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Abstract

The extremely high light intensities produced by lasers and the increasing use of lasers high-

lights the need for measures to prevent damage to materials due to exposure to high intensity

laser light. In particular it necessitates the development of systems to protect optical sensors,

including the human eye. In this work optical limiters were investigated as a system for protect-

ing sensors. An optical limiter transmits ambient light, but absorbs high intensity light. This

makes it ideal for protecting sensors from laser radiation, since it allows the sensor to operate

unhindered at design intensities while protecting it from harmful high intensity radiation.

There are various mechanisms used for optical limiting, and in this work the nonlinear

absorption and the nonlinear index of refraction changes of materials were investigated. A

facility was established to measure the nonlinear optical properties of a variety of materials,

in order to classify them as possible optical limiters. This entailed creating a so called Z-

scan setup, which enabled us to measure the nonlinear absorption coefficient and the nonlinear

index of refraction of a material. The theory and the design of the setup are discussed and

experimental results obtained using this setup are presented.

A wide variety of material types were investigated to show the versatility of the experimental

setup. These included C60, which was analyzed in solution; ZnO which is a crystal; CdS quan-

tum dots in solution; and poly(dioctyl-fluorene), which is a large polymer molecule, in solution.

The materials investigated in this work were chosen based on their known strong nonlinear op-

tical properties. Emphasis was placed on measuring the nonlinear absorption coefficients since

it was the dominant optical limiting effect of the materials under investigation.

The results obtained displayed the same trends as published results and it shows that the

established facility was capable of measuring the nonlinear properties of these samples. The

experimental limitations of the setup were determined, and critical experimental parameters

were identified for measurements of this nature. Improvements to the experimental facility are

suggested to improve the accuracy of future measurements.



Opsomming

Die besonder hoë ligintensiteite wat deur lasers genereer word en die toenemende gebruik

van lasers beklemtoon die noodsaaklikheid vir maatreëls om die beskadiging van materiale

deur blootstelling aan die hoë intensiteit laserlig te bekamp. In die besonder noodsaak dit die

ontwikkeling van sisteme om optiese sensors te beskerm, insluitende die menslike oog. In hierdie

werk word optiese beperkers (”optical limiters”) ondersoek as moontlike sensor beskermers. ’n

Optiese beperker laat lae intensiteit lig deur, maar absorbeer hoër intensiteit lig. Hierdie

eienskap maak beperkers ideale beskermers teen laserlig, omdat die sensors ongehinderd kan

funksioneer by ontwerps-intensiteite terwyl dit die sensor beskerm teen nadelige hoë intensiteit

straling.

Daar is verskeie meganismes wat gebruik kan word vir optiese beperking, en in hierdie werk

word nie-liniêre absorpsie en veranderinge in die nie-liniêre brekingsindeks van materiale onder-

soek as moontlike meganismes. Dit het die opbou van ’n sogenaamde Z-skanderingsopstelling

behels, wat dit moontlik gemaak het om die nie-liniêre absorpsie koëffisiënt en nie-liniêre

brekingsindeks van ’n materiaal te meet. Die teorie en die ontwerp van die opstelling word

bespreek, en die eksperimentele resultate verkry woord voorgestel.

’n Wye verskeidenheid van materiaalsoorte is ondersoek om die veelsydigheid van die op-

stelling ten toon te stel. Dit sluit in C60, wat in oplossing ondersoek is; ZnO wat ’n kristal is;

CdS kwantum ”dots” in oplossing; en poly(dioctyl-fluorene), wat ’n groot polimeer molekule is,

in oplossing. Die materiale wat in die werk ondersoek is, is gekies op grond van hul bekende hoë

nie-liniêre optiese eienskappe. Daar is klem gelê op die meet van nie-liniêre absorpsie koëffisiënte

omdat dit die dominante optiese beperkende effek van die materiale was wat ondersoek is.

Die resultate wat verkry is, is met gepubliseerde waardes vergelyk en dit het daarop gedui

dat die nuut daargestelde fasiliteit geskik is om die nie-liniêre optiese eienskappe van die gekose

materiale vas te stel. Die eksperimentele beperkings van die opstelling is bepaal, en die kritieke

eksperimentele parameters vir die tipe metings is gëıdentifiseer. Verbeteringe aan die eksperi-

mentele fasiliteit, om die akkuraatheid van toekomstige metings te verhoog, word voorgestel.
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Chapter 1

Problem statement and overview

1.1 Introduction and problem statement

Since the advent of the laser in the 1960s, the study of nonlinear optical properties of materials

has become readily accessible. However, along with the laser came all the dangers associated

with high intensity light, including damage to optical sensors like the human eye, range finders

and night vision equipment. This necessitates the protection of these sensors from laser light.

Industry is continually looking for materials that transmit light of low intensities (ambient light)

but absorb harmful high intensity light (laser radiation). These materials are known as optical

limiters. The working of an ideal optical limiter can be seen in Figure 1-1. As the incident

light intensity increases, the transmitted light reaches a threshold value at which point it is

clamped. Optical limiters are gaining in importance as lasers, in both commercial and military

applications, become more commonplace.

When considering a material as an optical limiter, two of the properties that are of particular

interest are the material’s nonlinear absorption coefficient and its nonlinear index of refraction.

Both change the intensity of the light in a nonlinear way as it passes through the medium. By

measuring these nonlinear properties of materials, these materials can be identified as possible

optical limiters.

1



Figure 1-1: A schematic representation of the transmission through an ideal optical limiter.

When considering the processes that contribute to the optical limiting behaviour of a ma-

terial, the process that best attenuates a laser beam, and thus protects an optical sensor, is

nonlinear absorption. The other processes like nonlinear refraction and nonlinear scattering,

to name but two, are merely secondary in importance. This implies that when a material is

identified as a possible optical limiter, it is its nonlinear absorption coefficient that will deter-

mine whether or not it will act as an effective optical limiter. To this end it is necessary to

construct a setup by means of which the nonlinear absorption coefficient can be measured.

1.2 Aim

The aim of this project was two-fold. The first was to conduct a theoretical investigation into

the nonlinear properties of materials and the mechanisms governing these properties. This

investigation focussed on nonlinear absorption and nonlinear refraction. Accompanying this,

a theoretical investigation into the Z-scan technique, used to measure the nonlinear index of

refraction and the nonlinear absorption coefficient, was performed.

The second aim was to establish a Z-scan facility, which would enable the measurement of the

nonlinear absorption coefficients and the nonlinear indices of refraction of a host of materials.

This entailed determining whether the capabilities for performing these measurements could be

established and, if so, to assemble the setup and evaluate it. Particular emphasis was placed on

2



determining the factors that influenced repeatable measurements. This was to ensure that the

setup was reliable and would enable the future investigation of novel materials for evaluation

as possible optical limiters. The scope of the project did not extend to the search for possible

optical limiters, although the versatility of the setup needed to be demonstrated, and this was

done by measuring the nonlinear properties of a range of completely different materials.

3



Chapter 2

Theory of nonlinear optical

processes in matter

For a discussion of nonlinear processes in materials, it is necessary to have a general theoretical

understanding of these processes. In this chapter a concise framework of this theory, starting

from Maxwell’s equations, is presented.

2.1 Theoretical framework for nonlinear light-matter interac-

tions

It is customary to start with Maxwell’s equations when describing any light-matter interaction.

∇×H =
∂D

∂t
(2.1)

∇ ·D = 0 (2.2)

∇×E = −
∂B

∂t
(2.3)

∇ ·H = 0 . (2.4)

In these equations it has been assumed that the surface charge density, σ, and the volume

charge density, ρ, are both zero. It is important to note that the magnetic field, B, and H

are related through B = µ0H, µ0 being the permeability of free space, and that the electric
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field, E, and the electric displacement, D, are related through D(E) = ε0E+P(E), where the

dielectric polarization P(E) is the dipole moment per unit volume, and ε0 is the permittivity

of free space.

Light-matter interactions are usually considered within the framework of the Lorentz model

[1]. In the Lorentz model, the electrons are considered to be bound to the atom in a harmonic

potential. This is equivalent to expressing the polarization of the material as a result of an

electric field as

P(E) = ε0χ
(1)E (2.5)

where χ(1) is the linear susceptibility of the material. This accounts accurately for all linear

phenomena occurring during light-matter interactions. This, however, does not explain the

nonlinear phenomena observed when high intensity light interacts with matter. To explain this,

it is necessary to consider the electron to be bound in a more generalized potential, namely

an anharmonic potential, which is approximated by a harmonic potential at low energies. For

this discussion the approach of Milonni and Eberly [1] is followed. This general potential (see

Figure 2-1) is normally expressed as a power series

V (x) =
1

2
mω20x

2 +Ax3 +Bx4 + · · · (2.6)

in which the first term is the harmonic potential, which dominates the expression for small

displacements, x. This can be obtained in the following way. Whatever the true potential is,

it can be expanded in a Taylor series in the normal fashion

V (x) = V (0) + x

(
dV

dx

)

x=0
+
1

2!
x2
(
d2V

dx2

)

x=0

+
1

3!
x3
(
d3V

dx3

)

x=0

+ · · · (2.7)

about the equilibrium point, x = 0. V (0) is just an additive constant to the total energy and

does not give rise to any force (F = −dV/dx). The constant term can therefore be neglected.

It can be seen from Figure 2-1 that (
dV

dx

)

x=0
= 0 (2.8)
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and that (
d2V

dx2

)

x=0

> 0 . (2.9)

Potential Energy (U)

Radial distance (r)

Figure 2-1: Curves indicating a harmonic potential (solid line) and a generalised potential

(dashed line).

The result is that Equation 2.7 can be rewritten as

V (x) =
1

2
x2
(
d2V

dx2

)

x=0

+
1

6
x3
(
d3V

dx3

)

x=0

+ · · · (2.10)

and since d2V/dx2 > 0, we can define

mω20 ≡

(
d2V

dx2

)

x=0

. (2.11)

In a similar fashion we define

A ≡
1

6

(
d3V

dx3

)

x=0

. (2.12)

This can be done for all the terms in Equation 2.6.

The force on an electron in this potential is given by

F = −
dV

dx
= −mω20x− 3Ax

2
− 4Bx3 − · · · (2.13)

6



which implies

ẍ+ ω20x+
3A

m
x2 +

4B

m
x3 + · · · =

e

m
E (t) (2.14)

when considering Newton’s equations of motion. This is a nonlinear differential equation,

which is generally not possible to solve analytically.

The polarization density, P, is given by

P = Nex̂ (2.15)

where N is the number of molecules per unit volume. Considering potential solutions for

Equation 2.14 and substituting them into Equation 2.15 leads to a power series in E for the

polarization, P [2].

P(E) = ε0(χ
(1)E+ χ(2)EE+ χ(3)EEE+ . . .) (2.16)

The expansion coefficients, χ(n), are tensors (Equation 2.16 therefore represents a tensor

product) and are the dielectric susceptibilities which are intrinsic properties of the material.

As was mentioned, χ(1) is the linear susceptibility. It is a complex number that governs

the linear optical processes in the material, the real part being related to the linear index of

refraction, n, and the imaginary part related to the linear absorption coefficient, α. All the

other χ(n) are the higher order susceptibilities that govern the nonlinear processes. They are

not significant in the linear regime because of their relative strengths. If it is considered that

χ(1) = 1, then the relative strengths of the higher order susceptibilities are typically of the order,

χ(2) ≈ 10−10 cm /V and χ(3) ≈ 10−17 cm2 /V2. It is thus clear that only when the intensity of

the incident light is sufficiently high, do the higher order polarization terms become significant.

In general, all the susceptibilities are tensors. They take account of the polarization of the

incident electric fields relative to the orientation of the medium, since generally the medium is

anisotropic and hence responds differently for different polarization directions of the incident

fields. It is, however, not necessary to consider them as tensors for this discussion, since their

tensor character is not essential for this analysis.

The different orders of susceptibilities govern different processes that occur during light-

matter interaction. The number of waves or photons that partake in an interaction determine

7



which χ(n) describes the interaction. For instance, χ(1) describes two-wave interactions, χ(2)

three-wave, χ(3) four-wave and so forth. A three-wave interaction implies that two waves (with

frequencies ω1 and ω2) enter the medium and one (with frequency ω3) leaves, or one wave enters

the medium and two leave the medium.

Energy, momentum and angular momentum must be conserved during these interactions.

For the above example energy conservation implies that ω3 = ω1 + ω2 or ω3 = ω1 − ω2. In

a degenerate case, ω1 = ω2, as is the case when only a single frequency laser is incident on

the material. This implies that ω3 = 2ω1, and this is known as second harmonic generation.

For a four-wave interaction, three waves are incident on the sample and one exits the sample.

In this case χ(3) describes the interaction. If all the incident waves have the same frequency,

then the exiting wave can have a frequency three times the incident frequency (third harmonic

generation) or equal to the incident frequency (ω4 = ω1 − ω1 + ω1 = ω1). Cases where the

exiting wave and the incident wave are of the same frequency, but a nonlinear process has

occurred, must therefore be described by at least the χ(3) term, and cannot be described by

a lower order term. An example of this is self focussing, which will be discussed in detail in

Section 2.2.

To describe nonlinear light-matter interactions it is necessary to find a solution for Maxwell’s

equations (Equations 2.1 to 2.4), where the nonlinear polarization is now included. It is

customary to separate the linear part from the nonlinear part by rewriting the polarization

(Equation 2.16) in the form

P(E) = ε0(ε1 − 1)E+PNL (2.17)

with ε1 the linear dielectric constant,

(ε1 − 1) = χ(1)

ε1 = χ(1) + 1 (2.18)

and PNL containing all the higher order polarization terms. In this form the electric displace-

ment simply becomes

D(E) = ε0ε1E+PNL . (2.19)

8



Maxwell’s equations, including the nonlinear polarization term, can now be written as

∇×H =
∂

∂t
(ε0ε1E+PNL) = ε0ε1

∂E

∂t
+
∂PNL
∂t

(2.20)

∇×E = −
∂

∂t
(µ0H) = −µ0

∂H

∂t
. (2.21)

In order to solve this set of coupled differential equations, to extract the nonlinear wave equation,

the rotation of Equation 2.21 is considered.

∇×∇×E = ∇×

(
−µ0

∂H

∂t

)

= −µ0
∂

∂t
(∇×H) . (2.22)

Substituting Equation 2.20 into Equation 2.22 yields

∇×∇×E = −µ0
∂

∂t

(
ε0ε1

∂E

∂t
+
∂PNL
∂t

)
. (2.23)

Using the general identity ∇× (∇×E) = ∇ (∇ ·E)−∇2E Equation 2.23 is rewritten as

∇ (∇ ·E)−∇2E = −µ0
∂

∂t

(
ε0ε1

∂E

∂t
+
∂PNL
∂t

)
(2.24)

In general only transverse fields are considered, which implies that ∇ ·E = 0. This simplifies

Equation 2.24 as follows,

∇
2E = µ0

∂

∂t

(
ε0ε1

∂E

∂t
+
∂PNL
∂t

)

∇
2E = ε0µ0ε1

∂2E

∂t2
+ µ0

∂2PNL
∂t2

∇
2E =

ε1
c2
∂2E

∂t2
+

1

c2ε0

∂2PNL
∂t2

∇
2E−

ε1
c2
∂2E

∂t2
=

1

c2ε0

∂2PNL
∂t2

, (2.25)

where the fact that ε0µ0 = c−2, with c being the speed of light in vacuum, is used. Equation

2.25 is known as the nonlinear inhomogeneous wave equation [3]. To obtain a solution of the

nonlinear wave equation, it is assumed that the solution consists of a linear summation of plane
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waves with discrete frequency components. The frequencies of these plane waves are ωj and

the accompanying wave vectors are kj =
n(j)ωj

c
. If it is further assumed that the plane waves

only propagate along the z-axis, then the solutions can be described by [2]

E(z, t) =
1

2




N∑

j=1

Ej(z, t)e
i(kjz−ωjt) + c.c.



 (2.26)

where c.c. refers to the complex conjugate of the first term and describes the waves travelling

in the negative direction. In a completely analogous fashion [2] the nonlinear polarization can

be written as

P(z, t) =
1

2




N∑

j=1

Pj(z, t)e
−iωjt + c.c.



 . (2.27)

Since the complex conjugate terms only describe waves travelling in the negative direction,

they do not yield any additional information. They are therefore discarded in the rest of the

discussion. Taking the second order spatial derivative of the electric field and the second order

temporal derivative of both the electric field and nonlinear polarization yields

∂2

∂z2
E(z, t) =

1

2

N∑

j=1

(
∂2Ej

∂z2
+ 2ikj

∂Ej

∂z
− k2jEj

)

eikjze−iωjt (2.28)

∂2

∂t2
E(z, t) =

1

2

N∑

j=1

(
∂2Ej

∂t2
− 2iωj

∂Ej

∂t
− ω2jEj

)

eikjze−iωjt (2.29)

∂2

∂t2
PNL(z, t) =

1

2

N∑

j=1

(
∂2PNLj

∂t2
− 2iωj

∂PNLj

∂t
− ω2jPNLj

)

e−iωjt . (2.30)

Considering the electric field and the induced nonlinear polarization field, and assuming

that spatially and temporally the amplitude changes very slowly, at least compared to the

frequency of the plane wave, the following assumption can be made:

∂2Ej

∂t2
� ωj

∂Ej

∂t
� ω2jEj (2.31)

∂2Ej

∂z2
� kj

∂Ej

∂z
� k2jEj (2.32)

∂2PNLj

∂t2
� ωj

∂PNLj

∂t
� ω2jPNL . (2.33)
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This assumption is known as the ”slowly varying envelope approximation”(SVEA) [1]. The

validity of the SVEA for the nonlinear polarization can be seen when considering the relative

time scales. Light in the visible spectrum has a frequency of approximately ωj ≈ 1015Hz.

The time it takes to polarize the medium is roughly tp ≥ 10−12 s. This has the result that

the second order spatial and temporal derivatives of the amplitude of the electric field and

the first and second order temporal derivative of the nonlinear polarization can be neglected

under the SVEA. Combining the nonlinear inhomogeneous wave equation (Equation 2.25) with

Equations 2.28, 2.29 and 2.30, and taking these omissions into account, yields

1

2

N∑

j=1

(
2ikj

∂Ej
∂z

− k2jEj−
εj
c2

[
−2iωj

∂Ej
∂t

− ω2jEj

])
ei(kjz−ωjt)

=
1

2

1

c2ε0

N∑

j=1

(
−ω2jPNLj

)
e−iωjt (2.34)

which can be further simplified by noting that k2j =
εjω

2

j

c2 . This yields

N∑

j=1

(
2ikj

∂Ej
∂z

+2i
εj
c2
ωj
∂Ej
∂t

)
eikjz =

−1

c2ε0

N∑

j=1

ω2jPNLj . (2.35)

This holds true for each of the frequency components and thus, keeping in mind that nj =
√
εj

and kj =
njωj
c , it follows that

∂Ej
∂z

+
nj
c

∂Ej
∂t

= i
ωj
cnj

1

2ε0
PNLje

ikjz . (2.36)

Equation 2.36 is then the well known, so-called nonlinear wave equation. It provides a

framework for describing all the nonlinear light matter interactions. Two such interactions,

self focussing and nonlinear absorption, will be described in some detail.

2.2 Self focusing (nonlinear refraction)

Self focusing is a nonlinear process. Since it is the fundamental laser beam that is influenced,

it cannot be a three-wave interaction, but must be at least a four-wave interaction, as was

shown in Section 2.1. In this analysis only a four-wave interaction will be considered since it
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is the dominant interaction in the case of self focusing [1]. This implies that the χ(2) term in

Equation 2.16 will play no part during self focusing and can thus be neglected. Equation 2.16

will now read as follows

P(E) = ε0(χ
(1)E+ χ(3)EEE+ . . .) (2.37)

which can be rewritten as

P(E) =
ε0
2
(χ(1) + χ(3) |E|2 + . . .)E . (2.38)

Considering the bracket term to be the field-dependent susceptibility and disregarding the

χ(4) and higher terms, then analogously to the case of linear polarization (Equation 2.5), the

nonlinear polarization can be written as

P(E) =
ε0
2
χ
(
|E|2

)
E (2.39)

with

χ
(
|E|2

)
= χ(1) + χ(3) |E|2 . (2.40)

It was shown (Equation 2.18) that ε1 = χ(1) + 1. It is known [1] that the linear index of

refraction, n0, relates to the dielectric constant through

n0 =
√
ε1 (2.41)

for the case of negligible absorption, which implies that

n20 = χ(1) + 1 . (2.42)

This implies that the refractive index, n, can analogously be written as

n2 = 1 + χ
(
|E|2

)
(2.43)

and thus

n =
(
1 + χ(1) + χ(3) |E|2

) 1
2 . (2.44)
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Using Equation 2.42 yields

n =
(
n20 + χ(3) |E|2

) 1
2

= n0

(

1 +
χ(3) |E|2

n2
0

) 1

2

≈ n0 +
χ(3) |E|2

2n2
0

≡ n0 +
n2
2
|E|2 (2.45)

and hence

n = n0 + n2 〈E ·E〉 = n0 +∆n (2.46)

with n2 being the nonlinear index of refraction

Self focusing can be easily understood, keeping in mind Equation 2.46, where it is shown

that the refractive index is a function of the square of the electric field. This implies that the

change in the refractive index, ∆n, is a function of the intensity, I(r).

∆n ∝ I(r) (2.47)

Figure 2-2: Self focusing of a Gaussian beam.

Considering incident laser light with a Gaussian intensity distribution, the intensity in the

nonlinear material is higher in the centre of the pulse than in the flanks of the pulse. The result

is that the change in the refractive index of the material will be greater in the centre of the

pulse than in the flanks, which results in a greater phase change, ∆φ(∆n), of the laser pulse in

the centre than in the flanks. The result is that the material will act as a lens. This effect is

illustrated in Figure 2-2. The sign of the nonlinear index of refraction will determine whether
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focusing (n2 > 0) or defocusing (n2 < 0) will occur. Usually one distinguishes between weak

self focusing and catastrophic self focusing, the difference being that in the first case the focus

is outside the medium and in the second case it is within the medium.

2.2.1 Conditions for self focusing

To obtain an understanding of the conditions required for self focusing to occur, a summary

of the discussion presented by Milonni and Eberly in their book ”Lasers” [1] will be presented

here. The wave equation for the electric field (E = E0e
−iωt), with the index of refraction given

by Equation 2.46, is considered

∇
2E−

n2

c2
∂2E

∂t2
≈ ∇

2E−
1

c2

(
n20 + 2n0n2E

2
) ∂2E
∂t2

= 0 (2.48)

with the approximation that n2 � n0. In the paraxial approximation [1] and averaging over

an optical period (which results in replacing E2 by 1

2
|E0|

2) the result is

∇
2

TE0+2ik
∂E0
∂z

+
k2n2
n0

|E0|
2E0 = 0 (2.49)

where k = n0ω/c and ∇
2

T =
∂2

∂x2
+ ∂2

∂y2
is the transverse Laplacian. The ∇2TE0 describes how

the beam changes perpendicular to the propagation direction and thus the beam spreading

(diffraction) that occurs. Since it describes how the beam changes perpendicular to the prop-

agation direction, it is dependent on the beam size or rather the beam cross section. In other

words, beam spreading can be considered to be dependent on the beam cross section [1]. If

the cross section is characterized by radius a0, then

∇
2

TE0 ∼ a−2
0
E0 . (2.50)

The k2n2
n0

|E0|
2E0 term is the intensity dependent part which describes the self focusing. Self

focusing can compete with diffraction if k
2n2
n0

|E0|
2E0 is comparable to ∇

2

TE0, that is if

k2n2
n0

|E0|
2E0 ∼ a−2

0
E0 (2.51)
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or

a20 |E0|
2
∼

n0
k2n2

. (2.52)

The beam intensity, I, is related to the square of the electric field through I = (n0cε0/2) |E0|
2.

The power, P , is related to the product of the intensity and the cross section of the beam. Using

Equation 2.52 the critical beam power that is necessary to overcome the diffractive spreading

of the beam is of the order

Pcr ∼
(
πa20

)
I =

πn0cε0
2

a20 |E0|
2

=
πn0cε0
2

n0
k2n2

=
πn2

0
cε0

2k2n2

=
cε0λ

2

8πn2
. (2.53)

This approximation is in good agreement [1] with numerical integration of the nonlinear

partial differential Equation 2.49. It can be seen that it is the beam power that must exceed a

certain threshold for self focusing and not the beam intensity. A beam with power less than Pcr

will not undergo self focusing even if it is focussed tighter [1]. The reason for this is that the

diffractive spreading increases as the beam diameter is reduced, counteracting the self focusing.

2.3 Nonlinear absorption

When considering absorption, the well known Beer’s law is applicable to linear absorption

I(z) = I0e
−α(ω)z (2.54)

where I0 is the incident intensity, α(ω) is the linear absorption coefficient, z is the propagation

depth in the absorbing medium and I(z) is the intensity at depth z. Beer’s law is merely the

solution of the differential equation that describes how light intensity decreases with propagation

depth in a medium for the case where α is a constant,

∂I

∂z
= −α(ω)I . (2.55)
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If nonlinear (multi-photon) effects are to be included then this differential equation must be

extended to include higher order intensity terms [4],

∂I

∂z
= −α(ω)I − β(ω)I2 − γ(ω)I3 −O(I4) (2.56)

where β(ω) is the two-photon absorption coefficient, γ(ω) is the three-photon absorption coef-

ficient and O(I4) represents the four-photon and higher absorption terms.

If a material displays negligible linear absorption and two-photon absorption dominates,

then only the second term on the right of Equation 2.56 needs to be considered and the other

terms can be disregarded. This implies that only

∂I

∂z
= −β(ω)I2 (2.57)

needs to solved. This can be done by separation of variables [4] which yields

I(z) =
I0

1 + βI0z
(2.58)

where I0 is again the incident intensity, β the two-photon absorption coefficient and z the

distance that the light has travelled in the sample. It can clearly be seen from Figures 2-3

and 2-4 that two-photon absorption results in much stronger absorption and thus more beam

attenuation. This is as a result of the intensity dependent nature of nonlinear absorption.
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Figure 2-3: A schematic graph depicting linear absorption, z being the depth in the sample

(I0 = 10, α = 0.2).
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Figure 2-4: A schematic graph depicting pure two-photon absorption, z being the depth in the

sample (I0 = 10, β = 0.2).
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Chapter 3

The Z-scan as analysis technique

There are numerous techniques for measuring the nonlinear index of refraction and the nonlinear

absorption coefficient of materials. The Z-scan is amongst the simplest and most sensitive of

these techniques. The basic Z-scan technique has been described by Mansoor Sheik-Bahae et al

[5][6] and a brief summary of the theory of the technique is presented here. The most important

aspects to be considered for an experimental setup, along with some of the constraints that need

to be placed on the design of the setup, will be highlighted.

3.1 The Z-scan

The Z-scan works on the principle of moving the sample under investigation through the focus

of a tightly focussed Gaussian laser beam. The interaction of the medium with the laser light

changes as the sample is moved. This is because the sample experiences different intensities,

dependent on the sample position (z) relative to the focus (z = 0). By measuring the trans-

mitted power (the transmittance) through the sample as a function of z-position of the sample,

information about the light-matter interaction can be extracted. The two nonlinear interac-

tions that can be determined in this fashion are the sample’s nonlinear index of refraction and

nonlinear absorption coefficient. For the measurement of the nonlinear index of refraction an

aperture is placed in front of the detector measuring the transmitted light. This makes the

measurement sensitive to beam spreading or focusing and relates to a transformation of phase

distortion into amplitude distortion. The basic setup can be seen in Figure 3-1. In the figure,
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Figure 3-1: The basic Z-scan setup.

BS is a beamsplitter, D1 is the reference detector, D2 the probe detector and the sample is at

position z. An aperture is placed in front of the probe detector when measuring the nonlinear

index of refraction.

A sample displaying nonlinear refraction will act as a lens of variable focal length as it

is moved along the z-axis. An example of this is the following: Consider a material with

a negative nonlinear index of refraction and a thickness less than the diffraction length (also

known as the Rayleigh length, z0) of the focussed laser beam. (The reason for this limitation

is explained in Section 3.2.) The sample exhibits negligible nonlinear refraction when it is far

from the focus, because of the low intensity of the laser beam at this position. As the sample

is moved towards the focus it starts acting as a negative lens, collimating the beam and shifting

the waist of the laser beam. The result is a smaller spot size at the aperture placed in front

of the detector, and thus a higher transmittance through the aperture (see Figure 3-2). This

effect increases as the sample is moved towards the focus due to the intensity increase. A

maximum transmittance through the aperture will occur when the sample is just in front of the

focus. This maximum in transmittance (peak) will drop to a minimum (valley) as the sample

is moved further and the beam diverges as a result of the negative lensing by the sample. The

transmittance through the aperture will again return to the linear value as the sample is moved

further from the focus. The result of a scan such as this is a transmittance versus position
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graph which has a peak followed by a valley. When the sample has a positive nonlinear index

of refraction, the graph is inverted. This is illustrated in Figure 3-3.

Figure 3-2: Illustration of the influence on the spot size of a Gaussian beam as a result of an in-

teraction with a sample having a negative nonlinear index of refraction. (green = unattenuated

beam, blue = sample before focus, red = sample after focus)

Figure 3-3: Traces showing the transmittance through a sample with a positive or a negative

nonlinear index of refraction (γ).

The sign of the nonlinear index of refraction of a sample is thus immediately clear from the

shape of the graph. It is important to note that in most cases nonlinear refraction does not

occur on its own, but usually in conjunction with nonlinear absorption. This implies that the
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data from a Z-scan will contain both nonlinear refraction and nonlinear absorption. To extract

the nonlinear index of refraction it is necessary to perform a Z-scan with the aperture removed,

in order to measure the total transmittance of the sample. The measured transmittance is then

independent of nonlinear refraction and only dependent on nonlinear absorption. It will be

shown in the following paragraphs that the data from such a Z-scan with the aperture removed,

when plotted, forms a valley that is symmetric around the focus (see Figure 3-4). This open

aperture Z-scan is used to determine the nonlinear absorption coefficient. The nonlinear index

of refraction can be obtained by dividing the data obtained from the Z-scan with the aperture

in place by the data obtained from the open aperture Z-scan The data from these two scans

as well as the result of dividing the two sets of data by each other can be seen in Figure 3-4.

Figure 3-4: A) A closed aperture Z-scan, B) an open aperture Z-scan and C) the result of

dividing the closed aperture Z-scan by the open aperture Z-scan.
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3.2 Theory

The theory of the Z-scan was developed by Mansoor Sheik-Bahae et al [5][6]. The following

sections on nonlinear refraction and nonlinear absorption are adapted from the existing theory.

Any assumptions and simplifications are taken from this theory.

3.2.1 Nonlinear refraction

The general theory on which the Z-scan is based is merely a specific case of the theory of the

nonlinear light-matter interaction discussed in Chapter 2. For the analysis of the Z-scan, a

TEM00 Gaussian beam, with associated electric field, E(r, t, z), will be considered interacting

with the sample. The procedure followed in deriving the relevant equations describing the data

obtained from a Z-scan can be explained by the following steps (see also Figure 3-5): (i) The

properties of the Gaussian beam, E(r, t, z), will be described at the sample position, z, relative

to the focus (z = 0). (ii) The sample introduces a phase shift, ∆φ(r, t, z, L), due to nonlinear

refraction. The properties of the Gaussian beam exiting the sample, Ee (r, t, z), will then be

described. (iii) This Gaussian beam will then be allowed to propagate a distance d through

free space up to the aperture plane where, again, its properties (Ea (r, t, z)) will be described.

(iv) Lastly, the transmittance through the aperture, T (z), will be calculated.

Figure 3-5: A schematic representation of the Gaussian beam’s interaction with the sample.

The lettering and numbering correspond to those in the text.
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(i) Gaussian beam at the sample

The electric field, E(r, t, z), of a Gaussian beam with a waist radius w0, propagating in the +z

direction at a distance z from the waist, can be written as

E(r, t, z) = E0(t)
w0
w (z)

. exp

(

−
r2

w2 (z)
−

ikr2

2R (z)

)

e−iφ(z,t) (3.1)

where the beam radius w (z) is related to the z-position through w2(z) = w2
0

(
1 + z2

z2
0

)
, the

radius of curvature of the wavefront at z is given by R (z) = z
(
1 +

z2
0

z2

)
, z0 = kw2

0
/2 is known

as the Rayleigh length or diffraction length of the beam, k = 2π/λ is the wave vector, and λ is

the laser wavelength, all in free space. E0 (t) contains the temporal envelope of the laser pulse

and denotes the radiation electric field at the waist.

The phase variations that are independent of r are contained in the e−iφ(z,t) term. For the

following discussion, only the radial phase variations, ∆φ (r), are of interest and hence all the

phase changes that are uniform in r are not considered in the discussion. Hence the e−iφ(z,t)

term is omitted in the subsequent analysis.

(ii) Introducing the phase shift

As was mentioned earlier, in the analysis of the Z-scan it is necessary to consider the index

of refraction of the sample to not only include the linear index of refraction, but to also be

dependent on the nonlinear indexes of refraction, n2 (esu) or γ (m
2/W), through

n = n0 +
n2
2
|E|2 = n0 + γI = n0 +∆n (3.2)

where n0 is the linear index of refraction, E is the electric field (cgs) and I is the intensity (MKS)

of the laser beam within the sample (n2 and γ are related through n2(esu) =
cn0
40πγ(m

2 /W)).

For the analysis it is necessary that the sample be considered ”thin” [5]. The sample under

investigation can be considered as such if the sample length (L) is small enough that changes

in beam diameter within the sample, due either to diffraction or nonlinear refraction, can be

ignored. This allows one to consider the interaction between the laser pulse and the sample to

happen at only one position, and not to be spread out over the entire interaction length. In
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this case the self refraction is called ”external self-action” [5]. For diffraction this implies that

L << zo, while for nonlinear refraction L << z0/∆φ(0) [5]. In most Z-scan experiments the

second criterion has been found to be automatically met since ∆φ(0) is usually small [5]. It

has been found experimentally that the first criterion placed on the linear diffraction is more

restrictive than it needs to be and that L < z0 is sufficient [5]. This assumption simplifies the

problem and if the interaction is now considered in the SVEA, which was discussed in Section

2.1, the following differential equations hold true:

d∆φ(r, t, z, L)

dz′
= ∆n (I) k (3.3)

and
dI

dz′
= −α (I) I (3.4)

with z′ the propagation depth in the sample and where α(I) includes both the linear and

nonlinear absorption terms. These equations govern the Gaussian beam propagation through

the sample, since the propagation of a Gaussian beam is described by its phase and amplitude.

Equations 3.3 and 3.4 can be solved [5], when negligible nonlinear absorption and only a cubic

nonlinearity is considered, to yield the phase shift ∆φ at the exit surface of the sample, namely

∆φ(r, t, z, L) = ∆φ0(t, z, L) exp

(

−
2r2

w2 (z)

)

(3.5)

with

∆φ0(t, z, L) =
∆Φ0(t, L)

1 + z2

z2
0

(3.6)

and Φ0(t), the on-axis phase shift at the waist, defined as

∆Φ0(t, L) = k∆n(t)Leff , (3.7)

where Leff =
1−e−αL

α with L the sample length, and α the linear absorption coefficient. Here

∆n(t) = γI0(t) with I0(t) the on-axis intensity at the focus (z = 0) in the sample since Fresnel

reflection losses have been ignored. If the phase shift that the sample created is now included
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in the equation, describing the Gaussian beam,

Ee (r, t, z, L) = E (r, t, z) e−αL/2ei∆φ(r,t,z,L) (3.8)

is obtained. Since the dependence on L is inherent in the specific setup, the dependence will

be omitted in the rest of the discussion:

Ee (r, t, z) = Ee (r, t, z, L) . (3.9)

(iii) Propagation of Gaussian beam through free space

By using the complex electric field exiting the sample,

Ee (r, t, z) = E (r, t, z) e−αL/2ei∆φ(r,t,z) , (3.10)

it is possible to obtain the far-field pattern of the beam at the aperture plane using the Huygens

principle, by performing a zeroth-order Hankel transformation of Ee. This is a complicated

mathematical procedure and a much simpler approach, namely Gaussian Decomposition (GD),

as given by Weaire et al [7] and implemented by Sheik-Bahae et al [5], will be followed here.

In this approach the complex electric field at the exit plane of the sample is decomposed into a

summation of Gaussian beams through a Taylor series expansion of the nonlinear phase term.

The reason for this approach is that generally only small phase changes are considered, which

implies that only the first few terms of the Taylor expansion need to be considered.

ei∆φ(z,r,t) =

∞∑

m=0

[i∆φ0 (z, t)]
m

m!
e−2mr

2/w2(z) (3.11)

In this approach each Gaussian beam is propagated individually to the aperture plane where

they are resummed to reconstruct the beam. The resultant field pattern at the aperture (Ea),

taking the initial beam curvature for the focused beam into account, can be derived [5] as

Ea (r, t) = E (z, r = 0, t) e−αL/2
∞∑

m=0

[i∆φ0 (z, t)]
m

m!

wm0

wm
· exp

(

−
r2

w2m
−
ikr2

2Rm
+ iθm

)

. (3.12)
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If we consider d to be the propagation distance in free space from the sample to the aperture

plane and g = 1 + d/R(z), R(z) being the radius of curvature, then the remaining parameters

in 3.12 can be expressed as

w2m0 =
w2 (z)

2m+ 1
(3.13)

w2m = w2m0

[

g2 +
d2

d2m

]

(3.14)

Rm = d

[
1−

g

g2 + d2/d2m

]
−1

(3.15)

θm = tan−1
[
d/dm
g

]
(3.16)

dm =
kw2m0
2

. (3.17)

(iv) Transmittance through the aperture

The transmitted power PT (∆Φ0(t)) through the aperture is obtained by spatially integrating

3.12 up to the aperture radius ra, which yields [5]

PT (∆Φ0(t)) = cε0n0π

∫ ra

0

∣∣∣Ea(r,t)
∣∣∣
2

rdr (3.18)

with ε0 the permittivity of vacuum. Including the temporal variation of the pulse, the nor-

malised Z-scan transmittance can be calculated as

T (z) =

∫
∞

−∞
PT (∆Φ0(t)) dt

S
∫
∞

−∞
Pi (t) dt

(3.19)

where Pi(t) = πw2
0
I0(t)/2 is the instantaneous input power (within the sample),

S = 1 − exp
(
−2r2a/w

2
a

)
is the linear transmittance through the aperture and wa is the beam

radius of the beam at the aperture.

For further analysis a steady state result is considered which implies an instantaneous non-

linearity and a temporally square pulse. This is equivalent to considering CW radiation. This

will later be expanded to include pulsed radiation. It is important to note that for a given ∆Φ0,

the magnitude and shape of T (z) does not depend on the geometry or the wavelength, as long

as the far-field condition for the aperture plane, namely d >> z0, is satisfied. An important

26



parameter in the Z-scan is the aperture size S, since a large aperture reduces the variations

in T (z). For a very large or no aperture (S = 1), these variations disappear altogether and

T (z) = 1, independent of the z-position or ∆Φ0.

For analysis purposes matters are simplified by defining an easily measurable quantity ∆Tp-v

(see Figure 3-6) as the difference between the normalised peak and valley transmittance. The

variation of this quantity as a function of |∆Φ0| can be calculated and it can be shown that this

dependence is almost linear for a specific aperture size. Furthermore, this value is independent

of the geometry or laser wavelength. This dependence can be described [5], to within a ±2%

accuracy, to be

∆Tp-v � 0.406(1− S)0.25 |∆Φ0| (3.20)

for

|∆Φ0| ≤ π . (3.21)

Equation 3.20 allows us to readily determine the nonlinear index of refraction to within very

good accuracy. One of the important things evident from this analysis is that the limitation on

the accuracy of the nonlinear index of refraction is only determined by the experimental setup

and the optical quality of the sample under investigation, since these usually introduce errors

greater than 2%.

Figure 3-6: A graph illustrating the meaning of ∆Tp−v.

It is now possible to expand this analysis to include the transient effects induced by pulsed
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radiation by merely using the time-averaged index of refraction change 〈∆n(t)〉 where

〈∆n(t)〉 =

∫
∞

−∞
∆nI0(t)dt∫

∞

−∞
I0(t)dt

. (3.22)

Considering a nonlinearity having an instantaneous response and decay time relative to the

pulse width of the laser, for a temporally Gaussian pulse the following relation can be obtained,

〈∆n(t)〉 = ∆n/
√

2 (3.23)

where ∆n represents the peak-on-axis index change at the focus. 〈∆Φ0(t)〉 is related to 〈∆n(t)〉

through Equation 3.7.

All these equations were obtained by considering a third-order nonlinearity. It is possible

to deal with higher-order nonlinearities in a similar fashion [6]. For higher nonlinearities one

expects similar quantitative features from a Z-scan. Considering a fifth-order nonlinearity, χ(5),

which occurs in semiconductors where the index of refraction is influenced by charge carriers

generated through two-photon absorption (a sequential χ(3) : χ(1) effect), the nonlinear index of

refraction change is only represented by ∆n = ηI2. Following the same steps, a result similar

to the one obtained for a third-order nonlinearity is obtained [5], namely

∆Tp-v � 0.21(1− S)0.25 |∆Φ0| . (3.24)

3.2.2 Nonlinear absorption

As was mentioned earlier (Section 3.1), a Z-scan can also be used to determine the nonlinear

absorption coefficient. For this measurement, the aperture is removed, making the scan insen-

sitive to nonlinear refraction. It should be clear that the transmittance versus sample position

graph of such an open aperture Z-scan should be symmetric around the focus since the inten-

sity distribution of a Gaussian beam is symmetric around the focus. In the following analysis

only two-photon absorption (2PA) is considered. This implies that it is still the third-order

nonlinear susceptibility which governs the nonlinear absorption since the third-order nonlinear
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susceptibility can be considered to be a complex quantity,

χ(3) = χ
(3)
R + iχ

(3)
I , (3.25)

with the imaginary part related to the 2PA coefficient, β, through

χ
(3)
I =

n20ε0c
2

ω
β , (3.26)

ω being the optical frequency, and the real part is related to the nonlinear index of refraction,

γ, through

χ
(3)
R = 2n20ε0cγ . (3.27)

In the preceding section where nonlinear refraction was considered, negligible nonlinear

absorption was assumed. Now Equations 3.4 and 3.3, shown here again as Equations 3.29 and

3.30, must be re-examined with the following substitution taken into account

α(I) = α+ βI (3.28)

d∆φ(r, t, z, L)

dz′
= ∆n (I) k (3.29)

dI

dz′
= −α (I) I . (3.30)

The solutions of these differential equations [6] yield the irradiance distribution and phase shift

of the laser beam at the exit surface of the sample as

Ie (z, r, t) =
I (z, r, t) e−αL

1 + q (z, r, t)
(3.31)

∆φ(z, r, t) =
kγ

β
ln [1 + q(z, r, t)] (3.32)

with q(z, r, t) = βILeff, where z is again the sample position with respect to the focus, β

is the nonlinear absorption coefficient and Leff is again the effective length of the sample,

Leff =
1−e−αL

α
, with α the linear absorption coefficient and L the actual length of the sample.

By using Equations 3.31 and 3.32 the complex electric field at the exit surface of the sample
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can be determined,

Ee = E(z, r, t)e−αL/2 (1 + q)(
ikγ
β
−
1

2
) . (3.33)

Equation 3.33 reduces to Equation 3.10 in the limit where no two-photon absorption occurs.

Generally [6], a zeroth order Hankel transform of Equation 3.33 will give the field distribution

at the aperture, which can be used in Equations 3.18 and 3.19 to yield the transmittance. If

only values of q such that |q| < 1 are considered, a binomial expansion of Equation 3.33 can be

done in powers of q, resulting in an infinite sum of Gaussian beams, similar to what was done

for the purely refractive case. This yields

Ee = E(z, r, t)e−αL/2
∞∑

m=0

q(z, r, t)m

m!
·

[
∏

n=0

(ikγ/β − 1/2− n+ 1)

]

(3.34)

where the Gaussian spatial profiles are implicit in q(z, r, t) and E(z, r, t). The complex field

pattern at the aperture plane can be obtained in the same manner as was previously done. The

result can again be represented by 3.12 as long as the (i∆φ0 (z, t))
m /m! terms are substituted

by

fm =
(i∆φ0 (z, t))

m

m!

m∏

n=0

(
1 + i (2n− 1)

β

2kγ

)
(3.35)

with f0 = 1. It should be noted that the coupling factor β/2kγ is the ratio of the imaginary

to real parts of the third-order nonlinear susceptibility, χ(3).

The Z-scan transmittance variations can now be calculated in the same manner as was done

previously. From Equation 3.35 it can be seen that absorptive and refractive contributions

to the far-field beam profile, and thus to the Z-scan transmittance, are coupled. With the

aperture removed the Z-scan transmittance is insensitive to nonlinear refraction and is thus

only a function of the nonlinear absorption. It is thus sufficient to spatially integrate Equation

3.31 for the case of no aperture (S = 1), excluding the free-space propagation process.

Integrating Equation 3.31 at z over r, we obtain the transmitted power as

P (z, t) = Pi(t)e
−αL ln [1 + q0(z, t)]

q0(z, t)
(3.36)
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with

q0 =
βI0Leff

1 + z2

z2
0

(3.37)

and with Pi(t) defined as it was in Equation 3.19. Assuming a Gaussian pulse, then Equation

3.36 can be time integrated to give the normalised energy transmittance as

T (z) =
1

√
πq0(z)

∞∫

−∞

ln
[
1 + q0(z)e

−τ2
]
dτ . (3.38)

For |q0| < 1 the transmittance function can be rewritten in a form more suitable to numerical

analysis, namely

T (z) =
∞∑

m=0

[−q0(z)]
m

(m+ 1)
3

2

. (3.39)

The nonlinear absorption coefficient, β, can be determined unambiguously by fitting this

function to the transmittance data obtained from an open aperture Z-scan . Having found β,

γ can be determined from the Z-scan with the aperture in place. This formulation, however,

puts some restrictions on the experiment. The fact that |q0| < 1 results in a limitation on the

level of nonlinear absorption for which this numerical analysis is possible. This can be seen

from Figure 3-7.

Figure 3-7: A graph depicting the lowest possible useful transmittance for numerical analysis.

31



If higher absorbancies need to be considered, it becomes necessary to fit the temporal

integral, Equation 3.38, to the data. The advantage of using Equation 3.39 is that it is not

necessary to compute a large number of terms in the sum as the series converges relatively

quickly. This can be seen if one considers Figure 3-8, which depicts the value of T (z) versus

m for q0(z) = 0.99. The fluctuations in T (z) increase with larger q0 and hence the choice of

q0(z) = 0.99.
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Figure 3-8: A schematic representation of how T (z) varies with m, showing the quick conver-

gence.

In conclusion, it is useful to notice that the assumptions that were made throughout this

theory, translates into the assumption that the nonlinear absorption and nonlinear refraction

occur completely independent of each other. This enables the extraction of the purely refractive

Z-scan data from the closed aperture Z-scan, which contains the effects of both nonlinear

absorption and nonlinear refraction, by dividing the data from the closed aperture Z-scan by

the data from the open aperture Z-scan, as was explained at the end of Section 3.1.
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Chapter 4

Experimental setup and

considerations of the Z-scan

technique

4.1 Refinement of experimental setup

A brief account is now given of how the basic Z-scan setup, as depicted in Figure 3-1, was

expanded to become a useful laboratory facility with which practically any sample can be

investigated.

Initial measurements were conducted using a very rough setup. This was done for the

purpose of merely determining whether the nonlinear effects were clearly visible and easily

measurable. The only component that remained the same in the final setup was the laser

used, namely a pulsed Dye laser, the specifications of which is given in the Appendix. During

these initial measurements an optical rail was used as translation stage and the sample was

moved manually. This limited the accuracy and introduced alignment errors as a result of

vibrational instability in the setup. The probe and reference energy were measured by two

pyro-electric detectors. This limited the lower range of the energy that could be used as

these detectors were not very sensitive in the microjoule range. Data acquisition was also

performed manually, which was extremely laborious and time consuming. These measurements
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did however prove that the setup worked in principle and that the nonlinear effects were clearly

visible. These measurements highlighted the important areas to concentrate on and indicated

what needed to be improved to enable more accurate measurements to be made. From these

initial measurements the following systematic improvements were made:

(i) Detectors

The pyro-electric detectors were replaced by large area photodiodes (Thorlabs FDS1010). This

vastly increased the sensitivity of the measurements. The photodiodes did, however, have a

problem with saturation and care needed to be taken to avoid this. To this end, both detectors

were shielded by neutral density filters.

(ii) Translation stage

The scanning of the sample was also improved by placing the sample on an automated trans-

lation stage. This improved the precision with which the sample could be moved and also

eliminated some of the problems that were experienced with vibration and misalignment. The

implementation of the automatic translation stage required the manufacturing of a stepper

motor controller and the writing of control software.

(iii) Data acquisition

Lastly, the data acquisition was automated. This eliminated any user error and increased the

speed of a scan. A data acquisition card (the details of which can be found in the Appendix) was

installed and used to capture the data from the detectors. Customized software was developed

and tested to handle the automated data acquisition. One of the factors that needed to be

considered was that the large area photodiodes produced very fast (∼ 40 ns) pulses, too fast for

the data acquisition card to capture. This necessitated the use of extra electronic components

to convert these pulses to signals that the data acquisition card could handle. For this purpose,

two boxcar integrators (Stanford Research Systems SR250) were used to capture the peak values

of the electrical pulses that the two photodiodes produced and to convert them to DC signals.

The data acquisition card could easily sample DC signals.
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Each of the abovementioned improvements increased the reproducibility of consecutive mea-

surements and the reliability of the measurements. The systematic refinement was an iterative

process, resulting in the final setup which can be seen in Figure 4-1. It is explained in Section

4.2.

4.2 Experimental setup

The basic Z-scan setup (Figure 3-1) was expanded to incorporate the improvements explained

in Section 4.1. The expanded setup can be seen in Figure 4-1.

Figure 4-1: The final Z-scan setup used in the experiments.

The experimental setup can be explained as follows: An XeCl Excimer laser (Lambda

Physik EMG 101 MSC) (λ = 308nm) was used to pump a Dye laser (Lambda Physik FL3001) (λ

tunable). The setup was designed to also be used with a frequency tripled Nd:YAG (Continuum

Powerlite) (λ = 355nm) pumped Optically Pumped Parametric Oscillator (OPPO) (Lambda

Physik Scanmate OPPO) which provides easier tunability and thus greater versatility. The Dye

laser beam was attenuated using different neutral density filters (NDF) to obtain the desired

energy for the measurements. The beam then passed onto two mirrors (M1 and M2), used for

laser alignment. Next the beam passed through two apertures (A1 and A2), used to improve

the beam shape. (This will be expanded on in Section 4.3.1.) A beamsplitter (BS) was inserted

into the beam to split the beam in two. The weaker part went to the reference detector, a large

area photodiode (LAPD1), after passing through another neutral density filter (NDF), which
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prevented the detector saturating. The main part of the beam was then focussed by a lens

(L) onto the sample that was placed on an automatic translation stage (TS). The transmitted

beam then passed through another neutral density filter (NDF), again to avoid saturation of

the detector, before going to the probe detector, another large area photodiode (LAPD2). An

aperture (A3) was placed in front of the probe detector for the nonlinear index of refraction

measurements (closed aperture Z-scans).

As was mentioned in Section 4.1, the signals from the large area photodiodes were extremely

short (∼ 40 ns) and it was thus impossible to capture these signals with normal analog to digital

(A2D) data acquisition cards. This necessitated the conversion of these short signals to signals

that the A2D card could measure. This conversion was done by first feeding these quick signals

into boxcar integrators (BC1 and BC2). The boxcar integrators operated on the principle that

they select a part of an electrical pulse and output the time-integrated value of that part of the

pulse as a DC signal.

The part of the pulse that is integrated can be chosen as well as the integration duration.

This allows one to capture the peak values of the fast pulses from the large area photodiodes

and to feed the generated DC signals to a normal A2D data acquisition card that is housed

in the personal computer (PC). A further advantage of using the boxcar integrators is that,

because the part of the pulse that is integrated is chosen, electromagnetic noise that is on top

of the signal can be eliminated. By merely selecting a part of the pulse that clearly contains

hardly any noise, a much more stable signal is achieved, with an improved signal-to-noise ratio.

The two boxcar integrators are triggered by a pulse from a fast photodiode (FPD) and the

data acquisition card is triggered directly from the Excimer laser. The computer also controls

the automatic translation stage.

4.3 Characterization of the experimental setup

The functioning of the components of the setup was evaluated in order to determine the influence

of each component on the quality of the measurements. This was done in order to minimize

or eliminate their contributions to errors. In this fashion the factors that could be included in

the analysis of the data could be determined.
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4.3.1 Beam quality

The theory of the Z-scan analysis was based on the assumption that the incident probe beam

had a Gaussian (TEM00) beam profile. This assumed the spatial profile of the energy (and

thus the intensity distribution) to be Gaussian, which made the analysis possible. The Dye

laser pulses used in the experiment were generally non-Gaussian, as can be seen in Figure 4-2.

This illustrated the need for some technique by which to improve the beam shape, to ideally

create a Gaussian beam profile.

Figure 4-2: An intensity profile of the Dye laser pulse, which is clearly non-Gaussian.

Various techniques for improving the beam quality were investigated. Initially a spatial

filter was inserted in the laser beam. A spatial filter works on the principle of discriminating

between the different spatial modes that coexist inside a laser pulse, based on the fact that

they all have different spot sizes at the focus. The spatial filter ideally only allows the TEM00

mode to pass through because this mode has the smallest spot size at the focus. The spatial

filter focuses the beam through a very small aperture (5 µm diameter) with the aim of letting

the TEM00 mode pass through the aperture while blocking all the other modes.

An open aperture Z-scan was performed using this beam and the result that was obtained

clearly showed two foci (two minima in a transmittance versus position graph can be seen in

Figure 4-3).
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Figure 4-3: An open aperture Z-scan of C60 using the spatially filtered Dye laser beam showing

two clear minima.

The position of the aperture with respect to the lens that focussed the beam through the

aperture inside the spatial filter could be set. By changing the distance between the aperture

and this lens, the relative intensities of these two foci with respect to each other changed. This

indicated that the two foci were indeed created as a result of the spatial filtering. Not only

did the beam show multiple foci, it was visually clear that the beam profile did not have a

Gaussian intensity distribution. This can be seen in the two-dimensional image of the filtered

beam, shown in Figure 4-4.
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Figure 4-4: The intensity distribution of the Dye laser beam after passing through the spatial

filter.

The disappointing result obtained using the spatial filter necessitated the use of another

technique. Instead of trying to create a Gaussian (TEM00) beam, it was decided to rather

opt for a closely related beam shape, namely a clipped Airy pattern. This was the approach

followed by Bum Ku Rhee et al [8].

A clipped Airy pattern is created by first inserting an aperture into the laser beam, thus

creating a normal Airy pattern. The beam is then allowed to propagate a distance in free

space. A second aperture is now inserted into the beam (see Figure 4-5). Ideally, the diameter

of this second aperture must correspond to the first minimum of the Airy pattern. In this

fashion only the centre maximum is allowed to propagate. This centre maximum is symmetric

and has an intensity distribution close to that of a Gaussian beam.

Figure 4-5: An illustration of how a clipped Airy pattern is created.
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Figure 4-6: Two- and three-dimensional intensity profiles of the clipped Airy pattern used in

the experiment.

This approach was followed and proved to be a very useful technique. The beam profile

obtained in this manner was nearly perfectly symmetrical. It only deviated from symmetry in

the extreme flanks, as can be seen in Figure 4-6.

4.3.2 Data capturing, processing and averaging

It is important to distinguish between nonlinear and linear processes when considering data

processing and averaging. Nonlinear processes introduce different considerations that need to

be taken into account. This will be expanded on later in this section.

A Z-scan was used to measure the nonlinear absorption or the nonlinear refraction of a

sample. These are classic examples of nonlinear interactions. It was thus necessary, when

dealing with the data from a Z-scan, to take these considerations into account. The data

obtained from a Z-scan was a transmittance versus z-position graph. The transmittance was

defined as the ratio obtained by dividing the energy measured by the probe detector by the

energy measured by the reference detector. The reference detector was used to compensate for

fluctuations that occurred in the laser energy on a pulse to pulse basis.

To improve the final measurement, numerous measurements were taken at each z-position,

as would have been the case had this been a linear process. The number of measurements at

each position determine the accuracy of the final measurement, but increase the time required

to perform the experiment. If this was a normal linear process that was being investigated,
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then the average of all these measurements would simply have been taken. This would have

significantly improved the measurements.

This can, however, not be done in the case of a Z-scan since it is a nonlinear process that is

being investigated. This implies that the average of all these measurements should not simply

be taken. The measurement taken by the probe detector is the result of a nonlinear process

whereas the measurement taken by the reference detector is merely the linear fluctuations in

laser energy.

Nonlinear processes are intensity dependent and thus only measurements taken with exactly

the same intensity at the waist should be considered together. Intensity is dependent on the

spatial and temporal profiles of the laser pulse as well as the laser energy. Since only the laser

energy is measured on a pulse to pulse basis (reference detector measurements) it has to be

assumed that the spatial and temporal profiles of the laser pulse remain constant. This implies

that measurements that originate from the same laser energy can be considered together.

Only the energy was measured, because the photodiodes that were used could not resolve

the temporal profiles of the laser pulse. The photodiodes produced ∼ 40 ns electrical pulses

in response to ∼ 10 ns laser pulses. These 40 ns electrical pulses were still to fast for the data

acquisition card and thus a boxcar integrator needed to be used as well. The boxcar integrator

selected a part of the electrical pulse and time integrated that part. The integrated value was

sent to the data acquisition card as a DC signal. It was these values that were taken as the

energy measurements.

It was of course impractical to consider measurements that were taken at exactly the same

energy. As compensation, a small energy interval in the data taken by the reference detector

was considered. All of these measurements taken by the reference detector inside the energy

interval, had a corresponding measurement taken by the probe detector. This meant that

for each small energy interval taken in the data of the reference detector, the corresponding

measurements taken by the probe detector were all conducted at nearly the same energy. For

each of these energy intervals in the data of the reference detector, there existed a corresponding

subset of measurements in the data from the probe detector.

Each of these subsets should represent an independent Z-scan, each conducted at a slightly

different energy. This is illustrated in Figures 4-7 and 4-8. Figure 4-7 shows the reference
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energy distribution for a Z-scan and two energy intervals. Figure 4-8 shows the probe energy

distribution and the two Z-scans that should originate when taking the corresponding measure-

ments to those inside the energy intervals in Figure 4-7. The measurements inside each of these

subsets should still contain some fluctuations, but because these measurements originated at

nearly the same intensity, they could now be averaged, as long as it was done only within a

subset.

Figure 4-7: The energy distribution as measured by the reference detector. A hundred samples

per z-position were taken. Energy intervals are also indicated.

Figure 4-8: The measurements taken by the probe detector. The coloured lines correspond to

the the energy slices shown in Figure 4-7.
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This treatment is only correct if the fluctuations that occurred in the measurements were

only the result of the pulse to pulse fluctuations in energy. For the measurements that were

taken using the Dye-laser, the fluctuations also originated as a result of changes in the temporal

and spatial profiles of the laser pulse. These pulse to pulse variations in spatial and temporal

profiles of the laser pulses resulted in changes in peak intensity and thus influenced the nonlinear

absorption that occurred. Since the detectors used in the Z-scan merely measured the energy

and not the peak intensity, these fluctuations could not be accounted for by this method of

taking small energy intervals. The fluctuations that still existed can be seen in Figure 4-9.

Figure 4-9: Three energy intervals in the reference detector’s data (left) and the corresponding

data of the probe detector (right).
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In order to obtain more accurate measurements, improvements in laser stability are required.

This includes both spatial and temporal stability. The results could clearly not be improved

by improving the data acquisition.

Because the measurements taken by the probe detector in each of the subsets were taken

at nearly the same energy, and because the other fluctuations could not be eliminated in these

subsets of measurements, nothing else could be done other than to average these measurements

inside these subsets. The nonlinear absorption coefficient or the nonlinear index of refraction

could now be extracted from each of these averaged subsets of data. The fact that each actual

Z-scan produced a number of effective Z-scans allowed for normal statistical processes for error

determination that would normally require multiple scans. This was the approach followed in

determining the error bars on the measurements that were conducted.

This approach is the correct way to process data when dealing with measurements of non-

linear effects. The reality is that the advantage of this approach over normal averaging is not

always apparent because the fluctuations that occur in the measurements can have different

origins, as was the case in these Z-scans.

4.3.3 Sample thickness

As was mentioned in Section 3.2.1, one of the experimental considerations was the sample

thickness. This thickness must be less than the Rayleigh length of the focussed laser beam.

This is necessary for the sample to be considered thin and for the nonlinear processes to be

considered to occur at a single position and not to be spread across the length of the sample.

An added advantage is that not a large amount of sample material is necessary for a Z-scan.

In the experiments conducted with samples in solution, the sample length was 2 mm while the

Rayleigh length was 3.4 mm. For the experiments conducted with ZnO, the sample length was

0.5 mm, with the same Rayleigh length used.

4.3.4 Background

It is possible that poor sample quality, in the case of solid samples like crystals, or poor cuvette

quality, in the case of liquid samples, can mask the nonlinear effects that occur in a sample.

It is possible to eliminate these masking effects by performing two Z-scans, one at the desired
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energy for the experiment and one at a very low energy. The data obtained from this second

”background” scan [5] must then be subtracted from the data obtained from the high energy

scan. In this fashion the effects attributed to the sample quality are eliminated. This can even

be done for large surface disturbances (∆φsurface of up to π), as long as the surface disturbances

do not change the circular symmetry of the beam or cause beam steering.

4.3.5 Solvent effect

When performing a Z-scan on samples that are in solution, it is important to consider the effect

of the solvent. This will of course depend on the solvent used. The effect of the solvent cannot

be eliminated by performing a low intensity background Z-scan. In order to determine the

effect of the solvent it is necessary to perform both open and closed aperture Z-scans of the

pure solvent at the same energy at which the experiment is to take place. Toluene was used

as solvent for C60. It is known that it displays nonlinear refraction [9]. The results obtained

for both nonlinear absorption and refraction of toluene will be presented in the experimental

results of C60 ( Section 5.1.2).

4.3.6 Nonlinear refraction in cuvette material (quartz)

Another factor that may influence the measurements is the quartz cuvette in which the sample

is placed. Depending on the sample being investigated, the quartz cuvette may have a similar

influence to that of the solvent, either masking or accentuating the nonlinear refractive index

measurement being conducted. In the case of these measurements it was, however, not neces-

sary to consider the effect of the nonlinear refraction in the quartz since its nonlinear index of

refraction is roughly four orders of magnitude smaller than that of C60 [10].

4.3.7 Stray reflections

The use of photodiodes as detectors introduce experimental considerations because of the mere

nature of photodiodes. These detectors are easily saturated and therefore care must be taken

to ensure that this does not happen. Furthermore, stray reflections can be a problem. As the

sample is moved, the reflections from the sample change in direction and position. The result

of this is that the light that reaches the detector can change as a function of the position of
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the sample because of stray reflections. This introduces false trends in the data obtained from

a Z-scan. These trends can be corrected for by performing a background scan, but a better

solution is to screen the detectors from all stray reflections and ensure that only transmitted

light through the sample reaches the detector. In the experimental setup used the detectors

were screened by placing shielding material around the beam path leading to the detectors.

4.3.8 Optical damage in cuvette

Quartz has a relatively low damage threshold. This puts a limitation on the intensity range over

which the investigation of a sample can be done when the sample is a liquid. More specifically,

it means that energies below 50µJ [11] must be used, which translates into intensities below

220 MW / cm2. This low damage threshold limits the sensitivity of the experiment as the

nonlinear properties of trace concentrations of a sample under investigation cannot be measured.

Practical optical limiters need to be effective already at relatively low intensities, which implies

that for the investigation of optical limiters, this upper energy boundary is not limiting.

4.3.9 Nonlinear scattering

A secondary effect that enhances the apparent nonlinear absorption is that of nonlinear scat-

tering, which occurs when the intensity inside the sample under investigation is high enough

to create a localized plasma. This plasma then acts as a source for scattering centres. The

scattering reduces the transmission through the sample and thus increases the apparent absorp-

tion. Although nonlinear scattering is a useful process when considering a material for optical

limiting applications, it makes it impossible to extract the nonlinear properties of material from

a Z-scan, as it is not possible to separate the effects in the data. An example of a Z-scan that

contains nonlinear scattering can be seen in Figure 4-10.
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Figure 4-10: A Z-scan showing the influence of nonlinear scattering.

The strong nonlinear absorption is visible in Figure 4-10 is because of the high energy used

in the Z-scan. The sudden decrease in transmittance close to the focus is indicative of plasma

formation. This was also visually confirmed by bubbles forming in the sample.

4.3.10 Cuvette type

The choice of cuvette can influence the measurements. In general, the solvents used to prepare

the samples are volatile. It is thus necessary to have a cuvette which can seal tightly to ensure

that the concentration of the sample remains constant and known during a measurement. A

further problem that a sealed cuvette helps to eliminate is that of oxidation (see Section 5.3.1

for an example of such a sample). This is a problem that occurs with some samples, especially

when the sample is in an excited state, as is the case during a Z-scan.

The type of material used for the cuvette is also important. Good quality quartz with

a high transmission and large spectral range is essential. The quartz must have negligible

influence on the transmitted light. Preferably no fluorescence must occur in the quartz. This

ensures that the attenuation that occurs is a result of the sample and not the cuvette. This

also enables the expansion of the setup to look at the fluorescence spectrum of a sample while

performing the Z-scan (see the section on future work, Chapter 6).
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4.3.11 Iris for closed aperture Z-scans

In this investigation the focus was on determining the nonlinear absorption coefficients of various

materials. In order to show the versatility of the setup it was shown that the setup could be

used to determine the nonlinear index of refraction of a sample through performing a closed

aperture Z-scan. Performing a closed aperture Z-scan entails placing an aperture in front of

the probe detector. The placement of this aperture is extremely critical. Any deviation from

perfect alignment introduces asymmetry in the data which masks the nonlinear refraction. By

placing the iris in front of the detector, a small part of the transmitted laser pulse is sampled.

Ideally the exact same part of the beam must be sampled each shot, but because of deviations

in spatial distribution of the laser beam on a shot to shot basis, this is not possible. This

results in fluctuations in the measured data that contribute to the error in the signal.
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Chapter 5

Material descriptions and

experimental results

Two materials were investigated extensively with the Z-scan setup, C60 and ZnO. Since C60

is known to have strong nonlinear properties most of the emphasis was placed on this ma-

terial. The properties of C60 have been well analyzed and documented in the literature

[9][11][15][16][17], making it an ideal candidate for testing and evaluating the experimental

setup.

The ZnO sample is a crystal while the C60 is analyzed in a solution. This makes ZnO useful

to illustrate the versatility of the setup for measuring the nonlinear properties of different types

of samples. ZnO is also an interesting sample because it has some unusual characteristics; it

is a transparent semi-conductor which is sufficiently conducting to be used as electrodes. This

makes it a very useful material in solar cell construction, where it is used for the contacts on the

cell. Furthermore, ZnO shows high chemical stability and has a high melting point (∼ 2300K)

[12]. This makes it an ideal material for use as an optical limiter. It is however still difficult

to produce large, single crystals, but this is a technological problem.

Lastly, two novel materials, poly(dioctyl-fluorene) and CdS quantum dots, were investigated.

Both these samples proved difficult to analyze, for various reasons (which will be expanded on

later), and thus only preliminary investigations were conducted.
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5.1 C60, the Buckminsterfullerene

5.1.1 Nonlinear absorption in C60

Since their discovery in 1985 [13], fullerenes (of which C60 is the most common) have been

heavily investigated due to their unique three-dimensional, conjugated (double-bond containing)

π-electron system. It is known that delocalized π-electrons provide exceptionally large nonlinear

optical responses, and this makes fullerenes like C60 good candidates when looking for a material

to be used as an optical limiter or a material with an intensity-dependent refractive index. This

made it an ideal candidate for testing and evaluating the effectiveness of the experimental setup.

A slice through the electron shell of the C60 molecule can be seen in Figure 5-1, which shows

the spherical symmetry of the molecule [14].

Figure 5-1: A figure showing the structure of a C60 molecule with a single plane of the delocalised

π-electrons visible, taken from [14].

The induced absorption of the C60 molecule can best be described by a five-level model

[16][15]. The simplified energy level diagram can be seen in Figure 5-2. Each electronic state

of the molecule gives rise to a manifold of associated vibrational states, indicated by the thin

lines above each of the thicker ones in Figure 5-2. The thick lines represent the zero-vibrational

electronic states.
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Figure 5-2: A simplified 5-level energy diagram of the C60 molecule, taken from [15].

C60 has singlet and triplet excited electronic states, the first triplet state lying energetically

below the first excited singlet state. Absorption of photons by the molecule excites electrons

in the ground state, S0, to one of the molecular vibrational levels of the first excited singlet

state, S1. These states relax very quickly (∼1 ps) [16] to the lowest vibrational level of the

first excited state. Subsequent absorption of another photon by the molecule can further excite

one of the electrons that is in the excited state S1 to an even higher singlet state, S2. The

excited state S1 can also return to the ground state through internal conversion, or can undergo

an intersystem crossing to the first triplet state, T0. Absorption of another photon by the

molecule can excite an electron in state T0 to the first excited triplet state, T1.

The intersystem crossing rate is very fast (650 ps - 1.2 ns), with quantum efficiency close to

unity [17], indicating that nearly each radiatively produced exciton in the S1 state follows the

channel via the T0 state and does not relax directly back to the S0 state. The radiative decay

of an exciton from the triplet state T0 to the singlet ground S0 state is spin-forbidden, which

results in an extremely long lifetime, in the order of 280 µs. Furthermore, the decay from the

higher states (S2 and T1) is very rapid [16], which has the result that the states S1 and T0 are

effectively not depopulated by the laser pulse. This implies that there will be a high population

in S1 and T0 for the duration of the laser pulse. Because these two states have significantly
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higher absorption cross-sections than the ground state [16] (for wavelengths around 532 nm),

an increase in absorption is achieved. This accounts for the intensity dependent (nonlinear)

absorption and thus the optical limiting behaviour of C60.

5.1.2 Experimental results for C60

C60 was investigated using the Z-scan setup described in Section 4.2. Figure 5-4 (shown on

Page 55) shows a typical Z-scan performed on a C60 solution. This specific result was obtained

using a 0.4 mM solution of C60 in toluene as sample. This concentration was chosen because

it resulted in nonlinear absorption of 17% (absorption had to be kept below 23%, see Section

3.2.2) at energies that allowed for sensitive measurements with the detectors and neutral density

filters chosen and without any other nonlinear effects like nonlinear scattering.

The data were obtained by measuring the transmitted and reference energy at each z-

position over 100 laser pulses. The sample was moved 130 steps of 0.63 mm each. This

amounted to a distance which ensured that the linear and nonlinear regions were sufficiently

covered. The step size chosen equated to a quarter revolution of the stepper motor used to

drive the translation stage.

The laser used was the XeCl Excimer laser pumped Dye laser (Coumarin 540 used as dye),

tuned to 540 nm. The pulse length (full width at half maximum) of the Dye laser was measured

using a fast photodiode and was found to be 10 ns. The energy used in the measurement was

3 µJ.

Experimentally, it was quite difficult to measure the Rayleigh length of a tightly focused

pulsed laser beam accurately. The Rayleigh length was therefore extracted from the fit on the

data from the Z-scan rather than measuring it with a knife edge or a slit. This seemed to be

standard practice according to the literature [11]. The Rayleigh length of the focused beam (a

100mm lens was used to focus the beam) was determined as 3.4 mm, which related to a beam

waist at the focus of ω0 = 24µm.

The intensity was calculated by dividing the pulse energy (3 µJ) by the product of the pulse

length (10 ns) and the cross-sectional area of the pulse at the focus (πω2
0
). This yielded an

intensity at the focus of 16 MW / cm2.

Equation 3.39, shown here again as Equation 5.1, was fitted to the data, replacing the
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infinite sum with a sum over the first 60 terms.

T (z) =
60∑

m=0

[−q0(z)]
m

(m+ 1)
3

2

(5.1)

q0 =
βI0Leff

1 + z2

z2
0

(5.2)

Leff =
1− e−αL

α
(5.3)

The rationale for this was discussed at the end of Section 3.2.2 and shown in Figure 3-8.

The fitting parameters were the nonlinear absorption coefficient and the Rayleigh length. The

fit was done using the Levenberg-Marquadt method, which is a standard way of minimizing

nonlinearities. The method consists of taking an estimation for the values of parameters that

need to be fitted. The deviation from the data is then expressed as a function of the fit

parameters and this function is then minimized through an iterative process.

The reason for taking 100 measurements per position was to improve the signal-to-noise ratio

and to decrease the error of measurement. It is important to note that the experiment deals with

a nonlinear process, which makes it impossible to merely take the average of the ratios of the

measurement of the probe detector and the reference detector, as was mentioned in Section 4.3.2.

In fact, it necessitates the categorizing of the data according to very narrow energy regimes

to ensure sensible data analysis, as was explained. The measurements taken by the reference

detector were divided into narrow energy sections and the corresponding measurements on the

probe detector were then grouped together. This effectively yielded multiple scans from a

single Z-scan, each at a slightly different energy. When all these ”scans” were normalised,

the error on each measurement of each of the ”scans” could be determined. By combining

these ”scans” an error bar for the measurement could be determined and this was done in the

standard way of considering the mean deviation.

As was discussed in Sections 4.3.4 and 4.3.5, it was necessary to perform a background scan,

using only the solvent, in order to eliminate any false signals. Figure 5-3 shows such an open

aperture Z-scan conducted with toluene as sample. It can be clearly seen that toluene displays

no nonlinear absorption and that any background effect is minimal. This result implies that

future open aperture Z-scans can be conducted with confidence and without background scans,
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as the background effects are negligible and need not be taken into account.

The resultant Z-scan obtained from the conditions described above is depicted in Figure

5-4. This enabled the extraction of the nonlinear absorption coefficient from the data, which

was found to be, β = 0.3 cm /MW.

The same process was followed for different concentrations of C60 in toluene solutions, at the

slightly lower energy of 2.5µJ. For each of these samples the nonlinear absorption coefficient

was extracted and plotted against the concentration of the sample. The result can be seen in

Figure 5-5. As expected, according to the literature [11], the graph shows a clear linear trend.

Figure 5-3: An open aperture Z-scan conducted with pure toluene as sample to illustrate the

low background signal.
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Figure 5-4: A Z-scan of C60 along with the fitted function on the data. Error bars are also

shown.
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Figure 5-5: A graph depicting the linear dependence of the nonlinear absorption coefficient, β,

on the C60 concentration.
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As an example of the versatility of the setup the nonlinear index of refraction of C60 was

investigated. Because of the difficulty involved with the alignment of the iris, it was difficult

to produce repeatable and thus quantitative results. It could, however, be clearly seen that

the sample displayed nonlinear refraction. Figure 5-6 shows the data from an open aperture

Z-scan of a 2 mM solution of C60 in toluene. The measurements were conducted with a Dye

laser energy of 18µJ, since the nonlinear index of refraction measurements did not require

the nonlinear absorption to be kept below 23%. Figure 5-7 shows the accompanying closed

aperture Z-scan. This was performed on the same sample with the same energy. An iris was

inserted in front of the probe detector, reducing the transmitted energy to 10% of the original

value in the linear regime (S = 0.1). Although it is difficult to see, a slight shift in symmetry

is visible as a result of the nonlinear refraction. Dividing the data from the closed aperture

Z-scan by the data from the open aperture Z-scan (Figure 5-7 divided by Figure 5-6) yields

Figure 5-8, in which the nonlinear refraction is clearly visible. By taking the difference between

the peak and valley transmittance, and using Equation 3.20 the nonlinear index of refraction

could be determined. This was found to be n2 = −1.2× 10
−6 cm2 /W. As mentioned earlier,

it was difficult to perform repeatable measurements, and thus not too much emphasis should

be placed on this value. Nevertheless, it is clear that by using this experimental setup, the

nonlinear refraction is clearly visible.
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Figure 5-6: The open aperture Z-scan performed on C60 used for the nonlinear index of refrac-

tion measurement.
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Figure 5-7: The closed aperture Z-scan performed on C60 used for the nonlinear index of

refraction measurement.
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Figure 5-8: Data obtained from a combination of a closed and open aperture Z-scan (Figures

5-6 and 5-7) for determination of the nonlinear index of refraction of C60.

As was stated in Section 4.3.5, toluene displays nonlinear refraction. This necessitates that

the nonlinear index of refraction of toluene first be measured and included in the analysis when

measuring the nonlinear index of refraction of C60. One expects the contribution from toluene

to be very small as its nonlinear index of refraction is about three orders of magnitude smaller

than that of C60 [18]. A closed aperture Z-scan of toluene was performed with a slightly higher

energy (23 µJ compared to 18 µJ). The result can be seen in Figure 5-9. It is clear that no

significant nonlinear refraction occurred under these experimental conditions. This again had

the fortunate implication that it was not necessary to incorporate the nonlinear refraction of

toluene into the analysis of C60, similar to the background scan for the open aperture Z-scan.
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Figure 5-9: A closed aperture Z-scan of pure toluene showing how little the nonlinear index of

refraction of toluene influences the measurement of that of C60’s nonlinear index of refraction.

5.2 Experimental results for single crystalline ZnO

To investigate the versatility of the setup it was decided to measure the nonlinear properties

of single crystalline ZnO. The same setup was used as for the measurements done with C60 as

sample. The only difference was that a new sample holder had to be constructed to hold the

crystal in place. This implied that all the experimental considerations that were applicable

to the C60 measurements still held, barring those pertaining to possible problems with the

cuvette.

With the crystal, one also had to be careful about inducing optical damage, although this

was unlikely since ZnO has a high damage threshold; it experiences no damage at intensities of

up to 70 GW / cm2 [19]. With this in mind, the nonlinear absorption coefficient and nonlinear

index of refraction of single crystalline ZnO was measured.

Nonlinear absorption

For the experiment, a 1 cm2 crystal of 0.5 mm thickness was used. Because the sample was so

thin it was necessary to use high laser energy (110 µJ) to obtain significant nonlinear absorption.
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The Dye laser wavelength was still 540 nm With these parameters an intensity of 0.5 GW / cm2

was obtained. The resultant open aperture Z-scan is shown in Figure 5-10. It was possible to

extract the nonlinear absorption coefficient, which was found to be β = 49 cm /GW.

Figure 5-10: A closed aperture Z-scan of ZnO. The fitted function and error bars are also

shown.

Nonlinear refraction

For the measurement of the nonlinear index of refraction of ZnO, the same problem of sensitivity

was encountered as was the case with C60. Figure 5-11 shows the Z-scan with an open aperture

and Figure 5-12 the corresponding Z-scan with an aperture in place in front of the probe

detector. The energy used in the two Z-scans was 55µJ. A slight change in the diameters of

the apertures shaping the beam allowed for a tighter focus and thus an increase in the intensity

at the focus. This is why the energy used in these Z-scans was less than what was used to

determine the nonlinear absorption coefficient, although nearly the same nonlinear absorption

was achieved. The aperture that was placed in front of the detector allowed about 10% of the

energy to be transmitted in the linear regime (S = 0.1). Figure 5-13 shows the result after

dividing the data obtained from the closed aperture Z-scan by the data from the open aperture

Z-scan (Figure 5-12 divided by Figure 5-11). Again, repeatability was difficult and thus not
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to much emphasis should be placed on a value for the measurement. The value was therefore

not determined as it would have no real significance. The effect of nonlinear refraction on the

other hand was clearly visible.
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Figure 5-11: An open aperture Z-scan of ZnO.
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Figure 5-12: A closed aperture Z-scan of ZnO.
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Figure 5-13: The resultant graph after dividing the closed aperture Z-scan (Figure 5-12) of ZnO

by the open aperture Z-scan (Figure 5-11) of ZnO.

The fluctuations that occurred in the linear region were as a result of the fluctuations in

the spatial energy distribution of the laser beam. This was explained in Section 4.3.11. This

resulted in the limited accuracy of these measurements.

5.3 Experimental results of two novel materials

During the investigation of C60 and ZnO, other novel materials with strong nonlinear properties

became available and were investigated. These included poly(dioctyl-fluorene), a large polymer,

and CdS quantum dots. The CdS sample is referred to as quantum dots because of the size

of the particles. They are all of the order of hundreds of nanometers in diameter. Because of

various complications with these samples, which will be expanded on in the next two sections,

only cursory investigations were performed on these samples. These investigations did, however,

illustrate some of the difficulties that can be encountered whilst carrying out a Z-scan.
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5.3.1 Poly(dioctyl-fluorene)

The photonics industry is always looking for materials with large nonlinear optical responses

to be used for, amongst others, optical switches. Much interest has been placed on conjugated

polymers that have extended delocalized π-electrons along their linear backbone [20]. Polyfluo-

renes are a class of polymers that includes prime examples of such compounds; they display very

strong nonlinear absorption [20]. This was the reason for investigating one such compound,

poly(dioctyl-fluorene), with the Z-scan technique. The monomer of poly(dioctyl-fluorene) can

be seen in Figure 5-14.

Figure 5-14: A schematic representation of the monomer of poly(dioctyl-fluorene).

A solution (3× 10−7 M) of poly(dioctyl-fluorene) in chloroform was prepared and analyzed

using the same Z-scan setup employed to analyze C60 and ZnO. The sample was placed in a

sealed quartz cell to limit the effect of oxidation, which is a problem with poly(dioctyl-fluorene).

The Dye laser energy was attenuated to 9 µJ which resulted in nonlinear absorption of about

7%. The same data capturing technique as used for C60 and ZnO was employed here (see

Section 4.3.2). The result of the Z-scan can be seen in Figure 5-15. This allowed for the

nonlinear absorption coefficient to be extracted from the functional fit on the data. From the

fit the value of 8× 10−2 cm /MW was obtained for β.
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Figure 5-15: The data from a Z-scan of poly(dioctyl-fluorene) as well as the fit to the data.

One of the secondary effects that was seen during the investigation of poly(dioctyl-fluorene)

was that if the sample was exposed to air and was irradiated, the transmission changed with

time. This effect was attributed to oxidation of the sample and was investigated. The sample

was placed in a cuvette that was open to the air. It was then placed at the focus of the

setup and the transmittance as a function of time, rather than position, was measured. The

sample was irradiated for approximately 75 minutes. The energy per pulse of the laser was

10 µJ and the repetition rate was 10 Hz. The result of this measurement is shown in Figure

5-16. A functional fit was performed on the data to try to obtain information on the temporal

dependence of the transmittance. The function fitted was chosen because of the shape of the

data. No assumption was made of the different processes involved or the temporal dependence.

The function that was chosen was

T (t) = A0e
−t/A1 +A2 (1−A3) e

−t/A4 (5.4)

and it fitted the data very well (Figure 5-16). The two exponential functions contained in

Equation 5.4 seemed to indicate that there are two different processes involved in the photo-
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oxidization of the sample. Without additional information about the chemistry involved it

would be mere speculation to elaborate on these processes at this point. Values for the

constants were extracted from the fit and are of academic interest should further analyses be

carried out. The values were found to be: A0 = 0.024, A1 = 317, A3 = 1.01, and A4 = 2484.

Figure 5-16: A plot of the time-dependent transmittance of poly(dioctyl-fluorene) as well as a

fit to the data.

The oxidized sample was further investigated using the Z-scan setup. Two open aperture Z-

scans, one at low energy (7.5 µJ) and one at a relatively high energy (19.7 µJ), were performed

on the oxidized sample to see if it displayed any nonlinear absorption. Figure 5-17 shows

clearly that the sample displayed no nonlinear absorption after it had been oxidized. If one

then considers the fact that the nonlinear optical properties of poly(dioctyl-fluorene) are as a

result of the delocalized π-electrons then it is a fair assumption that it is these electrons that

are involved in the oxidation of the sample, as the oxidized sample displays no nonlinear optical

effects.
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Figure 5-17: Two Z-scans of poly(dioctyl-fluorene) after oxidation.

5.3.2 CdS quantum dots

The CdS quantum dots are so called nano-particles with varying sizes, but the majority of

them are smaller than a micron in diameter. Because of the structure of the particles they

are highly insoluble and merely form a suspension in a non-polar solvent. This fact presents a

major problem if a sample is to be investigated since a solution of the sample to be analyzed

first needs to be prepared. Toluene was used as ”solvent” in the investigation to form the

suspension. The investigation was conducted using the same Z-scan setup as described for

C60, ZnO and poly(dioctyl-fluorene), the only difference being that the wavelength used was

now 455 nm. The results of a Z-scan performed on a suspension of CdS quantum dots using

12 µJ of energy can be seen in Figure 5-18.

66



Figure 5-18: Data from a Z-scan conducted on CdS quantum dots in suspension. The two

coloured lines show the two clear trends that are visible.

From the data it can be seen that the transmittance first increased as the sample approached

the focus, until nonlinear absorption started to dominate. The transmittance was again higher

directly after the focus than in the normal linear region. This indicated that there were clearly

two different processes involved, indicated by the green and red lines in Figure 5-18. The green

line indicates normal nonlinear absorption. The red line indicates a competing process. The

mechanism behind this secondary process is not yet understood. One theory is that it is a

decrease in scattering as a result of the decrease in beam size that accounts for the increase in

transmittance. This will have to be tested by looking at the amount of scattered light from

the sample as a function of position.

The fact that the sample is a suspension complicates matters. During a Z-scan the sample

precipitated, effectively changing the concentration. A Z-scan was therefore not conducted on

a sample with a constant concentration, making analysis of the data difficult.
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Chapter 6

Conclusions

The theory underlying the nonlinear processes that occur in matter was investigated and ana-

lyzed where it applies to nonlinear refraction and nonlinear absorption. A summary of relevant

theoretical considerations was presented. The Z-scan technique was chosen as the method for

measuring the abovementioned nonlinear properties. To this end a theoretical analysis was

performed of how the technique is utilized to measure the nonlinear index of refraction and the

nonlinear absorption coefficient and was presented here. The experimental considerations and

obstacles were investigated and highlighted. This allowed for the implementation of the theory

into an experimental setup.

The Z-scan technique which was analyzed in detail was then implemented in a Z-scan setup

with the aim of determining the nonlinear properties of selected materials. The setup was

constructed, systematically improved and categorized in order to perform repeatable measure-

ments. For the characterization a suitable sample had to be chosen and C60 was decided

upon because of its known strong nonlinear optical properties. Numerous measurements on

C60 showed the effectiveness of the setup in determining the nonlinear absorption coefficient.

As an indication of the versatility of the setup, measurements were also performed on single

crystalline ZnO. This was done in order to prove that the setup could handle different types

of samples. This was then illustrated when the nonlinear properties of ZnO were measured.
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Recommendations for future work

Future work on the setup should include making the setup more versatile and more sensitive.

Sensitivity can be improved by using lambda half plates as attenuators instead of neutral density

filters. The laser light from the Dye laser is polarized and the lambda half plates can use this

property to attenuate the beam by any value. Neutral density filters have fixed values which

fixes the amount that the beam is attenuated. Lambda half plates will increase the range of

energies at which the experiments are conducted and in this fashion improve the sensitivity. If

it is decided that still more sensitive measurements are needed, then the spatial and temporal

stability of the laser can be improved by operating in single mode. This can be done by

inserting a Fabry-Perot etalon inside the laser cavity.

As was mentioned in Section 4.2, the Z-scan setup was constructed with the idea in mind

that it could be used with an optically pumped parametric oscillator (OPPO) that is pumped

by a frequency tripled Nd:YAG laser. The OPPO has the advantage that its wavelength can

easily be tuned over a very large region. It differs in this respect from the Dye laser where it is

necessary to change the dyes when moving between wavelength regions. This ease of tunability

will enable wavelength dependence measurements of the nonlinear properties.

Furthermore, there are plans to incorporate fluorescence measurements with the Z-scan. By

looking at how the fluorescence of a sample changes as a function of the intensity, it is possible to

comment on the processes involved, namely whether two- or three-photon absorption is taking

place or whether the nonlinear effects are dominated by scattering. This will increase the

amount of information obtained from a sample and thus the versatility of the setup.
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Appendix

Details, specifications and explanation of components used in

experimental setup

XeCl Excimer laser:

Use: This laser is used to pump the Dye laser. It provides the excitation energy that the

Dye laser requires to operate.

Specifications:

Make: Lambda Physik EMG 101 MSC

Wavelength: 308 nm

Energy: 100 mJ

Pulse Length: 16 ns

Repetition rate: Variable but set to 10 Hz for the experiments performed

Dye laser:

Use: The Dye laser was the laser used for all the experiments. It provided the laser light of

sufficient intensity to observe the nonlinear effects in the investigated samples. It also allowed

for tunability in wavelength.

Specifications:

Make: Lambda Physik FL3001

Wavelength: Variable but set to 540 nm for C60 and ZnO investigations.

Energy: Variable and attenuated with NDFs to the µJ range

Pulse Length: 10 ns

Repetition Rate: 10 Hz (Determined by Excimer laser)
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Fast photodiode

Use: The fast photodiode is used to trigger the Boxcar integrator and the oscilloscope. It

was placed in such a manner that it would collect some of the Excimer laser’s reflected light.

It thus allows for the synchronization of the setup.

Specifications:

Make: Thorlabs DET210

Type: Si PIN

Rise Time: 1 ns

Active Area: 0.8 mm2

Spectral Range: 200 - 1100 nm

Neutral density filters (NDF)

Use: The Neutral Density Filters are inserted in the laser beam to attenuate the laser

energy in order to obtain the desired energy with which the experiments are to be performed.

They are also used to protect the detectors (which are sensitive photodiodes) from saturation

and damage.

Specifications:

Make: Edmund Industrial Optics

Optical Density Values: 0.3; 0.5; 1.0; 1.3; 1.5; 2.0; 2.5; 3.0

Lens (L)

Use: The lens is used to focus the beam onto the sample, creating the tight focusing

geometry required by the theory of the Z-scan experiment.

Specifications:

Make: Newport

Focal Length: 100 mm

Cuvette (sample holder)

Use: The liquid samples are placed in the high quality quartz cuvette when analyzed

Specifications:

Make: Starna

Optical Path Length: 2 mm
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Material: Spectrosil Quartz

Transmission region: 170 nm - 2700 nm

Large area photodiodes (LAPD)

Use: The large area photodiodes are used as the detectors, both probe and reference, in

the experiment because of their high sensitivity at low energies.

Specifications:

Make: Thorlabs FDS1010

Type: Si PIN

Rise Time: 45 ns

Active Area: 94.1 mm2

Spectral Range: 400 nm - 1100 nm

Large area photodiode in housing.

Large area photodiode power supply

Use: The large area photodiodes power supply was built in house for supplying a DC bias

voltage to the large area photodiodes.

Specifications:

Make: Self built

Voltage Range: Voltage variable from 0 - 15 V

Translation stage with stepper motor (TS)

Use: The translation stage with stepper motor is used to move the sample under investi-

gation along the Z-axis of the laser beam during the experiment.

Specifications:

Make: Superior Electric
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Total range 280 mm

Resolution: 200 steps per revolution

Distance per revolution: 2.508 mm

Translation stage with stepper motor

Stepper motor driver

Use: The stepper motor driver is the interface between the computer (PC) and the stepper

motor on the translation stage. It controls the movement of the stepper motor based on the

commands received from the computer.

Specification:

Make: Self built

Settings: Set to micro-step the stepper motor in order to double the resolution to 400

steps per revolution

Translation stage driver.

Translation stage power supply

Use: Provides the power for both the stepper motor and the stepper motor driver.

Specifications:

Make: Standard desktop computer power supply
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Computer (PC)

Use: The computer is the heart of the experiment. It is responsible for the automation of

the experiment. It controls the movement of the stepper motor, the data acquisition, the data

analysis and processing.

Specifications:

Processor: Intel Celeron 300 MHz

Memory: 256 MB RAM

Data Acquisition Card

Make: PCI 726 Data Acquisition Card from Eagle Technology

Specifications:

16 SE or 8 Diff A/D Channels

14 bit Analog Resolution

100 kHz A/D Sampling Rate

4 x 14 bit D/A Channels

24 (3 x 8) DIO Channels

3 x 16 bit Counter Timers (User)

3 Interrupt Sources (PCI-730/726)

2048 FIFO buffer with programmable word count

DB25M (A/D & D/A); IDC40 (DIO) Connectors

Windows98/ME/2000/XP (NT on request)

Linux OS Support

WaveView for Windows Data Acquisition & Logging Software

Labview, Testpoint & Agilent-VEE

Supplied with EDR Enhanced Software and Internal Cable with PC bracket

(IDC40 to DB37)

Software:

Labview 7.0: Used for the control of the stepper motor, the data acquisition and

the processing of the data in order to extract the nonlinear absorption coefficient.

MatLab 6.0: Used for filtering the rough data and performing the statistics nec-

essary to determine the error on the measurements.
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Gated integrator and Boxcar averager (BC)

Use: The boxcar integrator enables the capture of the peak value of extremely fast pulses

which cannot be measured by conventional data acquisition methods.

Specifications:

Make: Stanford Research Systems SR250

Gate widths from 2 to 15 µs (expandable to 150 µs)

Internal rate generator

Active baseline subtraction

Shot-by-shot output

Gate output for precise gate timing

Average 1 to 10,000 samples

DC to 20 kHz repetition rate

Low jitter (<20 ps + 0.01% of delay)

Boxcar averager and integrator.

Oscilloscope

Use: The oscilloscope is used to inspect the signal from the detectors and the boxcar

integrators visually. This allows for the adjustments on the boxcar integrators to ensure

correct overlap of the boxcar’s gate and the signals from the large area photodiodes. The

output from the boxcars can also be checked to ensure that the data acquisition card is not

saturated or damaged.

Specifications:

Make: Tektronix TDS 3034

Nr Channels: 4

Bandwidth: 300 MHz

Sample Rate: 2.5 GS/s
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