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Summary

Progress in computational systems biology depends crucially on the avail-
ability of generic rate equations that accurately describe the behaviour
and regulation of catalysed processes over a wide range of conditions.
Such equations for ordinary enzyme-catalysed reactions have been de-
veloped in our group and have proved extremely useful in modelling
metabolic networks. However, these networks link to growth and repro-
duction processes through template-directed synthesis of macromolecu-
les such as polynucleotides and polypeptides. Lack of an equation that
captures such a relationship led us to derive a generic rate equation that
describes catalysed, template-directed polymerisation reactions with vary-
ing monomer stoichiometry and varying chain length. A model describ-
ing the mechanism of a generic template-directed polymerisation process
in terms of elementary reactions with mass action kinetics was devel-
oped. Maxima, a computational algebraic solver, was used to determine
analytical expressions for the steady-state concentrations of the species
in the equation system from which a steady-state rate equation could be
derived. Using PySCeS, a numerical simulation platform developed in
our group, we calculated the time-dependent evolution and the steady-
states of the species in the catalytic mechanisms used in the derivation
of the rate equations. The rate equation was robust in terms of being
accurately derived, and in comparison with the rates determined with
PySCeS. Addition of more elongation steps to the mechanism allowed the
generalisation of the rate equation to an arbitrary number of elongations
steps and an arbitrary number of monomer types. To test the regulatory
design of the system we incorporated the generic rate equation in a com-
putational model describing a metabolic system consisting of multiple
monomer supplies linked by a template-directed demand reaction. Rate
characteristics were chosen to demonstrate the utility of the simplified
generic rate equation. The rate characteristics provided a visual repre-
sentation of the control and regulation profile of the system and showed
how this profile changes under varying conditions.
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Opsomming

Die beskikbaarheid van generiese snelheidsvergelykings wat die gedrag
en regulering van gekataliseerde prosesse akkuraat oor ’n wye reeks om-
standighede beskryf is van kardinale belang vir vooruitgang in rekenaar-
matige sisteembiologie. Sulke vergelykings is in ons groep ontwikkel
vir gewone ensiem-gekataliseerde reaksies en blyk uiters nuttig te wees
vir die modellering van metaboliese netwerke. Hierdie netwerke skakel
egter deur templaat-gerigte sintese van makromolekule soos polinuk-
leotiede en polipeptiede aan groei- en voorplantingsprosesse. Die gebrek
aan vergelykings wat sulke verwantskappe beskryf het ons genoop om
’n generiese snelheidsvergelyking af te lei wat gekataliseerde, templaat-
gerigte polimerisasie-reaksies met wisselende monomeerstoigiometrie en
kettinglengte beskryf. ’n Model wat die meganisme van ’n generiese
templaat-gerigte polimerisasie-proses in terme van elementêre reaksies
met massa-aksiekinetika beskryf is ontwikkel. Maxima, ’n rekenaarmatige
algebraı̈ese oplosser, is gebruik om analitiese uitdrukkings vir die besten-
dige-toestand konsentrasies van die spesies in die vergelyking-stelsel te
vind. Hierdie uitdrukkings is gebruik om ’n bestendige-toestand snel-
heidsvergelyking af te lei. Ons het die tyd-afhanklike progressie en die
bestendige toestande bereken van die spesies in die katalitiese megan-
ismes wat gebruik is in die afleiding van die snelheidsvergelykings. Die
rekenaarprogram PySCeS is ’n numeriese simulasieplatform wat in ons
groep ontwikkel is. Die snelheidsvergelyking blyk akkuraat afgelei te
wees en is in ooreenstemming met snelhede deur PySCeS bereken. Die to-
evoeging van verdere verlengingstappe tot die meganisme het dit moont-
lik gemaak om die snelheidsvergelyking te veralgemeen tot ’n arbitrêre
hoeveelheid verlengingstappe en monomeertipes. Om die regulatoriese
ontwerp van die sisteem te toets het ons die generiese snelheidsverge-
lyking in ’n rekenaarmatige model geı̈nkorporeer wat ’n metaboliese sis-
teem bestaande uit verskeie monomeer-aanbodblokke en ’n templaat-
gerigte aanvraagblok beskryf. Snelheidskenmerkanalise is gekies om die
nut van die vereenvoudigde generiese snelheidsvergelyking te demon-
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OPSOMMING xi

streer. Met hierdie snelheidskenmerke kon ons die kontrole- en reguler-
ingsprofiel van die stelsel visualiseer en wys hoe hierdie profiel verander
onder wisselende omstandighede.
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Chapter 1

Introduction

Metabolism has been conventionally studied using a reductionistic ap-
proach in which metabolic pathways have been regarded as isolated mod-
ules. This is also the way that metabolic pathways have traditionally
been depicted in biochemistry textbooks. Due to the complexity of meta-
bolic organisation this approach has of course been necessary for the
identification of the individual reactions and their substrates, products
and cofactors. However, to gain an understanding of the integrated na-
ture of metabolism it is necessary to consider the coupling of metabolic
pathways with each other, not only between pathways within interme-
diary metabolism, but also between intermediary metabolism as a whole
with processes such as the synthesis of proteins, polynucleotides and
complex lipids, i.e., macromolecular biosynthetic processes that produce
the polymers associated with growth and maintenance of the cellular ma-
chinery and structure. Metabolites such as amino acids, nucleotides and
fatty acids, which are usually described as ‘end-products’ of metabolism,
are actually metabolites that link intermediary metabolism with the syn-
thesis of biopolymers. Such a point of view leads one to consider the
functional organisation of cellular processes depicted in Fig. 1.1.

Hofmeyr and Cornish-Bowden [2] developed a quantitative frame-
work called metabolic supply-demand analysis to study the control and
regulation of the coupled metabolic ‘factories’ of catabolism, anabolism,
and macromolecular synthesis. They used this analysis to study, for
example, the control distribution between the biosynthetic supply of a
metabolic product such as an amino acid and the demand for such a
product in a macromolecular biosynthetic process such as protein syn-
thesis [2, 3]. They were able to show how the supply and demand be-
come functionally differentiated with regard to the control of flux and
the homeostatic maintenance of the concentration of the product that

1
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CHAPTER 1. INTRODUCTION 2
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Figure 1.1: The functional organisation of intermediary metabolism. The pri-
mary carbon and energy sources are degraded by catabolic pathways to form
ATP, reducing equivalents (NADPH), and C3–C6 metabolic intermediates (e.g.,
sugar phosphates, activated CoA-intermediates, PEP, pyruvate, and the inter-
mediates of the citric acid cycle such as oxaloacetate, 2-oxoglutarate and citrate)
that act as carbon skeletons for biosynthetic (anabolic) processes that produce
monomers for the synthesis of biopolymers (proteins from amino acids, nu-
cleic acids from nucleotides, lipids from fatty acids) and higher-order cellular
structures; these processes also require an input of free energy (NTP, nucleotide
triphosphates) (Adapted from [1]).

links supply and demand. For example, when the demand controls the
flux, the supply takes over the role of maintaining the concentration of
the linking metabolic within a narrow concentration range. Feedback by
end-product inhibition of the supply pathway determines both the range
of variation in concentration (the degree of homeostasis) and the distance
from the equilibrium concentration that the product would reach at a
fixed supply substrate concentration. Hofmeyr [4] subsequently showed
how the addition of a genetic level to the regulation of the concentration
of the linking metabolite (by adding a repressor to which this metabolite
can bind as co-repressor) and of a catabolic sink for the linking metabo-
lite enriches the regulatory behaviour of the system. In particular, he was
able to show which parameters of the different modules must be matched
to each other to ensure that the integrated system behaves harmoniously.
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CHAPTER 1. INTRODUCTION 3

Whereas the supply-analysis of a single biosynthetic supply pathway
coupled to its demand provided deep insight into the regulatory design
of such systems, the really interesting problem is how the cell integrates
biopolymer synthesis with the pathways that supply its individual mo-
nomers. Fig. 1.2 depicts such a (hypothetical) situation for the synthesis
of a polymer from five different monomers, each of which is synthesised
by its own biosynthetic pathway, which is subject to feedback regulation
both on the metabolic and the genetic level.

S1 A1 B1 M1

E1a

R1M1

R1

1a 1b 1c

synth deg
+

−

−

S2 A2 B2 M22a 2b 2c

S3 A3 B3 M33a 3b 3c

S4 A4 B4 M44a 4b 4c

S5 A5 B5 M55a 5b 5c

demand polymer

a

b

c

d

e

Figure 1.2: Scheme of a supply-demand metabolic system consisting of
five biosynthetic (supply) blocks that each produce a monomer, and one
demand block that consumes these monomers with the indicated stoi-
chiometries (a to e) to yield a polymer product with monomer composition
(M1)a(M2)b(M3)c(M4)d(M5)e. All five supply blocks are regulated both by al-
losteric feedback and by regulation of expression of the first enzyme; for sim-
plicity sake this is only shown for the first supply block. R1 is a repressor protein,
which, when bound to M1 (the corepressor), forms a R1M1 complex; the latter
prevents expression of the structural gene that encodes E1a.

The insight into regulatory design and behaviour described in the
previous paragraphs was obtained mostly via computational studies in
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CHAPTER 1. INTRODUCTION 4

which the steady-state behaviour of model pathways was numerically
simulated. The field that comprises such studies is now known as com-
putational systems biology [5]. One serious problem that hampered the
construction of realistic models was the lack of enzyme rate equations
that take account of the reversibility of reactions and phenomena such
as cooperativity and allosteric effects. The rate equations of classical en-
zyme kinetics were generated from studies aimed at probing the mecha-
nisms of catalysis and inhibition/activation and were almost always car-
ried out under conditions that, for instance, ensured that no product was
present—this led to irreversible rate equations. Even those rate equations
that were developed by, for example, Monod, Wyman and Changeux [6]
and Koshland, Nemethy and Filmer [7] to describe cooperativity and al-
losteric effects were irreversible. It was only in 1997 that the first serious
effort was made by Hofmeyr and Cornish-Bowden [8] to remedy this sit-
uation; they developed the so-called reversible Hill equation, which in-
corporated the requirements of reversibility, cooperativity and allosteric
effects. In their original paper they only consider single substrate–single
product reactions, but the reversible Hill equation has since been gener-
alised to multi-substrate–multi-product reactions [9, 10, 11].

This thesis confronts a similar problem: in order to construct a com-
putational model of a system such as the one depicted in Fig. 1.2 one
needs a general rate equation that can account for a catalysed, template-
directed polymerisation process that can produce from a specified num-
ber of monomer types a polymer with a given monomer composition.
Template-directed polymerisation reactions require a tightly coordinated
regulation of the pathways that synthesise the monomers that serve as
constituents of the polymers. This is because the monomer composition
of the polymers varies considerably with conditions. The envisaged rate
equation must therefore be able to handle conditions in which there is a
varying demand for the monomers that constitute the biopolymers.

There have of course been attempts to study the kinetics of these poly-
merisation reactions, but they all aim at modelling the details of the com-
plicated mechanistic processes that characterise the synthesis of a partic-
ular polymer, usually by either ribosomal polypeptide synthesis or the
synthesis of polynucleotides such as DNA or RNA. As is the case with
classical enzyme kinetics, the aim of these studies was to understand
mechanism, not to understand the integration of these processes with
the biosynthesis of the monomers. The type of rate equation required for
our purposes is of a different nature, namely that of a single rate equa-
tion that describes the whole process and allows for varying monomer
stoichiometry.
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CHAPTER 1. INTRODUCTION 5

1.1 Aim and outline of this study
The main aim of this study was to derive a generic rate equation that de-
scribes catalysed, template-directed polymerisation reactions with vary-
ing monomer stoichiometry. For this purpose we intentionally simpli-
fied the extremely complicated details of processes such as protein and
polynucleotide synthesis, especially with regard to the initiation reac-
tions. We were able to develop such an equation and show how it can
be used in a supply-demand analysis of the system in Fig. 1.2 through
the use of rate characteristics. It must be emphasised, however, that this
demonstration of its use served purely to show its utility. We did not aim
to do an extensive supply-demand analysis of the regulatory design of
such systems; it was felt that such an extension of the study would far
exceed the scope of an M.Sc.-thesis.

Chapter 2 is an overview of the surveyed literature on available ki-
netic models that describe the synthesis of macromolecules.

Chapter 3 describes the derivation of a generic rate equation for tem-
plate-directed polymerisation and forms the bulk of the thesis. Our ini-
tial strategy was to derive a rate equation for an irreversible Michaelis-
Menten mechanism in which the enzyme first binds to a template before
a single monomer is converted into a product. This allowed us to for-
mulate conditions under which a steady-state could be established. Sub-
sequently, we included the binding of a second and a third monomer
so that we could incorporate dimerisation and elongation to produce a
trimer. We obtained a rate equation to which we added additional elon-
gation steps to provide a pattern from which we could generalise the
equation to account for an arbitrary number of monomer types with ar-
bitrary stoichiometry. Chapter 3 also deals with the validation of the
derived rate equation and possible simplifications.

In Chapter 4 we use the derived equation in a computational supply-
demand analysis of the system in Fig. 1.2.

Finally, in Chapter 5, we discuss our results in general and speculate
on future studies.
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Chapter 2

Literature review

Template-directed polymerization reactions, such as DNA replication,
transcription and translation, form the basis of the ‘central dogma’ of
molecular biology articulated by Crick [12]. It states that once sequence
information is transferred into proteins it cannot be transferred back [12].
This transfer of sequence information is central to cellular function in liv-
ing organisms [13, 14]. Synthesis of biopolymer molecules, DNA, RNA
and proteins, is tightly regulated by complex machinery [13]. Translation
displays the highest degree of complexity as a result of the large number
of reacting molecules and individual steps involved in the production of
proteins [13, 15, 16].

This chapter reviews a number of studies that had as aim the descrip-
tion of the detailed kinetics of biopolymer synthesis in the processes of
transcription and translation. The aim of these kinetic models was to
gain a better understanding of the overall reaction mechanisms as well
as determining crucial components in the system that have an effect on
the rate of biopolymer production. These studies had to deal with the
issue of complex rate equations consisting of many parameters, and had
to make simplifying assumptions, such as the rapid equilibrium [17] and
steady-state assumptions [18, 19, 20].

2.1 Polynucleotide synthesis: Transcription
Transfer of genetic information from the primary genetic material, DNA,
to RNA encompasses the process of transcription. The process consists of
initiation, elongation and termination phases. The details of this complex
process differ considerably between prokaryotes and eukaryotes [13].

The following discusses a few of the kinetic models that have been

6
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CHAPTER 2. LITERATURE REVIEW 7

developed to explain various aspects of the transcription mechanism:
in vitro transcription by T7 RNA polymerase [21], the stochastic nature
of transcription [22, 23], and gene transcription kinetics mediated by
dimeric transcription factors [24].

Kinetic modelling of transcription by T7 RNA polymerase

Bacteriophage T7 RNA polymerase drives the promoter-specific DNA-
directed RNA synthesis both in vivo and in vitro [25, 26]. The T7 RNA
polymerase enzyme consists as a single subunit, has a low error rate,
and requires Mg2+ ions that function as cofactors [25]. These properties
and the ’uncomplicated’ nature of this enzyme have assisted in the de-
velopment of kinetic models of the transcription mechanism [27].

Following the development of a Michaelis-Menten-type equation by
Pozhitkov et al. [27] for transcription kinetics, Arnold et al. [21] devel-
oped a kinetic model of in vitro transcript polymerisation. The model of
Arnold et al. uses linear genomic sequence data to derive a rate equation
characterising the overall mechanism of transcription. In constructing
the model, they described initiation as a random-order binding mech-
anism between the T7 promoter, D, and GTP, the initiator nucleotide,
therefore assuming rapid equilibrium to occur [17, 21]. This assumption
helped them reduce complexity in the derived rate equation by remov-
ing the squared terms [GTP]2 and [D]2. By representing initiation as a
random-order binding mechanism, they forced initiation to be the rate-
limiting step in the mechanism [28]. Translocation of the enzyme along
the template was modelled as an irreversible step. They assumed the
addition of nucleotides to the growing RNA chain to be independent of
the nucleotide sequence of the RNA chain. Elementary steps of com-
petitive inhibition, i.e., competition of the free nucleotides for the RNA
polymerase, the promoter-RNA polymerase complex and transcription
complex, were defined in the model. Termination was defined as the dis-
integration of the transcription complex and the subsequent release of
the transcript.

With the help of an automated algorithm and simulation experiments
on the model, Arnold et al. derived the following rate equation describ-
ing the synthesis of RNA.

v =
Vmax

1 +
N

∑
j=1

KM,NTP,j

CNTP,j

1 +
CPPi

KI,PPi
+

N

∑
i=1
i 6= j

CNTP,j

KM,NTP,i

+
KM,D

CD

[
1 +

K I
G

CGTP

(
1 +

CPPi

KI,PPi
+

N−1

∑
i=1

CNTP,i

KI,NTP,i

)](2.1)
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CHAPTER 2. LITERATURE REVIEW 8

where the concentrations of nucleoside triphosphates, total promoter and
the inhibitor inorganic pyrophosphate are denoted as CNTP, CD and CPPi,
respectively. N is the number of ribonucleotides that the product is com-
posed of. Dissociation constants are denoted by Km-values. This rate
equation therefore covers transcript length, nucleotide composition and
the rate constants for transcription initiation, elongation, and termina-
tion.

As is often done in the process of deriving rate equations, Arnold et al.
made simplifying assumptions to reduce the complexity in eqn. 2.1. First,
they assumed that the effect of competing nucleotide substrates may be
significant only at concentrations above several millimolar of competing
NTP and could therefore be neglected. Second, they assumed saturation
by all nucleotides, so that the rate depended solely on promotor con-
centration CD. This yielded an expression of the form of an irreversible
Michaelis-Menten Eqn. 2.2:

v =
VmaxCD

KM,D + CD
(2.2)

The authors emphasised the capability to incorporate linear genomic
sequence information for simulation of nonlinear in vitro transcription
kinetics as a novel feature of their model.

Stochasticity of transcription

The processes that express genes, namely transcription and translation,
are known to be tightly regulated, so ensuring the synthesis of particular
proteins when required by the cell [16]. A consideration of the kinetics
of transcription has provided significant insight in the regulation of these
processes. Apart from this tight regulation, transcription has been shown
to display stochasticity [23].

Stochastic systems originate from molecular interactions that involve
small numbers of reacting molecules [23, 29]. In transcription these in-
teractions occur as randomly occurring fluctuations that lead to an ap-
preciable amount of molecular noise in the number of mRNA produced
[23, 29]. Kinetic modelling studies investigating this feature in transcrip-
tion have provided quantitative data [22, 23, 29, 30] that can be used in
the ongoing quest to incorporate stochasticity into a quantitative model
of the cell.

Jülicher and Bruinsma [22] developed a stochastic model based on
classical chemical kinetics that describe polymerization reactions driven
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by a free energy gain that depends on forces applied externally at the cat-
alytic site. Their major interest was to compare the motion of RNA poly-
merase along the DNA chain with that of motor proteins such as kinesins
that are used for fast transport in cells by moving along microtubules; in
comparison RNA polymerase has to produce an RNA strand that is an
exact copy of the DNA template. Their model will not be discussed in de-
tail for stochastic modelling has little bearing on the deterministic type
of rate equation developed in this thesis.

Different to the model of Jülicher and Bruinsma, Höfer and Rasch
proposed a model of transcription that depicted initiation as a multi-step
process [23]. In their model a promoter is activated by the binding of
transcription factors making it competent for the recruitment, the subse-
quent binding of RNA polymerase, and the start of transcription. The
evolution of this system was modelled with the help of the master equa-
tion [31].

Transcription factor mediated gene transcription

Classical gene transcription kinetic studies involved the empirical fitting
of experimentally observed data with the Hill function [32] or S-system
analysis [33]. Enzyme kinetics, on the other hand, has made extensive
use of the mechanistic approach of Michaelis and Menten [34] to derive
rate equations. This inspired Yang et al. [24] to draw an analogy between
enzyme and transcription reactions, on the basis of which they derived
analytical expressions for gene transcription rates that describe the kinet-
ics of gene transcription mediated by dimeric transcription factors.

The model of Yang et al. focuses solely on the initiation stage of tran-
scription and does not account for the stages of elongation and termina-
tion. In developing the model, the promoter sequence of the template
molecule was assumed to always be exposed to the binding by transcrip-
tion factors and polymerases. In their quest for a simple system Yang
et al. ignored the intermediate reactions involved upon the binding by
transcription factors. Adding on to the model of Cranz et al. [35], Yang et
al. incorporated an irreversible step that accounts for the synthesis of the
pre-initiation complex [24]. As this model does not account for the ter-
mination stage, i.e., the production of the final mRNA, it was assumed
that the production of a copy of mRNA preceded the formation of the
pre-initiation complex. Therefore, the transcription rate was assumed to
be the rate of formation of the pre-initiation complex:

v = k5[DT2] (2.3)
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where k5 denotes the rate constant and DT2 the promoter and dimeric
transcription factor complex (the original notation and numbering is re-
tained).

Numerical simulations were performed on a set of ordinary differen-
tial equations that describe the time-dependent evolution in the concen-
trations of the species involved. Changes in the formation rates were also
calculated.

On the basis of these results the derived analytical rate expression
was simplified by reducing the number of variables using assumptions
of mass balance, pre-equilibrium between the transcription factor forms
and quasi-steady state:

V[T]0 = k5[DT]2 =
2k1k2k5[D]0[T]20
a[T]20 + b[T]0 + c

(2.4)

where
a = 2k1k2(KD + 1)
b = 8k1KN + k2K4Kp
c = 2KNKp

and KD =
(k5 + k−2′)

k2′
, KN = k−2KD + k5, K4 = k−4/k4 and Kp = k−1 +√

k2
−1 + 8k1k−1[T]0 where the k coefficients are rate constants and the K

coefficients are dissociation constants.
Analytical expressions for the parameters of the Hill and S-system

systems were derived from eqn. 2.4. This model focused only on the
binding of Gcn4p (a homodimer molecule) to a promoter and can be ap-
plied to a heterodimer gene transcription system [24]. The results sug-
gest that the derived expression shares similarities with the rate laws of
enzyme reactions.

2.2 Polypeptide synthesis: Translation
The synthesis of polypeptides by translation of an mRNA is similar to
the transcription process in that it occurs in three stages: initiation, elon-
gation and termination. Initiation is the most complex part of translation
and consists of four steps (in eukaryotes):

• the dissociation of ribosomes into 40S and 60S subunits,
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• the formation of the pre-initiation complex that is made up of tRNAMet

(the initiator tRNA), GTP as an energy source, the initiation factor
eIF-2, and the 40S ribosomal subunit,

• the attachment of the pre-initiation complex to the mRNA,

• the attachment of the 60S ribosomal subunit to this complex to yield
a 80S initiation complex.

The mRNA is initially attached to the ribosomal peptide site (P-site) of
the 80S initiation complex. Free aminoacyl-tRNAs bind to the amino
acid site (A-site) of the ribosome. In the elongation phase, addition of
amino acids to the growing end of the polypeptide chain causes the 80S
initiation complex to move along the mRNA to the next codon. Upon
reaching a stop codon on the mRNA, the polypeptide chain is released
and the tRNA dissociates from the ribosome [13].

The various steps involved in translation make it a highly complex
process; theoretical and modelling studies therefore tended to focus only
on selected features of the process.

Theoretical model on the kinetics of biopolymerisation

As part of a series of publications, MacDonald et al. [36] developed a the-
oretical model of polypeptide biosynthesis as an extension to the work
of Pipkin and Gibbs [37]. MacDonald et al. incorporated the simulta-
neous synthesis of several polypeptide chains along a single template
molecule. To this the feature of depolymerisation, i.e., a reverse reaction,
was added.

MacDonald et al.’s model closely followed that of Pipkin and Gibbs,
which represented the synthesis of polypeptides as the diffusion of a sin-
gle point (the growing centre) along a one-dimensional lattice (i.e., tem-
plate). The model was defined as an ensemble of systems, with each
system made up of several segments that individually polymerise on
a one-dimensional lattice of K sites, i.e., codons [36]. Non-overlapping
of the segments was assumed to determine two sets of rates, uniform-
density and steady-state solutions. Elongation was represented by the
polymerisation centre moving along one lattice site j. On the basis of
experimental evidence for ribosomal coverage of multiple lattice sites a
parameter L was defined in the model to describe this feature [36].

The motion of the growing centre along the lattice was assumed to
exist in the states of occupancy (s = 1, 2, ...L) and emptiness (j = 0).
A probability term nj(t) describing the lattice in the jth site occupied at
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time t by a segment was defined. Solutions for n(s)
j (t) were determined.

The segments were allowed to react either in forward (polymerisation)
or backward (depolymerisation) directions, thus permitting derivation
of the forward and backward fluxes. A flux equation was thus derived
incorporating both the forward and backward reactions:

qj(t) = k f

nj(t)

[
1−

L

∑
s=1

nj+s(t)

]

1−
L

∑
s=1

nj+s(t) + nj+L(t)

− kb

nj+1(t)

[
1−

L

∑
s=1

nj−L+s(t)

]

1−
L

∑
s=1

nj−L+s(t) + nj−L+1(t)

(2.5)
To validate eqn. 2.5 it was used to determine the range over which

the rates of polymerisation occur through uniform-density and steady-
state cases. Results from these experiments indicated that initiation and
termination determined the region(s) of uniformity [36].

Part III of this series of publications [38] attempted to bridge the gap
between theory and experimental work on the biosynthesis of polypep-
tides by providing experimental kinetic information for subsequent stud-
ies. Hiernaux [39] performed a stability analysis on these results with
respect to the rate constants involved in initiation, elongation and ter-
mination. Hiernaux’s analysis agreed with results from MacDonald et
al. [38] and later Vassart et al. [40], suggesting that translational control
resides in the initiation and termination stages.

Model for the regulation of mRNA translation

The pioneering work of MacDonald and co-workers described in the pre-
vious section led to the derivation by Lodish [41] of a rate equation that
describes the synthesis of polypeptide chains in multicellular organisms.
Lodish’s equation explained how initiation and elongation affect the rate
at which proteins were synthesised. He then used his rate equation in a
study of the regulation of the α and β-globin mRNAs in the reticulocytes
[41].

Initiation was characterised by a single reaction between mRNA and
the Met-tRNA-ribosome complex leading to the formation of the 80S ini-
tiation complex. The rate constant did not account for the several factors
and steps known to be involved in this step [41]. Elongation and termina-
tion were defined as the addition of amino acids to the nascent chain and
as the release of the completed polypeptide chain, respectively. Contrary
to this approach, Bergmann and Lodish [42] constructed a more complex
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model accounting for the many factors and steps involved in the process
of protein synthesis. Lodish [41] assumed that the rate constant for the
addition of amino acids and that of elongation were the same. Similarly
to MacDonald et al. [36], Lodish defined the terms L, ni. The even distri-
bution of ribosomes on the mRNA was assumed to exist as it had been
previously shown [43, 44]. Termination was assumed not to govern the
rate of protein synthesis. These assumptions led to the derivation of a
mathematical expression that accounted for the entire process of protein
synthesis.

Q = mR∗K1[1−
L

Ke
K1R∗ + L− 1

] (2.6)

where m is the concentration of the mRNA and R∗ the concentration of
the Met-tRNA-ribosome complex.

Calculations on the parameters n, L, K1, Ke were performed in terms
of the concentration of the Met-tRNA f -40S complex, R∗, and the effect of
inhibition in the initiation stage. The rate of protein synthesis was shown
to display a level of dependency on R∗ and K1.

Following Lodish’s representation of the initiation stage as a single
reaction between mRNA and the R∗ complex, Godefroy-Colburn and
Thach developed a kinetic model where initiation was characterised as
a multi-step reaction [45]. Godefroy-Colburn and Thach introduced a
‘discriminatory factor’ that would bind mRNA prior to the pre-initiation
complex. Elongation and termination were modelled similarly to that of
Lodish’s model [41, 42]. The model was applied amongst others in in
vitro translational competition between α and β-globin, in the effect of
elongation inhibitors, and in the effect of competition of the mRNAs for
the discriminatory factor [45].

Model of the elongation step in protein synthesis

Mehra and Hatzimanikatis presented a genome wide mechanistic model
for translation that aims to explain the lack of correspondence between
mRNA and protein expression profiles shown by experimental studies.
Their model, an augmented form of the models described previously
[15, 36, 38], incorporated an additional feature of the initiation phase,
i.e., the reversible attachment of the ribosome around the Shine-Dalgarno
sequence [46]. This sequence allows for the recognition and backward
binding of the ribosome [46]. Mehra and Hatzimanikatis developed a
genome-wide algorithmic framework for subsequent models of transla-
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tion. This study suggested that polysome sizes would give some insight
on the rate at which proteins were synthesised.

Following this, Zouridis and Hatzimanikatis presented a determinis-
tic, kinetic model of the protein synthesis process that is specific at the
sequence level. Contrary to the models of MacDonald and Gibbs [36, 38]
and of Heinrich and Rapoport [15] that modelled the elongation phase
as a single step by means of ke, the elongation rate constant, this model
encompasses the fundamental steps involved in the elongation phase of
the translation process [47]. The elongation factors Tu (Ef-Tu), Ts (Ef-Ts)
and G (Ef-G), which act as cofactors in the process, were incorporated
in this model [47]. The focus on the elongation phase was as a result of
previous work that showed the codons on the mRNA to possess vary-
ing elongation kinetics [48, 49, 50]. This variation at the codon level has
been shown to be a result of the competition for accurate tRNAs [48],
codon-anticodon compatibility [49, 50], and the many elements involved
in the steps of elongation. Later, Fluitt et al. [51] showed that at the codon
level the accessibility to cognate, near-cognate and non-cognate charged
tRNAs affected the rate of translation.

In formulating their model, Zouridis and Hatzimanikatis assumed
the ribosomes at each codon to be in separate states, thus defining the
elongation phase in terms of the different states of the ribosome. Simi-
lar to the model developed by Lodish [41], Zouridis and Hatzimanikatis
modelled the initiation phase as a bimolecular reaction between the ri-
bosome and initiator site on the mRNA. The ribosomes were set to cover
12 codons, all the free tRNAs were assumed to be in the ternary complex
(elongation factor-aminoacyl-tRNA complex), and the reaction rate con-
stants involved in the elongation phase were defined to be the same. The
concentration of near and non-cognate tRNAs was assumed to be negli-
gible. First order binding kinetics was assumed for the elongation factors
and the states of the ribosomes. The release step was also assumed to fol-
low first order kinetics. The model was characterised by flux expressions.

Sensitivity analysis was performed on the model to determine the ef-
fects of the constituents of the translation process on the rate of trans-
lation. The model was applied in the investigation of the steady-state
behaviour of translation of the trpR gene in Escherichia coli. These re-
searchers investigated the relationship between the rate at which pro-
teins are synthesised with varying polysome sizes and it was shown that
the rate of translation dependended on a certain size of the polysomes,
i.e., translation was shown to possess a proportional relationship with
polysome size. The kinetics of the translation process were found to be
initiation or elongation-limited for low or intermediate polysome sizes,
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while termination-limited at high polysome sizes [47]. As with previous
studies, the ribosomes were shown to be evenly distributed along the
mRNA with respect to codon positions in the initiation and elongation-
limited regions. Zouridis and Hatzimanikatis therefore concluded that
when polysome sizes agreed with certain elongation rate constants, trans-
lation rates were influenced [47, 51]. This study presented evidence of
the effects of ribosome crowding and served as an adequate reference for
subsequent studies.

Fluitt et al. [51] proposed a mathematical model for ribosomal kinet-
ics that results from the competition at the codon level between cognate,
near and non-cognate aminoacyl-tRNAs. The Fluitt et al. model formu-
lation required far fewer assumptions than those made previously by
Zouridis and Hatzimanikatis, therefore making this model a more useful
tool for studying the kinetics of translation. Fluitt et al. assumed the pool
of tRNAs to be constant and that the hampering caused by other ribo-
somes on a mRNA was negligible. The transport of the charged tRNAs
was defined as a random diffusion process. To obtain the kinetics of this
process, the times at which the charged tRNAs arrived at the ribosomes
and the diffusion coefficients were defined in the model. This model
showed that the availability of tRNAs influenced the rate at which the
polypeptide chain was formed, i.e., tRNAs affected elongation rates.

As mentioned in the beginning of this chapter the studies reviewed
here all focussed on particular aspects and details of the mechanism of
transcription and translation. Not one of the mathematical models or,
where specifically derived, rate equations that were developed can serve
our purposes as we outlined them in Chapter 1. The next chapter de-
scribes how we developed, from basic principles, a suitably generic rate
equation for template-directed polymerisation that ignores most of the
intricacies of the previous models but instead focusses on accounting
for the polymerisation rate response to enzyme, template, and monomer
concentrations, and, most importantly, polymer length and composition.
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Chapter 3

Derivation of a generic rate
equation for catalysed,
template-directed polymerisation
reactions

3.1 Introduction
This chapter presents the derivation of a generic rate equation for a catal-
ysed, template-directed polymerisation reaction. The derivation is built
up gradually, starting with a simple mechanism that is identical to the
irreversible Michaelis-Menten mechanism, except that the enzyme first
binds to a template molecule. Before handling the added complexity of
a polymerisation reaction, we wanted to study a mechanism which con-
tains a binding step that is allowed to fully equilibrate without fixing
any of the enzyme or template forms. This analysis suggested a way
of handling the complexities that binding of template to enzyme intro-
duces. We then progressively added elongation steps into the mechanism
and were able to derive a generic steady-state rate equation for template-
directed polymerisation.

3.2 Methods
We used the simulation platform PySCeS [52, 53] to calculate both the
time-dependent evolution and the steady-states of the species in the cat-
alytic mechanisms used in the derivation of the rate equation. Models
were defined in a PySCeS input file in terms of reactions, species and pa-

16
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E

T

ET ETS

S

P

k0 f

k0r
k1 f

k1r

k2

Figure 3.1: Reaction scheme of a classical Michaelis-Menten mechanism that
converts S to P, but in which the enzyme E first binds to a template molecule T
(which eventually will be the template that directs the sequence in which mono-
mers bind and are ligated). ET and ETS are the intermediate complexes. P, the
final product is released from ET. The half-headed arrows denote the reversible
steps with the single-headed arrows denoting catalytic steps. k0f, k0r, k1f, k1r,
and k2 are rate constants.

rameters. Analytical steady-state solutions of the systems of differential
equations that describe the reaction mechanisms were obtained using the
’Solve’ function of the computer algebra software Maxima [54].

3.3 A preliminary model
As a point of departure we derived a steady-state rate equation for a uni-
uni Michaelis-Menten type mechanism in which the enzyme first binds
to a template molecule T (Fig. 3.1). Although T does not really play the
role of template in this preliminary mechanism we shall already refer to it
by this name. T binds to the enzyme E to yield an enzyme-template com-
plex (ET). A substrate (S) subsequently binds to ET forming an enzyme-
template-substrate complex (ETS). S is converted in product P, which is
then released from ET.

The time-dependent evolution of the concentrations of species involv-
ing enzyme or template in this system was described by the following set
of ordinary differential equations:
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d[S]
dt

= k1r[ETS]− k1f[ET][S] (3.1)

d[P]
dt

= k2[ETS] (3.2)

d[E]
dt

= k0r[ET]− k0f[E][T] (3.3)

d[T]
dt

= k0r[ET]− k0f[E][T] (3.4)

d[ET]
dt

= k0f[E][T] + (k1r + k2)[ETS]− (k0r + k1f[S])[ET] (3.5)

d[ETS]
dt

= k1f[ET][S]− (k1r + k2)[ETS] (3.6)

where [species] denotes concentrations.
There are two linear dependencies in this set of differential equations.

The first is the sum of eqns. 3.3, 3.5 and 3.6, which leads to the conserva-
tion equation for enzyme:

[E]t = [E] + [ET] + [ETS] (3.7)

where [E]t denotes the total concentration of the enzyme.
The second is the the sum of eqns. 3.4, 3.5 and 3.6, which leads to the

conservation equation for template T:

[T]t = [T] + [ET] + [ETS] (3.8)

where [T]t denotes the total concentration of template T.
The rate of the production of P depends on the concentration of ETS:

v =
d[P]
dt

= k2[ETS] (3.9)

At steady-state (assuming constant [S] and [P]), eqns. 3.3–3.6 are equal
to zero and are referred to as balance equations:

k0r[ET]− k0f[E][T] = 0 (3.10)
k0f[E][T] + k1r[ETS] + k2[ETS]− (k0r + k1f[S])[ET] = 0 (3.11)

k1f[ET][S]− (k1r + k2)[ETS] = 0 (3.12)
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Eqn. 3.10 expresses the fact that in steady state the enzyme-template
dissociation reaction is in equilibrium, and could therefore be rewritten
as:

K0 =
k0r

k0f
=

[E][T]
[ET]

(3.13)

where K0 denotes the dissociation constant for the enzyme-template com-
plex.

Similarly, eqn. 3.12 was rewritten as:

Km =
k1r + k2

k1f
=

[ET][S]
[ETS]

(3.14)

Time-dependency behaviour of the system

In order to obtain a mental picture of how the mechanism in Fig. 3.1 be-
haves dynamically, a kinetic model was defined in a PySCeS [52] input
file (see Appendix 6.1). S was clamped at a constant concentration of
10.0 and all rate constants were arbitrarily set to a value of 1.0. The to-
tal concentration of E was 10-fold higher than that of T ([E]t = 10 · [T]t).
This choice was based on the rather arbitrary assumption that the tem-
plate concentration would be the limiting factor in physiological condi-
tions (however, whether this assumption is justified is irrelevant to the
derivation that follows, because the roles of E and T in the mechanism
are symmetric, and therefore interchangeable).

The time-dependent changes in concentrations of E, T, ET, ETS and
P were calculated (Fig. 3.2). The concomitant changes in the rates of the
three reactions as a function of time are shown in Fig. 3.3.

E and T equilibrated with ET, which initially increased, but then de-
creased as it was converted to ETS through the binding of S. Eventually,
for this set of parameters, most of the template accumulated in the form
of ETS as the system approached a steady state where the net reaction
rate (rate of change of [P] with time) became constant.

The rate profile in Fig. 3.3 also clearly shows how the rate of reaction
R0 fell to zero as the reaction approached equilibrium, while the rates of
R1 and R2 approached each other to become equal in the steady state.

A steady-state rate equation

From the rate expression v = k2[ETS] (eqn. 3.9) it is clear that in order to
obtain a steady-state rate equation for the scheme in Fig. 3.1 we needed
to derive an expression for [ETS].
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Figure 3.2: Time-dependent concentration changes of E, T, ET, ETS and P in
Scheme 3.1 shown on two different concentration scales. The decrease in the
concentration change of E from a value of 10.0 tracks that of T from a value
of 1.0. The concentration of S was kept constant at a value of 10.0. All rate
constants were set to 1.0 (see Appendix 6.1 for the PySCeS model file with ini-
tial conditions and parameter values). Numbers next to the curves indicate the
steady-state concentrations (except for that of P, which does not reach a steady
state but keeps accumulating).
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Figure 3.3: Time-dependent changes of rates of the reactions 1, 2 and 3 in
Scheme 3.1. The number next to the R1 and R2 rate curves indicates the steady-
state flux. The initial conditions and parameter values are described in Fig. 3.2.

We obtained the following analytical expression for [ETS] by solving
eqns. 3.7, 3.8, 3.13, and 3.14, using the ‘Solve’ function of the computer
algebra program Maxima [54]:

[ETS] =

[S]
Km

(
1 +

[S]
Km

) [
K0 (2[T]t + [E]t) + [T]t ([T]t − [E]t)

(
1 +

[S]
Km

)]
± [S]

Km

[(
1 +

[S]
Km

)
[T]t + K0

]
X(

1 +
[S]
Km

)2 [
([T]t − [E]t)

(
1 +

[S]
Km

)
+ K0 ± X

]
(3.15)

where

X =

√
([T]t − [E]t)

2
(

1 +
[S]
Km

)2

+ 2K0 ([T]t + [E]t)
(

1 +
[S]
Km

)
+ K2

0 (3.16)

This expression was far too complex to be of any practical use. We there-
fore made the additional assumption that the concentration of free en-
zyme, [E], is constant (clamped). We could just as well have considered
a clamped free [T]; the two situations are symmetrical. This removed the
conservation equation 3.7 for [E]t from the system, which then reduced
to eqns. 3.8, 3.13, and 3.14. This may seem too restricting an assumption,
but if it is taken into account that usually there is much less template than
enzyme, i.e., [E]t � [T]t, then this would imply that [E] ≈ [E]t. However,
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in what follows we did not assume that [E] ≈ [E]t, only that free enzyme
concentration [E] was fixed.

Solving for ETS allowed us to construct the rate equation as:

v = k2[ETS] =
k2[T]t

[S]
Km

1 +
K0

[E]
+

[S]
Km

(3.17)

Symmetrically, if we assumed a fixed [T] and a variable [E], we obtained
an analogous expression:

v = k2[ETS] =
k2[E]t

[S]
Km

1 +
K0

[T]
+

[S]
Km

(3.18)

These equations exhibit an additional positive term (K0/[E] or K0/[T]) in
the denominator, as compared to the usual irreversible Michaelis-Menten
equation in the absence of binding of T.

When we made the assumption of near-equilibrium in the ETS 
 ET+
S dissociation reaction, i.e., k1r � k2, eqn. 3.14 simplified to

Ks =
k1r

k1f
=

[ET][S]
[ETS]

(3.19)

Under this assumption eqn. 3.17

v = k2[ETS] =
k2[T]t

[S]
Ks

1 +
K0

[E]
+

[S]
Ks

(3.20)

In this section we have established that allowing both enzyme and
template to vary freely yielded too complex a rate equation; we needed
to assume either a fixed [E] (as was done above) or a fixed [T]. As the
main aim of this study was to generate a rate equation for catalysed,
template-directed polymerisation reactions, we now extended the en-
zyme mechanism of the simple catalysed, template-directed system to
cater for a dimerisation of two monomers on the template and one sub-
sequent elongation step.
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3.4 Extended Model
We extended the reaction scheme in Fig. 3.1 by incorporating a template-
directed polymerisation process consisting of an initial dimerisation step
followed by one elongation step and a final product release step (see
Fig. 3.4A). Two monomers, M1 and M2, bind sequentially to the enzyme-
template complex (ET) and are then coupled. A third monomer M3 binds
and is coupled to the dimer ETM1–M2 to yield a trimer ETM1–M2–M3. Fi-
nally, a polymer product M1–M2–M3 is released from ET. Binding steps
were considered to be reversible, while the condensation and product re-
lease steps were considered to be irreversible (we assumed that the mo-
nomers of template-directed condensation reactions are usually activated
by the attachment of a good leaving group, so that the catalytic reactions
have a large equilibrium constant).

To avoid later confusion we note here that M1, M2, M3, etc. refer
specifically to the positions the monomers occupy in the polymer se-
quence (or, equivalently, the positions where the monomers enter the
reaction mechanism). They do not refer to the identities of the mono-
mers. Accordingly, [M3], for example, refers to the concentration of the
monomer that occupies position 3 in the polymer sequence.

In Fig. 3.4A there is an explicit product release step with rate constant
k6. If it is assumed that the release of product is must faster than the
catalytic elongation step, the reaction mechanism can be simplified to
the scheme in Fig. 3.4B. In what follows this simplified scheme is used
as the basis for the derivation of a steady-state rate equation. We discuss
the difference between the two mechanisms in Section 3.4.

The system in Fig. 3.4 could be expressed in terms of ordinary differ-
ential equations:
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Figure 3.4: Reaction schemes of a catalysed, template-directed polymerisation
reaction. Scheme A has an explicit elongation step with rate constant k5 and
product release step with rate constant k6. In Scheme B the elongation and prod-
uct release steps have been combined into one step with rate constant k5 (see text
for explanation). M1, M2, M3 denote the monomers, E the free enzyme, T the
free template, ET the enzyme-template complex, ETM1 the ET–monomer com-
plex, ETM1M2 the complex of ET with two unligated monomers, ETM1–M2 the
ET–dimer complex, ETM1–M2M3 the complex of ET–dimer with the next mo-
nomer, ETM1–M2–M3 the ET–trimer complex, and M1–M2–M3 the final trimer
product. The half-headed arrows denote the reversible binding steps, and the
single-headed arrows denote irreversible catalytic steps.
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d[T]
dt

=
d[E]
dt

= k0r[ET]− k0f[E][T] (3.21)

d[ET]
dt

= k0f[E][T] + k1r[ETM1] + k5[ETM1–M2M3]− (k0r + k1f[M1])[ET]

(3.22)
d[ETM1]

dt
= k1f[ET][M1] + k2r[ETM1M2]− (k1r + k2f[M2])[ETM1]

(3.23)
d[ETM1M2]

dt
= k2f[ETM1][M2]− (k2r + k3)[ETM1M2] (3.24)

d[ETM1–M2]

dt
= k3[ETM1M2] + k4r[ETM1–M2M3]− k4f[ETM1–M2][M3]

(3.25)
d[ETM1–M2M3]

dt
= k4f[ETM1–M2][M3]− (k4r + k5)[ETM1–M2M3] (3.26)

Time-dependency behaviour of the extended model

A kinetic model describing the dynamic behaviour of the mechanism in
Fig. 3.4B was defined in a PySCeS input file (see Appendix 6.4). M1, M2,
M3 and E were clamped at constant concentrations (E was clamped in
the light of the results of Section 3.3). The total concentration of E was
again assumed to be 10-fold higher than that of T. To assign values to
the rate constants we used the dissociation rate constants as reference,
setting k1r = k2r = k4r = 1.0. Strong and fast binding was then ensured
by setting k1f = k2f = k4f = 103. The initial binding of template to
enzyme was arbitrarily assigned an equilibrium constant of 1.0 with rate
constants set to 104, which ensured very rapid equilibration. The rate
constants of catalytic steps 3 and 5 were assumed to be much slower
than binding (a typical assumption in enzyme kinetics) and were set to
14 and 12 respectively, so that we could distinguish between the rates of
the two condensation steps (in the derivation to be discussed shortly we
assumed them to be equal).

The time-dependent changes in the concentrations of T, ET, ETM1,
ETM1M2, ETM1–M2, ETM1–M2M3 and M1–M2–M3 were calculated (see
Figs. 3.5 and 3.6). Changes in the rates of the reactions involved in the
system as a function of time are shown in Fig. 3.7.

In the initial fast phase up to 0.0001 time units, reactions R0, R1 and R2
equilibrated and enzyme-template accumulated as ETM1M2, in which
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Figure 3.5: Time-dependent concentration changes of the intermediates in-
volved in the fast binding equilibria (reactions 0, 1 and 2) of Scheme 3.4B. The
species ET and ETM1 decreased to low concentration levels, with most of the
enzyme accumulating as ETM1M2. The initial conditions and parameter values
are listed in Appendix 6.4.
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Figure 3.6: Time-dependent concentration changes of the intermediates in-
volved in reactions 3, 4 and 5 of Scheme 3.4B, which occurred on a much slower
time-scale because of the relatively slow catalytic rate constants of reactions 3
and 5. The species ETM1M2 and ETM1–M2M3 reached steady-state, while the
rate of production of the final polymeric product M1–M2–M3 became constant.
The concentrations of T, ET, ETM1, ETM1–M2 remained very low relative to the
concentrations of ETM1M2 and ETM1–M2M3 throughout the time course of the
reaction. The initial conditions and parameter values are listed in Appendix 6.4.
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Figure 3.7: Time-dependent changes of the rates of the reactions in Scheme 3.4.
A and B show the initial fast phase with two different rate scales, while C shows
rate changes in the slow phase. The number next to the converging rate curves
indicates the steady-state flux. The initial conditions and parameter values are
listed in Appendix 6.4.
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both monomers are bound (see Fig. 3.5). The rate changed up to 0.001
time units as shown in Fig. 3.7: A. shows how R0, R1 and R2 rapidly
approached equilibrium, while the rates of R3 and R4 increased to a
maximum. B. provides deeper insight, showing that the binding of tem-
plate to enzyme, R0, being 10-fold faster than the other binding steps,
reached and remained in quasi equilibrium with near zero net rate. As
ETM1–M2M3 started forming R5 came into play. The rates of reactions R1
and R2 tracked the slowly increasing rate of R5.

The subsequent slow phase comprised dimerisation, binding of M3,
and the second condensation step. A steady state was established in
which enzyme-template occurred in the form of ETM1M2 and ETM1–M2M3
(see Figs. 3.6 and 3.7C). Because the equilibrium constant of binding re-
action 4 was large (1000) and the forward rate constant was about 100-
fold larger than the catalytic constants, the concentration of ETM1–M2
remained very low throughout the time course of the reaction. As the
steady state became established the rate of M1–M2–M3 production be-
came constant.

Solving for a rate equation using the steady-state
assumption

We introduced the following definitions:

σ1 =
[M1]

Kd1

, σ2 =
[M2]

Kd2

, σ3 =
[M3]

Kd3

where
Kd1 =

k1r

k1f
, Kd2 =

k3 + k2r

k2f
, Kd3 =

k5 + k4r

k4f

Kd1 is the dissociation constant for the complex of ET with the first mono-
mer in the polymer sequence, while Kd2 and Kd3 represent the Michaelis
constants for the monomers that occur in positions 2 and 3 of the polymer
sequence.

Using these definitions, we derived the steady-state equations for this
system by setting eqns. 3.22–3.26 to zero and transforming them as fol-
lows:

1. As before, eqn. 3.21 expresses the fact that in steady state the enzyme-
template dissociation reaction is in equilibrium, and could there-
fore be rewritten as:

K0 =
k0r

k0f
=

[E][T]
[ET]

(3.27)
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where K0 denotes the dissociation constant for the enzyme-template
complex.

2. Eqns. 3.22 and 3.23 were divided by k1r:(
k0f

k1r

)
[E][T]+ [ETM1]+

(
k5

k1r

)
[ETM1–M2M3]−

(
k0r

k1r
+ σ1

)
[ET] = 0

(3.28)

σ1[ET] +
(

k2r

k1r

)
[ETM1M2]−

(
1 +

(
k3 + k2r

k1r

)
σ2

)
[ETM1] = 0

(3.29)

3. Eqn. 3.24 was divided by (k3 + k2r):

σ2[ETM1]− [ETM1M2] = 0 (3.30)

4. Eqn. 3.25 was divided by (k5 + k4r):(
k3

k5 + k4r

)
[ETM1M2]+

(
k4r

k5 + k4r

)
[ETM1–M2M3]−σ3[ETM1–M2] = 0

(3.31)

5. Eqn. 3.26 was divided by (k5 + k4r):

σ3[ETM1–M2]− [ETM1–M2M3] = 0 (3.32)

The two conservation equations for enzyme species and template species
are:

[E]t = [E] + [ET] + [ETM1] + [ETM1M2] + [ETM1–M2] + [ETM1–M2M3]
(3.33)

[T]t = [T] + [ET] + [ETM1] + [ETM1M2] + [ETM1–M2] + [ETM1–M2M3]
(3.34)

The rate of the polymerisation reaction is the rate at which the trimer
M1–M2–M3 is released from the enzyme-template complex ET, and is
given by

v =
d[M1–M2–M3]

dt
= k5[ETM1–M2M3] (3.35)

As in the case of the simple scheme described in Section 3.3 we as-
sumed the free enzyme concentration [E] to be fixed. Using the ’Solve’
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function of Maxima [54], we obtained solutions to the steady-state con-
centrations of the species in the equation system eqn. 3.27 and eqns. 3.29–
3.33. Using the expression for [ETM1–M2M3] the following rate equation
was obtained:

v =
k3k5k1rσ1σ2σ3[T]t

K0

[E]
(k3k5σ2σ3 + k1rk5σ3) + k1rk5σ1σ2σ3 + k1rk3σ1σ2σ3

+k3k5σ2σ3 + k1rk5σ1σ3 + k1rk3σ1σ2 + k1rk5σ3

(3.36)

It was assumed that the catalytic rate constants are identical, i.e., k3 = k5,
and so these rate constants were denoted by kcat. Dividing by k1rkcat
yielded:

v =
kcatσ1σ2σ3[T]t

K0

[E]

(
kcat

k1r
σ2σ3 + σ3

)
+ σ3 +

kcat

k1r
σ2σ3 + σ1σ2 + σ1σ3 + 2σ1σ2σ3

(3.37)

Eqn. 3.37 could be simplified further by assuming that the dissoci-
ation half-reactions occur much faster than the catalytic steps, that is
k1r, k2r, k4r � kcat. This also simplified the expressions for Michaelis con-
stants for M2 and M3 to:

Kd2 =
k2r

k2f
, Kd3 =

k4r

k4f

Eqn. 3.37 now became:

v =
kcat[T]tσ1σ2σ3(

1 +
K0

[E]

)
σ3 + σ1 (σ2 + σ3) + 2σ1σ2σ3

(3.38)

Dividing the numerator and denominator by σ1σ2σ3 yielded a partic-
ularly useful form of the rate equation that we subsequently used:

v =
kcat[T]t(

1 +
K0

[E]

)
1

σ1σ2
+

1
σ2

+
1
σ3

+ 2
(3.39)

Alternatively, if [T] was regarded as fixed instead of [E], the rate equa-
tion became:

v =
kcat[E]t(

1 +
K0

[T]

)
1

σ1σ2
+

1
σ2

+
1
σ3

+ 2
(3.40)
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In summary, to obtain these forms of the steady-state rate equation we
had to assume (i) that the concentration of either the free enzyme or the
free template was fixed, (ii) that the catalytic rate constants were equal,
and (iii) that binding occurred much faster than catalysis. The second
assumption presupposed that different monomers have similar chemical
reactivity, which seemed reasonable. The third assumption is often made
in enzymatic studies, and also seemed reasonable in this case.

When we introduced the reaction scheme that formed the basis for
the derivation of rate eqn. 3.39 we made the assumption that product
release is much faster than catalytic elongation, i.e., k6 � kcat. If we did
not make this assumption and derived the steady-state rate equation for
the reaction scheme in Fig. 3.4A we obtained

v =
kcat[T]t(

1 +
K0

[T]

)
1

σ1σ2
+

1
σ2

+
1
σ3

+ 2
(

1 +
kcat

k6

) (3.41)

The assumption that product release is faster than the rate of catalysis is
often made in enzyme kinetics and we continued to use it.

3.5 Validation
In order to validate the rate equations derived above we posed the fol-
lowing questions:

1. Are the rate values calculated with rate equation 3.37 (in which all
catalytic condensation steps have equal rate constants) identical to
the steady-state flux values of the mass-action model in Fig. 3.4 (cal-
culated with PySCeS ) on which the derivation of the rate equation
is based?

2. How does the assumption that the dissociation steps occur faster
than the catalytic steps, i.e., that kcat � k1r, k2r, k4r, affect the rate
values calculated with eqn. 3.38 when kcat is varied relative to k1r,
k2r and k4r?

To answer these questions we varied kcat in a range of 0.01–100.0, i.e.
from 100 times smaller to 100 times larger than the dissociation rate con-
stants, k1r, k2r, k4r which were all set to 1.0 (see Appendix 6.4). The net
rate of polymerisation was calculated for each kcat value using the mass-
action model, eqn. 3.37 and eqn. 3.38. The PySCeS script used for this
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Table 3.1: A comparison of steady-state and reaction rate values at different
values of kcat. The % error was calculated as 100(vsimp − v)/v.

kcat J v (Eqn. 3.37) vsimp (Eqn. 3.38) % error

0.01 4.99995× 10−3 4.99995× 10−3 4.99995× 10−3 1.55× 10−5

0.1 4.99994× 10−2 4.99994× 10−2 4.99995× 10−2 1.55× 10−4

1.0 4.99987× 10−1 4.99987× 10−1 4.99995× 10−1 1.55× 10−3

10 4.99918 4.99918 4.99995 1.55× 10−2

100 4.99221× 101 4.99221× 101 4.99995× 101 1.55× 10−1

purpose is given in Appendix 6.8. The calculation results are given in
Table 3.1.

Table 3.1 shows that the steady-state flux values (denoted by J) and
the rate values calculated from eqn. 3.37 (denoted v) yielded identical
results at all values of kcat (up to 12 significant figures, not shown). This
demonstrated the correctness of the derivation of eqn. 3.37.

The simplified rate eqn. 3.38 gave surprisingly accurate results. As
expected, when kcat was 100 times smaller than the dissociation rate con-
stants, the error was negligible. However, even if the rate constants were
all of comparable magnitude (here 1.0), the percentage error was still
only about 0.002%. What was surprising was that when kcat was con-
siderably larger than the dissociation rate constants, the percentage error
was still quite acceptable, i.e., about 0.2% when kcat was 100 times larger
than the binding rate constants.

From these results we therefore concluded that our derivation was
correct and that the simplified forms of the rate equations (eqns. 3.38–
3.40), or, their generalised forms (eqns. 3.45 and 3.46) that are derived in
the next section could be used in metabolic models to represent template-
directed polymerisation reactions.

3.6 Generalising the rate equation
To generalise our rate equation we had to consider two aspects:

1. Extension to an arbitrary length n of the polymer sequence.

2. The constraint of a fixed set of m monomers. For example, polypep-
tides consist of 20 different monomers, polynucleotides of four, etc.
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Extension to sequence length n
Section 3.4 focused on the derivation of a rate equation for a simple
catalysed, template-directed polymerisation reaction. However, this rate
equation is specifically for the formation of a trimer. In this section we
show how we generalised the rate equation to a sequence length of n mo-
nomers, still assuming that either [T] or [E] was constant. Our strategy
was to extend the system in Fig. 3.4 by successively incorporating ad-
ditional elongation steps, i.e., incrementally increasing the length of the
polymer. We hoped that a pattern would emerge that would allow us to
construct a generic rate equation for a polymer of sequence length n.

For a system with two elongation steps (addition of a fourth monomer)
the rate is given by:

v =
d[M1–M2–M3–M4]

dt
= kcat[ETM1–M2–M3M4] (3.42)

Inserting the expression for [ETM1–M2–M3M4] yielded the following
rate equation for the situation where [E] is constant:

v =
kcat[T]t(

1 +
K0

[E]

)
1

σ1σ2
+

1
σ2

+
1
σ3

+
1
σ4

+ 3
(3.43)

Similarly, a system with three elongation steps, that is with the addition
of a fifth monomer, produced the following rate equation:

v =
kcat[T]t(

1 +
K0

[E]

)
1

σ1σ2
+

1
σ2

+
1
σ3

+
1
σ4

+
1
σ5

+ 4
(3.44)

A clear pattern emerged from the above rate equations. This pattern
allowed us to generalise to n monomers to yield the following generic rate
equations. When [E] is constant:

v =
kcat[T]t(

1 +
K0

[E]

)
1

σ1σ2
+

n

∑
j=2

1
σj

+ (n− 1)
(3.45)

where n is the number of monomers and n − 1 the number of catalytic
steps.

When [T] is constant:

v =
kcat[E]t(

1 +
K0

[T]

)
1

σ1σ2
+

n

∑
j=2

1
σj

+ (n− 1)
(3.46)
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Constrain to fixed set of m monomers

We assumed that the generic polymer in question was constructed from
m different monomer types. In order to distinguish the identity of the
monomer from the position it occupies in the sequence we denoted mo-
nomer types by MA, MB, MC,..., while M1, M2, M3,..., referred to positions
in the polymer sequence.

Consider eqn. 3.45. From the first denominator term it is clear that
the monomers occupying positions 1 and 2 have a distinguished role in
the rate equation and that their identities need to be known. The middle
denominator term is a sum and here all that we need to know is how
the 1/σj terms (where j ranges over position 2 to n) partition between
the m monomers. These two conditions imply that all that we need to
know about our polymer is the initial dimeric sequence and the monomer
composition of the sequence from position 2 onwards.

As the above may not be immediately obvious we illustrate with a
specific example. Let the polymer have length n = 7. The generic rate
equation is

v =
kcat[T]t(

1 +
K0

[E]

)
1

σ1σ2
+

1
σ2

+
1
σ3

+
1
σ4

+
1
σ5

+
1
σ6

+
1
σ7

+ 6
(3.47)

Let this polymer now be constructed from a set of three monomers
MA, MB, and MC, and let the monomer sequence arbitrarily be

MBMAMCMAMAMBMC.

with composition (MA)3(MB)2(MC)2. The rate equation now becomes

v =
kcat[T]t(

1 +
K0

[E]

)
1

σBσA
+

1
σA

+
1

σC
+

1
σA

+
1

σA
+

1
σB

+
1

σC
+ 6

(3.48)

or, simpler,

v =
kcat[T]t(

1 +
K0

[E]

)
1

σBσA
+

3
σA

+
1

σB
+

2
σC

+ 6
(3.49)

The coefficients i in the i/σi-terms, namely 3, 1, and 2, reflect the total
number of each monomer type in the sequence from position 2 onwards.
They are of course also correct for the monomer composition of the full
sequence, except for the monomer in position 1 (here MB) which is one
less than the total number in the full sequence (i.e., 1 instead of 2).
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The fully generalised rate equation

We could now finally construct the generic rate equation for a polymer
with sequence length n constructed from a set of m monomer types. Let
ci be the number of monomers of type i from position 2 onwards in the
monomer sequence. Then the generic rate equation when [E] is constant
could be written as:

v =
kcat[T]t(

1 +
K0

[E]

)
1

σ1σ2
+

m

∑
i=1

ci

σi
+ (n− 1)

(3.50)

where σ1 refers to the first monomer in the sequence, and σ2 to the sec-
ond.

When [T] is constant

v =
kcat[E]t(

1 +
K0

[T]

)
1

σ1σ2
+

m

∑
i=1

ci

σi
+ (n− 1)

(3.51)

3.7 Simplifications of the generic rate equation
There were two aspects of the generic rate equations that needed further
consideration. The first was the degree to which the K0/[E] (or K0/[T])
term influences the rate, and the second was whether it is possible to
adapt the rate equation for the general case where only the composition
of the polymer is known without any sequence information.

Consider the K0/[E] term. From the definition of K0 it follows that

K0

[E]
=

[T]
[ET]

=
[free template]

[bound template]
(3.52)

It should therefore be clear that the generic rate equations could be sim-
plified further under the assumption that the free enzyme concentration
[E] (in eqn. 3.50) is much larger than K0, which implies that all the tem-
plate is bound to enzyme, i.e., [ET] ≈ [T]t. Strong binding of template
to enzyme would ensure a small dissociation constant K0. We there-
fore needed to ask which additional condition would make it possible
for [E]� K0 .

As discussed in section 3.3 we had to remove one of the two conser-
vation equations (for E or for T) in order to obtain a usable analytical
expression for [ETS]. To do this we had to assume that either the free
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concentration of E or that of T is kept constant (clamped)—we clamped
[E]. We made the point that if there is much less template than enzyme,
i.e., [E]t � [T]t, then this would imply that [E] ≈ [E]t, this assumption
would be justified. Therefore, the two conditions that would ensure that
the K0/[E] term tends to zero are [E]t � [T]t and [E]t � K0.

If these conditions were satisfied the generic rate equation would sim-
plify to

v =
kcat[T]t

1
σ1σ2

+
m

∑
i=1

ci

σi
+ (n− 1)

(3.53)

for the situation where [E] � K0. For the other situation where [T]t �
[E]t and [T]t � K0, which ensures that [T]� K0, the [T]t in the numerator
is replaced by [E]t.

v =
kcat[E]t

1
σ1σ2

+
m

∑
i=1

ci

σi
+ (n− 1)

(3.54)

The above theoretical analysis provides conditions under which the
K0/[E] term in itself tends to zero and becomes negligible, but it may
be that, due to the functional form of the rate equation, these conditions
could be relaxed without making much of a difference to the calculated
rate. It may be that an increase in the length of the monomer overshad-
ows any contribution that the K0/[E] term makes.

In addition, if the K0/[E] is negligible, another simplification of the
generalised rate equation suggested itself. If the 1/σ1σ2 term is changed
to 1/σ1 the equation simplifies to

v =
kcat[T]t

m

∑
i=1

ci

σi
+ (n− 1)

(3.55)

a form which is particularly attractive because it only requires a knowl-
edge of the monomer composition of the polymer, avoiding the necessity
of knowing the sequence and identity of the first two monomers. Note
that the coefficients ci in eqn. 3.55 now reflect the total number of each monomer
type in the full sequence, in contrast to ci in eqns. 3.50 and 3.51 and eqns. 3.53
and 3.54 where they reflect the total number of each monomer type from posi-
tion 2 in the polymer onwards.

The behaviour of all of these possible forms of the denominator of
eqn. 3.50 was explored by calculating the value of the denominator and
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its simplifications under conditions of varying K0/[E] and varying num-
ber of monomers. It was assumed that the polymer was a homopolymer,
i.e., consisting of only one monomer. Fig. 3.8 shows how the following
forms of the denominator varied with monomer concentration (the Gnu-
plot-plotfile used to generate this figure is given in Appendix 6.9; Gnuplot
[55] is a multi-platform a portable command-line driven graphing utility
that was extensively used in the research described in thesis):

• The full denominator of eqn. 3.50(
1 +

K0

[E]

)
1
σ2 +

n− 1
σ

+ (n− 1) (3.56)

• When [E]� K0
1
σ2 +

n− 1
σ

+ (n− 1) (3.57)

• When, in addition, 1/σ1σ2 is changed to 1/σ1

n
σ
+ (n− 1) (3.58)

• Also included in the figure is the(
1 +

K0

[E]

)
1
σ2

term by itself.

The graphs show clearly that when K0/[E] is small (0.01) there is, no
matter the polymer size, no discernable difference between the full form
of the denominator (red) and the form (green) that assumes that K0/[E]
is zero (on the top three graphs the red line overlays the green). When
n = 50 this also holds for the simplest form of the denominator (black),
except at very low levels of saturation (σ < 0.01). When the size of the
polymer decreases (n = 50 and n = 5 on the top three graphs) the de-
viation becomes larger, but even for the shortest polymer the simplest
denominator form is indistinguishable from the full form at levels above
half-saturation (σ > 1.0).

This profile changes very little when K0/[E] is increased to 1.0, except
that the denominator form that assumes that K0/[E] is zero is slightly
offset from the full form, but is nevertheless an excellent approximation.
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Figure 3.8: Variation in the value of different forms of the denominator of
eqn. 3.50 for a homopolymer with n monomers as a function of monomer con-
centration. The different graphs show combinations of different values of K0/[E]
and n. The monomer dissociation constant is 1.0.

It is only when K0/[E] is very large (100.0) that the simplified forms of
the denominator deviate substantially from the full form. Nevertheless,
for longer polymers the simplified forms are still good approximations at
σ > 1.0, and it is only for the shorter polymers that the level of saturation
needs to be higher for the approximation to hold.

In all cases the (1 + K0/[E])/σ2 term dominates the value of the full
denominator at low monomer concentrations while the other terms dom-
inate at high monomer concentrations, the switch-over point depending
on the value of K0/[E] and n.

From these graphs we can conclude that for K0/[E] values up to 1.0
the denominator can be simplified by assuming that K0/[E] is zero. This
weakens the condition derived theoretically earlier in this section consid-
erably, and implies that eqns. 3.53 is usable under most conditions. Fur-
thermore, if the monomer concentrations are all at least half-saturating
the simplest form of the denominator is also a good approximation for
the full form.
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3.8 Exploring the rate behaviour of the derived
rate equations

Variation in Vmax with number of monomers, n
When all monomer concentrations approach saturation values, i.e., all
σi � 1, the reaction rate of eqn. 3.45 approaches the limiting rate Vmax =
kcat[T]t/(n − 1) (when [E]t � [T]t), whereas eqn. 3.46 approaches the
limiting rate Vmax = kcat[E]t/(n− 1) (when [T]t � [E]t).

The variation of Vmax with n of course reflects the time it takes to
synthesise a polymer consisting of n subunits—the larger n the longer it
takes to synthesise one polymer molecule. The reason why Vmax varies
with n− 1 instead of with n is that n− 1 reflects the number of catalytic
steps (one could also think of it as due to the first monomer actually
forming part of the initiation complex, i.e., two monomers must bind
before a condensation reaction can take place).

Dependence of reaction rate on the concentrations of
monomers

For the purposes of this exploration of the behaviour of our derived rate
equations with varying monomer concentrations, we used the rate equa-
tion for a pentamer (eqn. 3.44, n = 5) in the form of eqn. 3.53 under the
assumptions explained in Section 3.7. Under these conditions eqn. 3.44
simplifies to

v =
kcat[T]t

1
σ1σ2

+
1
σ2

+
1
σ3

+
1
σ4

+
1
σ5

+ 4
(3.59)

We assumed that the pentamer consists of 5 different monomer types,
with monomer M1 in position 1, M2 in position 2, etc.

We also compared this equation with the simplified form in eqn. 3.55,
namely

v =
kcat[T]t

1
σ1

+
1
σ2

+
1
σ3

+
1
σ4

+
1
σ5

+ 4
(3.60)

in order to gain an idea of the conditions under which this form can be
used.

We explored the behaviour of these rate equations to changes in mo-
nomer concentration by varying the concentration of one monomer while
keeping all the other monomer concentrations equal at concentrations of
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either 0.1, 0.5. 1.0, 2.0, 5.0, 10.0, 50.0 or 100.0. All parameters were set to
1.0, which means that the maximum rate that can be achieved under such
conditions is 0.25 rate units (kcat[T]t/(n− 1)). The results are depicted in
Figs. 3.9 and 3.10 (the Gnuplot-plotfile used to generate these figures is
given in Appendix 6.10).
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Figure 3.9: Variation of the reaction rate of eqn. 3.59 with monomer concentra-
tion. Each curve represents the variation in reaction rate when the indicated
monomer is varied while the concentrations of all the other monomers are kept
constant and equal at 0.1, 0.5. 1.0, 2.0 (top row) and 5.0, 10.0, 50.0 or 100.0 (bot-
tom row).

We also calculated the apparent Km and Vmax values for the two forms
of the rate equations by transforming, for each monomer in turn, the rate
equation into the form of the irreversible Michaelis-Menten equation

v =
Vmaxs

Km + s
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Figure 3.10: Variation of the reaction rate of the modified derived rate equa-
tion, eqn. 3.60 with monomer concentration. Conditions are identical to those in
Fig. 3.9.

For example, if M1 is the variable monomer then

v =
kcat[T]t

1
σ1σ2

+
1
σ2

+
1
σ3

+
1
σ4

+
1
σ5

+ 4

=
kcat[T]t

1
σ1x

+
4
x
+ 4

=
kcat[T]tσ1

1
x
+ σ1

(
4
x
+ 4
)

=
kcat[T]txσ1

1 + σ1 (4 + 4x)

=

(
kcat[T]t ·

x
4 + 4x

)
σ1(

1
4 + 4x

)
+ σ1
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The bracketed terms in the numerator and denominator are the expres-
sions for the apparent Vmax and Km. Similar expressions were derived
for the other monomers and are given in Table 3.2. The actual values for
these parameters at different values of the fixed monomer concentration
x are given in Table 3.3.

Table 3.2: Expressions used to calculate apparent Km and Vmax-values at dif-
ferent constant monomer concentrations, all set to x. For example, if M1 is the
variable monomer, all other monomers as fixed at concentration x.

Variable monomer app. Km app. Vmax

eqn. 3.59

M1
1

4 + 4x
kcat[T]tx
4 + 4x

M2
1 + x

3 + 4x
kcat[T]tx
3 + 4x

M3, M4, M5
x2

1 + 3x + 4x2
kcat[T]tx2

1 + 3x + 4x2

eqn. 3.60

Mi
x

4 + 4x
kcat[T]tx
4 + 4x

For eqn. 3.59 the reaction rate, as expected from the form of the rate
equation, responds differently to M1 and M2 than to the other three mo-
nomers, which all have the same effect on the reaction rate. As the con-
centration of the constant monomers increase M2 starts to behave the
same as M3, M4, and M5. At saturating concentrations of the constant
monomers the rate responds much more sensitively to changes in M1
concentration than to changes in the concentration of the other mono-
mers. The apparent Km-value of M1 decreases dramatically as the con-
stant monomer concentration increases, that of M2 decreases slightly,
while those of the other three monomers increase from a very low value.
At high monomer concentrations all the apparent Km-values are nearly
the same, with the exception of the much lower value of M1. Vmax-values
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Table 3.3: Apparent Km and Vmax-values for eqns. 3.59 and 3.60 at different mo-
nomer concentrations. The monomers in the first column are the ones that are
considered to be variable.

Conc. 0.1 1.0 10.0 100.0

eqn. 3.59

Km Vmax Km Vmax Km Vmax Km Vmax

M1 0.2273 0.0227 0.1250 0.1250 0.0227 0.2273 0.0025 0.2475

M2 0.3235 0.0294 0.2857 0.1429 0.2558 0.2326 0.2506 0.2481

M3 0.0074 0.0074 0.1250 0.1250 0.2320 0.2320 0.2481 0.2481

M4 0.0074 0.0074 0.1250 0.1250 0.2320 0.2320 0.2481 0.2481

M5 0.0074 0.0074 0.1250 0.1250 0.2320 0.2320 0.2481 0.2481

eqn. 3.60

Mi 0.0227 0.0227 0.1250 0.1250 0.2272 0.2272 0.2475 0.2475

increase with increasing constant monomer concentration, approaching
the limit of 0.25 at high values.

For eqn. 3.60 the reaction rate responds identically to all monomers,
since they are functionally equivalent in the rate equation. The Vmax-
values are identical to that of M1 in eqn. 3.59 (see Table 3.2), but the ap-
parent Km increases from low values to a value nearly identical to that of
monomers 3–5 in eqn. 3.59.

These results show that, whereas the two forms of the rate equation
behave differently at low concentration of the constant monomer con-
centration, their behaviour is nearly indistinguishable when the enzyme-
template complex is more than half saturated. As expected from the form
of rate equations, the difference at low concentrations of constant mono-
mer is with respect to the first two monomers in the chain. However, as
shown in section 3.7 these differences become less as the length of the
polymer increases. We therefore are of the opinion that, for most pur-
poses (in computational systems biology), the simple form of the rate
equation as given in eqn. 3.55 suffices.
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Chapter 4

Testing the generic rate equation
in a supply-demand analysis of
template-directed polymerisation

In this chapter we test the generic rate equation derived in Chapter 3 by
inserting it into a computational model of the reaction scheme given in
the introduction (Fig. 1.2 in Chapter 1). For easy referencing the reaction
scheme is repeated here as Fig. 4.1.

The main aim of this exercise it to generate the rate characteristics [56]
of the five supply subsystems as the monomer product of each varies
with the polymerisation demand reaction and to show how variation in
the monomer composition affects the steady-state fluxes through the dif-
ferent biosynthetic pathways and the steady-state concentrations of the
monomers.

This chapter is structured as follows: First we review the theoreti-
cal background to supply-demand analysis through a metabolic control
analysis of a simple supply-demand system, and then we show how the
behaviour of a supply-demand system around a steady state can be vi-
sualised with log-log rate characteristics. Using a model of the system in
Fig. 4.1 we then generate the full set of rate characteristics and show how
they respond to changes in the monomer composition and length of the
polymer.

44
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Figure 4.1: Scheme of a supply-demand metabolic system consisting of
five biosynthetic (supply) blocks that each produce a monomer, and one
demand block that consumes these monomers with the indicated stoi-
chiometries (a to e) to yield a polymer product with monomer composition
(M1)a(M2)b(M3)c(M4)d(M5)e. All five supply blocks are regulated by both al-
losteric feedback and regulation of expression of the first enzyme; for simplicity
sake this is only shown for the first supply block. R1 is a repressor protein,
which, when bound to M1 (the corepressor), forms a R1M1 complex; the latter
prevents expression of the structural gene that encodes E1a.
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4.1 Metabolic control analysis of a
supply-demand system

As mentioned in Chapter 1, Hofmeyr and Cornish-Bowden [2, 3, 4] de-
veloped a quantitative framework called supply-demand analysis to study
the regulatory design of metabolism. This framework is based on a meta-
bolic control analysis [57, 58] of a supply-demand system in steady state
in which the degree of flux and concentration-control by the supply and
demand blocks is related to their local properties, which are quantified
as the elasticities of supply and demand.

Consider the biosynthesis of one of the monomers in Fig. 4.1. It can
be regarded as a supply block that is linked by its product to the demand
for that product as in Fig. 4.2.

M demandsupply

Figure 4.2: A metabolic supply-demand system around metabolite M

Metabolic control analysis defines measures, called control coefficients,
for quantifying the degree to which a particular step in the system con-
trols the steady-state fluxes and metabolite concentrations. For the supply-
demand system in Fig. 4.2 they are defined as

C J
supply =

d ln J
d ln vsupply

, C J
demand =

d ln J
d ln vdemand

(4.1)

for flux-control coefficients (J is the steady-state flux; vsupply and vdemand
are the local activities of the supply and demand subsystems) and

Cm
supply =

d ln m
d ln vsupply

, Cm
demand =

d ln m
d ln vdemand

(4.2)

for the concentration-control coefficients with respect to linking metabolite
M with steady-state concentration m.

Flux-control and concentration-control coefficients obey the follow-
ing summation relationships:

C J
supply + C J

demand = 1 (4.3)

Cm
supply + Cm

demand = 0 (4.4)
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With regard to flux-control in a supply-demand system it is therefore
appropriate to talk of the distribution of flux control. With regard to m
there is no distribution of m-control because Cm

supply is always equal to
−Cm

demand. Here it is only the magnitude of the variation in m that is of
interest.

Control coefficients are related to properties of the supply and de-
mand subsystems that quantify how sensitive the flux local to the sub-
system (or the reaction rate, if it consists of only one reaction) is to per-
turbations in the concentration of any metabolite (here M) that directly
affects that subsystem. These local properties are called elasticity coeffi-
cients and are defined as

ε
vsupply
m =

d ln vsupply

d ln m
, ε

vdemand
m =

d ln vsupply

d ln m
(4.5)

Note that ε
vdemand
m is typically positive because M is a substrate of the de-

mand; an increase in substrate concentration typically increases the reac-
tion rate (except, of course, in the rare cases where it inhibits the rate).
The product elasticity coefficient ε

vsupply
m is typically negative because M

is a product of the supply that inhibits the supply rate through product
inhibition and mass action.

The connectivity theorems relate control coefficients to elasticity coeffi-
cients as follows:

C J
supplyε

vsupply
m + C J

demandε
vdemand
m = 0 (4.6)

Cm
supplyε

vsupply
m + Cm

demandε
vdemand
m = −1 (4.7)

Together, the summation and connectivity theorems allow the expres-
sion of control coefficients in terms of elasticities of supply and demand
[3]. The flux-control coefficients are

C J
supply =

ε
vdemand
m

ε
vdemand
m − ε

vsupply
m

(4.8)

and

C J
demand =

−ε
vsupply
m

ε
vdemand
m − ε

vsupply
m

(4.9)

and the concentration-control coefficients:

Cm
supply = −Cm

demand =
1

ε
vdemand
p − ε

vsupply
p

(4.10)
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From eqns. 4.9 and 4.10 it follows that the ratio of elasticities deter-
mines the distribution of flux-control between supply and demand [2]. If
|εvsupply

m /ε
vdemand
m | > 1 the demand has more control over the flux than

the supply; if |εvsupply
m /ε

vdemand
m | < 1 the demand has less control over

the flux than the supply. On the other hand it is the sum of the abso-
lute values of the elasticities that determines the magnitude of the varia-
tion in m and, therefore, the degree to which it is homeostatically main-
tained: the larger |εvdemand

m − ε
vsupply
m |, the smaller the absolute values of

both Cm
supplyand Cm

demand, and the better the homeostatic regulation of m.
We now show how the behaviour of a supply-demand system around

a steady state can be visualised with log-log rate characteristics.

4.2 Rate characteristic analysis
A rate characteristic is a graph that shows how the rate through a reaction
(or the flux local to a reaction block) varies with the concentration of a
chemical species that affects that reaction (such as a substrate, a product,
or an effector). If the rate characteristic is plotted in double logarithmic
space the slope of the tangent to the rate characteristic at a particular
species concentration is equal to the elasticity coefficient that obtains at
that concentration [56].

If the rate characteristics for the supply and demand blocks are plot-
ted on the same graph they intersect at a point that represents the steady
state, which is characterised by a flux, J, and concentration [M]. Rate
characteristics therefore also illustrate the result from control analysis
that the response in the steady state to small perturbations in the activ-
ities of supply or demand depends completely on the slopes of the tan-
gents to the rate characteristics at the steady-state point, i.e., their elastic-
ity coefficients [2]. The supply-demand rate characteristics for the supply
of and the demand for M1 is given in Fig. 4.3. However, before this graph
is discussed we first describe the computational model that generated it.

The computational model

In order to generate the rate characteristics for the five biosynthetic sup-
ply pathways and the demand reaction in Fig. 4.1 we defined a model
of the system in a PySCeS input file (provided in Appendix 6.11). All re-
actions were modelled with realistic enzyme kinetic rate equations and
arbitrary parameter values (as defined in the PySCeS-input file). In each
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biosynthetic pathway the first enzyme was modelled using the reversible
Hill equation [8], which exhibits both cooperativity and allosteric regu-
lation.

v =

[E]t
kcat

s0.5

(
[S]− [P]

Keq

)(
[S]
s0.5

+
[P]
p0.5

)h−1

(
[S]
s0.5

+
[P]
p0.5

)h

+

1 +
(
[M]

m0.5

)h

1 + α

(
[M]

m0.5

)h

(4.11)

where [S] is the substrate concentration, [P] the product concentration,
[M] the allosteric modifier concentration, s0.5, p0.5, and m0.5 are the half-
saturating concentrations in the absence of other ligands, h is the Hill co-
efficient, α is the interaction factor (inhibitory when < 1; activating when
> 1), kcat and Keq are the catalytic and equilibrium constants respectively,
and [E]t is the concentration of the enzyme.

Enzymes 2 and 3 were modelled using the reversible Michaelis-Menten
equation:

v =

[E]t
kcat

Ks

(
[S]− [P]

Keq

)
(

1 +
[S]
Ks

+
[P]
Kp

) (4.12)

where Ks and Kp denote the Michaelis constants for the substrate S and
the product P respectively, kcat and Keq are the catalytic and equilibrium
constants respectively, and [E]t is the concentration of the enzyme.

The template-directed polymerisation reaction catalysed by Edem and
T was modelled with the simplified generic rate eqn. 3.55 derived in
Chapter 3 for a system with three elongation steps. Because we wanted
to study the effects of changes in monomer composition and polymer
length without having to worry about the identity of the first two mono-
mers in the sequence, we chose to use the simplified generic rate equation
that depends only on the monomer composition.

vdemand =
kcat[T]t

a
σ1

+
b
σ2

+
c
σ3

+
d
σ4

+
e

σ5
+ (n− 1)

(4.13)

where kcat is the catalytic rate constant, [T]t is the total template concen-
tration, and the σ terms refer to the monomer concentration/dissociation
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constant ratios. The coefficients a, b, c, d, and e are the number of mono-
mers of each monomer type that occur in the polymer so that the total
number of monomers (the length of the polymer) n = a + b + c + d + e.

Rate chacteristics of the supply and demand for M1

The rate characteristics in Fig. 4.3 were generated by fixing the concentra-
tion of M1, scanning it over a wide concentration range, and calculating
the changes in the flux local to the supply block and the changes in the
demand rate. Before the scan, the steady state of the system with all
monomers variable was calculated and the initial concentrations of the
monomers were set to their steady-state values. During the [M1]-scan all
other monomers remained fixed at these values. The PySCeS-script that
generated the results is provided in Appendix 6.12 and the Gnuplot file
that generated the graph is provided in Appendix 6.13.

Although there is only one demand process the actual demand on
each supply differs with the stoichiometry with which its monomer prod-
uct Mx participates in the polymerisation reaction. The stoichiometric
coefficient of each monomer is of course equal to the number of units of
that monomer in the polymer that is synthesised. For the reaction scheme
given in Fig. 4.1 the monomer composition is (M1)a(M2)b(M3)c(M4)d(M5)e,
so that the stoichiometric coefficient for M1 is a, for M2 is b, etc. The
calculated demand rate was therefore multiplied with the stoichiometric
coefficient for M1 (here 10) to produce the actual production rate of M1
(this was done in the Gnuplot file used to generate the plot, rather than in
the PySCeS-script)

The supply rate characteristic in Fig. 4.3 has distinct regions that are
numbered on the graph. Let us first consider the situation where there is
no feedback via repression of E1a synthesis: the light blue line at region 3
then represents the maximum flux-carrying capacity of the supply when
the concentration of E1a remains constant.

When E1a is allowed to vary the situation at regions 1 and 2 obtains: in
region 2 the concentration of M1 is so low that the repressor-corepressor
complex (R1M1) starts to dissociate, relieving inhibition and allowing the
synthesis of additional E1a to occur until it reaches a plateau (region 1)
where the supply reaches a higher maximum flux-carrying capacity.

The parameters of E1a have been chosen such that the concentration
ranges in which M1 acts as a repressor of E1a-synthesis (region 2) and
as an allosteric inhibitor of E1a-activity (region 4) are distinct from each
other (the relevant parameters are the dissociation constant of the repres-
sor-corepressor complex and the half-saturation constant for the binding
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Figure 4.3: Log-log rate characteristics of the supply pathway from substrate S1
to product M1 and of the demand for M1 with respect to changes in [M1]. The
steady state is obtained at the intersections of supply and demand rate charac-
teristics (black dot). The light blue line represents the supply rate characteristic
when the concentration of E1a is clamped, i.e., when there is no genetic regula-
tion of its concentration. The numbered regions of the supply rate characteristic
are discussed in the text.

of M1 to E1a). Region 4 therefore represents the [M1]-range where the flux
responds sensitively to M1 through kinetic regulation at the metabolic
level.

Region 4 should be seen relative to region 6, where [M1] approaches
its equilibrium value (the overall equilibrium constant of the supply block
was set to 400× 10× 10 = 40000 so that at the clamped value of 1 for S1
the equilibrium value for [M1] is 40000). It is therefore clear that in this
particular system kinetic regulation takes place at M1-concentrations or-
ders away from equilibrium (in which concentration range kinetic reg-
ulation occurs is a function of the binding strength of M1 to E1a). The
steepness of the curve at region 4 is determined by the Hill coefficient, h,
in eqn. 4.11. Changing the value of h changes the degree of cooperativ-
ity in the binding of M1. The higher h, the steeper the response and the
stronger the degree of cooperativity. Feedback inhibition is therefore es-
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sential for maintaining homeostasis of [M1] far from its equilibrium value
[2].

The plateau at region 5 represents the lower limit for kinetic regula-
tion of the supply flux by M1 and is a function of the interaction strength,
α, in eqn. 4.11 [8]. The smaller α, the lower the flux at which the plateau
occurs. When α = 0, M1 becomes an ordinary competitive inhibitor and
there is no plateau and the supply curve continues downwards.

In the near-equilibrium region 6 the supply flux is again very sensitive
to changes in [M1]. Here we can speak of thermodynamic regulation of
the supply flux, in contrast to kinetic regulation.

The point where the supply and demand rate characteristics intersect
represents the steady state characterised by flux J and [M1] that obtain
at that point. The slope of the demand curve at this point is effectively
zero so that the demand has full control over the flux. As discussed in
[2], the slope of the supply curve (the supply elasticity) determines the
magnitude of the variation in [M1] under these conditions.

Rate characteristics of the full supply-demand system

This section describes five numerical experiments to produce the full set
of supply and demand rate characteristics by repeating for the other four
monomers the concentration scan described in the previous section. In all
experiments the monomer supply pathways had the same reactions and
identical kinetic parameters, except for the catalytic constants of the first
reaction in each pathway (k1a = 200.0, k2a = 20.0, k3a = 10.0, k4a = 5.0,
k5a = 1.0). The differences between the experiments are listed in Table 4.1
and the rate characteristics are graphed in Figs. 4.4–4.7. Each figure con-
trasts the rate characteristics of experiment 1 with one of the other ex-
periments. In all graphs the demand rate (the rate at which polymer is
produced) was scaled with the stoichiometric coefficient for each mono-
mer to yield the five demand rate characteristics. The flux-control coef-
ficients and steady states for the four experiments are listed in Table 4.2
and Table 4.3. It should be emphasized that there is really only one flux,
J, in this system, numerically equal to the rate at which the polymer is
produced. It may seem as if there were five separate supply fluxes (each
measured as the rate at which its pathway substrates is consumed), but
they are of course all stoichiometrically linked to the demand flux and
therefore stand in a fixed ratio to each other when the system is in steady
state.

In section 4.1 we showed that the distribution of flux-control between
supply and demand is determined by the ratio of supply and demand
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Table 4.1: Values of parameters relevant to the numerical experiments. k5a is the
catalytic constant for reaction 5a and Kdx represents all five monomer dissocia-
tion constants of the demand.

k5a a, b, c, d, e Kdx [Template]

Exp. 1 1.0 10, 20, 30, 40, 50 1.0 300.0

Exp. 2 50.0 10, 20, 30, 40, 50 1.0 300.0

Exp. 3 1.0 50, 40, 30, 20, 10 1.0 300.0

Exp. 4 1.0 1, 2, 3, 4, 5 1.0 300.0

Exp. 5 1.0 10, 20, 30, 40, 50 0.1 3.0

Table 4.2: Flux-control coefficients of the combined monomer supplies and the
demand. The sum of flux-control coefficients were calculated from the non-
truncated values. C J

demand is the same for all 5 fluxes.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

C J
1a + C J

1b + C J
1c 0.000 0.000 0.007 0.000 0.000

C J
2a + C J

2b + C J
2c 0.000 0.018 0.124 0.000 0.001

C J
3a + C J

3b + C J
3c 0.000 0.078 0.077 0.000 0.002

C J
4a + C J

4b + C J
4c 0.000 0.194 0.054 0.000 0.004

C J
5a + C J

5b + C J
5c 0.991 0.043 0.076 0.991 0.087

C J
demand 0.009 0.666 0.660 0.009 0.910

C J
all supplies + C J

demand 1.000 1.000 1.000 1.000 1.000
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elasticities. When |εvsupply
m /ε

vdemand
m | > 1 the demand has more control

over the flux than the supply; if |εvsupply
m /ε

vdemand
m | < 1 the demand has

less control over the flux than the supply. These relationships allow us
to understand the flux-control distribution in the rate characteristics in
Figs. 4.4–4.6 at a glance (this is one of the most useful features of rate
characteristics). Consider, for example, the set of supply and demand
rate characteristics for experiment 1 (the top graphs in Figs. 4.4–4.6). Ex-
cept for the supply elasticity of M5, the demand elasticity at each steady
state is much smaller than the supply elasticity. For the supply of M5 the
situation is reversed: the supply elasticity is effectively zero, and much
less than the demand elasticity. This means that the supply for M5 lim-
its the demand reaction and prevents it from having any control over the
rate of production of polymer. The calculated control coefficients listed in
Table 4.2 confirm this reasoning: the supply for M5 has complete control
over the flux.

In experiment 2 the activity of the supply for M5 was increased by
increasing the value of k5a from 1.0 to 50.0 (Fig. 4.4, bottom graph). This
changed the steady state considerably and created a situation where the
supply for M5 was no longer limiting. The rate characteristics show that
the limitation on the demand reaction now shifted mostly to the supply
for M4 where the elasticities of supply and demand were nearly equal,
but the effect on the distribution of flux-control should not be so severe
as in experiment 1. One expects flux-control to be split about evenly be-
tween the combined supplies and the demand. Again the calculated flux-
control coefficients confirmed this: the demand had 67% control over the
flux, while the supply for M4 had the bulk (19%) of the rest.

Experiments 3 and 4 are the key experiments that show how the gene-
ric rate equation for template-directed polymerisation can be used to
study the regulatory design and performance of the combined supply-
demand system in the face of varying monomer composition and length
of the polymer. In experiment 3 the monomer composition was changed
(see Table 4.1) while retaining the length of the polymer, while in experi-
ment 4 the monomer ratios were retained but the polymer was shortened
from 150 to 15 monomer units. The rate characteristics of the two situ-
ations as compared to experiment 1 are given in Figs. 4.5 and 4.6. The
rate characteristics for the situation in which the monomer composition
has been changed within the same total number of units (Fig. 4.5, bot-
tom graph) is more difficult to interpret because the supplies for M2, M3,
M4, and M5 all share flux control between supply and demand, while
the supply for M1 clearly has little control over the flux. Because there is
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no one clear limiting supply, one would expect the demand to have an
appreciable degree of flux control because in all cases the demand elastic-
ities are smaller than the supply elasticities. The calculated flux-control
coefficients agree with this analysis.

At first glance the results of experiment 4, in which the relative mo-
nomer composition was retained but the polymer shortened by a factor
of 10, were unexpected, because, despite the apparent lower demand on
the monomer supplies due to the shorter polymer length, the rate charac-
teristics in Fig. 4.6 (bottom graph) look virtually indistinguishable from
those for the longer polymer in the top graph. Closer examination of the
steady-state fluxes showed that for the short polymer the flux was nearly
equal to 10 times the flux of the long polymer (see Table 4.3). However,
the stoichiometric coefficients for the monomers also differed by a fac-
tor of 10 (those for the long polymer being 10 times those for the short
polymer) so that the effects on the demand for the different supplies can-
celled. This can be explained by examining the demand rate equation for
the two situations. For the long polymer the rate equation is

vdemand =
kcat[T]t

10
σ1

+
20
σ2

+
30
σ3

+
40
σ4

+
50
σ5

+ 149
(4.14)

while for the shorter polymer the demand rate equation is

vdemand =
kcat[T]t

1
σ1

+
2
σ2

+
3
σ3

+
4
σ4

+
5
σ5

+ 14
(4.15)

That the demand rate for the short polymer is approximately equal to 10
times that of the long polymer follows from scaling both numerator and
denominator by a factor of 10:

vdemand =
10kcat[T]t

10
σ1

+
20
σ2

+
30
σ3

+
40
σ4

+
50
σ5

+ 140
(4.16)

The only difference in the denominator is the constant factor which is
149 for the long polymer and 140 for the short polymer. This difference
accounts for the small discrepancy between the two steady states. This
experiment therefore shows that the length of the polymer does not make
much of a difference to the steady state and the flux-control distribution
if the relative monomer composition remains constant.
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Finally, in experiment 5 the demand activity was decreased by de-
creasing the template concentration from 300.0 to 3.0 while the demand
was also made 10 times more sensitive to the monomer concentrations
by changing its monomer dissociation constants Kd1 , Kd2 , Kd3 , Kd4 , and
Kd5 from 1.0 to 0.1. The rate characteristics are given in Fig. 4.7 (bottom
graph). For all five supplies the demand elasticity was much smaller
than the supply elasticity, so that the demand had a high degree (91%)
of control over the flux. The situation for M1 illustrates the problem of a
demand that decreases to a point where kinetic regulation of the supply
fails and the steady state jumps to a state close equilibrium, the concen-
tration of M1 in this case increasing by about three orders of magnitude.
It is here that a catabolic sink for the monomer could act as an overflow
valve and prevent the potentially catastrophic increase in concentration,
providing it has the appropriate kinetic properties (this regulatory fea-
ture is discussed in [4]).

We believe that the experiments described in this section demonstrate
forcefully the utility of the generic rate equation for template-directed
polymerisation developed in this thesis, especially with regard to rate
characteristic studies of monomer supply pathways integrated by a com-
mon demand in situations where different templates dictate different
monomer sequences.
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Figure 4.4: Log-log rate characteristics of the five supply pathways in Fig. 4.1
and of the demand for the five monomers M1–M5 for experiments 1 and 2. Each
pair of supply and demand characteristics have their own colour. All mono-
mers were clamped at their concentrations in the steady state calculated when
the only fixed species were the pathway substrates S1–S5. Each of the five mono-
mers were in turn scanned over the concentration range that spans the x-axis of
the graph. The demand curves were generated by scaling the demand rate with
the stoichiometric coefficients of the monomers. The black dots represent the
calculated steady state for each monomer. The two graphs differ with respect
to the catalytic constant of E5a: in experiment 1 (top graph) k5a = 1.0, while in
experiment 2 (bottom graph) k5a = 50.0.
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Figure 4.5: Log-log rate characteristics of the five supply pathways in Fig. 4.1
and of the demand for the five monomers M1–M5 for experiments 1 and 3. The
two graphs differ with respect to monomer composition of the polymer: in ex-
periment 1 (top graph) (M1)10(M2)20(M3)30(M4)40(M5)50, while in experiment 2
(bottom graph) (M1)50(M2)40(M3)30(M4)20(M5)10.
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Figure 4.6: Log-log rate characteristics of the five supply pathways in Fig. 4.1
and of the demand for the five monomers M1–M5 for experiments 1 and 4.
The two graphs differ with respect to polymer length while retaining the same
monomer ratio: in experiment 1 (top graph) (M1)10(M2)20(M3)30(M4)40(M5)50,
while in experiment 2 (bottom graph) (M1)1(M2)2(M3)3(M4)4(M5)5.
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Figure 4.7: Log-log rate characteristics of the five supply pathways in Fig. 4.1
and of the demand for the five monomers M1–M5 for experiments 1 and 5.
The two graphs differ with respect to the template concentration and mono-
mer dissociation constant of the demand: In experiment 1 (top graph) [Tem-
plate] = 300.0 and all Kdx = 1.0, while in experiment 2 (bottom graph) [Tem-
plate] = 3.0 and all Kdx = 0.1.
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Table 4.3: Steady-state fluxes and concentrations.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
Jdem 1.0978e-01 3.7054e-01 3.7119e-01 1.0979e+00 1.6698e-02
JR1a 1.0978e+00 3.7054e+00 1.8560e+01 1.0979e+00 1.6698e-01
JR2a 2.1957e+00 7.4109e+00 1.4848e+01 2.1958e+00 3.3395e-01
JR3a 3.2935e+00 1.1116e+01 1.1136e+01 3.2936e+00 5.0093e-01
JR4a 4.3914e+00 1.4822e+01 7.4238e+00 4.3915e+00 6.6790e-01
JR5a 5.4892e+00 1.8527e+01 3.7119e+00 5.4894e+00 8.3488e-01
JE1a 1.0000e-02 1.0000e-02 1.0001e-02 1.0000e-02 1.0000e-02
JE2a 1.0001e-02 1.0014e-02 1.4863e-02 1.0001e-02 1.0000e-02
JE3a 1.0010e-02 2.2241e-02 2.2280e-02 1.0010e-02 1.0001e-02
JE4a 1.7577e-02 5.9292e-02 2.9702e-02 1.7577e-02 1.0002e-02
JE5a 1.0979e-01 1.0014e-02 7.4241e-02 1.0979e-01 1.6709e-02
[M1] 3.8514e+00 2.7218e+00 1.7254e+00 3.8513e+00 7.2644e+03
[M2] 1.6362e+00 9.1588e-01 2.1031e-01 1.6362e+00 2.8005e+00
[M3] 1.0101e+00 1.6363e-01 1.6348e-01 1.0101e+00 2.0686e+00
[M4] 1.8689e-01 1.0071e-01 1.4209e-01 1.8688e-01 1.5330e+00
[M5] 2.1505e-02 9.1585e-01 8.6376e-02 2.1423e-02 1.9310e-01
[A1] 4.0661e-02 3.3597e-02 4.6374e-02 4.0660e-02 7.2911e+01
[A2] 1.9590e-02 1.8999e-02 1.9687e-02 1.9590e-02 2.8579e-02
[A3] 1.4496e-02 1.4570e-02 1.4592e-02 1.4496e-02 2.1466e-02
[A4] 6.9279e-03 1.8166e-02 9.9531e-03 6.9280e-03 1.6292e-02
[A5] 6.3470e-03 3.4513e-02 5.0496e-03 6.3462e-03 2.8866e-03
[B1] 3.9089e-01 2.8703e-01 2.2734e-01 3.9089e-01 7.2777e+02
[B2] 1.6978e-01 1.0658e-01 3.9589e-02 1.6978e-01 2.8141e-01
[B3] 1.0799e-01 2.9628e-02 2.9635e-02 1.0799e-01 2.0850e-01
[B4] 2.4006e-02 2.6782e-02 2.2857e-02 2.4006e-02 1.5510e-01
[B5] 7.8006e-03 1.2948e-01 1.2717e-02 7.7920e-03 2.0323e-02
[E1a] 1.0000e+00 1.0000e+00 1.0001e+00 1.0000e+00 1.0000e+00
[E2a] 1.0001e+00 1.0014e+00 1.4863e+00 1.0001e+00 1.0000e+00
[E3a] 1.0010e+00 2.2241e+00 2.2280e+00 1.0010e+00 1.0001e+00
[E4a] 1.7577e+00 5.9292e+00 2.9702e+00 1.7577e+00 1.0002e+00
[E5a] 1.0979e+01 1.0014e+00 7.4241e+00 1.0979e+01 1.6709e+00
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Discussion

As described in the introduction (Chapter 1), the main aim of this thesis
was to derive a generic rate equation for template-directed, enzyme catal-
ysed polymerisation reactions which could be used in computational
studies of the regulatory design of the integrated biosynthetic pathways
for all the monomers linked to the polymerisation reaction; it would
thereby provide a bridge between models of intermediary metabolism
and models of the processes of growth.

A survey of the literature showed that there was no precedent for
a rate equation of this nature. Although there have been a number of
kinetic studies of DNA-transcription and mRNA-translation (surveyed
in Chapter 2), their focus was mainly on the detailed mechanism of these
processes, especially with regard to the initialisation phase.

Chapter 3 described the derivation of the required rate equation. There
were several initial hurdles to be overcome. The first was the compli-
cation of adding to the catalytic mechanism the reversible binding of
template to enzyme. In order to solve this we added template binding
to a simple, irreversible Michaelis-Menten mechanism, even though the
“template” did not here act as a template but rather as an essential cat-
alytic cofactor. In such a mechanism the net reaction rate depends on the
concentration of the enzyme-template-substrate (ETS) complex; in order
to derive a steady-state rate equation for this simple catalytic mechanism
we obtained an analytical expression for ETS (eqn. 3.15), assuming the
free enzyme and template concentrations to be variable. This equation
was far too complex to be usable, and we therefore had to make our first
important assumption, namely that either the free enzyme concentration
or the free template concentration is constant, thereby removing the cor-
responding conservation equation. If one assumes that the template and
enzyme concentrations differ considerably then this assumption is justi-

62
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fied: if, say, there is much less template than enzyme then, even if all the
template is complexed to enzyme, the free enzyme concentration is still
very close to the total enzyme concentration. Which concentration, tem-
plate or enzyme, is assumed to be constant depends on the physiological
state of the cell. Using this assumption we could derive a much simpli-
fied steady-state rate equation for the simple mechanism (eqn. 3.17).

When we added a dimerisation and elongation step to the mechanism
the time-dependent behaviour showed an initial fast phase in which all
the template is bound into ETM1M2, the complex with enzyme and two
unligated monomers; in the ensuing slower phase ETM1M2 decreased
until a steady state was reached in which the enzyme-template was par-
titioned between ETM1M2 and ETM1–M2M3 forms.

In deriving the steady-state rate eqn. 3.39 for the expanded mecha-
nism the following assumptions were made:

1. Binding steps were reversible, while catalytic and product release
steps were irreversible;

2. Dissociation was much faster than catalysis (dimerisation, elonga-
tion, product release);

3. Rate constants for dimerisation and elongation steps were consid-
ered equal.

The rates calculated with the derived steady-state rate equation were
identical to those calculated with PySCeS for the detailed mass-action
model of the catalytic mechanism. Our rate equation was surprisingly
robust with respect to assumption 2 above: even when kcat was 100 times
larger than the dissociation rate constants, the percentage error was still
only about 0.2%.

By adding more elongation steps to the mechanism we were able to
generalise the equation to an arbitrary number of elongation steps. As-
suming that the polymer is composed of a fixed number of monomer
types led to the fully generalised rate eqn. 3.50. The information needed
to construct this equation for a particular polymer was the identity of
the monomers that made up the initial dimeric sequence, as well as the
monomer composition of the polymer.

We then considered a number of ways in which the generic rate equa-
tion could be further simplified. The denominator for the form of the
equation in which [E] was considered clamped contains a term K0/[E]
which vanishes under the condition that [E]t � [T]t and [E]t � K0. This

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. DISCUSSION 64

assumption could well be satisfied under cellular conditions. Further-
more, if in addition the 1/σ1σ2 term in the denominator is changed to
1/σ1 a form of the rate equation (eqn. 3.55) is obtained in which only
the monomer composition needs to be known. We analysed the effect of
these assumptions on the numerical value of the denominator of the rate
equation and found it was quite robust to variation in K0/[E]: up to val-
ues of 1.0 the denominator could be simplified by assuming that K0/[E]
is zero. Even the second assumption was seen to be justified if the mo-
nomer concentrations are all at least half-saturating. Therefore, whereas
the two forms of the rate equation behave differently at low concentra-
tion of the constant monomer concentration, their behaviour is nearly
indistinguishable when the enzyme-template complex is more than half
saturated, a condition which may well be generally satisfied in the phys-
iological situation.

In the introduction the point was made that the rate equations used in
classical enzyme kinetics were aimed at probing the mechanisms of catal-
ysis and usually did not take account of the reversibility of the reaction
and inhibition by product, and that such equations had limited useful-
ness for computational systems biology. It may seem that the generic rate
equation derived in this thesis suffers the same limitations. However,
template-directed polymerisation reactions are generally irreversible and
product-insensitive. The irreversibility is due to coupling with activating
agents in the form of nucleoside triphosphates. This particular feature
has been ignored in the mechanism that formed the basis of our deriva-
tion, and should be included in future refinements of the generic rate
equation. Another feature that should be studied is the stochasticity in-
troduced when concentrations of enzyme or template become very low.

It then remained to test the usefulness of our derived rate equation by
inserting it into a computational model. We constructed a toy model of
a polymer consisting of five monomer types, each monomer having its
own biosynthetic pathway (the reaction scheme is given in Fig. 1.2). We
chose rate characteristic analysis of the combined supply and demand
for the monomers to demonstrate the utility of the rate equation. In a
series of numerical experiments we changed a number of features of our
system: the activity of one of the supply pathways, the monomer compo-
sition at constant sequence length, the sequence length at constant mono-
mer composition, and a decrease in demand activity (the results of these
experiments are discussed fully in Chapter 4). It was particularly grati-
fying that, as we had hoped, the rate characteristics gave a clear visual
representation of the control and regulation profile of the system.

It was made clear in the introduction that the primary aim of this the-
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sis was to derive a generic rate equation for enzyme-catalysed template-
directed polymerisation reactions and to test its utility as just described.
Our results now make possible a full study of the regulatory design of the
integrated system of monomer biosynthetic pathway coupled to poly-
merisation, and can therefore serve as a platform for a future research
project for our group.

There are a number of aspects that such a future study should ad-
dress. One important omission from the model used in this study is the
existence of a catabolic demand for the monomers in addition to the de-
mand of polymerisation. Hofmeyr [4] showed that a catabolic demand
can act as an ‘overflow valve’ when the polymerisation demand falls so
low that the lower limits of kinetic regulation is reached and the mono-
mer concentration jumps to near-equilibrium values (the situation shown
for M1 in Fig. 4.7). It is therefore important to expand the model by
adding a catabolic demand to each monomer. While rate characteris-
tic analysis as described in this thesis will form an important part of the
study, they will have to go hand in hand with an analysis of the responses
of the system to changes in system parameters such as those that deter-
mine demand activity, the nature and degree of end-product inhibition
of the biosynthetic subsystem at both the metabolic and genetic level. As
in [4] the central task is to gain an understanding of how the properties
of all the different subprocesses are tuned to each other to allow the inte-
grated system to function harmoniously.

Another possibility for a future study would be to adapt the rather
simple mechanism that forms the basis for the generic rate equation de-
scribed in this thesis to the intricacies of the transcription and translation
processes. Here the published studies described in Chapter 2 could serve
as useful references. A particularly useful extension would be the incor-
poration of multiple binding of enzymes to template, such as is found in
polyribosomal binding to messenger RNA.
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Appendices

6.1 PySCeS input file: Simple reaction
scheme 3.1

# A kinetic model of the enzyme mechanism in Fig. 3.1

# Filename: system_1.psc

FIX: S

R0: E + T = ET k0f * E * T - k0r * ET

R1: ET + S = ETS k1f * ET * S - k1r * ETS

R2: ETS = ET + P k2 * ETS

# Fixed concentrations

S = 10.0

# Initial concentrations

T = 1.0

E = 10.0

ET = 0.0

ETS = 0.0

P = 0.0

# Parameters

k0f = 1.0

66
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k0r = 1.0

k1f = 1.0

k1r = 1.0

k2 = 1.0
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6.2 PySCeS script for time-dependent
simulation of reaction scheme 3.1

import pysces

m = pysces.model(’system_1.psc’)

m.doSimPlot(end=1.0,points=1000, plot=’species’)

pysces.plt.setGraphTitle(title=’’)

pysces.plt.setGrid("off")

pysces.plt.setRange("y",min=0.0,max=1.0)

pysces.plt.setKey("off")

pysces.plt.setAxisLabel("x",label="Time")

pysces.plt.setAxisLabel("y",label="Concentration")

pysces.plt.save(’System_1_species_fast.dat’)

pysces.plt.export(’System_1_species_fast.png’)

m.doSimPlot(end=1.0,points=1000, plot=’species’)

pysces.plt.setGraphTitle(title=’’)

pysces.plt.setGrid("off")

pysces.plt.setRange("y",min=0.0,max=10.0)

pysces.plt.setKey("off")

pysces.plt.setAxisLabel("x",label="Time")

pysces.plt.setAxisLabel("y",label="Concentration")

pysces.plt.save(’System_1_species_slow.dat’)

pysces.plt.export(’System_1_species_slow.png’)

m.doSimPlot(end = 1.0, points = 1000, plot=’rates’)

pysces.plt.setGraphTitle(title=’’)

pysces.plt.setGrid("off")

pysces.plt.setRange("y",min=0.0,max=10.0)

pysces.plt.setKey("off")

pysces.plt.setAxisLabel("x",label="Time")

pysces.plt.setAxisLabel("y",label="Reaction Rate")

pysces.plt.save(’System_1_rates.dat’)

pysces.plt.export(’System_1_rates.png’)

pysces.plt.closeAll()
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6.3 Maxima batch file: Reaction scheme 3.1
/* Steady-state solution of the reaction system in Fig. 3.1

Filename: fig3_1.mac

s = [S]

e = [E]

t = [T]

a = [ET]

b = [ETS]

E = [E]t

T = [T]t

*/

e + a + b = E;

t + a + b = T;

K0 = e*t/a;

Km = a*s/b;

solve([%o2,%o3,%o4,%o5],[a,b,e,t]);
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6.4 PySCeS input file: Reaction scheme 3.4B
# A kinetic model of the enzyme mechanism in Fig. 3.4B

# Filename: system_3.psc

FIX: M1 M2 M3 E # For calculating time-dependent

# progress curves

# FIX: M1 M2 M3 E M1_M2_M3 # For calculating steady state

R0: E + T = ET k0f * E * T - k0r * ET

R1: ET + M1 = ETM1 k1f * ET * M1 - k1r * ETM1

R2: ETM1 + M2 = ETM1M2 k2f * ETM1 * M2 - k2r * ETM1M2

R3: ETM1M2 = ETM1_M2 k3 * ETM1M2

R4: ETM1_M2 + M3 = ETM1_M2M3 k4f * ETM1_M2 * M3 - k4r * ETM1_M2M3

R5: ETM1_M2M3 = ET + M1_M2_M3 k5 * ETM1_M2M3

# Fixed concentrations

T = 1.0

M1 = 100.0

M2 = 100.0

M3 = 100.0

# Initial concentrations

E = 10.0

ET = 0.0

ETM1 = 0.0

ETM1M2 = 0.0

ETM1_M2 = 0.0

ETM1_M2M3 = 0.0

M1_M2_M3 = 0.0

# Parameters

k0f = 10000.0

k0r = 10000.0
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k1f = 1000.0

k1r = 1.0

k2f = 1000.0

k2r = 1.0

k3 = 14.0

k4f = 1000.0

k4r = 1.0

k5 = 12.0
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6.5 PySCeS script for time-dependent
simulation of reaction scheme 3.4B

import pysces

m = pysces.model(’system_3.psc’)

m.doSimPlot(end=0.0001,points=1000, plot=’species’)

pysces.plt.setGraphTitle(title=’’)

pysces.plt.setGrid("off")

pysces.plt.setRange("y",min=0.0,max=1.0)

pysces.plt.setKey("off")

pysces.plt.setAxisLabel("x",label="Time")

pysces.plt.setAxisLabel("y",label="Concentration")

pysces.plt.save(’ExtModel_species_fast.dat’)

pysces.plt.export(’ExtModel_species_fast.png’)

m.doSimPlot(end=0.45,points=1000, plot=’species’)

pysces.plt.setGraphTitle(title=’’)

pysces.plt.setGrid("off")

pysces.plt.setRange("y",min=0.0,max=1.0)

pysces.plt.setKey("off")

pysces.plt.setAxisLabel("x",label="Time")

pysces.plt.setAxisLabel("y",label="Concentration")

pysces.plt.save(’ExtModel_species_slow.dat’)

pysces.plt.export(’ExtModel_species_slow.png’)

m.doSimPlot(end=0.001,points=1000, plot=’rates’)

pysces.plt.setGraphTitle(title=’’)

pysces.plt.setGrid("off")

pysces.plt.setRange("y",min=0.0,max=0.2)

pysces.plt.setKey("off")

pysces.plt.setAxisLabel("x",label="Time")

pysces.plt.setAxisLabel("y",label="Reaction Rate")

pysces.plt.save(’ExtModel_rates_upto_02.dat’)

pysces.plt.export(’ExtModel_rates_upto_02.png’)

m.doSimPlot(end=0.001,points=1000, plot=’rates’)

pysces.plt.setGraphTitle(title=’’)

pysces.plt.setGrid("off")

pysces.plt.setRange("y",min=0.0,max=16.0)

pysces.plt.setKey("off")

pysces.plt.setAxisLabel("x",label="Time")

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. APPENDICES 73

pysces.plt.setAxisLabel("y",label="Reaction Rate")

pysces.plt.save(’ExtModel_rates_upto_16.dat’)

pysces.plt.export(’ExtModel_rates_upto_16.png’)

m.doSimPlot(end = 0.45, points = 1000, plot=’rates’)

pysces.plt.setGraphTitle(title=’’)

pysces.plt.setGrid("off")

pysces.plt.setRange("y",min=0.0,max=16.0)

pysces.plt.setKey("off")

pysces.plt.setAxisLabel("x",label="Time")

pysces.plt.setAxisLabel("y",label="Reaction Rate")

pysces.plt.save(’ExtModel_rates_slow.dat’)

pysces.plt.export(’ExtModel_rates_slow.png’)

pysces.plt.closeAll()
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6.6 Maxima batch file: Reaction scheme 3.4A
/* Steady-state solution of the reaction system in Fig. 3.4A

Filename: fig3_4A.mac

y = [E]

t = [T]

x = [ET]

a = [ETM1]

b = [ETM1M2]

c = [ETM1-M2]

d = [ETM1-M2M3]

e = [ETM1-M2-M3]

s1 = [M1]/Kd1 where Kd1 = k1r/k1f

s2 = [M2]/Kd2 where Kd2 = (k3 + k2r)/k2f

s3 = [M3]/Kd3 where Kd3 = (k5 + k4r)/k4f

Et = [E]t

K0 = k0r/k0f = [E][T]/[ET]

*/

y*t - x*K0 = 0;

s1*x + (k2r/k1r)*b - (1 + ((k3+k2r)/k1r)*s2)*a = 0;

a*s2 - b = 0;

(k3/(k5+k4r))*b + (k4r/(k5+k4r))*d - c*s3 = 0;

c*s3 - d = 0;

k5*d - k6*e = 0;

a + b + c + d + e + x + y = Et;

solve([%o2,%o3,%o4,%o5,%o6,%o7,%o8],[a,b,c,d,e,x,y]);
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6.7 Maxima batch file: Reaction scheme 3.4B
/* Steady-state solution of the reaction system in Fig. 3.4B

Filename: fig3_4B.mac

y = [E]

t = [T]

x = [ET]

a = [ETM1]

b = [ETM1M2]

c = [ETM1-M2]

d = [ETM1-M2M3]

s1 = [M1]/Kd1 where Kd1 = k1r/k1f

s2 = [M2]/Kd2 where Kd2 = (k3 + k2r)/k2f

s3 = [M3]/Kd3 where Kd3 = (k5 + k4r)/k4f

Et = [E]t

K0 = k0r/k0f = [E][T]/[ET]

*/

y*t - x*K0 = 0;

s1*x + (k2r/k1r)*b - (1 + ((k3+k2r)/k1r)*s2)*a = 0;

a*s2 - b = 0;

(k3/(k5+k4r))*b + (k4r/(k5+k4r))*d - c*s3 = 0;

c*s3 - d = 0;

a + b + c + d + x + y = Et;

solve([%o2,%o3,%o4,%o5,%o6,%o7],[a,b,c,d,x,y]);
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6.8 PySCeS script for validating rate equations
# Filename: validate_rate_equation.py

import pysces

m = pysces.model(’system_3_fixed_product.psc’)

K0 = m.k0r/m.k0f

E_tot = m.E + m.ET + m.ETM1 + m.ETM1M2 + m.ETM1_M2 + m.ETM1_M2M3

T_tot = m.T + m.ET + m.ETM1 + m.ETM1M2 + m.ETM1_M2 + m.ETM1_M2M3

m.M1 = 100.0

m.M2 = 100.0

m.M3 = 100.0

rFile = open(’validate.txt’, ’w’)

rFile.write("k_cat \tm.J_R5 \tv \tv_simp\n\n")

for k_cat in [0.01,0.1,1.0,10.0,100.0]:

m.k3 = k_cat

m.k5 = k_cat

m.doState()

print k_cat

print m.J_R5

K_d1 = m.k1r/m.k1f

K_d2 = (k_cat + m.k2r)/m.k2f

K_d3 = (k_cat + m.k4r)/m.k4f

K_d2_s = m.k2r/m.k2f

K_d3_s = m.k4r/m.k4f

sig_1 = m.M1/K_d1

sig_2 = m.M2/K_d2

sig_3 = m.M3/K_d3

sig_2_s = m.M2/K_d2_s

sig_3_s = m.M3/K_d3_s
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v = (k_cat*sig_1*sig_2*sig_3*T_tot) / \

(K0/m.E*(k_cat/m.k1r*(sig_2*sig_3) + sig_3) \

+ 2*sig_1*sig_2*sig_3 \

+ k_cat/m.k1r*(sig_2*sig_3) \

+ sig_1*sig_3 \

+ sig_1*sig_2 + sig_3)

print v

v_simp = (k_cat*sig_1*sig_2_s*sig_3_s*T_tot) / \

(2*(sig_1*sig_2_s*sig_3_s) \

+ sig_1*(sig_2_s+sig_3_s) \

+ sig_3_s*(1 + (K0/m.E)))

print v_simp

rFile.write("%-7.5e\t%-7.5e\t%-7.5e\t%-7.5e\n"

% (k_cat,m.J_R5,v,v_simp))

rFile.close()
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6.9 Gnuplot plotfile for producing Fig. 3.8
# Gnuplot script to produce Fig.3.8 (TikZ output)

# Filename: Figs_3.8.plt

set term lua "gnuplot-tikz.lua" solid font "\\tiny"

set border 3

set samples 300

set key default

set style line 1 lt -1 lw 2 lc rgbcolor "red"

set style line 2 lt -1 lw 2 lc rgbcolor "blue"

set style line 3 lt -1 lw 2 lc rgbcolor "green"

set style line 4 lt -1 lw 2 lc rgbcolor "cyan"

set style line 5 lt -1 lw 2 lc rgbcolor "black"

unset size

set tics nomirror scale 0.5

set format x "$10^{%T}$" # log scale

set format y "$10^{%T}$" # log scale

set logscale xy

set xtics offset 0,0.5

set ytics offset 1,0

# Rate equation for homopolymer

# v = (kdem*Template)/((1 + K0/Edem)/((x/KdemM1)*(x/KdemM1))

+ (n-1)/(x/KdemM1)

+ (n-1))

# Rate equation for homopolymer (simplified symmetric form)

# v = (kdem*Template)/(n/(x/KdemM1) + (n-1))

# where

# x = concentration of monomer

# n is the length of the polymer

# Denominator terms of rate equation for homopolymer

rate_eq_homopol_denom(x) = (1 + K0/Edem)/((x/KdemM1)*(x/KdemM1))\

+ (n-1)/(x/KdemM1) \
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+ (n-1)

rate_eq_homopol_denom_1(x) = (1 + K0/Edem)/((x/KdemM1)*(x/KdemM1))

rate_eq_homopol_denom_23(x) = 1/((x/KdemM1)*(x/KdemM1)) \

+ (n-1)/(x/KdemM1) \

+ (n-1)

rate_eq_sym_homopol_denom(x) = n/(x/KdemM1) \

+ (n-1)

#-------------------------

#Initialise all parameters and variables to 1.0

K0 = 1.0

Edem = 1.0

Template = 1.0

kdem = 1.0

KdemM1 = KdemM2 = KdemM3 = KdemM4 = KdemM5 = 1.0

M1 = M2 = M3 = M4 = M5 = 1.0

n = 1.0

set output ’Homopolymer_denom_eqns_1.tikz’

set lmargin 0

set multiplot layout 3,3 rowsfirst

set xrange [1e-3:1e2]

set yrange [1e0:1e6]

unset key

unset title

unset label

unset arrow

# Produce multiplot for different values of K0 and n

#-------

K0 = 0.01

n = 5.0

set label 1 "$K_{0}/\\mathrm{[E]} = 0.01$" at 1,10e5 left

set label 2 "$n = 5$" at 4.25,20e4 left

set label 3 "$n/\\sigma + (n-1)$" at 0.00125,1e1+30 left

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. APPENDICES 80

set label 4 "{\\color{green} $1/\\sigma^{2} + (n-1)/\\sigma \

+ (n-1)$}" at 0.00110,1e1-5 left

set label 5 "{\\color{blue}$(1+K_{0}/\\mathrm{[E]})/\\sigma^{2}$}" \

at 0.25,1e3+50 left

set label 6 "{\\color{red} $(1+K_{0}/\\mathrm{[E]})/\\sigma^{2} \

+ (n-1)/\\sigma + (n-1)$}" at 0.0125,1e4 left

set ylabel "Rate" offset 2,0

unset xlabel

set format x ""

plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \

rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1

#-------

K0 = 0.01

n = 50.0

unset label

set label 1 "$K_{0}/\\mathrm{[E]} = 0.01$" at 1,10e5 left

set label 2 "$n = 50$" at 4.25,20e4 left

unset ylabel

set format y ""

unset xlabel

set format x ""

plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \

rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1

#-------

K0 = 0.01

n = 500.0

set label 1 "$K_{0}/\\mathrm{[E]} = 0.01$" at 1,10e5 left

set label 2 "$n = 500$" at 4.25,20e4 left

unset ylabel

set format y ""

unset xlabel

set format x ""

plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \
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rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1

#-------

K0 = 1.0

n = 5.0

set label 1 "$K_{0}/\\mathrm{[E]} = 1.0$" at 1,10e5 left

set label 2 "$n = 5$" at 4.25,20e4 left

unset ylabel

unset xlabel

set ylabel "Rate" offset 2,0

set format y "$10^{%T}$"

plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \

rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1

#-------

K0 = 1.0

n = 50.0

set label 1 "$K_{0}/\\mathrm{[E]} = 1.0$" at 1,10e5 left

set label 2 "$n = 50$" at 4.25,20e4 left

unset ylabel

set format y ""

unset xlabel

set format x ""

plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \

rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1

#-------

K0 = 1.0

n = 500.0

set label 1 "$K_{0}/\\mathrm{[E]} = 1.0$" at 1,10e5 left

set label 2 "$n = 500$" at 4.25,20e4 left

unset ylabel

set format y ""

unset xlabel

set format x ""
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plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \

rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1

#-------

K0 = 100.0

n = 5.0

set label 1 "$K_{0}/\\mathrm{[E]} = 100.0$" at 1,10e5 left

set label 2 "$n = 5$" at 4.25,20e4 left

unset ylabel

unset xlabel

set xlabel "[monomer]"

set ylabel "Rate" offset 2,0

set format x "$10^{%T}$"

set format y "$10^{%T}$"

plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \

rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1

#-------

K0 = 100.0

n = 50.0

set label 1 "$K_{0}/\\mathrm{[E]} = 100.0$" at 1,10e5 left

set label 2 "$n = 50$" at 4.25,20e4 left

unset ylabel

set format y ""

plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \

rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1

#-------

K0 = 100.0

n = 500.0

set label 1 "$K_{0}/\\mathrm{[E]} = 100.0$" at 1,10e5 left

set label 2 "$n = 500$" at 4.25,20e4 left

unset ylabel

set format y ""
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plot rate_eq_homopol_denom_1(x) ls 2, \

rate_eq_homopol_denom_23(x) ls 3, \

rate_eq_sym_homopol_denom(x) ls 5, \

rate_eq_homopol_denom(x) ls 1unset multiplot

set term wxt
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6.10 Gnuplot plotfile for producing Figs. 3.9
and 3.10

# Gnuplot script to produce Figs. 3.9 and 3.10 (TikZ output)

# Filename: Figs_3.9_3.10.plt

set term lua "gnuplot-tikz.lua" solid font "\\tiny"

set border 3

set samples 300

set key default

set style line 1 lt -1 lw 3 lc rgbcolor "red"

set style line 2 lt -1 lw 3 lc rgbcolor "blue"

set style line 3 lt -1 lw 3 lc rgbcolor "green"

set style line 4 lt -1 lw 3 lc rgbcolor "cyan"

set style line 5 lt -1 lw 3 lc rgbcolor "black"

set style line 6 lt 2 lw 2 lc rgbcolor "black"

unset size

unset logscale

set tics nomirror

set format x "%g"

set format y "%g"

set xtics offset 0,0.5

set ytics offset 1,0

#Initialise all parameters and variables to 1.0

K0 = 0.0

Edem = 1.0

Template = 1.0

kdem = 1.0

KdemM1 = KdemM2 = KdemM3 = KdemM4 = KdemM5 = 1.0

M1 = M2 = M3 = M4 = M5 = 1.0

c1 = 1.0

c2 = 1.0

c3 = 1.0

c4 = 1.0

c5 = 1.0

n = c1 + c2 + c3 + c4 + c5
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# Rate equation (eq. 3.44), in each one a different monomer is varied

# v = (kdem*Template) / ( (1 + K0/Edem)/((M1/KdemM1)*(M2/KdemM2)) \

+ 1/(M2/KdemM2) + 1/(M3/KdemM3) + 1/(M4/KdemM4) + 1/(M5/KdemM5) + 4)

rate_eq_m1(x) = (kdem*Template)/((1 + K0/Edem)/((x/KdemM1)*(M2/KdemM2)) \

+ 1/(M2/KdemM2) + 1/(M3/KdemM3) + 1/(M4/KdemM4) + 1/(M5/KdemM5) + 4)

rate_eq_m2(x) = (kdem*Template)/((1 + K0/Edem)/((M1/KdemM1)*(x/KdemM2)) \

+ 1/(x/KdemM2) + 1/(M3/KdemM3) + 1/(M4/KdemM4) + 1/(M5/KdemM5) + 4)

rate_eq_m3(x) = (kdem*Template)/( (1 + K0/Edem)/((M1/KdemM1)*(M2/KdemM2))\

+ 1/(M2/KdemM2) + 1/(x/KdemM3) + 1/(M4/KdemM4) + 1/(M5/KdemM5) + 4)

rate_eq_m4(x) = (kdem*Template)/((1 + K0/Edem)/((M1/KdemM1)*(M2/KdemM2)) \

+ 1/(M2/KdemM2) + 1/(M3/KdemM3) + 1/(x/KdemM4) + 1/(M5/KdemM5) + 4)

rate_eq_m5(x) = (kdem*Template)/((1 + K0/Edem)/((M1/KdemM1)*(M2/KdemM2)) \

+ 1/(M2/KdemM2) + 1/(M3/KdemM3) + 1/(M4/KdemM4) + 1/(x/KdemM5) + 4)

# Varying all of the monomers at the same time

rate_eq_all(x) = (kdem*Template)/((1 + K0/Edem)/((x/KdemM1)*(x/KdemM2)) \

+ 1/(x/KdemM2) + 1/(x/KdemM3) + 1/(x/KdemM4) + 1/(x/KdemM5) + 4 )

# Modification of original rate equations

# (modified by inserting an M2/KdemM2 term in the first denominator term)

# v = (kdem*Template) / ( c1/(M1/KdemM1) + c2/(M2/KdemM2) \

+ c3/(M3/KdemM3) + c4/(M4/KdemM4) \

+ c5/(M5/KdemM5) + (n-1) )

rate_eq_sym_m1(x) = (kdem*Template) / (c1/(x/KdemM1) + c2/(M2/KdemM2) \

+ c3/(M3/KdemM3) + c4/(M4/KdemM4) \

+ c5/(M5/KdemM5) + (n-1))

rate_eq_sym_m2(x) = (kdem*Template) / (c1/(M1/KdemM1) + c2/(x/KdemM2) \

+ c3/(M3/KdemM3) + c4/(M4/KdemM4) \

+ c5/(M5/KdemM5) + (n-1))

rate_eq_sym_m3(x) = (kdem*Template) / (c1/(M1/KdemM1) + c2/(M2/KdemM2) \

+ c3/(x/KdemM3) + c4/(M4/KdemM4) \

+ c5/(M5/KdemM5) + (n-1)

rate_eq_sym_m4(x) = (kdem*Template) / (c1/(M1/KdemM1) + c2/(M2/KdemM2) \

+ c3/(M3/KdemM3) + c4/(x/KdemM4) \

+ c5/(M5/KdemM5) + (n-1) )

rate_eq_sym_m5(x) = (kdem*Template) / (c1/(M1/KdemM1) + c2/(M2/KdemM2) \

+ c3/(M3/KdemM3) + c4/(M4/KdemM4) \
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+ c5/(x/KdemM5) + (n-1))

# Varying all of the monomers at the same time

rate_eq_sym_all(x) = (kdem*Template) / ( c1/(M1/KdemM1) \

+ c2/(M2/KdemM2) + c3/(M3/KdemM3) + c4/(M4/KdemM4) \

+ c5/(M5/KdemM5) + (n-1) )

# Settings

K0 = 0.0001 # Very strong binding of template

Edem = 100.0 # Edem effectively saturates E,

# so that the free enzyme is effectively ET

Template = 1.0

kdem = 1.0

KdemM1 = 1.0

KdemM2 = 1.0

KdemM3 = 1.0

KdemM4 = 1.0

KdemM5 = 1.0

# All monomer concentrations equal

M1 = M2 = M3 = M4 = M5 = 1.0

# Experiment 1

# Original rate equations

set output ’Exp_1_orig_rate_eqs.tikz’

set lmargin 0

set multiplot layout 2,4 rowsfirst

set xrange [0:10]

set yrange [0:0.25]

unset key

unset title

unset label

unset arrow

set xlabel "[monomer]" offset 0,1
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set ylabel "Rate" offset 2,0

unset xlabel

set format x ""

unset label

unset arrow

set label 1 "M$_{1}$" at 1.78, 0.058 center

set label 2 "M$_{2}$" at 3.6, 0.058 center

set label 3 "M$_{3}$, M$_{4}$, M$_{5}$" at 5.0, 0.058

set arrow 1 from 1.78,0.042 to 1.78,0.0206001 nohead

set arrow 2 from 3.6,0.042 to 3.6,0.0274194 nohead

set arrow 3 from 6.8,0.042 to 6.8,0.009 nohead

M1 = M2 = M3 = M4 = M5 = 0.1

plot rate_eq_m1(x) ls 1 title "M1", \

rate_eq_m2(x) ls 2 title "M2", \

rate_eq_m3(x) ls 3 title "M3", \

rate_eq_m4(x) ls 4 title "M4", \

rate_eq_m5(x) ls 5 title "M5"

unset ylabel

set format y ""

unset label

unset arrow

set label 1 "M$_{1}$" at 2.2,0.116 center

set label 2 "M$_{2}$" at 4.5,0.116 center

set label 3 "M$_{3}$, M$_{4}$, M$_{5}$" at 5.45,0.046 center

set arrow 1 from 2.2,0.105 to 2.2,0.079 nohead

set arrow 2 from 4.44, 0.105 to 4.44,0.095 nohead

set arrow 3 from 5.7,0.052 to 5.7,0.0706086 nohead

M1 = M2 = M3 = M4 = M5 = 0.5

plot rate_eq_m1(x) ls 1 title "M1", \

rate_eq_m2(x) ls 2 title "M2", \

rate_eq_m3(x) ls 3 title "M3", \

rate_eq_m4(x) ls 4 title "M4", \

rate_eq_m5(x) ls 5 title "M5"

unset label
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unset arrow

set label 1 "M$_{2}$" at 2.90028, 0.158 center

set label 2 "M$_{1}$, M$_{3}$, M$_{4}$, M$_{5}$" at 5.32110,0.098 center

set arrow 1 from 2.87520,0.129994 to 2.87520,0.145 nohead

set arrow 2 from 5.32110,0.102 to 5.32110,0.122038 nohead

M1 = M2 = M3 = M4 = M5 = 1.0

plot rate_eq_m1(x) ls 1 title "M1", \

rate_eq_m2(x) ls 2 title "M2", \

rate_eq_m3(x) ls 3 title "M3", \

rate_eq_m4(x) ls 4 title "M4", \

rate_eq_m5(x) ls 5 title "M5"

unset label

unset arrow

set label 1 "M$_{1}$" at 3.05,0.139 center

set label 2 "M$_{2}$" at 4.63123,0.198 center

set label 3 "M$_{3}$, M$_{4}$, M$_{5}$" at 7.3,0.139 center

set arrow 1 from 3.05,0.149 to 3.05,0.161817 nohead

set arrow 2 from 4.60615,0.186 to 4.60615,0.171478 nohead

set arrow 3 from 6.55,0.149 to 6.55,0.1694898 nohead

M1 = M2 = M3 = M4 = M5 = 2.0

plot rate_eq_m1(x) ls 1 title "M1", \

rate_eq_m2(x) ls 2 title "M2", \

rate_eq_m3(x) ls 3 title "M3", \

rate_eq_m4(x) ls 4 title "M4", \

rate_eq_m5(x) ls 5 title "M5"

unset label

unset arrow

set label 1 "M$_{1}$" at 1.44,0.23 center

set label 2 "M$_{2}$" at 2.5,0.165 center

set label 3 "M$_{3}$, M$_{4}$, M$_{5}$" at 3.75,0.135 center

set arrow 1 from 1.4,0.203 to 1.4,0.216 nohead

set arrow 2 from 1.6,0.1608 to 0.868297,0.1608 nohead

set arrow 3 from 0.5,0.1347 to 1.5,0.1347 nohead

set format x "%g"

set format y "%g"
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set xlabel "[monomer]" offset 0,1

set ylabel "Rate" offset 2,0

M1 = M2 = M3 = M4 = M5 = 5.0

plot rate_eq_m1(x) ls 1 title "M1", \

rate_eq_m2(x) ls 2 title "M2", \

rate_eq_m3(x) ls 3 title "M3", \

rate_eq_m4(x) ls 4 title "M4", \

rate_eq_m5(x) ls 5 title "M5"

unset ylabel

set format y ""

unset label

unset arrow

set label 1 "M$_{1}$" at 3.5,0.189 center

set label 2 "M$_{2}$, M$_{3}$, M$_{4}$, M$_{5}$" at 7.6,0.189 center

set arrow 1 from 3.47727,0.2 to 3.47727,0.225749 nohead

set arrow 2 from 6.9,0.2 to 6.9,0.222623 nohead

M1 = M2 = M3 = M4 = M5 = 10.0

plot rate_eq_m1(x) ls 1 title "M1", \

rate_eq_m2(x) ls 2 title "M2", \

rate_eq_m3(x) ls 3 title "M3", \

rate_eq_m4(x) ls 4 title "M4", \

rate_eq_m5(x) ls 5 title "M5"

unset label

unset arrow

set label 1 "M$_{1}$" at 3.5,0.210 center

set label 2 "M$_{2}$, M$_{3}$, M$_{4}$, M$_{5}$" at 7.74820,0.210 center

set arrow 1 from 3.48,0.218 to 3.48,0.244786 nohead

set arrow 2 from 7.64785,0.218 to 7.64785,0.238251 nohead

M1 = M2 = M3 = M4 = M5 = 50.0

plot rate_eq_m1(x) ls 1 title "M1", \

rate_eq_m2(x) ls 2 title "M2", \

rate_eq_m3(x) ls 3 title "M3", \

rate_eq_m4(x) ls 4 title "M4", \

rate_eq_m5(x) ls 5 title "M5"
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unset label

unset arrow

set label 1 "M$_{1}$" at 3.5,0.208 center

set label 2 "M$_{2}$, M$_{3}$, M$_{4}$, M$_{5}$" at 7.74820,0.208 center

set arrow 1 from 3.48,0.2185 to 3.48,0.247343 nohead

set arrow 2 from 7.49106,0.2185 to 7.49106,0.240240 nohead

M1 = M2 = M3 = M4 = M5 = 100.0

plot rate_eq_m1(x) ls 1 title "M1", \

rate_eq_m2(x) ls 2 title "M2", \

rate_eq_m3(x) ls 3 title "M3", \

rate_eq_m4(x) ls 4 title "M4", \

rate_eq_m5(x) ls 5 title "M5"

unset multiplot

# Experiment 2

# Modified rate equations

set output ’Exp_2_rate_eq_sym.tikz’

set format x "%g"

set format y "%g"

# set lmargin 0

set multiplot layout 2,4 rowsfirst

set xrange [0:10]

set yrange [0:0.25]

unset key

unset title

unset label

unset arrow

set xlabel "[monomer]" offset 0,1

set ylabel "Rate" offset 2,0

unset xlabel

set format x ""
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M1 = M2 = M3 = M4 = M5 = 0.1

plot rate_eq_sym_m1(x) ls 1 title "M1", \

rate_eq_sym_m2(x) ls 2 title "M2", \

rate_eq_sym_m3(x) ls 3 title "M3", \

rate_eq_sym_m4(x) ls 4 title "M4", \

rate_eq_sym_m5(x) ls 5 title "M5"

unset ylabel

set format y ""

M1 = M2 = M3 = M4 = M5 = 0.5

plot rate_eq_sym_m1(x) ls 1 title "M1", \

rate_eq_sym_m2(x) ls 2 title "M2", \

rate_eq_sym_m3(x) ls 3 title "M3", \

rate_eq_sym_m4(x) ls 4 title "M4", \

rate_eq_sym_m5(x) ls 5 title "M5"

M1 = M2 = M3 = M4 = M5 = 1.0

plot rate_eq_sym_m1(x) ls 1 title "M1", \

rate_eq_sym_m2(x) ls 2 title "M2", \

rate_eq_sym_m3(x) ls 3 title "M3", \

rate_eq_sym_m4(x) ls 4 title "M4", \

rate_eq_sym_m5(x) ls 5 title "M5"

M1 = M2 = M3 = M4 = M5 = 2.0

plot rate_eq_sym_m1(x) ls 1 title "M1", \

rate_eq_sym_m2(x) ls 2 title "M2", \

rate_eq_sym_m3(x) ls 3 title "M3", \

rate_eq_sym_m4(x) ls 4 title "M4", \

rate_eq_sym_m5(x) ls 5 title "M5"

set format x "%g"

set format y "%g"

set xlabel "[monomer]" offset 0,1

set ylabel "Rate" offset 2,0

M1 = M2 = M3 = M4 = M5 = 5.0

plot rate_eq_sym_m1(x) ls 1 title "M1", \

rate_eq_sym_m2(x) ls 2 title "M2", \

rate_eq_sym_m3(x) ls 3 title "M3", \

rate_eq_sym_m4(x) ls 4 title "M4", \
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rate_eq_sym_m5(x) ls 5 title "M5"

unset ylabel

set format y ""

M1 = M2 = M3 = M4 = M5 = 10.0

plot rate_eq_sym_m1(x) ls 1 title "M1", \

rate_eq_sym_m2(x) ls 2 title "M2", \

rate_eq_sym_m3(x) ls 3 title "M3", \

rate_eq_sym_m4(x) ls 4 title "M4", \

rate_eq_sym_m5(x) ls 5 title "M5"

M1 = M2 = M3 = M4 = M5 = 50.0

plot rate_eq_sym_m1(x) ls 1 title "M1", \

rate_eq_sym_m2(x) ls 2 title "M2", \

rate_eq_sym_m3(x) ls 3 title "M3", \

rate_eq_sym_m4(x) ls 4 title "M4", \

rate_eq_sym_m5(x) ls 5 title "M5"

M1 = M2 = M3 = M4 = M5 = 100.0

plot rate_eq_sym_m1(x) ls 1 title "M1", \

rate_eq_sym_m2(x) ls 2 title "M2", \

rate_eq_sym_m3(x) ls 3 title "M3", \

rate_eq_sym_m4(x) ls 4 title "M4", \

rate_eq_sym_m5(x) ls 5 title "M5"

unset multiplot

set term wxt
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6.11 PySCeS input file: Supply-demand system
in Fig. 4.1

# Filename: olona_supdem.psc

FIX: S1 S2 S3 S4 S5 Dummy

# Common growth demand

Rdem: M1 + M2 + M3 + M4 + M5 > Dummy

# The generic rate equation

# (kdem*Template) / (((1 + (K0/Edem))/((M1/KdemM1)*(M2/KdemM2)))
# + b/(M2/KdemM2) + c/(M3/KdemM3) + d/(M4/KdemM4)
# + e/(M5/KdemM5) + (n-1))

# Here the identity of the monomers in position 1 and 2 must be specified.
# Coefficients a,b,c,d,e are the number of each monomer type from
# position 2 in the polymer onwards.

# Simplified rate equation

(kdem*Template) / (a/(M1/KdemM1) + b/(M2/KdemM2) + c/(M3/KdemM3)
+ d/(M4/KdemM4) + e/(M5/KdemM5) + (n-1))

# Coefficients a,b,c,d,e are the number of each monomer type from
# in the full monomer sequence.

# Supply Enzymes

R1a: S1 = A1
(k1a*E1a/K1aS1)*(S1-A1/Keq1a)*(S1/K1aS1 + A1/K1aA1)**(h1a-1) /

((S1/K1aS1 + A1/K1aA1)**h1a
+ (1 + (M1/K1aM1)**h1a)/(1 + alpha1a*(M1/K1aM1)**h1a))

R2a: S2 = A2
(k2a*E2a/K2aS2)*(S2-A2/Keq2a)*(S2/K2aS2 + A2/K2aA2)**(h2a-1) /

((S2/K2aS2 + A2/K2aA2)**h2a
+ (1 + (M2/K2aM2)**h2a)/(1 + alpha2a*(M2/K2aM2)**h2a))

R3a: S3 = A3
(k3a*E3a/K3aS3)*(S3-A3/Keq3a)*(S3/K3aS3 + A3/K3aA3)**(h3a-1) /

((S3/K3aS3 + A3/K3aA3)**h3a \
+ (1 + (M3/K3aM3)**h3a)/(1 + alpha3a*(M3/K3aM3)**h3a))

R4a: S4 = A4
(k4a*E4a/K4aS4)*(S4-A4/Keq4a)*(S4/K4aS4 + A4/K4aA4)**(h4a-1) /

((S4/K4aS4 + A4/K4aA4)**h4a
+ (1 + (M4/K4aM4)**h4a)/(1 + alpha4a*(M4/K4aM4)**h4a))

R5a: S5 = A5
(k5a*E5a/K5aS5)*(S5-A5/Keq5a)*(S5/K5aS5 + A5/K5aA5)**(h5a-1) /

((S5/K5aS5 + A5/K5aA5)**h5a
+ (1 + (M5/K5aM5)**h5a)/(1 + alpha5a*(M5/K5aM5)**h5a))

# Supply Enzymes b
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R1b: A1 = B1
(k1b*E1b/K1bA1)*(A1-B1/Keq1b)/(1 + A1/K1bA1 + B1/K1bB1)

R2b: A2 = B2
(k2b*E2b/K2bA2)*(A2-B2/Keq2b)/(1 + A2/K2bA2 + B2/K2bB2)

R3b: A3 = B3
(k3b*E3b/K3bA3)*(A3-B3/Keq3b)/(1 + A3/K3bA3 + B3/K3bB3)

R4b: A4 = B4
(k4b*E4b/K4bA4)*(A4-B4/Keq4b)/(1 + A4/K4bA4 + B4/K4bB4)

R5b: A5 = B5
(k5b*E5b/K5bA5)*(A5-B5/Keq5b)/(1 + A5/K5bA5 + B5/K5bB5)

# Supply Enzymes c

R1c: B1 = M1
(k1c*E1c/K1cB1)*(B1-M1/Keq1c)/(1 + B1/K1cB1 + M1/K1cM1)

R2c: B2 = M2
(k2c*E2c/K2cB2)*(B2-M2/Keq2c)/(1 + B2/K2cB2 + M2/K2cM2)

R3c: B3 = M3
(k3c*E3c/K3cB3)*(B3-M3/Keq3c)/(1 + B3/K3cB3 + M3/K3cM3)

R4c: B4 = M4
(k4c*E4c/K4cB4)*(B4-M4/Keq4c)/(1 + B4/K4cB4 + M4/K4cM4)

R5c: B5 = M5
(k5c*E5c/K5cB5)*(B5-M5/Keq5c)/(1 + B5/K5cB5 + M5/K5cM5)

# Synthesis of supply enzyme a

E1a_syn: Dummy > E1a
V_syn_const
+ V_syn_induced*(1-M1**h_rpr1/(K_rpr1**h_rpr1 + M1**h_rpr1))

E2a_syn: Dummy > E2a
V_syn_const
+ V_syn_induced*(1-M2**h_rpr2/(K_rpr2**h_rpr2 + M2**h_rpr2))

E3a_syn: Dummy > E3a
V_syn_const
+ V_syn_induced*(1-M3**h_rpr3/(K_rpr3**h_rpr3 + M3**h_rpr3))

E4a_syn: Dummy > E4a
V_syn_const
+ V_syn_induced*(1-M4**h_rpr4/(K_rpr4**h_rpr4 + M4**h_rpr4))

E5a_syn: Dummy > E5a
V_syn_const
+ V_syn_induced*(1-M5**h_rpr5/(K_rpr5**h_rpr5 + M5**h_rpr5))

# Degradation of supply enzyme a

E1a_degrad: E1a > Dummy
k_degrad_E1a*E1a
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E2a_degrad: E2a > Dummy
k_degrad_E2a*E2a

E3a_degrad: E3a > Dummy
k_degrad_E3a*E3a

E4a_degrad: E4a > Dummy
k_degrad_E4a*E4a

E5a_degrad: E5a > Dummy
k_degrad_E5a*E5a

# External metabolites
S1 = 1.0 S2 = 1.0 S3 = 1.0 S4 = 1.0 S5 = 1.0
Dummy = 0.0

# Internal metabolites
E1a = 1.0 E2a = 1.0 E3a = 1.0 E4a = 1.0 E5a = 1.0
A1 = 1.0 A2 = 1.0 A3 = 1.0 A4 = 1.0 A5 = 1.0
B1 = 1.0 B2 = 1.0 B3 = 1.0 B4 = 1.0 B5 = 1.0
M1 = 1.0 M2 = 1.0 M3 = 1.0 M4 = 1.0 M5 = 1.0

# Composition of the polymer string
a = 1.0 b = 1.0 c = 1.0 d = 1.0 e = 1.0

n = 5 # number of monomers

K0 = 1.0
Template = 1.0

# Rdem (common growth demand)
Edem = 1.0
kdem = 1.0
KdemM1 = 1.0
KdemM2 = 1.0
KdemM3 = 1.0
KdemM4 = 1.0
KdemM5 = 1.0

# R1a # R2a # R3a # R4a # R5a
k1a = 200.0 k2a = 200.0 k3a = 200.0 k4a = 200.0 k5a = 200.0
E1a = 1.0 E2a = 1.0 E3a = 1.0 E4a = 1.0 E5a = 1.0
Keq1a = 400.0 Keq2a = 400.0 Keq3a = 400.0 Keq4a = 400.0 Keq5a = 400.0
K1aS1 = 1.0 K2aS2 = 1.0 K3aS3 = 1.0 K4aS4 = 1.0 K5aS5 = 1.0
K1aA1 = 1.0e4 K2aA2 = 1.0e4 K3aA3 = 1.0e4 K4aA4 = 1.0e4 K5aA5 = 1.0e4
K1aM1 = 1.0 K2aM2 = 1.0 K3aM3 = 1.0 K4aM4 = 1.0 K5aM5 = 1.0
h1a = 4.0 h2a = 4.0 h3a = 4.0 h4a = 4.0 h5a = 4.0
alpha1a = 0.001 alpha2a = 0.001 alpha3a = 0.001 alpha4a = 0.001 alpha5a = 0.001

# R1b # R2b # R3b # R4b # R5b
k1b = 1.0 k2b = 1.0 k3b = 1.0 k4b = 1.0 k5b = 1.0
E1b = 1000.0 E2b = 1000.0 E3b = 1000.0 E4b = 1000.0 E5b = 1000.0
Keq1b = 10.0 Keq2b = 10.0 Keq3b = 10.0 Keq4b = 10.0 Keq5b = 10.0
K1bA1 = 1.0 K2bA2 = 1.0 K3bA3 = 1.0 K4bA4 = 1.0 K5bA5 = 1.0
K1bB1 = 1.0 K2bB2 = 1.0 K3bB3 = 1.0 K4bB4 = 1.0 K5bB5 = 1.0

# R1c # R2c # R3c # R4c # R5c
k1c = 1.0 k2c = 1.0 k3c = 1.0 k4c = 1.0 k5c = 1.0
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E1c = 1000.0 E2c = 1000.0 E3c = 1000.0 E4c = 1000.0 E5c = 1000.0
Keq1c = 10.0 Keq2c = 10.0 Keq3c = 10.0 Keq4c = 10.0 Keq5c = 10.0
K1cB1 = 1.0 K2cB2 = 1.0 K3cB3 = 1.0 K4cB4 = 1.0 K5cB5 = 1.0
K1cM1 = 1.0 K2cM2 = 1.0 K3cM3 = 1.0 K4cM4 = 1.0 K5cM5 = 1.0

K_rpr1 = 0.1 K_rpr2 = 0.1 K_rpr3 = 0.1 K_rpr4 = 0.1 K_rpr5 = 0.1
h_rpr1 = 4.0 h_rpr2 = 4.0 h_rpr3 = 4.0 h_rpr4 = 4.0 h_rpr5 = 4.0
V_syn_const = 0.01 V_syn_const = 0.01 V_syn_const = 0.01 V_syn_const = 0.01 V_syn_const=0.01
V_syn_induced = 0.1 V_syn_induced = 0.1 V_syn_induced = 0.1 V_syn_induced = 0.1 V_syn_induced=0.1
k_degrad_E1a = 0.01 k_degrad_E2a = 0.01 k_degrad_E3a = 0.01 k_degrad_E4a = 0.01 k_degrad_E5a=0.01
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6.12 PySCeS script for rate-characteristic
analyses in Figs. 4.3 and 4.6

import pysces, scipy, pylab, sushi

m1,m2 = sushi.model(’olona_supdem’, [’M1’,’M2’,’M3’,’M4’,’M5’], \

return_all=False)

m1,m3 = sushi.model(’olona_supdem’, [’M1’,’M2’,’M3’,’M4’,’M5’,’E1a’], \

return_all=False)

# There are 5 monomer types: M1, M2, M3, M4, M5

# Model m1 has FIXED: S1 S2 S3 S4 S5 Dummy (as in .psc file)

# Model m2 has FIXED: S1 S2 S3 S4 S5 Dummy M1 M2 M3 M4 M5

# Model m3 has FIXED: S1 S2 S3 S4 S5 Dummy M1 M2 M3 M4 M5 E1a

def experiment(exp, a, b, c, d, e, k1a, k2a, k3a, k4a, k5a, Kdem, template):

m1.Stoich_nmatrix_SetValue(’M1’, ’Rdem’, -a)

m1.Stoich_nmatrix_SetValue(’M2’, ’Rdem’, -b)

m1.Stoich_nmatrix_SetValue(’M3’, ’Rdem’, -c)

m1.Stoich_nmatrix_SetValue(’M4’, ’Rdem’, -d)

m1.Stoich_nmatrix_SetValue(’M5’, ’Rdem’, -e)

m2.Stoich_nmatrix_SetValue(’M1’, ’Rdem’, -a)

m2.Stoich_nmatrix_SetValue(’M2’, ’Rdem’, -b)

m2.Stoich_nmatrix_SetValue(’M3’, ’Rdem’, -c)

m2.Stoich_nmatrix_SetValue(’M4’, ’Rdem’, -d)

m2.Stoich_nmatrix_SetValue(’M5’, ’Rdem’, -e)

m3.Stoich_nmatrix_SetValue(’M1’, ’Rdem’, -a)

m3.Stoich_nmatrix_SetValue(’M2’, ’Rdem’, -b)

m3.Stoich_nmatrix_SetValue(’M3’, ’Rdem’, -c)

m3.Stoich_nmatrix_SetValue(’M4’, ’Rdem’, -d)

m3.Stoich_nmatrix_SetValue(’M5’, ’Rdem’, -e)

m1.Stoichiometry_ReAnalyse()

m2.Stoichiometry_ReAnalyse()

m3.Stoichiometry_ReAnalyse()

m1.a = m2.a = m3.a = a

m1.b = m2.b = m3.b = b

m1.c = m2.c = m3.c = c
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m1.d = m2.d = m3.d = d

m1.e = m2.e = m3.e = e

m1.n = m2.n = m3.n = a + b + c + d + e

# Set the template concentration

m1.Template = m2.Template = m3.Template = template

# Set the demand dissociation constant for monomers

m1.KdemM1 = m2.KdemM1 = m3.KdemM1 = Kdem

m1.KdemM2 = m2.KdemM2 = m3.KdemM2 = Kdem

m1.KdemM3 = m2.KdemM3 = m3.KdemM3 = Kdem

m1.KdemM4 = m2.KdemM4 = m3.KdemM4 = Kdem

m1.KdemM5 = m2.KdemM5 = m3.KdemM5 = Kdem

# Set the catalytic constants

m1.k1a = m2.k1a = m3.k1a = k1a

m1.k2a = m2.k2a = m3.k2a = k2a

m1.k3a = m2.k3a = m3.k3a = k3a

m1.k4a = m2.k4a = m3.k4a = k4a

m1.k5a = m2.k5a = m3.k5a = k5a

# Calculate steady state for the model with variable Mx

m1.doState()

# Do a control analysis of this steady state

m1.doMca()

# Write out steady state and control analysis data

# Calculate summed flux-control coefficients

# for the 5 supply blocks

CJ1sup = m1.ccJR1a_R1a + m1.ccJR1a_R1b + m1.ccJR1a_R1c

CJ2sup = m1.ccJR2a_R2a + m1.ccJR2a_R2b + m1.ccJR2a_R2c

CJ3sup = m1.ccJR3a_R3a + m1.ccJR3a_R3b + m1.ccJR3a_R3c

CJ4sup = m1.ccJR4a_R4a + m1.ccJR4a_R4b + m1.ccJR4a_R4c

CJ5sup = m1.ccJR5a_R5a + m1.ccJR5a_R5b + m1.ccJR5a_R5c

CJsum = CJ1sup + CJ2sup + CJ3sup + CJ4sup + CJ5sup + m1.ccJR1a_Rdem

F = open(’C:\\pysces\\results\\SupDem_exp’ + exp + ’_mca.dat’, ’w’)

m1.showState(F)

F.write(’\n’)

m1.showCC(F)

F.write(’\n’)
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m1.showElas(F)

F.write(’\n’)

F.write(’ccJR1a_R1a = ’ + ‘m1.ccJR1a_R1a‘ + ’\n’)

F.write(’ccJR1a_R1b = ’ + ‘m1.ccJR1a_R1b‘ + ’\n’)

F.write(’ccJR1a_R1c = ’ + ‘m1.ccJR1a_R1c‘ + ’\n’)

F.write(’ccJR1a_Rdem = ’ + ‘m1.ccJR1a_Rdem‘ + ’\n\n’)

F.write(’ccJR2a_R2a = ’ + ‘m1.ccJR2a_R2a‘ + ’\n’)

F.write(’ccJR2a_R2b = ’ + ‘m1.ccJR2a_R2b‘ + ’\n’)

F.write(’ccJR2a_R2c = ’ + ‘m1.ccJR2a_R2c‘ + ’\n’)

F.write(’ccJR2a_Rdem = ’ + ‘m1.ccJR2a_Rdem‘ + ’\n\n’)

F.write(’ccJR3a_R3a = ’ + ‘m1.ccJR3a_R3a‘ + ’\n’)

F.write(’ccJR3a_R3b = ’ + ‘m1.ccJR3a_R3b‘ + ’\n’)

F.write(’ccJR3a_R3c = ’ + ‘m1.ccJR3a_R3c‘ + ’\n’)

F.write(’ccJR3a_Rdem = ’ + ‘m1.ccJR3a_Rdem‘ + ’\n\n’)

F.write(’ccJR4a_R4a = ’ + ‘m1.ccJR4a_R4a‘ + ’\n’)

F.write(’ccJR4a_R4b = ’ + ‘m1.ccJR4a_R4b‘ + ’\n’)

F.write(’ccJR4a_R4c = ’ + ‘m1.ccJR4a_R4c‘ + ’\n’)

F.write(’ccJR4a_Rdem = ’ + ‘m1.ccJR4a_Rdem‘ + ’\n\n’)

F.write(’ccJR5a_R5a = ’ + ‘m1.ccJR5a_R5a‘ + ’\n’)

F.write(’ccJR5a_R5b = ’ + ‘m1.ccJR5a_R5b‘ + ’\n’)

F.write(’ccJR5a_R5c = ’ + ‘m1.ccJR5a_R5c‘ + ’\n’)

F.write(’ccJR5a_Rdem = ’ + ‘m1.ccJR5a_Rdem‘ + ’\n\n’)

F.write(’ccJR1a_R5a = ’ + ‘m1.ccJR1a_R5a‘ + ’\n’)

F.write(’ccJR2a_R5a = ’ + ‘m1.ccJR2a_R5a‘ + ’\n’)

F.write(’ccJR3a_R5a = ’ + ‘m1.ccJR3a_R5a‘ + ’\n’)

F.write(’ccJR4a_R5a = ’ + ‘m1.ccJR4a_R5a‘ + ’\n’)

F.write(’ccJR5a_R5a = ’ + ‘m1.ccJR5a_R5a‘ + ’\n\n’)

F.write(’CJ1sup = ’ + ‘CJ1sup‘ + ’\n’)

F.write(’CJ2sup = ’ + ‘CJ2sup‘ + ’\n’)

F.write(’CJ3sup = ’ + ‘CJ3sup‘ + ’\n’)

F.write(’CJ4sup = ’ + ‘CJ4sup‘ + ’\n’)

F.write(’CJ5sup = ’ + ‘CJ5sup‘ + ’\n’)

F.write(’CJsum = ’ + ‘CJsum‘ + ’\n’)

F.close()

# Write the steady state [m1],Jsup pairs into a data file

F = open(’C:\\pysces\\results\\SupDem_exp’ + exp + ’_ss.dat’, ’w’)

F.write(‘a‘ + ’ ’ + ‘m1.M1_ss‘ + ’ ’ + ‘m1.J_R1a‘ + ’\n’)

F.write(‘b‘ + ’ ’ + ‘m1.M2_ss‘ + ’ ’ + ‘m1.J_R2a‘ + ’\n’)

F.write(‘c‘ + ’ ’ + ‘m1.M3_ss‘ + ’ ’ + ‘m1.J_R3a‘ + ’\n’)

F.write(‘d‘ + ’ ’ + ‘m1.M4_ss‘ + ’ ’ + ‘m1.J_R4a‘ + ’\n’)

F.write(‘e‘ + ’ ’ + ‘m1.M5_ss‘ + ’ ’ + ‘m1.J_R5a‘ + ’\n’)
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F.close()

scan_range = scipy.logspace(-2,5,101)

# In turn, scan each monomer while keeping the

# other at their steady-state concentrations

for monomer in [’M1’, ’M2’, ’M3’, ’M4’, ’M5’]:

# Initialise the monomer concentrations of model m2

# with fixed [Mi]) to steady-state values

m2.M1 = m1.M1_ss

m2.M2 = m1.M2_ss

m2.M3 = m1.M3_ss

m2.M4 = m1.M4_ss

m2.M5 = m1.M5_ss

m2.scan_in = monomer

m2.scan_out = [’J_R1a’,’J_R2a’,’J_R3a’,’J_R4a’,’J_R5a’,’J_Rdem’]

m2.Scan1(scan_range)

F = open(’C:\\pysces\\results\\SupDem_Flux_’+ monomer \

+’_exp’+exp+’.dat’,’w’)

m2.Write_array(m2.scan_res,F)

F.close()

# Polymer composition

# a = for M1

# b = for M2

# c = for M3

# d = for M4

# e = for M5

# experiment(exp, a, b, c, d, e, k1a, k2a, k3a, k4a, k5a, Kdem, template):

# Experiment 1:

experiment(’1’, 10, 20, 30, 40, 50, 200.0, 20.0, 10.0, 5.0, 1.0, 1.0, 300.0)

# Experiment 2: make the M5-supply 50 times more active

experiment(’2’, 10, 20, 30, 40, 50, 200.0, 20.0, 10.0, 5.0, 50.0, 1.0, 300.0)
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# Experiment 3: Same as exp 1, but reverse the monomer composition

experiment(’3’, 50, 40, 30, 20, 10, 200.0, 20.0, 10.0, 5.0, 1.0, 1.0, 300.0)

# Experiment 4: Same as exp 1, but shorter polymer, the same monomer ratios

experiment(’4’, 1, 2, 3, 4, 5, 200.0, 20.0, 10.0, 5.0, 1.0, 1.0, 300.0)

# Experiment 5: Same as exp 1, but decrease the demand

# and make it more sensitive to [monomer]

experiment(’5’, 10, 20, 30, 40, 50, 200.0, 20.0, 10.0, 5.0, 1.0, 0.1, 3.0)
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6.13 Gnuplot script for rate-characteristics in
Figs. 4.3–4.6

# Filename: SupDem_ratechar.plt

set term lua "gnuplot-tikz.lua" solid font "\\scriptsize"

set palette

set border 3 front linetype -1 linewidth 1.000

set format x "$10^{%T}$" # log scale

set format y "$10^{%T}$" # log scale

set nokey

set logscale xy

set xtics border in scale 1,0.5 nomirror norotate offset character 0, 0, 0

set ytics border in scale 1,0.5 nomirror norotate offset character 0, 0, 0

# Supply-Demand model: Flux vs [M1]

set output ’C:\Pysces\fig_conversion\supdem_flux_M1.tikz’

a = 10.0

b = 20.0

c = 30.0

d = 40.0

e = 50.0

set xlabel "[M$_{1}$]"

set xrange [1e-2 : 1e5] noreverse nowriteback

set ylabel "Flux, $J$" offset 2,0

set yrange [1e-2 : 1e3] noreverse nowriteback

unset label

unset arrow

set label 1 "1" at 0.0233451,756.262

set label 2 "2" at 0.08,408.866

set label 3 "3" at 0.50,73.5

set label 4 "4" at 0.99,17.2325

set label 5 "5" at 230.367,0.169951

set label 6 "6" at 20000.00,0.0419049

set label 7 "Demand" at 237.629,1.7 tc rgb "sea-green"

set label 8 "Supply" at 0.739330,101.00 tc rgb "blue"
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set label 9 "" at 3.851,1.098 point pointtype 7

plot ’C:\Pysces\results\SupDem_Flux_M1_fixE1a_exp1.dat’ \

u 1:2 w l lw 2 lt rgb "skyblue", \

’C:\Pysces\results\SupDem_Flux_M1_exp1.dat’ \

u 1:2 w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M1_exp1.dat’ \

u 1:(a*$7) w l lw 2 lt rgb "sea-green"

unset ylabel

# Supply-Demand model: Flux vs [monomers]

set xlabel "[M$_{x}$]"

set xrange [1e-2 : 1e5] noreverse nowriteback

set ylabel "Flux, $J$" offset 2,0

set yrange [1e-4 : 1e3] noreverse nowriteback

unset label

unset arrow

set label 1 "M1" at 1000,1.3*a*0.11 tc rgb "blue"

set label 2 "M2" at 1000,1.3*b*0.11 tc rgb "sea-green"

set label 3 "M3" at 1000,1.3*c*0.11 tc rgb "red"

set label 4 "M4" at 1000,1.3*d*0.12 tc rgb "violet"

set label 5 "M5" at 1000,1.3*e*0.74 tc rgb "cyan"

set output ’C:\Pysces\fig_conversion\supdem_flux_monomers_exp1.tikz’

plot ’C:\Pysces\results\SupDem_Flux_M1_exp1.dat’ \

u 1:2 w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M1_exp1.dat’ \

u 1:(a*$7) w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M2_exp1.dat’ \

u 1:3 w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M2_exp1.dat’ \

u 1:(b*$7) w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M3_exp1.dat’ \

u 1:4 w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M3_exp1.dat’ \

u 1:(c*$7) w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M4_exp1.dat’ \

u 1:5 w l lw 2 lt rgb "violet", \
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’C:\Pysces\results\SupDem_Flux_M4_exp1.dat’ \

u 1:(d*$7) w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M5_exp1.dat’ \

u 1:6 w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_Flux_M5_exp1.dat’ \

u 1:(e*$7) w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_exp1_ss.dat’ \

u 2:3 with points pt 7 lt rgb "black"

unset label

set output ’C:\Pysces\fig_conversion\supdem_flux_monomers_exp2.tikz’

plot ’C:\Pysces\results\SupDem_Flux_M1_exp2.dat’ \

u 1:2 w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M1_exp2.dat’ \

u 1:(a*$7) w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M2_exp2.dat’ \

u 1:3 w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M2_exp2.dat’ \

u 1:(b*$7) w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M3_exp2.dat’ \

u 1:4 w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M3_exp2.dat’ \

u 1:(c*$7) w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M4_exp2.dat’ \

u 1:5 w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M4_exp2.dat’ \

u 1:(d*$7) w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M5_exp2.dat’ \

u 1:6 w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_Flux_M5_exp2.dat’ \

u 1:(e*$7) w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_exp2_ss.dat’ \

u 2:3 with points pt 7 lt rgb "black"

a = 50.0

b = 40.0

c = 30.0

d = 20.0

e = 10.0

set output ’C:\Pysces\fig_conversion\supdem_flux_monomers_exp3.tikz’
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plot ’C:\Pysces\results\SupDem_Flux_M1_exp3.dat’ \

u 1:2 w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M1_exp3.dat’ \

u 1:(a*$7) w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M2_exp3.dat’ \

u 1:3 w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M2_exp3.dat’ \

u 1:(b*$7) w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M3_exp3.dat’ \

u 1:4 w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M3_exp3.dat’ \

u 1:(c*$7) w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M4_exp3.dat’ \

u 1:5 w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M4_exp3.dat’ \

u 1:(d*$7) w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M5_exp3.dat’ \

u 1:6 w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_Flux_M5_exp3.dat’ \

u 1:(e*$7) w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_exp3_ss.dat’ \

u 2:3 with points pt 7 lt rgb "black"

a = 1.0

b = 2.0

c = 3.0

d = 4.0

e = 5.0

set output ’C:\Pysces\fig_conversion\supdem_flux_monomers_exp4.tikz’

plot ’C:\Pysces\results\SupDem_Flux_M1_exp4.dat’ \

u 1:2 w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M1_exp4.dat’ \

u 1:(a*$7) w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M2_exp4.dat’ \

u 1:3 w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M2_exp4.dat’ \

u 1:(b*$7) w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M3_exp4.dat’ \

u 1:4 w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M3_exp4.dat’ \
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u 1:(c*$7) w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M4_exp4.dat’ \

u 1:5 w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M4_exp4.dat’ \

u 1:(d*$7) w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M5_exp4.dat’ \

u 1:6 w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_Flux_M5_exp4.dat’ \

u 1:(e*$7) w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_exp4_ss.dat’ \

u 2:3 with points pt 7 lt rgb "black"

a = 10.0

b = 20.0

c = 30.0

d = 40.0

e = 50.0

set output ’C:\Pysces\fig_conversion\supdem_flux_monomers_exp5.tikz’

plot ’C:\Pysces\results\SupDem_Flux_M1_exp5.dat’ \

u 1:2 w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M1_exp5.dat’ \

u 1:(a*$7) w l lw 2 lt rgb "blue", \

’C:\Pysces\results\SupDem_Flux_M2_exp5.dat’ \

u 1:3 w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M2_exp5.dat’ \

u 1:(b*$7) w l lw 2 lt rgb "sea-green", \

’C:\Pysces\results\SupDem_Flux_M3_exp5.dat’ \

u 1:4 w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M3_exp5.dat’ \

u 1:(c*$7) w l lw 2 lt rgb "red", \

’C:\Pysces\results\SupDem_Flux_M4_exp5.dat’ \

u 1:5 w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M4_exp5.dat’ \

u 1:(d*$7) w l lw 2 lt rgb "violet", \

’C:\Pysces\results\SupDem_Flux_M5_exp5.dat’ \

u 1:6 w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_Flux_M5_exp5.dat’ \

u 1:(e*$7) w l lw 2 lt rgb "cyan", \

’C:\Pysces\results\SupDem_exp5_ss.dat’ \

u 2:3 with points pt 7 lt rgb "black"
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