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ABSTRACT 

Background: Multivariable diabetes risk prediction models have the potential to contribute 

to screening strategies, combining several risk factors to predict undiagnosed diabetes or 

future risk of developing diabetes. The focus of this study is the prediction of undiagnosed 

diabetes and diabetes risk prediction in a developing country where no population-specific 

diabetes risk prediction model currently exists. Existent models have been developed in 

unrelated populations with different disease prevalence, predictor weightings and methods 

used for risk factor determination and diabetes diagnosis. For accurate diabetes risk 

prediction in the mixed ancestry population of Bellville South, Cape Town, methodological 

issues regarding the validation and performance of these models needs to be addressed.  

Methodology: Cross-sectional data from the Cape Town Bellville South cohort was used for 

this study. Missing data in risk prediction research was investigated through a systematic 

review and a number of imputation methods were explored to deal with missing data in this 

dataset. Models were identified via recent systematic reviews and validated in the mixed-

ancestry population. Discrimination was assessed and compared using the C-statistic and 

calibration was assessed via calibration plots. Model recalibration in diabetes risk prediction 

was investigated through a systematic review. In an effort to improve model performance in 

the new setting, model recalibration and updating strategies were used and performance was 

compared before and after implementation.  

Results: The study sample consisted of 1256 individuals, of whom 173 were excluded due to 

previously diagnosed diabetes. Of the final 1083 individuals, 329 (30.4%) had missing data. 

Deletion resulted in the lowest model performance and simple imputation, the simplest 

method, resulted in the highest model performance and was employed for further analysis. 

A systematic review highlighted the gross underreporting and mishandling of missing data in 

diabetes risk prediction research. Original model performance during validation was poor-to-

average, with both over- and underestimation present: Cambridge [C-statistic: 0.67 (0.62-

0.72); E/O: 1.81 (1.09-2.52)], Kuwaiti [C-statistic: 0.68 (0.63-0.73); E/O: 0.72 (0.43-1.12)], 

Omani [C-statistic: 0.66 (0.61-0.70); E/O: 1.28 (0.63-1.93)], Rotterdam [C-statistic: 0.64 (0.59-

0.69); E/O: 0.54 (0.50-1.04)] and Simplified Finnish [C-statistic: 0.67 (0.62-0.71); E/O: 0.26 

(0.13-0.39)] diabetes risk prediction models. Recalibration, as shown through a systematic 
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review, was undertaken only in models predicting incident diabetes, and was reported in 

22.9% of validation studies, with 77.8% achieving an increase in model performance. 

Updating results applied to this validation dataset showed an increase in both discrimination 

and calibration in varying levels across all five models. Overall, the re-estimation of the 

Cambridge diabetes risk model yielded the best model performance [C-statistic: 0.71 (0.67 – 

0.75); E/O: 1.00 (0.86 – 1.17)].  

Discussion and conclusion: The frequency of missing data, underreporting and mishandling of 

missing data, complexity of updating methods and overall model performance of validated 

models in new settings highlight the challenges in diabetes risk prediction research. This is 

the first validation study of prevalent diabetes risk prediction models in Sub-Saharan Africa 

and highlighted important methodological issues. While both simpler imputation and 

updating methods resulted in similar predictive utility when compared to more complex 

techniques, model performance was not increased sufficiently to suggest recommendation.  

Word count: 500 
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OPSOMMING 

 

Agtergrond: Diabetesrisikobeoordeling het na vore gekom as ’n eenvoudige manier om 

intervensiestrategieë af te stem op diegene wat asimptomaties is dog aan ongediagnoseerde 

diabetes ly, of groot gevaar loop om diabetes te ontwikkel. Meerveranderlike-

risikovoorspellingsmodelle kan tot hierdie siftingsproses bydra deur verskeie 

risikovoorspellers wat in die uitkomsvoorspelling gebruik word te kombineer. Hierdie studie 

konsentreer op die voorspelling van ongediagnoseerde diabetes en diabetesrisiko in ’n 

ontwikkelende land waar daar tans geen populasiespesifieke model vir die voorspelling van 

diabetesrisiko bestaan nie. Bestaande modelle is ontwikkel in nieverwante populasies met 

verskillende metodes vir risikofaktorbepaling en diabetesdiagnose, die bepaling van 

siektevoorkoms en die beswaring van voorspellers. Vir akkurate diabetesrisikovoorspelling 

onder die veelrassige inwoners van Bellville-Suid, Kaapstad, moet die geldigheid en prestasie 

van hierdie modelle aandag ontvang.  

Metodologie: Deursneedata uit die kohort Bellville-Suid, Kaapstad, is vir hierdie studie 

gebruik. Ontbrekende data in risikovoorspellingsnavorsing is deur middel van ’n stelselmatige 

oorsig ondersoek, en ’n aantal toerekeningsmetodes is verken om ontbrekende data in 

hierdie datastel te hanteer. Modelle is deur middel van onlangse stelselmatige ondersoeke 

geïdentifiseer, en die geldigheid daarvan is onder die veelrassige bevolking bepaal. 

Diskriminasie is met behulp van C-statistiese en nieparametriese metodes beoordeel en 

vergelyk, en kalibrering is met kalibreringsgrafieke beoordeel. Om modelprestasie in die nuwe 

studieomgewing te verbeter, is modelherkalibrering en bywerkingstrategieë gebruik. 

Modelherkalibrering in diabetesrisikovoorspelling is eers deur ’n stelselmatige oorsig van 

gepubliseerde geldigheidstudies ondersoek. Daarna is bywerkingstrategieë in hierdie 

studiepopulasie in werking gestel en is prestasie voor en na inwerkingstelling vergelyk.  

Resultate: Die steekproef van die studie het uit 1 256 individue bestaan, van wie 173 weens 

voorheen gediagnoseerde diabetes uitgesluit is. Van die uiteindelike 1 083 individue, het 329 

(30,4%) ontbrekende data gehad. Weglating het tot die laagste modelprestasie gelei, en die 

eenvoudigste toerekeningsmetode wat die hoogste modelprestasie tot gevolg gehad het, is 

vir verdere ontleding gebruik. ’n Stelselmatige oorsig het erge onderrapportering en 

verkeerde hantering van ontbrekende data in navorsing oor diabetesrisikovoorspelling aan 
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die lig gebring. Oorspronklike modelprestasie gedurende geldigheidsbepaling was gemiddeld, 

en sowel oor- as onderraming het voorgekom in die diabetesrisikovoorspellingsmodelle van 

Cambridge [C-statistiek: 0.67 (0.62-0.72); E/O: 1.81 (1.09-2.52)], Koeweit [C-statistiek: 0.68 

(0.63-0.73); E/O: 0.72 (0.43-1.12)], Oman [C-statistiek: 0.66 (0.61-0.70); E/O: 1.28 (0.63-

1.93)], Rotterdam [C-statistiek: 0.64 (0.59-0.69); E/O: 0.54 (0.50-1.04)] en Finland 

(vereenvoudig) [C-statistiek: 0.67 (0.62-0.71); E/O: 0.26 (0.13-0.39)]. Herkalibrering, wat slegs 

onderneem is in modelle wat nuwe diabetesgevalle (insidensie) voorspel, is in 22,9% van 

geldigheidstudies gerapporteer, en 77,8% het ’n toename in modelprestasie getoon. 

Bywerkingsresultate wat op hierdie geldigheidsdatastel toegepas is, toon ’n toename in 

diskriminasie sowel as kalibrering op wisselende vlakke oor ál vyf modelle. Oor die algemeen 

het die herraming van die Cambridge-diabetesrisikomodel die beste modelprestasie 

opgelewer [C-statistiek: 0.71 (0.67 – 0.75); E/O: 1.00 (0.86 – 1.17)].  

Bespreking en gevolgtrekking: Die frekwensie van ontbrekende data, die onderrapportering 

en verkeerde hantering van ontbrekende data, die kompleksiteit van bywerkingsmetodes 

sowel as die algehele modelprestasie van geldige modelle in nuwe studieomgewings 

beklemtoon die uitdagings van navorsing oor diabetesrisikovoorspelling. Hierdie studie is die 

eerste geldigheidstudie van bestaande modelle vir diabetesrisikovoorspelling in Afrika suid 

van die Sahara. Hoewel eenvoudiger toerekening- en bywerkingsmetodes soortgelyke 

voorspellingsnut as meer komplekse tegnieke tot gevolg gehad het, het modelprestasie nie 

soveel verbeter dat dit aanbeveling regverdig nie.  

Woorde: 519 
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General introduction 

Diabetes mellitus, type 2 diabetes in particular, is a growing epidemic worldwide with 

developing countries currently paying the highest toll. In addition to improving the detection 

of those who already suffer from the disease, strategies are needed to improve the detection 

of those at risk of diabetes such that treatment and prevention measures can be implemented 

to prevent or delay the onset of the disease and related complications. The use of 

multivariable risk prediction models has been advocated as a practical and potentially 

affordable approach for improving the detection of undiagnosed diabetes or screening for 

future risk of diabetes. Accordingly, guidelines increasingly promote the use of prediction 

models and derivatives for diabetes risk screening around the world. Despite the availability 

of many prediction models, a ‘one size fits all’ approach is unrealistic, and no single model 

developed from one population can perform well in all other settings. Consequently, many 

parts of the world, particularly developing countries, have to rely on prediction models 

developed in other populations. Issues relating to differences in case-mix across populations, 

inherent to the development of models, can severely affect the applicability of a model in 

different settings. It is therefore important to identify these issues and attempt to address 

them with efficient methods, to ensure that diabetes prediction models developed in other 

populations are used with increased accuracy to improve diabetes prevention and detection 

in developing countries. Those issues so far have not been investigated in the context of South 

Africa and Sub-Saharan Africa in general. Thus, this study aims to investigate and address 

methodological issues which may affect the applicability of existent diabetes risk prediction 

models in a mixed ancestry population in South Africa. The focus of this study is diabetes risk 

prediction, in particular the prediction of undiagnosed diabetes. We will use the case of 

mixed-ancestry population of South Africa as the application population. But issues discussed 

here, mutatis mutandis, apply to developing countries in general. The literature review will 

comprise of current diabetes screening information and an expert review on diabetes risk 

prediction.  
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Research questions 

1. How do existing undiagnosed diabetes risk prediction models perform in mixed-

ancestry South Africans? 

2. What are the methodological issues surrounding prediction model validation of 

diabetes mellitus in developing countries?  

3. Can these issues be resolved without the need for deriving a context specific model?  

 

Objectives 

1. Review information on risk predictive modelling in the context of incident and 

prevalent diabetes  

2.  Validate existent prevalent diabetes risk prediction models in the Bellville South study 

participants 

3. Review the reporting and handling of missing data in predictive research for 

prevalent undiagnosed type 2 diabetes mellitus 

4. Apply multiple missing data imputation techniques to the Bellville South dataset and 

investigate the effect these had on the performance of undiagnosed diabetes risk 

prediction models  

5. Review the extent to which recalibration of risk prediction models is undertaken in 

validation studies of diabetes risk prediction models 

6. Apply multiple model updating strategies to the Bellville South dataset and 

investigate the effect these had on the performance of undiagnosed diabetes risk 

prediction models  

 

Hypothesis 

Prediction models developed elsewhere generate inaccurate estimates of undiagnosed 

diabetes risk among mixed-ancestry adult South Africans, which can be substantially 

improved by efficient application of simple improvement procedures. 
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Significance of the study 

The burden of diabetes in South Africa is a reality and the issues surrounding diabetes 

detection and prevention need to be addressed. With mass screening impractical due to cost 

and resources, the use of multivariable risk models in opportunistic clinical risk assessments 

is recommended by various guidelines.  Diabetes mellitus is a multifaceted disease, with a 

wide range of attributes that affect the risk of onset. Risk prediction models have the capacity 

to handle this complexity and numerous models do already exist that predict undiagnosed 

and future diabetes using clinical information and / or laboratory measurements. These do 

unfortunately have their limitations, including low utilization rates due to the inclusion of 

OGTT and complex physician-calculations, and thus an improved method for diabetes risk and 

diagnosis assessment based on a variety of factors in a format that facilitates use in routine 

clinical practice is essential.  

 

Despite these numerous prediction models, very few are practically implemented and many 

have not been externally validated in alternative population groups. Additionally, there is a 

growing concern that many of the current risk prediction models are poorly developed as they 

are based on a small and inappropriate selection of the cohort, questionable handling of the 

continuous risk predictors, inappropriate treatment of missing data, use of flawed or 

unsuitable statistical methods and ultimately, lack of transparent reporting in the steps taken 

to derive the model. Methodological issues relating to model development and 

generalizability need to be better addressed by prediction researchers to help strengthen 

models and aid in implementation, the true aim of risk prediction models. The prediction of 

undiagnosed diabetes in the mixed ancestry population of South Africa aims to identify these 

methodological issues via validation and assessment of common models, which has not been 

addressed in the Sub-Saharan region of Africa. The possible model enhancement by efficient 

application of improvement procedures will allow for a model that performs well in the 

prediction of undiagnosed diabetes risk prediction specific to this community. A suitable final 

model may be achieved which would improve risk assessment and enable more people to be 

evaluated and at-risk individuals to be more efficiently identified when implemented. 

Alternatively, this study will identify the methodological issues involved in diabetes risk 
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prediction studies, and encourage and aid future research into models specific for South 

African populations.  

 

It is clear there is a great clinical need for a robust and convenient tool for identifying 

undiagnosed diabetes and predicating future diabetes easier, quicker and more economically. 

In the long term, these models can be useful in the implementation of healthcare 

interventions, lifestyle changes or diabetes preventative programs, specific to this 

community, which can be targeted towards those at an increased risk of future disease 

development. While this may seem a far reach for developing countries, screening in these 

settings will never be considered without the availability and recommendation of affordable 

methods, something risk prediction models offer. Yet no diabetes prediction research in this 

region has been undertaken. This study wishes to initiate this, with a methodological 

approach deemed the best place to start. This study aims to validate existing undiagnosed 

diabetes risk prediction models in the mixed ancestry population of South Africa while 

identifying and addressing the methodological issues encountered during the validation 

process.  
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Epidemiology of diabetes 

Type 2 diabetes mellitus is a global health problem with prevalence rates increasing rapidly. 

In 2015, approximately 400 million individuals suffered from type 2 diabetes, and future 

predictions indicate that this number will surge to approximately 640 million by 2040  [1]. This 

rapid rise of diabetes will result in an even greater and more profound burden that developing 

countries are not equipped to handle. Diabetes is often associated with increased 

cardiovascular risk and renal complications, which leads to increased morbidity and increased 

mortality [2]. Diabetes is no longer a condition of the developed, ‘industrialised’ or ‘Western’ 

countries. With a 10 - 16% prevalence of diabetes in South Africa, a 10.4% prevalence for self-

reported hypertension, a prevalence as high as 78% in adult South Africans of unknown 

hypertensive status; and 29.2% and 56.6% overweight or obese men and women, 

respectively, chronic diseases and subsequently cardiovascular diseases are a startling reality 

in this country [3-6]. Type 2 diabetes in developing countries is further characterized by the 

high proportion of people who are undiagnosed, as well as a large number of those without 

the disease, but who are at risk of developing the condition in the future. The most recent 

population-based studies have reported age-standardized prevalence rate of diabetes as high 

as 26% and 13% respectively among mixed-ancestry [7] and Black [8] adult South Africans. 

The former study indicated that two thirds of the individuals with the disease were 

undiagnosed at the time of the study [9]. Furthermore, estimates at a national level suggest 

that the population of adults at risk of developing diabetes in South Africa matches the 

number of those already living with the disease [10]. This situation is likely to be similar in 

many other developing countries in Africa and beyond.  

 

The global burden of diabetes can be reduced with prevention, diagnosis and treatment 

strategies. Diabetes is a chronic disease, largely the result of excess body weight and physical 

inactivity. Type 2 diabetes symptoms are often asymptomatic, with the International Diabetes 

Federation (IDF) reporting that up to 62% of people living in Africa are unaware of their 

condition [11]. The diagnosis may only manifest several years after onset, once complications 

have already arisen, and life expectancy has been significantly reduced. On average, diabetes 

reduces life expectancy by 7.5 years in men and 8.2 years in women [12]. Over time, diabetes 
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damages the heart, blood vessels, eyes, kidneys and nerves. Ensuing cardiovascular diseases, 

retinopathy, chronic kidney failure and diabetic neuropathy, increase the risk of death by up 

to 50% in an individual with diabetes when compared to a non-diabetic [13]. Detecting 

individuals at future risk of diabetes allows for the implementation of education on lifestyle 

measures that are effective in preventing or delaying the onset of diabetes. Detecting 

individuals with undiagnosed diabetes allows for effective treatment to control blood glucose 

levels, preventing or postponing the onset of complications. Interventions in developing 

countries are both cost saving and feasible, and all efforts should be made to aid this process. 

 

Screening of undiagnosed diabetes 

The purpose of screening is to differentiate an asymptomatic individual at high risk from an 

individual at low risk for diabetes. This is largely different to diagnostic testing where an 

individual with visible signs and symptoms is diagnosed. There are various methods for 

screening, including risk assessment questionnaires, portable capillary blood assessments and 

laboratory based tests. The ideal screening test should be rapid, simple, safe, reliable, 

reproducible and affordable [14-17]. Additionally, a screening test should be both highly 

sensitive, the high probability of detecting or predicting a positive outcome when the subject 

truly has the disease, and highly specific, a high probability of being negative when the subject 

does not have the disease. Screening is deemed appropriate when the following seven 

conditions are met [18-22]: 

 

1. The disease represents an important health problem that imposes a significant 

burden on the population 

Diabetes is currently listed as the seventh highest cause of death worldwide, with gross 

under-reporting being acknowledged [23]. This is even more profound in minority 

populations. The nations with the highest prevalence of diabetes are mainly low and middle 

income countries. By 2030, there is a projected increase of adults diagnosed with diabetes of 

at least 57% in these low and middle income countries, compared to an only 25% increase in 

high income countries [24]. Most apt for this study, the greatest proportional increase (90.5%) 

will occur in sub-Saharan Africa. Diabetic individuals consume health care resources at two to 
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three times the rate of a non-diabetic patient [25]. This is, in large, due to the major 

complications of diabetes, namely visual impairment and blindness, end-stage renal disease 

and contributes to cardiovascular disease, stroke, disability, peripheral vascular disease and 

premature mortality [26-29]. Additionally, diabetes is a component cause of several non-

communicable diseases such as pneumonia [30], bacteraemia [31, 32] and tuberculosis [33], 

considerably impacting morbidity and mortality in Sub-Saharan African [34-39]. This double 

burden of disease, along with limited resources, is an important health problem in this region.  

 

2. The natural history of the disease is understood 

The natural history of type 2 diabetes is well defined, where biological onset due to impaired 

insulin action or relative insulin deficiency is followed by a phase in which the disease remains 

undiagnosed and largely asymptomatic [40]. The underlying loss of β-cell function can, in part, 

be due to factors such as sustained elevated glucose and lipid levels, inflammation, amyloid 

deposition, and oxidative and endoplasmic reticulum stress [41, 42]. There is an initial 

postprandial hyperglycemia and subsequent fasting hyperglycemia. As the hyperglycemia 

increases, the natural course of diabetes involves the development of complications, 

dependent on the duration and degree of the elevated glucose levels, and ultimately, death 

[43]. Prior to the onset of diabetes mellitus, hyperglycemia presents in the form of impaired 

glucose tolerance (IGT) or impaired fasting glucose (IFG), controversially referred to as ‘pre-

diabetes’, which may or may not develop into diabetes. Individuals with IFG have a 20-30% 

chance of developing diabetes over a 5 – 10 year period. This risk increases if IFG is combined 

with IGT [44].  

 

3. There is a recognizable preclinical (asymptomatic) stage during which the disease 

can be diagnosed 

The asymptomatic pre-diabetes phase has an estimated duration of 8.5-10.3 years and the 

clear preclinical asymptomatic diabetic stage may be present for up to seven years before 

diagnosis [45, 46]. This long, latent period can be detected using routine diagnostic tests used 

in the diagnosis of symptomatic and suspected patients [47]. Importantly, using the same 

diagnostic criteria as for symptomatic cases, diabetes can be detected in the preclinical stage. 

The diagnosis of diabetes during this phase should be not be made on a single abnormal 
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glucose result, but rather confirmed with a random blood sample or oral glucose tolerance 

test (OGTT) [11]. Both IFG and IGT are conditions characterized by glucose levels higher than 

normal but lower than the diagnostic cut-point for diabetes, and which can be detected and 

diagnosed. In addition to the increased risk of diabetes and its complications during this stage, 

complications are certainly not uncommon even in these early stages of diabetes [47-51].  

 

4. Treatment after early detection yields benefits superior to those obtained when 

treatment is delayed 

The benefits and risks of screening are assessed by comparing short- and long term health 

outcomes. Many screening analysis studies have been performed however; in-depth studies 

comparing treatments in a screen and control group have not been undertaken and are 

unlikely to happen due to feasibility, ethical concerns, and costs [52, 53]. Due to the 

recommendation of screening by several health organizations, no diagnosis and treatment in 

the control group once symptoms have already been identified, is seen as unethical. However, 

although individuals diagnosed with diabetes via screening typically have glucose levels that 

warrant treatment, evidence supports the benefits of improved glycemic control in type 2 

diabetes [54-58]. Additionally, the United Kingdom Prospective Diabetes Study (UKPDS) 

provided evidence that up to 50% of the newly diagnosed individuals, whether detected 

conventionally or through screening, had chronic diabetes complications at the time of 

diagnosis [59-61]. Two large trials have been instrumental in highlighting the benefits of early 

treatment of diabetes and the related complications [62, 63]. The STENO-2 study showed that 

long-term and intensified intervention for modifiable risk factors, with conventional diabetes 

treatment, reduced the risk of cardiovascular and microvascular events in roughly 50% of 

cases [63]. The ADDITION study relied on screen-detected diabetes only, and although non-

significant, results showed a reduction in the incidence of cardiovascular events and death 

[62].  

 

Data from intervention studies have also been useful in highlighting the effectiveness of 

diabetes and risk factor treatment. Studies conducted in conventionally diagnosed diabetic 

populations have compared the effects of individual treatment to lower blood glucose [58], 

blood pressure [64], and serum cholesterol [65, 66], as well as lifestyle modification [67]. 
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These results can inform early treatment strategies. Additionally, evidence concerning the 

effect of interventions in IGT has also been established, in particular, interventions aimed at 

weight reduction, increased physical activity and the use of some pharmacological agents 

have been shown to be effective in reducing or delaying the transition to diabetes in those 

with IGT [68]. As most studies based on diabetes treatment have been conducted in 

Caucasians, and given the increased risk that certain populations in developing countries have 

to diabetes-related complications and increased progression rate from pre-diabetes to 

diabetes, this prevalence is likely higher in the mixed-ancestry population in South Africa [69]. 

With an early detection, patients and medical practitioners can take preventative actions or 

begin treatment to prevent or delay complications and mortality.  

 

5. Tests are available that can detect the preclinical stage of disease, and the tests are 

acceptable and reliable 

There are two major methods used to screen for preclinical asymptomatic type 2 diabetes: 

risk prediction through the use of scores or questionnaires, and biochemical tests. Risk 

prediction is used to assign a person to a higher or lower risk group for diabetes by obtaining 

self-reported demographic, behavioral, and medical information. Questionnaires or risk 

scores are popular, better suited for prevalent diabetes screening and less expensive than 

biochemical tests and will be discussed in detail in Chapter 3. Biochemical measurements of 

glucose and highly correlated metabolites (e.g., HbA1c and fructosamine levels) have been 

used extensively for diabetes screening. They may be based on metabolic states including 

fasting, random, postprandial and glucose load via urine, venous or capillary glucose 

measurements.  

Urine glucose: Urine glucose has a low sensitivity, ranging between 21% and 64%, and a low 

PPV, so despite a specificity of > 98% it is deemed an inappropriate screening test [40, 68]. 

However, it may have a place in low resource areas where no other test is possible. This may 

be useful when the prevalence of undiagnosed diabetes is high.  

Random blood glucose: RBG testing is easy to obtain but also has a lower specificity, limiting 

it as a screening tool. The cut-off point for RBG is dependent on population characteristics, 

with a lower value resulting in a significantly lower sensitivity [70].  
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Fasting plasma glucose: FPG is highly correlated with the risk of diabetes complications. The 

sensitivity ranges between 40% and 65% with a specificity > 90%, this specificity drops to 

85.2% when the cut-off is dropped to the recommended optimal cut-off of 7.0mmol/L [68, 

70]. However, there is no globally agreed upon cut-off point, and it should be determined via 

further testing in each population. This test is therefore not as sensitive as the OGTT in IGT 

identification.   

Glycated haemoglobin: HbA1c was evaluated as a hyperglycemic test with the desire of 

replacing the OGTT with a simpler test [71-73]. HbA1c is a stable marker of long-term glycemic 

level, making it an appealing screening tool. It does not require a fasting sample, may be done 

on a capillary sample from point-of-care testing and the intra-individual variability is lower 

than fasting plasma glucose [74-76]. The use of HbA1c for the diagnosis of diabetes has been 

adopted by the ADA and the WHO, however the WHO recommends HbA1c for diagnosing 

diabetes as an alternative to plasma glucose measurements only if stringent quality assurance 

tests are in place and there are no conditions present which prelude the accurate 

measurement. Both organizations define the cut-off as 6.5%, however a value of less than 

6.5% does not exclude diabetes that has been diagnosed using glucose tests [70, 77]. This 

value was based on the level of HbA1c after which the incidence of retinopathy, a common 

complication of diabetes that often is present before the actual diagnosis is made, is increased 

[78]. Unfortunately grey areas exist around this cut-off, and has been shown to be ethnicity 

dependent [77, 79]. A study conducted in the mixed-ancestry population used in this study 

found that a level of 6.1% was optimal in diagnostic testing for all age groups [80]. 

Additionally, HbA1c can be affected by a number of conditions that may be more prevalent in 

developing countries, including hemoglobinopathies, iron deficiency and chronic kidney 

disease [81, 82]. The need for global standardization, unavailability of the test and the cost of 

HbA1c  testing still needs to be addressed [83]. 

75g oral glucose tolerance test: The 2-h glucose concentration from the OGTT has served as 

the reference standard for diabetes screening and diagnosis. It is also the only method that is 

used to formally detect or diagnose IGT. Due to the practical downsides of the required 8-

hour fast before the test, the length of the test and the commitment of the staff administering 

the test, this test is not the favored screening test [70].  
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Combinations of biochemical tests in series (with second and subsequent screening tests 

performed only when the preceding test is positive) can enhance the positive predictive value 

(PPV) by increasing the prevalence of disease in the population receiving the second screening 

test. Screening programs can initially use a less expensive and more sensitive test and then 

use the more complicated, more specific, and more expensive test (e.g. a questionnaire 

followed by capillary glucose measurement). Strategies that use multiple screening tests will 

not however, detect more undiagnosed cases (i.e. will not improve sensitivity) [40]. Multiple 

screening tests, specifically screening tests that involve invasive testing, are not 

recommended for undiagnosed diabetes screening programs, as this defeats the purpose of 

the screening methodology.   

 

6. The costs of case finding and treatment are reasonable and are balanced in relation 

to health expenditures as a whole, and facilities and resources are available to treat 

newly detected cases 

There is limited information concerning the cost of screening, and the cost is dependent on 

the setting and the screening approach. Three approaches to diabetes screening that have 

been used are population-based, selective and opportunistic screening. Population based 

screening is done at a community level and aims to screen each and every person. This is 

unrealistic, costly and is only potentially efficient in a high diabetes prevalence population. 

Selective screening targets subgroups of a population where diabetes and its associated risk 

factors prevalence is high [40, 84, 85]. Finally, opportunistic screening involves screening 

individuals who come into contact with the health care system or at selected mass gatherings 

[86]. Selective and opportunistic screening require fewer resources to reach those who are 

considered high risk but both have poor coverage and have too little control of the number 

of tests each individual receives – some people are tested too often with too many tests while 

others miss testing all together [86].  

 

The demand on resources exists in the screening and diagnosis process as well as the 

additional years of care due to early diagnosis. On the surface, these costs may outweigh the 

lifetime costs of an individual detected through the current practice, however with the 

likelihood of complications higher in the latter; these additional costs may rapidly overtake 
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those calculated in early detection and long-term treatment and management. According to 

the WHO, diabetes screening programmes, started between the ages of 30 and 45, with 

screening repeated every 3-5 years (every year for high risk groups), have been recognized to 

be cost-effective measures [87]. They provide the opportunity to target risk reduction 

interventions to high risk populations and to reduce the burden of diabetes and its 

complications through early identification and treatment. These measures should be 

supported by a healthy diet, regular physical activity, maintenance of a normal body weight 

and avoidance of tobacco. On the contrary, a number of studies calculating the lifetime costs 

of diabetes treatment in screening versus none found that the cost was higher with screening 

[88, 89]. However, the cost per life-year gained and the cost per quality-adjusted life-year 

(QALY) were significant. Greater benefits and more favorable cost-effectiveness ratios were 

found if screening was conducted for younger compared with older people (because younger 

people lived longer with diabetes and had great reductions in lifetime complications) and for 

African-Americans compared with the general population (primarily because of the higher 

complication rates among African-Americans). How diabetes screening complements efforts 

to control other diseases should also be considered. Screening for diabetes can be combined 

with efforts to detect other conditions, such as hypertension and dyslipidemia [52, 90-92].   

 

7. Screening will be a systematic ongoing process and not merely an isolated one-time 

effort 

The high rates of undiagnosed diabetes highlights the nonexistence or ineffectiveness of 

screening practices in the Sub-Saharan Africa region. To fully address the problem of 

undiagnosed diabetes, screening programs should be ongoing. For this to occur there needs 

to be an accurate and simple process of screening. Ideally, opportunistic screening should be 

made part of routine care, conducted in clinical settings at designated, regular intervals.  

Despite population-based and selective screening programs in a community setting 

demonstrating low yield and poor follow-up with high costs, the periodic screening of high-

risk individuals is warranted. Additionally, opportunistic screening can be considered within 

the healthcare setting. Questions remain about the optimal screening methods and how 

often screening should be carried out; and the best method for outcome diagnosis with 

accurate cut-off points for a positive test in each population. However despite the lack of firm 
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evidence, several health organizations have recommended it for several reasons [68, 93-96]. 

The already large and continuously growing burden of diabetes is condition enough that 

screening of diabetes should be supported. The IDF screening and diagnosis 

recommendations suggest that each health service should decide on programmes to detect 

undiagnosed diabetes based on the prevalence and the resources available in that region [97]. 

In areas with limited care, such as developing countries, the detection programmes are 

suggested to be opportunistic and limited to high-risk individuals. The detection method 

advocated is a risk assessment questionnaire to identify those individuals at high risk and then 

use glycemic tests to detect diabetes in these selected individuals. Taking into account the 

lack of resources or in the least, the misuse of resources, in developing countries, the WHO 

propose the reorganization of resources to allow for greater availability of supplies for 

screening and community follow-up [68].   

 

Countries may also implement their own screening guidelines as a strategy to reduce 

household, public and economic costs. As a developing country, South Africa ranks as a Newly 

Industrialized Country (NIC) along with India, China, Turkey and Malaysia. Diabetes is a major 

health problem in India and this country has perhaps implemented and researched 

undiagnosed diabetes screening the most earnestly. The introduction of the Prevention 

Awareness Counseling and Evaluation (PACE) Diabetes Project is to date the largest diabetes 

and non-communicable disease awareness screening and prevention project in India [98]. 

There were three areas that were focused on, namely the increase of knowledge and 

awareness of diabetes, the large scale opportunistic blood glucose screening to identify 

undiagnosed diabetes and finally a community based prevention program in selected 

communities. This project found screening cost effective and several organizations within 

India have adopted the PACE diabetes model. Although not without its challenges, this project 

could serve as a model for similar programs in comparable developing countries. The 

government of India’s national program for Prevention and Control of Diabetes / 

Cardiovascular Disease and stroke has subsequently implemented the opportunistic 

screening of all persons over the age of 30 including pregnant women of all ages.  
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The only South Africa-specific diabetes screening guideline was released by the Society for 

Endocrinology, Metabolism and Diabetes of South Africa (SEMDSA) in 2012 and follows the 

American Diabetes Association (ADA) diabetes screening guidelines [96, 99]. The 

recommendation is for screening to take place in the healthcare setting only, where 

diagnostic testing is performed in high risk individuals to detect undiagnosed diabetes. The 

risk of an individual is assessed on the presence of a body mass index (BMI) greater than 

25kg/m2 (considered overweight) and the addition of one of the following risk factors: 

physical inactivity, hypertension, family history of diabetes, dyslipidemia, polycystic ovarian 

syndrome, high-risk ethnic group, cardiovascular disease history, gestational diabetes or a 

baby born weighing more than 4 kilograms, previous IFG or IGT or conditions related to insulin 

resistance. Should none of these risk factors be present, the age of greater than 44 years is 

considered the additional factor. There is no recommendation on how these risk factors 

should be determined so it is assumed that it is via a questionnaire or the health professional’s 

inquiry when alerted to risk factors. This leaves much room for error. The interval in which to 

screen is suggested as every 3 years if the initial diagnostic test is normal, and annually in 

those with multiple risk factors, IFG or IGT.  

 

The reality is that the expected process of screening for diabetes in developing countries such 

as South Africa is not undertaken. Even though mass screening is not recommended, patients 

with risk factors should constantly be encouraged to be screened via non-invasive methods. 

Unfortunately, the average number of visits for patient care in the diabetic population in Sub-

Saharan Africa is low and usually only occurs once complications have arisen [100, 101]. 

Additionally, information on independent screening is not known nor are the guidelines they 

choose to follow. New trials to determine the benefits of screening are not necessarily needed 

in developing countries, but rather the testing of the adaptability of proven diabetes 

prevention strategies to local settings. Translational studies can be challenging in general and 

this may be compounded in developing countries where the  lack of qualified investigators 

and infrastructure all contribute to the potential challenges [70, 102]. Cost of financing 

screening programs along with the required education, health interventions and personal 

training are not a program most developing countries are able to provide. Additionally, 

healthcare systems need to be able to handle the possible surge in patients, regardless of the 
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long term cost and infrastructure benefits. However, a community based approach is feasible 

in developing countries. With the use of population and cultural specific risk assessment 

questionnaires, lay persons can be trained to deliver both the risk assessment and the lifestyle 

intervention and education [102]. This method reduces the overall cost of the screening study 

and subsequent implementation screening programs. This saving is further enhanced by the 

use of risk assessment tools that only require laboratory testing for individuals classified as 

high risk. Risk assessment scores are feasible, cost-effective and can be considered but 

applicability must be certain, with the required tests available in the area and evidence that 

the risk score has been validated in the population to be screened.  

 

Conclusion 

Prevention, diagnosis and treatment strategies for diabetes are important in the reduction of 

the global burden of diabetes. Screening is imperative in targeting diabetes prevention and 

diagnosis and ultimately treatment of both the disease and the associated complications. 

Various guidelines have recommended screening for diabetes mellitus as a cost-effective 

measure. Not without its challenges, there are several compelling reasons to support diabetes 

screening. Screening provides the opportunity to target risk reduction interventions to high 

risk populations and to reduce the burden of diabetes and its complications through early 

identification and treatment. Several reliable biochemical tests are used to detect diabetes 

however implementation in developing countries is considered unrealistic, when considering 

the already strained healthcare systems. Risk scores, particularly non-invasive models, are an 

important tool in diabetes screening in developing countries such as South Africa. These will 

be explored in the following chapter.  
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SUMMARY 

With half of individuals with diabetes undiagnosed worldwide and a projected 55% increase 

of the population with diabetes by 2035, the identification of undiagnosed and high-risk 

individuals is imperative. Multivariable diabetes risk prediction models have gained 

popularity during the past two decades. These have been shown to predict incident or 

prevalent diabetes through a simple and affordable risk scoring system accurately. Their 

development requires cohort or cross-sectional type studies with a variable combination, 

number and definition of included risk factors, and their performance chiefly measured by 

discrimination and calibration. Models can be used in clinical and public health settings. 

However, the impact of their use on outcomes in real-world settings needs to be evaluated 

before widespread implementation. 

 

KEYWORDS: diabetes, incident, prevalent, risk prediction, screening 

 

Expert commentary 

Rationale for developing diabetes risk models 

Worldwide, 382 million individuals are living with diabetes, where 46% are undiagnosed [1]. 

The prevalence is expected to increase by 55% by 2035, with the highest relative increase 

occurring in developing countries.  Type 2 diabetes mellitus (T2DM), which accounts for 9 in 

10 diabetes cases, imposes a substantial burden of morbidity, mortality, suffering and 

economic cost [2]. The natural history of T2DM is characterized by a silent phase that can last 

for many years. At diagnosis, micro and macrovascular complications are already present in 

approximately half of patients [3], with diabetes associated macrovascular complications 

contributing to most of the morbidity and mortality [4]. 

 

All the aforementioned reasons dictate the need for early identification and prevention of 

diabetes. Indeed, early detection of diabetes can potentially improve morbidity, mortality  

and quality of life outcomes [5]. Furthermore, the progression to the full stage of diabetes 
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among individuals with impaired fasting glycaemia (IFG) or impaired glucose tolerance (IGT) 

has been shown to be reduced by lifestyle changes and/or pharmacotherapy [6-9]. Early 

identification of individuals with undiagnosed diabetes or future risk of diabetes may be cost-

effective; hence, the need for developing strategies to identify individuals at high risk for 

diabetes and/or with undiagnosed diabetes, which include risk models for diabetes. Indeed, 

prospective epidemiological studies have highlighted the limitation of the use of IGT as the 

sole mean for identifying individuals at high risk for T2DM, as only 30 – 40% of individuals 

with IGT ultimately develop diabetes [10-12]. Additionally, 40% of subjects who develop 

T2DM have a normal glucose tolerance at baseline [10]. This variability of prognosis among 

patients prompted the search for alternative methods to accurately predict diabetes risk. Risk 

prediction models including multiple risk factors have emerged as practical tools to classify 

and predict diseases. Diabetes results from a complex gene-environment interaction for 

which several risk factors are well documented [8]. The precise interaction of these risk 

factors is a complex process that varies both within and across populations [13-15]. Risk 

models that can handle this complexity but at the same time are sufficiently simple, 

affordable and implementable, have been developed. These can be roughly divided based on 

the prediction of prevalent or incident diabetes risk. These are developed in different settings 

but will be discussed overall, unless specified.  

 

Historical perspective on risk prediction in diabetes  

Until the late 1970’s and early 1980’s, there was a lot of controversy surrounding early 

identification of people with diabetes, treatment of those with a less severe form of the 

disease, and little or no difference between interventions for diabetes prevention and those 

for diabetes control. Furthermore, the definition, classification and diagnostic criteria for 

diabetes varied substantially. In this context, recommendations for diabetes detection, 

prevention and treatment were very loose, and accordingly little effort was invested in 

improving diabetes risk screening and stratification [16]. In 1979, the National Diabetes Data 

Group (NDDG) of the US National Institute of Health proposed the first uniform classification 

and diagnostic criteria for diabetes mellitus [17], largely adopted by the World Health 

Organization (WHO) a year later, and subsequently revised a few times by both the American 

Diabetes Association (ADA) and WHO. One defining event appears to be the change of stance 
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on community screening for diabetes by the ADA in 1989, in the wake of the accumulating 

evidence, by issuing a position statement recommending that “all people with one or more 

diabetes risk factors or having any diabetes symptoms should be identified and referred for 

medical evaluation” [18]. This was followed by a shift of focus towards developing appropriate 

strategies for diabetes risk screening. In 1993, the ADA issued the risk factor questionnaires 

for diabetes risk screening [19], thereby embracing the concept of multivariable approaches 

to diabetes risk screening. The first published multivariable diabetes risk models aimed to 

prove that conventional diabetes risk factors can predict future diabetes as well as, if not 

better than, IGT [20]. These models were developed in randomly selected Mexican Americans 

and non-Hispanic whites within the San Antonio Heart Study cohort; for the overall 

population and separate for each sex and ethnic group, all containing fasting plasma glucose 

(FPG) as a variable. Following this, and based largely on the ADA questionnaire, Herman and 

co-workers used the classification regression tree to develop a model for predicting 

undiagnosed diabetes based on data from the second Nutrition and Health Examination 

Survey (NHANES) in 1994 [21]. This marked the beginning of the model development 

explosion. There has been significantly more focus on incident diabetes risk models, and as 

expected, risk prediction research has been concentrated in Western countries, with a small 

spike in developing countries like India, China and Taiwan [22, 23]. These models have been 

examined in four comprehensive reviews on diabetes risk prediction modelling [22-26]. 

 

Principles of risk prediction applied to diabetes  

Study design to develop risk models  

Risk scores are ideally developed in large, age-defined populations, measuring baseline risk 

factors [27]. Hitherto, studies have been mostly undertaken in the USA and European 

countries on Caucasian individuals [22-26]; however multi-ethnic studies [21, 28, 29] and 

studies focusing on minorities in a country are available [30-32]. The age range of included 

participants has mainly encompassed middle aged individuals (40 – 65 years), however some 

studies did include a younger population (adults over 20 years of age) [22, 23, 26].  
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Longitudinal study designs, such as the Atherosclerosis Risk in Communities Study (ARIC), are 

required for the development and validation of incident diabetes risk prediction models [33], 

where individuals at baseline are without previously diagnosed or undiagnosed diabetes. A 

cross-sectional study can only be used for the development and validation of prevalent 

diabetes risk prediction models, for example the Isle of Ely Diabetes Project in 

Cambridgeshire, where a cross-sectional study was used for the development of the 

Cambridge Diabetes Risk Score [34]. For models of prevalent diabetes, only individuals with 

previously diagnosed diabetes are excluded from the study. A single time point collection 

from a longitudinal collection may be used for prevalent models, illustrated by the FINRISC 

cohorts, which are comprised of population representative cross-sectional surveys allowing 

for incident and prevalent diabetes risk prediction [35].  

 

Data may be collected de novo, alternatively existent data may be used. Primary data may be 

collected via surveys, questionnaires or interviews. Readily available data may be in the form 

of existent databases from longitudinal or cross-sectional studies or unpublished data such as 

hospital patient records can be used. Lin et al recruited individuals for the purpose of risk 

model validation using interview methods [36]. Primary data has the benefit of control when 

collecting variables, while it is hindered by high cost and time intensity. Secondary data use is 

inexpensive and immediately available but missing information may be an issue. The DETECT-

2 study is a good example of an existent database, where 34 countries have contributed data 

of population-based surveys or large cohorts of at least 500 individuals with set required 

information. This data has been routinely used for model validation [28, 37]. Alternatively, 

The Health Improvement Network (THIN) cohort is a database comprising of primary care 

medical records entered by general practitioners in the UK [38].  

 

Variables included in diabetes risk models  

The final model can vary in the combination and number of risk factors included. Variables 

included in diabetes risk models have ranged from simple demographic information such as 

age or family history, to more complex and invasive markers such as triglyceride levels and 

genetic polymorphisms. The most commonly included risk factors have been age, family 
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history of diabetes, BMI, hypertension, waist circumference (WC) and gender [22-26]. The 

selection of the final model variables from preselected diabetes risk factors can follow the 

stepwise approaches including the backward significance level to stay or the forward 

significance level to enter [39]; using the full model approach and the all-possible model 

approach. Bang et al used backward elimination, deleting the covariate with a p-value greater 

than the selected significance level to stay, one at a time, until a final model was reached with 

statistical significant covariates [40]. Alternatively, forward selection describes the selection 

of a significance level to enter and variables with a p-value less than this are included in the 

model one by one, ensuring the model p-value stays below the significance level to enter. In 

general, stepwise approaches are the most common choice of variable selection [29, 41-44]. 

Finally, a relative weighting can be assigned to each predictor in the final model to produce a 

final risk score, making it easier to use. 

 

The definition of a variable included in a model is not uniform across studies. Family history 

may be limited to parents (e.g. The Framingham Offspring Diabetes Risk Score [45]) or 

extended to sibling diabetes history as in Cambridge Risk Score [46]. The BMI, if not classified 

as continuous, can have different cut-offs, depending on the population (e.g. BMI ≥ 28 kg/m2 

in the Chinese Diabetes Risk Score was classified as obese [47], while the Cambridge Risk Score 

gave the highest scoring to a BMI ≥ 30 kg/m2). The same can be said for WC, as in the 

Atherosclerosis Risk in Communities Diabetes Prediction Model (Men WC cut-off: > 105 cm; 

Women WC cut-off: > 104cm) [48] compared to the Chinese Risk Score (Men WC cut-off: >100 

cm; Women WC cut-off: > 90cm) [49]. Variables such as hypertension may also be based on 

reported information (e.g. hypertension medication use in Diabetes Risk Score [50]) or based 

on tested values (e.g. systolic blood pressure in the San Antonio Diabetes Risk Score [51]).   

 

Models that require variables obtained through an interview or questionnaire are generally 

classified as a non-invasive model; while those containing variable(s) requiring biochemical 

results are considered invasive models. The use of invasive variables in prevalent diabetes risk 

prediction modelling is considered impractical, defeating the object of simple and cost-

effective screening for undiagnosed diabetes risk. For incident diabetes risk modelling, the 
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inclusion of diabetes biomarkers in these models is possible, but practically challenging.  The 

added benefits of invasive biomarkers is under question, as it has been shown that the 

inclusion of conventional circulating biomarkers such as glucose, HbA1C, lipids, uric acid or γ-

glutamyltransferase improves model performance [52], while a review by Echouffo-Tcheugui 

et al concluded that circulating but more specifically genetic biomarkers did not substantially 

improve model performance beyond the ability of non-invasive risk models [53]. Variables 

may have a continuous or categorical form. The conversion of continuous to categorical 

variables, commonly age, BMI and WC, is not recommended, as it can result in a loss of 

information. Nevertheless, linearity of the continuous variable cannot be assumed and simple 

predictor transformations should be tested [54].  

 

 Definition of diabetes in models  

Previously diagnosed diabetes is identified through medical records or current treatment, 

allowing for immediate exclusion from the study. The identification of diabetes status can 

vary across studies. Studies may choose to use fasting blood glucose, oral glucose tolerance 

test, or a combination of both. Longitudinal studies for incident diabetes risk prediction can 

also rely on self-reporting of a subsequent diabetes diagnosis. The defining cut-offs used in 

risk model studies have been that of the World Health Organization [5] or the American 

Diabetes Association [55] As yet, only Simmons et al has used HbA1C as a diagnosis for incident 

diabetes [56]. 

 

Performance of models  

The performance of a newly developed model is measured by the discrimination and 

calibration. The discrimination describes the reliability of distinguishing between high and low 

risk individuals, assessed and compared by the concordance (c) statistic [54]. The calibration 

describes the agreement between the probability of the outcome of interest as estimated by 

the model, and the observed outcome frequencies [57]. It is assessed graphically by plotting 

the predicted risk against the observed outcome rate, supplemented with formal statistical 

tests. However, few studies report the complete measures of predictive performance 
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including discrimination, calibration with sensitivity and specificity and positive or predicted 

value for potential cut-offs [22, 24, 25]. The majority of studies report discrimination and less 

often calibration. The c-statistic in model development samples have range from as low as 

0.64 in the Chinese Diabetes Risk Score [49] to as high as 0.92 for the women’s Clinical and 

Biologic Risk Score in the Data from an Epidemiological Study on the Insulin Resistance 

Syndrome (DESIR) cohort [58]. The performance of non-invasive models ranged from 0.70 to 

0.80, while models containing biochemical measures ranged from 0.68 – 0.85, not displaying 

substantial gain from the inclusion of more invasive variables [25].  

 

External validation of diabetes risk models  

The good performance of a model during development does not necessarily demonstrate an 

acceptable model. The performance of developed risk models should be validated both 

internally (same population as development) and externally (similar but not identical 

population) to allow for accurate implementation. The San Antonio Diabetes Risk Score had 

a discrimination performance in the development population in the United States of 0.84 in 

the clinical model and 0.85 in the full model [59]. However, when applied to different settings 

(either change in patient ethnicity, from primary to secondary care populations or from adults 

to children; altering the case mix), this affected the generalizability of the model, reducing the 

its predictive performance [22, 60]. The external validation of this model in independent 

populations highlights this reduction in performance, seen in a Mexican population (0.77) 

[61], an Australian population (0.78) [62], a Finnish population (0.74) [63] and more drastically 

in a Chinese population (0.68) [64]. The loss of performance during external validation can 

also be due to the modification of models in the validation population. The Finnish Diabetes 

Risk Score had a c-statistic of 0.86 in the development population; validation in another 

Finnish study with a similar methodology reproduced this discrimination (0.86) [50], but was 

lower in other populations (0.65 – 0.81) [58, 62, 63, 65]. The latter studies altered the models, 

by adding family history and removing diet and physical activity as a variable. Understandably, 

the publication of model development has slowed as the validation of the models increases. 

Well recognized and externally validated incident diabetes models are the ARIC Study 

Diabetes Risk Score [48, 51, 66, 67], Cambridge Diabetes Risk Score [46, 56, 64, 68, 69] and 

the Framingham Offspring Diabetes Risk Score [45, 64, 70-73]; and prevalent diabetes risk 
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models Cambridge Diabetes Risk Score [32, 36, 46, 49, 74-77] and Finnish Risk Score 

(FINDRISC) [36, 49, 50, 77-81]. The acceleration of validation across diverse settings and 

specifically in developing countries is necessary. This can be initiated by large research groups 

who develop or have access to multinational databases, allowing the validation of models 

across multiple countries and population groups. Although validation of existent risk models 

can be seen in developing countries, it is significantly less than in developed countries. To 

encourage risk model validation in developing countries, comprehensive collection of data is 

required, followed up for risk factors and disease events and used for the validation of risk 

models. It is the lack of these databases that slow predictive research in developing countries. 

 

Uses of diabetes risk models 

Clinical and public health uses  

Diabetes risk prediction scores should be developed with the eventual aim of clinical 

implementation or public health use. The clinical use of risk prediction models to inform 

individuals of their current undiagnosed or future diabetes risk, are intended for self-

administration via post, email or physically distributed; while others require the assistance of 

medical practitioners and invasive testing. The usability of a prediction model depends on 

circumstances, and the variables included in the model need to be relevant or realistic to the 

clinical practice it is aimed to be implemented [82]. Application of risk models at a population 

level is potentially beneficial for subsequent public health use, providing insight into the 

future burden of a disease in an area / country, providing information that can be used for 

current and future health resource planning and opening the doors for research in the 

potential health impact of various population-based interventions.  

 

Impact of risk models on outcomes  

A diabetes risk prediction model has the potential to be a cost and lifesaving tool; however 

consequences can be adverse if, for example, beneficial treatment is not recommended to an 

individual due to the low risk classification of the score. Hence, impact studies are highly 

recommended to determine the extent to which the scores are actually used and have led to 
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improved outcomes. Unfortunately impact studies are scarce, indeed neither qualitative nor 

quantitative studies into the impact of a model are common in risk prediction assessment 

[60]. In addition, no study of prevention of incident diabetes among high risk people identified 

using a diabetes risk score has been published. However, there are completed intermediate 

outcome studies and ongoing translational studies [83-85]. Recently, there have been studies 

assessing the success of implementation of diabetes risk models in primary healthcare. A 

comprehensive review by Dhippayom et al explored the extent of use of diabetes risk 

assessment tools, showing that implementation mostly took place in Europe in a general 

practice or healthcare setting, with the American Diabetes risk score being the most 

frequently used tool [86]. This review illustrates the fact that relatively few prognostic models 

are currently used in clinical practice, as highlighted by the Prognosis Research Strategy group 

[87].  

 

The published implementation studies were focused on either the medical practitioner and 

patient perception of the used diabetes risk score or on the use of the score as a more 

proactive way of introducing lifestyle modification programs to reduce the set outcome, 

specifically diabetes risk factors such as weight, blood pressure and glucose levels, dependent 

on the predicted risk [22, 86]. Surprisingly, none of the published implementation studies 

recalculated participants’ risk scores following the intervention to determine if there was a 

change in predicted risk [22]. There is a clear lack of systematic approaches post-identification 

of high risk individuals [86]. The successful use of the models for lifestyle intervention 

programs has been highlighted by the GOAL study in Finland using the FINDRISC score [83], 

the Greater Green Triangle Diabetes Prevention Project in Australia using the Diabetes Risk 

Score [84] and the Active Prevention in High Risk Individuals of Diabetes Type 2 in Eindhoven 

(APHRODITE) study in the Netherlands, using the adapted FINDRISC score [85]. 

 

In most cases, however, the methodological limitations raise doubts as to whether this 

evidence can be translated into cost-effective large scale community-wide programs [88]. 

Consequently, the transfer to ‘real-world’ settings prior to widespread implementation 
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should be evaluated with a scientifically valid design. It is this transfer to routine clinical 

practice that remains the greatest challenge in diabetes risk prediction and prevention [89]. 

 

Barriers to implementation of diabetes risk models  

Despite the rise and endorsement of diabetes risk prediction models, barriers to their 

implementation need to be addressed. The recommendation of a model for implementation 

can only be given if validation in the new population has shown accurate predictive 

performance, and with no model for either incident or prevalent diabetes having been 

validated across all populations, mass-recommendation is not possible. The need for external 

model validation for generalizability and extrapolation has been highlighted, but what must 

be stressed is the applicability of these models in clinical practice and community settings, 

especially in developing countries. Invasive models are limited in their availability of the tests 

worldwide.  

Implementation may be affected due to changes over time, where improvements or changes 

in biomarker measurements or diagnostics tests will change the prognosis of the patient [82]. 

Other reasons for the poor implementation of models include the possible complexity for 

laymen or basic medical professions or the image thereof, limiting their application in routine 

care. This may also be the case for community screening. Finally, once classified as high-risk, 

individuals need to be directed to appropriate healthcare and educational centres. Depending 

on the country of implementation, specific optimal diabetes risk identification would have to 

be developed based on the unique socio-demographic and risk factor composition of the 

population. 

 

Expert commentary 

Risk modelling for predicting prevalent undiagnosed or incident diabetes mellitus has mostly 

developed over the last two decades, and has paralleled the accumulated knowledge on the 

determinants, natural course and pathophysiology of diabetes mellitus as well as strategies 

for modifying them through prevention and ongoing management. Many models have 

essentially been developed over the last two decades to predict the presence of undiagnosed 
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diabetes, or the future occurrence of the diseases, using varying combinations of history, 

clinical, biological and at times genetic characteristics related to diabetes risk. In proportion, 

only a few of these models have been tested in other populations, while an even smaller 

number have been incorporated in implementation studies, particularly of diabetes 

prevention. It remains, however, that more external validation studies of existing diabetes 

prediction models are needed, just like the impact analysis of their introduction in routine 

care on healthcare providers’ behaviour and the outcomes of people at risk of diabetes, or 

with prevalent undiagnosed diabetes.  

 

Five year view 

We predict that the imbalance between the number of diabetes prediction models developed 

and those tested in diverse populations will continue to prevail in the coming years. 

Investigators are often tempted to develop new models with no consideration of what is 

already available. For those who elect to test existing models, in the presence of poor 

performance, developing new models is often the preferred alternative to model 

improvement strategies. We further predict that more results will become available from 

ongoing diabetes prevention implementation studies that have used prediction models to 

select participants. Positive or promising results from these studies could accelerate the 

uptake of prediction models in routine settings worldwide. Finally, we speculate that 

prediction models, at least for prevalent undiagnosed diabetes and validation studies of 

existing models, will increasingly emerge from developing countries as the result of the 

growing worldwide interest in prediction research and personalised medicine. 
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Key issues 

 A fast increasing number of multivariable models to predict prevalent undiagnosed 

or incident diabetes have been developed, but only a few have been tested in 

diverse settings. 

 It is not always obvious from published studies to accurately ascertain how the 

development of existing models has addressed the critical methodological 

challenges which may affect the performance of the models both on the derivation 

sample, and in subsequent external validation studies. 

 The complexity of existing models varies substantially and in the absence of head-

to-head comparison studies, it will be very difficult in most settings to choose the 

most appropriate model. 

 Existing models are mostly based on glycaemia-defined diabetes, and may not be 

valid in the context of the recommendations for also using HbA1c for diabetes 

diagnosis. 

 Existing models overwhelmingly originate from developed countries, and have 

seldom been tested in developing countries that may derive the most benefits from 

the introduction of those models in routine care. 

 Studies to assess the impact of adopting diabetes prediction models in routine care 

are a very recent development, and little is known on the effect of introducing 

diabetes prediction models in routine care on the behaviour of healthcare providers 

and the outcomes of care. 
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Ethical considerations 

This study was approved by the Faculty of Health and Wellness Sciences Ethics Committee of 

the Cape Peninsula University of Technology (Project number: CPUT/HW-REC 2008/002 and 

CPUT/HW-REC 2010/H017) and the University of Stellenbosch Ethics Committee 

(N10/05/142), and was conducted according to the code of ethics of the World Medical 

Association (Declaration of Helsinki). All participants signed written informed consent after 

all the procedures had been fully explained in the language of their choice.  In addition, 

permission was also sought from other relevant authorities such as city and community 

authorities. These authorities granted permission to operate in the community and also to 

make use of designated places such as community halls or nearby schools for data and sample 

collection. 

 

Research setting and population 

The data from the Cape Town Bellville-South cohort will serve as the basis for model validation 

in this thesis. The Bellville South community in Cape Town, South Africa, has been the center 

of the Chronic Diseases of Lifestyle study for many years and the data suggested for this study 

was collected from mid-January 2008 to March 2009 (cohort 1), and from January to 

November 2011 (cohort 2). Bellville South is located within the northern suburbs of Cape 

Town, South Africa. It is traditionally a community of a mixed ancestry ethnic population 

group formed in the late 1950s. The area, often referred to as a township, is an 

underdeveloped urban residential area that was previously reserved for non-Caucasians, 

including the mixed ancestry group. The population has ancestry from Khoisan, African, 

European Caucasian and a small amount of Asian populations [1]. According to the 2001 

population census (the latest census done in Bellville), its population stands at approximately 

26 758 with the mixed ancestry group accounting for 80.48% (21 536) [2]. The target 

population for this study were subjects between the ages of 35 – 65 years and their number 

was estimated to be 6 500, however other age groups were also included and the final range 

was 16 – 95 years of age [3].  
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 Research design  

The cohort was initially established for follow up for insulin resistance and its sequel in 

randomly selected mixed ancestry individuals. The random sampling of the population was 

conducted using a map of Bellville South, where a list of streets from each stratum was 

prepared. The streets were then classified as short, medium and long, based on the number 

of houses within each street. Streets with houses ≤ 22 were classified as short, houses 23–40 

as medium and long streets were those with > 40 houses. A total of 16 short streets 

representing approximately 190 houses, 15 medium streets representing approximately 410 

houses and 12 long streets representing approximately 400 houses were randomly selected 

across the different strata. From the selected streets, all household members meeting the 

selection criteria were eligible to participate in the study. Community authorities requested 

that participants outside the random selection area also benefit from the study; these were 

included, but given a different code.  

 

 Recruitment strategy 

To publicize the study, information regarding the project was circulated to the community 

through the use of a local newspaper (the Tygerberger) and radio station (Radio Tygerberg). 

Brochures and fliers were spread among the residents via school children and taxis. The team 

responsible for recruitment, unemployed matriculants, was managed by a qualified, retired 

nurse who lived within the community. Additionally, a local celebrity suffering from diabetes 

was involved in a roadshow strategy to reach out to potential participants, particularly in the 

targeted streets. Recruited subjects were visited by the recruitment team the evening before 

participation and reminded of all the study instructions. The instructions included overnight 

fasting, abstinence from drinking alcohol or consumption of any fluids in the morning of 

participation. Since the participants were required to bring in an early morning mid-stream 

urine sample, they were provided with a sterile container as well as instructions on how to 

collect the sample Furthermore, participants were encouraged to bring along their 

medical/clinic cards and/or drugs they were currently using.  
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 Data collection 

To obtain the medical information and samples of the participants, a detailed protocol 

describing data collection procedures (questionnaires and physical examination) was 

developed. The team members, consisting of professional nurses and field workers, were 

trained, and a pilot study in a neighboring community with similar demographics was 

performed, to validate the questionnaire and to synergize the workflow. A supervisor was 

allocated for each team to monitor the performance of the personnel and calibrate 

equipment according to a standard protocol. In addition, weekly meetings were held to assess 

progress, solve problems and re-train the research team (if necessary). A questionnaire 

designed to retrospectively obtain information on lifestyle factors such as smoking and 

alcohol consumption, physical activity, diet, family history of CVD and diabetes mellitus (DM), 

demographics and medication use was administered by trained personnel. The questionnaire 

was adapted from several existing standards and recognized sources [4, 5] and was also pre-

tested in a neighboring community with similar demographics. Information about medication 

taken by participants was also obtained through clinic cards and record of drugs that 

participants brought to the study site. The more detailed the information retrieved, the more 

accurate and complete the database.  

Clinical measurements obtained included: height, weight, hip and waist circumferences and 

blood pressure. Measurements were carried out by qualified healthcare professionals who 

underwent training to standardize all measurements prior to the commencement of the 

study. Blood pressure measurements were performed according to World Health 

Organization (WHO) guidelines [6]. Measurements were performed using a semi-automatic 

digital blood pressure monitor (Rossmax MJ90, USA) on the right arm, in sitting and 

ambulatory position. After a 10 minute rest period, three readings were taken at 5 minute 

intervals and the lowest of the three readings was taken as the blood pressure. Weight was 

determined on a Sunbeam EB710 digital bathroom scale, which was calibrated and 

standardized using a weight of known mass. Weight measurements were recorded to the 

nearest 0.1 kilograms and taken with each subject in light clothing, without shoes and socks. 

Height was recorded in centimeters, to one decimal place, using a stadiometer, with subjects 

standing on a flat surface at a right angle to the vertical board of the stadiometer. Body Mass 

Index (BMI) was calculated as weight per square meter (kg/m2). Waist circumference was 
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measured using a non-elastic tape at the level of the narrowest part of the torso as seen from 

the anterior view. When difficult to observe the waist narrowing, especially in obese subjects, 

the waist circumference was measured between the ribs and the iliac crest. Hip circumference 

was measured around the widest segment of the buttocks. All anthropometric measurements 

were performed three times and the average measurement used for analysis.  

 

All participants, except the self-reported type 2 diabetic subjects (confirmed by either medical 

card record or drugs in use), underwent a 75g OGTT as prescribed by the WHO, with fasting 

blood glucose in all participants. Categories of glucose tolerance were defined using the 1998 

WHO criteria [6]. Blood samples were transported daily in an ice-pack box for processing at 

the Metropolis Private Pathology Laboratory (Century City, Cape Town). Serum creatinine was 

determined using the kinetic-Jaffe reaction (Cobas 6000, Roche Diagnostics, USA) and the 

result used to determine the glomerular filtration rate using the MDRD and CKD-EPI formulae. 

Plasma glucose was measured by enzymatic hexokinase method (Cobas 6000, Roche 

Diagnostics, USA). Glycosylated hemoglobin (HbA1c) was assessed by turbidimetric inhibition 

immunoassay (Cobas 6000, Roche Diagnostics, USA). This method is National 

Glycohaemoglobin Standardization Programme (NGSP) certified according to Roche 

Diagnostics. High density lipoprotein cholesterol and triglycerides were estimated by 

enzymatic colorimetric methods (Cobas 6000, Roche Diagnostics, USA). Low density 

lipoprotein cholesterol was calculated using Friedwald’s formula. Serum cotinine was 

measured by chemiluminescent assay (Immulite 1000, Siemens, Germany). This laboratory 

was accredited and performed all the necessary and required daily, weekly and monthly 

internal and external quality control. 

To maintain patient confidentiality, all data captured sheets containing clinical and 

demographic info of each patient were coded by a study number and the specimen labeled 

accordingly, thus any info leading to the identity of the subjects was kept separately. All 

consent forms and questionnaires were stored in confidential files and securely locked away.  
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Sample size  

This was a pre-collected dataset so sample size calculations for the number of samples to be 

collected are not relevant in this study. Sample size for model development and validation 

studies is not well defined, however studies have suggested that a minimum of 100 events 

and 100 non-events [7], and more recently, a minimum of 100 event and 200 non-events [8], 

are required for external validation studies. The dataset used in this study met this criteria.  
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ABSTRACT 

Background: Guidelines increasingly encourage the use of multivariable risk models to predict 

the presence of prevalent undiagnosed type 2 diabetes mellitus worldwide. However, no 

single model can perform well in all settings and available models must be tested before 

implementation in new populations. We assessed and compared the performance of five 

prevalent diabetes risk models in mixed-ancestry South Africans. 

Methods: Data from the Cape Town Bellville-South cohort were used for this study. Models 

were identified via recent systematic reviews. Discrimination was assessed and compared 

using the C-statistic and non-parametric methods, and calibration was assessed via calibration 

plots, before and after recalibration through intercept adjustment.  

Results: Seven hundred thirty-seven participants (27% male), mean age, 52.2 years, were 

included, among whom 130 (17.6%) had prevalent undiagnosed diabetes. The highest C-

statistic for the five prediction models was recorded with the Kuwaiti model [C-statistic 0.68: 

95% confidence: 0.63–0.73] and the lowest with the Rotterdam model [0. 64 (0.59 – 0.69)]; 

with no significant statistical differences when the models were compared with each other 

(Cambridge, Omani and the simplified Finnish models). Calibration ranged from acceptable to 

good, however over- and underestimation was prevalent. The Rotterdam and the Finnish 

models showed significant improvement following intercept adjustment. 

Conclusions: The wide range of performances of different models in our sample highlight the 

challenges of selecting an appropriate model for prevalent diabetes risk prediction in different 

settings. 
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BACKGROUND 

Diabetes mellitus, type 2 diabetes in particular, is a growing epidemic worldwide with 

developing countries currently paying the highest toll [1]. In 2013 there were approximately 

382 million individuals with type 2 diabetes, and  this number will surge to approximately 592 

million by 2035 [1]. This rapid rise of diabetes will result in an even greater and more profound 

burden which developing countries are not equipped to handle. Type 2 diabetes in developing 

countries is further characterized by a low detection rate with a high proportion of people 

being undiagnosed. Strategies are therefore needed for early detection and risk stratification 

such that treatment measures can be implemented to prevent the onset or delay the 

progression of related complications.  

The use of multivariable risk prediction models have been advocated as practical and 

potentially affordable approaches for improving the detection of undiagnosed diabetes. 

Accordingly, guidelines, including the International Diabetes Federation, increasingly 

promote the use of reliable, simple and practical risk scoring systems or questionnaires and 

derivatives for diabetes risk screening around the world [2, 3]. During the last two decades, 

numerous diabetes prediction models have been developed. However, only a few models 

have been externally validated, and generally not in developing countries [4, 5]. 

Consequently, many developing countries have to rely on prediction models developed in 

other populations and not necessarily validated in their context. However, issues relating to 

differences in case-mix across populations, inherent to the development of models, can 

severely affect the applicability of a model in different settings [6, 7].  

This study aimed to validate and compare the performance of selected common models for 

predicting prevalent undiagnosed diabetes based upon non-invasively measured predictors, 

in mixed ancestry South Africans.  
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METHODS 

Study population and design of study 

The Cape Town Bellville-South study data served as the basis for model validations [8]. 

Bellville-South is located within the Northern suburbs of Cape Town, South Africa, and is 

traditionally a mixed-ancestry township formed in the late 1950s. According to the 2001 

population census, its population stands at approximately 26 758 with 80.48% (21 536) 

consisting of the mixed ancestry individuals [22]. The study was approved by the Ethics 

Committee of the Cape Peninsula University of Technology (CPUT/HW-REC 2008/002 and 

CPUT/HW-REC 2010) and Stellenbosch University (N09/05/146). 

The Bellville South Study was a cross-sectional study conducted from mid-January 2008 to 

March 2009 (cohort 1), and from January 2011 to November 2011 (cohort 2). The target 

population for this study were subject’s ≥ 35 years. Using a map of Bellville South obtained 

from the Bellville municipality, random sampling was approached as follows: first, the area 

was divided into six strata; second, within each strata the streets were classified as short (<22 

houses), medium (23 to 40 houses) and long (>40 houses) streets based on the number of 

houses. Two of each respective streets were randomly selected from each strata. In those 

instances where the numbers of houses were too few, a short or a medium street were 

randomly selected and added to such a stratum.  The result was a total of 16 short streets 

representing approximately 190 houses, 15 medium (approximately 410 houses) and 12 long 

streets (approximately 400 houses). From the selected streets, all household members 

meeting the selection criteria were invited to participate in the study. One thousand subjects 

who met the criteria were approached and 642 participated in the study. In addition, 

community authorities requested that willing participants outside the random selection area 

should benefit from the study. Therefore volunteers (304 in 2008-2009 [cohort 1]), and 308 

in 2011 [cohort2]) from the same community but who were not part of the randomly selected 

streets or did not meet the age criteria, were also included. 
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Recruitment strategy 

Information regarding the project was disseminated to residents through the local radio 

station, community newspaper, brochures and fliers; the latter bearing information about the 

project and distributed through school children and taxis by the recruitment team. 

Additionally, a ‘road show’ strategy that involved a celebrity suffering from diabetes from the 

same community was also used, especially in the targeted streets. Recruited subjects were 

visited by the recruitment team the evening before participation and reminded of all the 

survey instructions. These included overnight fasting, abstinence from drinking alcohol or 

consumption of any fluids in the morning of participation. Since the participants were 

required to bring in an early morning mid-stream urine sample, they were provided with a 

sterile container as well as instructions on how to collect the sample. Furthermore, 

participants were encouraged to bring along their medical/clinic cards and/or medication 

they were currently using. 

 

Identification of prediction models 

Existing prediction models were obtained from a systematic review by Brown et al [9]. The 

search strategy from Brown’s paper was re-ran in PubMed for the time-period up to April 

2014, to identify possible new models. The following string search was used, as per Brown et 

al: ((“type 2 diabetes” OR “hyperglycaemia” OR “hyperglycemia”) AND (“risk scores”)). 

Selected models were only those developed to predict the presence of undiagnosed diabetes.  

We focused on models developed using non-invasively measured predictors which were 

available in the Bellville-South cohort database. Models were excluded if they were 

developed for male and female individuals separately.  

 

Outcome and predictors’ definition and measurements 

The main outcome was newly diagnosed type 2 diabetes from the standard oral glucose 

tolerance test (OGTT), applying the World Health Organisation (WHO) criteria (i.e. fasting 

plasma glucose ≥ 7.0 mmol/L and/or 2-hour plasma glucose ≥ 11.1 mmol/L) [10]. At the 
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baseline evaluation, conducted between 2008 and 2011, participants received a face-to-face 

interview administered by trained personnel to collect data on personal and family history of 

diabetes mellitus, cardiovascular disease (CVD) and treatments; habits including smoking, 

alcohol consumption, physical activity and diet; demographics and education. 

Clinical measurements included: height, weight, hip and waist circumferences and blood 

pressure (BP). BP measurements used a semi-automatic digital blood pressure monitor 

(Rossmax MJ90, USA) on the right arm, in sitting position, after a 10-minute rest. The lowest 

value from three consecutive measurements 5 minutes apart was used in the current analysis. 

Weight to the nearest 0.1 kg was determined on a Sunbeam EB710 digital bathroom scale, 

with each subject in light clothing, without socks and shoes. Height to the nearest centimetre 

was measured with a stadiometer, with subjects standing on a flat surface. Body mass index 

(BMI) was calculated as weight per square meter (kg/m2).  

Blood samples were collected and processed for a wide range of biochemical markers. Plasma 

glucose was measured by enzymatic hexokinase method (Cobas 6000, Roche Diagnostics, 

USA). High density lipoprotein cholesterol (HDL-c) and triglycerides (TG) were estimated by 

enzymatic colorimetric methods (Cobas 6000, Roche Diagnostics, USA).   

 

Assessment of model performance 

The original selected models were validated for the overall data and subsets using the 

formulas, without any recalibration. The predicted probability of undiagnosed diabetes for 

each participant was computed using the baseline measured predictors. The performance 

was expressed in terms of discrimination and calibration. Discrimination describes the ability 

of the model’s performance in distinguishing those at a high risk of developing diabetes from 

those at low risk [11]. The discrimination was assessed and compared using concordance (C) 

statistic and non-parametric methods [12]. 

Calibration describes the agreement between the probability of the outcome of interest as 

estimated by the model, and the observed outcome frequencies  [13]. It was assessed 

graphically by plotting the predicted risk against the observed outcome rate. The agreement 

between the expected (E) and observed (O) rates (E/O) was assessed overall and within pre-

specified groups of participants. The 95% confidence intervals for the expected/observed 
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probabilities (E/O) ratio were calculated assuming a Poisson distribution [14]. We also 

calculated 1) the Yates slope, which is the difference between mean predicted probability of 

type 2 diabetes for participants with and without prevalent undiagnosed diabetes, with 

higher values indicating better performance; and 2) the Brier score, which is the squared 

difference between predicted probability and actual outcome for each participant with values 

ranging between 0 for a perfect prediction model and 1 for no match in prediction and 

outcome [11, 13]. To determine optimal cut-off for maximising the potential effectiveness of 

a model, the Youden’s J statistic (Youden’s index) was used to determine the best threshold 

[15], with sensitivity, specificity and percentage of correctly classified individuals determined 

for each threshold.  The main analysis was done for the overall cohort and for subgroups 

defined by sex, age (<60 vs ≥60 years) and BMI (<25 kg/m2 vs ≥25 g/m2).  

 

Sensitivity analysis 

To improve performance and eliminate differences in diabetes prevalence between the 

development population and the test population, models were recalibrated to the test-

population-specific prevalence using intercept adjustment [16]. The correction factor 

calculated is based on the mean predicted risk and the prevalence in the validation set, and 

is the natural logarithm of the odds ratio of the mean observed prevalence and the mean 

predicted risk [16]. To assess the potential effect on model performance of validation studies 

from complete case analysis, we also assess the discrimination of model across five datasets 

after the application of multiple data imputation procedures to fill missing data.  
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Results  

Identification of prediction models 

Five non-invasive prevalent diabetes prediction models were selected for validation following 

the sifting process; the Cambridge Risk Score [17], Kuwaiti Risk Score [18], Omani Diabetes 

Risk Score [19], Rotterdam Predictive Model 1 [20] and the simplified Finnish Diabetes Risk 

Score [21] (Fig. 1). Table 1 summarizes the models’ characteristics. All models included age as 

a predictor, while a range of other predictors were variably combined in models. These 

included: sex, BMI, use of antihypertensive medication, family history of diabetes, waist 

circumference, past or current smoking and the use of corticosteroids. Additional 1: Table S1 

comprises of the full equations for each of the models.  

 

 

 

 

Fig. 1 – Flow diagram of selected studies 

 

 

 

 

 

 

 

 

 

5 articles included in this study 

20 full-text articles excluded 

Reasons for excluding 

- Validation study: model repeated or irrelevant (13) 

- Incident diabetes (6) 

1104 articles identified through 
database searching (PUBMED) 

31 articles identified through the 
Brown et al systematic review  

1124 articles after duplicates removed  

1042 records excluded on title 

82 abstracts were assessed for eligibility 57 articles excluded on abstract 

Reasons for excluding 

- Incident diabetes (20) 

- Invasive model (2) 

- Variables not in Bellville-South database (25) 
25 full-text articles assessed for eligibility  
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Table 1 - Overview of the included prevalent diabetes risk prediction models and their performance for the original model and the intercept 

adjusted model 

 Incident diabetes risk models 

Description Cambridge risk score Kuwaiti risk score  Omani risk score  Rotterdam Predictive model 1 Simplified Finnish risk score Bellville South 

Authors Griffin et al[17] Al Khalaf et al [18] Al-Lawati & Tuomilehto [19] Baan et al [20] Bergmann et al [21] - 

Year published 2000 2008 2007 1999 2007 - 

Country UK Kuwaiti Oman Netherlands Germany South Africa 

Validation External [22-28] None External [26] External [27-29] External [26-28] - 

Sample size 1077 460 4881 1016 526 737 

Type of study Cross-sectional Cross-sectional Cross-sectional Cohort Cohort Cohort 

Age range 40 – 79  20 – 40 20 – 80 55 – 75  41 – 79 15-95 

Population Caucasian Arab Arab Caucasian Caucasian Mixed ancestry 

Diagnosis of diabetes FBG ≥ 7.0 mmol/l; 2h glucose ≥ 

11.1 mmol/l  

FBG ≥ 7.0 mmol/l; Random 

glucose  ≥ 11.1 mmol/l 

FBG ≥ 7.0 mmol/l; 2h glucose ≥ 11.1 

mmol/l 

FBG ≥ 7.0 mmol/l; 2h glucose ≥ 11.1 

mmol/l 

FBG ≥ 7.0 mmol/l; 2h glucose ≥ 

11.1 mmol/l 

FBG ≥ 7.0 mmol/l; 2h 

glucose ≥ 11.1 mmol/l 

Development C-statistic  0.80 (0.68 – 0.91) 0.82 (NS) 0.83 (0.82 – 0.84) 0.68 (0.64 – 0.72) 0.75 (0.68 – 0.81) -  

       

Predictors       

Age Yes Yes Yes Yes Yes Yes 

Sex Yes No No Yes Yes Yes 

BMI Yes No Yes Yes Yes Yes 

Use of HTN drugs Yes Yes No Yes Yes Yes 

Family history Yes Yes Yes No Yes Yes 

WC No Yes Yes No No Yes 

Smoking Yes No No No Yes Yes 

Corticosteroids Yes No No No Yes Yes 

Systolic/diastolic No No Yes No No Yes 

       

Performance Original  Adjusted Original Adjusted Original Adjusted Original Adjusted Original Adjusted  

E/O (95% CI) 1.81  

(1.09-2.52) 

1.22  

(0.61-1.83) 

0.72  

(0.40-1.12) 

0.94  

(0.47-1.41) 

1.28  

(0.63-1.93) 

1.06  

(0.47-1.66) 

0.54 

(0.50-1.04) 

0.98  

(0.91-1.05) 

0.26  

(0.13-0.39) 

0.89  

(0.51-1.26) 

- 

Brier score 0.193 0.160 0.141 0.143 0.164 0.157 0.147 0.140 0.157 0.143 - 

Yates slope 0.379 0.379 0.496 0.496 0.392 0.392 0.971 0.971 0.491 0.491 - 

C-statistic   (95% CI) 0.67 (0.62-0.72) - 0.68 (0.63- 0.73) - 0.66 (0.61- 0.70) - 0.64 (0.59- 0.69) - 0.67 (0.62-0.71) - - 

Optimal threshold 0.29      0.16 0.13 0.18 0.12 0.09 0.20 0.18 0.02 0.08 - 

Sensitivity 65 65 61 61 85 85 57 57 75 75 - 

Specificity 61 61 63 63 42 42 65 65 48 48 - 

Correctly classified 62 62 63 63 50 50 64 64 53 53 - 

*UK, United Kingdom; FBG , fasting blood glucose; OGTT, 2 hour post load oral glucose tolerance test; C-statistic, concordance statistic; NS, not stated; BMI, body mass index; HTN, hypertension; WC, waist 
circumference; E/O, ratio expected/observed event rate; 95% CI, 95% confidence interval.  
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Participants’ characteristics 

A total of 1256 participants were examined in the Bellville South studies, including 173 with 

a history of diagnosed diabetes who were excluded. A further 346 participants were excluded 

for missing data on predictors or the outcome variable. Therefore the final dataset comprised 

of 737 participants, of whom 580 (78.70%) were female. In the Additional file 2: Table S2, we 

compare the profile of participants in the final sample vs. that of participants excluded for 

missing data. Excluded participants comprised of more men (27.2 vs. 21.3%, p=0.012), were 

more likely to display a better lifestyle profile for alcohol intake (18.8% vs. 28.1%, p <0.001), 

smoking (31.8% vs. 43.8%, p<0.001), lower family history of diabetes (all p <0.001), higher 

systolic blood pressure (126 vs. 123 mmHg, p=0.009) and lower triglycerides (1.4 vs. 1.5 

mmol/l, p=0.043); although absolute differences were mostly clinically trivial.  

The baseline profile for men and women included in the study is described in Table 2. The 

mean baseline age was 51.2 years overall, and 53.5 and 52.1 years, respectively in men and 

women (p=0.311). The BMI (p<0.001) waist circumference (p=0.024) and fasting blood 

glucose (p=0.036) were significantly higher in women, while smoking (p <0.001) and alcohol 

consumption (p <0.001) were more frequent among men.   
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Table 2 - Characteristics comparison of participants with valid data  

 Male (157) Female (580) p-value Overall (737) 

Prevalent undiagnosed DM (%) 22 (14.0) 108 (18.6) 0.220 130 (17.3) 

Age (years) 53.5 (15.0) 52.1 (14.3) 0.311 52.2 (14.5) 

Body mass index (kg/m2) 25.5 (5.8) 29.6 (7.0) <0.001 29.4 (7.1) 

Waist circumference (cm) 92.5 (15.2) 95.6 (14.7) 0.024 95.9 (14.9) 

Hypertensive medication (%) 43 (27.4) 208 (35.9) 0.059 251 (34.1) 

Smoking status (% smoking) 88 (56.1) 235 (40.5) <0.001 323 (43.8) 

Systolic blood pressure (mmHg) 124.3 (16.6) 121.6 (19.2) 0.077 122.0 (18.7) 

Diastolic blood pressure (mmHg) 75.6 (11.1) 74.7 (12.1) 0.365 74.7 (11.9) 

Height (m) 1.7 (0.1) 1.6 (0.1) <0.001 1.6 (0.1) 

Mother having diabetes (%) 17 (10.8) 92 (15.9) 0.147 109 (14.8) 

Father having diabetes (%) 14 (8.9) 44 (7.6) 0.702 58 (7.9) 

Sister having diabetes (%) 12 (7.6) 80 (13.8) 0.053 92 (12.5) 

Brother having diabetes (%) 9 (5.7) 49 (8.5) 0.340 58 (7.9) 

Fasting blood glucose (mmol/L) 5.4 (1.4) 5.7 (2.0) 0.036 5.8 (1.9) 

HDL (mmol/L) 1.2 (0.4) 1.3 (0.3) 0.136 1.3 (0.3) 

Weight (kg) 72.3 (16.4) 73.9 (17.7) 0.290 74.1 (17.5) 

Ever consumed alcohol (%) 116 (73.9) 240 (41.4) <0.001 356 (48.3) 

Current drinking (%) 80 (51.0) 127 (21.9) <0.001 207 (28.1) 

Using Corticosteroid use (%) 1 (0.6) 4 (0.7) >0.99 5 (0.7) 

Triglyceride (mmol/L) 1.4 (0.9) 1.4 (0.9) 0.836 1.4 (0.9) 

 

 

Prediction of prevalent undiagnosed diabetes in the overall sample 

A total of 130 participants (17.6%) had prevalent undiagnosed diabetes. This prevalence was 

similar in men vs. women (14% vs. 18.6%, p=0.220) (Table 2). Table 1 shows the discrimination 

for the selected prediction models in their original form in the overall sample. Discrimination 

was modest-to-acceptable and similar between models, with C-statistics (95% CI) ranging 

from 0.64 (0.59 – 0.69) for the Rotterdam model to 0.68 (0.63 – 0.73) for the Kuwaiti model 
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(all p>0.05 for C-statistics comparison; Additional file 3: Table S3).  At the total population 

level, the absolute risk of prevalent diabetes was acceptably estimated by the Omani model, 

overestimated by 81% (9 to 152%) by the Cambridge model, underestimated by 74% (61 to 

87%) by the Finnish model and marginally underestimated by the Kuwaiti and Rotterdam 

models (Table 1). The calibration curves are shown in Fig. 2. There was a systematic risk 

underestimation across the continuum of predicted probability by the Finnish and Rotterdam 

models, a selective upper strata risk overestimation by the Cambridge and Omani models, 

and a combination of both lower strata risk underestimation and upper strata risk 

overestimation by the Kuwaiti model. Comparison of the C-statistics from the development 

study and the models’ performance in this population showed a drop in performance of all 

the models.   Other performance measures are shown in Table 1.  

 

Prediction of prevalent undiagnosed diabetes in subgroups 

The performance of the original models across subgroups was parallel to that in the overall 

dataset (Table 3). When comparing patterns of predictions across complementary subgroups, 

only stand-alone differences were seen in performance for a subgroup, which was not carried 

through all performance measures. Estimates of C-statistics were broadly similar across 

complementary subgroups, except for the Omani and Finnish models across BMI subgroups, 

whereby lower estimates were always found in the overweight/obese subgroup. The pattern 

of the overall calibration (E/O) across complementary subgroups varied substantially across 

models. For instance, across gender subgroups, the overall diabetes risk was acceptably and 

equally predicted by the Omani model, equally underestimated by the Kuwaiti and Finnish 

models, equally overestimated by the Cambridge model, but acceptably estimated in men 

and underestimated in women by the Rotterdam model (Table 3). Other performance 

measures across subgroups are shown in Table 3. 
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E/O: 0.89 (0.51 ; 1.26) 
Brier Score: 0.143 
Yates Slope: 0.491 

E/O: 1.06 (0.72 ; 1.41) 
Brier Score: 0.157 
Yates Slope: 0.392 

E/O: 1.28 (0.84 ; 1.72) 
Brier Score: 0.164 
Yates Slope: 0.392 

E/O: 1.22 (0.61 ; 1.83) 
Brier Score: 0.160 
Yates Slope: 0.379 

E/O: 0.94 (0.47 ; 1.41) 
Brier Score: 0.143 
Yates Slope: 0.496 

E/O: 1.81 (1.09 ; 2.52) 
Brier Score: 0.193 
Yates Slope: 0.379 

E/O: 0.72 (0.40 ; 1.12) 
Brier Score: 0.141  
Yates Slope: 0.496 

E/O: 0.26 (0.13 ; 0.39) 
Brier Score: 0.157  
Yates Slope: 0.491 

A C B D 

Fig. 2 - Calibration curves in the overall cohort for the models before (upper panel) and after the intercept adjustment (lower panel): 

A: Cambridge Risk Score, B: Kuwaiti Risk Score, C: Omani Diabetes Risk Score, and D: Simplified Finnish Diabetes Risk Score. Calibration describes the 

agreement between the probability of undiagnosed diabetes as estimated by the model and the recorded frequencies of the outcome. The ideal calibration is 

graphically represented by the dotted diagonal line at 45°. Participants are grouped into percentiles across increasing predicted risk. The vertical lines at the 

bottom of the graph depict the frequency distribution of the calibrated probabilities of diabetes. *E/O, expected/observed ratio. 
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Table 3: Discrimination and calibration statistics for diabetes risk model performance in subgroups of participants by gender, age and body mass index (BMI) 
Models  Male Female Age < 60 years Age ≥ 60 years BMI < 25 kg/m2 BMI ≥ 25  kg/m2 

Cambridge Diabetes 
Risk Score  [17] 

 

E/O (95% CI) 2.30 (1.21-3.37) 1.71 (1.00-1.41) 1.57 (0.71-2.44) 2.10 (1.51-2.69) 1.08 (0.55-1.61) 1.96 (1.30-2.63) 

Brier score 0.195 0.192 0.151 0.282 0.102 0.230 

Yates slope 0.373 0.384 0.368 0.384 0.450 0.368 

C-statistic (95% CI) 0.67 (0.56-0.78) 0.67 (0.62-0.73) 0.66 (0.60-0.72) 0.65 (0.56-0.73) 0.69 (0.58-0.79) 0.64 (0.59-0.70) 

Kuwaiti Risk Score [18] E/O (95% CI) 0.73 (0.40-1.06) 0.72 (0.34-1.10) 0.73 (0.37-1.10) 0.71 (0.32-1.11) 0.33 (0.20-0.46) 0.81 (0.43-1.19) 

Brier score 0.112 0.149 0.121 0.186 0.097 0.159 

Yates slope 0.588 0.468 0.476 0.449 0.890 0.468 

C-statistic (95% CI) 0.70 (0.58-0.82) 0.67 (0.61-0.72) 0.67 (0.61-0.74) 0.65 (0.57-0.73) 0.61 (0.51-0.72) 0.66 (0.60-0.71) 

Omani Diabetes Risk 
Score  [19] 

E/O (95% CI) 1.33 (0.45-2.20) 1.32 (0.65-2.00) 1.26 (0.53-1.99) 1.40 (0.60-2.20) 1.16 (0.41-1.92) 1.36 (0.71-2.01) 

Brier score 0.137 0.173 0.140 0.221 0.096 0.194 

Yates slope 0.347 0.399 0.393 0.296 0.620 0.304 

C-statistic (95% CI) 0.62 (0.49-0.74) 0.66 (0.61-0.71) 0.66 (0.60-0.71) 0.60 (0.52-0.68) 0.71 (0.61-0.82) 0.61 (0.56-0.67) 

Rotterdam  Predictive 
Model 1 [20] 

E/O (95% CI) 0.84 (-0.38-2.06) 0.48 (0.45-0.93) 0.52 (0.44-0.96) 0.49 (0.39-0.88) 0.72 (0.34-1.06) 0.51 (0.45-0.96) 

Brier score 0.117 0.155 0.125 0.199 0.096 0.168 

Yates slope 0.913 1.154 1.135 0.838 0.791 0.886 

C-statistic (95% CI) 0.62 (0.49-0.75) 0.66  (0.60-0.72) 0.62 (0.55-0.69) 0.61 (0.52-0.69) 0.61 (0.50-0.72) 0.63 (0.57-0.69) 

Simplified Finnish  
Diabetes Risk score  [21] 

E/O (95% CI) 0.22 (0.09-0.35) 0.32 (0.18-0.45) 0.34 (0.18-0.50) 0.26 (0.14-0.37) 0.11 (0.06-0.15) 0.34 (0.21-0.48) 

Brier score 0.128 0.162 0.128 0.213 0.103 0.176 

Yates slope 0.538 0.591 0.487 0.608 1.345 0.562 

C-statistic (95% CI) 0.70 (0.59-0.81) 0.66 (0.60-0.71) 0.64 (0.58-0.71) 0.67 (0.60-0.75) 0.77 (0.69-0.86) 0.62 (0.57-0.68) 

*E/O, expected/observed ratio
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Performance of the intercept adjusted models 

As expected, intercept adjustment yielded acceptable agreement between predicted and 

observed prevalent diabetes rates at the total population level. A perfect agreement was also 

observed across the continuum of the predicted probability by the updated Rotterdam model. 

However, despite some attenuation, selective upper strata risk overestimations were 

apparent for other models.  

 

Model performance at the optimal threshold 

The performances of models at the optimal thresholds are shown in Table 1. As anticipated, 

the optimal threshold probability for our sample varied across models and for the same model 

between the original and intercept adjusted versions. The sensitivity at the optimal threshold 

ranged from 61% for the Kuwaiti model to 85% with the Omani model, the specificity from 

42% (Omani model) to 65% (Rotterdam model), and the proportion of participants correctly 

classified from 50% (Omani model) to 64% (Rotterdam model). 

 

Model performance after multiple imputation of missing data 

The discrimination (C-statistic) of models across five datasets obtained after multiple 

imputation of missing data was very similar: 0.69 (0.64-0.73) for the Cambridge model, 0.69 

(0.65-0.74) for the Kuwaiti model, 0.65 (0.61-0.69) for the Omani model, 0.65 (0.60-0.69) for 

the Rotterdam model and 0.66 (0.62-0.70) for the Finnish model (results not shown). The 

values were also very similar to those from the validation of models in the dataset comprising 

only of participants with complete data (Table 1). 

 

Discussion  

To our knowledge, this is the largest and most comprehensive validation study of prevalent 

diabetes prediction models in a sub-Saharan African population. In the Bellville South cohort, 

the selected existing prediction models based upon non-invasive measured predictors had 

modest-to-acceptable discriminatory ability to predict prevalent undiagnosed diabetes, both 
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overall and within subgroups. Simple intercept adjustment had a mixed effect on the 

calibration performance of the models, while none of the models was significantly better than 

other models to be uniquely recommended for use in this setting. At the optimal probability 

thresholds, the best performing model would correctly classify only about 2/3rds of the 

population, indicating the existing scope for further improving the models’ performance in 

this setting. 

 

The need for diabetes screening programs is imperative in the reduction of the worldwide 

burden of complications from diabetes in undiagnosed individuals. In view of the large and 

continuously growing burden of diabetes, the Centre for Disease Control strongly advocates 

for diabetes screening programs. In its most recent guidelines for type 2 diabetes screening 

and diagnosis, the International Diabetes Federation has recommended that each health 

service should decide on programs to detect undiagnosed diabetes based on the prevalence 

and the resources available in that region [3]. In areas with limited care, such as developing 

countries, the detection programs are suggested to be opportunistic and should be limited to 

high-risk individuals. The World Health Organization African region promotes the screening 

of at-risk individuals in Africa in healthcare settings and social gatherings [30]. Risk assessment 

scores are feasible and cost-effective and can be considered, but applicability must be certain, 

with the required tests available in the area and the validation of that risk score in the 

population.  

 

With the exception of the Kuwaiti model [18], all other models assessed in our study have 

been validated externally. The most validated appeared to be the Cambridge model [17], with 

C-statistics ranging from 0.67 to 0.83 across validation studies [23-25, 27, 28]. With a C-

statistic of 0.67 in the Bellville South data set, the Cambridge model performance in this 

population fell to the bottom end of other validation study results. Similarly, the Finnish 

model’s discrimination performance (C-statistic: 0.67) also compared with lower c-statistic’s 

from validation studies [26-28]. The Rotterdam model mirrored the validation study results 

(0.64 vs. 0.63 – 0.65) [27-29], while the Omani model underperformed (C-statistic: 0.66) when 

compared to the only validation study the authors are aware of (C-statistic: 0.72) [26].  
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Through an attempt to improve calibration with simple intercept adjustment, the E/O ratios 

for all models were improved. Despite the expected decision that no model was ready for 

immediate implementation, the Rotterdam Predictive Model 1 showed the best 

improvement in calibration following this adjustment. A review by Brown et al in 2012 [9] of 

17 undiagnosed Type 2 diabetes risk scores, which included all five models discussed here, 

determined that performance was not associated to the number of predictors in the model. 

Overall, validation studies showed a drop in model performance when tested in a new 

population, with the Rotterdam model having the lowest validation performance range, when 

compared to the other models. This was echoed in our results for the original Rotterdam 

model validation. The possible reasons to explain the drop in the performance of diabetes 

prediction models in a new population, some of which apply to our study, have been 

extensively discussed elsewhere [31]. 

 

At the optimal probability threshold, the models tested in our study would at best correctly 

detect 2/3rds of participants, with diagnostic performance mostly similar to those from 

published studies [26, 28]. This indicates the existing scope for improving the performance of 

diabetes prediction models in our setting. This could be done by adopting or developing 

models enriched with predictors to improve the predictive accuracy. Such an approach 

however, has to be balanced against the fact that the number of predictors and the 

complexity and cost of their measurements are severe limitations for their uptake in routine 

practice [31]. What is probably needed the most in resources limited settings like Africa, is 

evidence to confirm that the introduction of diabetes prediction models in routine practice 

will improve early detection of diabetes by healthcare practitioners, and the outcome of those 

diagnosed with diabetes in the long run.     

 

The results of this study were strengthened by the diagnosis of diabetes based on OGTT, thus 

limiting the risk of misclassification. The age distribution was wide, including a vast majority 

of the high-risk population. A potential limitation of the study was the exclusion of some risk 

scores due to the necessary information being unavailable. The fewer number of males in the 

final dataset could have played a role in the performance of the models, owing to the 
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significant difference between the genders in BMI, a predictor in four out of the five models. 

No power estimation was done, in the absence of consensus methods for sample size 

estimation in model validation studies. However, studies have suggested that at least 100 

events and 100 non-events were the minimum required samples for external validation 

studies [32]. These requirements were largely met in our main analysis. Our study participants 

comprised a subset of randomly selected individuals and subset of self-selected participants 

from the same community. In the absence of any influence on participants’ selection of a prior 

knowledge of the association between relevant study outcomes and predictors included in 

tested model, any differential effect of the sample selection strategy on the discriminatory 

performance of tested models, is very unlikely. The prevalence of screen-detected diabetes 

in our randomly selected participant’s alones has been estimated to be 18.1% [33], which is 

very close to the 17.6% found in the combined sample, suggested the absence of a differential 

effect on the calibration performance of models. The total number of participants with 

screen-detected diabetes in the combined sample precluded reliable stratified analyses to 

investigate and confirm the assumptions above. Finally, a substantial number of participants 

were excluded from the main analyses due to missing data on predictors included in models 

or on the status for prevalent undiagnosed diabetes. However, participants with complete 

data were mostly similar to those with missing data, particularly regarding the distribution of 

key predictors included in models such as age, gender and measures of adiposity. Therefore, 

differential effect on the model performance of validation based on complete case analyses, 

is very unlikely. This was confirmed with multiple imputation of the missing data yielding no 

difference in model performances. Indeed, in sensitivity analysis, the discriminatory 

performance of models was very similar across multiple imputed datasets, and not 

appreciable different from the performance based on complete case analysis. Furthermore, 

variables with high frequency of missingness were likely to be those that are very difficult to 

accurately measure in routine setting like family history of diabetes, and therefore, less 

indicated for uncritical inclusion in models for predicting diabetes across settings [34, 35]. 
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Conclusions  

Our findings highlight how the performance of models differs across different populations, 

particularly calibration. This low performance can be explained by the obvious lack of 

transportability due to the differences in development and validation population 

characteristics and the effect case-mix difference has on model performance. With no model 

development in the mixed ancestry population of South Africa, selection of generalizable 

models for validation was limited. There is a great clinical need for a unique, robust and 

convenient tool for identifying undiagnosed diabetes and predicating future diabetes quicker 

and more economically in this South African population. Through efficient application of 

prediction models’ improvement procedures, the final model would improve risk assessment 

specific to this community. With no acceptable validated model, unique model development 

is possibly the best way forward. 
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Additional files 

Supplementary Table 1: Full equation for risk models to predict prevalent undiagnosed 

diabetes as applied to the Bellville South cohort  

 

Cambridge logistic regression diabetes risk model [17] 

The probability of developing diabetes was calculated as exp(X)/(1 + exp(X)); where 

X= -6.322 - 0.879 (if female, else 0) + 1.222 (if prescribed antihypertensive medication) + 2.191 (if 
prescribed steroids) + 0.063 × age in years + 0.699 (if 25 kg/m2 ≤ BMI ≤ 27.49 kg/m2) + 1.970 (if 27.5 
kg/m2 ≤ BMI ≤ 29.99 kg/m2) + 2.518 (if BMI ≥ 30 kg/m2) + 0.728 (if parent or sibling has diabetes) + 
0.753 (if parent and sibling has diabetes) - 0.218 (if an ex-smoker) + 0.855 (if a current smoker).  

Kuwaiti logistic regression diabetes risk model [18] 

The probability of developing diabetes was calculated as exp(X)/(1 + exp(X)); where 

X= -5.018 + 0.979 (if a sibling had a history of diabetes, else 0) + 0.978 (if prescribed antihypertensive 
medication) + 1.315 (if age ≥ 35 years, else 0) + 1.930 (if the waist circumference ≥ 100cm, else 0). 

Omani logistic regression diabetes risk model [19] 

The probability of developing diabetes was calculated as exp(X)/(1 + exp(X)); where 

X= -4.7 + 1.8 (if 40 years ≤ age ≤ 59 years) + 2.3 (if age ≥ 60 years) + 0.38 (if waist circumference ≥ 
94cm in men and waist circumference ≥ 80cm in women) + 0.54 (if 25 kg/m2 ≤ BMI < 30 kg/m2) + 
0.69 (if BMI ≥ 30 kg/m2) + 1.9 (if parental or sibling history of diabetes) + 0.73 (if if SBP≥140 and/or 
DBP≥90). 

Rotterdam logistic regression diabetes risk model 1 [20] 

The probability of developing diabetes was calculated as exp(X)/(1 + exp(X)); where 

X= -3.02 + 0.19 (per 5 year increment from 55 years to >75) + 0.46 (if male, else 0) + 0.42 (if 
prescribed antihypertensive medication) + 0.51 (if BMI ≥ 30 kg/m2). 

Simplified Finnish logistic regression diabetes risk model [21] 

The probability of developing diabetes was calculated as exp(X)/(1 + exp(X)); where 

X= -5.514 + 0.628 (if 45 years ≤ age ≤ 54 years) + 0.892 (if 55 years ≤ age ≤ 64 years) + 0.165 (if 25 
kg/m2 ≤ BMI < 30 kg/m2) + 1.096 (if BMI > 30 kg/m2) + 0.857 (if 94cm ≤ waist circumference < 102cm 
in men and 80cm ≤ waist circumference < 88cm in women) + 1.350 (if waist circumference ≥ 102cm 
in men and waist circumference ≥ 88cm in women) + 0.711 (if prescribed antihypertensive 
medication) + 2.139 (if a history of high blood glucose, assumed to be 0 for all participants due to 
the nature of this study). 

*BMI, body mass index; SBP, systolic blood pressure; DBP, dystolic blood pressure. 
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Supplementary Table 2: Characteristics comparison of participants with valid and missing 

data    

 

Characteristics Valid (737) Missing (346) p-value 

Male (%) 157 (21.3) 94 (27.2) 0.012 

Age (years) 51.2 (11.9) 52.8 (18.3)   0.104 

Body mass index (kg/m2) 29.9 (7.3) 29.6 (7.0) 0.515 

Waist circumference (cm) 96.4 (14.9) 95.0 (16.2)   0.147 

Hypertensive medication (%) 251 (34.1) 123 (35.6) 0.182 

Smoking status (% smoking) 323 (43.8) 110 (31.8) <0.001 

Systolic blood pressure (mmHg) 122.8 (17.6) 126.2 (23.1)   0.009 

Diastolic blood pressure (mmHg) 75.8 (11.5) 76.2 (14.5) 0.669 

Height (m) 1.6 (0.1) 1.6 (0.1)   0.522 

Mother having diabetes (%) 109 (14.8) 15 (4.3) <0.001 

Father having diabetes (%) 58 (7.9) 3 (0.9) <0.001 

Sister having diabetes (%) 92 (12.5) 11 (3.2) <0.001 

Brother having diabetes (%) 58 (7.9) 9 (2.6) 0.001 

Fasting blood glucose (mmol/L) 5.7 (1.9) 5.5 (1.5) 0.048 

HDL cholesterol (mmol/L) 1.3 (0.4) 1.3 (0.4)   0.739 

Weight (kg) 75.1 (17.9) 74.7 (17.6) 0.727 

Ever consumed alcohol (%) 356 (48.3) 88 (25.4) <0.001 

Currently drinking (%) 207 (28.1) 65 (18.8) 0.001 

Corticosteroid use (%) 5 (0.7) 7 (2.0) 0.097 

Triglyceride (mmol/L) 1.5 (1.0) 1.4 (0.8)   0.043 

*HDL, high-density lipoprotein.  
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Supplementary Table 3: Discrimination values and 95% confidence intervals for selected 

models and the comparison of the discrimination between each model, expressed using p-

value (<0.05 significant). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 C-statistic Comparison discrimination  

  Cambridge [17] Kuwaiti [18] Omani 
[19] 

Rotterdam [20] Finnish [21] 

Cambridge [17] 0.67 (0.62-0.72) - 0.689 0.458 0.066 0.734 

Kuwaiti [18] 0.68 (0.63-0.73) - - 0.292 0.109 0.397 

Omani [19] 0.66 (0.61-0.70) - - - 0.605 0.735 

Rotterdam [20] 0.64 (0.59-0.69) - - - - 0.320 

Finnish [21] 0.67 (0.62-0.71) - - - - - 
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Abstract  

Background: Missing values are common in health research and omitting participants with 

missing data often leads to a loss of statistical power, biased estimates, and consequently 

inaccurate inferences.  

Methods: We critically reviewed the challenges posed by missing data in medical research 

and approaches to address these. To achieve this more efficiently, these issues were analysed 

and illustrated through a systematic review on the reporting of missing data and imputation 

methods (prediction of missing values through relationships within and between variables) 

undertaken in risk prediction studies of undiagnosed diabetes. Prevalent diabetes risk models 

were selected based on a recent comprehensive systematic review, supplemented by an 

updated search of English-language studies published between 1997 and 2014.  

Results:  Reporting of missing data has been limited in studies of prevalent diabetes 

prediction. Of the 48 articles identified, 62.5% (n=30) did not report any information on 

missing data or handling techniques. In 21 (43.8%) studies, researchers opted out of 

imputation, completing case-wise deletion of participants missing any predictor values. 

Although imputation methods are encouraged to handle missing data and ensure the 

accuracy of inferences, this has seldom been the case in studies of diabetes risk prediction. 

Hence, we elaborated on the various types and patterns of missing data, the limitations of 

case-wise deletion, state-of the-art methods of imputations and their challenges.  

Conclusions: This review highlights the inexperience or disregard of investigators in the effect 

of missing data in risk prediction research. Formal guidelines may enhance the reporting and 

appropriate handing of missing data in scientific journals. 

 

Keywords: risk, prediction, diabetes, missing, imputation 
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Background 

Missing values on participants’ characteristics are common in healthcare research and are 

often non-optimally handled and/or reported in prediction research. Inappropriate handling 

of missing data can lead to a poor model performance at the model development stage, and 

mislabelling of the model at the external validation stage. It is therefore recommended that 

researchers in predictive research strive to examine the patterns of missing values in their 

database to aid in missingness classification, use a valid approach to dealing with the missing 

data and include the description in their final report [1]. Predictive research is an area in which 

the handling of missing data is of utmost importance. Indeed, simple risk prediction models 

based upon non-invasively measured predictors are increasingly advocated in population-

based strategies for screening prevalent undiagnosed diabetes, particularly in low and middle 

income countries where undiagnosed diabetes is very common [2]. Accordingly, many 

prevalent diabetes risk prediction models have been developed over the last decade to 

convey this new thinking. Available models however, remain specific to the population from 

which they were developed, until evidence of their good performance during external 

validations studies in different settings become available [3]. 

In this paper, we critically review the different patterns of missing data and approaches to 

dealing with them, with a focus on predictive modelling. For illustrative purpose, we 

investigated how missing data have been reported and handled in predictive modelling, 

through a systematic review of studies on the development and/or validation prevalent 

diabetes risk model. We hypothesized that the level of reporting and extent of imputation in 

studies of undiagnosed diabetes model development and validation would be poor.  

 

Methods 

Building on a recent comprehensive review article on diabetes risk prediction models by 

Brown et al 2012 [4], additional relevant articles were identified through a search of electronic 

database PubMed using the key terms ‘undiagnosed’, ‘diabetes’, ‘risk’ and ‘score’; and a 

manual search through reference lists of eligible studies. We selected studies aimed at the 

development or validation of a risk prediction model. The outcome had to be prevalent 
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undiagnosed diabetes in adults (aged >18 years). Models excluded were those of incident risk 

prediction or requiring blood tests (on the grounds that prevalent diabetes risk prediction 

aims at simple screening). The data extracted included country/setting (including its income 

classification), population/ethnicity, source of data and if from a questionnaire whether self-

administered or not, sample size, age range of participants and the presence of a discussion 

and action (or lack thereof) on missing data. 

We aimed at providing the reader with instances of missing data, the reporting and attempts 

to handle these, as well as the challenges posed by each method. In some instances, because 

of the paucity of reports on handling missing data in studies of diabetes risk prediction, we 

used examples from other fields for greater understanding and clarity on a subject that has 

not received much attention.  

 

Results  

Overview of included studies 

A total of 48 articles (26 were model development studies and 22 were external validations) 

were included (Figure 1). These are summarized in Table 1; published between 1997 and 2014 

(most appeared in 2005-2010). The number and combination of predictors was variable, with 

age, sex, body mass index and waist circumference being the most commonly used variables. 

Models were developed and validated in 24 countries across 5 continents (none from Africa). 

Participants’ ethnicity was not always clearly stated, but a number of studies included 

minority populations specific to their location (e.g; Asian and Black participants in a study 

conducted in the Netherlands) [5-10]. Administrative data was the most common source of 

data (30, 62.5%), from existent healthcare [11, 12], governmental organization [9, 13-15] or 

research settings [5, 10, 16-37]. The study sample sizes varied from 429 [28] to 68 476 [38]. 

Finally, the age of participants ranged from 18 to 94 years of age.  
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    Figure 1: Workflow summarising the selection of papers  

 

 

 

 

6 papers excluded based on full 

text 

Combined search output: 

131 papers 

68 papers excluded based on 

title and abstract 

Identified as suitable: 

57 papers 

17 duplicates excluded  
8 papers included from 

reference list searching 

Final papers included: 

48 papers 

Refined output: 

63 papers 
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Table 1:   Characteristics of 48 included studies of undiagnosed diabetes risk prediction models 

Author Year 
Validation or 

development 

Location of study 

(Income) 
Ethnicity 

Time of data 

collection 

Type of Data / 

Self-

administered 

Size of study 

population 
Age range Missing data status 

         Reporting  Handling  

         None % None Deletion Imputation 

Adhikari et al [39] 2010 Validate India (L/M) / Current  551 >20 X  X   

Akyil et al [40] 2014 Validate Turkey (L/M) / Current  702 / X  X   

Al Khalaf et al [41] 2010 Develop Kuwaiti (L/M) Caucasian Current X 562 >20 X  X   

Al-Lawati et al [16] 2007 Develop Oman (H) Caucasian Existing  4881 >20 X   X  

Baan et al [17, 42] 1999 Develop Netherlands (H) / Existing X 1016 55-75 X  X   

Bang et al [18] 2009 Develop USA (H) / Existing  5258 >20  X  X X 

Bergmann et al [43] 2007 Validate Germany (H) / Current  526 41-79 X  X   

Bindraban et al [5] 2008 Develop Netherlands (H) 
Asian, Black, 

Caucasian 
Existing  1434 35-60  X  X  

Chaturvedi et al [19, 44] 2008 Develop India (L/M) / Existing  4044 35-64 X  X   

de Leon et al [45] 2008 Develop Canary Islands (H) Caucasian Current  6237 18-75 X  X   

de Sousa et al [13] 2009 Develop Brazil (L/M) Multi-ethnic Existing X 1224 >35 X  X   

Franciosi et al [20] 2005 Validate Italy (H) / Existing X 1377 55-75  X  X  

Gao et al [46] 2010 Validate China (L/M) Asian Current  1986 20-74  X  X  

Ginde et al [6] 2007 Validate USA (H) 
Caucasian, African-

American, Hispanic 
Current  604 / X   X  

Glumer et al [21] 2004 Develop Denmark (H) / Existing  6784 30-60  X  X  

Glümer et al [22] 2005 Validate 
Australia / Denmark 

(H) 
/ Existing  7079 / 6270 30-60  X  X  

Glumer et al [23] 2006 Validate Global Multi-ethnic Existing  29 758 / X   X  

Gray et al [24] 2010 Develop UK (H) Caucasian, Asian Existing  6186 40-75  X  X  

Gray et al [25] 2013 Develop Portugal (H) / Existing  3435 (18-94) 18-94  X   X 

Griffin et al [11] 2000 Develop UK (H) Caucasian Existing  1077 40-64 X  X   

Hanif et al [47] 2008 Develop UK (H) Asian Current  435 20-75 X  X   

Heianza  et al [26] 2013 Develop Japan (H) Asian Existing  7477 18-88  X  X  
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Heikes et al [27] 2008 Develop USA (H) 
Representative of 

USA population 
Existing  7029 >20  X  X  

Heldgaard & Griffin [48] 2006 Develop Denmark (H) / Current X 1355 20-69 X  X   

Keesukphan  et al [28] 2007 Develop Thailand (L/M) / Existing  429 18-81 X  X   

Ko et al [12] 2010 Develop China (L/M) Asian Existing  7695  X  X   

Ku & Kegels [49] 2013 Validate Philippines (L/M) / Current  1789  X  X   

Lee et al [29] 2012 Develop Korea (L/M) / Existing  9602 >20  X  X  

Li et al [50] 2009 Develop Germany (H) / Current  921 14-93 X  X   

Lin et al [51] 2009 Validate Taiwan (H) Asian Current  2759 >18 X  X   

Lindstrom et al [14] 2003 Develop Finland (H) / Existing X 4435 35-64 X   X  

Liu et al [15] 2011 Develop China (L/M) / Existing  1851 40-90 X  X   

Mohan et al [30] 2005 Validate India (L/M) Asian Existing  2350 >35 X  X   

Park et al [31] 2002 Validate UK (H) Caucasian Existing X 6567 39-78 X   X  

Rahman et al [32] 2008 Validate UK (H) / Existing  25 639 40-79  X  X  

Ramachandran et al [33] 2005 Develop India (L/M) Asian Existing  10 003 >20 X  X   

Rathmann et al [34] 2005 Validate Germany (H) Caucasian Existing  1353 55-74 X  X   

Robinson et al [7] 2011 Develop Canada (H) 

Caucasian, 

Aboriginal, Asian, 

Black, Hispanic 

Current  6475 40-74  
X 

 
 X X 

Rolka et al [8] 2001 Validate USA (H) 

Hispanics, 

Caucasian, Black, 

Native American 

Current  1471 >20  X   X 

Ruige et al [35] 1997 Develop Netherlands (H) Caucasian Existing X 2364 50-74  X X   

Saaristo et al [52] 2005 Validate Finland (H) / 

Current 

supplemented 

with existing 

X 2966 45-74  X   X 

Spijkerman et al [9] 2004 Validate UK (H) Black, Asian Existing  803 40-75 X   X  

Ta  et al [53] 2010 Validiate Vietnam (L/M) / Current  721 30-70 X  X   

Tankove et al [54] 2011 Validate Bulgaria (L/M) / Current  2169  X  X   

Winkler et al [38] 2012 Validate Hungary (L/M) / Current  68 476 >18 X   X  
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Witte et al [36] 2010 Validate UK (H) Caucasian Existing  6990 35-55  X  X  

Zhang et al [10] 2014 Validate USA (H) Caucasian, Black Existing X 20 633 >20 X   X  

Zhou et al [37] 2013 Develop China (L/M) / Existing  41 809 20-74  X  X  
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Table 2:   Details of imputation options 

 Theory Package in R 

Single imputation methods   
Simple imputation In a predictor (X) which is unrelated to all other X’s, substitution replaces all missing 

continuous values with the mean (or median) of all participants who have a valid value or 
the mode for categorical predictors [55].  
Simple imputation reduces variability and correlation estimates by ignoring relationships 
between variables but assumes MCAR. Regression coefficients are biased towards 0 
(zero) since the outcome (Y) is not considered [1]. 

Mean substitution is easily implemented 
with the package ‘Hmisc’ of R statistical 
software through the function ‘impute 
(x, fun=mean)’ where x is the predictor 
of interest [56]. 

Conditional mean imputation Regression imputation assumes strong relationships between the X to be imputed and 
the independent X’s used in the univariable or multivariable regression formula [1, 57, 
58]. An imputation model is made to predict the missing values when X is related to the 
other X’s, this method is far more efficient [59-61]. Conditional mean imputation leads to 
a weakening of the variance and overestimation of the model fit and correlation 
estimates. The outcome (Y) should not be included in the imputation model to prevent 
over exaggeration of the strength of relationship between X and Y [1]. 

Conditional mean imputation can be 
implemented in R through the creation 
of a regression model and the 
subsequent inbuilt ‘predict’ function. 

Stochastic regression 
imputation 

An alternative to conditional mean imputation, stochastic regression imputation includes 
a random element to the prediction of values, highlighting the uncertainty of imputed 
values [57]. A random draw is taken from the distribution of predicted values, which 
allows for the inclusion of the outcome in the prediction model. 

This can be implemented with the ‘mice’ 
package for R via the command 
‘mice.impute.norm.nob’ [62]. 

Hotdecking Hotdecking replaces the missing value of an individual with a random value from a pool 
of individuals who are matched to the missing individual by predictors, the ‘deck’[63, 64]. 
These deck predictors may be researcher-determined or a correlation matrix may be used 
to determine which the most highly correlated predictors are. The standard error is better 
approximated through the hotdeck procedure than simple imputation.  

The command ‘hotdeck’ of the R 
package ‘VIM’ can implement the 
hotdecking [65]. 

Multiple imputation methods   
Markov chain Monte Carlo 
(MCMC) 

Multivariate normal imputation assumes a multivariate distribution and the MCMC 
algorithm is used to obtain imputed values and allow for uncertainty in the estimated 
model predictors [66]. MCMC describes a group of methods that use Markov chains to 
generate pseudorandom draws from probability distributions. 
 

The command ‘imp.norm of the R 
package ‘norm’ can implement MCMC 
approach to multiple imputation [67]. 
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Maximum likelihood  The expectation-maximization (EM) algorithm, also called joint modelling, assumes a 
multivariate distribution. First a set of parameter values that produces the maximum 
likelihood are identified from the conditional distribution; values that would most likely 
have resulted in the observed data [62, 68]. New parameter estimates are randomly 
drawn from a Bayesian posterior distribution, the distribution of unobserved values 
conditional on observed data [69]. Bootstrap procedures are employed to obtain 
standard error estimates, correcting for bias associated with non-normality. 

The package ‘Amelia’ in R implements 
bootstrapping algorithms to give EM 
results [70]. 
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Source of missing data in predictive research 

Figure 2 summarizes the reporting and handling of missing data. The chief reasons for missing 

data were study design, participant characteristics, measurements characteristics, data 

collection and management, and chance. These may occur alone or simultaneously within a 

study, with data missing for several different reasons acting additively.  

 

 

 

 

 

 

 

 

 

Figure 2: Graphical representation of handling of missing data from the 48 selected studies. 

*MI, Multiple Imputation; SI, Single Imputation 

 

Study Design  

The reviewed studies were cross-sectional. No study design can eliminate missing data; 

however the probability of missing data varies across designs, with longitudinal studies 

carrying a higher likelihood of missing data than cross-sectional studies. In longitudinal 

studies, a greater burden on the participants increases the likelihood of missing data, through 

the duration of the study, multiple repeated measures, long questionnaires and painful 

procedures. With lengthy and cumbersome procedures, participants are more prone to 

respond poorly or drop out altogether. Indeed, Rolka et al had high missing percentages for 

the invasive collection of a finger prick, fasting and 2 hour post-load blood collection (0.2%, 
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26.0% and 27.0% of missing data respectively), as the study design required three invasive 

and burdensome diagnosis tests.  

Participant characteristics  

Non-response to questions may be associated with personal characteristics of the 

participants, where the reason may be an inaccuracy of information processing or refusal to 

provide information. Information processing may be related to the language and 

comprehension levels of the participant. Beliefs, and the attitude toward the research topic 

or particular item collected, are important in non-response due to refusal. All studies that 

reported some form of missing data values were conducted in high income countries; except 

three studies undertaken in China [37, 46] and Korea [29], all published after 2010. 

Measurement characteristics 

The collection of quantifiable predictors can lead to missing data in a variety of ways. 

Observations may be lost due to malfunctioning equipment. The complexity, length and 

invasiveness of the measures may also lead to participants opting out of particular tests (e.g. 

oral glucose tolerance test). Finally, for predictors that are measured in a laboratory, errors 

in the pre-analytical sample collection and analytical testing, can result in random missing 

data (e.g. incorrect blood collection tube selection or extended waiting time before analysing 

blood glucose sample, where glucose is lost through glycolysis). Demographic or behavioural 

information may be collected via questionnaires through an interview of or self-

administration by the participant. Self-administration is limited by the lack of supervision thus 

increasing the likelihood of respondent error, ultimately increasing missing data. Only three 

articles that included self-administrated questionnaires, also reported missing data [20, 35, 

52]. Missing data was as high as 9% for body mass index and waist circumference in the study 

by Saaristo et al [52]; and 15.3% for the oral glucose tolerance test and 15.7% for 

questionnaire data in that of Franciosi et al [20].  

Data management 

Poor management of data can result in the loss of data obtained from all participants. This 

may be due to the data transfer process from one format to another, such as the exclusion of 

individual values due to unclear writing, unconventional answers or inadvertently missing 
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questionnaire items. Disorganized or poor data storage can also result in lost data through 

unsystematic filing and communication, or faulty or non-existent back up files. Of the 17 

articles reporting missing data, 13 of these were studies using existing databases, all 

developed for research [5, 18, 20-22, 24, 26, 27, 29, 32, 35-37]. Although administrative data 

has its own issues; the reduced response burden, the possibility of a large sample size, and 

comparatively low costs, make this an increasing popular choice of data collection. De novo 

data collection requires the correct preparation, validation and processing of the survey to 

limit missing data. The two articles that reported missing data above 20% were based on new 

data collection [7, 8].  

Chance  

Despite investigators’ best efforts to prevent missing data through study design, data 

collection and measurements and subsequent management of the data; missing data can still 

occur by chance. This does not produce a bias, however large amounts of data may be missing 

if multiple chance events occur which produces its own sets of problems, such as a reduction 

in statistical power [71].  

 

Reporting of missing data  

Missing data was frequently poorly handled, with 62.5% of the articles not mentioning 

whether missing data was encountered and, if there was, how it was treated. Sixteen articles 

(33.3%) stated the missing data percentage, with two testing the effect on the final dataset 

but not reporting missing data details [24, 27]. However, from the reporting, it is difficult to 

determine the type of missing data, as this was not investigated. 

 

Types of missing data 

Missing data can be classified as ‘missing completely at random (MCAR)’, ‘missing at random 

(MAR)’, and ‘missing not at random (MNAR)’, where the reason for missingness differs [72-

76]. Identifying the nature and pattern of missing data allows the researcher to correctly 

choose a data imputation method, which is based on the assumptions about the patterns of 

missing data.  
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Missing completely at random 

Data is MCAR where the random subset of observations missing will have similar distributions 

to observed values [72]. The reasons for missing are unrelated to characteristics or responses 

of the subjects. Missing completely at random is a strict assumption and can be tested for. 

Little [77] provided a statistical test of the MCAR assumption, where a significant chi-square 

test indicates that the data are not MCAR. Examples of MCAR include administrative errors 

or laboratory accidents that occur at random. 

Missing at random   

Missing data is described as MAR when the missing data is conditional. The missing 

observations commonly depend on observed characteristics not missing, with systematic 

differences between the missing and observed data [1, 78]. The assumption is fulfilled if the 

missing values are related only to measured, not unmeasured, values. MAR examples include 

increased missing data in elderly individuals, subjects from a certain region; or from a 

different calendar time. This is illustrated by Robinson et al [7], where smoking status was 

only available for selected collection sites, as this question was added to the questionnaire 

during the last phase of data collection, resulting in a large percentage of item-missing data.  

Missing not at random  

Missing data that are not at random are related to unobserved participant’s characteristics 

[72]. This type of missing data is problematic and imputation is not sufficient. An example of 

MNAR is the selective non-response by a subject, e.g. sexual orientation or weight where the 

association with social image may cause people to avoid or underestimate the answer.  

 

Patterns of missing data 

None of the selected articles on the prediction of prevalent diabetes risk discussed, nor 

graphically presented, patterns of missing data, nor offered reasons for the missing data. In 

general, there are three patterns of missing data, namely univariate, monotone, and arbitrary 

[79].  
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Handling of missing data  

In existing studies of diabetes risk prediction, 21 (43.8%) stated all individuals missing data 

were excluded from the study analysis, conducting complete case analysis. Two articles used 

simple imputation to overcome missing data [7, 52] and two made use of multiple imputation 

[8, 25], while a single article undertook both imputation methods [18]. Saaristo et al, stated 

the missing data percentage for the variables which most commonly had missing data (9% for 

both BMI and waist circumference), both of which were simply imputed with mean 

substitution [52]. Robinson et al used a number of deletion and imputation methods [7]. 

Waist circumference (6% missing) was imputed with mean substitution, while family history 

(13%) was dealt with by the substitution of ‘no’ for unanswered questions. Case-wise deletion 

was undertaken for all other predictors of missing data, 3.9% of participants were excluded. 

Finally, smoking was excluded as a predictor all together due to the large percentage of 

missing data (35.0%).  

 

Bang et al used complete case analysis for predictors with missing values as the missing data 

proportion was considered ‘small’, although no further details were stated [18]. Multiple 

imputation was done for family history of diabetes. Perhaps significantly, the studies with low 

missing data rates or few variables with missing data undertook multiple imputation as a 

solution. Rolka et al reported a full dataset apart from only three predictors with missing data, 

namely postprandial time (3.0%), fasting blood glucose (26.0%) and oral glucose tolerance 

test (27.0%) [8]. Finally, Gray et al described minimal missing data for the majority of 

predictors ranging from 0.1% for current hypertension to 1.7% for smoking status, apart from 

statin use (36%) [25]. The effect of missing data on both the modelling process and the final 

model chosen, was assessed. Another article did not state the missing data proportion, but 

rather the overall effect of the missing data, which was to underestimate the prevalence of 

prediabetes and undiagnosed diabetes by approximately 2% and 1.5% respectively [27]. None 

of the three studies using multiple imputation stated the details of the method [8, 18, 25], 

such as the number of imputations or the variables included in the imputation model. We 

herein discuss the key fundamentals aspects of the various methods to dealing with missing 

data, which were seldom or inappropriately undertaken as mentioned above. 
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Proportion of missing data and impact on the method for handling missing data 

A proportion (considered here as the proportion of subjects having any predictors missing) of 

≤0.05 is considered the cut-off when deciding if no or simple imputation, without sacrificing 

results, would be sufficient [80]. A missing data proportion between 0.05 and 0.15 requires 

some research into predictor relationships. If the predictor with missing values is unrelated 

to all of the other predictors, simple imputation is considered reasonable; else, conditional 

mean or stochastic regression is the minimum. Once missingness proportion is ≥0.15, multiple 

imputation becomes imperative.  

 

Methods for dealing with missing data 

Problems with simple alternatives to data imputation 

Common in predictive modelling is the case-wise deletion of individuals with data missing for 

the required model predictors. Complete case analysis or list-wise deletion, removes all 

subjects with missing values for any possible predictors to be used in risk models [58, 81]. 

Alternatively, available case analysis, or pairwise deletion, includes subjects with complete 

data for the predictors to be included in the final model, but who have missing data for other 

predictors not considered in the model [1]. List-wise or case-wise deletions lead to reductions 

in sample size, and as a consequence, a reduction in statistical power, increase in standard 

error, and bias and imprecision in the regression coefficient estimates is introduced if the data 

is not MCAR [82-84].  Furthermore, when more than one prevalent diabetes risk prediction 

models are to be validated in a new population, it is difficult to interpret the results when the 

number of subjects may vary across the analyses [1].  

Imputation 

Imputation of missing values is the process of replacing these values with accurate parameter 

estimates [85]. Imputation aims at predicting missing values by obtaining values through 

relationships within and between variables. In general, individuals should only be discarded 

if there is a missing predictor of overriding importance that cannot be reliability imputed from 

other information [1]. Table 2 details the imputation methods available, namely single and 

multiple imputation, and the implementation in R statistical software. Single imputation (SI) 
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includes simple imputation, conditional mean imputation, stochastic regression imputation 

and hotdecking, with each of these methods having its own advantages and drawbacks.   

Multiple imputation (MI) describes the production of multiple complete datasets derived 

from the initial dataset with missing values [86]. Statistical models are used to fill the missing 

data a number (m) of times to generate m complete data sets. The multiple datasets add 

variability, increasing accuracy for both sampling and imputation, and the number of imputed 

datasets is usually set to 5 or 10 [87]. The datasets are analysed separately using standard 

procedures, yielding multiple estimates which are then combined using a appropriate 

statistical method [88]. The first stage requires an imputation algorithm, while the 

combination of the analysis results of the multiple datasets requires an alternate pooling 

algorithm. Imputation algorithms may be univariate methods for monotone missing data such 

as predictive mean matching [89], propensity methods [90] or logistic regression; or for more 

complicated missing data, the Multiple Imputation by Chained Equations (MICE) or 

expectation-maximization (EM) algorithm have been proposed. Multiple imputation methods 

for non-monotone missing patterns using chained equations requires the decision of whether 

to use Markov chain Monte Carlo (MCMC) or fully conditional specification (FCS) methods. 

Expectation-maximization has yet to become that popular in medical applications but merits 

discussion and use.  

 

Multiple imputation is time, labour and computationally intensive, and in case of small 

amounts of missing data, researchers must decide whether the use of this method or 

alternative methods [78, 83]. The combination of lack of guidelines, imputer burden, and 

perhaps lack of knowledge, makes researchers hesitant to undertake MI. This hesitation is 

encouraged if MI is not going to be carried out successfully, with the failure to combine the 

final m datasets or leaving out of important predictors in the MI model.  
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Dealing with missing data in validation studies 

The implementation of a model in an alternative population to that in which the model was 

developed requires prior validation. Differences between the development and validation 

datasets can be expected, with predictors possibly missing altogether; hindering validation of 

the model. This can be handled in a variety of ways, all which will have an effect on model 

performance or final model selection. Missing predictors can be dealt with by excluding 

models which contain any predictors not collected in the study. This limits the possibility of 

finding an existing model that may have suitable performance in the new population. 

Alternatively, the model may be selected for validation but predictors in the model will be 

excluded from the model formula. This method could be improved by the substitution of a 

missing predictor with a reliable proxy variable, preventing model and predictor exclusion. Of 

the 22 validation studies, 11 (50%) used case-wise deletion of individuals or predictors in 

dealing with the missing data; with only a single article using mean imputation [52] and 

another multiple imputation [8].  

 

Discussion 

Dealing with missing data is a complex undertaking, which is not yet common place in medical 

research. Indeed, for studies on the development and validation of undiagnosed diabetes risk 

models, we found inconsistent reporting of missing data, with investigators frequently 

ignoring or failing to handle missing data appropriately. Despite the availability of a wide 

range of methods for handling missing data, only a handful of studies used the statistical 

modelling procedures. When imputation was undertaken, the reporting of the imputation 

procedures was often incomplete. Although multiple imputation is becoming more accessible 

in research, only three studies used this method, with no details of the method being 

provided. Despite an increased interest in recent years in the need for understanding and 

appropriately handling missing data, the scarcity of information on these issues points to the 

widespread failure to understand the significance of the problem among medical researchers; 

hence the need to more formally address this issue.  
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In an effort to understand the lack of reporting and correct data handling in these studies, it 

must be noted that many imputation methods have mainly been developed theoretically and 

tested by statisticians. Medical professionals without any experience in statistics may struggle 

or chose not to undertake imputation procedures for missing data. Suggested reporting 

guidelines state the inclusion of the number of missing values, along with the reasons for the 

missing data, and the important differences between individuals with complete and 

incomplete data [91]. These guidelines can be useful for journal editors and authors alike, as 

hitherto the full impact of missing data on the research results is not usually considered.  

 

Our review has limitations that are worth considering. Though we aimed to comprehensively 

review all papers on development and validation of undiagnosed diabetes risk prediction 

models, given that we relied on a single review article with a simple supplemental search, we 

may have missed some studies. Furthermore, MI was not widely accessible prior to 1997 (the 

earliest date of publication of the included article) so papers published immediately after this 

are more likely to have used complete case analysis or single imputation [92].  

 

Conclusion  

This review highlights the inadequate reporting and handling of missing data in prevalent 

diabetes prediction research. Appropriate understanding, interpretation and efficient 

handling of missing data in medical research are essential, as incomplete data and the less 

than ideal methods in dealing with this can severely affect study estimates and other 

inferences in general. Publication of formal guidelines on the uniform reporting of missing 

data and methods for handling them at the analysis stage is warranted. These guidelines 

should be accessible to all levels of practitioners and researchers to allow for easy 

implementation, ultimately enhancing the validity of reported results in all spheres of 

prediction research.   
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Abstract  

Background: Imputation techniques used to handle missing data are based on the principle 

of replacement. It is widely advocated that multiple imputation is superior to other 

imputation methods, however studies have suggested that simple methods for filling missing 

data can be just as accurate as complex methods. The objective of this study was to 

implement a number of simple and more complex imputation methods, and assess the effects 

on these techniques on the performance of undiagnosed diabetes risk prediction models 

during external validation. 

Methods: Data from the Cape Town Bellville-South cohort served as the basis for this study. 

Imputation methods and models were identified via recent systematic reviews. Models’ 

discrimination was assessed and compared using C-statistic and non-parametric methods, 

before and after recalibration through simple intercept adjustment. 

Results: The study sample consisted of 1256 individuals, of whom 173 were excluded due to 

previously diagnosed diabetes. Of the final 1083 individuals, 329 (30.4%) had missing data.  

Family history had the highest proportion of missing data (25%). Imputation of the outcome, 

undiagnosed diabetes, was highest in stochastic regression imputation (163 individuals). 

Overall, deletion resulted in the lowest model performances while simple imputation yielded 

the highest C-statistic for the Cambridge Diabetes Risk model, Kuwaiti Risk model, Omani 

Diabetes Risk model and Rotterdam Predictive model. Multiple imputation only yielded the 

highest C-statistic for the Rotterdam Predictive model, which was matched by simpler 

imputation methods. 

Conclusions: Deletion was confirmed as a poor technique for handling missing data. However, 

despite the emphasized disadvantages of simpler imputation methods, this study showed 

that implementing these methods results in similar predictive utility for undiagnosed diabetes 

when compared to multiple imputation. 

 

Keywords: Imputation, effect, performance, prediction, undiagnosed, diabetes 
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Background 

Missing data is common in predictive research, and can negatively affect the performance of 

risk prediction models. In an ideal setting, a subject with missing data on a predictor or 

outcome variable should be replaced with a randomly selected subject from the source 

population. However, replacement is burdensome and most often impossible. Instead, 

researchers can use observed data to make an estimation of the status of the participants for 

the characteristic with missing value. Imputation techniques are based on the basic principle 

of replacement, indicating that any conclusion drawn from the study should not depend on 

the sample that is involved in the study. Should each subject in the chosen sample be replaced 

by a new subject from the same source population as the original subject, the conclusions 

should not be compromised [1]. 

 

It is widely advocated that imputation of missing data is superior to the overlooking of the 

missing data, that the indicator method often provides biased results, that conditional mean 

imputation is better than unconditional implementation, and that multiple imputation 

method is better than single imputation [1-13]. However, studies have suggested that simple 

methods for filling missing data can be just as accurate as complex methods, allowing for 

easier implementation in prediction studies [14, 15]. The type and percentage of missing data 

are important determining factors for the accuracy of the different imputation methods. Data 

missing completely at random (MCAR) has a low probability that the observation missing is 

related to any other patient characteristics and most simple techniques for handling missing 

data give unbiased results [4]. When the missing data depends on information that is not 

observed, the missing data is considered missing not at random (MNAR) [3]. Although there 

is no advocated method available to handle the valuable information that has been lost 

through MNAR data, multiple imputation can be unbiased for MNAR data [2]. Most often, 

missing data are neither MCAR nor MNAR [12], but rather missing at random (MAR). This type 

of missing data is missing at random conditional on the individuals other characteristics that 

are available at the time of analysis [3]. When missing data are MAR, common and simple 

techniques used to handle missing data such as complete case and available case analysis, 
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indicator method and overall mean imputation are likely to introduce selection bias as the 

database is no longer a random sample of the source population [5, 7, 12, 16].  

 

This study aims to implement a number of simple and more complex imputation methods for 

filling missing data, and assess the comparative effects on the performance of undiagnosed 

diabetes risk prediction models during external validation. For this purpose, we use data for 

mixed-ancestry South Africans who took part in the Bellville-South study in Cape Town. 

 

Methodology 

Database  

Details of the study design and recruitment of the database that served as the basis for all 

imputation methods implementation have been described below. The Bellville South Study 

was a cross-sectional study conducted from mid-January 2008 to March 2009 (cohort 1), and 

from January 2011 to November 2011 (cohort 2). The study was approved by the Ethics 

Committee of the Cape Peninsula University of Technology and Stellenbosch University. All 

participants signed written informed consent after all the procedures had been fully explained 

in the language of their choice.  

 

Research setting 

Bellville-South is located within the Northern suburbs of Cape Town, South Africa and is a 

traditionally a Coloured township formed in the late 1950s. According to the 2011 population 

census, its population stands at approximately 29 301 with 76.0% (22 270) consisting of the 

mixed ancestry individuals [17, 18]. The target population for this study were subjects 

between the ages of 35 and 65 years and their number was estimated to be 6 500 in the 2001 

population census [19].  
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Research Design and Study Population 

Using a map of Bellville South, multistage stratified random sampling was approached as 

follows: From a list of streets of each stratum, the streets were then classified as short, 

medium and long streets based on the number of houses. Streets with houses ≤ 22 were 

classified as short, medium; houses 23–40 and long streets were > 40 houses. A total of 16 

short streets representing approximately 190 houses, 15 medium streets representing 

approximately 410 houses and 12 long streets representing approximately 400 houses were 

randomly selected across the different strata. From the selected streets, all household 

members meeting the selection criteria were invited to participate in the study. Community 

authorities requested that participants outside the random selection area also benefit from 

the study.  

 

Recruitment Strategy 

Information regarding the project was disseminated to the local residents through the local 

radio station, community newspaper, brochures and fliers; the latter bearing information 

about the project and distributed through school children and taxis to the local residents by 

the recruitment team. Recruited subjects were visited by the recruitment team the evening 

before participation and reminded of all the survey instructions.  

 

Data collection 

A detailed protocol describing data-collection procedures (questionnaires and physical 

examination) was developed. The questionnaire designed to retrospectively obtain 

information on lifestyle factors such as smoking and alcohol consumption, physical activity, 

diet, family history of CVD and DM, and demographics was administered by trained 

personnel. A detailed drug history was obtained by interrogation and by examining the clinic 

cards as well as the record of drugs that participants brought to the study site. Clinical 

measurements included height, weight, hip and waist circumferences, body fat 

measurements and blood pressure.  
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Diabetes diagnosis 

All participants, except the self-reported diabetic subjects, confirmed by either medical card 

record or drugs in use, had blood taken for fasting blood glucose and underwent a 75 g oral 

glucose tolerance test (OGTT) as prescribed by the WHO. Diabetes was diagnosed according 

to the WHO 2006 criteria [20]. 

 

Identification of undiagnosed diabetes prediction models 

Existing prediction models were obtained from a systematic review by Brown et al, 2012 [21]. 

Models met the criteria for model selection for this paper if they were developed to predict 

the presence of undiagnosed diabetes based on predictors measured in the Bellville South 

study. We focused on models developed from non-invasively measure predictors. Therefore 

the models retained were: Cambridge Risk model [22], Kuwaiti Risk model [23], Omani 

Diabetes Risk model [24], Rotterdam Predictive model 1 [25] and the simplified Finnish 

Diabetes Risk model [26]. Model characteristics and formulas have been published by 

Masconi et al [27]. All models included age as a predictor, while a range of other predictors 

were variably combined in models. These included: sex, BMI, use of antihypertensive 

medication, family history of diabetes, waist circumference, past or current smoking and the 

use of corticosteroids. Table 1 shows the overview of the performance of the prevalent 

diabetes risk prediction models across the five imputation methods.  

 

Statistical methods 

Analysis of missing data 

Data analysis used the R statistical software, version 3.1.2 [28]. Aggregation plots were 

created using the ‘VIM’ package to identify of the pattern of missing data for each variable. 

The corresponding frequencies were tabulated.  

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



106 
 

Identification of imputation methods 

A comprehensive search was previously carried out on the imputation methods available [29]. 

The aim was to compare deletion, single and multiple imputation techniques. To allow for a 

broad spectrum of techniques, it was decided to compare pair-wise deletion [30], simple 

imputation [31], conditional mean imputation [8, 30],  stochastic regression [8, 32] and 

multiple imputation for non-monotone missing patterns [16]. Imputation was completed on 

the outcome and all variables. Where applicable, the outcome and all variables were used as 

a predictor for the variable being imputed. 

Imputation 

Simple imputation via mean substitution was implemented with the package ‘Hmisc’ through 

the function ‘impute (x, fun=mean)’ where x is the predictor of interest [33]. Conditional mean 

imputation was implemented through the creation of a regression model and the subsequent 

inbuilt ‘predict’ function. Imputation via Stochastic regression used the method ‘norm.nob’ of 

the R package ‘mice’ was used [34]. Multiple imputation for non-monotone missing patterns 

via the Multiple Imputation by Chained Equations (MICE) method, using fully conditional 

specification (FCS) was implemented using the ‘mice’ package [35]. The m imputed datasets 

were analysed separately, then the estimates and the associated variance from the imputed 

data sets combined using rules established by Rubin that incorporates the within and 

between imputation variability [7].  

Model performance 

The original selected models were validated for the overall data and subsets using the 

formulas, both prior to recalibration and following intercept adjustment to eliminate 

differences in diabetes prevalence between the development population of the model and 

this test population. The predicted probability of undiagnosed diabetes for each participant 

was computed using the baseline measured predictors. The performance was expressed in 

terms of discrimination and calibration. Discrimination describes the ability of the model’s 

performance in distinguishing those at a high risk of developing diabetes from those at low 

risk [36]. The discrimination was assessed and compared using concordance (C) statistic and 

non-parametric methods [37]. 
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Calibration describes the agreement between the probability of the outcome of interest as 

estimated by the model, and the observed outcome frequencies [30]. It was assessed with 

formal statistical tests, determining the agreement between the expected (E) and observed 

(O) rates (E/O). The 95% confidence intervals for the expected/observed probabilities (E/O) 

ratio were calculated assuming a Poisson distribution [38]. We also calculated 1) the Yates 

slope, which is the difference between mean predicted probability of type 2 diabetes for 

participants with and without prevalent undiagnosed diabetes, with higher values indicate 

better performance; and 2) the Brier score, which is the squared difference between 

predicted probability and actual outcome for each participant with values ranging between 0 

for a perfect prediction model and 1 for no match in prediction and outcome [30, 36].  

 

Results 

Data available 

The study sample consisted of 1256 individuals, of whom 173 were excluded due to previously 

diagnosed diabetes. Of the final 1083 individuals, 329 (30.4%) had missing data.  Table 2 

summarises the number of missing values for each variable included in the 5 selected risk 

prediction models. Additionally, Figures 1 and 2 show the proportion and combinations of 

missing data respectively. Family history was the variable with the most missing data [mother 

(25.1%, father (24.9%), sister (25.0%), and brother (25.1%)]. The rest of the variables had a 

missing proportion of less than 5%, except smoking status (6.1%). 
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Table 1: Overview of the performance of the undiagnosed diabetes risk prediction models across the five imputation methods 

Models  Deletion  Simple   Conditional   Stochastic  Multiple   

  Original  Adjusted Original Adjusted Original Adjusted Original Adjusted Original Adjusted 

Cambridge 
Diabetes 
Risk 
model 

E/O (95% CI) 
1.81  
(1.09 ; 2.52) 

1.22  
(0.61-1.83) 

2.07  
(1.40 ; 2.75) 

1.28 
(0.69 – 1.87) 

2.01  
(1.28 ; 2.75) 

1.27  
(0.64 – 1.90) 

2.17  
(1.41 ; 2.93) 

1.27 
(0.64 – 1.90) 

2.16  
(1.40 ; 2.92) 

1.30 
(0.66 – 1.94) 

Brier score 0.193  0.181  0.185  0.186  0.189  

Yates slope 0.379  -1.401  -1.374  -1.399  -1.441  

C-statistic 
(95% CI) 

0.67  
(0.62 – 0.72) 

 0.69  
(0.65 – 0.73) 

 0.68  
(0.63 – 0.72) 

 0.68  
(0.64 – 0..73) 

 0.68  
(0.64 – 0.72) 

 

Kuwaiti 
Risk 
model 

E/O (95% CI) 
0.72  
(0.40 ; 1.12 ) 

0.94  
(0.47-1.41) 

0.79  
(0.39 ; 1.18) 

0.96 
(0.51 – 1.41) 

0.79  
(0.34 ; 1.25) 

0.96  
(0.45 – 1.47) 

0.82  
(0.44 ; 1.20) 

0.96 
(0.45 – 1.47) 

0.82  
(0.42 ; 1.22) 

0.96 
(0.55 – 1.37) 

Brier score 0.141  0.122  0.126  0.125  0.123  

Yates slope 0.496  -0.459  -0.514  -0.473  -0.534  

C-statistic 
(95% CI) 

0.68  
(0.63 – 0.73) 

 0.70  
(0.66 – 0.74) 

 0.69  
(0.65 – 0.73) 

 0.69  
(0.65 – 0.74) 

 0.69  
(0.65 – 0.73) 

 

Omani 
Diabetes 
Risk 
model 

E/O (95% CI) 
1.28  
(0.63 ; 1.93) 

1.06  
(0.47-1.66) 

1.40  
(0.82 ; 1.98) 

1.08  
(0.56 – 1.60) 

1.40  
(0.75 ; 2.05) 

1.08 
(0.50 – 1.66) 

1.56  
(0.81 ; 2.30) 

1.08 
(0.50 – 1.66) 

1.54  
(0.77 ; 2.31) 

1.11 
(0.51 – 1.71) 

Brier score 0.164  0.141  0.149  0.142  0.153  

Yates slope 0.392  -1.065  -1.104  -1.049  -1.196  

C-statistic 
(95% CI) 

0.66  
(0.61 – 0.70) 

 0.67  
(0.63 – 0.71) 

 0.65  
(0.61 – 0.70) 

 0.67  
(0.63 – 0.72) 

 0.65  
(0.61 – 0.69) 

 

Rotterdam 
Predictive 
model 

E/O (95% CI) 
0.54  
(0.50 ; 1.04) 

0.98  
(0.91-1.05) 

0.65  
(0.56 ; 0.74) 

0.99 
(0.83 – 1.14) 

0.59  
(0.48 ; 0.71) 

0.99 
(0.93 – 1.04) 

0.65  
(0.57 ; 0.74) 

0.99 
(0.93 – 1.04) 

0.65  
(0.57 ; 0.73) 

0.99 
(0.87 – 1.11) 

Brier score 0.147  0.126  0.130  0.129  0.127  

Yates slope 0.971  0.558  0.539  0.535  0.498  

C-statistic 
(95% CI) 

0.64  
(0.59 – 0.69) 

 0.65  
(0.61 – 0.70) 

 0.65  
(0.60 – 0.69) 

 0.65  
(0.60 – 0.70) 

 0.65  
(0.61 – 0.70) 

 

Simplified 
Finnish 
Diabetes 
Risk 
model 

E/O (95% CI) 
0.26  
(0.13 ; 0.39) 

0.89  
(0.51-1.26) 

0.34 
(0.17 ; 0.52) 

0.92 
(0.53 – 1.31) 

0.34  
(0.18 ; 0.50) 

0.92 
(0.56 – 1.28) 

0.35  
(0.17 ; 0.52) 

0.92 
(0.56 – 1.28) 

0.35  
(0.17 ; 0.53) 

0.92 
(0.53 – 1.32) 

Brier score 0.157  0.133  0.136  0.136  0.133  

Yates slope 0.491  -0.021  0.080  -0.053  -0.045  

C-statistic 
(95% CI) 

0.67  
(0.62 – 0.71) 

 0.66  
(0.62 – 0.70) 

 0.67 
(0.63 – 0.72) 

 0.66  
(0.62 – 0.70) 

 0.66  
(0.62 – 0.70) 
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Table 2: Missing data analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Histogram showing the proportion of missing for each variable 

 

 

 

 

 

 

 

 

 

Fig 2: Aggregation plot showing all combinations of missing (red) and non-missing (blue) 
values in the variables, from the highest to lowest frequency.  

*BMI, Body Mass Index; WC, Waist Circumference; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; FH, Family History; Cort, 
Corticosteroids; med, medication; Hpt, Hypertensive

Variable % 

Outcome (prevalent diabetes) 0.7 
Age 1.4 
Gender 1.6 
Body mass index 3.4 
Waist circumference 2.1 
Systolic blood pressure 1.9 
Diastolic blood pressure 1.9 
Mother family history 25.1 
Father family history 24.9 
Sister family history 25.0 
Brother family history 25.1 
Corticosteroid use 4.3 
Hypertensive drugs 2.5 
Smoking status 6.1 
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Table 3: Characteristics comparison of participants for the original database and five imputation methods 

 

 

 

 

 

 

 

 

 Imputation methods 
 Original  Pairwise deletion 

(754) 
Simple (1083) Conditional 

(Varied) 
Stochastic (1083) Multiple (1083) 

Prevalent undiagnosed diabetes (Yes/No) 162/913 132/622 162/921 162/916 163/920 162/921 
Age (years) 51.9 (15.0) 52.5 (14.6) 51.9 (14.9) 51.9 (15.0) 51.8 (15.0) 51.8 (15.1) 
Body mass index (kg/m2) 29.7 (7.2) 29.6 (7.1) 29.7 (7.0) 29.7 (7.1) 29.8 (7.2) 29.8 (7.2) 
Gender (Male/Female) 249/810 160/594 251/832 251/826 254/829 257/826 
Systolic blood pressure (mmHg) 124.3 (20.2) 122.0 (18.7) 124.3 (20.0) 124.3 (20.2) 124.3 (20.2) 124.4 (20.4) 
Diastolic blood pressure (mmHg) 76.0 (12.9) 74.7 (12.0) 76.0 (12.7) 76.0 (12.8) 76.0 (12.9) 76.1 (14.1) 
Waist circumference (cm) 95.8 (15.5) 95.9 (14.9) 95.8 (15.3) 95.8 (15.4) 95.8 (15.5) 95.7 (16.9) 
Hypertensive medication (Yes/No) 374/682 262/492 374/709 383/688 387/696 382/701 
Using corticosteroids (Yes/No) 12/1025 5/749 12/1071 12/1050 12/1071 13/1070 
Mother having diabetes (Yes/No) 124/687 114/640 124/959 124/880 182/901 165/198 
Father having diabetes (Yes/No) 61/752 60/694 61/1022 61/944 73/1010 78/1005 
Sister having diabetes (Yes/No) 103/709 98/656 103/980 107/897 143/940 128/955 
Brother having diabetes (Yes/No) 67/744 64/690 67/1016 67/936 79/1004 87/996 
Smoking status (Current/Past/No) 433/105/479 327/89/338 433/105/545 437/105/496 456/114/513 458/113/512 
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Table 4: Characteristics comparison of participants for five multiple imputation datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Multiple imputation datasets 
 1  2 3 4 5 

Prevalent undiagnosed diabetes (Yes/No) 162/921 163/920 162/921 162/921 163/920 
Age (years) 51.9 (15.1) 51.9 (15.0) 51.8 (15.0) 51.9 (15.1) 51.8 (15.0) 
Body mass index (kg/m2) 29.8 (7.2) 29.8 (7.2) 29.8 (7.2) 29.8 (7.2) 29.7 (7.2) 
Gender (Male/Female) 258/825 257/826 257/826 256/827 258/825 
Systolic blood pressure (mmHg) 124.5 (20.4) 124.5 (20.3) 124.4 (20.3) 124.5 (20.4) 124.3 (20.3) 
Diastolic blood pressure (mmHg) 76.1 (12.8) 76.1 (12.8) 76.2 (13.3) 76.1 (12.9) 76.1 (12.9) 
Waist circumference (cm) 95.8 (15.9) 95.7 (15.5) 95.8 (15.5) 95.8 (15.4) 95.7 (15.5) 
Hypertensive medication (Yes/No) 383/700 378/705 381/702 382/701 384/699 
Using corticosteroids (Yes/No) 13/1070 12/1071 12/1071 13/1070 13/1070 
Mother having diabetes (Yes/No) 157/926 168/915 155/928 179/904 164/919 
Father having diabetes (Yes/No) 71/1012 72/1011 83/1000 78/1005 84/999 
Sister having diabetes (Yes/No) 132/951 130/953 121/962 125/958 134/949 
Brother having diabetes (Yes/No) 87/996 88/995 83/1000 88/997 88/995 
Smoking status (Current/Ex/No) 464/110/509 455/118/510 459/115/509 452/113/518 460/111/512 
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Table 5: Overview of the performance of the undiagnosed diabetes risk prediction models across the five multiple imputation datasets 

Multiple imputation datasets 1 2 3 4 5 

Cambridge  E/O (95% CI) 2.17 (1.35 – 2.99) 2.13 (1.40 – 2.87) 2.15 (1.49 – 2.81) 2.18 (1.34 – 3.01) 2.16 (1.46 – 3.86) 

Diabetes Risk model Brier score 0.190 0.188 0.186 0.190 0.190 

 Yates slope -1.451 -1.435 -1.433 -1.454 -1.434 

 C-statistic (95% CI) 0.68 (0.64 – 0.72) 0.68 (0.64 – 0.72) 0.69 (0.65 – 0.73) 0.68 (0.64 – 0.73) 0.69 (0.64 – 0.73) 

Kuwaiti Risk model E/O (95% CI) 0.83 (0.42 – 1.24) 0.82 (0.40 – 1.23) 0.82 (0.45 – 1.19) 0.83 (0.41 – 1.24) 0.82 (0.44 – 1.19) 

 Brier score 0.124 0.124 0.122 0.123 0.123 

 Yates slope -0.563 -0.558 -0.496 -0.542 -0.509 

 C-statistic (95% CI) 0.69 (0.65 – 0.73) 0.69 (0.64 – 0.73) 0.70 (0.66 – 0.74) 0.69 (0.65-0.73) 0.69 (0.65 – 0.74) 

Omani Diabetes E/O (95% CI) 1.55 (0.76 – 2.33) 1.54 (0.72 – 2.37) 1.52 (0.87 – 2.17) 1.57 (0.78 – 2.37) 1.54 (0.80 – 2.29) 

Risk model Brier score 0.154 0.156 0.149 0.155 0.153 

 Yates slope -1.211 -1.232 -1.151 -1.214 -1.174 

 C-statistic (95% CI) 0.65 (0.61 – 0.69) 0.64 (0.60 – 0.68) 0.66 (0.62 – 0.70) 0.65 (0.61 – 0.70) 0.66 (0.61 – 0.70) 

Rotterdam  E/O (95% CI) 0.66 (0.57 – 0.75) 0.65 (0.58 – 0.72) 0.65 (0.57 – 0.74) 0.66 (0.57 – 0.75) 0.65 (0.57 – 0.74) 

Predictive model Brier score 0.126 0.127 0.126 0.127 0.127 

 Yates slope 0.486 0.539 0.526 0.479 0.461 

 C-statistic (95% CI) 0.65 (0.60 – 0.69) 0.65 (0.61 – 0.70) 0.65 (0.60 – 0.70) 0.65 (0.60 – 0.69) 0.65 (0.60 – 0.69) 

Simplified Finnish  E/O (95% CI) 0.35 (0.17 – 0.52) 0.34 (0.16 – 0.52) 0.35 (0.17 – 0.53) 0.35 (0.17 – 0.52) 0.34 (0.16 – 0.52) 

Diabetes Risk model Brier score 0.133 0.134 0.133 0.133 0.134 

 Yates slope -0.032 -0.068 -0.048 -0.026 -0.050 

 C-statistic (95% CI) 0.66 (0.62 – 0.71) 0.66 (0.62 – 0.70) 0.66 (0.62 – 0.70) 0.66 (0.62 – 0.71) 0.66 (0.62 – 0.70) 
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Imputation 

Table 3 shows the variable characteristics of the original database compared to the five 

methods of dealing with missing data. Pair-wise deletion resulted in a significantly reduced 

sample size (754) while conditional mean imputation resulted in a varied length of each 

variables as only missing values with complete cases for every other variables were imputed. 

Simple imputation, stochastic regression imputation and multiple imputation all imputed all 

missing data allowing for a full database of 1083 individuals.  

 

Imputation of the outcome, undiagnosed diabetes, was highest in stochastic regression 

imputation (163 individuals). Pair-wise deletion saw a higher mean age (52.5 years) and lower 

systolic and diastolic blood pressure (122.0 mmHg and 74.7 mmHg respectively) when 

compared to the other imputation methods. There was no substantial difference in body mass 

index and waist circumference between the methods. Stochastic regression imputed a higher 

prevalence of individuals on hypertensive medication (387 individuals), mother having 

diabetes (182 individuals), and sister having diabetes (143 individuals). Multiple imputation 

reported the highest prevalence of father (78 individuals) and brother having diabetes (87 

individuals). Variable characteristics across the five imputation datasets is shown in Table 4. 

Mother, father and sister family history, as well as smoking status had the most variation 

between the five multiple imputation datasets.   

 

Model performance 

Most notably, model performance following pair-wise deletion deviated from the model 

performance from other imputation methods. The discrimination was lower in all five models, 

however calibration was better in the Cambridge Diabetes Risk model [1.81 (1.09 - 2.52)]. 

Overall, although not large differences, simple imputation yielded the highest C-statistic for 

four of the five models; the Cambridge Diabetes Risk model [0.69 (0.65 – 0.73), vs. 0.67 (0.62 

– 0.72)], Kuwaiti Risk model [0.70 (0.66 – 0.74), vs. 0.68 (0.63 – 0.73)], Omani Diabetes Risk 

model [0.67 (0.63 – 0.71) vs. 0.65 (0.61 – 0.69)] and Rotterdam Predictive model [0.65 (0.61 

– 0.70) vs. 0.64 (0.59 – 0.69)]. Multiple imputation only yielded the highest C-statistic for the 

Rotterdam Predictive model [0.65 (0.61 – 0.70), which were matched by simpler imputation 
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methods. Table 5 details the indifference in model performance across the five datasets 

produced through multiple imputation. 

The pattern of the overall calibration (E/O) did not vary substantially across imputation 

methods. Uniformly, all imputation methods resulted in the Cambridge and Omani risk 

models overestimating diabetes risk, while the others showed underestimation. Other 

performance measures across subgroups, shown in Table 1, did also not show significant 

differences between imputation methods. When recalibration was performed, all models 

across all imputation techniques had an improved agreement between predicted and 

observed rates (Table 1).  

 

Discussion 

The suggested imputation method for the handling of missing data is a hot topic, with strong 

advocators for multiple imputation and those who propose that simple techniques can be just 

as effective. Several studies have been done to determine the effect of several imputation 

methods on the predictive performance of risk models, however these have been largely 

contradicting. Donders et al [1] performed a simulation study in an attempt to illustrate that 

single imputation yields unbiased estimates with too narrow confidence intervals and 

multiple imputation indeed yields unbiased estimates with correct standard errors. Both 

single and multiple imputation produced unbiased estimates of association, and the 

conclusion was that despite single imputation appearing more precise, multiple imputation 

produces less bias and more precise results. Alternately, a study by van der Heijden et al [15] 

concluded that the models fitted using the indicator method, a simple method of dealing with 

missing data, showed higher regression coefficients and predictive accuracy when compared 

to the models derived from the imputation methods. As confirmed in this study, we did not 

observe large differences between the models obtained after single unconditional, single 

conditional and multiple imputation of the missing data. Deletion of individuals with missing 

data resulting in an expected reduced discriminatory ability of the models. Model calibration 

was improved across all areas when recalibration was performed. This however, has no 

influence on the imputation techniques or the discriminatory ability of the models.  
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What should be noted is that most studies comparing imputation techniques start with a 

complete data set and introduce missing data to set variables. Our study made use of an 

existing database which already included missing data on a number of variables. This results 

in the true underlying value of the missing data being unknown, as well as the true regression 

coefficients and predictive accuracy of each variable. This lack of reference criterion can be 

limitation in a study. However, the use of existing databases should be encouraged as this is 

more translatable to medical research outside of a controlled setting.  

 

Despite recent advances in understanding missing data and imputation methods, most 

researchers still report deletion, perhaps because of a lack of adequate guidelines for handling 

missing data. What should be encouraged is the use of more than one method, the results 

compared and a preferred approach chosen and defended. When data are missing on several 

variables it is important to use some procedure that imputes them all together, rather than 

one variable at a time. This ensures that the imputed data are related to each other in the 

same way as those data that are observed.  

 

Conclusion 

 This study aimed to compare the performance results of undiagnosed diabetes risk prediction 

models across multiple imputation techniques. The results showed a lower model 

performance when deletion is used to deal with missing data and little difference between 

simple and more complex methods on the effect of risk prediction model performance. 

Missing data is an important aspect of predictive research and needs to be handled correctly. 

Imputation, specifically more complex and time-intensive imputation, can often be avoided 

by researchers due to preconceived complexity. Simpler imputation methods that allow for 

similar or better predictive performance are easy to undertake and should encourage 

researchers of all levels to limit the use of deletion of individuals with missing data. The 

negligible difference in model performance between simple and multiple imputation allows 

for the recommendation of single imputation for handling missing data in undiagnosed 

diabetes predicative research.  
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Abstract  

Background: Poor performance of risk prediction models in a new setting is common. 

Recalibration methods aim to improve the prediction performance of a model in a validation 

population, however the extent of its application in the validation of diabetes risk prediction 

models is not yet known.  

Methods: We critically reviewed published validation studies of diabetes prediction models, 

selected from five recent comprehensive systematic reviews and database searches. Common 

recalibration techniques applied were described and the extent to which recalibration and 

impacts were reported analysed. 

Results: Of the 236 validations identified, 22.9% (n = 54) undertook recalibration on existent 

models in the validation population. The publication of these studies was consistent from 2008. 

Only incident diabetes risk prediction models were validated, and the most commonly validated 

Framingham offspring simple clinical risk model was the most recalibrated of the models, in 4 

studies (7.4%).  

Conclusions: This review highlights the lack of attempt by validation studies to improve the 

performance of the existent models in new settings. Model validation is a fruitless exercise if the 

model is not recalibrated or updated to allow for greater accuracy. This halts the possible 

implementation of an existent model into routine clinical care. The use of recalibration 

procedures should be encouraged in all validation studies, to correct for the anticipated drop in 

model performance. 

 

Keywords: risk prediction, diabetes, update, recalibration, validation 
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Background 

The use of risk prediction models in a validation population is expected to have an effect on the 

performance of the model (usually a drop in the performance) due to the differences between 

development and validation populations, particularly the variances in outcome frequency 

between the populations, case-mix and measurements used for the variables and outcome 

determination [1]. In an effort to improve the performance of a model in a new setting, updating 

strategies have been proposed [2, 3]. The updating strategies range from simple adjustment of 

models’ parameters to more complex model alterations. Simple updating methods, termed re-

calibration, describes the re-estimation of the model intercept (or baseline risk parameter) with 

or without re-estimation of the regression coefficients.   

 

The recalibration of risk prediction models is encouraged, where the resulting updated model 

combines the prediction information that was captured in model development with the 

information of the new population. This lends to the concept that risk prediction models should 

be based on as many individuals’ data as possible. Too often, existent models are externally 

validated and when performance is disappointing, a new prediction model is developed. This 

results in a large number of models available, which are all poorly externally validated [4]. For 

illustration, a systematic review by Noble and co-workers [5] found that between 1993 and 2011, 

over 145 models were developed to predict prevalent or incidents diabetes, of which only a few 

were externally validated. This is of concern, considering the use of accurate and validated risk 

models is increasingly advocated as a basis for risk screening in strategies to prevent the 

occurrence of diabetes among those at high risk, to promote early detection among those with 

prevalent undiagnosed diabetes, and tailoring the complexity and intensity of the management 

among those with diagnosed diabetes, to the risk of subsequent complications. Indeed, with 

diabetes mellitus growing to the epidemic proportions around the world, and considering the 

complexity of the interaction of factors contributing to diabetes occurrence and related 

complications, the ability of risk prediction models to incorporate a multitude of risk factors, 

accounting for this complexity, cements their importance in diabetes prevention and control 
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strategies. Beyond the field of diabetes and non-communicable diseases in general, with the 

opening era of personalised healthcare, prediction models will be increasingly used to assist 

clinical decision making. Efforts to limit the number of prediction models through careful 

updating of existing models to work in various settings, have a potential to improve their uptake 

in routine practice.  

 

A recent validation study applied simple updating methods to diabetes risk prediction models, 

and reported some improvement, although non-optimal, of models performance [6]. However, 

the extent of the application of recalibration strategies in the validation of diabetes risk 

prediction models is not yet known. In this paper, we critically review the level of reporting, 

method of choice and extent of use of recalibration methods in validation studies, through a 

systematic review of studies on the validation of incident and prevalent diabetes risk prediction 

models, in an attempt to make conclusions on the extent of recalibration in diabetes risk 

prediction research. 

 

Methodology 

Building on the five most comprehensive review articles on both incident and prevalent diabetes 

risk prediction models by Buijsse et al (2011) [7], Collins et al (2011) [8], Noble et al (2011) [5], 

Thoopputra et al (2012) [9], and Brown et al (2012) [10], additional relevant articles were 

identified through a systematic literature review according to the PRISMA guidelines, where 

necessary [11]. We searched PubMed for all published studies aimed at validating diabetes risk 

prediction models using the following string search: ((“diabetes” OR “diabetes mellitus” OR “type 

2 diabetes”) AND (“risk score” OR “prediction model” OR “predictive model” OR “predicting” OR 

“prediction rule” OR “risk assessment” OR “algorithm”) AND (“validation” OR ‘validate”)). 
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Studies were included if they validated risk scores, models or questionnaires and the outcome 

was prevalent undiagnosed or incident diabetes in adults (aged >18 years). Studies undertaking 

internal validation were excluded as model recalibration should not be required at this early 

stage. Additionally, studies aimed at validating guidelines in new populations were excluded. 

Models that were developed outside of the logistic, cox or Weibull development methods were 

excluded due to the inability to validate these models (e.g. classification tree analysis method). 

There was no restriction on the variables included in the models, both non-invasive and invasive 

models were included. Additionally, there was no restriction on sample size or country. The data 

extracted included country/setting, name of the models validated, whether the study aimed at 

validation alone or with development of a model and the presence of a discussion and action (or 

lack thereof) on the recalibration of models. We reviewed the included studies with the aim of 

providing the reader with a comprehensive list of validated models, instances and prevalence of 

model recalibration, as well as the possible increase in performance of the updated model.  

 

Results  

Overview of included studies 

Following the sifting process, a total of 94 articles were included (Figure 1). These articles 

included 70 models, and 236 validations were conducted. Figure 2 depicts the distributions of 

risk prediction model validation. Included published studies undertook the validation of existent 

diabetes risk prediction model/s, where validation refers to the process of evaluating the 

performance of a model. Studies were focussed on external validation which goes beyond the 

assessment of model performance in all or a portion of the developmental datasets by assessing 

the performance in an independent dataset. The validation of a model can be grouped by a 

hierarchy proposed by Justice et al (1999) [12], according to the reproducibility and historic, 

geographic, methodologic, spectrum and follow-up period transportability (Text Box 1).  

Additionally, one paper can report on the validation of more than one model. Many studies 

undertook the validation of a model(s) as an added section to the development of a model in 
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their population group (48.8%). Details of the included studies are provided in Table 1; published 

between 1997 and 2014, however most appeared in 2005-2011. Articles reporting recalibration 

of existent models only appeared from 2008 onwards, with the most appearing in 2010. The 

number and combination of predictors was variable, with age, sex, body mass index and waist 

circumference being the most commonly used variables. The study setting was highly 

heterogeneous; models were validated in 31 countries across 5 continents (only 1 in Africa). 

Models predicting incident diabetes were more commonly validated (62.7%) when compared to 

prevalent diabetes risk prediction. The development, recalibration and use of incident and 

prevalent risk prediction models vary and will therefore be discussed separately.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow diagram of selected studies 

837 articles identified through 

database searching (PUBMED) 

210 articles identified through 

systematic reviews  

847 articles after duplicates removed  

681 records excluded on abstract 

157 full-text articles assessed for eligibility 

63 full-text articles excluded 
Reasons for excluding: 

- No print copy found (1) 
- Not in English (3) 
- No model validation (21) 
- Internal validation (26) 
- Outcome not diabetes (12) 94 articles included in review  
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Figure 2: Illustration of incident (top) and prevalent (bottom) model validation distribution. Top 
3 validated incident diabetes models: 15 times – Framingham offspring simple clinical diabetes 
model; 14 times – San Antonio clinical risk model; 11 times – Cambridge diabetes risk score. Top 
3 validated prevalent diabetes models: 13 times – Full prevalent FINDRISC risk model; 11 times – 
Rotterdam risk predicative model 1; 9 times – Cambridge diabetes risk model.  
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Text box 1: A hierarchy of external validation of predictive systems – adapted from Justice et al 

[12] 

Level of validation Cumulative generalizability evaluated 

0: Internal validation Reproducibility 

1: Prospective validation Level 0 + historic transportability 

2: Independent validation 
Level 1 + geographic transportability, 

methodologic transportability, spectrum 
transportability 

3: Multisite validation Level 2 at multiple sites 

4: Multiple independent validation Level 3 by multiple investigators 

5: Multiple independent validations 
with life-table analyses 

Level 4 + follow-up period transportability 

 

Incident diabetes risk prediction models 

The most commonly validated model was the Framingham offspring simple clinical risk model 

(10.1%) [13] followed by the San Antonio clinical risk model (9.5%) [14]. Validations were ranked 

according to the levels of transportability. There was no evidence of level 4 or 5 diabetes risk 

prediction validation. The most common form of validation (level 2) tested the models’ 

geographic, methodologic and spectrum transportability in addition to the reproducibility and 

historic transportability (62.8%). This included models which were validated in the same country 

as their development but a different city or cohort to development, as well as validation of a 

model for a different outcome.  

 

Prevalent diabetes risk prediction models 

The Finnish diabetes full risk model was the most frequently validated prevalent diabetes risk 

prediction model (14.8%) [15, 16], followed by the Rotterdam predictive model 1 (12.5%). As with 

incident risk models, hierarchy level 2 was the most common level of validation (81.8%), with no 

level 4 or 5 validation.  
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Recalibration methods 

Multiple updating methods exist [2, 3, 17-19], varying in the complexity and the number of 

parameters that are adjusted or re-estimated. The term ‘recalibration’ is used to describe basic 

techniques to fit a predictive model to a new setting. The development of the model dictates the 

recalibration methods available. The mathematical model chosen for development may follow 

logistic regression, cox or Weibull principles. The intercept, or equivalent, of risk models is 

determined by the prevalence of the outcome in the population in which the model was 

developed and the updating of this intercept aims to solve the discrepancy between the mean 

predicted risk and mean observed risk resulting in better calibration. To be noted, recalibration, 

through either method, does not change the discriminatory ability of the risk prediction model 

as the relative ranking of the predicted probabilities remain the same [20]. 

 

Logistic regressions are the most commonly used for risk prediction research. Recalibration 

methods, described by Steyerberg [1] and Janssen et al [3], aim to update the intercept of logistic 

models to better account for the prevalence in the validation population. The intercept can be 

updated by fitting a logistic regression model with a linear predictor as the only covariate in the 

updating set or by calculating a correction factor that is based on the mean predicted risk and 

observed outcome frequency in the validation population. When the outcome frequency is not 

particularly low or high, the correction factor will equal the calibration intercept. The final 

correction factor is simply added to the intercept of the original model. This is considered the 

most basic form of logistic model updating. An additional method, termed logistic calibration, fits 

a logistic regression model with a linear predictor as the only covariate in the updating set [3]. 

The calibration slope is used to recalibrate (multiply by) the original regression coefficients. The 

closer the calibration slope is to 1, the less adjustment the original regression coefficients 

required. The intercept is also updated by adding the calibration intercept to the intercept of the 

original prediction model.  
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Survival models available for risk prediction research depend on the distribution assumptions 

that can be made. Weibull models are generalised exponential models with the inclusion of shape 

(survival rate), allowing for more flexibility on the types of data that the model can fit. The model 

has a hazard function which measures how likely the outcome/event will take place as a function 

of the length of observation [21]. While exponential distribution has a constant hazard function, 

the Weibull distribution hazard rate can increase or decrease in relation to time. The Weibull 

model is a popular method for parametric data. When distribution assumptions of the survival 

time (time until diagnosis) cannot be met, the Cox proportional hazard model can be used. 

Additionally, cox models are used when the risk factors have a multiplicative effect on the hazard 

function and can be extended for multiple regression situations [22]. Cox models do not have an 

intercept but rather an equivalent, the ‘baseline survival function’ or ‘baseline risk’. This baseline 

information is almost never given by authors of published medical articles that report a cox 

model, however it can be recalculated [23]. Cox models are often referred to as semi-parametric, 

as the baseline hazard function is non-parametric, while the linear predictor in the cox model is 

fully parametric. 

 

The incorporation of diagnosis time in both of these models allows for them only to be used for 

the development of incident diabetes risk prediction models (as opposed to prevalent diabetes 

prediction). The choice of model is researcher dependent and each come with their own 

advantages, parametric models are more precise with smaller standard errors, while it is easier, 

and can prevent biases, not having to make assumptions of the underlying hazard function nature 

or shape with semi-parametric models. The recalibration of all survival analysis models uses 

Kaplan-Meier to determine the average incidence rates and update the model to the validation 

population incidence rate [17]. Additionally available, the mean values of each variable within 

the model which were derived from the validation population is replaced by the mean values of 

the same variables from the validation population. These methods are described in more detail 

by D’ Agostino (2001) [17]. Text box 2 details the components of the various models that are 

altered during recalibration.  
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Text box 2: Mathematical formula for key models illustrating change before and after 

recalibration – adapted from Janssen et al [3] and Houwelingen [23] 

Model Formula Components Recalibration change 

Logistic 1/{1 + EXP[-(ß0 + ß1 x 
predictor1 +…+ ßn x 
predictorn)]} 

Intercept: ß0 

Variable coefficient: ß1- ßn 
Update intercept: ß0 + correction factor  

Update intercept: ß0 + correction factor 
Coefficient: linear predictor x βcalibration 

Cox Ho(t)EXP(xβ) where xβ = 
β1(x1 − M1 + … + βn(xn – Mn) 

Baseline hazard function: 
H0(t)  
Prognostic index: xβ  
Regression coefficient: β 
Mean of risk factor: M 

Update incidence rate of validation 
cohort: H0(t) 

Update mean value of variable in 
validation cohort: β 

Weibull (β0 + β1 ln(t))EXP(xβ) 
where xβ = β1(x1 − M1 + … + 

βn(xn – Mn) 
 

Hazard function: β0 + β1 
ln(t) 

Prognostic index: xβ  
Regression coefficient: β 
Mean of risk factor: M  

Update incidence rate of validation 
cohort: β0 of (β0 + β1 ln(t)) 

Update mean value of variable in 
validation cohort: β 

 

Reporting of recalibration 

Of the 236 validations of diabetes risk prediction models in alternate populations, 54 (22.9%) 

reported the use of recalibration methods in an effort to increase performance of the existent 

models. The reporting of the recalibration method was clear, the only article to not report the 

method of recalibration was Bozorgmanesh et al (2011) [24]. Forty two of these studies (77.8%) 

reported an increase in model performance following the recalibration of the original model 

(seven studies did not report the original or recalibrated model performance [25-28]). Every 

recalibration was carried out on an incident diabetes risk prediction model, with most of them 

being logistic regression models (75.9%). Additionally, 68.5% of recalibrations were carried out 

in level 3 calibrations. There was no one model that was recalibrated significantly more often 

than others. The Framingham offspring simple clinical model was recalibrated four times (7.4%) 

[14, 24, 28, 29], while the DPoRT, concise Finnish, German, KORA base, KORA clinical, QDScore 

and San Antonio clinical diabetes risk models were recalibrated three times (5.6%).  
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Table 1 – Characteristics of validation/updating studies of diabetes prediction models 

Author Year 
Location of 

study 
Model/s 

Incident or 
prevalent 

model 

Validation 
with 

development 

Level of 
validation 

Recalibration 
Increase in 
calibration 

Alteration to model (if any) 

Abbasi et al [30] 2012 Netherlands 

KORA base model (model 1) – logistic [31]  

Incident No 2 Yes 

No 
Addition of WC following 

recalibration 

KORA clinical model (model 2) – logistic [31]  Yes 
Exclusion of HbA1c and 

uric acid;  Addition of WC 
following recalibration 

KORA clinical model (model 3) – logistic [31]  Yes 
Exclusion of HbA1c and 
OGTT;  Addition of WC 
following recalibration 

Abbasi et al [32] 2012 Netherlands 

DETECT-2 model – logistic [33] 

Incident No 3 Yes Yes 

/ 
 

BRHS simple clinical model – logistic [34] 

BRHS fasting biomarker model – logistic 
[34] 

BRHS non-fasting biomarker model – 
logistic [34] 

KORA base model (model 1) – logistic [31]  

KORA clinical model (model 2) – logistic [31]  

AUSDRISK – logistic [35] 

Self-reported prevalent 
cases of diabetes excluded 

- history of high blood 
glucose variable 

unavailable, therefore set 
to zero  

DPoRT – weibull [27] 
 

/ 
 

Tromso – cox [36] 

ARIC basic model – weibull [37] 

ARIC enhanced model – weibull [37] 

QDScore – cox [38] 

Z score combination of 
education levels and 

occupation status as proxy 
for social economic status 

DESIR clinical risk model – logistic [39] 

 
 
 
 

/ 

DESIR clinical and biological risk model – 
logistic [39] 

Framingham offspring simple clinical 
categorical model 1 – logistic [13] 

Framingham offspring simple clinical 
categorical model 2 – logistic [13] 
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Framingham offspring simple clinical 
categorical model 3 – logistic [13] 

EPIC-Norfolk – logistic [40] 

German diabetes risk score – cox [41]  

Finnish diabetes risk score concise – logistic 
[15] 

Self-reported prevalent 
cases of diabetes excluded 

- history of high blood 
glucose variable 

unavailable, therefore set 
to zero 

Finnish diabetes risk score full – logistic [15] 

Self-reported prevalent 
cases of diabetes excluded 

- history of high blood 
glucose variable 

unavailable, therefore set 
to zero 

San Antonio risk clinical model – logistic 
[42]  

/ 
PROCAM risk model – logistic [43]  

San Antonio reduced model – logistic [44]  

Adbul-Ghani et al [45] 2009 Finland 

San Antonio risk clinical model – logistic 
[42]  

Incident No 2 No / 
Addition of 1-hour plasma 

glucose 
California scoring model – logistic [46] 

Finnish diabetes risk score– logistic [15] 
(concise/full model not stated) 

Adhikari et al [47] 2010 India Indian diabetes risk score – logistic [48] Prevalent No 2 No / Incident to prevalent  

Akyil et al [49] 2014 Turkey 
Finnish diabetes risk score full – logistic [15, 

16] 
Prevalent No 2 No / / 

Al Khalaf et al [50] 2010 Kuwait 

American Diabetes Association risk 
assessment questionnaire [51] 

Prevalent Yes 2 No / / 

Rotterdam predictive model 1 – logistic [52] 

Cambridge diabetes risk score – logistic [53] 

Finnish diabetes risk score full – logistic [15, 
16] 

Danish risk score – logistic [54] 

Indian diabetes risk score – logistic [48] 

Thai simple risk model – logistic [55] 

Omani risk score – logistic [56] 

Al-Lawati et al [56] 2007 Oman 
Rotterdam predictive model 1 – logistic [52] 

Prevalent Yes 2 No / / 
Thai simple risk model – logistic [55] 
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Finnish diabetes risk score full – logistic [15, 
16] 

Danish risk score – logistic [54] 
 

Alssema et al [33] 2011 

Netherlands, 
Denmark, 

Sweden, UK, 
Australia, 
Mauritius 

Finnish diabetes risk score concise – logistic 
[15] 

Incident No 3 Yes Yes 
History of high blood 
glucose swopped for 
gestational diabetes 

Alssema et al [57] 2012 Netherlands 
Finnish diabetes risk score concise – logistic 

[15] 
Incident Yes 2 No / / 

Baan et al [52] 1999 Netherlands 
Rotterdam predictive model 1 – logistic [52] 

Prevalent Yes 1 No / / 
Rotterdam predictive model 2 – logistic [52] 

Balkau et al [39] 2008 France 

San Antonio risk clinical model – logistic  
[42]  

Incident Yes 

2 

No / / 

Finnish diabetes risk score full – logistic [15] 

DESIR clinical risk model – logistic [39] 

1 
DESIR clinical and biological risk model – 

logistic [39] 

DESIR clinical, biological and genetic risk 
model – logistic [39] 

Bang et al [58] 2009 USA 
Rotterdam predictive model 1 – logistic [52] 

Prevalent  Yes 2 No / / American Diabetes Association risk 
assessment questionnaire [51] 

Bergmann et al [59] 2007 Germany 

Finnish diabetes risk score concise – logistic 
[15] 

Incident  
No 2 No / / 

Finnish diabetes risk score concise – logistic 
[15, 16] 

Prevalent 

Bhadoria et al [60] 2014 India Indian diabetes risk score – logistic [48] Prevalent No 2 No / / 

Bozorgmanesh et al 
[61] 

2010 Iran ARIC enhanced model – Weibull [37] Incident No 2 No / / 

Bozorgmanesh et al 
[62] 

2010 Iran 

San Antonio risk clinical model – logistic 
[42]  Incident No 2 

Yes No 
Addition of OGTT 

San Antonio reduced model – logistic [44] No / 

Bozorgmanesh et al 
[24] 

2011 Iran 
Framingham offspring simple clinical model 

– logistic [13] 
Incident Yes 2 Yes Yes / 

Chaturvedi et al [63] 2008 India Urban Asian Indian risk score – logistic [63] Prevalent Yes 1 No / / 

Cameron et al [64] 2007 Mauritius 
San Antonio risk clinical model – logistic 

[42]  
Incident No 2 No / / 

Cameron et al [65] 2008 Australia 

Finnish diabetes risk score full – logistic [15] 

Incident No 2 No / 

History of high blood 
glucose excluded 

San Antonio risk clinical model – logistic 
[42]  

Family history only 
included parental history 
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Chen et al [35] 2010 Australia AUSDRISK – logistic [35] Incident Yes 1 No / / 

Chien et al [66] 2009 Taiwan 

Framingham offspring simple clinical model 
– logistic [13] 

Incident Yes 2 No / / 
San Antonio risk clinical model – logistic 

[42]  

Cambridge diabetes risk score – logistic [53] 

PROCAM risk model – logistic [43]  

Collins et al [8] 2011 
United 

Kingdom 
QD Score – cox [38]  Incident No 2 No / 

Continuous Townsend 
score replaced by 
categorical proxy 

Farran et al [67] 2013 Kuwait US screening score – logistic [58] Incident Yes 2 No / / 

Franciosi et al [68] 2005 Italy 
Finnish diabetes risk score full – logistic [15, 

16] 
Prevalent No 2 No / / 

Gao et al [69] 2010 China 

Qingdao diabetes risk score – logistic [69] 

Prevalent Yes 

1 

No / / 

Rotterdam predictive model 1 – logistic [52] 

2 

Cambridge diabetes risk score – logistic [53] 

Finnish diabetes risk score full – logistic [15, 
16] 

Danish risk score – logistic [54] 

Asian Indian diabetes risk score – logistic 
[70] 

Thai simple risk model – logistic [55] 

DESIR clinical risk model – logistic [39] 

Ginde et al [71] 2007 USA 
American Diabetes Association risk 

assessment questionnaire [51] 
Prevalent No 2 No / / 

Glümer et al [54] 2004 Denmark Danish risk score – logistic [54] Prevalent Yes 1 No / / 

Glümer et al [72] 2005 
Australia / 
Denmark 

Danish risk score – logistic [54] Prevalent No 2 No / Physical activity excluded 

Glümer et al [73] 2006 Global Rotterdam predictive model 1 – logistic [52] Prevalent No 3 No / / 

Gray et al [74] 2010 UK 
Leicester Risk assessment score – logistic 

[74] 
Prevalent Yes 1 No / / 

Gray et al [75] 2012 UK Leicester practice risk score – logistic [75] Prevalent Yes 1 No / / 

Gray et al [76] 2014 
South Asians 

in UK 

Leicester Risk assessment score – logistic 
[74] Prevalent No 2 No / / 

Leicester practice risk score – logistic [75] 

Griffin et al [53] 2000 UK Cambridge diabetes risk score – logistic [53] Incident Yes 1 No / / 

Guasch-Ferré et al [77] 2012 Spain 

PREDIMED personal model – cox [77] 

Incident Yes 

1 

No / / Finnish diabetes risk score full – logistic [15] 
2 

German diabetes risk score – cox [41]  

Guerrero-Romero et al 
[78] 

2010 Mexico Mexican diabetes model – cox [78] Incident Yes 1 No / / 
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Hanley et al [79] 2004 USA 
San Antonio risk clinical model – logistic 

[42]  
Incident Yes 2 No / / 

Hartwig et al [25] 2013 Germany German diabetes risk score – cox [41] Incident No 2 Yes NS 

 
Addition of 

HbA1c, blood glucose, 
triglycerides, HDL, alanine 

aminotransferase and 
gammaglutamyltransferase 

 

He et al [80] 2012 China 

DESIR clinical risk model – logistic [39]  

Incident No 2 No / / 

Finnish diabetes risk score concise – logistic 
[15] 

Framingham offspring simple clinical model 
– logistic [13] 

Thai simple risk model – logistic [55] 

Taiwan scoring concise model – cox [66] 

San Antonio risk clinical model – logistic 
[42] 

PROCAM risk model – logistic [43]  

California scoring model – logistic [46] 

Prevalent No 2 No / / 

Cambridge diabetes risk score – logistic [53] 

Omani risk score – logistic [56] 

Asian Indian diabetes risk score – logistic 
[70] 

Urban Asian Indian risk score – logistic [63]  

Heizana et al [81] 2013 Japan 

TOPICS diabetes categorical screening score 
–cox [81] 

Prevalent Yes 

1 

No / 

Prevalent to incident 

TOPICS diabetes continuous screening score 
–cox [81] 

/ 

Rotterdam predictive model 1 – logistic [52] 

2 

Danish risk score – logistic [54] 

Omani risk score – logistic [56] 

US screening score – logistic [58] 

Asian Indian diabetes risk score – logistic 
[70] 

Qingdao diabetes risk score – logistic [69] 

Leicester Risk assessment score – logistic 
[74]  

Screening tool in ADDITION-Leicester – 
logistic [75] 

Heldgaard & Griffin 
[82] 

2006 Denmark Cambridge diabetes risk score – logistic [53] Prevalent No 2 No / / 
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Hippisley-Cox et al [38] 2009 UK 
QDScore – cox [38] 

Incident Yes 
1 

No / / 
Cambridge diabetes risk score – logistic [53] 2 

Hippisley-Cox et al [26] 2014 UK QDScore – cox [38] Incident No 1 Yes NS / 

Kahn et al [37] 2009 USA 

Framingham offspring simple clinical model 
– logistic [13] Incident Yes 2 No / / 

DESIR clinical risk model – logistic [39] 

Kanaya et al [46] 2005 USA California scoring model – logistic [46] Incident Yes 1 No / / 

Keesukphan et al [83] 2007 Thailand 
 

Thailand diabetes risk model – logistic [83] 
 

Incident Yes 1 No / / 

Kengne et al [6] 2014 Europe 

ARIC clinical only model – logistic [84] 

Incident No 3 Yes 

Yes  

ARIC enhanced model – weibull [37] No  

AUSDRISK – logistic [35] Yes 
Blood pressure medication 

replaced by proxy ‘any 
hypertension’  

Cambridge diabetes risk score – logistic [53] No 

Family history of diabetes 
excluded 

Blood pressure medication 
replaced by proxy ‘any 

hypertension’ 

DESIR clinical risk model– logistic [39] Yes  

DPoRT – weibull [27] No  

Finnish diabetes risk score concise – logistic 
[15] 

Yes 
Blood pressure medication 

replaced by proxy ‘any 
hypertension’ 

Finnish diabetes risk score full – logistic [15] Yes 

Categorical daily intake of 
fruit, vegetables or berries 

replaced by continuous 
proxy 

Blood pressure medication 
replaced by proxy ‘any 

hypertension’ 

Framingham offspring complex clinical 
model 1 – logistic [13] 

Yes  

KORA base model (model 1) – logistic [31] Yes  

German diabetes risk score – cox [41]  Yes  

QDScore – cox [38] Yes 

Continuous Townsend 
score replaced by 

categorical education 
proxy 

Ko et al [85] 2010 China 
Southern Chinese diabetes risk model – 

logistic [85] 
Incident Yes 1 No / / 
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Ku and Kegels [86] 2013 Philippines 
Finnish diabetes risk score full – logistic [15, 

16] 
Prevalent No 2 No / Removal of variables 

Lee et al [87] 2012 Korea 

Korean diabetes prediction score – logistic 
[87] 

Prevalent Yes 

1 

No / / 
Qingdao diabetes risk score – logistic [69] 

2 
Thai simple risk model – logistic [55] 

Rotterdam predictive model 1 – logistic [52] 

US screening score – logistic [58] 

Li et al [88] 2007 Germany 
Framingham offspring simple clinical model 

– logistic [13] 
Incident No 2 No / / 

Li et al [89] 2009 Germany 
Finnish diabetes risk score full – logistic [15, 

16] 
Prevalent No 2 No / Removal of variables 

Li et al [90] 2011 Taiwan American Diabetes Association risk tool [91] Incident No 2 No / 

Addition of family history 
of hyperlipidaemia, 

education levels, TV hours, 
history of cardiovascular 

disease and 
hypertriglyceride 

Lin et al [92] 2009 Taiwan 

ARIC clinical only model – logistic [84] 

Incident No 2 No / / 

Asian Indian diabetes risk score – logistic 
[70] 

Cambridge diabetes risk score – logistic [53] 

Danish risk score – logistic [54] 

DESIR clinical risk model – logistic [39] 

Finnish diabetes risk score concise – logistic 
[15] 

Rotterdam predictive model – logistic [52] 
(model 1/2 not stated) 

Omani risk score – logistic [56] 

QDScore – cox [38] 

Thai simple risk model – logistic [55] 

Lindstrom et al [15] 2003 Finland 

Finnish diabetes risk score concise – logistic 
[15] Incident Yes 1 No / / 

Finnish diabetes risk score full – logistic [15] 

Luo et al [93] 2014 China 
Chinese risk assessment model – logistic 

[93] 
Incident Yes 1 No / / 

Lui et al [94] 2011 China 

Chinese diabetes risk model 1 – logistic [94] 

Prevalent Yes 1 No / / Chinese diabetes risk model 2 – logistic [94] 

Chinese diabetes risk model 3 – logistic [94] 

Lyssenko et al [95] 2008 
Sweden and 

Finland 
Framingham offspring simple clinical model 

– logistic [13] 
Incident Yes 2 No / / 

Lyssenko et al [96] 2012 Denmark PreDX diabetes risk score – logistic [97] Incident No 2 No / / 
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San Antonio risk clinical model – logistic 
[42]  

Framingham offspring simple clinical model 
– logistic [13] 

Mainous et al [98] 2007 USA ARIC clinical only model – logistic [84] Incident No 2 No / /  

Makrilakis et al [99] 2010 Greece 
Finnish diabetes risk score full – logistic [15, 

16] 
Prevalent No 2 No / / 

Mann et al [14] 2010 USA 

Framingham offspring simple clinical model 
– logistic [13] 

Incident No 2 Yes Yes / San Antonio risk clinical model – logistic 
[42]  

ARIC clinical only model – logistic [84] 

McNeely et al [100] 2003 USA 
San Antonio risk clinical model – logistic 

[42]  
Incident No 2 No / 

Addition of multiple 
variables 

Mühlenbruch et al 
[101] 

2014 Germany German diabetes risk score – cox [41]  Incident No 2 No / 

Sibling history of diabetes 
not available and all 

individuals assigned 0.5 
Minor variable changes 

Nicols et al [28] 2008 USA 

Framingham offspring personal model – 
logistic [13] 

Incident No 2 Yes 

N/S / 

Framingham offspring simple clinical model 
– logistic [13] 

Yes / 

Framingham offspring complex clinical 
model 1 – logistic [13] 

N/S 

/ 
Framingham offspring complex clinical 

model 2 – logistic [13] 
N/S 

Framingham offspring complex clinical 
model 3 – logistic [13] 

N/S 

Park et al [102] 2002 UK 
Cambridge diabetes risk score – logistic [53] 

Prevalent Yes 
1 

No / / 
Rotterdam predictive model 1 – logistic [52] 2 

Phillips et al [103] 2013 Ireland 

DESIR clinical risk model – logistic [39] 

Incident No 2 No / / 

Cambridge diabetes risk score – logistic [53] 

ARIC clinical only model – logistic [84] 

ARIC enhanced model – weibull [37] 

Finnish diabetes risk score full – logistic [15] 

German diabetes risk score – cox [41]  

Framingham offspring simple clinical model 
– logistic [13] 

Rahman et al [104] 2008 UK Cambridge diabetes risk score – logistic [53] Incident Yes 2 No / Prevalent to incident 

Ramachandran et al 
[70] 

2005 India Cambridge diabetes risk score – logistic [53] Prevalent Yes 2 No / / 

Rathmann et al [105] 2005 Germany Cambridge diabetes risk score – logistic [53] Prevalent No 2 No / / 
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Rotterdam predictive model 1 – logistic [52]  

San Antonio risk clinical model – logistic 
[42]  

Finnish diabetes risk score full – logistic [15, 
16] 

Riaz et al [106] 2012 Pakistan RAPID model – logistic [106] Incident Yes 1 No / / 

Rolka et al [107] 2001 USA 
American Diabetes Association risk 

assessment questionnaire [51] 
Prevalent No 2 No / / 

Rosella et al [27] 2010 Canada DPoRT – weibull [27] Incident Yes 1 Yes N/S Recalibrated for ethnicity 

Rowe et al [108] 2012 USA PreDX diabetes risk score – logistic [97] Incident No 2 No / / 

Ruige et al [109] 1997 Netherlands 

American Diabetes Association risk 
assessment questionnaire [51] Prevalent Yes 2 No / / 

American Diabetes Association risk tool [91] 

Saaristo et al [16] 2005 Finland 
Finnish diabetes risk score full – logistic [15, 

16] 
Prevalent No 2 No / Incident to prevalent 

Schmidt et al [110] 2012 Switzerland 

ARIC basic model – weibull [37] 

Incident No 2 No / / 

ARIC enhanced model – weibull [37] 

DESIR clinical risk model – logistic [39]  

Cambridge diabetes risk score – logistic [53] 

Finnish diabetes risk score full – logistic [15] 

Framingham offspring simple clinical model 
– logistic [13] 

Schmidt et al [111] 2012 Switzerland ARIC enhanced model – weibull [37] Incident No 2 No / 
Addition of genetic 

variables 

Schulze et al [41] 2007 Germany German diabetes risk score – cox [41]  Incident Yes 3 No / / 

Simmons et al [40] 2007 UK Cambridge diabetes risk score – logistic [53] Incident Yes 2 No / 
Addition of a physical 

activity and diet 

Spijkerman et al [112] 2004 
Minorities in 

UK 
Cambridge diabetes risk score – logistic [53] Prevalent No 2 No / / 

Stern et al [113] 2004 Mexico 

San Antonio risk clinical model – logistic 
[42]  

Incident No 2 No / 
Addition of metabolic 

syndrome Framingham offspring simple clinical model 
– logistic [13] 

Stern et al [114] 2008 USA 

San Antonio risk clinical model – logistic 
[42]  Incident No 2 No / / 

ARIC clinical only model – logistic [84] 

Sun et al [115] 2009 Taiwan 

ARIC clinical model plus FBG – logistic [84] 

Incident Yes 2 No / / ARIC clinical model plus FBG and lipids – 
logistic [84] 

Tabaebi et al [116] 2002 Egypt Egyptian diabetes risk model – logistic [116] Prevalent Yes 1 No / / 

Talmud et al [117] 2010 UK Cambridge diabetes risk score – logistic [53] Incident Yes 2 No / 
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Framingham offspring simple clinical model 
– logistic [13] 

Addition of genetic 
variables 

Tankova et al [118] 2011 Bulgaria 
Finnish diabetes risk score full – logistic [15, 

16] 
Prevalent No 2 No / Incident to prevalent 

Tuomilehto et al [119] 2010 Global STOP-NIDDM risk score – cox [119] Incident Yes 2 No / / 

Urdea et al [120] 2009 Denmark PreDX diabetes risk score – logistic [97] Incident No 2 No / / 

Wannamethee et al 
[121] 

2005 UK 
Framingham offspring simple clinical model 

– logistic [13] 
Incident No 2 No / 

Waist circumference 
replaced by BMI proxy  

Witte et al [122] 2010 UK 

Cambridge diabetes risk score – logistic [53] 

Prevalent No 2 No / / 

Rotterdam predictive model 1 – logistic [52] 

Rotterdam predictive model 2 – logistic [52] 

Finnish diabetes risk score full – logistic [15, 
16] 

Danish risk score – logistic [54] 

Hoorn study risk model – logistic [109] 

Xu et al [29] 2014 China 
Framingham offspring simple clinical model 

– logistic [13] 
Incident Yes 2 Yes Yes / 

Zhang et al [123] 2014 USA 

Finnish diabetes risk score full – logistic [15, 
16] Prevalent No 2 No / / 

US screening score – logistic [58] 

Zhou et al [124] 2013 China 
New Chinese Diabetes Risk Score - logistic 

[124] 
Prevalent Yes 2 No / / 
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Discussion 

The validation of existent models in a new population is highly encouraged, preventing the 

availability of numerous models, where few have been externally validated. The common 

method of developing and validating models simultaneously in a database in which previous 

risk prediction research has not been, defeats this purpose. Ideally, should a database suitable 

for diabetes risk prediction research be available, models should first be validated in an 

attempt to find an existent model that can perform at an optimum discrimination and 

calibration. Should a model show systematic overestimation or underestimation of risk, and 

the performance be too low to allow for accurate prediction and successful implementation, 

recalibration techniques can be employed in an effort to increase the performance of the 

model.  

 

The aim of this study was to determine the extent to which model recalibration was 

undertaken in validation of diabetes risk models. This review of available published literature 

on the validation of diabetes risk prediction models showed that although validation of 

existent models is occurring, the attempt to fit these models to the new setting is poor. 

Additionally, we wished to determine if this recalibration was successful in increasing model 

performance when incorporating information for the validation population. Most studies that 

undertook the recalibration of models were able to show that model performance can be 

increased with basic recalibration techniques. The new models retain their importance in a 

new setting, taking into account the underlying incidence of the outcome and the variable 

relative importance of each risk factor from the development to the validation population. 

This increase in performance through simple recalibration is important in the effort to 

encourage the updating of models during validation. The statistical effort in recalibrating a 

model is slight and the final product of a model better fitted to the population in question 

and increased model performance worth the added step.  

 

Although we aimed to comprehensively review all published papers on development and 

validation of undiagnosed diabetes risk prediction models, it should be highlighted that we 
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may have missed some published validation studies. However, the overall result would not 

be expected to differ significantly with the possible inclusion of more model validation 

studies.  

 

Conclusion 

Without recalibration in the validation of a diabetes risk prediction model, the ability of these 

models to generate an accurate point estimate of an individual’s diabetes risk may be 

inadequate. The importance of generalizability and validation of current models is repeatedly 

emphasized in literature, however this is fruitless if extra efforts are not taken to fit the model 

as best as possible to the new setting. Unfortunately, only a relatively small number of 

validation studies have included recalibration in their methodologies. Additionally, no 

prevalent diabetes risk prediction models used recalibration in an attempt to better fit the 

model to the validation population. An increased focus on the validation, and particularly 

recalibration, of existent models will improve the generalizability of the models and likely lead 

to greater application of diabetes risk prediction models in daily clinical practice. The question 

that remains is, when is a model ruled sufficiently validated and recalibration / updated? 

Future research should address this question and allow for the determination of how many 

validation studies, what type of adjustments need to be made and most importantly, what is 

optimum performance to justify the implementation of the risk prediction model into clinical 

practice.  
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Abstract  

Background: Many prediction models perform poorly when applied to populations different to 

the one in which they were developed. In an attempt to limit endless models development, 

model validation and updating methods to incorporate characteristics of the validation 

population into an existent models are encouraged. We assessed the impact of updating 

techniques on the accuracy of prevalent diabetes prediction models.  

Methods: Data from the Cape Town Bellville South cohort served as the basis for this study. 

Model updating techniques and models were identified via recent systematic reviews. Models’ 

discrimination was assessed and compared using C-statistic and non-parametric methods.  

Results: The study sample consisted of 1256 individuals, of whom 173 were excluded due to 

previously diagnosed diabetes. Updating methods increased the discrimination of four models 

(Cambridge, Omani, Rotterdam and Simplified Finnish diabetes risk models), while the Kuwaiti 

Risk model’s performance was maintained [C-statistic: 0.70 (0.66 – 0.74)]. Calibration was 

improved for all five models with logistic calibration and held throughout the remaining updating 

methods. Overall, the re-estimation of the Cambridge diabetes risk model yielded the best model 

performance [C-statistic: 0.71 (0.67 – 0.75); E/O: 1.00 (0.86 – 1.17)].  

Conclusions: Model updating techniques increased both discrimination and calibration in varying 

levels across all five models. These methods can potentially be employed when validating an 

existent diabetes risk model in an effort to better fit the model to the validation population.  

 

Word count – 224 

Keywords: risk, prediction, diabetes, update, performance 
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Background 

Updating methods aim to improve the prediction performance of a model in a new setting [1]. 

Prediction performance is often decreased when a model is tested in a population different to 

that in which the model was developed. To limit the number of models redeveloped in smaller 

datasets due to poor performance of existent models, the updating of model is encouraged. This 

allows for the information captured during the development of the model to be incorporated 

with characteristics of the validation population [1-5].  

Several updating methods are available in the statistical literature [1, 4-6]. These methods vary 

in the extent to which the model is adjusted, and range from simple recalibration in which only 

the intercept of the model may be update, to more extensive updating where all the model 

parameters are re-estimated and new variables are considered. There is no advocated method 

to use, however the most extensively used approach in the updating of an existent risk prediction 

model, simple intercept correcting, does not account for the difference in strength of the 

individual variables in the validation population; while the re-estimation of the regression 

coefficients to replace unbiased estimates and fit the model to the validation outcome 

prevalence, can be unreliable [6]. In addition, model aggregation allows for the classical paradigm 

of model updating to be extended to allow for the use of evidence from multiple potentially 

useful models.  

Updating methods are, however, not a remedy against poorly conceived and underpowered 

prediction research, nor do they guarantee complete bridging of the gaps due to large differences 

between development and validation datasets. How these methods alter the performance of the 

existent models during the validation of prevalent diabetes risk prediction in empirical data has 

not yet been investigated.  

In this study, we applied the updating methods presented by Janssen et al [6], adapted from 

Steyerberg et al [7], and model averaging presented by Debray et al [8], in a validation dataset 

from South Africa, where population specific diabetes risk prediction models are not available. 

Existent models developed in vastly different populations were validated and updated with 
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multiple methods, in an attempt to document if performance can be improved enough to allow 

recommendation for use.  

 

Methodology 

Database  

Details of the study design and recruitment of the database that served as the basis for all 

updating methods implementation are described below. The study was approved by the Ethics 

Committee of the Cape Peninsula University of Technology and Stellenbosch University. 

Research setting 

Bellville South is located within the Northern suburbs of Cape Town, South Africa and is a 

traditionally a Coloured township formed in the late 1950s. According to the 2011 population 

census, its population stands at approximately 29 301 with 76.0% (22 270) consisting of mixed 

ancestry individuals [9, 10]. The target population for this study were subjects between the ages 

of 35 and 65 years and their number was estimated to be 6 500 in the 2001 population census 

[11].  

Research Design and Study Population 

The data was collected during January 2008 to March 2009. Using a map of Bellville South, 

multistage stratified random sampling was approached as follows: From a list of streets from 

each stratum, the streets were then classified as short, medium and long streets, based on the 

number of houses. Streets with houses ≤ 22 were classified as short, medium; houses 23–40 and 

long streets were > 40 houses. A total of 16 short streets representing approximately 190 houses, 

15 medium streets representing approximately 410 houses and 12 long streets representing 

approximately 400 houses, were randomly selected across the different strata. From the selected 

streets, all household members meeting the selection criteria were invited to participate in the 

study. Community authorities requested that participants outside the random selection area 

should benefit from the study.  
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Recruitment Strategy 

Information regarding the project was disseminated to the local residents through the local radio 

station, community newspaper, brochures and fliers; the latter bearing information about the 

project and distributed through school children and taxis to the local residents by the recruitment 

team. Recruited subjects were visited by the recruitment team the evening before participation 

and reminded of all the survey instructions.  

Data collection 

A detailed protocol describing data-collection procedures (questionnaires and physical 

examination) was developed. The questionnaire designed to retrospectively obtain information 

on lifestyle factors such as smoking and alcohol consumption, physical activity, diet, family 

history of cardiovascular disease (CVD) and diabetes mellitus (DM), and demographics was 

administered by trained personnel. A detailed drug history was obtained by interrogation and by 

examining the clinic cards as well as the record of drugs that participants brought to the study 

site. Clinical measurements included height, weight, hip and waist circumferences, body fat 

measurements and blood pressure.  

Diabetes diagnosis 

All participants, except self-reported diabetic subjects, confirmed by either medical card record 

or drugs in use, had blood taken for fasting blood glucose and underwent a 75 g oral glucose 

tolerance test (OGTT) as prescribed by the World Health Organisation (WHO). Diabetes was 

diagnosed according to the WHO 2006 criteria [12]. 

Identification of prevalent diabetes prediction models 

Existing prediction models were obtained from a systematic review by Brown et al, 2012 [13]. 

Models met the criteria for model selection for this paper if they were developed to predict the 

presence of undiagnosed diabetes based on predictors measured in the Bellville South study. We 

focused on models developed from non-invasively measure predictors. Therefore the models 

retained were: Cambridge Risk model [14], Kuwaiti Risk model [15], Omani Diabetes Risk model 
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[16], Rotterdam Predictive model 1 [17] and the simplified Finnish Diabetes Risk model [18]. 

Model characteristics, formulas and base performance in this dataset are available elsewhere 

[19]. All models included age as a predictor, while a range of other predictors were variably 

combined in models. These included: sex, body mass index (BMI), use of antihypertensive 

medication, family history of diabetes, waist circumference, past or current smoking and the use 

of corticosteroids.  

Statistical methods 

Analysis of missing data 

The proportion of missing data for each variable was determined. Family history was the variable 

with the most missing data [mother (25.1%), father (24.9%), sister (25.0%), and brother (25.1%)]. 

The rest of the variables had a missing proportion of less than 5%, except smoking status (6.1%). 

During the comparison of several imputation methods on this dataset, simple imputation 

resulted in higher predictive utility and was hence used to handle missing data in this study, 

before the implementation of updating methods [20].  

Updating methods 

Updating methods ranged in extent to which the original model is altered and in the dataset 

requirements [6, 7, 21]. This study naturally did not have access to the development datasets of 

the validated prevalent diabetes risk prediction models, therefore excluding updating methods 

requiring the merging of both development and validation datasets. Updating methods which 

required the addition of variables were also not considered as the aim of this study was to focus 

on updating methods using the core structure of existing models in a new setting in an attempt 

to compare the change in model performance. The models were initially run without adjustment, 

termed Method 0. This is termed the ‘reference method’ to which all other methods were 

compared. The updating techniques explained by Janssen et al [6] were used to update the 

prevalent diabetes risk prediction models in this study. Methods 1 and 2 refer to recalibration. 

Method 1 updated only the intercept using a correction factor to correct for the difference in 

disease prevalence between the development and validation population. Method 2 updated 
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both the intercept and the regression coefficients of the variables using the intercept and 

calibration slope from Method 1 respectively.  Method 3 and 4 are more comprehensive revision 

methods. Method 3 tested weather the effect of each variable is different in the updating 

dataset, following the calibration of Method 2. Variables were individually added as an offset, 

calculating a deviation from the recalibrated regression coefficient based on Method 2. 

Likelihood ratio tests were used to test whether this deviation has added predictive value. The 

deviation was added to the regression coefficients of variables with statistically significant 

differences. Finally, Method 4 was the complete re-estimation of the intercept and the regression 

coefficients, fitting the variables from the original models in the validation dataset. All novel 

modelling used the lrm function of the R package ‘rms’, which fits binary logistic regression 

models using the maximum likelihood estimation. The ‘lmtest’ package was used to perform 

likelihood ratio tests in Method 3.  

Model aggregation and development 

As a reference for comparison of the model performance of each of the updating techniques, 

model aggregation and development was done. Model averaging combines the predictions from 

updated literature models by means of a weighted average. A meta-model that combines the 

best performing models was developed, using a Bayesian model averaging (BMA) method 

adapted by Debray et al [8]. A logistic regression prevalent diabetes risk prediction model was 

developed using forward stepwise regression. To reduce model overfitting, lasso regression was 

used to shrink the regression coefficients with the function penalized in the R package ‘penalized’.  

Model performance 

The original selected models were validated for the overall data and subsets using the formulas, 

without any recalibration. The predicted probability of undiagnosed diabetes for each participant 

was computed using the baseline measured predictors. The performance was expressed in terms 

of discrimination and calibration. Discrimination describes the ability of the model’s performance 

in distinguishing those at a high risk of developing diabetes from those at low risk [22]. The 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



157 
 
 

discrimination was assessed and compared using concordance (C) statistic and non-parametric 

methods [23]. 

Calibration describes the agreement between the probability of the outcome of interest as 

estimated by the model, and the observed outcome frequencies [1]. It was assessed by 

computing the expected (E) over observed (O) ratio (E/O); with the 95% confidence intervals 

calculated assuming a Poisson distribution [24]. We also calculated 1) the Yates slope, which is 

the difference between mean predicted probability of type 2 diabetes for participants with and 

without prevalent undiagnosed diabetes, with higher values indicating better performance; and 

2) the Brier score, which is the squared difference between predicted probability and actual 

outcome for each participant with values ranging between 0 for a perfect prediction model and 

1 for no match in prediction and outcome [1, 22]. The R package ‘rms’ and the ‘pROC’ package 

were used for model performance measures. 

 

Results  

Updating dataset 

The study sample consisted of 1256 individuals, of whom 173 were excluded due to previously 

diagnosed diabetes. Of the final 1083 individuals, 329 (30.4%) had missing data, which were 

imputed using simple imputation. The baseline profile for men and women included in the study 

is described in Table 1. The mean age was 51.9 (14.9) years and a total of 162 (15%) individuals 

had undiagnosed diabetes. The database was made up of 832 (76.8%) females. A comparison 

between the genders showed a significant difference for BMI, systolic and diastolic blood 

pressure, waist circumference, smoking status and a sibling with a history of diabetes.  

Models parameters 

Supplementary Table 1 shows the estimates of the main parameters of the various updating 

methods. The regression model intercept and regression coefficients of all the variables, per 

updated model, are presented in supplementary Table 2. In Method 1, too highly predicted risks 
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by the Cambridge and Omani diabetes risk models in the updating dataset required the intercept 

to be decreased, while the predicted risk was too low and the intercept increased for the Kuwaiti, 

Rotterdam and Simplified Finnish diabetes risk models. Method 2 shows additional adjustment 

to the intercept of all models. The Cambridge and Omani diabetes risk prediction models were 

still predicting too high a risk and the intercepts were further reduced, both by more than the 

initial adjustment [Cambridge: -0.415, - 0.986; Omani: -0.308, -0.752]. The Rotterdam diabetes 

risk prediction model was also further reduced, however only by 0.007. However, on the contrary 

to Method 1, the remaining models required the predicted risk to be lowered, as opposed to 

following the calibration to increase the predicted risk in Method 1. The regression coefficients 

of the original models are multiplied by the calibration slopes from method 0. All models required 

the weighting of the variables to be decreased, with the exception of the Rotterdam predictive 

model which had a calibration slope of 1.067.  

 

Table 1: Characteristics of the updating dataset, following simple imputation 

Variables  Updating dataset 

Overall (1083) Male (251) Female (832) P value 

Prevalent undiagnosed diabetes (Yes) 162 (15.0) 28 (11.2) 134 (16.1) 0.068 

Age (years) 51.9 (14.9) 53.8 (16.1) 51.3 (14.5) 0.031 

Body mass index (kg/m2) 29.7 (7.0) 26.0 (5.9) 30.9 (6.9) <0.001 

Systolic blood pressure (mmHg) 124.3 (20.0) 127.5 (19.4) 123.3 (20.1) 0.003 

Diastolic blood pressure (mmHg) 76.0 (12.7) 77.6 (13.9) 75.5 (12.3) 0.035 

Waist circumference (cm) 95.8 (15.3) 92.7 (14.5) 96.7 (15.4) < 0.001 

Hypertensive medication (Yes) 374 (34.5) 74 (29.5) 300 (36.1) 0.065 

Using corticosteroids (Yes) 12 (1.1) 2 (0.8) 10 (1.2) 0.847 

Mother having diabetes (Yes) 124 (11.5) 20 (8.0) 104 (12.5) 0.062 

Father having diabetes (Yes) 61 (5.6) 15 (6.0) 46 (5.5) 0.910 

Sister having diabetes (Yes) 103 (9.5) 12 (4.8) 91 (10.9) 0.005 

Brother having diabetes (Yes) 67 (6.2) 9 (3.6) 58 (7.0) 0.072 

Smoking status (Current) 433 (40.0) 123 (49.0) 310 (37.3) 0.001 
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The likelihood ratio test results from Method 3 showed significantly different effects in at least 

one variable across all the models, except the Simplified Finnish diabetes risk model 

(Supplementary Table 1). Additionally, a calibration slope of 1, from Method 2 for the Simplified 

Finnish diabetes risk model, resulted in no change in the regression coefficients, and an intercept 

of 0 meant no change in the intercept of the final model for Method 3. The remaining Method 2 

calibration slopes were all above 1, varying in the increasing effect on the linear predictor. The 

intercept adjustments for Method 3 followed the pattern from Method 1 to 2 for Cambridge, 

Kuwaiti and Omani diabetes risk prediction models, where the risk was lowered even further. 

The Rotterdam diabetes risk prediction model intercept was slightly lowered from -2.311 to -

2.240. Finally, the re-estimation of the models (Method 4) yielded an intercept closer to 0 (when 

compared to the original model) for all the models. The coefficients showed no pattern of 

increase or decrease across the models, however comparison of the final intercepts and 

regression coefficients of the updated models showed variability, Supplementary Table 2.   

Model performance 

Table 2 shows that the model performance in the updating dataset. As expected recalibration 

Methods 1 and 2 did not change the discriminative ability of the models. The Kuwaiti diabetes 

risk model maintained a C-statistic of 0.70 (0.66 – 0.74) throughout all the updating methods. 

Method 3 increased the C-statistic for the remaining models, excluding the Simplified Finnish 

diabetes risk model which remained at 0.66 (0.62 – 0.70), while the re-estimation resulted in the 

highest C-statistic for the Omani [0.70 (0.65 – 0.74)] and Simplified Finnish diabetes risk models 

[0.68 (0.63 – 0.72)]. Method 4 was able to increase the discrimination for the Omani, Simplified 

Finnish and Cambridge diabetes risk models, while holding the discrimination for the Rotterdam 

diabetes risk model [0.67 (0.62 – 0.72)]. The optimal calibration results were reached with 

Method 2 [E/O: 1.00 (0.86 – 1.17)] for all the models and was maintained through to Method 4. 

Both the final model developed through model averaging and complete model development 

matched the performance of the model re-estimation of the Cambridge model [C-statistic: 0.71 

(0.67 – 0.75)]. Both models’ parameters and performance is shown in Supplementary Table 3.  

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



160 
 
 

Table 2: Overview of the performance of the prevalent diabetes risk prediction models across the updating techniques  

Models  Original (0) Intercept adjustment (1) Logistic calibration (2)  Revision (3) Revision (4) 

Cambridge 

Diabetes Risk 

Model 

E/O (95% CI) 0.48 (0.41 ; 0.56) 0.78 (0.67 ; 0.91) 1.00 (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 

Brier score 0.181 0.140 0.120 0.119 0.117 

Yates slope 0.174 0.135 0.060 0.066 0.081 

C-statistic (95% CI) 0.69 (0.65 – 0.73) 0.69 (0.65 – 0.73) 0.69 (0.65 – 0.73) 0.70 (0.66 – 0.74) 0.71 (0.67 – 0.75) 

Kuwaiti Risk 

model 

E/O (95% CI) 1.27 (1.09 ; 1.48) 1.04 (0.90 ; 1.22) 1.00 (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 

Brier score 0.122 0.123 0.118 0.118 0.118 

Yates slope 0.097 0.111 0.070 0.075 0.074 

C-statistic (95% CI) 0.70 (0.66 – 0.74) 0.70 (0.66 – 0.74) 0.70 (0.66 – 0.74) 0.70 (0.66 – 0.74) 0.70 (0.66 – 0.74) 

Omani Diabetes 

Risk model 

E/O (95% CI) 0.70 (0.60 ; 0.82) 0.92 (0.79 ; 1.08) 1.00 (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 

Brier score 0.142 0.132 0.122 0.121 0.119 

Yates slope 0.110 0.090 0.047 0.053 0.062 

C-statistic (95% CI) 0.67 (0.63 – 0.71) 0.67 (0.63 – 0.71) 0.67 (0.63 – 0.71) 0.68 (0.64 – 0.72) 0.70 (0.65 – 0.74) 

Rotterdam 

Predictive 

model 

E/O (95% CI) 1.62 (1.38 ; 1.88) 1.01 (0.87 ; 1.18) 1.00 (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 

Brier score 0.126 0.123 0.122 0.120 0.120 

Yates slope 0.024 0.035 0.037 0.055 0.055 

C-statistic (95% CI) 0.66 (0.61 – 0.70) 0.65 (0.61 – 0.70) 0.66 (0.61 – 0.70) 0.67 (0.63 – 0.72) 0.67 (0.62 – 0.72) 

Simplified 

Finnish Diabetes 

Risk model 

E/O (95% CI) 2.92 (2.51 ; 3.41) 1.09 (0.93 ; 1.27) 1.00 (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 1.00  (0.86 ; 1.17) 

Brier score 0.133 0.125 0.122 0.122 0.121 

Yates slope 0.026 0.063 0.041 0.041 0.051 

C-statistic (95% CI) 0.66 (0.62 – 0.70) 0.66 (0.62 – 0.70) 0.66 (0.62 – 0.70) 0.66 (0.62 – 0.70) 0.68 (0.64 – 0.72) 
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Discussion 

The aim of this study was to compare the effects of different updating techniques on the 

performance of existent diabetes risk prediction models. The performance of the original models 

was not sufficient to recommend implementation and the updating methods were intended to 

better fit a model to the new setting, therefore improving performance. Discrimination was 

increased slightly across four of the five models with full model re-estimation, and calibration 

was significantly improved. To aid discussion of the model performance across the updating 

methods, model averaging and development was undertaken. Model re-estimation of the 

Cambridge diabetes risk model achieved the highest accuracy in predicting undiagnosed 

diabetes, when compared to other updating methods. 

The over or under estimated prediction of risk models in a new settings may often be due to 

variables of characteristics that are not incorporated into the model, but do have an effect on 

the final model parameters. With large disparities between the development and updating 

populations, as in this study, simple recalibration methods (Methods 1 and 2) are not anticipated 

to be able to fully adjust for the variability. The total re-estimation in the updating dataset 

(Method 4) is often undertaken in this situation, however revision methods with more simple 

adjustments (Method 3) can also achieve the incorporation of this new information in the model. 

Although discrimination was improved across the models, this was slight. Calibration was largely 

improved, with Method 2, 3 and 4 being able to achieve the best agreement between predicted 

and observed outcome frequencies. Comparison of the final intercepts and regression 

coefficients of the updated models showed large variability across the methods, highlighting the 

different effect each method had on the model parameters and the predictive ability of the 

variables. In large, Method 4 showed the best adjustment to the disparity between development 

and validation population. This was only matched by model averaging methods and the model 

developed through stepwise regression.  

The results of this study allow us to expand on the possible limitations. Two updating methods 

were excluded from the methodology, one was not possible (merging of the development and 

updating datasets), while the other was the retention of the original model predictors while 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



162 
 
 

assessing the added value of new predictors. This method was omitted as the aim was to keep 

the core structure of the original models and this is a far more extensive model revision method, 

however, it is the predictive effect of predictors that were not considered that may have 

increased model calibration and discrimination. Additionally, a limitation on model averaging 

must be mentioned. The final meta-model may include multiple classes and categories of the 

same base variable due to the nature of including all the variables from the highly weighted 

models. It is of note that model updating/revision results in new models, which must undergo 

external validation before recommendation for implementation in the new population. This extra 

step was deemed unnecessary in the current study, considering magnitude of improvement in 

models’ discrimination which was only modest. 

In conclusion, extensive updating methods on models validated in empirical data were superior 

over more simple methods. Total model re-estimation achieved good calibration while also 

increasing the discrimination of the model. Diabetes risk prediction research in Africa is poorly 

developed, and the largely diverse population setting makes existent models possibly too 

different for even the most complex of updating methods. Model validation and updating is 

advocated to prevent added models to the already saturated literature. The increase in model 

performance and comparison to model development of this study support model updating 

strategies in the role of diabetes risk prediction research.  
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Supplementary Table 1: Estimated parameters of the updating methods 1-3 and shrinkage factor for updating methods 3  

  Method 1 Method 2 Method 3 

Cambridge Diabetes Risk model 

Correction factor (1) / Calibration intercept (2-4) -0.939 - 1.401 -0.387 

Calibration slope - 0.415 1.015 

Deviation from recalibration regression coefficient    

Female gender - - 0.520 

Kuwaiti Risk model 

Correction factor (1) / Calibration intercept (2-4) 0.276 -0.459 0.944 

Calibration slope - 0.555 1.366 

Deviation from recalibration regression coefficient    

Waist circumference > 100 cm - - -0.647 

Omani Diabetes Risk model 

Correction factor (1) / Calibration intercept (2-4) -0.434 -1.060 -0.352 

Calibration slope - 0.467 1.091 

Deviation from recalibration regression coefficient    

               WC ≥ 94cm in men and ≥ 80cm in women - - 0.723 

               Parent or sibling history of diabetes - - -0.385 

Rotterdam Predictive model 

Correction factor (1) / Calibration intercept (2-4) 0.544 0.709 0.521 

Calibration slope - 1.067 1.195 

Deviation from recalibration regression coefficient    

Male gender - - -0.879 

Simplified Finnish Diabetes Risk 
model 

Correction factor (1) / Calibration intercept (2-4) 1.183 -0.021 0.000 

Calibration slope - 0.535 1.000 

Deviation from recalibration regression coefficient    

- - - - 

* Method 1: correction factor updated intercept; Method 2: both the intercept and the regression coefficients of the variables using the intercept and 

calibration slope from Method 1; Method 3: Extra adjustment of predictors with a different effect in the updating set compared to the derivation set, 

after recalibration by Method 2 
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Supplementary Table 2: Intercept and regression coefficients of the updated models per existing model updated  

 
 Method 0 Method 1 Method 2 Method 3 

Method 4  

(p-value) 

Cambridge 

Diabetes Risk 

model 

Intercept -6.322 -6.737 -7.723 -8.224 -4.966 

Female gender -0.879 -0.879 -0.365 0.150 0.025 (0.309) 

Prescribed antihypertensive medication 1.222 1.222 0.507 0.515 0.412 (0.035) 

 Prescribed steroids 2.191 2.191 0.910 0.924 -0.054 (0.947) 

 Age 0.063 0.063 0.026 0.026 0.036 (<0.001) 

 25 kg/m2 ≤ BMI ≥ 27.49 kg/m2 0.699 0.699 0.290 0.294 0.471 (0.166) 

 27.5 kg/m2 ≤ BMI ≤ 29.99 kg/m2 1.970 1.970 0.818 0.830 0.369 (0.248) 

 BMI ≥ 30 kg/m2 2.518 2.518 1.046 1.062 0.898 (0.001) 

 Parent or sibling has diabetes 0.728 0.728 0.303 0.308 0.358 (0.099) 

 Parent and sibling has diabetes 0.753 0.753 0.313 0.318 0.779 (0.027) 

 Ex-smoker -0.218 -0.218 -0.091 -0.092 0.272 (0.355) 

 Current smoker 0.855 0.855 0.355 0.360 0.406 (0.052) 

Kuwaiti Risk 

model 

Intercept -5.018 -4.634 -5.477 -6.538 -3.837 

Sibling history of diabetes 0.979 0.979 0.544 0.743 0.791 (<0.001) 

 Prescribed antihypertensive medication 0.978 0.978 0.543 0.742 0.617 (0.001) 

 Age ≥ 35 years 1.315 1.315 0.730 0.997 1.406 (0.007) 

 Waist circumference > 100 cm  1.930 1.930 1.071 0.816 0.824 (<0.001) 

Omani Diabetes 

Risk model 

Intercept -4.700 -5.008 -5.760 -6.366 -3.902 

40 years ≤ age ≤ 59 years 1.800 1.800 0.840 0.916 0.973 (0.003) 

 Age ≥ 60 years 2.300 2.300 1.073 1.170 1.476 (<0.001) 

 
WC ≥ 94cm in men and ≥ 80cm in 

women 
0.380 0.380 0.177 0.916 1.034 (0.005) 

 25 kg/m2 ≤ BMI < 30 kg/m2 0.540 0.540 0.252 0.275 0.143 (0.658) 

 BMI ≥ 30 kg/m2 0.690 0.690 0.322 0.351 0.294 (0.337) 

 Parental or sibling history of diabetes 1.900 1.900 0.887 0.583 0.519 (0.006) 

 SBP≥140 and/or DBP≥90 0.730 0.730 0.341 0.372 0.064 (0.753) 
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Rotterdam 

Predictive model 

Intercept -3.020 -2.318 -2.311 -2.240 -2.474 

Age per 5 year increment from 55 years 

to >75 
0.190 0.190 0.203 0.243 0.249 (<0.001) 

 Male gender 0.460 0.460 0.491 -0.292 -0.303 (0.196) 

 Prescribed antihypertensive medication 0.420 0.420 0.448 0.535 0.536 (0.004) 

 BMI ≥ 30 kg/m2 0.510 0.510 0.544 0.650 0.623 (0.001) 

Simplified Finnish 

Diabetes Risk 

model 

Intercept -5.514 -4.015 -5.535 -5.535 -3.010 

45 years ≤ age ≤ 54 years 0.628 0.628 0.336 0.336 -0.056 (0.807) 

55 years ≤ age ≤ 64 years 0.892 0.892 0.478 0.478 0.481 (0.021) 

 25 kg/m2 ≤ BMI < 30 kg/m2 0.165 0.165 0.088 0.088 -0.430 (0.200) 

 BMI > 30 kg/m2 1.096 1.096 0.587 0.587 -0.133 (0.703) 

 
94cm ≤ WC < 102cm in men  

80cm ≤ WC < 88cm in women 
0.857 0.857 0.459 0.459 0.965 (0.015) 

 
WC ≥ 102cm in men and ≥ 88cm in 

women 
1.350 1.350 0.723 0.723 1.369 (0.001) 

 Prescribed antihypertensive medication 0.711 0.711 0.381 0.381 0.637 (<0.001) 

 

History of high blood glucose, assumed 

to be 0 for all participants due to the 

nature of this study 

- - - - - 

* Method 0: original risk model; Method 1: correction factor updated intercept; Method 2: both the intercept and the regression coefficients of the 

variables using the intercept and calibration slope from Method 1; Method 3: Extra adjustment of predictors with a different effect in the updating set 

compared to the derivation set, after recalibration by Method 2; Method 4: complete re-estimation of the intercept and the regression coefficients, 

fitting the variables from the original models in the validation dataset 
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Supplementary Table 3: Intercept and regression coefficients of averaged and developed 

models 

  Estimates P value Model performance 

Averaged 

model 

Intercept -4.903  E/O (95% CI) 1.00 (0.86 ; 1.17) 

Female gender 0.233 < 0.001 Brier score 0.117 

Prescribed 

antihypertensive 

medication 

0.418 < 0.001 

Yates slope 0.079 

 Prescribed steroids -0.052 < 0.001 
C-statistic (95% 

CI) 

0.71 (0.67 – 0.75) 

 Age in years 0.041 < 0.001   

 
25 kg/m2 ≤ BMI ≥ 27.49 

kg/m2 
0.448 < 0.001 

 
 

 
27.5 kg/m2 ≤ BMI ≤ 

29.99 kg/m2 
0.350 < 0.001 

 
 

 BMI ≥ 30 kg/m2 0.855 < 0.001   

 
Parent or sibling has 

diabetes 
0.343 < 0.001 

 
 

 
Parent and sibling has 

diabetes 
0.740 < 0.001 

  

 Ex-smoker 0.258 < 0.001   

 Current smoker 0.385 < 0.001   

 
Sibling history of 

diabetes 
0.036 < 0.001 

  

 Age ≥ 35 years 0.063 < 0.001   

 
Waist circumference > 

100 cm  
0.036 < 0.001 

  

 
40 years ≤ age ≤ 59 

years 
0.0008 < 0.001 

  

 Age ≥ 60 years 0.002 0.076   

 
WC ≥ 94cm in men and 

≥ 80cm in women 
0.006 < 0.001 

  

 
SBP≥140 and/or 

DBP≥90 
0.001 0.028 

  

Developed 

model 
Intercept -3.955  E/O (95% CI) 1.00 (0.86 ; 1.17) 

 Age in years 0.034 < 0.001 Brier score 0.118 

 
Sibling history of 

diabetes 
0.296 < 0.001 

Yates slope 0.062 

 
Waist circumference > 

100 cm 
0.655 < 0.001 

C-statistic (95% 

CI) 

0.71 (0.67 – 0.75) 

 

Prescribed 

antihypertensive 

medication 

0.096 < 0.001 

  

* Averaged model: Bayesian model averaging to combine all five prediction models to form a meta 

model. BMI categories from Omani diabetes risk model removed from averaged model due to 

collinearity: ‘25 kg/m2 ≤ BMI < 30 kg/m2’ and ‘BMI ≥ 30 kg/; Developed model: stepwise regression 

with shrinkage to develop to new model  
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The worldwide burden of diabetes can be reduced with prevention, diagnosis and treatment 

strategies. Targeting groups with higher prevalence of diabetes for screening, by utilizing 

potential risk factors for diabetes that are population specific, will enhance diagnosis, 

treatment and prevent complications and lower comorbidities. However, before these end 

benefits of screening can be achieved, the chosen method of screening needs to be effective 

in the target population. Screening in developing countries will never be considered without 

appropriate affordable methods, and the identification of possible methodological risks 

involved in the development and implementation of the advocated method. Clinical 

prediction models are developed to facilitate prognostic or diagnostic probability estimations 

in daily medical practice [1-4]. These have been advocated as valuable diabetes screening 

tools. Diabetes risk prediction models are typically developed by associating multiple risk 

factors with the outcome in a development dataset [1-3, 5]. Well known examples of diabetes 

risk prediction models include the Cambridge diabetes risk model [6] and the simplified 

FINDRISC model [7]. However these models are specific to the populations in which they were 

developed in and accuracy is not guaranteed in the target population to be screened. 

Chapters 2 and 3 provide the details of the background information on the outcome, 

screening and the use of the risk prediction models to achieve diabetes screening.  

 

In acknowledgement of the vast differences in populations around the world, and to reduce 

the requirement of developing a model for each population and sub-population group, the 

value of a prediction model depends on its performance outside of the development sample 

[8-12]. This implies that the predictive performance of the model should remain sufficiently 

accurate across new samples from the same development population group (model 

reproducibility) or from different but related target population (model transportability) [10, 

11, 13]. This ability to uphold model performance across multiple populations refers to model 

generalizability and is commonly assessed in external validation studies [1, 3-5, 8-11, 14]. 

Validation studies aim to quantify the predictive performance of a previously developed 

model in individuals that were not used to develop the model. The extent to which these 

studies move away from the development population characteristics, and in the case of good 

model performance being upheld, the transportability of the model is increased [8, 15]. The 
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differences in development and validation settings can range from temporal or geographical 

differences, to validations across different medical settings with increasingly different case-

mix and discrepancies in predictor and outcome definitions.  

 

The transportability of a model therefore relates to what extent the differences in the 

development and the validation population affect the model performance. This is where the 

research community comes together to find a balance between the differences that are too 

great to allow for possible accurate outcome prediction and a new model will need to be 

developed, while still encouraging the validation of existing models. External validation of 

diabetes prediction models is widely advocated, particularly when there are a large number 

of existing models available which have been developed, and validated, in many population 

groups. However before validation can be fully appreciated, importantly, when there is a lack 

of diabetes risk prediction research in the validation population, the methodological issues 

around the validation of risk prediction models needs to be addressed. 

  

Unfortunately, there is a lack of clear guidelines for the process of model validation, 

particularly when reporting or publishing. The transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis (TRIPOD) statement has recently been 

published in an attempt to improve the reporting of prediction modelling studies of all types. 

However, although comprehensive, and certainly filling the needed for all-inclusive guidelines 

in this field, this publication is still too new to be both fully circulated or implemented [16]. 

As a consequence, it is has often been unclear to what extent researchers should do or not 

do regarding these methodological issues when undertaking the validation of a risk prediction 

model. This has impeded transparent interpretation of results from external validation 

studies, which may add to the circle of continuous model development in small datasets. This 

dissertation therefore aimed to validate existing prevalent diabetes risk prediction models in 

a mixed-ancestry population in South Africa, which has yet to be done; while investigating 

and describing methodological issues encountered during the validation process. This is 

presented through a number of published articles, from the initial validation of existing 
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models to the final updating techniques employed in an attempt to increase model 

performance.  

 

The results of this thesis enable the validation of existing diabetes risk prediction models to 

be introduced in Sub-Saharan Africa, which was previously lacking, and encompasses five 

main findings, through part II, III and IV. Chapter 5 presents the basic external validation of 

five selected models, which were not developed in Africa, but rather the UK, Germany, 

Netherlands, Oman and Kuwaiti. While the original model performance in the development 

dataset was good for the Cambridge, Omani and Kuwaiti diabetes risk models (C-statistic 

greater than 0.80), and acceptable for the FINDRSIC model (C-statistic greater than 0.70), it 

was fairly low for the Simplified Rotterdam risk model. To our knowledge, this is the largest 

and most comprehensive validation study of prevalent diabetes prediction models in a sub-

Saharan African population and with the exception of the Kuwaiti model [17], all other models 

assessed in this study have been validated externally elsewhere. Our first main result from 

this study was the presentation of the poor performance of these models in this mixed-

ancestry population, explained by the lack of transportability of these models to this new 

setting. At the optimal probability thresholds, the best performing model would correctly 

classify only about 2/3rds of the population. While overall, validation studies showed a drop 

in model performance when tested in a new population, the C-statistic of all the models either 

mirrored or underperformed in this population when compared to the other external 

validation results. Unfortunately, with no model development in the mixed ancestry 

population of South Africa, selection of generalizable models for validation was limited. The 

poor performance of these models in their original form was therefore in no way surprising 

and has opened the door for further prediction research.  

 

Dataset quality is an important aspect of prediction research. The clear definitions of the 

variables and outcomes, the uniform collection of these within the study and the 

comprehensiveness of the dataset all play an important role in the validity of the study results 

and ultimately the accuracy of risk prediction models, whether developed or validated. 

Missing data is generally the first hurdle for prediction research, where researchers are faced 
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with removal or imputation, covered in Part III. Deletion is incredibly common in this setting 

(Chapter 6), with some controversy. Deletion as a method of handling missing data has been 

deemed suitable if no significant difference is found between the dataset created through 

complete case analysis and that without the exclusion of individuals. However multiple 

studies show that bias is introduced into model performance results. There are many 

imputation methods available to researchers, from simple imputation to more complex 

multiple imputation. We critically reviewed the different patterns of missing data and 

approaches to dealing with them, and through a systematic review of studies on the 

development and/or validation of diabetes risk models, we investigated how missing data has 

been reported and handled to date. Our second main finding was the inconsistent reporting 

of missing data, with investigators frequently ignoring or failing to handle missing data 

appropriately. Dealing with missing data can be acknowledged as a complex task, which is not 

yet commonly undertaken in medical research. However, the availability of a wide range of 

methods for handling missing data should make even simple methods more routine in 

prediction research, yet only a handful of studies used the statistical procedures available.  

 

Chapter 7 illustrated some of the imputation methods available to deal with missing data 

using the empirical Bellville South data. Comparison analysis for missing data between the 

complete case analysis and full dataset in the initial validation of the existent risk prediction 

models (Chapter 5) showed a statistically significant difference for a number of variables, 

however these differences were deemed clinical trivial. This subsequent analysis of model 

performance across a number of imputation methods available to researchers did however 

highlight a considerable effect on performance when compared to other imputation 

methods. Models developed or validated with biased data are likely to yield meaningless 

models that do not perform well when applied in any local circumstances. The second 

objective of this chapter was to compare the effect of simple and complex imputation 

methods on the performance of the same existing diabetes risk models, as validated in 

Chapter 5. Literature is divided as to whether simpler methods are too broad in their 

approach, not taking into account other individual characteristics and ignoring patient 

clustering, or if multiple imputation techniques are unnecessarily complex and too labour 
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intensive for non-statistical researchers. It is important to investigate under which conditions 

model performance can be increased. Empirical data research comes with the limitation that 

the true missing value will never be known, so which imputation technique produces a value 

closest to the true value cannot be answered. However, the advantage is that missing data is 

an empirical data research problem and studies as close to ‘real world’ research as possible 

are translatable to investigators in prediction research outside of a controlled setting. This 

can be addressed by comparing the characteristics of the imputed datasets. These were 

shown to be similar across all methods, resulting in little difference in the models’ 

performances, with the third finding of this study highlighting the similar effect of simple over 

complex imputation techniques when assessing model performance. This is of great 

assistance for researchers with little statistical expertise or insufficient time, as the more 

complex methods are labour and time intensive, with multiple imputation requiring the 

pooling of the estimated parameters from each imputed dataset to effectively have a single 

combined dataset for which to run the models.  

 

The updating of models may considerably improve the performance of previously developed 

models by accounting for differences between development and validation datasets. The 

methods presented in Chapter 9 illustrate how models can be updated through a series of 

statistical steps. However, these methods were shown to be poorly undertaken and reported 

in diabetes risk prediction research (Chapter 8). Our fourth finding was that published 

validation studies rarely attempted to better fit a model, with only a handful of studies 

performing the most basic updating techniques, recalibration of the intercept. The 

importance of generalizability and validation of current models is repeatedly emphasized in 

literature, however this is fruitless if extra efforts are not taken to fit the model as best as 

possible to the new setting. Unfortunately, only a relatively small number of validation studies 

have included recalibration in their methodologies. Additionally, no prevalent diabetes risk 

prediction models were recalibrated in an attempt to better fit the model to the validation 

population. An increased focus on the validation, and particularly recalibration, of existing 

models will improve the generalizability of the models and likely lead to greater application 

of diabetes risk prediction models in daily clinical practice. 
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Fortunately, this study gave evidence (Chapter 9) that adjusting for the validation population 

outcome prevalence may suffice to adjust existent diabetes risk prediction models. The fifth 

and final conclusion of the study demonstrated that the more complex updating methods 

were no more successful in increasing performance of the models, when compared to simpler 

updating methods. Discrimination was increased slightly across four of the five models with 

full model re-estimation, and calibration was significantly improved. This result was 

disappointing, however it must be noted that although extensive updating strategies may 

further improve a model’s performance in local circumstances, their implementation requires 

a substantial amount of statistical knowledge and may not be an option for all risk prediction 

investigators. And although updating techniques deserve a fundamental role in diabetes risk 

prediction research, and have been proven to be successful in improving model performance 

in validation populations, they are not in use extensively and, from this study, are not always 

successful in achieving an increase in performance great enough to allow for 

recommendation.  

 

Diabetes risk prediction research in Sub-Saharan Africa has been lacking, and although these 

results highlight that existing models may not be the right fit for our population group, it may 

increase the research undertaken in the future and improve the level at which methodological 

issues are handled. The future prospective is to facilitate greater validation of models, 

allowing for identification of models that are of limited value and implementation of 

genuinely useful models, aiding diabetes screening in developing countries.  Final model 

performance increase in either discrimination or calibration may not be attainable when 

studies are too distantly related. This situation may arise when study populations differ too 

much and predictor-outcome associations strongly vary across studies. However, this should 

not discourage model validation and attempts to better fit the model to the validation 

dataset. 

In summary, five existent prevalent diabetes risk prediction models were validated in a mixed-

ancestry population in South Africa. This studies research questions asked if a model with 

sufficiently accurate predictive ability could be identified and recommended for use, while 
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identifying and discussing the methodological issues in the search for this model. The 

performance of these models in their original format was poor. Did the deletion of individuals 

with missing data affect this performance? Yes. Could this poor performance be improved by 

employing imputation techniques to deal with the missing data? Yes. Was there a difference 

between the multiple methods? Marginally, which allows for the recommendation that 

simple imputation with mean and mode, which are easily implemented and interpreted, can 

be just as effective as more complex, labour and time intensive methods. Was this increase 

in performance considered great enough for recommendation? No. Could model updating 

strategies increase the model performance? Yes, however the increase in discrimination in 

the more complex updating methods was at the expense of the calibration of the models. Can 

any model be recommended in this population group? No, simple intercept adjustment 

yielded the best performance across all models, however the models were still not accurate 

enough for recommendation. Our hypothesis; prediction models developed elsewhere 

generate inaccurate estimates of diabetes risk among adult South Africans, which can be 

substantially improved by efficient application of simple prediction models’ improvement 

procedures; is therefore rejected as the performance of these models was not substantially 

improved and no single model can be recommended for use.  

 

The future recommendations of this study can be separated into the risk prediction research 

community as a whole, as well as locally in Sub Saharan Africa. On a larger scale, this study 

highlighted the dire need for guidelines for both the handling and reporting of missing data, 

subsequently handled with the publication of the TRIPOD study. Despite recent advances in 

understanding missing data and imputation methods, most researchers still report deletion, 

perhaps because of the previous lack of adequate guidelines for handling missing data. It is 

hoped that these guidelines will provide a single, clear statement which will allow for uniform 

publication and interpretation. These guidelines are still fresh and require time to allow for 

circulation and recommendation from large health organizations, ultimately being accessible 

to all levels of practitioners and researchers to allow for easy implementation, enhancing the 

validity of reported results in all spheres of prediction research.  What should be encouraged 

is the use of more than one method, the results compared and a preferred approach chosen 
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and defended. When data are missing on several variables it is important to use some 

procedure that imputes them all together, rather than one variable at a time. This ensures 

that the imputed data are related to each other in the same way as those data that are 

observed.  

 

Additionally, we have shown that the model validation results are often taken at face value. 

Few investigators attempt to better fit a model to the population in which they are 

investigating. These results show a poor effect on the model calibration with more extensive 

updating methods, however this is in contrast to most research. Future research should be 

done on empirical data using these updating methods to determine their use in risk prediction 

on this type of data. It can be concluded that updating methods should become an integral 

part of model validation. A framework is therefore needed to identify whether early 

adaptation of a prediction model is justified, and to decide upon the extensiveness of 

updating methods. Furthermore, it may be helpful to identify when a prediction model has 

been sufficiently validated, and subsequent updating is no longer required or possible. Future 

research should address this question and allow for the determination of how many validation 

studies, what type of adjustments need to be made and most importantly, what is optimum 

performance to justify the implementation of the risk prediction model into clinical practice. 

 

 Additional to the research required on methodological issues, more external validation 

studies of existing diabetes prediction models are needed, along with the impact analysis of 

their introduction in routine care on healthcare providers’ behaviour and the outcomes of 

people at risk of diabetes, or with prevalent undiagnosed diabetes. Positive or promising 

results from these studies could accelerate the uptake of prediction models in routine settings 

worldwide. Importantly, this work need to increasingly emerge from developing countries as 

the result of the growing worldwide interest in prediction research and personalised 

medicine. 
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On a local level, a risk prediction model is still required for this population, where the effect 

of non-invasive screening will have long term benefits on both an individual and community 

level. This is the only active cohort (cross-sectional data used for this study) in this community, 

and therefore limits the idea of validating other existent diabetes models which use variables 

not collected in this study. This could be a long term plan, incorporating these missing 

variables in future collections in this community. However, this will take time and it must be 

acknowledged that this database used is extensive in size, and covers a multitude of possible 

diabetes risk factors relative in this population. Therefore, the development of a new model 

may be recommended on the basis that existent models were validated and, with the aid of 

updating techniques, not able to accurately predict undiagnosed diabetes in the mixed-

ancestry population of Bellville South, South Africa. 
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