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A closure space (J,−) is called a convex geometry (see, for example, [1]), if it
satisfies the anti-exchange axiom, i.e.

x ∈ A ∪ {y} and x /∈ A imply that y /∈ A ∪ {x}
for all x 6= y in J and all closed A ⊆ J.

Given a closure space, one can associate with it the lattice of closed sets Cl(J,−).
It is well known that the lattice of closed sets of a finite convex geometry is join-
semidistributive. The latter property is defined by

(∀x, y, z ∈ L) (x ∨ y = x ∨ z ⇒ x ∨ y = x ∨ (y ∧ z))

The following classical example of convex geometries shows how they earned
their name. Given a set of points X in Euclidean space Rn, one defines a closure
operator on X as follows: for any Y ⊆ X, Y = convex hull(Y ) ∩ X. One easily
verifies that such an operator satisfies the anti-exchange axiom. Thus, (X,−) is a
convex geometry. Denote by Co(Rn, X) the closure lattice of this closure space,
namely, the lattice of convex sets relative to X.

The current work was motivated by the following problem raised in [1]: which
lattices can be embedded into Co(Rn, X) for some n ∈ ω and some finite X ⊆ Rn?
Is this the class of all finite join-semidistributive lattices?

On the way to answer the above questions, one can address the associated prob-
lem raised in [2], and known as the

Edelman− Jamison Problem : Characterize those finite convex geometries
that are realizable as Co(Rn, X).

In the current paper we restrict ourselves to the case of n = 2 and point con-
figurations in general position, i.e. where no 3 different points belong to one line.
We formulate the hypothesis that a finite convex geometry is realizable by a point
configuration on a plane, if two properties of very lucid geometrical nature hold:
the so-called splitting rule and the carousel rule.

In one of major results of the paper we prove the hypothesis for all point config-
urations that have at most 2 points inside the n-gon. This extends the description
of Co(R2, X) for the point configurations X that have one point inside a n-gon,
given in [3]. We also confirm the hypothesis for all 6-point configurations on the
plane.

In another part of our paper we discuss the connection between the Edelman-
Jamison Problem and the Order Type Problem.

Following [4], call t : J [3] → {1,−1} an order type on J , if there is a function
f : J → R2 such that for all (a, b, c) in J [3] one has

t(a, b, c) = sign(f(a), f(b), f(c))
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The point configuration X = f(J) is then said to realize the order type t. In
brief, t is an order type, if it represents the orientation of triples of some suitable
point configuration.

The Order Type Problem : Given any function t : J [3] → {1,−1}, recognize
whether it is an order type and, if it is, find some realizing point configuration.

It is known that the Order Type Problem is NP-hard: that follows from the
famous Mnëv’s Universality Theorem [5]. We investigate whether the Order Type
Problem can be polynomially reduced to Edelman-Jamison Problem.

It turns out that each order-type t generates a unique convex geometry C(t),
associated with its point realization. On the other hand, a realizable convex geom-
etry C may have many realizations whose order-types are non-equivalent. The set
of such non-equivalent order-types is denoted Order-Types(C).

We build a series of examples of convex geometries Lp to demonstrate the fol-
lowing:

Corollary 0.1. The growth of |Order-Types(Lp)| of convex geometries Lp of size
O(p) cannot be p-polynomially bounded.

This does not allow to straightforwardly reduce the Order-type Problem to
Edelman-Jamison Problem.

On the positive side, we introduce the natural notion of a simple convex geom-
etry, for which we can prove:

Theorem 0.2. Given natural number l, let C(l) be the class of all finite simple
convex geometries of depth ≤ l, and let J (l) be the class of all candidate order-
types whose unique associated convex geometry is in C(l). Then the polynomial
time decidability of the realizability of t ∈ J (l) is equivalent to the polynomial time
decidability of the realizability of (J,−) ∈ C(l).

Here, the depth of the convex geometry indicates the number of its layers. The
first outside layer L1 of geometry C = (J,−) is just a set of its extreme points. Con-
sidering the restriction of closure operator to J\L1, one obtains a convex geometry
C1, whose set of extreme points is the second layer L2 of C etc.

Two points x, y of the same layer are are called equivalent, if z ∈ {x, u, v} iff
z ∈ {y, u, v}, for any u, v from the same layer. The geometry is called simple, if all
its layers, except innermost, do not have equivalent points.

A candidate order type is a function t : J [3] → {−1, 1} for which an associated
convex geometry can be defined. We show that it can be decided in polynomial time
whether a given function t is a candidate order type. Besides, it can be checked in
polynomial time, whether a given convex geometry is simple.
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