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Abstract

Earthquakes and other seismic events are known to have catastrophic effects on
people and property. These large-scale events are almost always preceded by smaller-
scale seismic events called precursors, such as tremors or other vibrations. The use of
precursor data to predict the realization of seismic hazards has been a long-standing
technical problem in different disciplines. For example, blasting or other mining
activities have the potential to induce the collapse of rock surfaces, or the occurrence
of other dangerous seismic events in large volumes of rock. In this study, seismic
data (T4) obtained from a mining concern in South Africa were considered using
a nonlinear time series approach. In particular, the method of surrogate analysis
was used to characterize the deterministic structure in the data, prior to fitting a

predictive model.

The seismic data set (T4) is a set of seismic events for a small volume of rock in a
mine observed over a period of 12 days. The surrogate data were generated to have
structure similar to that of T4 according to some basic seismic laws. In particular,
the surrogate data sets were generated to have the same autocorrelation structure
and amplitude distributions of the underlying data set T4. The surrogate data
derived from T4 allow for the assessment of some basic hypotheses regarding both

types of data sets.

The structure in both types of data (i.e. the relationship between the past behavior
and the future realization of components) was investigated by means of three test
statistics, each of which provided partial information on the structure in the data.
The first is the average mutual information between the reconstructed past and fu-
tures states of T4. The second is a correlation dimension estimate, D, which gives an
indication of the deterministic structure (predictability) of the reconstructed states
of T4. The final statistic is the correlation coefficients which gives an indication
of the predictability of the future behavior of T4 based on the past states of T4.
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The past states of T4 was reconstructed by reducing the dimension of a delay co-
ordinate embedding of the components of T4. The map from past states to future
realization of T4 values was estimated using Long Short-Term Recurrent Memory
(LSTM) neural networks. The application of LSTM Recurrent Neural Networks on

point processes has not been reported before in literature.

Comparison of the stochastic surrogate data with the measured structure in the
T4 data set showed that the structure in T4 differed significantly from that of the
surrogate data sets. However, the relationship between the past states and the
future realization of components for both T4 and surrogate data did not appear to
be deterministic. The application of LSTM in the modeling of T4 shows that the
approach could model point processes at least as well or even better than previously

reported applications on time series data.



Ekserp

Die katastrofiese gevolge van aardbewings of ander seismiese gebeurtenisse op mens
en eiendom is welbekend. Hierdie grootskaalse gebeurtenisse word amper altyd
voorafgegaan deur kleiner-skaalse seismiese gebeurtenisse, soos trillings of ander
vibrasies en die benutting van sulke data om die gerealiseerde seismiese risiko te
voorspel, is 'n ou probleem sonder 'n duidelike oplossing. In hierdie studie was die
seismiese data vanaf mynbedrywighede in Suid-Afrika oorweeg, waar die gevolge van
uitgrawings en ander aktiwiteite die potensiaal het om rotswande te laat verbrokkel
of ander seismiese gebeure te ontketen in groter rotsvolumes. Die studie is gedoen
aan die hand van nie-lineére tydreeksbenaderings. In die besonder is die tegniek
bekend as surrogaatdataanalise gebruik om die deterministiese struktuur in die seis-
misie data stel (T4) te karakteriseer, alvorens a voorspellende model daarop gepas

1s.

Die seismiese datastel, T4, is a waargenome stel seismiese gebeure vir 'n beperkte
rotsvolume in 'n myn, gemeet oor 'n periode van 12 dae. Surrogaatdatastelle was
gegenereer om 'n struktuur soortgelyk aan T4 te hé, in ooreenstemming met 'n paar
basiese seismiese wette. Surrogaatdatastelle is gegenereer om dieselfde autokorre-
lasiestruktuur en amplitudeverdeling te hé as die onderliggende datastel, T4. Met
die surrogaatdata afgelei vanaf T4 kon 'n aantal basiese hipotetese aangaande die

data getoets word.

Die struktuur in albei soorte data (i.e. die verwantskap tussen die pas afgelope
gedrag en die daaropvolgende gedrag ) is bestudeer aan die hand van drie toetssta-
tistieke, waarvan elkeen gedeeltelike inligting verskaf oor die struktuur in die data.
Die eerste is die gemiddelde wedersydse inligting tussen die herwinde afgelope toe-
stande en daaropvolgende herwinde toestande van 'n datastel. Die tweede toetssta-
tistiek is 'n beraming van die korrelasiedimensie, D., wat inligting verskaf oor die

deterministiese struktuur (voorspelbaarheid) van herwinde toestande van 'n datas-

11
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tel. Die laaste statistiek is die korrelasie koeffisiént wat 'n aanduiding gee van die
voorspelbaarheid van daaropvolgende gedrag waargeneem in T4 en die pas afgelope
toestande. Die vloei van toestande in T4 is herwin met 'n dimensievermindering
van die tydverwante komponentverpakking van T4. Die passing van die afbeelding
van die afgelope toestande na die daaropvolgende gedrag van T4 is beraam met lang

kort-termyn terugvoer-neurale netwerke (LKTT).

In die vergelyking tussen die stochastiese surrogaat- en seismiese data, skei die seis-
miese data betekenisvol van die surrogaatdatastelle. Die skeiding dui daarop dat
verdere ondersoeke na die strukture in T4 geregverdig is. Desnieteenstaande wys die
verwantskap tussen die afgelope herwinde toestande en die daaropvolgende gedrag

nie die kenmerkende tekens wat met 'n deterministiese struktuur verwag word nie.

Die toepassing van LSTM Recurrent Neural Networks op puntprosesse is tot op hede
nie gerapporteer in die literatuur nie. Die toepassing van LKTT in die modellering
van T4 wys dat LK'TT puntprosesse kan modelleer. Die toepassing van LKTT op
T4 het trouens beter resultate behaal as wat voorheen vir tydreeksdata gerapporteer

1S.
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Chapter 1

Introduction

Seismic events, for example earth tremors induced by plate tectonic movements in
the earth’s crust or blasting in mining activities, pose catastrophic hazards to people
and property. An accurate assessment of seismic hazards associated with a volume
of rock is therefore an important problem. Since these hazards are realized through
seismic events, the problem entails the location of the volume of rock in which a
seismic event will occur, as well as the timing of the events associated with the
hazard. In the case of mining activities, it must be established when a volume of
rock becomes potentially unsafe, as all the seismic events above a certain threshold
may realize the hazard. To this end, mining operations use seismic monitoring

systems to predict the probability of a seismic event occurring in rock mass.

1.1 Motivation and Problem Statement

Seismic signals are inherently difficult to interpret and there is as yet no universal
approach that can be used to successfully analyse these signals. Hence, research is
being undertaken in different directions in an effort to explore plausible interpreta-
tions of seismic data. In this thesis, the feasibility of using an approach inspired
by nonlinear dynamics theory in the analysis of seismic data was investigated. In
particular, state space reconstruction methods are proposed to quantify predictive

structure underlying the occurrence of seismic events in a seismic event sequence
(Kantz and Schreiber, 1997).

In nonlinear dynamics theory, the evolution of a system is given by a functional

relationship among the rates of change of the underlying variables of the system with
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respect to time, commonly referred to as the state space. However, in most cases,
the governing variables of a system are either unknown or difficult to access. Instead,
what is usually observed are other variables that contain information on the hidden
variables. The state space reconstruction method uses measured observations to
derive a functional relationship governing the evolution of the system. The success of
state space reconstruction methods depends on the levels of uncertainties associated
with the measurement process and how well the observations sample the state space.
To assess how good a reconstruction is, nonlinear statistical quantities including
among other, average mutual information, correlation dimension and predictability

are used.

An implicit assumption in state space reconstruction is that the observations fully
capture the dynamics driving the system. However, if the observations do not fully
reflect the state space of the system, the reconstruction may yield an incorrect state
space. In that case, the only structures observed are the distribution and correlations
in the data. Therefore, incorrect conclusions may be reached on the basis of such
a state space reconstruction. To minimize this risk, the method of surrogate data
analysis is used as a mechanism for testing the presence of non-trivial structures in
the data (Schreiber and Schmitz, 2000).

Surrogate data analysis is a technique for sampling a number of reconstructed state
spaces similar to that of the data set, under the assumption that the worst-case
scenario (that is, only trivial structures are present in data) is true. If the worst-
case scenario is not applicable to the data set its nonlinear statistics would differ
from those of the surrogate set. State space reconstruction can then be used for
further analysis of the observed data. In particular, if a state space driving the
system can be observed, the future behavior of the system can be modelled using

the current observations from the system.

Predicatibility is a natural test of evidence of determinism in observed data. Fit-
ting of reconstructed state space data to a model requires appropriate modelling
tools. In this study long short-term memory recurrent neural networks (LSTM)
are used (Hochreiter and Schmidhuber, 1991). LSTM is an experimental recurrent
neural network which has been shown to give improved performance over other types
of recurrent neural networks. The LSTM network has been demonstrated mostly
on benchmark examples, but little work has been done in extending to real-world

problems, especially those that can exploit the special properties of LSTM.
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In the case of mining-induced seismicity, the observable functional relationships are
still unknown (Helmstetter and Sornette, 2002; Mendecki et al., 1997). Therefore,
it is not yet possible to define a state space using analytical approaches (Gere and
Shan, 1984; Rikitake, 1976). Although an exact state space is yet to be established,
this study approximates the state-space driving mining induced seismicity via re-
construction methods. ISSI (ISSI©), 2003) is a company based in South Africa that
has established itself as a centre of excellence in monitoring and analysis of seismic
activity in mines. It is involved in the development and maintenance of seismic
monitoring systems. Additionally, they also provide analytical software to assist in

the interpretation of signals obtained from the monitoring systems.

Figure 1.1 shows a mind map for visualizing the different steps in the study outlined
above. At the top of Figure 1.1 are the mining-induced seismic data and correspond-
ing surrogate data generated according to some specified hypothesis. In this case,
the hypothesis is that state space reconstruction captures similar structure in the
seismic data as the surrogate data. Both sets are passed through the state space
reconstruction mechanism and are contrasted through the observed flow properties

of the constructed state spaces.

1.2 Layout of the thesis

The rest of the thesis is organized as follows. In Chapter 2, a literature review
of predictive modelling of mining-induced and crust-scale seismicity is presented.
To reconstruct a state space from a seismic system requires the quantification and
separation of the stochastic and structural components in the system. The predic-
tive modeling of seismicity likewise requires separating the two components. The
literature overview provides the motivation of this study and demonstrates its contri-
bution to the field. An attempt is made in establishing a common ground between
the mining-induced seismicity and crust-scale seismicity, since these two areas of
study appear to have developed rather separately. The method of surrogate data
analysis for the testing of hypotheses is discussed and applied to the seismic data in
Chapter 3. Chapter 4 considers the accuracy of the functional map realized by the
state space flow as expressed by a mean estimator based on long short-term memory
(LSTM) recurrent neural networks. The predictability in T4 modelled by LSTM is
compared to the optimal theoretical bound that can be expected from red colored

noise. Finally, Chapter 5 concludes and highlights the contributions of the study.
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Figure 1.1: A mind map of the study. Starting at the top are the mining induced
seismic data in contrast with the point process of the surrogate data. The surrogate data
are autocorrelated and scaled noise, sampled from a continuous distribution.



Chapter 2

Literature Review: Modelling
Mining-Induced Seismicity

2.1 Background

The prediction of significant seismic events produced by the earth’s crust is a major
challenge that has been facing geologists for quite some time (Gere and Shan, 1984;
Rikitake, 1976). Solving the problem for short time scales has so far proved very dif-
ficult. Some researchers have even concluded that the initiation of seismic events is
inherently random and, therefore, unpredictable (Barriere and Turcotte, 1994; Geller
et al., 1997; Hooge et al., 1994). Several authors have noted the appearance of pre-
cursors preceding large crust-generated seismic events over long-time observation
periods (Eneva and Ben-Zion, 1997b; Habermann, 1981; Kanamori, 1981; Rikitake,
1976; Vorobieva, 1999). This has led to speculations of alternative approaches to
the prediction problem for long- to medium-time scales (Sornette, 2000). In the
closely related field of modelling seismic generating processes, some advances have
been made and ballpark estimates of the location, time (Ben-Zion, 1996) and haz-
ard estimates of seismic events have improved (Darpahi-Noubary, 2002). It has
been argued that proper seismic hazard estimation during the development of in-
frastructure requires only knowledge of the statistical nature of earthquakes (Gere
and Shan, 1984). One school of thought further argues that most of the resources
used in the study of earthquakes should be spent on minimizing seismic hazards —
something which is necessary despite the poor predicatibility of earthquakes (Geller
et al., 1997). Minimizing seismic hazard is apparently an easier task than solving

the prediction problem, especially since the prediction problem is intractable.

5



Chapter 2. Literature review 6

Precursors to large mining-induced seismic events and rock burst have been predicted
through turbulence in estimated rock flow parameters (Mendecki et al., 1997). An-
other study reported that estimates of at least five (5) different rock flow parameters
are necessary to give a decisive indicator (Poplawski, 1997). However, establishing
reliable indicators is made difficult by the inconsistency of trends in the precursors
to dangerous seismic events because similar types of flow in observed seismic data
do not always result in the same behavior (Eneva, 1998). These issues, together
with the inherent difficulties of interpreting seismicity, result in a very low accurate
prediction rate. On the other hand, modelling failure process that occur in the
mining environment has proved to be fruitful (McGarr, 2000). These investigations
have resulted in, among other, better establishment of seismic hazards during min-
ing (Cai et al., 2001; Fujii et al., 1997; Mansurov, 2001) as well as improvements in

mine engineering techniques (Pytel, 2003).

Modelling and establishing precursors in mining-related seismicity lies between the
controlled environment of rock-breaking experiments and the problem of large-scale
earthquakes. In mining-induced seismicity similar parameters as in global or crust-
scale seismicity are monitored, and similar interpretation problems are encountered
(Kagan and Vere-Jones, 1996). Consequently, these parallels provide an opportunity
to formulate and test hypotheses for crust-scale seismicity using what has been

learned in mining-induced seismicity (Eneva, 1998; Pollard, 2000).

2.2 The nature of mining-induced seismicity

Characteristics or plausible governing physical laws exhibited by observed mining-
induced seismicity have been proposed in the literature. These physical laws form
the basis of modelling or hypothesis testing regarding the system since they dictate
specific types of correlations between the variables representing the system as well as
invariance of the test statistics. Establishing the cause-effect relationships is an im-
portant subject in the literature and helps to pin-point further areas of investigation
(Helmstetter and Sornette, 2002; Pollard, 2000).

Mining-induced seismicity is typically represented by a point process in combina-
tion with a location parameter. Each point in space and time represents a transition
from elastic strain to inelastic strain, with an observed seismic energy release and

seismic moment. An elastic solid described by a tensor field relating its stress and
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strain fields fails when the stress exceeds a given threshold, with the strain field sub-
sequently describing a relatively large acceleration. In a homogeneous rock sample
a failure is a repeatable experiment. In a heterogeneous sample set-up, the stress-
strain relationship behaves differently from the homogeneous case (Feynman et al.,
1989; Rikitake, 1976).

Although moment and energy estimates associated with a seismic event are inher-
ently inaccurate, they are important for comparing different events in the system.
Locating the source of the event may also be inaccurate as a result of the trian-
gulation process. Non-stationarity invariably occurs in the observed data since the
seismic monitoring system can only detect events above a set minimum lower bound
and, also requires frequent adjustments due to drift in its accuracy. Many approaches
for dealing with the sampling noise problem have been proposed literature (Bodri,
2001; Darpahi-Noubary, 2002).

If a volume of rock has been mined out of a rock mass and the deformed rock mass
can only reach equilibrium through seismic activity, the sum of the seismic moments

(M;) will be proportional to the mined out volume(V,,), i.e

tinf

> M o Vi, (2.1)

to
for the time interval (¢g — tinf), and where p is normalizing constant known as rigidity.

The seismic events are driven by the closure of nearby stopes, which accumulate
energy in proportion to the product of the volume of closure and the overhead
burden stress normal to the plane of the stope. In mining most of the pent-up
energy is used for creating the fault necessary for the seismic moment to occur.

Seismic energy release is considered inefficient (McGarr, 2000; Pytel, 2003).

The apparent volume is an estimate of the volume of rock that was deformed to

generate the occurrence of the seismic moment and is given by

Vi = ( 2.2
NS OE, (2.2)

indexed over the sequence of events. The accumulated apparent volume for the

seismic events generated in a given volume of rock is used to estimate the rate
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of deformation that occurs in that volume due to the smaller seismic events. A
positive correlation exists between co-seismic and a-seismic deformation. As a result,
cumulative apparent volume over a given volume provides insight into the rate and

distribution of co-seismic deformation.

No precursory behavior is demonstrated by the cumulative plots of scalar terms, if
the scaler terms provide only a one-dimensional description (viz. E; and M; used in

this study) of each of the the seismic event sources in the cumulative sum.

A log-log plot of seismic moment versus the energy release demonstrates a linear
relationship. The parameters for the relationship do not have universal values. The
ratio between the energy released and the expected energy release given the event’s

seismic moment, forms part of the precursory behavior of the system.

The time independent size distribution of the mining seismicity follows the Gutenberg-
Richter power law ( Section 3.2.3 ). In the time order event sequence, foreshock and
aftershocks to large events are demonstrated. Both of the sequences obey a power
law and the frequency of aftershocks decays according to Omori’s law with an ex-
ponent slightly larger than unity (see below). Four parameters have been reported
to be independent: the average time between seismic events; the average distance
between consecutive seismic events; the sum of the seismic moments; and the sum

of the seismic energies (Mendecki et al., 1997; Poplawski, 1997).

Mining induced seismic events are localized in both time and space. Space localiza-
tion is characterized by a process of nucleation in the region of the impending event.
Such Clusters of seismic events are characterized by their correlation dimension. A
correlation dimension larger than two is an indicator of a space-filling nucleation
while a correlation dimension of less than one is related to a plane-filling nucleation
(Eneva, 1998).

In the preceding paragraphs, many relationships between parameters and associated
invariant properties have been highlighted. These properties have been used and
applied in the mining environment to monitor seismic hazards. These relationships

have also been included in the body of knowledge representing seismicity in general.
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2.3 The relationship between mining and mining-
related seismicity

Realized seismic hazards are a major risk on mining operations. As mining activ-
ities become more extensive and deeper, the risk of seismic hazards also increases.
Therefore, it is essential to have a better understanding of the underlying seismic
dynamics to minimise risk associated with the hazards (Vieira et al., 2001). In the
following sections a summary of different approaches to estimating current failure
properties and /or projections of future failure properties of the rock mass in mining

operations is given.

The system generating seismic events can be divided into different scales depending
on the type of questions being asked. On a small scale, questions arise about specific
pillars or rock faces. Is this pillar building up stress to create a violent rock burst?
How do pillars fail gracefully? Is a specific rock face preparing for a rock burst? How
is this fault being influenced by the oncoming stope? The next scale of influence
on the seismic hazard lies in the combination of pillars and stopes. What is the
best strategy to mine this pocket of ore? Or, what strategy will lead to successful
rock mass softening and stope closure? On a large scale, the interest is in how the
mining activity interacts with the regional rock mass. Large events could be the
result of horizontal layers separating as the stope is closed (Pytel, 2003). McGarr
(2000) postulate that even though a surrounding rock mass maybe close to failure,
mining activity initially lowers the pore pressure and has a stabilizing effect on
the surrounding rock mass. Continuing excavations concentrate pressure gradients
around the stope, resulting in instabilities. To resolve these and related questions,
different research directions centered around the interpretation of seismic events

observed on the different scales have been discussed in literature.

The knowledge-based approach relates fundamental rock mass and source models to
observations. Subsequently, these source models are related to large scale fundamen-
tal properties of current or future states of failure. Using this approach, Mendecki
et al. (1997) established the rate of deformation in a volume of rock or pressure
gradient. The pressure gradient is inferred through the notion of dilatancy in Han-
son et al. (2002) using computer aided tomography (CAT). McGarr (2000) divided
mining seismicity into events associated with stope closure and events on nearby

faults due to changes in the regional stress-strain relationship.
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In some cases the observed system may lack sufficient information to fit all the de-
grees of freedom in the model. One can then resort to bootstrap statistical methods
that combine the knowledge-based approach with numerical simulation. The para-
metric space used in the model is approximated and discretized for the numerical
simulation, resulting in units of interaction. These units interact with each other
according to some set of laws, creating a conglomerate of units. The behaviour of
the conglomeration of units is investigated as the conglomerate is protruded in some
way. Failure models of this kind have a range of applications (Newman, 1995). For
example, these simulations were used to estimate the statistical difference which a
change in excavation strategy will have on the expected seismicity (Vieira et al.,
2001). Kaiser and Tang (1998) investigated failure properties of a pillar in different
conditions, derived from a fundamentally different approach to modelling failure.
Cai et al. (2001) related the observed seismicity to the extent of failure experienced
by a pillar. Beck and Brady (2002) estimated the expected seismicity to a planned

excavation.

Data mining techniques have also been applied to seismic data to establish prob-
abilistic rules. Also, in combination with other hypotheses, one can test for the
significance of the data set belonging to some class of processes, or for process in-
variance properties exhibited by the data. Eneva (1998) used three parameters to
describe spatial and temporal characteristics of mining-induced seismicity and found
rules to relate trends in the test statistics to the occurrence of large events. An seis-
mic warning signal index was proposed in Poplawski (1997) as a weighted sum of
a combinations of parameters. In Eneva (1994) the spatial distribution of mining-
induced seismicity was distinguished from a multi-fractal system as a mono-fractal
system, characterizing invariant properties of the spatial distribution. Spacial dis-
tribution tendencies can be used in combination with probabilistic rules to estimate

the future behavior of the mining induced seismicity more reliably than without it.

Mining-induced seismicity studies have improved the understanding and manage-
ment of the related hazards through source parameter estimation and extrapolation.
This understanding paid for the installation of a seismic observation system within
10 months of operation(Poplawski, 1997). The essence of the relationship between
the failure process and its related seismicity can be validated by the accuracy of
the simulated failure models evaluated in terms of the simulated seismicity they
produce. Statistics based on seismicity exhibit precursory behaviour providing indi-

cations of the scale and nature of possible determinism and independence exhibited



Chapter 2. Literature review 11

by the system (Eneva, 1998). All these connections demonstrate the importance
and validity of studying the mining-induced seismicity, in particular to gain insight

into the failure processes involved.

2.4 A framework for modelling crust-scale seismic-
ity

Large earthquakes have a recurrence time in the same place. Within such an area,
the smaller the earthquake the more frequently it occurs. Once it has occurred, an
earthquake diffuses into more earthquakes in the surrounding vicinity that decrease
exponentially in size (Helmstetter and Sornette, 2002; Rikitake, 1976). The large
time lapse between successive large earthquakes and the short time span of the
actual event leads to a very small independent probability of occurrence of any
given large event, based on the Poison distribution. Because of the need to pinpoint
the probability of a seismic event’s occurrence location and (possibly) time, the
search is on to establish the dependent probability and finding improvements on the
independent probability (Aki, 1981). Establishing exactly what earthquakes depend
on, given the size or rather precursors to earthquakes, has proved inconclusive.
Some researchers have proposed that the short time scale occurrence of earthquakes
are rather arbitrary and, thus independent of the observed short term precursors
(Abercrombie et al., 1995; Abercrombie and Mori, 1994; Barriere and Turcotte,
1994).

Seismicity is a result of the inhomogeneity of the earth’s crust, which one school
of thought assumes to be on the point of failure, commonly referred to as a state
of self-organized criticality (SOC) (Barriere and Turcotte, 1994). The stress in
the crust is induced by a series of forces exerted in and on the crust. The global
system of plate tectonics, the mid-ocean ridges, subduction zones, and faults form
one part of the exerted forces. Other forces include gravity, the resultant pressure
of liquids trapped in porous material in the crust and outward pressure from the
mantle. Earthquakes are triggered by natural and man-made activities. The natural
inducers include volcanic activity, other earthquakes, tides and atmospheric pressure
changes. Man-made triggers include reservoir water level fluctuations, deep well
liquid-waste disposal, mining and nuclear bomb detonations. It has been observed
that triggers “leading to incremental deviatoric stresses of less than 10 atmospheric

pressure are enough to induce events in the uppermost crust ranging in magnitude
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up to 77 (Sornette, 2000).

Earthquakes are related to each other in apparent size by estimating the amount
of deformation and energy released at the source in terms of the P and S waves
arriving at the measurement station. The deformation and energy observations are
model dependent (Gere and Shan, 1984). Due to the propagation qualities of the
S and P waves, the point processes documented in the seismic catalogs are the
most extensive and accurate observations of seismicity available. The energy release
at the source has been found to be in a log-linear relationship with the source
deformation. A consequence of the log-linear relationship is that the regional and
global rates of seismic energy release can be monitored. These have been found to
exhibit stationary properties, that is, the process is not in a transient state. Another
consequence is that no realistic number of small earthquakes can make up for the
energy released by a large seismic event. An ultimate point of strain has been
estimated for the earth’s crust and the largest recorded events demonstrated to be
near that point (Rikitake, 1976). The type and style of seismic source deformation
has been studied and related to the type and style of source deformation observed
during rock breaking experiments (Abercrombie et al., 1995). On the other side
of the seismicity size spectrum are the smallest events which are a source of non-
stationarity in the observed seismicity. Not all events of the same small size energy
release or deformation are recorded and any modelling based on the seismic source

parameters should take this source of nonstationarity into account(Li et al., 2002).

Theories on the long-term drivers of seismicity have been labeled as stationary.
Some of the largest forces involved have been identified and now generally accepted.
Theories on the medium- to short-term behavior of large seismic events were origi-
nally dominated by observations of fault zones, rock-breaking experiments and the
notions of wet and dry dilatancy. The model for dilatancy was developed using
rock-breaking experiments. In rock-breaking experiments, the failure of the sample
is directly related to the loading history of the sample. Failure in heterogeneous
samples is preceded by a fault preparation process. In general, buckling causes di-
latancy fracturing on the outside of the buckle, and compression on the inside of
the buckle. The specific point of failure is preceded by a nucleation process and a
resultant fractal fault area displayed as well as a series of foreshocks. The notions
of dilatancy contributed to the hypothesised existence of signatures to large seismic

events.
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The idea that earthquakes are preceded by foreshocks was strengthened by obser-
vations that reservoir-induced seismic events and mining-induced events are usually
also preceded by foreshocks. These ideas culminated in theories of stress build-up,
a fault preparing for a large seismic event and, finally failure setting in, resulting
in a large seismic event. This set of theories includes the notion of asperities and
the onset and end of seismic gaps (Habermann, 1981). The body of theories on the
medium- to short-term behaviour of the earthquake-generating process have been
questioned as they fail to predict or even uniquely identify foreshocks. The indepen-
dent empirically observed laws still considered valid explained by these theories are
the characteristic frequency-size power law distribution of events, the inverse power
law in the decreasing rate of aftershocks after a large event and the relationship
between the size of the subsequent event and the log of the radius of area affected
by abnormality (Helmstetter and Sornette, 2002; Sornette, 2000).

The emergence of the concept of self-organized criticality led to development of new
theories on medium- to short-term earthquake behaviour. Firstly, self-organized
criticality implied that the crust is on the verge of failure most of the time and,
secondly, the short-term time predictability of self-organized criticality systems in
general has been questioned. Studies into the nature of the earthquake generating
mechanism are still ongoing. It has been known for some time that observed seismic
catalogs alone do not provide enough information on the medium- and short-term
physical earthquake driving mechanism (Kagan and Vere-Jones, 1996; Kanamori,
1981; Rikitake, 1976). A number of issues relating to the physical mechanism of
earthquake generation are currently under investigation. These include (a) the effect
and distribution of subtle pressure changes in the crust caused by and resulting in
earthquakes (Stein, 2003); (b) the question of why some events grow into large events
and others do not (Abercrombie and Mori, 1994); and, (c) the long-term temporal

evolution of fault regions (Eneva and Ben-Zion, 1997a).

In general, the dependence exhibited by the observed seismic parameters can be used
to understand the underlying physical mechanism responsible for the seismic events
as well as hypothesis testing within a rigorous statistical framework (Habermann,
1981; Kanamori, 1981). Parallel to the study of the physical process, statistical
models and machine learning approaches have been used to establish and quantify
the extent of the dependence exhibited between observed parameters and the loca-
tion in time and space of an event of a given size. In all cases, pre-processing of the

seismic data forms an important part of the rigorous statistical framework because
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of the qualities of the observed seismicity. The interested reader is referred to the
cited works herewith and in Brillinger (1997).

An inference procedure for a rule set used in medium to large-scale seismic event
prediction is discussed in Eneva and Ben-Zion (1997b). Furthermore, two other sim-
ilar historical inference procedures based on the seismicity of a region are discussed,
and some of their weaknesses addressed. To create a rule, sequential portions of seis-
micity are divided into seismicity exhibiting some quality, typically a large event,
and seismicity preceding such behavior, typically precursory behavior. A rule asso-
ciates intervals of precursory seismicity with each other, and counts the empirical
probability of a given quality related to that association. A rule set is then a collec-
tion of these rules, representing the probability of occurrence of the required quality,
given the associated description of seismicity, as expressed in the data (Russell and
Norvig, 1995; Witten and Frank, 1999). The non-parametric approach needs suffi-
cient data to provide adequate error bounds on the rules. The success of the adapted
rule-inferencing method is measured on synthetic seismic catalogs. The identifica-
tion of foreshocks based solely on seismicity, or seismic prediction, is discussed in
Yamashina (1981) and Vorobieva (1999). The probability that a given seismic event
will be followed by a larger seismic event is estimated by a rule set, derived in a

similar fashion to the prediction algorithms for the preceding long-term estimation.

Artificial neural networks (Haykin, 1999) are used in Bodri (2001) to give an estimate
of the long-term time interval to a future large seismic event, given the rate of
preceding smaller events, partitioned into classes of different sizes. We refer to
this class of models as weakly parameteric models. An artificial neural network is
a universal function approximator with an adjustable, but unknown bias-variance
relationship (Fan and Gijbles, 1996). The functional mapping from the independent
to the dependent variables is done with no prior assumptions, being dependent
purely on the optimization of the network of weights. As a general modelling method

this puts similar constraints on the data as a non-parametric approach.

Colombo et al. (1997) used expert systems to estimate a maximum event magnitude
field for a region in Costa Rica. One of the motivations for the use of expert systems
was the large number of parameters being monitored. More parameters than the
seismicity of the region are used by the system. Non-linear regression is used to
model the functional form of the active seismic regions and the related maximum

observed seismic events. This style of regression represents a weakly parametrized
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approach, using a piecewise linear function as a general approximator. Maximum

moment field estimation is revisited below.

In contrast to the empirical prediction rules of the preceding sections, Kagan and
Knopoff (1987) present a well-defined stochastic model that a given event is followed
by a larger event within a relatively small time interval at a pre-described offset
in location. The time interval is small compared to the recurrence time of the
predicted event. The model is derived from a quasi-static fracture growth model
and has only three adjustable parameters. The optimal values for these parameters
are found using a maximum likelihood estimator. The model is used to identify
foreshock sequences in progress and provides a method of quantifying the success
of the model. A rule list expressing the relationship between preceding events and
following event sizes is extracted from the model with the maximum likelihood
estimated parameters. Independent models governed by a few parameters optimized
for a given system and used to express a most likely future behaviour are examples

of parametric modelling, or non-empirical modelling (Kagan and Knopoff, 1987).

In parametric stochastic modelling, a model of failure is defined representing a fam-
ily of distributions exhibiting a set of specified dependencies between the parameters
of the system. The specific distribution representing the parameters most likely ex-
pressed in the seismic track record (for a given region) is used to give the expected
future behavior of the system. The probability of occurrence for a large event, i.e.
a maximum event field, is estimated in a parametric approach in Akkaya and Yiice-
men (2000); Akkaya and Yiicemen (2002). The model uses space, time and location
correlations of the preceding seismicity on a given fault. Darpahi-Noubary (2002)
discuss a parametric estimation of the probability of occurrence for a large event in
a relatively stable seismic region. As an alternative to filtering the smaller portion
of non-stationary seismic events, they use a generalization of the exponential distri-
bution for the occurrence of events in the region known as the family of generalized
Pareto distributions. The generalization demonstrates that the assumption of the

exponential distribution for the arrival of a size class of seismic events is biased.

At the heart of all parametric stochastic modelling is a model of failure applicable to
the seismic scenario in question, with no more than adequate variance and as small a
bias as possible. In Kagan and Vere-Jones (1996) an attempt is made to express the
fundamental structure exhibited by the seismic failure process as measured by its

seismicity. An empirical failure model is presented capable of expressing the a pri-
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ori described structure. Several authors have also proposed dependence structures
and corresponding stochastic models capable of expressing these laws (Abinante
and Knopoff, 1995; Helmstetter and Sornette, 2002; Newman, 1995; Sornette et al.,
1992). With the emergence of self-organized criticality, generalized stochastic mod-
els expressing the self-organized earthquake style laws have also been investigated
(Blanter and Shnirman, 1996; Hooge et al., 1994).

In the search for precursors of large earthquakes, different contributing factors have
been proposed and advocated as theories. Consequently, many models of depen-
dence have been proposed, extended or rejected. Observations from the crustal and
related systems are systemized into different independent components. The statis-
tical significance of the temporal-dependent components have been tested. It has
been found that the crustal system exhibits self-similar dependencies over different
temporal and spacial scales. Some authors have argued that precursory behavior
to large seismic events lies only in the eye of the beholder, and that the study of
minimizing seismic hazard should not put much focus on the short term prediction
problem. On the other hand, rule-based algorithmic approaches have successfully
minimized the error on the expected time interval to the next large seismic event.
Hence, stochastic models are being developed that closely mimic the crustal system’s
observations resulting in better hazard estimation. New statistical procedures are

establishing probabilities of seismic hazards which has not been possible before.

2.5 Modelling of mining-induced seismicity from a
crust-scale perspective

Mining-induced seismicity and crust-scale seismicity correspond in some aspects and
differ in others. Similarities in the system represent scale invariant properties in the
crustal failure process while differences reflect system variant properties and beg

explanations since "the exception tests the rule".

One of the methods of monitoring the failure process is the creation of an expected
maximum event field representing the seismic hazard in a given area. The field can
be expressed in static or dynamic terms. The dynamical description is commonly
known as prediction (adding a time parameter to the hazard term). In both crust-
scale and mining-induced seismicity, the static description of the failure process

plays a dominant role. A static description looks at a description of the current
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state of the rock and associates a hazard term with that state. In the study of
crust-scale seismicity dynamical descriptions of seismic hazard have shown some
success (Bodri, 2001; Sornette, 2000). However, in the mining environment the
subject is not discussed often, nor are seismic rates parameters often used. This
lack of use of seismic rates is interesting since similarities between rock flow and
turbulent flow have been established (Mendecki et al., 1997). In reconstructing the
system responsible for turbulence (from a point process) the role and specification of
time intervals between points have been discussed in literature (Castro and Sauer,
1999; Pavlov et al., 2001; Sauer, 1994). Similarly, the time intervals between large
seismic events can be expressed as the realization of the rate at which that large

event is arriving.

Mining-induced seismic events have been put forward as evidence for the self-organized
criticality of the crust. Shortcomings in the statistical framework for the analysis
of seismicity have been highlighted, e.g. Kagan and Vere-Jones (1996). The sta-
tistical modelling approach to seismicity requires a well-defined framework to make
reliable conclusions. A similar method and test statistics developed for crust-scale
seismicity can be used in mining-induced seismicity. Due to the higher sampling
rate in a smaller area, deterministic test statistics have been used to quantify some
of the temporal qualities of the seismicity (Eneva, 1998). Correspondences and dif-
ferences in the statistical models for failure resulting in seismicity can be tested for
mining-induced seismicity, and deviations explained for a better understanding of

the failure model in general.

2.6 Concluding Remarks

The available literature on seismicity presents many perspectives on mining-induced
seismicity and its relationship to crust-scale seismicity. One group of these is re-
lated to the similarities and differences between the two types of seismicity and the
corresponding systems generating them. Another viewpoint is related to the pre-
dictability of seismicity, whether it is on a mining-induced or on a tectonic-induced

scale.

The similarities reported in the literature between the two types of seismicity are
striking considering their differences. Mining-induced seismicity is generated by a

man-induced, transient system on a very small scale. In contrast, crust-scale seis-



Chapter 2. Literature review 18

micity is generated by a natural, non-transient large scale system. All the major seis-
mic laws developed for crust-scale seismicity have been reported for mining-induced
seismicity as well. Despite the similarities in the apparently different systems, no
generally applicable theory exists that fully explains the nature of the system that

generates these two types of seismicity.

The system responsible for generating seismicity is still under investigation in the
hope of determining the extent to which it can be predicted and why. The self-
organized criticality perspective, if successful, may provide answers to the how and
why. However, seismicity as generated by a self-organized criticality system has not
yet been fully formalized. Prediction studies using empirically gathered information
are also being pursued. There is as yet no single method that offers a full explanation
of seismicity and its behaviour, nor has a concise summary of relevant facts on the

seismic laws been established.



Chapter 3

Analysis of seismic data using the
method of surrogates

In this chapter hypothesis tests conducted on the T4 seismic data set are discussed.
The chapter starts with an exposition of the terms and definitions used in the con-
struction of the hypothesis tests and relates the hypothesis test conducted on T4 to
seismicity in general. The chapter concludes with a discussion and summary of the

results of the surrogate data analysis.

3.1 Introduction

Surrogate data analysis is essentially a statistical hypothesis testing technique for
probing the nature of structure in observed data. A null hypothesis is assumed
for the data and tested against an alternative hypothesis using bootstrap sampling
methods. An appropriate test statistic is sampled from realizations of the data, also
known as surrogate data, generated according to the null hypothesis. If the distri-
bution of test statistic of the surrogate data is significantly different from the same
statistic computed on the observed data the null hypothesis is rejected, otherwise it

is accepted.

For the T4 seismic data, the hypothesis test is constructed by sampling two sets of
test statistics on the real data. The surrogate data are generated according to some
stochastic model (null hypothesis) against which the observed data are tested to
decide if the two sets belong to the same underlying population. The test statistics

are sampled from a state space reconstruction of the system producing each of the
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data sets (Sauer, 1991, 1994).

3.2 Definitions and measurements

3.2.1 Sampling the seismic dataset, T4

We define a seismic event as a sudden fracture in a rock mass described by a set of

seismic source parameters satisfying

-Pi: (LOCZ‘, Mi7 Ez) (31)

observed at specified time stamps ¢;. Here, the seismic event (E, t;) is estimated by
the time of occurrence, its location in the rock Loc;= (x4, Yi, ), the deformation
M;, and energy F; released at that location. The T4 seismic data set is a set of N
estimates of seismic events that occurred in a mine over time for a fixed volume of

rock, that is
T4={(P,t;)ei=1...N} (3.2)

with ¢ indexing the events in order of occurrence. It will be assumed that the
errors made in the measurements of the location, deformation and energy in T4 are

negligible.

A seismic monitoring system consists of a fixed array of instruments that measure
ground velocity and acceleration. These instruments enable so called primary (P)
and secondary (S) waves (Weisstein, 2004) propagated in the surrounding rock mass
to be sampled within a specified frequency range. The derivative and integral with
respect to time of both P and S waves give estimates of the ground acceleration and

movement respectively.

S and P waves originate from seismic events. Sudden rock fracture is associated
with two orthogonal components — friction and compression. The two components
are mostly orthogonal. In the volume of rock, the compression component is mostly
along one of the basis vectors, the friction component along the other two. The P
wave is initiated by the compression component, while the S wave is initiated by the

frictional component. In mines, S waves travel slightly faster than P waves. Using
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this information, combined with knowledge of the locations of the instruments, the

location of an event can be triangulated.

The measured ground movement at a sensor is divided into frequency components.
The ground movement measurements for all the sensors that pick up an event are
stacked on the same frequency components. The S and the P components are sam-
pled on separate frequency components. The power components over the stacked
spectra are adjusted to form a single power estimate for each of the observed frequen-
cies to compensate for random fluctuations in each of the individual measurements.
A Brune model (see below) is then fitted to the re-sampled spectra (Brune, 1990).
The model-dependent seismic source parameters, E; and M;, are derived using the

Brune model.

The Brune model (D(f)) is a function that relates a frequency f to the power
associated with that frequency Q(f). It is parameterized by two parameters: the
corner frequency fy, and the power at the zero frequency €2y. Deriving the seismic
source parameters from the S and P wave power spectra requires an infinite range of
frequencies. The Brune model, fitted to the finite frequencies of the stacked spectra,
can be extended to infinite frequencies under the required adjustment. The Brune
model is defined as
Qo

Q(f) = D(f) = 5 (/o) (3.3)
The seismic moment M; is estimated from the power at the zero frequency of the
stacked spectra by extrapolating the Brune model. The seismic energy FE; is es-
timated from the integral of the Brune model over the infinite spectrum of the
frequencies. The errors in the seismic moment and the seismic energy are derived
from the residuals after the Brune model has been removed from the stacked spec-
tra. The scale of the seismic source parameters E; and M; and their absolute errors
are rather large and, therefore logarithmic transformations are used for numerical
stability.

The sequence of recorded seismic moment changes M; and energy releases F; in the
T4 data set are shown in Figure 3.1 as a function of each event’s time stamp. T4
consists of 3835 events ranging in Richter magnitude from -1.5 to 2.9 sampled over
a period of 288 hours for a mass of rock approximately 0.2150 km? volume. The
distribution of the location of events in the rock mass Loc; of T4 is depicted in

Figure 3.2. In this study the location of an event is not taken into consideration
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The seismic moment and energy of the T4 data set with regard to time.
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Figure 3.1: The T4 data set’s seismic moment ( . ) and seismic energy ( + )
measurements plotted on a logarithmic scale as a function of time.

and the data set is considered to represent a single seismic source. T4 is considered

in more detail in Section 3.3.

3.2.2 Previous work - ISSI’s investigation

ISSI have published a book explaining the source and interpretation of their seismic
data sets (Mendecki et al., 1997). They did an analysis on the attractors formed by
the process generating the seismic events to establish determinism in the measure-
ments. A fundamental model of the fracture of solids was used to derive a method
for the prediction of large seismic events, and estimation of the pressure gradients in
the rock causing the fractures. The resulting model had a moderate 33.3% success

rate in predicting large seismic events.
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The event locations of T4 in meters.
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Figure 3.2: The event locations of the T4 data set. The measurements are made in
meters but the orientation of the axes is unknown.

Mining deforms the rock mass of a shaft mine out of its natural balanced form.
The shift from balance induces a pressure gradient in the rock so that the rock
becomes unbalanced or unstable. The pressure gradient, or stress, is described with
a tensor field. The rock flows along this gradient and is turbulent at fracture points
in the rock. The strain is also described with a tensor field. The turbulence is then

described along the interaction between these two tensor fields.

Stress and strain are related through Hooke’s linear law for solid materials given
the rigidity of a material (Feynman et al., 1989). Fracture points in the rock are
preceded by a nonlinear deviation from Hooke’s law in the tensor field’s stress-strain
relationship. The nonlinear deviation consist of an acceleration of rock deformation
for the same amount of work done by the deformation process. This signature occurs

irrespective of the size of the fracture.
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The energy index and the accumulated apparent volume can be computed from the
seismic moments and energies of consecutive events in a given portion of rock. The
energy index of an event is its observed energy in proportion to its expected energy,
given its moment, as exhibited by the moment-energy relationship in the rest of the
data set. The energy index is usually filtered using a moving median with respect to
time. Apparent volume is a function that relates the seismic moment (in Joules) to
the volume of rock deformed during the seismic event. The accumulated apparent

volume is the sum of the apparent volumes with respect to time.

Using Hooke’s law, a large fracture in a given portion of rock can be detected
when the accumulated apparent volume accelerates and the energy index decreases
simultaneously. ISSI uses these two quantities to predict the occurrence of large
seismic events. The occurrence of this pattern depends on correct selection of the
volume of rock, set of seismic events, filters and time frame for the two quantities.

The context selection and pattern recognition is done manually.

Figure 3.3 shows an example of how ISSI use seismic data to establish the occurrence
of big seismic events. Each arrow at the top indicates when a large event occurred
at the corresponding point on the time axis. The signature of the large events at the
end of day 21 are the accelerated deformation in the accumulated apparent seismic
volume during day 21, and the decrease in the released energy per unit deformation
(days 19 to 22).

3.2.3 Seismic Laws

A seismic data set is a set of measurements of a point process that consists of a series
of event measurements. The three basic measures of a seismic event are (a) the time
at which it occurs ¢;, (b) the estimated amount of rock deformation log(M;) and,
(c) work done during the event log(E;). Seismic laws describe empirical statistical

dependencies between the variables of the seismic event generating process.

Typical features, or seismic laws, observed in crust-scale seismicity have been related
to mining-induced seismicity (Chapter 2). A number of stochastic systems have sim-
ilarly been reported to demonstrate dependencies comparable with the seismic laws.
Observing systems demonstrating these ‘seismic laws’ does not necessarily lead to
the conclusion that these systems are therefore stochastic. Instead, the correct as-

sertion would rather be that the system cannot be distinguished from a stochastic
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Integrated Seismic System (c) ISSI - xdi Mon Jun 12 11:48:52 2000
TIME HISTORY: Jan 1 03:28 1997 to Dec 22 21:07 1999 Database: /wdl Polygon: 336_poly.ply Netid: 48 Machine: swell
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Figure 3.3: A method of estimating the time to fracture for a large seismic event. The
cumulative apparent volume (left-hand, bottom corner) and the filtered energy index
(left-hand, top corner) plotted versus a time scale. The two curves exhibit the expected
signature of a failure for solid materials. The graph was kindly provided by ISSI and
plotted using their seismic interpretation software.

system on the basis of these dependencies only. In other words, the expected behav-
ior of the stochastic systems exhibiting these dependencies will provide an indication
of the expected behavior of a seismic event generating system under assumption of

these dependencies alone.

Consideration of seismic laws is important for a number of reasons. Firstly, these
place the study into the larger context of investigation into seismicity. Secondly,
a number of existing relationships can result in an emergent behavior influencing
new possible measures of the system. A reported result on a system can either be
explained by the existing laws reported for the system, or demonstrate a property
that needs to be included into known laws for that system. Finally, the method of
surrogate data analysis can be used as a mechanism for generating synthetic seismic

activity if the structure in the surrogates can account for the observed seismic laws.
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Law I - The Gutenberg-Richter relationship

The Gutenberg-Richter relationship describes a linear functional relation between
the event’s moment size and the logarithm of the frequency of occurrences of the

event (Figure 3.4). It can be expressed as
Yige = logyo (Y I(M; > M")) (3.4)

where I(M; > M") is an indicator function that is equal to one if M; > M’ and
equal to zero if M; < M%. The law is used to establish the stationary range of
observed seismic events (Chapter 2). It has been shown that in the case of mining-

induced seismicity the law deviates from the linear form observed in crust-scale
seismicity (McGarr, 2000).

The slope (—b) is an indication of the amount energy the seismic system can exert
in principle, as a consequence of the third seismic law discussed below. A large b
indicates relatively few large events while a small b indicates a high number of large
seismic events generated by the system and larger maximum event sizes. The size

of b is not universally fixed in seismic systems.

Law II - Clustering of large events in time

The second law relates to the clustering of large events in time and is considered a
combination of seismic after-shocks (Omori’s law) and seismic foreshocks. Seismic
foreshocks only occur in a third of mining-induced large events (Chapter 2). The
law is not explicitly stated in a functional form, but only observed as a trend that is
induced by the clustering of large events around hazardous events due to fore- and

after-shock activity.

The trend can be depicted graphically through the following steps:

1. Select the seismic events, (1, X1), larger than a given threshold
(XT), from the data set XF > XE.

2. Stagger the large seismic event sequence into sequences of length n+1,
{(tﬁa XkL)7 (t£+1’ Xlérl) e (téJrna XkL+n)}
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The Gutenberg—Richter linear relationship between even frequency and size.
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Figure 3.4: The size vs. the log of cumulative frequency, relationship.
Y (ML) =logyo(>2; I(M; > M*)). According to literature the G-R relationship for
seismic activity follows a linear scaling law: Y/ (M%) = —b* M + a.

3. Plot the average arrival interval between the events,
E(DtF) =1/(n+ 1) S5 (th,, — tF) as a function of the average event size,

E(XZL) =1/(n+1) ZJZZL(XkLH) for each sequence.

4. Plot the trend for two different thresholds, firstly for large events, X* > 85%
of X; and secondly for all the events in the data set, X > —co.

The selection of a large event sequence is depicted in Figure 3.5 which shows a num-
ber of event values, X191, X102, ... X109 sampled at the corresponding time stamps.
Each of the events is larger than the threshold value X*. The value pair for the
sequence plotted schematically in Figure 3.6 is then (E(X}F), E(DtF)).

The average inter-event arrival intervals for large events plotted as a function of the
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The average inter—event time interval and event size of a event sequence.

T T T T T T T

The event order.

Figure 3.5: Selecting a sequence of events in plotting the trend for seismic event
clustering.

average event size are depicted in Figure 3.6 for the case where large events cluster
in time. Clustering of larger events around hazardous seismic events will cause
the average inter-event arrival intervals to be smaller for sequences demonstrating
hazardous events. The lower part of the average event sizes will show a whole range
of average inter-event arrival intervals of the large event set. Conversely, if the
same test is conducted taking the whole data set as large events, the trend of faster
event arrival rates for a sequence containing larger events should not be visible since
fore-shocks are not clearly visible prior to every event. Fore- and after-shocks are
considered only as the clustering in time of larger events around large events. Fore-
and after-shocks are not observed as a general increase of seismic events around the

occurrence of large events.
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Average time interval for a sequence of events.

The trend for the average inter—event time interval vs. the average event size for clustering
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Figure 3.6: An explanation of plotting a schematic of the trend for seismic event
clustering.

Law III - Seismic deformation and energy relationship

The third law is the log-linear relationship between seismic deformation and seismic
energy release. The linear relationship is depicted in Figure 3.17 on the top right
side axes. To demonstrate the importance of the relationship consider the functional

form of the relationship,

The functional relationship dictates that 107 events of log;o(M) = 9 are required
to release the amount of energy released by one event of log;,(M) = 10 and 10%*
events of log,,(M) = 8. Replacing a large event with an equivalent number of
smaller events will result in a violation of the G-R relationship. Stated differently,

given the G-R relationship, the log-linear relationship of the third seismic law, and a
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minimum amount of energy to dissipate, large seismic events are unavoidable (Gere

and Shan, 1984).

Other seismic laws

There are two other seismic laws reported in literature that are not considered in this
study. These laws focus on the fractal nature of event locations and the relationship
between the size of an oncoming large event, given the area of abnormal seismic
activity. Laws I-IIT above are concerned more with a characterization of the seismic
activity than giving an in-depth analysis of the seismic nature of the seismic data set.
The other two seismic laws are not expressed in the components used for surrogate

analysis.

3.2.4 Linear statistics

We consider hypothesis testing of the T4 under the null that the data are sampled
from an autoregressive moving average (ARMA) process, possibly transformed by a
fixed nonlinear invertible function. The null hypothesis specifies structure exhibited
by a red colored noise. The red colored noise is constrained to have the same
probability distribution function (PDF) and autoregressive coefficients as the data

set.

The surrogate sets are sampled without explicitly estimating the PDF or autore-
gressive coefficients of the red colored noise process. The surrogate data and the
observed data share the same linear statistics, i.e. red colored noise parameters.
The relationships between the linear statistics for the data set and the surrogate
sets are checked to ensure that the correct red colored noise was sampled for the

surrogate set.

The PDF of the data set is compared to the surrogate sets by pairing and plotting
estimated percentiles for each surrogate set with the PDF of the data set. If the
percentiles show a perfect linear relationship, then the two PDFs will correspond

when plotted on a quantile-quantile (g-q) plot.

More formally, suppose x is distributed according to = ~ fx(z), with PDF fx(x)
and y is distributed as y ~ fy(y), then the quantile-quantile plot is the graphical
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representation of the set of pairs of values:

{(za,ya) v € (0, 1)}

such that o, @« = Pr(z < z,) = Pr(y < y.), is the probability that x and y are
less than or equal to z, and y,, respectively. If the pairs of values are proportional
and share a similar domain, =, < y,, the two PDFs are at least as proportional and
share their domains extensively. Since the a values are not available for a sampled
data set, they are estimated by pairing the rank ordering of a sample of z and a

sample of y.

The quantiles of a distribution are the three points corresponding to o € {0.25; 0.5; 0.75}.
On the quantile-quantile plots the quantiles are used to compare fx(z) and fy(y)
from their samples. The quantiles are connected using straight line segments. The

line segments serve as a reference to the proportionality of the (z,,ys)-pairs. The
line segments will demonstrate an z = y functional relationship if the distributions

are the same. For example, the g-q plots of 2 different distributions are shown in
Figure 3.2.4.

The estimated autocorrelation coefficients of the data set are compared to those of
the surrogate sets by estimating the lag of the coefficients for each surrogate set
and plotting each as a function of the corresponding coefficients. If the two sets of
autoregressive coefficients are the same, the plot will demonstrate an z = y func-
tional relationship for the estimated autocorrelation coefficients. An autocorrelation
coefficient is the standardized covariance between a component of a data set and

the same component separated by a fixed lag.

More formally, suppose {AC?} and {AC?%} are the autocorrelation coefficients for
lags n = 1... N of a component of a multivariate surrogate set, i € {1... Ny},
and the corresponding component of the multivariate data set, respectively. The
graphical comparisons between the coefficients of the surrogates and the data set is
a plot of the set of pairs, {(AC%" AC')ei=0...N andn=1...Ng,}. That is,
suppose {x;} is a data component with ¢t = 1,2, ... 7T data points, and var(z,.,) the

variance of {x;,,,}, t =0,1,2,...T —n, then

ACgata _ 1/(T - 1) Zle LrLr4n (36)

Voar(z)var(ze,)

Since the {AC} coefficients are fixed, the comparison to the {AC?} coefficients

can be formalized in a confidence bound around the x = y functional relationship



Chapter 3. Surrogate data analysis 32

Comparing a Normal(0,1) to an Uniform(0,1) distribution using a g—q plot.
4 T T T T T T T T T

y-quantiles, y ~ Normal(0,1)

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
x-quantiles, x ~ Uni form(0,1)

Figure 3.7: A quantile-quantile plot comparison between a Normal(0,1) and an
Uniform(0,1) distribution. The dashed red line indicates the location of the quantiles, the

blue pluses connects the (x4, yq)-pairs. The domains of the distributions differ as well as
the proportionality of the a-pairs.

using the Fisher transform for correlation coefficients. That is, suppose Z, > 0 is the

critical value for the standardized normal distribution larger than zero at probability
1 — a, then

1/ke 2% — 1 1/ke*227 — 1

AC .
Cule) € | T he2Ze T 1 1 hetZer (3.7)

n
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The confidence bounds for rejecting that 2 sets of autocorrelation coefficients are the same.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fixed coefficients.

Figure 3.8: The contours of the probability density drop off around the null hypothesis
that the correlation coefficients are the same for the number of data points used in the
surrogate data analysis.

where

1 4 ACdate
1 — ACata

o=+/2/(T —n—3) (3.9)

k:

provides the confidence boundary for rejecting the null that autocorrelation coeffi-

cients for the surrogates are the same as those of the data set.

Figure 3.8 shows confidence intervals for different a’s for the null that the autocor-
relation coefficients of the surrogate data do not differ from that of the data. If
the autocorrelation coefficients of surrogate data lie outside the x = y relationship

demarcated by the o boundary, it can be concluded that the autocorrelation coef-
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ficients are different. The variance term in the confidence boundary is set at the
number of points used in computing the autocorrelation coefficients for the T4 data
set and its surrogates. Note that the graph is only drawn for coefficients in the
range of -0.1 to about 1. The actual range of the function is from -1.0 to 1.0 but the
functional relationship for the lower range of coefficients is symmetrical to the upper
range of coefficients and only the upper range was drawn here. More information on

the PDF and autocorrelation coefficients can be found in Law and Kelton (1991).

3.2.5 Embedding

As mentioned previously, hypothesis testing involves comparing invariant properties
of surrogate data and the original data in respective reconstructed phase spaces.

The reconstructed phase space is obtained using delay embedding methods.

A delay embedding of observed data is a set of vectors of fixed dimension, with
adjacent components in a vector corresponding to consecutive observations. If the
observed system consists of more than one variable, the different variables can be
combined to obtain a single embedding vector. The components of a multivariable
embedding vector consists of the sequence of embedding components of each variable.
The purpose of the embedding is to capture the time invariant properties of the

observed system.

Suppose a data set of i € {1,2,3,... N} observations consists of three variables, Dt;,
log(M;) and log(E;). Denoting the lag length for each vector by laga, lagy and lagg
and the observation indices of the first component as k € {i,i + 1,i +2,... (N —
max(lagq, lagyr, lage) + 1}, then the three consecutive multivariable embedding

vectors for the data set are given by

Seisk = (Dtk, Dtk+1, ey Dtk—l—lagdt—h Mk, Ce ,Mk—i-lagM—% Mk+lagM—17 Ek, e Ek—l—lagE—l)
Seispr1 = (Dtgs1, Dtito, .o, Dtitiagys M1y - -+, Mitiaga -1, Mittagn s Exts - - - Ektiags)
Seisgry = (Dtigo, Digys, ..., Dlgiaggs1s Misa, - - s Miviagn s Mitiagn+1> Erv2, - - - Ertiagp+1)

(3.10)

The dimensions of the set of vectors are D ppeq = Zie (dt:ME) lag;. The set of vectors
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ICA component 1.
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Figure 3.9: A picture of two ICA attractors. The two on the left are the Lorenz
attractor the, two on the right a surrogate data set of variables. The bottom graphs are
the same attractors as the top graphs, but are enlarged.

represents a sample of a phase space diffeomorphically equivalent! to the state space

of the original system. The dimension of the reconstructed phase space can be

reduced using a linear map of full rank, since the equivalence is maintained under

such a transformation. This is important in situations when there is insufficient

data to work in a high dimensional space.

The reconstructed attractor has a number of invariant properties not affected by

linear transformation such as the average mutual information and the correlation

dimension. These properties serve as a signature for the attractor. However, these

are affected by the choice of embedding delay lag and the sampling rate of the data.

! Diffeomorphical equivalence exists between a vector field and its transform if the vector field
is subject to a continuous map with a continuous differentiable inverse.
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3.2.6 Independent component analysis

The test statistics for hypothesis testing are sampled from the reconstructed phase
space of the two populations of data sets. The phase space is obtained by lag
embedding of the observed variables. The dimension of the embedded vector space
for the surrogate analysis of T4 is too large to accurately sample the test statistics.
Fortunately, the power of the test statistics to reject the hypothesis is unaffected
by reducing the dimension of the embedding with a linear map of full rank (Sauer,
1991). The test statistics are more readily sampled from the lower dimensional
phase space than the original embedding space. One such dimensionality reduction

method is independent component analysis.

Independent component analysis (ICA) (Haykin, 1999; Hyvarinen, 1999) seeks the
inverse of a mixing, linear transformation W of full rank for a number of statistically
independent signals s; of different non-Gaussian distributions. The mixing matrix
and the signals are unknown, and only a finite sample of the mixed signals, y; =
A X s;, are available to infer W. The number of mixed signals are set a priori,
providing a linear mapping W of full rank to reduce the dimension of the original

mixed signals.

The inference mechanism is based on the fact that a linear combination of two in-
dependent non-Gaussian random variables is closer or equal to a Gaussian random
variable than the original variables taken separately. Each rank of the inverse linear
transformation is then picked as a linear combination of the mixed signals that maxi-
mizes the non-Gaussianity of the source signal, and is orthogonal to the other inverse
linear transformations to form W of full rank. The measure of non-Gaussianity is
an approximation of negentropy. The Gaussian distribution has the maximum en-
tropy score for any distribution with a given mean and variance. The negentropy is
the difference between the entropy score for a normal distribution of similar mean
and variance as the signal and the actual score of the signal itself. Maximizing the

negentropy results in a random variable of least Gaussianity.

Computing the entropy for a given signal is computationally intensive and, therefore,
a robust approximation of the negentropy is usually used. The negentropy measure is
a generalized measure of the kurtosis or sharpness of the distribution. Maximizing
the negentropy approximation consists of iteratively adjusting the inverse mixing

matrix until convergence is reached (Hyvérinen, 1999, 2003). Each independent
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component estimate is initialized from a random number generator, which introduces
a variance into the value of the final linear transform for the same set of parameters
and mixed signals. The specific implementation of the ICA algorithm used in the

thesis can be found in Appendix B.1.

ICA requires that the variables be uncorrelated or else the assumptions of the op-
timization technique fails. Hence, before applying ICA a data set needs to be pre-
processed to remove cross-correlations in the data. This can be achieved using prin-
cipal component analysis (PCA). PCA defines a linear map of full rank mapping
a correlated set of random variables on to corresponding scores with least possible
correlation (Haykin, 1999). In essence, PCA is coordinate rotation of basis vectors
such that each of the new basis vectors represents an uncorrelated portion of the
variance of the vector set. Rotation being a linear transformation, and as a result
of the central limit theorem, if a large initial dimension can be reduced through
the rotation, the resulting observations would be closer to normal than the original
observations. PCA can also be used as a dimension reduction technique. However,
in the case of the T4 data the size of the variance in the rotated directions was found

to be too small to effectively reduce the dimension.

The ICA linear map is used to reduce the dimension of the reconstructed phase
space of T4 without affecting the power of the test statistics. Significant dimension
reduction using only the PCA map on the reconstructed phase space of T4 and
its surrogates was not observed. ICA successfully converged to a transform into a
lower dimension without significant loss of the variance observed in the reconstructed

phase space of T4.

3.2.7 Discriminating statistics

The average mutual information and D.(¢/€,) scores can be used as test statistics
on the population of reconstructed phase spaces (Judd, 1994; Kantz and Schreiber,
1997). These test statistics have the power to discriminate between different classes
of reconstructed phase spaces. Analytical distributions for the test statistics under
assumption of a specified system are not generally available. Numerical realizations
of the test statistics for some classes of parameters are available. If the population
of a given test statistic has been sampled n times, the variance of the population has
1

been sufficiently observed to provide a confidence interval on the statistic of 1 — —

and a hypothesis test based on the statistic at an a = ﬁ level of confidence
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(Schreiber and Schmitz, 1996, 2000).

Average mutual information

The first test statistic we will consider is the average mutual information (AMI).
AMI is a measure of the amount of information the value of one variable provides
on the value of another variable. Formally, the average mutual information is a
measure between two dependent, discrete measurements, X; and Y;, 7 = 1... N,
with X;,Y; € N, of the average amount of information X; provides on Y; (Fraser
and Swinney, 1986). If (X;,Y;) is sampled sufficiently from the trajectory of an
orbit which is long enough, the AMI provides a quantitative characterization of the
trajectory’s invariant qualities. AMI is derived from Shannon’s information theory

and defined here as:

Pp(X;, Vi)
P (X;) Ps(Y;)

AMI(X,Y) = > Y Pp(Xi, ¥i)logy(

X, eEM Y;€S

) (3.11)

where Pp is the joint probability distribution of the discrete random variables X; and
Y;, Py and Pg are the distributions of X; sampled from the population of M C N
and Y; sampled from the population of S C N. All the probability distributions
are estimated empirically using a histogram. Terms of the summation for which the
denominator will result in zero are assigned zero values. AMI is measured in bits

when base two logarithm is used as above.

The AMI of the reconstructed high dimensional phase space is measured by taking
the norm of consecutive vectors in the domain of the ICA map. The time ordered
sequence of norms provides a measure of the bumpiness of the phase space. A
predictable system typically has a smoother phase space compared to red colored
noise. Thus, AMI scores on the variables populating respective reconstructed phase
spaces can be used to distinguish a red colored noise process and a predictable data
set. The surrogate approach is particularly useful in this respect since no analytical
model exists relating the distribution of the average mutual information to the red

colored noise specified by the null hypothesis.
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Figure 3.10: The AMI between X and Y is a measure of how much the value of X is
pinned down given the value of Y, standardized to the case where there is no dependence.
The AMI is computed by sampling the shared distribution of X and Y.

Correlation Dimension Estimate

The second of the test statistics considered is the correlation dimension estimate.
The correlation dimension separates predictable data from red colored noise based

on the self-similar behavior of the reconstructed phase spaces.

The correlation dimension characterizes the extent of the self-similarity of a recon-
structed vector field. It is used to track the influence of the parameters of the
reconstruction process on the scaling behavior of the reconstructed field. Possible
scaling properties give an indication that the reconstructed phase space does not fill
the observation space. A lower dimension measure in a higher dimensional observa-
tion space indicates that the observed vector field has been constrained to the lower
dimension. A phase space reconstruction of red colored noise will eventually fill the

space as the dimension increases.

The correlation dimension measures the geometrical structure of the sample of points
over a range of small scales, d = D.(€), € € (€min,€) (Judd, 1992, 1994). The
dimension estimate is the exponent of the probability drop off in the tail of the
inter-point distribution for small scale lengths e for a general family of distributions.
Any distribution will suffice as long as the tail of the distribution over small inter-

point lengths is an asymptotic approximation of a probability measure of a cross-
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product of a separable self-similar measure and an absolutely continuous measure.
The functional form of the tail of the probability measure is given by

t

P(e) = e'(>_ a;e'), (3.12)

i=0

where P(e) = Pr(] X —Y |< €) is the probability measure on the distribution of
inter-point distances. A binning procedure is used to approximate the distribution
of inter-point distances. Only the small scale characteristic of the distribution is of
interest, hence all the inter-point distances greater that ¢, are grouped in the largest
bin. Bin edges follow an even geometrical sequence starting from ¢, and ending in

€min Such that log(€mm) = log(e,) — n x b, for n bins.

The dimension estimator D.(e/€,) characterizes a self-similar scaling range if an
e-region (on a logarithmic scale) with an approximately constant value can be iden-
tified. The estimate has the power to characterize self-similar scaling behavior, or
lack thereof, for a range of non-fractal probability measures. The power to discrim-
inate is useful because the use of a test for self-similarity with a test statistic that is
only valid under the assumption of self-similarity might lead to invalid conclusions.
The estimate is accurate over a dimension range between one and four. The corre-
lation dimension over the scaling range is quoted as the y-axis position of the flat

portion.

The D, estimates provide an indication of the scattering of the reduced vectors
populating the phase space. If the data set scatters differently from red colored
noise of the surrogates, the data will exhibit some structure on small scales that is

not explained by a red colored noise process.

3.2.8 Surrogate data

Surrogate data analysis of T4 involves performing a hypothesis test that the data
exhibits no more structure than a pre-specified null hypothesis. The hypothesis
is conducted by sampling surrogate data sets from the same distribution as T4,
assuming T4 was sampled from a red colored noise, i.e. if the null hypothesis were
true. The T4 data set consists of a 3-dimensional data set exhibiting auto- and cross-

correlations, with each component sampled from a unique non-normal distribution.

To generate surrogate data, the observed data are first shuffled and the amplitudes

iteratively adjusted in the Fourier spectrum transform domain to maintain the rank
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ordering and the energy spectrum of the original data (Schreiber and Schmitz, 1996).
The adjustment is made by re-ordering the rank order of the surrogate variable
after fixing the energy spectrum of each of the observed variables, and mapped by
the inverse Fourier transform in sequential iterations. The cross-correlations are
maintained by adjusting the angle of the surrogate variable in the Fourier domain
of the iteration. In short, a surrogate data set is a shuffle of the original data set in
such a way that the auto- and cross-correlations are maintained. If the data set is
large enough and sampled from a specified red colored noise, the resulting surrogate

data set will be sampled from the same source.

Suppose {}n’”} is an ordered sequence of m-dimensional vectors of length n =
1...N, fftm(.) is the fast Fourier transform for m components of each frequency,
and 4 f ftm(.) is the corresponding fast inverse Fourier transform. Then, {z]'} is the

m-~dimensional sequence of complex numbers of length, £k = 1... K defined as

(Z0} = {7 |exp’ G} = ffrm({X["}) (3.13)
with |.| denoting the norm and arg(.) denoting the angle of the complex numbers
(Weisstein, 2001).

The sequence of complex values @ +i b= if ftm(2]") is the result of the inverse fast
Fourier transform. For the multivariate surrogate generation p is nonzero since {zj '}
is not symmetrical (MATLAB®, 2001).

Furthermore, let {mnk(fﬁl)} denote a vector of the rank ordering of one of the

components of Xinm such that

(G} =X iy} (3.14)

is the non-descending ordered sequence of numbers in {X,,} for each of the compo-

nents of {X. },i.c. i=1...m, and

{cmy = {Y:ka(yf)} (3.15)
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denotes the sequence of m dimensional vectors with each entry a component of {)7(?}

ordered in ascending order.

Let {mnd:)} be a sequence of random numbers of dimension m. Then, the surrogate

variable an for y;n is initially sampled as

{rV,} = {anmm;")} (3.16)

and iterated to the correct auto-correlation structure as follows:

1. Map the random variable, 7V; into the frequency domain:
{rZ} = fftm({rVi}) (3.17)

2. Adjust the angles, p, = arg(rZ, )+ oy with:

M . —m —m
ap = | arctan Z}Z}:l sm(arg(i,:n) ﬁfn) |+ 7% q/2 (3.18)
m=1 COS(CLTg(Zk )_ Py,
g € {0; 1; 2; 3} such that (3.19)
M
Z(ak — % q/2 —arg(Z)+ Py ) is a maximum. (3.20)

m=1

3. Adjust the amplitudes and the angles of the Fourier surrogates and map the
adjusted surrogates back using i f ftm(.)

a™ +ix b =if ftm(| z,)| expiﬁ?) (3.21)
5= g™ (3.22)

4. Scale the values of the amplitude adjusted random variable, s to the correct

distribution:
Wk+1: {ainank(g?)} (323)
5. Repeat the iteration until convergence is reached:

rank(s;) is the same as rank(s; 1, ) (3.24)
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The iteration is repeated until the rank ordering adjustment converges. An imple-

mentation of the algorithm is provided in Appendix B.2.

Note that the surrogate generating mechanism optimizes the surrogate multivariable
data set to a given cross-correlation for a fixed distribution of each of the compo-
nents. It does not ensure that the surrogate data set has the same multivariate
distribution. The correspondence in the cross-correlations between the surrogate
data and the original data set will ensure the same multivariate distribution if the

components of the original data are distributed normally (Law and Kelton, 1991).

As an example of the iteration sequence consider Table 3.1. The first column of
the table is a 10-dimensional vector of observations, each consisting of one compo-
nent.The 10-dimensional vector rV is the randomly shuffled sequence of X observa-
tions. In the first iteration, fixing the power spectrum of rV; results in a re-shuffling
of X to form a new rV;,;. Once the order of observations in rV; are fixed, the phases

of rVi,, are fixed at the same power as that of X.

Surrogate data sets computed using the Fourier spectrum tend to distribute a dif-
ference between the first and last observation of a data set as energy in the high
frequency domain of the surrogate set. The resulting difference in the high frequency
domain between the observed system and the surrogate system influences the test

statistics. This observation will be taken into account in the subsequent analysis.

First iteration Second iteration | Third iteration
X| ¥ |V ]arg(fft(rV)) | 1V | arg(fft(rV)) | 1V | arg(ft(rV))
0 10 1 0 0 0 0 0
1 0 1 1.7407 2 0 2 0
1 |3.8042 | 0 -2.1991 1 -2.1991 1 -2.1991
2 0 1 -0.0766 1 0 1 0
1 23511 | 1 -2.8274 1 -2.8274 1 -2.8274
0 0 0 0 0 0 0 0
1 |23511 | 2 2.8274 2 2.8274 2 2.8274
1 0 2 0.0766 1 0 1 0
2 | 3.8042 | 1 2.1991 1 2.1991 1 2.1991
1 0 1 -1.7407 1 0 1 0

Table 3.1: Three iterations of an TAAFT surrogate generated for the 10-dimensional
vector X, depicted in the first row. The ¥ row provides the energy spectrum of X. rV; is
the shuffled sequence of X serving as the surrogate. The iterations continue until the
phases of rV;,1 are fixed at the same power as that of X.
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3.2.9 Hypothesis testing

A test statistic is a sampled value from an unknown distribution. A parameter-
ized test statistic belongs to a parameterized distribution of unknown value. A
parameterized distribution defines a family of distributions, each specific distri-
bution in the family defined by a different value of the parameter. A hypothesis
about a test statistic is a pair of propositions, each specifying a set of mutual ex-
clusive parameters, restricting a parameterized test statistic to a mutual excluding
subset of its family of distributions under assumption of each of the propositions.
The pair of propositions is known as the null hypothesis and the alternative hy-
pothesis, each hypothesis corresponding to one of the propositions. A hypothesis
test rejects that the null hypothesis is true in favor of the alternative hypothesis if
the observed test statistic of unknown distribution falls within the a-probable tail

portion of the distribution defined by the assumed value for the parameter.

The probability of rejecting a null hypothesis as false if the distribution of the test
statistic holds under the null hypothesis is specified by the probability «. The prob-
ability that the hypothesis is not rejected given that it is false, is the probability
that the test statistic was sampled from the distribution specified by a false null hy-
pothesis and a true alternative hypothesis. Since the distribution of the test statistic
under assumption of the alternative hypothesis is not always known, the probability
that a false null hypothesis is not rejected is not always known. The difficulty in
setting up a hypothesis test is in finding the uniquely specified distribution of the
test statistic under assumption of the null hypothesis. On establishing the distribu-
tion of the test statistics under assumption of the zero hypothesis, the critical value

at which the hypothesis is rejected is fixed (Dudewicz and Mishra, 1988).

The hypothesis testing procedure can be summarized as follows.

1. Generate sequences of red colored noise similar to the data set;
2. Measure the test statistics for each sequence;

3. Evaluate sufficient test statistics for each sequence to give the correct proba-

bility of false rejection;
4. Compute the test statistic for the data set;

5. Compare the surrogate test statistics to the data test statistic;
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The realization of two test statistics with a difference in distribution parameter value.
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Figure 3.11: Two histograms of the realized values of two test statistics belonging to
the same family of distributions but with different parameter values, changing the
distribution of each.

6. Test the null hypothesis that the data belongs to the population of red colored

noise if the computed test statistics do not differ.

Figure 3.11 depicts the realization of two test statistics with normal distributions
of unit variance, but different means of 0 and 2, normal(0,1) and normal(2,1).
Each test statistic is sampled from a parameterized distribution belonging to the
family of normal distributions with unit variance. The parameter separating the
family of distributions into different groups is the mean of each distribution. The
hypothesis that the means of the two distributions are the same can be tested by
sampling a number of realizations from normal(0, 1) and sampling one realization of
normal(2,1). If 11 values of normal(0, 1) are sampled and a value of normal(2,1)
is larger than the largest value of the 11, the hypothesis that normal(0,1) and
normal(2,1) are the same distribution can be rejected at an a = 1/10 level of

false rejection. Since the two distributions are only separated by their mean, if the
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distributions are not the same, the hypothesis that their means are the same can be

rejected.

3.2.10 Generating synthetic seismic data

The mechanisms for generating synthetic seismic activity can be divided roughly
into two categories. The first category consists of the point process arising from
the interaction between small units, each one governed by the same set of laws and
driven by a noise signal. It is commonly classified as a form of cellular automaton
models. The second category consists of the direct transformation of a noise signal

into the point process.

A cellular automaton was the first model used in the synthesis of self-organized
criticality behavior (Barriere and Turcotte, 1994). The relationships between cellular
automaton to seismicity of a single fault (Ben-Zion, 1996; Kaiser and Tang, 1998)
and seismic active region (Gabriclov et al., 2000) have been discussed. Other cellular
automaton models have been used to simulate the general failure process (Newman,
1995). In each of the cellular automata the system is driven in some random way
until a unit reaches a threshold value and fails. The failed unit interacts with its
associated neighboring units according to some set of functions. This might result
in more units failing. A seismic event is associated with a sequence of failures, or
the failure of a single unit with a large threshold value. The resulting kinematic
description of the failure process (Pollard, 2000) is a general description of some of
the seismic modeling algorithms (Ben-Zion, 1996), corresponding to discrete event
simulations (Law and Kelton, 1991).

The direct transformation of a noise signal into a point process forms the basis of
constructing a probability density field for the occurrence of seismic events. The
construction of a probability density for the occurrence of seismic events implies the
transformation of a noise signal into a point process. The probability field implies
the construction of synthetic seismic activity. Examples of this style of synthetic
seismic activity include Akkaya and Yiicemen (2000); Akkaya and Yiicemen (2002);
Helmstetter and Sornette (2002); Hooge et al. (1994); Kagan and Vere-Jones (1996);
Sornette et al. (1992).

The problem of the existence of repeatable behavior exhibited by a specified seismi-

cally active area observed in the mines has been highlighted in Chapter 1. Repeata-
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bility is usually initially tested in terms of the hypothesis that the system is separable
from stationary red-colored?(Schreiber and Schmitz, 2000). A deterministic system
can be distinguished from a stochastic system in a hypothesis test using appropriate
pivotal test statistics, even if the stochastic system exhibits similar observational
properties to the seismic data. Distinguishing a stochastic and another system de-
pends on the test statistic’s power to differentiate between the two (Dudewicz and
Mishra, 1988).

3.2.11 ISSI’s attractor analysis

ISST used seismic event measurements from a given volume of rock and analyzed re-
constructed attractors using each variable separately. They used the estimated auto-
correlation function to determine the delay lag. For the given lag, the Grassberger-
Procaccia (Lai and David, 1998) method was used to estimate a correlation dimen-
sion. Based on this analysis, it was concluded that an attractor did exist since in
three of the data set since the plot of the dimension versus the correlation dimension

showed a plateau region between the dimensions of 4 to 8 for all the variables.

ISST’s analysis of the attractor can be critiqued from a number of angles. The de-
scriptive statistics used made it very difficult to analyze other data sets using the
same method. Also, the Grassberger-Procaccia (Lai and David, 1998) method was
not originally developed for determining a point estimator, especially for systems ex-
hibiting high-dimensional chaos (Kantz and Schreiber, 1997). It gives an indication
of low-dimensional chaos with the distinction made on a series of curves. The range
of dimensions they used to plot the D, estimate curve ranged from 1 to 10. Not
all point processes convey attractor information in this range of values. It has been
reported that integrate-and-fire point processes convey attractor information in the
time intervals between events(Sauer, 1994). In all data sets analyzed, only one data
set consisted of inter-event time intervals, and the time intervals was measured only
between consecutive events not taking the effect that different event sizes could have

on the overall seismic rate(Helmstetter and Sornette, 2002).

Figure 3.13 shows correlation dimension estimates for estimated attractors of the

2R,ed-coloured noise (Schreiber and Schmitz, 1996) is known as an autoregressive moving average sampled from a normal
distribution and scaled by an invertible nonlinear function, s(.):

M N
sn =35(Yn), yn = Z aiYn—i + Z binn—i (3.25)
i=1 i=0

where the sequence of nys is sampled from Gaussian uncorrelated random variables of zero mean.
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The inter—event time intervals of T4,i,Dn order of occurrence.
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Figure 3.12: The time interval between two consecutive events, for all the events in the
T4 Data set.

indicated data using Judd’s algorithm. The collection of correlation dimension mea-
sures, D.(€/€p), in Figure 3.13 is a series of estimates of the dimension of the recon-
structed attractors of the T4’s time intervals, depicted in Figure 3.12, and that of
a set of surrogate data sets. In Judd’s algorithm, correlation dimension estimates
D.(€/€y) > 0 are evaluated over a range of scales log(e/eg) € (—o0, 0], proportional
to a specified largest scale €. In this context scale refers to a length in the inter-
point distances, and the log over the largest scale results in the 0 on the log-scale
x-axis of Figure 3.13. If the sampled attractor exhibits self-similarity then Judd’s
correlation dimension estimate would give nearly the same D.(e/¢y) estimate over a

range of €/ey’s.

Each surrogate set sur; is a sample from a random variable, sur; € Sur of data

sets. Each data set in Sur is a sequence of samples from a stochastic system with
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The correlation dimension estimate for the time intervals of T4 and 21 surrogate sets.
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Figure 3.13: The estimate of the correlation dimension of the time intervals of the T4
data set, and a set of surrogates, according to the Judd method. The arrow marked with,
Dt; of T4, indicates the solid line of the data set. The other arrow the time intervals of
the surrogate data sets.

a specified distribution and autocorrelation structure. T4’s time interval sequence
belongs to Sur, as T4’s statistics specifies the distribution and coefficients. Each
data set in the collection of reconstructed attractors was constructed according to
the method previously used by ISSI for attractor reconstruction from a sequence of
time intervals. The idea of generating surrogate time intervals and surrogate testing

of time intervals can be found in, for example, Sauer (1994).

From Figure 3.13 it can be concluded that T4 does not separate well from the random
variables. Also, T4’s correlation dimension is not clearly established since no scaling
range giving a constant estimate can be identified. The inter-event time intervals
of T4 are not separable from the population of surrogates Sur. The hypothesis

that the sequence of time intervals of T4 was drawn from a population of stochastic

-2.2
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systems with a specified linear structure, therefore, cannot be rejected based on the

D, estimate.

Since the publication of ISST’s latest reported work (1997), new and improved tech-
niques on establishing and testing attractors have been proposed and successfully
applied in other domains of nonlinear dynamical systems theory. It would be use-
ful to extend the previous ISSI analysis with a dependence test, Judd’s correlation

dimension estimate, determinism test and surrogate analysis.

3.3 The seismic behavior of T4

The T4 data set follows a number of seismic laws or relationships known to exist
in seismicity in general. These are the Gutenberg-Richter relationship, occurrence
of large seismic event clustering in time, and the log-linear relationship between the
log(E;) and log(M;). The hypothesis test is structured in such a way that these
relationships can be explained by the structure of the red colored noise. However,

large event clustering might violate the assumption of stationary red colored noise.

When conducting the hypothesis test, selected discriminating statistics are sampled
from the reconstructed phase space of components in T4. These are compared to
similar measures for the observed data. Each combination of compared compo-
nents highlights the structure of the reconstructed attractor that is sampled by that

combination.

The first step in the hypothesis test is to determine parameters of the seismic laws
when fitted to T4. In the second step, the T4 data is characterized as mining-induced

seismicity by determining and interpreting test statistics used in the hypothesis tests.

3.3.1 Seismic laws and stationarity

Seismic laws are used to indicate which relationships should be factored into the
structure exhibited by the red colored noise. The laws demonstrate which portions
of T4 are usable in the hypothesis test. The red colored noise sampled under assump-
tion of the null hypothesis is assumed stationary, that is, the PDF or autocorrelation
coefficients do not vary with time. Due to the nature of sampling, small events in

T4 are not considered part of a stationary process. Seismic laws are used to identify
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the stationary parts of T4.

Law I: Gutenberg-Richter relationship

The Gutenberg-Richter relationship states that an inverse log-linear relationship
exists between the number of events and the size of the event. The relationship for

the components of T4 are sampled as,
Yy =logyo (D> 1(X; > X))

with X € {Dt,log(M),log(E)} such that the y-axis depicts the number of events in
T4 larger than the corresponding variable value on the x-axis. Figure 3.14 depicts
the sampled scores. The top graph depicts the relationship for Dt;. The middle
graph depicts the relationship for log(}/;) and the bottom graph for log(E;). Each
graph shows the measured relationship with the number of events on the y-axis and
the corresponding event size on the x-axis. On each graph a model is fitted to the
measurement, as well as the coefficients of the model. The models in the graph are

fitted on the stationary measurements only.
Three observations can be made from the graphs and the fitted models in Figure 3.14:

e The quadratic models fitted in Figure 3.14 to Y),z and Y5r demonstrate deviation
from the norm in the T4 data set. The functional relationship of Y,z and Yjye
does not appear to be a single linear relationship, but rather consists of two linear

relationships of different slope, interchanging at M* ~ 9.4 and E* ~ 1.6.

A possible explanation for the change of slope is that a large amount of energy
is utilized by the system for fault formation. Therefore, the system producing the
smaller events behaves like a seismic system dissipating more energy than the system
producing the larger events (McGarr, 2000). If this is the case, the GR relationship

is validated for T4 over smaller events.

e The quadratic models show a deviation from the law for small scales. The deviation
indicates the non-stationarity in the data set introduced by the sampling process. In
the hypothesis test the events below the stationary threshold are omitted from the
data set since the hypothesis is sensitive to changes in stationarity. Note, however,
that omitting the non-stationary events in log(M;) does not necessarily result in
the removal of all the non-stationary events, since log(F;) still demonstrates the

non-stationary signature Darpahi-Noubary (2002).
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e The model fit of the time intervals shows that omitting the non-stationary sampled
events does not affect the shape of the frequency size relationship of the time intervals
Dt; significantly. A possible reason for this is that the inter-event time intervals and

the size of the events are not significantly related.

The frequency-size relationships in the seismic data do not affect the hypothesis of
red colored noise because the noise has the same distribution as the components of
the data set.

Law II: Large event clustering

The second seismic law concerns the clustering in time of larger seismic events,
especially around the large events in the data set. The clustering in T4 is observed
by relating the moving average of event size to the corresponding moving average
of inter-event time intervals for large events, Figure 3.15. The same variables are
related for the whole data set instead of just the large events, Figure 3.16. The

relationship is depicted for all three variables.

The depiction of the relationship for the time intervals Dt; of all the events is an
indication of the size of the autocorrelation coefficient for consecutive time intervals.
The relationship was added for completeness. A negative linear trend exists between
the moving average of event size and the corresponding inter-event time interval
average for the log(M;) and log(F;) components, Figure 3.15. The trend is not
evident in the Dt; component or in the component containing all the events. The
trends in Figure 3.15 show that larger events tend to cluster around the large events
in the data set.

However, the clustering around the large events in the data set did not generally
hold for all events as shown in Figure 3.16. The occurrence of aftershocks reported
in literature is normally more visible than the results reported here. This can be
attributed to at least two deviations observed in T4 and not in seismic data sets
in literature. Firstly, the size of the events considered for the generation of after-
shocks is significantly smaller. A smaller event size represents a larger example
set and demonstrates that the law is actually visible under the smaller events as
well. Secondly, the dual system discussed under the G-R relationship might have
a dampening effect on the aftershock mechanism compared to the one observed in

crust-scale earthquakes. In the crust-scale mechanism a number of readily avail-
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able fault lines exist to produce after-shocks. In the mining scenario, as discussed
here, opportunities to produce secondary, larger earthquakes might not be so readily

available.

The clustering of larger events around large events might cause the rejection of
the hypothesis that the structure in T4 is different from red colored noise. The
clustering will cause a rejection if the clustering cannot be explained by the auto-
and cross-correlation coefficients of the red colored noise. If more structure exists
than found in red colored noise modelling, the data should be investigated beyond

its linear properties, despite the size of the deviation.

Law III: Linear relationship between log(FE;) and log(M,;)

The third seismic law relationship is depicted in Figure 3.17 in the scatter plot
between corresponding pairs of log(E;) and log(M;) with a trend line added. Simi-
larly, the other cross-correlations in the data set are also demonstrated in Figure 3.17.
The log(E;)-log(M;) plot shows the cutoff points for the small non-stationary events.
Other than the linear trend between log(F;) and log(M;) no other trends are evident

between the components in T4.
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Figure 3.15: T4, clustering of large events for event sequences of length 10.
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Figure 3.16: The lack of event clustering in the event sequences of length 10.
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The surrogate hypothesis test can be rejected for surrogate data test involving com-
binations of (log(M;),log(E;)) if the dependence between log(M;) and log(E;) is not
sufficiently captured by the linear relationship between the two components. Fig-
ure 3.17 demonstrates the observed dependence between the two components. The
drop-off from the trend between log(E;) and log(M;) on the small scales is addressed
in the surrogate case by maintaining the distribution of each variable. Hence the
surrogates should not separate from the data set purely based on the drop-off from
the trend in Figure 3.17.

3.3.2 Nonlinear measures on attractors

The average mutual information and correlation dimension statistics are measured
for different, but comparable phase space reconstructions of T4. Each reconstruction
is done in the same way and mapped onto the same 10-dimensional space thus
ensuring similar properties in each reconstruction. Each of the components are
independent of each other based on the measure of independence employed by the
ICA algorithm. The two statistics are characteristic of a specific attractor and

invariant to linear transformations on the attractor (Kantz and Schreiber, 1997).

Suppose the data set was generated by the same underlying phase space and the
phase space participates in the generation of each of the parameters. Reconstruct-
ing the phase space from the different variables into a 10-dimensional space with
independent components should result in similar measures of the AMI and D.(¢/¢,)
statistics as for the original attractor; if the dimensionality of the dimensional space
guarantees unfolding of the same underlying attractor. If the original attractor
requires more than 10-dimensions to unfold properly, the attractor can not be re-
constructed properly with the tools and techniques followed in this study and the

surrogate hypothesis tests can not be rejected.

The D.(¢/¢,) and AMI measures are sampled from a set of 10 dimensional vectors,
{s10}:n = 1...N. The set of vectors is the resultant ICA transform of the multi-

dimensional embedding of the components of T4 obtained according to

530 = WlO,D X SGiS;, 1=1...K. (326)

embed

where Wig p is the estimated separation matrix. The lags for Seis; (that is lagy,

embed
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lagy and lagg) are taken as the first point of decorrelation of the autocorrelation

function.

In the estimation of W using ICA, pre-processing was achieved with PCA, with
99.9% of the variance retained in the transform to obtain decorrelated {Seis, }.
Measurement and sampling noise as well as a lack of variable mixing obscures re-

constructed phase space.

The ICA estimation starts off with a randomly initialized map and iteratively ad-
justs the map to find an optimal fit according to the selected measure of indepen-
dence. The measure of independence for the independent components are invariant
to mirror and sign changes. ICA does not give exactly the same transform in re-
peated estimation of W. Therefore, to keep track of the variance two maps were
estimated for each phase space reconstruction. The total number of reconstructed
phase spaces, each supposedly a transform from the phase space producing T4, is 14,
that is two (2) times seven (7). Computing W twice while keeping everything else
constant in the phase space reconstruction is a simple mechanism for keeping track
of the variance introduced in the computation. If the computation of W introduced
no variance then the 14 reconstructions would consists of two groups of 7 identical
reconstructions. As it is, the only difference between the two groups was introduced
by the computation of each of W’s. The variance introduced in the phase space
reconstruction should not affect the hypothesis tests and repeating the result allows

for a test on that.

The phase space reconstructions were performed twice for all possible embeddings of
the three variables: {(1 : [Dt;]); (2 : [log(M;)]); (3 : [log(E;)]); (4 : [log(M;),log(E;)));
(5 : [Dt;,log(E;)]); (6 : [Dt;, log(M;)]); (7 : [Dt,log(M;),log(E;)])}, for both the AMI
and D.(e/e€,) test statistics.

Average Mutual Information

AMI(X,Y) is a measure of two one-dimensional variables that characterizes the
global bumpiness of the phase space. AMI(X,Y) is computed for a delay lag of the

Euclidean norm, [2'°| = /319 ((1,)2) of 10

AMI; = AMI(]s)’],[s35,0), J =1,2,3,...,100

where J is the shift in the lag between the components of the sequence of norms,

|s1%]. Each computation of AMI; represents an AMT score at a lag of J between



Chapter 3. Surrogate data analysis 60

The AMI of the norm of two ICA scores of the seismic components using 25 symbols.
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Figure 3.18: The AMI; scores for the norm of the 10 dimensional ICs of the T4
dataset as a delay lag in J.

two components of the sequence of |s| norms.

The AMI of the delay lag of the norm for the reconstructed phase space is still a
measure of the global bumpiness of the attractor because of the relative closeness

two consecutive embedding vectors will have in the reconstructed phase space.
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The AMI; scores for the 14 reconstructed phase spaces of T4 are displayed in
Figure 3.18. The Figure contains three pairs of axes, with each pair having the
same units. The z-axis tracks the lag J while the y-axis tracks the value of AMI;
(in bits).

Each variable was binned into 25 bins for the computation of the AM; scores. A
value of 1 to 25 requires about 4.5 bits of information to be specified uniquely. If
the AMI score resulted in values of around 4.5 bits, the lag of variables can uniquely
identify the resulting trajectory in the attractor up to the bin with. The AMI;
scores vary from about 0.6 to 0.1 from lag 1 to lag 50. Interestingly, 0.1*50 equals
5, but since the lag of scores are based on correlated variables the lag of AMI scores

is not an indication that |s}’| can be uniquely identified from |s. ;|, J =1 : 100.

The jumps in the AMI; scores from one J to the next are an indication that the
original phase space is obscured by some kind of noise and the reconstructed phase
space is rather bumpy. The drop from a high value to a low value in AM [; indicates
that the sequence of sl are dependent on the time ordering. If the sequence of s
were independent the size of the AMI; scores would have been smaller and no

degradation of AMI; scores would have occurred with an increase in lag J.

The phase spaces constructed from the time intervals appear to be more bumpy in
the variance from one AM I ; score to the next than is the case in other reconstructed
phase spaces. This is further supported by the fact that the phase spaces with
component Dt; included score lower than the rest of the computed AMI; scores.
The exception is the combination (Dt;,1og(M;)) which seems to give the optimal
reconstructed phase space. The variance introduced by the computation of the W’s

did not affect the result significantly.

The slightly better reconstruction using the combination (Dt;,log(M;)) compared to
any of the other variable combinations can be explained as follows. Firstly, Any one
of the seismic source variables does not provide a sufficient mix of variables from the
original phase space (Mendecki et al. (1997) as discussed in Chapter 2 ). Secondly,
the log(£;) and Dt; components have more noise associated with them than the
log(M;) variable, as observed from their AMI; scores. The noise argument is ironic
since the time stamp is the only variables that have no error term associated with
it. The dynamics driving the timing of the events and the occurrence of them might

be independent of each other.
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Correlation Dimension

A total 14 phase spaces were reconstructed from the components of T4: all the
different combinations of variables and two ICA maps for each. The small scale
scattering of a reconstructed phase space is controlled by the amount of measurement

noise, sampling noise and mixing of the variables from the original phase space.

The D.(¢/€,) can be considered a measure of the dimension of the reconstructed

attractor in the phase space if:

e a flat portion of D.(€/¢€) exists over a range of log(e/€,)’s;

10

. are uncorrelated.

e the pairs of vectors used for the distance measures s

e the dimension estimate is less than about 3.1.

None of these conditions hold for the D.(e/¢,) estimates of the 14 attractors shown
in Figure 3.19. As a measure of the scatter of the reconstructed phase space, it can
still be used as a test statistic in the surrogate data analysis. The Dt; variable as
opposed to the AM I scores seems to reduce the small-scale scattering. Any phase
space reconstruction with Dt; included in the reconstruction seems to scatter less
than without it. The variance introduced by the computation of the IC’s did not

seem to affect the results.
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Figure 3.19: The 7 phase space reconstructions are grouped into 3 groups. The top left
graph is for single component phase spaces, the top right for pairs of components and the
bottom graph for all three components
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3.4 Surrogate data and Hypothesis tests

Results from the previous section showed that none of the reconstructions were
similar nor was an ideal reconstructed phase space obtained. This could be because
the data were either not uniformly sampled from the same red colored noise, or
the system is simply not deterministic. The next test for determinism is to fit a
model on the data to see if the future evolution of the system can be derived using
measurements collected in the past. Since the reconstructions did not show small-
scale or large-scale structure different from a red colored noise source, constructing
a model more complex than an autoregressive moving average must be approached

cautiously.

In the surrogate data analysis, a null hypothesis test of stationary red colored noise
generating source is assumed. The D.(e/¢,) and AMI; scores are the test statis-
tics with unknown distributions under the assumption of the null. As previously
discussed, surrogate analysis provides a mechanism for sampling portions of the
red colored noise from which T4 could have been sampled if the null hypothesis is
true. The ratio of surrogate sample to the observed data is critical, and guidelines
on choosing the size of the surrogate set to establish the confidence bound exist
(Schreiber and Schmitz, 1996, 2000).

Constructing the hypothesis tests involves a number of steps. First, a set of surrogate
data satisfying the red colored noise null hypothesis is generated. Then the test
statistics are evaluated for the surrogate data. Finally, the sets of test statistics can
be compared to see if each reconstructed phase space was sampled from the same

underlying red colored noise system.

If the test statistics for the different surrogate reconstructed phase spaces differ, then
the difference in the autocorrelation coefficient and noise distribution has a signifi-
cant influence on the final reconstructed phase space. If the initial autocorrelation
structure and distribution of the sampled system influences the final reconstructed
phase space, it would be difficult to establish if the different components are sam-
pled from the same underlying phase space. If such an underlying system can be
established, even if it represents only some type of noise, it could serve as a basis

model to generate synthetic seismic activity similar to that of the data set.

Figure 3.20 shows a comparison between the 3 components of (Dt;,log(M;),log(E;))

and a realization of the surrogate data. The two clusters in the figure appear to
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The components of T4. The components of a Surogate set.
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Figure 3.20: A 3-dimensional plot of the components of T4 and the components of a
surrogate set.

have superficially similar distribution, orientation and location in the 3-dimensional

space.

In Figure 3.21 are plots of the scores in order sequence in which the AM I statistic
is sampled for a surrogate set as well as the T4 data set. The score is computed
as the norm of the 10-dimensional independent components |s!°| representing the
reconstructed phase space of T4 and the surrogate set. The scores from the surrogate
set appear to be slightly more scattered than the scores from T4. Other than the
scattering the two sets of scores appear to be sampled from the same stationary
autoregressive moving average (ARMA) process, scaled with the same static non-
linear function. Two comparisons help to illustrate that the surrogate generating

mechanism gives noise similar to the original data.
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The{ |sr110|} of the (Mi, Dti) components of T4.
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Figure 3.21: The norm of the 10-Dimensional phase space reconstruction for
(log(M), Dt;) of T4, top, and a surrogate set, bottom. Note the scattering in the
surrogate set compared to the T4 set.

3.4.1 Comparison of linear statistics

T4 is identical to the surrogate population of red colored noise in that:

1. The components of T4 have a similar distribution to the corresponding com-

ponents of the surrogates as visualized in a quantile-quantile plot.

2. The components of T4 have a similar set of autoregressive coefficients to those
of the surrogates, demonstrated by plotting the corresponding coefficients on

the same axes.

3. The components of T4 have a similar set of cross correlation coefficients to
those of the surrogates, demonstrated by plotting the corresponding coeffi-

cients from a surrogate set and T4 on the same axes.
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In all the above cases, the domain of each graph should correspond and the func-
tional relationship should be a straight line. If any of these properties do not hold
for any of the surrogates then the hypothesis test is invalid. Figure 3.22 shows the

The quantile—quantile plot of thei§1for surrogate and seismic data.
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Figure 3.22: g-q plot and Acc plots of T4 and the surrogates for Dt;

quantile-quantile plot for Dt; and the comparative autoregressive coefficient plot in
the bottom plot. The graphs show the desired variable domain as well as straight
line functional relationship. Figure 3.23 is the quantile-quantile plot for the log(M;)
component followed by the comparative autoregressive coefficient plot. The two fig-
ures show the desired variable domain as well as straight line functional relationship.
Figure 3.24 is the quantile-quantile plot for the log(E;) followed by the comparative
autoregressive coefficient plot. The two figures show the desired variable domain as
well as straight line functional relationship. Figure 3.25 plots the cross-correlation
coefficients for the pairs of components for surrogates as well as those of T4 on the

Salne axes.
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The quantile—quantile plot of theis/lfor surrogate and seismic data.
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Figure 3.23: g-q plot and Acc plots of T4 and the surrogates for the log(M;)

Based on the comparisons it can be concluded that the coefficients from the (Dt;, log(E;))
and (Dt;,log(M;)) were probably sampled from the same system. A small bias to-
wards larger coefficients is demonstrated in the (log(M;),log(E;)) pair for the surro-
gates. The slightly larger cross-correlation coefficients have an expected influence on
the D.(€¢/¢,) and AM I scores, although the difference does not affect the conclusion
that it is not possible to discriminate between T4 and an autoregressive process on

the basis of linear statistics only.

3.4.2 Comparative non-linear statistics and hypothesis tests

Using a similar procedure as in the previous section, the hypothesis tests were per-
formed for the 14 phase space reconstructions using D.(¢/¢,) and AMI; scores as

the non-linear test statistics. Each of the 14 comparisons is a comparison between
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The quantile—quantile plot of theTsEfor surrogate and seismic data.
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Figure 3.24: g-q plot and the Acc plot for T4 and its surrogates for log(E;).

components from the original data set with the same set of surrogates. A total

0.4 0.6
Surrogate !Ecoefficients.

0.8

of 21 surrogate sets were initially sampled but due to the problems with the con-

vergence of W in the ICA a few test statistic measures were not realized for some

surrogates. Twenty one surrogates translate to a confidence level of o = 0.05, 16

surrogates translate to a confidence level of v = 0.06, representing the bounds on

the confidence level in each of the hypothesis tests.

Since each of the phase space reconstructions originates from the same system of red

colored noise or surrogate set, the statistics should converge to the same set of values.

The variance in the test statistics across the phase space reconstructions cannot be

attributed to the variance introduced by the ICA. Therefore, such variance needs to

be taken into careful consideration.

The set of figures below reconstruct phase spaces from different groupings in the

1.2
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The cross correlations of the surrogate sets compared to the seismic data set.
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Figure 3.25: The black dots are the cross correlations of T4 and the gray dots are the
cross-correlations of the surrogate data sets. The two sets of points do not separate
significantly.

following order:

{(1:(D1)); (2: (log(M;))); (3 = (log(E))); (4 : (log(M;)),log(E))); (5 : (Dt,log(Ex)));
(6 - (Dt,log(M))); (7 : (Dt,log(M;), log(E)))}-

An o = 1/15 level of confidence applies in all cases.

Figure 3.26 is a comparison of the phase space reconstruction of the inter-event time
intervals Dt; for the data and surrogate sets which shows a separation between the
test statistics of the data and surrogates. The hypothesis that the Dt;’s of the data
is red colored noise can be rejected in both the small scale scattering as well as the

large scale bumpiness of the reconstructed phase space.

Figure 3.27 shows a corresponding comparison for the seismic moments log(M;) of
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The correlation dimension estimate of Dti
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Figure 3.26: Surrogate analysis of Dt;. The top graph is of the correlation dimension
and the bottom of the distribution of the AMI; scores. The test statistic realizations of
the surrogates are in black and those of the data set in gray. Two grays are present, since
each test was repeated with a different separation matrix from the ICA.

the data and surrogates. Similarly, the test statistics of the data set separate from
those of the surrogates. Therefore, the null hypothesis that the log(M;)s of the data
set is red colored noise is rejected in both the small scale scattering as well as the

large scale bumpiness of the reconstructed phase space.

In the case of seismic energy log(F;), there was no separation between the test
statistics of the data and surrogates, Figure 3.28. Hence, the hypothesis that the
log(E;)’s of the data are consistent with red colored noise cannot be rejected in
both the small scale scattering and large scale bumpiness of the reconstructed phase

space.

The red colored noise process is rejected in the case of the inter-event time interval

0.55
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The correlation dimension estimate of Mi
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Figure 3.27: Surrogate analysis of log(M;). The top graph is of the correlation
dimension and the bottom of the distribution of the AM I scores. The test statistic
realizations of the surrogates are in black and those of the data set in gray. Two grays are
present, since each test was repeated with a different separation matrix from ICA.

and seismic moment (Dt;,log(M;)) as indicated in Figure 3.29. The separation
between the test statistics is not as marked as in the reconstruction from Dt; or M;

individually.

The test statistics computed for the phase space reconstruction using the inter-
event interval and seismic energy (Dt;,log(E;)) separate significantly better than
when only log(E;) is used, Figure 3.29. However, the measure of the large scale
bumpiness does not separate as well as the small scale behavior of the reconstructed
phase space. In any event, the hypothesis that the (Dt;,log(E;))’s of the data set are
consistent with a red colored noise process can be rejected in both the small scale

scattering as well as the large scale bumpiness of the reconstructed phase space.

0.8



Dc(slso)

F(AMI)

Chapter 3. Surrogate data analysis 73
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Figure 3.28: Surrogate analysis of log(F;). The top graph is of the correlation
dimension and the bottom of the distribution of the AM I scores. The test statistic
realizations of the surrogates are in black and those of the data set in gray. Two grays are
present, since each test was repeated with a different separation matrix from the ICA.

Different conclusions are obtained for the two test statistics in the comparison of the
phase space reconstruction of the seismic moment and seismic energy (log(M;), log(E;))
of the data and surrogate sets, Figure 3.31. While the AMI; test statistic shows
a separation between the data and surrogates, no separation is observed for the
D.(€/e,) test statistic. The measure of the small scale behaviour does not separate
at all compared to the large scale bumpiness of the reconstructed phase space. Thus,
the null that the (log(M;),log(E;))’s of the data is red colored noise cannot be re-
jected for the small scale scattering. However, it can be rejected for the measure on

the large scale bumpiness of the reconstructed phase space.

Finally, with respect to the inter-event time intervals Dt;, the red colored noise null

is marginally rejected in both the small scale scattering as well as the large scale
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The correlation dimension estimate of Dti and Mi
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Figure 3.29: Surrogate analysis of (Dt;,log(M;)). The top graph is of the correlation
dimension and the bottom of the distribution of the AM I scores. The test statistic
realizations of the surrogates are in black and those of the data set in gray. Two grays are
present, since each test was repeated with a different separation matrix from the ICA.

bumpiness of the reconstructed phase space, Figure 3.32.

From the foregoing, the only data component that did not separate for the set of
test statistics is the log(E;) variable. The Dt; and log(M;) reconstructions separated
best. The difference in the separation behavior log(E;) and log(M;) is interesting
due to the correlation between the 2 variables. However, it was not possible to
explain the cause of this. In general, the T4 data set cannot be labeled as merely
due to the sampling of stationary red colored noise. The data set was sampled over
a period of 12 days and the non-stationary events due to sampling were removed
from the set. The event removal did not affect the frequency of time interval size
behavior of the inter-event time intervals and the time intervals separated the best

among all the variables.
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The correlation dimension estimate of Dti and Ei
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Figure 3.30: Surrogate analysis of (Dt;,1og(E;)). The top graph is of the correlation
dimension and the bottom of the distribution of the AM I scores. The test statistic
realizations of the surrogates are in black and those of the data set in gray. Two grays are
present, since each test was repeated for with a different separation matrix from the ICA.

The AMI scores for the surrogates showed similar behaviour, implying they belong to
the same underlying phase space system. On the other hand, the scores for the data
set showed variation and did not appear to be sampled from the same underlying

phase space system.

The D.(€/¢,) scores for the surrogates did not display the same behaviour as the
AMI scores. The phase space reconstruction containing the Dt; variable behaved the
same. The two other phase space reconstructions containing the M; variable behaved
similarly. Finally, the D.(¢/¢,) scores for E; behaved differently from the others. It
is not clear why the small scale scattering in the red colored noise phase spaces
differed in these groups. The separation is an indication that the ICA dimension

reduction map allowed even changes in the noise structure to reflect onto the lower
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The correlation dimension estimate of Mi and Ei
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Figure 3.31: Surrogate analysis of (log(1;),log(E;)). The top graph is of the
correlation dimension and the bottom of the distribution of the AMI; scores. The test
statistic realizations of the surrogates are in black and those of the data set in gray. Two
grays are present since each test was repeated for with a different separation matrix from
the ICA. Note that the parameter, €/¢, to the correlation dimension is on a log scale.

dimensional projection but did not introduce the behavior itself. If the ICA map
construction introduced the behaviour, then the correlation between the repeated

maps for the ICA map construction would not have reflected the same results.

3.5 Concluding Remarks

Surrogate data analysis is a method that allows to assess whether the structure
in a data set is explained by a specified null hypothesis (Schreiber and Schmitz,
1996, 2000). Surrogate data analysis was performed on three of the components

of the T4 data set, viz. Dt;, log(M;) and log(F;). The null hypothesis was that
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The correlation dimension estimate of Dti, Mi and Ei
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AMI

Figure 3.32: Surrogate analysis of (Dt;,log(M,),log(E;)). The top graph is of the
correlation dimension and the bottom of the distribution of the AM1I; scores. The test
statistic realizations of the surrogates are in black and those of the data set in gray. Two
grays are present since each test was repeated for with a different de-mixing matrix from

the ICA.

the three components of T4 were sampled from a three-dimensional red colored
noise process. The test statistics used in the hypothesis test were the correlation
dimension D, (€/¢,), and the average mutual information lag AMI; on the sequence
of vectors representing the reconstructed phase space from the three variables. The

major findings from the analysis can be summarized as follows:
e The hypothesis can be rejected at a confidence level of at least a = 0.06.

e T4 did not demonstrate a linear scaling range in the 10-dimensional space of the
reconstructed attractor, and hence did not show an actual correlation dimension

during the construction of the hypothesis test.
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e The AMI; scores did show that the some structure existed in the phase space
beyond red colored noise, but the trajectory was far from smooth, as would be

required for high dimensional nonlinear systems to be significantly predictable.

The phase space was reconstructed by means of multivariate delay embedding using a
delay lag of 1 and a dimension per component equal to the first point of decorrelation

in the autocorrelation plots.

e The dimension of the embedding was successfully reduced to 10 independent com-
ponents using independent component analysis. It was not possible to achieve the
same levels of dimension using a PCA map while maintaining 99.9 % of the variance

in the reconstruction.

¢ An immediate consequence of the rejection of the red colored noise process for the
T4 data is that better predictability of the system can be expected using nonlinear
models compared to autoregressive moving average models. This issue is investigated

in the next chapter.

e Rejection of the null hypothesis means that iteratively amplitude adjusted Fourier
spectrum transform (IAAFT) multivariate surrogates cannot serve as synthetic seis-
mic data. A possible reason for this is that the IAAFT multivariate surrogates do

not enforce the same multivariate distribution of the data set on the surrogates.



Chapter 4

Modelling T4 using Long Short-Term
Memory

4.1 Introduction

A Long Short-Term Memory (LLSTM) is a flexible, general map and inference proce-
dure capable of inferring context sensitive grammars from examples. LSTM belongs
to the class of recurrent neural networks with time varying inputs. The network
iterates over consecutive input vectors to compute successive internal states. Subse-
quently, output and error signals are computed from the internal states on request.
The LSTM architecture was first proposed in Hochreiter and Schmidhuber (1991).
In a series of subsequent publications, the architecture was extended and applied to

different benchmark problems.

Traditional time delay neural network architectures, which are trained using the first
derivative of the error signal, have trouble learning sequences of values with long
noisy time lags. An analysis of the first derivative error signal back propagation in
networks with time-varying inputs show that the size of the error gradient decreases
exponentially as it is back propagated into the network. On the basis of this analysis,
the LSTM architecture was constructed to provide a solution to the long time lag,
vanishing error gradient problem. A shortcoming of the original architecture is that
it can only process input sequences of a finite length in a batch process style. The
internal state of the network becomes unstable after it has been presented with an

excessive number of input vectors.
Gers and Schmidhuber (2001); Gers et al. (1999) proposed extensions of the original

79
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architecture which possess the same functionality as the original with the added
advantage of continual prediction. This form of LSTM can be collapsed to an
equivalent of Real Time Recurrent Learning by fixing one of the weights in the
network to a dominating value (Haykin, 1999). The architecture investigated in
Gers and Schmidhuber (2001) was used in modelling the transition table for small
context-free and context-sensitive grammars. The transition table was generalized

from strings taken from the grammar.

Another LSTM architecture was applied in modelling the Mackey-Glass time series
and the Class A laser data set of the Santa Fé time series competition(Gers et al.,
2001, 1999). It was illustrated that the LSTM architecture performed worse than
other time window approaches in modelling and predicting the time series. It must
be mentioned that the values of the time series were presented to the network one
at a time, and to model the time series all the relevant information had to be stored
in the context values of the network. A time window approach was not used in
learning the future unfolding of the time series from past information. Gers et al.
(2001) concluded that the LSTM can “track the strongest eigen-frequency in the
task but was unable to account for high-frequency variance” . Bakker et al. (2000)
obtained improved results on the same data set using a time delay input to an feed
forward neural network, having reduced the dimensionality of the input series by a

PCA linear transformation.

In this chapter an LSTM-based predictive model is used on the T4 data. The LSTM-
based model is subsequently compared with the autocorrelation function of the T4
data set. If the structure in the T4 system is fully described by its autocorrelation
function, the LSTM network should not be able to predict future events any better
than the autocorrelation function. This would be equivalent to testing the null
hypothesis that the T4 system is identical to an autoregressive system. Note that
Long Short-Term Memory is applied to a point process (viz. T4) only for the purpose
of demonstrating that the T4 data set is more predictable than red colored noise
without attempting to construct an optimal model to predict seismic activity. The

presented methodology does not include a mechanism to optimize the model of T4.

The functional form of the LSTM networks implemented for this thesis can be found

in Appendix A.
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4.2 Modelling Using Mean LSTM Networks

Long Short-Term Memory is a parameterized map, Xo(t) “s* Yop(t) that maps

a sequence of input vectors, X, (t) to a sequence of corresponding output values,
Y. (). The network input and output is a sequence of time ordered vectors denoted
by t. The input and output pair are divided into a training set and a validation
set denoted by s. Each LSTM map , i.e. LST—A{’“, maps a given sequence of time
ordered training and validation inputs to a corresponding set of outputs. The mean
estimator Y,(t) is then an average of the LSTM estimates for the desired output
vector at time step ¢ which belongs to either a training set or a validation set. The

mean estimator is computed as

i) = 1N S Valt) (1)

LSTM;,
—

Xk (1) Yir(t) (4.2)

A number of maps, k = 1... N, of the same architecture (see Appendix A.1, 102)
and learning parameters are fit to different selections of training and validation
sets. The parameters of network are estimated only on the training set, and the
actual performance of the network is measured on an independent validation set.
Constructing and evaluating the mean estimators Y;(t) from the LSTM estimators

Yk (t) is done according the following sequence of steps:

1. Dataset setup
The maps from network inputs to network outputs need to be associated with
each other (X, (t), Yz(t)). The sampled association is the basis for fitting the
map represented by the LSTM networks.

2. Training and validation set selection
The data set is divided into two mutually exclusive training and validation
sets. The training set is used in the network’s parameter fit. The validation
set determines the performance of the fit. The two types of sets are denoted

by s and each selection denoted by k.

3. LSTM training

To fit the network a number of network and training parameters need to be
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Figure 4.1: A schematic representation of the 7 steps for modeling and evaluating the
components of T4. The schematic starts with the T4 data set and ends with the
comparison between the mean model and the desired components.

defined. These parameters are the size and shape of the network, the learn-
ing rate, bias term, weight initialization,weight update and error generation

strategy.

4. LSTM estimates
During the iterative fit of the network to the data set an optimal weight set
is reached for that specific training sequence. A set of Y, (t) estimates is

associated with the optimal weight set.

5. Repetition
Steps 1 to 4 are repeated to generate a number of optimal weight sets and

associated Y (t) estimates. Each repetition is indexed by k.

6. Mean estimates

A mean validation estimator is obtained by averaging the validation set estima-
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tors for the different fits from step 5. A mean training estimator is constructed
from the individual training set estimators for the different fits sampled in step
5.

7. Prediction test
The objective of fitting the network is to establish if the future evolution of
T4 can be derived from the past behavior with improved performance than is
possible using autoregressive models. The future evolution modelled by the
mean estimators is evaluated by conducting two hypotheses tests. The first
hypothesis is that the correlation between the estimators and the desired values
are greater than zero. The second hypothesis is that correlation coefficients

are larger than the autoregressive coefficients.

The 7 steps are schematically shown in Figure 4.1. Results from LSTM modelling

are reported later in the chapter.

4.3 Data set training and validation

The first three stages in constructing and evaluating the mean estimator consists of
fitting an LSTM model to a set of input-output pairs previously partitioned into a
training and validation set. This section of the chapter deals with these three closely

related steps.

The input data X,;(t) is obtained from the two 10-dimensional ICA scores used
in the surrogate data analysis of Figure 3.32, i.e. the two sets of ICA scores for
{(Dt;,log(M;),log(E;))}. Each of the ICA score vectors was defined in equation
(3.26) and is denoted by s'¥ with index i iterating over the sequence and a denoting

a set of ICA scores, i.e.

Xar(t) = (51, 521)- (4.3)

The set of targets for the network, Y; is constructed from a 5-dimensional lag of
the components of T4. The vector of components is shifted one step into the future
from each input vector. Thus, (s1?, s3?) is associated with time stamps i+1 to i+6 of

T4’s components. The outputs are scaled to to be within the range [-0.5 0.5 using
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Figure 4.2: The input-output map for modeling T4 with LSTM.

a function S(.), that is,

Y, =S5(\/Dtisi,..../Dtiys,10g(Mis1), ... log(Myys,10g(Eps, . . ., 1og(Eyys)[4.4)

The desired output for the data set is referred to as Y since each lag of T4 compo-
nents is uniquely identified through its time stamp ¢. The time interval components
of T4 are scaled to their square root prior to transforming using S(.). Note that
all the correlation tests are done on the desired values and not on the original com-
ponents of T4. Figure 4.2 is a schematic representation of input-output map for
modelling the components of T4 using LSTM. The schematic starts with the inputs
as a delay lag of T4 components, starting at time stamp ¢. The schematic ends with
the outputs as a delay lag of 5 for the components of T4 starting at time stamp ¢+ 1.
The LSTM network inputs are explicitly defined in equation 4.3 and the outputs
defined in equation 4.4.

The data set is partitioned using a non-replacement random selection such that 90%
are assigned to a training set and the rest to a validation set. Each training set is
fitted with a network of 4 blocks consisting of 1 cell each. The bias term was fixed
at 0.95 and the learning rate alternated between 1 x 10° and 1 x 10°. Each fit was
iterated over 25000 epochs. An error signal was generated for every vector of the
training set. Weight updating occured each time an error signal was generated. The

fitting procedure was repeated over 149 training and validation set selections.

The training sequence for each epoch was monitored using a Normalized Prediction

Error (NPE) for higher dimensions given by

mean(|Ye,(t)— Y |)

NPE), = — —
mean(| Y; —mean(Y;)|)

(4.5)

The mean(.) denotes the mean of a sequence of values and the |.| denotes the euclid-

ean norm. The NPFE), score is the ratio of the average distance of the error of the
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Figure 4.3: An error per epoch plot for an LSTM training sequence.

estimator compared to the average distance of the error of the mean estimator
mean(Y;) . Figure 4.3 shows a sequence of NPE errors for the training and vali-
dation sets during training. The training was stopped after 25000 epochs. Clearly,
data training and fitting does occur with the validation set tracking the behaviour
of the training set. Figure 4.4 gives the NPE errors for each of the 149 LSTM maps.
An LSTM map with minimum training error was sampled from the 25000 epoch
sequence. The jump in NPE validation error is the difference in the learning rate.
The initial network was trained with the smaller learning rate. A few of the errors
on the right of the graph indicate over-fitting of the training set as validation error
greater than unity occurred for relatively small training errors. A larger number
of the other fitted networks shows that more epochs of training maybe required for
an optimal fit. Figure 4.5 gives the number of times a 15-dimensional vector of

T4 components was selected as either a training or a validation vector. The mean
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The normalized prediction error for the selected LSTM networks.
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Figure 4.4: Training and validation errors for the selected LSTM networks.

validation estimator is constructed for values with at least 3 validation estimates.
Also shown in the plot are the number of points used in computing the correlation
statistics (2525 - almost the whole data set!). The large number of data points in
the mean estimators helps to provide tight confidence bounds on the test statistics
used in hypothesis testing. The figure shows that no portion of the domain of Y;

was left out in either the training or validation mean estimators.

No effort was made to find an optimal training strategy or network architecture for
the particular problem of the T4 map. The focus was on establishing the expected
behavior of any map when relating the past behavior of T4 to its future behavior.
Any valid map from the past to the future unfolding of the system performing
better than an ARMA model would have been sufficient. Finding the training and
set selection procedure that best solves the T4 problem is a problem that is beyond

the scope of this study.
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The number of times a Y; was selected for training or for validation.
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Figure 4.5: The number of times a Y; vector was selected for training or for validation.
4.4 Estimating the components of T4

A total of 149 LSTM fits to a 90% training set and a 10% validation set were used
to construct a mean validation estimator and a mean training estimator for the
15-dimensional desired output vectors. Each desired output vector represents a lag
of 5 observations from the components of T4 beyond the time stamp of the input
vectors. A lag of 5 observations into the future represents a prediction of 5 consec-
utive components for each network output. The following hypothesis tests include
correlation coefficients of estimators for predictions up to 5 step ahead. Figure 4.6
displays the mean validation estimator for one-step prediction in comparison to ex-
pected values. The top graph displays the relationship of the two variables to event
ordering, and shows that the estimated values constructs an event series that is

similar to the original event. The mean estimators have the ability to model T4

2501 2633
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The scaled time intervals S(Dt|+1) and their mean estimator in event order.
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Figure 4.6: A plot of the estimate of S(Dt;11) in comparison to the actual values.

otherwise the mean validation estimator would have been some function completely
different to the original data, for example, a flat line. In the bottom graph which
shows the relationship between the original component and its estimator, a linear
trend can be discerned. Although the trend is not large, it is significant due to the
large number of points that are used in the estimate. The linear trend does not
show that the mean validation estimator results in a event sequence similar to the
original data set. A more extensive relationship between desired estimators and the
validation estimators might be established using a different, time dependent mea-
sure between the two sequences. A possible measure would be the AMI between
the two variables. Figure 4.7 shows the autocorrelation coefficients for the 15 mean
validation estimates. The estimator results in a significantly more autocorrelated
event sequence than the original data set. The result is not surprising since the

LSTM maps used in the estimate have only cell to output connections. The auto-
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The autocorrelation coefficients of the components of the LSTM based mean estimator.

Sequence lag.

Figure 4.7: The autocorrelation coefficient estimates for the modeled components of the
T4 dataset.

correlation sequences separate into two groups: the estimators for the time intervals
on the inside, and the estimators for the event sizes on the outside. Figure 4.8 shows
the cross-correlations in the mean validation estimator. Note that the E(+1)-label
refers to the S(log(E;+1)) component of T4. The estimators for the time intervals
are almost the same values, as are the estimators for the event sizes. However, the
estimators for the time intervals differ from the estimators for the event sizes. The
large cross-correlations and autocorrelation values in the estimators are undesirable
because they are not present in the original data set. Thus, LSTM models a com-
pletely different system generating similar event sequences but with different auto-
and cross-correlation structures. It appears as if LSTM is estimating two variables

instead of three.

Maintaining the auto- and cross-correlation structure in a training set might be
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The cross correlation structure of the LSTM based mean estimator.
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Figure 4.8: The cross correlation coefficients for the modeled components. The
E(+1)-label refers to the S(log(Fi+1)) component of T4.

another source of error that can help in the search direction of the weight updating.
That is, the emergent correlation structure in the estimators is an inherent part of

the LSTM network after 25000 epochs of training.

4.5 Hypothesis tests on correlation coefficients

Hypothesis tests were conducted on the mean validation and training LSTM esti-
mators to establish whether they predict the future evolution of the system better

than an autoregressive moving average according to the following 3 steps:

1. The correlation coefficients of the mean estimators,
R, i € Comp = {Dt(+k); E(+k); M(+k) ek =1...5} are compared to the
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autocorrelation coefficients Acc;, i € Comp, of the component at the same lag

of estimation;
2. The R,; values are subjected to the hypothesis test that they are equal to zero;

3. The R, values and the Acc; values are subjected to the hypothesis test that

they are of the same size.

The indices in C'omp corresponds to the labels on the figures demonstrating the

component and offset corresponding to each estimator.

The hypothesis test in step 2 that the correlation coefficient p between a component

of T4 and a mean estimator is zero, i.e.

Hy: p=0
Hy: p#0

uses the test statistic

RVN —2
t = ——— ~ Student’s-T(N — 2) (4.6)
1—-R?
with T'(N — 2) distributed as Student’s ¢-distribution with N — 2 degrees of freedom
under assumption of the Hy hypothesis. The value of N = 2525 is the number of

pairs of values on which the R value is computed.

The comparison in step (1) above is depicted in Figure 4.9. The Ry, values are larger
than the Acc; values for both the training and the validation sets. The comparative
Ry, = 0.0038 value for N = 2525 is the cutoff value at which the hypothesis will
be rejected at an a = 0.999 level of confidence. The alpha value is rather large but
demonstrates the importance of the large number of points resulting from the mean

estimators

Ry, = 0.0038 = /T(N —2)2/(N — 2+ T(N —2)2). (4.7)

Since the cutoff value is smaller than the estimates, the hypothesis that the correla-
tion between the desired values and the estimated values is zero can be rejected at

almost any level of confidence.
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The auto- and correlation coefficients for Y; and the mean estimators.
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Figure 4.9: The correlation coefficients between the Y;s and the estimator; the
autocorrelation coefficients of T4; the critical value for rejecting that the correlation
coefficients (not the autocorrelation coefficients) are equal to zero. The E(+1)-label
refers to the S(log(E;+1)) component of T4.

Figure 4.9 depicts four sets of correlation coefficients: (i) correlation coefficients
of the mean training estimator; (ii) correlation coefficients of the mean validation
estimator; (iii) the autocorrelation coefficients for a lag of data components; and
(iv) the cutoff values for rejecting the hypothesis that the correlation coefficients for
the mean validation estimates are not zero. Comparing the four sets leads to the

following conclusions:

e The training and validation correlation coefficients are larger than zero;

e The training and validation correlation coefficients appear to be larger than

the autocorrelation coefficients;

e The training and validation correlation coefficients degrade with time: The

E(+1)
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correlation coefficients can only degrade if some kind of structure was present;

e The training and validation correlation coefficients degrade in the same way:
The LSTM networks could train more.

The hypothesis test in step 3 that the correlation coefficients from the mean esti-

mator is essentially the same as the autocorrelation coefficients, i.e.,

HO: PAcc; = Psi = P
Hl: P Ace; 7é Psi

is based on the test statistic:

F(Ry) — F(Acc;) — F(p) — F(p)

2(Rgi, Acc;) = (N —3) T 1V = ~ Normal(0, 1) (4.8)
F(R) =1/2log, (%[;) (4.9)

with Normal(0, 1) distributed as Gaussian with zero mean and unit variance under
assumption of the H, hypothesis. The values of N4, and Ny; are the number of
pairs of values on which the R values are computed. F(R) is the Fisher transform
of correlation coefficients and the test statistic z is derived from the distribution of
F(R). In the hypothesis test z(Rs;, Acc;) and the probability of realizing z(Rs;, Acc;)

under the null hypothesis are evaluated.

Figure 4.10 depicts the realized test statistic for the hypothesis that the correlation
coefficients for the estimators are the same as the autocorrelation coefficients be-
tween two components separated by the same lag. The test statistics for log(M;,3),
log(M;2), log(M;+1) could probably have been sampled from a normal distribution
of zero mean and unit variance. The other correlation coefficients of the other com-
ponents were probably not sampled from the same distribution. The hypothesis
that the correlation coefficients for the other estimator are the same as the autocor-
relation coefficients for the components can be rejected, possibly with a small error.
A critical value of 1.96 on the Y-axes corresponds to an error of & = 0.975 and most

of the realized values are above a critical value of 2 standard deviations.

The mean estimators demonstrate more structure in T4 than could be expected of

red colored noise because:
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Realized test statistics for comparing the autocorrelation to the model correlations.
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Figure 4.10: The hypothesis test that the correlation of the LSTM estimators are
significantly different from the autocorrelation coefficients. The y-axis is the value of the
test statistic. Under assumption of the null hypothesis the test statistic should be
distributed normal(0,1). The E(+1)-label refers to the S(log(F;+1)) component of T4.

All the correlation coefficients for the estimators and the components are sig-

nificantly different from zero;

The correlation coefficients for the Dt;s and log(E;)s components are signifi-

cantly different from the autocorrelation coefficients;

The correlation coefficients for the Dt;s and log(F;)s components are larger

than the corresponding autocorrelation coefficients;

The correlation coefficients between the estimated components and the actual

components decrease persistently with an increase in time.

E(+1)
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4.6 Concluding Remarks

The chapter demonstrated that the components of T4 (log(E;) and Dt;) can be
predicted beyond the structure exhibited by red colored noise (viz. an autoregressive
moving average, scaled with a fixed invertible nonlinear function) The prediction
was conducted on a lag of values into the future and the predictor outperformed the

autocorrelation coefficients on all the lags.

The estimator was constructed by taking the mean estimator for the validation sets
of a number of LSTM fits on a training set. The mean estimator was successful even
though neither the LSTM network architecture nor the learning parameters were
optimized for the fitting problem. The LSTM model showed that it could generate
output similar to the desired output but with a different autocorrelation structure.
The number of valid estimates resulting from the mean estimator scheme helps to
improve on the level of significance for the hypothesis tests relying on the estimators.
The optimal network architecture and learning parameters for fitting LSTM on the

T4 problem is an open research issue.



Chapter 5

Conclusions

In this study, seismic data (referred to as T4) were analyzed by comparing it with
artificially generated data (surrogate data) that had the same autocorrelation and
probability density functions as the T4 data set. The surrogate data were generated
as realizations of the estimated autocorrelation and probability density functions of
the T4 data set. A total of 16 such data sets were generated in order to get reliable
estimates of the statistics on which the comparisons of the T4 and surrogate data

sets were based.

Three statistics derived from each of the data sets, viz. the average mutual informa-
tion, the correlation dimension and the prediction error, were used in the compar-
isons. The study demonstrated that the T4 seismic system can be distinguished from
an autoregressive system, possibly sampled through a nonlinear invertible function,
due to its time invariant (viz. persistent) properties. The hypothesis that T4 was

sampled from the specified autoregressive system was rejected on all three measures.

A possible explanation for the distinction between T4 and the noise system is the
seismic law regarding the clustering of large events (Section 3.3.1, page 53). The
other 2 seismic laws relevant to the hypothesis test on T4 were sufficiently explained
by the null hypothesis. Hence, the noise generating mechanism cannot be used for
generating synthetic seismic data nor for determining the expected future unfolding

of a seismic generating system.

The measures of the small- and large-scale scattering on the flow of the T4 state space
suggested that T4 does not represent a deterministic system (Section 3.3.1, page 51).
This conclusion was supported by the test for a one-to-one map from past T4 states

to the future unfolding of T4 using Long Sort-Term Memory, (Chapter 4). Even
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though the LSTM model did predict the future behavior of T4 more successfully
than expected for systems consistent with null hypothesis, the model only predicted

a small portion of the variance in the T4 data set (Section 4.5, page 91).

In the phase space reconstruction of T4 the study demonstrated that:

e The ICA map was an effective dimension reduction tool that maintained more

of the original variance of T4 than PCA could for the same number dimensions.

e The probability distribution of the AMI score serves as a means to discrimi-
nate the surrogate data from the original data set (for example Figure 3.26,

page 72).

e The TAAFT surrogate data generator cannot be used as a synthetic seismic
generator ( Section 3.4.2, page 69) because of the power of the average mutual
information and the correlation dimension to discriminate between T4 and its

surrogate sets.

In the nonlinear modelling of T4 to its future events the following were observed:

e LSTM succeeded in providing the models that out performed the autoregres-
sive modelling (Section 4.5, page 91).

e A large bias term helped in the modeling of T4. Initial tests on fitting an

LSTM model to T4 struggled to converge to a decreasing error term.

e The optimal fit for the T4 estimator from LSTM was not reached, an issue

that can be addressed in future studies.

e Constructing a mean estimator from a number of LSTM fits gave a model for
T4 over the whole domain of its variables with sufficient power to model the

future unfolding of T4 better than the estimated autocorrelation function.

The hypothesis test can be developed and applied to the study of seismicity in
general since T4 behaves in a similar manner to seismicity reported in the literature
(Section 3.3.1, page 51).

This study suggests that seismic data like T4 can be used to improve current pre-

dictions on seismic hazards in mines.



Appendix A

The rule derivations for the LSTM
network

A.1 LSTM forward pass

Let DS = (X(t),D(t)),t € {i : N | i = 1...n} be a data set consisting of a
sequence of paired values. Long Short-Term Memory both an iterative optimization

algorithm and a parameterized map,

X)) 22 Y@

The parameters of the map are updated at each iteration of the optimization al-
gorithm in the general direction that minimizes the individual error terms e(t) =
3 S 9 (di(t) —ui(t))?. The iterated terms d;(t) and y;(t) are the components of D(t)
and Y'(t), respectively, O being the size of the output dimension. The iterator of

the error terms,
te{i:0...n|e() is an error term i} = subDS
can iterate over any subset of indices to the data set.

The LSTM map consists of two maps. The first assimilates input vectors into an

internal storage vector
— /. LSTMy +=
(H(t—1),X(t) =" (H(t))

and the second maps components of the interval storage vector onto the estimated

vector outputs
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Input vectors are assimilated into the hidden vector because the first map uses the
current input vector in combination with components of the previous hidden vector
to compute the current hidden vector. The second map allows LSTM to map output

vectors disjunct from the input vectors.

The two LSTM maps are described in terms of the artificial neural networks (ANN)
literature. A map consists of a weighed, directional, connected network of smaller
units. Each unit is stimulated with an activation value to which the unit responds, as
it sends or propagates a signal to the units it is connected to, in the proper direction
of connection. The input to the network is viewed as signals propagated into the
network from input units and output from the network of units, viewed as signals
propagated to output units. The two LSTM networks can then be combined to form
a single LSTM network of units and weighted connections propagating signals. In
this implementation of LSTM the activation value of a unit is a linear combination
of the signals and the weighted connections. The activation function mapping the
activation value to the response signal of the unit is mostly a logistic sigmoidal
function. One deviation in LSTM from the network of connections of other ANNs
is multiplicative connections between some of the response signals of a normal unit
and the activation value of the multiplicative unit. In the LSTM architecture these
are referred to as multiplicative gates since they scale the size of the activation value

flowing into a unit.

The minimum unit of computation in the LST' My map is known as an LSTM mem-
ory block. A memory block is a conglomerate of units, each performing a specialized
function and connected to each other in an unorthodox manner, compared to normal
ANNs. The LSTM architecture allows for a variable amount of memory blocks. A
memory block consists of an array of memory cells and three multiplicative gates.
Each of the cells and the multiplicative gates has an activation value and an associ-
ated response value at that time step. Each memory cell of a memory block consist
of a self connected linear unit known as the “Constant Error Carousel” (CEC), an
input squashing unit, and an output squashing unit. A cell’s input unit maps its
activation value with function g(.). The response to the cell’s activation value is
scaled with the first of the block’s multiplicative gates. The activation value of the
CEC is computed by adding the scaled response of the input squashing unit to the
previous response of the CEC, scaled with the second of the block’s multiplicative
units. The CEC responds with the same value as its activation value. The CEC’s

response is the activation value of the output squashing function. The response of
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the output squashing function h(.) is scaled with the third of the block’s multiplica-
tive gates, resulting in the cells response value. The response from a memory block
is a vector consisting of the response values of the block’s cells. The values used in
the hidden vector to combine with the input vector to assimilate into the internal
memory of the network are the response values of the cells and the units responsible
for the multiplicative gates. The internal memory of the network consists of the
hidden vector and the response values of the CECs. All the memory blocks in this

implementation of LSTM have the same amount of cells.

Let

e In={k,K:N|k=1...K and k is an index to an input component ek} be

the set of indices of the elements in the input vector;

e Gates = {in, scale, out} be the set of indices to the multiplicative gates in the
LSTM architecture;

e Let Blocks ={b,B: N |b=1...B and b is an index to a memory block eb}
be the set of indices to the memory blocks in die LSTM architecture;

o Let Cells = {c,C: N |c=1...Cand¢is an index to a cell in a memory block
ec} be the set of indices to the cells of each of the memory blocks in the LSTM
architecture. In cases where two of the same elements of the natural numbers
N refer to different components in the same set and lead to an ambiguity, a

distinction will be made.

Then ¢ € BC = Cells x Blocks is the set of indices to each cell of each memory
block in the LSTM architecture and G = Gates x Blocks is the set of indices
to each multiplicative gate for all blocks in the LSTM architecture. This defines
the index h € Hide = {Cells x Blocks U Gates x Blocks} as the set of indices
for all the hidden units of the LSTM architecture. It follows that m € LSTM =
OutUCells x BlocksUGates x BlocksUIn refers to an index to any of the components
in the LSTM architecture. A weighted connection from unit [ € LSTM to unit
m € LSTM is indicated by W,,, the activation value of unit m at input value
t € DS, is indicated by net,,(t) and the response as Y,,(t) = Y., (net,,(t)). A
correction has to be added to the usage of the indices in Hide. The cells of the
memory blocks are denoted by BC. The usage of this index depends on the unit

it refers to. As source it refers to the response of the cells of the memory blocks.
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Figure A.1: A graphical representation of an LSTM network with 3 input nodes, two
memory blocks, By and Bs, with two CECs each and one output node. The output layer
is connected like the architectures used in our study: no gate node to output node
connections. The hidden layer demonstrates only the connections to one node, including
the bias connection, b. For By the input and output squashing functions, g(.) and h(.),
are indicated as well as the multiplicative scaling gates: Y(;,,pu,2), cell input gate; Y caze 2)
cell forget gate; Y ueput,2) cell output gate. The CECs are indicated with Sp; and Saa.

As a destination it refers to the input squashing unit for each of the cells. The
combination does not result in an ambiguity in this implementation of the LSTM

map since no unit requires both indices as a source and a destination at the same
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time.

The LST My map is then initiated by the activation values for the hidden units:

nety(t) = Y Waix Xi(t)+ > Winp # Ya(t — 1) (A.1)
el heHide
m € Hide.

The LST My map is then completed by the update of the CEC’s and,

Sc(t) = Sc<t - 1) * }/;calexb(netscalexb<t>) + g(netc(t)) * }/mxb(t) (AQ)
c € BC, b e Blocks

the computation of the response for each cell for each blocks.

Y.(t) = Y.(net.(t)) with (A.3)
net.(t) = h(Sc(t)) * Yourss(netourxs(t)), ¢ € BC, b € Blocks

The LST Mo map is then computed from the response signals from the array of cell

and gate units of the blocks:

Yi(t) = Yilnetn(t)) with (A.4)
nety(t) = Y Wip*Yi(t), k € Out
heHidd

The LSTM architecture discussed in the thesis and the map discussed above is not a
completely connected network of units. The connection of W,,,, m € Out, n € In,
is not a part of the LSTM map as defined above, although the LSTM architecture

allows for such connections in principle.
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A.2 LSTM backward pass

The LSTM map from input to output vectors is fitted to the desired output vectors

by iteratively changing the weights of the connections between the units of the map.

The optimization algorithm for the parameters in this implementation uses a gra-
dient descent adaption of the back propagation algorithm for the special network
architecture. The direction of the gradient is provided by the partial first derivative
of the error distributed over the linear map of the activation value for a unit. The
first derivative error information is distributed throughout the LSTM map across

all units and the associated weight change computed.

A fully connected LSTM architecture includes two recurrent connects. The first
is in the hidden vector used as input in combination with the input vectors. The
second is in the self connected units of the CECs. The hidden units of memory
blocks follow the same approach of first derivative gradient descent as the truncated
Back Propagation Through Time used in an Elman ANN (Zurada, 1992). Error
signals flowing out of the memory block are truncated after they have been used in
computing the change in weights immediately connected to the memory block. No
error signal flows back into a memory block once it has left any of the other memory
blocks. The same is not true for the CECs, as the error signal in the self connected
unit is allowed to propagate back in time as many steps as it has been iterated itself.
The partial derivative information relating a change in response value in the CEC
to the weights responsible for its inputs is maintained in a manner similar to Real
Time Recurrent Learning (RTRL) while the forward pass of signaling is conducted
(Haykin, 1999).

The implementation of LSTM used in this study is not a completely connected
network. Input signals are connected only to the indices of the hidden units. The
response of the hidden units are connected to the full range of hidden units. None
of the multiplicative gate units are connected to the output units, only the array of

cells of the memory blocks are connected to the outputs units.

In the following AW, (t) m,n € LSTM refers to the change in the weighted
connection connecting unit n with unit m as a result of the error signal generated
at the input-output pair of t. The derivative of a function f(.) is denoted f(.). It is
important to note which activation of the hidden vector is responsible for a weight

change at the presentation of error signal ¢. Signals indexed with a ¢t — 1 are either
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the activation value of a previous layer or from a previously presented vector.

The weight updates of this implementation of the LSTM architecture differs slightly
from the weight updates used in the literature in that a momentum term is added
to the weight updates. The momentum term is a parameter added to the training

process with a value of 0 for the LSTM maps in the technical reports,

AVan(t) = ﬁAWmn(t - 1) + aém(t)ym(t)v (A5>
m,n € LSTM, a; 3 € R

In the above general weight update rule for the back propagation error gradient de-
scent type of optimization d,,(t) provides the direction for that specifically weighted
connection of the local gradient to minimize the loss function for output vector
number ¢. The value of 0,,(¢) is computed with the back propagation of the error
signal according to the partial derivative chain rule. The rules computing the value
of AW, (t) m,n € LSTM in terms of the indices for the units of the LSTM map
are presented below. For a full analysis of the partial derivatives upon which these
rules are based see Hochreiter and Schmidhuber (1991) or Gers et al. (1999).

During successive iterations of the LSTM map, the partial rate of change for a given
CEC in terms of the weights responsible for its updated values are maintained, as
with RTRL. Let the rate of change of every CEC in terms of a change in weight
affecting the value of the CEC be denoted by:

a5:(t) .
——~ with

Wom

m € InU Hide, b € Hide and ¢ € BC

DS; .(t) =

This results in a table of DS, (t) indexed by the source and location indices defined
above. The table is initialized as DSZ,(0) = 0 for all elements. All the entries in
the table not updated are fixed at zero. The rules to maintain the definition of the
table during successive iterations of the LSTM map, using the above defined indices

are:
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for b€ {in} x Blocks C G (A7)
DS; (t) = DSE (t — 1)Yy(t) + g(neto(t))Yy(nety(t)) Yo (t — 1), m € Hidd
DS¢ (t) = DSS (t — 1)Yy(t) + g(net (1)) Yy(nety(t)) Y (t), m € In

for b€ {scale} x Blocks C G (A.8)
DSE (t) = DS;, (t — 1)Yy(t) + so(t — 1)Yy(nety(t)) Y (t — 1), m € Hidd
DS, () = DSi, (t = 1)Y5(t) + sc(t = 1)Yy(nety(t))Yu(t), m € In

for  b,ce BC, b= (i,})) (A.9)
DSy (t) = DSy, (t — L)Yu(t) 4 g(neto(t))Yinx; (t) Y (t — 1), m € Hidd
DSy, (t) = DSy, (t — 1)Y3(t) + g(net(t))Yinx;(t)Yin(t), m € In

For an error signal,

er = dip(t) — yr(t), k € In

propagating into the network, the first step is to compute the local gradient d;, L €
LSTM for the reduction of the error signal. The second step is to compute the
change in weights for that local gradient in terms of the signal propagated over the

connection or representative value of past signals.

The local gradients, in terms of e, are computed as:
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for

for

for

ke ln (A.10)

outG = (out,b) € {out x Blocks} C G (A.11)
5outG’(t) = Y:)utG netoutG [ Z h, cb)(t)) Z wk(c,b)gk(t))
ceCells keOut
= (i,b) € BC (A.12)
ec(t) = Yiout b)(t)h(SC(t)> [ Z wkc(sk(t)]
keOut

The associated weight changes are then, for m € LST M:

for

for

for

k € InUout x Blocks (A.13)
Awkm(t) = &5k(t)ym(t)

g = (i,b) € {out; scale} x Blocks C G (A.14)
AWpn(t) = « Z e(cvb)(t)DS‘((]?.;f)

ceCells
c=(j,b) € BC (A.15)

AW,n(t) = ae.(t)DSC. (1)

A.3 Functional LSTM correctness

“There is always one more bug...

2

is commonly known as the programmers’ rule

of anthropology. The implementation of LSTM is no exception. The code was

debugged in various ways, but unfortunately no guarantees can be provided that

every bug in the implementation was found. In the literature LSTM’s functional

correctness is demonstrated empirically by benchmark problems. A bug in an em-

pirical model poses a problem only if it stops the network from doing what it is

supposed to do. Benchmark problem solving does not provide an absolute reference

for correctness.
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The first step in forming a correct implementation was in picking an easy and accessi-
ble design for the implementation. LSTM was implemented as an abstract data type
in a procedural subset of C++ (Stroustrup, 1997) using for loops and arrays. The
C++ implementation is sufficient for research purposes, while not over specifying
the structure of the implementation and creating unnecessary complexity. Weights
and internal states were grouped together in such a way that the mapping in the
network can be performed with as little iterations over indices as possible, forcing
errors to occur in groups. During implementation, text output of computed values
was used to detect obvious errors. After the C+-+ implementation was finished,
a specific LSTM architecture was implemented on a spreadsheet and the results
compared to the C+-+ implementation. Benchmark problems were used from the
continual LSTM prediction paper (Gers et al., 1999) as well as the application to
the Santa Fé laser data set (Gers et al., 2001). Implementing the LSTM algorithm
would have been quicker if a constructed solution for a weight update iteration was

available, similar to the one used in the spreadsheet.

The spreadsheet comparison would not have been viable without the implemen-
tation adhering to some variance reduction techniques, as proposed by Law and
Kelton (1991). The idea is to fix the sequence of random numbers used in a specific
initialization of LSTM as a seed to the random number generator. A fixed random
seed will remove any stochastic component for a specific instance of a network. This
type of random seed implementation and subsequent instance-variance control was

found lacking in other implementations of numerical algorithms used in the thesis.
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Algorithm listing

B.1 Code for ICA transforms

The Matlab code for transforming the embedded vectors, X, into a vector space of the
d number of independent components is given. The ICAmap function is an interface to
Hugo Gévert’s implementation of the fixed point ICA approximation algorithm. His
initial implementation combines a number of 1C estimation scenarios. Only the code
representing the method of analysis used in this thesis is listed. Even though this
code was not specifically implemented in this thesis, it is included as a specification
of the IC approximation mechanism. Only portions of the ICA implementation

actually used for the thesis are presented.

function |[vectors, W] = ...
ICAmap (X, d, ica_ count, parms, conv_step, pca_pers)

%X — The embedded vectors as rows.

%d — The number of ICs to compute.

%ica _count— If the convergence takes more steps than this, stop
%parms — wariance parameter to the Gaussian kernel
%conv_step — the step size during convergence

%pca _pers — total percentage of wvariance of in the first PCs.
[ ap, mp, stdp | = auto(X);

| E, Di | = pcamat (ap’);

%calculate the number of PCs

pca_pers = 0.99;

dim = 1;

while sum(diag(Di((end—(dim—1)):end, (end—(dim—1)):end))...
./sum(diag(Di)))< 0.99,

dim = dim+1;
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end

%cut down the dimension and handle a bit of noise
E =E(:,end—(dim—1):end);
Di = Di((end—(dim—1)):end, (end—(dim—1)):end);

%balance the input variables to remove
%spurious correlations, ie scale not rotate

| v, wm, dwm | = whitenv(ap’, E, Di);

%infer an inverse to a proposed mixzing matrix

| A, W | = fpica (v, wm, dwm, ’'symm’, d, ’gaus’,
'gaus’, 0, parms, conv_step, ica count);

%deMixz the proposedly mized signals

vectors = (Wxap’) ’;

I eI G Ve I e G I e G I e e G H e e 6 e e 60 e 6 60606 6060606606

function |[newVectors, whiteningMatrix, dewhiteningMatrix|...
= whitenv(vectors, E, D);

%Whitens the data (row wvectors).

%Returns the whitened vectors (row wvectors),

%whitening and dewhitening matrices.

%

% wvectors Data in row wvectors.

% E Eigenvector matriz from function ’pcamat’

% D Diagonal eigenvalue matriz from function ’pcamat’
% 24.8.1998

% Hugo aGuert

% — —

% Calculate the whitening and dewhitening matrices
whiteningMatrix = inv (sqrt (D)) x E’;

dewhiteningMatrix = E x sqrt (D);

% Project to the eigenvectors of the covariance matriz.
% Whiten the samples and reduce dimension simultaneously.
newVectors = whiteningMatrix * vectors;

I I eI e e VeI e Ve I e Ve 6 e e 606 e e 6060 e 606000660606

function [A, W] = fpica (X, whiteningMatrix, dewhiteningMatrix
approach , numOfIC, g, finetune, al, a2, myy, maxNumlterations);
%FPICA — Fixzed point ICA. Main algorithm of FASTICA.

Perform independent component analysis using
Hyvarinen ’s fized point algorithm . Outputs

an estimate of the mizing matriz A and its inverse W.
Follow the symetrical method, converge to all the ICs
at once.

N N N N N N N K

B
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:the whitened data as row wvectors
whiteningMatriz

ccan be obtained with function whitenv
dewhiteningMatriz

ccan be obtained with function whitenv
numOfIC [ 0 — Dim of whitesig |

cnumber of independent components estimated
g [ gaus’ |

cthe mnonlinearity wused

finetune[ ’gaus’ |

cthe mnonlinearity used in finetuning.

al [0 / runused

a?

cparameter for tuning ’gaus

)

3
g

step size in stabilized algorithm
v marNumlterations

% : mazximum number of iterations

%

% 28.8.1999

% Hugo aGuert

N AT ¥ N aF aF aF R ¥ ¥ ¥ K N K R K K

% Default values

| vectorSize , numSamples| = size (X);
%stopping criterion
epsilon = 0.0001;
myyOrig = myy;
% When we start fine—tuning we’ll set myy = myyK * myy
myyK = 0.01;
%the mnonlinearity used
usedNlinearity = 30;

finetuningEnabled = 1;

%the nonlinearity used in fine tuning
gFine = 30 + 1;

%Watch and guide the convergence process
stabilizationEnabled = 1
stroke = 0;
notFine =1
long 0

%Dewhitened basis vectors.
A = zeros(vectorSize , numOfIC);

%Take random orthonormal initial wvectors.
B = orth(rand(vectorSize , numOfIC) — .5);

BOld = zeros(size(B));
BOld2 = zeros(size (B));

%This 1is the actual fized—point iteration loop.
for round = 1l:maxNumlterations + 1,
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if round = maxNumlterations + 1,
A=];
W=[];
return ;

end

%Symmetric orthogonalization .
B =B % real(inv(B’ %« B)"(1/2));

%Test for termination condition. Note that we consider opposite
%directions here as well.

minAbsCos = min(abs(diag(B’ = BOId)));

minAbsCos2 = min(abs(diag(B’ * BOld2)));

if (1 — minAbsCos < epsilon)

%Has convergence been reached?

if finetuningEnabled & notFine
fprintf(’'Initial_convergence,_fine—tuning:_\n’);
notFine = 0;
usedNlinearity = gFine;
myy = myyK % myyOrig;
BOld = zeros(size(B));
BOld2 = zeros(size (B));

else
fprintf(’Convergence_after _%d_steps\n’, round);
%Calculate the de—whitened vectors.
A = dewhiteningMatrix * B;
break

end

elseif %stabilization FEnabled

%If convergence has not been reached, maybe some adjustments?

if (Tstroke) & (1 — minAbsCos2 < epsilon)
%convergence in one direction and not in the other.
fprintf(’Stroke!\n’);

stroke = myy; => Tstroke = false
myy = .5*myy;
if mod(usedNlinearity ,2) = 0
usedNlinearity = usedNlinearity + 1;
end
elseif stroke
myy = stroke;
stroke = 0;
if (myy =— 1) & (mod(usedNlinearity ,2) “= 0)

usedNlinearity = usedNlinearity — 1;
end
elseif (Tlong) & (round>maxNumlterations/2)
fprintf (' Taking_long_(reducing_step_size)\n’);

long = 1;
myy = .0xmyy;
if mod(usedNlinearity ,2) = 0

usedNlinearity = usedNlinearity + 1;



Appendix B. Algorithm listing 112

end
end
end

BOId2 — BOId;
BOld = B;

switch usedNlinearity
%gaussion kernel , entropy score.
case 30
U =X x B;
Usquared=U .~ 2;
ex = exp(—a2 x Usquared / 2);
gauss = U .x ex;
dGauss = (1 — a2 % Usquared) .xex;
= X % gauss / numSamples —

ones(size (B,1),1) % sum(dGauss).* B / numSamples;

case 31

%gaussion kernel, refinement step.
Y = X' x B;

ex = exp(—a2 x (Y .~ 2) /. 2);
gauss = Y .x ex;

Beta = sum(Y .x gauss);
D = diag(l ./ (Beta — sum((1 — a2 %= (Y .~ 2)) .%x ex)));
=B + myy * B %« (Y % gauss — diag(Beta)) * D;
end

end
%Calculate ICA filters .
W = B’ % whiteningMatrix;
return

B.2 Code for the surrogate computation

The Matlab code for generating an iaaft multivariate surrogate, through function

iaaftn is given. See the code listings for details about the inputs and outputs.

function [r, s bar, shift, cnt] = iaaftn( s, no_ adjust, maxi, r )
%[r, s_bar, shift, cnt] = iaaft( s, no_adjust, mazxi, r )
%Generate a IAAFT surrogate of s.

%Default

% [r, s_bar, shift, cnt] = iaaftn( s, 0, 1000, [] )

%Inputs

% s nxl — sampled data

% no_adjust 1x1 — [0]/1] to shorten s to a small enough jump.
% maxi 1z1 — The mazimum number of iterations

% r nrl — The surrogate at time step 0

%O0utputs :
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% r nrl — The surrogate with an exact distribution

% s _bar nrl — The surrogate with excact amplitudes

% shift.start 1xl — The startoff point for the shortend s

% shift.slip 1xl1 — The portion of the wvariance in s due

% to a jump between sl and sn

% shift.jump 1zl — The same as slip but for the firt derivative.
%

%Referance :

% Surrogate time series
% T. Schreiber and A. Schmitz
% Physics Department, University of Wuppertal, D—42097, Germany

%Set up the reference smplitudes, rank order and inverse rank map

s fft = fftn(s);
s _amplitudes = abs(s_fft);
s_rho = angle (s fft);
I = 1l:length (s);
s _rank order = cell(size(s,2),1);
sI = cell (size(s,2),1);
for i = 1:size(s,2)
[s _rank order{i}, sI{i}| = sort(s(:,1));
end
if nargin < 2, maxi = 1000; end %Mazimim iterations
if nargin < 3 | isempty(r), %start off surrogate
r = zeros(size(s));
for i = 1l:size(r,2)
r(:,i) = s(randperm(length(s)),i);
end
end

% The first iteration , While loop repeats on the step failure
%Step one: "A Crude Fourier Filter'”

cnt = 1;
Y%extract the angles for the surrogate
R = angle (fftn(r));
%adjust the angles for the surrogate cross correlations
R = adjust phases( R, s _rho );

%a surrogate with the correct angles
s_bar = (ifftn(s_amplitudes.x exp(R .x j )));

%Step two: Adjust the distribution
done = 1;
for i = 1:size(s,2)
s _bar(:,1) = abs(s_bar(:,i)).xsign(real(s_bar(:,i)));
%The rank ordering of the surrogate
[temp, s barl|] = sort(s_bar(:,1));



Appendix B. Algorithm listing 114

%The back map from the rank to the timeseries ordering
s _barl(s_barl) = I;

% Adjust the distribution of the surrogat with the correct angles

r(:,1) = s _rank order{i}(s barl);
done = done & all (sI{i}==s_barl);
sI{i} = s_barl;

end

while “done & (cnt < maxi)
% loop iterator
cnt = cnt+1;

%Step one

Y%extract the angles for the surrogate

R angle (fftn(r));

R = adjust phases( R, s _rho );

%a surrogate with the correct angles

s_bar = (ifftn( s_amplitudes.xexp(R .x j )));

%Step two: Adjust the distribution
done = 1;
for i l:size (s,2)

s _bar(:,i)

abs(s_bar(:,i))...
.«sign(real(s_bar(:,1i)));
%The rank ordering of the surrogate
[temp, s barl| = sort (s _bar(:,1));
%The back map from the rank to the timeseries ordering
s _barl(s barl) I;
%Adjust the distribution of the surrogat with the correct angles
r(:,1) s rank order{i}(s_barl);

done = done & all (sI{i}==s_barl);
sI{i} = s_barl;
end
end
return
function | phi | = adjust phases(gamma, rho)
angles = [0 pi/2 pi 3xpi/2];
M size ( gamma, 2 );
alpha =

abs(atan (sum(sin (gamma-rho),2)./sum(cos (gamma—rho) ,2)));

%compute the optimal alpha k ’s.
for k = 1 : length( alpha )
best a 0;

max _score

a_shift = 0;
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for a = angles
a_shift = (a + alpha( k ));
score = sum(cos(a_shift(ones(1,M))—gamma/(k,:)+rho(k,:)),2);
if score > max_score
best a = a shift;
max_score = score;
end
end
alpha (k) = best a;
end

phl — I'hO + repmat(alph371 7M)7
return
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