. (Modified from Depré et al 1997) 

 

 

 

 

 

 

 

 

 

 

Fig. 1.27 Total eNOS protein expression in heart tissue at different time-points of exposure 

to ischaemia. At 60 min ischaemia a ∼ 40% reduction in eNOS was observed compared to 

control levels. (Reproduced from Giraldez et al 1997) 
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induced NO-production in coronary endothelial cells [Park et al 1992], as well as 

isolated adult rat cardiomyocytes [Kitakaze et al 1995].The same group in a 

subsequent study demonstrated on open-chest dogs that treatment with a NOS-

inhibitor (L-NMMA) resulted in a reduction in blood flow during regional low-flow 

ischaemia, which was associated with a worsening of contractile function and 

metabolic function [Kitakaze et al 1996]. This study was one of the first to suggest a 

putative protective role for endogenously produced NO during ischaemia [Shah & 

MacCarthy 2000]. Ischaemia-induced NO-production seems to change over time 

since it has been shown that prolonged myocardial ischaemia is associated with a 

decline in NO levels [Shah & MacCarthy 2000; Schulz et al 2004]. Prolonged 

ischaemia of more than 60 min in isolated perfused rat hearts resulted in a loss of 

total eNOS protein expression as well as NOS activity, which was ascribed to the 

increasing levels of tissue acidosis [Giraldez et al 1997] (fig. 1.27). This trend was 

also observed in a model of isolated cardiomyocytes subjected to 2 h of simulated 

ischaemia, where it was shown that acidosis attenuated guanylyl cyclase-induced 

cGMP synthesis [Agullo et al 2003]. 

 

Despite several investigations examining the role of NOS and NO during hypoxia and 

ischaemia, more research is necessary to establish the significance of NOS 

regulation in cardiomyocytes during hypoxia / ischaemia [Jung et al 2000]. 

Furthermore, most of the data available focus on the role of eNOS, whereas the role 

of the high-output NO generating iNOS is comparatively under-investigated. It is 

unlikely that the contribution of nNOS is important in this regard since its expression 

seems to be downregulated during hypoxia [Mohan RM et al 2001]. A role for iNOS 

was demonstrated in a study on rat hearts in which it was shown that hypoxia 
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induced iNOS expression in cardiomyocytes, and that the iNOS gene was regulated 

by hypoxia inducible factor (HIF)-1 [Jung et al 2000].  

 

Detrimental effects of NO during ischaemia and hypoxia 

 

Although it is thought that most of the detrimental effects of NO during ischaemia-

reperfusion occur during the reperfusion phase (see later), some studies have 

demonstrated a harmful role for NO released during ischaemia and hypoxia in the 

absence of reperfusion or reoxygenation. In perfused rabbit hearts the addition of a 

NOS inhibitor prior to and during ischaemia, but not reperfusion, protected the hearts 

against ischaemic damage (improved functional recovery and attenuated enzyme 

release) [Depré et al 1995] (See fig. 1.28). Another study on isolated working rabbit 

hearts also demonstrated similar trends [Schulz & Wambolt 1995], where the 

administration of L-NAME and L-NMMA (NOS inhibitors) prior to the onset of 

ischaemia, but not present at the beginning of reperfusion, resulted in beneficial 

effects. In fact, in the case of the L-NAME treated hearts, an almost complete 

protection against myocardial mechanical dysfunction was observed, suggesting a 

damaging role for ischaemia-induced NO-release [Schulz & Wambolt 1995]. In a 

more recent study on endothelial cells, it was demonstrated that hypoxia potentiated 

NO-mediated apoptosis, probably via the formation of peroxynitrite [Walford et al 

2004]. In another study that investigated a role for endogenous NO during ischaemia, 

isolated rat hearts were subjected to cardioplegic arrest +/- a NOS inhibitor (L-

NMMA). Results showed a significant improvement in post-ischaemic mechanical 

function in the L-NMMA treated group [Amrani et al 1995]. See fig. 1.29 for a  
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Fig. 1.28 Development of contracture in perfused rabbit heart exposed to 60 min ischaemia 

and 30 min reperfusion. Treatment with a NOS inhibitor (L-NMMA) prior and during 

ischaemia, but not reperfusion, delayed the onset and reduced degree of contracture (filled 

circles on graph), compared to untreated controls (open circles). These results suggested 

that NO produced during ischaemia was harmful and contributed to the ischaemic damage. 

(Reproduced from Depré et al 1995) 
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Fig. 1.29 Signaling events involving NO production during hypoxia and ischaemia. Hypoxia / 

ischaemia activates PI3-kinase and PKB (protein kinase B or Akt) which results in activation 

of eNOS via phosphorylation of Serine1177. PKA and PKC can either activate or inhibit 

eNOS. Hypoxia- / ischaemia-associated tissue acidosis inhibits the activity and 

downregulates the expression of eNOS, however it has been shown to increase NO-

production in an eNOS-independent manner. Hypoxia / ischaemia can also increase NO 

production by LDH activation and nitrite-to-NO conversion catalyzed by xanthine oxidase 

(XO). (Reproduced from Schulz et al 2004) 
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schematic representation of the signaling events leading to increased NO production 

during hypoxia and ischaemia. 

 

Detrimental effects of NO during ischaemia-reperfusion 

 

Studies demonstrating a harmful role for NO are more abundant in the context of 

ischaemia and reperfusion injury [Shah & MacCarthy 2000]. In a study on piglets 

subjected to hypoxia-reoxygenation on cardiopulmonary bypass, it was shown that 

treatment with a NOS inhibitor resulted in nearly complete protection against 

myocardial reoxygenation injury [Matheis et al 1992]. When the NO substrate, L-

arginine was co-administered with the NOS inhibitor, the protective effects of NOS 

inhibition were abolished. In another study on isolated rat hearts subjected to hypoxia 

– reoxygenation, it was shown that addition of SNP (a NO donor) during 

reoxygenation was detrimental, as opposed to when it was added during the hypoxia 

period [Draper & Shah 1997].  Another group [Csonka et al 1999] also demonstrated 

harmful accumulation of NO in isolated perfused rat hearts during ischaemia-

reperfusion. They reported a marked increase in tissue NO levels after 30 min 

ischaemia by a spin trapping method, which was reduced in hearts pretreated with 

the NOS inhibitor, LNA. Reduction in NO levels was accompanied by improved 

postischaemic cardiac performance, decreased LDH release and reduced incidence 

of ventricular fibrillation (VF), which led the authors to conclude that the accumulation 

of NO during ischaemia and reperfusion contributed to the injury. Others have also 

demonstrated a harmful role for NO in ischaemia-reperfusion by reporting a reduction 

in infarct size in the presence of NOS inhibition [Woolfson et al 1995; Patel et al 

1993]. 
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A harmful role for iNOS-derived NO was described in a study on rabbits in which 

myocardial infarction (MI) was induced [Wildhirt et al 1995]. In this study, MI was 

induced by coronary occlusion, and iNOS activity measured 72 h post-MI. Findings 

showed that iNOS activity increased significantly (in the absence of changes in 

eNOS activity compared to baseline), which contributed to the observed left 

ventricular contractile depression and reduced myocardial bloodflow. The harmful 

effects of iNOS-derived NO were significantly reversed in the presence of the iNOS-

specific inhibitor, SMT. 

 

A plausible explanation for the detrimental effects of NO in ischaemia-reperfusion 

may be the formation of its highly reactive derivative, peroxynitrite [Ferdinandy &  

Schulz 2003]. In a study on isolated rat hearts exposed to global ischaemia and 

reperfusion, greatly increased NO levels were observed during the early post-

ischaemic phase of reperfusion, which was associated with myocardial injury and a 

concurrent burst of superoxide and peroxynitrite release [Wang & Zweier 1996]. 

Pretreatment with L-NAME (NOS inhibitor) or SOD (superoxide dismutase; 

superoxide scavenger) was associated with attenuated reperfusion injury, suggesting 

that the harmful effects of NO during ischaemia-reperfusion may in fact be mediated 

by the actions of peroxynitrite, rather than by NO itself (see section 1.3 (i)). In another 

study on rat papillary muscle, it was found that exposure to hypoxia and 

reoxygenation resulted in reduction of contraction and O2 -uptake (respiration), which 

was significantly reversed by a NOS inhibitor, a ROS scavenger, and a peroxynitrite 

scavenger [Xie et al 1998]. When endogenous peroxynitrite release was mimicked 

(administering a combination of a NO-donor, SNAP, and pyrogallol, a superoxide-  

 



 90

 

 

 

 

 

Fig. 1.30 Schematic representation of the proposed roles for NO in post-MI heart failure. See 

text for details. (Reproduced from Razavi et al 2005) 
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releasing agent), similar effects on contraction and respiration were observed than in 

hypoxia-reoxygenation injury.   

 

A dual role for NO has also been proposed in the development of heart failure 

following myocardial infarction (MI) [Razavi et al 2005]. Two major pathways have 

been suggested: (1) decreased vascular eNOS activity and NO-dependent 

vasodilatation, which contributes to increased vascular resistance, and (2) increased 

cytokine expression (e.g. TNF-α) leading to iNOS induction and production of large 

amounts of NO. High levels of NO may lead to cardiomyocyte apoptosis. However, it 

can also result in vasodilatation, which is beneficial. See fig. 1.30 for a schematic 

representation of the proposed role for NO in post-MI heart failure. 

 

(vi) The role of NO in protection against ischaemia –reperfusion injury 

 

In the previous section, attention was mostly given to the harmful role of NO and its 

reactive derivative, peroxynitrite, in hypoxia, ischaemia and ischaemia-reperfusion. 

However, NO has also been shown to be beneficial in these conditions [For reviews 

see: Bolli 2001; Schulz et al 2004; Shah & MacCarthy 2000; Ferdinandy & Schulz 

2003]. It is important to distinguish the protective role of NO in the ischaemia-

reperfused myocardium from the role of NO in the preconditioned myocardium [Bolli 

2001]. In this section, focus will be on the former. The modulation of the severity of 

ischaemia-reperfusion injury by NO has been widely studied. Most of the studies 

have used a pharmacological approach (either inhibition of NOS or enhancement of 

NO availability with NO-donors) prior to, during or after ischaemia, whereas some 

have utilized NOS-deficient animals [Bolli 2001]. In an extensive review on the role of 
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NO in cardioprotection, a meta-analysis of 92 studies during the preceding 10 years 

indicated that 73% had demonstrated a protective effect for NO in myocardial 

ischaemia (either endogenous or exogenous NO) [Bolli 2001]. In this review, it was 

suggested that the beneficial effects of NO were independent of the type of 

ischaemia applied (regional or global), the type of animal species, the experimental 

model (in vivo, isolated heart or isolated cell) or the measured endpoint. In a more 

recent review, the same authors argue that the role of NO in ischaemia should be 

regarded as ubiquitously cardioprotective [Jones & Bolli 2006].   

 

The proposed mechanisms of NO protection in ischaemia are summarized in fig. 

1.31. The classical NO-sGC-cGMP-PKG signaling pathway has been discussed 

earlier, and this pathway is regarded as a mechanism through which NO may exert 

protection by reducing intracellular calcium [Ferdinandy & Schulz 2003]. NO can also 

protect by the termination of chain propagating lipid radical reactions due to oxidant  

stress [Rubbo et al 1994]; prevention of platelet adhesion to the endothelial surface 

by inhibiting the activity of platelets and neutrophils [Kubes et al 1991; Radomski et al 

1987]; counteraction of the toxic effects of peroxynitrite [Villa et al 1994]; 

mitochondrial KATP channel activation [Sasaki et al 2000] and anti-apoptotic effects 

[Weiland et al 2000]. 

 

Beneficial effects of NO during ischaemia have been observed in ex vivo (isolated 

heart and isolated cell) studies as well as in vivo [Ferdinandy & Schulz 2003]. In 

isolated perfused heart investigations, protective effects of NO have generally been 

reported based on improved post-ischaemic contractile function, reduction in infarct 
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Fig. 1.31 Proposed mechanisms of protection of NO in ischaemia (Reproduced from 

Ferdinandy & Schulz 2003) 

 

 

 

 

 

 



 94

size and in arrhythmia’s [Shah & MacCarthy 2000]. Given the multitude of studies, 

only a few will be highlighted here. A protective role for endogenous NO against 

ischaemia-reperfusion injury was shown in a study on isolated mouse hearts in which 

eNOS was knocked out [Sumeray et al 2000]. Results showed that the eNOS knock- 

out hearts suffered significantly larger infarcts than wildtypes. A protective role for 

exogenous NO was demonstrated in a study on isolated rabbit hearts [Horimoto et al 

2000]. Hearts were pretreated with the NO precursor L-arginine and subsequently 

subjected to an ischaemia-reperfusion protocol; results indicated that the treated 

hearts developed significantly smaller infarct sizes than control groups. In another 

study on isolated rat hearts, the NO-donor nitroprusside was administered to hearts 

subjected to ischaemia-reperfusion to examine the effect of exogenous NO. They 

found that nitroprusside significantly improved post-ischaemic mechanical function 

compared to untreated hearts [Du Toit et al 1998].  

 

Several in vivo studies have also demonstrated a beneficial role for NO during 

ischaemia [for review, see: Bolli 2001]. In a study on rabbits, hearts were subjected 

to coronary occlusion followed by reperfusion and the effect of endogenous NO 

inhibition was investigated. Results showed a significant increase in infarct size 

compared to control in the NOS inhibitor treated group [Williams et al 1995]. The role 

of exogenous NO during ischaemia-reperfusion was investigated in an open-chest 

working pig heart by administering the NO-precursor, L-arginine. Findings indicated 

that L-arginine reduced myocardial stunning and arrhythmias compared to untreated 

hearts [Engelman et al 1995].  
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(vii) Summary of the role of NO in ischaemia 

 

From the above it is clear that the literature contains conflicting data with regards to 

the effects of NO during hypoxia, ischaemia and ischaemia-reperfusion. Although it is 

Bolli’s contention that NO is fundamentally cardioprotective and that its beneficial 

properties are not influenced by factors such as experimental models or protocols 

(See Section 1.3 (vi)) [Bolli 2001; Jones & Bolli 2006], others are of the opinion that 

several factors other than NO itself can influence the outcome (beneficial or harmful) 

[Shah & MacCarthy 2000]. These include (1) the experimental preparation (in vivo vs. 

ex vivo; isolated heart vs. isolated cell; different animal species), (2) the experimental 

protocol (perfusion buffer composition; type and duration of ischaemia; ischaemia 

alone or followed by reperfusion), and (3) the end-points measured (functional 

recovery vs. infarct size). A factor that has become increasingly evident in the 

interpretation of data recently, is the role of peroxynitrite formation, especially when it 

is formed in high concentrations [Shah & MacCarthy 2000]. Peroxynitrite is generated 

in situations of high NO production such as during reperfusion of the ischaemic 

myocardium or iNOS induction [Ferdinandy & Schulz 2003]. Under these conditions, 

NO will predominate over SOD and react with superoxide to form peroxynitrite 

[Ferdinandy & Schulz 2003]. The deleterious effects of peroxynitrite are further 

influenced by the existing antioxidant status of the microenvironment. In hindsight, it 

is clear that many investigators did not consider the effect of peroxynitrite simply 

because its potential role as a harmful by-product of NO metabolism was not yet fully 

understood at the time. 
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A further factor that should be considered in the interpretation of data emanating from 

NO studies, is the use of NOS inhibitors [Ferdinandy & Schulz 2003]. As described 

earlier, several studies that employed the use of NOS inhibitors during ischaemia 

observed cardioprotection [Schulz & Wambolt 1995; Depre et al 1995; Woolfson et al 

1995]. In the interpretation of these findings, one should also consider other factors 

that are not necessarily related to decreased endogenous NO-production. The 

dosage of NOS inhibitors could influence results, as well as the NOS isoform-

specificity of the inhibitor. Drug effects unrelated to NOS inhibition may also play a 

role. An example of the latter is the discovery that L-NAME at high concentrations 

(>100 µM) has been shown to be a muscarinic receptor antagonist [Buxton et al 

1993]. 

 

(viii) The role of NO in early (classical) preconditioning 

 

Early (classical) preconditioning has been explained earlier. Protection is observed 

soon (within minutes) after the preconditioning stimulus (either a brief cycle (-s) of 

ischaemia and reperfusion, or mimicked pharmacologically), it is robust, but 

disappears within 1-2 hours after the initial stimulus [Yellon & Downey 2003]. For the 

purposes of this study, a “trigger” of preconditioning refers to an event or release of a 

factor during the initial stimulus, whereas a “mediator” of preconditioning is 

considered a factor or event that occurs during the sustained ischaemic period. One 

should also distinguish between ischaemic preconditioning (“IP”), where the initial 

stimulus is brief ischaemia, and pharmacological preconditioning, in which case IP is 

mimicked or simulated by substituting the brief ischaemia with a drug or other 

chemical substance. 
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Fig 1.32 Demonstration of NO as a trigger of IP-protection. From the preconditioned results 

(bar chart on the right), it is clear that administration of the NOS inhibitor, L-NAME, prior and 

during the IP protocol resulted in a partial reversal of the protective effects (end-point: aortic 

output). (Reproduced from Lochner et al 2000) 
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NO as trigger 

 

A triggering role for NO in early IP was shown for the first time in 1992 in an in vivo 

study on dogs [Vegh et al 1992]. In this study, IP was induced by a two-cycle  

ischaemic protocol followed by a sustained ischaemic period. Protection was 

confirmed by a significant attenuation in the severity of ischaemia-induced 

arrhythmias (ventricular premature beats, ventricular fibrillation and ventricular 

tachycardia). When the NOS inhibitor L-NAME was administered before the first 

ischaemic episode of the IP protocol, some of the marked protective effects of IP 

were lost. Other studies also demonstrated a triggering role for NO in IP. An 

investigation conducted in our own laboratory demonstrated similar effects on 

isolated perfused rat hearts [Lochner et al 2000] (fig. 1.32). When L-NAME was 

added before and during the IP protocol, functional recovery of the heart as observed 

during IP alone was partially attenuated. In addition, pharmacological preconditioning 

by pre-administering the NO-donors SNAP and SNP before sustained ischaemia 

conferred protection, similar to that observed with the IP protocol. In another study, 

on cultured neonatal rat cardiomyocytes, an IP protocol of simulated ischaemia-

reperfusion conferred protection as measured by a cell viability test and LDH-release 

[Rakhit et al 2000]. Administration of the NOS inhibitor, L-NMMA during the IP 

protocol blocked the protection observed in untreated IP groups.  

 

Pharmacological preconditioning with SNAP also protected the cells in a fashion 

similar to that of IP. An investigation into the role of NO as a trigger of IP-protection in 

embryonic chick cardiomyocytes reported results similar to the above; however, their 

findings suggested that the stimulation of NO production during the triggering period 
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was a consequence of mitochondrial KATP channel opening [Lebuffe et al 2003]. In 

addition, this study provided evidence of a significant role for ROS as a trigger of IP, 

upstream of the mitochondrial KATP channel (see fig. 1.33). 

 

Endogenous vs. exogenous NO 

 

Despite the evidence supporting a possible triggering role for endogenous NO in 

early IP by utilizing NOS inhibition, other studies failed to demonstrate protection in 

this way [Bolli 2001; Weselcouch et al 1995; Lu et al 1995; Woolfson et al 1995; Post 

et al 2000; Nakano et al 2000]. Therefore, the role of endogenous NO as a trigger of 

early IP does not seem to be fully established. In fact, there seems to be 

disagreement in the literature as to the role of endogenous NO production as a 

requirement for the triggering mechanism of IP. Bolli in his review stated that 

endogenous biosynthesis of NO was not required for the development of the early 

phase of IP [Bolli 2001], conversely, Ferdinandy & Schulz stated in their review that 

intact NO biosynthesis was indeed required [Ferdinandy & Schulz 2003]. Despite the 

conflicting data and opinions, it does seem as if most authors agree that exogenous 

NO in the form of pharmacological preconditioning does elicit protection. Several 

studies utilized NO-donors to induce protection: SNAP [Lochner et al 2000; Rakhit et 

al 2000; Nakano et al 2000], SNP [Lochner et al 2000], NTG [Bilinska et al 1996; Hill 

et al 2001], SIN-1 [Bilinska et al 1996], and L-arginine [Horimoto et al 2000].  
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ROS and peroxynitrite 

 

Closely associated with the role of NO in IP are reactive oxygen species (ROS) and 

peroxynitrite [Ferdinandy & Schulz 2003]. A triggering role for mitochondria-derived 

ROS in IP-protection was demonstrated in a study on isolated cardiomyocytes 

[Vanden Hoek TL et al 1998]. Results also showed that ROS, generated by KATP 

channel activation, performed a triggering role in IP [Lebuffe et al 2003]. See fig. 1.33 

for a schematic representation of the proposed interaction between ROS, NO and the 

mitochondrial KATP channel in the triggering of early IP.  

 

Given the evidence that both NO and ROS are involved as triggers of IP, it became 

plausible to hypothesize a triggering role for peroxynitrite, a product of NO and 

superoxide [Ferdinandy & Schulz 2003]. Indeed, in a study on isolated rat hearts, 

brief administration of peroxynitrite prior to sustained ischaemia exerted protection 

against arrhythmias [Altug et al 2000]. Furthermore, administration of the ROS 

scavenger, MPG, prior to peroxynitrite treatment or the IP protocol, significantly 

reversed the protection, thereby confirming a triggering role for peroxynitrite. A 

protective role for peroxynitrite was confirmed in subsequent studies [Altug et al 

2001; Soylemez et al 2003]. 
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Fig. 1.33 Proposed signal transduction relationships between ROS, NO and the 

mitochondrial KATP channel in the triggering of early IP. (Reproduced from Lebuffe et al 2003) 
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(ix) The role of NO in late preconditioning 

 

The late phase of IP occurs approximately 12 – 24 h after the initial IP stimulus, and 

although it lasts for up to 72 h, the protection elicited is not as robust as that of early 

IP [Bolli 2001]. However in addition to the fact that the protection lasts longer than 

early IP-protection, late IP has been shown to protect against both infarction and 

stunning [Bolli et al 1997; Bolli 2000]. These qualities have prompted some 

researchers to attribute greater clinical relevance to late IP than early IP [Bolli 2001]. 

The triggering mechanism of late IP is very similar to that of early IP, however, there 

seems to be little dispute over the role of NO as a trigger of late IP.  A triggering role 

for endogenous as well as exogenous NO in late IP has been demonstrated mainly in 

the in vivo setting [Bolli 2001; Qiu et al 1997; Takano et al 1998; Banerjee et al 1993; 

Guo et al 1999; Ping et al 1999; Hill et al 2001].  

 

Generally, the main mechanistic difference between early and late IP is the fact that 

late IP involves genetic reprogramming of the heart , which leads to the de novo 

synthesis of protective proteins [Bolli 2000], whereas early IP seems to involve rapid 

post-translational modification of existing proteins. An intriguing aspect of the role of 

NO in late IP is its dual role as both a trigger and mediator, involving two different 

NOS isoforms [Bolli 2001].  It is believed that during the triggering phase, brief 

ischaemia activates eNOS to release NO, which then subsequently leads to the 

induction of iNOS protein expression and a second wave of NO release [Bolli 2001] 

(see fig. 1.14).  The mechanisms for the iNOS-derived NO protection are listed in 

table 1.3. 
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PROBABLE MECHANISMS 
 

Inhibition of calcium influx 

Antagonism of ß-adrenergic stimulation 

Reduced contractility 

Reduced myocardial oxygen consumption 

Opening of KATP channels 

Antioxidant actions (superoxide and peroxynitrite) 

Activation of cyclo-oxygenase 2 

 

POSSIBLE MECHANISMS 
 

Preserved endothelium-dependent vasodilatation 

Reduced “no reflow” 

Reduced leukocyte infiltration 

Reduced release of cytokines 

Reduced expression of VCAM-1 

 
 
Table 1.3: Mechanisms of protection of iNOS-derived NO release during late IP (Modified 

from Bolli 2001) 
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(x) The non-uniform distribution of NOS and NO-production in cardiac cells 

 

From the previous sections, it is clear that the heart is able to endogenously generate 

NO. It has also been established that all the major cell types of the heart, viz. 

endothelial cells, cardiomyocytes, fibroblasts and vascular smooth muscle cells 

express NOS and produce NO. Although the physiological role of NO is relatively 

well established and uncontroversial, it seems that the actions of NO in 

pathophysiological conditions, when oxygen supply is compromised (hypoxia, 

ischaemia, ischaemia-reperfusion), are not well established. Similar conclusions can 

be drawn from studies investigating the role of NO in early IP. On the whole, NO 

seems to exert ambivalent actions under such conditions, ranging from harmful to 

protective, or of no consequence at all. Many explanations for the conflicting data 

have been proposed (see Section 1.3 (vii)): the nature of the experimental 

preparation and protocol, variability in end-points used, the role of oxidant generation 

(superoxide and peroxynitrite), and the existing redox status in the cellular 

microenvironment. Another (relatively poorly investigated) explanation for the 

contradictory effects of NO in the heart could be the differences in its production by 

the various cardiac cell types due to a non-uniform distribution of NOS and NO-

producing capacity.  

 

The amount and ultimate action of NO produced by the different cell types could vary 

depending on NOS isoenzyme predominance (e.g. high-output iNOS vs. low-output 

eNOS/nNOS), as well as the size of the respective cell type populations [Brutsaert 

2003; Shah & MacCarthy 2000]. Evidence points to the fact that the cardiac 

endothelial cells and ventricular cardiomyocytes collectively form the majority of NO-
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producing cells in the heart [Brutsaert 2003; Shah & MacCarthy 2000].  However, the 

relative importance of endothelium- and cardiomyocyte-derived NO remains to be 

established [Shah & MacCarthy 2000]. A non-uniform distribution of eNOS 

expression exists among the different cell subpopulations of cardiac endothelium 

(macrovascular: epicardial, endocardial and coronary, vs. microvascular: myocardial 

capillaries) [Brutsaert 2003; Brutsaert et al 1998]. It is thought that the cardiac 

microvascular endothelial cells (CMECs) express relatively lower levels of eNOS than 

the other endothelial cell types [Brutsaert 2003; Brutsaert et al 1998].  

 

Although most cell types in the heart demonstrate eNOS expression and activity, 

there seems to be a predominance of eNOS expression in cardiac endothelium 

compared to considerably lower expression in the cardiomyocytes [Brutsaert 2003]. It 

has to be noted, though, that this conclusion was derived from eNOS-labeling and 

staining studies, and not via direct measurements of eNOS protein or NO-production. 

The ratio of all cardiac endothelial cells to cardiomyocytes is ~ 3:1 [Brutsaert 2003], 

and it is thought that CMEC comprise ~ 33% of the cells in the myocardium [Nishida 

et al 1993]. Ventricular cardiomyocytes seem to be present in similar numbers to 

CMECs, since it has been reported that they constitute <40% of the total myocardial 

cell number [Gödecke et al 2001]. It is therefore fair to assume that the CMEC: 

cardiomyocyte cell number ratio in the myocardium is at least 1:1. Despite their 

suggested low eNOS expression relative to other endothelial cell types, it is likely that 

CMECs are of greater functional relevance with regard to interaction with the 

underlying ventricular cardiomyocytes, since no single CMEC is more than 2-3 µm 

from a cardiomyocyte [Shah & MacCarthy 2000]. The proximity within which these 

cell types are located from each other in the myocardium, suggests they are likely to 
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participate in paracrine crosstalk involving the highly diffusable NO [Shah & 

MacCarthy 2000; Brutsaert 2003; Brutsaert et al 1998; Andries 1998]. It is unclear, 

however, whether such a NO paracrine messenger pathway exists, and if it does, in 

which direction the net diffusion gradient would be. It is also unclear what the effects 

of external NO would be on the recipient cell particularly during pathophysiological 

conditions when NO-production is thought to increase. 
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C. Motivation and Aims 
 

(i) Problem identification, rationale and motivation 

 

NO is a free radical produced throughout the body by enzymes called NO synthases 

(NOS), and occupies a unique position amongst the body’s signalling molecules due 

to its gaseous nature and ability to rapidly exert paracrine effects by simple diffusion 

across cell membranes. In the heart, NO has been recognized as a major regulatory 

factor in physiological conditions [Brutsaert 2003]. However, the discovery that NO is 

a mediator in myocardial hypoxia / ischaemia has made it one of the fastest growing 

fields in basic cardiovascular research in recent years [Bolli 2001]. The interest in the 

role of NO has been fuelled by mounting evidence that it may act as a potent 

cardioprotective mediator during myocardial ischaemia and particularly in the context 

of late ischaemic preconditioning [Bolli 2001]. In fact, in a recent review, Jones & Bolli 

argue that the effects of NO should be regarded as fundamentally cardioprotective 

except when present in pharmacological doses [Jones & Bolli 2006].  

 

Indeed, NO has been shown to exert a harmful role during myocardial ischaemia / 

hypoxia, especially when produced in excessive amounts, or when its generating 

enzyme, NOS, experiences a lack of substrate or cofactors, in which case the 

generation of harmful radicals is favoured [Ferdinandy & Schulz 2003]. The exact 

mechanism that causes a switch from NO-induced protection to damage is not well 

understood. Some suggest that it may be due to a shift away from endothelial NOS 

(eNOS) activity (thought to be responsible for basal, low-output NO production) 

towards induction of the inducible NOS isoform, iNOS [Klein 2002]. There is evidence 

to suggest that iNOS is responsible for high-output NO generation during stress 
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conditions such as hypoxia / ischaemia, resulting in the generation of harmful 

reactive nitrogen species (RNS) such as peroxynitrite (ONOO-) [Ferdinandy & Schulz 

2003]. Interestingly, eNOS per se has also been shown to be activated during 

myocardial ischaemia leading to increased NO levels [Schulz et al 2004]. eNOS can 

therefore not be disregarded as a possible source of harmful NO levels during 

hypoxia; however, this aspect needs further investigation. Regulation and activation 

of eNOS in cardiac endothelial microvascular cells (CMECs) and cardiomyocytes is 

an area that needs more research [Shah & MacCarthy 2000]. Although eNOS has 

traditionally been regarded as a constitutive protein, it is now recognized that its 

expression levels can be altered by several stimuli [Shah & MacCarthy 2000], 

however, the role of hypoxia in the induction of increased eNOS levels in cardiac 

cells is not well established. Although nNOS is also expressed in cardiac tissue, the 

function and regulation of nNOS-derived NO are not well characterized [Danson et al 

2005]; in addition, the expression of nNOS in cardiomyocytes and its physiological 

role is still largely under investigation [Brutsaert 2003; Mohan et al 2001]. 

 

The non-uniform cellular distribution of eNOS (and therefore NO production) in the 

myocardium, and the cell-to-cell variation in NOS isoform expression, suggest that 

the production and effects of NO in the heart are unpredictable and likely to be 

characterized by many paracrine crosstalk pathways, e.g. between CMECs and 

ventricular cardiomyocytes. In view of the assumption that CMECs produce larger 

amounts of NO than cardiomyocytes, and their proximity to the cardiomyocytes in the 

myocardium, spill over diffusion into the underlying cardiomyocytes may occur.  
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A further question that is not yet fully answered is the role of NO as a protective 

agent in early IP. In isolated, perfused rat hearts, findings from our laboratory have 

demonstrated a clear role for NO as a trigger of ischaemic preconditioning (IP) 

[Lochner et al 2000]. However, according to a recent meta-analysis study [Bolli 

2001], the majority of studies could not find a triggering role for NO in early IP-

protection. Clearly, this matter needs more research. Many studies investigating the 

role of NO in ischaemia / hypoxia and IP relied on indirect measures to assess NO 

(e.g. the use of NO-donors, NOS inhibitors, nitrate+nitrite measurements, etc.) and 

did not determine actual NO generation or eNOS expression / activation. This 

shortcoming in the methodology complicated the interpretation of data (particularly in 

the case of negative or controversial findings) [Ferdinandy & Schulz 2003]. 

Therefore, more studies utilizing direct NO measurement methods are required. 

 

In summary, from the above, the following salient conclusions were made: (1) NO 

may play an important role in myocardial hypoxia; (2) Studies utilizing direct NO 

measuring methods are lacking, thereby contributing to the confusion about the role 

of NO in myocardial ischaemia / hypoxia and early IP; (3) There is insufficient data 

available to establish the exact role of eNOS in the heart during hypoxia, and to what 

extent eNOS is regulated / activated by hypoxia; (4) Although cardiomyocytes and 

endothelial cells collectively produce the bulk of NO in the heart, the relative 

contribution to NO-production by these respective cell types is not well established; 

(5) CMECs and cardiomyocytes are located in close proximity to each other, and 

therefore likely to participate in paracrine crosstalk involving many messengers, 

including NO; (6) CMECs express more eNOS than cardiomyocytes, which makes 

the existence of CMEC-to-cardiomyocyte spill over diffusion of NO conceivable; 
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however this has not been shown yet; (7) The role of NO as a trigger of early IP is 

still unclear and needs further investigation, particularly in the isolated cardiomyocyte 

model where the influence of nonmyocyte sources of NO are excluded 

 

(ii) Hypothesis 

 

In view of the above, we hypothesize that: 

 

(1) Hypoxia-induced NO generation by cardiomyocytes acts as a trigger in eliciting IP 

protection against subsequent sustained hypoxia in these cells. 

(2) Exposure to hypoxia induces higher production of NO compared to baseline 

conditions in both cardiomyocytes and CMECs. 

(3) CMECs produce more baseline and hypoxia-induced NO than cardiomyocytes; 

this is associated with higher eNOS expression levels in the CMECs; in addition, 

eNOS expression and activation and iNOS induction play an important role in 

hypoxia-induced NO production in both CMECs and cardiomyocytes. 

 

(iii) Specific aims: 

 

In order to test the above hypotheses, the development of suitable experimental 

models was a prerequisite. Specific aims were therefore: 

 

(1) Establishment of isolated adult rat ventricular cardiomyocyte and CMEC models. 

(2) Establishment of techniques for the evaluation of cell viability in isolated  

  cardiomyocytes and CMECs. 
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(3) Development of a technique for direct measurement of intracellular NO 

      generation in cardiomyocytes and CMECs. 

(4) Design and development of protocols for the induction of hypoxia and early IP in   

      isolated cardiomyocytes, and hypoxia in CMECs. 

(5) Determination of the role of NO and ROS in hypoxia and early IP in     

     cardiomyocytes; determination of the role of NO and ROS in hypoxia in CMECs. 

(6) Quantification of total and activated eNOS, and total iNOS, in cardiomyocytes and 

CMECs under baseline and hypoxia conditions. These two NOS isoforms were 

chosen for the purposes of this study, since more is known about their role in the 

heart, and their expression and activation have been more extensively reported in 

the literature compared to nNOS. The role of nNOS, and its regulation in cardiac 

tissue have only recently become more evident. In addition, in the only study to 

investigate the effect of hypoxia on nNOS expression in cardiomyocytes, it was 

found that the enzyme was downregulated, which would make it an unlikely 

candidate source of increased NO-production during hypoxia.                                                      
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CHAPTER 2 
 

MATERIALS AND METHODS 
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2.1 The isolated cardiomyocyte model 
 

(i) General 

 

In this study, all investigations involving cardiomyocytes were performed on 

ventricular cardiomyocytes isolated from the hearts of adult male Wistar rats (250 – 

300g). Rats were allowed free access to water and food prior to anaesthesia (30mg 

of pentobarbital sodium intraperitoneally). The aspects of the project pertaining to 

animal studies were approved by the Ethics Committee of the Faculty of Health 

Sciences, Stellenbosch University. Furthermore, investigations conformed to the 

"Guide for the care and use of laboratory animals" (US National Institutes of Health; 

NIH publication no 85-23, revised 1985). 

 

(ii) Isolation of adult rat ventricular cardiomyocytes 

 

Chemicals: HEPES, pyruvic acid, and 2,3 butane dionemonoxime (2,3-BDM) were 

obtained from Sigma Chemical Co. Bovine serum albumin (BSA) (fraction V, fatty 

acid free) was obtained from Roche, and collagenase (Type 2 Class 2) from 

Worthington. All other chemicals were of Analar grade and obtained from Merck.  

 

The myocyte isolation technique was based on a previously described method 

[Fischer et al 1991]. After removal, hearts were perfused retrogradely (at a pressure 

of 100 cm water) with a nominally calcium-free Krebs-Henseleit buffer to rinse blood 

from the coronary vessels. The rinsing solution (solution A) contained in mM: KCl 6; 

Na2HPO4 1; NaH2PO4 0.2; MgSO4 1.4; NaCl 128; HEPES 10; D-glucose 5.5 and 

pyruvic acid 2 (37°C, pH 7.4, gassed with 100% O2). After 5 minutes, perfusion was 
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switched to a digestion buffer (solution B) consisting of 0.7% BSA, 0.1% collagenase 

and 15 mM BDM added to solution A. Perfusion with the digestion buffer was done in 

a recirculating fashion and continued for a further 25 – 30 minutes until the tissue 

was digested. Calcium (100 µM) was added at 15 minutes and 20 minutes of 

digestion respectively. 

 

At the end of the perfusion, ventricles were carefully separated from the atria and 

remnants of the large vessels, gently torn apart and placed in a post-perfusion 

digestion buffer (solution C = 1 part solution A + 1 part solution B) containing 200 µM 

CaCl2, 2% BSA, 0.05% collagenase and 7.5 mM BDM. The cell suspension was then 

incubated in a shaking waterbath (under an O2 atmosphere, 37°C) for 15 minutes, 

followed by a step-wise calcium readministration period of 5 minutes to render 

calcium-tolerant cells (final concentration: 1 mM). The digested cell suspension was 

then filtered through a nylon net (mesh size 200 x 200 µm) and gently centrifuged at 

100 r.p.m. for 3 minutes (room temperature), after which the supernatant (containing 

non-viable myocytes, other cells and debris) was removed and the remaining pellet 

resuspended in a final incubation buffer consisting of solution A, containing 1 mM 

CaCl2 and 2% BSA (solution D). Finally, cells were allowed to sediment for 5 minutes 

at room temperature, after which the supernatant was removed and the final pellet 

resuspended in solution D. The final suspension was stabilized for 1 hr by slow 

rotation under an O2 atmosphere at room temperature. After the stabilization period, 

the purity of the pellet was further enhanced by filtering it through 2% BSA-containing 

solution D. See fig. 2.1 for a microphotograph of typical viable rod-shaped 

cardiomyocytes isolated by the collagenase-perfusion method in our laboratory. 
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(iii) Assessment of cardiomyocyte viability 

 

During the course of this study, we investigated four different methods of cell viability 

assessment in the isolated cardiomyocytes, viz. (1) trypan blue exclusion test 

[Armstrong & Ganote 1991; Cheung et al 1985; Marber 2000], (2) % rod-shaped 

myocytes [Armstrong & Ganote 1991; Cheung et al 1985; Marber 2000], (3) 

propidium iodide (PI) nuclear staining [Marber 2000; Vanden Hoek 1998; Yao 1999], 

and (4) MTT- (3-4,5-di-methylthiazol-2-yl-2,5-diphenyltetrazolium bromide) staining 

[Gomez et al 1997].   

 

The trypan blue exclusion test was a modification of the one originally described by 

Armstrong & Ganote [Armstrong & Ganote 1991]. Sampling for time zero baseline 

viability was done on the initial cell pellets before subdivision into experimental 

groups. The pellets of the respective groups were again sampled at the end of the 

experiments. Sampling was done by removing 12.5 µl (representing approximately 

80 000 - 100 000 myocytes) directly from pellets and suspending them in 100µl of 

hypotonic solution D (diluted 1:1 with deionized water, containing 5mM KCN) for 3 

minutes. Subsequently, 25 µl was removed from the KCN-Sol D-cell suspension and 

mixed with 25 µl counting medium consisting of hypotonic solution D, 5mM KCN, 

0.5% glutaraldehyde (Merck) and 1% trypan blue (Merck) for 30 seconds. Samples 

(10 µl each) of the final counting suspension were placed on a haemocytometer and 

examined light microscopically (100x magnification) to evaluate the absorption (non-

viable) or exclusion (viable) of trypan blue dye.  In this way, cells were osmotically 

challenged by placing them in hypotonic counting solutions thereby allowing 

assessment of osmotic fragility. 
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Fig. 2.1 Rod-shaped cardiomyocytes photographed (light microscope; 100x magnification; 

no trypan blue added) after isolation in our laboratory. Myocytes are considered viable when 

they are rod-shaped and exhibit a length:width ratio of ≥ 3:1 as the shown in the 

microphotograph.  
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Fig. 2.2 Microphotographs of isolated cardiomyocytes stained with 1% trypan blue. (A) 10x 

magnification shows a population of mainly trypan blue-excluding, rod-shaped viable 

myocytes, with a few blue-stained round non-viable cells. (B) 100x magnification 

demonstrating a viable rod with a non-viable blue round myocyte. 

A. 

B. 
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Time zero viability (viable cells calculated as a percentage of the total cells in a 

sample) varied between 70% and 80% and all cell isolates of less than 70% viability 

were discarded. For experimental purposes, Trypan blue excluding cells were 

expressed as a percentage of the total number of viable cells (%TBE) as determined 

before experimentation. See fig. 2.2 for microphotographs of viable and non-viable 

cardiomyocytes when stained with trypan blue.  

 

The use of myocyte morphology (% rod-shaped myocytes) as an index of viability 

was also modified from a technique described by the same group [Armstrong & 

Ganote 1991]. More or less the same procedure was followed as described for the 

trypan blue exclusion test, with the exception that cells were suspended in an 

isotonic solution D and counting medium. Rod-shaped cells (length:width ratio ≥ 3:1; 

see fig. 2.1) were considered viable, whereas square-shaped (length:width ratio ≤ 

3:1) and round cells were considered non-viable. Cell viability was expressed as the 

percentage rod-shaped cells present. See fig. 2.1 & 2.2 for microphotographs 

demonstrating morphological properties of cardiomyocytes. 

 

We also employed propidium iodide (PI) nuclear staining to assess myocyte viability. 

A modification of a technique previously described for endothelial cells was used 

[Navarro-Antolin et al 2001(b)]. Accordingly, cell membrane permeability to, and 

subsequent nuclear staining by PI (Sigma Chemical Co.) was evaluated by FACS 

analysis (Becton-Dickinson FACSCalibur analyzer, Franklin Lakes, NJ). 

Cardiomyocytes were incubated with 1 µM PI in solution D for 15 min followed by 

flow cytometric analysis of fluorescence in the FL-2 channel; data were expressed as 
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mean fluorescence intensity (% of control signal). Increased PI fluorescence 

indicates reduced viability. 

 

The MTT assay was based on a modification of a technique described in isolated 

cardiomyocytes [Gomez et al 1997]. This assay is based on the reduction of the 

water-soluble yellow coloured MTT (Sigma Chemical Co.) to its water-insoluble 

purple coloured formazan product. Cells were suspended in 35 mm Petri dishes to 

which 1% MTT in solution D was added, followed by 120 min incubation at 37°C. 

Following removal of the supernatants, cells were lysed in a mixture containing 1% 

HCL in isopropanol and 0.1% Triton in distilled water for 5 minutes on a rotator after 

which cells were centrifuged and the supernatant analyzed spectrophotometrically at 

540 nm. High optical density readings indicate increased viability. 

 

(iv) Induction of hypoxia in cardiomyocytes 

 

Unless stated otherwise, ischaemia in the myocytes was simulated by employing a 

technique referred to as “ischaemic pelleting”, which is essentially a form of hypoxia. 

The technique was a modification of a method described in isolated rabbit 

cardiomyocytes [Armstrong et al 1994(a); Armstrong & Ganote 1994(b); Armstrong & 

Ganote 1994(c); Armstrong et al 1995].  Cells were gently compacted into a pellet by 

centrifugation (250 rpm; 40 sec) in microcentrifuge tubes. Subsequently, most of the 

supernatant was removed, leaving behind a layer of approximately ⅓ of the pellet 

thickness. The supernatant was then covered with a layer of mineral oil to exclude air 

for the required duration (See fig. 2.3). 
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(v) Experimental groups 

 

On average the digested heart yielded 3 – 6 million ventricular cardiomyocytes, 

sufficient for at least 6-12 myocyte fractions (experimental groups), containing       

500 000 myocytes each. Investigations were repeated on myocyte fractions from 

different hearts, with sample sizes varying from n = 5 - 15. All experimental groups 

were incubated at 37°C in a standard tissue culture incubator (21% O2, 5% CO2, 40-

60% humidity). Cells of all experimental groups were suspended in solution D for the 

indicated time durations, unless stated otherwise.  Generally, all non-hypoxia 

samples were incubated as suspension cultures in 1 ml solution D in 35 mm tissue 

culture dishes, whereas samples subjected to hypoxia were incubated in 

microcentrifuge tubes as stated above. Please refer to the chapters that follow for 

more specific descriptions of the various experimental groups and protocols. 
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Fig. 2.3 Schematic representation of the ischaemic pelleting technique of hypoxia induction. 

Myocyte suspensions are placed into microcentrifuge tubes, gently centrifuged thereby 

compacting the cells to form a pellet. The supernatant is then aspirated leaving behind a 

layer of about a third of the pellet thickness. Finally, the supernatant is covered with a 

mineral oil layer and the sample incubated for the required duration in a standard tissue 

culture incubator at 37°C. (Modified from Armstrong et al 1995) 
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2.2 Cardiac microvascular endothelial cell (CMEC) cultures 
 

(i) Primary CMEC cultures purchased from VEC Technologies ™, USA 

 

Primary rat CMEC cultures were purchased from VEC Technologies (Rensselaer, 

NY, USA). The isolation procedure followed by the manufacturer was designed to 

ensure the highest possible yield of microvascular endothelial cells, and steps were 

taken to avoid contamination with large-vessel epicardial and endocardial endothelial 

cells based on a previously described technique [Nishida et al 1993]. Cells were 

received in 75 ml fibronectin-coated tissue culture flasks and grown to confluency in 

a microvessel endothelial cell growth medium, EGM (Clonetics EGM-2MV; Cambrex 

BioScience). The medium was supplemented with 10% fetal bovine serum (FBS; 

Highveld Biological), 0.1% gentamicin/amphotericin B, and standard endothelial cell 

culture growth factors (Clonetics). Cultures for experimental purposes were prepared 

from confluent primary cultures by exposing cells to trypsin 500 BAEE U/ml and 

EDTA 180 µg/ml in Dulbecco’s phosphate-buffered saline (Sigma Chemical Co.), 

followed by resuspension of detached cells in growth medium and subculture in a 1:3 

ratio. Subcultures, plated in fibronectin-coated dishes, needed ∼5 days to become 

confluent. Cultures from the third or fourth passage were used for the experiments. 

Purity of CMEC cultures was verified by microscopic identification of a typical 

“cobblestone” monolayer morphology, a distinct characteristic of cultured endothelial 

cells [Nishida et al 1993; Piper 1990] (See fig. 2.4). Contaminating cells such as 

fibroblasts and cardiomyocytes were absent. In addition, functional characterization 

was done by measuring the uptake of fluorescently labeled Dil-ac-LDL (Biomed 

Technologies, Stoughton, MA), a marker specific for endothelial cells [Nishida et al 
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1993; Piper 1990; Walsh et al 1998; Fan et al 1999] by FACS analysis in the FL-2 

channel. Tests were performed on cells of randomly selected culture dishes, and a 

positive staining rate of 93–95% was recorded throughout. See fig. 2.5 for a 

fluorescence microphotograph of LDL-staining CMECs in culture. 

 

(ii) Assessment of CMEC viability 

 

In CMEC investigations, two cell viability tests were used, viz. trypan blue exclusion 

and PI staining. For trypan blue staining, CMECs were removed from culture by 

trypsinization (as described above) and subsequent suspension of the isolated cells 

in a 1% Trypan Blue-solution D mixture in a procedure similar to that described for 

the isolated cardiomyocytes. The only modification to the staining method used for 

the myocytes was that the counting solution remained isotonic. CMECs were 

subsequently assessed by light microscopy and the number of trypan blue-excluding 

cells (i.e. viable cells) calculated as a % of the total cell number.  CMEC viability was 

also assessed by staining trypsinized cells with 5 µM PI for 15 minutes at 37°C, 

similar to a method previously described for endothelial cells [Navarro-Antolin et al 

2001(b)]. Stained cells (non-viable) were subsequently quantified by FACS analysis 

of the mean fluorescence intensity as measured in the FL-2 channel, similar to the 

procedure described for myocytes. 

 

(iii) Induction of hypoxia in CMECs 

CMECs were subjected to two different hypoxia protocols: (1) overnight hypoxic 

incubation of cultured CMECs, or (2) ischaemic pelleting of isolated, trypsinized 

CMECs in a method similar to the one described for isolated cardiomyocytes.  



 124

 

Fig. 2.4 Microphotograph of confluent CMEC culture (10x magnification) demonstrating the 

typical cobblestone appearance. 

 

Fig. 2.5 Fluorescence microphotograph of LDL-staining CMECs in culture (20x 

magnification). On average CMEC cultures demonstrated >93% positive staining. 
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In the hypoxic incubation protocol, CMECs were retained in their original culture (35 

mm fibronectin-coated petri dish). Before induction of hypoxia, the 10% FBS-

containing endothelial growth medium (10% EGM) was removed and substituted with 

serum-reduced 5% EGM. Hypoxia was induced by lowering the oxygen tension in a 

standard multi-gas tissue incubator (↓PO2 incubation) (1% O2, 5% CO2, 40–60% 

humidity, 37°C) for 18 h.  The second hypoxia protocol (ischaemic pelleting) was 

designed to match the technique described for the fresh isolated cardiomyocytes. 

Cultured CMEC were isolated by detachment from their fibronectin-coated dishes 

with trypsin. After trypsin was washed out, isolated CMEC were resuspended in fresh 

solution D in 35 mm petri dishes. Hypoxia was induced by compacting isolated 

CMECs into a pellet in microcentrifuge tubes (centrifugation @ 1000 rpm), followed 

by removal of most of the supernatant and finally layering with mineral oil. Hypoxic 

samples were incubated in a standard tissue culture incubator (37°C).  

 

(iv) Experimental groups 

 

For experimental purposes, CMECs of the third or fourth generation were either 

incubated in culture or as trypsinized isolated cells, depending on the protocol (see 

later for detailed description) in 35 mm dishes at a density of 0.5 × 106 cells/dish. 

Experimental groups (varying sample sizes, n = 4–12) consisted of cells obtained 

from different culture dishes, equally representative of culture passages 3 and 4. All 

experimental groups were incubated at 37°C in a standard tissue culture incubator 

(21% O2, 5% CO2, 40-60% humidity). Incubation media were either 1 ml 5% EGM for 

the cultured CMEC experiments or 1 ml solution D for the isolated trypsinized CMEC 

experiments. 
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[For all other methods, protocols and experimental designs please refer to the 

specific chapters.] 

 

2.3 Statistical analyses 
 

Unless stated otherwise, all data are expressed as percentages (mean ± SEM). For 

comparative studies, Student’s t test (unpaired) or one-way ANOVA (with Bonferroni 

post-hoc test if p<0.05) was used for statistical analyses. Differences were 

considered statistically significant if a p-value of <0.05 was achieved. Analyses were 

performed by Graph Pad Prism® Version 4.01 software. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

 



 127

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 
 

HYPOXIA AND EARLY ISCHAEMIC 
PRECONDITIONING IN ISOLATED 

CARDIOMYOCYTES: THE ROLE OF NO AND 
ROS 
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3.1 Introduction 
 

The aim of the investigations in this chapter was to examine the role of NO 

(endogenous and exogenous), ROS and cellular cGMP in a model of simulated, early 

hypoxic preconditioning and hypoxia using isolated adult rat cardiomyocytes. The 

isolated cell model is sufficiently free of any interference by non-myocytes, thus 

providing the opportunity to focus on these factors in myocytes only. 

 

3.2 The isolated cardiomyocyte model 
 

In 1972, a method that successfully isolated calcium-tolerant ventricular 

cardiomyocytes from an adult rat heart was described for the first time [Gould & 

Powell 1972]. In this seminal study in the field of cardiac cellular research the 

observation was made that a straightforward coronary perfusion with buffer 

containing bacterial collagenase was sufficient to provide a good yield of cells able to 

survive in solutions containing physiological levels of calcium, thus the term “calcium-

tolerant” myocytes [Powell 1985]. The biggest advantage of the perfusion-based 

isolation technique as opposed to incubating tissue fragments with the enzyme is that 

the heart is continuously supplied with essential substrates during the stressful period 

of tissue dispersal; in addition, the perfusion method has shown to provide higher cell 

yields [Powell 1985]. 

 

In the years following, many studies aimed to relate isolated cardiomyocyte 

responses to those observed in whole tissue in an attempt to establish whether cell 

isolation compromises cellular behaviour [Powell 1985]. There is general 

appreciation of the fact that isolated cell preparations are not a substitute for the in 
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vivo situation or even isolated heart models [Hearse & Sutherland 2000; Marber 

2000; Stowe & Riess 2004]. Essentially, the advantages of the isolated cell 

preparation occur at the expense of a cell phenotype that differs from the intact heart 

[Marber 2000]. See Table 3.1 for a summary of the advantages and disadvantages of 

the isolated cardiomyocyte model compared to the intact heart. However, despite the 

shortcomings of the isolated myocyte preparation, it does provide an ideal 

opportunity for the investigation of a particular cell type in isolation from external 

influences (excluding complicating effects of vascular, neuronal or humoral factors) 

[Cave et al 1996]. Furthermore, it allows the contribution of cellular heterogeneity to 

be assessed and provides a relatively small volume of distribution, which makes the 

use of drug manipulation easier and more cost-effective [Marber 2000].  

 

The use of suspensions of freshly isolated adult cardiomyocytes (as in the present 

study) compared to other myocyte-based models also deserves some comment. 

Generally, researchers either make use of immature cardiomyocytes (embryonic, 

neonatal or dedifferentiated adult cells) or mature cardiomyocytes (adult cells) 

[Marber 2000]. As a rule, immature myocytes are studied in culture. The biggest 

disadvantage of studying embryonic and neonatal cardiomyocytes relate to their 

immature genotype and phenotype, particularly with regards the expression of ion 

channels and contractile protein isoforms that differ significantly from adult cells 

[Mitcheson et al 1998]. Adult cardiomyocytes can also be studied in culture 

[Mitcheson et al 1998], however placing them in culture is complicated by their 

adaptation to the culture environment and therefore the fact that they cannot be 

considered to be in a stable steady-state [Mitcheson et al 1998]. Furthermore, 

cultured adult myocytes undergo reorganization of their cytoskeletal and contractile 
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proteins as the cells adapt from a 3-dimensional to the 2-dimensional environment of 

the tissue culture dish. It is also thought that adult myocytes dedifferentiate to the 

fetal phenotype [Mitcheson et al 1998], or even die [Marber 2000] in long-term 

cultures. Regardless of whether freshly isolated or cultured adult cardiomyocytes are 

used, it is generally agreed that the single most important factor for obtaining a high 

and viable yield is the quality of the isolation procedure [Powell 1985; Mitcheson et al 

1998]. 

 

We and others [Mitcheson et al 1998] have observed that freshly isolated myocytes 

remain viable for at least 8 –12 hours. Therefore, given the temporal nature of our 

investigations, and the other considerations discussed above we have decided to opt 

for the freshly isolated adult cardiomyocyte model.  
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ADVANTAGES DISADVANTAGES 

Homogenous cell type; absence of 
external (nonmyocyte) factors 

Revelance to intact heart uncertain 

Study of interactions between cells (co-
culture models) 

Compromised function due to absence of 
adjoining or distant cells 

Genetic manipulation Lack of humoral or neuronal influence 
Low volume of distribution (cost-effective 
when using drugs) 

Uncertain maintenance conditions 

Separation of apoptosis from necrosis Results influenced by maintenance 
conditions 

Extracellular environment can be 
manipulated 

Isolation procedure shock 

Channel activity and redox can be 
measured 

Interventions such as ischaemia have to 
be simulated 

 
Table 3.1: Relative advantages and disadvantages of the isolated cardiomyocte model 

compared to the intact heart. (Modified from Marber 2000). 
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3.3 Experimental groups, protocols and drug treatment (see fig. 3.1) 
 

(i) Oxygenated controls  

 

Oxygenated control cells were incubated in suspension in solution D under an O2 

atmosphere for the full duration of the experiment (2½ h).  

 

(ii) Ischaemic preconditioned cells 

 

An IP protocol previously described for isolated cardiomyocytes [Armstrong et al 

1995] was modified and applied in this study. Briefly, myocytes were subjected to a 

single cycle preconditioning protocol of 10 min hypoxia (ischaemic pelleting; see 

section 2.1 (iv)) followed by 20 min reoxygenation.  Reoxygenation was achieved by 

removing the hypoxic cells beneath the oil layer and resuspending them in fresh 

solution D (gassed with 100% O2, 37°C). After the IP protocol, cells were once again 

pelleted in a microcentrifuge tube and covered with mineral oil to induce 2 h 

sustained hypoxia.  

 

(iii) Non-preconditioned (non-IP; hypoxic) cells 

 
The non-IP group was subjected to an initial intervention-free, oxygenated incubation 

period of 30 min (to correspond with the IP protocol), followed by sustained hypoxia 

of 2 h. 
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 (iv) NOS inhibition 

 

The role of NO was investigated by the administration of L-NAME (50 µM; Sigma), a 

non-specific NOS inhibitor under two different conditions. L-NAME was dissolved in a 

stock solution (distilled water) from which an appropriate volume was directly added 

to the cell suspensions. (i) L-NAME was present before (10 min) and during the short 

hypoxia of the IP protocol in order to prevent activation of NOS and NO generation 

during this time period. At the end of the short hypoxia, L-NAME was washed out 

twice before the reoxygenation period. In this way, a possible trigger effect of NOS 

and NO could be investigated. (ii) To investigate a possible mediator effect for NOS 

and NO, L-NAME was present during sustained hypoxia, with a 10 min pre-

administration period to ensure proper absorption into the cells at the start of 

hypoxia. Non-preconditioned groups were exposed to L-NAME at corresponding 

time-periods to serve as appropriate controls. The above investigations were 

repeated with L-NAME at a higher concentration (200 µM) and L-NNA (50 µM), an 

alternative NOS inhibitor.  

 

(v) iNOS inhibition 

 

In order to investigate whether the inducible form of NOS, iNOS, was involved as a 

trigger of IP, the iNOS-specific inhibitor SMT (10 µM; Sigma) was administered in a 

similar fashion as described for L-NAME above, 10 min before the onset of the brief 

hypoxia of the IP protocol and was also present during the brief hypoxia. After the 

brief hypoxia, the drug was washed out twice and cells were resuspended in fresh, 

oxygenated buffer (reoxygenation), followed by 2 h sustained hypoxia. Untreated IP 
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myocytes were used as controls. In a second group, SMT was present during the 

sustained hypoxia period only (with a 10 min pre-administration period), to 

investigate a possible mediator role of iNOS. Non-preconditioned groups were 

exposed to SMT at corresponding time-periods to serve as appropriate controls. 

 

(vi) NO donor studies 

 

This protocol was designed to establish whether exogenous NO could act as a 

trigger of protection against hypoxia.  Briefly, cells were pre-treated with the NO 

donor, SNP (100 µM; Sigma) for 10 min before a wash-out period of 20 min in fresh 

buffer followed by 2 h sustained hypoxia. Myocytes undergoing hypoxic 

preconditioning were used as appropriate controls for the SNP groups. 

 

(vii) H2O2 pretreatment 

 

In order to assess whether ROS could mimic IP in our model, cells were pretreated 

with 100 µM H2O2 for 10 min, followed by a wash-out period of 20 min, and sustained 

hypoxia of 2 h. Viability was measured and compared to non-IP and hypoxic IP 

groups. 

 

(viii) Inhibition of reactive oxygen species (ROS)  

 

The significance of the generation of ROS (particularly NO-derived ROS) during the 

IP protocol was investigated using the ROS scavenger, N-(2-mercapto-propionyl) 

glycine (MPG; 300 µM) (Aldrich, Germany), which was present 10 min prior to and 
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during the entire preconditioning protocol, i.e. during the brief hypoxia and 

subsequent reoxygenation. MPG is known to react avidly with oxidant species such 

as peroxynitrite and hydroxyl radical due to its thiol group [Xuan et al 2000]. MPG 

was washed out prior to sustained hypoxia. Untreated IP myocytes served as 

controls. In another series, MPG was also administered 10 min before and during the 

sustained hypoxia period, to investigate whether ROS-generation during this period 

had an effect on IP. Non-IP groups were exposed to MPG at corresponding time 

periods to serve as appropriate controls. Investigations were repeated with 0.5 mM 

N-acetyl-cysteine (NAC; Sigma), an alternative, non-specific ROS scavenger. 

 

3.4. Measurement of cardiomyocyte cGMP content 
 

Cardiomyocyte cyclic GMP extraction was done with 5% trichloro-acetic acid (TCA), 

after which samples were washed 4 times with ether. Measurement of cellular cyclic 

GMP levels was done with a radio-immuno assay kit (Amersham, UK). Cellular 

protein content was measured using the Lowry [Lowry et al 1951] and Bradford 

[Bradford 1976] techniques, and results were expressed as pmol cGMP / mg protein. 

Sampling was done as shown in fig. 3.1.  
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O2 control 

Non-IP 

IP 

IP + L-NAME/  
L-NNA (trigger) 

IP + L-NAME/  
L-NNA (mediator) 

Non-IP + L-NAME/  
L-NNA (trigger) 

Non-IP + L-NAME/  
L-NNA (mediator) 

IP + SMT  
(trigger) 

IP + SMT  
(mediator) 

Non-IP + SMT  
(trigger) 

Non-IP + SMT  
(mediator) 

0min 10min 30min 150min 

Fig. 3.1 Experimental groups and protocols. See next page for legend. 
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Fig. 3.1 Experimental groups and protocols. Unshaded bars represent control oxygenated 

incubation, and black shaded bars hypoxic conditions. Black lines below the bars indicate 

drug administrations. L-NAME, L-NNA, SMT, MPG and NAC were all pre-administered for 10 

min. All pharmacological agents were removed by washing twice with fresh buffer. Sampling 

points for myocyte viability determinations were done at the end of 150 min in all groups, and 

cellular cGMP sampling is indicated by the arrows. 

 
 
 
 
 
 
 
 

SNP pre-
treatment 

H2O2 pre-
treatment 

IP + MPG/  
NAC (trigger) 

IP + MPG/  
NAC (mediator) 
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NAC (mediator) 
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3.5 Results 
 

(i) Simulated ischaemia and preconditioning protocol (fig. 3.2 A & B) 

 

Exposure to 2 h sustained hypoxia lead to a significant reduction in viability 

compared to cells subjected to oxygenated control conditions. When the sustained 

hypoxia period was preceded by the IP protocol, cell viability improved significantly. 

The protective effects of the IP protocol were demonstrated by two independent end-

points of viability, namely the percentage of cells excluding trypan blue (viable cells 

increased by 54% with IP, p<0.05), and myocyte morphology (30% increase in rod-

shaped myocytes, p<0.05). As a third end-point of viability, the MTT reduction test 

was utilized. In this case, 2 h sustained hypoxia reduced viability significantly by 

~90% (p < 0.05), which was partially reversed in the IP-groups (non-IP: 7.08 ± 2.50% 

vs. IP: 54.2 ± 15.2%; p > 0.05). 

 

(ii) Inhibition of NOS with L-NAME (fig. 3.3 A & B) 

 

Inhibition of NO generation with 50 µM L-NAME during 10 min hypoxic IP 

(investigating the trigger effect of NOS and NO) had no effect on cell viability (44% 

and 46% viable cells in treated and untreated IP cells respectively). The 

administration of L-NAME to inhibit NOS activity during the sustained hypoxia period 

(mediator effect) similarly had no effect on the viability of preconditioned myocytes 

(51% and 46% viable cells in treated and untreated IP myocytes respectively). 

Administration of L-NAME for 10 min, followed by washout, to non-preconditioned 

cells, was also without effect. However, when non-preconditioned cells were treated 

with L-NAME during the sustained hypoxia period, cell viability increased significantly 
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from 36% to 51% trypan blue excluding myocytes (p<0.05, fig. 3.3 A) in one series, 

and from 39.5% to 54.9% in a separate series (p < 0.05, fig. 3.3 B) respectively. 

Morphological evaluation revealed a similar significant pattern (13% increase in rod-

shaped cells, p<0.05; fig. 3.3 B). Treatment of oxygenated control cells with L-NAME 

for 2½ h had no effect on viability, thereby excluding any possible drug-effects (data 

not shown).   

 

In order to determine whether the results obtained with 50 µM L-NAME were dose-

dependent, the above investigations were repeated using 200 µM L-NAME. Results 

with the increased drug concentration followed a similar trend as observed before: 

While L-NAME had no effect on the viability of IP cells, the protective effect exerted 

by NOS inhibition on non-preconditioned cells during sustained hypoxia could be 

successfully reproduced by 200 µM L-NAME (%TBE myocytes increased from 41.9 ± 

1.8% to 55.7 ± 1.9%, p < 0.05), as well as by the administration of an alternative 

NOS inhibitor, 50 µM L-NNA (42.2 ± 1.6% to 66.03 ± 6.7% increase in TBE 

myocytes, p < 0.05). Co-administration of the NOS substrate, L-arginine (10 mM), 

with L-NAME during sustained hypoxia did not alter L-NAME induced protection 

(non-IP+ L-NAME: 54.87 ± 2% TBE; non-IP + L-NAME + L-arginine: 53.2 ± 3.3% 

TBE, p>0.05). 
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Fig. 3.2 Demonstration of IP protection. (A) Using trypan blue exclusion (TBE) and myocyte 

morphology assessment (the ability of myocytes to retain their viable rod-shaped structure - 

%rods) as end-points. IP increased the viable, trypan blue excluding myocytes from 46,2% to 

71,3%, and the number of rod-shaped cells from 74% to 96% (n = 4-8 / group). (B) When 

MTT reduction was used as end-point, similar patterns were observed (viability reduced from 

100% to 7 ± 2.5% in non-IP cells, which improved to 54 ± 15.2% in IP groups (n = 4 / group). 
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Fig. 3.3 (A) Effect of NOS inhibition with L-NAME (50 µM) in non-IP and IP groups. The drug 

was administered to preconditioned cells during either the short hypoxia period of IP (“trigger 

effect”) or the sustained hypoxia (“mediator” effect) period. Non-preconditioned (non-IP) cells 

were treated with L-NAME in the same manner.  NOS inhibition had no effect on the viability 

of preconditioned cells, but significantly increased viable myocytes in non-preconditioned 

groups, when administered during sustained hypoxia; (n = 5-15 / group). 
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Fig. 3.3 (B) Effect of NOS-inhibition with L-NAME (50 µM) on non-IP groups (i.e. 

investigating the role of NOS during sustained hypoxia in the absence of IP). A significant 

improvement in viability was observed when NOS was inhibited; viable trypan blue excluding 

cells increased from 39.5 ± 0.9% in non-IP to 54.9 ±  2% in IP (n = 6 / group), and % rods 

increased from 75.1 ± 1.4% to 88.1 ± 3.9% respectively (n = 6 / group). 
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(iii) Inhibition of iNOS with 10 µM SMT (fig 3.4)  

 

The administration of SMT before and during hypoxic preconditioning had no effect 

on the percentage viable myocytes after 2 h of sustained hypoxia and values similar 

to those of untreated preconditioned groups were obtained (fig. 3.4 A). Similarly, the 

percentage viable cells was unchanged in both IP and non-IP groups when SMT was 

administered during sustained hypoxia (fig. 3.4 B).  No drug-effects were observed 

with SMT when administered to oxygenated control myocytes (data not shown). 

 

(iv) Pre-treatment with NO donor, 100 µM SNP (fig. 3.5) 

 

The viability of myocytes treated with the NO donor, SNP, for 10 min followed by  

20 min wash-out remained unchanged compared to untreated non-IP myocytes after 

2 h sustained hypoxia, indicating that exogenous NO did not act as a trigger of 

protection. 

 

(v) Reactive oxygen species studies (figs. 3.6 A & B)  

 

Treatment of myocytes with the ROS scavenger, MPG (300 µM), during the full IP 

protocol (short hypoxia and reoxygenation) had no effect on viability after 2 h 

sustained hypoxia compared to untreated preconditioned myocytes (fig. 3.6 A). 

Similarly, administration of MPG during sustained hypoxia had no effect on the 

viability of either preconditioned or non-preconditioned cells (fig. 3.6 B). MPG-

treatment did not alter the viability of oxygenated control cells, thereby excluding 

drug-effects (results not shown).  
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Fig. 3.4 The effect of iNOS inhibition in IP and sustained hypoxia. (A) Administration of the 

specific iNOS antagonist, SMT (10 µM), prior to and during the brief hypoxia period of the IP 

protocol, had no effect on the myocyte viability (n = 6 / group). (B) Similarly, SMT treatment 

during sustained hypoxia also had no effect on viability in either IP or non-IP cardiomyocytes 

compared to their respective untreated controls (n = 4 / group). 
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Fig. 3.5 Pre-treatment with NO donor, SNP (100 µM), followed by wash-out (20 min) and 2 h 

sustained hypoxia could not mimic IP protection; n = 9-13 / group. 
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In addition, an alternative ROS scavenger, N-acetyl-cysteine (NAC, 0.5 mM), was 

administered in similar fashion to MPG as described above, and the findings 

remained unchanged from those observed in MPG-treated IP and non-IP groups 

(data not shown). Pretreatment of the myocytes with H2O2 (100 µM), a ROS 

generator, failed to protect against sustained hypoxia, and viability remained at levels 

observed in non-IP cells (non-IP: 42.9 ± 1.4%; IP: 63.3 ± 2.6% and H2O2 treated 

cells: 42.8 ± 3.1%; p > 0.05). 

 

(vi) cGMP determinations (fig. 3.7 A & B) 

 

A transient elevation in cGMP levels was observed in preconditioned cells at the end 

of the IP protocol, compared to levels in oxygenated control and non-IP cells (IP: 

63.2 ± 8.6 pmoles / mg prot vs control and non-IP: 41.6 ± 3.4, p < 0.05). Cyclic GMP 

levels of non-IP cells were significantly elevated after 2 h hypoxia when compared to 

controls (p < 0.05) and IP cells (p < 0.05, fig. 3.7 A).  L-NAME administration had no 

additional lowering effect on the cGMP levels of both non-IP and IP myocytes 

compared to their untreated counterparts, after 2 h hypoxia (fig. 3.7 A). The iNOS 

inhibitor SMT had no effect on the cGMP levels of either IP (fig. 3.7 A) or non-IP 

groups (data not shown). MPG administration during the triggering phase of IP cells 

did not alter cGMP levels, however, when administered during the sustained hypoxia 

period, levels were significantly increased compared to untreated IP cells (IP+MPG: 

62.3 ± 5.3 pmoles / mg prot vs untreated IP: 41.5 ± 4, p < 0.05.). SNP administration 

for 10 min followed by 20 min wash-out and 2 h sustained hypoxia caused a gradual, 

significant increase in cGMP levels over time, when compared to untreated groups 

(fig. 3.7 B). 
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Fig. 3.6 Treatment with the ROS scavenger, MPG (300 µM). (A) Administration of MPG 

during the IP protocol (i.e. brief hypoxia and subsequent reoxygenation) had no significant 

effect on the cell viability of preconditioned myocytes. (B) MPG treatment during sustained 

hypoxia did not alter viability in either IP or non-IP cells compared to their respective 

untreated controls; n = 6 / group. 
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Fig. 3.7 Cyclic GMP levels in cardiomyocytes. (A) Cellular cGMP levels after 2 h hypoxia. 

Effects of L-NAME and SMT. See text for details (n = 4 – 8 / group). (B) The effect of 10 min 

SNP pretreatment on cGMP levels in non-IP cells over time. SNP-treated cells showed 

elevated cGMP levels compared to corresponding O2 control groups at the end of the 10 min 

treatment period. Cyclic GMP levels continued to rise in SNP-treated cells until the end of 

sustained hypoxia. 
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3.6 Discussion 
 

(i) The isolated adult cardiomyocyte model 

 

The isolation procedure used in this study is a standard technique widely used and 

accepted to yield a very pure myocyte preparation. The final suspension does not 

contain contaminating cell types that could influence findings in any significant way.  

Of particular concern in this study would be the presence of endothelial cells, since 

they possess NOS, and could therefore contribute to the overall NO production. 

Although small clusters of stripped endothelium were occasionally noted in random 

samples, the results obtained from such samples did not differ significantly from the 

others, and it is doubtful whether they would contribute to NO production in any 

significant way. The isolated myocyte model therefore represents an ideal 

opportunity to establish whether NO generated in cardiomyocytes plays a role 

(beneficial or harmful) in IP protection.  

 

(ii) The IP protocol 

 

The current study showed that the IP stimulus (10 min hypoxia, 20 min 

reoxygenation) could trigger inherent, anti-hypoxia cardioprotection in freshly isolated 

adult cardiomyocytes, manifesting within 2½ h. Protection was demonstrated by two 

independent end-points (%TBE cells and morphological studies), which are 

independent markers of viability: trypan blue exclusion measures osmotic fragility of 

the cell membrane, whereas the morphology test evaluates cell appearance, 

independent of trypan blue uptake. Although the margin of increase in viability 
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differed between the two end-points, both demonstrated a clear protective effect 

induced by prior hypoxic preconditioning.  

 

The findings observed with trypan blue are in line with previous results of a study 

upon which our IP protocol was based [Armstrong et al 1995]. The latter study, on 

isolated adult rabbit myocytes, demonstrated ∼ 50% increase in viable TBE cells after 

2 hr sustained hypoxia, compared to 54% in the present study. These observations 

confirm that cardiomyocytes per se are able to release triggers of protection in 

response to the IP stimulus [Cohen et al 2000; Miura 1996; Schultz et al 1997], and 

this may help explain why preconditioned isolated myocytes show some degree of 

protection.  In our model, protection was observed despite the fact that we were 

unable to demonstrate a triggering role for NO, which indicates that other, non-NO 

triggers were released.  Furthermore, the rather stressful isolation procedure may in 

itself serve as a still unknown preconditioning stimulus [Piper & Ladilov 1997]. 

 

(iii) NOS and NO as a possible trigger of protection 

 

NOS inhibition studies 

 

It has previously been established that a short period of ischaemia (e.g. 5 min) can 

rapidly stimulate NOS activity in the heart [Depré et al 1997]. We therefore studied 

whether the 10 min simulated ischaemia of the IP protocol could trigger protection via 

activation of the NOS - NO pathway. Results showed that NOS inhibition with L-

NAME during the triggering phase did not influence IP protection (fig. 3.3 A), 

suggesting that NOS activation was not necessary to trigger protection. To our 



 151

knowledge this is the first demonstration that NOS inhibition does not affect the 

protection elicited by IP in a fresh, isolated adult rat cardiomyocyte preparation.   

Although it has recently been suggested that NO could also act independently (such 

as direct KATP channel activation, inherent antioxidant properties and COX-2 

stimulation) [Bolli 2001], its cellular actions are usually mediated through its second 

messenger, cGMP [Balligand & Cannon 1997; Denninger & Marletta 1999; Villa-

Petroff et al 1999]. Therefore, we also measured the effect of NOS inhibition during 

the triggering phase on cGMP generation at the end of sustained hypoxia. Results 

show that L-NAME did not attenuate overall cGMP generation during this period, also 

suggesting that NOS-NO activation during the triggering phase does not play an 

important role in preconditioning (results not shown).  

 

A number of studies that applied NOS inhibition just before or during the IP protocol 

showed a similar trend, albeit with different experimental models and protocols.  In a 

study on isolated, perfused rabbit hearts, it was found that addition of L-NAME  

10 min before the IP protocol conferred no additional benefit compared to IP alone 

(end-point: infarct-to-risk ratio) [Woolfson et al 1995]. Similar results with L-NAME + 

IP treatment were obtained in rabbit hearts with infarct / risk zone as end-point [Patel 

et al 1992], and arrhythmias as end-point [Lu et al 1995], and in isolated rat hearts 

with contractile function and LDH release as end-points [Weselcouch et al 1995]. 

Similar findings were obtained in swine hearts (no alteration in the reduction of IP-

induced infarct size development) using a different NOS inhibitor, L-NA [Post et al 

2000]. In another study on isolated rabbit hearts, it was demonstrated that L-NAME + 

IP treatment did not alter cardioprotection and it was suggested that endogenous 

production of NO during the IP protocol was insufficient and therefore ineffective to 
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trigger protection [Nakano et al 2000]. Perhaps the best evidence was an observation 

made in isolated working rat hearts that IP did not increase basal cardiac NO  

content as measured by electron spin resonance [Csonka et al 1999]. 

 

In contrast, other studies found that inhibition of IP-induced NO synthesis did cause 

partial attenuation of IP protection. A study from our own laboratory demonstrated 

that L-NAME administration before and during the IP protocol partially attenuated 

functional recovery in isolated rat hearts [Lochner et al 2000]. Similarly, a study on 

anaesthetized, open-chest dogs, showed a partial attenuation of IP protection with L-

NAME pretreatment (end-point: arrhythmias) [Vegh et al 1992]. Differences in results 

between the present study and that of Lochner et al and Vegh et al could be 

explained by the presence of an intact coronary circulation, thereby allowing for an 

additional major source of NO (endothelium-derived NOS - NO). It is possible that the 

additional NO release and administration of NOS inhibitors may have had profound 

effects on the coronary vascular tone that could account for some of the findings in 

the IP protocols used. Furthermore, both the mentioned groups used multi-cycle IP 

protocols, compared to the single-cycle IP protocol of the present study.   

 

There are considerable variations in the concentrations of L-NAME used in the above 

studies; ranging from 30 µM, which failed to block protection [Weselcouch et al 

1995], to a concentration of 50 µM that did succeed in attenuating IP protection 

[Lochner et al 2000]. Recently, another group could only achieve inhibition of IP 

protection at a concentration of 200 µM in embryonic chick myocytes [Lebuffe et al 

2003].  In order to verify whether our results with 50 µM were dose-dependent, we 

repeated the investigations with 200 µM, which produced results identical to the  
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50 µM series, indicating that our model did not follow the trend observed by Lebuffe 

et al. A possible explanation for this discrepancy could be the difference in model 

used (cultured, embryonic chick myocytes vs isolated adult rat myocytes).  

 

L-NAME has been reported to be pharmacologically non-specific [Curtis & Pabla 

1997]. It is therefore possible that the drug may cause inhibition of both the eNOS 

and iNOS isoforms. Despite some controversy regarding the presence of NOS in 

isolated myocytes, it has been shown quite convincingly that myocytes express both 

iNOS and eNOS isozymes [Balligand et al 1995(b); Balligand et al 1994]. More 

recently, it has also been demonstrated that cardiomyocytes express the nNOS 

isoform [Danson et al 2005]; however, more investigations are necessary to establish 

its role [Brutsaert 2003]. Most studies that investigated IP, however, did not 

distinguish between the isoforms. Contrary to the commonly accepted view, a study 

conducted on rat hearts demonstrated that iNOS was constitutively expressed both in 

vitro and in vivo [Buchwalow et al 2001]. It is therefore possible that iNOS could be 

activated in a similar fashion to the constitutively present eNOS.  In order to 

investigate a possible trigger role for iNOS - NO in the present study, SMT, a known 

iNOS-specific inhibitor [Wang YP et al 2001; Wildhirt et al 1997], was administered 

during the brief hypoxia period of the IP protocol. Results indicated that iNOS 

inhibition during the triggering phase did not affect IP protection or cGMP generation, 

similar to the observations with L-NAME. Furthermore, iNOS inhibition during 

sustained hypoxia had no effect on either cell viability or cGMP levels at the end of 

the experiments, negating a role for iNOS activation in IP.  In summary, observations 

with L-NAME and SMT treatment suggest that the protection conferred by IP in our 

model was not dependent on eNOS or iNOS activation during the brief hypoxia 
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period. In addition, these findings suggest that activity of the NOS-NO-cGMP 

pathway at the end of the experiments was not affected by NOS inhibition during the 

triggering phase.  

 

NO donor studies 

 

Another technique widely used to investigate the potential role of NO as a trigger is to 

mimic IP by the administration of NO. SNP pretreatment could not induce protection 

against sustained hypoxia in our model (fig. 3.5). In one of the few studies to show a 

similar finding, albeit in an entirely different experimental model, it was demonstrated 

that pre-treatment of anaesthetized rats with a NO-donor, C87-3754, did not 

influence the incidence or severity of ventricular arrhythmias induced by sustained 

ischaemia [Sun & Wainwright 1997].  

 

In one of the few studies investigating NO in early IP in an isolated cell model 

(cultured neonatal rat myocytes), IP-protection (90 min simulated ischaemia – 30 min 

reoxygenation, followed by 6 h sustained ischaemia) was successfully mimicked by 

pretreating the cells with SNAP (S-nitroso-N-acetylpenicillamine; NO-donor) for  

90 min [Rakhit et al 2000].  Our own investigations showed that administration of the 

NO donors SNAP or SNP could successfully mimic classic IP in isolated perfused rat 

hearts [Lochner et al 2000]. Another study on conscious rabbits found that 

pretreatment with the NO-donor nitroglycerine (NTG) attenuated myocardial stunning 

[Shinmura et al 1999].  Interestingly, it also appears that exogenous, rather than 

endogenous, NO could trigger IP protection. It was demonstrated in eNOS knockout 

(KO) mice that IP significantly attenuated infarct size, indicating that eNOS-NO was 
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not pivotal in the protection of IP [Bell & Yellon 2001].  However, the administration of 

SNAP to both KO and wildtype mice successfully mimicked IP. Similarly, SNAP 

treatment was shown to be protective against ischaemia-reperfusion in isolated rabbit 

hearts [Nakano et al 2000]. 

 

However, despite other observations made to the contrary, it is evident from our 

results that neither endogenous NOS - NO, nor exogenous NO, act as triggers of IP 

protection in our model of freshly isolated rat cardiomyocytes. It remains unclear why 

exogenous NO administration could not elicit protection in our model, despite the 

observation that SNP treatment caused a significant, transient increase in cGMP 

levels compared to untreated control myocytes at corresponding time points (fig. 3.7 

B). These increases suggest that the failure to protect was not due to possible 

ineffective SNP concentrations, or desensitization of the downstream enzymes and 

effectors of the NOS – NO pathway (i.e. guanylate cyclase and cGMP), occurring as 

a possible result of the robust isolation procedure or potential pH changes.  

 

The role of ROS as triggers and mediators of IP 

 

An increasing number of studies are focusing on the role of ROS and reactive 

nitrogen species (RNS) as possible triggers of IP, most of which showed a protective 

role for ROS and RNS. For example a trigger role for peroxynitrite (ONOO-) in IP-

protection was demonstrated in isolated rat hearts, and administration of the ROS 

scavenger MPG increased the incidence of arrhythmias in both the IP and 

peroxynitrite treated cells [Altug et al 2000]. Similarly, in a study on isolated rabbit 

hearts, MPG blocked SNAP’s cardioprotection [Nakano et al 2000]; and in guinea pig 
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hearts MnTBAP, a O2
- scavenger, also abrogated protection [Kevin et al 2003].  A 

triggering role for ROS was demonstrated in a model of isolated embryonic chick 

ventricular myocytes [Lebuffe et al 2003; Vanden Hoek et al 1998]. However, ROS 

generation does not appear to trigger protection in our model of adult rat 

cardiomyocytes: (i) pretreatment of cells with H2O2, a ROS generator, did not confer 

protection, and (ii) administration of MPG or NAC before and during our IP protocol 

did not abolish protection.  The administration of MPG and NAC during the sustained 

hypoxia period had no effect on the viability of IP and non-IP groups. However, it is 

interesting to note that MPG treatment during this period induced a significant 

elevation in cGMP generation at the end of sustained hypoxia. It is not clear what 

caused this observation since MPG is not known to be a direct cGMP activator. 

However, one explanation may be that certain ROS (e.g. superoxide) act as "NO 

scavengers" [Estevez & Jordan 2002], and their removal with a relatively non-specific 

ROS scavenger could therefore lead to increased NO levels, with a resultant 

upregulation of the NO-cGMP pathway.  

 

It is difficult to explain why our model did not follow the cardioprotective trend of ROS 

observed in other studies, and more investigations on the isolated rat myocyte model 

are required to elucidate this. Certainly, differences with the embryonic chick myocyte 

studies [Lebuffe et al 2003; Vanden Hoek et al 1998] may be attributed to differences 

in species, experimental models or, in the case of MPG, different dosages (300 µM 

vs 400 µM). Limitations of ROS scavengers should also be considered, particularly 

the fact that some are likely to be consumed by ROS in the absence of continued 

delivery, which limits their ability to scavenge fully [Kevin et al 2003], but this fails to 

explain why H2O2 could not trigger protection in our model.  
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NOS as a possible mediator of protection 

 

We assessed the role of NOS-derived NO-release during sustained hypoxia in non-

preconditioned and preconditioned cells. NO is known to be a major activator of the 

guanylate cyclase-cGMP pathway [Balligand & Cannon 1997; Csonka et al 1999; 

Takano et al 1998], therefore, in the present study, the cardiomyocyte cGMP levels 

were used as an indicator of the activity of this pathway. Results showed that cGMP 

levels were elevated in non-IP cells, suggestive of NO and cGMP generation during 

hypoxia (fig. 3.7), a finding similar to previous observations [Depré & Hue 1994; 

Lochner et al 1998]. It is well established that NOS activity is rapidly stimulated by 

ischaemia [Depré et al 1997], while the activation of cGMP - phosphodiesterase is 

attenuated [Lochner et al 1998], both processes which could contribute to the 

increase in cGMP observed (fig. 3.7). It has recently been shown that cellular 

acidosis and subsequent activation of the Na+ / H+ exchanger modulate production of 

endogenous NO [Kitakaze et al  2001]. Addition of exogenous arginine had no further 

deleterious effect on cell viability, indicating that NOS activation was probably 

maximal under the experimental conditions used. 

 

The inhibition of NO generation during sustained hypoxia did not affect IP protection 

(fig. 3.3). In fact, it appears that IP decreases the accumulation of NO during 

sustained hypoxia, since significantly lower cGMP levels were found in 

preconditioned cells compared to non-IP cells at the end of sustained hypoxia (fig. 

3.7). The decreased cGMP levels in IP cells could be indicative of an endogenous 

down-regulation of NOS - NO by the IP protocol, the mechanism of which remains to 

be established. It is also evident from our cGMP studies that the administration of   
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L-NAME, or SMT, to IP myocytes caused no further decrease in cGMP, suggesting 

that NOS / NO activity had already been attenuated maximally in IP groups. 

 

Although most studies investigated the mediator role of NO in the context of delayed 

IP [Imagawa et al 1999; Takano et al 1998; Xuan et al 2000], a few authors did 

investigate NO as a mediator of classic IP. In isolated perfused rat hearts it was 

shown that the administration of L-NA before sustained ischaemia – reperfusion had 

no effect on either IP protection or NO generation during this time period [Csonka et 

al 1999]. A similar reduction of ischaemia-reperfusion induced NO accumulation was 

seen in the untreated IP hearts, suggesting that IP seemed to decrease the harmful 

accumulation of NO during sustained ischaemia - reperfusion, with the result that 

additional NOS inhibition had no effect.  They argued that the decreased rate of NO 

production in preconditioned cells during ischaemia / reperfusion could be due to 

altered metabolic conditions such as changes in pH, availability of cofactors and/or 

substrates for enzyme synthesis. These results are in agreement with our 

observations. Another possibility was the activation of endogenous NOS inhibitors 

such as asymmetrical dimethylarginine (ADMA) [Ueno et al 1992; Usui et al 1998]. 

The distribution of ADMA correlates well with that of NOS [Ueno et al 1992], although 

no evidence could be found in the literature to suggest that ADMA is present in 

cardiomyocytes.  

 

In summary, the results of the investigations on preconditioned myocytes suggest 

that:  (i) either cardiomyocyte NOS was not activated by the IP protocol used, or that 

NO was not generated in sufficient quantities during the IP protocol to act as a 

trigger, and (ii) the NO generated during sustained hypoxia in preconditioned cells 
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was reduced (as indicated by the cGMP levels) so that pharmacological inhibition of 

the enzyme had no additional effects. These results suggest therefore that in our 

model of isolated cells, the cardiomyocyte NOS - NO can be regarded as a neutral 

bystander with no influence on the IP mechanism, similar to findings by Liu and co-

workers [Liu et al 1999].  

 

NOS inhibition in non-preconditioned, hypoxic myocytes 

 

Interestingly, the current study showed that inhibition of NO synthesis (observed with 

both 50 µM and 200 µM L-NAME) during sustained hypoxia in non-preconditioned 

cells resulted in significant protection, the degree of which was comparable to the 

protection conferred by the IP stimulus (fig. 3.3 A & B). In separate experiments, L-

NNA (50 µM), an alternative NOS inhibitor, showed similar, if not slightly enhanced, 

protective effects compared to L-NAME, excluding possible drug-specific reactions 

with L-NAME. The observation that the inclusion of L-arginine (NOS substrate 

essential for NO generation) did not alter the protection conferred by L-NAME 

indicates that the drug decreased NOS activity, even in the presence of excess 

substrate. However, it is surprising that arginine did not reverse the effects of L-

NAME, the latter being an arginine based inhibitor. Obviously, this phenomenon 

needs to be further investigated. 

 

Reasons for the observed protection of non-preconditioned myocytes by L-NAME are 

not clear. L-NAME treatment during sustained hypoxia did not attenuate cGMP 

levels, suggesting that the protection observed with NOS inhibition was not likely to 

be via a downregulation of the NOS-NO-cGMP pathway. The protective effects of  
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L-NAME could not be reproduced by SMT administration, which indicates that iNOS 

inhibition is not involved in this particular observation (fig. 3.4 B). It is possible that 

NOS inhibition prevents the formation of potentially harmful NO-derived reactive 

oxygen species (ROS) such as hydroxyl radicals (OH-) and peroxynitrite (ONOO-) 

during sustained hypoxia. However, results obtained when the ROS scavengers, 

MPG and NAC, were administered during sustained hypoxia, suggest that ROS 

formation was not harmful to non-IP cells in our model. The bimodal action of NO (i.e. 

physiological effects at low, submicromolar concentrations and harmful effects at 

higher, micromolar or above concentrations) should also be considered; it is possible 

that sustained hypoxia in our model resulted in the release of high (harmful) 

concentrations of NO and that subsequent NOS inhibition during this period 

conferred protection. 

 

In summary, one has to consider the possibility that the protective effects of NOS-

inhibition may occur by other, NO-independent mechanisms [Curtis & Pabla 1997; 

Nakano et al 2000; Sun & Wainwright 1997]. The fact that cGMP levels remained 

unchanged despite NOS inhibition and the observed cytoprotection could also 

suggest that sustained hypoxia induced NOS-NO to exert harmful effects, 

independent of cGMP. 

 

3.7 Conclusion 
 

The present study was originally designed to specifically exclude any significant 

contribution of endothelial cell eNOS – NO, a major source of overall NO, in the 

mechanism of cardiomyocyte preconditioning. The results of this chapter indicate that 

the activation of cardiomyocyte NOS (eNOS or iNOS) during the IP stimulus and 
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sustained hypoxia is not required for protection in this model of simulated ischaemic 

preconditioning. Similar results were obtained in other models [Bolli 2001; Post et al 

2000; Weselcouch et al 1995; Woolfson et al 1995]. We also demonstrated that IP 

could not be mimicked by the administration of exogenous NO donors, despite 

transient increases in cGMP levels, which is indicative of increased NO-cGMP 

activity. Based on these results, one can speculate that NOS - NO in this isolated rat 

cardiomyocyte model may be an insignificant contributor to the overall pool of 

released NO, with no effect on IP on its own. One possibility is that adult rat 

myocytes are more dependent on non-myocyte NO-sources for the maintenance of 

their intracellular NO levels than chick embryonic myocytes or neonatal myocytes. In 

such a scenario, the absence of other NO-generating cell types in the experimental 

model could explain why NOS inhibition did not reverse IP. Future co-culture studies 

could establish a role for endothelial cell NOS-NO in IP and myocyte-endothelial 

interactions in NO release, thereby showing the relative roles of each of the cellular 

sources of NO in IP. It is also possible that adult rat myocyte-NOS generates 

superoxide in preference to NO during hypoxic stress, however, this would not 

explain why the ROS scavengers failed to reverse IP protection. The fact that 

isolated cardiomyocytes were nevertheless successfully preconditioned in the 

present study suggests that other triggers such as TNF-α must be involved [Lecour 

et al 2002].  

 

The findings of this chapter suggest that fresh, isolated adult rat cardiomyocytes 

seem to have a different phenotype with regards to NOS-NO physiology than their 

neonatal counterparts and myocytes of other species. Follow-up studies using NO-
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sensitive detection methods could help to clarify whether these isolated rat heart 

myocytes produce significant quantities of NO. 

Finally, the results of our experiments on NOS activation during sustained hypoxia in 

non-preconditioned cells were suggestive of a harmful role for NOS and NO, but that 

this effect was seemingly cGMP-independent. In view of the fact that we were unable 

to show a role for NO in IP protection, together with the unexpected findings 

demonstrating a harmful role for NO during sustained hypoxia, it was decided that, 

for the purposes of the rest of this thesis, focus would be directed at the role of NO in 

hypoxia.  

 

[The aims, methods, data and conclusions presented in this chapter appeared in: 

Strijdom H, Genade S, Lochner A. Nitric oxide synthase (NOS) does not contribute to 

simulated ischaemic preconditioning in an isolated rat cardiomyocyte model. 

Cardiovasc Drugs Therapy 2004; 18: 99-112. This publication received a dedicated 

editorial article written by two leading researchers in the field and appears as an 

addendum to this dissertation.] 
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CHAPTER 4 
 

THE NEED FOR DIRECT INTRACELLULAR 
DETECTION OF NITRIC OXIDE IN ISOLATED 
CARDIOMYOCYTES: DEVELOPMENT OF A 

NOVEL TECHNIQUE 
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4.1 Introduction 
 

Findings from the previous chapter suggested that there was no role for NO or ROS 

in IP-protection in our model of isolated cardiomyocytes. However, the results 

showed a seemingly harmful role for NO when released during sustained hypoxia. In 

view of this, it was decided to further investigate the role of NO as an important 

biological mediator during hypoxia / ischaemia. In contrast to our own findings, others 

have demonstrated a triggering and mediating role of NO in IP. These properties 

have made NO one of the fastest growing fields of interest in heart research [Bolli 

2001]. However, despite extensive research, the exact underlying cellular 

mechanisms of NO are complex and remain poorly understood [Ferdinandy & Schulz 

2003]. An important way by which more insight into NO’s mechanisms of action could 

be obtained, is direct measurement of intracellular NO production. However, many 

studies (including the study from our own laboratory on which we reported in Chapter 

3; Strijdom et al 2004(a)] depend on indirect methods to predict changes in 

intracellular NO levels, such as nitric oxide synthase (NOS) activity (citrulline assay 

and cyclic GMP measurements) [Depré et al 1997], NOx (nitrate/nitrite) level 

determinations [Depré et al 1997; Kelm 1999], NOS protein [Rakhit et al 2000; Failli 

et al 2002], and mRNA expression [Failli et al 2002].   

 

In addition, methods for direct, single-cell NO-detection (e.g. chemiluminescence 

assays, electron paramagnetic resonance spectroscopy and electrochemical 

electrode methods) are often complicated, insensitive and non-specific, and not 

readily available to the average equipped laboratory [Leikert et al 2001]. This is 

particularly true for low output NO-generating cells such as cardiomyocytes and 

endothelial cells. [Leikert et al 2001]. Diaminofluorescein –2/diacetate (DAF-2/DA), a 
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membrane-permeable, fluorescent, real-time indicator for NO [Kojima et al 1998], has 

recently been used to detect NO in cells of cardiac origin via flow cytometric analysis, 

viz. endothelial cells [Failli et al 2002; Leikert et al 2001; Navarro-Antolin et al 

1991(a)] and embryonal rat heart-derived cell lines [Chen et al 2002]. DAF-2/DA was 

also used to qualitatively assess NO in cultured embryonic chick ventricular myocytes 

[Lebuffe et al 2003] and isolated cardiomyocytes [Zorov et al 2000], by means of 

video fluorescent microscopy and confocal microscopy respectively.  

 

However, there is no evidence of studies using DAF-2/DA fluorescence to detect NO 

levels in adult cardiomyocytes with flow cytometry (fluorescence activated cell 

sorting, FACS). FACS has major advantages over other fluorescence detection 

techniques such as spectrofluorimetry and fluorescence microscopy [Vergne et al 

1998]. The former requires high labeling intensity and does not distinguish between 

intracellular and extracellular fluorescence, while the latter is time-consuming and 

analyzes a small number of cells at a time. In contrast, FACS rapidly measures and 

analyzes thousands of cells, distinguishes between cell subpopulations and analyzes 

intracellular events on a single-cell level [Vergne et al 1998].    

 

 

Therefore, we aimed to design a protocol for the FACS analysis of freshly isolated 

adult rat cardiomyocytes to assess whether baseline intracellular NO release in these 

cells could be detected with DAF-2/DA (Calbiochem). The NO donor 2-(N,N-

Diethylamino)-diazenolate 2-oxide (DEA/NO) (Sigma) was administered to verify the 

probe’s reported NO-sensitivity. Furthermore, since ischaemia stimulates cardiac 

NOS activity [Depré et al 1997], we investigated whether hypoxia could enhance 
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DAF-2/DA fluorescence in cardiomyocytes. L-NAME, a NOS inhibitor, was 

administered to establish whether the observed effects were due to NOS-induced 

NO-release. Levels of NOx (nitrate/nitrite), major oxidative metabolites of NO [Vergne 

et al 1998] were determined and compared with DAF-2/DA data in order to validate 

and quantitate results obtained with FACS analysis. 

 

4.2 Experimental groups and protocols (fig. 4.1) 
 

The probe-incubation protocols were modifications of previously described methods 

in endothelial cells [Navarro-Antolin et al 2001(a); Navarro-Antolin et al 2001(b)]. 

Suspensions of ~0.5x106 myocytes / ml were incubated with a non-limiting dose of 

DAF-2/DA (10 µM) for 180 min (37ºC). Exposure to light was avoided as far as 

possible throughout experimentation. Experimental interventions (fig. 4.1) were 

introduced at different time-points during incubation: (i) DEA/NO at t = 60 min, (ii) the 

NOS activator, CsA, at t = 60 min, (iii) hypoxia at t = 60 min, and (iv) L-NAME at t = 

30 min. Control groups were incubated in suspension under an O2 atmosphere (21% 

O2, 5% CO2, 40-60% humidity) for the full duration of the experiment (180 min). 

Simulated ischaemia was achieved by ischaemic pelleting as previously described 

[Ch. 3; Strijdom et al 2004(a)]. 

 

4.3 Flow cytometry (fig. 4.2 & 4.3) 
 

At t = 180 min, DAF-2/DA was washed out by centrifugation of the samples after 

removal of supernatants and mineral oil (in the hypoxia samples), subsequently, cells 

were resuspended in probe-free buffer followed by immediate FACS analysis. 
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Fig. 4.1 Experimental protocols. Isolated myocytes were divided into sample fractions of ~ 

0.5 x 106 cells each on which the respective experimental interventions were performed. 

Experimental groups consisted of samples from different hearts (n: 5 – 15 per group).  

(A) Control samples were kept in suspension in 1 ml of solution D for 180 min at 37° C in a 

tissue culture incubator. (B) The NO-donor, DEA/NO was administered at different 

concentrations (100, 500 and 1000 µM respectively) for 120 min at t = 60 min to validate the 

NO-detection properties of DAF-2/DA.  CsA (10 µM; NOS activator) was also added at t = 60 

min ± NOS inhibition (L-NAME). (C) Ischaemia was simulated by ischaeming pelleting 

starting at t = 60 min and lasting for 120 min. The unshaded portions of the bars represent 

untreated, oxygenated control conditions. L-NAME (50 µM) was administered to control and 

hypoxia groups at t = 30 min, and incubation lasted until t = 180 min (represented by black 

lines under the bars). Asterisks indicate the start of DAF-2/DA incubation for FACS analysis 

at t = 0min. Samples were collected at t = 180 min for subsequent FACS analyses and 

viability assessment. 
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A Becton Dickinson FACSCalibur ® analyzer was used to quantify fluorescence 

(excitation wavelength: 488 nm and emission wavelength: 530 nm) at the single-cell 

level, and data was analyzed using Cellquest ® version 3.3 (Becton Dickinson) 

software. In each sample viable cell populations were determined by gating forward 

light scatter (cell size) and side light scatter (cellular granularity) signals as recorded 

on a dot plot (fig. 4.2), which resulted in the exclusion of non-cellular particles and 

debris (located on the bottom left corner of the dot plot). In this way, undesired 

effects on overall fluorescence were limited.  

 

Pre-gated acquisition populations were limited to ∼ 50,000 events (viable cells + non-

viable cells and debris), and final, gated cell populations usually contained 10 000 – 

15 000 cardiomyocytes (for analysis). To standardize selection of the analyzed cell 

populations between different experimental samples, we used the gating coordinates 

of control samples for all subsequent analyses in a particular FACS session. Caution 

was taken to ensure that selected samples contained equal cell numbers. 

Fluorescence was produced by oxidation of DAF-2/DA to its highly green-fluorescent 

diaminofluorescein-triazol (DAF-2T) form, and signals were recorded on a frequency 

histogram (fig. 4.3) in the FL-1 channel by logarithmic amplifiers.  Fluorescence data 

were expressed as mean fluorescence intensity (% of control). 

 

4.4 NOx (nitrates + nitrites) measurements 
 

Samples collected at t = 180 min were stored in liquid nitrogen until a nitrate/nitrite 

colorimetric assay (Cayman Chemical) was performed on homogenized cell 

suspensions. Photometric measurements of absorbance (540 nm) determine nitrate 

+ nitrite concentrations, expressed as pmoles / 106 cells. 
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Fig. 4.2 Representative flow cytometry dot plot of a myocyte suspension showing the spread 

of the total recorded “events” (cells, particles and debris) calculated by their forward and side 

light scatter. The red eclipse-shaped area represents the gated cell population, which is 

ultimately analyzed and excludes the black zone in the left bottom corner representing 

cellular debris and other dissolved particles that may influence overall fluorescence. In total, 

50 000 “events” were counted per sample, and gated cell populations usually contained  

10 000 – 15 000 myocytes. Analysis of intracellular DAF-2/DA fluorescence was performed 

on the gated cell populations, and recorded on a frequency histogram. 
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Fig. 4.3 A representative frequency histogram depicting the fluorescence intensity (log) on 

the x-axis (FLH-1: fluorescence channel 1 height detecting green fluorescence) and cell 

count on the y-axis. The black graph represents control (incubated with 10 µM DAF-2/DA in 

normal Ca2+ containing medium), the green graph cells incubated in DAF-2/DA-free buffer 

and the red graph cells incubated in a Ca2+ -free medium. Fluorescence data indicated that 

no significant autofluorescence was present in cells incubated without DAF-2/DA (green), 

and that incubating cells in Ca2+ -free medium had no effect on fluorescence compared to 

control cells that contained Ca2+ at physiological concentrations. 
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4.5 Results 
 

(i) DAF-2/DA-fluorescence and FACS analysis (fig. 4.2 & 4.3) 

 

FACS analysis of DAF-2/DA (10 µM) produced detectable mean baseline 

fluorescence in control cardiomyocytes after 180 min. Fig. 4.2 is a typical dot plot of a 

myocyte suspension showing the spread of the total recorded events. Cells 

incubated in DAF-2/DA-free buffer showed a 5-fold attenuation in fluorescence 

compared to control cells in the presence of the marker. Incubation of control 

myocytes in calcium-free buffer had no effect on fluorescence (fig. 4.3).  

 

(ii) NO-specificity of DAF-2/DA (figs. 4.4, 4.5 & 4.6) 

 

A dose-dependent increase in mean fluorescence was detected in DEA/NO-treated 

myocytes (100, 500 and 1000 µM: 129.4 ± 11, 282.5 ± 10.5* and 343.7 ± 61.6*% of 

control respectively, * P<0.05 vs control) (fig. 4.4 & 4.5). Cyclosporine A (CsA) is 

known to activate NOS in cells [Navarro-Antolin et al 2001(a)], and our results 

demonstrate that baseline DAF-2/DA fluorescence was increased by 50% in the 

presence of 10 µM CsA (control: 100% vs CsA 10 µM: 149.9 ± 9%; P < 0.05; n = 5 / 

group) (fig. 4.6). Co-administration of the NOS inhibitor L-NAME (50 µM) significantly 

attenuated the increased fluorescence in 10µM CsA-treated cells (CsA: 149.9 ± 8.2% 

vs. CsA+L-NAME: 111.1 ± 7.1% of control; P<0.05; n = 5 / group) (fig. 4.6). 
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Fig. 4.4 Dose-dependent enhancement of DAF-2/DA fluorescence by the NO-donor, 

DEA/NO. Cells were incubated with DEA/NO for 120 min starting at t = 60 min. (A) A 

representative frequency histogram of the fluorescence intensity resulting from the 

administration of 100 µM (black graph), 500µM (green graph) and 1000 µM (red graph) 

DEA/NO respectively. (B) Bar chart of control and DEA/NO 100, 500 and 1000 µM 

fluorescence. Results are mean fluorescence expressed as % of control. DEA/NO 500 and 

1000 µM enhanced mean fluorescence significantly compared to control (283% and 344% of 

control respectively, P<0.05 vs control, n = 5 / group). 
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Fig. 4.5 (A) Fluorescence microphotographs of individual cardiomyocytes loaded with DAF-

2/DA. The increase in the DAF-2/DA fluorescence signal is clearly visible in the myocytes 

treated with the NO-donor DEA / NO (500 µM) compared to the untreated control cell on the 

left. (B) Frequency histogram and (C) bar chart quantify the increased fluorescence observed 

with DEA / NO; n = 5 / group. 
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Fig. 4.6 Effect of treatment with CsA (10 µM), a known activator of NOS, and subsequent 

inhibition of NOS (50 µM L-NAME) in cardiomyocytes. Results demonstrate a significant 

increase in DAF-2/DA fluorescence in CsA-treated cells, partially reversed by NOS inhibition. 

(Abbreviation: LN = L-NAME) *: P<0.05 vs CsA; n = 5 / group. 
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(iii) Effects of hypoxia on viability and DAF-2/DA fluorescence 

 

Myocytes subjected to 120 min hypoxia showed a 57% and 25% reduction in the 

percentage TBE cells and rods respectively (P<0.05 for both parameters; n = 10 / 

group). A 56.3% increase in mean DAF-2/DA fluorescence was observed in hypoxic 

cardiomyocytes (control: 100% vs hypoxia: 156.3 ± 5.6%; P<0.05, n = 15 / group) 

(fig. 4.7 A & C). Hypoxic myocytes incubated in DAF-2/DA-free buffer recorded a 

mean fluorescence of 77% of control compared to 163% in DAF-2/DA-incubated 

hypoxic myocytes (P<0.05; not shown). 

 

(iv) Effects of NOS inhibition on DAF-2/DA fluorescence 

 

Administration of the NOS inhibitor, L-NAME (50 µM), to control myocytes, resulted in 

a 16% attenuation of mean baseline fluorescence (P<0.05; not shown). Addition of 

50 µM L-NAME to hypoxic cells caused a reduction of 30% in mean fluorescence 

compared to untreated hypoxic cells (untreated hypoxia: 156.3 ± 5.6% vs L-NAME-

treated hypoxia: 126.4 ± 7.8%; P<0.05, n = 5 / group) (fig. 4.7 B & C).  

 

(v) NOx measurements (fig. 4.8) 

 

Hypoxia increased NOx levels by 60% compared to control (control: 482.6 ± 42 vs 

hypoxia: 773.4± 107 pmoles / 106 myocytes; P<0.05) (fig. 4.8). Addition of L-NAME 

to hypoxic cells resulted in an attenuation of NOx to levels observed in control cells 

(469 ± 42 pmoles / 106 myocytes; P<0.05 vs hypoxia) (fig. 4.8). DEA/NO (500 µM) 

caused a 140-fold increase in NOx levels compared to control (P<0.05; not shown). 
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Fig. 4.7 (A) Representative frequency histogram of DAF-2/DA fluorescence observed in 

control (black graph) and hypoxia (red graph) myocytes. It is clear that 120 min of hypoxia 

resulted in enhanced fluorescence intensity compared to control. (B) Representative 

frequency histogram of hypoxia myocytes treated with 50 µM L-NAME (red graph) compared 

with untreated hypoxia cells (black graph), showing a clear attenuation in fluorescence 

intensity in the former. (C) Bar chart depicting the effects of hypoxia ± L-NAME compared 

with control. Results are expressed as mean fluorescence as a % of control. (“LN” = 50 µM 

L-NAME). Results show that 120 min of hypoxia enhanced DAF-2/DA fluorescence 

significantly, and L-NAME attenuated this effect by 30%; n = 5 – 15 / group.  
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4.6 Discussion 
 

To the best of our knowledge, we have shown for the first time that FACS analysis 

detects NO levels in isolated adult cardiomyocytes incubated with the fluorescent 

NO-probe, DAF-2/DA. The NO-specificity of the probe in cardiomyocytes was 

demonstrated by the dose-dependent increase in fluorescence observed with the 

NO-donor, DEA/NO (fig. 4.4 & 4.5). The NO-specificity of DAF-2/DA has previously 

been questioned due to possible susceptibility to Ca2+ and light [Broillet et al 2001], 

however the authors who originally developed the probe, subsequently showed that 

the reaction between DAF-2 and NO was independent of Ca2+ and Mg2+, and that the 

role of Ca2+ was rather to release NO from NO-donors [Suzuki et al 2002]. Our own 

investigations into a potential role for Ca2+ in DAF-2/DA fluorescence showed that 

Ca2+ had no effect (fig. 4.3). All possible precautions were taken to avoid light 

exposure during incubation and experimentation, however, the effect of incidental 

light cannot be completely excluded. In such an event, all samples would be affected 

equally. Freshly isolated adult cardiomyocytes, despite their shortcomings as 

described in Chapter 2, are physiologically superior preparations to cultured 

neonatal/embryonic myocytes, since the latter express an immature heart cell 

genotype and phenotype [Mitcheson et al 1998]. Furthermore, fresh cardiomyocytes 

are known to survive in vitro for a sufficient period of time (8-10 hours) [Mitcheson et 

al 1998], allowing the investigator sufficient time to study eNOS-NO metabolism.  

 

Ischaemia has been shown to activate cardiac NOS [Depré et al 1997]. We 

investigated whether 120 min hypoxia could activate endogenous cardiomyocyte NO- 

production. Our FACS results indicate a significant increase in NO production   
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Fig. 4.8 Effects of hypoxia ± NOS inhibition on NOx (nitrates + nitrites) levels. Results show 

increased NOx levels after 120 min of hypoxia, reversed by the addition of L-NAME (n = 6 / 

group). 
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Fig. 4.9 Bar chart combining the DAF-2/DA FACS analysis and NOx data. Results of both 

methods are expressed as a percentage of control (control = 100%). Hypoxia results for both 

parameters were significantly greater than control and hypoxia + L-NAME values (DAF 

hypoxia and NOx hypoxia: 156 and 160% respectively; DAF hypoxia + L-NAME and NOx 

hypoxia + L-NAME: 126 and 97% respectively); n = 6-15 / group. 
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(fig. 4.7 A & C), associated by a pronounced reduction in cell viability confirming the 

efficacy of the protocol. Interestingly, the cardiomyocytes exhibit a bimodal pattern of 

mean DAF-2/DA fluorescence intensity (fig. 4.7 A & B), particularly the hypoxic cells. 

This is difficult to explain, but may be due to a change in the morphology of the 

myocytes, or that hypoxia induces a portion of the cells to develop greater 

fluorescence intensity. Possible autofluorescence induced by hypoxia was excluded 

by incubating hypoxic cells in a DAF-2/DA-free buffer. Increases in NO levels were 

significantly reversed by L-NAME (fig. 4.7 B & C), suggesting that the increase was 

due to activated cardiomyocyte NOS and therefore an endogenous mechanism. The 

ability of the probe to detect endogenous NO-production was further supported by 

the CsA data (fig. 4.6) CsA has been shown to be a potent activator of eNOS in 

endothelial cells [Navarro-Antolin et al 2001(a)]. In the present study, CsA 

significantly increased the DAF-2/DA fluorescence signal, and when NOS was 

inhibited by L-NAME, the increase was almost completely reversed, indicative of 

NOS activation, and therefore the probe’s ability to detect changes in endogenous 

NO. We have previously demonstrated significant increases in cardiomyocyte cGMP 

(the most important second messenger of NO) induced by 120 min hypoxia [Ch. 3; 

Strijdom et al 2004(a)], supporting the present DAF-2/DA findings.  

 

In a further attempt to validate this technique, we assayed cellular NOx levels, an 

acknowledged end-point for NO production [Kelm 1999], on all samples (fig. 4.8). 

The % changes in NOx between control, hypoxia and hypoxia + L-NAME groups was 

similar to observations with DAF-2/DA (fig. 4.9). This suggests that the FACS 

technique is at least as sensitive as NOx measurements, particularly in the case of 

intracellular control and hypoxia-induced, NOS-activated NO generation. It can 
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therefore be concluded that the 60% increase in hypoxia-induced DAF-2/DA 

fluorescence represents an intracellular release of ∼ 300 pmoles NOx / 106 myocytes. 

A similar conclusion can be drawn from the respective hypoxia + L-NAME findings.   

 

Attempts to use known concentrations of NO-donors and measurements of the NOx 

they release, as possible standards to calibrate fluorescence readings were 

unsuccessful. Increases in DEA/NO and SNP-induced (not shown) NOx generation 

over controls were 139- and 35.4-fold respectively, compared to 2.4 and 1.6 in FACS 

studies. Discrepancies between the results of the two detection methods can be 

explained by the fact that the NOx assay does not distinguish between intracellular 

and extracellular NOx, whereas FACS analyzes intracellular NO only. The 

investigator has limited control over the extent to which donors release NO in the 

extracellular compartment, particularly in the case of DEA/NO, known to 

spontaneously release NO on dissolution in aqueous media [Keefer 1998].  

 

In summary, our findings suggest that the DAF-2/DA FACS analysis method can be 

regarded as an independent and validated technique that detects and measures 

intracellular NOS-activated (i.e. endogenous) NO-production in isolated 

cardiomyocytes. The application of this technique in isolated myocytes can help to 

elucidate the complex nature of intracellular NO actions, both in physiological and 

pathophysiological (i.e. hypoxia / ischaemia) conditions. 
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[The aims, methods, data and conclusions presented in this chapter appeared in: 

Strijdom H, Muller C, Lochner A. Direct intracellular nitric oxide detection in isolated 

adult cardiomyocytes: flow cytometric analysis using the fluorescent probe, 

diaminofluorescein. J Mol Cell Cardiol 2004; 37(4): 897-902.] 
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CHAPTER 5 
 

NO-PRODUCTION AND NOS REGULATION IN 
CARDIOMYOCYTES AND CMECs: A 

COMPARATIVE STUDY 
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5.1 Introduction 
 

It is important at this stage to reflect in a summarized fashion on the findings of our 

investigations in Chapters 3 & 4 before the next series of investigations are 

presented. The most important findings and milestones are as follows: 

 

A viable freshly isolated adult rat ventricular cardiomyocyte model has been 

established. We have also developed a method of hypoxia induction, which has been 

validated by 3 independent viability indices. In addition, three independent NO-

detection methods (direct and indirect) have been established, viz. intracellular 

cGMP level determination, NOx measurements, and FACS analysis of DAF-2/DA 

fluorescence. The development of the DAF-2/DA technique in freshly isolated 

cardiomyocytes signifies a novel NO-detection method in the field of basic 

cardiovascular research. We have established that a sustained period of hypoxia 

increases NO-production in the cardiomyocytes as measured by the three detection 

techniques described above and that the observed increase in NO-production is 

likely to be derived from endogenous NOS-activation. However, the evidence for this 

conclusion is mostly indirect, and the NOS isoforms involved remain unknown.  

 

Although we were successful in the establishment of an early IP protocol that elicits 

protection against sustained hypoxia, our findings suggest that in our model of 

isolated cardiomyocytes, NO does not seem to be involved as a trigger or mediator of 

early IP-protection. We could also not demonstrate a triggering or mediating role for 

ROS in IP-protection. In addition, it seems as if NO released during sustained 

hypoxia was harmful in non-preconditioned cells, while its release had no effect in 
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preconditioned myocytes. In view of these observations, the rest of the thesis will 

focus on the role of NO during hypoxia. 

 

In this chapter, we will attempt to further characterize the phenomenon of hypoxia-

induced NO-production in cardiomyocytes. The NOS isoform (-s) involved needs to 

be established and its regulation and activation demonstrated. Furthermore, the role 

of NO-derived reactive species needs more research. NO-production in cardiac 

microvascular endothelial cells (CMECs), the most likely nonmyocyte cellular source 

of NO to the cardiomyocytes, needs to be investigated in baseline and hypoxic 

conditions, as well as the NOS enzyme (-s) involved. The relative contributions to NO 

production of each cell type has not been described yet, and we will attempt to 

establish models and protocols in which cell-to-cell comparisons can be investigated. 

 

As discussed in Ch. 1, studies investigating the role of NO in the heart often report 

contradictory effects ranging from harmful to protective [Shah & MacCarthy 2000]. An 

important factor that could contribute to the contradictory effects is the relative 

contributions of NO-producing cardiac cells to overall NO actions [Shah & MacCarthy 

2000]. Furthermore, protection may be dependent on the presence of nonmyocyte 

(e.g. endothelial cells) sources of NO. The amount and ultimate action of NO 

produced by the different cardiac cell types could vary depending on NOS isoenzyme 

predominance, as well as the size of the respective cell type populations, for 

example, cardiac endothelial cells and ventricular cardiomyocytes, which collectively 

form the majority of NO-producing cells in the heart [Ch. 1; Brutsaert 2003; Shah & 

MacCarthy 2000]. However, despite extensive research, the relative importance of 

endothelium- and myocyte-derived NO remains to be established [Shah & MacCarthy 
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2000]. Cardiac endothelial cells and ventricular cardiomyocytes both express the 

constitutive NO-generating enzyme, endothelial nitric oxide synthase (eNOS), albeit 

to a relatively low degree [Brutsaert et al 1998; Andries et al 1998; Balligand et al 

1995(b)]. Compared with other cardiac endothelial cell types, the cardiac microvessel 

endothelial cells (CMECs) are of greater functional relevance with regards to 

endothelial cell-cardiomyocyte interaction, since they are in close proximity to the 

myocytes, facilitating rapid passage of signaling molecules such as NO [Ch. 1; 

Brutsaert 2003; Shah & MacCarthy 2000; Brutsaert et al 1998; Andries et al 1998]. 

 

Studies investigating production of NO in hypoxic endothelial cells show contradictory 

trends [Kerkhof et al 2002]: whereas some have shown hypoxia-induced increases in 

NO production and eNOS expression [Justice et al 2000; Xu et al 1995], others have 

shown decreased eNOS mRNA levels and cGMP production [McQuillan et al 1994]. 

In hypoxic cardiomyocytes, data seem to be more consistent. We have previously 

shown that hypoxic ventricular cardiomyocytes produce more intracellular NO than 

oxygenated control cells [Ch. 3 & 4; Strijdom et al 1994(a); Strijdom et al 1994(b)], a 

trend also observed by others [Depré et al 1997; Kitakaze et al 1995].  

 

The contention that cardiac endothelial cells produce larger physiological (baseline) 

amounts of NO than cardiomyocytes is largely based on (indirect) eNOS-labeling and 

-expression studies [Brutsaert 2003; Shah & MacCarthy 2000; Brutsaert et al 1998; 

Andries et al 1998]. However, to the best of our knowledge, no evidence exists of 

studies that have compared actual physiological (basal) NO production in cardiac 

endothelial cells and cardiomyocytes by direct measurements of intracellular NO 

concentrations. Furthermore, studies investigating cardiomyocyte and CMEC NOS 



 187

(eNOS and iNOS) regulation during hypoxia are lacking [Jung et al 2000; Shah & 

MacCarthy 2000]. Hypoxia as a putative activator of eNOS is a case in point, and 

needs further investigation since there is no evidence of studies that directly compare 

NO production and the role of eNOS in these cell types during hypoxia. CMECs are 

thought to demonstrate the lowest eNOS expression of all cardiac endothelial cell 

types [Brutsaert 2003; Shah & MacCarthy 2000; Brutsaert et al 1998], and it would 

be interesting to compare their NO production with that of their ventricular 

cardiomyocyte neighbours, also thought to express low levels of eNOS. Direct eNOS 

expression studies in CMEC are lacking, which may be the result of possible eNOS 

down-regulation during culture in vitro, as reported by some authors [Lang et al 1999; 

Balligand et al 1995(a)]. 

 

The inducible isoform of NOS, iNOS, has also been described in both endothelial 

cells [Balligand et al 1995(a)] and cardiomyocytes [Balligand et al 1994], and its 

contribution to NO-production in the heart has been discussed earlier [Ch. 1]. 

Although several studies demonstrated increased iNOS expression under hypoxic 

conditions in cell types such as macrophages [Melillo et al 1995] and pulmonary 

endothelial cells [Palmer et al 1998], few have investigated the effects of hypoxia on 

iNOS in cardiomyocytes and CMECs. In a study on neonatal rat cardiomyocytes 

increased iNOS expression was observed after exposure to hypoxia, and data 

suggested that hypoxia inducible factor-1 (HIF-1) seemed to be the regulating factor 

for iNOS gene expression [Jung et al 2000].  

 

Therefore, in this chapter, we aimed to test the hypothesis that CMECs produce 

more intracellular NO than cardiomyocytes during baseline and hypoxic conditions. A 
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protocol was designed that directly measured and compared intracellular NO 

production in isolated ventricular cardiomyocytes and CMECs using flow cytometric 

analysis of diaminofluorescein (DAF-2/DA), a NO-specific fluorescent probe [Kojima 

et al 1998]. In addition, we aimed to assess the subsequent intracellular production of 

NO’s most reactive and potentially harmful metabolite, peroxynitrite (ONOO–) under 

the same conditions. ONOO– is biologically important since it has both deleterious 

(many of the harmful actions of NO are mediated via ONOO– [Ferdinandy & Schulz 

2003; Beckman & Koppenol 1996; Murphy et al 1998] and cardioprotective 

[Ferdinandy & Schulz 2003; Stowe & Riess 2004] effects. These findings could help 

explain the relative contributions of CMECs and cardiomyocytes to ONOO– 

production, and to what extent NO is metabolized to ONOO– in each cell type. 

 

We furthermore aimed to measure and compare baseline and hypoxia-induced 

regulation of eNOS and iNOS to ascertain whether their content reflects possible 

differences observed with direct NO measurements in these cell types. 

 

5.2 Experimental groups and protocols (fig. 5.1) 
 

(i) NO-measurements in cardiomyocytes 

 

Freshly isolated cardiomyocytes; hypoxia induced by ischaemic pelleting (fig. 5.1 A) 

 

Oxygenated control conditions were simulated by normoxic incubation of isolated 

cardiomyocytes in solution D (500,000 cells / 35mm petri dish) in a standard tissue 

culture incubator (21% O2, 5% CO2, 40-60% humidity, 37°C) for 180 min.  Hypoxia 

was simulated by the ischaemic pelleting method previously described [Ch. 2; 
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Strijdom et al 2004(a); Strijdom et al 2004(b)]. The protocol for the detection of NO 

was employed as previously described for endothelial cells [Navarro-Antolin et al 

2001(a); Navarro-Antolin et al 2001(b)] and isolated cardiomyocytes [Ch. 4; Strijdom 

et al 2004(b)], with minor modifications (fig. 5.1 A). At the beginning of experiments (t 

= 0 min), control and hypoxic samples were loaded with non-limiting concentrations 

of the cell-permeable fluorescent probe diaminofluorescein-diacetate (DAF-2/DA, 10 

µM in 1 ml solution D) for detection of intracellular production of NO. The probe was 

present throughout the experiments. Hypoxia was induced for a duration of either 

120 min (at t = 60 min), or 60 min (at t = 120 min), while control samples were 

incubated under normoxic conditions for the same time periods. To assess the role of 

NOS in the 120 min hypoxia groups, L-NAME (non-selective NOS inhibitor, 50 µM), 

or SMT (iNOS-specific inhibitor, 100 µM and 1 mM), were administered at t = 30 min 

and were present for the remainder of the experiments (fig. 5.1 A). At t = 180 min, 

probes were washed out from all samples and cells resuspended in probe-free 

solution D followed by immediate FACS analysis.   

 

NO-production in a cultured cardiomyocyte model (fig. 5.1 B) 

 

To test whether subjecting cardiomyocytes to culture conditions (as opposed to the 

freshly isolated state) would influence NO-production, isolated cells were cultured in 

35mm fibronectin-coated dishes in solution D under normoxic conditions for 24 h, 

after which the medium was removed, and cells loaded with DAF-2/DA-containing 

solution D for 60 min (fig. 5.1B). Subsequently, the probe was washed out, cells 

resuspended in probe-free medium, and analyzed by FACS. DAF-2/DA was 

administered at the end of the experiments, since separate investigations showed 
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that the incubation time in this model (24 h) was too long for sustainable production 

of fluorescence by the probe when administered at t = 0 min (data not shown). 

 

Cardiomyocytes in suspension cultures; hypoxia by ↓PO2 incubation (fig. 5.1 C) 

 

To establish whether the NO-production observed in hypoxic cells was dependent on 

the nature of the hypoxia protocol, cardiomyocytes were suspended in substrate-free 

solution D in 35mm culture dishes with oxygenated control samples incubated under 

normoxic conditions in a standard tissue culture incubator, and hypoxic samples 

subjected to ↓PO2 incubation (1% O2, 5% CO2, 40-60% humidity; 37°C) in a multi-

gas tissue culture incubator (fig. 5.1 C). After 120 min hypoxic incubation, samples 

were removed and loaded with solution D containing DAF-2/DA for 60 min, before 

the probe was washed out in preparation for FACS analysis. 

 

(ii) Peroxynitrite (ONOO-) measurements in cardiomyocytes (fig. 5.1 A) 

 
The protocol for the detection of ONOO- was employed as previously described for 

endothelial cells [Navarro-Antolin et al 2001(a); Navarro-Antolin et al 2001(b)] and 

isolated cardiomyocytes [Strijdom et al 2004(b)], with minor modifications (fig. 5.1 A). 

At the beginning of experiments (t = 0 min), control and hypoxic samples (120 min 

hypoxia groups) were loaded with non-limiting concentrations of the cell-permeable 

fluorescent probe dihydrorhodamine-123 (DHR-123, 2 µM in 1 ml solution D) for 

detection of intracellular ONOO- production.  The probe was present throughout the 

experiments. At t = 180 min, the probe was washed out from all samples and cells 

resuspended in probe-free solution D followed by immediate FACS analysis. 
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(iii) NO-measurements in CMECs 

 

CMECs isolated by trypsinization, hypoxia induced by mineral oil layering (fig. 5.1 A) 

 

In trypsinized CMECs, the experiments were designed to match those described for 

the fresh isolated cardiomyocytes (Fig. 5.1 A). Briefly, for oxygenated control 

samples, cultured CMECs were isolated by detachment from their fibronectin-coated 

dishes with trypsin, as discussed in Ch. 2. Isolated CMECs were incubated in 

fibronectin-free petri dishes in fresh solution D (0.5 x 106 cells / 35mm petri dish) 

under an O2 atmosphere as described for cardiomyocytes. Hypoxia was induced by 

gentle centrifugation of isolated CMECs (1000 r.p.m.) in microcentrifuge tubes, 

followed by removal of most of the supernatant and finally layering with mineral oil. 

Hypoxic samples were incubated in a tissue culture incubator (37°C).  

For the detection of NO samples were loaded with 10 µM DAF-2/DA at t = 0 min. 

Control groups were subjected to normoxia for 180 min. In the hypoxic samples, a 

normoxic preincubation period was followed by the induction of hypoxia for a duration 

of 60 min or 120 min. NOS inhibitors were administered in an identical fashion to that 

described in isolated myocytes in the 120 min hypoxia group. At t = 180 min, all 

samples were washed and analyzed by FACS. To test whether incubation of CMECs 

isolated by prior trypsinization was harmful to the cells, we measured the viability and 

LDL-uptake in cells isolated and then resuspended in solution D for 180 min, and 

compared findings with those in cells cultured on fibronectin for the same time period. 

 

 

 



 192

Cultured CMEC model, hypoxia induced by ↓PO2 incubation (fig. 5.1 D) 

 

We tested whether performing the experiments in cultured CMEC would influence 

results by repeating the NO-detection investigations in CMECs that were not isolated 

by prior trypsinization (fig. 5.1 D), but retained in culture (35mm fibronectin-coated 

petri dish). Prior to experimentation, the 10% FBS-containing endothelial growth 

medium (10% EGM) was removed and substituted with serum-reduced 5% EGM in 

control and hypoxic samples. In oxygenated control groups, samples were incubated 

for 18 h under an O2 atmosphere. Hypoxia was induced by ↓PO2 incubation of 

cultured cells (1% O2, 5% CO2, 40-60% humidity, 37°C) for 18 h. At the end of 18 h 

incubation, EGM was removed and cells were loaded with 10 µM DAF-2/DA for 60 

min. After the loading period, probe-containing medium was washed out and 

replaced with probe-free solution D before immediate FACS analysis. DAF-2/DA was 

administered at the end of the experiments, since separate investigations indicated 

that the incubation time in this model (18 h) was too long for sustainable production 

of fluorescence by the probe when administered at t = 0 min (data not shown).  

 

(iv) ONOO- measurements in trypsinized CMECs (fig. 5.1 A) 

 

At the beginning of experiments (t = 0 min), control and hypoxic samples (120 min 

hypoxia groups) were loaded with non-limiting concentrations of the cell-permeable 

fluorescent probe dihydrorhodamine-123 (DHR-123, 2 µM in 1 ml solution D) for 

detection of intracellular ONOO- production.  The probe was present throughout the 

experiments. At t = 180 min, the probe was washed out from all samples and cells 

resuspended in probe-free solution D followed by immediate FACS analysis. 
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(v) NO-production in mixed-cell suspensions (fig. 5.1 E) 

 

Isolated cardiomyocytes and trypsinized CMECs were co-suspended in solution D at 

a CMEC-to-cardiomyocyte cell number ratio of 1:1 (500 000 CMECs and 500 000 

cardiomyocytes respectively). Prior to the co-suspension of the cells, isolated 

cardiomyocytes and trypsinized CMECs were incubated separately in solution D from 

t = 0 min to t = 120 min. In the control oxygenated groups, CMECs and myocytes 

were subsequently co-suspended in solution D at t = 120 min and incubated in  

35 mm dishes for a further 60 min in a standard tissue culture incubator under 

oxygenated conditions (21% O2; 5% CO2; 40-60% humidity; 37°C). Hypoxia in the 

mixed-cell samples was induced at t = 120 min by pelleting the CMECs 

(centrifugation @ 1000 r.p.m.) in microcentrifuge tubes, followed by removal of the 

supernatant, addition of myocyte suspensions on top of the CMEC pellets, and a final 

centrifugation (@ 250 r.p.m.) in order to pellet the myocytes. As a last step, most of 

the supernatant covering the two pellets was removed and layered with mineral oil for 

60 min until t = 180 min. In separate experiments, cardiomyocytes were co-incubated 

with CMECs in culture under control conditions by layering the myocyte suspension 

onto the cultured CMEC monolayer for 60 min after separately pre-incubating the 

myocytes and CMECs in solution D for 120 min. 

 
5.3 Probe specificity 
 

Specificity of DAF-2/DA was tested as described earlier [Ch. 4; Strijdom et al 

2004(b)] by administration of the NO-donor, DEA/NO (see fig. 5.1 F for protocol). 

Incidental sensitivity of DAF-2/DA for ONOO- was evaluated by incubating DAF-

2/DA-loaded myocyte suspensions with 100 µM authentic ONOO- and analyzing 
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fluorescence by FACS. Specificity of DHR-123 for ONOO- was tested by FACS 

analysis of myocyte samples loaded with 2 µM DHR-123 and subsequently incubated  

with increasing concentrations of authentic ONOO- (100 µM, 500 µM and 1 mM) for 

120 min (fig. 5.1 F). Incidental sensitivity of the probe for NO was evaluated by 

incubating DHR-123-loaded myocyte samples with 500 µM DEA/NO (NO donor) and 

subsequently analyzing the fluorescence by FACS. 
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Fig. 5.1 Experimental groups and protocols for NO and ONOO- detection and viability testing 
(see next page for detailed legend) 
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Fig. 5.1 (A) Cardiomyocytes and CMECs (isolated by prior trypsinization) were incubated in 

substrate-containing solution D for 180 min. Control samples were incubated under a 

normoxic atmosphere, and hypoxia (ischaemic pelleting) was induced at t = 60 min or t = 120 

min. Probes, 10 µM DAF-2/DA and 2 µM DHR-123, were loaded at t = 0 min and remained 

present throughout the experiments. At t = 180 min, samples were randomly collected for 

FACS analysis or viability assessment (propidium iodide or trypan blue). NOS inhibitors, 50 

µM L-NAME or 100 µM and 1 mM SMT, were administered to 120 min hypoxia samples at t 

= 30 min and remained present until the end of experiments. (B) Cardiomyocytes were 

cultured in fibronectin-coated 35 mm dishes for 24 h followed by loading with DAF-2/DA for 

60 min and FACS analysis. (C) Cardiomyocytes were incubated in substrate-free solution D 

for 120 min, loaded with DAF-2/DA for 60 min, followed by FACS analysis, and hypoxia 

induced by ↓PO2 incubation for 2 h. (D) CMECs were incubated in culture for 18 h. Control 

samples were subjected to normoxia, and hypoxic samples by reduction of O2 concentration 

to 1%. At t = 18 h, samples were loaded with DAF-2/DA for 1 h, followed by FACS analysis. 

(E) Cardiomyocytes and trypsinized CMECs (loaded with DAF-2/DA at t = 0 min) were 

preincubated separately under normoxic conditions for 120 min, followed by co-incubation 

(normoxic or hypoxic) for 60 min in a 1: 1 cell number ratio. (F) Probe specificity of DAF-2/DA 

and DHR-123 was assessed in myocytes by the administration of DEA/NO (100 µM, 500 µM, 

and 1 mM), and authentic ONOO– (100 µM, 500 µM, and 1 mM) at t = 60 min and present 

until t = 180 min, followed by FACS analysis. 
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5.4 Flow cytometry  
 

FACS analysis of DAF-2/DA- and DHR 123-treated isolated cardiomyocytes and 

CMEC was performed as described previously [Ch. 4; Strijdom et al 2004(b); 

Navarro-Antolin et al 2001(b)]. Both the DAF-2/DA and DHR-123 fluorescence 

signals were recorded in the FL-1 channel. For PI-uptake viability tests [Ch. 2; 

Navarro-Antolin et al 2001(b)], cells were analyzed by FACS in the FL-2 channel. 

Unless stated otherwise, all FACS data are expressed as mean fluorescence 

intensity (percentage of control). 

 

5.5 Cell viability tests 
 

In both cardiomyocytes and CMECs, hypoxia-induced cell damage was evaluated by 

FACS analysis of the % increase in mean fluorescence of cells absorbing propidium 

iodide, based on the method previously described [Ch.2].  In the cardiomyocytes, the 

trypan blue exclusion test was used as a second indicator of viability based on a 

method previously described for myocytes [Ch.2-4]. 

 

5.6 Western Blot analyses of eNOS and iNOS (fig. 5.2) 
 

The amount of total and phosphorylated (Ser 1177) eNOS in both cell types 

(respective sample collection time points shown in Fig. 5.2) was determined by 

Western blotting. In samples exposed to 120 min hypoxia and the cultured CMEC 

groups (fig. 5.2 A & B), cells were lysed in a buffer containing in (mM): Tris 20; p-

nitrophenyl phosphate 20; EGTA 1; NaF 50; sodium orthovanadate 0.1; phenyl-

methyl sulphonyl fluoride (PMSF) 1; dithiotreitol (DTT) 1; aprotinin 10 µg/ml; 

leupeptin 10 µg/ml and 1% Triton-X100.  For the Western blots of the isolated 
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cardiomyocyte and trypsinized CMEC groups exposed to 60 min hypoxia (fig. 5.2 A & 

C), a lysis buffer containing (in mM): Tris 20; EGTA 1; EDTA 1; NaCl 150; ß-

Glycerophosphate 1; sodium orthovanadate 1; tetra-sodium diphosphate 2.5; PMSF 

1; 0.1% Sodium dodecylsulfate (SDS); aprotinin 10 µg / ml;  leupeptin 10 µg / ml, and 

1% Triton-X100 was used. After sonication, cell lysate protein (40 µg ) was loaded on 

7.5 or 8% SDS-polyacrylamide gel and transferred onto nitrocellulose. After Western 

blotting, membranes were probed with the respective rabbit polyclonal antibodies 

(Cell Signaling Technology). The secondary antibody was horseradish peroxidase-

linked anti-rabbit IgG (Amersham). INOS determinations in isolated cardiomyocytes 

and trypsinized CMECs were done by using the cell lysis procedure as described 

above. Primary anti-iNOS rabbit polyclonal antibodies (BD Transduction 

Laboratories) were used, and the secondary antibody was anti-mouse HRP-linked 

(Upstate Cell Signalling). The immunoreaction for all samples was visualized using 

the ECL™ system, and films were densitometrically analyzed (UN-SCAN-IT, Silk 

Scientific, Orem, UT, USA). 
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Fig. 5.2 Experimental groups and protocols for eNOS and iNOS determinations. See text for 
detailed description 
 
 

18 h normoxic incubation 

t = 0 h t = 18 h 

1 h probe Control 

18 h hypoxic incubation (1% O2) 

t = 0 h t = 18 h 

1 h probe Hypoxia 

B. 

CULTURED CMEC: *
*

TRYPSINIZED CMEC: 

*Control 180 min normoxic incubation 

t = 0 min t = 180 min

C. 

*Hypoxia 
60 min 

t = 0 min 

120 min preincubation 

t = 120 min t = 180 min

60 min hypoxia (mineral oil) 

Sampling points for Western Blots *

Hypoxia 
120 min   



 200

5.7 Results 
 

(i) Cell viability (fig. 5.3) 

 

Hypoxia-induced cell injury was tested by evaluating changes in cell viability. Two 

viability tests were used, viz. trypan blue exclusion and propidium iodide staining [Ch. 

2]. Unless stated otherwise, all data are given as the percentage of control (control 

adjusted to 100%). In isolated cardiomyocytes the % viable TBE cells decreased 

from 54% to 46.2±2% (P<0.05; n=10) after 120 min of mineral oil-induced hypoxia. 

Similarly, 120 min hypoxia increased the nonviable PI-staining cardiomyocytes by 

59.3% (increased mean PI fluorescence to 159.3±8.8% of control, P<0.05; n=11). In 

cardiomyocytes exposed to 60 min hypoxia a loss of 20% viable, trypan blue 

excluding cardiomyocytes was observed (control: 100% vs. hypoxia: 80.5 ± 1.3; p < 

0.05; n = 4 / group) and a 30% increase in non-viable PI-fluorescence intensity was 

observed (100% vs. hypoxia: 129.8 ± 6.3%; p < 0.05; n = 8 / group) (Fig. 5.3 A & B). 

When the hypoxia protocol was changed to 120 min ↓PO2 incubation (1% O2 

atmosphere), a 26% reduction of % viable TBE cells was observed (73.6±5% 

compared with control, P<0.05; n=3).  

 

In CMECs isolated by prior trypsinization, 120 min hypoxia induced by ischaemic 

pelleting reduced % viable TBE cells to 84.2 ± 3.8% of control (P<0.05; n=6). 

Trypsinized CMECs exposed to 60 min hypoxia induced by ischaemic pelleting 

demonstrated 18% increase in PI fluorescence (control: 100% vs. hypoxia: 117.7 ± 

3.7; p < 0.05; n = 5 / group) (fig. 5.3 F). When the hypoxia protocol was changed to 

18 h of ↓PO2 incubation of CMECs in culture, the percentage of non-viable PI- 
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staining cells increased to 121.5 ± 7.2% of control (P<0.05; n=5) (fig. 5.3 E). These 

data indicate that 60 min hypoxia (ischaemic pelleting) of trypsinized CMECs 

achieved the same degree of injury within a much shorter time than ↓ PO2 incubation 

of cultured CMECs (18 h). These results also suggest that CMECs were less 

vulnerable to hypoxic injury than the cardiomyocytes. Finally, we tested whether 

isolation of CMECs by prior trypsinization had any effect on CMEC viability  

compared with CMECs in culture (both groups under control, oxygenated conditions). 

The viability as measured by actual PI fluorescence readings remained unchanged in 

the two groups (cells isolated by trypsinization 1.24±0.08, n= 5, and cultured cells: 

1.22±0.14, P>0.05, n= 8). The ability of CMECs to take up fluorescence-labeled LDL 

was also not affected by the isolation procedure compared with cultured CMECs 

(data not shown). 

 

(ii) Probe specificity (fig. 5.4) 

 

The NO donor, DEA/NO, was administered in increasing concentrations to isolated 

myocytes preloaded with 10 µM DAF-2/DA as described earlier [Ch. 4]. The dose-

response curve of DEA/NO vs. mean fluorescence intensity measurements by FACS 

analysis is shown in fig. 5.4 A. A step-wise increase in fluorescence was observed: 

DEA/NO 100 µM, 1.4-fold increase (142±5% of probe only); 500 µM, 2.6-fold 

increase (259±19%); and 1 mM, 3.2-fold increase (316±38%) (P<0.05 vs. probe 

only). These results are in agreement with the findings presented in Ch. 4. Incidental 

sensitivity of DAF-2/DA for ONOO– was tested by incubating probe-containing 

samples with 100 µM authentic ONOO– and comparing the fluorescence with that 

obtained with 100 µM DEA/NO (see graph inset fig. 5.4 A).  
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Fig 5.3 Cell viability results. (A) Bar chart showing mean PI fluorescence in control and 

hypoxic cardiomyocytes exposed to 60 min hypoxia induced by ischaemic pelleting. 

*:p < 0.05; n = 8 / group. (B) Trypan Blue Exclusion (% of control) in control and 60 min 

hypoxic cardiomyocytes. * p < 0.05; n = 4 / group. (C) Representative histogram depicting PI 

fluorescence intensity in control CMECs. The fluorescence peak on the right, gated by M1, 

represents cells that have absorbed PI (non-viable population). (D) Histogram of PI 

fluorescence in hypoxic CMECs showing increased population of PI-positive cells. (E) PI 

fluorescence in cultured CMECs (18 h control and ↓ PO2 hypoxia). * p < 0.05; n = 4 / group. 

(F) PI fluorescence in trypsinized CMEC (control and 60 min mineral oil hypoxia). * p < 0.05; 

n = 5 / group. 
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Fig. 5.4 (A) Specificity of DAF-2/DA for NO tested by incubating cardiomyocytes with increasing 

concentrations of the NO donor, DEA/NO (100 µM, 500 µM, and 1 mM) for 120 min. In the inset, 

incidental sensitivity of the probe for authentic ONOO– (100 µM) was tested, and fluorescence was 

compared with 100 µM DEA/NO. (B) Dose-response effect tested in cardiomyocytes preloaded with 

DHR-123 followed by 120 min incubation with authentic ONOO– (100 µM, 500 µM, and 1 mM). In the 

inset, incidental sensitivity of DHR-123 for 500 µM DEA/NO was tested, and fluorescence was 

compared with 500 µM authentic ONOO–. 
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No significant enhancement of fluorescence was observed with authentic ONOO–. To 

test probe specificity of DHR-123 for ONOO–, we incubated cardiomyocyte samples 

preloaded with the probe with increasing concentrations of authentic ONOO– (fig. 5.4 

B). A step-wise enhancement of mean DHR-123 fluorescence intensity was observed 

(compared with probe-only control samples adjusted to 100%): ONOO– 100 µM, 1.9-

fold increase (192.5±12% of probe only); 500 µM, 6.5-fold increase (652±60%); and 

1 mM, 12.2-fold increase (1223±321%) (P<0.05 vs. probe only). We also tested 

whether incubation with 500 µM DEA/NO would result in enhanced DHR-123 

fluorescence. The graph inset (Fig. 5.4 B) shows that DHR-123 fluorescence was 

unaffected by the NO donor. 

 

(iii) DAF-2/DA and DHR-123 fluorescence in cardiomyocytes (figs 5.5 & 5.6) 

 

In cardiomyocytes, the induction of hypoxia by ischaemic pelleting for 120 min 

resulted in a 1.6-fold increase in DAF-2/DA fluorescence compared with control 

(155.6±4.6%; P<0.05; n=11; fig. 5.5 A). Co-incubation of hypoxic samples with the 

NOS inhibitors partially reversed fluorescence intensity: 50 µM L-NAME to 114 ± 

6.1%* (n=8), 100 µM SMT to 136.1 ± 4.3%* (n=4), and 1 mM SMT to 126.4 ± 3.8%* 

(n=4) respectively (*:P<0.05 vs. hypoxia) (fig. 5.5 A). Changing hypoxia to 60 min 

ischaemic pelleting resulted in a 1.4-fold increase in DAF-2/DA fluorescence (control: 

100% vs. hypoxia: 140.3 ± 4.6%; p < 0.05; n = 8 / group) (fig. 5.5 B). We tested 

whether the ability of cardiomyocytes to produce NO under baseline conditions would 

be affected by placing the cells in culture, as opposed to analyzing cells in the freshly 

isolated state. Cardiomyocytes were cultured for 24 h in fibronectin-coated dishes 

under normoxic conditions, after which DAF-2/DA fluorescence was measured. 
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Results showed that there was no difference in actual baseline DAF-2/DA 

fluorescence readings from those obtained in fresh cells in suspension (data not 

shown). Furthermore, to test whether the enhancement of fluorescence by hypoxia 

was a result of hypoxia per se, rather than the specific protocol used, studies were 

repeated in an alternative hypoxia protocol in which the PO2 of the incubator was 

lowered to 1% O2 (↓PO2 hypoxia) for 120 min. This model of hypoxia resulted in 

increased DAF-2/DA fluorescence to 109 ± 1.3% of control (P<0.05; n=7; fig. 5.5 C). 

These findings indicate that mineral oil-induced hypoxia was more effective in 

increasing NO production compared with control than hypoxia induced by ↓PO2 . In 

the last set of cardiomyocyte fluorescence studies, we measured DHR-123 

fluorescence in oxygenated control and mineral oil-induced hypoxic cells. Results 

showed that 2 h of hypoxia resulted in a significant reduction in fluorescence 

(61.2±2.5%; P<0.05; n=9) compared with control cells (fig. 5.6). 

 

In these studies, the focus was on the ability of the drugs to alter the production of 

NO and the possible effects of the inhibitors on cell viability were regarded not 

relevant. 
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Fig. 5.5 DAF-2/DA fluorescence in cardiomyocytes. (A) Subjecting cardiomyocytes to 120 

min hypoxia induced with ischaemic pelleting resulted in enhanced mean DAF-2/DA 

fluorescence intensity. NOS inhibition with 50 µM L-NAME, or 100 µM and 1 mM SMT during 

hypoxia reversed these effects, indicative of NOS activation by hypoxia in myocytes. (B) 60 

min ischaemic pelleting hypoxia also resulted in increased DAF-2/DA fluorescence. (C) 
Induction of a different model of hypoxia in cardiomyocytes also resulted in enhanced DAF-

2/DA fluorescence, albeit not to the same extent as that observed in mineral oil-treated cells. 

In this model of hypoxia, cardiomyocytes were suspended in substrate-free solution D for 

120 min under a hypoxic atmosphere (1% O2 concentration). Abbreviations: Hyp, hypoxia; 

LN, L-NAME. 
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Fig. 5.6 DHR-123 fluorescence in cardiomyocytes. Induction of hypoxia by 120 min 

ischaemic pelleting resulted in attenuated DHR-123 fluorescence in cardiomyocytes 

compared with oxygenated control. 
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(iv) DAF-2/DA and DHR-123 fluorescence in CMECs (figs. 5.7 & 5.8) 

 

Ischaemic pelleting-induced hypoxia (120 min) in CMECs isolated by prior 

trypsinization increased DAF-2/DA fluorescence 3.3-fold (331.5±43% of control; 

P<0.05; n=12; fig. 5.7 A). Pre-administration of 50 µM L-NAME, but not SMT, to 

hypoxic cells attenuated fluorescence from 331% to 223.2±17.6% of control (P<0.05 

vs. hypoxia) (fig. 5.7 A). Exposure of trypsinized CMECs to 60 min of ischaemic 

pelleting hypoxia resulted in 1.55-fold increase in the DAF-2/DA signal (control: 100% 

vs. hypoxia: 155.1 ± 7%; p < 0.05; n = 10 / group) (fig. 5.7 B). To test whether the 

increased fluorescence observed in hypoxic isolated CMECs was due to the hypoxic 

insult per se, and not methodological considerations, we measured DAF-2/DA 

fluorescence in a separate series in which cultured CMECs were subjected to ↓PO2 

hypoxia incubation for 18 h. Results indicate that in this model of hypoxia, mean 

fluorescence intensity increased 1.4-fold over control (141±5%; P<0.05; n=6; Fig. 5.7 

C). These findings suggest that hypoxia by ischaemic pelleting in trypsinized, isolated 

CMECs induced relatively more NO production over baseline than hypoxic incubation 

of cultured CMECs after 18 h. The effect of 120 min hypoxia (induced by ischaemic 

pelleting in isolated CMECs) on DHR-123 fluorescence is shown in fig. 5.8. Hypoxia 

attenuated mean DHR-123 fluorescence intensity to 78.7 ± 3% of control (P<0.05; 

n=7). 

 

In these studies, the focus was on the ability of the drugs to alter the production of 

NO and the possible effects of the inhibitors on cell viability were regarded as not 

relevant. 
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Fig. 5.7 DAF-2/DA fluorescence in CMECs. (A) Subjecting CMEC isolated by prior 

trypsinization to 120 min hypoxia induced with ischaemic pelleting resulted in enhanced 

mean DAF-2/DA fluorescence intensity. NOS inhibition with 50 µM L-NAME, but not 100 µM 

or 1 mM SMT, during hypoxia reversed these effects, indicative of a degree of NOS 

activation by hypoxia in CMECs. (B) Trypsinized CMECs exposed to 60 min of ischaemic 

pelleting hypoxia also increased the DAF-2/DA fluorescence signal. (C) Induction of a 

different model of hypoxia in CMECs also resulted in enhanced DAF-2/DA fluorescence, 

albeit not to the same extent as that observed in mineral oil-treated cells. In this model of 

hypoxia, cultured CMECs were incubated in serum-poor EGM for 18 h under a hypoxic 

atmosphere (↓PO2 hypoxia). Abbreviations: Hyp, hypoxia; LN, L-NAME. 
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Fig. 5.8 DHR-123 fluorescence in CMECs. Induction of hypoxia by mineral oil in CMECs 

isolated by prior trypsinization resulted in attenuated DHR-123 fluorescence compared with 

oxygenated control. 
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(v) Direct myocyte-CMEC comparison of fluorescence data (fig. 5.9 - 5.11) 

 

Direct comparisons of fluorescence measurements in cardiomyocytes and CMECs 

were made possible by selecting similar number of cells per cell type for FACS 

analysis and correcting for autofluorescence by subtracting background fluorescence 

produced by each cell type during probe-free incubation. Typical scatterplots and 

gated populations for subsequent FACS analysis are shown in fig. 5.9 A & B, and a 

histogram showing baseline mean DAF-2/DA fluorescence of myocytes and 

trypsinized CMECs is shown in fig. 5.9 C. In the 180 min groups (see fig. 5.1 A for the 

protocols), comparisons of actual DAF-2/DA mean fluorescence intensity readings 

showed that fluorescence signals in CMECs were 26 times stronger under control 

(baseline) conditions compared with cardiomyocytes (64.3±3.8 vs. 2.49±0.1; P<0.05). 

After 120 min ischaemic pelleting hypoxia, the signal was 52-fold stronger 

(185.1±24.1 vs. 3.55±0.3; P<0.05) (fig. 5.10). In the cultured cell models, CMECs 

produced 7 times more NO per cell than cardiomyocytes (P<0.05; data not shown) 

under baseline conditions. Similarly, when subjecting cells to the ↓PO2 hypoxia 

protocol, CMEC also produced 7 times more NO per cell (P<0.05; data not shown). 

In these investigations, DAF-2/DA was administered for 1 h at the end of the 

experiments due to technical considerations (DAF-2/DA fluorescence is diminished 

with long incubation times). Data from separate investigations in which we compared 

1 h probe exposure at the end of experiments to 3 h exposure demonstrated that 

there was no difference in the fluorescence signal (data not shown). Finally, 

oxygenated control DHR-123 fluorescence was 2.2 times greater in CMECs 

compared with cardiomyocytes (117.5±23 vs. 53.3±5.7 respectively; P<0.05) (fig. 

5.11). 
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Fig. 5.9 FACS analysis data of cardiomyocytes and CMECs. (A) Typical scatterplot of 

cardiomyocytes and gated population indicated by red circle. (B) Scatterplot of CMECs with 

gated population indicated by red circle. (C) Combined frequency histogram depicting 

baseline DAF-2/DA fluorescence (x-axis) in the FL-1 channel of cardiomyocytes (left: lower 

fluorescence signal) and CMECs (right: higher fluorescence signal). The bi-modal 

appearance of the fluorescence in (C) may be a result of variable cell morphology or 

differential fluorescence intensity within the respective populations. 
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Fig. 5.10 Combined bar chart demonstrating actual DAF-2/DA fluorescence intensity in 

control (baseline) and 120 min hypoxia (ischaemic pelleting protocol) (see fig. 6.1 A for 

experimental design) as measured in the same number of cells per cell type. Control 

fluorescence signals were 26-fold stronger in trypsinized CMECs than in cardiomyocytes and 

in hypoxia 52-fold stronger. 

 
 
 
 
 
 
 
 
 

1

10

100

1000

n=7

n=10

n=12

*

**

D.

*: P<0.05 vs control myocytes

**: P<0.05 vs hypoxia myocytes

n=9

Control
Myocytes

Hypoxic
Myocytes

Control
CMEC

Hypoxic
CMEC

A
ct

ua
l D

A
F-

2/
D

A
 F

lu
or

es
ce

nc
e 

(L
og

)



 214

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5.11 Bar chart depicting actual baseline DHR-123 fluorescence intensity readings 

measured in myocytes and trypsinized CMECs with 2.2-fold stronger fluorescence signals 

observed in CMECs. (117.5±23 vs. 53.3±5.7 respectively). 
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(vi) NO-production in mixed-cell suspensions (fig. 5.12) 

 

Mean DAF-2/DA fluorescence increased significantly in cardiomyocytes that were co-

suspended with trypsinized CMECs for 60 min under control conditions (myocytes 

only: 100% vs. myocytes+trypsinized CMECs: 126.8 ± 5.3%; p < 0.05; n = 5) (Fig. 

5.12 A). In separate experiments, isolated cardiomyocytes were co-incubated with 

cultured CMECs under control conditions by placing the myocyte suspension onto 

the monolayer CMECs in culture; similar results were obtained (myocytes only: 100% 

vs. myocytes+cultured CMECs: 113.4 ± 1.1%; p < 0.05; n = 4) (Fig. 5.12 A).  When 

the mixed-cell suspensions were exposed to 60 min hypoxia, the cardiomyocytes 

showed a 24% increase in DAF-2/DA fluorescence intensity compared to mixed-cell 

suspension control levels (mixed-cell control: 126.8 ± 5.3% vs. mixed-cell hypoxia: 

150.7 ± 5.7%; p < 0.05; n = 5).  Mixed-cell suspension subjected to 60 min hypoxia 

also showed a significant increase in DAF-2/DA fluorescence compared to myocyte-

only hypoxia groups (hypoxia myocyte-only: 131.6 ± 4.7% vs. hypoxia mixed-cell: 

150.7 ± 5.7%; p < 0.05; n = 4) (Fig. 5.12 B).  
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Fig. 5.12 Effects of co-incubation with CMECs on cardiomyocyte DAF-2/DA fluorescence. 

(A) DAF-2/DA fluorescence measured under control conditions in cardiomyocytes only and 

cardiomyocytes co-incubated with trypsinized CMECs (“Control Mixed”) or suspended on 

cultured CMECs (“Control Co-culture”) (*: p < 0.05 vs myocytes only; #: p < 0.05 vs. 

myocytes only). (B) 60 min ischaemic pelleting hypoxia in cardiomyocytes only or co-

incubated with trypsinized CMECs (“Hypoxia Mixed”) (*: p < 0.05 vs. myocytes only). 

A. 

B. 
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(vii) Total baseline eNOS and iNOS content in cardiomyocytes and CMEC (figs. 

5.13 & 5.14) 

 

Total eNOS protein content in isolated myocytes and CMECs (isolated by prior 

trypsinization) subjected to 180 min normoxic incubation in solution D was measured 

by Western blotting. Differences in cell size and number per sample were corrected 

for by loading identical amounts of total protein (50 µg per sample). In fig. 5.13, a 

representative blot of control cardiomyocyte and CMEC total eNOS (n=2; samples 

obtained from different preparations) shows increased eNOS in CMECs. Quantitation 

by densitometry indicates a 22-fold greater amount of eNOS / 50 µg cell protein in 

CMEC compared with cardiomyocytes. iNOS in both cell types was also measured 

by Western blotting and demonstrated a strong baseline signal in the 

cardiomyocytes, but no expression in CMECs (fig. 5.14). 
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Fig. 5.13 Western blot analysis of total eNOS expression in cardiomyocytes and CMECs 

incubated for 180 min under normoxic conditions (isolated cell models; see fig. 5.1 for 

protocols). Equal amounts of total protein per cell type (50 µg) were loaded and analyzed on 

the same blot to enable direct comparisons (n=2, samples obtained from different 

preparations). Upper panel: Western blot depicting total eNOS expression in control 

cardiomyocytes (lanes 1 and 2) and control CMECs (lanes 3 and 4). Lower panel: Bar chart 

of total pixels in oxygenated control samples of each cell type as measured by densitometry. 

Total eNOS protein content was 22-fold higher in CMECs than in cardiomyocytes, which 

corresponds to the 28-fold increase observed in DAF-2/DA fluorescence measurements. 

 
 

 140 kDa

Lanes: 1 2 3 4



 219

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.14 Representative Western blots of inducible NOS (iNOS) expression under baseline 

control conditions in cardiomyocytes and CMECs.  Both panels represent analyses done on 

cells from different hearts and CMEC cultures. On both occasions, the cardiomyocyte 

samples expressed iNOS whereas the CMECs showed no expression. 
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(viii) Total and phosphorylated (Ser1177) eNOS in hypoxia (figs. 5.15 & 5.16) 

 

Total eNOS expression in cardiomyocytes exposed to 120 min hypoxia (ischaemic 

pelleting) (see fig. 5.2 A for protocol) was significantly attenuated compared to control 

groups (control: 100% vs. hypoxia: 32.5 ± 11.8%; P < 0.05; n = 4) (fig. 5.15 A), 

however, the expression of phosphorylated eNOS remained constant compared to 

control conditions (control: 100% vs. hypoxia: 103.7 ± 12.05; P >0.05; n = 4) (fig. 5.15 

B). We subsequently exposed cardiomyocytes to a shorter hypoxia duration of 60 

min.  Results showed that 60 min hypoxia had no effect on total eNOS expression 

(control: 100% vs. hypoxia: 112.0 ± 5.5; p > 0.05; n = 4) (Fig. 5.15 C), but resulted in 

a 1.5-fold increase in phosphorylated eNOS (control: 100% vs. hypoxia: 152.6 ± 

16.3%; p < 0.05; n = 5) (Fig. 5.15 D).  

 

In cultured CMECs, 18 h of ↓PO2 hypoxia resulted in a 2.1-fold increase in total 

eNOS expression (control: 100% vs. hypoxia: 210.3 ± 15%; p < 0.05; n = 6) (fig. 5.16 

A), and this was associated with a 4.9-fold increase in phosphorylated eNOS levels 

(control: 100% vs. hypoxia: 493.9 ± 130.9%; p < 0.05; n = 4) (fig. 5.16 B). Trypsinized 

CMECs exposed to 60 min mineral oil hypoxia showed a 1.8-fold increase in total 

eNOS expression (control: 100% vs. hypoxia: 179.5 ± 34.2%; p < 0.05; n = 5) (Fig. 

5.16 C), whereas phosphorylated eNOS levels increased almost 3-fold (control: 

100% vs. hypoxia: 294 ± 86.6%; p < 0.05; n = 6) (Fig. 5.16 D). 
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Fig. 5.15 Total and phosphorylated (Ser1177) eNOS in cardiomyocytes. (A) Total eNOS 

expression in cardiomyocytes exposed to 120 min ischaemic pelleting hypoxia showed a 

significant reduction compared to control. *: P < 0.05 vs. control (B) Phospho eNOS levels 

remained constant during 120 min hypoxia. (C) Myocytes subjected to 60 min hypoxia 

retained baseline total eNOS expression. (D) Phospho eNOS levels increased in 

cardiomyocytes after 60 min hypoxia. *: P < 0.05 vs. control. 
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Fig. 5.16 Total and phosphorylated (Ser1177) eNOS in CMECs. (A) Total eNOS expression 

in cultured CMECs exposed to 18 hr hypoxic incubation showed a significant increase 

compared to control (*: P < 0.05). (B) Phospho eNOS levels increased after 18 hr hypoxia 

(*:P < 0.05). (C) Trypsinized CMECs subjected to 60 min hypoxia increased total eNOS 

expression compared to control (*:P < 0.05). (D) Phospho eNOS levels increased in 

trypsinized CMECs after 60 min hypoxia. *: P < 0.05 vs. control. 
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(ix) iNOS expression in cardiomyocytes and CMECs during hypoxia (fig. 5.17) 

 

In cardiomyocytes exposed to 120 min ischaemic pelleting hypoxia, iNOS expression 

remained unchanged (control: 100% vs. hypoxia: 91.78 ± 34.3; P > 0.05; n = 2) (fig. 

5.17), whereas no iNOS expression was observed in either control or hypoxic CMEC 

samples (not shown). 
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Fig. 5.17 iNOS expression in cardiomyocytes. Exposure to 120 min hypoxia did not affect 

control iNOS expression. Each Western blot panel represents separate myocyte samples 

obtained from different hearts. 
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5.8 Discussion 
 

The relative importance of endothelium- and myocyte-derived NO remains to be 

established [Brutsaert 2003; Shah & MacCarthy 2000]. In our opinion, this hiatus in 

current knowledge is to a large extent due to a lack of studies that directly measured 

and compared actual intracellular concentrations of NO in these cell types. One way 

of addressing this is by designing studies that make use of direct cellular models. It is 

now widely accepted that cardiac endothelial cells produce more NO in baseline, 

physiological conditions than cardiomyocytes, but this conclusion is largely based on 

NOS-staining and -expression studies, and not direct NO measurements [Brutsaert 

2003; Shah & MacCarthy 2000; Brutsaert et al 1998; Andries et al 1998]. 

 

There is a particular shortage of direct studies on the endothelial cell subtype that 

line the coronary microvessels (CMECs) [Shah & MacCarthy 2000]. CMECs are 

exposed and in closest proximity to the largest portion of myocardial muscle cells 

compared with any of the other endothelial cell subtypes. In fact, CMECs comprise 

about one-third of the total cell number in the ventricular wall [Shah & MacCarthy 

2000; Nishida et al 1993]. CMECs are therefore ideal candidate external sources of 

NO in physiological and pathophysiological conditions for the cardiomyocytes. 

Compared with other cardiac endothelial cell subtypes, CMECs are thought to 

produce the lowest concentrations of NO [Brutsaert 2003; Shah & MacCarthy 2000; 

Andries et al 1998], yet it has been strongly suggested that a significant reciprocal 

NO-crosstalk mechanism, with major local physiological and pathophysiological 

effects, exists between the low-output NO-generating CMECs and cardiomyocytes  

[Brutsaert 2003; Shah & MacCarthy 2000; Brutsaert et al 1998]. For this reason, 

more knowledge about the relative amounts of NO produced by each cell type is 
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necessary to gain a better understanding of their relative roles in paracrine NO 

communication. 

 

To achieve this, we measured intracellular NO production by flow cytometric analysis 

of the highly fluorescent oxidized product of DAF-2/DA, DAF-2T, a method previously 

developed for endothelial cells [Navarro-Antolin 2001(b)] and later modified for 

isolated ventricular cardiomyocytes [Ch. 4; Strijdom et al 2004(b)]. The advantage of 

flow cytometric measurement of changes in DAF-2/DA fluorescence above other 

fluorescence detection techniques is that it allows rapid real-time analysis of 

intracellular fluorescence on a single-cell level in thousands of cells at a time.  

 

DAF-2/DA was developed as a NO-detection probe [Kojima et al 1998], and its 

specificity for NO has since been confirmed in a variety of cell types [Leikert et al 

2001; Zorov et al 2000; Chen et al 2002; Lebuffe et al 2003] by validating results with 

other widely used indicators of NO production [Ch. 4; Strijdom et al 2004(b); Failli et 

al 2002; Havenga et al 2001]. In this chapter, DAF-2/DA specificity for NO was again 

demonstrated by observing a step-wise enhancement of fluorescence when 

increasing concentrations of the NO donor, DEA/NO, were administered [see Ch. 4]. 

Additionally, we excluded the possibility that ONOO– was a possible cause of 

changes in DAF-2/DA fluorescence (fig. 5.4 A). In a further attempt to validate probe 

specificity, we investigated whether DAF-2/DA could detect endogenous NO by 

administering 50 µM L-NAME to control cardiomyocytes; results showed an 

attenuation of the baseline fluorescence signal (control: 100% vs. control+L-NAME: 

87%; P<0.05; n=6), in agreement with the findings in Ch. 4. 
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(i) NO and NOS in oxygenated control (baseline) investigations 

 

Results demonstrate that CMECs generated significantly more NO than 

cardiomyocytes under baseline conditions. On a cell-to-cell basis, in the 180 min 

isolated cell incubation protocol (fig. 5.1 A), NO production was 26-fold higher in 

CMECs (fig. 5.10). Investigations were repeated in cells cultured overnight (see figs. 

5.1 B & D for the protocols), and similar, albeit smaller, patterns were observed. We 

subsequently investigated whether eNOS was present in both cell types, and if so, 

whether there were differences in the expression of the enzyme in the isolated cell 

models (fig. 5.2 A for protocol). Results demonstrate the existence of baseline eNOS 

expression in both cell types (fig. 5.13), confirming previous observations [Brutsaert 

2003; Shah & MacCarthy 2000; Brutsaert et al 1998; Balligand et al 1995(b)]. A 

comparison of the cell-to-cell expression of total eNOS content showed that 

expression was 22 times greater in CMECs (fig. 5.13), similar to the differences 

observed in NO production between the cell types.  

 

We also investigated baseline iNOS expression in cardiomyocytes and CMECs, and 

found that there was expression in the myocytes, but not the CMECs, in which there 

was no measurable signal (fig. 5.14). However, one has to consider the possibility 

that endotoxin present in the collagenase used during the isolation procedure could 

have up-regulated iNOS in the myocytes [Tirmenstein et al 2000]. In separate 

investigations, we administered the iNOS inhibitor SMT (1 mM) to baseline (control) 

cardiomyocytes and found a modest, but significant attenuation in the DAF-2/DA 

signal (control: 100% vs. control+SMT: 88.79 ± 4.5%; P < 0.05; n =4), further 

indicative of baseline iNOS activity and contribution to NO-production in myocytes. 
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Similar investigations with SMT in control CMECs could not demonstrate reduction in 

DAF-2/DA fluorescence (data not shown), thereby supporting the Western blot 

findings in these cells.  

 

Therefore, based on the NO and NOS data under baseline conditions, it seems that 

CMECs intrinsically produce more NO than myocytes on a cell-to-cell basis; however, 

the amount of NO produced by CMECs was affected by the cell model (CMEC 

produced 26-fold more NO in the isolated cell model vs. 7-fold in the cultured cell 

model). We furthermore established that the baseline eNOS expression in the 

isolated cell models was 22-fold higher in CMECs than cardiomyocytes, which was 

closely associated with the differences in NO-production; in addition our results 

suggest a possible contribution by iNOS to baseline NO production in the 

cardiomyocytes, but not in CMECs. To the best of our knowledge, there is no 

evidence of in vitro studies that have directly measured and compared cellular NO 

production and eNOS / iNOS expression between CMECs and cardiomyocytes. 

Results also demonstrate that the CMECs derived from cultures in this study 

(passage 3–4) retained their expression of eNOS, contrary to previous reports that 

this endothelial cell subtype loses eNOS expression in culture [Lang et al 1999; 

Balligand et al 1995(a)]. Indeed, given the possibility that earlier passages may have 

a higher expression of eNOS, the current data may well be an underestimation of the 

role of eNOS in CMECs. 
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(ii) NO and NOS during hypoxia: Isolated cardiomyocytes 

 

The effects of NO in cardiac hypoxia / ischaemia can be beneficial or harmful [Ch. 1 

for overview; Shah & MacCarthy 2000; Bolli 2001; Lochner et al 2000; Strijdom et al 

2004(a)], which may, among others, be explained by the fact that its production and 

release by different cellular sources are variable and nonuniform [Shah & MacCarthy 

2000]. In addition, the production of NO, on a cell-to-cell basis, during hypoxia in 

CMEC and cardiomyocytes is not known. 

 

Hypoxia induced by ischaemic pelleting 

 

We have shown that both 60 and 120 min of hypoxia induced by ischaemic pelleting 

significantly reduced cardiomyocyte viability as measured by two independent 

markers (Fig. 5.3). However, the injury exerted by the 120 min hypoxia protocol was 

more severe. In the 120 min hypoxia group, there was a 54% reduction in viable, 

trypan blue excluding cells compared to 20% in the 60 min hypoxia myocytes; 

similarly, cardiomyocytes exposed to 120 min hypoxia demonstrated an increase of 

59% in non-viable PI-staining fluorescence compared to only 30% in 60 min hypoxia.  

 

Despite the severity of the 120 min ischaemic pelleting hypoxia protocol and ensuing 

loss of viable cells, we observed a 1.56-fold increase in NO production compared to 

control (fig. 5.5 A). The increase in NO-production was observed in spite of a 68% 

loss of total eNOS protein (fig. 5.15 A). The activated (phospho Ser1177) eNOS 

levels remained unchanged, however, which effectively resulted in a 3.3-fold 

increase in the activated / total eNOS ratio (fig. 5.15 A & B). Another study also 
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reported a loss of total eNOS in isolated rat hearts subjected to prolonged ischaemia 

[Giraldez et al 1997]. After an initial increased expression at 30 min ischaemia, total 

eNOS levels started declining at 60 min ischaemia (40% reduction) and 90 min 

ischaemia (60% reduction). It is therefore evident that the total eNOS protein 

expression in cardiomyocytes is influenced by the duration and severity of the 

ischaemia / hypoxia insult. 

 

In our study, pharmacological evaluation of NOS activity in cardiomyocytes during 

the 120 min hypoxia protocol demonstrated that nonselective NOS inhibition 

significantly attenuated NO production (fig. 5.5 A), which suggests a possible role for 

eNOS activity during the hypoxia protocol, despite the observed loss in total 

expression. However, other non-eNOS sources of NO are more likely to have been 

induced by hypoxia given the size of the loss of total eNOS. It is known that 

ischemia-induced acidosis can lead to NO-production that is not related to NOS 

activation [Schulz et al 2004; Zweier et al 1999]. Another possible source of non-

eNOS NO-production may be the induction of iNOS [Jung et al 2000]. In fact, our 

findings suggest a role for iNOS in the cardiomyocytes, since the administration of 

the iNOS-specific inhibitor, SMT, during hypoxia significantly decreased NO 

production by 13 – 20% (fig. 5.5 A). In addition, we demonstrated iNOS expression in 

baseline and hypoxic cardiomyocytes (figs. 5.14 & 5.17). Although iNOS levels did 

not increase during hypoxia, we cannot exclude a contribution by iNOS to the 

observed increases in NO-production. More research is necessary to elucidate the 

role of iNOS in hypoxia in the cardiomyocytes. 
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In view of the loss of eNOS observed in the 120 min hypoxia cardiomyocytes, we 

decided to shorten the hypoxic insult to 60 min (see fig. 5.1 for the protocol). Under 

these conditions, there was no loss in total eNOS protein, in fact expression 

remained at control levels (Fig 5.15 C). Activated (phospho-eNOS ser1177) eNOS 

levels increased 1.5-fold (Fig. 5.15 D), which was associated with a 1.4-fold increase 

in NO production (Fig 5.5 B). From the 60 min hypoxia results, it is clear that a 

relatively close relationship existed between hypoxia-induced eNOS activation and 

NO production. This suggests that eNOS was a prominent source of increased 

cardiomyocyte NO levels in the shorter, less severe hypoxia protocol. Findings 

therefore indicate that the contribution of non-eNOS sources of NO was less in the 

60 min hypoxia group than the 120 min group. 

 

Isolated cardiomyocytes, hypoxia induced by ↓PO2 

 

The lowering of atmospheric O2 to 1% and 2 h incubation in a substrate-free medium 

also significantly increased NO production in cardiomyocytes (see fig. 5.1 C for 

protocols), although the relative increase over baseline was less than observed in 

mineral oil-treated freshly isolated cells (fig. 5.5 A & B). This suggests that the 

amount of NO produced in cardiomyocytes was dependent on the hypoxia protocol 

used, and possibly a result of the greater degree of hypoxia-induced injury observed 

in cells subjected to the ischaemic pelleting protocol. 
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(iii) NO and NOS during hypoxia: CMECs 

 

In the CMEC studies, we chose to use two different hypoxia protocols (fig. 5.1). The 

motivation for using two distinct CMEC cell models and protocols was to ensure that 

the trends and effects observed were not model-dependent. Furthermore, the 

trypsinized CMEC model allowed us to apply an incubation and hypoxia protocol that 

was identical to that used for the isolated cardiomyocytes, which facilitated 

comparisons of data between the cell types. The viability results confirm that the 

degree of cellular injury induced by the hypoxia protocols was similar in the two 

CMEC models and the cardiomyocytes (fig. 5.3 E & F). 

 

CMECs in culture, hypoxia induced by ↓PO2 

 

In the cultured model of CMECs, 18 h ↓PO2 hypoxia increased PI fluorescence by 

22% (fig. 5.3 E), and induced a 2.1-fold increase in total eNOS protein compared to 

control cells, which indicates that there was hypoxia-induced upregulation of eNOS in 

CMEC (fig. 5.16 A). This was associated with significant activation of eNOS (5-fold 

increase in absolute phospho eNOS, and 2-fold relative increase in phospho eNOS: 

total eNOS ratio) (fig. 5.16 B) and a 1.4-fold increase in NO production (fig. 5.7 C). 

The close relationship between hypoxia, and eNOS activation and NO production in 

the cultured CMECs, suggests that the NO generated during hypoxia is 

predominantly eNOS-derived. There seems to be little participation from iNOS in our 

model of hypoxic CMECs, since we showed in the same model that the iNOS-specific 

inhibitor, SMT, had no effect on NO production in CMECs during hypoxia, in contrast 

to observations made in the cardiomyocytes. In addition, subsequent Western 
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blotting could not demonstrate iNOS expression in either control or hypoxic CMEC 

obtained from similar passages. 

 

Trypsinized CMECs; hypoxia by ischaemic pelleting 

 

Hypoxia by 120 min ischaemic pelleting (see fig. 5.1 for protocols) resulted in a 3.3-

fold increase in NO production over control (fig. 5.7 A). Although nonselective NOS 

inhibition significantly reversed the hypoxia-induced increase, selective iNOS 

inhibition had no effect on NO production (fig. 5.7 A), contrary to observations made 

in cardiomyocytes. These trends were further substantiated by the absence of iNOS 

expression in CMECs (fig. 5.14). Ischaemic pelleting hypoxia of 60 min in the 

trypsinized CMECs resulted in a 1.55-fold increase in NO production (Fig 5.7 B). This 

was associated with a 1.8-fold increase in total eNOS (fig. 5.16 C), and ~ 3-fold 

increase in activated eNOS (fig. 5.16 D), demonstrating a similar pattern to that 

observed in the cultured CMEC investigations. Therefore, our findings showed that, 

in two distinct models of hypoxia, eNOS is upregulated and activated in CMECs 

leading to increased NO production. 

 

(iv) Cell models and hypoxia protocols used in the study 

 

It is evident that many of the observations made in the NO and eNOS investigations 

were dependent on the cell model and/or hypoxia protocol used. This phenomenon 

may partly be explained by the greater degree of hypoxic injury observed in the cells 

subjected to the ischaemic pelleting protocol compared with their controls. Another 

explanation could be that isolation of cultured CMECs by trypsinization before 
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experiments might have induced additional cellular stress, resulting in the relatively 

high NO production, although in separate experiments we showed that trypsinized 

CMECs maintained their baseline viability and LDL-uptake ability compared with 

cultured CMECs. Follow-up studies measuring and comparing total and activated 

NOS in isolated and cultured CMECs may give more clarity. 

 

A larger increase in NO production was also observed in cardiomyocytes when 

exposed to ischaemic pelleting hypoxia compared with ↓PO2 hypoxia (fig. 5.5). In the 

myocyte experiments, however, there was no difference in the cell models (fresh 

isolated myocytes in suspension were used in both hypoxia protocols; see fig. 5.1 A 

& C); therefore, it is likely that the higher NO production in cells subjected to 

ischaemic pelleting was directly related to the greater cellular injury induced by this 

form of hypoxia. Finally, viability results suggest that CMECs were less vulnerable to 

hypoxic injury than cardiomyocytes, consistent with findings from other studies [Piper 

1990; Buderus et al 1989]. 

 

(v) Peroxynitrite 

 

In a separate series of experiments, we measured baseline ONOO– production in 

CMECs (isolated by trypsin) and cardiomyocytes (freshly isolated), and investigated 

how this compared with NO production. Little is known about the relative 

contributions of CMECs and cardiomyocytes to ONOO– production. DHR-123 was 

used to detect ONOO–, based on findings of previous studies that showed a relative 

selectivity of the probe for ONOO– over other oxidants such as O2
–, H2O2, or NO in 

cellular systems [Navarro-Antolin et al 2001(b); Murphy et al 1998; Kooy et al 1994; 
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Ischiropoulos et al 1999]. In the present study, selectivity for ONOO– was confirmed 

by enhancement of DHR-123 fluorescence when authentic ONOO– was administered 

(fig. 5.4 B) in a protocol adopted from a previous study [Navarro-Antolin et al 

2001(b)]. It was interesting to note that the probe generated a detectable 

fluorescence signal, despite the relatively long incubation time of authentic ONOO–, 

which is known for its short half-life.  

 

The probe’s ability to detect changes in endogenous ONOO– production was 

assessed by administering a ROS scavenger N-acetyl-cisteine (NAC) to control cells, 

but no attenuation of the fluorescence signal was observed (data not shown). 

However, the attenuation of DHR-123 fluorescence during hypoxia provides indirect 

evidence for this, since it is widely believed that endogenous ROS production is 

decreased during hypoxia in the absence of reoxygenation. Results showed that the 

baseline ONOO– production in CMECs was 2.2-fold higher than in cardiomyocytes 

(fig. 5.11). Therefore, in our model, CMECs was the greater cellular source of 

ONOO– in baseline conditions, although the ratio of increase was lower than that 

observed with NO production. There was a significant attenuation of DHR-123 

fluorescence after exposure to hypoxia in both cell types (figs. 5.6 & 5.8), which is not 

unexpected since ONOO– is known to be generated during the reperfusion phase of 

ischaemia-reperfusion [Ferdinandy & Schulz 2003; Beckman & Koppenol 1996], and 

our model of hypoxia did not include reperfusion. 
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(vi) NO-production in mixed-cell studies 

 

In order to investigate whether intracellular NO-levels in cardiomyocytes are affected 

by co-incubation with CMECs, we developed a mixed-cell model in which 

cardiomyocytes and trypsinized CMECs were co-incubated at a 1:1 ratio (fig. 5.1 E 

for protocol). Results showed that intracellular NO levels in the cardiomyocytes 

increased by 27% compared to myocyte-only groups in control oxygenated 

conditions (Fig 5.12 A). This observation was repeated when cardiomyocytes were 

suspended on a monolayer of cultured CMECs (13% increase compared to myocytes 

only) (Fig 5.12 B) under oxygenated conditions. When the mixed-cell 

cardiomyocyte+CMEC suspensions were exposed to 60 min hypoxia, a significant 

increase in NO production compared to myocyte-only hypoxia was observed (Fig 

5.12 B).  

 

The increases in intracellular cardiomyocyte NO levels during control oxygenated 

and hypoxic conditions when exposed to CMECs suggest a possible spillover effect 

from the higher NO-producing CMECs. However, it is possible that the CMECs 

released factors other than NO into the medium that could have been indirectly 

responsible for the increased NO levels observed in the cardiomyocytes (e.g. eNOS-

activating factors). In order to exclude this possibility, we incubated cultured CMECs 

in Krebs-Henseleit Buffer (KHB) for 60 min in separate experiments, after which the 

medium was removed and transferred to the myocytes with subsequent DAF-2/DA 

loading and FACS analysis. The medium-transfer method was chosen to investigate 

this question, since it is very unlikely that, once the medium was removed from the 

CMECs, any significant amounts of the highly reactive and short-lived NO would be 
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present in the absence of a sustained CMEC-derived supply. Results indicated that 

there was no effect on intracellular myocyte NO (DAF-2/DA fluorescence in control 

myocytes: 100% vs. myocytes+medium: 99.6 ± 2.9%; p > 0.05; n = 7). These 

findings suggest that the CMECs were unlikely to release factors, other than NO 

itself, that could explain the increases observed in the myocytes. It should be borne 

in mind that these investigations are preliminary; however, findings thusfar are 

encouraging. More studies are necessary, including co-culture experiments in which 

live-cell microscopic analyses could be used to demonstrate real-time cell-to-cell 

spillover diffusion.  

 

5.9 Conclusion 
 

We have demonstrated that in baseline and hypoxia, rat CMECs produce 

significantly more NO than rat ventricular cardiomyocytes in different cellular models 

(isolated cells and cultured cells) and different hypoxia protocols (ischaemic pelleting 

and ↓PO2). The total eNOS measurements under baseline conditions showed similar 

patterns, suggesting that differences in baseline NO production may be explained by 

the relatively greater eNOS expression observed in CMECs. Conversely, we 

observed baseline iNOS expression in the cardiomyocytes, but not in the CMECs, 

suggestive of a possible contribution to baseline NO-production in the myocytes. We 

have shown that hypoxia resulted in the generation of increased NO levels in both 

cell types compared with control, which was partially reversed by nonselective 

inhibition of NOS. In the cardiomyocytes, but not CMECs, iNOS seemed to play a 

role as a source of NO production in hypoxia, but this needs to be investigated 

further. Although nNOS was not measured in this study, it is unlikely that it could 

have been a non-eNOS source of NO during hypoxia, since the only study to date 
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that investigated nNOS expression in cardiomyocytes, demonstrated a reduction in 

nNOS expression [Mohan et al 2001]. Hypoxia in our study activated eNOS in both 

cardiomyocytes and CMECs by phosphorylation of eNOS (Ser 1177), resulting in 

increased NO production in both cell types. In the CMECs, eNOS regulation was 

further characterized by increased total eNOS protein expression, whereas in 

myocytes eNOS levels were either reduced (120 min hypoxia) or maintained at 

control levels (60 min hypoxia protocol).  

 

Extrapolation to the in vivo situation is difficult since the exact CMEC-to-

cardiomyocyte cell number ratio in the adult heart is unknown. However, it is thought 

that CMECs comprise ∼33% of the total cell number in the ventricular wall [Nishida et 

al 1993], and the ratio of total cardiac endothelial cells (CMECs + endocardial 

endothelial cells) to cardiomyocytes is ∼3:1 [Brutsaert 2003]. Therefore, collectively, 

CMECs are likely to produce more NO than ventricular cardiomyocytes under 

baseline conditions (derived mainly from the constitutive activity of eNOS), and after 

exposure to hypoxia. The fate of the relatively greater amounts of NO released by 

CMECs is unknown, but spillover diffusion into the underlying cardiomyocytes is 

possible. Preliminary mixed-cell suspension experiments in this chapter demonstrate 

encouraging trends, with elevated NO-production observed in both baseline and 

hypoxic cardiomyocytes when exposed to CMECs. Follow-up studies with co-culture 

cell models could demonstrate how the increased NO production in CMECs in 

baseline and hypoxia affects NO crosstalk between these cell types. Future studies 

may also be able to show whether the greater intracellular production of NO/ONOO– 

in CMECs could lead to spillover effects in cardiomyocytes, particularly in hypoxia. 
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[The aims, methods, data and conclusions presented in this chapter appeared in: 

Strijdom H, Jacobs S, Hattingh S, Page C, Lochner A. Nitric oxide production is 

higher in rat cardiac microvessel endothelial cells than ventricular cardiomyocytes in 

baseline and hypoxic conditions: a comparative study. FASEB J 2006; 20(2): 314 – 

316.] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 240

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

CHAPTER 6 
 

CONCLUSIONS 
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The original purpose of this study was to investigate the possible cardioprotective 

properties of NO in the context of IP. As the findings in Chapter 3 clearly show, we 

were unable to prove that NO was either a trigger or mediator of hypoxia-induced 

early IP. The non-involvement of NO in IP protection in our model was extensively 

investigated using a variety of interventions. In addition, NO accumulation during 

sustained hypoxia was shown to be harmful to the adult cardiomyocyte, which is 

contrary to the overwhelmingly beneficial effects attributed to NO by Bolli and Jones 

[Bolli & Jones 2006]. In view of these rather unexpected findings, the focus of this 

PhD thesis was accordingly directed towards the role of NO in the context of hypoxia 

per se. 

 

In order to achieve the aims of this study, a number of methods and protocols were 

developed in our laboratory.  Viable cardiomyocytes were successfully isolated from 

adult rats, and an endothelial cell culture model (CMECs) was established. Both cell 

types were investigated in their isolated state as well as in cultured conditions, and 

appropriate models were designed for this purpose. Furthermore, a variety of cell 

viability techniques were developed or adapted from previous studies. This was 

necessary mainly to ensure that our experiments were conducted on cells of the 

highest possible viability, but also to serve as end-point for several interventions such 

as hypoxia and IP. The investigations conducted in Chapter 3 were mainly 

dependent on indirect NO assessment tools such as NOS inhibition and cGMP level 

determinations. This prompted us to develop the DAF-2/DA-FACS analysis technique 

of direct intracellular NO-detection, which was novel in the field of isolated 

cardiomyocyte research at the time. It provided us with a unique opportunity to 

measure real-time NO generation in thousands of cells simultaneously. Furthermore, 
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the DAF-2/DA-technique enabled us to conduct the first comparative study of its kind 

in cardiomyocytes and CMECs in which baseline and hypoxia-induced NO 

production could be measured separately. 

 

The role of NO and ROS was investigated in early IP and hypoxia. To achieve this 

aim, different hypoxia protocols were developed. For the isolated cell models, 

hypoxia was induced by layering the cell pellet with mineral oil, and for cell cultures, a 

tissue culture incubator in which the partial pressure of oxygen was lowered, was 

used. IP in the cardiomyocytes was induced by a single-cycle brief hypoxia period 

followed by reoxygenation prior to sustained hypoxia. We have earlier referred to the 

findings with regards to the non-involvement of NO in IP in our model of isolated 

cardiomyocytes. We could also not demonstrate contributions from ROS to IP 

protection in this model. These findings led to a shift in emphasis from investigating 

the role of NO in IP to examining its role in hypoxia per se.  

 

The development of the FACS-based detection method, enabled us to investigate 

NO and peroxynitrite (ONOO-) generation in hypoxia in both cardiomyocytes and 

CMECs. Results indicated that exposure to hypoxia induced both cell types to 

increase NO generation compared to baseline production. We could furthermore 

demonstrate that CMECs generate substantially more NO per cell than 

cardiomyocytes in both conditions. This was the first study of its kind in which NO-

production in these cell types was directly compared in the context of hypoxia. We 

were able to demonstrate this phenomenon in different cell models viz. isolated cells 

and cultured cells. Furthermore, the ONOO- data demonstrated that CMECs 
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generated higher amounts of this radical than cardiomyocytes, although hypoxia 

attenuated its generation significantly in both cell types.  

 

Having established that both cardiomyocytes and CMECs produce NO under hypoxic 

conditions, the next aim was to measure the expression and activation of two of the 

most important NOS isoforms in cardiac tissue, eNOS and iNOS. At the time, the role 

of nNOS was still under investigation, and its role and function in the heart were 

unclear. Furthermore, the only study to investigate the role of nNOS in hypoxia in 

cardiomyocytes demonstrated a reduction in its expression [Mohan et al 2001], 

making it an unlikely candidate for NO production in this particular scenario. It was 

therefore decided to focus on the role of eNOS and iNOS. Using Western blotting, it 

was shown that CMECs and cardiomyocytes both expressed baseline eNOS, but 

that iNOS was detected in the cardiomyocytes only. In the CMECs, hypoxia induced 

both eNOS expression and activation. The close relationship observed between 

hypoxia-induced NO generation and eNOS activation in the CMECs, suggested that 

eNOS was the predominant source of NO in hypoxia in these cells. In the myocytes, 

hypoxia of longer duration (120 min) caused a loss of eNOS although activated 

eNOS remained constant. Despite the loss of eNOS, NO production increased, which 

led us to believe that non-eNOS sources of NO may have been induced such as 

iNOS, as was indeed suggested by the Western blot and iNOS inhibition data (see 

Ch. 5). When cardiomyocytes were exposed to shorter hypoxia (60 min), total eNOS 

expression levels remained unchanged, and the increased activation of eNOS was 

closely linked to the hypoxia-induced NO generation.  
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From our results, it therefore seems that eNOS played a significant role in NO 

generation in both cell types leading us to believe that it is the predominant NOS 

isoform involved during baseline and hypoxic conditions. The relatively greater 

degree of NO-production capacity, eNOS-expression, and –activity observed in 

CMECs has important implications for our understanding of possible interactions 

between CMECs and cardiomyocytes in the myocardium. We believe that a spillover 

diffusion effect is likely to exist from CMECs to cardiomyocytes in both the resting 

and ischaemically-stressed myocardium. Preliminary mixed-cell studies from our 

laboratory show encouraging results pointing towards possible spillover diffusion, 

however, the existence and exact role of such a phenomenon have not been 

demonstrated yet and future studies using co-culture models could help elucidate this 

matter.  

 

Below is a schematic representation of the possible implications of our findings, in 

which the close proximity of the CMECs and cardiomyocytes in the myocardium is 

shown (fig. 6 B). Due to the short diffusion distance between these cell types, it is 

likely that a mechanism of NO-crosstalk exists; however, this phenomenon and the 

relative importance of each cell type to such a crosstalk remains unknown. Our data 

show that, in the in vitro situation, CMECs produce 7-26 times more NO per cell than 

cardiomyocytes under baseline conditions (fig. 6 C). The NO-data correspond well 

with the relative eNOS expression observed. In addition, our findings demonstrated a 

possible role for iNOS in the cardiomyocytes, however no iNOS expression was 

detected in the CMECs. In the in vivo situation, it is therefore possible that the 

relatively greater amounts of NO released by the CMECs could create a spillover 

diffusion effect into the underlying cardiomyocytes. The additional, non-myocyte 
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derived NO could contribute to baseline cardiomyocyte regulation and function. 

Future co-culture studies could help elucidate whether this phenomenon exists, and 

what the effects on the recipient cells would be.  

 

During hypoxia (fig. 6 D), eNOS was both upregulated and activated in the CMECs, 

which was associated with an increase in NO-production. In the cardiomyocytes, 

similar findings were observed, with the exception that there may be an additional 

role for iNOS in NO-generation. From these findings, it is possible that an even 

greater diffusion gradient may develop during hypoxia from the CMECs to the 

underlying cardiomyocytes. Future co-culture studies could indicate whether this 

does in fact occur, and if so, whether it is harmful or beneficial to the cardiomyocytes. 

 

Topics for future consideration: 
 

There is an overwhelming amount of data available in the literature on NO in the 

heart. Despite this, much confusion still exists as to the exact role of NO, particularly 

in the context of hypoxia / ischaemia. In view of this, and the findings of the current 

thesis, further investigations of the following topics may be worthwhile: 

 

1. To investigate the role of nNOS expression and activation in baseline and hypoxic 

conditions in cardiomyocytes and CMECs; 

2. Development of co-culture studies (cardiomyocytes + CMECs) in which IP is 

investigated in order to assess whether endothelial NO could act as a trigger and 

/ or mediator of protection in cardiomyocytes; 

3. Further investigations on isolated cardiomyocytes to explore other, non-NO, 

triggers and mediators of the IP protection observed in these cells. 
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Fig. 6 (A) Sagittal section of the myocardium shows the network of myocardial capillaries in 

the left ventricular wall. (B) The proximity of the two NO-producing cell types investigated in 

this study, CMECs (lining the myocardial capillaries) and the underlying ventricular 

cardiomyocytes, is shown here. Due to the short diffusion distance between these cell types 

(<1µm), it is likely that a NO-crosstalk mechanism exists, however, the relative importance of 

CMEC- and cardiomyocyte-derived NO remains unknown. (C) In the in vitro situation, results 

of this study showed that CMECs produced 7 to 26 times more NO per cell than 

cardiomyocytes under baseline conditions, which corresponded with the relative eNOS 

expression observed (22x more total eNOS in CMECs compared to myocytes). Our results 

demonstrated a possible NO-producing role for iNOS in the cardiomyocytes, but not the 

CMECs. Therefore, collectively, CMECs are likely to produce significantly more NO than 

ventricular cardiomyocytes under baseline conditions in the heart, derived predominantly 

from eNOS in both cell types. The fate of the relatively greater amounts of NO released by 

CMECs is unknown, but spillover diffusion into the cardiomyocytes is possible where it may 

contribute to baseline regulation and function of the myocytes. (D) After exposure to hypoxia, 

eNOS was both upregulated (ischaemic pelleting protocol: 1.8-fold increase; ↓PO2 incubation 

protocol: 2.1-fold increase) and activated (ischaemic pelleting: 4.9-fold increase; ↓PO2 

incubation: 3-fold increase) in CMECs. Upregulation and activation of eNOS in the CMECs 

were associated with 1.45 – 1.55-fold increase in NO-production. In the myocytes, 60 min 

ischaemic pelleting hypoxia caused eNOS activation (1.5-fold increase), which was 

associated with a 1.4-fold increase in NO-production. Inducible NOS (iNOS) was expressed 

in the myocytes, but no changes were observed in hypoxia. It is possible that the increases 

in NO-production observed over baseline will create an even bigger diffusion gradient from 

the CMECs to cardiomyoctes during hypoxia. This could lead to the diffusion of a significant 

portion of the CMEC-released NO into the underlying cardiomyocytes, however, the nature of 

the spill-over effects in this case is unknown, and could be either harmful or beneficial. 
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ADDENDUM 1: List of publications resulting directly from this study: 

 

Strijdom H, Genade S, Lochner A. Nitric oxide synthase (NOS) does not contribute to 

simulated ischaemic preconditioning in an isolated rat cardiomyocyte model. 

Cardiovasc Drugs Ther 2004; 18: 99-112. 

 

Strijdom H, Muller C, Lochner A. Direct intracellular nitric oxide (NO) detection in 

isolated adult cardiomyocytes: Flow cytometric analysis using the fluorescent probe, 

diaminofluorescein (DAF). J Mol Cell Cardiol 2004; 37: 897 – 902. 

 

Strijdom H, Jacobs S, Hattingh S, Page C, Lochner A. Nitric oxide production is 

higher in rat cardiac microvessel endothelial cells than ventricular cardiomyocytes in 

baseline and hypoxic conditions: a comparative study. FASEB J 2006; 20(2): 14 – 

316. 
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ADDENDUM 2: List of publications resulting indirectly from this study: 

 

Marais E, Genade S, Strijdom J, Moolman J, Lochner A. Activation of p38 MAPK 

induced by a multi-cycle ischaemia preconditioning protocol associated with 

attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell 

Cardiol 2001; 33: 769 – 778. 

 

Marais E, Genade S, Strijdom H, Moolman J, Lochner A. P38 MAPK activation 

triggers pharmacologically-induced beta-adrenergic preconditioning, but not 

ischaemic preconditioning. J Mol Cell Cardiol 2001; 33: 2157 – 2177. 

 

Lochner A, Marais E, Genade S, Huisamen B, Strijdom H, Moolman J. Ischaemic 

and pharmacological preconditioning is associated with attenuation of p38 MAPK 

activation during sustained ischaemia and reperfusion. Myocardial Ischaemia and 

Preconditioning (Ed: Dhalla NS et al. Kluwer Academic, Boston); 2002: 249 – 273. 

 

Lampiao F, Strijdom H, Du Plessis S. Direct nitric oxide measurement in human 

spermatozoa: flow cytometric analysis using the fluorescent probe, 

diaminofluorescein. International Journal of Andrology 2006; In Press. 

 

Esterhuyse J, Van Rooyen J, Strijdom H, Bester D, Du Toit E. Proposed mechanism 

for red palm oil induced cardioprotection in a hyperlipidaemic perfused rat heart 

model. Prostaglandins Leukot Essent Fatty Acids 2006: In Press. 
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DIE VETOPLOSBARE HORMONE… Hierdie hormone 
behoort aan ‘n klas molekules wat geredelik in vette kan oplos, en dus
as gevolg hiervan oor selmembrane kan beweeg sonder die hulp van ‘n 
RESEPTOR-SEINTRANSDUKSIE pad. Steroïed hormone is seker die 
bekendste voorbeelde van vetoplosbare hormone, maar daar is ander...

EIENSKAPPE IN
PLASMA

TEIKEN-SEL GEBEURE FINALE EFFEKTE

1. Vervoer via draerproteïene
(kan nie in plasma oplos nie!)

1. Bind aan intrasellulêre
reseptore (sitoplasma of
nuklêer)

1. Lei tot die induksie
(sintese) van nuwe proteïene
of die staking van die sintese
van proteïene

2. Plasma konsentrasies is
baie stabiel en voorspelbaar

2. Finale effekte word
bereik via hormone se
werking in die selkern

2. Die proteïene wat deur
vetoplosbare hormone
beïnvloed word, is:
intrasellulêre ensieme of
hormoon / neurotransmitter
reseptore

3. Neem redelik lank om uit
plasma verwyder te word

3. Veroorsaak veranderinge
op die vlak van DNA
(transkripsie / proteïen-
sintese); d.w.s. aktivering of
onderdukking van gene

3. Lei gewoonlik tot ‘n nuwe
funksie of voorkoms van ‘n
sel (metamorfose /
differensiasie)

4. Afskeiding in plasma word
ALTYD gereguleer deur die
sg. relay proteïen-hormone

4. Effekte op teikenselle is
gewoonlik onomkeerbaar

3. Vanweë die feit dat die
effekte op transkripsie /
proteïensintese vlak
waargeneem word, is hulle
werking redelik stadig
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KLASSIFIKASIE VAN VETOPLOSBARE HORMONE…
Onthou asb dat nie alle vetoplosbare hormone NOODWENDIG steroïed
hormone is nie!!

A. DIE BYNIERKORTEKS HORMONE

Die bynierkorteks hormone

ALMAL STEROIED 
HORMONE!

MEDULLA?

A. DIE HORMONE VAN DIE BYNIER KORTEKS

• Aldosteroon (vorm deel van ‘n teuel beheer paar wat die interne omgewing
reguleer!!)

• Glukokortikoiede (Kortisol en Kortikosteroon)

• Androgene (Dehidro-epi-androsteroon: DHEA)

B. DIE TIROIED HORMONE

C. DIE GESLAGSHORMONE

D. GROEI HORMOON: TREE SOOS VETOPLOSBAAR OP
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DIE ALDOSTEROON - HEPATO-RENALE REFLEKS 
TEUEL BEHEER PAAR… Hierdie voorbeeld van ‘n teuel-beheer
paar is in twee opsigte uniek: (i) Aldosteroon is nie ‘n wateroplosbare
hormoon nie, en (ii) die hepato-renale refleks is nie ‘n hormoon nie. In alle
ander opsigte voldoen hierdie paar aan die vereistes van interne omgewing
reguleerders wat hul effekte via teuel-beheer uitoefen.

ALDOSTEROON… Steroïed hormoon; sy afskeiding word deur
die relay hormoon ANG II beheer; Lei tot die sintese van Na+ en 
Na+/K+ pompe in die distale nierbuisies.

Die Hepato-Renale Refleks

HEPATO = LEWER:

• Lewer selle bevat Na+

sensitiewe reseptore wat
deur ↑ Na+ vlakke in die 
plasma gestimuleer word

RENALE = NIER:

• Veranderinge in die 
renale gloeruli en tubules 
lei tot Na+ ekskresie in 
die urine

REFLEKS = VAGUS:

• Na+ sensitiewe selle in 
die lewer stimuleer Vagus
wat tot die onderdukking
van die simpatiese
senuweesisteem en dus
toename in glomerulêre
filtrasie en Na+ ekskresie
lei.
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Aldosteroon-HRR teuel-beheer

Effekte van Aldosteroon

ALDOSTEROON:

• Dit is ‘n vetoplosbare hormoon
wat as ‘n INTERNE OMGEWING 
REGULEERDER dien;

• Sy afskeiding vanuit die bynier-
korteks word deur 3 FAKTORE 
gestimuleer: (i) ANG II, (ii) ↑ K+ in 
die plasma, en (iii) ↓ plasma 
osmolaliteit

• Vorm ook ‘n TEUEL-BEHEER paar
saam met die hepato-renale
refleks in die beheer van plasma 
Na+ vlakke

NETTO EFFEK:

• Na+ retensie

• K+ ekskresie
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KORTISOL… Steroïed-hormoon. Afskeiding word deur die 
hipotalamiese-ant. hipofisêre as beheer (Hipotalamus: CRH = corticotropin
releasing hormone; Ant. Hipofise: ACTH = adrenocorticotrophic hormone, of 
corticotropin)

Kortisol se HH-as 

CRH

ACTH

Bynier
Korteks

KORTISOL
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BIOLOGIESE EFFEKTE VAN KORTISOL...

NB: “CORTISOL IS ESSENTIAL FOR LIFE”

• Word algemeen as een van die liggaam se belangrikste stres-hormone
geklassifiseer (Adrenalien: kort-werkend; Kortisol: lang-werkend). Die 
meting van kortisol-vlakke kan as aanduiding van emosionele stres gebruik
word.
• Kortisol is basies ‘n hormoon met METABOLIESE effekte, en die 
belangrikste uitwerking van kortisol is om HIPOGLUKEMIE teen te werk. 
Kortisol is dus, saam met Adrenalien en Glukagon, ‘n diabetogene hormoon, 
want dit lei tot ↑ plasma glukose vlakke.

• Kortisol is essensiëel vir Glukagon en 
Adrenalien om tydens hipoglukemie
EFFEKTIEWE ↑ glukose-vlakke te
bewerkstellig

Kortisol se effek op Glukagon
en Adrenalien se diabetogene
effekte

Kortisol se biologiese effekte

GLUKONEOGENESE!!
• Kortisol is ook ‘n hoogs effektiewe immuun-onderdrukker. Dit word 
veroorsaak deur: (i) Inhibisie van sitokien-vrystelling en antiliggaam
produksie deur witbloedselle; (ii) Onderdukking van die inflammatoriese
reaksie deur leukosiet-beweging te inhibeer

POTENSIAAL AS ‘N MEDIKASIE? Kortikosteroïede...
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KORTISOL WORD RITMIES AFGESKEI… Vergelyk
Melatonien en Groeihormoon!!

Kortisol se sirkadiese ritme

SELFSTUDIE:

• KORTISOL TEKORT: “Addison se Siekte”

• KORTISOL OORMAAT: “Cushing se Siekte”

• http://academic.sun.ac.za/medphys/endo4.htm#i1

WATTER  IMPLIKASIE HET DIT OP DIE TYDSTIP WANNEER ‘N 
DOKTER BLOEDVLAKKE WIL BEPAAL? 
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DHEA… Word in baie klein hoeveelhede in beide mans en vrouens afgeskei. 
In vrouens, is die bynierkorteks die belangrikste bron van androgene, terwyl
dit ‘n sekondêre rol in mans speel, veral na puberteit wanneer die androgene
van die testis (veral testosteroon) oorheers.

B. DIE TIROïED HORMONE… Die tiroïed hormone is aminosuur-
derivate (van tirosien), maar is nogtans vetoplosbaar. Die afskeiding van 
tiroïed hormone word beheer deur die HH-as (Hipotalamus = TRH: thyrotropin
releasing hormone en Ant. Hipofise = TSH: thyroid stimulating hormone, of 
tirotropien). Die tiroïed hormone word mbv ‘n draerproteïen (TBG) in bloed
vervoer

Die HH-as van T4 en T3

T4 en T3 afskeiding

3 - 5x meer aktief as T4!!

TRH

TSH

Thyroid

T4, T3
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SELFSTUDIE:

Die sintese van tiroïed-hormone in die follikulêre selle, en die rol van 
kolloïed, jodium, en tiroglobulien. Silverthorn bl. 733, 744

BIOLOGIESE EFFEKTE VAN TIROïED HORMOON:

• Essensieel vir normale groei en ontwikkeling in kinders
• ↑ suurstof verbruik in meeste weefsels
• ß-reseptor sintese
• Interaksie met ander hormone tydens metaboliese reaksies (bv. 

verhoog adrenalien se vermoë om vry vetsure van vetselle te
sekreteer)

DIE EFFEKTE VAN TIROïED HORMOON WORD 
DUIDELIKER AS DAAR ‘N OORPRODUKSIE OF 
ONDER-PRODUKSIE PLAASVIND...

A. ONDER-PRODUKSIE TYDENS KINDERJARE: “Kretinisme”
sien: http://academic.sun.ac.za/medphys/endo3.htm#g1 vir
meer inligting

B. ONDER-PRODUKSIE IN VOLWASSENES: “Hipotiroïedisme”
(i) ↓ metaboliese tempo en suurstof verbruik(d.w.s. minder interne hitte
opgewek = koue intolerant); (ii) ↓ proteïensintese (swak naels, dun hare, 
droeë, dun vel); (iii) depressie; (iv) bradikardie

C. OOR-PRODUKSIE: “Hipertiroïedisme”
(i) ↑ metaboliese tempo en suurstof verbruik(d.w.s. meer interne hitte
opgewek = hitte intolerant; klam, sweterige hande); (ii) ↑ prikkelbaarheid; 
irriteerbaar; slapeloosheid; (iii) tagikardie
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C. DIE GESLAGS-HORMONE… Die klassieke
geslagshormone is steroïed-hormone wat in die gonades (man: testis; 
vrou: ovarium) gesintetiseer en afgeskei word. Daar is ‘n derde groep
geslags-hormone wat in die bynier korteks afgeskei word (androgeen: 
DHEA) – reeds behandel. Die geslagshormone staan onder beheer van die 
HH-as (Hipotalamus: GnRH = gonadotropin releasing hormone; Ant. 
Hipofise: LH = luteinizing hormone en FSH = follicle stimulating 
hormone).

Die HH-as van die geslagshormone

GnRH

LH; FSH

Gonades

Androgens, Estrogens, Progestins

KLASSIFIKASIE:

• Androgene: Testosteroon (testis) 
en DHEA (bynierorteks)

• Estrogene: Estradiol

• Progestiene: Progesteroone

FUNKSIES:

• Testosteroon: Ontwikkeling van 
spermselle; ontwikkeling en maturasie
van manlik geslagsorgane, insluitende
sekondêre manlike geslagskenmerke. 

• Estradiol: Ontwikkeling van die 
eierselle (oösiete); beheer van 
menstruasie (veral follikulêre fase); 
ontwikkeling en maturasie van die 
vroulike geslagsorgane, insluitende
sekondêre geslagskenmerke. 

• Progesteroon: Die hormoon van 
swnagerskap; voorbereiding en 
handhawing van swangerskap. 
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GROEIHORMOON… ‘n Proteïen-hormoon wat vanaf die Ant. 
Hipofise afgeskei word; vorm saam met tiroïed hormoon, insulien en 
geslagshormone die klassieke groep hormone wat vir normale groei en 
ontwikkeling verantwoordelik is. ‘n Tekort aan enige van hierdie hormone 
sal normale groei op een of ander manier beïnvloed. Alhoewel GH ‘n 
proteïen-hormoon is, besit dit baie eienskappe wat eerder met 
vetoplosbare hormone verbind word: (i) GH se afskeiding word deur relay 
hormone vanaf die hipotalamus gereguleer, (ii) ‘n belangrike meganisme
van werking op sellulêre vlak is geen-aktivering en proteïensintese, en (iii) 
minstens 50% van die plasma GH worddmv ‘n draerproteïen vervoer.

GHRHSomatostatin

GH

Liver

IGF

Groeihormoon afskeiding

GH FUNKSIES:

• GH reguleer groei en 
ontwikkeling in kinders
(been en weefsel groei via 
die induksie van proteïen
sintese)

• GH stimuleer verhoogde
glukose vrystelling van die 
lewer, en dus verhoogde
plasma glukose.

• GH die as ‘n relay hormoon
wat die sekresie van IGF 
(Insulin-like Growth 
Factor) reguleer. IGF is 
primêr verantwoordelik vir
kraakbeengroei, hoewel dit
ook bg funksies met GH 
deel. 
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AFWYKINGS VAN GH AFSKEIDING:

1. ONDER-PRODUKSIE IN KINDERJARE: Dwerg Groei
(vergelyk ‘n GH-tekort dwerg met ‘n tiroïed-hormoon tekort
dwerg)

2. OOR-PRODUKSIE IN KINDERJARE: Reusegroei
(“Gigantism”)

3. OOR-PRODUKSIE IN VOLWASSENES: Akromegalie

Meer info oor bg: http://academic.sun.ac.za/medphys/endo3.htm#h1

SELFSTUDIE:

Die verterings hormone … Silverthorn: Table 21-2; p. 672-673
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BELANGRIKE ONDERWERPE VAN TEMA 6, 
SESSIES 1-5:

KONSEPTE:

• Die Vetoplosbare Hormoon

• Hepato-Renale Refleks

• Die Glukokortikoïede

• Stres-hormoon

• Sirkadiese Ritme

• Die Hipotalamiese-Hipofisêre As 

• Kretinisme, Hipotiroïedisme, 
Hipertiroïedisme

• Hipotiroïed-Dwerg vs. Groeihormoon-tekort
dwerge

• Gigantisme vs. Akromegalie

UITKOMSTE IN STUDIEGIDS:

• Bl. 16, Uitkomste 1-6

• Bl. 17, Sessie 1 Selfstudie vrae 1,2,4

• Bl. 17 Sessies 2-6 uitkomste 1,2,4-6.



15



16

THE FAT SOLUBLE HORMONES... These hormones 
belong to a class of molecules that readily dissolve in fats, and are 
therefore able to move across cell membranes without the help of a 
RECEPTOR-SIGNALING PATHWAY. Steroid hormones are probably 
the most well known examples of fat soluble hormones, but there are 
others…

PROPERTIES IN
PLASMA

TARGET CELL
EVENTS

FINAL EFFECTS

1. Transported via
carrier proteins (can’t
dissolve in plasma!)

1. Bind to intracellular
receptors (cytoplasma
or nuclear)

1. Leads to the induction
(synthesis) of new
proteins or the
cessation of protein
synthesis

2. Plasma
concentrations are very
stable and predictable

2. Final effects are
achieved via actions of
the hormones in the cell
nucleus.

2. Proteins that are
affected by fat soluble
hormones are:
intracellular enzymes or
hormone/neurotransmit
ter receptors

3. Removal from plasma
is relatively slow

3. Cause changes on the
level of DNA
(transcription / protein
synthesis); thus
activation or
suppression of genes

3. Usually leads to a new
function or appearance
of a cell
(metamorphosis /
differentiation)

4. Secretion in plasma is
ALWAYS regulated by
the so-called relay
protein hormones

4. Effects on target
cells are usually
irreversible

5. Due to its effects
happening on
transcription / protein
synthesis level, it
follows that the action
is relatively slow.
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CLASSIFICATION OF FAT SOLUBLE HORMONES…
Please remember that not all fat soluble hormones are NECESSARILY 
steroid hormones!! 

A. THE ADRENAL CORTEX HORMONES 

The hormones of the adrenal cortex

A. THE HORMONES OF THE ADRENAL CORTEX

• Aldosterone (forms part of a rein control pair that regulates the   
internal environment!!)

• Glucocorticoids (Cortisol en Corticosterone)

• Androgens (Dehydro-epi-androsterone: DHEA)

B. THE THYROID HORMONES

C. THE SEX HORMONES

D. GROWTH HORMONE: BEHAVES LIKE FAT SOLUBLE

ALL STEROID 
HORMONES!

MEDULLA?
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THE ALDOSTERONE - HEPATO-RENALE REFLEX 
REIN CONTROL PAIR… This example of a rein control pair is 
unique in two ways: (i) Aldosterone is not water soluble, and (ii) the hepato-
renal reflex is not a hormone. In all other respects, this pair does fulfill the 
requirements of internal environment regulators that exert their effects 
via rein control mechanisms. 

The Hepato-Renal Reflex

ALDOSTERONE… Steroid hormone; its secretion is regulated 
by the relay hormone ANG II; Leads to the synthesis of Na+ and 
Na+/K+ pumps in the distal renal tubules.

HEPATO = LIVER:

• Liver cells contain Na+

sensitive receptors that 
are stimulated by ↑ Na+

levels in the plasma

RENAL = KIDNEY:

• Changes in the renal 
gloeruli and tubules lead 
to Na+ excretion in the 
urine

REFLEX = VAGUS:

• Na+ sensitive cells in the 
liver stimulate Vagus
which leads to the 
suppression of the 
sympathetic nervous 
system and therefore 
increased glomerular
filtration and Na+

excretion.
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Aldosterone-HRR rein control

ALDOSTERONE:

• Is a fat soluble hormone that 
serves as an INTERNAL 
ENVIRONMENT REGULATOR;

• Its secretion from the adrenal 
cortex is stimulated by 3 
FACTORS: (i) ANG II, (ii) ↑ K+ in 
the plasma, and (iii) ↑ plasma 
osmolality

• Forms a REIN CONTROL pair 
with the hepato-renal reflex in 
the control of plasma Na+ levels

Effects of Aldosterone

NET EFFECT:

• Na+ retention

• K+ excretion
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CORTISOL… Steroid-hormone. Secretion is controlled by the 
hypothalamic-ant. pituitary axis (Hypothalamus: CRH = corticotropin
releasing hormone; Ant. Pituitary: ACTH = adrenocorticotrophic hormone, or 
corticotropin)

The HH-axis of cortisol

CRH

ACTH

Adrenal 
Cortex

CORTISOL
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BIOLOGICAL EFFECTS OF CORTISOL...

NB: “CORTISOL IS ESSENTIAL FOR LIFE”

• Classified as one of the body’s most important stress hormones
(Adrenaline: short-working; Cortisol: long-working). The measurement of 
cortisol levels can be used as an indicator of emotional stress. 

• Cortisol is basically a hormone with METABOLIC effects, and the most 
important effect of cortisol is to counter HYPOGLYCAEMIA. Cortisol is 
therefore, together with Adrenaline and Glucagon, a diabetogenic hormone, 
since it leads to ↑ plasma glucose levels.

• Cortisol is essential for Glucagon
and Adrenaline to achieve 
EFFECTIVE ↑ glucose-levels during 
hypoglycaemia

Cortisol’s effect on Glucagon 
and Adrenaline’s diabetogenic
effects

Cortisol’s biological effects

GLUCONEOGENESIS!!
• Cortisol is also a very efficient immune suppressant. It achieves this by: 
(i) Inhibition of cytokine-release and antibody production by white blood 
cells; (ii) Suppression of the inflammatory reaction by inhibiting leucocyte
movement

POTENTIAL AS A MEDICATION? Corticosteroids...
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CORTISOL-RELEASE IS RHYTHMIC… See also 
melatonin and Growth Hormone!! 

Cortisol’s circadian rhythm

SELF STUDY:

• CORTISOL DEFICIENCY: “Addison’s Disease”

• CORTISOL EXCESS: “Cushing’s Disease”

• http://academic.sun.ac.za/medphys/endo4.htm#i1

WHAT  IMPLICATIONS DOES THIS HAVE ON THE TIMING OF 
BLOOD LEVEL MEASUREMENTS BY THE DOCTOR? 
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DHEA… Secreted in small quantities in both males and females. In 
females, the adrenal cortex is the most important source of androgens, whilst 
in males it plays a secondary role, especially after puberty when the androgens 
of the testis (testosterone) dominate. 

B. THE THYROID HORMONES… The thyroid hormones are 
amino acid derivatives (tyrosine), but are nevertheless fat soluble. The 
secretion of thyroid hormones is regulated by the HH axis (Hypothalamus = 
TRH: thyrotropin releasing hormone and Ant. Pituitary = TSH: thyroid 
stimulating hormone, or thyrotropin). The thyroid hormones are transported 
in blood by a carrier protein (TBG).

The HH-axis of T4 and T3

T4 and T3 secretion

3 - 5x more active than T4!!

TRH

TSH

Thyroid

T4, T3
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SELF STUDY:

The synthesis of thyroid hormones in the follicular cells, and the role of 
colloid, iodide and thyroglobulin. Silverthorn p. 733, 744

BIOLOGICAL EFFECTS OF THYROID HORMONE:

• Essential for normal growth and development in children 
• ↑ oxygen consumption in most tissues
• ß-receptor synthesis
• Interaction with other hormones during metabolic reactions (e.g. 
increases adrenaline’s ability to release free fatty acids from 
adipocytes.) 

THE EFFECTS OF THYROID HORMONES BECOME 
MORE APPARENT IN CASE OF INCREASED OR 
DECREASED PRODUCTION...

A. DECREASED PRODUCTION DURING CHILDHOOD: 
“Cretinism”
see: http://academic.sun.ac.za/medphys/endo3.htm#g1 for more info 

B.  DECREASED PRODUCTION IN ADULTS: “Hypothyroidism”
(i) ↓ metabolic rate and oxygen consumption (i.e.. less internal heat
generation = cold intolerant); (ii) ↓ protein synthesis (brittle nails, thin 
hair, dry, thin skin); (iii) depression; (iv) bradycardia

C. OVER-PRODUCTION: “Hyperthyroidism”
(i) ↑ metabolic rate and oxygen consumption (I.e. more internal heat 
generation - heat intolerant; clammy, sweaty hands); (ii) ↑ excitability; 
irritability; insomnia; (iii) tachycardia
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C. THE SEX HORMONES… The classical sex hormones are 
steroid hormones that are synthesized and secreted in the gonades (male: 
testis; female: ovarium). There is a third group of sex hormones that are 
secreted in the adrenal cortex (androgen: DHEA) – see earlier. The sex 
hormones stand under control of the the HH-axis (Hypothalamus: GnRH = 
gonadotropin releasing hormone; Ant. Pituitary: LH = luteinizing hormone and 
FSH = follicle stimulating hormone).

GnRH

LH; FSH

Gonades

Androgens, Estrogens, Progestins

The HH-axis of the sex hormones

CLASSIFICATION:

• Androgens: Testosterone (testis) 
and DHEA (adrenal corteks)

• Estrogens: Estradiol

• Progestins: Progesterone

FUNCTIONS:

• Testosterone: Development of 
sperm cells; development and 
maturation of male sex organs, 
including secondary male sex 
features. 

• Estradiol: Development of the egg 
cells (oocytes); control of 
menstruation (especially follicular 
phase); development and maturation 
of the female sex organs, including 
secondary female sex features. 

• Progesterone: The hormone of 
pregancy; preparation and 
maintenance of pregnancy 
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GROWTH HORMONE… A  protein-hormone that is secreted 
from the Ant. Pituitary; together with the thyroid hormone, insulin and 
the sex hormones, it forms a classical group hormones  that are 
responsible for normal growth and development. A shortage of any of 
these hormones will affect normal growth in one way or the other. 
Although GH is a  protein hormone, it does exhibit some features which 
rather resembles fat soluble hormones: (i) GH’s secretion is regulated by 
relay hormones from the hypothalamus, (ii) an important mechanism of 
action on cellular levels is gene-activation and protein synthesis, and (iii) 
at least 50% of plasma GH is transported by carrier proteins. 

GHRHSomatostatin

GH

Liver

IGF

Growth Hormone secretion

GH FUNCTIONS:

• GH regulates growth and 
development in children 
(bone and tissue growth via 
the induction of protein 
synthesis)

• GH stimulates increased 
glucose release from the 
liver, and thereby increases 
plasma glucose

• GH serves as a relay 
hormone that regulates the 
secretion of IGF (Insulin-
like Growth Factor). IGF is 
primarily responsible for 
cartilage growth, although 
it shares the above 
functions of GH as well. 
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ABNORMAL GH RELEASE:

1. UNDER-PRODUCTION DURING CHILDHOOD: Dwarfism
(compare a GH-deficient dwarf with a thyroid-hormone 
shortage dwarf)

2. OVER-PRODUCTION IN CHILDHOOD: Gigantism

3. OVER-PRODUCTION IN ADULTS: Acromegaly

More info: http://academic.sun.ac.za/medphys/endo3.htm#h1

SELFSTUDY:

The Digestive Hormones… Silverthorn: Table 21-2; p. 672-673
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IMPORTANT TOPICS OF THEME 6, SESSIONS 
1-5:

CONCEPTS:

• The fat soluble Hormone

• Hepato-Renal Reflex 

• The Glucocorticoids

• Stress-hormone

• Circadian Rhythm 

• The Hypothalamic-Hypophysis Axis 

• Cretinism, Hypothyroidism, 
Hyperthyroidism

• Hypothyroid-Midget vs. Growth hormone-
deficiency Midget

• Gigantism vs. Acromegaly

OUTCOMES IN STUDYGUIDE:

• p. 16, Outcomes 1-6

• p. 17, Session 1 Selfstudy questions 1,2,4

• p. 17 Sessions 2-6 outcomes 1,2,4-6.


	DECLARATION
	ABSTRACT
	OPSOMMING
	ACKNOWLEDGEMENTS
	INDEX
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1 LITERATURE REVIEW & HYPOTHESI
	CHAPTER 2 MATERIALS AND METHODS
	CHAPTER 3 HYPOXIA AND EARLY ISCHAEMICPRECONDITIONING IN ISOLATEDCARDIOMYOCYTES: THE ROLE OF NO ANDROS
	CHAPTER 4 THE NEED FOR DIRECT INTRACELLULARDETECTION OF NITRIC OXIDE IN ISOLATEDCARDIOMYOCYTES: DEVELOPMENT OF ANOVEL TECHNIQUE
	CHAPTER 5 NO-PRODUCTION AND NOS REGULATION INCARDIOMYOCYTES AND CMECs: ACOMPARATIVE STUDY
	CHAPTER 6 CONCLUSIONS
	ADDENDUM 1
	ADDENDUM 2
	REFERENCES
	ENDOKRINOLOGIE 3

