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ABSTRACT 

 

In order to understand and manipulate carbon flux to sucrose one needs to consider not only 

its biosynthetic pathways, but also the competing sinks for carbon in various parts of the 

plant and at different stages of development. The cell wall and sucrose is known to be the 

major sinks for carbon in young and mature tissues of sugarcane. UDP-Glucose is a central 

metabolite in the synthesis of both sucrose and most of the cell wall polysaccharides 

(including cellulose, hemicellulose and pectic polymers) and manipulation of the flux into 

either of the cell wall components could therefore cause an increase of flux toward one or 

more of the competing sinks. In the present study UDP-Glucose dehydrogenase (UGD) 

activity was chosen for down regulation as it catalyzes the rate limiting step in the 

biosynthesis of the precursors of both hemicellulose and pectin, a major competing sink for 

assimilated carbon. 

 

Transgenic sugarcane lines with repressed UGD activity showed significantly increased 

sucrose accumulation in all internodes which was highly correlated with reduced UGD 

activity. Sucrose phosphate synthase had increased activation which suggests an alteration 

in carbon flux toward sucrose. 

 

The reduction of carbon flux through UGD was compensated for by an increase in the 

activity of the myo-inositol oxygenation pathway (MIOP), an alternative pathway for the 

synthesis of cell wall matrix precursors. The increased activity of the MIOP resulted in 

increased total uronic acids and pentoses in the cell wall. Total cell wall glucose was also 

increased which is a further indication of altered carbon metabolism. 

 

 

 

 

 

 

 

 

 

 

 

 



OPSOMMING 

 

Manipulasie van die fluks van koolstof na sukrose vereis kennis van beide die biosintetiese 

bane (source, bron) vir sukrose, sowel as die mededingende koolstof poele (sinks) in 

verskillende dele van die plant en tydens verskillende stadiums van ontwikkeling. Die 

selwand en sukrose is die hoof koolstof poele in jong en volwasse suikerriet weefsels. UDP-

Glukose is ‘n sentrale metaboliet vir die sintese van beide sukrose en meeste van die 

selwand polisakkariede (insluitend sellulose, hemisellulose en pektiese polimere) en 

manipulasie van die fluks na een van die selwand komponente kan dus ‘n toename in die 

fluks na een of meer van die kompeterende poele veroorsaak. In hierdie studie word die 

aktiwiteit van UDP-Glukose dehidrogenase (UGD) afgereguleer om sodoende die fluks van 

koolstof na die sintese van hemisellulose en pektien, ‘n hoof poel vir geassimileerde koolstof, 

te verminder. 

 

Transgeniese suikerriet met onderdrukte UGD aktiwiteit het beduidende toenames in 

sukrose akkumulasie in alle internodes getoon. Die toenames was hoogs gekorrelleer met 

die vermindering in UGD aktiwiteit. Sukrose fosfaat sintase (SPS) het ‘n toename in 

aktivering getoon wat verder dui op ‘n wysiging in koolstof fluks na sukrose. 

 

Die afname in koolstof fluks deur UGD na hemisellulose en pektien was gekompenseer deur 

‘n toename in aktiwiteit in die mio-inositol oksigenasie baan (MIOP), ‘n alternatiewe baan vir 

die sintese van selwand matriks voorgangers. Die toename in die aktiwiteit van die MIOP het 

‘n toename in totale glukuronsuur sure en pentoses in die selwand tot gevolg gehad. Die 

totale selwand glukose en meer spesifiek die glukose in sellulose was ook verhoog wat ‘n 

verdere aanduiding is van ‘n wysiging in koolstof metabolisme in suikerriet met onderdrukte 

UGD aktiwiteit. 
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ABBREVIATIONS 

  

AIR Alcohol insoluble residue 

bp  Base-pairs 

BSA  Bovine serum albumin 

CeS Cellulose synthase 

DMSO Dimethyl sulfoxide 

DTT Dithiotreitol 

EDTA Ethylenediaminetetra-acetate 

EtOH Ethanol  

Fru-6-P Fructose-6-phosphate 

GC-MS Gas chromatography/mass spectrometry 

Glc-1-P Glucose-1-phosphate 

Glc-6-P Glucose-6-phosphate 

HEPES 4(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid (buffer) 

kDa Kilo Dalton 

MIOP Myo-inositol oxygenation pathway 

MIOX Myo-inositol oxygenase 

MS Murashige and Skoog (media) 

NAD+ Nicotineamide adenine dinucleotide  (oxidised) 

NADH Nicotineamide adenine dinucleotide  (reduced) 

NADP+ Nicotinamide adenine dinucleotide phosphate (oxidised) 

PCR Polymerase chain reaction 

PGI Glucose-6-P isomerase  

PGM Phosphoglucomutase  

Pi Inorganic phosphate 

PPi Inorganic pyrophosphate 

RT Room temperature (22 °C) 

SDS Sodium dodecyl sulphate 

SPS Sucrose phosphate synthase 

SuSy Sucrose synthase 

Tris 2-amino-2-hydroxymethylpropane-1,3-diol (buffer) 

UDP Uridine diphosphate 

UDP-Glc UDP-D-Glucose 

UGD UDP-Glucose dehydrogenase 

UGPase UDP-Glucose pyrophosphorylase 
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GENETIC MANIPULATION OF THE CELL WALL COMPOSITION OF 

SUGARCANE 

 

1.1 INTRODUCTION 

Through selective cross-breeding practices, plant breeders have been able to increase the 

sucrose content of Saccharum spp. (sugarcane) consistently over the past 100 years1. 

However, over the last decade breeders have been unable to show significant increases in 

sucrose content using traditional plant breeding approaches and a plateau in 

synthesis/storage capacity seems to have been reached. 

 

Sugarcane, cultivated mainly for its sucrose but also used for bio-ethanol production, the 

generation of electricity and other by-products, is one of the world’s most important crop 

plants. Worldwide it is grown in tropical and subtropical areas in more than 80 countries on 

an estimated land area of over 18 million hectares. Due to its importance as a sucrose 

yielding crop, sugarcane has been targeted by the novel gene manipulation techniques used 

in the field of biotechnology to unravel the complexities of the metabolism of sucrose and 

related compounds and also to increase the sucrose synthesis/storage capacity in vivo. It is 

estimated that sugarcane could potentially store more than 25% sucrose per fresh weight 

which is almost double its present yield1.   

 

Various genetic manipulation strategies, discussed by Grof and Campbell (2001)1 in their 

review of the topic, are currently being employed to redirect photosynthetically fixed carbon 

toward storage tissues and away from other sinks. Although the molecular tools for 

engineering high sucrose plants are available, and many targets for manipulation through 

overexpression or repression have been identified, this has not been achieved. Specific key 

target areas include sucrose synthesis in the leaf and stem, sucrose transport and the 

enzymes catalysing sucrose cleavage in stem tissues. An additional target area for 

manipulation is the plant cell wall as it represents a major carbon sink and is the most 

abundant reservoir of organic carbon in nature.  

 

1.2 THE PLANT CELL WALL 

The plant cell wall is the major determinant of the plant cell’s shape and size. Furthermore, 

the cell wall also provides a defensive barrier, anchorage for the cytoskeleton, fulfils 

functions in cell recognition, growth and differentiation. The wall is highly organized and is 

made up of polysaccharides, proteins and various aromatic compounds which cross-link the 

polymers together to provide structural support. Cellulose fibers are embedded in a hydrogel 
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of matrix polysaccharides and small amounts of protein. The exact chemical composition of 

the wall varies considerably from species to species and between different plant organs in 

the same plant, but the basic design of the wall is consistent.  The primary cell walls of dicots 

contain approximately 30% cellulose, 30% hemicellulose, 35% pectin with 1-5% protein (on 

a dry weight basis) compared to monocots that contain approximately 25% cellulose, 55% 

hemicellulose and 10% pectin2,3.  

 

UDP-D-Glucose (UDP-Glc) is the common precursor for most of the polymers found in the 

plant cell wall. In addition, UDP-Glc is also a substrate for sucrose synthesis. Together, the 

cell wall and sucrose represent the largest carbon sinks in plants. The central position 

occupied by UDP-Glc as a substrate for these sinks as well as the economic importance of 

its down-stream metabolic products makes the biosynthetic pathways leading from UDP-Glc 

a target for molecular manipulation. In the following section the various pathways leading 

from UDP-Glc are discussed with emphasis on its interconversion to UDP-Glucuronic acid 

(UDP-GlcA) by UDP-Glucose dehydrogenase (UGD).  

  

1.3 NUCLEOTIDE SUGARS IN PLANTS 

Nucleotide sugars are either synthesized from phosphorylated monosaccharides or through 

epimerization of precursor nucleotide sugars4. UDP-Glc, first isolated and studied by Leloir et 

al. (1951)5, is a key metabolite of carbohydrate metabolism in both photosynthetic and non-

photosynthetic plant tissues6. Nucleotide sugars represent between 10-25% of the total 

nucleotide pool of plants. Uridine nucleotides and in particular UDP-Glc predominate in the 

nucleotide-sugar pool of most plant tissues7. UDP-Glc contributes between 60-70% of total 

nucleotide-sugars followed by UDP-D-Galactose (UDP-Gal) making up 15-25%. In young 

and mature leaves, the main photosynthetic tissues, UDP-Glc is used for sucrose synthesis 

by sucrose phosphate synthase (SPS, EC 2.4.1.14) and sucrose synthase (SuSy, EC 

2.4.1.13) to a lesser degree8. In addition, UDP-Glc is either used in cell wall synthesis 

(cellulose, callose, mixed β(1-3)(1-4)-glucans) or enters the interconversion pathways and is 

used indirectly as wall precursors. UDP-Glc also supplies the Glc units incorporated in 

glycolipids and glycoproteins6. 

 

1.4 PLANT UDP-GLC METABOLISM  

UDP-Glc is a central metabolite in several anabolic pathways of plant carbohydrate 

metabolism. Not only is UDP-Glc the precursor for cellulose, callose and most of the cell wall 

matrix polysaccharides, but it also contributes the glucose-moiety for the glycosylation of 

small molecules and sucrose synthesis. The UDP-Glc ‘pool’ is maintained at three 
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intracellular sites namely the cytosol, the Golgi apparatus9 and at the plasma membrane10 

where it is used in various biosynthetic activities. 

 

Two major pathways exist for the synthesis of nucleotide sugars: (1) UDP-Glc is synthesized 

from uridine triphosphate (UTP) and glucose-1-phosphate (Glc-1-P) by UDP-Glc 

pyrophosphorylase (UGPase, EC 2.7.7.9) and (2) GDP-Man is synthesized from guanidine 

triphosphate (GTP) and mannose-1-phosphate (Man-1-P). An alternative and possibly more 

important pathway for the synthesis of UDP-Glc is catalyzed by SuSy.  

 

Carbon can enter the hexose phosphate pool (glucose-6-phosphate (Glc-6-P), Glc-1-P and 

fructose-6-phosphate (Fru-6-P)) through gluconeogenesis by the phosphorylation of free 

hexoses, via the breakdown of starch or sucrose and through the reverse reactions of 

glycolysis on the triose phosphate products of photosynthesis11 (Figure 1.1, p 9). The three 

constituent intermediates are kept in equilibrium by the actions of phosphoglucomutase 

(PGM) and glucose 6-P isomerase (PGI): 

Glc-1-P  →←PGM  Glc-6-P →←PGI  Fru-6-P 

 

The carbon moieties of the hexose phosphate pool are used in the synthesis of sucrose, 

starch, cell wall polymers, in the pentose phosphate pathway and glycolysis (Figure 1.1, p 9).   

 

Glc-1-P can enter and leave the hexose phosphate pool through UGPase. Many 

pyrophosphorylases have been demonstrated in plants, but UGPase which is responsible for 

the synthesis of UDP-Glc in both prokaryotic and eukaryotic systems, predominates (several 

100- to several 1000-fold) over the pyrophosphorylases that catalyze the formation of GDP-

Glc, TDP-Glc, ADP-Glc or GDP-Man. It is thought that the reason for this is the high levels of 

glucose-phosphates which are the primary products of photosynthesis. UGPase catalyzes 

the transfer of a uridyl unit between phosphate acceptors with the concomitant cleavage of 

inorganic pyrophosphate (PPi) in the nucleotide substrate7: 

UTP + Glc-1-P  →←UGPase  UDP-Glc + PPi  

 

Although the UGPase reaction is known to be readily reversible in vitro it is assumed that 

because of the removal of PPi in vivo by an as yet elusive mechanism11, intracellular levels 

of PPi does not reach levels high enough to favor the synthesis of Glc-1-P through the 

reverse reaction7. UDP-Glc exerts a strong inhibitory effect on UGPase with Ki-values of 

around 0.1 mM.  
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Figure 1.1: Central position of UDP-glucose in plant carbohydrate metabolism.  

1. Cellulose/callose synthase; 2. UDP-Glucose dehydrogenase; 3. Sucrose phosphate synthase,  
4. Sucrose phosphate phosphatase, 5. Sucrose synthase, 6. UDP-Glucose pyrophosphorylase. 
 

The reactions that provide the major synthetic drains on the cytosolic UDP-Glc pool are 

those catalyzed by cellulose synthase (CeS), UGD, SPS and the many nucleotide sugar 

interconversion reactions. 

 

1.4.1 CELLULOSE SYNTHESIS 

It is has been suggested that cellulose, the major structural polysaccharide component of the 

plant cell wall, is the most abundant biopolymer on earth12. Additionally, most of the carbon 

fixed during photosynthesis is incorporated into cell wall polymers which make these 

structural elements of plants the most abundant source of biomass and energy13. All of the 

monosaccharides in cell wall polymers are derived from glucose. Many interconversion 

pathways exist for the various reactions needed to convert glucose into the ten major 

monosaccharides that occurs commonly in the cell wall of plants. The central point of 

departure for the interconversion reactions is UDP-Glc which is known to occur at three 

intracellular sites or ‘pools’, namely the cytosol, Golgi-apparatus and at the cell wall9,10. The 

cytosolic pool provides UDP-Glc for glycosylation of small molecules14, nucleotide sugar 

interconversion reactions and through the reverse action of UGPase provides Glc-1-P for 

various metabolic pathways. Specific transporters for UDP-Glc were identified in isolated 

Golgi membrane vesicles of pea, providing evidence for the existence of a UDP-Glc pool 

inside the Golgi-apparatus9. The Golgi-apparatus is the site of synthesis of the cell wall 

matrix polysaccharides which includes the pectins and hemicelluloses. Following synthesis 

UDP-D-Glc Cellulose, 
callose 

Hemicellulose, 
pectic polymers

Sucrose 

Sucrose 6-P 

Glc-1-P 

Photosynthesis 

1. 

2. 3. 
4. 

5. 

6. 

Starch 

Fru-6-P Triose-P Glycolysis Glc-6-P 

Pentose 
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pathway 
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by various glycosyltransferases, these polysaccharides are packaged in secretory vesicles 

on the trans-face of the Golgi-apparatus and transported to the cell wall. The third UDP-Glc 

pool is localized at the plasma membrane and is the product of plasma membrane 

associated sucrose synthase (pSuSy)15. 

 

Cellulose and callose are the only cell wall polymers synthesized at the plasma membrane11. 

Cellulose synthesis is catalyzed by multimeric enzyme complexes known as rosettes or 

terminal complexes located at the terminal ends of growing cellulose fibrils. UDP-Glc, the 

substrate for CeS, is provided at the site of synthesis by pSuSy which complexes with 

CeS15,16. The current model for pSuSy-mediated cellulose synthesis suggests that the 

effective synthesis of cellulose depends on the coordinated activity of both pSuSy and CeS. 

A consistent high correlation has also been shown between increased SPS activity and high 

rates of cellulose synthesis and secondary wall deposition17. Following synthesis of the 

glucan-polymer, multiple glucan polymers associate to form a crystalline microfibril. 

 

CeS radial swelling (rsw1) mutants have disassembled CeS complexes, reduced cellulose 

synthesis capacity and its β-1,4-glucan accumulates in a noncrystalline form18. Rsw1 

mutants have a radial swelling phenotype similar to those of wild-type roots exposed to 

inhibitors of cellulose synthesis like dichlorobenzonitrile. CeS mutants also show defective 

elongation growth, collapsed xylem elements and resistance to the herbicide isoxaben, an 

inhibitor of cellulose synthesis during the formation of the primary cell wall13. A decrease in 

cellulose synthetic capacity is often partly compensated for by increases in cell wall pectin 

and hemicellulose19. 

 

1.4.2 SUCROSE SYNTHESIS 

Apart from being the most important precursor for the hexose and pentose component of 

plant cell walls, UDP-Glc also provides Glc units for the synthesis of the main carbon 

transport and storage compound in plants, namely sucrose. The synthesis of sucrose in 

plants can occur by two separate enzymatic reactions: 

UDP-Glc + Fruc 6-P →←SPS  Suc 6’-P + UDP      (1) 

UDP-Glc + Fruc  →←SuSy  Suc + UDP       (2)                       

           

Sucrose is synthesized in the chloroplasts of photosynthetic and in storage cells from UDP-

Glc and fructose-6-P (Fru-6-P) in two sequential reactions catalyzed by SPS and sucrose-

phosphate phosphatase (SPP, EC 3.1.3.24) (reaction 1)20,21 as well as from UDP-Glc and 

fructose (Fru) by SuSy (reaction 2). SPS and SuSy are known to be cytosolic enzymes. Both 

reactions are reversible but it is generally accepted that the SPS reaction is irreversible 
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because of the rapid removal of the 6’-phosphate from sucrose-6-phosphate by SPP8,22. SPS 

is the main sucrose biosynthetic enzyme in source leaves and is also active in the futile cycle 

of simultaneous breakdown (by SuSy and cytosolic (neutral) invertase) and synthesis (by 

SuSy and SPS) which occurs in a variety of tissues23. Increased SPS activity, high levels of 

UDP-Glc and increased Glc-6-P are indicative of the onset of sucrose accumulation in 

sugarcane22. A rapid turnover of sugars in different compartments is characteristic of sucrose 

accumulation in storage and other non-photosynthetic cells and could be regulated by 

phosphorylated metabolites. The rapid cycling is referred to as a futile cycle because of the 

waste of energy associated with the simultaneous synthesis and breakdown of sucrose. The 

ongoing cycling of sucrose and hexoses allows the plant to rapidly respond to changes in the 

supply and demand for sucrose and to remove photoassimilates from source tissue to 

prevent sink inhibition of source activity. 

 

The main sucrose synthetic activity in young photosynthetic tissue of sugarcane can be 

attributed to SPS8, although the relative contribution of SPS and SuSy differs between plants 

and tissue type. Labeling experiments have indicated that in sugarcane, SPS is the major 

enzyme responsible for sucrose synthesis in mature tissue8. It is currently believed that SuSy 

is not as important in sucrose synthesis, but is more intimately concerned with the generation 

of UDP-Glc for cell wall synthesis. SuSy activity is associated with elongating young 

internodes and mature fully-elongated internodes and is suggested to be associated with 

sink strength based on tissue UDP-Glc demand22. SPS supplies a steady increase in 

sucrose content. In sugarcane the activity of SPS exceeds that of SuSy more than three-fold 

in mature tissue8, and SPS was shown to be fully responsible for sucrose synthesis by 

internode 9.    

 

1.4.3 SYNTHESIS OF CELL WALL MATRIX POLYSACCHARIDES 

UDP-GlcA is the common precursor for activated glucuronosyl units and sugar nucleotides 

including UDP-GalA, UDP-Xylose (UDP-Xyl), UDP-Arabinose (UDP-Ara) and UDP-Apiose 

(UDP-Api), supplying the majority of monosaccharide units for hemicellulose and pectin 

biosynthesis. Three biosynthetic routes exist for the formation of UDP-GlcA in plants4,24.  (1) 

UDP-galacturonate 4-epimerase (UGE, EC 5.1.3.6) can convert UDP-GalA to UDP-GlcA by 

a reversible C-4 epimerization reaction4;  (2) GlcA-1-phosphate (GlcA-1-P), derived from the 

myo-inositol oxygenation pathway, is converted to UDP-GlcA by glucuronate-1-phosphate 

uridylyltransferase (EC 2.7.7.44)4 and (3) UDP-Glc is converted to UDP-GlcA by UGD (UDP-

α-D-glucose:NAD+ 6-oxidoreductase, EC 1.1.1.22)25. 
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1.4.3.1 UDP-GALACTURONATE 4-EPIMERASE 

UGE, also known as galactowaldenase, catalyzes the reversible interconversion of UDP-Glc 

and UDP-Gal through epimerization of the C-4 OH-group. It is known to exist in plants, yeast, 

bacteria and animals4,26. UGE is part of the Leloir pathway of galactose metabolism. 

Epimerases are also known to exist for UDP-Xyl, UDP-GlcA and GDP-Man interconversion, 

catalyzing the following reactions4,10: 

UDP-Glc  →← −−− epimeraseGlcUDP 4  UDP-Gal 

UDP-Xyl  →← −−− epimeraseXylUDP 4  UDP-L-Ara 

UDP-GlcA  →← −−− epimeraseGlcAUDP 4  UDP-GalA 

GDP-Man  →← −−− epimeraseManGDP 5,3  GDP-L-Gal 

GDP-Man  →← →← −−−−−−−−−−−−− edehydratasManGDPreductaseepimeraseManDdeoxyketoGDP 6,445.364  GDP-L-Fuc 

 

1.4.3.2 MYO-INOSITOL OXYGENATION PATHWAY 

The metabolic pathways leading from myo-inositol to L-gulonic acid (precursor to L-ascorbic 

acid) and to GlcA was first described by Charalampous and Lyras (1957)27. Their work with 
3H and 14C labeled myo-inositol indicated that label was incorporated into the galacturonosyl 

residues of pectin by strawberry fruit and parsley leaves. Incorporation of label into GlcA, Xyl, 

Ara and L-gulonic acid was also shown. The pathway responsible for the conversion of myo-

inositol into UDP-GlcA is known as the myo-inositol oxygenation pathway (MIOP). The MIOP 

is often seen as a ‘salvage’ pathway for the synthesis of UDP-GlcA. Salvage pathways are 

alternative routes for the synthesis of nucleotide sugars in which free monosaccharides 

released by the degradation of polysaccharides and other glycoconjugates are 

phosphorylated by monosaccharide kinases and subsequently converted to nucleotide 

sugars by the action of pyrophosphorylases in the presence of nucleotide triphosphates as 

co-substrates26,28,29. Recent work indicated that myo-inositol oxygenase (MIOX, EC 

1.13.99.1), the first enzyme of the MIOP, and UGD has different temporal and spatial 

expression patterns in Arabibopsis3,30. Both pathways are active in plant tissues and 

contribute UDP-GlcA for matrix polysaccharide synthesis in different ratios depending on the 

tissue type and developmental stage. It is important to note that where UGD is strongly 

inhibited by low levels of UDP-Xyl, none of the enzymes of the MIOP are31. This is an 

indication that under conditions where the synthesis of UDP-GlcA through UGD is inhibited 

by its downstream products, the MIOP will be able to supply the intermediates needed for 

cell wall synthesis. 

 

Myo-inositol-1-P is synthesized from Glc-6-P by the action of 1L-myo-inositol-1-P synthase 

(EC 5.5.1.4)32. Free myo-inositol is generated by myo-inositol-1-P phosphatase (EC 
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3.1.3.25). The MIOP consists of three sequential reactions; (1) myo-inositol is converted to 

GlcA by MIOX, (2) GlcA is phosphorylated by glucuronokinase (EC 2.7.1.43), yielding GlcA-

1-P and (3), UDP-GlcA is formed by the transfer of the uridylyl moiety of UTP by glucuronate-

1-phosphate uridylyltransferase (EC 2.7.7.44). The reactions of the MIOP provide the 

precursor UDP-GlcA which is subsequently interconverted to GlcA, 4-O-methyl-GlcA, GalA, 

Xyl, Ara and Api and incorporated into glucuronoarabinoxylans (GAX) and related wall 

polymers. 

 

1.4.3.3 UDP-GLUCOSE DEHYDROGENASE 

UGD is a cytosolic enzyme which provides the precursor UDP-GlcA for the synthesis of 

UDP-Ara, UDP-Xyl, UDP-GalA, UDP-Api and their methylated derivatives3. GAX, 

synthesized from UDP-GlcA, UDP-Ara and UDP-Xyl contributes a substantial proportion of 

the cell wall in monocots28 and as the above mentioned nucleotide sugars are all ‘down 

stream’ products of UGD, the biosynthesis of UDP-GlcA can be seen as a major metabolic 

activity during cell growth33.  

 

To fully understand the biosynthesis of polysaccharides it is necessary to investigate the 

upstream sources of the component nucleotide sugars34. The flux of carbohydrates into the 

pool of nucleotide sugars via UDP-GlcA is strictly controlled because it is generally accepted 

that UDP-GlcA cannot be reconverted into carbohydrates used to synthesize storage 

compounds like sucrose and the pools for storage compounds and nucleotide sugars used 

for wall synthesis are separated30. Interestingly, evidence suggests a link between UDP-

GlcA metabolism and gluconeogenesis via UDP-Xyl as follows: Myo-inositol → GlcA → 

GlcA-1-P → UDP-GlcA → UDP-Xyl → Xyl → Xylulose → Xylulose 5-P → Pentose 

phosphate intermediates → Hexose phosphates35. In germinating seed or young growing 

tissues such a pathway would probably function to channel phytate derived from myo-inositol 

into substrates used for cell wall biosynthesis and to supply carbon based intermediates for 

energy production.  

 

UGD was first described in and purified from bovine liver by Strominger and co-workers 

(1954)36. UDP-GlcA is formed by the NAD+ dependent oxidation of UDP-Glc followed by the 

nucleophilic attack of a cysteine residue (Cys260) in the catalytic domain on the resulting C6 

aldehyde. The aldehyde intermediate is protected and tightly bound to the enzyme active site 

and is not accessible to external aldehyde-trapping reagents. The hydride is subsequently 

transferred to a second NAD+ to form a thioester intermediate which is then hydrolyzed to 

form UDP-GlcA accounting for the irreversibility for the overall reaction37,38. Two NADH are 

formed. The enzyme mechanism is described as being of the Bi-Uni-Uni-Bi ping-pong type, 
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where UDP-Glc is bound first and UDP-GlcA is released last with NADH being released after 

each addition of NAD+. UGD is a nucleotide sugar modifying enzyme that has both alcohol 

dehydrogenase and aldehyde dehydrogenase activity37.  

    

Extensive studies on the kinetics of UGD in animals and microorganisms34,39 have been 

conducted. UGD from plant origin have received little attention possibly because of the early 

notion that an apparent predominance of the MIOP over UGD catalyzed formation of UDP-

GlcA exist in some plants24,40. Although there is evidence for the existence of both pathways 

in plants, the relative contribution of these pathways to the synthesis of UDP-GlcA is 

unknown33. The expression pattern of UGD was analyzed in Ugd promoter::GUS and GFP 

transformed Arabidopsis plants3. Plants up to five days old showed strong expression in 

young roots but not in hypocotyls or cotyledons, while UGD was more evenly expressed in 

the vascular system of older plants, in flowers (stamen, stigma and nectaries) and in 

meristems of the leaf axil of rosette and inflorescence leaves. Tissues showing low or no 

UGD activity could efficiently incorporate 3H-inositol into their cell walls indicating dominance 

of the MIOP. The expression of UGD in sugarcane was investigated in this laboratory 

(Institute of Plant Biotechnology, University of Stellenbosch, South Africa; IPB)41. The 

highest level of expression was detected in the leaf roll and internode 3 with a rapid decline 

in transcript levels down the stem and in older leaves. Almost no transcript could be detected 

in internode 18. Root tissue had a relatively high level of expression. Protein levels followed 

a similar pattern as transcript expression with almost no protein detected below internode 13.  

 

UGD has been cloned from poplar (Populus tremula x tremuloides)42 and soybean (Glycine 

max)43,44. Deduced amino acid sequences are highly similar between soybean, poplar, 

Arabidopsis and tobacco33. Native soybean UGD occurs as a homohexamer and has a 

molecular mass of approximately 272 kDa and a subunit mass of 50 to 52 kDa43,45. In 

contrast, the monomeric form of recombinant UGD from soybean was found to be the 

principal active from44. The enzyme was competitively inhibited by UDP-GlcA, UDP-Xyl and 

NADH46. An inducible UGD was purified from elicitor treated suspension culture cells of 

French bean (Phaseolus vulgaris) with a subunit mass of 40 kDa which showed alcohol 

dehydrogenase activity (Km 1.8 ± 0.5 mM)47. Immunolocalization in hypocotyls showed that 

the enzyme was primarily expressed in the cytoplasm during the early stages of vascular 

differentiation when secondary walls are laid down. Work conducted in this lab (IPB) on UGD 

purified from sugarcane indicated that it had a MW of 52 KDa, was competitively inhibited by 

UDP-GlcA and UDP-Xyl, and in contrast to soybean UGD, was non-competitively inhibited 

by NADH48. Recently, Kärkönen and co-workers investigated the importance of the 

nucleotide sugar oxidation pathway in UDP-GlcA biosynthesis in developing maize (Zea 
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mays) organs33. Maize mutants were obtained by inserting transposons into either of two 

putative Ugd genes (UDPGDH-A and –B).  Results indicated that both isozymes are active in 

young maize leaves and that the genes are developmentally regulated and transiently 

expressed in cells needing the precursors for wall biosynthesis. The disruption of UGD-A 

(specifically udpgdh-A1 homozygotes) activity caused a reduction in cell wall pentose 

content, indicating that isozyme A is essential for UDP-GlcA synthesis, and that the 

remaining UGD activity (UGD-B) was not enough to supply adequate UDP-GlcA and UDP-

pentoses. This also indicates that in young leaves of maize, the MIOP is not active enough to 

completely compensate for reduced UGD activity. Three UGD isozymes having high, 

intermediate and low Km-values were subsequently detected in maize suspension-cultured 

cells49. Of note is that it was also shown that neither of the UGD isozymes had ADH activity 

in contrast to the findings of Robertson et al. (1996). Samac et al. (2004) expressed soybean 

UGD in transgenic alfalfa (Medicago sativa) plants under control of the phosphoenolpyruvate 

carboxylase (P4; enhanced xylem expression) and Arabidopsis class III chitinase (Atchit; 

enhanced phloem expression) promoters to target transgene over-expression to vascular 

tissue50. P4::UGD alfalfa plants had the highest UGD activity. Ten greenhouse grown lines 

had 200% more UGD enzyme activity than untransformed control plants. The enhanced 

activity was however not retained in mature field-grown transgenic lines in subsequent 

generations. The increase in UGD activity led to a decreased polysaccharide content in 

transgenic plants and increases in Xyl (15%) and Rha (36%) and a tendency toward 

increased Ara in cell walls. The relative increase in Xyl was much greater than the increase 

in Rha.  The increase in Xyl and Ara can be explained by the increase in UDP-GlcA caused 

by the over-expression of UGD, but it is unclear why Rha was increased.  
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1.5 AIM OF THIS STUDY 

In their review highlighting the main target areas of sugarcane sucrose metabolism for 

molecular targets to increase sucrose content, Grof and Campbell (2001)1 suggest that for 

successful manipulation, it is necessary to identify the main rate limiting or co-limiting steps 

in all of the metabolic processes of sucrose biosynthesis and degradation. Thus, one of the 

important areas to consider is the futile carbon cycling between sucrose and hexose, 

resulting from the simultaneous synthesis (SuSy, SPS) and degradation (soluble acid 

invertase, cell wall bound acid invertase, neutral invertase, SuSy) of sucrose22. A by-product 

of sucrose breakdown, UDP-Glc, is also the precursor for the synthesis of structural 

polysaccharides, a respiratory substrate and a substrate for the re-synthesis of sucrose. As 

sugarcane is cultivated for its sugar-rich stalks, most carbon partitioning research in this 

plant has focussed on the accumulation of sucrose and its partitioning within the sugar pool. 

Relatively little attention has been paid to the allocation of carbon to the structural 

component of the cell41. The cell wall is known to be one of the largest carbon sinks in plants. 

For this reason its biosynthesis was chosen as site for genetic manipulation in an attempt to 

redirect carbon towards sucrose synthesis.  

In the present study we investigate the effects of manipulation of the plant cell wall and in 

particular the UDP-Glc pool in sugarcane through the down-regulation of UDP-Glc 

dehydrogenase activity using antisense and RNAi based technologies. We hypothesize that 

a decrease in carbon flux through UGD would increase the UDP-Glc pool, thereby increasing 

the substrate for sucrose synthesis and accumulation of sucrose. 
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2. MATERIALS 

 

All chemicals were obtained from Sigma-Aldrich (South Africa) unless otherwise indicated. 

All nucleic acid modifying enzymes were from Promega (South Africa) unless otherwise 

indicated. 

Primers were purchased from Integrated DNA Technologies (IDT, Whitehead Scientific, 

South Africa). 

All coupling enzymes were obtained from Roche (South Africa) unless otherwise indicated. 

 
 
3.  METHODS 

 

3.1  VECTORS, TRANSFORMATION AND MOLECULAR CHARACTERIZATION 

 

3.1.1  Construction of silencing vectors 

Antisense UDP-Glucose dehydrogenase vector 

A full length UGD cDNA was isolated and characterized from a sugarcane cDNA library41. 

The antisense vector was constructed by cloning a 1760 bp UGD cDNA sequence in the 

antisense orientation into pUBI510 behind the cauliflower mosaic virus 35S and maize 

ubiquitin promoters to ensure constitutive expression. The UGD sequence was amplified 

from a full length UGD cDNA cloned into pBlueScript® SK(+) (Stratagene) by polymerase 

chain reaction51 (PCR) using the primer pair UGD Fw 4: GCT CGA TAT CTG GTC ACA GAT 

CTA TCT G; Rev 5: TTA AGC GAC CGC GGG CAT GTC CTT GAG (1760 bp). Amplification 

conditions were as follows: 94 °C for 2 min; 35x (94 °C for 30 s, 58 °C for 30 s, 72 °C for 1.50 

min); 72 °C for 5 min. EcoRI restriction sites on the primers was used to clone the insert into 

the corresponding pUBI510 restriction sites using T4 DNA ligase (Promega) according to 

standard procedures. Colony PCR using 35S F: TCC ACT GAC GTA AGG GAT GAC; UGD 

Fw 4: was used to select colonies with inserts in the antisense orientation.  

 

Intron-spliced hairpin RNA vector 

The ihpRNA vector used in this project was based on the high-throughput gene silencing 

vector pHANNIBAL52. The pHANNIBAL vector was obtained from Commonwealth Scientific 

and Industrial Research Organization Plant Industry (CSIRO, Canberra, Australia). The 

pHan-UGD vector was constructed from a 384 bp PCR product amplified from a full length 

sugarcane UGD cDNA cloned into pGEM®-T Easy (Promega). The PCR product was 

amplified from the 5’ coding region and was cloned in both the sense and antisense 
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orientation into the pHANNIBAL directional cloning sites using restriction sites incorporated 

into the primers. Primers used for amplification and directional cloning were Xba.Xho UGD 

Fw: AGT CTC TAG ACT CGA GGG TTC GGT GGC TCT; Kpn.Hind UGD Rev: AGT CGG 

TAC CAA GCT TGG GGT CTC CCT GGT G. Amplification conditions were as follows: 94 °C 

for 2 min; 35x (94 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s); 72 °C for 5 min.  Standard 

molecular techniques were used for all steps in the construction of the vector53. Directional 

PCR using OCS Rev: CAC AAC AGA ATT GAA AGC AA; Kpn.Hind UGD Rev for the 

antisense insert, and 35S F; Kpn.Hind UGD Rev for the sense insert was used to identify 

positively transformed colonies. Amplification conditions for OCS Rev; Kpn.Hind UGD Rev 

and 35S F; Kpn.Hind UGD Rev were as follows: 94 °C for 2 min; 35x (94 °C for 30 s, 50 °C 

for 30 s, 72 °C for 30 s); 72 °C for 5 min. Both pAUGdf510 and pHan-UGD were transformed 

into, maintained and amplified in E. coli strain DH5α (Gibco-BRL). 

 

3.1.2  Sugarcane transformation 

Initiation and maintenance of sugarcane callus 

Callus initiation, transformation and selection were carried out according to standard IPB 

procedures54,55. In brief, freshly harvested sugarcane (variety NCo310) stalks from a field 

(Welgevallen, Stellenbosch, South Africa) were surface sterilized using 96% EtOH. Outer 

leaves were removed to expose the leaf roll which was surface sterilized with 96% EtOH and 

flamed off. Working aseptically in a laminar flow cabinet, the outer leaf roll leaves were 

removed exposing the inner leaf roll which was cut into 0.5 cm sections and transferred to 

sterile MSC3-media (MS-media containing 4.43 g/L MS basal medium, 2.22 g/L Gelrite 

Gellan Gum, sucrose 20 g/L, 0.5 g/L Casein enzymatic hydrolysate, pH 6.8 and 3 mg/L 2,4-

Dichlorophenoxyacetic acid (2,4-D))56. Calli were grown at 28 °C in the dark and subcultured 

on fresh MSC3-media every 14 days. 

 

Microprojectile bombardment of embryogenic callus 

After eight to ten weeks, actively growing embryogenic calli were selected for transformation 

and subcultured on fresh MSC3-media 4 days prior to bombardment. The embryogenic calli 

were placed on MSC3Osm (MSC3 containing 0.2 M Sorbitol and 0.2 Mannitol (Merck)) 

medium for 4 hours prior to bombardment. EtOH (96%) sterilized 0.7 µm diameter tungsten 

Grade M17 (Bio-Rad) was used for bombardment. The final mixture of tungsten-plasmid 

preparation for bombardment contained 38.5 µg/µl tungsten, 0.08 µg/µl plasmid DNA, 963 

mM CaCl2 and 15 mM N-[3-aminopropyl]-1,4-butanediamine (Spermidine). Either 

pAUGdf510 or pHan-UGD together with pEmuKN, a selection plasmid that contains the 

neomycinphosphotransferase (nptII) gene driven by the maize Ubi-1 promoter, was used for 

transformation. The tungsten-plasmid preparation was fired into the calli in a ‘gene gun’ 
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under vacuum using 1200 kPa helium for propulsion. Approximately 4 hours after 

bombardment, the calli were transferred from MSC3Osm to MSC3.   

 

Geneticin selection and regeneration 

Two days after bombardment the calli were transferred to MSC3G50 (MSC3 containing 50 

mg/ml Geneticin (Roche)) selection medium. Approximately eight to 12 weeks following 

bombardment, transformed calli were transferred to regeneration media (MSC) and 

incubated at 28 °C in the light. When plantlets were 3-6 cm high, they were transferred to 

autoclaved potting soil and hardened off. 

 

3.1.3  Selection of transformants  

Identification of transformants by polymerase chain reaction (PCR) 

DNA was extracted from 10-20 mg tissue from either callus or leaves of young putative 

transgenic lines as described57. Young leaf tissue (10-20 mg) was frozen in liquid N2 and 

ground in an Eppendorff tube. Four hundred µL extraction buffer (50 mM Tris-HCl, pH 8.0, 

1% cetyltrimethylammonium bromide (CTAB)(Merck), 0.7 M NaCl, 10 mM EDTA, 0.5% 

polyvinylpirrolidone, 0.1% β-mercaptoethanol (BME, added just before use)) was added to 

the leaf tissue and vortexed for 10 sec. Tubes were then incubated for 60 min at 60 °C. Four 

hundred µL chloroform was added and samples were vortexed and centrifuged (16 000 xg, 5 

min). The aqueous layer was transferred to new Eppendorff tubes containing 1 volume cold 

100% isopropanol and incubated on ice for 15 min. The precipitated nucleic acid was 

centrifuged (16 000 xg, 10 min) and washed in 70% EtOH, dried and resuspended in 20 µL 

TE-buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA) containing 20 µg/mL RNaseA. One µL of 

the DNA sample was used in PCR reactions to identify pAUGdf510; pEmuKN and pHan-

UGD; pEmuKN co-transformed lines, respectively. Primer sets used were UGD Rev7: GCA 

CGG ATC CTT CAC CAT CTT GTC AGA TAC; CaMV-R: AGG GTT TCT TAT ATG CTC 

AAC (±400 bp) and 35S-F; Kpn.Hind-UGD Rev (370 bp) for pAUGdf510 and pHan-UGD 

respectively, and RNPTII-F: ACC ATG GTT GAA CAA GAT GGA TTG; RNTPII-R: CTC AGA 

AGA ACT CGT CAA GAA GG (799 bp) for pEmuKN. Amplification conditions for pAUGdf510 

and pEmuKN were as follows: 94 °C for 5 min; 35x (94 °C for 30 s, 58 °C for 40 s, 72 °C for 

30 s); 72 °C for 5 min. Amplification conditions for pHan-UGD were: 94 °C for 5 min; 35x (94 

°C for 30 s, 50 °C for 30 s, 72 °C for 30 s); 72 °C for 5 min.   

 

3.1.4  Plant material 

Sugarcane plants (transgenic and wild type) were grown under greenhouse conditions (≈16 

h light period, ≈25 °C). Wild type (WT) plants were regenerated from callus which was 

passed through tissue culture processes similar to those of the transgenic lines without 
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transformation. Three ripe stalks of each selected transgenic line were harvested. To limit 

metabolite losses, plant tissues (young leaf, YL; leaf roll, LR; internode 3+4 pooled, I3+4; 

internode 9+10 pooled (I9+10)) were cut into liquid N2 directly after harvest and ground to a 

fine powder in an IKA® A11 basic (IKA) analytical mill. All tissues were stored in 50 mL 

screw cap tubes (Corning) at -80 °C.    

 

3.1.5  DNA extraction and Southern blot analysis 

Young leaves were collected from greenhouse grown mature sugarcane plants for screening 

of transgenic lines. Genomic DNA was extracted according to Dellaporta et al. (1983)58. Six 

grams of fresh plant material was cut into small pieces directly into liquid N2 and ground in an 

IKA® A11 basic (IKA) analytical mill. The fine powder was transferred to a 50 mL sterile tube 

(Corning) containing 35 mL extraction buffer (100 mM Tris-HCl, pH 8.0, 0.5 M NaCl, 50 mM 

EDTA, 0.2% (v/v) BME) and shaken vigorously. 3.5 mL 20% (m/v) SDS was added and 

samples were incubated at 70°C for 60 min. Seven mL of 5 M potassium acetate was added 

and mixed and incubated on ice for 20 min. The cell debris was centrifuged (12 000 xg, 10 

min, 4°C) and the supernatant added to 1 volume of ice-cold isopropanol and mixed. The 

precipitated nucleic acid was spooled off with a sterile Pasteur pipette hook and transferred 

to a 1.5 mL Eppendorff tube washed with 70% EtOH and dried. Nucleic acids were next 

resuspended in 1 mL 1 M NaCl containing 10 µg/mL RNaseA and incubated overnight at 

37°C while rotating the tube. DNA was extracted with 1 volume chloroform: isoamyl alcohol 

(24:1, (v/v)) and precipitated with 1 volume of isopropanol (-20 °C, 60 min). DNA was 

resuspended and stored in 500 µL TE-buffer. 

Ten µg DNA was digested overnight with 40 U HindIII/BamHI (Promega) and 

electrophoresed on 0.8% agarose gels, denatured and transferred to positively charged 

nylon membranes (Roche; Jhb, South Africa) by upward capillary transfer using 10 x SSC as 

buffer (20X SSC is 3 M NaCl, 0.3 M Na3C6H5O7, pH 6.8). Following transfer, DNA was 

crosslinked for 2.5 min at 120 mJ/cm using a UV-crosslinker (Ultra-Lūm Ultraviolet 

Crosslinker, Scientific Associates). Membranes were prehybridized for 2 h and hybridized for 

4 h at 50 °C in RapidHyb™ (AEC-Amersham) in a revolving hybridization oven (Hybridization 

Oven/Shaker, AEC-Amersham). Single stranded α-32P-dCTP (AEC-Amersham) labelled 

DNA probes were generated by asymmetric PCR59 and size fractionated on Sephadex G-50 

spin columns. UGD Fw4 was used to amplify the sense strand of the amplification product of 

UGD Fw4 and Rev5 (1760 bp). Amplification conditions were: 94 °C for 2 min; 40x (94 °C for 

30 s, 58 °C for 30 s, 72 °C for 30 s); 72 °C for 5 min. Probes were denatured before being 

added to the hybridization buffer. Following hybridization, blots were rinsed once in 2 x SSC, 

0.1% SDS for 20 min at room temperature, once in 2 x SSC, 0.1% SDS for 20 min at 50°C 

and once in 0.5 x SSC, 0.1% SDS for 20 min at 50°C and exposed to Super Resolution 
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Phosphor Screens for 12 h and visualized using a phosphor-imager and analysis software 

(Packard Cyclone, Packard Instrument Company Inc, USA). 

 

3.1.6  RNA extraction and (Northern) blot analysis 

Young leaf, leafroll, internode 3 and 4 as well as internode 9 and 10 tissue samples were 

collected from greenhouse grown mature plants for screening of transgenic lines. Total RNA 

was extracted from all tissues according to a modified method of Bugos et al. (1995)60. 

Tissues were cut into small pieces directly into liquid N2 and ground in an IKA® A11 basic 

analytical mill. The fine powder was transferred to a 50 ml sterile tubes (Corning) in liquid N2 

and stored at -80 °C. Two grams frozen tissue was added to 10 mL homogenisation buffer 

(0.1 M Tris, pH 8.0, 1 mM EDTA, 0.1 M NaCl, 1% SDS (w/v), 0.1% BME) and 10 mL 

phenol:chloroform (1:1) in a 50 mL tube and vortexed. Sodium acetate, pH 5.2, was added to 

a final concentration of 0.1 M and the emulsion was incubated on ice for 15 min followed by 

centrifugation at 4 °C (12 000 xg, 15 min). The aqueous phase was transferred to a new tube 

containing 3 volumes 100% EtOH and 0.1 volume 3 M sodium acetate, pH 5.2, mixed and 

precipitated at -20 °C for two hours. The precipitated nucleic acid was centrifuged at 4 °C (12 

000 xg, 15 min) and washed in 75% EtOH. Samples were resuspended in water and treated 

with Deoxyribonuclease I (RNase-free, Fermentas) according to the manufacturer’s 

instructions followed by precipitation in 2.5 volumes 100% EtOH, 0.1 volume sodium acetate. 

Ten µg RNA was denatured in one volume formamide at 55 °C for 10 min before being 

loaded on 1.2% agarose gels. Following separation, the RNA was transferred to positively 

charged nylon membranes (Roche) by upward capillary transfer using 10 x SSC as buffer 

(20X SSC is 3 M NaCl, 0.3 M Na3C6H5O7, pH 6.8). RNA was crosslinked for 2.5 min at 120 

mJ/cm using a UV-crosslinker.  Membranes were prehybridized for 2 h and hybridized for 4 h 

at 65 °C in RapidHyb™. Single stranded α-32P-dCTP labelled DNA probes were generated by 

asymmetric PCR as described (Southern Blots, above). UGD Rev3: CTC TTC TGG TAG 

TCG TTG ATC was used to amplify the non-sense strand of the amplification product of 

UGD Fw4; UGD Rev3. Amplification conditions were: 94 °C for 2 min; 40x (94 °C for 30 s, 54 

°C for 30 s, 72 °C for 30 s); 72 °C for 5 min.  Membranes were rinsed twice in 2 x SSC, 0.1% 

SDS at 25 °C and washed once for 20min in 1 x SSC, 0.1% SDS at 65 °C and exposed to 

Super Resolution Phosphor Screens for 12 h and visualized using a phosphor-imager and 

analysis software (Packard Cyclone, Packard Instrument Company Inc, USA). 

 

3.1.7  Protein extraction and Western blot analysis 

Western blots were performed according to Sambrook et al. (1989)53. Crude, desalted 

protein was denatured in 1 volume loading buffer (250 mM Tris, pH 6.8, 8 M urea, 40% 

glycerol) and 1 volume LB 2 (0.1 M DTT, 8% SDS, 0.01% Bromophenol Blue) at room 
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temperature before separation on SDS-PAGE using a 4% stacking gel and 12% separating 

gel. The Laemmli buffer system was used for all SDS-PAGE gels61. Gels were transferred to 

Hybond-C (AEC-Amersham) nitrocellulose membranes in transfer buffer (48 mM Tris, 39 mM 

glycine, 20% methanol and 0.0375% SDS) using a Trans-Blot SD semi-dry electrophoretic 

transfer cell (Bio-Rad). 

Membranes were blocked in 1% BSA (Bovine Albumin (Fraction V), Roche) in TBST-buffer 

(20 mM Tris, pH 7.6, 137 mM NaCl, 0.1% Tween-20) for 2 h. The primary antibody (1:2000, 

polyclonal Rabbit anti- sugarcane UGD; UGD purified in this laboratory48) was added to the 

above buffer, incubated for 2 h and rinsed in TBST-buffer. The secondary antibody (1:7000, 

alkaline phosphatase conjugated mouse anti-Rabbit-IgG, Sigma) in TBST-buffer containing 

3% low fat milk powder was then added and incubated for 1 h. The membrane was rinsed 

with TBST-buffer, washed twice in TBST-buffer containing 0.05% SDS and twice in TBST-

buffer. Blots were developed using NBT/BCIP Ready-to-use tablets (Roche) as colour 

substrate. 

 

3.2  METABOLIC CHARACTERIZATION 

 

3.2.1  Assay for UDP-Glucose dehydrogenase activity 

Crude protein extracts were made from YL, LR and young maturing internodal tissue (I3+4). 

The protein extraction buffer consisted of 50 mM Tris-HCl, pH 8.0, 2 mM EDTA and 5 mM 

dithiotreitol (DTT, Roche) which was added just prior to use. Extracts were centrifuged for 2 

min (16 000 xg, 4 °C). Supernatants were transferred to new tubes and again centrifuged for 

2 min (16 000 xg, 4 °C). Supernatants were transferred to Sephadex G-50 (Sigma-Aldrich) 

spin columns pre-equilibrated in extraction buffer and centrifuged for 2 min (2000 rpm, 4 °C).  

Desalted protein was added to assay buffer which consisted of 100 mM Tris HCl, pH 8.4 and 

5 mM UDP-Glc (Roche) according to Kärkönen et al. 200549. Reactions were started by 

adding NAD+ (Roche) to a final concentration of 2 mM. The reduction of NAD+ was monitored 

at 340 nm in a PowerWaveX spectrophotometer (Bio-Tek Instruments). 

 

3.2.2  Sucrose and hexose extraction and enzymatic quantification 

Frozen tissue (100 ± 10 mg) was added to 2 mL 80% EtOH, 100 mM potassium phosphate 

buffer pH 7. Suspensions were incubated at 70 °C for 1 h and centrifuged for 5 min (3500 xg, 

RT). Residues were re-extracted four times in 80% EtOH. Supernatants were pooled, 

vacuum dried overnight in a SpeedVac Plus SC11A (Savant), resuspended in 1 mL MilliQ 

H2O (MilliPore) and either used directly for analysis or stored at -20 °C. 

Enzymatic quantification was performed according to the method of Bergmeyer and Bernt62. 

For hexose analysis, 5 µL extract was added to 45 µL MilliQ H2O and 200 µL buffer A (150 
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mM Tris pH 8.1, 5 mM MgCl2, 1 mM ATP (Roche), 1 mM NADP (Roche)) in a 96 well 

microtitre plate (Nunc). Following an initial reading at A340, 0.5 U of Hexokinase/Glucose 6-

phosphate dehydrogenase (HK/G6-PDH) was added and incubated for 30 min at RT. A 

second reading was taken to calculate the free glucose content. Phosphoglucose isomerase 

(PGI, 0.7 U) was added and incubated for 30 min at RT. A third reading was taken to 

calculate the free fructose content present in the extract. To quantify the sucrose present in 

the sample, 5 µL of a 10x dilution of the extract was incubated with 40 µL buffer B (100 mM 

citrate pH 5.0, 5 mM MgCl2) and 10 U β-Fructosidase (Roche) for 15 min at RT. Following 

the addition of 200 µL buffer A and 0.5 U HK/G6-PDH, samples were incubated and read as 

before. All spectrophotometric readings were performed using a PowerWaveX plate reader.  

 

3.2.3  Assay for sucrose phosphate synthase activity 

SPS activity was determined in source (YL) and sink (I9+10) tissues. SPS activity was 

assayed according to Baxter et al. (2003) under maximal (Vmax) and limiting (Vlim) reaction 

conditions63. The protein extraction buffer consisted of 50 mM HEPES-KOH, pH 7.5, 10 mM 

MgCl2, 1 mM EDTA, 10 mM DTT and Complete® (Roche) protease inhibitor cocktail tablets 

which was added just prior to use according to the manufacturers instructions. Extracts were 

centrifuged for 2 min (16 000 g, 4 °C). Supernatants were transferred to Sephadex G-25 

(Sigma-Aldrich) spin columns pre-equilibrated in extraction buffer and centrifuged for 2 min 

(2000 rpm, 4 °C).  Crude protein sample (100 µL) was incubated for 30 min at 35 °C with 100 

µL assay buffer (50 mM HEPES-KOH, pH 7.5, 20 mM KCl and 4 mM MgCl2) containing (a) 

Vmax assay; 12 mM UDP-Glc, 10 mM Fruc 6-P and 40 mM Glc-6-P, or (b) Vlim assay; 4 mM 

UDP-Glc, 2 mM Fru-6-P, 8 mM Glc-6-P and 5 mM KH2PO4. The reaction was heated to 95 

°C for 5 min to stop the reaction and was then centrifuged at 16 000 g for 5 min. 100 µL 

supernatant was added to 100 µL of 5 M KOH and incubated at 95 °C for 10 min to destroy 

unreacted hexose phosphates. After adding 200 µL anthrone reagent (0.14% anthrone in 

14.6 M H2SO4) to 50 µL sample, absorbance was measured at 620 nm in a PowerWaveX 

spectrophotometer. The absolute amount of sucrose was calculated from a standard curve 

with 0-200 nmol sucrose.  

 

3.2.4  Assay for sucrose synthase in the sucrose breakdown direction 

To determine the rate of sucrose breakdown in source (YL) and sink (I9+10) tissues, the 

catalytic activity of SuSy was assayed according to Schäfer et al (2004)84. The protein 

extraction buffer consisted of 100 mM Tris-HCl, pH 7.0, 10 mM MgCl2, 1 mM EDTA, 10 mM 

DTT and Complete® (Roche) protease inhibitor cocktail tablets which was added just prior to 

use according to the manufacturers instructions. Extracts were centrifuged for 2 min (16 000 

g, 4 °C). Supernatants were transferred to Sephadex G-25 (Sigma-Aldrich) spin columns 
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pre-equilibrated in extraction buffer and centrifuged for 2 min (2000 rpm, 4 °C). Crude protein 

samples (20 µL) were incubated with assay buffer consisting of 100 mM Tris-HCl (pH 7.0), 2 

mM MgCl2, 400 mM sucrose, 2 mM NAD+, 1 mM sodium pyrophosphate, 4 U/mL 

Phosphoglucomutase and 4 U/mL Glucose-6-phosphate dehydrogenase. Reactions were 

started by the addition of uridine diphosphate (UDP) to 2 mM. NADH production was 

monitored at 340 nm. 

 
3.2.5  Assay for sucrose synthase in the sucrose synthesis direction 

To determine the rate of sucrose synthesis in source (YL) and sink (I9+10) tissues, the 

synthetic activity of SuSy was assayed according to Schäfer et al (2004)84. The protein 

extraction buffer consisted of 100 mM Tris-HCl, pH 7.0, 10 mM MgCl2, 1 mM EDTA, 10 mM 

DTT and Complete® (Roche) protease inhibitor cocktail tablets. Extracts were centrifuged 

and desalted as before (3.2.1, p22). Crude protein samples (20 µL) were incubated with 

assay buffer consisting of 100 mM Tris-HCl (pH 7.5), 15 mM MgCl2, 20 mM UDP-glucose, 

0.2 mM NADH, 1 mM  phosphoenolpyruvate (PEP, Sigma-Aldrich) and 0.45 U/mL Pyruvate 

kinase/Lactate dehydrogenase (PK/LDH). Reactions were started by the addition of fructose 

to 10 mM. NAD+ production was monitored at 340 nm. 

 
3.2.6  Assay for UDP-glucose pyrophosphorylase activity 

UDP-glucose pyrophosphorylase (UGPase) activity was determined in source (YL) and sink 

(I9+10) tissues. Crude protein was extracted and desalted as before (3.2.1, p22). Crude 

protein samples (20 µL) were incubated in assay buffer consisting of 100 mM Tris-HCl (pH 

7.0), 2 mM MgCl2, 10 mM UDP-glucose, 2 mM NAD+, 4 U/mL Phosphoglucomutase, 4 U/mL 

Glucose-6-phosphate dehydrogenase. Reactions were started by the addition of sodium 

pyrophosphate to 1 mM. NADH production was monitored at 340 nm. 

 

3.2.7  UDP-Glucose and hexose phosphate determination 

Metabolite extractions were performed according to Stitt et al. (1989)64. Frozen tissue (500 ± 

10 mg) was added to 800 µL ice cold 10% HClO4, vortexed and incubated at 4 °C for 20 min 

with mixing. Insoluble material was centrifuged for 2 min (13 000 rpm, at 4 °C). Following 

removal of the supernatant, the pellet was washed and incubated for 15 min with 250 µL 2% 

HClO4, centrifuged for 2 min (13 000 rpm, 4 °C), and pooled with the first supernatant. 

Samples were neutralized (pH 7.0-7.5) by the addition of 5 M KOH, 1 M triethanolamine and 

incubated at 4 °C for 15 min. The insoluble KClO4 was centrifuged for 2 min (13 000 rpm, 

RT).  
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Supelclean 100 mg ENVI-Carb SPE (Supelco) columns was activated with 3 mL 80% 

acetonitrile, 0.1% trifluoroacetic acid (TFA) (Fluka), followed by 3 mL H2O according to 

Räbina et al. (2001)65. The supernatants were applied to the columns and the flow-through 

containing the hexose phosphates collected. The columns were washed with 3 mL H2O, 3 

mL 25% acetonitrile and 3 mL 50 mM triethylammonium acetate (TEAA) buffer (Fluka) pH 

7.0. The NDP-sugars were eluted with 3 mL 25% acetonitrile (Merck), 50 mM TEAA buffer, 

pH 7.0. All sugar-phosphate and nucleotide sugar samples were frozen in liquid N2 and 

vacuum dried in a SpeedVac Plus SC11A. 

 

Hexose phosphates were resuspended in 250 µL MilliQ H2O. 50 µL sample was added to 

175 µL reaction buffer containing 100 mM Tris, pH 8.0, 5 mM MgCl2 and 0.25 mM NADP in a 

96-well plate. The background was read at A340. 0.7 U G6-PDH, 0.7 U PGI and 0.2 U 

phosphoglucomutase (PGM) in 5 mM Tris-HCl, pH 8.0 were added sequentially, incubated 

for 15 min at RT and read at A340 to determine Glc-6-P, Fru-6-P and Glc-1-P respectively. 

 

Nucleotide sugar containing samples were resuspended in 250 µL MilliQ H2O. 50 µL sample 

was added to 200 µL of reaction buffer containing 100 mM Tris, pH 8.0, 5 mM MgCl2 and 

0.25 mM NADP. Background readings were taken as before. 0.2 U UDP-glucose 

pyrophosphorylase (Sigma-Aldrich) and sodium pyrophosphate to a final concentration of 15 

mM were added and samples were incubated for 20 min at RT and read as before. 

 

3.2.8  Protein determination 

Protein concentration was determined according to Bradford66 using a commercially 

available protein assay solution (Bio-Rad). Bovine Albumin (Fraction V) (Roche) was used 

as protein standard.  

 

 

3.3  CELL WALL ANALYSIS 

 

3.3.1  Preparation of alcohol insoluble residue (AIR) 

Frozen tissue (100 ± 10 mg) was added to 100% EtOH to give a final concentration of 80% 

(v/v) and incubated at 70 °C for 20 min. Samples were centrifuged (4000 xg) and 

supernatants were discarded. The extraction process was repeated four times using 80% 

EtOH. AIR samples were washed in acetone and vacuum dried in a SpeedVac Plus SC11A 

(Savant) and stored in air-tight screw top tubes in a desiccator under vacuum. 
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3.3.2  Hydrolysis of alcohol insoluble residue 

Seaman hydrolysis 

Destarched AIR (10 ± 1 mg) was weighed into a screw top tube and 200 µL 12 M H2SO4 was 

added and vortexed. Samples were incubated at 4 °C for 2 hr. Subsequently, the H2SO4 was 

diluted to 2 M and incubated at 80 °C for 2 hr to hydrolyze cell wall polysaccharides. 

 

Trifluoroacetic acid hydrolysis 

Destarched AIR (1 ± 0.1 mg) was weighed into screw-top tubes and 0.5 mL 2 M TFA (Fluka) 

added. The non-cellulosic polysaccharide was hydrolyzed12 at 121 °C for 1 hr. Following 

hydrolysis, tubes were cooled to RT and the TFA resistant cellulosic residue was centrifuged 

(5000 rpm, 2 min). The supernatants were transferred to new tubes. The cellulosic residue 

was washed twice with 0.5 mL MilliQ H2O. Supernatants were pooled and vacuum dried in a 

SpeedVac overnight to remove TFA. To remove residual TFA, hydrolyzed monosaccharides 

were dissolved in 1 mL methanol, and vacuum dried. This process was repeated three times. 

Hydrolyzed monosaccharides were stored under vacuum over self-indicating silica-gel. 

 

3.3.3  Determination of cell wall total uronic acids 

This is an adaptation of the methods of Blumenkrantz and Asboe-Hansen (1973) and van 

den Hoogen et al. (1998)67,68. Forty µL hydrolyzed AIR sample containing 0.5-8 µg uronic 

acid was added to a microtiter plate (Nunc) well. Two hundred µL 96% H2SO4 containing 120 

mM sodium tetraborate (Fluka) was added. Samples were incubated for 30 min at RT and 

the background was read at A530. 40 µL m-hydroxydiphenyl reagent (100 µL m-

hydroxydiphenyl in DMSO (SAARChem), 100 mg/mL, mixed with 4.9 mL 80% (v/v) H2SO4; 

made freshly just before use), was added and mixed. Samples were then incubated at RT for 

15 min and read in a PowerWaveX spectrophotometer (Bio-Tek Instruments) at 530 nm. 

Galacturonic acid (Fluka) was used as standard (0 to 8 µg). 

 

3.3.4  Assay for myo-inositol oxygenase activity 

MIOX activity was assayed according to Reddy et al. (1981)69 with minor modifications. 

Crude protein was extracted in extraction buffer containing 100 mM Tris-HCl, pH 7.6, 2 mM 

L-cysteine, 1 mM ammonium ferrous sulfate hexahydrate (Fluka), 1 mM EDTA and 1% 

polyvinylpolypyrrolidone (PVPP). Following extraction, samples were centrifuged for 5 min 

(16 000 xg, 4 °C). Supernatants were transferred to new tubes and 1 volume 50% (v/v) 

polyethylene glycol 6000 (PEG) was added and samples were incubated on ice for 30 min 

and centrifuged for 10 min (10 000 xg, 4 °C). Supernatants were discarded and pellets 

resuspended in 100 mM potassium phosphate buffer, pH 7.2, containing 2 mM L-cysteine 

and 1 mM ammonium ferrous sulfate hexahydrate.   
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MIOX activity was assayed using 50 µg crude desalted protein in 100 mM potassium 

phosphate buffer, pH 7.2, containing 2 mM L-cysteine and 1 mM ferrous ammonium sulfate 

hexahydrate. Reactions were started by the addition of myo-inositol to a final concentration 

of 60 mM. Reactions were incubated for 30 min at 30 °C. Glucuronic acid formed was 

determined by the 3-phenylphenol method68. D-GlcA was used as standard. 

 

3.3.5  Expression analysis of UGD and MIOX 

Recently published sequences for MIOX from mouse, rat, human70 and Arabidopsis30 was 

used as a starting point to obtain a consensus sequence constructed from EST’s from The 

Institute for Genomic Research Saccharum officinarum Gene Index (TIGR-SoGI, 

http://www.tigr.org/tigr-scripts/tgi/T_index.cgi?species=s_officinarum) and the National 

Center for Biotechnology Information (NCBI) databases using the Basic Local Alignment 

Search Tool (BLAST, http://www.ncbi.nlm.nih.gov/BLAST/) algorithm71. The TIGR-SoGI was 

also used to screen different tissue EST libraries for differential expression patterns of UGD 

for comparison with the expression of MIOX in the same libraries. 

 

3.3.6  Semi-quantitative expression analysis of UGD and MIOX using RT-PCR 

Five microgram total RNA extracted from young internodal tissue of sugarcane lines with 

reduced UGD activity was reverse transcribed using SuperScript III (Invitrogen) and used for 

semi-quantitative reverse transcription (RT)-PCR. MIOX cDNA transcripts were amplified 

using Miox1 Fw: GAT CCA TCG GGG AAG AAG AT; Miox1 Rev: GTT GAA CTT GGG GTT 

GTG GT (597 bp) designed from TC51845 obtained from TIGR-SoGI. UGD transcripts were 

amplified using UGD Fw4; UGD Rev3 (900 bp). α-Actin was used as a housekeeping control 

to allow for comparison of the amount of template. Primers used for α-actin were actin Fw1: 

TCA CAC TTT CTA CAA TGA GCT; actin Rev1: GAT ATC CAC ATC ACA CTT CAT (600 

bp). Amplification conditions for MIOX and actin were as follows: 94 °C for 2 min; 35x (94 °C 

for 30 s, 55 °C for 30 s, 72 °C for 30 s); 72 °C for 5 min. Conditions for UGD was: 94 °C for 2 

min; 30x (94 °C for 30 s, 58 °C for 40 s, 72 °C for 30 s); 72 °C for 5 min. Each primer pair 

amplified a single product. Products were separated on 1% agarose gels and stained with 

ethidium bromide. Digitized images were analysed using AlphaEaseFC™ Software Version 

4.0.1 (Alpha Innotech Corporation). 

 

3.3.7  Destarching of alcohol insoluble residue and assay for starch content 

To remove starch, alcohol insoluble residues were resuspended in MilliQ water and 

incubated at 100 °C for 60 minutes. Samples were left to cool to room temperature and 4 U 

amyloglucosidase (AMG) from Aspergillus niger (Fluka) in 5 mM sodium acetate buffer, pH 

4.8, was added. Samples were incubated overnight at 55 °C. Following incubation, samples 
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were centrifuged (4000 xg) and washed twice in 70% EtOH. All supernatants were pooled 

and vacuum dried and resuspended in MilliQ water for starch determination. AIR was 

washed twice in 100% acetone. Destarched AIR was dried under vacuum and stored in air-

tight screw top tubes in a desiccator under vacuum. Background glucose and glucose 

released by AMG was determined according to the method of Bergmeyer and Bernt (1974)62. 

 

3.3.8  Enzymatic quantification of cell wall glucose content  

To determine the non-cellulosic glucose content of young leaves, ten mg of dry AIR (starch 

removed by AMG, 3.3.7, p27-8) was incubated in 2 M TFA at 100 °C for 5 hr. The cellulosic 

residue was centrifuged, washed twice with 70% EtOH and dried. All supernatants were 

pooled, vacuum dried and resuspended in MilliQ water. 

 

The remaining cellulosic residues were hydrolyzed by Seamann hydrolysis (3.3.2, p26), 

neutralized with NaOH, vacuum dried and resuspended in MilliQ water. The glucose content 

of cellulose was determined as before (3.2.2, p 22-3)62. 

 

3.3.9  Monosaccharide derivatisation and analysis by GC-MS 

All TFA hydrolyzed samples and standards were derivatised according to the method of 

Roessner et al. (2000)72. Eighty µL methoxyamine HCl in pyridine (20 mg/mL) was added to 

dry samples, vortexed thoroughly and incubated at 30 °C for 90 min with intermittent 

vortexing. Next, 20 µL of an alkane mixture (n-dodecane, n-pentadecane, n-nonadecane, n-

docosane, n-octacosane, n-dotriacontane and n-hexatriacontane) used for retention time 

standards followed by 140 µL N-Methyl-N-(Trimethylsilyl)–triflouroacetamide (MSTFA) was 

added and incubated at 37 °C for 30 min. Samples were kept at RT for two hours before 

injection. 

 

Sample volumes of one µL were injected with a splitless injection. The flow rate was 1 mL 

min-1. The system consisted of an AS 2000 autosampler, trace GC and a quadropole trace 

MS (ThermoFinnigan). Gas chromatography was performed on a 30 m Rtx®-5Sil MS column 

(RESTEK) with Integra Guard with an inner diameter of 0.25 mm and 0.25 mm film 

thickness. Injection temperature was 230 °C and the ion source temperature was set at 200 

°C. The temperature program was as follows: 5 min at 70 °C, followed by a 1 °C min-1 oven 

ramp to 76 °C and a second ramp of 6 °C min-1 to 350 °C. The system was then temperature 

equilibrated at 70 °C before injection of the next sample. Mass spectra were recorded at two 

scans per sec with a scanning range of 50-600 m/z. Chromatograms and mass spectra were 

evaluated using the Xcalibur™ software bundle version 1.2 (Finnigan Corporation 1998-

2000). 
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3.3.10  Statistical analysis 

The Student’s t-test (two-sample, independent-groups) was used to test for significant 

differences between group means. The square of the Pearson product moment correlation 

coefficient (coefficient of determination) was calculated to indicate correlation between 

characteristics. STATISTICA (StatSoft, Inc. (2004)(data analysis software system), version 

7. www.statsoft.com) was used throughout for all statistical analysis. Statistical significance 

was defined as P ≤ 0.05.  
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4.  RESULTS 
 

In the present study, antisense and RNAi based techniques were used to silence UDP-

Glucose dehydrogenase and decrease its activity in planta. The aim was to manipulate the 

plant cell wall synthesis and in particular the UDP-Glc pool in sugarcane. We hypothesize 

that a decrease in carbon flux through UGD would increase the UDP-Glc ‘pool’, thereby 

increasing the substrate for sucrose synthesis and subsequently the accumulation of 

sucrose. In the following sections we discuss the results of transformation vector 

construction, sugarcane transformation and molecular-, metabolic- and cell wall 

characterization of transgenic plants with repressed UGD activity. 

 

NOTE: for comparative purposes, all transgenic lines were numbered according to their 

percentage of wild-type UGD activity in leaf roll tissue. The following convention was used 

for naming purposes throughout the text: an A for pAUGdf510 or an H for pHan-UGD 

followed by the % leaf roll UGD activity. Lines which were not included in further detailed 

analysis lack the A or H. Only antisense lines were characterized in detail due to limited 

amounts of tissue available in pHan-UGD transformed lines which were not fully mature at 

the time of tissue sampling.  

 
 
4.1  VECTORS, TRANSFORMATION AND MOLECULAR CHARACTERIZATION 

 

4.1.1  Transformation vector construction 

In order to reduce the expression of UGD, a 1.65 kb EcoRI fragment was isolated from a full-

length UGD cDNA and cloned in the reverse orientation downstream to the CaMV 35S and 

ubiquitin promoters into the EcoRI site of pUBI510. The resulting ‘antisense’ UGD plasmid 

(designated pAUGdf510, Figure 4.1 A, p.31) was verified by restriction analysis and 

directional PCR (data not shown) to confirm insert orientation. As an alternative approach to 

reduce UGD expression in sugarcane, a 384 bp fragment amplified from UGD cDNA was 

cloned in both sense (XhoI/KpnI fragment) and antisense (HindIII/XbaI fragment) orientation 

downstream to the CaMV 35S promoter and on either side of the Pdk-intron into 

pHANNIBAL. The resulting intron-spliced hairpin RNA vector (designated pHan-UGD, Figure 

4.1 B, p.31) was verified as before (data not shown).  
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Figure 4.1: Schematic representation of a section of pAUGdf510 and pHan-UGD. 

The pAUGdf510 vector (7051 bp) is based on pUBI 510 and contains a 1647 bp insert of the full 

length UGD gene in the antisense orientation. pAUGdf510 is constitutively expressed by the 

cauliflower mosaic virus (CaMV) 35S (35S-p) and maize ubiquitin (UBI-p) promoter and contains the 

CaMV termination sequence (CaMV-t). (B) The pHan-UGD vector (6342 bp) is based on pHANNIBAL 

and contains two 384 bp inserts of the UGD gene in both the sense and antisense orientation 

separated by the Pdk-intron (pdk-i). pHan-UGD is constitutively expressed by the CaMV 35S promoter 

and contains the octopine synthase termination sequence (OCS-t). Bacterial ampicillin resistance was 

used for selection. 

 

4.1.2  Confirmation of putative transgenic lines 

To select positively transformed clones, transformants were screened by means of PCR for 

the presence of both the silencing vector and pEmuKN. For each transformation 15 

independent regenerated plants that were resistant to geneticin were transferred to soil and 

hardened off under standard conditions. Nine and four lines were generated which were 

transformed with the pAUGdf510 (Figure 4.2, p.32) and pHan-UGD (Figure 4.3, p.32) 

respectively.   

 

Four antisense lines were selected for further analysis based on UGD protein levels as 

indicated by Western blot analysis (4.1.5, p.35). Line 1.4 (transformed with pHan-UGD) was 

not selected for analysis because of lack of growth of plants in this line. Only basic metabolic 
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and expression analysis was attempted in pHan-UGD transformed lines due to very little 

tissue being available for analysis. 

 

 

 

Figure 4.2: PCR amplification of the transgene in putative pAUGdf510 transformed 

sugarcane lines. DNA was extracted from young leaf tissue. 150 ng DNA was used for 

amplification.  Primer pairs used were (A) 35S-F and UGD Rev7 for the pAUGdf510 plasmid, and (B) 

R-NPT II F and R-NPT II R for the co-transformed pEmuKN. MW, molecular weight marker, C+ 

positive control (pAUGdf510), C- negative control. 

 

 

 

Figure 4.3: PCR amplification of the transgene in putative pHan-UGD transformed 

sugarcane lines. DNA was extracted from 10 mg calli. Primer pairs used were (A) 35S-F and 

Kpn.Hind-UGD Rev to detect pHan-UGD, and (B) R-NPT II F and R-NPT II R for the co-transformed 

pEmuKN. MW, molecular weight marker, C+ positive control (pHan-UGD), C- negative control. 

 

 

4.1.3  DNA (Southern) blot analysis 

To confirm that transgenic lines were products of different transformation events, Southern 

analysis was used to confirm the presence of the transgene (pAUGdf510) in putative 

transformed sugarcane lines (Figure 4.4, p.33). 32P-labelled ssDNA probes were used to 

detect endogenous UGD genes as well as the transgene. Figure 4.4 shows distinct banding 

patterns in selected transgenic lines and confirms that the lines used in subsequent analyses 

are unique. 
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Figure 4.4: Southern analysis of transgenic sugarcane lines transformed with 

pAUGdf510. 10 µg DNA from leaves of selected transformed lines was digested with 

BamHI/HindIII, electrophoresed and transferred to a positively charged nylon membrane. The blot was 

probed with a labelled ssDNA UGD Fw4; UGD Rev5 probe.   

 
 
4.1.4  Northern blot analysis 

To select plants with reduced UGD transcript level, selected transformants were screened by 

Northern analysis. Amongst plants transformed with pAUGdf510 several lines were identified 

with reduced UGD mRNA of which four lines were selected for more detailed metabolic and 

structural characterization (Figure 4.5, p.34). The strongest transcription level inhibition was 

found in line A-34 although inhibition in all lines was similar.  

 

Similarly, young leaves of selected transgenic lines transformed with pHan-UGD were 

screened for UGD transcript level by Northern analysis (Figure 4.6, p.34). All of the four lines 

that were successfully regenerated showed reduced UGD transcript levels. Line 1.4 had the 

lowest UGD mRNA levels but was not included in subsequent determinations because of 

lack of growth in this line. 

 

 

+C- CONTROL12.312.22.31.1 +C- CONTROL12.312.22.31.1A-90         A-71          A-32        A-34
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Figure 4.5: Northern analysis of transgenic sugarcane lines transformed with 
pAUGdf510. A. Normalized UGD transcript level in leaf roll. B. Northern analysis on 10 µg total 
RNA showing the repression of endogenous UGD transcription in selected confirmed transgenic lines 
and wild type (WT) sugarcane. C.  RNA gel stained with ethidium bromide. 
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Figure 4.6: Northern analysis of transgenic sugarcane lines transformed with pHan-
UGD. A. Normalized UGD transcript level in young leaf. B. Northern analysis on 10 µg total RNA 
showing the repression of endogenous UGD transcription in selected confirmed transgenic lines and 
wild type (WT) sugarcane. C.  RNA gel stained with ethidium bromide. 
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4.1.5  Western analysis of UGD-Glucose dehydrogenase activity in sugarcane with 

repressed UGD expression 

Western blots were used to investigate the effect of antisense repression of UGD expression 

on the level of UGD protein in the leaf roll of transgenic sugarcane. Western blot analysis 

was carried out using a polyclonal antiserum raised against UGD from sugarcane. In 

agreement with the reduction shown in the transcript levels of UGD in pAUGdf510 transgenic 

lines, UGD protein amount was reduced in selected lines as compared to control plants. 

Among the transgenic lines, A-34 had the lowest level of UGD protein, followed by A-32.   

 
 

 
                                         A-90         A-71       A-32       A-34          WT 
 
Figure 4.7: Western analysis of sugarcane transformed with pAUGdf510.  

Leaf rolls of transgenic sugarcane were harvested and crude protein were extracted and desalted. 

Five µg crude protein was loaded per lane and electrophoresed on a 12% SDS-PAGE gel, transferred 

to nylon membranes and probed with a polyclonal rabbit anti-sugarcane UGD antibody. 

 
 

4.2  METABOLIC CHARACTERIZATION 

Although the effects of UGD mutants lacking UGD activity and of overexpression of UGD on 

cell wall synthesis have been studied in maize33,49 and Alfalfa50 respectively, the effect of 

repression of UGD expression on sucrose synthesis have not been considered. In the 

present investigation UGD activity was chosen for down regulation to determine the effect of 

a decrease in the flux of UDP-Glc toward the hemicellulose and pectic polymer component of 

the cell wall might have on the accumulation of sucrose in sugarcane. The effect of antisense 

repression on UGD activity and related metabolism is considered in the present chapter with 

substantiation of results by data from intron-spliced hairpin RNA repressed UGD activity in 

sugarcane. 

 

4.2.1  UDP-Glucose dehydrogenase activity in sugarcane transformed with antisense 

and ihpRNA constructs 

To investigate the role of UGD (Section 1.4.3.3, p.13-5) in sugarcane carbon metabolism, its 

expression was decreased by either antisense repression or by using an RNA interference 

approach. The antisense vector (pAUGdf510) contained a full length UGD cDNA in 

antisense orientation behind the cauliflower mosaic virus 35S (CaMV 35S) and maize 

ubiquitin promoters. The RNAi vector (pHan-UGD, based on pHANNIBAL, CSIRO) 
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contained a UGD fragment in antisense and sense orientation on either side of a spliceable 

intron sequence and was driven by the CaMV 35S promoter. 

 

Desalted, crude protein extracts from plants showing antisense repressed UGD expression 

and wild-type control plants were assayed for UGD activity (Figure 4.8). UGD activity in line 

A-34 decreased by 83.5 ± 2.5% in internode 3+4 and 65.8 ± 13.1% in the leaf roll which 

represented the most significant silencing (P = 0.005 and P = 0.006 respectively) of UGD 

activity in antisense-lines. The UGD activity in leaf roll tissue of plants transformed with 

pAUGdf510 was also correlated with the UGD protein level as indicated by Western blot 

analysis (Section 4.1.5, p.34 and Figure 4.7, p.35). 
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Figure 4.8: Repression of UDP-Glucose dehydrogenase activity in sugarcane 

transformed with pAUGdf510. Crude desalted protein extracts from the leaf roll and internode 3-

4 (Int 3+4) were used to determine UGD activity. Values calculated as mean ± SEM. A-90 – A-34, n = 

3; WT, n = 5. * P ≤ 0.05; ** P ≤ 0.01 

 

Sugarcane lines transformed with pHan-UGD showed similar decreases in UGD activity 

(Figure 4.9, p.37) as was found in the antisense lines. Silencing of UGD activity in leaf roll 
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tissue was significant (P ≤ 0.05) across all lines. Although silencing was evident in young 

internodal tissue (internode 3-5), only line H-27 showed a significant decrease (P = 0.01) in 

UGD activity.   
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Figure 4.9: Repression of UDP-Glucose dehydrogenase activity in sugarcane 

transformed with pHan-UGD. Crude desalted protein extracts from the leaf roll and internode 

3+4 (Int 3+4) were used to determine UGD activity. Values calculated as mean ± SEM. H-10 - WT, n = 

3. * P ≤ 0.05; ** P ≤ 0.01 

 

4.2.2  Sucrose and hexose accumulation in sugarcane with repressed UGD 

expression and enzyme activity 

To analyze the effect of repressed UGD expression and decreased enzyme activity on the 

accumulation of sucrose, glucose and fructose in transgenic sugarcane, metabolites were 

extracted and determined using an enzymatic method (Figure 4.10, Table 4.1 and 4.2, p.38-

9). Line A-34 showed a significant increase in sucrose storage in young (LR, P = 0.02), 

maturing (Int 3+4, P = 0.01) and mature internodes (Int 9+10, P = 0.05). Lines A-90 and A-71 

also showed significantly increased sucrose accumulation in mature internodes. When 

calculated on average percentage sucrose (in LR, Int 3+4 and Int 9+10) per fresh weight 

basis, line A-34 had 17.9 ± 4.3% (n = 3) sucrose per gram fresh weight compared to 10.0 ± 

2.3% (n = 6) of control plants. 

 



 - 38 -

The increased sucrose concentration was highly correlated with decreased UGD activity 

(Section 4.3.1, p35-7) in internode 3+4 of line A-32 and A-34 with line A-32 showing the 

highest correlation (r2 = 0.99, P = 0.003) between activity and sucrose content.    
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Figure 4.10: Sucrose accumulation in sugarcane with decreased UGD activity. 

Sucrose concentration was determined in immature (young leaves, YL and leaf roll, LR), maturing 

(internode 3+4, I3+4) and mature internodal tissues (internode 9+10, I9+10). Values calculated as 

mean ± SEM. A-90 – A-34, n = 3; WT, n = 5. * P ≤ 0.1; ** P ≤ 0.01 

 

Table 4.1: Glucose accumulation in tissues of sugarcane with antisense repressed 

UGD expression and decreased activity. Values calculated as mean ± SEM and expressed as 

µM/g FW. A-90 – A-34, n = 3; WT, n = 5. * P < 0.05; ** P < 0.01 

 

 Young leaf Leaf roll Internode 3+4 Internode 9+10 

   

A-90 6.7 ± 1.0 15.0 ± 3.2 4.6 ± 0.5 0.3 ± 0.1 

A-71 7.0 ± 2.2 12.9 ± 2.0 20.4 ± 3.5** 2.1 ± 1.1** 

A-32 7.1 ± 3.2 17.1 ± 5.1 5.3 ± 1.6 0.4 ± 0.1 

A-34 3.4 ± 0.5* 17.1 ± 1.0** 6.4 ± 2.3 1.0 ± 0.3** 

WT 3.6 ± 0.7 11.4 ± 1.7 4.3 ± 1.6 0.4 ± 0.1 
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Glucose (Table 4.1, p39) and fructose (Table 4.2, p.39) concentrations decreased as plant 

tissue matured indicating that more hexose moieties were being stored as sucrose. 

Significant differences in glucose and fructose levels are thought to be the result of increased 

phloem transport after sucrose breakdown in the source tissues. 

 

Table 4.2: Fructose accumulation in tissues of sugarcane with repressed UGD 

expression and decreased activity. Values calculated as mean ± SEM and expressed as µM/g 

FW. A-90 – A-34, n = 3; WT, n = 5. * P < 0.05; ** P < 0.01 

 

 Young leaf Leaf roll Internode 3+4 Internode 9+10 

   

A-90 0.7 ± 0.1 0.8 ± 0.3 1.0 ± 0.1 1.2 ± 0.1 

A-71 0.8 ± 0.1 0.7 ± 0.1* 0.9 ± 0.0 1.4 ± 0.2 

A-32 0.8 ± 0.2 0.6 ± 0.1* 1.2 ± 0.1 1.0 ± 0.0 

A-34 1.1 ± 0.4 1.0 ± 0.1** 1.1 ± 0.2 0.9 ± 0.1 

WT 0.8 ±0.1 0.2 ± 0.0 1.8 ± 0.4 1.2 ± 0.1 

 

 

4.2.3  SPS activity in young leaves and mature internodes of sugarcane with 

antisense repressed UGD expression 

Sucrose phosphate synthase (Section 1.4.2, p.10-1) is the main sucrose synthesizing 

enzyme in sugarcane8 and is its activity is strongly correlated with plant growth-rate and has 

been shown to increase photosynthesis in tobacco63. SPS activity was assayed in both 

source (Table 4.3, p40) and sink (Table 4.4, p.40) tissues to determine the effect of 

repressed UGD expression on the activity of sucrose synthesizing enzymes. SPS was 

assayed under Vlim and Vmax conditions to calculate the maximal activity and percentage 

activation (Vlim/Vmax) in transgenic plants. Statistically significant increases in the activation 

state of SPS were seen in both source and sink tissues of lines A-90, A-71 and A-32. 
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Table 4.3: SPS activity in young leaves under limiting (Vlim) and maximal (Vmax) 

conditions. Activity expressed in nmol/mg protein/min. Mean ± SEM, n = 3, * P < 0.1; ** P < 0.01. 

 
 Vmax Vlim Vlim/Vmax 

    

A-90 134.5 ± 24.4 131.3 ± 1.4k 97.6 * 

A-71 163.9 ± 17.3 152.9 ± 36.4j 93.3 * 

A-32 116.7 ± 7.5 116.4 ± 13.3 * 99.8 * 

A-34 172.0 ± 19.8 164.1 ± 20.6m 95.4 m  

WT 123.4 ± 40.1 96.1 ± 30.1m 77.8 M 

 

Table 4.4: SPS activity in mature internodes under limiting (Vlim) and maximal (Vmax) 

conditions. Activity expressed in µmol/mg protein/min. Mean ± SEM, n = 3, * P < 0.1; ** P < 0.01. 

 
 Vmax Vlim Vlim/Vmax 

    

A-90 2.2 ± 0.1 * 2.2 ± 0.3 99.7 * 

A-71 6.4 ± 1.0 * 5.6 ± 0.5 ** 87.0 * 

A-32 4.4 ± 0.2 ** 3.9 ± 0.5 ** 86.9 * 

A-34 6.1 ± 1.0 ** 5.4 ± 0.8 ** 87.9 

WT 2.8 ± 0.2 2.3 ± 0.3 80.3 

 

In accordance with previous research on SPS activity in sugarcane conducted in this lab8, an 

increase in activity was seen with maturation of the stem in transgenic cane. An activation of 

93-99% and 87-99% was shown in the young leaves and mature internodes respectively. 

Significant increases were also seen in SPS activity under both maximal and limiting 

conditions in mature tissues. The results indicate a general upregulation of SPS catalyzed 

sucrose synthesis in transgenic plants. 

 

4.2.4  Sucrose synthase activity in the sucrose synthesis and breakdown direction 

Sucrose synthase (Section 1.4.2, p.10-1) is the second enzyme involved in sucrose 

synthesis in plants. Although SuSy has lower activity than SPS, it is an important accessory 

sucrose synthesizing enzyme in young immature tissue and also provides UDP-Glc to 

cellulose synthase through its sucrose breakdown activity in young actively growing tissue. 

SuSy activity was assayed to determine whether a decrease of the UDP-Glc flux through 
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UGD had a downstream up-regulating effect on SuSy activity as indicated in SPS (4.2.3, 

p.39-40). 

 

Table 4.5: SuSy activity in young and mature internodes in the breakdown and 

synthesis direction. Activity expressed in nmol/mg protein/min. Mean ± SEM, n = 3. 

 

 Sucrose Breakdown Sucrose Synthesis 

 Young leaf Int 9+10 Young leaf Int 9+10 

     

A-90 17.6 ± 8.9 9.5 ± 3.5 1.2 ± 0.5 19.2 ± 3.6 

A-71 26.5 ± 9.0 5.0 ± 0.4 0.6 ± 0.2 23.0 ± 1.1 

A-32 11.6 ± 8.3 5.9 ± 0.3 1.3 ± 0.1 22.5 ± 2.2 

A-34 19.9 ± 0.8 5.5 ± 1.4 0.4 ± 0.1 20.0 ± 2.9 

WT 10.8 ± 4.8 6.7 ± 0.8 0.7 ± 0.1 21.7 ± 0.7 

 

SuSy activity (Table 4.5) in the sucrose breakdown direction tended to be higher in immature 

leaf tissue but increases over WT plants did not reach significance. This increase in sucrose 

cleavage activity may be due to a compensation taking place to assist with the breakdown of 

the higher sucrose levels in the source tissues of transgenic plants which have to enter the 

phloem for transport to the sink tissues. The increase in the breakdown activity of SuSy may 

also be to provide UDP-Glc to the growing cell wall. SuSy activity was not increased in the 

sucrose breakdown direction in mature tissue, or in the synthesis direction in immature or 

mature tissue.  

 

4.2.5  Assay for UDP-glucose pyrophosphorylase activity 

UDP-glucose pyrophosphorylase (Section 1.4, p.7-9) reversibly converts UDP-Glc to Glc-1-

P. UGPase activity (Figure 4.11, p42) was assayed to determine if the decreased flux of 

UDP-Glc through UGD in transgenic plants caused an increase in the activity of UGPase in 

the Glc-1-P synthesis direction due to a larger UDP-Glc ‘pool’. UGPase activity was 

significantly (P < 0.05) increased in young tissues of transgenic lines A-90, A-71 and A-34 

and also in mature tissue of lines A-32 (P < 0.01) and A-34 (P < 0.05). This possibly point 

towards a redirection of carbon flow away from hemicellulose and pectic polymer synthesis 

from UGD end-products. 
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Figure 4.11: UDP-Glucose pyrophosphorylase activity in sugarcane with decreased 

UGD activity. Values calculated as mean ± SEM. n = 3. * P ≤ 0.05; ** P ≤ 0.01. 

 

4.2.6  UDP-Glucose and hexose phosphates in sugarcane with repressed UGD 

expression 

UDP-Glc (Section 1.3-4, p.7-9) levels were quantified (Table 4.6, p43) in sugarcane with 

antisense repressed UGD activity to determine if any changes in the UDP-Glc ‘pool’ could be 

detected. UDP-Glc levels were similar in maturing internodes (internode 3+4). Although 

UDP-Glc in leaf roll was not determined in all transgenic lines, a significant increase (P = 

0.04) was shown in line A-34 which also showed strong correlation with decreased UGD 

activity (r2 = 0.78) and accumulated the highest levels of sucrose in all internodes.  

 

The metabolites of the hexose phosphate pool were quantified (Table 4.7, p43) to determine 

if the silencing of UGD and subsequent increases in SPS activation, sucrose accumulation 

and UGPase activity had any down-stream effect on hexose phosphate metabolism. Glc-6-P 

was increased in internode 3+4 of transgenic cane and significantly increased in line A-90 (P 

= 0.007) and A-32 (P = 0.001).  
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Table 4.6: Hexose phosphates and UDP-Glucose in leaf roll of sugarcane with 

repressed UGD expression and decreased activity. Values calculated as mean ± SEM. A-

90 – A-34, n = 3; WT, n = 5. * P ≤ 0.1; ** P ≤ 0.01. Nd = not determined. 

 

 Glucose-6-P 
(nmol/g FW) 

Glucose-1-P 
(nmol/g FW) 

Fructose-6-P 
(nmol/g FW) 

UDP-D-Glucose 
(pmol/g FW) 

     

A-90 (LR) 0.3 ± 0.01 0.01 ± 0.01 0.05 ± 0.01 * 6.0 ± 1.7 

A-71 (LR) Nd Nd Nd Nd 

A-32 (LR) Nd Nd Nd Nd 

A-34 (LR) 0.2 ± 0.05 * 0.01 ± 0.003 0.06 ± 0.02 9.8 ± 1.9 * 

WT (LR) 0.3 ± 0.04 0.02 ± 0.004 0.09 ± 0.01 3.1 ± 1.2 

 

 

Table 4.7: Hexose phosphates and UDP-Glucose in young internodes of sugarcane 

with repressed UGD expression and decreased activity. Values calculated as mean ± 

SEM. n = 3. * P ≤ 0.1; ** P ≤ 0.01. 

 

 Glucose-6-P 
(nmol/g FW) 

Glucose-1-P 
(nmol/g FW) 

Fructose-6-P 
(nmol/g FW) 

UDP-D-Glucose 
(pmol/g FW) 

     

A-90 (I3+4) 4.2 ± 0.5 * 1.8 ± 0.7 2.1 ± 0.7 6.9 ± 3.9 

A-71 (I3+4) 3.6 ± 0.3 * 0.7 ± 0.04 1.1 ± 0.1 14.2 * 

A-32 (I3+4) 4.9 ± 0.5 ** 1.0 ± 0.4 1.8 ± 0.1 10.6 ± 3.0 

A-34 (I3+4) 2.7 ± 0.2 0.4 ± 0.02 0.8 ± 0.04 4.0 ± 2.0 

WT (I3+4) 2.5 ± 0.6 1.1 ± 0.7 1.4 ± 0.5 5.4 ± 1.7 

 

 
 
4.3.  CELL WALL ANALYSIS 

 

The present project focused on increasing the sucrose accumulation in sugarcane through 

manipulation of UGD which catalyzes the flux generating reaction providing UDP-GlcA for 

synthesis of matrix polysaccharides. The cell wall was characterized because of the potential 

negative effect that silencing of the main pathway for pectin and hemicellulose precursors 

could have on the structural support of the plant. 
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4.3.1  Total uronic acid content of cell walls in sugarcane with antisense repressed 

UGD activity 

To determine the effect that silencing of UGD had on the cell wall matrix (Section 1.4.3, p.11-

15), alcohol insoluble residues were hydrolyzed and the total uronic component was 

determined in young, maturing and mature tissues (Figure 4.12). Significant increases in 

total uronic acids were noted in most of the tissues examined. The increases in uronic acids 

led to a more in-depth investigation of the cell wall composition and characterization of myo-

inositol oxygenase expression and activity. 
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Figure 4.12: Total uronic acid content in cell walls of sugarcane with antisense 

repressed UGD activity. Values calculated as mean ± SEM. A-90 – A-34, n = 3; WT (wild type), n 

= 5; ** P ≤ 0.01. 

 
4.3.2  Total glucose content of cell walls in sugarcane with antisense repressed UGD 

activity 

All of the glucose contained in the cell wall (cellulose, callose and glucans of the cell wall 

matrix) originates from UDP-Glc. Altered enzyme activities were shown for enzymes 

surrounding the UDP-Glc ‘pool’ in transgenic plants and the glucose content of the cell wall 

(Figure 4.13, 4.14, p.45) was quantified to determine the effect of UGD silencing and the 

resultant decrease in activity on the structural component of the cell wall. Cell walls were 

fractionated by enzymatic (AMG) digestion of starch followed by TFA hydrolysis of the non-

cellulosic residue and Seaman hydrolysis of the remaining cellulosic residue.  
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Figure 4.13: Total glucose content of fractionated cell walls in internode 9+10 of 

sugarcane with antisense repressed UGD activity. Values calculated as mean ± SEM. A-90 

– A-34, n = 3; WT (wild type), n = 5; * P ≤ 0.1, ** P ≤ 0.05. 
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Figure 4.14: Total glucose content of fractionated cell walls in young leaves of 

sugarcane with antisense repressed UGD activity. Values calculated as mean ± SEM. A-90 

– A-34, n = 3; WT (wild type), n = 5; * P ≤ 0.1, ** P ≤ 0.05. 

 

The total glucose content of cell walls of mature internodes (Figure 4.13) of transgenic plants 

were increased in all lines and reached statistical significance in line A-90 (P = 0.05), A-71 (P 

= 0.08) and A-34 (P = 0.1). Although statistical significance was not shown, all transgenic 
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lines had increased cellulose fractions. The total glucose content of young leaves (Figure 

4.14, p45) was also increased (significant in lines A-71 (P = 0.08) and A-34 (P = 0.03)) in 

transgenic lines with repressed UGD activity. Young leaves from line A-71 and A-34 had 

significantly increased cellulose (P = 0.09) and line A-34 (P = 0.1) had significantly increased 

starch content. The significant increases seen in the glucose content of cell walls indicates 

that alterations in the UDP-Glc ‘pool’ made more Glc available for the synthesis of cellulose, 

callose and other Glc containing matrix polymers.  

 
4.3.3  Monosaccharide content of cell walls in sugarcane with antisense repressed 

UGD activity 

The monosaccharide content of the cell wall was quantified by GC-MS to determine the 

effect of UGD silencing on the non-cellulosic component (matrix and pectic polymers) of the 

cell wall (Figure 4.15 and 4.16, p47). Pentose:hexose ratios in mature tissues (internode 

9+10) were either unchanged or were slightly increased. Small increases were detected in 

the Xyl:Gal ratios of transgenic lines A-32 and A-34 in mature internodes, but they were not 

significant. Ara:Gal ratios were significantly increased in line A-71 (P = 0.04) as well as line 

A-34 (P = 0.04). Pentose:hexose ratios were unchanged in leaf roll of transgenic lines. The 

results indicate that the transgenic plants were able to compensate for decreased UGD 

activity by upregulation of a secondary pathway (the MIOP) for GlcA synthesis and that the 

MIOP was able to provide all the monomers needed for normal cell wall synthesis. It also 

points toward less regulation of carbon flux through the MIOP than through UGD which is 

reflected in increased pentose:hexose ratios. 
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Figure 4.15: Xylose:galactose ratios of cell wall polysaccharide from pAUGdf510 
transformed plants. Pentose:hexose ratios of non-cellulosic polysaccharides in the leaf roll (LR) 
and mature internodes (I9+10) of wild type (WT) and transgenic sugarcane lines. Values are mean ± 
SEM, A-90 - A-34; n = 3. WT; n = 5. P ≤ 0.05 
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Figure 4.16: Arabinose:galactose ratios of cell wall polysaccharide from pAUGdf510 

transformed plants. Pentose:hexose ratios of non-cellulosic polysaccharides in the leaf roll (LR) 

and mature internodes (I9+10) of wild type (WT) and transgenic sugarcane lines. Values are mean ± 

SEM, A-90 - A-34; n = 3. WT; n = 5. P ≤ 0.05 

 
 
4.3.4  Myo-inositol oxygenase activity in sugarcane with repressed UGD expression 

It is thought that under conditions where the synthesis of UDP-GlcA through UGD is 

inhibited, the MIOP will be able to supply the intermediates needed for cell wall synthesis 

(Section 1.4.3.2, p.12-3). MIOX activity was determined in an attempt to explain the 

increased levels of uronic acids seen in the transgenic plants with decreased UGD activity. 

Leaf roll MIOX activity (Figure 4.17, p48) was significantly increased in transgenic line A-34 

(P = 0.04) and was either similar or slightly increased in the other antisense lines. Leaf roll 

MIOX activity was increased in all transgenic lines transformed with pHan-UGD and was 

significantly increased in line H-29 (P = 0.02).  
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Figure 4.17: Myo-inositol oxygenase activity in the leaf roll of transgenic sugarcane 

lines with repressed UGD activity. Values calculated as mean ± SEM. 1.1-1A-71, n = 3; WT, n 

= 5. * P ≤ 0.05 

 

4.3.5  Semi-quantitative expression analysis of UGD and MIOX using RT-PCR 

One of the possible down-stream effects of silencing UGD is that the alternative pathway for 

synthesis of hemicellulose and pectin precursors, the MIOP, could be up-regulated to supply 

the necessary nucleotide sugars needed for cell wall synthesis. Semi-quantitative RT-PCR 

was used to determine if up-regulation of transcripts coding for the first enzyme in the MIOP, 

namely MIOX did occur in response to the repression of UGD transcription. MIOX and UGD 

expression were compared in sugarcane lines with decreased UGD activity. Results (Figure 

4.18, p49) show an increase in MIOX transcript levels in young leaves. MIOX transcription 

was also increased in leaf roll (data not shown) and young internodal tissue as a result of 

antisense repression of endogenous UGD transcription. 
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Figure 4.18: Semi-quantitative RT-PCR analysis of MIOX expression in immature 

tissues of transgenic sugarcane with reduced UGD activity. A. RT-PCR showing levels of 

MIOX transcripts in leaf roll (LR). B. α-Actin was used as housekeeping gene to normalize the amount 

of template cDNA. Five µg total RNA was reverse transcribed using SuperScript III and each PCR 

reaction contained 0.5 µg cDNA as template. All reactions were as per the manufacturers instructions. 

 

Taken together, the results of the total uronic acid determination (4.3.1, p.44), MIOX activity 

(4.3.4, p.47-8) and expression analysis of MIOX (4.3.5, p.48-9) supports the notion that the 

MIOP can supply all the cell wall intermediates when UGD activity is suppressed and that the 

MIOP is not subject to tight feedback inhibition as seen in UGD activity. 

 

4.3.6  Expression analysis of sugarcane UGD and MIOX 

The TIGR-SoGI was searched for UGD and MIOX EST’s using the BLAST algorithm71. The 

reference UGD sequence was from sequencing data generated in this lab41. A mRNA 

(AY232552 (miox4)73) and three amino acid sequences (NP172904, NP194356, NP200475) 

for Arabidopsis MIOX was obtained from the NCBI nucleotide and protein databases and 

used in BLAST searches of TIGR-SoGI. Seven libraries were identified having transcripts for 

both UGD (TC56897) and MIOX (TC51845). Sugarcane MIOX had 66% homology to the 

Arabidopsis sequence and 88% homology to the corresponding sequence of Zea mays. 

A. 

B. 
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Although four expressed MIOX genes have been identified in Arabidopsis30, the present 

search of TIGR-SoGI did not identify any additional expressed genes in sugarcane. 

Interestingly, three expressed isoforms of UGD was identified (designated UGD1, UGD2 and 

UGD3) with 99%, 96% and 80% sequence homology to the reference sequence.  

 

UGD1 was expressed at the highest level in the apical meristem, developed inflorescence 

and rachis, leaf roll and seedlings inoculated with Gluconacetobacter. In contrast, in low 

temperature stressed calli, etiolated leaves from in vitro grown seedlings and lateral buds, 

UGD and MIOX expression were similar. A similar expression pattern for MIOX and UGD 

was also found in Oryza sativa in a similar experiment.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 - 51 -

5.  DISCUSSION 

 

Because of the central position of UDP-Glc in carbohydrate metabolism6, being situated at 

the branching point of various competing sinks for carbon74, UGD activity was selected to be 

manipulated in order to increase the flux of carbon moieties into sucrose. To analyse the 

effect of decreased UGD on sucrose accumulation in sugarcane, ‘antisense’ technology and 

intron-spliced hairpin RNA vectors were constructed and transformed into embryogenic 

sugarcane calli. Nine sugarcane lines transformed with the antisense vector (pAUGdf510) 

and four lines transformed with the ihpRNA vector (pHan-UGD) were raised. Northern 

analysis and RT-PCR indicated that the transformed lines had decreased UGD transcript 

levels and Southern analysis showed that all lines were unique transformation events. Four 

lines showing antisense repression of UGD transcription were chosen for more detailed 

characterisation. 

 

Although the kinetics46,48, temporal and spatial distribution of expression and enzyme 

activity3 and effects of UGD mutants33 and overexpression50 on cell wall composition in 

higher plants have been studied, the effect of repressed UGD expression on sucrose 

accumulation in plants, to our knowledge, have not been addressed. To determine the effect 

of repressed UGD expression, the enzyme activities and metabolite levels of pathways 

surrounding the UDP-Glc pool was determined. Even though UGD mRNA levels were similar 

in antisense transformed lines, major differences were shown in enzyme activity between 

transgenic lines. These differences in enzyme activity without reflection in mRNA levels are 

explained by experimental data that indicate that transcript levels and enzyme activity does 

not always correlate85 and because the relation between transcript level and protein is 

difficult to predict due to the dependence on how transcript level affects the rate of 

translation, the rate of protein turnover and on the presence or absence of coordinated 

regulation of protein degradation. 

 

Transgenic lines that showed significantly decreased UGD activity had significantly 

increased sucrose accumulation in young, maturing and mature internodes. The increased 

sucrose accumulation in internode 3 and 4 was highly correlated (r2 = 0.99, P = 0.003) with 

decreased UGD activity in two of the lines (A-32 and A-34) that had the lowest UGD activity. 

Glucose and fructose concentrations were high in young immature internodes and 

decreased down the stalk as tissue matured and sucrose storage increased, which is 

consistent with published data22,76.  

 



 - 52 -

In an attempt to address the increased sucrose accumulation in transgenic lines with 

decreased UGD enzyme activity, the activity of SPS and SuSy and activation state of SPS 

was determined in young leaves and in mature storage tissue. It was previously shown that 

SPS activity increased with maturation of the sugarcane stem, that SPS was the major 

enzyme responsible for sucrose synthesis in sugarcane and that its activity was highly 

correlated with sucrose accumulation8. Sucrose synthesis is highly regulated and the control 

occurs mostly at the first step in the pathway which is catalysed by SPS78. In agreement with 

the significant increases seen in sucrose levels, SPS activity in young leaves (source) and 

mature internodes (sink) in the selected transgenic plants showed significant increases in 

both activity and activation (Vlim/Vmax) under both Vmax and Vlim (limiting substrate and 5 mM 

Pi) conditions. In the present study, SPS showed increases in activation of approximately 15-

22% in source tissues and 6-19% in sink tissues over control plants. 

 

SuSy activity accounts for less than a quarter of sucrose production in young and maturing 

sugarcane tissue and is only weakly correlated with sucrose accumulation8. Labelling studies 

by Botha and Black (2000) indicated that sucrose synthesis is exclusively through SPS by 

internode 9. In the present study, SuSy activity was increased in the young leaves of 

transgenic lines in the breakdown direction but did not show any changes in either sucrose 

breakdown in mature tissue or in the synthesis of sucrose in young or mature internodal 

tissues. The unchanged activities were unexpected as it is thought that the high sucrose 

content in the mature internodes favours sucrose breakdown8. The higher SuSy activity in 

the breakdown direction in young tissue could be an indication of a sink for carbon import for 

respiration and biosynthetic activity. 

 

Increasing SPS activity through overexpression was shown to increase sink capacity and 

sucrose unloading in tomato fruit77 and also had a positive effect on the overall assimilation 

and partitioning of carbon into sucrose in tobacco63. In addition, significantly increased SPS 

activity in transgenic tobacco was also accompanied by higher and globally changed 

sucrose:starch ratios suggesting a major shift in carbohydrate metabolism. In the present 

study, the significantly increased accumulation of sucrose seen in sugarcane with repressed 

UGD activity suggests that the sucrose synthesis capacity of transgenic plants and 

specifically SPS activity or activation was in some way enhanced. It is known that the SPS of 

immature internodes of sugarcane shows very little sensitivity to Pi inhibition8 which may be 

attributed to the SPS activity in these tissues coming mostly from an SPS isoform belonging 

to the divergent A* sub-family (also named D family86) of monocot SPSs in family A that lack 

the 14-3-3 protein-binding site (Ser229), the Ser residue involved in osmotic stress activation 

(Ser424) and the ability to be phosphorylated at Ser158 which is involved in light-dark 
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regulation78. Recent work by Castledon and co-workers identified five SPS gene families in 

the Poaceae (grasses)86. Three of these form subfamilies homologous to the previously 

described families A (Family II), B (Family V) and C (Family I) and two form a novel and 

distinctive family D (DIII (Family III) and DIV (Family IV)) which has, to date, only been found in 

the grasses. The SPS proteins of the D family are smaller (108-109 kDa) than those from the 

other families (114-119 kDa) and their genes was shown to be constitutively expressed in 

both the leaves and stem of sugarcane87 by quantitative real-time PCR (RT-qPCR). 

Proportionally, the D family of SPS genes are most highly represented in sugarcane stem 

tissues (up to 50% of total SPS transcripts) and accounts for approximately 20% of the 

relative expression of SPS in leaves. This suggests that at least some of the SPS activity in 

sugarcane is not allosterically controlled by Pi inhibition. It is generally accepted that the 

substrate saturation profiles for both UDP-Glc and Fru-6-P are hyperbolic and that SPS is 

allosterically activated by Glc-6-P23. The levels of Glc-6-P in young internodes of transgenic 

cane was significantly increased (line A-90 P = 0.007, line A-32 P = 0.001) over those in 

control plants and may contribute, to some extent, to the increased activation and 

subsequent increased sucrose accumulation by increasing the affinity of SPS for both 

substrates. The increased SPS activity and subsequent increased sucrose levels have the 

additional effect of stimulating photosynthesis63, thereby providing more Glc-6-P which has a 

further activating effect on SPS. Because of the hyperbolic nature of SPS substrate 

saturation, the increased supply of substrate and activating Glc-6-P by enhanced 

photosynthesis and the lack of effective feedback inhibition, sucrose synthesis seems to be 

controlled by substrate levels available to the enzyme.  

 

Studies on enzymes of the nucleotide interconversion pathway revealed that UGD is often 

the least active enzyme of the pathway leading to the conclusion that UGD might catalyze 

the rate-limiting step in the production of cell wall hemicellulose and pectin precursors from 

UDP-Glc88-90 which, in turn, is also a precursor for cellulose and sucrose synthesis. 

Transgenic sugarcane lines showed significant increases in sucrose accumulation which 

was positively correlated with a decrease in UGD activity. Because of the central position of 

UDP-Glc in the synthesis of various structural polysaccharide components of the cell wall, it 

was important to determine whether a decrease in UGD activity caused down-stream 

changes in cell wall composition which could impact on its structural integrity.   

 

40-50% of dry sugarcane bagasse consists of cellulose and 25-35% of hemicelluloses, a 

heterogeneous polymer mixture composed of Xyl, Ara, Gal, Glc and trace amounts of Man 

and Rham79. The remaining dry weight is made up of approximately 18% lignin, 2-3% ash 

and 0.8% wax. Total uronic acids (GalA and GlcA) were determined in the present study 
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because its uridyl-derivatives are the enzymatic products of UGD and of the subsequent 4-

epimerization of UDP-GlcA by UGE to UDP-GalA. It was hypothesized that a decrease in 

carbon flux through UGD would have a negative effect on the pectin and hemicellulose 

content of transgenic plants. Unexpectedly, uronic acids were significantly increased in 

young and mature tissues of all transgenic plants. The biosynthesis of cell wall 

polysaccharides has received much attention in recent years,2,28,80,81. One of the interesting 

findings is that plants have two separate pathways for the interconversion of the hexosan 

and pentosan precursors needed for hemicellulose and pectin synthesis4,31. The first 

pathway is catalysed by UGD which converts UDP-Glc to UDP-GlcA36. The second pathway, 

known as the myo-inositol oxygenation pathway, is a three enzyme system which converts 

myo-inositol to UDP-GlcA32. Both pathways are temporally and spatially expressed in 

different tissues and at different developmental stages of Arabidopsis3,30 but the relative 

contribution of each pathway to matrix polysaccharide synthesis remains unclear.  

The increases in uronic acid content of transgenic lines led to a more in-depth investigation 

of the effect that the down-regulation of UGD had on the expression and activity of the MIOP. 

A BLAST search using the sequence for Arabidopsis MIOX was conducted on the TIGR 

Saccharum officinarum Gene Index to obtain a corresponding sugarcane sequence. The 

sugarcane sequence had 66% sequence identity to that of Arabidopsis and 88% identity to 

the maize sequence. Sugarcane MIOX EST’s were found in a total of seven EST libraries 

including apical meristem, developed inflorescence and rachis, leaf roll and seedlings 

inoculated with Gluconacetobacter diazotroficans. A ‘electronic northern’ of sugarcane MIOX 

showed expression equal to that of UGD in cold stressed calli and leaves and lower 

expression in leaf roll tissue and lateral buds. This pattern of expression is similar to that 

shown in Arabidopsis30. The fact that UGD EST’s was found in a ratio of approximately 10:1 

to MIOX EST’s indicate that the dominant pathway for cell wall matrix precursor synthesis in 

sugarcane is through UGD in most instances. Semi-quantitative RT-PCR was used to 

determine if the antisense repression of UGD transcript levels had an effect on the levels of 

MIOX transcripts in young tissues of transgenic sugarcane. Normalized results indicate that 

MIOX transcription increased up to five-fold in transgenic lines over that of wild-type plants. 

This is the first comparative analysis of UGD vs. MIOX mRNA levels in plants with repressed 

UGD transcription and results suggests a degree of ‘flexibility’ (or plasticity) in the relative 

contribution of the MIOP and UGD to the pool of cell wall matrix precursors. MIOX activity 

was increased in both leaf roll and maturing internodes of transgenic lines transformed with 

antisense and ihpRNA constructs and followed the same trend as those of the MIOX 

transcripts. The increased MIOX activity (up to two-fold in antisense lines and over four-fold 

in ihpRNA lines) and expression in transgenic lines is an indication that the MIOP was 

upregulated to compensate for the decrease in carbon flux through UGD. 
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The two major metabolic effects of decreasing the carbon flux through UGD can either be a 

flux into cellulose and/or into sucrose. In the present study, total cell wall Glc (cellulosic and 

non-cellulosic) was determined in destarched cell walls of transgenic plants and showed a 

significant increase in both young and mature tissues over wild type controls. On further 

investigation, the increase in total cell wall glucose was shown to be due to a significantly 

increased cellulose content in transgenic plants which was evident in immature and mature 

tissues. An increase in sucrose accumulation and an apparent increased activation of SPS 

was shown in the transgenic plants in the present study. Amor et al. (1995) demonstrated 

that sucrose is the preferred substrate for cellulose synthesis in cotton fibers and it is 

suggested that the availability of sucrose in the cell affects the rate of cellulose synthesis17 

and can subsequently also be correlated with growth rate86. The increase in cell wall Glc in 

the cellulose fraction in the transgenic plants could thus be a direct effect of the increased 

sucrose levels supplying more substrate for pSuSy (which is associated with the cellulose 

synthase complex) at the cell membrane and is further evidence of the redirection of 

carbohydrate flux away from the hemicellulose and pectin fraction and into the synthetic 

pathways for cellulose and sucrose. This redirection of flux is also indicated by the 

significantly increased activity of UGPase in young and mature tissues which was 

determined in the Glc-1-P synthesizing direction. Although it was hypothesized that an 

increased availability of Glc-1-P for conversion to ADP-Glc and subsequent increased 

synthesis of starch could also be possible in transgenic plants, this was not shown in the 

present study.  

 

Recently, Kärkönen and co-workers demonstrated that in maize UGD mutants the ratio of 

cell wall pentose:hexose (Xyl:Gal and Ara:Gal) was reduced by only 10% and suggested that 

either other UGD isozymes or the alternative MIOP was producing the UDP-GlcA necessary 

for matrix polysaccharide synthesis33. To confirm the upregulation of the MIOP in the present 

study, as was indicated by the increased levels of MIOX transcripts and activity and also by 

the increased total uronic acid content of the matrix polysaccharides of transgenic lines, 

pentose:hexose ratios were determined by GC-MS. In contrast to the decreased 

pentose:hexose ratios found in maize mutants, both Xyl:Gal and Ara:Gal ratios were 

increased in the mature internodes of transgenic plants. This confirms that an upregulation of 

the MIOP occurred in transgenic lines to compensate for the decrease in UDP-GlcA provided 

by the antisense repressed UGD activity. It has been suggested that carbon flux through the 

MIOP is regulated by feedback inhibition of UDP-GlcA and also by substrate inhibition by 

GlcA-1-P on glucuronokinase82. Taking the results of the present study into account, it 

seems that in sugarcane at least, the activity of the MIOP may not be under the strict 

regulatory control of its direct or down stream products. The results also indicate a degree of 
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plasticity in the alternate pathways for UDP-GlcA synthesis which have not been shown 

before. 

 
 
6.  SUMMARY, CONCLUSION AND FUTURE WORK 
 
In order to understand and manipulate carbon flux to sucrose one needs to consider not only 

its biosynthetic pathways, but also the competing sinks for carbon in various parts of the 

plant at different stages of development. UDP-Glc is a central metabolite in the synthesis of 

both sucrose and most of the cell wall polysaccharides and manipulation of the flux into 

either of the cell wall components could therefore cause an increase of flux toward one or 

more of the competing sinks. The present study considers the in planta modification of UGD 

activity which catalyzes the rate limiting step in the biosynthesis of the precursors of both 

hemicellulose and pectin, a major competing sink for assimilated carbon. 

 

Sugarcane with antisense repressed UGD activity was produced and characterized. Sucrose 

accumulation was increased in the transgenic lines and was highly correlated with 

decreased UGD activity. The transgenic lines had increased activation of SPS and in 

creased UGPase activity in young and mature tissues suggesting an alteration in carbon flux 

toward sucrose. Because of the importance of a structurally intact cell wall, total cell wall 

uronic acids and Glc were determined. Both uronic acids and Glc were increased, again 

suggesting a redirection of carbon. To determine whether the increase in uronic acids could 

be attributed to upregulation of the MIOP, the expression and activity of the first enzyme of 

this pathway, MIOX, was determined. Both the expression and activity of MIOX was 

upregulated in transgenic lines. The increase in cell wall Glc is thought to be a direct effect of 

higher availability of sucrose to pSuSy which increases the UDP-Glc available to CeS for its 

synthetic activity. It was shown that the increased cell wall Glc was caused by increases in 

Glc contained in the cellulose fraction in transgenic plants. Pentose:hexose ratios were also 

increased in transgenic lines suggesting that cell wall pentoses were still made in adequate 

amounts for normal synthesis of polysaccharides. The higher levels of uronic acids and 

pentoses found in the cell wall suggest that the feedback of the MIOP is not as finely 

modulated as that of UGD. 

 

A simplified hypothetical model for the altered carbon flux in the transgenic sugarcane lines 

is suggested in Figure 6.1, p54. A decrease of carbon flux toward matrix synthesis in plants 

with repressed UGD activity increases the cytosolic UDP-Glc pool, thereby providing 

increased substrate for sucrose synthesis by SPS. The increased sucrose is known to have 

an activating effect on photosynthesis63 which, in turn, increases Glc-6-P which has a further 
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activating effect on SPS. To keep the hexose phosphates in equilibrium, Glc-6-P is 

converted to Fru-6-P and Glc-1-P (and thus to UDP-Glc by UGPase) which provides further 

increased substrate levels for SPS. A known effect of increased sucrose accumulation is an 

increase in cellulose synthesis by CeS. The transgenic lines showed significant increases in 

cellulose. The cell walls of transgenic plants also showed increased uronic acid and pentose 

which is attributed to an upregulation of the MIOP which also uses Glc-6-P as substrate. 

 

 

 

Figure 6.1: Hypothetical model for increased sucrose synthesis in sugarcane with 

repressed UGD activity. 

     

The exact mechanism for the increased sucrose accumulation in transgenic sugarcane has 

not been determined. Future work will centre on the characterization of the mechanism and 

will include GC-MS based metabolite profiling as well as determination of the expression of 

SPS and SPP. The effectiveness and mechanism of UGD repression in increasing sucrose 

accumulation will also be further investigated in sugarcane where all of the expressed UGD 

genes are co-supressed.   

 

The upregulated MIOP will also be investigated in more detail. The second enzyme of the 

MIOP, glucuronokinase, will be cloned or purified from the transgenic sugarcane produced 

for the present study and characterized in a spin-off PhD study. Glucuronate is a precursor of 

L-ascorbic acid83. Another possibility that will be investigated is that L-ascorbic acid could be 
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produced at higher rates in transgenic lines with an upregulated MIOP because of the 

increased availability of GlcA.  
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