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ABSTRACT 

Concrete evidence of dryland salinity was observed in the Berg River catchment in the Western 

Cape Province of South Africa. Soil salinization is a global land degradation hazard that 

negatively affects the productivity of soils. Timely and accurate detection of soil salinity is 

crucial for soil salinity monitoring and mitigation. It would be restrictive in terms of costs to use 

traditional wet chemistry methods to detect and monitor soil salinity in the entire Berg River 

catchment. The goal of this study was to investigate less tedious, accurate and cost effective 

techniques for better monitoring.  

Firstly, hyperspectral remote sensing (HRS) techniques that can best predict electrical 

conductivity (EC) in the soil using individual bands, a unique normalized difference soil salinity 

index (NDSI), partial least squares regression (PLSR) and bagging PLSR were investigated. 

Spectral reflectance of dry soil samples was measured using an analytical spectral device 

FieldSpec spectrometer in a darkroom. Soil salinity predictive models were computed using a 

training dataset (n = 63). An independent validation dataset (n = 32) was used to validate the 

models. Also, field-based regression predictive models for EC, pH, soluble Ca, Mg, Na, Cl and 

SO4 were developed using soil samples (n = 23) collected in the Sandspruit catchment. These 

soil samples were not ground or sieved and the spectra were measured using the sun as a source 

of energy to emulate field conditions. Secondly, the value of NIR spectroscopy for the prediction 

of EC, pH, soluble Ca, Mg, Na, Cl, and SO4 was evaluated using 49 soil samples. Spectral 

reflectance of dry soil samples was measured using the Bruker multipurpose analyser 

spectrometer. “Leave one out” cross validation (LOOCV) was used to calibrate PLSR predictive 

models for EC, pH, soluble Ca, Mg, Na, Cl, and SO4. The models were validated using R
2
, root 

mean square error of cross validation (RMSECV), ratio of prediction to deviation (RPD) and the 

ratio of prediction to interquartile distance (RPIQ). Thirdly, owing to the suitability of land 

components to map soil properties, the value of digital elevation models (DEMs) to delineate 

accurate land components was investigated. Land components extracted from the second version 

of the 30-m advanced spaceborne thermal emission and reflection radiometer global DEM 

(ASTER GDEM2), the 90-m shuttle radar topography mission DEM (SRTM DEM), two 

versions of the 5-m Stellenbosch University DEMs (SUDEM L1 and L2) and a 5-m DEM 

(GEOEYE DEM) derived from GeoEye stereo-images were compared. Land components were 

Stellenbosch University   http://scholar.sun.ac.za



iv 

 

 

 

delineated using the slope gradient and aspect derivatives of each DEM. The land components 

were visually inspected and quantitatively analysed using the slope gradient standard deviation 

measure and the mean slope gradient local variance ratio for accuracy.  

Fourthly, the spatial accuracy of hydrological parameters (streamlines and catchment 

boundaries) delineated from the 5-m resolution SUDEM (L1 and L2), the 30-m ASTER GDEM2 

and the 90-m SRTM was evaluated. Reference catchment boundary and streamlines were 

generated from the 1.5-m GEOEYE DEM. Catchment boundaries and streamlines were extracted 

from the DEMs using the Arc Hydro module for ArcGIS. Visual inspection, correctness index, a 

new Euclidean distance index and figure of merit index were used to validate the results. Finally, 

the value of terrain attributes to model soil salinity based on the EC of the soil and groundwater 

was investigated. Soil salinity regression predictive models were developed using CurveExpert 

software. In addition, stepwise multiple linear regression soil salinity predictive models based on 

annual evapotranspiration, the aridity index and terrain attributes were developed using 

Statgraphics software. The models were validated using R
2
, standard error and correlation 

coefficients. The models were also independently validated using groundwater hydro-census data 

covering the Sandspruit catchment.  

This study found that good predictions of soil salinity based on bagging PLSR using first 

derivative reflectance (R
2
 = 0.85), PLSR using untransformed reflectance (R

2
 = 0.70), a unique 

NDSI (R
2
 = 0.65) and the untransformed individual band at 2257 nm (R

2
 = 0.60) predictive 

models were achieved. Furthermore, it was established that reliable predictions of EC, pH, 

soluble Ca, Mg, Na, Cl and SO4 in the field are possible using first derivative reflectance. The R
2
 

for EC, pH, soluble Ca, Mg, Na, Cl and SO4 predictive models are 0.85, 0.50, 0.65, 0.84, 0.79, 

0.81 and 0.58 respectively. Regarding NIR spectroscopy, validation R
2
 for all the PLSR 

predictive models ranged from 0.62 to 0.87. RPD values were greater than 1.5 for all the models 

and RMSECV ranged from 0.22 to 0.51. This study affirmed that NIR spectroscopy has the 

potential to be used as a quick, reliable and less expensive method for evaluating salt-affected 

soils. As regards hydrological parameters, the study concluded that valuable hydrological 

parameters can be derived from DEMs. A new Euclidean distance ratio was proved to be a 

reliable tool to compare raster data sets. Regarding land components, it was concluded that 

higher resolution DEMs are required for delineating meaningful land components. It seems 
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probable that land components may improve salinity modelling using hydrological modelling 

and that they can be integrated with other data sets to map soil salinity more accurately at 

catchment level. In the case of terrain attributes, the study established that promising soil salinity 

predictions could be made based on slope, elevation, evapotranspiration and terrain wetness 

index (TWI). Stepwise multiple linear regressions soil salinity predictive model based on 

elevation, evapotranspiration and TWI yielded slightly more accurate prediction of soil salinity. 

Overall, the study showed that it is possible to enhance soil salinity monitoring using HRS, NIR 

spectroscopy, land components, hydrological parameters and terrain attributes. 
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UITTREKSEL 

Konkrete bewyse van droëland sout is waargeneem in die Bergrivier opvanggebied in die Wes-

Kaap van Suid-Afrika. Verbrakking van grond is 'n wêreldwye   probleem wat ‘n negatiewe 

invloed op die produktiwiteit van grond kan hê. Tydige en akkurate herkenning van verandering  

in grond soutgehalte is ‘n noodsaaklike aksie vir voorkoming. Dit sou beperkend wees in terme 

van koste om konvensionele nat chemiese metodes te gebruik vir die opsporing en monitering 

daarvan  in die hele Bergrivier opvanggebied. Die doel van hierdie studie was om ondersoek in 

te stel na minder tydsame, akkurate en koste-effektiewe tegnieke vir beter monitering. 

 

Eerstens, is hiperspektrale afstandswaarnemings (HRS) tegnieke wat die beste in staat is 

elektriese geleidingsvermoë (EG) in die grond te kan voorspel deur gebruik te maak van 

individuele bande, 'n unieke genormaliseerde grond soutindeks verskil (NDSI), parsiële kleinste 

kwadratiese regressie (PLSR) en afwyking in PLSR, is ondersoek. Spektrale reflektansie van 

droë grondmonsters is gemeet deur gebruik te maak van 'n spektrale analitiese toestel: FieldSpec 

spektrometer in 'n donkerkamer. Voorspellings modelle vir grond soutgehalte is bereken met 

behulp van 'n toets datastel (n = 63). 'n onafhanklike validasie datastel (n = 32) is gebruik om die 

modelle te evalueer. Daarbenewens is veld-gebaseerde regressie voorspellings modelle vir EG, 

pH oplosbare Ca, Mg, Na, Cl and SO4 ontwikkel deur gebruik te maak van grondmonsters (n = 

23) versamel in the Sandpruit opvangsgebied. Hierdie grondmonsters is nie gemaal of gesif nie 

en die spectra is gemeet deur gebruik te maak van die son as ‘n bron van energie om veld 

toestande na te boots. Tweedens, is die waarde van NIR spektroskopie vir die voorspelling van 

die EG, pH, oplosbare Ca, Mg, Na, Cl, en SO4 met behulp van 49 grondmonsters geëvalueer. 

Spektrale reflektansie van droë grondmonsters is gemeet deur gebruik te maak van die Bruker 

NIR veeldoelige analiseerder . Kruisvalidering (LOOCV) is gebruik om PLSR voorspellings 

modelle vir EG, pH, oplosbare Ca, Mg, Na, Cl, en SO4 te kalibreer. Hierdie modelle is 

gevalideer: R
2
, wortel-gemiddelde-kwadraat fout kruisvalidering (RMSECV), verhouding van 

voorspellings afwyking (RPD) en die verhouding van die voorspelling se inter-kwartiel afstand 

(RPIQ). Derdens is  land komponente gekarteer vanweë die nut daat van tov grondeienskappe, en 

die waarde van DEMs is ondersoek om akkurate land komponente af te baken. Land komponente 

uit die tweede weergawe van die 30 m gevorderde ruimte  termiese emissie en refleksie radio 
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globale DEM (ASTER GDEM2), die 90-m ruimtetuig radar topografie sending DEM (SRTM 

DEM), twee weergawes van die 5 m Universiteit van Stellenbosch DEMs (SUDEM L1 en L2) en 

'n 5 m DEM (GEOEYE DEM) afgelei van GeoEye stereo-beelde, is vergelyk. Land komponente 

is afgebaken met behulp van helling, gradiënt en aspek afgeleides van elke DEM. Die land 

komponente is visueel geïnspekteer en kwantitatief ontleed met behulp van die helling gradiënt  

standaardafwyking te meet en die gemiddelde helling-gradiënt-plaaslike variansie verhouding vir 

akkuraatheid. 

Vierdens, is die ruimtelike akkuraatheid van hidrologiese parameters (stroomlyn en 

opvanggebied grense) geëvalueer soos afgelei vanaf die 5 m resolusie SUDEM (L1 en L2), die 

30 m ASTER GDEM2 en die 90 m SRTM . Die verwysings opvanggebied grens en stroomlyn is 

gegenereer vanaf die 1,5-m GEOEYE DEM. Opvanggebied grense en stroomlyn uit die DEMs is 

bepaal deur gebruik te maak van die Arc Hydro module in ArcGIS. Visuele inspeksie, 

korrektheid indeks, 'n nuwe Euklidiese afstand indeks en die indikasie-van-meriete indeks is 

gebruik om die resultate te valideer. Laastens is die waarde van die terrein eienskappe om grond 

southalte te modeleer ondersoek, gebaseer op die EG van die grond en grondwater. Grond 

soutgehalte regressie voorspellings modelle is ontwikkel met behulp van CurveExpert sagteware. 

Verder, stapsgewyse meervoudige lineêre regressie grond soutgehalte voorspellings modelle 

gebaseer op jaarlikse evapotranspirasie, die dorheids indeks en terrein eienskappe is ontwikkel 

met behulp van Statgraphics sagteware.  Die modelle is gevalideer deur gebruik te maak van R
2
, 

standaardfout en korrelasiekoëffisiënte. Die modelle is ook onafhanklik bekragtig deur die 

gebruik van grondwater hidro-sensus-data wat die Sandspruit opvanggebied insluit. 

 

Hierdie studie het bevind dat 'n goeie voorspelling van grond soutgehalte gebaseer op uitsak 

PLSR met behulp van eerste orde afgeleide reflektansie (R
2
 = 0,85), PLSR deur gebruik te maak 

van ongetransformeerde reflektansie (R
2
 = 0,70), 'n unieke NDSI (R

2
 = 0,65) en die 

ongetransformeerde individuele band op 2257 nm (R
2
 = 0,60) voorspellings modelle verkry is . 

Verder is vasgestel dat betroubare voorspellings van die EG, pH, oplosbare Ca, Mg, Na, Cl en 

SO4 in die veld moontlik is met behulp van eerste afgeleide reflektansie. Die R
2
 van EG, pH, 

oplosbare Ca, Mg, Na, Cl en SO4 is 0.85, 0.50, 0.65, 0.84, 0.79, 0.81 en 0.58 onderskeidelik. Ten 

opsigte van NIR spektroskopie het die validasie van R
2
 vir al die PLSR voorspellings modelle 
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gewissel tussen 0,62-0,87. Die RPD waardes was groter as 1,5 vir al die modelle en RMSECV 

het gewissel tussen 0,22-0,51. Hierdie studie het bevestig dat NIR spektroskopie die potensiaal 

het om gebruik te word as 'n vinnige, betroubare en goedkoper metode vir die analise van sout-

geaffekteerde gronde. T.o.v. hidrologiese parameters, het die studie tot die gevolgtrekking 

gekom dat waardevolle hidrologiese parameters afgelei kan word uit DEMs. 'n nuwe Euklidiese 

afstand verhouding is bevestig as 'n betroubare hulpmiddel om raster datastelle te vergelyk. Ten 

opsigte van grond komponente, is daar tot die gevolgtrekking gekom dat hoër resolusie DEMs 

nodig is vir die bepaling van sinvolle land komponente. Dit lyk waarskynlik dat die land 

komponent soutgehalte modellering hidrologiese modellering verbeter en dat hulle geïntegreer 

kan word met ander datastelle vir meer akkurate kaarte op opvangsgebied skaal. In die geval van 

die terrein eienskappe het, die studie vasgestel dat belowende grond soutgehalte voorspellings 

gemaak kan word gebaseer op helling, elevasie, evapotranspirasie en terrein natheid indeks 

(TWI). 'n  stapsgewyse meervoudige lineêre regressie grond soutgehalte voorspellings model wat 

gebaseer is op elevasie, evapotranspirasie en TWI het effens meer akkurate voorspellings van die 

grond soutgehalte gelewer. In geheel gesien, het die studie getoon dat dit moontlik is om grond 

soutgehalte monitering te verbeter met behulp van HRS, NIR spektroskopie, land komponente, 

hidrologiese parameters en terrein eienskappe. 
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CHAPTER 1  

INTRODUCTION: THE SOIL SALINTY QUESTION 

 

 

INTRODUCTION 

The link between what can be observed from space and the detailed work normally carried out in 

field surveys for agricultural, environmental and hydrological purposes, are mostly difficult to 

define. The work that will be presented in this dissertation is focussed on finding and defining 

the most functional link between the two modes of observation with elaboration on the 

extrapolation of ground based measurements through using remotely sensed information as co-

factors. Our diminishing ability to use ground based measurements, and the further restrictions 

due to the cost of sampling and chemical analysis, makes relating our results to remotely sensed 

information very attractive.   

As will be demonstrated in this dissertation, a huge number of articles already exist trying to 

bridge the gap between point based information and remotely sensed pixel based information.  

To be able to make a comparison between the two sources, one needs to find the neutral ground 

and this is mostly hazed by the questions of scale, sometimes called support, the quality of the 

data and the ability of analytical software. The work therefore presented in this dissertation will 

fall within the latter, and it will be indicated that for two specific uses, namely the adequate 

mapping of salinity in a landscape and the derivation of hydrologically correct information, how 

the information generated could vary and how to get the most out of available remotely sensed 

information.  

It is very important to acknowledge that this type of study demands people that are skilled in 

field observation techniques (Soil Science), geographical information systems (GIS), remote 

sensing and geostatistical techniques. This study, though done across three departments at 
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Stellenbosch University, could develop into a standard program as the demand for this type of 

information is on the increase.   

The amount of reasons remotely sensed information is important, is increasing daily while our 

ability to utilize all the resources is getting less and less as we discover more reasons why and 

how remotely sensed information is affected. Therefore, the knowledge and skills of defining 

remotely sensed information for specific uses and generate credibility for the utilisation of these 

products, is a very important step we need to take forward to also make sure that actions taken by 

government and environmentalists were not based on wrong information. As a simple example, a 

catchment boundary is normally determined using digital elevation models, derived from satellite 

information. If the boundary is delineated oncorrectly, all other hydrological calculations from 

then on are calculated wrongly. 

With the above in mind, the chapters that follow indicate the filling of specific gaps in our quest 

for generating better information towards the hydrological modelling of the Sandspruit and the 

role salinity plays in this region.  

1.1 BACKGROUND 

In the desire to provide food for the continually growing global population, more land is made 

available for crop production. As a result, deep-rooted plants are cleared and irrigation is 

introduced in arid and semi-arid regions of the world. In the study area, the removal of natural 

vegetation made room for winter crop production, and the landscape is left bare during summer. 

The elimination of deep-rooted native plants and the use of incorrect irrigation methods can 

result in soil salinization (Maianu, 1984; Allison et al., 1990; Cox and McFarlane; 1995; 

Greiner; 1998; Pannell and Ewing, 2005; Kingswell and John, 2007; Hughes et al., 2008). 

According to Farifteh (2007) soil salinization is the accumulation of soluble salts at the surface 

or near-surface of the soil horizon. Two main groups of soil salinization occur, namely primary 

soil salinization and secondary soil salinization. Primary soil salinization occurs as a 

consequence of natural processes and secondary soil salinization is that which is caused by the 

activities of human intervention (for example incorrect irrigation methods and removal of deep-

rooted plants). Soil salinity degrades agricultural land causing the decline in the productivity of 

plants and thus leading to the loss of agricultural yields (Patel et al., 2009). Salt-affected soils 
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occur across all continents and it is estimated that about 1 billion hectares of land around the 

world is affected by salts (Szabolcs, 1994; Metternicht and Zinck, 2003).  

In spite of the awareness of the damaging effects that excessive salts in the soil have on 

agricultural production and the environment, it is recorded that the problem is growing rather 

than decreasing (Szabolcs, 1994; Metternicht and Zinck, 2003). For instance, Mirlas (2012) 

studied the soil salinity problem in cultivated areas in the Jezre’el Valley in Israel using the 

MODFLOW groundwater model and GIS techniques. They established that the area affected by 

soil salinity has been increasing. Gao et al. (2011) monitored the temporal and spatial dynamics 

of soil salinization changes in the upper stream of the Tarim River in China based on remote 

sensing and global positioning system. Their study found that the total area of salinized land 

increased. Martínez-Sánchez et al. (2011) evaluated salinization problems in Murcia Region 

using two chemical degradation indicators, salinization state and salinization rate. They 

concluded that salinization increased in certain areas. Nell (2009) reported that about 23% of 

South African soils are slightly saline, 5.1% saline, 1.4% moderately saline, 0.4% strongly 

saline, 3.8% saline-sodic (non-alkaline), 6.3% saline-sodic (alkaline), and 0.4% can be 

considered as sodic. And, Fey and de Clercq (2004) found convincing proof of dryland salinity 

in the Berg River catchment (BRC) in the Western Cape Province of South Africa. Timely 

identification of areas affected by salinization is essential so that reclamation strategies can be 

implemented to regain degraded land.  

Traditionally, soil salinization is analysed and monitored by wet chemistry methods. Soil 

samples are collected at targeted areas and analysed in the laboratory for salinity. In recent times, 

the amount of land that is associated with the agricultural resources is vast. Consequently, the 

use of wet chemistry methods of analysing and monitoring soil salinity will be restrictive in 

terms of costs and labour involved. It is desirable to investigate reliable, less tedious and cost 

effective techniques to monitor soil salinization. Most recently, remote sensing, GIS and 

spectroscopy are among cheaper and less labour intensive methods that have been used for 

quantitative soil salinity analysis and monitoring.  

Despite the success of broadband sensors (for example SPOT and Landsat) in identifying 

severely saline from non-saline land, broadband sensors have not been useful in identifying 

saline soils at early stages of development. Also, the use of near-infrared (NIR) spectroscopy as a 
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less expensive and less labour intensive technique for soil salinity studies is limited. 

Additionally, the use of terrain attributes for studying soil salinity has not yet been adequately 

investigated.  

This study investigated hyperspectral remote sensing (HRS), NIR spectroscopy, terrain 

attributes, hydrological parameters and land components for improved soil salinity monitoring. 

HRS is the acquisition of spectral data using many contiguous bands. HRS provides near-

laboratory spectra and has the potential to overcome the shortcomings of broadband sensors for 

studying soil properties. NIR spectroscopy is an easy to use and less expensive technique that has 

the potential to replace traditional wet chemistry methods of soil analysis. Owing to the value of 

hydrological parameters (for example streamlines and catchment boundaries) in modeling 

salinity at catchment scales using hydrological models, the suitability of digital elevation models 

(DEMs) to derive accurate hydrological parameters deserves evaluation. Accurate hydrological 

parameters would be very useful to accurately model salinity at catchment scales. Regarding land 

components, they are landform elements with a constant value of elevation, or of two or more 

readily interpretable morphometric variables, bordered by lines of discontinuities (Minar and 

Evans, 2008). Land component borders commonly coincide with environmental land properties 

such as soil, climate and biology (Speight, 1997; MacMillan et al., 2004; Van Niekerk, 2010). 

Accordingly, land components have great potential to map soil properties and thus can be useful 

for mapping soil salinity. Finally, topography is an important soil forming property and 

determines areas of groundwater discharge in the landscape. Thus, the value of terrain attributes 

for modeling soil salinity in the landscape is vital. 

1.2 PROBLEM STATEMENT 

The Berg River is a crucial water source for the Western Cape Province in South Africa. 

Declining water quality in the BRC triggered concerns of the emergence of dryland salinity. 

According to Hughes et al. (2008) river salinity is a typical indicator of land salinity. A study 

conducted in a small catchment which is representative of the semi-arid conditions in the BRC 

by Fey and de Clercq (2004) confirmed the existence of dryland salinity in the catchment. The 

clearing of deep-rooted native plants for wheat production is the source of dryland salinity in the 

BRC. Dryland salinity in the BRC will have severe implications for irrigation agriculture, wheat 
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production, the supply of clean water, ecology of the river itself and for irrigation agriculture (de 

Clercq et al., 2010). 

It will be prohibitive in terms of costs and labour to use traditional ground-based methods to 

monitor salinity in the BRC due to its vast extent. Remote sensing, spectroscopy and DEM-

delineated terrain parameters are attractive less labour intensive and cheaper alternatives for 

quantitatively analysing, mapping and modelling soil salinity. Even though broadband sensors 

have been successfully used to isolate severely salinized from non-salinized soils, salinized soils 

in the BRC are predominantly small patches that may be challenging to map using broadband 

sensors due to their inadequate spatial and spectral resolution. It is critical to accurately identify, 

quantify and map salinized soils timely so that mitigation strategies can be implemented when 

the situation is still manageable. Thus, it is valuable to investigate the utility of hyperspectral 

remote sensing, NIR spectroscopy and DEM-based methods to quantitatively analyse and map 

soil salinity for improved monitoring.  

1.3 RESEARCH AIM AND OBJECTIVES 

The aim of this study is to evaluate the value of HRS, NIR spectroscopy, DEM-based 

hydrological parameters and land components, and terrain attributes as accurate, less tedious and 

cost effective methods for enhanced monitoring of soil salinity. Soil salinity analysis, modeling 

and mapping techniques developed in this study will be tested in the Sandspruit catchment and 

ultimately used in the entire BRC. The Sandspruit catchment is representative of the BRC in 

terms of soils, climate, geology and terrain. 

The specific objectives of this study are to: 

1. Conduct a review of literature to reveal the value of remote sensing, spectroscopy, 

hydrological parameters, land components and terrain attributes for monitoring soil salinity,  

2. Investigate the value of hyperspectral remote sensing for enhanced detection of soil salinity 

by remote sensing, 

3. Evaluate the potential of NIR spectroscopy for quantitative analysis of soil salinity, 

4. Assess the potential of DEMs to derive useful hydrological parameters for use in soil salinity 

modeling, 
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5. Investigate the accuracy of DEM-extracted land components for use in mapping soil 

properties (including soil salinity), and 

6. Evaluate the value of terrain attributes to map the risk of soil salinity. 

1.4 DATA REQUIREMENTS 

The data sets used to realize the aim of this study are; soil samples, soil spectral data, 

groundwater hydro-census data, DEMs and orthorectified digital aerial images. Each of the data 

sets is briefly described in the subsequent subsections. The description of the data sets may be 

partly repeated in Chapters 4, 5, 6 and 7 for the purpose of clarity of the specific data set used 

because this PhD study was presented in a manuscript format. 

1.4.1 Soil samples 

Soil samples were sourced from databases held at the Agricultural Research Council Institute for 

Soil, Climate and Water (ARC-ISCW). The ARC-ISCW soil samples included Land Type 

Database (LTD) and ad hoc soil sample data. The LTD arose from the 1:250 000 scale soil 

mapping programme, carried out over a period of 30 years (1972-2002) by the ARC-ISCW 

(Land Type Survey Staff, 1972-2003). The information was systematically transferred to a GIS, 

along with the composition of each of the more than 7000 unique land type mapping units, as 

well as a supporting database containing the soil profile information. The ARC-ISCW ad hoc 

soil samples selected were collected on a monthly or bi-monthly basis over a period of 14 years 

from fixed sites south east of Johannesburg in the Gauteng Province in South Africa. Other soil 

samples (n = 23) were collected from within the Sandspruit River catchment and the nearby 

Langgewens Experimental Farm north of Cape Town in South Africa. The samples were dried, 

ground and sieved with a 2 mm sieve to remove large particles and plant remains. The soil 

samples collected from the Sandspruit catchment and the nearby Langgewens Experimental 

Farm were not ground or sieved. These samples were used for developing field-based soil 

salinity predictive models. The samples were analysed for electrical conductivity (EC), organic 

carbon, texture, pH, and soluble Ca, Mg, Na, Cl, and SO4. EC was measured by a 1:5 saturated 

extract.  
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1.4.2 Soil spectral data 

Soil spectral data were collected using two different spectrometer instruments, namely the 

analytical spectral device (ASD) FieldSpec spectrometer (http://www.asdi.com) and the Fourier-

Transform (FT) Bruker multi-purpose analyser (MPA) laboratory spectrometer 

(http://www.bruker.com). The ASD Fieldspec instrument covers the visible to shortwave 

infrared wavelength range (350 to 2500 nm). The ASD spectrometer has a sampling interval of 

1.4 nm for the region 350 to 1000 nm and 2 nm for the region 1000 to 2500 nm with a spectral 

resolution of 3 and 10 nm, respectively. A halogen lamp (Lowel Light Pro, JCV 14.5V-50WC) 

was used as a source of light with the ASD Feildspec spectrometer. Also, a white reference was 

used to calibrate the ASD Fieldspec spectrometer. The white reference is a calibrated white 

spectralon with a near-100% diffuse (Lambertian) reference reflectance panel made from a 

sintered poly-tetra-flourethylene based material. The spectra measured by the ASD spectrometer 

were used to investigate quantitative hyperspectral models for predicting soil salinity in dry soils 

by hyperspectral remote sensing. 

The Bruker MPA spectrometer covers the wavelength range of 3595 to 12 489 cm
-1 

(equivalent 

to 800 to 2800 nm). According to Bruker Optics (2011), the MPA uses state-of-the-art optics for 

exceptional sensitivity and steadiness. The heart of the instrument is Bruker Optics’ patented, 

permanently aligned RockSolid
 
interferometer, which is equipped with gold-coated optics for 

maximum efficiency and sensitivity. The permanent alignment provides reliable high quality 

results, less downtime and great stability (Bruker Optics, 2011). The spectra measured by the 

Bruker MPA were used to investigate the utility of NIR spectroscopy to predict EC, pH, soluble 

Ca, Mg, Na, Cl and SO4. 

1.4.3 Groundwater hydro-census data 

Hydro-census data was obtained from the National Groundwater Information System of the 

Department of Water Affairs and Forestry (DWAF) (http://www.dwa.gov.za), South Africa. The 

data records groundwater information and the geographic location. The data records amongst 

others EC range of the groundwater and precipitation. The EC ranges of the groundwater data 

were classified into six categories; namely 0 - 70, 70 -150, 150 - 300, 300 – 500, 500 - 1000 and 

greater than 1000 mS m
-1

. The data covered the whole of the Berg River catchment and the 
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points were spaced at approximately 1 000 m from each other. The hydro-census data was used 

to investigate the relationship of the groundwater EC with terrain attributes. 

1.4.4 Digital elevation models 

Six DEMs were used in this study. These include the Shuttle Radar Topography Mission 

(SRTM) DEM, the second version of the 30-m Advanced Spaceborne Thermal Emission and 

Reflection Radiometer Global Digital Elevation Model (ASTER GDEM2), very high resolution 

DEMs generated from GeoEye stereo images (GEOEYE DEM), two versions of the 

Stellenbosch University DEM’s (SUDEM L1 and L2) and the 20-m Western Cape digital 

elevation model (WCDEM). 

The 90-m SRTM DEM, completed in 2000, is the first high resolution DEM to be developed at 

near-global scale (Farr and Kobrick, 2001; Li and Wong 2010). The SRTM DEM has a vertical 

accuracy of less than 16 m (Rodriguez et al., 2005; Van Niekerk, 2008). According to the 

Consultative Group on International Agricultural Research Consortium for Spatial Information 

(CGIAR-CSI), the SRTM DEM has been processed to fill data voids, and can be used by a wide 

group of potential users (CGIAR, 2011). 

ASTER GDEM was developed jointly by the Ministry of Economy, Trade and Industry (METI) 

of Japan and the United States National Aeronautics and Space Administration (NASA). The full 

1.5-million-scene ASTER archive was used to create the DEM. The second version of the 

ASTER GDEM (GDEM2) was released in October 2011 (ASTER GDEM Validation Team, 

2011) with the inclusion of 26 000 additional scenes to improve coverage. A smaller correlation 

kernel was also used to yield higher spatial resolution and enhanced water masking. ASTER 

GDEM2 was validated by comparing it to the absolute geodetic references over the 

conterminous United States (CONUS), the national elevation grids over the US and Japan, the 

SRTM 1 arc-second DEM over the US and 20 sites around the globe, as well as global space-

borne laser altimeter data. The vertical and horizontal accuracy of the GDEM2 is less than 17 m 

and 71 m respectively (ASTER GDEM Validation Team, 2011; Mukherjee et al., 2013). The 

number of voids and artefacts noted in GDEM1 were substantially reduced in GDEM2 and were 

almost eliminated in some areas (ASTER GDEM Validation Team, 2011). 
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The GEOEYE DEMs were created from the GeoEye stereo images acquired in July 2011. 

Elevations were extracted at 1.5, 2 and 5 m horizontal interval using the rational polynomial 

coefficients (RPC) model in the LPS module of Erdas Imagine software. The resulting DEMs 

were validated using five trig beacon height points covering the Sandspruit catchment. They 

were found to have a vertical accuracy of about 0.70 m. Although the GEOEYE DEM is a 

surface model, most of the study area is used for cultivation of grains and very few tall objects 

(e.g. trees and buildings) are present. At the time of acquisition, the crops were still at seedling 

height and had very little impact on the extracted elevations. The 1.5-m GEOEYE DEM was 

used to delineate a reference catchment boundary and reference streamlines that were used to 

validate hydrological parameters delineated from the other DEMs. While the 2-m GEOEYE 

DEM was used to extract hydrological parameters for the purpose of comparison with previous 

studies undertaken using a 2 m light detection and ranging (LiDAR) DEM, the 5-m GEOEYE 

DEM was used to generate land components for comparison with the other DEMs evaluated in 

this study. 

The SUDEM was developed by the Centre for Geographical Analysis (CGA) at the Stellenbosch 

University, South Africa. Large scale (1: 10 000) contours were used to interpolate two DEM 

products (Van Niekerk, 2011). The first product (Level 1) only used contours while the second 

product (Level 2) combined contours and the SRTM DEM (at flat areas). The SUDEMs were 

used to derive hydrological parameters and land components. The SUDEM L2 was also used to 

investigate the relationship of soil salinity with terrain attributes. 

The 20-m WCDEM was developed by the Stellenbosch University CGA using contours digitized 

from 1:50 000 national topographic map series (van Niekerk, 2001).  The vertical accuracy of the 

WCDEM was determined by computing mean absolute error (MAE) and root mean squares error 

(RMSE) using highly accurate elevation data obtained from Chief Directorate National 

GeoSpatial Information (CDNGI), South Africa (van Niekerk, 2008). It was found to have a 

MAE and RMSE of 7 and 10 m respectively, and is more accurate than the 90-m SRTM DEM. 

1.4.5 Orthorectified digital aerial photographs 

The orthorectified digital aerial photographs covering the Sandspruit catchment were obtained 

from the CDNGI. The resolution of the digital aerial images was 0.5 m. The orthorectified digital 
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aerial photographs were used as a backdrop for visual inspection of DEM delineated 

hydrological parameters and for delineating test terrain morphological discontinuities for 

validating land components. 

1.5 THE STUDY AREA 

The Sandspruit (quaternary catchment G10J) catchment is study area of interest. Soil salinization 

quantitative analysis, mapping and modelling techniques developed in this study will be applied 

in the Sandspuit. Ultimately, the techniques will be utilized in later studies to map dryland 

salinity risk in the entire BRC and other suitable sites. The Sandspruit River catchment is a 

tributary to the Berg River. The catchment is 152 km
2
 in size and is situated in the vicinity of 

Riebeek West, north of Cape Town in the Western Cape Province of South Africa (Figure 1.1).  

Figure 1.1 Location of the Sandspruit catchment 
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The geology in the Sandspruit catchment shows minimal variation and is dominated by the Table 

Mountain Group sandstone in the high elevation areas and Malmesbury shale in the mid- to low 

elevation parts. Most of the catchment is used for dryland cultivation, in particular winter wheat. 

Canola and pasturage also occur. Natural vegetation occupies only a small proportion of the 

catchment. The catchment was mainly chosen because it has a Department of Water Affairs and 

Forestry (DWAF) monitoring weir with a long-term record of salt and water discharge into the 

Berg River. Additionally, the Sandspruit catchment is the major contributor to the salinity of 

water in the Berg River. 

The Sandspruit catchment has a semi-arid (Mediterranean) climate and is located in a winter 

rainfall region with a mean annual rainfall of about 400 mm (Flügel, 1995). Rainfall is generally 

in the form of frontal rain approaching from the north-west, extending normally over a few days 

with significant periods of clear weather in between. Annual rainfall in the Sandspruit catchment 

is between 300 and 500 mm, with slightly higher rainfall in the upper southern reach in the 

vicinity of Kasteelberg (Riebeeck West).  

The catchment generally has an undulating topography with gentle to moderate slopes. About 

61% of the catchment has slope gradients between 0 and 4 degrees, 27% has slope gradients 

between 4 and 7 degrees, and 12% has slope gradients greater than 7 degrees. According to 

Flügel (1995), the valleys have a moulded shape and a shallow groundwater table occurs in the 

lower parts during the winter rainfall season. Salt crystallizes in patches during the hot summer 

between November and March. The Sandspruit catchment is representative of the BRC in respect 

of climate, geology, soils and geomorphology. 

The study area description and the map depicting the Sandspruit catchment will not be repeated 

in Chapters 5, 6 and 7 where it is needed, but will be referred to. This was done to minimize 

repetition in the dissertation.   

1.6 RESEARCH METHODOLOGY AND AGENDA 

The use of conventional wet chemistry methods to monitor soil salinity is not viable for large 

study areas due to high costs. Again, it will be challenging to use broadband sensors to map 

dryland salinity in the BRC because it predominantly manifests as small patches that may be 

partially covered with vegetation. It would be valuable to investigate less tedious, reliable and 
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cost effective methods for better monitoring. This study provides a unique opportunity to 

evaluate the utility of HRS, NIR spectroscopy, terrain attributes, DEM-delineated hydrological 

parameters and land components for quantitative analysis, mapping and modelling of soil salinity 

for better monitoring. This research is organized into eight (8) chapters. The overview of this 

research is summarized in the research design in Figure 2.2.  

The formulation of the research problem, research aims and objectives, research methodology, 

description of the study area and explanation of data sets used is given in this chapter (Chapter 

1).  
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Figure 1.2 Research design 

 

TERRAIN ATTRIBUTES AND SOIL 

SALINITY (CHAPTER 7) 

• Investigate relationship of soil salinity 

with terrain attributes 

• Develop terrain attributes-based soil 

salinity predictive models 

• Map salinity risk in the Sandspruit 

catchment 

HYPERSPECTRAL REMOTE SENSING OF 

SALINE SOILS (CHAPTER 3) 

• Individual bands 

• Normalized difference soil salinity index 

• Partial least squares regression (PLSR) 

• Bagging PLSR 

• Field-based predictive models for EC, 

pH, soluble Ca, Mg, Na, Cl and SO4 

SYNTHESIS: IMPROVED SOIL SALINITY 

MONITORING (CHAPTER 8) 

• Evaluate the success of the research 

• New developments 

• Directions for further research 

RESEARCH PLAN (CHAPTER 1) 

• Formulate research problem 

• Aims and objectives 

• Research methodology and outline 

LITERATURE REVIEW (CHAPTER 2) 

• Soil salinity hazard 

• Remote sensing of salt-affected soils 

• Spectroscopy of salt-affected soils 

• Land components and soil mapping 

• Hydrological parameters and salinity 

modeling 

• Topography and soil properties 

NEAR-INFRARED SPECTROSCOPY OF 

SALINE SOILS (CHAPTER 4) 

• Predicting EC, pH, soluble Ca, Mg, Na, Cl 

and  SO4 using NIR spectroscopy 

EVALUATION OF DEM-DELINEATED 

HYDROLOGICAL PARAMETERS 

(CHAPTER 5) 

• Delineate hydrological parameters 

(streamlines and catchment boundaries) 

from DEMs 

• Compare the accuracy of delineated 

hydrological parameters 

LAND COMPONENT 

EVALUATION (CHAPTER 6) 

• Delineate land components from DEMs 

• Evaluate land components visually and 

quantitatively 
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Chapter 2 gives an account of the theoretical background of the soil salinity risk. Quantitative 

analysis using spectroscopy, detection and mapping by remote sensing and the value of DEM-

based terrain attributes to study soil salinity is also outlined in this chapter. 

Chapters 3, 4, 5, 6 and 7 present the scientific papers responding to the objectives of this study. 

Chapter 3 investigated the potential of hyperspectral individual bands, a normalized difference 

salinity index (NDSI), PLSR and bagging PLSR to predict soil salinity. Spectra of dried, ground 

and sieved soil samples were measured using an ASD Fieldspec spectrometer in a darkroom. The 

spectral range of the ASD Fieldspec spectrometer is 350 to 2 500 nm. A halogen lamp was used 

as a source of light. The spectrometer was calibrated with a white reference before taking 

measurements of each sample. The spectral signatures were taken off-nadir at a height of about 

15 cm above the target to minimize the effects of bidirectional reflectance. Soil salinity 

predictive models were computed based on untransformed spectra, first derivative reflectance 

(FDR), PLSR and bagging PLSR using calibration samples (n = 63). The predictive models were 

validated using an independent sample (n = 32) set which was not used in the development of 

models. Furthermore, field-based regression predictive models for EC, pH, soluble Ca, Mg, Na, 

Cl and SO4 were developed using soil samples (n = 23) that were not ground or sieved to 

simulate field conditions. These samples were collected from the Sandspruit catchment and the 

nearby Langgewens Experimental farm. Spectral signatures of these samples were measured on a 

clear sky day using the sun as a source of light. A total of 118 soil samples spread throughout 

South Africa were used for this analysis. 

Chapter 4 presents the potential of NIR spectroscopy to predict EC, pH, soluble, Ca, Mg, Na, Cl 

and SO4. Spectra of ground, dried and sieved soil samples were measured using a FT Bruker 

MPA spectrometer. A total of 49 samples were used for this analysis. Due to a small number of 

samples, a full leave one out cross validation (LOOCV) was used to calibrate the PLSR 

predictive models for EC, pH, soluble Ca, Mg, Na, Cl and SO4. Not many studies that used NIR 

spectroscopy to predict EC and soluble cations and anions were found. To the best of the 

knowledge of the researcher, it is the first time that spectroscopy and chemometric modelling 

was used to predict Cl and SO4. The PLSR predictive models were validated using the R
2
, root 

mean square error of cross validation (RMSECV), ratio of prediction to deviation (RPD) and the 
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ratio of performance to inter-quartile distance (RPIQ). The use of RPIQ for evaluating pH, EC 

and soluble cations and anions was not found in the literature.  

Chapter 5 presents the potential of DEMs to delineate accurate hydrological parameters 

(streamlines and catchment boundaries) for enhanced soil salinity modelling by hydrological 

models. Four DEMs, namely two 5-m SUDEM (L1 and L2), the 30-m ASTER GDEM2 and the 

90-m SRTM DEM were used. A 1.5-m GEOEYE DEM which was developed from the GeoEye 

stereo-images was used to generate a reference catchment boundary and reference streamlines. 

The Arc Hydro module for ArcGIS software was used to extract streamlines and catchment 

boundaries at the native resolutions of the DEMs. Outlet (pour) points were selected at the same 

position for catchment boundary delineation. Streamlines were also delineated from a 2-m 

GEOEYE DEM to enable comparison with previous studies conducted with high-resolution light 

detection and ranging (LiDAR) DEMs. The catchment boundaries and streamlines were 

converted to raster data sets with a cell size of 5 m for comparison purposes. The DEM 

delineated catchment hydrological parameters were validated using visual inspection, a 

correctness index (Cr), the figure of merit index (FMI) and a new Euclidean distance (ED) index.  

Chapter 6 evaluates the suitability of DEMs to derive useful land components for mapping soil 

properties. Land components derived from the 30-m ASTER GDEM2, 90-m SRTM DEM, 5-m 

SUDEM L1 and L2, and a 5-m GEOEYE DEM using the multi-resolution segmentation (MRS) 

algorithm of eCognition 8.6 software. The SRTM DEM and the ASTER GDEM2 were up-

sampled to 5 m resolution for easy comparison. Land components were delineated using the 

slope gradient percentage and aspect derivatives of each DEM. A suitable scale factor was 

determined by experimentation and visual inspection using hill-shaded DEMs as backdrops. The 

experimentation with a suitable scale factor was carried out on the DEM with the highest detail 

(i.e. GEOEYE DEM). The scale factors for the other DEMs were adjusted so that their 

segmentations yield a similar number of objects to allow comparison. The resulting land 

components were visually inspected and quantitatively analysed using the slope gradient 

standard deviation (SGSD) measure and a novel mean slope gradient local variance (MSGLV) 

ratio.  

Chapter 7 investigates the value of terrain attributes to predict soil salinity. Terrain attributes-

based soil salinity regression predictive models based on the EC of top soil and groundwater are 
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developed using CurveExpert software (www.curveexpert.net). Stepwise multiple linear 

regression soil salinity predictive models were also developed based on terrain attributes, the 

annual evapotranspiration and the aridity index. The models are validated using R
2
, correlation 

coefficient and standard error. An independent groundwater hydro-census data covering the 

Sandspruit catchment is also used to validate the models. Although the models are less accurate, 

it is promising that further studies using better data sets will improve the results. Sound potential 

soil salinity maps of the Sandspruit were produced based on elevation, slope, evapotranspiration 

and terrain wetness index (TWI). 

Chapter 8 presents the overall findings, the implication for future soil salinity quantitative 

analysis, mapping and modelling for accurate monitoring, and the recommendations for further 

research. Overall this study demonstrated that HRS, NIR spectroscopy, land components, 

hydrological parameters and terrain attributes present positive developments for improving soil 

salinity monitoring.  
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CHAPTER 2  

REMOTE SENSING AND MODELLING OF SALT-AFFECTED SOILS: 

A REVIEW 

 

 

2.1 INTRODUCTION 

Salinization of soils is a global problem that harmfully affects the productivity of soils 

consequently threatening the sustainability of agricultural production. This problem is common 

in soils of arid and semi-arid regions (Allison et al., 1969; Fitzpatric, 1980; Rowel, 1994) and is 

practically non-existent in humid regions except when the soils have been subjected to the effects 

of seawater in river deltas and low lying areas near the sea (Allison et al., 1969). Soil salinization 

can develop as a consequence of natural processes (primary soil salinization) and also due to 

human activities (secondary soil salinization). While irrigation is a main source of human-

induced soil salinization (Lenney et al., 1996; Katerji et al., 1998; Utset and Borrotto, 2001; 

Slavisch et al. 2002; Pannell and Ewing, 2005), the removal of deep rooted plants also contribute 

to soil salinization in areas where the water table is closer to the surface also causes salinization. 

Irrigation-induced salinization is a result of the extreme use of low quality water (where the soil 

lacks sufficient drainage) for irrigation (Rietz and Haynes, 2003; Acosta et al., 2011; Iwai et al., 

2012). Dryland salinization is largely caused by rising water tables due to more rain water 

entering the subsoil and causing the water table to rise. Deep-rooted native plants capture most of 

the rainfall water, thus minimizing rates of groundwater recharge (Talsma, 1981; Pannell and 

Ewing, 2005; Robertson et al., 2009). All continents of the globe are affected by salts (Figure 

2.1). According to Sumner (2000), 20% of cultivated land around the globe is affected by salts. 

In total, it is estimated that 1 billion hectares of land in the world is affected by salts. 
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Figure 2.1 The extent of salt-affected soils in the world 

Adopted from: Szabolcs. 1994: 6 

Conventionally, soil salinization is analysed and thus monitored using ground-based methods. 

Soil samples are collected at chosen ground points and analysed for EC in the laboratory. Due to 

the large global acreage that is associated with agricultural resources to date, the use of field 

survey methods for soil salinity analysis and monitoring would be prohibitive in terms of labour 

and costs. Recently, GIS, remote sensing and spectroscopy can provide accurate, less labour 

intensive and cheaper alternatives for soil salinity analysis, mapping and modelling, thus 

resulting in improved monitoring.  

This chapter presents a theoretical account of the methods that are commonly used in the 

analysis and monitoring of salt-affected soils. Firstly, remote sensing of salt-affected soils is 

presented. Secondly, laboratory spectroscopy and chemometric modeling of soils is considered 

followed by the value of DEMs to delineate accurate hydrological parameters and digital terrain 

mapping for soil property mapping. Lastly, the relationship of soil salinity with terrain attributes 

is given. 
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2.2 REMOTE SENSING OF SALT-AFFECTED SOILS 

The use of remote sensing to study salinized soils is striking because images can cover large 

areas and the data is collected in a non-subjective manner. Generally, the identification and 

monitoring of salt-affected soils by remote sensing is  conducted using aerial photographs, video 

images, infrared thermography, visible and infrared multispectral and microwave images 

(Metternicht and Zinck, 2003; Abbas et al., In press). Basically, two approaches can be used to 

detect salt-affected soils by remote sensing; the first approach entails the detection of salt-

affected soils directly by analysing the spectral reflectance of soils and the second approach 

infers salt-affected soils by analysing the spectral reflectance of vegetation or crops growing on 

affected soils. Largely, broadband sensors have been used for studying salt-affected soils. Lately, 

the use of imaging spectroscopy for monitoring salt-affected soils has been increasing. Although 

light detection and ranging (LiDAR) and radio detection and ranging (RADAR) can be used for 

monitoring salinized soils, their use is not widespread. The use of LiDAR and RADAR for 

studying saline soils is not considered in this review because their use in studying salt-affected 

soils is limited. 

2.2.1 Broadband remote sensing of salt-affected soils 

In the main, broadband sensors have been used for detecting salinized soils and yielded 

satisfactory results (Csillag et al., 1993; Metternicht, 2001; Metternicht, 2003; Khan et al., 2005; 

Mashimbye, 2005; Douaoui et al., 2006; Fernandez-Buces et al., 2006; Gutierrez and Johnson, 

2010; Yu et al., 2010). For example, Jian-li et al. (2011) used a Landsat Enhanced Thematic 

Mapper Plus (ETM+) image using a decision tree approach to determine the key variables to be 

used for classification and extraction of salinized soil from other cover and soil types using 

principal component analysis (PCA). Their study revealed that the PC3 was the best band to 

identify areas of severely salinized soil while the blue spectral band from the enhanced thematic 

mapper plus sensor (TM1) was the most appropriate to recognize salinized soil by identifying 

salt-tolerant vegetation. Bouaziz et al. (2011) reported moderate correlations between EC and 

spectral indices using a linear spectral unmixing (LSU) technique to improve the prediction of 

salt-affected soils using MODIS data. In addition, they established that the use of the LSU 

enhanced the correlations. Ding et al. (2011) classified land cover into different levels of soil 

salinity using the Landsat ETM+ image by means of PCA and decision tree approach. They 
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obtained an accuracy of 95%. Melendez-Pastor (2010) used image based spectra of saline and 

non-saline training areas, and the spectrum of the halite mineral as a surrogate to the spectra of 

saline soils to map saline soils using multispectral ASTER images by matched filtering and 

mixture tuned matched filtering techniques. They reported that the image based approach was the 

most accurate approach for saline soil mapping and monitoring.  

Notwithstanding the success of multispectral sensors in mapping severely salt-affected soils, they 

have limitations in mapping slight to moderately affected soils (Farifteh et al., 2006; Weng et al., 

2010). This is attributed to their low spectral resolution and the use of traditional classification 

techniques (Dehaan and Taylor, 2003; Tamas and Lenart, 2006). Additionally, it is not easy to 

map small areas including areas with a good cover of salt tolerant plants (Dutkiewicz, 2006). 

2.2.2 Hyperspectral remote sensing of salt-affected soils 

Hyperspectral remote sensing has the potential to overcome the spectral limitations of the 

broadband data as it provides near-laboratory quality spectra for each pixel. Each picture element 

contains a distinctive spectrum which can be used for the recognition of earth’s surface 

materials. The spectrum allows the discrimination of slight differences between materials, 

permitting the investigation of phenomena that impressively extend the capability of traditional 

remote sensing (Chang, 2003; Lillesand et al., 2004; Campbell, 2007). This is possible because 

of the contiguous nature of the spectral profile of a hyperspectral signature. 

Currently, researchers have been investigating the value of hyperspectral remote sensing to 

enhance the detection of salt-affected soils using remote sensing (Ben-Dor and Banin, 1994; 

Drake, 1995; Ben-Dor et al., 2002; Dehaan and Taylor, 2002; Dehaan and Taylor, 2003; Tamas 

and Lenart, 2006). It is anticipated that hyperspectral remote sensing will yield more accurate 

detection of salinized soils. Encouraging findings on the value of hyperspectral remote sensing 

for studying salinized soils have been reported. Farifteh et al. (2007) used PLSR and obtained 

prediction R
2
 values between 0.78 and 0.98 using experimental soil sample data, which in each 

sample was treated with different salts (namely MgSO4, KCl, NaCl, and MgCl2). Weng et al. 

(2010) developed a univariate regression model to estimate soil salt content using a soil salinity 

index. The index was constructed from continuum-removed reflectance at 2052 and 2203 nm. 

Their model was applied to a Hyperion reflectance image and was successfully validated (R
2
 = 
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0.63). Zhang et al., (2011) investigated the relationship between vegetation spectra and soil 

salinity. They derived vegetation indices from the recorded hyperspectra and then evaluated their 

predictive power for salinity. Subsequently, they employed a univariate linear correlogram as 

well as multivariate PLSR analysis to investigate the sensitive bands. They concluded that there 

is potential to monitor soil salinity with the hyperspectra of salt-sensitive and halophyte plants. 

Wang et al. (2012) developed an exponent reflectance model to estimate soil salt contents under 

various soil moisture conditions based on a control laboratory experiment on the two factors (soil 

salinity and soil moisture) to soil reflectance. They examined Na2SO4, NaCl, Na2CO3 with wide 

soil salinity (0% to 20%) and soil moisture (1.75% to 20%) (In weight base) levels for their 

effects on soil reflectance through a model based approach. They identified moisture resistant but 

salt sensitive bands of reflected spectra for the model before applying them to inversely estimate 

soil salt content. They found high R
2
 of 0.87, 0.79, and 0.66, and low means relative error of 

16.42%, 21.17%, and 27.16% for NaCl, Na2SO4 and Na2CO3, respectively.  

The use of hyperspectral remote sensing for studying soil salinity is not yet fully established. 

More investigations are still needed to uncover techniques to enhance the detection of salinized 

and/or salt-affected soils. 

2.3 SPECTROSCOPY AND CHEMOMETRIC MODELING OF SALT-AFFECTED 

SOILS 

2.3.1 Spectroscopy of salt-affected soils 

Using traditional wet chemistry techniques for soil salinity analysis may be restrictive due to 

high costs and labour when large amounts of samples have to be analysed. It is accepted that near 

infrared (NIR) spectroscopy and mid-infrared (MIR) spectroscopy are among less expensive and 

user-friendly techniques for quantitative soil analysis (Shepherd and Walsh, 2002; Brown et al., 

2006; Bellon-Maurel et al., 2010; Bilgili et al., 2010; Bellon-Maurel and McBratney, 2011). It is 

perhaps the benefits regarding costs and less labour that makes the use of spectroscopic methods 

attractive, particularly because land that is under agriculture is massive these days.  However, the 

soil sample preparation requirements for NIR and MIR spectroscopic analysis are not the same. 

MIR spectroscopy requires more sample preparation in order to optimize the light interaction 

while at the same time showing better specificity and reproducibility than NIR spectroscopy 
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(Bellon-Maurel and McBratney, 2011). On the other hand, NIR spectroscopy is reported to be 

easy to use and requires less sample preparation (Viscarra Rossel 2006; Bellon-Maurel et al., 

2010; Bellon-Maurel and McBratney, 2011). 

While not many studies that used NIR spectroscopy for studying soil salinity were found in the 

literature, it appears that the adoption of spectroscopic techniques for soil analysis is gaining 

momentum nowadays. For example, Bilgili et al. (2010) evaluated visible-near infrared 

reflectance (VNIR) spectroscopy for prediction of diverse soil properties related to four different 

soil series of the entisol soil group within a single field in northern Turkey. They obtained strong 

correlations for exchangeable Ca, Mg, cation exchange capacity, organic matter, clay, sand, and 

CaCO3 contents. Bellon-Maurel et al. (2010) investigated the critical aspects to be conscious of 

when assessing NIR spectroscopy measurements for soil analysis. They concluded that attention 

should be paid to reducing bias. Moreover, they found that because the standard deviation (SD) 

does not describe correctly the spread of the population in skewed reference values for soil 

studies, the use of ratio of prediction to deviation (RPD) and its thresholds for model evaluation 

may be misleading. They proposed a new index called the ratio of prediction to inter-quartile 

distance (RPIQ). This index uses inter-quartile distance instead of the SD. Research on the index 

is still in progress. Viscarra Rossel et al. (2006) reviewed the literature comparing quantitative 

predictions of various soil attributes using a multivariate statistical technique and spectral 

response in the ultra violet (UV), visible (VIS), NIR and mid MIR regions of the electromagnetic 

spectrum. They tabulated the soil attributes studied, spectral regions, spectral range, R
2
, 

multivariate methods used, root mean squares error (RMSE) and the number of validation and 

calibration samples used. Their work presents a comprehensive base of what can be achieved 

with respect to spectroscopy of soils. 

2.3.2 Chemometric modeling of soil chemical variables 

A variety of statistical methods are used by researchers to extract soil attributes from the spectra. 

The statistical treatments that are used to enhance the extraction of soil attribute information 

from spectra include amongst others principal component regression (PCR), multiple regression 

analysis (MRA), stepwise multiple linear regression (SMLR), bagging PLSR and multivariate 

adaptive regression splines (MARS). Spectral transformations (mathematical treatments) are also 

applied to the spectra to maximize the extraction of information from spectra. The mathematical 
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spectral treatments include first and second derivatives, straight line subtraction, vector 

normalization, and multiplicative scattering correction, to mention a few. It appears that the use 

of statistical methods and spectral transformation frequently have a favourable result for 

enhancing the extracting of soil information from spectra. For example, Janik et al. (2009) 

compared the performance of PLSR analysis for the prediction of a variety of soil chemical and 

physical properties from their MIR spectra using a combination of PLSR and neural networks 

(NN). While their study established that the PLSR-NN method outperformed the PLSR for the 

prediction of some soil properties they cautioned that the use of PLSR-NN over the PLSR should 

be questioned against the backdrop of the trade-off of limited improvement and the added 

computational complexity. Cozzolino and Moron (2003) used modified partial least squares 

regression (MPLS) and first derivative transformation of the reciprocal reflectance to analyse soil 

samples for silt, sand, clay, Ca, K, Mg, Cu and Fe. They used cross validation to avoid over 

fitting of models. They obtained R
2
 values of 0.84, 0.80, 0.90, 0.95, 0.80, 0.90, 0.86 and 0.92 for 

silt, sand, clay, Ca, K, Mg, Cu and Fe respectively. Primarily, PLSR is the most commonly used 

statistical spectral treatment technique for soil analysis. Bilgilli et al. (2010) asserts that this is 

mainly because PLSR is superior to traditional methods in dealing with high dimensional multi-

collinearity in the data.  

2.4 TERRAIN ATTRIBUTE-BASED MAPPING OF SOIL PROPERTIES 

 Land components, hydrological parameters and terrain attributes can be useful for understanding 

soil properties. According to Moller et al. (2008) and Jenny (1941) landforms and landscape 

circumstances are crucial for revealing the processes of soil genesis and soil formation in the 

spatial domain. Thus, digital terrain analysis is beneficial to the establishment of quantitative 

variables that reveal geomorphic, soil properties, climatic and hydrologic processes (McKenzie 

and Ryan, 1999). Undoubtedly, DEM-derived attributes can be useful to study the dynamics of 

soil salinization in the landscape. Evidently, land components possess enormous significance for 

studying soil properties. Also, accurate hydrological parameters can be crucial for accurately 

modeling soil salinization in the landscape using hydrological models.  
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2.4.1 Land components 

Land component borders often correspond with environmental land properties such as soil, 

climate and biology (Speight, 1997; MacMillan et al., 2004). According to Hengl and Reuter 

(2008) and McBratney et al. (2003) soil landform units are expected to be relatively 

homogeneous in terms of the main factors including parent material. This means that accurately 

delineated land components can be useful for studying soil salinization. Owing to the use of 

conventional approaches (for example studying topographical maps, interpreting aerial 

photographs and making field measurements) to delineating land components (Speight, 1977; 

Graff and Usery, 1993; Drǎgut and Blashke, 2006), it is not surprising that these methods are 

often time consuming, subjective and expensive (Speight, 1977; Argialas, 1995; Adediran et al., 

2004; Drǎgut and Blaschke, 2006; Van Niekerk, 2010).  

The increasing availability of DEMs has promoted the use of computers for deriving terrain 

properties. Pixel-based classification techniques have been commonly used for land component 

classification. For example, Prima et al. (2006) proposed a generic landform classification 

method using a supervised classifier of four morphometric parameters from DEM-derived slope 

and topographic openness. They concluded that the constructional and erosional landforms and 

their evolutional stages were distinguishable using standard deviation ellipses, however, a post-

processing procedure to remove noisy cells was recommended. Wuest and Zhang (2009) 

reported that obtaining high levels of classification accuracy using certain pixel based methods 

such as neural networks or fuzzy based classifiers can be time consuming. Furthermore, pixel-

based classification yield problems of mixed pixels, commonly known as the ‘salt and pepper 

effects’ (Laliberte et al., 2004; Bhaskaran et al., 2010; Saha et al., In press). 

Most recently, concerns have been raised about the efficacy of the conventional pixel-based 

analysis methods to represent real world objects (Smith et al., 2007; Wulder et al., 2008). 

Although terrain information is represented through points, objects have been proposed as 

alternatives, mostly for soil-landscape modelling purposes (Blaschke and Strobl, 2003; Deng, 

2007; Drǎgut et al., 2010). The benefit of the object-oriented approach is that it offers new 

potential for image analysis since image objects can be characterized incorporating spectral 

values, texture, shape and context (neighbourhood) relationships (Bock et al., 2005). Object-
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based image analysis methods make use of segmentation algorithms to segment images into non-

overlapping homogeneous objects.  

Research on the use of DEMs for terrain and soil mapping has been steadily increasing. For 

instance, Drǎgut et al. (2010) presented a technique for estimating the scale parameter in image 

segmentation of remotely sensed data with eCognition software. They proposed a tool, called 

estimation of scale parameter (ESP), which builds on the idea of local variance (LV) of object 

heterogeneity within a scene. They argued that the ESP tool enables fast and objective 

parameterization when performing image segmentation and possess great potential for object 

based image analysis applications. Drǎgut and Eisank (2011) explored the relationships between 

object delineation and classification or regionalization in the framework of differences between 

general and specific geomorphometry. They concluded that discrete geomorphometry would 

apply to and describe land-surface divisions defined solely by the criteria of homogeneity in 

respect to a given land-surface parameter or a combination of several parameters. 

No studies that investigated the value of land components for studying soil salinity were found in 

the literature. For a start, it would be beneficial to compare the accuracy of land components 

derived from different DEMs. Accurate land components derived in a non-subjective and cost 

effective manner will be indispensable for studying soil properties because they are theoretically 

uniform in terms of parent material and terrain attributes.  

2.4.2 DEMs and hydrological parameters 

Accurate hydrological parameters (streamlines and catchment boundaries) are crucial for 

hydrological studies. These parameters are used in hydrological models to model salinity at 

catchment scales. According to O’Callaghan and Mark (1984), Martz and De Jong (1998) 

Renssen and Knoop (2000), Turcotte et al. (2001), Vogt et al. (2003) and Li and Wong (2010) 

DEMs play an important role for delineating catchments, identifying sub-basins and deriving 

streamlines. Due to the recent increasing availability of DEMs at high to medium-resolution 

near-global DEM (e.g. the SRTM DEM and the ASTER GDEM), new opportunities for carrying 

out hydrological analyses on regional or national levels are available. Delineating hydrological 

parameters from DEMs will most likely yield precise delineation. It is also highly likely to be 

useful, fast and cost effective.  
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DEM’s from different sources have been evaluated by a variety of researchers for hydrological 

studies. Terrain complexity, algorithms, resolution and the accuracy of DEMs have been 

reported to affect the quality of hydrological parameters. Areas of low terrain complexity yield 

less accurate hydrological parameters compared to areas of moderate to high terrain complexity 

(Wang and Yin, 1998; Vogt et al., 2003). Research has shown that algorithms considerably 

affect the delineation of hydrological features from DEMs (Gyasi-Agyei et al., 1995; Tarboton, 

1997; Jones, 1998; Barker et al., 2006; Wise, 2007). For example, Callow et al. (2007) 

investigated three algorithms (namely Stream burning, Agree and ANUDEM) for modifying a 

DEM to reveal known hydrology. They concluded that different methods yield non-convergent 

results for catchment parameters (such as catchment boundaries, stream position and length). 

Seyler et al. (2009) recorded that the D8 algorithm does not always give the correct delineation 

of sub-catchments corresponding to the gauging stations when using the GTOPO30 DEM. 

Most recently, availability of medium- (90 m) and high-resolution (30 m)  near-global DEMs has 

opened up new possibilities for hydrological analyses at national and regional scales (Wang et 

al., 2011; Zeilhofer et al., 2011; Weepener et al., 2012). Researchers use these DEMs for 

hydrological studies, largely because they are freely available (Wang et al., 2011; Gichamo et 

al., 2012; Weepener et al., 2012). However, the value of the products that are derived from these 

DEMs is not known. It is desirable to compare the spatial accuracy of catchment boundaries and 

streamlines derived from DEMs. Consequently, the value of DEM-extracted hydrological 

parameters for modeling soil salinity at catchment scales will be exposed.  

2.4.3 Soil salinization and topography 

Topography is an essential soil forming factor. The discharge of salts from groundwater to the 

surface is also dependent on topography. Thus, elevation and its derivatives would be essential 

for studying soil salinity. According to Dowling et al. (2003) most of the parameters associated 

to salinization processes are related to elevation and landscape position. Nevertheless, Clarke et 

al. (1998) and Barret-Lenard and Nulsen (1989) recorded that landscape alone is not adequate to 

recognize saline areas. According to Malins and Metternicht (2006) and Salama et al. (1993), the 

water table is closer to the surface at low areas in the landscape, and further away from the 

surface at high points in the landscape. It is documented that ground water discharge occurs at 

low lying areas in the landscape (Freeze and Cherry, 1979; Evans et al., 1990; Williamson, 1998; 
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Fetter, 2001). Not many studies investigated the relationship of EC with topography. A study by 

de Clercq et al. (2010) established that there is an inverse relationship of EC with topography.  

It is anticipated that saline prone areas in the landscape can be identifiable based on terrain 

attributes. It is projected that high areas in the landscape will be less susceptible to salinity, while 

low lying areas are expected to be prone to soil salinity. Thus, it is important to evaluate the 

value of elevation and its derivatives to predict the risk of soil salinity in the landscape. 

2.5 CONCLUSIONS 

The review of literature presented in this chapter outlined the use of remote sensing, 

spectroscopy and terrain attributes for quantitative analysis of soil salinity, mapping and 

modeling. There is consensus in the literature that traditional methods for studying salt-affected 

soils are not adequate due to the high costs and labour required. Cost effective and timely 

approaches are needed to enhance the quantitative analysis of soil salinity, mapping and 

modeling for improved monitoring. 

The literature revealed that the use of broadband sensors for studying salt-affected soils is not 

satisfactory due to limited spectral information. Hyperspectral remote sensing is promising to 

overcome the limitations of broadband sensors. The use of hyperspectral remote sensing for 

monitoring salt-affected soils still warrants more investigations.  

In the case of spectroscopy, notwithstanding challenges, the literature revealed that there is 

potential for these techniques to be used as alternative soil analysis methods in the laboratory and 

in the field. Nevertheless, their repeatability should be improved. The literature exposed that 

MIR spectroscopy provides more robust predictions than NIR spectroscopy; however, it is more 

expensive than NIR spectroscopy and requires more sample preparations. Skewed distributions 

mostly associated with soil chemicals, puts into question the applicability of RPD and its 

thresholds for evaluating quantitative prediction models for soil studies. An alternative index, 

namely the RPIQ is proposed and is still being investigated. However, RPD remains one of the 

main indicators for validating quantitative predictive models. The literature showed that bias is 

part of SEP or RMSE and cannot be reduced by averaging. But, composite sampling (making 

replications) can help reduce calibration SEP.  
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It was exposed in the literature that DEMs are useful to delineate hydrological parameters and 

land components. The potential use of DEMs for mapping soils properties was evident in the 

literature. The use of land components delineated by object based image analysis from DEM’s 

has good potential for mapping saline soils. The integration of land components and spectral 

reflectance of vegetation/crops to study saline soils as soil properties are theoretically uniform 

within land components is promising.  

Finally, the literature revealed that there is a connection of soil salinity with terrain attributes. 

The literature exposed that wet areas, low lying points and breaks of slope are vulnerable to soil 

salinity as they are liable to groundwater discharge. Clearly, investigations on the value of using 

terrain attributes to identify saline prone areas should be conducted.  
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CHAPTER 3 

 MODEL-BASED HYPERSPECTRAL QUANTIFICATION OF SALT-

AFFECTED SOILS: A SOUTH AFRICAN CASE STUDY
1
 

 

 

3.1 INTRODUCTION 

South Africa is a vast country. Millions of South African rands have been invested in building 

large irrigation infrastructure. Soil salinity often builds up in these schemes due to incorrect 

management practices. It is very difficult to monitor salinization in these schemes because 

current monitoring methods are ground based and the costs of laboratory analysis are high.  

Remote sensing is an attractive alternative to ground-based methods due to its relatively low 

costs and the ability to rapidly provide spatial information covering large areas. The use of 

remote sensing for soil salinity monitoring in South Africa is, however, not well established. 

Little is known about how South African conditions influence the spectra of salt-affected soils.  

Soil salinization is a world-wide land degradation process that occurs in arid and semi-arid 

regions. Salts accumulate in the soil due to natural or man-made processes, e.g., irrigation. 

Although statistics about the extent of salt-affected soils differ according to authors, Szabolcs 

(1994) and Metternicht and Zinck (2003) agree that about 1 billion hectares of land in the world 

are affected by salts. According to Nell (2009), nearly 60% of soils in South African are non-

                                                 
1
This work was published in the Pedosphere Journal and the Water Research Commission Report:  Mashimbye ZE, 

Cho MA, Nell JP, de Clercq JP, van Niekerk A, Turner DP. 2012. Model-based integrated methods for quantitative 

estimation of soil salinity from hyperspectral remote sensing data: a case study of selected South African soils. 

Pedosphere 22: 640-649. de Clercq WP, Javanovic N, Bugan R, Mashimbye E, Du Toit T, van Niekerk A, Ellis F, 

Wasserfall N, Botha P, Steudels T, Helschrot J, Flügel WA. 2013. Management of human-induced salinization in the 

Berg River catchment and development of criteria for regulating agricultural land use in terms of salt generating 

capacity. Final Report to the Water Research Commission, Report No. 1849/01/2013. The work was also presented 

at the Combined Congress,  17 – 21 January 2011, Pretoria, South Africa. 
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saline, 23% slightly saline, 5.1% saline, 1.4% moderately saline, 0.4% strongly saline, 3.8% 

saline-sodic (non-alkaline), 6.3% saline-sodic (alkaline), and 0.4% can be considered as sodic. 

Nell (2009) used analytical and morphological data derived from soil survey reports, 

environmental planning and the land type database (LTD) survey undertaken by the Agricultural 

Research Council-Institute for Soil, Climate and Water (ARC-ISCW) to quantify primary 

salinity status of South Africa. He then used elementary statistical techniques to identify 

relationships between the soil, water, climate, topography, vegetation, and salt parameters. 

Despite the awareness of the negative effects that excess salts in the soil have on agricultural 

yields, it is reported that the problem is increasing rather than decreasing (Szabolcs, 1994; 

Metternicht and Zinck, 2003). 

According to Metternicht and Zinck (2003), a variety of remote sensing data, e.g., aerial 

photographs, video images, infrared thermography, visible and infrared multispectral and 

microwave images, have been used for identifying and monitoring salt-affected soils. Hitherto, 

broadband remote sensing data have been generally used for monitoring salt-affected soils (Rao 

et al., 1991; Dwivedi, 1992; Verma et al., 1994; Sharma and Bhargarva, 1988; Mashimbye, 

2005). However, because of their low spectral resolution and the use of conventional 

classification methods, these multispectral sensors (e.g., SPOT, Landsat MSS, and Landsat 

ETM+) are reported to have limited value for studying soil properties (Dehaan and Taylor, 2003; 

Tamas and Lenart, 2006). Notwithstanding, these sensors have been successful in distinguishing 

severely salt-affected from non-affected soils (Farifteh et al., 2006; Weng et al., 2010). 

Imaging spectroscopy (hyperspectral remote sensing) does provide near-laboratory quality 

reflectance spectra for each pixel. According to Bertel et al. (2006), each picture element 

contains a unique spectrum which can be used for detecting earth’s surface materials. 

Hyperspectral remote sensing allows the discrimination of subtle differences between materials, 

permitting investigation of phenomena and concepts that greatly extend the scope of traditional 

remote sensing (Chang, 2003; Lillesand et al., 2004; Campbell, 2007). This is achievable 

because of the contiguous nature of the spectral profile of a hyperspectral signature. 

Hyperspectral remote sensing has been widely used to study salt-affected soils (Ben-Dor and 

Banin, 1994; Drake, 1995; Ben-Dor et al., 2002; Dehaan and Taylor, 2002, 2003; Tamas and 

Lenart, 2006; Farifteh, 2007). Al-Khaier (2003) achieved an accurate (R
2
 = 0.86) detection of 
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soil salinity by a normalized salinity index in bare agricultural soils using ASTER bands 4 (near-

infrared) and 5 (short-wave infrared). Additionally, Khan et al. (2005) successfully used a 

normalized difference salinity index (NDSI) (using the near-infrared and red bands of the Indian 

Remote Sensing LISS-II sensor) to map soil salinity. No studies that used a hyperspectral NDSI 

to map soil salinity could be found. 

Weng et al. (2010) developed a univariate regression model to estimate soil salt content using a 

soil salinity index. The index was constructed from continuum-removed reflectance at 2052 and 

2203 nm. Their model was applied to a Hyperion reflectance image and was successfully 

validated (R
2
= 0.627). Farifteh et al. (2007) used partial least squares regression (PLSR) and 

obtained prediction R
2
 values between 0.78 and 0.98 using experimental soil sample data, which 

in each sample was treated with different salts (namely, MgSO4, KCl, NaCl, and MgCl2). 

Viscarra Rossel (2007) showed that bagging PLSR predictive models provided more robust 

predictions of organic carbon than PLSR predictive models alone.  

The aim of this study was to evaluate the utility of hyperspectral remote sensing data for 

predicting soil salinity. Hyperspectral individual bands, an NDSI, PLSR, and bagging PLSR 

were investigated. A NDSI is a soil salinity index developed according to the principle of the 

normalized difference vegetation index (NDVI) commonly used in vegetation studies. 

Hyperspectral remote sensing bands located at 1410 and 2040 nm were used to develop the 

NDSI. To the best of our knowledge, a NDSI developed using hyperspectral data has never been 

tested for soil salinity prediction. Predictive models were developed using a training dataset. An 

independent validation dataset which was not included in the training was used to validate the 

models. In addition, field-based regression predictive models for EC, pH, soluble Ca, Mg, Na, Cl 

and SO4 were developed using soil samples which were collected from within the Sandspruit 

catchment and the nearby Langgewens Experimental Farm near Cape Town in the Western Cape 

Province of South Africa. 

3.2 MATERIALS AND METHODS 

3.2.1 Soil samples 

Two South African soil databases, namely, the LTD and ad hoc data held by the Agricultural 

Research Council (ARC), were used as sources for establishing a suitable set of soil samples for 
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this study. The LTD arose from the 1:250 000 scale soil mapping program, carried out over a 

period of 30 years (1972 - 2002) by the ARC-ISCW. From the early 1990s this information was 

systematically transferred to a geographical information system (GIS), along with the 

composition of each of the more than 7000 unique land type mapping units, as well as a 

supporting database containing the soil profile information. The ARC soil samples selected were 

collected on a monthly or bi-monthly basis over a period of 14 years from fixed sites southeast of 

Johannesburg in the Gauteng Province. More information about soils of South Africa can be 

found on the Agricultural Geo-Referenced Information Systems (AGIS) website at 

http://www.agis.agric.za. An additional 23 top soil samples were collected from within the 

Sandspruit catchment near Cape Town in the Western Cape Province of South Africa. These 

samples were not ground and sieved to simulate field conditions. The samples were used to 

develop regression predictive models for EC, pH, soluble Ca, Mg, Na, Cl and SO4. 

Most salts in South Africa are of sea origin imbedded in the geology. The LTD soil samples used 

in this study were from the following geological formations: Adelaide, Beaufort, Barbeton, 

Bokkeveld, Bushmanland, Drakensberg, Dwyka, Ecca, Kalahari, Meinhardskraal, Nama, 

Soutpansberg, Table Mountain, Tarkastad, and Zululand (Figure 3.11a). Natural organic carbon 

of the soil samples ranged from 0.01 to 0.28 g kg
-1

. The distribution of the samples with different 

quantities of natural organic carbon is depicted in Figure 3.1b. The soils were found to be saline 

sodic, moderately saline, non-alkaline sodic, and slightly alkaline soils (Figure 3.1c). The soil 

and terrain digital database (SOTER) soil units covered by the samples are: A4, AR, C1, E1, G1, 

and H1 (Figure 3.1d). 
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Figure 3.1 Simplified geology (a), natural organic carbon content (b) saline and sodic soils (c) 

and SOTER soil classification (d) in South Africa 

Source: AGIS (http://www.agis.agric.za) 

In total, 118 soil samples were used for this investigation. The samples were selected from the 

two databases using a stratified random sampling technique (Brus and Gruijter, 1997; 

Christofides, 2003; Kim et al., 2007) to ensure an even distribution within the five saline classes; 

non-saline (0 - 200 mS m
-1

), slightly saline (200 - 400 mS m
-1

), moderately saline (400 - 800 mS 
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m
-1

), strongly saline (800 - 1600 mS m
-1

), and extremely saline (> 1600 mS m
-1

). Additional soil 

samples (n = 23) were collected from the Sandspruit catchment and the Langgewens 

Experimental Farm. All the soil samples but the 23 collected from the Sandspruit catchment and 

adjoining Langgewens Experimental Farm were dried, ground, and put through a 2-mm sieve to 

remove large particles and plant remains. The Sandspruit and the nearby Langgewens 

Experimental Farm samples were kept in the original form from the field, i.e. they were not 

ground and sieved. The samples were analysed for electrical conductivity (EC), organic carbon, 

texture, pH, soluble Ca, Mg, Na, Cl and SO4. EC was measured by a 1:5 saturated extract.  

3.2.2 Spectral data collection 

Firstly, an analytical spectral device (ASD) FieldSpec spectrometer was used to acquire spectral 

signatures of the soil samples in a darkroom to ensure stable atmospheric and uniform 

illumination conditions. The instrument covers the visible to short-wave infrared wavelength 

range (350 - 2500 nm). The spectrometer has a sampling interval of 1.4 nm for the region 350 to 

1000 nm and 2 nm for the region 1000 to 2500 nm with a spectral resolution of 3 and 10 nm, 

respectively. Darkroom conditions were used to eliminate diffuse light conditions and to ensure 

that light conditions are similar to allow comparison. Diffuse lighting conditions will be 

considered in a separate part of the study as the influence thereof is required for calibrating the 

remotely sensed information. A halogen lamp (Lowel Light Pro, JCV 14.5V-50WC) was used as 

a source of light. The lamp was fixed at a nadir position 20 cm above the target. To prevent 

contamination of one sample by another, each sample was placed on a separate black plastic 

background before making spectral signature measurements. A sufficient amount of soil for each 

sample was spread on the plate to completely cover the plate’s surface. The soil was flattened on 

top to form an even surface. Reflectance calibration was done using a white reference. The white 

reference is a calibrated white Spectralon with a near 100% diffuse (Lambertian) reference 

reflectance panel made from a sintered poly-tetra-flourethylene based material. Calibration was 

done before taking measurements of each of the samples. Spectral signatures were taken at a 

height of approximately 15 cm above the target at approximately 15º off nadir to minimize the 

effect of bidirectional reflectance. 

Secondly, spectral signatures of the soil samples (n = 23) collected from the Sandspruit 

catchment and the neighbouring Langgewens Experimental Farm were measured using the ASD 
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spectrometer. These samples were not ground and sieved, and the spectral signatures were 

measured on a clear sky day to simulate field conditions. The sensor was mounted on a 

Laboratory Stand at nadir approximately 15 cm above the soil sample (Figure 3.2). Each sample 

was spread over a plate which was covered by a black plastic background and was rotated five 

times when the spectra were measured to minimize bidirectional reflectance effects.  

 

Figure 3.2 Photograph showing the experimental setup 

3.3 DATA ANALYSIS 

Salinity models were computed using untransformed individual reflectance, first derivative 

individual reflectance (FDR), a NDSI, PLSR, and bagging PLSR. Individual bands were selected 

based on the correlograms between EC and reflectance. Regression predictive models for EC, 

pH, soluble Ca, Mg, Na, Cl and SO4 using soil samples that were not ground or sieved and using 

the sun as a source of light were computed using the Sandspruit and Langgewens soil samples. 

Soil reflectance data in the wavelength range between 400 and 2500 nm were used for the 

analysis. R
2
 values were computed for each of the models. 
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PLSR and bagging PLSR were computed using the ParLeS version 3.1 software (Viscarra 

Rossel, 2007, 2008). PLSR is a method that specifies a linear relationship between a set of 

dependent variables, Y, and a set of predictor variables, X (Farifteh et al., 2007). The general idea 

of the PLSR is to extract the orthogonal or latent predictor variables, accounting for as much of 

the variation of the dependent variables as possible. The bagging PLSR is a bootstrap technique 

that leaves out about 37% of the data in the course of re-sampling (Viscarra Rossel, 2007, 2008). 

The bootstrap automatically calculates the R
2
, adjusted R

2
 (R

2
adj), root mean squares error 

(RMSE), mean error (ME), ratio of prediction to deviation (RPD), and standard deviation of the 

error distribution (SDE). The performance of each of the models was evaluated using the 

calibration R
2
 and the validation R

2
. The R

2 
values indicate the strength of statistical correlation 

between measured and predicted values (Farifteh et al., 2007). Additionally, the PLSR models 

were evaluated using the RPD, and R
2
adj. The R

2
adj measures the proportion of the variation in the 

response that may be attributed to the model rather than to random error, which makes it more 

comparable across models with different numbers of parameters (Viscarra Rossel, 2007). The 

RPD measures the ratio of percentage deviation to the RMSE. RPD values of less than 1.5 

indicate very poor model predictions, between 1.5 and 2.0 poor model predictions, between 2.0 

and 2.5 good model predictions, and greater than 2.5 very good model predictions (Viscarra 

Rossel, 2007). 

3.3.1 Individual bands 

A distribution fitting curve using untransformed EC values revealed that the training samples 

were not normally distributed (P< 0.05, Shapiro-Wilk’s W test) (Figure 3.3a). A second 

distribution fitting curve computed using the natural logarithmic values of EC resulted in a 

normal distributed (P> 0.05, Shapiro-Wilk’s W test) sample (Figure 3.3b). The analysis was 

consequently conducted using the natural logarithmic values of EC. Pearson’s correlation 

analyses of original soil spectra and FDR with EC were carried out and the bands that yielded the 

highest correlations with EC were identified. For individual band analysis, only bands that occur 

outside the major water absorption bands (1340-1480 and 1770-1970 nm) (Herold et al., 2004) 

were considered for analysis. Consequently, regression models that explained the most degree of 

variation of EC using spectral reflectance were computed using these bands only. A total of 95 

samples were used (training samples = 63 and validation samples = 32). 
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Figure 3.3 Training sample distribution-fitting curve of (a) original EC values and (b)LogEC 

values  

Chi-Square test = 48.25204, df = 2 (adjusted) , p = 0.00000
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3.3.2 Normalized difference salinity index (NDSI) 

An analysis was carried out to develop a NDSI that predicts EC in soils. Candidate NDSI for any 

two bands i and j for a sample n, NDSIi,j,n, was calculated according to the principle of the 

normalized difference vegetation index (NDVI) used in vegetation studies (Equation 3.1): 

 

NDSIi,j,n = (Ri,n-Rj,n)/(Ri,n+Rj,n)                                                       3.1 

 

where Ri,n and Rj,n are the reflectance of any two bands i and j for a sample n. 

The candidate NDSI was derived from all possible two-band combinations involving the bands 

in the 400-2500 nm range, sampled at 10 nm resolution. Only the training sample set was used 

for this purpose. This resulted in 44 100 (i.e., 210 x 210) candidates. The NDSI was regressed 

with EC and the best bands were identified. The number of soil samples used for this analysis is 

95. 

3.3.3 Partial least squares regression (PLSR) 

PLSR is a bilinear calibration method using data compression by reducing the large number of 

measured collinear spectral variables to a few non-correlated latent variables or factors (Hansen 

and Schjoerring, 2003; Cho et al., 2007). PLSR specifies a linear relationship between a set of 

dependent variables (Y) and a set of predictor variables (X), thereby extracting the orthogonal or 

latent predictor variables accounting for as much of the variation of the dependent variables as 

possible (Cho et al., 2007; Farifteh et al, 2007). The linear equation derived from the PLSR is: 

Y = Xb + E,                                              3.2 

where Y is the mean-centred matrix containing the response variables, X the mean-centred matrix 

containing the predictor variables (spectral bands in this study), b the matrix containing the 

regression coefficients and E is the matrix of residuals. PLSR of untransformed and first 

derivative reflectance with EC was conducted using the ParLeS version 3.1 software (Viscarra 

Stellenbosch University   http://scholar.sun.ac.za



39 

 

 

 

Rossel, 2008). As with individual bands and a NDSI evaluated above, 95 samples were used for 

this analysis. 

3.3.4 Bagging PLSR  

 Bootstrapping performs sampling within a sample. It is a technique that may be used to estimate 

the cumulative distribution function (CDF) of a population, its moments and their uncertainty by 

re-sampling with replacement (Viscarra Rossel, 2007). The bootstrap assumes that the CDF of 

the data is sufficiently similar to that of the original population, and that multiple realizations of 

the population can be replicated from a single dataset. The bagging PLSR function of the ParLes 

version 3.1 software was used to conduct automatic bootstrapping consisting of 50 iterations for 

the bagging PLSR. Although a bootstrap may have duplicate data, it leaves out about 37% of the 

data in the course of re-sampling for validation statistics (Viscarra Rossel, 2007). These statistics 

were analysed to assess the performance of the various models. 

3.3.5 Field-based soil salinity regression predictive models 

An investigation was conducted to evaluate the possibility of mapping soil salinity using 

airborne/satellite hyperspectral remote sensing data. Pearson’s correlation analysis of original 

and transformed spectra of dry soil with EC, pH, soluble Ca, Mg, Na, Cl and SO4 was conducted. 

The bands that yielded the highest r were used to develop regression predictive models for EC, 

pH, soluble Ca, Mg, Na, Cl and SO4. Only samples (n = 23) from the Sandspruit catchment and 

the Langgewens Experimental Farm were used for this investigation. These samples were not 

ground and sieved, and the sun was used as a source of light when measuring spectral signatures 

to emulate field conditions. 

3.4 RESULTS 

3.4.1 Regression between EC and individual bands 

Pearson correlation coefficient values of EC with untransformed saline soil spectra increased 

from the visible through to the short-wave infrared region of the spectrum (Figure 3.4).The raw 

reflectance data at 2257 nm and FDR at 991 nm showed the highest Pearson correlation 

coefficient (r = -0.59 for 2257 nm and r = -0.73 for FDR at 991 nm) with EC among the spectral 

bands from 400 to 2500 nm. The above bands were subsequently used to derive predictive 
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regression models for soil EC. Fig. 3.5a indicate that for the untransformed reflectance (at 2257 

nm), a quadratic regression model provided a better representation (R
2
 = 0.31) of the EC of the 

training sample set than a linear model (R
2
 = 0.25). Despite yielding a lower calibration R

2
, the 

linear predictive model yielded a slightly higher prediction R
2
 than the quadratic predictive 

model (Figure 3.5b, c) compared to the validation sample set. For the FDR (at 991 nm), both the 

linear and quadratic models yielded similar calibration and prediction R
2
 values (Figure 3.5d, e, 

f).  

 

Figure 3.4 The relationship of EC with untransformed reflectance of dry saline soil 
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Figure 3.5 Untransformed individual band (at 2257 nm) soil EC predictive models (a), quadratic 

untransformed individual band soil EC predictive model validation (b), linear untransformed 

individual band soil EC predictive model validation (c), FDR individual band (at 991 nm) soil 

EC predictive models (d), quadratic FDR individual band soil EC predictive model validation 

(e), and linear FDR individual band soil EC predictive model validation (f) 

3.4.2 NDSI 

Linear regression analyses were performed comparing each candidate NDSI with EC. A contour 

plot of R
2
 of the results is shown in Figure 3.6. The 2040 and 1410 nm wavelengths were 

identified as the most promising for developing a NDSI. Consequently, a NDSI using the 

corresponding bands was created and subsequently assessed for its predictive capability using the 

independent validation dataset. 
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Figure 3.6 Contour plot of R
2
 with wavelength (nm) 

Although the NDSI quadratic and linear regression predictive models yielded similar calibration 

R
2
 (Figure 3.7a), the NDSI quadratic predictive model yielded a higher prediction R

2
 than the 

NDSI linear predictive model, with the prediction R
2
 being 0.65 and 0.57 for the NDSI quadratic 

predictive model and the NDSI linear predictive model, respectively (Figure 3.7b, c). Compared 

to the individual band predictive models (Figure 3.5b, c, e, f), the NDSI quadratic predictive 

model yielded higher calibration and prediction R
2
 values. 
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Figure 3.7 NDSI soil salinity predictive models (a), quadratic NDSI soil salinity predictive 

model validation (b), and linear NDSI soil salinity predictive model validation (c). 

3.4.3 PLSR 

The results show that the R
2 

values for the untransformed and FDR PLSR predictive models were 

0.68 and 0.72, respectively (Table 3.1), while the RPD values were less than 1.5 in both cases. 

According to Farifteh et al. (2007), predictive models with RPD values less than 1.5 and 

calibration R
2 

values between 0.66 and 0.81 can be regarded as poor predictive models. In 

addition, the high RMSE values (0.39 and 0.41 for untransformed spectra and FDR, respectively) 

were indicative of high prediction errors. Although the R
2
 value of the FDR PLSR predictive 

model was slightly higher than the untransformed reflectance value, the former yielded a 

significantly lower prediction R
2
 (Figure 3.8a, b). The first five factors of the untransformed 

reflectance PLSR predictive model contained about 68% of the information on soil EC, while the 

first factor of the FDR PLSR predictive model contained almost 72% of the information on soil 

EC. 

 

 

 

 

 

a 
b c 
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Table 3.1 PLSR soil salinity predictive models calibration statistics 

Statistics
a)

 Untransformed reflectance    First derivative reflectance 

R
2
 0.68 0.72 

R
2
 adj. 0.47 0.41 

RMSE 0.39 0.41 

RPD 1.35 1.27 

Number of factors 5 1 

a)
R

2
adj = adjusted R

2
; RMSE = root mean square error; RPD = ratio of prediction to deviation.  

 

Figure 3.8 Untransformed spectra PLSR soil salinity predictive model validation (a) and the FDR 

PLSR soil salinity predictive model validation (b). 

 

a b 
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3.4.4 Bagging PLSR 

As with PLSR, the calibration R
2
 values were between 0.66 and 0.81 (R

2
 = 0.69 for 

untransformed reflectance and R
2
 = 0.67 for derivative reflectance). However, the RPD values 

are higher than 1.5 (Table 3.2). Additionally, the bagging PLSR presented lower prediction 

errors when compared to PLSR (Tables 3.1 and 3.2). Amongst all the predictive models 

evaluated in this work, the bagging PLSR model using FDR yielded the highest prediction R
2
 

(Figure 3.9b). 

Table 3.2 Bagging PLSR soil salinity predictive models calibration statistics 

Statistics
a)

 Untransformed reflectance    First derivative reflectance 

R
2
 0.69 0.67 

R
2
 adj. 0.69 0.66 

RMSE 0.29 0.29 

RPD 1.81 1.73 

Number of factors 8 2 

Number of bootstraps 50 50 

a)
R

2
adj = adjusted R

2
; RMSE = root mean square error; RPD = ratio of prediction to deviation.  
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Figure 3.9 Untransformed spectra bagging PLSR soil salinity predictive model validation (a) and 

FDR bagging PLSR soil salinity predictive model validation (b) 

4.4.5 Field-based soil salinity regression predictive models 

The relationship of soil spectra with EC is shown in Figure 3.10. Spectral interferences due to 

atmospheric moisture are observed around 1800 nm (Figure 3.10). First derivative reflectance 

(FDR) yielded higher r values for all the soil chemicals investigated in this study (Table 3.3). 

The relationships of EC, pH, soluble Ca, Mg, Na, Cl and SO4 with FDR are shown in Figure 

3.11. Owing to higher r values, regression predictive models were computed with FDR for all the 

soil chemicals investigated in this study. 

a b 
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Figure 3.10 The relationship of EC with wavelength based on field samples 

Table 3.3 Field-based correlation coefficients for EC, pH, soluble Ca, Mg, Na, Cl and SO4 based 

on untransformed and first derivative reflectance 

Variable Highest r (untransformed band 

where it occurs) 

Highest r (FDR band where it 

occurs) 

EC 0.66 (506 nm) 0.88 (2051 nm) 

pH 0.43 (441 nm) 0.71 (2205 nm) 

Ca -0.42 (1950 nm) 0.72 (2048 nm) 

Mg 0.57 (528 nm) 0.83 (2049 nm) 

Na 0.67 (494 nm) 0.83 (2051 nm) 

Cl 0.68 (494 nm) 0.84 (2051 nm) 

SO4 0.44 (1950 nm) 0.67 (2048 nm) 
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Figure 3.11 The relationship of (a) EC, (b) pH, soluble (c) Ca, (d) Mg, (e) Na, (f) Cl and (g) SO4 

with first derivative reflectance showing the band that yielded the highest r 

a b 

c d 

e f 

g 
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Regression predictive models using FDR for EC, pH, soluble Ca, Mg, Na, Cl and SO4 are 

depicted in Figure 3.12. Moderate to accurate predictive models for all the soil chemicals 

investigated were obtained in this investigation. The R
2
 values are 0.85, 0.84, 0.81, 0.79, 0.65, 

0.58 and 0.50 for the EC, Mg, Cl, Na, Ca, SO4 and pH regression predictive models respectively. 

All the soils chemicals but pH could be predicted using a quadratic equation (Figure 3.12). A 

linear model was found suitable for predicting soil pH. 
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Figure 3.12 Field-based regression predictive models for (a) EC, (b) pH, soluble (c) Ca, (d) Mg, 

(e) Na, (f) Cl and (g) SO4 based on first derivative reflectance 

 

a 
b 

c d 

e f 

g 
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The relationship of untransformed reflectance with EC, Na, and Cl looked similar throughout the 

spectrum (Figure 3.13). A similar trend was observed with FDR (Figure 3.11). Untransformed 

reflectance displayed a stronger relationship with EC, Na and Cl in the visible and near-infrared 

regions of the spectrum. The relationship was weaker in the short wave infrared (SWIR) region. 

On the other hand, FDR yielded a very strong relationship with EC, Na and Cl in the SWIR. The 

highest r of FDR with EC, Na, and Cl occurred at FDR band at 2051 nm. 

 

Figure 3.13 The relationship of untransformed reflectance with EC, soluble Na and Cl 

3.5 DISCUSSION 

This work confirmed the utility of bagging PLSR predictive models in soil studies. Bagging 

PLSR predictive models produced higher prediction R
2
 than PLSR, NDSI and individual bands 

predictive models. These results support the findings by Viscarra Rossel (2007) which showed 

that bagging PLSR predictive models provided more robust predictions of organic carbon than 

PLSR predictive models alone. This is because bagging PLSR incorporates a bootstrap sampling 

into the construction of the model, which stabilizes the modelling while still allowing for the 

identification of important relationships in the data (Viscarra Rossel, 2007). 
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We found that the PLSR predictive models performed better than using a two-band NDSI or 

individual bands. This is likely due to higher information content of the multiple bands used in 

PLSR. The prediction R
2
 obtained in this research is generally lower than that of Farifteh et al. 

(2007). Presumably, this is because the EC of the samples used in this work is the combined 

effect of a number of naturally occurring soluble salts. The results of untransformed PLSR 

analysis suggest that PLSR can provide useful estimates of soil EC. 

The NSDI predictive models could explain up to about 50% of the variation in soil EC.  

Normalized indices have been found to be useful in many studies, including vegetation studies 

(Gao, 1996; Al-Khaier, 2003; Jins and Sader, 2004; Delbart et al., 2005; Khan et al., 2005; 

George et al., 2006; Cho et al., 2007; Inoue et al., 2007). One of the bands (located at 1410 nm) 

used to compute the NDSI is found in the water absorption region. Consequently, the NDSI can 

only be applied to dry soils. No studies that linked the other band used in the NDSI (band at 2040 

nm) to soil EC were found. 

The relationship of EC with the saline soil spectra increased from the visible through to the short 

wave infrared (SWIR) portion of the spectrum. The highest correlations of untransformed saline 

soil spectra with EC occurred in the near-infrared (NIR) and SWIR. This is likely due to saline 

soils having distinct spectral features in the visible and near-infrared portions of the spectrum, 

which allow the recognition of minerals such as gypsum, bassanite and polyhalite (Dehaan and 

Taylor, 2002; Metternicht and Zinck, 2003). Also, Farifteh et al. (2007) found that the best 

performing bands for field-scale data sets, experimental-scale and image-scale data sets were in 

the NIR and SWIR regions of the spectrum. The untransformed individual band located at 2257 

nm presents possibilities for estimating soil EC for dry soils by a linear predictive model. No 

other studies were found linking the band at 2257 nm to soil EC.  

Because the study was based on dry soils, the influence of water on the soil spectra would be 

minimal. According to Weng et al. (2010, citing Baumgardner et al., 1970), organic carbon 

content hardly affects the reflectance of soil when it is lower than 20 g kg-
1
. Hence, organic 

carbon could not have affected the spectral reflectance of soils in this study because the highest 

measured organic carbon for the samples was 0.28 g kg
-1

, while the average organic carbon 

content was 0.03 g kg
-1

.  
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Regarding field-based predictive models, we found that reliable predictions of EC, pH, soluble 

Ca, Mg, Na, Cl and SO4 could be made based on FDR. Untransformed reflectance yielded 

weaker relationships with all the soil chemicals investigated in this work. This is perhaps due to 

the different particle sizes of the soil samples. The soil samples were not ground and sieved to 

emulate field conditions. FDR transformation seems to minimize the effect of scattering due to 

particle size. The best performing bands for field-based predictions of EC, pH, soluble Ca, Mg, 

Na, Cl, and SO4 are in the SWIR. The bands that yielded the highest r for EC, pH, soluble Ca, 

Mg, Na, Cl and SO4 are 2051, 2205, 2048, 2049, 2051 and 2048, respectively. This is consistent 

with the work of Farifteh et al. (2007) who found that best performing bands for salt-affected 

soils are in the NIR and SWIR.  

The techniques applied in this study have not been tested on digital hyperspectral airborne or 

satellite images. They will be tested using digital airborne hyperspectral data in a selected study 

site where further work is currently being conducted. Constraints such as atmospheric 

attenuation are envisaged when airborne or satellite images are used (Ben-Dor et al., 2009). 

Good atmospheric correction methods will have to be used. Other challenges include soil texture 

and bidirectional reflectance distribution effects. Additionally, the soil surface is not always fully 

exposed. Litter, vegetation cover and remains, rocky outcrops and other surface features might 

contribute to creating spectral confusion with salt reflectance properties (Metternicht and Zinck, 

2003; Ben-Dor et al., 2009). Further research is needed to verify the findings of this work. 

3.6 CONCLUSIONS 

Under controlled environment, this work suggest that individual bands, a NDSI, PLSR and 

bagging PLSR present opportunities for mapping salinity during dry seasons. The study also 

affirmed that bagging PLSR produces more robust predictive models than PLSR alone. Of all the 

techniques evaluated under controlled conditions, bagging PLSR using FDR is the most effective 

method of predicting soil EC. In addition, a NDSI and the untransformed band at 2257 nm can 

potentially predict soil EC under dry conditions. These techniques present possible solutions for 

estimating soil EC using remotely-sensed imagery during dry seasons. The work also revealed 

that soil EC can be explained by a linear predictive spectral model. Furthermore, this work 

presents opportunities for estimating EC using hand-held spectrometers in the laboratory (where 

minimum soil preparation will be required) and in-situ. With respect to field-based investigation, 
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the study established that reliable predictions of EC, pH, soluble Ca, Mg, Na, Cl and SO4 are 

possible based on FDR. This study confirmed that spectral transformations could minimize 

spectral interferences such as particle size. More research is needed to evaluate these techniques 

under field conditions, different soil types and different geological conditions.  
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CHAPTER 4  

NEAR-INFRARED SPECTROSCCOPY AND CHEMOMETRIC 

MODELLING OF SALT-AFFECTED SOILS
2
 

 

 

4.1 INTRODUCTION 

South Africa being a semi-arid country, monitoring soil salinity is crucial for natural resources 

management. Salinization of soils is a worldwide problem that negatively affects the productivity 

of soils, thus leading to the reduction of agricultural yields. Saline soils are characterized by 

elevated levels of electrical conductivity (EC) which affects the productivity of soils. This 

problem is common in soils of arid and semi-arid regions of the world (Fitzpatrick, 1993; Rowel, 

1994). While incorrect irrigation is a major contributor to soil salinization (Lenny et al., 1996; 

Katerji et al., 1996; Slavisch et al., 2002; Utset and Borroto, 2001), the removal of deep-rooted 

plants also contributes to soil salinization in areas where the water table is closer to the surface 

(Allison et al., 1990; Dowling et al.; 2003; Xu and Shao, 1990). 
 
In the arid and semi-arid 

regions of the world, including South Africa, soil salinity often builds up as a result of poor 

irrigation methods and the clearing of vegetation for crop production. It is estimated that about 1 

billion hectares of land in the world are affected by salts (Metternicht and Zinck, 2003; Szabolcs, 

1994). Despite the awareness of the adverse effects that excess salts in the soil have on 

agricultural yields, it is reported that the problem is increasing rather than decreasing (Greiner, 

                                                 
2
 The contents of this chapter was published in the Water Research Commission Report: de Clercq WP, Javanovic 

N, Bugan R, Mashimbye E, Du Toit T, van Niekerk A, Ellis F, Wasserfall N, Botha P, Steudels T, Helschrot J, Flügel 

WA. 2013. Management of human-induced salinization in the Berg River catchment and development of criteria 

for regulating agricultural land use in terms of salt generating capacity. Final Report to the Water Research 

Commission, Report No. 1849/01/2013. The work was also presented at the 2
nd

 South African Chemometrix 

Society Conference, 07 – 09 May 2012, Irene, South Africa. The work is being prepared for submission for 

publication in a suitable peer-reviewed scientific journal. 
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1998; Metternicht and Zinck, 2003; Bennet et al., 2009).
 
For instance, Gao et al. (2011) 

investigated soil salinization temporal and spatial dynamic changes in the upper stream of the 

Tarim River in China using remote sensing, global positioning systems and other data sets. Their 

study established that the total area of salinized land had increased. Also, Fey and de Clercq 

(2004) found credible evidence of dryland salinity in the Berg River catchment in the Western 

Cape Province of South Africa.  

South Africa would benefit from the development of less labour-intensive, more cost-effective 

and reliable methods for soil salinity monitoring, because conventional wet chemistry methods 

are tedious and expensive as they require the use of chemicals (Ben-Dor and Banin, 1995; 

Viscarra Rossel and McBratney, 1998; Shepherd and Walsh, 2002; Islam et al., 2003; Viscarra 

Rossel et al., 2009). Speedy assessment of soil salinity is essential for management purposes (de 

Clercq et al., 2009). This will allow early diagnosis of salt accumulation in the soil so that 

reclamation strategies can be implemented when the problem is still manageable. Furthermore, 

Shepherd and Walsh (2002) noted that soil-testing laboratories in Africa are closing at the time 

when they should be gearing to meet the challenges of agricultural development. They proposed 

a diagnostic surveillance framework modelled on the medical diagnostic approaches for 

evidence-based management of agriculture and environment. Non-destructive near-infrared 

(NIR) (14 286 – 4000 cm
-1

) and mid-infrared (MIR) (4000 – 400 cm
-1

) spectroscopic 

measurements are among the economical and user-friendly substitute or complementary methods 

for soil chemical analysis (Brown et al., 2006; Viscarra Rossel et al., 2006; Gomez et al., 2008; 

Mulder et al., 2011). Bellon-Maurel and McBratney (2011) undertook a review of research on 

NIR/MIR spectroscopy for soil studies, particularly for determining carbon (C) content. Their 

objective was to determine which acquisition method (NIR, MIR, in the field or in the 

laboratory) might be recommended to do C reserves measurement for carbon credit trading. 

Their study established that MIR spectroscopy performs better than NIR spectroscopy for C 

measurement. Mashimbye et al. (2012) investigated hyperspectral individual bands, a 

normalized difference salinity index (NDSI), partial least squares regression (PLSR) and bagging 

PLSR for predicting soil salinity. They established good soil salinity predictions based on PLSR 

using untransformed spectra (R
2
 = 0.70), bagging PLSR using first derivative reflectance (FDR) 

(R
2
 = 0.85), NDSI (R

2
 = 0.65) and the untransformed band situated at 2257 nm (R

2
 = 0.60). Also, 

Furthermore, Ge et al. (2011) reported that VNIR diffuse reflectance spectroscopy calibration 
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models are highly dependent on instrument and scanning environment, and that their extent of 

applicability could be limited. The shift towards fully exploiting the information-rich signal 

would be beneficial for agricultural development and will also reduce the amount of chemical 

waste generated by wet chemistry methods.  

The adoption of NIR/MIR spectroscopy as a routine laboratory technique for soil analysis has 

been sluggish. This is partly due to the challenges of repeatability of NIR/MIR results because of 

different instruments and the scanning environment. The use of NIR/MIR spectroscopy for soil 

salinity analysis is limited (Janik et al., 1998; Shibusawa et al., 2001;Islam et al., 2003; Viscarra 

Rossel et al., 2006; Wang et al., 2012). Most NIR spectroscopy studies for soil have focused on 

carbon (Ben-Dor and Banin, 1995; Vagen et al., 2006; Sankey et al., 2008; Bellon-Maurel et al., 

2010; Bilgili et al., 2010; Viscarra Rossel and Behrens, 2010; Ge et al., 2011; Fuentes et al., 

2012). No studies that used NIR spectroscopy for detecting soil salinity were found in the 

literature. Previous studies on soil EC mainly used MIR, VIS-NIR and ultraviolet visible near-

infrared (UV-VIS-NIR) spectroscopy (Janik et al., 1998; Shibusawa et al., 2001; Islam et al., 

2003; Farifteh, 2007; Mashimbye et al., 2012; Weng et al., 2012). Owing to the correlation of 

pH, cations and anions with EC (which is a major indicator of soil salinity) (Farifteh, 2007; 

Farifteh et al., 2007; Farifteh et al., 2008; Yao and Yang, 2010), this study aimed to investigate 

the utility of NIR spectroscopy to quantify EC, pH, soluble Ca, Mg, Na, Cl and SO4.  

4.2 MATERIALS AND METHODS 

4.2.1 Sites and soil sampling 

A total of 49 soil samples were used for this study. Twenty-three (23) topsoil samples were 

collected in the Sandspruit River catchment (33
o
17’12”S and 18

o
46’15”E) and the neighbouring 

Langgewens experimental farm north of Cape Town in South Africa. The Sandspruit catchment 

is the main contributor to the salinity of the water in the Berg River catchment and has a 

Department of Water Affairs and Forestry monitoring weir with a long-term record of salt and 

water discharge into the Berg River. An additional 26 samples were obtained from ad hoc data 

held by the Agricultural Research Council-Institute for Soil, Climate and Water (ARC-ISCW). 

The ARC-ISCW soil samples were collected for salinity monitoring on a monthly basis over a 

period of 14 years from fixed sites south-east of Johannesburg in Gauteng province, South 
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Africa. The soil samples were air-dried, ground with a mortar and passed through a 2-mm sieve 

to remove large stone particles and plant remains. EC, pH, soluble Ca, Mg, Na, Cl and SO4 were 

analysed in the laboratory. EC was measured by a 1:5 saturated paste extract.  

4.2.2 Spectral data measurement 

Near-infrared spectra were measured using a Bruker multi-purpose analyser (MPA) spectrometer 

(http://www.bruker.com) (wavelength range of 3595 to 12 489 cm
-1

, equivalent to 800 to 2800 

nm). In each of the reflectance measurements, 128 scans were averaged. Owing to soil being a 

highly heterogeneous medium, composite sampling was implemented to alleviate sampling bias-

related errors (Bellon-Maurel et al., 2010; Esbensen and Paasch-Mortensen, 2010) and to 

improve the resultant PLSR calibration models. Composite sampling was implemented by 

spreading the soil samples in a petri dish and subsequently sampling the soil with a spatula 

throughout the petri dish. Three independent composite samples were extracted from each soil 

sample. The soil was constantly mixed with a spatula to improve sample representativeness. 

Each composite sample was placed in an aluminium cup to completely cover the surface of the 

cylinder. The base of the cylinder is made of high-quality quartz glass with a diameter of 51 mm. 

Spectra for the soil samples were measured in reflectance mode because soil is a very diffusive 

and absorptive medium (Bellon-Maurel and McBratney, 2011). The instrument was calibrated 

with an in-house spectrometer control solution after measuring every six soil samples to monitor 

the performance of the instrument (Stellenbosch University Institute for Wine Biotechnology, 

2012). The spectrometer control solution is a 1-l mixture of 125 ml of absolute ethanol (12% 

v/v), 2.5 g tartaric acid and distilled water (pH was wet at 3.5). 

4.3 DATA ANALYSIS 

4.3.1 PLSR model calibration 

Saline soils contain varying amounts of solubleble cations and anions which contribute to the EC 

of the soil. Also, the pH, cations and anions are correlated to soil EC. All the soil chemical 

measurements were log transformed before the analysis was conducted because of the non-

Gaussian distribution of the values. Thus, the study evaluated the potential of NIR spectroscopy 

to predict EC, pH, soluble Ca, Mg, Na, Cl and SO4.  
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OPUS 6.5 software (http://www.bruker.com) was used to develop PLSR predictive models for 

each soil chemical property investigated. PLSR is a method that specifies a linear relationship 

between a set of dependent variables, Y, and set of predictor variables, X (Farifteh et al., 2007). 

PLSR extracts the orthogonal or latent predictor variables accounting for as much of the 

variation of the dependent variables as possible (Bilgili et al., 2010). Due to the limited number 

of samples for this study, “leave one out” cross validation (LOOCV) was used. According to 

Martens and Dardenne (1998) independent test validation yields over-optimistic assessment of 

predictive models while on the other hand LOOCV gave better predictive performance while 

yielding little over-optimistic assessment of the models predictive performance when a small 

number of samples is used for calibration.  

Mathematical treatment of the spectral data available in the OPUS 6.5 software involve no 

spectral data pre-processing, constant offset elimination, straight line subtraction, vector 

normalization (SNV), min-max normalization, multiplicative scattering correction (MSC), first 

derivative reflectance (FDR), second derivative reflectance (SDR), FDR + straight line 

subtraction, FDR + SNV and FDR + MSC. The gaps over which the derivatives were taken were 

17 data points. Pre-processing treatments are selected prior to model development and the OPUS 

software selects the best pre-processing technique for a particular PLSR predictive model. The 

software generates several models and ranks them according to the root mean square error of 

prediction (RMSEP) or the root mean square error of cross validation (RMSECV). More than 

300 models were generated for each soil chemical property that was investigated. 

4.3.2 PLSR predictive model validation 

The performance of each model was evaluated using the R
2
, RMSECV, ratio of performance to 

deviation (RPD) and the ratio of performance to inter-quartile distance (RPIQ). The R
2
 values 

indicate the power of statistical correlation between measured and predicted values (Farifteh et 

al., 2007). RMSECV is an error based on n calibration samples. RMSCEV is computed by 

equation 4.1 (Collell et al., 2011):
 

( )
∑

−

=

=
m

i n

iiCVRMSE
yy

1

2

ˆ
                                                                                                4.1 

Stellenbosch University   http://scholar.sun.ac.za



60 

 

 

 

where ŷi is the NIR predicted value of the response, yi is the value of the response measured by a 

reference method of sample i, and n is the number of samples. 

RPD measures the ratio of percentage deviation from the RMSECV. According to
 
(Bellon-

Maurel et al., 2010), the three categories for RPD model reliability are: (1) excellent models 

(RPD > 2), (2) fair models (1.4 < RPD < 2) and (3) non-reliable models (RPD < 1.4). RPD is 

computed by equation 2: 

                                  4.2 

where SD is the standard deviation and SEP is the standard error of prediction. 

RPIQ is an index recently proposed by Bellon-Maurel et al. (2010). They argued that owing to 

the use of SD in computing RPD, RPD may be misleading concerning the strength of PLSR 

predictive models for log-normally distributed samples as mostly is the case with soil chemicals. 

The RPD thresholds are also not grounded in a statistical basis and different thresholds were 

suggested by different researchers (Farifteh et al., 2007; Fuentes et al., 2012). RPIQ is based on 

quartiles which represent the spread of the population better than SD (Cozzolino et al., 2011). 

RPIQ is calculated by equation 4.3 (Bellon-Maurel et al., 2010): 

            4.3 

where Q1 is the value below which 25% of the samples are found, Q3 is the value below which 

75% of the samples are found and SEP is the standard error of prediction.  

4.4 RESULTS 

4.4.1 Soil chemical properties 

The statistics and the Pearson correlation coefficients for the soil chemical properties are given in 

Tables 4.1 and 4.2 respectively. Soil samples from both study sites display high values for EC 

(Table 4.1). It is clear from Table 4.1 that Sandspruit soil samples show high variations in Na 

and Cl. The soil chemical properties yielded moderate to very high correlations with each other. 

While pH was merely moderately correlated with EC, the other soil chemical properties were 
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highly correlated with EC. Soil samples from the eastern Johannesburg site have higher pH 

values (Figure 4.1). Also, the Gauteng site yielded slightly higher than average SO4 readings. On 

the other hand, the Sandspruit catchment soil samples yielded lower than average values for Na, 

Ca, Mg and Cl (Figure 4.1). Figure 4.1 shows that that SO4, Na, Cl, Mg and Ca are highly 

correlated to EC. 

Table 4.1 Summary statistics of the soil chemical properties 

Soil chemical 

(n) 

Mean (all 

samples) 

Range
(1)

 Range
(2)

 SD
(1)

 SD
(2)

 

EC (49) 250.8 4.0 - 1 520.0 37 – 1 234 535.9 232.9 

pH (49) 7.1 5.7 – 8.1 5.7 – 8.0 0.6 0.5 

Ca (49) 128.3 3.1 – 786.8 330- 528 161.3 125.8 

Mg (49) 71.1 1.2 – 442.2 7.33 - 534 144.9 102.4 

Na (49) 425.6 3.5 – 4263.3 19.9 – 1776.9 1 479.9 335.7 

Cl (49) 1 586.1 4.2 – 10 322.1 14.7 – 27 76. 5 3 568.4 536.9 

SO4 (48) 257.3 1.4 – 2 450.1 30.2 – 4 281.9 689.44 887.9 

(1)
= Sandspruit soil samples, 

(2)
 = Johannesburg soil samples, n = total number of samples, SD = 

standard deviation 
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Table 4.2 Pearson correlation coefficients for soil chemical properties of all the soil samples 

Soil chemical EC pH Ca Mg Na Cl SO4 

EC 1.0             

pH 0.3 1.0           

Ca 0.8 0.3 1.0         

Mg 0.9 0.3 0.8 1.0       

Na 0.9 0.3 0.7 0.9 1.0     

Cl 0.9 0.2 0.6 0.8 0.9 1.0   

SO4 0.6 0.3 0.9 0.8 0.5 0.4 1.0 

 

 

Figure 4.1 Principal component analysis (PCA) plot for (a) the two sites and (b) the soil 

chemicals PCA X-loadings plot for the two study sites (Blue is Sandspruit and red is Gauteng 

soil samples)  

 

b a 
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4.4.2 Spectral features 

The spectral features of all the soil samples are depicted in Figure 4.2. The spectral reflectance is 

typical of soil spectra.  The spectra show prominent absorption features which are associated 

with the bending and stretching of the O-H bonds of free water at 7142, 5128 and 4546 cm
-1

 

(equivalent to 1400, 1950 and lattice minerals around 2200 nm respectively) (Viscarra Rossel et 

al., 2006).  

 

Figure 4.2 Untransformed spectral reflectance of all the soil samples 

4.4.3 PLSR modelling 

LOOCV PLSR validation statistics, the spectral region used for model development and the 

OPUS software-determined pre-processing techniques for each soil chemical variable are given 

in Table 4.3. The LOOCV R
2
 values for all the soil chemical properties ranged from 0.62 to 0.87. 

While soluble Ca yielded the lowest R
2
, EC yielded the highest R

2
 value. RMSECV for all the 

soil chemical properties ranged from 0.22 to 0.51. Whereas EC yielded the lowest RMSECV, 

SO4 yielded a high RMSECV (Table 4.3). RPD values for all the soil chemical PLSR were 

higher than 1.5. This means that the models can yield fairly accurate to very precise predictions. 
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According to
 
(Bellon-Maurel et al., 2010), predictive models with RPD values less than 1.4 are 

non-reliable, RPD values greater than 1.4 and less than 2 are fairly accurate and those models 

with RPD values greater than 2 can yield excellent predictions. RPIQ values for all the soil 

chemical predictive models were higher than 5. This means that the models can predict 

accurately. RPIQ is a recent index, so its use on model evaluation is not yet widespread. The 

spectral regions used to develop the models and the OPUS software-determined pre-processing 

methods for each soil chemical property is also given in Table 4.3.  

Table 4.3 LOOCV PLSR statistics, spectral regions and pre-processing methods 

Soil 

chemical 

R
2
 RMSECV RPD RPIQ Spectral region 

(cm
-1

) 

Pre-processing 

EC 0.87 0.22 2.78 32 5176-4242 SDR 

pH 0.66 0.34 1.68 10 7505-4242 SDR 

Ca 0.62 0.29 1.61 5 7505-6793,  

5453-5021 

Min-Man 

normalization 

Mg 0.78 0.29 2.11 19 7505-6093,  

5453-5021 

Min-Man 

normalization 

Na 0.86 0.29 2.66 26 5453-4597 SNV 

Cl 0.85 0.33 2.59 23 5453-4597 Straight line 

subtraction 

SO4 0.65 0.51 1.7 8 7505-4597 SNV 

RMSECV = root mean square error of cross validation, RPD = ratio of prediction to deviation, 

RPIQ = ratio of performance to inter-quartile distance, SDR = second derivative reflectance, 

SNV = vector normalization 

Scatter plots of measured versus predicted values for all the soil chemical properties are depicted 

in Figure 4.3. Without doubt, the relationship between the measured and the predicted values for 

all the soil chemical properties investigated are high (Figure 4.3).  
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Figure 4.3 LOOCV predicted versus measured scatter diagrams for (a) EC, (b)Mg, (c) Ca, (d)Na, 

(d) Cl, (f) SO4 and (g) pH 

4.5 DISCUSSION 

The study found that reliable predictions of soil EC, pH, Ca, Mg, SO4, Na and Cl could be made 

based on PLSR using NIR spectroscopy. We found that the PLSR R
2
 for EC obtained in this 

study is comparable to previous studies. While Mashimbye et al. (2012) reported R
2
 values 

a b 

c d 

e f 

g 
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between 0.60 and 0.85 for EC, Farifteh et al. (2007) found R
2
 values between 0.78 and 0.98 for 

EC using PLSR. A FT Bruker MPA NIR spectrometer and LOOCV were used in this study. 

Mashimbye et al. (2012) and Farifteh et al. (2007) used independent test validation and an 

analytical spectral device (ASD) VIS-NIR spectrometer. The R
2
 for EC in this study is higher 

than that reported by Janik et al. (1998), Shibusawa et al. (2001) and Islam et al. (2003). 

Presumably, this is due to different regions of spectrum used and the statistical method used.  

While Janik et al. (1998) used PLSR and MIR spectroscopy, Shibusawa et al. (2001) and Islam 

et al. (2003) used VIS-NIR and UV-VIS-NIR spectroscopy respectively. Furthermore, 

Shibusawa et al. (2001) and Islam et al. (2003) used stepwise multiple linear regressions 

(SMLR) and principal component regression (PCR) respectively. While the RPD for EC 

obtained in this study is comparable to that obtained by Farifteh et al. (2007), it is higher than of 

Mashimbye et al. (2012). This is most likely due to different statistical calibration techniques 

used and the chemical composition of the soil. This study used LOOCV while Mashimbye et al. 

(2012) used independent test validation with the EC of the soil being the result of naturally 

occurring cations and anions, while Farifteh et al. (2007) used independent test validation, the 

EC of their samples was based on irrigating soil samples with different soil samples in the 

laboratory.  

With respect to soluble Mg, this study found that the R
2
 using PLSR was comparable to that 

obtained by Janik et al. (1998) using MIR spectroscopy and PLSR. The R
2
 for exchangeable Mg 

in this study is 0.78 while that of Janik et al. (1998) was 0.76. On the other hand, a higher R
2
 was 

recorded by Shepherd and Walsh (2002) for exchangeable Mg using MARS based on VIS-NIR 

spectroscopy. Chang et al. (2001) reported a lower R
2
 (0.68) using PCR based on VIS-NIR 

spectroscopy. These differences are presumed to be due to the use of different statistical 

techniques and the spectral region. No study that used NIR spectroscopy for Mg was found in the 

literature. 

While the R
2
 for Ca obtained in this study is lower than that obtained by Shepherd and Walsh 

(2002)
 
using VIS-NIR region, it is comparable to that of Chang et al. (2001) using VIS-NIR 

region (R
2
 = 0.75). Chang et al. (2001) used a comparable number of samples for calibration. 

This is highly likely due to different statistical techniques, region of spectrum and the number of 

samples used. While this study used NIR region and 49 samples for calibration, Chang et al. 
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(2001) calibrated with 30 samples using VIS-NIR region. Shepherd and Walsh (2002) used the 

VIS-NIR region and 493 samples for calibration. 

In the case of soluble Ca, we found an R
2
 that was lower than reported by Shepherd and Walsh 

(2002) (R
2
 = 0.88) and Chang et al. (2001) (R

2
 = 0.75). The number of samples used for model 

calibration, the spectral region and the statistical methods used are likely the cause of the 

differences in the prediction capacity of these methods. Also, Shepherd and Walsh (2002) and 

Chang et al. (2001) used independent test validation while we used LOOCV in this study. 

The PLSR predictive model for Na using NIR in this study was more accurate than previously 

recorded. While we found an R
2
 of 0.86 for exchangeable Na, Bikindou et al. (2012) reported an 

R
2
 of 0.12 using NIR spectroscopy using PLSR, whereas an R

2
 of 0.33 for exchangeable Na was 

reported by Janik et al. (1998) using MIR and PLSR. In addition, an R
2
 of 0.09 was reported by 

Chang et al. (2001) using PCR and VIS-NIR for exchangeable Na. It is probable that the higher 

R
2
 obtained in this study is due to the use of composite sampling, the number of scans measured 

and different instrumentation. Whereas Bikindou et al. (2012)
 
made two replications, measured 

16 scans per sample and used a Foss NIRystems 5000 spectrometer (Silver Spring, MD, USA) 

with wavelength range between 1100 and 2500 (equivalent to 9090 to 4000 cm
-1

) at a 2-nm 

interval, we used a Bruker MPA spectrometer with a wavelength range of 12 500 to 4000 cm
-1

 

(equivalent to 800 to 2500 nm) and a 1-nm frequency. Also, we extracted three replicates from 

the soil samples and measured 128 scans were done for each replicate.  

NIR PLSR results for pH are comparable with those reported by Islam et al. (2003) and Reeves 

III et al. (1999) using test set validation. Dong et al. (2011) and He et al. (2007) also recorded 

correlation coefficients of 0.89 and 0.91 respectively for pH using NIR spectroscopy. As regards 

the RMSECV for pH, it was lower than previously recorded by Shepherd and Walsh (2002) and 

Chang et al. (2001). These studies used multivariate adaptive regression splines (MARS) and 

principal component regressions (PCR) respectively. 

 Regarding Cl and SO4, we that found reliable predictive models could be developed based on 

PLSR using NIR spectroscopy. No studies that reported the use of MIR, VIS-NIR, NIR and UV-

VIS-NIR of Cl and SO4 could be found.  
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RPIQ values for all the PLSR predictive models in this study were higher than 5. This suggests 

that the models are reliable. However, no studies that evaluated the robustness of the RPIQ as a 

measure of the predictive capability of models were found. RPIQ is a fairly recent validation 

technique. No studies on the application of this index for soil EC, pH, Ca, Mg, Na, Cl and SO4 

appear to exist. Applications of the RPIQ for model validation have been reported for soil 

organic carbon and fruit juice by Cecillon et al. (2012), Cozzolino and Cynkar (2011) and 

Sarkhot et al. (2011).   

Generally, we found that fairly accurate to very accurate predictive models for EC, pH, Ca, Mg, 

Na, Cl and SO4 based on PLSR using NIR spectroscopy could be developed. While the 

relationship of measured and predicted values for EC, Mg, Na and Cl was high, it was moderate 

for pH, Ca and SO4. The RMSECV for SO4 was also high, thus this model may not be as 

reliable. The differences in the predictive abilities of the models in this study with previous 

studies are mainly attributed to different instruments, the abundance of soil chemicals, conditions 

under which the spectra are measured and the statistical methods used. According to Dong et al. 

(2011), the abundance and distributions of the various organic functional groups may influence 

both the biochemical properties and the NIR spectra. The findings of this study are consistent 

with previous work.  

4.6 CONCLUSIONS 

Spectral reflectance for dried, crushed and sieved soil samples were measured using a laboratory 

spectrometer. LOOCV was used to develop PLSR predictive models for EC, pH, Ca, Mg, Na, Cl 

and SO4. We conclude that EC, Ca, Mg, Na and Cl can be reliably predicted using PLSR based 

on NIR spectroscopy. The pH, Ca and SO4 predictive models are not as accurate. Since some of 

the results recorded were better than those reported in previous studies, the use of composite 

sampling very likely contributed to the superior PLSR predictive models. Although MIR 

spectroscopy is reported to perform better than NIR spectroscopy for quantifying organic C, the 

NIR PLSR predictive models used in this study were comparable and in certain instances more 

accurate than previously reported MIR results. Certainly, NIR spectroscopy can be useful as a 

routine procedure for analysing saline soils in the laboratory.  
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CHAPTER 5  

ASSESSING THE INFLUENCE OF DEM SOURCE ON DERIVED 

STREAMLINE AND CATCHMENT BOUNDARY ACCURACY
3
 

 

 

5.1 INTRODUCTION 

Digital elevation model (DEM)-derived catchment boundaries, subbasins and streamlines play an 

important role in hydrological studies (O’Callaghan and Mark, 1984; Martz and De Jong, 1998; 

Renssen and Knoop, 2000; Turcotte et al., 2001; Vogt et al., 2003; Li and Wong, 2010). In the 

past, hydrological analyses were mainly confined to relatively small areas such as single 

catchments or irrigation schemes. However, the increasing availability of high-resolution, near-

global DEMs, such as the shuttle radar topographic mission (SRTM) DEM and the advanced 

spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model 

(GDEM), offers new opportunities for carrying out hydrological analyses on regional or national 

levels. DEMs are offered at a variety of resolutions ranging from very high (0.1-5 m) to low (1 

km) (Behrens et al., 2010; Tarekegn et al., 2010). Very high-resolution DEMs, as derived from 

airborne light detection and ranging (LIDAR) data, are often only available for small areas, 

particularly in developing countries such as South Africa where this technology is still 

prohibitively expensive. Consequently, other sources of DEMs must be considered for 

hydrological studies at national or regional scale.  

                                                 
3
 The contents of this chapter were published in the Water Research Commission Report: de Clercq WP, Javanovic 

N, Bugan R, Mashimbye E, Du Toit T, van Niekerk A, Ellis F, Wasserfall N, Botha P, Steudels T, Helschrot J, Flügel 

WA. 2013. Management of human-induced salinization in the Berg River catchment and development of criteria 

for regulating agricultural land use in terms of salt generating capacity. Final Report to the Water Research 

Commission, Report No. 1849/01/2013. The work was also presented at the Geography Doctoral and Post-Doctoral 

Conference, 11
th

 of November 2011, Stellenbosch, South Africa. The work is also being prepared for publication in 

a suitable peer-reviewed scientific journal. 
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Various studies investigated the value of DEMs for hydrological analysis. For instance, 

Weepener et al. (2012) developed a hydrologically improved DEM for South Africa from the 

SRTM DEM by filling voids using 20-m 1:50 000 contours and ASTER GDEM data. They 

found that useful riverlines and catchment boundaries can be delineated from the hydrologically 

improved SRTM DEM. Li and Wong (2010) compared stream networks extracted from the 

National Elevation Dataset, SRTM DEM, and LIDAR with stream networks extracted from the 

National Hydrography Dataset. They also compared flood simulations using the stream networks 

delineated from the different DEMs. They concluded that higher-resolution DEMs can derive 

more accurate river networks, and that the spatial resolution of a DEM has only minor effects on 

flood simulation-results. Callow et al. (2007) evaluated the effect of commonly used 

hydrological correction methods (namely stream burning, Agree.aml and ANUDEM v4.6.3 and 

ANUDEM v5.1) on the overall nature of a DEM. They found that different methods produce 

non-convergent results for catchment boundaries, stream position and length and that these 

techniques differentially compromise secondary terrain analysis. Their study also concluded that 

while hydrological correction methods successfully improved calculation of catchment area, 

stream position and length, they all increased catchment slope. Vogt et al. (2003) presented an 

approach of integrating medium-resolution digital elevation data (250-m grid cell size) with 

climate data, vegetation cover, terrain morphology, soils and lithology to derive river networks 

and catchments over extended areas. They found that the methodology provided a good 

agreement of river superimposition and drainage density.  

The recent availability of medium- (90 m) and high-resolution (30 m) near-global DEMs has 

opened up new possibilities for hydrological analyses at national and regional scales (Wang et 

al., 2011; Zeilhofer et al., 2011; Weepener et al., 2012). Researchers are employing these DEMs 

for hydrological studies, mainly because they are freely available (; Wang et al., 2011; Gichamo 

et al., 2012; Weepener et al., 2012). However, little is known about the quality of the products 

that are derived from these DEMs. This study compares the spatial accuracy of catchment 

boundaries and streamlines derived from four DEMs that are available at national level in South 

Africa. The paper first describes the study site, the data used, and the methodology employed for 

delineating streamlines and catchment boundaries. A detailed account of the results is then 

provided, followed by a discussion and conclusions.   
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5.2 MATERIALS AND METHODS 

5.2.1 The study site 

The study area is the Sandspruit catchment of the Berg River catchment (BRC) in the Western 

Cape Province of South Africa. Refer to section 1.5 for more information about the study area. 

5.2.2 Data used 

DEMs, reference streamlines and a reference catchment boundary were used in this study. The 

DEMs and each of the data sets are described in the succeeding paragraphs. 

The DEMs considered in this study are the 90-m SRTM DEM, the 30-m ASTER GDEM2, two 

versions of the 5-m Stellenbosch University digital elevation model (SUDEM) and a 1.5-m DEM 

generated from GeoEye images (GEOEYE DEM). The SRTM DEM was completed in 2000 and 

provides the first medium-resolution DEM data at near-global scale (Farr and Kobrick, 2001; Li 

and Wong, 2010). The SRTM has an absolute vertical error of less than 16 m and an absolute 

horizontal accuracy of 20 m (Farr, 2000; Mulder et al., 2011). According to the Consultative 

Group on International Agricultural Research Consortium for Spatial Information (CGIAR-CSI, 

2011), the SRTM DEM data has been processed to fill data voids, and can be used by a wide 

range of potential users. The ASTER GDEM was developed jointly by the Ministry of Economy, 

Trade and Industry (METI) of Japan and the United States National Aeronautics and Space 

Administration (NASA). The second version of ASTER GDEM (GDEM2) was released in 

October 2011 (ASTER GDEM Validation Team, 2011) with the inclusion of 26 000 additional 

scenes to improve coverage. The new version uses a smaller correlation kernel to yield higher 

spatial resolution and water masking was also enhanced. ASTER GDEM2 was validated by 

comparing it to the absolute geodetic references over the conterminous United States (CONUS), 

the national elevation grids over the US and Japan, the SRTM 1 arc-second DEM over the US 

and 20 sites around the globe, and global space-borne laser altimeter data. The vertical and 

horizontal accuracy of the GDEM2 is less than 17 m and 71 m respectively (ASTER GDEM 

Validation Team, 2011; Mukherjee et al., 2013). The SUDEM was developed by the Centre for 

Geographical Analysis (CGA) at the University of Stellenbosch. Large-scale (1:10 000) 

contours, spot heights and smaller-scale (1:50 000) contours were used to interpolate the DEM. 

Small-scale contours were only used in areas where large-scale data was not available. Two 
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DEM products were produced. The first version (Level 1) only used contours and spot heights, 

while the second version (Level 2) combined contours, spot heights and the SRTM DEM. The 

mean absolute vertical error of the Level 1 and Level 2 products was estimated (using LiDAR 

data as reference) to be 2.1 m and 2.2 m respectively (van Niekerk, 2011). The GEOEYE DEM 

was created from GeoEye stereo images acquired in July 2011 using the rational polynomial 

coefficients (RPC) model in the LPS module of ERDAS Imagine software. The GEOEYE DEM 

was extracted at 1.5-m horizontal interval and was validated using reference points 

(trigonometric beacons) in the Sandspruit catchment. A mean absolute vertical error of 0.70 m 

was recorded. The GEOEYE DEM was used to delineate a reference catchment boundary and 

reference streamlines.  

Reference streamlines were digitized at a scale of 1:10 000 from the 1-5 othorectified GeoEye 

stereo images. The reference streamlines were visually compared to the 1:50 000 national 

riverlines data set. It was found that, although the two data sets were geometrically aligned, the 

1:50 000 streamlines were much more generalised and contained many topological errors (e.g. 

gaps). A reference catchment boundary, generated from the 1.5-m resolution GEOEYE DEM, 

was used to validate DEM-delineated catchment boundaries. The reference catchment boundary 

was validated during several field visits and by visual inspection in ERDAS Stereo Analyst.     

5.2.3 Delineation of catchment boundaries and streamlines from DEMs 

The Arc Hydro extension for ArcGIS software was used to delineate the Sandspruit catchment 

boundaries and streamlines from the DEMs. All the data sets were projected to the Universal 

Transverse Mercator (UTM) projection (Zone 34S). Catchment boundaries and streamlines were 

extracted at the native resolution of the DEMs. The threshold for stream delineation was set at 

1% of the maximum flow accumulation according to Arc Hydro’s recommended rule of thumb 

for stream delineation from DEMs. The GEOEYE DEM was used to calculate reference flow 

accumulation thresholds for the other DEMs at their respective resolutions. For catchment 

boundary delineation, outlet (pour) points were selected at the same position. A stream network 

was extracted from the 2-m GEOEYE DEM to enable comparison with previous studies 

conducted with high-resolution DEMs (Li and Wong, 2010). Catchment boundaries and 

streamlines extracted from all the DEMs were converted to raster data sets with a cell size of 5 m 

for comparison purposes. Cells representing boundaries or streamlines were allocated values of 
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1. All other cells were defined as having no values (i.e. NODATA). Separate raster data sets 

were created for catchment boundaries and streamlines. 

5.2.4 Validation of DEM-delineated catchment boundaries and streamlines  

The catchment boundaries and streamlines extracted from the DEMs were visually compared to 

the reference data sets. Four measures, the correctness index (Cr), figure of merit index (FMI), 

mean absolute error (MAE), and root mean square error (RMSE) were used to quantitatively 

evaluate the delineated catchment boundaries and stream networks. The Cr and FMI were used 

by Li and Wong (2010) to validate stream networks extracted from DEMs, while MAE and 

RMSE is proposed in this study as an additional measure of spatial agreement.   

The Cr compares two sets of raster cells (A and B) which represent DEM-extracted and reference 

raster data sets respectively (Li and Wong, 2010). The Cr is calculated by the equation: 

Cr =             5.1 

where NB is the number of cells representing the reference raster and  is the number of 

cells of the DEM-extracted raster, but the cells are also available in NB. Index values range 

between 0 and 1 and indicate the proportion of the reference raster that is correctly represented 

by the extracted raster (Li and Wong, 2010). High correctness index values mean high accuracy 

of extracted streams. 

According to Li and Wong (2010), Cr does not reflect how well the extracted raster (representing 

stream networks in their case) can reproduce the entire actual raster and assert that the FMI 

offers a better solution. The FMI is the ratio of the intersection of the observed change and 

predicted change to the union of observed change and predicted change (Klug et al., 1992; Perica 

and Foufoula-Georgiou, 1996; Pontius et al., 2008). FMI was computed by the equation: 

 FMI =                     5.2 

where  is the number of unique cells found in rasters A and B, and  is the total 

number of cells found in both A and B (overlapping cells are only counted once). FMI values 
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range between 0 and 1 and a higher FMI value indicates a higher overlap between the two raster 

data sets, therefore high accuracy.  

MAE and RMSE consider the offsets (Euclidean distances) between each cell in the reference 

raster (of which the cells with values represent the reference streamlines or catchment 

boundaries) and the closest cell in the candidate raster (of which the cells with values represent 

streamlines or catchment boundaries extracted from the DEMs under consideration). Euclidean 

distance is calculated from the centre of the reference raster cell to the centre of the extracted 

raster cell. Figure 5.1 depicts how ED is calculated for streamlines. The sum of the offsets was 

used to calculate MAE and RMSE using formulae:        

    

MAE =                          5. 3  

                   

RMSE =                            5.4 

where, ED is the Euclidean distance between the reference and candidate cells and N is the total 

number of cells with values in the reference raster. Relatively low MAE and RMSE values 

indicate a high accuracy of DEM-extracted raster data sets. RMSE is considered a better 

indicator of accuracy as it is more sensitive to outliers than MAE, but it is often useful to 

interpret these measures in combination. High differences between MAE and RMSE indicate 

high variance in the individual errors. 
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Figure 5.1 Depiction of Euclidean distance calculation using streamlines 

5.3 RESULTS 

5.3.1 DEM delineated catchments  

Overall, the catchment boundaries extracted from all four DEMs seem relatively accurate 

compared to the reference boundaries (see Figure 5.2a-d and Table 5.1). Visually it seems that 

the SUDEM L2 delineated the most accurate catchment boundary, although it underestimated the 

boundary in the south-eastern and north-western parts of the catchment (Figure 5.2a). Some of 

these errors are attributed to disturbances due to mining activities in the south-eastern section of 

the catchment. Similar errors are observed in the boundaries derived from the SUDEM L1 

product (Figure 5.2b). In addition, a large section of the eastern boundary was incorrectly 

delineated using the SUDEM L1 product (Figure 5.2b). The ASTER GDEM2 slightly 

overestimated the catchment boundary at the south-eastern part of the catchment and was also 

unable to correctly delineate the eastern boundary (Figure 5.2c). The SRTM DEM overestimated 

the catchment boundary in the south-eastern parts, but performed better than the ASTER DEM 

and SUDEM L1 in delineating the eastern boundary.  
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The SUDEM L2 yielded the lowest RMSE and MAE values followed by the SUDEM L1 and 

ASTER GDEM2 (Table 5.1). In contrast, the SRTM DEM yielded the highest RMSE and MAE 

values. Similarly, the SRTM DEM yielded the highest ED variance (RMSE – MAE) followed by 

the ASTER GDEM2, SUDEM L1 and SUDEM L2. This suggests that the SRTM DEM yields 

high inaccuracies in delineating the catchment boundary than all the DEMs. SUDEM L2 and 

SUDEM L1 yielded similar Cr and FMI ratios (0.98 and 0.96 respectively). The Cr ratio for 

ASTER GDEM2 and SRTM DEM is 0.98, while the FMI for SRTM DEM is slightly lower 

(0.95) than that of ASTER GDEM2 (0.96). From these results it is clear that the SUDEM L2 

delineated the most accurate catchment boundary compared to the other DEMs. 

 

Figure 5.2 DEM-delineated catchment boundaries for (a) SUDEM L2, (b) SUDEM L1, (c) 

SRTM DEM and (d) ASTER GDEM2 

(a) (b

(c) 
(d
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Table 5.1 DEM-extracted catchment sizes, Euclidean distance index, correctness index and 

figure of merit index   

DEM Supplied 

Resolution 

(m) 

Catchment 

size (km
2
) 

RMSE 

(ED) (m) 

MAE 

(ED) (m) 

Variance 

(RMSE-

MAE) 

Cr FMI 

GEOEYE 

DEM 

1.5 153.90       

ASTER 

GDEM2 

30.0 150.21 2.01 0.01 2 0.98 0.96 

SRTM 90.0 155.77 5.85 0.06 5.79 0.98 0.95 

SUDEML1 5.0 149.18 1.18 0.007 1.17 0.96 0.96 

SUDEML2 5.0 152.25 0.98 0.005 0.98 0.98 0.98 

RMSE – root mean square error, MAE – mean absolute error, ED – Euclidean distance index, Cr 

– correctness index, FMI – figure of merit index 

5.3.2 DEM extracted stream networks  

Streamlines extracted from the DEMs are depicted in Figure 5.3a-e. Generally, the streamlines 

align well with the reference streamlines, although some alignment distortions were apparent on 

some areas. The SUDEM L2 yielded the lowest RMSE and MAE values (Table 5.2). Whereas 

the RMSE and the MAE for the ASTER GDEM2 and SUDEM L1 are comparable, the SRTM 

DEM yielded the highest RMSE and MAE values. Surprisingly, the RMSE and MAE values of 

the GEOEYE DEM are higher than those of the SUDEMs (L1 and L2) and ASTER GDEM2. 

The SRTM DEM yielded the highest ED variance followed by the GEOEYE DEM, SUDEM L1, 

ASTER GDEM2 and the SUDEM L2 (Table 5.2). The GEOEYE DEM also yielded higher 

inaccuracies in delineating the streamlines than the ASTER GDEM2, SUDEM L1 and SUDEM 

L2. While the geometric distortions of SUDEM L2 are minimal, those of GEOEYE DEM, 

ASTER GDEM2 and SUDEM L1 are comparable (Table 5.2). Clearly, the SRTM DEM yielded 

high geometric distortion errors in delineating the streamlines. At closer inspection it was 
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observed that the GEOEYE DEM did not perform well in relatively flat areas (Figure 5.4a-e). 

However, the GEOEYE DEM performed better than the other DEMs in areas of moderate to 

complex terrain. This is likely why the GEOEYE DEM yielded the highest Cr and FMI ratios. 

The Cr and FMI ratios for the two SUDEMs are comparable and slightly lower than those of the 

GEOEYE DEM, while the SRTM DEM and ASTER GDEM2 yielded significantly lower Cr and 

FMI ratios.  

Table 5.2 DEM-extracted streamlines ED, Cr and FM 

DEM Supplied 

Resolution 

(m) 

Total 

stream 

length (m) 

RMSE 

(ED) (m) 

MAE 

(ED) (m) 

Variance 

(RMSE-

MAE) 

Cr FMI 

GEOEYE 

DEM 

2.0 116.82 49.52 6.29 43.23 0.21 0.08 

ASTER 

GDEM2 

30.0 105.68 41.34 5.09 36.25 0.04 0.02 

SRTM 

DEM 

90.0 101.65 95.74 13.88 81.87 0.05 0.02 

SUDEML1 5.0 98.81 42.12 4.98 37.14 0.15 0.06 

SUDEML2 5.0 101.25 25.29 2.72 22.57 0.14 0.06 

RMSE – root mean square error, MAE – mean absolute error, ED – Euclidean distance index, Cr 

– correctness index, FMI – figure of merit index 
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Figure 5.3 DEM-delineated stream networks for GEOEYE DEM (a), SUDEM L2 (b), SUDEM 

L1(c), SRTM DEM (d) and ASTER GDEM2 (e) 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 5.4 Stream networks in a selected area delineated from the (a) GEOEYE DEM, (b) 

SUDEM L2, (c) SUDEM L1, (d) SRTM DEM and (e) ASTER GDEM2  

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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5.4 DISCUSSION 

The results showed that the ASTER GDEM2 yielded a more satisfactory catchment boundary 

than the SRTM DEM. The SRTM DEM generally overestimated the catchment boundary, while 

the ASTER GDEM2 underestimated it. This is consistent with the findings of Wang et al. (2011) 

who concluded that the SRTM DEM overestimates valley-bottom elevation values while the 

ASTER GDEM underestimates the valley-bottom elevation values. The SUDEMs produced the 

most accurate catchment boundaries, most likely due to their higher resolutions. However, 

resolution is clearly not the only factor as the SUDEM L2 consistently outperformed the 

SUDEM L1 which also has a 5 m resolution. The only difference between these two DEMs is 

that the SUDEM L1 was fused with the SRTM DEM to produce SUDEM L2. According to van 

Niekerk (2011), this fusion process significantly improves the quality of the DEM in areas of 

moderate terrain.  

In terms of streamline delineation, the GEOEYE DEM outperformed the other DEMs when Cr 

and FMI ratios are considered. Similarly, the SUDEMs yielded more satisfactory stream 

networks than both the SRTM DEM and ASTER GDEM2. The higher resolution of GEOEYE 

DEM and the SUDEMs is likely the main factor in this result. This supports the findings by Vogt 

et al. (2003) who found that the quality of DEM-derived river networks are limited by the spatial 

resolution and vertical accuracy of the underlying DEMs. In contrast to these findings, the 

highest resolution DEM considered in this study (i.e. the GEOEYE DEM) yielded the highest 

RMSE and MAE values in the streamline delineation assessment. This was mainly due to 

distortions occurring in areas with limited variability in elevation. This confirms the findings of 

Charrier and Li (2012) who found that higher-resolution DEMs are sensitive to minor 

topographic features and potentially produce incorrect watershed boundaries, while on the other 

hand coarser resolution DEMs delineated more accurate catchment boundaries. A possible 

explanation why the coarser-resolution DEMs (in particular the SUDEM L2) performed better in 

delineating streamlines in such areas is the way in which these DEM were interpolated. The 

SUDEMs as well as the 5-m versions of the SRTM DEM and ASTER GDEM2 were interpolated 

using spline functions. These trend-fitting functions estimate elevations based on trends in the 

landscape and are consequently known to exaggerate local maxima and minima (e.g. ridges and 
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valley bottoms). In this study it seems that the interpolators were relatively successful in using 

these trends to predict where valley bottoms are likely to be, even in very flat areas.  

Considering Cr and FMI, the ASTER GDEM2 and SRTM DEM streamlines are comparable. 

However, the MAE and RMSE values indicate that the ASTER GDEM-extracted streams have 

fewer geometric distortions than those extracted from the SRTM DEM. The ED variance of the 

ASTER GDEM is far lower than that of the SRTM DEM. It appears that the ED RMSE and 

MAE can capture distortions more accurately than the other validation techniques. According to 

Tarekegn et al. (2010), ASTER-based DEMs are relatively accurate in near-flat and smoothly-

sloped areas, but they are characterized by large errors in areas covered by forest, snow, steep 

cliffs and deep valleys. The catchment area in this study is generally flat, which may explain why 

the ASTER GDEM performed relatively well. The Cr and FMI ratios calculated for the SRTM 

DEM in this study are lower than those reported by Li and Wong (2010), who recorded Cr and 

FMI ratios of 0.35 and 0.16 respectively for the 90-m resolution SRTM DEM. The significantly 

lower Cr and FMI ratios calculated in this study (0.05 and 0.02 respectively) is attributed to the 

way in which the SRTM DEM was upsampled to 5 m resolution prior to analyses. Upsampling 

decreased the chances of overlap between the reference and extracted cells. The Cr and FMI 

ratios are consequently not good indicators of accuracy when DEMs of different resolutions are 

compared. For such applications, the MAE and RMSE measures are recommended as they are 

less sensitive to differences in resolution.  

5.5 CONCLUSIONS 

This study investigated the utility of DEMs for extracting catchment hydrological parameters, 

namely catchment boundaries and streamlines. The SUDEM L1, SUDEM L2 and two freely-

available DEMs (30-m ASTER GDEM2 and the 90-m SRTM DEM) were investigated. The 

study confirmed that high-resolution DEMs generally produced more accurate parameters, but 

that other factors such as source data and interpolation algorithm also play a role. It is also 

evident from the results that the ASTER GDEM2 produced more satisfactory catchment 

hydrological parameters than the SRTM DEM.  

The ED MAE and RMSE proposed in this study can be reliably used to compare reference and 

DEM-extracted raster data sets of different resolutions and are generally better indicators of 
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geometrical accuracy than the Cr and FMI ratios. In spite of the relatively lower accuracies of the 

streamlines and catchment boundaries derived from the SRTM DEM and ASTER GDEM2, the 

quality of these data sets seems to be acceptable for many applications. Of the available DEMs 

covering South Africa, the SUDEM L2 is the most suitable product for delineating detailed 

catchment boundaries and streamlines.  

In this study, a catchment with relatively moderate terrain was chosen to assess the quality of the 

derived data sets. It is, however, expected that the quality of the DEM-derived products will 

improve as terrain complexity increases, particularly in the case of the SUDEMs as they were 

mainly interpolated from contours and are as such largely unaffected by distortions caused by 

view angle and vegetation cover. Contours are also more density distributed in areas of complex 

terrain, which means that interpolated elevations are generally more accurate in such areas. More 

research is, however, needed to evaluate how the different DEMs will perform in landscapes 

with complex terrain and land cover. 
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CHAPTER 6  

AN EVALUATION OF DIGITAL ELEVATION MODELS FOR 

DELINEATING LAND COMPONENTS
4
 

 

 

6.1 INTRODUCTION 

Terrain is one of the most important soil-forming factors (Behrens et al., 2010; Jenny, 1941) and 

is essential for spoil property mapping (McBratney et al., 2003). According to Moller et al. 

(2008), landforms and landscape context are particularly important to understanding the 

processes of soil genesis and soil formation in the spatial domain. Minar and Evans (2008) and 

van Niekerk (2008) describe land components as elementary landform elements with a constant 

value of elevation or having two or more readily interpretable morphometric variables, bordered 

by lines of discontinuities. Land component borders frequently coincide with environmental land 

properties such as soil, climate and biology (Speight, 1977; MacMillan et al., 2004; Van 

Niekerk, 2010).  

Conventional approaches to delineating land components include studying topographical maps, 

interpreting aerial photographs and making field measurements (Speight, 1977; Graff and Usery, 

1993; Dragut and Blashcke, 2006). However, these methods are often time-consuming, biased 

and costly (Speight, 1977; Argialas, 1995; Adediran et al., 2004; Drǎgut and Blaschke, 2006; 

                                                 
4
 The contents of this chapter were published in the Water Research Commission Report: de Clercq WP, Javanovic 

N, Bugan R, Mashimbye E, Du Toit T, van Niekerk A, Ellis F, Wasserfall N, Botha P, Steudels T, Helschrot J, Flügel 

WA. 2013. Management of human-induced salinization in the Berg River catchment and development of criteria 

for regulating agricultural land use in terms of salt generating capacity. Final Report to the Water Research 

Commission, Report No. 1849/01/2013.The work was also presented at the Combined Congress, 16 – 19 January 

2012, Potchefstroom, South Africa. The work is being prepared for publication in a suitable peer-reviewed 

scientific journal. 
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van Niekerk, 2010). The increasing availability of DEMs has promoted the use of computers and 

image processing techniques for deriving terrain properties. The application of object-based 

image analysis for land component mapping has gained popularity in recent years (Drǎgut and 

Blascke, 2006; Smith et al., 2007; Wulder et al., 2008; Drǎgut and Eisank, 2011), particularly for 

soil-landscape modelling purposes (Blaschke and Strobl, 2003; Deng, 2007).  

Various researchers have investigated the use of DEMs for digital soil and land component 

mapping. Van Niekerk (2010) evaluated land component maps delineated from DEMs using 

three algorithms, namely the automated land component mapper (ALCoM), the iterative self-

organizing data analysis technique algorithm (ISODATA) and multiresolution image 

segmentation (MRS) to determine which technique yields the most homogenous and 

morphologically representative land components. The three algorithms generated significantly 

different land component maps and MRS performed better and was more sensitive to 

morphological discontinuities than the other algorithms. Drǎgut and Blaschke (2006) 

investigated an automated classification system of landform elements based on object-orientated 

image analysis. Elevation, profile curvature, plan curvature and slope gradient was used to 

delineate relatively homogeneous objects through image segmentation. This was followed by a 

classification of objects into landform elements using a relative classification model based on the 

surface shape and on the altitudinal position of objects. They concluded that the methodology is 

reproducible and it is readily adaptable for diverse landscapes and data sets. A semi-automated 

method to recognize and spatially delineate geomorphological units in mountainous forested 

ecosystems using statistical information extracted from a 1-m resolution digital terrain model 

(DTM) derived from laser data was proposed by van Asselen and Seijmonsbergen (2006). They 

determined slope angle and elevation characteristics for each key geomorphological unit 

occurring in the study area and derived a map of slope classes from the DTM in an expert-driven 

multilevel object-orientated approach. They concluded that topographical data derived from 

high-resolution DTMs are useful for the extraction of geomorphological units in mountainous 

areas. 

It has been demonstrated that delineating land components from DEMs is more cost-effective 

and objective than traditional field-based and visual interpretation methods and that land 

component mapping is invaluable for landscape characterization and soil mapping (Minar and 
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Evans, 2008; Moller et al., 2008). However, although research has been done on the various 

algorithms available for segmenting DEMs to produce land components (van Niekerk, 2010), 

very little has been done to determine how the use of different input DEMs influences the 

delineation of land components. This paper compares the land components derived from five 

DEMs, namely the 90-m shuttle radar topography mission DEM (SRTM DEM), the second 

version of the 30-m advanced spaceborne thermal emission and reflection radiometer global 

digital elevation model (ASTER GDEM2), two versions of the 5-m Stellenbosch University 

DEM (SUDEM L1 and L2), and a 5-m DEM (GEOEYE DEM) derived from GeoEye stereo- 

images. The results are interpreted and evaluated in the context of using land component 

delineation for mapping and studying soil properties.  

6.2 MATERIALS AND METHODS 

6.2.1 Study Area 

The study area is the Sandspruit catchment of the BRC in the Western Cape Province of South 

Africa. Refer to section 1.5 for more information about the study area. 

6.2.2 Data used 

The data used for this study include orthorectified digital aerial photographs and DEMs. Each 

data set is described in the following paragraphs. 

High resolution (0.5 m) orthorectified digital aerial images covering the Sandspruit catchment 

were obtained from the Chief Directorate National Geo-spatial Information (CDNGI) 

(http://www.ngi.gov.za). The aerial images were used to digitize terrain morphological 

discontinuities for assessing the accuracy of the DEM-delineated land components. 

The 90-m SRTM DEM, completed in 2000, is the first high-resolution DEM developed at near-

global scale (Farr and Kobrick, 2001; Li and Wong, 2010). The SRTM DEM is reported to have 

a vertical error of less than 16 m (Farr, 2000; Rodriguez et al, 2005; van Niekerk, 2008; Mulder 

et al., 2011). According to the Consultative Group on International Agricultural Research 

Consortium for Spatial Information (CGIAR-CSI) (2011), the latest version of the SRTM DEM 

has been processed to fill data voids and it is suited to a range of potential users.  
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ASTER GDEM was developed jointly by the Ministry of Economy, Trade and Industry (METI) 

of Japan and the United States National Aeronautics and Space Administration (NASA). The full 

1.5-million-scene ASTER archive was used to create the DEM. The second version of ASTER 

GDEM (GDEM2) was released in October 2011 (ASTER GDEM Validation Team, 2011) with 

the inclusion of 26 000 additional scenes to improve coverage. A smaller correlation kernel was 

also used to yield higher spatial resolution and enhanced water masking. ASTER GDEM2 was 

validated by comparing it to the absolute geodetic references over the conterminous United 

States (CONUS), the national elevation grids over the US and Japan, the SRTM 1 arc-second 

DEM over the US and 20 sites around the globe, as well as global space-borne laser altimeter 

data. The vertical and horizontal accuracy of the GDEM2 is less than 17 m and 71 m respectively 

(ASTER GDEM Validation Team, 2011; Mukherjee et al., 2013). The number of voids and 

artefacts noted in GDEM1 were substantially reduced in GDEM2 and were almost eliminated in 

some areas (ASTER GDEM Validation Team, 2011). 

The GEOEYE DEM was created from GeoEye stereo-images acquired in July 2011. As with the 

ASTER GDEM, the elevation data that were extracted from the GeoEye imagery included 

objects above ground (i.e. it is a surface model and not a terrain model). However, because most 

of the study area is used for cultivation of grains, very few tall objects (e.g. trees and buildings) 

are present. Moreover, the July images record a time when the crops were at seedling height and 

thus had very little impact on the extracted elevations. Elevations were extracted at a 5-m 

horizontal interval using the rational polynomial coefficients (RPC) model in the LPS module of 

Erdas Imagine software. The resulting GEOEYE DEM was validated using the altitudes at 

reference points (trigonometric beacons) in the Sandspruit catchment. An absolute vertical 

accuracy of 0.70 m was achieved. The DEM was smoothed with a 7 x 7 circular median filter to 

remove artefacts caused by vegetation and crop patterns. Judging by visual inspection of 

histograms prior to and after the filtering, and the statistics recorded in Table 6.1, the filter did 

not significantly alter the terrain morphology.  
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Table 6.1 Attributes of original and filtered 5-m GEOEYE DEM 

DEM attributes Original GEOEYE DEM Filtered GEOEYE DEM 

Minimum elevation (m) 29.0 31.0 

Maximum elevation(m) 965.0 956.0 

Mean elevation (m) 497.0 493.5 

Standard deviation 270.5 267.3 

GEOEYE DEM – digital elevation model created from GeoEye stereo images 

The SUDEM was developed by the Centre for Geographical Analysis (CGA) at Stellenbosch 

University, South Africa. Large-scale (1:10 000) contours and spot heights were used to 

interpolate two DEM products (van Niekerk, 2011) using a combination of interpolation 

algorithms (e.g. the Topo to Raster and Spline tools in ArcGIS software). The first product 

(Level 1) only used 5 m vertical interval contours and spot heights as input, whereas the second 

product (Level 2) combined contours, spot heights and the SRTM DEM. For Level 2, the SRTM 

DEM was used to supplement the contour and spot height data in areas of low relief (i.e. where 

contour and spot height density was low).  

6.2.3 Data preparations 

All the DEMs were projected to the Universal Transverse Mercator projection (Zone 34S). For 

easier comparison, the SRTM DEM and ASTER GDEM2 were upsampled from their native 

resolutions (90 m and 30 m respectively) to 5-m resolution. This was achieved by converting the 

DEMs to points and interpolating new elevation values using the Spline algorithm in ArcGIS 9.3 

software. It is clear from Table 6.2 that up-sampling did not significantly alter the data content of 

the original DEMs. This was confirmed by examining histograms for the up-sampled and 

original DEMs which showed similar distributions of elevation values prior to and following the 

up-sampling procedure. 

Stellenbosch University   http://scholar.sun.ac.za



89 

 

 

 

Table 6.2 Attributes of original and upsampled ASTER GDEM and SRTM DEM 

DEM attributes 90-m SRTM 5-m SRTM 30-m ASTER 

GDEM 

5-m ASTER 

GDEM 

Minimum  

elevation (m) 

31.0 39.0 21.0 19.0 

Maximum 

elevation (m) 

944.0 944.0 957.0 957.0 

Mean elevation 

(m) 

460.6 491.5 489.0 488.0 

Standard 

deviation 

253.7 261.5 270.5 271.1 

ASTER GDEM2 – second version of the 30-m advanced space borne thermal emission and 

reflection radiometer global digital elevation model, SRTM DEM - the 90-m shuttle radar 

topography mission digital elevation model 

6.2.4 Land component segmentation 

Land component segmentation was carried out using the MRS algorithm as implemented in 

eCognition 8.6 software (http://www.ecognition.com). The MRS algorithm is a bottom-up 

segmentation algorithm based on a pairwise region-merging technique (Mathieu et al., 2007; 

Blaschke, 2010). According to Trimble (2011), the segmentation procedure starts with single 

image object of one pixel and repeatedly merges them in several loops in pairs to larger units as 

long as an upper threshold of homogeneity is not exceeded. In the first step of the procedure the 

seed looks for its best-fitting neighbour for a potential merger and if best fitting is not mutual, the 

best candidate image object becomes the new seed image object and is fitted with its best 

partner. When best fitting is mutual, image objects are merged. In each loop every image object 

in the image object level is handled once. The loops continue until no further merger is possible 

(Mancas et al., 2005; Thakur and Anand, 2005; Van Niekerk, 2010; Trimble, 2011). 
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Slope gradient and slope aspect were used as input layers to MRS. Slope aspect was converted to 

mean vector strength for analysis. A suitable MRS scale factor was determined by 

experimentation and visual interpretation using hill-shaded DEMs as backdrops (Van Niekerk, 

2010; Drǎgut et al., 2011). A systematic approach was used by increasing the scale factor by one 

until meaningful objects were obtained (Drǎgut et al., 2010). The mean slope gradient standard 

deviation (SGSD) of the objects was used to evaluate the internal homogeneity of the resulting 

objects. This experimentation with suitable scale factors was carried out on the DEM with the 

highest detail (i.e. GEOEYE DEM). The MRS algorithm was configured by setting the shape 

parameter to its minimum value (0.1) and colour was set to its maximum value (0.9) to maximize 

the internal homogeneity of objects. Both input layers were allocated equal weights in the 

segmentation.  

For the GEOEYE DEM, a scale factor of 12 produced land components that best represented 

terrain morphology. The scale factors for the other DEMs were adjusted so that their 

segmentations yielded a similar number of objects to allow comparison. The parameters and the 

number of objects produced by all the DEMs are summarized in Table 6.3. 

Table 6.3 Scale factors and the number of delineated land components for each DEM 

DEM Scale factor Total number 

of LC 

% difference from 

GEOEYE DEM LC 

ASTER GDEM2 24 21 086 -2.73 

GEOEYE DEM 12 21 678 0.0 

SUDEM L1 24 21 949 1.25 

SUDEM L2 11 21 443 -1.08 

SRTM DEM 12 20 670 -4.65 

LC –Land components, ASTER GDEM2 – second version of the 30-m advanced spaceborne 

thermal emission and reflection radiometer global digital elevation model, SRTM DEM - the 90-

m shuttle radar topography mission digital elevation model, SUDEM (L1 and L2) – Stellenbosch 

University digital elevation models (level 1 and 2) 
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6.2.5 Land component evaluation 

Three assessment methods were employed to evaluate the land components delineated from each 

of the DEMs. Firstly, the land components were visually inspected using hill-shaded DEMs as 

backdrops. Visual interpretation entailed evaluating how well the land components identified 

morphological discontinuities (e.g. aspect and slope breaks). Morphological discontinuities to be 

used in the evaluation were visually delineated on a 0.5-m resolution orthorectified digital aerial 

photograph covering the study area. The second assessment method evaluated the internal 

homogeneity of the land components by computing the mean SGSD (van Niekerk, 2010). It was 

premised that a small SGSD is indicative of high internal homogeneity (i.e. low interclass 

differences) and that a higher proportion of units with small SGSDs suggests accurate land 

component delineation (van Niekerk, 2010). The third assessment method employed the mean 

slope gradient local variance (MSGLV) to determine the effectiveness of the derived land 

components to detect morphological discontinuities (i.e. high interclass difference). Given that 

local variance (LV) is the mean of the standard deviation (SD) computed in a small 

neighbourhood (usually a 3×3 moving window) (Drǎgut and Eisank, 2011; Drǎgut et al., 2011), 

a satisfactory land component delineation will maximize internal (interclass) homogeneity and 

minimize external (intraclass) homogeneity. A land component should ideally have a low 

internal MSGLV and a high MSGLV at its edges. In this study the land component boundaries 

were defined as being one pixel (5 m) in width and all other pixels were considered internal. 

Internal and edge MSGLV were calculated for each set of land components derived from each 

DEM and a MSGLV ratio was computed using the equation: 

MSGLV ratio =         6.1 

The MSVLV ratio is a relative measure and attempts to quantify how well land component 

boundaries coincide with morphological discontinuities.  

6.3 RESULTS AND DISCUSSION 

A subset of the 0.5-m orthorectified digital aerial photograph showing the delineated test 

morphological discontinuities and land components generated from the five DEMs is depicted in 

Figure 6.1a–f. The GEOEYE DEM, SUDEM L2 and the SRTM DEM land components look 
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similar in shape and are distinctively different from the land components generated from ASTER 

GDEM2 and SUDEM L1 (Figure 6.1a-f). Closer visual inspection revealed that the GEOEYE 

DEM very effectively identifies morphological discontinuities (i.e. slope gradient and aspect 

breaks). Land component boundaries delineated from the GEOEYE DEM and SUDEM L2 

mostly coincided with the test morphological discontinuities. The GEOEYE DEM land 

components were more sensitive to morphological discontinuities than those of SUDEM L2. The 

GEOEYE DEM land components yielded more detailed morphological discontinuities and 

incorporated land surface features (for example trees and buildings) in certain areas. This is very 

likely due to the way the DEMs were created. The GEOEYE DEM was created from stereo-

imagery whereas the SUDEM L2 was created from large-scale contour data fused with the 

SRTM DEM. Consequently, the GEOEYE DEM is a more detailed DEM than the SUDEM L2. 

The reason why the GEOEYE DEM incorporated land surface features in the delineation in 

certain areas is because it is a surface model as opposed to the SUDEM L2, which is a terrain 

model. Despite the SRTM DEM land components looking similar in shape to those of the 

GEOEYE DEM and SUDEM L2, they were less sensitive to morphological discontinuities. 

Figure 6.1d shows that the SRTM DEM land components are generalized in certain areas and do 

not coincide with some significant morphological discontinuities. This is attributed to the lower 

native resolution (90 m) of the SRTM DEM. The ASTER GDEM2 and SUDEM L1 also failed 

to identify many significant morphological discontinuities (Figure 6.1e and f). This result 

confirms those of Gichamo et al. (2012), Frey and Paul (2012) and Shafique et al. (2011) who 

found that the ASTER GDEM2 quality is dependent on factors such as quality of the image pair, 

image acquisition angle and terrain complexity. Contour-interpolated DEMs such as the SUDEM 

L1 are usually not as accurate as DEMs generated by other means, because DEMs generated 

from contours suffer from oversampling in steep areas and generalizations in flat terrain (Taud et 

al., 1999; Ardiansyah and Yokoyama, 2002; Xie et al., 2003; Wise, 2007; Vaze et al., 2010). 
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Figure 6.1 Sandspruit orthorectified digital aerial image insert (a), land components delineated 

from GEOEYE DEM (b), SUDEM L2 (c), SRTM DEM (d), SUDEM L1 (e) and ASTER 

GDEM2 (f) 

The GEOEYE DEM and SRTM DEM yielded the lowest (1.2) overall (mean) SGSD (Table 6.4). 

This suggests that these products are internally the most homogeneous. The low mean SGSD of 

the SRTM-delineated land components is attributed to the relatively low resolution of the SRTM 

a b 

c d 

e 

f 
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DEM (90 m), which limits the variation within land components. The mean SGSD of the 

SUDEM L2 product is not significantly higher (1.3) than those of the GEOEYE DEM and 

SRTM DEM. The ASTER GDEM2 land components are the least homogeneous internally 

(mean SGSD of 4.4). The histogram of SGSD (Figure 6.2) revealed that, in contrast to the other 

DEMs, most of the ASTER GDEM2 land components are highly heterogeneous in terms of 

slope gradient. This result suggests that the ASTER GDEM2 is not suitable for land component 

mapping. 

Table 6.4 Overall SGSDs of digital elevation models 

DEM Mean SGSD 

ASTER GDEM2 4.4 

GEOEYE DEM 1.2 

SUDEM L1 1.5 

SUDEM L2 1.3 

SRTM DEM 1.2 

ASTER GDEM2 – second version of the 30-m advanced spaceborne thermal emission and 

reflection radiometer global digital elevation model, SRTM DEM - the 90-m shuttle radar 

topography mission digital elevation model, SUDEM (L1 and L2) – Stellenbosch University 

digital elevation models (level 1 and 2), LC –Land components, SGSD – slope gradient standard 

deviation 
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Figure 6.2 Mean slope gradient (%) standard deviation of the land components delineated from 

different DEMs 

The internal MSGLV for the GEOEYE DEM, SUDEM  L2, SRTM DEM and ASTER GDEM2 

were lower than the edge MSGLV, resulting in a MSGLV ratio of more than 1 (Table 6. 5). This 

indicates that the internal homogeneity of the land components delineated from these DEMs is 

maximized, while the homogeneity at the edges is minimized and consequently suggests that 

land component boundaries coincide with morphological discontinuities. In contrast, the internal 

and external MSGLV for the SUDEM L1 land components are equal (MSGLV ratio is 1), 

indicating that morphological discontinuities are not effectively represented by land component 

boundaries. GEOEYE DEM and SUDEM L2 yielded land components with the highest MSGLV 

ratio and as such are the most successful in representing terrain transitions. This was confirmed 

during the visual inspection of the land component boundaries, which revealed that these two 

DEMs perform equally well in producing land components boundaries that coincide with 

morphological discontinuities. The high accuracy of delineated land components from SUDEM 

L2 was unexpected given that SUDEM L1 and SRTM DEM (which was used to develop the 

SUDEM L2) did not perform as well. This result seems to suggest that the way in which 5-m 
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vertical contour data were fused with the SRTM DEM in areas of moderate terrain (i.e. where the 

density of contours is low) optimises the detail of each input DEM (Van Niekerk 2011). 

Table 6.5 Land component internal and edge MSGLV for each digital elevation model 

DEM Internal MSGLV Edge MSGLV MSGLV Ratio 

ASTER GDEM2 1.9 2.4 1.3 

GEOEYE DEM 0.6 0.9 1.5 

SUDEM L1 0.6 0.6 1.0 

SUDEM L2 0.6 0.8 1.5 

SRTM DEM 0.5 0.7 1.3 

MSGLV – mean slope gradient local variance, ASTER GDEM2 – second version of the 30-m 

advanced spaceborne thermal emission and reflection radiometer global digital elevation model, 

SRTM DEM - the 90-m shuttle radar topography mission digital elevation model, SUDEM (L1 

and L2) – Stellenbosch University digital elevation models (level 1 and 2) 

In spite of its relatively lower MSGLV, SRTM DEM outperformed ASTER GDEM2 regarding 

the identification of morphological discontinuities as evidenced by visual inspection and the 

SGSD. This may result from the ability of the microwave energy used to develop the SRTM 

DEM to penetrate some features, such as trees. In contrast, ASTER GDEM2 includes the height 

of trees and other objects, and hence is not a true terrain model. This interpretation is consistent 

with that of Frey and Paul (2012) who found that SRTM DEM yielded slightly more accurate 

results than ASTER GDEM for the compilation of topographic parameters in glacier inventories. 

Siart et al. (2009) concluded that, despite its coarser resolution, SRTM DEM yielded more 

satisfactory results than ASTER GDEM for identifying large depressions.  

6.4 CONCLUSIONS 

This study compared land components delineated from five different DEMs. The GEOEYE 

DEM (created from GeoEye stereo-images) was the most effective in producing land component 

boundaries that coincide with morphological discontinuities. The SUDEM L2 (created from 

contours and SRTM data) produced similar land components to those of the GEOEYE DEM, 

and it was almost as successful in maximizing internal (interclass) homogeneity and minimizing 
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external (intraclass) homogeneity. The SRTM DEM appeared to be more suitable for land 

component mapping than the ASTER GDEM2.  

A novel measure, namely the MSGLV ratio, was developed and applied in this study for 

evaluating how well land component boundaries coincide with morphological discontinuities. 

The MSGLV ratio measures the relationship between internal homogeneity and external 

heterogeneity of land components. The ratio complimented the other validation techniques used. 

The research demonstrated that a DEM’s properties (e.g. resolution, source data, and 

development method) have significant impacts on the delineation of land components. This has 

decisive implications for all applications using land components.  An example of such an 

affected application is digital soil mapping which relies on the principle of a strong relationship 

between terrain and soil properties, and that soil boundaries coincide with land component 

boundaries. Discrepancies between land component boundaries and terrain transitions will 

consequently lead to unreliable deductions and inaccurate soil maps.  
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CHAPTER 7 

 THE VALUE OF TERRAIN ATTRIBUTES TO MAP SOIL SALINITY
5
 

 

 

7.1 INTRODUCTION 

Soil salinity presents a serious risk to agricultural production and to the environment. It is vital to 

identify and map areas at risk of salinity to ease the danger of salinity to agricultural production 

and the environment. Tangible evidence of dryland salinity has been observed in the Berg River 

catchment (BRC). The emergence of dryland salinity in the BRC is attributed to human 

activities, particularly the removal of deep-rooted plants as has been the case in Australia and 

other countries where dryland salinity occurs (Fey and de Clercq, 2004; Dent, 2007; Kingswell 

and John, 2007; de Clercq et al., 2010). According to Dowling et al. (2003) dryland salinity can 

be expressed as salt-affected land or degraded stream water quality. Agricultural crops use less 

water than the deep-rooted native plants causing variations of hydrological processes and thus 

the rising of water tables over time (Kingswell and John, 2007).  

Remote sensing and geographical information systems (GIS) offer advantages to ground-based 

methods because they make it possible to objectively map vast areas at risk of soil salinity. It is 

recognized that salinised land frequently develop in lower valley locations and at breaks of slope 

(Freeze and Cherry, 1979; Evans et al., 1990; Williamson, 1998; Fetter, 2001; de Clercq et al., 

2010). However, Barrett-Lennard and Nulsen (1989) and de Clercq et al. (2010) argued that 

                                                 
5
 The contents of this chapter was published in the Water Research Commission Report: de Clercq WP, Javanovic 

N, Bugan R, Mashimbye E, Du Toit T, van Niekerk A, Ellis F, Wasserfall N, Botha P, Steudels T, Helschrot J, Flügel 

WA. 2013. Management of human-induced salinization in the Berg River catchment and development of criteria 

for regulating agricultural land use in terms of salt generating capacity. Final Report to the Water Research 

Commission, Report No. 1849/01/2013. The work is being prepared for submission to a suitable peer-reviewed 

journal. 
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topography alone was not adequate to predict the location of all salinised areas. A study by de 

Clercq et al. (2010) demonstrated that there was an inverse relationship of soil salinity with 

elevation where areas of salinity greater than 60 mS m
-1

 occur at areas less than 200 m. Also, 

Akramkhanov et al. (2011) maintain that terrain indices have low but noteworthy influence on 

bulk soil salinity.  

Despite the awareness of the relationship of soil salinity with terrain attributes, the utility of 

terrain attributes-based predictive models to map saline prone areas has not yet been fully 

understood. This study aims to evaluate the utility of mapping saline prone areas using DEMs 

and their derivatives. Two DEM-based approaches for mapping potentially saline areas are 

investigated. First, a high-resolution (5 m) DEM and EC of soil samples collected from within 

the Sandspruit catchment are used to develop soil salinity regression predictive models based on 

elevation, slope gradient percentage, terrain wetness index (TWI) and curvature using the 

CurveExpert software (http://www.curveexpert.net). The elevation, slope gradient percentage, 

TWI and curvature were derived from a 5-m level 2 Stellenbosch University DEM (SUDEM 

L2). Second, elevation, slope gradient percentage, TWI and curvature which were derived from a 

20-m DEM are used to develop soil salinity regression predictive models using the EC of 

groundwater. The soil salinity predictive models were used to map the risk of dryland salinity in 

the Sandspruit catchment. The results are evaluated in the context of using DEM-based terrain 

attributes for enhanced mapping of soil salinity at local and regional scales. 

7.2 MATERIALS AND METHODS 

7.2.1 The study site 

The study area is the Sandspruit catchment of the BRC in the Western Cape Province of South 

Africa. Refer to section 1.5 for more information about the study area. 

7.2.2 Data used 

Three data sets were used for this analysis, namely soil samples, groundwater hydro-census data 

and DEMs. Each data set is explained in the succeeding paragraphs. 

Twenty three (23) top soil samples were collected from within the Sandspruit catchment. The 

samples were analyzed for EC using a 1: 5 saturated paste extract. The EC of the samples were 
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used to investigate the relationship of EC with terrain attributes in the Sandspruit catchment. The 

location of the soil samples collected in the Sandspruit catchment is shown in Figure 7.1. 

 

Figure 7.1 Sandspruit catchment field sample points 

Hydro-census data was obtained from the National Groundwater Information System of the 

Department of Water Affairs and Forestry (DWAF) (http://www.dwa.gov.za), South Africa. The 

data records the EC range of groundwater, annual evapotranspiration, the aridity index and the 

geographic location. The EC ranges of the groundwater are 0 - 70, 70 -150, 150 - 300, 300 – 500, 

500 – 1000 and greater than 1000 mS m
-1

. The data covered the whole of the Berg River 

catchment and the points were spaced at approximately 1 000 m from each other. The 

distribution of the hydro-census data in the Berg River catchment is shown in Figure 7.2. The 

hydro-census data was used to develop soil salinity predictive models using elevation, slope 

gradient percentage, TWI and curvature. 
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Figure 7.2 Hydro-census samples covering the Berg River catchment 

In the case of DEMs, two DEM products were used in this investigation, namely the 5-m 

Stellenbosch University DEM level 2 (SUDEM L2) product and the 20-m Western Cape DEM 

(WCDEM). Both DEMs were developed by the Centre for Geographical Analysis (CGA) at 

Stellenbosch University, South Africa. The 5-m SUDEM L2 was created from large-scale (1:10 

000) contours, the shuttle radar topography mission (SRTM) DEM (at areas of low relief) and 

spot heights using a combination of interpolation algorithms (e.g. the Topo to Raster and Spline 

tools in ArcGIS software) (van Niekerk, 2011). The 20-m WCDEM was developed by the 

Stellenbosch University CGA using contours digitized from 1:50 000 national topographic map 

series (van Niekerk, 2001).  The vertical accuracy of the WCDEM was determined by computing 

mean absolute error (MAE) and root mean squares error (RMSE) using highly accurate elevation 

data obtained from Chief Directorate National GeoSpatial Information (CDNGI), South Africa 

(van Niekerk, 2008). It was found to have a MAE and RMSE of 7 and 10 m respectively. 
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While the SUDEM L2 was used to develop soil salinity predictive models using the EC of the 

soil samples collected from within the Sandspruit catchment, the WCDEM was used to compute 

terrain attribute-based soil salinity predictive models using the EC of groundwater hydro-census 

data. The SUDEM L2 was used because it is a true DEM and was found to perform as well as 

the GEOEYE. The WCDEM was used because of its higher resolution and is more accurate than 

the SRTM DEM. 

7.3 DATA ANALYSIS 

7.3.1 Development of soil salinity regression predictive models 

Curve Expert software was used to develop soil salinity regression predictive models based on 

the EC of the soil and groundwater using elevation, slope gradient percentage, TWI and 

curvature. Concave and convex curvatures were treated separately as it was challenging to model 

them together. CurveExpert software models data using a toolbox of linear regression, nonlinear 

regression models, interpolation or splines. The basic version (CurveExpert 1.4) can be 

downloaded for free at http://www.curveexpert.net/curveexpert-basic. The software computes 

several models and ranks the models using the standard error (SE).  

The EC of the soil was determined by the 1:5 saturated paste extract. The soil samples were 

collected from within the Sandspruit catchment. The EC of groundwater was based on the 

DWAF hydro-census data. Hydro-census calibration samples were randomly selected from the 

entire Berg River catchment. This was done because it was problematic to model using all the 

points covering the Berg River catchment as the EC of the groundwater was based on ranges and 

not actual values. Also, the sampling was done so that the predictive models could be 

independently validated using the samples that were not used in the calibration. The calibration 

samples were selected by constructing a 1 000 m buffer around a line feature delineated to cover 

most of the catchment. The points that intersected with the buffer were extracted. The total 

number of calibration samples used was 203. The distribution of calibration samples in the Berg 

River catchment is depicted in Figure 7.3. The calibration samples were used to develop soil 

salinity regression predictive models using CurveExpert. Soil salinity predictive models that 

explained the most variation in EC were used to map the risk of soil salinity in the Sandspruit 

catchment.  
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In addition, stepwise multiple linear regressions was used to develop soil salinity predictive 

models based on the natural logarithm of EC, slope, elevation, TWI, annual evapotranspiration 

and the aridity index. The resultant model was used to map soil salinity in the Sandspruit 

catchment using Arc Map 10.0.   

 

Figure 7.3 Hydro-census calibration samples in the Berg River catchment 

7.3.2 Validation 

The terrain attribute-based salinity predictive models were used to map dryland salinity risk in 

the Sandspruit catchment. The soil salinity predictive models developed using CurveExpert 

software were validated using the correlation coefficient (r) and the SE which are generated by 

the software. The r indicates the strength of statistical correlation between measured and 

predicted values. The R
2
 was used to validate the model generated by the Statgraphics software. 

In addition, the soil salinity predictive models were independently validated using 54 hydro-

census samples covering the Sandspruit catchment. The distribution of the hydro-census 

validation samples in the Sandspruit catchment is shown in Figure 7.4. Measured groundwater 

EC values were compared with the predicted soil EC values. The percentage of correctly 
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predicted EC range values was computed for each of the terrain-attributes-based soil salinity 

regression predictive model. 

 

Figure 7.4 Hydro-census validation samples covering the Sandspruit catchment 

7.4 RESULTS AND DISCUSSION 

7.4.1 Soil EC-based salinity regression predictive models 

Terrain-attributes-based soil salinity regression predictive models which were developed based 

on the EC of the soil are depicted in Figure 7.5. The terrain attributes were derived from the 5-m 

SUDEL L2. Table 7.1 gives the corresponding equations and statistics of the soil salinity 

predictive models.  An elevation-based soil salinity quadratic regression predictive model 

yielded the highest r followed by the slope gradient percentage-based soil salinity predictive 

model (Table 7.1). The elevation-based soil salinity predictive model yielded the lowest SE (SE 

equal to 447.85). Despite this model yielding the highest r and a lower SE, it seems unlikely that 
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it can yield accurate soil salinity predictions. Judging by the model fit, it is obvious that the 

model can predict negative EC values (Figure 7.5a). EC values may not be negative. This is 

perhaps due to inadequate number of samples used for model calibration. Also, the soil samples 

are not evenly spread throughout the catchment. The samples are restricted to areas very close to 

the river due to problems of accessibility in the catchment.  

The r values for concave curvature-, convex curvature- and the TWI-based soil salinity 

predictive models are low and comparable (Table 7.1). The low r values suggest that the 

relationship between EC and these attributes is low. SE values for convex curvature-, TWI- and 

concave curvature-based soil salinity predictive models are 452.08, 486.49 and 678.11 

respectively. Due to a weaker relationship of EC with curvature and TWI, these models were not 

considered for further analysis. Further analysis was conducted with the elevation and slope-

based soil salinity predictive models.  

Potential soil salinity maps based on elevation and slope gradient percentage predictive models 

for the Sandspruit catchment were computed using ArcMap 10.0 software (http://www.esri.com). 

The slope gradient percentage-based soil salinity predictive model shows that areas of low slope 

and flat areas are highly prone to soil salinity. Potential salinity maps derived from the elevation 

and slope gradient-based regression predictive models are depicted in Figure 7.6. Despite a high 

SE and a moderate r for the slope gradient-based soil salinity predictive mode, the results of this 

model are consistent with the theory that soil salinity would occur at areas of low slope (Figure 

7.6a). On the contrary, the elevation-based soil salinity predictive model indicates that elevated 

areas are more susceptible to salinity than low lying areas (Figure 7.6b). Clearly, this is unlikely. 

This model would less likely yield reliable soil salinity predictions. This is most likely due to 

limited data available for model calibration. The samples are also not spread throughout the 

catchment and thus may not be representative of the conditions in the catchment. It was recorded 

that soil salinity usually occurs at low lying areas (de Clercq et al., 2010). 
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Table 7.1 Soil EC-based soil salinity regression predictive models equations and statistics 

Terrain attribute Equation Correlation 

coefficient (r) 

Standard error 

(SE) 

Elevation (m) y = 16726.82-366.79x + 1.94x
2
 0.66 447.85 

Concave curvature y = 658.28 + 2834.48x 0.29 678.11 

Convex curvature y = 286.71 - 591.24x 0.27 452.08 

Slope (%) y = 1131.45e 
-0.31x

 0.55 486.49 

Terrain wetness index y = 117.25 + 94.04x 0.28 578.78 
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Figure 7.5 Terrain attribute-based soil EC regression predictive models for elevation (a), concave 

curvature (b), convex curvature (c), slope gradient percentage (d) and terrain wetness index (e) 

 

a b 

c 
d 

e 
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Figure 7.6 Sandspruit catchment potential salinity maps derived from (a) slope-based soil salinity 

predictive model, (b) elevation-based soil salinity predictive model 

Soil salinity maps computed using the elevation- and slope-based soil salinity predictive models 

were compared with the measured groundwater hydro-census EC values covering the Sandspruit 

catchment. The percentage of accurately predicted soil EC was computed. The validation of the 

soil EC-based soil salinity predictive models is given in Table 7.2. While the slope-based soil 

salinity predictive model yielded a moderately accurate prediction, the elevation-based soil 

salinity predictive model yielded inaccurate predictions of soil salinity (Table 7.2). This is 

mostly likely because the elevation-based soil salinity predictive model fit seems to predict 

negative values. It appears that the elevation data was not adequate to yield reliable a calibration. 

Contrary to the elevation-based soil salinity predictive model, the slope-based soil salinity 

predictive model yielded somewhat reasonable soil salinity predictions. The results are consistent 

with Barrett-Lennard and Nulsen (1989) who recorded that elevation alone is not sufficient to 

identify saline areas in the landscape 

Table 7.2 Soil EC-based soil salinity predictive models accuracy 

Soil salinity regression predictive model Percentage correctly identified (%) 

Slope-based soil salinity predictive model 39.13 

Elevation-based soil salinity predictive model 8.69 

 

a 
b 
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7.4.2 Groundwater EC-based soil salinity regression predictive models 

Soil salinity regression predictive models were developed based on the EC of groundwater and 

terrain attributes. Terrain attributes-based soil salinity regression predictive models are depicted 

in Figure 7.7. The corresponding equations, correlation coefficient and the SE of the models are 

given in Table 7.3. While elevation, concave curvature, convex curvature and TWI yielded an 

exponential relationship with EC, slope yielded a logarithmic relationship with EC (Table 7.3). 

Although not recorded in Table 7.2, an exponential relationship of soil salinity with slope was 

also observed. This relationship recorded a slightly lower r than the logarithmic relationship 

reported here. The r values for curvature with EC were low (r equal to 0.32 and 0.37 for concave 

and convex curvature respectively). This means that the relationship of curvature with EC is low. 

Hence the predictive models for curvature were not considered for further analysis. Elevation, 

slope and TWI-based soil salinity predictive models were considered for further analysis. 

Whereas r for slope was 0.44, elevation and TWI yielded the same r value (r = 0.51). The 

concave curvature soil salinity predictive model yielded the highest standard error (SE) while the 

elevation-based soil salinity predictive model yielded the lowest SE (Table 7.3). The SE for 

TWI, convex curvature and slope were comparable (SE equals to 316.76, 317.22 and 321.11 for 

convex curvature, TWI and slope gradient percentage respectively). SE values for groundwater 

EC-based soil salinity predictive models are lower than those of soil EC-based regression 

predictive models. This is most likely due to the number of samples used for model calibration. 

The moderate r values for slope gradient percentage-, elevation- and TWI-based soil salinity 

predictive models indicates that these models may not be accurate in predicting soil salinity. 

Perhaps this is due to the fact that the groundwater hydro-census data is course. We observed 

that low lying areas in the landscape are more prone to soil salinity (Figure 7.7a). Similar to the 

soil EC-based soil salinity regression predictive model, the groundwater EC-based soil salinity 

predictive model indicates that flat areas and areas of slopes lower than 4% are highly 

susceptible to soil salinity. This is consistent with the theory. Regarding TWI, the study found 

that wet areas are prone to soil salinity. This is most probably because the water table is most 

likely going to rise under wet areas. Salts will be mobilized to the surface when this occurs. 
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Table 7.3 Groundwater EC-based soil salinity regression predictive models equations and 

statistics 

Terrain attribute Equation Correlation 

coefficient (r) 

Standard error (SE) 

Elevation (m) y = 745.53e
-0.0086x

 0.51 308.68 

Concave curvature y = 441.15e
6.25x

 0.32 355.99 

Convex curvature y = 507.78e
-42.02x

 0.38 316.76 

Slope (%) y = 430.71 - 106.19ln(x) 0.44 321.11 

Terrain wetness index y = 93.04e
0.25x

 0.51 317.22 
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Figure 7.7 Terrain attribute-based EC range regression predictive models for elevation (a), 

concave curvature (b), convex curvature (c), slope gradient percentage (d) and terrain wetness 

index (e) 

The elevation-, slope gradient percentage- and TWI-based soil salinity regression predictive 

models were used to map the risk of dryland salinity in the Sandspruit catchment using ArcMap 

10.0 software (http://www.esri.com). The soil salinity maps based on elevation, slope and TWI 

predictive models are shown in Figure 7.8. The elevation-based soil salinity map of the 

Sandspruit catchment indicates that the low lying areas in the catchment are highly prone to 

a b 

c d 

e 
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salinity (Figure 7.8a). This is probably due to the fact that groundwater flows from elevated areas 

to low lying areas. Generally, the results indicate that low lying areas, flat areas and wet areas are 

highly susceptible to soil salinity. This is consistent with the findings by Barrett-Lennard and 

Nulsen (1989) and De Clercq et al. (2010) who established that salinised land frequently develop 

in lower valley locations.  

Figure 7.8 Sandspruit catchment potential saline areas derived from elevation (a), slope gradient 

percentage (b) and terrain wetness index (c) 

The percentage of accurately predicted elevation-, slope- and TWI-based soil salinity predictive 

models is recorded in Table 7.4. The models yielded low to moderate predictions.  The TWI-

based soil salinity predictive model yielded the highest percentage of accurately predicted soil 

salinity followed by the slope-based soil salinity predictive model and the elevation-based soil 

salinity predictive model (Table 7.4). The soil EC-based soil salinity predictive model yielded 

slightly more accurate predictions than the groundwater EC-based soil salinity predictive model. 

a b 

c 
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This is perhaps due to the resolution of the DEMs. While a very high-resolution (5 m) was used 

in the case of the soil EC-based model, a 20-m WCDEM was used in the calibration of the 

groundwater EC-based predictive model.  

Overall, the soil salinity predictions from all the models used in this study are somewhat less 

accurate. These inaccurate predictions are likely due to the data being recorded as EC ranges and 

that the spread of the groundwater hydro-census samples was course. While the soil EC-based 

predictive models were based on a very high-resolution DEM, there were not sufficient soil 

samples to use for calibration. A more detailed sampling and a higher-resolution DEM would 

likely yield better results.  It is clear that there is good potential for DEM-based prediction of soil 

salinity at local and regional scales. 

Table 7.4 Soil salinity predictive models accuracy 

Soil salinity regression predictive model Percentage accurately predicted (%) 

Elevation-based soil salinity predictive model 16.36 

Slope-based soil salinity predictive model 25.45 

TWI-based soil salinity predictive model 34.69 

 

7.4.3 Stepwise multiple regressions 

A correlation matrix showing the R
2
 values amongst the variables is given in Table 7.5. The EC 

values were transformed to natural log for this analysis. While the R
2
 of the natural EC with the 

aridity index and annual evapotranspiration was higher, precipitation and elevation yielded a 

moderate R
2 

with EC (Table 7.5). The relationship of EC with elevation and TWI was moderate 

(R
2
 = 0.25 and 0.38 for TWI and slope respectively). A multiple stepwise regression was 

conducted using Statgraphics software to establish a possible interaction between elevation, 

slope gradient percentage, TWI, aridity index and annual evapotranspiration. Stepwise multiple 

linear regressions revealed that the best soil salinity predictive model included elevation, TWI 

and annual evapotranspiration. The stepwise soil salinity predictive model is given by equation 
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7.1. The statistics of the model are given Table 7.6. Table 7.7 gives the analysis of variance for 

the model. 

LogEC = -0.00305 (elevation) + 0.031452 (TWI) + 0.00668 + 0.920952 (annual 

evapotranspiration)            7.1 

The R
2
 and the R

2
 (adj) for the stepwise soil salinity predictive models are comparable. This 

suggests that the model is somewhat stable in its predictions. The SE and mean absolute error for 

the stepwise regressions salinity model are low (Table 7.6). This is most likely due to the use of 

log transformed EC values. 

Table 7.5 Matrix of R
2
 and p values amongst the soil chemical variables 

 Aridity index 

R2 (p) 

Evapotranspiration 

R2 (p) 

Precipitation 

R2 (p) 

Elevation 

R2 (p) 

Slope 

R2 (p) 

TWI 

R2 (p) 

Plan C 

R2 (p) 

Profile C 

R2 (p) 

Log EC 

R2 (p) 

Aridity index 1         

Evapotranspiration 0.69 (0) 1        

Precipitation -0.75 (0) -0.95 (0) 1       

Elevation -0.59 (0) -0.68 (0) 0.61 (0) 1      

Slope -0.46 (0) -0.58 (0) 0.56 (0) 0.56 (0) 1     

TWI 0.33 (0) 0.37 (0) -0.37 (0) -0.42 (0) -0.46 (0) 1    

Plan C -0.17 (-0.0962) -0.24 (0.02) 0.25 (0.02) 0.17 (0.09) 0.15 (0.14) -0.29 (0) 1   

Profile C -0.033 (0.74) -0.044 (0.66) 0.09 (0.40) -0.142 (0.16) 0.05 (0.61) 0.1 (0.31) -0.28 (0.00) 1  

Log EC 0.57 (0) 0.56 (0) -0.50 (0) -0.51 (0) -0.38 (0) 0.25 (0.01) -0.14 (0.17) -0.0049 (0.96) 1 

 

Table 7.6 The statistics of the stepwise multiple regression soil salinity predictive model 

Independent variable coefficient Std. error t-value Significance level 

Constant 0.920952 0.329265 2.7970 0.0057 

Elevation -0.000305 0.000124 -2.4639 0.0146 

TWI 0.031452 0.00942 3.3389 0.0010 

Evapotranspiration 0.000668 0.000141 4.7236 0.0000 

R
2 

(adj) = 0.53), standard error = 0.31, mean absolute error = 0.24 
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Table 7.7 Analysis of variance for the stepwise regressions models based on TWI, elevation and 

evapotranspiration model 

 Sum of squares DF Mean square F-Ratio p-value 

Model 14.48 3 4.83 51.65 0.00 

Error 18.60 199 0.09   

R
2
 = 0.44, R

2
 (adj.) = 0.43 

The soil salinity map of the Sandspruit catchment based on the stepwise multiple linear 

regressions model is shown in Figure 7.9. The percentage of accurately predicted EC range 

values was computed using the EC of the groundwater hydro-census samples covering the 

Sandspruit catchment. The stepwise multiple linear regressions soil salinity model yielded an 

accuracy of 40.82%. This is higher than the groundwater and soil EC-based soil salinity 

predictive models. While the soil EC-based slope gradient and elevation soil salinity regression 

predictive models yielded accuracies of 39.13 and 8.68% respectively, the groundwater EC-

based slope gradient percentage, elevation and TWI soil salinity predictive models yielded 

accuracies of 25.45, 16.36 and 34.69% respectively. The slightly higher prediction capacity of 

the multiple stepwise linear regressions models is most likely due to the fact that it uses more 

variables. The prediction of the stepwise multiple linear regressions soil salinity predictive model 

is consistent with the theory that low lying areas are more prone to salinity than elevated areas in 

the landscape. 

Although the models presented here are based on reliable information, it is a question of scale. 

Information that was sampled at different scales or support cannot necessarily produce reliable 

secondary information. Comparing information that was sampled at different scales is therefore 

not advisable as different scales of information support different processes. As a concluding 

argument for this work, we strongly advise that the resolution or scales of information be 

comparable when mapping soil salinity. 
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Figure 7.9 Sandspruit soil salinity map derived from stepwise multiple regression based on 

evapotranspiration, TWI and elevation  

7.5 CONCLUSSIONS 

This work investigated the potential of terrain attribute-based mapping of soil salinity at 

catchment scales. Terrain attributes-based soil salinity predictive models were computed using 

the EC of topsoil samples collected from within the Sandspruit catchment. In addition, terrain 

attributes-based soil salinity predictive models were developed using the EC of groundwater. 

Stepwise multiple linear regression soil salinity predictive models were also investigated. The 

stepwise multiple linear regressions predictive model based on TWI, elevation and 

evapotranspiration yielded the most accurate predictions of soil salinity. Promising soil salinity 

maps for the Sandspruit were produced using the slope-, elevation-, evapotranspiration and TWI-

based soil salinity predictive models. The study established that wet areas in the landscape are 

more prone to soil salinity than drier areas. It appears that areas with slope gradient less than 4% 
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are highly susceptible to soil salinity. Despite less accurate predictions, we conclude that there is 

good potential for terrain attributes-based soil salinity predictive models. The results of this study 

lay a foundation for using terrain attributes-based predictive models to map soil salinity. Further 

investigations using more detailed sampling and higher-resolution DEMs are needed to improve 

the results. Also, object-based analysis for mapping soil salinity using terrain attributes should be 

explored. 
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CHAPTER 8  

SYNTHESIS: IMPROVED SOIL SALINITY DETECTION, ANALYSIS 

AND MONITORING 

 

 

8.1 BACKGROUND 

The emergence of dryland salinity in the BRC will have devastating consequences for wheat 

production, irrigation agriculture and the supply of clean water in the region. Owing to 

insufficient funds available for research in South Africa, it will be restrictive in terms of costs to 

detect and monitor dryland salinity in the BRC using traditional wet chemistry methods. The 

literature review in this research exposed that remote sensing, NIR spectroscopy, hydrological 

parameters, land components and topography can be useful for the detection, analysis and 

mapping of soil salinity. The use of NIR spectroscopy will pave the way for analysing soil 

salinity cost effectively in the laboratory and in situ. NIR spectroscopy will also enhance our 

understanding of the spectral behaviour of salt-affected soils. Thus, such information is crucial 

for improving the use of hyperspectral remote sensing to map salt-affected soils remotely from 

satellite and airborne sensors. Hyperspectral remote sensing has the potential to overcome the 

limitations of broadband sensors for mapping salt-affected soils. Land components possess great 

valuable for studying soil properties. Soil properties (including soil salinity) can be mapped at 

local and regional scales using land components. The accuracy of hydrological parameters is also 

key to accurate modeling of soil salinity at catchment scales. So, it would be beneficial to evalue 

the accuracy of DEM-delineated streamlines and catchment boundaries. Finally, terrain attributes 

possess the ability to map soil salinity at local and regional levels. Thus NIR spectroscopy, 

hyperspectral remote sensing and DEM derivatives would enhance studying soil-affected soils in 

the laboratory, in situ and at local and regional scales.  
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Bearing in mind the above, the foundation for this study was to develop accurate, less tedious 

and cheaper techniques for detection and mapping soil salinity. The resultant techniques will be 

applied to detect and map soil salinity in the chosen study site (Sandspruit catchment of the 

BRC). These techniques will form the basis for enhanced monitoring of the soil salinity risk in 

the BRC and other areas where appropriate.  

8.2 REVISTING THE OBJECTIVES OF THE STUDY 

This study was aimed to evaluate the value of hyperspectral remote sensing, NIR spectroscopy, 

DEM-based hydrological parameters and land components, and terrain attributes for quantitative 

analysis, characterization, mapping and modelling of dryland salinity in the Sandspruit for 

enhanced monitoring. Six (6) objectives were set to realize the overall goal of this study. The 

degree to which each of the objectives was achieved is outlined in the following subsections.  

8.2.1 Review of soil salinity analysis, detection and mapping techniques 

The first objective was to review the literature to reveal the value of remote sensing, NIR 

spectroscopy, hydrological parameters, land components and terrain attributes for better 

monitoring of soil salinity. The literature established that although incorrect irrigation accounts 

for most of the human induced salinization, dryland salinization is increasingly contributing to 

the rising human caused salinization. It was exposed in the literature that broadband sensors are 

inadequate to study subtly occurrences of soil salinity. Owing to high spectral resolution, 

hyperspectral remote sensing is promising to enhance the mapping of soil salinity. In the case of 

NIR spectroscopy, the literature revealed that while it has potential to be used as a reliable, cheap 

and less labour intensive technique to quantitatively analyse soil salinity, it has not yet been 

widely adopted. Composite sampling was also exposed to reduce sampling related bias, thus can 

improve model calibration. Regarding land components, the literature exposed that they have 

good potential for mapping soil properties. However, traditional methods of delineating them are 

subjective, tedious and expensive. Land components can be delineated from DEMs with less 

costs and effort. But, the accuracy of land components derived from different DEM sources is 

not yet known. It is crucial to reveal the accuracy of DEM-delineated land components before 

they can be used for mapping soil properties. Consequently, the accuracy of land components 

derived from different DEMs has to be investigated first. In the case of hydrological parameters, 
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it was revealed that they have great value for improving the accuracy of soil salinity modeling 

from hydrological models. The accuracy of hydrological parameters extracted from DEMs 

should be investigated. Finally, the literature demonstrated that there is a relationship of soil 

salinity with topography. It was revealed that saline areas occur at low lying areas in the 

landscape. The literature also revealed that soil salinity is most likely to occur at wet areas and 

concave curvature profiles. Additionally, groundwater discharge areas occur at low lying areas 

and breaks of slope. 

8.2.2 Hyperspectral remote sensing of saline soils 

The second objective was to investigate the value of hyperspectral remote sensing to enhance the 

mapping of soil salinity by remote sensing. Individual bands, a NDSI, PLSR and bagging PLSR 

were investigated. Furthermore, field-based regression predictive models for EC, pH, soluble Ca, 

Mg, Na, Cl and SO4 were developed. It was established that accurate predictions of soil salinity 

for dry soils can be made using untransformed reflectance individual band (at 2257 nm), a NDSI, 

PLSR using untransformed reflectance and bagging PLSR using first derivative reflectance 

predictive models. The predictive models yielded validation R
2
 values of 0.85, 0.70, 0.65 and 

0.60 based on bagging PLSR using first derivative reflectance, PLSR using untransformed 

reflectance, a NDSI and untransformed individual band at 2257 nm respectively. The study also 

concluded that reliable predictions of EC, pH, soluble Ca, Mg, Na, Cl and SO4 in the field are 

possible using first derivative reflectance. The R
2
 values for field-based predictive models for 

EC, pH, soluble Ca, Mg, Na, Cl and SO4 were 0.85, 0.50, 0.65, 0.84, 0.79, 0.81 and 0.58 

respectively. These findings are applicable to dry soils and can only be applicable for mapping 

soil salinity during dry seasons. Thus, this study affirmed that it is possible to improve soil 

salinity mapping using airborne and satellite hyperspectral data. 

8.2.3 NIR spectroscopy of saline soils 

The third objective was to investigate the value of NIR spectroscopy as a reliable, less labour 

intensive and cost effective alternative or complimentary method to analyse soil salinity. The 

results showed that reliable predictions of EC, pH, Ca, Mg, Na, Cl and SO4 could be made based 

on PLSR regression predictive models. Owing to enhanced predictions of some soil chemicals, it 

is also concluded that the use of composite sampling possibly yielded superior PLSR predictive 
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models. The study also revealed that although MIR spectroscopy is reported to perform better 

than NIR spectroscopy , the NIR PLSR predictive models used in this study were more accurate 

than previously reported MIR results for some soil chemicals investigated. These findings affirm 

that soil salinity can be analysed accurately, cheaper and faster using NIR spectroscopy. NIR 

spectroscopy findings also confirmed that the most information on EC and salt minerals are 

found in the NIR and SWIR regions of the spectrum. Therefore, this information will also be 

useful for enhancing hyperspectral remote sensing of salt-affected soils. 

8.2.4 The accuracy of DEM-delineated streamlines and catchment boundaries 

The fourth objective evaluated the value of DEMs to delineate accurate hydrological parameters 

(streamlines and catchment boundaries). Accurate hydrological parameters will enhance the 

modeling of salinity at catchment scales using hydrological models. The research affirmed that 

higher resolution DEMs are required to derive correct hydrological parameters. The ED ratio 

developed in this study promises to be a valuable technique to compare DEM extracted raster 

datasets with reference datasets. In general, it appears as if usable hydrological information can 

be derived from the SRTM DEM and the ASTER GDEM2. This study established that 

streamlines and catchment boundaries delineated from DEMs generated from high resolution 

stereo-images can produce results comparable to those of LiDAR DEM’s. Accurate streamlines 

and catchment boundaries are indispensable for improving the modelling of soil salinity using 

hydrological models. We believe that accurate hydrological parameters can enhance the 

modelling of soil salinity using hydrological models at local and regional scales. 

8.2.5 The accuracy of DEM-delineated land components 

The fifth objective evaluated the utility of DEMs to delineate accurate land components. The 

study concluded that the 5-m GEOEYE DEM was the most successful in producing land 

component boundaries that coincides with morphological discontinuities. The 5-m SUDEM L2 

produced similar land components to the GEOEYE DEM and was almost as successful in 

maximizing internal (interclass) homogeneity and minimizing external (intraclass) homogeneity. 

The SRTM DEM appears to be somewhat superior to the ASTER GDEM2 for land component 

mapping. A novel measure, namely the MSGLV ratio, was developed and tested in this study for 

evaluating how well land component boundaries coincide with morphological discontinuities. 
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The MSGLV ratio measures the relationship between internal homogeneity and external 

heterogeneity of land components. The MSGLV ratio complimented the other validation 

techniques used in this study. It appears that the MSGLV has good potential to be used for 

evaluating the efficacy of DEMs to identify morphological discontinuities. Accurate land 

components delineated in a cost effective and objective manner provide new opportunities for 

mapping soil salinity at local and regional levels.  

8.2.6 The value of terrain attributes to map soil salinity 

Finally, the sixth objective investigated the value of mapping saline prone areas using terrain 

attributes. Terrain attributes-based soil salinity regression predictive models were developed 

based on the salinity of the soil and groundwater. Additionally, stepwise multiple linear 

regression soil salinity predictive models were investigated. The stepwise multiple linear 

regressions soil salinity predictive model based on TWI, elevation and evapotranspiration 

yielded more accurate soil salinity predictions than the predictive models based on TWI, slope 

gradient percentage and elevation. Sound relationships of slope, elevation and TWI with soil 

salinity were observed. Although not very accurate, sound potential salinity maps based on slope, 

elevation, evapotranspiration and TWI which identified areas at risk of soil salinity in the 

landscape for the Sandspruit catchment were produced. Although the accuracy is low, the study 

found that there is potential to map soil salinity at local and regional scales based on slope, 

elevation, evapotranspiration and TWI.  

8.3 NEW DEVELOPMENTS 

Traditional methods for analysing, detection and mapping of saline soils by remote sensing have 

been inadequate. While conventional analysis by wet chemistry methods is tedious and 

expensive, broadband sensors (for example SPOT and Landsat) are inadequate for mapping soil 

properties due to limited spectral resolution. This study established that there is potential to map 

soil salinity using airborne and satellite hyperspectral data. The study found that hyperspectral 

remote sensing has the possibility to enhance the detection of saline soils using an individual 

band (at 2257 nm), a novel NDSI, PLSR and bagging PLSR. Bagging PLSR using first 

derivative reflectance was established to be the most accurate method that has the potential to 

accurately detect slight to moderately salt-affected soils. With respect to NIR spectroscopy, this 
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study recognized that there is potential for it to be used as a less tedious and cost saving 

technique for quantifying soil salinity and soluble ions in the soil. Furthermore, this study 

established that although useful land components and hydrological parameters can be delineated 

from freely available high- to medium-resolution DEMs, very high-resolution DEMs are needed 

to delineate accurate land components and hydrological parameters. Two novel indices were also 

developed, namely an ED index for comparing raster data and a MSGLV ratio for validating the 

ability of DEMs to detect terrain morphological discontinuities. Regarding the value of terrain 

attributes to map soil salinity, it was demonstrated that there is potential to predict the risk of 

dryland salinity using slope-, elevation- and TWI-based regression predictive models. A stepwise 

multiple linear regressions soil salinity predictive model based on evapotranspiration, TWI and 

elevation was found to predict soil salinity more accurately than the slope-, elevation- and TWI-

based regression predictive models. Sound dryland salinity risk maps for the Sandspruit 

catchment were produced using regression predictive models based on elevation, TWI and slope. 

Overall, this study demonstrated that NIR spectroscopy, hyperspectral remote sensing, land 

components, hydrological parameters and terrain attributes can enhance the detection of salt-

affected soils in the laboratory, in situ and at local and regional scales. 

8.4 DIRECTIONS FOR FURTHER RESEARCH 

The hyperspectral individual bands, NDSI, PLSR and bagging PLSR predictive models 

developed in this study were tested under controlled conditions. This work should be expanded 

and evaluated using aerial and satellite data. Also, these predictive models were developed based 

on soil samples of varying properties covering the whole of South Africa. Further research 

should be conducted using soil samples at local and regional scales. It was established in this 

research that accurate land components and hydrological parameters can be extracted from 

DEMs. Research should be conducted to investigate the value of land components to study soil 

salinity and their relationship to soil properties. Land components have the potential enhance the 

detection of soil salinity using vegetation indices, and more research is needed to expose this 

value. Object-based methods for mapping soil salinity using land components should be 

explored. The utility of DEM-derived hydrological parameters to enhance soil salinity modeling 

using hydrological models should also be investigated. The potential for NIRS spectroscopy to 

quantify soil salinity was demonstrated in this study using a limited number of soil samples, 
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more research is needed to verify the findings. The data used in this study to investigate the value 

of terrain attributes to map soil salinity was not adequate. More research should be done using 

more detailed sampling and high-resolution DEMs to improve the results.  
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APPENDIX A 

SOIL SAMPLE DATA 

Table A1 Sandspruit catchment soil samples 

Samples EC (mS m
-1

) pH Ca(mg/l) Mg
 
(mg/l) Na

 
(mg/l) Cl

 
(mg/l) SO4

 
(mg/l) 

Sand_09 20.00 6.66 20.80 12.14 20.20 18.24 4.17 

Sand_101 8.00 5.92 4.60 2.01 11.07 7.21 7.18 

Sand_103 33.00 6.46 29.74 8.32 117.58 81.23 34.15 

Sand_104 1353.00 7.80 728.06 442.23 3984.73 9386.96 2436.60 

Sand_108 4.00 6.50 3.13 1.71 6.46 4.31 1.42 

Sand_111 11.00 6.76 14.89 7.53 10.78 8.70 4.74 

Sand_114 728.00 6.85 344.00 223.58 1290.73 3728.91 356.76 

Sand_115 1520.00 8.06 313.81 349.82 4263.26 10255.90 843.28 

Sand_116 1130.00 7.25 129.21 236.72 3233.63 7484.11 359.93 

Sand_15 16.00 6.75 27.83 11.18 3.95 9.15   

Sand_20 36.00 6.65 54.19 7.40 8.68 28.37 8.10 

Sand_21 20.00 6.79 36.52 4.25 5.51 11.86 5.16 

Sand_23 83.00 6.75 68.09 16.67 10.08 45.34 11.32 
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Sand_28 82.00 6.06 107.84 8.98 28.47 45.39 287.54 

Sand_32 143.00 6.60 89.66 23.37 150.90 265.00 242.07 

Sand_34 230.00 6.69 103.96 43.99 257.70 707.00 119.56 

Sand_39 77.00 6.88 41.28 14.74 73.06 93.35 48.20 

Sand_61 92.00 6.74 52.51 17.96 12.70 34.33 16.88 

Sand_71 154.00 7.28 62.50 27.81 104.13 211.89 63.58 

Sand_72 79.00 7.01 52.02 8.76 23.27 30.23 12.43 

Sand_89 120.00 6.37 59.98 20.42 109.98 374.43 37.16 

Sand_90 912.00 6.58 164.11 293.99 1486.62 3644.34 754.25 

Sand_98 7.00 5.70 4.00 1.21 3.46 4.22 5.36 

 

Table A2 Agricultural Research Council ad hoc samples 

Samples 

EC (mS m
-

1
) pH Ca

 
(mg/l) 

Mg
 

(mg/l) 

Na
 

(mg/l) Cl
 
(mg/l) 

SO4
 

(mg/l) 

JHB_2229 121.00 7.44 60.10 20.89 166.59 57.92 457.16 

JHB_2230 145.00 7.29 122.65 38.93 130.14 221.11 485.30 

JHB_2231 88.00 7.09 51.22 16.95 90.55 62.75 225.66 

JHB_2232 121.00 6.94 105.28 37.40 86.23 115.25 408.37 

JHB_2233 221.00 6.87 201.75 64.18 189.07 172.42 858.19 

JHB_2234 186.00 5.70 149.91 67.64 146.25 338.13 590.31 

JHB_2235 215.00 7.56 142.53 49.21 244.51 195.19 851.29 

JHB_2236 216.00 7.33 153.41 49.59 213.93 377.85 659.06 

JHB_2237 162.00 7.65 83.78 32.00 193.79 109.38 644.67 

JHB_2238 257.00 6.95 207.18 69.41 229.94 321.05 991.53 

JHB_2239 429.00 7.29 528.59 132.53 339.43 238.68 2598.31 

JHB_2240 220.00 7.07 184.78 99.46 78.30 166.66 779.21 

JHB_2241 265.00 7.65 214.13 64.45 261.10 225.56 1047.74 

JHB_2242 229.00 7.52 256.10 59.44 190.55 285.62 821.82 

JHB_2243 161.00 7.78 118.48 37.37 156.04 130.24 603.69 

JHB_2244 119.00 7.74 104.97 27.78 100.39 80.09 248.27 

JHB_2245 60.00 7.81 36.58 13.16 56.95 63.93 198.26 

JHB_2246 50.00 7.79 26.73 9.02 49.66 32.98 138.38 

JHB_2247 39.00 7.98 33.33 11.31 19.96 19.59 30.16 

JHB_2248 117.00 7.93 88.94 28.22 96.03 57.86 411.79 

JHB_2249 37.00 8.01 25.44 8.90 26.30 14.71 60.83 

JHB_2250 43.00 7.82 19.79 7.33 45.39 24.87 71.03 

JHB_2251 78.00 7.83 34.83 12.36 87.52 28.23 263.49 
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JHB_2252 198.00 7.39 172.02 59.76 154.17 267.20 760.46 

JHB_2253 1234.00 7.77 482.69 534.96 1776.85 2776.51 4251.89 

JHB_2254 418.00 7.36 167.18 147.68 508.70 811.63 1464.83 
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Table A3 Land Type Database soil samples 

LabNoType LabNo SoilClass X-Coord Y-Coord Texture Org_C Extr_Exch Conductivity

C 1759 Ar20 31.96500015 -27.5083 ClLm 2.799999952 Exchangeable 90

C 1997 We12 27.02444458 -29.2325 Cl 0.100000001 Exchangeable 120

C 2799 Va21 26.32999992 -28.5633 Cl 0.400000006 Exchangeable 60

C 2891 Oa46 26.11277771 -29.7806 Lm 0.200000003 Exchangeable 90

C 4556 Av36 26.26000023 -27.3767 SaClLm 0.150000006 Exchangeable 46

C 4560 We13 27.10666656 -27.3567 SaCl 0.289999992 Exchangeable 56

C 4647 Hu46 30.06388855 -24.8856 Lm 0.100000001 Exchangeable 64

C 5107 Bo30 31.52833366 -27.5917 SaLm 0.200000003 Exchangeable 80

C 7264 Oa46 20.2816658 -31.3825 SiLm 0.100000001 Exchangeable 124

D 244 Es15 29.27083397 -23.825 LmSa 0.430000007 Exchangeable 70

C 1903 Kd13 25.48111153 -33.9761 SaClLm 0.200000003 Exchangeable 308

C 2569 Es33 28.57777786 -26.2806 SaCl 0.200000003 Exchangeable 240

C 2698 Oa47 26.09777832 -30.1453 SiCl 0.899999976 Exchangeable 260

C 2708 Ar20 26.38194466 -29.0667 Cl 0.5 Exchangeable 203

C 4728 Hu43 17.22333336 -28.87 SaLm 0.300000012 Exchangeable 300

C 5464 Sw20 22.40166664 -32.37 SaClLm 0.300000012 Exchangeable 234

C 5563 Ss26 25.51388931 -32.3767 Cl 0.200000003 Exchangeable 295

C 5584 Gs23 24.28388977 -32.9625 SaCl 0.300000012 Exchangeable 351

C 6384 Hu34 17.88166618 -30.7697 LmSa 0.600000024 Exchangeable 370

C 6388 Cv21 17.79055595 -30.9731 Sa 0.360000014 Exchangeable 267

C 8643 Ss13 26.74749947 -30.6306 SiClLm 0.059999999 Exchangeable 340

C 8936 Hu44 22.82638931 -30.2228 SaLm 0.180000007 Exchangeable 348

D 306 Oa16 19.52750015 -31.3889 SaLm 0.379999995 Exchangeable 214

C 2298 Rg20 31.7788887 -25.8572 ClLm 0.300000012 Exchangeable 465

C 3448 Kd11 18.09222221 -32.8339 Sa 0.100000001 Exchangeable 460

C 3827 Es14 23.33166695 -33.9508 ClLm 0.100000001 Exchangeable 514

C 4228 Bo41 32.05833435 -28.3833 Cl 0.300000012 Exchangeable 445

C 4281 Ss16 32.24000168 -27.695 Cl 0.100000001 Exchangeable 624

C 4407 Kd16 19.52444458 -33.6828 SaClLm 0.100000001 Exchangeable 650

C 4713 Cv41 16.68333244 -28.8633 Sa 0.100000001 Exchangeable 412

C 4916 Hu32 17.45833397 -29.2208 SaLm 0.100000001 Exchangeable 440

C 5337 Va41 31.26666641 -24.35 SaCl 0.200000003 Exchangeable 690

C 5771 Oa47 20.52000046 -30.4767 SaClLm 0.200000003 Exchangeable 775

C 6511 Hu46 25.89888954 -33.2256 SaClLm 0.200000003 Exchangeable 480

C 6514 Oa46 25.97249985 -33.0444 SaClLm 0.400000006 Exchangeable 400

C 7250 Va20 20.09555626 -31.1361 Lm 0.189999998 Exchangeable 459

C 8312 19.2088089 -31.3861 ClLm 0.730000019 Exchangeable 758

C 1555 Ar20 32.13499832 -27.4983 Cl 0.200000003 Exchangeable 1490

C 1875 Hu46 26.41666603 -33.2 SaClLm Exchangeable 1172

C 3449 Kd11 18.09222221 -32.8339 LmSa 0.200000003 Exchangeable 980

C 3779 Ms20 20.41388893 -34.4972 LmSa 0.800000012 Extractable

C 4305 Bo40 32.10833359 -28.3433 SaClLm 0.300000012 Exchangeable 1450

C 4403 Ss26 19.47277832 -33.7839 SaCl 0.300000012 Exchangeable 1158

C 4719 Hu42 17.71333313 -28.9133 Sa 0.100000001 Exchangeable 1407

C 4948 Hu32 17.19000053 -29.1667 Sa 0.100000001 Exchangeable 1370

C 4951 Hu42 17.39722252 -29.3431 LmSa 0.200000003 Exchangeable 1500

C 5146 Hu34 22.37916756 -33.5639 LmSa 0.100000001 Exchangeable 1590

C 5147 Hu34 22.37916756 -33.5639 Sa 0.100000001 Exchangeable 1000

C 5377 Oa44 21.92277718 -33.1136 LmSa 0.100000001 Exchangeable 1200

C 5515 Oa46 22.07250023 -33.1972 SaLm 0.100000001 Exchangeable 1070

C 6244 Hu33 18.66333389 -31.8667 Sa 0.100000001 Exchangeable 1207

C 6419 Cv31 17.66777802 -30.9778 SaLm 0.200000003 Exchangeable 900

C 6420 Cv31 17.66777802 -30.9778 SaLm 0.100000001 Exchangeable 1449

C 8945 Sd30 23.69611168 -30.4869 Lm 0.159999996 Exchangeable 821

C 9485 Va20 29.11666679 -22.6833 SaLm 0.200000003 Exchangeable 978

C 1554 Ar20 32.13499832 -27.4983 Cl 0.800000012 Exchangeable 1860

C 2408 Oa36 19.36555481 -33.6242 SaClLm 0.200000003 Exchangeable 2680

C 4720 Hu42 17.71333313 -28.9133 LmSa 0.100000001 Exchangeable 2345

C 4864 Es30 31.01166725 -28.0217 SaLm 0.300000012 Exchangeable 1644

C 4964 Hu35 18.42333412 -30.3133 Sa 0.230000004 Exchangeable 320

C 5470 Oa47 21.10333252 -30.0014 Cl 0.300000012 Exchangeable 1776

C 5484 Oa47 19.56666756 -30.36 SiCl 0.300000012 Exchangeable 3980

C 5485 Oa47 19.56666756 -30.36 SiLm 0.200000003 Exchangeable 3440

C 5543 Va22 25.11249924 -32.4356 Cl 0.600000024 Exchangeable 1960

C 5978 Oa47 24.08444405 -30.1853 Lm 0.100000001 Exchangeable 2272

C 6270 Va21 24.38999939 -31.7144 Cl 0.200000003 Exchangeable 1634

C 6390 Ss23 17.88916588 -31.0172 SaCl 0.400000006 Exchangeable 1974

C 8987 Oa46 22.93333244 -30.8694 ClLm 0.170000002 Exchangeable 2000  
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