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SUMMARY 

 

A new membrane based affinity separation system that is bio-specific, biocompatible, well 

characterised and capable of being regenerated or re-used is described.  The amphiphilic 

non-ionic surfactant Pluronic® F108, was covalently derivatised to form two novel 

bioligands (Pluronic-Biotin and Pluronic-DMDDO) for the bio-specific immobilisation of 

avidin conjugated proteins and histidine tagged proteins respectively.  Pluronic was also 

used to non-covalently functionalise nonporous membranes for ligand attachment and to 

simultaneously shield the surfaces from non-specific protein adsorption.  Each component 

of this bioaffinity system (from the membrane matrix to the elution/desorption of the 

ligate/ligand system) was studied with the aim of producing a well characterised system 

and key quantitative data for the development of a robust, reliable, re-usable and scalable 

technology. 

 

Specifically, this study describes: 

 

1. The fabrication and partial characterisation of nonporous planar and capillary 

membranes as model affinity matrices. 

2. The development and evaluation of a robust protocol for solvent desorption and 

accurate colorimetric quantification of Pluronic® F108 and its derivatives. 

3. Interfacial analysis of Pluronic adsorption onto nonporous affinity membranes, 

including the direct solid-state analysis of model, halogenated Pluronic derivatives 

using nuclear microprobe analysis. 

4. Development of a surfactant based protocol for affinity membrane regeneration 

and re-use. 

5. Specific bioaffinity immobilisation of avidin conjugated peroxidase onto 

biotinylated membranes in the presence of model protein foulants. 

6. Cloning and expression of C-terminal hex-histidine tagged human cytochrome b5 

into the bacterial expression system E. coli BL-21 DE3. 

7. Development and characterisation of an immobilised metal affinity membrane 

system for metal chelation (Ni2+, Cu2+ and Zn2+) using a new chelator Pluronic-

N,N-dicarboxymethyl-3,6-diazaoctanedioate and the bio-specific immobilisation of 

N-terminal hex-histidine tagged pantothenate kinase. 
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OPSOMMING 

 

'n Nuwe membraan-gebaseerde affiniteitskeidingsisteem word beskryf wat biospesifiek, 

bioversoenbaar en goed gekarakteriseer is, en geregenereer of hergebruik kan word.  Die 

amfifiliese nie-ioniese surfaktant Pluronic is kovalent gederivatiseer om twee nuwe 

bioligande (Pluronic-Biotien en Pluronic-DMDDO) te vorm vir biospesifieke 

immobilisering van proteïnligate.  Pluronic is ook gebruik om nie-poreuse membrane nie-

kovalent te funksionaliseer vir ligandaanhegting en om hulle oppervlaktes teen nie-

spesifieke proteïen-adsorbsie af te skerm.  Elke komponent van hierdie bioaffiniteitsisteem 

(van die membraanmatriks tot die uitwas/desorpsie van die ligaat/ligand sisteem) is 

ondersoek met die doel om 'n goed-gekarakteriseerde sisteem te produseer en om 

kwantitatiewe data te genereer vir die ontwikkeling van 'n robuuste, betroubare, 

herbruikbare en opskaleerbare tegnologie. 

 

Hierdie studie beskryf spesifiek: 

1. Die fabrisering en gedeeltelike karakterisering van nie-poreuse planêre en kapillêre 

membrane as model affiniteitsmatrikse. 

2. Die ontwikkeling en evaluering van 'n robuuste protokol vir oplosmiddel desorpsie 

en akkurate kolorimetriese kwantifikasie van Pluronic® F108 en afgeleides 

daarvan. 

3. Intervlakanalises van Pluronic adsorpsie op nie-poreuse affiniteitsmembrane, 

insluitend die direkte vastetoestand analise van model ligand-gemodifiseerde 

Pluronic deur die gebruik van kern-mikrosonde analise. 

4. Ontwikkeling van 'n surfaktant-gebaseerde protokol vir affiniteitsmembraan 

regenerering en hergebruik. 

5. Spesifieke bioaffiniteitsimmobilisering van avidien-gekonjugeerde peroksidase op 

gebiotinileerde membrane in die teenwoordigheid van model bevuilende proteïne. 

6. Klonering en uitdrukking van C-terminaal hex-histidien geëtiketeerde menslike 

sitochroom b5 in die bakteriële uitdrukkingsisteem E. coli BL-21 DE3. 

7. Ontwikkeling en karakterisering van 'n geïmmobiliseerde 

metaalaffiniteitsmembraansisteem vir metaalchelering (Ni2+, Cu2+ en Zn2+) met 

behulp van die nuwe cheleerder Pluronic-N,N-dikarboksimetiel-3,6-

diasaoktaandioaat en die bio-spesifieke immobilisering van N-terminaal hex-

histidiengeëtiketerde pantotenaatkinase. 
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CHAPTER 1: INTRODUCTION 

 

This introductory chapter highlights the concept of membrane affinity separation as an 

application of process biotechnology and outlines the objectives of this study within the 

confines of the broader aim of developing reliable affinity membranes for protein or bio 

molecule separation.  A brief outline of the experimental objectives is also listed, together 

with a concise layout of the thesis. 

 

1.1. BACKGROUND TO PRESENT STUDY 

 

Column chromatography is by far the most widely used technique for the high resolution 

separation and purification of biomolecules, among which affinity chromatography is the 

most promising technology due to the possibility of achieving rapid, high purity, one step 

isolation of specific, high-value biological products [1-3].  Additionally, a trend in 

downstream processing is to apply affinity interactions as early as possible in the 

bioseparation process [4].   

 

Traditionally the differences in the various reported systems are due largely to the 

selection of an inert support that was conventionally made using agarose, polyacrylamide, 

cellulose or glass as the resin matrix.  Each has its merits and shortcomings – agarose for 

example is very porous, has few ionic groups and can be easily derivatised.  However, it is 

also chemically and mechanically fragile and the derivatisation process frequently creates 

unwanted ionic groups on surfaces [5].  These conventional resin based, packed bed 

columns have numerous, well-documented limitations [1,3,6-10] that contribute to the 

high cost of biomolecule recovery and hamper the scalability of affinity purification 

applications.   

 

Affinity membranes offer the following advantages to solve these problems: 

• higher flow rates with low pressure drops; 

• faster binding kinetics with short diffusive distances; 

• operation at lower residence times; 

• comparatively low cost of materials; 
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• conducive to process scale-up. 

 

However, there remain a few major obstacles preventing the routine or extensive use of 

membrane technology: 

• strong fouling tendency of commercial hydrophobic membranes; 

• the ligand coupling technology frequently involves time-consuming, multi-

step covalent coupling chemistry; 

• a lack of information describing the interfacial properties of the membrane 

and the ligand capacity; 

• insufficient studies on possible membrane regeneration strategies for 

efficient re-use. 

 

1.1.1. Synthetic polymeric membranes 

 

Synthetic membranes (porous and nonporous) can be defined as a permselective barrier 

between two phases [6].  Depending on the choice of fabrication polymer, solvent and 

conditions, membranes with varying surface architecture and chemistry can be formed.  

The membrane matrix is the first important consideration when designing a membrane 

affinity separation system, thus it is important that the surface is characterised with respect 

to the intended process application.   

 

1.1.2. Pluronic surfactants 

 

Pluronic or poly(ethylene oxide)m-poly(propylene oxide)n-poly(ethylene oxide)m triblock 

copolymers are water soluble, non-ionic, amphiphilic surfactants [11].  These surfactants 

have high chemical and thermal stability and are approved for use in biopharmaceutical, 

biomedical and environmental applications by the United States Food and Drug 

Administration and the Environmental Protection Agency [12].  Pluronic has also been 

used to modify conventional filtration membranes to reduce fouling and improve permeate 

flux [9] and as dynamic surface modifying polymers [6].  The adsorption behaviour of 

Pluronic® F108 at the solid interface is also an important area of research [11-15].   
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1.1.3. Affinity ligands and supports 

 

Popular commercial affinity technologies of importance to the related fields of 

biochemistry and biotechnology are immobilised metal affinity chromatography and 

biosensor development [7-9].  The development and implementation of biocompatible 

ligands for membrane coupling will significantly improve the acceptance of membrane 

based affinity separation technology within the biological research community.    

 

1.1.4. Membrane regeneration strategies 

 

An important practical consideration for the implementation of membranes in affinity 

separation technology is its process lifetime [16], which is dependent on its ability to resist 

non-specific protein adsorption and its regeneration capacity.  There are very few studies 

devoted to the regeneration of affinity membranes and colloidal polymers; however this is 

partially offset by the huge research thrust into defouling strategies for filtration 

membranes.  Notable regeneration studies include steam sparging of silica membranes 

[16], air sparging and carbonate extraction of surfactant modified zeolites [17], detergent 

(Tween-20) and high salt (KSCN) regeneration of worn out sepharose affinity columns 

[18].  Bioaffinity membrane regeneration strategies should ideally be biocompatible, with 

low material and energy costs and incorporated in situ with the membrane system, 

utilising existing equipment. 

 

 

1.1.5. Research Hypothesis 

 

The central idea at the outset of this study was to develop affinity membrane separation 

systems using Pluronic bioligands for bio-specific protein immobilisation that were also: 

1) well characterised at the membrane-liquid interface, 2) able to resist non-specific 

protein adsorption, 3) able to specifically remove proteins from solution and 4) capable of 

being regenerated and re-used. 
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1.2. OBJECTIVES 

 

The overall objective of this study was to investigate the use of Pluronic® F108 coupled 

ligands in membrane based affinity immobilisation of proteins and to develop protocols 

for both the quantification of a new metal chelating ligand and the regeneration and re-use 

of the attendant membrane affinity separation technology.  Noting the current state of 

affinity membrane technology and the research niche areas generated by some of its 

limitations, the specific objectives of this study were to: 

a) fabricate nonporous membranes and characterise the surface properties of each 

membrane; 

b) develop and evaluate protocols for both efficient Pluronic extraction and accurate 

colorimetric quantification; 

c) interfacial analysis and solid-state estimation of ligand modified Pluronic; 

d) investigate the protein shielding ability of the affinity linker Pluronic F108 and to 

develop a procedure for biocompatible membrane regeneration; 

e) cloning and immobilisation of histidine tagged proteins; 

f) coupling of the ligands biotin and N’,N-dicarboxymethyl-3,6-diazaoctanedioate to 

Pluronic for bio-specific protein immobilisation and metal chelation. 

 

1.3. EXPERIMENTAL TASKS 

 

In order to meet the specific objectives, the experimental rationale and the attendant tasks 

are listed below.  A simplified flow diagram illustrating these experimental aims within 

this dissertation is depicted in Figure 1-1. 

 

1.3.1. Membrane fabrication 

 

Three candidate membranes were fabricated from the commercially available polymers 

polysulphone, poly(vinylidenefluoride) and poly(ether imide) using the immersion 

precipitation technique.  Membrane sections (1 cm2) were used as model matrices for 

Pluronic modifications and ligand coupling.  These membrane surfaces were characterised 

using atomic force microscopy, electron microscopy and infra-red spectroscopy. 
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1.3.2. Pluronic estimation 

 

A simple, reliable and reproducible assay was critical to the study of the adsorption of the 

Pluronic affinity-linker onto planar and curved membrane surfaces.  A CHCl3-NH4FeSCN 

colorimetric assay was developed for the accurate quantification of membrane desorbed 

Pluronic and derivatised Pluronic [19] in solution.   

 

1.3.3. Ligand synthesis and surface analysis 

 

Model halogenated ligands were initially synthesised to mimic the coupling of bioaffinity 

ligands to Pluronic.  Covalent coupling of the halogens Br and I to Pluronic was also used 

to help develop protocols for direct solid-state nuclear microprobe analysis of ligand-

modified membranes.  Solid-state analysis was performed with X-ray photon electron 

spectroscopy, proton induced X-ray emission and Rutherford backscattering spectroscopy. 

 

1.3.4. Protein shielding and regeneration 

 

The protein shielding ability of Pluronic F108 was investigated using the model protein 

foulants lysozyme and bovine serum albumin.  Sodium dodecyl sulphate was used to 

develop a membrane regeneration strategy. 

 

1.3.5. Cloning of histidine tagged human cytochrome b5 

 

The gene for human cytochrome b5 was cloned into the plasmid pET22b.  This histidine 

tagged ferric protein is a potential ‘marker’ for solid-state ligate quantification. 

 

1.3.6. Affinity ligands 

 

Biotinylated Pluronic and Pluronic-N,N-dicarboxymethyl-3,6-diazaoctanedioate were 

synthesised for membrane based protein immobilisation.  These bioligands are specific for 

avidin conjugated peroxidase and histidine tagged proteins respectively. 
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Membrane matrix fabrication (nonporous planar, hollow fiber and hollow fine fiber 

membranes) and characterisation using microscopy and spectroscopy. 

(Chapter 3) 

 

 

Development of a robust, extraction and detection system for membrane adsorbed Pluronic 

and the interfacial analysis of Pluronic adsorption onto planar and curved membranes. 

(Chapter 4) 

 

 

Direct solid-state analysis of model, halogenated-Pluronic ligands on planar, nonporous 

poly(vinylidene fluoride), poly(sulphone) and poly(ether imide) membranes. 

(Chapter 5) 

 

 

Use of a new biotinylated Pluronic for testing both the bio-specificity of ligand modified 

Pluronic and its ability to simultaneously inhibit non-specific protein adsorption.  A practical, 

anionic surfactant based regeneration protocol is also investigated for the possibility of 

improving the process lifespan of affinity membrane systems. 

(Chapter 6) 

 

 

Cloning and expression of histidine tagged human cytochrome b5 for possible testing of an 

immobilised metal affinity membrane. 

(Chapter 7) 

 

 

Synthesis and characterisation of a novel metal chelating Pluronic.  The ligand capacity of this 

chelating membrane for divalent cations and bio-specific binding of histidine tagged proteins 

was also investigated. 

(Chapter 8) 
 

 
Figure 1-1:  A flow diagram illustrating the experimental aims discussed in the attendant chapters of this 

dissertation. 
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1.4. LAYOUT OF DISSERTATION 

 

A brief description of the aims and significance of each chapter is given below. 

 

1. Chapter 1.  Introduction 

 

2. Chapter 2.  Literature overview 

A literature overview of the fields of affinity chromatography and affinity membrane 

separation is discussed, with emphasis on bioaffinity separation and immobilised metal 

affinity membranes. 

 

 

3. Chapter 3.  Fabrication and characterisation of model membrane affinity 

matrices. 

Partial characterisation of the candidate nonporous membranes and construction of 

capillary modules is described.  Membranes were characterised using surface tension 

analysis, infrared spectroscopy, scanning electron microscopy and atomic force 

microscopy to provide a better understanding of this affinity matrix. 

 

 

4. Chapter 4.  A robust approach to studying the adsorption of Pluronic F108 on 

nonporous membranes. 

This chapter was published in Journal of Colloid and Interface Science (2005), and 

focuses on the interfacial analysis of Pluronic adsorption onto planar and capillary 

membranes.  It also describes a bisolvent extraction protocol for adsorbed Pluronic and 

details a bi-phasic colorimetric assay for Pluronic and ligand modified Pluronic [19].  This 

robust assay was subsequently used to routinely quantify Pluronic in solution.   

 

 

5. Chapter 5.  Solid-state analysis of membrane-coupled ligand modified Pluronic. 

Attempts were made to directly study the interfacial behaviour of membrane adsorbed 

Pluronic derivatives using direct solid-state analysis.  Solid-state analysis was performed 

with atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), proton 

induced X-ray emission and Rutherford backscattering spectroscopy (RBS).  This was 
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achieved with the synthesis of model ligands via covalent coupling of halogens (I and Br) 

to tosylated Pluronic derivatives. 

 

 

6. Chapter 6.  Affinity immobilisation of proteins on re-usable ligand modified 

membranes. 

This chapter was submitted as a manuscript to Journal of Biotechnology and describes the 

competitive affinity binding of avidin-peroxidase using biotinylated Pluronic membranes.  

Using this new bioligand (Pluronic-biotin) we investigated the ability of ligand-modified 

Pluronic to inhibit non-specific protein adsorption, while binding specifically to avidin 

conjugated peroxidase.  A proposed protocol for affinity membrane regeneration and re-

use is also discussed. 

 

 

7. Chapter 7.  Cloning and expression of histidine tagged human cytochrome b5. 

The gene for the histidine tagged human cytochrome b5 ferrous hemoprotein was cloned 

and transformed into a bacterial expression vector.  An intact expressed form of this heme 

protein could potentially serve as a ferric marker for solid-state quantification of the metal 

affinity immobilisation process.  This histidine tagged protein can also be used as a test 

protein for the metal chelating Pluronic described in chapter 8. 

 

 

8. Chapter 8.  A Pluronic coupled metal chelating ligand for membrane affinity 

chromatography. 

This chapter has been accepted as a full length paper in Journal of Membrane Science, and 

discusses the synthesis and characterisation of a novel metal-chelating ligand coupled via 

Pluronic to poly(vinylidene fluoride) membranes, the chelation of metal ions  and the bio-

specific immobilisation of histidine tagged bacterial pantothenate kinase. 

 

 

9. Chapter 9.  Conclusions and recommendations 

This chapter summarises the findings of this study and discusses recommendations for 

future work. 
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CHAPTER 2: LITERATURE OVERVIEW 

 

2.1. INTRODUCTION 

 

The rapid and unprecedented developments in biotechnology and the progress and 

achievements in biopharmaceutical and medical applications have fuelled a demand for 

rapid, reliable and efficient downstream processing technologies.  Recovery of sensitive 

biomolecules such as interferons, vaccines, polynuclueotides, antibodies, DNA, 

polypeptides, proteins, hormones, etc. from a biological host environment also requires 

attention to their unique characteristics [1,2].   

 

In bio-separations, all products are labile and mild processing conditions are thus required 

[3].  Time consuming, multi-step processes can cause proteolysis, deamination and 

aggregation of proteins and degradation to many gene products.  In addition to strict 

standards in purity inherent to the food and pharmaceutical industries, the American Food 

and Drug Administration (FDA) requires validating the removal of various contaminants 

such as: host cell-related biomolecules (DNA, endotoxin, protein, virus), product related 

factors (oxidation, deamination, acetylation, dimerisation) and process related chemicals 

(antibiotics, antifoam chemicals, inducing agents) [3,4]. 

 

Various column chromatographic techniques have been successfully used for biomolecule 

separation, among which affinity chromatography exhibited the best performance in terms 

of product purity due to its high specificity [5,6].  The high costs of conventional column 

chromatography have shifted research efforts towards modifying and developing 

traditional filtration membranes for use as affinity membranes.  In large-scale processes 

the cost of biomolecule recovery dominates the total manufacturing costs [3] and as shown 

with bioreactors [7], membrane processes offer greater scope for scalability than 

conventional support matrices such as agarose gels and polymeric beads [8,9].   
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2.2. AFFINITY SEPARATION 

 

2.2.1. Affinity chromatography 

 

Affinity chromatography was a term first used in 1968 by Cuatrecasas et al., [10] to 

describe a new form of chromatography based on biological recognition.  This paper 

signalled an immediate research effort resulting in the development of affinity separation 

techniques leading to the quest for ‘short cuts’ for the isolation and purification of 

biological compounds.  This biological affinity chromatography initially involved 

covalently coupling bio-specific ligands to an inert solid matrix where they served as 

adsorption centres [6].  The interactions involved in this adsorption process are usually 

similar or identical to interactions that occur in nature.  A comparison between different 

types of column chromatographic techniques is listed in Table 2-1. 

 

Table 2-1:  Comparison between different types of column chromatographic techniques [5] 

 

Thus bio-specific affinity chromatography exploits some of natures’ own information 

channels resulting in biologically functioning complexes.   The molecular forces and bond 

interactions forming these complexes are systematised under the terms ionic bonds, 

hydrophobic interactions, hydrogen bonding, Van der Waals forces, London dispersive 

forces, dipole-dipole interactions and charge-transfer interactions [6].  The understanding 

and quantification of these interactions, which usually occur at the solid-liquid interface, 
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have recently become important areas of study after the advent of highly sensitive and 

non-destructive analytical techniques such as scanning probe microscopy, ellipsometry 

and surface plasmon resonance spectroscopy [11]. 

 

2.2.2. Biological affinity ligands 

 

Bioaffinity chromatography usually involves the immobilisation of naturally occurring 

ligands onto a solid porous support [12,13].  The biotin-avidin complex was one of the 

systems chosen as a model for developing experimental work [12].  Proteins provide an 

almost unlimited array of molecular structures that might be used as ligands or ligates and 

the type of ligand employed provides an extensive applications listing.  These include 

amino acids, dye ligands, metal-chelating ligands, ion-exchange ligands and 

immunoaffinity (antigen and antibody) ligands.   

 

The production of recombinant proteins in a highly purified and well-characterised form 

has been another major catalyst in affinity separation techniques.  Several epitope peptides 

and proteins have been developed recently to over-produce recombinant proteins [14].  

These affinity-tag systems have the following common features: 

• one step adsorption purification; 

• minimal effect on tertiary structure and biological activity of the ligate; 

• simple but specific removal to yield the native protein; 

• a sensitive assay system for the recombinant protein; 

• applicability to a number of different proteins. 

 

However, a disadvantage of conventional bioaffinity tag systems is that in many cases a 

further step in the purification process is required to remove the affinity tag from the target 

protein, as in the maltose binding protein-amylose system [14]. 
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2.2.3. Conventional affinity matrices 

 

The affinity matrix is the first important consideration when designing an affinity system 

as it composes for the most part, the largest volume of the adsorbent.  Certain 

characteristics of the matrix are essential [5,15,16]: 

• it must be insoluble in the attendant solvents or buffers used; 

• mechanical and chemical stability; 

• possess good flow characteristics; 

• contain sufficient surface area available for ligand accessibility. 

 

Matrices currently employed can be divided into two groups, the first generation matrices 

that are predominantly single-composition matrices (e.g., agarose, controlled pore glass, 

cellulose, collagen) and the second-generation matrices (dual composition and or 

chemically modified matrices) [17].  The latter include agarose coated polyacrylamide, 

acrylic coated iron particles and crosslinked agarose [18].  Most commercial affinity 

supports use first generation matrices, but the best matrix for any given procedure will 

depend on the nature of the biomolecule to be purified and on any specific demands 

placed on the procedure such as separation time, high yields and high purity.  There are 

many excellent texts and reviews [13,16-19], which describe the chemistry and 

applications of the various matrices that could be used in affinity chromatographic 

separations. 

 

2.2.4. Affinity membrane separation 

 

Synthetic, polymeric membranes are routinely used in many biotechnological and medical 

applications.  Affinity membranes reflect technological advances in both membrane 

filtration and fixed-bed liquid chromatography.  Membrane affinity separation systems 

function as short, wide chromatographic columns in which the adsorptive packing consists 

of one or more membranes in series, each derivatised with adsorptive moieties [1].   

 

Adsorptive membranes for use in membrane based affinity separation have been the focus 

of intensive research in the last decade as an alternative to resin based chromatographic 

columns [1,5,8,16,20].  In addition to serving as affinity adsorbents these membranes can 
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also be modified or fabricated as ion-exchange, hydrophobic, reverse-phase or filtration 

membranes.  In porous membranes, the interactions between the dissolved molecules and 

the active sites on the membrane occur in convective through-pores rather than in stagnant 

fluid inside the pores of an adsorbent polymer bed [20]. 

 

 

 

Figure 2-1:  Solute transport in fixed packed bed chromatography and membrane chromatography. 

 

Affinity separation using membrane matrices is superior to conventional fixed bed 

columns in the following aspects [1,5].  The macropores inside the membrane (filtration 

membranes) allow the convective flow of solute through the membrane and intra-bed 

diffusion does not feature in a permeable membrane system (Figure 2-1).  The large cross-

sectional area relative to the bed length allows high velocities and large volumetric 

capacity with a small or negligible pressure drop, enabling high flow rate operations for 

Bulk convection

Film diffusion

Membrane columns

Bulk convection
Film diffusion
Pore diffusion
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flow processes.  However a large diameter to length ratio introduces the challenge of 

achieving uniform flow distribution across the membrane [20].   

 

A possible solution to the above problem, was introduced by Yuan et al., [21], where a 

rational approach to the design of flow distributors was shown to give uniform distribution 

in numerical simulations and laboratory prototypes.  Adequate flow distribution is critical 

for maintaining column efficiency during scaling up of a membrane column.  

Nevertheless, compared to fixed bed columns, membrane processes are easier to scale-up, 

regenerate and are not limited by bed compaction [1,8].   

 

2.2.5. Membrane configuration and module design 

 

Module design is fundamental to the operation of a membrane separation process as this is 

the unit that must operate at a technical scale utilising large membrane surface areas.  The 

module design is based on two general types of membranes, flat sheet or tubular.  It is the 

method of packing the membrane and the relative membrane size that leads to a range of 

module configurations [22].  Affinity membranes can be organised into a variety of 

configurations (stacked membranes, hollow fibre membranes, spiral wound membranes).  

A schematic illustration of typical membrane module designs is shown in Figure 2-2. 

 

 

Figure 2-2:  Schematic representations of some typical membrane modules [5]. 

 

Disc holder Plate and frame module Spiral wound cartridge HF Module
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Two important aspects of a membrane module are 1) the actual polymer used in its 

fabrication and 2) its final form and shape that influence the choice of the module.  The 

design requirements of a particular separation and the mechanism of transport through the 

membrane will dictate and in many cases limit the material choice, thickness, pore size, 

etc. [22].  

 

 

2.3. MEMBRANE BASED METAL AFFINITY SEPARATION 

 

2.3.1. Immobilised metal affinity chromatography 

 

The term immobilised metal affinity chromatography (IMAC) was first coined by Porath 

[23] to encompass all modes of metal chelation interactions including ligand exchange.  

IMAC is a separation technique that uses covalently bound chelating compounds on solid 

chromatographic supports to immobilise divalent metal ions (electron pair acceptors) 

[23,24].  These cations serve as affinity ligands for various proteins via coordinative 

binding of surface exposed electron donating amino acid residues [12,23].   

 

In sorption of proteins by metal affinity, the exposed electron-donating amino acid 

residues (affinity tags), such as the imidazole group of histidine, the thiol group of 

cysteine and the indoyl group of tryptophan coordinate with the metal ion through non-

bonding lone pair electron coordination [12,13].  Other amino acid residues suitable for 

IMAC are tyrosine, aspartic acid and glutamic acid, which will also contribute to the 

binding of the immobilised metal ion.  IMAC is most suitable for rapid, high throughput 

isolation of product, however it is not as highly specific as other affinity separation 

techniques using biological ligands.  However, intelligent choice of metal cations, system 

buffers and the design of recombinant amino acid tags can increase the specificity of this 

widely used system.   

 

Nevertheless, IMAC holds a number of advantages over biomolecule dependent affinity 

chromatography techniques, which have a similar order of affinity constants and exploit 
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affinities between enzymes and their inhibitors, receptors and their ligands or antigens and 

antibodies.  The benefits of IMAC include: 

• ligand stability and low cost; 

• high protein loading; 

• mild elution conditions and simple regeneration; 

• quantifiable ligand capacity; 

• stability under denaturing conditions.  

 

2.3.2. Immobilised metal affinity membranes 

 

Immobilised metal affinity membranes (IMAM) are one of the most widely used affinity 

membrane separation techniques [5].  IMAM designs basically follow the IMAC systems 

described above and hence the properties and applications are very similar.  As with 

bioaffinity membranes, IMAM offers similar advantages to IMAC resins and from a down 

stream applications point of view, it has great potential for scale-up.  Ligand stability and 

capacity are important parameters that require characterisation and quantification for 

successful scale-up or commercial applications.  Determination of the ligand capacity of 

the IMAM requires an understanding of the chemistry of the membrane surface functional 

groups, the nature of the chelating agent, immobilisation method, types of metal ions, and 

metal ion concentration [13,19,25-27].  Table 2-2 summarises some of the IMAM systems 

that have used two or more metal ions for protein purification. 

 

2.3.3. Metal chelating ligands 

 

In aqueous environments, metal ions are solvated by surrounding water molecules.  The 

metal ion serves as a Lewis acid and water as a Lewis base.  However, when water is 

replaced by a stronger base, a coordination complex is formed [13].  A molecule with a 

single donor atom will form a mono-dentate ligand, resulting in a metal complex.  A 

polydentate ligand formed by two or more atoms from the same molecule with a metal ion 

results in a metal chelate.  The binding of a metal ion to a ligand is much stronger in a 

metal chelate than in a metal complex, due largely to the greater stability arising from the 

loss of free energy produced by ring formation from the polydentate ligand [28]. 
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There are four different types of dentates that have been investigated as ligands for 

immobilised metal affinity separation [12,13,28], bidentates (e.g., salicylaldehyde, 

aminohydroxamic acid), tridentate [e.g., iminodiacetic acid (IDA), ortho-phosphoserine], 

tetradentate [e.g., nitrilotriacetic acid (NTA), carboxymethylated aspartic acid (CM-Asp)], 

pentadentate [e.g., N,N,N’-tris-carboxymethyl ethylene diamine (TED)].  Multidentates 

are the most popular chelating agents used in commercial applications and described in 

research reports [5].  Conventional coupling of reactive groups (such as hydroxyl, amine, 

etc.) on the membrane surface to dentate chelators usually occurrs via epoxide activation 

agents such as epichlorohydrin, epibromohydrin and bioxiranes [5,15].  Their chelating 

mechanism is presented in Figure 2-3.   

 

 

Table 2-2:  Characteristics of some immobilised metal affinity membranes reported in the literature that 

have investigated the chelation of two or more metal ions with the commercial chelating ligand IDA 
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According to the molecular structure and chelating mechanisms of multidentates, the order 

for affording a stronger immobilisation with the metal ions should be pentadentate > 

tetradentate > tridentate [2,13,15,24]. The stronger chelating ability for tetradentate and 

pentadentate ligands could induce a higher chelate complex stability, thus reducing metal 

ion leakage.  However, the number of coordination sites on metal ions remaining for 

biomolecule binding will be reduced, causing weaker adsorption [5].  Therefore the order 

for biomolecule adsorption strength is tridentate > tetradentate > pentadentate. 

 

Triazine dyes such as cibacron blue, cibacron red and procion brown etc., are also capable 

of chelating metal ions [30].  The immobilised metal ions using these dyes are not as 

stable as the dentate chelators and the chelator utilisation percentage (CUP) is usually 

lower.  The CUP is defined as the immobilised metal ion capacity divided by the chelator 

capacity.   

 

 

Figure 2-3:  Putative structures of some representative chelators in complex with commonly used metal 

ions.  Spacers to the various supports are not specified. [24]. 
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2.3.4. Metal ions 

 

Stable metal immobilisation is also dependent on the selection of a suitable metal ion.  

According to their reactivity to different nucleophiles, metal ions could be divided into 

three subcategories: soft, hard and intermediate [6,13].  The soft Lewis metal ions react 

better with the sulphur atom while the hard Lewis metal ions react better with oxygen-rich 

groups.  Intermediate metal ions (such as Cu2+, Ni2+, Zn2+, Co2+ and Fe2+) include mostly 

the first transition metal series and could couple with S, O and N containing amino acids 

[5,12,13,24].  The intermediate metal ions Cu2+ and Ni2+are the most commonly used for 

immobilised metal affinity separation.  When IDA was applied as the chelator, the 

affinities to the retained biomolecules were in the following order: Cu2+ > Ni2+ > Zn 2+ > 

Co2+ [5,19]. 

 

 

2.3.5. Metal ion leaching and regeneration 

 

Metal ion leakage and metal toxicity are important issues particularly with Ni(II) 

compounds being established as human carcinogens [24].  The role of Ni(II) in 

carcinogenesis is not clear but molecular models suggest interaction with histones in the 

cell nucleus, causing DNA damage [31].  Metal ion leaching occurs with every IMAC 

column, depending on the type of chelator, surface matrix and mode of elution 

[12,13,15,24,30,32].  In this respect, tetradentate chelators such as NTA or TALON are 

superior to tridentates.  Ni-NTA was reported to exhibit low leaching in the range of up to 

1 ppm [33].   

 

The reasons for metal ion leakage at different stages of the affinity separation process 

differ.  During adsorption and washing, the metal ions may be tightly captured by bio-

molecules and released into solution, while during elution they may be displaced by salt 

ions in the elution buffer [5].  In most cases the immobilised metal ion capacity of a 

column is regenerated by incubation of the affinity membranes in a solution of the metal 

ion with excellent reusability for multiple experiments [5,33]. 
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2.3.6. Purification of proteins 

 

There are several factors to consider in protein-metal ion interactions [13,28].  The 

carboxyl, imidazole and sulfhydral side-chain groups are more important in metal ion 

coordination than are the terminal amino and carboxyl groups.  The binding coefficient for 

metal ions decreases with decreasing pH, since protons begin to compete with the metal 

for binding to the functional ligand groups (NH2, S-, COO-).  The positive charge on the 

protonated amino group repels the positively charged metal ion, and protonation of 

sulphide and carboxylate ions negates the attractive force towards the metal ion [13].  

Proteins can be released from their bound complexes by any mode which reduces the 

affinity constant between the immobilised metal ion and the protein such as changing the 

salt concentration, pH or displacement by a competitive agent that is similar in structure as 

the amino acid residues involved in the binding.   

 

Many naturally occurring proteins contain histidine residues in their amino acid sequence, 

however these mildly hydrophobic histidine residues are rarely located on the protein 

surface.  For proteins with known 3D structure, data regarding the number and 

arrangement of surface histidine residues can be obtained from protein data banks.  This is 

potentially a very useful basis for predicting their behaviour in IMAM applications [24].  

Due to the recent advances and successes in the field of proteomics the database of protein 

primary structure is constantly increasing, but there still remains too little published 

information regarding surface histidines, to be of immediate assistance in IMAC studies. 

 

Protein purification using IMAC requires that the protein-surface histidine residues must 

be accessible to the metal ion and the comparatively bulky chelating compound [24].  

Usually one histdine is enough for weak binding to IDA-Cu(II), while more proximal 

histidines are required for binding to Zn(II) and Co (II) [12,13].  A routinely-used strategy 

in recombinant protein affinity purification involves genetic engineering of a 

poly(histidine) tag to target proteins.  The most popular IMAC approach involves histidine 

(His) tags of up to six consecutive histidine residues and NTA-Ni(II) columns [34,35].   

 

The advantage of this system is that Ni(II) requires at least two surface histidine residues 

for efficient binding and since it is very rare to find two naturally occurring protein-

surface histidine residues, this IMAC technology becomes much more selective.  Histidine 
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tags are also compatible with all expression systems used today and have been produced 

in both procaryotic and eucaryotic organisms.  The preferable position for the insertion of 

the His tag (N- or C- terminus) depends on the nature and intended use of the protein and 

must be determined experimentally [12,24,29].  In most cases His6 tags are non-

immunogenic and do not affect protein folding, nor interfere with the biological 

functionality of the target protein.   

 

 

2.4. FUNCTIONALISED MEMBRANES AND BIOCOMPATIBILITY 

 

2.4.1. Ligand coupling chemistry 

 

Affinity matrices are usually hydrophobic and inert, thus requiring covalent attachment of 

ligands via reactive functional groups (carboxyl, amino and hyroxyl).  However, 

anchoring the ligand molecule to the matrix reduces its freedom to interact with the ligate 

[13].  The tertiary structure of a native protein in solution also hinders the close approach 

of many functional ligands on the protein to a metal ion.  To counteract this effect, a 

spacer arm is usually introduced between the matrix and the ligand [6].   

 

There are usually two stages in preparing an affinity matrix; 1) the attachment of a spacer 

arm to the matrix and 2) the attachment of the ligand to the spacer [17].  The most 

commonly used strategy for spacer arm coupling to matrices is via cyanogen bromide 

activation of the vicinal diol groups on surfaces such as agarose, followed by coupling to 

popular spacer arms e.g. diamines (1,4-butanediamine) or polyhydrazides [36].  Radiation 

induced graft polymerisation is a popular method for forming polymeric brush layers such 

as glycidyl methacrylate (GMA) with reactive epoxy groups that can be ligand 

functionalised [37].  Epoxide activation of matrices is another commonly used method of 

ligand coupling to inert surfaces. 

 

In most cases, the spacer molecules are pre-attached to the matrix.  Choosing the 

attachment site to a biological ligand can be difficult, as the bound ligand must retain its 

original affinity for the ligate, so a non-essential reactive site on the biomolecule must be 
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found.  The reaction chemistry employed for ligand coupling to spacer molecules or 

supports typically involves, 1) attachment by amide formation; 2) succinylation of amino 

alkyl termini and 3) nucleophilic attachment of a ligand to an activated carboxyl derivative 

[17]. 

 

2.4.2. Surface modification of membranes 

 

The hydrophobic nature of a membrane can be changed into a more hydrophilic one by 

means of surface modification.  A number of surface modification techniques can be 

applied, and most methods rely on post-treatments of an existing membrane [22].  These 

techniques include chemical reactions [38], grafting [37], crosslinking [39], plasma 

treatment [37], in situ polymerisation [40] and adsorption [41].   

 

Chemical reactions introduce hydrophilic groups and ionic groups such as sulphonic and 

quaternary ammonium groups, whereas plasma treatment functionalises surfaces.  Both 

techniques involve structural modification of surfaces and plasma treatment is particularly 

irreproducible [38,42,43].  However, membranes can also be non-permanently pre-treated 

with polymeric surfactants by physical adsorption of the polymer, either from a solution 

onto the membrane or by convective adsorption during filtration of the adsorbent [41,44]. 

 

2.4.3. Biocompatibility 

 

Hydrophobic surfaces, associated with most commercial membranes are non-specifically 

active to the adsorption of a wide range of polymeric material such as biomolecules with 

hydrophobic components, proteins, lipids, etc.  At the molecular level, these diverse 

bioadhesion manifestations condition the surface for the subsequent adhesion of other 

biopolymers [45].  As with conventional membrane filtration processes, much effort is 

being devoted to the development of protein shielding and biocompatible surfaces 

[46,47,48].  A protein shielding surface reduces non-specific and uncontrolled 

biomolecule adsorption, thereby increasing the signal to noise ratio for biosensors while 

maintaining the ligand capacity of affinity membranes.   
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Many strategies have been employed to produce protein shielding surfaces such as the 

development of polymer adducts such as poly(ethylene imine) and poly(ethylene glycol) 

[49].  Grafted poly(ethylene glycol) (PEG) chains [39] and tethered ligands have also been 

developed to improve the biocompatibility of potential colloidal drug carriers [43,50,51].   

 

The use of PEG based non-ionic surfactants such as the Pluronic tri-block copolymers is 

also becoming popular.  Pluronic® (BASF, Corp) are a group of poly(ethylene oxide) 

(PEO)-poly(propylene oxide) (PPO)-PEO surfactants that are being widely studied for 

applications in the pharmaceutical and medical industry because of their unique surfactant 

abilities and their low toxicity and immunogenic behaviour [52-54].  Pluronic copolymers 

also have the ability to suppress protein adsorption and platelet adhesion due to their PEO 

segments [54]. 

 

Several members of the Pluronic family have been reported to adsorb onto hydrophobic 

surfaces in a pseudo-irreversible way, forming complexes that have long term stability 

[9,55].  Despite the interest in numerous applications of this surfactant, few studies have 

dealt with the chemical modification and interfacial analysis of the resultant derivative.  

Studies by Li et al., [9] and Ho et al., [56] have demonstrated the covalent coupling of 

bioaffinity ligands to these surfactants and have studied the adsorption behaviour on solid 

matrices.  A technique of adsorbing ligand derivatised Pluronic surfactants onto 

polystyrene latex spheres [9] has also opened an interesting research area to improve the 

biocompatibility of polymeric ligand-modified affinity-matrices.   
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CHAPTER 3: FABRICATION AND CHARACTERISATION OF 

MODEL MEMBRANE AFFINITY MATRICES 

 

3.1. INTRODUCTION 

 

The choice of a polymer material for synthetic membrane fabrication is often based 

empirically, i.e. membranes have been developed for a wide range of applications, instead 

of developing a membrane for a certain class of applications, such as in bio-process 

applications [1].  A number of techniques are available to prepare synthetic polymeric 

membranes [2-4].  Some of these techniques can be used to prepare organic as well as 

inorganic membranes, but the choice of material limits the preparation technique 

employed [1].  Most commercial filtration membranes are prepared by phase inversion 

techniques, either by immersion precipitation or by thermal induced phase separation 

[4,5]. 

 

Developing membranes for specific applications requires an understanding of the material 

properties, and a study in relation to the intended application.  However, the poor 

hydrophilicity and biocompatibility of many membranes limit their application in 

downstream bioaffinity processes [6].  Therefore the surface properties of a membrane, 

which is being used as an affinity matrix must be characterised to explain its interactions 

with polymers and its suitability for a particular application.   

 

A distinction must be made between porous and nonporous membranes as these have 

different characteristics and fields of application [7].  Similarly, characterisation methods 

can be conveniently divided into two areas, for porous and nonporous membranes.  For 

studying bioaffinity separation using Pluronic affinity linkers [8], membrane matrices 

should ideally be nonporous and inert with a well-defined surface structure before and 

after surface modification while exhibiting non-specific protein-shielding properties.   

 

Typically a porous membrane will be characterised for its filtration properties while 

nonporous membranes are of dense polymeric composition, without pores and separation 

is thus dependent upon the material properties and morphology [4].  In chromatographic 
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applications porous membrane techniques involve the solid polymeric phase that usually 

has a liquid phase on either side, physically connected by the membrane pores.  The 

transfer of macromolecules from one liquid phase (feed) to another (filtrate) is usually 

pressure driven and the target analytes such as biomolecules are concentrated in the filtrate 

[1].  However, nonporous membranes have many applications in techniques such as solid 

phase extraction chromatography and as affinity strips for protein immobilisation [7]. 

 

Several fundamental studies of polymer adsorption on membranes have investigated the 

effects of membrane surface properties such as pore size distribution, surface roughness 

and structure, electrokinetic characteristics, chemical properties and specific chemical 

structure [9,10,11].  A wide variety of analytical techniques have been used for elucidating 

specific chemical and physical properties of membranes and polymer films.  Some of 

these include Raman spectroscopy (structure) [9], AFM (surface roughness, structure, 

topography) [12,13], electron microscopy (qualitative information on surface structure, 

pores, topography) [11,14], streaming potential measurements (membrane surface zeta 

potential) [9], XPS and FT-IR (surface chemical functional groups) [15] and surface 

tension (hydrophobicity) [16].    

 

Although there are several robust techniques available for the characterisation of 

membrane surface morphology, no single technique can fully characterise membrane 

surface substructure [10].  Complete characterisation can only be achieved by a 

combination of techniques.  To be of significance to the membrane industry these 

techniques should preferably be rapid, routinely available, inexpensive and non-invasive 

[9].   

 

This study involved the preparation and partial characterisation of candidate polymeric 

membranes polysulphone (PSU), poly(vinylidene fluoride) (PVDF) and poly (ether imide) 

(PEI) for use as affinity adsorbent matrices.  Detailed knowledge of the surface properties 

of these membrane supports would contribute to the understanding of the interactions of 

affinity ligands and biomolecules with the attendant membrane matrix. 
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3.2. EXPERIMENTAL 

 

3.2.1. Reagents and chemicals 

 

Pluronic® F108 with an average molecular mass of 14 600 daltons was obtained from 

BASF (Germany).  Hexane, chloroform and 2-propanol were purchased from Merck NT 

laboratory suppliers, SA.  Unless otherwise stated, all chemicals were obtained from 

Merck.   

 

3.2.2. Membrane fabrication and module construction 

 

Planar nonporous membranes were cast from solutions containing 27% [m/m] (PSU, PEI 

and PVDF) respectively and 73 % (m/m) N,N-Dimethylacetamide (DMAc).  PSU and PEI 

were dissolved in DMAc by rotating the solution container for more than 48 h at room 

temperature to obtain a homogeneous solution.  PVDF required sonication in an ultrasonic 

water bath for 30 min and further heat treatment at 55˚C for 48 h to dissolve. The 

solutions were then degassed before being used to cast the 200 µm planar membranes.  

Nonporous hollow fibre (HF) and hollow fine fibre (HFF) membranes and externally 

unskinned ultrafiltration (UF) membranes were produced by the phase inversion technique 

[3,4] using a dry-wet spinning process [2].  The dimensions of the capillary membranes 

were measured using an optical light microscope with a vernier scale and these 

measurements were verified with scanning electron microscopy (SEM).   

 

The asymmetric nonporous HF capillary membranes were encased in a perspex shell.  The 

multi-capillary membrane module (MCMM) was assembled by potting the capillary 

membranes and was left to set so that the capillaries were taut.  An O-ring was inserted 

into the membrane module and then the end cap was threaded into the shell. 
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3.2.3. Solvent compatibility 

 

The physical integrity of the membranes and the Perspex module was investigated in 

various commonly used cleaning and sterilisation solvents.  This involved incubating each 

membrane in solutions of CHCl3, hexane, 2-propanol, urea (8 M), formaldehyde (4 %), 

ethanol (40 %) and sodium hypochlorite (0.2 M) for ~30 min.  The membranes were then 

analysed with SEM and FT-IR for morphological and chemical changes on the membrane 

surface. 

 

3.2.4. Membrane coating 

 

In order to compare the adsorption properties of the fibres with the 1 cm2 flat sheets, the 

lengths of the fibres were prepared such that the external surface area was equivalent to 1 

cm2.  Capillary and planar membranes (1 cm2 external surface area) were stored in 

aqueous 0.04 M sodium azide solutions to prevent microbial growth.  Prior to adsorption, 

membranes were washed overnight in sterile, deionised water, followed by three further 

washes with deionised water.  Membranes were then sonicated three times in sterile 

deionised water in an ultrasonic bath for 5 min followed by drying in a laminar flow 

cupboard.  Dry membranes were statically incubated in 5 mg.ml-1 Pluronic F108 solutions 

in water at 20°C for 8 to 12 h.  The coated membranes were then removed from solution, 

washed three times in deionised water and dried in a sterile laminar flow unit. 

 

3.2.5. Infra-red spectroscopy 

 

Photo-acoustic Fourier transform infra-red (FT-IR) spectroscopy is based on the principle 

that modulated infra-red (IR) radiation striking the sample surface causes the surface to 

alternately heat and cool with IR adsorption [17].  The advantages of using photo-acoustic 

spectroscopy for membrane analysis are that minimal sample preparation is required and 

the capability of studying opaque samples and depth profiling is also possible.  The 

surface chemical composition of the membranes was verified using photo-acoustic FT-IR.  

Up to 128 scans at a scan range of 450 to 4000 cm-1, were performed on each membrane 
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with a resolution factor of 8.  A Perkin Elmer Paragon 1000 PC spectrophotometer was 

used for all solid-state infra-red analysis. 

 

3.2.6. Scanning Electron Microscopy 

 

Membranes were fixed for 2 h in 5 % (v/v) glutaraldehyde in 0.1 M phosphate buffer at 

4°C and pH 7.5, after which the sections were dried in water:ethanol mixtures of 20, 40, 

60, 80 and 100 % ethanol.  Cross-sections of the membranes were prepared by freeze 

fracturing using liquid N2.  A Leo 1430VP SEM, fitted with backscatter, 

cathodoluminescence, variable pressure and energy dispersive detectors, as well as a Link 

EDS system and software for microanalysis and qualitative work was used to generate 

images of the membrane surfaces.    

 

3.2.7. Atomic Force Microscopy 

 

Atomic force microscopy (AFM) has been routinely used for the characterisation of 

filtration membranes, surface-colloid interactions and affinity ligands [13,14].  In the 

intermittent contact mode, the cantilever is oscillated vertically at high frequency during 

raster scanning.  A topographical map was obtained by scanning with a silicon nitride tip 

attached to a cantilever over the membrane surface, while maintaining a constant force 

between the tip and the sample.  The deflection of the tip and cantilever was measured 

optically using a reflected laser light beam off the back-face of the cantilever (AFM, TMX 

2000 Explorer, Topometrix, Santa Barbara, CA).   

 

3.2.8. Contact angle analysis 

 

Contact angles for the planar membranes were calculated using the sessile drop technique.  

The measurement of contact angle, θ, provides information on the interaction of a liquid 

with a solid through Young’s equation [18] γSV = γSL + γLV ·cos θ, where γ represents the 

interfacial tensions of solid and liquid.  The experimental set-up incorporated a Nikon 

PUNiX video camera equipped with Nikon microscope objectives and adjustable vernier 
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scales.  The camera was connected to a video recorder and the real-time image was 

provided on a monitor (Figure 3-1).  The substrates were placed on an adjustable 

horizontal platform and droplets of water were deposited from a syringe.  The narrow bore 

UF membranes; HF and HFF nonporous membranes were analysed using a Wilhelmy 

slide technique with deionised H2O as the solvent.  

 

 

 

 

Figure 3-1:  Experimental set-up of a movable platform and a CCD camera for static contact angle analysis. 

1, computer; 2, video recorder; 3, camera; 4, chamber; 5, syringe facility; 6, adjustable stage; 7, optical 

windows. 
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3.3. RESULTS AND DISCUSSION 

 

3.3.1. Planar nonporous membranes 

 

When interactions between membranes and macromolecules are attractive, the latter 

adsorb on the pore walls, generally at a large number of interaction sites per molecule, 

which stabilise the molecule on the surface.  The shear forces induced by conventional 

cross-flow filtration are generally not strong enough to overcome this attraction, hence the 

adsorbed macromolecules remain attached to the pore walls.  This typical fouling 

mechanism, which is based on attractive interactions, could severely hamper reliable 

interfacial analysis of Pluronic-modified membrane-based affinity separation systems.  

Even if electrostatic repulsive interaction occurs between membranes and 

macromolecules, in practise proteins adsorb onto porous membrane material irrespective 

of the surface charge due to hydrogen bonding and hydrophobic attraction, which would 

overcome the electrostatic repulsion. 

 

To avoid the aforementioned experimental bottlenecks, nonporous planar membranes 

were selected as potential affinity matrices for the study of Pluronic adsorption and 

affinity separation described in this and the following chapters.  Using commercially 

available polymers such as PSU, PVDF and PEI, nonporous membranes were fabricated 

using a 27 % (m/m) solution of polymer in DMAc.  Said membranes were prepared by an 

immersion precipitation technique [3] where a 27% (m/m) polymer solution was 

immersed in the non-solvent (deionised H2O) bath and the composition shifted to the 

demixing region.  By controlling these conditions, it was then possible to repeatedly 

produce asymmetric nonporous membranes with a characteristic dense top layer.   

 

The PVDF polymer is of increasing scientific and industrial significance because of its 

outstanding electrical properties (piezoelectricity), chemical resistance, durability and its 

biocompatibility in soft tissue applications [19,20,21].  PVDF exists in at least three main 

crystalline forms, designated as α (form II), β (form I) and γ (form III), and also in a 

minor phase, designated as δ [20,21].  Each of these forms is distinguished by the 

conformation of the C-C bonds along the chain backbone.  The α and γ phase can be 
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obtained from solution deposition while the oriented β phase can be produced by 

stretching a PVDF film [20].   

 

The α phase of PVDF has a unique IR absorption band at 763 cm-1 (Figure 3-2), which 

was baseline separated from the other peaks.  Other relevant peaks in Figure 3-2 that 

correlate to the α phase are the vibration bands at 532 cm-1 (CF2 bending), 763 cm-1, 613 

cm-1 (CF2 bending and skeletal bending), 792 cm-1 (CH2 rocking).  According to Benz and 

Euler [20] the β and γ crystalline phases resembled each other structurally and 

spectroscopically, making differentiation difficult.  The vibration band at 840 cm-1 can be 

assigned to the β form. 

 

 

 

Figure 3-2:  FT-IR spectrum of PVDF. 

 

Photo-acoustic FT-IR spectra were also generated for PEI and PSU membranes (Figure 

3-3).  The imide group of PEI displayed four characteristic absorption bands at 1780 cm-1, 

vs C=O 1725 cm-1, vas C-O 1358 cm-1 and a possible v C-N band at 745 cm-1.  The 

vibrations bands in the region 3700 to 2000 cm-1 were characteristic of PSU where the two 

triplet peaks around 3100 and 2950 cm-1 corresponded to the C-H stretching vibration of 

the carbon sp2 and sp3 hybrid in the aromatic system respectively [15].   

4400.0 4000 3000 2000 1500 1000 450.0
48.5

50

55

60

65

70

75

80

85

90

95

99.0

cm-1

%T 

PVDF

4327.61

4194.38

3895.71

3023.10

2981.15

1403.95
1184.32

1071.20

879.02

840.05

762.06

613.36

488.87



 3-9

 

 

Figure 3-3:  FT-IR spectra for native PEI and PSU membranes. 

 

Membrane hydrophobicity can be determined by measuring the contact angle (θ) between 

the membrane and a solvent such as deionised H2O (dH2O).  The angle, according to 

Young’s equation depends on the interfacial tensions (γ) of the interfaces involved [1].  

Contact angle analysis for native planar nonporous membranes is described in Table 3-1.  

Static contact angle measurements indicate that of the three candidate membranes under 
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investigation, PVDF appeared to be the most hydrophobic, while PEI was comparatively 

hydrophilic.  It is expected that the surface hydrophobicity of the membranes would 

feature significantly in the development of affinity linkers using amphiphilic surfactants 

such as Pluronic® F108, which are based on non-covalent intermolecular interactions. 

 

Table 3-1:  Static contact angle analysis of native planar nonporous PVDF, PEI and PSU membranes 

 

 

Qualitative information on membrane surface structure, and the effect of solvents on 

membrane integrity was investigated by SEM imaging.  Initial surface analysis was 

performed using the energy dispersive X-ray spectroscopy (EDX) feature of electron 

microscopy.  While these planar membranes are difficult to distinguish from the Pluronic 

coated membranes at the microscopic level, SEM is still the standard analytical instrument 

for membrane morphology characterisation [22].  A low vacuum mode of operation was 

followed for much of the analysis to minimise artefacts. 

 

The SEM images in Figure 3-4, depict fairly heterogeneous surfaces, with thin (nano 

scale) abrasions on the surface.  This was a consequence of the fabrication process of the 

candidate planar membranes, where a stainless steel bar and a 2 mm spacer blade were 

used to spread the polymer films to form membranes.  After coating with 5 mg.ml-1 

Pluronic solutions, more homogenous and smoother surfaces were noticed.  The adsorbed 

Pluronic ‘masking’ of the inherent markings on the native membrane suggest that Pluronic 

adsorption was uniform over the 1 cm2 membrane surface.   

 

AFM analysis was performed under hydrated conditions, with the less destructive 

intermittent contact mode or ‘tapping mode’.  This involved performing vertical 

oscillations with the cantilever across the membrane surface using a constant force.  The 

atomic force micrographs in Figure 3-5 and the attendant force curves suggest that the 

61.8157.74°PSU

62.8251.38°PEI

62.3566.61°PVDF

N±SDContact anglePolymer Type

61.8157.74°PSU

62.8251.38°PEI

62.3566.61°PVDF

N±SDContact anglePolymer Type
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average surface roughness decreases with Pluronic modification of the surface.  A similar 

trend was observed with PVDF and PEI membranes.   

 

 

Figure 3-4  Electron micrographs showing native polymeric membranes (PSU, PVDF and PEI) and typical 

Pluronic coated membranes (PSU~F108, PVDF~F108 and PEI~F108).  Bar = 2μm. 

 

Production of smooth membranes, are not essential for affinity separation or filtration.  

Conversely, a rough surface is potentially more advantageous due to the larger surface 

area to volume ratio, which would favour surfactant adsorption.  However, solid-state 

PSU PSU~F108 

PVDF PVDF~F108 

PEI~F108 PEI 
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analytical instruments (AFM, RBS and to a lesser extent XPS) are sensitive to rough 

surfaces that contribute background ‘noise’ which can hinder accurate measurements.   

 

 

Figure 3-5:  Atomic force topographical micrographs showing A) Native PSU membrane and B) Pluronic 

modified PSU surface.  The insets beneath each figure represent force distance curves, which indicate the 

surface roughness. 

 

The integrity of the native membranes was evaluated against organic solvents that were 

envisaged to be used during modification (displacement) of the surface adsorbed Pluronic 

or during affinity immobilisation of proteins.  At the outset of the study solvents such as 

ethanol, urea, hexane, 2-propanol, chloroform and ethyl acetate were considered as agents 

or as buffer components for chemical treatment of surfactant-modified membranes.   

 

Planar 1 cm2 membrane sections were immersed in the different solvents at 20 and 70ºC, 

dried and examined with SEM.  The membranes appeared to be stable in all of the 

solvents tested while PVDF and PSU showed similar characteristics except when 

incubated in CHCl3.  CHCl3 treated PVDF membranes showed melting or widening of the 

nanometer size ‘pores’ detected on native PVDF surfaces (Figure 3-6).  These results were 

similar to chemical reactivity assays performed by Momtaz et al., [23] on commercial 
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“Durapore” PVDF microfiltration membranes.  FT-IR analysis confirmed the stability of 

the native chemical groups on all the membranes subjected to solvent treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6:  Hexane-isopropyl alcohol treated PSU and PVDF (A and B) and CHCl3 treated PSU and PVDF 

(C and D) membranes.  Bar = 1 μm. 

 

3.3.2. Capillary membranes 

 

The externally unskinned UF capillary membranes were produced according to the 

methodology of Jacobs and Leukes [2].  The fabrication conditions for the nonporous 

capillary membranes are listed in Table 3-2.  These membranes (Figure 3-7) were spun 

into an aqueous solvent external contact bath containing a small percentage deionised 

water.  The dimensions of the capillaries are listed in Table 3-3 and these membranes were 

stored in a cool dry cylinder at ambient temperature.   

 

Surface tension analysis using a Wilhelmy slide technique was performed on the capillary 

membranes.  Dynamic contact angle analysis (Table 3-4) revealed that the nonporous HF 

and HFF membranes were of similar surface hydrophobicity while the externally porous 

(unskinned) UF capillaries were slightly more hydrophobic, but with a larger discrepancy 

A 

C 

B 

D 
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between the advancing and receding contact angles.  This dynamic contact angle 

hysteresis is typical of polymeric surfaces and the hysteresis described in Table 3-4 is 

most likely due to a combination of membrane surface roughness and porosity, 

particularly with the externally unskinned UF membranes. 

 

Table 3-2:  Parameters for nonporous capillary membrane production using the dry/wet spinning process   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7:  Electron micrographs of A) nonporous hollow fiber, B) nonporous hollow fine fiber and C) 

externally unskinned ultrafiltration PSU membranes. 
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Table 3-3:  Dimensions and characteristics of the membranes used for construction of the capillary modules, 

with the external surface area (As), lumen surface area (AL) and the volume (Vi) 

 

 

 

Table 3-4:  Dynamic contact angle analysis of the capillary membranes 

 

 

 

 

3.3.3. Construction of capillary membrane modules 

 

Single-capillary membrane modules (SCMM) and multi-capillary membrane modules 

(MCMM) were constructed for two reasons: 

1. to perform interfacial analysis of Pluronic adsorbed at curved interfaces [16] and 

2. to enable testing of a laboratory scale multi-capillary membrane affinity separation 

system, coupled to an automated liquid chromatography system. 

 

The SCMM (Figure 3-8A) was used to study the effects of interfacial curvature on 

Pluronic adsorption by slowly re-circulating a 5 mg.ml-1 solution of Pluronic F108 within 

the lumen (concave interface) and the external wall of the membrane (convex interface).  
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These inexpensive membrane units were convenient to work with, easy to set up and 

dismantle and have a simple geometry that is well characterised [24,25]. 

 

The nonporous HFF and capillary membranes were encased in a clear Perspex shell and 

potted (glued) with a commercially available epoxy resin.  The epoxy resin was allowed to 

set for at least 24 h before the membranes were pressure tested.  The MCMM (Figure 

3-8B) comprised 30 PSU HF capillary membranes with a total internal surface area of 

3875.50 mm2.  The dimensions of the MCMM (Table 3-5) were compatible with a 

commercial fast protein liquid chromatography (FPLC) system, AKTA Prime 

(Amersham) such that it could be coupled to said FPLC as a column. 

 

 
 

 

 

 

 

 

 

Figure 3-8:  The single capillary membrane module (SCMM) and the multi-capillary membrane module 

(MCMM), A and B respectively.   

 

Table 3-5:  Dimensions of the Perspex capillary membrane module 

 

 

 

A B 

89594.30 mm3Extra-capillary module volume

25.25 mmShell OD

19.5 mmShell ID

300 mmShell Length

DimensionsCapillary membrane module

89594.30 mm3Extra-capillary module volume

25.25 mmShell OD

19.5 mmShell ID

300 mmShell Length

DimensionsCapillary membrane module
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3.4. CONCLUSIONS 

 

Synthetic polymeric membranes were fabricated using the immersion precipitation 

technique to manufacture nonporous planar and capillary membranes of reproducible 

physical and chemical composition.  The surface chemistries of the membrane polymers 

were verified using photo-acoustic FT-IR analysis.  Surface hydrophobicity was calculated 

using static and dynamic contact angle analysis for the planar and capillary membranes 

respectively.  The membrane surface hydrophobicity was of the order PVDF > PSU > PEI.   

The candidate membranes chosen in this study have rough surfaces that are inherent to the 

fabrication conditions used.  However, microscopy analysis (AFM and SEM) suggested 

that membrane surface roughness was found to decrease after surface modification in 5 

mg.ml-1 aqueous Pluronic F108 solutions.   

 

PVDF membranes were found to be susceptible to damage after prolonged incubation in 

CHCl3, while the membranes were relatively stable in the other solvents used in the 

investigation.  The Perspex module used to encase the HF capillaries was unstable in 

solutions of hexane and 2-propanol.  Using a Perspex shell and adjustable endcaps, single 

and multi-capillary membrane modules were constructed for interfacial curvature analysis 

and scale-up studies. 

 

In summary, the partial characterisation using SEM, AFM, FT-IR and contact angle 

analysis, provided a better understanding of the mechanical and chemical properties of the 

affinity membrane matrix.  This is of importance in future studies directed towards 

investigating the adsorption behaviour of Pluronic, bioligands and proteins at the 

membrane-liquid interface.  Additionally, the physical and chemical nature of the 

membranes is also a factor that determines the success of solid-state spectrophotometric 

analysis.  

 

 

 

 

 

 



 3-18

3.5. REFERENCES 

 

1. J.A. Howell, V. Sanchez, R.W. Field,  Membranes in bioprocessing: Theory and 

Applications. Chapman and Hall. Cambridge, 1993, p.203. 

2. E.P. Jacobs, W.D. Leukes,  J. Mem. Sci.  121 (1996) 149. 

3. S. Kazama, M. Sakashita,  J. Mem. Sci.  243 (2004) 59. 

4. A.M.W. Bulte, M.H.V. Mulder, C.A. Smolders, H. Strathmann,  J. Mem. Sci.  121 

(1996) 51. 

5. L. Jiansheng, W. Lianjun, H. Yanxia, L. Xiadung, S. Xiuyun,  J. Mem. Sci.  256 

(2005) 1. 

6. F-Q. Nie, Z-K. Xu, P. Ye, J. Wu, P. Seta,  Polymer  45 (2004) 399. 

7. J.Ä. Jonsson, L. Mathiasson,  J. Chromat. A.  902 (2000) 205. 

8. J-T. Li, J. Carlsson, J-N. Lin, K.D. Caldwell,  Bioconjugate Chem.  7 (1996) 592. 

9. E.M. Vrijenhoek, S. Hong, M. Elimelech,  J. Mem. Sci.  188 (2001) 115. 

10. S. Ramaswamy, A.R. Goldberg, M.L. Peterson,  J. Mem. Sci.  239 (2004) 143.  

11. R. Chan, V. Chen,  J. Mem. Sci.  242 (2004) 169. 

12. Y.F. Dufrene,  Current Opinion in Microbiol.  6 (2003) 317. 

13. S. Sagrin, S. Takac, T.H. Ozdamar,  Sep. Sci. Technol.  40 (2005) 1191. 

14. S. Govender, E.P. Jacobs, W.D. Leukes, B. Odhav, V.L. Pillay,  J. Mem. Sci.  238 

(2004) 83. 

15. T. Steckenreiter, E. Balanzat, H. Fuess, C. Trautmann,  J. Polymer Sci.  37 (1999) 

4318. 

16. S. Govender, E.P. Jacobs, M.W. Bredenkamp, P. Swart,  J. Colloid Int. Sci.  282 

(2005) 306. 

17. J.L. Koenig,  Spectroscopy of Polymers.  American Chemical Scoiety, Washington 

DC, 1992, p.49. 

18. A. Zdniennicka, B. Janczuk, W. Wojcik,  J. Colloid Interface Sci.  281 (2005) 465. 

19. D. Klee, Z. Ademovic, A. Bosserhof, H. Hoecker, G. Maziolis, H-J. Erli,  

Biomaterials.  24 (2003) 70. 

20. M. Benz, W.B. Euler,  J. Applied Polymer Sci.  89 (2003) 1093. 

21. A. Salimi, A.A. Yousefi,  J. Polymer Sci.  42 (2004) 3487. 

22. H.K. Shon, S. Vigneswaran, I.S. Kim, J. Cho, H.H. Ngo, J. Mem. Sci.  234 (2004) 

111. 

23. M. Momtaz, J-L. Dewez. J.Marchand-Brynaert,  J. Mem. Sci.  250 (2005) 29. 



 3-19

24. S.R. Reiken, D.M. Briedis, Biotechnol. Bioeng.  35 (1990) 260. 

25. S. Govender, E.P. Jacobs, W.D. Leukes, V.L. Pillay,  Biotechnol. Lett.  25 (2003) 

127. 

 

 



CHAPTER 4: A ROBUST APPROACH TO STUDYING THE 

ADSORPTION OF PLURONIC F108 ON NONPOROUS 

MEMBRANES 

 

 

 

This chapter has been published in, Journal of Colloid and Interface Science in 2005, 

Volume 282, pages 306 – 313.  S. Govender performed all the experimental work and data 

analysis detailed in this manuscript.  The aim of this study was to develop a robust, 

extraction and detection system for Pluronic and to investigate the effects of membrane 

surface hydrophobicity and interfacial curvature on the adsorption process.  The article as 

published is enclosed as Chapter 4 of this thesis. 
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Abstract

A method for poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) desorption from synthetic nonporous po
membranes, using hexane:isopropanol treatment and subsequent colorimetric quantification, is described. The polymers polysulfo
poly(vinyldiene fluoride), and poly(ether imide) were used to fabricate solid adsorption matrices. The desorbed Pluronic F108
color complex with ammonium ferrothiocyanate (NH4FeSCN) and is based on partitioning of a chromophore present in NH4FeSCN from an
aqueous phase to a chloroform phase in the presence of Pluronic. The protocols for Pluronic desorption and detection are simpl
inexpensive, rapid, and reproducible over a wide range of Pluronic coating concentrations and membrane surface chemistries. A
sponse over the concentration range from 3 to 130 µg ml−1 is obtained. The adsorption isotherms for flat sheet membranes are also de
and the Langmuir equation provides the best fit for the adsorption data obtained within the concentration range studied. The abse
significant interference from certain proteins, vitamins, carbohydrates, plasma, and halogenated derivatives makes the assay equ
for the estimation of Pluronic F108 in the attendant Pluronic conjugates or in biomedical applications. Using nonporous hollow fi
and capillary membranes as model curved substrates we were also able to correlate an increase in the radius ofcurvature with a correspondin
increase in the surface interfacial adsorption of Pluronic F108.
 2004 Elsevier Inc. All rights reserved.

Keywords:Pluronic F108; Nonporous membranes; Adsorption isotherms; Colorimetric detection; Interfacial curvature
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1. Introduction

The advent of membrane technology in the past
decades has resulted in numerous applications in the fi
of biotechnology, waste water treatment, and pharmaceu
cal and biomedical applications. The efficiency of membr
technology is highly dependent on its ability to resist
nonspecific adsorption of organic foulants due to protein
cell adhesion[1]. This often unwanted adsorption leads
decreased flux in water treatment[2], cytotoxicity in drug
delivery, and increased thrombogenicity in biomaterial
cardiovascular therapeutics[3].

* Corresponding author. Fax: +27-21-808-5863.
E-mail address:pswart@sun.ac.za(P. Swart).
0021-9797/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2004.08.138
Poly(ethylene oxide)m–poly(propyleneoxide)n–poly(eth-
ylene oxide)m (PEOm–PPOn–PEOm) triblock copolymers
(Pluronics, BASF, Co) are water-soluble, nonionic a
phiphilic surfactants. These compounds are surface ac
form micelles and lyotropic crystalline phases[4], and have
high chemical and thermal stability. These block copo
mers of PEO and PPO are approved as thermovisco
agents by the Food and Drug Administration and the
vironmental Protection Agency as direct and indirect fo
additives, pharmaceutical ingredients, agricultural product
and in biotechnological applications[5,6].

The interfacial adsorption behavior of Pluronic is receiv
ing increasing attention due to its amphiphilic nature, wh
is attributed to the differing solubilities in water of the h
drophobic PPO and the hydrophilic PEO. This feature

http://www.elsevier.com/locate/jcis
mailto:pswart@sun.ac.za
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contributed to its emergence in the fields of polymer ads
tion and steric stabilization[1,3,5,6]. It has also become
popular coating material because of its ability to nonco
lently attach to hydrophobicsurfaces and shield said surfac
from the nonspecific adsorption of macromolecules from
surrounding bulk phase[1,3–5]. This is a particularly attrac
tive feature in applications using synthetic polymer me
branes.

Pretreatment of membranes is an important strategy
the reduction of protein and cell adsorption. It is the
fore important to understand the complex multiparam
process of polymer adsorption onto membranes. Plur
pretreatment is achieved by passive adsorption of the
drophobic PPO center block of the triblock copolymer o
the membrane surface, whilethe pendant hydrophilic PEO
groups protrude out into the solution, forming a second
hydrophilic layer that sterically hinders the adsorption of
tential foulants.

A wide range of techniques such as small angle X-
spectroscopy[5], sedimentation field flow fractionation[6],
photon correlation spectroscopy[7], surface plasmon res
onance spectroscopy[8], atomic force microscopy, ellip
sometry, neutron scattering, and X-ray photoelectron s
troscopy[9] have been used to study Pluronic adsorpt
onto polymeric surfaces. It is to a large extent the ph
cal and chemical properties of the adsorption matrix
determines the suitability of the attendant analytical metho
ology. Since most direct and indirect analytical instrument
are not entirely suitable or routinely available for quantifyi
bound Pluronic, this study focused on a simple, inexpens
and readily available protocol for Pluronic extraction and
tection on synthetic membranes.

This work is aimed at developing a robust extract
and detection system for membrane-adsorbed Pluron
order to investigate the interfacial properties of Pluro
and modified Pluronic, adsorbed onto flat-sheet or plana
membranes and capillaries. Planar macroscopic surf
such as membranes are ideal for fluid–solid systems s
many experimental techniques are designed primarily for
surfaces[10]. Polysulfone (PSU), poly(ether imide) (PE
and poly(vinyldiene fluoride) (PVDF) were cast as den
skinned or symmetrically homogeneous planar membra
which resulted in three unique matrices that differed in thei
hydrophobicity, such that they could adsorb the amphiphili
Pluronic. Nonporous curved capillary membranes were
fabricated in order to investigate the possible contributi
of interfacial curvature to Pluronic adsorption. We decid
to base our assay on the phospholipid detection prot
described by Stewart[11] and the solvent extraction comb
nation used for Pluronic extraction was hexane–isoprop
(3:2 v/v).

In this study we report a simple procedure for bipha
extraction and colorimetric detection of Pluronic F108
sorbed onto dense-skinned membranes. The extraction
detection methods described were used to study interf
s

,

d
l

adsorption onto capillary membranes and similar cur
nonporous surfaces.

2. Experimental

2.1. Reagents and chemicals

Pluronic F108 was obtained from BASF (Germany). U
less otherwise stated, all chemicals and reagents were
chased from Merck NT laboratory suppliers, SA. The a
monium ferrothiocyanate assay solution was prepared b
dissolving 30.4 g NH4SCN (Protea Holdings Ltd., SA) an
27.03 g FeCl3·6H2O (Sigma–Aldrich Chemical Compan
SA) in deionized water made up to 1 L. The deionized wa
was purified with a Milli-Q water purification system fro
Millipore.

2.2. Membrane matrix fabrication

Flat-sheet membranes were cast from a solution con
ing 27% (m/m) (PSU, PEI, and PVDF) and 73% (m/
N ,N -dimethylacetamide (DMAc). PSU and PEI were d
solved in DMAc by rotating the solution container for mo
than 48 h at room temperature to obtain a homogene
solution. PVDF required sonication in an ultrasonic wa
bath for 30 min and further heat treatment at 55◦C for 48 h
to dissolve. The solutions were then degassed before b
used to cast the 200-µm planar membranes. Nonporous
illary and hollow fine fiber membranes were produced
the immersion precipitation technique using a dry–wet s
ning process[12]. The dimensions of the capillary (1.8 mm
and HFF (0.9 mm) were measured using an optical light
croscope with a vernier scale and these measurements
verified via scanning electron microscopy (SEM). In ord
to compare the adsorption properties of the fibers with
1 cm2 flat sheets used in previous experiments the length
the fibers were prepared such that the external surface
was equivalent to 1 cm2.

2.3. Cleaning regime

Capillary and planar membranes (1 cm2 external surface
area) were stored in 0.04 M sodium azide to prevent mi
bial growth. Prior to adsorption, membranes were was
overnight in sterile, deionized water, followed by three f
ther washes with deionized water. Membranes were
sonicated three times in sterile deionized water in an u
sonic bath for 5 min, followed by drying in a laminar flo
cupboard.

2.4. Synthesis of Pluronic iodide

p-Toluene sulfonyl chloride (19.06 g) was added to
solution of Pluronic F108 (14.6 g) in dry pyridine (50 m
at ambient temperature. Thereaction mixture was coole
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to 4◦C and retained for 7 days. The reaction mixture w
slowly poured into rapidly stirred ice and water (150 m
The mixture was then extracted with chloroform (4×
100 ml). The combined chloroform (CHCl3) extracts were
then washed with hydrochloric acid (6 M, 150 ml) a
deionized water (100 ml), dried over K2CO3–Na2SO4, and
evaporated under high vacuum (0.04 mm Hg) at amb
temperature for 2 h to give Pluronic tosylate. Lithium
dide (2.658 g) was added to a solution of tosylated Pluro
(2.908 g) in dry DMF (20 ml) and heated to 100◦C un-
der Ar for 3 h. The reaction mixture was treated with H
(3 M; 50 ml) and extracted with CHCl3 (3 × 100 ml).
The combined CHCl3 extracts were evaporated overnig
in a freeze dryer to give polyoxyethylene (diiodide)–block–
polyoxypropylene (Pluronic iodide). The structure of Plu
nic iodide was confirmed by13C nuclear magnetic resonan
(NMR) spectroscopy using a Varian VXR 300 NMR spe
trometer. All samples were analyzed in deuterated chloro
form at 25◦C.

2.5. Pluronic adsorption onto nonporous membranes

A dilution series of Pluronic F108 in deionized water w
made, from 7 mg ml−1 Pluronic down to 0.125 mg ml−1.
Membrane sections (1 cm2) were incubated into each s
lution for 8 to 12 h at room temperature to ensure that
adsorption reaction reached equilibrium. After incubat
the membranes were washed three times with deionized
ter and allowed to air-dry for 30 min.

2.6. Hexane:isopropanol extraction of Pluronic F108

Dried Pluronic-coated membranes were then subme
in 25 ml hexane–isopropanol (3:2 v/v) mixture and in
bated for 1 h at room temperature. The mixture cont
ing the membranes was subsequently boiled for 15
and washed twice with 10 ml preheated hexane–isoprop
(3:2 v/v). The mixture was then filtered through Whatm
No. 1 filter paper. The hexane–isopropanol filtrate was s
sequently evaporated under N2 gas and slight heat unt
complete dryness. The extracted Pluronic was redisso
in 10 ml CHCl3. Native or uncoated membranes were u
as controls.

2.7. Assay procedure

A dilution series of Pluronic F108 in CHCl3 was prepared
and an assay was performedon each dilution in order to
generate a standard curve. The Pluronic–CHCl3 standard so
lution (3 ml) was added to NH4FeSCN solution (3 ml) an
the mixture was vortexed thoroughly for 2 min. The res
tant two phases were then allowed to separate. The bo
CHCl3 phase was carefully pipetted out and the absorp
was measured spectrometrically at 510 nm using a 1
beam cuvette in a CARY 100 spectrophotometer. The a
age optical density (OD) was plotted for Pluronic F108 a
-

l

its halogen derivative. A curve of absorption at 510 nm
Pluronic concentration was determined.

The robustness of this assay was experimentally v
fied by adding human plasma (1.5 mg ml−1), biotin from
Sigma–Aldrich Chemical Company, SA (1 mg ml−1), bovine
serum albumin from Sigma–Aldrich (1 mg ml−1), dextran
(1 mg ml−1), 34 mM sodium dodecyl sulfate (SDS), a
lysozyme from Sigma–Aldrich (1 mg ml−1) directly into
the cuvette used for the Pluronic assay. Any interfere
or change in the stable OD reading at 510 nm would be
tributable to the presence of the attendant additive.

2.8. Pluronic adsorption at curved interfaces

Studies were conducted on PSU capillaries and ho
fine fibers (HFF) by adsorbing 5.0 mg ml−1 Pluronic F108
onto the convex external surface of the membranes and
suring the adsorbed fraction using the hexane:isoprop
desorption approach previously discussed. The effect o
concave inner surface of the fibers was not considered a
stage, due largely to the difficulty in accurately extract
the adsorbed Pluronic layer from the lumen (tube side
the membrane.

2.9. Contact angle analysis

Contact angles for the planarmembranes were calculate
using the sessile drop technique. The measurement of
tact angle,θ , provides information on the interaction of
liquid with a solid through Young’s equation[10], γSV =
γSL + γLV cosθ , whereγ represents the interfacial tensio
of solid and liquid. The experimental setup incorporate
Nikon PUNiX video camera equipped with Nikon micr
scope objectives and adjustable vernier scales. The came
was connected to a video recorder and the real-time imag
was provided on a monitor. The substrates were place
an adjustable horizontal platform and droplets of water wer
deposited from a syringe.

2.10. Atomic force microscopy

Atomic force microscopy (AFM) has already been a
plied extensively for the characterization of surface adsorbe
Pluronic[9] and of hydrophobic surfaces[13]. In the tapping
mode, the cantilever is oscillated vertically at high freque
during raster scanning. A topographical map was obta
by scanning a silicon nitride tip attached to a cantilever o
the air-dried membrane surface, while maintaining a con
stant force between the tip and the sample. The defle
of the tip and cantilever was measured optically by refl
ing a laser light beam off the back face of the cantile
(AFM, TMX 2000 Explorer, Topometrix, Santa Barba
CA).
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3. Results and discussion

3.1. Colorimetric estimation of Pluronic using the biphas
assay system

Most of the existing colorimetric methods for measur
PEO-based surfactants in biological samples require th
moval of proteins, lipids, and sugars by precipitation and
filtration [14]. Colorimetric estimation of PEO-based su
factants and Pluronics havebeen based on the formatio
of a complex with cobalt thiocyanate[15], the Wickbold
method [16], or titration with tetrakis(4-halophenyl) bo
rate [17]. The cobalt thiocyanate assay required repea
centrifugation steps, while the Wickbold method involv
the use of a specifically designed apparatus for concen
ing the color complex.

In this study the extracted Pluronic formed a color co
plex with NH4FeSCN. This is based on partitioning of
chromophore present in NH4FeSCN from an aqueous pha
to a CHCl3 phase in the presence of Pluronic. A pink to p
ple color development occurs rapidly after mixing at ro
temperature withλmax at 505 to 510 nm. The Fe(SCN3
chromophore on its own does notpartition into the chloro-
form layer in the biphasic assay system, so it is highly lik
that the amphiphilic Pluronic solvates the Fe(SCN)3 com-
plex due to its solubility in both water and CHCl3.

A linear response over a concentration range of 3
130 µg ml−1 is obtained (Fig. 1). Beyond 130 µg ml−1 the
Beer–Lambert law is not obeyed and the concentration c
deviates progressively from linearity. The robustness of
assay was tested with a halogenated Pluronic F108 de
tive, which had been used in another study for solid-s
detection of Pluronic on membranes (results not show
Pluronic iodide was characterized with13C NMR (Table 1)
and showed similar linearity at 510 nm (Fig. 1) and the
linear response was also within the dilution range of 3
130 µg ml−1. In comparison to the systems described
[14–17], both the protocols for Pluronic desorption and d
tection are relatively simple, sensitive, inexpensive, qu
and reproducible over a wide range of Pluronic coating c
centrations and membrane surface chemistries.

Fig. 1. Typical standard curves for Pluronic F108 (r2 = 0.9985) and for
Pluronic F108 iodide (r2 = 0.9966).
-

-

Table 1
13C NMR chemical shifts(δ) of Pluronic–I in CDC13 at 25◦C

Carbon Pluronic–I

–CH2–CH(CH3)–O 17.05; 17.18
–CH2–I 29.44
–CH2–CH2–I 70.46
–CH2–CH(CH3)–O 72.74; 72.78; 72.82; 72.87; 73.2
–CH2–CH(CH3)–O 75.03; 75.24; 75.27; 75.44
o-Ts –
m-Ts –
p-Ts –
Ts–CH3 –

Table 2
Effects of bioadditives on the NH4FeSCN–CHCl3 assay for Pluronic

Additive Concentration (mg ml−1) Change in OD

None – 0
Human plasma 1.5 <2–5%
Biotin 1.0 0
Bovine serum albumin 1.0 0
Dextran 1.0 0
Sodium dodecyl sulfate 34 mM >70%
Lysozyme 1.0 >90%

In an attempt to further test the versatility of this meth
of Pluronic estimation in the presence of common biolo
cal materials such as plasma, sugars, proteins, and vita
the effect of these additives on the recovery of Pluronic
investigated.Table 2shows the effect of bioadditives on th
quantification of Pluronic F108. Biotin, BSA, and dextr
had no effect on Pluronic recovery, while the presence
human plasma had a minor impact on the assay. SDS
lysozyme however were incompatible with the assay.

3.2. Efficacy of hexane:isopropanol extraction of Pluron

Both hexane and isopropanol have been used for
extraction from plant tissue with an efficacy of 52 a
45%, respectively[18]. A binary solvent system usin
hexane:isopropanol was considered for Pluronic desorp
from polymer membranes due to its proven efficacy w
lipids and oils[19].

The atomic force micrographs inFig. 2serve as a macro
scopic indicator of the extent of Pluronic desorption w
the hexane:isopropanol solvent system. A typical native,
treated PSU planar membrane is shown inFig. 2a, while
Fig. 2b shows a Pluronic-coated membrane with bright c
ters suggesting micelle formation[13]. AFM analysis indi-
cated uniform adsorption of Pluronic onto flat sheet P
membranes, while native membranes were characterize
rough and extremely heterogeneous surfaces, irrespe
of the polymer used in its preparation. Typical membr
treatment with hexane:isopropanol for Pluronic desorp
is shown inFigs. 2c and 2d. Figs. 2c and 2dare micro-
graphs showing hexane–isopropanol extraction below
melting point of Pluronic F108 (55◦C) and at∼70◦C, re-
spectively. The color intensity shows the vertical profile
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Fig. 2. (a) Atomic force micrographs showing a native PSU flat sheet membrane, (b) Pluronic F108-coated flat sheetPSU membrane, (c, d) typical plan
Pluronic-coated PSU membranes that were treated with hexane:isopropanol at 50 and∼70◦C, respectively. The inset in (d) correlates the surface-p
differences on the hexane–isopropanol-treated membranes with respect to color intensity.
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the membrane surface, with light regions indicating the high-
est points (micelles), the dark regions being the depress
inherent to the fabrication process, while the intermed
region is the membrane surface. The variation in light in
tensity or “brightness” of the adsorbed Pluronic, sugg
that Pluronic aggregation occurred on the membrane sur
A similar profile for native, Pluronic-coated, and hexan
isopropanol-treated membranes was observed with an
ronmental scanning electron microscope (results not sho

Since the extraction kinetics and the extraction efficie
of a suitable solvent are positively influenced by tempe
ture, methods based on extraction at elevated tempera
are in common use. This is also applicable to hexa
isopropanol extraction of membrane-adsorbed Pluronic
solvent extraction at 65–70◦C (above the melting point o
Pluronic F108) was comparatively much more effective
desorbing the surfactant coating (Fig. 2d) than treatment a
lower temperatures (Fig. 2c). The robust membrane and t
low-melting-point Pluronic F108 are an ideal adsorbent
adsorbate system for this binary solvent extraction proto

3.3. Interfacial analysis of Pluronic adsorption on
planar membranes

The saturation curves for the adsorption of Pluronic F
onto PSU, PVDF, and PEI are shown inFig. 3. The results
presented inFig. 3 were analyzed in terms of the Langmu
isotherm. The adsorption/desorption data of Pluronic F
on dense skin planar membranes was fitted to the Lang
.

-
.

s

r

Fig. 3. Saturation curves for Pluronic F108 adsorbed on candidate plan
membranes.

isotherm,

(1)Q = QmaxKC(1+ KC)−1,

where Q and Qmax are the equilibrium amount and a
sorption capacity of Pluronic F108 adsorbed per 1 cm2 of
adsorbent, respectively.C is the liquid phase adsorbate co
centration at equilibrium andK is the binding constant.

The isotherms obtained followed a Langmuir type pro
as characterized by a steep initial slope at a low copoly
equilibrium concentration (<1 mg ml−1) and an adsorptio
plateau was reached above a bulk Pluronic coating concen
tration of 5 mg ml−1. Since the adsorption capacity of t
different membrane substrates differ due to their inhe
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Table 3
Static contact angle measurements for 1 cm2 planar membranes;N is the
sample number, which indicates the number of measurements made o
sample

Polymer type Native membranes Pluronic-coated membr

Contact angle N ±SD Contact angle N ±SD

PEI 51.38 6 2.82 61.84 6 1.85
PSU 57.74 6 1.81 40.29 6 1.69
PVDF 66.61 6 2.35 51.34 6 2.84

surface chemistries, the equilibrium adsorption concen
tion also differed for all the membrane matrices under inv
tigation. The critical micelle concentration of the Pluron
F108 used in this study was calculated from surface
sion measurements to be 7 mg ml−1 [20], so the plateau
does deviate from linearity for coating solutions greater t
5 mg ml−1 Pluronic, due to the formation of micelles in th
bulk coating solution.

From the saturation curves inFig. 3, the curve for
Pluronic adsorption onto PEI lies above the isotherm p
for both those of PVDF and PSU. This suggests that Plur
adsorbs more strongly to PEI than it does to PVDF
PSU. The slopes of the isotherms for PVDF and PSU ap
steeper than that for PEI, whichindicates that the adsorptiv
capacity of PVDF and PSU increases at higher equilibr
solute concentrations.

Contact angle measurements for both native and Pluro
coated flat sheet membranes are shown inTable 3. Static
contact angle measurements show that native PEI m
branes are relatively hydrophilic and Pluronic adsorption
could result in a reversal of the surface properties to
of a relatively hydrophobic membrane. This could be d
to the self-assembly of the hydrophilic PEO segments
trains in contact with the membrane surface, with the PP
loops sticking out. This scenario differs markedly from t
hydrophilic brushes formed by PEO chains on the hydropho
bic PSU and PVDF membranes, which form a hydroph
layer that can potentially sterically hinder the adsorption
proteins and cells[3,5].

Langmuir isotherms for planar PSU, PVDF, and PEI n
porous membranes are described (Fig. 4) and the corre-
sponding adsorption isotherms (Figs. 4a and 4c) obey the
Langmuir equation. The isotherms generated on PEI m
branes (Fig. 4b) showed the greatest deviations from l
earity. This could be attributed to the conformational s
assembly of the PEO groups on the surface such tha
PPO center block served as a matrix for multilayer Pluro
adsorption. This was undesirable from a membrane
treatment perspective since the Pluronic adsorption pro
would be more complex. This also reduces the sterically
pulsive forces provided by the highly hydrated PEO la
at high surface coverage that allows the stabilization of
loidal dispersions, which enable resistance to fouling. Th
linear fit of the Langmuir isotherms for PSU and PVDF su
gests that the adsorption of Pluronic F108 onto these m
h

(a)

(b)

(c)

Fig. 4. Typical Langmuir isotherms for (a) PSU flat sheet membrane
25◦C, (b) PEI flat sheet membranes at 25◦C, and (c) PVDF flat sheet mem
branes at 25◦C. The interfacial adsorbed amount of Pluronic (Q) and the
liquid phase equilibrium concentration of Pluronic (C) were used to con
struct the Langmuir isotherms.

branes is due to monolayer formation, since there ma
minimal Pluronic–Pluronic interaction.

3.4. Influence of interfacial curvature on
Pluronic adsorption

Curved capillaries with their defined radii can easily
used for studying adsorption under controlled flow con
tions and as models for adsorption on porous substr
When previous studies[20] were conducted with flat shee
it was assumed that the radius of curvature was large
respect to the thickness of the adsorbed layer.

However, according to Fleer et al.[10], in order to de-
scribe the adsorption of polymers on small spherical pa



312 S. Govender et al. / Journal of Colloid and Interface Science 282 (2005) 306–313

re

ants
s,

reti-
e
e is
hick
orbe
yer

ts
ad-
yer

Con
onic
ntal

was

on
d in
tion
a-
en
er
een
ing
p-

rix
stru-
ol

etic
ing

es
yer,

PO
cur-
in

tha
the
ture

rface
w a
ely
rties
oto-

and

alo-
xyl
d a

ne:
e
sur-
s a
ysis.
tion

the
hy-

c in
man

s as-
and
tud-
d in
ere
and
orts
sur-

rch

248

g:
.
537.

In-

ar-

)

99)

.J.B.
Table 4
Data for Pluronic desorption from 1 cm2 curved surfaces (experiments we
conducted in triplicate)

PSU membrane Desorbed Pluronic (mg ml−1) ±SD N

Capillary 0.14 0.0025 3
Hollow fine fiber 0.055 0.0010 3
Planar 0.063 0.0084 3

cles or in pores, or to model the self-assembly of surfact
or block copolymers into spherical or cylindrical micelle
a flat lattice geometry is inadequate. According to theo
cal studies by Wijmans et al.[21], curvature effects becom
important when the radius of curvature of the substrat
of the same order of magnitude as the adsorbed layer t
ness. These authors predicted an increase of the ads
amount of diblock copolymer and the hydrodynamic la
thickness with increasing curvature. Baker and Berg[22]
measured the layer thickness for various Pluronic surfactan
on polystyrene particles and concluded that the specific
sorption was independent of particle size while the adla
thickness decreased with an increase in particle radius.
sidering these and many other conflicting reports on Plur
adsorption on curved polymeric surfaces an experime
study of Pluronic adsorption on capillary membranes
undertaken.

Measurements of the adsorbed amount of Pluronic
each of the model membrane matrices are summarize
Table 4. The results show an increase in Pluronic adsorp
(0.055 to 0.14 mg ml−1) with an increase in membrane r
dius (0.9 to 1.88 mm). The capillaries with a larger lum
diameter, hence less convexthan the HFF, showed great
Pluronic adsorption. This correlates with the trend s
with Pluronics adsorbed onto polystyrene lattices of vary
thickness[22]. However, reported results in the literature a
pear to be plagued with inconsistencies[5–9], and this is due
to a combination of the instability of the adsorption mat
used and the constraints imposed by the analytical in
mentation or technique[5]. The reliable hexane:isopropan
protocol and the sensitive biphasic NH4FeSCN/CHCl3 as-
say system is well suited to Pluronic analysis on synth
polymer membranes, which limits the possibility of draw
convoluted conclusions from theinterfacial curvature data.

The larger interfacial curvature of HFF membran
causes additional lateral crowding in the adsorbed la
which might sterically hinder the adsorption of further P
chains. The capillary membrane has a larger radius of
vature thus limiting lateral crowding and this is reflected
the much greater amounts of Pluronic adsorbed per cm2 of
membrane. On theoretical grounds, it can be expected
an increase in particle size would provide an increase in
adsorbed layer thickness up to the point where the curva
of the surface was essentially the same as a planar su
The progression from capillary to flat sheet did not sho
similar increase in Pluronic adsorption. This was most lik
due in large part to the surface physicochemical prope
that arose due to the differing membrane fabrication pr
-
d

-

t

.

cols that are inherent to the manufacture of capillary
planar membranes.

4. Summary

Biphasic colorimetric quantification using NH4FeSCN
and CHCl3 was sensitive to Pluronic F108 (3–130 µg ml−1)
and insensitive to dextran, biotin, human plasma, and h
genated Pluronic derivatives. Modification of the hydro
end groups of Pluronic F108 to Pluronic iodide showe
similar linearity within the described dilution range.

The bisolvent extraction of Pluronic F108 using hexa
isopropanol treatment at∼70◦C, was highly reproducibl
for a wide range of Pluronic coating concentrations and
face chemistries in addition to being relatively effective a
desorbent based on AFM and electron microscopy anal
The saturation curves followed Langmuir-type adsorp
and the corresponding Langmuir isotherms correlated to
current understanding of the adsorption of Pluronic onto
drophobic surfaces such as the candidate membranes.

The specific spectrophotometric detection of Pluroni
the presence of some common bioadditives such as hu
plasma, serum albumin, and dextran, suggest that thi
say system could also be used to quantify Pluronic
poly(ethylene oxide) based surfactants in biomaterial s
ies and drug delivery devices. The methods describe
this study for the extraction and detection of Pluronic w
also successfully used for studying interfacial curvature
the results were in good agreement with many other rep
concerning surfactant adsorption onto curved polymer
faces.
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CHAPTER 5: SOLID-STATE ANALYSIS OF MEMBRANE 

COUPLED LIGAND-MODIFIED PLURONIC 

 

5.1. INTRODUCTION 

 

Polymeric membranes are widely used in chromatographic applications such as affinity 

separation for the isolation and purification of proteins from biological fluids [1,2].  The 

performance of an affinity membrane is greatly dependent on its surface properties 

exhibited at the solid-liquid interface.  The surface properties of an affinity membrane may 

affect the adsorption capacity and its behaviour by controlling adsorption of proteins 

present in the liquid phase [3,4].  In particular, surfactant self-assembly, non-specific 

protein adsorption and bio-specific affinity separation is dependent on the surface 

composition and morphology of the affinity membrane.   

 

There are numerous reports that protein and cell adsorption on affinity membrane surfaces 

are quantitatively changed, depending on the type of ligands immobilised [5,6].  The 

adsorption of polymers onto surfaces is a complex and poorly understood process, which 

can be influenced by several factors.  Among these the chemical structure, surface 

roughness, degree of surface hydrophobicity, electrostatic interactions of the polymer 

molecules with each other and with the surface and the structural stability of polymer 

molecules are the most significant [7].  The study of such factors has been of great interest 

in the last four decades [8].  The benefits in the understanding of these problems have 

found their applications in bioengineering, colloid stabilisation, materials science and 

biophysics, etc. [9]. 

 

In membrane affinity chromatography, membrane matrices are usually surface 

functionalised with ligands [1,10,11] and in many cases the chemical nature of this 

functional layer or surface is not precisely known, thus surface analysis is normally 

required.  In general, the field of surface analysis is vast and rapidly growing, requiring 

specialised equipment and skilled operators.  It is largely the surface matrix under 

investigation and the information required that determines the surface analysis technique 



 5-2

to be used.  These techniques include proximal probes, electron microscopy, electron 

spectroscopy, ion beam analysis, X-ray techniques [12] and optical analysis [13].   

 

The surface analysis of ligand-modified and unmodified nonporous membranes in this 

study attempts to use solid-state techniques to generate information that can contribute to 

the understanding of both the native membrane surface and the chemical state of the 

ligand termini of Pluronic.  Ligand modification of the PEO terminus of Pluronic 

frequently involves the conversion of the hydroxyl end groups of the hydrophilic brush 

layer to primary amine equivalents for the covalent attachment of an affinity ligand 

[11,14].  Synthesis of ligand terminated Pluronic also involves the activation of the 

oxygen functionality to enhance its capacity as a leaving group.   

 

Aminated Pluronic F108 was initially synthesised in this group [15] for the coupling of the 

non-specific protein binding ligand, cibacron blue 3GA.  Although this amine derivative 

of Pluronic was an excellent nucleophile, the amino terminus was not a suitable chemical 

constituent for solid-state analysis due to its low backscattering potential and the atomic 

similarity of the amino N to O and C in both the membrane and Pluronic.  Therefore, in 

order to ‘model’ a covalently attached affinity ligand, halogen derivatives of Pluronic 

were synthesised for both adsorption experiments and ion beam and X-ray analyses.  It 

was hypothesised that accurate surface quantification of the PEO coupled halogens would 

correspond to potential ligand binding sites per unit area of membrane.   

 

In this study, Langmuir adsorption isotherms were determined and saturation curves for 

Pluronic adsorption at different temperatures were constructed.  Halogenated Pluronic 

derivatives (Pluronic bromide and Pluronic iodide) were synthesised to mimic affinity 

ligands, and to facilitate solid-state analysis using X-ray photoelectron spectroscopy 

(XPS), Rutherford backscattering spectroscopy (RBS) and protein induced X-ray emission 

(PIXE).  Three candidate membranes (PSU, PVDF and PEI) were non-covalently 

modified with a halogenated Pluronic derivative and nuclear microprobe and X-ray 

analysis were performed on these surfaces so that solid-state measurements could be 

obtained that would generate reliable and accurate data.  Of particular interest were the 

coating homogeneity of the derivatised Pluronic, the layer thickness and the potential 

number of ligand binding sites per cm2 of membrane surface.  
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5.2. EXPERIMENTAL 

 

5.2.1. Reagents and chemicals 

 

Unless otherwise stated all reagents and chemicals used in this study were purchased from 

Merck NT laboratories, South Africa. 

 

5.2.2. Pluronic adsorption 

 

A dilution series comprising Pluronic F108 in deionised water was made from 7 mg.ml-1 

to 0.125 mg.ml-1.  Three batches of PVDF, PSU and PEI membrane sections (1 cm2) were 

incubated in all the respective coating solutions for 8 h at 25°C, 35°C and 45°C 

respectively.  After incubation the membranes were washed three times in deionised water 

and dried in air for 30 min.  Membrane adsorbed Pluronic was subsequently extracted and 

quantified [16], and Langmuir isotherms were calculated. 

 

5.2.3. X-Ray Photoelectron Spectroscopy 

 

The XPS instrument used in this study was a PH1 5300.  An Al Kα with a radiation of 

1486.6 eV was used as the primary X-ray source, which was obtained by an acceleration 

voltage of 15 keV and an emission current of 20 mA. Two different angles (20 and 70°) 

between the sample surface and the position of the analyser were used to measure the 

photoelectrons.  At low angles the analyser only detects the photoelectrons coming from 

the outermost surface, while at larger angles (70°) information from those electrons that 

are coming from regions deeper inside the surface layer, is also detected [17].  In this way 

no sputter coating is required to obtain depth information and thus eliminates the 

possibility of sputter-induced modification of the surface layer. 
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5.2.4. Rutherford Backscattering Spectroscopy 

 

A Varian sputter coater with a high vacuum evaporator system and a control unit for 

online thickness monitoring was used to coat the samples with 900 Å Ti at a rate of 4.6 

Å.s-1 with a current strength of 100 mA.  The beam energy used for RBS was 1 MeV with 

the He2+ backscattering measured at an incident angle set at 0° with the backscattering 

angle at 15°.  SiO2 and Pt/Si were used as reference standards.  The Rutherford universal 

modification program (RUMP) source code was used to analyse the RBS data. 

 

5.2.5. Proton Induced X-Ray Emission 

 

PIXE was used to quantify the number of Br atoms on the surface of Pluronic-Br coated 

membranes.  Measurements were performed using a nuclear microprobe at Materials 

Research Group (iThemba LABS, South Africa) [18].  A 3.0 MeV H+ beam was focused 

and collimated to a 5 µm x 5 µm spot and scanned on the membrane surface.  PIXE 

spectra were recorded with a Si(Li) detector positioned at 135º to the beam direction.  

Data were collected using XSYS data acquisition system in list mode. GUPIX software 

[19,20] was used for the evaluation of the concentration of metals on the membrane 

surface from the PIXE spectra. PIXE elemental maps were obtained with GeoPIXE-II 

software and generated using the dynamic analysis method [21]. Proton backscattering 

spectra were used for evaluation of the depth distribution of metal atoms.   

 

 

5.2.6. Atomic Force Microscopy 

 

The surface topography of Pluronic coated membranes was analysed with intermittent 

contact mode AFM as described in Section 3.2.5.  
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5.2.7. Synthesis of halogenated Pluronic derivatives 

 

p-Toluene sulphonyl chloride (19.06 g) was added to a solution of Pluronic® F108 (14.6 g) 

in dry pyridine (50 ml) at ambient temperature.  The reaction mixture was cooled to 4°C 

and retained for 7 d.  The reaction mixture was slowly poured into rapidly stirring ice and 

water (150 ml).  The mixture was then extracted with chloroform (4 x 100 ml).  The 

combined chloroform (CHCl3) extracts were then washed with hydrochloric acid (6 M, 

150 ml) then deionised water (100 ml), dried over K2CO3-Na2SO4, evaporated under high 

vacuum (0.04 mmHg) at ambient temperature for 2 h to give Pluronic – tosylate.  Lithium 

bromide (2.658 g) was then added to a solution of tosylated Pluronic (2.908 g) in dry 

DMF (20 ml) and heated to 100°C under Argon for 3 h.  The reaction mixture was treated 

with HCl (3 M; 50 ml) and extracted with CHCl3 (3 x 100 ml).  The combined CHCl3 

extracts were evaporated overnight in a freeze dryer to give Pluronic-Br.  The reaction 

schematic is detailed in Figure 5-1. 

 

Figure 5-1:  Reaction schematic for the halogenation of Pluronic® F108. 

 

5.2.8. Nuclear Magnetic Resonance Spectroscopy 

 

NMR analysis was performed with a Varian VXR 300 NMR spectrometer.  40.2 mg 

Pluronic-bromide was dissolved in deuterated chloroform and subjected to 13C analysis. 
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5.3. RESULTS AND DISCUSSION 

 

5.3.1. Adsorption isotherms 

 

The adsorption profile of Pluronic on nonporous membranes at high temperature (25 to 

45°C) was investigated.  Adsorption studies were performed on planar membranes using 5 

mg.ml-1 Pluronic F108 at 25°C, 35°C, and 45°C.  The melting point of Pluronic® F108 is 

~55°C.  The adsorption/desorption data of Pluronic at said temperatures were fitted to the 

Langmuir isotherm Q = Qmax.K.C(1 + KC)-1.  Typical Langmuir isotherms for planar 

PVDF, PEI and PSU membranes are shown in Figure 5-2 and the corresponding 

adsorption isotherms at 35°C and 25°C obey the Langmuir equation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-2:  Langmuir isotherms for the candidate membranes at 25°C, 35°C and 45°C.  The interfacial 

adsorbed amount of Pluronic (Q) and the liquid phase equilibrium concentration of Pluronic (C), were used 

to construct the Langmuir isotherms. 

PSU_25ºCPSU_25ºC PVDF_25ºCPVDF_25ºC PEI_25ºCPEI_25ºC

PSU_35ºCPSU_35ºC PVDF_35ºCPVDF_35ºC PEI_35ºCPEI_35ºC

PSU_45ºCPSU_45ºC

PVDF_45ºCPVDF_45ºC PEI_45ºCPEI_45ºC
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The isotherms generated at 45°C, however show the greatest deviation from the Langmuir 

requirements for monolayer formation at specific constant temperature.  From the non-

linear isotherms in Figure 5-2, it is likely that Pluronic did not form monolayers on the 

surfaces of all the candidate membranes during incubation at 45°C.  An increase in 

Pluronic adsorption is also evident, which could be a consequence of multi-layer 

formation or aggregation.  Nevertheless, the amount of Pluronic adsorbed on membranes 

was found to increase from 25°C to 45°C.  A requirement for the efficient functioning of 

Pluronic as an affinity linker is that the pendent hydroxyl termini are accessible to the bulk 

solution for ligand attachment or ligate retrieval.  Hence, multi-layer formation would 

suggest that surfactant aggregation could occur on the membrane surface.  The AFM 

micrographs in Figure 5-3 suggest that it is also possible that, upon aggregation from 

solution at 45°C, there may also be Pluronic coating inhomogeneity. 

 

 

 

Figure 5-3:  AFM analysis of PSU membranes at 25°C and 45°C respectively.  The inset correlates the 

surface peak differences between the A and B. 

 

The non-linearity at high temperature makes it difficult to reliably study Pluronic 

adsorption using the data generated for the Langmuir model.  A study on the melting 

endotherm of Pluronic using differential scanning calorimetry might offer a better 

explanation for the adsorption of Pluronic at higher temperatures.  Additionally, solid-state 

analytical techniques such as RBS and PIXE utilise high energy beams that cause sample 

heating, and this becomes a consideration later in this study, where the stability of the 

adsorbed Pluronic layer and the membrane integrity need to be monitored during solid-

state analysis.   
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5.3.2. Pluronic activation and modification 

 

As the candidate membranes are chemically inert and contain no reactive functional 

groups relevant to its ligand coupling ability, the Pluronic affinity linker had to be 

functionalised before membrane coating.  The reactive functional group on Pluronic F108 

is the terminal hydroxyl group on the PEO chain that can be functionalised by: 

 

• activation of the oxygen functionality to enhance its capacity as a leaving group or 

• increasing the electrophilicity of the carbon atom to which the oxygen 

functionality is attached, making it a better alkylating agent.   

 

Activation of hydroxyl groups to enhance nucleophilic substitution was accomplished by 

their transformation into sulphonic esters, using p-toluenesulphonyl chloride (TsCl), 

which is selective towards oxygen containing functional groups.  Since the reactivity of 

sulphonyl chloride is strongly solvent dependent, the reaction with TsCl was conducted in 

the presence of one equivalent of dry pyridine.  The completion of the reaction was 

indicated by the cessation of pyridinium chloride precipitation.  The characterisation of 

Pluronic-tosylate was described in detail by Yanic et al., [22] using 1H and 13C NMR 

spectroscopy.  This was a challenging task that was complicated by the high molecular 

mass of Pluronic F108.  The indirect conversion of Pluronic to the halide derivative was 

completed with the displacement of the tosylate by the halide.  Pluronic-Br was 

characterised with 13C NMR spectroscopy (Table 5-1). 

 

Table 5-1: 13C NMR chemical shifts (δ) of Pluronic-Br in CDCl3 at 25°C 

-Ts-CH3

-p-Ts

-m-Ts

-o-Ts

75.03; 75.24; 75.27; 75.44-CH2-CH(CH3)-O

72.74; 72.78; 72.82; 72.87; 73.28-CH2-CH(CH3)-O

70.48-CH2-CH2-Br

30.35-CH2-Br

17.23; 17.4-CH2-CH(CH3)-O

Pluronic-BrCarbon

-Ts-CH3

-p-Ts

-m-Ts

-o-Ts

75.03; 75.24; 75.27; 75.44-CH2-CH(CH3)-O

72.74; 72.78; 72.82; 72.87; 73.28-CH2-CH(CH3)-O

70.48-CH2-CH2-Br

30.35-CH2-Br

17.23; 17.4-CH2-CH(CH3)-O

Pluronic-BrCarbon
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5.3.3. X-RAY PHOTOELECTRON SPECTROSCOPY 

 

The surface composition of the membrane adsorbed Pluronic films were investigated by 

XPS measurements.  By fitting carbon 1s spectra, the ratio of ether carbons (C-O) to total 

carbon atoms (C-O + C-H + C-C) can be calculated for PSU, which has by comparison 

with Pluronic, very few surface ether groups and no ester and hydroxyl groups.  The 

activity of this membrane for different interfacial layers such as Pluronic F108, 

brominated Pluronic and or a metal chelating Pluronic can be estimated.  XPS was 

therefore used to quantify the O1s/C1s ratios, which indicate the C-O bonds in the sample.   

 

With respect to adsorbed Pluronic-Br, the C-O bonds could be attributed to C-OH and C-

O-C (i.e. the hydroxyl carbons and ether carbons respectively).  Changes in O1s/C1s ratios 

would then indicate the amount of OH groups that were derivatised to form the Br 

terminus.  This is due to C-OH and C-O-C.   

 

Typical XPS spectra are described in Figure 5-4 where the expected C1s, O1s, S1s and N1s 

peaks are observable.  Hydroxyl carbon terminated Br (Br1s) however, was not detected 

using XPS.  By subtracting the O1s/C1s ratios calculated in Figure 5-4B from those in 

Figure 5-4A (negative control with most of the background ether groups), an indirect 

indication of the extent of ligand modification with the bromine derivative is possible.  

The O1s/C1s ratios calculated from XPS analyses are listed in Table 5-2. 

 

Table 5-2:  O1s/C1s ratios calculated from XPS analysis of PSU surfaces 

 

26.97  %5 m g.m l-1PSU ~Pluronic-B r

29.66  %5 m g.m l-1PSU ~Pluronic

23.25  %-PSU

O 1s/C 1s ra tioSurfactant C oating 
C oncentration

M em brane 
D escrip tion

26.97  %5 m g.m l-1PSU ~Pluronic-B r

29.66  %5 m g.m l-1PSU ~Pluronic

23.25  %-PSU

O 1s/C 1s ra tioSurfactant C oating 
C oncentration

M em brane 
D escrip tion
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The increase in the O1s/C1s ratio (23.25 %) for native PSU (spectra not shown) to Pluronic 

F108 coated PSU (29.66 %) suggests that Pluronic coating increases the hydrophilicity of 

the hydrophobic PSU membrane.  This increase in the hydroxyl carbons and ether carbons 

is attributed to the PPO and PEO chains of Pluronic that self-assemble onto the membrane 

by adsorption.  These results also support the surface tension analysis described in chapter 

3.  However, the O1s/C1s ratio for Pluronic-Br coated PSU membranes were lower than 

that of unmodified Pluronic coated PSU membranes.  The change from 29.66 % to 26.97 

% indicates that there was a decrease in the number of hydroxyl carbons (CH2-OH) that 

were converted to CH2-Br.   

 

XPS detection of specific levels of Br was inconclusive as the only Br signals observable 

were the Br3d lines, which was less than 0.1 %.  It is likely that the CH2-Br signals were 

extremely small in comparison to the larger C and O related signals of the large Pluronic 

molecule, and consequently Br levels were below the detection limit for XPS.  XPS does, 

however, provide information on the chemical state of the C, O and S content of the 

surface and adsorbed film but is not sensitive enough as an analytical tool for quantitative 

detection of ligand-coupled Pluronic adsorbed on membrane surfaces.   

 

 

 

Figure 5-4:  X-Ray analysis of PSU membranes modified with A) Pluronic and B) Pluronic-Br. 
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5.3.4. Nuclear microprobe analysis 

 

Nuclear microprobe analysis (NMA) enables quantitative detection of any element of the 

periodic table that is immobilised on a solid surface [23].  Mircobeams of protons, 

deuterons and alpha particles with energies varying from 0.5 to 3.7 MeV can be focused 

on an area as small as 1 μm2, to produce atomic or nuclear interactions with the elements 

of the target sample placed in an analysis chamber under vacuum.  Under optimised 

conditions NMA can also generate accurate information on characteristics of a thin film 

adsorbed onto a sample surface with no sample damage.  Popular NMA techniques 

include nuclear reaction analysis (NRA), proton induced γ-ray emission (PIGE), PIXE, 

RBS and non-Rutherford backscattering spectrometry using resonances.  Due to the lack 

of sensitivity of XPS for the detection of Br terminated Pluronic, RBS and PIXE were 

investigated as possible analytical tools for the study of ligand modified Pluronic 

(Pluronic-X) adsorbed onto synthetic membranes. 

 

From an analytical point of view, RBS compatible materials are heavier thin-films on 

lighter substrate materials.  Heavier thin films give high intensity RBS signals free of 

background.  RBS measurements of ‘lighter’ elements such as the C and O in Pluronic and 

the sulphur (PSU), fluorine (PVDF) and nitrogen (PEI) in the respective membranes are 

more difficult due to low signal to background ratio.  Since samples need to be conductive 

to generate RBS spectra, a thin layer of Ti (15 nm) was coated onto inert planar 

membranes preadsorbed with Pluronic F108 as described in section 5.2.2.  Since the 

chemical composition of unmodified Pluronic® F108 (C, H, O) and the membranes C, H, 

O and S, F and N respectively) were so similar with little elemental variation, a problem 

for measuring the adsorbed layer thickness using conventional RBS analysis arose.   

 

Backscattering spectra of Ti was measured in relation to the S, F and N in the three types 

of membranes.  All experiments were conducted in triplicate and an uncoated membrane 

was used as a control.  Differences in eV readings could thus be used to measure the 

adsorbed layer thickness of Pluronic.  Other quantitative information expected to be 

generated using this modified approach was the coating homogeneity of the adsorption 

process.  Computer simulations with a Rutherford universal modification program, which 

is a standard program specifically designed for analysis and simulation of RBS data, was 
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used to calculate the optimum coating for ‘soft’, non-homogenous nonporous membranes.  

Titanium was found to give the best simulation with a thickness of 90 nm and accurate 

coating was achieved with a sputter coater coupled to an electronic thickness monitor.  

Figure 5-5 represents an RBS spectrum of a Ti coated Pluronic modified PSU membrane.  

RBS could not generate reliable data to measure the layer thickness on PVDF and PEI 

membranes due in large part to the difficulty in discriminating the F and N peaks from the 

C and O background in the Pluronic.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5:  RBS spectra on Pluronic® F108 modified PSU, PVDF and PEI membranes in an attempt to 

measure adsorbed layer thickness.  The black spectra (poly 004, poly 011 and poly 015) are native 

membrane samples while the other spectral lines in each RBS spectrum were generated from membranes 

coated with Pluronic® F108. 
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However, if we assumed that Pluronic formed a monolayer after adsorption and washing 

in deionised water, the thickness would have to be in the order of micrometers to be 

reliably measured.  This assumption is based on convincing microscopy analysis and 

Langmuir adsorption isotherms (chapters 3 and 4 respectively), which reliably indicated 

the formation of Pluronic monolayers on membrane surfaces at ambient temperature.  

RBS, however, is generally not suited to measuring depths in the nm range [24] and in 

attempting to quantify the S signals in PSU membranes, the detection limits of RBS were 

being tested.   

 

Coating homogeneity data was only generated for PSU since the S was able to give an 

appreciable backscattering yield compared to the lighter elements F and N where no 

significant energy loss was detected.  To explain the 157.07 keV difference (612.6-606.4 

keV) in Figure 5-5, between PSU (poly 004 , control) and the Pluronic F108 coated PSU 

membranes, requires a layer with a calculated average composition of (C:H:O = 7:16:5) to 

be 157 x 1015 atoms.cm-2 thick.  Thus for an assumed densely packed mono-layer this 

would suggest the presence of PPO strands with a nearest neighbour distance of about  

4.7 nm. 

 

In order to verify these data for PSU and to develop a NMA protocol for ligand 

quantification, coating the membranes with derivatised Pluronic carrying a ‘heavy’ 

element such as Br covalently coupled to the hydroxyl terminus of PEO was attempted.  

This high atomic mass halogen should theoretically give a higher signal to background 

ratio than the elements C, H, O, N, F or S found on most conventional affinity ligands and 

in the candidate membranes in this study.  Another advantage would be that the Br moiety 

is covalently coupled to the hydroxyl group of Pluronic, which is the functional group that 

is modified to accept a ligand in affinity chromatography.  Thus RBS could be a possible 

tool to accurately determine the number of ligand binding sites on a saturated 1 cm2 

membrane by measuring the energy loss of the Br atom. 

 

A method for the direct solid-state quantification of ligand binding sites on derivatised 

Pluronic, using a halogenated derivative of Pluronic could then also be used to quantify 

the metal affinity of a chelating Pluronic ligand described in Chapter 8.  Halogenation of 

Pluronic was accomplished by covalently coupling the halogens Br and I to the terminal 

hydroxyl group of Pluronic, which was conventionally used for ligand attachment [11].   



 5-14

 

The protocols developed in this study were based on initial experiments performed under 

empirical conditions.  Generally the counts per channel were too low to give statistically 

reliable data.  The best fit in Figure 5-6, was 1 – 5 x 1014 Br atoms.cm-2 using 

backscattered αHe particles.  This equates to a nearest neighbour Br distance of 0.8 nm 

under optimised conditions determined by RUMP simulations.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6:  Rutherford backscattering spectrum showing the potential number of ligand binding sites on 

derivatised Pluronic using the model affinity ligand Pluronic-Br. 

 

Figure 5-7 represents a RUMP simulated RBS spectrum performed under the optimised 

conditions calculated from data generated with Figure 5-6.  The conditions used to 

generate data with up to 95 % confidence levels was achieved using a current of 2 nA, a 

charge of 20 000 μC and 1 MeV voltage.  Higher currents initially caused overheating of 

the polymer so the reduced current of 2nA (which also prevented damage to the adsorbed 

Pluronic film) extended the analysis time to 167 min per sample.  This was very labour 

intensive and could be viewed as a practical difficulty with RBS analysis of Pluronic 

modified polymers. 
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Figure 5-7:  RBS spectrum under ‘optimised’ conditions of a PSU membrane coated with Pluronic-Br (5.0 

mg.ml-1).  This was achieved with a current of 2 nA, a charge of 20 000 μC and 1 MeV voltage. 

 

PIXE analysis using proton beams was another NMA technique considered for solid-state 

analysis of surface adsorbed Pluronic derivatives. The advantages of PIXE analysis are 

that surface roughness or homogeneity is not as critical during analysis compared to RBS.  

PIXE cannot reliably be used for depth profiling of the adsorbed Pluronic film but it can 

be used for accurate elemental quantification and to create X-ray images of the sample.  

Samples were made conductive by sputter coating a thin layer of C onto the membrane 

surface, prior to analysis.   

 

The PIXE spectra in Figure 5-8 show the elements detected on halogenated Pluronic 

treated PSU and PVDF membranes.  The corresponding 35Br and 53I Kα lines were 

quantified and the concentrations were expressed as ng.cm-2 in Table 5-3.   As concluded 

in chapter 4 and observed at higher temperatures in Figure 5-2, PVDF adsorbed more 

Pluronic than PSU and this could explain the larger amounts of halogenated Pluronic 

detected on PVDF membranes.  The synthesis protocol for Pluronic-I was similar to 

Pluronic-Br but it is also possible that incomplete tosylation of Pluronic or Br 

displacement could also explain the lower amounts of Br on PSU membranes.  The 

surface concentration of iodine on the PVDF membrane (33950.6 ng.cm-2) is an indication 

of the amount of ligand on the Pluronic coated surface.  This also corresponds to 2.68 x 
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10-7 mol I atoms or 1.61 x 1017 I atoms.cm-2.  The more hydrophobic PVDF membranes 

were therefore considered for use as the affinity matrices in forthcoming studies on 

membrane affinity binding.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8:  PIXE spectra for halogenated Pluronic adsorbed onto candidate membranes.  Pluronic-Br was 

adsorbed onto PSU membranes while Pluronic-I was adsorbed onto PVDF membranes.  The Iodine 

derivative was chosen because of its larger atomic number, which generated a stronger signal thus reducing 

analysis time.  The figures on the right of the PIXE spectra for Br and I spectra show the superimposed 

element standards as a verification of the accuracy of PIXE analysis of the respective Pluronic coated 

membranes. 

 

Table 5-3:  Summary of PIXE analysis of PSU membranes modified with Pluronic-Br 

 

 

7230.51233950.60PVDF~Pluronic-I

277.1621395.15PSU~Pluronic-Br

4.89 and 1741.3225722.7027.25PSU~Pluronic

SDN53I K 
[ng.cm-2] 

35Br K 
[ng.cm-2]

Membrane Details

7230.51233950.60PVDF~Pluronic-I

277.1621395.15PSU~Pluronic-Br

4.89 and 1741.3225722.7027.25PSU~Pluronic

SDN53I K 
[ng.cm-2] 

35Br K 
[ng.cm-2]

Membrane Details

Br Kα
Br Kβ

I Kα

I Kβ

Zn Kα
Br Kα

Br Kβ
Br Kα

Br Kβ

I Kα

I Kβ

Zn Kα
Br Kα

Br Kβ

I Kα

I Kβ

Cl Kα

Br Kα
Br Kβ

Br Kα
Br Kβ

I Kα

I Kβ

Cl Kα

I Kβ
I Kα

Fe Kα

Fe Kβ

I L

I Kβ
I Kα

Fe Kα

Fe Kβ

I L

I Kα
I Kβ

Fe Kα

Fe Kβ

I L

I Kα
I Kβ

Fe Kα

Fe Kβ

I L

Pluronic-Br

Pluronic-I
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5.4. CONCLUSIONS 

 

Adsorption isotherms generated from adsorption studies at elevated temperatures suggest 

that Pluronic F108 adsorption does not exhibit the typical Langmuir characteristics above 

35°C.  It is thus likely that non-uniform, multi-layer coating occurs at this temperature.  In 

addition to adsorption, surface analysis should be monitored to minimise instrumentation 

induced heating and prolonged exposure above 35°C.  Halogenated Pluronic-F108 

derivatives were synthesised via indirect coupling of bromine (LiBr) and iodine (LiI) to 

Pluronic via a tosylated intermediate.  The resultant halogenated Pluronic was used as a 

high molecular mass ‘marker’ to mimic an affinity ligand coupled Pluronic for 

quantitative solid-state analysis.  XPS analysis was found to be unsuitable for solid-state 

detection of halogenated Pluronic adsorbed to membranes, due to the low signal intensity 

of the Br3d lines.   XPS can, however be used to study the chemical states of surface 

adsorbed C,O, S and N.  Optimum conditions for RBS analysis of Pluronic modified 

membranes were with a current of 2 nA, a charge of 20 000 μC and 1 MeV voltage.  

Reliable RBS spectra were generated on PSU membranes where a Pluronic layer thickness 

of 157 x 1015 atoms.cm-2 was measured, which suggested an arrangement of PPO strands 

with a nearest neighbour distance of 4.7 nm.  RBS analysis of a Pluronic-Br coated 

membrane yielded ~ 2.5 x 1014 Br atoms.cm-2 of PSU membrane.  Iodine terminated 

Pluronic was synthesised due to its higher atomic mass that generated stronger nuclear 

microprobe signals, subsequently reducing analysis time and possible sample heating.  

Iodine coupled Pluronic was detected on the surface of PVDF membranes at a 

concentration of 33.960 μg.cm-2.  This also correlates to 2.68 x 10-7 mol I atoms or 1.61 x 

1017 I atoms.cm-2.  In summary, the protocols developed in this study to measure the 

Pluronic layer thickness and the concentration of the surface halogen, could be adopted for 

the investigation of new Pluronic ligands (detailed in chapter 8).  The stability and 

adsorption properties of the PVDF polymeric membrane studied thus far make it the ideal 

affinity matrix for affinity separation studies.  
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CHAPTER 6: AFFINITY IMMOBILISATION OF PROTEINS 

ON RE-USABLE LIGAND-MODIFIED MEMBRANES 

 

 

 

This chapter has been submitted for publication in Journal of Biotechnology.  S. Govender 

performed all the experimental work described in this manuscript.   

Coupled with an understanding of the interfacial adsorption of halogenated Pluronic, this 

study uses a new biotinylated Pluronic for testing both the bio-specificity of membrane 

adsorbed, ligand-modified Pluronic and its ability to simultaneously inhibit non-specific 

protein adsorption.  A strategy for membrane regeneration and re-use was also 

investigated.   
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Abstract 

 

A membrane based affinity immobilisation system was developed, that has the properties 

of bio-specific affinity immobilisation, protein shielding and regeneration.  The 

amphiphilic surfactant Pluronic® F108 was used as an affinity linker, by non-covalent 

coupling to nonporous membrane matrices.  The terminal hydroxyl groups of Pluronic 

were covalently coupled to the ligand biotin.  Planar nonporous membranes of varying 

surface chemistry were fabricated to test the affinity adsorption of biotinylated Pluronic 

and its ability to resist non-specific protein adsorption.  Solutions of lysozyme and bovine 

serum albumin (0.25 mg.ml-1) were used as model protein adsorbates.  Pluronic F108 

coated membranes offered 98% shielding of lysozyme adsorption and 75% shielding of 

BSA adsorption respectively.  Anionic sodium dodecyl sulfate (SDS) formed the basis of 

a displacement solution intended to regenerate the affinity membrane matrix by desorbing 

both membrane bound Pluronic and protein foulants.  A membrane regeneration strategy 

using SDS was capable of displacing both adsorbed proteins and Pluronic.  SDS micelles 

(34 mM) were most effective in desorbing membrane bound protein while 5 mM SDS 

removed > 85% of the adsorbed Pluronic F108 after 20 h incubation at 20°C.  Biotinylated 

Pluronic modified PVDF membranes specifically immobilised avidin-peroxidase, and the 

resultant affinity membrane system was regenerated and re-used with no significant 

change in performance for up to five cycles.   
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6.1. INTRODUCTION 

 

Synthetic polymeric membranes are becoming increasingly popular as solid adsorption 

matrices in biological applications ranging from enzyme immobilisation for biosensors [1] 

to separation and filtration in downstream bio-processing [2].  As with all types of 

membranes, the interaction between the surface properties of the membrane and the 

molecules in solution determine the extent of fouling and flux through the membrane.  

Bio-fouling is usually characterised by the uncontrolled, irreversible adsorption or 

adhesion of macromolecules such as proteins, lipids and cells [3].  The extent of 

biochemical diversity in different biological processes severely complicates the 

manufacture of the perfect membrane for biological processes.  Surface protection or 

‘shielding’ is afforded by either pre-filtration of the macromolecular solution and or 

membrane surface modification to prevent bio-fouling.   

 

Protein adsorption and interactions on surfaces is a common phenomenon and is of 

considerable technological concern [4,5].  Thus the prevention of protein adsorption on 

surfaces influences the design and viability of biomaterials including membranes.  In vitro 

experiments have also shown that cell behaviour is influenced by the physicochemical 

properties of polymer surfaces [6].  In recent years a popular approach to enhancing 

surface bio-compatibility was to graft polymeric molecules such as poly(ethylene oxide) 

chains [4], betaines, phospholipids, poly(acryl amide) and polysaccharides [7,8].  An 

alternative to this covalent coupling is the physisorption of surfactants onto these polymer 

surfaces to alter adsorption properties. 

 

In protein-surface interactions, the governing factors are determined by both the physical 

state of the adsorption matrix, protein surface and the solution environment.  These factors 

include bound ions, surface charge, roughness, surface elemental composition and surface 

energetics.  The interactions of polymers and surfactants, mainly in oppositely charged 

polymer-surfactant systems have also received much attention [2,9].  Many reports focus 

on the interaction of Pluronic® F108 (a non-ionic surfactant) and SDS (an anionic 

surfactant) since they are much studied and from a process application point of view are 

amongst the few thermo-viscofying materials approved as direct and indirect food 

additives, pharmaceutical ingredients and agricultural products [2].   
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Pluronic® F108 surfactants are poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-

poly(ethylene oxide) tri-block copolymers, that are important to many bio-medical and 

biotechnological applications [2,9,10,11].  These commercially available, amphiphilic, 

non-ionic surfactants self-assemble onto hydrophobic surfaces via the hydrophobic PPO 

centre block, while the longer hydrophilic PEO chain forms a flexible tether that 

terminates in a functional hydroxyl moiety.  This hydroxyl group has also been targeted 

for the covalent attachment of ligands [9,10].  A ligand of particular interest is biotin 

which ligates strongly and specifically to the protein avidin [12].  Interactions between 

biotin and avidin represent one of the strongest non-covalent coupling processes in nature, 

(Kd = 1015 M-1), and has been used as a model for biosensor development, usually via 

surface immobilisation of biotin onto a transducer [13].   

 

This study is directed towards an effort to produce a robust, re-usable, membrane based 

affinity separation system for the specific immobilisation of avidin peroxidase using a 

novel biotinylated Pluronic as a model affinity ligand.  The use of biotinylated derivatives 

as ligands on affinity matrices provides an attractive approach for the specific isolation of 

biochemical ligates such as hormones and receptors [14].  Candidate planar, nonporous 

membranes of varying surface chemistry were fabricated and the capability of these 

membrane matrices to resist non-specific protein adsorption and of being efficiently 

regenerated for reliable re-use was also investigated.  A procedure for Pluronic pre-

treatment of membranes to inhibit non-specific protein adsorption is described, and 

attempts to regenerate said membranes with sodium dodecyl sulfate (SDS) are discussed.  

Experimental results also describe the synthesis and interfacial adsorption of the novel 

biotinylated ligand for avidin immobilisation and will contribute to the understanding of 

surfactant displacement of Pluronic modified membranes. 
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6.2. EXPERIMENTAL 

 

6.2.1. Reagents and chemicals 

 

Bovine serum albumin (BSA) and lysozyme (Roche, Penzberg Germany) were used as 

model protein adsorbates and were reconstituted as 0.25 mg.ml-1 solutions in 0.1 M 

phosphate buffer, pH 7.4.  SDS (Merck, Darmstad, Germany) was used as a desorption 

agent.  Pluronic® F108 (14 600 g.mol-1) was obtained from BASF corporation (New 

Jersey, USA) and biotinamidohexanoic acid N-hydroxysuccinimide ester (NHS-Biotin) 

from Sigma chemical company, South Africa.  Streptavidin-peroxidase conjugate and 

ABTS were purchased from Roche.  Unless otherwise stated, all other reagents were 

purchased from Merck (Darmstad, Germany).   

 

6.2.2. Pluronic assay 

 

A biphasic colorimetric assay for Pluronic quantification was performed as described by 

Govender et al., [10].  A plot of absorbance at 510 nm versus Pluronic concentration 

yielded a linear standard curve.  

 

6.2.3. Protein assay 

 

Protein concentration was measured using a bicinchoninic acid protein assay kit from 

PierceTM, (Rockford, USA), with bovine serum albumin as a protein standard. 

 

6.2.4. Membrane matrix fabrication 

 

Planar nonporous membranes were cast from solutions containing 27% (m/m) [Udel 

P3500 polysulphone (PSU), poly(ether imide) (PEI) and poly(vinylidene fluoride) 

(PVDF)] respectively and 73% (m/m) N,N-Dimethylacetamide (DMAc).  PSU and PEI 

were dissolved in DMAc by rotating the solution container for more than 48 h at room 

temperature to obtain a homogeneous solution.  PVDF required sonication in an ultrasonic 
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water bath for 30 min and further heat treatment at 55˚C for 48 h to dissolve [10]. All 

solutions were degassed before being used to cast the 200 µm flat-sheet membranes.  To 

ensure that all membrane surfaces were free of contaminating adsorbents, membranes 

were washed overnight in sterile deionised water.  The membranes were then sonicated 

three times in sterile deionised water in an ultrasonic bath for 5 min followed by drying in 

a laminar flow cupboard prior to surfactant and protein adsorption.  The surface 

hydrophobicity of PVDF and PSU membranes was verified using static contact angle 

analysis, while PEI membranes were confirmed to be hydrophilic [10]. 

 

6.2.5. Protein adsorption on membrane 

 

67 000 Da Bovine serum albumin (BSA) and lysozyme (14 700 Da) solutions [0.25 

mg.ml-1] in 0.1 M phosphate buffer (PB), pH 7.4 were prepared and stored at 4°C.  

Membranes were non-covalently modified with Pluronic by static incubation in 5 mg.ml-1 

Pluronic at 20°C for 8 h.  Membranes (native and Pluronic coated) were statically 

incubated for 120 min at 20°C in 10 ml of the respective protein solutions.  The 

membranes were then rinsed three times in PB and then inserted into a vial containing 10 

ml of 1.0 % (w/v) SDS.  These vials were then shaken for 120 min and the protein 

concentration in the SDS solution was measured using a PierceTM protein assay reagent 

kit.  In a conventional protein adsorption experiment [3], also called the depletion method, 

the amount of adsorbed proteins was determined based on the decrease in protein 

concentration in the solution after contacting with the solid surface. 

 

6.2.6. Membrane regeneration 

 

Pluronic modified membranes were stripped of adsorbed Pluronic using a 34 mM aqueous 

SDS solution.  Pluronic coated membranes were initially statically equilibrated in 10 ml of 

the SDS solution for 1 h and then transferred to a Stoval Belly DancerTM shaker for 2 h of 

vigorous shaking.  In an attempt to determine if this was a time dependent process, the 

shaking incubation period was increased from 2 h to 4 h, 20 h and 48 h respectively.  A 

concentration range of SDS (5 mM, 8 mM and 34 mM) was also investigated in order to 

ascertain if SDS micelles facilitated Pluronic desorption from candidate membranes of 
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varying surface chemistry.  The critical micelle concentration of SDS is 8 mM.  After 

incubation in SDS, the membranes were washed in a solution of 100 ml dH20 for 12 h and 

finally rinsed three times in dH2O.  Pluronic was separated from SDS after solvent 

evaporation, followed by the addition of 10 ml CHCl3.  SDS is insoluble in CHCl3 and can 

be separated from Pluronic by filtration through Whatman filter paper. 

 

6.2.7. Synthesis of biotinylated Pluronic 

 

The terminal hydroxy groups of Pluronic were modified in a two-step reaction to yield an 

amine terminated Pluronic (Figure 6- 1).  Pluronic F108 (2g) [I] was dissolved in benzene 

(6 ml) and then added dropwise to 4-nitrophenyl chloroformate in 6 ml of benzene.  After 

24 h of stirring, the reaction product [II] was precipitated with excess ether, filtered, dried 

under high vacuum and redissolved in benzene.  This procedure was repeated at least 3 

times [9].  The dried activated Pluronic (1.5 g) was then dissolved in 6 ml methanol, with 

slow dropwise addition of 1 ml hydrazine (NH2NH2).  The molar ratio of hydrazine to 

Pluronic was kept at 100:1.  After an 8 h reaction period, the product was precipitated with 

an excess of ethyl ether.  Precipitation from methanol was repeated at least three times, 

and the final product [III] was dried under high vacuum overnight.  Hydrazine Pluronic 

(40 mg) and NHS-biotin (12.5 mg) were then dissolved in 5 ml dry DMF.  This reaction 

mixture was stirred for 48 h at 20°C, followed by drying under high vacuum.  The dry 

product [IV] was re-dissolved in deionised water to a final concentration of 5 mg.ml-1.   

 

The structure of the biotinylated Pluronic derivative was confirmed by 13C nuclear 

magnetic resonance (NMR) spectroscopy using a Varian VXR 400 NMR spectrometer.  

All samples were analysed in deuterated chloroform (Sigma) at 25˚C with 

tetramethylsilane as the internal standard. 
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Figure 6-1:  Modification of Pluronic® F108 for imino-biotin coupling. 

 

 

6.2.8. Membrane affinity immobilisation of avidin-peroxidase 

 

Membrane surfaces were modified by static adsorption for 8 to 12 h at 25°C, in 5 mg.ml-1 

solutions of Pluronic F108 and biotinylated Pluronic respectively.  Membranes incubated 

in unmodified Pluronic were used as negative controls.  The two sets of eight membranes 

were then transferred to glass scintillation vials containing a dilution series of avidin-

peroxidase in phosphate buffered saline, pH 7.4 (serial dilution series from 1 U.ml-1 to 

0.0156 U.ml-1) in a total reaction volume of 2 ml for 60 min with vigorous shaking.  

Membranes were then washed three times in dH2O, air dried and transferred to a 8 x 12 

well NUNCTM microtitre plate.  An ABTS solution (300 μl of 0.5 mg.ml-1) in citrate 

buffer, pH 5 and 1μl.ml-1 H2O2, was added to each well.  Plates were immediately shaken 

at 37°C for 30 min before removing 150 μl of the ABTS solution for analysis at 405 nm.  

In the presence of sufficient peroxidase, the ABTS solution undergoes a distinct colour 

change from yellow/green to dark green/blue indicating peroxidase activity.  The log of 

avidin-peroxidase dilution was plotted against absorbance to illustrate specific binding of 
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avidin-conjugated peroxidase to membrane bound biotinylated Pluronic.  To demonstrate 

competitive avidin-peroxidase binding to biotinylated membranes, studies were also 

performed with 0.2 mg.ml-1 of a model protein contaminant cocktail comprising 0.1 

mg.ml-1 BSA and 0.1 mg.ml-1 lysozyme. 

 

A schematic illustration of the process from membrane surface modification and avidin-

peroxidase immobilisation to regeneration is illustrated in Figure 6-2. 

 

 

 

 

Figure 6-2:  Schematic illustration of affinity immobilisation of avidin-peroxidase and membrane 

regeneration with SDS. 
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6.3. RESULTS AND DISCUSSION 

 

6.3.1. Protein shielding ability of Pluronic modified membranes 

 

Nonporous planar membranes are becoming increasingly popular in the development of 

‘strip tests’ where they are used as affinity chromatography matrices [15].  A solid-liquid 

interface usually has a higher standard free energy than the bulk phase and as a result, this 

interface is apt to be thermodynamically stabilised by adsorbing any substances that are 

different from the solvent molecules [3].  The secondary, tertiary and quaternary structures 

of proteins and polypeptides can deviate significantly from their conformation in free 

solution upon adsorption onto a hydrophobic surface.  The interactions between proteins 

and surfactants are generally described as arising because of both electrostatic and 

hydrophobic interactions [16].   

 

The pI values of BSA and lysozyme are 4.8 and 10.45 respectively, and after correcting 

the pH to 7.4, a negative charge was conferred to BSA while lysozyme was rendered 

positive.  Between proteins such as lysozyme (+) and BSA (-) or polyelectrolytes and an 

oppositely charged surfactant, the attractive interaction is in general very strong, and the 

initial binding is more site specific than in the case of inert (uncharged) polymers such as 

Pluronic and the candidate native membranes used in this study.   

 

From the data in Table 6-1, it was observed that Pluronic coated membranes offer as much 

as 98% shielding of lysozyme adsorption and up to 75% shielding of BSA adsorption 

from a high protein coating concentration of 0.25 mg.ml-1.  Typically, the higher the bulk 

concentration of the protein the greater the adsorbed amount at the membrane surface 

[3,17].  Since PVDF is more hydrophobic than PSU [10], it adsorbed Pluronic more 

efficiently and was therefore most effective in shielding both BSA and lysozyme 

adsorption from solution.  Although PEI membranes are fairly hydrophilic, they were 

found to adsorb Pluronic almost as effectively as PVDF [10] but were however not as 

effective in reducing BSA adsorption.  This was most likely due to the polar PEO chains 

of Pluronic self-assembling onto the hydrophilic PEI surface such that the centre PPO 

block was exposed to the liquid phase.  This could reduce the steric hindrance offered by 

PEO, thereby encouraging hydrophobic interactions between PPO blocks from different 
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Pluronic molecules, resulting in multi-layer formation.  The Langmuir isotherms 

describing Pluronic F108 adsorption onto PEI [10] suggest possible micelle formation on 

hydrophilic surfaces while monolayer coverage on hydrophobic surfaces was observed. 

 

Table 6-1:  Lysozyme and bovine serum albumin adsorption onto membranes from a bulk equilibrium 

protein solution of 0.25 mg.ml-1.  The protein shielding ability of Pluronic F108 modified membranes was 

determined after measuring the amount of protein adsorbed onto native membranes.  Analysis was based on 

the depletion method of estimating protein adsorption [3]   

 

 

In general, the amount of adsorbed proteins is dependent on various factors including the 

surface matrix, protein internal stability energy, tertiary conformation and ionic strength of 

the buffer [3,18].  Proteins such as BSA have a lower structural stability or a low internal 

stability energy, which facilitates adsorption onto surfaces under seemingly unfavourable 

conditions [3,17].  This factor contributes significantly to the relatively high non-specific 

adsorption of BSA on all Pluronic-modified membranes in this study (Table 6-1), where 

adsorption is favoured because of a gain in conformational entropy upon adsorption.  

Lysozyme has a stronger internal coherence and this higher internal stability energy does 

not favour adsorption on hydrophilic surfaces, as observed by the lower adsorption of 

lysozyme on Pluronic hydrophilised membranes. 
 
Typical Pluronic modified and unmodified PSU membrane surfaces are depicted in the 

electron micrographs in Figure 6-3.  The native PSU membrane in Figure 6-3A is 

characteristic of the planar nonporous membranes prepared in this study.  The membrane 
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surface morphology is typically rough, and this was found to be inherent to the fabrication 

protocol.  This phenomenon is however not an undesirable factor for membrane 

adsorption where a rough surface has more surface area available for adsorption of 

macromolecules from solution.  Figure 6-3B suggests that Pluronic coating of the PSU 

surface changes the microscopic appearance of the membrane surface and the coating at 5 

mg.ml-1 appeared uniform over the surface.  Intermittent contact mode atomic force 

analysis of membrane surfaces (Figure 3-5) confirmed the decrease in surface roughness 

after Pluronic coating. 

 

A 

C 

B

D
 

 
Figure 6-3:  Electron micrographs showing typical planar nonporous PSU membranes that were used in 

Pluronic coating and desorption.  A) Native or virgin PSU membrane surface; B) Pluronic coated PSU, C) 

SDS displacement of Pluronic treated membranes, D) Hexane-isopropanol treated membranes modified with 

Pluronic.  Magnification = 5000X and bar = 2 μm. 
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6.3.2. Regeneration of Pluronic modified membranes 

 

An important practical consideration for the implementation of membrane affinity 

technology is its lifetime and regeneration capacity [19].  Regeneration was investigated 

by SDS treatment of Pluronic coupled affinity membranes.  SDS was used because it is 

non-toxic, water soluble, economic from a process point of view and is a known 

competitive displacer of adsorbed polymers that can bind organics in solution in the 

micellar form  [16,20,21].  SDS treatment was performed at room temperature (20°C) and 

its efficacy was compared with that of high temperature (70°C), biphasic 

(hexane:isopropanol) solvent extraction of Pluronic (Figure 6-4) described in another 

study [10].  This biphasic solvent system poses potential problems with degradation of 

polymers such as perspex and polyvinyl chloride (PVC) that are routinely used in 

laboratory scale membrane module manufacture. 

 

SDS treatment was considered as a non-solvent based Pluronic desorption alternative.  It 

has been reported that the phase behaviour and microstructure of Pluronic block 

copolymers are affected by SDS micelles [5].  34 mM SDS displacement of Pluronic 

appeared effective as the native membrane surface could once again be observed (Figure 

6-3C), however, the electron dense structures observed on the surface suggested the 

possible remnants of SDS deposits.  The ex situ, energy intensive but highly efficient 

hexane-isopropanol extraction of Pluronic depicted in Figure 6-3D appeared more 

effective, since it lacked the apparent electron dense structures in Figure 6-3C.  A 

‘cleaning in procedure’ or a more rigorous wash process after SDS treatment, should 

remove possible micelles or aggregates, as SDS is water-soluble.  This is important since 

most surfaces acquire some surface charge when exposed to ionic solutions and in such 

situations long-range electrostatic interactions will dominate protein adsorption.  Most 

physiological buffers such as PB will confer a charge to proteins (except at the isoelectric 

point, where the net charge on the protein is zero) and this can orient the protein towards 

an oppositely charged surface.   

 

Figure 6-4 illustrates the typical Pluronic displacement trends observed with 

hexane:isopropanol and SDS respectively.  Importantly it was noted that SDS was 

efficiently separated from Pluronic prior to biphasic colorimetric analysis, where SDS was 

found to interfere with the spectrophotometric assay [10].  In general SDS was not as 
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effective as high temperature bi-solvent extraction of Pluronic from hydrophilic PEI 

membranes and hydrophobic PVDF and PSU membranes.  However, the empirically 

selected SDS desorption parameters were far from optimised with respect to incubation 

time, shaking and temperature.   

 

 
Figure 6-4:  A comparison between typical hexane-isopropanol desorption of Pluronic F108 from native 

planar membranes and membranes that were regenerated (Reg-) with 5 mM SDS.  N = 3. 

 

The data in Figure 6-5 suggests that 5 mM SDS was more effective in displacing Pluronic 

from the membrane surface than at concentrations at or above the 8 mM critical micelle 

concentration (cmc).  These results were comparable with trends observed with 

hexane:isopropanol extraction and were similar to findings by Cosgrove et al., [20], where 

the same trend was observed with SDS and poly(ethylene glycol) (PEG) adsorbed on 

polystyrene beads.  In said paper, it was found that the PEO served as a nucleation centre 

for the formation of micelles at SDS concentrations above the cmc of the surfactant.  

These authors concluded that the driving force for SDS displacement of PEG from solid 

supports was due to polymer-surfactant interactions and not competitive adsorption for 

sites.  It can be argued that membrane bound Pluronic would behave differently than the 

extremely hydrophilic PEG with the SDS micelles forming a solution complex with the 

PPO centre block of Pluronic at high SDS concentrations (34 mM). 
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Figure 6-5:  Influence of SDS concentration on Pluronic desorption.  (* 5 mM, ** 8 mM and *** 34 mM).  

Pluronic® F108 desorption occurred at 20°C for 2 h with gentle shaking.  N = 3. 

 

A contradiction to the observed displacement of membrane adsorbed Pluronic layers in 

this study and also in other reports [20], was noted in a study by Ma and Li [21].  These 

authors showed a reverse trend, where SDS above its cmc of 8 mM was more effective in 

displacing a pre-adsorbed layer of PVP while the layer thickened at lower SDS 

concentrations (below its cmc).  It was suggested that increasing the SDS concentration 

close to and above the cmc, results in micellisation of SDS and the micelle association 

number decreases until pure SDS micelles and individual Pluronic macromolecules 

saturated with SDS are present [2].   

 

Table 6-2 shows the time dependent nature of SDS displacement of Pluronic.  Initially 

experiments were performed under empirical conditions with 2 h incubation at room 

temperature.  Much more Pluronic was displaced after a 20 to 40 h incubation period, but 

the desorbed amount from all candidate membranes was at least 20 % less than the amount 

of Pluronic that can be desorbed by high temperature (70°C) solvent extraction.  The time 

dependence of SDS desorption was most significant for hydrophilic PEI membranes rather 

than hydrophobic PSU and PVDF.  It is possible that the multi-layer formation of Pluronic 

at the PEI interface compared to the Langmuir type monolayer coverage observed with 

PSU and PVDF complicated the association of SDS micelles with the PPO blocks of 

Pluronic. 
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Studies have also shown that this bi-solvent extraction protocol is temperature dependent 

[10], such that incomplete desorption is observed below 65°C.  Although the empirically 

selected conditions for SDS displacement are far from optimised, this remains a promising 

approach for Pluronic displacement from nonporous membranes.  Future work could 

involve using varying SDS concentrations at higher temperatures with a range of 

incubation times and with the membrane also under shear stress.  

 

Table 6-2:  Time dependent displacement of Pluronic F108 coated membranes at 20°C using 5mM SDS.  

The amount of SDS displaced Pluronic [μg.cm-2] was measured after varying the incubation period from 2 h 

to 40 h.  N = 3   

 

0.0130.190.0140.190.0170.140.0220.11PVDF

0.00710.0450.00590.0470.0100.0420.0110.039PSU

0.0180.1810.0090.180.0200.130.0130.077PEI

SDμg.cm-2SDμg.cm-2SDμg.cm-2SDμg.cm-2

Incubation Time in 5 mM SDS
2 h                              4 h                            20 h                          40 h

0.0130.190.0140.190.0170.140.0220.11PVDF

0.00710.0450.00590.0470.0100.0420.0110.039PSU

0.0180.1810.0090.180.0200.130.0130.077PEI

SDμg.cm-2SDμg.cm-2SDμg.cm-2SDμg.cm-2

Incubation Time in 5 mM SDS
2 h                              4 h                            20 h                          40 h

 
 

6.3.3. Desorption of model protein foulants 

 

At membrane surfaces, additional interactions between the adsorbed molecules and the 

surface come into play.  These interactions are both hydrophobic and electrostatic in 

nature and the interactions between the protein, surfactant and copolymer, can be affected 

by the presence of the surface.  Furthermore the relation between the properties of the 

complex will determine whether the surfactant will be able to displace the protein [16].  

The ability of SDS to displace membrane-adsorbed proteins is depicted in Table 6-3.   

 

A comparison of the desorbed protein data in Table 6-3 with Table 6-2 indicates that even 

after SDS treatment, a large amount of protein (over 80 % for native membranes) remains 

adsorbed to the membrane.  BSA was also found to be more difficult to displace than 

lysozyme.  The physical displacement of proteins is most likely due to the conformational 
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change in the protein structure after denaturation by SDS micelles.  Stigter [22] showed 

that for different head-groups on the same surfactant alkyl chain, it is usually found that 

the binding again follows the micellisation, where the higher the tendency to form 

micelles the stronger the interaction with proteins.  Recent work has also verified that the 

protein repellent properties of the membrane were still retained after re-coating with 

Pluronic.   

 
Table 6-3:  SDS (34 mM) displacement of pre-adsorbed polymers on native and Pluronic modified 

membrane surfaces after 20 h of incubation at 20°C 

 

 

At low SDS concentrations (5 mM), binding is thought to take place via electrostatic 

interactions between the charged headgroup of the anionic surfactant and the oppositely 

charged residues in the protein molecule.  As a result of this initial binding, the protein-

surfactant complex becomes less charged and more hydrophobic than the protein itself, 

which may lead to aggregation and precipitation.  At higher surfactant concentrations (> 8 

mM), binding most likely occurs via hydrophobic interactions, with the SDS headgroups 

pointing out from the protein surface [23].  At this stage the hydrophobicity of the protein-

surfactant complex decreases and it becomes more hydrophilic and re-dissolves into the 

polar bulk equilibrium solution, eventually acquiring a negative charge like the SDS 

molecule [16].   
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6.3.4. Membrane immobilisation of avidin-peroxidase  

 

In an attempt to conceive a re-usable bioaffinity membrane separation technology, we 

used the biotin-avidin system as a model of biological (ligand-receptor) interaction.  

Biotin is an imidazolone ring cis-fused to a tetrahydrothiophene ring substituted at 

position 2 by valeric acid.  It is the essential coenzyme for carboxylation reactions, where 

it is covalently bonded to proteins by an amide linkage between its carboxyl group and a 

lysyl-ε-NH2 group in the polypeptide chain.  However, the strength of the non-covalent 

interaction between biotin and avidin can pose problems for ligate retrieval.  In this study 

a weaker binding biotin ligand was used, that was displaceable by biotin.  One such 

potential ligand is the N-hydroxysuccinimido ester of (iminobiotinylamido)hexanoic acid 

[24].  Coupling was achieved by displacement of the NHS group in the conjugated biotin 

by the amine group in hydrazide Pluronic in a DMF solution (Figure 6- 1). 

 

The structure of biotinylated Pluronic was confirmed with 13C NMR.  The similarities in 

the saturation curves in Figure 6-6 indicate that biotin coupling to the hydroxyl terminus 

of Pluronic did not affect its adsorption affinity for hydrophobic surfaces via the 

unmodified PPO moiety.   

 

 

Figure 6-6:  Saturation curves for biotinylated Pluronic (r2 = 0.9162) and unmodified Pluronic F108 (r2 = 

0.9307) on planar PVDF membranes.  Both Pluronic F108 and biotinylated Pluronic were desorbed from 

PVDF surfaces using the optimised hexane-isopropanol extraction method described in [10].   
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Protein adsorption isotherms using lysozyme and BSA (results not shown) also indicate 

that the covalently modified biotinylated Pluronic retains the protein shielding ability 

described in this study (Table 6-1).  The adsorption of biotinylated Pluronic (Figure 6-6) 

showed a typical Langmuir type adsorption profile at 25°C with a plateau at ~ 5 mg.ml-1.  

Pluronic F108 and its derivatives were also only found to form micelles on membranes at 

coating solutions approaching 7 mg.ml-1 [10].   

 

PVDF was selected as the substrate affinity membrane in this study because of its high 

hydrophobicity, protein shielding ability (Table 6-1), mass transfer properties as hollow 

fibers [25] and because it is a popular piezoelectric, electro-active polymer in biosensor 

development.  Dose response curves were obtained that related the solid phase 

biotinylated Pluronic to concentration of avidin conjugated peroxidase (Figure 6-7).  The 

normalised curves follow a typical inverted sigmoidal shape, reaching a plateau when all 

the available binding sites on the membrane are occupied by the enzyme conjugate.   

 

The typical dose-response effect in Figure 6-7A suggests that there is a specific link 

between avidin-peroxidase binding to surface immobilised Pluronic-biotin, and the 

response is proportional to the concentration of avidin-peroixdase used in the binding 

assay.  The curves in Figure 6-7B however, are of the interaction between Pluronic and 

avidin-peroxidase.  Interactions producing a signal in Figure 6-7B are due to non-specific 

binding of protein to Pluronic.  The highest response is at the highest enzyme 

concentration (1 U.ml-1) where protein saturation of the surface at high concentration 

occurred.  The subsequent dilution steps yielded a much lower signal or response 

suggesting that there was comparatively low non-specific binding.   

 

Pluronic coated membranes that were repeatedly regenerated appeared to lose their protein 

shielding properties as observed by the increase in the signal intensity with the fourth 

regeneration cycle.  SDS displacement of Pluronic is not 100 % efficient as depicted in 

Figures 6-4 and 6-5, and if avidin bound Pluronic remained on the surface after SDS 

regeneration, then there could be an increased tendency for the conjugated avidin to non-

specifically bind more protein from solution via hydrophobic interactions, eventually 

forming protein multi-layers at the interface.   
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   A      B 

 
Figure 6-7:  Dose-response obtained with A) biotinylated membranes and B) unmodified Pluronic treated 

membranes incubated with a serial dilution of avidin-peroxidase.  Avidin-peroxidase was serially diluted 

from 1 U.ml-1 to 0.0156 U.ml-1.  Biotinylated membranes and Pluronic coated membranes were subjected to 

four regeneration cycles and each experiment was performed in triplicate.  To make comparisons possible, 

all curves have been normalised so that their highest signal corresponds to 100%.  Baselines are less than 10 

% of the maximum and were not subtracted when calculating EC50 values using GraphPad Prism® for the 

biotin-avidin-peroxidase interaction.   

 

The regenerated membranes treated with biotinylated Pluronic (Figure 6-7B), still 

produced characteristic dose-response curves, but EC50 analysis revealed that with 

increasing regeneration cycles, the concentration of avidin-peroxidase required to induce a 

response halfway between the maxima and the baseline decreased.  EC50 data for the 

virgin PVDF through to the four regenerated cycles described in Figure 6-7A are 5.95, 

5.923, 6.358, 6.506 and 9.231 respectively.  This is most likely due to incomplete 

regeneration of the membranes with SDS-treatment, where protein-protein interactions 

progressively increased resulting in higher EC50 values. However, this colorimetric avidin-

peroxidase assay is extremely sensitive, and the consistent shapes of the binding curves 

warrant further investigation of SDS treatment of affinity membranes to increase their 

capacity and performance. 

 

The specificity of avidin-peroxidase binding to membrane immobilised biotin and the 

protein shielding ability of the ligand-modified Pluronic, were tested with a competitive 

binding assay where 0.2 mg.ml-1 of model protein contaminants were incubated with each 

of the serially diluted avidin-peroxidase containing vials.  In Figure 6-8 the presence of 

0.2 mg.ml-1 of lysozyme did not cause a significant change to the typical dose response 
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effect (EC50 = 5.414) suggesting that the hydrophilic PEO tether of Pluronic F108 shielded 

the membrane surface from non-specific lysozyme adsorption, whilst freeing the 

biotinylated ligand binding sites to recognise avidin-peroxidase.  However, a mixed 

solution of BSA and lysozyme did not yield a similar trend with a dramatic shift in the 

EC50 from 5.414 to 0.88.  It is postulated that since BSA adsorbs on both hydrophobic and 

hydrophilic surfaces [3], such as Pluronic F108 coated membranes (Table 6-1), BSA 

blocked many of the avidin binding sites on the biotinylated PVDF membrane.  This 

would cause a reduction of the avidin-peroxidase binding capacity of the membrane 

resulting in lower signal intensity.  The adsorbed BSA could also serve as a nucleation 

centre for further protein adsorption if the reaction incubation times were extended.   

 

 

 

Figure 6-8:  Normalised competitive binding assay for avidin–peroxidase in the presence of 0.2 mg.ml-1 

model protein contaminants.  Represents biotinylated PVDF membranes that were incubated with 0.1 

mg.ml-1 BSA and 0.1 mg.ml-1 lysozyme, × represents biotinylated PVDF membranes incubated with 0.2 

mg.ml-1 lysozyme while ο represents a non-derivatised Pluronic coated membrane with 0.1 mg.ml-1 BSA 

and 0.1mg.ml-1 of lysozyme.  N = 3. 
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6.4. CONCLUSIONS 

 

The amphiphilic surfactant Pluronic® F108 and the attendant covalently modified biotin 

derivative, coupled to synthetic polymeric membranes via predominantly hydrophobic 

interactions.  The protein shielding ability of membrane bound Pluronic F108 was 

dependent on its adsorption capacity on the membranes, which was influenced by the 

surface hydrophobicity conferred by the fabrication polymer.  These properties in addition 

to its ability to be displaced by SDS make this affinity membrane technology possible to 

regenerate thus improving its process lifespan and capacity.   

 

This study has also shown specific affinity immobilisation of the protein conjugate, 

avidin-peroxidase onto biotinylated PVDF membranes using a novel ligand (Pluronic-

biotin).  Biotin coupling to the hydroxyl terminus of the PEO moiety of Pluronic did not 

affect its adsorption profile on the electroactive polymer PVDF, thus making it an 

attractive option for use in biosensor development.  Competitive binding assays also 

suggest that this specific binding is not influenced by up to 0.2 mg.ml-1 of lysozyme.  

However large amounts of the globular protein BSA (0.1 mg.ml-1) does affect the 

competitive affinity binding sites for avidin-peroxidase, with a significant decrease in the 

EC50.   

 

The dose response curves for regenerated biotinylated membranes followed the same 

shape as that of the virgin PVDF membrane, with the EC50 values increasing with each 

corresponding regeneration cycle.  Pluronic displacement was favoured at lower SDS 

concentrations (5 mM) while SDS micelles (> 8 mM) were more effective in desorbing 

adsorbed proteins.  The SDS regeneration protocol developed in this study can be 

incorporated into both in situ and ex situ membrane systems by utilising existing 

equipment for re-circulation of the various system components. 
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CHAPTER 7: CLONING AND EXPRESSION OF HISTIDINE 

TAGGED HUMAN CYTOCHROME b5 

 

7.1. INTRODUCTION 

 

Immobilised metal affinity separation is one of the most popular methods for the isolation 

and purification of recombinant proteins using an engineered histidine affinity tag.  In this 

study (detailed in chapter 8) we aim to show the bio-specific immobilisation of soluble E. 

coli histidine tagged proteins under native conditions.  However, therapeutically relevant 

biomolecules such as the frequently reported recombinant eukaryotic proteins tend to be 

sequestered into insoluble aggregates or inclusion bodies when expressed in bacterial 

hosts [1,2].  This is particularly endemic to integral membrane proteins that have a 

hydrophobic membrane binding domain and a hydrophilic portion.   

 

Cytochrome b5 (cytb5) is a ubiquitous membrane bound, amphipathic electron transfer 

hemoprotein that is found mainly in the endoplasmic reticulum and mitochondria of many 

mammalian cells [3,4,5].  It has a molecular mass of approximately 16 000 Da comprising 

134 amino acids [6].  Cytb5 participates in a number of electron transport reactions and is 

required for the function of a number of cytochrome P450 catalysed reactions, for fatty 

acid desaturation and for the sythesis of plasmalogens [6-8].   

 

The polypeptide consists of two distinct domains linked by a trypsin sensitive region: a 

short hydrophobic C-terminal membrane binding domain comprising approximately 40 

amino acid residues which anchors the protein to the endoplasmic reticulum membranes 

and a larger globular segment containing the heme catalytic domain that projects into the 

cytosol [5].  In liver microsomes cytb5 is an integral part of a system responsible for 

oxidative conversion of stearyl-CoA to oleoyl-CoA and has been implicated as a 

participant in the cytochrome P-450 dependent hydroxylation reactions [9].   

 

The different forms of cytb5 all show a high degree of sequence identity (Figure 7-1), 

while the carboxyl-terminal domains show somewhat lower identity.  Additionally, 

different mammalian species show over 80 % identities with substitutions being very 
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conservative [9].  Due to its high solubility and its ease of isolation the heme-binding 

domain has been the subject of most structural and functional studies.  The sequence of 

this cytosolic amino terminal heme domain, residues 1 – 96, is highly conserved [10].  By 

contrast little definitive structural data is available for the membrane-binding domain.  

Progress in this area has been hindered due to difficulties encountered during the isolation 

of full-length cytb5, where the hydrophobic membrane-binding domain promotes 

aggregation [9,11].   

 

The primary goal of this study, within the context of the overall objectives of this 

dissertation, was to test the efficacy of an IMAM system (described in chapter 8) for the 

bio-specific immobilisation of a typical insoluble membrane protein.  This could involve 

the purification of the histidine tagged cytb5 under denaturing conditions with buffers 

containing urea and guanidine HCl and surfactants to solubilise the protein.  Thus the 

biochemical behaviour of the Pluronic affinity chelator in this buffer system would be of 

practical interest when applied to the purification of proteins that tend to form aggregates.   

 

The choice of the target protein was based on its physical and chemical behaviour in 

solution and because of the ferric heme domain, which has one Fe2+ per protein molecule.  

The heme group could thus potentially be used as an ‘intramolecular marker’ to quantify 

the number of affinity adorbed protein molecules per cm2 of membrane using PIXE 

(protocols described in chapter 5), and to relate the ratio of chelated Ni2+ ions to bound 

protein. 

 

Thus the aim of this study is to clone human cytb5 into a commercial plasmid vector 

pET22b that allows the intracellular expression of histidine tagged cytochrome b5.  

Typically the strategy will involve insertion of the cytb5 DNA upstream of the hex 

histidine tag of pET22b located on the COOH terminus.  The expression hosts for these 

plasmids are E. coli mutants such as BL-21(DE3).  The histidine tagged cytb5 can be 

purified with commercial Ni-NTA columns, while the presence of the soluble folded 

target protein was investigated using labelled polyclonal antibodies (Ab) raised against 

sheep liver cytb5 and with a horse radish peroxidase conjugated-Ni chelating probe.  
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Figure 7-1:  Alignment of cytochromes b5 from different phyla.  Accession numbers are provided for the 

various forms of cytochrome b5. Forms include bacteria (bacti), tobacco plant, housefly (MusDom), rat 

mitochondria outer membrane (Rat_OMb5), and erythrocyte soluble protein (RBCsolpi).  Asterisks above 

alignments indicate fully conserved residues. Plus signs above alignment indicate acidic residues implicated 

in charge-pairing interactions with redox partners.  Black indicates identical residues for a position, grey 

indicates a conservative substitution (such as an aspartate for glutamate or lysine for arginine) [9]. 
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7.2. EXPERIMENTAL 

 

7.2.1. Reagents and chemicals 

 

Unless otherwise stated all laboratory reagents were of analytical grade or better.  Water 

from an ‘Ultra Pure Milli-Q water system’ (Millipore, USA) was used in all experiments.  

All proteins, enzymes and molecular weight markers were purchased from Roche, 

(Penzberg, Germany).  Nucleic acid gel extraction/purification kits were purchased from 

Qiagen (California, USA).  Unless otherwise stated, all bacterial growth media and 

chemicals were purchased from Fluka (SA). 

 

7.2.2. Culture media and growth conditions 

 

Bacterial cultures were grown routinely in Luria Bertani media supplemented with 

ampicillin (Sigma chemical company, South Africa) at a final concentration of 100 μg.ml-1 

at 37ºC under aerobic conditions.   

 

7.2.3. Bacterial strains and plasmids 

 

The commercial plasmid vector pUC18 was used as an intermediate cloning vector, which 

was transformed into the non-expression host E. coli JM109.  An expression strain (E. coli 

BL21-DE3) and an expression plasmid (pET22b) were purchased from Novagen, USA. 

 

7.2.4. Polymerase chain reaction 

 

The polymerase chain reaction (PCR) was performed with a PCR Sprint (Madison, WI, 

USA).  The reaction details and mixture compositions are outlined in Table 7-1.  PCR 

primers were supplied by Whitehead Scientific, Biochemical Supplies, South Africa.  

Amplification of the human cytb5 cDNA was performed with the polymerase PfuI, by 

initial denaturation at 95°C (2 min), followed by 30 cycles of further denaturation at 96°C 

for 1 min, annealing at 55°C for 1 min and elongation at 72°C for 2 min.  The reaction 
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mixtures were overlaid with mineral oil before PCR and were stored at –20°C after 

completion of the amplification reaction.  Details of the primers used for PCR are 

presented below. 

 

Left primer (PET22L) 
Sequence:   5'-ATATGAATTCCATGGCAGAGCAGTCGGACG-3' 

Length: 30 Bp-pos: 455; %GC:  50;   Tm: 77°C;  

Composition:  A:9  C:6  G:9  T:6     

5' extension: ATATGAATTC 

 

Right Primer (PET22R) 
Sequence:   5'-GCGCAAGCTTGTCCTCTGCCATGTATAGGCGA-3' 

Length: 32  Bp-pos: 857; %GC:  56;   Tm: 75°C;  

Composition:  A:6  C:9  G:9  T:8 

5' extension:  GCGCAAGCTT 

 

 

Table 7-1:  PCR protocol for insertion of EcoRI and HindIII into the termini of the human cytcochrome b5 

gene 
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7.2.5. Preparation of the insert DNA 

 

Human cytochrome b5 cDNA from an intermediate pUC18 vector was used as a template 

for insert preparation.  The insert was modified by PCR to incorporate restriction enzyme 

sites on both the NH2 and COOH termini of cytb5 that were compatible with restriction 

sites (EcoRI and HindIII) in the multiple cloning sites of the expression vector pET22b 

(Figure 7-2).    

 

The agarose gel purified PCR product was digested with EcoRI and HindIII (according to 

the manufacturer’s instructions).  Restriction digested PCR products were first prepared 

for ligation into an intermediate vector pUC18 before subcloning into the periplasmic 

expression vector pET22b.  The multiple cloning sites of these vectors have EcoRI and 

HindIII restriction sites (Figure 7-2) that are compatible with the restriction enzyme sites 

engineered into the amplified cytb5 gene. 

 

7.2.6. Preparation of vector DNA for ligation 

 

The incubation conditions and buffers used for vector preparation were dependent on the 

manufacturer’s recommendations.  The cloning vectors were linearised by digestion with 

HindIII and EcoRI and the termini of each DNA strand was dephosphorylated using calf 

intestinal phosphatase (Promega, USA). 

 

The expression vector pET22b was digested with EcoRI and HindIII to generate cohesive 

termini.  The digested plasmid was gel purified, freeze-dried and stored in sterile Milli-Q 

water.  Restriction digested pET22b[HindIII/EcoRI] was stored at –80°C and only thawed 

for use in ligation reactions. 

 

7.2.7. Ligation 

 

The non-complimentary protruding termini of the linearised vectors (pUC18 and pET22b), 

shown in Figure 7-2, were ligated according to standard procedures described in 

Sambrook and Maniatis [12].  A 20 μl ligation reaction was performed at 14°C for 3 to 4 
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h, with ~ 100 ng dephosphorylated linear vector DNA and ~60 ng digested insert gene.  

Approximately 2U T4 DNA ligase per μg DNA was used, with 20 mM ATP (Roche).  

Details of the reaction mixture for the cloning vector (pUC18) and the expression vector 

(pET22b) are presented in Table 7-2. 

 

Table 7-2:  Ligation protocol for insertion of HindIII/EcoRI digested PCR product into dephosphorylated 

restriction enzyme linearised plasmid vectors using T4 DNA ligase.  Typically, stock solutions of 14.65 

ng.μl-1 of plasmid DNA and 12.8 ng.μl-1 of PCR product were used during ligation 

 

 

 

 

Figure 7-2:  Diagrams of the cloning vectors pET22b and pUC18. 
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7.2.8. Transformation of competent cells 

 

Preparation of competent cells 

A single colony of JM109 and BL21(DE3) cells was inoculated into separate 50 ml sterile 

tubes containing 10 ml of LB-ampicillin (100 μg.ml-1) and grown for 7 to 8 h at 37°C, 

before transferring 1 ml of this reaction mixture into 100 ml pre-warmed LB broth 

containing 100 μg.ml-1 ampicillin (Amp) until an OD600 of 0.5 was reached (~ 100 min).  

The culture was then cooled on ice for 5 min, transferred to a sterile round bottom 

centrifuge tube for cell harvesting at 4000g for 5 min at 4°C.  The supernatant was 

discarded carefully while the cells were kept on ice.  The cells were then re-suspended in 

30 ml ice-cold filter sterile TFB1 buffer (0.1 M RbCl, 50 mM MnCl2, 30 mM potassium 

acetate, 10 mM CaCl2, 15 % glycerol; pH 5.8) followed by 90 min incubation on ice.  

Cells were collected by centrifugation at 4000g for 5 min at 4°C and the supernatant was 

carefully discarded while the cells were maintained on ice.  The cells were then carefully 

resuspended in ice-cold sterile TFB2 buffer (10 mM MOPS, 10 mM RbCl2, 75 mM CaCl2, 

15 % glycerol, adjusted to pH 6.8 with KOH).  Aliquots (200 μl) of competent cells were 

prepared in sterile 1.5 ml microcentrifuge tubes, frozen in liquid N2 and immediately 

stored at -80°C.   

 

Transformation 

An aliquot of the ligation mix (5 μl) was transferred to a cold sterile microcentrifuge tube 

and kept on ice, while aliquots of frozen competent cells were thawed on ice.  The thawed 

competent cells were gently resuspended and 100 μl of this cell suspension was 

transferred to the tube containing the ligation mix.  This solution was mixed carefully and 

incubated on ice for 20 min, before transferring to a 42°C heating block for 90 s.  Finally 

500 μl of warm Psi broth was transferred to the heat shocked cells followed by shaking 

incubation at 37°C for 80 min at 180 RPM.   

 

7.2.9. Selection of recombinants 

 

Transformants (50 μl) were added to the centre of LB-ampicillin-IPTG-X-gal plates.  The 

cells were spread radially using an ethanol flamed L-shaped glass spreader and the plates 
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were then allowed to stand at 25°C for 15 to 20 min.  Plated transformants were then 

incubated overnight at 37°C.  Typical negative clones were characterised by blue colonies 

due to the IPTG induced expression of β-galactosidase which converted the chromogenic 

X-gal substrate, while positive clones contained an insertion or ligated gene that disrupted 

the gene coding for β-galactosidase and appeared white.  PCR was used to verify the 

presence of the inserted cytb5 gene in the positive (white) transformants. 

 

7.2.10. Protein expression 

 

Inoculum cultures (10 ml) of E.coli BL21(DE3) transformed with pET22b[cytb5(his6)] 

were grown at 25°C for 8 h at 150 RPM in TB medium (tryptone 1.2 g, yeast extract 2.4 g, 

glycerol 0.5 g, 0.017 M KH2PO4, 0.072 M K2HO4) and carbenicillin (50 μg).  A solution 

of trace elements of the following composition was added, 3 ml to 1 litre of medium  

(g.l-1): FeCl3.6H2O (27); ZnCl2.4H2O (2); CoCl2.6H2O (2); Na2MoO4.2H2O (2); 

CaCl2.2H2O (1); CuCl2 (1); H3BO3 (0.5); HCl conc. (100ml) [13].  The cultures were 

grown at 25°C for 6 h until an OD at 600 nm = 1.2 was reached, at which point 0.1 mM 

IPTG was added to the growth media to induce the synthesis of the T7 RNA polymerase 

(10 to 15 h).   

 

7.2.11. Protein isolation and purification 

 

The cells from the cultures expressing cytb5 were harvested by centrifugation at 4000g for 

10 min and the pelleted cells were weighed and suspended in 4-5 vol (w/v) of PBS (12 

mM phosphate buffer (pH 7.4) containing 137 mM NaCl and 3 mM KCl).  The cells were 

pelleted by centrifugation at 4000g and the washed cells suspended in two volumes of 

buffer A (75 mM Tris-Cl, pH 8.0, 0.1 mM EDTA and 1 mM PMSF) [6].  The cells were 

disrupted by sonication using a Heat System Ultrasonic Inc. SonicatorTM  for a total of 8 

min per 100 ml of suspended cells: 30 s on, 30 s off, 30 % power.  The sonicate was 

heated to 50°C, [14] maintained at this temperature for 15 min, cooled and the intact cells 

were removed by centrifugation at 12 000g for 10 min followed by resuspension in the 

original volume of buffer A, sonicated again as described and the combined supernatant 

centrifuged for 60 min at 100 000g to pellet the membranes [6].  Ultracentrifugation was 
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performed with a Beckman L5-75 ultracentrifuge.  The supernatant fluid was decanted and 

saved for SDS-PAGE analysis and further purification.  The green/pink gelatinous pellets 

were suspended with a dounce homogeniser in 1 ml of buffer B (20 mM Tris-Cl, pH 8.0; 

2mM β-mercaptoethanol and 20% glycerol) for each gram of wet weight of harvested 

cells.  The resuspended membrane fraction was stored at -80°C and the ultracentrifuged 

supernatant was stored at 4°C [6].   

 

7.2.12. Analysis 

 

DNA sequence analysis 

Automated nucleotide sequence information was determined using a 3100 Genetic 

Analyzer (Applied Biosystems, Foster City, CA) and a BigdyeTM Version 2 Determinator 

sequencing kit 373 A ABI, Applied Biosystems).  The sequences of the primers used for 

sequencing of the relevant plasmid are indicated in Table 7-3. 

 

Table 7-3:  Primers used for DNA sequencing 

 

 

Protein analysis 

Analysis of expressed proteins was performed with SDS-PAGE and Western blotting 

using horse-radish peroxidase (HRP) coupled to Ni-chelating probes and goat anti-rabbit 

antibodies respectively.  Typically 14 and 10 % acylamide gels were prepared for SDS-

PAGE and cast in a Biorad Mini-Protein® Cell for gel electrophoresis.  An INDIATM 

HisProbe-HRP (Pierce) was used as a nickel-chelating probe for histidine residues and 

HRP-conjugated goat anti-rabbit polyclonal antibodies were purchased from Sigma. 

CAG GAA ACA GCT ATG ACM13 region reversepUC18 (antisense)

GTT TTC CCA GTC ACG ACM13-40 region forwardpUC18 (sense)

ATT AAC CCT CAC TAA AGG GA T7 terminator regionpET22b (antisense)

TAA TAC GAC TCA CTA TAG GGT7 promoter regionpET22b (sense)

Primer SequencePrimer specificityTemplate DNA

CAG GAA ACA GCT ATG ACM13 region reversepUC18 (antisense)

GTT TTC CCA GTC ACG ACM13-40 region forwardpUC18 (sense)

ATT AAC CCT CAC TAA AGG GA T7 terminator regionpET22b (antisense)

TAA TAC GAC TCA CTA TAG GGT7 promoter regionpET22b (sense)

Primer SequencePrimer specificityTemplate DNA
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7.3. RESULTS AND DISCUSSION 

 

7.3.1. Preparation of the insert gene 

 

A 424 base pair (bp) fragment was amplified from a recombinant plasmid template 

containing the cytb5 cDNA.  Using PCR, the restriction sites EcoRI and HindIII were 

incorporated into the 5’ and 3’ termini of the cytb5 gene.  The amplified PCR product, 

obtained from 10 x (50 μl) amplification reactions, was subjected to analytical gel 

electrophoresis on a 0.8 % agarose gel in TAE buffer.  A typical 424 bp PCR product is 

illustrated in Figure 7-3A.  A preparatory gel (Figure 7-3B) was run for large-scale 

isolation of the cytb5 PCR product.  The cytb5 PCR product was isolated and purified 

using a Qiagen gel extraction and purification kit.  Approximately 10 to 20 ng.μl-1 of DNA 

was obtained per isolation and the purity was checked by UV analysis with a Beckman 

spectrophotometer.  The PCR product was then digested with EcoRI and HindIII and the 

enzymes were cleaned with a Qiagen PCR clean up kit.    

 

 

 

Figure 7-3:  0.7% (m/v) Agarose gels (A and B) in TAE buffer showing the amplification of the cytochrome 

b5 gene with EcoRI and HindIII termini. Lane 1, Roche DNA marker VIII; Lane 4, PCR amplified cytb5 

gene (20 μl); Lane 5, Roche DNA Marker VIII; Lanes 6-8, PCR amplified cytb5 gene (100 μl).  Gel B is a 

typical preparatory gel for gel extraction and purification of insert DNA for ligation. 

 

1      2        3          4           5       6             7  8

501 bp

A B

424 bp
404 bp
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7.3.2. Cloning and sequencing of cytochrome b5 

 

Initial cloning should be performed in a host cell that lacks the gene for T7 RNA 

polymerase.  This gene enables high percentage monomer plasmid yields for the 

examination of the construct sequence as well as separation of cloning from expression.  

This is generally a practical route to follow, as it can be invaluable in trouble-shooting that 

is inherent to the system dependent cloning procedures that are conventionally followed 

[15]. 

 

Cloning vectors contain three essential elements, an antibiotic resistance marker, an origin 

of replication (for screening E. coli transformants) and a polylinker region containing 

multiple restriction enzymes sites into which foreign DNA may be ligated.  For efficient 

subcloning of the cytb5 gene, pUC18 was used as a cloning vector that had restriction 

enzyme sites compatible with many commercial expression vectors such as pET22b.  The 

advantage of the polylinker site is that it affords versatility in the choice of restriction 

enzymes such that directional cloning is possible.  In this study two different restriction 

enzymes (EcoRI and HindIII) were used to generate digested DNA products with non-

compatible protruding 5’ and 3’ extensions such that the insert PCR product could only 

ligate into the vector in one direction. 

 

Molar ratios of plasmid vector to insert DNA ranged from 1:1 to 1:2.  Further increases in 

this ratio may reduce the yield of the undesired parent vector, but overall efficiency is not 

improved since the yield of products with multiple inserts also increases [15].  

Additionally, the linearised vectors (pUC18 and pET22b) were dephosphorylated with calf 

intestinal phosphatase to reduce recircularisation, thus improving the transformation 

efficiency.   

 

An important cofactor used in the ligation mix was 20 mM ATP, after it was found that 

ligation efficency of the T4 DNA ligase was influenced by the ATP viability in the 

ligation buffer.  BSA was used in all enzymatic reactions as a stabiliser.  A one-step 

screening procedure was followed based on marker inactivation using a portion of the E. 

coli lacZ gene in pUC18, which is inducible by IPTG.  The ligated pUC18 vector was 

transformed into the bacterial strain E. coli JM109, which contained a second defective 
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lacZ gene.  The two gene products complement each other by secreting an active β-

galactosidase that metabolises the chromogenic substrate X-gal producing blue colonies.  

Inserted DNA fragments such as cytb5 into lacZ causes the inactivation of the gene, and 

transformants appear white.  

 

The EcoRI/HindIII digested cytochrome b5 gene (~400 bp) was successfully ligated into 

the linear pUC18 (2499 bp).  Restriction enzyme digestion of the transformed plasmids is 

shown in Figure 7-4A.  Double digestion of a ‘white’ transformant containing the insert 

gene with HindIII and EcoRI resulted in bands at ~2700 bp and ~420 bp (lanes 3 and 5 in 

Figure 7-4A).  The linear pUC18 plasmid in lane 4 was a control, verifying the size of the 

larger band as the 2686 bp pUC18 intermediate cloning vector.  The absence of other 

significant bands, and the correlation of the sizes of the digested products, indicated that 

the ligation reaction was successful.  A PCR reaction was also performed, using a positive 

transformant colony as a DNA template and the original PCR primers (Table 8-1) to 

verify the presence of the cytb5(his)6 insert (Figure 7-4B). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-4:  Gel A is a restriction enzyme digestion analysis of plasmids obtained from blue white 

transformed colonies.  Lane 1, Roche DNA marker VII; Lane3, pUC18PETB (from a white colony) digested 

with EcoR1 and HindIII; Lane 4, pUC18 negative control (blue colony) without the insert gene; Lane 5, 

pUC18PETC (white colony) digested with EcoR1 and HindIII; Lane 7, DNA marker VIII.  The DNA 

fragments and plasmids were analysed on a 0.7% agarose gel in TAE buffer, followed by ethidium bromide 

staining.  Gel B shows the PCR confirmation of the insert gene cytb5(his)6.  Lane 8, Roche DNA Marker 

VIII; Lanes 10 and 12, white colonies containing the transformed recombinant plasmid; Lanes 9 and 11, 

blue colonies (negative control lacking the insert gene during ligation).   

1         2          3          4          5         6        7 

2799 bp

3639 bp

501 bp

404 bp

1         2          3          4          5         6        7 
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501 bp

404 bp

A B 

8         9         10         11        12                

501 bp

404 bp
424 bp
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The linearised recombinant plasmid pET22b[cytb5(his)6] is described in Figure 7-5A 

while Figure 7-5B depicts the enzymatic double digestion of pET22b clones containing 

the insert cytb5 gene.  Double digestion with HindIII and EcoRI yielded the inserted 

cytb5(his)6 gene (lanes 8 and 11, Figure 7-5B).  DNA sequence analysis of the pUC18 and 

pET22b clones confirmed the success of the cloning and verified that the cytb5 gene was 

inserted in the correct reading frame for translation of histidine tagged cytb5 holoenzyme 

(Figure 7-6). 

 

 

 

Figure 7-5:  0.7% Agarose gels (A and B) in TAE buffer.  Restriction enzyme digestion analysis of 

plasmids obtained from cells transformed onto antibiotic selective agar plates.  Lanes 1 and 5, DNA marker 

VII; Lane 3, positive transformant (pET22b ligated with cytb5) linearised with EcoRI; Lanes 4 and 6, 

transformant (negative control lacking the insert gene during ligation) linearised with EcoRI; Lane 7, DNA 

marker VIII; Lanes 8 and 11, positive transformant digested with HindIII and EcoRI; Lanes 9 and 10, 

negative control digested with HindIII and EcoRI; Lanes 12 and 13, linearised native pET22b; Lane 14, 1 kb 

Promega DNA marker. 

 

 

The correct reading frame and base pair sequence of the inserted cytb5(his)6 gene was 

verified using DNA sequencing generated with a sense primer from the T7 promoter 

region and the antisense primer specific for the T7 terminator region. 
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Figure 7-6:  Sequence analysis of the sense strand (3’ to 5’), of the cloned pET22b[cytb5] plasmid to 

confirm the DNA sequence of the inserted gene and verify the reading frame of the inserted cytb5 gene.  The 

nucleotides indicated by uppercase letters code for the expressed recombinant cytb5(his)6 protein while the 

lowercase nucleotides are native to the parent pET22b plasmid vector.  Restriction enzyme sites for EcoRI 

and HindIII are indicated in bold. 

 

137   atc gga att aat tcg gat ccg aat tcc ATG GCA GAG CAG TCG GAC   181 

46    Ile Gly Ile Asn Ser Asp Pro Asn Ser Met Ala Glu Gln Ser Asp   60 

 

182   GAG GCC GTG AAG TAC TAC ACC CTA GAG GAG ATT CAG AAG CAC AAC   226 

61    Glu Ala Val Lys Tyr Tyr Thr Leu Glu Glu Ile Gln Lys His Asn   75 

 

227   CAC AGC AAG AGC ACC TGG CTG ATC CTG CAC CAC AAG GTG TAC GAT   271 

76    His Ser Lys Ser Thr Trp Leu Ile Leu His His Lys Val Tyr Asp   90 

 

272   TTG ACC AAA TTT CTG GAA GAG CAT CCT GGT GGG GAA GAA GTT TTA   316 

91    Leu Thr Lys Phe Leu Glu Glu His Pro Gly Gly Glu Glu Val Leu   105 

 

317   AGG GAA CAA GCT GGA GGT GAC GCT ACT GAG AAC TTT GAG GAT GTC   361 

106   Arg Glu Gln Ala Gly Gly Asp Ala Thr Glu Asn Phe Glu Asp Val   120 

 

362   GGG CAC TCT ACA GAT GCC AGG GAA ATG TCC AAA ACA TTC ATC ATT   406 

121   Gly His Ser Thr Asp Ala Arg Glu Met Ser Lys Thr Phe Ile Ile   135 

 

407   GGG GAG CTC CAT CCA GAT GAC AGA CCA AAG TTA AAC AAG CCT CCG   451 

136   Gly Glu Leu His Pro Asp Asp Arg Pro Lys Leu Asn Lys Pro Pro   150 

 

452   GAA ACT CTT ATC ACT ACT ATT GAT TCT AGT TCC AGT TGG TGG ACC   496 

151   Glu Thr Leu Ile Thr Thr Ile Asp Ser Ser Ser Ser Trp Trp Thr   165 

 

497   AAC TGG GTG ATC CCT GCC ATC TCT GCA GTG GCC GTC GCC TTG ATG   541 

166   Asn Trp Val Ile Pro Ala Ile Ser Ala Val Ala Val Ala Leu Met   180 

 

542   TAT CGC CTA TAC ATG GCA GAG GAC AAG CTT GCG GCC GCA CTC GAG   586 

181   Tyr Arg Leu Tyr Met Ala Glu Asp Lys Leu Ala Ala Ala Leu Glu   195 

 

587   CAC CAC CAC CAC CAC CAC TGA gat ccg gct gct aac aaa gcc cga   631 

196   His His His His His His End Asp Pro Ala Ala Asn Lys Ala Arg   210 
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7.3.3. Bacterial expression of cytochrome b5 

 

Expression of recombinant proteins can be approached in general by starting with a 

plasmid that encodes the desired protein, transforming the plasmid into the required host 

cells, inducing expression, and ending with cell lysis and SDS-PAGE analysis to verify 

the presence of the expressed protein.  Successful expression of appreciable levels of 

recombinant protein is dependent on the choice of host strain, vectors, growth conditions 

and purification buffers.  However, many polypeptide gene products that are expressed in 

bacteria (E. coli) accumulate as insoluble aggregates that lack functional activity.  Other 

problems may include cell toxicity, protein instability, incomplete folding, improper 

processing such as post-translational modification and inefficient transcription [16].   

 

To facilitate the expression of correctly folded non-truncated human cytochrome b5 in E. 

coli it was necessary to compromise protein quantity for protein stability.  Thus a pET22b 

plasmid vector containing a pelB signal sequence that directs histidine tagged recombinant 

proteins to the periplasm was selected as an expression vector.  Expressed periplasmic 

proteins were considered more stable but in general, yields were found to be significantly 

lower than recombinant proteins expressed in the cytoplasm [12].  

 

SDS-PAGE evaluation of the IPTG induced T7 expression procedure is illustrated in 

Figure 7-7.  The protein molecular weight marker in lane 8 was used to estimate the size 

of the proteins in the respective bands.  There was no observable evidence of an intact 

cytb5 holoenzyme or a distinct band at 16 kDa.  Analysis of proteins in the induced 

soluble and insoluble fractions (Lanes 1 and 5) did not reveal the presence of a cytb5 

monomer.  Since the soluble and insoluble fractions can be prone to protease degradation, 

expressed proteins can also be transported to the periplasm.  However, analysis of the 

periplasmic fractions also failed to show clear evidence of the expected soluble 16.7 kDa 

cytb5 holoenzyme.   

 

An analysis of all the induced fractions in Figure 7-7 (lanes 1,5,7) reveals the presence of 

a prominent band at ~97 kDa.  This phenomenon was repeatedly observed even when 

growth expression conditions such as growth temperature and IPTG concentration were 

varied.  These variations include shifting the induction temperature from 37°C to 22°C, 
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lowering the IPTG concentration and the addition of growth additives such as hemin 

chloride and ferric citrate.  Holmans et al., [6] suggested that reduced temperature (25°C) 

and extended expression time (15 – 20 h) could allow for adequate cytb5 biosynthesis [6].  

However, the expression of soluble intact, correctly folded cytb5 holoenzyme was not 

detected using conventional SDS-PAGE analysis with coomasie blue staining.  This was 

consistent with reports by Fahnert et al., [11], who concluded that the in vivo folding of 

many heterologous eukaryotic proteins is a major bottleneck of high level production in 

bacterial hosts.  This review also noted that simple optimisation protocols are currently 

unavailable and that this is a field requiring more study. 

 

In a conflicting report by Miroux [17], who investigated the over-expression of seven 

membrane proteins in E. coli BL21(DE3), cell toxicity and death after induction was 

shown.  These authors then suggested the use of E. coli mutants that survived and 

subsequently expressed the proteins as inclusion bodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-7:  Coomassie stained SDS-PAGE gel; Lane 1, Soluble fraction (induced cells); Lane 2, soluble 

fraction (uninduced cells); Lanes 3 and 8, Roche molecular weight protein rainbow-marker; Lane 4, 

Insoluble fraction (uninduced cells); Lane 5, insoluble fraction (induced cells); Lane 6, periplasmic fraction 

(uninduced cells); Lane 7, periplasmic fraction (induced cells).  Arrows on the gel indicate the positions of 

the cytb5 aggregates. 
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A western blot using a Ni chelating probe conjugated to horse radish peroxidase, which is 

specific to both surface histidine residues and metal moieties of metallo-proteins was used 

to check for the presence of low levels of cytb5(his)6.  Figure 7-8 is a typical blot 

obtained.  The non-specific appearance of signals due to proteins in both the induced and 

uninduced cultures suggests that this particular probe is not ideal for this study.  While the 

Ni probe is specific for surface histidine residues on proteins, it is also specific for 

metalloproteins as observed by the clear, reproducible band at 30 kDa (carboxypeptidase 

marker in Lanes 1 and 9).  

 

The advantages of this probe were also curtailed largely by the trace element and ferric 

hemin chloride solutions used as nutrient additives, which caused many false positive 

signals by binding to the E. coli proteins and subsequently, being detected by the highly 

sensitive metal specific probe.  Additionally, when amphiphilic proteins form aggregates 

or inclusion bodies, the resultant superstructure of the complex, may block or shield metal 

ion interaction with the terminal surface histidine tag.  Zhang et al., [18], tried to 

overcome this problem by inserting hex histidine tags, at both the amino and carboxyl 

termini of the recombinant human aromatase protein. 

 

 

 

Figure 7-8:  Western blot performed with a Ni chelating probe conjugated to horse radish peroxidase.  Lane 

1, protein marker; Lane 2, induced soluble fraction; Lane 3, uninduced soluble fraction; Lane 4, induced 

insoluble fraction; Lane 5, uninduced insoluble fraction; Lane 6, uninduced periplasmic fraction; Lane 7, 

induced periplasmic fraction; Lane 9, protein marker. 
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A different approach was attempted to verify the presence of recombinant cytb5 using 

polyclonal antibodies raised against sheep liver cytb5 (anti-cytb5) and a secondary Ab 

raised against anti-sheep cytb5 in rabbits (goat anti-sheep antibodies).  Sheep liver cytb5 

was used as a positive control in lane 8.  A western blot depicting this experiment is 

shown in Figure 7-9.  A large amount of non-specific bands however were observed in 

both the induced samples (lanes 3 and 7) and the uninduced samples (lanes 2 and 6).   

 

 

 

Figure 7-9:  Western blot performed with primary polyclonal Ab raised against ovine cytb5 in rabbits and a 

secondary anti-rabbit polyclonal Ab raised in goats conjugated to horse radish peroxidase.  Lane 2, 

uninduced insoluble fraction, Lane 3, induced insoluble fraction; Lane 6, uninduced soluble fraction; Lane 7, 

induced soluble fraction, Lane 8, soluble ovine cytb5. 

 

The western blot analysis detailed in Figure 7-9, was inconclusive for the following 

reasons: 

• the large number of non-specific signals routinely detected in both induced and 

uninduced samples; 

• lack of clear evidence showing antibody binding to monomeric cytb5 or possible 

aggregates; 

• possible non-specificity of the rabbit anti-sheep liver cytb5 antibodies for the 

recombinant human cytb5. 

 

 

16 kDa

1                 2                  3                 4        5                   6                   7                 8



 7-20

7.4. CONCLUSIONS 

 

Using PCR, the cDNA of human cytb5 was amplified along with the addition of 

restriction enzyme sites HindIII and EcoRI, which were incorporated into the 3’ and 5’ 

termini of the gene respectively.  This gene was then subcloned into the expression vector 

pET22b, which contains a carboxyl terminus hex histidine sequence under the control of 

the T7 promoter.  This recombinant pET22b[cytb5(his)6] plasmid was transformed into an 

E. coli BL21(DE3) expression strain, which allows for high-level intracellular expression 

of proteins.  Recombinant proteins are transported to the periplasm via E. coli molecular 

chaperones under the control of the pELB signal sequence [19].  However, expression of 

intact cytb5 holoenzyme was not detected using this expression system.  SDS-PAGE 

analysis suggests that the protein is sequestered into aggregates after translation and there 

is evidence of the formation of hexamers corresponding to ~97 kDa.  Although yields are 

generally higher in bacterial systems, the consequently powerful action of the frequently 

used T7 and T7 lac promoters are known to cause aggregation of membrane proteins 

[20,21].   

 

Confirmation of the presence of histidine tagged cytb5 or soluble cytb5 using a metal 

chelating probe and polyclonal antibodies raised against sheep liver cytb5 were 

inconclusive.  The problems associated with bacterial expression systems and integral 

membrane metallo-proteins have been widely reported and alternate expression 

hosts/mutants have also been suggested, depending on the nature of the target protein.  

Expression of histidine tagged cytochrome b5 holoenzymes might be more successful 

using a yeast system such as Pichia pastoris.  This expression system is becoming 

increasingly popular for the production of amphipathic mammalian proteins.  Yeasts are 

also eukaryotic expression systems that produce heme and possess the machinery for post-

translational modifications that allow for protein folding around the ferric heme group.  

Alternative expression systems include the baculoviruses, where higher yields may be 

sacrificed for proper enzyme folding with no reconstitution and no aggregation [20]. 

 

The inability to produce high levels of histidine tagged cytb5 holoenzyme, with E. coli 

BL21(DE3), necessitated the use instead of histidine tagged bacterial pantothenate kinase 

for the testing of a potential IMAM system using a new bio-ligand.  The synthesis, surface 

characterisation and bio-specific binding of these ligands are described in chapter 8. 



 7-21

7.5. REFERENCES 

 

1. V. Smith, J.E. Walker,  Protein Expression Purificat.  29 (2003) 209. 

2. G. Georgiou, P. Valax, Methods in Enzymology  309 (1999) 48. 

3. R.R. Reed, P.F. Hollenberg, J. Inorg. Biochemistry  97 (2003) 265. 

4. M.A. Khaderbhai, R. Morgan, N.N. Kaderbhai,  Arch. Biochem. Biophys.  412 

(2003) 259. 

5. B.J. Curry, S.D. Roman, C.A. Wallace, R. Scott, E. Miriami, R.J. Aitken, 

Genomics  83 (2004) 425. 

6. P.L. Holmans, M.S. Shet, C.A. Martin-Wixtrom, C.W. Fisher, R.W. Estabrook,  

Arch. Biochem. Biophys.  312 (1994) 554. 

7. S.B. Mulrooney, L. Waskell,  Protein Expression Purification  19 (2000) 173. 

8. W. Boireau, J.C. Zech, P.E. Puig, D. Pompon, Biosensors Bioelectronics  20 

(2005) 1631. 

9. J.B. Schenkman, I. Jansson,  Pharmacol. Therapeutics.  97 (2003) 139. 

10. G. Vergeres, L. Waskell,  Biochemie  77 (1995) 604. 

11. B. Fahnert, H. Lilie, P. Naubauer,  Advances in Biochem. Engineering Biotechnol.  

89 (2004) 93. 

12. J. Sambrook, E.F. Fritsch, T. Maiatis,  Molecular cloning.  A laboratory manual. 

Cold spring Harbour Laboratory Press, New York. 

13. S. Bauer, J. Shiloach,  Biotechnol. Bioeng.  16 (1974) 933. 

14. A.S. Ladokhin, L. Wang, A.W. Steggies, P.W. Holloway,  Biochemistry.  30 

(1991) 10200. 

15. A.J. Harwood,  Basic DNA and RNA protocols.  Methods in Molecular Biology.  

58 (1996) Humana Press, Totowa, New Jersey, p.219. 

16. D.L. Kaufman, G.A. Evans,  BioTechniques  9 (1990) 306. 

17. B. Miroux, J.E. Walker,  J. Mol. Biol.  260 (1996) 289. 

18. F. Zhang, D. Zhou, Y-C. Kao, J. Ye, S. Chen,  Biochemical Phamacol.  64 (2002) 

1317. 

19. M.K. Akhtar, N.N. Khaderbhai, D.J. Hopper, S.L. Kelly, M.A. Kaderbhai,  B. 

Biol. Chem.  278 (2003) 45555. 

20. R.E. Whitwam, I.G. Gozarian, M. Tien,  Biochem. Biophys. Res. Comun.  216 

(1995) 1013. 

21. G-Q, Chen, E. Gouaux,  Proc. Natl. Acad. Sci. USA.  94 (1997) 13431. 



 

 

8-1

CHAPTER 8: A PLURONIC COUPLED METAL-CHELATING 

LIGAND FOR MEMBRANE AFFINITY CHROMATOGRAPHY 

 

 

 

 

This chapter has been accepted as is for publication in Journal of Membrane Science.  S. 

Govender performed all the experiments and data analysis described in this manuscript.  

The aim of this study was to couple a novel metal-chelating Pluronic to PVDF 

membranes, for the bio-specific immobilisation and elution of histidine tagged proteins 

and to quantify the ligand binding capacity of this new immobilised metal affinity 

membrane.   
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Abstract 

 

A technique for bio-specific affinity chromatography using synthetic nonporous 

membranes and a new metal chelating Pluronic surfactant is described.  Synthetic 

polymeric poly(vinyldiene fluoride) membranes were fabricated for use as solid, 

hydrophobic adsorption membrane matrices.  An ethylene diamine tetraacetic acid 

dianhydride was coupled to the terminal hydroxyl end groups of Pluronic® F108 via a two-

step reaction at 40°C, to create a new metal affinity ligand, Pluronic-N,N-

dicarboxymethyl-3,6-diazaoctanedioate (Pluronic-DMDDO).  The hydrophobic 

poly(propylene oxide) moiety of Pluronic allowed non-covalent adsorption of the ligand to 

the hydrophobic membrane matrix.  The protein repellent-properties of the hydrophilic 

poly(ethylene oxide) brush layer of Pluronic, served to preserve the bio-specific activity of 

the ligand and to increase ligand accessibility.  Proton induced X-ray emission (PIXE) 

analysis was used to determine the metal binding capacity, stability and surface 

homogeneity of this immobilised metal affinity membrane system and to generate surface 

homogeneity maps of the chelated metal ions.  The chelate capacity of Pluronic-DMDDO 

was determined under non-competitive conditions and was of the order (Zn2+ > Ni2+ > 

Cu2+).  An amino terminal hex-histidine tagged recombinant Escherichic coli pantothenate 

kinase was used as a test protein.  Histidine tagged pantothenate kinase bound strongly to 

Pluronic-DMDDO treated membranes specifically in the presence of Ni2+.  Eluted 

immobilised histidine tagged proteins retained their biochemical activity and the 

membranes were capable of being regenerated and re-used. 

 

 

 

 

 

 

 

Key Words: 

 

Membrane affinity chromatography, Pluronic® F108, metal chelating ligand, PIXE 

 

 



 

 

8-3

8.1. INTRODUCTION 

 

Affinity chromatography is becoming the method of choice for rapid and high purity 

down-stream bio-processing in pharmaceutical and medical applications.  For the isolation 

and purification of therapeutically relevant bio-molecules such as interferons, vaccines, 

antibodies, hormones, polynucleotides and peptides, etc; high quality ligands are required 

[1-3].  Immobilised metal affinity chromatography (IMAC) shows great potential for 

ligand purification using immobilised divalent metal ions [4].  This is due largely to 

IMAC being a low cost, well-characterised re-usable technology with higher adsorption 

capacity than conventional affinity matrices [5,6]. 

 

Lately, after the emergence of membranes in filtration processes, synthetic polymeric 

membranes have become promising candidates as affinity matrices [5,6].  An ideal 

membrane affinity matrix offers the following advantages: a large surface area to volume 

ratio, high chemical, thermal and mechanical stability, bio-compatibility, a wide variety of 

surface functional groups, controlled pore size for filtration, scaleability and non-toxicity 

[3,7].  Many commercially available membranes are either hydrophobic (hence susceptible 

to non-specific protein adsorption) or have covalently grafted surface functional groups 

that are difficult to activate or regenerate.  These inherent features of some affinity 

membranes could hamper the development of membrane-based IMAC applications.  A 

possible solution to preventing non-specific binding and to simultaneously present 

functional groups for covalent modification with ligands is to functionalise the membrane 

surface with an amphiphilic surfactant like Pluronic F108 [8]. 

 

Pluronic surfactants are commercially available poly(ethylene oxide)x-poly(propylene 

oxide)y-poly(ethylene oxide)x (PEOx-PPOy-PEOx) triblock copolymers, which are water 

soluble, non-ionic, micelle forming surface acting detergents that can self assemble into 

monolayers at hydrophobic interfaces [9].  These low-cost, non-toxic surfactants are 

widely used in bio-medical, pharmaceutical and biotechnological applications [10].  

Pluronic pre-treatment of membranes in filtration applications has already been shown to 

reduce protein and cell adhesion and enhance permeate flux [11,12].  Since Pluronic 

interacts at the solid interface with membranes via non-covalent intermolecular 

interactions, it is also a potential re-usable affinity linker for IMAC systems.  Membrane 

affinity separation techniques utilising Pluronic surfactants have several advantages over 
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conventional methods that are dependent on surface grafted ligands [8,13].  These 

surfactant-based separations generally have low-energy requirements and are approved by 

the environmental protection agency and the food and drug administration, thus 

facilitating their acceptability in biotechnological and medical applications [10].   

 

As with conventional chromatographic matrices such as agarose and silica, metal affinity 

membranes require the surface immobilisation of a ligand.  The most commonly used 

chelators for IMAC include the tridentate IDA, tetradentate NTA and the pentadenate 

TED [14].  The choice of chelator is dependent on the chemistry of the matrix reactive 

groups, ligate and its attendant cost.  Based on a recent review by Suen et al., [6] the 

tridenate IDA is the most commonly used chelator, because of its lower price and 

convenient availability.  Once an appropriate membrane matrix and chelator are selected, 

other important parameters for investigation include the chemistry of surface functional 

groups, chelate capacity, metal ion sorption capacity, immobilisation method and the 

effects of the buffer regime on ligate stability and purification. 

 

This work is directed towards the fabrication of planar, nonporous PVDF membranes for 

the reversible immobilisation of a new metal chelating Pluronic.  This novel chelating 

ligand was synthesised by covalent coupling of an EDTA type ligand (ethylene diamine 

tetraacetic acid dianhydride) to Pluronic F108 via a two-step reaction to yield the chelating 

ligand Pluonic-DMDDO.  The nuclear microprobe technique, PIXE was adapted to 

directly study the interfacial chelating capacity of divalent metal ions (Ni2+, Cu2+ and 

Zn2+) on the membrane surface.  The chelate density, metal stability and metal sorption 

capacity were directly quantified using solid-state PIXE analysis.  Using non-denaturing 

buffers and protein analysis we were able to demonstrate the biospecific immobilisation of 

an amino-terminal histidine-tagged recombinant pantothenate kinase [his6(PK)].   

 

 

 

 

 

 



 

 

8-5

8.2. EXPERIMENTAL 

 

8.2.1. Reagents and Chemicals 

 

Pluronic® F108 was obtained from BASF (Germany).  Unless otherwise stated all 

chemicals were purchased from Merck, Chemical company, South Africa.  All enzymes 

and enzyme solutions were purchased from Roche (Penzberg, Germany). 

 

8.2.2. Inductively Coupled Plasma 

 

Inductively coupled plasma (ICP) analysis was performed on a Liberty Series II radial 

emission ICP-atomic emission spectrometer.  High purity grade reagents were used in this 

work.  The water used was prepared by further purification of de-ionised water with a 

Milli-Q water purification system (Millipore, USA).  Samples were dissolved in 10 ml 

Milli-Q water. 

 

8.2.3. Proton Induced X-Ray Emission 

 

Proton induced X-ray emission (PIXE) was used to quantify the number of metal atoms on 

the surface of chelated membranes.  Measurements were performed using a nuclear 

microprobe at Materials Research Group, iThemba LABS, South Africa [15].  A 3.0 MeV 

H+ beam was focused to a 5 μm x 5 μm spot and scanned on the membrane surface.  Scans 

of 1.5 mm x 1.5 mm were used close to the centre of the membrane surface where the 

highest surface homogeneity was observed [16].  PIXE spectra were recorded with a 

Si(Li) detector positioned at 135° to the beam direction, ca. 25 mm from the specimen, 

shielded from backscattered protons by an external 155 μm Kapton absorber.  Proton 

backscattering spectra were simultaneously recorded with an annular Si surface barrier 

detector, 100 μm thick, positioned at an average angle of 176o. Data were collected using 

XSYS data acquisition system in list mode. GUPIX software was used for the evaluation 

of the concentration of metals on the membrane surface from the PIXE spectra. PIXE 

elemental maps were obtained with GeoPIXE-II software and generated using the dynamic 
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analysis method [17]. Proton backscattering spectra were used for qualitative evaluation of 

the depth distribution of metal atoms.   

 

8.2.4. Nuclear Magnetic Resonance Spectroscopy 

 

NMR analysis was done using a Varian VXR 600 NMR spectrometer.  60 to 80 mg 

Pluronic-DMDO was dissolved in deuterated chloroform (CDCl3) with tetramethylsilane 

as internal standard for 13C analysis.   

 

8.2.5. Spectrophotometric analysis 

 

Protein concentration was measured using a bicinchoninic acid protein assay kit from 

Pierce chemical company, with bovine serum albumin as standard.  Pluronic® F108 and its 

derivatives were extracted and quantified according to the biphasic desorption system and 

colorimetric assay described in [16]. 

 

8.2.6. Membrane fabrication 

 

Planar nonporous immersion precipitation membranes were cast from a solution 

containing 27 % [m/m] PVDF and 73 % (m/m) N,N-Dimethylacetamide (DMAc).  The 

PVDF solution required sonication in an ultrasonic water bath for 30 min and further heat 

treatment at 55˚C for 48 h to dissolve. The solutions were subsequently degassed before 

being used to cast the 200 µm planar membranes.  These membranes were cut into 1 cm2 

sections and were stored in 0.04 M aqueous sodium azide to prevent microbial growth.  In 

preparation for adsorption studies, membranes were washed overnight in sterile, deionised 

water, followed by three further washes with deionised water.  Prior to non-covalent 

surface modification, the membranes were sonicated three times in sterile deionised water 

in an ultrasonic bath for 5 min followed by drying in a laminar flow cupboard. 
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8.2.7. Synthesis of a chelating ligand modified Pluronic F108 

 

The terminal hydroxy groups of Pluronic were modified in a two-step reaction to yield the 

tetradentate DMDDO type ligand at the hydroxyl terminals of Pluronic (Figure 8-1).  This 

reaction was carried out by dissolving a 10-fold excess of the EDTA dianhydride (256 mg) 

and 156 mg imidazole (Sigma-Aldrich, Chemical Co.) in dry DMF (10 ml) after which 

Pluronic F108 (1.5 g) was added and reacted for 8 h at 40oC.  Methanol (3 to 5 ml) was 

subsequently added and reacted for another 8 h after which the DMF was removed in 

vacuo.  Longer reaction times were employed due to the size of Pluronic F108.  The 

residue was treated with toluene to selectively dissolve ligand-modified Pluronic from the 

DMDDO by-product.  The final product was characterised mainly by NMR with the aid of 

model ligands based on mono and diethylene glycol. 

 

 

 

Figure 8-1:  Reaction scheme for the synthesis of Pluronic – N,N-dicarboxymethyl-3,6-diazaoctanedioate. 
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8.2.8. Chelation using ligand modified membranes 

 

PVDF membranes were coated in a solution of Pluronic-DMDDO for 8 h at 25°C.  For 

batch chelation with divalent metal ions, 1 cm2 pieces of planar nonporous membranes 

(non-covalently modified with Pluronic-DMDDO) were incubated in 10 ml of 0.05 M 

solutions of NiCl2.6H2O (Aldrich), Cu(NO3)2.xH2O (Sigma) and Zn(NO3)2.6H2O 

(Aldrich) in 0.007 M NaOH.  The incubation was carried out at room temperature for 60 

min.  Membranes were then removed, washed in 10 ml dH2O, air-dried and stored under 

inert atmosphere for further analysis.  Metal ions in the bulk equilibrium solution were 

quantified by ICP analysis.  

 

8.2.9. Pantothenate kinase assay 

 

Recombinant Escherichia coli pantothenate kinase (a kind gift by Dr. E. Strauss, 

Department of Chemistry and Polymer Science, University of Stellenbosch), was purified 

on an Amersham AKTA Prime (Amersham Biosciences) using a Ni-NTA column (Sigma) 

and was eluted with an imidazole gradient.  Pantothenate kinase (PK) activity was based 

on the measurement of the decrease in the absorbance at 340 nm [18].  An extinction 

coefficient of 6220 M-1.cm-1 was used for the calculation of NADH concentrations.  

Reactions were monitored at 25°C in a CARY 110 UV-Vis spectrophotometer.  PK 

activity was determined using a continuous spectrophotometric assay that coupled the 

production of ADP to the consumption of NADH.  Each 500 μl reaction mixture contained 

1.5 mM ATP (Sigma), Tris-Cl, pH 7.6 (50 mM), MgCl2 (10 mM), KCl (20 mM), β-

NADH (0.3 mM), 0.5 mM phosphoenol pyruvate (Sigma) pyruvate kinase (5 units), lactic 

dehydrogenase (5 units), 5 μg pantothenate kinase, and 0.5 mM sodium pantothenate 

(Sigma).  The reaction was initiated by the addition of the pantothenic acid substrate [18] 

and is detailed in Figure 8-2.   

 

 

 

 

 



 

 

8-9

 

Figure 8-2:  Schematic representation of the interactions of histidine tagged pantothenate kinase (PK), 

Pyruvate kinase and lactate dehydrogenase (LDH) in the spectrophotometric assay based on NADH 

consumption at 340 nm.  The reaction was initiated with pantothenic acid while phosphoenolpyruvate (PEP) 

and ATP were used as cofactors. 

 

8.2.10. Bio-specific separation 

 

Ni2+ chelated ligand coupled PVDF membranes were washed 3 times in 10 ml dH2O, air-

dried and then immersed into a loading buffer of (0.3 M NaCl, 0.01 M imidazole, 0.05 M 

NaH2PO4, pH 8.0) and a his6(PK) solution at a bulk initial protein concentration of 0.2 

mg.ml-1.  A non-derivatised Pluronic coated PVDF membrane was used as a negative 

control.  After 120 min incubation with gentle shaking at 4°C, the enzyme assays were 

performed on the bulk equilibrium enzyme solution and the protein concentration was 

measured.  Unbound protein was removed by washing the membrane in 5 ml of washing 

buffer (0.3 M NaCl, 0.05 M NaH2PO4, pH 8.0).  Affinity immobilised his6(PK) was eluted 

with an elution buffer (0.3 M NaCl, 0.25 M imidazole, 0.05 M NaH2PO4, pH 8.0).  The 

contact time of the membrane in each buffer was 120 min at 4°C with gentle shaking and 

the enzyme assays were performed on the bulk equilibrium enzyme solution and the 

protein concentration was determined with a PierceTM colorimetric spectrophotometric 

assay. 
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8.3. RESULTS AND DISCUSSION 

 

8.3.1. Synthesis of Pluronic-DMDDO 

 

The widely used nitrilotriacetate (NTA) IMAC system involves covalent coupling to 

Sepharose® CL-6B and is chelated to Ni2+ by perfusing a NTA-Sepharose® column with a 

metal ion solution until equilibrium is reached between the metal chelated to the stationary 

phase and the metal ion in solution.  Preparation of these columns is typically very 

cumbersome, agarose is mildewy and ultimately adds to the high costs of biological 

downstream processing [3,6,19,20].  According to Suen et al., [6], the most commonly 

used chelator is imidodiacetic acid (IDA), because of its low cost and convenience.  The 

synthetic route and yields greatly influence cost [6,19] so direct chemical attachment of a 

chelator is thus favoured because multiple steps lead to higher labour associated costs and 

eventual loss of compound.  This is of greater significance when working with relatively 

large polymers like Pluronic® F108.   

 

The attachment of the widely used and relatively inexpensive EDTA chelator to Pluronic 

is an example of direct chemical coupling.  EDTA is hexadentate, capable of filling the 

octahedral coordination system and can thus complex a number of metal cations.  The 

coupling chemistry was based on using one of the acids of EDTA dianhydride, the reactive 

precursor derivative of EDTA to bind to Pluronic by esterification (thus removing it from 

coordination) and another acid by esterification with methanol (Figure 8-1).  Imidazole 

was used to activate and solubilise the EDTA-dianhydride.  This yielded a tetradentate 

ligand with coordination sites on the octahedral system open for ligand attachment and a 

nonpolar centre block available for hydrophobic surface interaction.  The ligand Pluronic-

DMDDO was characterised using 13C NMR spectroscopy and is soluble in water or 

organic solvents and can be stored indefinitely, either in solution or as a desiccate. 
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8.3.2. The ligand functionalised membrane 

 

The PVDF polymer is of increasing scientific and industrial significance because of its 

outstanding electrical properties (piezoelectricity), chemical resistance, durability and its 

biocompatibility in soft tissue applications [21,22].  The fabricated PVDF membranes are 

stable and can be stored indefinitely under ambient conditions or in a NaN3 solution to 

prevent possible microbial growth.  PVDF exists in at least three main crystalline forms, 

designated as α (form II), β (form I) and γ (form III), and also in a minor phase, 

designated as δ [21].  PVDF membranes were fabricated as hydrophobic affinity matrices 

and were characterised using photo-acoustic FT-IR (Figure 8-3).   

 

The α phase of PVDF has a unique IR absorption band at 763 cm-1 (Figure 8-3), which 

was baseline separated from the other peaks.  Other relevant peaks in Figure 8-3 that 

correlate to the α phase are the vibration bands at 532 (CF2 bending), 763, 613 (CF2 

bending and skeletal bending), 792 (CH2 rocking).  The vibration band at 840 cm-1 can be 

assigned to the β form.   

 

 

Figure 8-3:  Photoacoustic FT-IR spectra of a native nonporous planar PVDF membrane. 

 

The immobilisation of a ligand to an affinity matrix usually occurs via covalent coupling 

but this was found to reduce its freedom to interact with the ligate [14].  The PEO chain of 

Pluronic counteracts this by functioning as a large spacer arm between the matrix and the 

metal chelating ligand.  The PEO chain does not impart any adverse properties to the 

adsorbent and because it is hydrophilic, it does not serve as an adsorption centre for 
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proteins, thus it is more likely to inhibit non-specific protein adsorption.  A schematic 

illustration of the coupling of a Ni chelated Pluronic-DMDDO membrane for histidine 

tagged protein immobilisation is depicted in Figure 8-4. 

 

 

Figure 8-4:  Schematic illustration of affinity immobilisation of histidine tagged proteins using membrane 

coupled Pluronic-DMDDO-Ni2+. 

 

Saturation curves for the adsorption of Pluronic F108 and Pluronic-DMDDO are shown in 

Figure 8-5.  The similarities in the saturation curves in Figure 8-5 indicate that EDTA 

dianhydride coupling to the hydroxyl terminus of Pluronic F108 did not affect its 

adsorption affinity for hydrophobic surfaces via the unmodified PPO moiety.  The 

adsorption of Pluronic DMDDO (Figure 8-5) showed a typical Langmuir type adsorption 

profile at 25°C with a plateau at ~ 5 mg.ml-1.  Ligand coupled Pluronic coating solutions 

were maintained at 5 mg.ml-1 for all experiments in this study as surface tension analysis 

revealed that Pluronic F108 and its associated derivatives tended to self assemble into 

micelles at 7 mg.ml-1 [16]. 
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Figure 8-5:  Saturation curves for Pluroninc F108 and Pluronic~DMDDO adsorbed on 1 cm2 planar 

nonporous PVDF membranes at 25°C. 

 

 

8.3.3. Chelation and ligand capacity 

 

Micro-PIXE analysis was used to confirm the specific chelation of Ni2+, Cu2+ and Zn2+ 

ions to membrane coupled Pluronic-DMDDO.  Proton backscattering spectra confirmed 

that these ions were located exclusively on the membrane surface.  A summary of the 

quantitative investigation of metal ion chelation using the PVDF affinity matrix is listed in 

Table 8-1.  

 

Metal ions can adsorb passively and non-specifically to both untreated membrane surfaces 

and to Pluronic modified membranes (Table 8-1), but at much lower levels than with 

ligand modified membranes.  The specific sorption capacity of the ligands for Zn2+, Ni2+ 

and Cu2+ were 0.52 μmol.cm-2, 0.47 μmol.cm-2 and 0.32 μmol.cm-2 respectively.  Typical 

PIXE spectra are depicted in Figure 8-6, where distinct metal (Ni, Zn and Cu) Kα and Kβ 

peaks are observed with no significant levels of other elemental species other than a minor 

chlorine peak on the Ni chelated membrane.   
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Table 8-1:  Summary of PIXE analysis of ligand modified (PVDF~F108-DMDO), Pluronic coated 

(PVDF~F108) and native PVDF membranes 

 

 

Figure 8-6:  PIXE spectra showing specific divalent cation binding on PVDF~F108-DMDDO  

 

 

PIXE elemental maps showing homogeneity of the distribution of elements on the 

membrane surface (Figure 8-7), were generated for each metal chelated affinity 
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membrane.  The colour intensity gives an indication of the distribution of the respective 

metal ions on the membrane surface.  A uniform surface is indicative of a homogenous 

distribution or sorption of metal ions on the surface.  Provided we assume monolayer 

coverage and an even distribution of the DMDDO coupled to Pluronic, the homogeneity 

maps depicted in Figure 8-7 suggests that uniformity in metal distribution or surface 

homogeneity was of the order Cu2+ > Zn2+ > Ni2+.   

 

 

Figure 8-7:  PIXE elemental maps showing the distribution of Ni, Cu and Zn localisation of planar PVDF 

membranes, surface modified with Pluronic-DMDDO. 

 

The Ni2+ inhomogeneity could be explained by the presence of the chlorine peak in the 

PIXE spectrum (Figure 8-6), suggesting the formation of chloride salts on the surface, 

which could be caused by high salt and pH induced precipitation during Ni chelation using 

the Ni(II) salt NiCl2.6H2O. 
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8.3.4. Chelate stability and repeated use 

 

An important characteristic of chelating ligands is their ability to be regenerated and 

reused [9] with minimal leaching of metal ions.  The stability of the repeated application 

of the chelating copolymer can be estimated from results obtained in several 

sorption/desorption cycles [23].  Previous studies related to the stability and regeneration 

of membrane associated metal chelating ligands make use of either the relatively non-

specific monochlorotriazinyl dye cibacron blue F3GA [24] in conjunction with strong 

acids (2 M HCl) or conventional ligands like IDA [7].   

 

The pH plays a complex role in the chelation, retention and elution processes because of 

its affects on the nucleophilic behaviour of the buffer components [2].  Metal coordination 

can therefore be controlled by varying the pH [1,2].  The carboxymethyl groups on the 

Pluronic-DMDDO chelator need to be deprotonated for metal ion chelation.  This is 

usually achieved at pH 4 or higher.  Metal ion displacement, however, is relatively simple 

to implement with 0.1 M EDTA [24,25].  Treatment of chelated membranes in the elution 

buffer set at a pH range from 2.5 to 8.5 suggested that the stability of the Ni2+ chelate was 

very high above pH 5.5, with Ni2+ most stable at physiological pH (7.5).  However, metal 

leaching (5 – 10%) was observed below pH 5 (Table 8-2).  Reliable ICP analysis of Cu 

and Zn was hampered by the formation of precipitates in solution. 

 

Table 8-2:  ICP data for pH dependent desorption of Ni from chelated membranes 

 

< 0.02 μg.cm-2pH 8.5

< 0.02 μg.cm-2pH 7.5

0.02 μg.cm-2pH 6.5

0.04 μg.cm-2pH 5.5

1.66 μg.cm-2pH 4.5

1.74 μg.cm-2pH 3.5

2.59 μg.cm-2pH 2.5

[Ni2+] desorbed from membrane 
coupled  ligand

pH of Elution buffer

< 0.02 μg.cm-2pH 8.5

< 0.02 μg.cm-2pH 7.5

0.02 μg.cm-2pH 6.5

0.04 μg.cm-2pH 5.5

1.66 μg.cm-2pH 4.5

1.74 μg.cm-2pH 3.5

2.59 μg.cm-2pH 2.5

[Ni2+] desorbed from membrane 
coupled  ligand

pH of Elution buffer
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The sorption rate and capacity of the chelating polymers towards metal ions depend on 

several parameters such as shear stress (or flow rate), structural properties of the sorbent, 

metal ion properties (hydrated ionic radius), metal ion concentration, pH, chelate 

formation rate, and the presence of competitive ions for the active sites [23].  However, 

the published results regarding metal sorption on chelating polymers have been obtained 

under different experimental conditions so it is difficult to make reliable comparisons. 

 

The high salt concentration used in the loading, washing and elution buffers can give high 

recovery but repeated use may cause severe metal ion leakages.  From Figure 8-8 it can be 

seen that Ni2+ leakage did occur after cycles 4 and 5.   

 

 

Figure 8-8:  Stability of surface chelated Ni2+ after repeated membrane incubation in loading, elution and 

washing buffers.  Initially 10 membranes were chelated under identical conditions and after every typical 

IMAC cycle of incubation in loading, washing and elution buffers, 2 membranes were subsequently 

removed for PIXE analysis. 

 

Reduction in salt concentration from 0.3 M NaCl to approximately 0.1 to 0.2 M may 

diminish the metal ion leakage from the affinity membrane but affinity immobilised 

histidine tagged proteins or any surface amino acid coupled protein may present 

difficulties during the elution procedure.  Although an appropriate salt concentration 

should be carefully selected [26], other alternatives include the use of a post-trap for 

leaching metal ions [27] or regeneration of the membrane coupled ligand with a metal ion 

solution [6]. 
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8.3.5. Bio-specific protein immobilisation 

 

Evaluation of PVDF~Pluronic-DMDDO as an affinity ligand for immobilised metal 

affinity protein immobilisation was performed with an amino-terminal histidine tagged E. 

coli pantothenate kinase.  His6(PK) was used as a test protein because of the high levels 

that could be expressed and purified, and because it was stable and its biological activity 

could be conveniently and accurately determined spectrophotometrically [18].  His6(PK) 

activity was determined by monitoring the decrease in NADH concentration over time at 

340nm.   

 

A 2 ml solution of 0.2 mg.ml-1 His6(PK) was incubated with ligand modified Pluronic, 

unmodified Pluronic and native PVDF membranes.  Curves representing PK activity as a 

function of NADH concentration are depicted in Figure 8-9, while the protein and NADH 

concentrations are listed in Table 8-3.  Curve A in Figure 8-9 is an example of a typical 

activity profile of the enzyme in solution, without the addition of ligand functionalised 

membranes.  Curve B in Figure 8-9 shows a similar activity profile due to a 0.17 mg.ml-1 

solution of PK, which suggests that low levels of PK adsorbed non-specifically to 

PVDF~Pluronic at a concentration of 0.066 mg.cm-2.  Incubation of this membrane in a 

wash buffer resulted in the displacement of 0.06 mg protein. 

 

Ligand modified PVDF membranes however, produced a flatter activity curve, 

characterised by a low NADH conversion rate and depletion of His6(PK) from the bulk 

solution.  Affinity adsorption using a single PVDF~Pluronic-DMDDO membrane, 

specifically immobilised 0.17 mg PK.cm-2 of membrane.  Treatment of a 0.2 mg.ml-1 

solution of PK with three ligand modified membranes (3 x 1 cm2) yielded virtually no PK 

activity and removed 0.24 mg of His6(PK).  Treatment of these PVDF~DMDDO-Ni 

bound His6(PK) membranes in the wash buffer showed no significant desorption of the 

protein. 

 

To reduce non-specific binding of pantothenate kinase, high ionic strength buffers were 

used for all the steps from loading and washing to elution.  Another advantage relevant to 

membrane affinity separation is that any weakly bound biospecies containing certain 

surface exposed amino acids can be washed off the affinity membrane [6].  Elution was 

attempted under non-denaturing conditions using strong displacing agents such as 
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imidazole and a high salt concentration.  A single incubation step of the IMAM in the 

imidazole containing elution buffer resulted in 78% displacement of immobilised protein 

His6(PK).  Other methods of elution of histidine tagged proteins could involve using a 

milder strategy such as a lower pH buffer (a pH lower than the pKa for the electron 

donating histidine) or with a stronger metal chelating agent.   

 

 

Figure 8-9:  Pantothenate Kinase [his6(PK)] activity, a) Typical PK assay under standard conditions, 

his6(PK) incubated with b) 1 cm2 Pluronic coated PVDF membrane, c) 1 cm2 Ni chelated ligand modified 

Pluronic-PVDF, d) three (3x 1 cm2) Ni chelated ligand modified Pluronic-PVDF membranes.  The change in 

absorbance over time for each assay is depicted as ΔA/Δt, while the enzyme concentrations were calculated 

from the bulk equilibrium protein remaining after removal of membranes from the incubation vessel.  The 

initial enzyme concentration prior to the addition of membranes was ~0.2 mg/ml. 

 

 

The NADH concentrations were calculated from Beer Lamberts Law: A = E.c.l, 

where A is the absorbance and c the NADH concentration.  The molar extinction 

coefficient (E) for NADH is 6220 M-1.cm-1 and a 1 cm path length (l) cuvette was used.  

The change in NADH concentration was calculated from the absorbance time point 

extremities (Table 8-3).  The Ni-chelated membranes in C and D, show a much lower % 

reduction of NADH which suggests that there is much less PK remaining in solution, due 

to the specific removal of PK by the chelated membranes. 
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Table 8-3:  Rate of change of absorbance and NADH concentration due to His6(PK) activity.  The 

concentration of pantothenate kinase refers to the bulk equilibrium amount remaining in solution after 

contacting with chelating membranes in a 2 mg.ml-1 solution of His6(PK) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.42 %8.0 x 10 -7 M0.0050.078 mg.ml-1D] PVDF~F108-DMDDO-Ni2+ (3x)

29.54 %1.35 x 10 -5 M0.0120.11 mg.ml-1C] PVDF~F108-DMDDO-Ni2+

51.24 %1.86 x 10 -5 M 0.0250.17 mg.ml-1B] PVDF~F108-DMDDO

59.58 %4.26 x 10-5 M0.040.20 mg.ml-1A] Control

Percentage
Reduction

ΔNADH ΔA/ΔtPantothenate 
Kinase 
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8.4. CONCLUSIONS 

 

When used as an affinity linker, the amphiphilic surfactant Pluronic F108 provides a 

method to: 1) hydrophilise a hydrophobic affinity membrane matrix, 2) serve as a 129 

carbon affinity spacer molecule and 3) allows for the covalent modification of the terminal 

hydroxyl groups of the PEO chain for the direct coupling of an EDTA-type ligand 

(DMDDO).  The synthesised nonporous affinity matrices and ligand were stable and well 

characterised using direct solid-state PIXE analysis.  Non-covalent coupling of the 

chelating ligand to PVDF membranes followed Langmuir type adsorption with maximum 

monolayer coverage at 5 mg.ml-1.   

 

The sorption capacity of the ligands for Zn2+, Ni2+ and Cu2+ were 0.52 μmol.cm-2, 0.47 

μmol.cm-2 and 0.32 μmol.cm-2 respectively.  Accurate quantification and chelating 

homogeneity maps were obtained using the highly sensitive and direct PIXE technique.  

The Ni2+ chelating properties of the PVDF~F108-DMDDO membranes were consistent 

for up to three typical IMAC cycles of binding, washing and elution.  However, a five-fold 

decrease in chelated Ni2+ was observed after four cycles.  Since Pluronic displacement was 

found to be negligible during incubation in mild physiological buffers [16], it is likely that 

Ni2+ ions leached off the ligand modified membranes.  This IMAM system was also able 

to specifically immobilise up to 0.17 mg.cm-2 his6(PK).  A his6(PK) elution efficiency of 

78% was achieved with a single treatment of the histidine tagged protein immobilised 

PVDF~DMDDO-Ni membrane in a non-denaturing elution buffer.  The activity of the 

enzyme in both the bulk equilibrium solution and in the eluted form, were unaffected by 

the chelating membrane, as demonstrated spectrophotometrically, by monitoring NADH 

consumption.   

 

 

Acknowledgements 

 

The Water Research Commission and the National Research Foundation provided 

financial support for this study.  Histidine tagged E. coli pantothenate kinase was provided 

by Dr. E. Strauss and Ms. L.A. Brand at the Department of Organic Chemistry, 

Stellenbosch University. 



 

 

8-22

8.5. REFERENCES 

 

1. J. Porath,  Trends In Analytical Chemistry  7(7) (1988) 254. 

2. U. Bora, K. Kannan, P. Nahar,  J. Mem. Sci.  250(1-2) (2005) 215. 

3. D.K. Roper, E.N. Lightfoot,  J. Chromat. A.  702 (1995) 3. 

4. J. Porath, J. Carlsson, I. Olsson, G. Belfrage, Nature  258 (1975) 598. 

5. W. Hao, Z. Chen, J. Wang, X. Liu,  Analytical Letters  37 (2004) 1319. 

6. S-Y. Suen, Y-C. Liu, C-S. Chang,  J. Chromat. B.  797 (2003) 305. 

7. Y-C. Liu,  (2003). J. Chromat. B.  794 (2003) 67. 

8. J-T. Li, J. Carlsson, J-N. Lin, K.D. Caldwell,  Biocon. Chem.  7 (1996) 592. 

9. S.C. McLean, H. Lioe, L. Meagher, M.L. Gee,  Langmuir  21(6) (2005) 2199. 

10. S. Stolnik, B. Daudali, B. Arien, J. Whetsone, C.R. Heald, M.C. Garnett, S.S. 

Davis, S.S., L. Illum,  Biochimica Biophysica Acta  1514 (2001) 261. 

11. H.K. Shon, S. Vigneswaran, I.S. Kim, H.H. Ngo, J. Mem. Sci.  234 (2004) 111. 

12. X.J. Yang, A.G. Fane, C. Pin, Chemical Eng. Journal.  88 (2002) 45. 

13. C-H. Ho, L. Limberis, K.D. Caldwell, R.J. Stewart,  Langmuir  14 (1998) 3889. 

14. J. Porath, J. Chromatogr.  218 (1981) 241. 

15. V.M. Prozesky, W.J. Przybylowicz, C.L. Churms, C.A. Pineda, K.A. Springhorn, 

C.G. Ryan, T. Swart,  Nucl. Instrum. Meth. B.  104 (1995) 36. 

16. S. Govender, E.P. Jacobs, M.W. Bredenkamp, P. Swart, J. Colloid Interface Sci.  

282 (2005) 306. 

17. C.G. Ryan, D.N. Jamieson, C.L. Churms, J.V. Pilcher,  Nucl. Instr. Meth. B. 104 

(1995) 157. 

18. E. Strauss, T.D. Begley,  J. Biol. Chem.  277(50) (2002) 48205. 

19. Q. Zheng, J. Xu, R. Fu, Q. Ye,  J. Chrom. A.  921 (2001) 197. 

20. E. Lightfoot, J.S. Moscariello, Biotechnol. Bioeng.  87(3) (2004) 259. 

21. M. Benz, W.B. Euler, J. Applied Polymer Sci.  89 (2003) 1093. 

22. A. Salimi, A.A. Yousefi,  J. Polymer Sci.  42 (2004) 3487. 

23. A. Nastasovic, S. Jovanovic, D. Dordevic, A. Onija, D. Jakovlejevic, T. 

Novakovic, Reactive and Functional Polymers  58 (2003) 139. 

24. V. Gaberc-Porekar, V. Menart,  J. Biochem. Biophys. Methods.  49 (2001) 335. 

25. N. Labrou, Y.D. Clonis, J. Biotechnology  36 (1994) 95. 

26. C-Y. Wu, S-Y. Suen, S-C. Chen, J-H. Tzeng,  J. Chromat. A.  996 (2003) 53. 

27. G.S. Chaga, J. Biochem. Biophys. Methods  49 (2001) 313.  



 9-1

CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 

 

9.1. SUMMARY 

 

The great interest in affinity membrane technology stems from the expectations generated 

by combining the exceptional selectivity of bioaffinity ligands with the high productivity 

associated with filtration membranes [1].  However, there have been very few commercial 

applications arising from the numerous reports that generally focus on the chemical 

coupling of biological ligands onto various polymeric membranes.  Typically the 

development of affinity membranes for bioseparation technology follows distinct phases: 

proof of concept, characterisation, and optimisation, followed by process scale-up. 

 

This study has focused largely on the interfacial analysis of a new bio-compatible, ligand-

modified Pluronic coated membrane, and has provided key quantitative information 

concerning the ligand capacity of the membrane and its ability to be regenerated and re-

used.  Additionally, proof of concept was demonstrated using two novel bioligands 

(Pluronic-biotin and Pluronic-DMDDO) for the bio-specific immobilisation of avidin-

peroxidase and histidine tagged pantothenate kinase respectively.  Experimentally, a 

multi-disciplinary approach was adopted, involving polymer chemistry, materials science, 

and biology with the objective of formulating a solution to what is widely perceived as an 

engineering problem, from a biochemical perspective. 

 

9.1.1. The membrane matrix 

 

As traditional commercially available filtration membranes tend to be developed to 

encompass a wide range of applications, the resultant membrane properties depend largely 

on both the fabrication protocol and the choice of polymer material.  In this study, we 

have focused on adsorptive membranes that are hydrophobic, robust, of a simple, well 

defined surface architecture, while of suitable chemical and mechanical strength.  The 

three candidate membranes (fabricated from PSU, PVDF and PEI), were prepared and 

characterised with these properties in mind (detailed in chapter 3).   
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SEM and AFM analysis were useful in qualitatively imaging the membranes in their 

native states and after Pluronic coating and treatment in various solvents.  Membrane 

surface roughness was found to decrease after Pluronic treatment; while the membrane 

integrity was conserved after incubation in these solvents.  The surface chemistry of each 

polymeric membrane was monitored with photo-acoustic FT-IR and the surface 

hydrophobicity was measured using static contact angle analysis.  SCA confirmed surface 

hydrophobicity of planar nonporous membranes to follow the order PVDF>PSU>PEI.  

The piezoelectric polymer PVDF was found to be the most hydrophobic membrane and 

the next phase of the study involved studying the adsorption of Pluronic and modified 

Pluronic on the membrane surface (chapter 4).   

 

9.1.2. Surface modification with Pluronic 

 

The adsorptive capacity of immunoaffinity membranes is known to be enhanced by the 

presence of a spacer molecule between the ligand and the support matrix [2].  This was 

initially a short aliphatic hydrocarbon chain (4 – 10 carbons), which was effective at 

facilitating interactions involving small ligands and target solutes.  However to facilitate 

surface interactions between macromolecules or biological complexes such as fusion 

proteins, the use of a much longer spacer is best.   

 

Pluronic® tri-block coplymers are commercially available, surface active, micelle forming 

amphiphilic compounds with high chemical and thermal stability.  They are also approved 

by the FDA and EPA as direct and indirect food additives in biotechnological 

applications, agricultural products and as pharmaceutical ingredients [3,4].  It was thus 

selected as an affinity linker, because of its ability to non-covalently attach to hydrophobic 

membranes via its hydrophobic PPO centre block.  Additionally, Pluronic F108 has two 

large PEO chains per molecule which shield the membrane from the non-specific 

adsorption of macromolecules found in the surrounding bulk liquid phase.  Therefore it 

was necessary to study the adsorption behaviour of Pluronic and ‘model’ affinity ligands 

such as halogenated Pluronic (Pluronic-Br and Pluronic-I) on both planar and curved 

interfaces.   
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The focus of this particular study [5], described in chapter 4, was to develop an accurate, 

reliable, robust, reproducible protocol for both the extraction (desorption) and 

quantification of membrane adsorbed Pluronic at both planar and curved interfaces.  

Bisolvent hexane:isopropanol (3:2) extraction of Pluronic at 70ºC, was extremely effective 

in complete desorption of Pluronic from both planar and capillary membranes.  A biphasic 

colorimetric spectrophotometric assay was also developed to accurately measure Pluronic 

from both planar and capillary membranes.  This assay is based on the specific binding of 

NH4FeSCN to PEO in CHCl3, and can reproducibly and accurately measure Pluronic F108 

at 510 nm.  This assay was sensitive to Pluronic F108 (3 to 130 μg.ml-1) and insensitive to 

dextran, biotin, human plasma and BSA.  Saturation curves followed a typical Langmuir 

type adsorption onto PSU, PVDF and PEI membranes, while the corresponding Langmuir 

isotherms correlated to the current understanding (published reports) of Pluronic 

adsorption on membranes and can be applied to various matrices or PEG based surfactants 

that are compatible with the solvents described in chapter 3.   

 

The influence of interfacial curvature on Pluronic adsorption was investigated using HF 

and HFF nonporous membranes.  This study has shown that an increase in capillary 

diameter (0.9 to 1.88 mm) leads to a corresponding increase in Pluronic adsorption.  

Applications of Pluronic affinity ligands to capillary membranes should therefore consider 

the impact of interfacial curvature on lateral crowding of the adsorbed PPO/PEO blocks, 

which may sterically hinder the adsorption of additional PPO chains.   

 

Pluronic adsorption onto hydrophobic membrane surfaces (PVDF and PSU) increased the 

hydrophilicity as noticed by convincing SCA measurements, while Pluronic adsorbed onto 

the relatively hydrophilic PEI via its hydrophilic PEO blocks such that the surface 

hydrophobicity increased, resulting in multi-layer formation.  Adsorption isotherms for 

PEI membranes generated at 25ºC do not exhibit typical Langmuir characteristics, 

possibly promoting non-uniform multi-layer formation of the tri-block copolymer that 

could subsequently shield the potential ligand-ligate interactions with biomolecules such 

as proteins.  Ligand modified Pluronic treatment of membranes is thus most useful for 

hydrophobic membranes and the interfacial analysis data favoured the use of 5 mg.ml-1 

Pluronic at 25°C on PVDF membranes as an affinity linker.  
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9.1.3. Surface analysis 

 

The self-assembly of the PEO-PPO-PEO chains on the membrane surface is influenced by 

the CMC and coating concentration of Pluronic, incubation temperature and surface 

matrix hydrophobicity.  Solid-state analysis could also be used to generate information on 

the physical and chemical state of the covalently modified Pluronic using ‘model’ ligands 

such as the halogenated derivatives.  Using these PEO attached halogens as ligand mimics, 

XPS, PIXE and RBS were used to generate information on the coating homogeneity of 

Pluronic, layer thickness, and protocols for calculating the number of ligand binding sites 

per cm2 of membrane surface (chapter 5).   

 

RBS spectra estimated an adsorbed Pluronic-Br layer thickness of 157 x 1015 atoms.cm-2 

which suggested PPO self-assembly with a nearest neighbour distance of 4.7 nm.  

Analysis of surface adsorbed Pluronic-Br correlated to 2.5 x 1014 Br atoms.cm-2.  XPS 

analysis was hindered by the weak CH2-Br and CH2-I signals, which were much smaller in 

comparison to the strong C and O related signals of the Pluronic molecule.  Consequently 

Br levels were below the detection limit of XPS.  Adsorbed layer thickness can also be 

more conveniently measured using ellipsometry and small angle neutron scattering.  These 

techniques are well documented but are however, not routinely available in most 

laboratories. 

 

9.1.4. Affinity membrane regeneration and biocompatibility 

 

Hydrophobic membrane surfaces are non-specifically active to the adsorption of proteins 

and lipids, so much effort has been devoted to the development of biocompatible, protein-

shielding surfaces [6-9].  Realistically, membrane fouling in affinity separation devices is 

practically inevitable [10,11] and an effective and acceptable regeneration protocol could 

increase the lifespan of affinity devices and subsequently reduce process costs in 

biotechnological applications.  As a step towards the accomplishment of such an 

endeavour, we have developed a bio-specific affinity immobilisation system that has 

shown excellent protein repellent properties and is capable of being regenerated and re-

used (chapter 6).   
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Using Pluronic coated, planar, nonporous membranes (PVDF, PSU and PEI) and model 

protein foulants (BSA and lysozyme), we have also shown that the protein repellent 

properties of Pluronic were influenced by the adsorption capacity of the membrane and the 

nature of the protein foulant.  Hydrophobic PVDF had the largest adsorption capacity for 

Pluronic and had the best protein shielding properties, with 98% shielding of lysoyzme 

and 75% shielding of BSA adsorption at high protein loading concentrations (0.25  

mg.ml-1).  Hydrophilic PEI membranes were however, hydrophobised by Pluronic and 

showed an increase in protein adsorption, compared to native PEI membranes.  Therefore 

an understanding of the surface properties of the membrane matrix is important to the 

successful application of ligand-modified, Pluronic coated membranes in affinity 

separation.   

 

Anionic SDS solutions (5 and 34 mM), formed the basis of a membrane regeneration 

strategy by displacing both surface adsorbed proteins and Pluronic after 20 h of shaking 

incubation at 20°C.  BSA, lysoyzme and avidin-peroxidase were most effectively 

displaced by SDS micelles (34 mM) while Pluronic desorption was favoured below the 

CMC of SDS (i.e. 5 mM).   

 

The aforementioned biocompatible, regeneration protocols were tested using the model 

affinity separation ligand-ligate system of biotin and avidin conjugated peroxidase.  This 

was achieved with the successful covalent modification of Pluronic from a hydrazine 

intermediate to a new, biotinylated Pluronic derivative.  The hydrophobic, electroactive 

PVDF membrane matrix showed similar saturation curves for both unmodified and biotin-

modified Pluronic.  The typical dose-response curves obtained with avidin-peroxidase 

immobilised biotinylated-membranes suggested that the colorimetric response measured is 

proportional to the concentration of avidin-peroxidase used in the study.  Non-specific 

binding was only found to occur at high enzyme concentrations (> 1 U.ml-1) where protein 

saturation of the surface was anticipated.   

 

SDS regeneration was found to have no effect on the specificity of the dose-response 

curves and the corresponding EC50 data for up to 3 cycles of regeneration.  After the 

fourth cycle, both a gradual decrease in the signal intensity and bio-specificity of 

membrane immobilised biotinylated Pluronic for avidin-peroxidase was observed.  

However, it can be argued that the regeneration protocol still has room for optimisation, as 
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the agitation and incubation temperature parameters were selected emperically.  

Nevertheless, the results described in this study merit further investigation of this process 

friendly SDS-regeneration protocol. 

 

Competitive binding assays incorporating the model protein foulants BSA and lysozyme 

into the target biomolecule solution suggest that bio-specific binding of avidin-peroxidase 

on the affinity-membrane surface is not influenced by up to 0.2 mg.ml-1 of lysoyzme.  

However, large amounts of the globular protein BSA (0.2 mg.ml-1), does affect the 

competitive affinity binding sites on the membrane for avidin-peroxidase.  The problems 

associated with BSA adsorption onto both hydrophobic and hydrophilic surfaces have 

been well documented [10,11].  This author proposes that if non-specific adsorption of 

globular protein is confirmed as a serious problem during an affinity separation process, 

then perhaps a pre-filtration procedure (e.g. size exclusion chromatography or UF) be 

performed before the affinity immobilisation step.   

 

9.1.5. Metal chelation and immobilisation of histidine tagged proteins 

 

Immobilised metal affinity membranes are one of the most widely used affinity membrane 

separation techniques [12] with applications in pharmaceutics and the broader 

biotechnology industry.  This has generated much research into the design of membrane 

matrices for ligand coupling and chelating ligands for the immobilisation of proteins with 

engineered, proximal, side chain groups.  An important focus of this study was to couple a 

simple and inexpensive chelator (DMDDO) to the affinity linker Pluronic F108, such that 

biocompatible membranes could thus be created for metal ion chelation.  Additionally this 

system has been characterised and we have also shown the specific immobilisation of a 

soluble, recombinant, bacterial histidine tagged pantothenate kinase. 

 

EDTA is a commercially available hexadentate ligand and can be directly coupled to 

Pluronic via one of the acids of the reactive precursor, EDTA dianhydride by 

esterification.  The resultant tetradentate ligand Pluronic-DMMDO has coordination sites 

available for metal ion chelation and non-covalent hydrophobic interaction with 

hydrophobic PVDF membranes via the unmodified, non-polar PPO centre block of 

Pluronic.  Saturation curves at 25°C for Pluronic-DMDDO adsorption onto planar 
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membranes, showed a typical Langmuir type adsorption profile with a plateau at 5 mg.ml-1 

, suggesting that ligand coupling to Pluronic did not influence its adsorption properties.   

 

The sorption capacity of PVDF-Pluronic-DMDDO for Ni2+, Cu2+ and Zn2+ and the 

attendant stability within the chelate complex was studied using ICP and micro-PIXE 

analysis.  The specific chelation capacity of the ligand for Ni, Cu and Zn was 0.47, 0.32 

and 0.52 μmol.cm-2 respectively.  PIXE elemental maps indicated that uniformity in metal 

distribution or surface homogeneity was of the order Cu2+ > Zn2+ > Ni2+.  The stability of 

the chelated ligand (Pluronic-DMDDO-Ni2+) was investigated using an elution buffer (0.3 

M NaCl, 0.25 M imidazole, 0.05 M NaH2PO4) set at a pH range of 2.5 – 8.5.  The Ni2+ 

chelate was found to be most stable at a higer pH (> 6), as deprotonation of the 

carboxymethyl groups of Pluronic-DMDDO for metal chelation is favoured above pH 4.   

 

The stability of the Ni2+ chelate after repeated cycles of membrane (PVDF-Pluronic-

DMDDO- Ni2+) incubation in loading, washing, and elution buffers decreased 

significantly (5 fold) after the fourth cycle.  Metal ion leakage may be remedied by 

decreasing the salt concentration from 0.3 M to 0.15 M, but this may then reduce the 

elution efficiency of immobilised histidine tagged proteins.  A more practical approach 

could involve the use of a post-trap for leaching metal ions [13], or regeneration with a 

Ni2+ salt solution as early as before the fourth operation cycle. 

 

Proof of concept of this new IMAM technology was achieved using a soluble histidine 

tagged pantothenate kinase.  PVDF-DMDDO-Ni2+ membranes specifically immobilised 

up to 0.17 mg.cm-2 his6(PK).  An elution efficiency of 78% was achieved with a single 

treatment of the immobilised his6(PK) membrane in a non-denaturing elution buffer.  The 

activity of the enzyme was unaffected by the chelating membrane, as confirmed by 

monitoring the consumption of NADH spectrophotometrically.  A cloned and expressed 

human cytochrome b5 described in chapter 7, could also be used (when purified as a 

monomer) to test the versatility of this system with an insoluble membrane protein.  

However, since cytb5 tends to form aggregates in solution, a denaturing buffer would also 

have to be used in conjunction with the PVDF-DMDDO-Ni2+ membrane.  This technology 

is nevertheless well charactersied for planar nonporous membranes and qualifies for scale-

up studies for incorporation into a well-characterised HF membrane system. 
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9.1.6. Conclusion 

 

The preceding summary detailed the research objectives that were experimentally 

fulfilled.  Specifically it was shown that inexpensive nonporous membranes could be 

surface functionalised with Pluronic bioligands for bio-specific protein immobilisation 

while resisting non-specific protein adsorption.  Additionally, this Pluronic-modified 

affinity matrix was well characterised and the ligand and chelate capacity was estimated 

using direct solid-state analysis.  The design of the metal chelating membrane also makes 

it possible to accurately control the density of the immobilised ligand onto a 

biocompatible or bio-mimetic surface such that the ratio between sensitivity and 

specificity for various applications can be optimised. 

 

This thus supports the hypothesis that it is possible to design a membrane-based affinity 

separation system using Pluronic bioligands that has the following properties: 

• a well characterised affinity matrix and ligand chemistry; 

• able to shield non-specific protein adsorption; 

• can specifically remove proteins from solution; 

• capable of being regenerated and re-used. 

 

 

 

 

 

9.2. FUTURE RESEARCH AND RECOMMENDATIONS 

 

Pluronic surfactants, membrane technology and affinity ligand development are fields of 

study on their own and therefore present a plethora of opportunities for future applications 

or even improvement.  Within the context of the multi-disciplinary approach of this work 

and the success of affinity membrane separation technology in the field of biotechnology, 

the following possible areas for improvement and future application are discussed.  
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9.2.1. The membrane matrix and module 

 

The great advantage of polymeric membranes is their wide range of applications.  

Similarly, much more work can be done with the affinity membrane matrix used in this 

study.  An area of particular interest, now that planar nonporous membranes have helped 

in characterisation and demonstration of proof of concept of bio-specific affinity 

immobilisation, is to couple the filtration properties of UF capillary membranes to the 

high selectivity of bio-ligand functionalised affinity membranes.  This process, as 

expected, is limited by concentration polarisation and fouling.  Hence it is crucial to 

quantify this process in order to predict membrane flux and performance.   

 

Hydrodynamic characterisation of both axial and transverse flow membrane modules is 

not a trivial process but has nevertheless been well described in the literature.  The 

interpretation of protein fouling on UF membranes based on a pore flow model [14] and 

Monte Carlo simulations for investigating possible phase transition [15] are just two 

examples of numerous techniques that can be employed to understand flow and fouling in 

HF membranes.  

 

9.2.2. Biosensor and probe development 

 

The field of biosensor development, involving the incorporation of a biologial element in 

a sensing layer that is intimately connected to a transducer has been growing tremendously 

in the last decade [16].  However the design of macromolecular assemblies containing 

both protein and nucleic acids for DNA sensors or bioelectronic devices remains a 

challenge.  A recent report by Boireau et al., [17], describes a DNA chip sensor that can 

potentially overcome the shortcomings of the other reported devices by using a well 

characterised affinity ligand and a short spacer molecule while still maintaining high 

sensitivity and bioselectivity using modified cytb5 and modified ssDNA (Figure 9-1).  The 

domain of cytb5 contained two opposite poles for molecular coupling: one allowing for 

association with a functionalised hybrid bi-layer, the other allowing the covalent link of a 

modified nucleic acid via a hetero bi-functional cross-linker (succinimidyl 6-[3´-(2-

pyridylthio)-propionamidyl] hexanoate).  It is this short cross-linker that separates this 

technology [17] from other reported DNA chip systems. 
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Figure 9-1:  Schematic structure of cytb5 coupled to single stranded DNA through a succinimidyl 6-[3´-(2-

pyridylthio)-propionamidyl] hexanoate (LC-SDPD), hetero bifunctional linker [17]. 

 

A description of how the comparatively simple, ligand-modified Pluronic coupled 

membrane (described in chapters 6 and 8) and a histdine tagged redox protein such as 

cytb5(his)6 (chapter 7) can also be used in biosensor development, is illustrated in Figure 

9-2.  Pluronic ligands can self-assemble onto the hydrophobic membrane via its 

hydrophobic PPO blocks, while the hydrated PEO brush prevents the non-specific 

adsorption of bio-macromolecules.  The tethered metal chelating ligand can then 

specifically immobilise the poly(histidine) tagged redox protein.  These self-assembled 

monolayers, (Figure 9-2) can thus be tailored with a variety of ligands, peptides and 

proteins.  The interaction of this ‘biochip’ with complimentary ligands can be monitored 

with surface plasmon resonance spectroscopy [17]. 

 

 
Figure 9-2:  Monolayers self-assembled onto hydrophobic PVDF membranes for the bio-specific 

immobilisation of proteins. (Left) General structure of a monolayer presenting a ligand and PEO groups. 

(Right) The ligand-receptor combination discussed for this system is the binding of a his-tagged protein to a 

complex of Ni2+ chelated Pluronic. 

histidine tagged cytb5 modified ssDNA
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