
Control of a reconfigurable assembly system

by
Azeez Olawale Adams

December 2010

Thesis presented in partial fulfilment of the requirements for the degree
Master of Science in Engineering at the University of Stellenbosch

Supervisor: Prof. Anton Basson
Faculty of Engineering

Department of Mechanical and Mechatronic Engineering

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my

own original work and that I have not previously in its entirety or in part

submitted it at any university for a degree.

Signature: ……………………………..

Date: ……………………………………..

Copyright © 2010 University of Stellenbosch

All rights reserved

Abstract

Control of a reconfigurable assembly system

AO Adams

Department of Mechanical and Mechatronic Engineering

Stellenbosch University

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Mechanical)

December 2010

This work considers the control of reconfigurable assembly systems using a welding
assembly system as a case study. The assembly system consists of a pallet magazine, a
feeding system, an inspection and removal system, a welding system and a conveyor. The
aim of the work is to compare PC and PLC as controllers, as well as to compare two
different approaches to reconfigurable control.

The control system of the pallet magazine was developed using a PC and a PLC. The PC
control was programmed using Visual C#, while the PLC was programmed in Ladder Logic
using Siemens S-300 STEP7. The two controllers were compared based on the attributes
that measure the quality of a controller's software, which include its capability,
availability, usability and adaptability.

The approaches to reconfigurable control considered were the agent-based
methodology and the IEC 61499 distributed control methodology, both of which were
applied to the feeding system. The agent-based control system was implemented using
the JADE agent platform, while the IEC 61499 distributed control system was
implemented using the FBDK software kit. These two methods were compared based on
the characteristics of a reconfigurable system, which include the system's modularity,
integrability, convertibility, diagnosability, customization and scalability.

The result obtained in comparing the PC to the PLC shows that the PLC performs better
in terms of capability, availability and usability, while the PC performs better in terms of
adaptability. Also, the result of the comparison between the agent-based control system
and the IEC 61499 distributed control system shows that the agent-based control system
performs better in terms of integrability, diagnosability and scalability, while the IEC
61499 distributed control system performs better in terms of modularity and
customization. They are, however, on a par in terms of convertibility.

i

Uittreksel

Beheer van ‘n herkonfigureerbare monteringstelsel

AO Adams

Departement Meganiese en Megatroniese Ingenieurswese

Universiteit Stellenbosch

Privaatsak X1, 7602 Matieland, Suid-Afrika

Tesis: MScIng (Meganies)

Desember 2010

Hierdie werk beskou die beheer van herkonfigureerbare monteringstelsels met 'n
sweismonteringstelsel as gevallestudie. Die monteringstelsel bestaan uit 'n paletmagasyn, 'n
voerstelsel, 'n inspeksie-en- verwyderingstelsel, 'n sweisstelsel en 'n voerband. Die mikpunt
van die werk is om persoonlike rekenaars (PCs) en programmeerbare-logikabeheerders
(PLCs) as beheerders te vergelyk, asook om twee verskillende benaderings tot
herkonfigureerbare beheer te vergelyk.

Die beheerstelsel van die paletmagasyn is ontwikkel met 'n PC en 'n PLC. Die PC-beheer is in
Visual C# geprogrammeer, terwyl die PLC in leerlogika met Siemens S-300 STEP7
geprogrammeer is. Die twee beheerders is vergelyk in terme van die eienskappe wat die
kwaliteit van 'n beheerder se sagteware meet en sluit in vermoë, beskikbaarheid,
bruikbaarheid en aanpasbaarheid.

Die benaderings tot herkonfigureerbare beheer wat oorweeg is, is die agent-gebaseerde
metodologie en die IEC 61499 verspreide-beheermetodologie. Beide is op die voerstelsel
toegepas. Die agent-gebaseerde beheerstelsel is geïmplementeer met behulp van die JADE
agent-platform, terwyl die IEC 61499 verspreide stelsel geïmplementeer is met behulp van
die FBDK sagteware-stel. Hierdie twee metodes se vergelyking is gebaseer op die eienskappe
van 'n herkonfigureerbare stelsel, waarby die stelsel se modulariteit, integreerbaarheid,
diagnoseerbaarheid, pasmaakbaarheid en skaleerbaarheid ingesluit is.

Die resultate wat in die vergelyking tussen die PC en PLC verkry is, toon dat die PLC beter
vaar in terme van vermoë, beskikbaarheid en bruikbaarheid, terwyl die PC beter vaar in
terme van aanpasbaarheid. Die resultaat van die vergelyking tussen die agent-gebaseerde
beheerstelsel en die IEC 61499 verspreide beheerstelsel wys dat die agent-gebaseerde
beheerstelsel beter vaar in terme van integreerbaarheid, diagnoseerbaarheid en
skaleerbaarheid, terwyl die IEC 61499 verspreide beheerstelsel beter vaar in terme van
modulariteit en pasmaakbaarheid. Hulle is egter vergelykbaar in terme van omskepbaarheid.

ii

To Her,

Mother of my Father,

Who enjoyed many years of mortal existence,

But ended it before I could finish writing this.

May Allah forgive the Lady of Malara,

 And grant her admittance into the Garden of Eternal Bliss.

Amin.

iii

Acknowledgments

I could never have completed an undertaking such as this, except with the
assistance of some other people more able than myself. It therefore obviates all
pretensions to self-sufficiency, and makes it necessary that I express my gratitude
to these people as follows:

Many thanks to my family who I have not set eyes upon these two years past.
They have remained on the sidelines cheering and urging me on. To them, I owe
an incalculable debt of thanks. To this list, I must add my teacher, my friend, my
brother – Siraj Obayopo and his family. He has sought out my difficulties at every
turn and set to guide me aright. I also extend my gratitude to the Ibrahims. What
can one say for even words fail me in expressing my profound gratitude to these
two. If I had the luxury of space and the pen of a Shakespeare, then I would have
indulged in their eulogy, but I am unable to and I am ashamed of my
inadequacies. For this reason, I shall resort to prayers for you all.

I make special mention too of my friends – Kenny and Wasiu. How can I thank
you except to hide under how guys say it in our language when they are unable
to find fitting words for their expression. They say “somo now?” (you know
now?). And Bashir and Fathi, two fine gentlemen, and the son of our Brother,
Momoh Djemilou. Your companionship over these past months, I am sure, I will
never forget.

Thanks too to those I shared my office and time with, and to Chris Vogt and Ruan
vd Merwe, who I had the especial fortune of sharing the office with twice – guys,
plenty of thanks. And if ever I had to choose an office-mate all over again, God
knows – I will choose the Good German and his South African mate. In all of this,
I must not forget Pieter Greff, Frank Vuureen and Frank Dymond who walked this
road before us. Many thanks to them too. And to Frank Senda, the Congolese and
able father of Papa Joseph.

I express my gratitude to the members of staff of the Mechanical Engineering
Department of Stellenbosch University. To the secretaries on the fifth floor and
others whose designation we do not know, to the kindly men of the workshop
and very importantly, to Cobus Zietmann. I must remember too Tony – and his
replacement Kevin Neaves who perhaps is the one amongst the whole lot I
troubled most.

iv

Thanks are also due to Stellenbosch University Library Service for their
resourcefulness and efficiency – where would we be without them? And to the
countless people that have assisted me in this work – who, it is very likely, I shall
never again meet. To people like Johann (Distell), Francois Kleyn, Andre
Liebenberg (TFD), Paul (SEW), Rushdien (Siemens) and even those who I only met
in the cyber realm. Thanks too.

I would like to extend my appreciation to Advanced Manufacturing Technology
Strategy (AMTS) for providing the funding for this work, and to CBI for their
support. Finally, I will like to thank and make special mention of Prof AH Basson,
my supervisor. I have mentioned my supervisor last and this I hasten to clarify
lest some student of Language should, in future, try to infer by it my own
estimation of him. Let it be known that I do this so as not to crowd him in that he
is not discernible. He is one I owe much more than I can express – in my work
and even more. He facilitated my coming, eased my staying and aided my
completion. He gave me invaluable advice and showed such earnestness that I
am unable to describe. He provided me with every necessary resource to ease
my work. So far did he go – and much farther.

So, if any deficiency should be found in the quality of this work, then the fault
should squarely be placed at my doorstep, not his.

v

Table of Contents

Abstract...i

Uittreksel...ii

Acknowledgments..iv

List of Figures...x

Abbreviations..xii

1 Introduction..1
1.1 Background...1

1.2 Motivation..1

1.3 Objective..2

2 Literature review..4
2.1 Manufacturing systems..4

2.1.1 Dedicated manufacturing systems...4

2.1.2 Cellular manufacturing systems...5

2.1.3 Flexible manufacturing systems...5

2.1.4 Reconfigurable manufacturing systems...7

2.1.5 Holonic manufacturing systems...9

2.2 Control of manufacturing systems...10

2.2.1 Types of control architectures...10

2.2.2 Control method for FMSs..12

2.2.3 Control methods for RMSs ..12

2.2.4 Control methods for HMSs ...14

2.3 Agent-based control ..17

vi

2.3.1 Agents and agent communication...17

2.3.2 Use of agents in manufacturing control ..19

2.3.3 Methodologies for developing agents...22

2.4 Distributed control based on IEC 61499 ..24

2.5 Conclusion ...26

3 Description of the case study..27
3.1 Assembly system overview ..27

3.2 Pallet magazine ..29

3.2.1 Uploading pallets ..30

3.2.2 Offloading pallets ..33

3.3 Feeding system...35

3.3.1 Singulation unit ..36

3.3.2 Feeder camera ..37

3.3.3 Feeder robot ...38

3.4 Other subsystems...40

4 Low level control of the subsystems......................................41
4.1 Pallet magazine..41

4.1.1 Magazine assembly motor...41

4.1.2 Conveyor motor...43

4.1.3 Solenoid valves..45

4.1.4 PC control of the pallet magazine..46

4.1.5 PLC control of the pallet magazine ...50

4.2 Singulation unit..50

4.2.1 Hopper motor..50

4.2.2 Transfer conveyor motor..51

4.2.3 Solenoid valve ...51

4.2.4 PC control of the singulation unit ...51

4.3 Feeder camera..54

vii

4.4 Feeder robot...57

5 Reconfigurable control of the feeding system.......................59
5.1 Subsystems' interaction...59

5.1.1 Singulation unit control program ..60

5.1.2 Feeder camera control program ...60

5.1.3 Robot control program ...61

5.2 Agent-based control...62

5.2.1 Holons in the feeding system ..62

5.2.2 Supervisor holon ...63

5.2.3 Singulation unit holon ...64

5.2.4 Camera holon ...65

5.2.5 Robot holon ..65

5.2.6 Task holon ...65

5.3 Distributed control based on IEC 61499...66

5.3.1 XML encoder and parser function blocks ..67

5.3.2 IN_DEV1 and OUT_DEV1 HMI devices ..69

5.3.3 Feeder device ...70

5.3.4 Camera device ..71

5.3.5 Robot device ...73

6 Comparison between controllers and control methods.........75
6.1 Comparison between PC and PLC ...75

6.1.1 Capability ..75

6.1.2 Availability ..76

6.1.3 Usability ..77

6.1.4 Adaptability ..78

6.1.5 Cost ...80

6.2 Comparison between agent-based control and distributed control based on
IEC 61499 ...80

viii

6.2.1 Modularity ..80

6.2.2 Integrability ...81

6.2.3 Convertibility ..82

6.2.4 Diagnosability ...82

6.2.5 Customization ...82

6.2.6 Scalability ..83

6.2.7 Fault tolerance ..83

7 Conclusions and recommendations......................................85

References...88

Appendix A Drive inverter control ..95

Appendix B Vision sensor scripts...97

Appendix C Controller ports and XML data format.................100

Appendix D Feeding system function blocks102

ix

List of Figures

Figure 2.1 Three types of control architectures 10

Figure 2.2 Petri net model 13

Figure 2.3 Agents used to represent holons in HMS 22

Figure 2.4 Manufacturing systems and their control methods 26

Figure 3.1 Spatial arrangement of the welding assembly system 27

Figure 3.2 Components of circuit breaker 28

Figure 3.3 Pallet magazine 29

Figure 3.4a Uploading pallets 31

Figure 3.4b Uploading pallets 32

Figure 3.5a Offloading pallets 34

Figure 3.5b Offloading pallets 35

Figure 3.6 Singulation unit 36

Figure 3.7 Cognex DVT vision sensor 38

Figure 3.8 RTX robot 39

Figure 3.9 Rexroth TS2 Plus conveyor 40

Figure 4.1 Conveyor motor connection 44

Figure 4.2 Linear drive 46

Figure 4.3a Flow charts for process flow of pallet magazine 48

Figure 4.3b Flow charts for process flow of pallet magazine 49

Figure 4.4a Flow charts for process flow of singulation unit 53

Figure 4.4b Flow charts for process flow of singulation unit 54

Figure 5.1 Communication layout of feeding system 59

x

Figure 5.2 XML encoder function blocks 67

Figure 5.3 ECC of XML encoder function blocks 68

Figure 5.4 XML parser function blocks 68

Figure 5.5 IN_DEV1 and OUT_DEV1 user interfaces 69

Figure 5.6 FB_FEEDER composite function block 71

Figure 5.7 FB_CAMERA composite function block 72

Figure 5.8 FB_ROBOT composite function block 74

Figure A.1 MOVIDRIVE wiring diagram 95

Figure C.1 Controller ports 100

Figure D.1 Feeder device function blocks 102

Figure D.2 Camera device function blocks 102

Figure D.3 Robot device function blocks 103

Figure D.4 IN_DEV1 input HMI function blocks 103

Figure D.5 OUT_DEV1 output HMI function blocks 104

xi

Abbreviations

CIM Computer Integrated Manufacturing

CMS Cellular Manufacturing System

CNC Computer Numerically Controlled

DMS Dedicated Manufacturing System

FMS Flexible Manufacturing System

HMI Human-Machine Interface

HMS Holonic Manufacturing System

MAS Multi-Agent System

OLE Object Linking and Embedding

OPC OLE for Process Control

PAC Programmable Automation Controller

PC Personal Computer

PLC Programmable Logic Controller

RAS Reconfigurable Assembly System

RMS Reconfigurable Manufacturing System

XML eXtensible Markup Language

xii

1 Introduction

1.1 Background

This thesis considers the control of a reconfigurable assembly system (RAS). It is a
continuation of a series of research works aimed at the development of expertise
in reconfigurable assembly systems in South Africa. This research is part of the
“Affordable Automation” theme of the AMTS (Advanced Manufacturing
Technology Strategy). AMTS is an initiative under the Department of Science and
Technology geared towards developing technologies which are related to the
manufacturing industry.

The reconfigurable assembly system considered, is a welding assembly system for
the components of circuit breakers manufactured by CBI (Circuit Breakers
Industries) Ltd. Various students within the research group are working on
different aspects of the system. The conceptual design of the welding assembly
system was done by Sequira (2008). The design comprises five major systems
which include a pallet magazine, a feeding system, an inspection and removal
system, a conveyor and a welding system. The pallet magazine was designed by
Burger (2009) and the singulation unit of the feeding system was designed by
Strauss (2009). Students of Central University of Technology (CUT) are developing
a multi-agent control system for the reconfigurable control of the entire welding
assembly system. The multi-agent control system will interface with the
controllers of each of the subsystems via OPC (OLE for process control) and will
also make shop-floor data and events accessible to office managers through the
internet. Jacques du Preez, a student of the Industrial Engineering Department of
Stellenbosch University, is developing a simulation procedure which will
determine, for a given product mix, the optimal assembly system configuration.
The simulation will also predict the cost of production for the given product mix.

The work in this thesis considers the control of the subsystems designed by
Burger (2009) and Strauss (2009). This will provide the control interface for the
multi-agent control system to be developed by students of CUT.

1.2 Motivation

This work was motivated by the need to have an automated system which is
reconfigurable. The automated system should selectively replace labour for
assembly so that manual and automatic operations may be combined and run
concurrently. The combination of these operations will make manufacturing

1

more internationally competitive. The selective replacement of the workforce has
become necessary due to the increases of strikes in South Africa, which can easily
disrupt production plans and schedules, and the need to improve the quality of
the product.

The need for a reconfigurable system stems from the fact that production
volumes in South Africa are typically small, the product range is quite varied, and
demand keeps changing. There is, therefore, the need to have a system that can
handle a range of products and easily adapt to future changes in the type of
product demanded. This cannot be achieved using a system which is not
reconfigurable.

The control of the reconfigurable system is done using distributed control. The
choice of a distributed method of control was motivated by the need to protect
the system from the problems encountered in a centralized system of control.
These problems include the high complexity of the system especially in cases of
large systems, the lack of fault tolerance due to the centralized database of
information and control, the high cost of maintenance of the system and the non-
reconfigurability of the system. The failure of one or more components, in a
centralized system of control, may lead to the malfunction or collapse of the
entire assembly system. Multi-agent systems is one of the means of achieving
distributed control. Furthermore, a new standard – the IEC 61499 – was recently
developed as a new architecture for the development of distributed control. The
standard was developed with holonic systems as one of its targeted aims. The
standard hopes to make control more distributed and reconfigurable by use of
function blocks. This motivated the use of this standard so that it may be
compared with the multi-agent system approach.

1.3 Objective

The objective of the thesis work is to evaluate some of the current reconfigurable
control strategies for some subsystems in the welding assembly cell used as case
study.

The objective will be approached by, firstly, comparing PCs and PLCs as
controllers. This will be done using the control of the pallet magazine as case
study.

Secondly, reconfigurable control of the feeding system will be considered using
both the multi-agent system approach and the distributed approach of the IEC
61499 standard. Multi-agent systems is one of the means of achieving
reconfigurable control by the use of agents, while the IEC 61499 is a standard
that was recently developed as a new architecture for the development of

2

distributed control by use of function blocks. The use of these two approaches,
described fully in later chapters, will enable a comparison between the IEC 61499
methodology and the multi-agent system method.

The study however does not extend to issues that arise between agents such as
agent cooperation or the use of game theory in decision making. It also does not
seek to find ways to optimize decision making or bargaining between agents.

3

2 Literature review
This chapter considers the various types of manufacturing systems that have
been developed over time and the different methods available for the control of
such systems. It also considers the multi-agent system method and the
distributed system of the IEC 61499 standard as possible control methodologies
for reconfigurable systems.

2.1 Manufacturing systems

Automated manufacturing cells are the practical building blocks of computer
integrated manufacturing (CIM) systems. A cell, according to Williams (1991), can
be viewed as the smallest autonomous unit capable of sustained production. The
activities carried out within a cell include planning, scheduling and regulation.
Planning involves generating a production plan from the process plan for the job.
Scheduling involves three main tasks, which are evaluation of production,
generation of a schedule containing a list of tasks with start and finish times for
each equipment controller and, lastly, resolution of any conflicts and problems
that may arise. Regulation includes releasing and monitoring of jobs and
feedback from the equipment controllers.

Setchi and Lagos (2004) mentioned the stages of evolution of manufacturing
systems from the earliest manufacturing systems. The stages they highlighted
include: the Dedicated Manufacturing System (DMS), the Cellular Manufacturing
System (CMS) and the Flexible Manufacturing System (FMS). As a further
improvement on these stages, they made a case for the development of
Reconfigurable Manufacturing Systems (RMSs).

2.1.1 Dedicated manufacturing systems

Dedicated manufacturing systems enable the production of a large number of
parts on dedicated machines. The first of the manufacturing paradigms of this
kind is called mass production, which was introduced at the beginning of the last
century (Setchi and Lagos, 2004). It involved the manufacture of large product
quantities with good quality at low cost. Mass production was, however, found to
be wasteful of resources. As a result, a more recent paradigm called lean
manufacturing was introduced in the 1980s (Setchi and Lagos, 2004).

Lean manufacturing aims at making more efficient use of resources. It reduces
waste by producing finished products at the pace of consumer demand. Setchi
and Lagos (2004) define lean manufacturing as “a systematic set of principles,

4

methods and practices [which reduce] waste in production by reviewing all
aspects of product development, manufacturing, organization, human resources
and customer support.” Some of the principles of lean manufacturing they
mentioned include continuous quality improvement, waste minimization and
establishment of long-term relationship with customers.

2.1.2 Cellular manufacturing systems

Cellular manufacturing systems are an improvement on the dedicated
manufacturing systems. CMSs consist of different cells which may be dedicated to
the production of a product or a product component. These cells consist of
groups of machines or workstations which are arranged in such a way that
products are processed progressively without having to wait for a batch to be
completed (Setchi and Lagos, 2004). A method used for the design of cells is
group technology. Group technology, according to Setchi and Lagos (2004), is
“the process of studying a large population of parts, and then grouping them into
logical families with similar characteristics so that they can be produced by the
same group of machines, tooling and people with only minor changes on
procedure or set-up.”

An improvement to CMS is the new paradigm called virtual cellular
manufacturing, which makes use of distributed networks and an intranet. The
aim of this paradigm is to create a CMS that is more responsive to demand and
changes in workload. CMSs are typically designed as groups of cells arranged
physically in a particular order. It is this rigid physical arrangement that makes
CMSs less responsive to changes in workload. On the other hand, in virtual
cellular manufacturing, the physical cells are replaced with temporary “virtual
cells”. These virtual cells are created based on a scheduling criterion. Changes in
workload or scheduling criterion may lead to the creation of new virtual cells
without the need for physical rearrangement, and are thus more responsive to
demand and workload changes. The cells are still able to operate, in spite of
these changes, because of communication over the distributed network.

2.1.3 Flexible manufacturing systems

A flexible manufacturing system is “a manufacturing system configuration with
fixed hardware and fixed, but programmable, software to handle changes in work
orders, production schedules, part-programs and tooling for several types of
parts” (Setchi and Lagos, 2004). The main components of an FMS are computer
numerically controlled (CNC) manufacturing machines, tools to operate CNC
machines, robots, and automated material handling systems (Setchi and Lagos,
2004). An FMS should be “flexible” and flexibility is defined as “the ability of a
system to change or react to product variation with little penalty in time, effort,
cost, or performance” (De Toni and Tonchia, 1998).

5

There are different levels of flexibility. ElMaraghy (2006) identifies 10 types of
flexibility which are as follows:

Machine flexibility: Various operations [can be] performed without set-up
change,

Material handling flexibility: Various paths available for transfer of materials
between machines. It can be measured by number of used paths divided by total
number of possible paths between all machines,

Operation flexibility: Various operation plans available for part processing. It can
be measured by the number of different processing plans available for part
fabrication,

Process Flexibility: [Different] sets of part types can be produced without major
set-up changes, i.e. part-mix flexibility,

Product Flexibility: Ease (in terms of time and cost) of introducing products into
an existing product mix, [this] contributes to agility,

Routing Flexibility: It can be measured as the ratio of the number of feasible
routes of all part types to the number of part types,

Volume Flexibility: The ability to vary production volume profitably within
production capacity,

Expansion Flexibility: Ease (in terms of effort and cost) of augmenting capacity
and/or capability, when needed, through physical changes to the system,

Control Program Flexibility: The ability of a system to run virtually uninterrupted
(e.g. during different shifts) due to the availability of intelligent machines and
system control software,

Production Flexibility: It can be measured as the number of all part types that can
be produced without adding major capital equipment.

The degree of flexibility of an assembly system largely depends on its modularity.
A modular design makes it easy to install, remove and regroup various modules
of an assembly system. An advantage of modular design is the possibility of “plug
and produce” (Martinsen et al, 2007). This means that modules can be
dynamically added or removed from the system without having to change or
reconfigure the hardware or software of the assembly system.

Many factors have been identified that militate against the adoption of FMSs and
have even prompted the need for the development of RMSs. Raj et al (2007)

6

discussed some of the issues surrounding the implementation of FMSs. They
grouped the issues identified into seven classes as issues regarding parts loading,
scheduling, material handling, flexibility, machine tools, operation and control,
and the human element. They, however, concluded that there is no definite
recommendation on the procedure for the implementation of FMSs. Apart from
the issues of implementation mentioned above, there are also some barriers that
inhibit the transition of firms from other manufacturing systems to FMSs. Raj et
al (2007) identified these barriers as the high cost and uncertainty of FMSs, the
problem of tool management, the difficulty of design, and flexibility since most
FMSs exhibit volume flexibility but lack product flexibility. They, however, did not
propose solutions to the individual problems identified, but highlighted the
importance of knowledge of FMSs before trying to implement such a system.

Mehrabi et al (2002), on the other hand, conducted a survey of experts in
manufacturing in the industry on the use and adoption of FMSs and RMSs. The
result of the survey shows that “it appears that FMSs have excess capacity and
features which in many cases were not eventually used. Furthermore, their
complexity, high initial costs, lack of reliability of the software, the needs for
highly skilled personnel and support costs, and lack of capability and willingness
of machine tool builders to carry out necessary system engineering involved are
among the reasons that make FMSs not very attractive to industry” (Mehrabi et
al, 2002).

2.1.4 Reconfigurable manufacturing systems

An RMS is a system designed for rapid change in structure in order to quickly
adjust production capacity and functionality within a part family in response to
changes in market requirements. The objective is to provide exactly the
functionality and capacity that is needed, when it is needed (Koren et al, 1999).
The idea of reconfigurability is consistent with that of expansion flexibility
(ElMaraghy, 2006). For this reason, there are a number of similarities between
flexible systems and reconfigurable systems which have sometimes made it
difficult to distinguish between the two systems.

Bi et al (2008) point out the controversy surrounding the definition of RMSs. They
mention, as an example, the 3rd Conference on Reconfigurable Manufacturing
held at the University of Michigan during May 10–12, 2005, where “some
[people] insisted that an RMS is an intermediate paradigm between Mass
Production and Flexible Manufacturing Systems (FMSs), some argued that an
RMS is an advanced paradigm whose flexibility must be higher than that of an
FMS, and others said it is not very meaningful to distinguish RMSs from FMSs.”
The authors, however, concluded that an RMS is a system which has the “ability
to reconfigure hardware and control resources at all of the functional and

7

organizational levels, in order to quickly adjust production capacity and
functionality in response to sudden changes in market or in regulatory
requirements.”

According to Wiendahl (2007), reconfigurability describes the operative ability of
a manufacturing or assembly system to switch with minimal effort and delay to a
particular family of work pieces or sub-assemblies through the addition or
removal of functional elements, while flexibility refers to the tactical ability of an
entire production and logistics area to switch with reasonably little time and
effort to new – although similar – families of components by changing
manufacturing processes, material flows and logistical functions.

Key to the difference between reconfigurability and flexibility are:

• The diversity of workpieces handled. Reconfigurable systems may switch
between different families of products, while flexible systems switch
between similar products

• The extent of change the manufacturing system has to undergo.
Reconfigurable systems may add or remove machine components, while
flexible systems change the process or material flow.

Apart from flexibility, Koren et al (1999) mention five important characteristics of
RMSs. ElMaraghy (2006) summarizes these and adds an additional characteristic.
These were given as:

i. Modularity of both hardware and software components,

ii. Integrability for both ready integration and future introduction of new
technology,

iii. Convertibility to allow quick changeover between products and quick
system adaptability for future products,

iv. Diagnosability to identify quickly the sources of quality and reliability
problems,

v. Customization to match designed system capability and flexibility to
applications,

vi. Scalability to incrementally change capacity rapidly and economically
(Elmaraghy, 2006).

There are two types of reconfiguration that can occur in a manufacturing system.
Rooker et al (2007) mentions these as basic and dynamic reconfiguration. Basic

8

reconfiguration is reconfiguration in its simplest form, which can be achieved by
stopping the system, applying the necessary hardware changes, and then
restarting the system. This is also called “coldstarting” the system. Dynamic
reconfiguration, on the other hand, is reconfiguration which takes place while a
system is still in operation without having to stop the system. Timeliness is the
crucial factor in dynamic configuration (Rooker et al, 2007).

Bi et al (2007a) mention some of the issues involved in the development of
RMSs:

• Separation of RMSs from product design. As currently designed, most
RMSs are developed separate from the product design and this makes
optimization of the system difficult

• Perception of RMSs as a premature technology. RMSs are still in their
early days and full automation cannot yet be achieved, so developers still
have to solve many of the problems manually

• Indifferent attitude towards RMSs. The attitude towards RMSs is not
encouraging. A number of companies are uncertain of the importance of
automating their assembly systems

• Use of an RMS as a wrong solution. RMSs do not have to be deployed in
all manufacturing situations. There are some cases where RMSs may not
be the most suitable solution, especially where there is a lack of technical
competence or where the company has no need to adapt to different
manufacturing strategies.

2.1.5 Holonic manufacturing systems

The quest for decentralization gave rise to the concept of holonic manufacturing
systems. The term holon, was first introduced in 1967 by Koestler (Paolucci and
Sacile, 2005) from the Greek word “holos” which means “whole”. A holon, as
Koestler named the term, is a part of a (manufacturing) system that may be made
up of subordinate parts, and in turn, can be part of a larger whole (Leitao and
Restivo, 2008). This concept is used to refer to the decentralized coordination and
control of manufacturing systems, hence the term holonic manufacturing system.
The concept of holon and holon system has a wide and varied application.
Ermolayev and Matzke (2007) mention many applications of HMSs, including
emergency response, e-commerce, traffic control, engineering design and, of
course, agile manufacturing.

Implementation of this manufacturing system can be done by the use of an
agent-based control system. In fact, Ermolayev and Matzke (2007) state that

9

software agents and agency paradigms are a “natural choice” for modeling
holonic systems. Agents have been used in many different fields of human
endeavor but its application to manufacturing systems is quite recent. Because of
the dearth of defined ways of applying this method to manufacturing systems,
Bussman et al (2004) developed a methodology to help the control engineer
apply the use of agents to manufacturing control. This methodology was termed
the DACS (Designing Agent-based Control Systems) methodology.

2.2 Control of manufacturing systems

2.2.1 Types of control architectures

Meng et al (2006) mention three types of control architectures: centralized,
hierarchical and distributed. As illustrated in figure 2.1, centralized control is one
in which the entire system is controlled by one controlling system which carries
out all the automation processes. Hierarchical control generally involves more
than one controller arranged in some form of hierarchy. In hierarchical control,
control decisions emanate from the highest level of the hierarchy, and these are
then decomposed into smaller and more detailed instructions which are passed
on to the lower level controllers for implementation. Distributed control, on the
other hand, involves independent control and handling of the various automation
processes by different controllers which interact with one another by engaging in
some form of communication.

Figure 2.1 Three types of control architectures (Meng et al, 2006)

The classical approach to control of production systems is hierarchical and
schedule-driven. However, there has been a shift away from the hierarchical
approach to control and the recent trend has been towards the implementation

10

Centralized Hierarchical

Machine component

Controller

Distributed

of control methods which are more heterarchical and distributed. An example of
a system with a heterarchical structure, in which control is distributed, is the
holonic manufacturing system (Scholz and Freitag, 2007).

Scholz and Freitag (2007) stated some of the disadvantages of hierarchical
control and the advantages of heterarchical control over them. They mentioned
that the disadvantage of hierarchical control is largely due to the complexity of
these control systems which grows rapidly with the size of the manufacturing
system. This complexity results in high costs for development, maintenance,
operation, and modification of the control system. On the other hand, the
advantages of heterarchical control are that:

• it leads to reduced complexity by localizing information and control,

• it reduces software development costs by eliminating supervisory
[control] levels,

• it has higher maintainability and modifiability due to improved modularity
and self-configurability,

• it has improved reliability by taking a fault-tolerant approach rather than
a fault-free approach (Scholz and Freitag, 2007).

Centralized control has a number of shortcomings. Meng et al (2006) give some
of these shortcomings as structural rigidity, difficulty of control system design,
lack of flexibility and a low level of fault tolerance. It is difficult to add, modify, or
delete resources. In order to reconfigure a centralized or hierarchical system, the
system has to be shut down and all data structures of higher levels need to be
updated. Unforeseen disturbances, such as machine breakdown, invalidate the
production plan and schedule. Because of these, centralized and hierarchical
modes of control are not suitable for RMSs (Meng et al, 2006).

Different methods have been used to implement control (either hierarchical or
heterarchical) in different manufacturing systems. Some of these methods are
specific to certain manufacturing systems, while others are more general. Below,
we discuss the various methods that have been applied to the different
manufacturing systems. The agent-based control method and the distributed
control method based on the IEC 61499 standard are methods that can be
specifically applied to RMSs and HMSs respectively. The agent-based method will
be discussed in section 2.3, while the IEC 61499 methodology will be discussed in
section 2.4.

11

2.2.2 Control method for FMSs

Ferrolho and Crisostomo (2007) worked on control and integration software for
FMSs. They developed customized software for different equipment that make
up the components of an FMS, and an integration software unit which allows an
easy and efficient integration of these components into an FMS. Each customized
software unit makes use of the original control capacity of the equipment it was
developed for by acting as a client, while the equipment's control system serves
as a server. Examples of the software developed include the two software
programs named “winRS232ROBOTcontrol” and “winEthernetROBOTcontrol”,
which were developed for different industrial robots depending on whether they
communicate via RS232 or Ethernet. They also developed software programs
named “winMILLcontrol” and “winTURNcontrol” for the CNC mill and CNC lathe
respectively. They tested the software in an industrial application and concluded
that the software is viable and that it resulted in improved performance of the
FMS.

2.2.3 Control methods for RMSs

Software issues represent the area of greatest concern for the successful
development of the RMS technology (Mehrabi et al, 2002). For this reason, there
has been widespread research into different methods of controlling RMSs. Some
of the methods used so far include Petri nets, HMI based control and multi-agent
systems. The control of a reconfigurable system is similar to that of a distributed
manufacturing system (Bi et al, 2007b).

Petri nets are used as one of the methods of controlling reconfigurable systems.
A Petri net is a graphical representation of discrete event systems. It is a directed
graph consisting of nodes indicating transitions or events, places indicating
conditions and directed arcs indicating relations between events. The nodes,
places and directed arcs are represented using bars, circles and arrows
respectively. The method was invented by Carl Petri in 1939 to describe chemical
processes. An example of a Petri net model is shown in figure 2.2. The system
consists of two related systems or automata. The states or places in the first
automaton are shown as the circles marked s1, s3, s4, s6, while the states of the
second automaton are the circles s2, s5, s7. The transitions are the squares
marked t1, t2, t3, t4, t5, t6, t7 and they show the events which can cause an
automaton to move from one state to the other. From the diagram, it can be seen
that the automata synchronize on the transitions t4 and t5.

Petri nets also serve as a powerful tool for modeling and control of assembly
systems by considering them as discrete event systems. This method was used by

12

Yu et al (2003) and Kuo et al (1999) as a tool to model and control assembly
systems.

Figure 2.2 Petri net model (Partial-order Verification Techniques, 2004)

Although Petri nets have been used to a large extent to model manufacturing
systems, the classical Petri net which can be used to describe logical control lack
the ability to treat information flow. They are not data-oriented (Yu et al, 2003).
This motivated the introduction of artificial intelligence into the use of Petri nets
as done by Yu et al (2005). They discussed the strategy of modeling RMSs using a
method called Knowledge Based Timed Colored Object-oriented Petri Net
(KTCOPN). KTCOPN is the result of the combination of knowledge and object-
oriented methods with timed colored Petri net. Using KTCOPN, the modeling of
RMSs was done in three phases: the construction of the object-oriented Petri net
(OPN) for the assembly cell, the construction of the OPN for the assembly

13

s1 s2

t1 t2 t3

s3 s4 s5

t4 t5

s7

t7

s6

t6

module and the construction of the entire KTCOPN model for the reconfigurable
assembly system. The modularity introduced into the system ensures the quick
reconfiguration of the system (Yu et al, 2005).

Onofrio and Bruccoleri (2006) developed an HMI-based control system for a
reconfigurable manufacturing cell. The control system was developed using
object-oriented methodology and was programmed with Microsoft Visual Basic.
The system has an interactive user interface and it allows for easy reconfiguration
by reacting to changes in both the operations sequence of workpieces and in the
hardware configuration of the manufacturing cell (Onofrio and Bruccoleri, 2006).

Agent-based control is another method that may be applied in the control of
RMSs, but this will be discussed in section 2.3.

2.2.4 Control methods for HMSs

After the conception of the idea of HMSs, an international consortium was
formed. This consortium on the HMS was set up as one of the projects under the
Intelligent Manufacturing Systems (IMS) program. Its aim was to standardize,
research and create support for the HMS architecture by covering such topics as
“system architecture and engineering, planning and scheduling, control and
holonic man–machine system and emulation” (Kotak et al, 2003). Some of the
research outputs of this consortium include:

• the development of a holonic system architecture by Van Brussel et al
(1998) called PROSA (Product-Resource-Order-Staff Architecture)

• the development of a methodology and architecture for holonic multi-cell
control system by Langer (1999) as part of his PhD thesis

• the presentation of an architecture for the coordination of a holonic
automated guided vehicle system by Liu et al (2000)

• the development of a holonic production planning and control system by
McFarlane and Bussmann (2000)

• the development of a virtual manufacturing environment to implement
the holonic shop floor control by Kotak et al (2003).

In addition to the work done by the consortium, other researchers have also
developed different control architectures for HMSs. These include ADACOR
(ADAptive holonic COntrol aRchitecture), MetaMorph I and II, HCBA (Holonic
Component Based Architecture), RFID based approach, etc.

14

ADACOR, which is also called a collaborative control architecture, was developed
by Leitao (Leitao and Restivo, 2006). It is built on a set of cooperative holons
which are used to represent different manufacturing components. These
components may be physical entities, for example machines, pallets, etc, or
logical entities such as products and orders within the system. Four holons
relating to manufacturing are specified in ADACOR and they include the product
holon (PH), the task holon (TH), the operational holon (OH), and the supervisor
holon (SH) (Leitao and Restivo, 2006). The PHs, THs, and OHs are holons which
represent the different products, orders and resources within the manufacturing
system respectively. The SH is the holon responsible for the coordination and
optimization of the other holons. The holons in ADACOR are implemented as
agent classes in the JADE (Java Agent DEvelopment) framework, which is a
software unit that can be used to develop agents. JADE complies with Foundation
of Intelligent Physical Agents (FIPA) specifications for agents and communication
between the autonomous holons can be done using FIPA agent communication
language (ACL).

The control architecture described in PROSA is similar to ADACOR. PROSA
specifies three main holon classes: the resource holon, the product holon and
the order holon (Van Brussel et al, 1998). These holon classes are referred to as
the basic holons and that is because they are present in every HMS. The resource
holon is used to represent physical entities such as machines, while the product
holon is used to represent the process and knowledge about the product that
facilitates product processing. The order holon represents a task that is to be
done in the manufacturing system. Apart from the basic holons, a staff holon is
also defined in PROSA. The staff holon is a kind of “utility” holon which assists the
basic holons in performing their functions. The function of the staff holon in
PROSA is not restricted to supervision as in the case of the supervisor holon in
ADACOR.

Another holonic control architecture is MetaMorph which was developed at the
University of Calgary. MetaMorph consists of two approaches: MetaMorph I
(which is now called MetaMorphic) and MetaMorph II. MetaMorph I consists of
resource agents and mediator agents. The model used is that of a hybrid agent
model. The mediator agents act as brokers and recruiters for the resource agents
(Shen et al, 2000). They act as brokers by receiving information or requests from
an initiating agent. They interpret the information or request and then look for a
receptor agent. They also act as recruiters by searching for agents based on the
criteria they receive from one of the resource agents. They link the agents that
match the given criteria with the requesting agent so they can communicate with
each other. The MetaMorph II approach is an extension of MetaMorph I. It
involves not just the integration of distributed intelligent machines, but also the

15

integration of other aspects of manufacturing, such as planning, scheduling,
execution, material supply, market services, etc, into a distributed intelligent
open environment (Shen et al, 2000). Though the implementation is similar to
MetaMorph I, in MetaMorph II, there are additional mediator agents such as
Shop Floor Resource Mediators, Machine Mediators, Tool Mediators, Worker
Mediators, etc.

Chirn and Farlane (2000a) introduced the component-based approach to holonic
systems. They applied this approach to the control of a robot assembly cell. The
idea originated from the concept of Software Integrated Circuit (SIC). Their aim
was to develop and package software components for later use in the same way
as hardware components are packaged for later use in integrated circuits (Chirn
and Farlane, 2000b). “The Component Based Development (CBD) approach
focuses much on developing reusability and reconfigurability in view of the
architecture rather than the individual software modules” (Chirn and Farlane,
2000a). They introduced two holons: product and resource holons. The resource
holons are independent and are not allowed to communicate directly with each
other. This is to avoid poor integration when dealing with long-term changes, and
to ensure easy replacement and reconfiguration of the system. The product
holons, on the other hand, make use of the resource holons by negotiating with
them.

Generally, the implementation of the control architectures of HMSs is done using
multi-agent systems. This is not particularly surprising because agents and holons
share many common attributes which include being autonomous, cooperative
and open (Kotak et al, 2003). Bussmann and Sieverding (2001) undertook an
industrial evaluation of the holonic manufacturing system which was
implemented using multi-agent systems. They concluded that the holonic
paradigm does meet the requirements of an industrial deployment, increasing
scalability and productivity of the assembly process, while maintaining high
volume and low costs per product.

Kamioka et al (2007) developed an RFID-driven holonic control scheme for
production systems. In this scheme, an RFID tag is attached to each product
component (which is independent and is considered to be a holon). This RFID tag
contains the “lifeline” information necessary for the processing of each
component. Based on the information on the RFID tag on each component, the
controllers of the conveyors are able to direct the component to the relevant
production facility which will process it. When the processing is complete, this
facility returns the processed component to the next conveyor which takes it
further on to the next relevant production facility based on the RFID tag
information. Lastly, in case of a change of orders (i.e. reconfiguration of the

16

system), the new and updated information is sent to all the relevant production
facility controllers. Each controller compares the information on the product's
RFID tag with the order change information and decides whether the component
should be processed or not. If the component is to be canceled, the cancellation-
related information including the ID for its destined inventory center is written on
the RFID tag. The canceled component is then transported to the relevant facility
by the conveyors.

The use of RFID tags in holonic control offers a great advantage as regards
flexibility. This is because Gouyon et al (2007) state that having RFID tags
embedded on products enables individual identification of product occurrences.
This individual identification opens a way towards the customization of control
rules for each product occurrence, which implies greater flexibility (Gouyon et al,
2007). However, the use of RFID tag information alone in a control scheme, as
done by Kamioka et al (2007), is not a reliable method of control. Gouyon et al
(2007) state that the reliability of read and write operations on RFID tags is not
yet 100%. Therefore, a control method that is entirely dependent on information
on RFID tags cannot be accurate. It has to be coupled with other forms of control.

Another methodology for the control of HMSs is by the use of the distributed
control based on the IEC 61499 standard. This method will be discussed in
section 2.4.

2.3 Agent-based control

Agent-based control is achieved by agents in a multi-agent system. A major
component of using agent-based computing to solve a problem is the
decomposition of the problem into various autonomous entities which solve the
problem. Decomposing the problem simplifies complex systems in two ways:

• Firstly, it gives a natural representation for complex systems that are
invariably distributed, which is a suitable condition in the case of
reconfigurable assembly systems.

• Secondly, due to the devolution of actions to autonomous entities, the
actions performed by these entities (or agents) can be said to be
responsive to the agent's actual state of affairs, rather than some external
entity's perception of this state (Jennings, 1999).

2.3.1 Agents and agent communication

Agents have been defined by many authors, but a well suited definition for our
application is the definition given by Jennings and Wooldridge (1998), which has
often been cited by other authors: “An agent is considered [to be] a software

17

entity situated in a production environment, with enough intelligence that is
capable of autonomous control actions in this environment and of co-operation
relationships by participating in associations with other entities in order to meet
its design objectives”. An agent should be able to act without the direct
intervention of humans or other agents, and should have control over its own
actions and internal state (Jennings and Wooldridge, 1998).

Multi-agent systems are made up of interacting agents and these agents possess
a number of properties which make them intelligent. Agents could be
autonomous, proactive, cognitive, adaptive or reactive (Guessoum, 2004). The
most important of all of these properties is autonomy in decision-making (Tozicka
et al, 2007). Another key property is reflectivity which is the ability of agents to
observe and understand their behavior, reason about their behavior and revise
the behavior accordingly (Tozicka et al, 2007). Most agents have one or more of
these properties. The agents in multi-agent systems must be aware of their own
capabilities and of changes to other agents and their environment. To remain
effective, agents must be able to adapt their structures and knowledge while
they execute (Guessoum, 2004).

There are two dominant approaches to the way agents are modeled: the
cognitive approach and the reactive approach (Guessoum, 2004). In the cognitive
approach, each agent is a symbolic model of the real world in which it is
supposed to operate. Based on the information it possesses of its environment, it
develops plans or makes decisions using the traditional methods of artificial
intelligence. On the other hand, in the reactive approach, “simple-minded agents
react rapidly to asynchronous events without using complex reasoning”
(Guessoum, 2004). Reactive agents are behaviour-based agents. These agents are
defined simply by a set of behaviours which determine their reaction to events,
and therefore, they do not need to have memory (Tang and Wong, 2005). A third
approach to agent modeling is the hybrid approach as mentioned by Bussmann
et al (2004). They suggested three agent architectures: reactive agents (based on
the reactive approach), deliberative agents (based on the cognitive approach)
and hybrid agents (based on the hybrid approach). The hybrid agents incorporate
both reactive and deliberative mechanisms in one architecture (Bussmann et al,
2004).

While agents may be able to determine their individual plans based on their own
competencies and knowledge, there is the need for agents to interact with other
agents, by communicating and sharing information, in order to solve complex
problems and avoid conflicts. The need for interaction between agents
necessitated the development of standards for agent development and
communication. This gave rise to the Foundation for Intelligent Physical Agents

18

(FIPA). “FIPA is an IEEE Computer Society standards organization that promotes
agent-based technology and the interoperability of its standards with other
technologies” (FIPA, 2010). FIPA was founded in 1996 as an organization of
academic and industrial organizations, but officially became an IEEE standards
organization in June 2005.

The core of the FIPA standards is the agent communication standard (FIPA, 2010).
Agent communication in the FIPA standard is according to the Agent
Communication Language (ACL) and is called the FIPA-ACL. The FIPA-ACL defines
standard acts such as INFORM, AGREE, REQUEST, etc, which agents require in
communicating with each other. These acts are based on the speech act theory.
This theory assumes that messages represent actions or communicative acts, also
known as speech acts or performatives (Bellifemine et al, 2004). The first ACL was
the Knowledge Query and Manipulation Language (KQML) that included many
performatives, assertives and directives which agents use for telling facts, asking
queries, subscribing to services and/or finding other agents (Monostori et al,
2006).

The FIPA standard, however, does not specify any particular “language” to be
used along with the acts specified in the standard. Any language or
representation may be used, but FIPA has its own FIPA-SL language which is
widely recommended. Some of the standards also specified by FIPA include Agent
Management System (AMS), the Directory Facilitator (DF), the Agent Platform,
etc.

In multi-agent systems, agents need to engage in some form of bargaining or
negotiation in order to reach certain decisions. For this reason, many models for
negotiations have been developed. For example, Turgay (2008) proposed some
decision-making rules for the control of agent-based manufacturing systems,
while Qiu et al (2004) applied non-cooperative game theory as a means of
facilitating the decision-making process during reconfiguration at the machine
controller level. Zhao et al (2008) used an optimization model called the particle
swarm optimization model to achieve dynamic reconfiguration and task
allocation within a multi-agent system. Zhao et al (2008) also made use of the
contract net protocol for agent interaction. Another method is the use of
auctions which Mahr and de Weerdt (2007) declared to be faster and more
efficient than bargaining.

2.3.2 Use of agents in manufacturing control

The multi-agent system approach is a convenient and well-tested approach to
reconfigurable control. It is one of the most adopted technologies used in RMS
and HMS paradigms’ applications (Candido and Barata, 2007). This is because
multi-agent systems increase the “plug and produce” capability of the

19

manufacturing system by making it possible for components to enter or leave the
system with minor variations in the production process. This is enabled by
components’ modularization and embedded intelligence, which together ensure
close to zero-downtime reconfigurability (Candido and Barata, 2007). In fact,
Turgay (2008) made a review of the different methods that have been applied to
the control of RMSs and concluded that “multi-agent systems (MASs) offer
modularity. If a problem domain is particularly complex, large or unpredictable,
then the only way it can reasonably be addressed is to develop a number of
functionally specific modular components (agents) that are specialized in solving
a particular problem aspect”.

The use of agents in the control of RMSs was implemented by Sugi et al (2003),
Tang and Wong (2005), and Wang et al (2005). The agent-based control
architecture was also used to develop the NovaFlex Shop Floor Environment
(Candido and Barata, 2007). Farlane et al (2001) developed an algorithm for
agent-based control of manufacturing flow shops in which they utilized the
queuing theory. Lohse et al (2005) developed an ontology based agent control
system. An ontology is a set of concepts and symbols used to express messages
sent between agents (Bellifemine et al, 2004). Lohse et al (2005) used an
ontology which defines the assembly system requirements in terms of product
and assembly process descriptions, and the capabilities of assembly requirement
modules in terms of the equipment functions, behavior and structure.

Al-Safi and Vyatkin (2007) discussed the use of a reconfiguration agent which can
be used for reconfiguration without human intervention. The reconfiguration
agent uses its ontological knowledge of the manufacturing environment for
reconfiguration. It attempts to reconfigure the system whenever it realizes that
the current configuration is not able to fulfill the required task whether due to
changes in the manufacturing requirement or the manufacturing environment.
The use of the agent minimizes the overhead of the reconfiguration process and
achieves rapid reconfiguration (Al-Safi and Vyatkin, 2007).

Ulieru (1997) analyzed the design of control mechanisms for a multi-agent
flexible transfer system. The system consists mainly of two groups of agents: the
specialist agents and the supervisor agents. The supervisor agents represent
pallets which have workpieces on them, while the specialist agents represent the
various machines which work on the workpieces. The supervisor agents are
autonomous and are able to chart the path to follow in order to accomplish the
work to be done on the workpiece, while the specialist agents have cognitive
capability and are able to respond to several unexpected situations.

It has often been thought that the object-oriented methodology can also be
applied to the control of reconfigurable systems. The two well-known software

20

engineering technologies (multi-agent systems and object-oriented software
engineering) seem well suited to implement a holonic abstraction of a
reconfigurable control problem. This is because multi-agent systems have a
distributed nature and object-oriented systems have a recursive structure [i.e. a
hierarchical structure in which complex elements could be created from simpler
ones through inheritance] (Colombo et al, 2006). However, Bussmann and
Jennings (2003) compared the two software techniques and concluded that the
use of agents is more suited for complex problems. They state the following in
support of the use of agents over objects:

• Objects are generally passive in nature. They need to be sent a message
before they become active

• Although objects encapsulate state and behavior realization, they do not
encapsulate behavior activation (i.e. action choice). Thus, any object can
invoke any publicly accessible method on any other object. Once the
method is invoked, the corresponding actions are performed

• Object orientation fails to provide an adequate set of concepts and
mechanisms for modeling complex systems. Recognition of this fact led to
the development of more powerful abstraction mechanisms such as
design patterns, application frameworks, and component-ware. Although
these are a step forward, they [still] fall short of the complete set of data
desired for the development of complex systems. They focus on generic
system functions, and the mandated patterns of interaction are rigid and
predetermined

• Object-oriented approaches provide only minimal support for specifying
and managing organizational relationships.

Agents are also suitable for control of HMSs because agent technology provides
techniques for modeling and implementing autonomous and cooperative
software systems. Agents can even be viewed as holons without physical
processing capabilities (Bussman and Sieverding, 2001). Kotak et al (2003)
present the senario of an agent system used in the control of a HMS as shown in
figure 2.3. Each holon is represented by an agent in the system, and together
with other holons, they form a holarchy. Each holon has its agent (software)
aspect and physical aspects comprising the device and drivers. The Directory
Facilitator, which is platform-dependent, stands in to coordinate the other
agents.

However, there are some downsides to the application of the agent-based
approach to engineering problems. These limitations include:

21

• The patterns and outcomes of the interactions between agents are
inherently unpredictable

• Predicting the behaviour of the overall system based on its constituent
components is extremely difficult (and sometimes impossible) because of
the strong possibility of [unintended] emergent behaviour (Jennings,
1999).

Figure 2.3 Agents used to represent holons in HMS (Kotak et al, 2003)

2.3.3 Methodologies for developing agents

Different methods of developing multi-agent systems exist. Some of the methods
are general, while some are more specific methodologies for creating particular
categories of agents. Some others have been developed based on the agent
platform on which the agent system will be implemented. Bussmann et al (2004)
gives an extensive list of agent methodologies and their categories. Included in
the list are knowledge-oriented methodologies, e.g. CoMoMAS, MAS-
CommonKADs, etc, some methodologies for manufacturing, e.g. PROSA, some
role-based methodologies, e.g. MASB and Gaia, and some system-oriented
methodologies, e.g. MESSAGE and Prometheus, etc.

Bussmann et al (2004) developed a methodology called DACS (Designing Agent-
based Control Systems) specifically for manufacturing control. The DACS
methodology consists of three main steps: analysis of control decisions,
identification of agents and selection of interaction protocols. Analysis of control

22

decisions, which is the first step, includes the identification of effectoric decisions
and the identification of decision dependencies. Effectoric decisions are decisions
which result in at least one physical action by the machines, while decision
dependencies are the relationships that exist between effectoric decisions. The
outcome of the first step is called the decision model. The second step, which is
the identification of agents, involves clustering of decision tasks and improving
the decision model. The result of this step is a list of agents. The final step is a
selection of interaction protocols. This results in the agent-based design.

Agents can be simulated on traditional object-oriented programming languages,
but this is error-prone and fraught with as much difficulties as attempting to
develop objects using a non-object-oriented language (Padgham, 2004). Various
software on which agent systems can run have been developed. Most of the
software are middleware platforms which are ported on JAVA. The agent
software platforms allow programmers to write agent programs using their
knowledge of the JAVA programming language, while the software takes care of
such details as “agentisation” (i.e. building the agents from the code), agent
communication, etc. Just as in the case of agent methodologies, some agent-
oriented software are general, while others are specifically for particular types of
agents. Padgham and Winikoff (2004) classified agent platforms into three groups
based on the “strengths” of the platforms. These are:

• Agent platforms that support internal agent reasoning and the
development of agent plans, goals, etc. Examples of these platforms
include PRS, JACK, JADEX, etc.

• Agent platforms that focus on inter-agent communication and provide
means for transfer of messages between agents. Examples of these
platforms include JADE, Zeus, etc.

• Agent platforms that focus on agent mobility. Examples of these platforms
include Grasshopper, Aglets, etc (Padgham and Winikoff, 2004).

Examples of other agent platforms that have been developed for specific types of
agents are the GOAL Agent Programming Language for developing “rational
agents” and the 3APL for developing cognitive agents.

Rzevski et al (2007) developed a toolkit called the Magenta Toolkit which is a set
of multi-agent tools for developing large-scale adaptive multi-agent applications.
This toolkit has found wide application in, for example, the collaborative design
of an airplane wing, web portal for healthy lifestyle, and ocean and truck
schedulers (Rzevski et al, 2007).

23

2.4 Distributed control based on IEC 61499

Industrial personal computers (PCs) and programmable logic controllers (PLCs)
are the major controllers used for automation. Control application in PLCs have
been based on the IEC 61131-3 standard, but in 2005, the IEC 61499 standard,
which had been in the works for some time, was officially released to extend the
IEC 61131-3 standard.

The IEC 61131 (formerly IEC 1131) standard was set up to provide a global
standard for PLCs ranging from PLC programming to PLC communication via
fieldbus. The standard consists of several parts with each part dealing with
specific aspects relating to PLCs. The part of the standard that deals with PLC
programming is the IEC 61131-3. One of the major objectives of the IEC 61131-3
standard is to improve the quality of PLCs with regards to:

• “Capability”, which is the extent to which a system can perform its
intended design functions

• “Availability”, which is the proportion of time in the life of a system when
it is available for its intended design functions

• “Usability”, which is the ease with which a specified set of users can
acquire and exercise the ability to interact with the system in order to
perform its intended design functions

• “Adaptability”, which is the ease with which a system may be changed in
various ways from its initial intended design functions (Lewis, 1998).

In spite of the effort put into the development of the standard, some of these
goals were not met. An example is “Portability” which Lewis (1998) mentions as
one of the factors influencing Adaptability. It is generally known that not all PLC
programs are portable from one PLC manufacturer to the other. In order to
promote wide acceptance of the IEC 61131-3 standard, and PLC interoperability,
the PLCopen organization was founded. PLCopen was set up by PLC
manufacturers, and is a vendor-independent association which ensures various
levels of compliance with the standard.
The deficiencies in the current PLC software influenced studies by various
research groups and highlighted the need for a new standard, called IEC 61499,
different from IEC 61131-3. According to Zoitl et al (2007), two of these studies
had the most far reaching effect in the development of the IEC 61499 standard.
The first study, by the Iacocca Institute, developed the concept of “agile
manufacturing” which envisaged not only a dynamic reconfiguration of control
applications, but also a physical reconfiguration of production resources (Zoitl et
al, 2007). The other study, which was carried out by the HMS project consortium,
developed the “means and methods for self-adaptable production systems”,
which led to the HMS with a new lower level control architecture (Zoitl et al,
2007). These major researches influenced the extension of the function blocks of

24

the already established IEC 61131-3 standard to include event-driven execution
in the new IEC 61499 architecture.
The drawbacks in IEC 61131-3 standard which have been addressed in IEC 61499
are:

• non-deterministic switching points in time (due to cyclic execution policy),
• lack of fine granularity (i.e. reconfiguration at task level),
• jitter effects (i.e. task reconfiguration influences other tasks),
• the possibility of inconsistent states (which may lead to deadlocks)

(Rooker et al, 2007).
The development of IEC 61499 was so strongly associated with the HMS research
that it made the twin concepts of adaptability and reconfigurability its main
focus. However, a full support for dynamic reconfiguration is beyond the scope of
the standard (Zoitl et al, 2007).

The major benefit of the IEC 61499 methodology is a separation of concerns
(Rooker et al, 2007). The whole application is first programmed as a Function
Block (FB) network as in centralized systems. Then, the components of the
network are mapped to the devices of the real system where they are executed.
This facilitates the movement of functionality from one controller to another
(since only the mapping of FBs change, while the original application remains
unchanged) and the enhanced support of distribution enables the idea of
component-based automation (Rooker et al, 2007).

Support for the IEC 61499 standard is not yet widespread and this is because its
development is still relatively recent (Black and Vyatkin, 2009). While hardware
support for the standard is still very limited, a number of software platforms for
the implementation of the standard have been developed. The first implemented
IEC 61499 execution environment is the FBRT (Function Block Run-Time
Environment) by James Christensen (Zoitl et al, 2007). This FBRT is an integral
part of the Function Block Development Kit (FBDK) also developed by James
Christensen of Holobloc Incorpocrated, USA. FBDK is an engineering support tool
for the execution of the IEC 61499 standard which is available for free on the
Holobloc website. It was used for the world's first factory installation of IEC 61499
by Tait Control Systems Limited in New Zealand (Vyatkin, 2007). Other execution
environments for the standard have since been developed and these include
O3NEIDA Workbench (now Fbench, promoted by Dr. Valeriy Vyatkin), CORFU ESS
(CORFU Engineering Support System developed by Prof Kleanthis Thramboulidis),
IsaGRAPH v5.0 (the first commercial software compliant with the standard), etc.
Some research work has been done on the use of the standard. Thramboulidis et
al (2004) used real-time UML as a meta-model between the design models of IEC
61499 and their implementation models to support dynamic reconfiguration of

25

control applications. The TORERO research project focuses on plug and play, and
self-reconfiguration of field devices using IEC 61499 (TORERO, [s.a]).
The standard is not, however, without its own critics. Lewis (2001) mentioned the
non-adoption of some of the concepts of object-oriented software technology,
such as inheritance, as part of the criticism leveled against the standard. Vyatkin
(2006) studied the impact of the standard in the industry and concluded that,
unless control systems are developed based on this standard to solve the current
need of consumers, the concept might as well be doomed to die.

2.5 Conclusion

Different manufacturing systems and the methods available for controlling them
have been reviewed in this chapter. Some of the control methods can be applied
to more than one type of manufacturing system. The methods of multi-agent
systems and distributed control based on the IEC 61499 standard will be used for
the reconfigurable control of the feeder. Figure 2.4 illustrates the manufacturing
systems and the control methods commonly associated with them.

Figure 2.4 Manufacturing systems and their control methods

26

Manufacturing systems

DMS HMSRMSFMS

Petri Nets

Multiagent systems

IEC 61499

PROSA

ADACOR

HierarchicalCentralized

CMS

3 Description of the case study
The assembly system dealt with in this work is a welding assembly system. The
adopted configuration is based on the conceptual design developed by Sequira
(2008) for a fixture-based reconfigurable spot welding system. In his work,
Sequira (2008) proposed four layouts and decided on “the loose pallet assembly”
which consists of a central round robin main loop, with modular in-feed and out-
feed conveyor units, allowing for the implementation of parallel loops. This is the
configuration used in this work with some slight, but cost-saving, modifications.

3.1 Assembly system overview

The assembly system is being constructed at Stellenbosch University. It consists
of four main systems and a conveyor. The four systems are the pallet magazine,
the feeding system, the welding system (automatic welding machine) and an
inspection/removal system. The spatial arrangement of the assembly system is
shown in figure 3.1. The feeding system consists of a number of singulation units,
a camera and a robot, while the inspection/removal system consists of a camera
and a robot. There are two feeding systems in the assembly system.

Figure 3.1 Spatial arrangement of the welding assembly system

27

Feeder 1 Feeder 2

Pallet MagazineInspection/Removal StationWelding System

Conveyor

Feed Loop

Robot

Camera

Singulation unit

Pallet

The assembly system in its current configuration is designed to weld some
component parts of CBI's Q-frame circuit breaker. The components of the circuit
breaker are shown in figure 3.2. The areas marked with circles represent the
points where the components will be welded. The sizes of the components range
from 10 mm to 60 mm, which are the lengths of the two pigtails. The dimensions
of the moving contact and the arc runner are 27 x 8 x 12 mm and 42.6 x 9.8 x
18.4 mm respectively. The pigtail diameters are between 2.5 mm and 4 mm,
while the length of the coil is about 21 mm with an external diameter of 9 mm.
The variations amongst the Q-frame breakers are minor and they can all be
assembled using the current assembly system configuration. Types other than
the Q-frame will require reconfiguration (e.g. changes to grippers and welder
electrodes), but the particulars of that reconfiguration have yet to be
determined. The type of reconfiguration in the present study is aimed at the
ability to replace or add subsystems to adjust production capacity and/or
material handling routes.

Figure 3.2 Components of circuit breaker

The welding assembly system should typically operate as follows:

The pallet magazine, which is capable of storing or releasing pallets to the
system, supplies a pallet based on the type of fixture needed on the pallet. The
conveyor transfers the pallet from one station to the other. First, the pallet moves
to the feeding stations where parts are loaded onto the fixture. Then the pallet
moves to the inspection station to confirm that all parts are present and correctly
located. It then moves to the welding station where the parts are welded. Upon
completion of welding, the pallet moves to the inspection and removal station
where the necessary inspection is done and the assembled part is offloaded.
When the production of the current assembly is complete, the pallets used for
that assembly are returned to the pallet magazine, which removes them from the
conveyor system.

28

Contact tip

Weld points

Moving contact

Pigtail 1

Magnetic frame Coil
Arc runner

Pigtail 2

Handle frame assembly

3.2 Pallet magazine

The pallet magazine was designed by Burger (2009) and is shown in figure 3.3.
The design, advantages and reasons for the choice of each component during the
design process are fully described in Burger (2009). The pallet magazine consists
of a rotary magazine assembly, a safety screen assembly, a conveyor assembly, a
linear drive and a piston. The rotary magazine assembly consists of three
magazines, which can store three different fixture-type pallets. The different
fixture-types determine the variants of the final product assembly produced.
When a particular type of pallet is required, the magazine assembly is positioned
by the magazine assembly motor (mounted below the magazine assembly). This
motor is a geared servo motor, which is controlled by an inverter drive. The
inverter drive is connected to the main controller via PROFIBUS.

Figure 3.3 Pallet magazine

The conveyor assembly is responsible for moving the pallet to be transferred into
or out of the magazine. The direction of rotation of the conveyor is determined

29

Magazine

Magazine
Assembly
Motor

Conveyor
Assembly

Linear Drive

Solenoid
Valves

Piston

Conveyor
Motor

Safety
Screen
Assembly

Jaw

by the conveyor motor, which is a DC geared motor capable of turning in the
clockwise or counterclockwise direction depending on the direction of power
connected to it. The conveyor assembly is connected to the linear drive, which is
responsible for raising and dropping the conveyor assembly. The jaws form a part
of the conveyor assembly. The purpose of the jaws is to lift the stack of pallets in
the magazine when a pallet is to be transferred into the magazine. However, if a
pallet is to be released from the magazine, the jaws lift all the pallets except the
lowest one.

The jaws are opened and closed by a pneumatic piston. This piston is connected
to a solenoid valve, which is a 4/2 way valve. The linear drive, on the other hand,
is connected to two 3/2 way valves. These valves are used to lift and drop the
linear drive. When the conveyor assembly is to be raised, one of the valves is
opened and the other is closed, while if the conveyor assembly is to be dropped,
the states of the valves are reversed.

The pallet magazine can perform two functions, namely loading of pallets on to
the conveyor system, which shall be referred to as “uploading” pallets, and
removing pallets from the conveyor system, which shall be referred to as
“offloading” pallets.

3.2.1 Uploading pallets

The procedure for uploading pallets is as follows:

First, the pallet magazine is informed by the higher level controller to upload a
pallet. Then, the following sequence of operation occurs, as shown in figure 3.4:

1. Position the magazine – The magazine assembly motor positions one of
the magazines above the conveyor assembly. As stated earlier, there is
provision for 3 different kinds of pallet depending on the type of fixture
on it, with each set of pallets stored in one of the three magazines.
Therefore, the right magazine is positioned depending on the type of
pallet required.

2. Raise the conveyor assembly – The conveyor assembly is raised to a
height midway along the length of the linear drive. At this height, the jaws
(when closed) are between the lowest two pallets.

3. Close the jaws – The jaws are closed. At this point, the jaws are between
the lowest two pallets in the magazine.

4. Raise the conveyor assembly further – The conveyor assembly is raised
further till it reaches the full length of the linear drive. The effect of this is
that all the other pallets are lifted, by the jaws, off the lowest pallet

30

(which is the one that will be uploaded). At this point, the lowest pallet
becomes free to move and rests solely on the conveyor.

5. Run the conveyor in the outward direction – Running the conveyor motor
clockwise causes the conveyor belt to run in the outward direction. This
motion transfers the pallet out of the magazine.

A proximity sensor attached to the magazine indicates when the pallet leaves the
magazine and then the pallet magazine returns to the initial state by stopping the
conveyor motor, dropping the conveyor assembly and opening the jaws.

Figure 3.4a Uploading pallets (Burger, 2009)

31

Pallet to be uploaded

Magazine positioned

Conveyor assembly
raised midway

Jaw between the lowest
two pallets (Jaws to be
closed at this point)

Figure 3.4b Uploading pallets (Burger, 2009)

32

Jaw closed and conveyor
assembly raised (Lowest
pallet now free)

Conveyor runs clockwise

Uploaded pallet

System returned to
passive state

3.2.2 Offloading pallets

The procedure for offloading pallets is as follows:

First, the pallet magazine is informed by the higher level controller to offload a
pallet. The presence of the pallet to be offloaded is detected using a proximity
sensor on the conveyor leading to the pallet magazine, and then the following
sequence of operation occurs as shown in figure 3.5:

1. Position the magazine – The magazine is positioned based on the type of
pallet to be offloaded.

2. Close the jaws – The jaws are closed so that at the next step, when the
conveyor is raised, the jaws lift all the pallets in the magazine.

3. Raise the conveyor assembly – The conveyor assembly is raised to the full
length of the linear drive so that it is at the same height as the pallet to be
offloaded. At the same time, the pallets in the magazine are lifted by the
jaws.

4. Run the conveyor in the inward direction – Running the conveyor motor
counterclockwise causes the conveyor belt to run in the inward direction.
This motion transfers the pallet into the magazine. The proximity sensor
attached to the magazine detects the presence of the pallet in the
magazine. The conveyor motor stops running when the pallet arrives in
the magazine.

5. Drop the conveyor assembly – The conveyor assembly is dropped so that
the pallets supported by the jaws are brought to rest on the newly arrived
pallet. The jaws can now be opened.

The pallet magazine is then back at its initial state where the conveyor assembly
is dropped and the jaws are open.

33

Figure 3.5a Offloading pallets (Burger, 2009)

34

Pallet to be offloaded

Jaw closed (to raise
pallets in magazine)

Conveyor assembly raised

Conveyor runs
counterclockwise

Pallet arrives in magazine

Figure 3.5b Offloading pallets (Burger, 2009)

3.3 Feeding system

The feeding system is an aggregate of three major subsystems, namely the
singulation unit, the feeder camera and the feeder robot. These three
subsystems work together to perform the feeding system function of loading
parts into the fixture on the pallet. The singulation unit transfers parts from a
hopper and separates or singulates them so that they are not tangled. The parts
are inspected by the camera which returns the position of the parts' pick point.
The robot uses this pick point position in picking the part and placing it on the
pallet.

35

Conveyor assembly dropped

Jaw open

System returned to
passive state

3.3.1 Singulation unit

The singulation unit was designed by Strauss (2009) and is shown in figure 3.6.
The design, advantages and reasons for the choice of each component during the
design process are fully described in Strauss (2009). The singulation unit consists
of a hopper, a hopper conveyor, two transfer conveyors running at different
speeds and an inspection section. The original design by Strauss (2009) had a
flipping section that uses three pneumatic pistons and a stepper motor. The
purpose of the flipping section was to orientate the part, but this was removed
due to concerns about its reliability. The flipping section was then replaced by air
nozzles which reject unwanted parts using air jets.

Figure 3.6 Singulation unit

Parts to be loaded are transferred manually from the parts bin to the hopper. The
collection of parts in the hopper is unsorted and may, therefore, be tangled and
intertwined. As the hopper conveyor, which is driven by the hopper motor, runs,
parts drop off the hopper conveyor belt onto the first transfer conveyor through
a shute. There is a shute sensor which is used to detect the passage of parts
along the shute. This sensor serves two diagnostic purposes: it detects whether
parts have actually dropped from the hopper to the transfer conveyor, and it also
detects whether any part rejected from the inspection platform has passed
through the return shute. Along the length of the first transfer conveyor are side
guides and a deflector. These guides prevent the parts from dropping off the side

36

First transfer
conveyor

Side guide
and
deflector

Hopper
conveyor

Hopper

Hopper motor Transfer conveyor motor Second transfer
conveyor

Inspection
section

Return
shute

Shute
sensor

Platform
sensor

Air Nozzle

of the conveyor, and at the end of the first transfer conveyor is the deflector
which directs the parts onto the second transfer conveyor. There is a “transfer
sensor” (not shown in the figure) at this transfer point from the first transfer
conveyor to the second. This sensor tracks the parts that have moved from the
first to the second transfer conveyor. The first and second transfer conveyors are
driven by a three-phase AC motor, but are geared to run at different speeds with
the second conveyor running faster than the first.

The reason for this speed difference between the transfer conveyors is to create
gaps between the parts. Along the length of the second transfer conveyor are
deflectors which will only allow single parts to pass through. There is also a wiper
blade which allows only parts of a particular maximum height to pass through.
Any parts which are still tangled are pushed back onto the first transfer conveyor
by the deflectors and the wiper blade. There is also another sensor here (called
“circulating sensor”, and is not shown in the figure) which detects the parts
returning (or circulating) from the second to the first transfer conveyor. When the
part reaches the end of the second transfer conveyor, it slides on to the
inspection station. An optical sensor detects the arrival of the part and triggers
the stoppage of the motor driving the transfer conveyors.

Part inspection is done by the camera and the part is only rejected if the camera
determines that the part is not the one required to be loaded or if the part is in
an unacceptable pose. The singulation unit rejects parts by ejecting a high
pressure air jet from an air nozzle which drives the part back, along the return
shute, to the first transfer conveyor.

3.3.2 Feeder camera

The feeder camera is a Cognex DVT Legend 540 vision sensor shown in figure 3.7.
The vision sensor has an image resolution of 640 x 480 pixels and a grayscale CCD
(charge-coupled device) for image detection. It has exposure times of between
10μs to 1s and an isolated power supply of 24V DC. The camera has two RJ-45
ports, one for power supply and the other for communication over Ethernet.
There is also a separate digital I/O with 8 configurable inputs and outputs that
can be used to send commands to the vision system.

The feeder camera inspects the part in the inspection section of the singulation
unit. If the camera confirms that the inspected part is the part required to be
loaded, it then determines the position of the pick point of the part. This
information is what the robot uses to pick the part. On the other hand, if the part
is not the part required or the part not in a collectible orientation, it informs the
singulation unit to reject the part.

37

Figure 3.7 Cognex DVT vision sensor

3.3.3 Feeder robot

The feeder robot is a six-degree of freedom RTX robot manufactured by Universal
Machine Intelligence. Figure 3.8 shows the robot as depicted in its manual,
“Introducing RTX” (UMI, 1986). The robot has an upper arm, a lower arm at
which end is a gripper and a vertical linear slideway. It also has three joints: the
shoulder, elbow and wrist joints. The upper arm is driven by the shoulder motor,
the lower arm is driven by the elbow motor, while the wrist is controlled by two
motors which enable it to perform both pitch and roll motions.

38

The role of the robot in the feeding system is to pick parts based on the position
given by the camera and place them on to the pallet. The coordinate space of the
robot is measured in millimeters, which is the same unit used for the
transformation coordinate for the camera. The camera only supplies dimensions
in two coordinates while the z-coordinate of the camera is fixed.

Figure 3.8 RTX robot (UMI, 1986)

39

3.4 Other subsystems

The other subsystems of the welding assembly system are: the inspection and
removal system, the welding system and the conveyor. The inspection and
removal system is almost the same as the feeding system except for the absence
of a singulation unit. The inspection and removal station is where inspection is
done on parts loaded on the pallet fixture before welding, and also where the
final inspection on the welded parts is carried out before removal. Here, the
welded parts are inspected for defects and they are transferred to the assembly
bin if the inspection is successful, or to the rejection bin if the inspection is not
successful.

The welding system spot-welds the parts loaded on to the pallet. However, due
to the high cost of an automated welding system, no physical welding system was
purchased. Its actions of welding in this study case will only be simulated. The
conveyor to be used is a Rexroth TS2 Plus transfer system. It has several motors,
an ID40 RFID system, a number of sensors connected on an AS-i network and a
PROFIBUS communication interface. The incomplete conveyor is shown in figure
3.9.

Figure 3.9 Rexroth TS2 Plus conveyor

40

4 Low level control of the subsystems
The control of the subsystems in this work is divided into two: the low level
control and the high level control. The low level control directly interacts with the
hardware of the subsystems by reading from sensors, and activating the
actuators of the subsystems. This control is covered in this chapter. The high level
control, which is considered for the feeding system, is termed reconfigurable
control and is covered in chapter 5. The low level control of the subsystems is to
be implemented using a PC and a PLC. The subsystems to be controlled are the
pallet magazine and the feeding system components which include the
singulation unit, the camera and the robot.

4.1 Pallet magazine

The hardware components of the pallet magazine were described in section 3.2.
The actuators responsible for the movement of these components include:

• the magazine assembly motor which is used to position the magazine
assembly,

• the conveyor motor which runs the conveyor,

• the solenoid valves which regulate the flow of air into the linear drive and
the piston which operates the jaws.

We first discuss the control of the components common to the PLC and PC
controllers, and then discuss the control as done using the PLC and the PC,
respectively.

4.1.1 Magazine assembly motor

The magazine assembly motor is a geared servo motor from SEW EURODRIVE
(KAF37 DS56M). In order to control the motor, a drive inverter, the SEW
MOVIDRIVE MDX61B0005-5A3-4-0T, was used. The characteristics of the motor
utilized in order to position the motor, as given by the manufacturer, are:

• gear ratio of motor, which is 29.96:1

• the gear teeth values, which the manufacturer gives as pinion 23T, gear
31T, second gear pinion shaft 18T, gearwheel 97T, rose 8T and bevel 33T.

In the control of the pallet magazine, the communication between the controller
and the Movidrive inverter is over PROFIBUS, which is a commonly used

41

communication standard in the industry. The drive inverter is able to connect to a
PROFIBUS network using a DFP21B PROFIBUS module. The PROFIBUS address of
the drive inverter was set to number 4. The magazine assembly motor has an
internal resolver which serves as its encoder. With this resolver, the drive inverter
is able to monitor and report the actual position of the motor. Also, because of
the direct connection between the motor and the magazine assembly (which is
termed as “positive connection”), there is no need for an external encoder. For
these reasons, a resolver module, the DER11B, was installed on the drive inverter
instead of an encoder module.

Setting up the drive inverter involved the use of IPOS which is a programmable
positioning language developed by the drive manufacturer. The Modulo
positioning tool was specifically used in this case because what is to be done here
is rotational positioning (not linear positioning). The Modulo positioning tool
uses a reference point, defined by a reference cam, and a reference travel type to
specify the initial position of the motor. In order to use the Modulo positioning
tool, the drive inverter is first set up using a keypad. The data of the magazine
assembly motor are entered into the inverter. These data values include the
voltage rating, the power, the maximum current, etc, of the motor. The next step
is to configure the inverter from a computer using the Movitools software which
is also supplied by the manufacturer. A USB/Serial converter is used to connect
the drive inverter to the computer for automatic start up. Additional data, which
include ramp up and ramp down times, maximum moment of inertia, etc, are
supplied.

The final step is to set up the Modulo positioning tool. To do this, the drive
inverter is first wired based on the wiring diagram shown in appendix A.1. The
Modulo positioning tool automatically configures the first four digital inputs as
follows: DI00 is Control Inhibit, DI01 is Enable, DI02 is Reset and DI03 is Reference
Cam Input. In this work, there is no reference cam, so DI03 was not wired.
Instead, a reference travel type 5 was chosen. With a reference travel type 5,
there is no reference travel and the current position of the motor is taken as the
reference point. The values of the gear teeth and the gear ratio were used to
calculate the fractional ratio of the gear box. These values were entered as 33077
for “numerator” and 1104 for “denominator” as required in the Modulo
positioning tool. The derivation of this ratio of 33077:1104, which translates to
the actual gear box ratio (i.e. 29.96:1), is given in appendix A.2.

From the IPOS program of the Modulo positioning tool, there are different ways
by which the positioning can be done, but the “automatic positioning with
optimization” method was chosen. This method is an intelligent positioning
option in which the motor takes the shortest route from its present position to

42

the target position. An illustrative example is the case where the motor is
required to move to a 315-degree position when its current position is 20
degrees. With the “automatic positioning with optimization” option, the motor
moves in the counterclockwise direction instead of the clockwise direction which
is the default. This is because the counterclockwise direction is the shorter route
to the target position. However, the disadvantage of the method is that the gear
ratio limits the maximum position the motor can attain. Although it is not likely in
our case, if the motor exceeds the maximum angle of rotation (about 1176
degrees approx.), then the rotation will have to occur along the longer route.

With the configuration of the Modulo positioning tool, only six process data (PD)
words are required by the inverter for positioning the motor. The six output data
words represent the Control Word 2, the Target Position (high word), the Target
Position (low word), the Setpoint Speed, the Acceleration Ramp and the
Deceleration Ramp respectively. On the other hand, the six input data words,
which will be returned by the inverter, represent the Status Word, the Actual
Position (high word), the Actual Position (low word), the Actual Speed, the Active
current and the Device Utilization.

The target position was set, in the Modulo positioning tool, to be measured in
degrees. Other units of position measurement allowed are tenth of degree and
encoder count. The actual position of the motor returned by the inverter is in
encoder count. The method used in this work to determine whether the motor
positioning is complete or not is to check the fourth bit of the status word (i.e.
process input data 1). This bit represents Target Position Reached, and it has a
value of 1 when the target position is reached.

4.1.2 Conveyor motor

The conveyor motor, which drives the conveyor in the pallet magazine, is a 12V
DC motor. There are three states in the control of this motor: it runs in the
outward direction when a pallet in the magazine is to be uploaded, it runs in the
inward direction when a pallet is to be offloaded and it is stationary when the
pallet has arrived or left the magazine. Two relays are used in order to control the
conveyor motor. The relays are connected to the motor as shown in figure 4.1.
The first relay labeled R4 is called the enabling relay while the one labeled R5 is
called the direction relay for reasons explained below. The motor is connected to
the COM (common) of relay R4, while the N.O. (Normally Open) of relay R4 is
connected to the COM of relay R5. Relay R5 is connected to the voltage supply
line in the following order: the N.O. of R5 is connected “normally” so that the
positive terminal of the motor connects to the positive end of the 12V power
supply, while the negative terminal of the motor connects to 0V or the negative
end of the 12V power supply. The N.C. (Normally Closed) of R5 is then connected

43

in the reverse direction so that the positive terminal of the motor connects to the
negative end of the power supply and the negative terminal of the motor
connects to the positive end of the 12V power supply.

Figure 4.1 Conveyor motor connection

Based on this connection, when the relay R4 is energized, the conveyor motor is
connected to power so it moves either in the forward or reverse direction
depending on whether relay R5 is energized or not. However, if relay R4 is not
energized, the motor stays stationary notwithstanding whether relay R5 is
energized or not. This is because there is no power supply connected to the
motor through the N.C. of R4. The dependence of the operation of the motor on
the energized state of relay R4 is the reason why R4 is called the enabling relay. In
the case of relay R5, when the relay is energized, the motor connects to the N.O.
of R5 and so rotates in the forward (or outward) direction, while if the coil is not
energized, the motor connects to the N.C. of R5 and therefore rotates in the

44

reverse (or inward) direction. Because relay R5 determines the direction of
rotation of the motor, R5 is called the direction relay.

The motor is controlled using two digital output bits, which are used to energize
the two relays respectively. Therefore, in the control of the conveyor motor,
when the motor is to run in the outward direction (i.e. forward), the first bit is set
to a value of 1 and the second bit is set to 0. When the conveyor motor is to run
in the inward direction (i.e. reverse), both bits are set to a value of 1. If the motor
is to be stopped, the first bit is set to a value of 0 and there is no need to set the
second bit. The use of two relays in controlling the conveyor motor is inherently
safe from the risk of a short circuit. This is because at no time will both current
carrying lines from the supply voltage reach the motor at the same time, which
ordinarily may lead to a short circuit.

4.1.3 Solenoid valves

There are three solenoid valves used in the pallet magazine. One of them is a 4/2
way valve, while the other two are 3/2 way valves. As explained in section 3.2,
the 4/2 way valve controls air supply to the pneumatic piston which opens and
closes the jaws in the pallet magazine. On the other hand, the two 3/2 way valves
control air supply to the linear drive which raises or drops the conveyor assembly.
All three valves are connected to relays which can open or close the valves
depending on whether the relays are energized or not. The valves are connected
to the N.C. (normally closed) terminals of the relays since the supply ports of the
valves are open in the initial state, which means that they allow air to flow
through them thereby raising the conveyor assembly in the case of the linear
drive, and closing the jaws in the case of the pneumatic piston. This is contrary to
what is desired in the control where in the initial state, the conveyor assembly
should be down while the jaws should be open. This was achieved by connecting
the valves to the relays as stated.

The jaws are controlled using one digital output bit which is able to open or close
the jaw depending on whether the bit value is zero or one. The linear drive,
shown in figure 4.2, is controlled using two digital output bits. To move the slide
on the linear drive upwards, the first bit is set to 1 and the second bit is set to 0,
while reversing the bits causes the slide to move downwards. There are three
proximity sensors along the length of the linear drive which are labeled as top
sensor, middle sensor and bottom sensor in figure 4.2. The top, middle and
bottom sensors are used to detect when the slide of the linear drive reaches the
top, middle and the bottom of the linear drive respectively.

45

Figure 4.2 Linear drive

4.1.4 PC control of the pallet magazine

The PC control program of the pallet magazine was written using Microsoft Visual
C#. Two hardware modules were used with the PC. The first is the Applicom
PCIE1500PFB card, which allows the PC to connect to the PROFIBUS
communication network, and the second is the Eagle uDAQ Lite data acquisition
device. The Applicom card is installed in the PCI Express slot of the PC board
which provides a much higher speed of communication than the ordinary PCI
slot. The Applicom card enables the PC to act either as a class 1 or a class 2
master on the PROFIBUS network. As a class 1 master, the PC is able to
communicate with its configured slaves, while as a class 2 master, the PC only
plays a “supervisory” role (i.e. it is used to commission slaves and to obtain
diagnostic data from the slaves). In the case of the pallet magazine, the PC is the
only master in the PROFIBUS network and acts as a class 1 master. The slave on
the PROFIBUS network is the drive inverter which is used to control the magazine
assembly motor. The setup of the Applicom card is done using the Applicom
software provided by the manufacturer. The GSD file of the slave (i.e. the drive
inverter) is installed in the configuration of the Applicom card and the

46

Piston

Linear drive

Top
sensor

Middle
sensor

Bottom
sensor

Slide

communication was configured for six process data words, as required for the use
of the Modulo positioning tool of the drive inverter.

The Eagle uDAQ Lite device, on the other hand, has a USB interface through
which it is connected to the PC. It is configured using the Eagle data acquisition
software supplied by the manufacturer. The Eagle uDAQ has digital and analog
ports but the analog ports were not used in this work. The digital input and
output ports are eight bits wide. The Applicom card and the Eagle uDAQ were
accessed in the control program through their dll files which were provided by
their manufacturers. These dll files were included in the control program as
references. The Applicom card dll file gives access to immediate and deferred
read and write functions on the PROFIBUS network, and the Eagle uDAQ dll file
provides access to read from and write to the digital ports.

The flowcharts in figure 4.3 show the algorithms for the uploading and offloading
of pallets in the pallet magazine. Each of the processes shown in the flowcharts
represents a method in the PC control program. For example, position magazine,
lift conveyor assembly and open jaws are all methods in the control program. The
decision-making methods, which are represented by the diamond shape, involve
reading the bit values of the corresponding sensors. For example, whether the
conveyor assembly has arrived at the top of the linear drive or not is determined
by reading the bit value of the top sensor from the Eagle uDAQ digital input.
Reading the digital input returns a corresponding byte value for the 8-bit wide
input port, and the value of the bit needed is obtained by carrying out a bit-
masking operation. Activating the actuators, for example, to lift conveyor
assembly, is also done via the Eagle uDAQ by masking the bit to be changed and
writing to the card's digital output. The low output voltage of the Eagle uDAQ
device made it necessary to use the Eagle PC-38G, which is a relay adaptor module.
The PC-38G has 8 electro-mechanical relay channels, and uses an external 12V
DC power supply to energize the relays. Uploading and offloading of pallets in the
control program is therefore achieved by calling the individual methods as shown
in the flowcharts.

47

 Uploading pallets Offloading pallets

Figure 4.3a Flowcharts for process flow of pallet magazine

48

START

POSITION MAGAZINE

LIFT CONVEYOR
ASSEMBLY

CLOSE JAWS

CONVEYOR ASSEMBLY
MIDWAY?

CONVEYOR ASSEMBLY
AT TOP?

RUN CONVEYOR
OUTWARDS

START

POSITION MAGAZINE

LIFT CONVEYOR
ASSEMBLY

CLOSE JAWS

CONVEYOR ASSEMBLY
AT TOP?

RUN CONVEYOR
INWARDS

PALLET INSIDE
MAGAZINE?

Y

Y

Y

Y

N

N

N

N

 Uploading pallets Offloading pallets

Figure 4.3b Flowcharts for process flow of pallet magazine

49

PALLET OUT OF
MAGAZINE?

STOP RUNNING
CONVEYOR

DROP CONVEYOR
ASSEMBLY

OPEN JAWS

CONVEYOR ASSEMBLY
AT BOTTOM?

STOP

STOP RUNNING
CONVEYOR

DROP CONVEYOR
ASSEMBLY

OPEN JAWS

CONVEYOR ASSEMBLY
MIDWAY?

OPEN JAWS

STOP

Y

Y

Y

N

N

N

4.1.5 PLC control of the pallet magazine

The PLC used for the control of the pallet magazine is a Siemens S300 PLC. The
PLC has an integrated PROFIBUS interface. The Siemens STEP 7 program was used
to set the hardware configuration of the PLC as well as write the control program
using ladder logic. The GSD file for the drive inverter was also installed in the
hardware configuration of the PLC just as in the case of the PC. The control
program algorithms are also according to the flowcharts in figure 4.3, but the
processes in the figure are represented as steps.

The PLC ladder logic program consists of the three function blocks: the upload
function block, the offload function block and the position magazine function
block (which is used by both the upload and offload function blocks). The
position magazine function block uses the STEP7 SFC 14 and SFC 15 special
functions to read from and write to the drive inverter over PROFIBUS. As earlier
explained, the exchange over PROFIBUS between the master controller and the
drive inverter (i.e. the slave) is done using six process data words. For this reason,
a UDT (user-defined data type) variable comprising six words was defined and
used. The other function blocks, i.e. the upload and the offload function blocks,
made use of the position magazine function block to position the magazine
assembly motor. The PLC typically executes cyclically so, in order to implement
the processes in figure 4.3 as steps, a temporary variable initialized to zero was
defined in the function blocks. All the steps in the flowcharts have been labeled
consecutively with the first step labeled as zero. Each step only executes if the
value of the temporary variable is equal to the number label of that step. Upon
completion of each step, the value of the temporary variable is increased by one.
By so doing, the PLC executes the program in a stepwise manner.

4.2 Singulation unit

The singulation unit is one of the subsystems within the feeding system. The
hardware components of the singulation unit, shown in figure 3.6, were
described in section 3.3.1. The actuators within the singulation unit are the
hopper motor, the transfer conveyor motor and the solenoid valve for the air
nozzle.

4.2.1 Hopper motor

The hopper motor is a PARVALUX SD8 AC motor, which is used to run the hopper
conveyor belt. The motor is connected via a 2.5µF capacitor to the power supply.
The motor is controlled using only a contactor since there is no need for speed
control in our application. The motor is run or stopped by switching this
contactor.

50

4.2.2 Transfer conveyor motor

The transfer conveyor motor is a geared AC motor from SEW EURODRIVE
(DR63M4). In order to control the motor, a drive inverter, the SEW MOVITRAC
MC07B0005-2B1-4-00, was used. The drive inverter is used only to control the
speed of the motor. The drive inverter setup was done using a keypad. The data
that had to be provided include the name and type of motor to be controlled, the
setpoint speeds to be used, the control operating mode, and various motor data
such as voltage, power, frequency, etc. The drive inverter has terminals for binary
input and output. The functions of these terminals have already been preset by
the manufacturer. The drive inverter can be used to control the motor by writing
to the binary inputs.

In the case of the singulation unit, only three of the binary input terminals were
used. These are the terminals marked as DI01, DI03 and DI04, which (when they
are set) represent the CW (clockwise) rotation, the Enable and the Speed
setpoint bits respectively. The transfer conveyors, like the hopper conveyor, only
run in one direction in the singulation unit, therefore the DI02 terminal which
represents the CCW (counterclockwise) rotation bit was not used. The binary
output terminals were used to obtain the status of the drive inverter and the two
terminals used are the DO02 and the DO03 terminals, which represent the Brake
Released and the Motor Ready bits respectively.

4.2.3 Solenoid valve

The solenoid valve is used to regulate the flow of air to the air nozzle. The
solenoid valve is a 3/2 way valve. The valve is connected to a relay which opens
or closes the valve depending on whether the relay is energized or not. This valve
is also connected to the N.O. (normally open) of the relay and is controlled using
only one digital output bit.

4.2.4 PC control of the singulation unit

The PC control program for the singulation unit was also written using Microsoft
Visual C#, as in the case of the pallet magazine. The Eagle uDAQ Lite data
acquisition device was used to read from the sensors and write to the actuators.
The singulation unit loads parts as well as rejects parts that fail the inspection by
the camera. The flowcharts in figure 4.4 show the algorithms for the loading and
the rejection of parts. Just as in the case of the pallet magazine, each step is
represented in the control program as a method. The decision-making methods
involve reading the bit values of the corresponding sensors, while activating the
actuators is done via the Eagle uDAQ device by masking the bit to be changed
and writing to the card's digital output. The PC-38G relay module was also used.
Four sensors, described in section 3.3.1, were used to aid decision-making: the

51

shute sensor, the transfer sensor, the platform sensor and the circulating sensor.
The shute sensor is used to detect whether parts are actually supplied from the
hopper when the hopper motor is run, and whether parts rejected have passed
through the return shute. If no part is detected, it triggers a fault output. The
transfer sensor is used to detect parts that move from the first transfer conveyor
to the second transfer conveyor, while the platform sensor is used to detect
whether a part has arrived at the inspection platform. The circulating sensor is
used to detect parts that are circulating back to the first transfer conveyor from
the second transfer conveyor. These sensors are used to update the values of
three variables used in the control: the number of parts on the first transfer
conveyor (x1), the number of parts on the second transfer conveyor (x2), and the
number of circulating parts (x3). Every part detected by the shute sensor
increases x1 by 1, and every part detected by the transfer sensor decreases x1 by
1 and increases x2 by 1. Every part detected by the platform sensor decreases x2
by 1 and every part that is detected by the circulating sensor increases both x1
and x3 by 1, and decreases x2 by 1. Variable x3 is a diagnostic variable and it
triggers a warning output if its value is greater than a minimum (5, in our case),
and its value is reset to zero after every 10 parts loaded.

There are two methods which run simultaneously and are cyclically called by the
control program. These are the hopper motor controller method and the transfer
conveyor controller method. The algorithms for these methods are shown in the
flowcharts in figure 4.4a. The hopper motor controller method constantly checks
whether the number of parts on the first transfer conveyor is less than the
minimum number of parts that should be on it (which, in this case, is 5). If it is
less, the hopper motor is then run for a specified period (40 seconds, in this case)
in order to increase the number of parts on the first transfer conveyor. On the
other hand, the transfer conveyor controller constantly checks whether there is a
part present on the inspection platform, ready to be inspected and picked in case
a LOAD command is sent to the feeder. If there is no part on the inspection
platform (for example, after the loaded part is picked by the robot or rejected by
the singulation unit), the transfer conveyor is started so that a new part is loaded
on to the platform.

The algorithms for loading and rejecting parts are shown in the flowcharts in
figure 4.4b. In the case of loading of parts, it is expected that a part should
already be on the inspection platform, but if that is not the case, the transfer
conveyor motor is started in order to load a part. The transfer conveyor motor
stops immediately when a part is loaded on to the inspection platform. On the
other hand, for the rejection of parts, the air nozzle is opened to allow air jets to
remove the part from the inspection platform. When the part leaves the
platform, the air nozzle is closed.

52

Hopper motor controller Transfer conveyor controller

Figure 4.4a Flowcharts for process flow of singulation unit

53

START

RUN HOPPER MOTOR
FOR 40 SECS

RUN TRANSFER
CONVEYOR MOTOR

START

STOP TRANSFER
CONVEYOR MOTOR

PART REACHED
INSPECTION SECTION?

STOP

STOP

PART NOT LOADED AT
INSPECTION SECTION?

NO. OF PARTS ON 1ST
CONVEYOR LESS THAN

MIN. NO. OF PARTS

STOP HOPPER MOTOR

N

Y

N

Y

N

Y

 Loading parts Rejecting parts

Figure 4.4b Flowcharts for process flow of singulation unit

4.3 Feeder camera

The feeder camera is a Cognex DVT vision sensor. It is an “intelligent” camera and
does not require a controller in order to execute its functions. The vision sensor
comes with software, the Intellect software, which can be used to configure the
vision sensor from a PC. The software can be used to visualize images captured
by the camera, view the result of the inspection, perform general camera setup,
as well as change the settings of the camera. Typically, the software is used to set
up sensor tools to be used by the vision sensor for inspection and it can also be
used to write scripts which are programmed to run in the vision sensor. The

54

START

START

STOP AIR FROM NOZZLE

START AIR FROM NOZZLE

PART NO LONGER AT
INSPECTION SECTION?

Y

STOP

PART PRESENT AT
INPSECTION SECTION

STOP

N N

Y

scripts are programmed either as background scripts or foreground scripts.
Background scripts are cyclic functions that execute continuously within the
vision sensor, while the foreground scripts are functions which are programmed
to be triggered at various times by events or triggered externally by inputs to the
camera's digital IO ports. The software is also used to calibrate the vision sensor.
The calibration of the camera is done by the use of standard grids from the
manufacturer. The calibration is stored within the sensor and is used to transform
dimensions obtained in pixels to standard measurements such as millimeters,
centimeters, etc.

Two transforms are used in this work due to the difference in sizes between the
various parts to be inspected. Most of the parts measure between 10 and 60 mm
in length while the assembled part is more than 100 mm in length. A standard
DVT grid of 10 mm spacing was used to calibrate the camera for the smaller sized
parts like the arc runner, the pigtail, etc, while a standard DVT grid of 20 mm
spacing was used for the larger components such as the assembled part which
will be inspected after welding. Each calibration is saved in the Intellect software
as a transform and given a specific name. The transform set up using the 10 mm
spacing grid was named loadTransform, while the other transform coordinate set
up using the 20 mm spacing grid was named removalTransform. In order to
calibrate the vision sensor, the appropriate grid is placed in the camera's field of
view, and the system coordinate calibration option is selected in the Intellect
software. The camera then automatically performs the necessary coordinate
transform. The origin of the grid then becomes the camera coordinates' origin.
Each of the parts to be inspected has a product name (and a product ID). In this
case, the product names and IDs are the numbers 1 to 6 representing the moving
contact, the pigtail 1, the handle frame assembly, the coil, the pigtail 2 and the
arc runner respectively. The actual parts serve as the model against which each
inspection is done.

Three sensor tools were set up for the vision sensor. The first tool, named
filter_Tool, is used for the enhancement of the image acquired by the camera.
There are a number of options available for filtering but “Morphology” with the
“close” option was chosen because “this option eliminates noise inside the part
and does not alter the sizes of the parts” as stated in the sensor tool guide. This
filter_Tool is therefore not an inspection tool but a preprocessing tool. The
advantage of pre-processing is that it improves the quality of the image acquired
by the camera and compensates for poor lighting and other deficiencies. The
second sensor tool used is the identification tool, named identifPart_Tool. This
tool compares the image acquired by the camera with that of the model in
memory and returns a PASS or a FAIL remark depending on the success or failure
of the inspection. The bases of the comparison between the image and the

55

model include blob comparison, area comparison, eccentricity, perimeter, etc.
The criterion for deciding the PASS or FAIL remark of the inspection was set at
90% correlation and this is because some of the parts to be inspected appear
similar from some viewing angles, so a greater correlation should be required
between the image and the model before it is decided whether the inspection is
successful or not. Each product has a number of models used by the
identifPart_Tool to identify the part being inspected. These models represent the
different collectable poses of the part. A PASS remark is returned by
identifPart_Tool if there are enough similarities between the acquired image and
any of the models. The matching model is contained in the “BestMatchType”
property of the identifPart_Tool. The last tool is the positioning tool which
returns the pick point position of the part and its angle of orientation. The
positioning tool was set to reference the image identified by the identification
tool. Two collectable poses were assumed in this work, and therefore, two
positioning tools were used for the respective poses. The two positioning tools
are named PickPos_Tool and PickPos1_Tool. The positioning tool returns the pick
point position and the angle required by the feeder robot to pick up the part.

Two scripts were written to accept user input as well as coordinate the output of
the sensor tools. By default, the sensor tools run concurrently but in our case,
some of the tools, for example the identifPart_Tool, rely on the output of others,
for example the filter_Tool, so, a script is needed to collate the output of each
tool. One of the scripts written is a background script and the other is a
foreground script. These scripts are included in appendix B and the syntax of the
scripting language in the DVT vision sensor is similar to C. The background script
runs continuously and is responsible for accepting inspection commands from
the main feeding system controller, while the foreground script was configured to
be triggered by the background script when it receives the INSPECT command.

Because, in our case, communication with the background script is to be done
over Ethernet, two options are available for communicating the command to the
camera. The first is the default command list from the manufacturer which can
be understood by the vision sensor. This command list is a set of standard letters
and symbols. However, there are disadvantages to the use of this list. The first is
that the program becomes difficult to debug since the commands in the list are
not easily comprehensible to human readers. The second is that the command
list is actually for the manufacturer's internal use and a caveat was placed on its
use because its functionality cannot be guaranteed. A different approach was
used instead. A standard was devised to send information to the vision sensor
over Ethernet using two bytes. The vision sensor reads these bytes through the
background script which is always running cyclically. The interpretation of the
two bytes is as follows: the first byte contains the command and the second byte

56

contains the product ID. The use of these bytes could be extended in future, but
for our work, the two bytes are sufficient. The only value of the first byte used is
value 1 which was assigned to the “inspect” command. Future users of the vision
sensor may find it necessary to assign other commands to other values of the
first byte. The values of the second byte range from 1 to 6, and represent the
product ID which is used to identify the product to be used for the inspection.

An Ethernet terminal controller using the DATALINK driver was set up so that the
camera acts as a server listening for connections on port 10000. We intend to use
DATALINK, which is an in-built tool by the manufacturer, to obtain inspection
result output from the camera. DATALINK usually sends output through port
3247, but in this case, the output is diverted to port 10000 of the Ethernet
terminal controller. The foreground script, named partScript Tool, triggers the
generation of the inspection result through DATALINK when the inspection is
completed. By default, the inspection result is sent out through DATALINK every
time an inspection is done by any of the camera's sensor tools. However, in our
case, the result is to be sent in the format described below only after the
inspection is completed by all vision sensor tools. For this reason, DATALINK was
configured to give out inspection reports only when a bit (the User1 bit) is
triggered. The bit is triggered in the partScript foreground script when inspection
is completed. This is to enable the results of the various sensor tools to be
collated in an XML format. This XML format was hard-coded in the DATALINK
string output format. It gives an output in the following format:

<MODEL>{identifPart_Tool.BestMatchType}</MODEL>

<DONE> {identifPart_Tool.ResultString} </DONE>

<X> {Pickpos_Tool.PickPoint.X}</X>

<Y> {Pickpos_Tool.PickPoint.Y}</Y>

<ANGLE> {Pickpos_Tool.PickPoint.ANGLE}</ANGLE>

The camera stores this as the format with which DATALINK sends out inspection
results and fills in the various properties of sensor tools (for example,
identifPart_Tool.ResultString) when the output message is to be sent.

4.4 Feeder robot

The feeder robot is an RTX robot and, as was stated earlier, it is without a
controller. Communication between the PC controller and the robot is over a RS-
232 port. The commands sent and responses received by the robot are in bytes.
Depending on the type of command, command bytes may be sent in one or two

57

transactions. In the RTX robot, a transaction is a complete cycle of sending a
command and receiving a response. The interaction between the PC controller
and the robot is 4 bytes long and these bytes include both the command and the
response bytes. Commands are always one byte or three bytes long, while
responses are also always one byte or three bytes long and for any transaction,
the sum of bytes for the command and the response never exceeds 4 bytes.
Therefore, if a command of length 3 bytes is sent to the robot, then a response of
length one byte is received, and if a command of length one byte is sent, then
there are two possibilities to the length of the response. The response could be
of length one byte or three bytes. Commands of length one byte are usually
those of the “supervisory” type that typically requests information from the
robot controllers and these commands are usually completed in one transaction.
The robot is internally controlled by two controllers called IP0 and IP1 which
perform the actual control of its appendages. The particular bytes for specific
commands and the expected responses received, including the number of
transactions required, are given by the manufacturer in the robot's
documentation files (UMI, 1986). Distances in the robot are measured in terms of
encoder counts and the conversion ratios of these encoder counts to millimeters
are also given by the manufacturer (UMI, 1986).

Apart from the bytes needed to control the robot, the geometry of the robot also
plays an important role in the control of the robot. For the movement of the
robot arm to any position, the lengths of the robot shoulder, elbow and grippers
are considered and the problem is solved as a geometric problem using the laws
of cosines. This is used to determine the distance (and therefore, the encoder
count value) that should be sent to the robot in order for it to move to the
correct position. This also applies in the case of the pitch, the roll and the gripper
distance of the robot.

In the control program of the robot, a library file, similar to the RT100.lib file
provided by Wane [s.a.], was developed. It was written as a dll file and it takes
care of the low-level byte transactions with the robot's IP controllers. Another
library file, called Interact.dll, was developed to perform the geometric
calculations and convert distances given in Cartesian coordinates to encoder
counts for the various motors of the robot. Three of the methods used in the
control program are the moveTo(x,y,z), open(grip) and the rotateBy(angle)
methods. The first method is used to move the robot arm to a given position
(x,y,z), the second is used to open the grippers through a given distance “grip”,
and the third method is used to rotate the grippers through a specified angle.
The PicknPlace(frmX,frmY,frmZ,frmAng,toX,toY,toZ) method is used to pick up the
parts from a position (frmX,frmY,frmZ) to (toX,toY,toZ). The frmAng represents
the roll angle of the robot wrist.

58

5 Reconfigurable control of the feeding
system
As discussed earlier, the feeding system consists of the singulation unit, the
camera and the robot. The overall controller for the feeding subsystem is a PC.
The control is distributed among the controllers of each of the subsystems
mentioned above with the feeding system controller at the top of the hierarchy.
Each one of the subsystems is also controlled by a PC. The communication
interface between all the controllers is Ethernet. The layout is as shown in figure
5.1. In this work, the same PC is used as the controller, while the control
programs use different Ethernet ports for communication.

Figure 5.1 Communication layout of feeding system

Our aim in this chapter is to discuss how the control of the feeding system was
implemented to make it reconfigurable. There are two methods considered in
this work: the agent-based approach and the distributed approach based on the
IEC 61499 standard. These two methods should interface with the controllers of
each of the subsystems in the feeding system as developed in chapter 4. For this
reason, a client-server approach and an XML data exchange format, both of
which are discussed next, were used.

5.1 Subsystems' interaction

Since the communication between the feeding system controller and the
controllers of its subsystems is over Ethernet, each of the subsystem control
programs was programmed to be a server and the feeding system control
program acts as a client. This is the case in the agent-based and the IEC 61499
distributed approaches. The use of socket programming makes it easy to transmit
data as strings (i.e. in XML format, in this work) between the controllers. In

59

Singulation unit
Controller

Robot Controller

Feeding System Controller

Camera Controller

addition, socket programming is language independent which makes the transfer
of data uniform in spite of the fact that the subsystem controllers were
programmed using Visual Studio, the multi-agent system is executed using JADE,
and the IEC 61499 distributed control is implemented in FBDK. Socket
programming also provides a seamless connection with the camera. Each
controller in this work was assigned a port over which it listens for connections as
a server. A list of the various ports allocated to each controller is provided in
appendix C.

The XML format adopted for the exchange of data between the controllers is also
given in appendix C. In order to send data from one controller to the other, the
data is written as an XML document and this document is sent as a string to the
output stream of the TCP/IP connection. The string is received by the other
controller and it is decoded based on the standard XML format. After decoding
the string, the controller can tell whether the data was intended for it or not. It
can also extract the necessary information it needs in order to implement the
task requested. In Visual C#, the XML document was written using XMLTextWriter
and decoded using the XMLTextReader. The XML writer is used to create an XML
document and this document is converted to string using a string writer. The
string is then written to the TCP/IP network stream. In Java (on which the JADE
platform for agents runs), the XML documents were written using a library file
downloaded from the internet. The library file was developed by Jakarta ECS for
creating XML documents in Java. Decoding the XML format data in Java is done
by parsing the XML string using the SAX (Simple API for XML) and DOM
(Document Object Model) API from W3C (i.e. the World Wide Web Consortium),
which is responsible for developing standards such as XML (W3C, 2010).

5.1.1 Singulation unit control program

The singulation unit control program listens for connection from the feeding
system controller on port 7210. It receives the XML string format and parses it to
determine, based on the task given, whether it should LOAD or REJECT a part. If it
is able to complete the task, it returns an XML string format, which contains
“<DONE>true</DONE>” indicating the task was completed successfully, to the
feeding system controller, else it returns a “<DONE>false</DONE>” message and
the singulation unit triggers a FAULT output (e.g. if no part is loaded due to
clogging).

5.1.2 Feeder camera control program

The feeder camera control program listens for connection on port 7220. It
receives the XML string format and parses it to determine whether to perform an
INSPECT task. The XML string also contains the part to be inspected. The control
program then creates a client socket with which it connects to the Cognex

60

camera's background script (which is listening for connection on port 3248 of the
Cognex camera's IP address). The control program sends two bytes: byte value 1
for INSPECT and the second byte value to represent the ID of the part to be
inspected. The Cognex camera returns whether the part was correctly identified,
and it also returns the pick point position and the angle of orientation of the part.
If the part was not correctly identified, the control program returns an XML string
containing “<DONE>false</DONE>” to the feeding system controller. However, if
the part was correctly identified, the control program carries out a coordinate
transformation (discussed below), and sends the pick position and angle to the
feeding system controller in XML format.

In this work, a general reference coordinate system was chosen for coordinate
exchange between the feeder camera and the robot. This reference coordinate
system was such that its X axis is same as the Y axis of the Cognex camera, and its
Y axis is the negative of the X axis of the camera. In addition, the origin of the
Cognex camera's coordinate system has an offset (223, 1190, 320), in millimeters,
from the origin of the reference coordinate system. Therefore, the coordinate
transformation done in the feeder camera control program is as follows:

The reference coordinate X is Cognex camera Y + X offset (i.e. 223);

The reference coordinate Y is -[Cognex camera X] + Y offset (i.e. 1190);

The reference coordinate Z is Z offset (i.e. 320).

The angle of orientation is measured clockwise from the Y axis of the camera and
was set to have a value that lies between the range -180 degrees to 180 degrees.

5.1.3 Robot control program

The robot control program listens for connection on port 7230. It receives the
XML string format and parses it to determine whether to perform a PICKUP task.
The XML string also contains the X, Y, Z position of the part to be picked, and the
angle of orientation. The control program transforms this position coordinate
from the general reference coordinate system. The axes of the reference
coordinate system align with the axes of the robot, but the origin of the robot's
coordinate system is at an offset of (-150, 1100, 0), in millimeters, to the origin of
the reference coordinate system. The control program transforms the
coordinates received as follows:

The robot coordinate X is Reference X – X offset (i.e. -150);

The robot coordinate Y is Reference Y – Y offset (i.e. 1100);

The robot coordinate Z is Reference Z;

61

The robot roll angle is the negative of the angle of orientation (if the angle of
orientation is negative) or 180 – angle of orientation (if the angle of orientation is
positive).

The roll angle is set to be perpendicular to the angle of orientation of the part,
but since the roll angle is measured counterclockwise from the robot's Y axis
(which is perpendicular to the Cognex camera's Y axis), the roll angle is thus 180 –
the angle of orientation. In addition, a given roll angle θ is the same as the roll
angle 180 + θ.

5.2 Agent-based control

Multi-agent systems are one of the means of achieving reconfigurable control.
One of the ways of making the feeding system reconfigurable is to ensure the
independence of the subsystems within it, i.e. the singulation unit, the camera
and the robot. Hence, the feeding system can be seen as a holonic system in
which the individual subsystems are independent. Holons can be implemented
using agents.

5.2.1 Holons in the feeding system

According to the methodologies for holonic systems, such as PROSA, ADACOR,
etc, the physical components or machines form a class of holons. Therefore, the
singulation unit, the camera and the robot are holons and they are referred to as
the resource holons in PROSA and operational holons in ADACOR. In this work,
the singulation unit holon, the camera holon and the robot holon are each
implemented as feederAgent, cameraAgent and robotAgent agent classes in the
multi-agent system. Also, there is the taskAgent holon which performs the task of
the product holon and the task holon, as specified in PROSA and ADACOR
respectively. Finally, there is the controllerAgent holon. This holon maintains the
other holons and is referred to as the staff holon in PROSA and the supervisor
holon in ADACOR. From the foregoing, five holons, and therefore five agents,
were identified: the supervisor holon, the singulation unit holon, the camera
holon, the robot holon and the task holon, which are implemented as the
controllerAgent, the feederAgent, the cameraAgent, the robotAgent and the
taskAgent agent classes respectively. These agents were implemented on the
JADE platform (JADE, 2010).

As mentioned in chapter 2, JADE is one of the programming languages for
implementation of multi-agent systems. One of the reasons for choosing JADE in
this work is that it is a well developed and researched language. Since 1998 when
it was developed by the Telecom Italia (formerly CSELT), it has constantly been
updated and the latest version, JADE 3.7, was released in June 2009. Another

62

reason for the choice of JADE is the large number of resources and support
available for the language by other developers. Furthermore, the language is FIPA
compliant and its communication framework complies with the agent
communication language (ACL) of FIPA. Also, in JADE, different interaction
protocols already exist within the software framework so that there is no need to
program an interaction protocol. Examples of the protocols, which are used in
this work for bargaining between the agents, are the FIPA-Request and the FIPA-
Contract-Net protocols. In JADE, the different actions which an agent is able to
perform are programmed as behaviors.

In order for agents to communicate meaningfully, it is necessary to develop an
ontology. An ontology was developed for this case study using the Protege
software and JADE ontology bean generator. The ontology consists of concepts,
actions and predicates. Concepts are entities with structure and properties, and
are typically nouns. Actions, on the other hand, represent the agent actions and
are typically verbs. Predicates indicate some form of relationship between
concepts. The actions used in the multi-agent system include Inspect, Load,
PicknPlace and Reject. The concepts used include Controller, Duration, Part and
Position, while the predicates used include hasControllerName, isPosition and
lostEffector. This ontology was automatically generated by the JADE ontology
bean generator from Protege. The generated ontology files were then
programmed.

Before the discussion of the behaviours of each of the agents, two actions
common to all the agents will be mentioned. The first is the registration of the
agents in the yellow pages of the JADE platform. JADE has a yellow-pages
function which allows agents to publish their services so that they can be located
by other agents. All the agents used in this multi-agent system publish their
services as part of their setup() method. They also include a service description
by which they can be found, for example, the robotAgent gives its service
description as “robot”. This implies that when a search criterion is done using
“robot”, all robot agents with that service description will be located. The second
action common to all the agents is the “deregistration” of the agents from the
yellow-pages service when the agents are terminated. This is included in the
takeDown() method of the agents and is called when an agent is to be
terminated. This action is also provided by the supervisor holon as a behaviour.

5.2.2 Supervisor holon

The supervisor holon is implemented as the controller agent. The supervisor
holon is responsible for creating the agents for the other controllers and
performs the clean up when any agent is terminated. The controller agent is the
first agent that is created and remains in the main agent container when the

63

agent platform starts up. The controller agent manages the existent controllers
within the multi-agent system, and it informs the JADE AMS (agent management
system) of which agents are to be created or terminated. The behaviours (or
actions) of this agent are called createController and killController.

The createController behaviour is a OneShotBehaviour, which in JADE, is a
behaviour that runs only once. It is activated when the controller agent receives
any messages from a new controller connected to the multi-agent system. The
controller agent requests the JADE AMS to create an agent for the new controller.
In the case study of the feeding system, the controller agent creates the
feederAgent, the cameraAgent, the robotAgent and the taskAgent agents upon
system start up. It does this by adding new createController behaviours with each
of the agent names in the program thus:

addBehaviour(new createController(feederAgtName, feederAgtClass));

addBehaviour(new createController(cameraAgtName, cameraAgtClass));

addBehaviour(new createController(robotAgtName, robotAgtClass));

addBehaviour(new createController(taskAgtName, taskAgtClass));

The other behaviour, the killController, is a cyclic behaviour. In JADE, this means
that the behaviour runs continuously throughout the life of the agent. The
purpose of this behaviour is to inform the AMS to deregister any agent, and its
services, that has been terminated. This deregisteration includes removing the
services of the terminated agent as well as reducing the number of agents of that
kind within the system. This behaviour is added thus: addBehaviour(new
agentKiller());

5.2.3 Singulation unit holon

The singulation unit holon is implemented as the feeder agent. The feeder agent
performs two actions: loading parts and rejecting parts. It, therefore, has two
behaviours which represent these actions. These behaviours are called loadPart
and rejectPart, and are both cyclic behaviours. Each of these behaviours cyclically
scans all messages received by the feeder agent. The loadPart behaviour looks for
“load” messages, while the rejectPart behaviour looks for “reject”. These
behaviours are implemented to respond to FIPA-Requests and FIPA-Contract-Net
messages. In the case of FIPA-Requests messages, the relevant behaviour
executes the task immediately and responds with a FIPA-Inform or FIPA-Failure
depending on whether it performs the task successfully or not. In the case of
FIPA-Contract-Net call for proposal, the relevant behaviour responds by sending a
proposal of its duration time which the contract-net initiator may accept or not. If

64

the proposal is accepted, then the task is executed. The task agent used in the
case study of the feeding system, which is responsible for initiating request
messages, uses the FIPA-Request. The behaviours of the feeder agent are added
thus: addBehaviour(new loadPart()); for loading parts, and addBehaviour(new
rejectPart()); for rejecting parts.

5.2.4 Camera holon

The camera holon is implemented as the camera agent. The camera agent
performs only one action: inspecting parts. It, therefore, has just one behaviour:
the inspectPart behaviour. This behaviour is a cyclic behaviour. The inspectPart
behaviour continuously scans all messages received by the camera agent for
“inspect” messages. The response of the behaviour to FIPA ACL messages is
similar to that described above in the case of the feeder agent. The behaviour of
the camera agent is added thus: addBehaviour(new inspectPart());.

5.2.5 Robot holon

The robot holon is implemented as the robot agent. The robot agent performs
only one action, which is to pick up parts and place them in the fixtures on the
pallets. This action is represented as a cyclic behaviour which is called pickPart
behaviour. The pickPart behaviour cyclically scans all messages received by the
robot agent for “PicknPlace” messages. The response of the pickPart behaviour
to FIPA ACL messages is similar to that described for the case of the feeder agent.
The behaviour of the robot agent is added thus: addBehaviour(new pick());.

5.2.6 Task holon

The task holon is implemented as the task agent. The task holon generates the
task to be done, and is responsible for sending request messages to other agents.
It carries out the steps necessary for the feeding system to load a part by
coordinating the activities of the other agents, and it takes decisions based on
the outcome of each of the tasks performed by the other agents. It determines
the procedure and sequence of the job to be done. When a part is required to be
loaded onto a pallet, it sends a message to the singulation unit holon requesting
it to load a part. If the singulation unit is not able to load the part, a fault
message is printed by the task holon, but if the task holon is informed that the
part has been successfully loaded by the singulation unit holon, it sends another
message to the camera holon to inspect the part. If the camera holon informs the
task holon that the inspection was successfully done (and the part's pick position
is supplied), the task holon sends a message to the robot to pick the part, but if
the inspection response message was a failure message, the task holon sends a
message to the singulation unit holon to reject the part. If the robot holon
returns a failure message, the singulation unit holon is requested to reject the

65

part, but if the robot successfully picks the part, the camera holon is requested to
confirm by inspection whether the part has been picked. If no part is detected,
the task is completed, but if a part is detected, the singulation unit holon is
requested to reject it. The behaviour has handleInform and handleFailure
methods for each type of message returned to it. These steps are implemented in
the task agent as a stepped behaviour called the nextJob behaviour. A variable
called step is defined in the behaviour and the value is only increased when the
current task is successful and then, the behaviour proceeds to the next step. This
behaviour is introduced as addBehaviour(new nextJob());.

The task agent also has three additional behaviours: the feederAgentList, the
cameraAgentList and the robotAgentList behaviours. The agent uses these
behaviours to request the list of all feeder agents, camera agents and robot
agents in the multi-agent system. The behaviours sends these requests to the
JADE DF (Directory Facilitator), which uses the service descriptions (which in our
case are feeder, camera and robot respectively) of the agents to locate them in
the yellow pages of the JADE platform.

5.3 Distributed control based on IEC 61499

The IEC 61499 standard is another methodology for the distributed control of
holonic systems aimed at system reconfigurability. This method is also applied to
the control of the feeding system. In the distributed control method, the
controllers are programmed using function blocks and the controller of each
subsystem is configured as an independent device. Therefore, for the feeding
system, the singulation unit, the camera and the robot controllers are configured
as devices in the function block application. Each of these devices has function
blocks suitable for its operation mapped into it. The IEC 61499 function block
model of the feeding system is developed using the FBDK from Holobloc Inc. The
FBDK is used because it has the longest history of all the software development
kits available for the IEC 61499 standard and it provides services which range
from the development of function blocks to the execution of the function block
application. In addition, FBDK is still being constantly used and developed, and
there is an active group of users of FBDK that participate in an FBDK googlegroup
where ideas are shared on the software with its developers.

From the discussion above, three devices have been identified respectively for
the singulation unit, the camera and the robot. These were named as the Feeder
device, the Camera device and the Robot device in the function block application
model. In addition, there are the IN_DEV1 and OUT_DEV1 devices, which are
HMI devices set up for diagnostic purposes and they will be discussed further in
section 5.3.2. A full description of each function block and the distributed

66

application as mapped into the various devices is given in appendix D. Similar to
the case of the agent-based control method, the controller devices have to
communicate with the subsystem controllers developed in chapter 4. In the
distributed control method, socket programming and the XML data format are
also used, except that they are done with the use of function blocks. FBDK
provides a standard function block for client-server communication over
Ethernet. The creation of XML documents and parsing of XML strings were done
using the XML encoder and parser function blocks which we discuss next.

5.3.1 XML encoder and parser function blocks

The XML encoder and parser function blocks were developed to enable the
function blocks in the controller devices, i.e. the feeder device, the camera device
and the robot device, to communicate with the subsystems' controllers, i.e. the
control programs of the singulation unit, the camera and the robot developed in
chapter 4. The XML encoder function blocks are used to create XML documents
that are sent as strings to the subsystems' controllers, while the XML parser
function blocks are used to parse XML strings received from the subsystems'
controllers.

There are two types of XML encoder function blocks developed in this work and
they are shown in figure 5.2 below. The first of them, XML_ENCODER_1, is used

Figure 5.2 XML encoder function blocks

to create XML string formats that are sent to the singulation unit and the camera
control programs. The second function block, XML_ENCODER_4, is used to create
XML string formats that are sent to the robot control program. The reason for
these different function blocks is the XML standard used in this work. The XML
format for the control programs of the singulation unit and the camera only

67

require the task to be executed and the part to be loaded or inspected, while the
robot control program needs to be supplied the X, Y and Z positions (relative to
the origin of the reference coordinate system) of the part to be picked, along
with the angle of orientation. Apart from the difference in the number and the
type of inputs required, both encoder function blocks work in the same way.
Figure 5.3 shows the execution control chart (ECC) of the function blocks. The
REQ algorithm shown also uses the Jakarta ECS library file to create XML
document. The .java files which FBDK generates for each function block were
modified so that the Jakarta ECS library file can be used to generate XML
documents. The modified .java files were then recompiled and used to replace
the FBDK compiled .class files.

Figure 5.3 ECC of XML encoder function blocks

A similar procedure was followed for the XML parser function blocks shown in
figure 5.4. There are also two parser function blocks: the XML_PARSER_0, which
is used to parse XML strings received from the singulation unit and the robot
control programs, and the XML_PARSER_4, which is used to parse XML strings
received from the camera control program.

Figure 5.4 XML parser function blocks

68

The camera function block uses XML_PARSER_4 because it returns four values
representing the pick position and angle of the inspected part, while the
singulation unit and the robot function blocks use XML_PARSER_0 because the
XML string to be parsed only returns one value which represents whether the
task was successfully done or not.

5.3.2 IN_DEV1 and OUT_DEV1 HMI devices

The IN_DEV1 and the OUT_DEV1 were set up as HMI devices. In FBDK, HMI
devices have panel resources, which enable the display of input control buttons
and output display respectively. Figure 5.5 shows the graphic displays of the
IN_DEV1 and the OUT_DEV1 devices. IN_DEV1 is used to accept input from the
user. It displays a drop-down list from which the user can make choices. As shown
in the figure, the two choices available are LOAD and REJECT part. There is a text
box which accepts user input of the type of part to be loaded, and a control
button marked GO which starts the LOAD or REJECT action. OUT_DEV1, on the
other hand, is only used for diagnostic purposes. It reports what task is currently
in progress and reports whether it was successfully done or not. It receives the
updates on the progress of work from each of the other devices and updates the
display based on the progress report.

Figure 5.5 IN_DEV1 and OUT_DEV1 user interfaces

The function blocks used in the IN_DEV1 and OUT_DEV1 are given in appendix D.
All the function blocks are standard function blocks provided in FBDK except
HMI_EXIT function block. HMI_EXIT is programmed to read the choice of the user
and it generates a LOAD or REJECT event depending on the choice of the user.
This event is communicated to the Feeder device through a publisher function
block.

69

5.3.3 Feeder device

The Feeder device contains the function blocks which control the singulation
unit. It contains a subscriber block, a composite function block called the
FB_FEEDER, and two publisher blocks. The Feeder device receives events and
data from other devices through the SUB1 subscriber block and it sends events
and data to the Camera device for inspection through one of the publisher
blocks, the PUB2 publisher block. It also sends event updates to the OUT_DEV1
device through the other publisher block, the PUB5 publisher block.

The main control function takes place within the FB_FEEDER function block. The
FB_FEEDER function block, apart from the customary INIT and INITO events, has
two event inputs: the LOAD and the REJECT events, which represent the tasks
that the singulation unit executes. It also has two event outputs: the CNF and the
INSPECT events. The CNF event confirms that the task assigned to the singulation
unit has been completed and a Boolean variable associated with the event
indicates whether the task was successful or not. The INSPECT event is an event
which is sent to the Camera device, and it is only generated if the input event to
the FB_FEEDER was a LOAD event and the loading was completed successfully.

The FB_FEEDER function block consists of the FEEDER_ENTRY, the
XML_ENCODER_1, the CLIENT_1, the XML_PARSER_0 and the E_SPLIT (which is
the FEEDER_EXIT) function blocks. The function block network in the FB_FEEDER
is shown in figure 5.6. The function of each of these function blocks is as follows:
the FEEDER_ENTRY function block determines what task is to be performed by
the singulation unit. The task to be performed is received as an input event from
the IN_DEV1 device. FEEDER_ENTRY then sets the TASK string variable to either
“LOAD” or “REJECT” and sends this to the XML_ENCODER_1 function block.
XML_ENCODER_1 also receives the type of part to be loaded, stored in the PART
variable, from the IN_DEV1 device and with this, it creates the XML data format
for the string that will be sent to the control program of the singulation unit. If
the event is a REJECT event, then there is no need for a PART variable.

The XML string output is sent to the control program of the singulation unit
through the CLIENT_1 function block, which serves as a client over Ethernet. The
response from the singulation unit's control program is also obtained through the
CLIENT_1 function block. The response is in XML format and has to be parsed so
it is sent from the CLIENT_1 to the XML_PARSER_0 function block.
XML_PARSER_0 parses the XML string to determine whether the task was
completed successfully or not. In the case of a REJECT event, there is no need to
generate any further events, but in the case of a LOAD event, a CNF event is
generated by the XML_PARSER_0 which is split into two by the E_SPLIT function
block. One of the events is sent to the OUT_DEV1 device to update the display

70

output, while the other is an INSPECT event which is sent to the Camera device
for it to inspect the loaded part.

Figure 5.6 FB_FEEDER composite function block

5.3.4 Camera device

The Camera device contains the function blocks which control the camera. It
contains a subscriber block, a composite function block called the FB_CAMERA
and three publisher blocks. The Camera device receives events and data from
other devices through the SUB2 subscriber block. The only type of event the
Camera device responds to is the INSPECT event and it sends events and data to
three other devices. It uses the PUB3 publisher block to send PICKUP events to
the Robot device when a part is successfully inspected by the camera, and it uses
the PUB4 publisher block to send REJECT events to the Feeder device in cases
where there is an inspection failure. It also sends event updates to the
OUT_DEV1 device through the PUB6 publisher block.

The main control function takes place within the FB_CAMERA function block. The
only task performed by the Camera device is to inspect so the FB_CAMERA
function block has only one event input, the INSPECT event, apart from the INIT
event. It also has four event outputs, which include the INITO, the CNF, the
PICKUP and the REJECT output events. The CNF event is generated when the
inspection task is completed by the Camera device and a Boolean variable
associated with the event indicates whether the task was successful or not. This
event is sent to the OUT_DEV1 device for it to update the display output.
Depending on the outcome of the inspection task, FB_CAMERA generates either
a PICKUP event which is sent to the Robot device (along with the pick position
and angle of the part) if the inspection was successful, or a REJECT event which is
sent to the Feeder device if the inspection was not successful.

The FB_CAMERA function block consists of the CAMERA_ENTRY, the
XML_ENCODER_1, the CLIENT_1, the XML_PARSER_4, the E_SPLIT and the

71

CAMERA_EXIT function blocks. The function block network in the FB_CAMERA is
shown in figure 5.7. The function of each of these function blocks is as follows:
the CAMERA_ENTRY function block receives an INSPECT input event from the
Feeder device. It then sets the TASK string variable to “INSPECT” and sends this to
the XML_ENCODER_1 function block. XML_ENCODER_1 also receives the type of
part to be inspected, stored in the PART variable, from the Feeder device and
with this, it creates the XML data format for the string that will be sent to the
control program of the camera.

The XML string output is sent to the control program of the camera through the
CLIENT_1 function block, which serves as a client over Ethernet. The response
from the camera's control program is also obtained through the CLIENT_1
function block. The response is in XML format and has to be parsed, so it is sent
from the CLIENT_1 to the XML_PARSER_4 function block. XML_PARSER_4 is used
in this case because the string from the camera's control program will contain the
pick position (X, Y, Z) and angle of orientation of the part. XML_PARSER_4 parses
the XML string to determine whether the inspection was completed successfully
or not, and if it was successful, it parsers further for the X, Y, Z and ANGLE values
of the pick position. A CNF event is generated by the XML_PARSER_4 and this is
split into two events by the E_SPLIT function block. One of the events is sent to
the OUT_DEV1 device to update the display output, while the other is sent to the
CAMERA_EXIT function block. CAMERA_EXIT also receives the Boolean variable
DONE, which indicates whether the inspection was successfully carried out or
not, from XML_PARSER_4. If DONE is true, then CAMERA_EXIT generates a
PICKUP event which is sent to the Robot device, but if DONE is false, then
CAMERA_EXIT generates a REJECT event instead, which is sent to the Feeder
device for it to reject the part.

Figure 5.7 FB_CAMERA composite function block

72

5.3.5 Robot device

The Robot device contains the function blocks which control the robot. It
contains a subscriber block, a composite function block called the FB_ROBOT and
three publisher blocks. The Robot device receives events and data from other
devices through the SUB3 subscriber block. The only type of event the Robot
device responds to is the PICKUP event and it sends events and data to three
other devices. It uses the PUB8 publisher block to send REJECT events to the
Feeder device when the robot is unable to pick up a part, the PUB9 publisher
block to send INSPECT events to the Camera device after it has picked the part,
and it also sends event updates to the OUT_DEV1 device through the PUB7
publisher block.

The main control function takes place within the FB_ROBOT function block. The
only task performed by the Robot device is the pickup task so the FB_ROBOT
function block has only one event input, the PICKUP event, apart from the INIT
event. It also has three event outputs: the INITO, the CNF and the REJECT output
events. The CNF event is generated when the robot has completed the pickup
task and a Boolean variable associated with this event indicates whether the task
was completed successfully or not. This event is sent to the OUT_DEV1 device for
it to update the display output. Depending on the outcome of the pickup task,
FB_ROBOT generates a REJECT event, which is sent to the Feeder device, only if
the part was not successful picked, otherwise the CNF event generated is sent to
the Camera device to inspect whether the part has truly been picked.

The FB_ROBOT function block consists of the ROBOT_ENTRY, the
XML_ENCODER_4, the CLIENT_1, the XML_PARSER_0, the E_SPLIT and the
ROBOT_EXIT function blocks. The function block network in the FB_ROBOT is
shown in figure 5.8. The function of each of these function blocks is as follows:
the ROBOT_ENTRY function block receives a PICKUP input event from the Camera
device. It then sets the TASK string variable to “PICKUP” and sends this to the
XML_ENCODER_4 function block. XML_ENCODER_4 is used in this case because
the pick position X, Y, Z and ANGLE of the part will be included in the XML data
string. XML_ENCODER_4 receives the pick position from the Camera device, and
then creates the XML data format for the string that will be sent to the control
program of the robot.

The XML string output is sent to the control program of the robot through the
CLIENT_1 function block, which serves as a client over Ethernet. The response
from the robot's control program is also obtained through the CLIENT_1 function
block. The response is in XML format and has to be parsed, so it is sent from the
CLIENT_1 to the XML_PARSER_0 function block. XML_PARSER_0 parses the XML
string to determine whether the pickup of the part was completed successfully or

73

not. A CNF event is generated by the XML_PARSER_0 and this is split into two
events by the E_SPLIT function block. One of the events is sent to the Camera
device and the OUT_DEV1 device to update the display output, while the other is
sent to the ROBOT_EXIT function block. ROBOT_EXIT also receives the Boolean
variable DONE, which indicates whether the pickup task was successfully carried
out or not, from XML_PARSER_0. If DONE is true, then the Camera device
proceeds to inspect, while no further event is generated in ROBOT_EXIT, but if
DONE is false, i.e. pickup was not successfully done by the robot, then
ROBOT_EXIT generates a REJECT event which is sent to the Feeder device for it to
reject the part.

Figure 5.8 FB_ROBOT composite function block

74

6 Comparison between controllers and
control methods
The control of the pallet magazine was done using a PC and a PLC as controllers,
and two different control methods have been used for reconfigurable control of
the feeding system. We now proceed to compare the two controllers used and to
compare the two control methods used.

6.1 Comparison between PC and PLC

The PC used in this work has an Intel Pentium 4 CPU with a processor speed of
3.00 GHz. It also has 0.99GB of RAM, and runs Microsoft Windows XP
Professional Version 2002 Service Pack 3. The hardware modules used with the
PC are the Applicom card, PCIE1500PFB, for PROFIBUS communication, and the
Eagle uDAQ Lite device for reading from and writing to the digital ports. On the
other hand, the PLC used has a SITOP 24V, 5A power supply with a Siemens CPU
315-2 PN/DP which is capable of PROFINET and PROFIBUS communication. The
PLC signal modules are DI16XDC24V, DO16XDC24V/0.5A and
DI8/DO8XDC24V/0.5A. The software used to configure and program the PLC is
the SIMATIC Manager STEP 7 V5.4 + SP5. The comparison between the PC and
the PLC as controllers is done using the criteria for measuring the quality of a
controller given by Lewis (1998). These criteria include: capability, availability,
usability and adaptability. Cost will be considered as an additional criterion. The
comparison made below is strictly based on what was experienced in this work.

6.1.1 Capability

Capability is the extent to which a system can perform its intended design
function (Lewis, 1998). It is influenced by the following factors:

• Responsiveness: this is the time required for the system to produce
appropriate responses to a specified combination of external events
(Lewis, 1998).

The PLC is more responsive than the PC, since it takes a shorter time to
respond to external events than the PC. The test was to consider the time
taken by each controller to raise the conveyor assembly of the pallet
magazine and then close the jaws. The process took over 2 seconds for
the PC controller while it took less than a second for the PLC controller.

75

• Processing capacity: this is the extent to which the system can meet
scheduling deadlines under specified sets of conditions (Lewis, 1998).

The processing capacity of the PLC is higher than that of the PC. As can be
seen from the test mentioned above, the PLC is capable of meeting
stricter deadlines than the PC.

• Storage capacity: this is the extent to which the system can retain in
memory all the required programs and data under specified sets of
conditions (Lewis, 1998).

The PC has a higher storage capacity than the PLC. While the PLC has
adequate memory to store its data and programs, it is without doubt that
the PC has greater provision for memory to store data and programs. The
memory capacity of the PLC is typically between 128KB and 2MB, while
the PC may have a memory size of up to 250GB. The PLC generally stores
only one program at a time, which is the program it runs when it is put in
run mode. If a different program is to be run on the PLC, then that
program has to be uploaded separately. On the other hand, for the PC, it
can store many programs simultaneously and any one of the programs
can be run at any time (and concurrently too).

6.1.2 Availability

Availability is the proportion of time in the life of a system when it is available for
its intended function (Lewis, 1998). It is influenced by the following factors:

• Reliability: this is the ability of the system to continue to perform all its
intended functions over a specified period of time and range of conditions
(i.e. the inverse of the mean time between failures) (Lewis, 1998).

The PLC is more reliable than the PC. Provided the PLC is correctly
configured, it is less prone to failures than the PC. An example of the PC's
abrupt failure is that sometimes, while running, the PC suddenly gives an
OS (operating system) Load Locker error when it accesses the data
acquisition card's dll methods. Therefore, since the mean time between
failures for the PLC is lower than for the PC, then the PLC's reliability,
which is the inverse of the mean time, is higher than the PC's reliability.

• Maintainability: this is the ease with which the system can be restored to
full capability after the occurrence of one or more faults from a specified
set. It is the inverse of the mean time of repair (Lewis, 1998).

The PLC is more maintainable than the PC. This is because the PLC
software makes provision for diagnosis of faults. It is able to report both

76

hardware and software faults. This makes identification of faults faster
than in the case of the PC. Repair may then be carried out by replacing
faulty hardware components or correcting wrong program logic. Moreso
in the PC, the debug tools cannot be used to debug dll files obtained from
other sources. Therefore, the mean time of repair is shorter for the PLC,
which implies that maintainability is higher for the PLC than the PC.

• Integrity: this is the degree to which the system can continue to perform
all its intended functions over a specified range of threats, including both
unintended user actions and intentionally hostile actions (Lewis, 1998).

Threats may be considered to be hardware-related or software-related.
The PC has a higher integrity than the PLC for some hardware-related
threats, while the PLC has a higher integrity for some software-related
threats. For hardware-related threats, this is demonstrated when the PLC
and the PC programs are run without connecting the PROFIBUS cable with
which they communicate with the drive inverter used in the pallet
magazine. In the case of the PLC, it immediately generates a Bus Fault and
a Signal Fault and goes into STOP mode. Whereas for the PC, the error is
reported, and the PC program can then decide whether it is safe to
continue other operations while retrying to establish communication via
the Profibus, or to halt program execution. For software-related threats,
while the PC may be susceptible to a virus attack, the PLC is much less
prone to such virus attacks.

6.1.3 Usability

Usability is the ease with which a specified set of users can acquire and exercise
the ability to interact with the system in order to perform its intended functions
(Lewis, 1998). For reconfigurable systems, it is necessary to extend the users in
Lewis' definition of usability to include not only end-users, but also, system
developers. Usability is influenced by the following factors:

• Entry requirements: this is the amount of formal and informal training
required before the user can learn to interact with the system (Lewis,
1998).

Entry requirements for the end-users of the PLC are slightly less than
those of the PC. This is because less training is required to use the PLC
than is required to use the PC. No special training is required to use a PLC
controlled system other than switching buttons on and off. For the PC, a
user needs to learn to use the keyboard and mouse. However, the entry
requirements for system developers of the PC and the PLC are the same.

77

• Learning requirements: this is the training required for a user [who has
met] a specified set of entry requirements (Lewis, 1998).

The learning requirements for the developer who will use the system to
develop a control program are less for the PLC than those for the PC. Part
of the training required for the developer of either type of controller is
the use of the programming languages. The amount of training required
to be able to use PLC programming languages, such as Ladder Logic, is less
than that required to use PC programming languages, such as C#.

• User productivity: this is the number of system-related operations per
unit time which can be performed by a user with a specified level of
training and experience (Lewis, 1998).

A definite verdict on the user productivity is difficult to give. This is
because there are tasks which require more system-related operations in
the PLC than in the PC, and other tasks which require more system-
related operations in the PC than in the PLC. A typical example of a system
task is the case of adding new signal (digital input and output) modules to
the controller. For the PC, all this requires may be plugging the module
into a USB port as in the case of the Eagle USB card without making any
system modifications, while for the PLC, the system must be stopped and
the hardware configuration must be modified in the PLC software and
reloaded after the signal module has been added. On the other hand, if
the module to be added is a field bus module such as the Applicom card
for the PC, the system must be shut down. The Applicom card is then
slotted into the PCI bus of the PC and the card's software is installed,
while for the PLC, the amount of operations required to install interface
modules is exactly the same as the case of adding signal modules.

• Congeniality: this is how “user-friendly” the system is (Lewis, 1998).

The PC is more congenial than the PLC. This is because the PC program
interface can be made more user-friendly for the final user than the PLC.
The PC usually has a graphic user interface, while the PLC has no such
interface. However, this is provided the use of an HMI screen with the PLC
is not considered.

6.1.4 Adaptability

Adaptability is the ease with which the system may be changed in various ways
from its initial intended functions (Lewis, 1998). This is the criterion that is most
related to reconfigurability. Adaptability is influenced by the following factors:

78

• Improvability: this is the ease with which system attributes can be
upgraded without affecting system functionality (Lewis, 1998).

The PC is more improvable than the PLC. This is because, in the PC,
different components, software and software updates can be installed on
the PC to improve it without affecting its functionality. In the case of the
PLC, this is more difficult to do because even moving from one PLC series
range to another one by the same manufacturer may lead to program
incompatibility thereby necessitating a change of software. An example is
the case of the Siemens S-200 and S-300 series PLC which use different
software and have incompatible programs.

• Extensibility: this is the ease with which new functionality can be added
to the system (Lewis, 1998).

The PC is more extensible than the PLC. This is similar to improvability,
and it is easier to add new functionality to a PC than to a PLC.

• Portability: this is the ease with which system functionality can be moved
from one system to another (Lewis, 1998).

PC programs are more portable than PLC programs. A PC's functionality
may be moved and accessed across different PCs and PC software from
different manufacturers. For example, the Applicom card which was used
as the PC fieldbus module can be used even in PCs from different
manufactures. However, in the case of the PLC, such portability is
impossible or very difficult. For example, the fieldbus functionality cannot
be moved easily from a Siemens S-300 PLC to a Siemens S-1200 PLC
because the S-1200 PLC cannot be used as a PROFIBUS master.

• Reusability: this is the ease with which the functional capabilities of an
existing software element can be used in a new or different system
(Lewis, 1998).

PC software is more reusable than PLC software. Existing programs in a PC
are easily transferable and reusable in different PCs while for the PLC, it is
likely that existing programs are only transferable and reusable between
exactly the same PLCs. In fact, the number of hardware modules in both
PLCs must be the same and arranged in the same order else the program
from one PLC cannot be reused in the other.

In summary, for the case study considered here, there are some PLC attributes
which give it some advantages over the PC, while there are other PC attributes
which give it some advantages over the PLC. The choice of which one to use in a

79

given application will depend on which of the controller attributes the user
considers as relatively more important than others. However, the PC, because of
its higher adaptability, is more suitable for application in reconfigurable systems.

6.1.5 Cost

In addition to the attributes discussed above, we mention cost. The cost is
considered in terms of the monetary value of the controller and the time taken to
get the various components of the controller to work. The monetary value of the
PLC, which includes the cost of the DIN rail, the CPU, the signal modules, the
SITOP power supply, the front connectors, and the 512KB memory card, is
R36828.12. The cost of the PC, which includes the cost of the CPU, the monitor,
the keyboard, the mouse, the Applicom card, and the Eagle uDAQ Lite device, is
R29020.12. This shows that the PC is marginally cheaper than the PLC.

With regards to the time taken to get the components to work, this is subjective
and the following is based entirely on our own experience. It took a shorter time
to get the PLC to work than it took for the PC. The PLC modules are from the
same manufacturer and are closely integrated, so getting the various modules to
work only took about 2 weeks which is the period it took to learn and become
familiar with PLCs and PLC programming. The time to get the various PC
components to work was much longer. It includes the time taken to read through
the manuals of the various components and avenues to learn how to use these
components (particularly the Applicom card) were not available. In all, it took
about 6 weeks to acquire the requisite skill to use all the components of the PC.

6.2 Comparison between agent-based control and
distributed control based on IEC 61499

The comparison between the agent-based control method and the IEC 61499
distributed control method is done using the characteristics of reconfigurable
systems given by ElMaraghy (2006) as the criteria. These characteristics include:
modularity, integrability, convertibility, diagnosability, customization and
scalability. Modularity, integrability and diagnosability reduce the reconfiguration
time and effort, while customization and convertibility reduce cost. In addition,
the fault tolerance of both control methods is considered.

6.2.1 Modularity

The IEC 61499 distributed control system is more modular than the agent-based
control system. This is because every device in the IEC 61499 distributed control
system is entirely independent and only sends to and receives events and data
from other devices. On the other hand, in an agent-based system, there is always
a “host” system on which the main container runs. Therefore, in one way or the

80

other, all the agents are connected to this main host system and any threat to the
host affects the entire multi-agent system. The IEC 61499 system does not have
any such “host”. In the feeding system agent-based control, the Controller Agent
resides in the host.

6.2.2 Integrability

This is a measure of a system based on the performance of its components and
interfaces of both software and machine hardware modules (Koren et al, 1999). It
shows whether the system is ready for both integration and future introduction
of new technology (ElMaraghy, 2006).

The agent-based system is more integrable than the IEC 61499 control system.
This is because, in the agent-based control system, any agent can join the multi-
agent system (if the agent and the system are FIPA compliant, and they have
compatible ontology) even at run time, while in the IEC 61499 control system, the
new system has to be explicitly added to the system configuration. Furthermore,
in the agent-based control system, once a new agent joins the multi-agent
system, it can register and publish its services so that any other agent within the
multi-agent system that requires those services can locate the new agent in the
yellow-pages service. A message requesting the new agent to perform any
service may then be sent to it. However, in the IEC 61499 distributed control
system, it is necessary that the new system or device is explicitly added to the
system configuration and included in the subscriber list by adding a subscriber
function block with the appropriate address (plus a publisher function block or a
client/server connection if that is necessary).

In the feeding system agent-based control, if an additional feeder is to be added
to the system, the new Feeder Agent is created and is registered in the main
container and publishes its services so that it can be located by the Task Agent in
the yellow-pages service. The Task Agent will now see two feeder agents and it
can choose between them using the contract-net protocol. In the case of the IEC
61499 control system, this will necessitate modifying the system as follows: the
new device will have to have a subscriber function block with the same address
as the former feeder and an interaction protocol for choosing which feeder to
assign the LOAD task will have to be programmed. Programming an interaction
protocol can be quite tedious, and doing so in a function block application will
add some level of complexity to the system. This is in contrast to the agent-based
system where the interaction protocol is already integrated into the software.

81

6.2.3 Convertibility

This is a measure of how easily conversion can be achieved in the intervals
between different production batches. Conversion may involve changing tools,
part-programs and fixtures (Koren et al, 1999).

Conversion is possible in both the multi-agent systems and the IEC 61499 control
system, and it will take about the same amount of work and time. An example of
a possible conversion process could be the following: if the robot gripper is to be
changed to accommodate a new type of part to be loaded, the conversion will be
restricted only to changes at the level of the robot control program. The changes
may include the manual labour of changing the robot gripper, making
adjustments for the length of the new gripper in the robot control program, as
well as recalibrating the robot. The functions of both the multi-agent and the IEC
61499 control systems will remain the same. If, on the other hand, a different
robot is to be used in place of the current robot, the software system remains
unaffected if the robot program of the former robot will work for the new. If, on
the other hand, the robot programs are different, then a new robot agent or a
new robot function block will have to be developed. The time spent in either case
of developing a new robot agent or a new robot function block will depend on
the programmer. Once the agent or function is completed, the multi-agent
system or the IEC 61499 control system is updated and the execution begins.

6.2.4 Diagnosability

This is a measure of the system's ability to quickly identify the sources of quality
and reliability problems (ElMaraghy, 2006).

The agent-based control system in this case study is more diagnosable than the
IEC 61499 control system. This is because FBDK on which the IEC 61499 control
system runs has no debugging tools, while JADE on which the multi-agent system
runs uses the debugging tools of Java which hosts the JADE platform. However,
FBDK can also be run from a Java environment, for example Eclipse or Netbeans.
If this is done, then the debugging tools of Java become available to be used with
FBDK and in that case, the diagnosability of the agent-based and the IEC 61499
control systems will be the same.

6.2.5 Customization

This has two aspects, according to Koren et al (1999), which are customized
flexibility (i.e. flexibility that revolved around specific parts currently being
manufactured only) and customized control (i.e. integration of control modules
with the aid of open-architecture technology).

82

The agent-based control system and the IEC 61499 control system have the same
level of customized flexibility, but the IEC 61499 control system has higher
customized control than the agent-based control system. The first aspect of
customization called customized flexibility is machine dependent according to
Koren et al (1999), and therefore, it does not really affect the control systems. On
the other hand, the second aspect called customized control has to do with the
use of open-architecture technology, particularly for communication. The idea
behind the IEC 61499 based control is that the control system should be able to
use any hardware or communication protocol independent of the manufacturer.
For this to be achieved, the IEC 61499 standard specifies that hardware
manufacturers must provide service interface function blocks that can be used to
communicate with or access the functionality of their hardware or
communication protocol. Once these function blocks are provided, the IEC 61499
control system is able to use the hardware or communication protocol, and
control can be customized for that hardware or communication protocol. For
agent-based control, the multi-agent systems are, by default, restricted to
Ethernet communication. This is because agents typically run on PCs, and
communication between PCs is by use of Ethernet. Therefore the agents are
restricted to communicate over Ethernet.

6.2.6 Scalability

This is a measure of how the system's capacity can be incrementally changed
rapidly and economically (ElMaraghy, 2006).

The agent-based control system is more scalable than the IEC 61499 control
system. If the change in system capacity is to be done by changing the capacity of
the individual machines, then the control systems will remain unaffected
provided only the machine hardware changes. Examples of this include changing
the camera's lens or the size of the feeder's hopper, etc. On the other hand, if
changing the system's capacity is to be done by adding new machines, for
example by including additional feeders, cameras, or robots in the system, then
the case is similar to that of integrability. From the integrability of both control
systems, it is evident that capacity change will occur much more rapidly in the
multi-agent system than in the IEC 61499 control system.

6.2.7 Fault tolerance

The agent-based control system is expected to be more fault tolerant than the
IEC 61499 distributed control system. This is because the ability to reroute
processes when a subsystem fails is inherent to the agent-based control method,
while only scenarios that were foreseen ab initio, can be provided for in an IEC
61499 distributed control application.

83

In summary, for the case study considered, the agent-based control system is
more integrable, diagnosable, scalable and fault tolerant than the IEC 61499
distributed control system. On the other hand, the IEC 61499 distributed control
system is more modular and customizable.

84

7 Conclusions and recommendations
The thesis considers reconfigurable control strategies in a welding assembly cell.
Two systems in the assembly cell were considered: the pallet magazine and the
feeding system. The pallet magazine control program was written using a PC and
a PLC as controllers, while the reconfigurable control of the feeding system was
done using the agent-based control method and the distributed control
methodology based on IEC 61499. The development of the control for these two
systems led to two further objectives:

• the comparison between the PC and the PLC used to control the pallet
magazine

• the comparison between the agent-based control methodology and the
distributed control methodology based on IEC 61499, which were used in
the control of the feeding system.

From this work, it can be concluded that in a reconfigurable system, the
hardware and software components of the system have to be modular. There
must be proportional modularity between the hardware and the software
components in order to ease reconfiguration. For example, the feeding system in
our case study can easily be reconfigured since the hardware components (i.e.
the singulation unit, the camera and the robot) are separate and their control
software are also separate. On the other hand, the pallet magazine cannot easily
be reconfigured without having to change its control software, e.g. the control
software must change if the drive inverter for the magazine assembly motor
changes. This is corroborated by Bi et al (2007b) who state that “system
reconfigurability can be classified in terms of the levels where the reconfigurable
actions [occur] … the reconfigurability at lower levels is mainly achieved by
changing hardware resources, and the reconfigurability at higher levels is mainly
achieved by changing software resources. However, they usually work together
so that system reconfiguribility can be maximized cost efficiently.”

Based on the comparison between the PC and the PLC, it was observed that the
PC is more adaptable than the PLC. However, the PLC has a higher capability,
availability and usability than the PC. For most industrial applications, the most
important attributes of the controllers used are the capability and reliability of
the controllers. Concerning these two attributes the PLC fared better than the PC.
This, perhaps, explains the preponderance of the use of PLCs in industrial control
applications. However, the PC surpasses the PLC with regards to some other
attributes (e.g. adaptability), and as Bruccoleri (2005) states: “PC-based control

85

environments bring indisputable advantages [with] respect to PLC-environments
especially concerning their networking predisposition, real-time monitoring and
visualization capabilities, and flexibility related to the great number of
programming languages that could implement the real control software”,
therefore, a combination of the qualities of PCs and PLCs should be considered.
The superiority of the PC over the PLC in terms of adaptability recommends the
use of PCs in reconfigurable systems or at least as an augmentation to PLCs.
Some manufacturers are already attempting to combine the functionality of PCs
and PLCs. An example is the new Programmable Automation Controllers (PAC) by
the Opto 22 Company.

The comparison between the agent-based control and the IEC 61499 distributed
control showed IEC 61499 distributed control systems are more modular and
customizable than agent-based control systems. In addition, the events and data
in IEC 61499 control systems are decoupled, thereby making them more flexible
than agent-based systems (Fletcher, 2001). However, agent-based control
systems are more integrable, more diagnosable and more scalable than IEC
61499 distributed control systems. The low integrability and scalability of the IEC
61499 distributed control systems probably explain why Zoitl et al (2007) state
that “a full support for dynamic reconfiguration is beyond the scope of the
standard [IEC 61499]”. In addition, there is the possibility of losses of events in
the use of the IEC 61499 control method since there are no “input event and data
queues” as stated by Lewis (2001), and this is because the IEC 61499 standard
does not make provision for event storage.

From what has been encountered in this work, the following recommendations
are made:

• An ontology should be created specifically for manufacturing to include all
the processes within manufacturing. In multi-agent systems developed for
manufacturing, this will make actions less ambiguous and better defined.

• Research should be conducted into ways of combining the agent-based
and the IEC 61499 based approaches to reconfigurable control. One of the
effects would be that IEC 61499 may be more integrable and more
scalable.

• More research work should be done on the implementation of the IEC
61499 standard because its philosophy fits perfectly well with the
requirements for easy reconfiguration.

86

• Research should be conducted into ways of developing cheaper hybrid
controllers by combining the functionality of PCs and PLCs. This should
make the hybrid controllers more affordable and widely available.

• An XML standard format could be developed for information and data
exchange for machine controllers as XML is being currently integrated
with OPC (OLE for process control).

87

References
Al-Safi Y and Vaytkin V, 2007, ‘An Ontology-Based Reconfiguration Agent for
Intelligent Mechatronic Systems’, Proceeding of the 3rd International Conference
on Industrial Applications of Holonic and Multi-agent Systems, HOLOMAS 2007,
Regensburg, Germany: 114 – 126

Bellifemine F, Caire G and Greenwood D, 2004, 'Developing Multi-agent Systems
Using JADE', Wiley Series in Agent Technology, 1st Edition, New York: Wiley

Bi Z M, Lang S Y T, Verner M and Orban P, 2007a, 'Development of Reconfigurable
Machines', International Journal of Advanced Manufacturing Technology, Vol. 39:
1227 – 1251

Bi Z M, Wang L and Lang S Y T, 2007b, ‘Current Status of Reconfigurable Assembly
Systems’, International Journal of Manufacturing Research IJMR, Inderscience
Vol. 2 No. 3: 303 – 328

Bi Z M, Lang S Y T, Shen W and Wang L, 2008, ‘Reconfigurable Manufacturing
Systems: The State of the Art’, International Journal of Production Research, Vol.
46, No. 4: 967 – 992

Black G and Vyatkin V, 2009, ‘Intelligent Component-Based Automation of
Baggage Handling Systems with IEC 61499’, IEEE Transactions on Automation
Science and Engineering, Vol. 7, No. 2: 337 – 351

Bruccoleri M, 2005, 'Reconfigurable Control of Robotized Manufacturing Cells',
Robotics and Computer-Integrated Manufacturing, Vol. 23: 94 – 106

Burger J N, 2009, 'Reconfigurable Conveyor System and Pallet Magazine', BEng
Final Year Project, Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch

Bussman S and Sieverding J, 2001, 'Holonic Control of an Engine Assembly Plant:
An Industrial Evaluation', Proceedings of the 2001 IEEE Systems, Man, and
Cybernetics Conference, Tucson, Arizona, USA, 2001: 169 – 174

Bussman S, Jennings N R and Wooldridge M, 2004, Multiagent Systems for
Manufacturing Control, Berlin: Springer

Bussmann S and Jennings N R, 2003, 'Agent-Based Control Systems', IEEE Control
Systems Magazine, June 2003: 61 – 73

88

Candido G and Barata J, 2007, 'A Multiagent Control System for Shop Floor
Assembly', Proceeding of the 3rd International Conference on Industrial
Applications of Holonic and Multi-agent Systems, HOLOMAS 2007, Regensburg,
Germany: 293 – 302

Chirn J and Farlane D, 2000a, 'A Holonic Component-Based Approach to
Reconfigurable Manufacturing Control Architecture', Proceedings of Industrial
Applications of Holonic and Multi-agent Systems, HolonMas00, London, UK,
September

Chirn J and Farlane D, 2000b, 'Application of the Holonic Component-Based
Approach to the Control of a Robot Assembly Cell', Proceedings of IEEE
Conference on Robotics and Automation, San Francisco, USA, April

Colombo A W, Schoop R and Neubert R, 2006, 'An Agent-Based Intelligent Control
Platform for Industrial Holonic Manufacturing Systems', IEEE Transactions on
Industrial Electronics, Vol. 53, No. 1: 322 – 337

De Toni A and Tonchia S, 1998, 'Manufacturing Flexibility: A Literature Review',
International Journal of Production Research, Vol. 36, No. 6: 1587 – 1617

ElMaraghy H, 2006, 'Flexible and Reconfigurable Manufacturing System
Paradigms', International Journal of Flexible Manufacturing System, Vol. 17: 261 –
276

Ermolayev V and Matzke W, 2007, ‘Performance in Industrial Holonic Systems’,
Proceeding of the 3rd International Conference on Industrial Applications of
Holonic and Multi-agent Systems, HOLOMAS 2007, Regensburg, Germany: 383 –
386

Farlane D, Kollingbaum M, Matson J and Valckenaars P, 2001, 'Development of
Algorithms for Agent-Based Control of Manufacturing Flow Shops', IEEE
International Conference on Systems, Man and Cybernetics, Tucson, Arizona,
USA, October

Ferrolho A and Crisostomo M, 2007, 'Intelligent Control and Integration Software
for Flexible Manufacturing Cells', IEEE Transactions on Industrial Informatics, Vol.
3, No. 1: 3 – 11

FIPA (Foundation for Intelligent Physical Agents), 2010, [Online]. Available:
http://www.fipa.org

Fletcher M, 2001, 'Building Holonic Control Systems With Function Blocks',
Proceedings of the Fifth International Symposium on Autonomous Decentralized
Systems, IEEE Computer Society, Vol. 1: 247 – 250

89

http://www.fipa.org/

Gouyon D, Petin J and Morel G, 2007, 'A Product-Driven Reconfigurable Control
for Shop Floor Systems', Studies in Informatics and Control, Vol. 16

Guessoum Z, 2004, 'Adaptive Agents and Multiagent Systems', IEEE Computer
Society, Vol. 5, No. 7

JADE (Java Agent Development Framework), 2010, [Online]. Available:
http://jade.tilab.com

Jennings N R and Wooldridge M J, 1998, 'Applications of Intelligent Agents',
Agent Technology: Foundations, Applications and Markets, New York: Springer-
Verlag

Jennings N R, 1999, 'On Agent Based Software Engineering', Journal of Artificial
Intelligence, Vol. 117: 277 – 296

Kamioka K, Kamioka E and Yamada S, 2007, ‘An RFID Driven Holonic Control
Scheme for Production Control Systems’, IEEE Computer Society 2007
International Conference on Intelligent Pervasive Computing, Jeju: 509 – 514

Koren Y, Heisel U, Jovane F, Moriwoki T, Pritschow G, Ulsoy A G and Van Brussel H,
1999, 'Reconfigurable Manufacturing Systems', Annals of the CIRP, Vol. 48, No. 2:
1 – 13

Kotak D, Wu S, Fleetwood M and Tamoto H, 2003, 'Agent-Based Holonic Design
and Operations Environment for Distributed Manufacturing', Computers in
Industry, Vol. 52: 95–108

Kuo C H, Huang H P, Wei K C and Tang S H, 1999, 'System Modeling and Real-Time
Simulator for Highly Model-Mixed Assembly Systems’, Transactions of ASME,
Journal of Manufacturing Systems and Automation, Vol. 121: 282 – 289

Langer G, 1999, 'HoMuCS – A Methodology and Architecture for Holonic Multi-
cell Control Systems', PhD Thesis, Department of Manufacturing Engineering,
Technical University of Denmark

Leitao P and Restivo F J, 2006, 'ADACOR: A Holonic Architecture for Agile and
Adaptive Manufacturing Control', Computers for Industry, Vol. 57, No. 2: 121–
130

Leitao P and Restivo F J, 2008, ‘Implementation of a Holonic Control System in a
Flexible Manufacturing System’, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 38, No. 5: 699 – 709

90

http://jade.tilab.com/

Lewis R W, 1998, Programming Industrial Control Systems Using IEC 1131-3,
London: Institute of Engineering and Technology

Lewis R W, 2001, Modeling Control Systems Using IEC 61499, London: Institute of
Engineering and Technology

Liu S, Gruver W A, Kotak D and Bardi S, 2000, 'Holonic Manufacturing System for
Distributed Control of Automated Guided Vehicles', IEEE International
Conference on Systems, Man, and Cybernetics, Vol. 3: 1727 – 1732

Lohse N, Hirani H and Ratchev S, 2005, ‘Equipment Ontology for Modular
Reconfigurable Assembly Systems’, Proceedings of the 3rd International CIRP
Conference on Reconfigurable Manufacturing, Ann Arbor, USA: 301 – 314

Mahr T and de Weerdt M, 2007, ‘Auctions with Arbitrary Deals’, Proceeding of
the 3rd International Conference on Industrial Applications of Holonic and Multi-
agent Systems, HOLOMAS 2007, Regensburg, Germany: 37 – 46

Martinsen K, Haga E, Dransfeld S, and Watterwald L E, 2007, 'Robust, Flexible and
Fast Reconfigurable Assembly System for Automotive Air-brake Couplings',
Intelligent Computation in Manufacturing Engineering, Vol. 6

McFarlane D C and Bussmann S, 2000, 'Developments in Holonic Production
Planning and Control', International Journal of Production Planning and Control,
Vol. 11, No. 6: 522 - 536

Mehrabi M G, Ulsoy A G, Koren Y and Heytler P, 2002, 'Trends and Perspectives in
Flexible and Reconfigurable Manufacturing Systems', Journal of Intelligent
Manufacturing, Vol. 13: 135 – 146

Meng F, Tan D and Wang Y, 2006, 'Development of Agent for Reconfigurable
Assembly System with JADE', Proceedings of the 6th World Congress on Intelligent
Control and Automation, Dalian, China, 21 – 23 June

Monostori L, Vancza J and Kumara S R T, 2006, 'Agent-Based Systems for
Manufacturing', Annals of the CIRP, Vol. 55 No. 2: 697 – 720

Movidrive, 2006, 'Modulo Positioning Application', SEW EURODRIVE, Bruchsal

Onofrio C and Bruccoleri M, 2006, 'A User-friendly Control System to Easy
Reconfigure a Manufacturing Cell', International Conference on Industrial
Technology, ICIT 2006, Mumbai, 15 – 17 December

Padgham L and Winikoff M, 2004, Developing Intelligent Agent Systems: A
Practical Guide, Sussex: John Wiley and Sons

91

Partial-order Verification Techniques, 2004, [Online]. Available:
http://www.fmi.uni-stuttgart.de/szs/research/resources/pom/

Paolucci M and Sacile R, 2005, Agent-Based Manufacturing and Control Systems,
London: CRC Press

Qiu R G, Joshi S and Mcdonnell P, 2004, ‘An Approach To Regulating Machine
Sharing In Reconfigurable Back-End Semiconductor Manufacturing’, Journal of
Intelligent Manufacturing, Vol. 15: 579 – 591

Raj T, Shankar R and Suhaib M, 2007, ‘A Review of Some Issues and Identification
of Some Barriers in the Implementation of FMS’, International Journal of Flexible
Manufacturing System, Vol. 19: 1 – 40

Rooker M N, Sunder C, Strasser T, Zoitl A, Hummer O and Ebenhofer G, 2007,
‘Zero Downtime Reconfiguration of Distributed Automation Systems’, Proceeding
of the 3rd International Conference on Industrial Applications of Holonic and
Multi-agent Systems, HOLOMAS 2007, Regensburg, Germany: 326 – 337

Rzevski G, Skobelev P and Andreev V, 2007, ‘Magenta Toolkit: A Set of Multi-
agent Tools for Developing Adaptive Real-Time Applications’, Proceeding of the
3rd International Conference on Industrial Applications of Holonic and Multi-agent
Systems, HOLOMAS 2007, Regensburg, Germany: 303 – 313

Scholz-Reiter B and Freitag M, 2007, 'Autonomous Processes in Assembly
Systems', Annals of the CIRP, Vol. 56: 712 – 730

Sequeira M A, 2008, 'Conceptual Design of a Fixture-Based Reconfigurable Spot
Welding System', MScEng Thesis, Department of Mechanical and Mechatronic
Engineering, University of Stellenbosch

Setchi R M, and Lagos N, 2004, 'Reconfigurability and Reconfigurable
Manufacturing Systems: State-of-the-Art Review', IEEE Conference on Industrial
Informatics, INDIN 2004, Berlin, 24 – 27 June

Shen W, Maturana F and Norrie D H, 2000, 'MetaMorph II: An Agent-Based
Architecture for Distributed Intelligent Design and Manufacturing', Journal of
Intelligent Manufacturing, Vol. 11: 237 – 251

Strauss R, 2009, 'Development of a Reconfigurable Parts Feeder for Assembly
Automation', BEng Final Year Project, Department of Mechanical and
Mechatronic Engineering, University of Stellenbosch

92

http://www.fmi.uni-stuttgart.de/szs/research/resources/pom/

Sugi M, Maeda Y, Aiyama Y and Arai Y, 2003, ‘A Holonic Architecture for Easy
Reconfiguration of Robotic Assembly Systems’, IEEE Transactions on Robotics and
Automation, Vol. 19, No. 3: 457-464

Tang H P and Wong T N, 2005, 'Reactive Multi-agent System For Assembly Cell
Control', Robotics and Computer-Integrated Manufacturing, Vol. 21: 87 – 98

Thramboulidis K, Doukas G, Frantzis A, 2004, ‘Towards An Implementation Model
For FB-Based Reconfigurable Distributed Conrol Applications’, Proceedings of the
7th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing: 193 – 200

TORERO, [s.a.], [Online]. Available: http://www.uni-magdeburg.de/iaf/cvs/torero

Tozicka J, Pechoucek M, Rehak M and Prokopova M, 2007, ‘Multi-agent Reflection
in Autonomic Systems’, Proceeding of the 3rd International Conference on
Industrial Applications of Holonic and Multi-agent Systems, HOLOMAS 2007,
Regensburg, Germany: 27 – 36

Turgay S, 2008, ‘Agent-Based Flexible Manufacturing System (FMS) control’,
Robotics and Computer Integrated Manufacturing, Vol. 25: 470 – 480

Ulieru M, 1997, 'Soft Computing Issues in the Intelligent Control of Holonic
Manufacturing Systems', North American Conference on Fuzzy Information
Processing Systems, Syracuse, New York, 21 – 24 September

UMI, 1986, 'Introducing RTX', Universal Machine Intelligence Limited, London

Van Brussel H, Wyns J, Valckenaers P, Bongaerts L and Peeters P, 1998, 'Reference
Architecture For Holonic Manufacturing Systems: PROSA', Computers in Industry,
Vol. 37: 255 – 274

Vyatkin V, 2006, ‘The Potential Impact of the IEC 61499 Standard on the Progress
of Distributed Intelligent Automation’, International Journal of Manufacturing
Technology and Management, Vol. 8: 1 – 3

Vyatkin V, 2007, 'IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design', North Carolina: Instrumentation, Systems and
Automation Society, ISA

W3C, 2010, [Online]. Available: http://www.w3.org

Wane, S, [s.a.], [Online]. Available: http://www.staffs.ac.uk/personal/engineering and
technology/ sow1/Robotics/RTX/rtx.htm

93

http://www.staffs.ac.uk/personal/engineering_and_technology/sow1/Robotics/RTX/rtx.htm
http://www.staffs.ac.uk/personal/engineering
http://www.staffs.ac.uk/personal/engineering
http://www.staffs.ac.uk/personal/engineering
http://www.staffs.ac.uk/personal/engineering
http://www.uni-magdeburg.de/iaf/cvs/torero

Wang F, Guang H X and Min T, 2005, 'An Agent-Based Holonic Architecture For
Reconfigurable Manufacturing Systems’, Lecture Notes in Computer Science, Vol.
3612, Part III: 622 – 627

Wiendahl H P, 2007, 'Changeable Manufacturing – Classification, Design and
Operation', Annals of CIRP, Vol. 56: 783 – 809

Williams D J, 1991, Manufacturing cells: Control, Programming and Integration,
London: Butterworth-Heinemann

Yu J, Yin Y and Zhaoneng C, 2005, 'Control Model For Reconfigurable Assembly
Systems’, High Technology Letters, Vol. 11, No. 2: 171 – 174

Yu J, Yin Y, Sheng X and Chen Z, 2003, 'Modelling Strategies for Reconfigurable
Assembly Systems', Journal of Assembly Automation, Vol. 23, No. 3: 266 – 272

Zhao F, Zhang Q and Wang L, 2008, ‘Task Allocation and Evaluation Model For
Holonic Manufacturing System Based on Multi-agent System’, Proceedings of the
7th World Congress on Intelligent Control and Automation, Chongqing, China, 25 –
27 June

Zoitl A, Strasser T, Hall K, Staron R, Sunder C and Favre-Bulle B, 2007, ‘The Past,
Present and Future of IEC 61499’, Proceeding of the 3rd International Conference
on Industrial Applications of Holonic and Multi-agent Systems, HOLOMAS 2007,
Regensburg, Germany: 1 – 14

94

Appendix A Drive inverter control
A.1 Wiring diagram for MOVIDRIVE MDX61B

Figure A.1 MOVIDRIVE wiring diagram (Movidrive, 2006)

95

A.2 Determining Modulo parameters

The followings steps are used to deduce the Modulo parameters for Modulo
positioning.

Motor Gear Box

The values of the gear teeth are as follows – Pinion Z1 - 23T, Gear Z2 - 31T,
Second gear pinion shaft Z3 - 18T, Gearwheel Z4 - 97T, Rose Z5 - 8T and Bevel Z6 -
33T.

Gear box numerator = Z2 x Z4 x Z6 = 31 x 97 x 33 = 99231

Gear box denominator = Z1 x Z3 x Z5 = 23 x 18 x 8 = 3312

Additional Gear

Gear ratio is 5:2

Modulo Parameters

Modulo parameters is product of gear box ratio and additional gear ratio.

Modulo parameters =
99231
3312

×5
2 =

33077
1104

Therefore, Modulo numerator is 33077 while Modulo denominator is 1104.

96

Appendix B Vision sensor scripts
Background and Foreground Scripts

Foreground script

class partScript

{

public void inspect()

{

//set datalink output inactive with user output User1

SetOutputs(0L, (1L<<32)); //User1 is output bit 32

partScript.Result = -1; //assumes it has failed

if (identifPart_Tool.Result == 0) //Part was correctly identified

{

if (Pickpos_Tool.Result == 0) //if model 1 is the model identified

{

//get pick point position

partScript.Point.X = Pickpos_Tool.PickPoint.X;

partScript.Point.Y = Pickpos_Tool.PickPoint.Y;

partScript.ANGLE = Pickpos_Tool.PickPoint.Angle;

}

if (Pickpos1_Tool.Result == 0) //if model 2 is the model identified

{

//get pick point position

partScript.Point.X = Pickpos1_Tool.PickPoint.X;

partScript.Point.Y = Pickpos1_Tool.PickPoint.Y;

partScript.ANGLE = Pickpos1_Tool.PickPoint.Angle;

}

97

}

//set the external trigger mode bit to 1 (i.e. on) to stop inspection

SetInputs((1L<<7), 0L);

//set datalink output active with user output User1

SetOutputs((1L<<32),0L); //User1 is output bit 32

partScript.Result = 0; //shows it is completed

}

}

Background Script

class NewScript

{

public static void main(String args[])

{

while(true)

{

int len = 2; //This is the length of data to be received

int port = 3248; //The port no where the camera listens for connection

int conStatus = -1; //Detects when a connection is accepted

byte data[] = new byte[len]; //Byte array to receive the incoming data

Socket mySocket = new Socket(); //New socket object

Socket sock = new Socket(); //socket generated to accept a connection

int status = mySocket.Bind(port);

if (status==0)

{

status = mySocket.Listen();

if (status == 0)

{

98

while (conStatus != 0)

{

conStatus = mySocket.Accept(sock);

}

status = sock.Recv(data, 0, len); //Receives data
//Check whether system is busy and wait until it is idle

while((GetOutputs() & (1L<<8)) != 0) //Bit 8 (busy bit)

{//Waiting for current inspection to end

}

//Handling the case of inspection command

if (data[0] == 1) //An inspection command

{ //set the trigger bit to 1

SetInputs(1L, 0L);

//set the external trigger mode bit to 0

SetInputs(0L,(1L<<7));
//get product object

Product prod = GetProductById((short) data[1]);

prod.Select(); //sets the inspection product

Inspect(); //begin inspection

}

}

}

// Short delay before next iteration

sleep(10);

}

}

}

End of scripts

99

Appendix C Controller ports and XML data
format
C.1 Port Designation for Controllers

The port assigned to each controller is given after the colon (:).

Figure C.1 Controller ports

C.2 XML data format adopted in this work

The format shows the standard request and response formats. In the request
format, “sender” is the controller/agent sending the request message (e.g.
camera agent), “receiver” represents the intended receiver (e.g. camera
controller), “task” is the job to be done (e.g. LOAD) and that is filled in the {…},
while “req” is the data needed to do the job (e.g. part type, etc). Additional data,
e.g. X, Y, and Z coordinates of the pick point as for the case of the robot, may be
supplied.

100

Pallet Magazine
:7100

Welding System
:7400

Multiagent System
:7000

Feeding System
:7200

Inspection System
:7300

Conveyor
:7500

Singulation Unit
:7210

Inspection Robot
:7320

Inspection Camera
:7310

Feeder Robot
:7230

Feeder Camera
:7220

The situation is similar for the response format, except that <done> will only have
a Boolean value to indicate whether the task was done successfully or not.
Additional information may be supplied, e.g. the case of the camera that gives
the X, Y and Z coordinates of the pick point.

REQUEST MESSAGE

<?xml version="1.0" encoding ="UTF-8"?>

<sender>

<receiver>

<task>{...}</task>

<req>{...}</req>

…

...

</receiver>

</sender>

RESPONSE MESSAGE

<?xml version="1.0" encoding ="UTF-8"?>

<sender>

<receiver>

<task>{...}</task>

<done>{...}</done>

…

...

</receiver>

</sender>

101

Appendix D Feeding system function blocks
IEC 61499 Function Blocks for Feeding System

Figure D.1 Feeder device function blocks

Figure D.2 Camera device function blocks

102

Figure D.3 Robot device function blocks

Figure D.4 IN_DEV1 input HMI function blocks

103

Figure D.5 OUT_DEV1 output HMI function blocks

104

