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Abstract

Control of a reconfigurable assembly system 

AO Adams 

Department of Mechanical and Mechatronic Engineering 

Stellenbosch University 

Private Bag X1, 7602 Matieland, South Africa 

Thesis: MScEng (Mechanical) 

December 2010 

This  work  considers  the  control  of  reconfigurable  assembly  systems using  a  welding 
assembly system as a case study. The assembly system consists of a pallet magazine, a 
feeding system, an inspection and removal system, a welding system and a conveyor. The 
aim of the work is to compare PC and PLC as controllers, as well  as to compare two 
different approaches to reconfigurable control. 

The control system of the pallet magazine was developed using a PC and a PLC. The PC 
control was programmed using Visual C#, while the PLC was programmed in Ladder Logic 
using Siemens S-300 STEP7. The two controllers were compared based on the attributes 
that  measure  the  quality  of  a  controller's  software,  which  include  its  capability, 
availability, usability and adaptability. 

The  approaches  to  reconfigurable  control  considered  were  the  agent-based 
methodology and the IEC 61499 distributed control methodology, both of which were 
applied to the feeding system. The agent-based control system was implemented using 
the  JADE  agent  platform,  while  the  IEC  61499  distributed  control  system  was 
implemented using the FBDK software kit. These two methods were compared based on 
the characteristics of a reconfigurable system, which include the system's modularity, 
integrability, convertibility, diagnosability, customization and scalability. 

The result obtained in comparing the PC to the PLC shows that the PLC performs better 
in terms of capability, availability and usability, while the PC performs better in terms of 
adaptability. Also, the result of the comparison between the agent-based control system 
and the IEC 61499 distributed control system shows that the agent-based control system 
performs  better  in  terms of  integrability,  diagnosability  and scalability,  while  the  IEC 
61499  distributed  control  system  performs  better  in  terms  of  modularity  and 
customization. They are, however, on a par in terms of convertibility. 
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Uittreksel

Beheer van ‘n herkonfigureerbare monteringstelsel

AO Adams 

Departement Meganiese en Megatroniese Ingenieurswese 

Universiteit Stellenbosch 

Privaatsak X1, 7602 Matieland, Suid-Afrika 

Tesis: MScIng (Meganies) 

Desember 2010 

Hierdie  werk  beskou  die  beheer  van  herkonfigureerbare  monteringstelsels  met  'n 
sweismonteringstelsel as gevallestudie. Die monteringstelsel bestaan uit 'n paletmagasyn, 'n 
voerstelsel, 'n inspeksie-en- verwyderingstelsel, 'n sweisstelsel en 'n voerband. Die mikpunt 
van  die  werk  is  om  persoonlike  rekenaars  (PCs)  en  programmeerbare-logikabeheerders 
(PLCs)  as  beheerders  te  vergelyk,  asook  om  twee  verskillende  benaderings  tot 
herkonfigureerbare beheer te vergelyk. 

Die beheerstelsel van die paletmagasyn is ontwikkel met 'n PC en 'n PLC. Die PC-beheer is in 
Visual  C#  geprogrammeer,  terwyl  die  PLC  in  leerlogika  met  Siemens  S-300  STEP7 
geprogrammeer is.  Die twee beheerders is  vergelyk in terme van die eienskappe wat die 
kwaliteit  van  'n  beheerder  se  sagteware  meet  en  sluit  in  vermoë,  beskikbaarheid, 
bruikbaarheid en aanpasbaarheid. 

Die  benaderings  tot  herkonfigureerbare  beheer  wat oorweeg is,  is  die  agent-gebaseerde 
metodologie en die IEC 61499 verspreide-beheermetodologie.  Beide is  op die voerstelsel 
toegepas. Die agent-gebaseerde beheerstelsel is geïmplementeer met behulp van die JADE 
agent-platform, terwyl die IEC 61499 verspreide stelsel geïmplementeer is met behulp van 
die FBDK sagteware-stel. Hierdie twee metodes se vergelyking is gebaseer op die eienskappe 
van  'n  herkonfigureerbare  stelsel,  waarby  die  stelsel  se  modulariteit,  integreerbaarheid, 
diagnoseerbaarheid, pasmaakbaarheid en skaleerbaarheid ingesluit is.

Die resultate wat in die vergelyking tussen die PC en PLC verkry is, toon dat die PLC beter 
vaar  in  terme van vermoë,  beskikbaarheid en bruikbaarheid,  terwyl  die PC beter vaar in 
terme van aanpasbaarheid. Die resultaat van die vergelyking tussen die agent-gebaseerde 
beheerstelsel  en  die  IEC  61499  verspreide  beheerstelsel  wys  dat  die  agent-gebaseerde 
beheerstelsel  beter  vaar  in  terme  van  integreerbaarheid,  diagnoseerbaarheid  en 
skaleerbaarheid,  terwyl  die  IEC  61499  verspreide  beheerstelsel  beter  vaar  in  terme  van 
modulariteit en pasmaakbaarheid. Hulle is egter vergelykbaar in terme van omskepbaarheid. 
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1 Introduction

1.1 Background

This thesis considers the control of a reconfigurable assembly system (RAS). It is a 
continuation of a series of research works aimed at the development of expertise 
in reconfigurable assembly systems in South Africa. This research is part of the 
“Affordable  Automation”  theme  of  the  AMTS  (Advanced  Manufacturing 
Technology Strategy). AMTS is an initiative under the Department of Science and 
Technology  geared towards  developing  technologies  which  are  related to  the 
manufacturing industry. 

The reconfigurable assembly system considered, is a welding assembly system for 
the  components  of  circuit  breakers  manufactured  by  CBI  (Circuit  Breakers 
Industries)  Ltd.  Various  students  within  the  research  group  are  working  on 
different aspects of the system. The conceptual design of the welding assembly 
system was done by Sequira (2008).  The design comprises five major systems 
which include a pallet magazine, a feeding system, an inspection and removal 
system, a conveyor and a welding system. The pallet magazine was designed by 
Burger (2009) and the singulation unit of the feeding system was designed by 
Strauss (2009). Students of Central University of Technology (CUT) are developing 
a multi-agent control system for the reconfigurable control of the entire welding 
assembly  system.  The  multi-agent  control  system  will  interface  with  the 
controllers of each of the subsystems via OPC (OLE for process control) and will 
also make shop-floor data and events accessible to office managers through the 
internet. Jacques du Preez, a student of the Industrial Engineering Department of 
Stellenbosch  University,  is  developing  a  simulation  procedure  which  will 
determine, for a given product mix, the optimal assembly system configuration. 
The simulation will also predict the cost of production for the given product mix.  

The  work  in  this  thesis  considers  the  control  of  the  subsystems designed by 
Burger (2009) and Strauss (2009). This will provide the control interface for the 
multi-agent control system to be developed by students of CUT.  

1.2 Motivation

This work was motivated by the need to have an automated system which is 
reconfigurable.  The  automated  system  should  selectively  replace  labour  for 
assembly so that manual and automatic operations may be combined and run 
concurrently.  The  combination  of  these  operations  will  make  manufacturing 
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more internationally competitive. The selective replacement of the workforce has 
become necessary due to the increases of strikes in South Africa, which can easily 
disrupt production plans and schedules, and the need to improve the quality of 
the product.

The  need  for  a  reconfigurable  system  stems  from  the  fact  that  production 
volumes in South Africa are typically small, the product range is quite varied, and 
demand keeps changing. There is, therefore, the need to have a system that can 
handle a range of products and easily adapt to future changes in the type of 
product  demanded.  This  cannot  be  achieved  using  a  system  which  is  not 
reconfigurable. 

The control of the reconfigurable system is done using distributed control. The 
choice of a distributed method of control was motivated by the need to protect 
the system from the problems encountered in a centralized system of control. 
These problems include the high complexity of the system especially in cases of 
large  systems,  the  lack  of  fault  tolerance  due  to  the  centralized  database  of 
information and control, the high cost of maintenance of the system and the non-
reconfigurability  of  the  system.  The failure  of  one or  more components,  in  a 
centralized system of  control,  may lead to the malfunction or  collapse of  the 
entire assembly system. Multi-agent systems is one of the means of achieving 
distributed control. Furthermore, a new standard – the IEC 61499 – was recently 
developed as a new architecture for the development of distributed control. The 
standard was developed with holonic systems as one of its targeted aims. The 
standard hopes to make control more distributed and reconfigurable by use of 
function  blocks.  This  motivated  the  use  of  this  standard  so  that  it  may  be 
compared with the multi-agent system approach. 

1.3 Objective

The objective of the thesis work is to evaluate some of the current reconfigurable 
control strategies for some subsystems in the welding assembly cell used as case 
study. 

The  objective  will  be  approached  by,  firstly,  comparing  PCs  and  PLCs  as 
controllers. This will  be done using the control of the pallet magazine as case 
study.  

Secondly, reconfigurable control of the feeding system will be considered using 
both the multi-agent system approach and the distributed approach of the IEC 
61499  standard.  Multi-agent  systems  is  one  of  the  means  of  achieving 
reconfigurable control by the use of agents, while the IEC 61499 is a standard 
that  was  recently  developed  as  a  new  architecture  for  the  development  of 
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distributed control by use of function blocks. The use of these two approaches, 
described fully in later chapters, will enable a comparison between the IEC 61499 
methodology and the multi-agent system method. 

The study however does not extend to issues that arise between agents such as 
agent cooperation or the use of game theory in decision making. It also does not 
seek to find ways to optimize decision making or bargaining between agents. 
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2 Literature review
This  chapter  considers  the  various  types  of  manufacturing  systems that  have 
been developed over time and the different methods available for the control of 
such  systems.  It  also  considers  the  multi-agent  system  method  and  the 
distributed system of the IEC 61499 standard as possible control methodologies 
for reconfigurable systems. 

2.1 Manufacturing systems

Automated manufacturing  cells  are  the  practical  building  blocks  of  computer 
integrated manufacturing (CIM) systems. A cell, according to Williams (1991), can 
be viewed as the smallest autonomous unit capable of sustained production. The 
activities carried out within a cell  include planning, scheduling and regulation. 
Planning involves generating a production plan from the process plan for the job. 
Scheduling  involves  three  main  tasks,  which  are  evaluation  of  production, 
generation of a schedule containing a list of tasks with start and finish times for 
each equipment controller and, lastly, resolution of any conflicts and problems 
that  may  arise.  Regulation  includes  releasing  and  monitoring  of  jobs  and 
feedback from the equipment controllers.

Setchi  and  Lagos  (2004)  mentioned the stages  of  evolution  of  manufacturing 
systems from the earliest  manufacturing systems. The stages they highlighted 
include: the Dedicated Manufacturing System (DMS), the Cellular Manufacturing 
System  (CMS)  and  the  Flexible  Manufacturing  System  (FMS).  As  a  further 
improvement  on  these  stages,  they  made  a  case  for  the  development  of 
Reconfigurable Manufacturing Systems (RMSs).

2.1.1 Dedicated manufacturing systems

Dedicated manufacturing systems enable the production of a large number of 
parts on dedicated machines. The first of the manufacturing paradigms of this 
kind is called mass production, which was introduced at the beginning of the last 
century (Setchi and Lagos, 2004). It involved the manufacture of large product 
quantities with good quality at low cost. Mass production was, however, found to 
be  wasteful  of  resources.  As  a  result,  a  more  recent  paradigm  called  lean 
manufacturing was introduced in the 1980s (Setchi and Lagos, 2004). 

Lean manufacturing aims at making more efficient use of resources. It reduces 
waste by producing finished products at the pace of consumer demand. Setchi 
and Lagos (2004) define lean manufacturing as “a systematic set of principles, 
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methods  and  practices  [which  reduce]  waste  in  production  by  reviewing  all 
aspects of product development, manufacturing, organization, human resources 
and  customer  support.”  Some  of  the  principles  of  lean  manufacturing  they 
mentioned  include  continuous  quality  improvement,  waste  minimization  and 
establishment of long-term relationship with customers. 

2.1.2 Cellular manufacturing systems

Cellular  manufacturing  systems  are  an  improvement  on  the  dedicated 
manufacturing systems. CMSs consist of different cells which may be dedicated to 
the  production  of  a  product  or  a  product  component.  These  cells  consist  of 
groups  of  machines  or  workstations  which  are  arranged  in  such  a  way  that 
products are processed progressively without having to wait for a batch to be 
completed (Setchi  and Lagos,  2004).  A method used for  the design of  cells is 
group technology.  Group technology,  according to Setchi  and Lagos  (2004),  is 
“the process of studying a large population of parts, and then grouping them into 
logical families with similar characteristics so that they can be produced by the 
same  group  of  machines,  tooling  and  people  with  only  minor  changes  on 
procedure or set-up.”  

An  improvement  to  CMS  is  the  new  paradigm  called  virtual  cellular  
manufacturing, which makes use of distributed networks and an intranet. The 
aim of this paradigm is to create a CMS that is more responsive to demand and 
changes in workload.  CMSs are typically  designed as groups of  cells  arranged 
physically in a particular order. It is this rigid physical arrangement that makes 
CMSs  less  responsive  to  changes  in  workload.  On  the  other  hand,  in  virtual 
cellular  manufacturing,  the physical  cells  are replaced with temporary “virtual 
cells”. These virtual cells are created based on a scheduling criterion. Changes in 
workload or scheduling criterion may lead to the creation of new virtual cells 
without the need for physical rearrangement, and are thus more responsive to 
demand and workload changes.  The cells are still  able to operate, in spite of 
these changes, because of communication over the distributed network. 

2.1.3 Flexible manufacturing systems

A flexible manufacturing system is “a manufacturing system configuration with 
fixed hardware and fixed, but programmable, software to handle changes in work 
orders,  production  schedules,  part-programs  and  tooling  for  several  types  of 
parts” (Setchi and Lagos, 2004). The main components of an FMS are computer 
numerically  controlled  (CNC)  manufacturing  machines,  tools  to  operate  CNC 
machines, robots, and automated material handling systems (Setchi and Lagos, 
2004). An FMS should be “flexible” and flexibility is  defined as “the ability of a 
system to change or react to product variation with little penalty in time, effort, 
cost, or performance” (De Toni and Tonchia, 1998). 
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There are different levels of flexibility.  ElMaraghy (2006) identifies 10 types of 
flexibility which are as follows: 

Machine  flexibility:  Various  operations  [can  be]  performed  without  set-up 
change,

Material  handling  flexibility:  Various  paths  available  for  transfer  of  materials 
between machines. It can be measured by number of used paths divided by total 
number of possible paths between all machines,

Operation flexibility: Various operation plans available for part processing. It can 
be  measured  by  the  number  of  different  processing  plans  available  for  part 
fabrication,

Process Flexibility: [Different] sets of part types can be produced without major 
set-up changes, i.e. part-mix flexibility,

Product Flexibility: Ease (in terms of time and cost) of introducing products into 
an existing product mix, [this] contributes to agility,

Routing Flexibility:  It  can be measured as the ratio of the number of feasible 
routes of all part types to the number of part types,

Volume  Flexibility:  The  ability  to  vary  production  volume  profitably  within 
production capacity,

Expansion Flexibility: Ease (in terms of effort and cost) of augmenting capacity 
and/or capability, when needed, through physical changes to the system,

Control Program Flexibility: The ability of a system to run virtually uninterrupted 
(e.g. during different shifts) due to the availability of intelligent machines and 
system control software,

Production Flexibility: It can be measured as the number of all part types that can 
be produced without adding major capital equipment.

The degree of flexibility of an assembly system largely depends on its modularity. 
A modular design makes it easy to install, remove and regroup various modules 
of an assembly system. An advantage of modular design is the possibility of “plug 
and  produce”  (Martinsen  et  al,  2007).  This  means  that  modules  can  be 
dynamically  added or  removed from the system without having to change or 
reconfigure the hardware or software of the assembly system. 

Many factors have been identified that militate against the adoption of FMSs and 
have even prompted the need for the development of RMSs. Raj  et al  (2007) 
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discussed  some of  the  issues  surrounding  the implementation  of  FMSs.  They 
grouped the issues identified into seven classes as issues regarding parts loading, 
scheduling, material handling, flexibility,  machine tools, operation and control, 
and  the  human  element.  They,  however,  concluded  that  there  is  no  definite 
recommendation on the procedure for the implementation of FMSs. Apart from 
the issues of implementation mentioned above, there are also some barriers that 
inhibit the transition of firms from other manufacturing systems to FMSs. Raj et 
al (2007) identified these barriers as the high cost and uncertainty of FMSs, the 
problem of tool management, the difficulty of design, and flexibility since most 
FMSs exhibit volume flexibility but lack product flexibility. They, however, did not 
propose  solutions  to  the  individual  problems  identified,  but  highlighted  the 
importance of knowledge of FMSs before trying to implement such a system. 

Mehrabi  et  al  (2002),  on  the  other  hand,  conducted  a  survey  of  experts  in 
manufacturing in the industry on the use and adoption of FMSs and RMSs. The 
result of the survey shows that “it appears that FMSs have excess capacity and 
features  which  in  many  cases  were  not  eventually  used.  Furthermore,  their 
complexity,  high initial  costs,  lack  of  reliability  of  the  software,  the  needs for 
highly skilled personnel and support costs, and lack of capability and willingness 
of machine tool builders to carry out necessary system engineering involved are 
among the reasons that make FMSs not very attractive to industry” (Mehrabi et 
al, 2002). 

2.1.4 Reconfigurable manufacturing systems

An RMS is a  system designed for rapid change in structure in order to quickly 
adjust production capacity and functionality within a part family in response to 
changes  in  market  requirements.  The  objective  is  to  provide  exactly  the 
functionality and capacity that is needed, when it is needed (Koren et al, 1999). 
The  idea  of  reconfigurability  is  consistent  with  that  of  expansion  flexibility 
(ElMaraghy, 2006). For this reason, there are a number of similarities between 
flexible  systems  and  reconfigurable  systems  which  have  sometimes  made  it 
difficult to distinguish between the two systems. 

Bi et al (2008) point out the controversy surrounding the definition of RMSs. They 
mention, as an example, the  3rd Conference on Reconfigurable Manufacturing 
held  at  the  University  of  Michigan  during  May  10–12,  2005,  where  “some 
[people]  insisted  that  an  RMS  is  an  intermediate  paradigm  between  Mass 
Production  and Flexible  Manufacturing  Systems (FMSs),  some argued that  an 
RMS is an advanced paradigm whose flexibility must be higher than that of an 
FMS, and others said it is not very meaningful to distinguish RMSs from FMSs.” 
The authors, however, concluded that an RMS is a system which has the “ability 
to  reconfigure  hardware  and  control  resources  at  all  of  the  functional  and 
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organizational  levels,  in  order  to  quickly  adjust  production  capacity  and 
functionality  in  response  to  sudden  changes  in  market  or  in  regulatory 
requirements.”

According to Wiendahl (2007), reconfigurability describes the operative ability of 
a manufacturing or assembly system to switch with minimal effort and delay to a 
particular  family  of  work  pieces  or  sub-assemblies  through  the  addition  or 
removal of functional elements, while flexibility refers to the tactical ability of an 
entire  production and logistics  area  to switch with  reasonably  little  time and 
effort  to  new  –  although  similar  –  families  of  components  by  changing 
manufacturing processes, material flows and logistical functions.

Key to the difference between reconfigurability and flexibility are:

• The diversity of workpieces handled. Reconfigurable systems may switch 
between  different  families of  products,  while  flexible  systems  switch 
between similar products 

• The  extent  of  change  the  manufacturing  system  has  to  undergo. 
Reconfigurable systems may add or remove machine components, while 
flexible systems change the process or material flow.

Apart from flexibility, Koren et al (1999) mention five important characteristics of 
RMSs. ElMaraghy (2006) summarizes these and adds an additional characteristic. 
These were given as: 

i. Modularity of both hardware and software components, 

ii. Integrability for both ready integration and future introduction of new 
technology, 

iii. Convertibility to  allow  quick  changeover  between  products  and  quick 
system adaptability for future products, 

iv. Diagnosability to  identify  quickly  the  sources  of  quality  and  reliability 
problems, 

v. Customization to  match  designed  system  capability  and  flexibility  to 
applications, 

vi. Scalability to  incrementally  change  capacity  rapidly  and  economically 
(Elmaraghy, 2006). 

There are two types of reconfiguration that can occur in a manufacturing system. 
Rooker et al (2007) mentions these as basic and dynamic reconfiguration. Basic 
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reconfiguration is reconfiguration in its simplest form, which can be achieved by 
stopping  the  system,  applying  the  necessary  hardware  changes,  and  then 
restarting  the  system.  This  is  also  called  “coldstarting”  the  system.  Dynamic 
reconfiguration, on the other hand, is reconfiguration which takes place while a 
system is still in operation without having to stop the system. Timeliness is the 
crucial factor in dynamic configuration (Rooker et al, 2007). 

Bi  et  al  (2007a)  mention  some of  the  issues  involved  in  the  development of 
RMSs:

• Separation  of  RMSs  from product  design.  As  currently  designed,  most 
RMSs are developed separate from the product design and this makes 
optimization of the system difficult

• Perception of  RMSs as  a  premature  technology.  RMSs are still  in  their 
early days and full automation cannot yet be achieved, so developers still 
have to solve many of the problems manually

• Indifferent  attitude  towards  RMSs.  The  attitude  towards  RMSs  is  not 
encouraging. A number of companies are uncertain of the importance of 
automating their assembly systems

• Use of an RMS as a wrong solution. RMSs do not have to be deployed in 
all manufacturing situations. There are some cases where RMSs may not 
be the most suitable solution, especially where there is a lack of technical 
competence or  where the company has no need to adapt to different 
manufacturing strategies.

2.1.5 Holonic manufacturing systems

The quest for decentralization gave rise to the concept of holonic manufacturing 
systems. The term holon, was first introduced in 1967 by Koestler (Paolucci and 
Sacile,  2005) from the Greek word “holos” which means “whole”.  A holon, as 
Koestler named the term, is a part of a (manufacturing) system that may be made 
up of subordinate parts, and in turn, can be part of a larger whole (Leitao and 
Restivo, 2008). This concept is used to refer to the decentralized coordination and 
control of manufacturing systems, hence the term holonic manufacturing system. 
The  concept  of  holon  and  holon  system  has  a  wide  and  varied  application. 
Ermolayev  and  Matzke  (2007)  mention  many  applications  of  HMSs,  including 
emergency  response,  e-commerce,  traffic  control,  engineering  design  and,  of 
course, agile manufacturing.

Implementation  of  this  manufacturing  system can  be  done  by  the  use  of  an 
agent-based  control  system.  In  fact,  Ermolayev  and  Matzke  (2007)  state  that 
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software  agents  and  agency  paradigms  are  a  “natural  choice”  for  modeling 
holonic  systems.  Agents  have  been  used  in  many  different  fields  of  human 
endeavor but its application to manufacturing systems is quite recent. Because of 
the dearth of defined ways of applying this method to manufacturing systems, 
Bussman et  al  (2004)  developed a methodology to help  the control  engineer 
apply the use of agents to manufacturing control. This methodology was termed 
the DACS (Designing Agent-based Control Systems) methodology. 

2.2 Control of manufacturing systems

2.2.1 Types of control architectures

Meng  et  al  (2006)  mention  three  types  of  control  architectures:  centralized, 
hierarchical and distributed. As illustrated in figure 2.1, centralized control is one 
in which the entire system is controlled by one controlling system which carries 
out all  the automation processes.  Hierarchical  control  generally  involves more 
than one controller arranged in some form of hierarchy. In hierarchical control, 
control decisions emanate from the highest level of the hierarchy, and these are 
then decomposed into smaller and more detailed instructions which are passed 
on to the lower level controllers for implementation. Distributed control, on the 
other hand, involves independent control and handling of the various automation 
processes by different controllers which interact with one another by engaging in 
some form of communication. 

Figure 2.1 Three types of control architectures (Meng et al, 2006)

The  classical  approach  to  control  of  production  systems  is  hierarchical  and 
schedule-driven.  However,  there  has  been  a  shift  away  from the  hierarchical 
approach to control and the recent trend has been towards the implementation 
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of control methods which are more heterarchical and distributed. An example of 
a  system with a heterarchical  structure,  in which control  is  distributed,  is  the 
holonic manufacturing system (Scholz and Freitag, 2007). 

Scholz  and  Freitag  (2007)  stated  some  of  the  disadvantages  of  hierarchical 
control and the advantages of heterarchical control over them. They mentioned 
that the disadvantage of hierarchical control is largely due to the complexity of 
these control  systems which grows rapidly with the size of the manufacturing 
system.  This  complexity  results  in  high  costs  for  development,  maintenance, 
operation,  and  modification  of  the  control  system.  On  the  other  hand,  the 
advantages of heterarchical control are that: 

• it leads to reduced complexity by localizing information and control, 

• it  reduces  software  development  costs  by  eliminating  supervisory 
[control] levels, 

• it has higher maintainability and modifiability due to improved modularity 
and self-configurability, 

• it has improved reliability by taking a fault-tolerant approach rather than 
a fault-free approach (Scholz and Freitag, 2007). 

Centralized control has a number of shortcomings. Meng et al (2006) give some 
of these shortcomings as structural rigidity, difficulty of control system design, 
lack of flexibility and a low level of fault tolerance. It is difficult to add, modify, or 
delete resources. In order to reconfigure a centralized or hierarchical system, the 
system has to be shut down and all data structures of higher levels need to be 
updated. Unforeseen disturbances, such as machine breakdown, invalidate the 
production  plan  and  schedule.  Because  of  these,  centralized  and  hierarchical 
modes of control are not suitable for RMSs (Meng et al, 2006).

Different methods have been used to implement control (either hierarchical or 
heterarchical) in different manufacturing systems. Some of these methods are 
specific to certain manufacturing systems, while others are more general. Below, 
we  discuss  the  various  methods  that  have  been  applied  to  the  different 
manufacturing  systems.  The  agent-based  control  method  and  the  distributed 
control  method  based  on  the  IEC  61499  standard  are  methods  that  can  be 
specifically applied to RMSs and HMSs respectively. The agent-based method will 
be discussed in section 2.3, while the IEC 61499 methodology will be discussed in 
section 2.4. 
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2.2.2 Control method for FMSs

Ferrolho and Crisostomo (2007) worked on control and integration software for 
FMSs. They developed customized software for different equipment that make 
up the components of an FMS, and an integration software unit which allows an 
easy and efficient integration of these components into an FMS. Each customized 
software unit makes use of the original control capacity of the equipment it was 
developed for by acting as a client, while the equipment's control system serves 
as  a  server.  Examples  of  the  software  developed  include  the  two  software 
programs  named  “winRS232ROBOTcontrol”  and  “winEthernetROBOTcontrol”, 
which were developed for different industrial robots depending on whether they 
communicate  via  RS232  or  Ethernet.  They  also  developed software programs 
named “winMILLcontrol” and “winTURNcontrol” for the CNC mill and CNC lathe 
respectively. They tested the software in an industrial application and concluded 
that the software is viable and that it resulted in improved performance of the 
FMS. 

2.2.3 Control methods for RMSs 

Software  issues  represent  the  area  of  greatest  concern  for  the  successful 
development of the RMS technology (Mehrabi et al, 2002). For this reason, there 
has been widespread research into different methods of controlling RMSs. Some 
of the methods used so far include Petri nets, HMI based control and multi-agent 
systems. The control of a reconfigurable system is similar to that of a distributed 
manufacturing system (Bi et al, 2007b).

Petri nets are used as one of the methods of controlling reconfigurable systems. 
A Petri net is a graphical representation of discrete event systems. It is a directed 
graph  consisting  of  nodes indicating  transitions  or  events,  places indicating 
conditions  and  directed  arcs indicating  relations  between  events.  The  nodes, 
places  and  directed  arcs  are  represented  using  bars,  circles  and  arrows 
respectively. The method was invented by Carl Petri in 1939 to describe chemical 
processes. An example of a Petri net model is shown in figure 2.2. The system 
consists  of  two related systems or  automata.  The states or  places in the first 
automaton are shown as the circles marked s1, s3, s4, s6, while the states of the 
second  automaton  are  the  circles  s2,  s5,  s7.  The  transitions  are  the  squares 
marked  t1, t2, t3, t4, t5, t6, t7 and they show the events which can cause an 
automaton to move from one state to the other. From the diagram, it can be seen 
that the automata synchronize on the transitions t4 and t5. 

Petri  nets also serve as a powerful tool  for modeling and control of assembly 
systems by considering them as discrete event systems. This method was used by 
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Yu et al (2003) and Kuo et al (1999) as a tool to model and control assembly 
systems. 

Figure 2.2 Petri net model (Partial-order Verification Techniques, 2004)

Although Petri nets have been used to a large extent to model manufacturing 
systems, the classical Petri net which can be used to describe logical control lack 
the ability to treat information flow. They are not data-oriented (Yu et al, 2003). 
This motivated the introduction of artificial intelligence into the use of Petri nets 
as done by Yu et al (2005). They discussed the strategy of modeling RMSs using a 
method  called  Knowledge  Based  Timed  Colored  Object-oriented  Petri  Net 
(KTCOPN). KTCOPN is the result of the combination of knowledge and object-
oriented methods with timed colored Petri net. Using KTCOPN, the modeling of 
RMSs was done in three phases: the construction of the object-oriented Petri net 
(OPN)  for  the  assembly  cell,  the  construction  of  the  OPN  for  the  assembly 
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module and the construction of the entire KTCOPN model for the reconfigurable 
assembly system. The modularity introduced into the system ensures the quick 
reconfiguration of the system (Yu et al, 2005). 

Onofrio  and  Bruccoleri  (2006)  developed  an  HMI-based  control  system  for  a 
reconfigurable  manufacturing  cell.  The  control  system  was  developed  using 
object-oriented methodology and was programmed with Microsoft Visual Basic. 
The system has an interactive user interface and it allows for easy reconfiguration 
by reacting to changes in both the operations sequence of workpieces and in the 
hardware configuration of the manufacturing cell (Onofrio and Bruccoleri, 2006). 

Agent-based control  is  another method that may be applied in the control  of 
RMSs, but this will be discussed in section 2.3. 

2.2.4 Control methods for HMSs 

After  the  conception  of  the  idea  of  HMSs,  an  international  consortium  was 
formed. This consortium on the HMS was set up as one of the projects under the 
Intelligent  Manufacturing  Systems (IMS)  program.  Its  aim was to standardize, 
research and create support for the HMS architecture by covering such topics as 
“system  architecture  and  engineering,  planning  and  scheduling,  control  and 
holonic man–machine system and emulation” (Kotak et al, 2003). Some of the 
research outputs of this consortium include: 

• the development of a holonic system architecture by Van Brussel  et  al 
(1998) called PROSA (Product-Resource-Order-Staff Architecture)

• the development of a methodology and architecture for holonic multi-cell 
control system by Langer (1999) as part of his PhD thesis 

• the  presentation  of  an  architecture  for  the  coordination  of  a  holonic 
automated guided vehicle system by Liu et al (2000)

• the development of a holonic production planning and control system by 
McFarlane and Bussmann (2000)

• the development of a virtual manufacturing environment to implement 
the holonic shop floor control by Kotak et al (2003).

In addition to the work done by the consortium, other researchers have also 
developed  different  control  architectures  for  HMSs.  These  include  ADACOR 
(ADAptive  holonic  COntrol  aRchitecture),  MetaMorph I  and  II,  HCBA (Holonic 
Component Based Architecture), RFID based approach, etc. 
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ADACOR, which is also called a collaborative control architecture, was developed 
by Leitao (Leitao and Restivo, 2006). It  is  built on a set of cooperative holons 
which  are  used  to  represent  different  manufacturing  components.  These 
components  may  be  physical  entities,  for  example  machines,  pallets,  etc,  or 
logical  entities  such  as  products  and  orders  within  the  system.  Four  holons 
relating to manufacturing are specified in ADACOR and they include the product 
holon (PH), the task holon (TH), the operational holon (OH), and the supervisor 
holon (SH) (Leitao and Restivo, 2006). The PHs, THs, and OHs are holons which 
represent the different products, orders and resources within the manufacturing 
system respectively.  The SH is the holon responsible for  the coordination and 
optimization of  the other holons.  The holons in ADACOR are implemented as 
agent  classes  in  the  JADE  (Java  Agent  DEvelopment)  framework,  which  is  a 
software unit that can be used to develop agents. JADE complies with Foundation 
of Intelligent Physical Agents (FIPA) specifications for agents and communication 
between the autonomous holons can be done using FIPA agent communication 
language (ACL).

The  control  architecture  described  in  PROSA  is  similar  to  ADACOR.  PROSA 
specifies three main holon classes: the resource holon, the product holon and 
the order holon (Van Brussel et al, 1998). These holon classes are referred to as 
the basic holons and that is because they are present in every HMS. The resource 
holon is used to represent physical entities such as machines, while the product 
holon is used to represent the process and knowledge about the product that 
facilitates product processing. The order holon represents a task that is  to be 
done in the manufacturing system. Apart from the basic holons, a staff holon is 
also defined in PROSA. The staff holon is a kind of “utility” holon which assists the 
basic  holons  in  performing their  functions.  The function of  the  staff  holon in 
PROSA is not restricted to supervision as in the case of the supervisor holon in 
ADACOR. 

Another holonic control architecture is MetaMorph which was developed at the 
University  of  Calgary.  MetaMorph  consists  of  two  approaches:  MetaMorph  I 
(which is now called MetaMorphic) and MetaMorph II. MetaMorph I consists of 
resource agents and mediator agents. The model used is that of a hybrid agent 
model. The mediator agents act as brokers and recruiters for the resource agents 
(Shen et al, 2000). They act as brokers by receiving information or requests from 
an initiating agent. They interpret the information or request and then look for a 
receptor agent. They also act as recruiters by searching for agents based on the 
criteria they receive from one of the resource agents. They link the agents that 
match the given criteria with the requesting agent so they can communicate with 
each  other.  The  MetaMorph  II  approach  is  an  extension  of  MetaMorph  I.  It 
involves not just the integration of distributed intelligent machines, but also the 
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integration  of  other  aspects  of  manufacturing,  such  as  planning,  scheduling, 
execution,  material  supply,  market  services,  etc,  into  a  distributed  intelligent 
open environment (Shen et al, 2000). Though the implementation is similar to 
MetaMorph I,  in MetaMorph II,  there are additional  mediator agents such as 
Shop  Floor  Resource  Mediators,  Machine  Mediators,  Tool  Mediators,  Worker 
Mediators, etc. 

Chirn and Farlane (2000a) introduced the component-based approach to holonic 
systems. They applied this approach to the control of a robot assembly cell. The 
idea originated from the concept of Software Integrated Circuit (SIC). Their aim 
was to develop and package software components for later use in the same way 
as hardware components are packaged for later use in integrated circuits (Chirn 
and  Farlane,  2000b).  “The  Component  Based  Development  (CBD)  approach 
focuses  much  on  developing  reusability  and  reconfigurability  in  view  of  the 
architecture rather than the individual  software modules” (Chirn and Farlane, 
2000a). They introduced two holons: product and resource holons. The resource 
holons are independent and are not allowed to communicate directly with each 
other. This is to avoid poor integration when dealing with long-term changes, and 
to  ensure  easy  replacement  and  reconfiguration  of  the  system.  The  product 
holons, on the other hand, make use of the resource holons by negotiating with 
them. 

Generally, the implementation of the control architectures of HMSs is done using 
multi-agent systems. This is not particularly surprising because agents and holons 
share many common attributes which include being autonomous,  cooperative 
and open (Kotak  et  al,  2003).  Bussmann and Sieverding  (2001)  undertook an 
industrial  evaluation  of  the  holonic  manufacturing  system  which  was 
implemented  using  multi-agent  systems.  They  concluded  that  the  holonic 
paradigm does meet the requirements of an industrial deployment, increasing 
scalability  and  productivity  of  the  assembly  process,  while  maintaining  high 
volume and low costs per product. 

Kamioka  et  al  (2007)  developed  an  RFID-driven  holonic  control  scheme  for 
production systems.  In  this  scheme,  an RFID  tag  is  attached to each product 
component (which is independent and is considered to be a holon). This RFID tag 
contains  the  “lifeline”  information  necessary  for  the  processing  of  each 
component. Based on the information on the RFID tag on each component, the 
controllers of the conveyors are able to direct the component to the relevant 
production facility which will process it. When the processing is complete, this 
facility  returns the processed component to the next conveyor which takes it 
further  on  to  the  next  relevant  production  facility  based  on  the  RFID  tag 
information.  Lastly,  in  case  of  a  change  of  orders  (i.e.  reconfiguration  of  the 
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system), the new and updated information is sent to all the relevant production 
facility  controllers. Each controller  compares the information on the product's 
RFID tag with the order change information and decides whether the component 
should be processed or not. If the component is to be canceled, the cancellation-
related information including the ID for its destined inventory center is written on 
the RFID tag. The canceled component is then transported to the relevant facility 
by the conveyors.

The  use  of  RFID  tags  in  holonic  control  offers  a  great  advantage  as  regards 
flexibility.  This  is  because  Gouyon  et  al  (2007) state  that  having  RFID  tags 
embedded on products enables individual identification of product occurrences. 
This individual identification opens a way towards the customization of control 
rules for each product occurrence, which implies greater flexibility (Gouyon et al, 
2007). However, the use of RFID tag information  alone in a control scheme, as 
done by Kamioka et al (2007), is not a reliable method of control.  Gouyon et al 
(2007) state that the reliability of read and write operations on RFID tags is not 
yet 100%. Therefore, a control method that is entirely dependent on information 
on RFID tags cannot be accurate. It has to be coupled with other forms of control. 

Another methodology for the control of HMSs is by the use of the distributed 
control  based  on  the  IEC  61499  standard.  This  method  will  be  discussed  in 
section 2.4. 

2.3 Agent-based control 

Agent-based  control  is  achieved  by  agents  in  a  multi-agent  system.  A  major 
component  of  using  agent-based  computing  to  solve  a  problem  is  the 
decomposition of the problem into various autonomous entities which solve the 
problem. Decomposing the problem simplifies complex systems in two ways:

• Firstly,  it  gives  a  natural  representation  for  complex  systems  that  are 
invariably  distributed,  which  is  a  suitable  condition  in  the  case  of 
reconfigurable assembly systems. 

• Secondly, due to the devolution of actions to autonomous entities, the 
actions  performed  by  these  entities  (or  agents)  can  be  said  to  be 
responsive to the agent's actual state of affairs, rather than some external 
entity's perception of this state (Jennings, 1999). 

2.3.1 Agents and agent communication

Agents have been defined by many authors, but a well suited definition for our 
application is the definition given by Jennings and Wooldridge (1998), which has 
often been cited by other authors:  “An agent is considered [to be] a software 
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entity  situated  in  a  production  environment,  with  enough intelligence  that  is 
capable of autonomous control actions in this environment and of co-operation 
relationships by participating in associations with other entities in order to meet 
its  design  objectives”.  An  agent  should  be  able  to  act  without  the  direct 
intervention of humans or other agents, and should have control over its own 
actions and internal state (Jennings and Wooldridge, 1998).

Multi-agent systems are made up of interacting agents and these agents possess 
a  number  of  properties  which  make  them  intelligent.  Agents  could  be 
autonomous, proactive, cognitive, adaptive or reactive (Guessoum, 2004).  The 
most important of all of these properties is autonomy in decision-making (Tozicka 
et al, 2007). Another key property is reflectivity which is the ability of agents to 
observe and understand their behavior, reason about their behavior and revise 
the behavior accordingly (Tozicka et al, 2007). Most agents have one or more of 
these properties. The agents in multi-agent systems must be aware of their own 
capabilities and of changes to other agents and their environment. To remain 
effective, agents must be able to adapt their  structures and knowledge while 
they execute (Guessoum, 2004). 

There  are  two  dominant  approaches  to  the  way  agents  are  modeled:  the 
cognitive approach and the reactive approach (Guessoum, 2004). In the cognitive  
approach,  each  agent  is  a  symbolic  model  of  the  real  world  in  which  it  is 
supposed to operate. Based on the information it possesses of its environment, it 
develops  plans  or  makes  decisions  using  the  traditional  methods  of  artificial 
intelligence. On the other hand, in the reactive approach, “simple-minded agents 
react  rapidly  to  asynchronous  events  without  using  complex  reasoning” 
(Guessoum, 2004). Reactive agents are behaviour-based agents. These agents are 
defined simply by a set of behaviours which determine their reaction to events, 
and therefore, they do not need to have memory (Tang and Wong, 2005). A third 
approach to agent modeling is the hybrid approach as mentioned by Bussmann 
et al (2004). They suggested three agent architectures: reactive agents (based on 
the reactive approach),  deliberative agents (based on the cognitive approach) 
and hybrid agents (based on the hybrid approach). The hybrid agents incorporate 
both reactive and deliberative mechanisms in one architecture (Bussmann et al, 
2004). 

While agents may be able to determine their individual plans based on their own 
competencies and knowledge, there is the need for agents to interact with other 
agents,  by communicating and sharing information,  in order to solve complex 
problems  and  avoid  conflicts.  The  need  for  interaction  between  agents 
necessitated  the  development  of  standards  for  agent  development  and 
communication. This gave rise to the Foundation for Intelligent Physical Agents 
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(FIPA).  “FIPA is an IEEE Computer Society standards organization that promotes 
agent-based  technology  and  the  interoperability  of  its  standards  with  other 
technologies”  (FIPA,  2010).  FIPA  was  founded  in  1996  as  an  organization  of 
academic and industrial  organizations, but officially  became an IEEE standards 
organization in June 2005. 

The core of the FIPA standards is the agent communication standard (FIPA, 2010). 
Agent  communication  in  the  FIPA  standard  is  according  to  the  Agent 
Communication Language (ACL) and is called the FIPA-ACL. The FIPA-ACL defines 
standard acts such as INFORM, AGREE, REQUEST, etc,  which agents require in 
communicating with each other. These acts are based on the speech act theory. 
This theory assumes that messages represent actions or communicative acts, also 
known as speech acts or performatives (Bellifemine et al, 2004). The first ACL was 
the Knowledge Query and Manipulation Language (KQML) that included many 
performatives, assertives and directives which agents use for telling facts, asking 
queries,  subscribing to services  and/or  finding other  agents  (Monostori  et  al, 
2006).

The FIPA standard,  however,  does not specify any particular  “language” to be 
used  along  with  the  acts  specified  in  the  standard.  Any  language  or 
representation may be  used,  but  FIPA has  its  own FIPA-SL  language  which is 
widely recommended. Some of the standards also specified by FIPA include Agent 
Management System (AMS), the Directory Facilitator (DF), the Agent Platform, 
etc. 

In multi-agent systems, agents need to engage in some form of bargaining or 
negotiation in order to reach certain decisions. For this reason, many models for 
negotiations have been developed. For example,  Turgay (2008) proposed some 
decision-making  rules  for  the  control  of  agent-based  manufacturing  systems, 
while  Qiu  et  al  (2004)  applied  non-cooperative  game  theory  as  a  means  of 
facilitating the decision-making process during reconfiguration at  the machine 
controller level. Zhao et al (2008) used an optimization model called the particle 
swarm  optimization  model  to  achieve  dynamic  reconfiguration  and  task 
allocation within a multi-agent system. Zhao et al (2008) also made use of the 
contract  net  protocol  for  agent  interaction.  Another  method  is  the  use  of 
auctions  which  Mahr  and de  Weerdt  (2007)  declared  to  be  faster  and  more 
efficient than bargaining. 

2.3.2 Use of agents in manufacturing control 

The multi-agent system approach is a convenient and well-tested approach to 
reconfigurable control. It is one of the most adopted technologies used in RMS 
and HMS paradigms’ applications (Candido and Barata,  2007).  This is  because 
multi-agent  systems  increase  the  “plug  and  produce”  capability  of  the 
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manufacturing system by making it possible for components to enter or leave the 
system  with  minor  variations  in  the  production  process.  This  is  enabled  by 
components’ modularization and embedded intelligence, which together ensure 
close  to  zero-downtime  reconfigurability  (Candido  and  Barata,  2007).  In  fact, 
Turgay (2008) made a review of the different methods that have been applied to 
the  control  of  RMSs  and  concluded  that  “multi-agent  systems  (MASs)  offer 
modularity. If a problem domain is particularly complex, large or unpredictable, 
then the  only way it  can  reasonably be addressed is to develop a number of 
functionally specific modular components (agents) that are specialized in solving 
a particular problem aspect”. 

The use of agents in the control of RMSs was implemented by Sugi et al (2003), 
Tang  and  Wong  (2005),  and  Wang  et  al  (2005).  The  agent-based  control 
architecture  was  also  used  to  develop  the  NovaFlex  Shop  Floor  Environment 
(Candido and  Barata,  2007).  Farlane  et  al  (2001)  developed an  algorithm for 
agent-based  control  of  manufacturing  flow  shops  in  which  they  utilized  the 
queuing theory. Lohse et al (2005) developed an ontology based agent control 
system. An ontology is a set of concepts and symbols used to express messages 
sent  between  agents  (Bellifemine  et  al,  2004).  Lohse  et  al  (2005)  used  an 
ontology which defines the assembly system requirements in terms of product 
and assembly process descriptions, and the capabilities of assembly requirement 
modules in terms of the equipment functions, behavior and structure.

Al-Safi and Vyatkin (2007) discussed the use of a reconfiguration agent which can 
be  used  for  reconfiguration  without  human  intervention.  The  reconfiguration 
agent  uses  its  ontological  knowledge  of  the  manufacturing  environment  for 
reconfiguration. It attempts to reconfigure the system whenever it realizes that 
the current configuration is not able to fulfill the required task whether due to 
changes in the manufacturing requirement or the manufacturing environment. 
The use of the agent minimizes the overhead of the reconfiguration process and 
achieves rapid reconfiguration (Al-Safi and Vyatkin, 2007). 

Ulieru  (1997)  analyzed  the  design  of  control  mechanisms  for  a  multi-agent 
flexible transfer system. The system consists mainly of two groups of agents: the 
specialist  agents  and  the  supervisor  agents.  The  supervisor  agents  represent 
pallets which have workpieces on them, while the specialist agents represent the 
various  machines  which  work  on  the  workpieces.  The  supervisor  agents  are 
autonomous and are able to chart the path to follow in order to accomplish the 
work to be done on the workpiece, while the specialist agents have cognitive 
capability and are able to respond to several unexpected situations. 

It  has  often  been thought  that  the  object-oriented methodology  can  also be 
applied to the control of reconfigurable systems. The two well-known software 
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engineering  technologies  (multi-agent  systems  and  object-oriented  software 
engineering)  seem  well  suited  to  implement  a  holonic  abstraction  of  a 
reconfigurable  control  problem.  This  is  because  multi-agent  systems  have  a 
distributed nature and object-oriented systems have a recursive structure [i.e. a 
hierarchical structure in which complex elements could be created from simpler 
ones  through  inheritance]  (Colombo  et  al,  2006).  However,  Bussmann  and 
Jennings (2003) compared the two software techniques and concluded that the 
use of agents is more suited for complex problems. They state the following in 
support of the use of agents over objects: 

• Objects are generally passive in nature. They need to be sent a message 
before they become active 

• Although objects encapsulate state and behavior realization, they do not 
encapsulate behavior activation (i.e. action choice). Thus, any object can 
invoke  any  publicly  accessible  method  on  any  other  object.  Once  the 
method is invoked, the corresponding actions are performed 

• Object  orientation  fails  to  provide  an  adequate  set  of  concepts  and 
mechanisms for modeling complex systems. Recognition of this fact led to 
the  development  of  more  powerful  abstraction  mechanisms  such  as 
design patterns, application frameworks, and component-ware. Although 
these are a step forward, they [still] fall short of the complete set of data 
desired for the development of complex systems. They focus on generic 
system functions, and the mandated patterns of interaction are rigid and 
predetermined 

• Object-oriented approaches provide only minimal support for specifying 
and managing organizational relationships.

Agents are also suitable for control of HMSs because agent technology provides 
techniques  for  modeling  and  implementing  autonomous  and  cooperative 
software  systems.  Agents  can  even  be  viewed  as  holons  without  physical 
processing  capabilities  (Bussman  and  Sieverding,  2001).  Kotak  et  al  (2003) 
present the senario of an agent system used in the control of a HMS as shown in 
figure 2.3. Each holon is represented by an agent in the system, and together 
with other  holons,  they form a holarchy.  Each holon has  its  agent (software) 
aspect  and  physical  aspects  comprising  the  device  and drivers.  The  Directory 
Facilitator,  which  is  platform-dependent,  stands  in  to  coordinate  the  other 
agents. 

However,  there  are  some  downsides  to  the  application  of  the  agent-based 
approach to engineering problems. These limitations include: 
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• The  patterns  and  outcomes  of  the  interactions  between  agents  are 
inherently unpredictable 

• Predicting the behaviour of the overall  system based on its constituent 
components is extremely difficult (and sometimes impossible) because of 
the  strong  possibility  of  [unintended]  emergent  behaviour  (Jennings, 
1999). 

Figure 2.3 Agents used to represent holons in HMS (Kotak et al, 2003)

2.3.3 Methodologies for developing agents

Different methods of developing multi-agent systems exist. Some of the methods 
are general, while some are more specific methodologies for creating particular 
categories  of  agents.  Some others  have  been developed based  on  the  agent 
platform on which the agent system will be implemented. Bussmann et al (2004) 
gives an extensive list of agent methodologies and their categories. Included in 
the  list  are  knowledge-oriented  methodologies,  e.g.  CoMoMAS,  MAS-
CommonKADs, etc,  some methodologies for manufacturing, e.g.  PROSA, some 
role-based  methodologies,  e.g.  MASB  and  Gaia,  and  some  system-oriented 
methodologies, e.g. MESSAGE and Prometheus, etc. 

Bussmann et al (2004) developed a methodology called DACS (Designing Agent-
based  Control  Systems)  specifically  for  manufacturing  control.  The  DACS 
methodology  consists  of  three  main  steps:  analysis  of  control  decisions, 
identification of agents and selection of interaction protocols. Analysis of control 
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decisions, which is the first step, includes the identification of effectoric decisions 
and the identification of decision dependencies. Effectoric decisions are decisions 
which  result  in  at  least  one  physical  action  by  the  machines,  while  decision 
dependencies are the relationships that exist between effectoric decisions. The 
outcome of the first step is called the decision model. The second step, which is 
the identification of agents, involves clustering of decision tasks and improving 
the decision model. The result of this step is a list of agents. The final step is a 
selection of interaction protocols. This results in the agent-based design. 

Agents can be simulated on traditional object-oriented programming languages, 
but  this  is  error-prone and fraught  with as  much difficulties as attempting to 
develop objects using a non-object-oriented language (Padgham, 2004). Various 
software on which agent systems can run have been developed.  Most of  the 
software  are  middleware  platforms  which  are  ported  on  JAVA.  The  agent 
software  platforms  allow  programmers  to  write  agent  programs  using  their 
knowledge of the JAVA programming language, while the software takes care of 
such  details  as  “agentisation”  (i.e.  building  the  agents  from the  code),  agent 
communication,  etc.  Just as in the case of  agent methodologies,  some agent-
oriented software are general, while others are specifically for particular types of 
agents. Padgham and Winikoff (2004) classified agent platforms into three groups 
based on the “strengths” of the platforms. These are:

• Agent  platforms  that  support  internal  agent  reasoning  and  the 
development  of  agent  plans,  goals,  etc.  Examples  of  these  platforms 
include PRS, JACK, JADEX, etc. 

• Agent  platforms that  focus  on inter-agent  communication and provide 
means  for  transfer  of  messages  between  agents.  Examples  of  these 
platforms include JADE, Zeus, etc. 

• Agent platforms that focus on agent mobility. Examples of these platforms 
include Grasshopper, Aglets, etc (Padgham and Winikoff, 2004). 

Examples of other agent platforms that have been developed for specific types of 
agents  are  the  GOAL  Agent  Programming  Language  for  developing  “rational 
agents” and the 3APL for developing cognitive agents. 

Rzevski et al (2007) developed a toolkit called the Magenta Toolkit which is a set 
of multi-agent tools for developing large-scale adaptive multi-agent applications. 
This toolkit has found wide application in, for example, the collaborative design 
of  an  airplane  wing,  web  portal  for  healthy  lifestyle,  and  ocean  and  truck 
schedulers (Rzevski et al, 2007). 
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2.4 Distributed control based on IEC 61499 

Industrial  personal  computers (PCs) and programmable logic controllers (PLCs) 
are the major controllers used for automation. Control application in PLCs have 
been based on the IEC 61131-3 standard, but in 2005, the IEC 61499 standard, 
which had been in the works for some time, was officially released to extend the 
IEC 61131-3 standard. 

The  IEC  61131  (formerly  IEC  1131)  standard  was  set  up  to  provide  a  global 
standard  for  PLCs  ranging  from  PLC  programming  to  PLC  communication  via 
fieldbus.  The  standard  consists  of  several  parts  with  each  part  dealing  with 
specific aspects relating to PLCs. The part of the standard that deals with PLC 
programming is the IEC 61131-3. One of the major objectives of the IEC 61131-3 
standard is to improve the quality of PLCs with regards to: 

• “Capability”,  which  is  the  extent  to  which  a  system  can  perform  its 
intended design functions

• “Availability”, which is the proportion of time in the life of a system when 
it is available for its intended design functions

• “Usability”,  which  is  the  ease  with  which  a  specified  set  of  users  can 
acquire and exercise the ability to interact with the system in order to 
perform its intended design functions

• “Adaptability”, which is the ease with which a system may be changed in 
various ways from its initial intended design functions (Lewis, 1998). 

In spite of the effort put into the development of the standard, some of these 
goals were not met. An example is “Portability” which Lewis (1998) mentions as 
one of the factors influencing Adaptability. It is generally known that not all PLC 
programs  are  portable  from  one  PLC  manufacturer  to  the  other.  In  order  to 
promote wide acceptance of the IEC 61131-3 standard, and PLC interoperability, 
the  PLCopen  organization  was  founded.  PLCopen  was  set  up  by  PLC 
manufacturers, and is a vendor-independent association which ensures various 
levels of compliance with the standard. 
The  deficiencies  in  the  current  PLC  software  influenced  studies  by  various 
research groups and highlighted the need for a new standard, called IEC 61499, 
different from IEC 61131-3. According to Zoitl et al (2007), two of these studies 
had the most far reaching effect in the development of the IEC 61499 standard. 
The  first  study,  by  the  Iacocca  Institute,  developed  the  concept  of  “agile 
manufacturing” which envisaged not only a dynamic reconfiguration of control 
applications, but also a physical reconfiguration of production resources (Zoitl et 
al, 2007). The other study, which was carried out by the HMS project consortium, 
developed  the  “means  and  methods  for  self-adaptable  production  systems”, 
which led to the HMS with a new lower level control architecture (Zoitl  et al, 
2007). These major researches influenced the extension of the function blocks of 
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the already established IEC 61131-3 standard  to include event-driven execution 
in the new IEC 61499 architecture.
The drawbacks in IEC 61131-3 standard which have been addressed in IEC 61499 
are: 

• non-deterministic switching points in time (due to cyclic execution policy), 
• lack of fine granularity (i.e. reconfiguration at task level), 
• jitter effects (i.e. task reconfiguration influences other tasks), 
• the  possibility  of  inconsistent  states  (which  may  lead  to  deadlocks) 

(Rooker et al, 2007).
The development of IEC 61499 was so strongly associated with the HMS research 
that  it  made  the  twin  concepts  of  adaptability  and  reconfigurability  its  main 
focus. However, a full support for dynamic reconfiguration is beyond the scope of 
the standard (Zoitl et al, 2007). 

The major benefit  of  the IEC 61499 methodology is  a  separation of  concerns 
(Rooker et al,  2007). The whole application is first programmed as a Function 
Block  (FB)  network  as  in  centralized  systems.  Then,  the  components  of  the 
network are mapped to the devices of the real system where they are executed. 
This  facilitates  the movement of  functionality  from one controller  to  another 
(since only the mapping of FBs change, while the original  application remains 
unchanged)  and  the  enhanced  support  of  distribution  enables  the  idea  of 
component-based automation (Rooker et al, 2007).

Support for the IEC 61499 standard is not yet widespread and this is because its 
development is still relatively recent (Black and Vyatkin, 2009). While hardware 
support for the standard is still very limited, a number of software platforms for 
the implementation of the standard have been developed. The first implemented 
IEC  61499  execution  environment  is  the  FBRT  (Function  Block  Run-Time 
Environment) by James Christensen (Zoitl  et al,  2007). This FBRT is an integral 
part  of  the  Function  Block  Development Kit  (FBDK)  also  developed by  James 
Christensen of Holobloc Incorpocrated, USA. FBDK is an engineering support tool 
for the execution of the IEC 61499 standard which is available for free on the 
Holobloc website. It was used for the world's first factory installation of IEC 61499 
by Tait Control Systems Limited in New Zealand (Vyatkin, 2007). Other execution 
environments  for  the  standard  have  since  been developed and these  include 
O3NEIDA Workbench (now Fbench, promoted by Dr. Valeriy Vyatkin), CORFU ESS 
(CORFU Engineering Support System developed by Prof Kleanthis Thramboulidis), 
IsaGRAPH v5.0 (the first commercial software compliant with the standard), etc.
Some research work has been done on the use of the standard. Thramboulidis et 
al (2004) used real-time UML as a meta-model between the design models of IEC 
61499 and their implementation models to support dynamic reconfiguration of 
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control applications. The TORERO research project focuses on plug and play, and 
self-reconfiguration of field devices using IEC 61499 (TORERO, [s.a]). 
The standard is not, however, without its own critics. Lewis (2001) mentioned the 
non-adoption of some of the concepts of object-oriented software technology, 
such as inheritance, as part of the criticism leveled against the standard. Vyatkin 
(2006) studied the impact of the standard in the industry and concluded that, 
unless control systems are developed based on this standard to solve the current 
need of consumers, the concept might as well be doomed to die.  

2.5 Conclusion 

Different manufacturing systems and the methods available for controlling them 
have been reviewed in this chapter. Some of the control methods can be applied 
to more than one type of manufacturing system. The methods of multi-agent 
systems and distributed control based on the IEC 61499 standard will be used for 
the reconfigurable control of the feeder. Figure 2.4 illustrates the manufacturing 
systems and the control methods commonly associated with them. 

Figure 2.4 Manufacturing systems and their control methods
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3 Description of the case study
The assembly system dealt with in this work is a welding assembly system. The 
adopted configuration is based on the conceptual design developed by Sequira 
(2008)  for  a  fixture-based  reconfigurable  spot  welding  system.  In  his  work, 
Sequira (2008) proposed four layouts and decided on “the loose pallet assembly” 
which consists of a central round robin main loop, with modular in-feed and out-
feed conveyor units, allowing for the implementation of parallel loops. This is the 
configuration used in this work with some slight, but cost-saving, modifications. 

3.1 Assembly system overview 

The assembly system is being constructed at Stellenbosch University. It consists 
of four main systems and a conveyor. The four systems are the pallet magazine, 
the  feeding  system,  the welding  system (automatic  welding  machine)  and  an 
inspection/removal system. The spatial arrangement of the assembly system is 
shown in figure 3.1. The feeding system consists of a number of singulation units, 
a camera and a robot, while the inspection/removal system consists of a camera 
and a robot. There are two feeding systems in the assembly system. 

Figure 3.1 Spatial arrangement of the welding assembly system
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The  assembly  system  in  its  current  configuration  is  designed  to  weld  some 
component parts of CBI's Q-frame circuit breaker. The components of the circuit 
breaker are  shown in figure 3.2.  The areas  marked with circles represent the 
points where the components will be welded. The sizes of the components range 
from 10 mm to 60 mm, which are the lengths of the two pigtails. The dimensions 
of the moving contact and the arc runner are 27 x 8 x 12 mm and 42.6 x 9.8 x 
18.4 mm respectively.  The pigtail  diameters are between 2.5 mm and 4 mm, 
while the length of the coil is about 21 mm with an external diameter of 9 mm. 
The  variations  amongst  the  Q-frame breakers  are  minor  and  they  can  all  be 
assembled using the current assembly system configuration.  Types other than 
the Q-frame will  require reconfiguration (e.g.  changes to grippers and welder 
electrodes),  but  the  particulars  of  that  reconfiguration  have  yet  to  be 
determined. The type of  reconfiguration in the present study is  aimed at  the 
ability  to  replace  or  add  subsystems  to  adjust  production  capacity  and/or 
material handling routes.

Figure 3.2 Components of circuit breaker

The welding assembly system should typically operate as follows: 

The  pallet  magazine,  which  is  capable  of  storing  or  releasing  pallets  to  the 
system, supplies a pallet based on the type of fixture needed on the pallet. The 
conveyor transfers the pallet from one station to the other. First, the pallet moves 
to the feeding stations where parts are loaded onto the fixture. Then the pallet 
moves to the inspection station to confirm that all parts are present and correctly 
located. It then moves to the welding station where the parts are welded. Upon 
completion of welding, the pallet moves to the inspection and removal station 
where the necessary inspection is  done and the assembled part  is  offloaded. 
When the production of the current assembly is complete, the pallets used for 
that assembly are returned to the pallet magazine, which removes them from the 
conveyor system. 
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3.2 Pallet magazine 

The pallet magazine was designed by Burger (2009) and is shown in figure 3.3. 
The design, advantages and reasons for the choice of each component during the 
design process are fully described in Burger (2009). The pallet magazine consists 
of a rotary magazine assembly, a safety screen assembly, a conveyor assembly, a 
linear  drive  and  a  piston.  The  rotary  magazine  assembly  consists  of  three 
magazines,  which  can  store  three  different  fixture-type  pallets.  The  different 
fixture-types  determine  the  variants  of  the  final  product  assembly  produced. 
When a particular type of pallet is required, the magazine assembly is positioned 
by the magazine assembly motor (mounted below the magazine assembly). This 
motor  is  a  geared servo  motor,  which is  controlled by an inverter  drive.  The 
inverter drive is connected to the main controller via PROFIBUS. 

Figure 3.3 Pallet magazine

The conveyor assembly is responsible for moving the pallet to be transferred into 
or out of the magazine. The direction of rotation of the conveyor is determined 
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by the conveyor motor, which is a DC geared motor capable of turning in the 
clockwise  or  counterclockwise  direction depending on  the direction of  power 
connected to it. The conveyor assembly is connected to the linear drive, which is 
responsible for raising and dropping the conveyor assembly. The jaws form a part 
of the conveyor assembly. The purpose of the jaws is to lift the stack of pallets in 
the magazine when a pallet is to be transferred into the magazine. However, if a 
pallet is to be released from the magazine, the jaws lift all the pallets except the 
lowest one. 

The jaws are opened and closed by a pneumatic piston. This piston is connected 
to a solenoid valve, which is a 4/2 way valve. The linear drive, on the other hand, 
is connected to two 3/2 way valves. These valves are used to lift and drop the 
linear drive. When the conveyor assembly is to be raised, one of the valves is 
opened and the other is closed, while if the conveyor assembly is to be dropped, 
the states of the valves are reversed. 

The pallet magazine can perform two functions, namely loading of pallets on to 
the  conveyor  system,  which  shall  be  referred  to  as  “uploading”  pallets,  and 
removing  pallets  from  the  conveyor  system,  which  shall  be  referred  to  as 
“offloading” pallets. 

3.2.1 Uploading pallets 

The procedure for uploading pallets is as follows: 

First, the pallet magazine is informed by the higher level controller to upload a 
pallet. Then, the following sequence of operation occurs, as shown in figure 3.4: 

1. Position the magazine – The magazine assembly motor positions one of 
the magazines above the conveyor assembly. As stated earlier,  there is 
provision for 3 different kinds of pallet depending on the type of fixture 
on  it,  with  each  set  of  pallets  stored  in  one  of  the  three  magazines. 
Therefore,  the  right  magazine  is  positioned depending  on  the  type  of 
pallet required. 

2. Raise  the  conveyor  assembly  –  The  conveyor  assembly  is  raised  to  a 
height midway along the length of the linear drive. At this height, the jaws 
(when closed) are between the lowest two pallets.

3. Close the jaws – The jaws are closed. At this point, the jaws are between 
the lowest two pallets in the magazine.  

4. Raise the conveyor assembly further – The conveyor assembly is raised 
further till it reaches the full length of the linear drive. The effect of this is 
that  all  the  other  pallets  are  lifted,  by  the jaws,  off  the  lowest  pallet 
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(which is the one that will be uploaded). At this point, the lowest pallet 
becomes free to move and rests solely on the conveyor. 

5. Run the conveyor in the outward direction – Running the conveyor motor 
clockwise causes the conveyor belt to run in the outward direction. This 
motion transfers the pallet out of the magazine. 

A proximity sensor attached to the magazine indicates when the pallet leaves the 
magazine and then the pallet magazine returns to the initial state by stopping the 
conveyor motor, dropping the conveyor assembly and opening the jaws. 

Figure 3.4a Uploading pallets (Burger, 2009)
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Figure 3.4b Uploading pallets (Burger, 2009)
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3.2.2 Offloading pallets 

The procedure for offloading pallets is as follows: 

First, the pallet magazine is informed by the higher level controller to offload a 
pallet. The presence of the pallet to be offloaded is detected using a proximity 
sensor on the conveyor leading to the pallet magazine, and then the following 
sequence of operation occurs as shown in figure 3.5: 

1. Position the magazine – The magazine is positioned based on the type of 
pallet to be offloaded. 

2. Close the jaws – The jaws are closed so that at the next step, when the 
conveyor is raised, the jaws lift all the pallets in the magazine.

3. Raise the conveyor assembly – The conveyor assembly is raised to the full 
length of the linear drive so that it is at the same height as the pallet to be 
offloaded. At the same time, the pallets in the magazine are lifted by the 
jaws. 

4. Run the conveyor in the inward direction – Running the conveyor motor 
counterclockwise causes the conveyor belt to run in the inward direction. 
This motion transfers the pallet into the magazine. The proximity sensor 
attached  to  the  magazine  detects  the  presence  of  the  pallet  in  the 
magazine. The conveyor motor stops running when the pallet arrives in 
the magazine. 

5. Drop the conveyor assembly – The conveyor assembly is dropped so that 
the pallets supported by the jaws are brought to rest on the newly arrived 
pallet. The jaws can now be opened. 

The pallet magazine is then back at its initial state where the conveyor assembly 
is dropped and the jaws are open. 
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Figure 3.5a Offloading pallets (Burger, 2009)
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Figure 3.5b Offloading pallets (Burger, 2009)

3.3 Feeding system

The  feeding  system  is  an  aggregate  of  three  major  subsystems,  namely  the 
singulation  unit,  the  feeder  camera  and  the  feeder  robot.  These  three 
subsystems work  together  to  perform the feeding system function of  loading 
parts into the fixture on the pallet. The singulation unit transfers parts from a 
hopper and separates or singulates them so that they are not tangled. The parts 
are inspected by the camera which returns the position of the parts' pick point. 
The robot uses this pick point position in picking the part and placing it on the 
pallet. 
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3.3.1 Singulation unit  

The singulation unit was designed by Strauss (2009) and is shown in figure 3.6. 
The design, advantages and reasons for the choice of each component during the 
design process are fully described in Strauss (2009). The singulation unit consists 
of  a  hopper,  a  hopper  conveyor,  two  transfer  conveyors  running  at  different 
speeds and an inspection section. The original design by Strauss (2009) had a 
flipping  section  that  uses  three  pneumatic  pistons  and a  stepper  motor.  The 
purpose of the flipping section was to orientate the part, but this was removed 
due to concerns about its reliability. The flipping section was then replaced by air 
nozzles which reject unwanted parts using air jets. 

Figure 3.6 Singulation unit

Parts to be loaded are transferred manually from the parts bin to the hopper. The 
collection of parts in the hopper is unsorted and may, therefore, be tangled and 
intertwined. As the hopper conveyor, which is driven by the hopper motor, runs, 
parts drop off the hopper conveyor belt onto the first transfer conveyor through 
a shute. There is a shute sensor which is used to detect the passage of parts 
along the shute. This sensor serves two diagnostic purposes: it detects whether 
parts have actually dropped from the hopper to the transfer conveyor, and it also 
detects  whether  any  part  rejected  from  the  inspection  platform  has  passed 
through the return shute. Along the length of the first transfer conveyor are side 
guides and a deflector. These guides prevent the parts from dropping off the side 
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of the conveyor, and at the end of the first transfer conveyor is  the deflector 
which directs the parts onto the second transfer conveyor. There is a “transfer 
sensor” (not shown in the figure) at this transfer point from the first transfer 
conveyor to the second. This sensor tracks the parts that have moved from the 
first to the second transfer conveyor. The first and second transfer conveyors are 
driven by a three-phase AC motor, but are geared to run at different speeds with 
the second conveyor running faster than the first. 

The reason for this speed difference between the transfer conveyors is to create 
gaps between the parts. Along the length of the second transfer conveyor are 
deflectors which will only allow single parts to pass through. There is also a wiper 
blade which allows only parts of a particular maximum height to pass through. 
Any parts which are still tangled are pushed back onto the first transfer conveyor 
by the deflectors and the wiper blade. There is also another sensor here (called 
“circulating  sensor”,  and  is  not  shown in  the  figure)  which  detects  the  parts 
returning (or circulating) from the second to the first transfer conveyor. When the 
part  reaches  the  end  of  the  second  transfer  conveyor,  it  slides  on  to  the 
inspection station. An optical sensor detects the arrival of the part and triggers 
the stoppage of the motor driving the transfer conveyors. 

Part inspection is done by the camera and the part is only rejected if the camera 
determines that the part is not the one required to be loaded or if the part is in 
an  unacceptable  pose.  The  singulation  unit  rejects  parts  by  ejecting  a  high 
pressure air jet from an air nozzle which drives the part back, along the return 
shute, to the first transfer conveyor. 

3.3.2 Feeder camera 

The feeder camera is a Cognex DVT Legend 540 vision sensor shown in figure 3.7. 
The vision sensor has an image resolution of 640 x 480 pixels and a grayscale CCD 
(charge-coupled device) for image detection. It has exposure times of between 
10μs to 1s and an isolated power supply of 24V DC. The camera has two RJ-45 
ports,  one for  power supply and the other for  communication over Ethernet. 
There is also a separate digital I/O with 8 configurable inputs and outputs that 
can be used to send commands to the vision system. 

The feeder camera inspects the part in the inspection section of the singulation 
unit. If the camera confirms that the inspected part is the part required to be 
loaded,  it  then  determines  the  position  of  the  pick  point  of  the  part.  This 
information is what the robot uses to pick the part. On the other hand, if the part 
is not the part required or the part not in a collectible orientation, it informs the 
singulation unit to reject the part. 
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Figure 3.7 Cognex DVT vision sensor

3.3.3 Feeder robot 

The feeder robot is a six-degree of freedom RTX robot manufactured by Universal 
Machine  Intelligence.  Figure  3.8  shows  the  robot  as  depicted  in  its  manual, 
“Introducing RTX” (UMI,  1986).  The robot  has an upper arm,  a  lower arm at 
which end is a gripper and a vertical linear slideway. It also has three joints: the 
shoulder, elbow and wrist joints. The upper arm is driven by the shoulder motor, 
the lower arm is driven by the elbow motor, while the wrist is controlled by two 
motors which enable it to perform both pitch and roll motions. 
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The role of the robot in the feeding system is to pick parts based on the position 
given by the camera and place them on to the pallet. The coordinate space of the 
robot  is  measured  in  millimeters,  which  is  the  same  unit  used  for  the 
transformation coordinate for the camera. The camera only supplies dimensions 
in two coordinates while the z-coordinate of the camera is fixed. 

Figure 3.8 RTX robot (UMI, 1986)
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3.4 Other subsystems

The other subsystems of the welding assembly system are: the inspection and 
removal  system,  the  welding  system  and  the  conveyor.  The  inspection  and 
removal system is almost the same as the feeding system except for the absence 
of a singulation unit. The inspection and removal station is where inspection is 
done on parts loaded on the pallet fixture before welding, and also where the 
final  inspection on the welded parts  is  carried out before removal.  Here,  the 
welded parts are inspected for defects and they are transferred to the assembly 
bin if the inspection is successful, or to the rejection bin if the inspection is not 
successful.

The welding system spot-welds the parts loaded on to the pallet. However, due 
to the high cost of an automated welding system, no physical welding system was 
purchased. Its actions of welding in this study case will only be simulated. The 
conveyor to be used is a Rexroth TS2 Plus transfer system. It has several motors, 
an ID40 RFID system, a number of sensors connected on an AS-i network and a 
PROFIBUS communication interface. The incomplete conveyor is shown in figure 
3.9.

Figure 3.9 Rexroth TS2 Plus conveyor
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4 Low level control of the subsystems
The control  of  the subsystems in this  work is  divided into two: the low level 
control and the high level control. The low level control directly interacts with the 
hardware  of  the  subsystems  by  reading  from  sensors,  and  activating  the 
actuators of the subsystems. This control is covered in this chapter. The high level 
control,  which is  considered for  the  feeding system,  is  termed reconfigurable 
control and is covered in chapter 5. The low level control of the subsystems is to 
be implemented using a PC and a PLC. The subsystems to be controlled are the 
pallet  magazine  and  the  feeding  system  components  which  include  the 
singulation unit, the camera and the robot. 

4.1 Pallet magazine

The hardware components of the pallet magazine were described in section 3.2. 
The actuators responsible for the movement of these components include:

• the magazine assembly  motor which is  used to position the magazine 
assembly,

• the conveyor motor which runs the conveyor,

• the solenoid valves which regulate the flow of air into the linear drive and 
the piston which operates the jaws. 

We first  discuss  the  control  of  the  components  common to  the  PLC  and  PC 
controllers,  and  then discuss  the  control  as  done  using  the  PLC  and  the  PC, 
respectively. 

4.1.1 Magazine assembly motor

The magazine assembly motor is a geared servo motor from SEW EURODRIVE 
(KAF37  DS56M).  In  order  to  control  the  motor,  a  drive  inverter,  the  SEW 
MOVIDRIVE MDX61B0005-5A3-4-0T, was used. The characteristics of the motor 
utilized in order to position the motor, as given by the manufacturer, are:

• gear ratio of motor, which is 29.96:1

• the gear teeth values, which the manufacturer gives as  pinion 23T, gear 
31T, second gear pinion shaft 18T, gearwheel 97T, rose 8T and bevel 33T. 

In the control of the pallet magazine, the communication between the controller 
and  the  Movidrive  inverter  is  over  PROFIBUS,  which  is  a  commonly  used 
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communication standard in the industry. The drive inverter is able to connect to a 
PROFIBUS network using a DFP21B PROFIBUS module. The PROFIBUS address of 
the drive inverter was set to number 4. The magazine assembly motor has an 
internal resolver which serves as its encoder. With this resolver, the drive inverter 
is able to monitor and report the actual position of the motor. Also, because of 
the direct connection between the motor and the magazine assembly (which is 
termed as “positive connection”), there is no need for an external encoder. For 
these reasons, a resolver module, the DER11B, was installed on the drive inverter 
instead of an encoder module. 

Setting up the drive inverter involved the use of IPOS which is a programmable 
positioning  language  developed  by  the  drive  manufacturer.  The  Modulo 
positioning tool was specifically used in this case because what is to be done here 
is  rotational  positioning  (not  linear  positioning).  The  Modulo  positioning  tool 
uses a reference point, defined by a reference cam, and a reference travel type to 
specify the initial position of the motor. In order to use the Modulo positioning 
tool, the drive inverter is first set up using a keypad. The data of the magazine 
assembly  motor  are  entered  into  the  inverter.  These  data  values  include  the 
voltage rating, the power, the maximum current, etc, of the motor. The next step 
is to configure the inverter from a computer using the Movitools software which 
is also supplied by the manufacturer. A USB/Serial converter is used to connect 
the drive inverter to the computer for automatic start up. Additional data, which 
include ramp up and ramp down times, maximum moment of inertia, etc, are 
supplied. 

The final  step is  to  set  up the Modulo positioning tool.  To do this,  the drive 
inverter is first wired based on the wiring diagram shown in appendix A.1. The 
Modulo positioning tool automatically configures the first four digital inputs as 
follows: DI00 is Control Inhibit, DI01 is Enable, DI02 is Reset and DI03 is Reference 
Cam  Input.  In  this  work,  there  is  no  reference  cam,  so  DI03  was  not  wired. 
Instead, a reference travel type 5 was chosen. With a reference travel type 5, 
there is no reference travel and the current position of the motor is taken as the 
reference point. The values of the gear teeth and the gear ratio were used to 
calculate the fractional ratio of the gear box. These values were entered as 33077 
for  “numerator”  and  1104  for  “denominator”  as  required  in  the  Modulo 
positioning tool. The derivation of this ratio of 33077:1104, which translates to 
the actual gear box ratio (i.e. 29.96:1), is given in appendix A.2. 

From the IPOS program of the Modulo positioning tool, there are different ways 
by  which  the  positioning  can  be  done,  but  the  “automatic  positioning  with 
optimization”  method  was  chosen.  This  method  is  an  intelligent  positioning 
option in which the motor takes the shortest route from its present position to 
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the  target  position.  An  illustrative  example  is  the  case  where  the  motor  is 
required  to  move  to  a  315-degree  position  when  its  current  position  is  20 
degrees. With the “automatic positioning with optimization” option, the motor 
moves in the counterclockwise direction instead of the clockwise direction which 
is the default. This is because the counterclockwise direction is the shorter route 
to the target position. However, the disadvantage of the method is that the gear 
ratio limits the maximum position the motor can attain. Although it is not likely in 
our  case,  if  the  motor  exceeds  the  maximum  angle  of  rotation  (about  1176 
degrees approx.), then the rotation will have to occur along the longer route.

With the configuration of the Modulo positioning tool, only six process data (PD) 
words are required by the inverter for positioning the motor. The six output data 
words represent the Control Word 2, the Target Position (high word), the Target 
Position  (low  word),  the  Setpoint  Speed,  the  Acceleration  Ramp  and  the 
Deceleration Ramp respectively.  On the other hand,  the six input data words, 
which will  be returned by the inverter,  represent the Status Word, the Actual 
Position (high word), the Actual Position (low word), the Actual Speed, the Active 
current and the Device Utilization. 

The target position was set, in the Modulo positioning tool, to be measured in 
degrees. Other units of position measurement allowed are tenth of degree and 
encoder count. The actual position of the motor returned by the inverter is in 
encoder count. The method used in this work to determine whether the motor 
positioning is complete or not is to check the fourth bit of the status word (i.e. 
process input data 1). This bit represents Target Position Reached, and it has a 
value of 1 when the target position is reached. 

4.1.2 Conveyor motor

The conveyor motor, which drives the conveyor in the pallet magazine, is a 12V 
DC motor.  There  are  three states  in  the  control  of  this  motor:  it  runs  in  the 
outward direction when a pallet in the magazine is to be uploaded, it runs in the 
inward direction when a pallet is to be offloaded and it is stationary when the 
pallet has arrived or left the magazine. Two relays are used in order to control the 
conveyor motor. The relays are connected to the motor as shown in figure 4.1. 
The first relay labeled R4 is called the enabling relay while the one labeled R5 is 
called the direction relay for reasons explained below. The motor is connected to 
the COM (common) of relay R4, while the N.O. (Normally Open) of relay R4 is 
connected to the COM of relay R5. Relay R5 is connected to the voltage supply 
line in the following order: the N.O. of R5 is connected “normally” so that the 
positive terminal of the motor connects to the positive end of the 12V power 
supply, while the negative terminal of the motor connects to 0V or the negative 
end of the 12V power supply. The N.C. (Normally Closed) of R5 is then connected 
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in the reverse direction so that the positive terminal of the motor connects to the 
negative  end  of  the  power  supply  and  the  negative  terminal  of  the  motor 
connects to the positive end of the 12V power supply. 

 

Figure 4.1 Conveyor motor connection 

Based on this connection, when the relay R4 is energized, the conveyor motor is 
connected  to  power  so  it  moves  either  in  the  forward  or  reverse  direction 
depending on whether relay R5 is energized or not. However, if relay R4 is not 
energized,  the  motor  stays  stationary  notwithstanding  whether  relay  R5  is 
energized or  not.  This  is  because there  is  no power  supply  connected to the 
motor through the N.C. of R4. The dependence of the operation of the motor on 
the energized state of relay R4 is the reason why R4 is called the enabling relay. In 
the case of relay R5, when the relay is energized, the motor connects to the N.O. 
of R5 and so rotates in the forward (or outward) direction, while if the coil is not 
energized,  the motor connects to the N.C.  of  R5 and therefore rotates in the 
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reverse  (or  inward)  direction.  Because  relay  R5  determines  the  direction  of 
rotation of the motor, R5 is called the direction relay. 

The motor is controlled using two digital output bits, which are used to energize 
the  two relays  respectively.  Therefore,  in  the  control  of  the  conveyor  motor, 
when the motor is to run in the outward direction (i.e. forward), the first bit is set 
to a value of 1 and the second bit is set to 0. When the conveyor motor is to run 
in the inward direction (i.e. reverse), both bits are set to a value of 1. If the motor 
is to be stopped, the first bit is set to a value of 0 and there is no need to set the 
second bit. The use of two relays in controlling the conveyor motor is inherently 
safe from the risk of a short circuit. This is because at no time will both current 
carrying lines from the supply voltage reach the motor at the same time, which 
ordinarily may lead to a short circuit. 

4.1.3 Solenoid valves

There are three solenoid valves used in the pallet magazine. One of them is a 4/2 
way valve, while the other two are 3/2 way valves. As explained in section 3.2, 
the 4/2 way valve controls air supply to the pneumatic piston which opens and 
closes the jaws in the pallet magazine. On the other hand, the two 3/2 way valves 
control air supply to the linear drive which raises or drops the conveyor assembly. 
All  three  valves  are  connected  to  relays  which  can  open  or  close  the  valves 
depending on whether the relays are energized or not. The valves are connected 
to the N.C. (normally closed) terminals of the relays since the supply ports of the 
valves  are  open in  the initial  state,  which  means  that  they  allow air  to  flow 
through them thereby raising the conveyor assembly in the case of the linear 
drive, and closing the jaws in the case of the pneumatic piston. This is contrary to 
what is desired in the control where in the initial state, the conveyor assembly 
should be down while the jaws should be open. This was achieved by connecting 
the valves to the relays as stated.

The jaws are controlled using one digital output bit which is able to open or close 
the jaw depending on whether the bit value is zero or one.  The linear drive, 
shown in figure 4.2, is controlled using two digital output bits. To move the slide 
on the linear drive upwards, the first bit is set to 1 and the second bit is set to 0, 
while reversing the bits causes the slide to move downwards. There are three 
proximity sensors along the length of the linear drive which are labeled as top 
sensor,  middle  sensor  and  bottom sensor  in  figure  4.2.  The  top,  middle  and 
bottom sensors are used to detect when the slide of the linear drive reaches the 
top, middle and the bottom of the linear drive respectively.
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Figure 4.2 Linear drive

4.1.4 PC control of the pallet magazine

The PC control program of the pallet magazine was written using Microsoft Visual 
C#.  Two hardware modules were used with the PC.  The first  is  the Applicom 
PCIE1500PFB  card,  which  allows  the  PC  to  connect  to  the  PROFIBUS 
communication network, and the second is the Eagle uDAQ Lite data acquisition 
device. The Applicom card is installed in the PCI Express slot of the PC board 
which provides a much higher speed of communication than the ordinary PCI 
slot.  The Applicom card enables the PC to act either as a class 1 or a class 2 
master  on  the  PROFIBUS  network.  As  a  class  1  master,  the  PC  is  able  to 
communicate with its configured slaves, while as a class 2 master, the PC only 
plays  a  “supervisory”  role  (i.e.  it  is  used  to  commission  slaves  and to  obtain 
diagnostic data from the slaves). In the case of the pallet magazine, the PC is the 
only master in the PROFIBUS network and acts as a class 1 master. The slave on 
the PROFIBUS network is the drive inverter which is used to control the magazine 
assembly  motor.  The setup of  the Applicom card is  done using the Applicom 
software provided by the manufacturer. The GSD file of the slave (i.e. the drive 
inverter)  is  installed  in  the  configuration  of  the  Applicom  card  and  the 
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communication was configured for six process data words, as required for the use 
of the Modulo positioning tool of the drive inverter. 

The Eagle uDAQ Lite device,  on the other hand,  has a  USB interface through 
which it is connected to the PC. It is configured using the Eagle data acquisition 
software supplied by the manufacturer. The Eagle uDAQ has digital and analog 
ports  but  the analog ports  were not used in this  work.  The digital  input and 
output ports are eight bits wide. The Applicom card and the Eagle uDAQ were 
accessed in the control program through their dll files which were provided by 
their  manufacturers.  These  dll  files  were  included  in  the  control  program  as 
references. The Applicom card dll  file gives access to immediate and deferred 
read and write functions on the PROFIBUS network, and the Eagle uDAQ dll file 
provides access to read from and write to the digital ports.

The flowcharts in figure 4.3 show the algorithms for the uploading and offloading 
of pallets in the pallet magazine. Each of the processes shown in the flowcharts 
represents a method in the PC control program. For example, position magazine, 
lift conveyor assembly and open jaws are all methods in the control program. The 
decision-making methods, which are represented by the diamond shape, involve 
reading the bit values of the corresponding sensors. For example, whether the 
conveyor assembly has arrived at the top of the linear drive or not is determined 
by reading the bit value of the top sensor from the Eagle uDAQ digital  input. 
Reading the digital input returns a corresponding byte value for the 8-bit wide 
input port,  and the value of the bit needed is obtained by carrying out a bit-
masking  operation.  Activating  the  actuators,  for  example,  to  lift  conveyor 
assembly, is also done via the Eagle uDAQ by masking the bit to be changed and 
writing to the card's digital output. The low output voltage of the Eagle uDAQ 
device made it necessary to use the Eagle PC-38G, which is a relay adaptor module. 
The PC-38G has 8 electro-mechanical relay channels, and uses an external 12V 
DC power supply to energize the relays. Uploading and offloading of pallets in the 
control program is therefore achieved by calling the individual methods as shown 
in the flowcharts.  
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       Uploading pallets Offloading pallets

Figure 4.3a Flowcharts for process flow of pallet magazine
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       Uploading pallets Offloading pallets

Figure 4.3b Flowcharts for process flow of pallet magazine
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4.1.5 PLC control of the pallet magazine 

The PLC used for the control of the pallet magazine is a Siemens S300 PLC. The 
PLC has an integrated PROFIBUS interface. The Siemens STEP 7 program was used 
to set the hardware configuration of the PLC as well as write the control program 
using ladder logic. The GSD file for the drive inverter was also installed in the 
hardware configuration of  the  PLC just  as  in  the  case  of  the  PC.  The  control 
program algorithms are also according to the flowcharts in figure 4.3, but the 
processes in the figure are represented as steps. 

The PLC ladder logic program consists of the three function blocks: the upload 
function block,  the offload function block and the position magazine function 
block  (which  is  used  by  both  the  upload  and  offload  function  blocks).  The 
position  magazine  function  block  uses  the  STEP7  SFC  14  and  SFC  15  special 
functions to read from and write to the drive inverter over PROFIBUS. As earlier 
explained, the exchange over PROFIBUS between the master controller and the 
drive inverter (i.e. the slave) is done using six process data words. For this reason, 
a UDT (user-defined data type) variable comprising six words was defined and 
used. The other function blocks, i.e. the upload and the offload function blocks, 
made  use  of  the  position  magazine  function  block  to  position  the  magazine 
assembly motor. The PLC typically executes cyclically so, in order to implement 
the processes in figure 4.3 as steps, a temporary variable initialized to zero was 
defined in the function blocks. All the steps in the flowcharts have been labeled 
consecutively with the first step labeled as zero. Each step only executes if the 
value of the temporary variable is equal to the number label of that step. Upon 
completion of each step, the value of the temporary variable is increased by one. 
By so doing, the PLC executes the program in a stepwise manner. 

4.2 Singulation unit

The singulation unit  is  one of  the subsystems within the feeding system. The 
hardware  components  of  the  singulation  unit,  shown  in  figure  3.6,  were 
described  in  section  3.3.1.  The  actuators  within  the  singulation  unit  are  the 
hopper motor, the transfer conveyor motor and the solenoid valve for the air 
nozzle.  

4.2.1 Hopper motor

The hopper motor is a PARVALUX SD8 AC motor, which is used to run the hopper 
conveyor belt. The motor is connected via a 2.5µF capacitor to the power supply. 
The motor is controlled using only a contactor since there is no need for speed 
control  in  our  application.  The  motor  is  run  or  stopped  by  switching  this 
contactor. 
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4.2.2 Transfer conveyor motor

The  transfer  conveyor  motor  is  a  geared  AC  motor  from  SEW  EURODRIVE 
(DR63M4). In order to control the motor, a drive inverter, the SEW MOVITRAC 
MC07B0005-2B1-4-00, was used. The drive inverter is used only to control the 
speed of the motor. The drive inverter setup was done using a keypad. The data 
that had to be provided include the name and type of motor to be controlled, the 
setpoint speeds to be used, the control operating mode, and various motor data 
such as voltage, power, frequency, etc. The drive inverter has terminals for binary 
input and output. The functions of these terminals have already been preset by 
the manufacturer. The drive inverter can be used to control the motor by writing 
to the binary inputs. 

In the case of the singulation unit, only three of the binary input terminals were 
used. These are the terminals marked as DI01, DI03 and DI04, which (when they 
are  set)  represent  the  CW  (clockwise)  rotation,  the  Enable  and  the  Speed 
setpoint bits respectively. The transfer conveyors, like the hopper conveyor, only 
run in one direction in the singulation unit, therefore the DI02 terminal which 
represents the CCW (counterclockwise)  rotation bit  was not  used.  The binary 
output terminals were used to obtain the status of the drive inverter and the two 
terminals used are the DO02 and the DO03 terminals, which represent the Brake 
Released and the Motor Ready bits respectively. 

4.2.3 Solenoid valve 

The  solenoid  valve  is  used  to  regulate  the  flow of  air  to  the  air  nozzle.  The 
solenoid valve is a 3/2 way valve. The valve is connected to a relay which opens 
or closes the valve depending on whether the relay is energized or not. This valve 
is also connected to the N.O. (normally open) of the relay and is controlled using 
only one digital output bit. 

4.2.4 PC control of the singulation unit 

The PC control program for the singulation unit was also written using Microsoft 
Visual  C#,  as  in  the  case  of  the  pallet  magazine.  The  Eagle  uDAQ  Lite  data 
acquisition device was used to read from the sensors and write to the actuators. 
The singulation unit loads parts as well as rejects parts that fail the inspection by 
the camera. The flowcharts in figure 4.4 show the algorithms for the loading and 
the rejection of parts. Just as in the case of the pallet magazine, each step is 
represented in the control program as a method. The decision-making methods 
involve reading the bit values of the corresponding sensors, while activating the 
actuators is done via the Eagle uDAQ device by masking the bit to be changed 
and writing to the card's digital output. The PC-38G relay module was also used. 
Four sensors, described in section 3.3.1, were used to aid decision-making: the 
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shute sensor, the transfer sensor, the platform sensor and the circulating sensor. 
The shute sensor is used to detect whether parts are actually supplied from the 
hopper when the hopper motor is run, and whether parts rejected have passed 
through the return shute. If no part is detected, it triggers a fault output. The 
transfer sensor is used to detect parts that move from the first transfer conveyor 
to  the second transfer  conveyor,  while  the  platform sensor  is  used to detect 
whether a part has arrived at the inspection platform. The circulating sensor is 
used to detect parts that are circulating back to the first transfer conveyor from 
the second transfer conveyor. These sensors are used to update the values of 
three variables used in the control:  the number of  parts  on the first  transfer 
conveyor (x1), the number of parts on the second transfer conveyor (x2), and the 
number  of  circulating  parts  (x3).  Every  part  detected  by  the  shute  sensor 
increases x1 by 1, and every part detected by the transfer sensor decreases x1 by 
1 and increases x2 by 1. Every part detected by the platform sensor decreases x2 
by 1 and every part that is detected by the circulating sensor increases both x1 
and x3 by 1, and decreases x2 by 1. Variable x3 is a diagnostic variable and it 
triggers a warning output if its value is greater than a minimum (5, in our case), 
and its value is reset to zero after every 10 parts loaded.

There are two methods which run simultaneously and are cyclically called by the 
control program. These are the hopper motor controller method and the transfer 
conveyor controller method. The algorithms for these methods are shown in the 
flowcharts in figure 4.4a. The hopper motor controller method constantly checks 
whether  the  number  of  parts  on  the  first  transfer  conveyor  is  less  than  the 
minimum number of parts that should be on it (which, in this case, is 5). If it is 
less, the hopper motor is then run for a specified period (40 seconds, in this case) 
in order to increase the number of parts on the first transfer conveyor. On the 
other hand, the transfer conveyor controller constantly checks whether there is a 
part present on the inspection platform, ready to be inspected and picked in case 
a  LOAD command is  sent to the feeder.  If  there is  no part  on the inspection 
platform (for example, after the loaded part is picked by the robot or rejected by 
the singulation unit), the transfer conveyor is started so that a new part is loaded 
on to the platform. 

The algorithms for loading and rejecting parts  are shown in the flowcharts in 
figure 4.4b.  In the  case  of  loading of  parts,  it  is  expected that  a  part  should 
already be on the inspection platform, but if that is not the case, the transfer 
conveyor motor is started in order to load a part. The transfer conveyor motor 
stops immediately when a part is loaded on to the inspection platform. On the 
other hand, for the rejection of parts, the air nozzle is opened to allow air jets to 
remove  the  part  from  the  inspection  platform.  When  the  part  leaves  the 
platform, the air nozzle is closed.   
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Hopper motor controller Transfer conveyor controller

Figure 4.4a Flowcharts for process flow of singulation unit
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Figure 4.4b Flowcharts for process flow of singulation unit

4.3 Feeder camera

The feeder camera is a Cognex DVT vision sensor. It is an “intelligent” camera and 
does not require a controller in order to execute its functions. The vision sensor 
comes with software, the Intellect software, which can be used to configure the 
vision sensor from a PC. The software can be used to visualize images captured 
by the camera, view the result of the inspection, perform general camera setup, 
as well as change the settings of the camera. Typically, the software is used to set 
up sensor tools to be used by the vision sensor for inspection and it can also be 
used to write  scripts  which are  programmed to run in the vision sensor.  The 
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scripts  are  programmed  either  as  background  scripts  or  foreground  scripts. 
Background  scripts  are  cyclic  functions  that  execute  continuously  within  the 
vision sensor, while the foreground scripts are functions which are programmed 
to be triggered at various times by events or triggered externally by inputs to the 
camera's digital IO ports. The software is also used to calibrate the vision sensor. 
The calibration of  the  camera is  done by the use of  standard grids  from the 
manufacturer. The calibration is stored within the sensor and is used to transform 
dimensions obtained in pixels  to standard measurements such as  millimeters, 
centimeters, etc. 

Two transforms are used in this work due to the difference in sizes between the 
various parts to be inspected. Most of the parts measure between 10 and 60 mm 
in length while the assembled part is more than 100 mm in length. A standard 
DVT grid of 10 mm spacing was used to calibrate the camera for the smaller sized 
parts like the arc runner, the pigtail, etc, while a standard DVT grid of 20 mm 
spacing was used for the larger components such as the assembled part which 
will be inspected after welding. Each calibration is saved in the Intellect software 
as a transform and given a specific name. The transform set up using the 10 mm 
spacing grid was named loadTransform, while the other transform coordinate set 
up  using  the  20  mm spacing  grid  was  named removalTransform.  In  order  to 
calibrate the vision sensor, the appropriate grid is placed in the camera's field of 
view, and the system coordinate calibration option is  selected in the Intellect 
software.  The  camera  then  automatically  performs  the  necessary  coordinate 
transform. The origin of the grid then becomes the camera coordinates' origin. 
Each of the parts to be inspected has a product name (and a product ID). In this 
case, the product names and IDs are the numbers 1 to 6 representing the moving 
contact, the pigtail 1, the handle frame assembly, the coil, the pigtail 2 and the 
arc runner respectively. The actual parts serve as the model against which each 
inspection is done. 

Three  sensor  tools  were  set  up  for  the  vision  sensor.  The  first  tool,  named 
filter_Tool, is used for the enhancement of the image acquired by the camera. 
There are a number of options available for filtering but “Morphology” with the 
“close” option was chosen because “this option eliminates noise inside the part 
and does not alter the sizes of the parts” as stated in the sensor tool guide. This 
filter_Tool  is  therefore  not  an  inspection  tool  but  a  preprocessing  tool.  The 
advantage of pre-processing is that it improves the quality of the image acquired 
by the camera and compensates for  poor lighting and other deficiencies.  The 
second sensor tool used is the identification tool, named identifPart_Tool. This 
tool  compares  the  image  acquired  by  the  camera  with  that  of  the  model  in 
memory and returns a PASS or a FAIL remark depending on the success or failure 
of  the  inspection.  The  bases  of  the  comparison  between the  image  and  the 
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model  include blob comparison,  area comparison,  eccentricity,  perimeter,  etc. 
The criterion for deciding the PASS or FAIL remark of the inspection was set at 
90% correlation and this is because some of the parts to be inspected appear 
similar from some viewing angles,  so a greater correlation should be required 
between the image and the model before it is decided whether the inspection is 
successful  or  not.  Each  product  has  a  number  of  models  used  by  the 
identifPart_Tool to identify the part being inspected. These models represent the 
different  collectable  poses  of  the  part.  A  PASS  remark  is  returned  by 
identifPart_Tool if there are enough similarities between the acquired image and 
any of  the models.  The matching model is  contained in the “BestMatchType” 
property  of  the  identifPart_Tool.  The  last  tool  is  the  positioning  tool  which 
returns  the  pick  point  position  of  the  part  and  its  angle  of  orientation.  The 
positioning tool was set to reference the image identified by the identification 
tool.  Two  collectable  poses  were  assumed  in  this  work,  and  therefore,  two 
positioning tools were used for the respective poses. The two positioning tools 
are named PickPos_Tool and PickPos1_Tool. The positioning tool returns the pick 
point position and the angle required by the feeder robot to pick up the part. 

Two scripts were written to accept user input as well as coordinate the output of 
the sensor tools. By default, the sensor tools run concurrently but in our case, 
some of the tools, for example the identifPart_Tool, rely on the output of others, 
for example the filter_Tool, so, a script is needed to collate the output of each 
tool.  One  of  the  scripts  written  is  a  background  script  and  the  other  is  a 
foreground script. These scripts are included in appendix B and the syntax of the 
scripting language in the DVT vision sensor is similar to C. The background script 
runs continuously and is responsible for accepting inspection commands from 
the main feeding system controller, while the foreground script was configured to 
be triggered by the background script when it receives the INSPECT command. 

Because, in our case, communication with the background script is to be done 
over Ethernet, two options are available for communicating the command to the 
camera. The first is the default command list from the manufacturer which can 
be understood by the vision sensor. This command list is a set of standard letters 
and symbols. However, there are disadvantages to the use of this list. The first is 
that the program becomes difficult to debug since the commands in the list are 
not easily comprehensible to human readers. The second is that the command 
list is actually for the manufacturer's internal use and a caveat was placed on its 
use because its functionality cannot be guaranteed. A different approach was 
used instead. A standard was devised to send information to the vision sensor 
over Ethernet using two bytes. The vision sensor reads these bytes through the 
background script  which is always running cyclically.  The interpretation of the 
two bytes is as follows: the first byte contains the command and the second byte 
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contains the product ID. The use of these bytes could be extended in future, but 
for our work, the two bytes are sufficient. The only value of the first byte used is 
value 1 which was assigned to the “inspect” command. Future users of the vision 
sensor may find it necessary to assign other commands to other values of the 
first byte. The values of the second byte range from 1 to 6, and represent the 
product ID which is used to identify the product to be used for the inspection.  

An Ethernet terminal controller using the DATALINK driver was set up so that the 
camera acts as a server listening for connections on port 10000. We intend to use 
DATALINK,  which is  an in-built  tool  by the manufacturer,  to  obtain  inspection 
result  output  from the  camera.  DATALINK  usually  sends  output  through  port 
3247,  but  in  this  case,  the  output  is  diverted  to  port  10000 of  the  Ethernet 
terminal  controller.  The foreground script,  named partScript  Tool,  triggers  the 
generation of  the  inspection  result  through DATALINK when the  inspection  is 
completed. By default, the inspection result is sent out through DATALINK every 
time an inspection is done by any of the camera's sensor tools. However, in our 
case,  the  result  is  to  be  sent  in  the  format  described  below  only  after  the 
inspection is completed by all vision sensor tools. For this reason, DATALINK was 
configured  to  give  out  inspection  reports  only  when  a  bit  (the  User1  bit)  is 
triggered. The bit is triggered in the partScript foreground script when inspection 
is  completed.  This  is  to  enable  the  results  of  the  various  sensor  tools  to  be 
collated in an XML format.  This XML format was hard-coded in the DATALINK 
string output format. It gives an output in the following format: 

<MODEL>{identifPart_Tool.BestMatchType}</MODEL>

<DONE> {identifPart_Tool.ResultString} </DONE>

<X> {Pickpos_Tool.PickPoint.X}</X>

<Y> {Pickpos_Tool.PickPoint.Y}</Y>

<ANGLE> {Pickpos_Tool.PickPoint.ANGLE}</ANGLE>

The camera stores this as the format with which DATALINK sends out inspection 
results  and  fills  in  the  various  properties  of  sensor  tools  (for  example, 
identifPart_Tool.ResultString) when the output message is to be sent.  

4.4 Feeder robot

The  feeder  robot  is  an  RTX  robot  and,  as  was  stated  earlier,  it  is  without  a 
controller. Communication between the PC controller and the robot is over a RS-
232 port. The commands sent and responses received by the robot are in bytes. 
Depending on the type of command, command bytes may be sent in one or two 
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transactions.  In the RTX robot,  a transaction is a complete cycle of  sending a 
command and receiving a response. The interaction between the PC controller 
and the robot is 4 bytes long and these bytes include both the command and the 
response  bytes.  Commands  are  always  one  byte  or  three  bytes  long,  while 
responses are also always one byte or three bytes long and for any transaction, 
the sum of  bytes for  the command and the response never exceeds 4 bytes. 
Therefore, if a command of length 3 bytes is sent to the robot, then a response of 
length one byte is received, and if a command of length one byte is sent, then 
there are two possibilities to the length of the response. The response could be 
of  length one byte or  three bytes.  Commands of  length one byte are usually 
those  of  the  “supervisory”  type  that  typically  requests  information  from  the 
robot controllers and these commands are usually completed in one transaction. 
The robot  is  internally  controlled by two controllers  called IP0 and IP1 which 
perform the actual control  of its appendages. The particular bytes for specific 
commands  and  the  expected  responses  received,  including  the  number  of 
transactions  required,  are  given  by  the  manufacturer  in  the  robot's 
documentation files (UMI, 1986). Distances in the robot are measured in terms of 
encoder counts and the conversion ratios of these encoder counts to millimeters 
are also given by the manufacturer (UMI, 1986). 

Apart from the bytes needed to control the robot, the geometry of the robot also 
plays an important role in the control  of the robot. For the movement of the 
robot arm to any position, the lengths of the robot shoulder, elbow and grippers 
are considered and the problem is solved as a geometric problem using the laws 
of cosines. This is used to determine the distance (and therefore, the encoder 
count  value)  that should be sent to  the robot  in order for  it  to  move to the 
correct position. This also applies in the case of the pitch, the roll and the gripper 
distance of the robot. 

In the control program of the robot, a library file, similar to the RT100.lib file 
provided by Wane [s.a.], was developed. It was written as a dll file and it takes 
care of the low-level byte transactions with the robot's IP controllers. Another 
library  file,  called  Interact.dll,  was  developed  to  perform  the  geometric 
calculations  and  convert  distances  given  in  Cartesian  coordinates  to  encoder 
counts for the various motors of the robot. Three of the methods used in the 
control  program  are  the  moveTo(x,y,z),  open(grip)  and  the  rotateBy(angle) 
methods. The first method is used to move the robot arm to a given position 
(x,y,z), the second is used to open the grippers through a given distance “grip”, 
and the third method is used to rotate the grippers through a specified angle. 
The PicknPlace(frmX,frmY,frmZ,frmAng,toX,toY,toZ) method is used to pick up the 
parts from a position (frmX,frmY,frmZ) to (toX,toY,toZ). The frmAng represents 
the roll angle of the robot wrist.

58



5 Reconfigurable  control  of  the  feeding 
system
As  discussed  earlier,  the  feeding  system  consists  of  the  singulation  unit,  the 
camera and the robot. The overall controller for the feeding subsystem is a PC. 
The  control  is  distributed  among  the  controllers  of  each  of  the  subsystems 
mentioned above with the feeding system controller at the top of the hierarchy. 
Each  one  of  the  subsystems  is  also  controlled  by  a  PC.  The  communication 
interface between all the controllers is Ethernet. The layout is as shown in figure 
5.1.  In  this  work,  the  same  PC  is  used  as  the  controller,  while  the  control 
programs use different Ethernet ports for communication.

Figure 5.1 Communication layout of feeding system

Our aim in this chapter is to discuss how the control of the feeding system was 
implemented to make it  reconfigurable. There are two methods considered in 
this work: the agent-based approach and the distributed approach based on the 
IEC 61499 standard. These two methods should interface with the controllers of 
each of the subsystems in the feeding system as developed in chapter 4. For this 
reason,  a  client-server  approach  and  an  XML data  exchange  format,  both  of 
which are discussed next, were used.

5.1 Subsystems' interaction

Since  the  communication  between  the  feeding  system  controller  and  the 
controllers  of  its  subsystems is  over  Ethernet,  each  of  the  subsystem control 
programs  was  programmed  to  be  a  server  and  the  feeding  system  control 
program acts as a client. This is the case in the agent-based and the IEC 61499 
distributed approaches. The use of socket programming makes it easy to transmit 
data  as  strings  (i.e.  in  XML  format,  in  this  work)  between  the  controllers.  In 
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addition, socket programming is language independent which makes the transfer 
of  data  uniform  in  spite  of  the  fact  that  the  subsystem  controllers  were 
programmed using Visual Studio, the multi-agent system is executed using JADE, 
and  the  IEC  61499  distributed  control  is  implemented  in  FBDK.  Socket 
programming  also  provides  a  seamless  connection  with  the  camera.  Each 
controller in this work was assigned a port over which it listens for connections as 
a server. A list of the various ports allocated to each controller is provided in 
appendix C. 

The XML format adopted for the exchange of data between the controllers is also 
given in appendix C. In order to send data from one controller to the other, the 
data is written as an XML document and this document is sent as a string to the 
output  stream  of  the  TCP/IP  connection.  The  string  is  received  by  the  other 
controller and it is decoded based on the standard XML format. After decoding 
the string, the controller can tell whether the data was intended for it or not. It 
can also extract the necessary information it needs in order to implement the 
task requested. In Visual C#, the XML document was written using XMLTextWriter 
and decoded using the XMLTextReader. The XML writer is used to create an XML 
document and this document is  converted to string using a string writer.  The 
string is then written to the TCP/IP network stream. In Java (on which the JADE 
platform for agents runs), the XML documents were written using a library file 
downloaded from the internet. The library file was developed by Jakarta ECS for 
creating XML documents in Java. Decoding the XML format data in Java is done 
by  parsing  the  XML  string  using  the  SAX  (Simple  API  for  XML)  and  DOM 
(Document Object Model) API from W3C (i.e. the World Wide Web Consortium), 
which is responsible for developing standards such as XML (W3C, 2010). 

5.1.1 Singulation unit control program 

The  singulation  unit  control  program  listens  for  connection  from  the  feeding 
system controller on port 7210. It receives the XML string format and parses it to 
determine, based on the task given, whether it should LOAD or REJECT a part. If it 
is  able to complete the task,  it  returns an XML string format,  which contains 
“<DONE>true</DONE>” indicating the task was completed successfully,  to the 
feeding system controller, else it returns a “<DONE>false</DONE>” message and 
the singulation unit  triggers  a  FAULT output  (e.g.  if  no part  is  loaded due to 
clogging). 

5.1.2 Feeder camera control program 

The  feeder  camera  control  program  listens  for  connection  on  port  7220.  It 
receives the XML string format and parses it to determine whether to perform an 
INSPECT task. The XML string also contains the part to be inspected. The control 
program  then  creates  a  client  socket  with  which  it  connects  to  the  Cognex 
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camera's background script (which is listening for connection on port 3248 of the 
Cognex camera's IP address). The control program sends two bytes: byte value 1 
for  INSPECT and the second byte value to represent the ID of the part  to be 
inspected. The Cognex camera returns whether the part was correctly identified, 
and it also returns the pick point position and the angle of orientation of the part. 
If the part was not correctly identified, the control program returns an XML string 
containing “<DONE>false</DONE>” to the feeding system controller. However, if 
the part was correctly identified, the control program carries out a coordinate 
transformation (discussed below), and sends the pick position and angle to the 
feeding system controller in XML format. 

In this work, a general reference coordinate system was chosen for coordinate 
exchange between the feeder camera and the robot. This reference coordinate 
system was such that its X axis is same as the Y axis of the Cognex camera, and its 
Y axis is the negative of the X axis of the camera. In addition, the origin of the 
Cognex camera's coordinate system has an offset (223, 1190, 320), in millimeters, 
from the origin of the reference coordinate system. Therefore, the coordinate 
transformation done in the feeder camera control program is as follows: 

The reference coordinate X is Cognex camera Y + X offset (i.e. 223);

The reference coordinate Y is -[Cognex camera X] + Y offset (i.e. 1190);

The reference coordinate Z is Z offset (i.e. 320). 

The angle of orientation is measured clockwise from the Y axis of the camera and 
was set to have a value that lies between the range -180 degrees to 180 degrees.

5.1.3 Robot control program 

The robot control program listens for connection on port 7230. It receives the 
XML string format and parses it to determine whether to perform a PICKUP task. 
The XML string also contains the X, Y, Z position of the part to be picked, and the 
angle  of  orientation.  The control  program transforms this  position coordinate 
from  the  general  reference  coordinate  system.  The  axes  of  the  reference 
coordinate system align with the axes of the robot, but the origin of the robot's 
coordinate system is at an offset of (-150, 1100, 0), in millimeters, to the origin of 
the  reference  coordinate  system.  The  control  program  transforms  the 
coordinates received as follows: 

The robot coordinate X is Reference X – X offset (i.e. -150);

The robot coordinate Y is Reference Y – Y offset (i.e. 1100);

The robot coordinate Z is Reference Z;
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The robot roll angle is the negative of the angle of orientation (if the angle of 
orientation is negative) or 180 – angle of orientation (if the angle of orientation is 
positive).

The roll angle is set to be perpendicular to the angle of orientation of the part, 
but since the roll  angle is  measured counterclockwise from the robot's Y axis 
(which is perpendicular to the Cognex camera's Y axis), the roll angle is thus 180 – 
the angle of orientation. In addition, a given roll angle θ is the same as the roll 
angle 180 + θ. 

5.2 Agent-based control

Multi-agent systems are one of the means of achieving reconfigurable control. 
One of the ways of making the feeding system reconfigurable is to ensure the 
independence of the subsystems within it, i.e. the singulation unit, the camera 
and the robot. Hence, the feeding system can be seen as a holonic system in 
which the individual subsystems are independent. Holons can be implemented 
using agents. 

5.2.1 Holons in the feeding system 

According to the methodologies for holonic systems, such as PROSA, ADACOR, 
etc, the physical components or machines form a class of holons. Therefore, the 
singulation unit, the camera and the robot are holons and they are referred to as 
the resource holons in PROSA and operational holons in ADACOR. In this work, 
the  singulation  unit  holon,  the  camera  holon  and  the  robot  holon  are  each 
implemented as feederAgent, cameraAgent and robotAgent agent classes in the 
multi-agent system. Also, there is the taskAgent holon which performs the task of 
the  product  holon  and  the  task  holon,  as  specified  in  PROSA  and  ADACOR 
respectively. Finally, there is the controllerAgent holon. This holon maintains the 
other holons and is referred to as the staff holon in PROSA and the supervisor 
holon in ADACOR. From the foregoing,  five holons, and therefore five agents, 
were  identified:  the  supervisor  holon,  the  singulation  unit  holon,  the  camera 
holon,  the  robot  holon  and  the  task  holon,  which  are  implemented  as  the 
controllerAgent,  the  feederAgent,  the  cameraAgent,  the  robotAgent  and  the 
taskAgent  agent  classes  respectively.  These  agents  were  implemented on the 
JADE platform (JADE, 2010). 

As  mentioned  in  chapter  2,  JADE  is  one  of  the  programming  languages  for 
implementation of multi-agent systems. One of the reasons for choosing JADE in 
this work is that it is a well developed and researched language. Since 1998 when 
it was developed by the Telecom Italia (formerly CSELT), it has constantly been 
updated and the latest version, JADE 3.7, was released in June 2009. Another 
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reason for  the  choice  of  JADE is  the  large  number  of  resources  and support 
available for the language by other developers. Furthermore, the language is FIPA 
compliant  and  its  communication  framework  complies  with  the  agent 
communication  language  (ACL)  of  FIPA.  Also,  in  JADE,  different  interaction 
protocols already exist within the software framework so that there is no need to 
program an interaction protocol. Examples of the protocols, which are used in 
this work for bargaining between the agents, are the FIPA-Request and the FIPA-
Contract-Net protocols. In JADE, the different actions which an agent is able to 
perform are programmed as behaviors.

In order for agents to communicate meaningfully, it is necessary to develop an 
ontology.  An  ontology  was  developed  for  this  case  study  using  the  Protege 
software and JADE ontology bean generator. The ontology consists of concepts, 
actions and predicates. Concepts are entities with structure and properties, and 
are typically nouns. Actions, on the other hand, represent the agent actions and 
are  typically  verbs.  Predicates  indicate  some  form  of  relationship  between 
concepts.  The  actions  used  in  the  multi-agent  system  include  Inspect,  Load, 
PicknPlace and Reject. The concepts used include Controller, Duration, Part and 
Position,  while  the  predicates used include hasControllerName, isPosition and 
lostEffector.  This  ontology  was  automatically  generated  by  the  JADE  ontology 
bean  generator  from  Protege.  The  generated  ontology  files  were  then 
programmed. 

Before  the  discussion  of  the  behaviours  of  each  of  the  agents,  two  actions 
common to all the agents will be mentioned. The first is the registration of the 
agents  in  the  yellow  pages  of  the  JADE  platform.  JADE  has  a  yellow-pages 
function which allows agents to publish their services so that they can be located 
by  other  agents.  All  the  agents  used  in  this  multi-agent  system publish  their 
services as part of their setup() method. They also include a service description 
by  which  they  can  be  found,  for  example,  the  robotAgent  gives  its  service 
description as “robot”. This implies that when a search criterion is done using 
“robot”, all robot agents with that service description will be located. The second 
action common to all the agents is the “deregistration” of the agents from the 
yellow-pages service when the agents  are  terminated.  This  is  included in the 
takeDown()  method  of  the  agents  and  is  called  when  an  agent  is  to  be 
terminated. This action is also provided by the supervisor holon as a behaviour. 

5.2.2 Supervisor holon 

The  supervisor  holon  is  implemented as  the  controller  agent.  The  supervisor 
holon  is  responsible  for  creating  the  agents  for  the  other  controllers  and 
performs the clean up when any agent is terminated. The controller agent is the 
first agent that is created and remains in the main agent container when the 
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agent platform starts up. The controller agent manages the existent controllers 
within the multi-agent system, and it informs the JADE AMS (agent management 
system) of  which agents are  to be created or  terminated.  The behaviours (or 
actions) of this agent are called createController and killController. 

The  createController  behaviour  is  a  OneShotBehaviour,  which  in  JADE,  is  a 
behaviour that runs only once. It is activated when the controller agent receives 
any messages from a new controller connected to the multi-agent system. The 
controller agent requests the JADE AMS to create an agent for the new controller. 
In  the  case  study  of  the  feeding  system,  the  controller  agent  creates  the 
feederAgent, the cameraAgent, the robotAgent and the taskAgent agents upon 
system start up. It does this by adding new createController behaviours with each 
of the agent names in the program thus:

addBehaviour(new createController(feederAgtName, feederAgtClass));

addBehaviour(new createController(cameraAgtName, cameraAgtClass));

addBehaviour(new createController(robotAgtName, robotAgtClass)); 

addBehaviour(new createController(taskAgtName, taskAgtClass)); 

The other behaviour, the killController, is a cyclic behaviour. In JADE, this means 
that  the  behaviour  runs  continuously  throughout  the  life  of  the  agent.  The 
purpose of this behaviour is to inform the AMS to deregister any agent, and its 
services, that has been terminated. This deregisteration includes removing the 
services of the terminated agent as well as reducing the number of agents of that 
kind  within  the  system.  This  behaviour  is  added  thus:  addBehaviour(new 
agentKiller()); 

5.2.3 Singulation unit holon 

The singulation unit holon is implemented as the feeder agent. The feeder agent 
performs two actions: loading parts and rejecting parts. It,  therefore, has two 
behaviours which represent these actions. These behaviours are called loadPart 
and rejectPart, and are both cyclic behaviours. Each of these behaviours cyclically 
scans all messages received by the feeder agent. The loadPart behaviour looks for 
“load”  messages,  while  the  rejectPart  behaviour  looks  for  “reject”.  These 
behaviours are implemented to respond to FIPA-Requests and FIPA-Contract-Net 
messages.  In  the  case  of  FIPA-Requests  messages,  the  relevant  behaviour 
executes the task immediately and responds with a FIPA-Inform or FIPA-Failure 
depending on whether it performs the task successfully or not. In the case of 
FIPA-Contract-Net call for proposal, the relevant behaviour responds by sending a 
proposal of its duration time which the contract-net initiator may accept or not. If 
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the proposal is accepted, then the task is executed. The task agent used in the 
case  study  of  the  feeding  system,  which  is  responsible  for  initiating  request 
messages, uses the FIPA-Request. The behaviours of the feeder agent are added 
thus:  addBehaviour(new loadPart());  for  loading  parts,  and  addBehaviour(new 
rejectPart()); for rejecting parts. 

5.2.4 Camera holon 

The  camera  holon  is  implemented  as  the  camera  agent.  The  camera  agent 
performs only one action: inspecting parts. It, therefore, has just one behaviour: 
the inspectPart behaviour. This behaviour is a cyclic behaviour. The inspectPart 
behaviour  continuously  scans  all  messages  received  by  the  camera  agent  for 
“inspect”  messages.  The  response  of  the  behaviour  to  FIPA  ACL  messages  is 
similar to that described above in the case of the feeder agent. The behaviour of 
the camera agent is added thus: addBehaviour(new inspectPart());. 

5.2.5 Robot holon 

The robot holon is implemented as the robot agent. The robot agent performs 
only one action, which is to pick up parts and place them in the fixtures on the 
pallets. This action is represented as a cyclic behaviour which is called pickPart 
behaviour. The pickPart behaviour cyclically scans all messages received by the 
robot agent for “PicknPlace” messages. The response of the pickPart behaviour 
to FIPA ACL messages is similar to that described for the case of the feeder agent. 
The behaviour of the robot agent is added thus: addBehaviour(new pick());. 

5.2.6 Task holon 

The task holon is implemented as the task agent. The task holon generates the 
task to be done, and is responsible for sending request messages to other agents. 
It  carries  out  the  steps  necessary  for  the  feeding  system  to  load  a  part  by 
coordinating the activities of the other agents, and it takes decisions based on 
the outcome of each of the tasks performed by the other agents. It determines 
the procedure and sequence of the job to be done. When a part is required to be 
loaded onto a pallet, it sends a message to the singulation unit holon requesting 
it  to  load  a  part.  If  the  singulation  unit  is  not  able  to  load  the  part,  a  fault 
message is printed by the task holon, but if the task holon is informed that the 
part has been successfully loaded by the singulation unit holon, it sends another 
message to the camera holon to inspect the part. If the camera holon informs the 
task holon that the inspection was successfully done (and the part's pick position 
is supplied), the task holon sends a message to the robot to pick the part, but if 
the inspection response message was a failure message, the task holon sends a 
message  to  the  singulation  unit  holon  to  reject  the  part.  If  the  robot  holon 
returns a failure message, the singulation unit holon is requested to reject the 
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part, but if the robot successfully picks the part, the camera holon is requested to 
confirm by inspection whether the part has been picked. If no part is detected, 
the  task is  completed,  but  if  a  part  is  detected,  the singulation unit  holon is 
requested  to  reject  it.  The  behaviour  has  handleInform  and  handleFailure 
methods for each type of message returned to it. These steps are implemented in 
the task agent as a stepped behaviour called the nextJob behaviour. A variable 
called step is defined in the behaviour and the value is only increased when the 
current task is successful and then, the behaviour proceeds to the next step. This 
behaviour is introduced as addBehaviour(new nextJob());.

The task agent  also has  three additional  behaviours:  the  feederAgentList,  the 
cameraAgentList  and  the  robotAgentList  behaviours.  The  agent  uses  these 
behaviours  to  request  the  list  of  all  feeder  agents,  camera  agents  and  robot 
agents in the multi-agent system. The behaviours sends these requests to the 
JADE DF (Directory Facilitator), which uses the service descriptions (which in our 
case are feeder, camera and robot respectively) of the agents to locate them in 
the yellow pages of the JADE platform. 

5.3 Distributed control based on IEC 61499

The IEC 61499 standard is another methodology for the distributed control  of 
holonic systems aimed at system reconfigurability. This method is also applied to 
the  control  of  the  feeding  system.  In  the  distributed  control  method,  the 
controllers  are  programmed using  function  blocks  and  the  controller  of  each 
subsystem is  configured as an independent device.  Therefore,  for  the feeding 
system, the singulation unit, the camera and the robot controllers are configured 
as devices in the function block application. Each of these devices has function 
blocks suitable for its operation mapped into it. The IEC 61499 function block 
model of the feeding system is developed using the FBDK from Holobloc Inc. The 
FBDK is used because it has the longest history of all the software development 
kits available for the IEC 61499 standard and it provides services which range 
from the development of function blocks to the execution of the function block 
application. In addition, FBDK is still being constantly used and developed, and 
there is an active group of users of FBDK that participate in an FBDK googlegroup 
where ideas are shared on the software with its developers. 

From the discussion above, three devices have been identified respectively for 
the singulation unit, the camera and the robot. These were named as the Feeder 
device, the Camera device and the Robot device in the function block application 
model.  In addition,  there are the IN_DEV1 and OUT_DEV1 devices,  which are 
HMI devices set up for diagnostic purposes and they will be discussed further in 
section  5.3.2.  A  full  description  of  each  function  block  and  the  distributed 
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application as mapped into the various devices is given in appendix D. Similar to 
the  case  of  the  agent-based  control  method,  the  controller  devices  have  to 
communicate  with  the  subsystem  controllers  developed  in  chapter  4.  In  the 
distributed control method, socket programming and the XML data format are 
also  used,  except  that  they  are  done  with  the  use  of  function  blocks.  FBDK 
provides  a  standard  function  block  for  client-server  communication  over 
Ethernet. The creation of XML documents and parsing of XML strings were done 
using the XML encoder and parser function blocks which we discuss next. 

5.3.1 XML encoder and parser function blocks 

The  XML encoder  and  parser  function  blocks  were  developed  to  enable  the 
function blocks in the controller devices, i.e. the feeder device, the camera device 
and the robot device, to communicate with the subsystems' controllers, i.e. the 
control programs of the singulation unit, the camera and the robot developed in 
chapter 4. The XML encoder function blocks are used to create XML documents 
that  are  sent  as  strings  to  the  subsystems'  controllers,  while  the  XML parser 
function  blocks  are  used to parse  XML strings  received from the subsystems' 
controllers. 

There are two types of XML encoder function blocks developed in this work and 
they are shown in figure 5.2 below. The first of them, XML_ENCODER_1, is used

 

Figure 5.2 XML encoder function blocks

to create XML string formats that are sent to the singulation unit and the camera 
control programs. The second function block, XML_ENCODER_4, is used to create 
XML string formats that are sent to the robot control program. The reason for 
these different function blocks is the XML standard used in this work. The XML 
format  for  the  control  programs of  the  singulation  unit  and the camera only 
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require the task to be executed and the part to be loaded or inspected, while the 
robot control program needs to be supplied the X, Y and Z positions (relative to 
the origin of the reference coordinate system) of the part to be picked, along 
with the angle of orientation. Apart from the difference in the number and the 
type of  inputs required, both encoder function blocks work in the same way. 
Figure 5.3 shows the execution control chart (ECC) of the function blocks. The 
REQ  algorithm  shown  also  uses  the  Jakarta  ECS  library  file  to  create  XML 
document.  The .java files which FBDK generates for  each function block were 
modified  so  that  the  Jakarta  ECS  library  file  can  be  used  to  generate  XML 
documents. The modified .java files were then recompiled and used to replace 
the FBDK compiled .class files. 

Figure 5.3 ECC of XML encoder function blocks 

A similar procedure was followed for the XML parser function blocks shown in 
figure 5.4. There are also two parser function blocks: the XML_PARSER_0, which 
is used to parse XML strings received from the singulation unit and the robot 
control programs, and the XML_PARSER_4, which is used to parse XML strings 
received from the camera control program.

Figure 5.4 XML parser function blocks 
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The camera function block uses XML_PARSER_4 because it returns four values 
representing  the  pick  position  and  angle  of  the  inspected  part,  while  the 
singulation unit and the robot function blocks use XML_PARSER_0 because the 
XML string to be parsed only returns one value which represents whether the 
task was successfully done or not. 

5.3.2 IN_DEV1 and OUT_DEV1 HMI devices 

The  IN_DEV1 and the OUT_DEV1 were set  up  as  HMI devices.  In  FBDK,  HMI 
devices have panel resources, which enable the display of input control buttons 
and  output  display  respectively.  Figure  5.5  shows  the  graphic  displays  of  the 
IN_DEV1 and the OUT_DEV1 devices. IN_DEV1 is used to accept input from the 
user. It displays a drop-down list from which the user can make choices. As shown 
in the figure, the two choices available are LOAD and REJECT part. There is a text 
box which accepts user input of the type of part to be loaded,  and a control 
button marked GO which starts the LOAD or REJECT action. OUT_DEV1, on the 
other hand, is only used for diagnostic purposes. It reports what task is currently 
in progress and reports whether it was successfully done or not. It receives the 
updates on the progress of work from each of the other devices and updates the 
display based on the progress report. 

Figure 5.5 IN_DEV1 and OUT_DEV1 user interfaces 

The function blocks used in the IN_DEV1 and OUT_DEV1 are given in appendix D. 
All  the  function blocks  are  standard  function  blocks  provided in  FBDK except 
HMI_EXIT function block. HMI_EXIT is programmed to read the choice of the user 
and it generates a LOAD or REJECT event depending on the choice of the user. 
This event is communicated to the Feeder device through a publisher function 
block. 
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5.3.3 Feeder device 

The  Feeder  device  contains  the function  blocks  which control  the  singulation 
unit.  It  contains  a  subscriber  block,  a  composite  function  block  called  the 
FB_FEEDER,  and two publisher blocks.  The Feeder device receives events and 
data from other devices through the SUB1 subscriber block and it sends events 
and  data  to  the  Camera  device  for  inspection  through  one  of  the  publisher 
blocks, the PUB2 publisher block. It also sends event updates to the OUT_DEV1 
device through the other publisher block, the PUB5 publisher block. 

The main control function takes place within the FB_FEEDER function block. The 
FB_FEEDER function block, apart from the customary INIT and INITO events, has 
two event inputs: the LOAD and the REJECT events, which represent the tasks 
that the singulation unit executes. It also has two event outputs: the CNF and the 
INSPECT events. The CNF event confirms that the task assigned to the singulation 
unit  has  been  completed  and  a  Boolean  variable  associated  with  the  event 
indicates whether the task was successful or not. The INSPECT event is an event 
which is sent to the Camera device, and it is only generated if the input event to 
the FB_FEEDER was a LOAD event and the loading was completed successfully. 

The  FB_FEEDER  function  block  consists  of  the  FEEDER_ENTRY,  the 
XML_ENCODER_1, the CLIENT_1, the XML_PARSER_0 and the E_SPLIT (which is 
the FEEDER_EXIT) function blocks. The function block network in the FB_FEEDER 
is shown in figure 5.6. The function of each of these function blocks is as follows: 
the FEEDER_ENTRY function block determines what task is to be performed by 
the singulation unit. The task to be performed is received as an input event from 
the IN_DEV1 device. FEEDER_ENTRY then sets the TASK string variable to either 
“LOAD”  or  “REJECT”  and  sends  this  to  the  XML_ENCODER_1  function  block. 
XML_ENCODER_1 also receives the type of part to be loaded, stored in the PART 
variable, from the IN_DEV1 device and with this, it creates the XML data format 
for the string that will be sent to the control program of the singulation unit. If 
the event is a REJECT event, then there is no need for a PART variable. 

The XML string output  is  sent to  the control  program of  the singulation unit 
through the CLIENT_1 function block, which serves as a client over Ethernet. The 
response from the singulation unit's control program is also obtained through the 
CLIENT_1 function block. The response is in XML format and has to be parsed so 
it  is  sent  from  the  CLIENT_1  to  the  XML_PARSER_0  function  block. 
XML_PARSER_0  parses  the  XML  string  to  determine  whether  the  task  was 
completed successfully or not. In the case of a REJECT event, there is no need to 
generate any further events,  but in the case of a LOAD event,  a CNF event is 
generated by the XML_PARSER_0 which is split into two by the E_SPLIT function 
block. One of the events is sent to the OUT_DEV1 device to update the display 
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output, while the other is an INSPECT event which is sent to the Camera device 
for it to inspect the loaded part. 

Figure 5.6 FB_FEEDER composite function block

5.3.4 Camera device 

The Camera device contains the function blocks which control  the  camera.  It 
contains a subscriber block, a composite function block called the FB_CAMERA 
and three publisher blocks. The Camera device receives events and data from 
other devices through the SUB2 subscriber block.  The only type of  event  the 
Camera device responds to is the INSPECT event and it sends events and data to 
three other devices. It uses the PUB3 publisher block to send PICKUP events to 
the Robot device when a part is successfully inspected by the camera, and it uses 
the PUB4 publisher block to send REJECT events to the Feeder device in cases 
where  there  is  an  inspection  failure.  It  also  sends  event  updates  to  the 
OUT_DEV1 device through the PUB6 publisher block. 

The main control function takes place within the FB_CAMERA function block. The 
only  task  performed  by  the  Camera  device  is  to  inspect  so  the  FB_CAMERA 
function block has only one event input, the INSPECT event, apart from the INIT 
event.  It  also  has  four  event  outputs,  which  include  the  INITO,  the  CNF,  the 
PICKUP and the REJECT output events.  The CNF event is  generated when the 
inspection  task  is  completed  by  the  Camera  device  and  a  Boolean  variable 
associated with the event indicates whether the task was successful or not. This 
event  is  sent  to  the  OUT_DEV1  device  for  it  to  update  the  display  output. 
Depending on the outcome of the inspection task, FB_CAMERA generates either 
a PICKUP event which is sent to the Robot device (along with the pick position 
and angle of the part) if the inspection was successful, or a REJECT event which is 
sent to the Feeder device if the inspection was not successful. 

The  FB_CAMERA  function  block  consists  of  the  CAMERA_ENTRY,  the 
XML_ENCODER_1,  the  CLIENT_1,  the  XML_PARSER_4,  the  E_SPLIT  and  the 
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CAMERA_EXIT function blocks. The function block network in the FB_CAMERA is 
shown in figure 5.7. The function of each of these function blocks is as follows: 
the CAMERA_ENTRY function block receives an INSPECT input event from the 
Feeder device. It then sets the TASK string variable to “INSPECT” and sends this to 
the XML_ENCODER_1 function block. XML_ENCODER_1 also receives the type of 
part to be inspected, stored in the PART variable, from the Feeder device and 
with this, it creates the XML data format for the string that will be sent to the 
control program of the camera. 

The XML string output is sent to the control program of the camera through the 
CLIENT_1 function block, which serves as a client over Ethernet. The response 
from  the  camera's  control  program  is  also  obtained  through  the  CLIENT_1 
function block. The response is in XML format and has to be parsed, so it is sent 
from the CLIENT_1 to the XML_PARSER_4 function block. XML_PARSER_4 is used 
in this case because the string from the camera's control program will contain the 
pick position (X, Y, Z) and angle of orientation of the part. XML_PARSER_4 parses 
the XML string to determine whether the inspection was completed successfully 
or not, and if it was successful, it parsers further for the X, Y, Z and ANGLE values 
of the pick position. A CNF event is generated by the XML_PARSER_4 and this is 
split into two events by the E_SPLIT function block. One of the events is sent to 
the OUT_DEV1 device to update the display output, while the other is sent to the 
CAMERA_EXIT function block. CAMERA_EXIT also receives the Boolean variable 
DONE, which indicates whether the inspection was successfully carried out or 
not,  from  XML_PARSER_4.  If  DONE  is  true,  then  CAMERA_EXIT  generates  a 
PICKUP  event  which  is  sent  to  the  Robot  device,  but  if  DONE  is  false,  then 
CAMERA_EXIT generates  a  REJECT event  instead,  which is  sent  to the Feeder 
device for it to reject the part. 

Figure 5.7 FB_CAMERA composite function block
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5.3.5 Robot device 

The  Robot  device  contains  the  function  blocks  which  control  the  robot.  It 
contains a subscriber block, a composite function block called the FB_ROBOT and 
three publisher blocks. The Robot device receives events and data from other 
devices through the SUB3 subscriber block. The only type of event the Robot 
device responds to is the PICKUP event and it sends events and data to three 
other devices. It  uses the PUB8 publisher block to send REJECT events to the 
Feeder device when the robot is unable to pick up a part, the PUB9 publisher 
block to send INSPECT events to the Camera device after it has picked the part, 
and  it  also  sends  event  updates  to  the  OUT_DEV1 device  through  the  PUB7 
publisher block. 

The main control function takes place within the FB_ROBOT function block. The 
only task performed by the Robot device is the pickup task so the FB_ROBOT 
function block has only one event input, the PICKUP event, apart from the INIT 
event. It also has three event outputs: the INITO, the CNF and the REJECT output 
events. The CNF event is generated when the robot has completed the pickup 
task and a Boolean variable associated with this event indicates whether the task 
was completed successfully or not. This event is sent to the OUT_DEV1 device for 
it to update the display output. Depending on the outcome of the pickup task, 
FB_ROBOT generates a REJECT event, which is sent to the Feeder device, only if 
the part was not successful picked, otherwise the CNF event generated is sent to 
the Camera device to inspect whether the part has truly been picked. 

The  FB_ROBOT  function  block  consists  of  the  ROBOT_ENTRY,  the 
XML_ENCODER_4,  the  CLIENT_1,  the  XML_PARSER_0,  the  E_SPLIT  and  the 
ROBOT_EXIT function blocks.  The function block  network  in the FB_ROBOT is 
shown in figure 5.8. The function of each of these function blocks is as follows: 
the ROBOT_ENTRY function block receives a PICKUP input event from the Camera 
device. It then sets the TASK string variable to “PICKUP” and sends this to the 
XML_ENCODER_4 function block. XML_ENCODER_4 is used in this case because 
the pick position X, Y, Z and ANGLE of the part will be included in the XML data 
string. XML_ENCODER_4 receives the pick position from the Camera device, and 
then creates the XML data format for the string that will be sent to the control 
program of the robot. 

The XML string output is sent to the control program of the robot through the 
CLIENT_1 function block, which serves as a client over Ethernet. The response 
from the robot's control program is also obtained through the CLIENT_1 function 
block. The response is in XML format and has to be parsed, so it is sent from the 
CLIENT_1 to the XML_PARSER_0 function block. XML_PARSER_0 parses the XML 
string to determine whether the pickup of the part was completed successfully or 
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not. A CNF event is generated by the XML_PARSER_0 and this is split into two 
events by the E_SPLIT function block. One of the events is sent to the Camera 
device and the OUT_DEV1 device to update the display output, while the other is 
sent to the ROBOT_EXIT function block. ROBOT_EXIT also receives the Boolean 
variable DONE, which indicates whether the pickup task was successfully carried 
out  or  not,  from  XML_PARSER_0.  If  DONE  is  true,  then  the  Camera  device 
proceeds to inspect, while no further event is generated in ROBOT_EXIT, but if 
DONE  is  false,  i.e.  pickup  was  not  successfully  done  by  the  robot,  then 
ROBOT_EXIT generates a REJECT event which is sent to the Feeder device for it to 
reject the part. 

Figure 5.8 FB_ROBOT composite function block
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6 Comparison  between  controllers  and 
control methods
The control of the pallet magazine was done using a PC and a PLC as controllers, 
and two different control methods have been used for reconfigurable control of 
the feeding system. We now proceed to compare the two controllers used and to 
compare the two control methods used. 

6.1 Comparison between PC and PLC 

The PC used in this work has an Intel Pentium 4 CPU with a processor speed of 
3.00  GHz.  It  also  has  0.99GB  of  RAM,  and  runs  Microsoft  Windows  XP 
Professional Version 2002 Service Pack 3. The hardware modules used with the 
PC are the Applicom card, PCIE1500PFB, for PROFIBUS communication, and the 
Eagle uDAQ Lite device for reading from and writing to the digital ports. On the 
other hand, the PLC used has a SITOP 24V, 5A power supply with a Siemens CPU 
315-2 PN/DP which is capable of PROFINET and PROFIBUS communication. The 
PLC  signal  modules  are  DI16XDC24V,  DO16XDC24V/0.5A  and 
DI8/DO8XDC24V/0.5A. The software used to configure and program the PLC is 
the SIMATIC Manager STEP 7 V5.4 + SP5. The comparison between the PC and 
the PLC as controllers is done using the criteria for measuring the quality of a 
controller  given by Lewis (1998).  These criteria  include:  capability,  availability, 
usability and adaptability. Cost will be considered as an additional criterion. The 
comparison made below is strictly based on what was experienced in this work. 

6.1.1 Capability 

Capability  is  the  extent  to  which  a  system  can  perform  its  intended  design 
function (Lewis, 1998). It is influenced by the following factors:

• Responsiveness: this  is  the  time  required  for  the  system  to  produce 
appropriate  responses  to  a  specified  combination  of  external  events 
(Lewis, 1998). 

The PLC is more responsive than the PC, since it takes a shorter time to 
respond to external events than the PC. The test was to consider the time 
taken by  each  controller  to  raise  the  conveyor  assembly  of  the  pallet 
magazine and then close the jaws. The process took over 2 seconds for 
the PC controller while it took less than a second for the PLC controller.  
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• Processing  capacity: this  is  the  extent  to  which  the  system can  meet 
scheduling deadlines under specified sets of conditions (Lewis, 1998). 

The processing capacity of the PLC is higher than that of the PC. As can be 
seen  from  the  test  mentioned  above,  the  PLC  is  capable  of  meeting 
stricter deadlines than the PC. 

• Storage capacity: this  is  the extent  to  which the system can retain  in 
memory  all  the  required  programs  and  data  under  specified  sets  of 
conditions (Lewis, 1998). 

The PC has a higher storage capacity than the PLC.  While the PLC has 
adequate memory to store its data and programs, it is without doubt that 
the PC has greater provision for memory to store data and programs. The 
memory capacity of the PLC is typically between 128KB and 2MB, while 
the PC may have a memory size of up to 250GB. The PLC generally stores 
only one program at a time, which is the program it runs when it is put in 
run  mode.  If  a  different  program  is  to  be  run  on  the  PLC,  then  that 
program has to be uploaded separately. On the other hand, for the PC, it 
can store many programs simultaneously and any one of the programs 
can be run at any time (and concurrently too). 

6.1.2 Availability 

Availability is the proportion of time in the life of a system when it is available for 
its intended function (Lewis, 1998). It is influenced by the following factors: 

• Reliability: this is the ability of the system to continue to perform all its 
intended functions over a specified period of time and range of conditions 
(i.e. the inverse of the mean time between failures) (Lewis, 1998). 

The  PLC  is  more  reliable  than  the  PC.  Provided  the  PLC  is  correctly 
configured, it is less prone to failures than the PC. An example of the PC's 
abrupt failure is that sometimes, while running, the PC suddenly gives an 
OS  (operating  system)  Load  Locker  error  when  it  accesses  the  data 
acquisition card's dll methods. Therefore, since the mean time between 
failures for  the PLC is  lower than for  the PC,  then the PLC's  reliability, 
which is the inverse of the mean time, is higher than the PC's reliability.

• Maintainability: this is the ease with which the system can be restored to 
full capability after the occurrence of one or more faults from a specified 
set. It is the inverse of the mean time of repair (Lewis, 1998). 

The  PLC  is  more  maintainable  than  the  PC.  This  is  because  the  PLC 
software makes provision for diagnosis of faults. It is able to report both 
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hardware and software faults.  This makes identification of faults  faster 
than in the case of the PC. Repair may then be carried out by replacing 
faulty hardware components or correcting wrong program logic. Moreso 
in the PC, the debug tools cannot be used to debug dll files obtained from 
other sources. Therefore, the mean time of repair is shorter for the PLC, 
which implies that maintainability is higher for the PLC than the PC. 

• Integrity: this is the degree to which the system can continue to perform 
all its intended functions over a specified range of threats, including both 
unintended user actions and intentionally hostile actions (Lewis, 1998). 

Threats may be considered to be hardware-related or software-related. 
The PC has a higher integrity than the PLC for  some hardware-related 
threats, while the PLC has a higher integrity for some software-related 
threats. For hardware-related threats, this is demonstrated when the PLC 
and the PC programs are run without connecting the PROFIBUS cable with 
which  they  communicate  with  the  drive  inverter  used  in  the  pallet 
magazine. In the case of the PLC, it immediately generates a Bus Fault and 
a Signal Fault and goes into STOP mode. Whereas for the PC, the error is 
reported,  and  the  PC  program  can  then  decide  whether  it  is  safe  to 
continue other operations while retrying to establish communication via 
the Profibus, or to halt program execution. For software-related threats, 
while the PC may be susceptible to a virus attack, the PLC is much less 
prone to such virus attacks. 

6.1.3 Usability 

Usability is the ease with which a specified set of users can acquire and exercise 
the ability to interact with the system in order to perform its intended functions 
(Lewis, 1998). For reconfigurable systems, it is necessary to extend the users in 
Lewis'  definition  of  usability  to  include  not  only  end-users,  but  also,  system 
developers. Usability is influenced by the following factors: 

• Entry requirements: this is  the amount of formal and informal training 
required before the user can learn to interact with the system (Lewis, 
1998).

Entry  requirements  for  the  end-users  of  the  PLC are  slightly  less  than 
those of the PC. This is because less training is required to use the PLC 
than is required to use the PC. No special training is required to use a PLC 
controlled system other than switching buttons on and off. For the PC, a 
user needs to learn to use the keyboard and mouse. However, the entry 
requirements for system developers of the PC and the PLC are the same.
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• Learning requirements: this is the training required for a user [who has 
met] a specified set of entry requirements (Lewis, 1998). 

The learning requirements for the developer who will use the system to 
develop a control program are less for the PLC than those for the PC. Part 
of the training required for the developer of either type of controller is 
the use of the programming languages. The amount of training required 
to be able to use PLC programming languages, such as Ladder Logic, is less 
than that required to use PC programming languages, such as C#. 

• User productivity: this is  the number of  system-related operations per 
unit  time which can be performed by  a  user  with  a  specified level  of 
training and experience (Lewis, 1998). 

A  definite  verdict  on  the  user  productivity  is  difficult  to  give.  This  is 
because there are tasks which require more system-related operations in 
the  PLC  than  in  the  PC,  and  other  tasks  which  require  more  system-
related operations in the PC than in the PLC. A typical example of a system 
task is the case of adding new signal (digital input and output) modules to 
the controller. For the PC, all this requires may be plugging the module 
into a USB port as in the case of the Eagle USB card without making any 
system modifications, while for the PLC, the system must be stopped and 
the hardware configuration must be modified in the PLC software and 
reloaded after the signal module has been added. On the other hand, if 
the module to be added is a field bus module such as the Applicom card 
for the PC, the system must be shut down. The Applicom card is then 
slotted into the PCI bus of the PC and the card's software is installed, 
while for the PLC, the amount of operations required to install interface 
modules is exactly the same as the case of adding signal modules.

• Congeniality: this is how “user-friendly” the system is (Lewis, 1998). 

The PC is more congenial than the PLC. This is because the PC program 
interface can be made more user-friendly for the final user than the PLC. 
The PC usually has a graphic user interface, while the PLC has no such 
interface. However, this is provided the use of an HMI screen with the PLC 
is not considered. 

6.1.4 Adaptability 

Adaptability is the ease with which the system may be changed in various ways 
from its initial intended functions (Lewis, 1998). This is the criterion that is most 
related to reconfigurability. Adaptability is influenced by the following factors:
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• Improvability: this  is  the  ease  with  which  system  attributes  can  be 
upgraded without affecting system functionality (Lewis, 1998). 

The  PC  is  more  improvable  than  the  PLC.  This  is  because,  in  the  PC, 
different components, software and software updates can be installed on 
the PC to improve it without affecting its functionality. In the case of the 
PLC, this is more difficult to do because even moving from one PLC series 
range to another one by the same manufacturer may lead to program 
incompatibility thereby necessitating a change of software. An example is 
the case of the Siemens S-200 and S-300 series PLC which use different 
software and have incompatible programs. 

• Extensibility: this is the ease with which new functionality can be added 
to the system (Lewis, 1998). 

The PC is more extensible than the PLC. This is similar to improvability, 
and it is easier to add new functionality to a PC than to a PLC.

• Portability: this is the ease with which system functionality can be moved 
from one system to another (Lewis, 1998). 

PC programs are more portable than PLC programs. A PC's functionality 
may be moved and accessed across different PCs and PC software from 
different manufacturers. For example, the Applicom card which was used 
as  the  PC  fieldbus  module  can  be  used  even  in  PCs  from  different 
manufactures.  However,  in  the  case  of  the  PLC,  such  portability  is 
impossible or very difficult. For example, the fieldbus functionality cannot 
be  moved  easily  from a  Siemens  S-300  PLC  to  a  Siemens  S-1200  PLC 
because the S-1200 PLC cannot be used as a PROFIBUS master.

• Reusability: this is the ease with which the functional capabilities of an 
existing  software  element  can  be  used  in  a  new  or  different  system 
(Lewis, 1998). 

PC software is more reusable than PLC software. Existing programs in a PC 
are easily transferable and reusable in different PCs while for the PLC, it is 
likely that existing programs are only transferable and reusable between 
exactly the same PLCs. In fact, the number of hardware modules in both 
PLCs must be the same and arranged in the same order else the program 
from one PLC cannot be reused in the other. 

In summary, for the case study considered here, there are some PLC attributes 
which give it some advantages over the PC, while there are other PC attributes 
which give it some advantages over the PLC. The choice of which one to use in a 

79



given  application  will  depend  on  which  of  the  controller  attributes  the  user 
considers as relatively more important than others. However, the PC, because of 
its higher adaptability, is more suitable for application in reconfigurable systems.

6.1.5 Cost 

In  addition  to  the  attributes  discussed  above,  we  mention  cost.  The  cost  is 
considered in terms of the monetary value of the controller and the time taken to 
get the various components of the controller to work. The monetary value of the 
PLC, which includes the cost of the DIN rail,  the CPU, the signal modules, the 
SITOP  power  supply,  the  front  connectors,  and  the  512KB  memory  card,  is 
R36828.12. The cost of the PC, which includes the cost of the CPU, the monitor, 
the keyboard, the mouse, the Applicom card, and the Eagle uDAQ Lite device, is 
R29020.12. This shows that the PC is marginally cheaper than the PLC.  

With regards to the time taken to get the components to work, this is subjective 
and the following is based entirely on our own experience. It took a shorter time 
to get the PLC to work than it took for the PC. The PLC modules are from the 
same manufacturer and are closely integrated, so getting the various modules to 
work only took about 2 weeks which is the period it took to learn and become 
familiar  with  PLCs  and  PLC  programming.  The  time  to  get  the  various  PC 
components to work was much longer. It includes the time taken to read through 
the manuals of the various components and avenues to learn how to use these 
components (particularly the Applicom card) were not available. In all,  it took 
about 6 weeks to acquire the requisite skill to use all the components of the PC.

6.2 Comparison  between  agent-based  control  and 
distributed control based on IEC 61499 

The comparison between the agent-based control  method and the IEC 61499 
distributed control  method is  done using the characteristics  of  reconfigurable 
systems given by ElMaraghy (2006) as the criteria. These characteristics include: 
modularity,  integrability,  convertibility,  diagnosability,  customization  and 
scalability. Modularity, integrability and diagnosability reduce the reconfiguration 
time and effort, while customization and convertibility reduce cost. In addition, 
the fault tolerance of both control methods is considered. 

6.2.1 Modularity 

The IEC 61499 distributed control system is more modular than the agent-based 
control system. This is because every device in the IEC 61499 distributed control 
system is entirely independent and only sends to and receives events and data 
from other devices. On the other hand, in an agent-based system, there is always 
a “host” system on which the main container runs. Therefore, in one way or the 
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other, all the agents are connected to this main host system and any threat to the 
host affects the entire multi-agent system. The IEC 61499 system does not have 
any such “host”. In the feeding system agent-based control, the Controller Agent 
resides in the host.

6.2.2 Integrability 

This is a measure of a system based on the performance of its components and 
interfaces of both software and machine hardware modules (Koren et al, 1999). It 
shows whether the system is ready for both integration and future introduction 
of new technology (ElMaraghy, 2006). 

The agent-based system is more integrable than the IEC 61499 control system. 
This is because, in the agent-based control system, any agent can join the multi-
agent system (if  the agent and the system are FIPA compliant,  and they have 
compatible ontology) even at run time, while in the IEC 61499 control system, the 
new system has to be explicitly added to the system configuration. Furthermore, 
in  the  agent-based  control  system,  once  a  new  agent  joins  the  multi-agent 
system, it can register and publish its services so that any other agent within the 
multi-agent system that requires those services can locate the new agent in the 
yellow-pages  service.  A  message  requesting  the  new  agent  to  perform  any 
service may then be sent to it.  However, in the IEC 61499 distributed control 
system, it is necessary that the new system or device is explicitly added to the 
system configuration and included in the subscriber list by adding a subscriber 
function block with the appropriate address (plus a publisher function block or a 
client/server connection if that is necessary).

In the feeding system agent-based control, if an additional feeder is to be added 
to the system, the new Feeder Agent is created and is registered in the main 
container and publishes its services so that it can be located by the Task Agent in 
the yellow-pages service. The Task Agent will now see two feeder agents and it 
can choose between them using the contract-net protocol. In the case of the IEC 
61499 control system, this will necessitate modifying the system as follows: the 
new device will have to have a subscriber function block with the same address 
as the former feeder and an interaction protocol for choosing which feeder to 
assign the LOAD task will have to be programmed. Programming an interaction 
protocol can be quite tedious, and doing so in a function block application will 
add some level of complexity to the system. This is in contrast to the agent-based 
system where the interaction protocol is already integrated into the software.
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6.2.3 Convertibility 

This  is  a  measure  of  how easily  conversion  can  be  achieved in  the  intervals 
between different production batches. Conversion may involve changing tools, 
part-programs and fixtures (Koren et al, 1999). 

Conversion is possible in both the multi-agent systems and the IEC 61499 control 
system, and it will take about the same amount of work and time. An example of 
a possible conversion process could be the following: if the robot gripper is to be 
changed to accommodate a new type of part to be loaded, the conversion will be 
restricted only to changes at the level of the robot control program. The changes 
may  include  the  manual  labour  of  changing  the  robot  gripper,  making 
adjustments for the length of the new gripper in the robot control program, as 
well as recalibrating the robot. The functions of both the multi-agent and the IEC 
61499 control systems will remain the same. If, on the other hand, a different 
robot is to be used in place of the current robot, the software system remains 
unaffected if the robot program of the former robot will work for the new. If, on 
the other hand, the robot programs are different, then a new robot agent or a 
new robot function block will have to be developed. The time spent in either case 
of developing a new robot agent or a new robot function block will depend on 
the  programmer.  Once  the  agent  or  function  is  completed,  the  multi-agent 
system or the IEC 61499 control system is updated and the execution begins. 

6.2.4 Diagnosability 

This is a measure of the system's ability to quickly identify the sources of quality 
and reliability problems (ElMaraghy, 2006).

The agent-based control system in this case study is more diagnosable than the 
IEC 61499 control system. This is because FBDK on which the IEC 61499 control 
system runs has no debugging tools, while JADE on which the multi-agent system 
runs uses the debugging tools of Java which hosts the JADE platform. However, 
FBDK can also be run from a Java environment, for example Eclipse or Netbeans. 
If this is done, then the debugging tools of Java become available to be used with 
FBDK and in that case, the diagnosability of the agent-based and the IEC 61499 
control systems will be the same. 

6.2.5 Customization 

This  has  two aspects,  according  to Koren  et  al  (1999),  which  are  customized 
flexibility  (i.e.  flexibility  that  revolved  around  specific  parts  currently  being 
manufactured only) and customized control (i.e. integration of control modules 
with the aid of open-architecture technology). 

82



The agent-based control system and the IEC 61499 control system have the same 
level  of  customized  flexibility,  but  the  IEC  61499  control  system  has  higher 
customized  control  than  the  agent-based  control  system.  The  first  aspect  of 
customization called customized flexibility  is  machine dependent  according to 
Koren et al (1999), and therefore, it does not really affect the control systems. On 
the other hand, the second aspect called customized control has to do with the 
use of  open-architecture technology,  particularly for communication.  The idea 
behind the IEC 61499 based control is that the control system should be able to 
use any hardware or communication protocol independent of the manufacturer. 
For  this  to  be  achieved,  the  IEC  61499  standard  specifies  that  hardware 
manufacturers must provide service interface function blocks that can be used to 
communicate  with  or  access  the  functionality  of  their  hardware  or 
communication protocol. Once these function blocks are provided, the IEC 61499 
control  system  is  able  to  use  the  hardware  or  communication  protocol,  and 
control  can  be customized for  that  hardware or  communication protocol.  For 
agent-based  control,  the  multi-agent  systems  are,  by  default,  restricted  to 
Ethernet  communication.  This  is  because  agents  typically  run  on  PCs,  and 
communication  between PCs  is  by  use  of  Ethernet.  Therefore  the  agents  are 
restricted to communicate over Ethernet. 

6.2.6 Scalability 

This is  a measure of how the system's capacity can be incrementally changed 
rapidly and economically (ElMaraghy, 2006). 

The  agent-based  control  system is  more  scalable  than  the  IEC  61499  control 
system. If the change in system capacity is to be done by changing the capacity of 
the  individual  machines,  then  the  control  systems  will  remain  unaffected 
provided only the machine hardware changes. Examples of this include changing 
the camera's lens or the size of the feeder's hopper, etc. On the other hand, if 
changing  the  system's  capacity  is  to  be  done  by  adding  new  machines,  for 
example by including additional feeders, cameras, or robots in the system, then 
the case is similar to that of integrability. From the integrability of both control 
systems, it is evident that capacity change will occur much more rapidly in the 
multi-agent system than in the IEC 61499 control system. 

6.2.7 Fault tolerance 

The agent-based control system is expected to be more fault tolerant than the 
IEC  61499  distributed  control  system.  This  is  because  the  ability  to  reroute 
processes when a subsystem fails is inherent to the agent-based control method, 
while only scenarios that were foreseen ab initio, can be provided for in an IEC 
61499 distributed control application.   
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In summary,  for the case study considered, the agent-based control  system is 
more  integrable,  diagnosable,  scalable  and  fault  tolerant  than  the  IEC  61499 
distributed control system. On the other hand, the IEC 61499 distributed control 
system is more modular and customizable.
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7 Conclusions and recommendations
The thesis considers reconfigurable control strategies in a welding assembly cell. 
Two systems in the assembly cell were considered: the pallet magazine and the 
feeding system. The pallet magazine control program was written using a PC and 
a PLC as controllers, while the reconfigurable control of the feeding system was 
done  using  the  agent-based  control  method  and  the  distributed  control 
methodology based on IEC 61499. The development of the control for these two 
systems led to two further objectives:

• the comparison between the PC and the PLC used to control the pallet 
magazine 

• the comparison between the agent-based control methodology and the 
distributed control methodology based on IEC 61499, which were used in 
the control of the feeding system.  

From  this  work,  it  can  be  concluded  that  in  a  reconfigurable  system,  the 
hardware and software components of the system have to be modular. There 
must  be  proportional  modularity  between  the  hardware  and  the  software 
components in order to ease reconfiguration. For example, the feeding system in 
our case study can easily be reconfigured since the hardware components (i.e. 
the singulation unit, the camera and the robot) are separate and their control 
software are also separate. On the other hand, the pallet magazine cannot easily 
be reconfigured without having to change its control software, e.g. the control 
software must  change  if  the  drive  inverter  for  the  magazine assembly  motor 
changes.  This  is  corroborated  by  Bi  et  al  (2007b)  who  state  that  “system 
reconfigurability can be classified in terms of the levels where the reconfigurable 
actions  [occur]  …  the  reconfigurability  at  lower  levels  is  mainly  achieved  by 
changing hardware resources, and the reconfigurability at higher levels is mainly 
achieved by changing software resources. However, they usually work together 
so that system reconfiguribility can be maximized cost efficiently.” 

Based on the comparison between the PC and the PLC, it was observed that the 
PC is more adaptable than the PLC. However, the PLC has a higher capability, 
availability and usability than the PC. For most industrial applications, the most 
important attributes of the controllers used are the capability and reliability of 
the controllers. Concerning these two attributes the PLC fared better than the PC. 
This, perhaps, explains the preponderance of the use of PLCs in industrial control 
applications.  However,  the  PC surpasses  the PLC  with regards  to  some other 
attributes (e.g. adaptability), and as Bruccoleri (2005) states:  “PC-based control 
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environments bring indisputable advantages [with] respect to PLC-environments 
especially concerning their networking predisposition, real-time monitoring and 
visualization  capabilities,  and  flexibility  related  to  the  great  number  of 
programming  languages  that  could  implement  the  real  control  software”, 
therefore, a combination of the qualities of PCs and PLCs should be considered. 
The superiority of the PC over the PLC in terms of adaptability recommends the 
use of  PCs in reconfigurable systems or  at  least  as  an augmentation to PLCs. 
Some manufacturers are already attempting to combine the functionality of PCs 
and PLCs. An example is the new Programmable Automation Controllers (PAC) by 
the Opto 22 Company. 

The comparison between the agent-based control and the IEC 61499 distributed 
control  showed IEC 61499 distributed control  systems are  more modular  and 
customizable than agent-based control systems. In addition, the events and data 
in IEC 61499 control systems are decoupled, thereby making them more flexible 
than  agent-based  systems  (Fletcher,  2001).  However,  agent-based  control 
systems  are  more  integrable,  more  diagnosable  and  more  scalable  than  IEC 
61499 distributed control systems. The low integrability and scalability of the IEC 
61499 distributed control systems probably explain why Zoitl et al (2007) state 
that  “a  full  support  for  dynamic  reconfiguration  is  beyond  the  scope  of  the 
standard [IEC 61499]”. In addition, there is the possibility of losses of events in 
the use of the IEC 61499 control method since there are no “input event and data 
queues” as stated by Lewis (2001), and this is because the IEC 61499 standard 
does not make provision for event storage. 

From what has been encountered in this work, the following recommendations 
are made:

• An ontology should be created specifically for manufacturing to include all 
the processes within manufacturing. In multi-agent systems developed for 
manufacturing, this will make actions less ambiguous and better defined.

• Research should be conducted into ways of combining the agent-based 
and the IEC 61499 based approaches to reconfigurable control. One of the 
effects  would  be  that  IEC  61499  may  be  more  integrable  and  more 
scalable.

• More research work should be done on the implementation of the IEC 
61499  standard  because  its  philosophy  fits  perfectly  well  with  the 
requirements for easy reconfiguration. 
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• Research should be conducted into ways of developing cheaper hybrid 
controllers by combining the functionality of PCs and PLCs. This should 
make the hybrid controllers more affordable and widely available. 

• An XML standard format could be developed for information and data 
exchange  for  machine controllers  as  XML is  being  currently  integrated 
with OPC (OLE for process control).
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Appendix A Drive inverter control 
A.1 Wiring diagram for MOVIDRIVE MDX61B 

Figure A.1 MOVIDRIVE wiring diagram (Movidrive, 2006)
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A.2 Determining Modulo parameters

The  followings  steps  are  used to deduce the Modulo  parameters  for  Modulo 
positioning.

Motor Gear Box 

The values of the gear teeth are as follows – Pinion Z1 -  23T,  Gear Z2 -  31T, 
Second gear pinion shaft Z3 - 18T, Gearwheel Z4 - 97T, Rose Z5 - 8T and Bevel Z6 - 
33T. 

Gear box numerator = Z2 x Z4 x Z6 = 31 x 97 x 33 = 99231

Gear box denominator = Z1 x Z3 x Z5 = 23 x 18 x 8 = 3312 

Additional Gear

Gear ratio is 5:2

Modulo Parameters

Modulo parameters is product of gear box ratio and additional gear ratio.

Modulo parameters = 
99231
3312

×5
2 = 

33077
1104

Therefore, Modulo numerator is 33077 while Modulo denominator is 1104.
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Appendix B Vision sensor scripts
Background and Foreground Scripts

Foreground script

class partScript

{

public void inspect()

{

//set datalink output inactive with user output User1

SetOutputs(0L, (1L<<32)); //User1 is output bit 32

partScript.Result = -1; //assumes it has failed

if (identifPart_Tool.Result == 0) //Part was correctly identified

{

if (Pickpos_Tool.Result == 0) //if model 1 is the model identified

{

//get pick point position

partScript.Point.X = Pickpos_Tool.PickPoint.X;

partScript.Point.Y = Pickpos_Tool.PickPoint.Y;

partScript.ANGLE = Pickpos_Tool.PickPoint.Angle;

}

if (Pickpos1_Tool.Result == 0) //if model 2 is the model identified

{

//get pick point position

partScript.Point.X = Pickpos1_Tool.PickPoint.X;

partScript.Point.Y = Pickpos1_Tool.PickPoint.Y;

partScript.ANGLE = Pickpos1_Tool.PickPoint.Angle;

}
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}

//set the external trigger mode bit to 1 (i.e. on) to stop inspection

SetInputs((1L<<7), 0L);

//set datalink output active with user output User1

SetOutputs((1L<<32),0L ); //User1 is output bit 32

partScript.Result = 0; //shows it is completed

}

}

Background Script

class NewScript

{

public static void main(String args[])

{

while(true)

{

int len = 2; //This is the length of data to be received

int port = 3248; //The port no where the camera listens for connection

int conStatus = -1; //Detects when a connection is accepted

byte data[] = new byte[len]; //Byte array to receive the incoming data

Socket mySocket = new Socket(); //New socket object 

Socket sock = new Socket(); //socket generated to accept a connection

int status = mySocket.Bind(port); 

if (status==0)

{

status = mySocket.Listen();

if (status == 0)

{
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while (conStatus != 0)

{

conStatus = mySocket.Accept(sock);

}

status = sock.Recv(data, 0, len); //Receives data
//Check whether system is busy and wait until it is idle

while((GetOutputs() & (1L<<8)) != 0) //Bit 8 (busy bit)

{//Waiting for current inspection to end

}

//Handling the case of inspection command

if (data[0] == 1) //An inspection command

{ //set the trigger bit to 1

SetInputs(1L, 0L);

//set the external trigger mode bit to 0

SetInputs(0L,(1L<<7));
//get product object

Product prod = GetProductById((short) data[1]); 

prod.Select(); //sets the inspection product

Inspect(); //begin inspection

}

}  

}

// Short delay before next iteration

sleep(10);

}

}

}

End of scripts
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Appendix C Controller  ports  and  XML  data 
format
C.1 Port Designation for Controllers

The port assigned to each controller is given after the colon (:). 

Figure C.1 Controller ports

C.2 XML data format adopted in this work

The format shows the standard request and response formats. In the request 
format,  “sender”  is  the  controller/agent  sending  the  request  message  (e.g. 
camera  agent),  “receiver”  represents  the  intended  receiver  (e.g.  camera 
controller), “task” is the job to be done (e.g. LOAD) and that is filled in the {…}, 
while “req” is the data needed to do the job (e.g. part type, etc). Additional data, 
e.g. X, Y, and Z coordinates of the pick point as for the case of the robot, may be 
supplied.
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:7100

Welding System
:7400

Multiagent System
:7000
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:7200

Inspection System
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Conveyor
:7500

Singulation Unit
:7210

Inspection Robot
:7320

Inspection Camera
:7310

Feeder Robot
:7230

Feeder Camera
:7220



The situation is similar for the response format, except that <done> will only have 
a  Boolean  value  to  indicate  whether  the  task  was  done  successfully  or  not. 
Additional information may be supplied, e.g. the case of the camera that gives 
the X, Y and Z coordinates of the pick point. 

REQUEST MESSAGE

<?xml version="1.0" encoding ="UTF-8"?>

<sender>

<receiver>

<task>{...}</task>

<req>{...}</req>

…

...

</receiver>

</sender>

RESPONSE MESSAGE

<?xml version="1.0" encoding ="UTF-8"?>

<sender>

<receiver>

<task>{...}</task>

<done>{...}</done>

…

...

</receiver>

</sender>
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Appendix D Feeding system function blocks 
IEC 61499 Function Blocks for Feeding System

Figure D.1 Feeder device function blocks

Figure D.2 Camera device function blocks
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Figure D.3 Robot device function blocks

Figure D.4 IN_DEV1 input HMI function blocks
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Figure D.5 OUT_DEV1 output HMI function blocks
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