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UITTREKSEL 
 
Die studie het die gebruik van dubbel bemonstering met regressie skatters in Namibiese 
bosse ondersoek, in ŉ soeke na effektiewe bosopnames. Bykomstige data is verkry vanaf 
QuickBird satelliet beelde (fase 1) gedurende Oktober en November 2004, vir die Hans 
Kanyinga Gemeenskapsbos wat ŉ area van 12,107 hektaar  beslaan. Hierdie data is 
getoets teen ‘n veldopname van 2002 (fase 2). Die verwantskappe tussen bykomstige en 
veld veranderlikes word beskryf en voorspellings modelle is geskep. Volgens die 
resultate van die stapsgewyse prosedure en Mallow se Cp statistiek as keuse maatstaf, is 
gevind dat fotogrammatiese opstandsdigtheid en ŉ samestelling van fotogrammetriese 
kroon area en fotogrammetriese opstandsdigtheid die beste kandidate vir geskatte 
opstandsvolume is. Die volume model wat verkry is verklaar 56% van die variasie. 
Fotogrammetriese opstandsdigtheid is goed gekorreleer met die veldopname 
opstandsdigtheid en verklaar 81% van die variasie. Fotogrammetriese kroondeursnit is 
gekorreleer met deursnit op borshoogte wat verkry is tydens ŉ veldopname om ruimtelike 
posisies van bome te bepaal asook om ŉ deursnit verspreiding te kry. Die deursnit 
verspreidings model verklaar 43% van variasie. Die GPS posisies wat in die proses 
bepaal is, is ook met opmetingstegnieke, wat afstand en rigting behels, vergelyk en ŉ 
verplasing van 8.67m is in GPS posisies gevind. Slegs die meet van afstande van bome 
van die middel van die perseel tydens veld opmeting is meer aanvaarbaar as dit gevind. 
Foute in bepaling van boomposisie is nie van groot belang in die tydelike steekproef 
plotte wat gewoonlik in Namibiese bosinventarisasie gebruik word nie. Die vermindering 
in koste van opname met die metode is 24%  (N$25.79 teenoor N$19.67 per hektaar). Die 
resultate van die studie kan as haalbaar gesien word vir die Kavangostreek en ander 
streke met soortgelyke fisiese en klimaatstoestande, maar versigtigheid moet aan die dag 
gelê word in die gebruik van resultate in ander omgewingstoestande. 
 
Sleutelwoorde: Afstandswaarneming, QuickBird, dubbele bemonstering, regressie, 
effektiwiteit, posisionele akkuraatheid, opstandsvolume, opstandsdigtheid, deursnit, 
model. 
 
 
 
 
 
 
 
 
 
 
 



ABSTRACT 
 
The present study investigated double sampling with regression estimators as a quest for 
efficiency and effectiveness in forest inventory in Namibian woodlands. Auxiliary data 
used were obtained from Standard QuickBird satellite scenes (phase 1) for Hans 
Kanyinga Community Forest from October and November 2004 covering an area of 
12,107 hectares, amplified with terrestric data (phase 2) of 2002. The relationships 
between auxiliary and terrestric variables are described and prediction models were 
constructed. According to the results of the stepwise procedure with the Mallow’s Cp 
statistic as the selection criteria, photogrammetric stand density and a combination of the 
photogrammetric crown area with photogrammetric stand density were the best 
candidates for predicting the stand volume. The resulting volume model explains 56% of 
the variation. Photogrammetric stand density was found to be highly correlated to the 
terrestric stand density with the resulting model explaining 81% of the 
variation. Photogrammetric crown diameter was found to be correlated with the diameter 
at breast height measured from the plots which were assessed for spatial tree positions, 
which enabled the derivation of the diameter distribution. The diameter distribution 
model explains 43% of the variation. In addition, the actual tree positions were 
determined using the GPS and surveying techniques (polar positions) involving distance 
and bearings. GPS tree positions showed a considerable shift of up to 8.67 m. However, 
only the distance measurements of tress from the plot centre using the infield surveying 
methods were more reliable. Nevertheless, the influences of the tree positional errors are 
not of high concern for temporary based sample plots which are normally used in 
Namibian forest inventories. A reduction in inventory cost was found to be 24% i.e. 
N$25.79 to N$19.67 per hectare. The results of this study are valid for Kavango region or 
any other region with similar set of physical and climatic conditions, but caution must be 
exercised in implementing these results elsewhere under different physical and 
environmental conditions. 
 

Keywords: Remote sensing, QuickBird, double sampling, regression, efficiency, 
effectiveness, positional accuracy, stand volume, stand density, diameter, model. 
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ACRONYMS, ABBREVIATIONS AND DEFINITIONS 
 
Acronyms 
 
ESRI  Environmental Systems Research Institute 

FAO  Food and Agriculture Organization 

GIS  Geographic Information System 

GPS  Global Positioning System 

N$  Namibian Dollar 

NFI  National Forest Inventory 

NRSC  National Remote Sensing Centre (in Namibia) 

 

Abbreviations 

DBH  Diameter at breast height (1.3 m) 

ha  Hectare 

n  Sample size 

SE  Standard error 

R2  Coefficient of determination 

s.a.  sans annum (undated) 
 
Definitions 

There can be much confusion about the terminology used in this investigation.  In order 

to facilitate the description and avoid misunderstanding, the terms accuracy, auxiliary, 

crown area, crown cover percent, double sampling, effectiveness, efficiency, monitoring, 

precision, stand density, terrestric, traditional inventory, and trees are defined here: 
 

Accuracy implies the success of estimating the true value of the inventory variable. 
 

Auxiliary sample refers to the measurements carried out on the satellite image.  In this 

investigation, it is used interchangeably with the term phase 1. 
 

 i 



 ii 

Crown area is the area in m2 which is covered by the tree crown.  When this is expressed 

in percent of the total area of the sample plot, it gives rise to the crown cover percent. 
 

Crown cover percent is the percentage of the total area of a sample plot which is covered 

by the horizontal projection of the tree crown. 
 

Double sample refers to the measurements carried out on the image combined with few 

samples collected in the field (phase 1 + phase 2).  This term also encompasses the costs 

involved in collecting both samples. 
 

Effectiveness implies that the estimates obtained are within a tolerable limit of error and 

can be used to make decisions.  This term is also used to express the logistical and time 

requirements for fieldwork. 
 

Efficiency implies that stand volume, stand density and diameter distribution estimation 

can be possible with few inputs leading to financial, time and productivity gain in terms 

of laborious fieldwork. 
 

Monitoring refers to the data sampling which is repeated at certain intervals of time for 

management purposes and decisions.  Monitoring is distinguished from surveys by 

emphasizing repeated and replicable measurements over an extended period of time and 

by focusing more on the rates and magnitude of change (Danielsen et al. 2000). 
 

Precision implies the clustering of the sample values around the mean or average. 
 

Stand density refers to the number of stems per hectare.  These terms are sometimes used 

interchangeably. 
 

Terrestric sample (phase 2) refers to the trees/stems measured in the field, but not 

necessarily referring to traditional inventory.   
  

Traditional inventory refers to the inventories which are carried out only terrestrically (or 

phase 2) without the amplification of data by other sources (such as satellite images).



1. INTRODUCTION 
 

The ultimate purpose of this study is to investigate how remote sensing can support 

traditional forest inventories by enabling the collection of forest stand parameters 

instantly, and to efficiently obtain stand volumes, number of trees and diameter 

distribution.  The study represents a quest for efficiency and effectiveness of forest 

inventory in Namibia.  To the author’s knowledge, this is the first time that double 

sampling with regression estimators aimed at reducing inventory costs is investigated in 

open savannah woodlands of Southern Africa.  This can also be substantiated by the lack 

of relevant literature regarding efficient inventory concepts such as double sampling in 

the open savannah woodlands of Southern Africa. 

 
In Namibia, forests are an important national legacy and are described as key resources 

because they play a crucial role in productive and protective functions i.e., their role in 

climate, biodiversity, human livelihood and recreation.  Therefore, forests are appreciated 

as one of the close-to-nature landscapes (Brassel and Lischke, 2001).  Of late, 

exchanging, sharing and integrating forest spatial data from various sources has become 

increasingly important (Noongo et al. 2003).  This is due to the growing environmental 

concerns and pressure on the Namibian government to perform more efficiently under 

budgetary constraints.  Other phenomena such as deforestation and forest change are 

monitored because forest resources and products are used for political and management 

decisions and also supports the need for a consistent view of forest rehabilitation (Apan, 

1997).   

 

Forestry development in Namibia started at the beginning of the 20th century when the 

role of woody vegetation in environmental protection was recognized by the German 

colonial government (FAO, s.a.).  However, the forest resource suffered a great deal 

during the liberation struggle for independence when the forest policy was not effectively 

enforced, especially in the communal areas of the North and North East of the country.  

From 1995, donor support was received from the government of Finland to support the 
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Directorate of Forestry.  This support became known as the Namibia-Finland Forestry 

Programme.  The aim of the support was to build the capacity of the Directorate of 

Forestry to carry out forest inventories for sustainable management and utilization of the 

forest resource.  This support was extended to cater for forest inventories needs and since 

then a substantial amount of forest inventories were carried out.  The support came to an 

end in 2004 and from that year, it became a too heavy load for the Directorate of Forestry 

to sustain these forest inventories.  Consequently, a cost effective and efficient method of 

carrying out forest inventories and sampling is needed to satisfy the increasing and 

diverse informational demands, in view of ensuring sustainable forest management in 

Namibia.  This method should be conducted with the up-to-date technologies and should 

provide scientifically sound estimates of the target parameters necessary for sustainable 

forestry (Lund, 1998).  This requirement is in line with the mission statement of the 

Directorate of Forestry in Namibia which aims: 

 

“To practice and to promote sustainable and participatory management of forest 

resources and other woody vegetation to enhance the socio-economic 

development and environmental stability in Namibia” (Directorate of Forestry, 

2001 cited in Julin, 2002). 

 

Before the phasing out of the Namibia-Finland Forestry Programme in 2004, a woody 

vegetation inventory based upon detailed field sampling of tree parameters was 

conducted in Northern Namibia in 2002.  The ultimate goals were to investigate the 

extent to which Landsat TM satellite imagery could be used to reduce inventory costs, to 

model woody resources in areas which were not yet covered by an inventory and to 

monitor changes in woody vegetation resources over time (Verlinden and Laamanen, 

2006).  This woody resource monitoring method developed is good for forest cover, 

biomass and stand volumes.  However, the recent shift from regional inventories to local 

level (community forests) inventories requires additional information such as the number 

of trees and diameter distribution. 

 

 2 



Similarly, investigations of this nature have been carried out in many countries in the 

Northern Hemisphere and to a limited extent in Southern Africa’s natural forests and 

woodlands.  This widens the information gap since the sharing of experiences among 

countries is limited and the methods applied in the Northern Hemisphere cannot be 

sufficiently applied in the Southern Hemisphere due to the manifold growth and 

structural characteristics of trees.  For instance, most of the existing literature on this 

subject is from homogeneous forests, where the application of remote sensing may be 

relatively easier than in natural woodlands where a mixture of plant species is found with 

their different growth and recognition characteristics.  Therefore, this study is aimed at 

highlighting the situation in using remote sensing in Southern African savannah 

woodlands and at the same time uses the recent technologies of high resolution satellite 

imagery and new advances in image processing.  The results of this investigation will 

hopefully become a major milestone to ensure the acquisition of the inventory data 

needed for forest management planning taking the cost implications into account.  The 

knowledge generated will serve as a basis for most inventory concepts to be developed in 

the future and the modification of readily available concepts in Namibia and other 

countries in Southern Africa with the same conditions.  The target beneficiary of this 

investigation is the Directorate of Forestry in Namibia or any entity dealing with resource 

assessments. 

 
The hypothesis that inspired this study is that the use of QuickBird satellite imagery can 

provide the inventory information pertaining to Namibian woodlands, efficiently and 

effectively.  For this hypothesis to be tested, two things have to be demonstrated, firstly, 

QuickBird satellite imagery has to be effective in providing the required inventory 

parameters and, secondly, it should deliver the parameters at a lower cost than the 

traditional method, by reducing costly inventory activities and expenses i.e. amount of 

field work without risking the precision and accuracy of the information. 
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2. STATE OF THE ART 
 
This investigation deals with different fields such as remote sensing and forest inventory 

in the open savannah woodlands of Namibia.  This chapter highlights the work that has 

been done or is still ongoing in remote sensing as far as its application in forest inventory 

is concerned in various forest types.  The discussions in this chapter are limited for 

Southern African natural forests since there have been few investigations of this nature.  

Nonetheless, the principles and basics remain applicable elsewhere in different forest 

types and conditions. 

 
Inventory concept: Double sampling with regression estimators 

Double sampling as described in most of the literature is dominated by double sampling 

with regression estimators and its suitability has been investigated extensively in the 

small regions and relatively homogenous forests of the Northern Hemisphere.  This forest 

inventory concept includes a terrestrial phase on a smaller number of sample plots taken 

in the field and a big sample measuring auxiliary variables from a set of different imagery 

(e.g. Kätsch, 2006a; Kätsch and Van Laar, 1994; Akça et al. 1993; Avery and Burkhart, 

1988; Cochran, 1977; Hildebrandt, 1996).   

 

Multiphase sampling is another important inventory concept which is an extension of 

double sampling.  This makes use of different sources of data (more than two) which are 

linked by mathematical models (Kätsch, 2006a; Lötsch, F and Haller, K.E, 1964).  This 

concept is also aimed at replacing expensive terrestrial measurements by taking auxiliary 

variables from images at different scales. Based on the investigations carried in the 

Northern Hemisphere, the multiphase concept is very efficient than full terrestrial 

inventories without compromising the accuracy (Kätsch, 1990; Scheer et al. 1997 cited in 

Kätsch, 2006a).  Therefore, when satellite images are used for determining variables that 

are known to be related to timber volume, a two-phase (double sampling) sampling 

design with regression estimators is an appropriate choice (Kätsch, 1991 cited in 

Stellingwerf and Hussin, 1997). 
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Aerial regression equations are composed of a dependent y- variable (such as volume) 

and one or more independent x- variables such as tree height, crown diameter or crown 

area for single trees, maximum or mean tree height and mean crown diameter of trees per 

plot (Kätsch, 1991 cited in Stellingwerf and Hussin, 1997).  In all the techniques, the 

variable of interest (the y- variable) must be determined in the field and the x- variables 

on the satellite image.  The resultant equations are obtained by carrying out multiple 

regression procedures and the usual regression assumptions applies.    

 

Applications of remote sensing in forest inventory 

Little work has been published regarding the employment of remote sensing in forestry in 

the natural woodlands of Namibia.  Some of the pioneering work in Namibia was done by 

Tokola et al. (1999) which was based on the calibration of Landsat TM images for forest 

cover and change detection.  Erkkilä and Löfman (1999) cited in Verlinden and 

Laamanen (2006) used Landsat TM and aerial photographs to assess forest cover change. 

Recently, Verlinden and Laamanen (2006) developed a woody resource monitoring 

system based on the on numerical analysis of Landsat TM images with limited field 

work.  This woody resource monitoring system was aimed at reducing the inventory 

costs, to model woody resources in areas which were not yet covered by inventories and 

to monitor changes over time.  In plantation forests, several authors provide good 

examples of their work in which the potential of remotely sensed data was demonstrated.  

For instance, Norris-Rogers (2004) demonstrated that remote sensing technology can be 

used for change detection in plantations for reporting and planning future forest 

management operations.  Therefore, Apan (1997) concluded that remote sensing is a 

powerful tool that could be used to address the problem of out-dated thematic maps 

which may be used for land cover mapping. 

 

In view of the above, Kätsch (2006a) grouped the uses of remote sensing in forest 

inventory into four intensity levels, namely:  
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 Level I in which the remotely sensed data is used as an aid for orientation in the 

forest aimed at reducing the time lags in activities such as fieldwork planning.   

 In level II, remotely sensed data is used with a simple forest inventory to yield a 

basis for stratification, forest type mapping etc.  This level was also mentioned by 

Neuton and Kapos (2003) and Skidmore et al. (s.a.) that remote sensing images 

can provide a basis for stratifying the forests as well as for mapping distributions 

of species that are closely associated with distinctive vegetation types.  Although 

remote sensing may provide indications of ecosystem-level diversity as indicated 

by spatial distribution of different vegetation types, it cannot yet provide direct 

information on species-level diversity (Newton and Kapos, 2002; Norris-Rogers, 

2004).  This may however be overcome in the near future with the rapid 

development of remote sensing technologies, such as the development of the new 

generation imaging sensors such as the hyperspectral technology (Kätsch, 2006b).   

 Level III combines remotely sensed data with terrestrial measurements using 

photogrammetric variables, grey scale values as auxiliary variables etc.   

 Level IV includes automatisation of the forest inventory, which is completely 

based on remotely sensed data and a model based estimation of forest tree and 

forest stand data. 

 

Apart from the applications of remote sensing in forest inventory, remote sensing has 

been used in other fields. Aplin (s.a.) mentioned that remote sensing has been an 

important tool in ecological research such as habitat monitoring in National parks such as 

the Kruger National Park. In a Zambian study, Scanlon and Albertson (2003) cited in 

Aplin (s.a.) processed satellite imagery to define the leaf area index (LAI) and vegetation 

canopy structure to monitor the changes between vegetation and the atmosphere. A 

similar study was conducted by Scholes et al. (2004) in the Kalahari Sands and there was 

good agreement in the estimations of the LAI in the field and remote sensing imagery. 
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Cost implications of remote sensing in forest inventory 

Linked to all of the above, but also of separate concern is to note that the current 

traditional forest inventory methods used in Namibia are very expensive and raise a 

concern for carrying out forest inventories.  Government funding is not enough to cater 

for forest inventories due to high costs and problems associated with carrying out the 

inventories despite the readily available manpower.  To alleviate this situation, 

Diedershagen et al. (2002) suggested that it is necessary to automate forest inventory 

methods and to analyze them with the use of remote sensing.  Also, many attempts have 

been made to find equilibrium between the desired information and the cost (Kätsch, 

2002).  A number of investigations indicated a massive reduction in inventory costs by 

using remote sensing.  For instance, Edwards (1975) cited in Paine and Kiser (2003) used 

a combination of photogrammetric measurements with some ground variables and 

subsequently encountered an estimated reduction of the inventory costs by up to 35 

percent for mapping, inventorying and planning in forest management.  This reduction in 

the costs is an important aspect on which this study focuses in order to ensure 

sustainability of carrying out forest inventories in countries such as Namibia. 

 

Limitations of remote sensing in forest inventory 

Remote sensing as depicted elsewhere in literature is an ideal tool for carrying out forest 

inventories, but may be difficult to apply in heterogeneous woodlands of Namibia.  In 

their work, Bodmar (1993) and Kellenberger (1996) cited in Brassel and Lischke (2001) 

mentioned that the use of remotely sensed data still needs to overcome some obstacles 

mostly in different forest types.  Similarly, it was found that there is a limitation in the 

use of remote sensing data for detailed forestry application due to its coarse spatial 

resolution (Hamzar, 2001).  This limitation is being alleviated by the increasing 

availability of high resolution satellites such as IKONOS and QuickBird which enables 

the view of single trees with less effort.  Over the past decades, remarkable advancement 

has been made in indicating the potentials and limits for identifying and mapping various 

earth surface features and that these limitations prompt the repeated improvement and 
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concentration to sensors that can obtain data at wavelengths beyond the optical portion of 

the spectrum (Stellingwerf and Hussin, 1997). 

 

In view of the above, Kätsch (2006a) recommended that sophisticated inventory concepts 

are required to combine some terrestrial measurements with image analysis and spatial 

modelling approaches provided by the contemporary geo-informatics.  Otherwise, the use 

of remote sensing unaided cannot be fully realized.  Nevertheless, the technology of 

remote sensing is currently developing so fast that it might be a fully operational tool 

even in the heterogeneous woodlands of Namibia and elsewhere with similar forest 

conditions. 

 

Accuracy of remotely sensed data in forest inventory also poses a serious limitation.  In 

their recent study, Kätsch and Kunneke (2006) developed an automatic tree counting 

system for Pinus patula stands using aerial photographs and found that there is a 

systematic underestimation of the actual number of stems.  Their reason for the 

underestimation was due to the fact that not all trees were visible from above, meaning 

that some trees were covered by others.  The remedy for the underestimation of the 

number of stems could be corrected using simple linear regression models.  Under normal 

conditions, reasonably accurate tree counts can be made.  For instance, Dilworth (1956) 

cited in Paine and Kiser (2003) using 1:12,000-scale photographs conducted crown 

counts on Douglas-fir and the average difference between the visible count from the 

photos and dominant and co-dominant trees on field plots was +1.0, with an average 

deviation of 2.02 trees. 

 

Two factors that contribute to the accuracy of tree counts are photo scale and stand 

density (Paine and Kiser, 2003).  It is also important to note that the success and accuracy 

of using remotely sensed data also depends on the sensor’s spectral and spatial 

characteristics (Kätsch, 2006a).  Coupled with the later, is the image analysis and 

processing, which are crucial in ensuring the reliable extraction of tree parameters.  

Contemporary statistics and geo-statistics facilitate the procedural structure for assessing 
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the precision of sample parameters and for calculating indices describing the forest 

situation. 

 

With regard to positional errors, the work of Imfeld et al. (s.a.) indicated that the 

positional accuracy of the centre of photo and the terrestrial plots is low even with the aid 

of relatively sophisticated instruments such as Ortho-photos.  A mean positional distance 

of 5.2 meters apart was encountered and the authors warn of a possibility of further 

distances. 

 

2.1 ASPECTS OF REMOTE SENSING 
 

The aspects of remote sensing are fully described in remote sensing textbooks and 

publications and it is the contention of the author that they are not repeated in detail in 

this thesis.  Important sensor specifications relevant to this study are discussed in Chapter 

4.  Nevertheless, it is important to mention that remote sensing enables the acquirement 

of information from a distance without being in physical contact with the object.  Remote 

sensors in space borne and airborne platforms use the electromagnetic spectrum (figure. 

1). 

 
 

Figure 1. The electromagnetic spectrum (Lillesand and Kiefer, 1979) 
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The electromagnetic radiation from the sun will hit the object on the earth’s surface, 

resulting in one of the following interactions (Clevers, 1986); 

 

 Transmission of radiation because the object is wholly or partly transparent to the 

radiation; 

 Absorption of radiation by the object, i.e. radiation is retained by the object and 

may be used for certain internal processes (e.g. photosynthesis); and 

 Reflection of radiation at or near the surface of the object. The radiation reflected 

or emitted by an object on the earth’s surface may be remotely sensed. 

 

The energy interaction is often specific for a certain object.  This may be used for 

distinguishing objects or ascertaining characteristics of an object.  The atmosphere may 

modify or contribute to the radiation from the earth’s surface.  It is important to note that 

there are different kinds of particles present in the atmosphere that scatters and absorb the 

radiation that passes through them.  Also, it should be remembered that the atmosphere 

has limited transparency in certain parts of the electromagnetic spectrum (bands) because 

there is a strong absorption of energy by the atmosphere in those bands, thus restricting 

the application of remote sensing to certain windows in the electromagnetic spectrum. 
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3. INFORMATION NEEDS AND EARLY FOREST INVENTORIES 
 
3.1 INFORMATIONAL NEEDS 
 

Because of their diverse uses and cultural values, woodlands are one of the most 

important natural resources in Namibia.  The variable quantity and quality of these 

woodlands requires that continuous assessment and monitoring is carried out due to the 

fact that they are used to meet demands of communities, whose population continues to 

increase.  However, the assessment of forests to support decision making in forest policy 

and management presents a number of challenges.  First, because of the complexity of the 

forests in time and space, information about it needs to be assembled and expressed based 

on simplified variables (Noss, 1990; 1999 cited in Neuton and Kapos, 2002).  Second, 

since decisions relating to forests are made at a variety of scales, forest data need to be 

aggregated across different scales for monitoring and reporting purposes (Noss, 1990; 

Turner, 1995 cited in Neuton and Kapos, 2002). 

 

In Namibia, forest inventories are carried out to determine the location of forest 

resources, their quantity by species and the potential of harvesting them.  Resource 

assessments are also carried out to provide a foundation for both political and 

management decisions.  Management and planning decisions require mapped or 

pinpointed information on the availability of the resources, both in quantities and 

qualities when possible.  This investigation deals with the estimation of stand volume, 

diameter distribution and the number of stems.  These parameters are pivotal for resource 

assessment and management decisions for the Directorate of Forestry.  Timber quality is 

usually assessed during the terrestric inventories. 

 

The informational changes and needs are recognized by various administrative levels 

which are concerned with the woodland resource, namely the lower (community) and 

higher (Directorate of Forestry) level.  However, the information changes are 

increasingly linked to the costs involved in obtaining the required information 

particularly for the higher level.  Furthermore, this change in information needs is 
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reflected, for instance in the type of data collected from the onset of the forest inventories 

to date (section 3.2). 

 

In view of the above, it is also important to note that the basic information required to 

satisfy management plans and decisions differs only on the finest details needed by 

higher and lower level planners.  This difference is mainly on the parameters measured 

and the way the data are analyzed and reported.  For instance, at the community level, the 

volume parameter is not very important since the community is mainly interested in the 

number of stems and sizes in specific areas of their community forests.  The above 

information is also required by the higher level but on a broader scale (region) and 

additional information regarding the forest roads and trails is crucial for the higher level 

to enable prior knowledge of accessibility to the remotest areas while carrying out routine 

forest management and protection.   

 
The paradigm shift from regional inventories to the community forestry approach is in 

line with the current demand for reliable and location specific information by 

communities, which applies not only to forest resources but also include woody plants in 

agricultural fields, grazing grounds and in other land-use areas not traditionally 

considered being forests (FAO, 2000 cited in Erkkilä, 2001).  Hence, in order to be able 

to satisfy the increasing and diverse informational needs, an efficient and effective 

method of collecting and analyzing of the information is required in Namibia. 

 
3.2 EARLY FOREST INVENTORIES 
 
Early forest inventories in Kavango started as early as 1975.  The mapping of the forest 

was done using aerial photographs (1:75 000) and topographic maps (1:250 000). 

Initially, four forest types were defined over an area of 2.4 million hectares, which is 

about half of Kavango (see map 1 for the location of Kavango region).  After the field 

survey, five forest types were defined and consisted of 14 different species groups. In 

total, 194 cluster points were selected for data collection.  Each cluster consisted of four 

circular sample plots, each with a radius of 30 m (0.283 ha).  All trees with DBH >10 cm 
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were enumerated by species and DBH.  Volumes of saw logs were estimated for the main 

species namely Baikiaea plurijuga, Pterocarpus angolensis, Guibourtia coleosperma and 

Burkea africana (Geldenhuys, 1975). 

 

Another inventory was conducted in 1986 on an area of 10,000 ha at Mile 30 (an area 

popularly known to be inhabited by wood carvers).  A systematic line plot inventory was 

carried out using 0.5 ha sample plots (total 128 plots).  All Pterocarpus angolensis trees 

over 10 cm DBH were measured and vitality was classified.  No estimation of volumes 

was done (Hilbert, 1986). 

 
Of late, woody vegetation inventories based upon detailed field sampling of tree 

parameters were initiated by the Namibia Finland Forestry Programme.  The aim was to 

obtain tree cover, basal density and volume estimates in northern Namibia (Verlinden and 

Laamanen, 2006).  It was hoped that the approach would result in regional level 

inventories useful for strategic planning. 

 

A common drawback of these early inventories is that they have been species specific 

and biased towards timber industrial development.  This entails that the focus was woody 

species with commercial value.  Another shortfall of these early inventories is their 

inadequate value in monitoring and prediction of the forest stand parameters.  However, 

the need for monitoring woody resources was deemed necessary and was included in the 

latest woody resource monitoring system (Verlinden and Laamanen, 2006). 
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4. MATERIALS AND METHODOLOGY 
 
4.1 THE TEST AREA 

4.1.1 Location 
Kavango is one of the 13 regions of Namibia which lies in the north eastern part of the 

country and is bordered by the Caprivi, Oshikoto, Ohangwena and Otjozondjupa regions 

(see map 1 below). 

 
Map 1. Map showing the Location of Kavango region 

Namibia

 
Hans Kanyinga Community Forest lies between latitudes 18o 08’26’’ S and 18o 18’21’’ S 

and longitudes 20o 11’54’’ E and 20o 27’46’’ E within Ndiyona Constituency of the 

Kavango region (see map 2).  The study area covers 12,107 hectares.  It lies about 900 m 

above sea level and approximately 115 km South-east of Rundu1 and is further described 

in Kamwi (2003).  The study area was selected due to the availability of QuickBird 
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satellite scenes with less clouds and the availability of terrestric data which was collected 

shortly before the scenes were captured (2 years).  Adding to the selection of the study 

area on a larger scale, Kavango region is the main source of wood-carving materials in 

Namibia, thus requires regular assessment of the resources to enable sound decisions for 

sustainable harvesting.  The study area is typical of the entire Kavango region. 

 
Map 2. Map showing the Location of Hans Kanyinga community forest (Courtesy of Kamwi, 2003). 
 

4.1.2 Ownership 
 
Hans Kanyinga Community Forest belongs to four villages namely Vikota, Tara Tara, 

Shinunga and Kapupa Hedi in the VaGciriku district of Kavango east.  The people settled 

in the area in 1958 having come from Mabushe, Ngona, Shitemo, Cavazi, Ndonga 

Linena, Makendu and Kayengona areas along the Kavango River.  The main reason for 

this settling pattern was to find space where the community could cultivate and graze 

their livestock.  The population is estimated at 1,300 with 112 households (Otsub et al. 

2004). 
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4.1.3 Climate 
 
Compared to other regions in Namibia, and Botswana, Kavango has a climate that is 

comparatively sub-tropical because it receives more rain than the south and the west of 

the country.  The rainfall increases slightly from southwest to northeast.  The average 

annual rainfall is 500-600 mm.  The first rains are expected in September or October and 

the last ones in April or May.  Most of the rain falls between December and March 

although there are marked fluctuations from year to year. 

Rainfall for Kavango region (2005-2006)
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Figure 2. Rainfall for Kavango region 
 

Furthermore, there are no rains between May and September (see figure 2 above).  This is 

attributed to the fact that there are high rates of solar radiation and evaporation, relatively 

low cloud cover and a limited amount of rainfall. 

 

The long-term average monthly temperature varies from 16oC in June-July to 25-26oC in 

October-January (figure 3).  The corresponding maximum and minimum temperatures 

are 30oC and 7oC respectively.  There is a slight possibility of a few nights with frost in 

June.  The absolute minimum temperature measured in Rundu is – 4oC and the absolute 

maximum temperature measured is 41oC (Erkkilä and Siiskonen, 1992). 
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Figure 3. Temperature for Kavango region (Obeid and Mendelsohn, 2001)

 

4.1.4 Forest types and structure 
 
Forest types and their structures are manifold in Namibian woodlands.  The forest 

structure is very uneven with a mixture of different species (about 26 tree species).  This 

is important when employing remote sensing for the reason that apart from the sensor’s 

characteristics, forest structure determines the success of obtaining meaningful remotely 

sensed data.  The vegetation in Kavango can generally be described as tree savanna and 

woodland and along the Kavango River, riverine woodlands are found. 

  

Tree density increases from south to north and from west to east respectively, following 

the precipitation patterns.  The dominant tree species are mainly Baikiea plurijuga, 

Guibourtia coleosperma, Pterocarpus angolensis, Burkea africana and Dialium 

engleranum (Kamwi, 2003). 
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4.1.5 Edaphic situation 
 

Kalahari sandy soils predominate in the eastern parts of the country including Hans 

Kanyinga Community Forest.  Ferralic Arenosols2 dominate these sands (Mendelsohn et 

al. 2002).  Variations in vegetation are mainly due to soil depth and topography (Kamwi, 

2003).  The landscape is rather uniform with isolated valleys, called the Omirambas.  

 

4.2 DATA 
 
Double sampling with regression estimators investigated in this thesis utilizes two 

different data sets namely auxiliary data, which is data emanating from the satellite 

imagery and terrestric data, which emanates from the field inventory.  The manner in 

which these data sets were collected is described in detail in this section, including the 

costs involved.  Figure 4 shows the flowchart indicating the steps taken during inventory 

data handling in phase 1 and 2 respectively. 

  

 
     Phase 1 (auxiliary data)    Phase 2 (terrestric data) 

 
                                          Condensation of data 
                                            Linking of the data 

 
 

                            Correlation analysis & creation of new variables 
                             Transformation & Combination of variables 

 
 

                                   Regression & stepwise analysis 
 
 

                             Volume, stand density & DBH estimation 
 
 

                                          Error/Accuracy assessment 
 
 
Figure 4. Work flowchart (inventory data handling) 
 
Figure 5 shows the flowchart for the inventory cost examination in phase 1 and 2. 

                                                 
2 Soils formed by deposition of sand and can be 1 m deep hence increasing drainage of water to depths to 
which most plant roots cannot reach 
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Determination 
of phase 1 costs 

Determination 
of phase 2 costs 

Calculation of 
required samples for 
phase 1 and 2 

 
Figure 5. Work flowchart (inventory cost examination) 

4.2.1 Overview of the inventory concept 
 
Double sampling with regression estimators applies when tree parameters are estimated 

e.g. from satellite images or aerial photographs, or when variables are estimated which 

are correlated with the growing trees and are further related to the measured standing 

trees in the forest sample plots via regression estimation (Brassel and Lischke, 2001).  In 

simple terms, a larger sample is collected from the satellite image and a smaller one is 

collected terrestrically, with the same plots in both cases i.e. the plots measured 

terrestrically are again measured on the image.  The ultimate idea of the concept is to 

combine the accuracy of the terrestric data with the economy of obtaining auxiliary data. 

 

By nature of its underlying theory, auxiliary variables in double sampling are assessed in 

the first phase (from the image).  In the second phase, the survey of tree volume takes 

place by measuring individual tree parameters on the forest plots (terrestric).  Auxiliary 

variables are usually easier and more cost efficient to measure than the target variable 

since more samples are taken in the first phase than in the second phase.  Therefore, 

double sampling permits a more cost efficient assessment of the variables of interest than 

Calculation of 
minimum R2 Justification of 

the inventory 
concept 
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the simple terrestrial inventory for the same level of precision (Brassel and Lischke, 

2001). 

 
The size of the photogrammetric sample plot corresponded to 50 m radius (0.7855 ha) 

and terrestric sample plots to 30 m (0.2828 ha).  A relatively larger plot size for the 

photogrammetric plots was used to cater for possible errors in plot locations.  These 

different plot sizes were expressed in hectares before further calculations were done.  

Hundred photogrammetric and 50 terrestric plots out of the 203 plots from the earlier 

traditional inventory were systematically selected and used in this investigation.  The 

illustrations of the costs based on the inventory carried out in this investigation and the 

actual two phase for planning purposes are given in Chapter 5. 

4.2.2 Auxiliary data (image/phase 1)  
 
As presented by DigitalGlobe Inc., QuickBird satellite imagery is the highest-resolution 

satellite imagery currently commercially available.  The QuickBird imaging system 

concurrently gathers 60-70 centimeter resolution for panchromatic and 2.44-2.88 meter 

resolution for multi-spectral images.  DigitalGlobe provides three types of QuickBird 

products using different processing levels:  Basic Imagery, Standard Imagery and 

Orthorectified Imagery (DigitalGlobe, 2002).  In this investigation, a Standard QuickBird 

bundle (Panchromatic and Multispectral images) was used to extract the auxiliary 

variables of interest since it was the only QuickBird scene available in the archive at 

reasonable cost for the study.  

 
The two software environments used in this investigation are the geographic imaging 

software Erdas Imagine 8.7 and ArcView 3.2.  Erdas Imagine 8.7 software includes a 

broad tool set incorporating enhanced image mosaicing and 3-D visualization feature 

along with the tools for advanced modeling, vector and raster support, surface 

interpolation, image interpretation, ortho-rectification and GIS spatial analysis.  ArcView 

3.2 is a powerful GIS and mapping software, provided by ESRI.  It is a tool used to 

display spatial information and to read information in tables from different data formats 

and was used for the production of maps. 
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The Standard QuickBird satellite scenes (Panchromatic and Multispectral) used were 

acquired in October (P0002) and November 2004 (P0001), with all channels present 

namely; blue (0.45-0.52 µm), green (0.52-0.60 µm), red (0.63-0.69 µm) and near infrared 

(0.76-0.89 µm) in the Multispectral image and a Panchromatic channel (0.45-0.90 µm) in 

the Panchromatic image from GISCOE South Africa (Pty) Ltd at a cost of 

N$26,900.00.  The image acquired in October was cloud free, while the one acquired in 

November 2004 had cloud cover of 9%.  It is important to note that the only QuickBird 

satellite scenes available in the archive for the study area were from October and 

November 2004.  Due to high altitudes (which may result in some sort of displacement 

and noise) at which these scenes were taken, it was essential to register them for 

consistency.  Therefore, the images were geo-referenced by the supplier.  The satellite 

images were projected using the Universal Transverse Mercator (UTM) as the coordinate 

system with WGS 84 as the spheroid and datum name with the scale factor of 1 in zone 

34.  Since the two images were taken at different dates and time; they appeared slightly 

different because of the sun or atmospheric effects.  The two images (P0002 and P0001) 

were mosaiced to obtain a single image with panchromatic and multispectral layers. 

As one would expect, image enhancement modifies the image to make it more suited to 

human vision (Sabins, 1978).  The optimization of the Image brightness and contrast 

were carried out before the actual analysis began.  Panchromatic and multi-spectral 

images were overlaid and fused together using the multiplicative as the merging method 

and the nearest neighbour as the resampling technique to derive a single image which was 

clear and enabled the vision of a single tree crown.  The multiplicative merging method 

uses a simple multiplicative algorithm which integrates the Panchromatic and 

Multispectral images.  This merging method was selected because it allows the quick 

movements (scrolling) on the images since it requires least computer system resources.  

The aim of fusion was to obtain a new image from the original ones in order to increase 

the amount of information that could be interpreted visually.  On the image, it was 

assumed that tree crowns were ellipsoidal geometric shapes and were measured using the 

measuring tool offered by Erdas Imagine 8.7 by measuring the longest portion of the 
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crown and the narrowest axis of the crown.  The two measurements were averaged to 

obtain the mean crown diameter.  Tree counts were made by counting the visible tree 

crowns. 

##Y

###Y#

 
Figure 6. Photogrammetric and terrestric layout of sample plots 
 

A systematic layout of sample plots was used to ensure a full coverage of the whole 

inventory area.  Every second photogrammetric sample plot from the random starting 

point was selected for the double assessment (figure 6).  All the sample plots were 

assessed photogrammetrically while the dark coloured sample plots were assessed also 

during the terrestric phase as depicted in figure 6 above.  The sample plots which fell 

directly under the cloud were omitted and removed from the data set since no 

measurements could be obtained from them.  Photogrammetric plot coordinates are given 

in Appendix 5. 

 
In order to determine the extent to which the satellite imagery could be used to predict the 

diameter distribution of trees, 2 plots out of the 100 photogrammetric plots (figure 8) 

were accurately measured in the field.  These plots were selected subjectively due to their 

closeness to the road and the visibility of individual tree crowns on the satellite image.  

The spatial tree positions in these 2 plots were determined from the field measured 
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distances and bearings (surveying method).  The DBH measurements collected from 

these two plots was correlated to the corresponding photogrammetric crown 

diameters.  The resultant model was then used to predict the DBH of trees in the fitting 

set (photogrammetric crown diameters of trees in 100 plots measured).  Trees which were 

in clusters were removed from the sample for diameter distributions, as their crowns 

could not be assessed accurately from the satellite image. 

4.2.3 Terrestric data (phase 2) 
 
The terrestric data used in this study was collected by the National Forest Inventory (NFI) 

team in 2002.  Depending on the tree size and distance from the plot centre, trees inside 

the plot with at least 5 cm DBH were measured.  The plot consisted of three concentric 

circles (Selanniemi and Chakanga, 2001).  This is because of the spatial variability of 

trees and their sizes in the forest.  In Namibia, big trees are not very frequent and in order 

to be able to get one or more on a plot, the plot size must be big enough although there is 

a practical limit of using very large plots.  The size of the plot depended on the size of the 

tree so that the radius of the plot is 30 m for trees with a breast height diameter (DBH) 

more than or equal to 45 cm; 20 m for trees with 20 ≤ DBH < 45 cm; and 10 m for trees 

with 5 ≤ DBH < 20 cm (see figure 7).  The DBH were measured with sliding callipers.  A 

Vertex hypsometer was used to measure distance, length of possible saw log, height, 

canopy diameter and crown height.  Other recordings taken included species, crown 

class, quality and phenology. 

 

In addition, shrubs and regeneration were measured using two circular sub plots of 3.99 

m radius.  Woody plants with a diameter at breast height less than 5 cm were recorded 

accordingly.  Several variables describing the site, soil and tree cover were observed and 

recorded for each plot.  All these measurements are described in more detail in the field 

instructions (Selanniemi and Chakanga, 2001). 
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Figure 7. Plot design of terrestric sample plots (Adapted from Selanniemi and Chakanga, 2001) Figure 7. Plot design of terrestric sample plots (Adapted from Selanniemi and Chakanga, 2001) 
  

In the field, a systematic grid of terrestric sample plots with a random starting point was 

laid.  The sample plots were located using Garmin GPS II plus.  For this project, sample 

plot selection for phase 2 sample was done by systematically taking every second plot of 

the photogrammetric sample plot, thus remaining within the systematic grid of the 

photogrammetric sample plots (see figure 6).  It is important to mention here that if the 

grid was not maintained, everything could be wrong because it would mean that 

correlations were being carried out away from actual subject-trees with different 

correlation characteristics (plot pairing was the aim).  Measuring instruments were 

checked for accuracy and consistency from time to time and re-calibrated when necessary 

before data collection. 

In the field, a systematic grid of terrestric sample plots with a random starting point was 

laid.  The sample plots were located using Garmin GPS II plus.  For this project, sample 

plot selection for phase 2 sample was done by systematically taking every second plot of 

the photogrammetric sample plot, thus remaining within the systematic grid of the 

photogrammetric sample plots (see figure 6).  It is important to mention here that if the 

grid was not maintained, everything could be wrong because it would mean that 

correlations were being carried out away from actual subject-trees with different 

correlation characteristics (plot pairing was the aim).  Measuring instruments were 

checked for accuracy and consistency from time to time and re-calibrated when necessary 

before data collection. 

  

With regard to the layout of the terrestric sample plots onto the satellite image, the 

coordinates of the sample plots were captured in Microsoft Excel and saved in a database 

file (dbf) format which was imported into ArcView 3.2 and converted to a shape file.  

The shape file was registered in the same manner as the QuickBird satellite imagery to 

allow the compatibility with the already projected QuickBird satellite scene.  The 

coordinates were later imported to Erdas Imagine in a vector format where they were 

With regard to the layout of the terrestric sample plots onto the satellite image, the 

coordinates of the sample plots were captured in Microsoft Excel and saved in a database 

file (dbf) format which was imported into ArcView 3.2 and converted to a shape file.  

The shape file was registered in the same manner as the QuickBird satellite imagery to 

allow the compatibility with the already projected QuickBird satellite scene.  The 

coordinates were later imported to Erdas Imagine in a vector format where they were 

 

 DBH 5-20 cm 
DBH 20-45 cm R =10 m 
R = 20 cm 

DBH > 45 cm 
R = 30 m 

Regeneration DBH < 5 cm 
R = 3.99 m 
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superimposed on the fused image and measurements of the crown diameters taken.  

Terrestric plot coordinates are given in Appendix 6.  The volume functions used to 

calculate tree volumes in the database were general functions designed for use in the 

whole of Namibia.  These functions are further described and given by Verlinden and 

Lamaanen (2006). 

 

4.3 DATA ANALYSIS, ACCURACY ASSESSMENT AND COSTS 

4.3.1 Data analysis 
 
In general, the knowledge regarding the relationship between tree parameters and remote 

sensing data was deficient in Hans Kanyinga Community Forest.  Therefore, linear 

regression procedures were used for the relationship between photogrammetric and 

terrestric tree parameters.  The premise for double sampling with regression estimators is 

that the photogrammetric data need to be significantly correlated to the target variables 

such as volume, terrestric number of trees and DBH.  Data were analyzed using 

Microsoft Excel and SAS enterprise guide 3.0.  It was also important to check whether 

the populations from which the samples were taken were normally distributed.  For 

example, the photogrammetric samples should be normally distributed, or if not, there 

should be a sufficiently large number of sample plots to obtain precise 

estimates.  Therefore, the test for normality was important for statistical inference and in 

obtaining reliable measures of precision (Stellingwerf and Hussin, 1997).  The test was 

carried out using SAS enterprise guide 3.0.  It was therefore hypothesized that:  

H0: The data follows the Gaussian distribution. 

The first step was to analyze the relationship between the photogrammetric and terrestric 

variables.  When necessary, combined variables were developed to improve the 

correlations.  After obtaining a set of variables that correlated with the volume, a stepwise 

selection regression analysis which included Mallow’s Cp statistic as the selection 

criteria was used to optimize the model selection at 0.1000 significant level to minimize 

the number of terms.  Mallow’s Cp statistic is based on the goodness of fit for the 

selection of explanatory variables (Lakshminarayan and Moore, 2001).  In this 

investigation, the selected variables were described as having “behaved” themselves, and 
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they appear in the equation-sequence from the best to the least behaved variable.  

Furthermore, it was noted that the inclusion of many interconnected variables as 

anticipated tends to produce “inflated estimates of the regression estimates” (Kätsch and 

Van Laar, 2002).  Since the procedure of double sampling with regression estimators in 

this investigation is the relationship between photogrammetric variables and volume, 

stems per hectare and DBH, all the terrestric variables were removed from the regression 

analysis.  The correlation matrix reflecting the degree of linear interrelationship among 

the variables is given in Appendix 1a. 

 

The second step was to test the degree to which the regression assumptions were met by 

the models based on the display of standardized residuals and using the non parametric 

Shapiro-Wilk W statistic because it is regarded to be one of the best omnibus tests for 

normality (Royston, s.a.).  It can be used in samples as large as 2,000 or as small as 3 

since some of the samples used in this investigation (such as diameter distribution model) 

were small. 

4.3.2 Accuracy assessment 
 
Inventory data evaluation and assessment 

Inventory result evaluation and assessments determine the quality of the information in 

terms of estimates derived from the inventory data (Stellingwerf and Hussin, 1997).  The 

likelihood that errors occurred in the data collected were almost unlimited during the 

traditional inventory.  It was absolutely important that the data collected was checked 

with respect to its plausibility before entering it into the NFI data entry and analysis 

program.  Usually, the first check was done in the field by the field team supervisor while 

collecting the data.  For this project, a database for Hans Kanyinga was obtained from the 

NFI within the Directorate of Forestry.  In this database, dead trees were removed from 

the data set because their crowns were not measured (see plate 1). 
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Plate 1. Live tree standing alongside a dead tree (Plot 94) 
 

In this investigation it was important to focus on the actual number of stems not only the 

number of trees because trees tend to grow in clusters or one stem may have several 

forks.  When the forks are below 1.3 m, they were considered to be several trees, in 

which one tree represents many individuals per hectare.  If this was not attended to, it 

could lead to the underestimation of the stems per hectare and the results could not 

correlate with other variables investigated, as it was the case at the beginning of the 

terrestric data analysis. 

 
The standard error of the mean volume was calculated using the formula given by Kätsch 

(1991). 
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Where: 

dsyS 2  = standard error of the mean volume  

2
2
yS  = variance of terrestrial volume 

2R  = coefficient of determination of the model used 

pn  = number of photo-measured plots 
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tn  = number of field-measured plots 

p  = number of auxiliary variables 

N = total possible number of plots in the population without replacement  

 

It is important to note that the correction factor in formula 1 was not used in the 

calculations because the area under investigation is very large and the true population 

was not known.  The confidence limit for the mean volume was calculated using a 

formula by Paine and Kiser (2003). 

ySEtyCI ×+=          (2) 
Where  

CI    = confidence interval 

y     = mean volume 
 

t       = t statistic for probability level 

=ySE  Standard error of the mean volume 
 

Evaluation of tree spatial position 

The central question under the evaluation of tree spatial positions was to find out if the 

trees on the image are correctly located in relation to the actual trees in the field and 

whether it is necessary to have a higher accuracy in the spatial positions of the trees.  In 

order to answer this question, the accuracy of the GPS tree spatial positions was 

evaluated through a comparison of the actual distances and bearings (surveying method) 

of trees away from the plot centre and the GPS positional readings.  Figure 8 shows the 2 

plots which were selected for positional accuracy assessment.  These sample plots were 

measured as accurately as possible terrestrically.  Plot and tree position coordinates were 

obtained from the Garmin GPS II plus and distances of trees from the centre of the plot 

and their respective bearings were measured using Vertex hypsometer and a compass 

respectively.  The specifications of the Garmin GPS II plus device are given in Appendix 

8.  The tree spatial positions from both methods were superimposed on the Standard 

QuickBird satellite scene to determine the relationships between the GPS and surveyed 

distances and to visualize the individual tree positions.   
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Figure 8. Positional accuracy assessment sample plots 
 

4.3.3 Cost analysis (phase 1 and 2) 
 

The expenditure composed of satellite image costs; personnel expenditures (salaries, 

travels, daily subsistence allowances and overtime payments); fuel, and equipment 

perishables (batteries for GPS and torches).  The labour cost in the first phase was 

associated with a forester, one who has specialized skills in statistics, GIS and remote 

sensing. 

 

For the estimation of the expenditure, several different bases and empirical figures were 

available for phase 2 from the initial traditional inventory.  From the initial traditional 

inventory, the numbers of sample plots were known.  The cost for the terrestric sample 

was derived from adding the cost of all the activities and expenses required in collecting 

data in a sample plot for a given period of time, e.g. salaries of the staff, daily subsistence 

allowances and fuel for guard bikes and cars used during the inventory.  The cost also 

#

#

###

#

#

#

#

#

#

# # # # # # # # # # # 

# 
# 

# 
# 

# 
# 

###

###
#

###
#

# # # # # #

# # # # # #

#

# # #
# # # # 

# # #
# # # # 

# # # # # # # # 

# # # # # # # # # 

# # # #
# # # # 

# # # # #
# # # # 

Plot 94 

Plot 19
5 0 5 10 K i lo m e t e  sr

N 

 29 



includes the allowances and man-hour remuneration for the technical advisors to the NFI, 

and staff of the NRSC including their accommodation during the field work.  The man-

hours of the district forest officials who provided logistical support from the nearby 

forestry office are included.  However, the depreciation of vehicles and equipment is not 

included in the calculations. 

 

The justification (optimum ratio) of double sampling with regression estimators was 

calculated based on the formula given by Kätsch and Van Laar (2002). 
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Where: 

 R2   = coefficient of determination of the model used 

 nt     = cost per sampling plot of terrestric sampling 

 np    = cost per sampling plot on the satellite imagery 

 K     = cost ratio of terrestric to photo plot 

 

The minimum value of the coefficient of determination required to render double sample 

sampling efficient was calculated using the formula given by Kätsch (1991). 
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The number of required sample plots was calculated using the formulae given Kätsch 

(1991).  
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Where: 

np    = number of photo plots 
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nt     = number of terrestric plots 
2
yS    = variance of mean terrestric volume 

2

dsy
S  = sampling error in % 

t       = t statistic for confidence level 

  t = 1 for 68.3% 

  t = 2 for 95.4% 

R2    = coefficient of determination of the model used 

K     = cost ratio of terrestric plot to photo plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 31 



5. RESULTS 
 
5.1 REGRESSION AND CORRELATION ANALYSIS 
 

Table 1 below summarizes the explanatory variables used in the statistical analysis.  It is 

important to note that the photogrammetric, terrestric and volume estimates were not 

absolute values, but were average values per plot.  Absolute values were only used for the 

plots which were assessed for positional accuracy since the tree positions were known. 

 
Table 1. Summary of explanatory variables 

Variable Description 
BA Basal area (cm2) 
DBH Diameter at breast height (cm) 
CAp Photogrammetric crown area (m2) 
CAp*SDp Combination of Photo crown area and Photo number of stems per hectare 
CAt Terrestric crown area (m2) 
CCp  Photogrammetric crown cover (%) 
CCt  Terrestric crown cover (%) 
CDp Photogrammetric crown diameter (m) 
CDt Terrestric crown diameter (m) 
SDp Photogrammetric number of stems or stand density (per hectare) 
SDt Terrestric number of stems or stand density  (per hectare) 
SDp*CCp Combination of Photo-stems per hectare and Photo crown cover percent 
V Stand volume (m3 per hectare) 

 
 

Stand volume 

Potential explanatory variables for the model were analyzed individually to determine 

their relationship with the stand volume. 
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V  = 2.2532*SDp + 10.19
R2 = 0.5348
n   = 50
SE = 13.5
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Figure 9. Linear regression between SDp and V(m3/ha) 
 

From figure 9, it is apparent that the volume per hectare increased with an increase in the 

number of stems counted on the image.  In other words, the higher the number of stems 

per hectare counted on the image, the higher the volume per hectare.  The corresponding 

R2 value is 0.53, indicating that 53% of the variation in volume V(m3/ha) can be 

explained by the linear relationship with SDp.  The trend depicted in figure 9 may be 

different from other forest types, where the volume increases as the number of stems 

decreases due to growing space availability (Kätsch, 2006b). 

 

Figure 10 shows that the volume per hectare had a relatively flat relationship with the 

photogrammetric crown cover percent.  The low value of R2 (0.011) was a clear 

indication of the poor correlation between volume and the photogrammetric crown cover 

percent.  This was expected because there are many small sized trees per unit area in 

Hans Kanyinga Community Forest with little contribution to the stand volume. 
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V  = 0.4955*CCp + 36.147
R2 = 0.0114
n   = 50
SE = 4.2
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Figure 10. Linear regression between CCp and V(m3/ha) 
 

Figure 11 shows that the relationship between photogrammetric crown area and stand 

volume was weak.  The R2 value of 0.072 was a clear indication of the weak correlation 

between the photogrammetric crown area and stand volume.  

 

V    = 0.3146*CAp + 24.561
R2   = 0.0722
n     = 50
SE   = 19.1
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Figure 11. Linear regression between CAp and V(m3/ha) 
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Figure 12 below shows that a combination of the photogrammetric crown area and stand 

density was a function of the stand volume.  This combination was made deliberately to 

improve the prediction capability of the model.  The resultant R2 value was 

0.479.  Appendix 4 shows the relationship between the stand volume and some terrestric 

variables as well as the combined variables. 
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Figure 12. Linear regression between CAp*SDp and V(m3/ha) 
 
Figure 13 below shows that the relationship between volume and photogrammetric crown 

diameter is very weak (R2 value of 0.011). 

 
V  = -1.7498*CDp + 54.584
R2 = 0.0144
n   = 50
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Figure 13. Linear regression between CDp and V(m3/ha) 
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Multiple regression 

The results obtained from the stepwise regression procedure are shown in Table 2 below: 

 
Table 2. Stepwise procedure 
Summary of Stepwise Selection 

Variable Variable Number Partial Model Ste

p Entered Removed 

Label 

Vars In R-Square R-Square 

C(p) F 

Value 

Pr > F 

1 SDp   SDp 1 0.5348 0.5348 3.815 55.18 <.0001 

2 CAp*SDp   CAp*SDp 2 0.027 0.5618 2.921  2.9 0.095 

3 SDp*CCp   SDp*CCp 3 0.0172 0.579 3.079  1.88 0.177 

4   SDp*CCp SDp*CCp 2 0.0172 0.5618 2.921  1.88 0.177 

 

The first variable to be selected by the step wise procedure was SDp.  It can be seen that 

the relationship between the stand volume and SDp already accounted for 53% (R2 = 

0.5348) of the variation in the data set.  The second variable to be selected was 

CAp*SDp.  The R2 value has increased to 56% (R2 = 0.5618).  This means that the two 

variables alone account for almost the same amount of variation as the full model would. 

Therefore, 56% of the variation in the total volume per hectare can be explained by the 

linear relationship with SDp and a combination of CAp with SDp.  In the statistical 

context, SDp*CCp was removed because it was not significant at 0.1000 significant 

level.  For this reason, SDp was found to be the best behaved photo variable to be used 

for volume estimation per hectare, followed by CAp*SDp.  Already, it can be seen that a 

combination of explanatory variables (CAp with SDp) resulted in the following 

regression model: 

 

Total vol/ha (m3) = 11.33865+1.53760*SDp + 0.012054*CAp*SDp 

R2 = 0.56, n = 50, SE = 13.3 
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Plausibility check of the stand volume model 

Regression diagnostics were used to check the goodness of fit, the ability of the model to 

predict the stand volume and whether the assumptions of multiple linear regression were 

satisfied.  This check, using residual plots is shown in figure 14 below.  
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Figure 14. Residuals of the stand volume per hectare model 
 

With the visual analysis of figure 14, it can be clearly seen there was no distinct pattern 

of residuals depicted, hence making it a good model to predict stand volume.  In addition, 

figure 14 shows a relatively even scatter of the residuals, which satisfies one of the 

important assumptions of the multiple linear regression procedure.  The figure above 

shows that almost all the standardized residuals are below 2 (or 1.96).  This means that 

there is 95% probability that most of the residuals do not violate the good fit of the linear 

model.  However, one observation with the size of 2.5 m3/ha was unusual to the entire 

population.  This unusual observation was checked and was attributed to measurement 

errors.  Therefore, there is only 5% chance (probability) that this unusual observation 

belongs to the entire population.  The corresponding value for normality of residuals 

based on Shapiro-Wilk W statistic was 0.5734.  This means that there is insufficient 

evidence to reject the null hypothesis that the data were normally distributed.  The 

estimated stand volume in the initial traditional inventory was 40.399 m3/ha, which is 
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close to 35.728 m3/ha in the present investigation.  The stand volume model was used for 

further analysis and calculations in this investigation. 

 

Stand density 

As indicated earlier, the sample plots in which the numbers of trees were counted 

comprised of different dimensions (50 m photogrammetric and 30 m terrestric).  

Relatively big plot sizes of 50 m radius were used on the image to cater for spatial 

positional shifts of the plots, while 30 m radius of the terrestric plot was based on the 

practicality of measuring trees on the ground.  To avoid misunderstandings, these 

dimensions were standardized to a per hectare basis before deriving these results.  

Therefore, in this investigation, the results of the number of stems are accounted for on a 

per hectare basis.  It is important to note that the terrestric number of stems per hectare 

may include trees in clusters, but these were regarded as different stems during the 

traditional inventory.  Plate 2 shows a cluster of Baikea plurijuga trees.  Counting 

individual trees on the satellite imagery was sometimes unrealistic and contributed to the 

underestimation of the tree counts. 

 

 
Plate 2. Tree cluster (plot 19) causing the underestimation of tree counts 
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In many cases, the likelihood that leaning stems with their extended branches have 

comprised a serious inconsistency on stem counts on the satellite image (see plate 3) 

should not be excluded.  That is, a single stem may also appear as numerous stems on the 

image, thus leading to inconsistency in tree counts. 
 

 

Tree 2

Tree 3

Tree 1 

Plate 3. Leaning tree (Plot 19) which may be regarded as several trees on the satellite image 
 

Figure 15 shows that the photogrammetric number of stems per hectare and terrestric 

stems per hectare follows a similar pattern when plotted against each other, with the R2 of 

0.81%, which was very satisfactory giving the characteristics associated with natural 

woodlands a merit. 
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SDt = 2.8284*SDp - 1.3866
R2   = 0.8125
n     = 50
SE   = 8.7
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Figure 15. Linear regression between SDt and SDp (with the unusual observation) 
 

Plausibility check of the terrestric stand density model 

The goodness of fit and the predictive ability of the model (in figure 15) to predict the 

terrestric number of stems per hectare was assessed in figure 16 below. 
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Figure 16. Residuals of the terrestric stand density model (with the unusual observation)

 

 

The Shapiro-Wilk W statistic for normality is highly significant (p < 0.0001), indicating 

that there is sufficient evidence to reject the null hypothesis that the terrestric data are 

normally distributed.  The histogram (Appendix 3) shows that the data are asymmetrical 

with right skewness.  The Shapiro-Wilk W statistic was found not to be significant (p = 
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0.8568), indicating that the data were indeed lognormal.  Figure 16 also indicates one big 

unusual value with a value of 5 which was attributed to counting or recording errors.  For 

indication purposes, this unusual value was removed and the resulting figures were 

inspected for improvement in the R2 value.  The regression with the removed observation 

is shown in figure 17. 

 

SDt = 2.9618*SDp - 4.0931
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Figure 17. Linear regression between SDt and SDp (without the unusual observation) 
 

Figure 17 above reveals that the coefficient of determination has improved considerably 

to 0.91. 

 
Diameter distribution 

The question whether the diameter distribution could be obtained from the QuickBird 

satellite imagery using the well known and much publicized relationship (e.g. Hemery et 

al. 2005; Smith and Gibbs, 1970) between tree crown diameter and stem diameter was 

investigated.  Whether such a relationship existed in the natural woodlands of Namibia 

was investigated by regression before and after assessing the tree spatial positions in two 

sample plots. 

 

Figure 18 shows the linear relationship between DBH and photogrammetric crown 

diameter.  The resultant R2 value of 0.115 is a clear indication of the weak correlation 
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between DBH and CDp.  This indicates that only 0.115% of the variation in the mean 

DBH can be explained by the linear relationship with the CDp.  Normally, a positive 

slope of the trend line would have been expected as opposed to the negative slope of the 

trend line shown in figure 18. 
 

DBH = -2.2876*CDp + 44.22
R2     = 0.1149
n       = 50
SE     = 8.63
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Figure 18. Linear regression between DBH and CDp 
 

Figure 18 further shows indicated one big unusual observation with a value of 66.2 

cm.  This is expected because bigger sized trees are not frequent in Hans Kanyinga 

Community Forest. 

 

The terrestric data obtained from the 2 plots which were assessed for spatial tree positions 

was referred to as the validation set.  This is because the data could be paired, meaning 

that the same trees measured on the image were the same ones measured in the field.  The 

validation set indicated an improvement in the R2 value to 0.43.  This improvement 

means that 43% of the variation in DBH can now be explained by the linear relationship 

with the photogrammetric crown diameter, instead of 11.5% when spatial positions were 

not assessed.  Appendix 1b shows the correlation matrix based on the plots which were 

assessed for spatial positional accuracy. 
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DBH   = 5.5804*CDp - 4.2566
R2       = 0.4293
n         = 23
SE       = 6.97
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Figure 19. Linear regression between DBH and CDp (plots assessed for positional accuracy) 
 
The coefficient of determination in the plots which were assessed for spatial positions 

was considered to be high enough, taking the positional errors of the measuring devices 

into account, to further consider the correlation between DBH and photogrammetric 

crown diameter as a potential candidate of the regression estimator for the diameter 

distribution.  Subsequently, a rule of thumb was developed based on the linear 

relationship in figure 19 that the tree diameter in cm equals 5 times the average 

photogrammetric crown diameter in meters.   

 

The value for Shapiro- Wilk W statistic was found to be 0.8733.  This means that there is 

insufficient evidence to reject the null hypothesis that the data were normally 

distributed.  The full regression diagnostics are shown in appendix 7.  The standardized 

residuals of the model indicate that there was 95% probability that most of the residuals 

do not infringe the good fit of the linear model (figure 20). 
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Figure 20. Residuals of the diameter distribution model 
 

The model in figure 19 was used to predict the DBH distribution of trees based on the 

photogrammetric crown diameters (shown in figure 21).  The fitting data set emanates 

from all the crown diameters measured on all photogrammetric plots (100 plots). 
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Figure 21. Diameter distribution 
 

From figure 21, it can be clearly seen that the bulk of trees were in the small and medium 

diameter classes (<50 cm).  However, big trees were not very frequent.  This trend was 
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also depicted in Kamwi (2003).  It also important to note that smaller sized trees may 

have not been sufficiently represented in the sample due to the effect of fires and the 

usage of small diameter trees for fencing and kraals.  Overall, figure 21 indicates that 

despite the effect of the fire and usage, there are a relatively good number of trees 

entering the medium to large diameters (>35 cm) which are exploited for timber. 

 

5.2 ACCURACY ASSESSMENT 
 
Inventory data evaluation 

The estimated volume for Hans Kanyinga Community Forest was 35.728 m3/ha.  For the 

full regression diagnostics, see appendix 2.  The standard error of the mean volume based 

on formula 1 is: 

Variance of estimated mean = ( )
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6.38556.054.0
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−×  = 3.991 

 

Where: 

2
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yS  = 385.6 m3/ha (variance of mean terrestric volume) 

2R    = 0.56 (coefficient of determination of the model used) 

pn   = 100 (number of photo-measured plots) 
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Standard error of mean volume = 991.3  
 

   = 1.998 m3/ha 
 

The standard error of the mean volume per hectare was found to be 1.998 m3/ha.  This 

means that 68 percent of all sample means in Hans Kanyinga Community Forest lie 

between 33.730 m3/ha and 37.726 m3/ha.  The standard error as a percentage of the mean 

volume was: 

Standard error of the mean volume in % = %59.5100
/728.35

/998.1
3

3

=×
ham

ham  
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Based on formula 2, the confidence interval for the estimated mean volume was: 
 
Confidence interval =  hamham /998.196.1/728.35 33 ×±
 

CI    = confidence interval 

y     = 35.728 m3/ha (mean volume) 
t       = 1.96 (t statistic for probability level) 

=ySE  1.998 m3/ha (standard error of the mean volume) 
 
It is therefore, expressed with 95 percent confidence that the true mean volume is   
 

somewhere between 31.812 m3/ha and 39.644 m3/ha. 
 
 
Evaluation of tree spatial position 

Individual spatial tree positions emanating from the GPS and surveying (distance and 

bearing measured positions) method is indicated in plate 4.  GPS positions are denoted 

with a T (tree) in front of a specific number (black dots); surveyed positions (blue dots) 

are not denoted by any letter and the yellow point represents the plot centre.  The reddish 

colour on the image denotes tree crowns (polygons represent tree crowns); brownish 

colour represents the shrubs and other small vegetation while the whitish colour 

represents soil with grass.   
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Plate 4. Tree positions in plot 94 (GPS and surveyed positions) 
 
It is apparent from plate 4 above that individual trees behave erratically by assuming two 

positions depending on the method of spatial positional determination.  Plate 5 shows the 

portions of circular peripherals of the measured distances of individual trees (using GPS) 

from the centre of the plot.  That is, each circle represents the actual measured distance of 

an individual tree from the plot centre.  Looking at these circles in plate 5, they do not fit 

with the centre of the plot indicating that the measured distances were either more or less 

than the GPS distances.  The spatial positional error was found to be up to 8.67 m.  GPS 

positions are denoted with a T (tree) in front of a specific number.  The reddish colour on 

the image denotes tree crowns; brownish colour represents the shrubs and other small 

vegetation while the whitish colour represents soil with grass.  It is important to note that 

the plot centre itself is also prone to positional errors, so the true plot centre is somewhere 

within the error zone formed by the circles representing tree peripherals around the plot 

centre. 
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Plot centre 

Error zone 

Plate 5. Tree positions using GPS (plot 94) 
 

 

Plot centre 

Plate 6. Distance measurements (surveyed tree positions, plot 19) 
 

Plate 6 shows the surveyed spatial tree positions based on the distance and bearing.  It is 

noticeable that the peripherals of the portions of the circles representing the distances of 

individual trees passes through the centre of the plot indicating that the measured 

distances from the plot centre were reliable.  The yellow dot represents the plot centre 

and surveyed tree positions are the blue points with a corresponding tree number.  The 

reddish colour on the image denotes tree crowns; brownish colour represents the shrubs 

and other small vegetation while the whitish colour represents soil with grass.   
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5.3 COSTS 
 
In Namibia, foresters are paid N$400 per man-day (N$8,400 divided by 21 working 

days).  Experience has shown that it takes 15 minutes to measure crown diameters and 

count trees on the image, which is N$12.50 per photogrammetric sample plot.  The total 

cost of the initial traditional inventory was N$131,950.00 (N$10.90/ha), which is 

N$650.00 per plot.  Experience has also shown that 30 minutes is required to measure a 

traditional sample plot.  The costs of the traditional inventory were derived from the 

expenses described in 4.3.3.  The costs of the inventory carried out in this investigation 

using the background data from the initial traditional inventory and the two phase 

approach based on planning a new inventory are elaborated fully in this section.  

 
The cost for double sampling in the current inventory was: 
 

Expenditure N$ N$/ha
Satellite image 26,900 2.22
Software renewal 2,000 0.17

Phase 1 (100 
plots), fixed costs 

Hardware 6,000 0.50

Variable cost 
Labour per plot 
(N$12.5) 1,250 0.10

Phase 2 (50 plots) Cost per plot (N$650) 32,500 2.68
Total   68,650 5.67

 
The costs for the hardware and software, including its associated annual license fees are 

estimates.  The cost for double sampling in relation to the direct sampling approach for 

planning purposes is: 

Double sampling  Expenditure N$ N$/ha 
Satellite image 26,900 2,22 
Software renewal 2,000 0,17 Phase 1 (903 

plots), fixed costs Hardware (Depreciation) 6,000 0,50 

Variable costs 
Labour per plot (N$24.35) incl. Support from 
remote sensing centre & logistics 21,989 1,82 

Phase 2 (223 
plots) 

Terrestric (N$813/plot) incl. Transport & 
logistics 181,299 14,97 

Total   238,188 19,67 
    
Direct sampling Expenditure N$ N$/ha 
Terrestric (384 
plots) Terrestric (384 plots) 312,192 25,79 
Total   312,192 25,79 
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In Namibia, experience has shown that phase 2 requires more time (about 2 hours), which 

can be attributed to extra time for geo-referencing with GPS, and longer traveling time 

from plot to plot.  Therefore, the cost in phase 2 increased by a quarter of the traditional 

cost per plot.  Subsequently, the cost per sample plot in phase 2 became N$813.00.  The 

cost of phase 2 is N$181,299.00 which was obtained by multiplying the required 223 

terrestric plots by the cost per plot (N$813.00).  Therefore, the total cost of the double 

sample was N$238,188.00 (N$19.67/ha).  The corresponding cost for the direct sample is 

N$312,192.00 (N$25.79/ha).  For planning purposes, the actual costs for the two phase 

sample using the above parameters of this study are graphically scrutinized in figure 22 

and 23.   

 
The cost of carrying out double sampling makes sense and is justifiable if the total 

sampling cost for a given precision of the estimated parameter is below that associated 

with direct estimates (Kätsch and Van Laar, 2002).  The justification was evaluated using 

the optimum ratio based on formula 3: 

Optimum ratio ( )256.011

56.0
63

813

−−
≥=         

  = 12.9 ≥ 4.8 
Where: 

 R2 = 0.56 (coefficient of determination of the model used) 

 nt   = N$813.00 (cost per sampling plot of terrestric sampling-planning purposes) 

 np  = N$63.00 (cost per sampling plot on the satellite imagery-planning) 

 
From the calculation above, it can be seen that the two phase approach is justifiable for 

carrying out inventories in Hans Kanyinga Community Forest.  In addition, underlining 

the advantages and uses of the satellite imagery in forest inventory justifies the inventory 

concept further as elaborated in Chapter 6.  It is also important to understand that the 

efficiency of double sampling depends on the cost relationship between the assessment in 

the first and second phase and it also depends on how close the relationship is between 

the variable of interest (volume) and the auxiliary variable (Kätsch, 1991).  The minimum 

value of the coefficient of determination that should be exceeded to render double 

sampling efficient in this investigation based on formula 4 was found to be: 
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( )2
2

63813
638134

+
××

=R  = 0.27 

 
The costs involved in double sampling are handsomely related to the number of samples 

and the desired standard error.  This subsection shows the calculations based on the 

formulae given by Kätsch (1991) which were used to derive the required number of 

sample plots.  The desired sampling error was 5% and the coefficient of variation was 

49% (from the previous inventory in Hans Kanyinga Community Forest).  The 

coefficient of determination of the model used was 56%.  Based on formula 5 and 6, the 

number of photogrammetric and terrestric sample plots for the actual planning of the two 

phase sample are: 

( )[ ]56.056.0156.09.12
2

96.16.385
2

2

+−××
×

=pn  = 903 plots 

 

9.12
1

56.0
56.01903 ×

−
×=tn = 223 plots 

Where: 

np     = number of photo plots 

nt      = number of terrestric plots 
2
yS     = 385.6 (variance of terrestric mean volume) 

2

dsy
S   = 2 (5% of 40.399 m3/ha) = sampling error 

t2       = 1.96 (t statistic for 95% confidence level) 

R2      = 0.56 (coefficient of determination of the model used) 

K       = 12.9 (cost ratio of terrestric plot to photo plot) 
 
 

The number of sample plots also determines the sampling error to be tolerated in an 

inventory.  This has a marked influence on the precision of the results and the 

cost.  There are many ways of defining sampling error with distinctions made upon its 

applicability.  FAO (s.a.) defined it as the inaccuracy of the expected inventory 

results.  However, Kätsch (1991) defined it as the cost incurred per hectare because high 

sampling error leads to high costs and low sampling error leads to low costs.  In this 

study, Kätsch (1991)’s definition of sampling error has been adopted using the inventory 
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costs and parameters of this investigation.  Kätsch (1991)’s definition was adopted 

because the current study also deals with inventory cost optimization.  It is also important 

to note that the desired sampling error (DSE) is always a compromise between the 

available time, funds, manpower and required precision of the information (Lötsch et al. 

1973).  The relationship between the costs per hectare and coefficient of determination at 

different desired sampling errors is depicted in figure 22. 
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Figure 22. Total cost (N$)/ha above the R2 for planning purposes using different sampling errors (DSE = ± 
5% and DSE = ± 10%) 
 

Figure 22 above shows that the total cost for double sampling is higher than the direct 

sampling approach but reduces as the correlation of determination increases.  That is, 

double sampling gets more efficient as the relationship between the auxiliary and variable 

of interest becomes tight.  This trend was also depicted by Kätsch (1991) in 

Germany.  Higher costs in double sampling than the direct sampling approach are 

attributed to high investment costs, involving, software, hardware and satellite 

images.  Other costs may include training, planning and organizational restructuring.  On 

the other hand, the cost of direct sampling remains constant regardless of how small or 

big the R2 becomes.  The point where these two approaches cross indicates the minimum 

R2 for double sampling to be efficient (0.27 from equation 3).  Figure 22 further shows 

that the total cost per hectare is reduced as the sampling error gets smaller in both 
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approaches since few samples are taken.  Figure 23 shows the relationship between the 

cost per hectare and the coefficient of variation. 
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Figure 23. Total cost (N$)/ha above the CV for planning purposes using different sampling errors (DSE = 
± 5%) 
 

It is important to note that a high coefficient of variation means that there is high 

variability within the variable of interest i.e. stand volume in the forest.  In this 

investigation, the coefficient of variation in stand volume is 49% obtained from the initial 

traditional inventory.  Figure 23 above shows that the total cost of double sampling is 

higher than that of the double sample below the CV of 18% due to high investment costs. 

The double sampling approach break-evens with the total cost per hectare at the CV of 

18% and beyond the break-even point both double and direct sampling approaches 

increase with an increase in the coefficient of variation. However, the total cost for 

double sampling becomes lower than for a direct sampling approach after the break-even 

point.  It is important to observe that the total cost per hectare increases with an increase 

in the coefficient of variation because more plots and effort leading to higher costs is 

needed to sufficiently obtain a representative sample in a more diverse and variable 

stand.    
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6. DISCUSSION 
 
6.1 THE NECESSITY TO DEVELOP A NEW INVENTORY CONCEPT 
 
Traditional timber inventory methods used in Namibia are no longer appropriate for the 

Directorate of Forestry in Namibia.  These methods provide detailed forest inventory 

information i.e. volume, number of stems, diameter distribution and species diversity as 

this information is needed for higher and lower level decision making on the management 

of the forest resource.  However, the costs involved in collecting this information is 

enormous for the Government of Namibia, hence a new concept which can be used to 

collect the inventory information under the constraint of the budget is deemed 

necessary.  Remotely sensed data has potential to be one of the main sources of forest 

information and future inventories in Namibia.  At this moment, it is naïve to make a 

statement about the full employment of remote sensing, since this depends decisively on 

the inventory objectives, which are highly dynamic from area to area.  This calls for a 

critical definition of the inventory information needs by forest managers and balance the 

required information with the corresponding costs of acquiring this information. 

 

As indicated earlier, an investigation to the extent to which Landsat TM satellite imagery 

could be used to model woody resources, aimed at a reduction in the cost was conducted 

in 2002 (Verlinden and Laamanen, 2006).  The results of the investigation were 

satisfactory for forest cover, biomass and stand volumes.  However, it does not provide 

inventory information necessary for the local level inventories since the forest inventory 

focus has been shifted from regional to local level inventories.  Although crown cover 

can be assessed from the woody monitoring system, it does not sufficiently provide 

information on the number of stems and diameter distributions, which are important 

parameters at the local level.  This is due to the low spatial resolution (30 m) of the 

Landsat TM satellite imagery used in which distinguishing features in detail such as 

individual tree crowns is not possible.  Therefore, in a quest for efficient and effective 

inventory information, the spectral characteristics of QuickBird satellite imagery are 

useful for identifying features such as trees, as single tree crowns. 
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In line with the quest for a new inventory concept, double sampling with regression 

estimators was investigated to determine the degree to which it can provide inventory 

information efficiently than the traditional inventory approach.  The main aim of double 

sampling with regression estimators is to reduce the costs of collecting forest inventory 

information amplified with the multipurpose use of the concept inputs, such as the 

satellite image for many other purposes.  Further justification of the new concept is dealt 

in detail in the forthcoming sections of this investigation. 

 
6.2 MEASURED DATA 
 
General 
Looking for trees on the image requires very different and sophisticated approaches in 

digital image processing (Kätsch and Kunneke, 2006).  In this investigation, the auxiliary 

attributes which were measured on the QuickBird satellite scene were used as 

explanatory variables to estimate tree volume, number of stems and diameter distribution.  

A major disadvantage encountered was that some of the explanatory variables could only 

be measured in sometimes unrealistic conditions.  For instance, in dense, clustered and 

multilayered plots the assessment of the number of trees or individual crown diameters 

was difficult since the trees appeared fairly different on the image.  Moreover, tree 

height, being an important variable in estimating tree volume was un-obtainable from the 

image because to some extent hotspots were created by the sun when the images were 

acquired before 9 am.  Simply stated, the sensor appeared to be directly in front of the 

sun, thus no sun-angle could be determined.  The influence of the shadows emanating 

from the sun angles was also depicted in an investigation by Verlinden and Laamanen 

(2006). 

 

Relationship between auxiliary and response variables 

Stand volume 
A detailed analysis of the photogrammetric variables indicated that the volume per 

hectare is mainly explained by the variables photogrammetric stems per hectare and a 

combination of the photogrammetric crown area and photogrammetric stems per 

hectare.  This investigation further revealed that auxiliary variables obtained from 
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QuickBird satellite images are suitable and reliable in predicting stand volume.  This is 

attributed to the good quality of the satellite image and its spectral characteristics such as 

the ability to see tree crowns clearly.  For instance, the mean stand volume increased with 

an increased number of stems per hectare counted from the image.  In other words, the 

higher the number of stems per hectare counted on the image, the higher the stand 

volume.  This relationship made sense because an accumulation of the number of trees 

means an accumulation of volume as well.  On the other hand, there is a weak 

relationship between the mean stand volume and the photogrammetric crown cover.  This 

was possibly because there were few big sized trees and many small sized trees in the 

study area covering a large area with little contribution to volume.  However, this result is 

different from other forest situations.  For instance, Stellingwerf and Hussin (1997) found 

a positive relationship between volume and crown cover percent in beech stands. 

 

The relationship between the photogrammetric crown area and stand volume per hectare 

was weak.  In the case of Hans Kanyinga Community Forest, this was possible because 

there were many different trees with different crown growth characteristics whereby 

some individuals may comprise wide crowns but with relatively small bole diameters.  

However, this was in line with what was expected in natural woodlands where there are 

many small individuals with little contribution to the volume. 

 

The relationship between the photogrammetric crown diameter and volume per hectare 

was very weak.  This is in contrast to the findings by Kätsch (2002) in even-aged spruce 

stands where the coefficient of determination was high.  The weak relationship between 

the photogrammetric crown diameter and stand volume per hectare was anticipated 

because of the unevenness of the forest and the highly irregular shapes of tree crowns in 

Hans Kanyinga Community Forest. 

 

Stand density 

Photogrammetric stand density was found to be highly correlated to the terrestric stand 

density.  Similarly, Stellingwerf and Hussin (1997) found this relationship in Norway 

spruce.  However, the photogrammetric stand density was lower than the terrestric stand 
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density.  The low photogrammetric stand density was attributed to the growth character 

of natural woodlands in which some stems tend to grow under large trees hence making it 

impossible to see them from the satellite image.  This scenario was also encountered by 

Tandon (1973) cited in Stellingwerf and Hussin (1997), where a higher number of trees 

in the understorey created an underestimation of the number of trees on the aerial 

photograph. 

 

Another reason for the underestimation of the number of trees was due to the fact that 

some stems tend to grow in clusters, which may be judged as a single stem on the satellite 

image while judged as several stems during the terrestric inventory, depending on the 

origin of the boles.  These clusters may have been interpreted on a satellite image as 

single stems while in reality there were several stems and some of them may not emanate 

from the same stump per se, leading to a loss in the number of individuals which may 

translate to many stems per hectare.  In other words, a cluster of several individuals may 

have been regarded as a single stem on the image.  This was because it was difficult to 

make these distinctions on the satellite image since the individual stems in the clusters 

and stumps may not have been seen clearly.   

 

The forking behaviour of trees also contributed to the underestimation of 

photogrammetric stand density.  Stems which have forks below 1.3 m were regarded as 

individual trees (Selanniemi and Chakanga (2001).  This forking behaviour may not be 

seen from the satellite image, consequently leading to the assignment of the forked stems 

as single stems while they were regarded as several stems during the terrestric inventory. 

 

Diameter at breast height 

Diameter distribution is important because it gives a clue of the tree sizes expected to 

enter useable diameter classes in the stand.  It also gives an indirect clue of the forest 

stand age (Paine and Kiser, 2003).  It is important to note that the growth phenomenon of 

the trees in which they have a tendency of clustering creates unrealistic situations for 

predicting the DBH because the visible crown diameter may be assigned to a single 

crown regardless of the numerous stems present in a cluster with different 
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diameters.  The wrong positional orientation of trees in plots also meant that the paired 

observations of trees on the photo and in the field were not achieved.  This resulted in a 

negative and very weak correlation between the DBH and photogrammetric average 

crown diameter in plots which were not assessed for positional accuracy.  By contrast, the 

two plots which were assessed for spatial positional accuracy demonstrated a good 

improvement in the correlation between the DBH and photogrammetric average crown 

diameter.  Most of the variation which was not explained by the model was chiefly 

attributed to the positional shift due to the GPS devices (Chapter 5) and the co-

registration between satellite and terrestric data. 

 

Finally, the relatively low level of explanation of variation by the models in the measured 

data should be expected in natural and heterogeneous woodlands.  This is attributed to the 

variable structure and species composition of the Namibian woodlands. 

 
6.3 ACCURACY ASSESSMENT 
 
Error sources and their influence on the results of the study 

Making errors is not needed and to believe that no errors can occur is naïve (Brassel and 

Lischke, 2001).  Therefore, despite the efforts to achieve high quality data and to use 

efficient statistical estimators, the results of this study were not free of errors.  Initially, a 

complete census of Hans Kanyinga Community Forest was impossible due to the costs, 

available personnel and the required time from the beginning of the inventory up to the 

end, including the presentation of the results.  Therefore, there was no other alternative to 

a sample based approach. 

 

In this sample based inventory, a small portion (sample) was selected from the entire 

forest stand and precisely assessed.  The variables included in the sample were then used 

to draw an inference about the entire forest of Hans Kanyinga Community 

Forest.  Inference to the whole forest means that the probabilities within which the 

individual forest elements selected for the sample are taken into account during the 

derivation of the statistical parameters such as mean volumes, number of stems and 
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diameter distribution (Brassel and Lischke, 2001).  Therefore, the statistical parameters 

that were calculated using the sample data were applied to the entire Hans Kanyinga 

Community Forest. 

 
Since only some of the tree variables were used for the derivation of the statistical 

parameters, the derived values for the resources in Hans Kanyinga Community Forest 

were not absolute values, but rather estimates.  These estimates were subject to sampling 

errors.  The calculation of the standard error was based on the assumption that an 

observation of the estimated volume per hectare corresponds to its actual or true 

value.  The standard error of the mean stand volume estimate per hectare in the present 

investigation was found to be 5.59% and in the initial traditional inventory was 

3.43%.  The standard error of the mean volume estimate in the present investigation 

could further be reduced by increasing the number of photogrammetric sample plots 

which are measured at a low cost, thus becoming more cost efficient and effective.  It is 

important to note that this estimate of the standard error of the mean volume was 

obtained using the formula applicable for random sampling.  Usually, the formula for 

random sampling provides an overestimate of the sampling error for the systematic 

sampling (Kätsch, 2006c).  As a result, it is safe to use the derived estimates of this 

investigation.  Deviations of observed and true value occurred due to measurement errors 

or the wrong assignment of tree attributes such as the number of stems.  Finally, the 

magnitude of prediction errors that occurred because the forest parameters such as the 

terrestric volume were derived with the help of general functions which were not 

assessed in this study. 

 
Evaluation of spatial tree positions 

It is important to assess accuracy in remote sensing; otherwise the derived results may be 

misleading (Achard et al. 2001).  The major consideration in this investigation was if the 

trees were mapped correctly on the satellite image.  The visual display of trees on the 

satellite image showed the positional shift of up to 8.67 m (Chapter 5).  This shift is 

substantial and may have resulted in the low correlations obtained in this 

investigation.  This was also found by Verlinden and Laamanen (2006) in 
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Namibia.  According to the specifications of the Garmin GPS II plus device used in this 

investigation, the error limit expected is up to 15 meters. 

 

Other factors influencing spatial positional errors are inseparable e.g. the orientation of 

the satellite image.  This factor was also encountered by Verlinden and Laamanen (2006) 

using Landsat TM satellite imagery.  The Standard QuickBird satellite image used in this 

investigation was geo-referenced by the supplier.  Geo-referencing by suppliers of 

satellite imagery is usually based on general analytic models, which may not provide the 

finest accuracy for small areas.  Also, Standard QuickBird satellite images cannot be 

aimed for very accurate geometric positioning since the image has been naturally 

distorted in an irreversible way by using the coarse digital elevation models (Volpe, 

s.a.).  However, since the terrestrial sample plots were located and measured with high 

expenditure, it is reasonable to assume that the positional shifts achieved here are the 

lowest limit possible under the practical conditions.  Further positional shifts should be 

expected in other plots due to measurement and equipment error. 

 

To minimize the problems associated with the shifts in positions, differential GPS may be 

necessary.  However, the question of whether higher accuracy is necessary (such as 

measuring the location of each and every tree) and the questions of cost implications of 

such investments in various differential installations need to be addressed.  Huge 

distances between Namibian forest areas also raise logistical problems due to the fact that 

more differential stations maybe necessary, leading to uplift in the cost. 

 
6.4 COST-EFFICIENCY AND QUICKBIRD APPRAISAL 
 
The efficiency of double sampling depends on the cost relationship between the 

assessment in the first and second phase and it also depends on how tightly the 

relationship is between the variable of interest and the auxiliary variables.  The present 

study showed that the measurement of one sample plot on the image takes less than 15 

minutes, although this varies with the tree density of a given area.  From the cost 

efficiency calculations, it was clearly seen that the total cost of a traditional inventory in 

Hans Kanyinga is N$312,192.00 (N$25.79/ha) and for a double sample is N$238,188 
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(N$19.67/ha) which is a reduction in the inventory costs by 24%.  This is insufficient 

evidence to reject the null hypothesis that double sampling using QuickBird satellite 

imagery can provide the inventory information pertaining to Namibian woodlands, 

efficiently and effectively since the time delivery of the inventory results is also reduced 

(a number of days against several months or years) and the estimates fell within 95% 

confidence limits.  This is in line with the need to focus on more cost efficient and 

effective methods of collecting forest inventory information in Namibia as there is a 

constraint of funding.  However, this is factual when the area to be inventoried is large 

and when the relationship between the photo and field plots parameters is high.   

 
Caution must be exercised in estimating the costs for the terrestric phase because the cost 

of a traditional or direct inventory is highly variable as it depends on the number of the 

inventory teams with their crews, their man-days and allowance rates.  It is important to 

note that the motivation of the field teams is crucial for the quality of the data.  As a 

result, good working conditions have to be created for the field teams which lead to an 

increase in the cost of the terrestric inventory.  Of particular interest is to compare the 

results of the volume estimates of double sampling to the traditional inventory.  The 

estimated volume from this investigation was 35.728 m3/ha and the estimated volume in 

the traditional inventory was 40.399 m3/ha.  It is important to understand that these 

terrestrial volumes are also error prone due to many reasons such as poor volume 

estimators and measurement errors.  The precision of the results can be improved, but it 

is important to weigh the benefits of the high precision with the corresponding 

investment cost of obtaining the “very precise” results.  It has also been demonstrated 

that the total cost of an inventory per hectare increases as the desired sampling error 

reduces.  This is attributed to the fact that more sample plots are taken to ensure higher 

precision of the inventory results.  In addition, the total cost was found to decrease as the 

desired sampling error increases, due to a low number of required sample 

plots.  Furthermore, the total cost per hectare of direct sampling remained constant 

regardless of the increase in the coefficient of determination while the double sampling 

approach decreased as the coefficient of determination increased.  Double sampling 

became more efficient when 27% of the variation could be explained by the linear model 
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used.  The relationship between the cost per hectare and the coefficient of variation 

showed that double sampling becomes efficient beyond the coefficient of variation of 

18% due to high investment costs.  The total cost per hectare increases with an increase 

in the coefficient of variation because more plots and effort is required to obtain a 

representative sample in more variable forest stands. 

 
The optimum ratio indicated that double sampling is an efficient means of carrying out 

forest inventories in Namibia.  Further justification of the use of QuickBird satellite 

imagery in forest inventory is the relative short period of time in which most of the 

required forest information can be obtained, subsequently leading to lower costs as 

compared to traditional inventory methods where trees have to be measured for different 

parameters individually which in turn can be very labour intensive.  One way of further 

reduction in cost in double sampling is to increase the extensive use of the QuickBird 

satellite data for other costly purposes.  For example, the images can also be used for 

mapping, change detection and updating of existing inventory maps (Tokola et al. 1999; 

Norris-Rogers, 2004). 

 
On the other hand, acquiring data from satellite images poses difficulties due to the fact 

that the information cannot be obtained at every desirable moment because it depends on 

the weather and on the service providers of the satellites.  Satellite orbits cannot be 

controlled by the Department of Forestry, which means that the information can only be 

obtained at the moment the satellite passes over the area of interest.  Furthermore, despite 

the long and dry cloudless seasons in Namibia, when purchasing a new satellite image 

tasking, it may not be possible to have a quick look of the image, this means accepting an 

image with at least 20% cloud cover which can be exactly on the area of interest.  Special 

requests of images with less cloud cover may be made to the supplier of the image 

although there may be a significant uplift in price. 

 

Comparing QuickBird satellite imagery with other sources of data in terms of spatial 

resolution, the apparent limit is the resolution (lower than aerial photographs usually at 

scales of about 1:20 000), but the advantage is that the different bands available on 
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QuickBird can be selected and combined to improve the resolution (table 3).  Conversely, 

the availability and access to recent aerial photographs is often limited and new aerial 

surveys are time consuming, low frequency of obtaining photographs, costly and difficult 

to organize in developing countries (Holland and Marshall, s.a.).  However, this 

limitation may be compensated by the advantages of the frequent re-visit prospects of the 

satellite which enables the monitoring of forest resources, fast processing of the image 

data and the possibility of covering large areas. 

 
The limited area coverage of individual aerial photographs leads to a practical 

disadvantage whereby large area coverage of aerial photographs may need to be 

mosaiced from geometrically corrected and mosaiced aerial photographs.  This task is far 

more time consuming than correcting a single satellite image scene and is prone to 

registration errors where expertise is inadequate. 

 
Table 3. Technical comparison between QuickBird and other auxiliary data sources (Adapted from 
Timmerman and Strydom, 2004)  

Sensor 
Spectral 
bands Pixel size 

Special 
features 

Radiometric 
resolution Footprint 

Temporal 
resolution 

Costing 
(R/ha) 

Aerial 
photograp
hy 1 and 3 

Depends on 
flight height. 
Usually 10 
cm to 1.5 m 

Stereo 
capability 

Depend on 
scan, normally 
8 bits 

Depends on 
flight height. 
Usually 
from 1 to 25 
km2 

Depend 
on 
weather, 
fuel & 
logistics 

R1.98 
to 
R2.10 
per ha 

Landsat 7 
ETM+ 7 

15 m pan, 30 
m multi-
spectral 

Limited 
stereo 
capability 8 bits 

180 x 180 
km 16 days 

R0.14 
per ha 

SPOT5 5 

2 m pan, 10 
m multi-
spectral 

Stereo 
capability 8 bits 60 x 60 km 2-3 days 

R0.7 to 
R0.25 
per ha 

IKONOS 

Blue, 
Green, 
Red, Near 
infrared, 
Pan 

0.82 m pan, 
3.2 m multi-
spectral 

Stereo 
capability 11 bits 

11.3 x 11.3 
km 

Every 3 
days at 
40o off-
nadir 

R1.90 
to 
R2.10 
per ha 

QuickBird 

Blue, 
Green, 
Red, Near 
infrared, 
Pan 

0.61 m pan, 
2.44 m 
multi-
spectral 

Stereo 
capability 11 bits 

16.5 x 16.5 
km 2-3 days 

R1.54 
to 
R1.96 
per ha 
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Finally, in spite of the good achievements of some remote sensing techniques, the use of 

remote sensing within the National Forest Inventory (NFI) in Namibia has been slow.  

This may be due to reluctance to move away from traditional inventory methods and the 

limited understanding of recent developments.  There is also a high rate of staff turnover 

in Forestry, i.e. skills loss to greener pastures such as non-governmental 

organizations.  The apparent high cost of satellite imagery and the bureaucratic 

procedures for investment in satellite imagery by the government also makes the 

employment of remote sensing in forest inventory to move at a slow pace. 
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7. CONCLUSIONS 
 
Traditional forest inventories operational in Namibia are increasingly becoming 

inappropriate.  They should pave a way to integrated and multiple data collection 

inventory concepts to produce more comprehensive information of the forests efficiently 

and effectively.  In this view, the recent application and scientific advances in the use of 

remote sensing in forest inventories have produced methods which may be useable in 

carrying out forest assessment.  However, these methods are not universally applicable 

due to different forest conditions where they have been tested.  It was deduced that 

remotely sensed data allows the updating of GIS data and improve the practical 

arrangements required for the fieldwork.  However, the decrease in the amount of the 

fieldwork using remotely sensed data creates arguments with the current and possibly 

future informational needs since they require detailed woodland observation e.g. species 

diversity and regeneration information. 

 
The results of this investigation are quite satisfactory and a plausible fit of the models to 

the data was obtained.  The comparison of results from regression equations with the 

results from the traditional inventory in the same area indicated that the equations yield 

comparable estimates of stand volume, diameter distribution and stand 

density.  Especially, stand volume and stand density estimates were close to the average 

obtained by field inventories.  The trend depicted from the diameter distribution obtained 

in this investigation is comparable to the diameter distribution derived using traditional 

inventory method.  Although traditional inventory method gives an indication of species 

composition but limited indication of spatial distribution, the inventory concept investigat

ed here gives comprehensive high resolution distribution information but without informa

tion regarding species composition.  Therefore, this concept will permit a raw inventory 

in Namibia which will be adequate because there are no strict schedules of activities such 

as thinning and other silvicultural operations. 

 
This investigation also showed that correlating terrestric data with satellite image data 

which were not measured at the same time (about less than 5 years) is not usually likely 
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to cause great error in Namibian woodlands because these woodlands do not change 

quickly (Mwiikinghi3, 2007).  The change in a short period of time (less than 5 years) 

may be observed when there is moderate to heavy cutting or when the stand is subjected 

to incidences such as fire or elephant damage, which lead to a reduction in tree 

individuals.  Moreover, for the improvement of the correlations among the variables from 

the image and the target variable, it is important that the size of the sample plot on the 

image is not too large since the counting of too many trees will unquestionably reduce the 

accuracy (Stellingwerf and Hussin, 1997).  Small sample plots may jeopardize the 

statistical representation of the results due to high variations among sample plots.  

Therefore, a balance must be found to include an optimum number of sample plots and 

sizes with the required precision taking the available budget into consideration. 

 
Furthermore, double sampling is not necessarily a separate inventory technique for 

obtaining forest inventory information, but it is a valuable and valid inventory concept 

that can be adopted in view of reducing forest inventory costs which are relatively high in 

Namibia.  The cost calculations indicated that the inventory costs may be reduced when 

double sampling is used compared to traditional forest inventory.  It was therefore 

articulated that if double sampling with its different data sources can be used for 

numerous purposes e.g. forest mapping and monitoring, then it becomes a much more 

cost effective option for financial stricken departments such as the Directorate of Forestry 

in Namibia. 

 

Despite the favorable environmental conditions and the structure of the trees in using the 

GPS devices in Namibia, the surveying method used in this investigation is promising in 

obtaining accurate spatial tree positions than the GPS.  The use of GPS alone may not 

provide exact research positions for the trees.  This is chiefly attributed to the high range 

of positional errors to be accepted when using GPS.  Therefore, there is potential to 

derive diameter distributions from the QuickBird imagery if the actual tree positions in 

the plots are known.   

 
                                                 
3 Forester in charge of Hans Kanyinga Community Forest 
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8. RECOMMENDATIONS 
 
Future inventory concepts should focus on the information needs and technical issues of 

forest inventory to promote efficiency and effectiveness, being important aspects in 

ensuring the continuity of carrying out forest inventories.  Also, future inventory concepts 

should be fully adapted to the information needs.  Since there are increasing needs to 

obtain detailed and specific forest resource information in small community forest areas 

of Namibia, the use of the K-nearest neighbour (K-nn) concept should be explored.  This 

concept uses satellite data or digital maps aided with field sample plot data to produce 

thematic maps and detailed small area inventory information (Tomppo, s.a.).  The K-nn 

method could be used as an expansion of double sampling in the estimations with very 

low additional costs to the double sampling design. 

 
 In addition, multiphase approaches should also be thought of in further investigations to 

improve the correlations among variables.  Tree height, being an important variable in 

volume estimation could not be obtained from the QuickBird satellite scene alone as it is 

dependent on the time the image was acquired.  Also, trees have different growth patterns 

and forms therefore the use of stereo images should be thought of in the future where 

height is expected to have a significant contribution to the overall estimates of the target 

variables.  These stereo images will allow the observation of the differences between 

trees and crown heights, leading to a fairly accurate estimation of the tree height. 

 
Further investigations should attempt to measure a coarse network of terrestric plots 

using surveying methods to determine the exact spatial position of trees in plots.  Without 

the accurate positions of trees in sample plots, QuickBird data’s utility for the 

determination of the diameter distributions is considered very minimal.  In situations 

where accurate satellite imagery data is required to be linked to terrestric data, surveying 

methods involving the accurate determination of distances and bearings should be carried 

out.  GPS positions alone may not be sufficient due to the positional errors which should 

be tolerated and hence attracting risks of incorrect inventory results emanating from 

inaccurate spatial data. 
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Further investigations which are aimed at modeling the number of stems likely to be in a 

“mob” of trees observable from the satellite imagery should be carried out to improve the 

accuracy of tree counts.  These further investigations should be coupled with the 

development of reference spectra to enable species recognition from the satellite image.   

 

Finally, in order to fully convince potential users of the remote sensing technology, 

further investigations would be needed to determine whether the benefits of using 

QuickBird satellite imagery would be economically accepted in Namibia. 
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APPENDICES 
 
Appendix 1a. Correlations among predictor variables 

  
BA 

(cm2) 
DBH 
(cm) 

CAp 
(m2) CAp*SDp 

CAt 
(m2) CCp (%) CCt (%) 

CDp 
(m) 

CDt 
(m) SDp SDt SDp*CCp V (m3/ha) 

BA (cm2) 1                         

DBH (cm) 0.958 1                       

CAp (m2) -0.108 -0.036 1                     

CAp*SDp -0.246 -0.222 0.641 1                   

Cat (m2) 0.257 0.290 -0.083 0.276 1                 

CCp (%) -0.092 -0.123 -0.074 0.249 0.351 1               

CCt (%) -0.043 -0.015 0.001 0.467 0.890 0.357 1             

CDp (m) -0.297 -0.339 -0.100 -0.116 0.082 0.358 0.137 1           

CDt (m) 0.764 0.769 -0.149 -0.152 0.638 0.152 0.419 -0.132 1         

SDp -0.314 -0.311 0.150 0.816 0.451 0.381 0.635 -0.036 -0.163 1       

SDt -0.370 -0.406 0.122 0.741 0.397 0.246 0.609 0.047 -0.251 0.901 1     

SDp*CCp (%) -0.248 -0.254 0.061 0.661 0.550 0.755 0.673 0.191 -0.004 0.862 0.739 1   

V (m3/ha) -0.059 0.046 0.269 0.692 0.598 0.107 0.689 -0.120 0.103 0.731 0.702 0.553 1 

 
 
Appendix 1b. Correlations among DBH predictor variables (position assessed plots) 
 

  CDp (m) DBH (cm) CDt (m) 

CDp (m) 1     

DBH (cm) 0.655 1   

CDt (m) 0.494 0.735 1 
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Appendix 2. Regression diagnostics of the Stand volume model 
 

Regression Statistics          
Multiple R 0.750        
R Square 0.562        
Adjusted R Square 0.543        
Standard Error 13.272        
Observations 50        
ANOVA         

  df SS MS F 
Significance 

F    

Regression 2 
10615.64

5 5307.822 30.131 3.7915E-09    
Residual 47 8279.421 176.158        

Total 49 
18895.06

6          
         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 11.339 4.490 2.525 0.015 2.306 20.371 2.306 20.371 

CAp*SDp 0.012 0.071 1.703 0.095 -0.022 0.263 -0.022 0.263 
SDp 1.538 0.515 2.986 0.004 0.502 2.573 0.502 2.573 

 
Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.980504 Pr < W 0.5734 

Kolmogorov-Smirnov D 0.102601 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.060964 Pr > W-Sq >0.2500 

Anderson-Darling A-Sq 0.365688 Pr > A-Sq >0.2500 
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Appendix 3. Regression diagnostics of the photogrammetric Stand density model 
 

Regression Statistics          
Multiple R 0.901        
R Square 0.813        
Adjusted R Square 0.809        
Standard Error 8.748        
Observations 50        
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 15923.290 15923.290 208.050 4.48918E-19    
Residual 48 3673.730 76.536        
Total 49 19597.021          
         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -1.387 2.926 -0.474 0.638 -7.270 4.496 -7.270 4.496 

SDp 2.828 0.196 14.424 0.000 2.434 3.223 2.434 3.223 
 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.760566 Pr < W <0.0001 

Kolmogorov-Smirnov D 0.206633 Pr > D <0.0100 

Cramer-von Mises W-Sq 0.390019 Pr > W-Sq <0.0050 

Anderson-Darling A-Sq 2.423798 Pr > A-Sq <0.0050 
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Appendix 3 cont. Regression diagnostics of the photogrammetric number of stems 
model: Lognormality test 
 
 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.987103 Pr < W 0.8568 

Kolmogorov-Smirnov D 0.081044 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.035343 Pr > W-Sq >0.2500 

Anderson-Darling A-Sq 0.230158 Pr > A-Sq >0.2500 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 78 



Appendix 4. Relationship between the volume and some terrestric variables  
 

V  = 0.6889*SDt + 15.264
R2 = 0.4922
n   = 50
SE = 14.1
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Appendix 5. Photogrammetric plot coordinates 
 
PLOT LONGITUDE LATITUDE PLOT LONGITUDE LATITUDE 

2 20.40663 -18.16737 103 20.36006 -18.20722 
5 20.39992 -18.17408 104 20.35334 -18.21394 
7 20.41334 -18.17408 106 20.36656 -18.21394 
9 20.42656 -18.17408 108 20.37999 -18.21394 

11 20.39320 -18.18730 111 20.40663 -18.21394 
12 20.39320 -18.19401 113 20.41985 -18.21394 
15 20.39320 -18.21394 115 20.43327 -18.21394 
16 20.39320 -18.22065 117 20.44649 -18.21394 
19 20.39320 -18.24058 119 20.35334 -18.22044 
20 20.39320 -18.24729 121 20.36656 -18.22044 
23 20.31990 -18.25380 123 20.37999 -18.22044 
25 20.33320 -18.25380 126 20.40663 -18.22065 
27 20.34663 -18.25380 128 20.41985 -18.22065 
29 20.35985 -18.25380 130 20.43327 -18.22065 
31 20.37327 -18.25380 132 20.44649 -18.22065 
33 20.38649 -18.25401 134 20.34663 -18.22715 
34 20.39992 -18.25401 136 20.35985 -18.22715 
36 20.41334 -18.25401 138 20.37327 -18.22715 
38 20.42656 -18.25401 140 20.38649 -18.22736 
40 20.43999 -18.25401 141 20.39992 -18.22736 
42 20.45320 -18.25401 143 20.41334 -18.22736 
45 20.45320 -18.23408 145 20.42656 -18.22736 
46 20.45320 -18.22736 147 20.43999 -18.22736 
49 20.45320 -18.20722 149 20.33320 -18.23387 
50 20.45320 -18.20072 151 20.34663 -18.23387 
52 20.44670 -18.19401 153 20.35985 -18.23387 
54 20.43327 -18.19401 155 20.37327 -18.23387 
56 20.42006 -18.19401 157 20.38649 -18.23408 
58 20.40663 -18.19401 158 20.39992 -18.23408 
61 20.37999 -18.19380 160 20.41334 -18.23408 
64 20.40663 -18.18730 162 20.42656 -18.23408 
66 20.42006 -18.18730 164 20.43999 -18.23408 
68 20.43327 -18.18730 166 20.32670 -18.24058 
71 20.44670 -18.18730 168 20.33992 -18.24058 
72 20.37999 -18.18730 172 20.36656 -18.24058 
73 20.39992 -18.18058 174 20.37999 -18.24058 
75 20.41334 -18.18058 177 20.40663 -18.24058 
77 20.42656 -18.18058 179 20.41985 -18.24058 
80 20.37327 -18.20051 181 20.43327 -18.24058 
82 20.38670 -18.20072 183 20.44649 -18.24058 
83 20.39992 -18.20072 185 20.32670 -18.24729 
85 20.41334 -18.20072 187 20.33992 -18.24729 
87 20.42656 -18.20072 189 20.35334 -18.24729 
89 20.43999 -18.20072 191 20.36656 -18.24729 
92 20.37327 -18.20722 193 20.37999 -18.24729 
94 20.38670 -18.20722 196 20.40663 -18.24729 
95 20.39992 -18.20722 198 20.41985 -18.24729 
97 20.41334 -18.20722 200 20.43327 -18.24729 
99 20.42656 -18.20722 202 20.44649 -18.24729 

101 20.43999 -18.20722 203 20.38670 -18.18058 
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Appendix 6. Terrestric plot coordinates 
 
PLOT LONGITUDE LATITUDE PLOT LONGITUDE LATITUDE 

2 20.40663 -18.16737 166 20.32670 -18.24058 
7 20.41334 -18.17408 172 20.36656 -18.24058 

11 20.39320 -18.18730 179 20.41985 -18.24058 
16 20.39320 -18.22065 183 20.44649 -18.24058 
19 20.39320 -18.24058 187 20.33992 -18.24729 
20 20.39320 -18.24729 191 20.36656 -18.24729 
25 20.33320 -18.25380 198 20.41985 -18.24729 
29 20.35985 -18.25380 202 20.44649 -18.24729 
33 20.38649 -18.25401 203 20.38670 -18.18058 
36 20.41334 -18.25401    
40 20.43999 -18.25401    
49 20.45320 -18.20722    
50 20.45320 -18.20072    
54 20.43327 -18.19401    
58 20.40663 -18.19401    
61 20.37999 -18.19380    
66 20.42006 -18.18730    
71 20.44670 -18.18730    
75 20.41334 -18.18058    
80 20.37327 -18.20051    
83 20.39992 -18.20072    
87 20.42656 -18.20072    
92 20.37327 -18.20722    
95 20.39992 -18.20722    
99 20.42656 -18.20722    

104 20.35334 -18.21394    
108 20.37999 -18.21394    
111 20.40663 -18.21394    
115 20.43327 -18.21394    
121 20.36656 -18.22044    
128 20.41985 -18.22065    
132 20.44649 -18.22065    
136 20.35985 -18.22715    
140 20.38649 -18.22736    
143 20.41334 -18.22736    
147 20.43999 -18.22736    
149 20.33320 -18.23387    
153 20.35985 -18.23387    
157 20.38649 -18.23408    
160 20.41334 -18.23408    
164 20.43999 -18.23408    
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Appendix 7. Regression diagnostics of the photogrammetric crown diameter and DBH 
 

Regression Statistics          
Multiple R 0.655        
R Square 0.429        
Adjusted R Square 0.402        
Standard Error 6.973        
Observations 23        
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 767.969 767.969 15.796 0.001    
Residual 21 1021.009 48.619      
Total 22 1788.978          
         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -4.257 7.407 -0.575 0.572 -19.660 11.147 -19.660 11.147 

CDp 5.580 1.404 3.974 0.001 2.660 8.500 2.660 8.500 
 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.978198 Pr < W 0.8733 

Kolmogorov-Smirnov D 0.08062 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.026498 Pr > W-Sq >0.2500 

Anderson-Darling A-Sq 0.189355 Pr > A-Sq >0.2500 
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Appendix 8. Specifications of the GPS used in this investigation 
Source: [Online] www4.shopping.com/xPF-Garmin-GPS-II-Plus 
 

Garmin GPS II Plus GPS Receiver 

 

Specifications and Features 
 

Designation   Outdoor  

Receiver type  Parallel-Channel (12)  

Resolutions  100 X 64  

Trip calculator   Maximum speed  

Grids   Irish, Lat/Lon, Swedish, Swiss, User Grid, UTM, Maidenhead, Taiwan  

Acquisition time - cold  45 sec  

Acquisition time - warm  15 sec  

Update rate  1 per second, continuous  

Max. Horizontal accuracy   < 49 feet (15 meters) 

Differential standards  DGPS Ready  

Number of routes  20  

Waypoints   500  
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