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ABSTRACT 
 

 

Unstabilised polyolefins are susceptible to degradation when exposed to molecular oxygen, heat, 

irradiation as well as chemical and mechanical stimuli.  Oxidation leads to changes in molecular 

properties such as molecular weight, molecular weight distribution, chemical composition, chemical 

composition distribution and crystallisability.  Conventional analytical techniques are of limited use 

when studying the degradation of heterogeneous materials such as impact polypropylene copolymers 

(ICPP).  These copolymers consist of a number of components of different monomer contents, 

isotacticity and crystallinity, ranging from amorphous EPR to highly crystalline polypropylene.  The 

individual components are affected differently by degradation, leading to heterogeneity within the 

degradation of impact copolymers.  Novel analytical approaches that acknowledge the heterogeneity in 

sample composition are needed to study the degradation behaviour of such heterogeneous materials.   

 

This study describes the combination of fractionation and hyphenated techniques with conventional 

analyses for extensive structural characterisation of complex impact copolymers as well as their 

degradation behaviour.  Temperature rising elution fractionation (TREF) coupled to conventional 

techniques such as size exclusion chromatography (SEC), Fourier-Transform infrared spectroscopy 

(FTIR), Carbon-13 nuclear magnetic resonance (13C-NMR) and differential scanning calorimetry (DSC) 

indicated the ICPPs in question to consist of four main components, namely ethylene-propylene 

random copolymers (EPR), isotactic PP (iPP), as well as semi-crystalline ethylene-propylene 

copolymers (EPC) and lower isotacticity PP.  The degradation of an ICPP was studied by a multi-

component analysis procedure consisting of TREF coupled to SEC, 13C-NMR, as well as SEC-FTIR.  

Results obtained by this procedure indicated the change in crystallisability of the bulk sample observed 

by TREF, crystallisation analysis fractionation (CRYSTAF) and DSC to be the result of the preferential 

degradation of the iPP phase.  Degradation of ICPPs initiates within this phase where chain scission 

and carbonyl group insertion leads to a change in the crystallisability of iPP chains.  During TREF  

of degraded bulk ICPPs, the degraded iPP molecules elute at lower elution temperatures, depending 

on their degree of degradation.  The other components of the copolymer were degraded to a lesser 

extent.  Degradation products were also found to be heterogeneously distributed across the molecular 

weight distribution of each fraction, with a higher concentration appearing at the low molecular weight 

side.  The multi-component analysis procedure was also used to study the difference in degradation 

behaviour between ICPPs of different comonomer content, isotacticity and crystallinity.   

 

The spatial heterogeneity of degradation within ICPPs was studied by Fourier-Transform infrared 

microspectroscopy (FTIR-μS).  A heterogeneous distribution of degradation products was found across 

the depth of thicker sample specimens.  These results were compared to those obtained by 

conventional layer-by-layer milling followed by SEC, FTIR and CRYSTAF.  The principles of 

degradation within thick samples were similar to that observed for thin films, although additional 

contributions by sample morphology and oxygen diffusion were detected.   

 



OPSOMMING 
 

 

Ongestabiliseerde poli-olefiene degradeer in die teenwoordigheid van suurstof, hitte, radiasie, asook 

chemiese en meganiese stres.  Oksidasie lei tot veranderinge in moleculêre massa, moleculêre 

massaverspreiding, chemiese samestelling, chemiese samestellingverspreiding asook kristalliniteit.  

Konvensionele analitiese tegnieke is onvoldoende vir die studie van degradasie van heterogene 

materiale soos impak polipropileen kopolimere.  Hierdie kopolimere bestaan onder andere uit etileen-

propileen statistiese kopolimere en hoogs kristallyne polipropileen.  Degradasie van impak copolimere 

is heterogeen aangesien die onderskeie komponente verskillend geaffekteer word.  Innoverende 

analitiese tegnieke word tans benodig om die degradasie van hierdie heterogene sisteme te bestudeer. 

 

Tydens hierdie studie is fraksionering- en koppelingstegnieke gekombineer met konvensionele 

analises ten einde impak kopolimere te karakteriseer en hul degradasie te bestudeer.  

Temperatuurstygings eluering fraksionering (TREF) gekoppel aan grootte-uitsluitings chromatografie 

(SEC), infrarooi specktroskopie (FTIR), koolstof-13 kern magnetise resonansie spektroskopie (13C-

NMR) en differensiële skandeerkalorimetrie (DSC) het aangedui dat die betrokke impak kopolimeer 

bestaan uit statisitese etileen-propileen kopolimere (EPR), isotaktiese polipropileen (iPP), semi-

kristallyne etileen-propileen kopolimere (EPC) en lae isotaktisiteit polipropileen.  Die degradasie van 

die impak kopolimeer is bestudeer deur middle van ‘n multi-dimensionele analitiese metode bestaande 

uit TREF gekoppel aan SEC, 13C-NMR en SEC-FTIR.  Resultate het aangedui dat die verandering in 

kristallinitiet van die impak kopolimeer soos aangedui deur TREF, kristallisasie-analise fraksionering 

(CRYSTAF) en DSC spruit uit die degradasie van die isotaktiese polipropileen komponent.  Degradasie 

van impak kopolimere ontstaan binne hierdie komponent en beide die verkorting en invoeg van 

karbonielgroepe in kettings lei tot veranderinge in die kristallinitiet van iPP molecules.  Gedegradeerde 

iPP molekules elueer by laer temperature in die TREF eksperiment, afhangend van hulle graad van 

modifikasie deur degradasie.  Alle ander komponente toon ‘n meer geringe mate van degradasie as 

iPP.  ‘n Heterogene verspreiding van degradasieprodukte is ook opgemerk oor die molekulêre 

massaverspreiding van elke komponent, waar die hoogste konsentrasie aangetref is aan die lae 

molekulêre massa sy van elke verspreiding.  Die betrokke multi-dimensionele prosedure is ook 

aangewend ten einde die verskil in degradasie van twee impak kopolimere met verskillende 

komonomeer konsentrasie en isotaktisiteit te bestudeer.   

 

Die ruimtelike heterogeniteit van degradasie binne dikker monsters van die twee kopolimere is 

bestudeer met behulp van infrarooimikroskopie (FTIR-μS).  ‘n Heterogene verspreiding van 

degradasieprodukte is opgemerk oor die diepte van die dikker monsters, met die hoogste konsentrasie 

naby die oppervlak.  Hierdie resultate is vergelyk met dié bekom deur ‘n laag-op-laag 

afskilferingstegniek gevolg deur SEC, FTIR en CRYSTAF analise van die lae.  Die degradasie 

beginsels soos vasgelê vir dun films, is ook hier van pas, alhoewel morfologie van die monsters en 

suurstofdiffusie ook ‘n rol speel.   
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General introduction and Objectives 
 

 

 

This chapter provides a general introduction to impact polypropylene copolymers, including their 

synthesis, properties and the analytical techniques most frequently used for their characterisation.  The 

objectives for this study are formulated and the layout of this dissertation is explained.   
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1.1 Introduction 
 

Polyolefins are the most widely used class of commodity thermoplastics in the world and constitute 

more than 50% of all synthetic polymers produced annually.  Polyolefin consumption has grown at a 

substantial rate over the past few years, and is expected to continue to do so in future, as new 

technologies and synthesis procedures are developed constantly to satisfy commercial demands.  

Polypropylene is one extremely versatile member of the polyolefin family, which, due to the prochiral 

nature of the propylene monomer, can be produced as a variety of different structures, ranging from 

atactic PP which is non-crystalline in nature, to highly crystalline isotactic PP1.  Although polypropylene 

is one of the most important commercial polyolefins, it has been reported to lack impact strength at low 

temperatures, mainly due to its relatively high Tg and large spherulite dimensions.  Impact 

polypropylene copolymers (ICPP) or heterophase ethylene-propylene copolymers are a unique group 

of polyolefin materials produced to extend the application range of the polypropylene homopolymer 

through improvement of its impact strength at temperatures below 0ºC.  These impact copolymers can 

be produced either by blending of polypropylene homopolymer with elastomers2-4, or by 

copolymerisation of polypropylene with ethylene in the presence of a Ziegler-Natta catalyst.  

Copolymerisation is performed in-situ via a two-reactor sequential gas-phase process where propylene 

is polymerised within the first reactor and transferred to the second reactor where the monomer feed 

consists of both ethylene and propylene5.  This sequential polymerisation procedure, together with the 

heterogeneous nature of the catalyst, possessing multiple active sites with different selectivity towards 

ethylene and propylene polymerisation6, 7, leads to the formation of a complex mixture of reaction 

products ranging from amorphous random ethylene-propylene copolymers (EPR), to highly isotactic 

polypropylene (iPP) as well as a range of semi-crystalline ethylene-propylene copolymers (EPC) with 

different monomer sequence distributions and lengths8-10.  These copolymers as sometimes mistakenly 

referred to as ethylene-propylene block copolymers11-13, although this terminology is misleading, 

regarding the nature of the mixture of end products obtained.  The presence of true block structures 

within impact copolymers is still disputed12, 14-16.  Depending on the nature of the application for which 

the ICPP is intended, the comonomer concentration and reactor conditions can be varied during 

copolymerisation to ensure the desired properties for a specific end use17. 

 

The properties of impact PP copolymers strongly depend on their microstructure, e.g., distribution of 

ethylene monomer, taciticity distribution as well as ethylene and propylene sequence distributions and 

average sequence lengths.  13C-NMR spectroscopy has long been the method of choice for 

determining these structural parameters in bulk EP copolymers18, whereas FTIR spectroscopy can also 

supply information on comonomer contents, isotacticity and the distribution of the two monomers within 

EP copoylmers19.  Differential scanning calorimetry (DSC) is the thermal method most often used to 

study the melting and crystallisation temperatures of ICPP, while it is also used to distinguish random 

copolymers from blends and block structures found in EP copolymers20.  With the realisation of the 

complexity of the products formed during ICPP synthesis, it has become evident that fractionation 

techniques would form an integral part of the characterisation of impact copolymers.  Although ICPP 
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fractions of different crystallinity could be obtained by temperature-gradient extraction fractionation 

(TGEF)10, 21, 22, analytical and preparative temperature rising elution fractionation (TREF) have become 

the preferred methods for separation of the different components8, 11, 13, 23, 24.  Preparative TREF 

combined with offline analysis of the fractions by 13C-NMR, FTIR and DSC are the methods most often 

employed for comprehensive structural analysis of impact PP copolymers.   

 

Impact polypropylene copolymers, like all polyolefins, are susceptible to degradation when exposed to 

molecular oxygen, elevated temperatures, irradiation and mechanical processes.  As a result of the 

structural and morphological complexity of impact PP copolymers, their thermo-oxidative and photo-

degradation has only been studied in a number of cases25-27.  Some publications reported the 

similarities in ICPP degradation behaviour to that of PP homopolymer, which is not surprising in 

copolymers containing ≥ 85% PP25, 26.  The individual components of impact PP copolymers degrade 

non-identically due to differences in ethylene contents, isotacticity, morphology as well as monomer 

sequence lengths and distributions28-33.  Bulk characterisation techniques such as SEC or FTIR are of 

limited use when studying the degradation of heterogeneous materials, since they provide only the 

average value of a certain property measured, e.g., molecular weight and carbonyl concentration for 

the bulk material, without any indication of the degradation behaviour of the individual components or 

morphologies.  The insufficiency of these techniques has been realised over the past few years, with 

the result that new techniques, that acknowledge the heterogeneity of this unique group of polyolefins, 

have been utilised for the purpose of understanding the structure and degradation within the individual 

components of impact PP copolymers.  Very recently, the potential of TREF for studying the 

degradation of impact PP copolymers, has been demonstrated27, 34, 35.  Differences in degradation 

behaviour between bulk ICPP samples were related to the tacticity distribution within the TREF 

fractions of the undegraded materials36, 37.  TREF separation, followed by degradation of the individual 

fractions are usually performed in order to assess the degradation behaviour of the individual 

components2, 27.  Such procedures do, however, destroy the unique morphology of these heterophase 

materials, and the degradation behaviour of each component studied independently, does not 

necessarily reflect the degradation behaviour of the bulk ICPP material.  In this study, fractionation and 

hyphenated techniques will be combined with conventional techniques in novel ways to study the 

microstructure of impact PP copolymers as well as their degradation behaviour.  The individual 

components will only be separated after degradation of the bulk sample, and changes in the 

composition, molecular weight and crystallisability within the fractions will be correlated to the 

degradation behaviour of the bulk material.   

 

 

1.2 Objectives and methodology 
 

The main objective of this study was to develop novel analytical approaches for studying the thermo-

oxidative degradation of low ethylene content impact PP copolymers.  For this purpose, fractionation 

(CRYSTAF and TREF) and hyphenated (SEC-FTIR) techniques were to be combined with 
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conventional analyses such as SEC, FTIR and 13C-NMR to simultaneously characterise the changes in 

chemical composition, molecular weight and crystallisability caused by accelerated degradation.  An 

unstabilised commercial impact PP copolymer produced by sequential gas-phase polymerisation in the 

presence of a Ziegler-Natta catalyst, was to be used to investigate the suitability of fractionation and 

hyphenated techniques for studying ICPP degradation.  Conventional SEC and FTIR analysis of the 

bulk ICPP would still be performed to monitor molecular weight and chemical composition changes 

during the degradation process, whereas SEC-FTIR was to be carried out in order to determine the 

distribution of carbonyl-containing degradation products as a function of the molecular weight 

distribution of the samples.  CRYSTAF would also be used to study changes in crystallisability during 

degradation.  Samples obtained at different stages of the degradation process were to be fractionated 

by prep-TREF, also to study changes in crystallisability as a function of degradation time.  The next 

step in the multi-component analysis procedure would be off-line SEC analysis for studying the 

molecular weight distribution shifts within the individual fractions and 13C-NMR for determining changes 

in tacticity and monomer sequence lengths and distributions upon degradation.  TREF was also to be 

combined with off-line SEC-FTIR analysis for the determination of the distribution of degradation 

products and chemical composition changes as a function of the molecular weight distribution of each 

fraction upon degradation.  This multi-component analysis procedure should provide valuable 

information on the influence of degradation on the crystallisability of the bulk sample, as well as the 

stability of the different components to degradation, as studied by molecular weight and chemical 

composition changes.  It will also, within each component, be able to indicate the heterogeneity in the 

distribution of degradation species as a function of molecular weight.  TREF combined with 13C-NMR, 

SEC and FTIR should also be used to extensively characterise the undegraded material, i.e., its 

distributions in comonomer content, isotacticity, ethylene and propylene sequences as well as their 

sequence lengths as a function of TREF elution temperature.  The possibility of combining TREF with 

SEC-FTIR for studying the ethylene and propylene crystallinity distributions within each fraction of the 

undegraded material, as a function of molecular weight, should also be investigated. 

 

The second objective of this study was to extend the ICPP degradation study to a second, higher 

ethylene content copolymer.  It was proposed to investigate the difference in degradation behaviour 

between this ICPP sample and the one studied in the first section, based on their chemical composition 

(ethylene content), microstructure (monomer sequence distributions and average sequence lengths) 

and crystallinity.  It was once again the aim to use a combination of TREF fractionation and 

conventional techniques for analysing the differences in composition between the two undegraded 

samples, as well as the difference in their degradation behaviour.   

 

After completion of the investigation of the compositional heterogeneity of degradation within ICPPs 

based on differences in chemical composition, microstructure and crystallinity, the study will be 

extended to thicker specimens of the two ICPPs studied in the foregoing two sections.  Since oxygen 

diffusion effects are expected to play a more significant role in the degradation of these samples, the 

spatial heterogeneity of the degradation process within the two samples will be compared by means of 
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FTIR-microspectroscopy (FTIR-μS).  The concentration profiles of degradation products will be 

constructed as a function of depth into the sample.  These results will be compared to a conventional 

technique comprising the abrasion of layers of specific thickness from the surface of a thick specimen 

and subsequent analysis of the layers by SEC, FTIR and CRYSTAF to determine the molecular weight, 

chemical composition and morphology or crystallisability influence on the spatial heterogeneity of the 

degradation process.   

 

 

1.3 Layout of this dissertation 
 

This dissertation is divided into the following five chapters: 

 

Chapter 1 
 

A general introduction has been presented in the first section of this chapter and the objectives for this 

study have been formulated. 

 

Chapter 2 
 

The historical section of this chapter summarises the most important contributions made by scientists 

in the field of polyolefin degradation.  Special emphasis is placed on the analytical techniques used to 

study degradation over the past few decades.  The characterisation of impact polypropylene 

copolymers, in particular, is discussed and an overview of their degradation behaviour is presented.   

 

Chapter 3 
 

The procedures followed during sample preparation, oven aging and characterisation are discussed.  

The experimental conditions for all analytical instrumentation is supplied, together with a brief 

discussion on the principles of TREF, CRYSTAF and SEC-FTIR operation. 

 

Chapter 4 
 

The results of this study are divided into three sections within this chapter, according to the three main 

objectives of this study.  The first section contains the results obtained by the multi-component analysis 

procedure developed for characterising an undegraded low ethylene content impact PP copolymer and 

for studying its degradation behaviour.  The second section contains the results on the comparison of 

the degradation behaviour of two copolymers of different ethylene contents and the third section 

illustrates the difference in the spatial heterogeneity of the degradation process within the two 

copolymers.   

 



Chapter 1:    General introduction and Objectives 
 
 

   
  6 

Chapter 5 
 

The conclusions of all three sections of this study are summarised and recommendations are proposed 

for future studies within this field of research. 
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This chapter gives a general overview on impact polypropylene copolymers and polyolefin degradation.  

Special emphasis is placed on the analytical techniques used in literature to study the properties of 

these copolymers, as well as their degradation.   
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2.1. Polyolefins:  An overview 
 

The term olefin originates from ‘olefiant’ (oil-forming gas), the word first used by four pioneer Dutch 

chemists to describe the gas (ethylene) that produced an oil (ethylene dichloride) by the addition of 

chlorine1.  It was as early as 1858 that Goryainov and Butlerov reported on producing polypentene by 

addition of boron trifluoride to pentene2.  The same approach was used to successfully polymerise 

propylene and isobutylene, but the same success could not be achieved with ethylene3.  In 1894 von 

Pechman made use of the decomposition of diazomethane for producing a linear, low molecular weight 

ethylene polymer4.  This technique was also used by several authors to prepare crystalline 

polymethylene5-8.   

 

It was only much later, during the 1930’s that the polymerisation of high molecular weight polymers 

became a topic of interest. In 1931 Taylor and Jones reported on the polymerisation of ethylene in the 

presence of diethylmercury and the condensation of decamethylene bromine was used by Carothers 

and co-workers to produce linear polyethylene9  A few years later, in 1935 the Fischer-Tropsch 

reduction of carbon monoxide by hydrogen was used by Koch and Ibing to produce linear 

polyethylene10.  In 1940 Pitchler and Buffleb repeated this synthesis using a ruthenium catalyst, a 

process later patented by Du Pont in 195511. 

 

In 1952 Fontana attempted the cationic polymerisation of propylene, but his product could only be used 

as an additive for lubricating oil, since it was of limited use as a structural material.  A significant step 

forward in the polymerisation of high molecular weight polyolefins was taken when Ziegler managed to 

produce high density polyethylene in 1953.  The following year Natta managed to synthesise 

polypropylene, followed shortly by Ziegler12.  Stereoregularity in polyolefins only became acknowledged 

during the late 1940’s when the stereoregularity of natural rubber was observed.  During this time the 

terms isotactic, syndiotactic and atactic were cloned, and have ever since become part of the accepted 

nomenclature13. 

 

The first commercial production of polyolefins was that of low density polyethylene by ICI in 193312.  It 

was during the time of World War II that high pressure plants appeared in both the United States (Du 

Pont and Union Carbide) and Germany.  The commercial production of linear polyethylene was started 

in the late 1950s by Phillips in the United States.  After having realised the importance of branch 

structures in lowering the density of polyolefins, Du Pont succeeded in producing a copolymer of 

ethylene and 1-butene, known as linear low density polyethylene14.  At the time however, there was 

limited demand for such materials and the technology was still in its infancy.  The first commercial 

production of crystalline polypropylene was only done by Hercules, Montecatini and Farbwerke-

Hoechst in 19571.  Soon thereafter, in 1965, two other polyolefins, namely poly(4-methyl-1-pentene) 

and poly-1-butene were also synthesised successfully in small quantities.  From here onwards the 

production of polyolefins escalated and improved as traditional materials such as metals, glass and 
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wood were replaced by polymers due to their superior properties.  A 6.9% growth in the production of 

polypropylene was reported between 1993 and 2000, with the other major polyolefins showing similar 

trends (LDPE 3.5%, LLDPE 9.7%, HDPE 6.1%)12.  The polyolefin market continues to grow at a steady 

rate and technologies are adjusted and improved in order to supply materials for demanding 

applications. The invention of blends and copolymers comprising polyolefins have opened up a whole 

new field of applications and are being used in increasing amounts in our daily lives. 

 

 

2.2 Commercial Polypropylene 
 

As early as 1869, propylene has been polymerised by Berthelot by reaction with concentrated sulphuric 

acid to yield a viscous oil product that was not considered of economic or industrial importance.  The 

first industrially important crystalline, high molecular weight polypropylene was synthesised by Natta in 

1955 from organo-metallic catalysts based on titanium and aluminium15. The mechanical properties of 

this semi-crystalline material made it a favourite to be introduced into the market by Hoechst in 1965.  

A wide variety of polypropylene homopolymers, and versatile random and block copolymers with 

various molecular weight distributions were also manufactured for numerous applications16.   

 

Polypropylene is widely used in injection moulding applications for supplying bumpers and dashboards 

for the automotive industry.  A high percentage of the overall polypropylene produced is also used for 

packaging produced by blow moulding and thermoforming.  Pipes, profiles and sheets are produced by 

extrusion, while textile fibres and non-woven fibres are also possible via melt spinning, in the case of 

sufficiently high molecular weight.  Furthermore, the high melting temperature of isotactic 

polypropylene allows the exploitation of its properties over a wide temperature range17-19.  Its overall 

crystallinity, which is related to both stereoregularity and molecular weight, promotes some properties 

such as stiffness, hardness and high-temperature mechanical characteristics.  However, its fairly high 

glass transition temperature results in it being too brittle at application temperatures below 0ºC.  The 

homopolymer has also proven to be too rigid and lacks the transparency desired for some applications.  

The application range can, therefore, be expanded if its flexibility and clarity is improved together with a 

reduction of its melting point, which would promote its weldability.  Improved impact resistance and 

elongation properties at low temperatures combined with good stiffness would also be an asset to this 

already versatile polyolefin material.   

 

 

2.3 Impact-modified Polypropylenes 
 

The toughness of polypropylene can be improved in several ways, i.e., blending with a variety of 

elastomers20-24, addition of a nucleating agent to reduce the average size of the spherulites 25-27 or by 

multi-stage copolymerisation.  Copolymerisation with another olefin such as ethylene or butene 

simultaneously lowers the melting point of polypropylene and ensures higher flexibility.  Adequate 
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stiffness and improved low temperature impact resistance is generally achieved by incorporation of an 

elastomeric copolymer component as a dispersed phase in the polypropylene matrix28-31.  Thus, 

blending and copolymerisation can alter the polymer structure and morphology and, therefore, the end-

use properties and applications of polymeric materials.  These approaches have been employed for 

decades in the polymer industry, but growing demands in the field leads to continuous developments, 

and interest in this topic still continues. 

 

2.3.1 Polypropylene-elastomer blends 
 

The application range of isotactic polypropylene as an engineering plastic has expanded significantly 

over the last few decades due to blending with elastomers such as ethylene-propylene copolymer (EP) 
32-34, butyl rubber35, styrene-butadiene-styrene copolymer (SBS)36,  ethylene-1-hexene copolymer (EH), 

ethylene-propylene rubber (EPR)37, 38 and ethylene-propylene-diene terpolymer (EPDM)39-41.  Blends 

can be prepared by post-reactor mechanical mixing of the two materials, or by in-situ or in-reactor 

blending.  In-situ blending is considered to be more advantageous both in terms of mechanical 

properties and production costs42.   

 

It is well known that addition of a low-Tg rubber-like material to a high-Tg, hard polymer may result in 

dramatic improvement in the toughness of the hard polymer43 .  The elastomer is typically added at low 

concentrations, and exists either as a discrete phase in the continuous matrix of the hard phase or as a 

continuous phase throughout the matrix.  In PP/EPDM blends it was observed that an impact modifier 

content below 20% leads to the formation of a dispersed elastomer phase in the polypropylene matrix, 

whereas the incorporation of 50% EPDM constitutes the formation of a continuous elastomer phase44.  

The properties of blends, i.e., mechanical strength, surface bonding and impact resistance are 

dependent on the blend morphology which, in turn, depends strongly on the miscibility of PP and the 

elastomer in question.  Owing to the negligibly small entropy of mixing45-47 as well as unfavourable 

enthalpic interactions48, the majority of polymer blends are immiscible.  The only miscible PP blends 

are those of atactic polypropylene (aPP) with EPR containing less than  

10 wt% ethylene, and with polybutene-1(PB-1)49, 50.  Even in these cases miscibility is limited due to the 

strong tendency of polypropylene to crystallise out from the mixtures.  Therefore, compatibilisation by 

means of compatibilizer addition or reactive blending (usually accomplished by the addition of a 

peroxide) is needed to promote miscibility in polyolefin blends. 

 

2.3.2 Random and sequential copolymerisation 
 

As has been mentioned before, the unsatisfactory impact behaviour of isotactic PP at low 

temperatures, can be improved via copolymerisation with ethylene.  Ethylene-propylene copolymers 

are the most widely investigated of the Ziegler-Natta copolymers and undoubtedly illustrate the benefits 

that comonomer incorporation can bring51.  Commercially, the copolymerisation of ethylene and 

propylene can be accomplished in two ways, i.e., random or statistical copolymerisation, or sequential 
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copolymerisation.  In random copolymers the ethylene comonomer units are, as the name suggests, 

incorporated in a purely random manner, thereby acting as defects in the long macromolecular chains 

of polypropylene.  This decrease in the length of the isotactic segment leads to different thermal, 

mechanical and processing properties compared to polypropylene homopolymer (i.e. lowering of 

melting and sealing temperatures, flexural modulus, broadening of the melting range).  Another very 

important effect is the improvement of optical properties such as haze and clarity, by the reduction of 

the refractive index difference between the amorphous and crystalline zones52.  These effects do, 

however, depend on the amount of comonomer added and its distribution within the copolymer53.   

 

Random ethylene-propylene copolymers are synthesised when a small amount of ethylene is 

polymerised together with propylene in a single reactor.  The degree of randomness within the 

copolymer depends on various factors such as the polymerisation conditions, catalyst system and the 

reactivity ratio of ethylene relative to propylene.  The influence of the mentioned parameters on the 

resulting copolymer, has also been discussed by Tait and Berry54.   

 

The second means of copolymerising ethylene and propylene is called sequential copolymerisation or 

in-situ polymerisation55 and the copolymer produced is generally referred to as impact polypropylene 

copolymer30, 31, 56-61.  Other terms also used to describe the copolymers formed by sequential 

polymerisation of ethylene and propylene, are heterophasic PP62 and EP block copolymer63, 64.  For the 

purpose of consistency/uniformity, the term ‘impact PP’ or ‘impact PP copolymers’ will be used 

throughout this dissertation.   

 

2.3.3 Impact PP copolymers 
 

2.3.3.1 Synthesis and morphology 
 

The sequential copolymerisation of ethylene and propylene to form impact PP is a two-step, two-

reactor process described by various authors40, 65-68.  In the first reactor isotactic PP polymerisation 

takes place in liquid propylene in the presence of a Ziegler-Natta catalyst.  After a predetermined time, 

the PP pre-block, along with the living catalyst and some unreacted monomer is transferred to the 

second stage, a gas-phase fluidised reactor containing a mixture of ethylene and propylene, where 

EPR is mainly formed69 within the PP matrix59.  Since a heterogeneous catalyst is used, the resultant 

copolymer system is a highly complex mixture of isotactic PP, EPR, a series of EP segmented 

copolymers with different sequence lengths of ethylene and propylene as well as an ethylene 

homopolymer component64, 70, 71.  The presence of propylene homopolymer is obviously explained by 

the production within the first reactor where only catalyst, propylene homopolymer and hydrogen are 

present.  The EPR is the result of its deliberate production in the second reactor where ethylene, 

propylene, catalyst and hydrogen are all present.  It is however, unexpected to find semicrystalline 

copolymers of ethylene and propylene besides the non-crystallisable EPR.  The monomer ratio of 

ethylene and propylene in the second reactor is such that a copolymer equally rich in both monomers 
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should theoretically be produced.  These requirements are fulfilled by the EPR being present in the 

final mixture.  The reason for the presence of the semi-crystalline copolymers that contain small 

quantities of propylene in an ethylene-rich copolymer and small amounts of ethylene in a propylene-

rich copolymer, is however, not straightforward, but it is believed to be related to the heterogeneous 

nature of the catalyst which contains a spectrum of active sites governing different processes56, 72.  The 

small amount of PE homopolymer always present in the final mixture is the result of the Ziegler-Natta 

catalyst’s ability to polymerise ethylene at a much higher rate than propylene55.  If some catalyst active 

sites have no active chains attached to them when it is transferred to the second reactor, ethylene, with 

its higher reactivity ratio may readily polymerise to yield PE homopolymer as a by-product.   

 

Although impact polypropylene copolymers are often referred to as EP block copolymers, the existence 

of true block structures are still disputed73-75.  In order to successfully synthesise true blocks of ethylene 

and propylene, a number of requirements should be met,12, 54, 76 (a) catalyst active sites should have 

equal activity towards ethylene and propylene, (b) all polymerisation centres should be activated at the 

same time, (c) active centres should remain alive during polymerisation (i.e. all chains must remain 

attached to active centres during polymerisation, (d) the crossover propagation rates must be high for 

all centres and (e) centres must be isospecific for polypropylene polymerisation and be able to produce 

linear polyethylene segments.  These requirements were formulated for typical anionic initiators and it 

is clear that many of them do not hold for heterogeneous Ziegler-Natta catalysts, where a number of 

transfer reactions (to metal alkyl and hydrogen) take place, resulting in growing chains having very 

short lifetimes76-78.  Therefore a more suitable nomenclature such as heterophasic or impact 

polypropylene should be used for these copolymers.   

 

The dispersed EPR phases in these copolymers act as stress concentrators to relieve the strain on 

impact by cavitation at the particle/matrix interface as well as within the copolymer particles, leading to 

large deformations of the surrounding matrix79-82.  It is also known that polyethylene and polypropylene 

are generally immiscible in a blend, and, therefore, the ethylene-propylene segmented copolymers are 

proposed to act as the compatibiliser that enhances the interfacial adhesion between the disperse 

phase and the matrix30, 70.  Although the process of sequential copolymerisation of ethylene and 

propylene is commercially successful, the mechanism of polymer growth is poorly understood, mainly 

due to a lack of thorough characterisation of the resulting product.   

 

Debling and Ray83 based their description of the growth process on the double grain structure 

proposed by Kakugo et al.84, 85 for the polypropylene particles formed in the first reactor.  According to 

this model the PP particle is formed by mesoparticles, also referred to as polymer globules.  

Mesoparticles are formed by primary polymer particles containing catalyst crystallites.  These 

structures also contain macropores separating the mesoparticles and micropores that separate the 

microparticles.  The EPR formed in the second reactor does not remain encapsulated within the PP 

microparticles but progressively expands into the small micropores and into the large macropores.  

According to McKenna et al.86 the EPR is formed on the active sites on the surface of the catalyst 
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crystallites underneath a PP homopolymer layer.  The EPR creates stresses in the viscoelastic PP 

homopolymer, leading to crack formation in the PP after which the EPR flows through the cracks, into 

the micro and macropores and onto the surface of the polymer particle.  Cecchin et al. 87 proposes that 

homopolymerisation within the first reactor results in PP particles consisting of a number of polymer 

mesoparticles.  Catalyst fragments are believed to exist at the surface of these mesoparticles, where 

they have migrated to during homopolymerisation.  Therefore, the EPR polymerised in the second 

reactor is located at the surface of these mesoparticles, filing the pores between them, thereby 

accounting for the continuous EPR network found within the PP matrix.  Urdampilleta et al.59 proposed 

that the PP particles are formed by a relatively small number of mesoparticles, in which the catalyst 

fragments are well dispersed.  No proof of a finer morphology was observed.  EPR in the second 

reactor is formed around the catalyst fragments, yielding a composite of finely dispersed EPR within 

the PP matrix.  Most of the EPR is located within the mesoparticles, while some of it breaks through the 

PP matrix and flows to the pores.  A part of the EPR reaches the surface of the particle, thereby 

smoothing the particle surface.  It is however, uncertain whether the catalyst fragments encapsulated 

by elastomer migrate to the surface of the mesoparticle together with the elastomer, and once there, 

contribute to the formation of EPR within the pores.  Understanding of the growth process of nascent 

impact PP copolymers is by no means conclusive and the growth mechanism is still the subject of 

ongoing investigation.61 

 

2.3.3.2 Characterisation  
 

Impact PP copolymers are known to exist as highly complex mixtures consisting of polypropylene 

homopolymer and ethylene-propylene copolymers, random and segmented, with different chemical 

compositions and monomer sequence distributions.  The complete assessment of the compositional 

heterogeneity and chain structure of such systems is undoubtedly a formidable task.  However, 

detailed analysis of the microstructure of impact PP copolymers is necessary to obtain a better 

understanding of the impact performance of the material as a whole as well as the location and 

function of each of the components.  Owing to the presence of a multiplicity of different components, 

fractionation techniques are often employed in the analysis of impact PP copolymers.  Such techniques 

can separate the various chemically distinct components from each other, yielding more homogeneous 

fractions that can subsequently be analysed by a number of well-established ancillary techniques in 

order to obtain detailed structural information.  Fractionation techniques so far employed in the analysis 

of impact PP copolymers, include Soxhlet extraction63, successive solvent extractions 30, 88, 89, 

temperature-gradient extraction fractionation (TGEF) 31, 70 and temperature rising elution fractionation 

(TREF).  TREF fractionation of impact PP for structural analysis was first performed by Mirabella in 

1992 and 199356, 72.  Ever since, both preparative55, 60, 64, 90-93 and analytical TREF procedures have 

been employed 56, 72 in this regard.  A novel online TREF-SEC analysis procedure, reported by Usami 

et al. in 1993 was also applied to the characterisation of impact PP copolymers94.   
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One aspect of the characterisation of impact PP copolymers is the identification of the major 

components on the basis of their unique chemical structure.  By far the most popular techniques for 

this purpose are 13C-NMR and FTIR spectroscopy.  Certain pre-defined bands in the FTIR spectrum 

are known to be characteristic of crystalline and amorphous polyethylene and polypropylene 95, 96.  

Through the evaluation of the presence as well as the ratio of these bands, certain assumptions can be 

made with regard to the crystallinity and microstructure of a polymer.  FTIR analysis of TREF-

fractionated impact PP copolymers has been performed by a number of authors30, 70, 90, 96.  FTIR 

spectroscopy can even be used to study the amount of ethylene in each TREF fraction in cases where 
13C-NMR calibration data is available70.   

 

However, the preferred method for reliable evaluation of the molecular structure of impact 

polypropylenes is 13C-NMR spectroscopy.  The most important factors influencing the performance and 

properties of impact PP are tacticity, and monomer sequence distribution, both of which are reliably 

detected by 13C-NMR spectroscopy.  While the amount of ethylene in each TREF fraction can be 

determined using the relationship suggested by Cheng97 and Ray et al.98 and Carman and Wilkes99 

have proposed the assignments widely used for the sequential analysis of both monomers in EP 

copolymers.  The quantitative NMR measurement of EP copolymers with low ethylene content has also 

been confirmed by Paxon and Randall100 and a review article was published by Randall in 1989, on the 

detailed extraction of triad concentrations from 13C-NMR data of ethylene-based copolymers101.  Most 

studies allowed the determination of sequence distribution only as far as triad level, until Hayashi et al 

accurately determined tetrad and hexad sequence distributions in stereoregular EP copolymers102.   

 

Monomer sequence distribution determinations have been successfully applied to bulk impact PP 

samples102-105 as well as TREF-fractionated impact PP copolymers have been reported58, 90.  Even if 

determinations are done only up to diad or triad concentrations, one can still obtain valuable 

information on the distribution of both short and long ethylene and propylene sequences within each 

fraction, as well as the amount of EP junctions.  By determining the mole fraction of long ethylene and 

propylene (EE, EEE, PP, PPP) sequences in each fraction, together with the amount of junctions 

between them (PE, PPE, EPE, EEP, and PEP), one can easily distinguish between fractions of EPR, 

those containing isotactic PP and PE homopolymer, and those containing the range of EP copolymers 

of varying ethylene and propylene segment lengths30, 31, 64, 70, 106.  The average length of long ethylene 

and propylene sequences can also be calculated using the PPP, PPE, EEE and EEP triad 

information30.  Monomer sequence distributions within impact PP copolymers clearly illustrate the 

continuity in the change of composition and chain sequence from low to higher elution temperatures.  

This continuity in properties as a function of TREF elution temperature is an undeniable characteristic 

of impact PP copolymers30.   

 

Another popular technique for studying the composition of TREF-fractionated impact PP copolymers on 

the basis of their thermal behaviour and crystallinity, is DSC31, 58, 63, 64.  The observation of thermal 

transitions and their change observed upon increasing elution temperature may be used to gain insight 
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into the microstructure of fractions. Results on microstructure obtained by DSC were in good 

agreement with those obtained by NMR and FTIR70, although DSC results are typically reported in 

conjunction with 13C NMR for the purpose of identification56, 60, 64, 72.  Wide-angle X-ray diffraction 

(WAXD) is also sometimes used together with DSC for studying the microstructure of impact PP 

copolymer fractions90, 91. 

 

The final aspects of importance in the characterisation of impact PP copolymers, are their morphology 

and impact behaviour.  Morphological aspects such as the size and dispersion of EPR inclusions in the 

PP matrix and the compatibilisation between the phases, are usually studied by scanning electron 

microscopy (SEM)57, 59, 63, 71, 89, transmission electron microscopy (TEM)44, 57, 61, 94 or atomic force 

microscopy (AFM) 62 in order to gain knowledge of the relationship between the chain structure and 

morphology and the impact behaviour of impact polypropylenes.  Polarised light microscopy (PLM) has 

also been used to study crystalline morphology of impact PP fractions as a function of their chain 

structure71, 89, while dynamic mechanical analysis (DMA) provided useful information on the 

compatibility between dispersed particles and the matrix44, 63, 89.   

 

 

2.5 Polyolefin Degradation 
 

Polyolefins, most notably PE and PP, have gained considerable popularity over the past few decades 

due to their versatility in terms of affordable petrochemical stocks serving as raw materials, the efficient 

catalytic polymerisation processes for their production and the ease of processing of the final products.  

This success has occurred in spite of polyolefins being susceptible to degradation when exposed to 

elevated temperatures, radiation, chemicals, molecular oxygen and other stimuli.  Polymer degradation 

has long been recognised as the Achilles’ heel in polymer applications, therefore causing it to become 

an active area of research, together with stabilisation studies.  Polyolefins are normally subjected to 

high temperature manufacturing and processing operations, and are, like all other hydrocarbon 

polymers, susceptible to degradation during every stage of their lifecycle, i.e., during synthesis, 

processing and end-use.  Degradation is defined as the process that brings about several physical and 

chemical changes in a polymeric material107, 108, that leads to significant deterioration in the quality of 

the material (i.e., deterioration of mechanical, electrical, and aesthetic properties) and finally to it failing 

prematurely and becoming unsuitable for its intended application109, 110.  Decomposition is closely 

related to degradation, but is generally conceived as the processes induced by heat, oxygen, 

chemicals etc. that leads to the formation of non-polymeric products or a structure completely different 

from the original material109 It is accepted as the advanced stage of degradation and distinction 

between these terms is rarely made.  ‘Weathering’ is another concept closely related to the topic of 

polymer degradation but it normally refers to the process where oxygen, heat, wind, humidity, micro-

organisms, rain, atmospheric pollutants and UV irradiation alters the properties of a material during 

outdoor use, leading to failure109, 111, 112.   
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Except for a few instances where controlled degradation can lead to improved properties of a material 

for a certain application (i.e., adjustment of the molecular weight of a polymer through controlled 

backbone scission and the controlled cross-linking of surface coatings), degradation is usually treated 

as an unwanted occurrence leading to irreversible changes in the physical, mechanical and chemical 

characteristics of polymeric materials.  The usefulness of polyolefins strongly depends on the retention 

of their properties during a prolonged service life and thus studies of polyolefin degradation and the 

influence of various factors on their degradation behaviour is of appreciable commercial importance.  

Polypropylene is one of the most oxidatively unstable of the polyolefins due to its chemical structure, 

but it is commercially very successful as a commodity thermoplastic, thereby reflecting the extent to 

which a detailed understanding of the degradation process has led to strategies of successful 

stablisation113-116.   

 

2.5.1 Types of degradation 
 

The most common types of degradation occur through chemical reactions that modify the chemical 

structure of the polyolefin, leading to a change in its chemical, mechanical and physical properties107, 

108, 117, 118.  Such reactions include (a) chain scission, (b) cross-linking, (c) modification of the chemical 

structure of the main polymer chain, (d) modification of branched chains, or (e) a combination of all of 

these reactions.  The overall effect of degradation on a material is usually the summation of all of these 

reactions and may vary widely depending on the relative rates of these reactions as well as exposure 

conditions.  The agent(s) initiating the degradation process defines the type of degradation or 

decomposition of a material.  A summary of the different types of degradation and their initiating agents 

are given in Table 1109.  Oxidative degradation is the prime agent causing deterioration of products 

fabricated from polyolefins, and even very small amounts of oxygen can cause drastic changes in the 

polymer and destroy its useful properties119, 120.   

 
Table 2.1:  The types of degradation induced by various degrading agents 

Degrading agent Type of degradation

Light (UV, visible) Photochemical degradation
X-rays, γ-rays, fast electrons High-energy radiation-induced degradation
Laser light (pulsed mode) Ablative Photodegradation, involving photothermal 

and/or photochemical processes
Electrical field electrical ageing
Plasma Corrosive degradation, etching
Microorganisms Biodegradation / biological degradation
Abrasive forces Physical degradation, physical wear, 

environmental stress cracking
Stress forces Mechanical degradation, fatigue
Chemicals (acids, alkalis, salts Chemical degradation and/or decomposition
reactive gases, solfents, water)
Heat Thermal degradation and/or decomposition
Oxygen, ozone Oxidation, oxidative degradation and/or decomposition
Heat and oxygen 0Thermo-oxidative degradation and/or decomposition
Light and oxygen Photooxidation
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It is very difficult to study a ‘pure’ type of degradation, since various factors often act simultaneously to 

induce the degradation process within polymers.  The types of degradation most commonly studied are 

thermal and photo-oxidation.  The chemical reactions in both cases are fairly similar, with only minor 

differences owing to variations in the initiation mechanism and secondary photochemistry121.  In 

thermal oxidation, initiation results form thermal dissociation of chemical bonds, whereas in photo-

oxidation, photophysical processes such as the formation of electronically excited species, energy 

transfer and photo-dissociation, all induced by UV radiation, lead to bond cleavage.  The degradation 

of weathering of polymers during outdoor use is usually initiated by UV radiation, and referred to as 

photooxidation112.  The process ultimately leads to surface embrittlement and failure due to brittle 

fracture, unless photo-stabilisers are incorporated to prolong the lifetime of the polymeric material116.  

Under conditions of outdoor use, elevated temperatures close to the crystalline melting points of 

polymers are usually not reached, therefore, photo-oxidation is seen as the major type of oxidation to 

prevent or restrict during outdoor use of polymers. 

 

Polymers may however, also degrade in the absence of light when they are exposed to elevated 

temperatures.  In the presence of molecular oxygen this is referred to as thermo-oxidative 

degradation110  In both photo- and thermo-oxidative degradation, the process is considered to be a free 

radical oxidation process, also known as autoxidation.  The earliest work on the free radical chain 

theory of polymer oxidation was done by Morou and Dufraisse122 when they realised that small 

quantities of substances they called ‘antioxygens’, could retard oxidation.  Also in the 1920’s, 

Christiansen123 and Bäckström124 obtained evidence for the existence of a chain reaction mechanism 

during degradation.  This was followed in the early 1940’s, by the discovery that free radicals were 

responsible for initiation and autocatalysis was related to the presence of hydroperoxides125.  Detailed 

studies by Bolland and Gee at the British Rubber Producers Research Association in 1946, gave birth 

to the generally-accepted oxidation model for olefins, consisting of radical initiation, propagation and 

termination still used in present times126.  Polyolefin degradation is often described by making use of 

the Ciba cycle for themo-oxidative degradation in polyolefins113, as seen in Scheme 1.   

 

 
Scheme 2.1:  Schematic representation of the cyclical autoxidation process taking place during polyolefin 

degradation 
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2.5.2 Oxidation mechanisms for polyolefins 
 

The autoxidation process of polyolefin degradation is best described by the classical free-radical chain 

reactions depicted in Scheme 2113, 127, consisting of individual steps of initiation, propagation and 

termination.   

 

2.5.2.1 Initiation: 
 

During the initiation stage of polyolefin degradation, stimuli such as heat or UV radiation are 

responsible for the formation of macro-alkyl radicals due to the abstraction of a hydrogen atom from the 

polymer backbone or cleavage of a polymer chain.  Radicals formed during this stage may either react 

with each other (as is the case during cross-linking), or with other molecules in the polymer matrix, e.g., 

molecular oxygen to continue the cycle of degradation.   

 

Cleavage of the polymer chains (reactions 2.1, 2.2) is usually caused by severe deformation of a 

polymer by physical means or high temperature, high-shear processes in the molten state such as 

extrusion, injection moulding, blow moulding and internal mixing.  This process is less likely to occur, 

as the majority of polyolefin degradation is initiated by scission of a C-H bond.   

 

2.5.2.2 Propagation: 
 

During propagation, the radicals formed during initiation react with molecular oxygen and are 

transformed into macro-alkylperoxyl radicals (reaction 2.4).  This is followed by the abstraction of a 

hydrogen atom from another polymer molecule, (or the same molecules, through backbiting) giving rise 

to macro-hydroperoxides (reaction 2.5) and more alkyl radicals.  Hydroperoxides formed during this 

stage of degradation may be cleaved homolytically to yield both an alkoxy and a hydroxyl radical 

(reaction 2.8).  Both these species are capable of abstracting hydrogens form adjacent polymer chains, 

resulting in the formation of water, an alcohol and more alkyl radicals capable of initiating degradation.  

These reactions are known as chain branching reactions and are detrimental to the long-term stability 

of polyolefin materials during use, leading to catastrophic failure.  Free radicals formed during the first 

two steps may also undergo further reactions leading to the insertion of various oxygen-containing 

groups in the oxidised polymer, leading to changes in molecular structure and deterioration of 

properties.  One example of such a reaction is the unimolecular decomposition of polypropylene alkoxy 

radicals, also known as β-scission (reaction 2.12).  Scission reactions decrease the molecular weight 

of chains and also influence the crystallinity of samples through an effect known as chemi-

crystallisation128.  Since amorphous regions of semi-crystalline polymers degrade more readily than the 

crystalline phase129-131, the scission of tie molecules, responsible for linking two adjacent crystalline 

areas, will cause a rapid impairment of the physical and mechanical properties of a polymer.  The 

higher mobility of oxygen in non-crystalline material leads to propagation within amorphous regions, but 

without the presence of oxygen, alkyl radicals will migrate until they react with other radical species.  
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This step of the degradation is autocatalytic and is a continuous process, which will sustain itself until 

all radicals are terminated.   

 
 
 

Initiation:  RH  → R·  +  H     (2.1) 

    RR  → R·  +  R·     (2.2) 
 

Propagation:   R·  +  R’H  → RH  +  R’·     (2.3) 

    R·  +  O2  → ROO·     (2.4) 

    ROO·  +  R’H → ROOH  +  R’·    (2.5) 

    ROOH  + R’OOH → RO·  +  R’OO·  +  H2O   (2.6) 

    ROOH  +  R’H → RO·  +  R’· +  H2O    (2.7) 

    ROOH  → RO·  +  HO·    (2.8) 

    RO·  +  R’H → ROH  +  R’·    (2.9) 

HO·  +  R’H → H2O  +  R’·    (2.10) 
             
            
      
      
      
      (2.11)
      
      
      
      
      
      (2.12)
      
      
            
             
     (2.13)
     
            
             

Termination:    R·  +  R·  → RR     (2.14)

    R·  +  RO·    → ROR     (2.15) 

R·  +  ROO· → ROOR     (2.16) 

R·  +  R·  → RH  +  Olefin    (2.17) 

ROO·  +  ROO· → Ketone + alcohol + O2   (2.18) 

 

Scheme 2.2:  Possible oxidation reactions during the autoxidation cycle of polyolefins 

 
 
2.5.2.3 Termination: 
 

The reactions taking place during termination are highly dependent on the molecular structure of the 

polymer as well as the prevailing degradation conditions.  Under normal oxygen pressure (oxygen 

saturation) ROO· radicals are the abundant species, i.e., [ROO·]>[R·]113 and termination reactions 2.16 

and 2.18 (scheme 2) predominate.  However, in the case of oxygen starvation (during processing and 

in thick polymer sheets) alkyl radical predominate, i.e., [ROO·]<[R·] and bimolecular termination 

reactions are of greater significance.  This leads to cross-linking which is evidenced by an increase in 

molecular weight, (especially in PE) and /or disproportionation without a change in molar mass. 

 

Chain 
Branching 
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2.5.3. Degradation mechanism of polypropylene  
 

Polypropylene also degrades by means of the generally accepted free radical chain reaction 

mechanism consisting of the steps of initiation, propagation, branching and termination.  During the 

initiation step, heat-facilitated hydrogen abstraction from either the tertiary or secondary carbons may 

lead to the formation of either tertiary of secondary alkyl radicals (reaction 3.1).  In PP, tertiary radicals 

are formed predominantly, due to the lower dissociation energy of a tertiary C-H bond  

(ca. 373 kJ.mol-1 at 25ºC), compared to that of a secondary C-H bond (ca. 394 kJ.mol-1 at 25ºC)132.  

During the subsequent propagation step, secondary and tertiary radicals will follow separate reaction 

paths.  The reaction paths followed by tertiary and secondary radicals are depicted in Schemes 2.3 and 

2.4, respectively.  

 
 

 
Scheme 2.3:  Initiation, propagation and termination reactions involving the tertiary alkyl radical 

 
 
In the presence of oxygen, tertiary radicals will react with molecular oxygen to form tertiary peroxides 

(reaction 3.2).  The next propagation step involves the abstraction of a hydrogen atom from an 

adjacent polymer chain to form a tertiary hydroperoxide (reaction 3.3) and another active alkyl radical 

species capable of continuing the cycle of degradation.  Subsequently, the tertiary hydroperoxide may 

follow one of two possible degradation pathways.  It may either react with a hydrogen atom to form a 

tertiary alcohol (reaction 3.5) or it may undergo β-scission to form an inactive ketone and a macroalkyl 
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radical (reaction 3.6)133.  The primary chain end formed in this step can be oxidised further to produce 

an aldehyde (reaction 3.9) or an alcohol and water (reaction 3.11).   

 

Although PP degrades preferentially via the formation of tertiary radicals, secondary radical species 

may also originate during the initiation step.  Similar to the first propagation steps followed by the 

tertiary radical, secondary radicals also react with molecular oxygen to form secondary peroxides 

(reaction 4.2), followed by the formation of secondary hydroperoxides (reaction 4.3) after hydrogen 

abstraction.  Hydroperoxides can degrade in a similar fashion to their tertiary counterparts, extracting 

either another hydrogen atom to form a secondary alcohol and a chain radical (reaction 4.5), or 

undergoing β-scission to yield an aldehyde and a macroalkyl radical (reaction 4.6).   

 

 

 
 

Scheme 2.4:  Initiation, propagation and termination reactions involving the secondary alkyl radical 

 
 
Secondary chain ends are also capable of further degradation, leading to the formation of inactive 

ketones (4.9), alcohols (4.11) and water.  According to Adams et al.134, these degradation cycles 

should lead to the formation of equal amounts of methyl ketones and aldehydes, but Costa135 used a 
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combination of FTIR spectroscopy and derivatisation techniques to illustrate that the main degradation 

products detected were tertiary and secondary hydroperoxides (products of reactions 3.3 and 4.3), 

alcohols (reactions 3.5; 3.11; 4.5; 4.11), ketones (reactions 3.6 and 4.9), carboxylic acids (reactions 5.8 

and 5.6, Scheme 2.5), γ-lactones and γ-perlactones.  A very low concentration of aldehydes was 

detected, since they are highly reactive and quickly undergo further oxidation into peracid groups 

(reactions 5.2 and 5.3).   

 
 

 
 

Scheme 2.5:  Oxidation of aldehydes into peracids and peresters 

 
 
During the termination steps, several reactions may occur, some of which have been illustrated in the 

propagation section, where the formation of ketones, aldehydes, peracids and other inactive carbonyl-

containing species is discussed.  Termination of polymer radicals occurs through various bimolecular 

recombinations which are very much dependent on the availability of oxygen and prevailing conditions.  

When sufficient oxygen is present, termination proceeds almost exclusively via reactions 2.18 and 

2.16113.  At low oxygen pressure other termination reactions involving radicals or macroradicals may 

take place, e.g., cross-linking reaction 2.14113, as evidenced by an increase in molecular weight.  

Recombination is influenced by cage effects, steric control, mutual diffusion and the molecular 

dynamics of the polymer matrix136-138.  In solid PP samples the recombination of polymer peroxy 

radicals is subject to the rate of their encounter with each other and is influenced by the intensity of 

molecular motion within the polymer.  

 

2.5.4 Comparison of the degradation mechanisms of PP and PE 
 

Although polyethylene and polypropylene oxidise via similar propagation reactions, there are some 

marked differences in their oxidative degradation processes.  Propagation reaction 2.4 is approximately 

20 times faster at the tertiary carbon in polypropylene than at the secondary carbon in PE113.  Similarly, 

reaction 2.5 is about 6 times faster in PP than in PE due to the ease of abstraction of a tertiary carbon.   
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However, the conventional termination reaction 2.18 is approximately three orders of magnitude faster 

when the secondary peroxyl radicals of PE are involved, relative to that of PP.  This accounts for the 

kinetic chain length of autoxidation in PE being 10 times shorter than in the case of PP139, 140.   

 

A marked difference is seen between the degradation mechanism in PE and PP under conditions of 

high temperature and high shear (i.e., extrusion, injection moulding, mixing).  In the case of PE, cross-

linking reactions predominate at temperatures up to about 290ºC141.  Low concentrations of various 

unsaturated groups, e.g., terminal vinyl, in-chain vinylidene and pendant trans-vinylene groups are 

present in PE that affects its overall degradation.  High concentrations of vinyl groups with respect to 

other types of unsaturation, often present in Ziegler-catalysed LLDPE, would promote cross-linking 

reactions through addition of macro-alkyl radicals to vinylic double bonds.  Degradation by chain 

scission is less favourable in PE and only becomes important at higher temperatures and proceeds to 

a large extent via β-scission of alkoxy radicals.  PP, however, predominantly undergoes chain scission 

under all processing conditions, accompanied by a reduction of molecular weight and melt viscosity.  

The propagation reaction is facilitated by intramolecular hydrogen abstraction leading to the formation 

of adjacent hydroperoxides that are less stable than the isolated kind, leading to an increase in the rate 

of initiation.   

 

A difference in the photo-oxidation behaviour of PE and PP is also observed due to fundamental 

differences in the behaviour of hydroperoxides in the two polyolefin materials.  Hydroperoxides are 

known not to accumulate during the photo-oxidation of PE, whereas the concentration increases 

steadily during the photo-oxidation of PP.  This is in contrast with observations made under conditions 

of thermal oxidation, where hydroperoxides accumulate in both polymers.  Carbonyl-containing 

products become more important during the later stages of photo-oxidation.  PE undergoes Norrish 

types I and II photo-cleavage processes that result in backbone scission to give free radicals capable 

of initiating photo-oxidation or undergo rearrangements to give molecular products with backbone 

scission (scheme 6).  Photo-oxidation of PE leads to the formation of acids, ketones, γ-lactones, esters 

and vinyl-alkenes, with an overall higher concentration of vinyl groups and acids formed in PE than PP.   

 
 

 
Scheme 2.6:  Photolysis of polyethylene, the Norrish reactions 
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2.5.5 Degradation of impact polypropylene copolymers 
 

As has been mentioned in section 2.3, impact PP copolymers were developed to compensate for the 

poor impact toughness of PP homopolymer at low temperatures.  Impact PP copolymers, like PP and 

PE, are also readily degraded by stimuli such as elevated temperatures and UV radiation when 

insufficiently stabilised.  The degradation chemistry of impact PP is complicated to a great extent by the 

presence of multiple components of different chemical composition (isotactic PP, EPR, PE 

homopolymer and a range of semi-crystalline EP copolymers) composing this heterophasic material.  

Degradation studies of impact PP copolymers are concerned with the oxidative stability of the 

respective phases based on chemical composition and morphology or crystallinity.  From the viewpoint 

of primary structure, PP is considered less stable than PE and EPR due to the presence of many highly 

reactive tertiary carbons capable of undergoing hydrogen abstraction during the initiation stage of 

oxidation142.  Oxidative degradation is however, dependent on morphology of polymers in the solid 

state and is known to originate in amorphous regions of semi-crystalline samples131 due to the higher 

diffusion and solubility of oxygen within these regions.  This will lead to EPR being oxidised 

preferentially and the overall degradation process being heterogeneous.  These contradictory 

tendencies are responsible for only a limited number of studies on the degradation of impact PP 

copolymers having been performed so far.  Authors such as Manabe, Suzuki, Nakatani Terano and 

some co-workers have performed a number of successive studies on the degradation of impact PP.  

They concluded that the degradation behaviour of the different phases could be linked directly to their 

primary structure.  EPR was found to have higher oxidative stability compared to PP due to the lower 

concentration of tertiary carbons, regardless of the higher oxygen diffusion and solubility143, 144.  They 

also investigated the effect of comonomer content and tacticity on degradation behaviour of a range of 

impact PP materials and found that the rate of oxidation decreased with increasing ethylene content 

and decreasing isotacticity145, 146.   

 

Their investigations continued with the fractionation of impact PP into a xylene-soluble and -insoluble 

fraction prepared via precipitation form boiling xylene144.  Characterisation of these fractions by GPC, 

TGA and AFM also indicated that degradation is confined to the PP matrix, thereby confirming the 

belief that the concentration of tertiary carbon atoms is of greater importance than oxygen permeability.  

They also speculated that this might be due to catalyst residues initiating oxidation in the PP matrix 

after their migration from their initial location in the amorphous EPR phase, but no experimental 

evidence was supplied to support this assumption.  Their most recent publication involves the thermal 

oxidation of 8 individual fractions obtained by TREF-fractionation of an impact PP sample147.  It was 

once again observed that the degradation behaviour of each fraction depends on two factors, namely 

the chemical constitution (i.e., number of tertiary carbons) and the concentration of 31 helix 

conformation, corresponding to isotacticity.  When degradation takes place in the 31 helix conformation, 

the peroxy radical is adjacent to the tertiary C-H and hydroperoxide formation via bimolecular 

decomposition occurs with great ease.   
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The most important factors governing the degradation of impact PP copolymers are therefore, (i) the 

chemical structure (number of tertiary carbon atoms), (ii) comonomer content, (iii) isotacticity and (iv) 

existence of 31 helix conformation corresponding to the PP crystalline part.   

 

Some of the earliest investigations of the degradation behaviour of impact PP copolymers were done 

by Singh et al. who investigated the products formed via thermo-oxidation by FTIR spectroscopy148.  

Derivatisation reactions were used to resolve the overlapping bands in the carbonyl region of the FTIR 

spectrum and degradation products were compared to those formed by PP and LLDPE homopolymers.  

They also investigated the concentration profile of products from the surface to the bulk and found that 

thermo-oxidative degradation was concentrated within the first  

125 μm, with the inner layers being impermeable to oxygen.  Oxygen consumption results indicated 

that the presence of ethylene sequences delayed the initiation of degradation and caused a decrease 

in the degradation rate with increasing ethylene content.  As was also confirmed at a later stage149, 

degradation takes place at a faster rate in the PP phase, in spite of its crystalline nature and ethylene 

acts as a moderator for oxidation in impact PP copolymers.   

 

During later years they also compared the degradation products formed under natural and artificial 

weathering111.  It was found that the same relative amounts of photo-products such as alcohol, ketone, 

and ester groups were formed in both degradation scenarios, which indicated that the mechanism of 

the formation of these products were independent of temperature and the flux of photons in the 

degradation environment.   

 

The morphological aspects of oxidation of impact PP copolymers were investigated in a series of 

publications by Kruczala et al.130, 150-152 They’ve made use of 1D and 2D electron spin resonance (ESR) 

and electron spin resonance imaging (ESRI) for studying the degradation behaviour of the phases in 

impact PP copolymers containing a hindered amine stabiliser (HAS)130, 150-152.  The nitroxides are 

derived from the HAS and are extremely sensitive to polymer morphology.  Comparison of the thermo- 

and photo-oxidation behaviour of impact PP copolymers with different ethylene contents (10% and 

25%) yielded the opposite result.  FTIR and ESRI indicated a higher rate of thermo-oxidation in the 

sample containing 25% ethylene than the samples containing only 10%151.  This was explained by the 

enhanced rate of oxygen diffusion and reactant mobility at ageing temperatures of 393 and 433K in 

copolymers containing more ethylene.  UV-irradiation of the same samples suggested a higher rate of 

degradation in the sample containing 10% ethylene150.  It is agreed that, although PP tertiary carbons 

are the point of attack, the rate of oxidation is sensitive to the amount of EPR in the sample, which 

influences the diffusion of oxygen and reactant mobility.  A difference in the oxidation mechanism of PP 

under thermal and UV-irradiated conditions has also been reported in recent papers, using 32O2 and 
34O2

153, 154 where a difference in temperature is proposed to cause the two different mechanisms in 

thermal (high temperatures) and photo-oxidation (lower temperatures).   
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2.5.6 Factors influencing the oxidation of polyolefins 
 

For many years the free radical chain reaction mechanism has provided the framework for interpreting 

the oxidation of hydrocarbon polymers.  This model treats oxidation reactions as though they were 

homogeneous, i.e., occurring in the liquid phase for all polymers.  Although this model is suitable for 

polymers in the molten state, the oxidation of solid polymers is far more complicated and several 

reports have indicated the heterogeneous nature of the degradation process131, 155-162.  Visual evidence 

for heterogeneity of the degradation process was observed by Knight et al.131 when macroscopic 

cracks became visible in thermally oxidised PP.  The heterogeneous distribution of oxidation products 

as studied by UV microscopy and staining techniques confirmed the heterogeneity of the process.  

Several authors have confirmed the inhomogeneous distribution of degradation products in polymer 

samples by making use of FTIR microscopy and other techniques for depth profiling of oxidation 

products such as carbonyl species163-166, hydroperoxides164, 167, double bonds168 and carboxylic 

groups169 across the thickness of samples.  The heterogeneity is caused by several factors such as the 

morphology and structure of the material170, catalyst residues131, 171, 172 and specific properties of free 

radicals in the solid state, such as recombination and migration probabilities173-175.  The influence of the 

most important factors responsible for heterogeneous degradation will now be discussed. 

 

2.5.6.1 Solubility and diffusion of oxygen 
 

Many studies have proven that degradation is a heterogeneous process controlled by oxygen 

diffusion130, 155, 163-169, 176.  It has been observed that degradation at polymer surfaces is more severe 

than in the interior or bulk176-181.  This is generally attributed to oxygen starvation in the interior.  The 

reaction rate near the surface is very high and most oxygen available at the surface is consumed in 

free radical reactions before it can be replenished by diffusion from the environment, and subsequently 

diffuses into the bulk of the sample182, 183.  Only with sufficient stabilisation will the reaction rate near 

the surface be lower and oxygen will penetrate the layers underneath the surface to initiate 

degradation here184.   

 

The solubility and diffusion of oxygen and other reactants is largely influenced by the density of the 

material which varies with the degree of crystallinity and compactness of amorphous and crystalline 

regions of semi-crystalline materials.  As the degree of crystallinity and the size of spherulites increase, 

oxygen permeability decreases due to changes in the relative content of the crystalline phase and the 

lowering of the diffusion constant which is related to an increased impedance factor185, 186.  In most 

polyolefins, degradation initiates in the amorphous region where oxygen diffusion is much less 

restricted than in crystalline domains129.  Michaels and Bixler have shown that the solubility of oxygen 

was proportional to the volume fraction of the amorphous material in PE, as well as the size, shape and 

size distribution of crystallites187.   
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Another factor influencing the diffusion of oxygen in semi-crystalline polymers, is film thickness.  It was 

illustrated that thin samples (less than 40 μm thick) were independent of oxygen diffusion effects, 

whereas samples between 40 and 200 μm showed an intermediate dependence and films of more 

than 200 μm was subject to diffusion-controlled processes188.  Vink189 concluded that, for films of less 

than 100μm, the effect of diffusion on photo-oxidation seemed negligible.  Still underinvestigated is the 

effect of oxidation on chemical composition and, therefore, oxygen diffusion. 

 

2.5.6.2 Comonomer content and stereoregularity 
 

A number of studies on the effect of stereoregularity on degradation behaviour of PP has been 

performed131, 171, 174, 190-192.  Although Iring et al.193 demonstrated a longer induction period and more 

rapid oxidation in aPP compared to iPP, Dulog et al.194, 195 were the first authors to indicate that iPP 

was more prone to degradation than aPP, mainly due to the difference in the chain initiation step, 

where iPP undergoes a bimolecular chain initiation reaction of hydroperoxides, whereas a unimolecular 

reaction occurs in aPP.  Various other works have also indicated that isotactic PP is much more 

susceptible to oxidation than syndiotactic PP196, 197 or atactic PP194, 195, 198.  The resistance of the 

different PP structures to oxidation has been found to decrease in the following order:   

sPP >> aPP >>> iPP199.  Degradation in iPP proceeds via a bimolecular chain initiation step and 

random scission events dominate the degradation process, whereas unimolecular chain initiation takes 

place in aPP and the process is non-random193.  Mori et al.197 and Hatanaka199 gave the following 

explanation for the difference in oxidative stability between syndiotactic and isotactic PP.  In isotactic 

PP all methyl groups are situated on the same side of the polymer backbone and most of the 

configurational repeat units show meso-diads.  During the oxidation of iPP, where hydrogen abstraction 

preferentially occurs at the tertiary carbons, the hydroperoxide species formed upon reaction with 

molecular oxygen is situated on the same side as the hydrogen atom connected to the adjacent tertiary 

carbon.  Therefore, intramolecular hydrogen abstraction occurs with greater ease than in the case of 

syndiotactic PP where the process is complicated by the steric hindrance of the methyl group, and 

where the peroxy radical and tertiary C-H bond are located on opposite sides of the backbone.  It, 

therefore, seems probable that the thermo-oxidative degradation is depressed significantly due to the 

existence of racemic configurations in sPP.  The high thermo-oxidative stability of sPP has also been 

reported by other authors200, 201.  Suzuki continued the investigation of the effect of tacticity on the rate 

of oxidation.  In this study TREF was used to study the effect of tacticity distribution on the ease of 

oxidation of two PP samples146.  It was seen that fractions of the same molecular weight but different 

tacticities degraded differently, and the explanation given above for the higher degradation rate in 

samples of higher tacticity, was confirmed.   

 

Suzuki et al. investigated the effect of comonomer content and tacticity on a series of impact PP 

copolymers with different ethylene contents145, 146.  It was seen that a decreasing tacticity and 

increasing ethylene content lead to an increase in oxidation resistance in this series of copolymers.  

Alam et al.142 studied the photo-oxidation of iPP and s-PP and also found that sPP had higher 
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photostability.  This study has lead to the proposal for increasing the photostability of iPP by 

copolymerisation with ethylene.  Incorporation of ethylene is supposed to eliminate a number of highly 

reactive tertiary carbons in PP, thereby improving its resistance to photo-oxidation.   

 

2.5.6.3 Mobility of radicals 
 

One of the main reasons for the heterogeneous oxidation of solid polymers is the limited mobility of 

radical species.  It is accepted that kinetic treatments developed for liquid phases are not suitable for 

solid systems where radical mobility is impaired.  Radicals formed in close proximity to each other in 

highly viscous melts and solid systems have little chance of migrating away from one another, leading 

to a high frequency of recombination and disproportionation reactions.  These reactions result in a 

significant change in molecular weight of polymers138.  Cage recombination is considered the main 

difference between liquid- and solid-state photo-oxidation process174.  Liquid state radicals are capable 

of quick randomisation whereas solid-state radicals will only separate by slow segmental diffusion.  

Kinetics of solid polymer reactions is limited by this problem, which complicates predictions of polymer 

lifetimes.   

 

It has been demonstrated that the mobility of radicals varies significantly between crystalline and 

amorphous phases in semicrystalline polymers.  Chien and Wang investigated the initiation efficiency 

of polyolefin oxidation and concluded that initiation was around ten times lower for semicrystalline 

polymers than for amorphous systems202.  Crystallinity and orientation undoubtedly influence the 

mobility of radicals and, therefore, control the rate of termination through recombination and/or 

disproportionation.  Increased crystallinity and/or orientation reduce the mobility of radicals, and the 

rate of termination, causing an increase in propagation reactions involving chain scission203.  This 

effect is the opposite of that caused by reduced oxygen mobility and it is very difficult to predict whether 

the restriction of oxygen or radical mobility will dominate.  Thus, some studies proved an increase in 

the rate of degradation with crystallinity, 204, or with orientation205, while in others the opposite effect 

was observed175, 206, 207.   

 

Another aspect of importance in oxidation kinetics is secondary cage recombination, whereby radicals 

that escape the initial cage still have very high probabilities of recombining even after several 

propagation steps173.  Limited migration of radicals clearly is a very important factor in heterogeneous 

degradation of semicrystalline polymers, but the extent to which it affects the degradation process, 

strongly depends on polymer morphology and structure as well as molecular mobility of the matrix. 

 

2.5.6.4 Catalyst residues 
 

Celina et al.159 have demonstrated that individual PP particles have different intrinsic stabilities, 

possibly due to different concentrations of catalyst residues or residual stabilisers in each particle.  The 

spreading of oxidation from one particle to another was also demonstrated.  This has lead to the 
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proposal of ‘the spreading model’ for heterogeneous oxidation of solid PP161.  This model proposes that 

oxidation originates in localised domains of possible higher catalyst concentration, and subsequently 

spreads to other regions of the polymer.  It has been confirmed that it is, in fact, the ions of the 

transition metals of the polymerisation catalysts that are responsible for initiating degradation190, 208, 209.  

Residual titanium concentrations of 1-20 ppm were detected in polymers prepared by second-

generation Ziegler-Natta catalytic systems210.  It has been demonstrated that metal chelates such as n-

butyl-o-titanate, n-octadecyl-o-titanate and titanium tetrastearate could act as oxidation initiators in PP 

at low concentrations but also as inhibitors at high concentrations, depending on the nature of the 

ligand211.  Several other studies have also been undertaken to evaluate the initiation of oxidation in 

areas of higher catalyst concentrations157, 159, 160, 162.  One study of particular interest was the study 

done by Blakey and George212, where it was found that catalyst residues had an inhibiting effect on 

oxidation in the exact spot where they are found, but they do generate migratable oxidant species that 

can initiate oxidation some distance from the original catalyst particles.  Superoxide and hydroperoxy 

radicals formed at the location of catalyst particles, spread to other areas where they take part in the 

formation of highly reactive hydroxyl radicals that subsequently abstract hydrogen atoms from polymer 

chains, thereby initiating oxidation in this area.   

 

2.5.6.5 Inhomogeneous distribution of stabilisers 

 

Before any degradation occurs, there is already an inhomogeneous distribution of pigments, 

plasticisers and additives or stabilisers in all freshly produced polymers.  Furthermore, the migration of 

these entities, especially those stabilisers affecting the long-term stability of materials, is an important 

factor governing the heterogeneity within degraded materials.  The migration of stabilisers to their 

surrounding medium (physical loss) and the oxidation of stabilisers themselves (chemical loss), are two 

important causes for the loss of stability in polymeric materials213-215.  The physical loss of 

stabilisers/antioxidants is controlled either by the rate of diffusion in the polymer or by its escape rate at 

the material boundary.  The latter can be the result of either evaporation in a gas phase medium or 

dissolution in a liquid phase like water.  The migration of phenolic antioxidants in polyolefins used in 

hot-water applications was studied216, 217 and it was found that the chemical consumption of phenolic 

antioxidants is negligible compared to their physical loss at temperatures between 70 and 110ºC216, 217.  

The rate of antioxidant diffusion within the polymer matrix should be fast enough to compensate for 

their consumption in the reactive layers.  If this is not the case, antioxidant supplies cannot be 

replenished in the areas where they are needed and degradation will proceed very quickly into the bulk 

of a sample.  Due to the practical importance, numerous investigations on the diffusion and extraction 

of stabilisers in and from polymers have been performed218-220.   

 

The migration of additives leads to a change in their concentration profile across the thickness of 

polymer samples.  This concentration profile changes with time and can be studied by a number of 

techniques.  One way to study additive concentration profiles is by stacking many individual film layers 

together and to allow sufficient time for stabilisers to diffuse between the layers 221.  The layers are 
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then separated and the amount of stabiliser can be determined by means of spectroscopy or solvent 

extraction followed by chromatography.  In the case of a single film, successive layers may be 

microtomed from the surface into the bulk and then analysed by microscopy or spectroscopy.  An 

alternative to successive microtoming is depth-profiling using attenuated total reflectance Fourier-

transform infrared spectroscopy (ATR-FTIR)222-224, but ATR only probes a fraction of the thickness of a 

film and quantification is a challenge with ATR-FTIR.  Photoacoustic FTIR spectroscopy (PAS-FTIR) 

can also be used for the purpose of examining the heterogeneity of degraded surface layers225.  

Depending on the optical and thermal properties of the sample, as well as the frequency at which the 

IR light is modulated, the penetration depth may vary from only a few microns to several tens of 

micrometers.   

 

A more favourable approach is to microtome cross sections of a film and subsequently scan the 

concentration profile across the thickness of the film by UV microscopy226, although this technique is 

limited to those additives that absorb sufficiently in the UV region.  Therefore, Raman-212 and FTIR 

microspectroscopy155, 227-230 are considered among the key innovations in studying the heterogeneity of 

the degradation process.   

 

 

2.6 Characterisation techniques for studying degradation 
 

As it has been mentioned before, polyolefin materials are of extreme importance commercially, but 

unfortunately they are also vulnerable to attack by oxygen, radiation, heat, chemicals and other 

stimulants.  It is extremely important to analyse the degradation process i.e., to establish the 

mechanisms at work during oxidation, the products formed as well as the influence of molecular 

structure on the stability of materials.  A full understanding of degradation is of extreme importance, 

since without this, successful stabilisation approaches and superior methods of lifetime prediction 

would not have been possible.  It is, therefore, necessary to pay careful consideration to the analytical 

techniques employed to study the degradation process.  The field of analytical chemistry possesses a 

powerful arsenal of conventional techniques that have been used for the purpose of studying polyolefin 

degradation over the years, some of which include size exclusion chromatography (SEC), Fourier 

transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), nuclear magnetic 

resonance spectroscopy (NMR), chemiluminescence (CL), ultraviolet spectroscopy (UV) and gas 

chromatography coupled to mass spectrometry (GC-MS).  A number of more recently developed 

techniques have also found application in the field of polymer degradation studies over the past few 

years.  Such techniques include temperature rising elution fractionation (TREF), crystallisation analysis 

fractionation (CRYSTAF) and liquid chromatography coupled to Fourier transform infrared 

spectroscopy (LC-FTIR).  A brief overview on the use of some of these techniques for the purpose of 

studying polyolefin degradation will now be presented.   
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2.6.1 Conventional techniques 
 

2.6.1.1 Size Exclusion Chromatography 
 

Size exclusion chromatography separates molecules according to their hydrodynamic volume and is 

the preferred method for the determination of molecular weight and molecular weight distribution of 

synthetic polymers.  During the degradation of polyolefins, changes in average molecular weight and 

molecular weight distribution (MWD) are often observed231-234.  Depending on the polymer in question 

and the degradation conditions, many radical reactions can take place.  In the case of polyethylene, 

branching and recombination reactions predominate at lower temperatures, yielding a cross-linked 

material, which leads to an increase in the average molecular weight of the material234.  Polypropylene 

degrades almost exclusively by means of chain scission, leading to a reduction of its average 

molecular weight235.   

 

Chain scission during degradation results in continuous breaking of polymer chains, yielding chains of 

shorter lengths.  The average result is that the number of short chains increases with degradation time 

and is accompanied by a broadening of the molecular weight distribution.  The molecular weight curve 

obtained from SEC measurements, therefore, shifts towards the region of lower molar mass when 

chain scission is the dominant degradation mechanism142, 144, 147.  As degradation proceeds and chain 

scissions continue, the molecular weight curve will exhibit bimodality with the portion of highly 

degraded short molecules appearing as a narrow distribution on the lower molecular weight side of the 

original material.   

 

The following equation was proposed by David et al.236 for determining the number of chain scissions 

in degraded samples, by determining the numerical average of the initial and final number-average 

molecular weights.   

1−=
nf

no
R M

Mn  

where:   is the number of chains scission Rn

 noM  is the initial number-average molecular weight ( nM ) determined by SEC, and 

 nfM  is the final nM  value after degradation 

 

As explained in Section 2.5.5, polyolefin degradation in the solid state is a heterogeneous process that 

leads to varying depth levels of oxidation products in thick samples.  Size exclusion chromatography 

can be used to register molecular weight changes over a cross-section of a thick polymer sample by 

means of microtoming163 or layer-by-layer milling184.  Computer-aided analysis procedure called 

molecular weight distribution computer analysis (MWDCA) has also proven to be useful for the 
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comparison of degradation rates in polyolefins176, 237, 238.  This technique uses molecular weight data, 

obtained by comparison of experimental SEC molecular weight distribution profiles with computer 

simulations for determining the scission or crosslink ratio of layers milled from the surface into the core 

of the sample.  Shyichuk investigated scission and crosslink concentrations in photo-degraded LDPE, 

PP homopolymer and an ethylene-propylene copolymer and found that there was much less variation 

in these concentrations for LDPE with depth and ongoing degradation times176.  The lower degree of 

stratification in PE suggested that oxidation of PE is less dependent on oxygen diffusion than PP.   

 

2.6.1.2 Fourier Transform Infrared Spectroscopy 

 

IR spectroscopy is one of the most popular techniques for studying the chemical changes brought 

about by polymer degradation.  It has been used for both qualitative and quantitative characterisation 

of degradation products166, 239-242.  The chemical changes resulting from polymer ageing involve the 

formation of various functional groups at rates that are strongly dependent on the chemical structure of 

the polymer.  The main chemical species detectable by infrared spectroscopy are hydroxyl and 

carbonyl groups243.  The formation of these groups generally leads to visible changes in the infrared 

spectrum, with carbonylated products and hydroxy and hydroperoxy compounds appearing in the 

regions of 1850-1550 cm-1 and 3700-3200 cm-1, respectively111, 239, 244.  Associated hydroperoxides and 

hydrogen-bonded hydroxyl groups are known to give rise to a band around 3400 cm-1 in the infrared 

spectrum 243-245, with free hydroperoxides appearing at around 3560 cm-1 245.  The wavenumbers (cm-1) 

of the degradation products strongly depend on the mechanism of degradation and the polymer matrix.  

Differences can be observed in the degradation products of natural and artificial ageing111 detected by 

FTIR spectroscopy, as well as thermo- and photo-oxidation242 conditions.  Furthermore, differences in 

the FTIR absorption of degradation products in PE and PP can also be observed and used for studying 

the difference in their oxidation mechanisms246.   

 

The absorption bands of the degradation products often overlap to form complex absorption bands, 

which complicates their identification.  From the hydroxyl and carbonyl groups, degradation products 

such as peroxides, alcohols, carboxylic acids, ketones, aldehydes, esters and γ-lactones can be 

identified by means of derivatisation reactions239, 247.  This method usually involves the treatment of 

oxidised samples with a reactive gas that can selectively convert degradation products.  This leads to 

the disappearance of some bands in the infrared spectrum and the appearance of some new bands of 

the derivated products.  Derivatisation methods for this purpose were first applied to polyolefins by 

Carlsson et al.248.  The reagents used are diazomethane for conversion of acids and peracids to their 

respective methylesters, sulphur tetrafluoride to convert acids to acyl fluorides, nitric oxide to convert 

alcohols and hydroperoxides to nitrites and nitrates respectively, and phosgene to convert alcohols and 

hydroperoxides to chloroformates248.   
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FTIR has also been useful in determining changes in unsaturation of PE during degradation243, 249.  The 

unsaturated groups typically detected, include vinylidene end groups (characteristic bands at 889 and 

1684 cm-1) terminal vinyl groups appearing at 910 cm-1 and trans-vinylenes at 965 cm-1.   

 

The extent of degradation within polymer samples is often determined on the basis of their carbonyl 

index240, 250-252.  The carbonyl index is defined as the ratio of the carbonyl absorbance band around 

1714 cm-1 with respect to a certain reference band that is not affected by the degradation process.  In 

the case of PE, the band around 1470 cm-1 can be used, whereas the bands at 1892 cm-1 250,  

974 cm-1 251 2720 cm-1 203 and 840 cm-1 252, have all been used as reference bands for determining the 

carbonyl index in PP.  Plotting the carbonyl index against degradation time (hours), permits 

assessment of the kinetics of oxidation244.  These kinetic curves usually present two phases during the 

degradation process.  The induction stage of degradation is seen in the first region of these plots, 

where the curve has a very low slope. This stage is characterised, in part, by the consumption of 

residual processing stabiliser still present in the sample and the diffusion of oxygen into the top layers 

of the sample, thereby kicking off the degradation process.  The second stage is characterised by a 

steep increase in the carbonyl index of the material as the autoxidation process continues.  Changes in 

the carbonyl index of different polymer materials as a function of degradation time or temperature, are 

therefore a convenient way for comparing the degradation behaviour of different polymer systems.   

 

2.6.1.3 Nuclear Magnetic Resonance Spectroscopy 

 
13C-NMR has the potential to differentiate between all the major degradation products such as ketones 

(both methyl and chain-ketones), primary and secondary peroxy radicals, hydroperoxides, alcohols, 

ketones and acids based on their chemical shifts.  The major disadvantage is the insufficient sensitivity 

to detect products at very low concentrations.  Even in highly oxidised polymers, where a considerable 

loss in mechanical properties is observed, only moderate levels of oxidation products might be present.  

Jelinski et al.253 reported on the detection and quantification of thermo-oxidation products at the 0.05% 

level.  Ketones, secondary alcohols, secondary hydroperoxides and carboxylic acids were found as the 

primary oxygen-containing degradation products.  It was also possible to distinguish between the 

degradation patterns and distribution of degradation products in LDPE and LLDPE, originating from 

different branch contents and thermal treatment procedures.  Some of the most difficult species to 

detect are quaternary carbons due to their low Nuclear Overhauser effect (NOE) and long relaxation 

times.  These complications have been overcome by acquisition of a large number of scans, long pulse 

delays and large NMR tube diameters.  Valuable results on the thermo-oxidation of PE254 and γ-

irradiated PP255 have been reported.  Vaillant et al.256 identified the chemical shifts between 60 and 

250ppm in the NMR spectrum as the area of interest with regard to oxidation products.  It was shown 

that the tertiary carbons of alcohols, hydroperoxides and ester were found in the region between 60 

and 120ppm, with carboxylic acids and methyl- and in-chain ketones appearing between 140 and 

240ppm.   
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Unsaturated chain ends produced by degradation can also be identified and quantified by means of 1H 

and 13C-NMR.  Kolbert et al. studied all the possible chain ends that could form during mechano-

chemical degradation of ethylene-propylene (EP) copolymers and found that vinyl, vinylidene and 

vinylene groups were the main unsaturated species formed257.  By assigning the olefin region of the 

NMR spectrum, it was clear that the mechanism of shearing is hydrogen abstraction followed by 

disproportionation.  The methine proton is preferentially abstracted by a ratio of 6:1, compared to a 

proton linked to a secondary carbon and there is a preference toward main chain scission following C-

H scission, at the β-position relative to the radical by over 2:1.   

 

2.6.1.4 Differential Scanning Calorimetry 

 

Differential scanning calorimetry is another technique often used to obtain information on the 

degradation behaviour of polymers258-260.  Changes in the peak temperatures and shape of melt 

endotherms as well as the overall percentage crystallinity, can supply information on the susceptibility 

of different crystalline phases or arrangements to degradation260.   

 

DSC is very useful in determining the oxidative induction time (OIT)261-263 and oxidative temperature 

(Tox)261, 264 of polymers.  OIT measurements are often used to assess the thermal stability, antioxidant 

effectiveness and degree of degradation of polymers under high temperature conditions.  The thermal 

stability is determined by measuring the time needed until the onset of degradation in a polymer at a 

given temperature within an oxidative atmosphere.  Rosa et al.259 investigated the influence of several 

parameters on OIT data and found that sample preparation (shape and size), oxygen flow and heating 

rate of the OIT experiment had a significant influence on the data obtained.   

 

2.6.2 Fractionation and hyphenated techniques 
 

Although conventional techniques such as these mentioned in the previous section are still of 

undeniable value for studying degradation of polymers, some techniques specifically suited for studying 

the chemical heterogeneity within polyolefin materials have also recently found application in the field 

of degradation studies.  TREF is a highly effective technique for separating semi-crystalline polymers 

according to their crystallisability, which is directly related to their molecular structure58, 92, 265, 266.  

Although it has been a technique of choice for characterisation of semi-crystalline materials for several 

years already, it has only recently been employed for the purpose of studying degradation146, 147, 267, 268.  

TREF supplied valuable information on the influence of tacticity and tacticity distribution146 as well as 

molecular weight147 on the degradation of polyolefins.   

 

Crystallisation analysis fractionation (CRYSTAF), another technique used for solution crystallisation of 

semi-crystalline polymers265, 269, has only recently been employed for studying degradation270, 

271CRYSTAF also fractionates polymers according to their crystallisability, which is a function of their 

chemical composition.  The depth profile of degradation across thick PP samples, based on their 
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crystallisability, was determined by CRYSTAF analysis of abrased layers, taken from the surface 

towards the sample core.  Depending on the level of degradation, samples will change in their ability to 

crystallise out at higher temperatures, due to impurities incorporated in chains (e.g., carbonyl and 

hydroxyl groups).  Surface layers comprised of highly degraded, amorphous material, that was altered 

by degradation to such a large extent that crystallisation was no longer possible.  The crystallisability 

increases towards the bulk where chain molecules have been altered to a smaller extent, rendering 

them still crystallisable to a large extent.  Apart from a shift in the CRYSTAF crystallisation peak 

towards lower temperatures, a decrease in the intensity of the main crystallisation peak (i.e., 

concentration of crystallisable material) and an increase in the soluble fraction of each layer was also 

observed upon higher degrees of degradation.   

 

Another very effective technique for assessing the heterogeneity within complex polymers such as 

polyolefins, is SEC coupled to FTIR (SEC-FTIR), which can supply information on the chemical 

composition as a function of molecular weight distribution272, 273.  It is especially useful for studying 

copolymers where the chemical heterogeneity across the molecular weight distribution can be studied 

by determining the ratio of two specific functional groups of interest274-280.  Its benefits have also 

recently been exploited as a tool for studying polymer degradation270, 271, 281.  SEC-FTIR analysis was 

also performed on the abrased layers of a degraded thick PP sample270, 271.  The Gram-Schmidt plot 

shifted towards lower molecular weight in the surface layers compared to the core, and the highest 

concentration of carbonyl functionalities was found in the low molecular weight region of each layer.  

The heterogeneous degradation of polyolefins can therefore be successfully studied by techniques 

such as TREF, CRYSTAF and SEC-FTIR to obtain information that is not possible with conventional 

analytical techniques.  It will be the aim of this study to demonstrate further applications of these 

techniques in studying polyolefin degradation.   

 

 

2.7 References: 
 

1. Seymour, R. B., History of Polyolefins. In Handbook of Polyolefins, Vasile, C.; Seymour, R. B., 
Eds. Marcel Dekker: New York, 1993; p 1. 

2. Monasse, B.; Haudin, J. M., Molecular structure of polypropylene homo- and copolymers.  
In Polypropylene:  Structure, blends and composites, Karger-Kocsis, J., Ed. Chapman & Hall: 
London, 1995; p 3. 

3. Zimm, B. H. J. Chem. Phys. (1948) 16, p 1099. 
4. Grinshpun, V.; O'Driscoll, K. F.; Rudin, A. J. Appl. Polym. Sci. (1984) 29, p 1071. 
5. Grinshpun, V.; Rudin, A. J. Appl. Polym. Sci. (1985) 30, p 2413. 
6. Utracki, L. A.; Dumoulin, M. M. ACS Symp. Ser. (1984) 145, p 91. 
7. Lew, R.; Suwunda, D.; Balke, S. T. J. Appl. Polym. Sci. (1988) 35, p 1049. 
8. Chiang, R., In Newer methods of polymer characterisation, Ke, B., Ed. Wiley-Interscience:  

New York, 1964; p 471. 
9. Horska, J.; Stejskal, J.; Kratochvil, P. J. Appl. Polym. Sci. (1979) 24, p 1845. 
10. Horska, J.; Stejskal, J.; Kratochvil, P. J. Appl. Polym. Sci. (1983) 28, p 3873. 
11. Mays, J. W.; Fetters, L. J. Macromolecules (1989) 22, p 921. 
12. Moore, E. P. J., Polypropylene handbook. Hanser/Gardner Publishers Inc.: Cincinnati, 1996;  

p 89. 
13. Atkins, J. L.; Muus, L. T.; Smith, C. W.; Pieski, E. T. J. Am. Chem. Soc. (1957) 79, p 5089. 



Chapter 2:    Historical overview and Theoretical background 
 
 

   
   
 
 36

14. Schulz, G. V. Phys. Chem. (1940) B46, p 173. 
15. Natta, G.; Pino, P.; Corradini, P. J. Am. Chem. Soc. (1955) 77, p 1708. 
16. Galanti, A. V.; Mantell, C. L., Polypropylene fibers and films. Plenum press: New York, 1965. 
17. Natta, G. J. J. Polym. Sci. (1959) 34, p 531. 
18. Natta, G.; Pasquon, I.; Zambelli, I.; Gatti, G. Makromol. Chem. (1964) 70, p 191. 
19. Van der Ven, S., Polypropylene and other polyolefins. Elsevier Science Publishers: 

Amsterdam, 1990. 
20. Greco, R.; Mancarella, C.; Martuscelli, E.; Ragosta, G.; Yin, J. Polymer (1987) 28, p 1922. 
21. D'Orazio, L.; Mancarella, C.; Martuscelli, E.; Sticotti, G. J. Mater. Sci. (1991) 26, p 4033. 
22. Zhang, X. F.; Xie, F.; Pen, Z. L.; Zhang, Y.; Zhang, Y. X.; Zhou, W. Eur. Polym. J. (2002) 38,  

p 1. 
23. Jang, B. Z.; Uhlman, D. R.; Vander Sande, J. B. J. Appl. Polym. Sci. (1984) 29, p 3409. 
24. Jang, B. Z.; Uhlman, D. R.; Vander Sande, J. B. Polym. Eng. Sci. (1985) 25, p 643. 
25. Premphet, K.; Horanont, P. Polymer (2000) 41, p 9283. 
26. Rybuikar, F. J. J. Appl. Polym. Sci. (1969) 13, p 827. 
27. Binsbergen, F. L.; Delarge, B. G. M. Polymer (1970) 11, p 309. 
28. Ito, J.; Mitani, K.; Mizatani, Y. J. Appl. Polym. Sci. (1992) 46, p 1221. 
29. Yokoyama, Y.; Ricco, T. J. Appl. Polym. Sci. (1997) 66, p 1007. 
30. Hongjun, C.; Xiaolie, L.; Dezhu, M.; Jianmin, W.; Hongsheng, T. J. Appl. Polym. Sci. (1999) 71, 

p 93. 
31. Tan, H.; Li, L.; Chen, Z.; Song, Y.; Zheng, Q. Polymer (2005) 46, p 3522. 
32. Yang, D. C.; Zhang, B. L.; Yang, Y. K.; Fang, Z.; Sun, G. F. Polym. Eng. Sci. (1984) 24, p 612. 
33. Jang, B. Z.; Uhlman, D. R.; Vander Sande, J. B. J. Appl. Polym. Sci. (1985) 30, p 2485. 
34. Van Gisbergen, J. G. M.; Hoeben, W. F. L. M.; Meijer, H. E. H. Polymer (1991) 31, p 1539. 
35. Van Gisbergen, J. G. M.; Meijer, H. E. H.; Lemstra, P. J. Polymer (1989) 30, p 2153. 
36. Choudhary, V.; Varma, H. S.; Varma, I. K. Polymer (1991) 32, p 2534. 
37. D'Orazio, L.; Mancarella, C.; Martuscelli, E.; Sticotti, G.; Massari, P. Polymer (1993) 34,  

p 3671. 
38. Choudhary, V.; Varma, H. S.; Varma, I. K. Polymer (1991) 32, p 2541. 
39. D'Orazio, L.; Mancarella, C.; Martuscelli, E. Polymer (1991) 32, p 1186. 
40. Prentice, P.; Williams, J. G. Plast. Rubber Compos Process. Appl. (1982) 2, p 27. 
41. Chiang, W. Y.; Yang, W. D.; Pukanszky, B. Polym. Eng. Sci. (1991) 32, p 641. 
42. Wang, L.; Huang, B. J. Polym. Sci., Part B: Polym. Phys. (1990) 28, p 937. 
43. Whelan, T., Polymer technology dictionary. Chapman & Hall: London, 1994; p 439. 
44. Karger-Kocsis, J.; Kallo, A.; Kuleznev, V. N. Polymer (1984) 25, p 279. 
45. Sheffold, F.; Budkowski, A.; Steiner, U.; Eiser, E.; Klein, J. J. Chem. Phys. (1996) 104, p 8795. 
46. Graessley, W. W.; Krishnamoorti, R.; Balsara, N. P.; Butera, R. J.; Fetters, L. J.; Lohse, D. J.; 

Schulz, D. N.; Sissano, J. A. Macromolecules (1994) 27, p 3896. 
47. Weimann, P. A.; Johnes, T. D.; Hillmyer, M. A.; Bates, F. S.; Londono, J. D.; Melnichenko, Y.; 

Wignall, G. D.; Almdal, K. Macromolecules (1997) 30, p 3560. 
48. Fredrickson, G. H.; Liu, A. J.; Bates, F. S. Macromolecules (1994) 27, p 2503. 
49. Lohse, D. J., Miscibility and phase separation in polypropylene blends. In Polypropylene:   

An A-Z reference, Karger-Kocsis, J., Ed. Kluwer Publishers: Dordrecht, 1999; p 484. 
50. Lohse, D. J.; Wissler, G. E. Jnl. Mater. Sci. (1991) 26, p 743. 
51. Baldwin, F. P.; Ver Strate, G. Rubber Chem. Technol. (1972) 45, p 709. 
52. Del Duca, D.; Moore, E. P. J., End-use properties. In Polypropylene handbook, Moore, E. P. J., 

Ed. Hanser/Gardner Publications Inc.: Cincinnati, 1996; p 237. 
53. Galli, P.; Haylock, J. C.; Simonazzi, T., Manufacturing and properties of polypropylene 

copolymers. In Polypropylene:  Structure, blends and composites, Karger-Kocsis, J., Ed. 
Chapman & Hall: London, 1995; p 1. 

54. Tait, P. J. T.; Berry, I. G., Monoalkene polymerisation:  Copolymerisation. In Comprehensive 
Polymer Science, Allen, G. F.; Bevington, J. C., Eds. Pergamon Press plc: Oxford, 1989;  
Vol. 4. 

55. Pires, M.; Mauler, R. S.; Liberman, S. A. J. Appl. Polym. Sci. (2004) 92, p 2155. 
56. Mirabella, F. Polymer (1993) 34, p 1729. 
57. Zacur, R.; Goizueta, G.; Capiati, N. Polym. Eng. Sci. (2000) 40, p 1921. 
58. Soares, J. B. P.; Hamielec, A. E. Polymer (1995) 36, p 1639. 
59. Urdampiletta, I.; González, A.; Iruin, J. J.; de la Cal, J. C.; Asua, J. M. Macromolecules (2005) 

38, p 2795. 
60. Xu, J.; Fu, Z.; Fan, Z.; Feng, L. Eur. Polym. J. (2002) 38, p 1739. 



Chapter 2:    Historical overview and Theoretical background 
 
 

   
   
 
 37

61. Chen, Y.; Chen, Y.; Chen, W.; Yang, D. Polymer (2006) 47, p 6808. 
62. Tanem, B. S.; Kamfjord, T.; Augestad, M.; Løvgren, T. B.; Lundquist, M. Polymer (2003) 44,  

p 4283. 
63. Sun, Z.; Yu, F.; Qi, Y. Polymer (1991) 32, p 1059. 
64. Xu, J.; Feng, L.; Yang, S.; Wu, Y. Polymer (1997) 38, p 4381. 
65. Fernado, P. L.; Williams, J. G. Polym. Eng. Sci. (1981) 21, p 1003. 
66. Narisawa, I. Polym. Eng. Sci. (1987) 27, p 41. 
67. Ma, D.; Li, X.; Luo, X.; Chin. J. Polym. Sci. (1994) 12, p 164. 
68. Bramuzzo, M. Polym. Eng. Sci. (1987) 29, p 1077. 
69. Prentice, P. Polymer (1982) 23, p 1189. 
70. Fan, Z.; Zhang, Y.; Xu, J.; Wang, H.; Feng, L. Polymer (2001) 42, p 5559. 
71. Fu, Z.-S.; Fan, Z.-Q.; Zhang, Y.-Q.; Feng, L.-X. Eur. Polym. J. (2003) 39, p 795. 
72. Mirabella, F. J. J. Appl. Pol. Sci., Appl. Polym. Symp. (1992) 51, p 117. 
73. Cogswell, F. N.; Hanson, D. E. Polymer (1975) 16, p 937. 
74. Ke, B. J. Polym. Sci. (1960) 42, p 15. 
75. Ke, B. J. Polym. Sci. (1962) 61, p 47. 
76. Boor, J., Block copolymerisation. In Ziegler-Natta catalysts and polymerisations, Boor, J., Ed. 

Academic Press Inc.: London, 1979; p 587. 
77. Barbè, P. C.; Cecchin, G.; Noristi, L. Adv. Polym. Sci. (1986) 81, p 1. 
78. Kashiwa, N.; Yoshitake, J. Polym. Bull. (1984) 11, p 479. 
79. Lazzeri, A.; Bucknall, C. B. Polymer (1995) 36, p 2895. 
80. Kim, G. M.; Michler, G. H. Polymer (1998) 39, p 5689. 
81. Kim, G. M.; Michler, G. H.; Gahleitner, M.; Fiebig, J. J. Appl. Polym. Sci. (1996) 60, p 1391. 
82. Michler, G. H. J. Macromol. Sci., Phys. (1999) B38, p 787. 
83. Debling, J. A.; Ray, W. H. J. Appl. Polym. Sci. (2001) 81, p 3085. 
84. Kakugo, M.; Sadatoshi, H.; Sakai, J.; Yokoyama, M. Macromolecules (1989) 22, p 3172. 
85. Kakugo, M.; Sadatoshi, H.; Yokoyama, M.; Kojima, K. Macromolecules (1989) 22, p 551. 
86. McKenna, T.; Bouzid, D.; Matsunami, S.; Sugano, T. Polymer Reac. Eng. (2003) 11, p 177. 
87. Cecchin, G.; Marchetti, E.; Baruzzi, G. Macromol. Chem. Phys. (2001) 202, p 1987. 
88. Besomles, M.; Menguel, J.-F.; Delmas, G. J. J. Polym. Sci., Part B:  Polym. Phys. (1988) 26,  

p 1881. 
89. Hongjun, C.; Xiaolie, L.; Xiangxu, C.; Dezhu, M.; Jianmin, W.; Hongsheng, T. J. Appl. Polym. 

Sci. (1999) 71, p 103. 
90. Feng, Y.; Hay, J. N. Polymer (1998) 39, p 6723. 
91. Feng, Y.; Jin, X.; Hay, J. N. J. Appl. Polym. Sci. (1998) 68, p 381. 
92. Xu, J.; Feng, L. Eur. Polym. J. (2000) 36, p 867. 
93. Xu, J.; Feng, L.; Yang, S.; Yang, Y.; Kong, X. Eur. Polym. J. (1998) 34, p 431. 
94. Usami, T.; Gotoh, Y.; Umemoto, H.; Takayama, S. J. Appl. Polym. Sci., Appl. Polym. Symp. 

(1993) 52, p 145. 
95. Painter, P. C.; Watzek, M.; Koenig, J. L. Polymer (1977) 18, p 1169. 
96. Baker, B. B.; Bonesteel, J. K.; Keating, M. Y. Thermochim. Acta (1990) 166, p 53. 
97. Cheng, H. N. Macromolecules (1984) 17, p 1950. 
98. Ray, G. J.; Johnson, P. E.; Knox, J. R. Macromolecules (1977) 10, p 773. 
99. Carman, C. J.; Harrington, R. A.; Wilkes, C. E. Macromolecules (1977) 10, p 536. 
100. Paxon, J. R.; Randall, J. C. Anal. Chem. (1978) 50, p 1777. 
101. Randall, J. C. JMS-Rev. Macromol. Chem. Phys. (1989) C29 (2&3), p 201. 
102. Hayashi, T.; Inoue, Y.; Chûjô, R.; Asakura, T. Polymer (1988) 29, p 1848. 
103. Kakugo, M.; Naito, Y.; Mizunuma, K.; Miyatake, T. Macromolecules (1982) 15, p 1150. 
104. Hansen, E. W.; Redford, K.; Oysaed, H. Polymer (1996) 37, p 19. 
105. Wang, W.-J.; Zhu, S. Macromolecules (2000) 33, p 1157. 
106. Xu, J.; Feng, L. Polym. Int. (1998) 47, p 433. 
107. Bhuiyan, A. L. Adv. Polym. Sci. (1982) 47, p 43. 
108. Hutchinson, J. M. Prog. Polym. Sci. (1995) 20, p 703. 
109. Vasile, C., Degradation and Decomposition. In Handbook of polyolefins, Vasile, C.; Seymour, 

R. B., Eds. Marcel Dekker: New York, 1993; p 479. 
110. Carlsson, D. J.; Wiles, D. M., Degradation. In Encyclopedia of Polymer Science and 

Engineering, Kroschwitz, J. I., Ed. John Wiley & Sons: New York, 1985; p 630. 
111. Mani, R.; Singh, R. P.; Sivaram, S. Polym. Int. (1997) 44, p 137. 
112. White, J. R., Weathering. In Polypropylene:  An A-Z reference, Karger-Kocsis, J., Ed. Kluwer 

Publishers: Dordrecht, 1999; p 866. 



Chapter 2:    Historical overview and Theoretical background 
 
 

   
   
 
 38

113. Al-Malaika, S. Adv. Polym. Sci. (2004) 169, p 122. 
114. Al-Malaika, S., Thermal antioxidants. In Polypropylene:  An A-Z reference, Karger-Kocsis, J., 

Ed. Kluwer Publishers: Dordrecht, 1999; p 821. 
115. Hawkins, W. L.; Winslow, F. H., Degradation and stabilisation. In Crystalline olefin polymers 

Raff, R. A. V.; Doak, K. W., Eds. John Wiley & Sons Inc.: New York, 1964; p 361. 
116. Dragutan, I., Photostabilisation of Polyolefins. In Handbook of polyolefins, Vasile, C.; Seymour, 

R. B., Eds. Marcel Dekker: New York, 1993; p 605. 
117. Azizi, H.; Ghasemi, I. Polym. Test. (2004) 23, p 137. 
118. Sahin, S.; Yayla, P. Polym. Test. (2005) 24, p 1012. 
119. Hansen, R. H.; Russell, C. A.; De Benedictis, T.; Martin, W. M.; Pascale, J. V. J. Polym. Sci. 

(1964) A2, p 587. 
120. Hawkins, W. L.; Matreyek, W.; Winslow, F. H. J. Polym. Sci. (1959) 41, p 1. 
121. Wood, D. L.; Luongo, J. P. Mod. Plast. (1961) 38, p 132. 
122. Morou, C.; Dufraisse, C. Chem. Rev. (1926) 3, p 113. 
123. Christiansen, J. A. J. Phys. Chem. (1924) 28, p 145. 
124. Backström, H. L. J. Am. Chem. Soc. (1927) 49, p 1460. 
125. Farmer, E. H.; Bloomfield, G. F.; Sundralingham, A.; Sutton, D. A. Trans. Faraday Soc. (1942) 

38, p 348. 
126. Bolland, J. L.; Gee, G. Trans. Faraday Soc. (1946) 42, p 236. 
127. George, G. A.; Celina, M., Honmogeneous and heterogeneous oxidation of polypropylene. In 

Handbook of Polymer Degradation, Hamid, S. H., Ed. Marcel Dekker Inc.: New York, 2000;  
p 277. 

128. Rabello, M. S.; White, J. R. Polymer (1997) 38, p 6379. 
129. Blais, P.; Carlsson, D. J.; Wiles, D. M. J. Polym. Sci., Part A1 (1972) 10, p 1077. 
130. Schlick, S.; Kruczala, K. JCT Research (2005) 2, p 389. 
131. Knight, J. B.; Calvert, P. D.; Billingham, N. C. Polymer (1985) 26, p 1713. 
132. Schnabel, W., Polymer Degradation:  Principles and Practical Applications. Hanser 

International: Munich, 1981. 
133. Gensler, R.; Plummer, C. J. G.; Kausch, H.-H.; Kramer, E.; Pauquet, J.-R.; Zweifel, H. Polym. 

Degrad. Stab. (2000) 67, p 195. 
134. Adams, J. H. J. Polym. Sci., Part A:  Polym. Chem. (1970) 8, p 1077. 
135. Costa, L.; Luda, M. P.; Trossarelli, L. Polym. Degrad. Stab. (1997) 55, p 329. 
136. Garton, A.; Carlsson, D. J.; Wiles, D. M. J. Polym. Sci., Polym. Chem. Ed. (1978) 16, p 33. 
137. Garton, A.; Carlsson, D. J.; Wiles, D. M. Macromolecules (1979) 12, p 1071. 
138. Al-Malaika, S. Polym. Plast. Technol. Eng. (1988) 27, p 261. 
139. Decker, C.; Mayo, F. R. J. Polym. Sci., Polym. Chem. Ed. (1973) 11, p 2879. 
140. Decker, C.; Mayo, F. R.; Richardson, H. J. Polym. Sci., Polym. Chem. Ed. (1973) 11, p 2879. 
141. Rideal, G. R.; Padget. J. Polym. Sci. Symp. (1976) 57, p 1. 
142. Alam, M. S.; Nakatani, H.; Goss, B. G. S.; Ichiki, T.; Liu, B.; Terano, M. J. Appl. Polym. Sci. 

(2002) 86, p 1863. 
143. Manabe, N.; Yokota, H.; Nakatani, H.; Suzuki, S.; Liu, B.; Terano, M. Polym. Bull. (2005) 54,  

p 141.  
144. Manabe, N.; Yokota, H.; Suzuki, S.; Liu, b.; Terano, M. J. Appl. Polym. Sci. (2006) 100, p 1831. 
145. Suzuki, S.; Liu, B.; Terano, M.; Manabe, N.; Kawamura, K.; Ishikawa, M.; Nakatani, H. Polym. 

Bull. (2005) 55, p 141. 
146. Suzuki, S.; Nakamura, Y.; Hasan, A. T. M. K.; Liu, B.; Terano, M.; Nakatani, H. Polym. Bull. 

(2005) 54, p 311. 
147. Nakatani, H.; Manabe, N.; Yokota, Y.; Minami, H.; Suzuki, S.; Yamaguchi, F.; Terano, M. 

Polym. Int. (2007) 56, p 1152. 
148. Singh, R. P.; Mani, R.; Sivaram, S.; Lacoste, J.; Lemaire, J. Polym. Int. (1993) 32, p 189. 
149. Sarwade, B. D.; Singh, R. P. J. Appl. Polym. Sci. (1999) 72, p 215. 
150. Kruczala, K.; Aris, W.; Schlick, S. Macromolecules (2005) 38, p 6979. 
151. Kruczala, K.; Bokria, J. G.; Schlick, S. Macromolecules (2003) 36, p 1909. 
152. Kruczala, K.; Varghese, B.; Bokria, J. G.; Schlick, S. Macromolecules (2003) 36, p 1899. 
153. Philippart, J.-L.; Gardette, J.-L. Polym. Degrad. Stab. (2001) 71, p 189. 
154. Philippart, J.-L.; Gardette, J.-L. Polym. Degrad. Stab. (2001) 73, p 185. 
155. Jouan, X.; Gardette, J.-L. Polym. Commun. (1987) 28, p 329. 
156. Scheirs, J.; Delatycki, O.; Bigger, S. W.; Billingham, N. C. Polym. Int. (1991) 36, p 187. 
157. Livanova, N. M. Polym. Sci. Ser. A (1994) 36, p 32. 
158. Lemaire, J.; Gardette, J.-L.; Lacoste, J. Macromol. Chem., Macromol. Symp. (1993) 70, p 419. 



Chapter 2:    Historical overview and Theoretical background 
 
 

   
   
 
 39

159. Celina, M.; George, G. A.; Billingham, N. C. Polym. Degrad. Stab. (1993) 42, p 335. 
160. Livanova, N. M.; Zaikov, G. E. Polym. Degrad. Stab. (1997) 57, p 1. 
161. George, G. A.; Celina, M.; Lerf, C.; Cash, G.; Weddell, D. Macromol. Symp. (1997) 115, p 69. 
162. George, G. A.; Ghaemy, M. Polym. Degrad. Stab. (1991) 33, p 411. 
163. Girois, S.; Audouin, L.; Verdu, J.; Delprat, P.; Marot, G. Polym. Degrad. Stab. (1996) 51, p 125. 
164. Yu, Y.-L.; Shen, F.-W.; McKellop, H. A.; Salovey, R. J. Polym. Sci., Polym. Chem. Ed. (1999) 

37, p 3309. 
165. La Mantia, R. P.; Gardette, J.-L. Polym. Degrad. Stab. (2002) 75, p 1. 
166. Gulmine, J. V.; Janissek, P. R.; Heise, H. M.; Akselrud, L. Polym. Degrad. Stab. (2003) 79,  

p 385. 
167. Rincon-Rubio, L. M.; Fayolle, B.; Audouin, L.; Verdu, J. Polym. Degrad. Stab. (2001) 74, p 177. 
168. Kumar, A.; Commerceuc, S.; Gonon, L.; Verney, V. Polym. Degrad. Stab. (2002) 75, p 509. 
169. Grossetete, T.; Gonon, L.; Verney, V. Polym. Degrad. Stab. (2002) 78, p 203. 
170. Celina, M.; George, G. A.; Lacey, D. J.; Billingham, N. C. Polym. Degrad. Stab. (1995) 47,  

p 311. 
171. Billingham, N. C. Makromol. Chem., Makromol. Symp. (1989) 28, p 145. 
172. Gijsman, P.; Hennekens, J.; Wiles, D. M. Makromol. Chem. (1980) 181, p 1841. 
173. Garton, A.; Carlsson, D. J.; Wiles, D. M. Makromol. Chem. (1980) 181, p 1841. 
174. Mayo, F. R. Macromolecules (1978) 11, p 942. 
175. Chien, J. C. W.; Wang, D. S. T. Macromolecules (1975) 8, p 920. 
176. Shyichuk, A. V.; White, J. R.; Craig, I. H.; Syrotynska, I. D. Polym. Degrad. Stab. (2005) 88,  

p 415. 
177. White, J. R.; Turnbull, A. J. Mater. Sci. (1994) 29, p 584. 
178. Gillen, K. T.; Wise, J.; Clough, R. L. Polym. Degrad. Stab. (1995) 47, p 149. 
179. Wise, J.; Gillen, K. T.; Clough, R. L. Polymer (1997) 38, p 1929. 
180. Schoolenberg, G. E.; Vink, P. Polymer (1991) 32, p 432. 
181. Gonon, L.; Gardette, J.-L. Polymer (2000) 41, p 1669. 
182. Gillen, K. T.; Clough, R. L. Polym. Degrad. Stab. (1989) 24, p 137. 
183. Clough, R. L.; Gillen, K. T. Polym. Degrad. Stab. (1992) 38, p 47. 
184. Turton, T. J.; White, J. R. Polym. Degrad. Stab. (2001) 74, p 559. 
185. Michaels, A. S.; Bixler, H. J.; Fein, H. L. J. Appl. Phys. (1964) 35, p 3165. 
186. Vieth, W.; Wuerth, W. F. J. Appl. Polym. Sci. (1969) 13, p 685. 
187. Michaels, A. S.; Bixler, H. J. J. Polym. Sci. (1961) 50, p 393. 
188. Kiryushkin, S. G.; Shlyapnikov, Y. A. Polym. Degrad. Stab. (1989) 23, p 185. 
189. Vink, P. Jnl. Appl. Pol. Sci., Appl. Polym. Symp. (1979) 35, p 265. 
190. Van Sickle, D. E. J. Polym. Sci., Part A1 (1972) 10, p 355. 
191. Garton, A.; Carlsson, D. J.; Wiles, D. M. Makromol. Chem. (1981) 181, p 1841. 
192. He, P.; Xiao, Y.; zhang, P.; xing, C.; Zhu, N.; Zhu, X.; Yan, D. Polym. Degrad. Stab. (2005) 88, 

p 473. 
193. Iring, M.; Laszlo-Hedvig, Z.; Tüdos, F.; Kelen, T. Polym. Degrad. Stab. (1983) 5, p 467. 
194. Dulog, L.; Radlmann, E.; Kern, W. Makromol. Chem. (1963) 60, p 1. 
195. Dulog, L.; Radlmann, E.; Kern, W. Makromol. Chem. (1964) 80, p 67. 
196. Kato, M.; Osawa, Z. Polym. Degrad. Stab. (1999) 65, p 457. 
197. Mori, H.; Hatanaka, T.; Terano, M. Macromol. Rapid Commun. (1997) 18, p 157. 
198. Osawa, Z.; Saito, T.; Kimura, Y. J. Appl. Polym. Sci. (1968) 22, p 563. 
199. Hatanaka, T.; Mori, H.; Terano, M. Polym. Degrad. Stab. (1999) 64, p 313. 
200. Hatanaka, T.; Mori, H.; Terano, M. Macromol. Rapid Commun. (1997) 18, p 157. 
201. Osawa, Z.; Kato, M.; Terano, M. Macromol. Rapid Commun. (1997) 18, p 667. 
202. Verdu, J. Macromol. Symp. (1997) 115, p 165. 
203. Rabello, M. S.; White, J. R. Polym. Degrad. Stab. (1997) 56, p 55. 
204. Billingham, N. C.; Prentice, P.; Walker, T. J. Polym. Sci. Symp. (1976) 57, p 287. 
205. Akay, G.; Tincer, T.; Aydin, E. Eur. Polym. J. (1980) 57, p 287. 
206. Mucha, M. Colloid. Polym. Sci. (1986) 264, p 113. 
207. Baumhardt-Neto, R.; De Paoli, M. A. Polym. Degrad. Stab. (1993) 40, p 59. 
208. Richters, P. Macromolecules (1970) 3, p 262. 
209. Billingham, N. C. Polymer (1985) 86, p 1713. 
210. Nowlin, T. E. Prog. Polym. Sci. (1985) 11, p 29. 
211. Cicchetti, O.; de Simone, R.; Gratani, F. Eur. Polym. J. (1973) 9, p 1205. 
212. Blakey, I.; George, G. A. Polym. Degrad. Stab. (2000) 70, p 269. 



Chapter 2:    Historical overview and Theoretical background 
 
 

   
   
 
 40

213. Pickett, J. E., Permanence of UV absorbers in plastics and coatings. In Handbook of polymer 
degradation, Hamid, S. H., Ed. Marcel Dekker: New York, 2000. 

214. Billingham, N. C.; Garcia-Trabajo, P. Polym. Degrad. Stab. (1995) 48, p 419. 
215. Boersma, A. Polym. Degrad. Stab. (2006) 91, p 472. 
216. Smith, G. D.; Karlsson, K.; Gedde, U. W. Polym. Eng. Sci. (1992) 32, p 658. 
217. Viebke, J.; Gedde, U. W. Polym. Eng. Sci. (1997) 37, p 896. 
218. Figge, K. Prog. Polym. Sci. (1980) 6, p 187. 
219. Spatafore, R.; Pearson, L. T. Polym. Eng. Sci. (1991) 31, p 1610. 
220. Allen, N. S.; Marshall, G. P.; Vasilou, C.; Moore, L. M.; Kotecha, J. L.; Gardette, J. L. Polym. 

Degrad. Stab. (1988) 20, p 315. 
221. Foldes, E.; Turcsanyi, B. J. Appl. Polym. Sci. (1992) 46, p 507. 
222. Bokria, J. G.; Schlick, S. Polymer (2002) 43, p 3239. 
223. Ekgasit, S.; Ishida, H. Appl. Spectrosc. (1996) 50, p 1187. 
224. Ekgasit, S.; Ishida, H. Appl. Spectrosc. (1997) 51, p 461. 
225. Delprat, P.; Gardette, J.-L. Polymer (1993) 34, p 933. 
226. Billingham, N. C.; Calvert, P. D.; Uzuner, A. Eur. Polym. J. (1989) 25, p 839. 
227. Sankhe, S. Y.; Hirt, D. E. Appl. Spectrosc. (2002) 56, p 205. 
228. Sankhe, S. Y.; Hirt, D. E. Appl. Spectrosc. (2003) 57, p 37. 
229. Hsu, S. C.; Lin-Vien, F.; French, R. N. Appl. Spectrosc. (1991) 46, p 225. 
230. Joshi, N. B.; Hirt, D. E. Appl. Spectrosc. (1998) 53, p 11.  
231. Fayolle, B.; Audouin, L.; Verdu, J. Polym. Degrad. Stab. (2002) 75, p 123. 
232. Gonzalez-Gonzalez, V. A.; Neira-Velazquez, G.; Angulo-Sanchez, J. L. Polym. Degrad. Stab. 

(1998) 60, p 33.  
233. Lew, R.; Suwanda, D.; Balke, S. T. J. Appl. Polym. Sci. (1988) 35, p 1049. 
234. Lew, R.; Suwanda, D.; Balke, S. T. J. Appl. Polym. Sci. (1988) 35, p 1033. 
235. Ying, Q.; Zhao, Y.; Liu, Y. Macromol. Chem. (1991) 192, p 1041. 
236. David, C.; Trojan, M.; Daro, A.; Demarteau, W. Polym. Degrad. Stab. (1992) 37, p 233. 
237. Shyichuk, A. V.; White, J. R. J. Appl. Polym. Sci. (2000) 77, p 3015. 
238. Shyichuk, A. V.; Stavychna, D. Y.; White, J. R. Polym. Degrad. Stab. (2001) 72, p 279. 
239. Edge, M., Infrared spectroscopy in analysis of polymer degradation. In Encycl. Anal. Chem., 

Meyers, R. A., Ed. John Wiley and Sons Ltd.: Chichester, 2000; p 7658. 
240. Gugumus, F. Polym. Degrad. Stab. (1997) 55, p 21.  
241. Nekhoroshev, V. P.; Turov, Y. P.; Nekhorosheva, A. V.; Ogorodnikov, V. D.; Gaevoi, K. N. 

Russ. J. Appl. Chem. (2006) 79, p 833. 
242. Costa, L.; Luda, M. P.; Trossarelli, L. Polym. Degrad. Stab. (1997) 58, p 41. 
243. Andreassen, E., Infrared and Raman spectroscopy of polypropylene. In Polypropylene:  An A-Z 

reference, Karger-Kocsis, J., Ed. Kluwer Publishers: Dordrecht, 1999 p320. 
244. Rivaton, A.; Gardette, J.-L.; Mailhot, B.; Morlat-Therlas, S. Macromol. Symp. (2005) 225,  

p 129. 
245. Gugumus, F. Polym. Degrad. Stab. (1999) 66, p 161. 
246. Adams, J. H.; Goodrich, J. E. J. Polym. Sci., Part A1 (1970) 8, p 1269. 
247. Piton, M.; Rivaton, A. Polym. Degr. Stab. (1996) 53, p 343. 
248. Carlsson, D. J.; Brousseau, R.; Zhang, C.; Wiles, D. M. A.C.S. Symp. Ser. (1988) 364, p 376. 
249. Kolbert, A. C.; Didier, J. G.; Xu, L. Macromolecules (1996) 29, p 8591. 
250. Jansson, A.; Möller, K.; Gevert, T. Polym. Degrad. Stab. (2003) 82, p 37. 
251. Miraftab, M.; Horrocks, A. R.; Mwila, J. Polym. Degrad. Stab. (2002) 78, p 225. 
252. Santos, A. S. F.; Agnelli, J. A. M.; Trevisan, D. W.; Manrich, S. Polym. Degrad. Stab. (2002) 

77, p 441. 
253. Jelinski, L. W.; Dumais, J. J.; Luongo, J. P.; Cholli, A. L. Macromolecules (1984) 17, p 1650. 
254. Cheng, H. N.; Schilling, F. C.; Bovey, F. A. Macromolecules (1976) 9, p 363. 
255. Busfield, W. K.; Hanna, J. V. Polym. J. (1991) 23, p 1253. 
256. Vaillant, D.; Lacoste, J.; Dauphin, G. Polym. Degrad. Stab. (1994) 45, p 355. 
257. Kolbert, A. C.; Didier, J. G.; Xu, L. Macromolecules (1996) 29, p 8591. 
258. Olivares, N.; Tiemblo, P.; Gòmez-Elvira, J. M. Polym. Degrad. Stab. (1999) 65, p 297. 
259. Rosa, D. S.; Sarti, J.; Mei, L. H. I.; Filho, M. M.; Silveira, S. Polym. Test. (2000) 19, p 523. 
260. Elvira, M.; Tiemblo, P.; Gòmez-Elvira, J. M. Polym. Degrad. Stab. (2004) 83, p 509. 
261. Camacho, W.; Karlsson, S. Polym. Degrad. Stab. (2002) 78, p 385. 
262. Chang, T. C.; Yu, P. Y.; Hong, Y. S.; Wu, T. R.; Chiu, Y. S. Polym. Degrad. Stab. (2002) 77,  

p 29. 
 



Chapter 2:    Historical overview and Theoretical background 
 
 

   
   
 
 41

263. Gröning, M.; Eriksson, H.; Hakkarainen, M.; Albertsson, A.-C. Polym. Degrad. Stab. (2006) 9,  
p 1815. 

264. Ahlblad, G.; Gijsman, P.; Terselius, B.; Jansson, A.; Möller, K. Polym. Degrad. Stab. (2001) 73, 
p 15. 

265. Monrabal, B., Temperature Rising Elution Fractionation and Crystallisation analysis 
fractionation. In Encycl. Anal. Chem., Meyers, R. A., Ed. John Wiley & sons LTD: New York, 
2000; Vol. 9, pp 8074. 

266. Wild, L. TRIP (1993) 1, p 50. 
267. Nakatani, H.; Matsuoka, H.; Suzuki, S.; Taniike, T.; Boping, L.; Terano, M. Macromol. Symp. 

(2007) 257, p 112. 
268. Mierau, U.; Voigt, D.; Böhme, F.; Brauer, E. J. Appl. Polym. Sci. (1997) 63, p 283. 
269. Monrabal, B. J. Appl. Polym. Sci. (1994) 52, p 491. 
270. De Goede, S.; Brüll, R.; Pasch, H.; Marshall, N. Macromol. Symp. (2003) 193, p 35. 
271. De Goede, S. Novel Analytical approaches for studying Degradation in PP and PP-1-Pentene 

Copolymers. University of Stellenbosch, Stellenbosch, 2006. 
272. Wheeler, L. M.; Willis, J. N. Appl. Spectrosc. (1993) 47, p 1128. 
273. Cheung, P.; balke, S. T.; Schunk, T. C.; Mourey, T. H. J. Appl. Polym. Sci., Appl. Polym. Symp. 

(1993) 52, p 105. 
274. Dekmezian, A. H.; Morioka, T. Anal. Chem. (1989) 61, p 458. 
275. Ver Strate, G.; Cozewith, C.; West, R. K.; Davis, W. M.; Capone, G. A. Macromolecules (1999) 

32, p 3837. 
276. Adrian, J.; Esser, E.; Hellmann, G.; Pasch, H. Polymer (2000) 41, p 2439. 
277. Pasch, H.; Siewing, A.; Heinz, L.-C. Macromol. Mater. Eng. (2003) 288, p 771. 
278. Kok, S. J.; Wold, C. A.; Hankemeier, T.; Schoenmakers, P. J. J. Chromatogr. A. (2003) 1017,  

p 83. 
279. Pasch, H.; Adler, M.; Rittig, F.; Becker, S. Macromol. Rapid Commun. (2005) 26, p 438. 
280. Kok, S. J.; Hankemeier, T.; Schoenmakers, P. J. J. Chromatogr. A. (2005) 1098, p 104. 
281. Coulier, L.; Kaal, E.; Hankemeier, T. J. Chromatogr. A (2006) 1130, p 34. 
 
 



 

 

 

 

Chapter 3 
 

 

 

 

 

 

 

 

 

 

Experimental 
 

 

 

This chapter describes the procedures followed during selection of samples, additive compounding, 

sample preparation and ageing, as well as the analytical instrumentation and conditions used for 

characterisation purposes. 
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3.1 Sample selection and preparation 
 

3.1 1 Impact PP Copolymer grades 
 

Two commercial Ziegler-Natta-based impact PP copolymer samples with different ethylene contents 

were supplied by SASOL Polymers (Secunda, South Africa) as unstabilised reactor grades.  The 

ethylene content, tacticity and molecular weight data of both copolymers are presented in Table 3.1.  

The two samples are labelled 3V and 4V, respectively.   

 
Table 3.1:  Properties of the two impact PP copolymer samples 

Sample [Ethylene] Isotacticity 
___

wM  
___

nM  PDI 

 (mole%) (%mmmm) (g.mol-1) (g.mol-1)  
      

3V 10.48 88.82 354 400 114 600 3.18 

4V 16.42 83.17 351 900 86 600 4.06 
      

 

Ethylene content and isotacticity (%mmmm):  determined by 13C-NMR 
___

nM ,  and PDI:  measured by HT-SEC 
___

wM
 
 

3.1.2 Compounding 
 

A phosphite processing stabiliser, Irgafos 168, was added to both grades at a concentration of 0.05%, 

in order to prevent degradation during film extrusion and sample preparation.  Processing stabilisers 

are efficient in preventing degradation during processing procedures, without having any influence on 

the long-term stability of polyolefin materials, and should therefore not influence long-term stability 

studies.  The impact polypropylene powder and Irgafos 168 were subjected to dry-blending followed by 

melt-blending at 200ºC on a Brabender PL 2000-6 single-screw extruder equipped with a 19mm 

diameter screw, length-to-diameter ratio of 25 and screw speeds of 40–100 rpm.  The extrudate was 

cooled and pelletised. 

 

3.1.3 Compression moulding of films 
 

Both thin films (ca. 160 µm) and thicker polymer plaques (ca. 4mm) were prepared by compression 

moulding at 190ºC.  Weights of 1 and 4g were used for preparation of the thin films and plaques, 

respectively.  A typical compression cycle consisted of melting of the pellets for 1.5 min and 

compression at 10-12 bar for another 1.5 min, with subsequent rapid cooling in an ice/water mixture.   
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3.2 Degradation 
 

3.2.1 Accelerated oven ageing  
 

Thin films and plaques were degraded thermo-oxidatively at 90ºC and 110 ºC, respectively, in a heat-

circulating oven with digital temperature control, supplied by SMC manufacturing (Cape Town, South 

Africa).  The progress of degradation was followed visually (for physical changes) and by means of 

FTIR spectroscopy (chemical changes) and samples were removed at regular intervals for further 

analysis.  The degradation process was discontinued when samples snapped or flaked on bending.   

 

3.2.2 Homogenisation of degraded films 
 

A number of films were collected at pre-determined time intervals during the degradation process for 

further analysis by means of various analytical techniques.  Since degradation is a spatially 

heterogeneous process, one would expect to obtain different results when analysing different areas on 

one polymer film.  Reproducibility of results was ensured by homogenisation of films.  The 

homogenisation process was done by shredding the various films into smaller pieces and re-melting 

them into a single new film for a very brief time.  Films removed from the oven at advanced stages of 

degradation were brittle and shattered easily.  After this remoulding process, however, plasticity was 

restored. 

 

3.2.3 Abrasion of layers form plaques for depth-profile studies 
 

For the purpose of studying the spatial heterogeneity of degradation in the thick polymer plaques, 

layers were removed in 100 µm increments from the degraded surface into the core, for further 

analysis.  Abrasion of layers was done mechanically by moving a rotational fly cutter over the width of 

every plaque.  The shavings from every layer were collected and stored for further analysis.  The 

machinery was cleaned after each collection to avoid contamination. 

 

 

3.3 Characterisation 
 

3.3.1 Size Exclusion Chromatography 
 

Size exclusion chromatography (SEC) separates macromolecules according to their hydrodynamic 

volume1 which can be related to their molecular weight through calibration of the system with narrow 

dispersity standards.  SEC has become the dominant method for the determination of molecular weight 

and molecular weight distribution (MWD) of synthetic polymers.  The stationary phase consists of a 

swollen gel with a defined pore size distribution.  Depending on the size or hydrodynamic volume of 
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macromolecules, they will be able to access a certain fraction of the pores, thereby affecting their 

retention time within the column2.  Polyolefins with high tacticity and copolymers of propylene and 

ethylene and/or higher α-olefins containing long isotactic PP sequences, can only be dissolved under 

conditions which result in complete melting of crystalline domains.  Therefore, SEC of PP  and 

crystalline copolymers of PP is carried out at elevated temperatures by means of ‘high temperature 

SEC’ (HT-SEC)1.   

 

Molecular weight measurements (i.e., average molecular weight, molecular weight distributions) were 

performed on a Polymer Laboratories PL 220 high-temperature chromatograph (Polymer Laboratories, 

Varian Inc., Church Stretton, Shropshire, England).  The temperature of the injection block and column 

compartment was set to 150ºC and a flow rate of 1ml.min-1 was maintained.  The chromatographic 

system was equipped with three 300 X 7.5mm PLgel Olexis columns (Polymer Laboratories, Varian 

Inc., Church Stretton, Shropshire, England) and a differential refractive index detector was used.  

Polymer samples were dissolved in 1,2,4-trichlorobenzene (TCB) for two hours at a concentration of 

1mg/ml and 200 µl of each sample was injected.  Butylhydroxytoluene (BHT) (Ciba®, Switzerland) was 

used as antioxidant to prevent further oxidation of samples during SEC analysis.  Narrowly distributed 

polystyrene standards (Polymer Standards Service GmbH, Mainz, Germany) were used for calibration 

purposes.  The WinGPC software (Polymer Standards Service GmbH, Mainz, Germany) was used for 

data acquisition and processing.   

 

3.3.2 Fourier-Transform Infrared Spectroscopy 
 

Transmission FTIR spectra were recorded on a Perkin Elmer Paragon 1000 FTIR spectrometer (Perkin 

Elmer, Waltham, USA).  Spectra were recorded at a resolution of 2 cm-1, 64 scans were accumulated 

for each spectrum and automatic background subtraction was performed.  Spectrum V2.0 software 

(Perkin Elmer) was used for data acquisition and processing.   

 

Attenuated total reflectance (ATR) measurements were performed on a Nicolet Nexus 670 (Thermo 

Electron, Waltham, USA) FTIR spectrometer with SensIR ATR attachment equipped with a diamond 

reflective crystal.  All measurements were performed at an incidence angle of 45º.  Spectra (from 4000 

to 650cm-1) were obtained from collection of 64 scans at a resolution of 2 cm-1.   

 

3.3.3 Differential Scanning Calorimetry 
 

Melting and crystallisation behaviour was determined using a Mettler 822 DSC instrument (Mettler 

Toledo, Switzerland), calibrated with indium metal according to standard procedures.  The thermal 

history of samples was removed by a first heating cycle from 25ºC to 200ºC at a heating rate of 

10ºC.min-1, after which the temperature was kept isothermally for 3 minutes.  Thereafter, the sample 

was cooled at 10ºC.min-1 to 25ºC, kept constant for another 3 minutes, and subsequently heated to 

200ºC again.  Data obtained during the second heating cycle were used for all thermal analysis 
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calculations.  In all DSC plots presented the upwards curve is associated with exothermic transitions 

while downwards curves illustrate endothermic thermal transitions.  All DSC measurements were 

conducted in a nitrogen atmosphere at a purge gas flow rate of 20ml.min-1.   

 

3.3.4 Nuclear Magnetic Resonance Spectroscopy 
 

Nuclear magnetic resonance (NMR) has become a valuable and indispensable analytical tool among 

polymer chemists, especially in the field of copolymers, where the determination of sequence 

distribution is frequently a pre-requisite in structural characterisation.   

 

High resolution solution 13C-NMR spectra were obtained at 120ºC on a 600 MHz Varianunity INOVA 

NMR spectrometer operating at 125 MHz for carbon.  A 5mm PFG switchable broadband probe was 

used.  Samples were prepared to a concentration of 6 wt% in deuterated tetrachloroethane (d-TCE), 

(Aldrich, South Africa).  Spectra were recorded with a 90º flip angle of approximately 6 µs, with 

continuous proton decoupling, an acquisition time of 1.8 s and a pulse delay time of 15 s.  Under these 

conditions, spectra were found to be 99% quantitative, provided that only carbon atoms with relaxation 

delays (T1) of less than 3s are taken into account3.   

 

3.3.5 Temperature Rising Elution Fractionation 
 

Temperature rising elution fractionation (TREF) fractionates semi-crystalline polymers according to 

their crystallisability or solubility-temperature relationship, which is a function of their molecular 

structure 4.  Molecules of different structures will each have a distinct crystallinity and dissimilar 

dissolution temperatures, thereby allowing their separation by TREF.  Commercially, there exist two 

kinds of experimental TREF apparata, analytical and preparative TREF4-6.  Analytical TREF is 

generally an automated process, with the separation/fractionation setup directly linked to other 

analytical instruments such as FTIR or SEC, allowing on-line structural characterisation of polymer 

fractions.  Preparative TREF allows for the collection of larger amounts of fractions which can 

subsequently be analysed off-line also by means of NMR and/or DSC.  Although this is a time-

consuming process, it is usually the method of choice when fractionating polypropylene.   

 

During this study an in-house built preparative-TREF setup, utilising sea sand as support medium, was 

used7.  The TREF experiment consists of two steps or cycles8.  The first involves the controlled, slow 

crystallisation of polymer onto a support (eliminating the previous crystallisation history of the polymer), 

whereby molecules of different crystallisabilities are packed onto the support particles in a layered 

structure.  It is of the utmost importance that a slow cooling rate is applied during the crystallisation 

step, since fast cooling may lead to secondary effects such as co-crystallisation of fractions with 

different crystallisability, and a molecular weight influence on the crystallisation process4, 5.  Material 

with the highest crystallisability will crystallise out of solution first at high temperature and form the first 

layer on the support, followed by layers of continuously decreasing crystallisability. In the subsequent 
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elution step, the polymer/support mixture is subjected to increasing temperatures in the presence of a 

suitable solvent, which dissolves the layers off the support in a reversed order to that followed during 

crystallisation, i.e., least crystallisable material elutes first, followed by fractions of increasing 

crystallisability.  The two steps of a typical TREF experiment are illustrated in Scheme 3.1.   

 

During the crystallisation step 3g of polymer and ca. 2 wt% Irganox 1010 (Ciba® Speciality chemicals, 

Switzerland) were dissolved in 300 ml xylene at 130ºC in a glass reactor.  After complete dissolution, 

the reactor was transferred to an oil-bath (pre-heated to 130ºC) and pre-heated sea sand (white quartz, 

Aldrich, South Africa) was added to the solution.  The reactor containing the mixture of sand and 

dissolved polymer was cooled down to room temperature at a rate of 1ºC/hour, to allow for very slow, 

controlled crystallisation of layers onto the support material.  At the end of this stage the polymer exists 

as segregated layers of different composition and crystallinity5, 6, which can be separated and collected 

during the subsequent elution step.   

 

 

 
 
Scheme 3.1:  Schematic separation mechanism of TREF where (A) represents the crystallisation and (B) the 

elution step. 

 

 

The polymer/sand mixture from the previous step was packed into a stainless steel column and 

transferred into a modified GC oven.  Pre-heated xylene was pumped through the column and the 

temperature of the oven was increased at a steady rate.  As the temperature was increased, fractions 

of increasing crystallisability became soluble, and were collected at pre-determined temperature 

intervals (30, 60, 80, 90, 100, 110, 120ºC).  Xylene was evaporated and fractions were recovered by 

precipitation in acetone.  Finally, all fractions were dried until no further weight loss was observed and 

prepared for subsequent analysis by complimentary analytical techniques.   
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3.3.6 Crystallisation Analysis Fractionation 
 

Crystallisation analysis fractionation (CRYSTAF) is another useful technique for fractionating semi-

crystalline polymers, sharing the same fundamentals with TREF on separation according to 

crystallisability.  The process is similar to classical stepwise fractionation by precipitation, the major 

difference being that the concentration of the polymer still in solution is measured during crystallisation 

by temperature reduction, rather than the amount of polymer precipitated6, 8.  It differs from TREF in the 

sense that, whereas two temperature cycles are applied during a TREF experiment (crystallisation and 

elution cycles), CRYSTAF is a continuous process during which information is extracted directly during 

the crystallisation process by monitoring the concentration depression during cooling8.  CRYSTAF also 

does not utilise any packing/support material for the crystallisation step and no fraction collection is 

done for the purpose of further analysis (i.e., not preparative).  The CRYSTAF experiment is illustrated 

in Scheme 3.2.   

 

 

 
 
Scheme 3.2:  Schematic representation of the CRYSTAF process 

 

 

CRYSTAF experiments were performed on a commercial CRYSTAF apparatus Model 200 

(PolymerChar, Valencia, Spain).  For each sample, a weight of 20mg was dissolved in 40 ml 1,2-ortho-

dichlorobenzene (o-DCB).  Crystallisation was carried out under agitation in stainless steel reactors, 

equipped with automatic stirring and filtration devices.  After dissolution, the temperature was 

decreased from 100ºC to approximately 30ºC at a rate of 0.1ºC/min.  Fractions were taken 

automatically and the concentration of the solution was determined by an infrared detector, using 3.5 

µm as the chosen wavelength.   

 

3.3.7 SEC-FTIR using the LC-Transform® interface 
 

Size Exclusion Chromatography coupled to infrared spectroscopy (SEC-FTIR) is a valuable technique 

for studying the chemical heterogeneity of polymers, especially copolymers where each monomer has 

IR detector

Polymer 
Solution 

Filter 

Stirrer 

Sample 
Inlet 

Precipitated
   Polymer 

30 40 50 60 70 80 90
0

20

40

60

80

100

 C
on

c 
(w

ei
gh

t%
)

Temperature (ºC)

T(1), C(1) T(n), C(n)T(2), C(2)



Chapter 3:    Experimental 
 
 

  
 
 
  49 

its own characteristic groups absorbing in the infrared spectrum, and the chemical composition or 

heterogeneity can be determined by the IR absorption band ratio of the functional groups of the two 

monomers9-13.  This hyphenated technique combines the molecular weight separation capability of 

SEC with the power of infrared spectroscopy to identify components on the basis of their unique 

chemical fingerprint.  Two experimental approaches have been employed for coupling the two 

techniques14, (a) flow cells and (b) solvent evaporative interfaces.  Flow-cells provide convenient on-

line coupling of the two techniques.  The technique is, however, complicated by the presence of the 

solvent, since most organic solvents absorb strongly in the IR region, which might overlap with signals 

from the polymer molecules in question.  Solvent evaporative interfaces are therefore favoured in this 

regard, as long as samples are non-volatile and the solvent does not contain any buffer that could 

precipitate with the sample.  The commercial evaporative interface most often employed, is the LC-

Transform® device manufactured by Lab Connections (Lab Connections, Carrboro, USA).  The 

principle upon which the LC-Transform® interface operates is illustrated in Scheme 3.3.   
 

 

 
Scheme 3.3:  LC-FTIR setup illustrating the collection and optics module 
 

 

The first step (A) of the SEC-FTIR experiment is the chromatographic separation of molecules 

according to their hydrodynamic volume by SEC.  At the column exit, the SEC eluent containing 

separated solutes are directed towards the LC-Transform® unit, where it flows into the sealed 

deposition chamber that is kept under vacuum.  Here the eluent flows through a heated nebuliser 

nozzle which directs the eluent onto a rotating Germanium disc placed on a heated stage for assisted 

evaporation of the solvent.  The species separated during SEC are sprayed continuously onto the 

perimeter of the Germanium collection disc and subsequently transferred to the optics module (B) of 

the interface which fits into the sample compartment of the FTIR spectrometer.  During the FTIR 

analysis stage, specialised software is used to rotate the disc at the same speed used during 

deposition, while recording the infrared spectrum at every spot along the perimeter of the disc.  
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Processing of the data allows the construction of Gram-Schmidt plots and chemigrams which provide a 

wealth of information with regards to chemical composition of the material analysed.   

 

A prototype high-temperature gradient HPLC system PL XT-220 (Polymer Laboratories, Varian Inc, 

Church Stretton, Shropshire, England) was used for the size exclusion chromatography part of the 

experiment.  Dissolution and automated sample injection was performed using a robotic sample 

handling system (PL-XTR, Polymer Laboratories).  The temperature of the sample block, injection 

needle, injection port and the transfer line between the auto-sampler and column compartment was set 

at 140ºC.  Four PL mixed A columns, column size 250 X 8.0 mm internal diameter, containing packing 

material particles with an average diameter of 20 µm (Polymer Laboratories) were chosen and TCB 

was used as mobile phase at a flow rate of 1ml.min-1.  Samples were dissolved at 140ºC in TCB at a 

concentration of 0.5–1.0mg/ml and 50µl of each sample was injected.  The column outlet was 

connected to a solvent evaporation FTIR interface, the LC-Transform® (Series 300, Lab Connections, 

Carrboro, USA).  The stage and nozzle temperatures were set to 160 and 150ºC, respectively, while 

the transfer line between the SEC column outlet and LC-Transform nebulisation compartment was set 

to 150ºC.  The nebuliser nozzle was cooled by a constant flow of compressed air to avoid overheating.  

Germanium collection discs were rotated at a speed of 10º.min-1 inside the compartment and 

subsequent FTIR analysis of the deposited trace was performed on a Nicolet Protegè (Thermo 

Electron, Waltham, USA).  Analysis of SEC-FTIR results was performed by means of the Omnic 

software package supplied by Thermo Electron.   

 

3.3.8 High-Temperature Gradient Liquid Chromatography 
 

The same high-temperature gradient HPLC system described in Section 3.3.7 was used for the 

separation of carbonyl-containing degradation products from non-degraded material.  A Perfectsil 300 

Å column with dimensions 250 X 4.6mm internal diameter and particle diameter of 5 μm (MZ 

Analysentechnik, Mainz, Germany) was used as stationary phase.  Decalin and cyclohexanone were 

used as mobile phase solvents (Merck, Darmstadt, Germany) in the following gradient profile:   
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Scheme 3.4:  Representation of the cyclohexanone/decalin solvent gradient profile used for HT-gradient HPLC 

separation.   
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Samples were dissolved in decalin for 2 hours at a concentration of 1–1.2 mg.ml-1 at 140ºC prior to 

injection.  A volume of 50μl was injected for each sample and the column outlet was connected to an 

evaporative light scattering detector (ELSD), model PL-ELS 1000, supplied by Lab Connections, 

Carrboro, NC.  An ELSD nebuliser temperature of 160ºC and evaporation temperature of 270ºC was 

employed together with an air flow of 1.5 ml.min-1.   

 

3.3.9 Fourier Transform Infrared microspectroscopy 
 

All FTIR-µS measurements were performed on a Thermo Nicolet Continuµm infrared microscope 

(Thermo Electron, Waltham, USA) equipped with a cryogenically cooled MCT detector (Mercury 

cadmium telluride, narrow band mid-IR:  4000–650 cm-1).  The microscope was coupled to a Nicolet-

Nexus 680 FTIR spectrometer as beam source.  The aperture was set to 100 X 100 µm and the step 

width of the line scans was 50 µm (i.e., a scan is performed at intervals of 50 µm along the line 

scanned).   

 

Samples were prepared by taking thin slices across the width of degraded plaques (200 ± 5 µm) using 

a Reichert-Jung rotary microtome.  The thickness was measured by means of a micrometer gauge.  

Each cross-section was clamped in a micro-vice sample holder which fits into the X-Y-movable stage, 

allowing for precise control over the position of a sample during scanning.  All measurements were 

performed in transition mode at a resolution of 4 cm-1 and 100 scans were collected at each point along 

a line.  Data accumulation and processing was done by means of the OMNIC Continuµm software 

(Thermo Electron, Waltham, USA).   
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Results and Discussion 
 

 

 

This chapter describes the development of a multi-component analysis approach, combining 

fractionation and hyphenated techniques for studying the degradation of impact polypropylene 

copolymers. The degradation behaviour of two copolymers with different ethylene contents is 

compared and finally, the spatial heterogeneity of the degradation process is studied in both 

copolymers.  All results are accompanied by a discussion of the trends observed.   
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Introduction 
 

Polyolefin degradation has been a subject of interest since the 1940’s when some preliminary 

investigations were performed by Bolland and Gee1.  It has, however, become evident over the past 

few years that conventional analytical techniques are insufficient for assessing degradation in 

heterogeneous polymers.  The need for understanding the effect of degradation on polymer 

microstructure has lead to new developments in this field, where techniques such as CRYSTAF, TREF 

and LC-FTIR have recently provided valuable information on the degradation of polyolefins.  Whereas 

conventional techniques such as SEC, FTIR and DSC generally only supply average values of the 

specific property measured for the bulk material, e.g., average molecular weight, chemical composition 

and thermal behaviour, these innovative techniques provide the capability to study degradation as a 

function of the heterogeneity of the sample.  Such techniques are of extreme importance when 

studying samples such as impact PP copolymers, which are known to be highly complex, 

heterogeneous materials.  In this chapter fractionation (TREF and CRYSTAF) and hyphenated 

techniques (SEC-FTIR) will be used in combination to assess the heterogeneity of degradation within 

impact PP copolymers.  TREF fractionation will also be coupled to conventional techniques (SEC, 

FTIR, DSC) for studying the degradation behaviour of the individual, more homogeneous morphologies 

comprising these copolymers.   

 

This chapter will be divided into three major sections according to the three major objectives of this 

study.  The first section contains results obtained by the combination of various techniques into a multi-

dimensional analysis procedure developed for studying the heterogeneity of the degradation within a 

low ethylene content impact polypropylene copolymer.  In the second part it is demonstrated how the 

techniques employed in the first section can be used to highlight the differences in degradation 

behaviour between two impact PP copolymers based on their primary structure.  In the third section the 

spatial heterogeneity of the degradation in thicker samples of both impact polypropylene grades is 

studied by means of FTIR-microspectroscopy and these results are compared to those obtained by a 

conventional technique consisting of layer-by-layer milling followed by ATR-FTIR, SEC and CRYSTAF 

analysis of the layers.  This section illustrates the influence of the morphology of these copolymers and 

its effect on oxygen diffusion from the surface into the core of thicker samples during degradation.  This 

extends the results of the previous sections, by also taking into account diffusion effects resulting from 

sample morphology.   

 

 

4.1 Development of a multi-dimensional analysis approach for studying the 
degradation behaviour of an impact PP copolymer 

 

Although it is the aim of this study to develop new analytical methods that supply more information on 

the degradation process than conventional techniques, FTIR and SEC are two conventional techniques 

still employed for monitoring the progress of polyolefin degradation2, 3.  Results obtained by these 
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conventional techniques are presented first before a discussion on novel approaches is given.  All 

results in Section 4.1 were obtained from analyses of sample 3V, which is the copolymer sample of 

lower ethylene content (10.48%) and higher isotacticity (88.82%), as summarised in Table 3.1.   

 

4.1.1 FTIR analysis of undegraded and degraded samples of copolymer 3V 
 

Transmission FTIR spectroscopy was used to monitor the progress of degradation during accelerated 

oven ageing of copolymer 3V.  FTIR is a useful technique for identification and quantification of 

degradation products, since oxidation reactions lead to the formation of new functional groups not 

present within the original, undegraded material.  Figure 4.1 illustrates the changes in the FTIR 

spectrum occurring upon degradation in copolymer 3V.  All spectra were normalised to the CH3 

symmetric bending (umbrella) band4, 5 at 1377 cm-1.  The most significant oxygenated products 

generated by degradation, namely carbonyls and hydroperoxides, are clearly observed in the 

wavelength ranges 1550–1850 cm-1 and 3200–3700 cm-1, respectively.  In Figure 4.1 the intensity of 

these bands are seen to increase with ongoing degradation times, as the concentration of degradation 

products increases.  The broadness of these bands is ascribed to the overlapping absorption of a 

number of different carbonyl and hydroperoxide-containing products.  The hydroperoxide band centred 

around 3400 cm-1 is inherent to the stretching vibrations of both associated (3370 cm-1) and free 

hydroperoxides (3560 cm-1)6.  Derivatisation reactions have been performed to resolve the overlapping 

stretching vibrations of various species in the carbonyl region of the FTIR spectrum7, 8.   
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Figure 4.1:  Changes in the FTIR spectra of sample 3V during thermo-oxidative degradation. 
 

Carboxylic acids (1705–1710 cm-1), ketones (1715 cm-1), esters (1740 cm-1), aldehydes (1730 cm-1) 

and γ-lactones (1770–1780 cm-1) have previously been reported to be the major degradation 

functionalities within this region9-12.  In Figure 4.2 the FTIR spectral changes in the carbonyl and 



Chapter 4:    Results and Discussion 
 
 

   
   
 
  56

hydroperoxide regions are illustrated for different time intervals and the above-mentioned functionalities 

are clearly observed.  The band around 1720cm-1, corresponding to the ketone functionality, is a direct 

product of β-scission and is the most significant primary degradation product formed during the early 

stages of degradation within PP.  With ongoing degradation times, the γ-lactone band at 1785cm-1 

becomes most significant with simultaneous increases in all other bands within the carbonyl region as 

well.  This result is consistent with other studies on the thermo-oxidative degradation of PP 

homopolymer, where the formation of ketones and γ-lactones followed the same order10, 13.  The 

presence of a significant γ-lactone band at 1785cm-1 is characteristic of the thermo-oxidative 

degradation of polypropylene homopolymer.  Although this band does appear during the photo-

degradation of polyethylene10, 14, it is negligible in polyethylene and EP elastomers subjected to 

thermo-oxidative degradation10.  There exist some similarities between the degradation behaviour of 

ethylene-propylene copolymers and polypropylene homopolymer15, 16.  This is to be expected, since 

this particular impact PP copolymer sample consists mainly of PP and it has been reported that, in 

samples containing ≥ 85% propylene, the degradation is dominated by this repeat unit16, 17.   
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Figure 4.2:  An enlargement of the (a) hydroperoxide and (b) carbonyl areas of the FTIR spectrum showing the 

main degradation products formed.   
 

The degree of oxidation at different times is quantified by the carbonyl index, defined as the ratio 

between the integrated band absorbance (area or height) of the carbonyl band and that of a reference 

band, in order to compensate for film thickness variations18.  The 840cm-1 was chosen as the reference 

band19 and the increase in the carbonyl index with ongoing degradation time is illustrated in Figure 4.3.   
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Figure 4.3:  Carbonyl content and weight-average molecular weight ( ) changes of sample 3V as a function of 

degradation time.  
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An induction stage resembling oxygen uptake and diffusion into the polymer is clearly visible until 

approximately 40 hours, after which there is a steady increase in the carbonyl index caused by the 

autocatalytic radical-initiated degradation process found in polyolefins.  Besides the incorporation of 

carbonyl functionalities, the molecular weight of polyolefins is also known to be affected by scission 

reactions during oxidation.  The decrease in the weight-average molecular weight ( ) and the 

increase in carbonyl concentration is seen to occur simultaneously, although a decrease in  is 

already evident at very short degradation times, even when no carbonyl groups can be detected by 

FTIR spectroscopy.  The change in the molecular weight distribution curves of sample 3V observed 

upon degradation, will be presented next.   

___

wM
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4.1.2 SEC analysis of undegraded and degraded samples of copolymer 3V 
 

Polymer degradation is always accompanied by changes in molecular weight averages and molecular 

weight distributions20.  Depending on the nature of the polymer and the type of radical reactions 

present, either chain branching or chain scission reactions may prevail.  In the case of polypropylene, 

tertiary C-H bonds are preferentially cleaved during the initiation of oxidation and the autocatalytic 

sequence of reactions leads to chain scission events and polydispersity reduction rather than 

crosslinking21.  Figure 4.3 demonstrates the effect of degradation on the molecular weight and carbonyl 

concentration in copolymer 3V.  It is seen that, even when a low concentration of carbonyl species is 

detected by FTIR, there already seems to be a considerable decrease in the weight-average molecular 

weight ( ) from approximately 354 000 g.mol-1 in the undegraded sample to 326 000 and  

243 000 g.mol-1 after degradation times of 16 and 40 hours, respectively.  FTIR is known to detect 

___
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carbonyl species immediately after the induction period, although degradation is seen to occur at times 

shorter than this, since the decrease in molecular weight is undoubtedly related to irreversible chemical 

changes within the polymer.  The molecular weight distribution curves for the various degradation times 

are illustrated in Figure 4.4.   
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Figure 4.4:  Changes in the SEC curves of sample 3V as a function of degradation time. 

 

With ongoing degradation time, molecular weight curves show a general shift towards lower values, 

indicating that chain scission occurs predominantly in this low ethylene content impact PP copolymer.   

The change in the number-average ( ) and weight-average ( ) molecular weight as well as the 

polydispersity of sample 3V is illustrated as a function of degradation time in Table 4.1.   

___
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___

wM

 
 
Table 4.1:  Average molecular weight and polydispersity values for sample 3V as a function of degradation time 

Sample Degradation time 
___

nM  
___

wM  PDI 

 (h) (g.mol-1) (g.mol-1)  
     

3V-0h 0 111 500 354 400 3.18 

3V-40h 40 49 000 242 800 4.96 

3V-65h 65 25 400 100 000 3.94 

3V-90h 90 6 900 23 000 3.33 

3V-110h 110 6 600 18 400 2.79 

 
 
Although some information on the chemical composition and molecular weight changes brought about 

by degradation could be obtained for this copolymer, it is clear that new analytical approaches are 

needed to obtain more detailed information on the degradation process.  Since the amount of ethylene 

within these copolymers is so small, techniques such as FTIR and SEC reflect only the degradation 
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behaviour of the PP phase.  These techniques supply only average chemical composition and 

molecular weight information for the bulk polymer, without any indication of the degradation of the other 

components present in smaller amounts within this heterogeneous system.   

 

One approach for obtaining information on the distribution of degradation products across the 

molecular weight distribution of a polymer, is through hyphenation of SEC and FTIR spectroscopy22.  

The solvent evaporation LC-Transform® interface for semi-online coupling of SEC and FTIR was used 

to obtain infrared absorption intensities as a function of elution volume.  Visually, SEC-FTIR results 

differ slightly from that obtained by normal SEC equipped with a differential refractive index detector, 

although the shapes of the curves are comparable.  The Gram-Schmidt plot obtained from SEC-FTIR 

analysis can be defined as a graphical representation of the total infrared absorption over the entire 

elution volume of the polymer, which can be correlated with its molecular weight distribution.  Each 

point along the Gram-Schmidt constitutes a complete FTIR spectrum and thus, the chemical 

composition can be determined at every point across the molecular weight or elution volume plot23.  It 

is, therefore, possible to obtain the total infrared absorption of specific functional groups as a function 

of elution volume, which allows for the determination of degradation products22 or comonomer 

concentrations23, 24 across the molecular weight distribution of a polymer. 

 

4.1.3 Fractionation and hyphenated techniques for studying degradation in impact PP 
copolymers 
 

4.1.3.1 SEC-FTIR results for undegraded and degraded 3V samples 
 

Figures 4.5 (a)–(d) illustrate the SEC-FTIR results obtained for four 3V samples degraded for 0, 60, 90 

and 110 hours, respectively.  Names of samples are given as 3V, followed by the degradation time in 

hours, and the extension _GS or _CO/CH to indicate the Gram-Schmidt curve or carbonyl profile, 

respectively.  The sample name 3V-110h_GS therefore signifies that this is the Gram-Schmidt profile of 

the 3V copolymer sample degraded for 110 hours, whereas the sample name 3V-0h_CO/CH describes 

the carbonyl profile within the 3V sample degraded for 0 hours, i.e., the undegraded 3V copolymer.  

Upon degradation a shift in the Gram-Schmidt curve towards larger elution volumes (i.e., lower 

molecular weight) is observed.  This is in agreement with the shift in the SEC results obtained in 

Section 4.1.2.  As the length of long chains decreases due to chain scission, pores from which large, 

undegraded molecules have been excluded, have now become accessible to them, leading to longer 

retention times within the porous column packing.  For the purpose of determining the distribution of 

carbonyl-containing degradation products across the molecular weight distribution, the area ratio of the 

entire carbonyl band (1804–1580 cm-1) with respect to the CH band at 3005–2787cm-1 was constructed 

over the elution volume curve.  In Figure 4.5 it can be seen how the carbonyl concentration or index 

increases from 60 to 110 hours across the Gram-Schmidt curve and reaches a maximum at the low 

molecular weight side.   
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Figure 4.5:  SEC-FTIR results for sample 3V degraded for (a) 0, (b) 60, (c) 90 and (d) 110 hours. 
 

The low molecular weight region of the copolymer is therefore rich in carbonyl-containing degradation 

products, which was also found for a PP homopolymer and PP-1-pentene copolymers upon thermo-

oxidative degradation25.  This technique is therefore valuable in providing information on the distribution 

of degradation products and confirms the heterogeneity of the degradation process which is not 

possible with conventional techniques.   

 

Apart from changes in molecular weight and chemical composition, degradation is also known to affect 

the crystallinity or crystallisability of polymer molecules.  These changes in crystallinity and thermal 

behaviour of degraded polymers are usually studied by DSC26-30, where the changes in peak melting 

temperatures and melt enthalpy values can supply valuable information on the effect of degradation on 

crystallinity.  Another technique that has the ability to provide information on the influence of 

degradation on crystallisability, is CRYSTAF.  Although this technique is well-established for studying 

the crystallisability of semi-crystalline polyolefins, it has only recently found application in the field of 

polymer degradation22.  In principle this technique is a fractionation process facilitated by step-by-step 

precipitation of a semi-crystalline polymer from solution, while monitoring the concentration of polymer 

in solution31.  Since crystallisability can also be studied by TREF, which operates on a slightly different 

principle to CRYSTAF, the effect of degradation on crystallisability as studied by this stepwise 

crystallisation and subsequent dissolution process will also be studied.   
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4.1.3.2 CRYSTAF results for the undegraded and degraded 3V samples 
 

Figure 4.6 demonstrates the changes in crystallisation behaviour of impact copolymer 3V as a function 

of degradation time.  The curve labelled 3V-0h, which represents the undegraded 3V copolymer, 

shows characteristic crystallisation behaviour expected from a semi-crystalline material, with a 

relatively sharp crystallisation peak centred around 83ºC and a small soluble fraction.  The curve of the 

same 3V copolymer degraded for 90 hours (3V-90h), resembles a broader crystallisation peak 

commencing at a considerably lower crystallisation temperature than the undegraded sample, together 

with a significant increase in the soluble fraction.  The effect of degradation on crystallisability 

previously reported for a polypropylene homopolymer and polypropylene-1-pentene copolymer25, were 

also visible in this case.  The main crystallisation peak is seen to shift towards lower crystallisation 

temperatures upon degradation, accompanied by a decrease in the peak intensity, indicating a lower 

concentration of material crystallising out at the maximum crystallisation temperature.  An increase in 

the soluble fraction is also observed, which indicates that oxidation alters the chemical composition of 

some chains to such an extent that they are no longer crystallisable at higher temperatures.   
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Figure 4.6:  Changes in the CRYSTAF results for sample 3V with degradation time. 
 

The crystallisation curve of the sample degraded for 40 hours shows a narrowing of the original sample 

(3V-0h) on the higher crystallinity side, which might indicate the preferential degradation of higher 

crystallinity material.  Data on the peak crystallisation temperatures and the percentage soluble 

material in each sample is given in Table 4.2.  The peak crystallisation temperature of the sample 

degraded for 110 hours, is also reported, although its crystallisation was measured over a different 

temperature range, as can be seen in Figure A1 of Appendix A.  Full width at half maximum (FWHM) 

values supplied here are used as an indication of the amount of peak broadening or narrowing 
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occurring in CRYSTAF peaks upon degradation.  These values were determined by fitting a simple 

Gaussian distribution to all CRYSTAF curves.   

 
 
Table 4.2:  Peak crystallisation temperatures and soluble fraction percentages of undegraded and degraded 

samples of 3V determined by CRYSTAF 
    

Sample Tc (peak maximum) Soluble fraction FWHM 
 (ºC) (Wt %)  

    

3V-0h 84.0 12.8 4.69 

3V-40h 83.2 14.2 3.44 

3V-65h 80.2 14.7 6.68 

3V-90h 77.9 19.9 5.12 

3V-110h 76.2 n.d. n.d. 
n.d. not determined    

 
 
The oxidation process is known to lead to several reactions in the polymer, including chain scission, 

crosslinking and insertion of chemical groups such as carbonyl functionalities and hydroperoxides into 

polymer chains, both of which affect the crystallinity of the polymer28, 29, 32.  It has been reported that 

main chain scission leads to the formation of in-chain CO functionalities such as ketones in 

polypropylene33, which are partially included in the lamella crystal upon re-crystallisation.  These 

inclusions lead to disruption of the lamellae, causing amongst other things, a broadening of the 

crystalline distribution, as indicated by broadening of crystallisation peaks.  Insertion of chemical 

groups such as carbonyls and hydroperoxides also disrupts the molecular regularity, thereby limiting 

secondary crystallisation.  It is known that the disruption of the regularity of PP leads to a significant 

reduction in crystallinity.  This effect is illustrated by the decrease in crystallisation peak intensity and 

temperature, as well as the increase in the soluble fraction observed in Figure 4.6.  In Figure 4.3 it is 

clear that there is an increase in the carbonyl index (i.e., concentration of carbonyl groups) and a 

decrease in molecular weight with ongoing degradation times.  CRYSTAF analysis has, therefore, 

indicated that a major portion of these carbonyl groups are incorporated into the main chain in order to 

observe this effect on crystallisability.  Owing to the existence of a relationship between crystallinity and 

both molecular weight and CO concentration, it is necessary to investigate the effect of these two 

parameters on the crystallisability of this impact PP copolymer.  The relationship between 

crystallisation peak temperature, molecular weight and carbonyl concentration is illustrated in Figure 

4.7.   

 

 

 



Chapter 4:    Results and Discussion 
 
 

   
   
 
  63

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

76

78

80

82

84

0
100000

200000
300000

400000

C
R

YS
TA

F 
T c (º

C
)

Molecular w
eight (g

.m
ol
-1 )

Carbonyl index

 
Figure 4.7:  Representation of the combined influence of molecular weight and carbonyl concentration on the 

crystallisation peak temperature in CRYSTAF. 
 

The black curve represents the combined effect of degradation on the three molecular parameters 

namely molecular weight, carbonyl concentration and crystallisation temperature.  The XZ projection 

(blue) represents the relationship between CRYSTAF crystallisation temperature (Tc) and carbonyl 

index, whereas the YZ (green) and XY (red) projections display the relationship between molecular 

weight and Tc and that between molecular weight and carbonyl index, respectively.  The blue curve 

indicates that the highest crystallisation temperatures are present in samples with low carbonyl 

concentrations, and a non-linear, exponential decrease in crystallisation temperature is observed with 

increasing carbonyl concentrations.  The green curve shows an exponential decrease in crystallisation 

temperature with decreasing molecular weight and the red curve is similar to Figure 4.3, where an 

exponential decrease in molecular weight is observed with increasing carbonyl concentrations.  The 

black curve which represents the combined effect of molecular weight and carbonyl concentration on 

CRYSTAF Tc, follows the shape of the Tc as a function of molecular weight curve (green) up to a 

certain CO concentration value, after which the curve follows the shape of the carbonyl index versus Tc 

curve (blue).  At low carbonyl index values where a significant decrease in molecular weight is 

observed for small carbonyl index increases, the crystallisation temperature seems more dependent on 

molecular weight.  At higher CO concentration, however, the carbonyl concentration influence becomes 

the dominant factor governing the crystallisation temperature.  It is known that changes in crystallinity 

caused by degradation can also be studied by DSC27-30, 34, therefore the DSC melt and crystallisation 

curves for the undegraded and degraded samples will be compared next.   
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4.1.3.3 DSC results for the undegraded and degraded 3V samples 
 

Figure 4.8 shows the differences in the crystallisation and melting behaviour for the undegraded and 

degraded 3V samples.  All melting curves observed here were collected during the second heating 

cycle after the thermal history of all samples was eliminated.   
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Figure 4.8:  DSC results for the undegraded and degraded 3V samples. 

 

The peak maxima of both the crystallisation and melting peaks shift towards lower temperatures with 

ongoing degradation time.  It has been stated  that the melting temperature obtained during the second 

heating cycle of the DSC experiment more accurately reflects the influence of degraded molecules on 

crystallisation34.  Crystals formed upon re-crystallisation consists of degraded molecules that are both 

shorter due to chain scission events and defective due to the incorporation of carbonyls and 

hydroperoxides.  With ongoing degradation times, scission and group insertions lead to crystals that 

are progressively less perfect, with an accompanied decrease in melting temperatures.   

 

The melt endotherm in Figure 4.8 broadens and splits into two at more advanced stages of 

degradation.  The presence of a second melt endotherm as well as the broadening of the melt 

endotherm is probably also caused by melting of less perfect crystals formed from defective, oxidised 

molecules (containing more impurities) under less favourable conditions (i.e., low mobility).  The less 

perfect crystals melt, crystallise again and melt at higher temperatures, where they have more mobility, 

giving rise to the second melting peak.  The onset of melting is also seen to move to lower 

temperatures as degradation time increases.  Continuous melting of both pre-existing and newly-

formed, overgrown crystals are supposed to be a continuous melting process, starting with the melting 

of those crystals deposited last.  Since the level of impurity in crystals increases with exposure time, 
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the onset of melting is expected to shift to lower temperatures34.  The thermal data for the undegraded 

and degraded samples are presented in Table 4.3.  The Tm values in paretheses represent the melting 

temperature of the higher melting component observed upon splitting (90 and 110 h) or broadening 

(65h) of the main melt endotherm at longer degradation times.  These changes in the characteristics of 

the melting peak, therefore, also illustrate the existence of metastable structures caused by the 

degradation process and emphasise the need for fractionation techniques to better understand the 

heterogeneity of degradation within impact PP copolymers.   

 
 
Table 4.3:  DSC thermal data for undegraded and degraded 3V samples 

    

Sample Tm Tc Δhm 

 (ºC) (ºC) (J.g-1) 
    

3V-0h 162.6 118.2 94 

3V-40h 160.1 117.7 91 

3V-65h 154.6  (159.0) 115.5 89 

3V-90h 148.6  (155.7) 112.5 89 

3V-110h 147.0  (154.6) 110.9 87 

 
 
In Figure 4.9 the melting and crystallisation temperatures obtained by DSC are presented as a function 

of carbonyl concentration as determined by FTIR.  The crystallisation temperature curve is similar to 

that observed for the CRYSTAF crystallisation in Figure 4.6.  It can therefore be concluded that there is 

a definite, non-linear relationship between CRYSTAF and DSC crystallisation and DSC melting 

temperature and the concentration of carbonyl functionalities present in the degraded sample, although 

molecular weight effects should not be ignored.   

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
145

150

155

160

165
 Main Tm

 Minor Tm at higher temperature

D
SC

 T
m
 (º

C
)

Carbonyl index

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

112

114

116

118

 D
SC

 T
c (º

C
)

Carbonyl index

Figure 4.9:  DSC melting (Tm) and crystallisation (Tc) values as a function of carbonyl concentration. 
 

The combined effect of molecular weight and CO concentration on DSC crystallisation and melting 

temperatures are illustrated in Figures 4.10 and 4.11, respectively.   
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Figure 4.10:  Representation of the combined influence of molecular weight and carbonyl concentration on the 

crystallisation temperature in DSC. 
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Figure 4.11:  Representation of the combined influence of molecular weight and carbonyl concentration on the 

melting temperature in DSC. 
 

Molecular weight and carbonyl concentration seem to have a similar effect on both DSC and 

CRYSTAF crystallisation temperatures where, at low carbonyl concentrations crystallisation 

temperature is governed by molecular weight changes, whereas the level of CO incorporation becomes 

dominant at higher CO concentrations.  The effect is also similar to that observed for DSC melting 

temperatures, although the black curve follows the molecular weight curve (green) up to a higher CO 

index than in the case of crystallisation temperature.  Here, molecular weight effects remain dominant 

for longer before the CO concentration effect starts to govern the melting of this copolymer.   
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From the results in Sections 4.1.3 it can be concluded that combined techniques such as SEC-FTIR 

and TREF-SEC supply more detailed information on the degradation behaviour of impact PP 

copolymers than when these techniques are used in isolation.  When used in isolation, these two 

techniques do however, not supply information on the way in which the different components or 

morphologies in these heterogeneous samples are affected by oxidation.  It is clear at this point that 

the different morphologies would have to be separated from each other and studied in isolation to 

obtain information on the way in which they degrade.  Preparative-TREF is a well-established 

technique for fractionating semi-crystalline materials according to their crystallisability.  The changes in 

the crystallisability of a polymer as a function of degradation time observed by DSC and CRYSTAF, 

should therefore also be evident in TREF, while analysis of the fractions obtained from this 

fractionation procedure should provide information on the susceptibility of the different components to 

degradation.   

 

A suitable elution temperature program is selected to obtain a range of fractions with different 

crystallisabilities ranging from highly amorphous material eluting at low temperatures, to highly 

crystalline material collected at higher temperatures.  It is known that impact PP copolymers are highly 

complex materials consisting of amorphous ethylene-propylene random copolymers (EPR), a range of 

crystallisable copolymers with different comonomer contents and monomer sequence distributions as 

well as homopolymers of ethylene and propylene35-37.  Prep-TREF is, therefore, considered a highly 

suitable method for separating the different morphologies, and since fractionation depends on both 

chemical composition and tacticity, FTIR, SEC, DSC and NMR data will supply information on the 

degradation behaviour of the individual fractions, leading to a better understanding of the degradation 

process in impact PP copolymers.  It will also allow the full characterisation of the undegraded material, 

since molecular parameters such as comonomer distribution, monomer sequence distribution and 

tacticity distribution can be obtained as a function of crystallisability. 

 

The next section contains results on the TREF fractionation of the undegraded 3V copolymer sample 

into its constituting components, and subsequent analysis of the individual components by means of 

FTIR, SEC, NMR, DSC and SEC-FTIR.  The TREF analysis was combined with these techniques to 

obtain detailed structural information on the composition and heterogeneity of the undegraded material.  

A proper analysis of the structure and composition of this complex sample in its undegraded state will 

promote a better understanding of its behaviour upon degradation.   

 

4.1.3.4 Prep-TREF results for the undegraded 3V sample 
 

Undegraded films were fractionated by means of the prep-TREF setup described in Section 3.3.5 of 

the experimental chapter.  An antioxidant stabiliser (Irganox 1010) was added to the polymer to prevent 

degradation during the dissolution and fractionation steps and fractions were collected at 30, 60, 80, 

90, 100, 110, 120 and 130ºC during subsequent re-heating of the pre-crystallised polymer in 
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incremental steps.  Figure 4.12 shows the weight fraction per temperature increment (Wi%/ΔT) and 

accumulative weight (ΣWi%) plots for copolymer 3V, as a function of elution temperature.  The Wi%/ΔT 

plot approximates the differential curve of the cumulative weight plot.  From this curve it is seen that the 

copolymer dissolves and elutes over a broad range, indicating heterogeneity in both isotacticity and 

chemical composition.  The fractionation data is presented in Table 4.4.   
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Figure 4.12:  TREF curves for the undegraded 3V copolymer sample. 

 

From the fractionation data three main weight fractions can be identified, namely those eluting at 30ºC, 

110ºC and 120ºC.  Together these three fractions constitute 74.42% of the total sample weight, with 

the 120ºC fraction alone, constituting 47.77 percent.  The composition of these fractions will therefore 

influence the properties of the bulk copolymer to a large extent.  The individual fractions obtained by 

prep-TREF were analysed by FTIR, DSC, 13C-NMR and SEC-FTIR to determine their chemical 

composition as well as thermal and morphological properties.   

 
Table 4.4:  TREF data for the undegraded 3V sample 

      

Sample Te Wi Wi ΣWi Wi%/ΔT 

 (ºC) (g) (%) (%)  
      

3V-0h-30 30 0.303 9.90 9.90 0.330 

3V-0h-60 60 0.102 3.36 13.26 0.090 

3V-0h-80 80 0.106 3.47 16.73 0.163 

3V-0h-90 90 0.100 3.26 19.99 0.307 

3V-0h-100 100 0.171 5.60 25.59 0.527 

3V-0h-110 110 0.574 18.80 44.39 1.771 

3V-0h-120 120 1.459 47.77 92.16 4.498 

3V-0h-130 130 0.240 7.85 100.00 0.739 
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4.1.3.5 TREF-(13C-NMR) results for the undegraded 3V sample 
 
13C-NMR has long been the method of choice for determining the comonomer content, monomer 

sequence distributions and stereoregularity of the propylene unit in EP copolymers38 and their fractions 

of impact copolymers obtained by solvent fractionation or TREF37, 39-41.  Figure 4.13 represents the 13C-

NMR spectrum for the bulk 3V copolymer, which is a typical spectrum for EP copolymers with low 

ethylene contents42.  Chemical shifts were referred to isolated methylene groups at 30.0 ppm and 

assignment of the resonances followed the terminology described by Carman and Wilkes43 where the 

letters S, P and T indicate secondary (methylene), primary (methyl) and tertiary (methine) carbon 

atoms, respectively.   
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Figure 4.13:  13C-NMR peak assignments for the undegraded 3V sample 

 

Furthermore, the two Greek subscripts refer to the distance, in both directions, of any given carbon to 

the nearest neighbouring tertiary carbon bearing a methyl side group.  Therefore, a carbon labelled 

, is a secondary carbon with two tertiary carbons on either sides, whereas a Sαβ carbon is a 

secondary carbon with a tertiary carbon on one side and another tertiary carbon found one carbon 

away, until a  carbon is reached which indicates a secondary carbon with tertiary carbons bearing 

methyl groups, being four carbons away on both sides.  When the distance to the nearest tertiary 

carbon exceeds four, the  notation is used.  This nomenclature is illustrated in Scheme 4.1 for the 

methylene carbons in EP copolymers without monomer inversion 44. 

ααS

δδS

+δ
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Scheme 4.1:  Illustration of the nomenclature used for the methylene carbons in ethylene-propylene copolymers 

without monomer inversion. 

 

In Figure 4.13 four major peaks are observed, namely the  (CH2),  (CH) and  (CH3) 

corresponding to the three distinct carbon atoms in the constitutional base unit of PP, as well as the 

Sδδ, representing the CH2’s in PE.  Minor peaks ( ) are also 

present in the spectrum, indicating that various transition segments such as PEP, EPE, PPE, EEP, are 

present as junctions in between longer ethylene and propylene segments 42.  The absence of the  

resonance indicates that no inverted propylene units are present.  Comonomer content and monomer 

sequence distributions were calculated according to the following equations 45, based on relationships 

established by Ray et al. 46 and Randall 44.   

ααS

βδαδ S;

ββT

δδ S;

ββP

γγβγβδγδαγ PPTSSS ;;;;;

αβS

 

P’    =   Sαα + ½ (Sαγ + Sαδ)     (4.1) 

E’    =   ½ [Sδδ + Sβδ + Sαγ + ½ (Sγδ + Sβδ + Sαδ)]  (4.2) 

P    =   P’/(P’ + E’)      (4.3) 

E    =   E’/(E’ + P’)      (4.4) 

PP  = Sαα/(P’ + E’)      (4.5) 

PE + EP = (Sαγ + Sαδ)/(P’ + E’)     (4.6) 

EE  = ½ (Sβδ + Sδδ + ½ Sγδ)/(P’ + E’)    (4.7) 

PPP  = P x Tββ/ (Tββ + Tβδ + Tδδ)    (4.8) 

PPE + EPP = P x Tβδ/ (Tββ + Tβδ + Tδδ)    (4.9) 

EPE  = P x Tδδ/ (Tββ + Tβδ + Tδδ)    (4.10) 

EEE  = ½ (Sδδ + ½ Sγδ)/(P’ + E’)    (4.11) 

EEP + PEE = Sαδ / (P’ +E’)      (4.12) 

PEP  = ½ Sαγ/(P’ +E’)      (4.13) 
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Results from the sequence analysis of the 3V bulk copolymer and its TREF fractions, are presented in 

Table 4.5, together with isotacticity (%mmmm) data for the PP part obtained by the 13C-NMR method 

described by Kanezaki et al.47  Unfortunately, data on the 130ºC fraction was not available, although, 

based on the knowledge of TREF fractionation it is expected to be similar in composition to the 110 

and 120ºC fractions.  The sample names of all fractions were given according to the method described 

in Section 4.1.3.1, followed by -30; -60; -80, etc., to indicate the TREF elution temperature at which 

each fraction was collected.  The sample name 3V-0h-120, therefore, describes the 120ºC fraction of 

the undegraded 3V copolymer, whereas the 80ºC fraction of the same sample is labeled 3V-0h-80.  

This nomenclature will be used throughout this dissertation. 

 
 

Table 4.5:  13C-NMR monomer sequence analysis and tacticity data of the bulk 3V sample and its TREF fractions  
             

Sample P E PP PE EE PPP PPE EPE EEE EEP PEP % 
    EP   EPP   PEE  mmmm 
             

             

3V-0h 89.52 10.48 86.36 6.34 7.32 84.19 3.63 1.70 5.75 3.18 1.58 88.82 

3V-0h-30 49.55 50.45 34.43 30.23 34.39 49.39 0.14 0.02 25.78 13.42 1.80 24.70 

3V-0h-60 45.11 54.89 34.15 21.92 43.87 28.74 11.64 4.73 37.56 12.43 1.65 36.13 

3V-0h-80 44.46 55.54 38.29 12.32 48.99 37.74 3.96 3.11 44.47 7.47 1.00 64.91 

3V-0h-90 54.31 45.69 52.66 3.31 43.83 54.26 0.04 0.01 42.25 2.37 0.06 71.21 

3V-0h-100 90.27 9.73 89.96 0.63 9.11 89.37 0.90 0.00 8.50 0.02 0.11 85.74 

3V-0h-110 94.85 5.15 94.85 0.00 4.37 91.86 2.99 0.00 2.81 0.00 0.00 86.54 

3V-0h-120 99.39 0.61 99.39 0.00 0.61 99.39 0.00 0.00 0.61 0.00 0.00 91.52 

 
 
From the sequence analysis data it can be seen that, with increasing elution temperature, there is a 

decrease in ethylene content, with an accompanying increase in the propylene content and isotacticity, 

which indicates that fractionation is governed mainly by decreasing comonomer content and increasing 

isotacticity.  The content of long ethylene sequences (EEE) also decreases and that of long propylene 

sequences (PPP) increases with elution temperature, until values of 94,85 and 99.39% are reached for 

PPP triads in the 110ºC and 120ºC fractions respectively, indicating that these fractions consist mainly 

of long propylene sequences.  The amount of EP junctions and isolated ethylene and propylene units 

decreases with elution temperature.  The high amount of (PE + EP) diads in the first four fractions 

indicates that ethylene and propylene segments are linked to some degree, whereas this value 

becomes virtually 0 in the highest eluting fractions, indicating that almost no junctions between the 

propylene and ethylene is present.  These fractions are believed to consist of long propylene 

homopolymer sequences with a small amount of PE homopolymer.   

 

The first fraction eluting at 30ºC consists of equal amount (ca. 50/50%) of ethylene and propylene and 

together with the high amount of EP junctions (PE+EP; PPE+EPP; EEP+PEE), it can be assumed that 

this fraction consists mainly of ethylene-propylene random copolymer (EPR) while atactic PP and some 

ethylene homopolymer may also form part of this fraction48.  The following three fractions eluting at 

60ºC, 80ºC and 90ºC consist of equally high amounts of long sequences of ethylene and propylene, 
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with a fair amount of EP junctions also present, thereby indicating that these fractions consist of 

propylene and ethylene segments that are linked, but since true block structures cannot be produced 

by the sequential gas-phase polymerisation process in question, these are called ‘blocky’ 

copolymers49.  The 60ºC fraction also exhibits a higher amount of (EEP+PEE) and (PPE + EPP) 

junctions between the segments than the following 2 fractions, thereby indicating that these fractions 

might be classified as transition copolymers, i.e., having a structure between that of a random and 

blocky copolymers49.   

 

The number average sequence length of the propylene and ethylene segments in the copolymer 

fractions was calculated from the following relationships38 and the results are presented in Table 4.6:   

 

)(21
)(21)(
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PEPPnP
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=      (4.14) 
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Average sequence lengths were not determined for the 110 and 120ºC fractions, since the amount of 

PE sequences is 0 in this case.  The concentration of propylene and long propylene sequences (PPP) 

in these two fractions are close to 100, therefore it can be accepted that these fractions consist mainly 

of PP homopolymer, in which case the average length of propylene sequences is expected to be 

infinite.   

 
 
Table 4.6:  The average lengths of ethylene and propylene segments in the bulk 3V sample and its TREF fractions 

Sample En  Pn  
   

3V-0h 3.31 28.86 

3V-0h-30 5.41 3.32 

3V-0h-60 5.00 4.12 

3V-0h-80 8.95 7.21 

3V-0h-90 27.51 32.84 

3V-0h-100 29.99 287.23 

3V-0h-110 n.d. n.d. 

3V-0h-120 n.d. n.d. 
n.d:  not determined 

 
 
From these results it is clear that the length of both the ethylene and propylene segments increases 

with elution temperature, with a more marked increase in the length of propylene segments towards 

higher elution temperatures.  This indicates that TREF not only fractionates impact PP copolymers 

according to the isotacticity of the propylene phase, but also according to the ethylene and propylene 
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sequence lengths, or isotactic sequence lengths50, with fractions containing longer sequences, eluting 

at higher temperatures39, 51.  This range of copolymers with varied composition is the result of 

numerous catalyst active sites with different selectivity towards ethylene and propylene during 

copolymerisation and it is observed that more ethylene inserted into chains with lower stereoregularity.  

The gradual change in the sequence distribution of propylene and ethylene sequences from the first to 

the last fraction reveals some continuity in structure, which is known to be characteristic of impact PP 

copolymers prepared via the in-situ co-polymerisation method40.  SEC analysis of the molecular weight 

distribution of the TREF fractions of this complex copolymer formed the next step in the multi-step 

characterization procedure followed to characterize the undegraded 3V-0h copolymer.   

 

4.1.3.6 TREF-SEC results for the undegraded 3V sample 
 

The molecular weight distributions of all TREF fractions of the undegraded sample were determined by 

SEC and are presented together with the distribution of the bulk 3V-0h sample in Figure 4.14.  The 110 

and 120ºC fractions exhibit monomodal molecular weight distribution curves, indicating their 

homogeneity.  The 60–90ºC fractions show clear bimodality in their molecular weight distributions with 

the 30 and 100ºC fractions also having slight shoulders at the lower and higher molecular weight sides, 

respectively.  Such bimodal molecular weight distributions indicate compositional heterogeneity due to 

the co-elution of non-identical products within these fractions.  This phenomenon is often observed for 

the mid-elution temperature fractions of impact PP copolymers fractionated by TREF52 53 54,15, 54.  Zacur 

et al.52, 53 and Usami et al.55 have illustrated the co-elution of semi-crystalline ethylene-propylene 

copolymers (EPC) and PP homopolymer within this elution range for an impact PP copolymer 

fractionated by TREF.  Since PP is characterised by an isotacticity distribution,52, 56 not all of the PP 

homopolymer phase will elute at high temperatures, with PP fractions of lower isotacticity eluting within 

the same temperature range as the semi-crystalline EPC phase.  These authors have concluded that 

the higher molecular weight component consists of the EP copolymer phase (EPC), while the lower 

molecular weight distribution belongs to PP homopolymer52, 53.  The high molecular weight tail in the 

100ºC fraction of sample 3V-0h is similar to that observed in the 105ºC fraction of the ICPP 

fractionated by Zacur, who have, upon comparison of the hydrodynamic volume curve of this fraction 

with that obtained at 105ºC for the hPP, concluded that the shoulder was indicative of  the presence of 

EPC molecules52.  Although these fractions of the impact PP copolymer in question seems similar in 

composition to those analysed by these authors, additional information on the composition of these 

fractions will be obtained to clarify its composition.   
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Figure 4.14:  SEC curves for the undegraded bulk 3V copolymer sample and its TREF fractions. 
 

From the SEC results of copolymer 3V-0h it is clear that TREF-SEC alone does not supply sufficient 

information on the composition of the various distributions within the molecular weight curves of these 

TREF fractions.  Therefore, additional techniques are needed for complete characterisation.  The 

overall composition and thermal behaviour of the TREF fractions will now be studied by FTIR-ATR and 

DSC, and finally, the composition of each fraction will be characterised as a function of its molecular 

weight distribution by means of SEC-FTIR.   

 

4.1.3.7 TREF-(ATR-FTIR) results for the undegraded 3V sample 
 

The IR bands at 998 cm-1 and 841 cm-1, associated with methyl rocking modes, are characteristic of 

the threefold helix of isotactic PP57, 58, and only appear for helix segments with at least ~11 and ~14 

repeat units, respectively59.  These bands indicate the presence of long crystallisable PP sequences, 

whereas the band at 972 cm-1 is associated with the methyl rocking vibrations of shorter helix 

segments.  The 720 cm-1 band is characteristic of the rocking vibrations of methylene sequences –

(CH2)n, where n ≥ 558, 60, and is considered an indication of the presence of long ethylene sequences 

(EEE), while a doublet at 720–740 cm-1 indicates the presence of crystalline PE.  When PE crystallinity 

is small, the band at 730 cm-1 of the doublet will be reduced to a shoulder of the band at 720 cm-1.  

Figure 4.15 illustrates the ATR spectra of the TREF fractions of copolymer 3V.   
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Figure 4.15:  A selected area of the FTIR spectrum obtained by ATR-FTIR of the undegraded 3V sample and its 

TREF fractions. 
 

The attenuated total reflectance infrared (ATR-FTIR) spectrum of the 30ºC fraction is typical for a 

random copolymer where both the ethylene and propylene segments are too short too crystallise, as 

indicated by the absence of bands at 998 cm-1, 841 cm-1 and 730 cm-1.  A small peak at 720 cm-1 is 

observed, which indicates that some longer ethylene sequences (n ≥ 5) are present.  This supports the 

NMR data which indicated that this fraction consists of the EPR and non-crystallisable ethylene and 

propylene homopolymer part of the copolymer.  From elution temperatures of 60 to 120ºC, an increase 

in the bands at 998 cm-1 and 841 cm-1 is observed, indicating an increase in the concentration of long 

crystallisable PP sequences.  A shoulder at 730 cm-1 in the 60ºC fraction indicates that PE sequences 

have also reached the required length for crystallisation and this shoulder develops into a distinct, 

separate band in the 80ºC to 100ºC fractions.  These fractions, therefore, consist of crystallisable 
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segments of both ethylene and propylene.  The last two fractions are characteristic of highly crystalline 

PP (strong intensity bands at 998 cm-1 and 841 cm-1) with a small amount of PE homopolymer present 

too, as indicated by the very small band visible at 720 cm-1.  The absence of the band at 730 cm-1 

indicates that no long, crystallisable PE segments are present.   

 

4.1.3.8 TREF-DSC results for the undegraded 3V sample 
 

The DSC crystallisation and melting curves of all fractions, the latter which were obtained upon the 

second heating cycle, are presented in Figure 4.16.  In the 30ºC fraction, a small crystallisation peak 

around 37ºC and melt endotherm at 56ºC is observed, which indicates that, even though amorphous 

random ethylene-propylene copolymers are expected to elute in this fraction, some crystallisable 

material is present too.  The presence of EPR is confirmed by the glass transition (Tg) present below 

0ºC61, 62.  The transition around 40ºC is expected to be caused by long PE segments (evidenced by the 

relatively large percentage of EEE sequences from NMR results in Table 4.4) that may be arranged in 

a long-range order40.   

 

Small melting endotherms at about 90 and 112ºC as well as at 103 and 130ºC are observed in the 60 

and 80ºC fractions, respectively.  This indicates that both the ethylene and propylene segments have 

reached a crystallisable length, but the large difference in melting temperatures compared to PE and 

PP homopolymers, suggests that the amount of long, crystallisable PE and PP sequences is very 

small.  The large amount of shorter sequences disrupts the crystal growth, leading to imperfect 

crystals.  These results are consistent with those obtained by NMR and FTIR and serve as proof that 

these fractions are segmented or transition copolymers.  The following two fractions (90 and 100ºC) 

also exhibit two melt endotherms, corresponding to the melting of both ethylene and propylene 

crystallisable sequences53, 63.   

 

In these two fractions the melting temperatures of the PP segments have increased to 146ºC and 

150ºC, respectively, indicating that more prefect crystals are formed in the PP phase.  The endotherm 

associated with the melting of ethylene segments appears at almost the same melting temperature in 

these two fractions, namely at 118ºC, which is considerably higher than the Tm of the ethylene in the 

fractions eluting at 60 and 80ºC.  This indicates that the ethylene segments of the copolymer phase are 

also crystallising into more perfect crystals.  The intensity of these endotherms do, however, decrease 

significantly, indicating that there is less ethylene crystallising out in these two fractions, than in the 

foregoing two, which agrees well with the NMR sequence results for the percentage long ethylene 

sequences (EEE) provided in Table 4.5.  These fractions clearly consist of segmented or ‘blocky’ 

copolymers (EPC) with longer segments of PE and PP that are able to crystallise at higher 

temperatures into more perfect crystalline structures.   
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Figure 4.16:  DSC crystallisation and melting curves for the undegraded bulk 3V sample and its TREF fractions 
 

In the last two fractions, a single melting endotherm is observed around 160ºC, which agrees with 

NMR and FTIR results of this fraction being isotactic PP.  These melting endotherms are slightly below 

that expected for the isotactic homopolymer.  This is attributed to the presence of a very small amount 

of ethylene in these fractions, as confirmed by NMR and FTIR.  The concentration of long ethylene 

sequences is, however, too low for a melt endotherm to be observed in DSC.   

 

4.1.3.9  TREF-(SEC-FTIR) results for the undegraded 3V sample 
 

SEC-FTIR analysis of the fractions was performed in order to obtain information on the chemical 

composition across the molecular weight distribution of each fraction.  This is expected to provide 
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valuable information on the chemical composition of especially those fractions where bimodality was 

detected in their molecular weight distributions.  The SEC-FTIR results of the 60, 80, 90 and 100ºC 

fractions are presented in Figure 4.17.   
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Figure 4.17:  SEC-FTIR analysis of the ethylene and propylene distribution within the 60ºC, 80ºC, 90ºC and 100ºC 

TREF fractions of sample 3V-0h.   

 

As explained previously, the CH3/CH2 curve illustrates the propylene distribution across the Gram-

Schmidt, while the ethylene content profile is labelled ‘Et content’.  In all SEC-FTIR results presented in 

this study, the Gram-Schmidt plot represents the total FTIR absorption over the 2800-3200 cm-1 range 

of the FTIR spectrum.  The propylene content is quantified by the ratio of the areas of the bands 

representing the CH3 and CH2 bendings at 1376 cm-1 and 1462cm-1, respectively23, 24, 64.  The presence 
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of CH3 groups indicates branching and is characteristic of PP units, whereas the intensity of the CH2 

band is taken as a measure of the total polymer concentration.  Since the band at 1378 cm-1 may also 

originate from chain branching in polyethylene65, the validity of using the 1378cm-1/1462cm-1 ratio as an 

indication of propylene content, was investigated by constructing the ethylene content profile across 

the molecular weight distribution curves of the ‘blocky’ or segmented copolymer fractions.  The 

ethylene content was quantified by the area ratio of the bands at 720 cm-1 and 1163 cm-1, which is 

used to determine the comonomer composition within EP block copolymers66.   

 

The 60, 80 and 90ºC fractions exhibit a gradual increase in the CH3/CH2 ratio across the bimodal 

molecular weight distributions, suggesting a higher propylene content within the low molecular weight 

component, although this might also originate from branched polyethylene.  The 720 cm-1/1162 cm-1 

ratio of these three fractions, however indicate a gradual decrease in ethylene content from the high 

molecular weight side of the distribution, until a value of 0 is reached within the lower molecular weight 

component.  This serves as an indication of ethylene-rich chains being present in the high molecular 

weight component, while no ethylene is found within the lower molecular weight component of the 

bimodal distribution.  The 1378 cm-1 band is, therefore, believed to be representative of the methyl 

groups in polypropylene only.  The 1378 cm-1/1462 cm-1 ratio will be used in all subsequent SEC-FTIR 

analyses to characterise the propylene concentration across each Gram-Schmidt profile.   

 

The lower molecular weight component of the bimodal distributions of the blocky and block copolymers 

seems to consist of propylene homopolymer only, whereas the higher molecular weight component is 

believed to contain ethylene-propylene copolymers (EPC) with different monomer distributions.  The 

copolymers which are richest in ethylene appear on the higher molecular weight side of the distribution 

and a gradual increase in propylene concentration is observed towards the lower molecular weight 

side.  These results are in agreement with those obtained by Zacur et al., which indicated the overlap 

between EPC and hPP within the mid-elution temperature fractions of TREF-fractionated ICPPs52, 53.  

From 13C-NMR it was predicted that the 100ºC fraction forms the transition between the block 

copolymer and higher eluting iPP fractions.  Although the amount of ethylene present within this 

fraction (ca. 10%) is much lower than in the preceding ones (ca. 50%), the presence of some ethylene-

propylene copolymers seems to be indicated by the slight shoulder detected on the high molecular 

weight side of the SEC curve.  The CH3/CH2 ratio constructed from the SEC-FTIR results indicate a 

slightly lower value at the low elution volume (high molecular weight) side of the Gram-Schmidt curve 

compared to the higher elution volume end, indicating a lower propylene content within this region of 

the molecular weight distribution.  This is also in agreement with the 720 cm-1/1163 cm-1 ratio which 

indicates that the ethylene concentration decreases to 0 across the larger elution volume component of 

the distribution.  SEC-FTIR analysis, therefore, confirms the presence of EPC within the higher 

molecular weight shoulder to the hPP molecular weight distribution within the 100ºC fraction.   

 

DSC analysis revealed two melt endotherms in each of these fractions, suggesting the presence of 

both crystalline ethylene and propylene.  Since there exist specific infrared bands associated with 
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crystalline entities for both monomers within the infrared spectrum, it should be possible from  

SEC-FTIR to construct profiles of ethylene and propylene crystallinity across these bimodal molecular 

weight distributions.  The 998 cm-1 and 841 cm-1 bands are known to result from long repeating 

monomer units in the crystalline 31 helix of PP57, 59, 60, 67, while the 972 cm-1 band is associated with 

short helix segments.  The intensity of the 998 cm-1 and 841 cm-1 bands were also found to be linearly 

related to the density of polypropylene as a measure of its crystallinity68.  The ratio of the 998 and  

972 cm-1 bands has, therefore, been used to determine PP tacticity59, 67, 69, 70, and has been indicated 

as a measure of the degree of spectral crystallinity in polypropylene51.  FTIR determination of 

isotacticity is known to depend on the thermal history of the sample71, and standardisation via 

annealing of PP samples at elevated temperatures, has been proposed70.  The deposition and cooling 

conditions of all samples were kept identical during SEC-FTIR analysis in order to ensure reliable 

crystallinity measurements.   

 

Similar to propylene, FTIR spectroscopy should also supply information on the relative crystallinity of 

ethylene in EP copolymers.  As the crystallinity in polyethylene increases, the 720 cm-1 band, 

originating from long continuous methylene sequences, splits and the intensity of the 730 cm-1 

component increases72, 73.  The 730 cm-1 band produced by crystal-field splitting, has been identified as 

a true crystallinity band59 and, therefore, the ratio of the band intensities at 720 cm-1 and 730 cm-1 is 

related to the relative crystallinity in polyethylene73-75.  In Figure 4.18 the 998 cm-1/972 cm-1 and 730 

cm-1/720 cm-1 ratios are constructed across the Gram-Schmidt curves of all fractions in order to study 

the distribution of ethylene and propylene crystallinity across the molecular weight profiles.   

 

The 60ºC fraction displays a very low level of propylene isotacticity or crystallinity across the low 

elution volume (high molecular weight) component of the bimodal elution volume curve.  The  

998 cm-1/972 cm-1 ratio across the higher elution volume (lower molecular weight) component is 

considerably higher, and agrees well with the CH3/CH2 ratio which indicated that this component 

consists of PP homopolymer.  The 730 cm-1/720 cm-1 ratio profile indicates that crystalline ethylene is 

only present within the lower elution volume component, which was identified as the semi-crystalline 

EPC component of this fraction.  The discontinuation of this profile result from the absence of the  

730 and 720 cm-1 bands within the higher elution volume component of the distribution.   
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Figure 4.18:  SEC-FTIR analysis of the ethylene and propylene crystallinity distributions within the 60ºC, 80ºC, 

90ºC and 100ºC TREF fractions of sample 3V-0h.   
 

The 80ºC and 90ºC fractions both show a gradual increase in the 998cm-1/972cm-1 ratio across the 

bimodal elution volume curve, with the highest value reached across the higher elution volume 

component where PP homopolymer is found.  The 80ºC and 90ºC fractions also display ethylene 

crystallinity only within the lower elution volume component of the distribution, where EPC elutes.  It is 

therefore concluded that, within these fractions, both crystalline ethylene and propylene is found within 

the EPC phase, while PP of a higher crystallinity is found within the higher elution volume, PP 

homopolymer component.  The two melt endotherms present in the DSC heating curve of these 

fractions is therefore representative of crystalline ethylene of the EPC phase melting at the lower of the 



Chapter 4:    Results and Discussion 
 
 

   
   
 
  82

two melting temperatures, with the propylene segments of the EPC, as well as the homopolymer 

phase, melting at higher temperatures.   

 

The 100ºC fraction, which consists mainly of PP homopolymer with a very small percentage EPC, 

exhibits a more or less uniform propylene concentration across the Gram-Schmidt curve.  The value for 

the 998 cm-1/972 cm-1 ratio is similar to that observed on the higher elution volume end of the PP 

homopolymer component of the preceding fractions, with only a slightly lower value present on the 

lower elution volume end shoulder where the CH3/CH2 ratio has indicated the EPC to elute.  It is also 

only within this low elution volume shoulder of the Gram-Schmidt plot that any crystalline ethylene is 

detected.  These results on the ethylene and propylene crystallinity determined by SEC-FTIR appear to 

agree well with the compositional information obtained by SEC and the thermal behaviour of the 

fractions detected by DSC.  The propylene (1376 cm-1/1462 cm-1) and ethylene content  

(720 cm-1/1163cm-1) of the 30, 110 and 120ºC fractions were determined by the same SEC-FTIR 

procedure as described for the preceding fractions and the results are presented in Figure 4.19.   
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Figure 4.19:  SEC-FTIR analysis of the ethylene and propylene contents distributions within the 30ºC 110ºC and 

120ºC TREF fractions of sample 3V-0h.   
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The 30ºC fraction, which consists mainly of EPR, shows uniform concentration profiles for both 

ethylene and propylene across the main elution volume curve, with a decrease in the ethylene content 

on the larger elution volume side, where atactic PP is expected to elute.  The 110 and 120ºC fractions 

are known to consist almost exclusively of iPP, which is also reflected in the uniform CH3/CH2 ratio 

across the elution volume curve of these two fractions, and the ethylene content profiles approaching 

0.  The crystallinity of both monomers was also profiled across the elution volume curves of these 

fractions and the results appear in Figure 4.20.  In the 30ºC fraction ethylene crystallinity seems to 

decrease slightly towards larger elution volumes, with a substantial decrease at the largest elution 

volume end of the curve, where atactic PP elutes.  No 998 cm-1 band was present across the entire 

Gram-Schmidt plot, indicating the absence of any crystalline propylene within this fraction.  It can, 

therefore, be concluded that the crystallisation and melting transitions visible in the DSC result of this 

fraction, originate from low crystallinity polyethylene alone.   
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Figure 4.20:  SEC-FTIR analysis of the ethylene and propylene crystallinity distributions within the 30ºC 110ºC 

and 120ºC TREF fractions of sample 3V-0h.   
 

The 110 and 120ºC fractions are known to consist mainly of iPP, which is reflected in their uniform 

propylene crystallinity profiles across the elution volume curve of both.  Ethylene crystallinity profiles 
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were not constructed for these fractions, due to the absence of the ethylene bands at 730 cm-1 and  

720 cm-1.   

 

Analysis of the TREF fractions of the undegraded 3V copolymer by SEC, FTIR, DSC, 13C-NMR and 

SEC-FTIR revealed the 30ºC fraction to consist of EPR and atactic PP, the 60 and 80ºC fractions 

contain transition EPC copolymers consisting of shorter, low crystallinity segments of ethylene and 

propylene, as well as low isotacticity PP.  The 90 and 100ºC fractions contain ‘blocky EPC copolymers’ 

with longer crystallisable segments of ethylene and propylene, as well as low isotacticity PP 

homopolymer.  The 110 and 120ºC fractions consist mainly of isotactic PP with a very small amount of 

ethylene homopolymer.  The 130ºC fraction is expected to be similar in composition to the two 

foregoing fractions, therefore, the weight percentage of this fraction is included in the total weight 

percentage of material eluting within the highest (110–130ºC) elution range.  The weight percentage of 

material collected within each of the 4 major elution ranges, is presented in Table 4.7.   

 
 
Table 4.7:  Weight percentages of the 4 major fractions constituting sample 3V 

     

Te 30ºC (60–80ºC) (90–100ºC) (110–130ºC) 

Sample EPR ‘Transition’ EPC ‘Blocky’ EPC Isotactic PP 
 + + + + 

 aPP low isotacticity PP higher isotacticity PP hPE 
     

3V-0h 9.90 6.83 8.86 74.72 

 
 
It can be seen here that the highest eluting fractions consisted mostly of isotactic PP, account for 

almost 75% of the bulk sample, with the EPR and atactic PP being the second largest component at 

10% and those fractions consisting of the transition and blocky EPC copolymers and low isotactictiy 

PP, constitute only 6.83 and 8.86% of the total sample mass, respectively.  This explains why bulk 

characterisation techniques mostly reflect the behaviour of the iPP phase upon degradation and 

emphasises the fact that fractionation and hyphenation of techniques are needed in order to study the 

degradation behaviour of all morphologies present.   

 

4.1.4 TREF results for the degraded 3V samples 
 

After oven ageing, degraded samples were re-crystallised according to the TREF crystallisation step 

described in Section 3.3.5 of the experimental chapter, after which fractions of the degraded samples 

were collected at the same elution temperatures used in the fractionation step of the undegraded 

sample in the previous section.  In Figure 4.21 the weight fraction per temperature increment (Wi%/ΔT) 

of the undegraded 3V copolymer is compared to those of the same copolymer degraded for 40, 65 and 

90 hours respectively.  A shift in the peak dissolution temperature is observed from 120ºC in the 

undegraded and only slightly degraded samples (3V-40h) to 110ºC in the samples degraded for 65 and 

90 hours.  This shift also indicates the selective degradation of the higher isotacticity fraction which was 

observed in the CRYSTAF results in Section 4.1.3.2.  The shift in dissolution temperature towards 
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lower temperature and the decrease in its intensity, together with the increase in the amount of material 

eluting at the lowest elution temperature (soluble fraction) also agrees with the CRYSTAF results 

obtained in Section 4.1.3.2.   
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Figure 4.21:  TREF weight fraction per temperature increment curves (Wi%/ΔT) for the undegraded and degraded 

3V samples. 

 

Both these techniques, therefore, indicate changes in the solution crystallisation of the impact PP 

copolymer upon degradation.  TREF, however, provides the advantage of obtaining additional 

information on the structural or compositional changes caused by degradation, through off-line analysis 

of the collected fractions by other techniques.  Figure 4.22 displays the change in the weight 

percentage of each TREF fraction as a function of degradation time, where the bulk sample was 

fractionated after 0, 40, 65 and 90 hours of degradation.   
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Figure 4.22:  Changes in the weight percent (Wi%) of all TREF fractions of sample 3V obtained after degradation 

times of 0, 40, 65 and 90 hours. 

 

The fractions eluting from 30 to 100ºC show an increase in weight percentage with ongoing 

degradation time, whereas a decrease is observed for the 120 and 130ºC fractions.  The 110ºC 

fraction shows an initial increase in weight percentage from degradation times of 0 to 65 hours, 

followed by a decrease in the sample degraded for 90 hours.  These changes are also illustrated by the 

line graphs in Figure 4.23, where the changes in weight percentage of each fraction with ongoing 

degradation time can be seen more clearly.   
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Figure 4.23:  Weight percent (Wi%) changes of all TREF fractions as a function of degradation time. 
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The 120ºC fraction, which comprises the largest weight fraction of sample 3V, shows the most 

significant decrease in weight percent with ongoing degradation time, followed by the 130ºC fraction.  

The most significant increases in weight percentage is observed in the 30 and 110ºC fractions, 

whereas a more gradual increase is seen in the weight percentage of all fractions eluting from 60 to 

100ºC for degradation times up to 65 hours.  A more significant increase in the amount of material 

eluting in these fractions is only observed at a degradation time of 90 hours.  The increase in the 

amount of material eluting at 30ºC, together with the decrease in the 120 and 130ºC fractions also 

suggests that the fractions with higher isotacticity are more susceptible to degradation.   

 

From a theoretical point of view, the chemical composition effect accounts for PP being more 

degradable than PE, due to the presence of numerous highly reactive tertiary C-H bonds which can be 

cleaved in the presence of oxygen 76-78, despite its crystalline nature.  From the analysis of the TREF 

fractions of the undegraded material, it was concluded that the highest eluting fractions are those 

consisting of isotactic PP with only a very small amount of PE homopolymer.  The initial increase in the 

amount of material eluting in the 110ºC fraction suggests that some portion of the original 120ºC and 

130ºC fractions was modified by degradation to a relatively small extent to ensure its elution at 110ºC, 

rather than at 30ºC at degradation times up to 65 hours.  At 90 hours, however, a considerable portion 

of the 110ºC fraction has been modified to an extent where it is no longer crystallisable at 110ºC, and 

is presumed to elute at lower elution temperatures, as indicated by the decrease in the amount of 

material eluting within this fraction and the increase in the amount of material eluting at lower 

temperatures. 

 

The TREF results therefore suggest that the PP fraction is more susceptible to degradation than the 

amorphous EPR and the range of semi-crystalline EP copolymers, and it’s crystallisability is 

significantly affected by degradation.  The preferential degradation of the PP phase in impact PP 

copolymers, has also been demonstrated by other authors54, 76, 77, 79, but it is still unclear as to how the 

EPR and segmented copolymers are affected by the degradation process and whether it is only the PP 

being modified.  The TREF fractions of the samples degraded for 40, 65 and 90 hours, obtained by 

fractionation after degradation, will now be analysed by SEC, SEC-FTIR and 13C-NMR and compared 

to those of the undegraded copolymer, to obtain more detailed information on the compositional 

changes occurring in the different fractions upon degradation and to better understand the changes in 

crystallisability of the bulk sample observed by the TREF analysis of degraded samples.   

 

4.1.4.1 TREF-SEC results for the degraded 3V samples 
 

The molecular weight distributions of the TREF fractions of the undegraded 3V-0h sample have been 

presented in Section 4.1.3.6.  Figure 4.25 shows the SEC curves for the undegraded and degraded 

bulk 3V samples, each with the individual SEC distributions of their TREF fractions.  The SEC 

molecular weight distribution curve of the bulk 3V sample shifts towards lower molecular weight with 

increasing degradation times from 0 to 90 hours as has been demonstrated in Figure 4.4.  Shifts in the 
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SEC curves of the individual TREF fractions of each sample are also observed.  Individual molecular 

weight distributions are also seen to shift towards lower values.  The bimodal distributions show an 

increase in the intensity of the lower molecular weight component with ongoing degradation time, with 

an accompanying decrease in the intensity of the higher molecular weight distribution.  The higher 

molecular weight component shows an initial increase in molecular weight after a degradation time of 

40 hours, followed by a decrease at longer degradation times.  The lower molecular weight component 

shows molecular weight shifts even at 40 hours.  Overlays of the molecular weight distribution changes 

of each TREF fraction, as a function of degradation time, are presented in Figure 4.25.   
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Figure 4.24:  SEC curves for the bulk undegraded and degraded 3V samples and the individual SEC distributions 

of the TREF fractions of each.   
 

The 30, 110 and 120ºC fractions show a definite shift towards lower molecular weight with ongoing 

degradation of the bulk 3V sample.  The high molecular weight side of the 100ºC fraction also shifts 

towards lower values.  The molecular weight curves of the degraded transition and blocky copolymer 

fractions (60–90ºC), however, display more complicated changes, where, in general, the MWD of the 

lower molecular weight component is seen to remain constant, whereas a shift in the distribution of the 

higher molecular weight component is observed.  It has to be taken into account that the shifts 

observed here are not those of the isolated fractions being degraded, but rather represent the changes 

occurring in the bulk sample upon degradation, since re-crystallisation and fractionation was performed 

after degradation.  It also has to be remembered that, upon degradation, some material shift into other 
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fractions due to changes in crystallisability, therefore the material giving rise to the molecular weight 

distribution in the 0h sample of a certain fraction, may not be of the same chemical composition as the 

fraction eluting at the same temperature within the 3V-90h sample after TREF re-crystallisation and 

fractionation.   
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Figure 4.25:  Changes in the SEC curves of the bulk 3V samples and their TREF fractions with ongoing 

degradation times. 
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In Figure 4.25 the shift in the molecular weight curves of the 100, 110 and 120ºC fractions can be 

ascribed to the comonomer content and tacticity of the undegraded sample (0h), which is considerably 

higher than that of the preceding fractions.  According to theory, the 30ºC fraction is expected to be 

extremely stable, since it has the highest ethylene content and lowest isotacticity of all the fractions.  

This fraction, however, exhibits the largest shift in molecular weight with ongoing degradation time.  

From TREF analysis we have observed a considerable increase in the amount of material eluting at 

30ºC with ongoing degradation times, with an accompanying decrease in the amount eluting at 110 

and 120ºC.  This shift in the molecular weight curve is therefore expected not only to be caused by 

changes in the EPR originally present in the 30ºC fraction of the undegraded material, but mainly by 

the fractions of higher elution temperatures (110ºC, 120ºC) that have moved into the soluble fraction as 

a result of considerable modification of their structure, that has rendered them non-crystallisable.   

 

As has been mentioned before, more complicated changes in molecular weight are observed for the 

60-90ºC fractions, where the lower molecular weight component of the bimodal distribution remains at 

more or less the same molecular weight, whereas the higher molecular weight component shows 

noticeable shifts.  13C-NMR revealed these fractions to consist of almost equal amounts of ethylene 

and propylene, and isotacticity values between that of the 30ºC fraction and that of the 100–120ºC 

fractions.  DSC and FTIR have also further indicated that these fractions are segmented or blocky 

copolymers of ethylene and propylene.  As mentioned before, the two components in the bimodal 

distribution of these fractions are expected to be EPC and PP homopolymer, but further analysis is 

needed to confirm the chemical composition of the overlapping distributions.   

 

From these results, it can be seen that off-line coupling of TREF and SEC supplies information on the 

molecular weight shifts occurring in the individual fractions obtained by fractionation after degradation 

of the bulk 3V sample.  Conventional SEC only gives an average molecular weight result for the bulk 

material, without any indication of the susceptibility of the different components to oxidation.  The 

TREF-SEC technique does, however, not supply information on the distribution of degradation 

products or the chemical composition across the molecular weight distribution of each fraction.  The 

next step in the development of the multi-dimensional analysis technique for studying the degradation 

of impact PP copolymers is, therefore, the hyphenation of TREF with SEC-FTIR.  This will be useful 

especially for determining the distribution of degradation products across molecular weight distributions 

and for confirming compositional changes within fractions as a result of degradation.   

 

4.1.4.2 TREF-(SEC-FTIR) results for the degraded 3V samples 
 

The SEC-FTIR results of the TREF fractions obtained by fractionation of the bulk samples after 

degradation will now be discussed.  In the following figures the concentration of degradation products 

was calculated by the ratio of the carbonyl band area (1804–1580cm-1) and that of the CH band in the 

region 3005–2787 cm-1.  The propylene content was quantified by the ratio of the CH3 and CH2 

bendings at 1376 cm-1 and 1462 cm-1, respectively 23, 24, 64.  In Section 4.1.3.9 it was proven that the 
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1376 cm-1 band is not the result of branching in PE and, therefore, only representative of PP units.  

Chain branching is, however, also known to occur during PE degradation,80 therefore, the validity of 

using the 1376 cm-1 band as an indication of CH3 groups in PP, was once again investigated by 

profiling the ethylene contents across the Gram-Schmidt plots of the degraded 80ºC TREF fraction.  

The 720 cm-1/1163 cm-1 band area ratio was once again used to quantify the ethylene contents within 

this blocky copolymer fraction.  The comparison of the propylene (1378 cm-1/1462 cm-1) and ethylene 

contents (1163 cm-1/720 cm-1) within the 80ºC fraction of the undegraded and degraded samples, are 

presented in Figure 4.26.   
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Figure 4.26:  Comparison of the ethylene and propylene concentration profiles within the 80ºC fraction of the 

undegraded and degraded 3V copolymer samples.   
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The ethylene and propylene content profiles for the 80ºC fraction of the undegraded sample (3V-0h) 

have already been discussed in Section 4.1.3.9, where it was concluded that the lower elution volume 

component contains semi-crystalline EP copolymers, whereas the higher elution volume component 

consists of PP homopolymer exclusively.  Within the samples degraded for 40, 65 and 90 hours, the 

gradual increase in propylene content towards the higher elution volume component originally visible 

within the undegraded sample, still exists, with this ratio reaching a plateau across the higher elution 

volume component in the degraded samples.  This indicates that, even in the degraded samples, only 

PP is to be found within this component of the bimodal distribution.  When comparing this to the 

ethylene content profiles of this fraction, it is seen that, even after degradation, this higher elution 

volume component still contains no ethylene.  Therefore, the CH3 groups present here, are not part of 

branched PE within this component and must be inherent to the PP units only.  The  

1378 cm-1/1462 cm-1 ratio will, therefore, be used as an indication of the propylene content in all 

subsequent SEC-FTIR results of the degraded fractions as well.   

 

The carbonyl concentration and propylene content will now be profiled across the molecular weight 

distribution of each TREF fraction in the undegraded and degraded samples.  The distribution of 

degradation products across the molecular weight distribution of each fraction will be studied, together 

with changes in its chemical composition.  The SEC-FTIR results of the highest eluting iPP fractions 

(120 and 110ºC) will be presented first, followed by that of the 60-100ºC fractions (co-eluting low 

isotacticity PP and EPC), and finally, that of the EPR-rich 30ºC fraction.  Figure 4.27 shows the SEC-

FTIR results obtained for the 120ºC fraction in samples degraded for 0, 40, 65 and 90 hours, obtained 

after re-crystallisation of the bulk, degraded samples and fractionation by TREF.   

 

The Gram-Schmidt curve shifts to higher elution volumes from 0 to 90 hours, which is in agreement 

with the decrease in molecular weight observed in the SEC results for this fraction (Section 4.1.4.1).  

As degradation proceeds, chain scission of longer, entangled chains renders shorter molecules that 

are capable of entering some of the pores in the column packing material from which they were 

previously excluded in their undegraded state.  This leads to an increase in the elution volume 

necessary to elute these molecules.  The Gram-Schmidt curves also broaden towards longer 

degradation times.  There also seems to be a slight broadening in the SEC curves in Section 4.1.4.1, 

but the effect is much less pronounced.  This is ascribed to the fact that a certain degree of spreading 

always accompanies the deposition onto the Germanium disc in the LC-Transform® interface.   

 

In the 0 hours fraction a uniform CO/CH ratio distribution of value close to 0 is observed across the 

molecular weight distribution curve.  In the 120ºC fraction of the sample degraded for 90 hours, this 

ratio curve is seen to have shifted to a slightly higher value across the entire distribution, with a marked 

increase at the higher elution volume end, indicating a higher concentration of degradation products 

within the lower molecular weight end of the curve.  The ratio in the 40 and 65 hours samples also 

displays a uniform profile close to 0 across the entire molecular weight distribution, which indicates that 

only undegraded material remains in the 120ºC fraction of bulk samples degraded for 40 and 65 hours.  



Chapter 4:    Results and Discussion 
 
 

   
   
 
  93

All degraded molecules containing substantial amounts of carbonyl functionalities have been rendered 

non-crystallisable, causing them to elute at lower temperatures, except at longer degradation times 

(90h), where carbonyls are clearly incorporated into chains, but they are still crystallisable and elute at 

120ºC.   
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Figure 4.27:  SEC-FTIR results for the 120ºC TREF fraction of sample 3V degraded for 0, 40, 65 and 90 hours, 

where fractionation was performed after degradation.   

 

It has already been mentioned that the CH3/CH2 ratio gives an indication of the distribution of propylene 

across the molecular weight distribution of this fraction.  This ratio appears to remain unchanged during 

all stages of degradation, i.e., there does not seem to be a significant change in the chemical 

composition of this fraction as a function of degradation.  This ratio indicates that, even after 
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degradation, this sample still consists predominantly of PP, even though some part of the iPP phase is 

degraded preferentially.  The ethylene concentration is presumed to be too low to have a marked 

influence on the CH3/CH2 ratio.   

 

Individual FTIR spectra can be extracted from the Gram-Schmidt profile in order to examine the 

chemical composition at any point along the elution volume curve.  The individual FTIR spectra at the 

maximum of the Gram-Schmidt curves of the 120ºC fraction in the undegraded sample and that 

degraded for 90 hours, appear in Figure 4.28.   
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Figure 4.28:  Individual FTIR spectra extracted from the Gram-Schmidt profiles of sample 3V-0h-120ºC(a) and 

sample 3V-90h-120ºC(b) at 36.2 ml and 38.9 ml, respectively.   
 

The FTIR spectra in the 1900–600 cm-1 region of Figure 4.28 (a) and (b) are characteristic of isotactic 

PP.  The absence of the 720 cm-1 and 730 cm-1 bands indicate that, even though the presence of 

ethylene is detected by 13C-NMR, the concentration of long ethylene sequences is not high enough to 

be visible in the FTIR spectrum.  The two spectra display a difference in the intensity of the carbonyl 

band in the area 1805–1580 cm-1, which is reflected in the CO/CH ratio’s in Figure 4.27, (3V-90h-

120_CO/CH), already starting at this point along the distribution, although the most significant increase 

only occurs at the lower molecular weight edge of the Gram-Schmidt curve.  The insert in Figure 

4.28(b) is an enlargement of the carbonyl absorption area, where peak intensities are clearly visible at 

approximately 1780 cm-1, 1722 cm-1 and 1712 cm-1, corresponding to the main carbonyl functionalities 

formed during PP degradation.   

 

Figure 4.29 shows the SEC-FTIR results for the 110ºC fraction in samples degraded for 0, 40, 65 and 

90 hours, obtained after re-crystallisation and fractionation by TREF.  The results for the 110ºC fraction 

are similar to that of the 120ºC, where the Gram-Schmidt plot is seen to shift towards slightly longer 

elution volumes at longer degradation times.  Similar shifts in SEC curves were also observed for the 

120ºC and 110ºC fractions in Section 4.1.4.1.  A CO/CH ratio of approximately 0 is also observed up to 
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65 hours, whereas this ratio curve shifts to a higher value across the entire Gram-Schmidt plot at 90 

hours, with a marked increase at the lower elution volume end.  The CH3/CH2 ratio remains unchanged 

from 0 to 90 hours, as was also seen in the 120ºC fraction.   
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Figure 4.29:  SEC-FTIR results for the 110ºC TREF fraction of sample 3V degraded for 0, 40, 65 and 90 hours, 

where fractionation was performed after degradation.   

 

Next, the SEC-FTIR results of the blocky and segmented copolymer fractions were studied.  The 80ºC 

fraction is presented first within this series to illustrate the changes occurring upon degradation within 

the fractions consisting of co-eluting low isotacticity PP and EPC.  The SEC-FTIR results for the 80ºC 

fraction of the undegraded and degraded samples are presented in Figure 4.30.   
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Figure 4.30:  SEC-FTIR results for the 80ºC fraction of the 0h, 40h, 65h and 90h samples of copolymer 3V, 

obtained by TREF analysis after degradation. 

 

The chemical composition of the bimodal molecular weight distribution of the 80ºC fraction of the 

undegraded sample was studied by SEC-FTIR in Section 4.1.3.9 and it was found that the lower 

elution volume component consists of semi-crystalline EP copolymers, which co-elute with low 

isotacticity PP homopolymer present within the higher elution volume component.  With degradation 

times from 0 to 90 hours, the lower elution volume component is seen to shift towards larger elution 

volumes, whereas the higher elution volume component remains at an approximately constant elution 

volume.  The intensity of the higher elution volume component also increases within the Gram-Schmidt 

profile with ongoing degradation times, whereas the lower elution volume component, which is the 

dominant component within the undegraded sample, is reduced to a very small intensity within the 
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sample degraded for 90 hours.  The CH3/CH2 ratio which increases gradually towards the higher 

elution volume end of the undegraded sample, reaches a plateau which spreads across the entire 

higher elution volume component of the samples degraded for 40, 65 and 90 hours.  The value for this 

ratio is approximately 0.65, which agrees with the value obtained for the CH3/CH2 ratio within the 

isotactic PP fraction (120ºC).  The increase in the amount of PP eluting within this component might 

less likely be caused by degraded PP originally present within the lower elution volume EPC 

component of this fraction that has been reduced in molecular weight by chain scission, or more likely 

by isotactic PP from higher eluting fractions (120ºC, 130ºC of sample 3V-0h) that has been degraded 

and rendered less crystallisable upon re-crystallisation.  TREF analysis indicated an increase in the 

weight percentage of this fraction from 3.26% in the undegraded material to 7.46% in the sample 

degraded for 90 hours.  This increase was accompanied by a considerable decrease in the amount of 

material eluting at 120 and 130ºC in the degraded sample, therefore the SEC-FTIR result suggests that 

the iPP phase degrades preferentially and elutes at lower temperatures in the TREF experiment after 

re-crystallisation of the degraded chains.   

 

The carbonyl concentration of approximately 0 is observed across the entire bimodal molecular weight 

distribution of the sample labelled 3V-0h-80 hours.  A slight increase in this profile is seen at the lower 

molecular weight side in the sample degraded for 40 hours, and becomes more pronounced across a 

larger portion of the higher elution volume component in the 65 and 90 hours samples.  The drastic 

increase in the slope of the ratio curve indicates that a considerable amount of carbonyl-containing 

degradation products are present within this lower molecular weight component of the 80ºC fraction of 

the sample degraded for 90 hours, although the CO/CH ratio across the higher molecular weight 

component also increases from approximately 0.003 to values between 0.0127 and 0.0159 in the 

sample degraded for 90 hours.  This component continuously elutes in the 80ºC fraction with ongoing 

degradation times, but its intensity (amount of material) appears to decrease due to PP degradation 

products moving into this fraction at longer degradation times.   

 

Figure 4.31 shows an overlay of the individual infrared spectra obtained at the maxima (34.0 ml and 

44.1 ml) of the two components of the bimodal distribution of the 80ºC fraction of the undegraded 3V 

sample.  It is clear that the spectrum at 34.0 ml contains a considerable amount of long ethylene 

segments, some of which are crystallisable, as seen by the strong absorption band present as a 

doublet at 720cm-1 and 730cm-1.  Bands associated with PP, i.e., 972 cm-1 and 998 cm-1 are also 

present.  The spectrum at 44.1 ml is characteristic of PP with bands at 998 cm-1, 972 cm-1 and  

841 cm-1.  These spectra confirm that the two components in the bimodal distribution are EPC and PP 

homopolymer.   
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Figure 4.31:  Individual FTIR spectra extracted from the Gram-Schmidt profile at the maxima of the two peaks in 

sample 3V-0h-80ºC.   

 

The spectra extracted from the maxima of the two components in the Gram-Schmidt of the 80ºC 

fraction of the sample degraded for 90 hours, are presented in Figure 4.32.   
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Figure 4.32:  Individual FTIR spectra extracted at 36.7 ml (a) and 43.8 ml (b) of the Gram-Schmidt profile of 

sample 3V-90h-80ºC.   

 

The spectrum at 36.7 ml contains bands associated with both ethylene and propylene, with a 

considerable amount of both longer and crystallisable ethylene segments, as indicated by the doublet 

at 720 cm-1 and 730 cm-1.  The spectrum at 43.8 ml seems to contain only PP, with no bands at  

720 cm-1 or 730 cm-1 to indicate the presence of longer or crystallisable ethylene sequences.  The 

spectrum at 36.7 ml also contains a sharp carbonyl band with a maximum intensity at approximately 
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1722 cm-1, which is characteristic of ketones, the major primary degradation product formed in PP, 

although the narrowness of the carbonyl region and the negligible γ–lactone band at 1780 cm-1 might 

indicate that carbonyl groups have been inserted into PE chains too.  The carbonyl band is 

considerably broader in the spectrum at 43.8 ml, with definite bands at 1722 cm-1 and 1776 cm-1, the 

latter which is associated with γ-lactones, a degradation product formed during degradation in PP.  The 

presence of a significant carbonyl band in both spectra indicates that at 90 hours, carbonyl 

functionalities are present across both components of the bimodal distribution.  The transition and 

blocky copolymer fractions (60–100ºC) all showed bimodal molecular weight distributions in SEC, 

although the higher molecular weight component was reduced to a shoulder in the 100ºC fraction.  The 

SEC-FTIR results for the 60 and 90ºC fractions were similar to those of the 80ºC and are presented in 

Figure 4.33 and Figure 4.34, respectively.   
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Figure 4.33:  SEC-FTIR results for the 60ºC fraction of the 0h, 40h, 65h and 90h samples of copolymer 3V, 

obtained by TREF analysis after degradation. 
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Figure 4.34:  SEC-FTIR results for the 90ºC fraction of the 0h, 40h, 65h and 90h samples of copolymer 3V, 

obtained by TREF analysis after degradation. 

 

The CH3/CH2 ratio in the undegraded sample of both of these fractions (3V-0h-60; 3V-0h-90) also 

increases towards the lower elution volume side of the Gram-Schmidt plot, indicating that the 

propylene content increases towards the lower molecular weight side of the distribution.  As was seen 

for the 80ºC fraction, this ratio also reaches a plateau across the higher elution volume component with 

ongoing degradation times, indicating an increase in the propylene content.  Degraded, less 

crystallisable PP that was originally present within higher eluting fractions is, therefore, seen to elute in 

all lower eluting, copolymer fractions with ongoing degradation times.  The CO/CH ratio also increased 

on the higher elution volume side of all degraded samples, indicating that degraded molecules 

containing carbonyl functionalities are found mainly on the lower molecular weight side of the 
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distribution.  At 90 hours, this ratio is seen to have increased across both components of the bimodal 

distribution, but a much higher concentration of degradation products is seen within the higher elution 

volume component.  The SEC-FTIR results of the 100ºC fraction are presented in Figure 4.35.   
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Figure 4.35:  SEC-FTIR results for the 100ºC fraction of the 0h, 40h, 65h and 90h samples of copolymer 3V, 

obtained by TREF analysis after degradation. 

 

The Gram-Schmidt curve moves to slightly larger elution volumes with ongoing degradation times with 

the most significant change or decrease at the low elution volume side.  This result agrees with the 

SEC data where a decrease was mainly seen on the high molecular weight side of the molecular 

weight distribution curve.  At a degradation time of 65 hours, the CO/CH ratio curve shows an increase 

at the larger elution volume side of the Gram-Schmidt curve which becomes even more pronounced in 
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the 90h sample.  A uniform CH3/CH2 ratio is observed across the entire elution volume curve of the 

undegraded sample and it remains unchanged throughout all degradation times.   

 

The individual spectra extracted at elution volumes of 36.5 ml and 41.4 ml in the Gram-Schmidt plot 

are presented in Figure 4.36.  The main difference between the two spectra, is the presence of the 720 

cm-1 and 730 cm-1 bands, presenting long, crystallisable ethylene sequences, in the 36.5 ml spectrum.  

The lower elution volume component of the 100ºC fraction is therefore also EPC, whereas the higher 

elution volume component consists of semi-crystalline PP, as indicated by the spectrum at 41.4 ml.  

This fraction is therefore, also accepted as part of the range of EP copolymers, which co-elutes with PP 

homopolymer, although, in comparison to the 60–90ºC fractions, a much lower ethylene content and 

concentration of long ethylene sequences were detected by 13C-NMR.  The appearance of the EPC as 

just a shoulder to the PP distribution, is ascribed to the low amount of EPC within this fraction, 

compared to the PP homopolymer.  13C-NMR has illustrated that this fraction contains only 0.63% of 

EP sequences, whereas the concentration of long PPP sequences equals 89.37%.  This fraction is 

therefore the highest eluting fraction containing EPC before the predominantly isotactic PP-containing 

fractions eluting at 110 and 120ºC.   
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Figure 4.36:  Individual FTIR spectra extracted from the Gram-Schmidt profile at 36.5 ml and 41.4 ml in sample 

3V-0h-100ºC.   

 

The spectra extracted at the maximum intensity of the Gram-Schmidt curve (elution volume of 38.2 ml) 

and a point close to the lowest elution volume end (43.1 ml) of the 100ºC fraction of the 90h sample, is 

presented in Figure 4.37. 
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Figure 4.37:  Individual FTIR spectra extracted at 38.2 ml (a) and 43.1 ml (b) of the Gram-Schmidt profile of 

sample 3V-90h-100ºC.   

 

The spectrum at 38.2 ml is similar to that extracted at 36.5 ml in the 0h sample, although a much 

smaller 720 cm-1 band is present in the 90h sample.  In Figure 4.22 it was seen that the weight 

percentage of the 100ºC fraction increased from 5.27% in the 0h sample to 18.16% in the sample 

degraded for 90 hours, therefore a considerable amount of degraded PP has moved into this fraction 

upon degradation.  This is proven by the spectrum at 43.1 ml showing that only PP is present at the 

larger elution volume end where the highest CO concentration is found.  Finally, the SEC-FTIR results 

of the EPR-rich fraction will be presented.  The SEC-FTIR results for the 30ºC fraction at the various 

stages of degradation are presented in Figure 4.38.   

 

The Gram-Schmidt plot of the 30ºC fraction of the undegraded sample contains a single broad 

component centred around an elution volume of 32.1 ml.  The Gram-Schmidt plot shifts to larger 

elution volumes with ongoing degradation times, indicating a decrease in molecular weight, which was 

also observed in the SEC results in Section 4.1.4.1.  The CO/CH ratio shows a slight increase towards 

the higher elution volume side of the Gram-Schmidt of the 65h sample, while it forms a steeper slope 

across the entire molecular weight distribution in the sample degraded for 90 hours, where it reaches a 

maximum at the lower molecular weight side.  In this case, degradation products are present across 

the complete molecular weight distribution.  The CH3/CH2 ratio is uniform across the entire molecular 

weight range in the undegraded and 40h samples, whereas a slight increase is observed in the 

samples degraded for 65 and 90 hours.  The extraction of individual spectra from the Gram-Schmidt 

plot is necessary to gain insight into the chemical composition changes of this fraction resulting from 

degradation.   
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Figure 4.38:  SEC-FTIR results for the 30ºC fraction of the 0h, 40h, 65h and 90h samples of copolymer 3V, 

obtained by TREF analysis after degradation. 

 

Figure 4.39 shows the spectrum extracted at the maximum (32.1 ml) of the Gram-Schmidt plot of the 

30ºC fraction of the undegraded sample.  This fraction clearly consists of amorphous ethylene and 

propylene, with no crystalline PP bands visible at 998 cm-1 and 841 cm-1.  A shoulder to the 720 cm-1 

band around 730 cm-1, suggests that some crystallisable ethylene is present, which was also seen 

from the SEC-FTIR results of the 730 cm-1/720 cm-1 ratio of this fraction in Figure 4.20.  The spectra 

extracted at the maximum (40.0 ml) as well as a point close to the higher elution volume end of the 

molecular weight distribution (48.0 ml) of the 90 hours sample, appear in Figure 4.40.   
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Figure 4.39:  Individual FTIR spectra extracted from the Gram-Schmidt profile at the maximum of the main peak 

at 32.1 ml in sample 3V-0h-30ºC.   

 

The spectrum at 40.0 ml is similar to that at the maximum of the undegraded sample, which is 

characteristic of EPR.  The spectrum at 48.0 ml, however, is that of PP with characteristic bands at 972 

cm-1, as well as 1462cm-1 and 1376 cm-1.  Strong carbonyl bands commonly observed upon thermo-

oxidative degradation in PP are also present at 1780 cm-1, 1740 cm-1 and 1712 cm-1 and 1720 cm-1. 

There does not seem to be any ethylene present in this part of the Gram-Schmidt, although its 

presence might be obscured by the abundance of polypropylene.  These results prove that PP found at 

higher Te in the undegraded sample had been modified by carbonyl group insertion, to such an extent 

that it is no longer crystallisable at higher temperatures.  This accounts for the increase in the weight 

percentage of material eluting in the 30ºC fraction from 0 to 90 hours.   
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Figure 4.40:  Individual FTIR spectra extracted at 40.0 ml (a) and 48.0 ml (b) of the Gram-Schmidt profile of 

sample 3V-90h-30ºC.   
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4.1.4.3 TREF-(13C-NMR) results for the degraded 3V samples 
 
13C-NMR analysis was performed on the fractions of all degraded samples after fractionation by TREF.  

Sequence analysis of these fractions was done in order to obtain information on the changes in the 

distribution of ethylene and propylene caused by degradation.  The complete sequence analysis and 

propylene tacticity results of the TREF fractions of the undegraded material have already been 

presented in Table 4.4, while those for the most degraded sample (90h) are presented in Table 4.8.   

 
 

Table 4.8:  13C-NMR monomer sequence analysis and tacticity data of the bulk 3V-90h sample and its TREF 

fractions  
             

Sample P E PP PE EE PPP PPE EPE EEE EEP PEP % 
    EP   EPP   PEE  mmmm 
             

             

3V-90h 88.35 11.65 84.95 6.79 8.29 83.15 3.57 1.63 6.57 3.57 1.61 84.80 

3V-90h-30 46.89 53.11 30.63 32.53 35.46 15.10 26.71 5.08 0.02 0.01 0.01 21.80 

3V-90h-60 61.14 38.86 55.27 11.74 32.74 50.32 7.62 3.20 28.63 7.25 0.88 67.41 

3V-90h-80 80.29 19.71 78.73 3.12 18.10 77.88 1.58 0.83 16.88 2.24 0.17 87.91 

3V-90h-90 91.88 8.12 91.62 0.52 7.79 91.59 0.27 0.03 0.02 0.00 0.00 91.18 

3V-90h-100 98.07 1.93 98.07 0.00 1.93 98.07 0.00 0.00 1.93 0.00 0.00 96.03 

3V-90h-110 99.01 0.99 99.01 0.00 0.99 99.01 0.00 0.00 0.98 0.00 0.00 98.15 

3V-90h-120 93.30 6.70 93.30 0.00 6.70 93.30 0.00 0.00 6.70 0.00 0.00 96.28 

 
 
Changes in the total amount and the distribution of the monomers, as well as the isotacticity of the PP 

phase, are observed.  Interpretation of these results was simplified by plotting the most important 

changes as a function of degradation time.  The changes in the weight percentages of all fractions of 

the 0 and 90 hours samples obtained by TREF, are presented together with the changes in monomer 

sequence distributions.  Figure 4.41 illustrates the changes in the propylene concentration with elution 

temperature for the undegraded and most degraded (3V-90h) samples.  An increase in the mole 

percentage of propylene is observed for all fractions from 30–110ºC, with drastic increases in 

especially the 60–90ºC fractions.  A decrease is observed in the 120ºC fraction.  This is also the 

fraction in which a significantly smaller weight percentage of material eluted in the degraded (3V-90h) 

sample after re-crystallisation and fractionation by TREF.   
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Figure 4.41:  Weight percent (Wi%) and propylene content (mole%) per TREF elution temperature for the 3V-0h 

and 3V-90h samples. 

 

This result, therefore, also indicates the selective degradation of the isotactic PP phase.  Those 

fractions presenting an increase in propylene also show an increase in the amount of material eluting 

upon degradation.  Degraded isotactic PP is therefore believed to elute within these fractions as a 

result of changes to its structure, rendering chains less crystallisable.  Some chains are, therefore, 

unable to crystallise at higher temperatures, which prevents them from eluting at 120ºC, as was the 

case in the undegraded sample.  As seen from the data in Table 4.8, the distribution of long PP 

sequences (PPP) follows the same tendency as the total amount of PP in the undegraded and 

degraded samples.  The number average sequence length of the propylene and ethylene segments in 

the fractions was once again calculated and the results appear in Table 4.9.   

 
 
Table 4.9:  The number-average lengths of ethylene and propylene segments in the bulk 3V-90h sample and its 

TREF fractions 

Sample En  Pn  Sample En  Pn  
      

3V-0h 3.31 28.86 3V-90h 3.44 26.02 

3V-0h-30 5.41 3.32 3V-90h-30 3.18 2.88 

3V-0h-60 5.00 4.12 3V-90h-60 6.58 10.42 

3V-0h-80 8.95 7.21 3V-90h-80 12.58 51.39 

3V-0h-90 27.51 32.84 3V-90h-90 30.95 353.45 

3V-0h-100 29.99 287.23 3V-90h-100 n.d. n.d. 

3V-0h-110 n.d. n.d. 3V-90h-110 n.d. n.d. 

3V-0h-120 n.d. n.d. 3V-90h-120 n.d. n.d. 
n.d: not determined      
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Compared to the average sequence lengths for ethylene and propylene determined in Section 4.1.3.5 

(Table 4.6), it is observed that both the ethylene and propylene sequence length increases in the 60-

90ºC fractions upon degradation.  Shorter sequence lengths are observed for both monomers in the 

30ºC fraction.  The change in the tacticity of the PP phase in each fraction is illustrated in Figure 4.42.  

All fractions from 60 to 100ºC exhibit an increase in isotacticity as PP from higher fractions has moved 

into these fractions, causing an increase in the amount of PP, as well as its isotacticity.   
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Figure 4.42:  Weight percent (Wi%) and tacticity values per TREF elution temperature for the 3V-0h and 3V-90h 

samples. 

 

It can, therefore, be concluded that the iPP phase of this impact PP copolymer is degraded 

preferentially, and the change in crystallisability of the bulk sample, is caused by a significant change in 

the crystallisability of this phase.  Chain scission and carbonyl group insertion alters the crystallisability 

of PP chains, causing them to elute at lower elution temperatures after re-crystallisation in the TREF 

experiment.  The degree to which chains have been modified, determines the temperature at which 

degraded molecules will elute, i.e., severely degraded material will elute as part of the soluble fraction, 

whereas less degraded material will elute at temperatures between 30ºC and 110ºC, according to the 

extent of their degradation.  In the following section, the degradation study of impact PP copolymers 

will be extended to a second, higher ethylene content impact PP copolymer grade and TREF 

fractionation combined with other techniques will be used to investigate the difference in degradation 

behaviour based on sample heterogeneity, i.e., the distribution in molecular weight, tacticity and 

comonomer contents.   
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4.2  Comparison of the degradation behaviour of two impact PP copolymers with 
different ethylene contents 

 

4.2.1 Properties of the bulk 3V and 4V copolymer samples 
 

In Section 4.1 it was concluded that the degradation of the impact PP copolymer in question is 

governed by chemical composition.  Of all the components present in copolymer 3V, the iPP phase 

was seen to degrade preferentially due to its low ethylene contents (high concentration of tertiary 

carbons) and its high isotacticity, despite the amorphous nature of the EPR which promotes oxygen 

diffusion.  A grade of higher comonomer content was selected to investigate the combined effect of 

comonomer content, isotacticity and a higher weight percentage of amorphous material on the 

degradation behaviour of impact PP copolymers.  The changes in crystallisability observed for sample 

3V in Section 4.1 will also be studied for the higher ethylene content copolymer grade. 

 

In addition to the impact PP copolymer sample, 3V, described in Section 4.1, a second grade with a 

higher comonomer content and lower isotacticity, named 4V, was also obtained as unstabilised reactor 

powder.  Both materials were prepared via copolymerisation of propylene with ethylene for production 

of a PP with increased toughness at temperatures ranging from ambient to below zero temperatures.  

For commercial purposes sample 3V is produced as a high flow (MFR = 16g.10min-1), narrow 

molecular weight distribution material suitable for injection moulding of thin-walled articles requiring 

good impact resistance and stiffness.  Such products include stadium seating, caps and closures, 

boxes and containers, indoor furniture and cosmetic containers.  Sample 4V is a very high flow (MFR = 

50g.10 min-1), narrow molecular weight distribution copolymer, normally formulated with antistatic 

additives.  This grade is particularly suitable for injection moulding of thin-walled articles with long flow 

paths, and is known for its superior impact strength at low temperatures.  Typical high flow path-to-wall 

thickness applications of this grade include basins, laundry baskets and silicone/filler tubes, whereas 

its most common thin-walled products are yoghurt cups, margarine tubs and domestic household 

articles. 

 

The properties of the two impact PP grades are summarised in Table 4.10.  The major differences 

observed here are the comonomer content, which is approximately 10.5 mole% and 16.4 mole% for 

the 3V and 4V samples, respectively.  This is accompanied by a difference in propylene isotacticity 

(%mmmm) of approximately 88.8% and 83.2% for the respective samples.  Weight-average molecular 

weight values ( ) are similar, whereas a slightly higher polydispersity is detected in sample 4V.  

Slightly lower melting and crystallisation temperatures (Tm, Tc) and a considerably lower melt enthalpy 

(ΔHm) value is also observed for sample 4V, indicating a lower percentage crystallinity within this 

copolymer. 

___

wM
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Table 4.10:  Summary of the molecular properties of impact PP copolymer samples 3V and 4V 

Sample [Ethylene] Isotacticity 
___

wM  
___

nM  PDI Tc Tm Δhm 

 (mole%) (%mmmm) (g.mol-1) (g.mol-1)  (ºC) (ºC) (J.g-1) 
         

3V-0h 10.48 88.82 354 400 114 600 3.18 118.2 162.6 94 

4V-0h 16.42 83.17 351 900 86 600 4.06 116.3 160.7 72 
         

 
 
The difference in crystallisability of the two samples investigated by CRYSTAF, prep-TREF and DSC 

are presented in Figure 4.43 and Figure C.3 (Appendix C).  It is noted here that the peak crystallisation 

temperature (Tc) in CRYSTAF is considerably lower than the dissolution temperature in prep-TREF.  

This temperature difference is referred to as the ‘undercooling’ effect, as described by Monrabal81.  It is 

stated that, although CRYSTAF and TREF both separate according to crystallisability, and a slow 

cooling process is applied in both cases, the difference arises from the undercooling needed to start 

nucleation and further crystallisation in CRYSTAF, compared to the dissolution step alone in TREF.  

This is also the case in crystallisation from the melt with subsequent melting measured by DSC.  The 

effect of different solvents used for CRYSTAF and TREF analysis, namely 1,2,4-trichlorobenzene 

(TCB) or ortho-dichlorobenzene (o-DCB) and xylene can, however, also not be ruled out.   
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Figure 4.43:  Dissolution and crystallisation curves of samples 3V and 4V obtained by (a) TREF (Wi%/ΔT) and (b) 

CRYSTAF, respectively.   
 

Although the CRYSTAF peak crystallisation temperatures and the maximum of the TREF (Wi%/ΔT) 

curves at 120ºC are similar for the two samples, the intensity of the 4V crystallisation peak is lower 

than that of sample 3V in both experiments, and a larger CRYSTAF soluble fraction and TREF 

Wi%/ΔT-value at 30ºC is detected for the 4V sample.  This sample contains a higher percentage of 

ethylene comonomer, and therefore is expected to contain a larger amount of non-crystallisable 
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material.  The CRYSTAF Tc and soluble fraction data, together with the TREF dissolution temperatures 

(Td) and Wi%/ΔT values at 30ºC and 120ºC are given in Table 4.11.   

 
 
Table 4.11:  Comparison of CRYSTAF and TREF data for the undegraded 3V and 4V samples 

      

Sample CRYSTAF Tc Soluble fraction TREF peak Td Wi%/ΔT Wi%/ΔT 

 (ºC) (Wt %) (ºC) at peak max at 30ºC 
      

3V-0h 84.0 12.8 120 4.498 0.330 

4V-0h 83.9 21.0 120 3.439 0.845 
      

 
 
Analysis of the bulk samples has indicated a difference in ethylene content and isotacticity, as well as a 

reasonable difference in the amount of amorphous material present in the two materials.  In Section 4.1 

fractionation techniques were used to study the heterogeneity of copolymer 3V.  It was seen that 

ICPP’s are highly complex materials exhibiting distributions in a number molecular properties such as 

molecular weight, comonomer content, isotacticity and monomer sequence lengths and distributions.  
13C-NMR, SEC, and DSC analysis of the TREF fractions of the undegraded 4V copolymer will now be 

compared to those of copolymer 3V.   

 

4.2.2 Characterisation of the TREF fractions of the undegraded 3V and 4V samples  
 

Sample 4V was fractionated according to the same TREF conditions used for copolymer 3V in Section 

4.1 and the fractionation data, i.e., the weight in grams (Wi), weight percent (Wi%), accumulative 

weight percent (ΣWi%) and weight percent per temperature increment (Wi%/ΔT) for all fractions of the 

two copolymers are presented in Table B.1 of Appendix B.  The weight percentage (Wi%) and weight 

percentage per temperature increment (Wi%/ΔT) data for the two copolymers are compared in Figure 

4.44.  Here it can be seen that the major differences in the weight percentage of the fractions of the two 

copolymers are present within the lowest elution temperature fractions, namely those eluting at 30 and 

60ºC, as well as the higher eluting 110ºC and 120ºC fractions.  A larger weight percentage of material 

elutes at 30 and 60ºC in copolymer 4V, accompanied by smaller weight percentages of the fractions 

eluting at 110 and 120ºC.  Very small variations in the weight percentages of fractions eluting at 80–

100ºC and 130ºC are detected for the two copolymers.   
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Figure 4.44:  Comparison of the weight percentage (Wi%) and weight percentage per temperature increment 

(Wi%/ΔT) of the fractions of samples 3V and 4V as a function of TREF elution temperature.   

 

In Section 4.1 it was concluded that the 30ºC and 60ºC fractions of copolymer 3V consisted mainly of 

EPR (30ºC) and transition EP copolymers (60ºC) of short ethylene and propylene sequences, which 

co-elutes with a small amount of atactic PP.  13C-NMR, DSC, and SEC of the fractions of copolymer 4V 

will now be presented in order to compare their chemical composition, molecular weight and thermal 

properties to those of sample 3V.   

 

4.2.2.1 TREF-(13C-NMR) analysis of the undegraded 3V and 4V samples 

 

The comonomer content and tacticity of the two grades have already been presented in Table 4.9.  The 

diad and triad sequence distributions of the two monomers as well as the number-average sequence 

length of ethylene ( En ) and propylene ( Pn ) are presented in Table 4.12.   

 
 

Table 4.12:  13C-NMR sequence analysis and average sequence lengths for samples 3V and 4V  

Sample PP PE EE PPP PPE EPE EEE EEP PEP En  Pn  

  EP   EPP   PEE    
            

            

3V-0h 86.36 6.34 7.32 84.19 3.63 1.70 5.75 3.18 1.58 3.31 28.26 

4V-0h 78.31 10.54 11.17 74.95 5.81 2.82 8.56 5.32 2.61 3.12 15.86 

 
 
Apart from the higher ethylene content and lower isotacticity of copolymer 4V previously mentioned, a 

higher EEE and lower PPP triad concentration is also observed.  A higher concentration of long 

ethylene sequences is, therefore, found within copolymer 4V, accompanied by a lower concentration of 

long propylene sequences.  Furthermore, a higher concentration of all connecting units found in E and 
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P sequences (EP, PPE, EPE, EEP, PEP) are also present in this copolymer.  These results suggest 

that the excess ethylene present in the bulk 4V copolymer is located both in longer ethylene 

homopolymer sequences and within the random and semi-crystalline EP copolymers.  The average 

length of ethylene sequences is similar in the two grades, whereas a longer propylene average 

sequence length is present in copolymer 3V.  The comonomer content, tacticity and monomer 

sequence distribution data of the TREF fractions of sample 3V have been presented in Table 4.5 of 

Section 4.2.6.1, whereas the data for sample 4V is presented in Table 4.13.  All calculations were done 

according to the methods described in Section 4.1.3.5.   

 
 

Table 4.13:  13C-NMR sequence analysis and tacticity data for sample 4V and its TREF fractions 
             

Sample P E PP PE EE PPP PPE EPE EEE EEP PEP % 
    EP   EPP   PEE  mmmm 
             

             

4V-0h-30 36.11 63.89 25.23 21.77 47.94 7.89 27.44 0.78 33.32 9.02 3.21 19.16 

4V-0h-60 34.33 65.67 20.69 27.27 52.30 13.70 12.95 7.67 44.32 17.01 3.50 31.53 

4V-0h-80 33.25 66.75 27.36 11.77 60.68 24.83 5.54 2.88 56.40 7.80 1.19 55.99 

4V-0h-90 51.39 48.61 48.65 5.48 45.83 51.21 0.13 0.05 44.00 3.46 0.54 67.73 

4V-0h-100 92.70 7.30 92.24 0.92 6.80 91.39 1.13 0.17 6.47 0.46 0.08 87.74 

4V-0h-110 99.05 0.95 99.05 0.00 0.95 99.05 0.00 0.00 0.95 0.00 0.00 94.52 

4V-0h-120 99.76 0.24 99.58 0.37 0.13 99.76 0.00 0.00 0.13 0.28 0.00 92.99 
             

 

 
 
In both samples, the isotacticity of the fractions increases with Te from 30ºC to 120ºC, indicating that 

the fractionation of the polypropylene phase is governed by tacticity.  The ethylene content within the 

30–90ºC fractions is also higher than that of the 100–120ºC fractions of both copolymers.  The 

distribution of ethylene as a function of TREF elution temperature is presented in Figure 4.45.   

 

0

10

20

30

40

50

60

70

20 40 60 80 100 120 140
0

10

20

30

40

50

W
i%

TREF elution temperature (ºC)

 Wi%_3V-0h
 Wi%_4V-0h
   [Et]_3V-0h
   [Et]_4V-0h

 Ethylene content (m
ole%

)

 
Figure 4.45:  Comparison of the weight percentage and ethylene content of samples 3V and 4V as a function of 

TREF elution temperature. 
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Figure 4.45 shows that the ethylene contents of both copolymers decrease towards higher elution 

temperatures.  A considerably higher ethylene concentration is present in the first three fractions of 

copolymer 4V, whereas the ethylene content of the following 4 fractions is similar to that of copolymer 

3V.  The excess ethylene comonomer added during polymerisation, therefore, seems to be 

incorporated into the random copolymer fractions, i.e., the EPR and ‘transition’ copolymers consisting 

of shorter segments of ethylene and propylene.  According to these results, a higher comonomer 

content should affect the nature of the random and semi-crystalline EP copolymers produced, without 

having much influence on the PP matrix.  Since, during the ICPP polymerisation process ethylene is 

only introduced into the second reactor, after hPP synthesis in the first, this can be expected.  Zacur et 

al. have also found, when comparing the TREF profiles of an iPP sample and an impact PP copolymer, 

the higher cumulative weight at low Te of the impact copolymer resulted from the presence of EP 

copolymers52.  The isotacticity of the fractions of the two grades are presented as a function of TREF 

elution temperature in Figure 4.46.   

 

0

20

40

60

80

100

40 60 80 100 120
0

10

20

30

40

50

 Isotacticity (%
m

m
m

m
)

 Wi%_3V-0h
 Wi%_4V-0h
 Isotacticity_3V-0h
 Isotacticity_4V-0h

W
i(%

)

TREF elution temperature (ºC)  
Figure 4.46:  Weight percentage and propylene isotacticity of samples 3V and 4V as a function of TREF elution 

temperature. 

 

The tacticity distribution is also similar in the two copolymers, with a slightly lower isotacticity detected 

in the fractions eluting between 30 and 90ºC of sample 4V, which are also the fractions containing a 

higher ethylene content than the corresponding fractions in copolymer 3V.  TREF-(13C-NMR) have 

indicated that the excess ethylene detected in the bulk 4V sample is mainly incorporated into the EPR 

and transition copolymer fractions eluting between 30 and 90ºC, and the isotacticity of the PP within 

these fractions is also slightly lower than that of copolymer 3V.   
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4.2.2.2 TREF-SEC and TREF-DSC analysis of the undegraded 3V and 4V samples 

 

Molecular weight and thermal parameters of the TREF fractions of the two copolymers were obtained 

by SEC and DSC analysis.  The molecular weight distribution curves for all fractions of the two 

copolymers are displayed in Figure B.1 of Appendix B, while  and  values are given in Table 

B.2 of the same appendix.  The values of the fractions of both copolymers are plotted against 

TREF elution temperature in Figure 4.47.  Only the molecular weight values of the higher molecular 

weight EPC component of the 60–90ºC fractions are included here due to the similarity in molecular 

weight observed for the low isotacticity PP homopolymer part of these fractions eluting at 

corresponding temperatures within the two copolymers.   

___

wM
___

nM

___

wM

 

20 40 60 80 100 120
0

100000

200000

300000

400000

500000

600000

700000

800000  3V-0h
 4V-0h

M
w
 (g

.m
ol

-1
)

TREF elution temperature (ºC)  

Figure 4.47:   values of all TREF fractions of the undegraded 3V and 4V samples as a function of TREF 

elution temperature. 
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The  values of fractions eluting at 60, 80, 100, 110 and 120ºC are fairly similar in the two 

copolymers, whereas differences are observed in the 30ºC and 90ºC fractions.  In these three fractions 

higher  values are observed for those fractions belonging to copolymer 3V.   
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The values of the DSC thermal parameters, Tc, Tm and ΔHm, of all TREF fractions of the undegraded 

3V and 4V copolymers are given in Table B.3 of Appendix B.  The DSC Tm and Tc values of the 

fractions of both copolymers are compared in Figure 4.48.  Two melt endotherms were observed in the 

60–100ºC fractions of both copolymers, and the Tm values of both the higher and lower melting 

components are included in Figure 4.48.   
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The melting temperatures of both the lower and higher melting components of all fractions of the two 

copolymers are almost identical.  In Section 4.1 the 60ºC, 80ºC, 90ºC and 100ºC fractions were seen 

to consist of co-eluting lower isotacticity PP homopolymer as well as semi-crystalline EP copolymers.  

The lower of the two melt endotherms were assigned to the melting of the crystallisable ethylene in the 

EPC phase, whereas propylene from both the EPC and PP homopolymer phase was seen to melt at 

higher temperatures.   
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Figure 4.48:  DSC melting and crystallisation temperatures for all fractions of the undegraded 3V and 4V 

copolymers. 
 

The similarity in the melting temperatures of the lower melting component indicates that the sequence 

length of the crystallisable ethylene sequences in the EP copolymers eluting at corresponding 

temperatures in the two copolymers is very similar.  The similarity in the melting temperatures of the 

higher melting component suggests that the PP phase of the two copolymers is of similar isotacticity 

distributions across the elution temperature range, as was also seen in Figure 4.46 from 13C-NMR 

analysis.  Furthermore, it also suggests that the propylene sequence lengths of the EPC phase is 

similar in fractions of corresponding elution temperatures.  These results show that components of 

almost identical thermal behaviour are found in fractions of corresponding elution temperatures within 

the two copolymer grades, regardless of differences in ethylene content and molecular weight.  The 

degradation behaviour of the two copolymers will now be compared.   

 

4.2.3 Analysis of the degradation behaviour of the bulk 3V and 4V samples by FTIR and 
SEC 

 

Thin films of samples 3V and 4V were subjected to the same conditions of accelerated thermo-

oxidative degradation.  Samples of both grades were extracted from the oven at pre-determined time 

intervals and saved for further analysis.  The progress of degradation was studied by means of FTIR 

analysis and the ageing procedure was terminated when embrittlement of a complete film area 
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occurred in each grade.  It was observed that embrittlement of the 3V films occurred at an earlier 

degradation time than those of sample 4V, therefore, the rate and extent of degradation was compared 

quantitatively by means of the carbonyl index.  This was calculated as the ratio of the peak height at 

the maximum of the carbonyl band (1804–1580 cm-1) and that of the reference band at 840cm-1, as 

was done in Section 4.1.1.  Since the intensity of the 840 cm-1 band is influenced by sample 

crystallinity and there is a difference in crystallinity between the two copolymer grades, the carbonyl 

index was also calculated relative to the 972 cm-1 band.  These results are displayed for both samples 

in Figure 4.49.   
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Figure 4.49:  Comparison of the carbonyl index changes in samples 3V and 4V, as calculated relative to the 840 

cm-1 (a) and 972 cm-1 (b) bands of the infrared spectrum.   
 

The 3V sample displays a significantly shorter induction period (ca. 40 hours) than sample 4V, for 

which a gradual increase in carbonyl index is only observed after 100 hours of ageing.  After the 

induction period, degradation is seen to spread through both samples at a steady rate, although a 

faster rate is observed in sample 3V, as indicated by the steeper slope of the carbonyl index curve.  A 

maximum carbonyl index value is reached after 110 hours for sample 3V and approximately 230 hours 

for sample 4V.  For comparison of the degradation behaviour of the two samples, sampling intervals or 

degradation times were chosen that correlate to approximately the same carbonyl index.  Samples of 

copolymer 3V taken at 0, 40, 65 and 90 and 110 hours were therefore compared to those sampled at 

0, 115, 179 and 195 and 230 hours for sample 4V.  The decrease in weight-average molecular weight, 

, with ongoing degradation time is presented in Figure 4.50 (a).  Figure 4.50 (b) illustrates the  

change of both copolymers as a function of the carbonyl index values obtained with ongoing 

degradation.   
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Although the two copolymers are of almost identical molecular weight in their undegraded state, the 

change in molecular weight with ongoing degradation time is dissimilar.  During the first stages of 

degradation (up to 40 and 115 hours for samples 3V and 4V, respectively), the molecular weight of 
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both copolymers decrease to approximately 250 000 g.mol-1.  At longer degradation times, however, 

the decrease in  for sample 3V is considerably faster, confirming the faster rate of degradation in 

the sample of lower comonomer content and isotacticity.   
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Figure 4.50:  Comparison of  decreases of samples 3V and 4V as a function of (a) degradation time and (b) 

carbonyl index. 
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Figure 4.50 (b) also illustrates a similar relationship between and carbonyl during early stages of 

degradation (low carbonyl index values) for the two samples.  At more advanced stages of 

degradation, however, for the same carbonyl index values, sample 3V shows a more significant 

decrease in molecular weight than sample 4V.  The molecular weight distribution curves of the different 

samples are presented in Figure C.1 of Appendix C and the average molecular weight and 

polydispersity values of all samples of the two grades are presented in Table C.1 of Appendix C.   

___

wM

 

4.2.4 Changes in crystallisability of the degraded 3V and 4V copolymers studied by 
CRYSTAF, DSC and TREF 

 

In Sections 4.1.3.2 and 4.1.3.3 it was demonstrated how the CRYSTAF Tc and DSC melting and 

crystallisation temperatures of copolymer 3V are influenced by degradation.  The CRYSTAF results of 

copolymer 4V were consistent with those obtained for copolymer 3V, where the peak crystallisation 

temperature decreased, the intensity of the crystallisation peak decreased and an increase in the 

soluble fraction was observed with ongoing degradation times.  The CRYSTAF crystallisation curves of 

the degraded 4V copolymer are presented in Figure C.2 of Appendix C, whereas the crystallisation 

data, soluble fraction weight percentages and FWHM values are supplied in Table C.2 of the same 

appendix.  The DSC curves of the two copolymers are presented in Figure C.3 and the melting and 

crystallisation data is supplied in Table C.3 of Appendix C.  The changes in CRYSTAF Tc, as well as 
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DSC Tc, Tm and ΔHm of the two copolymers with ongoing degradation time are summarised in Figure 

4.51.  Each coloured arrow points in the direction of the Y-axis belonging to the curve of the same 

colour, i.e., the CRYSTAF Tc (black) and DSC ΔHm (blue) curves are associated with the Y-axis on the 

left hand side of each plot, whereas the DSC Tc (red) and Tm (green) curves correspond to the Y-axis 

on the right. 
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Figure 4.51:  Comparison of the changes in crystallisation and melting behaviour of the two copolymers as a 

function of degradation time.   
 

Similar changes in the crystallisation parameters are observed for the two copolymers. Copolymer 3V 

shows very little change in these parameters from 0 to 40 hours of degradation, after which the melting 

and crystallisation as well as melt enthalpy values decrease steadily.  Copolymer 4V, which was seen 

only to start degrading after approximately 115 hours, also shows a minor change in these parameters 

during the induction period, after which the decrease in the melting and crystallisation temperatures 

follow a similar pattern to those of copolymer 3V.  In Sections 4.1.3.2 and 4.1.3.3 it was demonstrated 

how three molecular parameters, namely the carbonyl index, molecular weight and either the 

CRYSTAF Tc or DSC Tc or Tm could be combined to study the effect of molecular weight and carbonyl 

concentration on the crystallisation and melting temperature of the degraded 3V copolymer.  These 

plots were also constructed for copolymer 4V.  The combined effect of carbonyl index and molecular 

weight on the CRYSTAF crystallisation temperature of this sample is demonstrated in Figure 4.52, 

while the effect of these two parameters on the DSC Tm and Tc are illustrated in Figure 4.53.   
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Figure 4.52:  Representation of the combined influence of molecular weight and carbonyl concentration on the 

CRYSTAF crystallisation temperature of copolymer 4V. 
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Figure 4.53:  Representation of the combined influence of molecular weight and carbonyl concentration on DSC 

melting and crystallisation temperatures of copolymer 4V. 
 

For copolymer 4V it can also be seen that there exists some correlation between the three independent 

parameters presented here.  The combination curve (black) indicates that the Tm and Tc values of 

degraded samples of copolymer 4V are also influenced predominantly by molecular weight effects 

during early stages of degradation (low carbonyl concentrations), whereas the carbonyl concentration 

dominates thermal parameters during advanced stages of degradation when the molecular weight is 

reduced significantly by scission and a large number of carbonyl functionalities are incorporated into 
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oxidised chains.  The CRYSTAF Tc and DSC Tm combination curves (black), together with their XY, YZ 

and XZ projections, for samples 3V and 4V are compared in Figures 4.54 and 4.55, respectively.   
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Figure 4.54:  Comparison of differences in the relationships between carbonyl index, molecular weight and 

CRYSTAF Tc for samples 3V and 4V.   
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Figure 4.55:  Comparison of differences in the relationships between carbonyl index, molecular weight and  

DSC Tm for samples 3V and 4V.   
 

Differences in the shape of the combination curves of the two copolymers are observed for both the 

CRYSTAF Tc and DSC Tm data.  Compared to copolymer 3V, the combination curves for copolymer 4V 

appear to follow the molecular weight curve for a shorter period of the degradation process before the 

carbonyl concentration becomes dominant.  The difference in the combination curves of the two 

samples is related to differences in the individual projections.  The relationship between Tc and Tm and 



Chapter 4:    Results and Discussion 
 
 

   
   
 
  122

molecular weight are very similar for the two copolymers, whereas differences are observed for the 

molecular weight versus carbonyl index and Tc or Tm versus carbonyl index projections.  Although 

similar relationships between these parameters are seen initially, it can be seen at higher carbonyl 

index values that for approximately the same carbonyl index, copolymer 4V has higher molecular 

weight and Tm values than sample 3V.  In Figure 4.44 (b) it was seen that the relationship between 

carbonyl index and , which is almost identical at low carbonyl index values, is steeper in copolymer 

4V, indicating that, for the same carbonyl index,  is higher in copolymer 4V.  The molecular weight 

decrease is small compared to the increase in carbonyl concentration, which explains the steeper 

slope of the combination curves of copolymer 4V at higher carbonyl index values in Figures 4.54 and 

4.55.  These presentations allow the comparison of the degradation of ICPP copolymers 3V and 4V 

irrespective of the difference in the time scale of their degradation and clearly indicate the influence of 

degradation on the interrelationship between three seemingly independent molecular parameters. 
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To conclude the results on the degraded bulk 3V and 4V samples, degraded samples of copolymer 4V 

were also re-crystallised and fractionated by TREF.  The preparative TREF results for both copolymers 

are shown in Figure 4.56.   
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Figure 4.56:  TREF weight fraction per temperature increment curves (Wi%/ΔT) for the degraded 3V and 4V 

samples. 
 

Although the TREF dissolution profiles of the two samples differ slightly in terms of the intensity and 

broadness of the main dissolution peak and the amount of material eluting in the soluble fraction at 

30ºC, the changes observed, are similar.  The dissolution curve of sample 4V is also seen to shift 

towards lower temperatures and decrease in intensity with ongoing degradation time while there is an 

increase in the Wi%/ΔT value of the 30ºC fraction.  These results indicate that, although there is a 

difference in the amount of iPP of copolymer 4V relative to that of the amorphous material eluting at 

lower temperatures, the iPP phase is still degraded preferentially.  The changes in the weight 



Chapter 4:    Results and Discussion 
 
 

   
   
 
  123

percentages of the material eluting in every fraction of the undegraded and degraded 4V copolymer, 

are illustrated in Figure 4.57.   
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Figure 4.57:  Changes in the weight percentage (Wi%) of all TREF fractions of sample 4V obtained after 

degradation times of 0, 115, 179 and 195 hours.   
 

Similar to what was observed for sample 3V in Figure 4.22, a decrease in the amount of material 

eluting in the 120 and 130ºC fractions with ongoing degradation times occurs, accompanied by an 

increase in the amount of material eluting in most of the fractions between 30 and 110ºC.  Degradation 

seems to affect the crystallisability of the degraded 4V sample to the same extent as in sample 3V, 

where degraded iPP molecules were modified by scission and carbonyl group insertion to such an 

extent that they were no longer crystallisable at higher temperatures (110 and 120ºC), resulting in the 

increase in the amount of material dissolving and eluting at lower elution temperatures.  The SEC 

results of all fractions of the two copolymers are presented in Figures 4.58 and 4.59.  Although these 

results have already been presented for sample 3V in Section 4.1.4.1, it is included here for 

comparative purposes.   
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Figure 4.58:  Changes in the SEC curves of the bulk 3V samples and each of its TREF fractions obtained after re-

crystallisation of samples degraded for 40, 65 and 90 hours. 
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Figure 4.59:  Changes in the SEC curves of the bulk 4V samples and each of its TREF fractions obtained after re-

crystallisation of samples degraded for 115, 179 and 195 hours.   
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The shifts in molecular weight distributions of the highest eluting fractions of the two copolymers are 

very similar.  This is to be expected, since these fractions consist mainly of iPP, and since the 

polymerisation of propylene in the first reactor of the synthesis of impact PP is not affected by ethylene 

content, the characteristics (e.g., molecular weight and isotacticity distribution) of the hPP phase is 

accepted to be fairly similar in the two copolymers.  In Section 4.1 the 60–90ºC fractions were found to 

consist of two co-eluting components, i.e., low isotacticity PP and EPC.  If the molecular weight shifts 

of these fractions eluting at corresponding temperatures in the two grades are compared, it is seen that 

there is very little difference in the molecular weight changes of the low isotacticity PP component (at 

lower molecular weight) of these fractions in the two grades.  The EPC component, however, shows 

slightly different molecular weight shifts in the two copolymers.  In the 60 and 80ºC fractions of sample 

3V, the molecular weight distribution curve of the higher molecular weight EPC component is seen to 

shift towards higher values in the sample degraded for 40 hours, after which the complete molecular 

weight distribution curve shifts back to lower values after 65 and 90 hours.  This component of the 60 

and 80ºC fractions of copolymer 4V is seen to shift to even higher molecular weight values in the 

sample degraded for 115 hours, after which the molecular weight distribution curve also shifts back to 

lower values, but compared to sample 3V, a higher molecular weight shoulder remains where the EPC 

distribution was seen in the fractions degraded for 115 hours.  A more gradual shift towards lower 

molecular weight values is seen with ongoing degradation time in sample 4V.  These fractions of 

sample 4V were also seen to contain a higher mole percentage of ethylene than the corresponding 

fractions of sample 3V, and since it is known that PE degrades mainly via a cross-linking mechanism at 

moderate temperatures, this might be an indication of partial cross-linking of the ethylene sequences in 

the EP copolymers.   

 

The most significant difference in the molecular weight changes of the fractions of the two copolymers 

is, however, seen within the 30ºC fraction.  SEC-FTIR analysis in Section 4.1 indicated this fraction to 

consist mainly of EPR, with a minor aPP component present as a low molecular weight shoulder to the 

molecular weight distribution curve of the EPR.  From Section 4.1 it was also concluded that degraded 

iPP from higher eluting fractions is found in the 30ºC fraction upon re-crystallisation and fractionation of 

degraded samples by TREF, therefore the concentration of low molecular weight material is expected 

to increase within these fractions.  The entire molecular weight distribution curve of this fraction shifts 

to lower values in sample 3V, whereas some part of the original distribution in the undegraded material 

remains and overlaps with the distribution of low molecular weight degradation products in sample 4V.  

The EPR of this fraction of copolymer 4V, therefore, seems to be more stable than that of sample 3V, 

possibly due to its chemical composition, .i.e., higher comonomer content and lower isotacticity.  The 

higher ethylene in the 60–90ºC fractions of sample 4V also seems to improve the stability of these 

fractions in copolymer 4V.   

 

In Section 4.2 FTIR and SEC results have indicated a longer induction period and slower increase in 

carbonyl functionalities, as well as a slower decrease in values for copolymer 4V.  A longer 
___
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induction period and slower degradation rates in impact PP copolymers with higher ethylene contents 

and isotacticity has been reported by a number of authors10, 54, 79, whereas the opposite result was 

obtained by others4, 5, 82.  The introduction of more stable methylene units from ethylene is believed to 

be the reason for the delayed onset and slower rate of oxidation in ICPP’s of higher ethylene contents.  

The presence of ethylene units is believed to eliminate the number of tertiary PP carbons that can 

undergo dissociation reactions.  Higher isotacticity of the PP unit also increases the rate of oxidation, 

since the presence of the 31 helix in crystalline PP promotes the bimolecular decomposition reaction 

which is of lower activation energy than the unimolecular equivalent occurring in more random 

conformations54.  The preferential attack of tertiary carbons of the PP phase in ICPP’s is not denied by 

Kruczala et al.5, 82, although the rate of degradation is reported to be influenced by the amount of EPR.  

Thermal degradation at 393 and 433K indicated the copolymer of higher ethylene content (25%) to 

degrade more rapidly than the sample containing only 10% ethylene, due to the higher rate of oxygen 

diffusion in the EPR phase at elevated temperatures5.   

 

In Figures 4.49 and 4.50 a considerable difference in degradation behaviour is observed for the two 

copolymers with only a small difference in ethylene contents and isotacticity, but a relatively large 

difference in the amount of amorphous material.  TREF fractionation combined with 13C-NMR, DSC 

and SEC was used to investigate the microstructural properties of the two copolymers.  SEC and DSC 

results of the corresponding fractions of both copolymers agreed well, with only minor differences in the 

SEC values for the 30 and 90ºC fractions of samples 3V and 4V.  Almost identical Tm and Tc values 

were observed for all fractions eluting at corresponding TREF elution temperatures within the two 

copolymer grades.  This illustrates the similarity in the isotacticity distribution of the hPP phase of the 

two copolymers as well as the similarity in ethylene and propylene sequence lengths of the EPC 

component of corresponding fractions.   

 

Differences are, however, observed in the weight percentages of the fractions eluting at corresponding 

elution temperatures for the two samples.  Larger amounts of the amorphous fractions (30ºC–90ºC) 

are collected during prep-TREF of sample 4V, accompanied by a smaller amount of the more 

crystalline ones eluting at 110 and 120ºC.  Similar amounts are collected for the 100ºC fraction of both 

copolymers.  From 13C-NMR, DSC, SEC and CRYSTAF results it was concluded that the four major 

constituents identified in sample 3V are also present within the same elution ranges for sample 4V.  In 

Section 4.1 the major constituent of the 30ºC fraction was identified as EPR, the 60ºC and 80ºC 

fractions consists of co-eluting components of EPC and low isotacticity hPP, where the ethylene and 

propylene sequences are very short and of low crystallinity.  The 90 and 100ºC fractions also consist of 

these two components, although the isotacticity of the hPP within these fractions is higher and the 

ethylene and propylene sequence lengths are longer, resulting in EP copolymers of higher crystallinity.  

The 110–130ºC fractions were found to consist mainly of isotactic PP, with a very low concentration of 

hPE present too.  According to these classifications, the total amount of material (Wi%) eluting within 

each of the elution ranges mentioned here, was calculated from TREF data and the results are 

presented in Table 4.14.   
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Table 4.14:  Weight percentages of the four major constituents of samples 3V and 4V 

     

Te  30ºC (60–80ºC) (90–100ºC) (110–130ºC) 
     

Sample EPR ‘Transition’ EPC ‘Blocky’ EPC Isotactic PP 
 + + + + 

 aPP low isotacticity PP higher isotacticity PP hPE 
     

3V-0h 9.90 6.83 8.86 74.72 

4V-0h 21.11 10.94 8.67 59.28 

 
 
It is seen here that similar amounts of material elute between 90ºC and 100ºC within the two 

copolymers, whereas significant differences are seen for the other three elution ranges.  The combined 

weight percentage of the 60 and 80ºC fractions constitutes 6.83% and 10.94% of sample 3V and 4V, 

respectively.  The most significant differences are, however, observed in the 30ºC fraction, as well as 

the highest eluting (110–130ºC) fractions.  The PP phase is considered unaffected by the ethylene 

content during copolymerisation.  This PP phase, ranging from aPP in the lowest eluting fractions, 

through semi-crystalline propylene within the mid-eluting EP copolymers to highly isotactic PP in the 

highest eluting fractions, is indicated to be very similar in the two copolymers, with regard to istoacticity 

and thermal behaviour.  It is, therefore, assumed that similar weight percentages of PP will elute in 

corresponding fractions of the two copolymers where PP was seen to co-elute with EPC.  A difference 

in the weight percentage of the 60–80ºC elution range is, therefore, expected to result from a 

difference in the concentration of the EPC, rather than the low isotacticity PP.  The aPP in the 30ºC 

fraction and the hPE in the highest elution range (110–130ºC) are present in such small amounts, that 

the differences observed for these fractions can confidently be ascribed to a difference in the amount of 

EPR and iPP present within the two copolymers.  It is seen that the amount of EPR in copolymer 4V is 

more than double the amount in sample 3V, whereas the amount of iPP in sample 4V is only 59.28%, 

compared to 74.72% in sample 3V.   

 

The delayed induction and slower oxidation rate portrayed by sample 4V is believed, not only to be the 

result of the higher ethylene content and lower isotacticity of the bulk sample, but also the relative 

amounts of the four major components present within the two impact copolymers.  TREF fractionation 

of the undegraded samples has indicated that sample 4V also contains a larger concentration of 

amorphous EPR and transition EPC accompanied by a lower concentration of iPP, which is the 

component that degrades preferentially in this copolymer too, despite its higher concentration of 

amorphous material.  TREF fractionation combined with 13C-NMR has also indicated that the excess 

ethylene added during the second stage of the polymerisation of sample 4V is located within the EPR 

and transition EPC fractions.  Upon re-crystallisation and fractionation of degraded samples by TREF, 

similar molecular weight shifts were seen within the iPP fractions of the two copolymers.  The 

behaviour within the EPR and co-eluting EPC and low isotacticity PP fractions were, however, different 

for the two copolymers, where these fractions of copolymer 4V appeared to be more stable than those 

of sample 3V.  The higher ethylene content within copolymer 4V is, therefore, considered to be 
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responsible for the higher stability of the bulk 4V copolymer, mainly due to an increased stability of the 

lower eluting fractions containing the excess ethylene.   

 

It seems interesting that, although degradation initiates within the PP phase, the amount of ethylene 

and its distribution within the four components of an ICPP seems to be the most important factor 

determining the degradation behaviour of the two copolymers.  An increase in the oxidation induction 

time with increasing ethylene content is accounted for by the higher chemical stability of its methylene 

units as well as the barrier effect of the comonomer in intra-chain hydroperoxide formation76-79.  It is 

also known that the amount of ethylene affects the morphology of impact PP copolymers, e.g., the 

shape and size distribution of the dispersed EPR phase as well as the nature of the segmented EP 

copolymers acting as a compatibiliser at the interface between the EPR inclusions and the iPP matrix36, 

40.  This interface has been suggested to play a vital role in the migration and combination of free 

radicals during the degradation of heterophase EP copolymers83.  Therefore, the difference in stability 

between the two copolymers might be the result of the difference in morphology between the two 

grades.  These results have indicated that, although chemical composition is still the most important 

factor governing the degradation of impact PP copolymers, the unique morphology of these 

copolymers plays a very important role.  In the following section the degradation of impact PP 

copolymer thin films studied in the previous two sections, will be expanded to thicker specimens where 

oxygen diffusion is expected to play a bigger role.  The spatial heterogeneity of degradation within 

copolymers 3V and 4V will be studied by FTIR-μS and a conventional technique consisting of layer-by 

layer milling followed by SEC, FTIR and CRYSTAF analysis.   

 

 

4.3 Studying the spatial heterogeneity of thermo-oxidative degradation in impact PP 
copolymers 3V and 4V 

 

As explained in Section 2.5.5, polymer degradation is not always homogeneous on the macroscopic 

scale.  Degradation under accelerated conditions often occurs as a heterogeneous process controlled 

by oxygen diffusion 84-94.  In thick polymer samples, where oxygen consumption exceeds the rate of 

oxygen permeation, oxidation of the surface layers is generally observed, with the core of the sample 

remaining unaffected.  The heterogeneity of the degradation process depends on various factors.  

Intrinsic sample parameters responsible for heterogeneous degradation behaviour in polymers include:  

sample thickness; comonomer distribution and stereoregularity as well as sample morphology, which 

governs the solubility and permeability of oxygen in the polymer.  Heterogeneity is also caused by 

differences in radical mobility throughout the sample, although the effect of additives and catalyst 

residues on the degradation behaviour of polymers is also not to be ignored.   

 

The spatial heterogeneity of the degradation process leads to depth-varying concentrations of 

oxidation products across thick polymer specimens.  Depth profiling of degradation products can be 

done by a number of analytical techniques, including FTIR and GPC analysis over a cross-section of 
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the degraded polymer obtained by microtoming95 or layer-by-layer milling96,97.  It is clear that, when 

studying the heterogeneity of the degradation process, techniques are needed that take into account 

the spatial variation in degradation product concentrations as well as the intrinsic heterogeneity of the 

sample.  FTIR microspectroscopy (FTIR-µS) is a very powerful technique currently used for studying 

the heterogeneity of degraded samples on the micrometer scale.  Depth profiling of degradation 

products are done by analysing the oxidised sample in the plane perpendicular to the axis of exposure 
98.  Slices are positioned under the objective of the FTIR microscope and analysed by transmission of 

light through a restricted area, the size and dimensions of which are determined by the pre-defined 

image-masking aperture.  The sample is secured onto a precision-controlled movable sample stage 

that allows accurate, reproducible analysis of each slice at a number of points across the sample width, 

as determined by the step-width selected for the experiment.  Individual IR spectra are recorded at a 

single point or a number of points or zones across the sample width, as determined by the selected 

step-width and are subsequently analysed by suitable IR software to create a profile of oxidation 

product concentration across the sample width.  Single point analyses are, however, of limited use 

when studying heterogeneous or multi-component samples.  Point-by-point analysis of larger, 

continuous areas is possible by moving the specimen in a known, pre-determined manner relative to 

the aperture.  This technique is known as FTIR mapping and, by plotting the absorbance magnitude of 

a specific vibrational mode over the area analysed, a concentration map or profile of a specific 

chemical species can be obtained.  Such maps are generally referred to as functional group maps and 

are extremely useful when studying the distribution of carbonyl, hydroperoxide and carboxylic groups in 

heterogeneously degraded polymer samples99.   

 

4.3.1  Optimisation of experimental conditions 
 

To ensure reliable, reproducible results from FTIR-µS analysis, a few experimental parameters need to 

be considered.  One of the biggest sources of error in FTIR-µS originates from the microspectroscopy 

apertures chosen.  Opaque apertures are applied to ensure that radiation reaching the detector is 

representative only of the sample area of interest, and that stray light from areas surrounding the 

defined sample area is excluded.  The spatial resolution of the FTIR microscope can be controlled by 

the aperture size and dimensions, however, the highest spatial resolution is not determined by the 

apertures, but rather by the diffraction limit of the radiation100.  Figure 4.60 shows the results of 

selected area of the FTIR spectrum obtained from analysis of an EP copolymer, using three different 

aperture dimensions.   
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Figure 4.60:  The comparison of different aperture dimensions on the quality of FTIR-μS results obtained. 

 

It is evident that the signal-to-noise level improves from the smallest aperture size to the largest.  It has 

been stated that small aperture sizes are responsible for an increase in the noise level and distortion of 

the relative intensities observed in the FTIR spectra.  An aperture size of 100 X 100 µm2, which is 

similar to that used by Ellis et al. 100 for the analysis of a heterogeneous EP copolymer system, was 

selected for all analyses.   

 

Finally, the step-size or step-width between measurement points in line scans or maps needed to be 

selected.  Figure 4.61 shows the results obtained for the CO peak area measured in sample 4V at 

step-widths of 10, 20, 50 and 100 μm.   
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Figure 4.61:  Comparison of the effect of the step-width on the concentration profile of the carbonyl functionality. 
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It is clear that larger step-widths result in similar concentration profile trends than smaller ones, with the 

advantage of saving valuable analysis time.  The step-width is usually smaller than or equal to the 

aperture dimensions chosen 100.  Over-sampling, i.e., when the step-width is smaller than the aperture 

size, is often applied for obtaining sharper mapping data when studying details close to the diffraction 

limit.  Step-widths of 100 μm and 50 μm were chosen respectively, for collecting the maps and line 

scans presented in this section.   

 

4.3.2 Determination of carbonyl oxidation product profiles by FTIR-μS 
 

For the purpose of obtaining CO concentration profiles within heterogeneous samples, one can 

perform FTIR-µS analyses both by means of line scans, i.e., where a number of points are scanned 

across the width of a specimen at a pre-determined step-width in the Y direction, and area maps, 

where an area of pre-defined size is scanned at a specified step-width in both the X and Y directions.  

FTIR maps of the CO band intensity over areas of both an undegraded (3V-0h) and degraded  

(3V-170h) sample of copolymer 3V are presented in Figure 4.62.   

 

      (a)                 (b) 

0.00 1.00 2.00 3.00 4.00 5.00 6.00  
Figure 4.62:  Carbonyl group maps of a microtomed slice of (a) the undegraded (3V-0h) and (b) a degraded 

sample (3V-170h). 

 

The concentration of carbonyl-containing degradation products was measured by the area of the CO 

band between 1736 cm-1 and 1694 cm-1.  A reference band was not chosen in this case, since the 

thickness of all microtomed slices varied by less than 5%.  As seen from the scale attached, the dark 

blue areas are representative of areas containing no carbonyl functionalities, whereas the green, 

yellow and red areas represent those portions of the sample that contain increasing amounts of CO 

degradation products, with red areas being the most degraded.  In the undegraded sample, the dark 

blue area is indicative of the air surrounding the microtomed slice and the lighter blue areas represent 

the very low concentration of CO functionalities formed during sample preparation, which are in this 
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case, seen to be uniformly distributed across the entire sample area.  In the degraded sample, the dark 

blue area on both sides of the specimen are once again representative of the air surrounding the 

sample, whereas the green, yellow and red zones indicate a low to high concentration of CO 

degradation products.  The highest concentration of carbonyl-containing functionalities can be 

observed close to the edges, with the core of the sample also being degraded (no blue area present in 

the centre as in the undegraded sample).  The narrow light blue, green and yellow areas at the edges 

of the degraded sample are an artefact caused by overlap of the film edge (red) and surrounding air 

(dark blue) within the 100 µm slices recorded.  FTIR maps are useful for extracting individual spectra 

from areas of dissimilar colours, therefore the difference in the CO peak intensity of any point on the 

undegraded sample can be compared to those found in the degraded sample.  These maps also give 

an indication of the thickness of the surface area affected by degradation.  The width of the microtomed 

slice of the undegraded sample is approximately 2700 µm, which is subsequently reduced to only 1240 

µm in the sample degraded for 170 hours, which indicates the loss of the surface layers due to severe 

embrittlement caused by prolonged degradation.  Different embedding media such as paraffin wax and 

epoxy resins were attempted to ensure adhesion of the brittle layer to the undegraded material during 

microtoming, but sufficient adhesion was not achieved by any of these media.   

 

In the following analyses, line scans were performed for the purpose of constructing CO concentration 

profiles for the different degradation times of both copolymers.  The reproducibility of the technique was 

investigated by comparing several line scans recorded at different positions on the same microtomed 

slice to the concentration profiles obtained from a number of different microtomed slices.   

Figure 4.63 (a) contains the CO concentration profile of the undegraded 3V copolymer obtained at six 

different positions on the same microtomed slice.  A step-width of 100 µm was applied.  The average of 

the six curves is presented in Figure 4.63 (b) and error bars are fitted to indicate the deviation of each 

point from the average.   
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Figure 4.63:  Evaluation of the reproducibility of the CO group concentration profiles measured at different points 

on a microtomed slice of the undegraded (3V-0h) sample.   
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Figure 4.64 (a) contains the CO concentration profile obtained from line scans performed on three 

different microtomed slices.  Here, a step-width of 50µm was applied.  The average curve is also 

shown in Figure 4.64 (b), with error bars indicating the deviation of individual curves from the average 

value.  It can be seen here that CO concentration values obtained in the three separate scans deviate 

more from the average values than in Figure 4.63 (b), but the deviation observed here, is still within 

acceptable limits.   
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Figure 4.64:  Evaluation of the reproducibility of the CO group concentration profiles measured on different 

microtomed slices of the undegraded (3V-0h) sample.   
 

Since thick samples such as these in question are known to degrade heterogeneously, a larger 

deviation between measurements of degraded samples was expected.  CO concentration profiles 

obtained from three separate line scans performed on three different slices of 3V-96h plaques are 

presented in Figure 4.65 (a) and the average curve with fitted error bars are once again shown in 

Figure 4.65 (b).  A relatively small deviation from the average values is seen for data points collected 

within the core of the three plaques (500 to 1500 µm).  A larger deviation between points is however 

seen close to both edges (0 to 450 µm and 1600 to 2250 µm).  From Figure 4.62  it is clear that a more 

advanced level of degradation is detected at the edges compared to the core of the sample.  In 

samples degraded for 96 hours, it can be seen that the core of all three are still relatively undegraded 

compared to the edges.  Since degradation is a heterogeneous process, the edges of the three 

samples are expected to degrade somewhat differently depending on the characteristics of each 

plaque, and the deviation from the average value at each point is expected to be noticeable.   
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Figure 4.65:  Evaluation of the reproducibility of the CO group concentration profiles measured on different 

microtomed slices of a degraded (3V-96h) sample.   
 

It was, therefore, concluded that results from a number of analyses performed on separate microtomed 

slices would have to be performed to obtain reliable results.  Each CO concentration profile presented 

in the following graphs represents the average curve obtained for a number of individual 

measurements performed on different microtomed specimens.   

 

The carbonyl concentration profiles for the various degradation times obtained across the width of each 

microtomed slice of sample 3V, are presented in Figure 4.66.  All profiles were constructed around the 

centre of each sample, which is indicated by the point, X=0.   
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Figure 4.66:  Averaged CO group concentration profiles obtained at different times during the degradation of 

sample 3V.   
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The concentration profiles obtained at all time intervals are symmetrical, indicating that degradation 

proceeds in a similar way starting from both surfaces.  The undegraded sample shows a uniform 

distribution of carbonyl functionalities across the entire width of the sample.  During the early stages of 

degradation (3V-24h), a slight increase in the CO concentration is observed at distances close to the 

two edges first, with the core of the sample appearing to be unaffected, as seen by the plateau region 

in the middle of the CO concentration profile.  This is typically found during the degradation of thicker 

samples where oxygen is consumed within the surface layers before it can diffuse into the core 

layers97, 101.  At longer degradation times, degradation is seen to spread further into the bulk of the 

sample, as a drastic increase in the CO concentration values at the two edges is observed.  A 

decrease in the width of the plateau section in the core of the sample (distances close to 0 µm on 

either side) also gets increasingly narrower as the edges degrade away.  This can be seen by the CO 

concentration profile changing its shape from a U to a sharper V-shaped curve.  It is also interesting to 

note that, although the edges are considerably more degraded than the bulk of the sample at all 

degradation times, the core also seems to degrade gradually with ongoing degradation times, as is 

visible from the increase in the y-offset of all curves at X = 0 µm (centre or core of the sample) with 

ongoing degradation time.  The CO concentration profiles of sample 4V obtained at the various 

degradation times are presented in Figure 4.67.   
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Figure 4.67:  Averaged CO group concentration profiles obtained at different times during the degradation of 

sample 4V.   

 

The CO concentration profiles of sample 4V are similar in shape to those of sample 3V, with the edges 

at all degradation times containing a higher concentration of CO functionalities and therefore being 

more degraded than the bulk or core.  The increase in CO concentration at the edges seems more 

gradual than in sample 3V and the U-shaped curve never really develops into a V-shaped one at 

longer degradation times.  This indicates that, at longer degradation times, (especially 4V-145h and 



Chapter 4:    Results and Discussion 
 
 

   
   
 
  136

4V-170h), the core of the 4V slices are still substantially less degraded than the edges.  It can therefore 

be concluded that the CO concentration profile across the width of sample 3V is much steeper than in 

sample 4V, at longer degradation times.  These results are consistent with those obtained for the 

degradation of the thin 3V and 4V films in Section 4.2, where a steeper increase in the carbonyl index 

with ongoing degradation time was observed for sample 3V.   

 

The CO concentration at different distances from the core to the surface of all 3V and 4V samples is 

presented as a function of degradation time in Figure 4.68.  Here, d indicates the distance of each point 

from the core of the sample where the CO peak area (1736–1694cm-1) was measured and d = 0 

signifies the point exactly at the centre of each plaque.  Therefore, the curve labelled d = 0 μm 

illustrates how the CO concentration profile changes in the exact centre or core of the sample with 

ongoing degradation time.  The curves labelled d = 1400 µm in sample 3V and d = 1350 µm in sample 

4V, represent the CO concentration curves taking place at the edges of the two samples with ongoing 

degradation times.  Unfortunately these two curves only contain a limited number of points, since the 

edges degrade completely within a fairly short time and are lost due to embrittlement.  Furthermore, 

curves labelled d = 100 µm, d = 250 µm, d = 450 µm, which are closest to d = 0 µm, can also be 

regarded as layers found within the core of the plaques, whereas those labelled d = 800 µm, d = 1000 

µm and d = 1200 µm are regarded to be representative of the CO concentration changes happening at 

the edges.   
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Figure 4.68:  The CO concentration value at different distances from the core to the surface of all 3V and 4V 

samples, as a function of degradation time.   
 

It can be seen in Figure 4.68 that the difference in the CO concentration profiles of the core and the 

edges of sample 4V is less significant than those of sample 3V, where the CO concentration profiles of 

the layers close to the edge are much steeper than those in the bulk.  In sample 4V, the layers at  

d = 0 µm to d = 650µm all have similar concentration profiles, with the biggest difference seen only 

from 100-170h, where there is a significant increase in CO concentration with ongoing degradation 
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time.  The layers found at 800–1350 µm from the core show an increase in CO concentration 

commencing at shorter degradation times, with significantly higher CO values reached at longer 

degradation times.  The outermost layers (d = 1000 µm; d = 1200 µm; d = 1350 µm) of sample 4V 

show a gradual increase in CO concentration after 20h, with a drastic increase only observed after 50h, 

at which point there seems to be very little change in the CO profiles of the core layers.   

 

In sample 3V, a gradual increase in CO concentration with ongoing degradation times is only observed 

for the core layers from 0 to 250 µm.  All layers closer to the edge, starting at a distance of 450 µm 

from the core show a drastic increase in CO concentration from a degradation time of 78h.  The 

outermost layers of sample 3V show a drastic increase in CO concentration from as early as 20h of 

degradation, with the layer at d = 1400 µm, showing no induction period at all, as indicated by the 

increase in CO concentration seen from 0h already.   

 

From the above it can be concluded that degradation starts earlier in sample 3V (as seen from the 

increase in the CO profile of the layer at 1400 µm from 0h already) and it spreads more quickly towards 

the core layers than in sample 4V.  However, when comparing the degradation behaviour of the core of 

both samples (d = 0), a similar CO concentration is detected for sample 4V than 3V with ongoing 

degradation time.   

 

In Section 4.2 the degradation behaviour of thin films of samples 3V and 4V were compared and it was 

seen that degradation also started earlier in sample 3V and proceeded more quickly with ongoing 

degradation time.  This difference in stability was ascribed to the higher ethylene content (less tertiary 

carbons originating from propylene) and accompanying lower isotacticity of sample 4V, both factors 

which render this material more stable as a result of its chemical structure.  In terms of the 4 major 

components found in the two impact PP copolymers, it was also confirmed that sample 4V contained a 

higher amount of amorphous copolymer (EPR) and transition copolymers, and a smaller amount of 

highly crystalline isotactic PP than sample 3V.  The degradation behaviour observed for the thicker 

plaques is consistent with the results observed for the thin films of the two copolymers.  What is 

observed here, however, is that oxygen diffusion effects might also play a role, since the core of both 

samples seem to degrade similarly.  Oxygen diffusion effects are expected here, since these plaques 

are considerably thicker, and the difference in the amount of amorphous material in the two films might 

be responsible for the slightly different degradation behaviour than that observed in Section 4.2.  

Information on the crystallinity or morphology of the thicker samples is needed to confirm the 

contribution of morphology to the difference in degradation behaviour between the core and surface of 

these samples.  This is also needed to justify why, although the edges of the two grades behave as 

expected, there is a similarity in the degradation behaviour of their core layers.   
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4.3.3 Spatial heterogeneity of thermo-oxidative degradation in ICPPs studied by SEC, 
FTIR and CRYSTAF after layer-by-layer milling 

 

The FTIR micro-spectroscopy results will now be compared to a conventional technique of layer-by-

layer milling with subsequent analysis of the layers by ATR-FTIR, SEC and CRYSTAF.  Three different 

degradation time intervals were chosen for comparison by this conventional technique, 0h, 50h and 

102h.  Longer degradation times were omitted due to the difficulty of accurately milling severely 

degraded samples to the desired thickness, due to their brittleness.  The top layers of all plaques were 

mechanically removed in thickness steps of 100 µm to a distance of 700 µm into the bulk.  The ATR-

FTIR results of the layers obtained from undegraded and degraded samples of samples 3V and 4V are 

presented in Figure 4.69.  The peak area from 1736 cm-1 to 1670 cm-1 was taken as an indication of 

the concentration of carbonyl-containing degradation products found in each layer.   
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Figure 4.69:  ATR-FTIR results of the CO concentration of the layers of copolymers 3V and 4V obtained by 

abrasion from the surface. 
 

Both undegraded samples show a uniform distribution of a very low concentration of CO species from 

the surface to a distance of 700 µm into the core.  After 50 hours, a significant concentration of CO 

species is detected in the 100 to 700 µm layers of sample 3V, whereas a small increase in CO 

concentration is visible only in the surface layer (100 µm) of sample 4V.  After 102 hours, however, a 

considerable increase in the CO concentration of all layers from the surface to a distance of 700 µm of 

sample 4V is observed.  In sample 3V, a higher CO concentration is observed in the surface layers 

compared to those in sample 4V, but the CO concentration of the 500-700 µm layers is smaller than in 

the case of sample 4V.  This agrees well with the FTIR-µS results which indicate that the surface 

layers of sample 3V is more degraded than those of sample 4V, whereas the layers around the core of 

sample 4V seem to be degraded to a greater extent than those in sample 3V.  The SEC results for the 

layers of the two copolymers are presented in Figure 4.70.   
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Figure 4.70:  SEC results of the molecular weight changes within the layers of copolymers 3V and 4V obtained by 

abrasion from the surface. 
 

Similar molecular weights are seen for all layers of the two undegraded samples.  At 50 hours, a 

significant decrease is seen in all layers of sample 3V, whereas only the 100 and 200 µm layers of 

sample 4V show a molecular weight decrease.  At 102h, a drastic decrease in molecular weight is seen 

in all layers of sample 4V too, and the molecular weight of the 500–700 µm layers is slightly lower than 

the corresponding layers in sample 3V.  This is once again consistent with the ATR-FTIR and FTIR-µS 

results presented before.   

 

Finally, CRYSTAF analysis of the layers was performed to investigate possible differences in 

crystallinity and crystallisability of the surface and core layers of both copolymers, and to investigate 

whether differences in morphology could be related to the degradation behaviour observed by FTIR-

µS.  The CRYSTAF crystallisation curves of the layers of the undegraded 3V and 4V copolymers, as 

well as those of the samples degraded for 50 and 102 hours, are presented in Figure 4.71.   

 

Similar crystallisation curves are observed for the core and surface layers of both the undegraded 3V 

and 4V copolymer samples.  At a degradation time of 50 hours, a decrease in the peak maximum of 

the crystallisation curves of sample 3V is seen with increasing distance towards the surface of the 

sample.  A significant increase in the soluble fraction of the surface layers is also observed.  These 

results indicate that the crystallisability of the surface layers has been changed by degradation, while 

very little shift in the 3V-50h_500 and 3V-50h_700 core layers indicate that these layers have remained 

fairly undegraded.  A very small shift in the crystallisation curves of the 4V layers are seen at 50 hours, 

with the layers at 100-300 um appearing at only a slightly lower crystallisation temperature than the 

core layer (4V-50h_600 μm).   
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Figure 4.71:  CRYSTAF crystallisation curves of the different layers of the undegraded and degraded 3V and 4V 

copolymers.   
 

At a degradation time of 102 hours, the degradation within sample 3V has spread even further into the 

core, as indicated by the shift in the crystallisation curve of the 200 and 300 μm layers to even lower 

crystallisation temperatures, and the significant increase in their soluble fractions, compared to the 50 

hours sample.  However, the core layers (3V-102h_500 and 3V-102h_700 μm) still appear at a 

crystallisation temperature close to that of the sample degraded for 50 hours.  At 102 hours, the 

crystallisation curves of all layers of sample 4V have shifted towards lower crystallisation temperatures, 

indicating that degradation spreads through all surface and core layers at longer degradation times.  

These results indicate that, at longer degradation times, degradation spreads equally through all layers 

of sample 4V, whereas the core layers of sample 3V are affected to a smaller extent.  The peak 

crystallisation temperatures (Tc) of the undegraded and degraded 3V and 4V samples are presented as 

a function of depth Figure 4.72.   
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Figure 4.72:  CRYSTAF crystallisation temperatures of the different layers of the undegraded and degraded 3V 

and 4V copolymers.   
 

The CRYSTAF Tc results of the layers of the two copolymers agree well with the FTIR and SEC results 

presented in Figures 4.70 and 4.71.  At a degradation time of 50 hours, a decrease in the Tc of all 

layers of copolymer 3V from 100 to 700 μm into the core are observed, with the lowest Tc within the 

most degraded surface layers (100 and 200 μm).  At this stage of degradation, the Tc of all 4V layers 

are similar to those of the undegraded material.  After 102 hours of degradation, however, the Tc of all 

4V layers have decreased to values below that of the layers of sample 3V-102h, indicating that a 

higher level of degradation is now present within all layers of sample 4V.  It is also noted here that the 

Tc values of the 4V layers at different distances from the surface are very similar within the 102h 

sample, whereas a gradient is still present within sample 3V, where the Tc value increases from the 

surface towards the less degraded core.  These results are taken as an indication that oxygen diffusion 

effects do play a role in the degradation of thicker specimens of the two copolymers.  The higher 

amount of amorphous material present in sample 4V is considered to improve oxygen permeability 

through the layers, resulting in a more uniform degradation profile from the surface to the core layers.   

 

In Section 4.3 it was illustrated that the degradation principles observed for the thin films in Sections 

4.1 and 4.2 still apply in the case of thicker specimens, although sample morphology also starts to play 

a role, possibly due to oxygen diffusion effects.  Chemical composition, i.e., the concentration of tertiary 

carbons and isotacticity is still the driving force governing the onset and the rate of degradation as was 

seen for thin films of the two copolymers, although morphological effects also seem to become 

important at longer degradation times.   
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Conclusions and Recommendations 
 

 

 

In this chapter the overall conclusions of this study are formulated and discussed and some 

recommendations for future work in this field of study are proposed.   
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5.1 Conclusions 
 

In Section 4.1 it was illustrated that fractionation (TREF, CRYSTAF) and hyphenated techniques (SEC-

FTIR) could be used successfully to obtain information on the heterogeneity of the degradation of bulk 

impact PP copolymers.  The combination of TREF with conventional techniques such as 13C-NMR, 

FTIR, SEC and DSC into a multi-component analysis procedure proved to be highly suitable for 

extensive characterisation of the undegraded material and for assessing the degradation behaviour of 

the individual components of this complex copolymer.  The final step of the multi-analysis procedure 

comprised the combination of TREF with SEC-FTIR, which provided valuable information on the 

chemical composition of all fractions as a function of molecular weight.  This allowed unprecedented 

insight into the chemical composition distribution as well as ethylene and propylene crystallinity 

distributions as a function of molecular weight for the fractions of the undegraded material.  The 

distribution of carbonyl-containing degradation products as well as chemical composition changes 

caused by degradation, could also be evaluated within the TREF fractions of the degraded samples.   

 

The following individual conclusions were also obtained from this section: 

 

 Prep-TREF combined with 13C-NMR, DSC, FTIR and SEC was highly successful at identifying the 

major components of this heterogeneous copolymer system based on chemical composition, 

molecular weight, thermal properties and crystallinity.  It was concluded that the PP homopolymer 

phase, ranging from highly amorphous aPP in the lowest elution temperature (Te) fraction, to highly 

iPP in the highest fractions, eluted across the entire TREF elution range as a result of its tacticity 

distribution.  Copolymers of ethylene and propylene, ranging from EPR to a range of semi-

crystalline copolymers of different monomer sequence lengths and distributions were found to co-

elute with the PP phase across the same TREF elution profile, with the result that bimodal 

molecular weight distributions were present within most fractions of this copolymer.  This effect was 

most pronounced within the mid-eluting fractions.  Chemical composition analysis by TREF-(SEC-

FTIR) was successful at identifying the lower molecular weight component as low isotacticity PP 

and the higher molecular weight component as the EP copolymer part.  Construction of crystallinity 

profiles across the bimodal distribution indicated the presence of both crystalline ethylene and 

propylene within the higher molecular weight EPC component, while a low level of crystallinity of 

only PP was identified within the low molecular weight component.  This was the first time where 

the chemical composition of TREF fractions of impact PP copolymers had been confirmed by 

means of SEC-FTIR.  This offers a powerful alternative to methods used by other authors for 

investigating the composition of these copolymers.  Prep-TREF combined with the complimentary 

techniques mentioned above, indicated the 30ºC fraction to consist of EPR with a minor aPP 

component, the 110–130ºC fractions to consist of highly isotactic PP with a minor hPE component 

present too, while the mid-eluting 60–100ºC fractions were identified to consist of co-eluting EPC 

and low isotacticity PP. 
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 Conventional SEC and FTIR analysis of the bulk 3V copolymer indicated a similarity in thermo-

oxidative degradation behaviour to that of hPP, i.e. molecular weight changes resulting mainly from 

chain scission and the formation of carbonyl functionalities usually found in hPP.   

 

 SEC-FTIR illustrated both shifts in molecular weight distribution curves to lower values as a result of 

chain scission, and indicated an inhomogeneous distribution of degradation products across the 

molecular weight distribution of the degraded bulk sample, where the highest concentration of 

degradation products were located at the low molecular weight side of the molecular weight 

distribution of degraded samples.   

 

 CRYSTAF analysis indicated a change in the crystallisability of the bulk 3V copolymer as a function 

of degradation time.  Degradation was seen to cause a shift in the peak crystallisation temperature 

towards lower values, accompanied by an increase in the weight percentage of the soluble fraction.  

This suggests that degradation mainly affects the more crystalline material, altering the 

crystallisability of highly isotactic material in such a way that renders some chains completely non-

crystallisable.   

 

 Similar changes in crystallinity of the bulk sample were also observed by prep-TREF.   

Re-crystallisation of degraded bulk samples and their fractionation by TREF, revealed an increase 

in the weight of material eluting within the lower Te fractions (30–100ºC), accompanied by a 

decrease in the amount of the highest eluting fractions (110–130ºC), indicating the preferential 

degradation of the higher isotactic material within this copolymer.  TREF-SEC indicated the biggest 

shift in molecular weight distribution of the fractions of the degraded samples to be present within 

the iPP fractions, as well as the 30ºC fraction.  Within the bimodal molecular weight distribution 

fractions, the lower PP molecular weight component showed very little shift in its molecular weight 

distribution, while the higher EPC component shifted to some extent.  SEC-FTIR analysis of the 

TREF fractions of the degraded samples provided valuable information on the molecular weight and 

chemical composition changes responsible for the crystallisability changes observed in the TREF 

curves of the bulk samples.  Carbonyl concentration and propylene content profiles were 

constructed across the molecular weight distribution of each fraction of the undegraded and 

degraded samples in order to evaluate the distribution of degradation products as well as any 

chemical composition changes occurring within each fraction.  A uniform CO profile with a value 

close to 0 was observed across the molecular weight distribution curves of all fractions of the 

undegraded material.  Upon degradation, an increase in the CO profile could be observed at the 

lower molecular weight end of the Gram-Schmidt plot of fractions.  The concentration of CO species 

remained mostly unchanged in the 110ºC and 120ºC fractions, but together with the decrease in the 

weight of material eluting within these fractions upon degradation, it was believed that degraded 

material was no longer eluting within this fraction of the degraded material due to a change in 

crystallisability.  The 30ºC fraction, which showed a significant increase in the amount of 

amorphous material eluting here as a function of degradation time, showed a significant increase in 
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its CO concentration profile towards the lower molecular weight end of the distribution.  The 

propylene concentration profile indicated the elution of hPP within this fraction upon degradation 

and, therefore, it was concluded that degraded iPP from higher eluting fractions eluted at 30ºC 

within the degraded samples.  Within the fractions exhibiting bimodal molecular weight distributions 

of hPP and EPC, an apparent increase in the intensity of the lower molecular weight component 

was detected, accompanied by an apparent decrease in the intensity of the EPC distribution.  The 

propylene content profile indicated the lower molecular weight component to still only consist of PP, 

even in the degraded samples.  CO functionalities are also mainly found within this component.  

These results suggest that degraded iPP from higher fractions not only eluted within the soluble 

fraction (30ºC) after degradation, but also in the 60–100ºC fractions.  The elution temperature of the 

degraded iPP chains, therefore, depends on the level of molecular weight and chemical 

composition modification brought about by degradation, when degraded bulk sample are re-

crystallised and fractionated by TREF.   

 

 CRYSTAF, TREF and SEC proved to be more successful at detecting the onset of degradation 

than FTIR.  Although no carbonyl functionalities could be detected by FTIR during early stages of 

degradation within the bulk sample (40 hours), CRYSTAF, TREF and SEC indicated changes in 

crystallisability and molecular weight. 

 

In Section 4.2 it was concluded that TREF combined with 13C-NMR, SEC, and DSC is highly suitable 

for studying differences in chemical composition, molecular weight, thermal behaviour and monomer 

sequence distributions and lengths in impact PP copolymers of different comonomer, isotacticity and 

crystallinity.  Although conventional SEC and FTIR analysis illustrated the main differences in 

degradation behaviour between two copolymer grades, TREF once again succeeded in identifying 

micro-structural differences between the two undegraded samples in order to explain their difference in 

degradation behaviour.  TREF-SEC also indicated how these micro-structural differences can be 

correlated to the difference in degradation behaviour of fractions of the two copolymers observed after 

recrystallisation and fractionation of bulk samples by TREF.  The following conclusions were made in 

this section: 

 

 A large difference in the degradation behaviour of the two copolymers was observed by FTIR and 

SEC.  Conventional techniques indicated a difference in ethylene content, isotacticity and 

crystallinity between the two copolymers, with a higher ethylene content and lower isotacticity and 

higher amount of amorphous material by weight than copolymer 3V.  Similar changes in 

crystallisability were also observed by CRYSTAF, TREF and DSC of the bulk copolymers, despite 

the significant difference in the time scale of the degradation within the two grades. 

 

 TREF fractionation of the two copolymers indicated similar isotacticity distributions as well as DSC 

Tm and Tc values for corresponding fractions of the undegraded copolymers, indicating that the PP 

phase is very similar in composition and that the ethylene and propylene sequence distributions of 
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the EPC phase are very similar in the two copolymers.  Only minor differences in molecular weight 

values were detected in selected fractions.  There was, however, a difference in the weight 

percentage of the fractions eluting in the various elution ranges of the two copolymers.  The weight 

percentage of the lower Te fractions of copolymer 4V (30ºC and 60ºC) were larger than that of 

copolymer 3V, and a higher ethylene content was also detected within these fractions as expected.   

 

 TREF analysis of the degraded 4V copolymer illustrated similar changes in the weight percentage 

of individual fractions to those observed for copolymer 3V, where the amount of material within 

higher eluting fractions also decreases with an accompanying increase in the amount of material 

eluting at lower temperatures.  It is, therefore, also observed in this case, that the crystallisability of 

the iPP phase is altered by degradation to such an extent that some part of the original iPP phase is 

no longer at higher Te, causing it to elute either at 30ºC or slightly higher Te, according to the extent 

of structural modification by scission and CO group insertion reactions.  The iPP phase is still 

degraded preferentially, despite the larger amount of amorphous material present within the bulk 4V 

sample. 

 

 TREF-SEC of degraded samples, however, indicated differences in the degradation behaviour of 

some fractions of the two copolymers.  The molecular weight shifts observed for the higher eluting 

(iPP) fractions of the two copolymers are similar, which is to be expected, since the hPP phase 

seems to be very similar in composition and isotacticity, which are the two major influences 

governing degradation within PP.  The mid-eluting fractions of sample 4V, consisting of low 

isotacticity PP and EPC, show slight differences in molecular weight shifts to those of sample 3V.  

Similar changes are observed for the low isotacticity PP component of the fractions of 

corresponding elution temperatures, whereas the EPC component of copolymer 4V shows slightly 

higher stability than that of sample 3V.  The biggest difference in molecular weight shifts are, 

however, observed within the 30ºC sample of the two copolymers.  In sample 3V, the entire 

molecular weight distribution of this fraction is seen to shift to lower values with ongoing 

degradation time, indicating that, although degraded iPP elutes here within the degraded samples, 

there also seems to be some degradation of the EPR phase.  In copolymer 4V, some part of the 

original molecular weight distribution remains at longer degradation times, indicating a higher 

stability of the EPR phase observed for this copolymer.   

 

 The higher stability of copolymer 4V is concluded to result not only from differences in comonomer 

content and isotacticity within the bulk samples, but also from the relative amounts of EPR and iPP 

as well as the amount of ethylene within the EPR and transition copolymer fractions.  Since the 

ethylene content and amount of EPR has a significant influence on the morphology of the bulk 

sample, the difference in the stability of the two copolymers is also believed to be related to a 

difference in the morphology.  The EPR promotes mobility of oxygen, causing the core layers of 4V 

to degrade to a larger extent than that of 3V, but the larger amount of EPR will also restrict 
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cracking, flaking and loss of surface material, thereby slowing down surface attack during early 

stages of degradation.   

 

In Section 4.3 the spatial heterogeneity of degradation within thicker samples of both copolymers were 

studied in order to investigate the influence of morphology (i.e., oxygen diffusion), which might be more 

significant for these samples compared to the thin films studied in the previous section.  FTIR-μS 

proved to be a suitable method for studying CO concentration profiles across the width of thicker 

specimens of both samples.  The following conclusions were obtained:   

 

 Functional group maps constructed for the CO degradation products indicated a higher level of 

degradation within the surface layers of thick samples, compared to the core. 

 

 The degradation product profiles were symmetrical for all degradation times studied in the two 

copolymers, suggesting similar rates of degradation from both surfaces for each plaque.  The shape 

of the profiles were slightly different in the two copolymers, where the CO concentration profiles at 

longer degradation times were V-shaped in sample 3V, compared to flatter, U-shaped profiles in the 

4V grade.  These results suggested an earlier onset of degradation at the edges of sample 3V, and 

quicker spread of degradation from the edges towards the core of this copolymer compared to 

sample 4V.  These results are consistent with those observed for thin films of the two copolymers 

studied in the previous section, where chemical composition (i.e., concentration of tertiary carbons 

and isotacticity) was concluded to be the main force governing the earlier degradation in sample 

3V.  Despite this difference in degradation behaviour at the surface of the two copolymers, the level 

and the increase in the carbonyl concentration within the core layers of the two samples appeared 

similar as degradation time increased.   

 

 Layer-by-layer milling from the surface towards the core of thick degraded specimens, followed by 

FTIR of the layers, confirmed the earlier onset of degradation within the surface layers of sample 3V 

at degradation time of 50 hours, when hardly any CO functionalities could be detected for sample 

4V.  At a degradation time of 102 hours, however, similar degradation behaviour is observed 

throughout the surface layers of both copolymers.  SEC analysis of the layers also confirmed the 

larger extent of degradation in sample 3V at 50 hours, followed by a drastic increase the level of 

degradation observed for sample 4V at 102 hours.   

 

 CRYSTAF analysis suggested the similarity in degradation of the core layers of the two copolymers 

to be the result of the similar crystallinity or crystallisability of the core layers of the two copolymers, 

compared to the bulk.  It can, therefore, be concluded that the differences in degradation behaviour 

of the surfaces of the two copolymers is the result of chemical structure, whereas the similarity in 

degradation behaviour between the core layers are the result of morphology, where similar 

crystallisability are detected for the core layers of the two grades, suggesting similar oxygen 

diffusion effects, which did not play a significant role in the degradation of the thin films.   
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In general, it is concluded that fractionation and hyphenated techniques, combined with conventional 

characterisation techniques are highly suitable for studying the microstructure of undegraded impact 

PP copolymers.  These techniques are equally informative of the degradation behaviour of impact PP 

copolymers as a function of their chemical composition and crystallinity or morphology.  These 

techniques have suggested that chemical structure, i.e., comonomer content and isotacticity of the PP 

phase governs the degradation behaviour of impact PP copolymer thin films.  It was also illustrated 

how degradation leads to a change in the crystallisability of the iPP phase through chain scission and 

CO group insertion.  The spatial heterogeneity of the degradation process was studied by FTIR-μS and 

analysis of mechanically abrased layers, which suggested that the degradation of surface layers of 

thick samples is governed by chemical composition, whereas morphological effects also become 

important in the degradation of the core layers.   

 

 

5.2 Recommendations 
 

In this study it was seen how TREF combined with SEC-FTIR can be used to study the degradation of 

the individual fractions within heterophase EP copolymers.  The co-elution of degraded higher 

isotacticity material from higher eluting fractions together with non-degraded material could, however, 

obscure changes in the lower eluting fractions.  It would, therefore, be useful to separate the degraded 

molecules from the non-degraded material within each TREF fraction.  For this purpose, high-

temperature gradient HPLC separation combined with TREF is proposed.  Some preliminary 

investigations for future work in this regard have been performed and the results are presented here. 

 

A sample of copolymer 3V, degraded for 115 hours was fractionated by TREF into three fractions, 

according to the major components identified within this copolymer within Section 4.1 of this study.  

The EPR, iPP and co-eluting EPC and low isotacticity fractions were collected at 30, 100 and 130ºC, 

respectively, in both samples.  The TREF fractions of these two samples were analysed by the HT-

HPLC procedure described in Section 3.3.8 of the experimental chapter.  Considering that the main 

functionalities formed by degradation are polar in nature, a polar stationary phase was selected to 

facilitate interaction with degraded molecules.  Therefore, non-degraded material was expected to elute 

first, followed by the more polar, degraded molecules.  The 30ºC fraction of the undegraded 3V 

copolymer, which is known to consist mainly of soluble, non-degraded EPR, was used as reference to 

investigate the separation of the fractions of the degraded sample according to their degree of 

degradation.  The HT-HPLC results of the undegraded and three degraded fractions are presented in 

the following figure.   
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Figure R.1:  HT-gradient-HPLC curves of the various TREF fractions of a degraded and undegraded 3V sample. 

 

The undegraded 0h-30ºC fraction elutes within a single, uniform peak at an elution volume close to the 

dead volume of the column.  This indicates that only non-polar material, which does not interact with 

the stationary phase is present within this fraction.  Contrary to this, all fractions of the degraded 

sample have a main elution peak at slightly higher elution volumes than the single peak eluting in the 

undegraded fraction, as well as an additional peak at a considerably larger elution volume.  The peak 

at higher elution volume is expected to contain the most degraded, polar molecules retained within the 

column.  The intensity of this peak indicates that the highest concentration of degradation products is 

present within the 30ºC fraction of the degraded sample, followed by the 100 and 130ºC fractions.  The 

30ºC fraction also contains the lowest concentration of the original undegraded material, as can be 

seen from the really small intensity of the blue peak at an elution volume of approximately 1.8 ml.  The 

intensity of this peak decreases in the order 0h-30ºC > 115h-130ºC > 115h-100ºC > 115h-30ºC, 

indicating that the amount of undegraded material also decreases from the highest to lowest eluting 

fraction within the degraded sample, and that all fractions contain a smaller concentration of 

undegraded material than the 0h-30ºC fraction.  The degraded fractions all have an additional peak 

eluting around 3 ml, which is believed to consist of degraded material which is of lower polarity (i.e., 

lower carbonyl concentration) than the highest eluting peak at 8 ml.  The elution order of this peak 

increases from the 115h-130ºC to the 115h-30ºC fractions, thereby, also indicating that the highest 

concentration of degradation products is found within the lowest eluting fraction.   

 

It is suggested that, for future work, the HT-HPLC system should be coupled to spectroscopic 

techniques such as FTIR and NMR for identification of the separated components.  Some preliminary 

results were obtained through coupling of the HT-HPLC to FTIR via the LC-Transform® interface.  The 

(HT-HPLC)-FTIR results of the 115h-30ºC fraction is displayed in Figure R.2.   
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Figure R.2:  (HT-HPLC)-FTIR results illustrating the carbonyl concentration profile within the 30ºC fraction of a 

degraded (115h) sample of copolymer 3V. 

 

These results indicate that carbonyl functionalities are found within both the lower and higher elution 

volume peaks and that the carbonyl concentration increases with increasing elution volume.  This 

combination of HT-HPLC separation and FTIR can, therefore, be used successfully for separating 

degraded from non-degraded material within each component of impact PP copolymers fractionated by 

TREF and for identifying the components separated.  Future studies will be directed towards the 

optimisation of the HT-HPLC-FTIR system as well as the coupling of NMR to HT-HPLC as an 

alternative method for the identification of the degradation products separated.   
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Appendix A              3V Degradation 
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Figure A.1:  CRYSTAF curve of the 3V sample degraded for 110 hours. 
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Appendix B       3V & 4V Characterisation 
 
 
 
 
Table B.1:  TREF data for the undegraded 3V and 4V copolymers 

      

Sample Te Wi Wi ΣWi Wi%/ΔT 

 (ºC) (g) (%) (%)  
      

3V-0h-30 30 0.303 9.90 9.90 0.330 

3V-0h-60 60 0.102 3.36 13.26 0.090 

3V-0h-80 80 0.106 3.47 16.73 0.163 

3V-0h-90 90 0.100 3.26 19.99 0.307 

3V-0h-100 100 0.171 5.60 25.59 0.527 

3V-0h-110 110 0.574 18.80 44.39 1.771 

3V-0h-120 120 1.459 47.77 92.16 4.498 

3V-0h-130 130 0.240 7.85 100.00 0.739 
      

4V-0h-30 30 0.7498 21.11 21.11 0.8445 

4V-0h-60 60 0.2573 7.24 28.36 0.2070 

4V-0h-80 80 0.1312 3.69 32.05 0.1847 

4V-0h-90 90 0.1260 3.55 35.60 0.3548 

4V-0h-100 100 0.1820 5.12 40.72 0.5125 

4V-0h-110 110 0.5759 16.22 56.94 1.6216 

4V-0h-120 120 1.2215 34.39 91.33 3.4394 

4V-0h-130 130 0.3078 8.67 100.00 0.8667 
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Figure B.1:  Molecular weight distribution curves for all TREF fractions of the undegraded 3V and 4V copolymers. 

 

 

 

Table B.2:  Molecular weight values for all TREF fractions of the undegraded 3V and 4V copolymers 
      

Sample Te 
___

nM  
___

wM  

 (ºC) (g.mol-1) (g.mol-1) 
      

3V-0h-30 30  750 500  166 600 

3V-0h-60 60 2 200 78 500 2 000 42 500 

3V-0h-80 80 4 100 84 500 3 600 53 200 

3V-0h-90 90 7 500 560 900  5 900 233 900 

3V-0h-100 100  105 400  21 600 

3V-0h-110 110  186 000  53 100 

3V-0h-120 120  321 200  127 500 
      

4V-0h-30 30  333 300  132 600 

4V-0h-60 60 2 100 50 700 2 000 30 000 

4V-0h-80 80 4 000 69 600 3 600 44 600 

4V-0h-90 90 7 800 321 000 6 300 172 300 

4V-0h-100 100  37 400  14 900 

4V-0h-110 110  147 600  47 600 

4V-0h-120 120  225 000  99 300 
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Table B.3:  DSC Tc, Tm and ΔHm values for all TREF fractions of the undegraded 3V and 4V samples 

       

Sample Te Tm Tc Δhm 

 (ºC) (ºC) (ºC) (J.g-1) 
       

3V-0h-30 30 56.3  36.7 2  

3V-0h-60 60 89.2 111.5 62.8 6 0 

3V-0h-80 80 103.0 129.7 85.1 13 10 

3V-0h-90 90 117.6 145.5 104.7 16 38 

3V-0h-100 100 118.1 150.1 110.7 3 66 

3V-0h-110 110  159.1 115.3  92 

3V-0h-120 120  160.5 114.3  99 
       

4V-0h-30 30 52.3  31.7 1  

4V-0h-60 60 87.2 111.5 65.5 13 3 

4V-0h-80 80 101.9 128.6 83.5 19 6 

4V-0h-90 90 117.3 147.2 101.3 17 33 

4V-0h-100 100 115.4 151.6 105.2 5 48 

4V-0h-110 110  158.9 110.0  88 

4V-0h-120 120  154.1 115.0  70 
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Appendix C             3V & 4V Degradation 
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Figure C.1:  Comparison of the shift in molecular weight curves of samples 3V and 4V after degradation. 
 

 

 

Table C.1:  Molecular weight and polydispersity values for the various stages of degradation in copolymers 3V 

and 4V 

Sample Degradation time 
___

nM  
___

wM  PDI 

 (h) (g.mol-1) (g.mol-1)  
     

3V-0h 0 111 500 354 400 3.18 

3V-40h 40 49 000 242 800 4.96 

3V-65h 65 25 400 100 000 3.94 

3V-90h 90 6 900 23 000 3.33 

3V-110h 110 6 600 18 400 2.79 
     

4V-0h 0 86 600 351 900 4.06 

4V-115h 115 40 000 250 800 6.26 

4V-179h 179 23 100 189 100 8.18 

4V-195h 195 16 300 122 700 7.52 

4V-230h 230 10 000 56 400 5.63 
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Figure C.2:  CRYSTAF results for the various stages of degradation in copolymers 3V and 4V. 
 
 
 
Table C.2:  CRYSTAF data of the bulk 3V and 4V copolymer samples 

    

Sample Tc (peak maximum) Soluble fraction FWHM 
 (ºC) (Weight %)  
    

3V-0h 84.0 12.8 4.69 

3V-40h 83.2 14.2 3.44 

3V-65h 80.2 14.7 6.68 

3V-90h 77.9 19.9 5.12 

3V-110h 76.2 n.d. n.d. 
    

4V-0h 83.9 21.0 3.41 

4V-115h 82.7 22.5 3.61 

4V-179h 81.9 23.0 5.07 

4V-195h 80.1 23.9 4.39 

4V-230h 78.3 n.d. n.d. 
n.d. not determined    
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Figure C.3:  DSC melting and crystallisation curves obtained at the various stages of degradation in copolymers 

3V and 4V. 
 
 
 
Table C.3:  DSC thermal data for the various stages of degradation in copolymers 3V and 4V 

    

Sample Tm Tc Δhm 

 (ºC) (ºC) (J.g-1) 
    

3V-0h 162.6 118.2 94 

3V-40h 160.1 117.7 91 

3V-65h 153.6 115.5 89 

3V-90h 148.6 112.5 88 

3V-110h 147.0 110.9 87 
    

4V-0h 160.7 116.3 72 

4V-115h 159.0 113.8 70 

4V-179h 156.7 110.2 67 

4V-195h 155.3 108.3 66 

4V-230h 153.7 106.5 65 
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