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Abstract 

Percussion is a centuries old bedside diagnostic technique that is used to diagnose various conditions of the 

thorax and abdomen, among these, abnormalities of the liver. The physician taps the patient’s skin in the area of 

interest to determine the qualities or presence of the underlying tissue or organ, by listening to the generated sound.  

The research contained in this thesis views percussion as a system identification method which uses an impulse 

response to identify the underlying system. A design employing an electromagnetic actuator as input pulse 

generator and accelerometer as impulse response recorder was motivated and built.  

Tests were performed on volunteers and the recorded signals were analysed to find methods of identifying the 

presence of the liver from these signals. The analyses matched signals to models or simply extracted signal features 

and matched these model parameters or signal features to the presence of the liver. Matching was done using 

statistical pattern recognition methods and the true presence of the liver was established using MR images. Features 

extracted from test data could not be matched to the presence of the liver with sufficient confidence which led to the 

conclusion that either the test, apparatus or analysis was flawed.  

The lack of success compelled a further test on a mock-up of the problem – a silicone model with an anomaly 

representing the organ under test. Results from these tests showed that signals should be measured further from the 

actuator and the approach followed during this test could lead to the successful location of the anomaly and 

discrimination between subtle differences in the consistency thereof. 

It is concluded that further research should aim to first validate percussion as performed by the physician and 

increase complexity in a phased manner, validating results and apparatus at each step. The approach followed was 

perhaps too bold in light of the lack of fundamental understanding of percussion and the underlying mechanisms.  
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Uittreksel 

Beklopping is ’n eeu-oue mediese tegniek wat gebruik word om toestande van die buik en borskas te identifiseer 

en diagnoseer. Onder andere word dit ook gebruik om abnormaalhede of siektes van die lewer te identifiseer. Die 

dokter gebruik sy vinger om die area van belang te klop en gebruik dan sy ontwikkelde tas en gehoor sensasies, 

gebind met sy ondervinding, om die kwaliteit of teenwoordigheid van onderliggende weefsel of organe te bepaal.  

Die navorsing vervat in hierdie tesis beskou beklopping as ’n stelsel identifiserings metode wat ’n impuls 

respons gebruik om die onderliggende stelsel te identifiseer. ’n Meganisme was ontwerp om beklopping na te boots, 

waar die klop uitgevoer word met ’n elektromagnetiese vibrator en die reaksie met versnellingsmeters gemeet word. 

Die ontwerp is uit literatuur en praktiese oorwegings gemotiveer, ontwerp en gebou. 

Toetse was op vrywilligers uitgevoer en die opgeneemde seine is geanaliseer om maniere te vind om die seine te 

manipuleer om die teenwoordigheid van die lewer te voorspel. Seine is gekoppel aan modelle of eenvoudig verwerk 

om parameters uit die seine te onttrek. Statistiese patroon herkenning metodes het gepoog om model of sein 

parameters te koppel aan die teenwoordigheid van lewer weefsel, waar laasgenoemde deur MR beelde vasgestel is. 

Die parameters kon egter nie met genoegsame vertroue gekoppel word aan die posisie van die lewer nie – dus die 

gevolgtrekking dat die metode, apparatus of verwerkingstegnieke inherent foutief is. 

Die mislukking in die voorafgaande toets het gelei tot ’n volgende toets waar ’n model van die probleem gemaak 

is. Die model bestaan uit ’n silikon blok en ’n voorwerp van ’n ander materiaal binne-in om die lewer of ander 

orgaan voor te stel. Resultate wys dat tydens toetse op vrywilligers die sein te na aan die intree gemeet is. Verder 

word ook gewys dat die posisie van die voorwerp suksesvol geïdentifiseer kan word en dat daar gediskrimineer kan 

word tussen toestande van die voorwerp. 

Die gevolgtrekking word gemaak dat verdere navorsing moet fokus daarop om eers beklopping, soos deur ‘n 

dokter beoefen, te verifieer. Hierna kan die kompleksiteit van die metode op ’n gefaseerde manier verhoog word 

deur stelselmatig funksies van die dokter (hand bewegings, gehoor en laastens interpretasie) te vervang. Verhoogde 

kompleksiteit en apparatus moet ook in elke fase geverifieer word. Die aanslag was moontlik oorhaastig gewees 

terwyl die onderliggende meganismes van beklopping nie goed verstaan word nie.  
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Chapter 1 Introduction 

The study summarised in this thesis involves the development of a device used for the emulation of medical 

percussion in order to determine the borders or condition of the human liver. As an introduction, this chapter will 

give background on percussion and how it is used to detect liver disease, discuss the goal and scope of this study, 

give some insight into the motivation of the study and give an overview of this thesis report. 

1.1 Background  

Medical percussion is a centuries old technique that is used by physicians to assess the condition of the thorax 

and abdomen. The technique forms part of the clinical or physical examination (which also includes palpation, 

auscultation and patient history), performed by a physician when investigating the patient for primary signs of 

disease. Percussion mainly involves the tapping of areas of the body by the fingers of the physician – either directly 

with two fingers; or indirectly, where one hand is used as a base on the skin and the other to tap the middle finger of 

the first hand. The physician listens to the resulting sound to determine the presence of underlying tissue, bone, air 

or abnormality.  

Unfortunately, percussion is not well understood and the technique itself is not agreed upon. Even so, percussion 

is simplified for the purposes of this study: when percussion is applied to a patient’s body, one can view the input 

stroke, underlying organs and output sound as a very complex system responding to an impulse. The underlying 

system is identified by a highly specialized detection system – the trained physician’s ear (and tactile sense) and 

mind. This thesis views percussion as a system identification method, a method that could perhaps be emulated by a 

machine. Previous studies that involve the emulation of percussion were identified from literature and, although 

none of these studies were focused on actual emulation of percussion, they do provide valuable insight into possible 

approaches and solutions.  

Percussion is applied to detect and diagnose various organs, but the scope of this thesis is limited to the liver, 

where percussion is used to detect an over- or undersize or abnormality thereof. The liver is a complex, but 

important organ in the human body. It serves various important bodily functions (among these are the metabolism 

of energy and synthesis of regulatory proteins without which the body cannot function) and is therefore vulnerable 

to numerous diseases – most of which would cause the size or elasticity of the liver to change and therefore might 

be detectable by percussion. Most diseases of the liver are either symptomatic of other diseases or lead to other 

diseases. If these conditions go unchecked it could have dire effects and even lead to death.  

More insight into percussion and the liver is given in Chapter 2 Background and Literature Review. 
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1.2 Motivation, Goal and Scope 

Identification of liver abnormality is difficult at best and often early diagnosis could save a life. Currently, a 

physical exam by a general practitioner (GP) is the first step in detection and diagnosis of various diseases of the 

liver. The doctor uses a combination of percussion, palpation and auscultation to determine the boundaries and 

hardness of the liver. If the doctor finds that the liver has an abnormal sound or that it is abnormally large or small, 

the doctor will refer the patient for a sonogram (ultrasound imaging), Elastogram (ultrasound elasticity imaging), X-

ray, liver function test, liver biopsy, CT (Computerized Tomography) or MRI (Magnetic Resonance Image). These 

techniques are effective in further diagnosis of liver disease, but are expensive, require specialised facilities and rely 

on the doctor’s experience and presence to initially detect abnormalities during the physical exam. Furthermore, 

some of these methods rely on potentially dangerous electromagnetic radiation or are invasive as with a liver 

biopsy.  

The problems with high cost and lack of skills are quite apparent in rural areas where access to experienced 

doctors and services are limited and/or the patients are sometimes too poor to afford proper health care. Physical 

examinations are performed by nurses, who might not have the experience and expertise of a doctor and referral to a 

secondary institute for further investigation might be too expensive. Wrongful primary investigation can prove to be 

costly, resulting in either very late diagnosis or unnecessary expenses. This underlines the necessity for a better, but 

inexpensive, unbiased liver disease screening device in rural areas. 

The University of Stellenbosch’s Mechanical Engineering Department was approached by GeoAxon Holdings 

(PTY) Ltd, a medical research company, with the request to research, design and develop a device that uses the 

principles of percussion to non-invasively extract information about the condition of the liver, in an unbiased 

fashion and at a fraction of the cost of existing techniques. Further work might include application of the device or 

derivatives thereof in diagnostics of other medical problems, including other diseases of the abdomen, diseases of 

the lungs, bone fractures and diseases of the lower abdomen. 

Unfortunately, the applications of percussion is very broad (lungs, spleen, heart, bones, cranium, etc.) and it 

would be an unrealistic expectation to apply this study to all of these applications. It was therefore decided to 

narrow the scope of the study to focus on one of the most important organs in the human abdomen, the liver. 

Percussion is mainly used to detect the boundaries of the liver, which would indicate whether it is over or under 

size, or sometimes to determine liver quality like hardness. The problem is therefore to develop a system to emulate 

percussion for the purposes of detecting abnormalities of, or just the liver (and therefore boundary). In order to 

solve this problem one would need to understand the technique of percussion and especially how it applies to the 

liver. If a deep understanding of percussion existed one could perhaps simulate a mathematical model of the 

problem with different actuators and sensors, but no such deep understanding exists. A dedicated system would 

therefore need to be developed with an actuator to generate an input similar to (or better than) that of the physician 

as well as a sensor system to record the reactionary signal(s). The design choices need to be motivated as far as 

possible and an applicable experimental setup needs to be designed to test the concept. 



 3

If one could exactly emulate the action of the physician and exactly mimic the sensor that a physician uses to 

assess the reaction (sound and tactile – ears and hands), one would expect to measure what the physician hears – 

however, this scenario is highly unlikely and one would most probably have to develop a signal processing and 

classification system that generates the outputs that a physician would have for a particular point on a patients body. 

Where percussion is applied to the liver, this output is basically one of the following: ‘Liver’ on ‘No liver’, and in a 

more advanced situation: ‘Abnormal liver’ or ‘Normal liver’. The topography of these outputs is also of relevance 

as they indicate where the liver ends and therefore indicates the size of the liver. 

The scope of the project can be summarized by the following steps: 

• Research and understand percussion as it applies to detection of the liver. 

• Review literature that relates to this study in an attempt to better understand the problem and identify 

possible solutions. 

• Develop and acquire the necessary tools. 

• Develop an experimental setup for data collection and collect data. 

• Develop signal processing techniques to identify the liver. 

• Validate results. 

• Document research and results. 

Unfortunately, an initial system did not yield a solution that could successfully identify the liver and a secondary 

study followed – a mock-up of the problem was created and various uncertainties regarding the method were 

investigated. This secondary investigation was not part of the initial scope of the project, yet was seen as a 

necessary step to clarify why the initial approach failed. If information was revealed that could help in the analysis 

of the initial study’s data, this would have been used and applied, but this was not the case. The initial experiment 

was done on volunteers and as such is referred to as Human Subject Tests. The subsequent experiment was applied 

to a silicon model with a phantom anomaly inside and is thus referred to as Model Tests. 

1.3 Overview 

This thesis report documents the relevant information collected during the research process, the processes 

followed in the attempt to reach the research goals, the results of these processes, and conclusions based on the 

results, findings and experiences. 

Chapter 2 contains in depth information about the technique and history of percussion as well as information 

about the liver. Percussion has been criticised over the centuries and various references are invoked to review 

criticisms and perceived limitations – these findings show a lack of understanding about the physics of percussion 

which contributed to of the lack of success of the project. There have been various studies that have, inadvertently, 

copied components of the technique of percussion, but for completely different reasons – these are also discussed 

with a view as to how they apply to this study.  
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The importance of the liver is emphasized with the main focus on liver abnormalities potentially detectable by 

percussion. Current techniques that are used to detect liver abnormalities are pointed out with special attention to 

their perceived shortcomings and how a suggested device may be useful. 

System design is documented in Chapter 3 which contains information about the acquisition and development of 

the tools required to perform the two main actions of the physician – to generate an input pulse and to record and 

interpret reactionary signals. Design choices are motivated based on various literature sources and deductions. 

Critical evaluation of selected sensors’ performance is also performed and reference is made to subsequent analyses 

of sensors in Chapter 4. 

Chapter 4 contains details on the test procedure and subsequent analysis of the experiment on human subjects. 

The experiment involves percussing fixed points on a volunteer’s body while measuring the surrounding skin’s 

vibrational response. The signals produced by the skin surrounding the percussion point are analysed and the 

analyses are focused on extracting signal parameters and subsequently matching these parameters to underlying 

physical features.  

The experiment on human subjects was unsuccessful in arriving at a method that could successfully predict the 

presence of liver tissue. Chapter 5 discusses a subsequent experiment which was performed on a silicon model with 

an anomaly. This experiment was aimed at evaluating other approaches (i) as far as the input signal for percussion is 

concerned – instead of using a pulse as input to the actuator, chirp and white noise signals are used to estimate an 

impulse response; and (ii) as far as the location of the actuator input and sensor output is concerned – it may be that 

better signals are acquired further from the input and with the input and output at different positions relevant to the 

organ under investigation. 

The results of both these experiments are discussed at the end of each respective chapter and collectively 

summarised with conclusions and recommendations for further investigations in Chapter 6. 
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Chapter 2 Background and Literature Review 

Percussion is a technique that has been developed over centuries. This chapter provides insight into the 

technique, origin and limitations of medical percussion and also looks at studies which involved the emulation of 

percussion or touch on points that should be considered when such an attempt is made. An overview of the liver and 

its functions is also included with a look at diseases that may be detectable by percussion. Modern techniques to 

detect liver abnormalities are evaluated with attention to shortcomings that may be solved by the suggested device 

or system..  

This chapter deals at some length with information that isn’t used directly for research purposes – the lack of 

consistency in how percussion should be performed and how it actually works. This information is presented to 

emphasize the lack of conclusive information, a factor that contributed to the lack of success in this project.  

2.1 Percussion 

In brief, percussion is the method where the surface of the skin is tapped to determine the underlying structures’ 

quality by assessing the resulting sound [1]. It forms part of the clinical or physical examination performed by a 

physician when investigating the body of a patient for signs of disease. It is mainly used for assessment of the 

thorax (lungs heart) and abdomen (liver, spleen, kidneys, stomach), but can also be used to examine bones [2] or the 

head [3]. Other components of the clinical examination are inspection, palpation and auscultation, all of which 

would be performed after taking a medical history.  

The technique of percussion, along with the other clinical examination techniques, has declined in popularity 

with the advent of modern diagnostic techniques [4]. Even so, the technique is still applied by physicians and is 

essential in the early detection of abnormalities in the chest and abdomen – without applying some form of bedside 

diagnostic, a physician could not even consider further, more advanced, diagnostic techniques.  
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2.1.1 Technique 

Percussion is described in medical textbooks [5] and journals [4]. One hand is used as a base and placed against 

the body in the area to be percussed. The middle finger of the base hand (also called pleximeter) is placed on the 

area to be percussed, away from bony prominences. The dorsal side of the middle phalanx (finger bone) of the 

middle finger is struck by the tip of the middle finger of the other hand (also called the plexor) – see Figure 2.1. The 

resultant normal percussion sound can be placed in one of three categories – resonance, tympany and dullness 

(signal trace depictions in Table 2.1). Normally resonance is expected over lung tissue, tympany over portions of 

the abdomen and dullness over solid organs like the liver. Sounds between resonance and tympany are called hyper 

resonant and relative dullness describes the sound between tympany and dullness. Abnormalities are detected by 

comparing sounds on both sides of symmetric organs or by detecting an abnormal sound.  

 

 

Figure 2.1:  Diagrammatical representation of percussion ([6]) 

As this investigation is focused on percussion of the liver, only the analysis of liver percussion sounds is 

discussed. The liver is percussed on the right mid-clavicular line (the line vertically down from the middle of the 

right clavicle). The dull sound of the liver is usually audible from the upper edge of the sixth rib down to the lower 

edge of the tenth rib, just at the costal margin. These anatomical areas are depicted in Figure 2.2. 

 

Figure 2.2:  Percussion of the liver [7] 
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2.1.2 History and Origin 

According to Fedorowski [4], McGee [8] and Yernault et al. [9], Leopold Auenbrugger published his Inventum 

Novum ex Percussione Thoracis Humani ("`New Invention of Human Chest Percussion') in 1761 which contained 

the first detailed description of chest percussion. Percussion as such, was however not invented by Auenbrugger, 

and was often performed to diagnose the human abdomen at the Hippocratic School. Swiss veterinarians even 

percussed the heads of cattle to detect cysticerci. Auenbrugger was the first person to regard the technique of 

percussion as an essential part of the physical diagnosis. Auenbrugger suggested [8] that the chest should be 

percussed directly with the tips of the fingers of one hand, that a healthy sound resembled the sound of a stifled 

drum and a duller sound on the one side of the chest may indicate pleural effusions, pneumonia or asthma (among 

various other). 

Unfortunately, Auenbrugger's work was not taken seriously by physicians of his time and it was only when 

Frenchman Jean Corvisart came upon his work that percussion became an integral part of the physical examination. 

According to Yernault and Bohadana [9], Corvisart believed that the physician's sense organs, education and 

exercise were essential practices in becoming good bedside physicians. Corvisart used percussion as his main 

method in discovering and localisation of many diseases. He added the use of the palmar surface of extended and 

approximated fingers to percuss regions of the chest. He introduced the technique to his students of whom René 

Laënnec was one. Laënnec felt that percussion on its own was insufficient for the diagnosis of diseases of the chest 

which led him to develop the technique of auscultation (as well as the stethoscope) which also forms part of the 

suite of techniques available to the medical practitioner in the physical examination. 

In 1828 Pierre A. Piorry introduced Indirect (or mediate) Percussion where an impulse is given by the right 

middle finger (called the plexor) to a solid resonant body (called pleximeter), like an ivory sheet, which is applied to 

the organ or area under investigation. Resulting sounds supposedly reveal the condition of the area or organ under 

investigation. Risse [10] describes three circumstances where Piorry felt direct percussion (as suggested by 

Auenbrugger) was inadequate: (i) it can cause pain where the patient suffers from inflammation of the pleura; (ii) 

thick tissue under the skin limits the transmission of auditory sensations; and (iii) the use of one's palm vibrates a 

large area which might cause the practitioner to miss smaller lesions. To Piorry’s dismay, two of his students, 

William Stokes and James Hope, simplified the technique by replacing the ivory sheet with their left middle finger 

and this is the method that is still used today.  

Auenbrugger, Corvisart and Laënnec’s technique can be described by the term Direct Percussion, as the finger is 

directly in contact with the skin during the action. Topographic and Comparative Percussion describe how the 

technique is applied - Topographic Percussion involves identifying underlying tissue by assessing the percussion 

note in that particular location, and Comparative Percussion identifies abnormalities by comparing the result 

obtained by percussing at different areas on the surface of the body.  
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The third technique of percussion (pertaining to the way it is applied) is Auscultatory Percussion which, 

according to [8], was introduced by Camman and Clarke in 1840. Developed to determine the size and density of 

organs, most notably the heart and the liver, it was practiced with a solid stethoscope placed against the chest with 

the one hand and the other striking the wall of the chest whilst listening for the sound [11]. In a study by Sehrwald 

in 1904, however, it was found that the sounds had little to do with the underlying organs – this finding lead to the 

failure of Auscultatory Percussion [8]. Recent studies by Guarino [12], [13], [14] and a very recent study in India 

[15] have resurrected Auscultatory Percussion as a diagnostic technique to detect pleural effusions, yet McGee 

remains sceptical [8]. As pleural effusions are not related to the liver, this method can be abandoned for the 

purposes of this study. 

The descriptions of percussion sounds have varied greatly over the centuries starting with the descriptions by 

Auenbrugger of tympanic, dull and indistinct [9], to Joseph Skoda (who pioneered percussion throughout Europe 

after Piorry) who described percussion sounds with the terms full-empty, clear-dull, tympanic-nontympanic and 

high-low [16]. The terms introduced by Skoda lead to ambiguous definitions being given to some sounds and these 

terms were eventually discarded and replaced with the terms used to describe sounds today: tympany-resonance-

dullness [8]. Sound pressure waveforms of these sounds, as extracted from Murray and Neilson [17], are 

summarized in Table 2.1. Also shown in the table are the topographical locations where the notes are expected to be 

found: Tympany over the abdomen, Resonance over the lung, and Dullness over the liver. 

Table 2.1:  Summary of percussion sounds [17] 

 
Unfortunately, graphical representations are not accessible to a physician when performing percussion and, 

according to McGee [8], the interpretations of these descriptions are varied. McGee cites various references 

describing and deliberating the qualities of these sounds as heard and interpreted by an individual. Modern 

evaluations of percussion sounds, like that by Murray and Neilson [17] & [18], have gone a long way in clarifying 

these definitions. 

One element of percussion theory that is still in dispute is the factors that cause the percussion note. In the study 

by McGee [8] two theories originating from the 1800s are discussed: Cage Resonance Theory and Topographical 

Percussion Theory.  



 9

Cage Resonance Theory originated in 1852 from experiments performed by a Russian, J.F. Mazoon. He 

observed that any external pressure on the chest (like a stretcher, hand or pillow) dampened the percussion note by 

impeding the movement of the chest wall. He removed the abdominal organs from cadavers and found that the 

percussion note becomes more resonant at distant sites, even the upper part of the chest. Upon replacing pieces of 

the liver and holding it against the thoracic wall, the percussion note over that area was dull. The degree to which 

distant notes were dampened due to the presence of liver tissue on the inside wall of the thorax was also 

proportional to the force of applied to the piece of the liver. In a study by Murray and Neilson [19], attempts are 

made to account for the frequency of the percussion note by percussing single ribs and assessing the acceleration 

thereof – it is found that the measured oscillation is half the frequency of the note measured, which is accounted for 

by the attachment of the rib to the rest of the chest. In the studies by Sapira et al. [20] and Sullivan et al. [21] it is 

also shown that a lighter percussion stroke resulted in over estimation of the liver size, which is contrary to what is 

expected by Topographic Percussion Theory – as one moves to the sides of the liver, the liver tissue lies deeper and 

a harder percussion stroke should therefore penetrate deeper. This results is explained by McGee [8] as the Cage 

Resonance Theory – as one percuss the liver near where it touches the body wall, the heavy stroke is sufficiently 

strong to generate distant resonant notes and the light not note is not; as one moves away from this point, the light 

stroke generates a more resonant note – yet the author believes that McGee [8] forgot that resonance is not 

associated with the liver and that the liver span should then have been underestimated.  

Topographic Percussion Theory has its origins with Pierre Piorry who believed that Topographic Percussion was 

possible because underlying organs absorbed sound waves – if the organ was in contact with the skin its absorption 

of the sound would cause the resulting sound to be dull; should the organ and surface be separated by lung tissue no 

absorption would occur and the sound would be resonant. Piorry’s theory was evolved by Skoda, a mathematician 

and physicist, who believed that the percussion tone was dependant on the amount of air that separates the organ 

from the surface. Subsequent studies by Weil quantified the depth that an organ could be to be detectable as 6 cm – 

2 cm of body wall and 4 cm of lung – which was subsequently adopted as the “several centimetre rule” that is still 

used in text books today. 

2.1.3 Criticism and Limitations 

 Except for the disagreement about the factors that cause the percussion note, other factors that led to the 

criticism of percussion include the discrepancies about the technique of percussion and the performance of 

percussion.   

The strength of the percussion stroke was believed to have to be as strong as possible which actually led to the 

development of indirect percussion – to alleviate the pain caused when percussing the abdomen of a critically ill 

patient. Subsequent studies came to the conclusion that the strength of the stroke made no difference in the results 

obtained. In two studies [20] & [21], however, it was found that the strength of the stroke did have an effect on 

estimated dimension of the liver span.  
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In a study by Burger et al. [22], the researchers discovered a great variability in various parameters concerning 

the technique - the velocity of the plexor (ranging between 0.45 and 2.2 m/s), the duration of contact between the 

plexor and pleximeter (ranging between 0.06 and 0.18 s) after the stroke and the contact pressure of the pleximeter 

(ranging between 0.9 and 3.2 kg). These variances could account for inter-observer discrepancies found in the 

various evaluations cited by McGee [8].  

According to a modern bedside diagnostic textbook [5] the plexor finger should be withdrawn immediately after 

the percussion stroke, but in a study by Coleman [23] in 1939, clinicians could not distinguish notes created by 

rapid withdrawal of the plexor from notes by resting the plexor gently on the pleximeter after the stroke.  

On the argument of whether direct or indirect percussion performs the best, Sapira et al. [20] found that the 

direct technique gave more accurate results for some cases, yet no other investigations that considered direct 

percussion could be found. 

There have been many studies that compare the results of Topographic Percussion for the estimation of liver size 

to gold standards [20], [21], [23], [24]. The golden standard in these studies are either only scintiscan [25] (a radio 

nucleotide scan) or both ultrasound and scintiscan [21], [26] & [24] or ultrasound and x-ray [20]. Sullivan et al. [21] 

and Peternel et al. [25] found poor correlation between ground truth and the percussion finding of the span on the 

mid-clavicular line (vertical) with mean errors of >2 cm and 3.5 cm respectively, over ranges of 0 – 9.5 cm and 0.5 

and 11.5 cm. On the other hand, Sapira et al. [20] found a reasonably high correlation coefficient of r=0.53-0.61 

(the results are cited as a correlation coefficient). The study by Leevy and Naftalis [26] calculated a very high 

correlation of r=9, but these results have been disregarded by McGee [8] due to the fact that investigators 

(percussors) were allowed to repeat their evaluation after seeing the result on the scintiscan.  

Despite the criticism, Skrainka et al. [24] presented a study aimed at evaluating the reliability of percussion (and 

other bedside diagnostics that form part of the clinical investigation). They found that clinical estimation (use of 

percussion and palpation) of the liver span should definitely be considered a valid technique.  

2.1.4 Emulation of Percussion 

During the previous century there have been various studies that attempted to bring technology and percussion 

together. This section discusses these studies and point out some ideas that are relevant to this study. These 

references are also cited in Chapter 3 and Chapter 4 where they influenced design choices. 

In a study by Murray and Neilson [17] & [18], an attempt is made to characterize percussion sounds and 

subsequently classify them. This study was documented in 1975 and already showed promise with limited 

computing capability. By comparing the frequency spectrum of percussion notes they found that the energy of the 

percussion notes was below 600 Hz, that the frequencies at which notes peak differs between sounds (resonance, 

tympany and dullness) and that the total energy in each differs. To eliminate the influence of noise multiple 

acquisitions were taken and an average signal used for analysis. This information provides guidelines as to how data 

acquisition equipment should be used (acquisition bandwidth).  
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A subsequent study by Murray and Neilson [19] made use of accelerometers, tied to the pleximeter fingers, to 

compare the acceleration of the pleximeter finger to percussion sounds during the act of percussion. The reason for 

this investigation was that some physicians believe that the tactile sensations felt by the base hand contribute 

additional information to the percussion note itself. The researchers found strong correlation between the percussion 

note and the acceleration signal indicating that no additional information is presented. The acceleration signal and 

sound waveform discrepancy could be explained by the fact that the sound does not originate from a point source 

but a surface, therefore generating plane waves. This information is helpful as it shows that accelerometer could 

also be considered to acquire a waveform of the percussion sound. 

Sandrin et al. [27] and Ophir et al. [28] & [29] introduced the concept of elastography – where a shear wave is 

introduced on the body wall and its propagation through the liver tissue is recorded by way of ultrasound. This 

technique uses an electromagnetic vibratory shaker to generate the shear wave and its propagation through the liver 

tissue is fundamental in the success of the technique. 

Bohadan and Kraman [30] attempted to evaluate the consistency of the percussion stroke during Auscultatory 

percussion by using the strokes of a mechanical thumper as a standard. It found that the strokes by percussors were 

similar to that of the thumper. The thumper operated with a rubber tipped cylinder connected to a solenoid valve 

which, in turn, is connected to a source of compressed air.  

Royston et al. [31] assessed the use of abdominal percussion for pneumoperitoneum (when free air is present in 

the abdominal cavity) detection. They performed their tests on dogs with the use of a modal hammer and a steel bar 

and recorded the signal using an air-coupled omni-directional microphone. In this study, and subsequent studies by 

Mansy et al. [17] & [18], an averaging technique was used to acquire a signal with reduced noise. They also 

mention specific features – attack rate, decay rate and dominant frequency – that were used to predict the volume of 

air present.  

A short paper concerning the types of sensors that could be used to measure body surface vibration [32], 

evaluated the use of air coupled microphones, contact piezoelectric elements, accelerometers, an electronic 

stethoscope, implanted microphones and an acoustic stethoscope. Results were compared to that of a Laser Doppler 

vibrometer and it was found that all devices performed satisfactorily and the air-coupled microphone was the most 

sensitive to ambient noise. The electronic stethoscope performed the best as it is designed to detect a very specific 

signal.  

2.2 The Liver 

The goal of this project is to use the emulation of percussion to detect abnormalities of the liver. The liver as 

organ is of utmost importance to the normal functioning of the human body as it performs an array of functions; 

therefore it is susceptible to various diseases. Particular attention is given to diseases that can and should be 

detectable by percussion as they influence the physical properties of the liver. Further attention is given to modern 

methods for detecting abnormalities of the liver, and practical problems with these methods are pointed out as a 

motivation for a different solution.  
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2.2.1 Characteristics 

According to Hawker [33] and Encyclopaedia Britannica [34] , the adult human liver normally weighs between 

1400 and 1600g and is a soft, pinkish-brown "boomerang shaped" organ. It is the second largest organ (the largest 

organ being the skin) and the largest gland within the human body. It is positioned immediately under the 

diaphragm on the right side of the upper abdomen extending from the right fifth intercostal space (space between 

ribs) in the mid-clavicular line down to the right costal margin. The liver lies on the right of the stomach and makes 

a kind of bed for the gallbladder (which stores bile). Figure 2.3 shows the normal anatomical position of the liver in 

the adult male (as extracted from Netter [35]).  

The liver is supplied by two main blood vessels on its right lobe: the hepatic artery and the portal vein which 

enter the liver at the porta. The hepatic artery normally comes off the celiac artery, the first major branch of the 

abdominal aorta. The portal vein brings venous blood from the spleen, pancreas, and small intestines, so that the 

liver can process the nutrients and by-products of food digestion. The hepatic veins drain posteriorly directly into 

the inferior vena cava. 

The functions of the liver [33] & [36] include bile metabolism of energy, lactate, protein, bile acids, bilirubin, 

lipids, drugs and toxins; and synthesis of proteins and bile; synthesis of Kupffer cells which are critical in defence 

of the human body against infection; and regulation of total blood volume (the liver stores 15 % of the total blood 

volume at any given time). The functions of bile include digestion, recirculation of bile acids, excretion of 

endogenous compounds like cholesterol, bilirubin and aged proteins, excretion of foreign compounds like drugs, 

environmental toxins and heavy metals and mucosal immunity by secretion of immunoglobin A (an antibody). 

 

Figure 2.3:  Anatomical views and position of the liver [35] 
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It is apparent that the liver is a critical organ in the human body. Any damage to the liver will negatively impact 

on the body as a whole and complete impairment of the liver’s functions, without intervention, could lead to death. 

2.2.2 Diseases of the Liver 

There are various diseases or actions (like drug abuse) that impact on the liver and, depending on the liver 

function being influenced or liver cells being affected, these diseases will manifest itself as a symptomatic disease 

of the liver or a symptom directly caused by the liver’s impairment (like jaundice).  

Most of the diseases leading to symptomatic diseases of the liver are only detectable by liver function tests 

(LFT) or liver biopsies, yet the symptomatic diseases are differentiable/detectable by traditional screening 

techniques like percussion, ultrasonography and CT-scanning.  

The most common symptomatic diseases are: (i) Hepatitis, (ii) Cirrhosis, (iii) Cholestasis, (iv) Hepatic Steatosis, 

(v) Cancer of the liver (hepatic tumours), and (vi) Jaundice. This section will briefly cover the description and 

symptoms of each. 

(i) Hepatitis [37] & [38] 

The term hepatitis generally refers to inflammation of the liver by inflammation of hepatocytes, but can also 

imply general cellular alterations including necrosis (death). Chronic hepatitis eventually leads to cirrhosis or 

necrosis of hepatocytes.  

(ii) Cirrhosis [37] & [39] 

Cirrhosis is a process characterised by fibrous alteration of normal liver architecture into structurally abnormal 

nodules of liver cells surrounded by fibrosis (the formation of excess fibrous connective tissue as a reparative 

process to injured liver cells). The symptoms of cirrhosis are very wide and unspecific and mostly associated with 

impaired liver function (jaundice, hypogonadism, muscle wasting). Untreated, cirrhosis will lead to eventual failure 

or cancer of the liver.  

(iii) Cholestasis [37], [40] & [41] 

Cholestasis is any condition in which bile flow is blocked. The blockage of bile flow could lead to inflammation 

of the liver and hepatocytes which in turn could lead to cirrhosis. 

(iv) Hepatic Steatosis [37], [42] & [43] 

Lipids (fat) represent approximately 5% of the normal liver. In the case of Hepatic Steatosis (also Fatty Liver or 

steatorrhoeic hepatosis) small vacuoles of lipid (liposomes) accumulate in hepatocytes. As the size of the vacuoles 

increase, the cell nuclei are pushed to the periphery and large fat vesicles are formed. Large vacuoles eventually 

coalesce to form fatty cysts which represent irreversible lesions.  

(v) Cancer of the liver (hepatic tumours) [37], [42] [44] & [45] 

Hepatic tumours can be benign or malignant (cancerous) and present as either hepatomegaly (enlarged liver), 

abdominal pain, jaundice or impaired liver function.  

(vi) Jaundice [42], [44] & [46]  
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Jaundice in general refers to a yellowing of the skin and the mucous membranes caused by increased levels of 

bilirubin in the human body. Bilirubin is mainly formed during the breakdown of haeme (which forms part of the 

haemoglobin in red blood cells) in the spleen and Kupffer cells in the liver and is secreted with bile. Jaundice can be 

divided into three classes associated with the cause: (i) pre-hepatic (or haemolytic) caused increased rate of 

haemolysis (breakdown of red blood cells); (ii) hepatic caused by liver cell impairment; and (iii) post-hepatic 

caused by an interruption to the drainage of bile. Jaundice is one of the first symptoms of impaired liver function 

and is important in initial screening. It is not a disease of the liver as such, but a symptom primarily caused by liver 

diseases. A measurement of the level of jaundice in a patient can assist in the diagnosis of that patient. 

These six symptomatic diseases are important to this study for two reasons:  

i. All except Jaundice represent as macroscopic changes to the liver which should be detectable as 

anomalies during percussion, palpation or auscultation. In the case of hepatitis, hepatic steatosis, 

cholestasis and possibly tumours, the liver will increase in size. In the case of cirrhosis the liver could 

either increase or decrease in size depending on the prognosis. The elasticity of the liver could change in 

all cases, and the consistency mostly changes in tumour cases. Jaundice is a symptom that can indicate 

any of the other conditions. 

ii. These conditions are, in various cases and as stated, caused by other diseases. By the time these 

conditions present themselves the prognosis is severe and it is imperative that the patient presenting these 

symptoms be presented with the appropriate medical care. As is often the case in rural areas, the 

appropriate screening tools are not available and the bedside diagnostic methods (history and physical 

exam) need to be well understood to detect these symptoms.  

2.2.3 Detection of Liver Disease 

Modern methods for the detection of liver diseases can be divided into four categories: (i) Clinical Evaluation 

(History and Physical Exam), (ii) Laboratory Evaluation, (iii) Radiological Imaging and (iv) Morphologic 

Evaluation (Liver Biopsy). This section will briefly mention the relevance of each of these methods. 

(i) Clinical Evaluation [37]  

The clinical evaluation is usually performed by the general practitioner (GP) and involves taking a complete 

history of the patient and a physical examination. The GP relies on his own experience and knowledge, and then 

makes an assessment. The general exam includes percussion, palpation, examination of the body and taking the 

patient history. The physical exam is rather inexpensive in comparison to any other screening technique, but is 

highly dependent on the GP’s experience and knowledge. 

(ii) Laboratory Evaluation [33] & [37] 

Laboratory evaluation refers to Liver Function Tests (LFTs) and concerns a wide variety of blood tests. The 

standard LFT measures the levels of serum enzymes and other markers. These tests are generally inexpensive once 

the equipment is attained, but still require skilled operators and large initial investment. 

(iii) Radiological Imaging [33], [37], [47] - [48] 
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Radiological imaging techniques include X-ray, Ultrasonography, Computed (Axial) Tomography (CT and 

CAT), Medical Resonance Imaging (MRI), Elastography and Radionuclide Imaging (Single Photon Emission 

Computed Tomography (SPECT) and Positron Emission Tomography (PET)). These techniques all involve some 

form of radiation, but only X-ray, SPECT, PET, CT and CAT involve dangerous ionizing radiation, however, at 

safe exposure levels (for single doses/assessments).  

Of these methods, X-ray, SPECT, PET, CT, CAT and MRI are all relatively expensive and require special 

facilities to perform – these are therefore irrelevant to the study as they are ill-suited for rural areas. Even so, they 

are all adaptable to scan soft tissue including the liver.  

Ultrasonography (US) can detect the size and shape of the liver, surface irregularities, alterations in hepatic 

parenchyma (fatty, necrotic, fibrous) and space occupying lesions within the liver such as tumors, cysts, abscesses, 

calcifications and stones. US is relatively inexpensive, mobile, produces images in real-time, causes minimal 

discomfort for the patient and has no long-term side effects. Although ultrasound might have a lot of commonality 

with percussion on face value, it must be pointed out that sound at the frequencies used by ultrasound are collimated 

(they do not diverge) whereas the low frequency waves of percussion are not. For this reason the principles of 

ultrasound cannot be extrapolated to percussion theory. 

Elastography [27] - [29] is a relatively new technique that involves producing elastograms (images of the 

elasticity/stiffness) of the tissue under test with the aid of either MRI or ultrasound. The tissue is excited by a 

transducer that produces waves at 50 to 1000 Hz. The acquired data is processed to determine Young’s modulus or 

Poisson ration of the underlying tissue. The technique of elastography is particularly valuable in the diagnosis of 

cirrhosis (because the liver becomes harder/stiffer), liver tumours, hepatic steatosis (liver becomes softer/more 

elastic) and cholestasis (blockage of tracts causing some softer regions). The cost of elastography is comparable to 

US. It still requires the skills of a technician to operate, is too costly to be used in rural areas and can only diagnose 

a few pathologies of the liver.  

(iv) Morphologic Evaluation [37] & [49] 

Morphologic evaluation mainly refers to taking a biopsy of the liver, but specimens can also be obtained 

surgically. A liver biopsy involves the removal of cells or tissue by means of percutaneous needle or transvenous 

catheter; which is then histologically (chemically or microscopically) analysed. The main advantage of morphologic 

evaluation is that it can give a very clear picture of the pathological state of the liver when the parenchymal cells of 

the liver are involved. It does, however, fail to diagnose many pathologies that are not directly caused by 

hepatocytes. The greatest disadvantages involved with a biopsy are that it can be very painful for the patient, require 

highly skilled and educated pathologists and, inherently, can be very expensive.  
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2.3 Conclusions 

Although medical percussion is explained in medical textbooks, the underlying physics is not well understood 

and ambiguous. It mainly uses some variant of the hand as a striking tool and in most cases the other as a mediate 

and the resulting note is used to diagnose or identify underlying pathology or organs. Percussion is applied to assess 

various regions of the body, one area being the liver – this application of the technique is explained in Section 2.1.1.  

Percussion has evolved over the past four centuries and has been adopted by most physicians and medical 

textbooks. There are, however, various versions of the technique with most of them still in use today and even 

studies focused on establishing which version is superior could not identify a clear winner.  

Over the previous century there have been various studies that have both discredited and affirmed the technique 

in all areas where it is applied. These studies evaluate inter-observer agreement on percussion notes, the correct 

technique and the results obtained. The results between studies are conflicting, which makes it difficult to make 

clear conclusions.  

There have been numerous modern studies not aimed at emulating percussion, but inadvertently copying the 

actions of the hand in order to obtain a more repeatable stroke/result. Other studies were aimed at evaluating the 

percussion note by computer – these used crude signal analysis techniques and little computing power to 

successfully distinguish between percussion notes.  

In Section 2.2 the importance of the liver as an organ in the human body is underlined. Early detection of liver 

problems is of utmost importance and the correct application of percussion could succeed in identifying these.  

Techniques other than percussion, that evaluate the liver’s condition are superior, but more expensive and less 

accessible (depending on where a patient is) than percussion. Unfortunately, skill and experience is of utmost 

importance to the successful application of percussion. Lack of these attributes can lead to misdiagnosis. 

It is possible to copy the technique of percussion by some mechanical device, but there is no scientific basis to 

draw a parallel between percussion and artificial percussion (whatever that may be) in order to validate results. 

Although signal traces have been depicted for percussion sounds recorded with a microphone, other sensors might 

perform better, but record different signal traces (acceleration vs. sound pressure) – whether the same separability 

would be attainable is questionable. It may also be possible that such an investigation may present with far superior 

results. 
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Chapter 3 System Development  

Hardware and software needs to be acquired, or designed and built, and finally integrated to perform the primary 

tasks performed by the physician when performing percussion – to percuss the patient’s body wall (actuate) and to 

listen to the result (sense). The identification of signals would require experimentation and evaluation (like the 

training of the physician’s ear) with the systems that perform these primary tasks – the experimentation and 

analyses are discussed in Chapter 4 and Chapter 5. This chapter deals with the development of a system that can 

actuate the body wall and record reactionary signals. 

3.1 Conceptual Design 

Except for the physical devices needed to perform the primary tasks, one would need to control these devices, 

condition the signals and store the acquired signals for later analysis. The following components were identified as 

necessary and their individual designs and/or selections are discussed in subsequent sections: 

• Actuator (a mechanical device that could deliver the percussion stroke) 

• Sensors to measure changes generated after the percussion stroke. 

• Signal Conditioning System to remove noise and unnecessary components as well as provide power to 

sensors.  

• Data Acquisition (DAQ) System to digitize sensor data for computer analysis. 

• Computer to collect data and control the actuator 

• Rigid frame (after some initial investigation it became apparent the patient’s movement manipulates the 

recorded data as well as the actuator input) to attach the actuator to the bed. 

Some of these subsystem requirements could be met by calibrated laboratory equipment, but laboratory 

equipment is often ill-suited for testing on human subjects and extensive development may have been required if 

such equipment was chosen. Furthermore, unless equipment was not being used for other laboratory work, it would 

need to be acquired which would be expensive especially given budgetary constraints. The custom designed sensors 

that were employed in the end, may have been better adapted to human testing and far cheaper, but their 

performance were found to be lacking, unpredictable and could not be validated. The approach of developing 

custom sensors should perhaps have been preceded by a proof of concept with standard, tested and calibrated 

equipment and only once the concept was proven. Unfortunately, the author continued on this path of customised 

sensors based on the assumption that they would work and are working and also because of a lack of knowledge of 

standardised laboratory equipment. More attention will be given to these problems in subsequent sections. 
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3.2 Actuator 

The actuator should ideally be a robotic hand that can move like that of a physician during the physical exam, 

only more repeatable, but this approach would be impractical as the control of such a robotic hand would be a 

project in itself. Realistically the actuator should be some device that would allow an investigator to provide a 

repeatable mechanical thump to the body of a patient without hurting the patient. Additionally, having the ability to 

be actuated with different signals would be useful.  

Two options were investigated – a modal hammer and an electromagnetic vibrational shaker.  

The modal hammer is a standard modal analysis tool used in Mechanical Engineering for Vibrational Analysis. 

Hammer models mostly contain a load cell in the tip of the hammer and the input force signal is combined with 

output sensor signals to estimate a frequency response function (FRF) – this effectively normalises the output to the 

input. The use of a modal hammer for human testing was not researched, but tested and the tests revealed that very 

light thumps against the ribs caused severe discomfort to volunteers. The main researcher had minimal exposure to 

modal analysis and was not aware of FRF estimation techniques at this time and rejected the use of the modal 

hammer based on the lack of repeatability and discomfort to the volunteer. The lack of bandwidth in the input force 

signal used for the FRF estimate may have proven to be an additional dismissing factor.  

The electromagnetic vibrational shaker is another standard Vibrational Analysis tool. The devices work on 

different principles, but in essence have some piston that can be moved by modulating the current through 

electromagnetic coils. The shaker is therefore versatile in that it can be driven with various analogue signals – a 

pulse to simulate the percussion stoke, a frequency ramp that could help determine a frequency response, and white 

noise to estimate an impulse response (time domain version of a complex FRF). A vibrational shaker is used in 1-D 

transient elastography, a technique used to determine the elasticity of, amongst others, the liver [27]. The technique 

uses ultrasound to image the wave as it passes through the liver, proving the signal penetrates at least as deep as the 

liver – this result further motivates the decision to use the shaker as actuator. The problems that one would have 

with the vibrational shaker is that it has a short offset position (<25 mm) which means that one would have to place 

the head of the shaker against the skin of the patient; the shaker does not have a standard load cell, which means 

that an additional force sensor would need to be developed; and the shaker models that were accessible had rubber 

diaphragms which generated a sound at the same frequency as the excited frequency – this would render sound 

sensors useless. The advantages of the shaker would be the ability to modulate the piston movement (repeatable); 

the shakers are mountable (if one should need to connect it to a frame); a head could be designed to make the input 

to the patient more comfortable; and the modulation capabilities could make the FRF estimation more dependable.  

These considerations led to the decision to make use of the electromagnetic vibrational shaker. The mechanical 

shaker that was used in this project is the V201-PA25E from LDS Group [50]. An excerpt of the datasheet can be 

found in Appendix E.1. A photo and drawing of the shaker is shown in Figure 3.1. 
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Figure 3.1:  Vibrational shaker as implemented 

The use of the vibrational shaker necessitated additional custom design work which included a customised tip 

and stem and a custom force sensing element.  

The coupling element that transfers the energy from the electromagnetic shaker is designed in such a way that 

the weight and inertia of the shaker is decoupled from the target (this is the function of the narrow stem) and to 

distribute the energy evenly over the contact area. In addition to distributing the energy, the spherical shape of the 

tip limits the effect of non-perpendicular input (offset angle) which is a factor when actuating a human body which 

is covered by non-regular surfaces. Other exciter head shapes were not considered. 

The sensing of input force requires some force sensor. Although a load cell was not considered, it would have 

required some custom design to mount it between the shaker and its tip and may not have recorded the exact input 

force. Mounting the load cell to measure the load delivered to the human subject may also have caused discomfort 

for the patient. A force sensing resistor (FSR), the Model 400 FSR from Interlink Electronics [51], was therefore 

placed in the centre of the tip’s contact area. Although the FSR may not be the ideal sensor for measuring input 

force, it was easily acquired at the time of design and very easy to implement as it is made from a thin film and does 

not interfere with the contact between the shaker tip and the subject’s skin. An FSR changes resistance inverse 

proportionally to the force applied and is connected in a voltage divider configuration with 10 kΩ resistor. The FSR 

and voltage divider configuration are shown in Figure 3.2. 
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Figure 3.2:  FSR and Voltage Divider Configuration 

The input force vs. output voltage relationship is given by equation 1 below. This relationship is derived in 

Appendix A.4. 
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The exact relationship between input force and measured voltage was not verified by testing, but equation 1 was 

used to calculate set points so that two tests could be performed using the same pre-tension (assuming zero drift). 

An example of an FSR signal recorded during experimentation on human subjects is shown in Figure 3.3. The top 

left plot of the figure shows the signal where a sequence of pulses were delivered to the human subject and the top 

right and bottom plots are depiction of the same signal, but zoomed in sections. The FSR voltage signals (shown in 

blue) in general seemed unnatural with components that look like discontinuities. The FSR force signals (shown in 

red) were obtained by converting the voltage signal to force (N) using equation 1, and seem more natural, but still 

do have some saturation at 0 N which can be attributed to the actuator tip not making any contact with the skin for a 

short period of time. The slowly changing offset can be attributed to the subtle movement of the volunteer under 

test. Although it is not clear here, some signals still showed discontinuities or sudden jumps in the offset voltage 

which could not be attributed to environmental factors. 
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Figure 3.3:  Force Sensing Resistor signals 

The electromagnetic shaker is also driven from a single channel sound amplifier which amplifies the sound 

output from a PC (or any other sound generating device). The sound amplifier was borrowed and is developed 

primarily for this function and is not an off-the-shelf device (therefore, there is no datasheet). The amplifier is AC 

coupled. 

3.3 Sensors 

The function of the sensor or sensors is to measure the reactionary signal of the human body wall. The physician 

relies on the sound generated by the body wall during percussion to decide whether the sound is liver dullness, but, 

according to McGee [8], it is unclear whether a physician practising percussion is making deductions based on what 

he hears or whether he includes what he feels (with his hands) in making deductions. In the discussion about the 

actuator it was pointed out that the electromagnetic shaker has a diaphragm which generates a sound representation 

of the input force signal and this sound is louder than any reactionary signal one could hear. This places an 

unfortunate constraint on the selection of the sensor as it cannot be an air coupled microphone and needs to be some 

sensor measuring the vibration of the skin.  
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The spectral content of the sound recorded by the physician’s ear will not exactly match the spectral content of 

the vibrational signal measured on the skin as the transfer of vibration from skin to air is not ideal and other acoustic 

effects in a room may influence the sound heard. Be that as it may, the signal bandwidth should be similar and there 

should be distinguishing features in the surface vibration signal just as there are in the sound, although these may 

not be the same features. According to Murray and Neilson [17] & [18], the energy spectrum of the percussion note 

detectable above the abdomen is contained between 200 and 600 Hz, which means that whichever sensor is 

implemented needs to have a bandwidth of 600 Hz. 

A study by Mansy et al. [32] gives some guidance as to how to select sensors for surface vibration measurements 

in humans. They compared the use of an electronic stethoscope, accelerometers, contact piezoelectric elements, an 

air coupled microphone, an acoustic stethoscope with built in microphone and a Laser Doppler vibrometer (LDV) 

by measuring vibrations on a silicon phantom with an internal speaker. They concluded that all of these sensors 

performed adequately as far as signal-to-noise is considered, yet the stethoscopes performed better for measurement 

of the desired signal (this evaluation assessed typical auscultation sounds which are related to the heart beat and 

lung ventilation) and the air-coupled microphone was very sensitive to ambient noise. The LDV should be immune 

to ambient noise and was therefore considered as the golden standard to which the other devices were compared. In 

this selection of sensors only two were considered for this thesis: the electronic stethoscope and accelerometer. The 

LDV was not considered as none was accessible at the time. 

An electronic stethoscope from GeoAxon was evaluated for the purposes of recording percussion sounds. It was 

found that it was too sensitive and saturated, therefore eliminating the option.  

Both industrial standard piezoelectric accelerometers and smaller, more modern MEMS accelerometers were 

considered. Industrial piezoelectric accelerometers are heavy and expensive, but MEMS accelerometers are small in 

size and weight and relatively inexpensive, which led to the selection of the latter for this project.  

MEMS accelerometers operate in various ways, but usually have some microstructure with a known weight 

loaded on some micro spring mechanism and some method to detect deflection of the structure. The measured 

signal is related to the earth’s gravitational field and the actual acceleration of the device. The devices are usually 

manufactured in flat square or rectangular packages with acceleration axes being parallel to the flat surface unless it 

has a third axis, in which case it would be perpendicular to the package’s surface. The third axis, labelled the z-axis, 

is of interest as the device can be mounted to a surface with this axis being perpendicular to this surface and 

therefore most sensitive to vibration if only one vertical movement is considered.  

A formal literature investigation into the actual required sensitivity revealed no exact quantity as to what the 

typical acceleration of the skin under percussion is and it was decided to build the sensor and evaluate its 

performance. The ADXL330 from Analog Devices [52] was selected. The ADXL330 has a sensitivity of 300 mV/g 

(where g denotes gravitational acceleration), dynamic range of 3 V or 10 g and bandwidth of 1600 Hz in the x and y 

directions and 550 Hz in the z direction – the bandwidth of the z-axis is a bit below the 600 Hz requirement, yet it 

represents a roll-off of 20 dB per order of magnitude (5.5 kHz), therefore a dominant frequency below 600Hz 

should still be measurable.  
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An accelerometer PCB was designed as a substrate for the ADXL330. The design is detailed in Appendix A.3. 

The PCB with the ADXL330 is engulfed in an epoxy to protect the circuitry. A small clip is glued to the base of the 

unit and clips to an ECG sticker. The ECG sticker sticks to the patient’s skin in the target position and the 

accelerometer unit clips into the sticker. The combination of ECG sticker and clip may have some energy transfer 

effects, but the exact transfer function between a vibrating source and MEMS accelerometer was not established. 

However, a frequency sweep with the ECG sticker attached to the actuator head revealed that the signal bandwidth 

remained in tact. It was assumed that the combined effect of the sticker and clip would be consistent throughout 

measurements, if there was any effect at all. 

 

Figure 3.4:  Image of Accelerometer Sensor Unit 

In a preliminary investigation into the applicability of the ADXL330 as vibration sensor, the ECG sticker and 

sensor unit were placed on various places on the thorax and abdomen of a volunteer and both the electromagnetic 

vibrational shaker and modal hammer were used as thumper. Accelerometer signals were measured with an 

oscilloscope and it was found that the sensor could detect signals generated from distant locations (>20 cm) as well 

as having the necessary dynamic range to record strong signals (without saturation) in close proximity (<5 cm) to 

actuation. From this experiment it was concluded that the sensor should perform adequately as a body wall vibration 

detector.  

It was decided to measure at fixed distances from the point of actuation and at the same height, therefore only 

requiring two accelerometers. An additional accelerometer unit was built and could have been used if there were 

certain points of interest to be measured, but there were no such instances. 

Although preliminary investigations showed that the accelerometer produced normal looking signals, some of 

the signals recorded during human subject tests showed seemingly unnatural artefacts. These artefacts included 

saturation which could be ascribed to maximum acceleration limits being reached (see Figure 3.5), and high 

frequency glitches or sudden changes in the voltage signal which could not be explained (see Figure 3.6). The signal 

processing techniques used in Chapter 4 assumes that these artefacts would be rejected by matching models to the 

input-output data or by obtaining averages of multiple signals. 
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Figure 3.5:  Accelerometer saturation 
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Figure 3.6:  Accelerometer discontinuities 

3.4 Data Acquisition System 

The function of the data acquisition system is to digitize signals before sending it to a computer for storage 

and/or analysis. For this purpose an already available module, the Measurement Computing PMD-1608FS USB 

Analogue and Digital I/O Module, was used. The device has eight single-ended 16-bit analogue-to-digital 

conversion channels with software selectable input ranges of ±10 V, ±5 V, ±2 V and ±1 V and sample rates of 50k 

samples/s per channel, but 100k samples/s total. There are also eight digital input/output channels with built in pull-

up resistors which are used to control the multiplexers of the Signal Conditioning System. The device uses an USB 

2.0 port, comes with the necessary driver software and can be controlled through the Matlab Data Acquisition 

Toolbox (Matlab was used as the software development and evaluation environment). The user guide and 

specification is available from the manufacturer [53]. 

Figure 3.7 shows a picture of the PMD-1608FS USB and its system block diagram respectively, with the device 

pin-out.  
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Figure 3.7:  PMD 1608FS USB Block Diagram and pin-out [53] 

The device was used for data acquisition and controlled from one Matlab m-file called DataloggerGUI.m 

discussed in Section 3.6. Analogue (analogue-to-digital conversion) channels 1 to 3 (CH1 in, CH2 in and CH3 in) 

were used for the three accelerometer signals from the Signal Conditioning and Routing PCB. The FSR signal was 

connected to analogue channel 0 (CH0 in) and the modulation input to the electromagnetic vibrational shaker was 

sampled through analogue channel 4 (CH4 in) in some experiments. Two digital outputs (DIO0 and DIO1) are used 

to control the multiplexing function on the Signal Conditioning and Router PCB.  

3.5 Signal Conditioning System 

The signal conditioning system’s requirements were driven by the hardware choices in the previous sections. 

The accelerometer signals needed to be manipulated slightly to make better use of the data acquisition device’s 

dynamic range. The data acquisition device also has limited acquisition channels which necessitates the ability to 

switch between signal sources. Different components also have different power requirements.  
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The ADXL330 MEMS Accelerometers require ground (GND) and 3.3 V power to operate and the sensor 

outputs contain a DC component – this is due to the offset acceleration caused by the earth’s gravitational field and 

the zero acceleration output being 1.65 V (halfway between the power rails). The sensors also have three outputs 

each; therefore, with three sensors one would already require nine analogue-to-digital conversion channels if each 

channel was of interest. In addition to this, the FSR sensor discussed in Section 3.2 and other possible sensors 

would also require analogue-to-digital channels.  

The signal conditioning system has the following functions: 

• Provide power to three ADXL330 MEMS Accelerometers. 

• Multiplex the nine input signals to three outputs by either mapping the three z-axes or the x-, y- and z-

axes of a single accelerometer.  

• Remove the DC component from the accelerometer signal as it is not of interest (this will only give 

information as to the sensors orientation relative to the centre of the earth). 

• Amplify the signals to make better use of the dynamic range in the analogue-to-digital conversion of the 

Data Acquisition System therefore improving signal to digitization noise ratios. 

Two PCBs were developed to perform these functions. The first board is called the Signal Conditioning and 

Routing PCB and the second the Power Source PCB. The Signal Conditioning and Routing PCB uses multiplexing 

techniques to map input signals to output signals (as outlined above) determined by two control input lines. Mapped 

signals are high pass filtered to remove the DC component in the signal and then amplified by 10 dB. Connectors on 

the board provide connection for the accelerometer PCBs to transfer power and signals, power connectors and 

output connectors to transfer signals to the Data Acquisition System. The system block diagram is shown in Figure 

3.8 and the design is detailed in Appendix A.1. 
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Figure 3.8:  Signal Conditioning and Routing Block Diagram 
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The Power Source PCB converts 230 VACRMS
 to 3.3 V, +5 V and -5 V. The output voltages are used to power 

the first board and the accelerometers. The design of the Power Source PCB is detailed in Appendix A.2. The block 

diagram is shown in Figure 3.9. 
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Figure 3.9:  Power Source PCB system block diagram 

3.6 Computer System 

The functions of the ‘computer system’ are the following: 

• Generate the sound signal for the actuator. 

• Control the Signal Conditioning and Router PCB to return the correct signals. 

• Record and store measured signals. 

• Analyse recorded signals. 

These functions are all controlled through software that was developed in and for the Matlab environment. The 

software can run on any computer running the Windows XP operating system with a USB 2.0 port and sound 

output. The software was not developed with distribution in mind; it was simply developed for use by the author.  

The first three listed functions have to do with the data acquisition phase of the project and are performed by one 

program or m-file called DataloggerGUI.m, which has a graphical user interface (GUI) built from a base generated 

with the Matlab development tool called GUIDE (Graphical User Interface Development Environment). An 

overview of the software flow is shown in Figure 3.10. When the application starts it initialises values, updates logs 

and dates, initialises the DAQ device (if available) and generates the user interface. Hereafter the program is in a 

wait state where it waits for the user to change values on the panel, start an acquisition, save data or terminate the 

program. The click of a button, changing of a value, or entering of text calls functions or callbacks in the program 

that will perform an action related to that button. Underlying functions or callbacks can be called from others and 

not all of them are accessible by the user (e.g. plotting data).  
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Figure 3.10:  DataloggerGUI.m general software flow diagram 

Should the user change a value, the underlying callback will update the value and return control to the interface 

immediately. If more than one control is clicked while an update is performed, that action is stored in a buffer and 

executed as soon as possible. 

The software was developed to allow the user to perform tests with one or all of three actuation signals (white 

noise, chirp or pulse). When an acquisition sequence is started, the software generates the output signal internally 

and then starts capturing data and outputting the signal simultaneously. Hereafter the data is stored in internal 

variables and presented on a graph. 

Once data has been collected, the user can choose to overwrite the data with a new single acquisition or 

sequence thereof; the user can save the stored variables in a .mat standard Matlab data file or the user can choose to 

end the program in which case data will be lost. 

Additional functionality includes loading previously recorded data for display in the window. This is not 

included in the software flow as it is a redundant function as far as the project is concerned as the data analysis 

functions generate various other representations. 

An image of the user interface is shown in Figure 3.11  

Data analysis software or programs were also developed as m-files in the Matlab environment. These functions 

do not include GUIs as they were not developed as tools, but simply used for evaluation. These programs are 

discussed within the sections where they were employed. 
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.  

Figure 3.11:  DataloggerGUI.m graphical user interface 

3.7 Frame 

If a patient is percussed with a mechanical device while he/she is standing up, the patient will tend to sway either 

simply periodically or in reaction to the percussion stroke (this was confirmed with primary investigations where 

the vibrational shaker was simply clamped to a bench and the patient asked to stand against it). If a patient is lying 

on his/her back, swaying is not possible, but if an operator is holding the device (especially if it is heavy) he/she 

will also tend to sway. To prevent patient or operator sway it was decided to design and construct a frame from rigid 

steel.  

The designed frame must adhere to the following requirements: 

• It must be attachable to a bed. 

• The position of the actuator should be lockable for two reasons: 

o So that the actuator stays in place for repeat sequences. 

o If the actuator or parts of the frame slides out of place it could injure a patient. 

• It must allow an operator to move the actuator to any position on the patient’s body. 
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Of the concepts that were considered the one represented in Figure 3.12 was the one that was finally decided 

upon. The electromagnetic shaker (“shaker”) is attached to a base with a pipe extrusion (“shaker base”). The pipe 

extrusion fits into another curved structure (“curve slider”) with a locking screw to lock the shaker base into 

position. The curved base is curved so that it can slide over curved pipes (“curved track”) which fit into side 

supports structures (“straight slider”). These side supports are partially made from pipes so that they can slide over 

the straight track, therefore the name “straight slider”, and the straight track end in bed clamps. The straight and 

curved tracks have lock screws to keep the frame locked in position whilst a measurement is being done.  

Curve Slider

Shaker Base

Shaker

Curved Track

Straight Track

Bed Clamps

Straight Slider

 
Figure 3.12:  Frame design and measurement setup 

Detailed design documentation can be found in Appendix C.1. 

3.8 Conclusions 

To perform emulation of percussion various devices and frameworks are required. A concept was developed by 

referencing literature and taking some practical considerations into account and this concept led to individual 

component requirements and finally component selection.  

In the light of the outcome of this project, critical evaluation of the performances of sensors is required and this 

was done in Sections 3.2 and 3.3. It is shown that the FSR and accelerometer did perhaps not perform ideally, and 

should have been compared against standard sensors. The artefacts could perhaps be due to weak performance or 

the signal conditioning system, but that they truly reflect what is happening can also not be refuted. The evidence is 

inconclusive, but selection of trusted, calibrated laboratory equipment would have eliminated this problem. In 

Chapter 4 model matching techniques are used to define systems that best describe input-output data and it was 

hoped that these fitting techniques would reject signal artefacts – this theory is also verified using artificial data. 
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The choice of the electromagnetic vibratory shaker allows for some versatility over the modal hammer, but 

impacts on the sensor selection in that an air coupled microphone cannot be used to measure reactionary signals. 

The rejection of the modal hammer was perhaps premature and could have allowed the use of an air coupled 

microphone which is closer to percussion.  

In Chapter 4, an experiment employing this system is developed and performed on the assumption that the 

method and devices are sound and would allow some method of determining the presence of the liver.  
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Chapter 4 Human Subject Tests 

The desired system to be used for liver border detection does not only consist of hardware, software and data 

acquisition tools; it requires a method or algorithm to recognise which signals belong to liver presence and which do 

not. A method can be developed by simulation, but as it was pointed out, a model of the problem cannot be 

constructed easily and thus experimental data is required to develop and test an algorithm. This chapter is therefore 

involved with experimentation to collect data, a mass of signal analysis and feature extraction, and feature matching 

to underlying tissue (classification).  

The experiment uses the tools developed in Chapter 3 to perform tests on volunteers (discussed in Section 4.1) in 

accordance to the test procedure set out in Section 4.2. In brief, the test involves volunteers lying on a bed 

underneath the frame being actuated by a series of pulses at different locations in a grid on the surface of the 

volunteer’s body. Data is recorded using the tools developed in Sections 3.3 to 3.6.  

Subsequent to these tests, volunteers are scanned using MRI and the actual location of the liver extracted from 

these images – this is called ground truth extraction which is discussed in Section 4.4.2.  

Signal processing and feature extraction (Section 4.3) involves simplifying the mass of information contained in 

each time signal by representing it by features. Two feature extraction approaches were used – direct feature 

extraction, where components of the measured signals are used as features; and model fitting techniques where data 

is fitted to simple models and the parameters of the model that best describe the data is used as features. 

Once features are extracted for each measurement point for each volunteer, classification techniques are 

evaluated to map parameters to underlying ground truth. The ability of a classifier to identify the underlying tissue 

(ground truth) is used as measure of the success of the method as a whole. Each feature extraction method combined 

with a type of classifier is considered a method. 

The evaluations contained in this chapter ultimately showed that the approach followed was flawed and possible 

reasons are discussed. A subsequent investigation using a model of the problem (in Chapter 5) showed more 

promising results, but the chapter is far shorter than this one – the reason is that this chapter represents almost 90% 

of the effort of this thesis and the author needed to emphasize this and also indicate that no stone was left unturned 

in an attempt to solve the problem using the particular setup. 

4.1 Volunteers 

Volunteers consisted of eight male students, ages 22 to 25, of average build (1.75-1.95 m tall, 70-85 kg in weight 

and medium frame).  
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Three of the volunteers assisted in tests before the frame was built. The actuator was simply attached to a bench 

and these volunteers were asked to stand against the actuator whilst a series of pulses were performed. These tests 

showed significant problems in the repeatability of results and difficulty in pin pointing specific points of entry. 

These issues, among others, led to the subsequent development of the frame. 

Another two volunteers assisted in the development of the experiment after the frame was built. During these 

tests, usage cases for the development of the control software were developed. Various issues in the movement of 

the frame and the placement of accelerometers were addressed.  

Three other volunteers were used in actual data acquisition tests where data was useful, and this data is used in 

later analyses. 

Each test took approximately an hour to complete in which time the volunteer had to be lying on his back and 

keep his body still. Although the percussion blows were weak, they were still uncomfortable. It was thus decided to 

limit the amount of test work and to focus on extracting features that could indicate the location of the liver.  

4.2 Test Procedure 

Volunteers were asked to lie on the bed underneath the frame described in Section 3.7 as shown in Figure 4.1. 

ECG stickers were placed in fixed positions on the surface of the volunteer’s skin. The bottom of the sternum 

was used as a reference point after finding it by palpation. From this point, three marks were made in each 

horizontal direction, 6 cm from the reference point and each other resulting in seven points. Another two rows of 

marks were made as the first, but 5 and 10 cm below the first row resulting in a total of 21 points. These points 

represent the points of percussion and ECG stickers were placed horizontally in between and outside of these points, 

3 cm from the input, for attachment of accelerometers.  

The actuation points are shown in Figure 4.2, as performed with one volunteer. The red, green and blue rows 

represent the first, second and third row respectively. The actuation points are labels as outlined in Table 4.1 where 

R3 represents the furthest position right (relative to the volunteer), LR represent the middle, UD represents the top 

(cranial) and D2 represents the lowest point (caudal).  Some points are also indicated in Figure 4.2. 
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Figure 4.1:  Experimental setup - Volunteer under frame 

Table 4.1:  Actuation point labels 

R3/UD R2/UD R1/UD LR/UD L1/UD L2/UD L3/UD 
R3/D1 R2/D1 R1/D1 LR/D1 L1/D1 L2?D1 L3/D1 
R3/D2 R2/D2 R1/D2 LRD2 L1/D2 L2/D2 L3/D2 

 

LR/UD R3/UD

L2/D2

 
Figure 4.2:  Measurement points on patient 

The actuator was moved to each point with the head of the shaker placed firmly against the patient’s skin. 

Accelerometers were placed on the ECG stickers directly left and right of the percussion point. 
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The DataloggerGUI.m Matlab program performed a calibration test to ascertain the orientation of the 

accelerometer and correct the z-axis (as the sensor might be lying skew). During calibration the thumper was 

excited with a 2 second 10 Hz sinusoidal signal for each accelerometer. The three axes of each accelerometer are 

recorded and the absolute value of acceleration, relative to the absolute value of the z-axis is calculated. This value 

indicates the factor the z-axis should be multiplied to get the actual perpendicular acceleration of the skin. (It must 

be stated that this calibration constant was not applied as signals were normalised in post processing.)  

After calibration, a series of nine pulses at one second intervals were performed whilst recording the two 

accelerometer and FSR signals at each point of entry – this is also controlled from DataloggerGUI.m. During this 

actuation the volunteer was asked to hold his breath as to not influence the measurement. An example of the 

measured signals is shown in Figure 4.3. As can be seen, it is difficult to see what the actual signals look like unless 

one looks at less samples at a time and one removes the trend in the FSR signal to remove the large DC offset – this 

is shown in Figure 4.4. Accelerometer 1 was placed left and accelerometer 2 right of the actuator input, relative to 

the volunteer. The FSR voltage signal indicates when the force was applied. The FSR voltage may look very 

discontinuous and unnatural, but the voltage signal is very sensitive to slight force changes which could have been 

caused by slight movements or settling of the sensor. These effects were evaluated critically in Section 3.2, and 

calculated FSR force signals are shown in Sections 3.2 and 4.3.1.1. 

 

Figure 4.3:  Example of signals measured 
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Figure 4.4:  Examples of signals measured - enlarged 

 

Figure 4.5:  Typical MRI Image and analysis thereof 

After the patient had been subjected to this battery of tests, an MRI was performed of the patient’s lower thorax 

and abdomen to determine the actual depth of the liver and other sub dermal presences (like ribs). An MRI slice is 

shown in Figure 4.5 with the relevant measurements extracted (with the help of SYNGO fastview software from 

Siemens AG). The extraction of ground truth is discussed in Section 4.4.2. 
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4.3 Signal Processing and Feature Extraction 

The goal of signal processing and feature extraction is to process signals to remove noise and time align them, 

and then find features within signals which correlate well with ground truth. In the ideal case, features would 

correlate well with ground truth and a linear relationship could be established. In practice, however, the relationship 

may be far more complex (multiple groups or clusters of data points indicating underlying sub classes, or odd 

probability density functions, or simply too many features to linearise a relationship) and require a statistical 

classifier to be trained to map features to the correct class.  

Feature extraction was done in two ways: 

• Direct extraction from measured responses – by looking at the response signal one can extract features 

like rise time, decay time, resonant frequency, or amplitude. Note that these features ignore the input 

signal or assumes that it is consistent. 

• Fitting of a model – one could fit a model that either matches the physics of the underlying problem (if 

one knew that the body wall behaved exactly like the membrane of a drum one would try to fit the wave 

equation, however this is not the case); or one could fit a model that seems to fit the response seen (this 

will be discussed later, but the measured responses seemed to behave like a mass-spring-damper system) 

– the model parameters that fit the measured signals best are compared to ground truth. 

Direct extraction of features is the simpler approach, where the FSR signal is used as a time reference and 

features like maximum acceleration, settling time (decay rate) and peak time are extracted from the accelerometer 

signal. One could also look at the frequency content of a typical signal by looking at the amplitude spectrum, 

selecting specific frequency bands and calculating the energy contained therein; or one could simply look for the 

peak of the frequency content.  

To fit a model to data might be a considered an easy option if an expected model for the situation existed – this 

is not the case. Two model types were considered: (i) a general autoregressive model; and (ii) a more specific mass-

spring-damper system. An autoregressive model is general in that it can describe various model types (mechanical 

or thermal) with the same parameters called “time series coefficients”. The more specific mass-spring-damper 

system was considered after data collection and subsequent analysis of the data where it became apparent that the 

accelerometer signal behaved like the response of a single or dual mass-spring-damper system to the FSR signal. 

4.3.1 Direct Feature Extraction 

Direct feature extraction involves extracting features from time or frequency spectrum signals. In order to extract 

features from the captured data, the raw data needs to be pre-processed which involves time aligning multiple 

signals, allowing the possibility to visually compare time signals and phase information.  

Section 4.3.1.2 is involved with the identification of features that separate signals from one another. The 

extracted features are used in Section 4.4.3.1 to train and evaluate classifiers.  
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4.3.1.1 Pre-processing of Data 

The data that was captured during the test procedure is contained in time signals representing the input and 

output at each measurement point. If one wanted to compare signals to each other one would want to do this 

visually first, which means signals must be in phase with each other – i.e. the time axis is the same relevant to the 

percussion stroke in each measurement. Although signals are captured using the same sequence for each 

measurement point, the result is not aligned in time – an example of some FSR signals are shown in Figure 4.6.  

Another consideration is contracting signal information which consists of a series of nine pulses that were 

performed at each measurement point. By taking the average of these signals one should be able to get a clear signal 

and reject the noise. The use of an average signal rather than absolute single signals to determine the signal trace of 

percussion sounds (recorded by microphone) was also performed by Mansy et al. [31].  

A Matlab function called get_aver_pulse.m was created to time align signals and get the average. The algorithm 

finds the first pulse in the FSR signal measured at a particular measurement point (e.g. L1UD), then uses cross-

correlation to find the time offset of the subsequent pulses. The other signals measured with the same DAQ 

sequence (Accelerometer 1, Accelerometer 2) should have the same time offsets and the result obtained is applied to 

each signal to obtain an average of that signal. More information on the algorithm used can be found in Appendix 

B.1. 
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Figure 4.6:  FSR signals showing time jitter 

Processing the signals in Figure 4.6 yields the results shown in Figure 4.7. Using these averaged and time 

aligned signals allow the bulk comparison of numerous signals. The accelerometer signals from the top row of one 

data set are shown in a waterfall plot in Figure 4.8. Plots like these are used in the next section to identify features 

for extraction.  
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Figure 4.7:  Time aligned and averaged FSR signals 
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Figure 4.8:  Series of time aligned accelerometer signals 

4.3.1.2 Identifying Features 

The averaging and time alignment discussed in the previous section allows one to look at multiple signals at the 

same time and identify possible distinguishing features. The goal of this section is to provide a list of features to be 

used for further evaluation (in Section 4.4.3.1) as well as the methods to extract them. 
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From the time signals depicted in Figure 4.8 it seems that most signals have a natural frequency multiplied with 

an exponential rise and decay. One can replace rise and decay rates with rise time and settling time as these are 

inter-related and the maximum component in the amplitude spectrum should be the dominant frequency. An 

example of the extraction of time features is shown in Figure 4.9Error! Reference source not found.. Note that 

some signal traces are noisy which leads to false detection of these features.  

 
Figure 4.9:  Extracting rise time, settling time and frequency 

If one looks at the amplitude spectrum for a row of accelerometer signals one obtains the spectrum depicted in 

Figure 4.10. Most signals have a clear central lobe, but also side lobes. One way to generalise around this problem 

is to calculate the percentage of power over frequencies with subsets of frequencies overlapping. Eleven features are 

selected by calculating percentages of total energy in intervals of 50 Hz every 25 Hz from 0 Hz to 300 Hz. The 

amplitude spectra of the signals in Figure 4.10 have the features shown in Figure 4.11. 
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Figure 4.10:  Amplitude spectra of multiple signals 

An attempt was also made to generalise the response as that of a low pass filter – the point where the phase 

spectrum changes slope would be the point of the dominant pole. This method and feature was discarded as it could 

not be extracted with sufficient confidence.  

Fourteen features were therefore extracted directly. These features are used for classifier training and testing in 

Section 4.4.3.1. Note that there were only three full data sets, with twenty-one points containing two accelerometer 

signals each – in total 126 data points’ features were extracted. 

 

Figure 4.11:  Features (percentage of energy in subsets of spectra) extracted from amplitude spectra 
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4.3.2 Model Fitting Methods 

Fitting models to input-output data is an attractive approach as one reduces the data to the parameters that 

describe the model that best fit the data. As stated earlier, the underlying mechanisms that create a percussion sound 

is not agreed upon nor described technically. Therefore, no known model with unknown parameters exists. One 

solution is to fit data to a more generic model – like a higher degree filter, or simple mechanical system. The 

problem with these approaches, however, is that choosing a model structure that does not describe the problem well, 

could cause erroneous results even though the model can be made to fit. Increasing the complexity of a model 

means more describing which would lead to the case where one simply describes a signal by its N points and 

therefore require no model.  

The various models that were considered can be categorized according to the tools that were used to 

develop/evaluate them: 

• Matlab’s System Identification Toolbox provides tools where one can determine the parameters of linear 

polynomial models (black box, system unknown) like ARX (Autoregressive model with exogenous inputs), 

ARMAX (Autoregressive moving average model with exogenous inputs); or linear and non-linear grey box 

(system known but parameters unknown) models described by unknown parameters of ordinary differential 

equations (ODE), that best relate input to output data. The parameters are estimated using linear regression 

and optimization using a gradient direct search method. 

• Matlab was also used to fit input-output data to a single and dual mass-spring-damper system using 

stochastic optimization methods, more precisely, the particle swarm and genetic optimization algorithms 

(this could also be done using the linear and non-linear grey box models in the System Identification 

Toolbox, but the direct search method was a drawback). These search methods search over a whole search 

space continuously and use the best results to generate new points of evaluation. The methods are based on 

swarm and genetic theory, respectively, and work well for problems where multiple local optima and 

discontinuities in the search space might exist. Although the particle swarm optimization algorithm seemed 

promising it did not lead to good model fits and this idea was subsequently cast aside. 

In Section 3.8 it was pointed out that sensor signals (FSR and accelerometer) possess unnatural artefacts some of 

which may have been caused by sensor error. One problem that the accelerometer signal experienced was 

saturation as the offset was too close to one of the rails It was hoped that model fitting techniques would reject 

these saturations and noise and fit more natural looking responses (where appropriate). A short evaluation is 

done using the mechanical model and this evaluation can be found Section 4.3.2.2. The evaluation shows that 

data could be fitted well, but that the fitted parameters mismatched the original slightly. 
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4.3.2.1 Autoregressive Models 

The System Identification Toolbox provides a multitude of possible models. Initially it was unclear which simple 

mechanical system could possibly closely resemble the data that was captured and it was decided to attempt to fit 

more general models to the data – therefore the ARX and ARMAX models (these belong to the more general class 

of time series models).  

An autoregressive model with exogenous inputs (ARMAX) is simply a model where the next output value is a 

linear combination of the previous input and output values where the moving average adds a term for the moving 

average of the output. For ease of reference only the ARMAX model structure is shown in equation 2 [54]. 
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Here y(t) and u(t) are the output and input at time t, na is the number of poles, nb is the number of zeros plus 1, nc 

is the number of C-coefficients, nk is the dead time and e(t) is the white noise term. The ARX model structure does 

not have c-terms. 

The ARMAX and ARX model structures therefore have [na nb nc nk] and [na nb nk] degrees of freedom, 

respectively. 

The toolbox uses the measure in equation 3 to determine the goodness-of-fit of the model output (yh) to the 

actual output (y). This is the objective function that the search algorithm maximizes to find an optimal fit.  

)))((/)(1(100(%) 22 ∑∑ −−−×= ymeanyyyFit h  (3) 

Initially the raw sensor output data was used with the FSR signal as the input and accelerometer 1 signal as the 

output and an average fit of only 40% was attained. The problem was attributed to noise in the signal. Subsequent 

filtering caused “smear” in the sharp rising edge of the FSR signal which led to the input lagging the output – an 

ARX model would not fit this scenario unless first input sample is multiplied infinitely to attain an appropriate 

output.  

A vast improvement was attained when the input was shifted forward in time by 75 samples and the input and 

output signals zeroed before a non-noise change in the FSR signal was registered. A Matlab script ran through all 

the signals in multiple experiments and found the ARX fits by varying the number of poles (na) and number of zeros 

(nb- 1) from six to 15 (five or less did not yield adequate fits) and only using the dead time (nk) (zero to 150 

samples) that resulted in the best fit.  

Additionally, signal filters were experimented with to ascertain which level of filtering might be the best out of 

those selected – the following Butterworth filters were experimented with: (1) none; (2) 300 Hz 4th-order; (3) 360 

Hz 4th-order; (4) 400 Hz 4th-order; (5) 440 Hz 4th-order; (6) 480Hz 4th-order; (7) 600Hz 4th-order; (8) 600Hz 6th-

order; and (9) 600Hz 8th-order.  

The effective discrete search space therefore has two dimensions –na, nb and 9 possible filters; and at each point 

in the search space, three experimental datasets were evaluated each with 21 input-output combinations resulting in 

10 (possible poles and zeros) x9 (possible filters) x42 (data points) x3 (subject) = 11340 fits.  
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The average, variance, maximum and minimum of the fits for each possible combination (in the two dimensional 

search space) is listed in Table 4.2, sorted from best to worst performing and only a subset of the results.  

Table 4.2:  ARX Fits Results (sub set) 

Mean of 

fits (%)

Variance 

of fits (%)

Max of fits 

(%)

Min of fits 

(%)

Order of 

Na

Order of 

Nb

Filter 

number
84.57 9.37 97.24 48.16 14 14 9
84.40 9.30 97.37 45.17 14 14 2
83.79 9.38 97.18 47.18 12 12 2
83.65 9.79 97.06 47.04 12 12 9
83.62 9.98 97.43 42.84 15 15 2
83.36 10.07 96.55 45.48 15 15 9
82.98 9.71 96.88 46.19 10 10 2
82.96 9.90 96.55 44.27 14 14 3
82.85 10.09 96.84 43.34 13 13 2
82.60 10.29 96.17 42.69 15 15 3
82.33 10.20 96.18 44.49 14 14 4
82.27 10.08 96.26 44.30 12 12 3
82.17 10.25 96.71 44.22 11 11 2
82.15 10.37 95.85 41.14 15 15 4
82.02 9.97 96.78 43.14 8 8 2
81.98 10.27 95.96 40.54 14 14 8  

A typical example of an input-output signal and its fit is shown in Figure 4.12. In this particular case the model 

can be represented by the following 13 parameters: nk = 127 samples; a1-6 = [-1.9094, 0.8999, -0.2022, 0.2454, 

0.093, -0.1249]; and b1-6 = [0.0349, -0.0449, 0.0113, -0.0026, 0.0114, -0.0078]; there was also no filtering except 

for averaging. This particular fit seems to fit the initial part of the signal well, but not as well in the decaying stage.  

A second example is shown in Figure 4.13. This model can be represented by the parameters: nk = 143 samples; 

a1-6 = [-2.5382, 1.9761, -0.3608, 0.3205, -0.7357 0.3403]; and b1-6 = [0.041, -0.1139, 0.094, -0.0292, 0.0306, -

0.0238]; there was also no filtering except for averaging. Again, the initial part of the signal fits very well, but the 

rest of the output signal is not reflected by the model.  

The signal traces in Figure 4.12 and Figure 4.13 show a significant delay between the input and output, but this 

delay is the one that was artificially induced (as stated in an earlier paragraph, the output was shifted 75 samples 

along the time axis) so that the model would find the time lag that best fits the input-output data. The artificially 

induced time lag is equal to 9.3 ms, to which the anomalies in signal traces can be attributed to.  
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Figure 4.12:  Example 1 of fit with ARX model 

 

Figure 4.13:  Example 2 of fit with ARX model 

Once these parameters are extracted for each point in each dataset they can be used as features to train and 

evaluate classifiers that will map them to underlying ground truth – liver or none. In order to limit the error that is 

induced by noisy data (data that does not fit a model), thresholds for the required fit are set. Figure 4.14 shows a 

histogram of measured fitness of model to data for the case where no filtering was applied with orders of six for 

both “a” and “b”. In this case the threshold could be set at 50 %. 



 46

 

Figure 4.14:  Distribution of fitness values for data fitting to an ARX model 

4.3.2.2 Mechanical Model 

Although the parameters describing the ARX systems produce seemingly good fits, the number of parameters 

describing each data point is large (30 in the most extreme case). If one looks at a typical input-output example (like 

that shown in Figure 4.12) the behaviour could belong to that of a mass-spring-damper or similar system. Various 

systems were considered (and evaluated) and it was found that a single mass-spring-damper system does not 

describe the system well; a non-linear spring did not contribute to the description; but a dual mass-spring-damper 

system does describe the system with reasonable correlation.  

When considering a dual mass-spring-damper system, described by seven parameters (m1, m2 = mass [kg], k1, k2 

= spring constant [N/m], B1, B2 = damper constant [N/m2] and A = linear gain [no unit, to compensate for overall 

signal gains/attenuations]) and as shown in Figure 4.15, one would have only seven features describing each 

measurement point.  

 

Figure 4.15:  A dual Mass-Spring-Damper system 

The system in Figure 4.15 is described by the following ODEs (Ordinary Differential Equations): 
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For each particular data set one would evaluate input and output data and attempt to find the model parameters 

that best fit the particular data set. Unfortunately, finding these parameters is not trivial and one would need a 

search algorithm to find the best fit within some search constraints (number of iterations, upper and lower bounds of 

parameters).  

Equations 4 and 5 can be converted to their Laplace representations and then drawn in a block diagram for use 

with Matlab’s Simulink. The Simulink model is shown in Figure 4.16. The seven variables are adjusted by an 

optimization algorithm to find a model that has a similar output to that measured. Additionally the model allows for 

some transport delay and saturation in the signal.  

Finding the parameters that describe a model that fits the data is an optimisation problem, thus an objective 

function needs to be defined and it needs to be representative of the goal that is to be reached. Various objective 

functions were considered and it was found that typical fitness functions (like that used in equation 3 in Section 

4.3.2.1) found solutions that are over damped to be a better fit than those that are under damped even though the 

true output was in fact under damped. Problems were also encountered due to the noisiness of the input (FSR 

signal) at low levels. An ad hoc measure was defined by identifying the start of the input and the possible end of the 

measured output and forcing the rest of the signal to be zero. This adapted output signal was then used as 

comparison to the model output with the same fitness measure as used in equation 3.  

The most common optimisation algorithms are Direct Search (DS) based. These are good at finding a local 

optimum (which is sufficient in a search space where the local optimum is likely to be the global optimum), but do 

not perform well in situations where there might be many local optima that are far less optimal than a possible 

global optima. Stochastic optimization algorithms use behavioural patterns (like genetics or insect behaviour) to 

find global optima and in many difficult problems tend to outperform direct search methods. These algorithms 

search spaces by starting off with random positions in the search space and change positions based on some or all 

evaluations.  

Two stochastic optimization algorithms were initially considered: the genetic algorithm (GA) and the particle 

swarm optimization (PSO) algorithm. Evaluations were done on small examples and it was found that the genetic 

algorithm found much better solutions than the PSO algorithm, which compelled the researcher to continue using 

only the genetic algorithm to find approximate solutions. The GA results were subsequently fed into a DS algorithm 

which found the local optimum around this particular solution. 
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Figure 4.16:  Simulink model of dual Mass-Spring-Damper system 

The GA is based on natural selection in nature [55] & [56] – the process that (arguably) drives biological 

evolution. The algorithm repeatedly modifies a population of possible solutions to generate a new generation. 

Modifications are based on selection rules (how the parents that will reproduce are selected), crossover rules (how 

the solutions of the parents will be combined to form a new solution) and mutation rules (random changes to 

parent’s solutions). The GA flow is depicted in Figure 4.17.  

A Matlab script was created to find optimal solutions using Matlab’s Genetic Algorithm and Direct Search 

Toolbox. Bounds were placed on the values for the spring constant, damping constant, gain and masses as follow: 

minimum(m1,b1,A,k1,m2,b2,k2) = [2 10 10 1000 2 10 1000] and maximum(m1,b1,A,k1,m2,b2,k2) = [50 10000 800 

10000000 50 10000 10000000]. These values were empirically tested and found to be the most appropriate. The 

algorithm population was limited to 20 individuals and the algorithm to 100 generations (these values were also 

empirically tested). Other parameters pertaining to the GA were left at default. Values (parameters) generated by the 

GA was passed to the objective script, which passes values to the Simulink model and compared the measured 

model output to actual output data using the objective function defined earlier. The optimal result obtained by the 

GA was passed to a direct search algorithm (from the same toolbox) to find the local optimum using derivative 

methods. The direct search algorithm was employed using its default parameters and the same boundaries as that of 

the GA. The software flow diagram can be found in Appendix B.2.3. 
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Figure 4.17:  The basic cycle of the GA [56] 

Before delving into actual results, a concern that is raised in Section 3.8 is that the sensors signals are non-

optimal as it contains artefacts. The FSR signal “jumps” can be ascribed to small movements of the volunteer and 

saturation of the voltage signal is shown to be due to lack of force when the signal is converted to its force 

equivalent. Some accelerometer signals show sudden sharp changes, which seem unnatural but this cannot be 

proved. The saturation of the accelerometer signal, however, is due to actual saturation of the signal. The saturation 

effect is a clear unwanted artefact and this effect is simulated in the following example, with additive noise in the 

output.  

A model was created with the following parameters: A = 250; m1 = 20; m2 = 45; k1 = 2.8M; k2 = 7.9M; b1 = 

8000; and b2 = 1300, and simulated with a simple FSR input. The output acceleration was recorded with and 

without additive noise and saturation. The noisy signal was used to fit a model to and a final fit of 93% was 

obtained. The signals are shown together in, the first plot showing all signals together and therefore some not visible 

as they are shadowed; the second plot shows the saturation effect in the signal to be fitted and the fitted signal 

matching the noiseless signal; and the third plot shows the noise and clearly how close the fit is to the actual model 

output without noise. The fitted model has the following parameters (rounded off): A = 225; m1 = 15; m2 = 36; k1 = 

2.4M; k2 = 5.6M; b1 = 9694; b2 = 1710. 
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Figure 4.18:  Using mechanical model fit with simulated noise 

This result shows that these artefacts could be ignored by fitting a mechanical model to the data, but that the fit 

is not perfect and the slight difference represents a system with different parameters. The difference between 

parameters represents up 23% of the range of k1 as an example. Although this is discouraging, a classifier may be 

able to find a linear combination of features that remain constant between the original parameters and the fitted 

ones. A critical evaluation of this suggestion was not performed, but the simulation does indicate that differences in 

a few parameters still result in a very similar system.  

Figure 4.19 to Figure 4.22 show examples of both good and bad fits on real data. Bad fits were obtained for data 

that could not be represented by a model – this may be due to very noisy FSR signals and it was also found that the 

smaller the amplitude of the output signal the weaker the typical fit.  

The data and model represented in Figure 4.19 has the following parameters (as an example): 

A = 248; m1 = 20.7; m2 = 33.0; k1 = 2.8M; k2 = 7.9M; b1 = 8838; b2 = 31. 

The data and model represented in Figure 4.20 has the following parameters (as a comparative example): 

A = 30; m1 = 8.2; m2 = 9.6; k1 = 2.6M; k2 = 7.1M; b1 = 940; b2 = 5483. 

 

Figure 4.19:  Example 1 of good fit on mechanical model 
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Figure 4.20:  Example 2 of good fit on mechanical model 

 

Figure 4.21:  Example 1 of bad fit on mechanical model 

 

Figure 4.22:  Example 2 of bad fit on mechanical model 
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A distribution of fitness values obtained for the three datasets evaluated is shown in Figure 4.23. Only 40 of the 

126 measurement points could fit a model with a fitness of more than 50 %. Data used in the next section for 

parameter mapping was limited by the requirement that the fitness of the model parameters has to exceed 40 % - 

there is a total of 59 data points that fit this requirement.  

 

Figure 4.23:  Distribution of fitness values for data fitting to mechanical model 

4.4 Classification 

Features were extracted from the data captured during the test procedure using the various methods discussed in 

Section 4.3. The extracted features form so called data sets – one data set for each feature extraction method. These 

data sets are all relatively small which limits possible classifier complexity (the evaluations will not be shown, but 

the use of combinations of classifiers did not improve results for classification of the extracted features). 

A classification system is developed using training data in a process of training. Once a classifier is employed, it 

returns the likelihoods of a test feature belonging to any of the classes that the classifier is trained for. These 

likelihoods are so called soft outputs and are followed by hard decisions by applying a weighting or threshold 

before assigning the class with the highest likelihood to a feature (or data point) The practice of the classifier 

calculating likelihoods is also referred to as a mapping (the terminology used in this thesis matches that used by 

Van der Heijden et al. [57] and PRTools a Matlab toolbox used for pattern recognition). Some mappings are linear 

or affine – matrix rotation projection and shift; and others are non-linear – these include various, e.g. Mixture of 

Gaussians (MOG), or Quadratic Bayes (QDC).  

For each feature extraction method, the features are separated into training and test data. Training data is used to 

train a classifier to best separate classes in the training data and the subsequent evaluation with test data determines 

the validity (or performance) of a solution. Mappings can also be combined to create more complex mappings, but, 

as stated earlier, this is ill advised when such small data sets are considered.  
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Because the data sets are small, an extreme case of a cross validation technique is also used – for each point in 

the data set an evaluation is done using all the other points for training and the particular point for testing – this 

method is known as “leave-one-out” cross validation. The number of errors divided by the size of the data set yields 

the expected error rate for a particular classification system.  

The next section will give an example of a classification problem to gain more clarity on some of the topics. The 

example is visual in terms of graphs and tabulated results, but the subsequent evaluations on experimental data are 

less visual and aimed at only giving performance results – this because numerous combinations were considered for 

each feature extraction method and each yields several plots and graphs, but can be summarised by a number 

indicative of its performance, the correct classification rate.  

Before delving into evaluations on extracted features, the ground truth labels need to be extracted using a golden 

standard for this study, the MRI. MR images are used to determine which input points are close enough to the 

patient’s liver to be labelled as ‘liver’, or otherwise as ‘no liver’. Without these labels, a classification system will 

have no means of training a mapping, or evaluating its performance. Ground truth extraction is contained in Section 

4.4.2 

PRTools was used in all of this section’s evaluations. It is a Matlab toolbox for pattern recognition, developed by 

the Delft Pattern Recognition Group at the Faculty of Applied Physics at Delft University of Technology [58] and 

provides most of the tools one would need for basic and some advanced pattern recognition problems. 

4.4.1 Classification Introduction 

This section will attempt to introduce and clarify the topics of the subsequent sections. The topics are involved 

with statistical pattern recognition. The explanations are contracted for the sake of brevity and the reader can 

consult referenced sources for more information.  

The feature extraction methods used in Section 4.3 mostly resulted in more than three features being extracted 

for each method – this makes it difficult to represent features visually. Principle Component Analysis (PCA) 

involves reducing the number of features (dimensionality) to a smaller number of features by taking linear 

combinations of the primary features. According to [59], PCA can be defined mathematically as an “orthogonal 

linear transformation” that transforms data to a new coordinate system such that the greatest variance by any 

projection of the data will lie on the resulting first axis, second highest variance on the second axis, and so forth. 

PCA is often performed prior to training a classifier or simply used to better visualise data. Unfortunately, PCA 

does not separate classes. To simulate PCA an example is shown in Figure 4.24. Here an artificial two class dataset 

with three features were generated and PCA maps it to two (three dimensions were simply selected as it can 

demonstrate the method). 



 54

 

Figure 4.24:  An example of mapping data using PCA 

PCA was used to gain insight into the scatter of some data sets and also as a pre-process to the training of some 

more complex classification systems. 

A PRTools data example is depicted in Figure 4.25. The two classes are shaped in the form of opposing bananas, 

which is typically difficult to classify with a linear threshold (straight line). There are 2000 data points.  

 

Figure 4.25:  Difficult data set 

Linear Discriminant Analysis (LDA) differs from PCA in that it attempts to find a linear combination of the 

features that best separate two classes [60]. PRTools implements LDA using Fisher’s Linear Discriminant Classifier 

which does not assume uncorrelated features (LDA normally assumes this as a simplification). The algorithm maps 

data to a maximum dimension of the number of features minus 1 and then measures the distance from points on this 

axis to determine the class likelihoods – the results are shown in Figure 4.26. Performing a 100-fold cross validation 

yields an error rate of 14.4 % (or correct classification rate of 85.6 %). For one particular combination of 50 % 

training and 50 % test data, the confusion matrix result shown in Table 4.3 results from evaluation on the test data. 
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Table 4.3:  Confusion matrix from Fisher Linear Discriminant example 

1 2
1 410 77 487
2 68 444 512

Totals 494 505

True 
Labels

Estimated Labels
Totals

 

 

Figure 4.26:  Fisher Linear Discriminant example 

A Quadratic Bayesian Classifier (QDC) assuming normal (Gaussian) densities estimates the Gaussian 

parameters (mean and covariance) of the training data and applies the threshold where class likelihoods are equal 

[60]. The outputs of the mapping are the likelihoods of any data point belonging to either class. The largest 

likelihood determines the class (in default cases), but this can be adapted should the cost of misclassification of a 

particular class be too high. The results are shown in Figure 4.27. Performing a 100-fold cross validation yields an 

error rate of 15.25 %. For one particular combination of 50 % training and 50 % test data, the confusion matrix 

shown in Table 4.4 results from evaluation on the test data. 

Table 4.4:  Confusion matrix from Quadratic Bayes discriminant classifier example 

1 2
1 427 77 504
2 70 425 495

Totals 497 502 999

Estimated Labels
Totals

True 
Labels
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Figure 4.27:  Quadratic Bayes discriminant classifier example 

A Mixture of Gaussians classifier clusters data in the number of clusters specified and determines the Gaussian 

parameters of each cluster (the underlying algorithm is far more involved, but not part of this discussion). The 

likelihood of the combined Gaussians determines the class likelihood for each class and the mapping maps features 

to these likelihoods. The results of training a mapping with a mixture of three Gaussian densities for each class are 

shown in Figure 4.28. Performing a 20-fold cross validation (the training of a MOG classifier takes much longer 

than training the previous two classifiers – therefore less folds are used) yields an error rate of 1.6 %. For one 

particular combination of 50 % training and 50 % test data, the confusion matrix shown in Table 4.5 results from 

evaluation on the test data. 

 

 
Figure 4.28:  The MOG classifier results 
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Table 4.5:  Confusion matrix from MOG classifier example 

1 2
1 497 8 505
2 10 485 495

Totals 507 493 1000

Totals
True 

Labels
Estimated Labels

 

An Artificial Neural Network (ANN) classifier involves the use of a network of processing nodes or neurons 

each connected with a weight (multiplication factor). The weights and nodes are trained to produce the desired 

output – a separation between classes. The ANN has recently lost popularity to the methods of Statistical Pattern 

Recognition (to which Quadratic Bayes, Fisher Linear Discriminant and Mixture of Gaussians belong, among 

various others). A back-propagation trained feed-forward neural net classifier with one hidden layer and three nodes 

in the hidden layer was trained on the example data, the results of which are shown in Figure 4.29. Performing a 20-

fold cross validation (the training of an ANN classifier also takes much longer in training) yields an error rate of 5.7 

%. For one particular combination of 50 % training and 50 % test data, the confusion matrix shown in Table 4.6 

results from evaluation on the test data. 

Table 4.6:  Confusion matrix from ANN classifier example 

1 2
1 480 16 496
2 9 495 504

Totals 489 511 1000

True 
Labels

Estimated Labels
Totals

 

 

Figure 4.29:  The ANN classifier results 
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The classifiers shown here are used in further analysis on extracted features, but it must be stated that a 

multitude of other classifiers were considered (Simple LDA (uncorrelated features), Nearest Mean Classifier, 

Nearest Mean Scaled Classifier, K-Nearest Neighbour Classifier) all with similar or weaker results. Possibilities that 

weren’t considered include Support Vector Machines and Hidden Markov Models, as well as combinations of used 

and unused classification structures.. 

4.4.2 Extracting Ground Truth 

As explained previously, ground truth is the actual underlying class that a data point belongs to. Depending on a 

the size of the data set, one could use very specific class labels like “ribs and liver more than 2 cm below surface”, 

“fat layer and liver more than 2 cm below surface”, etc.. The extreme case would be where measured data is fitted 

to measurable parameters, but the amount of data required would be enormous. Unfortunately very small data sets 

are available and it was hoped that simple class labels (like “liver”, “no liver”) could be distinguished as a proof of 

concept.  

Three full data sets were acquired from three volunteers. Only two volunteers (Volunteers 1 and 2 in Table 4.7) 

were submitted to MRIs, but assessment of the images obtained revealed that these volunteers had very similar liver 

sizes and loci, leading to the assumption that the third volunteer (Volunteer 3) had a similar ground truth – 

discrepancies where assigned the label “none” (this is probably not a safe assumption at all, but the data is so 

limited that it was paramount to the study to at least process all the available data – the additional volunteer should 

also have a liver on the right side of his body (in very rare cases people have mirrored organs)).  

Table 4.7:  Summary of assigned labels (ground truth) 

L=Liver; N=None. R3 R2 R1 LR L1 L2 L3 

UD N N L L L N N 

D1 L L L L L L N 
Volunteer 

1 
D2 L L L N N N N 

UD N L L L N N N 

D1 L L L L N N N 
Volunteer 

2 
D2 L L N N N N N 

UD N N L L N N N 

D1 L L L L N N N 
Volunteer 

3 
D2 L L N N N N N 

The labels summarized in Table 4.7 were used for evaluation purposes. 

Images of the MRI slices and the associated labels are shown in Figure 4.30 for these two volunteers with 

Volunteer 1 on the left and Volunteer 2 on the right. 
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Figure 4.30:  Labelled labels on data capture locations for two subjects  
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4.4.3 Classification of Extracted Features 

4.4.3.1 Directly Extracted Features 

In Section 4.3.1.2 fourteen features were extracted directly from the accelerometer signals recorded during tests. 

These features are the rise and 2% settling times, the dominant frequency, and the percentages of energy contained 

in 11 subsets of the amplitude spectrum. Evaluations were performed on the first three and last eleven features 

separately and then together. A scatter plot of the first three parameters is shown in Figure 4.31. 

As stated in the introductory section, four classification systems are used in the evaluation of mappings, but with 

the addition of a PCA combined with an MOG mapping. The five mappings are: (i) Fisher’s linear discriminant 

analysis (FISHER); (ii) Quadratic Bayes assuming Gaussian densities (QDC); (iii) a Mixture of two Gaussians per 

class (MOG2) using all features; (iv) a MOG2 after PCA mapping features to three dimensions; and (v) an Artificial 

Neural Network (ANN) with one hidden layer of three nodes.  

 

Figure 4.31:  Scatter plot of first three directly extracted features 

For each of the feature sets combined with each classification system a cross-validation process was followed 

with four folds for (i) and (ii) and three folds for (iii-v), as well as single 50 % training, 50 % test data confusion 

matrix results. 

The confusion matrix results are summarised in the tables of Table 4.12. The cross validation results can be 

summarised as follow (values indicate correct classification rates): 

(i) FISHER – three features: 56 %; eleven features: 54 %; fourteen features: 52 %. 

(ii) QDC – three features: 53 %; eleven features: 61 %; fourteen features: 56 %. 

(iii) MOG2 – three features: 57 %; eleven features: 54 %; fourteen features: 52 %. 

(iv) MOG2+PCA – three features: 60 %; eleven features: 45 %; fourteen features: 64 %. 

(v) ANN 1(3) – three features: 50 %; eleven features: 53 %; fourteen features: 59 %. 

.  
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Table 4.8:  Confusion matrix results on directly extracted features 

Liver None Liver None Liver None
Liver 10 19 29 Liver 12 17 29 Liver 17 12 29
None 16 18 34 None 13 21 34 None 17 17 34
Totals 26 37 63 Totals 25 38 63 Totals 34 29 63

Liver None Liver None Liver None
Liver 12 17 29 Liver 15 14 29 Liver 15 14 29
None 16 18 34 None 14 20 34 None 14 20 34
Totals 28 35 63 Totals 29 34 63 Totals 29 34 63

Liver None Liver None Liver None
Liver 15 14 29 Liver 9 20 29 Liver 29 0 29
None 15 19 34 None 15 19 34 None 34 0 34
Totals 30 33 63 Totals 24 39 63 Totals 63 0 63

Totals Totals Totals
Liver None Liver None Liver None

Liver 15 14 29 Liver 14 15 29 Liver 12 17 29
None 15 19 34 None 12 22 34 None 8 26 34
Totals 30 33 63 Totals 26 37 63 Totals 20 43 63

Totals
Liver None Liver None Liver None

Liver 25 4 29 Liver 14 15 29 Liver 14 15 29
None 32 2 34 None 18 16 34 None 19 15 34
Totals 57 6 63 Totals 32 31 63 Totals 33 30 63

True 
Labels

Estimated Labels
Totals

True 
Labels

Estimated Labels
Totals

MOG2
True 

Labels
Estimated Labels

Totals

True 
Labels

Estimated Labels

Estimated LabelsTrue 
Labels

MOG2+PCA

ANN 1(3)

MOG2+PCA

ANN 1(3)

Eleven FeaturesThree Features

Fisher

QDC

Fisher

QDC

Totals

True 
Labels

Estimated Labels

Fourteen Features

Totals

True 
Labels

Estimated Labels

Estimated Labels
Fisher

QDC

True 
Labels

Estimated Labels

MOG2
True 

Labels
Estimated Labels

Totals

Totals
True 

Labels Totals

True 
Labels

MOG2+PCA

ANN 1(3)

True 
Labels

Estimated Labels

Estimated Labels

Totals Totals

MOG2
True 

Labels
Estimated Labels

Totals

True 
Labels

Estimated Labels

Estimated LabelsTrue 
Labels

 
The results are very weak and akin to a random classifier. From these results one can conclude that either the 

directly extracted features do not describe the signals well enough, or that the signals themselves are not 

representative of the underlying tissue/organs. 

4.4.3.2 Autoregressive Models 

As stated in Section 4.3.2.1 the following permutations were considered for models: (i) varying the number of 

possible poles and zeros from 6 to 15; (ii) considering various signal pre-processing filters or none; and (iii) varying 

the time delay until an optimum fit for the possible setup was found. The resulting fitness percentages were placed 

in histograms and appropriate thresholds for the required fitness percentages were set for each combination (pre-

filter and number of poles and zeros) – see Figure 4.14. It was decided to ignore the data of very bad fits as these 

would taint the classification results. 

The chosen thresholds and the percentage of data points that qualify for each combination of filter and number 

of poles and zeros are summarized in Table 4.9.  
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As it is impossible to discuss and review each permutation with each of the evaluated classifiers, it was decided 

to perform a single evaluation on each combination with three of the classifiers – (i) Fisher’s linear discriminant 

analysis (FISHER); (ii) Quadratic Bayes assuming Gaussian densities (QDC); (iii) a Mixture of three Gaussians per 

class (MOG2). The point that yields the best results is used in further classifier evaluation – the results are 

summarised in Table 4.10. The percentages in these results are the correct classification results and the ones with a 

greater rate than 60 % have been highlighted. There is no overlapping between the evaluations, but the pre-filter #8 

(300Hz 6th order LPF) and 15 poles/zeros combination yields almost 60 % correct classification in each evaluation. 

This combination is used in subsequent evaluations. 

Table 4.9:  Percentage of ARX data points used 

6 7 8 9 10 11 12 13 14 15
1 84.13% 96.83% 96.83% 87.30% 89.68% 90.48% 78.57% 80.95% 82.54% 81.75%
2 83.33% 85.71% 89.68% 88.10% 92.06% 89.68% 92.86% 91.27% 93.65% 92.86%
3 81.75% 84.13% 88.10% 88.89% 88.89% 89.68% 91.27% 90.48% 92.06% 90.48%
4 79.37% 78.57% 84.13% 86.51% 89.68% 88.10% 89.68% 90.48% 91.27% 90.48%
5 77.78% 75.40% 83.33% 82.54% 88.10% 84.92% 89.68% 88.89% 89.68% 89.68%
6 74.60% 72.22% 82.54% 77.78% 86.51% 84.13% 88.10% 86.51% 88.89% 88.10%
7 73.02% 66.67% 81.75% 74.60% 84.92% 80.95% 87.30% 84.92% 88.10% 87.30%
8 69.84% 62.70% 80.16% 80.95% 84.92% 84.92% 89.68% 89.68% 91.27% 89.68%
9 71.43% 60.32% 79.37% 76.98% 88.89% 86.51% 92.06% 88.89% 92.86% 91.27%

Threshold = 40% Threshold = 50% Threshold = 60%

#Poles/Zeros

P
re

-fi
lte

r

Percentage of data points used

 
To visualise the data in at least some fashion, a PCA mapping from thirty to two features were trained on the 

selected data set. The result is shown in Figure 4.32. From this depiction one can see that some points are clustered 

together, which might make the problem slightly separable, however, a mass of different classes are collected at the 

origin – these will be difficult to separate. 

Only three classifier topologies were considered (the Mixture of Gaussian training ran into singularities, even 

after PCA) – (i) Fisher’s linear discriminant analysis (FISHER); (ii) Quadratic Bayes assuming Gaussian densities 

(QDC); and (iii) an Artificial Neural Network (ANN) with one hidden layer of three nodes. In each case a cross-

validation process was followed with four folds for (i) and (ii) and three folds for (iii), as well as single 50 % 

training, 50 % test data confusion matrix results. 

The confusion matrix results are summarised in the tables of Table 4.12. The cross validation results can be 

summarised as follow: 

(i) FISHER – 59 % 

(ii) QDC – 55 % 

(iii) ANN 1(3) – 55 % 
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Figure 4.32:  PCA of a ARX data set 

Table 4.10:  Preliminary evaluations on ARX data 

6 7 8 9 10 11 12 13 14 15
1 45.28% 47.54% 59.02% 58.18% 62.83% 52.63% 55.56% 47.06% 32.69% 51.46%
2 56.19% 50.00% 52.21% 47.75% 60.34% 48.67% 52.14% 42.61% 44.07% 48.72%
3 59.22% 50.94% 49.55% 60.71% 48.21% 55.75% 42.61% 54.39% 60.34% 45.61%
4 56.00% 57.58% 56.60% 54.13% 46.90% 60.36% 57.52% 61.40% 44.35% 47.37%
5 48.98% 45.26% 60.00% 51.92% 56.76% 58.88% 50.44% 60.71% 53.98% 53.98%
6 51.06% 45.05% 55.77% 55.10% 65.14% 62.26% 54.95% 44.95% 55.36% 53.15%
7 56.52% 45.24% 47.57% 51.06% 45.79% 52.94% 40.00% 53.27% 53.15% 52.73%
8 52.27% 46.84% 58.42% 45.10% 43.93% 60.75% 52.21% 57.52% 54.78% 62.83%
9 46.67% 42.11% 46.00% 48.45% 53.57% 57.80% 41.38% 44.64% 57.26% 49.57%

>60% correct

6 7 8 9 10 11 12 13 14 15
1 45.28% 55.74% 55.74% 50.91% 59.29% 52.63% 47.47% 41.18% 50.00% 45.63%
2 73.33% 64.81% 66.37% 58.56% 36.21% 46.90% 45.30% 54.78% 44.07% 60.68%
3 53.40% 58.49% 60.36% 53.57% 50.00% 53.98% 58.26% 49.12% 53.45% 49.12%
4 58.00% 47.47% 54.72% 63.30% 50.44% 53.15% 61.06% 40.35% 49.57% 54.39%
5 53.06% 53.68% 56.19% 48.08% 44.14% 40.19% 52.21% 53.57% 61.06% 57.52%
6 51.06% 36.26% 67.31% 61.22% 54.13% 58.49% 54.95% 50.46% 57.14% 53.15%
7 52.17% 64.29% 51.46% 53.19% 51.40% 58.82% 52.73% 55.14% 53.15% 52.73%
8 50.00% 54.43% 50.50% 45.10% 57.01% 45.79% 55.75% 53.98% 47.83% 59.29%
9 62.22% 42.11% 54.00% 54.64% 55.36% 44.95% 34.48% 55.36% 50.43% 51.30%

>60% correct

6 7 8 9 10 11 12 13 14 15
1 47.17% 54.10% 0.00% 63.64% 45.13% 47.37% 51.52% 54.90% 57.69% 53.40%
2 0.00% 0.00% 50.44% 0.00% 50.00% 0.00% 65.81% 49.57% 61.02% 48.72%
3 0.00% 56.60% 54.95% 51.79% 46.43% 62.83% 53.04% 59.65% 48.28% 52.63%
4 0.00% 0.00% 0.00% 0.00% 57.52% 51.35% 55.75% 0.00% 42.61% 54.39%
5 0.00% 53.68% 44.76% 0.00% 0.00% 51.40% 59.29% 42.86% 46.90% 52.21%
6 0.00% 0.00% 0.00% 51.02% 50.46% 62.26% 47.75% 0.00% 44.64% 0.00%
7 56.52% 0.00% 57.28% 51.06% 45.79% 43.14% 49.09% 55.14% 47.75% 49.09%
8 0.00% 0.00% 0.00% 0.00% 57.01% 0.00% 0.00% 46.90% 63.48% 62.83%
9 0.00% 0.00% 0.00% 0.00% 60.71% 0.00% 56.90% 55.36% 52.14% 0.00%

>60% correct Singularity problem

QDC results

FISHER results
#Poles/Zeros
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#Poles/Zeros
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#Poles/Zeros
MOG3 results
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Table 4.11:  Confusion matrix results on mechanical parameter data 

Liver None Liver None
Liver 13 13 29 Liver 6 20 26
None 10 20 34 None 13 17 30
Totals 23 33 63 Totals 19 37 56

Liver None
Liver 8 18 26
None 6 24 30
Totals 14 42 56

Totals
True 

Labels
Estimated Labels

Totals
True 

Labels

Fisher QDC

Totals

Estimated Labels

ANN 1(3)
Estimated LabelsTrue 

Labels

 
The ARX classifier evaluation results are very weak for all three considered classifier structures. From these 

results one can conclude that either the ARX parameters extracted do not describe the signals well enough, or that 

the signals themselves are not representative of the underlying tissue/organs. 

4.4.3.3 Mechanical Model 

In the process of establishing the parameters of mechanical models as discussed in Section 4.3.2.2 only one 

combination of features were determined for each data point. As such, classifier evaluation is simpler than in the 

previous two sections. 

As was done in Section 4.4.3.2 only data where the fit was greater than a specific threshold (40 %) were used in 

the evaluation and data was also split into 50 % for training and 50 % for testing. 59 out of 126 points qualified as 

far as fitness is concerned resulting in a 29/30 split between training and test data. 

A PCA mapping from 7 to 2 dimensions result in the scatter plot shown in Figure 4.33. There may be some 

clustering of the data, but there is no clear trend. 

 

Figure 4.33:  PCA of a mechanical model data set 
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Five classifier topologies were considered (as was done in the previous sections) – (i) Fisher’s linear 

discriminant analysis (FISHER); (ii) Quadratic Bayes assuming Gaussian densities (QDC); (iii) a Mixture of two 

Gaussians per class (MOG2) using all features; (iv) a MOG2 after PCA mapping features to three dimensions; and 

(v) an Artificial Neural Network (ANN) with one hidden layer of three nodes. MOG3 was initially considered, but 

the training algorithm ran into matrix singularities which caused errors. In each case a cross-validation process was 

followed with four folds for (i) and (ii) and three folds for (iii-v), as well as single 50 % training, 50 % test data 

confusion matrix results. 

The confusion matrix results are summarised in the tables of Table 4.12. The cross validation results can be 

summarised as follow (values indicate error rates): 

(i) FISHER – 56 % 

(ii) QDC – 58 % 

(iii) MOG3 – 73 % 

(iv) MOG3+PCA – 59 % 

(v) ANN 1(3) – 54 % 

Table 4.12:  Confusion matrix results on mechanical parameter data 

Liver None Liver None
Liver 9 6 15 Liver 7 8 15
None 8 6 14 None 8 6 14
Totals 17 12 29 Totals 15 14 29

Liver None
Liver 8 7 15
None 5 9 14
Totals 13 16 29

Totals Labels Totals
Liver None Liver None

Liver 4 11 15 Liver 10 5 15
None 8 6 14 None 6 8 14
Totals 12 17 29 Totals 16 13 29

Fisher QDC

Totals

True 
Labels

Estimated Labels

MOG2

Estimated Labels
MOG2+PCA ANN 1(3)

Estimated Labels

Totals

True 
Labels

Estimated Labels

True 
Labels

Estimated Labels
Totals

True 
Labels

 
From the three feature extraction methods considered, the mechanical model seems to yield the best result. The 

MOG2 yielded the best result which indicates that there may be some clustering in the data. Using an MOG2 

classifier should yield 70 % correct classification, should the data be matched to a two stage mass-damper-system 

and the parameters that best fit the data used for classification. The practicality of this solution is questionable as the 

Genetic Algorithm takes long to find an optimum fit. 
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4.5 Conclusions 

A test procedure was developed to mechanically perform percussion on human volunteers and the tools 

developed in Chapter 3 were used to capture the acceleration of the skin next to the percussion site. Three human 

volunteers’ data was captured and these were used for further analysis. 

The presence of the liver was identified using MRI to find the percussion points that were close to the liver or 

not. These results were stored as ground truth and subsequent evaluations were targeted at identifying points that 

belong to the presence of the liver or not. 

The collected data was processed in various ways to extract parameters that describe the signals. The processing 

methods included direct extraction from signals and model fitting techniques. The latter method used predefined 

models (autoregressive and mass-spring-damper models) and tuned the model parameters to fit the data – the model 

parameters that best fit the data were used for further evaluation. The signals from some data points could not be 

matched to models with great confidence (the source of the error was not evaluated), and these signals were ignored 

in further evaluations.  

Various classifier topologies were used to attempt to match the data to underlying ground truth. Three of the 

classifier topologies (Mixture of Gaussians, Quadratic Bayesian Discriminant, and Fisher Linear Discriminant) 

assume some underlying probability density and trains itself accordingly, where an Artificial Neural Network 

simply tunes internal parameters to best separate classes. Classification results were calculated using cross-

validation techniques and varied between 40 % and 73 % correct classification rates, with most of the results under 

60 %. These results can be compared to a system that simply assigns classes at random – attaining a correct 

classification result as the prior probability of any point being a liver. The best results were attained using the mass-

spring-damper parameter description and a Mixture of Gaussians classifier with two clusters (73 %). 

Even though these tests were performed using a small data set, some correlation between features and the 

presence of the liver should have been apparent with most of the methods. The final method using a mechanical 

model to describe the system shows some promise, but the author is sceptic. It is most probable that the test 

procedure is flawed, that the selected hardware is suboptimal, or even that other parameter extraction and 

classification methods should be considered. It may also be possible that the problem is simply too complex and 

other factors, like the presence of bone or fat, are throwing signals out. The main concerns as far as the test 

procedure is concerned are the following: 

• What is the effect of the actuator’s offset force on the free vibration of the body wall – it may be 

possible that the actuator is simply damping the signal so that no reaction is measured, but only the 

input. 

• The input angle and offset forces could not be controlled accurately during tests – it may be that these 

factors/parameters need to be controlled. 
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It was decided to perform an evaluation using a much simpler and controlled setup. This is the discussion of the 

next chapter. A mock-up of the human abdomen was created using silicone and an anomaly (hole) inside the 

silicone would simulate an underlying organ. The following investigations were to be performed: 

• The possibility of using other actuator signals to identify the underlying system. 

• What is the effect of distance between the actuator and accelerometer, and can one place the 

accelerometer close to the actuator? 

• Can one find an underlying anomaly in such a simple setup? 

• What is the effect of the offset force of the actuator? 

• Does the angle of the actuator head influence the resulting signals? 
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Chapter 5 Model Tests 

The measurement setup used during human subject tests was very specific and the various data processing 

techniques could not extract information that could predict underlying conditions with sufficient confidence. Some 

of the decisions that were made in development of the measurement setup for human tests were based on very 

vague information (e.g. the actuation signal was based on the only stroke possible for a medical practitioner, yet a 

vibrational instrument can be actuated using various signals) and, in hindsight, it would have been a better idea to 

create a mock-up of the problem and evaluate possible configurations before proceeding with such a specific 

measurement setup.  

The function and goal of this experiment is therefore to use a mock-up of the problem (a simple model of the 

human body with some anomaly (or phantom) within the model to represent the liver) to gain more information on 

how different approaches to specific setup parameters (input signal type, input offset force and output measurement 

position) influence the ability to detect the liver or abnormalities thereof. This approach is similar to that used in 

elastography (measurement of the elasticity of liver tissue by ultrasound) research [27] where the use of a silicone 

mass with an anomaly (called a phantom) contained within were used to evaluate the concept. 

Unfortunately, this experiment was performed very late in the project and very little time was available. Due the 

time limit, only the evaluations mentioned here were performed, but other evaluations that could have been done 

include assessment of the effect of ribs, fat and other organs.  

5.1 Experiment Design 

Except for the human subjects and the mechanical frame, the same tools were used as in the human subject tests, 

but some additional development was required: 

• Model – a mass of material that would represent the human body and a phantom contained within it to 

represent the liver. For this purpose silicone rubber compound that closely resembles human tissue 

(boneless) was acquired and moulded into a flat cylinder. Whilst moulding, a rubber balloon was left in 

the mixture to leave a hole for simulants. A balloon filled with either (i) water; (ii) air; and (iii) jelly 

solution were used to simulate different anomaly conditions. The silicon rubber compound called 

Dragon Skin™ is produced by a company called Smooth-On and an excerpt from the datasheet can be 

found in Appendix E.2. The model was placed on a wooden base (which was glued to the work bench) 

with the plastic base of the model pushing against two guiding screws to make sure that it stayed in 

position when rotating. 
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Figure 5.1:  Silicone model on base 

• Clamp to hold the vibrational shaker in place – as the model was not quite the same shape as a human 

subject, the frame that was developed for human subject tests was not sufficient. The part of the frame 

that is connected to the vibrational shaker has quite a long pipe protruding from the back and this was 

simply attached to a clamp that was connected to the table on which experiments were performed. 

• A DC power supply was used in series with the shaker amplifier to control the offset force of the 

vibrational shaker.  

The measurement setup is shown in Figure 5.2. An image of the 3D model of the setup can also be found in 

Appendix C.2 - this was created to assist in the recreation of the experiment should it have been disassembled.  

The silicone model has a cross-section and height 261 mm and 100 mm respectively. The circumference of the 

silicone model was divided into 13 approximately 60 mm intervals (at a specific point of actuation the 

accelerometers could not be placed closer than 30 mm from the centre of the actuator – this limitation was the 

motivation for this choice) and at each interval an ECG sticker was placed for connection of an accelerometer. 

Halfway between each pair of accelerometers is a designated point of actuation. Each input and output was 

numbered on the silicone model either with a circle around the number (output) or not (input) and this is shown in 

Figure 5.3. 
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Figure 5.2:  Phantom tests measurement setup 

 

Figure 5.3:  Numbering of input/outputs on silicone model 

The dimensions of the model along with the phantom hole’s dimensions were used to generate a plot of the 

various elements of the models as seen from above. This representation is shown in Figure 5.4. 
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Figure 5.4:  Model Dimensions 

5.2 Test Procedure 

Three different phantoms were used: (i) water filled balloons; (ii) air; and (iii) balloons filled with a “jelly” 

solution.  

The silicone model with the phantom was rotated so that each of the 13 input positions was actuated. In each 

case the offset voltage was adjusted such that the offset force measured by the FSR (using the datasheet’s 

calibration curve – see Appendix A.4), without any actuation signal, read 1 N (Newton) – this value was never 

verified, but it was kept consistent throughout measurements as to negate the influence of differing offset force.  

Only two accelerometers were available for these measurements, so the accelerometers were placed at two of the 

thirteen outputs. A sequence consisted of actuation by nine pulses; 10 s of white noise; and a chirp signal form 1 Hz 

to 1 kHz ramping at 25 Hz/s. The accelerometer signals, FSR signals and actuator input signals were stored 

automatically for each actuation type and the storage filenames contained the phantom type, the actuation type, the 

input position and the positions of the two accelerometers (e.g. Water_Chirp_Actuate_01_ACC1_10_ACC2_11.mat 

would be the file that contains the signals recorded when the phantom was a water filled balloon, the actuator was in 

position 1 and accelerometers 1 and 2 were placed at positions 10 and 11 respectively). After each sequence, the 

accelerometers were moved to the next set of outputs and the sequence repeated. Once all outputs for a particular 

input was covered, the silicone model was moved to the next actuation position.  
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All data collection was done with the DataLoggerGUI.m Matlab program that was written to perform all the 

required functions (as stated in Section 3.6, the computer generates output signals, sets up the DAQ device, records 

signals, and stores results with appropriate filenames). The GUI provides the user with controls to record where the 

actuator head is placed, where the accelerometers are placed, to display the offset force and control which type of 

actuation should be performed (or that a sequence should be performed). During a sequence, all data is saved with 

the appropriate filenames automatically, whereas manual selection of actuation would require manual saving, but 

with the default filename generated unless otherwise specified.  

For each particular phantom type, two full datasets were recorded at different times to verify the repeatability of 

tests.  

In addition to the aforementioned tests, multiple tests were performed at specific input and output combinations, 

but with the variation of input force and input angle. These tests should verify how critical these conditions are in 

obtaining repeatable results.  

5.3 Evaluations 

The goal of this experiment is to gain insight into the effect of the following factors/parameters whilst attempting 

to identify the location of and material in the anomaly: 

• Actuation signal – in the human subject tests only pulses were used (to determine an impulse response), 

but the use of a chirp or white noise signal might yield better results in estimating an impulse response. 

• Position of actuation and measurement – in human subject tests, measurement was done in very close 

proximity to the input, but it may be that there are no differentiating features as the actuator dampens the 

natural response.  

• Finding the phantom or anomaly – in human subject tests features were extracted using various intricate 

methods, but there may be clear features in signals that indicate the position of the anomaly. 

• Actuation factors – the influence of offset force and input angle could not be controlled accurately 

during human subject tests, and the sensitivity to these parameters may be of interest.  

• Repeatability – during the human subject tests, each subject was only subjected to a single test, thus the 

repeatability of results could not be established. Multiple tests were performed on the silicone model and 

the repeatability can therefore be established for this experiment.  

• Differentiability between underlying consistencies – can one identify the slight differences between 

water, air and jelly, if hidden in the silicone model? This would give clues as to how easy it would be to 

differentiate between healthy and diseased liver, should the elasticity of the liver be influenced by the 

disease. 

Each of these evaluations is discussed in the following sections. 
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5.3.1 Actuation Signal for Impulse Estimation 

If an ideal impulse could be delivered to a system, the impulse response should fully describe the system’s 

transfer function – this theory resides in the theory of the Fourier Transform which can be found in many texts, but 

is cited from [61] for the purposes of this report.  

Unfortunately the pulses that are delivered during pulse actuation are far from ideal and only represent an 

approximation of an impulse. Chirp and white noise actuation methods, on the other hand, can estimate an impulse 

response by use of cross correlation of the input and output signal according to Peebles [62]. The theory behind 

impulse responses and the use of noise and chirp signals to estimate them is quite involved, but an impulse can be 

estimated using equation 6 as extracted from Peebles [62], where N0 is the noise power, RXY is the cross-correlation 

between input x and output y and h(τ) is the impulse response estimate. A simple theoretical example that uses 

equation 6 is discussed next. 
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H(s) therefore represents a 2 pole, 0dB low-pass filter with cut-off frequency at approximately 5 Hz and 

damping coefficient of 0.3, therefore being over-damped and should present with some oscillation.  

This system is simulated with three different inputs: (i) a chirp signal that ramps from 0.1 to 500 Hz in 20 s; (ii) 

20 s white noise; and (iii) a 20 s pulse train with 20 ms pulses spaced 1s apart. The simulation is done using 

Matlab’s Simulink at a fixed sampling rate of 8 kHz. The block diagram and resulting signals are shown in Figure 

5.5. To complicate matters, measurement noise with amplitude of approximately 1/10th of the measured signals was 

added at the output of each signal.  
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The inputs and outputs of the systems are cross-correlated. The resulting waveforms for the noise method, chirp 

method and the measured pulse method is compared to what is returned when the impulse function in Matlab is 

used (the function estimates an ideal impulse response), in Figure 5.6. It shows that the chirp and noise methods 

should produce similar impulse responses to the pulse train and also that these methods are far more resilient to 

measurement noise in obtaining an impulse response. Additionally, it seems that the pulse train method obtains a 

phase lagged response which is not present in the other two methods – this is due to the high frequency harmonics 

of the sharp edge of the pulse that cannot be processed by the slow system. 

 

 

Figure 5.5:  Impulse response estimation methods 

The estimated bode plots of these three methods are compared to that obtained by Matlab’s bode function in 

Figure 5.7 – the bode plot of the pulse method result does not match the theoretical nearly as well as those of the 

other methods. The higher frequency phase responses of both the noise and chirp methods seem to deviate from the 

theoretical, more so for the white noise estimate. The white noise method also seems to generate results with a 

weaker signal-to-noise ratio (SNR). Although it is difficult to determine SNR for a decaying signal a Root-Mean-

Squared (RMS) amplitude was determined for the expected signal and the difference signals for each case (noise) 

and used to calculate SNRdB = 20log(Asignal/Anoise): Chirp 33dB; Noise 30dB; Pulse 19dB. The SNR is therefore best 

for the Chirp method as far as noise is concerned, but only slightly better than the white noise method. 
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Figure 5.6:  Comparison of impulse response estimation methods 

 

Figure 5.7:  Comparison of impulse estimation methods - bode plots 

All three of these actuation methods were used for each input output combination during data collection as it was 

still unclear which method would present the best results.  

Figure 5.8 and Figure 5.9 show the time domain and frequency domain signals of the three methods for input at 

point 10 and output at point 5 with air as the phantom. The time domain signals look quite similar, but the 

frequency domain (amplitude spectrum) signals show that the pulse method has a reduced amount of high frequency 

information – this is due to the non-idealism and therefore reduced bandwidth of the input pulse.  
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The noise and chirp methods inherently have the correct time information and all evaluations are synchronised. 

The pulse method requires the matching of time alignment of input signals, which might induce an error and 

subsequently result in erroneous phase information. No comment can be made about the comparison of the chirp 

and noise amplitude spectra as the true response is not known, but it is possible that the same effect seen in the 

theoretical example is present – the noise estimate contains some induced noise.  

 

Figure 5.8:  Time domain signals and estimations from model 

 

Figure 5.9:  Frequency domain signals and estimations from model 

The theoretical and practical evaluations show that the chirp and noise method provides better impulse response 

estimation than the impulse response generated by a non-ideal input pulse. The chirp estimate contains less noise 

and is used in most of the further evaluations. 
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Another evaluation that needs to be performed is testing the coherence between the input and output. Coherence 

is a statistical measure of the causality between input and output signals and is based on the assumption that signals 

are ergodic (statistical properties can be deduced from the sample length provided) and the system is linear [63]. It 

uses cross and auto spectral densities to determine the fractional part of the output signal power that is produced by 

the input at that frequency. Coherence (γ2) is calculated by equation 8, where SXY is the cross power spectral density 

between input X and output Y and SXX and SYY represent auto power spectral densities.  
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The coherence spectrum should be equal to 1 unless there is noise in the input or output signals, the system has 

non-linearities or the output is due to additional inputs besides the measured input. The same signals that were used 

to produce the model impulse estimates were used to determine their coherence and the result is shown in Figure 

5.10. 
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Figure 5.10:  Coherence between input and output 

The coherence is less than ideal, but at least higher where the signal content is located. The setup was mostly 

immune to noise or other sounds which means that the output is not likely being caused by other input signals. The 

system is likely non-linear and/or the input and output signals contain noise. Further investigation of this kind was 

not performed, but should be considered in further studies or investigations that stem from this thesis. 
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5.3.2 Position of Actuation and Measurement 

The question that is addressed in this section is ‘where should one actuate relative to a measurement point (or 

vice versa)?’ This is answered by looking at signals for different combinations and seeing whether there are 

differentiating features – if none, the combination is a bad choice; if some, the differences may be indicative of the 

phantom location (but this is the topic of the next section). 

 
Figure 5.11:  Input-output combinations 

As stated earlier, the model was evaluated with thirteen possible inputs and thirteen possible outputs which make 

it difficult to gain insight into how signals compare when looking at them individually.  

To compare multiple signals, they were depicted next to each other in an image, with the x-axis being the 

time/frequency axis and the y-axis being the relevant signals. Additionally, looking at each input and output 

combination, for a particular offset (e.g. input and output five positions to the left), one can compare the signal to 

parameters inherent to that combination – like “distance from input to anomaly”, “distance of signal path through 

anomaly”, etc. – these parameters can be extracted from the depiction in Figure 5.11. This can give clues as to 

which parameters in the signal are indicative of the location of the phantom.  
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Figure 5.12:  Comparing signals to model (Air Phantom) 

An example of this depiction is shown in Figure 5.12 – with air as the phantom and employing the chirp method, 

the time domain impulse estimates are shown for the input-output combinations stated on the y-axis. The inputs 

combined with outputs seven positions to the left are used in this depiction. The signal at y equal to “1/8” is shown 

in Figure 5.13. 

 

Figure 5.13:  A signal trace from image depiction 

From Figure 5.12, one can clearly see that there are signal variations as one moves inputs and outputs around the 

silicone model. One can even go as far as pointing these out – e.g. where the path crosses the anomaly, the peak 

around 27 ms is negative, otherwise it is positive. What one can conclude is that this particular combination shows 

differences for signals at different points relative to the anomaly.  

A similar analysis was performed for each combination (offset) and the following conclusions can be made: 
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• With the output at the opposite side of the input (offset of six positions – remember that the positions 

are pre-numbered and output 1 is left of input 1) there exists some differentiation between signals, but it 

is unclear how anything correlates with the location of the anomaly.  

• When the offset is between five positions to the left or right (offset smaller than four or larger than 

eight) a discrepancy is detectable as a peak time difference. Output 13 and input 1 has a slightly longer 

distance between them, subsequently some combinations of input/output points have a longer distance. 

The peak time correlates perfectly with the distance between input and output points and not with the 

presence of an anomaly close to points or in the path – an example is shown in Figure 5.14. Directly 

next to the input (offset of zero or 12), no differentiation is visible, which does not bode well for the 

method used in human subject tests where this was the case. 

 

Figure 5.14:  Correlation between distance and peak time 

• The two remaining combinations (offset of five or seven positions) show promise. The signals all have 

a peak around 23-27 ms, and the peak is negative where the anomaly is present between points and 

positive otherwise.  

Unfortunately, one cannot show each depiction, but the case with the output left of the input (zero offset) and 

jelly as the phantom is shown in Figure 5.15. 
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Figure 5.15:  Signals with jelly phantom with zero offset 

5.3.3 Finding the Phantom 

The point of this evaluation is to identify where the anomaly is located. In the previous section it was shown that 

very little distinguishing features are visible when measuring close to the input; and some distinguishing features 

are visible when measuring directly opposite the input, but the features are not well correlated with the location of 

the anomaly. Signals at an offset of five or seven points showed one clear feature and some less clear features 

correlated with the presence of an anomaly between points. Other signal combinations show a strong correlation 

between the distance between points and the signal’s peak time, as expected, and some unclear correlation between 

features in the signal and the presence of the anomaly.  

The signal combinations at five and seven offset positions all seem to present with a peak close to 25 ms, the 

sign of which is correlated with the presence of the anomaly in the path. Furthermore, the amplitude without an 

anomaly in the path has a strong peak at 60 Hz, otherwise it is distorted with a wider standard deviation (should the 

amplitude spectrum be seen as a density spectrum).  

The following features are therefore extracted from these signal combinations: 

• Peak time (tp) 

• Peak Amplitude (Ap) 

• Peak at 60 Hz in amplitude spectrum (A60Hz) 
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• Standard deviation of amplitude spectrum (fstd dev) 

 

Figure 5.16:  Example of extracting peak time and amplitude 

 

Figure 5.17:  Example of extracting fstd dev and A60Hz 

The extracted features can be plotted on an axis parallel to the underlying features to visually determine the 

correlation and the result for an offset of five positions is shown in Figure 5.18. Ap is clearly correlated with the 

presence of the anomaly and the A60Hz seems to have some correlation, but the other two features do not show any 

correlation. A similar result is obtained for an offset of seven positions. 
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Figure 5.18:  Comparing extracted features to silicone model parameters (offset of five positions) 

These two features can be plotted against the distance through the anomaly to better emphasize the correlation – 

shown in Figure 5.20. It should therefore be possible to reconstruct an image showing the possible location of the 

underlying anomaly by looking at these two parameters – if the normalised amplitude at 60 Hz is smaller than 0.5 

there may be an anomaly between points; or if the amplitude close to 25 ms is negative there may be an anomaly in 

the path. The use of these two methods is illustrated using the data obtained with a jelly anomaly and an offset of 

five positions between input and output, shown in Figure 5.19 – black lines indicate the presence of an anomaly 

between input and output and red lines not. Both features seem to predict the location of the anomaly with 

reasonable accuracy for the specific data set. A similar evaluation was performed on all available data and the use of 

A60Hz works for 60 % of the data, where Ap works for 90 % of the data. 

 

Figure 5.19:  Predicting location of anomaly using extracted parameters 
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Figure 5.20:  Scatter plot of features vs. disrupted distance 

It is therefore concluded that, for this specific setup, one can predict the location of an anomaly with reasonable 

accuracy if one uses a chirp signal as an input at all of the 13 positions and measure the output for each input at an 

offset of five or seven positions. Measuring directly opposite the input does not yield usable results, nor does 

measuring next to the input.  

5.3.4 Repeatability of Procedure 

Repeatability is of importance to this evaluation as one would want to know whether data can be trusted. The 

previous section inadvertently evaluated repeatability by extracting the same parameters from signals that were 

recorded at different times and using the same setup. A different measure will be employed in this section – 

goodness of fit expressed as a percentage as expressed in equation 9, where y is the first signal and yh the second.  

)))((/)(1(100(%) 22 ∑∑ −−−×= ymeanyyyFit h  (9) 

Air was used as a phantom in two separate experiments and these experiments can be compared for each signal 

combination, using the first as a base and the second as comparison. Table 5.1 summarises the results for each 

combination. The average fit is equal to 76.68 %, which is adequate. Some combinations show very bad fits, but 

looking at the actual comparisons show that these signals actually still do compare very well – see Figure 5.21. 
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Table 5.1:  Fitness measures for repeatability measurement 

1 2 3 4 5 6 7 8 9 10 11 12 13

1 84.95 78.10 37.07 62.53 68.96 67.11 19.69 47.71 36.71 73.44 69.60 64.71 72.20

2 72.21 72.09 68.81 65.00 71.34 51.39 64.61 54.54 70.36 65.39 79.55 73.61 78.55

3 75.64 55.84 77.74 77.06 67.81 61.42 56.59 75.30 47.70 63.91 75.54 73.01 47.07

4 63.22 67.62 70.14 79.70 75.94 72.79 69.67 73.06 77.64 35.04 71.71 75.47 76.51

5 69.06 67.85 53.40 80.78 72.43 76.51 60.71 75.96 72.59 67.82 34.88 72.70 68.86

6 46.93 61.35 77.81 73.36 77.88 78.09 73.34 60.76 70.39 70.96 73.17 53.09 63.57

7 46.44 55.20 77.35 83.94 70.33 68.39 78.21 71.53 81.00 72.75 62.58 81.21 26.28

8 59.97 54.50 77.84 81.59 75.25 72.50 69.86 73.25 81.59 52.85 59.86 65.28 81.58

9 67.89 44.52 75.30 55.06 72.82 49.79 69.33 79.18 78.25 54.58 65.24 70.88 64.21

10 39.29 79.81 49.99 54.48 70.29 58.13 63.81 80.58 83.07 75.19 71.83 69.59 74.51

11 41.53 59.70 71.97 45.25 63.90 80.03 66.95 69.50 81.49 46.17 84.43 63.54 49.28

12 54.56 64.67 50.67 69.99 22.03 79.82 65.87 81.95 66.85 59.98 55.16 78.75 48.93

13 22.58 68.73 71.60 67.67 72.27 57.09 59.60 33.07 73.03 44.11 78.98 76.82 76.11
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Figure 5.21:  Repeatability of some signals and their fits 

5.3.5 Effect of Actuation Parameters 

There are two factors which could not be controlled during tests on human subjects – the angle of the actuator to 

the surface of the skin, and the offset force to the skin. It would be difficult to establish the exact effect of these 

parameters on the signals measured during human subject tests, but the effect on the silicone model tests should at 

least give some indication as to what the importance of control over these parameters are. 

During human subject tests it was difficult to control the input angle of the actuator head as the human body has 

a fixed shape and the frame has a fixed shape, therefore for each volunteer a different relationship exists and it is 

almost impossible to have the input perpendicular to the body wall. Measurements were therefore performed with 

the actuator placed at angles of -45°, -10°, 0°, +10° and +45°, of the perpendicular (minus sign refers the head 

facing output one and plus facing output thirteen). The input was at position two and output at position three 

(remember that this constitutes a two position offset as output one is after input one) – using the chirp method to 

estimate the impulse, as well as the pulse method and actual pulses.  
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The results of variation of the input angle are shown in Figure 5.22 and Figure 5.23. It seems that the amplitude 

is slightly higher where the actuator is directed toward the output and the phase is slightly delayed as the angle 

increases. The frequency content remains in tact. 

 

Figure 5.22:  Effect of variation of input angle 

(using Chirp method) 

 

Figure 5.23:  Effect of variation of input angle 

(using Pulse method) 

During human subject tests, the offset force could have varied even though the head was moved as to exert as 

much force as was comfortable to the volunteer. Because this parameter can’t be controlled it is important to 

determine its effect. The offset force was set at 0, 0.5, 1.5 and 2 N and the response calculated using the chirp 

method, and simply using the pulse response. The results are shown in Figure 5.24 and Figure 5.25. 

 

 

Figure 5.24:  Effect of variation of offset force 

(using Chirp method) 

 

Figure 5.25:  Effect of variation of offset force 

(using Pulse method) 

The input force variation seems to have less influence on the pulse method’s pulses, and more on the chirp 

method estimate. The input signal recorded during the chirp method gets distorted by the offset voltage used to 

generate the offset force – as such, the impulse estimates may be incorrect. The phase of the pulse method’s pulses 

seems to be influenced slightly by the change in force, but the signal contents seem to remain in tact. 
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From these results one can conclude that the input force and angle does not influence signals extracted from the 

silicone model too much. Whether these results can be extrapolated to human subjects is debatable.  

5.3.6 Differentiating Anomaly Types 

Of interest to the research would be whether one could distinguish between healthy and diseased liver (where the 

disease influences the elasticity of the liver). The tests on the silicone model therefore involved the use of various 

phantoms to simulate different anomalies, just as the liver would present differently inside the human body.  

Tests were performed with water, air and jelly as the anomaly, with two tests performed with water and air and a 

single test using jelly. Signals with the same input and output combination should ideally be the same for the same 

anomaly and differ between different anomalies. Should the signal differ between the same anomalies that signal is 

not dependable; otherwise, any differences seen between different anomalies are dependable.  

Signals were compared by looking at both their time and frequency representations. All 13 by 13 combinations 

were looked at, and it was found that some signals from the second water set were very abnormal – it is believed 

that a problem crept in whilst the data was being captured, possibly the accelerometers were not connected properly. 

Fortunately some signal combination did present proper results (air signals matching each other and water signals 

matching each other) and a small subset of these showed some difference between the anomaly types. Using the 

combination of input at position 2 and output at position 10 (which means the anomaly was between the points) 

yields the results shown in Figure 5.26. The time signal (on the right) does not show clear discrepancies between 

signals, but the amplitude spectrum does – the water signals have their strongest components at 140 Hz, where the 

jelly signal has strong components at 80 Hz and 140 Hz. The air signals are relatively weak at these two 

frequencies, but have stronger components than the other two at 105 Hz. 

 

Figure 5.26:  Identifying the anomaly - visual analysis 

The amplitudes at the three identified frequencies can be extracted and plotted pair wise. Only two combinations 

are shown in Figure 5.27. The discrepancies are clear for these data points and it should be possible to discriminate 

between anomalies for this simple problem. Unfortunately more data was not captured to verify these results.  
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Figure 5.27:  Identifying the anomaly - scattered data 

Evaluations on data points where the inputs and outputs were close to each other, showed no detectable 

discrepancies, again emphasising the need to measure further from the input when performing similar tests on 

human subjects.  

5.4 Conclusions 

The evaluations performed during silicone model tests led to the following conclusions: 

• Method for identifying a system – during human subject tests only multiple pulses were used to obtain 

an impulse response estimate and subsequently derive unique parameters. The use of a chirp or white 

noise signal combined with cross-correlation generates almost ideal impulse responses, with the chirp 

signal generating superior results depending on the required bandwidth.  

• The relationship between the input and output measurement positions – from the analyses on the silicone 

model it seems that almost no information can be deduced from impulse estimates calculated between 

inputs and outputs in close proximity. Measurements on the model showed that accelerometer readings 

at a distance of more than 300 mm from the input yield distinguishing results. Converting this measure 

to human testing has not been done, but it is clear that measuring next to the input will not reveal 

information about the underlying structure. 

• The ability to identify the position of the phantom was demonstrated using only a few parameters 

extracted from subsets of the data. The parameters were extracted from data where the inputs and 

outputs were far removed further emphasising the need to have a larger distance between these points in 

human tests.  

• Repeatability of the measurement procedure was demonstrated by comparing repeated experiments on 

the same anomaly and using a measure of fit between subsequent experiments. This shows that such a 

controlled environment can yield repeated results, but this was in fact also demonstrated by identifying 

the position using multiple data sets (separate experiments). 
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• The effect of the variation of offset force and input angle (not controllable in the human test setup) were 

evaluated on the silicone model and it was found that these variations only slightly influenced the signal 

obtained using pulsing. This could mean that their effects did not factor in the weak results obtained 

during human subject tests. 

• The different anomalies could be differentiated by looking at the captured data. A point that is 

emphasised again is that information cannot be detracted from combinations where the input and output 

is close to each other. 

This evaluation showed promise using the tools developed for human subject tests and identified different 

actuation methods to identify the system between input and output. Simple features are extracted from signals to 

identify the presence and type of the anomaly, which indicate that it should be possible to do the same on human 

subjects, depending on the effect of differences in fat presence and ribs. If more time was available, the effect of 

ribs and fat could also be simulated. One clear error that was made during human subject tests, however, is that the 

measurement was done too close to the actuator input. 
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Chapter 6 Conclusions and Recommendations 

The research that has been reported shows that emulating percussion is difficult at best. Except for the lack of 

understanding about the underlying mechanics, there exists no guideline as to how to go about emulating the 

technique. It was concluded that the act of percussion uses some mechanical input pulse and the physician uses 

his/her hearing and experience to identify the underlying tissue. 

The author investigated possible ways to emulate percussion. Subsequently, a design employing an 

electromagnetic actuator and accelerometer was motivated and built. The function of the accelerometer would be to 

listen to the body wall vibration and the actuator would deliver the input pulse. Additionally hardware was 

developed to collect data and perform experiments. The sensors that were used were not standard, calibrated 

laboratory equipment and their performances were shown to be lacking, but whether the lack in performance led to 

the lack of success could not be validated. 

Upon completion of the system design, it was employed to collect data to develop signal processing methods to 

identify the borders of the liver from sensor data. The data collection method evolved with the assistance of human 

volunteers and only three volunteers were used in the final test setup – presenting the research with a very small 

data set. The method involved the use of successive pulses at various locations on a volunteer’s body and measuring 

the acceleration of the skin next to the point of actuation. 

To identify signals that indicate the presence of the liver, various signal processing and parameter extraction 

methods were considered (a small subset of all possible approaches). Each method involves some simplification of 

the data by extraction of parameters and a method for matching parameters to underlying truth (liver or no liver). 

Each method showed promise for some data, but not for all. Signal parameters could not be extracted with sufficient 

confidence, but even those parameters that were extracted with confidence could not successfully identify the 

presence of the liver. The method that showed the most promise involved matching signals to the parameters of a 

dual mass-spring-damper system and training a Mixture of Gaussians classifier with two clusters using these 

parameters – a 70% correct classification was shown. It is possible that such a result was an abnormality as most of 

the other techniques resulted in less than 60% correct classification.  

These results compelled further investigation using a much simpler setup – a silicone model with an anomaly 

contained within, also using the same tools as were used in the human tests. The questions that needed to be 

answered were (i) are there perhaps better actuation methods; (ii) where should measurement take place relative to 

the position of actuation; (iii) could the position of the anomaly be identified using such a simple setup; (iv) is the 

procedure repeatable and how do factors like offset force and input angle influence results; and finally (v) could the 

physical properties of the anomaly be identified by such a process? 

The tests on the silicone model revealed the following:  
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i. A more involved method including actuation using a chirp or noise signal and cross-correlation could 

yield better results for defining a system. 

ii. There should be a large distance between the point of actuation and measurement. The lack of success 

in human tests can perhaps be attributed to this finding. 

iii. The position of the anomaly contained within the silicone model could be identified with some 

confidence – it may be possible to do the same in human testing and implementation, but the effect of 

other factors like ribs, other organs and fat cannot be predicted, nor could it be evaluated in the thesis’ 

time frame. 

iv. The procedure is highly repeatable in such a controlled environment and factors like offset force and 

input angle influences signals only slightly.  

v. Signal features can be used to differentiate between anomaly types (water, jelly and air), but only when 

measuring at a distance from the input and with the anomaly between the input and output. 

From this subsequent evaluation it does seem that the measurement location should at least be further from the 

input and that other actuation signals should be considered.  

The outcome of this thesis is thus the following: 

• A system and methods were developed to emulate the act of percussion as used to identify the border of 

the liver. This system and method was, however, shown to be invalid as it could not successfully 

identify the liver boundary. 

• Further investigation in sensor performances may reveal that it also impacted on the negative outcome of 

this project. 

• The methods that were used to process signals to perhaps find indicators of the liver are quite advanced, 

even though they could not be validated. They may still be useful in future evaluations. 

• The source of error was investigated in subsequent tests and definite problems in the initial approach 

were pointed out. 

• Although the thesis did not yield a positive result, the lessons that were learnt do contribute to the 

understanding of the problem and should not be ignored. 

In the event of the investigation being taken further, the following should be considered: 

• It is still unclear whether one would be able to extract information using the approach used and a more 

familiar starting point should perhaps be considered – percussion should be performed by physicians 

whilst the reactionary sounds are recorded using a microphone. The physician’s remarks regarding the 

notes should be compared to the signal traces measured and it should be established whether it is 

possible to discern between percussion sounds. 

• Once confidence has been established in how sounds differ from a signal processing point of view one 

can proceed to design a system that classifies resulting sounds automatically and establish such a 

system’s performance or validity. A validated tool like this could contribute vastly to the understanding 

of percussion and could also be implemented as a learning tool for future physicians. 
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• Only after showing that there is promise in emulating percussion, one can systematically attempt to 

automate or mechanise the physician’s functions, but these changes should happen systematically, 

validating each step. During these developments, the use of standard, calibrated laboratory equipment is 

strongly suggested. The use of non-standard untested sensors should only be implemented once 

validated against standard, calibrated laboratory equipment. 

The human as a learning machine should not be underestimated – computer learning have proven superior in 

cases where a problem or process is well understood and the human is ill adept at taking various parameters into 

consideration. The technique of percussion, however, was developed by humans and for humans over centuries 

whilst never being well understood.  
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Appendix A Electronic Designs 

A.1 Design of Signal Conditioning and Routing PCB 
The purpose of the Signal Conditioning and Routing PCB is to route and pre-condition accelerometer signals to 

the DAQ device (PMB-1608FS USB [53]).  

A.1.1 Requirements  

The expected input signals have a DC component and are at levels between 0~3.3V, whereas the DAQ device 

has a 16-bit resolution over ±5 V.  

The accelerometers require power, which is also to be routed via this board so that they can connect only to one 

port. 

Furthermore, this circuit is designed with the capability to provide power to up to three 3-axis accelerometers 

(ADXL330 [52]) which means nine channels of information. The DAQ device has eight analogue input channels of 

which some are allocated for other functions; therefore only three channels are demarcated for accelerometer 

signals.  

Requirements are therefore as follow: 

• Be able to switch between 4 configurations: 3 axes of one accelerometer (of which there are 3) or the 3 

z-axes of the accelerometers. 

• Remove DC component in signals. 

• Amplify signals to better use dynamic range. 

• Provide power routing to accelerometers. 

A.1.2 System Block Diagram 

The system block diagram is shown in Figure A-1. There are power inputs for GND, +3.3 V, +5 V and -5 V 

which are connected to the blocks where these levels are required. Each accelerometer (ACC) connection provides 

three analogue signals as input which is switched by a multiplexer system (MUX) to three signals in total. Analogue 

Signal Conditioning blocks remove the DC components in the MUX output signals and amplify them, the result of 

which is provided through the output connections. 
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Figure A-1:  Signal Conditioning and Routing Block Diagram 

A.1.3 MUX system 

The MUX system consists of two MAX4531 MUX ICs from Maxim Semiconductor [64]. Figure A-2 shows the 

device’s block diagram. Each IC has two output channels (COMA and COMB), and each output is multiplexed 

from four inputs (NO0A, NO1A, NO2A, NO3A and NO0B, NO1B, NO2B, NO3B, respectively). Each IC has two 

address lines (ADDA and ADDB) to determine which input is switched to which output.  

 

Figure A-2:  MAX4531 Block Diagram [64] 
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Each IC has two output channels (COMA and COMB), and each output is multiplexed from four inputs (NO0A, 

NO1A, NO2A, NO3A and NO0B, NO1B, NO2B, NO3B, respectively). Each IC has two address lines (ADDA and 

ADDB) to determine which input is switched to which output. Table A-1 summarizes the truth table for the MAX 

4531.  

The function of this subsystem is to switch between four possible three-signal-sets: 

1. Z0, Z1 and Z2 

2. Z0, X0 and Y0 

3. Z1, X1 and Y1 

4. Z2, X2 and Y2 

(e.g. Z0 refers to the Z-axis of accelerometer 0 signal).  

To make these combinations possible two address lines are used for both MUXes and both ports of the one and 

one of the other are used (therefore 4 connections to each port mapping to one of the three output signals).  

Table A-1:  MAX4531 Truth Table 

 
Figure A-3 shows the circuit diagram of the MUX subsystem. As can be seen, the same address lines are used 

for both devices, labelled ADDA and ADDB. Pins /LE, EN2 and /EN1 are routed to GND, +5 V and GND 

respectively so that the circuit always operates in accordance to the address lines. Table A-2 summarizes how 

connections are made depending on address signals from a control device.  

Table A-2:  MUX system connection table 

Address Lines 
ADDB ADDA 

Connections

Z0-IN1 
Z1-IN2 0 0 
Z2-IN3 
Z0-IN1 0 1 
X0-IN2 
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Y0-IN3 
Z1-IN1 
X1-IN2 1 0 
Y1-IN3 
Z2-IN1 
X2-IN2 1 1 
Y2-IN3 

 

 

Figure A-3:  MUX subsystem circuit diagram 

Additionally the necessary power connections are made in accordance with the pin descriptions. The signal path 

has a resistance of 75 Ω, which is taken into account in the next section. The detailed design drawings in can be 

found in Appendix A.1.6. 
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A.1.4 Analogue Signal Conditioning System 

The multiplexed signals originating from the accelerometer contain a DC offset voltage due to the orientation of 

the sensor and the zero acceleration point being offset due to the rails of the device being 0 and 3.3V. As stated 

earlier, the DC component is meaningless in this analysis, therefore this subsystem needs to remove this component 

and amplify the signal to make use of the ±5V resolution of the DAQ device.  

The accelerometer’s circuitry already low-pass filters the acceleration signals with one pole at 1600 Hz (X- and 

Y-axis) and 550 Hz (Z-axis), therefore the signal conditioning needs no low pass filtering.  

 

Figure A-4:  Signal conditioning sub system simulation model 

Figure A-4 shows a model of the suggested and implemented circuit for conditioning. A low voltage operational 

amplifier from Linear Technology (LT1492) is used in this model simply because of the use of the free simulation 

software, LTSpice, offered by Linear Technology. V1 simulates the accelerometer signal; R4 simulates the 

impedance of the MUX system. The combination of C1 and R1 acts as a passive 1-pole high pass filter; whereas 

R5, R2 and U1 (op-amp) acts as an active 3X voltage amplifier. R3 simulates the input impedance of the DAQ 

device (100 MΩ). V2 and V3 simply act as the ±5 V power rails for the op-amp. The transfer function (in Laplace 

from) from V1 to V(R3) can be represented by equation 10 below. 
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The first part of equation 10 represents the gain of the signal conditioning stage as the second part has unity gain 

where the signal frequency is higher than the second part’s cut-off frequency. The second part of the equation forms 

the high pass filter with unity gain in its pass band and -3dB cut-off frequency 112
1

CR
fc π
=

 (Because 41 RR >>  

the effect of 4R  can be ignored). Equation 10 can also be expressed with gain (A) and cut-off frequency ( cf ) 

parameters as is shown in equation 11 below. 
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 and denotes the pass-band gain; and j  denotes the complex number ( 1− ).  

With resistor and capacitor values as shown in Figure A-4, a pass-band gain of 3 V/V or 9.54 dB and a cut-off 

frequency of approximately 1 Hz are calculated. SPICE simulation of the circuit results in the plot in Figure A-5 

where very similar results are seen. 
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Figure A-5:  Signal conditioning amplitude response 

The actual circuit was designed and built with LF351 op-amps (these ICs are readily available at the University 

of Stellenbosch’s Electronic Engineering Department in DIP form factor), space for an adjustable potentiometer (for 

adjustable gain) and fixed resistors (for fixed gain) to determine the pass-band gain, and power noise decoupling 

capacitors placed close to the op-amps. The final realisation of the circuit schematic is shown in Figure A-6. The 

detailed design drawings in can be found in Appendix A.1.6. 
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Figure A-6:  Signal conditioning sub system circuit diagram 

A.1.5 Layout Considerations 

All components share the same ground plane which greatly simplifies the layout. In general the following 

approach was followed: 

• Power supply decoupling capacitors were placed as close as possible to the IC they protect. 

• Ground planes and connections were kept as large and wide as possible to limit EMI effects. 

• Power supply tracks were kept as wide as was sensible. 

• Tracks were kept as short as possible – connected devices were placed as close al possible to each other. 

• The board size was kept to a minimum; however size was not a constraint. 

• Layout was done on a dual (top and bottom) layer board. 
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A.1.6 Detailed Design Drawings 

The Signal Conditioning and Routing PCB’s system design was discussed in the previous section. The following 

figures should help the reader understand how the PCB was realised, but these cannot be used to directly recreate 

the PCB. The author should be contacted who will supply interested parties with the necessary design files. 

“EAGLE - Easily Applicable Graphical Layout Editor Version 4.16r1 for Windows Light Edition” was used as 

design software for the PCB. Figure A-7 and Figure A-8 show the schematics of the circuit. Figure A-9 and Figure 

A-10 show the top and bottom view of actual board. To give the reader an idea of the actual size of the board, the 

top edge is 93.2 mm and the left edge is 80 mm in length. The boards were populated and implemented as suggested 

by the components indicated on the board images. 

 

Figure A-7:  Signal Conditioning and Router PCB Schematics (part 1) 
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Figure A-8:  Signal Conditioning and Router PCB Schematics (part 2) 

 

Figure A-9:  Signal Conditioning and Router PCB Board Top 
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Figure A-10:  Signal Conditioning and Router PCB Board Bottom 

A.2 Design of Power Source PCB 
The function of the Power Source PCB is to provide the various power levels required by different components 

in the Signal Conditioning and Routing PCB (Appendix A.1) and the Accelerometer PCBs (Appendix A.3). The 

PCB receives 230 VAC input power and converts it into +3.3 V, -5V and +5 V. 

A.2.1 Requirements 

The PCB simply needs to have a 230 VAC input and DC +3.3 V, -5 V and +5 V outputs. 

A.2.2 System Block Diagram 

The system has a five power conditioning subsystems – an AC to DC power conditioning sub system; and the 

+3.3 V, -5 V and two +5 V regulator blocks/systems. The block diagram is shown in Figure A-11. 
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Figure A-11:  Power Source PCB system block diagram 

A.2.3 AC-DC Power Conditioning System 

To obtain the +3.3 V, -5 V and +5 V voltages simple fixed voltage regulators are used with care taken to convert 

the 230 VAC input to a DC voltage within the specified input voltage ranges of the fixed regulators with a 

combination of transformer, diode rectifier bridge and capacitor output filter. These components are shown in the 

circuit diagram in Figure A-12. 

 

Figure A-12:  AC-DC Power conditioning system 

The transformer was selected to produce output voltages that are within the acceptable input voltages for the 

uA78M05 and uA79M05 regulators (to be discussed in the next section) which are 7~25 VDC and -7~-25 VDC. 

Taking the voltage drop over the diode rectifier bridge into account (2X0.7 V=1.4 V) and dividing by 2  to obtain 

the peak voltage results in a required output rated voltage of approximately 6~18 VACRMS and -6~-18 VACRMS. A 

230/12 3.2 VA transformer with dual secondary coils were obtained to provide 2x12 VACRMS and a more than 

adequate power rating for the circuits that need power. A review of this design should decrease the size of the 

transformer and the capacitors (to be discussed later) to be closer to requirements. 
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The centre of the secondary coils are used as output ground and the other two outputs are rectified and 

capacitively filtered to produce ±15.5 VDC (multiply peak with 2  and minus voltage drops across diode bridge to 

get to this value) with some ripple component depending on the load current.  

The voltage ripple can be calculated by equation 12 shown below [65]. 

C
IVr 100

=
 

(12) 

Where I is the load current and C denotes the filter capacitor. This shows that the bigger the capacitance and 

smaller the load current, the smaller the voltage ripple. The reader is reminded, however, that voltage regulators 

reject voltage ripple by 60-90 dB. Table A-3 and Table A-4 summarise the power requirements for various 

components that get power from the +15.5 V and -15.5 V respectively. Standard practice would be to determine a 

required minimum voltage ripple and use the power requirements to calculate the required capacitance, however, 

1mF capacitors were available at the time of the design and the actual size of the board is not a constraint and it was 

decided to implement these in the design. Using the capacitor values and the required current in equation 12, 

voltage ripples of 0.1796 V (1.2%) and 0.0576 V (0.4%) are calculated respectively. A voltage regulator with a 

mere 60 dB ripple rejection should bring this ripple down to a thousandth of the input at 0.18 mV and 0.06 mV 

respectively; and with additional output filter capacitors this noise source should be negligible and pose no threat to 

the operation of any other module. 

Table A-3:  Power budget for positive voltage 

Device 
Rated 

Voltage 
(V) 

Rated 
Current 

(mA) 
Number 

of 
Total 

Power 
(mW) 

Current@15V 
(mA) 

Accelerometer 3.300 0.320 3 3.168 0.211 
5V LEDs 5.000 3.000 2 30.000 2.000 
3.3V LEDs 3.300 3.000 1 9.900 0.660 
Op-Amps 5.000 0.250 3 3.750 0.250 
MUXs 5.000 0.010 2 0.100 0.007 
uA78M05s 15.000 4.500 3 202.500 13.500 
REG1117-3.3 5.000 4.000 1 20.000 1.333 
        Total 17.961 

Table A-4:  Power budget for negative voltage 

Device 
Rated 

Voltage 
(-V) 

Rated 
Current 

(mA) 
Number 

of 
Total 

Power 
(mW) 

Current@-
15V (mA) 

 -5V LED 5.000 3.000 1 15.000 1.000 
Op-Amps 5.000 0.250 3 3.750 0.250 
MUXs 5.000 0.010 2 0.100 0.007 
uA79M05s 15.000 4.500 1 67.500 4.500 
        Total 5.757 

A total current of 23.7mA is drawn from the transformer which equates to 0.568 VA which is well within the 

transformer’s 3.2 VA rating. 
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A.2.4 Fixed Voltage Regulation Systems 

The voltages produced by the AC-DC Power Conditioning System are ±15.5 VDC where the devices that get 

power from the PCB require +3.3 V, -5 V and two +5 V power rails. This is accomplished by the circuit diagram 

shown in Figure A-13.  

+3.3VDC

+5VDC

±5VDC
LEDs

Switch
 

Figure A-13:  Fixed voltage regulation systems 

The ±5 VDC voltages are generated by a uA78M05 and uA79M05 voltage regulator which generates +5 V and -

5 V respectively. The input and output capacitors act as input and output filters placed close to the ICs.  

The single +5 VDC is also generated by a uA78M05 voltage regulator with the necessary input and output 

capacitors as suggested by the datasheet. 

The +3.3 VDC is generated by a combination of uA78M05 5 V voltage regulator and REG1117-3.3V 3.3 V 

voltage regulator. The reason for this combination is that the REG1117-3.3V has a low drop-out voltage (1V) and a 

maximum input voltage of 15 V (lower than anticipated input voltage). Input and output capacitors are placed as 

suggested by the datasheet of the REG1117-3.3V and not the uA78M05 (as the filtering effects of the former 

component’s design should be sufficient). 

A DIP switch is placed between the regulators and the output connectors to make it possible for the user to 

disable some voltages should it not be required. 

Each output is connected to a through-hole LED and resistor combination which illuminates if the output is 

active. Each resistor is selected so that 4 mA flows through the LED (therefore all LEDs have the same 

luminescence) – therefore R1, R2, and R4 are selected as 1 kΩ, and R5 as 430 Ω. 

A.2.5 Layout Considerations 

All components share the same ground plane which greatly simplifies the layout. In general the following 

approach was followed: 

• Power supply decoupling capacitors were placed as close as possible to the IC they protect. 
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• Ground planes and connections were kept as large and wide as possible to limit EMI effects. 

• Power supply tracks were kept as wide as was sensible. 

• Tracks were kept as short as possible – connected devices were placed as close al possible to each other. 

• The board size was kept to a minimum; however size was not a constraint. 

• Layout was done on a dual (top and bottom) layer board. 

The input power supply (230 VAC) was kept separate from the DC circuitry as it may cause 50 Hz noise on 

output power rails. 

A.2.6 Detailed Design Drawings 

The detailed schematics can be found in Figure A-12 and Figure A-13 of the previous two sub sections. These 

and the following figures should help the reader understand how the PCB was realised, but these cannot be used to 

directly recreate the PCB. The author should be contacted who will supply interested parties with the necessary 

design files. “EAGLE - Easily Applicable Graphical Layout Editor Version 4.16r1 for Windows Light Edition” was 

used as design software for the PCB. Figure A-14 and Figure A-15 show the top and bottom view of actual board. 

To give the reader an idea of the actual size of the board, the top edge is 108 mm and the left edge is 97 mm in 

length. The boards were populated and implemented as suggested by the components indicated on the board images. 

 

Figure A-14:  Power PCB top view 
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Figure A-15:  Power PCB bottom view 

A.3 Design of Accelerometer PCBs 
The accelerometer PCBs acts as a surface for the ADXL330 3-axis MEMS accelerometers to attach to and 

contain the necessary power supply noise decoupling and output low pass filter capacitors. Due to the simplicity of 

the PCB, there is no system breakdown in this section. 

A.3.1 Requirements 

 

Figure A-16:  ADXL330 MEMS accelerometer block diagram (extracted from datasheet) 

The ADXL330 3-axis MEMS accelerometer functional block diagram is shown Figure A-16. The internal 

operation is detailed in the datasheet [52].   
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For the accelerometer to be light enough to not significantly dampen the PCB needs to have a small footprint. 

Furthermore, the necessary power supply decoupling capacitors are to be supplied close to the IC (0.1 µF) as well as 

the three output’s output filtering capacitors. The selection of output filter capacitors depends on the desired signal 

bandwidth which is governed by equation 13. 

ZYX
dB Ck

F
,,

3 *)32(2
1
Ω

=− π  
(13) 

The X and Y output capacitors are set to 4.7 nF to give a bandwidth of approximately 1 kHz (the actual signal 

bandwidth for these two channels is 1.6 kHz) and the Z input is set to 10 nF to give a bandwidth of 500 Hz (the Z 

signal bandwidth is 500 Hz). The Z-axis, as the device is mounted on the patient’s body, is parallel to the expected 

motion of the skin – this could therefore be considered the actual signal bandwidth. 

A.3.2 Detailed Design Drawings 

The detailed schematics and actual layout can be seen in Figure A-17 and Figure A-18 below. These and the 

following figures should help the reader understand how the PCB was realised, but these cannot be used to directly 

recreate the PCB. The author should be contacted who will supply interested parties with the necessary design files. 

“EAGLE - Easily Applicable Graphical Layout Editor Version 4.16r1 for Windows Light Edition” was used as 

design software for the PCB. To give the reader an idea of the actual size of the board, the top edge is 20mm and the 

left edge is 18 mm in length. The boards were populated and implemented as suggested by the components 

indicated on the board images. 

 

Figure A-17:  Accelerometer PCB schematic 
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Figure A-18:  Layout of Accelerometer PCB (single layer) 

A.4 FSR Calibration 
The Force Sensing Resistor (FSR) was calibrated using the conductance-force curve on the Interlink Model 400 

datasheet [51]. The author acknowledges that this method is scientifically incorrect and that the supplier datasheet 

even says that the sensor should not be used for precision measurement, but the result should be repeatable and 

make individual measurements comparable. It assumed that the sensor does not drift. 

The FSR is connected in a voltage divider topology with resistor (RREF) and power source (Vcc) – depicted in 

Figure 3.2. The FSR resistance (RFSR) relative to the voltage measured above the FSR (VFSR) is given by equation 

14 and the result is converted to conductance (GFSR) in equation 15. 

REF
FSRcc

FSR
FSR R

VV
VR ⋅
−

=  (14) 

REFFSR

FSRcc
FSR RV

VVG
⋅
−

=  (15) 

The conductance-force relationship for the FSR is shown in Figure A-19. The values are extracted at each point 

and a cubic curve is fitted through the points (notice that the curve fitting axes are swapped and converted). 
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Figure A-19:  FSR resistance-force curve [51] and curve fit 

The cubic fit through the points is given by equation 16. 
3910550 FSRGF ⋅⋅=  (16) 

The force-voltage (F-VFSR) relationship can now be obtained by combining the cubic fit and GFSR-VFSR 

relationship – shown in equation 17.  
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In the implemented circuitry, a 9.8 kΩ resistor was used as RREF and Vcc was equal to 5 V. Replacing the 

variables in equation 17 with these values, gives equation 18. 
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Appendix B Software Designs  

The source code is available on the CD that accompanies this thesis report. Should the CD not be available the 

author can be contacted. 

B.1 get_aver_pulse.m 

 

Figure B-1:  getting_aver_pulse.m flow diagram 
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The task of this function is to take a set of signals from a particular acquisition – FSR, Accelerometer 1 and 

Accelerometer 2 – extract the pulses in each signal, obtain an average of that signal, and adjust the signals so that 

the FSR signal starts at 0 ms and the other two are shifted accordingly (temporal relationship between signals are 

maintained).  

This task is accomplished by using some prior knowledge as to where signals should occur, predicting the time 

windows where each pulse should be located, using cross-correlation to determine the exact point at which two 

signals match the best and finally to move each pulse so that it matches the first. These signals are then averaged 

and the start of the FSR signal is identified. All signals are the shifted forward in time so that the FSR signal starts 

at 0 ms.  

The algorithm flow is depicted in Figure B-1. 

B.2 General Feature Extraction Flow 
The human subject data was converted into features using three different methods, but the general flow was the 

same – generate a list of the data files to be processed, loop through each file to obtain an average set of signals and 

subsequently extract the features. Temporary results are stored in variables and log files whilst the algorithm loops, 

and when it finishes all data is stored in a data file. This general flow is depicted in 

 

Figure B-2:  General Feature Extraction Flow 
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The flow diagram for each extraction method is shown in broad overview in the following sections. 

B.2.1 Direct Feature Extraction 

Direct feature extraction is quite simple - values are simply calculated from the signals iteratively. This simple 

flow diagram is depicted in Figure B-3.  

 

Figure B-3:  Direct feature extraction 

B.2.2 Extracting Autoregressive Features 

 

Figure B-4:  Extracting autoregressive features 
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The autoregressive (with exogenous input) system identification extracts points for systems with six to 15 poles. 

The process that is followed with each input/output data combination is the following: use the toolbox to find the 

time series coefficients that best fit the data with a specific time shift; if a best result is obtained, update, otherwise 

don’t; increase time shift; when all time shifts have been considered, increase number of poles/zeros. This flow is 

depicted in Figure B-4. 

B.2.3 Extracting Mechanical Model Features 

The parameters of the dual mass-spring-damper system are tuned to fit data using the Genetic Algorithm (GA). 

The GA passes values from the search space to an objective function which simulates the model using these 

parameters. A cost function evaluates the fit and returns the fitness value to the GA. Based on the number of 

generations and the resulting fit the GA will terminate or generate a new population. The best fitting population is 

sent to the Direct Search Optimisation (DSO) algorithm to find the maximum in the local space surrounding the GA 

result. The DSO algorithm uses a gradient approach to find the optimum solution and evaluates the solution by 

using the same objective function. The DSO algorithm terminates when the improvement becomes small enough or 

when the number of iterations exceed the upper limit (settings are left at the toolbox default). These two stages are 

depicted in Figure B-5 and Figure B-6 respectively. 

 

Figure B-5:  Extracting mechanical model features, Genetic Algorithm 
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Figure B-6:  Extracting mechanical model features, Genetic Algorithm 
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Appendix C Mechanical Designs 

C.1 Frame Design 
The experimental setup for tests on human subjects requires the design and manufacture of a rigid adjustable 

frame that can be attached to a bed for experimental purposes. The frame should allow an operator to move a 

vibrational shaker to various points for “percussion” of a patient or volunteer.  

 

Figure C-1:  Frame concept 

The mechanical drawing for the parts that make up the frame are contained in Figure C-2 to Figure C-7. 
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Figure C-2: Mechanical drawing: frame back part 
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Figure C-3:  Mechanical drawing: frame half circle 
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Figure C-4:  Mechanical drawing: frame base 
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Figure C-5:  Mechanical drawing: frame feet 
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Figure C-6:  Mechanical drawing: frame slider 
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Figure C-7:  Mechanical drawing: frame clamps 
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C.2 Phantom test setup 
The setup used for tests on the silicone model was drawn up so that it could be recreated, if need be. Figure C-8 

shows a depiction of the 3D model of the setup. 

 

Figure C-8:  Phantom test setup 
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Appendix D Additional Information 

D.1 Body Planes and Orientations 
Figure D-1 shows the body planes and orientations as is referenced in the text. This image was extracted from 

[66]. 

 
Figure D-1:  Summary of body planes and orientations [66] 
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Appendix E Datasheet Excerpts 

This section contains excerpts of datasheets which are not easily attainable off the internet, or may be removed 

in future. 

E.1 Vibrational Shaker V201-PA25E from LDS Group 
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E.2 Smooth-On Dragon Skin Silicone Rubber Compounds  
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