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Summary

Binary Decision Diagrams (BDDs) are data structures that have been used to solve various

problems in different aspects of computer aided design and formal verification. The large

memory and time requirements of BDD applications are the major constraints that usually

prevent the use of BDDs since there is a limited amount of memory available on a machine.

One way of overcoming this resource limitation problem is to utilize the memory available

on a network of workstations (NOW). This requires the distribution of the computation and

memory requirements involved in the manipulation of BDDs over a NOW.

In this thesis, an algorithm for manipulating BDDs on a NOW is presented. The algorithm

makes use of the breadth-first technique to manipulate BDDs so that various BDD operations

can be started concurrently on the different workstations on the NOW. The design and im-

plementation details of the distributed BDD package are described. The various approaches

considered in order to optimize the performance of the algorithm are also discussed. Experi-

mental results demonstrating the performance and capabilities of the distributed package and

the benefits of the different optimization approaches are given.
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Opsomming

Binêre besluitnemingsbome (BBBs) is data strukture wat gebruik word om probleme in verskil-

lende areas van Rekenaarwetenskap, soos by voorbeeld rekenaargesteunde ontwerp en formele

verifikasie, op te los. Die tyd- en spasiekoste van BBB-gebaseerde toepassings is die hoofrede

waarom BBBs nie altyd gebruik kan word nie; die geheue van ’n enkele is ongelukkig te beperk-

end.

Een manier om hierdie hulpbronprobleem te omseil, is om die gedeelde geheue van die werk-

stasies in ’n netwerk van werkstasies (Engels: “network of workstations”, oftewel, ’n NOW) te

benut. Dit is dus nodig om die berekening en geheuevoorvereistes van die BBB bewerking oor

die NOW te versprei.

Hierdie tesis bied ’n algoritme aan om BBBs op ’n NOW te hanteer. Die algoritme gebruik die

breedte-eerste soektegniek, sodat BBB operasies gelyklopend kan uitvoer. Die details van die

ontwerp en implementasie van die verspreide BBB bilbioteek word beskryf. Verskeie benader-

ings om die gedrag van die biblioteek te optimeer word ook aangespreek. Empiriese resultate

wat die werkverrigting en kapasiteit van die biblioteek meet, en wat die uitwerking van die

onderskeie optimerings aantoon, word verskaf.
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Chapter 1

Introduction

Many areas in Computer Science depend heavily on Boolean algebra. Problems in system design

and testing, combinatorics, artificial intelligence and mathematical logic can be expressed as

a sequence of Boolean operations. The efficient representation and manipulation of Boolean

functions is an important requirement for many algorithms used in the different application

areas. Binary Decision Diagrams (BDDs) are data structures that provide such an efficient way

of representing and manipulating Boolean functions, and have been used in various applications

including circuit verification, combinatorial problems, symbolic model checking, finite state

machines traversal and symbolic simulation.

BDDs are directed acyclic graph representations of Boolean functions which were first intro-

duced in 1959 by Lee [27] and later widely popularized in 1986 by Bryant [8] after developing

algorithms that can be used to efficiently manipulate them. Since this time, BDDs and their

use in various application areas have been extensively studied by several researchers. The

canonical representation of Boolean functions that BDDs provide has led to its wide use in

several application areas and has also led to major breakthroughs in many of these areas. For

example, in symbolic model checking, the use of BDDs has made it possible to verify systems

with a very large number of states [12]. However, a major problem often encountered is that

the size of the BDD representing a Boolean function may grow so large such that computation

involving such BDDs becomes impossible to handle due to limited resources.

1



CHAPTER 1. INTRODUCTION 2

Over the years, different BDD packages for manipulating BDDs have been developed from var-

ious BDD algorithms with known complexities. Many of these packages use the conventional

depth-first technique presented by Brace et al. [6]. Moreover, various techniques of speeding up

the computation of BDDs and also reducing the size of BDDs generated during computation in

order to combat the problem of arbitrary size which is the major drawback of BDDs have also

been implemented. Some of these techniques include dynamic variable ordering, garbage col-

lection, the use of specialized programming techniques for storing BDD nodes and other special

higher-level algorithms [23]. However, these techniques may still fail because the manipulation

of large BDDs is still often limited by the size of physical memory.

A major problem with the use of conventional depth-first algorithms in BDD manipulation is

the random memory access pattern involved which results in a poor locality of reference and bad

use of the CPU caches. An alternative way of manipulating BDDs in order to regularize memory

accesses was presented by Ochi et al. [33]. Their approach involves a breadth-first manipulation

of BDDs and leads to fewer page faults and allows larger BDDs to be handled. However, the

major problem with their algorithm is that it is still limited by memory requirements. Moreover,

the efficient swapping algorithm presented in their work which makes use of the processor swap

space leads to the creation of redundant BDD nodes in the application.

Another approach that can be used to handle the resource limitation problem is to combine the

resources available on a Network of Workstations (NOW) and to use distributed programming

techniques. Some of the advantages of this approach which can be easily identified include:

1. Network communication is generally faster than disk accesses, so the approach is better

than allowing the processor to use the swap space.

2. By making use of the collective resources available on the NOW, BDD applications can

take advantage of the availability of a large amount of memory and possibly more pro-

cessing power.

3. The approach does not require special hardware like a shared memory multiprocessor or

a dedicated parallel computer; a NOW is usually easy to set up.

Various work has been done on how to parallelize BDD manipulation algorithms. Some of
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the parallel BDD implementations that have been developed include packages for distributed

shared memory (DSM) architectures [35, 25], and for vector processors [32]. However, these

approaches are still limited by the amount of memory available on either the machine or the

distributed shared memory. Other work that has been done on parallelizing BDDs include the

work of Stornetta [42], Milvang-Jensen [30] and that of Ranjan et al. [37]. Details of their work

are discussed in Section 2.6.

1.1 Thesis Goal

This thesis presents a distributed BDD manipulation package that uses the collective resources

available on a NOW. The thesis gives a brief description of a non-parallel BDD manipulation

algorithm and an implementation of the algorithm which forms the basis for the distributed

BDD package. The major questions that need to be answered are:

1. How do we find an efficient way of distributing BDDs over the workstations on a NOW

to use the collective memory available on the NOW?

2. How do we distribute the computation involved in BDD manipulation over the worksta-

tions in order to maximize our use of the computing power of each of the workstations

on the NOW?

3. How do we make sure that each of the workstations executes different threads of compu-

tation simultaneously?

4. What is the effect of caching, the effect of different cache sizes, and the effect of caching

different kinds of information during BDD computations?

This thesis gives a detailed description of the design and implementation of a distributed

BDD package and the approaches used to resolve these questions. Techniques used to improve

the performance of the distributed BDD package are discussed in detail, and the results of

experiments conducted to evaluate the performance of the package are also presented.
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1.2 Thesis Outline

Chapter 2 provides the basic background information necessary to understand Boolean func-

tions and how BDDs are used for their representation. An overview of the major algorithms

used in BDD manipulation and some of the various application areas of BDDs are presented.

We give a brief description of the implementation of one of the modern sequential BDD pack-

ages available and also look at some of the previous attempts to distribute a BDD package over

a NOW.

The core of the thesis is Chapter 3 which includes a detailed discussion of the design and

implementation of the distributed BDD package developed. First, an implementation of the

non-distributed BDD package which forms the basis for the distributed package is briefly dis-

cussed since the distributed BDD package uses similar data structures. The rest of chapter

discusses how the major tasks involved in the distribution of a BDD application are handled

in the implemented package and how our distributed BDD package compares to other similar

packages.

Chapter 4 describes different approaches for improving the performance of the distributed BDD

package developed and how they are implemented. We discuss the details of two levels of caching

and an alternative way of distributing the memory and computational requirements of a BDD

application. A new technique for analyzing the performance of a distributed BDD package

for any specific problem is explained. The benefits of the various optimization techniques

considered are also examined.

Results of experiments conducted to measure the performance of the distributed BDD package

developed are discussed in Chapter 5 of the thesis. The performance of the various optimiza-

tion techniques considered are measured. These experiments were conducted using the high

performance computing (HPC) cluster at the University of Stellenbosch.

Chapter 6 presents the conclusions of the thesis and proposes various ideas for future work.



Chapter 2

Background

Over the last two decades, various application areas of Boolean functions have benefited from

the symbolic representation and manipulation of Boolean functions [12, 16, 15, 10, 11, 29].

The efficiency of many of these applications depends on the data structure used to represent

the Boolean functions involved. An efficient way of symbolically representing Boolean func-

tions known as Binary Decision Diagrams (BDDs) which has made it possible to solve various

complex problems in applications involving Boolean function manipulations was presented by

Bryant [8] in 1986 and has been extensively studied by various researchers since then.

This chapter describes the details necessary to understand BDDs. Section 2.1 presents a brief

overview of Boolean functions and other approaches that have been used for representing and

manipulating Boolean functions. Details about BDDs are presented in Section 2.2 up to Section

2.4. The chapter concludes in Section 2.5 with a brief description of a modern sequential BDD

package known as CUDD [40].

2.1 Boolean Functions

A Boolean function is of the form:

f : Bk → B

5
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where B = {0, 1} and k is a non-negative integer. The set B is the set of Boolean values whose

elements are sometimes referred to as false and true instead of 0 and 1, respectively. For any

k, there are exactly 22
k

possible Boolean functions.

Boolean functions are used for expressing the relation between different Boolean variables. A

Boolean expression is composed of Boolean variables, x, y, . . . , Boolean values, true (1) and

false (0) and also the Boolean operators: conjunction ∧, disjunction ∨, negation ¬, implication

⇒, and bi-implication ⇔. Formally, Boolean expressions are generated by the grammar:

t ::= x | 0 | 1 | ¬t | t ∧ t | t ∨ t | t ⇒ t | t ⇔ t

where x can be any element of a set of Boolean variables or Boolean values. Parentheses

and operator priorities are used to resolve ambiguities. Usually, the priorities of the operators

(starting from the highest) are: ¬, ∧, ∨, ⇔, ⇒ [22]. One example of a Boolean expression is:

¬x1 ⇒ x2 ∨ x3.

To make the priorities absolutely clear, the expression can also be written as:

((¬x1) ⇒ (x2 ∨ x3)).

A Boolean expression describes how to determine a Boolean output value based on logical

calculations on some Boolean variables and values. The sequence of assignments of values to

Boolean variables is referred to as a truth assignment (or interpretation) and is written as:

[1/x1, 0/x2, 0/x3]

which means that a value 1 is assigned to x1 and 0 is assigned to x2 and x3. A truth as-

signment for a given expression evaluates to either 0 or 1. For example, the truth assign-

ment [1/x1, 0/x2, 0/x3] evaluates to 1 in the above expression while the truth assignment

[0/x1, 0/x2, 0/x3] evaluates to 0 for the same expression.

Two Boolean expressions p and q are said to be equivalent if they yield the same output values

for all truth assignments. A tautology is a Boolean expression that yields the value 1 for all

possible truth assignments whereas a contradiction is one that always yields 0. A Boolean

expression is said to be satisfiable if it yields the value 1 for at least one truth assignment.
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In practice, some of the tasks for which Boolean functions are used include testing for satisfi-

ability and checking for equivalence. Many of these tasks require solutions to NP-complete or

co-NP-complete problems [8]. Given our present knowledge, the amount of time and memory

required to complete them grows exponentially in the size of the problem. Some of the methods

that have been used for representing Boolean functions include the use of classical representa-

tions like truth table, Karnaugh maps and prime cubes. However, all these approaches have

their drawbacks because they yield representations of exponential size for some common func-

tions. Moreover, for a given function, they may give more than one representation or in cases

where the representations are not of exponential size, performing a simple operation may lead

to a function with exponential representation. Thus, testing for equivalence and satisfiability

can be difficult. In addition, for all the different approaches, the time required to perform

these operations also grows exponentially with the size of the problem. Thus, there is a need

for an efficient way of representing and manipulating Boolean functions so that the size of the

representations will be reasonable and the exponential computations will be avoided.

2.2 Binary Decision Diagrams

As mentioned earlier, BDDs were first introduced by Akers [1] and Lee [27] and were later

popularized by Bryant [8] when he presented a restricted form of BDD known as the Reduced

Ordered Binary Decision Diagram (ROBDD) which can be used to efficiently represent and

manipulate Boolean functions. The main idea behind BDDs is the Shannon expansion. For a

function f and variable x, the Shannon expansion1 is:

f = x · f|x=1
+ x · f|x=0

.

The Shannon expansion is a way of expressing a Boolean function as a sum of the positive

and negative Shannon cofactors of the function. The positive Shannon cofactor of a function

f with respect to a variable x is described as the function f with all values of x set to 1 while

the negative Shannon cofactor is the function f with the values of x set to 0. When expressed

1The notation “·” refers to the logical and (∧) operation, “x” means not x or negation of x and “+” means

the logical or (∨) operation.
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over several variables x1, x2, . . . , xn, the expansion can be written as:

f(x1, x2, x3, . . . , xn) = x1 · f(1, x2, x3, . . . , xn) + x1 · f(0, x2, x3, . . . , xn).

BDDs are directed acyclic graphs (DAG) consisting of decision nodes where each node either

has two outgoing edges or none. The terminal nodes in the graph are labeled “T” or “F”

corresponding to the true and false values, respectively. The root of the tree has no incoming

edges and there is only one root. Each internal node of the DAG is labeled with a variable

taken from the set of variables over which the function is defined. The output edges are labeled

“1” or “0” and are often referred to as the THEN and ELSE edges or the true and false edges,

respectively. Each edge from a node in the graph leads to another node called the child node

of the node.

An Ordered Binary Decision Diagram (OBDD) has a total ordering of the associated Boolean

variables such that along every path of the BDD starting at the root and terminating at a

“T” or “F” node, the variables associated with the nodes occur in a given linear order that is

the same for all possible paths. An OBDD is reduced (and called a Reduced Ordered Binary

Decision Diagram) if each node in the BDD represents a unique function. That is, it contains

no duplicate or redundant nodes. Given any BDD, an ROBDD is generated by performing the

following operations:

1. Merge all isomorphic subgraphs, that is, similar nodes are shared and not duplicated.

2. Eliminate any node whose two children are identical. That is, if the two edges of a node

lead to the same child node, the node is deleted and its incoming edge(s) is directed to

its child node.

For example, the DAG representing the Boolean function (x1 ∨x2)∧ (x1 ∨x3) shown in Figure

2.1 can be transformed into the ROBDD shown in Figure 2.2 by applying these two rules.

As Bryant shows, an important property of the ROBDD is that for any given ordering of the

variables, a Boolean function has a unique representation [8]. This property makes it useful

in checking for the equivalence of two Boolean functions by checking if they have the same

representations. Another property of BDDs that can be easily seen from the example is that
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Figure 2.1: A DAG representing the Boolean function (x1 ∨ x2) ∧ (x1 ∨ x3)
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Figure 2.2: ROBDD representation of the Boolean function (x1 ∨ x2) ∧ (x1 ∨ x3)

BDD representations are very compact. The difference in the size of the BDD and binary tree

representations is an illustration of this fact. In the rest of this thesis, we shall simply refer

to Binary Decision Diagrams (BDDs) instead of Reduced Ordered Binary Decision Diagrams

(ROBDDs) since all our BDDs will be of this form.

In the BDD representation of the Boolean function (x1∨x2)∧(x1∨x3) shown in Figure 2.2, the

path through the BDD leads to “T” if and only if the vector 〈x1x2x3〉 which corresponds to the

values selected at each of the nodes xi is an element of the set {〈011〉, 〈100〉, 〈101〉, 〈110〉, 〈111〉}
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(which is also true for the first DAG representation). A function representing a BDD is satis-

fiable if and only if the BDD contains a terminal vertex labeled “T”.

2.2.1 Variable Ordering

In practice, the size of the BDD representation of any function depends on both the function

and the chosen ordering of the variables over which the function is defined. The ordering of

Boolean variables is very important because it has a crucial effect on the size of BDDs. For

example, Figure 2.3 shows two different BDDs (with different variable ordering) for the same

function f = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6).
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(b) x1 < x3 < x5 < x2 < x4 < x6

Figure 2.3: BDD representations for different variable orderings

Using the variable ordering x1 < x2 < x3 < x4 < x5 < x6, the BDD representing the function

f has 6 internal nodes whereas if the variable ordering x1 < x3 < x5 < x2 < x4 < x6 is used,

the BDD representation of f consists of 14 internal nodes. In some applications, a particular
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ordering is usually chosen at the outset and BDDs are then constructed using this ordering.

It is difficult to determine how good a particular variable ordering will be and the problem of

finding the best variable ordering is NP-hard [5]. However, there are heuristic techniques used

to handle this problem, and dynamic variable reordering [38] is also widely used.

01: Apply(A, B, op) {

02: if IsTerminalCase(A) or IsTerminalCase(B)

03: return (A op B)

04: else if Apply(A,B,op) is in computed-table

05: return result

06: else

07: T = Apply(Then(a1), Then(b1), op)

08: E = Apply(Else(a1), Else(b1), op)

09: if T = E

10: return T

11 result = Node(minimum(A.var, B.var), T, E)

12: if InUniqueTable(result)

13: return result

14: insert in the computed-table (Apply(A,B,op), result)

15: return Makenode(result)

16: }

Figure 2.4: Simplified implementation of the Apply algorithm

2.2.2 BDD Operations

The ability to efficiently perform operations on functions represented by BDDs is one of the

most important features of BDDs. As proposed by Bryant [8], there are various algorithms

for efficient manipulation of BDDs. The most common operations on BDDs are based on the

Apply and If-Then-Else (ITE) algorithms.

The Apply algorithm is the general algorithm for implementing all binary Boolean operations.

The algorithm takes three arguments: two BDDs A and B and a Boolean operator ∗. It returns

another BDD representing the function,

fC = fA ∗ fB
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which is defined as

(fA ∗ fB)(x1, . . . , xn) = (fA(x1, . . . , xn)) ∗ (fB(x1, . . . , xn)).

The construction of the Apply algorithm is based on the Shannon expansion. It is easy to show

that for all Boolean operators ∗,

f1 ∗ f2 = xi · (f1 |xi=1 ∗f2 |xi=1) + xi · (f1 |xi=0 ∗f2 |xi=0).

A simplified implementation of the Apply algorithm is shown in Figure 2.4. To apply an opera-

tor to two Boolean functions represented by BDDs A and B with roots a1 and b1, respectively,

the different possible cases are considered as shown in the algorithm. The simple cases of

the operands are handled first, that is, when a1 or b1 or both is a terminal node. Otherwise,

recursive calls of the Apply algorithm are made using the THEN and ELSE edges of a1 and

b1 until a terminal node is reached. Lines 9–10 ensure that there are no redundant nodes,

while lines 11–13 ensure that there are no duplications. The algorithm has a worst-case time

complexity of O(|A|+ |B|+ |C|) where C is the BDD representing the result of the operation

and |A| is the number of BDD nodes in A [8]. As we shall discuss in Section 3.1, the check for

node duplication is typically done using a unique-table [6] implemented as a hash table; this

maintains the canonicity of the BDD. We also make use of memoization by keeping a cache of

all operations already done. The cache which is called the computed-table helps to improve the

efficiency of the Apply algorithm.

Apply(A,B,∧) = Apply(x1, x3,∧)

T1 = Apply(x2, x3,∧)

T2 = Apply(true, x3,∧) = x3

E2 = Apply(false, x3,∧) = false

return(x2.var, x3, false)

E1 = Apply(false, x3,∧) = false

return (x1.var, T1, false)

Apply(A,B,∧) = (x1.var, T1, false)

Figure 2.5: Recursive use of the Apply Algorithm

An example of the application of the Apply algorithm is shown in Figure 2.5 for computing

the conjunction of two BDDs representing the functions, A = x1 ∧ x2 and B = x3 ∧ x4. The
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algorithm is applied recursively through both BDDs to generate the result. The two BDDs and

the result generated from the conjunction are shown in Figure 2.6.
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Figure 2.6: Conjunction of two BDDs

01: ITE(A, B, C) {

02: if IsTerminalCase(A) or IsTerminalCase(B)

03: return result

04: else if Computed-table has Entry (A, B, C)

05: return result;

06: else

07: let x be the top variable of (A, B, C)

08: T = ITE(A_x, B_x, C_x)

09: E = ITE(A_x’, B_x’, C_x’)

10: if T = E

11: return T

12: R = findInUniqueTable_Or_Add(Node(x, T, E))

13: return R

14: }

Figure 2.7: The ITE algorithm

The second algorithm used in many BDD operations is the ITE (If-Then-Else) algorithm which

is very similar to the Apply algorithm. It takes three arguments A, B and C which are all

BDDs and returns a BDD D resulting from the If-Then-Else operation which is defined as: if
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A then B, else C. The Boolean representation of the ITE algorithm can be expressed as:

ITE(A,B,C) = A · B +A · C.

An outline of the ITE algorithm as presented by Brace et al. [6] is shown in Figure 2.7. The

term A_x (A_x’) refers to the BDD representation of A, with the values of x = 1 (x = 0). Lines

12–13 are equivalent to lines 11–15 of the Apply algorithm as both are used to ensure that

there are no duplication of nodes or repetition of computation. The algorithm can be used to

implement all binary Boolean operations [6] and thus it can also be used to express an Apply

operation. For example, Apply(A,B,∨) = ITE(A, 1, B) and Apply(A,B,∧) = ITE(A,B, 0).

Table 2.1 shows the ITE implementation of various Boolean operations. The time complexity

of the ITE algorithm is O(|A| · |B| · |C|). In practice, the number of computation steps in both

the Apply and ITE algorithms is normally close to the size of the resulting BDD.

Boolean expression ITE expression

1 0 0

2 f · g ITE(f, g, 0)

3 f · g ITE(f, g, 0)

4 f f

5 f · g ITE(f, 0, g)

6 g g

7 f ⊕ g ITE(f, g, g)

8 f + g ITE(f, 1, g)

9 f + g ITE(f, 0, g)

10 f ⊕ g ITE(f, g, g)

11 g ITE(g, 0, 1)

12 f + g ITE(f, 1, g)

13 f ITE(f, 0, 1)

14 f + g ITE(f, g, 1)

15 f · g ITE(f, g, 1)

16 1 1

Table 2.1: ITE implementation of all two variable Boolean functions

An example of the ITE algorithm evaluating ITE(A,B,C) is shown below. The BDDs A, B,
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C and the resulting BDD D are as shown in Figure 2.8.

D = ITE(A,B,C)

= (u, ITE(A|u=1, B|u=1, C|u=1), ITE(A|u=0, B|u=0, C|u=0))

= (u, ITE(true, G,C), ITE(E, false, C))

= (u,G, (v, ITE(E|v=1 , false, C|v=1), ITE(E|v=0, false, C|v=0)))

= (u,G, (v, ITE(true, false, true), ITE(false, false,H)))

= (u,G, (v, false,H))

The evaluation of the function ITE(A,B,C) is also the same as evaluating the function:

D = Apply(Apply(A,B,∧), Apply(A,C,∧),∨)
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Figure 2.8: An example of ITE algorithm

Some other algorithms [8] used for efficient manipulation of BDDs include:
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• Restrict : The algorithm is used to construct a restricted form of a BDD. That is, given

a truth assignment for a BDD f , the algorithm constructs the corresponding BDD for f

under this truth assignment. In other words, the algorithm transforms a BDD f into a

BDD representing the function f |xi=c for some variables xi and Boolean values c ∈ {0, 1}.

• Compose: Given two formulas g and h, the composition algorithm derives the BDD

representing the function f which is a composition of g and h defined as;

f = g |xi=h= (h ∧ g |xi=1) ∨ (h ∧ g |xi=0)

• Satisfy-one: The algorithm is used to decide whether a function f is satisfiable for some

input a, that is, if f(a) = 1.

• Satisfy-all : The algorithm computes the list of all satisfying truth assignments for a

Boolean function f . That is, it returns the list of all a such that f(a) = 1.

• Satisfy-count : The algorithm returns the number of truth assignments satisfying a Boolean

function f . That is, it returns the total number of all a such that f(a) = 1.

These functions are useful for performing operations like equality testing, satisfiability, existen-

tial and universal quantification, and concatenation. Existential and universal quantification

of the variables in a function are done in time quadratic in the size of the BDD representing

the function. More details about some of the basic operations handled with these algorithms

are given in Section 3.4.4.

2.3 Applications of BDDs

The ability to efficiently manipulate BDDs have led to their wide use in various application

areas over the last two decades. For any problem domain, in order to apply BDDs, the data

to be represented are expressed as Boolean functions. The necessary results are obtained by

carrying out a sequence of operations on the BDDs representing the Boolean functions. Some

of the various application areas of BDDs include formal verification (especially symbolic model

checking), optimization of logic circuits, and testing and optimization of sequential circuits.
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2.3.1 Application of BDDs in Verification and Model checking

A detailed description of the sequence of state transitions of a system is often required in

order to solve many of the problems in digital system verification. Algorithms that construct

an explicit representation of the state graph in order to handle this problem are inefficient

because digital systems usually have a very large number of states. BDDs have become a

major data structure used in formal verification. The various aspects of formal verification in

which BDDs have been applied include verification of combinatorial and sequential circuits,

symbolic simulation, and symbolic model checking.

The verification of combinatorial circuits is the problem of proving the equivalence of two

circuits usually a verified circuit and an unverified circuit. A formal proof of correctness of the

unverified circuit is achieved by computing the BDDs of the functions representing both the

verified circuit and the unverified one. The problem is reduced to checking for the equivalence

of these two BDDs. A major limitation often encountered in circuit verification is that BDDs

representing large circuits are often very large themselves, exhausting the memory on machines

handling the BDDs. Some of the numerous studies that have been done in order to simplify the

verification of large combinatorial circuits using BDDs include the work of Brand [7], Shin [39],

and Lai and Sastry [26].

Unlike combinatorial circuits, sequential circuits are verified by checking the equivalence of

a deterministic finite state machine M against a specification M ′ also given as a finite state

machine. This verification, which can be reduced to a reachability problem, requires a compact

representation of the finite state machines in order to handle large systems. BDDs are used for

these compact representations. The reachability problem is reduced to a number of conjunction,

disjunction and existential operations on the BDDs. The reduction to a reachability problem

is also a major part of the symbolic model checking technique which is used for automatically

verifying finite state systems. As defined by Burch et al. [12], model checking is the process of

determining whether a given formula is true in a given model of a system. Since systems to

be verified are often very large, an explicit enumeration of the set of states may be impossible.

Symbolic model checking uses BDDs to describe the set of states implicitly. The check for sat-

isfiability is done using the BDDs representing the set of states and the propositional formulas.
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Systems with very large number of states have been verified using model checking techniques

based on the implicit representation of the set of states [12, 29]. More detailed descriptions

of the verification of sequential circuits using BDDs are presented by Coudert, Berthet, and

Madre [16, 15], Clarke et al. [10] and Burch et al. [11].

The use of BDDs in symbolic model checking has proven to be an efficient technique for com-

bating the state explosion problem often encountered in automated verification. This problem

arises because for very large systems, the number of states grows exponentially in the number

of the components of the system. Although BDDs can be used to handle this problem, a related

problem called the node explosion problem is encountered when BDDs are used to represent

very large systems. This is because intermediary BDDs that arise during the computation

are often large even though the final BDD may be small. This results in high memory and

computation time requirements. Other approaches to using BDDs for model checking include

the work of Burch et al. [13, 12] and Brayton et al. [43].

Some of the other application areas of BDDs include protocol verification, and CAD applica-

tions such as functional simulation [2, 28], logic synthesis [44] and test generation [14]. More

applications of BDDs are highlighted by Bryant [9].

2.4 Advantages and Disadvantages of BDDs

The popularity of BDDs in various application areas can be attributed to their ability to

efficiently represent and manipulate Boolean functions. Apart from the fact that BDDs provide

a canonical presentation of Boolean functions, which makes it possible to easily test functional

equivalence, procedures involved in performing operations on BDDs are also simple. The

number of computational steps usually involved in an operation is always less than the product

of the sizes of the operand BDDs (and not more than the size of the resulting BDD). In addition,

many interesting functions have compact BDD representations. Thus, most operations on

BDDs can be performed relatively fast.

Moreover, a single BDD structure can be used in the representation of several functions thus

saving more space and making the manipulation faster and more efficient. The use of BDDs
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in the various applications areas has lead to a major breakthrough in most of these areas. For

example, the use of BDDs have made it possible to verify very large circuits and systems [12].

However, despite all the advantages of using BDDs, a major problem with the use of BDDs

which is often encountered in most of the application areas is that for some large systems and

circuits, BDDs constructed during computation often grow extremely large resulting in high

memory and time requirements. This often makes it impossible for a single machine to handle

their computation and thus hinder the use of BDDs in such application area or problem.

2.5 Sequential BDD Packages

Since the popularization of BDDs by Bryant [8], various BDD packages have been developed

by different people. As mentioned earlier, many of these packages share a number of common

implementation features which are based on the work of Brace et al. [6] and Rudell [38]. In this

section, we give a brief description of one of the modern BDD packages known as CUDD. The

description of the CUDD package given below is based on the documentation of the package [40].

Other packages that have been developed include CAL [36], TiGeR [17] and ABCD [4].

The CU decision diagram (CUDD) package is a sequential BDD package based on depth-

first traversal of BDDs. The package provides various functions for the manipulation of

BDDs, Algebraic Decision Diagrams (ADDs) [3] and Zero-suppressed Binary Decision Dia-

grams (ZDDs) [31]. In CUDD, a BDD is represented as a pointer to a structure containing

several fields including the variable index, the reference count and the node. BDD nodes are

stored in a unique-table implemented as a hash list. The hash list is used to guarantee the

uniqueness of each of the BDD nodes. In addition, the package also contains several heuristics

for dynamic variable reordering which are used to reduce the size of the decision diagrams.

The CUDD package uses a cache which is also implemented as a hash list to store computed

results. It typically starts with a small cache which is then increased until it no longer affects

the computation involved or until a limit size is reached. The user is allowed to choose both the

initial and the limit values for the cache size. The optimal value for the cache usually depends

on the specific problem being handled. The cache is always cleared when dynamic variable
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reordering takes place.

In addition, the package uses garbage collection for reclaiming memory occupied by nodes that

are no longer used. The technique is implemented by keeping reference counts for each node.

A node is marked as dead when its reference count becomes zero. In order to optimize the

performance of the package, garbage collection only takes place when the number of dead nodes

reaches a given level which is dynamically determined by the package [40]. All cache entries

pointing to a dead node are removed when garbage collection is done. The CUDD package is

widely regarded as a very efficient BDD package and is publicly available.

2.6 Distributed BDD Packages

There are many ways to address the resource limitation problem often encountered during BDD

computation. Some approaches involve minimizing the size of BDDs, while others involve the

use of parallel processing to accelerate BDD operations. Some of the several attempts that have

been made in order to minimize the size of BDDs include modification of the BDD structure

and alternative representations of the transition relations or system states. However, not all of

these attempts have been successful at minimizing large intermediary BDDs [19].

A fair amount of research has been done on using parallel processing to speed-up BDD com-

putation time and provide more memory. Most of them used a parallel distributed memory

multi-processing environment. However, not many of these distributed memory architectures

actually use a network of workstations. Some of the recent work that have been done on paral-

lelizing BDDs include the work of Stornetta and Brewer [42]. They present a BDD package that

is suitable for a distributed memory multi-processor. The package allows depth-first algorithms

on BDDs to be performed in parallel. According to their scheme, tasks are distributed to the

processors by considering the node with the highest level in a given computation’s arguments.

Although this technique leads to an excellent distribution of tasks, it results in a very high

computation overhead. Moreover, their algorithm exhibits speed-up only when compared to a

single machine that is running out of memory.

Milvang-Jensen and Hu [30] also introduced a parallel BDD package which is based on the
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CUDD package [40]. Their package makes it possible to perform several different BDD oper-

ations in parallel using breadth-first algorithms. The package is designed to run on multiple

machines using the parallel virtual machine (PVM) library [20]. According to their algorithm,

tasks are distributed based on the topmost variable of the operand BDDs. The main problem

with their approach is the lack of efficient ways to balance the work [30]. However, for large

BDDs, they are the first to report a speed-up of computation on a distributed memory over

computation on a single machine provided that the parallel version is running on a certain

minimum number of processors.

Another algorithm presented by Ranjan et al. [37] handles memory limitations by manipu-

lating BDDs using a Network of Workstations (NOW). In their approach, BDD variables are

distributed among the workstations such that all variables assigned to a workstation are consec-

utive. Each workstation handles operations involving the BDDs that are assigned to it. Their

implementation uses the PVM library to provide the necessary communication between the

workstations during BDD manipulation. The study also pointed out the potential impact of

distributing BDDs on a network of workstations. The major drawbacks in their implementation

include the fact that the performance of the algorithm is hampered by the network overhead

resulting from the number of remote requests made to perform the BDD operations. Their

approach also results in a duplication of effort due to its inability to recognize requests that

have been earlier processed. Moreover, the equal distribution of variables to workstations leads

to an uneven distribution of the workload when the number of nodes in certain levels grows

very large. However, a better approach of dynamically distributing the variables among the

processors in order to balance the load was proposed.

Our approach to parallelizing BDDs also involves the use of a NOW. Some of the features are

similar to the work of Ranjan et al. but with additional functionality. We also use the level-by-

level distribution of the variables over the NOW. However, we implement two different levels of

caching for operations already performed thus reducing the number of network accesses which

constitutes a major problem when dealing with a NOW. The problem of uneven distribution of

workload is addressed by providing a way for the user to distribute the variables more flexibly.

Details regarding our approach of distributing BDDs over a NOW and the differences between

our work and that of Ranjan et al. are presented in Section 3.3 through 3.6.
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Design and Implementation

The previous chapter presented background details of BDDs. In this chapter, we describe the

design and implementation of our distributed BDD package. Section 3.1 describes the imple-

mentation of a non-distributed BDD package. The non-distributed implementation makes it

easier to explain the problems encountered in BDD manipulation and how they are handled. It

is also useful to compare the performance of the distributed BDD package to the non-distributed

version. Our implementation of a distributed BDD package is described in Section 3.2. The

distributed BDD application is based on the non-distributed package. Both implementations

are done using the C programming language which was chosen to provide more control over

the hardware we use.

3.1 Non-distributed BDD Package

Several BDD packages have been developed since the work of Bryant [8] in 1986 to run on

single machines. Our implementation of the non-distributed BDD package is similar to the

package described by Brace et al. [6]. The Apply and ITE algorithms form the major part of

the implementation of a BDD package since they can be used to express any binary Boolean

operation. As shown in Figure 2.4, the Apply algorithm is a depth-first recursive algorithm that

performs operations by traversing the operand BDDs from top to bottom on a path-by-path

basis.

22
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A BDD package is implemented as a library of BDD manipulation routines which are made

available to the user. However, it is not necessary for the user to understand the details of the

construction of the routines because the implemented Boolean operations can be used without

changing the routines.

The two basic BDD nodes in a BDD package are the terminal nodes true and false. BDD

nodes are usually constructed starting from the input variables and then performing desired

operations to produce the output. Given that the input variables obey some variable ordering,

the implementation constructs BDDs obeying the same ordering. All BDD operations are

implemented using a common ordering.

A BDD node is basically a pointer to memory (containing the variable number of the node,

and the left and right child nodes). BDD nodes are stored in a table called the unique-table [6]

using the makenode routine shown in Figure 3.1. The unique-table, which is built as a hash

table, maintains the canonical property of BDD nodes and each node is identified by a unique

id. A lookup of the unique-table is always done before a BDD node is added to the table. If

the node is found, the already stored node is used, otherwise the new BDD node is added to

the unique-table. Thus, each node in the unique-table represents a unique Boolean function

which is only stored once in the table even if the same function is constructed in different ways.

The use of a unique id for representing each node in the unique-table makes it possible to do

an equivalence test by simply testing if the two pointers are the same.

01: makenode ({varnr, left, right}) {

02: if (left = right)

03: return left

04: else

05: R = findInUniqueTable_Or_Add({varnr, left, right})

06: return R

07: }

Figure 3.1: The routine for constructing a BDD node

Another table which is implemented in the non-distributed BDD package to improve the per-

formance of the application is the computed-table [6]. Since there are potentially many paths to

get to the terminal nodes of a BDD, the computation necessary to perform a recursive operation
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is reduced by keeping track of the intermediate computational results. The computed-table is

implemented as a hash-based cache with a fixed maximum size. New computational results are

stored by computing a hash function and storing the operands and operation leading to the

result together with the result. The efficiency of the computed-table is improved by storing

an entry only once in the table. If a new operation that has been performed earlier, is to be

repeated, and the result of the operation is still present in the computed-table, the result is

returned immediately instead of performing the same operation again.

The storing of intermediate results of Boolean operations causes several results to be stored

during BDD computation, some of which might not be useful once the desired result is obtained.

Thus, it is important to be able to release the memory used by these BDDs. However, a BDD

node can be referenced from various locations in the package. For example, apart from the

single reference of the BDD node in the unique-table, a node can be referenced many times by

other nodes and can possibly also appear in the computed-table. This implies that in order

to free a BDD node from memory, one must make sure that no other nodes are pointing to it

from anywhere in the package.

A memory management technique called garbage collection is implemented to periodically free

unused memory. Garbage collection can be implemented by keeping a reference count for each

BDD node in order to know when the node is no longer active. The reference count for a node

is incremented when a new BDD node points to it and decremented when a node pointing

to it is freed from memory. A node is removed from the memory when its reference count

becomes zero. That is, when it is found only in the unique-table. Garbage collection can

also be implemented using the “stop-and-copy” or “copying” algorithm [24]. In this case, the

available memory on a machine is divided into two, and BDD computation is completed on

only one part of the memory. However, when the currently active part of the memory becomes

full, BDD computation is paused and all the BDD nodes that are pointed to by another node

are copied to the second memory partition. All other nodes left in the active memory partition

after copying are deleted since it implies that no other BDD node is pointing to them. The

second memory partition then becomes the active memory used for computation. The swap is

repeated as each memory partition gets full.

Garbage collection in our non-distributed package is implemented using the “mark-and-sweep”
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algorithm [24]. The algorithm involves the marking and unmarking of BDD nodes. To perform

garbage collection, all the BDD nodes in the memory are first unmarked. Starting from the

root node, each node that is pointed to from another BDD node is then marked. All unmarked

BDD nodes are then removed from the memory since it implies that they are no longer needed

since no node is pointing to them. Garbage collection is performed at different points in the

package to free memory used by nodes that are no longer needed. The use of garbage collection

is important because the amount of memory used keeps increasing during BDD manipulation

and the memory limit can be reached before the end of the execution if some precaution is

not taken. Moreover, even when the memory limit is not yet reached, accessing nodes in the

unique-table becomes slower as the table grows fuller.

3.2 Distributed BDD Package

Our distributed BDD package is designed for a network of workstations (NOW). BDDs for

small systems are not usually large and they can be easily manipulated on a single machine.

However, the number of BDD nodes representing a system can grow exponentially as the

system gets larger and it becomes impossible to handle these BDDs on a single machine.

Moreover, the time taken to complete BDD manipulation also increases as the system gets

larger. The main goal of this project is to avoid memory problems that can arise during BDD

manipulation while also speeding up the computation by making use of the collective memory

resources available on a NOW. The NOW which is usually an existing infrastructure consists

of a number of workstations interconnected via a local area network. Because communication

between workstations can be slow, access to the network is avoided as much as possible in the

implementation.

The standard BDD manipulation algorithm (non-distributed) shown in Figure 2.4 leads to

a large number of network accesses during BDD manipulation since we have to access the

memory of another workstation in order to manipulate a BDD node. The effect of this is that

workstations on the NOW will at some point have to wait for data from another workstation

in order to carry out their own tasks. We need to modify the algorithm so that a workstation

can continue other tasks even when some data is needed from other workstations. This cannot
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01: bfOp(F,G,op) {

02: if IsTerminalCase(F) or IsTerminalCase(G)

03: minIndex = minimum variable id of (F,G)

04: create a REQUEST (F,G) and insert in REQUESTQUEUE[minIndex];

05: /* Top-down APPLY phase. */

06: for (i = minIndex; i <= numVars; i++) { bfApply(op,i) }

07: /* Bottom-up reduce phase */

08: for (i = numVars; i >= minIndex; i--) { bfReduce(i) }

09: return REQUEST or the node to which it is forwarded;

10: }

01: bfApply(op,id) {

02: x = variable with index id

03: /*Process each request queue*/

04: while(REQUESTQUEUE[id] not empty) {

05: REQUEST(F,G) = unprocessed request from REQUESTQUEUE[id]

06: if (not TerminalCase ((op,F_x,G_x ),result) ) {

07: nextIndex = minimum index of (F_x,G_x )

08: result = findOrAdd(F_x,G_x ) in REQUESTQUEUE[nextIndex]

09: }

10: REQUEST->THEN = result

11: if (not TerminalCase((op,F_x’,G_x’ ),result) ) {

12: nextIndex = minimum index of (F_x’,G_x’ )

13: result = findOrAdd(F_x’,G_x’ ) in REQUESTQUEUE[nextIndex]

14: }

15: REQUEST->ELSE = result

16: }

17: }

01: bfReduce(id) {

02: x = variable with index id

03: while (REQUESTQUEUE[min] not empty) {

04: REQUEST(F,G) = unprocessed request from REQUESTQUEUE[min]

05: if (REQUEST->THEN is forwarded to T) { REQUEST->THEN = T }

06: if (REQUEST->ELSE is forwarded to E) { REQUEST->ELSE = E }

07: if (REQUEST->THEN == REQUEST->ELSE) { forward REQUEST to REQUEST->THEN }

08: else if ( (REQUEST->THEN, REQUEST->ELSE) found in UNIQUETABLE[id]) {

09: forward REQUEST to that node

10: }

11: else { insert REQUEST in UNIQUE-TABLE[id] }

12: }

13: }

Figure 3.2: The Breadth-first BDD manipulation algorithm based on [41]
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be achieved by using depth-first manipulation.

In order to minimize the number of memory accesses necessary to manipulate BDDs and also

allow concurrent execution of threads on the workstations, we use the breadth-first iterative

algorithm shown in Figure 3.2. The algorithm performs BDD computations by doing a breadth-

first traversal of the operand BDDs rather than the depth-first traversal shown in previous

algorithms.

The breadth-first BDD algorithm manipulates BDDs by horizontally grouping the BDD nodes

for each input variable together and then manipulating the groups one by one. This technique

reduces the random accesses to the memory, thereby improving the performance of the breadth-

first technique when compared to the depth-first algorithm.

3.3 Design

In order to achieve our goal of distributing a BDD package, quite a number of decisions have

to be made. The major ones include how to distribute BDD nodes among the workstations,

how to distribute the computation in order to obtain the best performance of the package,

and lastly, how to make sure that no workstation stays idle during BDD manipulation, that is

each of the workstations executes some threads of computation concurrently with the others.

This is related to the general problem of load balancing [18, 21, 45] in distributed applications.

However, in addition to load balancing, another requirement of a distributed BDD application

is that the data (BDD nodes stored on each workstation) must also be balanced. Thus, it is

necessary to distribute both the BDD nodes that will be stored on the workstations and the

operations that will be performed adequately.

3.3.1 Node Distribution

BDD nodes are distributed by assigning each variable to a unique workstation as proposed by

Ranjan et al. [37]. The distribution of the variables is done before the construction of BDDs

and each workstation is assigned an approximately equal number of BDD variables to prevent

overloading any of the workstations.
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We note that, performing a large number of network transactions would lead to a poor per-

formance of the distributed BDD package. Thus, a distribution of BDD nodes that requires

network transaction when dealing with only one level of a BDD node would be unacceptable.

Based on the fact breadth-first technique traverses BDDs on a level-by-level basis, and due to

the overhead involved in performing network transactions, the distribution of BDD nodes is

done such that all BDD nodes with the same variable number (or a set of consecutive variable

numbers) are stored on and handled by the same workstation. This is achieved by distributing

BDD nodes to the workstations on a level-by-level basis. A graphical representation of the

distribution of the BDD nodes is shown in Figure 3.3. If there are N input variables, the dis-

tribution ensures that there are no more than N network accesses in order to reach a terminal

node from the root of a BDD.

workstation 3

workstation 2

workstation 1

FT
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2 2

3 3 3

4 4
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Figure 3.3: Level-by-level distribution of BDD nodes to workstations

In addition, the terminal nodes are stored on all the workstations as constants. Thus, accessing

a terminal node (which happens a number of times during BDD manipulation) requires no
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network transaction. They are retrieved by accessing the local memory of the workstation

on which the manipulation is performed. Also, since there are only two terminal nodes, no

significant memory usage is involved.

3.3.2 Generalized Address

In the non-distributed BDD package, each BDD node is uniquely identified by a pointer to

memory address. Pointers cannot be used to identify BDD nodes in our distributed package

since BDD nodes now reside on different workstations that cannot directly access each other’s

memory spaces. Moreover, two distinct nodes may reside on two different workstations but may

nevertheless be stored at exactly the same address (on different workstations). However, each

workstation on the network needs to be able to identify any BDD node regardless of whether

the BDD node resides in its local memory or on any other workstation on the network.

We can determine the workstation on which a BDD node resides from its variable number.

Thus, we need to be able to retrieve the variable number of a BDD node without actually

accessing it since this would involve another network transaction. We therefore form a new

address format for BDD nodes. This addressing format called generalized address by Ranjan

et al. [37] is a tuple (var_nr,mem_ptr) consisting of the variable number and the memory

address of the BDD node on the workstation where it resides. This address format uniquely

identifies each BDD node on the NOW. Given any generalized address, we can determine the

workstation on which it is stored by checking the variable number and also access it by checking

the memory address pointer associated with it on the workstation on which the node is stored.

3.3.3 Garbage Collection

As discussed in Section 3.1, garbage collection is a memory management technique used to free

unused memory in a BDD package. Some of the algorithms that are often used to perform

garbage collection include the use of reference counts, the mark-and-sweep algorithm, and

the stop-and-copy algorithm [24]. In our non-distributed BDD package, garbage collection

is quite easy to implement using the mark-and-sweep algorithm. However, even though the

non-distributed package forms the basis for our distributed package, the algorithm will be very
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expensive to perform in the distributed BDD package and may also lead to a bad performance of

the package. This is because the algorithm will result in a large number of network transactions

in order to mark all BDD nodes that are still active and to consequently remove unmarked

BDD nodes since a node can be referenced from any of the workstations on which the package

is distributed. For similar reasons, other forms of garbage collection are also impractical. Thus,

the garbage collection technique is currently not implemented in our distributed BDD package.

3.3.4 BDD Manipulation

As mentioned earlier, BDDs are computed by doing a breadth-first traversal of the operand

BDDs. The use of the breadth-first algorithm in Figure 3.2 (adapted to work on a NOW)

implies that new processes involving the child nodes of a BDD can be started at the same time.

That is, BDD manipulation is done simultaneously on the two different paths of a BDD node.

Thus, different processes can be started on the different workstations at the same time. For

example, if the BDD node in Figure 3.4 is to be manipulated, a process involving node 1 will

be completed by starting two new processes involving nodes 2 and 3 which can either belong

to the same or different workstations depending on which workstations they were assigned to.

1
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Figure 3.4: BDD Manipulation

For any recursive operation involving two operand BDDs, the process involved is given to the

workstation handling the lower variable BDD and the result is stored only on the workstation

to which the root variable of the resulting BDD was assigned. Moreover, since BDD nodes are
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distributed on a level-by-level basis and nodes with lower variable numbers are closer to the root

of the BDD. This implies that from any workstation on the NOW, requests for manipulation

of BDDs are always sent to workstations handling higher variable numbers (compared to the

variables assigned to the workstation) while the results of requests processed on a workstation

are always sent to workstations handling lower variable numbers (compared to the variables

assigned to the workstation).

3.4 Implementation

This section describes the implementation details of our distributed BDD package. To imple-

ment the transfer of messages between workstations, the distributed package uses the message

passing interface (MPI) library. A detailed description of the various messages which can be

transfered between the workstations is given in Section 3.4.1. Distributed versions of the vari-

ous data structures and techniques used to increase the efficiency of the non-distributed BDD

package are also implemented in the distributed BDD package. These include implementations

of the unique-table and the computed-table. Other data structures implemented include the

request queue which does not exist in the non-distributed BDD package.

3.4.1 Data Structures

A description of the various data structures used to aid the implementation of our distributed

BDD package and also to improve the efficiency are given below.

Generalized Address Structure

As discussed in Section 3.3.2, a generalized address is a tuple (var_nr,mem_ptr) containing

the variable number and a pointer to the address in which the BDD node is stored in memory.

Given any generalized address v, the memory pointer in v points to a BDD node. The BDD

node contains two generalized addresses corresponding to its left and right child nodes, and

a pointer called link which links the BDD nodes in a hash list. A representation of the

generalized address structure is shown in Figure 3.5. The use of generalized addresses provides
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a unique identification of each BDD node on a NOW.

BDD:

var nrvar nr

var nr

mem ptrmem ptr

mem ptr

BDDNode: ch0 ch1

link

link

Figure 3.5: A BDD generalized address structure

Unique-Table

The unique-table in our distributed BDD package is similar to the one in the non-distributed

package in that it has an entry for each node in the BDD. However, in the distributed package,

the unique-table is distributed across the workstations on the NOW. Moreover, instead of

having one big hash table for all the BDD nodes, each variable has its own unique-table which

resides on the workstation to which the variable was assigned.

An important requirement for the unique-table is that BDD nodes must not be duplicated in

the table. This property is maintained by giving each of the workstations the responsibility of

adding new BDD nodes with variables that were assigned to the workstation. Before a new

node is added, the workstation first confirms that the variable actually belongs to it. BDD

nodes with variable numbers that do not belong to the workstation are not stored on such a

workstation. This situation should never arise – it would mean that the data structures have

been corrupted, forcing the application to terminate immediately. Before insertion, the node is

checked to see if it already exists in the hash table for the variable. If the node is found during

this lookup operation, it is just returned and not stored again. Otherwise, the new node is
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inserted in the hash table. The use of hash lists for the unique-table of each variable helps to

maintain a strong canonical representation of BDDs.

Hash tables for the variables assigned to each of the workstations are set up on the workstations

during initialization. Section 3.5 gives a full description of the processes involved during a BDD

manipulation.

Computed-Table

The distributed computed-table is implemented as a distributed hash-based cache and is used

to store intermediate computational results. The use of the computed-table, in the same way as

that in the non-distributed BDD package, helps to avoid the repetition of an already completed

operation.

The computed-table is set up by specifying different caches for each of the major BDD oper-

ations. The user can specify the cache size, which refers to the total number of cache entries

that will be stored in all the different caches altogether. During BDD manipulation, new cache

entries are added at the beginning of a list (since they are usually more likely to be reused

in the next computation than previous entries) provided that the maximum cache size is not

yet reached. Once the maximum cache size has been reached, new cache entries are added to

the corresponding list by replacing the last entry (which has stayed longest) in the list and

the newly added entry becomes the first entry of that list. If the list to which a new cache

entry is to be added is empty, we replace the last entry of the first non-empty list found in the

computed-table and the newly added entry also becomes the first entry of that list.

The computed-table is implemented on two levels. The first is the local caching in which a

workstation only caches operations that it computed itself. That is, the variable number of the

lower variable BDD operand belongs to it. The second level of caching is called global caching,

and it involves workstations storing intermediate results that were computed and stored on

other workstations. That is, it allows a workstation to cache intermediate results with variable

numbers that are not necessarily assigned to the workstation. Details about the two levels of

caching implemented in the package are discussed in Section 4.1.
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Message Structure

The transfer of data between the workstations is implemented using the Message Passing In-

terface (MPI). There are three types of messages that can be transferred within the distributed

BDD package. They are:

1. BDD_REQUEST messages,

2. BDD_ANSWER messages, and

3. BDD_QUIT messages.
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Figure 3.6: Structure for storing requests to be transmitted (OperationData)

A BDD_REQUEST message is used to send requests to another workstation on the NOW to carry

out an operation on nodes that belong to it. A workstation sends responses to previously re-

ceived requests to the source of the request with a BDD_ANSWERmessage. Both the BDD_REQUEST

and the BDD_ANSWERmessages are sent using the same data structure called an OperationData.

The third message type (BDD_QUIT message) is only sent to all the workstations after all re-

quests have been completed. The message is used to inform the workstations of the successful

completion of all BDD manipulations and give them permission to exit the application.



CHAPTER 3. DESIGN AND IMPLEMENTATION 35

Information about requests sent from one workstation to another are stored using two struc-

tures. The first structure, which is shown in Figure 3.6, is an OperationData structure and

it is part of the request message that is actually transmitted to another workstation. The op

field in the OperationData structure contains the operation to be performed in the request

while the lr field is used to determine whether a request is a left or right subrequest. The

purpose of the lr field will become clear shortly. The vnr field contains a variable number

depending on the operation to be performed. The extra1, extra2, and fraction fields are

used to store additional information for specific operations. The left and right fields contain

the operand BDD(s). The original_request field contains a pointer to the original request

for which this request was generated. The second structure used to store information about

requests is called the RequestData structure (shown in Figure 3.7). The structure consists

of an opdata field, which is an OperationData structure. In addition, it also contains the

worker field, which contains the identity of the workstation on which a request is to be com-

pleted, the ans field which is used to store intermediate result of the request in opdata, the

lr field, which is used to determine whether an intermediate result is an answer to a left or

right subrequest and lastly, a next field which contains a pointer to the request on the request

queue. A RequestData structure is kept by the requester during the transfer of requests and

referenced by the OperationData structure that was actually sent, while the requester waits

for the answer to return. This is necessary so that when a workstation sends a request to other

workstations, it can continue with other operations. The workstation however needs to store

some information about the sent request in order to recognize the result when it returns.

Request Queue

The request queue is used to keep track of work assigned to each workstation. In a non-

distributed BDD package using depth-first traversal, a work queue is not explicitly defined,

since it uses the call stack. However, in a distributed package, a call may not be local. That

is, it might have been sent from another workstation. Moreover, a call on a workstation may

also not be completed on the same workstation, thus other work may not be able to start until

some have finished.

The request queue facilitates the scheduling of work on each workstation. Each workstation
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Figure 3.7: Structure for storing sent requests (RequestData)

manages its own queue and jobs are added to the queue as they are received. Both jobs

generated locally on a workstation and those received from other workstations are added to

the request queue of each workstation. A workstation examines its own queue and completes

the work assigned to it in the order of arrival. If a job generates other requests, the requests

are added to the appropriate queue whether locally or on other workstations depending on the

workstation responsible for the variable number of the original operands.

The purpose of the request queue is to allow a number of different computations to completed

at the same time. Each workstation is always busy generating results for one or more compu-

tations. The processes involved in the transfer of a request from one workstation to another

and how the requests are handled are discussed in Section 3.4.2.

3.4.2 Distributed Computation

Given a BDD node on a particular workstation wi, it is possible to have its two child nodes

on the same workstation or both children on another workstation wj or even to have one child
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node on workstation wj and another on wk depending on the variable number of each of the

children. This makes it easy to distribute BDD computation by allowing each workstation

to manipulate only the BDD nodes with the variable numbers that were assigned to it. In

our implementation, computations involving two BDD nodes are processed by the workstation

responsible for the node closest to the root in the distribution of BDD variables. Thus, a wide

spread of BDD nodes across the workstations will cause the children to frequently point to

nodes on other workstations such that all the processors will always have some work to do.
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Figure 3.8: BDD to be manipulated

For each operation, a workstation determines whether the work can be done locally (that is,

the variable number belongs to it), or if it has to transfer the request to another workstation. If

the operation is non-local, the workstation sends a request message with all the necessary data

to the appropriate workstation and carries on with the next job on its queue. Some information

about the sent request is however stored by the workstation so that the original request can

be completed when the results from both child nodes are available. The information stored

about the sent request is the RequestData structure mentioned earlier (in Section 3.4.1). The

structure makes it possible to recognize to which operation an answer applies when that answer

is received on a workstation.

During BDD computation, each workstation keeps track of which operations have been started

but not yet completed. It also keeps track of whether the answer to a subrequest previously sent
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corresponds to the left or the right child node. This avoids starting any operation more than

once during the computation. When one of two expected results is obtained, the workstation

waits for the second result while carrying on with other jobs on its queue. Once the second

result is available, it is combined with the first result and the answer to the original request is

sent to the workstation from which the request was received.

For example, Figure 3.8 shows a BDD distributed over two workstations ws1 and ws2. The

list of variables assigned to each workstation, nodes added to the queue for processing, and the

requests that are forwarded are shown in Table 3.1. In this example, in order to process node 1,

one request (to process node 2) is added locally to the queue of ws1 while another request (to

process node 3) is transfered to ws2. The request to process node 2 generates two new requests

(for nodes 3 and 4) which are added to the queue of ws2. The manipulation of node 3 on ws2

also generates a request which is added to its queue. Each of the workstations completes its

tasks and sends the results back to the workstations from which the requests were received.

The answers received are combined appropriately since the necessary information to identify

the answers had been stored before sending each request away.

Workstation Variable Assigned Request to Queue Request Forwarded

1 1, 2 Node 1, 2 from ws1 Node 3, 4 to ws 2

2 3, 4 Node 3, 4 from ws1 none

Node 4 from ws2

Table 3.1: The Queue and forwarded requests involved in BDD manipulation

3.4.3 Communication

The distributed BDD package is implemented using the C programming language and the

message passing interface (MPI) library. One of the reasons for using MPI is its facility for

creating derived data types [34] that describes data as a single entity. The different kinds of

messages that can be transfered from one workstation to another are discussed in Section 3.4.1.

During BDD manipulation, MPI ranks the workstations to be used for manipulation from 0

to n− 1 where n is the number of workstations. The workstation with rank 0 is designated as

the “master” while all other workstation are “workers”. The master does not handle any BDD
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nodes and no variables are assigned to it. However, it causes operation routines to be invoked

and the chain of requests generated are completed on the workers. In addition, the master

also sends a quit message to all the workers after all operation routines have been successfully

completed. The quit message causes the workers to exit and terminate successfully.

A worker continuously waits for all kinds of messages that might be sent to it to arrive. Each

message is dealt with according to which type of message it is. When a message to process a

request is received, the workstation reads the content of the message and stores the work in its

queue for processing. Due to the manner in which BDD nodes are distributed and manipulated

on the NOW, messages which are requests are always sent to workstations handling higher BDD

variables while messages which are answers are always sent to workstations handling lower

variables. Every worker sends a message for each job that does not belong to it. The global

cache discussed in Section 4.1.2 is used to reduce the number of jobs sent to other workstations

by allowing the worker to make an attempt to get the answer to the request before sending

the request. Messages which are answers to previously sent requests are stored. If the answer

is one of two expected results, a final result is computed when the second result is received.

We do not worry about workers trying to send an answer message after a message to quit has

been received. This is because in such a case, a worker would have been stuck waiting for the

completion of a process and the master would have been unable to send the quit message to

the workers. Thus, if the BDD_QUIT message was sent, it implies that all processes have been

successfully completed.

3.4.4 Implemented BDD Operations

The distributed BDD package is limited by the fact that the user needs to specify in advance

how many variables are to be manipulated. However, for most applications, this is not a

serious constraint. The number of variables to be manipulated has to be initialized in order

to initialize the execution of the distributed BDD package and also to initialize the message

passing interface (MPI). The initialization process for MPI involves getting the number of

workstations to be used for the BDD manipulation process and ranking these workstation in

order to identify the master and the workers. The initialization process of the package involves

setting up the necessary data structures on each of the workstations. The process is done by a
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routine called bdd_init.

Another important but simple routine in the package, called bdd_shutdown is used to clear the

message passing interface and to instruct the workers to terminate by sending a quit message

from the master. Both the routines to perform the initialization process and the routine to

terminate the workstations together with all the main routines used to manipulate BDDs are

also called by the user from “outside” the package. The routines to perform BDD manipulations

are only used by the master who receives all the calls from the “outside” and invokes a chain

of requests on the workers. The routines that are presently handled by the implementation

together with a description of which BDD operation the routines are used for, are listed below.

• bdd_t: Constructs a BDD for the Boolean function,

f(v)
.
= (v = True)1

where the parameter v is a Boolean variable. In other words, it constructs the BDD node

in Figure 3.9.

True False

v

Figure 3.9: BDD node constructed by the bdd t function

• bdd_f: Similar to bdd_t except that it constructs a BDD for the Boolean function,

f(v)
.
= (v = False)

The BDD constructed is shown in Figure 3.10.

• bdd_equal: Constructs a BDD representing the Boolean function,

f(v1, v2)
.
= (v1 = v2).

1f(v)
.
= (v = True) means that the computation, (v = True) is done and the result is equal to (or becomes)

the function represented as f(v).



CHAPTER 3. DESIGN AND IMPLEMENTATION 41

False True

v

Figure 3.10: BDD node constructed by the bdd f function

• bdd_not_equal: Constructs a BDD for the Boolean function

f(v1, v2)
.
= (v1 6= v2).

• bdd_neg: Given a BDD b that represents the Boolean function f(X), this routine com-

putes the Boolean function,

g(X)
.
= (f(X) = False)

which is the negation of b and returns a BDD representation of g(X). The parameter X

(X = (x1, x2, x3, . . . , xn)) is a vector of Boolean variables.

• bdd_and: Constructs the conjunction of two BDD nodes. That is, given a BDD b1 that

represents the Boolean function f(X), and another BDD b2 that represents the Boolean

function g(X), it computes the Boolean function

h(X)
.
= (f(X) ∧ g(X)).

• bdd_or: Given a BDD b1 that represents the Boolean function f(X), and another BDD

b2 that represents the Boolean function g(X) this routine computes the disjunction of b1

and b2. The BDD representing the Boolean function,

h(X)
.
= (f(X) ∨ g(X))

is returned.

• bdd_fraction: This is the only routine that does not return a BDD and does not consider

which of the left or right child node has the lower variable number. Given a BDD
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representing a Boolean function f(X), it computes the fraction of the possible number of

variable assignments that satisfy f(X). In other words, the routine calculates the number

of minterms (or satisfying assignments) for a BDD as a fraction of the potential number

of minterms.

• bdd_exists: Given a BDD b that represents a Boolean function f(X), it computes the

existential quantification of f with respect to x, which is given by:

g(X)=̇f(X)|x=0 ∨ f(X)|x=1.

• bdd_forall: Given a BDD b that represents a Boolean function f(X), it computes the

universal quantification of f with respect to x, which is given by:

g(X)=̇f(X)|x=0 ∧ f(X)|x=1.

• bdd_shift: Given a BDD, it constructs a new BDD with all the variable numbers in

the nodes shifted by a given offset. The shifting is done by adding the offset to all the

variable numbers in the given BDD.

3.5 Program Execution

This section gives a detailed description of all the processes involved in BDD manipulation

using the distributed BDD package implemented.

The command line arguments necessary to use the BDD package includes the number of work-

stations that the user wishes to use and the name of the file containing the BDD operations

required by the user. In reality, a copy of the user program is executed on each of the worksta-

tions even though each of them only processes those commands that relate to it. The bdd_init

function which has to be called first in the user program causes the message passing interface

to be initialized and the number of the workstations specified by the user to be stored by MPI.

The message passing interface also ranks the workstations by giving them numbers ranging

from 0 to n − 1 where n is the number of workstations specified. The two major BDD nodes

True and False are initialized on all the workers so that each of them can perform operations
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on these two nodes. The workstation with rank 0 is set as the master while the others are set

as the workers.

The variables are distributed among the workers by assigning an approximately equal number

of variables to each worker. No variable is assigned to the master, thus the only BDD nodes

it manipulates are True and False. The number of variables specified by the user when calling

bdd_init is divided between the n−1 workers. In situations where the workers cannot handle an

exactly equal number of variables (that is, (number of worker mod number of variables) 6=

0), the workers with ranks 1 to (number of worker mod number of variables) handle one

extra variable compared to the others. Hash tables are allocated on each worker accord-

ing to the number of variables designated to the worker. The function to process requests

bdd_process_requests is then called.

Although no variable is assigned to the master, calls to the main BDD routines are handled by

the master which like all other workstations also has a copy of the user program running on it.

The master generates chains of requests and sends them to the appropriate workers. On the

other hand, the workers continuously wait for requests which they have to process. When a

BDD manipulation routine is called from the user program, the parameters are stored inside a

OperationData request structure and sent to the appropriate worker. Each request is sent to

the owner with a tag BDD_QUESTION. Answers to requests are sent with the tag BDD_ANSWER.

The tags enable each worker to know which kind of data they are dealing with since both

requests and answer are sent using the same message structure (OperationData).

When a worker receives a request, if the request has a BDD_QUESTION tag, it allocates a new

request record either by taking it from the list of free requests (if there are any), or by allocating

new memory for it. The list of free requests contains all the previous allocations for requests

that have already been successfully processed. This list ensures that the memory used for

previous requests is not lost by reusing it and it also reduces memory fragmentation in the

memory of the workstations.

Requests from a worker’s request queue are serviced depending on which operation the user

wishes to perform. In cases where the child nodes of the operand BDD(s) have to be ma-

nipulated first, the worker sends a subrequest to the workstation responsible for the variable
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numbers involved. If these subrequests still belong to the same worker, they are added to

its request queue and the process continues since the worker is constantly waiting for new

requests. When sending subrequests, the lr field of the request (OperationData) structure

is modified to reflect whether the request is for the left (0) or right (1) child node. In cases

where the answer can be computed without sending subrequests, the answer is stored in an

OperationData structure and sent with the tag BDD_ANSWER. The lr field of the message is

updated to the lr field from the subrequest being processed. This enables a worker to know

whether an answer it receives correspond to the left or right subrequest so that they can be

combined appropriately. The original_request field in an answer message is also updated to

the original_request field from the question being answered so that a worker receiving the

message knows the request to which an answer corresponds.

When a worker gets an OperationData structure with a BDD_ANSWER tag, the worker checks if

an answer has already been received for the same original_request field by checking if the

variable number of the answer in the original_request field is −1. If the variable number of

the answer field is −1, it means that the answer just received is the first answer to the request

in question. The answer field of the original_request structure is then set to the answer just

received and the worker continues receiving different data until it receives the second answer

to the same original_request structure. The two answers are combined depending on the

operation that is being performed and sent to the worker from which the original request was

received. Once the request has been answered, the request structure containing the request

that has just been serviced is added to the free request list so that it can be reused for another

request. The final answer to requests is sent to the master. After all requests have been

processed, the bdd_shutdown function which is the last routine called in the user program is

executed by the master. The routine causes the master to send a BDD_QUIT message to all

the workers, instructing them to terminate. A typical example of a user program using the

distributed BDD package is given in Appendix A.

As mentioned earlier, a hash table (the unique-table) is initialized for each variable number at

the beginning of BDD manipulation and it is used when making a new node with this variable

number, that is when the bdd_makenode function is called. Since each worker has certain

variable numbers it is responsible for, when a call is made to the bdd_makenode function on a
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worker, the worker first checks if the variable number indeed belongs to it. Only the owner of

a variable number is allowed to make a BDD node with that variable number and each BDD

node is stored in the hash table for its variable number. When a new BDD node is created, the

hash value of the new BDD is calculated and the hash table of the associated variable number

is checked to confirm whether the node has already been created. If it has already been created,

the BDD node is returned. Otherwise memory is allocated for the new BDD node and it is

created and returned to the caller of the bdd_makenode function.

3.5.1 Program Flow Example

To motivate the use of some of the BDD operations implemented in the package and the

program flow description above, we discuss a simple typical example of BDD manipulation

using the distributed BDD package. An example of a user program that uses the distributed

BDD package is included in Appendix A for better understanding of how to use the package.

The program flow details of a typical use of the distributed BDD application is shown in Figure

3.11. The chart shows the steps taken in order to compute the conjunction of two BDD nodes

A and B where A = bdd_t(0) and B = bdd_t(1). There are three workstations and the user

program is initialized with two variables. Thus the two workers handle one variable each. BDD

node A is handled by the first worker and B by the second worker. The labeled arrows on the

diagram show the sequence of the operations to execute the user program. The details of each

step of this sequence are as follows:

1. The function bdd_init is executed on all the workers since they all have to initialize

the base BDD nodes (True and False), the message passing interface and their internal

structures.

2. The master handles the bdd_and routine issued from the user, by filling an OperationData

request structure which is to be sent to the appropriate worker.

3. Both worker 1 and worker 2 are already waiting for requests to process.

4. The master sends the filled OperationData request structure to worker 1 which is re-

sponsible for the lower variable BDD, that is A.
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function bdd_init

function bdd_init

function bdd_init

  Initialize bdd_true and bdd_false

  Initialize bdd_true and bdd_false

  Initialize bdd_true and bdd_false

function bdd_and

   send to owner of lower variable number

  Determine my var_nrs and allocate hash list

  Determine my var_nrs and allocate hash list

  function bdd_process_request

  function bdd_process_request

  gets new request, r

function bdd_service(r)
/*not simple case, send subrequests */

  
  function bdd_request(request 1)
  function bdd_request(request 2)

  fields are updated before sending*/

  Gets new request r1 and r2

function bdd_service(r2)
function bdd_service(r1)

/*lr and original_request fields are updated
before sending*/

  Gets answer to sub−requests r1

 to see if it is first answer, YES*/
  Gets answer to sub−requests r2

 to see if it is first answer, NO*/

  /*checks answer field of original request 

  /*checks answer field of original request 

function bdd_answer()
      Send combined answer to source 

   Gets final answer

   function bdd_shutdown
   /*Sends BDD_QUIT message to all
    workers*/

  Gets BDD_QUIT message

 mpi_finalize

 exit
 mpi_finalize
 exit

 mpi_finalize

  Gets BDD_QUIT message

exit

USER

WORKER 2

MASTER

WORKER 1

Requests not mine, fill request structures
 and send to owner. /*lr and original_request

Compute answers and send to request source
/*Requests are simple cases*/

bdd_init(&argc, &argv, 2)

and(A, B)

bdd_shutdown()

  Add the request r to the free request list

  Initialize MPI

  Initialize MPI

  Initialize MPI

   fill an OperationData request structure and 

Figure 3.11: Program flow for a typical use of the BDD application
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5. Once worker 1 gets the request, it adds the request to its request queue and processes the

request by calling the function bdd_service. However, worker 1 is unable to compute

the final answer because the BDD nodes are not simple cases and the second operand of

the bdd_and operation (BDD B) belongs to worker 2.

6. Worker 1 generates two subrequests corresponding to the left and right subrequests by

calling the function bdd_request. The function checks whether the requests belong to

worker 1; in this case it does not since the second operand of the subrequests is B.

Thus, worker 1 fills two OperationData request structures and sends them to worker 2

for processing. The original_request field of the subrequests are set as the original

request that was sent to worker 1 from the master. The lr field of the subrequests are

also set to reflect which of them is the left and right request.

7. Worker 2 which is already waiting for requests gets the two subrequests from worker 1

and adds them to its request queue.

8. Worker 2 processes the two new requests on its queue (by calling bdd_service). Since

the requests contain the simple cases of the bdd_and operation, they can be handled by

worker 2 independently.

9. Worker 2 computes the answers to the requests and sends them back to the source

of the request, that is, worker 1. The lr and original_request fields of the answer

(OperationData structure) sent is updated to those obtained from the requests that are

being answered.

10. Worker 1 gets the first answer from worker 2 and checks the answer field of the answer’s

original_request field to see if it is the first answer (that is, the variable number of

the answer field is −1). Worker 1 stores the first answer in the answer field of the

original_request field.

11. After getting the second answer of the subrequests from worker 2, worker 1 combines

it with the first answer to get the final answer of the bdd_and operation by calling the

function, bdd_answer.

12. Worker 1 sends the final answer of the bdd_and operation to the master.
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13. The OperationData request structure of the request that has just been processed by

worker 1 is added to the free request list on worker 1 so that it can be later reused.

14. The master gets the final answer to the bdd_and operation on BDD A and B and returns

the answer.

15. The master executes the bdd_shutdown routine by sending BDD_QUIT messages to all the

workers.

16. The workers get the BDD_QUIT message and stop waiting for new requests to come in.

17. The message passing interface MPI is finalized on all the workstations including the

master and they all exit the program.

3.6 Comparison with Previous Work

The distributed BDD package implemented in this thesis is most similar to the work of Ranjan

et al. [37]. However, the procedure implemented is not the same as theirs. Some of the major

similarities include:

1. The level-by-level distribution of BDD nodes to the workstations on a NOW.

2. The use of generalized addresses to uniquely identify each BDD node represented.

3. Both algorithms use a breadth-first approach for traversing BDD nodes.

There are also some major differences which makes our distributed BDD package unique. Some

of these differences include the following:

1. Our distributed BDD package uses the request queues on each workstation to keep track

of jobs that need to be completed on each of the workstations instead of the notion of node

forwarding [37] used by Ranjan et al. This allows us to overcome the problem of shadow

request duplication encountered by Ranjan since a request will always be forwarded to the

same worker no matter how many times the same request was generated from anywhere in

the NOW. Such requests are however not recomputed every time they are to be processed
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since the workstation would have cached the result the first time it was computed and

will subsequently be returned from the operation cache.

2. We use the message passing interface (MPI) for the transfer of messages between the

different workstations on the NOW during BDD manipulation while the parallel virtual

machine (PVM) is used in the work of Ranjan.

3. We also introduce two levels of caching in the computed-table which we call local and

global caching. Details about these two levels of caching and how they are used to improve

the performance of our distributed BDD package are explained in Section 4.1.

4. Finally, we introduce the use of profile shifting to determine how well a particular dis-

tribution of variables works on the NOW with regard to the number of messages that

are sent and received by each of the workstations. A detailed description of the use of

profile shifting and the evaluation of the performance of the BDD package is discussed in

Section 4.3.



Chapter 4

Optimization

The previous chapter discussed the implementation details of our distributed BDD package.

The package is designed to execute on a network of workstations such that both the BDD

nodes and the computations involved in their manipulation are distributed across the set of

workstations. The workstations communicate by passing messages to one another using the

MPI. Some of the drawbacks that can easily be identified in the implementation include:

1. Each workstation sends a message anytime it has to process a node that does not belong

to it and this implies a large number of network transactions.

2. Variables are distributed approximately equally across all the workstations on the NOW

without taking into account the number of BDD nodes associated with each variable or

any other form of distribution that could make the execution more efficient.

This chapter describes how these drawbacks are handled in the implementation so as to improve

the performance of the distributed BDD package.

4.1 Caching

The original attempt made to optimize the performance of the distributed BDD package was the

distribution of the BDD nodes and the computation across the workstations. The distribution of

50
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computation however requires communication among the workstations which involves sending

messages through the network. The communication overhead associated with the sending of

messages can make the package less optimal. To ensure that the performance is improved, the

amount of communication required to complete a computation must be reduced as much as

possible.

There are different approaches that can be used to reduce the number of requests sent during

BDD computation. One simple strategy is to test for base cases before generating subrequests

when an operation is to be performed. The test for base cases does not require accessing the

contents of the nodes involved thus no network transaction is required. Testing for the base

cases is done by comparing the variable numbers. Testing for the equivalence of any other BDD

nodes is done by comparing the variable numbers and the memory pointers in the generalized

address of the two BDDs involved. During any BDD manipulation process, the test for base

cases is done before an operation is recursively performed on the child nodes of the BDD and

this prevents unnecessary communication between workstations since the results can always be

returned without accessing the other nodes involved.

Another approach to optimizing the implementation by reducing the number of network trans-

actions due to sending of requests is the use of the computed-table. As discussed in Section

3.4.1, the computed-table is a hash-based cache used for storing intermediate computation

results and each workstation on the NOW manages its own computed-table.

For any computation thread, there are three situations that can occur with regards to subre-

quests generated:

1. The two subrequests may be continued on the same workstation; in this case, the same

workstation does the next computation step. The subrequests generated will be added

to its queue for processing.

2. A subrequest may be processed locally (that is, added to the queue of the workstation)

while the second subrequest is processed by another workstation.

3. Both requests may be sent to one or two other workstations; in this case a workstation

sends the subrequests and continues with other work on its queue.
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As discussed in Section 3.4.2, each workstation takes note of what operation was started on

it but is yet to be completed. Intermediate results of BDD computations are stored on two

different levels. We refer to these different levels of caching as local caching and global caching.

4.1.1 Local Caching

Local caching is one of the two ways in which intermediate results from BDD computation can

be added to the computed-table on a workstation. Each workstation on the NOW is designed

to maintain its own computed-table. A workstation records each operation it has performed

before by including it in its computed-table. The results of all computation processed from a

workstation’s queue are added to its computed-table.

Local caching is implemented such that a workstation stores all the results of computations

that were started on it. The caching is done regardless of whether the whole computation was

handled by the workstation or part of it were handled by other workstations. Once the final

result of a computation is available, the operation leading to the result is cached. Answers

to subrequests generated from other workstations which were also added to its queue are also

cached in the computed-table.

One advantage of local caching is that if a previously performed computation required sending

a number of messages to different nodes in order to be performed, these messages are only sent

once from a particular workstation, even if the workstation has to perform the same operation

again. This is achieved by always checking the computed-table before an operation is recursively

performed on the child nodes. This step comes immediately after the test for base cases

(in which case the operation can be easily performed without generating subrequest or going

through the cache). Since a workstation has a cache of operations that have been started on it

before, previously completed operations are not restarted and this helps to reduce the amount

of computation and also the amount of communication required during BDD manipulation.
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4.1.2 Global Caching

As explained in the last section, local caching is used to cache results for the operations that

were started on a particular workstation. However, during BDD manipulation, a subrequest

involving BDD nodes which are not assigned to the same workstation may be performed a

number of times for different major operations. All these subrequests requires messages to be

sent to another workstation. Even though the workstation handling such subrequest would have

cached the operation on its computed-table locally, we can reduce the amount of communication

required by avoiding the network transaction involved with sending the request in the first place.

This is achieved by allowing a workstation to store the results generated from subrequests that

were sent to other workstations. This strategy is what we refer to as global caching and it causes

workstations to store BDD nodes that are not actually allocated to them in their caches. A

typical example that shows some of the advantages of this technique is shown in Figure 4.1.
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Figure 4.1: Computing the negation of BDD nodes A and B

Assume that variables 1, 2, and 3 are assigned to workstation 1 and variable 4 is assigned to

workstation 2. In order to compute the negation of BDD nodes A and B which are stored on

workstation 1, a request to perform the negation of the BDD node C (in Figure 4.2) which is a

child node somewhere in both A and B is sent to workstation 2 for each of the negations. The

use of local caching will cause the BDD node representing the negation of C to be stored on

workstation 2 after it has been done the first time and this result can be returned each time
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workstation 1 sends a subrequest to perform the same operation. However, the communication

required to send this subrequest to workstation 2 can be avoided by allowing workstation 1 to

cache the result of the negation of C.

F

4

T

C =

Figure 4.2: BDD node to be negated for each of the computations

Caching of results generated from subrequests are done before the computation of final results

for original requests. Since a workstation can easily recognize the subrequest to which an

answer it receives corresponds before the answers are actually composed, caching these result

does not require much overhead.

Even though we talk of both local and global caching, these two cache levels use the same

cache to avoid the overhead of going through two different caches to see if an operation has

been earlier performed. The cache is always checked before requests for a recursive operation

are generated. Subrequests that have already been cached are simply returned and no commu-

nication is required between the workstation on which the subrequests were generated and the

workstation that is supposed to process them. This significantly reduces the number of network

transactions necessary in the implementation and does not increases the actual computation

done on a workstation except for the checking of the cache for results of subrequests generated.

The size of the cache is specified by the user when the distributed BDD package is initialized.

The size, which is fixed throughout an execution, is expressed as the number of data entries

that may be stored in the cache during BDD manipulation. During the computation of BDDs,

if the number of entries specified for the cache is reached, new intermediate results are stored

in the computed-table by replacing the first item added to the list or by replacing another

entry if the current list is empty. Deleted entries have to be computed one more time in order

to be stored again. This is not a major concern since the cache is implemented just as an

optimization for the package and it does not affect the completion (or termination) of BDD

operations. It is important to note that for different problems, the size of the cache has a
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different effect on the performance of the distributed BDD package. But as a general rule, the

size of the cache should be big enough to store enough intermediate results and small enough to

avoid making use of additional memory that could have been used for computation and storing

of BDD nodes.

The caching of results, particularly for global caching, leads to a significant improvement in the

performance of the distributed BDD package. Even though the local caching of intermediate

results reduces the number of network transaction necessary in BDD computation, the number

was reduced to approximately one-tenth when global caching is used. Fewer network trans-

actions imply that the workstations have fewer operations to complete and the computation

of BDDs becomes considerably faster, making the application more efficient. Details about

experiments conducted to evaluate the use of the global cache are presented in Chapter 5.

4.2 Alternative Distribution of Variables

We originally implemented the distribution of BDD nodes to workstations by assigning an

approximately equal number of variables to each workstation for them to handle as explained

in Section 3.3.1. However, we noted that a small change in the way variables are distributed

across the workstations can cause a significant change in the performance of the application.

Using an equal distribution of variables among seven workstations, Figure 4.3 shows a plot of

the total number of network transactions required by each of the workstations to complete BDD

manipulation (for the DP7 problem discussed in Section 5.3). As seen in the histogram, even

though the variables are equally distributed among the workstations, the number of network

transactions carried out by each of the workstations increases as we traverse the BDD from top

to bottom. The increase in the number of network transactions can be attributed to the struc-

ture of the BDD involved in the manipulation. For many BDDs, the level-by-level distribution

of variables with equal variables assigned to each workstation will cause more BDD nodes to

be assigned to some workstations than others because the number of nodes corresponding to

each variable is different. In many cases, the number of BDD nodes corresponding to top

variables is usually smaller than the number of nodes corresponding to variables midway (or

at some lower part) of the BDD. Thus, using an equal distribution of variables may not result



CHAPTER 4. OPTIMIZATION 56

in a good performance of the package for some problems due to the unbalanced distribution

of loads on the workstations. We therefore implemented a technique which allows the user to

specify how the variables should be distributed to the workstations. This technique is however

an optional way of distribution and is most useful when the user has an idea of how the BDD

to be manipulated or generated looks.
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Figure 4.3: Total network number transactions by each workstation

To use this technique, the user has to choose the option to specify the distribution by themselves.

The distribution is done by specifying what percentage of the variables are handled by each

workstation. For example, if there are n workers to be used, the percentage of the variables

assigned to each of the first n−1 workers is specified. The remaining variables are then assigned

to the last worker. During execution, BDD variables are assigned to the different workstations

as the percentages are read from the list provided by the user. For example, to distribute

a number of variables over seven workstations using the percentage list (10, 20, 20, 20, 10, 10)

specified by the user, the first 10% of the variables (according to the ordering) are assigned to

workstation 1, the next 20% of the variables are assigned to workstation 2, then the next 20%
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are assigned to workstation 3, and so on.

There are three interesting ways in which a user may choose to distribute variables. The first

option is to assign fewer variables at the top of the BDD to a workstation and more variables

at the lower part of the BDD to other workstations. An example of this is the percentage

distribution (5, 5, 10, 10, 20, 20). The second option is the converse of the first, that is, more

variables at the top are assigned to a workstation while fewer variables at the lower part of

the BDD are assigned to other workstations; for example using the percentage distribution,

(30, 20, 20, 10, 10, 5). A third option is to distribute the variables based on the skewness of

the graph obtained when the number of transactions carried out on each workstations for

the equal distribution of variables is plotted. For example, if we consider Figure 4.3, we

may choose the distribution (25, 20, 15, 10, 5, 10) so that workstations with a large number of

network transactions are assigned fewer variables than before and those with little network

transactions are assigned more variables in order to make the amount of network transactions

on all the workstations within the same range. These different distribution of variables will lead

to different behaviors of the distributed BDD package. As mentioned earlier, if we consider

the structure of many BDDs, the number of nodes associated with variables closer to the root

node are usually smaller than those of nodes associated to variables more closer to the terminal

nodes. Thus, we expect that the first option will not yield a good distribution of computation

because of an unbalanced load (since fewer nodes are assigned to some workstations while

others handle a large number of BDD nodes). The last two options are expected to yield

better performance of the package depending on the problem being handled since more BDD

variables at the top of the BDD and fewer BDD variables at the lower part of BDD are assigned

to different workstations thus creating a level of load balancing on the workstations since the

number of BDD nodes handled by each workstation is much closer. These predictions are

checked in Section 5.3.

If the distribution that yields the optimal performance of the package can be found for simple

cases of a problem, then the optimal distribution of the variables for larger cases of the same

problem can generally be predicted. Although the user has no control over the number of

network transactions, we expect the number of network transactions carried out on all the

workstations to be within a close range for the optimal distribution of variables.
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4.3 Measurement of Performance with Profile Shifts

As explained in the previous section, users are allowed to specify how variables are to be dis-

tributed among the workstations. An improper distribution of the variables on the NOW will

generally cause some of the workstations to be underutilized, thus losing potential computation

power while others will be overloaded. In addition, it will also increase the amount of communi-

cation necessary between workstations. To optimize our BDD package, we want to avoid these

two situations as much as possible. This requires that we find some way of evaluating how well

the package performs for any particular distribution of the variables across the workstations.

Thus, we introduce the concept of profile shifting. For each execution completed using the

distributed BDD package, a profile of the number of messages sent and received by each of

the workstations to and from other workstations is obtained. The measurement of the number

of network transactions is a better way of comparing the execution of two different problems

other than the measurement of time. This is because time taken to complete an execution is

usually dependent on several factors including the system architecture of the workstations, the

network, and the order in which messages are received from the network among other things.

On the other hand, the number of network transactions will always remain almost the same at

any time, even when different systems or platforms are used. Thus, the use of profiles is a good

way of evaluating the performance of the package for any problem. The difference between two

profiles generated for the same problem using different data sets (for example, different cache

sizes, different variable distributions, or different levels of caching) which we refer to as profile

shifts can be used to determine which data set yields a better performance of the package for

any problem. Another benefit of measuring the number of network transactions involved in a

BDD computation is that it is an indicator of how much time the computation may take, since

network transactions take some time to be completed.

An abstract representation of the profile obtainable when executing BDD operations on a NOW

with for example 4 workstations is shown in Table 4.1. The profile shows the total number of

messages exchanged between the workstations. The entries (i, j) denotes the number of request

messages sent from workstation i to workstation j and the entry (j, i) denotes the number of

response messages received by workstation i from workstation j where i goes through the rows

of the profile and j goes through the columns with i and j between 1 and the number of
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WS 1 2 3 4 Total sent Total received Total communication

1 − a b c a+ b+ c 0 a+ b+ c

2 a − d e d+ e a a+ d+ e

3 b d − f f b+ d b+ d+ f

4 c e f − 0 c+ e+ f c+ e+ f

Table 4.1: Profile generated from BDD manipulation

workers on the NOW used. For example, in Table 4.1, the number of request messages sent

from workstation 1 to workstations 2, 3, and 4 are a, b, and c, respectively. The number of

requests sent from workstation 2 to workstations 3 and 4 are d and e, respectively while the

number of requests sent from workstation 3 to workstation 4 is f . As mentioned earlier, due

to the level-by-level distribution of consecutive variables to the workstations, requests from a

workstation are always sent to workstations handling higher variable numbers compared to the

ones assigned to the workstation. As expected, the number of responses received by workstation

1 from workstations 2, 3, and 4 are a, b and c, respectively, which are the same as the numbers

of requests that were sent to them from workstation 1. The same behaviour is also true for

all other workstations. We note that a workstation does not require network transaction to

process the nodes that belongs to it, thus no network accesses is involved with subrequests

generated for the same workstation to handle because they are simply added to its queue. The

last column in Table 4.1 shows the total number of network transactions that were completed

on each workstation on the NOW.

Since BDD nodes can be distributed in various ways by the user as discussed earlier, each

different distribution of variables across the workstations yields different profiles. The shifts (or

differences) in the profiles generated, can be used to determined the best variable distribution

for any particular problem. Obviously, a distribution that leads to more network transaction is

not optimal because it will increase the computation time and may also cause some workstations

to do more work than others. Examples of how profile shifting can be used to draw conclusions

about the distribution that leads to the optimal performance of the distributed BDD package

are discussed in Section 5.3.1 of the thesis.



Chapter 5

Experiments

In the previous two chapters, the different design decisions which were taken to implement

and optimize the performance of the distributed BDD package implemented in this thesis were

discussed. This chapter investigates the effect of the various design decisions and optimizations.

In particular, it addresses the following questions:

• How efficient is the performance of the distributed BDD package in comparison with the

sequential BDD package?

• How does the number of workstations in a NOW affect the performance of the distributed

BDD package?

• What is the relationship between the time and memory consumption?

• How does the alternative distribution of variables by the user affect the performance of

the package? And what is its effect on time and memory requirements?

• How does the use of caches affect the performance? What is the benefit of the two levels

of caching implemented in the package?

• How do different cache sizes affect the performance? And what is the effect of different

cache sizes on different network topologies?

A summary of the results is highlighted at the end of the chapter.

60
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The experiments were conducted using the high performance computing cluster at the Univer-

sity of Stellenbosch. The cluster consists of 21 computing hosts each with 8 CPUs and 336GB

of disk space and about 16GB of main memory. The computing hosts are composed of two Intel

Quad-core processors each and are interconnected by an Ethernet connection. The message

passing interface (MPI) library is used to provide communication between workstations on the

cluster. Even though there are more than 160 cores available on the cluster, we were only able

to use some of the cores due to the high grid workload. However, it was sufficient to evaluate

the performance of the distributed BDD package. In the rest of this chapter, we refer to the

cores as workstations. Time measurements for the experiments were made using the standard

Unix getrusage() system call for evaluating resource usage on a machine during a program

execution. The time reported includes both the user time and the system time used during

execution. The measurements are given in seconds and are averaged over five runs.

A number of problems were chosen to evaluate the performance of the package since different

problems lead to different BDD behaviours. This gives a fairly general view of the package.

Some of the problems chosen for this purpose are shown in Table 5.1. Each problem takes one

or two parameters thus giving us a wide range of different problems. The source code for the

DP problem can be found in Appendix A. The general structure of the source code for other

problems is similar to that of the DP problem. Although most of the results shown in this

chapter reflect only the DP problem, all the experiments conducted were done using some or

all of the other problems shown in Table 5.1. However, since most of the results look similar

(that is, they follow the same trend), only the results from the DP problem are reported for all

the experiments to allow comparison between the different experiments where necessary.

Problem Description

DPn The dining philosophers problem with n philosophers, n ≥ 5

CNTRmn A model of m counters of n bits each, m = 4, n = 3

NETn A model of a network of n communicating processors and n network slots, n = 3

TREEn A model of a tree arbiter with 2n requester cells, n = 1, 2

Table 5.1: Problems selected for evaluating the performance of the distributed BDD package
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5.1 BDD Node Generation

As explained in Section 3.4, BDD nodes are generated and stored on the workstations (if they

are not already stored) as requests for BDD manipulation are processed. In this section, we

observe the effect of the number of completed BDD operations and nodes generated on the

time and memory requirements on the workstations when using the distributed BDD package.

We compare the result with the sequential BDD implementation (Section 3.1) running on a

single machine. Table 5.2 presents a summary of the amount of memory and time required

for the dining philosopher problem as the number of philosophers increases. The experiment

is completed using five workstations.

Problem Implementation Memory(bytes) Time (sec.)

DP5 Distributed 3784360 0.27

Sequential (with garbage collection) 1411156 0.03

Sequential (no garbage collection) 1450568 0.03

DP6 Distributed 19357400 0.60

Sequential (with garbage collection) 1468836 0.04

Sequential (no garbage collection) 1526948 0.04

DP7 Distributed 21478792 2.23

Sequential (with garbage collection) 1540332 0.06

Sequential (no garbage collection) 1620744 0.06

DP8 Distributed 66891040 5.66

Sequential (with garbage collection) 1625628 0.07

Sequential (no garbage collection) 1731940 0.07

DP9 Distributed 162599896 44.66

Sequential (with garbage collection) 1724724 0.09

Sequential (no garbage collection) 1860536 0.08

DP10 Distributed 746185128 248.86

Sequential (with garbage collection) 1837620 0.11

Sequential (no garbage collection) 2006532 0.10

Table 5.2: Memory and time requirement for distributed and sequential BDD applications

We observe from Table 5.2 that the memory and time requirements of the distributed BDD

package as well as that of the sequential BDD package increases as the problem grows larger.

However, both the time and memory requirements of the distributed package is significantly

more than that of the sequential package. This increase in the time and memory usage is due to
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the overhead involved in performing network transactions and also the various data structures

used in the distributed package. Another factor contributing to the increased memory require-

ment is that we did not implement garbage collection for the distributed package whereas it is

implemented in the sequential package.

Despite the increase in the resource requirements of the distributed package, one important

advantage of the package which is the main purpose of distributing the BDD package is that it

uses the collective memory available on the NOW. Thus, even though the sequential package

requires less resources, as the problem gets larger, problems which may be lead to insufficient

availability of memory when handled with a single machine can be handled using the distributed

package. The threshold above which a single machine may be unable to handle a problem is

specific to individual problems and it generally depends on the BDD operations carried out

in such problem and the memory available on the machine used. Moreover, the memory

requirement of the distributed package can also be further reduced by making use of a larger

number of workstations to perform BDD manipulation. Further experiments showing the

relationship between time and memory requirements and the number of workstations on the

NOW when using the distributed BDD package are discussed in Section 5.2.

5.2 Time And Memory Requirements

In order to determine the relationship between time and memory requirements in the distributed

package, a number of experiments were conducted using different numbers of workstations for

the different problems. Figure 5.1(a) and Figure 5.1(b) show the plots of time and memory

against the number of workstations used for BDD manipulation for various problems.

From Figure 5.1(a), we can conclude at least within the range of our experiments that the

cost of communication outweighs the benefit of multiple processors. That is, the time required

to complete BDD manipulation increases as the number of workstations increases. However,

the converse is true for the memory requirements as shown in Figure 5.1(b). The relationship

between the time and the memory requirement as seen in Figure 5.2 (where n ranges from 5 to

10 workers) is that there is a trade-off between time and memory requirements. That is, when

a small number of workstations are used for BDD manipulation, the computation is faster but
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Figure 5.1: Time and memory requirements for different number of workstations
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the memory required grows large. On the other hand, increasing the number of workstations

used for BDD manipulation causes the computation to require more time and lesser amount of

total memory to complete.

This relationship between memory and time can be attributed to the fact that using a small

number of workstations leads to fewer communication transactions thus reducing the overhead

due to network transactions. However, the purpose of distributing the BDD package will

be defeated by using a small number of workstations since the available memory can easily be

exhausted as the problem grows larger. On the other hand, using a large number of workstations

requires more computation and thus more time. However, we utilize the collective memory

available on the network of workstations and this results in a smaller memory requirement on

individual workstations as the number of workstations increases.
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Figure 5.2: Relationship between time and memory requirement

The use of an excessively large number of workstation for a problem that can be handled

adequately with fewer workstations will generally lead to very large communication overhead
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thus affecting the time required for the computation to complete. For many of the experiments

that follow, we shall only report the results for the DP7 problem; however, the results for other

models are similar.

5.3 The Effect of Alternative Distribution of Variables

In Section 4.2, we described an alternative way of distributing variables over the workstations

by implementing an optional method in which the user can specify the percentage of the total

variables that will be assigned to each workstation on the NOW instead of the approximately

equal distribution of variables originally implemented in the package. The variables are dis-

tributed to the workstations according to percentages read from a list.

Considering the DP7 problem, we may choose to use any variable distribution as explained in

Section 4.2. However, the best variable distribution for the problem involves assigning more

BDD variables at the top of the BDD to some workstations and fewer variables at the lower

part of the BDD to other workstations. The list of the percentage distributions used for the

different number of workstations considered for handling the problem is shown in Table 5.3.

The outcome of the experiments for both time and total memory usage (for the different number

of workstations) are shown in Figures 5.3(a) and 5.3(b) respectively. The plots also show the

time and memory requirements when an equal distribution of variables across the workstations

is used.

Workstations Distribution of variables (%)

2 (70, 30)

3 (60, 20, 20)

4 (50, 20, 20, 10)

5 (40, 30, 10, 10, 10)

6 (40, 30, 10, 10, 5, 5)

7 (40, 20, 10, 10, 10, 5, 5)

Table 5.3: Alternative distribution of variables on workstations

As seen in Figure 5.3(a), the time required to complete BDD computation when using the

alternative distribution of variables decreases as the number of workstations increases. This
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Figure 5.3: Time and memory requirements for equal and alternative distribution of variables
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is contrary to what is obtained when variables are distributed approximately equally to the

workstations in which case the time required to complete computation increases with the num-

ber of workstations used. The same trend of time requirement obtained for the alternative

distribution of variables is also obtained for the memory requirements despite the usual rela-

tionship between time and memory consumption. Although the memory required also reduces

as the number workstations increases for an equal distribution of variables to workstations, we

observe that the memory reduces much faster when the alternative distribution of variables

is used. Up to a 50% reduction in memory requirement is obtainable on some number of the

workstations when an appropriate distribution is used.
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Figure 5.4: Relationship between time and memory requirement

An important conclusion that can be drawn from both Figures 5.3(a) and 5.3(b) is that both

time and memory requirements can be reduced to a large extent by finding an alternative way

of distributing variables other than the approximately equal distribution of variables across

the workstations. It is also important to note that the aim of the alternative distribution

of variables is not to make the package similar to the sequential package by shifting many
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variables to a single workstation. Even though we assign more variables to a workstation, if

the distribution is poor, it affects the performance of the package negatively. For example, if

the same distributions of variables to 7 workstations shown in Table 5.3 is used in different

orders, say, distribution2 = (5, 10, 10, 40, 20, 10, 5) and distribution3 = (5, 5, 10, 10, 10, 20, 40),

we observe different performances of the package. Figure 5.4 shows the total number of network

transactions performed by each of the workstations with the different distributions. As can

be seen from the graph, the alternative distribution distribution1 = (40, 20, 10, 10, 10, 5, 5)

makes the load on each of the workstations to be within a close range, while the distributions

distribution2 and distribution3 cause some workstations to have more load than the others.

Thus, the alternative distribution of variables must be done in an appropriate order to achieve

the best results.

5.3.1 Interpretation of the Profile Shifts

In Section 4.3, we discussed the idea of profile shifting and how it supplies information about

all completed executions for which the distributed BDD package is used. A profile showing

the total number of messages transfered between each of the workstations on the NOW is

associated with every execution.

Total Total

Requests messages requests network

WS 1 2 3 4 5 6 7 sent trans.

R
es
p
on

se
m
es
sa
ge
s 1 0 2198 342 342 342 342 338 3904 3904

2 2198 0 5279 1102 1150 1150 1102 9783 11981

3 342 5279 0 11717 3288 3308 3312 21625 27246

4 342 1102 11717 0 27545 8963 9342 45850 59011

5 342 1150 3288 27545 0 73718 33036 106754 139079

6 342 1150 3308 8963 73718 0 28672 28672 116153

7 338 1102 3312 9342 33036 28672 0 0 75802

Total

Responses

received 3904 9783 21625 45850 106754 28672 0 216588 433176

Table 5.4: Profile generated for DP7 using equal distribution of variables
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Total Total

Requests messages requests network

WS 1 2 3 4 5 6 7 sent trans.

R
es
p
on

se
m
es
sa
ge
s 1 0 18159 4800 2904 4994 66 0 30923 30923

2 18159 0 21177 4863 10023 130 0 36193 54352

3 4800 21177 0 7410 3248 32 0 10690 36667

4 2904 4863 7410 0 16943 100 0 17043 32220

5 4994 10023 3248 16943 0 16483 0 16483 51691

6 66 130 32 100 16483 0 0 0 16811

7 0 0 0 0 0 0 0 0 0

Total

Responses

received 30923 36193 10690 17043 16483 0 0 111332 222664

Table 5.5: Profile generated for DP7 using the alternative distribution of variables

As an example of the use of profiles, the profiles generated for the DP7 problem for both the

equal and alternative distribution of variables discussed in Section 5.3 are shown in Tables 5.4

and 5.5, respectively.

From the two profiles, we note that the number of request messages sent from a workstation wsi

to another workstation wsj is always equal to the number of response messages sent from wsj to

wsi. That is, each workstation always receives a response for every request it sends to another

workstation. In addition, the number of network transactions shown in the profiles explains why

the computation of the DP7 problem with the variable distribution in Table 5.3 completes faster

than when the computation is done with an approximately equal number of variables assigned

to each workstation. Up to 50% of the network transactions performed when variables were

distributed equally is avoided when using the alternative distribution. The overhead involved

in performing network transactions is a major drawback to the performance of the distributed

BDD package. Although profile shifts can be used to determine which alternative distribution

of the variables performs better, we believe that the performance will be greatly increased if

network transactions become faster than what is currently available or if the number of network

transactions required to complete a computation can be further reduced.
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5.4 The Effect of Local and Global Caching

Apart from the distribution of variables to workstations on a NOW, another factor which can

affect the number of network transactions and thus the time and memory requirements, is the

use of the cache. In Section 4.1 we discussed the two levels of caching (local caching and global

caching) implemented in our distributed BDD package. For all the experiments in previous

sections (such as that reported in Table 5.4), local caching was used to reduce the run-time. In

this section, we evaluate the performance of the cache and how the different levels of caching

affect the time and memory requirements in the distributed BDD package.

Total Total

Requests messages requests network

WS 1 2 3 4 5 6 7 sent trans.

R
es
p
on

se
m
es
sa
ge
s 1 0 2264 344 344 344 344 341 3981 3981

2 2264 0 7191 1192 1192 1192 1144 11911 14175

3 344 7191 0 22215 4132 4132 3940 34419 41954

4 344 1192 22215 0 65768 14020 13252 93040 116791

5 344 1192 4132 65768 0 185873 43012 228885 300321

6 344 1192 4132 14020 185873 0 458073 485073 663634

7 341 1144 3940 13252 43012 485073 0 0 546762

Total

Responses

received 3981 11911 34419 93040 228885 485073 0 857309 1687618

Table 5.6: Profile generated for DP7 when no cache is used

In order to evaluate the cache, we use the DP7 model and consider the number of network

transactions, memory requirement and time required when the problem is completed with no

caching at all, with the use of local caching only and also with the use of both local and global

caching.

The profiles generated for each of the experiments mentioned above are shown in Tables 5.6,

5.7 and 5.8. From the difference in the number of transactions required to complete the

experiments, we can already draw conclusions about the performance of the cache. When a

BDD computation is performed without any cache at all, the number of network transactions

is very large. The same is also true of the time and memory requirements in this situation.



CHAPTER 5. EXPERIMENTS 72

Total Total

Requests messages requests network

WS 1 2 3 4 5 6 7 sent trans.

R
es
p
on

se
m
es
sa
ge
s 1 0 2237 342 342 342 342 338 3943 3943

2 2237 0 6494 1150 1150 1142 1102 11038 13275

3 342 6494 0 14678 2674 2899 2599 22850 29686

4 342 1150 14678 0 39495 9384 8801 57680 73850

5 342 1150 2674 39495 0 63153 9977 73130 116791

6 342 1142 2899 9384 63153 0 110768 110768 187688

7 338 1102 2599 8801 9977 110768 0 0 133585

Total

Responses

received 3943 11038 22850 57680 73130 110768 0 279409 558818

Table 5.7: Profile generated for DP7 when local caching is used

Total Total

Requests messages requests network

WS 1 2 3 4 5 6 7 sent trans.

R
es
p
on

se
m
es
sa
ge
s 1 0 2198 342 342 342 342 338 3904 3904

2 2198 0 5279 1130 1134 1150 1102 9795 11993

3 342 5279 0 10817 2908 2950 2919 19594 25215

4 342 1130 10817 0 26734 10183 8918 45835 58124

5 342 1134 2908 26734 0 8450 6337 14787 45905

6 342 1150 2950 10183 8450 0 3651 3651 26726

7 338 1102 2919 8919 6337 3651 0 0 23266

Total

Responses

received 3904 9795 19594 45836 14787 3651 0 97567 195133

Table 5.8: Profile generated for DP7 when both local and global caching is used

Total network Memory Percentage memory Time

Cache used transactions (bytes) requirement (%) (sec.)

No cache 1687618 413372416 100 7.39

Local caching only 558818 189370160 46 2.87

Global caching only 311488 18139472 4.5 1.37

Global and local cache 195133 13785752 3.5 0.86

Table 5.9: Summary of computation details
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When the computation is done using only local caching, we observe that the number of network

transactions required to complete the computation is reduced compared to when no cache is

used. Similarly, we observe that the entire computation becomes almost three times faster in

this case. A summary of the total number of network transactions, memory requirements and

the time taken to complete the DP7 problem in the different situations are shown in Table 5.9.

The outcome of the last experiment in which case both the local and global caching of operations

are used shows a significant increase in the speed at which the computation is completed

compared to the other caching options. The computation is more than 8.5 times faster than

when no cache is used and up to three times faster than when local caching alone is used.

Also, both the number of network transactions and the memory required to complete the

computation were significantly reduced, as only 3.5% of the memory required when no cache

is used is now required when both caching options are used. As mentioned earlier, Table 5.9

also shows that the time and memory requirements are proportional to the number of network

transactions required to complete a computation and this can be associated with the overhead

involved in network transactions.

For any problem (as the experiment was carried out for other problems too), the use of caching

will definitely allow much larger problems to be handled on a smaller number of workstations

since the memory required is reduced. It will increase the speed at which the BDD computations

are completed while keeping the number of network transactions small. It is also important

to note that when global caching alone is used, the performance of the package is better than

when making use of local caching alone. However, the combination of both global and local

caching gives the best results. All these benefits achieved from the use of global caching leads

to an increase in the overall performance of our distributed BDD package. Although global

caching was implemented as an optional technique, we remark that it should always be used

when making use of the distributed BDD package.

5.5 The Interaction of Cache Size and Network Topology

Apart from the distribution of BDD nodes and the use of global and local caching, another

important factor that affects the performance of our distributed BDD package is the size of the
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cache. As mentioned in Section 3.4.1, the size of the cache which is the total cache entries that

can be stored in all the caches set up for the different operations is specified by the user before

BDD manipulation. In this section, we evaluate the performance of the package in relation to

cache size and also discuss other issues that may affect the performance of the cache.

The evaluation of the cache sizes is done using the DP7 problem and the variables are equally

distributed on all the workstations. Also, due to the advantages of using both local and global

caching earlier identified, we use both levels of caching in the experiments. The number of

requests sent to other workstations is used to evaluate the cache performance since it is an

indicator of how much time the computation will take to complete.

One other important factor which we take into account that affects the performance of the

cache is the interconnection between the workstations on which the BDD manipulations are

done. This is because the speed at which messages are sent between different pairs of worksta-

tions depends on the connection between each pair. For example, we expect communication

between two workstations on the same computing host to be faster than workstations on two

different computing hosts. The difference in the rate at which messages are transfered between

different pairs of workstations affects the order in which both request and response messages

are transfered on the NOW and also the performance of the cache. We consider three different

cases that can be observed on the computing grid and discuss each of them further in the next

sections:

• Case 1: Workstations used for BDD manipulation reside on the same computing host.

That is, the computing host has more than one processor and each processor is assigned

as a workstation on the host. This is similar to using a shared memory multiprocessor

for BDD manipulations.

• Case 2: All the workstations used for BDD manipulation are on different computing

hosts. This is similar to a situation in which computers with a single processor are

interconnected.

• Case 3: Some workstations reside on the same host while others reside alone on their

host computer. This situation is similar to having a mixture of single and multiprocessor

computers on a network where each processor is used a workstation or a situation in which
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the grid engine is allowed to distribute workstations required for processing randomly on

the available computing hosts.

5.5.1 Interaction of Cache Size and Network Topology (Case 1)

The DP7 model was analyzed using different cache sizes starting from 10,000 cache entries to

500,000 cache entries. The total number of requests sent between the workstations for the

different cache size is shown in Figure 5.5.
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Figure 5.5: Number of requests sent with different cache sizes in Case 1

The results show that when the cache size is smaller than a certain number (which is different

for specific problems), more requests are sent between the workstations. This can be attributed

to the fact that when the cache size is small, most of the cache entries which might be later used

are replaced with other entries before they can be used and thus request for such operations are

sent again for it to be re-performed. The large number of network transactions also results in
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an increase in the time required to complete BDD manipulation since some requests may have

to be performed several times. However, as the cache size increases, the number of requests sent

between workstations also reduces because operations which have been previously performed

are more likely to be found on the cache when such operations are to be performed again and the

results are simply returned instead of sending requests for such operations again. The number

of requests sent reduces as the cache size is increased until a certain cache size after which the

number of requests remains approximately the same even if the cache size is further increased.

This cache size can be seen as the optimal cache size for the specific problem. A possible

explanation for the constant number of requests sent after the optimal cache size is reached is

that most of the operations that are usually done several times are all already cached and are

always retrieved from the cache when needed. Another possible explanation may be that all the

operations performed during BDD manipulation are cached without ever replacing the cache

entries. But this is not the case, as the experiments show that there are cache replacements

after the optimal cache size is reached. The cache replacements are also responsible for the

little differences in the number of requests sent after the optimal cache size is reached. Thus,

the only viable explanation is that most of the operations usually re-performed are all already

stored when using the optimal cache size. For example, for the DP7 problem shown in Figure

5.5, the optimal cache size is around 200000. The optimal cache size is however different for

specific problems depending on which operations are performed and how often the operations

have to be re-performed.

We also discovered that even if the number of workstations on which the problem is handled

is slightly increased (e.g., up to 8 workstations instead of the five workstations used for the

DP7 problem), the optimal cache size remains the same. Moreover, the time taken to complete

BDD manipulation for the different cache sizes follows the same trend as the number of requests

sent across the workstations. It is important that the cache size specified by the user is not

unnecessarily larger than the optimal cache size because even though the number of network

transaction and the time taken remains the same, the memory usage on the workstations are

increased since more memory will be required to store the additional operations that will be

cached.
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5.5.2 Interaction of Cache Size and Network Topology (Case 2)

The DP7 problem was also analyzed using workstations which are all residing on different

computing hosts. In this situation, we expect communication between the workstations to take

longer than the previously discussed case in which workstations are on the same computing

host. In addition, other factors that may affect the performance of the cache in this case include

the order in which request and response messages are received on the different workstations and

the speed at which communication between any two workstations is completed. These factors,

which can not usually be controlled affect the number of requests sent and received between

the workstations. The result obtained from executing the DP7 model on workstations residing

on different computing hosts is shown in Figure 5.6.
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Figure 5.6: Number of requests sent with different cache sizes in Case 2

Similarly to case 1 discussed earlier, the result shows that the number of network transaction

reduces as the cache size is increased until the optimal cache size is reached. However, increasing

the cache size above the optimal size causes the number of requests to vary within a close range
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unlike in case 1 where the number of requests remains almost the same. This variation can be

attributed to the order in which messages are received on the different workstations. That is, in

case 1, it is most likely that messages are received at their destinations according to the order in

which they were sent from different workstations so that once the optimal cache size is reached,

the number of requests remain almost the same. On other hand, in case 2 the order may differ

depending on the interconnection between any two communicating workstations and this may

in turn affect the number of requests sent even for different instances of the same problem.

Since the experiment for each cache size examined is conducted individually, the number of

requests in each situation varies within a close range depending on how messages were sent on

the network in that particular situation. We note that the optimal cache size in this case is

also almost the same as in case 1 which is around 200000. The time taken to complete BDD

manipulation also follows the same trend as the number of requests sent when the cache size

is changed.

However, one major difference between the case in which workstations are on the same host

and when they are on different hosts is that in the first case, the total number of requests sent

is lesser than those sent in the second case even if the same cache sizes are used. For example,

in case 1 discussed above, the number of requests sent when using caches sizes between 10000

and 500000 ranges from 115000 to 60000 requests while in case 2, it ranges between 220000 and

130000. This difference can be attributed to the order in which requests and response messages

are received on the workstations which is usually different with every execution of a problem.

5.5.3 Interaction of Cache Size and Network Topology (Case 2)

Another possible interconnection of workstations used for processing is to have a mixture of

multiprocessor and single processor machines on the network. The experiment was conducted

by allowing the grid engine to assign workstations to available computing hosts randomly. Thus,

there are computing hosts on which only one workstation resides while other computing hosts

may have two or more workstations running on them. Using the same number of workstations

used in the earlier cases for the DP7 problem, the result obtained in this situation shows that

for any particular cache size, the number of requests sent among the workstations can vary

between some maximum and minimum values. An average of the possible maximum and
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minimum values found for different cache sizes are shown in Figure 5.7.
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Figure 5.7: Number of requests sent with different cache sizes in Case 3

Some of the reasons responsible for the variations in the number of requests sent during different

executions using the same cache size include:

1. The assignment of workstations on available computing hosts, which in turn affects the

rate at which communication between two workstations can be completed.

2. The order in which messages meant for the same workstation are received.

For example, we observed that for any particular cache size, a lower number of requests are sent

when more workstations are on the same computing hosts while a higher number of requests

are sent otherwise. The number of requests sent also increases as the workstations are assigned

to more different computing hosts. This result can be seen as a combination of case 1 and case

2 discussed earlier. Thus, the number of requests sent can be anything between the number of

requests in case 1 and those in case 2.
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In addition, another information obtainable from the result is that even though the number

of requests sent can be anything within an interval, as the cache size increases the number of

requests sent tends to certain maximum or minimum values which becomes almost stable after

the optimal cache size is reached. We note that the time taken to complete BDD manipulation

in this case follows the same trend as the number of requests sent. Thus, the time taken also

vary between certain maximum and minimum values which depends on the number of requests

that are sent.

In summary, considering the three different cases of interconnection of workstations discussed,

case 1 results in a better performance of the cache than case 2 and case 3 since it is not affected

by issues pertaining to the network. However, the difference between case 1 and case 2 is

not so much as the results obtained in both cases show a major similarity (that is, number

of requests sent reduces as cache size increases until the optimal cache size is reached). Thus,

the number of requests that will be sent when the cache size is increased and the time it will

take to complete BDD manipulation can be predicted in both cases. Case 3 shows that the

number of requests sent when a particular cache size is used can vary between two different

values depending on the connection between the workstations used for manipulation and the

order in which messages are received. We observe that the minimum and maximum number

of requests that can be sent in case 3 are almost the same as the number of requests sent

in case 1 and case 2, respectively. Thus pointing to the fact that case 3 is a combination of

both case 1 and case 2. Moreover, we can say that the use of a single computing host for

BDD manipulation gives the lower limit of the number of requests that can be sent during

BDD manipulation while the upper limit is obtained when each of the workstations are on

different computing hosts. Although these two values are relatively close for the DP7 problem,

the difference may likely increase for larger problems. However, for predictability, it is better

to use either multiprocessor systems or an interconnection of single processor machines when

making use of the distributed BDD package. Lastly, in all the three cases discussed, we note

again that the optimal cache size remains approximately the same (200000 for the DP7 problem)

and the number of requests sent remains within a very close range or approximately the same

when the cache size is increased beyond the optimal cache size.
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5.6 Summary

To summarize the experiments discussed in this chapter, we found the following results:

• The distributed BDD package requires more resources (both time and memory) than the

sequential package. However, since it uses the collective memory on a NOW, it has the

potential to solve larger problems which can lead to insufficient availability of memory

on a single machine.

• When using an equal distribution of BDD variables among the workstations, the time

taken to complete BDD manipulations increases as the number of workstations on the

NOW increases. This is due to the number of network transactions involved. On the

other hand, memory requirement reduces as the number of workstations is increased.

Thus, large problems with high memory requirement can be handled by increasing the

number of workstations used to handle the problem.

• Also, when BDD variables are equally distributed on the workstations, there is a trade-off

between time and memory requirements. That is, the time required for a computation

can be reduced by increasing the memory requirement (by reducing the number of work-

stations) and memory requirements can be reduced by making the computation to take

a longer time (by using more workstations).

• An alternative distribution of the BDD variables (selected by the user depending on

specific problems) can be used to obtain a better performance of the distributed BDD

package. Both time and memory requirements for a problem can be significantly reduced

by using a carefully selected distribution of the BDD variables. Moreover, time and

memory requirements are proportional in this case.

• The use of the cache improves the performance of the distributed BDD package. When

local caching alone is used, time and memory requirements are reduced to 39% and

46% of what is required without caching, respectively. When using the global caching

alone, the requirements are reduced to up to 19% and 4.5%, and when both global and

local caching are used, the requirements are reduced to 12% and 3.5% of what is required

without caching. These figures are the average results from five runs. They may therefore
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not be perfectly accurate but they give a good indication of the true behaviour of the

system.

• The effect of the cache size on the performance of the package depends on the network

topology of the NOW. When workstations are on the same computing host (similar to a

distributed shared memory multiprocessor), the number of network transactions reduces

as the cache size increases until the optimal cache size is reached after which the number

of network transactions remain approximately equal. When the workstations are on

different computing hosts (similar to an interconnection of single processor machines),

the number of network transactions also reduces until the optimal cache size is reached.

However, the number remains within a close range if the cache size is further increased.

In a network with mixtures of single processor and multiprocessor machines, the number

of network transactions varies between a minimum and a maximum value which are

approximately the number of network transactions carried out in the first and second

situations mentioned earlier, respectively.



Chapter 6

Conclusion

The purpose of this thesis was to develop a distributed BDD package that uses the collec-

tive resources available on a network of workstations in order to avoid the time and memory

insufficiency problem usually encountered in the manipulation of BDDs on single machines.

A distributed package for manipulating binary decision diagrams on a network of workstations

was developed. The algorithm uses the collective memory available on a network of workstations

(NOW) and exploits the breadth-first search technique for parallel computation of BDDs. The

message passing interface (MPI) was used to handle the communication between workstations

on the NOW. Workstations were utilized both for storing of BDDs and also for parallel BDD

computations. Each of the workstations handle its own variables, unique table and caches.

Techniques to improve the performance of the distributed BDD package, including global and

local caching and the alternative distribution of variables to workstations on a NOW were

implemented and evaluated in detail.

The results obtained from the evaluation of the distributed BDD package show that even

though the total memory used on all the workstations on a NOW may be more than what is

used when a single machine can be used to solve the problem, the package has the potential

to handle larger problems. Increasing the number of workstations used to solve a problem also

causes a reduction in the memory requirement of each workstation on the NOW and increases

the overall performance of the package. The time taken to complete BDD manipulation in the

distributed package is generally more than that of the sequential package, primarily because of

83



CHAPTER 6. CONCLUSION 84

network overhead and other data structures used for parallel processing.

We discovered that an alternative distribution of variables to workstations can yield a better

performance of the package than an equal distribution of variables. In addition, the use of

the two different levels of caching introduced in the thesis improved the performance of the

distributed BDD package by reducing the number of network transactions necessary to complete

BDD manipulation and thus reducing the communication overhead and the time required.

We were able to test how the package behaves in various network interconnections by making

use of special facilities provided on the computing grid used for evaluating the package. The use

of a shared memory multiprocessor may yield a better performance of the distributed package

than using an interconnection of single processor computers. However, one major advantage

of using the NOW is that shared memory multiprocessors are specialized pieces of hardware,

whereas NOWs are common and easy to construct. The package can however be easily adapted

to work in both situations so that for very large problems where memory available on a shared

memory multiprocessor may be insufficient for BDD manipulation, a NOW can always be used

to handle BDD manipulations.

Even though the package could not be evaluated against other similar work [37] due to the

unavailability of the original source code, we believe that the distributed BDD package discussed

in the thesis produced promising results.

The package can be improved in many ways, but the following are likely to produce the greatest

benefits:

• Implementation of garbage collection: Garbage collection is currently not implemented

in the package and this is part of the reasons why the distributed BDD package currently

uses more resources than the sequential version. The implementation of garbage collection

in the distributed BDD package is likely to improve the performance of the package. For

example, when the specified cache size is reached, garbage collection can be used to free

memory that are used by BDD nodes that are no longer needed and this causes such nodes

to be deleted from the cache also, thus making it possible to store more nodes without

performing a replacement. In addition, accessing nodes in the hash table becomes faster

if unneeded nodes can be deleted.
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• Dynamic variable re-ordering: The experiments conducted show that the performance

of the package can be improved by distributed BDD variables in better ways. Although

we have considered different distributions of variables to workstations, the variables are

still statically distributed. Various studies on load balancing [18, 21, 45] in a distributed

system have shown that statical distribution of variables can lead to an uneven distribu-

tion of load in situations where a task can generate other tasks which is true of a BDD

operation. Dynamic distribution of load has been suggested as a way of combating this

problem. The use of dynamic variable re-ordering which is not currently implemented

in the package has also been suggested as a way of getting a good variable order which

may improve BDD manipulation process [38]. Implementing the technique will be an

interesting improvement of the package.

• Improving the alternative distribution of variables technique: Since the alternative dis-

tribution of variables lead to an improved performance of the distributed BDD package,

it will be interesting to implement more efficient ways of finding alternative distributions

of variables.

• Addition of other features: The package can also be extended by implementing additional

Boolean functions in it.



Appendix A

The Distributed BDD package

A.1 Using the BDD distributed package

The user makes use of the distributed BDD package through the command line with at least

three command line arguments which include, the name of the user file containing calls to the

routines the user would like to perform, the number of workstations the user would like to use

and the cache size to be used. The user can also specify the option to distribute BDD variables

by themselves in which case a file containing the list of percentages to be used will also be

specified. The user file should include the header file bdd2.h. The package includes a make file

that compiles the user file. The mpirun command with all the necessary parameters specified

is used to execute the compiled source code.

Note that the first routine that must be called in the user file is the bdd_init function which

initializes all necessary variables and also the message passing interface (MPI) on all the work-

stations. The main routines for BDD operations required by the user can then be called.

The bdd_shutdown routine is called after all the BDD operations required by the user have

been called. The routine causes all the workstations to terminate by sending each of them a

BDD_QUIT message and exiting the package.
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A.2 Source code for solving the Dining philosopher problem

The source code for the dining philosopher problem is listed below. Although, other problems

are solved using the different BDD operations applicable to them, source codes for the other

problems mentioned in the thesis follow the same format.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "bdd2.h"

/*Macros for variable encoding, more readable names for L’, L, R’, R*/
#define LEFT_P(x) (((x) *4 + 0))
#define LEFT(x) (((x) * 4 + 1) )
#define RIGHT_P(x) (((x) * 4 + 2))
#define RIGHT(x) (((x) * 4 + 3))
#define TOUCH(v,b) { \

int w; \
for (w = 0; w < b; w++) touched[v + w * 2] = 1; \

}
#define CLEAR { \

int v; \
for (v = 0; v < F; v++) touched[v * 2] = 0; \
aaa = bdd_true ; \
SIZE(aaa, F); \

}
#define IS_F(v) {\

bbb = bdd_f(v);\
aaa = bdd_and(aaa, bbb); TOUCH(v, 1) ;\
SIZE(aaa, F); \

}
#define IS_T(v) { \

bbb = bdd_t(v); aaa=bdd_and(aaa, bbb); TOUCH(v, 1) ; \
SIZE(aaa, F); \

}

#define ADD_INIT { \
I = bdd_or(I, aaa) ; \
SIZE(I, F); \

}
#define ADD_TRANS { \

int v; \
for (v = 0; v < F; v++) \

if (touched[v * 2] == 0) { \
bbb = bdd_equal(v * 2, v * 2 + 1); \
aaa= bdd_and(aaa, bbb);\

} \
R = bdd_or(R, aaa); \

}
#define PEAK(n) { \
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unsigned long int m; m = bdd_get_nodes(); if (m > peak[n]) peak[n]= m; }
#define LOGTWO (0.693147181)
#define LOG2(x) (log(x) /LOGTWO)
#define POW2(x) (exp(x*LOGTWO) )
#define SIZE(b, n) { \

double k, f; \
k = bdd_fraction(b), f = LOG2(k) + (n); \
if (f < 31) printf("%ld", (long int) (0.5 + POW2(f) ) ); \
else printf("%g of 2^%ld", k, (long int) (n)); \

}
int N; /*number of philosophers*/
int F; /*number of forks*/
int V; /*number of BDD variables*/

BDD I; /*the set of initial states*/
BDD R; /*the transition relation*/
BDD S; /*the set of reachable states*/
int iter; /*number of iterations before fix point is reached*/
unsigned long int peak[4]; /*different maxima computed during expansion*/

int *touched; /*dynamic array: which variables have been altered? */
int main(int argc, char *argv[])
{

if ((argv[1][0]<48)||(argv[1][0]>57)) {
/*Read the command line parameter*/
printf("Usage: %s <nphil>\n", argv[0]);
exit(-1);

}
N = atoi(argv[1]);
F = 2 * N;
V = 2 * F;
touched = (int *) malloc(sizeof(int) * V);
if (touched == NULL) {

printf("Couldn’t allocate the \"touched\" array!\n");
exit(-1);

}
printf("Nr of philosophers: %d\n", N);
bdd_init(&argc, &argv, V);

{ /* Build the initial state */
BDD aaa, bbb; int i;
I = bdd_false;
CLEAR;
for (i = 0; i < N; i++) {

IS_F(LEFT_P(i));
IS_F(RIGHT_P(i));

}
ADD_INIT;

}
{ /* Build the transition relation */

BDD aaa, bbb; int i;
R = bdd_false;
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printf("transitions:"); fflush(stdout);
for (i = 0; i < N; i++) {

printf("%d", i); fflush(stdout);
/* Build the first transition for philosopher i */
CLEAR;
IS_F(LEFT(i));
IS_F(RIGHT(i));
IS_F(RIGHT((i + N - 1) % N));
IS_T(LEFT_P(i));
ADD_TRANS;
printf("."); fflush(stdout);
/* Build the second transition for philosopher i */
CLEAR;
IS_T(LEFT(i));
IS_F(RIGHT(i));
IS_F(LEFT((i + 1) % N));
IS_T(RIGHT_P(i));
ADD_TRANS;
printf(".");fflush(stdout);
/* Build the third transition for philosopher i */
CLEAR;
IS_T(LEFT(i));
IS_T(RIGHT(i));
IS_F(LEFT_P(i));
ADD_TRANS;
printf(".");fflush(stdout);
/* Build the fourth transition for philosopher i */
CLEAR;
IS_F(LEFT(i));
IS_T(RIGHT(i));
IS_F(RIGHT_P(i));
ADD_TRANS;
printf(".");fflush(stdout);
aaa = bdd_false; bbb = bdd_false;

} printf("\n");
}
/*Pre-report the result */
printf("|I| == "); SIZE(I, F); printf("\n");
printf("|R| == "); SIZE(R, V); printf("\n");

/* Compute the full state space */
{ BDD uus;

iter = 0;
uus = I;
printf("expansions:"); fflush(stdout);
do {

S = uus;
uus = bdd_shift(S, 1);
uus = bdd_and(R, uus);
uus = bdd_exists(uus, 1, F, 2);
uus = bdd_or(uus, S);
iter++;

} while(BDD_NE(uus, S));
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printf("\n");
printf("Iter: %d\n", iter);

}
/* Report the results */
printf("Non- Restricted number of iteration \n");
printf("|S| == "); SIZE(S, F); printf("\n");

bdd_shutdown();
exit(EXIT_FAILURE);

}
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