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A closure space (J,—) is called a conver geometry (see, for example, [1]), if it
satisfies the anti-exchange axiom, i.e.

x € AU{y} and z ¢ A imply that y ¢ AU {z}
for all x # y in J and all closed A C J.

Given a closure space, one can associate with it the lattice of closed sets Cl(J, —).
It is well known that the lattice of closed sets of a finite convex geometry is join-
semidistributive. The latter property is defined by

(Vz,y,z€ L) (zVy=axzVz = zVy=zV(yAz))

The following classical example of convex geometries shows how they earned
their name. Given a set of points X in Euclidean space R™, one defines a closure
operator on X as follows: for any Y C X, Y = conver hull(Y) N X. One easily
verifies that such an operator satisfies the anti-exchange axiom. Thus, (X, —) is a
convex geometry. Denote by Co(R"™, X) the closure lattice of this closure space,
namely, the lattice of convex sets relative to X.

The current work was motivated by the following problem raised in [1]: which
lattices can be embedded into Co(R™, X) for some n € w and some finite X C R™?
Is this the class of all finite join-semidistributive lattices?

On the way to answer the above questions, one can address the associated prob-
lem raised in [2], and known as the

Edelman — Jamison Problem : Characterize those finite convex geometries
that are realizable as Co(R™, X).

In the current paper we restrict ourselves to the case of n = 2 and point con-
figurations in general position, i.e. where no 3 different points belong to one line.
We formulate the hypothesis that a finite convex geometry is realizable by a point
configuration on a plane, if two properties of very lucid geometrical nature hold:
the so-called splitting rule and the carousel rule.

In one of major results of the paper we prove the hypothesis for all point config-
urations that have at most 2 points inside the n-gon. This extends the description
of Co(R?, X) for the point configurations X that have one point inside a n-gon,
given in [3]. We also confirm the hypothesis for all 6-point configurations on the
plane.

In another part of our paper we discuss the connection between the Edelman-
Jamison Problem and the Order Type Problem.

Following [4], call t : J[3] — {1,—1} an order type on J, if there is a function
f:J — R? such that for all (a,b,c) in J[3] one has

t(a,b,c) = sign(f(a), f(b), f(c))
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The point configuration X = f(J) is then said to realize the order type t. In
brief, t is an order type, if it represents the orientation of triples of some suitable
point configuration.

The Order Type Problem : Given any function t : J[3] — {1,—1}, recognize
whether it is an order type and, if it is, find some realizing point configuration.

It is known that the Order Type Problem is NP-hard: that follows from the
famous Mnév’s Universality Theorem [5]. We investigate whether the Order Type
Problem can be polynomially reduced to Edelman-Jamison Problem.

It turns out that each order-type t generates a unique convex geometry C(t),
associated with its point realization. On the other hand, a realizable convex geom-
etry C' may have many realizations whose order-types are non-equivalent. The set
of such non-equivalent order-types is denoted Order-Types(C').

We build a series of examples of convex geometries L, to demonstrate the fol-
lowing:

Corollary 0.1. The growth of |Order-Types(L,)| of convex geometries L, of size
O(p) cannot be p-polynomially bounded.

This does not allow to straightforwardly reduce the Order-type Problem to
Edelman-Jamison Problem.

On the positive side, we introduce the natural notion of a simple convex geom-
etry, for which we can prove:

Theorem 0.2. Given natural number 1, let C(l) be the class of all finite simple
conver geometries of depth < I, and let J(l) be the class of all candidate order-
types whose unique associated convex geometry is in C(l). Then the polynomial
time decidability of the realizability of t € J (1) is equivalent to the polynomial time
decidability of the realizability of (J,—) € C(1).

Here, the depth of the convex geometry indicates the number of its layers. The
first outside layer Ly of geometry C' = (J, —) is just a set of its extreme points. Con-
sidering the restriction of closure operator to J\Lj, one obtains a convex geometry
C1, whose set of extreme points is the second layer L, of C etc.

Two points x,y of the same layer are are called equivalent, if z € {z,u,v} iff
z € {y,u,v}, for any u,v from the same layer. The geometry is called simple, if all
its layers, except innermost, do not have equivalent points.

A candidate order type is a function ¢ : J[3] — {—1,1} for which an associated
convex geometry can be defined. We show that it can be decided in polynomial time
whether a given function ¢ is a candidate order type. Besides, it can be checked in
polynomial time, whether a given convex geometry is simple.
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