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Abstract

Order picking is the most important activity in distribution centres. It involves the process of
retrieving products from storage in response to a specific customer request. The order picking
system in a distribution centre used by Pep Stores Ltd. (Pep), located in Durban, South Africa,
is considered. The order picking system in Pep utilises picking lines. The system requires that
the pickers move in a clockwise direction around the picking line. The planning of picking
lines may be divided into three tiers of decisions. The first tier determines which Stock Keeping
Units (SKUs) should be allocated to which picking line and is known as the SKU to Picking Line
Assignment Problem (SPLAP). The second tier, the SKU Location Problem (SLP), considers
the positioning of the various SKUs in a picking line. The final tier considers the sequencing of
the orders for pickers within a picking line and is referred to as the Order Sequencing Problem
(OSP). Collectively, these three tiers aim to achieve the objective of picking all the SKUs
for all the orders in the shortest possible time. The decisions associated with each tier are
made sequentially during the planning of a picking line. Each problem therefore relies on the
information generated by its predecessing tier(s).

Initially the OSP is addressed. A number of heuristic and metaheuristic approaches are pre-
sented, together with an exact formulation to solve this tier. The size of the problem is reduced
by using a relaxation of the problem that may be solved exactly. A number of greedy tour
construction heuristics, a scope and ranking algorithm, methods based on awarding starting
locations with respect to preference ratios and a modified assignment approach was used to
solve the OSP. Furthermore, a tabu search, simulated annealing, genetic algorithm and a gen-
eralised extremal optimisation approach are used to solve the OSP. The solution quality and
computational times of all the approaches are compared for the data provided by Pep, with the
generalised extremal optimisation approach delivering the best solution quality.

Two methods from the literature was used to model the SLP, whereafter an ant colony system
was used to maximise the number of orders in common between adjacent SKUs. A number of
agglomerative clustering algorithms were used from which dendrograms could be constructed.
Two novel heuristic clustering algorithms were considered. The first heuristic calculates a dis-
tance between two clusters as the set of orders that have to collect all the SKUs in both clusters,
whereas the second method is based upon the frequency of SKUs within a cluster. Little or no
improvement was achieved in most cases.

The SPLAP was introduced by means of a number of possibilities of how to formulate objectives.
A possible exact formulation is presented, followed by a nearest neighbour search, which was
initially used to construct new picking lines based on all data sets. A different approach was
then taken by means of a tabu search where the waves of two or three picking lines were altered.
Significant savings may be incurred for large data sets.
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Opsomming

Die opmaak van bestellings is die belangrikste aktiwiteit in ’n distribusiesentrum. Dit behels
dat geskikte hoeveelhede produkte uit stoorplekke opgespoor en herpak moet word om aan
kleinhandeltakke gestuur te word. Die bedrywighede binne een van Pep Stores Ltd. (Pep) se
distribusiesentrums in Durban, Suid-Afrika, word beskou. Die sisteem vereis dat die werkers in
’n kloksgewyse rigting om ’n uitsoeklyn beweeg. Die beplanning van die uitsoeklyne kan verdeel
word in drie besluite/probleme. Die eerste besluit is watter voorraadeenhede (VEs) toegewys
moet word aan watter uitsoeklyn. Die tweede besluit is in watter vakkies in die uitsoeklyn die
VEs geplaas moet word, en word die VE-plasings probleem (VLP) genoem. Die finale besluit
is in watter volgorde bestellings opgemaak moet word in ’n uitsoeklyn, en staan bekend as
die volgorde-van-bestellings-probleem (VBP). Die doel van al drie hierdie probleme is om al
die bestellings in ’n uitsoeklyn in die kortste moontlike tyd af te handel. Die besluite wat
verband hou met elke vlak van besluit word opeenvolgend gedoen tydens die beplanning van
’n uitsoeklyn. Die oplossing van elke subprobleem berus op die inligting van die voorafgaande
probleme.

Aanvanlik word die VBP beskou. ’n Aantal heuristiese en metaheuristiese benaderings word
aangebied saam met ’n eksakte formulering om die derde vlak op te los. Die grootte van
die probleem is verminder deur die gebruik van ’n verslapping van ’n eksakte formulering. ’n
Aantal toerkonstruksie heuristieke, ’n omvang en rangorde algoritme, metodes wat gebaseer is
op die toekenning van beginpunte met betrekking tot voorkeurverhoudings en ’n veralgemeende
toewysingsprobleem is gebruik om die VBP op te los. ’n Tabu-soektog, gesimuleerde tempering,
genetiese algoritme en ’n veralgemeende-ekstreme-optimering-benadering word ook gebruik om
die VBP op te los. Die oplossingsgehalte en berekeningstye van al die benaderings word vergelyk
vir werklike data wat verskaf is deur Pep. Die veralgemeende-ekstreme-optimering-benadering
lewer die beste oplossingsgehalte.

Twee metodes uit die literatuur is gebruik om die VLP te modelleer, waarna ’n mier kolonie
stelsel gebruik word om die aantal bestellings wat aangrensende VEs in gemeen het te maksimeer.
’n Aantal groeperingsalgoritmes word gebruik wat dendrogramme kan lewer. Twee heuristiese
groeperingsalgoritmes word oorweeg. Die eerste heuristiek bereken die afstand tussen twee
groepe as die aantal bestellings wat al die VEs in beide groepe moet versamel, terwyl die
tweede metode gebaseer is op die frekwensie van VEs binne ’n groep. Min of geen verbeterings
is in die meeste gevalle gevind.

Die eerste besluit word bekend gestel na aanleiding van ’n aantal moontlike maniere om die
doelwitte te formuleer. ’n Moontlike eksakte formulering word aangebied. ’n Alternatiewe be-
nadering is geneem deur middel van ’n tabu-soektog waar die golwe van twee of drie uitsoeklyne
gewysig word. Beduidende besparings word gerealiseer vir groot datastelle.
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Contents
1.1 A supply chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A distribution centre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Pep DCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Order picking and picking lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Problem description and project scope . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 The order sequencing problem . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.2 SKU location problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.3 SKU to picking line assignment problem . . . . . . . . . . . . . . . . . . 6

1.6 Project objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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Order picking is known as the most important activity in warehouses [122]. It involves the
process of clustering and scheduling orders, assigning stock to locations in picking lines, releas-
ing orders to the floor, picking the pallets from storage locations and the disposal of picked
products [28]. Poor performance in order picking may lead to unsatisfactory output and high
costs incurred by a warehouse.

1.1 A supply chain

The Council for Supply Chain Management Professionals (CSCMP) defines supply chain man-
agement as encompassing:

“The planning and management of all activities involved in sourcing and procure-
ment, conversion, and all Logistics Management activities. Importantly, it also
includes coordination and collaboration of channel partners, which can be suppli-
ers, intermediaries, third-party service providers, and customers. In essence, Supply
Chain Management integrates supply and demand management within and across
companies” [47].

The supply chain encompasses every effort involved in producing and delivering a final product,
from the supplier’s supplier to the customer’s customer. Four basic processes: plan, source,

1
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make and deliver broadly define these efforts, which include managing supply and demand,
sourcing raw materials and parts, manufacturing and assembly, warehousing and inventory
tracking, order entry and order management and distribution across all channels and delivery
to the customers [71]. There are four key elements in the supply chain that deliver the product
to the final customer, namely the suppliers, manufacturers, distributors and retail stores.

The supply chain is initially provided with raw materials from the suppliers. The suppliers are
at the root of the supply chain. The raw materials provided by the suppliers must be used to
produce products for the final user.

Manufacturers process the raw materials into goods that is in a form or condition requested by
the customers. Manufacturers may use a series of processes to transform the raw material into
a useful product. Manufacturers make use of human activity and technology to create finished
goods on a large scale. A series of manufacturers, each adding different processes, may be used
to work on the raw materials to create the final goods.

After the manufacturers have delivered the final product, the distributors (or wholesalers),
maintain a warehouse of stock. Stock is usually received in bulk from the manufacturers, after
which the stock is reassigned and redistributed to the retailers [100]. A distributor often makes
use of a distribution centre (DC) which is a warehouse that permits the functions of receiving,
transfer and storage, order picking, shipping and sometimes cross-docking [28]. The receiving
activity includes unloading the goods from the transportation vehicle, inspection of the goods to
determine if the correct products are delivered, the delivered products are in a good condition
with no damages and that the correct quantities thereof have arrived. The inventory records
are updated accordingly, after which the new inventory is transferred into storage locations.
Before a product is stored, it may be repackaged into a different (standard) size container used
in the warehouse. The process of order picking is an operation in which quantities of the correct
products are selected for each customer (retail) order. The shipping process entails a final
quality check of outgoing orders and the distribution thereof.

The retailers are the shops or stores which sell the completed products received from the dis-
tributors in smaller quantities directly to consumers, who are the users/owners of these final
products.

1.2 A distribution centre

Distribution centres are warehouses used for storing and buffering products before products are
dispatched when needed downstream in the supply chain. A distribution centre has a vital role
to play in the supply chain of most companies [100]. The distribution centre contribute to a
significant cost within a supply chain. Warehouses and DCs are not identical in general, but
in the case of Pepstores Ltd. (Pep) the DC and the warehouse refer to the same part of the
logistics system, since traditional activities taking place in a warehouse and a DC is done at the
same location. For the purpose of this thesis, a DC and a warehouse refer to the same part of the
logistics system. This facility controls the operations from its boundaries as goods are moved
into the warehouse, handled and stored, and moved from the warehouse to the customers [113].
Warehouses often involve large investments and operating costs [28].

Products typically arrive packaged on a larger scale and leaves packaged on a smaller scale. An
important function of a warehouse is to break down large chunks of product and redistribute
it in smaller quantities [12]. Warehouses are used to support manufacturing operations, where
products in bulk are mixed and consolidated into shipments for the following users.
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Operations within a distribution centre are usually more labour intensive than other operations
within the supply chain. The reordering of incoming products may be done by means of two
processes: inbound processes and outbound processes [12]. Inbound processes include receiving
and put-away of goods, while outbound processes include order-picking, checking, storage and
shipping of goods.

The efficiency of warehouse operations is influenced by facility design, storage and replenishment
methods and picking policies [49]. In order to reduce unnecessary handling of products, a general
rule is that products should flow continuously through this sequence of processes [12]. To meet
customer demands for shorter replenishment times and lower prices, warehouse processes have
to be examined for productivity and cost improvements [26]. A prominent design criterion is
the maximum throughput, to be reached at minimum investment and operational cost [96].

1.3 The Pep DCs

Pep is a retail company based in South Africa. Founded in 1965, Pep operates in 11 countries
in Southern Africa. In 2010, Pep sold over 500 million items through over 220 million customer
transactions [69]. Pep serves at least 100 customers every five seconds [85]. Currently Pep
has more than 1 500 stores and is the biggest single brand chain store in Southern Africa and
employs more than 15 000 people.

This thesis focuses on Pep as the distributor. The DC in Durban is classified as a retail distri-
bution centre, as its direct customers are the Pep retail stores [100]. A large and continuous flow
of products in the DC is maintained to satisfy the demands of more than 1 200 retail outlets
that the Durban DCs serves.

A DC receives a notification that an arrival for cartons of product will be arriving in the near
future. The DC then schedules accordingly for the receipt and unloading of the cartons upon
arrival. Once products arrive at the DC via a truck, the cartons are unloaded and moved to
the Goods Received area. A control check is performed where the quality of the products, the
number of products and the various sizes of the products are investigated to determine whether
the goods may be stored or set aside to be returned to the suppliers. If the cartons clear the
control check, the cartons receive a label (sticker) that contains the details of the contents of the
carton. The labels are scanned to register the arrival of the products to the computer system.
The cost associated with receiving accounts for approximately 10% of the operating cost in a
DC [28].

The manner in which the cartons are handled are of great importance, since the locations where
stock keeping units (SKUs) are stored has a significant influence on how much time will be spent
to collect products when needed. The goods are handled by means of two different ways in the
Goods Received area. Cartons that need not be opened before shipment are moved to the Full
Carton Area. These cartons are distributed to retailers without being repackaged. Cartons that
contain more products than needed by a single retail outlet need to be repackaged into smaller
cartons, to meet the demand of retail outlets. These cartons will be used during picking to
make cartons specially packed with various products needed by retail outlets. The cartons may
be moved to the Storage Racks or is immediately moved to a picking area that is organised in
a picking line. The cost associated with storage is approximately 15% of operating costs in a
DC [28].

When a picking line is built, people (called pickers) walk along the picking line picking SKUs
which are placed into a carton destined for a particular retail outlet. The requests of a retail
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Figure 1.1: A schematic representation of the physical layout of a picking line containing m locations.

outlets is referred to as an order. When an order from a retail outlet is completed, the picker
places the carton on a conveyor belt. The carton is moved to the Distribution Area where
the cartons will be collected to be shipped to the various retail outlets once final quality and
quantity checks are completed. The cost associated with order picking is approximately 55% of
operating costs in a DC [28, 30].

1.4 Order picking and picking lines

Order picking is defined as the process by which appropriate quantities of products are retrieved
from storage locations to fulfil customer orders [63]. Order picking is done on a picking line. A
picking line is the layout of various SKUs in such a way that pickers may easily acquire various
SKUs for retail outlets. Order picking is a labour-intensive task in warehousing — improving the
performance of order picking may lead to huge savings in warehousing costs [58]. The efficiency
of order picking is dependable on factors such as the storage racks, warehouse layout and control
mechanisms and philosophies of companies.

A picking line resembles a flow line in which each SKU has a unique location or set of locations
on the picking line. Pickers move along the picking line collecting items for locations. Each
picker has a set of orders assigned to him/her. Usually an automated system communicates
instructions to the picker i.e. to which location to move, the number of items to collect, when a
order is completed and when a new order may be started. A picking line may be constructed in
some form of a cycle, where a picking line’s end position is connected to the starting position.
Figure 1.1 contains a schematic representation of a typical picking line used in Pep’s DC.

1.5 Problem description and project scope

Pep is interested in improving the efficiency of the picking lines within their DCs and conse-
quently lowering its operating costs. The scope of this thesis is to improve picking operations in
Pep’s DC in Durban, South Africa. Initially, it is necessary to determine which SKUs must be
sent to the available picking lines. SKUs within picking lines then have to be assigned to various
locations within that picking line. Finally, orders within a picking line have to be sequenced
with the aim of minimising the total distance travelled by all pickers, while assigning an equal
workload to each picker.

Pep has identified a bottleneck in its supply chain to be the operations within the picking
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lines. The picking line schedulers construct SKUs on a picking line based on past experiences
and “rules-of-thumb”. Picking line schedulers rely on the feedback from pickers on the picking
lines [80] to generate these rules. The only measurement of the effectiveness of the picking lines
available to the schedulers, is the time required to complete operations within a picking line.

The planning of picking lines may be divided into three tiers of decisions. The first tier de-
termines which SKUs should be allocated to which picking line. The problem of assigning
scheduled SKUs to available picking lines is referred to as the SKU to Picking Line Assignment
Problem (SPLAP). The second tier is called the SKU to Location Problem (SLP) and considers
the positioning of the various SKUs in a picking line. The final tier considers the sequencing of
the orders for pickers within a picking line and is referred to as the Order Sequencing Problem
(OSP). All of these subproblems aim to achieve the objective of picking all the orders in the
shortest possible time.

The decisions associated with each tier are made sequentially during the planning of a picking
line. Firstly, it has to be decided which SKUs are assigned to which picking lines, then within
each picking line each SKU has to be assigned to a specific location, and finally the sequence in
which the orders should be picked must be determined.

Each tier therefore relies on the information generated by its predecessor. For example, the
OSP will rely on the SKU locations generated by the SLP. Similarly, to solve a tier the solution
to the successive tier must be calculated. For example, to evaluate a candidate solution for an
instance of the SLP will require the sequencing of orders generated in the OSP. Due to this
exchange of information between subproblems, the first problem that needs to be solved is the
OSP.

1.5.1 The order sequencing problem

The DC uses an order picking system which is based on the concept of a wave. A wave may
be described as the set of SKUs in conjunction with a set of branches requiring at least one of
these SKUs. All the orders, or requests by the branches for that SKUs for that wave are picked
in a single operation. The OSP may be described as the sequencing of all the orders, for each
picker, given a wave of SKUs assigned to distinct locations in a picking line, such that the total
picking time is minimised.

Each order requires a number of distinct SKUs in various quantities. A picker must visit each
location containing the SKUs required by that order and collect the requested number of SKUs.
A picker may only commence a new order once all the SKUs have been collected from the current
order. Pickers are required to move in a clockwise direction when collecting SKUs. Since each
subproblem relies on its predecessor, the OSP relies on which SKUs are assigned to the picking
line and where the SKUs are situated within that picking line.

1.5.2 SKU location problem

One tier up it should be investigated whether improvement in the time needed to pick all the
orders may be achieved by reassigning the SKUs to other locations within a picking line. It
is assumed that a set of SKUs are fixed to a picking line for a given wave of picking. It is
important that SKUs may not be duplicated in a picking line. Each location contains a distinct
SKU within a picking line.
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1.5.3 SKU to picking line assignment problem

The SPLAP combines the OSP and the SLP and relies on the solution approaches of both the
OSP and the SLP to be solved. The SPLAP divides all the SKUs available from distribution
among the picking lines in a DC in such a way to minimise the time necessary to complete all
the orders over all the picking lines. A SKU may only be assigned to a single picking line during
a wave of picking.

1.6 Project objectives

This thesis is aimed at optimising the current state of the operations in the Pep DC directly con-
cerned with order picking. Towards realising this aim, seven objectives are persued throughout
the thesis.

Objective I: To present an exact formulation for each problem, in order to better understand
the complexity of the problems at hand.

Objective II: To examine the complexities of each problem, identify a level of difficulty in
finding good solutions and find various approaches of addressing each problem.

Objective III: To formulate and solve the OSP by means of heuristics and metaheuristic
approaches.

Objective IV: To address the possibilities of improvements within the SLP.

Objective V: To determine various measures for defining a balanced picking line in terms
of the balance of work amoungst the workers, minimising the distance travelled by the
pickers and adhering to managerial requests.

Objective VI: To compare the performance of the solution approaches for each problem with
respect to the solution quality and execution time.

Objective VII: To comment on open questions and to suggest further studies that may have
an impact on the current state of the Pep DC operations.

1.7 Project organisation

In Chapter 2 a brief introduction to operations within supply chains are presented. Basic
concepts of logistics management is discussed. Logistics processes are examined as well as the
impact of these processes on the entire supply chain. Emphasis is placed on the importance of
order picking systems. A large range of order picking configurations are presented that are used
to support the handling of various SKUs that may be found in practise. Order batching systems
are introduced as well as conventional routing policies. The notion of carousels are considered
since the picking lines within the Pep DC may be modelled as unidirectional carousels, which is
relatively unexplored and rarely used in practise. Picking area zoning strategies are discussed,
which cannot be employed by the Pep DC, due to constraints by the system and the layout of
the picking lines.

In Chapter 3 the operations within the Pep DC are examined. The operations within the Durban
DC is investigated as well as some references to the DC in Kuilsrivier. The physical layout and
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building of a picking line is sketched. The interaction between the system and the pickers is
explained as well as the manner in which SKUs are assigned to picking lines. Control procedures
for coordinating activities within the DC and the rules imposed by Pep are presented.

Chapter 4 contains all the aspects of the OSP. An exact formulation is presented, however, the
computational complexities of this formulation is too excessive to solve real-life problems. A
number of definitions are introduced to simplify the description of the OSP, which results in
approaches that may be used to create a relaxation of the initial formulation. Matthews [77]
presents a tight lowerbound for the OSP. Heuristic as well as metaheuristic approaches are
developed to deliver good solutions that requires less computational time. All approaches used
to address the OSP are compared and recommendations are made on the suitability of each
approach.

Chapter 5 addesses the SLP. A formulation is presented that delivers a lowerbound. Approaches
from the literature are used to address the SLP. A metaheuristic approach and well-known
agglomerative clustering algorithms are also adapted to be implemented. Two novel clustering
approaches are contructed for the SLP. These approaches are compared with one another.

Chapter 6 contains a nearest neighbour approach and a tabu search methodology is implemented
to solve the SPLAP. The SPLAP is addressed where a set of waves are clustered and new waves
are constructed.

Finally Chapter 7 contains the conclusions and closing remarks of the thesis. The chapter closes
with a number of ideas and recommendations with respect to further work.
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Order picking is the most labour-intensive operation in a warehouse with manual systems [46].
The organisation of order picking operations impacts on the distribution centres and thereby
the supply chain’s performance [28]. Warehouse design, storage assignment and planning the
routes of pickers may be used to enhance the operating efficiency and the space utilisation and
reduce order picking costs [57].

2.1 Introduction to the supply chain

Supply chains may be explained by means of the product life cycle processes comprising physical,
information, financial and knowledge flows whose purpose is to satisfy end-user requirements
with physical products and services from multiple, linked suppliers [5]. Figure 2.1 displays a
typical supply chain. A supply chain may be altered in order to suit the needs of a specific
business.

Supply chain management (SCM) consists of businesses collaborating in order to leverage strate-
gic positioning and to improve operating efficiency [21]. All the firms involved in a particular
supply chain operation is part of a relationship based on strategic choice. Any supply chain
strategy is dependant on collaboration between the parties involved.

9
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Suppliers Manufacturers Distributors Retailers

Figure 2.1: The predominant flow in a typical supply chain.

2.2 Warehousing

Warehousing may be defined as being part of a firm’s logistics system that stores products (raw
materials, parts, goods-in-process and finished goods) at and between the point of origin and
point of consumption, and provides information to management on the status, condition and
disposition of items being stored [47].

Cromier & Gunn [27] classifies warehousing problems into three major categories: throughput
capacity models, storage capacity models and warehouse design models. Throughput capacity
models refer particularly to storage assignment policies, in which incoming products are matched
with available storage locations. Focus is placed on reducing material handling cost, inventory
holding cost and reordering cost. Storage capacity models aim to find the warehouse size
which may either minimise total discounted cost or allow a required service level. Warehouse
design models primarily optimise the external warehouse configuration, while taking the internal
capacities of the warehouse into consideration.

2.2.1 The nature and importance of warehousing

Warehousing usually provided storage of products during all the phases of the logistics process.
Two basic types of inventory may be placed into storage, namely the physical supply and the
physical distribution. Physical supply comprises of raw materials, components and other parts,
while physical distribution refers to finished goods.

Warehouses may be used to support manufacturing, to mix products from multiple production
facilities for shipment to a single customer, to breakbulk or subdivide a large shipment of product
into smaller shipments to satisfy the needs of many customers and to combine or consolidate a
number of small shipments into a single higher-volume shipment [47].

2.2.2 Warehouse operations

The main warehouse activities include: receiving, transfer and put away, order picking, accu-
mulation/sortation, cross-docking and shipping [28]. Figure 2.2 displays a typical layout of a
warehouse with its functional areas and flows.

Receiving is the process of unloading products from the trucks, inspecting the unloaded products
for quality or quantity errors and updating the inventory record. The transfer and put away
activity involves the moving of the received products to storage. Order picking is the process of
retrieving the correct quantity of the right product for customer (branch) orders. Cross-docking
is performed only when products are transferred directly to the shipping area. These products
require no order picking and storage and remains in the warehouse for a short period of time.
The shipping process is concerned with traversing products to retail outlets.

A good warehouse system should ensure easy and efficient access of merchandise, properly
use the storage location to find the shortest path, and finally to deliver the merchandise in a
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Figure 2.2: Typical warehouse functions and flows [104].

reasonable time [57]. Companies are required to cope with uncertain changes in production
volume, product mix, and product life cycle [55].

2.3 Order picking systems

Order picking involves the process of clustering and scheduling orders, assigning stock on loca-
tions to picking lines, releasing orders to floor, picking the pallets from storage locations and
the disposal of picked products [28]. There are usually more than one order picking system
employed within a warehouse. These order picking systems may be fully automated or han-
dled by humans, but most systems employ humans as order pickers. In a typical warehouse
approximately 65% of operating expenses are consumed by order picking [97].

In the picker-to-parts system the picker moves along the aisles to pick items. There are two
distinguished picker-to-parts systems, the low-level and high-level picking. The low-level picking
systems entails that the pickers picks the requested items from a bay (storage rack), while
travelling along the storage aisles. The high-level picking system uses high storage racks and
the picker is moved by a crane or a truck to the destination of the bay from which the picker
has to collect items. This system is also known as a man-aboard picking system [28]. Ruben
and Jacobs [97] refers to this system as a person-aboard automatic storage/retrieval systems.

For information support system, a computer aided picking system (CAPS) or electronic paperless
pick-to-light system may be implemented in practise in a pick-and-pass system [86]. A pick-to-
light system uses a hands free terminal to inform pickers on instructions. Benefits of this system
include quick and accurate order picking. The pick-and-pass system consists of a conveyor
connecting all bays (locations) located along the conveyor line. Figure 2.3 displays examples of
typical picker-to-parts systems.

Parts-to-picker systems include automated storage and retrieval systems (AS/RS). This system
is isle-bound and retrieves pallets from storage to a picking position for the picker to collect
via a crane. Once the picker has completed the required picks, the crane returns the pallets
and collects another for order picking. Figure 2.4 displays examples of typical parts-to-picker
systems.

Other technological options include micro stackers and automated carousels, powered conveyors
and Automated Guided Vehicle Systems (AGVS), automated sorting packages, pick list gener-
ation software, and bar coding [49]. These technologies usually required a substantial capital
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(a) A picker collecting a product (Source: [106]). (b) A picker travelling with a trolley (Source: [62]).

Figure 2.3: Examples of picker-to-parts systems.

investment, since these systems have to be installed in an integrated way. Benefits of AVGS
include lower handling costs, reduced handling-related product damage, improved safety, ability
to interface with other automated systems and increased reliability [47]. Robots may also be
used in many processes of materials handling. Robots have developed due to robotics technology
and have expanded their use to a larger number of applications. Robots are usually automatic
guided vehicles capable of storing and retrieving products and in some instances may also build
pallet loads of product as well as stacking pallets of product.

(a) A crane retrieving products (Source: [116]). (b) A typical carousel system (Source: [102]).

Figure 2.4: Examples of parts-to-picker systems.

A put-system or distribution system uses either a parts-to-picker or a picker-to-parts to retrieve
items from storage. A picker then sorts the pre-picked items into customer orders. This systems
delivers good results for customer orders with short time periods.

Order picking systems may also be done by automated processes, which is usually used in special
cases. Automated process is used when handling valuable items or small and delicate items or
when the cost of labour is too high [28].

The design of real order picking systems is often complicated, due to the wide spectrum of
external and internal factors which impact on design choices [28]. Factors that influence exter-
nal considerations of the order picking system include marketing channels, customer demand
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patterns, supplier replenishment patterns and inventory levels, the overall demand for product
and the state of the economy [46]. Internal factors include system characteristics, organisation
and the operational policies of order picking systems [28].

Different order picking methods may be employed in a warehouse, e.g. single-order picking,
batching and sort-while-pick, batching and sort-after-pick, single-order picking with zoning, and
batching with zoning [121]. Each order picking method consists of some or all of the following
basic steps: batching, routing and sequencing, and sorting [50].

The objective of the order picking system is to minimise the order retrieval time of all orders
on a picking line i.e. the time that is needed to pick all orders assigned to a picking line. The
sooner an order is retrieved, the sooner that order may be shipped to the retail outlets and the
sooner other orders may be completed. In the case of manual-pick order picking systems, the
travel time is an increasing function with respect to travel distance [28].

Thompkins et al. [104] indicates that the travel time of a typical picker in a picker-to-parts
system, is approximately 50% of the total time a picker spends in the picking line during order
picks. Bartholdi and Hackman [12] states “travel time is waste. It costs labour hours but does
not add value.” Figure 2.5 displays the distribution in which a picker’s time is spent on average
in a picker-to-parts order picking system.
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Figure 2.5: A distribution of how a picker’s time is spent [104].

It is clear that minimising the average distance travelled by all pickers should be an objective
of the distribution centre. Other important objectives might include minimising the total cost
associated with the order picking process. Objectives which are often taken into consideration
in warehouse design and optimisation include minimising the throughput time of an order,
minimising the overall throughput time, maximising the use of space, maximising the use of
equipment, maximising the use of labour and maximising the accessibility to all items [28].

Management decisions concerning warehousing and order picking systems are classified into two
categories: strategic management decisions and control decisions [76]. Strategic management
decisions are the long-term decisions that concern broad policies and plans for a company’s
resources in order to implement a competitive strategy. Control decisions influence short-term
and operational aspects of operations within a company — the routing, sequencing, planning
and batching problems.
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2.4 Order batching systems

Given a set of released orders, the problem is to partition the set into batches, where each batch
will be picked and accumulated for packing and shipping during a specific time window, or
“pick wave” [50]. A wave may be described as the set of products in conjunction with a set of
orders requiring at least one of the products. All the orders for the products for that wave are
picked as a single operation. Each product is therefore completely picked for all orders during
one wave. The problem of partitioning orders amoung the pickers is a variation of the classical
vehicle routing problem (VRP), in which “stops” are assigned to routes and the objective is to
minimise the total route distance or time [50].

Batching is used to minimise the impact of idle-time during the time it takes to complete the
processing of all orders [4]. Order batching is the method of grouping a set of customer orders
into a number of sub-sets, such that multiple customer orders are completed simultaneously
rather than completing one at a time [28]. It is usually easier to assign one picker to attend to
large orders. When orders are small, travel times may potentially be reduced by picking a set
of orders in a single picking tour.

There are two criteria for batching: the proximity of pick locations and time windows [28].
Proximity batching is the assignment of each order to a batch based on the proximity of its
storage location to those of other customer orders. The difficulty then is to calculate ways in
which to measure the proximity’s among orders. Time window batching entails that orders
arriving within the same time interval, are grouped as a batch. This batch may be processed
in the following stages of operations. Realistic time windows need to be established in order to
process the orders arriving during a time window.

Gu et al. [50] describes the batching problem as given, a warehouse configuration, pick wave
schedule and set of orders to pick during a shift, determine the partition of orders for assignment
to waves and pickers, subject to performance criteria and constraints such as picker effort,
imbalances amoung workers, time slots, picker capacity and order due dates.

This may be reduced to two levels of considerations: partitioning work into time slots and
partitioning work amoung pickers within a zone or picking line. Partitioning work into time
slots may be described as a bin-packing problem, where the objective is to balance the workload
amoung the workers. The difficulty is that the time (or distance travelled) in order to pick a
batch may only be determined once the batch has been determined, partitioned amoung the
individual pickers and routed through the warehouse (or picking line).

There are two major types of batching heuristics that attempt to minimize total picking effort
and are based on VRP heuristics [50]. A seed algorithm selects an initial seed order to form a
batch. Additional orders are added to this batch according to an order closeness metric, until
a capacity constraint prohibits more orders from being placed into a batch. Saving algorithms
starts by assigning each order to a unique batch. The algorithm iteratively combines pairs of
batches until no more batches may be combined due to the capacity constraints.

A number of order closeness metrics, found in literature, have been summarised by Gu et al. [50]
and are displayed in Table 2.1. Closeness metric (1) calculates the total distance in number of
locations traversed when performing order picking. Closeness metric (2) determines the number
of locations used to serve two or multiple orders, while closeness metric (3) measures the distance
between adjacent orders, while taking the distance of each order into consideration. Closeness
metric (4) uses a two-dimensional spacefilling curve (SFC), which is a continuous mapping
from a point, θ, on the unit square, where 0 ≤ θ ≤ 1. This measures the clockwise revolutions
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Index Closeness metric Example

(1) Number of locations between two orders Elsayed [36]
(2) Combined number of locations for multiple orders Elsayed & Stern [37]
(3) Sum of the distance between each location of one order Elsayed & Stern [37]

and the closest location on the other order
(4) Difference of the order theta values of two orders Gibson & Sharp [43]

based on space-filling curves
(5) The number of additional aisles to travel Rosenwein [95]

when two orders are combined
(6) Savings in travel when two orders are combined Elsayed & Unal [38]
(7) Centre of gravity metric Rosenwein [95]
(8) Economic convex hull base metric Hwang & Lee [59]
(9) Common covered regions or areas Hwang et al. [60]

Table 2.1: Order closeness metrics for batching systems [50].

removed from a fixed reference point. The value θ = 1 corresponds to 360◦. For different
values of θ the SFC traces a tour of all the points in a unit square [13]. Closeness metric (5)
compares the distance required to be traversed to pick two particular orders if they are picked
together on a picking tour with the distance required to pick each order by itself, while closeness
metric (6) determines the savings in time travelled when orders are combined and picked in a
single sequence. The centre of gravity (COG) metric (7) aims to maximise the total distance
saved when a subset of orders are considered to be picked simultaneously. The number of aisles
traversed is considered in this case. Closeness metric (8) uses a convex hull based on finding
boundary points by means of the locations of an order or set of orders. This is used then to
cluster orders, by analysing the intersection of the convex hulls of two orders. Closeness metric
(9) relies on cluster analysis techniques to cluster (batch) orders to minimise the total distance
travelled.

2.5 Sequencing and routing policies

The purpose of picker routing planning is to reduce the unnecessary picking distance that in
turn results in the shortest and most efficient picking [57]. Most order picking systems do not
sequence a picker’s path optimally during order picking, since most picking systems does not
know the layout and dimensions of the warehouse. Industry mainly applies heuristic methods
to solve the problem of routing pickers through a warehouse [100]. The order picking in a
warehouse is a special case of the travelling salesman problem (TSP) since travel is restricted
by aisles of products, and due to this structure it is possible to quickly find optimal solutions
by computer [12, 50].

Numerous methods have been proposed for multiple aisle picking lines to minimise the overall
travel time, and thus travel distance, within the operation of order picking [100]. Products are
stored in longitudinal pick aisles. Cross aisles are located perpendicular on the pick aisles and
allow for an efficient movement from one pick aisle to the next [103]. A graphical representation
of a typical multi-parallel-aisle layout is displayed in Figure 2.6.
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Figure 2.6: Example of a warehouse layout with multiple cross aisles [94].

2.5.1 Sequencing and routing for conventional single-block warehouses

Industry mainly applies heuristic methods to solve the problem of routing order pickers through a
warehouse during the picking process. These are typically applied to a single-block warehouse.
Schematics of these are found in Figure 2.7. For each method, the same customer order is
considered. The simplest of these methods is the S-shape heuristic as shown in Figure 2.7(a).
This heuristic operates by traversing an entire aisle if at least one product has to be picked
within an aisle. If no product has to be picked in an aisle, the aisle is not traversed.

The return heuristic, as depicted in Figure 2.7(b) is another example of a simple routing heuristic
where a picker enters only those aisles containing at least one pick and leaves them from the
same end at which the picker entered the aisle.

The mid-point heuristic is one which delivers better results than the S-shape heuristic and is
displayed in Figure 2.7(c) [28]. Here, the aisles are divided into two areas where picks in the
front half are accessed from the front cross aisle, and those in the back half, from the back cross
aisle. The last or first aisle visited is used by the picker to move between the two areas.

The largest gap heuristic is displayed in Figure 2.7(d) and is similar to the mid-point method.
In this strategy the picker will enter an aisle as far as the largest gap instead of the midpoint.
The gap is the separation between any two adjacent picks, the first pick and the front cross aisle
or the last pick and the back cross aisle. The picker will return from both ends of the aisle if
the largest gap is between two adjacent picks. Otherwise the return route will be either from
the front cross aisle or the back cross aisle. Thus the portion of the aisle that is not traversed
by the picker is the largest gap.

The combined or composite heuristic merges these concepts, as shown in Figure 2.7(e). A picker
may either traverse an aisle containing picks entirely, or enter and leave at the same end, the
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choice is made by means of dynamic programming [28].
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Figure 2.7: Diagrams depicting the five different routing methods of pickers between aisles for order
picking within a single-block warehouse. The same order is considered for all methods. The asterisks
indicate the locations that need to be picked from and the arrows depict how the picker will move between
the isles. (Source: [100]).

2.5.2 Sequencing and routing for conventional multi-parallel-aisle systems

In a conventional multi-parallel-aisle system, the aisle structure limits the TSP state space,
which greatly simplifies its solution [50]. Ratliff and Rosenthal [91] formulated a dynamic
programming algorithm to optimally solve the problem. The algorithm may solve the problem
in polynomial-time. A number of assumptions are made in order to utilise the algorithm. Firstly,
the aisles are parallel, narrow and equal in size. There is a single depot for the picker. The
aisles are connected by a cross aisle at each end. The locations of the products are known in
advance.
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Others have considered variations of the multi-parallel-aisle systems by relaxing some assump-
tions. Although it is possible to construct optimal routing algorithms efficiently, simple heuris-
tics such as the traversal and return policies are widely used in practice because they are simple
to implement and the resulting routes are consistent [50]. With the traversal policies, the picker
will travel across an entire aisle if that aisle contain at least one pick. The picker therefore
enters the isle at the one end and leaves the aisle at the other end. For the return policy, the
picker always enters and exits at the same end of the aisle, and the same aisle may be entered
twice from both its ends.

2.5.3 Sequencing and routing AS/RS

The routing problem for man-on-board AS/RS is a TSP with a Chebyshev distance metric. The
problem may be formulated by dividing the rack into two equal height horizontal bands; the
points in the lower band are visited in the increasing x-coordinate direction, while the points in
the upper band are visited in the opposite direction [50]. If the tour must visit many points, the
rack may be divided into pairs of horisontal bands. A man-on-board AS/RS is an automatic
storage and retrieval machine that may performs the same actions as an order picker and may
sometimes operate as an industrial truck when outside an aisle. Chebyshev distance is also
called maximum value distance. It examines the absolute magnitude of the differences between
coordinates of a pair of objects [65]. The Chebyshev distance between two vectors or points p
and q, with standard coordinates pi and qi, respectively, is

DChebyshev(p, q) := max
i

(|pi − qi|). (2.1)

The AS/RS routing are usually used for storage racks containing multiple levels. The routing
problem for unit-load AS/RS pairs a storage operation with a retrieval operation for a combined
command cycle. Graves et al. [48] show that travel distance may be minimised when reducing
unproductive travel between storage and retrieval locations. The algorithms in the literature
are usually either static or dynamic. Static algorithms consider a group of storage and retrieval
requests, sequence the requests in the group and execute the resulting schedule ignoring new
storage and retrieval requests. The dynamic approach is used to re-sequence the storages and
retrievals when new requests are presented.

2.6 Carousels

Carousel storage and retrieval systems are often used in warehouses for the storing and order
picking of small, light, and highly demanded items [110]. Instead of the order picker travelling
to the storage location, the storage location travels to the order picker [12]. A carousel conveyor
is essentially a length of shelf that is designed into a closed loop that may be rotated clockwise
or counterclockwise [42]. A carousel system may hold many different products stored in bins
(locations) that rotate in a closed loop. The system is served by an operator (either human or
robotic) who occupies a fixed position at the front of the carousel. To retrieve a product, the
carousel system automatically rotates the bin with the requested product to the position of the
operator [108].

Three types of carousel systems are used in practise: the horizontal carousel, the vertical carousel
and the rotary rack [108]. The horizontal carousel consists of a number of shelves (carriers) that
are rotated horizontally by a chain in a closed loop. Each shelve may contain multiple bins for
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different items. Vertical carousels are similar to horizontal carousels with the exception of being
rotated by a chain in a vertical closed loop. The rotary rack is an extension of the horizontal
carousel in that every bin may rotate independently, reducing the waiting time of the operator
(picker). Since the product rotates to the person, there is no need for an aisle by which to
access product. This means that carousels may be installed side-by-side, which increases space
utilisation and also provides security for the product [14]. Hassini [53] has also identified a
twin-bin carousel, which is similar to horizontal carousels that allows the picker to pick from
two adjacent locations during a given instance. Figure 2.8 displays examples of typical carousel
systems.

(a) An example of horisontal carousels (b) An example of a vertical carousel

Figure 2.8: Examples of carousel systems (Source: [35]).

Carousels have similar layouts to the picking lines used by Pep. Instead of a rotating carousel,
the picker merely travels around a horizontal carousel. Since the picker may only move in a
single direction, the carousel becomes a unidirectional carousel. Hassini [53] presents a general
model that includes the one-dimensional carousel storage location problem as well as other
well-known combinatorial optimisation problems as special cases.

Bartholdi and Platzman [14] considered the Single Order Pick Sequencing (SOPS) problem.
The sequence of the orders are fixed and the time necessary to move between bins by the
picker is neglected. The problem is then reduced to find the shortest Hamiltonian path on a
circle. Wen and Chang [117] have considered a SOPS and incorporated the time necessary to
move between bins on a carousel. Bartholdi and Platzman [14] also considered the Multiple
Order Pick Sequencing (MOPS) problem. Three heuristics are presented to complete all the
orders, when the orders may be arbitrarily sequenced. Van den Berg [108] presents an efficient
dynamic programming algorithm for MOPS that finds the optimum sequence of the orders.
Ghosh and Wells [42] present further algorithms for retrieval of goods from a carousel. Vickson
and Fujimoto [110] formulated an optimal storage and retrieval system for carousels.

Figure 2.9 displays a carousel containing one order. Assume the locations that has to be visited
by the order is indicated by the squares. Also assume that the picker is situated at location 1.
The shortest distance travelled to complete the order is indicated by the arrows in the centre
of the carousel. The carousel should move such that the picker is positioned (relative to the
carousel) from location 1 to 2. The carousel should then change direction and move such that
the picker is positioned (relative to the carousel) to location 8.

The operation of carousels may be compared to the Patrolling Repairman problem. The problem
may be classified as a priority queueing problem. A single operator (picker) is assinged a group
of N semiautomatic machines (locations), which fail intermittenly and are repaired by the
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Figure 2.9: A carousel consisting of 12 distinct locations and 1 order.

operator (have to be picked for an order by the picker) [83]. The patrolling repairman problem
differs from typical carousel systems where failures in machines may be predicted (usually by a
Poisson distribution), whereas carousel systems may know which locations a picker has to visit
in advance.

Koenigsberg and Mamer [70] studied the efficiency of a single carousel server serving a single
carousel system. This research has lead to assessing a wide range of carousel configurations that
may arise. Kim and Koenigsberg [67] studied the efficieny when a single robot (picker) serves
two or more carousels simultaneously.

Recently, focus have been placed on the performance of pods1 of carousels. Park et al. [87]
considers the case where a pod contains two carousels. Vlasiou and Adan [112] extends the
results by Park et al. [87] by considering more general distributions for the pick times. Meller
and Klote [79] considered the efficiency when the number of pods in a carousel is equal to two
or greater.

2.7 Picking area zoning

Zoning is the problem of dividing the whole picking area into a number of smaller areas (zones)
and assigning order pickers to pick requested items within the zone [29]. Zoning is a strategy
useful for a warehouse with a predetermined layout, storage strategy and routing policy [86, 100].
The order picking area is divided into smaller zones. A picker is assigned to a zone picking orders
only from his zone. Zoning may be classified as synchronised zoning or progressive zoning [29].
In progressive zoning, an order is processed at a single zone at a time and then passed on to
the next zone. Synchronised zoning is where multiple pickers work on the same customer order,
each picker staying in his/her respective zone. The difficulty associated with zoning is to find
the correct trade-offs between the number of zones, the size of each zone and the number of
pickers assigned to each zone in such a way to balance the workload evenly over all the zones
in order to minimise the throughput time of each customer order.

1Pods refer to a single rod that contains a series of attached carousels, each carousel usually having similar
characteristics.
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The bucket brigade system is based on a dynamic zoning system. A bucket brigade is a linear
picking line in which each worker picks up a job and processes it at each station until he gets
“bumped” by a downstream worker. Whenever the last worker in the line finishes a job, he
initiates a reset of the production line — each worker takes over his predecessor’s job and the
first worker starts a new job [3]. Each picker follows a rule of “carry your work forward from
station to station until someone takes over your work; then go back for more” [10]. The last
order picker, after completing the customer order, will walk back upstream and take over the
work of his predecessor, who will then walk back and take over the work of his predecessor and
so on until the first order picker starts a new customer order at the beginning of the picking
line [100]. Pickers are not restricted to any stations — each picker carries his/her work forward
as far as possible, except that workers may not overtake one another. This means that a picker
might catch up to his/her successor and is then blocked. Pickers must also be sequenced from
slowest to fastest along the picking line. Work is paced by the fastest worker, who triggers each
successive series of walk-backs — the result is a pure pull system [10].

Bucket brigades are constructed in a way such that no picker has a restricted set of pick locations,
each picker simply picks as much of the customer order as possible, until another picker takes
over the customer order. A distinctive feature of bucket brigades is that they are self-balancing
— a balanced partition of the work will emerge spontaneously. Another advantage is that
bucket brigades creates a balanced system in which the maximum possible rate of production
is realised [10, 11].

Pep does not employ a zoning strategy for their picking lines. The voice-automated software
system that Pep uses is unable to handle any zoning strategy. Each picker has to finish one
customer order at a time, multiple pickers are unable to work on the same customer order.
Another problem with zoning is that if the orders differ considerably, zoning systems and bucket
brigades never reach a convergence condition. This might lead to a chaotic picking line [11].
Zoning and bucket brigades models contain weaknesses, since assumptions are made on picker
velocities and teamwork between pickers [9]. Bartholdi et al. [11] describes that chaos has
implications external to the picking line as “a chaotic assembly line will appear to start and to
complete products at random, even though the assembly line is completely deterministic.”

2.8 Chapter summary

The aim of this chapter has been to introduce the concept of a supply chain, together with
the importance of an integrated logistics system. Order picking forms a crucial part of any
DC operation and must be investigated for efficient planning and implementation throughout
the supply chain. Initially the notion of a supply chain is described in §2.1. Focus is then
shifted to the importance and necessity of warehousing (§2.2). The process of order picking as
well as processes and systems associated with it is considered in §2.3. Various order picking
systems are presented that are used in a variety of warehouses for different types of order picking
configurations. In §2.4 batching of orders are considered together with measures in literature
that may be used to evaluate closeness between orders. Sequencing and routing policies are
considered in §2.5 for conventional single-block warehouses and multi-parallel-aisle warehouses,
as well as AS/RS systems. In §2.6 the developments in carousel systems are presented. The
notion of picking area zoning is discussed in §2.7.

Stellenbosch University  http://scholar.sun.ac.za



22 Chapter 2. Literature review

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3

The Pep DCs

Contents
3.1 Organisational background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The Durban and Kuilsrivier DC . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Layout of a picking line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Building of a picking line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 The pickers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Assigning SKUs to locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Control procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Rules imposed by Pep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

This chapter considers the various aspects of how the Pep DCs operate. Two Pep DCs owned
by Pep is considered, one in Durban and another in Kuilsrivier. Operations within these DCs
are explained.

3.1 Organisational background

A central team plan and manages stock levels within the DCs. Pep utilises a Supply Chain
Operation Reference-model (SCOR-model) to aid in management consulting issues. Pep uses
the SCOR-model to mainly measure their performance relative to competitors and to learn best
practises from other companies [69].

Pep utilises a system where approximately 50% of its stock is required for replenishment con-
siderations and the remaining 50% is for seasonal requirements [69]. Pep imposes both push
and pull systems. The pull systems are frequently used in conjunction with replenishment stock,
while the push system is used in collaboration with the seasonal stock. Replenishment stock
refers to stock sold throughout the year, not subject to seasonal change, trend or changes in
style. These items include underwear, linen and school clothing. Seasonal stock refers to prod-
ucts that are only sold during a specific period, after which it is usually replaced by a new
fashion. Shirts, trousers and dresses form a small part of the seasonal stock.

Pep’s biggest cost component is the transport cost. The average distance between the DCs and
retail outlets are 1 300 km. Pep does not own any transport vehicles — transport is outsourced
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to an outside company. However, it is Pep’s responsibility to specify the number of trucks
needed and it is Pep’s responsibility to use the trucks efficiently.

Pep’s stock is manufactured locally and abroad. Local production forms one third of Pep’s stock
and the rest is imported from the Far East. Approximately 70% of the imported stock arrives
from China, where three or four shipping lines are used to move all the stock from abroad.

3.2 The Durban and Kuilsrivier DC

Operations within two Pep DCs, the Durban DC and Kuilsrivier DC, will be investigated. The
Durban DC is the largest DC of Pep, utilising a floor space of more than 50 000m2 [69]. The
Kuilsrivier DC is considerably smaller than the Durban DC, but also plays a critical part in the
distribution of goods within the supply chain employed by Pep. Figure 3.1 displays a general
view of the Pep DC in Durban.

Figure 3.1: A view of the Pep DC in Durban.

Each of the Durban and Kuilsrivier DCs contain four main areas, namely the receiving, storage,
order picking and dispatch areas. The layout for the Durban DC is displayed in Figure 3.2. The
Kuilsrivier DC has a similar layout to the Durban DC.

Goods arrive in cartons at the receiving docks displayed in Figure 3.3(a), and then goes to the
storage racks, displayed in Figure 3.3(b), or the full carton area. Some products are distributed
as full cartons to the retail outlets, which are assigned to the full carton area. The cartons that
need to be opened and repackaged for smaller shipments are sent to the storage racks. Cranes
operate between the storage racks to store and collect stock as needed. These cranes have the
ability to easily move between the storage racks and ascend and descend to store or collect
pallets of products.
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Figure 3.2: The layout of the Pep DC in Durban.

(a) A receiving dock at the goods received area. (b) Storage racks used to store products for later use.

Figure 3.3: The receiving process at the Durban DC.

Since the DCs receive and send many products in various carton sizes, pallets are used to ease
the movements of goods within the DC. Pallets are portable platforms used for storing or moving
cargo or freight. The general pallet is 1 000mm wide, 1 200mm in breadth and 140mm in height.
Figure 3.4(a) displays how cartons may be stacked on a pallet, in order to move products in
bulk within the DC. Figure 3.4(b) displays how a forklift may be used to move pallets.

Since Pep predominantly stocks clothing, the weight of products is not the main consideration.
Pallets are able to store many cartons stacked on top of one another. Pallets may also be stored
on top of one another, if the cartons are strong enough to support the weight.

3.3 Layout of a picking line

In the Durban DC all order picking is done on one level. All the picking lines are constructed
next to one another. In contrast to this, the Kuilsrivier DC employs a layout where picking
lines are constructed on different levels on top of each other.

Pep employs isle picking lines. Pickers walk in a clockwise direction around the picking line. In
the Durban DC, there are 112 locations on a picking line — 56 locations on each side of the
conveyor belt. The picking lines at the Kuilsrivier DC contain 72 locations on each side of the
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(a) Cartons of product stacked on pallets. (b) A forklift moving pallets with the DC.

Figure 3.4: The movement of goods within the Durban DC.

conveyor belt — a total of 144 locations per picking line. Each location contains a different set
of identical products. Figure 3.5 displays the configurations of a picking line used in the Pep
DC in Durban. Figure 3.5(a) depicts the scenario where the whole picking line is used (i.e. all
112 locations are utilised for order picking). This scenario is seldomly used in the Durban DC.
Each picking line in the Durban DC has a gate in the middle. The gate may be utilised when
a picker does not need to make a full cycle around the picking line. Two smaller picking lines
may be constructed using the gate. Each picking line then has only 56 locations allocated to it.
Figure 3.5(b) depicts a scenario where one picking line is split in two smaller picking lines. This
layout is used frequently at the Durban DC. The last scenario is where products on one side of
the conveyor belt is mirrored onto the other side of the conveyor belt displayed in Figure 3.5(c).
Figure 3.6 displays how a picking line is constructed in the Kuilsrivier DC. The Kuilsrivier DC
uses this single layout, since the picking lines does not have gates in the middle.

The products are fixed in their respective locations until the pickers in the picking line have
completed all the orders requested by the retail outlets. The length of a picking line in the
Durban DC is approximately 75 meters and pickers travel approximately 150 meters to complete
a cycle. The length of a picking line in the Kuilsrivier DC is approximately 95 meters and pickers
travel approximately 190 meters to complete a cycle. The picking lines in the Kuilsrivier DC is
longer than the picking lines in the Durban DC, since the Kuilsrivier DC have more locations
in a picking line. The area between the locations and the conveyor belt is large enough to let
pickers overtake one another when necessary [81].

3.4 Building of a picking line

The Durban DC is made up of 6 parallel picking lines, 5 picking lines as the standard single isle
picking lines and a 6th picking line using flow racks. This picking line is used to pick items that
are requested by the majority of retail outlets — these products are high intensity products.
The picking lines are located alongside one another on the ground level of the DC. The building
process of picking lines starts with the forklifts collecting the necessary pallets, stacked with
cartons of identical product, from storage and placing it in specific locations. Each location
may hold up to five pallets at any time. The cartons containing products remain stacked on the
pallet during the picking process. A location is the same concept as a bin, which is referred to
in literature by Koster et al. [28] or product locations as used in Bartholdi & Hackman [12].
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Figure 3.5: Examples of possible picking line configurations in the Pep DC in Durban. The arrows
indicate the direction that the pickers may travel. In (b) and (c) the pickers use the gate in the centre
of the conveyor belt.
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Figure 3.6: An example of the picking line configuration in the Pep DC in Kuilsrivier. The arrows
indicate the allowable direction that a picker may travel.

The Kuilsrivier DC is made up of 8 picking lines. In contrast to the Durban DC, each location
in a picking line may only contain 2 pallets of products. The picking lines in the Kuilsrivier DC
are situated on different levels. There are 10 levels in the DC. Picking lines are situated on the
second, third, fourth and fifth level, each level containing two parallel picking lines.

The Pep DC builds picking lines according to lists of distribution requests that are received from
central office [69]. A list contains a product with the quantities required by the various retail
outlets. The retail outlets become the “customers” that are serviced by the DC — customer
orders refers to the requests of the retail outlets. Picking lines must then be built in such a way
that all the products in their correct quantities may be collected for distribution to the retailers.
The building process entails that each location or set of locations in a picking line receives a
unique product from storage.

The DCs use an order picking system which is based on the concept of a wave. A wave may
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be described as the set of products in conjunction with the set of retail outlets requiring at
least one of the products. All the orders for that wave are picked as a single operation. All the
products in a wave are therefore completely picked for all retail outlets during that wave.

Figure 3.7(a) displays an empty picking line with no pallets. Figure 3.7(b) displays a picking
line being built. Note that the location at the back contains five pallets of product, while the
front two contain no pallets.

(a) An empty picking line currently not (b) A picking line being built with one location

in operation. containing pallets of product.

Figure 3.7: Building picking lines at the Durban DC.

Figure 3.8 displays how the conveyor belt moves the cartons to the dispatch area, where the
cartons are sealed and labelled appropriately. Both picking lines are in full operation. To the
right of the conveyor belt a picker is busy completing an order.

(a) Conveyor of picking line moving cartons (b) A picking line in full operation with pickers

to the dispatch area. on either side of the conveyor belt.

Figure 3.8: Operational picking lines at the Durban DC.

When only half a picking line is used, the gate has to be opened to enable pickers to move
around the smaller picking line. Figure 3.9(a) displays an open gate used to construct two
smaller picking lines within a picking line, while Figure 3.9(b) displays a closed gate.

All products in storage are classified into stock-keeping-units (SKUs). SKUs are unique compo-
nents held in stock [47], for example, two different sizes of the same shirt (or product) will be two
different SKUs. The picking line manager has the duty of placing SKUs in locations [32, 80, 81].
The high intensity SKUs have to be separated by lower intensity SKUs in order to avoid con-
gestion of the pickers within a picking line. Similarly, SKUs that are difficult to pick have to be
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(a) An open gate used to move to the opposite (b) A closed gate with cartons moving along

side of the conveyor belt. the conveyor belt.

Figure 3.9: The gate at the centre of a picking line in the Durban DC.

alternated with those that are easier to pick. Once SKUs have been allocated to locations, the
software system stores this configuration in memory.

3.5 The pickers

A picking line usually contains eight pickers but this number may vary in accordance with the
number of pickers available or the layout or contents of the picking line. Pickers pick orders in
serial, i.e. each picker picks one order at any time, as opposed to parallel order picking where
multiple pickers pick one order simultaneously [12]. Each picker has a trolley which contains a
carton in which SKUs are placed as the picker moves along the picking line collecting SKUs for
an order. A picker only leaves his/her trolley when picking a SKU, collecting a new carton or
when placing a carton on the conveyor belt. Pickers are assigned to a picking line and do not
leave their picking line until the pickers have completed all the orders assigned to that picking
line. The SKUs needed by a retail outlet may span over more than one picking line. This simply
means that the required SKUs for a retail outlet may be spread over more than one picking line.

All cartons are sealed before leaving a picking line. Whenever a carton is full, it is placed on
the conveyor belt, sealed, and moved to the distribution area. An order may require more than
one carton. If a picker is unable to complete his/her order by only using a single carton, a full
carton may be placed onto the conveyor belt, collecting a new carton for the rest of the picks.
This may be done as many times as needed until the customer order is completed.

A voice-automated software system is used to communicate with the pickers. Each picker has a
headset with which the computer system instructs the picker and the picker may also commu-
nicate with the system if needed. The system directs the picker to locations from which SKUs
are obtained and placed into cartons. Once a picker has completed picking from a particular
location, the picker notifies the system with his/her voice via the headset. The system then
directs the picker to the next location. Once a picker has finished an order, the carton is placed
on the conveyor belt. The picker now collects a new carton and receives a new set of locations
to visit for a different retail outlet. Figure 3.10 displays pickers collecting SKUs in a picking
line.

SKUs in the DC are classified into one of three categories, A-, B- and C-type of picks. An
A-type pick is a SKU picked with a minimal effort. A-type picks are usually picked using a
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Figure 3.10: Pickers operating in a picking line.

single hand. B-type picks are picked with medium effort. A picker has to use both his/her
hands to pick a B-type SKU. C-type SKUs requires a great deal of effort to pick. The picker
has to use his/her entire body in an effort to collect the SKU. The picker may crouch, use both
hands to grip the SKU and use his/her body to lift the SKU. C-type SKUs are rarely built into
picking lines, instead they are often shipped as full carton shipments to the retail outlets [80].
Typically, a picking line consists only of SKUs requiring A- and B-type picks.

3.6 Assigning SKUs to locations

Each location may only contain a set of identical SKUs. The software is unable to recognise
more than one location containing the same SKU on a picking line. The locations containing the
same SKUs must be in consecutive locations. The systems operator will then locate the SKU
in one location and leave consecutive locations empty on the system. The system records these
locations as containing no SKUs, but the forklifts do place additional SKUs for order picking
in them. The pickers are informed that they may collect SKUs from the “empty” locations if
necessary.

High frequency SKUs usually need more than one location on a picking line, since these pallets
may deplete quickly, which makes the process of replenishment difficult. Pep management also
prefer building picking lines in such a manner that no SKUs have to be replenished during
a wave of order picking [80]. This enables constant, uninterrupted flow of work during order
picking. If a location has to be replenished, the entire picking line comes to a stand-still. If,
however, the SKUs in a location have to be replenished, the picking line manager is required to
inform a forklift to retrieve additional pallets of SKUs from storage. The driver of the forklift
will place this request at the bottom of his/her list of priorities, possibly making replenishment
a tedious process.

If more than one location is allocated to a SKU, the SKUs have to be placed in sequence, i.e.
only consecutive locations may share the identical SKUs. For example, if product x is placed in
locations i, i+ 1 and i+ 2, the system will instruct the picker to collect product x from location
i every time product x has to be picked, ignoring location i+ 1 and i+ 2. If location i contains
no more SKUs, the picker will know that he/she should move to the next location (i+1 or i+2)
to collect the product from the “reserve” locations1. The locations i, i + 1 and i + 2 will form
a single SKU location, since they contain identical SKUs. Since each location in the Kuilsrivier

1The pickers working in the picking will be informed of “reserve” locations before order picking commences.
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DC may only have two pallets at a time, most SKUs have more than one location allocated
to it. High frequency SKUs may have in excess of 6 locations allocated to it. This is done to
reduce replenishment during order picking. The DC in Durban rarely allocates more than two
locations for a SKU, since each location can hold 5 pallets. The picking lines in the Durban DC
is built in such a way that pallets never have to be restocked during order picking.

A picking line manager has the duty of addressing all elements of construction of picking lines.
This staff member uses his/her knowledge from years of experience. No mathematical optimi-
sation is done when constructing the picking lines, except lessons learnt from past experiences.

The planning of a picking line is completed in approximately 30 minutes [81]. After planning,
the picking line is built for picking. A picking line containing less than 30 000 SKUs may usually
be completed within one day. A picking line usually contains no more than 60 000 SKUs and
such picking lines usually does not exceed two days of picking [80].

All products owned by Pep are divided in a hierarchical order. At the first level of the hierarchy
stock is received as a business unit. The business unit is divided into groups after which it is
sorted into divisions, specifically to suit the operations within a DC [75]. Products are then
divided into departments indicating the gender or age group of the products (e.g. men’s or
women’s clothing). Departments are divided into classes relating different items of clothing in
each department (e.g. shirts or trousers). Classes may be divided into subclasses (e.g. short
sleeved shirts and long sleeved shirts). Each subclass contains different styles between products
(e.g. “v-neck shirts” and “polo shirts”). Styles are grouped according to different sizes.

3.7 Control procedures

All the operations in the Pep DCs are captured and controlled by a computerised system. The
system contains all the relevant information needed to operate a DC. Figure 3.11 displays the
data captured from an active picking line. An entry is added to the system once a picker has
successfully collected a number of identical SKUs for a specific order. All the data is retrieved
from picking line 9997. The first recorded pick was by Nomusa, collecting SKU 877835, at
location C101, for branch (order) 549. She was required to collect 2 packs of this SKU, one
pack containing 6 SKUs. She collected these SKUs during the early morning of the 21st of May
2010, at 03:33:13.

Pickers are reawarded for how quick they pick, a picker with more orders completed receives a
bonus. The pickers in a picking line are also rewarded for how efficient a picking line operates.
These incentives promote fast and thorough work done by the pickers. It also motivates a sense
of team participation among pickers working in the same picking line.

Once a carton is initially received at the Goods received area, it receives a sticker to describe it.
When a carton is sealed after order picking, it receives a new sticker indicating the destination of
the carton. Figure 3.12 (a) displays a sticker that a carton receives when the carton is received
initially. The sticker indicates the location where the carton should be stored, the order number
which acts as a counter for the carton, the SKU is the identification number of the contents
within the carton, the quantity of SKUs within the carton, the number of cartons containing the
same SKUs and the packsize of the SKU. Figure 3.12 (b) displays the sticker used to indicate the
destination of the carton. The sticker contains the invoice number, the hub of the destination,
the route this carton should take and where to deliver the cartons.

After the cartons are packed, sealed and moved to the distribution area, a small fraction of
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Report run on: 24-May-2010 17:15:49

Attention: TJAARTL

Report name: rfpickdetail.rdf
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Figure 3.11: Information contained in the system that is used to track operations within the DC.

orders are selected for a control check. Each of these cartons are opened, each item is removed
and counted to check that the picker made no mistakes. If the correct quantities of the correct
SKUs are found in the carton, the SKUs are repacked into a new carton, sealed and sent to the
distribution area. If there is a problem with the order, the correct SKUs are retrieved, repacked
into a new carton, sealed and sent to the distribution area. Pickers are rewarded with incentive
bonuses if the correct quantities of the correct SKUs are packed into these cartons [80, 81].

The type of SKU is not specified on the system. It is unknown whether SKU 877835 is an A-,
B- or C-type product. Various DCs may therefore categorise certain SKUs differently.

(a) Sticker indicating the contents of a carton (b) Sticker indicating the destination of a carton

Figure 3.12: Stickers used to identify the location of cartons, its destination and its contents.
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3.8 Rules imposed by Pep

The Pep DC builds picking lines according to the list of distributions (DBNs) that is received
from central office. A list on the SKU level contains all the products that each branch requires,
along with the respective quantities thereof.

Pep operates on a first-in-first-out (FIFO) system. DBNs that are received today have to be
completed before tomorrow’s DBNs may be started. The only exception to this rule, is when a
very urgent request is sent. The floor manager will be informed of the urgent request, and the
floor manager will shift that specific DBN to be scheduled in a picking line as soon as possible.

A DBN must be dispatched within seven days after it has been issued. This rule is imposed as
a key performance indicator (KPI). Pep believes in a system where stock is continuously moved
through the supply chain to the retail outlets.

All the orders requested by the Botswana retail outlets are picked first. Each item of product
that has to be shipped to Botswana has to receive a new price tag at a seperate work station.
Employees have to open each carton containing requested products, remove the old price tag,
add a new price tag and repackage the products.

Apart form the restrictions mentioned in §3.4 on the placing of SKUs in locations, the various
DCs impose rules to reduce errors during the picking process. The Kuilsrivier DC imposes a
rule that similar SKUs of the same colour may not be placed next to one another (e.g. “boys
maroon school jerseys” may not be placed next to “girls maroon school jerseys”). The Durban
DC does not impose this rule used in the Kuilsrivier DC. However, the Durban DC imposes
that similar products of different sizes are not be allowed to be placed next to one another (e.g.
“boys maroon school jerseys (medium)” may not be placed in a successive location to “boys
maroon school jerseys (large)”). In contrast to this rule, the Kuilsrivier DC insists that similar
products of different sizes are placed next to one another. Pickers in the Kuilsrivier DC are
informed that the sizes of similar products are placed next to one another.

3.9 Chapter summary

This chapter provides a general framework for the operations present in the Pep DCs. The
layout of the Pep DCs are discussed in §3.3, while the picking line configurations and operations
are considered in §3.4 and §3.5. The decisions regarding the construction of a picking line is
also discussed, and finally some control procedures and rules are presented in §3.7 and §3.8.
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This chapter will provide context for the OSP and the implications of solving this problem.
Various solution techniques are considered to solve the OSP in reasonable time. Each section
will address the OSP with a different approach. The chapter concludes with computational
results obtained from the performance of the various algorithms used.

4.1 Introduction

The OSP for a picking line may be modelled in a variety of ways. It may be considered as a single
picker working on a picking line. The sequence of orders is then scheduled for a single picker.
Since it might be more efficient to use more than one picker in a picking line, this schedule
may then be partitioned into smaller sections or schedules for each picker in the picking line. A
dynamic approach may be used to assign orders to a picker whenever a picker has completed an
order. It is assumed that when orders are scheduled in a picking line, all the SKUs have already
been assigned to locations.

The time needed to pick a SKU from a location is considered as constant. The time needed to
travel between orders and between locations within orders are considered as variables. Unnec-
essary travelling time may be eliminated by sequencing orders to minimise the total distance
travelled.

The following assumptions are made to model the OSP. These assumptions were made in coop-
eration with the management of Pep.

1. A picker must complete an order before starting a new order.

2. The time to pick a SKU is constant over all orders.

3. Pickers move at a constant speed.

4. An order may commence at any location.

5. The time required to switch between orders is negligible.

6. A picker may not collect the first SKU of a new order at the same location as the last
location of a previous order.

4.2 Exact formulations

The time that pickers travels between locations is directly proportional to the distance travelled
by the picker. Thus the objective is to sequence a set of orders in such a way as to minimise
the number of (pick) cycles required to complete all the orders.

Due to the size of the OSP, exact formulations cannot be solved in a realistic timeframe. If a
picking line contains n orders and each order k contains |Ok| locations, a total of n!

∏n
k=1 |Ok|

possible combinations of sequences exists to pick all orders in the worst case. This solution
space may be reduced to n! possible combinations. All test cases were solved using an Intel(R)
Core(TM)2 Duo 3 GHz with 3.7 GB ram using Linux Ubuntu. The programming was done
in either Java [101] or Lingo 11 [73].
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In the following subsection an exact formulation for solving the OSP is considered. A branch
and bound approach is then presented in §4.3.1. The maximal cut formulation is presented in
§4.3.2 which is a strong lower bound for the OSP. The solutions of the maximal cut formulation
act as a benchmark for all heuristic approaches presented here to solving the OSP.

4.2.1 An exact formulation

Each order may begin at any location even if the order may not necessarily require the SKU at
that particular starting location. The number of locations passed to complete any single order
is therefore determined by the starting position assigned to it. Let the duple (i, k) represent
order k starting at location i, which may be considered as a solution of picking order k. Let
N be a set of all duples (i, k). Let I1, I2, . . . , In be a proper partition of the set N , where
Ik = {(1, k), (2, k), . . . , (m, k)}, if m locations are present on a single picking line1. The set N
may be interpreted as the vertices on a digraph with edges representing the connection between
orders. The problem may be viewed as a variant of the generalized travelling salesman problem
(GTSP). The objective of the GTSP is to find a cycle of edges that visits exactly one vertex, or
duple, in each set Ik.

The OSP may thus be interpreted as an equality generalised travelling salesman problem (E-
GTSP), where only one vertex must be visited in each set Ik. One vertex in each set Ik has to
be connected to one vertex in a different set, in an attempt to minimise the total arc lengths of
the selected edges [17, 39, 51, 52]. The E-GTSP is an NP-hard problem [51, 52].

Each edge of the E-GTSP used to solve the OSP, represents the distance of starting an order
at a particular location contained in that order, picking all the locations within that order and
then travelling to the starting position of another order. The goal is to minimise the distance
travelled by a picker.

To formulate the OSP input data is required. Let

dijk` be the distance when order k is picked from location i, completed and then travels
to the starting location of order ` at location j,

n be the number of orders,
m be the number of locations,
M be a large constant in the model.

Two sets of variables are required in modelling this problem. Let

xijk` be equal to 1 if order k is picked from location i, completed and then travels to the
starting location of order ` at location j, and 0 otherwise,

dk` be equal to the distance travelled when order ` is to be completed after order k was
picked, and 0 otherwise.

1The number of locations are equal to the number of distinct products on a single picking line.
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The objective is to

minimise
1

m

n∑
k=0

n∑
`=0

dk` (4.1)

subject to

m∑
i=0

m∑
j=0

n∑
`=0

xijk` = 1 k = 0, 1, . . . , n, (4.2)

m∑
i=0

m∑
j=0

n∑
k=0

xijk` = 1 ` = 0, 1, . . . , n, (4.3)

x0j
0` = 1

` = 0, 1, . . . , n,
j = 1, 2, . . . ,m,

(4.4)

m∑
i=0

m∑
j=0

dijk`x
ij
k` = dk`

k = 0, 1, . . . , n,
` = 0, 1, . . . , n,

(4.5)

uk − u` + n

m∑
i=0

m∑
j=0

xijk` ≤ n− 1
k 6= `,
k = 0, 1, . . . , n
` = 0, 1, . . . , n,

(4.6)

xijk` ∈ {0, 1}

k = 0, 1, . . . , n,
` = 0, 1, . . . , n,
i = 1, 2, . . . ,m,
j = 1, 2, . . . ,m,

(4.7)

uk ≥ 0 k = 0, 1, . . . , n. (4.8)

The objective function (4.1) minimises the total number of cycles travelled to complete all the
orders. Constraint set (4.2) ensures that each order has a starting location and constraint
set (4.3) ensures that each order has an ending location. Constraint set (4.4) ensures that the
picker initially starts order picking at a location 0 which acts as a depot. Order 0 only has to
visit the depot. Constraint set (4.5) calculates the distance travelled between orders k and `, if
order picking for order ` starts once order picking is completed for order k. Constraint set (4.6)
ensures that no subtours are formed. This problem contains n(nm2 +m+ 1) variables of which
n2m2 are binary variables and n(n+m+2) constraints. For a typical real life instance n ≈ 1 200
and m ≈ 56, yielding a number of variables in excess of 4, 5× 109 and a number of constraints
in excess of 2, 9× 106.

This formulation is computationally too expensive to solve. Even the input data becomes too
large to handle, when implementation is done using Lingo 11 [73] for small sized problems faced
by Pep.

4.3 Notation for the OSP

This section provides concise notation to represent the distance travelled by a picker on a
picking line. A number of definitions have to be made to simplify the description of determining
desirable starting locations for an order.

Definition 1 The span of an order is the smallest set of locations passed to complete the order
given a starting location.
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Figure 4.1: A schematic representation of the layout of a picking line containing 20 locations.

A span for an order k starting at location i may be represented by Sik = 〈i, eik〉, where i is the
starting location and eik is the closest ending position of order k. Following Definition 1, any
starting location for an order has an unique span associated with it, since an order must be
completed once it is started.

Definition 2 The size of a span is the number of locations that have to be traversed to complete
the order if a starting position is specified.

Each order may be assigned one starting point from all the possible locations within an order.
The size of a span Sik for an order k may be represented by

|Sik| = |〈i, eki 〉| =
{
eki − i if i < eki
m+ eki − i if i ≥ eki ,

where m is the total number of locations, i is the starting location of the span and eik is the
ending location of the span.

Consider an example of a picking line in Figure 4.1 containing 20 locations. Let Ok be the set
of different locations that has to be visisted to complete order k. Assume order k requires SKUs
from locations 9, 12 and 16 (indicated by the squares in Figure 4.1). Thus Ok = {9, 12, 16}. If
a picker, currently at location 6, is assigned to pick order k a distance of |S6

k | = |〈6, 16〉| = 10
locations are travelled. The picker may now start a new order at location 17.

If, however, a picker currently at location 13, is assigned to pick order k a distance of |S13
k | =

|〈13, 12〉| = 19 locations are travelled.

Definition 3 The minimum span of an order is a span of smallest size for an order.

Let |Smin
k | denote the length of the minimum span of order k. From the example in Figure 4.1,

|Smin
k | = |〈9, 16〉| = 7.

Real life instances of the exact formulations cannot be solved using Lingo 11, due to memory
issues with the large input data sets, as well as the number of decision variables and constraints.
Thus methods of finding lower bounds are considered.

Definition 4 The cut of a location is the number of spans passing that location.

Stellenbosch University  http://scholar.sun.ac.za



40 Chapter 4. Order sequencing problem

The cut at each location represents a lower bound for the number of cycles needed to pick a set
of spans since it represents the minimum number of times a location must be passed to complete
the picking of all the spans considered.

Definition 5 The maximal cut is the number of spans passing the location containing the
largest cut.

Since the number of cycles travelled in a picking line to complete all the orders is dependant on
the number of cuts at each location, minimising the cuts of each location, by assigning a starting
location (a span) to each order, may reduce the number of cycles travelled to complete a set
of orders. By reducing the maximal cut C, the possible number of cycles needed to complete
orders in a picking line may be reduced.

The idea of a cut evolved from the realisation that in some picking line layouts, it is not beneficial
to pick orders on their minimum spans. Figure 4.2 represents a picking line, displayed in the
form of a carousel, consisting of 12 distinct locations, each location containing a unique product,
and 5 orders. The first order is represented by three squares, O1 = {1, 2, 8}. The second order
is represented by circles, O2 = {3, 4, 9}. The third, fourth and fifth orders are represented
by pentagons, diamonds and triangles, respectively. Every order contains a unique minimum
span. The length of the minimum span of the first order is |Smin

1 | = |〈8, 2〉| = 6. Similarly,
the length minimum span of the second order is |Smin

2 | = |〈3, 9〉| = 6. Figure 4.2 represents an
example where orders should not be picked on their minimum spans. Each location i is assigned
a label 〈s̄, s〉i referring to the optimal number of cycles travelled when orders are not picked on
their minimum spans (s̄) and the number of cycles necessary when orders are picked on their
minimum spans (s) when order picking commences at location i. All 〈s̄, s〉i values in Figure 4.2
are tested by means of a brute force manner, where all possible sequences are tested for each
case. This example illustrates that unidirectional carousels (like the picking lines considered
here) are more complex than bi-directional carousels found in literature. For bi-directional
carousels it is always optimal to pick all orders on their minimum spans [14].

Figure 4.3 displays the distance and cycles travelled by a picker when orders do not have to
be picked on their minimum spans. Assume the picker starts order picking at location 1. The
picker may start order picking for the first order on S1

1 . The second order is then picked on S9
2 .

The third order is then picked on S5
3 . The fourth order is then completed followed by the last

remaining order, ending at location 12. Three cycles were travelled in order to complete all the
orders. Notice that each location has a cut of three, i.e. each location is traversed exactly three
times. This result remains the same when starting at any other location, other than location 1.

Figure 4.4 displays the distance and cycles travelled by a picker when orders have to be picked
on their minimum spans. The arrows in the centre of the carousel indicate the minimum spans
of all the orders. Assume the picker starts order picking at location 1. The picker may start
order picking for the second order at location 3 and end at location 9. The third order is
then started at location 5 and ends at location 10. The fourth order is then commenced at
location 6 and ends at location 11. The last remaining order is then completed followed by the
first order, ending at location 1. Five cycles was travelled in order to complete all the orders.
Each location has a cut of five. Location 1 is traversed exactly five times, while the remaining
locations are traversed four times each. This experiment remains the same when starting at any
other location other than location 1.

It is evident form the examples presented that the starting position of an order may reduce the
number of cycles travelled by a picker. By assigning starting positions to orders it is possible to
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Figure 4.2: A carousel illustrating a picking line consisting of 12 distinct locations and 5 orders, where
each order contains a unique set of shapes, namely, squares, circles, pentagons, diamonds and triangles.
Each location is assigned a label 〈s̄, s〉i referring to the optimal number of cycles travelled when orders
are not picked on their minimum spans (s̄) and the number of cycles necessary when orders are picked
on their minimum spans (s), when order picking commences at location i.
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Figure 4.3: A carousel illustrating a picking line consisting of 12 distinct locations and 5 orders, where
each order contains a unique set of shapes, namely, squares, circles, pentagons, diamonds and triangles.
Each location is assigned a label 〈s̄, s〉i referring to the optimal number of cycles travelled when orders
are not picked on their minimum spans (s̄) and the number of cycles necessary when orders are travelled
on their minimum spans (s) when order picking commences at location i. A sequence in which orders
are picked in the least number of cycles is presented by the arrows, when order picking starts at location
1.

reduce the maximum cut of a picking line reducing the bound on the number of cycles travelled
by a picker in a picking line.
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Figure 4.4: A carousel illustrating a picking line consisting of 12 distinct locations and 5 orders, where
each order contains a unique set of shapes, namely, squares, circles, pentagons, diamonds and triangles.
Each location is assigned a label 〈s̄, s〉i referring to the optimal number of cycles travelled when orders
are not picked on their minimum spans (s̄) and the number of cycles necessary when orders are travelled
on their minimum spans (s) when order picking commences at location i. A sequence in which orders
are picked when each order may only be picked on its minimum span, is presented by the arrows, when
order picking starts at location 1.

4.3.1 A branch and bound approach

The branch and bound method may be described as a set of enumerative methods applied to
solving discrete optimisation problems [64]. The original problem, or root problem, is bounded
from below and above. If the bounds are equal the optimal solution has been found. If this is
not the case the feasible region is to be explored, by dividing the feasible region into subregions.
The subregions amount to feasible regions for subproblems, which become children of the root
problem in a search tree.

Before the branch and bound algorithm presented here is explained, a heuristic procedure is
used to get an initial upper bound to the problem. The sequence of orders presented by the
heuristic is presented by the vector, bs, which is the best current solution. The total number of
cycles travelled when using the results obtained from the heuristic is denoted by us. The value
of us is an upper bound. Two vectors are then created from which the first is to keep track of
the orders that have been inserted to a new sequence of orders, vs. The inserted vector contains
the sequence of the orders that will be executed consecutively. The total distance for the orders
in vs is denoted by ds. The second vector contains all the orders that have not been added to
the sequence of executable orders, vp. The minimum distance that has to be travelled by the
orders in vp is denoted by dp. The value of dp is calculated as the maximum of either the sum of
the minimum spans dm of the orders in vp or as the value of the location that is visited by the
largest number of orders multiplied by the number of locations in the picking line, dc. Let Dc

be the number of times location dc has to be visited. An order cannot be completed by visiting
less locations than the number of locations on its minimum span. Also, if a location has to be
visited by n orders, at least n cycles have to be travelled to complete the remaining orders.
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The branch and bound method commences by means of a depth-first search. At each branch
an upper bound is calculated. The total distance travelled by a picker is dt = ds + dp + 1. Since
the number of cycles travelled is of importance, the total distance is then translated into cycles.
The total number of cycles is then calculated as ct =

⌈
dt
m

⌉
.

The value of dc may be influenced by the location of the picker, once the last order in vs is
completed. Assume this position is denoted by ps. Assume then bn is the location in vp with
the largest number of orders that has to be visited, then

dc =

{
(Dc − 1)m+ (bn − ps) if ps ≤ bn
Dcm− (ps + bn) if ps > bn.

(4.9)

The minimum distance is determined as dp = max {dc, dm} . If vp is empty and dt < us a better
solution has been found. The value of us is then updated as well as bs.

Consider an example of a picking line containing 10 locations. Assume the vector vp contain
3 orders. These orders are O1 = {1, 3, 6}, O2 = {5, 8} and O3 = {2, 3, 7, 8, 10}. Each of
these orders have a unique minimum span. The length of the minimum span in order 1 is
|Smin

1 | = |〈1, 6〉| = 5, |Smin
2 | = |〈5, 8〉| = 3 in order 2 and |Smin

3 | = |〈7, 3〉| = 6 in order 3. The
sum of the minimum spans in vp is 14 (dm = 14). Now it is necessary to determine the location
that is visited by the largest number of orders. Both orders 1 and 3 have to visit location 3.
Location 3 is thus visited by the most orders in vp (bn = 3, C = 2). The value of dc is dependant
on the current location at which the picker is positioned. If the picker is currently positioned
at location 2 (ps = 2), dc = (2 − 1)10 + (3 − 2) = 11 (ps ≤ bn). If the picker is positioned at
location 5 (ps = 5), dc = (2× 10)− (5− 3) = 18, since three cycles would at least be travelled.

The pseudo code listing of the branch and bound algorithm may be found in Algorithm 1. This
branch and bound approach was coded, but could not solve the OSP in a reasonable amount of
time.

4.3.2 A lower bound

An integer programming formulation may be used to formulate the problem of minimising the
maximum cut. This problem was formulated by Matthews & Visagie [77].

A number of variables required in modelling this problem are defined. Let

xik be equal to 1 if order k starts at location i and 0 otherwise,
C be the maximum cut of all the locations.

A set of parameters are also defined. Let

n be the number of orders,
m be the number of locations,
dikj be equal to 1 if order k starts at location i and passes location j and 0 other-

wise,
eikj be equal to 1 if order k starts at location i and is completed location j and 0

otherwise.

The objective then is to minimise the maximum cut, i.e. to
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Algorithm 1: A branch and bound approach.
Data: The values of bs and us obtained by means of a heuristic.
Result: The values of bs and us.
initialise vs;
vp ← bs ;
sort vp in decreasing order;
insert the first element in vp into vs and remove that element from vp;
calculate ct according to the solution of the heuristic;
while every branch resulting from a “dummy” root node has not been investigated do

calculate dt;
if dt ≤ us then

if vs contains n elements then
remove the last element in vs and add to vp;
find the smallest element in vp larger than the last element in vs and add to vs;
if no such element exists or if this branch has been tested, repeat the above steps;

else
insert the last element in vs into vp and remove that element from vs;

end

else
if dt < us then

bs ← vs;

ct ←
⌈
dt
m

⌉
;

test whether switching the last two elements in vs yields a better result;
remove the last three elements in vs and add to vp;
if all the orders in vp has been tested, remove the last element in vs and add to vp until a new
order is reached;

else
remove the last element in vs and add to vp;
find the smallest element in vp larger than the last element in vs and add to vs;
if no such element exists or if this branch has been tested, repeat the above steps;

end

end

end

minimise C (4.10)

subject to

n∑
i=1

xik = 1 k = 1, 2, . . . , n, (4.11)

n∑
k=1

m∑
i=1

dikjxik ≤ C j = 1, 2, . . . ,m, (4.12)

n∑
k=1

xj+1,k −
n∑
k=1

m∑
i=1

xikeikj = 0 j = 1, 2, . . . ,m− 1, (4.13)

n∑
k=1

x1k −
n∑
k=1

m∑
i=1

xikeikm = 0, (4.14)

xik ∈ {0, 1}
k = 1, 2, . . . , n,
i = 1, 2, . . . ,m.

(4.15)

The objective function (4.10) minimises the maximal cut. Constraint set (4.11) assigns a starting
position to each order. Constraint set (4.13) calculates the maximum cut. Equation sets (4.14)
pairs every starting position with an ending position over all the orders.
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The solution to the maximal cut model is described in total by two sets S and E as the starting
and ending positions respectively, of each order and the objective function value. The set E is
determined by the set S, since the starting location of an order determines the ending location.
Each starting position is paired with an ending position within one location. The solution may
not be feasible as the starting and ending positions of all the orders may not allow for the
generation of a complete tour [77].

A subtour generation heuristic was presented by Matthews & Visagie [77] and is supplied in
Algorithm 2. This heuristic may be used to find a set of T subtours containing all the orders. It
was then proven by Matthews that a feasible solution may be generated by linking the starting
and ending positions in such a way that the cost with linking the subtours will result in at most
one cycle travelled.

Algorithm 2: Subtour generation heuristic.
Data: A set of starting positions S and ending positions E obtained from formulation (4.10)–(4.15).
Result: A set T of subtours that link up all the orders.
while All orders have not been allocated to a subtour do

Generate a new subtour st with the first available unallocated order;
Let the current ending position of st be location i;
if An unallocated order exists which has a starting location corresponding to i+ 1 (mod m) then

Add this order to the end of the uncompleted subtour;
end
else

Close the subtour by connecting the last order to the first order;
end

end

Table 4.1 displays the results obtained for the maximal cut formulation when considering 22
data sets provided by Pep. Each of the data sets contains a number of orders (O) and a number
of locations (L). The solutions are indicated in the number of cycles that have to be traveled in
order to complete the OSP. Computational times are also indicated in seconds. The data sets
are partitioned into three groups: large, medium and small. The large data sets contain more
than 1 000 orders, medium data sets contain more than 200 orders but less than 1 000 orders
and small data sets contain fewer than 200 orders.

The results in Table 4.1 will be used as a benchmark for all other OSP algorithms used further in
this thesis. Heuristic approaches will be investigated in order to determine reasonable solutions
that may be obtained in computational times that outperform those of the maximal cut formu-
lation. For average data sets the maximal cut formulation does not exceed computational times
in excess of 10 minutes. However, data set E requires an excess of 4 hours to be solved, using
the maximal cut formulation. In a real life scenario a picking line manager would not have this
amount of time to his/her disposal to construct a sequence in which orders may be executed.
Alternative algorithms may therefore be used to reduce computational time and simultaneously
providing a good quality solutions.

4.4 Tour construction heuristics

Heuristic algorithms for the TSP may be broadly divided into two classes: tour construction
procedures, which build a tour by successively adding a new node at each step; and tour im-
provement procedures, which start from an initial tour and seek a better one by iteratively
moving from one solution to another, according to adjacency relationships defined by a given
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Size Maximal cut Computational
Data set (O, L) approach (cycles) time (seconds)

A (1262,49) 1232 133.31
B (1264,54) 1226 243.83
C (1265,51) 1161 193.45
D (1263,56) 1072 464.02
E (1264,51) 1069 14733.61
F (1258,55) 1025 253.48
G (1258,53) 1005 223.53
H (1244,54) 992 253.66
I (1260,56) 955 303.78
J (1264,56) 947 563.61

K (943,63) 259 202.77
L (846,56) 232 71.87
M (728,51) 152 775.51
N (733,55) 125 51.55
O (396,63) 90 31.44
P (574,48) 80 50.92
Q (242,64) 45 20.69

R (158,55) 14 10.34
S (89,42) 9 10.12
T (82,51) 8 10.14
U (90,48) 7 10.17
V (80,56) 6 10.2

Table 4.1: Results obtained from the maximal cut algorithm used to solve the OSP. A total of 22 data
sets are considered where number of orders (O) and locations (L) are displayed for each data set. The
solution of the maximal cut algorithm is displayed as the number of cycles travelled by a picker and the
computational time is indicated in seconds.

neighbourhood structure [51]. The following tour construction heuristics present possible ways
in which to sequence orders.

4.4.1 Next shortest order

The next shortest order (NSO) heuristic considers a single picker in a picking line. The picker
considered starts at the first location in a picking line. If there are any orders that has to visit
the first location, these orders are considered. The order with the shortest span is selected as
the first order of the sequence. When the picker is finished with the first order, the current
location is updated as well as the number of cycles travelled by the picker.

If, however, there are no orders starting at the current location, the current location of the
picker is incremented, i.e. the picker travels to the next location. If there are any orders that
has to visit this location, these orders are considered and the order with the shortest picking
distance is selected. This process is repeated iteratively until all orders are allocated to the
sequence. Algorithm 3 displays the pseudo code for the NSO heuristic.

The NSO heuristic determines the next order k to be picked, as

k = arg min
k∈Oi

|Sik|. (4.16)

The nearest order may be interpreted as the order which may thus be completed within the
smallest number of cycles from the current location.

Stellenbosch University  http://scholar.sun.ac.za



4.4. Tour construction heuristics 47

Algorithm 3: Next shortest order heuristic (NSO).

Data: A set of orders, a set of SKU locations within a picking line and which SKUs must be picked by which
order.

Result: A sequence in which the orders may be picked and the total number of cycles traversed.
Set the current location to location 1;
while All orders have not been sequenced do

Determine all the orders containing a SKU at the pickers current location;
if no such order exists then

Increment the current location by one;
Update the number of cycles traversed;

end
else

Determine the best order (or most desirable order) which picks from the current location;
Add this order to the sequence;
Update the current location;
Update the number of cycles traversed;

end

end

4.4.2 Next shortest order relative to minimum span

The next shortest order relative to its minimum span (NSOM) heuristic is similar to the NSO
heuristic — it only varies in the manner in which orders are selected to enter the sequence.

The NSOM heuristic determine the next order k to be picked, by

k = arg min
i∈Ok

|Sik|
|Smin
k |

, (4.17)

where i is the current location of the picker. If no order is found, the current location i is

increased by one. If
|Sik|
|Smin
k | = 1 the length of order k is at a minimum. This order will receive

preference over other orders that do not pick on their minimum spans. This encourages the
process of picking an order on its minimum span or an alternative span that does not increase
the number of locations traversed considerably.

4.4.3 Next shortest order relative to its number of picks

The next shortest order relative to its number of picks (NSOP) heuristic is similar to the NSO
heuristic — it only varies in the manner in which orders are selected to enter the sequence.

The NSOP heuristic determines the next order k to be picked, by

k = arg min
i∈Ok

|Sik|
|Ok|

, (4.18)

where i is the current location of the picker. If
|Sik|
|Ok| = 1 the length of order k is at a minimum

and there is a pick at each location on the minimum span.

4.4.4 Results for the tour construction heuristics

A number of test cases are used to evaluate the results obtained from the various models used
to solve the OSP. The test cases consisted of actual order requests and actual layouts used by
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Pep in practice. Ten out of the 22 test cases contain an excess of 1 200 orders with an average
of approximately 56 locations used within the picking line. Table 4.2 displays the results (in
terms of the number of cycles travelled to complete order picking on a picking line) obtained
when the tour construction algorithms are used to solve the OSP for each of the data sets. The
first column lists all the data sets, the second column displays the number of orders (O) and
locations (L) used in each data set. Results from the maximal cut formulation is then presented.

Size Maximal cut Total number of cycles
Data set (O, L) approach NSO NSOM NSOP

A (1262,49) 1232 1253 1255 1254
B (1264,54) 1226 1243 1247 1248
C (1265,51) 1161 1200 1229 1226
D (1263,56) 1072 1120 1203 1207
E (1264,51) 1069 1132 1209 1199
F (1258,55) 1025 1072 1142 1141
G (1258,53) 1005 1076 1186 1185
H (1244,54) 992 1056 1181 1178
I (1260,56) 955 1018 1163 1161
J (1264,56) 947 999 1163 1163

K (943,63) 259 367 444 434
L (846,56) 232 322 346 347
M (728,51) 152 260 248 260
N (733,55) 125 209 215 218
O (396,63) 90 200 216 218
P (574,48) 80 148 139 150
Q (242,64) 45 110 109 101

R (158,55) 14 28 27 28
S (89,42) 9 12 13 12
T (82,51) 8 15 15 15
U (90,48) 7 14 14 14
V (80,56) 6 10 9 10

Total 11711 12864 13773 13769

Table 4.2: Total number of cycles obtained from the tour construction algorithms used to solve the
OSP. The next shortest order (NSO), next shortest order relative to minimum span (NSOM) and the
next shortest order relative to number of picks (NSOP) are tested against the lower bound obtained from
the maximal cut formulation for each of the 22 data sets. The number of orders (O) and locations (L)
are displayed for each data set. The best solutions are printed in boldface.

The results in Table 4.2 indicate that NSO outperforms NSOM and NSOP in most test cases.
The total number of cycles travelled in the NSO for the 22 data sets considered only differs by
9.85% from the total number of cycles travelled for the maximal cut formulation. However, the
average deviation between the NSO and the maximal cut formulation is considerably larger.
The NSO, as well as the NSOM and NSOP, fail to deliver good solutions in data sets containing
less than 1 000 orders.

These tour construction algorithms are implemented in Java [101] and is able to solve an average
problem in a short period of time. Computational times of the various algorithms are displayed
in Table 4.3 in milliseconds.

4.5 Scope and ranking algorithms

The heuristic algorithms that have been considered sequence orders by only considering orders
that start closest to the picker. Also, orders are not ranked in any manner in terms of their
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Size Computational times
Data set (O, L) NSBO NSBOM NSBOP

A (1262,49) 712 693 771
B (1264,54) 372 340 376
C (1265,51) 236 235 187
D (1263,56) 186 183 179
E (1264,51) 183 175 180
F (1258,55) 161 134 137
G (1258,53) 251 184 175
H (1244,54) 160 158 206
I (1260,56) 180 184 184
J (1264,56) 141 143 150

K (943,63) 52 53 90
L (846,56) 46 47 45
M (728,51) 32 33 34
N (733,55) 29 32 30
O (396,63) 24 22 25
P (574,48) 21 37 23
Q (242,64) 26 10 13

R (158,55) 6 6 6
S (89,42) 4 4 5
T (82,51) 5 5 5
U (90,48) 4 7 5
V (80,56) 5 7 5

Total 2836 2692 2831

Table 4.3: Computational times in milliseconds of the tour construction algorithms used to solve the
OSP. The next shortest order (NSO), next shortest order relative to minimum span (NSOM) and the
next shortest order relative to number of picks (NSOP) are tested against the lower bound obtained from
the maximal cut formulation for each of the 22 data sets. The number of orders (O) and locations (L)
are displayed for each data set.

respective importance to be picked. A number of heuristic approaches are considered where the
picker has a scope of locations ahead of the current location of the picker, from which a possible
order must be selected. This scope may be varied. The scope may then be combined by using
measures to determine preferable orders during the picking process.

A further definition is needed to introduce the concept of ranking preferable orders.

Definition 6 The preference spans of an order are the spans of that order, that starts at a
location at which the order requires a SKU.

Let P pk denote the pth shortest preference span of order k. Referring to Figure 4.1, P 1
k =

S9
k , P

2
k = S16

k and P 3
k = S12

k are the only three preference spans of order k.

Initially each order is ranked in terms of its minimum span relative to its pth best preference
span.

4.5.1 Ranked preference span algorithm

In contrast to the heuristics considered thus far, the greedy scope algorithm may consider
picking orders that do not necessarily pick from the pickers current location. Instead the picker
considers orders starting within a certain scope of the current location. This scope, sc, has to
be specified in advance. The range specifies the number of locations the picker considers ahead
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Figure 4.5: A bar chart displaying the results (cycles travelled) obtained for all of the 22 data sets
considered when setting a scope of possible starting locations. The scope is varied from 1 to 30 locations
ahead of the current location of the picker.

of the current location as possible starting locations for a new order to be picked. All orders
that have preference span starting within the scope are considered as possible orders to choose
from.

Figure 4.5 displays the total number of cycles travelled for all 22 data sets, when the picker’s
scope is varied at different values. The lowest total number of cycles are found when the scope
is set at 7.

A second measure may be considered where orders are ranked in terms of the length of their
spans. Orders may be ranked according to a selected span for order picking relative to a different

span of that order. The orders are initially ranked according to
|Smin
k |
|P pk |

in increasing order, which

refers to the pth shortest preference spans of order k. The order selected during every iteration
of the algorithm is an order starting at the current location for the order that is ranked best.

These two heuristic approaches may be combined, where orders are ranked and the picker has
a certain scope to select orders ahead of the current location. The span selected for comparison
with the minimum span of each order is varied as the second best span to the fifth best span.
The scope is varied for all integer values between and including 1 and 30. Figure 4.6 displays a
bar chart where the scope as well as the preference span is varied. The lowest total number of
cycles are realised when sc = 6 and p = 3.

4.5.2 Minimum span preserving algorithm

It might be beneficial to attempt to pick all orders on their minimum spans. The greedy
heuristics in §4.4 often pick the initial orders on their minimum spans, however, when fewer
orders remain to sequence, many orders are picked on span much longer than their minimum
span(s).

This algorithm starts by determining for each location, the number of orders that start at that
location if the order is picked on its minimum span. If an order has multiple minimum spans,
each location that is the start of a minimum span is taken into account. The aim is to sequence
orders in such a way that the ending location of the span of a selected order is followed by the
starting location of the minimum spans of a large number of orders.
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Figure 4.6: A bar chart displaying the results (cycles travelled) obtained for all of the 22 data sets
considered when setting a scope of possible starting locations and altering the rank of orders based on
various spans. The score for each order is varied by considering the pth best span relative to the minimum
span of that order. The scope is varied from 1 to 30 locations ahead of the current location of the picker.

Locations

Locations

Conveyor Belt

987654321 10

1314151617181920 12 11

(10)(20)(30)

Figure 4.7: A schematic representation of the layout of a picking line containing 20 locations and 3
orders.

This algorithm is also combined with a scope. Consider the example in Figure 4.7 of three
orders. A picker is currently positioned at location 6 and requires a new order. If the scope is
set at three locations the picker may be awarded one of three orders, namely the triangles, the
circles or the squares. The ending location of each order contains a number which indicates the
number of orders that start on their minimum span at the location following the final location
of that order. In Figure 4.7 the squares contain 10 such orders, the circles 20 and the triangles
contain 30. In this case it would be beneficial to pick the triangles, since the picker would pick
the triangles on its minimum span (the same goes for the circles and the squares), but a large
number of orders await that may be picked on their minimum span (relative to the circles and
squares). In this manner orders are still picked on their minimum spans, but each location is
likely to be the starting location of the minimum span of multiple orders. The minimum spans
are preserved such that orders may be picked on their minimum spans during the entire order
picking process.

The scope of this algorithm may be varied for better performance of the algorithm. During
order picking, if no order, within the scope, is found, orders that do not start at their minimum
spans are considered. If no such order is found, the scope is temporarily increased until an order
is found that picks from a location within the scope.
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Figure 4.8: A bar chart displaying the results (cycles travelled) obtained for all of the 22 data sets
considered when setting a scope of possible starting locations for the minimum span preserving algorithm.
The scope is varied from 1 to 30 locations ahead of the current location of the picker.

Figure 4.8 displays a bar chart of the total number of cycles travelled for all 22 data sets
considered when the scope is varied from 1 to 30. The best results are obtained for sc = 4.

4.5.3 Results of the scope and ranking algorithms

From the results in Figure 4.6 concerning the ranked preference span algorithm, the span selected
to determine a score for each order does not have a significant influence on the solution quality,
however, the scope may have a direct effect on the solution quality. The least number of cycles
may be achieved when p = 3 and sc = 6. The best results are obtained when sc = 6 irrespective
of the value of p. Similarly, the minimum span preserving algorithm, displays the best overall
results when sc = 4.

Table 4.4 displays the results for the best solution obtained for the ranked preference span algo-
rithm and the minimum span preserving algorithm. The ranked preference span algorithm and
the minimum span preserving algorithm achieve similar results, however, the ranked preference
span algorithm outperforms the minimum span preserving algorithm for medium and smaller
data sets.

4.6 Awarding spans according to preference ratios

All the algorithms considered thus far have considered all the possible spans of an order. A
number of algorithms are developed to reduce the number of possible preference spans for each
order, to eliminate preference spans that will potentially reduce the solution quality, forcing
orders to be picked on shorter preference spans.

This heuristic procedure awards a certain number of possible preference spans to an order. The
preference spans awarded to each order, are ranked in increasing order in terms of the number
of locations that have to be traversed, i.e. if an order k is awarded uk possible preference spans,
these spans are the uk shortest possible preference spans of order k.

One span, from a number of possible preference spans, have to be selected for each order to
solve the OSP within a picking line. Initially the maximum number of possible preference spans,
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Size Maximal cut Ranked preference span Minimum span preserving
Data set (O, L) approach Number of Computational Number of Computational

cycles time (ms) cycles time (ms)

A (1262,49) 1232 1250 390 1247 518
B (1264,54) 1226 1240 248 1236 264
C (1265,51) 1161 1180 169 1181 209
D (1263,56) 1072 1113 196 1103 207
E (1264,51) 1069 1125 175 1133 218
F (1258,55) 1025 1095 174 1063 660
G (1258,53) 1005 1060 185 1066 213
H (1244,54) 992 1029 167 1036 261
I (1260,56) 955 1015 186 1005 204
J (1264,56) 947 983 167 986 200

K (943,63) 259 300 46 299 57
L (846,56) 232 261 34 261 48
M (728,51) 152 208 33 194 39
N (733,55) 125 150 29 160 34
O (396,63) 90 124 47 145 34
P (574,48) 80 111 21 121 37
Q (242,64) 45 54 12 67 15

R (158,55) 14 17 7 22 7
S (89,42) 9 10 7 12 5
T (82,51) 8 11 7 13 7
U (90,48) 7 8 6 11 5
V (80,56) 6 7 8 9 6

Total 11711 12351 2314 12370 3248

Table 4.4: Results indicating the number of cycles travelled when using the ranked preference span
algorithm, when p = 3 and sc = 6, as well as the minimum span preserving algorithm when the sc = 4.
The results are compared to the lower bound obtained from the maximal cut formulation for each of the
22 data sets. The number of orders (O) and locations (L) are displayed for each data set. Computational
time are displayed in milliseconds. The best performing algorithm is indicated in boldface for each data
set.

Q+ 1, have to be determined. No order may have more than Q+ 1 preference spans from which
to select an appropriate candidate span to be used in the OSP. Let Qk be the maximum number
of distinct preference spans that an order may have. Consider an order Ok = {α, β, γ}. Order

k has three preference spans, namely Sαk = 〈α, γ〉, Sβk = 〈β, α〉 and Sγk = 〈γ, β〉. The number
of preference spans within an order k is equal to the number of locations that order k have to
visit (|Ok| = Qk).

An order can never contain more preference spans than the number of locations it has to visit.
Therefore, the number of preference spans considered in each order must be the minimum of
either the maximum number of possible preference spans considered (Q+1) or the total number
of locations within an order (|Ok|). Let uk be the number of preference spans considered in
order k (uk = min{Q+ 1, |Ok|}). Let Sk = {q1

k, q
2
k, . . . , q

s
k, . . . , q

uk
k } be the set of the lengths of

the spans in order k, listed in decreasing order in terms of distance travelled. In this case qsk
refers to the length of the sth best preference span in order k.

Intervals are specified to determine the number of preference spans that may be awarded to each
order. The number of preference spans assigned to each order is determined by the ratio, rk, of
the number of locations traversed when order picking is done on the minimum span divided by
the number of locations traversed when order picking is done on the uk

th best preference span

of order k. Thus rk =
q1k
q
uk
k

.
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The ratio, rk, is used to determine the number of preference spans assigned to order k. If the
maximum number of possible preference spans are Q + 1, test intervals {t1, t2, . . . , ts, . . . , tQ}
is constructed such that t1 > t2 > · · · ts · · · > tQ, where each ts ∈ {0, 1}, s = 1, 2, . . . , Q. If
rk > t1, Q possible preference spans are awarded to order k. When order tp+1 < rk ≤ tp, a total
of Q + 1 − p possible preference spans are awarded to order k. If rk < tQ, only the minimum
span is awarded to order k. Let Pk be an ordered set of the spans assigned to order k.

The reason for assigning the preference spans to orders in this manner is that if an order contains
a large ratio (rk ≈ 1), the number of locations that have to be traversed in the minimum span
does not differ considerably in comparison to the uk

th best preference span. A small cost (in
terms of locations traversed) is incurred when the minimum span of an order is not selected, when
that order has a large ratio. However, if an order contains a small ratio, many more locations
than the minimum span have to be traversed to complete the order when the minimum span is
not selected. In this case the algorithm will only award a single span or few spans, to ensure
that unnecessary travelling is avoided.

Once the number of preference spans have been awarded to all the orders, each span is ranked
according to one of two criteria. According to the first criteria, each order is ranked by means
of the ratio Lk = Q+ 1−uk + rk for k = 1, 2, . . . , n. A preference list is constructed where each
selected span of an order is listed. The preference list is ranked in decreasing order. In this
manner if order k is ranked higher than order ` (i.e. Lk > L`), all of the uk spans awarded to
order k will be ranked higher than all of the u` spans that is awarded to order `. The pseudo
code for the algorithm utilising this criteria is supplied in Algorithm 4.

Algorithm 4: Preference ratio RS1

Data: The maximum number of preference spans Q, as well as a test interval {t1, t2, . . . , tQ−1}.
Result: An ordered list in which the orders should be picked.
Let B = ∅ and |B| = 0;
i← 1;
Calculate the ordered set Sk for all k = 1, 2, . . . , n;
Calculate rk for all k = 1, 2, . . . , n;
Construct the set Pk for each order k = 1, 2, . . . , n;
Calculate the ratio Lk for all k = 1, 2, . . . , n;
Create an orderned preference list V1 containing all orders,where each order k according to the value of Lk for
all k = 1, 2, . . . , n, where higher values of Lk constitues a higher rank;
while |B| 6= n do

while an order is not found do
Find the first preference span pk ∈ Pk for k ∈ V1 that starts at location i;
if no order is found then

i← i+ 1 (mod m);
end
V1 ← V1 \ Pk;

end
B ← B ∪ pk;
i← endpoint of Qk + 1;

end

According to the second criteria, each span of an order receives a unique preference. The

preference of the pth span of an order k is calculated as Np
k = uk +

qpk
|Ok| for k = 1, 2, . . . , n and

p = 0, 1, . . . , uk. This preference list is ranked in increasing order. In this situation orders that
have to visit locations on a picking line that are sparsely distributed will receive more spans.
Orders that may contain a cluster of locations on particular part of the picking line, will receive
a small amount spans.
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Once the preference list is constructed, a sequence in which orders may be picked is constructed.
The sequence starts with order picking commencing at the first location. If the first criteria is
considered, the preference list is searched starting at the first entry in the list. The preference list
is searched until a preference span is reached that starts at the current location of the picker.
If such a span exists, this preference span is entered to the sequence, the pickers position is
updated and all the preference spans of that order in the preference list is eliminated. However,
if no preference span starts at the current position of the picker, the picker moves to the next
location. In this manner all orders will be included in a sequence.

The maximum number of possible preference spans, Q+ 1, that may be selected, as well as the
test interval, must be determined prior to the execution of this algorithm a series of simulations
are constructed to determine the relevent number of preference spans and the intervals that
yields the lowest number of spans traversed. The pseudo code containing this procedure is
supplied in Algorithm 5.

Algorithm 5: Preference ratio RS2

Data: The maximum number of preference spans Q, as well as a test interval {t1, t2, . . . , tQ−1}.
Result: An ordered list in which the orders should be picked.
Let B = ∅ and |B| = 0;
Let i be the current location;
i← 1;
Calculate the ordered set Sk for all k = 1, 2, . . . , n;
Calculate rk for all k = 1, 2, . . . , n;
Construct the set Pk for each order k = 1, 2, . . . , n;
Calculate the ratio Np

k for all p ∈ Pk and k = 1, 2, . . . , n;
Create an orderened preference list V2 for all orders, where every order k receives a rank according to the value
of Np

k for all p ∈ Pk and k = 1, 2, . . . , n, where lower values of Np
k constitutes a higher rank;

while |B| 6= n do
while an order is not found do

Find the first preference span pk ∈ V2 that starts at location i;
if no order is found then

i← i+ 1 (mod m);
end
V2 ← V2 \ Pk;

end
B ← B ∪ pk;
i← endpoint of Qk + 1;

end

In order to illustrate the algorithm an example is presented. Consider two orders namely,
O1 = {1, 3, 7, 8} and O2 = {2, 4, 9}, that have to be picked from a picking line containing 10
locations. Order 1 contain four preference spans namely, |S1

1 | = |〈1, 8〉| = 7, |S3
1 | = |〈3, 1〉| = 8,

|S7
1 | = |〈7, 3〉| = 6 and |S8

1 | = |〈8, 7〉| = 9. Order 2 contain three preference spans namely,
|S2

2 | = |〈2, 9〉| = 7, |S4
2 | = |〈4, 2〉| = 8 and |S9

2 | = |〈9, 4〉| = 5. Let the maximum number of
possible preference spans assigned to a picking line be 3 (Q = 2).

The ranked sizes of the preference spans in an increasing manner for order 1 and 2 are {〈7, 3〉,
〈1, 8〉, 〈3, 1〉, 〈8, 7〉} and {〈9, 4〉, 〈2, 9〉, 〈4, 2〉}. However, since Q = 2, u1 = u2 = 3. Only three
shortest preference spans of order 1 may be considered. Therefore, P1 = {〈7, 3〉, 〈1, 8〉, 〈3, 1〉}
and P2 = {〈9, 4〉, 〈2, 9〉, 〈4, 2〉}.

Consider the case where the test interval is specified as {0.8, 0.6}. Preference spans are now

ranked according to the first criteria. The ratio of order 1 is R1 = |〈7,3〉|
|〈3,1〉| = 6

8 = 0.75. Since

0.6 < R1 ≤ 0.8, the two shortest preference spans (〈7, 3〉 and 〈1, 8〉) are considered for order
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1. The ratio of order 2 is R2 = |〈9,4〉|
|〈4,2〉| = 5

8 = 0.625. Since 0.6 < R2 ≤ 0.8, the two shortest

preference spans (〈9, 4〉 and 〈2, 9〉) are considered for order 2.

All the selected preference spans are ranked in a final list. L1 = 3 − 3 + 0.8 = 0.8 and L2 =
3− 3 + 0.625 = 0.625. Both preference spans of order 2 will be considered before the preference
spans of order 1 will be considered. Order picking may now be started. Order picking starts
at location 1. None of the preference spans of order 2 starts at location 1, however order 1
contains a preference span starting at location 1 (〈1, 8〉). This span is selected for order 1 and
the current position of the picker is updated. The picker is now positioned at location 9. Order
2 contains a preference span starting at location 9 (〈9, 4〉). Order 2 is picked on this span and
the picker is positioned at location 4. A total of 14 locations are travelled to complete order 1
and 2 using the first criteria.

Consider the case where spans are ranked according to the second criteria. Each preference
span of each order k receives a ratio, Np

k , for p = 1, . . . , uk and k = 1, 2, . . . , n. Both orders
contain 2 preference spans. Thus R1

1 = 2 + 6
8 = 2.75, R2

1 = 2 + 7
8 = 2.875, R1

2 = 2 + 5
8 = 2.625

and R2
2 = 2 + 7

8 = 2.875. All of these ratios are used to rank the spans of each order in a
preference list. The preference list will be {〈9, 4〉2, 〈7, 3〉1, 〈1, 8〉1, 〈2, 9〉2}. The first and the last
span corresponds to the spans of order 2 while the remaining two spans correspond to order 1 as
indicated by the subscript. Since R2

1 = R2
2, the third and the fourth elements in the preference

list may be swapped. This will, however, make no difference when executing the algorithm as
the two spans start at different locations. Order picking may now be started. Order picking
starts at location 1. The preference list is searched until a span is found that starts at location
1. The third preference span in the preference list is selected. This preference span corresponds
to order 1. Order 1 is picked first and the current location of the picker is updated. The picker
is now positioned at location 8. All the preference spans in the preference list corresponding to
order 1 is removed. The preference list now becomes {〈9, 4〉2, 〈2, 9〉2}. The list is searched for a
preference span starting at location 9. The first preference span in the preference list is selected.
The current position of the picker is updated upon completing order picking for order 2. The
picker has completed order picking and is positioned at location 4. The picker has travelled 14
locations in order to complete both orders.

For the data presented in this example both criteria reaches the same sequence. However, when
a large number of orders are considered, the results of the two crieria may differ.

Table 4.5 displays the results obtained from the selecting spans according to ratio tests. The
number of ratios awarded according to the first criteria is indicated by RS1 (as displayed in
Algorithm 4) and the second criteria for determining the number of ratios is indicated by RS2

(as displayed in Algorithm 5). The minimum number of cycles travelled for each criteria is
displayed for each data set. Each result is accompanied by the preference list that is able to
achieve this number of cycles.

Entries in the preference list are varied in permutations. Initially the preference list is con-
structed as {0.9} and decreases in intervals of 0.1 units. When the preference list is {0.1}, the
preference list is awarded another ratio and the preference list becomes {0.9, 0.8}. All permuta-
tions where each ratio is a multiple of 0.1 and where the first ratio is larger than the second ratio
are tested, upon which the preference list is awareded another ratio. This process is repeated
iteratively until all possible permutations are considered.

Results in Table 4.5 indicate that RS2 outperforms RS1 for eight of the twelve data sets and
RS1 only outperforms RS2 for one data set. It is therefore better to rank each span of an
order individually according to RS2 when considering a large variation in the length and entries
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Size Maximal cut RS1 preference RS2 preference
Data set (O, L) approach RS1 list RS2 list

A (1262,49) 1232 1233 {0.9, 0.8, 0.7} 1233 {0.9, 0.8, 0.7}
B (1264,54) 1226 1226 {0.8, 0.6, 0.5} 1226 {0.8, 0.6, 0.5}
C (1265,51) 1161 1181 {0.7, 0.6, 0.5, 0.4} 1177 {0.8, 0.7, 0.4, 0.3, 0.2, 0.1}
D (1263,56) 1072 1164 {0.9, 0.6, 0.4, 0.3, 0.2, 0.1} 1121 {0.9, 0.8, 0.7, . . . , 0.2, 0.1}
E (1264,51) 1069 1138 {0.4, 0.3} 1121 {0.9, 0.8, 0.7, 0.6, 0.5}
F (1258,55) 1025 1099 {0.6, 0.4, 0.3} 1065 {0.7, 0.5, 0.2, 0.1}
G (1258,53) 1005 1085 {0.6, 0.3} 1065 {0.9, 0.8, 0.6, 0.2}
H (1244,54) 992 1060 {0.8, 0.5} 1041 {0.9, 0.6, 0.5}
I (1260,56) 955 1041 {0.9, 0.7, 0.4} 1021 {0.9, 0.8, 0.7, 0.5}
J (1264,56) 947 1022 {0.8, 0.7} 995 {0.8, 0.7, 0.5}
K (943,63) 259 284 {0.7} 278 {0.7}
L (846,56) 232 244 {0.8} 244 {0.8}
M (728,51) 152 180 {0.9} 191 {0.9}
N (733,55) 125 139 {0.9} 137 {0.9}
O (396,63) 90 109 {0.7} 109 {0.9}
P (574,48) 80 95 {0.6} 95 {0.8}
Q (242,64) 45 54 {0.5} 51 {0.5}
R (158,55) 14 16 {0.6} 16 {0.5}
S (89,42) 9 10 {0.9} 11 {0.9}
T (82,51) 8 10 {0.9} 11 {0.9}
U (90,48) 7 8 {0.9} 8 {0.9}
V (80,56) 6 7 {0.9} 7 {0.9}

Total 11711 12405 12223

Table 4.5: The number of ratios awarded according to the first criteria is indicated by RS1 and the
second criteria for determining the number of ratios is indicated by RS2. One preference list is displayed
that may be used to achieve the minimum number of cycles for each data set. The criteria that achieved
the lowest number of cycles for each data set is displayed in boldface. The number of orders (O) and
locations (L) are displayed for each data set.

of a preference list. In order to test the robustness of both criteria, a series of instances are
constructed where the length of the preference list is varied.

A series of tests are considered to perform a sensitivity analysis on the length of the preference
list. The reduction in the size of the preference list entails that fewer solutions are calculated,
which decreases computing time. Table 4.6 displays results obtained from varying the length of
the preference list. Both criteria are considered in this table, where the length of the preference
list is indicated in brackets. Once again the preference list is constructed as {0.9} and decreases
in intervals of 0.1 units. When the preference list is {0.1}, the preference list is awarded another
ratio and the preference list becomes {0.9, 0.8}. All permutations where each ratio is a multiple
of 0.1 and where the first ratio is larger than the second ratio are tested, upon which the
preference list is awareded another ratio. This process is repeated iteratively until all possible
permutations are considered for each case displayed Table 4.6. The results indicate that savings
in cycles travelled are possible when increasing the length of the preference list. On average
the solutions obtained for the second criteria outperform the solutions of the first criteria. It is
clear that the solution quality is not very sensitive to a change in the length of the preference
list.

The computational times of the results obtained in Table 4.6 are displayed in Table 4.7. A large
increase in total computational time is incurred, when increasing the length from 3 possible
spans to 6 possible spans. The computational times to solve instances by using the second
criteria are higher on average than the first criteria.
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Size Maximal cut RS1 RS1 RS1 RS1 RS2 RS2 RS2 RS2

Data set (O, L) approach (10) (6) (3) (2) (10) (6) (3) (2)

A (1262,49) 1232 1233 1233 1234 1234 1233 1233 1234 1234
B (1264,54) 1226 1226 1226 1227 1232 1226 1226 1227 1232
C (1265,51) 1161 1181 1181 1198 1207 1177 1178 1183 1202
D (1263,56) 1072 1164 1169 1196 1201 1121 1174 1191 1194
E (1264,51) 1069 1138 1138 1138 1147 1121 1121 1128 1146
F (1258,55) 1025 1099 1099 1102 1153 1065 1065 1083 1133
G (1258,53) 1005 1085 1085 1085 1094 1065 1065 1068 1083
H (1244,54) 992 1060 1060 1060 1085 1041 1041 1048 1066
I (1260,56) 955 1041 1041 1043 1058 1021 1021 1023 1034
J (1264,56) 947 1022 1022 1022 1026 995 995 1001 1015

K (943,63) 259 284 284 284 284 278 278 278 278
L (846,56) 232 244 244 244 244 244 244 244 244
M (728,51) 152 180 180 180 180 191 191 191 191
N (733,55) 125 139 139 139 139 137 137 137 137
O (396,63) 90 109 109 109 109 109 109 109 109
P (574,48) 80 95 95 95 95 95 95 95 95
Q (242,64) 45 54 54 54 54 51 51 51 51

R (158,55) 14 16 16 16 16 16 16 16 16
S (89,42) 9 10 10 10 10 11 11 11 11
T (82,51) 8 10 10 10 10 11 11 11 11
U (90,48) 7 8 8 8 8 8 8 8 8
V (80,56) 6 7 7 7 7 7 7 7 7

Total 11711 12405 12410 12461 12593 12223 12277 12344 12497

Table 4.6: The number of ratios awarded according to the first and second criteria are indicated by
RS1 and RS2 respectively. The minimum number of cycles travelled for each criteria is displayed for each
data set. The number of orders (O) and locations (L) are displayed for each data set.

It is evident that a trade-off exists between solution quality and the length of the preference list
to solve the OSP using the preference list. Figure 4.9 contains a bar chart of solution quality
versus the maximum number of spans awarded to each order.

The preference list has to be determined before any of the algorithms may be used. A preference
list is considered and solutions are obtained for each data set. The preference list yielding
the lowest total number of cycles travelled are listed in Table 4.8 in increasing order. These
preference lists deliver stable solution qualities. The preferred preference list for both criteria
is {0.6}. However, RS2 outperforms RS1 when the criteria is {0.6}. It appears that awarding
fewer spans yields better results when all data sets are considered.

4.7 Generalised assignment approach

Assignment problems deal with assigning a number of sources (supply points) to destinations
(demand points). Each source must be assigned to a destination, where a cost is incurred for
each of the source-destination combinations. It is required to assign exactly one source to one
destination in such a way that the total cost of the assignment is minimised [51, 120]. The
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Size RS1 RS1 RS1 RS1 RS2 RS2 RS2 RS2

Data set (O, L) (10) (6) (3) (2) (10) (6) (3) (2)

A (1262,49) 75.552 52.949 8.039 3.145 96.025 69.652 9.632 3.798
B (1264,54) 91.781 63.940 8.359 2.872 125.104 89.308 10.499 3.681
C (1265,51) 47.530 34.029 6.036 2.264 65.146 47.346 6.926 2.569
D (1263,56) 64.886 50.665 7.658 2.510 95.586 73.585 9.428 3.065
E (1264,51) 39.396 27.490 4.731 2.252 54.220 37.371 5.327 2.445
F (1258,55) 53.200 42.726 7.419 2.301 57.774 44.279 8.305 2.661
G (1258,53) 29.882 21.600 4.448 1.886 40.031 27.849 4.744 2.008
H (1244,54) 26.675 18.770 3.588 1.756 32.945 22.979 3.916 1.823
I (1260,56) 25.795 18.574 3.909 1.775 33.945 23.992 4.074 1.864
J (1264,56) 20.880 14.604 3.201 1.648 26.266 17.814 3.258 1.978

K (943,63) 9.016 6.874 1.876 1.359 11.423 8.404 1.888 1.628
L (846,56) 7.852 6.166 1.839 1.505 11.117 8.121 1.866 1.360
M (728,51) 6.740 5.479 2.014 1.619 8.504 6.325 1.883 1.392
N (733,55) 4.785 3.802 1.808 1.309 6.021 4.595 1.776 1.459
O (396,63) 4.616 3.607 1.453 1.291 5.524 4.049 1.435 1.523
P (574,48) 4.085 3.447 1.483 1.455 4.760 4.146 1.476 1.364
Q (242,64) 2.232 1.703 1.470 1.572 2.110 1.815 1.344 1.256

R (158,55) 1.429 1.305 1.507 1.255 1.533 1.323 1.396 1.404
S (89,42) 1.287 1.358 1.375 1.240 1.474 1.371 1.139 1.561
T (82,51) 1.442 1.463 1.303 1.381 1.245 1.731 1.147 1.246
U (90,48) 1.557 1.199 1.527 1.498 1.226 1.254 1.300 1.219
V (80,56) 1.299 1.206 1.538 1.241 1.346 1.205 1.389 1.382

Total 521.917 382.956 76.581 39.134 683.325 498.514 84.148 42.686

Table 4.7: Computational times in seconds when assigning preference to ratios for data sets when
solving the OSP. The number of ratios awarded according to the first and second criteria are indicated
by RS1 and RS2. The number of orders (O) and locations (L) are displayed for each data set.

mathematical model for the classic assignment problem may be given as

minimise

n∑
k=1

n∑
`=1

ck`xk` (4.19)

subject to

n∑
k=1

xk` = 1 ` = 1, 2, . . . , n, (4.20)

n∑
`=1

xk` = 1 k = 1, 2, . . . , n, (4.21)

xk` ∈ {0, 1}
k = 1, 2, . . . , n,
` = 1, 2, . . . , n.

(4.22)

If xk` = 1 supply point k is assigned to demand point `, and 0 otherwise, and ck` is the cost
of assigning supply point k to demand point ` [89]. Constraint set (4.20) ensures that only one
supply point is assigned to a demand point, while constraint set (4.21) ensures that only one
demand point is assigned to a supply point.

Matthews & Visagie [77] proved that a number of orders grouped into a set of T subtours
may be linked to create a feasible solution with the addition of at most one cycle travelled (see
§4.3.2). It is therefore possible to convert a solution to the assignment problem to obtain a
feasible solution of the OSP. The result obtained from the assignment problem may contain
subtours. Linking these subtours will result in an increase of at most one cycle.

The assignment problem is used to link two orders resulting in the minimum distance travelled.
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Figure 4.9: The trade-off between the number of cycles travelled and number of possible spans awarded
to each order, when solving the RS1 and RS2 when varying the lengths of the preference list.

RS1 RS2

Preference list Total cycles Preference list Total cycles

{0.6} 12663 {0.6} 12601
{0.7} 12683 {0.5} 12608
{0.8} 12710 {0.4} 12615
{0.5} 12721 {0.7} 12616
{0.4} 12747 {0.3} 12624
{0.3} 12782 {0.6, 0.5} 12628
{0.9} 12787 {0.6, 0.4} 12634
{0.7, 0.5} 12795 {0.7, 0.5} 12642
{0.6, 0.5} 12795 {0.8, 0.4} 12643
{0.8, 0.5} 12807 {0.5, 0.4} 12647

Table 4.8: The preference lists that yield the best solution for all 22 data sets considered. Results are
indicated in the number of cycles travelled when the preference list is used. Results are displayed for
both criteria RS1 and RS2. The numbers in brackets indicate the length of the maximum length of the
preference list. The number of orders (O) and locations (L) are displayed for each data set.

The assignment problem must, however, be adapted for the situations in which an order k would
be assigned to order ` starting at the location associated with its pth best preference span. In
this case order ` must start at the location associated with its qth best span.

Since each order may request a different set of SKUs to pick, each order may have a different
number of preference spans. Each order has a number of preference spans equal to the number
of various SKUs requested by that order. Assume that a picking line contains n orders and
Q + 1 preference spans are considered for each order. Let cnp+k,nq+` be the distance to pick
order k on its pth best span, and to then travel to the location preceding the starting location
of the qth best span of order `. Also let xnp+k,nq+` be equal to 1 if order k starts picking on its
pth best span, is assigned to the location preceding the starting location of the qth best span of
order `, and 0 otherwise.

Let cnp+k,nq+k = M , where M is a very large number (relative to the actual distances in the
problem). Setting cnp+k,nq+k = M ensures that we will not go to order i immediately after
leaving order i. If an order contains fewer products than the value of Q+ 1, the corresponding
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entries in the cost matrix is also set to M .

Then the generalised assignment problem (GAP) may be formulated to

minimise
n∑
k=1

n∑
`=1

Q∑
p=0

Q∑
q=0

cnp+k,nq+` · xnp+k,nq+k (4.23)

subject to
n∑
k=1

Q∑
p=0

Q∑
q=0

xnp+`,nq+k = 1 ` = 1, 2, . . . , n, (4.24)

n∑
`=1

Q∑
p=0

Q∑
q=0

xnp+k,nq+` = 1 k = 1, 2, . . . , n, (4.25)

n∑
`=1

Q∑
q=0

xnp+k,nq+` =
n∑
`=1

Q∑
q=0

xnq+`,np+k
k = 1, 2, . . . , n,
p = 0, 1, . . . , Q,

(4.26)

xnp+k,nq+` ∈ {0, 1}

k = 1, 2, . . . , n,
` = 1, 2, . . . , n,
p = 0, 1, . . . , Q,
q = 0, 1, . . . , Q.

(4.27)

The objective function (4.23) gives the total length of the assignments. The constraint set (4.24)
ensures that each order is assigned to following order only once. The constraints set (4.25)
ensures that each order is assigned to a prior order only once. The cost matrix is displayed in
Figure 4.10. The constraints in (4.26) ensures that if a subtour is generated, the beginning of
the subtour is connected to the end of the subtour. This implies that all the ending locations of
an order is connected to the starting position of another order.

This problem contains n2Q2 variables and 2n+ nQ constraints. Due to the size of the problem
and the size of data required as input variables, this problem could not be solved for typical
sized problems faced by Pep, when using Lingo 11 [73].

Figure 4.11 represents a general cost matrix to solve the GAP for a problem containing three
orders (n = 3), where a maximum of three preference spans may be selected (Q = 2). Constraint
set (4.24) ensures that only one element is selected for each row k = 1, k = 2 and k = 3. Each
order may only start on a single preference span. Similarly, constraint set (4.25) ensures that
only one element is selected for each column ` = 1, ` = 2 and ` = 3. Each order may be
preceded by a single order. Assume c15 is selected (indicated in red in Figure 4.11). This means
that order 1 is picked on its shortest preference span and then moves to the starting location of
order 2, if order 2 starts on its second shortest preference span. Constraint set (4.25) ensures
that order 2 starts on its second shortest preference span (i.e. one element c5x is selected for a
value of x where x ∈ {1, 2, . . . , 9} indicated in blue in Figure 4.11).

Due to the size of the problem, heuristic approaches are used to solve the GAP. A number
of greedy heuristics are adapted to solve the assignment problem and are considered in the
following subsection.

4.7.1 Heuristic solution methods to solve the generalised assignment prob-
lem

Six variations of a greedy heuristic are discussed in this section. In the first three variations the
rows of the cost matrix are searched for a minimum entry in (respectively) a top-down fashion
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Figure 4.10: The cost matrix used when solving the OSP using a generalised assigment problem.
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Figure 4.11: The cost matrix used to solve the OSP by means of the GAP for n = 3 and Q = 2.

(Greedy RTB), bottom-up fashion (Greedy RBT ) and randomly (Greedy RR). In the last three
variations the columns of the cost matrix are searched for a minimum entry in (respectively) a
left-to-right fashion (Greedy CLR), a right-to-left fashion (Greedy CRL) and randomly (Greedy
CR). These heuristics were introduced in an unpublished report by Van Dieman [107]. Due
to the nature of the generalised assignment problem, only these six variations heuristics are
considered. These six variations were implemented for the classical assignment problem and
may be modified for the generalised assignment problem.

The Greedy RTB starts with the first row and progresses in a top–down fashion. The mimimum
entry cij in first row is selected and is recorded into a set A. Now the row and column that
corresponds to the minimum entry cij is deleted and this procedure is continued until all rows
and columns are deleted at which time the set A has cardinality n, where n is the dimension of
the problem. The objective function is obtained by summing up the entries in the set A. The
Greedy RBT and the Greedy RR works in a similar way, but the Greedy RBT begins with the
last row and progresses to the top row and for the Greedy RR, the rows are permuted according
to a permutation P .

Consider the example where the distance matrix is

C =


5 4 5 2 3
6 4 3 5 3
2 1 6 5 4
0 2 4 5 6
6 0 4 2 3

 . (4.28)

The minimum entry in row 1 of the distance matrix is c14 = 2, row 1 and column 4 are eliminated
(Figure 4.12 (a)). Now row 2 is examined, the minimum uncovered entries in row 2 are c23 = 3
and c25 = 3; c23 is chosen arbitrary, and row 2 and column 3 are eliminated (Figure 4.12 (b)).
The next row to be examined is row 3 in which c32 = 1 is the minimum uncovered entry; row
3 and column 2 are therefore eliminated (Figure 4.12 (c)). The minimum uncovered entry in
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row 4 is c41 = 0; row 4 and column 1 are thus eliminated (Figure 4.12 (d)). Now entry c55 = 3
is the only uncovered entry; row 5 and column 5 are therefore eliminated, since all the rows
and columns have been eliminated the algorithm is terminated. The objective function value
obtained by this algorithm is z = 9, which is optimal. Algorithm 6 displays the pseudo code of
the Greedy RTB algorithm.
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Figure 4.12: Graphical illustration of the steps followed by the greedy RTB heuristic.

Algorithm 6: Greedy RTB
Data: A n× n cost matrix C.
Result: A low cost assignment.
Let i← 1, A = ∅;
while |A| 6= n and C 6= 0 do

Find minimum cij for j = 1, . . . , n;
A ← A∪ cij ;
Remove column j;
i← i+ 1;

end
z =

∑
cij∈A cij ;

The Greedy RBT is similar to the Greedy RTB, however, it starts with the last row of the
distance matrix as displayed in Figure 4.13. Algorithm 7 displays the pseudo code for the
Greedy RBT. The Greedy RR uses a permutation P for the selection of the rows.

Consider the permutation P = {3, 1, 5, 4, 2} for the selection of the rows. The first row to be
examined is row 3 with a minimum uncovered entry, c32 = 1, thus row 3 and column 2 are
eliminated (Figure 4.14 (a)). The minimum uncovered entry in row 1 is c14 = 2; and row 1 and
column 4 are therefore eliminated (Figure 4.14 (b)). The next row to examine is row 5 with
a minimum uncovered entry of c55 = 3; thus row 5 and column 5 are eliminated (Figure 4.14
(c)). Now the minimum entries for rows 4 and 2 is c41 = 0 and c23 = 3 respectively and rows 4
and 2 and columns 1 and 3 are eliminated (Figure 4.14 (d) and Figure 4.14 (e)). An objective
function value of z = 9 (optimal solution) is obtained by the Greedy RR heuristic. Algorithm 8
displays the pseudo code of the Greedy RR algorithm.

In the next variations of the greedy heuristic the columns, instead of the rows, are examined.
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Figure 4.13: Graphical illustration of the steps followed by the Greedy RBT heuristic.

Algorithm 7: Greedy RBT
Data: A n× n cost matrix C.
Result: A low cost assignment.
Let i← n, A = ∅;
while |A| 6= n and C 6= 0 do

Find minimum cij for j = 1, . . . , n ;
A ← A∪ cij ;
Remove column j;
i← i− 1;

end
z =

∑
cij∈A cij

The Greedy CLR starts with the first column and progresses in a left to right fashion. The
minimum entry cij in each column is sorted and is recorded in a set A. Now the row and
column that corresponds to the minimum entry cij is deleted and this procedure is continued
until all rows and columns are deleted at which time the set A has cardinality n, where n is
the dimension of the problem. The objective function is obtained by summing up the entries in
the set A. The Greedy CRL and the Greedy CR works in a similar way, but the Greedy CRL
begins with the last column and progresses from the most right column to the left and for the
Greedy CR the columns is permuted according to a permutation P . The pseudo codes of these
three variations may be found in Algorithms 9, 10 and 11.

The minimum entry in column 1 to 5 of the distance matrix is c41 = 0, c52 = 0, c23 = 3, c14 = 2
and c35 = 4 respectively and a objective function value of z = 9 (optimal solution) is obtained
by Greedy CLR (Figure 4.15). The minimum entries in columns 5 to 1 in the distance matrix
is c15 = 3, c24 = 5, c43 = 4, c52 = 0 and c31 = 2 respectively and an objective function value of
z = 14 is obtained by Greedy CRL (Figure 4.16). Consider the permutation P = {2, 5, 1, 4, 3}.
The first column to be selected by the Greedy CR heuristic will be chosen according to the
permutation P . The minimum entries for columns 2, 5, 1, 4 and 3 are c32 = 1, c15 = 3, c41 = 0,
c24 = 5 and c53 = 4 respectively and an objective function value of z = 13 is obtained (Figure
4.17).
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Figure 4.14: Graphical illustration of the steps followed by the Greedy RR heuristic.

Algorithm 8: Greedy RR
Data: A n× n cost matrix C.
Result: A low cost assignment.
Let A = ∅ and |A| = 0;
j ← 1;
Let P be a permutation of {1, . . . , n};
while |A| 6= n and C 6= 0 do

Find minimum cij for i ∈ P and j = 1, . . . , n;
A ← A∪ cij ;
j ← j + 1;
P ← P \ {i};

end
z =

∑
cij∈A cij ;

The elementary operations of the greedy heuristic is scan a row/column and delete a row and
column. The maximum number of steps required is 2n (n rows/columns must be scanned and
n rows and columns must be deleted), thus the time complexity of the greedy heuristic is O(n).
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Figure 4.15: Graphical illustration of the steps followed by the Greedy CLR heuristic.
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Figure 4.16: Graphical illustration of the steps followed by the Greedy CRL heuristic.
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Figure 4.17: Graphical illustration of the steps followed by the Greedy CR heuristic.

Algorithm 9: Greedy CLR
Data: A n× n assignment of minimum cost.
Result: A low cost assignment.
Let A = ∅;
j ← 1;
while |A| 6= n and C 6= 0 do

Find minimum cij for i = 1, . . . , n;
A ← A∪ cij ;
Remove row i j ← j + 1;

end
z =

∑
cij∈A cij

4.7.2 Implementation of the modified assigment problem

The heuristic approaches to solving the assigment problem in §4.7.1 may be used to solve the
generalised assignment problem, where each order may contain a number of possible starting
locations.

When implementing the assignment problem, orders may be connected in such a way that
subtours are created. If a number of subtours are generated, a new assignment problem may be
constructed where each subtour contains only one starting location and one ending location. The
starting and ending location may be determined by considering the most number of locations
travelled to connect any two orders in a single subtour. Consider the example in Figure 4.18
where three subtours exist, each subtour containing four orders.

Within the first subtour, the longest arc connecting any two orders, is the arc connecting order
8 and 3. The starting position of this subtour starts at the location where order 8 starts.
Similarly, the ending position of this subtour ends at the location where order 3 ends. The arc
connecting order 8 and 3 is then removed.

This process may be implemented for each subtour. Each subtour will contain a unique span,
with a single starting and ending location. A classical assignment problem may be implemented
to connect subtours.
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Algorithm 10: Greedy CRL
Data: A n× n assignment of minimum cost.
Result: A low cost assignment.
Let A = ∅;
j ← n;
while |A| 6= n and C 6= 0 do

Find minimum cij for i = 1, . . . , n;
A ← A∪ cij ;
Remove row i;
j ← j − 1;

end
z =

∑
cij∈A cij

Algorithm 11: Greedy CR
Data: A n× n cost matrix C.
Result: A low cost assignment.
Let A = ∅;
j ← 0;
Let P be a permutation of {1, . . . , n};
while |A| 6= n and C 6= 0 do

Find minimum cij for j ∈ P and i = 1, . . . , n;
A ← A∪ cij ;
Remove row i;
P ← P \ {j};

end
z =

∑
cij∈A cij
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Figure 4.18: An example of three subtours that have to be connected. Each subtour contains four
orders. The connecting cost is indicated on each arc. The connecting cost is the number of locations
travelled from the ending location of an order to the starting location of the following order.

If the cost matrix for the example is

c =

 M 4 16
10 M 7
3 5 M

 ,
the result would be to connect subtour 1 to subtour 2, subtour 2 to subtour 3 and subtour 3
to subtour 1, resulting in a single tour. Figure 4.19 displays the final tour containing all the
subtours. The number of locations traversed in this tour is used to determine the number of
cycles that may be travelled by a picker.

If the classical assignment problem does not create a single subtour, the longest arc within each
subtour is removed, and a unique starting and ending location is calculated for each subtour.

Stellenbosch University  http://scholar.sun.ac.za



70 Chapter 4. Order sequencing problem

7

10

12

4

15 3

6

3

2

6

8

5

8 6

11

1 5

9

3 13

2

4

73

Figure 4.19: The manner in which three subtours may be connected to form a single subtour. The arcs
in bold connect two orders from different between subtours. The connecting cost is indicated on each
arc. The connecting cost is the number of locations travelled from the ending location of an order to the
starting location of the following order.

The classical assignment problem is used once more to generate a single tour. This process is
iteratively implemented until a single tour is generated.

All the greedy heuristics used in §4.7.1 are used to calculate a single tour containing all the orders
assigned to a picking line. Each greedy heuristic is used to solve the generalised assignment
problem as well as the classical assignment problem for each data set.

4.7.3 Results of the generalised assignment problem

All the data sets are considered for implementation of the generalised assignment problem. The
solution techniques of the generalised assignment problem are tested by varying the number of
possible spans assigned to all the orders within a picking line. Figure 4.20 displays number of
cycles travelled for the generalised assignment problem when the 10 best possible preference
spans of each order are considered when all 22 data sets are considered. The best results for the
RBT, RR, CLR, CRL and CR may be achieved when only two preference spans are awarded
to each order. The best results for the RTB heuristic is achieved when only a single preference
span is awarded to each order. The results for the RR heuristic is poor compared to the other
heuristics for any number of preference spans considered.

The results for each individual data set is considered when the number of preference spans are
fixed at two. All of the six greedy heuristics used to solve the GAP provided the best average
solutions when two preference spans were used. Table 4.9 displays the results for each data set
when only two preference spans are considered for each order.

Due to implementation issues a maximum of 10 possible spans for each order is considered. The
greedy heuristics used to solve the generalised assignment problem is coded in Java [101], which
is unable to process cost matrices for average sized problems (n ≈ 1 200) when the number of

Stellenbosch University  http://scholar.sun.ac.za



4.8. Metaheuristic approaches to order sequencing 71

1 2 3 4 5 6 7 8 9 10

13 000

13 100

13 200

13 300

Number of preference spans awarded to each order

N
u
m

b
er

o
f

cy
cl

es
tr

av
el

le
d

RTB RBT RR CLR CRL CR

Figure 4.20: A bar chart displaying the results (cycles travelled) obtained for all of the 22 data sets
considered when the number of preference spans used in the generalised assignment problem is varied for
values ranging from 1 to 10. Results from six heuristics used to solve the GAP include the RTB, RBT,
RR, CLR, CRL and CR heuristics.

possible spans exceeds 10. The dimensions of the cost matrix in this case is 12 000 × 12 000,
which equates to 144 000 000 entries in this matrix.

Table 4.10 displays the computational times for the results displayed in Table 4.9. The times
are similar for all the heuristic algorithms considered. The algorithms where random sequences
(Greedy RR and Greedy CR) use slightly more computational time to solve any data set con-
sidered.

4.8 Metaheuristic approaches to order sequencing

Metaheuristics are procedures that coordinate simple heuristics and rules to find good (and
even optimal) solutions to computationally difficult optimisation problems [2]. Metaheuristics
are among the most effective solution strategies for solving combinatorial optimisation problems
in practice and have been applied to a wide variety of problems [19]. The general objective of
metaheuristics is to effectively and efficiently explore the solution space [92].

Two important components in metaheuristics are intensification and diversification strategies [45,
92]. Intensification is the exploitation of the accumulated search experience — when concen-
trating the search effort in a confined, small area of the solution space. Intensification aims to
explore the “most promising” areas in the solution space to ensure that the best solutions in
these areas are indeed found [41]. Intensification procedures are based on some intermediate-
term memory which evaluates the number of consecutive iterations that certain components in
the solution space have been present without interruption. The solution space that contains
these components may be explored thoroughly in order to improve the solution quality.

Diversification is an exploration into the larger unexplored regions of the solution space. It is
essentially an algorithmic mechanism that forces the solution space into previously unexplored
areas of the solution space [41]. Long-term memory may be used to evaluate the total number
of iterations that various solution components have been involved in the current solution. Di-
versification aims to essentially restart the search from an area currently unexplored within the
solution space.
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Size Maximal cut
Data set (O, L) approach RTB RBT RR CLR CRL CR

A (1262,49) 1232 1243 1237 1241 1235 1237 1240
B (1264,54) 1226 1257 1269 1266 1263 1271 1270
C (1265,51) 1161 1231 1222 1228 1209 1208 1209
D (1263,56) 1072 1218 1211 1205 1202 1201 1197
E (1264,51) 1069 1176 1175 1184 1176 1176 1173
F (1258,55) 1025 1164 1191 1189 1180 1186 1183
G (1258,53) 1005 1153 1182 1186 1157 1147 1157
H (1244,54) 992 1114 1119 1114 1128 1132 1121
I (1260,56) 955 1094 1099 1116 1096 1113 1094
J (1264,56) 947 1041 1091 1075 1049 1060 1050

K (943,63) 259 325 304 312 337 348 334
L (846,56) 232 265 278 268 284 276 278
M (728,51) 152 200 214 218 211 213 217
N (733,55) 125 154 152 160 182 185 170
O (396,63) 90 148 131 132 137 135 132
P (574,48) 80 102 113 111 112 112 113
Q (242,64) 45 55 66 62 89 68 70

R (158,55) 14 19 33 23 23 24 27
S (89,42) 9 14 15 11 15 16 15
T (82,51) 8 9 15 16 17 15 15
U (90,48) 7 11 14 14 14 16 13
V (80,56) 6 8 10 10 11 11 13

Total 11711 13001 13141 13141 13127 13150 13091

Table 4.9: The number of cycles travelled for the generalised assignment problem when the 2 best
possible spans of each order are considered. Results from each of the six greedy heuristics are consid-
ered, namely the Greedy RTB, Greedy RBT, Greedy RR, Greedy CLR, Greedy CRL and the Greedy CR
heuristics. The heuristic that performs the best for each data set is indicated in boldface. The number
of orders (O) and locations (L) are displayed for each data set.

A tabu search, simulated annealing, genetic algorithm and an extremal optimisation approach
is presented to address the OSP. The OSP may be simplified by considering the preference
spans of various orders and electing one of these spans for each order. The subtour generation
heuristic in §4.3.2 may then be used to create a set of subtours that may be linked with at most
one additional cycle travelled.

4.8.1 Data structure and improvement of a solution

The size of the problem may be reduced by only considering the preference spans of an order.
When an order is not started on a preference span a number of locations are traversed that does
contribute to the picking process in that order. In this case more distance is travelled for an
order than may actually be required. The subtour generation heuristic may be used to obtain
a feasible solution that may alter the spans of orders to deliver a feasible tour.

The metaheuristics considered to solve the OSP are modelled by assigning a starting location
to each order. The length of the preference span for each order may be calculated when the
starting location is known for each order. The cut at each location is then determined. The
maximal cut(s) are also identified.

A number of situations may present itself where improvement may be achieved. To reduce the
maximal cut(s), orders that pass the maximal cut(s) but do not pick from that/those locations
are selected to possibly reduce the maximal cut(s).
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Size
Data set (O, L) RTB RBT RR CLR CRL CR

A (1262,49) 780 884 851 651 700 908
B (1264,54) 432 401 461 348 369 473
C (1265,51) 313 308 357 280 303 333
D (1263,56) 328 329 374 282 296 330
E (1264,51) 342 350 388 295 310 343
F (1258,55) 289 293 344 245 250 295
G (1258,53) 313 310 346 281 302 327
H (1244,54) 311 314 367 270 287 324
I (1260,56) 388 392 440 356 376 400
J (1264,56) 315 348 367 276 305 318

K (943,63) 139 144 159 132 136 147
L (846,56) 132 127 137 115 110 132
M (728,51) 78 78 81 70 70 76
N (733,55) 78 74 74 63 70 86
O (396,63) 103 78 79 23 24 24
P (574,48) 39 43 44 93 83 100
Q (242,64) 13 13 13 11 11 11

R (158,55) 6 8 7 7 7 6
S (89,42) 7 4 4 4 5 4
T (82,51) 5 6 5 5 5 5
U (90,48) 4 6 5 4 7 5
V (80,56) 5 4 5 5 6 12

Total 4420 4514 4908 3816 4032 4659

Table 4.10: Computational times in seconds for the generalised assignment problem when the 2 best
possible spans of each order are considered. Results from each of the six greedy heuristics are consid-
ered, namely the Greedy RTB, Greedy RBT, Greedy RR, Greedy CLR, Greedy CRL and the Greedy CR
heuristics. The number of orders (O) and locations (L) are displayed for each data set.

An example is displayed in Figure 4.21 where three orders are considered. Each location con-
tained on the preference span of the order is representated by either a filled circle or square.
Suppose that a filled square represents a location that the order has to pick from, while a filled
circle represents a location passed by the order which is not picked from. The first order ends
at location i, while the second order starts at location i. The third order starts at location i− 1
and ends at location i+ 1. Assume that the current maximal cut is located at location i. Since
orders 1 and 2 have to pick from location i, altering the spans of these orders will not decrease
the maximal cut C. However, order 3 passes location i without picking from it. By altering the
preference span of order 3 in such a way that the preference span starts at location i + 1 and
ends at location i− 1, the maximal cut may be reduced if any location preceding location i− 1
and any location preceding location i+ 1 does not contain a cut C−1 or more. If such an order
exists, the span of the order is altered and the maximal cut is decreased.

This altering of the preference span of an order, where the maximal cut of a picking line is
reduced may be referred to as a reducing move. Whenever a reducing move is performed the
solution quality is improved by reducing the total number of cycles travelled by one pick cycle.
Figure 4.22 displays the resulting picking line configuration when the preference span of order
3 is changed. Each of the locations on the section of the illustrated picking line now contains a
cut of C − 1.

If no improvement may be incurred, by altering preference spans of the orders to minimise the
maximal cut(s), an effort may be made to change the location(s) containing the maximal cut(s).
Figure 4.23 displays a situation in which the maximal cut cannot be reduced. It is, however,
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i− 1 i i+ 1i− 2 i+ 2

Order 3

Order 2

Order 1

...

C

Figure 4.21: Example of an order that may reduce the maximal cut when a different span is selected.
Only three orders are displayed, namely 1, 2 and 3. The locations are indicated by i− 2, i− 1, i, i + 1
and i+2, which represents a section of a picking line. Filled squares indicate locations where orders have
to pick, while filled circles indicate locations that are traversed without being picked from. The maximal
cut is located at location i. The arrows indicate the current spans of each order.

i− 1 i i+ 1i− 2 i+ 2

Order 3

Order 2

Order 1

...

C − 1 C − 1 C − 1 C − 1 C − 1

Figure 4.22: Example of when the span of an order is altered that reduces the maximal cut. Only three
orders are displayed, namely 1, 2 and 3. The locations are indicated by i − 2, i − 1, i, i + 1 and i + 2,
which represents a section of a picking line. Filled squares indicate locations where orders have to pick,
while filled circles indicate locations that are traversed without being picked from. The maximal cut is
located at all the locations considered on the section of the picking line displayed. The arrows indicate
the current spans of each order.

possible to alter the location(s) containing the maximal cut(s). Order 4 starts order picking at
location i− 2 and ends at location i+ 1. Assume that order 4 only has to visit locations i− 2
and i+ 1. By changing the preference span of this order, to start at location i+ 1 and end at
location i− 2, the number of locations containing the maximal cut(s) are reduced and changed
if all the locations from i + 1 to i − 2 contains a cut of C − 1 or less. Before the alteration,
locations i − 1 and i contained the maximal cut C, but when the preference span of order 4
is changed, only location i+ 2 contains a maximal cut. These alterations act as intermediate
actions that may contribute to decreasing the maximal cut. This move may be referred to as
a shifting move. Figure 4.24 displays the situation in which the span of order 4 is altered to
reduce the number of maximal cut locations as presented in Figure 4.23.

Care should be taken not to increase the maximal cut if some of the locations have a cut of C−1.
The locations containing a cut of one less than the maximal cut (C−1) must also be examined.
Figure 4.25 displays a situation which may seem similar to the situation in Figure 4.21. Four
orders are present in the picking line. The current maximal cut C is at location i− 1. Orders 1
and 2 have to pick from location i− 1, however, order 4 does not require a SKU from location
i−1. It may seem beneficial to alter the preference span of order 4 by starting at location i and
ending at location i− 2, decreasing the cut at location i− 1 to C − 1, but the cut is increased
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i− 2 i− 1 i i+ 1 i+ 2

Order 4

Order 3

Order 2

Order 1
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C C

Figure 4.23: Example of an order that may shift and reduce the number of maximal cuts when a
different span is selected. Only four orders are displayed, namely 1, 2, 3 and 4. The locations are
indicated by i − 2, i − 1, i, i + 1 and i + 2, which represents a section of a picking line. Filled squares
indicate locations where orders have to pick, while filled circles indicate locations that are traversed
without being picked from. The maximal cuts are located at location i − 1 and i. The arrows indicate
the current spans of each order.

at locations i+ 1 and i+ 2 as shown in Figure 4.26.

These three considerations have to be considered when metaheuristic procedures are investigated
to solve the OSP. The next section will present a number of metaheuristics used to solve the
OSP by assigning a starting location to each order.

4.8.2 Greedy starting heuristic

A greedy heuristic to reduce the maximal cut(s) is initialised by iteratively assigning starting
locations to all the orders on a picking line. Only preference spans of an order are considered.
When a starting location is awarded to an order, the maximal cut(s) may be calculated. The
starting location of the following order is chosen to minimise the maximal cut and furthermore
reduce the number of maximal cuts as far as possible. The first criteria is to reduce the maximal
cut, followed by reducing the number of maximal cuts.

When all the orders on a picking line have received a starting location, the subtour generation
heuristic is used to create a feasible solution. The subtour generation heuristic may effectively
alter the starting locations of some orders. However, each order will still be picked on its
preference span identified by the greedy maximal cut(s) reducing heuristic.

Due to the lack of connectivity between orders, the solution structure moves away from an
n × n connectivity matrix (connecting orders to one another) to an n ×m assignment matrix
(assigning a starting location to an order). In addition, the sequencing of orders are done once
each order have been awarded a starting location associated with a preference span.

Let C represent the maximal cut for a given configuration, where the preference spans are
awarded to orders in a picking line, and NC be the number of locations containing the maximal
cut. Let the solution structure be a vector s of starting locations, where the kth element sk of
the vector s represents the starting location of order k, with respect to a single preference span
of order k. From a given solution s both C and NC may be calculated.

The greedy heuristic in Algorithm 12 may be used to find good starting solutions for meta-
heuristics in the following sections.
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i− 2 i− 1 i i+ 1 i+ 2
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Figure 4.24: Example of an order that shifts and reduces the number of maximal cuts when the
preference span is altered. Only four orders are displayed, namely 1, 2, 3 and 4. The locations are
indicated by i − 2, i − 1, i, i + 1 and i + 2, which represents a section of a picking line. Filled squares
indicate locations where orders have to pick, while filled circles indicate locations that are traversed
without being picked from. The maximal cut is located at location i+2. The arrows indicate the current
spans of each order.

Algorithm 12: Greedy maximal cut reducing heuristic.
Data: A set of all the order S. All the preference spans for each order.
Result: A vector s of starting locations awarded to each individual order.
Let C ← 0 and NC ← 0;
while S 6= ∅ do

Randomly select an order k such that k ∈ S;
if the selected order contains a preference span that will not increase the current value of C then

Assign that starting location to the kth entry in vector s;
end
else

Select a preference span of order k that results in the lowest value of NC ;
end
Update the value of C and NC ;
S ← S\k;

end

4.8.3 Tabu search

Tabu search (TS) was first introduced by Fred Glover in an article in 1986 [44]. Although many
of the ideas that Glover used in tabu search was suggested earlier, he proposed the majority
of the principles we currently use. The fundamental principle that distinguishes tabu search
from the local search technique, is that tabu search incorporates “intelligence”. The tabu search
directs an iterative search in a “good” direction so that the search for the optimal solution is
not determined solely by chance.

Implementing tabu search techniques poses two challenges. The first challenge is to create an
effective search engine. The search engine is responsible for evaluating neighbourhood solutions.
Secondly, all pieces of knowledge available should be included to the search procedure, as to
avoid bad regions of the solution space. With this in mind, the search procedure should be
directed while avoiding the mistake of repeating solutions already visited.

Tabu search is based on the premise of solving a problem intelligently. For this to be possi-
ble adaptive memory and responsive exploration is necessary. Adaptive memory refers to the
property that the solution space is searched economically and effectively. Local choices are thus
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i− 2 i− 1 i i+ 1 i+ 2

Order 4

Order 3

Order 2

Order 1

...

C C − 1C − 1

Figure 4.25: Example of an order that may be altered to increase the number of maximal cuts when a
different span is selected. Four orders are displayed, namely 1, 2, 3 and 4. The locations are indicated by
i−2, i−1, i, i+1 and i+2, which represents a section of a picking line. Filled squares indicate locations
where orders have to pick, while filled circles indicate locations that are traversed without being picked
from. The maximal cut is located at location i− 1. The arrows indicate the current spans of each order.

guided by information that are retrieved during the search. This is in contrast with a genetic
algorithm search which incorporates a “memory-less” search.

An emphasis on responsive exploration is derived from the notion that a strategic choice that
yields a poor result contributes more information than a random choice that yields a good result.
In a system that incorporates memory, a bad strategic choice may give hints that may be used
to alter the strategy profitably. Responsive exploration is the backbone of intelligent search in
that the good solutions always surface, while the solution space is simultaneously explored.

In most tabu search problems the problem may be expressed as optimising (maximising or
minimising) a function f(s) subject to s ∈ S, where the set S summarises constraints on the
vector of decision variables s [92]. It must be noticed that not all tabu search problems can
be formulated in this way. Tabu search begins in the same way as a local search method, by
utilising an iterative search from one point to another until a specified termination criterion is
reached. Here each s ∈ S has a neighbourhood N(s) ∈ N . Each new solution s′ ∈ N(s) that is
reached from s, is called a move. It is often useful to choose an s′ at each iteration that yields
a “good” result of f(s′) [34].

Tabu search has to make an “intelligent” choice from the solutions in N(s). Reducing the size
of the neighbourhood is a good way to speed up the process of evaluating the neighbourhood.
This might also direct the search. This may be implemented in the form of a data structure
known as a candidate list. Here it should be noticed that a good quality move will remain good
for solutions not too different. This may be implemented by ordering the entire set of feasible
moves by decreasing quality, in a given iteration. During the later iterations only the moves
that are classified as the best will be considered.

Tabus may become too powerful in the sense that they may prohibit attractive moves, even
when the danger of repeating prior states are not present. This may lead to the stagnation of
the searching process. It is therefore necessary to use algorithmic devices that may allow the
system to revoke (cancel) tabus. These are called aspiration criteria [41]. The most commom
used aspiration criterion consists of allowing a tabu move, if it results in a solution with an
objective value better than the current best solution. This is done since the new best solution
has not been visited in previous iterations. The basic local search is usually called iterative
improvement, since each move is only performed if the resulting solution is better than the
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i− 2 i− 1 i i+ 1 i+ 2

Order 4

Order 3

Order 2

Order 1

...

C − 1 CC

Figure 4.26: Example of an order that is altered to increase the number of maximal cuts when a
different span is selected. Four orders are displayed, namely 1, 2, 3 and 4. The locations are indicated by
i−2, i−1, i, i+1 and i+2, which represents a section of a picking line. Filled squares indicate locations
where orders have to pick, while filled circles indicate locations that are traversed without being picked
from. The maximal cut is located at location i+ 1 and i+ 2. The arrows indicate the current spans of
each order.

current solution [19]. The algorithm stops as soon as it finds a local minimum.

When using memory in an iterative process, a check should be included that verifies whether a
solution in the neighbourhood was already visited. This concept is called short-term memory.
The data structure used to implement this is called a hashing table. Hashing tables might,
however, prove to be very ineffective in certain situations [34]. Hashing tables prohibit a solution
whose value was already obtained during the last t iterations. Thus a cycle of length t or less
may be prohibited.

Another way to eliminate cycles and to direct the search, is to use a tabu list. To implement
a tabu list, N(s) has to have two characteristics, namely connectivity and reversibility. Con-
nectivity refers to the characteristic that the optimal solution may be reached from any feasible
solution. Reversibility refers to the property that a move m applied to a solution s, may be
reversed by a move m−1 such that (s⊕m)⊕m−1 = s. Since it makes no sense to apply move
m−1 straight after movem, we need to limit the moves when we have s⊕m to all possible moves
at this position, except m−1. By prohibiting the reverse of a move during several iterations,
one can prevent other cycles from intermediate solutions.

The implementation of the tabu search commences by iteratively selecting a starting location
for each order to minimise the cut of each location. Orders are not sequenced in this process.
Once an order has been assigned a starting position, the span of that order is calculated. The
cut of each location is then updated accordingly and the location(s) containing the maximal
cut(s) are determined.

The greedy heuristic in §4.8.1 is considered to deliver an initial solution for any instance. The
tabu search is implemeted by considering reducing moves placed into a candidate list. If the
candidate list contains at least one starting location, any one of these starting locations are
selected. The starting location of the corresponding order is updated and that order becomes
tabu for a number of predetermined iterations.

If no starting locations are identified that will reduce the maximal cut (i.e. the candidate list is
empty) a shifting move is attempted. All the starting locations of orders that does not increase
the maximal cut(s) but shifts the number of maximal cuts is considered, effectively creating
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a new candidate list containing all shifting moves). A single starting location is then selected
which shifts the maximal cut(s). The order corresponding to the starting location then becomes
tabu. If no such starting location exists, no alteration in the number of starting locations may
be achieved that reduces the number of maximal cut(s) or ensures that the number of maximal
cuts remain the same. In this case the algorithm is terminated and the subtour generation
heuristic is used to find a feasible tour with the current starting locations of the tabu search.
Algorithm 13 contains the psuedo code of the tabu search implementation.

Algorithm 13: Tabu search.
Data: A set of all the order S, all the preference spans for each order considered and, a tabu list length `, the

termination number t and two boolean variables ReducingMove and ShiftingMove.
Result: A vector s of starting locations awarded to each individual order.
Find an initial solution s by means of the greedy reducing heuristic. Calculate the values of C and NC ;
Create a tabu list L such that |L| = `;
ReducingMove ← false;
ShiftingMove ← false;
repeat

repeat
Select an order k to be examined at random such that k ∈ S;
if order k contains a preference span that will not increase the current value of C then

ReducingMove ← true;

Assign that preference spans starting location to the kth entry in vector s;

end

until all orders k ∈ S has been examined ;
if ReducingMove ← false then

repeat
Select an order k to be examined at random such that k ∈ S;
if order k contains a preference span that results in the lowest value of N∗C (N∗C ≤ NC) then

ShiftingMove ← true;

Assign that preference spans starting location to the kth entry in vector s;

end

until all orders k ∈ S has been examined ;
Update the value of C and NC ;
Update the tabu list L and set L ← L ∪ k;

end

until no improvement for t iterations or ReducingMove ← false and ShiftingMove ← false ;

Table 4.11 displays the results of the tabu search. The tabu serach was tested by varying the
tabu list length at 10%, 20%, 30% and 40% of the number of orders considered. A second
parameter was introduced which terminated the algorithm if the maximal cut was not reduced
after 50, 100 or 200 iterations. The best results are realised when the tabu list is fixed at
30% of the number of orders considered. Insignificant savings are achieved when the algorithm
is terminated at 200 iterations without improvement or 100 iterations without improvement.
However, the solution quality decreases substancially when the termination criteria is set at 50.
Thus only 100 iterations without a reduction of the maximal cut is considered, which requires
significantly less computational time. The computational times are displayed in Table 4.12.

4.8.4 Simulated annealing

The simulated annealing algorithm (SA) is based on the analogy between the simulation of the
annealing of solids and the problem of solving large combinatorial optimisation problems [109].
Annealing is the process of physically heating a solid material to impart high energy to it. At
a high temperature, the solid becomes a liquid. The particles of the solid randomly rearrange
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themselves in a liquid phase. A cooling phase follows where the temperature is slowly lowered.
Decreasing the temperature in a controlled manner leads to the material forming a crystalised
solid state. This is a stable state of an absolute minimum energy.

Quencing the opposite technique of annealing. It consists of quickly lowering the temperature.
This can lead to an amorphous structure2, a metastable state that corresponds to a local min-
imum of energy [1]. If the decrease in temperature is too fast, it may cause defects which can
be eliminated by local reheating [34].

The notion is to use this annealing technique to address optimisation problems by means of
controlling the annealing process by altering the temperature for the process. The temperature
must have the same effect as in the physical system: it must condition the number of possible
states and lead towards the optimal state, if the temperature is lowered gradually in a slow and
well-controlled manner (as in the annealing technique) and leads towards a local minimum if
the temperature is lowered abruptly (as in the quenching technique) [34].

In the annealing process, when thermodynamic balance is reached at a given temperature,
the relative probability of a physical system to have an energy E in a multi-state system in

thermodynamic equilibrium is proportional to the Boltzmann factor of exp
(
−E
kBT

)
, where kB

denotes the Boltzmann constant and T is the temperature of the system [1].

The Metropolis algorithm is used to enable the solid to reach a thermal equilibrium whenever
the temperature is lowered. Given the structure of the system (preference span awarded to each
order), the system is subject to a modification (altering preference spans of the orders). If this
transformation improves the objective function (Reduce the maximal cut and reduce the number
of locations containing a maximal cut) of the system, it is accepted. If the alteration reduces
the solution quality by ∆E of the objective function, it may be accepted with a probability of
exp

(−∆E
T

)
. Following this criterion the system eventually evolves into a thermal equilibrium at

the temperature considered — this leads to a Boltzmann distribution of energy states [1, 34, 109].

Initially, at a high temperature, exp
(
−E
kBT

)
is close to 1. The majority of exchanges are con-

sidered, and the algorithm becomes a random walk within the solution space. Many exchanges

may be accepted to deteriorate the state of the system. At low temperatures exp
(
−E
kBT

)
is close

to 0. Most of exchanges that would reduce the solution quality are rejected. The algorithm is
now similar to an iterative improvement heuristic. At intermediate temperatures the system
explores local minima, probing desirable solution spaces.

The annealing process may be terminated when the system is solidified (the temperature reaches
0 or no moves are able to improve the solution quality). The system may also be reheated,
essentially applying the annealing process again if the solidified state of the current system is
not desirable.

An initial solution is generated using the greedy algorithm described in §4.8.1. The choice of
valueing the exchange of starting locations is measured by a combination of the maximal cut
and the number of locations containing the maximal cut. The energy Ex for a given state x is

Ex = Cx +
Nx
C

m
, (4.29)

where Cx denotes the maximal cut, Nx
C denotes the number of locations containing the maximal

cut and m is the total number of locations in the picking line for a given state x.

2An amorphous solid is any noncrystalline solid in which the atoms and molecules are not organized in a
definite lattice pattern. Such solids include glass, plastic, and gel [22].
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4.8. Metaheuristic approaches to order sequencing 83

The initial temperature T0 is calculated by assigning a random starting location to each order.
A total of 100 alterations are made at random calculating the average ∆E of the corresponding
∆E variations. The initial rate of acceptance τ0 that is associated with the quality of the initial
configuration must be selected. According to Dréo et al. [34] for poor quality solutions to be
considered τ0 = 0.5 (starting at a high temperature), while good quality solutions are considered
when τ0 = 0.2 (starting at a low temperature). The value of T0 is deduced from the relation

exp

(
−∆E

T0

)
= τ0. (4.30)

The Metropolis acceptance rule is used to address exchanges that decreases the solution qual-
ity. If ∆E > 0, a number r ∈ [0, 1] is randomly generated. The exchange is accepted if

r < exp
(
−∆E+t
T0

)
, where T indicates the current temperature, and t is the current number of

iterations at a given temperature. The Metropolis rule is adapted, since the greedy heuristic in
§4.8.1 serves as a good general point of departure. Few moves are able to improve the solution
quality. If too many moves are selected that do not improve the solution quality, the algorithm
tends towards a random local search.

During an iteration a number of orders are randomly selected. The starting locations of these
orders may be altered. Each starting location is awarded with a certain probability of being
elected. If an order k requests |Ok| different SKUs, each of the |Ok| possible starting locations
associated with various preference spans is awarded a probability relative to the minimum span
of order k. Each starting location i of an order k is awarded a score of

cik =
|Smin
k |
|Sik|

. (4.31)

This score is then normalised, by awarding a probability pik for each starting location i of an
order k by using

pik =
cik∑
i∈Ok c

i
k

. (4.32)

When an order k is selected for an alteration of its starting location, the probability pik consti-
tutes the probabilty of starting order k on location i.

Changes in temperature may occur at the end of an iteration where a certain percentage of
orders are elected. The change in temperature occurs when either a number of exchanges are
accepted or when a number of exchanges are attempted. The change in temperature is altered
according to the geometric law, where

Ty+1 = 0.9 · Ty. (4.33)

An iteration is ended after 5 successive temperature decreases without acceptance of any ex-
changes. The program is terminated after 5 successive iterations without an improvement in
the solution quality, where a maxmimum of 100 iterations are awarded to the algorithm. Algo-
rithm 14 displays the pseudo code for the simulated annealing process.

The SA is implemented by altering the percentage of preference spans during each iteration at
5%, 7,5%, 10% and 11%. The value of τ0 is varied at 0.02, 0.05 and 0.1. The best results are
produced when τ0 is equal to 0.02 and when 10% of the preference spans are considered to be
altered during every iteration. Considerable computational time increases are incurred when
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84 Chapter 4. Order sequencing problem

Algorithm 14: Simulated annealing.
Data: A set of all the order S, all the preference spans for each order considered and the number of orders to

be altered during each iteration so and the value of τ0.
Result: A vector s of starting locations awarded to each individual order.
Find an initial solution s by means of the greedy reducing heuristic in Algorithm 12. Calculate the values of C
and NC ;

Evaluate ∆E;
Calculate T0 according to (4.30);
repeat

Select so orders at random and an alternative preference span for each order based on (4.32);
for x← 0 to so do

Use Metropolis rule of acceptance;
Update the fitness Ex;
if 12 perturbations are accepted or 100 perturbations attempted then

Ty+1 = 0.9 · Ty;
end

end

until no improvement in the fitness is found in 5 iterations or until 100 iterations have been completed ;

the number of preference spans altered are shifted from 5% to 10% and even more from 10%
to 11% and neither of these time increases justify the minor or no increase in solution quality.
Table 4.13 displays the results obtained for the SA. Table 4.14 displays the computational
time in milliseconds for the results in Table 4.13. More computational time is required when
more orders are considered during an iteration, but better quality solutions are not necessarily
attained.

4.8.5 Genetic algorithm

During the 1990s genetic programming became a popular search technique due to work by
Koza [68]. Fogel [40] describes genetic programming as a two-step iterative process, consisting
of random variation followed by selection. The link between this description of evolution and
the optimising algorithms that are the hallmark of evolutionary computation is conceptually
simple. Hirsh [56] explains genetic programming by progressively breeding a population of
computer programs over a series of generations using the Darwinian principles of evolution and
natural selection. It extends the genetic algorithm to the arena of computer programs.

Genetic Algorithms (GAs) and Evolutionary Strategies (ES) are two types of algorithms which
try to imitate the mechanism of natural evolution [6]. GAs are search techniques inspired
by the biological evolution of species in nature. The principles of a GA commences with an
initial population, where each individual has a certain fitness level, which measures the level of
adaptation to the objective aimed. Adaptation is the evolutionary process whereby a population
(or individual within the population) becomes better suited to its habitat [34]. The GA gradually
evolves in successive generations.

First an initial population of possible solutions (chromosomes) must be generated. Chromo-
somes may be any feasible solution to the problem and is usually expressed as a binary string.
A GA must generate many chromosomes as an initial population. A chromosome is formed by
genes. The genes are the elements that described the chromosome in its entirety. The chromo-
somes are observed and evaluated according to their fitness function. A fitness function is the
objective function that specifies the goodness of the solution (chromosome).

Within a population, the chromosomes are then ranked according to their fitness. All the
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chromosomes that produce a good fitness, or even the chromosomes with weaker fitnesses, are
then allowed to create offspring [90]. This process is called the crossover. The crossover is
the breeding process of the population. The reproduction process generates diversity in the
gene pool [88]. The existing chromosomes breed to create new chromosomes (offspring), which
will enter the following generation. The genes from two or even multiple parents may produce
offspring.

When an offspring improves itself, the chromosome has created a hybrid of itself. Mutation
is similar to hybrid but with mutation a chromosome does not have control over the changes
that happens to it. This is usually used to achieve genetic diversity. Genetic diversity maintain
diversity from one generation to another.

A GA is applied to each picking line individually. Solutions (chromosomes) are presented as
the sequence in which orders must be executed. The fitness of each gene is calculated as the
number of cycles travelled in each picking line.

The initial population was constructed either randomly or in a greedy manner. The greedy
manner of finding a gene entails that an order is selected at random. All the other orders in
that picking line is then considered and the order resulting in the least number of locations
travelled is then selected. This process is iteratively done until all orders are sequenced to form
a chromosome. A ranked based selection is used to rank the genes. Genes are ranked in terms
of their fitness in increasing order. A fraction of the genes may be eliminated if their fitness
is poor compared to the other genes. A uniform order-based crossover is used. An offspring
inherits a combination of the orders existing in two “parent” sequences. This crossover has the
advantage of being simple to implement and effective. The crossover follows three stages [34]:

• A binary template is generated at random.

• Two parents are mated. The 0 (respectively 1), of the binary string indicates the preserved
positions in the sequence of parent 1 (respectively parent 2).

• Non-preserved elements are permuted to generate offspring 1 (respectively offspring 2).

Figure 4.27 displays an example of an uniform order-based crossover, where each parent contains
six orders.

1 1 0 1 0 0 random binary string

1 2 3 4 5 6 parent 1

a b c d e f parent 2

a b 3 d 5 6 offspring 1

1 2 c 4 e f offspring 2

Figure 4.27: An example of a uniform order-based crossover where both parent solutions contain
6 orders. A random binary string is used to aid the crossover where genes are exchanged to create
offspring.

Stellenbosch University  http://scholar.sun.ac.za



88 Chapter 4. Order sequencing problem

S
iz

e
M

a
x
im

a
l

cu
t

N
u
m

b
er

o
f

ch
ro

m
o
so

m
es

=
1
0
0

N
u
m

b
er

o
f

ch
ro

m
o
so

m
es

=
2
0
0

N
u
m

b
er

o
f

ch
ro

m
o
so

m
es

=
5
0
0

D
a
ta

se
t

(O
,

L
)

a
p
p
ro

a
ch

t
=

4
0

t
=

6
0

t
=

8
0

t
=

1
0
0

t
=

4
0

t
=

6
0

8
0

t
=

1
0
0

t
=

4
0

t
=

6
0

t
=

8
0

t
=

1
0
0

A
(1

2
6
2
,4

9
)

1
2
3
2

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

B
(1

2
6
4
,5

4
)

1
2
2
6

1
2
3
0

1
2
3
1

1
2
2
9

1
2
3
0

1
2
2
9

1
2
3
0

1
2
3
0

1
2
2
9

1
2
2
9

1
2
2
9

1
2
2
9

1
2
2
8

C
(1

2
6
5
,5

1
)

1
1
6
1

1
2
1
6

1
2
1
6

1
2
1
5

1
2
1
4

1
2
1
4

1
2
1
4

1
2
1
5

1
2
1
6

1
2
1
5

1
2
1
4

1
2
1
4

1
2
1
3

D
(1

2
6
3
,5

6
)

1
0
7
2

1
1
9
5

1
1
9
5

1
1
9
3

1
1
9
3

1
1
9
5

1
1
9
5

1
1
9
4

1
1
9
0

1
1
9
4

1
1
9
3

1
1
9
2

1
1
9
3

E
(1

2
6
4
,5

1
)

1
0
6
9

1
2
0
0

1
2
0
0

1
1
9
9

1
2
0
0

1
1
9
8

1
1
9
7

1
1
9
9

1
2
0
1

1
1
9
9

1
1
9
9

1
2
0
0

1
1
9
8

F
(1

2
5
8
,5

5
)

1
0
2
5

1
1
5
6

1
1
5
7

1
1
5
8

1
1
5
7

1
1
5
7

1
1
5
6

1
1
5
7

1
1
5
7

1
1
5
6

1
1
5
5

1
1
5
6

1
1
5
6

G
(1

2
5
8
,5

3
)

1
0
0
5

1
1
8
1

1
1
8
2

1
1
7
9

1
1
8
1

1
1
7
9

1
1
8
1

1
1
8
0

1
1
8
0

1
1
7
9

1
1
7
9

1
1
7
8

1
1
8
0

H
(1

2
4
4
,5

4
)

9
9
2

1
1
6
6

1
1
6
5

1
1
6
5

1
1
6
5

1
1
6
2

1
1
6
5

1
1
6
4

1
1
6
5

1
1
6
2

1
1
6
5

1
1
6
3

1
1
6
5

I
(1

2
6
0
,5

6
)

9
5
5

1
1
5
8

1
1
5
9

1
1
5
8

1
1
5
8

1
1
5
6

1
1
5
7

1
1
5
8

1
1
5
9

1
1
5
7

1
1
5
5

1
1
5
5

1
1
5
8

J
(1

2
6
4
,5

6
)

9
4
7

1
1
5
8

1
1
5
7

1
1
5
9

1
1
5
5

1
1
5
7

1
1
5
6

1
1
5
6

1
1
5
7

1
1
5
7

1
1
5
6

1
1
5
6

1
1
5
7

K
(9

4
3
,6

3
)

2
5
9

6
0
1

5
9
6

6
0
2

6
0
5

6
0
3

6
0
0

6
0
4

6
0
3

5
9
7

5
9
8

5
9
9

6
0
0

L
(8

4
6
,5

6
)

2
3
2

5
2
6

5
3
0

5
2
9

5
2
5

5
2
6

5
2
7

5
2
7

5
2
5

5
2
6

5
2
6

5
2
2

5
2
5

M
(7

2
8
,5

1
)

1
5
2

4
2
1

4
2
1

4
2
3

4
2
1

4
1
7

4
2
3

4
2
0

4
1
6

4
1
7

4
1
9

4
1
9

4
1
9

N
(7

3
3
,5

5
)

1
2
5

4
0
9

4
1
3

4
1
3

4
0
9

4
1
2

4
0
8

4
0
9

4
1
3

4
0
8

4
0
6

4
1
0

4
0
1

O
(3

9
6
,6

3
)

9
0

2
2
9

2
2
6

2
3
0

2
2
8

2
3
0

2
2
7

2
2
9

2
2
9

2
2
6

2
2
5

2
3
0

2
2
8

P
(5

7
4
,4

8
)

8
0

3
0
5

3
0
8

3
0
4

3
0
4

3
0
6

3
0
4

3
0
2

3
0
6

3
0
2

3
0
0

3
0
2

2
9
9

Q
(2

4
2
,6

4
)

4
5

1
3
0

1
3
1

1
3
2

1
3
2

1
3
0

1
2
9

1
3
0

1
2
9

1
2
9

1
2
9

1
2
8

1
2
7

R
(1

5
8
,5

5
)

1
4

7
4

7
2

7
2

7
3

7
3

7
2

7
2

7
2

6
9

7
1

7
0

7
1

S
(8

9
,4

2
)

9
3
9

3
7

3
8

3
8

3
7

3
8

3
7

3
9

3
7

3
7

3
7

3
4

T
(8

2
,5

1
)

8
3
5

3
5

3
6

3
6

3
4

3
6

3
6

3
5

3
5

3
3

3
4

3
4

U
(9

0
,4

8
)

7
3
9

3
7

3
6

3
9

3
8

3
5

3
7

3
7

3
6

3
7

3
6

3
7

V
(8

0
,5

6
)

6
3
5

3
3

3
5

3
4

3
4

3
3

3
5

3
2

3
3

3
4

3
3

3
4

T
o
ta

l
1
1
7
1
1

1
4
7
3
7

1
4
7
3
5

1
4
7
3
9

1
4
7
3
1

1
4
7
2
1

1
4
7
1
7

1
4
7
2
5

1
4
7
2
4

1
4
6
9
7

1
4
6
9
4

1
4
6
9
7

1
4
6
9
1

T
a
b

le
4
.1

5
:

R
es

u
lt

s
(i

n
th

e
n
u

m
b

er
of

cy
cl

es
tr

av
er

se
d

)
w

h
en

th
e

ge
n

et
ic

al
go

ri
th

m
m

o
d

el
s

ch
ro

m
os

om
es

as
th

e
se

q
u

en
ce

of
or

d
er

s,
w

h
en

th
e

n
u

m
b

er
o
f

ch
ro

m
os

om
es

ar
e

va
ri

ed
at

ei
th

er
10

0,
20

0,
or

50
0.

T
h

e
n
u

m
b

er
of

it
er

at
io

n
s

ar
e

va
ri

ed
at

ei
th

er
40

,
60

,
80

or
10

0.
T

h
e

n
u

m
b

er
of

or
d

er
s

(O
)

an
d

lo
ca

ti
o
n

s
(L

)
ar

e
d

is
p

la
ye

d
fo

r
ea

ch
d

at
a

se
t.

Stellenbosch University  http://scholar.sun.ac.za



4.8. Metaheuristic approaches to order sequencing 89

S
iz

e
N

u
m

b
er

o
f

it
er

a
ti

o
n
s

=
1
0
0

N
u
m

b
er

o
f

it
er

a
ti

o
n
s

=
2
0
0

N
u
m

b
er

o
f

it
er

a
ti

o
n
s

=
5
0
0

D
a
ta

se
t

(O
,

L
)

t
=

4
0

t
=

6
0

t
=

8
0

t
=

1
0
0

t
=

4
0

t
=

6
0

t
=

8
0

t
=

1
0
0

t
=

4
0

t
=

6
0

t
=

8
0

t
=

1
0
0

A
(1

2
6
2
,4

9
)

1
5
3
0

1
9
9
0

2
5
2
4

2
7
2
1

2
5
2
6

3
6
6
6

4
7
7
0

5
9
3
9

1
1
2
0
3

1
6
8
6
0

2
3
4
2
0

2
9
1
0
5

B
(1

2
6
4
,5

4
)

9
0
1

1
2
2
5

1
5
4
6

1
9
6
1

1
9
2
7

2
8
0
9

3
7
2
1

4
6
8
1

1
2
0
2
9

1
5
5
6
5

2
1
5
9
4

3
4
7
9
5

C
(1

2
6
5
,5

1
)

1
0
1
9

1
3
7
6

1
7
6
1

2
1
1
5

2
0
9
2

3
0
4
5

3
9
2
1

4
9
7
5

1
2
1
4
4

1
6
3
4
4

2
2
4
8
9

4
2
4
3
8

D
(1

2
6
3
,5

6
)

9
6
3

1
3
8
7

1
8
2
9

2
2
8
2

2
1
7
5

3
1
5
6

4
2
3
6

5
4
2
3

1
1
9
5
4

1
6
7
2
8

2
5
3
0
9

4
4
2
6
1

E
(1

2
6
4
,5

1
)

1
0
4
3

1
4
4
7

1
8
3
3

2
1
3
1

2
0
9
6

3
1
0
8

4
0
7
2

5
0
5
7

1
2
1
8
9

1
5
5
7
3

2
4
8
2
1

4
4
5
2
7

F
(1

2
5
8
,5

5
)

9
1
9

1
2
9
6

1
6
8
9

2
0
6
9

2
0
8
3

3
0
0
8

3
9
7
5

4
9
3
0

1
1
2
0
4

1
5
5
4
9

2
1
7
2
7

4
3
5
0
8

G
(1

2
5
8
,5

3
)

9
6
1

1
3
5
9

1
7
3
9

2
1
5
9

2
0
9
1

3
1
0
5

4
0
1
4

5
1
3
0

1
1
1
5
0

1
5
9
5
6

2
2
1
2
3

4
2
2
0
1

H
(1

2
4
4
,5

4
)

1
0
0
1

1
4
3
3

1
8
6
1

2
3
3
4

2
4
2
9

3
3
9
0

4
4
4
7

5
4
9
0

1
1
1
4
3

1
7
7
4
5

2
2
8
8
0

4
3
7
0
5

I
(1

2
6
0
,5

6
)

1
0
8
0

1
4
5
7

1
9
0
5

2
2
2
8

2
2
2
3

3
2
8
7

4
2
4
8

5
4
7
9

1
1
0
4
1

2
2
0
0
4

2
3
3
9
3

4
3
6
7
5

J
(1

2
6
4
,5

6
)

9
2
0

1
3
1
2

1
7
5
1

2
1
5
9

2
1
5
8

3
1
3
0

4
1
5
4

5
0
9
9

1
1
1
2
4

1
5
6
3
9

2
3
1
6
2

3
6
4
2
2

K
(9

4
3
,6

3
)

5
2
7

7
6
3

9
9
6

1
2
7
0

1
2
9
5

1
9
0
7

2
5
0
5

3
1
1
6

7
1
1
6

8
3
7
8

1
3
3
3
8

1
3
7
7
3

L
(8

4
6
,5

6
)

5
3
8

6
7
7

8
8
6

1
1
0
9

1
1
4
2

1
7
0
3

2
2
6
1

2
7
5
8

5
2
8
0

7
3
0
0

9
9
2
8

1
2
2
9
8

M
(7

2
8
,5

1
)

1
1
7
3

1
2
9
5

8
9
6

1
9
6
9

1
2
5
1

1
8
3
6

2
7
7
8

3
3
6
5

7
8
8
2

1
2
1
5
5

9
3
2
2

1
1
3
0
4

N
(7

3
3
,5

5
)

3
8
5

5
4
0

7
3
3

9
1
7

9
5
4

1
4
2
8

1
9
1
6

2
3
5
6

4
7
9
8

1
0
9
9
2

1
4
0
2
6

9
9
8
9

O
(3

9
6
,6

3
)

2
3
9

3
3
2

4
2
5

5
4
2

5
9
8

8
6
4

1
1
4
5

1
3
6
8

2
5
7
4

3
8
4
8

4
8
1
5

5
9
2
5

P
(5

7
4
,4

8
)

2
9
3

4
1
8

5
4
7

6
7
4

7
2
4

1
0
6
4

1
4
4
5

1
7
5
9

3
3
0
2

4
8
9
0

6
4
9
7

7
7
2
0

Q
(2

4
2
,6

4
)

2
2
2

2
5
5

3
4
1

3
9
5

3
6
7

5
5
0

7
3
4

8
7
0

1
4
3
8

2
1
4
1

2
8
2
1

3
4
4
9

R
(1

5
8
,5

5
)

1
0
1

1
0
8

1
4
3

1
7
6

1
9
5

2
8
5

3
8
0

4
6
9

8
7
1

1
2
9
2

1
7
1
7

2
1
6
3

S
(8

9
,4

2
)

5
4

6
4

8
0

9
9

1
1
3

1
6
2

2
1
6

2
6
9

5
0
5

7
3
8

9
8
6

1
2
0
3

T
(8

2
,5

1
)

4
8

5
8

8
8

9
1

1
4
4

1
5
0

2
0
0

2
4
5

4
5
3

6
7
5

8
9
5

1
0
9
9

U
(9

0
,4

8
)

5
1

6
2

8
0

9
8

1
1
0

1
6
1

2
1
8

2
6
4

4
9
1

7
3
2

9
8
6

1
1
9
0

V
(8

0
,5

6
)

4
9

5
8

7
3

9
0

1
0
1

1
5
0

1
9
9

2
4
0

4
4
9

6
6
9

9
0
0

1
0
7
7

T
o
ta

l
1
4
0
1
7

1
8
9
1
2

2
3
7
2
6

2
9
5
8
9

2
8
7
9
4

4
1
9
6
4

5
5
5
5
5

6
9
2
8
2

1
5
0
3
4
0

2
2
1
7
7
3

2
9
7
1
4
9

4
7
5
8
2
7

T
a
b

le
4
.1

6
:

C
om

p
u

ta
ti

on
al

ti
m

es
,
in

m
il

li
se

co
n

d
s,

fo
r

th
e

g
en

et
ic

al
go

ri
th

m
m

o
d

el
s

ch
ro

m
os

om
es

as
th

e
se

q
u

en
ce

of
or

d
er

s.
w

h
en

th
e

n
u

m
b

er
of

it
er

at
io

n
s

ar
e

va
ri

ed
at

ei
th

er
40

,
60

,
80

or
10

0.
T

h
e

n
u

m
b

er
of

ch
ro

m
os

om
es

ar
e

va
ri

ed
at

ei
th

er
10

0,
20

0,
or

50
0.

T
h

e
n
u
m

b
er

of
or

d
er

s
(O

)
an

d
lo

ca
ti

on
s

(L
)

a
re

d
is

p
la

ye
d

fo
r

ea
ch

d
at

a
se

t.

Stellenbosch University  http://scholar.sun.ac.za



90 Chapter 4. Order sequencing problem

Modelling chromosomes as the sequence for orders

The implementation of the GA commences with the creation of the initial population. A number
of chromosomes are generated, each containing a sequence in which orders must be executed.
All the genes within the population are evaluated and the number of cycles travelled by a picker
when picking the orders in that sequence is the fitness associated with that gene. The genes are
then ranked in decreasing order according to the fitness of that gene.

Two common fitness assignment methods in GAs are the ranked-based fitness and the propor-
tional fitness assignment. The ranked-based fitness sorts the chromosomes in the population
in decreasing order in terms of their fitness value. The proportional fitness assignment cal-
culates an actual objective value for each gene. The ranked-based fitness assignment is used,
since it tends to be more robust than proportional fitness assignment and is thus selected for
implementation of this GA [6].

The chromosomes that do not produce good fitnesses are then neglected from performing
crossovers. A set of binary strings are then generated for the genes that may perform crossovers
— one binary string for every two genes. A uniform order-based crossover is performed by every
pair of these genes. When crossovers have been completed, the genes are ranked according to
their fitness. Only the best performing genes are used for a mutation process, where alterations
are made to genes with the aim of improving the fitness of the genes.

The mutation commences with identifying the location(s) containing the maximal cut within
a gene. Orders that pass the maximal cut(s) but do not pick from these location(s) are then
considered for mutation. Within each gene, the considered orders are swapped with all other
orders in the gene. Swaps that decrease the maximal cut at one or more locations, are ranked
according to the number of maximal cuts decreased and the best swap is selected as a mutation.
If no swaps are able to reduce the maximal cut or decrease the location(s) containing the
maximal cut, a swap that alters the location(s) containing the maximal cut are chosen as the
mutation. This entails the process of reducing the maximal cut of the location considered, but
forcing one other location to have a cut equal to the maximal cut. This is identical to a swap in
the tabu search metaheuristic explained in §4.8.3. The mutation will never increase the maximal
cut or the number of locations containing the maximal cut. It may, however, shift the locations
containing the maximal cut.

The number of chromosomes are varied at 100, 200 and 500, while the number of iterations (t)
are varied at 40, 60, 80 and 100. The number of chromosomes that are used for the mutation
process is the top 2% of the number of chromosomes considered. The mutation process is
computationally expensive and is therefore only reserved for the best genes during each iteration.
After each iteration 20% of the worst performing chromosomes are replaced by a set of random
chromosomes.

Table 4.15 displays the results obtained from a series of parameters used to solve the GA.
Table 4.16 displays the computational times of the results obtained from a series of parameters
used to solve the GA.

Modelling chromosomes as starting locations

Instead of modelling chromosomes as the sequence in which orders must be picked, chromosomes
may also indicate the starting location of each order. When the starting location of an order
is known, the size of the span may be calculated. Furthermore, the maximal cut(s) may be
identified for each chromosome.
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4.8. Metaheuristic approaches to order sequencing 91

Initially starting locations for all the orders are iteratively awarded to each chromosome ac-
cording to the heuristic in §4.8.1. The sequence in which orders are awarded preference spans
is altered for each chromosome to obtain a diverse range of starting solutions in an attemp to
diversify the gene pool.

The fitness of each chromosome z is calculated as

fz = Cz +
N z
C

m
, (4.34)

where m is the total number of locations, Cz denotes the maximal cut and N z
C denotes the

number of locations containing the maximal cut.

Three types of crossovers may be used to create offspring between two parents. The crossovers
entail the process of swapping starting locations for the various orders between two chromosomes.
Before the crossover commences, chromosomes are ranked in decreasing order in terms of its
fitness. All the chromosomes are allowed to create offspring in a ranked-based manner.

Algorithm 15: Genetic algorithm.
Data: A set of all the order S, all the preference spans for each order considered and population size P and the

desired crossover approach.
Result: A vector s of starting locations awarded to each individual order.
Find an initial solution s by means of the greedy reducing heuristic, together with the values of Cz and Nz

C for
each chromosome z = 1, 2, . . . , Z;
Evaluate fz for each chromosome z = 1, 2, . . . , Z;
repeat

Rank the chromosomes in a decreasing manner in terms of their fitness;
for z ← 0 to P − 1 (with step size 2) do

Perform a crossover between chromosomes z and z + 1 according to the desired crossover approach;
Update the fitness fz and fz+1;

end
Rank the chromosomes in a decreasing manner in terms of their fitness;
Perform mutation on the best 1% of the chromosomes;
Rank the chromosomes in a decreasing manner in terms of their fitness;
Perform elitism of the top 2% of chromosomes;
Replace 30% of the worst performing chromosomes with solutions by means of the greedy reducing heuristic;

until no improvement in the fitness is found in 5 iterations;

The first type of crossover is a random swapping starting locations of orders between two
chromosomes, called the 50/50 crossover. A vector of random numbers are generated for each
order within a chromosome. Two parents are considered. If the random number for an order
is larger than 0.5, the starting locations (genes) of that order is swapped. Figure 4.28 displays
an example of two chromosomes, each containing six genes. A vector containing six random
numbers are generated. Three genes are swapped to create two offspring. A second manner of
approaching crossovers is to award a higher probability of one offspring receiving the shorter
preference span, called the ranked crossover. When considering two parents, the probability of
swapping two starting locations (genes), i and j, for an order k by generating a random number
r. If

r <
|Sik|

|Sik|+ |S
j
k|
, (4.35)

the two starting locations are swapped. In this manner a higher likelihood exists of creating an
offspring containing the majority of the shorter preference spans and one offspring containing
the longer preference spans. A final crossover is considered where the maximal cut(s) of the
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0.6 0.7 0.2 0.85 0.1 0.35 vector of random numbers

p1 p2 p3 p4 p5 p6 parent 1

q1 q2 q3 q4 q5 q6 parent 2

q1 q2 p3 q4 p5 p6 offspring 1

p1 p2 q3 p4 q5 q6 offspring 2

Figure 4.28: An example of a 50/50 crossover, where the starting locations of two parents are swapped
if the random number is larger than 0.5. A total of six orders are considered in this example.

first parent is identified, called the maximal cut traverse crossover. A crossover is only made
between two starting locations if the starting location of an order in the first parent currently
crosses all the current maximal cut(s) associated with the fitness of the first parent. In this case
an effort is only made to improve the quality of one of the parents.

Elitism is also used in the genetic algoritm. Only 1% of the best solutions will enter the
next generation as is. This allows the algorithm to always alter the current best performing
chromosome in an attempt to improve its solution quality. Also 1% of the best performing
chromosomes in an iteration are selceted for a mutation phase, where each gene is individually
examined for any alteration in starting location (preference span) that may improve the solution
quality. During each iteration a total of 30% of the worst performing chromosomes are replaced
with new chromosomes generated by the heuristic procedure in §4.8.1. Algorithm 15 shows the
pseudo code for the implementation of the GA.

Table 4.17 displays the results obtained for the GA when the three approaches used to do
crossovers are considered when the number of chromosomes are varied at 40, 60, 80 and 100
for each crossover approach. The number of chromosomes are relatively little compared to the
number suggested in literature, but these parameters are selected, since the computational times
associated with increasing the number of chromosomes does not yield significant improvements.
Also, the other metaheuristics considered to solve the OSP require little computational time,
compared to the GAs, to solve an instance. To compare the metaheuristics considered, the
computational times have to be of a similar nature. Table 4.18 displays the computational
times in milliseconds for the results in Table 4.17.

Stellenbosch University  http://scholar.sun.ac.za



4.8. Metaheuristic approaches to order sequencing 93

S
iz

e
M

a
x
im

a
l

cu
t

5
0
/
5
0

cr
o
ss

o
v
er

R
a
n

k
ed

cr
o
ss

o
v
er

M
a
x
im

a
l

cu
t

tr
a
v
er

se
cr

o
ss

o
v
er

D
a
ta

se
t

(O
,

L
)

a
p

p
ro

a
c h

C
r

=
2
0

C
r

=
4
0

C
r

=
6
0

C
r

=
8
0

C
r

=
2
0

C
r

=
4
0

C
r

=
6
0

C
r

=
8
0

C
r

=
2
0

C
r

=
4
0

C
r

=
6
0

C
r

=
8
0

A
(1

2
6
2
,4

9
)

1
2
3
2

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

1
2
3
3

B
(1

2
6
4
,5

4
)

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

1
2
2
6

C
(1

2
6
5
,5

1
)

1
1
6
1

1
1
6
4

1
1
6
6

1
1
6
4

1
1
6
3

1
1
6
6

1
1
6
5

1
1
6
3

1
1
6
2

1
1
6
8

1
1
6
5

1
1
6
7

1
1
6
3

D
(1

2
6
3
,5

6
)

1
0
7
2

1
1
0
0

1
0
9
1

1
0
9
7

1
0
9
9

1
0
9
9

1
0
9
7

1
0
9
8

1
0
9
7

1
0
9
8

1
0
9
8

1
0
9
6

1
0
9
6

E
(1

2
6
4
,5

1
)

1
0
6
9

1
0
8
8

1
0
9
1

1
0
9
5

1
0
8
7

1
0
9
2

1
0
8
5

1
0
8
5

1
0
8
9

1
1
0
2

1
0
9
8

1
0
9
6

1
0
9
3

F
(1

2
5
8
,5

5
)

1
0
2
5

1
0
5
4

1
0
5
3

1
0
5
4

1
0
5
1

1
0
5
2

1
0
5
3

1
0
5
3

1
0
5
4

1
0
5
5

1
0
5
3

1
0
5
3

1
0
5
4

G
(1

2
5
8
,5

3
)

1
0
0
5

1
0
5
9

1
0
5
8

1
0
6
0

1
0
6
0

1
0
6
4

1
0
6
0

1
0
5
8

1
0
5
9

1
0
6
4

1
0
6
3

1
0
6
3

1
0
5
9

H
(1

2
4
4
,5

4
)

9
9
2

1
0
3
3

1
0
3
5

1
0
3
4

1
0
3
3

1
0
3
1

1
0
3
4

1
0
2
8

1
0
3
1

1
0
3
3

1
0
3
5

1
0
3
2

1
0
3
4

I
(1

2
6
0
,5

6
)

9
5
5

1
0
0
0

1
0
0
0

1
0
0
4

1
0
0
2

1
0
0
2

1
0
0
2

1
0
0
2

1
0
0
2

1
0
0
2

1
0
0
2

1
0
0
2

1
0
0
2

J
(1

2
6
4
,5

6
)

9
4
7

9
9
6

9
9
6

9
9
2

9
9
1

9
8
6

9
8
8

9
9
3

9
9
3

9
9
5

9
9
3

9
9
2

9
9
1

K
(9

4
3
,6

3
)

2
5
9

2
7
8

2
7
8

2
7
8

2
7
5

2
7
1

2
6
9

2
6
9

2
6
7

2
7
1

2
7
1

2
7
4

2
6
7

L
(8

4
6
,5

6
)

2
3
2

2
3
8

2
4
0

2
4
0

2
4
0

2
3
9

2
3
6

2
3
6

2
3
6

2
4
1

2
3
8

2
3
7

2
3
8

M
(7

2
8
,5

1
)

1
5
2

1
5
7

1
5
4

1
5
7

1
5
7

1
5
6

1
5
4

1
5
4

1
5
5

1
5
9

1
5
5

1
5
4

1
5
4

N
(7

3
3
,5

5
)

1
2
5

1
2
9

1
2
8

1
2
8

1
3
0

1
2
9

1
2
8

1
2
8

1
2
9

1
2
9

1
3
2

1
2
8

1
2
8

O
(3

9
6
,6

3
)

9
0

9
5

9
2

9
2

9
3

9
4

9
3

9
3

9
3

9
2

9
3

9
3

9
3

P
(5

7
4
,4

8
)

8
0

8
2

8
1

8
1

8
1

8
2

8
1

8
2

8
2

8
3

8
3

8
2

8
1

Q
(2

4
2
,6

4
)

4
5

4
6

4
5

4
5

4
5

4
5

4
5

4
5

4
5

4
5

4
5

4
5

4
5

R
(1

5
8
,5

5
)

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

S
(8

9
,4

2
)

9
9

9
9

9
9

9
9

9
9

9
9

9
T

(8
2
,5

1
)

8
8

8
8

8
8

8
8

8
8

8
8

8
U

(9
0
,4

8
)

7
8

8
8

8
8

8
8

8
8

8
8

8
V

(8
0
,5

6
)

6
6

6
6

6
6

6
6

6
6

6
6

6
T

o
ta

l
1
1
7
1
1

1
2
0
2
3

1
2
0
1
2

1
2
0
2
5

1
2
0
1
1

1
2
0
1
2

1
1
9
9
4

1
1
9
9
1

1
1
9
9
8

1
2
0
4
1

1
2
0
2
8

1
2
0
1
8

1
2
0
0
2

T
a
b

le
4
.1

7
:

R
es

u
lt

s
(i

n
th

e
n
u

m
b

er
of

cy
cl

es
tr

av
er

se
d

)
w

h
en

th
e

ge
n
et

ic
al

go
ri

th
m

w
h

en
th

e
50
/5

0
cr

os
so

v
er

,
ra

n
ke

d
cr

os
so

v
er

an
d

th
e

m
ax

im
a
l

cu
t

tr
av

er
se

ap
p

ro
a
ch

es
ar

e
te

st
ed

w
it

h
th

e
n
u

m
b

er
of

ch
ro

m
o
so

m
es

,
Z

,
va

ri
ed

at
40

,
60

,
80

an
d

10
0

fo
r

ea
ch

ap
p

ro
ac

h
.

T
h

e
n
u

m
b

er
of

or
d

er
s

(O
)

a
n
d

lo
ca

ti
on

s
(L

)
ar

e
d

is
p

la
ye

d
fo

r
ea

ch
d

at
a

se
t.

Stellenbosch University  http://scholar.sun.ac.za



94 Chapter 4. Order sequencing problem

S
iz

e
P

er
ce

n
ta

g
e

to
sw

a
p

is
2
.5

%
P

er
ce

n
ta

g
e

to
sw

a
p

is
5
%

P
er

ce
n
ta

g
e

to
sw

a
p

is
7
.5

%
D

a
ta

se
t

(O
,

L
)

C
r

=
2
0

C
r

=
4
0

C
r

=
6
0

C
r

=
8
0

C
r

=
2
0

C
r

=
4
0

C
r

=
6
0

C
r

=
8
0

C
r

=
2
0

C
r

=
4
0

C
r

=
6
0

C
r

=
8
0

A
(1

2
6
2
,4

9
)

1
7
5
8

2
1
9
6

2
6
1
8

3
0
0
0

1
8
7
9

2
1
7
2

2
5
4
7

3
1
0
6

1
9
2
3

2
3
2
3

2
5
5
4

3
0
6
7

B
(1

2
6
4
,5

4
)

1
4
2
1

1
7
1
2

2
0
2
3

2
4
0
1

1
4
3
8

1
7
4
0

2
0
1
2

2
4
4
8

1
4
7
4

1
7
5
9

2
1
2
2

2
3
5
8

C
(1

2
6
5
,5

1
)

2
3
4
0

2
1
4
1

4
7
8
0

4
2
7
3

2
5
3
1

3
9
5
1

6
4
7
8

4
6
2
0

1
5
6
3

1
5
4
6

4
1
5
2

3
4
8
4

D
(1

2
6
3
,5

6
)

2
4
9
2

1
6
5
6

4
8
1
2

2
2
7
2

3
8
7
6

5
5
7
2

2
3
1
2

2
5
8
8

1
4
1
8

1
6
5
4

1
9
3
4

4
9
9
1

E
(1

2
6
4
,5

1
)

3
0
3
3

3
8
6
0

2
4
0
1

6
3
7
9

3
5
6
8

8
1
3
9

6
6
7
9

4
9
1
0

1
3
0
5

2
6
8
5

1
7
4
8

3
7
6
2

F
(1

2
5
8
,5

5
)

9
6
3

1
4
6
7

5
9
4
5

2
6
2
3

1
2
4
4

1
5
0
8

2
3
3
1

1
9
2
4

2
1
4
4

1
4
5
1

2
0
4
8

1
9
3
6

G
(1

2
5
8
,5

3
)

1
2
8
1

2
1
2
7

4
4
7
5

2
7
8
5

1
2
6
0

1
5
7
2

4
4
9
7

5
4
4
1

1
2
9
4

2
1
0
1

1
8
1
1

3
9
0
3

H
(1

2
4
4
,5

4
)

2
1
6
3

1
6
6
3

2
6
9
4

2
6
2
3

6
2
1
1

1
6
5
3

1
9
5
4

2
2
0
7

1
4
6
7

1
6
5
3

2
3
8
0

2
6
1
0

I
(1

2
6
0
,5

6
)

3
6
0
3

2
2
8
5

1
9
1
3

2
1
8
9

1
3
5
4

4
9
0
8

2
2
6
7

2
5
6
7

1
6
9
6

1
5
9
5

1
9
0
6

2
5
5
2

J
(1

2
6
4
,5

6
)

3
2
7
0

1
9
2
3

1
8
6
6

5
7
8
0

1
3
0
8

3
2
3
1

5
4
9
0

2
1
0
8

2
5
2
6

1
5
6
5

1
8
6
9

3
2
4
7

K
(9

4
3
,6

3
)

1
3
1
6

1
5
4
1

1
5
3
9

3
1
2
5

1
7
9
0

2
2
7
3

1
5
2
1

3
6
8
8

1
2
0
4

1
5
8
7

1
0
0
9

3
3
4
9

L
(8

4
6
,5

6
)

6
2
9

1
5
5
1

8
7
6

1
0
8
9

1
5
4
2

9
5
7

2
3
3
9

1
3
7
6

7
5
0

8
0
9

1
0
0
7

1
0
7
0

M
(7

2
8
,5

1
)

5
0
3

7
1
0

7
7
0

6
3
7

6
5
8

3
9
6

4
1
4

1
5
7
9

4
7
6

5
4
9

7
7
0

1
2
1
6

N
(7

3
3
,5

5
)

8
8
3

1
0
2
1

4
2
9

4
7
1

1
7
0
9

9
6
9

8
1
2

5
6
0

4
7
9

6
7
2

5
2
7

6
6
4

O
(3

9
6
,6

3
)

2
2
8

1
8
6

2
9
6

4
2
9

1
9
6

2
2
7

3
8
1

3
0
5

1
8
6

5
0
7

5
0
5

2
4
9

P
(5

7
4
,4

8
)

3
4
4

5
2
7

3
0
3

3
2
9

2
5
6

4
4
1

8
8
8

2
7
1

2
5
6

2
7
4

3
0
3

5
5
2

Q
(2

4
2
,6

4
)

6
8

1
0
3

1
4
4

1
9
0

7
4

9
0

1
4
5

1
9
0

8
5

1
0
4

1
0
6

1
6
8

R
(1

5
8
,5

5
)

2
7

3
3

3
9

5
9

2
6

3
3

4
2

4
9

2
9

3
3

3
9

5
7

S
(8

9
,4

2
)

1
0

1
4

1
6

2
1

1
2

1
3

1
8

2
0

1
0

1
3

1
6

2
0

T
(8

2
,5

1
)

1
3

1
4

1
9

2
4

1
1

1
5

2
1

2
3

1
3

1
6

1
8

2
2

U
(9

0
,4

8
)

1
2

2
2

2
7

2
8

1
2

1
5

1
7

2
1

1
1

1
8

1
8

2
6

V
(8

0
,5

6
)

1
4

1
6

2
0

2
7

1
5

1
6

2
2

2
5

1
3

1
7

2
0

2
5

T
o
ta

l
2
6
3
7
1

2
6
7
6
8

3
8
0
0
5

4
0
7
5
4

3
0
9
7
0

3
9
8
9
1

4
3
1
8
7

4
0
0
2
6

2
0
3
2
2

2
2
9
3
1

2
6
8
6
2

3
9
3
2
8

T
a
b

le
4
.1

8
:

C
om

p
u

ta
ti

on
al

ti
m

es
,

in
m

il
li

se
co

n
d

s,
fo

r
th

e
ge

n
et

ic
al

go
ri

th
m

w
h

en
th

e
50
/5

0
cr

os
so

v
er

,
ra

n
k
ed

cr
os

so
ve

r
an

d
th

e
m

ax
im

al
cu

t
tr

av
er

se
ap

p
ro

ac
h

es
ar

e
te

st
ed

w
it

h
th

e
n
u

m
b

er
of

ch
ro

m
os

o
m

es
,
Z

,
va

ri
ed

at
40

,
60

,
80

an
d

10
0

fo
r

ea
ch

ap
p

ro
ac

h
.

T
h

e
n
u

m
b

er
of

or
d

er
s

(O
)

an
d

lo
ca

ti
on

s
(L

)
ar

e
d

is
p

la
y
ed

fo
r

ea
ch

d
at

a
se

t.

Stellenbosch University  http://scholar.sun.ac.za
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4.8.6 Extremal Optimisation

Extremal Optimisation (EO) is an optimisation heuristic inspired by the property of self-
organized criticality (SOC) from the field of statistical physics3. EO is based on the dynamics
of non-equilibrium processes and in particular those exhibiting SOC, where better solutions
emerge dynamically without the need for parameter tuning [16]. The Bak-Sneppens model of
co-evolution of species exhibits SOC and was the inspiration for EO [118].

In contrast to genetic algorithms which consider the entire gene pool, EO improves a single
candidate solution by considering each component as co-evolving according to Darwinian prin-
ciples [15]. EO uses a non-equilibrium approach which requires few parameters that have to be
altered, unlike simulated annealing. It may be modelled by having a single parameter, while
maintaining competitive, and even superior, results with respect to elaborate optimisation al-
gorithms. In contrast to simulated annealing EO takes the system far from equilibrium as it
applies no decision criteria and all new configurations are accepted indiscriminately.

In EO the search spaces are always spaces of structured tuples g = (g1, g2, . . . , gx, . . . , gX). A
single solution is considered and is examined to determine the contributions of its genes to
the overall fitness. Analogously to the Bak-Sneppens model, each gene gx has its own fitness
contribution λ(gx). The higher the value of λ(gx), the better the contribution. The EO algorithm
proceeds as follows [118]:

1. Create an initial solution (individual) h with a random gene construction g and set the
current best known solution candidate f∗, i.e. f∗ = h · g.

2. Sort all al the genes hx · gx of h · g in a list in ascending order according to their fitness
contributions λ(hx · gx).

3. The gene with the lowest fitness contribution is selected and modified randomly, leading
to a new solution candidate f = h · g′.

4. If f is better than f∗, set f∗ = h · g′.

5. If the termination criterion has not yet been met, return to Step 2.

Instead of always picking the weakest part, Boettcher & Percus [15] selected a gene to be
modified ramdomly in order to ensure that the algorithm does not become stuck in a local
optima. The probability

P (yx) ∝ y−τx (4.36)

is awarded to a gene gx with a fitness rank yx. The higher the value of τ , the less prone it is to
alter genes that are ranked lower.

The major concern with EO is the manner of determining the fitness contributions λ(hx ·gx) for
the elements hx ·gx. De Sousa et al. [31] extended EO to the Generalised Extremal Optimisation
(GEO), by examining each gene in the search space, according to the following procedure:

1. Create an initial solution (individual) h with a random gene construction g and set the
current best known solution candidate f∗, i.e. f∗ = h · g.

3The theory of SOC states that large interactive systems evolve to a state where a change in one single of its
elements may lead to domino effects that may reach any other element in the system [118].
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96 Chapter 4. Order sequencing problem

2. For each gene gx, do the following:

(a) Toggle the value of each gene gx to retrieve a solution f ′x = hx · g′x.

(b) Set the change in fitness at ∆fx = f∗ − f ′x.

(c) Return the gene to its origional form.

3. Rank the genes in decreasing order in terms of ∆fx for x = 1, 2, . . . , X.

4. Use (4.36) as mutating probability to determine which gene will be mutated. A random
number r is uniformly generated in the range [0, 1]. If r is smaller than the mutating
probablity, the mutation is confirmed, otherwise the process is repeated until a gene is
confirmed to mutate. This yields a fitness of f ′.

5. If f ′ is better than f∗, set f∗ = h · g′.

6. If the termination criterion has not yet been met, continue with Step 2.

The EO algorithm is implemented for the OSP by considering the starting locations of each
order. Once again, to reduce the size of the problem, only preference spans of orders are
considered. An initial solution to the problem is based on the heuristic in Algorithm 12. This
initial solution enables the EO algorithm to reach better solutions in fewer iterations. The
implementation of the EO algorithm is based on the GEO approach used by De Souse et al. [31].
Each gene (starting location of an order) is considered and toggled. By toggling the starting
location of an order an attempt is made to find a more suitable starting location that will benefit
the solution quality by considering implications that may arise as the algorithm progresses.

Before genes are altered, the maximal cut C of the current configuration is determined together
with the number of maximal cuts in the current system NC . Similarly, if a location exists
containing one less span than the maximal cut it is also identified, say C−1, and the number of
locations that contain a cut of C − 1, say NC−1. For each gene the current starting location is
compared to all other starting locations (preference spans) of that order. An alternative starting
location for an order is identified that may improve the solution quality or slightly reduce the
solution quality based on a number of considerations.

During an iteration genes that will be considered for alteration are identified. Orders that do
not currently traverse any of the NC locations with maximal cut, are not considered. These
orders do not influence the maximal cut — the maximal cut C and the number of locations
containing the maximal cut NC cannot be reduced by altering these genes. Thus only genes
that currently traverse maximal cut(s) are considered. Each of these genes gx are awarded with
a change in performance ∆fx, where the current preference span of the order gx is compared
with all its other preference spans and the best alternative preference span is identified.

The change in performance is influenced by a number of factors. If an alternative preference span
for a gene gx is considered the locations that currently traverse and not traverse the maximal
cuts(s) are considered. The fitness ∆fx receives a score (with a numerical value of 1) for each
maximal cut that the current preference span has to traverse and the proposed preference span
does not have to visit. Similarly, the fitness function receives a score of −1 when the current
preference span does not traverse a maximal cut but the proposed preference span does.

The fitness is also influenced by the possibility of creating maximal cuts at other locations.
If the preference span of a gene gx currently does not traverse a location containing one less
span than the maximal cut (cut of C − 1), but does traverse this location with the proposed
preference span, the fitness is awarded with a score of −1, since the cut of this location will
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4.9. Results summary 97

increase to the current maximal cut (C). This is done in order to avoid creating maximal cuts
at other locations.

Once the change in performance is calculated for each considered gene x, the genes are ranked
in decreasing order of ∆fx. Each gene gx is awarded a probability of

P (rx) = r−τx , (4.37)

where rx denotes the rank of gene x. These probabilities are then normalised to create a
probablity distribution where a higher likelihood exists of altering a gene that will improve the
solution quality. A random number is used to determine the alteration. When the alteration is
made, the cuts at each location is updated.

Algorithm 16: Generalised extremal optimisation.
Data: All the preference spans for each order considered and a set of all the order S, the value of τ and the

stopping criteria so.
Result: A vector s of starting locations awarded to each individual order.
Find an initial solution s by means of the greedy reducing heuristic and f∗x ;
repeat

for x← 0 to n do
Toggle the value of each gene gx and retireve the solution f ′x = h · g′;
Calculate ∆fx;

end
Rank the genes in a decreasing order in terms of ∆fx for x = 1, 2, . . . , n;
Use the mutating probalilty distribution in (4.37) to determine a gene for mutation;
if f∗ < f ′ then

Let f∗ = h · g′ be the new best solution;
end

until no improvement in the fitness is found in so iterations;

When an alteration is made with a possitive fitness, the solution may remain unchanged. In
some cases the solution quality may even decrease. These situations exist when a picking line
contains multiple maximal cuts. Some maximal cuts are reduced but some are increased (the
GEO algorithm will ensure that more maximal cuts are reduced than the number of maximal cuts
increased). Algorithm 16 displays the pseudo code implementation of the GEO implementation
used.

Table 4.19 diplays the results for the GEO algorithm when the value of τ is tested at 1, 1.25,
1.5 and 1.75. The stopping criteria is tested for situations where no improvement was found
in 100, 200 and 300 iterations. The best results are found for the GEO when τ = 1.5 and
when the stopping criteria is set at 200 iterations without improvement. Table 4.20 displays
the computational time in milliseconds for the results in Table 4.19. More computational time
is required when the stopping criteria is increased and when the value of τ is increased.

4.9 Results summary

In this section all the results obtained from the exact and heuristic approaches to solve the OSP
are summarised. Table 4.21 displays the summarised results for non-metaheuristic approaches
used to solve the OSP. Results from the NSO are displayed, since the NSO outperformed the
NSOM and NSOP for all the data sets considered. The best results from the scope and ranking
algorithms are also displayed (Scope). Solutions of the algorithm that assigns spans according
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100 Chapter 4. Order sequencing problem

Size Maximal
Data set (O, L) cut NSO Scope RS GAP Pep

A (1262,49) 1232 1253 1255 1234 1239 1301
B (1264,54) 1226 1243 1242 1232 1255 1255
C (1265,51) 1161 1200 1200 1206 1220 1254
D (1263,56) 1072 1120 1130 1195 1205 1224
E (1264,51) 1069 1132 1147 1148 1202 1234
F (1258,55) 1025 1072 1109 1166 1193 1177
G (1258,53) 1005 1076 1096 1093 1197 1222
H (1244,54) 992 1056 1065 1066 1096 1242
I (1260,56) 955 1018 1049 1037 1095 1227
J (1264,56) 947 999 1007 1018 1070 1202

K (943,63) 259 367 340 285 293 640
L (846,56) 232 322 289 254 248 615
M (728,51) 152 260 219 202 182 457
N (733,55) 125 209 170 145 135 461
O (396,63) 90 200 201 110 111 224
P (574,48) 80 148 105 102 103 324
Q (242,64) 45 110 107 54 57 142

R (158,55) 14 28 21 17 18 82
S (89,42) 9 12 10 11 13 40
T (82,51) 8 15 11 11 9 36
U (90,48) 7 14 8 8 11 40
V (80,56) 6 10 8 7 8 38

Total 11711 12864 12789 12601 12960 15437

Table 4.21: Summary of the number of cycles travelled when the OSP is solved with various heuristic
algorithms. The next shortest order (NSO), the best solution obtained from the scope and ranking
algorithms (Scope), the best solution obtained from the ratio spans (RS) and the best solution to the
generalised assignment problem (GAP). The lower bound of the number of cycles travelled for each data
set is indicated by the maximal cut approach. The number of orders (O) and locations (L) are displayed
for each data set. The algorithm(s) that obtained the best results for each data set is indicated in
boldface.
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Size Maximal
Data set (O, L) cut TS SA GA GEO Pep

A (1262,49) 1232 1233 1233 1233 1233 1301
B (1264,54) 1226 1226 1226 1226 1226 1255
C (1265,51) 1161 1178 1168 1163 1167 1254
D (1263,56) 1072 1114 1089 1098 1080 1224
E (1264,51) 1069 1124 1083 1085 1073 1234
F (1258,55) 1025 1062 1038 1053 1040 1177
G (1258,53) 1005 1069 1042 1058 1026 1222
H (1244,54) 992 1049 1021 1028 1008 1242
I (1260,56) 955 1017 988 1002 977 1227
J (1264,56) 947 1005 982 993 971 1202

K (943,63) 259 293 276 269 263 640
L (846,56) 232 247 241 236 237 615
M (728,51) 152 171 155 154 160 457
N (733,55) 125 134 132 128 128 461
O (396,63) 90 101 93 93 93 224
P (574,48) 80 84 82 82 83 324
Q (242,64) 45 53 45 45 45 142

R (158,55) 14 16 14 14 14 82
S (89,42) 9 10 9 9 9 40
T (82,51) 8 8 8 8 8 36
U (90,48) 7 8 8 8 8 40
V (80,56) 6 6 6 6 7 38

Total 11711 12208 11939 11991 11856 15437

Table 4.22: Summary of the number of cycles travelled when the OSP is solved by means of meta-
heuristics. The best results of the tabu search (TS), simulated annealing (SA), genetic algorithm (GA)
and the generalised extremal optimisation (GEO) are presented, together with the lower bound (LB)
and Pep’s current solution (Pep). The lower bound of the number of cycles travelled for each data set is
indicated by the maximal cut approach. The number of orders (O) and locations (L) are displayed for
each data set. The algorithm(s) that obtained the best results for each data set is indicated in boldface.

to preference ratios are displayed in the column named RS. The best solution of the heuristic
methods used to solve the generalised assignment problem (GAP) is displayed for each data set.

Overall, the best heuristic solutions are obtained by the RS, as this is the heuristic that results in
the least number of cycles travelled over all the data sets. The NSO also present good solutions
with respect to the maximal cut approach, and the method used by Pep performs the worst for
all the data sets considered.

Table 4.22 displays the solutions obtained from the metaheuristic approaches used to solve the
OSP. The TS, SA, GA and GEO are compared to the lower bound of the maximal cut approach
and the solution quality obtained by Pep. The GA approach where chromosomes are modelled
as starting locations in §4.8.5 are considered, since it outperforms the alternative approach.
The best overall results are delivered by the GEO, followed by the SA and then the GA. The
metaheuristic approaches outperform the heuristics, however, they require on average more
computational time.

Figure 4.29 displays bar charts of all the results contained in Table 4.21. This presents a
summary of the best results obtained from the algorithms used to solve the OSP. Similarly,
Figure 4.30 displays bar charts of the results in Table 4.22 of the metaheuristic implementations
for the OSP.
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Figure 4.29: A bar chart displaying the results (cycles travelled) obtained in Table 4.21 for each of the
22 data sets considered. These results obtain the best solutions found for all the algorithms used to solve
the OSP. The lower bound (LB) is indicated by the results for the maximal cut formulation. The next
shortest order (NSO), the best solution obtained from the ratio spans (RS), the best solution obtained
from the scope and ranking algorithms (Scope) and the best solution to the generalised assignment
problem (GAP). Finally, the method in which Pep would solve the OSP (Pep) is also indicated.
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Figure 4.30: A bar chart displaying the results (cycles travelled) obtained in Table 4.22 for each of the
22 data sets considered. These results obtain the best solutions found for all the algorithms used to solve
the OSP. The lower bound (LB) is indicated by the results for the maximal cut formulation. The tabu
search (TS), simulated annealing (SA), genetic algorithm (GA) and generalised extremal optimisation
(GEO) approaches are compared with the results incurred by Pep are also indicated.
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4.10 Chapter summary

In this chapter a variety of methodologies are considered to solve the OSP. Exact solutions were
considered in §4.2. Initailly the OSP is formulated as an equality generalised traveling salesman
problem. Matthews & Visagie [77] formulated the maximal cut formulation which is used as a
benchmark to evaluate solution quality.

Greedy heuristic algorithms of sequencing orders are presented in §4.4. The NSO, NSOP and
NSOM were constructed and the NSO outperformed the other heuristics for all the data sets
considered. From all the heuristics considered to solve the OSP, the NSO is the fastest algorithm
to solve the OSP.

The greedy scope and ranking algorithms introduced in §4.5 performed better than the greedy
heuristics in §4.4, delivering better results for medium and small data sets. Two variations
of the greedy, scope and ranking algorithms were developed focussing on different important
aspects, that address the shortcommings of the greedy heuristics.

A manner of allocating a number of spans of each order and then ranking each span according to
a preference is described in §4.6. Two criteria for ranking the spans of each order is considered.
However, the RS provided better solutions than the NSO for some of the data sets. The
computational time was higher on average to that of the NSO, but is solvable in a reasonable
amount of time.

A heuristic implementation of a generalised assignment problem is presented in §4.7. The
generalised assignment problem is computationally more expensive, however, it is able to find
better solutions for the medium and small data sets compared to the greedy heuristics.

This is followed by metaheuristic order sequencing in §4.8. Data structures used and a greedy
starting heuristic are introduced, whereafter a tabu search, simulated annealing, genetic algo-
rithm and generalised extremal optimisation approach are used to solve the OSP. A summary of
the computational results are displayed in §4.9 where various algorithms were tested on a series
of data sets. A GEO metaheuristic outperforms all other methods considered to solve the OSP.
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CHAPTER 5

SKU location problem
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The SKU location problem (SLP) may be described as the allocation of SKUs within a picking
line, once these SKUs have already been assigned to a particular picking line. Pep operates
on a principle that SKUs may not be placed in more that one distinct location within a single
picking line.

5.1 A lower bound

The SLP may be interpreted as a routing problem together with an assignment problem. SKUs
assigned to a picking line, must be placed in various locations in such a way that when sequencing

105
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the orders, minimal distance is travelled by the pickers. The placement of the SKUs have a direct
impact on the sequence in which orders may be executed.

The following input data are required to formulate the SLP. Let

Ok be the set of SKUs that have to be collected in order k,
|Ok| be the number of SKUs that have to be collected in order k,
n be the number of orders,
m be the number of locations and
T be the number of SKUs assigned to the picking line.

A number of variables required in modelling this problem are defined. Let

cki be equal to 1 if order k passes location i and 0 otherwise,
xti be equal to 1 if SKU t is positioned at location i and 0 otherwise,
ski be equal to 1 if order k starts at location i and 0 otherwise,
sk be the location at which order k starts order picking,
ek be the location at which order k ends order picking,
Oki be the ith location that order k has to visit,
yki be a set of auxilary binary variables and
C be the maximal cut.

The problem may be formulated as a mixed integer programming (MIP) problem. The objective
then is to minimise the maximal cut, i.e. to

minimise C (5.1)

subject to

m∑
i=1

xti = 1 t = 1, 2, . . . , T, (5.2)

T∑
t=1

xti = 1 i = 1, 2, . . . ,m, (5.3)

∑
t∈Ok

m∑
i=1

ixti = Oki k = 1, 2, . . . , n, (5.4)

m∑
i=1

ski = 1 k = 1, 2, . . . , n, (5.5)

m∑
i=1

iski = sk k = 1, 2, . . . , n, (5.6)

Ok1 − sk ≤Myk|Ok| k = 1, 2, . . . , n, (5.7)

max
i=1,...,|Ok|

{sk −Oki, 0} ≤Myki k = 1, 2, . . . , n, (5.8)

|Ok|∑
i=1

Okiyki = ek k = 1, 2, . . . , n, (5.9)

ek∑
i=sk

cki = 1
if sk < ek,
k = 1, 2, . . . , n,

(5.10)
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5.2. SKU location in literature 107

m∑
i=si

cki = 1
if sk > ek,
k = 1, 2, . . . , n,

(5.11)

ek∑
i=1

cki = 1
if sk > ek,
k = 1, 2, . . . , n,

(5.12)

n∑
k=1

cki ≤ C i = 1, 2, . . . ,m, (5.13)

xti ∈ {0, 1}
t = 1, 2, . . . , T,
i = 1, 2, . . . ,m,

(5.14)

yki ∈ {0, 1}
k = 1, 2, . . . , n,
i = 1, 2, . . . ,m,

(5.15)

ski, cki ∈ {0, 1}
k = 1, 2, . . . , n,
i = 1, 2, . . . ,m.

(5.16)

The objective function (5.1) minimises the maximal cut. Constraint set (5.2) ensures that each
SKU is assigned to one location, while constraint set (5.3) ensures that each location contains a
single SKU. Constraint set (5.4) calculates all the locations each order needs to visit. Constraint
set (5.5) ensures that each order has a unique starting location. Constraint set (5.6) assigns a
starting location to each order. Constraint set (5.7) and (5.8) is used to aid in determining the
ending location of each order. Constraint set (5.9) assigns an ending location to each order.
Constraint set (5.10) – (5.12) calculates the cut at each location for each order. Constraint set
(5.13) calculates the maximal cut.

The size of this formulation consists of 4nm+mT+2n+1 variables of which 3nm+mT are binary
variables and T + 2m+ 9n constrains. This model presents a significant reduction in number of
variables and is used to solve the OSP with an exact formulation (see §4.3.2). However, it should
be noted that this formulation only considers the maximal cut. The maximal cut formulation
only considers locations contained in orders as possible starting locations, From these starting
locations the sequence in which orders are picked must still be determined. However, it reduces
the complexity of the formulation considerably. This model presents a lower bound for the SLP.
A feasible solution may be obtained by using the subtour generating heuristic in §4.3.2.

5.2 SKU location in literature

Optimal SKU location in literature mainly focusses on the placement of SKUs within a bi-
directional carousel system. Vickson and Fujimoto [110] considers a carousel system, containing
a series of locations (referred to as bins). Each location contains several shelves (equal in number
and equally spaced). Each shelf may contain a single SKU. Vickson & Lu [111] considers SKU
location in one-dimensional storage racks. They consider a system where future orders are
unknown in advance. The placement of the various SKUs are determined together with the
location at which the server (a single picker) is to be situated. The following two manners of
adressing the SLP are used most often in industry for uni- and bi-directional carousel systems.

5.2.1 Organ-pipe arrangement

An organ-pipe arrangement (OPA) is built by placing the most frequent SKU on the carousel,
the next most frequent SKU immediately adjacent, the next most frequent SKU to the other
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side, and so on, where the frequency of a SKU refers to the number of orders requiring that
SKU [12]. The OPA was formally introduced by Lim et al. [72] and the optimality of OPA, for
bi-directional carousel systems, for certain types of location problems involving linear or circular
patterns of points was proved by Bergmans [18]. The location problem of these carousels may
be divided into two subproblems. An inital grouping problem addresses how groups of SKUs
are packed into one location1. The location problem is then used to address the problem of
assigning groups to various bay locations. Figure 5.1 displays an example of how the OPA
arranges SKUs in terms of their frequency, where the frequency refers to the number of orders
requiring a specific SKU.

SKU
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U

Figure 5.1: An example of using OPA to solve the SLP. The frequency of a SKU refers to the number
of orders requiring that SKU.

Vickson and Fujimoto [110] proved the OPA to be an optimal location problem for the case in
which a bi-directional carousel is used for orders of size one. Bartholdi et al. [12] states that
the OPA is probably an effective strategy whenever typical orders visit few locations on any
carousel. Pseudo code for the OPA is displayed in Algorithm 17.

5.2.2 Greedy ranking and partitioning

The greedy ranking and partitioning algorithm (GRP) was introduced by Lim et al. [72], Vickson
and Fujimoto [110] and Vickson and Lu [111]. The GRP sorts the SKUs in decreasing order
in terms of the demand frequencies. If the locations contain multiple shelves, the SKUs are
partitioned into groups equal to the size of a single shelve. Once a group has been formed it is
placed in the next location that has not received a group2. Figure 5.2 displays an example of
how the GRP arranges SKUs.

Hassini [53] proved that the GRP may optimally partition n SKUs into m groups (n > m)
when any one-dimensional carousel is used. A two dimensional carousel consists of a number
of locations where each location contains a number of shelves [54]. The shelves are usually
packed vertically and the locations are positioned in a horisontal fashion around the carousel.
Horisontal motion refers to the situation in which the correct location is allocated and a vertical

1In the case of Pep, only one SKU may be allocated to a location. Conventional carousels often contain
multiple shelves in one location. The grouping problem does not exist in the case of Pep, which simplifies the
SLP in Pep’s situation.

2In Pep’s case a group will consist of a single SKU. Essentially SKUs are then ranked in decreasing order in
terms of their demand frequencies and then packed onto the picking line in that sequence.
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Algorithm 17: Organ pipe algorithm.
Data: A set of orders, Ok for each order k and a set of SKUs U .
Result: An ordered set U ′ containing the sequence in which the SKUs should be placed into the picking line.
for k ← 1 to n do

for i← 1 to m do
if i ∈ Ok then

Ui ← Ui + 1;
end

end

end
sort the values of Ui in decreasing order for i = 1, 2, . . . ,m;
for i← 1 to |U| do

if i (mod 2) = 0 then
U ′⌈ |U|+i

2

⌉ = Ui;

end
else

U ′⌈ |U|−i
2

⌉ = Ui;

end

end
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Figure 5.2: An example of using greedy ranking and partitioning algorithm to solve the SLP. The
frequency of a SKU refers to the number of orders requiring a SKU.

motion denotes the situation in which the correct shelf is identified within a particular location.
A one-dimensional carousel refers to the situation in which each location contains a single shelf3.
Vertical motions are thus neglected. Hassini [53] also proved that the GRP optimally partitions
n SKUs into m groups (n > m), for a one-dimensional carousel irrespective of its operations and
direction of rotation. This, however, is for the case in which orders are not known in advance.
Algorithm 18 displays the pseudo code for the GRP.

Vickson & Lu [111] used the GRP in an anticipatory operation of orders in a one-directional
carousel system. They obtained simultaneous optima for the (picker’s) server’s home base and
the SKUs locationed within a rack.

3All picking lines in Pep uses a one-dimensional system.
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Algorithm 18: Greedy ranking and partitioning algorithm.
Data: A set of orders, Ok for each order k and a set of SKUs U .
Result: An ordered set U containing the sequence in which the SKUs should be placed into the picking line.
// Arrange the set of SKUs in decreasing order in terms of their demand frequencies and place

the arranged orders in an ordered set U.
for k ← 0 to n do

for i← 0 to m do
if i ∈ Ok then

Ui ← Ui + 1;
end

end

end
sort the values of Ui in decreasing order for i = 1, 2, . . . ,m;

5.3 Ant colony algorithm for locating similar SKUs

An alternative approach to the SLP is to place SKUs next to one another, on a picking line,
that share a common pool of orders that have to visit these SKUs. The possibility exists that
orders that must visit a number of SKUs will find these SKUs close to one another within a
picking line, reducing distance travelled between orders.

This problem may be formulated as a TSP where each entry in the distance matrix dij denotes
the number of orders that have to visit both SKU i and j. This problem may then be solved
using an exact formulation. However, Lingo 11 [73] may require an excess of 1 hour to solve a
TSP containing 50 SKUs (depending on the nature of the cost matrix) on an Intel(R) Core(TM)2
Duo 3 GHz with 3.7 GB ram. It is necessary to find an algorithm to solve this problem (for an
average sized problem faced by Pep) within reasonable time.

Ant colony algorithms form a class of algorithms that are inspired from the collective behaviour
of trail deposit and follow-up, observed in the ant colonies [34]. A number of agents (ants)
communicate indirectly via modifications of their environment (trails of pheromones). The ants
form a solution for a problem that is based upon the collective endeavours of all the ants.

5.3.1 Behaviour of social insects

The ants form a self-organisational system. Self-organisation is the process where a structure or
pattern appears in a system without a central authority or external element imposing it through
any interference. A formal definition has been proposed by Camazine et al. [24]:

Self-organization is a process in which a pattern at the global level of a system
emerges solely from numerous interactions amoung lower-level components of the
system. Moreover, the rules specifying interactions amoung the system’s components
are executed using only local information, without reference to the global pattern.

A “pattern” indicates some form of organised positioning of objects, while an “emerging” prop-
erty indicates an unforseen characteristic of the system that arises from interactions of compo-
nents within the system. It is necessary to understand the interactions of the components in
order to determine how patterns are produced. Two basic instruments for interpreting patterns
consists of feedback and information flow. Feedback may either be of a positive or a negative
nature. Positive feedback are processes which result in reinforcing certain actions. Positive
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feedbacks may lead to fluctuations in the system. Negative feedback acts as stabilisers to the
system and is used to offset fluctuations that may exist in the system.

Ant colony optimisation uses a self-organising system, where each ant only has a local vision of
its environment. Decisions are made solely by the ants and their environment. Furthermore, ant
colony algorithms makes use of a dense heterarchy. The notion of a dense heterarchy, initially
introduced by Wilson and Hölldobler [119], used to describe the organisation of social insects
(ant colonies in particular), where activities on all levels of operations influence all parties
involved in the system. This manner of interacting is contrary to a hierarchy, where different
levels of authority exist. Activities on lower levels of the hierarchy does not necessarily influence
the higher levels. However, actions on higher levels have significant impact on lower levels.

Stigmergy froms the basis for communication within ant colony systems. It may be explained as
modifying the environment of the system in order to communicate. Ant colony algorithms are
based on the observation that social insects may, in general, solve complex problems in a natural
way. Ants possess a characteristic that enables them to employ substances (called pheromones)
to communicate. They are able to perceive these substances with their antennas. Ants deposit
pheromones on the path they travel, by means of a gland, which forms an odorous trail. Ants
use pheromones to lay a trail of their path. Ants may use these pheromones to find a trail from
the nest to a source of food. A colony of ants may (under certain conditions) be able to find the
shortest path to a source of food, without having knowledge of the global vision of the path [34].
If more ants follow the shortest path to the food source, a larger quantity of pheromones will be
present on this path, increasing the probability of other ants also following this path with the
aim of locating food. If paths become neglected that have been travelled previously by ants,
the pheromones on these paths evaporate.

5.3.2 Ant system

An ant colony algorithm may be used to solve a TSP exactly. The goal is to generate a
hamiltonian cycle that maximises the costs between any two SKUs. The ant system (AS) was
one of the first implementations of ant colony algorithms and was used to solve TSPs. During
each iteration t (1 ≤ t ≤ tmax), each ant a (k = 1, 2, . . . , A) builds a complete path of M stages.
For every ant, during each iteration, the path between city i and j depends on

1. the list of SKUs that have already been visited, when ant a is currently at SKU i, Jai ,

2. the reciprocal of the distance between cities i and j, ηij = 1
dij

, which is called the visibility

between two SKUs. This contributes to directing ants to SKUs containing similar orders,
and to avoid SKUs having fewer orders in common,

3. the quantity of the pheromone on the edge connecting to SKUs i and j, τij — this is called
the intensity of the trail. This defines the attraction of the path and changes with each
passage of an ant.

The rule of displacement (also called “random proportional transition rule” by Bonabeau et
al. [20]) may be stated as

pkij =


(τij(t))

α·(ηβij)∑
l∈Ja

i
(τil(t))α·(ηil)β

if j ∈ Jai
0 if j /∈ Jai ,

(5.17)
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where α and β are two parameters assigning the relative importance of the trail intensity, τij(t),
and visibility, ηij . When α = 0 only the visibility of a SKU is considered, and the SKU with
with most orders in common with the current SKU will be selected. Similarly, if β = 0 only the
pheromones are used to guide the ants. In order to balance visibilty and intensity a compromise
between visibility and intensification must be reached. After an iteration, each ant leaves a
quantity of pheromones

∆τaij(t) =

{
W
La(t) if (i, j) ∈ T a(t)
0 if (i, j) /∈ T a(t)

(5.18)

on its course, where T a(t) is the path traversed by ant a during iteration t, La(t) is the length
of the path traversed by ant a and W is a fixed parameter.

Pheromones need to evaporate from undesirable edges for the algorithm to “forget” poor solu-
tions. An update rule for trails may be

τij = (1− ρ) · τij(t) + ∆τij(t), (5.19)

where ∆τij(t) =
∑A

a=1 τ
a
ij(t) and ρ is the evaporation rate. The initail quantity of pheromone

on the edges is a uniform distribution. Algorithm 19 displays the pseudo code implementation
for a basic AS metaheuristic when applied to the SLP.

Algorithm 19: Ant System.
Data: A distance matrix D.
Result: A sequence in which orders should be placed on a picking line.
for t← 1 to tmax do

for a← 1 to A do
Select a SKU at random;
for Each SKU that has not been visited do

Select a SKU j, from list Jai of the remaining SKUs from (5.17);
end
Calculate pheromones employed ∆τaij(t) on the path T a(t) in accordance with (5.20);

end
Evaporate trails according to (5.19);

end

5.3.3 Extensions of the ant system

An ant colony optimisation (ACO) algorithm is presented that is inspired by AS, which achieves
performance improvements through the introduction of new mechanisms based on ideas not
included in the original AS.

The ant colony system (ACS) is used to improve the performance of the AS. ACS consists of
modifications that may be made to the AS. ACS differs from AS in three different ways [33].
Firstly, the search space is explored more strongly by the ants than AS does. This is done by
using a more aggressive action choice rule. Secondly, pheromone evaporation and deposit only
take place on the arcs of the best tour. Finally, each time an ant makes use of arc (i, j) to move
from SKU i to SKU j, some of the pheromone on that arc is removed to encourage exploration
of alternative paths.

ACS introduces a rule of transition depending on a parameter q0 (0 ≤ q0 ≤ 1), which defines
a balance between diversification and intensification. Tour construction is altered by an ant k
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currently at SKU i choosing a SKU j according to a pseudo random proportional rule, given by

j =

{
arg maxu∈Jki

[
(τiu(t)) · (ηiu)β

]
if r ≤ q0

J if r > q0,
(5.20)

where r is a random variable randomly distributed in [0, 1], q0 (0 ≤ q0 ≤ 1) is a parameter, and
J ∈ Jai a SKU randomly selected according to the probability distribution given by

paiJ =

{
(τiJ (t))·(ηiJ )β∑
l∈Ja

i
(τil(t))·(ηil)β

if J ∈ Jai
0 if J /∈ Jai .

(5.21)

If r > q0, a SKU is chosen in the same manner as in the AS algorithm and the systems tends to
diversify the search space. However, if r ≤ q0 the systems tends towards intensification of the
search space.

The pheromones on the trails may be divided as a global update and a local update. Each ant
deposits pheromones on the trail according to

τij(t+ 1) = (1− ζ) · τij(t) + ζ · τ1,

where 0 < ζ < 1 and τ1 is the initial pheromones on the trail. The pheromones are updated in
this manner immediately after having crossed an arc during tour construction. This is known as
the local pheromone trail update [33]. Through experimentation, a good value of ζ is considered
to be 0.1, while a good avlue for τ1 is considered to be 1

CTT
, where T is the number of SKUs

considered and CTT is the length of a nearest neighbour tour. This local update rule decreases
the pheromone τij whenever an ant crosses an arc (i, j). The arc then becomes less desirable for
the other ants. This increases the likelihood of ants exploring arcs that have not been visited
yet.

During each iteration the visited edges see their quantity of pheromones decreasing in order to
support diversification of unexplored paths. The global pheromone trail update may be defined
as

τij(t+ 1) = (1− ρ) · τij(t) + ρ ·∆τij(t),

where the edges (i, j) belong to the best solution. The arcs of the best solution assigned to a
set T + with a length of L+, and where ∆τij(t) = 1

L+ . This ensures that only the best trail
during an iteration is updated. This is important, because in this manner the computational
complexity of the pheromone update at each iteration is reduced from O(m2) to O(m), where
m is the size of the instance being solved [33]. The parameter ρ represents the pheromone
evaporation, however, in equation (5.21) the deposited pheromone is discounted by a factor ρ.
The new pheromone is a weighted average between the old pheromone value and the amount of
pheromone deposited.

The system uses a list of candidates. This list stores closest neighbours for each SKU in de-
creasing order. An ant will consider an edge towards a SKU apart from this list, only if the
edge has been visited once before. In this case the choice is made according to equation (5.21).

The ACS may easily be transformed in such a way as to maximise the number of orders in
common between adjacent SKUs. The distances between two SKUs is equal to the number of
orders that have to pick both these SKUs. The distance matrix has to be modified, since larger
values in the distance matrix is associated with better similarities between SKUs. The largest
single element in the distance matrix is calculated and denote this element xmax. Each element
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Parameter Range

q0 0.5
β 1, 2, 5, 10
ρ 0.01, 0.05, 0.10, 0.20
ζ 0.01, 0.05, 0.10, 0.20
Q average arc weight × number of SKUs

Table 5.1: Ant colony parameter ranges for the SLP data sets.
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Figure 5.3: A graphical representation of the solution quality of the ant colony system for data set K,
when the value of β is varied at 1, 2, 5 and 10.

in the distance matrix is then altered by replacing each element xij in the distance matrix by
xmax − xij , for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m, where m is equal to the number of SKUs on
a picking line.

The effectiveness of the ACS may be measured against the inverse ant colony system (IACS),
where two SKUs with less orders in common are placed next to one another.

The ACS is tested for a series of parameters for each data set considered. Table 5.1 displays
the ranges of the various parameters used to solve the ACS. The number of ants are fixed at
20, while 500 iterations are incurred in total for every set of parameters.

Figure 5.3 displays the solution quality of the ant colony system for data set K, when the value
of β is varied at 1, 2, 5 and 10. The value of ζ is fixed at 0.10.

This ACS was used to determine which SKUs should be placed next to one another with the
aim of maximising the similar orders amoung SKUs. To test the effect of this approach the
opposite was also attempted where SKUs where placed in a cluster if they share as little orders
as possible. This method was called the Inverse ACS (IACS).

5.4 (Agglomerative) Clustering algorithms

Clustering algorithms analyse the assignment of a set of observations (similarities) into subsets
(called clusters) so that observations in the same cluster are similar in some sense. Clustering
holds an advantage in that all data points within a cluster are represented by a single point
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within the cluster. This may lead to computational efficiency when analysing data. Clustering
depends on types of data used in the clustering analysis [66]. Clustering may be used to place
SKUs with similar attributes on the same part of a picking line.

All the agglomerative clustering algorithms were computed using SAS [98], and Matlab [78]
was used to construct dendrograms4 used to visually display the results obtained by the al-
gorithms. A number of known clustering methods are explained, followed by new clustering
algorithms created specifially for the SLP.

5.4.1 The single-link method

The single-link method (also referred to a the nearest-neighbour method) is one of the first and
simplest clustering methods. Each data point is initially contained in a cluster of its own.
The shortest distance between any two clusters merges these clusters during an iteration of the
algorithm. The distance between two clusters, X and Y , is

dX,Y = min
i∈X, j∈Y

{dij}, (5.22)

where dij denotes the distance between two data points, i ∈ X and j ∈ Y .
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Figure 5.4: Dendrogram of the clusters formed by the single-link method as a function of their threshold
distances for data set K.

The advantage of this clustering method lies in its simplicity of implementation. However, this
clustering method contains a significant disadvantage in that two clusters, which are far apart,
may be clustered together, merely because their nearest neighbours are close to one another.
Figure 5.4 displays the dendrogram obtained from data set J used by Pep.

5.4.2 The average-link method

Similar to the single-link method, each data point is initially represented as a cluster. Two
clusters closest to one another are fused together during each iteration of the algorithm. How-

4A dendrogram is a tree diagram that may be used to illustrate the arrangement of the clusters produced by
hierarchical clustering.
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ever, the distances between clusters are calculated as the average distance of the various points
within each cluster. The distance between clusters X and Y is

dX,Y =
1

nX + nY

∑
i∈X
j∈Y

dij , (5.23)

where dij denotes the distance between two data points, i ∈ X and j ∈ Y , and where nX
and nY denote the number of points in cluster X and Y , respectively. The distances in (5.23)
may be recomputed between clusters after successive iterations of the algorithm, by altering
the between-cluster average distances. When fusing clusters X and Y , distances are updated
according to

dX∪Y,Z =
nX

nX + nY
dX,Z +

nY
nX + nY

dY,Z , (5.24)

where dX∪Y,Z denotes the distance between clusters X ∪ Y and Z, and where dX,Z and dY,Z
denote the distances between clusters X and Z, and between clusters Y and Z, respectively.

Figure 5.5: Schematic illustration of the mechanism of the average-link method for data set K.

Figure 5.5 represents a schemetic representation of the average-link method containing two
clusters. Figure 5.6 displays the dendrogram obtained from data set K.
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Figure 5.6: Dendrogram of the clusters formed by the average-link method as a function of their
threshold distances.
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5.4.3 The centroid method

In the centroid method, every point is once more represented as a cluster. Two clusters closest
to one another are once more fused together during each iteration of the algorithm. The distance
between two clusters, X and Y , are calculated as the centroids ZX and ZY of the two clusters,
respectively. If a cluster contains n distinct points (x1, y1), . . . , (xn, yn), then the x and y
coordinates of the cluster centroid are

ZX =
1

n

n∑
i=1

xi and ZY =
1

n

n∑
i=1

yi,

respectively.

The distances between clusters at successive iterations of the algorithm may be recomputed by
changing the between-cluster centroid distances, when fusing clusters X and Y by

dX∪Y,Z =
nX

nX + nY
dX,Z +

nY
nX + nY

dY,Z −
nXnY

(nX + nY )2
dX,Y , (5.25)

where dX∪Y,Z is the distance between clusters X ∪ Y and Z, and where dX,Z , dY,Z and dX,Y
denote the distances between clusters X and Z, between clusters Y and Z, and between clusters
X and Y , respectively.
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Figure 5.7: Schematic illustration of the mechanism of the centriod method.

Figure 5.7 represents a schemetic representation of the centriod method containing two clusters.
Figure 5.8 displays the dendrogram obtained from data set K.

5.4.4 Ward’s algorithm

Ward [114] developed a hierarchical aggregation procedure which is a routine for searching
through groups of data to find which pair of basic data units shows the greatest mutual similarity
with respect to specified characteristics [84]. The objective is to minimise some measure of the
within-cluster variance when decisions are made regarding the clustering process. Every SKU
initially represents a cluster and two clusters are then fused according to some criteria during
each iteration. Distance between two clusters, X and Y , is the Euclidean distance between
the centres of the clusters, respectively, raised to any power % on the interval (0, 2] [99]. The
distance between clusters X and Y is

dX,Y =
1

nX + nY

nX+nY∑
i=1

d%(xi, cj), (5.26)
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Figure 5.8: Dendrogram of the clusters formed by the average-link method as a function of their
threshold distances for data set K.

where

cj =
1

nX + nY

nX+nY∑
i=1

xi,

X = {x1, . . . ,xnX},
Y = {xnX+1, . . . ,xnX+nY },

and where d%(·, ·) is an appropriate distance matrix.

Ward’s algorithm simplifies the process of recomputing distances between clusters in successive
iterations of the algorithm when fusing clusters X and Y . The fusion is updated by

dX∪Y,Z =
nX + nZ

nX + nY + nZ
dX,Z +

nY + nZ
nX + nY + nZ

dY,Z −
nZ

nX + nY + nZ
dX,Y , (5.27)

where dX∪Y,Z is the distance between clusters X ∪ Y and Z, and where dX,Z , dY,Z and dX,Y
denote the distances between clusters X and Z, between clusters Y and Z, and between clusters
X and Y , respectively [115]. Figure 5.9 displays the dendrogram obtained from data set K.

The sum of squares (ESS) method is a special case of Ward’s Algorithm, when % = 2. The error
sum of squares of a cluster X is defined as the sum of squared Euclidean distances between the
objects of the cluster and its centroid, it is

ESS(X) =
∑
i∈X

(xi − x̄(X))2. (5.28)

This is used to measure the tightness of a cluster [66]. Ward’s algorithm is constructed by
requiring that ∆ESS be as small as possible during each iteration.

5.4.5 When to stop the clustering process

During implementation of various clustering algorithms, a result containing one cluster does
not necessarily provide any benefit. The aim is to construct clusters of SKUs that should be
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Figure 5.9: Dendrogram of the clusters formed by Ward’s algorithm to orders as a function of their
threshold distances for data set K.

placed adjacent on a picking line. A single cluster containing all the SKUs on a picking line does
not specify which SKUs possess simlarities that other do not, nullifying the clustering process.
In order to obtain meaningful results, some stopping criteria should be employed to prohibit
hierarchical algorithms from continuing the clustering process untill all SKUs are fused into a
single cluster. The following stopping criteria may be considered:

1. A predetermined number of iterations may be decided upon in advance.

2. Patterns after each iterations may be used as a guideline to determine the number of
clusters. A dendrogram may be used to determine a desirable number of clusters.

3. Other methods exist where the ratio between the total cluster variance and the within-
cluster variance are plotted. These considerations may be used in aiding the stopping
criteria.

5.4.6 Implementation of clustering algorithms

In order to implement all the agglomerative hierarchical clustering methods, a distance matrix
is used identical to the distance matrix in §5.3. The distances between two SKUs are equal
to the number of orders that have to pick both these SKUs. The distance matrix has to be
modified, since larger values in the distance matrix is associated with better similarities between
SKUs. The largest single element in the distance matrix is calculated and denote this element
xmax. Each element in the distance matrix is then altered by replacing each element xij in the
distance matrix by xmax − xij , for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m, where m is equal to the
number of SKUs on a picking line.

5.5 Heuristic clustering methods

Heuristic clustering methods use an initial partition of the data points as a basis for the clustering
process. These clustering algorithms are created specifically to suite the SLP and characteristics
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it possesses. The number of clusters are not specified and depends on the nature of the data.
Contrary to the agglomerative clustering algorithms in §5.4, the aim of these clustering algo-
rithms are to maximise the “distance” between clusters, where the distance refers to a measure
of similarity between clusters.

5.5.1 Clustering according to orders

This heuristic is constructed in order to cluster SKUs that aim to contain all the SKUs within
a cluster may form entire orders. Two clusters may only be fused if they share orders that have
to visit all the SKUs in both clusters. The distance between clusters X and Y is

dX,Y =

{
|PX,Y | if X ∩ Y = ∅
0 otherwise,

(5.29)

where PX,Y is the set of orders that have to collect all the SKUs in clusterX and Y . Whenever all
the distances between any two clusters are equal to 0, the algorithm is stopped. At this stage
no order requires all the SKUs from any two clusters. Figure 5.10 displays the dendrogram
obtained from a typical dataset used by Pep.
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Figure 5.10: Dendrogram of the clusters formed by heuristic manner of clustering according to orders
as a function of their threshold distances for data set K.

This clustering heuristic is used since it only fuses clusters if it may be beneficial to the orders
that have to collect SKUs from both of those clusters.

5.5.2 Clustering according to SKU frequency

This clustering algorithm considers the number of orders that have to visit SKUs contained in
a cluster. During an iteration, two clusters that have to be visited by the largest number of
orders in common are fused. This distance is, however, normalised in order to enable clusters
containing fewer SKUs to fuse with other clusters. The distance between clusters X and Y is

dX,Y =

{
|PX∩PY |
|PY | if X ∩ Y = ∅

0 otherwise,
(5.30)
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where PX is the set of orders that have to collect a SKU in cluster X. Figure 5.11 displays the
dendrogram obtained from a typical dataset used by Pep.
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Figure 5.11: Dendrogram of the clusters formed by heuristic manner of clustering according to SKU
frequency as a function of their threshold distances for data set K.

5.6 Computational results

A number of test cases were used to evaluate the effectiveness of the various algorithms used to
address the SLP. Table 5.2 displays the number of cycles required to complete order picking on
a picking line for each algorithm. The first column specifies the data set used, while the second
column identifies the number of orders and the number of SKUs contained in the data set. The
results of the OPA and GRP follows. Results from the ACS and the IACS is then displayed.
The ACS and IACS algorithms were tested for a series of parameters and the best parameters
were selected for implementation. The agglomerative hierarcical clustering algorithms, the
average link (AL), centroid method (CM), single link (SL) and Ward’s algorithm (W) follows.
The two heuristic clustering algorithms, clustering according to orders (H1) and clustering
according to SKU frequency (H2) is then displayed, followed by the number of cycles travelled
by Pep’s origional configuration (Pep). Once the SKUs were allocated according to the respective
algorithms, the maximal cut algorithm (see §4.3.2) was used to test the quality of the solution.

All the agglomerative hierarchical clustering algorithms, as well as the heuristic clustering algo-
rithms achieve the results indentical for each data set. The original configuration (Pep) is based
on balancing higher frequency SKUs on the picking line with lower frequency SKUs. Often Pep
employs a system where a high frequency SKU is placed in a location, followed by a number of
SKUs with lower frequencies. In a typical picking line within Pep, about four lower frequency
SKUs are seperated by a single higher frequency SKU [81]. This is done in order to reduce
congestion of pickers.

From the results in Table 5.3 it is evident that certain data sets are not improved upon with
any SLP algorithm and the solution quality also did not decrease. Table 5.4 displays the largest
number of picks at a single location for each data set considered. In all the cases the maximal
cut formulation matches these solutions. The SLP is unable to reduce the number of cycles
travelled in these cases, since at least 1 226, 1 161 and 1 069 cycles have to be travelled for data
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Data Size
set (O, L) OPA GRP ACS IACS AL CM SL W H1 H2 Pep

A (1262,49) 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232
B (1264,54) 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226 1226
C (1265,51) 1161 1161 1161 1179 1161 1161 1161 1161 1161 1161 1161
D (1263,56) 1060 1011 1011 1079 1072 1072 1072 1072 1072 1072 1072
E (1264,51) 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069
F (1258,55) 941 872 863 863 1025 1025 1025 1025 1025 1025 1025
G (1258,53) 1021 1002 997 1007 1005 1005 1005 1005 1005 1005 1005
H (1244,54) 989 980 976 1012 992 992 992 992 992 992 992
I (1260,56) 971 968 970 980 955 955 955 955 955 955 955
J (1264,56) 967 957 949 959 947 947 947 947 947 947 947

K (943,63) 277 284 274 287 259 259 259 259 259 259 259
L (846,56) 224 226 233 233 232 232 232 232 232 232 232
M (728,51) 148 149 152 154 152 152 152 152 152 152 152
N (733,55) 117 121 117 123 125 125 125 125 125 125 125
O (396,63) 121 93 116 146 90 90 90 90 90 90 90
P (574,48) 74 80 81 79 80 80 80 80 80 80 80
Q (242,64) 67 55 66 54 45 45 45 45 45 45 45

R (158,55) 16 18 15 14 14 14 14 14 14 14 14
S (89,42) 10 10 9 8 9 9 9 9 9 9 9
T (82,51) 8 8 8 9 8 8 8 8 8 8 8
U (90,48) 7 7 7 7 7 7 7 7 7 7 7
V (80,56) 6 7 6 7 6 6 6 6 6 6 6

Total 11712 11536 11538 11727 11711 11711 11711 11711 11711 11711 11711

Table 5.2: Results obtained when implementing the various SLP algorithms. Results from The OPA,
GRP, ACS, IACS, AL, CM, SL, W, H1 and H2. The number of orders (O) and locations (L) are displayed
for each data set.

sets B, C and E, respectively.

Figure 5.12 displays the number of cycles travelled when using the maximal cut approach and
the minimum number of cycles required, when considering the most frequent location(s), for
each data set. Improvement in the SLP is only possible where the picks at the most frequent
location is less than the solution obtained by the maximal cut approach.

The greatest saving was incurred in dataset F, where the number of cycles travelled may be
reduced by as much as 162 cycles. However, any reduction in the number of cycles in comparison
to Pep’s configuration decreased the number of cycles by 2.50% on average.

5.7 Random SLP configurations

Due to the inconsistency of the results obtained using the various SLP algorithms, random
SLP configurations are constructed. The minimum cut formulation is then used to determine
the lowerbound of the number of cycles that have to be traversed. Then 200 random SLP
configurations of each data set were created. The average number of cycles travelled, the
minimum number of cycles travelled, the maximum number of cycles travelled and the frequency
of the various spans used were retrieved to better understand the nature of each data set.

Table 5.5 displays the percentage of the shortest spans used when solving 200 instances of
random SLP configurations for each of the 22 data sets considered. An average of 70.569%
of all orders for large data sets should be picked on their minimum span according to the
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Size Best performing SLP configuration Pep’s Percentage
Data set (O, L) SLP Solution Configuration improvement

A (1262,49) All 1232 1232 0.00 %
B (1264,54) All 1226 1226 0.00 %
C (1265,51) All except IACS 1161 1161 0.00 %
D (1263,56) GRP and ACS 1011 1072 5.69 %
E (1264,51) All 1069 1069 0.00 %
F (1258,55) ACS and IACS 863 1025 15.80 %
G (1258,53) ACS 997 1005 0.80 %
H (1244,54) ACS 976 992 1.61 %
I (1260,56) AL, CM, SL, W, H1 and H2 955 955 0.00 %
J (1264,56) AL, CM, SL, W, H1 and H2 947 947 0.00 %

K (943,63) AL, CM, SL, W, H1 and H2 259 259 0.00 %
L (846,56) OPA 224 232 3.45 %
M (728,51) OPA 148 152 2.63 %
N (733,55) OPA and ACS 117 125 6.40 %
O (396,63) AL, CM, SL, W, H1 and H2 90 90 0.00 %
P (574,48) OPA 74 80 7.50 %
Q (242,64) AL, CM, SL, W, H1 and H2 45 45 0.00 %

R (158,55) ACS, IACS, AL, CM, SL, W, H1 and H2 14 14 0.00 %
S (89,42) IACS 8 9 11.11 %
T (82,51) All except IACS 8 8 0.00 %
U (90,48) All 7 7 0.00 %
V (80,56) All except GRP and IACS 6 6 0.00 %

Table 5.3: Best performing configurations obtained when implementing the various SLP algorithms.
Results from The OPA, GRP, ACS, IACS, AL, CM, SL, W, H1 and H2. The number of orders (O) and
locations (L) are displayed for each data set.

Data set A B C D E F G H I J K
Most frequent 1232 1226 1161 1011 1069 835 959 817 855 729 95

Data set L M N O P Q R S T U V
Most frequent 141 109 66 74 67 33 13 9 8 7 5

Table 5.4: The number of picks at a location that is picked most often (most frequent location) for each
data set.

maximal cut formulation. Medium and small data sets require that 97.513% and 99.379% of
orders should be picked on their minimum spans when solved by means of the maximal cut
formulation. Medium and small data sets are relatively less complex to solve, since most spans
should be minimum span. The problem is to determine which orders should be picked on their
minimum spans. Another factor that may cause complications is to select the most desirable
shortest span when multiple shortest spans exist.

The solution quality of these data sets were also calculated by means of the lowerbound in in
§4.3.2. The solution qualities does not differ significantly. For data set A the average solution
quality was 1 236.94 with a standard deviation of 2.63, while data set B had an average solution
quality of 1 226 with a standard deviation of 0.
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Figure 5.12: The number of picks at a location that is picked most often for each data set, compared
to the number of cycles travelled using Pep’s configuration.

5.8 Chapter summary

In this chapter a variety of methodologies are considered to solve the SLP. A model for the
problem was presented in §5.1. Two well-known algorithms are presented — the OPA in §5.2.1
and the GRP in §5.2.2. An ant colony algorithm was used to place two products that share
orders next to one another in §5.3. A number of agglomerative hierarchical clustering algorithms
were used to cluster SKUs with similar charcteristic in §5.4. Two heuristic clustering algorithms
are presented. The first heuristic clustering algorithm uses an alternative manner of clustering
SKUs that have to be visited by the same orders. The second heuristic clusters SKUs based
on the frequency of the SKUs. The chapter concludes with some computational results when
using real life data sets supplied by Pep in §5.6 and results when considering random SLP
configurations in §5.7. Results indicate that little saving may be incurred when adressing the
SLP.
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The SKU to picking line assignment problem (SPLAP) may be described as the allocation of
SKUs to a picking line. Pep operates on a principle that a SKU may not be placed in more
than one distinct picking line during any stage of order picking.

The SPLAP should aim to delegate the work amongst picking lines in such a way as to minimise
the total number of cycles travelled over all picking lines, while balancing the workload over the
picking lines.

6.1 Managerial considerations

Picking lines are constructed in a variety of manners. Depending on situations which the picking
line scheduler may not have any control over, the best possible SPLAP configuration needs to be
determined. Picking line schedulers are entrusted with the task of adhering to demands from the
Pep Central Office regarding delivery of distributions that is sent from the Planning department
within Pep, as well as adhering to requests from the pickers and balancing the workload evenly
among picking lines.

Picking line managers have to construct picking lines to balance the “workload” over all the
picking lines as well as ensuring that time required to pick the entire picking line is reduced
as far as possible. Pep is unable to provide a clear definition on the balancing aspect of the
picking lines. Picking line managers have various opinions on how to balance picking lines.
These (sometimes conflicting) opinions are formulated from feedback from the pickers/managers
working on the picking lines. Some picking line managers requests that pickers should not
pick too frequently, varying time spent walking and picking regularly. Others may claim that
minimising the total number of cycles is the only considerations that has to be taken into
account.

Pickers are awarded incentive bonusses for the number of SKUs they pick in a given period. A
picker may be pleased if the average orders he/she receives contains more picks than his/her
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peers, if they receive the same number of orders within a picking line [80]. Pickers also prefer
having an even spread of picks for the entire duration of order picking. Picking lines containing
too many picks per cycle are also not favourable. Picking line managers construct a picking
line, ensuring that pickers do not pick from most of the locations during any cycle. If picking
lines containing too many picks per cycle relative to other picking lines, the pickers refrain from
going to work on that picking line. Instead they may take a leave of absence [69]. The pickers
consider these picking lines as containing a heavier workload, which is not percieved as just.

Picking line managers have also noted that if pickers pick orders that contain an excessive
number of picks in succession, the pickers will complain that the workload is not balanced,
resulting in certain pickers receiving a larger incentive bonus for incurring more picks [80].
Picking line managers are also entrusted with ensuring that pickers have an even spread of A-
and B-type SKUs.

Picking line managers must also take note of any other complaints from the pickers. Typical
examples include instances where pickers would complain that an A-type SKU requires a sub-
stancial amount of effort to pick. In this case the picking line manager would be required to
alter the status of the SKU as well as balancing the different types of SKUs on picking lines
accordingly in the future.

Some DBNs may be submitted after specified dates (deadlines). In this case picking line man-
agers receive urgent requests that have to be delivered much earlier than other SKUs. Picking
line managers must then build a new picking line in order to deliver SKUs to the destinations
as soon as possible. Picking line managers may find it difficult to balance the workload evenly
among these picking lines.

Identical SKUs may not be placed on more than one picking line. Furthermore, the warehouse
management system used by Pep only allows a SKU to be placed in one location on that picking
line. This implies that all orders that require that SKU should pick from that location. An
example of an exact formulation for the SPLAP is presented in Appendix A.

6.2 Nearest neighbour search

The nearest neighbour search (NN) is an optimisation approach for finding the nearest neigh-
bours in metric spaces [93]. The NN may be defined by a set D of n points in a d–dimensional
metric space M = (X, d) and a query point q ∈ X. The objective is to find the point p ∈ D
closest to q.

The NN is adapted for the SPLAP to determine the construction of a “desirable” picking line,
where managerial considerations mentioned in §6.1 are taken into account. As an initial attempt
to solve the problem, only the average picks per cycle is considered as a measure of solution
quality. The reasoning is that this may satisfy the requirements of the pickers and may cause a
reduction in the number of cycles travelled.

The Pep DC uses an order picking system which is based on the concept of a wave. During
a typical day of operations within the Pep DC, an average of two or three picking lines may
be constructed. For this reason it is necessary to consider improvements between fewer picking
lines. Also, since the definition of workbalance is not clear a number of various measures are
proposed to address different aspects associated with order picking.

Initially all SKUs in two different picking lines are removed. Initially each picking line receives a
SKU. One picking line receives the SKU that is requested by the most orders (highest frequency
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SKU), while the second picking line receives the SKU requested by the fewest orders (lowest
frequency SKU). All the remaining SKUs are then iteratively placed into the first picking line.
The SKU that is best fit according to a measure is then selected and added to the first picking
line. The same process is done for the second picking line.

A number of measures are formulated to construct picking lines with different objectives. Let
ch be the number of cycles travelled on a picking line h. The first criteria for adding SKUs to
a picking line is by simply minimising the number of cycles travelled on each picking line, i.e.

minimise
H∑
h=1

ch. (6.1)

This criteria solely focusses on reducing the number of cycles travelled in each picking line. This
criteria does not address the issue of work balance between picking lines.

Let the number of picks in a picking line h be ph. Another measure may be to maximise the
product of the picks per cycle for a number of picking lines, i.e.

maximise

H∏
h=1

ph
ch
. (6.2)

This criteria aims to reduce the number of cycles travelled with the aim of maintaining similar
picks per cycle for each picking line considered. In this manner the work balance is addressed
in such a way that all picking lines have the same picks per cycle.

The second criteria does not necessarily ensure that the number of picks in each picking line is
in proportion to the number of SKUs placed on the picking line. For example, if two picking
lines are constructed, both having an average of 20 picks per cycle, the first picking line contains
100 SKUs and the second picking line contains 20 SKUs, the work is not balanced. In this case
the pickers in the second picking line will need to pick from each location during each cycle.
The pickers in the first picking line will need to only pick approximately 1 in every 5 locations.
For this reason it is necessary to take the number of SKUs that are placed into a picking line
into account as well. Let the number of SKUs in picking line h be sh. Another measure may
be to maximise the product of the picks per cycle for a number of picking lines, by taking the
number of SKUs of a picking line into consideration, i.e.

maximise
H∏
h=1

ph
ch × sh

. (6.3)

This measure is not considered for the nearest neighbour search, since the SKUs are divided
approximately equally between multiple picking lines.

Let µc denote the average number of cycles travelled for all picking lines considered. In this
case

µc =
1

H

H∑
h=1

(ch), (6.4)

and the standard deviation may be expressed as

σc =

√√√√ 1

H

H∑
h=1

(ch − µc)2. (6.5)
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Simlarly, let µp denote the average picks per cycle for all picking lines considered. In this case

µp =
1

H

H∑
h=1

(
ph
ch

)
, (6.6)

and the standard deviation may be expressed as

σp =

√√√√ 1

H

H∑
h=1

(
ph
ch
− µp

)2

. (6.7)

The first manner of scoring considers the number of cycles travelled in each picking line. The
objective is to

minimise [αµc + (1− α)σc]. (6.8)

The scalar, α, is used to shift the focus on either ensuring that the number of cycles travelled
in each picking line is kept to a minimum (higher values of α), or ensuring that all picking lines
considered travel approximately the same number of cycles (lower values of α).

A second manner may also be considered where the picks per cycle is considered. The objective
is then to

maximise [αµp + (1− α)σp]. (6.9)

The scalar, α, is used to shift the focus on either ensuring that the picks per cycle in each picking
line is kept to a minimum (larger values of α), or ensuring that all picking lines considered travel
approximately the same number of picks per cycle (lower values of α).

This approach was implemeted for the criteria in (6.1) and (6.2), respectively. The SKUs from
two picking lines were aggregated and two new picking lines were constructed. The first picking
line will receive the SKU with the highest frequency and the second picking line will receive the
SKU with the lowest frequency. The remainder of the SKUs are then iteratively added to each
picking line at a time, where the SKU that best improves the criteria is added to the picking
line. This approach does not yield significant savings. A tabu search implementation was able
to achieve better results and follows in the following section.

6.3 A tabu search approach

A tabu search implementation may be performed once all the SKUs have been allocated to a
respective picking line. Each SKU in each picking line is temporarily traded with each SKU
from all the other picking lines. The trade with the largest score is selected, where the score
may be defined in a variety of manners.

Initially the tabu search was implemented with the aim of increasing the product of the picks
per cycle between two picking lines. The scoring method was thus to

maximise

H∏
h=1

ph
ch
. (6.10)

This manner of scoring aims to create the same work balance in all picking lines considered,
while lowering the number of cycles travelled in each picking line. In this case the focus is
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not shifted on either lowering the number of cycles travelled in each picking line or aiming to
balance the workload over the picking lines. This manner of scoring may address both issues
simultaneously. The data was seperated for all different groups of data sets. For instance,
comparison between two large data sets form part of the group LL (large-large comparison),
while a comparison between the medium and smaller data sets forms part of the group MS
(medium-small comparison).

The NSO heuristic was used to solve the OSP1. The computational time of considering two data
sets is on average 1 824 seconds (30 minutes and 24 seconds). Due to this long computational
times to solve an instance by means of the tabu search, considering only two picking lines at a
time as well as three large picking lines.

Table 6.1 displays the average number of cycles travelled when comparing the results of the
original picking lines to the picking lines constructed by the tabu search. On average, the tabu
search did not reduce the number of cycles considerably. Some cases do exist where two large
pairs of data sets may incur significant savings. Table 6.2 displays the 10 pairs of picking lines
that resulted in the largest savings in cycles travelled when using the tabu search when three
picking lines are considered.

Average number of cycles travelled
Original Tabu Percentage Average

Configuration picking line search improvement computational time

LL (45) 2136.80 2031.29 4.94 % 3788
LM (70) 1208.83 1201.33 0.62 % 2015
LS (50) 1077.20 1076.88 0.03 % 1851

MM (21) 280.86 273.33 2.68 % 401
MS (35) 149.23 147.91 0.88 % 238
SS (10) 17.60 17.50 0.57 % 63

Average 1064.48 1040.85 1824

Table 6.1: The average number of cycles travelled for the data sets in each configuration, by considering
the original picking lines and the picking lines modified using the tabu search when considering two
picking lines. The computational times are indicated in seconds. The number in brackets next to
each configuration indicates the number of the pairs of picking lines solved by the tabu search for each
configuration.

Figure 6.1 displays the frequency of each SKU before and after the tabu search is implemented on
picking line A and B. All the SKUs are ranked in decreasing order in terms of their frequencies.
Note that picking line B initially contained a single SKU that has a frequency in excess of
1 200. Except for this SKU, the SKU with the second largest frequency in picking line B has a
frequency of less than 800. Picking line A, however, contain 7 SKUs with frequencies in excess
of 1 200. By swapping the SKU with the high frequency in picking line B with a SKU in picking
line A that has a frequency of less than 800, significant savings are achieved.

Figure 6.2 displays the frequency of each SKU before and after the tabu search is implemented on
picking line B and C. All the SKUs are ranked in decreasing order in terms of their frequencies.
Many SKUs present in picking line B are also present in picking line C. Before the tabu search
implementation only a single SKU in picking line B had a frequency in excess of 1 200. However,
after tabu search implementation, 4 SKUs have a frequency in excess of 1 200. Fewer SKUs are
thus present on picking line C. The number of cycles travelled on picking line C increases, while
the number of cycles travelled on picking line B decreases substancially.

1The GEO metaheuristic was also used. This metaheuristic delivered similar results, but requires far more
computational time to execute a single instance of the OSP.
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Picking line 1 Picking line 2
Original Tabu Original Tabu Number of Total percentage Computational

Data sets picking line search picking line search cycles saved improvement time

A & B 1232 1232 1226 909 317 12.90 % 8208
B & C 1226 863 1161 1226 298 12.48 % 7454
F & G 1025 1063 1005 726 241 11.87 % 4827
B & D 1226 853 1072 1226 219 9.53 % 9302
B & G 1226 809 1025 1226 216 9.60 % 4329
C & I 1161 1161 955 751 204 9.64 % 1596
B & E 1226 877 1069 1226 192 8.37 % 6740
A & C 1232 1232 1161 973 188 7.86 % 7333
C & G 1161 1161 1005 820 185 8.54 % 2587
C & E 1161 1161 1069 900 169 7.58 % 3368

Table 6.2: The 10 best pairs of picking lines that resulted in the largest savings in cycles travelled
when using the tabu search when considering two picking lines. All computational times are indicated
in seconds.
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Figure 6.1: Frequency of each SKU before and after the tabu search is implemented on picking line A
and B.

The best improvement outside the LL configuration is in the LM configuration for picking lines
H and L. A number of SKUs with lower frequencies in picking line H are swapped with the
highest frequency SKUs in picking line L. A total saving of 52 cycles travelled may be saved in
this manner. Figure 6.3 displays the frequency of each SKU before and after the tabu search is
implemented on picking line H and L. All the SKUs are ranked in decreasing order in terms of
their frequencies.

Table 6.3 displays the 10 pairs of picking lines that resulted in the largest savings in cycles
travelled when using the tabu search when three picking lines are considered. Only large data
sets are considered, due to the large cost in computational time to solve these problems.

Figure 6.4 displays the frequency of each SKU before and after the tabu search is implemented on
picking line A, B and E. All the SKUs are ranked in decreasing order in terms of their frequencies.
The solutions obtained for data set A delivers the same result as the configuration proposed
by Pep. Picking line B and E contain SKUs with lower frequencies than the configurations
proposed by Pep. Picking line E contains a number of SKUs that have a frequency slightly
less than 800. For data set B it would seem possible to swop the three SKUs with the largest
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Figure 6.2: Frequency of each SKU before and after the tabu search is implemented on picking line A
and B.
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Figure 6.3: Frequency of each SKU before and after the tabu search is implemented on picking line H
and L.

frequencies with SKUs of lower frequencies from data set A.

A possible explanation is that the greedy heuristic used to determine the solution quality did
not assess swopping the higher frequency SKUs of data set B with lower frequency items from
a different picking line as being beneficial. Another explanation may be that when swopping
a single high frequency item from data set B does not improve the solution quality and that a
number of SKUs must be swopped simultaneously to improve the solution quality.

The tabu search was also implemented using the scoring method

minimise

H∑
h=1

ch.

This method displayed similar, and sometimes identical, results to the initial scoring method.
For this reason the results are not included in this thesis.

Many open questions still have to be addressed with regards to SPLAP. This chapter merely
considers initial attempts used for addressing the SPLAP. Questions relating the number of
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Figure 6.4: Frequency of each SKU before and after the tabu search is implemented on picking line A,
B and E.

SKUs awarded to a picking line have not been considered in any form. Also, with the nearest
neighbour and tabu search approaches emphasis was not placed on ensuring that the workbal-
ance is equally divided amongst the picking lines. Instead only workbalance within each picking
line is considered. More sophisticated approaches have to be developed which have to encom-
pass these and other open questions to construct picking lines effectively according to Pep’s
guidelines.

6.4 Chapter summary

This chapter examines a number of approaches to address the SPLAP. Initailly some practical
considerations are highlighted in §6.1. These considerations place context on the contradicting
objectives that arises when the SPLAP is solved. A goal progamming formulation is then
presented as an exact formulation to the problem. This formulation is, however, too large to
solve in a reasonable time frame.

Consequently, two nearest neighbour search heuristics were then used in §6.2. Both these
approaches aim to minimise the total picks per cycle for each picking line, minimising the
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number of cycles travelled while balancing the workload amongst the various picking lines.

Initially all the SKUs in all of the 22 picking lines were consolidated and 20 new picking lines were
constructed, of which 19 contained 56 SKUs and the final picking line containing 27 locations.
This approach of considering all 22 picking lines simultaneously is unrealistic as usually no more
than 3 or 4 picking lines receive a wave simulatneously.

A different approach in §6.3 was then undertaken in the form of a tabu search, where SKUs
between two (or three) picking lines are swopped to effectively construct two (or three) new
picking lines, such that each picking line is then awarded a more desirable wave. Significant
savings may be incurred between large data sets.
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Conclusion
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This chapter contains a summary of the work contained in this thesis, followed by a description
of ideas for future research.

7.1 Thesis summary and achievement of goals

This thesis starts by defining supply chains and the importance of picking lines and picking
line operations within a broader logistics framework. An introduction of the current state of
picking line activities with the Pep DC’s are introduced. Three subproblems are identified that
divides the picking line operations within the Pep DC into three problems that may be addressed
individually, each subproblem relying on the results of its predecessor. Objectives set out for
this thesis also forms part of the introductory chapter.

The purpose of Chapter 2 is to provide a basic understanding of all the components that influence
the operations within a supply chain. A literature review is presented covering all these aspects
and by putting special focus on picking line configurations and operations. Advances in picking
line optimisation are included and the important contributions are mentioned. The operations
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within the Pep DC is also discussed in detail in Chapter 3. All the operations and considerations
before, during and after order picking are explained.

The three subproblems are modelled mathematically. An exact approach for the OSP is mod-
elled in §4.2 as an integer progamming formulation, a lower bound is presented for the SLP in
§5.1 in the form of a mixed integer programming formulation and a goal programming formula-
tion is constructed for the SPLAP in Appendix A. This is done in fulfillment of Thesis Objective
I as stated in §1.6. Each of these formulations cannot be solved in a reasonable time frame.

A number of definitions are then presented which lead to alternative methods of addressing
the OSP. Instead of sequencing orders to be picked, each order receives a starting location.
Once each order, in a wave, has received a starting location, a heuristic is used to deliver a
sequence that do not add more than one pick cycle to the solution. Heuristic and metaheuristic
approaches are constructed to address the OSP in this manner, which fulfills Thesis Objective
III.

In fulfillment of Thesis Objective IV the SLP is solved in a variety of manners. Initially clas-
sical approaches from literature is used to formulate the SLP. Consequenctly, a metaheuristic
approach, agglomerative clustering algorithms and novel clustering approaches specifically iden-
tified for the SLP are developed.

Managerial and practical implementations for SPLAP are examined. A number of measures for
the SPLAP are presented that address various aspects of importance of the SPLAP. A nearest
neighbour approach and a tabu search algorithm is presented to address the SPLAP. This is
done in order to fulfull Thesis Objective V.

Computational results for each of the subproblems are presented as well as computational times
where applicable. Conclusions are made in reference to the solution qualities (and computation
times) of the various algorithms used to solve the subproblem. Thesis Objective II is addressed
in this manner.

The following subsection contains open questions and new questions that have arised during the
completion of this thesis, thus addressing Thesis Objective VI. Thesis Objective VII is presented
in §7.3.

7.2 Thesis contributions

Some achievements of this thesis are presented in the following subsections.

7.2.1 Quick heuristic and metaheuristic approaches for the OSP

Matthews & Visagie [77] provided a lower bound to the OSP. The solution time to calculate
the lower bound for an average data set may be excessive. Algorithms that find near-optimal
solutions in a fraction of the time is needed when the SLP or the SPLAP is addressed.

The heuristic and metaheuristic implementations for solving the OSP may aid greatly in future
work on the SLP and SPLAP. A wide range of various algorithms are presented with the
solution qualities and computational times. Although the types of algorithms are known, all
these approaches were adapted to solve a novel problem in literature.
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7.2.2 Novel clustering algorithms for the SLP

Two clustering algorithms were presented for implementation of the SLP. These clustering algo-
rithms were constructed specifically to suite the characteristics of the SLP. The first clustering
heuristic was to group SKUs according to the number of orders that they have in common,
while the second clustering heuristic grouped SKUs according to their respective frequencies.

7.2.3 Preliminary investigation into the SPLAP

Some initial attempts to solve the SPLAP are presented in this thesis and may be used as a
guideline as to future work. Promising results were obtained from a tabu search implementation
where products from two or three picking lines were reassigned to the picking lines to minimise
the total distance travelled by the pickers. A number of criteria was discussed which may be
used as an objective for the SPLAP.

7.3 Possible future work

Seven categories of suggestions are made with respect to possible future research emanating
from the work presented in this thesis.

7.3.1 Developing criteria for measuring performance of the SPLAP

Conflicting objectives hinders a clear and direct goal when addressing the SPLAP. A number
of possible measures for determining ideal waves assigned to picking lines are suggested. These
measures do not, however, allow for much flexibility.

Alternative measures may be created to deliver specific results in the composition of possible
waves. The measures used in this thesis do not specify the ideal number of SKUs in a wave,
rather SKUs are sequentially placed in a wave. These and similar other aspects of constructing
waves may be investigated for constructing more desirable waves.

As mentioned in §6.3, many issues concerning the SPLAP was not considered in this thesis.
A manner of addressing all the components of SPLAP must be developed. Also, the term
“workbalance” must remain flexible in such a way that alterations in the picking line manager’s
preferences may be incorporated in practical settings.

7.3.2 Finding bounds on improvements of the SLP

Little improvement were found in the number of cycles travelled when addressing the SLP. Due
to the size of the SLP for an average sized problem, exact solutions could not be calculated. An
attempt to find lower bounds of the SLP may aid in identifying areas of improvement.

7.3.3 Measuring the trade-offs for using non-exact approaches to solve the
SPLAP

The results of the SPLAP displayed in this thesis used a greedy heuristic to solve the OSP
for each SPLAP configuration. Relatively little computational time is required to retrieve the
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results for using a greedy heuristic in comparison to using a metaheuristic to solve the OSP
during the process of constructing a wave during the SPLAP process. However, the solution
quality when moving from a greedy heuristic (NSO) to a metaheuristic (GEO) to solve the OSP
does not improve the solution quality considerably.1

7.3.4 Optimal number of pickers in a picking line

In this thesis order picking is sequenced for a single picker whereby the work may be partitioned
when multiple workers are present in the picking line. Orders may be allocated in a dynamic
fashion to pickers in practise. However, no investigation was made into a desired number of
workers within various picking line configurations. Cost-benefit analysis may be done to weigh
additional savings when the number of pickers working in a picking line is increased or decreased.

7.3.5 Optimal mix of picking line sizes

The data presented in this thesis is based on past data gathered from operations with the
Durban DC operated by Pep. Pep uses a system where a potential picking line containing 112
locations is partitioned into two picking lines each containing 56 locations. No investigation was
done into the optimal size of a picking line. Smaller picking lines (in terms of the number of
locations within the picking line) containing high frequency products and longer picking lines
with lower frequency products may possibly increase productivity in the Pep DC.

7.3.6 The effect of KPIs on the DC operations

Currently Pep uses a FIFO-system, with a release period of 5 workings days. The release period
takes into effect once the SKUs have been received by the DC and the distribution has been
released from Central Office. The FIFO-system limits the scope of constructing waves, which
may impact operations within the picking lines.

7.3.7 Permanent picking line

To improve efficiency within the picking line operations, Pep uses a permanent picking line.
The permanent picking line contains SKUs that are fixed to their respective locations. These
products often form part of the high frequency SKUs. Replenishment issues regularly occur in
this picking line. This picking line makes use of flowracks which acts as locations, whith three
levels of flowracks. The problem entails that the flowracks are unable to contain a large buffer of
stock. Workers are often unable to consistently replenish these locations. Currently this picking
line cannot operate on a permanent basis and consequently operated by means of wave picking.

1Experiments were conducted where the NSO was used to solve the OSP when the SPLAP was solved by
means of the tabu search approach. Experiments were then also conducted when the OSP was solved by means
of the GEO metaheuristic approach which was unable to deliver considerably better results.
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APPENDIX A

An exact formulation for the SPLAP

An exact formulation by means of using a mixed integer programming approach is presented.
This formulation is an extension of the formulation presented by Scott [100], where the objec-
tive is to minimise the total picking distance of a single picker on a single picking line. This
formulation considers all the pickers each picking line and all the picking lines within a DC.

The formulation is based on a two travelling salesman problem where each node is a location.
The pickers assigned to the various picking lines may visit the locations that contain SKUs
necessary for the order — these locations are called active locations for a customer order. All
the pickers are therefore not required to visit all the locations, i.e. all the nodes. To avoid
creating subtours, an inactive picker is created for each picking line to visit all the locations
that do not contain SKUs necessary for the order that is being picked.

The problem is formulated as a mixed integer goal programming problem. Multiple-objectivity
is a highly flexible and practical methodology for modelling, solving and analysing problems for
which it is necessary to consider the impact of multiple, conflicting objectives [61]. The first
objective is used to ensure that the total distance travelled by all the pickers are minimised,
while the second goal ensures that each picker in each picking line travels approximately the
same distance. A picking line finishes its operations when the last picker finishes the orders
assigned to him/her, therefore, the workload among the pickers have to be balanced.

The input data for this formulation consists of

Dij
k`h as the number of locations that must be picked from, when starting at location i in

order k and travelling to location j in order ` in picking line h,
P tkh which is equal to 1 if SKU t is in order k in picking line h and
Mh be the expected distance travelled in picking line h.

A number of variables required in modelling this problem are defined. Let
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zijk`rh be equal to 1 if a picker r in picking line h travels from location i in order k to
location j in order `,

yijk`h be equal to 1 if the inactive picker in picking line h travels from location i in order
k to location j in order `,

xtih be equal to 1 if SKU t in picking line h is in location i and
wkih be equal to 1 if location i in picking line h must be visited in order k,
ηh be the negative deviation of the total distance travelled in picking line h,
ρh be the positive deviation of the total distance travelled in picking line h,
ηrh be the negative deviation of the total distance travelled by picker r in picking line

h and
ρrh be the positive deviation of the total distance travelled by picker r in picking line h.

A set of constants are defined. Let

n be the number of orders,
m be the number of locations,
T be the number of SKUs,
Th be the number of SKUs assigned to picking line h,
R be the number of pickers and
H be the number of picking lines in the DC.

The objective is to firstly minimise the total number of cycles travelled by all pickers and then
to balance the number of cycles travelled over all the pickers in a picking line, i.e. to

lexicographically minimise α =

{(
H∑
h=1

ηh

)
,

(
H∑
h=1

R∑
r=1

ηrh

)}
(A.1)

subject to

T∑
t=1

xtih = 1
i = 1, 2, . . . ,m,
h = 1, 2, . . . ,H,

(A.2)

m∑
i=1

xtih = 1
t = 1, 2, . . . , T,
h = 1, 2, . . . ,H,

(A.3)

n∑
k=1

n∑
`=1

m∑
i=1

m∑
j=1

Dij
k`hz

ij
k`rh + ηh − ρh = Mh

h = 1, 2, . . . ,H,
r = 1, 2, . . . , R,

(A.4)

R∑
r=1

n∑
k=1

n∑
`=1

m∑
i=1

m∑
j=1

Dij
k`hz

ij
k`rh + ηrh − ρrh =

Mh

Th
h = 1, 2, . . . ,H, (A.5)

P tkhx
t
kh ≤ wkih

t = 1, 2, . . . , T,
k = 1, 2, . . . , n,
i = 1, 2, . . . ,m,
h = 1, 2 . . . , H,

(A.6)

1 + P tkh − xtkh ≥ wkih

t = 1, 2, . . . , T,
k = 1, 2, . . . , n,
i = 1, 2, . . . ,m,
h = 1, 2, . . . ,H,

(A.7)

R∑
r=1

n∑
k=1

m∑
i=1

zijk`rh +

n∑
k=1

m∑
i=1

yijk`h = 1
j = 1, 2, . . . ,m,
` = 1, 2, . . . , n,
h = 1, 2, . . . ,H,

(A.8)
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n∑
`=1

m∑
j=1

(yijk`h − y
ji
`kh) = 0

i = 1, 2, . . . ,m,
k = 1, 2, . . . , n,
h = 1, 2, . . . ,H,

(A.9)

R∑
r=1

n∑
`=1

m∑
j=1

(zijk`rh − z
ji
`krh) = 0

i = 1, 2, . . . ,m,
k = 1, 2, . . . , n,
h = 1, 2, . . . ,H,

(A.10)

m∑
j=1

n∑
`=1

y0j
0`h = 1 h = 1, 2, . . . ,H, (A.11)

R∑
r=1

n∑
`=1

m∑
j=1

z0j
0`rh = 1 h = 1, 2, . . . ,H, (A.12)

n∑
k=1

m∑
i=1

yi0k0h = 1 h = 1, 2, . . . ,H, (A.13)

R∑
r=1

n∑
k=1

m∑
i=1

zi0k0rh = 1 h = 1, 2, . . . ,H, (A.14)

uikh − u
j
`h +mnH

(
yijk`h +

R∑
r=1

zijk`rh

)
≤ mnH − 1

1 ≤ i, j ≤ m,
1 ≤ k, ` ≤ n,
if i = j, k 6= `,
if k = `, i 6= j,
h = 1, 2, . . . ,H

(A.15)

m∑
i=1

n∑
k=1

(yijk`h + wikh) = 1
j = 1, 2, . . . ,m,
k = 1, 2, . . . , n
h = 1, 2, . . . ,H,

(A.16)

zijk`rh ∈ {0, 1}

i = 1, 2, . . . ,m,
j = 1, 2, . . . ,m,
k = 1, 2, . . . , n,
` = 1, 2, . . . , n,
r = 1, 2, . . . , R,
h = 1, 2, . . . ,H,

(A.17)

yijk`h ∈ {0, 1}

i = 1, 2, . . . ,m,
j = 1, 2, . . . ,m,
k = 1, 2, . . . , n,
` = 1, 2, . . . , n,
h = 1, 2, . . . ,H,

(A.18)

xtih ∈ {0, 1}
i = 1, 2, . . . ,m,
t = 1, 2, . . . , T,
h = 1, 2, . . . ,H,

(A.19)

wkih ∈ {0, 1}
i = 1, 2, . . . ,m,
k = 1, 2, . . . , n,
h = 1, 2, . . . ,H,

(A.20)

uikh ∈ {0, 1}
i = 1, 2, . . . ,m,
k = 1, 2, . . . , n,
h = 1, 2, . . . ,H.

(A.21)

Constraint sets (A.2) and (A.3) assign SKUs to locations. Constraint sets (A.4) reflect the
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goal of minimising the total distance travelled by all the pickers in the DC, while constraint
sets (A.5) ensures that the distance travelled by each picker is minimised. Constraint sets (A.6)
and (A.7) states that a SKU must be in an order and be assigned to a location in order for
the location to be considered active. It is ensured in constraint set (A.8) that each location is
visited by exactly one of the pickers in that picking line. From constraint sets (A.9) and (A.10)
it is ensured that the picker that visits a location should be the picker to leave the location.
Constraint sets (A.11) to (A.12) ensure that both all pickers have to start and end at location 0,
i.e. at the depot (or the first location). The subtour breaking constraints are defined in (A.13)
and constraint set (A.14) states that the pickers must only visit active locations and the inactive
salesmen visit the inactive locations.

Values for Mh in constraint sets (A.4) and (A.5) may be considered as an upper bound for the
sum of the distance travelled by all the pickers in a picking line n. The size of this formulation
consists of m2n2H(1 +R) + nH(T +m) +H(4 +R+mn) variables of which m2n2H(1 +R) +
nH(T +m) are binary variables and H(m+ T +R+ 2Tmn+ 5mn+ 6) constraints.
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