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Abstract

Stochastic visual tracking with active appearance models
M.R. Ho�mann

Department of Mathematical Sciences (Division Applied Mathematics)
University of Stellenbosch

Private Bag X1, Matieland, 7602, South Africa

Dissertation: PhD (Applied Mathematics)

December 2009

In many applications, an accurate, robust and fast tracker is needed, for example in surveillance,
gesture recognition, tracking lips for lip-reading and creating an augmented reality by embedding
a tracked object in a virtual environment. In this dissertation we investigate the viability of a
tracker that combines the accuracy of active appearance models with the robustness of the particle
�lter (a stochastic process)—we call this combination the PFAAM. In order to obtain a fast system,
we suggest local optimisation as well as using active appearance models �tted with non-linear
approaches.
Active appearance models use both contour (shape) and greyscale information to build a

deformable template of an object. �ey are typically accurate, but not necessarily robust, when
tracking contours. A particle �lter is a generalisation of the Kalman �lter. In a tutorial style,
we show how the particle �lter is derived as a numerical approximation for the general state
estimation problem.
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ABSTRACT

�e algorithms are tested for accuracy, robustness and speed on a PC, in an embedded
environment and by tracking in 3D. �e algorithms run real-time on a PC and near real-time in
our embedded environment. In both cases, good accuracy and robustness is achieved, even if the
tracked object moves fast against a cluttered background, and for uncomplicated occlusions.
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Uittreksel

Stochastiese volg van voorwerpe met aktiewe voorkomsmodelle
(“Stochastic visual tracking with active appearance models”)

M.R. Ho�mann
Departement Wiskunde Wetenskappe (Afdeling Toegepaste Wiskunde)

Universiteit van Stellenbosch
Privaatsak X1, Matieland, 7602, Suid Afrika

Proefskrif: PhD (Toegepaste Wiskunde)

Desember 2009

’nAkkurate, robuuste en vinnige visuele-opspoorder word in vele toepassings benodig. Voorbeelde
van toepassings is bewaking, gebaarherkenning, die volg van lippe vir liplees en die skep van ’n
vergrote realiteit deur ’n voorwerp wat gevolg word, in ’n virtuele omgewing in te bed. In hierdie
proefskrif ondersoek ons die lewensvatbaarheid van ’n visuele-opspoorder deur die akkuraatheid
van aktiewe voorkomsmodelle met die robuustheid van die partikel�lter (’n stochastiese proses) te
kombineer—ons noem hierdie kombinasie die PFAAM. Ten einde ’n vinnige visuele-opspoorder
te verkry, stel ons lokale optimering, sowel as die gebruik van aktiewe voorkomsmodelle wat met
nie-lineêre tegnieke gepas is, voor.
Aktiewe voorkomsmodelle gebruik kontoer (vorm) inligting tesamemet grysskaalinligting om

’n vervormbaremeester van ’n voorwerp te bou. Wanneer aktiewe voorkomsmodelle kontoere volg,
is dit normaalweg akkuraat, maar nie noodwendig robuust nie. ’n Partikel�lter is ’n veralgemening
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UITTREKSEL

van die Kalman�lter. Ons wys in tutoriaalstyl hoe die partikel�lter as ’n numeriese benadering tot
die toestand-beramingsprobleem afgelei kan word.
Die algoritmes word vir akkuraatheid, robuustheid en spoed op ’n persoonlike rekenaar, ’n

ingebedde omgewing en deur volging in 3D, getoets. Die algoritmes loop intyds op ’n persoonlike
rekenaar en is naby intyds op ons ingebedde omgewing. In beide gevalle, word goeie akkuraatheid
en robuustheid verkry, selfs as die voorwerp wat gevolg word, vinnig, teen ’n besige agtergrond
beweeg of eenvoudige okklusies ondergaan.
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Chapter

1
Introduction

�ere are two mistakes one can make along the road to truth... not going all the way,
and not starting.

—Gautama Siddharta

Tracking objects in a video sequence is one of the fundamental problems in computer vision,
and can be one of the toughest. Tracking a single, rigid object against a smooth background

is relatively easy. Tracking multiple, deformable objects through occlusions against cluttered
backgrounds, is di�cult. Yet it is an essential part of many applications.
We need computers to be able to track in order to automate applications, such as following

a suspect in surveillance (Hu et al., 2004), gesture recognition (Wu and Huang, 1999), tracking
lips for lip-reading (Matthews et al., 2002), and creating an augmented reality by embedding a
tracked object in a virtual environment (Fischer et al., 2007). Most applications need accurate,
robust and fast tracking before they become useful. For example, in the case of lip-reading, we
need real-time translation, and since the recognition algorithms will take the tracker’s output as
input, the tracker needs to be accurate, robust and fast. Our aim in this dissertation is to provide
and investigate such a tracker.
Ideally one would prefer to track arbitrary objects. �is has proved to be too di�cult and

the emphasis has shi�ed to tracking speci�c objects where the basic shape and deformations are
known, or can be learnt, see (Blake and Isard, 1998). �is is the approach that is followed in this
dissertation.
An object is identi�ed through its shape and/or texture. When an object is described by a

1



Chapter 1. Introduction 1.1. Overture

shape only, it results in active contours (Kass et al., 1987; Blake and Isard, 1998). �e use of only
texture information leads to kernel-based (blob) tracker, for example (Comaniciu et al., 2003).
�e combination of shape and texture information results in active appearance models (Cootes
et al., 1998; Edwards et al., 1998).

1.1 Overture

In order to track objects, we need two things: a way to describe an object, i.e., an object represen-
tation, and a way to follow the object representation from one frame to the next.

�e three ways to represent an object are points, kernels (blobs), and silhouettes (the shape
and contours of a deformable object), each with its own advantages. We focus on a silhouette
representation. In particular, we focus on active appearance models which are template based,
built from a combination of contour (shape) and greyscale information, allowing accurate, but
not necessarily robust, tracking of contours (Stegmann, 2001).
Having chosen an active appearance model representation of the object to be tracked, we

need a way to follow this representation from one frame to the next. Here the approaches are
either deterministic or stochastic. Deterministic approaches initialise a search for the object in
the current frame with the previous frame’s object parameters. No knowledge of the noise or the
dynamics of the moving object is taken into account. However, stochastic approaches incorporate
our knowledge of both the noise and the dynamics into the prediction of the parameters of the
object representation.
With our choice of active appearance models as an object representation, a deterministic

approach is shown to break under certain conditions. We therefore choose a stochastic approach—
particle �ltering.
Particle �lters have been shown to provide robust stochastic tracking (Isard and Blake, 1998a;

Pérez et al., 2002). A particle �lter is a generalisation of the Kalman �lter (Kalman, 1960)—a
method of updating the state of a system given some noisy measurements, some knowledge of
the dynamics, how the measurements are made, and the statistics of the noise. For example, the
estimate of a boat’s position at sea can be updated using a (noisy)measurement of the sun’s position
and knowledge of our current velocity. �is updated measurement combines all information
(measurement and dynamics) and is therefore more accurate than if the information were used
separately.
We combine active appearance models and particle �lters to obtain accuracy and robustness,

bearing the speed constraints in mind. �is yields stochastic tracking with active appearance

2
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models. In particular, we assume that the parameters describing an active appearance model are
distributed according some probability density function (pdf). �is pdf is approximated by a set
of samples. Using the particle �lter, the pdf is propagated over time. �is enables us to track an
object.
We have chosen implementation in an embedded environment and 3D-tracking as �nal test

beds for the algorithms.
Implementing computer vision algorithms in an embedded environment, such as smart

cameras, has recently become more prevalent. �is enables distributed computing, relieving the
bandwidth problem, and avoiding privacy issues (Fleck and Straßer, 2008). Since this environment
has limited processing power per node, it is an excellent test for the delicate speed versus accuracy
trade-o�. Our algorithms run in near real-time on a standard smart camera.

�e 3D-tracking algorithms are an extension of their 2D counterparts. Our 2D-tracker is
built on an active appearance model allowing a straightforward extension to 3D. We also get
an estimate of the accuracy of the 2D-trackers from the epipolar constraints in the 3D-tracker.
Satisfactory results are obtained.

1.2 Dissertation objectives

�is work’s principal objective is to provide a detailed investigation into the viability (in terms
of speed, robustness and accuracy) of stochastic tracking with active appearance models. �e
secondary objectives are to provide a fully �eshed derivation of all the algorithms in a tutorial
style, and to comment on implementation issues.

1.3 Contributions of this work

�is dissertation makes the following contributions:

ä A combination of the particle �lter and active appearance models has also been proposed
by Hamlaoui and Davoine (2005); our approach is similar, but with some di�erences.
For example, we use di�erent models, a �xed number of particles and local optimisation
to increase robustness of the tracker (Fleck et al., 2007). A detailed description of the
di�erences is provided in Chapter 4.

ä Wecompare the combined active appearancemodels and particle �lter tracker with an active
contours-active appearance models combination (Ho�mann et al., 2007b) and investigate

3
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in particular how these di�erent methods deal with occlusions (Ho�mann et al., 2007a).
�ese results are presented in Chapter 4.

ä Based on Saragih and Göcke (2006), we investigate the advantages of non-linear iterative
active appearance model �tting methods in a particle �lter and present an implementation
of the tracker on a smart camera (Ho�mann et al., 2008b) and an extension to a 3D-face
tracker in Chapter 5.

ä A so�ware library, written in C++, allowing tracking of objects with active appearance
models and particle �lters.

1.4 Outline of the dissertation

We review particle �lters in Chapter 2, followed by a discussion of active appearance models in
Chapter 3. Combinations of these two methods and other tracking methods are presented in
Chapter 4, with experimental results where appropriate. Chapter 5 presents the implementation
and further experimentation.
We have written each of Chapters 2 and 3 so that they can be read independently as tutorials

from the rest of the dissertation. �is also means that the reader can comfortably skip either
chapter if he is familiar with their topics.
Note that we have not included a literature review as a separate chapter so that Chapters 2 and

3 remain independent. We provide references within each body of work.

4
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2
�e particle �lter

“Have you pen and ink, Master Doctor?”
“A scholar is never without them, your Majesty,” answered Doctor Cornelius.

—C.S. Lewis, The Chronicles of Narnia

Suppose one wants to model a dynamic process that is contaminated by noise, for example
tracking an object through an image sequence. �e process is usually described by a state

vector at time t denoted by x t ∈ Rnx . Furthermore, suppose the state vector x t is not observed
directly, but is known through some noisy measurements z t ∈ Rnz and knowledge of the dynamic
evolution of the system. Using all the available information, i.e., all measurements and knowledge
of the dynamic process, the aim is to �nd the best possible estimate for the state x t .
In particular, we assume that the states evolve according to

x t = f t−1 (x t−1, v t−1) (2.1)

where f t−1 is a known, possibly non-linear function and v t−1 is the process noise. �e state is
related to the measurements via the measurement equation

z t = g t (x t ,w t) (2.2)

where g t is again a known, possibly non-linear function andw t is themeasurement noise. �e state
equation (2.1) describes the transitional probability, p (x t ∣x t−1), whereas the likelihood p (z t ∣x t)

5



Chapter 2. �e particle �lter Chapter 2. �e particle �lter

is depicted by the measurement equation (2.2). If no assumptions are made about f t−1, g t , and the
statistics of the noise, explicit formulas for p (x t ∣x t−1) and p (z t ∣x t) are not in general available.
A special case is the linear Gaussian dynamic system when equations (2.1) and (2.2) reduce to

x t = Ft−1x t−1 + v t−1 (2.3)

z t = Gtx t +w t , (2.4)

with v t−1 and w t Gaussian distributed random variables. In this case, p (x t ∣x t−1) and p (z t ∣x t)

are known explicitly. �e exact solution to equations (2.3) and (2.4) is given by the Kalman
�lter (Kalman, 1960). Here Ft−1 is called the state transition matrix and Gt the measurement
matrix.

�e stochastic �ltering problem given by (2.1) and (2.2) can also be described as a Bayesian
network, illustrated in Figure 2.1. A Bayesian network (Pearl, 1988; Lauritzen, 1996) is a directed
graphical model which represents the relationships between a set of variables as a directed acyclic
graph. Here we clearly see that the current state x t depends on the previous state x t−1 and the
measurement at time t, z t, depends on the state x t, but is conditionally independent of the
measurements at other time steps. �is is consistent with equations (2.1) and (2.2).

⋯ ⋯x t−1 x t x t+1

z t−1 z t z t+1

f t−1 f t

g t−1 g t g t+1

Figure 2.1: Graphical model of stochastic �ltering.

�e aim of stochastic �ltering is thus to �nd the pdf p (x t ∣z0∶t) that is a complete solution
for the problem. However, this is o�en intractable since typically p (x t ∣z0∶t) is a density function
and may not be available in closed form. Nevertheless, it is instructive to understand the exact
conceptual solution. Here we use the conceptual solution (discussed in Section 2.1.1) as a starting
point in the development of the ideas underlying a Monte Carlo approximation to the problem:
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the particle �lter (presented in Section 2.1.3). En route we present the Kalman �lter as the exact
solution to the special case (2.3), (2.4) in Section 2.1.2 and review Monte Carlo methods in
Section 2.1.3.1. Resulting algorithms are presented in Section 2.2. Finally we discuss a simple
example in Section 2.3.

�e concepts presented here have been extensively investigated in the literature. �e goal
of this chapter is to provide a concise summary of the theory of particle �lters, together with a
small example to aid in the understanding of the topic. We also provide references for further
investigation.

2.1 Recursive Bayes �lter

In this section we discuss the conceptual solution to the stochastic �ltering problem described
by Equations (2.1) and (2.2) (Ho and Lee, 1964; Maybeck, 1979), the Kalman �lter as the exact
solution of a special case and the particle �lter as a numerical approximation.

2.1.1 �e conceptual solution

We use the notation x0∶t to denote the set of states, up to and including the state at time t, i.e.,
x0∶t ≜ {x0, x1, . . . , x t}.
Implicit in the model described above, are the assumptions that the states follow a �rst

order Markov process, that is p (x t ∣x0∶t−1, z0∶t−1) = p (x t ∣x t−1), and that the measurements are
conditionally independent of each other given the state sequence.

�e goal in solving the stochastic �ltering problem (Bar-Shalom et al., 2001) in a Bayesian
framework, is �nding the posterior pdf of the states given the measurements, p (x t ∣z0∶t). �is
posterior pdf contains all the information about the latent variables and can thus be used to
�nd estimates of the state. �e recursive Bayesian �lter provides a formal way to propagate the
posterior pdfs over time if an initial condition is given.
In order to see how the recursive Bayesian �lter operates, let us consider the posterior pdf

7
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p (x t ∣z0∶t) at time t. We have that

p (x t ∣z0∶t) = p (z0∶t , x t)

p (z0∶t)
=

p (x t , z t ∣z0∶t−1) p (z0∶t−1)
p (z t ∣z0∶t−1) p (z0∶t−1)

=
p (z t ∣x t , z0∶t−1) p (x t ∣z0∶t−1)

p (z t ∣z0∶t−1)
(conditional independence) = p (z t ∣x t) p (x t ∣z0∶t−1)

p (z t ∣z0∶t−1) . (2.5)

�e recursive formula for the posterior pdf (2.5) consists of the prior p (x t ∣z0∶t−1), the likeli-
hood p (z t ∣x t) and the model evidence p (z t ∣z0∶t−1). Using the state transition pdf p (x t ∣x t−1), the
posterior at time t − 1, p (x t−1∣z0∶t−1), and marginalising1 over x t−1 the prior is written as

p (x t ∣z0∶t−1) = ∫ p (x t , x t−1∣z0∶t−1) dx t−1
= ∫ p (x t ∣x t−1, z0∶t−1) p (x t−1∣z0∶t−1) dx t−1
= ∫ p (x t ∣x t−1) p (x t−1∣z0∶t−1) dx t−1 . (2.6)

For the calculation of (2.6), the initial estimate and dynamics are needed.
�e likelihood p (z t ∣x t) is the probability of the measurement given the current state, i.e., how

likely the measurement z t is. �e evidence is given by

p (z t ∣z0∶t−1) = ∫ p (z t , x t ∣z0∶t−1) dx t

= ∫ p (z t ∣x t , z0∶t−1) p (x t ∣z0∶t−1) dx t

= ∫ p (z t ∣x t) p (x t ∣z0∶t−1) dx t . (2.7)

In (2.7), the measurement z t and the dynamic update (2.6) are needed to successfully compute
the evidence.
All the components of p (x t ∣z0∶t) can thus be calculated since, crucially we assume p (x t ∣x t−1)

and p (z t ∣x t) are known. �e recursive Bayesian �lter is seldom implemented because the
marginalisations (2.6) and (2.7) are intractable. For the Kalman �lter, these marginalisations can
be done analytically.
Using the posterior pdf at time t, it is possible to calculate several estimates for the state. One
1Also known as the Chapman-Kolmogorov equation.
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such estimate is the conditional mean

x j∣k ≜ E[x j∣z0∶k] = ∫ x j ⋅ p (x j∣z0∶k) dx j , (2.8)

with its conditional variance

P j∣k ≜ E [(x j − x j∣k) (x j − x j∣k)T ∣z0∶k] . (2.9)

In all the cases we will consider, j ⩽ k.

2.1.2 �e Kalman �lter

�us far we have presented the conceptual solution to the recursive Bayesian �lter. In the special
case of a linear Gaussian system, the recursive Bayesian �lter reduces to the Kalman �lter (Kalman,
1960; Zarchan and Muso�, 2005). Here we present the Kalman �lter, as viewed from the recursive
Bayes point (Ho and Lee, 1964; Maybeck, 1979).
For the linear Gaussian system, we assume that the process and measurement models are

given by (2.3) and (2.4) respectively, listed again for convenience:

x t = Ft−1x t−1 + v t−1
z t = Gtx t +w t .

We denote a Gaussian distribution with mean m and covariance C asN (m, C). Using this
notation, we assume that v t ∼ N (0, Qt) and w t ∼ N (0, Rt) and that v t and v t′ are independent
for t ≠ t′. Similarly, w t and w t′ are assumed to be independent for t ≠ t′. We also assume that the
noise v t and w t are independent. Consequently, the dynamics and measurement equations can
be written as

p (x t ∣x t−1) = N (Ft−1x t−1, Qt−1) (2.10)

and

p (z t ∣x t) = N (Gtx t , Rt) (2.11)

respectively.
It is well-known that the product of two Gaussian pdfs is again a Gaussian pdf. Likewise, the

marginal and conditional of a Gaussian distribution, is Gaussian. �us to derive the Kalman �lter,

9
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we use the conceptual solution (2.5) and simply read o� the values from the formulas given in
Appendix A.
It will be useful to write

p (x t−1∣z0∶t−1) = N (x̂ t−1, Pt−1) . (2.12)

A solution for (2.5) requires the speci�cation of (2.6) and (2.7). Using our assumptions of the
Kalman �lter, (2.6) is given by

p (x t ∣z0∶t−1) = N (Ft−1x̂ t−1, Qt−1 + Ft−1Pt−1FTt−1) (2.13)

≜ N (x−t , P−t ) (2.14)

where we use themarginalisation property of a Gaussian. Here we have de�ned x−t as the predicted
estimate that is obtained without seeing anymeasurement; similarly P−t is the predicted covariance.
For the evidence (2.7), we have (again using the marginalisation property of a Gaussian)

p (z t ∣z0∶t−1) = N (Gtx−t , Rt +GtP−t GTt ) (2.15)

≜ N (z−t , St) . (2.16)

Finally

p (x t ∣z0∶t) = N (x̂ t , Pt) (2.17)

where

x̂ t = Pt (P−t )−1 x−t + PtGTt R−1t z t (2.18)

and

Pt = [(P−t )−1 +GTt RtGt]
−1
. (2.19)

At this point, we have all the information for the solution of (2.5). However, if we de�ne the
Kalman gain

Kt ≜ P−t GTt S−1t , (2.20)

10
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then (2.18) and (2.19) simplify (a�er considerable algebraic manipulation) to

x̂ t = x−t + Kt (z t − z−) (2.21)

and

Pt = P−t − KtStKTt (2.22)

respectively.
�e Kalman �lter operates in two steps (this can also be said for the recursive Bayes �lter).

During the �rst step we propagate the pdf p (x t−1∣z0∶t−1) to p (x t ∣z0∶t−1) using (2.14) and (2.16).
�en a new measurement becomes available. By using (2.20), (2.21), and (2.22) we propagate the
pdf p (x t ∣z0∶t−1) to p (x t ∣z0∶t).

2.1.3 �e particle �lter

As discussed in Section 2.1.1, exact inference in the Bayesian �lter is not in general possible due
to intractable integrals. In general, p (x t ∣z0∶t) could be multivariate, multi-modal or unavailable
in closed form. In these cases one has to resort to Monte Carlo techniques to approximate the
integrals. Hence we proceed to provide an overview ofMonte Carlo (MC)methods. �ey form the
cornerstone of the numerical approximations of the recursive Bayesian �lter. �erea�er we apply
the MC techniques to the recursive Bayesian �lter resulting in sequential importance sampling
(SIS) (Doucet and de Freitas, 2001; Isard and Blake, 1998a; Ristic et al., 2004), also known as the
particle �lter.

2.1.3.1 Monte Carlo methods

Loosely following the notation of Bishop (2006), we provide an overview of Monte Carlo (MC)
methods.
In the MC framework, we wish to estimate the expected value of a function f (x) with respect

to the distribution function p (x),

E [ f ] = ∫ f (x) p (x) dx . (2.23)

We assume that N independent samples x(i), with i = 1, . . . N, drawn from p (x) are available.

11
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�en the expectation in (2.23) is approximated by

f̂ = 1
N

N
∑
i=1 f (x(i)) , (2.24)

that is by the sample mean of the function f .
Two important measures of the MC estimate are the expected value and variance of the

estimator. �e expected value is given by

E [ f̂ ] = E [ f ] . (2.25)

�is tells us that the MC estimator is an unbiased estimate for our initial problem. For the
derivation of the variance, we use a well-known identity that var [ f ] = E [ f 2] − (E [ f ])2 and
(2.25):

var [ f̂ ] = E [ f̂ 2] − (E [ f̂ ])
2

= E [ f̂ 2] − (E [ f ])2 . (2.26)

Now note that

E [ f (x(k)) f (x(m))] =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

var [ f ] + (E [ f ])2 if k = m

(E [ f ])2 otherwise

= (E [ f ])2 + δmkvar [ f ] . (2.27)

Substituting (2.24) into (2.26) and then using (2.27), we obtain

var [ f̂ ] = E [
1
N

L
∑
k=1 f (x(k)) 1

N

N
∑
m=1 f (x(m))] − (E [ f ])2

=
1
N2

N
∑
k=1

N
∑
m=1 [(E [ f ])2 + δmkvar [ f ]] − (E [ f ])2

=
1
N
var [ f ] . (2.28)

From (2.28), we see that the variance of the estimator gets smaller as we increase the number of
samples.

�e MC techniques su�er from several problems. Amongst others, it may be di�cult or
impossible to sample from p (x); in this case one can use importance sampling. �e idea behind

12
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importance sampling is to use a proposal density function q (x) that is easy to sample from,
instead of p (x). �e support of the proposal pdf should include p (x), i.e.,

p (x) > 0 Ô⇒ q (x) > 0 . (2.29)

Now we sample N independent samples from q (x). We can write the expectation in (2.23) as

E [ f ] = ∫ f (x) p (x) dx

= ∫ f (x) p (x)
q (x)q (x) dx

≈
1
N

N
∑
l=1

p (x(i))
q (x(i)) f (x(i)) . (2.30)

�e importance sampling estimate in (2.30) is similar to the MC estimate (2.24). �e only
di�erence is the additional factor, p(x(i))

q(x(i)) that corrects the bias since we are not sampling from
p (x); we de�ne this as the importance weights

w(i) ≜ p (x(i))
q (x(i)) . (2.31)

Suppose further that p (x) can only be evaluated up to a normalising constant, such that

p (x) = p̃(x)
Zp

,

where p̃ (x) can be easily evaluated and Zp is the normalising constant. Similarly, we assume that
q (x) can be evaluated up to a normalising constant Zq where q̃ (x) can be easily evaluated,

q (x) = q̃(x)
Zq

.

�en we calculate the MC estimate as

E [ f ] = ∫ f (x) p (x) dx

=
Zq

Zp
∫ f (x) p̃ (x)

q̃ (x)q (x) dx

≈
Zq

Zp

1
N

N
∑
i=1 w̃(i) f (x(i)) (2.32)
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where w̃(i) = p̃(x(i))
q̃(x(i)) .

We proceed by calculating the MC estimate for the normalising factor as

Zp

Zq
=
1
Zq

∫ p̃ (x) dx

= ∫ p̃ (x)
q̃ (x)q (x) dx

≈
1
N

N
∑
i=1 w̃(i). (2.33)

Now we de�ne the weights as

w(i) = w̃(i)
∑
N
m=1 w̃(m) , (2.34)

and therefore

E [ f ] =
N
∑
i=1 w(i) f (x(i)) .

�is result should be emphasised. Equation (2.34) tells us that if p (x) and q (x) can only be
evaluated up to a normalising constant, we can �nd an approximation for this constant by
normalising the importance weights. We will use this fact to simplify the equations when we
derive the particle �lter.

2.1.3.2 Sequential importance sampling (SIS)

At this point we have introduced all the numerical techniques that are used to approximate the
recursive Bayesian �lter. �e fundamental idea of particle �ltering is to approximate the pdf
p (x0∶t ∣z0∶t) and eventually themarginal of it by a weighted sample set St . �us, suppose N samples
or particles x(i)0∶t from the pdf p (x0∶t ∣z0∶t) are available, with a weight w(i)t associated with each
sample x(i)t normalised such that ∑Ni=1w(i)t = 1. Using (2.23) and (2.30) we have the following
discrete representation

p (x0∶t ∣z0∶t) ≈
N
∑
i=1 w(i)t δ (x0∶t − x(i)0∶t ) . (2.35)

To derive the recursive formulation, using a notation similar to (Isard and Blake, 1998a;
Doucet and de Freitas, 2001; Ristic et al., 2004), we begin by �nding a recursive approximation
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for pdf p (x0∶t ∣z0∶t). We assume that N samples x(i)0∶t−1 with associated weights w(i)t−1 are available
approximating the posterior p (x0∶t−1∣z0∶t−1). We have that

p (x0∶t ∣z0∶t) = p (x0∶t , z0∶t)
p (z0∶t)

=
p (z t ∣x0∶t , z0∶t−1) p (z0∶t−1, x0∶t)

p (z0∶t)
=

p (z t ∣x t) p (x t ∣x0∶t−1, z0∶t−1) p (x0∶t−1, z0∶t−1)
p (z0∶t)

=
p (z t ∣x t) p (x t ∣x t−1) p (x0∶t−1∣z0∶t−1) p (z0∶t−1)

p (z t ∣z0∶t−1) p (z0∶t−1)
=

p (z t ∣x t) p (x t ∣x t−1)
p (z t ∣z0∶t−1) p (x0∶t−1∣z0∶t−1)

∝ p (z t ∣x t) p (x t ∣x t−1) p (x0∶t−1∣z0∶t−1) . (2.36)

Since we use importance sampling, the importance weights become (see (2.31))

w(i)t ∝
p (x(i)0∶t ∣z0∶t)
q (x(i)0∶t ∣z0∶t)

. (2.37)

Note that they are unnormalised. By normalising them, we get an MC approximation for the
normalising factor.
We choose the proposal density to factorise as

q (x0∶t ∣z0∶t) = q (x t ∣x0∶t−1, z0∶t) q (x0∶t−1∣z0∶t−1) . (2.38)

Upon substituting (2.36) and (2.38) in (2.37), we obtain

w(i)t ∝
p (x(i)0∶t ∣z0∶t)
q (x(i)0∶t ∣z0∶t)

∝
p (z t ∣x(i)t ) p (x(i)t ∣x(i)t−1) p (x(i)0∶t−1∣z0∶t−1)

q (x(i)t ∣x(i)0∶t−1, z0∶t) q (x(i)0∶t−1∣z0∶t−1)

= w(i)t−1
p (z t ∣x(i)t ) p (x(i)t ∣x(i)t−1)

q (x(i)t ∣x(i)0∶t−1, z0∶t)
. (2.39)
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Wemake one further assumption (conditional independence assumption) that

q (x(i)t ∣x(i)0∶t−1, z0∶t) = q (x(i)t ∣x(i)t−1, z t) ,

and calculate the weights as

w(i)t ∝ w(i)t−1
p (z t ∣x(i)t ) p (x(i)t ∣x(i)t−1)

q (x(i)t ∣x(i)t−1, z t)
. (2.40)

�is allows us to write down the discrete representation of the marginal of p (x0∶t ∣z0∶t) as

p (x t ∣z0∶t) ≈
N
∑
i=1 w(i)t δ (x t − x(i)t ) . (2.41)

�e resulting algorithm is summarised in Algorithm 1.

Algorithm 1: Sequential importance sampling (SIS)
Input: Samples x(i)t−1 with weights w(i)t−1, i = 1, . . . , N. Measurement z t .
for i = 1 ∶ N do1

Sample x(i)t from q (x(i)t ∣x(i)t−1, z t) ;2
Evaluate the importance weights using (2.40) ;3

end4
Normalise weights using (2.34) ;5

A common simpli�cation is to choose the proposal density q as the transitional density, i.e.,
q (x(i)t ∣x(i)t−1, z t) = p (x(i)t ∣x(i)t−1). �en the importance weights simplify to

w(i)t ∝ w(i)t−1p (z t ∣x(i)t ) . (2.42)

�is is known as the basic PF. It has the advantage that the particles are easily obtained. However,
no knowledge of the observations is incorporated in obtaining the samples and therefore this PF
is not particularly e�cient.
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2.2 Algorithmic issues

When the sequential importance sampling (SIS) is implemented, o�en all but one of the weights
become zero. �e result is that the algorithm performs badly in practice.
Doucet et al. (2000) proved that when the proposal density q (x) is written as in (2.38), the

variance of the weights increases over time, resulting in unavoidable degeneracy. A measure of
the degeneracy phenomenon is the e�ective sampling size

N̂e� =
1

∑
N
i=1 (w(i)t )

2 . (2.43)

Note that N̂e� = 1 when all but one weight is zero; N̂e� = N if the weights are uniform.
A remedy to the problem is resampling: Whenever the e�ective sampling size falls below

a certain threshold Nthr, a new set of particles is sampled from the current set, each sample
proportional to its weight, i.e., a new sample x(i)∗t is chosen such that

P {x(i)∗t = x( j)
t } = w( j)

t . (2.44)

Resampling is illustrated in Figure 2.2. A cumulative sum of the weights w(i)t is calculated. �en a
variable u(i) is drawn uniformly from Unif [0, 1]. A particle is selected by mapping u(i) to the
corresponding index j. Consequently, the weights a�er resampling are 1N .

Particles ( j)

Cu
m

ul
at

iv
es

um
of

w
ei

gh
ts

Resam
pling

probability
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Figure 2.2: Resampling of particles.
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Several implementations of resampling exist. One can implement resampling directly obeying
(2.44); other alternatives include systematic resampling (Kitagawa, 1996) and residue sampling (Liu
and Chen, 1998). Embedding resampling in SIS yields the generic particle �lter and this algorithm
is listed in Algorithm 2.

Algorithm 2: Generic particle �lter
Input: Samples x(i)t with weights w(i)t obtained from SIS(x(i)t−1, w(i)t−1, z t).
Calculate N̂e� using (2.43);1

if N̂e� < Nthr then2
Resample such that (2.44) holds. Any technique can be used.;3

end4

As an example of resampling as part of the PF, consider the pdf p (x t−1∣z0∶t−1) represented by
8 samples as illustrated in Figure 2.3. Samples from this pdf are circular points in this graphical
illustration. �e particle �lter algorithm propagates this posterior pdf at time t − 1 to the posterior
at time t using the sample-set representation. It is assumed that the proposal density is given by
p (x(i)t ∣x(i)t−1). �e steps are outlined below.
• Selection and prediction: First, a cumulative histogram of all the samples’ weights is
computed. �en, according to each sample’s weight w(i)t−1, its number of successors is
determined according to its relative probability in this cumulative histogram. In the �gure,
the weight of a particle is indicated by the size of a circular point. �us samples with larger
weights (bigger circular points), will be chosen several times. �e successors are then fed to
the process model (2.1), yielding the new samples x(i)t . �is lead to particles with uniform
weights (the circular points have the same size). �us the particles are resampled at each
iteration—this variation of the PF is known as sampling importance resampling (SIR). Since
the particles are resampled at each step, they may su�er from loss of diversity.

• Measurement update: Here, the new sample x(i)t is weighted with the likelihood of the
new measurement z t , i.e., w(i)t = p (z t ∣x(i)t ).

2.3 An example

Consider a boat travelling in a one-dimensional ocean as illustrated in Figure 2.4 (Sundvall, 2009).
Given some noisy depth measurements and knowledge about the sea �oor, the position must be
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Selection and 
prediction

Measurement

p (x t �z�∶t) ∝ p (z t �x t) p (x t �x t−�) p (x t−��z�∶t−�)

p (x t−��z�∶t−�)

p (x t �x t−�)

Figure 2.3: Particle propagation from time step t − 1 to t. �e horizontal axis denotes for example
the position of an object being tracked.

estimated. �e dynamics of the boat are given by

xt = Axt−1 + vt−1

where vt−1 ∼ Unif (−F0, F0), F0 ∈ R. �e noisy measurement is described by

zt = d(xt) +wt

where wt ∼ N (0, σ) and d(x) = sin (x) + ax + bx2. �e proposal density is chosen as p (xt ∣xt−1).
Consequently, we should be able to sample from p (xt ∣xt−1), but a closed form formula is not
needed. �e measurement noise wt is Gaussian, and therefore the pdf p (zt ∣xt) is also Gaussian.
�us the likelihood is given by

p (zt ∣xt) = N (d (xt) , σ) .

Note that a Kalman �lter cannot �nd a solution for this problem, because the process noise is not
Gaussian and the measurement function is non-linear.
In Figure 2.4, an estimate of the posterior pdf at some time t is shown. Clearly the pdf is

multi-modal.

19



Chapter 2. �e particle �lter 2.4. Summary

!10 !8 !6 !4 !2 0 2 4 6 8 10
!3

!2

!1

0

1

2

3

4

5

6

7

8

Sea !oor

Sea surface

Position (x)

Boat

d(xt)
zt

p (xt ∣z0∶t)

Figure 2.4: A boat travelling in a one-dimensional ocean. A particle estimates the position of the
boat. Image courtesy of Paul Sundvall.

2.4 Summary

We discussed the estimation of a process state if only noisy measurements are observed. �e
recursive Bayesian �lter provides a solution to this problem. However, this is seldom implemented
due to intractable integrals. In the special case of a linear Gaussian system, the Kalman �lter is
the exact solution to the problem, i.e., the recursive Bayesian �lter reduces to the Kalman �lter.
Otherwise one has to use numerical approximations; when Monte Carlo methods are used the
result is the particle �lter.
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Chapter

3
Active appearance models

Selfs ywer is sonder kennis nie goed nie; en hy wat haastig is met die voete, trap mis.

— Spreuke 19:2

Active appearance models (AAMs) (Cootes et al., 1998; Edwards et al., 1998) are deformable
template models using shape and texture (greyscale or colour information) to segment

objects of interest from an image. �ey are a generalisation of active shapemodels (ASMs) (Cootes
et al., 1995) that only use shape information.
AAMs are template based because they use samples from the object in question during the

training process. Furthermore, they are deformable since the objects can undergo shape and
texture deformations, learnt from the training examples. For example, if the object is a person’s
face, the shape and texture deform as the person smiles.
AAMs were introduced in the context of modelling facial features (Edwards et al., 1998).

Later, they were applied to numerous other problems, including segmentation of medical im-
ages (Stegmann et al., 2001), lip-reading (Matthews et al., 2002), facial expression recognition
and synthesis (Abboud et al., 2004), and object tracking (Stegmann, 2001; Hansen et al., 2002b).

�is chapter describes AAMs. We start by discussing the modelling of shape in Section 3.1.
Here we also show the similarities to active contours (Blake and Isard, 1998). In Section 3.2 we
discuss the modelling of texture. Having modelled shape and texture, one is able to de�ne an
independent AAM—the shape and texture models are used separately. However, the shape and
texture information can be combined yielding a more compact model presentation, known as a
dependent AAM and this is discussed in Section 3.3. Section 3.4 discusses model �tting when
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only a shape model is assumed. �erea�er, in Section 3.5 we describe �nding the parameters of
AAMs.

3.1 Modelling of shape

In an image, a shape describes the geometrical information of an object a�er normalisation
with respect to location, scale, and rotational e�ects. �e geometry of an object is described by
landmark points. �us, a shape can be viewed as a set of landmark points a�er normalisation.
Landmark points are corresponding points that lie on the edge, boundary, corners, or distinct
features inside an object. It is important to emphasise that landmark points are corresponding
points that match between images of the same object. Figure 3.1 shows a face annotated with
landmark points.

Figure 3.1: An example of an image annotated with some landmark points. �e landmark points are
connected with straight lines.

�e goal of shape modelling is a compact representation of the shape given some landmark
points in a set of training images. Collecting the landmark points is done manually or by an
automatic annotation process. For automated collection procedures, see for example (Walker
et al., 2000; Saragih and Göcke, 2006).
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3.1.1 From landmark points to shape points

�e spatial coordinates of the landmark points in the NT training images are stacked into vectors
x i = [xi1,⋯, xin , yi1,⋯, yin]

T, i = 1, . . . , NT where n is the number of landmark points. To conform
to our de�nition of a shape, these recorded features must be normalised with respect to scale,
rotation and location. �is normalisation is done by setting up a common coordinate frame. �e
features are then all aligned in this common frame by a procedure known as general Procrustes
analysis (Goodall, 1991). �is procedure yields parameters sc and θ that describe the scale and
rotational e�ects respectively, and tx and ty that are the translation parameters. We de�ne the
pose therefore as

pp ≜ [sc , θ, tx , ty]
T . (3.1)

Using the pose pp and the shapes, landmark points can be obtained by translation, scale
and rotation of a shape. �us, let [x , y]T be a single shape point. �en the coordinates of the
corresponding landmark point x is

x =

⎡
⎢
⎢
⎢
⎢
⎣

s cos (θ) −s sin (θ)
s sin (θ) s cos (θ)

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

x
y

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

tx

ty

⎤
⎥
⎥
⎥
⎥
⎦

. (3.2)

�e normalised spatial coordinates are called the shape vectors and we denote them by s i .

3.1.2 From shapes to a model

A mean shape s is calculated by

s = 1
NT

NT
∑
i=1 s i , (3.3)

where s i is a shape vector. �e covariance is given by

Σs =
1
NT

NT
∑
i=1 (s i − s) (s i − s)T . (3.4)

Principal component analysis (PCA) is performed on the shape covariance matrix Σs and the
eigenvectors corresponding to the largest eigenvalues of Σs are recorded in Φs. �us m modes are
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chosen such that

m
∑
i=1 λi ⩾

c
100

2n
∑
i=1 λi (3.5)

where λi is the ith eigenvalue of Σs and c is the percentage of variation we want to keep. �is
yields a generative model S (ps)where linear combinations of the columns of Φs, with coe�cients
ps, are taken according to

S (ps) = s +Φs ps . (3.6)

Note that the mean shape s is distorted by deformations spanned by the column space of Φs.
Figure 3.2 illustrates the mean shape deformations obtained by varying the coe�cients of the �rst
and second principal components while the other coe�cients are le� unchanged.

ps (�) = �ps (�) = −�
�

λ�

ps (�) = � ps (�) = �
�

λ�ps (�) = −�
�

λ�

ps (�) = �
�

λ�

Figure 3.2: Shape deformations obtained by varying the coe�cients of the �rst and second principal
components while the other coe�cients are le� unchanged. �e shapes are overlaid with the mean
greyscale information.
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3.1.3 Spline curves and shape space

�emodelling of shape described above, is similar to the shape space of spline curves as discussed
by Blake and Isard (1998).
Given a set of coordinates of control points (x1, y1) , . . . , (xn , yn), a B-spline (see for example

(de Boor, 1978)), is the curve r(t) = (x(t), y(t)) formed by a parametrisation with parameter t
on the real line,

r(t) =
⎡
⎢
⎢
⎢
⎢
⎣

B(t)T 0
0 B(t)T

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

Qx

Qy

⎤
⎥
⎥
⎥
⎥
⎦

(3.7)

where B(t) is the n × 1 vector of B-spline basis functions, and Qx , Qy are the vectors of control
points consisting of the x and y coordinates respectively. We refer to a curve as de�ned by (3.7)
as a contour.
A set of landmark points may contain many sets of control points for di�erent B-splines. For

example, in Figure 3.1, page 22, the subset of landmark points outlining the mouth of the person
forms a set of control points. Similarly, the subset of points outlining the nose forms another set
of control points. Now for the rest of the discussion in this section, we restrict the set of landmark
points so that it contains only one set of control points. A shape parameter vector is mapped to a
spline vector Q = [Qx , Qy]

T
by

Q = S (ps) = s +Φs ps , (3.8)

where s and Φs are the same as previously de�ned. However, when mapped to landmark points,
the shapes contain only a single set of control points. �e space spanned by these spline vectors is
the shape space. By restricting ps, Q is essentially a deformation of the template s, and the type of
deformation allowed is determined by Φs.
Typically, the control points Q are not normalised with respect to scale, rotation, and location.

�erefore, (3.8) yields landmark points.

3.2 Modelling of texture

Now thatwe havemodelled the shape of an object, we construct amodel for the texture. �e texture
of an object refers to the greyscale or colour pixels across it, but other texture representations
such as wavelet coe�cients (Larsen et al., 2007) can also be used. In general, the texture values
are normalised to compensate for lighting variations.
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3.2.1 Sampling the texture

Correspondences between points in di�erent shapes are de�ned by corresponding landmark
points. On the contrary, texture points are obtained within shapes that can have di�erent de-
formations, scales and rotations. �erefore, care must be taken to sample these texture points
consistently across di�erent shapes.

�e process of collecting texture points starts by calculating a warp from a reference shape,
typically the mean shape s, to a shape in an image that contains the texture. �is is illustrated in
Figure 3.3. We denote this warp from the reference shape to the synthesised shape asW ( j; p)
where p = [pTp , pTs ]

T. Using the warp, we can form a new image I ′ by going through the points in
s, calculating their location in the synthesised shape and use the corresponding greyscale values
to form I ′. In other words, we obtain

I ′ ( j) = I (W ( j; p)) . (3.9)

Here j is a two-dimensional index of the allowable pixel coordinates in the mean shape; we shall
sometimes abuse the notation j ∈ s to indicate this. We use the notation I (⋅) to index the pixels
of an image.
Several warping methods exist (Mardia, 1998), but within the AAM framework a piece-wise

a�ne warp is normally implemented. First, a Delaunay triangulation of the reference shape s is
calculated. Given three vertices j1, j2 and j3 of a triangle in I , we can write any point j within
that triangle as a linear combination of these vertices,

j = j1 + η2 ( j2 − j1) + η3 ( j3 − j1)

= η1 j1 + η2 j2 + η3 j3, (3.10)

where η1 + η2 + η3 = 1. �e warp from s to s is then calculated as

j′ = W ( j; p) (3.11)

= η1 j′1 + η2 j′2 + η3 j′3
with j′1, j′2 and j′3 the vertices of the corresponding triangles in I ′. All that remains is to solve for
the warping parameters ηi , i = 1, . . . , 3 for a known point j = [x , y]T; this can be easily carried
out using (3.10) and the three vertices of the triangle.
Now we form a vector representation of I ′ and denote it by g image. �is is the sampled texture.
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s I

I ′

W ( j; p)

Figure 3.3: Graphical illustration of the texture sampling procedure.

3.2.2 Normalising the texture

A�er the pixels have been sampled into g image, a photometric normalisation is carried out to
compensate for global changes in illumination,

gnorm =
g image − β1

α
. (3.12)

Here 1 is a vector of ones, α = g image ⋅ g and β =
g image ⋅1

m , g is the mean texture (to be de�ned shortly)

and m is the number of texture points. We de�ne the global texture normalisation pt ≜ [α, β]
T
.

3.2.3 Constructing the model

Let the normalised texture of the object in question be described by a vector, g i = [gi1, gi2, . . . , gim]
T,

i = 1, . . . , NT with m the number of texture points. �e mean texture of NT normalised texture
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vectors is given by

g =
1
NT

NT
∑
i=1 g i . (3.13)

Furthermore, the covariance matrix of the NT texture vectors is

Σg =
1
NT

NT
∑
i=1 (g i − g) (g i − g)T . (3.14)

PCA is performed on the covariance matrix Σg to obtain a basis Φg . New texture instances can
be synthesised by

G (pg) = g +Φg pg . (3.15)

Since Φg is the result of PCA, the dimension can be reduced by including only the eigenvectors
with the largest eigenvalues, similar to (3.5).
Now that a shape and texture model exist, one can use them to describe an object in an image.

Hence we use the shape deformation parameters, ps, the texture deformation parameters, pg , the
global pose, pp, and the global texture normalisation, pt, to describe an object. �is is referred
to as an independent AAM. However, we can perform one more combination, resulting in the
dependent AAM, discussed in the next section.

3.3 Modelling of the combination of shape and texture

A dependent AAM is constructed by forming a model parameter pc obtained by combining the
PCA deformation parameters into

b =

⎡
⎢
⎢
⎢
⎢
⎣

Ψs ps

pg

⎤
⎥
⎥
⎥
⎥
⎦
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with Ψs a weighting matrix between pixel intensities and pixel distances. �e weighting matrix Ψs

is given by

Ψs =
λg

λs
I

λg = ∑
i

λgi

λs = ∑
i

λsi

where λsi and λgi are the eigenvalues of the shape and texture covariance matrices respectively. A
third PCA is performed on the combined model parameters to obtain

b = Φc pc ,

where Φc consists of eigenvectors. Writing Φc =

⎡
⎢
⎢
⎢
⎢
⎣

Φc,s

Φc,g

⎤
⎥
⎥
⎥
⎥
⎦

, it is now possible to generate new shape

and texture instances by

S (pc) = s +ΦsΨ−1
s Φc,s pc (3.16)

G (pc) = g +ΦgΦc,g pc . (3.17)

Note from (3.16) and (3.17) that changing pc varies both the shape S (ps) and the texture G (pc)

of an object.
For notational convenience elsewhere, we de�ne the AAM parameter pa as

pa ≜

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

pc if a dependent AAM is used

[pTs , pTg ]
T
if an independent AAM is used.

(3.18)

3.4 Fitting ASMs

�is section discusses parameter estimation when only shape information is used to model a
deformable object.

�e simplest strategy for �nding the model parameters is edge detection. An initialisation
for the shape is assumed. A search along the normal line of each point on the initial shape is
performed, looking for the strongest edge. �e shape point is then moved to the point detected
on the edge of the object. See Figure 3.4 for a graphical illustration.
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Normal line

Shape

Edge

Figure 3.4: Fitting an ASM. Searches are done along the normal lines to build a statistical pro�le of
the greyscale values.

�e edge detection approach for �nding the model parameters is not robust. First, an edge
might not exist along the normal lines. Second, the best landmark point is not necessarily the point
on the strongest edge, but may be a less prominent edge. To overcome these problems, a statistical
model of grey level information is used. For each point j in the shape s i , i = 1, . . . , NT, k pixels
are uniformly sampled along the normal line. �e gradient of these pixels is taken to compensate
for global e�ects, such as lighting variations. Let the vector of gradients be g ′ji . �erea�er, the
pixels are normalised yielding

g ji =
g ′ji

∥g ′ji∥1
. (3.19)

It is assumed that the greyscale values of the pixels (more precisely the gradient of the greyscale
values) along the normal lines are normally distributed. Su�cient statistics for the distribution of
the jth shape point are therefore given by the mean

g j =
1
NT

NT
∑
i=1 g ji , (3.20)
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and the covariance

S j =
1
NT

NT
∑
i=1 (g ji − g j) (g ji − g j)

T
. (3.21)

Given a new sampled shape with its pixel information, the quality of the �t is the probability
under the distributionN (g j, S j). To implement ASM �tting, an initial shape is assumed. �en K,
(K≫ k) pixels are sampled along the normal line for each point j in the initial shape. Subsequently,
using a sliding window of length k, k pixels are chosen and the quality of each �t is recorded. �e
shape point is then moved to the position where the quality of the �t is the best.

3.5 Fitting AAMs

During the �tting phase of AAMs, the model parameters p = [pTp , pTa ]
T
are estimated that best

represent an object in a new image I not contained in the original training set. �e idea of AAM
�tting is to vary pa (optimise over pa) so that the shape and texture generated by (3.16) and (3.17)
or (3.6) and (3.15) �t the object in the image as well as possible. Note that one can distinguish
between dependent AAM �tting where (3.16) and (3.17) are used to generate the shape and texture
respectively, or independent AAM �tting where (3.6) and (3.15) are used instead. However, most
of the time the techniques are the same. For this reason, unless otherwise indicated, we shall
discuss from now on, independent model �tting. �us, for an independent model, the objective
function that is minimised,

E = ∑
j∈s

[G ( j; pg) − I (W ( j; p))]2 (3.22)

= ∣∣gmodel − g image∣∣2 (3.23)

= ∣∣δg ∣∣2 (3.24)

is the di�erence between the texture values generated by pg and (3.15), denoted as gmodel, and
the texture values in the image, g image. Note that the image texture values g image for a speci�c
value of ps are the values sampled from the shape generated by (3.6) and then translated, scaled
and rotated using the pose pp. We also explicitly indicate that G is indexed with j. Indexing G is
possible, since the texture, although synthesised, is an image. In summary, the optimisation over
pa and pp minimises (3.24), i.e., produces the best �t of texture values.
Two approaches exist to �t the AAM, namely discriminative and generative �tting. Discrimi-

native �tting learns a �xed function (or a set of functions) that produce the optimal parameter
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updates given some observed features. Generative �tting, on the other hand, minimises the error
between the synthesised texture and the warped images.

3.5.1 Discriminative �tting

Given an initial estimate p̃0, discriminative �tting �nds the optimal update δp, such that p ←
p̃0 + δp. �is is done iteratively so that the updates are given by

p ← p̃0 +
nu

∑
i=1 δpi (3.25)

where nu is the number of iterations.
�e corrections δpi are calculated through an update function Ui as follows,

δpi = Ui (F (I ; p̃i)) . (3.26)

Here F is a function that maps an image I with model parameters p̃i , onto a set of features.
Discriminative approaches learn a set of functions Ui , i = 1, . . . , nu, given a training set formed
by perturbed model parameters

{F (I ; p∗ − δp) , δp} (3.27)

where p∗ is the optimal parameter setting.
�e original AAM formulation (Cootes et al., 1998) assumes that there is a linear relation

between the residual texture

F (I ; p) = G ( j; pg) − I (W ( j; p)) (3.28)

and the optimal parameter updates. Furthermore, it is assumed that the parameter updates are
close to linear around the optimal parameter settings of an image. Using these assumptions, we
have that

δpi = Ui [G (pg) − I (W ( j; ps))]

= Ui (δg) . (3.29)

Given a training set of the form (3.27), estimates exist for δpi and δg . If it is assumed that Ui is a
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linear function, it can then be found using multivariate linear regression. �is yields

δpi = Riδg (3.30)

where Ri is a matrix found using linear regression.
Alternatively, one can solve for Ui using support vector regression (Saragih and Göcke, 2006).

Support vector regression, (for a tutorial see (Smola and Schölkopf, 2004)) uses the “kernel-trick”
to build linear regressors in a high-dimensional feature space. �e result is a non-linear regressor
in input space. Applying this to AAMs, the update functions in (3.29) are obtained from support
vector regression training.
Saragih and Goecke (2007) also proposed techniques based on solving Ui through boosting.

All these techniques based on learning a non-linear update function, are referred to as iterative
non-linear discriminant �tting methods.
Note that it is not necessary to learn an update function for pg , since its e�ect is captured by

the functionW if we assume the latter operates on the greyscale values of the image, e.g. (3.28) is
used. �e resulting update functions Ui , i = 1, . . . , nu are faster to learn; pg can be solved through
equation (3.15) a�er sampling g in the shape obtained by (3.6).
For further detail on discriminative �tting, the reader is referred to (Cootes et al., 1998;

Stegmann, 2000; Saragih and Göcke, 2006).

3.5.2 Generative �tting

AAM �tting methods using the generative approach try to solve (3.22) directly, in contrast to the
previous paragraph’s approach that sought an optimal update by learning some update functions,
Ui , i = 1,⋯, nu.
To derive the generative update, also known as the �xed Jacobian approach (Cootes et al.,

2001), the AAM residual is de�ned as

r (p) = gmodel − g image. (3.31)

Subsequently, a �rst order Taylor approximation of (3.31) around p yields

r (p + δp) = r (p) + ∂r
∂p δp . (3.32)
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Now the L2-norm of (3.32) is minimised by setting r (p + δp) = 0 and solving for δp. We obtain

δp = −Rr (p) (3.33)

R = (
∂r
∂p

T ∂r
∂p)

−1
∂r
∂p

T

. (3.34)

�ematrix R is expensive to calculate. �erefore the assumption is made that it is constant and can
be pre-computed. �is also leads to the name for the method, namely the �xed Jacobian approach.
�is method gives generally smaller �tting errors than the linear regression method (Cootes et al.,
2001).
Matthews and Baker (2004) showed that the assumption of a �xed Jacobian is wrong and

one cannot expect in general a small �tting error. However, if the assumption is not made, the
AAM �tting becomes computationally too expensive. For this reason, they proposed the inverse
compositional approach—another generative �tting technique. �e key di�erence between the
�xed Jacobian and the inverse compositional approach is that the warpW ( j; p) is updated instead
of the parameter vector. �is modi�cation has been proven to be equivalent when solving the
�tting problem (Baker and Matthews, 2004). Here p is a concatenation of the shape and pose
vectors. �e warp is updated as

W ( j; p) ← W ( j; p) ○W ( j; δp) , (3.35)

whereW ( j; p) is a warp function such that (3.9) holds, ○ is the compositional operator 1.
To simplify our discussion of the inverse compositional algorithm, we look at a simpler form

of the problem where the appearance variation is ignored, i.e., we minimise

∑
j∈s

[g ( j) − I (W ( j; p))]2 . (3.36)

Note that in (3.36), it is explicitly shown that g is an image that can be indexed with j. �e
problem in (3.36) is also known as Lukas-Kanade image alignment (Lucas and Kanade, 1981).
Minimising (3.36) is a non-linear optimisation problem. In the Lukas-Kanade algorithm, however,
it is assumed that an initial value for the parameters p is known and an update δp is then sought.
In other words, the problem changes to the minimisation of

∑
j∈s

[g ( j) − I (W ( j; p + δp))]2 (3.37)

1 f (x) ○ g (x) ≜ f (g (x)) with f and g functions on x
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and solving for δp. �e �rst-order Taylor expansion of (3.37) around p yields

∑
j∈s

[g ( j) − I (W ( j; p + δp)) − ∇I ∂W
∂p δp] (3.38)

where ∇I is the image gradient. An analytic solution for (3.38) exists and is computed iteratively.
�e solution is computationally expensive though, since ∇I and ∂W

∂p depend on p and should be
recalculated on each iteration.

�e ine�cient computation inspired the next idea of updating the warp instead of the param-
eters; the algorithm is known as forward compositional image alignment. Now the problem is the
minimisation of

∑
j∈s

[g ( j) − I (W (W ( j; δp) ; p))]2 (3.39)

and then updating the warp using (3.35). Similar to what we did before, a �rst-order Taylor
approximation of (3.39) is calculated, given by

∑
j∈s

[g ( j) − I (W (W ( j;0)) ; p) − ∇I (W ( j; p; )) ∂W
∂p δp]

=∑
j∈s

[g ( j) − I (W ( j; p)) − ∇I (W ( j; p; )) ∂W
∂p δp] . (3.40)

We assumed thatW ( j;0) is the identity warp. Note that the gradient is calculated atW ( j; p).
Furthermore, the Jacobian is evaluated at ( j;0) and can therefore be pre-computed.

�e �nal re�nement, known as inverse compositional image alignment, reverses the role of the
image I and the mean template g . �e alignment problem is then expressed as the minimisation
of

∑
j∈s

[I (W ( j; p)) − g (W ( j; δp))] (3.41)

and updating the warp as

W ( j; p) ← W ( j; p) ○W ( j; δp)−1 . (3.42)
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A �rst-order Taylor approximation of (3.41) gives

∑
j∈s

[I (W ( j; p)) − g (W ( j;0)) − ∇g ∂W
∂p δp]

=∑
j∈s

[I (W ( j; p)) − g ( j) − ∇g ∂W
∂p δp] . (3.43)

Since g is constant, it can be pre-computed and with the forward compositional algorithm, ∂W∂p can
also be pre-computed. A slight complication is the inverse warp needed to updateW . However, it
can be e�ciently computed.

�e inverse compositional algorithm is applied with the AAM formulation resulting in a fast
�tting approach. In other words, (3.22) is minimised directly. For a complete derivation, the
reader is referred to (Matthews and Baker, 2004).
In both �tting approaches, an initial estimate is assumed to be available. When this initial

value is far from the optimal solution, the �tting techniques o�en fail. Consequently, AAM �tting
techniques are sensitive to initialisations.

3.6 Summary

AAMs provide a general framework to track or segment di�erent types of objects. Furthermore,
no parameters need to be speci�ed by an expert to use them. On the downside, AAMs require
objects to have distinct features/outlines and there is a training phase involved. Also, a good
initialisation is required for the �tting algorithm.
We have not presented any AAM �tting examples in this chapter. However, in the next chapter,

when tracking is discussed, we shall demonstrate how AAMs can be used to track an object.
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Chapter

4
Tracking

Glücklich ist, wer vergisst, was nicht mehr zu ändern ist.

— Johann Strauss

The aim of this dissertation is the tracking of objects. To be more precise, we are interested
in tracking the outline of an object, i.e., a contour. Here we con�ne ourselves to tracking

objects that can be described by a model, for example constructing a model of the facial features
of a person allows us to accurately track faces.

4.1 A taxonomy of trackers

Tracking algorithms have been widely studied. In this section, an overview of trackers is pre-
sented. In addition, the work that is discussed in this chapter, is placed within the context of
the existing tracking algorithms. A taxonomy of trackers, taken from (Yilmaz et al., 2006), and
illustrated in Figure 4.1, is used to accomplish these objectives. �is overview is not complete; for
a comprehensive survey the reader is referred to (Yilmaz et al., 2006).
Object tracking algorithms are built on the representation of an object. �is representation is

employed to classify trackers.
Point trackers track a single point or a set of points. At each consecutive frame, the set of interest

points are found using some interest point detector, such as the Harris point detector (Harris and
Stephens, 1988). �ese points are then matched with the interest points in the previous frame.
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Object 
tracking

Point tracking Kernel 
tracking

Silhouette 
tracking

Shape 
matching

Contour 
evolution

State space 
models

Direct 
minimisation

Figure 4.1: A taxonomy of trackers. �e region in the cloud indicates the work in this chapter.

Examples of such trackers are (Sethi and Jain, 1987) and (Veenman et al., 2001). One can also use
temporal �ltering to move the points from one frame to the next (Broida and Chellappa, 1986).
Kernel trackers use a kernel based on an object’s shape and appearance. �e most popular

kernel is a rectangle or elliptical region of interest around the object in question, together with
a histogram of the pixel values within this region. �ese trackers are o�en referred to as blob
trackers. A kernel tracker minimises the di�erences between the histograms in one frame and the
next, by translating, scaling and rotating the region of interest. An example of such a tracker is
the mean-shi� tracker (Comaniciu and Meer, 1999). O�en a PF is used to predict the translation,
scale and rotation parameters (Nummiaro et al., 2002). Similarly, optical �ow can be used to
calculate the translation of the region of interest (Shi and Tomasi, 1994).
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Chapter 4. Tracking 4.2. Deterministic and stochastic tracking

Silhouette trackers track the complete outline of an object. Typically, this is done by �tting
a contour to the outline of an object. An alternative is to use a shape template and match this
template to the underlying image on each consecutive frame (Huttenlocher et al., 1993).
When an object is described by a contour, this contour must evolve from one frame to the

next, i.e., the contour must be �tted in each frame. Evolution of contours is done by state space
models, such as (Isard and Blake, 1998a) where a PF is used to predict and �nd the parameters of
the control-points of a B-spline �tted around an object. Alternatively, a contour can be evolved
by direct minimisation. Typically, some energy functional de�ned over the object’s boundary is
minimised. Examples include the snakes of Kass et al. (1987) and the work of Yilmaz et al. (2004).
Point trackers are suitable to track small rigid objects. Kernel trackers track rigid objects or

even more complex objects if one is only interested in the centre of gravity with knowledge of
scale and rotation. Silhouette trackers are appropriate to track non-rigid objects with complex
boundaries.
In this chapter, the shape model of an AAM is used to describe an object. �us, referring to

the taxonomy in Figure 4.1, we perform silhouette tracking. �e shape of an AAM forms contour
representations of the underlying object. �erefore, we con�ne ourselves to tracking algorithms
based on contour evolution. We use a PF to evolve the shape from one frame to the next. A PF
leads to a state space approach. In summary, given the taxonomy of trackers, we use state space
models to evolve contours resulting in a silhouette tracker.

4.2 Deterministic and stochastic tracking

�e trackers described in the previous section can also be divided into those with temporal
�ltering and those without. �is leads to an alternative taxonomy: deterministic and stochastic
tracking. In deterministic tracking, some function, de�ned over the object’s outline or greyscale
values, is optimised in order to obtain the location and description of the object in the image
domain. Stochastic tracking techniques usually employ probabilistic temporal �ltering techniques
to predict, and so restrict, the regions where the functions de�ned by deterministic tracking are
then optimised.
Deterministic approaches in general follow a bottom-up approach where only certain parts of

the image are used to directly solve the inverse problem of estimating the features of an object
from the image. If a solution is found, it is accurate since low-level information is being used.
However, these approaches o�er limited robustness, since ambiguities that appear over time
cannot be handled well. For example, in a small region of an image, it is di�cult to decide if an
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edge is part of the object or the background.
Stochastic tracking uses a top-down approach where all the information in the image is

used to render from feature space to image domain and measuring the quality of the hypothesis
by comparing it with the actual image. �is can either be done directly in the image domain
or in feature space, e.g. on histograms, and is typically done with a feedback loop where the
measurements are used to update the initial value of the features.
Top-down analysis o�ers better robustness than bottom-up approaches. �e initial values

of the features are important and if the values are not good estimates, the subsequent updates
through the feedback loop might fail. A remedy, also used in this dissertation, is a combination
of top-down and bottom-up processing, in the spirit of analysis by synthesis (Yuille and Kersten,
2006) (see Figure 4.2).
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Figure 4.2: Analysis by synthesis.

A popular deterministic approach to track contours, is snakes (Kass et al., 1987). A curve is
de�ned over image features such as boundaries. �e energy of this curve is then minimised by
the snake algorithm. �is energy is de�ned in terms of the length, curvature, and elasticity of the
curve.
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Other deterministic contour tracking approaches proceed by �tting a curve through image
feature points. �ese �tting techniques include standard interpolation, spline curves and subdivi-
sion; a better method is to �t a curve according to some basic shape (Blake et al., 1995; Blake and
Isard, 1998).
AAMs provide yet another deterministic tracking approach (Stegmann, 2001; Birkbeck and

Jagersand, 2004). �ey allow the simultaneous tracking of object contours and internal object
features. AAMs o�er specialisation to a particular tracking problem as they follow a model-based
approach. AAMs follow the top-down idea of rendering the model from a feature set and then
evaluating this model in the image domain instead of solving the inverse problem, i.e., extracting
parameters from the image directly. �is deterministic approach is presented in Section 4.4.
An example of a stochastic tracker is the work of Isard and Blake (1998a): they used the PF to

track contours described by B-splines. �is method combines measurements sampled from a
B-spline’s control points with temporal �ltering. �erea�er, Isard and Blake (1998b) combined
colour information with the contour information in a PF. A PF that combines more then one
feature in its state is known as a multi-cue PF.
An AAM typically includes an iterative optimisation (e.g.Newton/Gauss-Newton) to improve

the quality of the AAM parameters by searching along the gradient direction for an improved
feature vector. �is o�ers high precision, since a local optimum will always be found successfully.
However, it is not necessarily the global optimum, making the robustness of the AAM an issue.
�us, although the AAM runs top-down, the feedback loop of optimising the parameter vector
works bottom-up, which leads to the problem of getting trapped in local optima. Moreover, the
top-down processing requires good initialisation. A combination of PFs and AAMs can lead to
the best of both worlds—the robustness of PFs combined with the precision of AAMs.
We present the AAM and PF combination in Section 4.5.

4.3 Evaluation of tracking algorithms

�roughout the rest of this chapter and the next, we present and evaluate tracking algorithms. At
this point, it is therefore necessary to introduce the evaluation protocol.
Tracking algorithms can be evaluated qualitatively or quantitatively. When an algorithm is

evaluated qualitatively, the question is the ability of the algorithm to track an object in a video
sequence, as judged by a human. Furthermore, if the tracker loses the target, for example, due to
occlusions, the question is asked whether the tracker can recover from this by �nding the object
again. �is evaluation protocol is acceptable, since the main goal of a tracker is to track an object.
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We apply this evaluation strategy in this chapter.
When a tracking algorithm is evaluated quantitatively, some metric is used that describes

how well the tracker performs. Most quantitative performance metrics require ground-truth. In
the case of tracking algorithms, the gathering of ground-truth is a cumbersome procedure. For
example, if a 10s video clip is recorded at a frame rate of 15Hz, it would require 150 frames to be
annotated manually. Moreover, this manual annotation, especially if contours are tracked, might
not be accurate.
In the next chapter, where we evaluate the algorithms quantitatively, we obtain the ground-

truth by AAM �tting methods. �us, in each frame an AAM is manually �tted to obtain the
location and outline of the object being tracked. �erefore, we assume that the contours found by
the AAM is our reference of accuracy. Tracking algorithms are tested on how well they perform
to a manually �tted AAM. �is approach has some disadvantages. An AAM might not have
found the exact location of an object accurately (due to the nature of the AAM �tting algorithms).
However, since we gather the ground-truth manually, great care is taken to ensure that the AAMs
are �tted as well as possible and are not stuck in local optima. Secondly, in the presence of
occlusions, the AAM will not be able to produce ground-truth. We shall, nonetheless, apply this
approach to obtain ground-truth, since we aim to mimic AAMs’ accuracy.
Sometimes, we use themeasure for evaluating an AAM’s �t to evaluate our tracking algorithms.

�is measure is the quadratic norm, (3.22)–(3.24), page 31, repeated here for convenience,

E = ∑
j∈s

[G ( j; pg) − I (W ( j; p))]2

= ∣∣gmodel − g image∣∣2
= ∣∣δg ∣∣2 .

�e norm (3.24) above is not robust if outliers exists, e.g. occlusions. For this reason, the Lorentzian
norm (Stegmann, 2000) is used instead, de�ned by

E2Lor = log(1 +
E
2σ2s

) (4.1)

where σ2s is the scale parameter that discards outliers. �is measure does not incorporate ground-
truth. Notwithstanding, it gives an indication of how well the AAM �ts the underlying object
from one frame to the next.
Methods exist to measure performance without ground-truth (Erdem et al., 2004). �ese

methods make the assumption that the statistics of the object being tracked do not change
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throughout the video sequence. Since these methods are still actively investigated, we shall not
use them.
Apart from a suitable performance measure, the sequences used for evaluation of the tracking

algorithms, must also be selected. Robustness can be compromised due to cluttered backgrounds,
fast movements, occlusions, and object deformations (Yilmaz et al., 2006). �erefore, as an
example of tracking in the presence of occlusions and object deformations, the facial outlines of
a person are tracked. Selected frames are illustrated in Figure 4.3. To test for fast movements,
we track a moving hand, as shown in Figure 4.4. Moreover, all these videos are taken against a
cluttered background.

Figure 4.3: Selected frames from a video sequence used to test for occlusions and object deformations.

Figure 4.4: Selected frames from a hand moving against a cluttered background.

4.4 Deterministic tracking using AAMs

AAMs can be used to perform tracking without temporal �ltering. However, before dwelling
upon this topic, it is instructive to formalise AAM tracking. Let the state of a tracker at time t be
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given by

x t = [pTp , pTa ]
T
, (4.2)

where pp and pa are the AAM’s pose and model parameters respectively as described by (3.1) and
(3.18). �e aim of any AAM tracking method is to �nd the optimal values of x t given a new image
(an image that is not in the training set) at time t. �e parameters are optimal if the AAM �tting
error (3.24) is as small as possible.
During deterministic tracking using AAMs, the model parameters pa and pose pp from the

current frame are simply used to initialise the AAM search in the next frame. �us, during
deterministic tracking, the state of the tracker, x t , is updated as

x t = x̂ t−1 + δx . (4.3)

Here x̂ t−1 contains the optimal values of the AAM at time t − 1. When discriminative �tting is
assumed, using (3.25) and (3.26),

δx =
nu

∑
i=1 Ui (F (I ; p̃i)) , (4.4)

where p̃0 = x̂ t−1. When generative �tting is used, δx is calculated by minimising the di�erences
in texture values, i.e., (3.22) is minimised.

Results and examples

Video sequences for the results presented in this dissertation, are available at Ho�mann (2009).
Figure 4.5 shows selected frames when the facial features of a person are tracked. Note that

the tracker fails under occlusions.
Figure 4.6 illustrates selected frames as a hand moves against a cluttered background. �e

tracker is not able to track robustly when the object moves fast.
�e failure of the AAM algorithm in the examples presented is inherent to the AAM �tting

algorithm. As discussed before, a good initialisation is required for an AAM to segment an object
correctly. However, in cases of fast movements, the AAM parameters in the current frame will
not necessarily be a good initialisation for the next frame. Moreover, in cases of occlusion, no
optimum exists if the di�erences in texture values ∣∣gmodel − g image∣∣2 is used as the optimisation
criterion. For these reasons, temporal �ltering in the form of the particle �lter is used to increase
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Frame 2 Frame 175

Frame 193 Frame 229

Figure 4.5: Tracking the facial features of a person.

the robustness of the AAM tracker—this is discussed in the next section.

4.5 Stochastic tracking using AAMs

We showed in the previous section that a deterministic AAM tracker fails when an object is being
tracked in the presence of occlusions or when the object moves fast. In other tracking paradigms,
such as active contours (Isard and Blake, 1998a) and blob tracking (Nummiaro et al., 2002; Pérez
et al., 2002), PFs have been successfully applied to overcome tracking failures. We shall proceed
to develop a similar approach.

�e use of a PF in conjunction with AAMs was �rst proposed by Hamlaoui and Davoine
(2005) in the context of facial feature tracking. �ey built their work on Zhou et al. (2004) to
obtain an AAM and PF combination. Zhou et al. (2004) used appearance models (not AAMs)
together with a PF to perform tracking. AAMs and PFs were also used by Bagnato et al. (2007) to
track faces of infants.

�e basic part of our work shares some similarities with Hamlaoui and Davoine (2005). �e
main di�erence is that we use multiple dynamic models. Furthermore, we use a di�erent robust
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Frame 10 Frame 149

Frame 184 Frame 310

Figure 4.6: Selection of result frames to indicate the performance of the deterministic AAM tracker.
In frames 149, 184, and 310 the tracker loses its target due to fast movements.

norm (Lorentzian norm) based on the extensions done by Stegmann (2000). We detect occlusions
and then switch to a di�erentmotionmodel. On the contrary, Hamlaoui and Davoine modify
theirmeasurement model in the PF to deal with occlusions. We �nd the parameters needed for
occlusion detection by training. We propose a local optimisation step in which the standard AAM
optimisation routines are used to enhance the AAM particle �lter tracker—the PFAAM. We also
extend the work to include a non-linear AAM formulation. In Section 4.6 we shall provide a
comparison between our work and Hamlaoui and Davoine (2005).
In Section 4.5.1, we detail the combination of PFs and AAMs. In Section 4.5.2, we de�ne

occlusion detection for our problem. �erea�er, in Section 4.5.3, we discuss tracking when a
smaller state space is used. �is is typically the situation when the iterative non-linear or inverse
compositional �tting methods are applied. �e local optimisation procedure—the standard AAM
optimisation routines are used to enhance the AAM particle �lter—is discussed in Section 4.5.4.
Section 4.5.5 details the case when AAMs are used in conjunction with active contours.
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4.5.1 PFs and AAMs: �e PFAAM

Particle �lters, as described in Chapter 2, can be applied to a general class of problems. For any
speci�c problem, the state vector x t , the process model, and the measurement model need to be
speci�ed.

�e process model can be described as the process function (2.1), repeated here for conve-
nience,

x t = f t−1 (x t−1, v t−1) .

An equivalent speci�cation for the process model is the transitional pdf p (x t ∣x t−1). Similarly, the
measurement model is given by the measurement equation (2.2),

z t = g t (x t ,w t)

or the likelihood p (z t ∣x t).
�e process function f t−1 and the measurement function g t are dependent on the tracking

problem, and the chosen features. For example, in PFs working on colour distributions, the
process function predicts the region of interest according to the position information contained
within the PF’s state. �e measurement function can be any similarity measure that is accessible
through measurements on the underlying image. �e similarity measure can be calculated in the
image space or some feature space, e.g. the Bhattacharrya distance in colour histogram space.
We now introduce the PF using AAMs.

�e state vector

If an object is tracked with an AAM and PF, we assume that the AAM pose pp and model

parameters pc at time t are distributed according some pdf p ([pTp , pTc ]
T
, z0∶t), where the time

dependence of pp and pc is not indicated in order to keep the notation uncluttered. �us we are
uncertain of the exact values of pp and pc . �e state is therefore a combination of the AAM pose
and model parameters at time t and is given by

x t = [pTp , pTc ]
T
. (4.5)

Note that the pdf over x t is not available in closed form and is therefore represented by a set of
particles. �e PF propagates this pdf from time t to t + 1.

47



Chapter 4. Tracking 4.5.1. PFs and AAMs: �e PFAAM

In (4.5), we assume a dependent AAM. Using the parameters contained in the state x t, it is
possible to synthesise a shape using (3.16) and a texture using (3.17). Furthermore, we can sample
a texture from the generated shape a�er it has been scaled, rotated and translated using the pose
parameters pp.

�e value of x0 is obtained by �tting an AAM at time 0. �e AAM is initialised manually.
�en we assume that p (x0) is distributed normally with mean x0 and variance Σ0.

�e process model

�e process model is given by a �rst-order Markov process

x t = x t−1 + ωt−1 + St−1v t−1 (4.6)

where x t−1 is the state at time t − 1, ωt−1 is the deterministic update or feedback (that will be
discussed shortly), St−1 is the process noise covariance and v t−1 is a vector of normally distributed
white noise, with zero mean and unit covariance.

�e deterministic update ωt−1 is estimated as the optimal parameter update (3.26)

ωt−1 ≜ [δpTp , δpTc ]
T (4.7)

=
nu

∑
j=1 U j (F (I ; p̃ j)) (4.8)

when an AAM �tting is performed in the previous frame with the previous state as initialisation,
i.e., p̃0 = x t−1. Note if a linear model is used, Ui is the linear regression matrix. A non-linear
model is obtained if Ui is estimated with some non-linear predictor. In (4.8) F is a function of
the image I at time t − 1 and the previous state x t−1.
When implementing and estimating the model (4.6), we use the following heuristic. We

assume that the change in the state from one frame to the next is small, i.e. we assume that state
at time t will be near the previous state. Let us denote the estimate of x t−1 by x̂ t−1. We rewrite the
model (4.6) as

x t = x̂ t−1 + ωt−1 + St−1v t−1. (4.9)

We call this the AAM process model. We found that in practise, (4.9) performed better in terms
of tracking accuracy.
However, this model (4.9) is sensitive to occlusions. Although (4.9) gives an accurate predic-
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tion, the update ωt−1 makes it vulnerable to occlusions because standard AAM �tting methods
calculate this update and the procedure is initialised with the estimate x̂ t−1. During occlusions,
the standard AAM �tting methods might not �nd a solution.
Furthermore, if a PF is used to propagate the model (which is in the fact the case) and suppose

that the process model is the proposal density, x̂ t−1 has the same value across all particles. During
fast movements or occlusions, a more diverse model (a model with particles exploring more of
the state space) is preferred. For these reasons, a second process model given by a second-order
auto-regressive process

x t = x + A2 (x t−2 − x) + A1 (x t−1 − x) + B0v t (4.10)

is used in parallel with (4.9). �e parameters A2, A1, B0, and x are learnt o�-line. For detail on
the learning procedure, see (Blake and Isard, 1998, Chapter 11, page 244).
A �xed number of particles is propagated through each model. We show in the next chapter

how we propagate particles through the two process models.

�e measurement model

�e purpose of the measurement model is to classify how well the current measurement z t �ts
the underlying image, given a prediction for the state. In other words, we seek p (z t ∣x t).
We proceed by specifying the measurement function for the AAM as

z t = g +ΦgΦc,g pc +w t (4.11)

= G (pc) +w t (4.12)

where we have used (3.17) and assumed that our measurement is corrupted with normally dis-
tributed white noise w t with zero mean and covariance σ2wI . In (4.12) z t only depends on pc and
not pp. However, when the actual measurement is made, pp will be incorporated.
Since we assume that the measurement noise w t is normally distributed and (4.12) is a linear

function, z t will be normally distributed. Su�cient statistics are then given by the conditional
mean

E [z t ∣x t] = G (pc) , (4.13)
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and the conditional covariance

Cov [z t ∣x t] = σ2wI . (4.14)

�us

z t ∣x t ∼ N (G (pc) , σ2wI) . (4.15)

Now we make the actual measurement, z̃ t. First we generate a shape using (3.16) and pc.
Subsequently, we transform the shape to the correct coordinates in the image plane with the pose
parameters pp. Now we warp it to the mean shape s and sample the texture. More compactly

z̃ t = I (W ( j; p)) (4.16)

using the notation de�ned in (3.9). Here p = [pTp , pTc ]
T
, similar as de�ned previously in Chapter 3.

Substituting the real measurement (4.16) into (4.15), we have that

z̃ t ∣x t ∼ exp(−
1
2σ2w

(z̃ t − G (pc))
T
(z̃ t − G (pc)))

= exp(− E
2

2σ2w
). (4.17)

Notice that E2 is the residual error as de�ned in Equation (3.24), page 31.
�e residual error E2 is calculated using all the pixels in the textures z̃ t and G (pc). If occlusion

occurs, the occluded pixels increase the value of the residual error, since they correspond to a
large di�erence between the generated texture G (pc) and the measured texture z̃ t . We can regard
these occluded pixels as outliers. �e residual error is therefore not robust when outliers occur.
�e likelihood of the outlier pixels will be zero. �is results in a PF where many particles have a
weight of zero and the e�ective sampling size ((2.43), page 17) is thus smaller.
We solve this problemheuristically by replacing the residual error E2 with the robust Lorenzian

norm

E2Lor = log(1 +
E2
2σ2s

) (4.18)

where σ2s is the scale parameter that discards outliers. To investigate the e�ect of this robust norm,
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let σ2s = σ2w and replace E2
2σ2w
in (4.17) with E2Lor yielding

z t ∣x t ∼
1

1 + E2
2σ2w

. (4.19)

�is distribution is compared with a Gaussian in Figure 4.7. It clearly has a heavier tail resulting in
a large likelihood for particles with a larger error. For small values of E, we have that log (1 + E2

2σ2w
) ≈

E2
2σ2w
, our original distribution.
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Figure 4.7: E�ect of Lorenzian norm on likelihood

Other robust norms may be used; for a discussion of di�erent robust norms and AAM �tting,
see (�eobald et al., 2006).

�e readermight have noticed that an estimate of the current state is involvedwhen performing
the actual measurement. In particular, in (4.16), the warping functionW depends on p. Here p
is initialised with an estimate of the current state. We therefore violate the assumption that the
measurement is independent of the state. �is is a common problem with particle �lter-based
trackers in computer vision. For example, the colour-based histogram tracker uses the x − y
position of the current state to sample pixels for the histogrammeasurement. Oneway to overcome
these problems would be a separate object detector to obtain an independent measurement.
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�e proposal density

PFs sample from a proposal density q (x(i)t ∣x(i)t−1, z t) instead of the posterior density. We choose

the transitional density p (x(i)t ∣x(i)t−1) as the proposal density (as described in Section 2.1.3.2 on
page 14).
We assume a dependent AAM in this section. However, it is straightforward to modify the

equations when an independent model is assumed. We conclude that the above discussion is
valid for dependent and independent AAMs.

Results and examples

Figure 4.8 illustrates the output when the facial features are used to track a person through an
occlusion. �e AAMwas trained with 6 images of the person being tracked. A�er losing its target,
the deterministic tracker is not able to relocate (see Figure 4.5). However, the stochastic approach
is able to track the sequence successfully. We used N = 60 particles.

Frame 2 Frame 175

Frame 193 Frame 229

Figure 4.8: Tracking the facial features of a person using AAMs and PF.

In Figure 4.9 a hand that moves fast against a cluttered background is tracked. Compare
these results to Figure 4.6—clearly the PFAAM tracker can handle fast movements better than its
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deterministic counterpart.

Frame 10 Frame 149

Frame 184 Frame 310

Figure 4.9: Random selection of result frames to indicate the performance of the AAM-based particle
�lter tracker.

4.5.2 Detection of occlusion

If occlusion is present, the AAM update process model (4.9) does not apply. Instead, only the
second-order auto-regressive process (4.10) is used. �erefore, occlusion must be detected.
In Section 4.5.1, a robust error function has been used in the measurement model. Within the

context of the measurement model, this robust error function compensates for outlier pixels in
the measured texture. We proceed with a similar strategy using robust error functions. Now the
aim is to detect occlusion and if present, switch to a di�erent process model based.

�e occlusion detection is based on the residual error (3.24), page 31. For a given particle,
using its state x t = [pTp , pTc ]

T
, a shape is calculated using (3.6). Subsequently, a texture g∗ is

sampled within this shape. �e orthogonal projection g� of g∗ onto the column space of Φs is
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computed. Now

ρc =
m
∑
j=1 H [∥g�( j) − g∗( j)∥2 − 2 (σ j

x)
2
] , (4.20)

where H is the Heaviside function, σ j
x is the scale, and m is the length of the texture (as explained

in Section 3.2, page 25). �e Heaviside function is de�ned as

H [n] =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, n < 0

1, n ≥ 0
,

where n ∈ R. In (4.20), we regard a pixel as occluded if the di�erence between the projected
and the sampled texture is greater than 2 (σ j

x)
2
. In our implementation, we obtain the value of

∥g�( j) − g∗( j)∥2 in several unoccluded images and calculate the standard deviation of this error
to get an estimate of σ j

x .
If

ρc > 0.8m, (4.21)

then the texture for the particle is regarded as occluded. Moreover, occlusion is declared if the
number of occluded particles exceeds a certain, pre-de�ned threshold.
For more information on robust error functions and occlusion detection, the interested reader

is referred to (�eobald et al., 2006).

4.5.3 AAM and PFs with a smaller state space

It is possible that the state vector merely consists of the AAM’s pose pp and shape parameters ps

at time t, i.e.,

x t = [pTp , pTs ]
T
. (4.22)

Note that we do not include the texture parameters pg in the state vector and that we are assuming
an independent AAM. �is choice is particularly appropriate for iterative non-linear �tting
methods, since fewer non-linear functions are learnt and a speed improvement is obtained.
When the state vector (4.22) is used, it is not possible to calculate the likelihood (4.17) as

the texture parameters pg are not available to make a prediction. In these cases, we suggest a
likelihood based on the back-projection error of a texture sampled inside a shape synthesised by
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the parameters contained in a particle. More precisely, the measurement likelihood is

p (z t ∣x t) ∝ exp(−
E2
σ2w

) . (4.23)

It is estimated as follows:

ä Calculate a shape using (3.6).

ä Sample a texture g∗ inside this shape.
ä Calculate the projection error E2 when g∗ is projected on the column space of Φg .

An alternative, proposed by Hamlaoui and Davoine (2005), is to sample the texture in the
�rst frame, denoted by g�y. �erea�er, the texture is updated with a sampled texture, gsampled,
acquired with the PFs estimate for the current state,

g�y = αg�y + (1 − α) gsampled (4.24)

where α is a weighting (forgetting) factor. �en the likelihood is

p (z t ∣x t) ∝ exp(−
∣∣g∗ − g�y∣∣22

σ2w
) . (4.25)

Results and examples

�e tracking results, when compared qualitatively, are similar to the results discussed in Sec-
tion 4.5.1, i.e., the tracker is able to track the sequences successfully. In the next chapter, we show
quantitative results when the non-linear �tting method is compared to other trackers.

4.5.4 Local optimisation

We now present how the top-down PF approach can be combined with a bottom-up local optimi-
sation for increased robustness and precision within tracking. �is works by embedding the local
optimisation loop as an inner loop within the PFAAMmain loop described in Section 4.5.1. �e
intuition behind this is illustrated in Figure 4.10: a set of particles is used to approximate a pdf.
Using the PF, these particles are propagated over time. However, a PF will not in general �nd the
optimum (the state corresponding to the global peak within the pdf), as no correction is made
a�er a prediction. �is can also be observed in the PF algorithm on page 16. Only the weights are
corrected using the measurement. �e only correction made is throwing away particles with a
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low likelihood. Our proposed algorithm works as follows (on a per sample basis): each sample
is �rst predicted according to the motion model and then measured as in the top-down PF and
AAM combination described above. �en, starting from this new position in state space, the
local Gauss-Newton optimisation of the standard AAMs is started, working on the same camera
image and using the same measurement function (4.17). �us, each sample moves to an adjacent
local optimum. If the representation of the pdf p(x t ∣z0∶t) by samples is good enough, the global
optimum should be among them. �e particles must be reweighed a�er the local optimisation
step because their position and thus their likelihood in the state space changed.

Selection and 
prediction

Measurement

Local 
optimisation

p (x t−��z�∶t−�)

p (x t �x t−�)

p (x
t�z �∶

t)∝
p (z

t�x t)
p (x

t�x t−
�)p
(x t−

��z �∶
t−�)

Figure 4.10:�e PFAAM algorithm. �is shows how the local optimisation of AAMs is embedded
consistently within the particle �lter loop.

Algorithm 3 details the local optimisation step that is carried out a�er the measurement step
of the standard particle �lter.
Local optimisation can be applied to all the particles representing a pdf. We propose to restrict

the optimisation to the most promising particles. �e most promising particles are those with the
largest associated weights. �e idea is to use the given computational resources where we expect
the best optima exist. When implementing this, the weights of the particles must be stored in
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Algorithm 3: Local optimisation of particles with highest weights
I = Indices of particles with largest weights;1
foreach Index i ∈ I do2

x̂(i)t = AAM Optimise( x(i)t );3

if p (z t ∣x̂(i)t ) < p (z t ∣x(i)t ) then4

x(i)t = x̂(i)t ;5

Recalculate w(i)t ;6
end7

end8
Normalise weights;9

order of increasing values. Alternatively—this is the approach we use— a sorting algorithm is
applied on the PF’s weights to obtain the most promising particles.
Local optimisation in general provides better �tting of the object to be tracked to the underlying

image, but under occlusion, the particles will degenerate severely. Consequently the update of the
particles with the largest weights does not take place under occlusion.

Results and examples

�e implemented tracker is used to track a hand performing fast movements. We refer to the
PFAAM algorithm without local optimisation as the PFAAM_light. A selection of the tracking
results is shown in Figure 4.11. We use the Lorentzian norm (4.18) as a measure of the AAM �t to
the underlying image. �e norm for the model output by tracker is indicated for each frame. All
the trackers are able to track the hand correctly when it moves slowly (frames 150 and 309), but in
cases of fast movements, the deterministic tracker fails.
To further demonstrate the in�uence of local optimisation, the Lorentzian norm versus the

frame number is plotted in Figure 4.12. �e reader is reminded that a smaller Lorentzian norm
implies a better �t of the estimate to the underlying image. Together with the results illustrated in
Figure 4.11 we notice that the deterministic AAM tracker provides the best results in cases of slow
movements (frames 0 – 210). On the contrary, the PFAAM without local minimisation, is not
precise, but robust. �e PFAAM o�ers the best of both worlds: a small Lorentzian norm, but also
robustness. Furthermore, we see that more particles lead to a better �t, but the PFAAM o�ers
better precision with fewer particles.
Figure 4.13 illustrates the results when tracking in the presence of occlusion. �e AAM is

trained with 9 images of the person being tracked. We used N = 150 particles in the particle
�lter. In the �gure, the �rst image for a particular tracker is obtained before occlusion; the image
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E = 0.000574 E = 0.962119 E = 0.000546

E = 0.011389 E = 0.003129 E = 0.004093

E = 0.002991 E = 0.002721 E = 0.003080

Figure 4.11: Tracking a fast hand movement, frames 150 (le� column), 262 (middle column), and 309
(right column). Top row: Deterministic tracking, Middle row: Tracking in the PFAAM_light, Bottom
row: PFAAM tracking with local optimisation.

therea�er is a few frames a�er occlusion. �e deterministic tracker is not able to deal with
occlusions and once it loses its target, it cannot acquire it again. �e PFAAM_light tracker can
deal with occlusions, but it takes longer before it �nds the target a�er occlusion, whereas the
PFAAM tracker o�ers the same robustness as the PFAAM_light tracker, but a�er occlusion, it
re-acquires the target fairly easily.

4.5.5 AAMs and active contours

�e combined active contour and active appearance model (AC-AAM) proposed by Sung and
Kim (2006) �nds a shape to initialise the AAM algorithm using active contours. �is method
thus provides an alternative to initialise an AAM. Given a good initialisation to the AAM, this
leads to a tracker with improved tracking robustness. We discuss active contours, followed by the
combination of active contours and active appearance models.
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(a) Lorentzian norm for complete sequence
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(b) Lorentzian norm for frames 0 – 210
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(c) Lorentzian norm for frames 210 until the end of the
sequence

Figure 4.12:�e e�ects of local optimisation
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Tracking facial features under occlusion. (a) – (b): Deterministic tracking, (c) – (d):
Tracking in the PFAAM_light, (e) – (f): PFAAM tracking with local optimisation. Le� column is
before occlusion; Right column is a�er occlusion.

4.5.5.1 Active contours

Following Blake and Isard (1998), we summarise the contour based particle �lter. Adapting a
particle �lter for a particular implementation, requires the speci�cation of the state vector, process
model and measurement model.
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�e state vector

�e state vector at each time step t is given by the shape space vector. �us x t = ps. �is allow us
to generate a vector of B-spline control points Q for each particle using (3.8).

�e process model

States evolve according to a simple random walk given by

x t = x t−1 + Stv t−1 (4.26)

where St is the process noise covariance and v t−1 is a vector of normal distributed random variables.
�is process model assumes small changes between frames. One can use more sophisticated
process models and the reader is referred to (Blake and Isard, 1998) for a detailed discussion.

�e measurement model

�e binary edge map for the current frame is given to the algorithm to estimate the weight
associated with each particle. An example of such an edge map, with a contour, its control points
and normal lines superimposed on the edge map, are illustrated in Figure 4.14. To calculate the
weight for the ith particle, the following procedure is followed:

ä Using (3.8) and the state vector, calculate the vector of control points Q(i).
ä Calculate the normal lines for each control point.

ä For each control point, search along the normal line until an edge is found. Let the distance
from the control points to the edge be d j, j = 1, . . . , n where n is the number of control
points. If an edge is not found, set the distance equal to the length of the normal line.
Calculate the total length d(i)t = ∑

n
j=1 d j.

ä �e weight for the ith particle is then given by

w(i)t = exp
⎛
⎜
⎜
⎝

−
(d(i)t )

2

σ2w

⎞
⎟
⎟
⎠

. (4.27)
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Figure 4.14: An example output from the Canny edge detector with a contour and its normal lines
drawn on it.

�e weights are normalised a�erwards to sum to unity. From equation (4.27), we see that a small
value of d(i)t will result in a larger value of w(i)t and vice versa. Furthermore, the variance σ2w
determines how much preference we give to particles with a lower distance, d(i)t .
Every time an edge is not found for a particular particle, it is recorded and denoted by n(i)d .

If ∑Ni=1 n(i)d is larger than a certain pre-set threshold, occlusion is declared. �is method for
the detection of occlusion provides adequate results; for more sophisticated techniques see e.g.
(MacCormick, 2002).

4.5.5.2 Initialisation of AAMs with ACs

�e AC-AAM tracker consists of two parts. At time step t, the �rst part performs standard AC
tracking with the estimate from the tracker denoted by x̂ t . In the second part, (3.8) is used together
with x̂ t to generate a shape estimate

Q̂t = s +Φs x̂ t . (4.28)

Note that Q̂t and the AAM shape representation S (x̂ t) (not normalised with respect to the pose)
are equivalent. �is shape Q̂t is then used to initialise standard AAM optimisation and the result
is output as the best �tted AAM.�e result of the AAM is then used to initialise the AC tracker
again.
In the presence of occlusion the AAMoptimisation fails. �erefore, when occlusion is detected

by theACpart, the trackerwill output no estimate for the resultingAAM, i.e., theAAM is “switched
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o�”.
�is technique uses the particle �lter indirectly. �e particle �lter is an integral part of the

active contour tracker, but the AAM part of the AC-AAM tracker does not utilise the particle
�lter.

Results and examples

In Figure 4.15 the results obtained with the AC-AAM tracker are shown, while the corresponding
results obtained with the AAM-based particle �lter are illustrated in Figure 4.16. Both trackers
are able to track the movement of the object accurately.
When the AC-AAM approach is used, a simple dynamic model for the active contour tracker

su�ces. �is can be seen in Figure 4.15 where the output of the active contour tracker is not as
accurate, but the resulting AAM �t is. �is illustrates the principal idea of the AC-AAM approach:
the robustness of the active contour tracker is used to initialise the AAM which in turn, adjusts
well to the underlying image. �e AC-AAM tracker detects occlusion as can be seen in Figure
4.15(c) and (d), and the AAM optimisation is disabled for these frames.

�e AAM-based particle �lter successfully tracks the head and shoulders in the presence of
occlusion as illustrated in Figure 4.16(c) and (d). Note that this tracker, contrary to the AC-AAM
tracker, provides an estimate for all frames (including those with occlusion) and the estimate is
consistent with our intuition.

4.6 Discussion

�is chapter examines visual tracking of objects, with emphasis on tracking with AAMs and PFs.
We showed that a deterministic tracker AAM tracker fails when the tracked object moves fast

or is occluded. �is is explained by the inability of an AAM to �nd optimal parameters if it is
initialised poorly.
We therefore introduced several variations of stochastic tracking with AAMs. �ey are the

PFAAM. �is tracker represents the general combination of tracking with an AAM and a PF. It
is capable of tracking an object in cluttered backgrounds that moves fast or is occluded.

PFAAM where the state space is smaller. �is is similar to the PFAAM, but provides the option
for tracking with non-linear �tted AAMs or AAMs �tted with the inverse compositional
algorithm. Using a non-linear �tted AAM, we shall show in the next chapter, improves the
accuracy of the tracker. Also, the measurement in this variation is calculated di�erently.
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(a) Frame 1 (b) Frame 23 (c) Frame 54

(d) Frame 62 (e) Frame 67 (f) Frame 115

Figure 4.15: Selection of result frames to indicate the performance of the AC-AAM tracker. �e
green and white shapes are the output of active contours and AC-AAM respectively. Note that the
AC-AAM provides no AAM when the object undergoes occlusion in (c) and (d).

(a) Frame 1 (b) Frame 23 (c) Frame 54

(d) Frame 62 (e) Frame 67 (f) Frame 115

Figure 4.16: Selection of result frames to indicate the performance of the AAM-based particle �lter
tracker. Note that the tracker still outputs an estimate in (c) and (d) when the object undergoes
occlusion.
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PFAAM with local optimisation. By using local optimisation in tandem with the standard
PFAAM, the accuracy is increased and fewer particles are needed (improving running
time).

We recommend therefore to use a PFAAM with local optimisation where the state space is
smaller.
As mentioned in Section 4.5, similar ideas were also proposed by Hamlaoui and Davoine

(2005). Table 4.1 details the di�erences between this work and theirs. Hamlaoui and Davoine
tested their algorithms on facial sequences, while we have employed a more general approach.
�ere is, however, no reason to believe that their tracker will not handle general video sequences.
Our process model consists of two models used in a combination. When occlusion occurs,
we change our process model. Hamlaoui and Davoine use a single process model and handle
occlusions through a robust norm. Occlusion handling through detection allows one to switch to
a process model that is designed to handle occlusions. �e parameters for our occlusion detection
are trained o�-line.
We have a running time of 10 – 20 frames per second. Hamlaoui and Davoine reported 2

frames per second. Since they use a variable number of particles, this frame rate is also not a
constant. In critical applications this might be a drawback. We use local optimisation as part of
the PFAAM to increase accuracy and robustness. �is has a omissible e�ect on the running time.
We described and implemented the algorithms for both dependent and independent AAMs,

while Hamlaoui and Davoine focused on dependent AAMs.
A quantitative analysis is not possible. �e source code is not available and even if one had

implemented the described algorithms, these results would not necessarily correspond to those
published by Hamlaoui and Davoine since it is impossible to follow the exact optimisations
implemented by the original authors.
Comparing this dissertation’s algorithms quantitatively to other silhouette trackers is prob-

lematic, since no universal ground-truth exists and since standardised implementations of all
the tracking algorithms are not available. We therefore compare the algorithms qualitatively. �e
qualitative comparison is summarised in Table 4.2; taken from (Yilmaz et al., 2006) with two
rows added to re�ect Hamlaoui and Davoine (2005) and our work. Note that the PFAAM can,
in principle, be extended to a multi-object tracker, since a PF forms the base for the algorithm.
It is worth noting that the tracker of MacCormick (2002) is based on active contours. �us the
PFAAM has the added bene�t of simultaneously tracking shape and texture.
We also showed in this chapter how ACs and AAMs are combined, resulting in yet another

AAM-based tracker. By forming the combination, the accuracy of the AC-tracker is improved.
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Stochastic visual tracking with AAMs Hamlaoui and Davoine (2005)
General object tracking Facial tracking (can be extended to general

tracking)
Error norms based on Lorentzian norm Error norms based on Huber norm
Dynamics: two models in combination Dynamics: single model
Local optimisation No local optimisation
Occlusion detection based on trained
model. �erea�er the dynamical models
are switched.

Occlusions handled through robust norm.
�e threshold for the robust norm is �xed
(not trained).

Speed: about 10 – 20 frames per second Speed: average of 2 frames per second
(variable number of particles means frame
rate also varies

Can handle dependent and independent
AAMs

Dependent AAMs

Implementation: PC and smart camera Implementation: PC

Table 4.1: Comparison between this work and Hamlaoui and Davoine (2005)

Description # Occ. Trn. Features Technique
Terzopoulos and Szeliski
(1993)

S ×
√

Gradient mag. Kalman �ltering

Isard and Blake (1998a) S ×
√

Gradient mag. Particle �ltering
MacCormick (2002) M F

√
Gradient mag. Particle �ltering

Chen et al. (2001) S ×
√

Gradient mag. JPDAF
Hamlaoui and Davoine
(2005)

S F
√

Texture statistics Particle �ltering

PFAAM S F
√

Texture statistics Particle �ltering

Table 4.2: Comparison of PFAAM to other silhouette trackers. �e table is taken from (Yilmaz
et al., 2006) (as well as the description in brackets that follow) with the last row added to re�ect our
work. (Occ. denotes occlusion handling and Trn. denotes training. #: number of objects, S: single,
M: multiple, P: particle, F: full. Symbols

√
and × denote whether the tracker can or cannot handle

occlusions, and require or does not require training.)
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Moreover, the robustness of the deterministic AAM tracker is improved. Table 4.3 explains the
di�erences between the PFAAM and the AC-AAM.

AC-AAM PFAAM
Temporal �ltering by using PF through AC Temporal �ltering by using PF directly
Use AAM to increase accuracy Use AAM to increase accuracy
Handle occlusions, but no AAM estimate Handle occlusions with AAM estimate

Table 4.3: Comparison between AC-AAM and PF-AAM.

We recommend that if an AC-tracker is available, one can use it in tandem with an AAM for
increased accuracy. Otherwise, one should implement the PFAAM directly.
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Chapter

5
Implementation and experimentation

Ideas, like stalactites and stalagmites, form in the dark inner cave of consciousness. �ey
form in drips and drops... We must learn to wait for an idea to hatch. All too o�en we
try to push, pull, outline, and control our ideas instead of letting them grow organically.
�e creative process is a process of surrender, waiting, not control.

— Julia Cameron

The previous chapter presented tracking algorithms based onAAMs and PFs. At the same time,
it presented experimental results where appropriate. �is chapter builds on the previous

chapter by presenting additional empirical results. It also discusses the so�ware implementation
and gives an overview of the hardware con�gurations. A particular emphasis is placed on the
smart camera implementation that demonstrates how the tracking algorithms can run on di�erent
hardware platforms. Finally, we show how the 2D-AAM tracker can be extended to a 3D-tracker.

�is chapter is organised as follows: Section 5.1 overviews the so�ware implementation. �e
hardware con�gurations are discussed in Section 5.2. Section 5.3 presents the tracking results. An
implementation of the algorithms for a smart camera is presented in Section 5.4. �e 3D-tracker
is detailed in Section 5.5.

5.1 So�ware overview

�e so�ware is mainly implemented in C++. An initial version of the so�ware is implemented
using the open-source AAM-API (Stegmann et al., 2003). �e AAM-API is only available for the
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Microso�Windows platform. Since our goal is a cross-platform implementation, we implemented
a second version of the so�ware. In this implementation, computer vision tasks are done with
the open-source and cross-platform computer vision libraries, vxl (vxl-maintainers, 2009). �e
AAM implementation is provided by DeMoLib (Saragih, 2009). �us, in the implementations,
the basic AAM algorithms are provided by the AAM-API or DeMoLib. We implemented the PF
algorithms and algorithms for the combination of AAMs and the PF. We use the facade design
pattern (Gamma et al., 1994) in our interface class with DeMoLib. �is enables us to change the
basic AAM library easily, since only the facade class needs to re�ect another AAM library. �e
rest of the code is kept unchanged. �e resulting system runs on at least Apple OS X 10.5.7, Linux
2.6.27, and Microso� Windows XP, because vxl itself is cross-platform and forms the base of the
implementation.
A version has also been developed for the Matrix Vision mvBlueCOUGAR-P smart cam-

era (Matrix Vision, 2008a). Here we used the same implementation as discussed in the previous
paragraph. However, we implemented extra routines enabling us to interface with the smart
camera. �e code is compiled for the smart camera using a GCC cross-compiler for PowerPC.
When optimising the code for speed, bottlenecks in the implementation are identi�ed with

the dynamic tracing framework DTrace (Cantrill et al., 2004). �e main cause for a deterioration
in speed is allocation of memory. �is problem is recti�ed by pre-allocation of data structures. A
signi�cant performance gain is obtained with automatic vectorisation of loops as implemented by
the Intel C/C++ or the GNU GCC (Naishlos, 2004) compiler.

�e active contour implementation is in Matlab. �is implementation builds on the active
contour Kalman �lter of Jacobs (2005). We provided the particle �lter implementation.

�e so�ware will not be released publicly in the near future due to commercial possibilities.
However, all the code are available in a Subversion repository within the Stellenbosch University
Network.1 Details of the implementation are provided in Appendix C.

5.2 Hardware overview

Two di�erent hardware systems were used to conduct experiments. �e �rst system, used for
most of the experiments, is based on a standard personal computer. �e second system is a smart
camera, i.e., all the processing is performed directly on the camera. A smart camera allows the
algorithms to run on the raw, artefact free video data, transmitting only the resulting parameters.
�e bene�ts are that the video feed does not leave the camera, reducing the bandwidth and

1Access detail can be obtained be contacting the author.
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freeing the centralised servers in computer vision applications to concentrate on higher level
processing. A comprehensive overview of current smart camera based vision systems can be
found in (Dietrich et al., 2007) and (Rinner and Wolf, 2008).

5.2.1 �e desktop testing environment

�e hardware consists of a 2.66GHz Intel Core 2 Duo processor with 4GB of DDR3 RAM.�e op-
erating system is Mac OS X 10.5.7 and the C++-code are compiled with GNUGCC 4.4. Automatic
vectorisation of loops is enabled.

5.2.2 �e smart camera system

We embed the PFAAM algorithm on the mvBlueCOUGAR-P smart camera series available from
Matrix Vision (Matrix Vision, 2008a). �ese industrial cameras are powered by a 400MHz
PowerPC processor with 64MB of SDRAM and run an embedded version of the Linux operating
system. Interfacing with the device is done via Gigabit Ethernet. Both CCD and CMOSmodels are
available with resolutions up to 1600×1200 pixels. �eir power consumption is below 7W. Results
as reported are obtained using the VGA colour version (-P120aC) with 13” CCD progressive scan
sensor. An illustration of the hardware can be seen in Figure 5.1.

5.3 Experimentation

�is section has multiple goals: it demonstrates the accuracy of the tracking algorithms and
gives estimated running times, given di�erent con�gurations. A number of parameters are user-
de�nable. For example, when training an AAM, the number of perturbed model parameters is
speci�ed by the user. An exhaustive report is impossible. We select those parameters that are the
most critical for object tracking with an AAM and PF combination. We focus on the following
aspects of the PFAAM tracker:

ä the number of particles in the PF,

ä the process models of the PF,

ä the e�ect of the measurement covariance in the PF,

ä local optimisation, and

ä the type of AAM used in the PF.
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Figure 5.1:�e smart camera system.

�ese con�gurations will be demonstrated on the same video sequence. We carefully collected
ground-truth for this sequence. Selected frames from the sequence are given in Figure 5.2. When
a deterministic AAM tracker is used to track these sequences, it fails due to erratic movements.
�e results are shown in Figure 5.3. Clearly we need the AAM and PF combination to perform
the tracking.

Figure 5.2: Selected frames from our benchmark video sequence.

Before presenting the results, it is instructive to discuss the evaluation protocol. �e evaluation
protocol is built on the evaluation of tracking algorithms of Chapter 4, page 41. However, more
detail is necessary to understand the results of this chapter.
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Frame 43 Frame 130

Frame 257 Frame 415

Figure 5.3: Selected frames when a deterministic AAM tracker is used to track the benchmark video
sequence.

5.3.1 Evaluation protocol

�roughout this chapter, we use quantitative performance measures. We commence by collecting
the ground-truth in the video sequences. For each frame, it consists of the shape found by the
AAM �tting algorithm. Let us denote it by s̃t. Using s̃t, given by (3.1) and (3.6), we calculate the
pose p̃p. Now, let the estimate of a tracking algorithm be ŝt . Similarly for ŝt , we calculate the pose
parameters p̂p, where we have dropped the t-dependence of p̃p and p̂p to simplify the notation.
�e relative error between between the ground-truth and the tracked frame is then given by

eGTt =
∥p̃p − p̂p∥2

∥p̃p∥2

. (5.1)

�e relative error is based on the pose, since it contains the x − y position of the object, as
well as information of the scale and rotation. �erefore, it gives an indication of geometrical
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interpreted accuracy.
�e performance of the tracker is measured as the mean of eGTt , t = 1, . . . T, where T is the

length of the video sequence.

5.3.2 �e number of particles in the PF

�e number of particles is varied between 1 and 500. A non-linear iterative AAM is used and the
process model is a trained auto-regressive process. Figure 5.4 illustrates the accuracy versus the
number of particles. �e error drops as the number of particles increases, but having more than
100 particles, the error is more or less constant. �is suggests that the pdf is well approximated
and that the limit of the model is reached. �e remaining error is attributed to the AAM �tting.
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Figure 5.4:�e accuracy of the tracker compared versus the number of particles.

�e running time of the particle �lter is linear in the number of particles. Assume that k
operations are performed for a particle. �en, for N particles, Nk operations are performed,
because the particles do not interact with each other. Furthermore, an additional c operations
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are done for normalisation of the particles. �is normalisation is also linear in the number of
particles (it is only a sum over all particles). Consequently, the overall running time is Nk +Nc
which yield a linear running time.

5.3.3 �e process models of the PF

As discussed in Chapter 4, the PF applies two processmodels. One processmodel is a second-order
auto-regressive process, given by (4.10) and repeated below for convenience

x t = x + A2 (x t−2 − x) + A1 (x t−1 − x) + B0v t .

�e second process model relies on an AAM to calculate an update. It is given by (4.9), again
listed below for convenience,

x t = x̂ t−1 + ωt−1 + St−1v t−1 .

In our PF implementation, any number of particles can be propagated through both models.
A parameter αp speci�es the number of particles on which the AAM update process are applied.
For example, if αp = 0.1, then (4.9) is used to predict the new values of 0.1 ×N particles. �is is
done by adding 0.1 ×N particles to the PF and propagating them through the process. Particles
are added to the PF to ensure that all the information a�er prediction by the AR process is taken
into account when calculating the weights. At each iteration, resampling is done, but only N
particles are selected. If αp = 1.0, however, we use only the auto-regressive process; if αp = 0.0 all
the particles are propagated through the AAM update process.
Figure 5.5 illustrates the accuracy for di�erent values of αp. As expected, the AAM update

process is more accurate. However, particles from a process other than the AAM update are
needed, because AAM updates cannot be predicted in the presence of occlusions.
Figure 5.6 shows the running time if αp is varied. An increase in running time is observed for

0 < αp < 1, since more particles are e�ectively in the PF. A possible remedy is to specify a smaller
number of initial particles when 0 < αp < 1.

5.3.4 �e e�ect of the measurement covariance in the PF

In Section 4.5.1 on page 47, we introduced themeasurement covariance as part of themeasurement
model. Now we shall vary the values of σw . A non-linear iterative AAM is used with 100 particles
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Figure 5.5: Accuracy of tracker for di�erent process models. In (a), the accuracy is plotted for
0 < αp < 1; in (b) αp = 0 is removed, allowing us to focus on the e�ect of varying αp when αp > 0.

0.0 0.2 0.4 0.6 0.8 1.0
20

25

30

35

40

45

Ti
m

e

αp

Figure 5.6: Running time versus αp. If αp = 0, the process model is an AAM update process. If αp = 1,
the process model is a second-order AR process.
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in the PF. A combination of an auto-regressive process and AAM update model (αp = 0.1) forms
the process model.
In Figure 5.7, the accuracy is shown as a function of σw . Here we can clearly see that small

values of σw lead to better accuracy. One can immediately draw the conclusion that smaller
values of σw are preferable. �is is, however, not true. In Figure 5.8, the e�ective sampling size
(Equation (2.43) on page 17) is plotted against the measurement covariance. In this graph, one
observes that smaller values of σw lead to a smaller e�ective sampling size. Having a small e�ective
sampling size, the particles in the PF are less diverse and therefore the target might be lost during
fast movements or occlusions.
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Figure 5.7: Accuracy versus the measurement covariance, σw .

We observe thus a trade-o� between the values of σw and the e�ective sampling size. A value
of σw should therefore be chosen such that the e�ective sampling size is at least half the number
of particles. If accuracy is of more importance, a smaller value of σw su�ces.
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Figure 5.8: E�ective sampling size versus the measurement covariance, σw .

5.3.5 Local optimisation

Previously, in Section 4.5.4 on page 55, we presented detailed analysis of local optimisation based
on the Lorentzian norm. Table 5.1 describes the running time and accuracy (based on ground-
truth) if local optimisation is applied. We see a reduction in the ground-truth error if local
optimisation is used. Notice the time penalty that one pays. However, this is justi�able, since one
can use fewer particles to achieve the same accuracy as a particle �lter with more particles and no
local optimisation.

Description Accuracy Running time (in ms)
No local optimisation (100 particles) 0.012 25.02
Local optimisation (100 particles) 0.0052 44.09
Local optimisation (40 particles) 0.016 21.00

Table 5.1: Accuracy and running time for di�erent cases of local optimisation
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5.3.6 �e type of AAM used in the PF

Table 5.2 reports the accuracy and running times for di�erent AAMs (see Section 3.5, page 31).
�e PF consists of 100 particles. No local optimisation is used. �e results con�rm the literature
about AAM �tting, but generalises to tracking algorithms employing a PF. Cootes et al. (2001)
argued that the �xed Jacobian method performs better in practise than linear regression. Saragih
and Goecke (2007) show empirically that the non-linear iterative �tting algorithms are at least as
accurate as the �xed Jacobian.

Description Accuracy Running time (in ms)
Linear regression >0.5 23.29
Fixed Jacobian 0.144 20.25
Non-linear iterative �tting 0.017 25.13

Table 5.2: Accuracy and running time for di�erent AAMs.

5.4 An implementation on a smart camera

We implemented the tracker for the smart camera in C++. Acquisition of image sequences, as well
as control of the camera’s settings, was done with themvIMPACT SDK fromMatrix Vision (Matrix
Vision, 2008b).
An AAM was trained o�ine for a person’s face. �is was done on a training set comprising

6000 perturbations for each of the 32 images of size 320×240. Approximately 380 pixels were
sampled inside the shape during an observation. �e particle �lter uses 50 samples.
In Figure 5.9 (le� column) the results are shown of tracking the facial features of a person.

�e tracker runs at approximately 5 frames per second on the smart camera. On a standard laptop
computer (Intel Core 2 Duo 2.16Ghz, 2GB of RAM), we achieve a framerate of 50Hz. We currently
do not use a background model to perform pre-processing of the frames. If we have a background
model, this would reduce the regions of interest and increase the frame rate.
In Figure 5.9 (right column) the reconstructions are illustrated using the AAM parameters.

We sampled about 6000 texture values inside the shape on the tracker. Using these texture values,
the appearance parameters are calculated through (3.15) and then transmitted to the server. �e
dimension of the parameter vector is typically 30. �e transmission of only these parameters
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reduces the bandwidth requirement. However, the reconstructed images are still good enough to
interpret.

5.5 3D-head tracking with AAM-based particle �lter

Until now, we focused only on 2D-tracking algorithms. �is section extends the ideas of the 2D-
tracking algorithms, resulting in a 3D-tracker. Classical tracking algorithms track a cloud of points
from one frame to the next (Gennery, 1992). �e problem is then to �nd these corresponding
points in a stereo pair of images.
We follow a di�erent approach. �e outline of an object is tracked in 2D. �is outline consists

of a set of points. If an AAM is used to describe the outline, corresponding points are trivially
found.
Using the correspondences, the 2D-points are mapped to 3D-space. �e result is object

contours in 3D. In 3D-space we can map these points to a generic object model. By doing so, we
can manipulate the 3D-model using detail obtained from the 2D-trackers. If one extends this
idea of mapping the 3D-points onto a 3D-model, animation can for example be performed from
movements captured by the 2D-trackers. We also get an estimate of the 3D-pose.

�e 3D-tracker gives us an indication of the accuracy of the 2D-tracker if we observed how
well the corresponding points obey the epipolar constraints.
Using AAMs to track an object in 3D has been investigated before; see for example (Sung and

Kim, 2004; Mittrapiyanuruk et al., 2005; Faggian et al., 2006). In these approaches, the AAM is
extended to include 3D-information within its shape formulation.
In this section, we assume that the reader is familiar with projective geometry and 3D-

reconstruction. Appendix B provides a revision of these topics.

5.5.1 �e stereo 2D-trackers

Finding the corresponding points in the pair of 2D images is a problem in typical 3D-reconstruction
using stereo geometry. However, this problem is easily solved when an AAM tracker is used.
Given a synchronised pair of images, an AAM is �tted in these images. �en shapes s and s′ can
be obtained from these pair of images. If the same AAM is used, the points in s correspond to
the points in s′ (see Section 3.1 on page 22). Figure 5.10 shows the points being tracked in the
synchronised setup.
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Frame 1

Frame 26

Frame 32

Frame 38

Figure 5.9: Tracking facial features. Le� column is the result of the tracker; Right column is the
reconstruction using the AAM’s texture parameters.
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Figure 5.10: Corresponding points tracked with PFAAM.

5.5.2 Estimating the 3D head pose

�e corresponding points obtained with the PFAAM tracker, are mapped to 3D space using stereo
geometry. �us, for shape s, we obtain points x i , i = 1, . . . , N2 , where N is the length of the shape
vector s. Similarly, we obtain the points x′i , i = 1, . . . , N2 from s′. Notice that x i and x′i form a
corresponding point set. Using triangulation, these points are mapped into 3D-space. Figure 5.11
shows the result of such a triangulation.

x

y

z

Figure 5.11: 3D points obtained from triangulation.

Next we mapped these 3D-points onto a generic 3D-face model by manually de�ning similar
features between the reconstructed points and the 3D-model. Figure 5.12 illustrates this generic
face model.
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x

z

Figure 5.12: Generic face model in 3D-space.

5.5.3 Results

�e experiments were conducted on a pair of Fire�y cameras from Point Grey Research Inc (Point
Grey Research Inc., 2009). �e cameras are synchronised externally. Frames are captured at a
resolution of 640 × 480. Camera calibration is performed o�ine.
In Figure 5.13 we compare the tracked points and those recti�ed using Sampson correction.

Notice that these lines are nearly straight; an indication that the epipolar constraints are satis�ed
in the sense that their recti�ed y-coordinates in the two images are almost equal. �is suggests
that the PFAAM tracker is able to accurately track images. In Figure 5.14, selected frames are
shown with the estimated 3D-pose for each.

5.6 Summary

�is chapter presented two implementations of the tracking algorithms that use a combination
of the AAM and PF. One implementation is a cross-platform implementation that runs on Mac
OS X, Linux and Windows. �e second implementation runs on the mvBlueCOUGAR-P smart
camera of Matrix-Vision.
Quantitative results were presented for di�erent con�gurations. In particular, we focused on

the number of particles in the PF, the process models of the PF, the e�ect of the measurement
covariance in the PF, local optimisation, and the type of AAM used in the PF. Many times a
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Figure 5.13: PFAAM tracks accurately in 2D, since the epipolar constraints are satis�ed.
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Figure 5.14: Selected frames from the right camera sequence (top), and the estimated 3D-pose for
each (bottom).

trade-o� existed between accuracy and speed or accuracy and robustness.
Using the smart camera implementation, we demonstrated the advantage of transmitting only

the AAM parameters in tracking applications where bandwidth is critical. Finally, we presented a
3D-head tracker that use as its building blocks a tracker consisting of an AAM and PF.
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6
Concluding remarks

And for us this is the end of all the stories, and we can most truly say that they all lived
happily ever a�er. But for them it was only the beginning of the real story. All their life
in this world and all their adventures in Narnia had only been the cover and the title
page: now at last they were beginning Chapter One of the Great Story which no one
on earth has read: which goes on forever: in which every chapter is better than the one
before.

—C.S. Lewis, The Chronicles of Narnia

6.1 Reprise

�is dissertation’s main aim is tracking. It investigated, in particular, the viability of stochastic
tracking with active appearance models. In order to be called viable, the tracker needs to be

ä robust,

ä accurate, and

ä fast.

Concerning robustness, a deterministic active appearancemodel tracker was shown to fail, without
recovery if the tracked object moved fast or was occluded. We therefore introduced a combination
of active appearance models and particle �lters. �is tracker tracked correctly where an object
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moved fast in cluttered backgrounds or in cases of uncomplicated occlusions. We showed that
with enough samples in a particle �lter, the probability density functions are well approximated.
�en the tracker is as accurate as the underlying active appearancemodel. �is implies an accurate
tracker. We implemented the algorithms on a standard desktop computer and achieved a real-time
running time. Near real-time is achieved on a smart camera. Furthermore, if local optimisation
is applied, fewer particles are needed resulting in a faster tracker. On the other hand, non-linear
�tted active appearance models boosted the accuracy of the tracker. �us stochastic tracking with
active appearance models is indeed viable.
En route, we presented an extension of the 2D-tracker to 3D. It also con�rmed the accuracy

of the tracker.

6.2 Limitations

In Figure 6.1 a person is tracked, and as he moves, he passes another person. �e dynamic model
consists of a combination of a trained auto-regressive process and an AAM update process model.
In the image sequence shown below, the PFAAM tracker is able to recover a�er it has lost its
target due to the occlusion that took place. However, when a second occlusion occurs, illustrated
in Figure 6.2, the tracker do not recover.

�us, the question is raised: what went wrong the second time? In the �rst sequence, the
person reappears more or less in the position where the tracker lost him. �is is not the case in
the second image sequence. �is problem is intensi�ed, since when the target is lost, a di�erent
target (the wrong person) appears.

�e auto-regressive process was trained on a sequence where if a person stood still in a
sequence and then moved again, the movement would be in the opposite direction to the original
movement (similar to the sequence in Figure 6.1). Also the particle �lter uses only the previous
state when predicting the current state, and as the particle �lter resamples, diversity of the particles
is lost. Although one could train the auto-regressive process di�erently, this would not solve the
problem completely, since the main reason for the failure of the tracker is that too little of the
particle �lter’s history is used when tracking through occlusions.

�us a limitation of the PFAAM is that it cannot handle occlusions if the tracked object is
occluded by an object of the same type. To rectify this, one could derive and implement a particle
�lter with more history. Alternatively, one could use an object recognition system together with
the tracker. �us, when the particle �lter loses its target, it is reinitialised with the objects found
by the recognition system.
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Frame 4

Frame 211Frame 292

Frame 340

Figure 6.1: Tracking a person passing another. Occlusion occurs and the tracker recovers.

6.3 Recommendations and future directions

To track deformable objects, an active appearance model and particle �lter combination is a viable
alternative. If an active contour implementation is available, one can use it in tandem with an
active appearance model to obtain an accurate and robust tracker.
Future work would include incorporating a backgroundmodel to further improve the running

time of the tracker. It would also be interesting to attempt to quantitatively compare the active
appearance model and particle �lter combination with other silhouette trackers. As discussed
in this work, two of the obstacles are to obtain ground-truth and standardised implementations
of the the tracking algorithms. �ere is however already work done in this direction, and more
work will surely follow.
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Frame 394 Frame 406

Frame 424 Frame 430

Figure 6.2: Tracking the same person as in Figure 6.1. Occlusion occurs, but this time the tracker
does not recover.
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Appendix

A
Rules for Gaussian distributions

Mathematics, rightly viewed, possess not only truth, but supreme beauty—a beauty
cold and austere, like that of sculpture.

— Bertrand Russel

Given a marginal pdf

p (x) = N (µ, Λ−1) (A.1)

and a conditional pdf

p (y∣x) = N (Ax + b, L−1) (A.2)

whereN (m, C) is a Gaussian pdf with mean m and covariance C. �en

p (y) = N (Aµ + b, L−1 + AΛ−1AT) (A.3)

and

p (x∣y) = N (Σ {ATL (y − b) + Λµ} , Σ) (A.4)
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where

Σ = (Λ + ATLA)−1 . (A.5)

A proof can be found in (Bishop, 2006).
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B
Epipolar geometry

Attempt the end, and never stand to doubt;
Nothing’s so hard but search will �nd it out.

—Robert Herrick

In a stereo reconstruction set-up, two images are given with corresponding points de�ned
in them. Knowledge of the cameras that produced these images is also assumed. With all

this information, one can obtain the 3D coordinates of the original corresponding points. In
this chapter, an overview of the solution to the 3D reconstruction problem is presented. We
commence by discussing in Section B.1 the 2D projective geometry that forms the basis for the
camera model we assume. �erea�er, in Section B.2, the camera model is detailed. Once the
camera model is known, Section B.3 uses this model to de�ne epipolar geometry—the geometry
of two cameras—and �nally put all the information together to obtain the 3D coordinates of the
original points by means of triangulation. For a thorough exposition of these topics, the reader is
referred to Hartley and Zisserman (2003).

B.1 2D projective geometry

Projective geometry uni�es the concept of the intersection of two lines. In Euclidian geometry, the
intersection of parallel lines is not well-de�ned. However, in projective geometry the intersection
of all lines, including parallel lines, is well-de�ned.
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Consider a line described by

ax + by + c = 0. (B.1)

If we let x = [x , y, 1]
T
and l = [a, b, c]

T
, the the line in (B.1) is given by

xT l = 0. (B.2)

It is also true that the line kl , k ≠ 0 gives rise to the same line (B.1). Similarly, the line
kxT l = 0, where k ≠ 0 is also the same line. For these reasons, we regard l = [a, b, c,]

T
and

kl = [ka, kb, kc,]
T
, and x = [x , y, 1,]

T
and kx = [kx , ky, k,]

T
as equivalent. In all these cases,

k ≠ 0. Vectors in these equivalent classes are referred to as homogenous vectors.
�e vectors x and l are elements of the projective space P2. �e study of P2 is projective

geometry. We can map a vector from R2 to P2 by concatenating a 1, i.e.,

⎡
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⎢
⎢
⎢
⎣

x
y
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∈ R2. (B.3)

A vector in P2 is mapped to R2 by
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∈ P2. (B.4)

Given two lines l 1 and l2, the intersection of these lines is

x = l 1 × l2 (B.5)

where × is the Cartesian cross product. Moreover, the line through x1 and x2 is

l = x1 × x2. (B.6)

A proof of (B.5) and (B.6) can be found in (Hartley and Zisserman, 2003).
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As an example, consider the lines

l 1 ∶ x − 1 = 0

l2 ∶ x − 2 = 0.

�en the intersection is

x =
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From this example, we see that two parallel lines intersect in a well-de�ned point. �is point is
known as the point at in�nity.

B.2 �e camera model

A camera is modelled as a transformation from P3 to P2. Suppose that X is the object in world
coordinates. �is point is projected to x in pixel coordinates on the CCD.�is projection is given
by

x = PX (B.7)

where P is a 3 × 4 homogenous matrix with rank 3. �is is illustrated in Figure B.1. �e matrix P
is the camera projection matrix.
In order to �nd P, camera calibration is performed. During camera calibration, an image of

a calibration object is taken. �e geometry of the calibration object is assumed known. Points
on the calibration object are identi�ed in the image taken. �en the camera matrix is found by
solving for P in

x i = PXi (B.8)

where Xi is a known point on the calibration object and x i is the corresponding point in the
image plane. �e index i runs through the corresponding points identi�ed on the calibration
object and the image taken of it. Figure B.2 illustrates a simple Lego calibration object.
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Figure B.1:�e camera model.

Figure B.2: An example calibration object built from Lego blocks.
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B.3 Epipolar geometry and triangulation

So far this discussion has only considered one camera. For two cameras, referred to as a stereo
pair, we use epipolar geometry.
Figure B.3 details epipolar geometry. In this �gure, the point X is projected onto x in the

image plane by the camera matrix P, while x′ is the image of X under the camera matrix P′. �e
camera centres, X, and the images x and x′ lie in the same plane. �is is the epipolar plane. �e
epipoles are formed by intersections of the line that joins the camera centres. An epipolar plane
intersects the image plane at an epipolar line.

x

x x′

e e′
C C′

l′

Xplane

epipolar

epipolar

line for

Figure B.3: Graphical depiction of epipolar geometry.

Epipolar geometry is also described algebraically by the fundamental matrix F which is a 3× 3
homogeneous matrix that satis�es

x′Fx = 0 (B.9)

for all corresponding points x and x′.
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If two images x and x′ are given, the point X is found using triangulation. �us two camera
matrices P and P′ as well as a pair of corresponding points x and x′ are given. �e aim is to
calculate the 3D feature X where

x = PX, (B.10)

x′ = P′X. (B.11)

One cannot solve for X directly in (B.10) and (B.11) because homogenous coordinates are used.
However, x × PX = 0 and from (B.10) we get

ypT3 X − zp2X = 0

zpT1 X − zp3X = 0

x pT2X − zp1X = 0,

where pTi , i = 1, . . . , 3 are the rows of P. Similar equations is written for x′ × PX = 0. �en a
system

AX = 0 (B.12)

is formed by taken the �rst two equations of the two camera systems. �e 3D feature X is then
solved using (B.12).

B.4 Summary

�is chapter brie�y described epipolar geometry, i.e., the geometry of two cameras. It introduced
projective geometry and showed the camera model based on this geometry. Having a camera
model, the geometry for two cameras were de�ned and used to reconstruct a 3D feature given two
images of the point. For more a more detailed discussion, refer to Hartley and Zisserman (2003).
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C
Notes on the so�ware implementation

Ad aspra per aspera et per ludum.

—W.A. Fowler

The algorithms developed and described in this dissertation, were implemented as a so�ware
library. We refer to this so�ware library as Vestigo. �e so�ware was predominantly

implemented in C++. In order to run the so�ware, at least Apple OS X 10.5.7, Linux 2.6.27, or
Microso� Windows XP is required. A version has also been developed for the Matrix Vision
mvBlueCOUGAR-P smart camera (Matrix Vision, 2008a).

�is chapter gives an overview of the implemented so�ware. Section C.1 explains the �lesys-
tem layout of Vestigo. Section C.2 provides installation instructions for the so�ware. Finally,
Section C.3 describes the main classes implemented.

C.1 Organisation of the library

�e top level of Vestigo consists of the folders below. �e content of the folder is shown next to it:

bin/ Executables

config/ Temporary �les when building the library

lib/ Static linked libraries

src/ Source code
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python/ Utility scripts implemented in Python

�e src folder is divided as:

exe/ Driver programs; C++ classes in this folder contain mainmethods

st3p/ �ird party libraries

stmvc/ Classes related to the smart camera implementation

sttrk/ �e source code of the tracker

We use three third party libraries, apart from vxl and all its dependencies. �ese libraries are
located in st3p. �erefore, the folder st3p is organised as:

configfile/ �ird party library to read and write con�guration �les

demolib/ Source code of DeMoLib (AAM library)

libsvm/ Source code of libsvm; used by DeMoLib

C.2 Installation instructions

Suppose that the Subversion repository url to Vestigo’s root folder and DeMoLib’s root folder
are svn://localhost/Vestigo and svn://localhost/DeMoLib respectively. �e exact url,
together with authorisation credentials, can be obtained by contacting the author. We assume
that vxl is installed. We use the notation $ to indicate interaction at a Bash command shell. �e
steps below are then followed to install Vestigo.

1. Check out Vestigo from the repository.
$ svn co svn://localhost/Vestigo/trunk Vestigo

2. Change to the st3p folder and check out DeMoLib and libsvm from the repository.
$ cd Vestigo/src/st3p

$ svn co svn://localhost/DeMoLib/trunk/src/lib demolib

$ svn co svn://localhost/DeMoLib/trunk/trink/src/libsvm libsvm

3. In the �le src/CMakeLists.txt, change the value of VXL_DIR to re�ect the installation
directory of vxl on the system.
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4. Create the makefiles using cmake.
$ cd config

$ cmake -i ../src/

5. Compile the source code using make.
$ cd Vestigo/config

$ make

C.3 Overview of main classes

�e C++ classes of the tracker are located in the folder src/sttrk. Here follows a list of the main
classes with descriptions:

sttrk_generic_pf �is class is a pure virtual, templatised class implementing a PF. It
forms the base of all PF implementations. When this class is extended,
methods providing a process function and a measurement function,
must be implemented.

sttrk_aam �is class provides an AAM implementation. �e underlying AAM
implementation is DeMoLib. �e class uses the facade design pat-
tern (Gamma et al., 1994) to reduce dependencies on DeMoLib.

sttrk_aam_pf �e class implements a combination of an AAM and PF. It inherits
from sttrk_generic_pf.

sttrk_aam_tracker An entry point towards the tracking library is provided. �is class
can be seen as the top level of the AAM tracker.

sttrk_aam_state �e state of the AAM-based PF is encapsulated in this class. It is thus
the type of the particles in sttrk_aam_pf.

sttrk_arp �is class predicts the values of the next state using a second-order
auto-regressive process.

sttrk_sym_aam �is pure virtual class forms the base of all measurement functions.

sttrk_sym_aam_factory Using the factory design pattern (Gamma et al., 1994), this class
creates classes of type sttrk_sym_aam.
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sttrk_aam_orig �is class provides the measurement function for the original AAM
formulation.

sttrk_aam_di �emeasurement function for the iterative non-linear AAM is im-
plemented by this class.

sttrk_aam_ic It implements themeasurement function for the inverse-compositional
project-out AAM.

sttrk_weight_index �is helper class associate a weight with a particular particle. �e
class is only used when sorting particles to �nd the most promising
particles for local optimisation.

sttrk_options �e values of all the parameters in the system are encapsulated in
this class.

sttrk_options_reader A con�guration �le is read by the class. �e information in the �le is
used to initialise the values of a sttrk_options object.

sttrk_math_util Miscellaneous mathematical functions are implemented as static
functions in this class.
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