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Abstract

An analysis of security protocols for lightweight systems

M.N. Kamkuemah

Department of Mathematical Sciences
University of Stellenbosch

Private Bag X1, Matieland 7602 , South Africa.

Dissertation: PhD

April 2022

Security is hard to maintain in distributed systems especially for communicating 

agents restricted to lightweight computations, as in the Internet of Things, which 

struggle to implement strong cryptographic security. A methodology is developed 

for specifying and reasoning algebraically about security in such systems which 

combines epistemic logic and a state-based formalism. The knowledge modal-
ity K is used to define a uthentication a nd s ecrecy i n t erms o f w hat e ach agent 
knows. Operations are defined a s s tate t ransitions. Having g ained c onfidence in 

our methodology by applying it to the benchmark case studies Needham-Schroeder 
and Diffie-Hellman protocols, we then apply it to the contemporary examples Sig-
nal and Long-Range Wide-Area Network protocols. A mitigation is proposed and 

verified for a  Long-Range Wide-Area Network.

ii

Stellenbosch University https://scholar.sun.ac.za



Uittreksel

An analysis of security protocols for lightweight systems

M.N. Kamkuemah

Department of Mathematical Sciences
University of Stellenbosch

Private Bag X1, Matieland 7602 , South Africa.

Proefskrif: PhD

April 2022

Sekuriteit is moeilik om te handhaaf in verspreide stelsels, veral vir kommunikasie-
agente met beperkte berekenings vermoë, soos Internet van Dinge, wat sukkel om 

sterk kriptografiese sekuriteit t e i mplimenteer. ‘n Metodologie word ontwikkel vir 
die spesifikasie e n a lgebraïes r edenering a angaande s ekuriteit v ir s ulke sisteme. 
Hierdie metodologie maak van epistemiese logika en ‘n staat gebaseerde formalisme 

gebruik. Die kennismodaliteit K word gebruik om verifikasie e n geheimhouding 

te definieer i n t erme van wat e lke a gent w eet. Operasies word a s staatsoorgange 

gedefinieer. Nadat vertroue in die metodologie verkry word deur dit op die maatstaf 
gevallestudies van die Needham-Schroeder- en Diffie-Hellman protokolle toe te pas, 
word dit vervolgens op die hedendaagse voorbeelde van Sein en Langafstand Wye-
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area netwerk protokolle toegepas. ‘n Versagting word vir ‘n Langafstand Wye-area
netwerk voorgestel en geverifieer.
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Chapter 1

Introduction

This chapter provides the context of this thesis, our methodology, questions tackled
and summarises related work.

1.1 Historical context

When programming a single computer dominated computation, the major difficulty
of correctness involved nontermination. Of course computing the right output
was essential, but with nontermination the programmer was unable to distinguish,
by program execution, delayed output from none at all, which has its theoretical
foundation in the Halting Problem: in general there is no algorithm for detecting
nontermination. Distributed systems now provide mainstream computation, from
multiprogramming (Eindhoven 1960’s), Aloha-net (Hawaii 1971), Arpanet (late
1970’s), the Internet, the Web (1991), to the Internet of Things (since the late
90’s). Reflecting the distinction between uniprocessor and distributed systems the
word “algorithm” is used for the former and “protocol” for the latter.

With protocols in distributed systems come new difficulties: livelock, privacy, se-
curity, channel corruption, fault-tolerance, self-stabilisation, consistency, etc. Even
input-output correctness, called functional correctness, is more subtle because of
the coordination used to attain the result.

1
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CHAPTER 1. INTRODUCTION 2

From the 1980’s security has been seen as a nonfunctional property, in which it re-
sembles complexity. A functional specification describes the desired input-output
behaviour without regard for the efficiency, or computational complexity, with
which it is to be reached in the implementation. This thesis explores the extent
to which privacy and security can be specified and reasoned about as functional
properties.

1.2 Domain information

The development of distributed systems was captured in the mid 1980’s by the
OSI-ISO 7-layer model [85]. At that time the internet used the TCP/IP protocol
[80, 70] for communication at the transport layer (layer 4, where layer 1 is the
physical layer, layer 2 is the data link layer, layer 3 is the network layer, layer 5
is the session layer, layer 6 is the presentation layer, and layer 7 is the application
layer). So we begin by addressing privacy and security of TCP, which is important
because it is used by higher layers.

With the advent of smart devices, the ISO model has needed revision [85]. Smart
devices like sensors and actuators designed for specific tasks do not operate at
the layers of the ISO model due to limitations in their processing power, memory,
bandwidth, and storage capacity. Contemporary networks involving the Internet
of Things (IoT) use either a 3-layer or 5-layer architecture [78]. For instance, a
device using the Long Range Wide Area Network (LoRaWAN) [62] communication
protocol operates at 3 layers of the ISO model, including the physical layer for
transmitting messages over physical media; the network layer for routing messages;
and finally the application layer for message formatting and human interaction.
The 3-layer architecture has advantages and disadvantages. It is cost-effective for
manufacturers to build smart devices that use fewer layers but these designs have
security issues. Devices are often produced with basic-level security like default
passwords. Furthermore, according to Suo et al. [83] some communication protocols
for these networks lack security by design.
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CHAPTER 1. INTRODUCTION 3

1.3 Methodology

Since the 1980’s Formal Methods have been used in the hope of taming the complex-
ities of distributed systems. Functional properties have been expressed to specify
and describe system designs, and a concept of refinement was developed to connect
the two. For interactive systems safety and liveness were used. But it was not seen
how to capture privacy and security functionally, so those remained nonfunctional.

In this thesis a distributed system is seen as a collection of agents with disjoint
state spaces, communicating by message passing. This differs from an alternative
model which uses shared variables. It makes it easier for us to express and reason
about which agent can know which property. Privacy and security properties have a
natural knowledge interpretation, for example, what legitimate agents know about
a property. For example, mutual authentication can be expressed as both agents
know they both know a certain value while secrecy can be expressed as an intruder
does not know certain information [20]. Knowledge is represented with the modal
operator Ki , where the subscript indicates the agent. Formula Ki φ reads “agent i
knows fact φ”. These knowledge statements form part of epistemic logic which has
sound and complete semantics defined in general by Kripke [53] and specifically by
Fagin et al. [27, 26, 28], and Chandy and Misra [13]. Nested knowledge operators
are a recurring theme in this thesis necessary for expressing knowledge gained as
agents communicate. The above interpretation assumes the agents possess the
knowledge. In some instances we are interested in reasoning about knowledge that
an agent does not possess but knows another agent possesses. This is the concept
of zero-knowledge.

Finally, a state-based notation (in particular Z) [82] is used to specify security
protocols as discrete dynamical systems [45] with state and operations on state. We
combine the Z specifications with epistemic statements to reason about correctness
and show protocols are secure. Sometimes the cryptographic notation of a protocol
is also used to reason about security.
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CHAPTER 1. INTRODUCTION 4

The nonfunctional property of efficiency has evolved with the development of dis-
tributed systems. For uniprocessors it involved only space-time complexity, but
now it involves much more: also number of messages, firewall activity, etc. It will
be important when we consider designs for IoT that they be computationally re-
alistic, since those devices have limited computational capability. An example is a
children’s toy that is capable of taking video and connecting to the internet (see
for example “The Cayla doll” [65]). Privacy mitigations for flaws in TCP may be
far from appropriate for LoRaWAN.

Privacy and security have been found difficult to maintain in distributed systems
particularly because new attack opportunities are regularly discovered (see [32, 65,
40, 44]), in particular – as we have seen – IoT presents new opportunities for attack.
In view of the activity on the internet it is not easy to identify attacks not already
covered there, so we shall be satisfied with describing existing attacks.

1.4 Research aims

In order to provide efficient and trusted services for devices such as sensors in the
IoT, there is a need to preserve the privacy and security of agents whose computa-
tional resources are limited and whose privacy is vulnerable to attack. This thesis
explores the extent to which privacy and security goals of IoT protocols can be
expressed and reasoned about algebraically at the design level, without having to
resort to reasoning at the level of code. The result is a calculus that can be har-
nessed during design and not as an afterthought. To meet this goal, the thesis uses
epistemic logic to specify security properties and to analyse protocol behaviour.
The work specifies security protocols using a state-based approach and analyses
their behaviour using epistemic laws. This approach is applied to the benchmarks:
the Needham-Schroeder Protocol and the Diffie-Hellman Key-Exchange Protocol.
It is then applied to Lamport’s One-Time Password-Authentication Scheme. Sat-
isfied with its applicability we then apply the approach to protocols designed for
lightweight distributed systems. These include the instant messaging protocol Sig-
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CHAPTER 1. INTRODUCTION 5

nal, and an IoT protocol called LoRaWAN.

In summary, this work addresses the following research question:

To what extent can privacy and security of protocols designed for lightweight
distributed systems be specified and reasoned about algebraically using
epistemic logic and a state-based approach?

To answer this question, this thesis makes the following contributions. It provides
novel and precise epistemic definitions of privacy, mutual authentication and se-
crecy. It then specifies the behaviour of various protocols using the Z language
while ensuring that these specifications are correct and consistent. This approach
is applied to various lightweight security protocols and presents results in the form
of proofs about security, based on certain assumptions about their cryptographic
primitives. We also provide theoretical evaluations on the efficiency of the solutions
suggested to mitigate weaknesses in one of the lightweight distributed protocols and
a new proposal is similarly treated. This approach is novel in the context of IoT.

1.5 Related work

Security comprises many properties; here we consider authentication and secrecy
and ways to give precise definitions for them. Techniques include process algebra
[42], model-checking methods [72], verification tools [19], and logics [2, 12, 84].

Glasgow et al. [33] use modal logic to specify secrecy. Their work is related because
it also uses the knowledge modality to specify secrecy in terms of what each agent
knows. Our work extends the definition of secrecy and includes a definition for
authentication.

Lowe [57] uses process algebra to specify various forms of authentication. We use
Lowe’s agreement definition which states there is a one-one relationship between
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CHAPTER 1. INTRODUCTION 6

values shared by agents after completing a protocol run. We express this form of
authentication in terms of who knows what.

In the case of authentication, Needham and Schroeder [67] use BAN logic [12] to
show that the Needham-Schroeder authentication protocol does indeed satisfy au-
thentication. Their protocol design was later shown by Lowe [56] to be susceptible
to a man-in-the-middle attack and therefore did not satisfy authentication. Lowe
patched the protocol, now called Needham-Schroeder-Lowe [56], and justified his
patch by modelling an intruder in a process algebra called Communicating Sequen-
tial Processes (CSP). We analyse the man-in-the-middle attack of Lowe in epistemic
logic.

Without considering security or privacy, Smith [80] used IO automata to prove that
TCP implemented its functional properties. His method used invariant assertions
and refinement. By specifying TCP in terms of bounded and unbounded sequence
number generation, he showed correctness of an experimental implementation of
TCP called T/TCP. We also use a state-based formalism, the language Z, whose
schema bodies act as invariants. Our TCP is an abstraction of that considered by
Smith and concentrates on security properties.

Lamport [54] used a one-way function mapping to achieve authentication. A one-
way function maps some set of bitstring into itself such that given x , f (x) is easy
to computing but given y, if is infeasible to compute x such that y = f (x). Lam-
port showed correctness of this protocol by implementing a one-time password
authentication protocol. Our work studies the protocol using our approach as a
zero-knowledge protocol.

More recent work that gives definitions of authentication and secrecy and applies
them to new protocols is that of Cohn-Gordon et al. [17] and Frosch et al. [31].
Cohn-Gordon et al. [17] defined predicates for authentication and secrecy and ap-
plied them to the Signal protocol [62] designed for private communications between
users. They showed the protocol is secure under certain cryptographic assumptions.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 7

Similarly, Frosch et al. [31], showed that TextSecure, the predecessor of Signal, is
secure. Our approach is similar to that of Cohn-Gordon. Both works create an
abstract model of the protocol in question. However, our proofs use epistemic
predicates and require explicit reasoning about an intruder while proofs by Cohn-
Gordon et al. [17] are in random oracle setting which reasons about security based
on hardness assumptions about the cryptographic algorithms used by the protocol.

Other work that is relevant to this research but which used model-checking to give
precise definitions of authentication is that of Eldefrawy et al. [24]. Among the
security properties the authors defined a form of authentication called non-injective
agreement. Lowe [57] describes non-injective agreement as a form of authentication
where two parties agree on a set of data variables whenever a party acting as
initiator completes a run of the protocol, apparently with a responder, and vice
versa. They build an abstract model of LoRaWAN using the verification tool
Scyther consisting of these security claims. Again, our work uses a state-based
approach to build an abstraction of LoRaWAN and reason about its security. In
both cases our more abstract approach applies at the design stage, and confers the
ability to reason about a range of implementations at once.

Stronger models of privacy which we have not needed to resort to, include the
Shadow semantics (work of Morgan et al. [64, 63]) and other quantitative measures
of information flow (work of Geoff Smith et al. [79]).

For a survey of further communications protocols to which the techniques here can
be applied see Clark and Jacob [16].

Publications arising from this thesis are:

[47] A conference paper (to appear in proceedings) summarising Chapter 6, Anal-
ysis of Signal. However no state transitions are included (to keep the paper
Z free) and so the formalisation of Signal there is treated with a light touch.
In the thesis numerical experiments are included.
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CHAPTER 1. INTRODUCTION 8

[46] A conference paper (to appear in proceedings) summarising Chapter 7, Vul-
nerability in LoRaWAN. Again state transitions are not formalised there, for
the same reason.

[48] A conference paper (submitted) summarising Chapter 4, Zero Knowledge,
both in general and applied authentication. Lamport’s One-Time Authenti-
cation Scheme is treated as a stand alone study.

[45] A workshop talk explaining how discrete transition systems of the type en-
countered in this thesis are specified and implemented as abstract data types,
and how this is analogous to a differential equation specifying a solution for
a smooth, rather than discrete, system.

1.6 Organisation

The rest of the thesis is organised as follows. Notation for a state-based formalism
and epistemic laws are given in Chapter 2. Epistemic logic is used in Chapter 3
to produce definitions for privacy, mutual authentication and secrecy. Chapter 4
defines authentication as zero knowledge and applies the definition to an authen-
tication protocol. Chapter 5 applies the security-protocol definitions in a standard
setting before moving onto lightweight applications in Chapters 6 and 7. Finally,
Chapter 8 summarises the thesis and indicates future work.
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Chapter 2

Notation

This chapter describes the notation used in this thesis to reason about agent knowl-
edge and behaviour in a distributed system. In order to reason rigorously we need to
formalise requirements, specifications and implementation designs. Requirements
will often describe “who knows what” because of our concentration on security, for
which epistemic logic is used, although its semantics will be refined in the next
chapter to take into account the inability to learn the results of infeasible compu-
tations. Designs are described as state transition systems, for which the Z notation
is used, incorporating epistemic predicates where appropriate.

2.1 Predicate calculus

Propositional and predicate calculus are of such widespread use that they scarcely
need to be introduced; on the other hand that means various notations exist. We
use the notation summarised in Table 2.1.

9
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CHAPTER 2. NOTATION 10

¬ Negation
∧ Conjunction
∨ Disjunction
⇒ Implication
if a then b else c Conditional
≡ Equivalence
∀ For all
∃ There exist
Qx · P Prenex normal form
B Booleans
:= Equals by definition
` Theoremhood

Table 2.1: Logical notation.

Frequently we find that a property consists of a conjunction of sub-properties. So
it is convenient to use the Z “stacking” convention which expresses conjunction as
newline within parentheses thus

Bonnie ∧ Clyde is written as
(

Bonnie
Clyde

)
.

The notation p[e/x ] means replacement of free variable x by expression e through-
out formula p. In particular x and e may be tuples of the same length. For example,
if p(x , y) := x ∧ y then

p[Bonnie/x ] = Bonnie ∧ y
p[Bonnie,Clyde/x , y] = Bonnie ∧ Clyde .

When we introduce Z (Section 2.4) we shall also use that notation when p is a
schema having observable(s) x .
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CHAPTER 2. NOTATION 11

Duality of the quantifiers ∀ and ∃ means:

∀ x · p(x) ≡ ¬∃ x · ¬p(x) ,

which saves quoting laws for both quantifiers. We regard them as infinitary con-
junction and disjunction respectively. Consequently we have the law

∀ x · p(x) ∧ q(x) ≡ (∀ x · p(x)) ∧ (∀ x · q(x))

yet only

∃ x · p(x) ∧ q(x) ⇒ (∃ x · p(x)) ∧ (∃ x · q(x)) .

Such laws we use without reference.

Quantifications are typed:

∀ x : X · p(x) and ∃ x : X · p(x) , (2.1)

where x : X denotes variable x to be of type X . When the type X is empty the
former is true and the latter is false.

Free variables are bound by the use of universal and existential quantifiers. The
observation above that quantifications are viewed as infinitary propositions is for-
malised by the n-point laws. The two-point law is:

∀ x : B · p(x) ≡ p[0/x ] ∧ p[1/x ]

and its dual.

The one-point law turns predicates into propositions for a variable x : X with some
value α:

∀ x : X · (x = α)⇒ p(x)

≡ p[α/x ]

≡ ∃ x : X · (x = α) ∧ p(x),

which of course is consistent with the observation after Formula (2.1) since x = α

is false.
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2.2 Epistemic logic

Epistemic, or knowledge, logic is a modal extension of propositional calculus (see
Fagin et al. [26]). It is invaluable in the analysis of distributed information systems
(see Fagin and Halpern [26]), but began in philosophy with the Greeks and was
formalised by Hintikka [41]. In the 1960’s knowledge axioms were defined. More
recently reasoning about knowledge has had applications in diverse fields such as
economics, linguistics, artificial intelligence and computer science (see Fagin et al.
[26, 28]).

Since epistemic logic is a modal logic its semantics is a many-worlds Kripke seman-
tics [53]. In the context for distributed systems that is reworked by Fagin et al.
[29, 28]). In this thesis, as is generally the case, we need to reason about knowledge
of a proposition which is true with high probability (similar reasoning is also used
by Fagin et al. [26], Halpern et al. [39, 38], and Halpern, Moses and Tuttle [36]).
We have avoided any situation in which an arbitrary loop contains a block satisfy-
ing a property which is almost true, because errors may accumulate resulting in a
loop failing the property. For instance common knowledge is expressed as a limit
(Definition (2.10)) which in practice we shall limit to depth two (see Section 2.2.1),
obviating the problem.

2.2.1 Knowledge predicates and laws

The modality Kiφ means that agent i knows property φ, and its dual ¬Ki¬φ can
be thought of as agent i considers φ possible. Epistemic logic is distinguished from
other belief logics by the ability to know only truths,

if ` Ki φ then ` φ . Law (2.2)

Agents are considered rational, so they know all the theorems of propositional
calculus and propositional inference:

if ` Ki (φ→ ψ) and ` Ki φ then ` Kiψ . Law (2.3)
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An infinite regress of identical modalities is avoided by the introspection laws:

if ` Ki φ then ` Ki(Kiφ) , Law(2.4)

if ` ¬Ki φ then ` Ki(¬Kiφ) .

In other words if i knows φ then it knows that it knows φ and so on.

Knowledge is conjunctive:

if ` Ki φ and ` Ki ψ then ` Ki(φ ∧ ψ) . Law (2.5)

The converse follows by Law (2.3), since ` (φ ∧ ψ ⇒ φ).

We apply epistemic logic frequently to the case of i knowing the value of a variable,
so use abbreviation Kix when x : X is a variable to mean there is some value t for
which i knows x = t:

Kix := ∃ t : X · Ki(x = t) . Definition (2.6)

We extend that notation to finite sets V of variables, to mean i knows the value of
each variable in the set:

Ki V := ∀ x : V · Kix . Definition (2.7)

Since V is finite the universal quantification is finite. If V is empty then the
universal quantification is vacuous and so true.

If G is a finite set of agents then the modality EGφ means that every agent in G
knows φ:

EG φ := ∀ i : G · Ki φ . Definition (2.8)

Iteratively, E1
Gφ := EGφ and for n ≥ 1:

En+1
G φ := ∀ i : G · Ki(En

G φ) . Definition (2.9)
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En
G φ means that every agent in G knows that every agent in G knows that . . . that

every agent in G knows that “φ is true” holds, where the phrase “every agent in G
knows” appears in the sentence n times. This approximates common knowledge to
a finite “depth” (see Halpern et al. [37]), where the modality CGφ means that φ is
common knowledge among agents in G.

CG φ := ∀ n : N+ · En
G φ . Definition (2.10)

In other words, φ is true and every agent in G knows φ, every agent knows that
every agent knows φ, and so on ad infinitum. This infinite conjunction is expressed
as a fixed point of the EG operator:

CG φ = EG(φ ∧ CG φ) .

Common knowledge is impossible to achieve in distributed systems where agents
communicate by asynchronous sending and receiving of messages unless it is present
initially.

Theorem 1. (Attaining Common Knowledge, [37]).
If common knowledge of a property does not initially exist then no finite number of
communications in an asynchronous distributed system can attain it.

Indeed when agents send messages back and forth, no fixed number of acknowl-
edgements to acknowledgements and so on suffices to reach agreement. An ac-
knowledgement may get lost which a receiving agent cannot distinguish from the
acknowledgement never being sent.

Acknowledgement can be seen as achieving “I know you have received a value”,
without which that information is unattainable. Knowledge is gained or lost by
communication (see [14]):
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If B receives φ then KBφ and if φ came from A then KBKAφ.

Conversely if at some stage of a computation ¬KA φ

and at a later stage KA φ then

between those two stages A received a message. Law (2.11)

This can be used to approximate common knowledge of φ between A and B to
depth 2.

Lemma 1 (Acknowledgement).

1. If B receives φ from A then KBKA φ .

2. If B then acknowledges φ to A, then KAKB φ.

Proof.

1. This is simply a restatement of the first part of Law (2.11).

2. This applies Law (2.11) to the receipt by A of the acknowledgement from B.
2

Soundness of the laws is established in the semantics previously referred to. A
feature of this thesis is that we are able to reason entirely using laws without
explicit use of semantics.

2.2.2 Application

In this section we demonstrate the use of Lemma 1. Formalisations of this argument
appear throughout the thesis.
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For example, when a sender transmits data packets to a receiver via a bounded
channel, it may require the receiver to acknowledge each item before sending the
next in order avoid data being lost when the channel is full. This is called the
Stop-and-Wait protocol [85], which is too strict; the sliding-window protocol [85] is
used in practice. But it illustrates the importance of acknowledgement.

After receiving an acknowledgement of the previous packet the sender knows that
the receiver has received it, and can move to the next state in which it sends
the next packet. Without receiving an acknowledgment the sender has no way of
knowing that the packet has reached the receiver.

2.2.3 Using K : The Clever Princess

In this section we demonstrate the use of epistemic logic on a mini case (n = 2) of
a popular example.

In a kingdom ruled by an evil king his beautiful and clever daughter has come of
age. Her suitors come from far and wide to undergo the canonical trials for her
hand: slaying dragons, rescuing damsels, etc. One suitor has the support of the
king because he is well connected but unfortunately not very bright.

Finally the suitors have been reduced to a shortlist of two for the deciding trial
which of course includes the king’s favourite, but also a candidate who has won
favour with the princess for his commitment to befriending dragons and his humil-
ity. After consulting with his advisors the king suggests to his daughter a protocol
for the final trial, which he assures her will put his favourite at a disadvantage and
so should be acceptable to her.

He suggests to her that his favourite stand in the centre of the hall facing the
throne. Behind him stands the other candidate also facing the throne. So the
king’s favourite cannot see the other candidate but the other candidate can see
him. The king proposes to tell the candidates that he is about to put a coronet on
each, starting from the rear, which is either gold or silver, at least one of which is

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. NOTATION 17

gold. The first to deduce the colour of his own coronet and shout it out wins it and
the princess’s hand. He tells his daughter that he will in fact put a gold coronet on
both.

Naturally the candidates are keen but honest, so shout out if and only if they
identify their coronet. The king elaborates to his daughter that his own favourite
would not see the other and so must be at a disadvantage. Does she welcome his
suggested protocol?

The princess reflects for a minute, imagining the situation. The front candidate
could reason that if his coronet were silver, then the other candidate would reason
that his must be gold and shout out. When that does not happen the front can-
didate knows his assumption that his coronet is silver must be wrong, and so is
able to identify it correctly as gold. Moreover the other candidate, seeing a gold
coronet, is able to infer nothing about his own. So the king’s favourite alone is able
to win.

Used to dealing with her father, the clever princess replies that she welcomes his
protocol but sees no reason to put one candidate at a ‘disadvantage’. Why not
arrange them facing each other? Since that is symmetrical each has an equal
chance. Naturally she thinks to herself that the quicker has an advantage, by
reasoning as she has just done.

Out manoeuvred, the king agrees. We leave the story’s ending to the reader.

Reasoning. We formalise the princess’s reasoning in epistemic logic. We must
be careful to use global information only if it is available to a suitor. In this
example, communication is synchronous: by word of mouth or by sight.

Consider first the king’s proposal. When the king announces to the assembled
suitors that both coronets are gold or silver and at least one is gold, that becomes
common knowledge. Assume the suitors in the final trial are i : [0, 2) (notation
explained in Section 2.3.1) where 0 is the king’s favourite. The variable ci : {g, s}
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represents the type of i’s coronet, g for gold and s for silver. Due to the king’s
announcement:

C (∀ i : [0, 2) · ci ∈ {g, s} ∧ ∃ j : [0, 2) · cj = g) . (2.12)

In the king’s suggested configuration each suitor knows the configuration, with 1

observing the coronet of 0:

C (K1c0 ∧ ¬K0c0 ∧ ¬K1c1 ∧ ¬K0c1) . (2.13)

When a suitor identifies his coronet he shouts out and so that fact becomes common
knowledge

∀ i : [0, 2) ·Kici ⇒ C (Kici).

Now, what about the princess’s argument? From (2.12) and (2.13) candidate 0

knows

K0(c0=s ⇒ K1(c1=g)) .

But 1 has not identified his own coronet, since c1 = s and c1 = g are both consistent
with the data. Thus 0 infers

K0(c0=g)

by contrapositive and Laws (2.2), (2.3).

In the configuration suggested by the princess (2.12) remains true but (2.13) is
replaced by

C (K1c0 ∧ ¬K0c0 ∧ ¬K1c1 ∧ K0c1).

Now the same reasoning as above applies to the quicker of the two suitors.

The same reasoning applies to any shortlist. That case n = 2 corresponds to the
inductive step for general n. The case n = 50 of the princess’s configuration is used
in Fagin et al.’s book [29] under the title The Muddy Children.
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⊥ Undefined
x :∈ E Select x uniformly at random from a nonempty finite set E
X \ {a} Remove from set X the element a
# Cardinality
⊕ Overriding of relations
P >> Q Piping output from P as input to Q
dom, ran Domain and range of a relation
seqX Finite sequences from X
# Forward relational sequential composition
N,Z,R Natural numbers, integers, reals
X ↔ Y Binary relations from X to Y
X → Y Total functions from X to Y
X 7→ Y Partial functions from X to Y
X �→ Y Bijections between X and Y
x 7→ y Maplet {(x , y)}
∅ Empty set
P Power set
⊇ Super set

Table 2.2: Expressions and symbols.

Why is it necessary for (2.12) to be common knowledge in the princess’s configu-
ration, when both suitors see that there is at least one gold coronet? The quicker
suitor relies on the common knowledge in (2.12) to depth 2 which is stronger than
the depth 1 provided by sight.

2.3 Set notation

We assume the notation in Table 2.2. The following notation is less common.

2.3.1 Intervals

An interval refers to either a finite set or list of consecutive natural numbers. As a
set

[a, b) = {n : Z | a ≤ n < b} .
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In particular the interval [a, a) is empty.

2.3.2 Lists

Finite lists of type D are defined recursively to be empty or starting with an element
of D. Thus the type seq D of lists of type D is defined

ls ::= [ ] | d.ls ,

where d : D. Of course d.[ ] is written [d] and the nonempty finite list

d0.(d1. · · · (dn−1.[ ]) · · · )

is written [d0, · · · , dn−1].

For lists xs and ys, xs++ys is the concatenation of xs and ys. The list xs is a prefix
of list ys if ys = xs ++ zs for some list zs. For a list xs, #xs gives its length.

2.3.3 Sequential composition

In this thesis relations are more important than functions and so it is relational
composition that is important. If P : A ↔ B and Q : B ↔ C then their forward
sequential composition

P # Q : A↔ C

arises by abstracting the intermediate state:

(a, c) ∈ P # Q := ∃ b : B ·
(

aPb
bQc

)
.

The order is opposite to that of functional composition, which is why the name
‘forward’ composition is often used.
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2.4 State transition systems

We think of the information systems encountered in this thesis as discrete dynamical
systems, evolving with time (see Kamkuemah [45]). We express each as a data type,
having state, an initial state, and operations under which the type evolves. Each
operation has a precondition, and takes input, delivers output, and updates state.
We use the Z notation since it provides conventions to simplify the description
of states, the description of operations, and their collection into a data type (see
Spivey [81], Duke and Rose [23]). We now give a summary.

If s is the system state before an operation, its value after the operation (presuming
it terminates) is written s′. An operation is specified by a predicate with free
variables s, in?, s′, out!. The notation ? and ! alert us to input and output of values,
respectively.

The precondition of an operation is the weakest condition on state and input under
which it is able to achieve a final state and output. If an operation Op changes
state A by accepting input in? and yielding output out! subject to invariant P,

Op
a, a′ : A
in?, out!

P(a, in?, out!, a′)

then its precondition holds at states before and input for which P holds:

preOp
a : A
in?

∃ a′ : A, ∃ out! · P(a, in?, out!, a′)

The Z notation is “tuned” for abstract description. So if a variable is not mentioned
in the body of a schema but is declared then it is assumed to satisfy true, i.e., to take
any value of its type. When expressing designs close to code, an implementation in
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particular, that decisions results in lengthy descriptions. So Lamport’s TLA, which
is executable, chose to modify Z’s convention by adopting a more programming
approach: an unmentioned variable is assumed to be unchanged. Here we need to
describe both abstract and low-level designs. So we use, for instance,

State
x : X
y : Y

P(x , y)

as usual for abstract descriptions,

∆State
x , x ′ : X
y, y ′ : Y

P(x , y) ∧ P(x ′, y ′)

But for more concrete descriptions with the same State but a context in which y
is unchanged, we use ∆State(x) to mean only observable x is changed:

∆State(x)
∆State

y ′ = y

Unmentioned observables in the ∆ statement (y above) are unchanged, as in TLA
[55] or in fact any code.

The notation ∆ allows operations to be described as state-transition operations,
requiring the state-before and state-after to satisfy the state invariant. This feature
is particularly useful and supports the non-operational specification of operations.
See for instance the operation Push in the Stack example (Figure 2.1), where the
precondition holds iff the invariant holds afterwards, #s′ ≤ n, which implies #s <
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Stack
State
s : seqD
#s ≤ n

Init
State

s = [ ]

Push
∆State
d? : D

s′ = [d?] ++ s

Pop
∆State
d! : D

s = [d!] ++ s′

Figure 2.1: Bounded stack specified in Z. A Push adds input to the front of the stack
and a Pop removes and outputs the front item. This example demonstrates the use of
the implied state invariant, and the non-operational specification of Pop.

n. A more operational specification would require that to be included explicitly.
This feature will abbreviate our specifications.

We consider a standard simple example of a bounded stack as a data type. See
Figure 2.1. A stack stores at most n items and removes the most recent item first,
where n : N+ is a generic parameter. Items are added with operation Push and
removed with Pop.

Preconditions for stack operations are, liberated from schema form:

pre Push(s, d?)

= By definition

∃ s′ : State · Push

= By body of schema Push

∃ s′ : State · s′ = [d?] ++ s
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= One-point Law (2.2) and definition of State

#([d?] ++ s) ≤ n

= #([a]++ as) = (#as)+1

#s < n .

Similarly,

prePop(s)

=

#s > 0 .

Pop is specified non-operationally. By comparison an operational description is
closer to code (in Python):

d! = s[0]

s′ = s[1 : ] .

The existence of an initial state ensures that a state specification is consistent. The
calculation of each operation’s precondition ensures it acts consistently. Identifica-
tion of the precondition helps to confirm the correctness of the specification of the
operation. Those reasons help to ensure that Z specifications are consistent and
correct.

2.5 Message passing

In a distributed system agents interact pairwise by message passing. And the
system exhibits three kinds of event: an internal action at an agent (an update to
its state); a send action at the sender (containing the message and its recipient); a
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receive action at the receiver (containing the message and its sender). The events at
each agent are linearly ordered in time. Sometimes, for instance in simple security
protocols, instead of operations in Z we use the more primitive message passing
sequence diagram

A → B : x
B → A : x + 1 ,

for A sending x to B and B acknowledging with x + 1. If it is desired to include
the calculation by B of x + 1 we write

A → B : x
B : y := x + 1

B → A : y .

In complicated cases the update to y is defined by schema.

2.6 Conclusion

This chapter has provided notation and laws to reason about knowledge of agents
in distributed systems, and in particular how knowledge is gained. It has also pro-
moted our view of an information system as a discrete dynamical systems expressed
in Z.

In order to express communication between agents we have used message passing
between agents with disjoint state spaces, rather than agents with overlapping state
spaces. The result is simplified reasoning; for instance we need not be concerned
with side effects.

In using Z we shall exploit implicit preconditions and nonoperational conditions,
as exemplified in Figure 2.1. The result will be simpler and more elegant formali-
sations.
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Security model

This chapter introduces the security model for a lightweight distributed system and
the minimum requirements for a protocol to be secure in this model. Protocol secu-
rity is often described in terms of authentication, secrecy, integrity, non-repudiation,
and availability. These properties are achieved by various cryptographic techniques
(see “Handbook of Applied Cryptography” [50]). However, the current work is not
an extensive study of all these techniques.

Instead, we give definitions for mutual authentication and secrecy in terms of epis-
temic logic. In subsequent chapters we apply the definitions to Lamport’s One-Time
Password Authentication Scheme, the Signal Protocol, and the Long Range Wide
Area Network Protocol. But in this chapter we show how the techniques work on
a benchmark example, that of the Needham-Schroeder protocol [67], and analyse
the Diffie-Hellman key-agreement protocol [21] for use later. Weaknesses of these
two protocols are highlighted and solutions suggested and analysed.

This preparation will be used in Chapters 6, and 7 to analyse protocols designed
for lightweight distributed systems.

26
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3.1 Distributed systems

We assume agents in distributed systems have disjoint state and therefore commu-
nicate by message passing which we assume to be asynchronous. We study security
in the standard model of cryptographic security (see Bellare and Rogaway [8]): an
adversary is restricted by the amount of time and resources available to compute
certain cryptographic functions. These functions create powerful authentication
and secrecy mechanisms.

3.1.1 Adversary model

A common model for security protocol analysis is the Dolev-Yao adversarial model
[22]. It limits the power of an adversary by placing restrictions on what it can
do. Like the Dolev-Yao model, we consider passive and active adversaries. A
passive adversary like an eavesdropper, observes and remembers communications
and tries to decipher messages. An active adversary is a passive one which also has
complete control of a communication channel: it can intercept, delay, delete and
insert messages between agents.

However, it is infeasible for both types of adversary to decipher messages without
the correct decryption keys (unless they obtain encryption keys via other means
like cryptanalysis or social engineering attacks). We emphasise that both types of
adversary are bound by polynomial-time constraints, that is, do not have quantum
computers, making certain problems infeasible.

3.1.2 Infeasibility

We assume that certain computations are infeasible. For lightweight distributed
systems, it is neccesary to analyse computations on devices with limited resources.
If the device can be hacked by computing certain feasible functions, the protocol
is not secure.

Definition 1. [Infeasibility] A computation (like computation of a value) is infea-
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sible if there exists no implementation in the standard model of computation more
efficient than a global search of the solution space.

For example factorising large numbers is infeasible. Further examples will arise in
the following.

3.1.3 Hashing

Messages shared between agents are usually encrypted and/or signed. Decrypting
messages without the right key is infeasible due to cryptographic hash functions
which form the core of encryption and signature schemes. In this thesis, the prop-
erties of hash functions are important in reasoning about security of a system.

Definition 2. A hash function h : {0, 1}∗ → {0, 1}q accepts input of bitstring of
arbitrary length and outputs a hash value of length q. It satisfies the following
properties:

1. h is quick to compute but given output y : ran h it is infeasible to find x such
that h(x) = y (one-way property) (i.e., it requires an exhaustive search to find
such x).

2. h−1 is discontinuous: given x : {0, 1}∗ and h(x), perturbing h(x) slightly,
y ≈ h(x), it is still infeasible to invert y.

3. In particular, although the range is in general smaller than the domain so h
is not injective, given x : {0, 1}∗ it is infeasible to find z 6= x yet h(z) = h(x).

Notice that use of “hash function” in cryptography is different from its use in hash
tables in Information Systems, though there is a vague similarity justifying the same
name. Examples of hash functions in cryptography are provided by the family of
Secure Hash Algorithms (SHA-128, SHA-256, . . . [61]).
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3.1.4 Public-Key Cryptography

We assume that each agent A has a public key pk(A) and an inverse private key
pr(A). The notation {m}pk(A) (resp. {m}pr(A)) will denote encryption of message
m with agent A’s public (resp. private key) key. So

{{m}pk(A)}pr(A) = m = {{m}pr(A)}pk(A) .

The notation {m}pk(A) corresponds to encryption of m for sending securely to A,
and {m}pr(A) corresponds to signature of m by A. Applying the public key first
gives encryption. Anyone can encrypt using pk(A) which we assume to be common
knowledge but only A has pr(A). Applying pr(A) first gives signature by A. Only A
has pr(A) for signing but anyone can verify the signature using pk(A). A signature
ensures a message has not been tampered with since its verifiable origin (message
integrity).

Lemma 2. A signs a message, m with its private key pr(A), and sends both m
and {m}pr(A) to B. Similarly, B signs a message with its private key pr(B) and
sends both the message and the signature to A:

A→ B : m, {m}pr(A)

B → A : m, {m}pr(B) .

When B verifies A’s signature, KBKA m. Similarly, when A verifies B’s signature,
KAKB m.

Proof Suppose a verification algorithm Ver exists. Ver inputs the sender’s public
key, the sender’s signature and plaintext message and outputs a single bit indicating
whether or not the signature is accepted i.e,

Ver(A,m, n) = 1 ≡ {n}pk(A) = m .

When B receives n from A, it verifies that A sentm by checking that Ver(A,m, n) =

1. If so, B knows that A knows m, KBKA m by Law (2.11). Otherwise verification
fails. Similarly, when A receives n′ from B. If Ver(B,m, n′) = 1 then A knows that
B knows m, KAKB m. 2
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3.2 Security properties

3.2.1 Authentication

When distributed agents need to communicate securely, communication protocols
enable them to do so. Communication starts with a handshake to establish a secure
connection then continues with message-exchange sessions. The idea is that only
the two agents communicating should be able to read what is sent. To prevent an
intruder from compromising a session, every session is protected with a new session
key. We refer to this as end-to-end encryption (an idea patented by Zeidler [87]).

We now provide four progressively stronger conditions describing coordination be-
tween a pair of agents.

An initiator A starts a handshake with a responder B and they establish a shared
secret φ when each knows φ:

Shared(A,B, φ) :=

(
KA φ

KB φ

)
. Definition (3.1)

When each agent also knows the other knows φ, we say φ is endorsed between them:

Endorsed(A,B, φ) :=

(
KAKB φ

KBKA φ

)
. Definition (3.2)

By Law (2.2) Endorsed implies Shared.

If the agents who share a secret are the only ones who know it, we say the secret
is private:

Private(A,B, φ) :=

(
Shared(A,B, φ)

C 6= A,B ⇒ ¬KC φ

)
. Definition (3.3)

Evidently Private strengthens Shared. In the next chapter we shall view the second
conjunct as formalising that C has no knowledge of φ.
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If furthermore the secret is endorsed, each agent is assured the other knows φ rather
than an imposter, and we say the connection is authenticated:

Authenticated(A,B, φ) :=

(
Endorsed(A,B, φ)

C 6= A,B ⇒ ¬KC φ

)
. Definition (3.4)

Endorsed (and so Authenticated) does not achieve common knowledge of φ within
the group {A,B} but approximates it to depth 2 (see Section 2.2.1, Law (2.9)).

For example, a web browser and a web server authenticate each other when they
receive acknowledgments for their identities, chosen cryptographic algorithms and
nonces.

We analyse two benchmark handshake procedures – the Needham-Schroeder public-
key authenticated protocol (NS) and the Diffie-Hellman key-agreement protocol
(DH). DH establishes a secure connection over which agents compute a shared
secret. Only agents involved in DH should know the shared secret, so that Private
(3.3) holds.

The Needham-Schroeder-Lowe (NSL) protocol [56] locks out the possibility of an
intruder with an authenticated connection. Agents are assured of each other’s
identity after authenticating a shared secret which only they know: Authenticated
holds for NSL, even though the man-in-the-middle attack shows it fails for NS.

3.2.1.1 Needham-Schroeder public-key authentication protocol

With the advent of distributed systems arose the need for secure communication.
The Needham-Schroeder was proposed to provide security by means of public-key
cryptography. Recall from Chapter 1 that the protocol purports to authenticate
agents by ensuring each agent knows the other knows a shared secret and that they
are the only ones that know it, thereby achieving the property Authenticated. How-
ever a man-in-the-middle (MitM) attack demonstrated by Lowe [56] (see Section
3.2.1.2) negates the assumption that participating agents are the only ones that
know the secret. This violates the second conjunct of Authenticated (3.4).
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This section shows how NS achieves the property Endorsed but fails to achieve the
property Authenticated. We use the knowledge predicates defined in Section 2.2.1
to reason about the MitM attack and about how NSL mitigates this attack. The
results give us confidence in the appropriateness of our tools, which we use on new
situations in the remainder of the thesis.

The NS public-key authentication protocol creates an authenticated connection
between two agents using public key cryptography. Each party is equipped with a
public/private key pair. Public keys are assumed to be common knowledge. Agents
exchange identities and nonces1 (all encrypted), and compute a shared secret φ that
only they know.

NS(A,B, φ) := 1. A→ B : {idA, nA}pk(B)

2. B → A : {nA, nB}pk(A)

3. A→ B : {nB}pk(B) where φ := {nA, nB} .

Figure 3.1: The Needham-Schroeder public-key authentication protocol. The values
nA,nB are nonces discarded after one use (consisting of two communications). The shared
secret consists of φ = {nA,nB}.

Assume that both A and B follow NS and they each know it. In Step 1, A ini-
tialises a nonce nA and initiates a handshake with B by sending it the message
{idA, nA}pk(B). By Law (2.2), KB nA. The message is encrypted with B’s public
key. B receives, and decrypts the message with its private key.

In Step 2, B initialises its nonce nB. Using Law (2.2), KB nB. According to Law
(2.5): KB nA and KB nB then KB (nA ∧ nB). B sends to A acknowledgement for nA

along with its nB. When A receives the message, it decrypts it and by Law (2.2),
KA nB. By Law (2.5), KA (nA ∧ nB) With an acknowledgement of its nonce nA,

1A nonce is used once and deleted.
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by the ‘Acknowledgement’ Lemma 1, A knows that only B could have decrypted
its previous message sent in Step 1. So KAKB φ.

In Step 3, A sends to B an acknowledgement for nB. B receives {nB}pk(B), de-
crypts it and now knows that only A could have decrypted the previous message,
{nA, nB}pk(A). Hence NS ` Endorsed(A,B, φ) .

This purportedly achieves authentication between A and B

KC φ ⇒ C = A,B .

However Lowe [56] showed that NS is susceptible to a man-in-the-middle, MitM,
attack that violates the premise that only A and B know φ. In a MitM attack, an
intruder impersonating A (as C (A)) learns φ by establishing communication with
B and convinces B it is communicating with A.

3.2.1.2 Man-in-the-middle attack on NS

Lowe [58] described four similar types of MitM attack on authentication protocols.
They all involve an intruder impersonating one agent and starting a communication
session with another. Here we analyse the simplest MitM attack on the NS protocol.

Agent A starts a handshake with what turns out to be a malicious agent C . C im-
personates A, written C (A), and starts a session with B. C forwards any messages
it cannot decrypt. A MitM attack on NS, MitMNS , is asymmetric: A communicates
with C , sending messages encrypted with C ’s public key; whilst B replies to C ,
thinking it is communicating with A and sends messages encrypted with A’s public
key.
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1. A → C : {idA, nA}pk(C)

2. C (A) → B : {idA, nA}pk(B)

3. B → C (A) : {nA, nB}pk(A)

4. C → A : {nA, nB}pk(A)

5. A → C : {nB}pk(C)

6. C (A) → B : {nB}pk(B)

Figure 3.2: A man-in-the-middle attack in which C communicates with A and imper-
sonates A, C (A) in communicating with B.

Theorem 2. A man-in-the-middle attack on NS, MitMNS , allows C to learn the
private key φ = {nA, nB}, violating the third conjunct of Authenticated:

MitMNS ` (C 6= A,B) ∧ KC φ .

Proof The proof focuses on what each agent knows after it receives a message.
Let φ = {nA, nB}.

In Step 1, after A initialises its nonce nA, it initiates a handshake with C . It
sends to C an encrypted message containing its identity, idA, and its nonce, nA. C
receives and decrypts {idA, nA}pk(C), and learns idA and nA. Thus by Law (2.2),
KC {idA, nA}.

In Step 2, B receives {idA, nA}pk(B) from C (A) and decrypts it. B now knows idA

and nA, i.e., by Law (2.2), KB{idA, nA}.

In Step 3, after B its nonce nB, it responds to C (A) with its nonce and an acknowl-
edgement of nA. This message is encrypted with A’s public key. When C receives
the message, it cannot decrypt it. In Step 4, C simply forwards the encrypted
message to A. A decrypts the message and by Law (2.2) learns KA {nA, nB}. Using
the ‘Acknowledgement’ Lemma 1, A now knows that C knows φ, KAKC φ.
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In Step 5, A responds to C with an acknowledgement for nB. C receives and
decrypts the message, and learns nB. Since C already knows nA from Step 1, it
now knows nB, so KC {nA, nB} using Law (2.2). By the ‘Acknowledgement’ Lemma
1, C also now knows that A knows nB, so KCKA {nA, nB}.

In Step 6, C forwards the acknowledgement for nB to B. B decrypts the message,
and by Lemma 1, B now knows that A knows nB. So, KBKA φ.

As a result of the MitMNS interaction
KAKC φ

KCKA φ

KBKA φ

(C 6= A,B) ∧ KC φ

 . (3.5)

This result violates the third conjunct of Authenticated(A,B, φ). 2

Lowe [56] mitigates MitMNS by including B’s id in Step 2 of Figure 3.3, which
results in ¬(KCKA φ).

NSL(A,B, φ) := 1. A→ B : {idA, nA}pk(B)

2. B → A : {idB, nB, nA}pk(A)

3. A→ B : {nB}pk(B)

Figure 3.3: Needham-Schroeder-Lowe (NSL), where φ := {nA,nB}.

Theorem 3. The NSL protocol meets the specification for Authenticated(A,B, φ),

NSL(A,B, φ) ` Authenticated(A,B, φ)

where φ = {nA, nB}.

Proof The proof shows what agents know after receiving messages. A and B
follow NSL as in Figure 3.3. In Step 1, KB nA according to Law (2.2). In Step 2,
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by receiving an acknowledge, KAKB φ, according to the ‘Acknowledgement’ Lemma
1. Finally in Step 3, KAKB φ, again following the ‘Acknowledgement’ Lemma 1.
The protocol satisfies the first two conjuncts of Authenticated (3.4).

Now suppose an intruder C impersonates A (denoted C (A)) to B and tries to
learn φ, and violates the third conjunct of Authenticated. The MitM attack takes
place as follows. A starts a handshake with C , and C impersonates A and starts a
handshake with B.

1. A→ C : {idA, nA}pk(C)

2. C (A)→ B : {idA, nA}pk(B)

3. B → C (A) : {idB, nB, nA}pk(A)

In Step 1, C receives and decrypts the message from A. According to Law (2.2),
KC nA. In Step 2, B receives and decrypts a message from someone impersonating
A. B makes the following deductions: KB nA by Law (2.2). In Step 3, C receives
a message encrypted with A’s public key. It cannot do anything with this message
so it simply relays the message to A in Step 4. In Step 4, A receives an acknowl-
edgement for nA but from an agent whose id differs from C . So KA(idC 6= idB).
Therefore A deduces that ¬KAKC φ. At this point the NSL stops. The third
conjunct still holds.

No other agent could know φ because messages are encrypted. 2

3.2.2 Secrecy

Oftentimes when participants exchange messages they use the same message en-
cryption key over and over again. If an attacker were to record messages and some
time later obtain the encryption key, it could decrypt recorded messages as well as
future messages. To ensure communications remain protected, every message must
be encrypted with a fresh encryption key. Protocols use key exchange mechanisms
like the Diffie-Hellman key exchange protocol [21] for creating ephemeral encryption
keys. Since keys are ephemeral, they cannot be used to decrypt recorded messages.
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In other words if an encryption key is compromised, it cannot be used to decrypt
past or future messages.

To ensure secrecy of encryption keys we use infeasibility to guarantee an intruder
cannot compute past or subsequent keys from a current encryption key in polynomial-
time with a non-negligible success probability.

Informally, forward secrecy ensures that past messages remain protected; while
future secrecy ensures that future messages remain protected. In cryptography
hash-based key derivation functions (KDF) [50] are used to generate encryption
keys. Key exchange protocols that use KDFs with hash properties given in Def-
inition (2), can guarantee forward and future secrecy. (Chapter 6 Section 6.2.2.1
gives a definition of a KDF). The KDF inputs a current encryption key and some
random values, and outputs a new key.

We now give formal definitions of forward and future secrecy.

3.2.2.1 Forward secrecy

When a current encryption key is compromised it is infeasible to derive a past
encryption from it.

Definition 3. Forward secrecy means that an attacker cannot infer a past encryp-
tion key kt′ from a compromised current session key kt:

FoS(A,B, kt) : = ∀X 6= A,B, KX kt ⇒ ∀ t ′ < t · ¬KX kt′ Definition (3.6)

where X is an intruder.

3.2.2.2 Future secrecy

An intruder that compromises a current encryption key can easily compute a future
encryption key if it knows the formula by which it is calculated. A KDF removes
this possibility by inputting random values along with a current session key, and
outputting an encryption key that appears random to an intruder. When a current
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session encryption key is compromised it is infeasible to derive the next key from
it.

Definition 4. Future secrecy means an intruder cannot infer a future session key
kt′ from a compromised current session key kt:

FuS(A,B, kt) : = ∀X 6= A,B, KX kt ⇒ ∀ t ′ > t · ¬KX kt′ Definition (3.7)

where X is an intruder.

We combine the two notions of secrecy and express them as FFSec. Suppose an
intruder X 6= A,B that is perchance able to infer a session key kt at time t in time
domain T. Then it is not able from that to compute any other session key kt′ , past
or future. We write ` KX kt to express that X infers key kt . FFSec expresses that
KX kt′ is not feasibly computable by adversary X from kt .

FFSec(A,B, kt) : = FoS(A,B, kt) ∧ FuS(A,B, kt) . Definition (3.8)

For any time t : T and any key function assigning kt to any time t, we define:

FFSec(A,B) : = ∀ t : T,∀ kt · FFSec(A,B, kt) . Definition (3.9)

3.2.2.3 Diffie-Hellman key agreement

Diffie and Hellman [21] had the idea of public-key cryptography but it was Rivest,
Shamir and Adleman [71] who proved that it was feasible, implemented by what is
now called the RSA protocol. It is well-known now that similar ideas were obtained
for GCHQ by Ellis and Cocks [25].

Agents use DH to generate a shared secret key over an insecure channel. The shared
secret is used to compute new session keys which are updated in subsequent ses-
sions [62]. Groups used often include prime finite fields F∗p = (Z/pZ∗), finite fields
F∗pn , and elliptic curves over finite fields E(Fp). DH uses a multiplicative group Z∗q
of prime order q, with a group generator g. The group has the advantageous prop-
erty that exponentiation is quick while computing discrete logarithms is infeasible
(Definition (1)). This is called the discrete logarithm problem.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. SECURITY MODEL 39

Definition 5 (Discrete Logarithm Problem, DLP). Given a finite cyclic group G,
a generator g ∈ G, and target y ∈ G, find x ∈ G such that y = gx .

In terms of epistemic logic, because agents are polynomially bounded, we express
DLP as follows: an attacker A that knows g and target gx does not know x, i.e.,

¬(KA {g, gx} ⇒ KA x) . Definition (3.10)

In practice an attacker must not have any better than a uniform chance of guessing
the discrete logarithm. The chance of guessing it is non-negligible which we express
as Property (3.10) to avoid reasoning with probabilistic semantics of epistemic logic.

With the group set to Z∗q, the values q and g are common knowledge between A
and B. A randomly selects a secret key a :∈ Z∗q and computes ga; similarly for B
with b and gb. A then sends ga to B and B sends gb to A. A calculates (gb)a and
B calculates (ga)b, which of course are equal and so constitute a shared secret (see
Figure 3.4).

DH (A,B, g; φ) := A : a :∈ Z∗q
B : b :∈ Z∗q

A −→ B : {ga}pk(B)

B −→ A : {gb}pk(A)

A : φ := (gb)a

B : φ := (ga)b .

Figure 3.4: The DH protocol. Agents A and B exchange values which they use to
compute a shared secret φ.

The DLP for non-trivially sized numbers is infeasible (Definition eq1) as we now
show.
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Theorem 4. The DH implementation satisfies Private(A,B, φ),

DH (A,B, g, φ) ` Private(A,B, φ) .

Proof Assume both A and B follow DH and moreover they each know that, and
they each know other’s public keys. When B receives ga from A, it computes
φ = (ga)b so according to Law (2.2), B now knows φ, KBφ. Similarly, A receives
gb, computes φ = (gb)a and learns φ, by Law (2.2), KAφ. Thus Shared(A,B, φ)

holds. It is infeasible for an eavesdropper that observes ga and gb to compute gab

unless it knows either a or b. Thus Private(A,B, φ) holds. 2

In fact Theorem 4 is best possible in the sense that Private(A,B, φ) cannot be
replaced by Endorsed(A,B, φ) because A and B are not aware the other knows φ
at this point.

3.2.2.4 Man-in-the-middle attack on DH

After violation of Authenticated(A,B, φ) by NS, due to MitMNS , we ask: what of a
MitM on DH?

We illustrate how a MitM cannot violate DH. Suppose an eavesdropper C intercepts
communications ga and gb between A and B respectively.

1. A → C : ga

2. C → B : ga

3. B → C : gb

4. C → A : gb

Figure 3.5: A man-in-the-middle attack on DH, MitMDH .

Theorem 5. A man-in-the-middle attack on DH, MitMDH , does not reveal private
key φ to intruder C and so does not violate Private(A,B, φ),

MitMDH ` C 6= A,B ⇒ ¬KCφ .
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Proof We want to show that an attacker C can never learn the secret φ = gab

known to A and B. C observes ga and gb shared between A and B. A and B follow
the protocol strictly, A knows a and no one else including C knows it, KA a and
¬KC a. Similarly for B, KB b and ¬KC b. It is infeasible for C to compute φ
without knowing either a or b. So Private(A,B, φ) holds. 2

Theorem 5 is best possible in the sense that Private(A,B, φ) cannot be replaced
by Endorsed(A,B, φ) because A and B are not aware the other knows φ.

3.3 Conclusion

This chapter has provided a security model for use in the chapters to follow. The
model assumes an attacker with full control over a communication channel but who
is bound by the capabilities of a classical computer. We have given probabilistic
epistemic definitions of mutual authentication and secrecy and have shown how
an attacker can violate them using a man-in-the-middle attack, which incorporate
infeasibility. An example, namely the Needham-Schroeder (NS) protocol, has been
used to show how mutual authentication and secrecy can be achieved. NS turns
out to be susceptible to a man-in-the-middle attack that violates the authentication
requirement. We have analysed a patch proposed and demonstrated by Lowe [56],
showing it achieves mutual authentication as well as the notions of secrecy defined in
the chapter. Another example, namely the Diffie-Hellman key exchange protocol
was analysed and shown to achieve both mutual authentication and secrecy by
allowing agents to establish a share secret.

These benchmark examples give us confidence in the methodology for specification
and reasoning to be used in this thesis.
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Zero Knowledge

In the previous chapter we have calibrated our method on two benchmark appli-
cations. Here we exploit it to analyse security of Lamport’s One-Time Password
Authentication Scheme for use in Chapter 7. We continue to use authentication
(3.4) which incorporates zero knowledge on the part of an eavesdropper, and dis-
cuss more of the background of zero-knowledge protocols. We also use the commit-
reveal framework, explained in terms of Blum’s coin-tossing protocol, to structure
our description of Lamport’s scheme.

This chapter extends the work of [48].

4.1 Zero Knowledge

The idea of zero knowledge was incorporated as the second conjunct of the defini-
tions of Private (3.3) and Authenticated (3.4). In summary an agent C is said to
have zero knowledge of φ:

ZK (C , φ) := ¬KC φ . Definition (4.1)

The term zero knowledge was coined by Goldwasser, Micali and Rackoff [34] in the
context interactive theorem proving. An interactive proof typically involves two

42

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. ZERO KNOWLEDGE 43

agents, one called a prover which tries to convince another called a verifier of the
truth of a statement. Such a proof is said to be zero knowledge when the only
knowledge gained by the verifier is the truth of the statement. Zero-knowledge
interactive proofs have been used to authenticate participants in identification pro-
tocols like the Feige-Fiat-Shamir Identification Scheme [30], the Quisquater Iden-
tification Scheme (GQ) [35], and the Schnorr Identification Scheme [75]. These
protocols prove zero knowledge of discrete logarithms and also satisfy completeness
and soundness requirements. Completeness ensures that an honest verifier always
accepts a proof by an honest prover. Soundness ensures that an honest verifier
rejects the proof of a dishonest prover.

In a zero-knowledge proof an agent called the prover P, tries to convince another
agent called the verifier V , of the truth of a statement φ through a sequence of
interactions without revealing any information about φ. As a result:

KVKP φ ∧ KP¬KV φ

and so ZK (V , φ).

In the following section we introduce a design, the commit-reveal scheme, which
achieves zero knowledge for B whilst it is making a decision but ends with both A
and B knowing φ. This scheme will help to structure the description and verification
of Lamport’s scheme.

4.2 Commit-Reveal Scheme

The idea of ‘escrow’ is required in everyday interactions between untrusted agents
and so has online equivalents. The structure is that of a ‘commitment scheme’ [11].
For now we see how it can be implemented using a hash function.

Several distributed protocols use the idea of an agent A committing to a value,
an agent B making progress on that assumption, and then A revealing to B its
committed value to complete a transaction. The committed value is initially hidden
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from B but binding on A. Since the agents are untrusted it must be ensured that B
is not able to infer any information about the committed value before it is revealed,
and A is unable to change its value between commitment and revelation.

During the first interaction A commits to a value but keeps it hidden from B. The
value is binding to A and cannot be changed during subsequent interactions. At
the same time, B must not be able to infer any information about the committed
value before it is revealed.

In committing to a value, A chooses a : B∗ randomly (because it must be careful
not to allow B any chance of predicting its choice, A would be reluctant to use a
deterministic expression for a as discussed in Section 3.1.3) and sends a hash of a,
h(a), to B which B stores as variable b:

Commit A : a :∈ B∗

A→ B : h(a)

B : b := h(a)

Since h is a hash function and a was random, it is infeasible for to B can glean
anything from h(a), except that A has committed to a value of a:

KBKA a ∧ KA ¬KB a .

The function h is now not common knowledge as it was in the previous chapter.
However the hash system being used (like SHA, recall Section 3.1.3) is common
knowledge as is its property of not having conjugates. In the context of h and a as
above, a conjugate hash function h∗ satisfies:

h∗(¬a) = h(a) . Definition (4.2)

When appropriate, A reveals its value by sending a and h to B. So now B must
ensure that A hasn’t changed the value a since committing to it, and so checks h(a)

against its stored value b (using Property 2 of Definition (2) of a hash function,
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and the lack of conjugates). If they are equal B updates b to equal a and accepts
it; but otherwise B rejects it.

Reveal A→ B : a, h
B : if b = h(a) then b := a # Accept(a)

else Reject(a)

In other words if Accept(a) then KAKB a. Since the hash system does not contain
conjugates B knows that A cannot cheat if B guessed correctly by revealing instead
¬a and h∗.

The commit-reveal interaction between A and B is summarised in Figure 4.1 which
contains both a specification AbsCR and a protocol implementing it, ImpCR.

4.2.1 Correctness

Since the states of A (respectively B) are the same in both the abstract and concrete
types, no data representation is required and we show that ImpCR refines AbsCR
by showing the operations of the former are operational refinements of the latter:
they have weaker preconditions and stronger postconditions.

The ‘Commit-reveal correctness’ Theorem 6 shows the implementation meets the
specification.

Theorem 6 (Commit-reveal correctness.). The concrete type ImpCR refines the
abstract AbsCR: each concrete operation refines the corresponding abstract opera-
tion.

Proof The implementation Commit operation is total and

ImpCR.Commit(a, b)

⇒ Property 2 of Definition (2) of h

a :∈ B∗ ∧ b = h(a)
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AbsCR
AState
a : B∗

BState
b : B∗

Commit
ΞAState
∆BState

A : a ∈ B∗
KA¬KB a
KBKA a

Reveal
ΞAState
∆BState

Accept(a)⇒ KAKB a ∧ KBKA a

ImpCR
AState
a : B∗

BState
b : B∗

Commit
∆AState
∆BState
A : a :∈ B∗, h(a)
A→ B : h(a)

B : b := h(a)

Reveal
ΞAState
∆BState
A→ B : a : B∗, h : B∗ → B∗

B : if b = h(a) then b := a # Accept(a)
else Reject(a)

Figure 4.1: The commit-reveal abstract type AbsCR expresses its requirements in terms
of knowledge. The implementation ImpCR gives a design. The Commit operation is
specified to result in a pair of states about which A is assured its state is private from B,
yet B knows A has committed to a value. The Reveal operation results in a state were
the state of A is later revealed to B.
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⇒ Law (2.2) and ‘Acknowledgement’ Lemma 1

a ∈ B∗ ∧ KBKA a ∧ KA¬KBa

= By definition

AbsCR.Commit(a, b) .

Restricting the implementation Reveal operation to the precondition h(a) = b,

ImpCR.Reveal(a, b)

= Restriction

b = h(a)

⇒ By definition of the operation since no conjugates exist

Accept(a) ∧ KBKA a ∧ KAKB a

= By definition (on precondition)

AbsCR.Reveal(a, b) .

2

4.2.2 Coin-tossing

An early use of the commit-reveal framework was due to Blum [10]. Suppose A and
B want to flip a coin by telephone, a distributed situation with no trusted party.
A chooses either 1 (heads) or 0 (tails). B wins if it guesses A’s choice.

Let a : B be a variable which contains A’s choice (either 1 for heads or 0 for tails).
In committing to a value, A hashes its choice and sends to B the hashed value h(a)

– as commitment to its choice – then B sends to A its guess b. B must wait to
receive A’s commitment before sending its choice otherwise A would commit to the
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opposite of B’s choice. Now A knows who has won, but B does not. The commit
step achieves zero knowledge: ZK (B, a) holds.

It is important that h not be common because if it were B could simply compute
h(0) and h(1) and know A’s committed value of a.

In revealing a value, A sends to B its choice and the hash function, A → B : a, h.
B now also knows who has won, and can confirm that A did not cheat by checking
that the hash function applied to A’s guess gives the value A sent as its committed
value (under the system assumption assumed above). That is,

if b = h(a) then Accept(a)# if b = a then B wins
else A wins

else Reject(a) .

By the ‘Commit-reveal correctness’ Theorem Blum’s protocol achieves common
knowledge to depth 2 of the fair winner.

4.3 Lamport’s Scheme

Many devices connected to the Internet of Things use password authentication [43]
but the problem with such an approach is that repeated use of the same password
is vulnerable to attack [51]. The problem is further exacerbated when passwords
are not frequently updated, which makes devices susceptible to more attacks and
violations of device data. In Chapter 7 we shall use the following protocol to
mitigate that problem.

One solution would be to allow a device user to derive a hashed value from its
secret password each time it needs to be authenticated in a communication session.
For instance, some transactions like online banking typically require a user to enter
a one-time password before the user is granted access to the system. First use
of the one-time password authenticates the user; any replay leads to failure. No
information about the user’s secret password is revealed but the bank is convinced
the user knows the secret password.
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Init := A : n :∈ N | n ≥ 2 ;
a :∈ B∗ ;
i := n − 1 ;
x := hi(a) ;
y := h(x) ;

A→ B : y ;
A : i := i − 1 ;

X
X := A : if i ≥ 1 then A→ B : x ;

i := i − 1
else Init

B : if h(x) = y then B → A : Accept ;
y := x ;
X

else B → A : Error

Figure 4.2: The LAOTP Protocol, in which A reinitialises after n accesses, and uses a
common hash function h.

Lamport’s One-Time Password Authentication Scheme (LAOTP) [54] was inspired
by the commit-reveal framework to solve that problem.

Assume that A and B share the hash function h. A’s state consists of an arbitrarily
large natural n which equals the number of accesses it will perform, and a secret
seed a. Initially A sends h(a) to B which it stores. For its initial access, A computes
x := hn−1(a) and sends it to B which confirms that h of that value equals its stored
value hn(a). If so it grants A access, but not otherwise.

An eavesdropper who remembers hn(a) from the initial communication is unable
to compute h−1(hn(a)), A’s current password.

A and B iterate that process until A is unable to continue that descent, when it
reinitialises n and a. See Figure 4.2.

The property satisfied by LAOTP is summarised in the following theorem.
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Theorem 7. Assume that A,B are honest and follow LAOTP. The protocol achieves
Authenticated(A,B, x) on each iteration and, recalling future secrecy from Section
3.2.2.2, also ∀ i · FuS(A,B, xi) overall, where xi denotes the value of x on the i-th
iteration.

Proof.

The X -iteration of the design of LAOTP terminates because the variant i decre-
ments on each iteration. Moreover it maintains the invariant

0 ≤ i < n ∧

x = hi(a) ∧

y = h(x) ∧

KAKB x ∧

KBKA x .

The first three conjuncts follow by standard reasoning. The fourth conjunct follows
since A receives Accept or Error from B on each iteration. The fifth conjunct follows
since A→ B : x on each iteration.

It remains to establish invariant ∀C 6= A,B · ¬KCx . On each iteration an
eavesdropper C knows all values of x from previous iterations but is unable to
compute the inverse h−1(x) of the latest x , which is the next value of x , because
that is infeasible (Property 1 of Definition (2)). So ¬KC x . 2

Forward secrecy between A and B, FoS(A,B), fails because, as just explained,
given hi(a), an eavesdropper C can compute hi+1(a) = h(hi(a)), the previous key
(et seq.).

4.3.1 Efficiency

We make a simplifying assumption for the purpose of approximating the amount of
work a standard attacker needs to perform in order to break ImpCR. An attacker
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will try to break ImpCR by inverting the scheme’s hash function. We consider the
Secure Hash Algorithm (SHA) with 256-bit key sizes (SHA-256). From Table 6.1,
Chapter 6, we observe that a 256-bit key is associated with 128-bit security level.
We let the attacker make q ≥ 260 queries to the hash function while trying work
out a one-time password. The attacker can compute the right one-time password
with probability of success at most q/2k , where k = 256. So the probability of
computing the correct one-time password is approximately 260/2256 = 1/2196.

Now suppose a small IoT device with a 32MHz processor is used to implement
Lamport’s scheme. The clock ticks 32 million times per second. So with each tick,
approximately one instruction completes. We place a lower bound on the number
of computations an attacker can perform in order to work out a password: no less
than 2128+60 = 2188 operations.

How much time would it take an attacker to find the correct one-time password?
It would take 2188 × 1

32000000
≈ 2188 × 1

225
≈ 2163 seconds to compute the correct

password, or roughly 1.104× 1034 years.

4.4 Conclusion

As more resource-constrained devices connect to the internet, they introduce new
security challenges. The need arises to protect these devices from attacks that com-
promise authentication. Threats indicate the need to analyse security guarantees
and vulnerabilities associated with protocols envisaged for Internet of Things. One
way to mitigate these threats is insist on zero knowledge by an intruder on secret
values shared between participants in a protocol.

In this chapter we have defined the concept of zero knowledge epistemically and
have illustrated its conceptualisation with a commit-reveal scheme. We have then
shown how a protocol called the Lamport’s One-Time Password Authentication
Scheme achieves zero-knowledge authentication. A theoretical evaluation of the
scheme has been provided which shows it is suitable for authenticating devices
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with limited resources. This technique is to be exploited in Chapter 7.
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Chapter 5

Vulnerability of TCP

Before moving to lightweight applications we investigate how our techniques ap-
ply in conventional communication networks. The purpose of this chapter is to
formalise the handshake of TCP, the Transmission Control Protocol [70], which
orchestrates communication, and so reason about it at a level of abstraction above
any particular implementation.

TCP is used to exchange messages subject to the requirement that exchanges
are protected. We assume TCP is implemented in a system that uses a public-
key cryptosystem having public and private key pairs to protect data. The TCP
procedure begins with a handshake phase to establish a connection that satisfies
Authenticated, Definition (3.4), continues with the desired exchange, and ends by
freeing up the connection. But if used in a non-standard manner, called a split
handshake, the actions in the handshake phase constitute a known security vulner-
ability violating Authenticated.

5.1 Devices and connections

We consider communicating devices like computers, mobile phones, tablets, etc.,
gathered into connected networks. Networks may have firewalls for security and, to
ensure privacy, different communications even between the same two devices occur

53
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on different connections.

A ‘connection’ occurs between two endpoints, each called a socket and consisting of
a port p within a device determined by its device identifier d. For that we suppose
a set DID of device identifiers and a set Port of ports common to all devices. We
shall see later that ports are identified numerically.

Socket
d : DID
p : Port

A connection consists of: an identifier, cid; a pair of sockets, one for the host (which
initiated the connection), the other for the server (which did not); a mode indi-
cating which stage has been reached in the communication; and so-called sequence
numbers isn “initial” and jsn (responding) for use by the communicating devices
in acknowledging receipt of messages. Devices store that information which they
pass to each other. However the firewall (as modelled here) needs only part of it.

We choose to express connection information in terms of a substructure C shared
by connections, lookup tables and messages. It has an identifier cid in some set
CID of connection identifiers, and origin and destination sockets.

C
cid : CID
orig, dest : Socket

Perhaps orig equals dest. So we impose no state invariant.

Then a connection consists of C , with host socket substituted for orig and server
socket instead of dest, together with the sequence numbers and mode as already
mentioned:

Connection
C [host, server/orig, dest]
isn, jsn : N
mode : open | synsent | · · · | estab
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A device has: a device identifier, i : DID; a non-empty set P of ports which it
uses for authenticated communications with other devices via sockets; and a set
tcb (transmission control block, see the standard description [70]) of connections in
which it is currently engaged. Each connection c ∈ tcb has this device as either host
or server1 (i.e. the device identifier is either c.host.d or c.server .d) and in either
case the port is one of its own:

Device
i : DID
P : PPorts
tcb : PConnection

P 6= ∅

∀ c : tcb ·


(c.host.d = i) ∨ (c.server .d = i)
c.host.d = i ⇒ c.host.p ∈ P
c.server .d = i ⇒ c.server .p ∈ P



A message between devices contains a header and data. The header contains a
connection (though with the original labels orig and dest of C ) and a flag demarking
the type of action being performed.

Header
Connection[orig, dest/host, server ]
flag : syn | ack | synack | rst | . . .

The data in a message, included for ‘completeness’, are of no concern in the hand-
shake.

Message
h : Header
data : D

1We see no reason to prohibit both.
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5.2 The net

The net of connections under consideration forms a directed graph. We ignore the
structure imposed by local area subnets, but do later take into account the effect
of their firewalls. Our model is based on the description in Tenanbaum [85].

5.2.1 A directed graph

The net forms a directed graph2 (S ,E) whose vertices are sockets and whose directed
edges consist of c : C from c.orig to c.dest with label c.cid. It is assumed that
edges are determined by their endpoints and also by their identifiers. Similarly
devices are determined by their identifiers.

Net
S : P Socket
E : PC

∀ b, c : E ·
(

b.orig = c.orig ⇒ c.orig ∈ S
b.dest = c.dest ⇒ c.dest ∈ S

)
≡ b.cid = c.cid

∀ e, f : {g : Device | ∃ s : S · g.i = s.d} · e = f ⇒ e.i = f .i

In TCP, ports are allocated by service. For instance port 25 is assigned to email,
port 80 to http, and those beyond 1024 to ‘private conversations’ (see Tenanbaum
[85], Section 6.5.2).

Initially we assume that no private conversations are under way, but that public
ports are accessible to all:

E = {c : C | c.dest.p ∈ {25, 80, . . . , 1024}} . (5.1)

Operations for the opening and closing of connections form part of TCP, as we
shall see. The result will be a model of TCP as an abstract data type.

2Which could also be modelled as a multigraph whose vertices are devices.
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5.2.2 Firewalls

Devices are grouped into local area networks, LANs, each protected by a firewall.
Devices within a firewall communicate unimpeded. The exterior of a firewall is
called its DeMilitarised Zone, DMZ. The DMZ contains publicly available servers
which offer email, web, ftp and DNS services (see the text [86]). The DMZ is
protected from the Internet by an external firewall. We consider simple external
firewalls3 which either allow or bar input on the basis of its origin and destination.

A firewall achieves that by having state consisting of a set, safe, of the IDs of devices
it protects (i.e. inside the firewall) and for each such device a lookup table (set) of
allowed connections. It stores only the part it needs, C , of a connection, not the
full Connection. It is therefore convenient to use a function Γ which abstracts the
extra values isn, jsn and mode of its argument, and returns the argument’s values
of cid, orig/host and dest/server . In terms of mathematics rather than Z, on the
understanding that Connection has six observables and C has three,

Γ : Connection → C
Γ(cid, host, server , isn, jsn,mode) = (cid, host, server)

We model a firewall as an abstract data type F , as usual, with state, initial state,
an a filtering operation OpF .

The state of the firewall F is

StateF
safe : PDID
lt : DID 7→ PC

dom lt = safe

Initially devices can communicate on their public ports, corresponding to Equation
(5.1), but there are no private connections.

3See Netfilter [86] for a typical example of how much more firewalls can achieve.
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InitF
StateF

lt = {c : C | c.dest.p ∈ {25, 80, . . . , 1024}}

We overlook operations to add or remove devices inside the firewall, and concentrate
on OpF , the filtering operation of F .

When the firewall receives an output message from a device it is protecting, it
updates the component of its lookup table associated with that device by adding the
C component of the message (i.e. Γ of the connection information in the message)
before forwarding it. When both origin and destination lie within the firewall, it
lets a message pass unimpeded (thus all internal destinations are included in a
firewall’s lookup table).

A message input from its DMZ is allowed to pass iff Γ of its connection lies (com-
plete) in lt of its destination. Firewalls are assumed to be updated only on outputs.
Several messages may be required to complete the firewall’s information on a con-
nection, as is the case in TCP’s handshake. Whilst Γ of the connection information
is being accumulated by the firewall, messages are delivered to a given port. A
firewall does not support a private connection until its lookup table contains all the
information in Γ of that connection. Using a conditional to express that:

OpF
∆StateF(lt)
m?,m! : Message

m?.h.orig.d ∈ safe ⇒(
lt ′ = lt ⊕ {m?.h.orig.d 7→ Γ(m?.h.connection)}
m! = m?

)
m?.h.orig.d 6∈ safe ⇒

if {Γ(m?.h.connection)} ∈ lt(m?.h.dest.d)

then m! = m? else ⊥
lt ′ = lt


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Recall the convention that ∆StateF(lt) means that the observable safe of StateF
remains unchanged (see Section 2.4).

If Op is an operation which outputs a message, then the effect of the firewall is
described by piping the output of Op to the input of OpF . For then the output
m! : Message of Op is identified with the input m? : Message of OpF and hidden,
whilst the two operations Op and OpF act ‘side by side’. The result is written using
piping Op >> OpF . Use of piping avoids an expansion of the result.

Having expressed a firewall in terms of state and a filtering operation, OpF , which
acts on an output operation Op from within the firewall as

Op >> OpF ,

we now investigate TCP’s handshake.

5.3 Handshake

The purpose of this section is to specify TCP’s handshake for establishing a con-
nection that maintains TCP’s privacy conditions (shown in the next section to be
violated by the split handshake).

5.3.1 Specification

TCP is used to establish connections which are reliable (see Section 3.1.3 for mes-
sage integrity) and authenticated (see Section 3.2.1 for the definition of authenti-
cation). The TCP handshake consists of a client and server of type Device (see
Section 5.1), and operations Syn, SynAck and Ack (see Figure 5.1). The property
we establish is the following.

Theorem 8. As a result of TCP’s handshake, connections are established satis-
fying:
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1. each connection is characterised by its cid and moreover different connections
have disjoint endpoints: for any connections b, c,

{b.host, b.server} ∩ {c.host, c.server} 6= ∅ ⇒ b = c

2. for host h and server s

Authenticated(h, s, φ) ,

where φ = {cid, host, server , isn, jsn,mode} .

In this section we see how TCP’s handshake achieves Theorem 8, and then in
Section 5.4.1 how the split handshake violates it.

5.3.2 Opening a connection

The establishment of a connection, from a host device h to a device destined to be
the server with socket ss, is begun by an operation Open being invoked at h. Open is
supplied with a port and remote socket ss, and updates the device connection table
tcb and the set P of ports. The operation proceeds with h updating its tcb to contain
a new connection c having host device c.host.d as h.i, host port c.host.p supplied
as port, connection server c.server supplied as ss, an initial sequence number c.isn
chosen randomly and responder sequence number c.jsn initially undefined (to be
supplied by receiver’s acknowledgement), and in mode c.mode set to open, with a
fresh host port, and with server having socket ss and

A port q of device h is fresh iff it is not used in h’s tcb as either a host port or a
server port:

Fresh(h, q) := ∀ b : h.tcb · q 6∈ {b.host.p, b.server .p} .

The Open operation is expressed, from the previous paragraph,
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Open
h, h′ : Device(P, tcb)
port : Port
ss : Socket

Fresh(h, port)
h′.P = h.P ∪ {port}

∃ c : Connection ·



c.host.d = h.i
c.host.p = port
c.server = ss
c.isn :∈ N
c.jsn = ⊥
c.mode = open
h′.tcb = h.tcb ∪ {c}



We have extended the ∆S(x) notation by writing h, h′ : Device(P, tcb) to mean
that the operation being specified does not change the third observable i of h.

Operation Open is total (that is, there are no preconditions) because there is always
such a c : Connection and a fresh port.

The operation Listen indicates a device s is waiting to receive incoming connection
requests. Listen is supplied with a port. The operation checks that the port for
listening on device s is a fresh one. Device state is updated with the new port
number. A new connection is created with server device supplied as s.i, server
port as port, initial sequence number isn chosen randomly and responder sequence
number jsn initially undefined, and mode set to listen; the device tcb is updated
with the new connection information. To handle multiple simultaneous connections
through a single TCP port, many operating systems make a copy of the tcb and
perform state transition and updates on the copy.
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Listen
s, s′ : Device(P, tcb)
port : Port

Fresh(s, port)
s′.P = s.P ∪ {port}

∃ c : Connection ·



c.server .d = s.i
c.server .p = port
c.host = ⊥
c.isn :∈ N
c.jsn = ⊥
c.mode = listen
s′.tcb = s.tcb ∪ {c}



Operation Listen is again total.
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5.3.3 Operation Syn

sh

open listen

synsent synrec

synackrec synacksent

estab estab

Syn

SynAck

Ack

Figure 5.1: The 3-way TCP handshake. A host h and server s engage in a handshake
that starts communication by 3 operations, Syn, SynAck and Ack. The vertical lines
represent the states of h and s as time evolves downwards. After each operation, h and
s result in different modes, open, listen, synsent, synrec, synackrec, synacksent, or estab.

The device h of Open starts an exchange of 3 operations, the handshake (see Figure
5.1), for each connection c in its tcb in mode open, to establish a connection with
the (proposed) server of c. The first operation in the handshake is Syn, which we
split into a send SynSend at the host and a receive SynRec at the server.

Operations are split in this way because it is convenient to express how the state
of each device changes due to each suboperation.

Recall that operation Open updates the sender’s tcb to contain connection c and
sets the mode to open. Operation SynSend happens after that, ensured by its
precondition including mode = open, and so it can use the information in c to
define m!. It updates c’s mode to synsent which is the only change to h’s state.
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The notation c[synsent/mode] in schema SunSend means c’s mode is updated with
value synsent.

SynSend
h, h′ : Device(tcb)
ss? : Socket
m! : Message

∃ c : h.tcb ·



c.host.d = h.i
c.host.p :∈ P
c.server = ss?
c.jsn = ⊥
c.mode = open


∧



m!.h.cid = c.cid
m!.h.orig = c.host
m!.h.dest = c.server
m!.h.P = c.host.p
m!.h.isn = c.isn
m!.h.jsn = c.jsn
m!.h.flag = syn
m!.data =⊥


∧
h′.tcb = h.tcb ∪ {c[synsent/mode]}

The precondition for SynSend is that there exists a connection in h.tcb with host id
equal to device h.i, host port is in P, and server socket equal to ss?, jsn undefined
and mode open. The connection is updated by changing only its mode.

pre SynSend
h : Device(tcb)
ss? : Socket

∃ c : h.tcb,m! : Message ·



c.host.d = h.i
c.host.p :∈ P
c.server = ss?
c.jsn = ⊥
c.mode = open


∧



m!.h.cid = c.cid
m!.h.orig = c.host
m!.h.dest = c.server
m!.h.P = c.host.p
m!.h.isn = c.isn
m!.h.jsn = c.jsn
m!.h.flag = syn
m!.data =⊥


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Message m! is sent via h’s firewall. The combination of SynSend and the firewall
is expressed

SynSend >> OpF .

Since h ∈ safe, the piping ensures that m! is transmitted unchanged from its output
by SynSend and lt is updated corresponding to the update of h.tcb.

Now h’s firewall requires only the server’s port in order to know both sockets of c
and hence support a private conversation. That is achieved by operation SynAckRec
(see Section 5.3.4).

Meanwhile message m! is allowed through the receiver’s firewall to port 25 of device
s = m!.h.dest, which in operation SynRec inputs it as m? and updates its tcb by
updating an existing connection listening for incoming requests to one in synrec
mode. There should be at least one listening connection on the server side.

SynRec
s, s′ : Device(tcb)
m? : Message

m?.h.flag = syn

∃ c : s.tcb ·



c.mode = listen
c.cid = m?.h.cid
c.host = m?.h.orig
c.server .d = m?.h.dest.d = s.i
Fresh(s, c.server .p)

c.isn = m?.h.isn
c.jsn :∈ N
s′.tcb = s.tcb ∪ {c[synrec/mode]}



The preconditon for SynRec is that the incoming message has flag equal to syn,
and there exists a receiver connection in s.tcb with connection mode equal to listen
with host id equal to m?.h.orig, and destination id equal to server id.
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pre SynRec
s : Device(tcb)
m? : Message

m?.h.flag = syn

∃ c : s.tcb ·


c.mode = listen
c.cid = m?.h.cid
c.host = m?.h.orig
c.server .d = m?.h.dest.d = s.i



As a result of SynRec the receiver knows the information in the message, known to
the sender, as well as, of course, its own choices (of local port and jsn).

Lemma 3. From operation SynRec, concerning its connection

Ks (cid, host, server , isn, jsn,mode) ∧ Kh (cid, host, isn,mode) .

Proof We are assuming both h and s follow TCP (achieved in practice by the
protocol being identified in the header) and moreover they each know that. Thus
they know the operations invoked and their order. We also assume accurate delivery
of messages.

So when s receives the message m from h it now knows the information therein,
and remains (so far) unchanged. It stores and hence knows the values of cid, host
and isn. By knowing TCP it knows that h has synsent for mode; and it stores the
value synrec.

Also, since s chooses and stores jsn and its local port,

Ks (cid, host, server , isn, jsn,mode) .

This follows from the Knowledge Gain Law (2.11). 2
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5.3.4 Operation SynAck

We assume that the server wishes to continue with the connection.4 It does so with
a double operation, SynAck, whose decomposition in two we consider later in the
‘split handshake’. Again we consider SynAckSend then SynAckRec.

In SynAckSend the server acknowledges the Syn operation concerning connection
c by returning isn := isn+1, its own sequence number jsn, and updating the mode
of c to synacksent.

SynAckSend
s, s′ : Device(tcb)
m! : Message

∃ c : s.tcb ·



m!.h.cid = c.cid
m!.h.orig = s.i = c.server
m!.h.server .dest = c.host
m!.h.isn = c.isn + 1

m!.h.jsn = c.jsn
m!.h.flag = synack
c.mode = synrec
s′.tcb = s.tcb ∪ {c[synacksent/mode]}



The precondition for SynAckSend is that there exists a connection in s.tcb with
mode is equal to synrec, host socket equal to input host?, port in set P of ports,
and server id equal to s.i.

4Otherwise the next operation would not be enabled by SynRec which would instead set mode
to a new value.
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pre SynAckSend
s : Device(tcb)
host? : Socket

∃ c : s.tcb,m! : Message ·


c.mode = synrec
c.host = host?
c.host.p :∈ P
c.server = s.i

 ∧



m!.h.cid = c.cid
m!.h.orig = s.i = c.server
m!.h.server .dest = c.host
m!.h.isn = c.isn + 1

m!.h.jsn = c.jsn
m!.h.flag = synack



The firewall of s incorporates information from m! in its lookup table and forwards
m! to h. The result is

SynAckSend >> OpF .

The firewall of the host h = m?.h.dest allows the message through to h’s port 25
and the following operation occurs. Operation SynAckRec inputs message m? and
updates an existing connection mode from synacksent to synackrec.

SynAckRec
h, h′ : Device(tcb)
m? : Message

m?.h.flag = synack

∃ c : h.tcb ·



c.cid = m?.h.cid
c.server .p = m?.h.orig.p
c.isn + 1 = m?.h.isn
c.jsn = m?.h.jsn
h′.tcb = h.tcb ∪ {c[synackrec/mode]}


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The precondition for SynAckRec is that incoming message m? has flag equal to
synack, and there exists connection with mode equal synsent, host id equal h.i and
server port equal to m?.h.orig.p.

pre SynAckRec
h : Device(tcb)

m?.h.flag = synack

∃ c : h.tcb ·


c.cid = m?.h.cid
c.mode = synsent
c.host = h.i
c.server .p = m?.h.orig.p



Since h receives from s its original value isn incremented, it knows s has received
the message containing it.

Lemma 4. From operation SynAckRec, concerning its connection

Kh ((cid, host, server , isn, jsn,mode) ∧ Ks (cid, host, isn,mode)) .

Proof Receipt by h of a message from s containing isn + 1 means (since delivery
is assumed to be accurate) that h knows s received its original message and knows
its contents. According to Lemma 1, upon receiving acknowledgement of isn from
s, Kh Ks (cid, host, isn,mode). The same reasoning, as in Lemma 3, applies.

From the message itself Kh completes its knowledge using the Knowledge Gain Law
(2.11) so that Kh (cid, host, server , isn, jsn,mode). 2

5.3.5 Operation Ack

The final operation in the handshake, establishing as much common knowledge as
is possible with just 3 operations, is Ack.

AckSend delivers a message from the host to the server, which requires few fields
because a connection is uniquely determined by its cid. The host returns jsn + 1

to the server.
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AckSend
h, h′ : Device(tcb)
m! : Message

∃ c : h.tcb ·


m!.h.cid = c.cid
m!.h.jsn = c.jsn + 1

m!.h.flag = ack
h′.tcb = h.tcb ∪ {c[estab/mode]}



The precondition of operation AckSend is that such a c exists in h.tcb with mode
equal to synackrec, server equal to ss? and port number in set P.

preAckSend
h : Device(tcb)
ss? : Socket

∃ c : h.tcb,m! : Message ·


c.mode = synackrec
c.server = ss?
c.server .p :∈ P

 ∧


m!.h.cid = c.cid
m!.orig = i = c.host
m!.dest = c.server
m!.h.jsn = c.jsn + 1

m!.h.flag = ack



The host’s firewall is updated to contain the server’s port,

AckSend >> OpF ,

so from now on inputs are allowed by the firewall from private socket to private
socket.

At the server the message passes through the firewall (it could use port 25 or be
directed to the socket which the server has dedicated to this connection) and at
the server updates the connection to established mode.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. VULNERABILITY OF TCP 71

AckRec
s, s′ : Device(tcb)
m? : Message

m?.h.flag = ack

∃ c : s.tcb ·
(

c.cid = m?.h.cid
h′.tcb = h.tcb ∪ {c[estab/mode]}

)

The precondition for AckRec is that the message m? has flag equal to ack and
incoming connection m?.h.cid already exists in s.tcb.

preAckRec
s : Device(tcb)
m? : Message

m?.h.flag = ack

∃ c : s.tcb ·
(

c.cid = m?.h.cid
c.mode = ack

)

Concerning the server’s connection, using techniques that are now familiar,

Lemma 5. Operation AckRec satisfies(
Ks Kh {cid, host, server , isn, jsn,mode}
Kh Ks {cid, host, server , isn, jsn,mode}

)
.

Therefore, Endorsed(s, h, φ), where φ := {cid, host, server , isn, jsn,mode}.

2

Both devices have updated their firewalls to support an authenticated connec-
tion which we show establishes Theorem 8. An intruder i that wishes to obtain
cid, isn, jsn, needs to decrypt messages exchanged during AckRec. It can use either
h’s private key or s’s private key. It can do so only if it is either h or s. That is,

Ki {cid, host, server , isn, jsn,mode} ⇒ i = d, s .
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As a result of Lemmas 3, 4, and 5, the TCP handshake achieves authentication
Authenticated(h, s, φ) . This completes the proof of Theorem 8.

5.4 Split handshake

5.4.1 Specification

The 3-way TCP handshake described in Figure 5.1 is not the only way to create new
connections. Some firewalls are configured to create TCP connections using a 4-way
TCP handshake called a split handshake. In the 4-way handshake, the server splits
the SynAck message into a separate acknowledgement Ack and synchronisation
SynAck. There is no explicit instruction in the TCP documentation [70] on how
to deal with a split handshake. A client following the TCP protocol is expected
to silently accept the Ack and explicitly acknowledge the Syn. But this does not
happen. TCP implementations [7, 66] that use the split handshake option produce
unexpected behaviour. Figure 5.2 shows one effect of the split SynAck. When
the server splits the SynAck into Ack and Syn messages, a client h establishes a
connection, i.e., the mode is set to estab, when it receives the Ack message. Without
full connection details and without following the protocol as documented, the server
s manages to establish a connection. The client h then sends a SynAck to s. This
reversal in the logical flow of the normal handshake causes h to behave like a server
and violates the privacy of connections. This constitutes a known vulnerability (see
[7, 66]). Some firewalls just drop the single Ack message from a server.
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sh

open listen

synsent

estab

synackrec

estab

Syn

Ack

SynAck

Ack

Figure 5.2: The 4-way split TCP handshake. A host h and server s engage in a
handshake that starts communication by 4 operations, Syn, Ack, SynAck, and Ack. And
after each operation, h and s result in different modes, open, listen, synsent, synrec,
synackrec, synacksent, or estab.

The result of this section is:

Theorem 9. Split handshake violates the invariant established by the TCP hand-
shake that different connections have disjoint endpoints.

So connection endpoints are now shared by connections with distinct cids and
therefore are no longer private.

5.4.2 Opening a new connection

This section introduces operation SplitOpen to formalise the idea of a split hand-
shake. As before, a device h invokes Open which must start an exchange of 3
operations for each connection c in its tcb with mode open in order to establish a
connection with the server of c. Again, SynSend chooses a c in h.tcb with mode
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open and updates c’s mode to synsent. The same results hold as stated in Lemma
3.

The server s invokes operation Ack to acknowledge the connection request from the
host.5 AckSend[h, h′/s, s′] delivers ack from the server to the host, which returns
isn + 1 to h. The host h silently6 accepts the ack message with AckRec[s, s′/h, h′]
before it times out while waiting for a synack. From operation AckRec, concerning
its connection

Kh Ks (cid, host, server , isn,mode) .

The server then invokes operation SplitOpen, which works like Open but does not
accept as input a socket and port of the device to connect to; it instead is supplied
with an existing connection b. A new connection c is created with the same end-
points as connection b; and with mode open and a new initial sequence number
isn. Connection c is then added to the tcb of s. The server goes on to create a
connection request with Syn.

SplitOpen
s, s′ : Device(tcb)
b : Connection

b ∈ s.tcb

∃ c : Connection ·



c.host.d = s.i = b.server .d
c.host.p = b.server .p
c.server .d = b.host.d
c.server .p = b.host.p
c.cid :∈ N 6= b.cid
c.isn :∈ N
c.jsn = ⊥
c.mode = open
s′.tcb = s.tcb ∪ {c}


5This can be skipped if s goes directly to operation Syn.
6The ack field acknowledges syn sent.
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5.4.3 Proof of Theorem 9

It remains to show that as a result of the SplitOpen operation, a new connection c
is created from an existing connection b such that c.cid 6= b.cid and yet

{b.host, b.server} = {c.host, c.server}. (5.2)

In other words the invariant that connections are identified by both their ids and
their endpoints is violated.

Assume both s and h follow the TCP protocol. The new connection c must have a
different identifier from that of connection b due to SplitOpen:

c.cid 6= b.cid .

Yet also from SplitOpen: 
c.host.d = b.server .d
c.host.p = b.server .p
c.server .d = b.host.d
c.server .p = b.host.p

 ,

hence Equation (5.2) holds. 2

5.4.4 Mitigating the split handshake

We consider the role the firewall has to play in the split handshake. Splitting
SynAck in two causes unexpected behaviour. Instead of h merely acknowledging
the syn from the server, it responds with a synack instead. The host firewall defined
in the beginning lets these messages through and does not maintain state about
connections. The problem with this is that the firewall will accept any connection
request from a trusted server.

The host firewall must prevent unsolicited connection attempts before they reach a
host. It does so with operation OpI , which inspects incoming messages. If the con-
nection information is already in the lookup table, i.e., {Γ(m?.h)} ∈ lt(m?.h.dest.d)
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and has the right flag, i.e, synack, ack, rst, the connection is updated in the lookup
table lt. If the incoming message endpoints are not in lt and the message tries to
access a well known port in E , the firewall lets the message through and updates
lt. Otherwise it discards the message.

OpI is expressed as:

OpI
∆StateF(lt)
m?,m! : Message

Γ(m?.h) ∈ lt(m?.h.dest.d) ⇒

(
m?.h.flag ∈ {synack, ack, rst}
m! = m?

)
Γ(m?.h) 6∈ lt(m?.h.dest.d) ⇒

m?.h.dest.p ∈ E ⇒
m?.h.flag = syn
lt ′ = lt ⊕ {m?.h.dest.d 7→ Γ(m?.h)}
m! = m?


m?.h.dest.p 6∈ E ⇒

(
lt ′ = lt
m! =⊥

)



So now the operation
OpI >> SynRec

on host h drops the syn request when a port is private. It mitigates SplitOpen by
ensuring that connections are determined by both their ids and their endpoints.

SplitOpen should not be confused with simultaneous open where ports are known
before the connection set up. With SplitOpen the server lets the host expose its
port number before it sends a syn request.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. VULNERABILITY OF TCP 77

5.5 Conclusion

This chapter has formalised the TCP handshake and reasoned about an odd be-
haviour of the TCP handshake called a split handshake, that results in unspecified
behaviour during operation. This treatment of the split handshake shows that for-
malising protocols can identify loopholes that would otherwise only show up when
the protocol is implemented.

TCP underpins standard communications protocols and has been the first real use
of our methodology. In the rest of the thesis we consider more recent protocols
developed in response to lightweight and mobile devices.
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Chapter 6

Analysis of Signal

So far this thesis has considered how our techniques work for a standard communi-
cations protocol, the Transmission Control Protocol. We now apply our techniques
to a protocol whose design philosophy is maintaining privacy of user data. The
Signal communication protocol allows communicating devices like smartphones to
set up authenticated communication sessions using a key-agreement scheme (re-
call Authenticated in Definition (3.4) in Chapter 3), and thereafter encrypt each
message exchanged between a sender and receiver with a new encryption key in
order to maintain privacy (recall Private in Definition (3.3)) as well as secrecy of
messages (recall FFSec in Definition (3.8)). This chapter formalises the protocol’s
key-agreement and encryption key-update mechanisms. It extends our paper [46]
on analysing security in Signal.

6.1 Signal Protocol

The Signal Protocol [62] provides security for the Signal messaging application.1

The messaging application encrypts data end-to-end, which means only the sender
and receiver can read encrypted messages between them. Traditionally messaging
servers are responsible for encrypting user data but with increasing public concern

1The protocol and app share the same name. Henceforth, by the name Signal we refer to the
protocol.

78
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about privacy of user data, protocols like Signal are sought to provide end-to-end
encryption. A recent example of such concern was [74].

How does the Signal security protocol provide end-to-end encryption? The pro-
tocol sets up an authenticated connection for secure exchange of messages. Fresh
symmetric keys encrypt and decrypt messages in a communication session and are
updated in each session according to specifications by Spike et al. [60]. The pro-
tocol uses Diffie-Hellman key agreement to establish a shared secret key between
sender and receiver. Session encryption keys are then derived from the shared secret
key, and Signal’s Double Ratcheting algorithm updates session keys for subsequent
sessions. Fresh session keys ensure that past encrypted messages are secure against
compromise of the current session key; as are future messages.

Cohn-Gordon et al. [17, 18] were amongst the first to formalise Signal. They
concluded that Signal’s key agreement and update mechanisms have no flaws under
standard cryptographic assumptions. The authors also found that the protocol
maintains forward secrecy.

Frosch et al. [31] formalised an early version of Signal called TextSecure. They
showed that it achieves forward secrecy. The authors identified an authentication
vulnerability where an intruder impersonates a legitimate user. They proposed a
solution in which a participant proves knowledge of the private identity key before
it is registered with a key-management server.

In contrast our formalisation of Signal uses epistemic logic to show that the proto-
col’s key agreement and update mechanisms do achieve authentication and secrecy.

6.2 Key agreement

Signal agents use a sequence of sessions to exchange messages encrypted with sym-
metric keys. Keys are characterised as long-term, medium-term and prekeys which
are used in the creation of symmetric encryption keys. A key-agreement algorithm
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establishes a shared secret key between two communicating agents and then a key-
evolution algorithm creates fresh symmetric keys to encrypt messages in subsequent
sessions. These algorithms maintain forward and future secrecy.

Agents agree on a shared secret and use a key derivation function (KDF) to generate
two sequences of session keys called chains – a sending chain and a receiving chain.
One agent’s sending chain matches the other agent’s receiving chain. The sending
chain contains message-encryption keys while the receiving chain contains decryp-
tion keys. The one-way nature of the KDF ratchets the chains forward so that
output appears random to an intruder. Communication latency may temporarily
force these chains out of synchronisation. The length of the chains is chosen to
overcome this latency.

6.2.1 Initialising key agreement

Signal uses Diffie-Hellman key exchange (DH) (see Section 3.2.2.3) to create a
shared secret key ss between two agents. Being shared, each agent knows the other
knows it; being secret, they are the only ones who know it. That is formalised in
terms of epistemic logic for agents A and B in Section 3.2.1 by predicate (from
Definition (3.3)):

Private(A,B, φ) =

(
Shared(A,B, φ)

C 6= A,B ⇒ ¬KC φ

)
. (6.1)

Theorem 4 in Section 3.2.2.3 proves that DH satisfies Private.

6.2.1.1 Diffie-Hellman

Recall the definition of DH in Section 3.2.2.3. In the case of Signal, DH uses
the group structure of a specific elliptic curve. We show in Section 6.5.1.1 the
advantages of keys generated using this sort of curve.
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As is illustrated in Figure 3.4, Section 3.2.2.3, the key values ga and gb can be
observed by any intruder. However, an intruder will not be able to compute gab

due to the infeasibility of solving the Discrete Logarithm Problem (see Definition
(5), Section 3.2.2.3). DH as described in Figure 3.4 uses signed keys to verify the
identity of agents involved in the key-agreement scheme. By using signed keys, the
protocol satisfies Authenticated, Definition (3.4). We shall see in Section 6.5 how
Authenticated is achieved with Double Ratcheting.

Signal calculates several shared secret keys by iterating DH. Section 6.2.2 shows
how this is done.

6.2.2 Maintaining key agreement

New session keys are generated and updated in subsequent sessions with a KDF.
The KDF inputs the shared secret key and other values, and outputs session keys.
It is a one-way function that outputs keys of desired length. We use it in Signal’s
key agreement algorithm called Triple Extended Diffie-Hellman (X3DH). We now
provide the definitions of a hash function and a key derivation function because
they are used by the X3DH algorithm.

6.2.2.1 Key-derivation function

A key-derivation function inputs a key, a seed value, information about the protocol
and a length argument indicating desired length of output. It outputs a key of
desired length.

Signal uses a hash-based message authentication code [52] (HMAC) KDF. The
HMAC is a keyed hash function.

Definition 6. An HMAC function f : B∗ × B∗ → Bb inputs a key k in the form of
a bit string, and a bit string of data, applies the hash function to those inputs, and
outputs a hash value of length b:

f (k, data) = h(k ′ ⊕ u ++ h(k ′ ⊕ v ++ data)) ,
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where ++ denotes catenation of strings, ⊕ denotes addition modulo two, u, v are
fixed bit strings of length b and

k ′ =

h(k) for #k > b ,

k otherwise .

The output of f has the same length as the output of the hash function (see Defi-
nition (2)).

Recall the bijection between natural numbers and nonempty bit strings correspond-
ing to ‘binary representation’, is defined recursively:

bin : B∗ \ {[ ]} → N
bin [x ] = x

bin (xs ++ [x ]) = 2(bin xs) + x .

Thus for instance bin[1101] = 1.23 + 1.22 + 0.21 + 1 = 13 in decimal notation (base
10). So the input string has most significant bits at the start.

Definition 7. A KDF F inputs bit string key k and a bit string r, a bit string of
context information c and a length l. It outputs a bit string of length l

F : B∗ × B∗ × B∗ × N → Bl

F(k, r , c, l) = K1 ++ . . .++ Kn

where the right-hand side is evaluated using the HMAC function (typically SHA-
256) f to compute a key of size l and

n = dl/be,

prk = f (k, r),

K0 = [ ],

Ki+1 = f (prk,Ki ++ c ++ bin−1(i + 1)) , 1 ≤ i < n .
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6.2.2.2 Extended Triple Diffie-Hellman

Signal uses three key types to create shared secrets: identity keys which are long-
term keys that identify an agent; signed prekeys which are short-term keys that
change periodically to provide authentication; and one-time prekeys which are used
only once to provide forward secrecy.

Signal’s key agreement protocol is called Triple Diffie-Hellman (X3DH) that com-
putes at least three shared secret values (iterated n times, n ≥ 3) by iterating DH.
Extended Triple Diffie-Hellman key agreement can be represented as follows

XnDH (A,B, g, ss) := ∀ i : [1, n] · DH (A,B, g, ssi) (6.2)

where ss = (ssi)0≤i≤n is a vector of shared values.

Suppose that agents A and B want to communicate. Before sending an initial
message to B, A obtains a vector b consisting of B’s long-term public key ipk,
signed public prekey spk, one-time public prekey opk and signature sign. After
successfully verifying sign, A uses its private key ik and its private ephemeral key
ek, and keys in b to compute shared secret keys and eventually an encryption key
kenc. See Figure 6.2 for how the keys are combined. In the meantime, A also creates
vector a consisting of its public identity key ipk and public ephemeral key epk that
corresponds with ek. A used ephemeral key is deleted hereafter. The message m is
tagged with an authentication code ad and then it is encrypted using newly derived
kenc. A then calculates a tag ad using identities of both agents. A encrypts m and
ad, {m, ad}kenc . Finally, A sends to B vectors a and b of public keys along with
the encrypted message.

When B receives the message it retrieves a and b, and loads its private keys cor-
responding to b. It calculates shared secrets, and derives a decryption key. It also
computes verification tag ad ′. B decrypts {m, ad}B and checks that ad ′ matches
ad. If verification succeeds, B deletes the one-time key opk and continues with the
protocol.
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A design for one iteration of X3DH is shown in Figure 6.1.

A : a =

(
ik
ek

)
A −→ S : A requests B ′s keys

S −→ A : b =


ipk
spk
opk
sign


A : ss =


gik·spk

gek·ipk

gek·spk

gek·opk

 #

m : D #
kenc = F(ss) #
ad = h(ik ++ h(ipk))

A −→ B : a,b, {m, ad}kenc

B : ss =


gik·spk

gek·ipk

gek·spk

gek·opk

 #

k ′enc = F(ss) #
{{m, ad}kenc}k′enc

#
ad ′ = h(ik ′ ++ h(ipk ′)) #
ad ′ = ad

Figure 6.1: X3DH (see Definition (6.2)) is designed to establish shared secrets, ss, and
send initial messages encrypted with symmetric keys, kenc and k ′enc.

X3DH supports the computation of shared secret keys using the pairs of exponents
shown in Figure 6.2. The pair (ik, spk) authenticates agents. The pairs (ek, ipk),
(ek, spk) and (ek, opk) ensure forward secrecy of keys. The concatenated shared
secret keys are used with a KDF F to derive a master shared secret. The master
shared secret is used with f again to derive initial symmetric session keys .
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ik

ek

ipk

spk

opk

Figure 6.2: Shared secret key ss is computed from ga1b2 , ga3b1 , ga3b2 and ga3b3 as ex-
plained in Section 6.2.2. On the left are A’s keys a and on the right are B’s keys b.

6.3 Key evolution

Following X3DH, the key-evolution process updates session keys to ensure that
past and future messages cannot be decrypted by knowing current session keys.
Recall that session keys are changed in each session using a KDF. Signal’s Double
Ratcheting (DR) algorithm resets and updates session keys to achieve forward
secrecy (recall Definition (3.6), Section 3.2.2). Since an intruder may know the
KDF F and current session key, an extra precaution is required. Furthermore,
session keys are temporary. So when a current session is compromised, past and
future session keys will be infeasible to compute. Random values are introduced
to randomize the input to the KDF so that an intruder cannot predict the output.
This achieves future secrecy(recall Definition (3.7), Section 3.2.2).

Lemma 6. Double Ratcheting satisfies forward secrecy and future secrecy: FFSec
(recall Definition (3.8)).

The rest of the section shows how Lemma 6 is achieved.
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6.3.1 Session keys and chains

Recall that each agent maintains a sending chain and a receiving chain,2 and the
initiator’s sending chain matches the responder’s receiving chain and vice versa.
The chains are initialised with a root key, which is the result of applying the KDF
F to a DH key-agreement output. The process of initialising the root key, sending
and receiving chains is called Diffie-Hellman ratcheting:

i = F(dh) , (6.3)

s = F(i) , (6.4)

r = F(s) . (6.5)

Note that the KDF F accepts four inputs as in Definition (7). We include only the
necessary inputs to highlight differences.

In Equation (6.3) the root key i is initialised from dh in Equation (6.3), the DH
key-agreement output. The initial sending key s is initialised from the root key in
Equation (6.4). The receiving key r is initialised from s in Equation (6.5). The
new dh and KDF inputs ensure that the KDF output appears random using the
third property in Definition (2). Random outputs ensure future secrecy.

Subsequent session keys of the receiving and sending chains are generated in a
process called symmetric ratcheting as follows:

r ′ = F(r) ,

s′ = F(s) .

Ratcheting forward maintains forward secrecy.
2We abstract the root chain and focus on root keys that initialise the sending and receiving

chains.
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6.4 Design

This section describes the state and operations for X3DH and Double Ratcheting.
The design includes state for key information, messages, server and agents (that
is, an initiator and responder). We also specify operations in X3DH and Double
Ratcheting that change given state.

6.4.1 Key information

The type of data is written D as in Section 5.1. From it various data types are
constructed. An important subset consists of identifiers:

Id : PD

So far we have used encryption and decryption by agents’ private and public keys
(see Section 3.1.3). Now we need notation for keys in abstract.

The type of keys is written K. Participants in the protocol maintain a subset Pub
of public keys and a subset Prv of private keys, which ideally partition K, and a
function pair which provides a one-to-one correspondence between them.

Pub,Prv : PK
pair : K↔ K

Pub ∩ Prv = ∅
Pub ∪ Prv = K
pair ∈ Prv �→ Pub

A keypair has a private component, prv, and a public one, pub, which correspond.

KeyPair
prv : Prv
pub : Pub

(prv, pub) ∈ pair
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6.4.2 Key bundles

Various collections of keys are used. A key bundle consists of a long-term public
key ipk, a signed public key spk, and a sequence opk (recall Section 6.2.2.2) of
one-time public keys which turn out to be ephemeral. It also contains a string sign
signed by the agent to identify it.

Bundle
ipk, spk : Pub
opk : seq Pub
sign : D

A chain is a sequence of triples of keys, for which we introduce type X .

X
rk, ck,mk : K

6.4.3 Messages

Messages in this design use a message type that consists of Header information and
body information.

Message
h : Header
b : Body

The header includes the origin orig and destination dest of the message, a verifica-
tion tag ad, and a flag that indicates the kind of message. For instance req is sent
by an initiator to request a responder’s key bundle; the flag ack is an acknowledge-
ment of a req message; the flag err indicates an error message; and the flag icomm
indicates an initial message in a communication. The header differs slightly from
its use in Section 5.1. It would be unusual for the orig to be the dest but we do
not prohibit it.
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Header
orig, dest : Id
ad : seqD
flag : req | ack | err | icomm | . . .

The message body consists of responder id rid, whose key bundle bun is being
requested by initiator, loc which contains the initiator’s public keys, connection
information Info, and a sequence of data.

Body
rid : Id
bun : Bundle
loc : Bundle
info : Info
data : seqD

Info is shared between initiator and responder, and includes the conversation cid
and seed value for use in the KDF (which is of course provided by the initiator).

Info
cid : Id
seed : N

6.4.4 Server

The server has its own id sid and a set reg of ids of registered participants for each
of which it maintains a key bundle.

Server
sid : Id
reg : P Id
db : Id 7→ Bundle

dom db = reg

In this treatment we omit the routine operation of an agent registering its key
bundle with the server, which is entirely straightforward.
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6.4.5 Agent

The initiator and responder have their own ids and key information registered with
the server. They also record the conversations in which they are involved. A
conversation between an initiator init and a responder resp has:

• a unique id cid;

• a shared secret;

• double ratcheting values, root i, sending s and receiving r chain keys;

• a KDF function F , to initialise and update keys i, s, r respectively;

• the conversation can be at one of three stages, IComm, Progress or End.

The stage of a conversation is initialised by an interaction with the server, continues
with an initial session (IComm) with a responder, matures to sessions (Progress)
that exchange data and then ends (End).

Conversation
init, resp : Id
cid : Id
secret : K
i, s, r : X
F : B∗ × B∗ × B∗ × N→ K
stage : IComm | Progress | End

An agent has a unique id, identity key idk, signed key spk, a prekey bundle opk, its
unique signature sign, loc which contains the initiator’s public keys with a singleton
list in opk, rem which associates responder id with corresponding key bundle, and
a set conv of conversations in which it is engaged. Conversation ids are assumed
to be unique, even for different conversations between the same two agents.
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Agent
id : Id
idk, spk : KeyPair
opk : seq KeyPair
sign : K
loc : Bundle
rem : Id → Bundle
conv : PConversation

∀ s, t : conv · s 6= t ⇒ s.cid 6= t.cid

6.4.6 Operation KReq

Having identified an agent with which it wishes to communicate (to become the
responder) the initiator obtains the responder’s key bundle from the server using
operation KReq. (So communications are possible only between agents registered
at the server.)

The operation KReq is split into a Req at the initiator, a receive ReqAck at the
server, and ReqAckRec at the initiator. We describe those 3 operations separately
rather than combining them, for simplicity.

Req inputs the responder r? whose key bundle is to be requested from the server
s?.

Req
ΞAgent
r?, s? : Id
m! : Message

m!.h.orig = id
m!.h.dest = s?
m!.h.flag = req
m!.b.rid = r?

Message m! is sent to the server.
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In operation ReqAck the server acknowledges the initiator’s message m? and pre-
pares a response message m! containing part of the responder’s key bundle. It
returns the responder’s bundle but with the opk chain replaced by just its head,
and updates its state by deleting the head in the responder’s opk chain. (Though
natural to return the head value we model that by returning a singleton list con-
taining the head, so that we can continue to use the type Bundle.) Thus the server
updates db by replacing the responder opk sequence with the tail of opk. The server
sets message m! flag to ack and sends it.

Recall the notation (Section 2.4) ∆S(x).

ReqAck
∆Server(db)
m?,m! : Message

m?.h.dest = sid
m?.h.flag = req
m?.h.orig ∈ reg
m?.b.rid ∈ reg
m!.b.bun = db(m?.b.rid)[head(opk)/opk]
m!.h.orig = sid
m!.h.dest = m?.h.orig
m!.h.flag = ack
m!.b.rid = m?.b.rid
db′ = db ⊕ {db(m?.b.rid)[tail(opk)/opk]}

The precondition for ReqAck is that the message has flag req, is meant for the server
and that the originator of the message is in reg. In reality that operation would be
totalised by calling an error procedure outside the precondition, as usual.
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preReqAck
s : Server(db)
m? : Message

∃ db : s.db,m! : Message ·


m?.h.flag = req
m?.b.rid ∈ dom db
m?.h.orig ∈ reg

 ∧


m!.h.orig = sid
m!.h.dest = m?.h.orig
m!.h.flag = ack
m!.b.rid = m?.b.rid



The message m! is sent to the agent.

In operation ReqAckRec the initiator updates rem with the responder’s key bundle.

ReqAckRec
∆Agent(rem)
m? : Message

m?.h.dest = id
m?.h.flag = ack
rem′ = rem ⊕ {m?.b.rid 7→ m?.b.bun}

The precondition for ReqAckRec is that the message is meant for the initiator and
forms an acknowledgement of its original message (as in the first two lines).

6.4.7 Initial communication operation

Having obtained the responder’s key-bundle information from the server the initia-
tor now commences communication with the responder.

The initiator creates a conversation with fresh cid which we describe using function

createConv : Id2 ×K2 ×K3 → Conversation .

It takes arguments x and y, the ids of the initiator and responder, and a and b,
the vectors of keys in Figure 6.2.
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

createConv(x , y, a,b).cid :∈ N
createConv(x , y, a,b).init = x
createConv(x , y, a,b).resp = y
createConv(x , y, a,b).secret = F(k, r1, c, l)
createConv(x , y, a,b).i = F(secret, r2, c, l)
createConv(x , y, a,b).s = F(i, r3, c, l)
createConv(x , y, a,b).r = F(s, r4, c, l)
createConv(x , y, a,b).stage = IComm


.

The final observable F in the schema Conversation in Section 6.4.5 is a KDF
satisfying Definition (7) and secret is computed by the initiator from the vectors a
and b as mentioned in Section 6.2.2.2:

k = F(bin−1(ga1b1) ++ bin−1(ga2b1) ++ bin−1(ga2b2) ++ bin−1(ga2b3), r1, c, l) (6.6)

where seed r1 (similarly for r2, r3 and r4), context c and length l of that description
are as discussed in Definition (7).

In IComm the initiator updates its conversation set with the new conversation and
sends an initial message m! to responder r?. The message contains the initiator’s
key bundle loc and the responder’s public key bundle.

IComm
∆Agent(conv)
r? : Id
m! : Message

r? ∈ dom rem
conv ′ = conv ∪ {createConv(id, r?, loc, rem(r?))}
m!.h.orig = id
m!.h.dest = r?
m!.b.loc = loc
m!.b.flag = icomm
m!.b.bun = rem(r?)

The precondition for IComm is that the initiator has the responder r?’s key bundle
before the start of a conversation: the first line of schema IComm.
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pre IComm
a : Agent(rem)
r? : Id

∃ c : a.rem,m! : Message ·
(

r? ∈ dom c
)
∧



m!.h.orig = a.id
m!.h.dest = r?

m!.b.loc = loc
m!.b.flag = icomm
m!.b.bun = rem(r?)



When the responder receives the initiator’s public key-bundle and its own public
key-bundle in message m?, it uses JComm to create a conversation matching the
initiator conversation, deleting its one-time key used by the initiator. As before
the responder uses private keys corresponding to entries in vector b and the public
keys corresponding to entries in vector a to compute shared secrets.

JComm
∆Agent(opk, conv)
m? : Message

m?.h.flag = icomm

∃ is, js ·
(

opk = is ++ [head(m?.b.bun.opk)] ++ js
opk ′ = is ++ js

)
conv ′ = conv ∪ {createConv(m?.h.orig, id,m?.b.loc,m?.b.bun)}

The precondition for JComm is that the message has flag icomm and that the key
bundle head(m?.b.bun.opk) is in the responder’s opk.

pre JComm
a : Agent(opk)
m? : Message

∃ o : a.opk,m! : Message ·
(

m?.b.flag = icomm
m?.b.bin.opk ∈ o

)
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6.4.8 Communication continued

A conversation between a given initiator and responder consists of an initial com-
munication (IComm and JComm) followed by a finite number of double ratchet
sessions. A conversation is defined:

Conv := IComm # JComm # DoubleRatchet+ .

Recall each agent’s conversation state includes variables for “double ratcheting”:

• a seed dh to start the sequence of session keys for sending and receiving;

• a current sending key s and receiving key r .

We assume as given a Diffie-Hellman key exchange which contains an exchange and
local updates resulting in the two agents sharing the secret key.

The operation which initialises the KDF F , but is also used any time to reinitialise
secret keys (called DH ratcheting) is:

Init
∆Conversation(i, r , s)
dh? : N

stage = IComm
i ′ = F(dh?, r1, c, l)
s′ = F(i ′, r2, c, l)
r ′ = F(s′, r3, c, l)

The precondition of Init that the conversation stage equals to IComm. In many
situations Init is invoked on every new message exchange.

pre Init
conv : Conversation

∃ c, c! : conv ·
(

c.stage = IComm
c! = c

)
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The operation RatchetR generates the next element of the receiving chain.

RatchetR
∆Conversation(r)

stage = Progress
r ′ = F(r , r4, c, l)

The precondition for RatchetR is that the conversation stage equals Progress.

Similarly RatchetS . Old keys i, r , s are deleted after they’re updated. This main-
tains forward secrecy.

We have now formalised the idea of key exchange and key evolution via exchange
of messages and session key updates.

6.5 Security analysis

We analyse the security of the Signal Protocol under the assumption of an intruder
that is able to to intercept messages shared between an initiator and a responder
(see Section 3.1.1). The goal of the intruder is to learn session-key information.

Theorem 10. Signal is secure in the sense that it achieves Authenticated(A,B, k)

of shared secret key k between initiator A and responder B who are not malicious
and follow the protocol, and achieve FFSec(A,B, kt) if A and B share secret key kt

at time t.

Proof We show that operations involved in key agreement and key evolution
achieve the security goals of authentication and secrecy in the presence of an in-
truder with Dolev-Yao capabilities.

After operations IComm and JComm, A and B establish shared secret key k using
Equation (6.6). According to Lemma 2, successful verification of B’s signature sign
by A (again see Figure 6.1), means A knows that B knows k, i.e., Endorsed(A,B, k)

(recall Definition (3.2)), and vice versa: B knows that A knows k, respectively. We
consider two attack scenarios.
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1. Suppose a passive intruder C observes communications between A and B. It
cannot compute k due to the infeasibility of the discrete logarithm problem
(DLP) embedded in Diffie-Hellman. Therefore, ¬KC k.

2. Suppose an active intruder C compromises the key server and acts as a man-
in-the-middle between A and B. We know from X3DH that agents are bound
to a communication channel by their key bundles. The attacker may insert
itself into the communication channel in the following ways:

a) When A initiates communication with B, it instead receives the at-
tacker’s key bundle.

b) When A and B are already in communication, the attacker shares new
keys with both agents, forcing them to renegotiate session keys.

The Signal protocol mitigates an attack by an active intruder by asking agents
to verify identity keys during initial session setup (they do so by manually
comparing a security code composed with A and B’s identity keys) or warning
agents when identity keys change. A man-in-the-middle does not go unde-
tected unless both agents ignore verify request of identity keys (see Signal
blog [59]). So, C 6= A,B ⇒ ¬KC k.

Therefore, the communications IComm and JComm satisfy Authenticated,

Icomm, JComm ` Authenticated(A,B, k) .

Now we reason about forward and future secrecy and how key agreement and
key evolution achieve these properties. A and B are non-malicious and follow the
protocol, so do not reveal any session keys to show that for any t : T and for
C 6= A,B, if KC kt then ∀ t ′ 6= t · ¬KC kt′ . We do so by cases.

For all cases, C observes a and b exchanged between A and B during the key-
agreement phase.
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If t ′ < t then by the discrete nature of T and by Definition (3) (in Chapter 2), C
inverts the KDF F in Equation (6.6) to obtain kt′ ,

kt′ := F−1kt
. (6.7)

Since A and B are non-malicious, they do not pass on information about keys
to other agents. They engage in operations RatchetR and RatchetS to establish
session keys. The only way for C to learn kt′ is by computing it. Computing kt′ is
infeasible. Equation (6.7) cannot be computed even given KC kt . We infer ¬KC kt′

as required.

If t ′ > t then this time
kt′ := Fkt ,

where the inputs of function F are indistinguishable from random values to an
intruder. Computing kt′ without input r in Definition (7) is infeasible . Again, we
infer ¬KC kt′ as required. Therefore, RatchetR,RatchetS ` FFSec(A,B, kt). 2

Theorem 10 is best possible when computations are infeasible for an intruder who
observes certain public values and not those that are private between non-malicious
agents.

6.5.1 Computational cost

Signal uses elliptic-curve cryptography (ECC) for security. It uses the ECC Curve25519

equation developed by Bernstein [9] to generate keys. Curve25519 is fast and se-
cure [9]. It also produces smaller keys with the same security strength as much
larger keys produced by traditional public-key schemes like Rivest-Shamir-Adleman
(RSA) [71] and Digital Signature Algorithm (DSA). This section presents the im-
plementation results of a comparison of ECC with RSA and DSA.
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6.5.1.1 Security level

The strength of a key is determined by its security level, which denotes the number
of operations an attacker needs to perform to find a single bit of the key. Given
a key of size q bits, a brute-force attempt to determine q bits performs 2q search
operations of the key space. The security level is usually set to 2q/2 (see recom-
mendations by NIST [5]). Still, given a large enough q an exhaustive search of half
the key space is infeasible in polynomial time (refer to Section 3.1.2).

What is feasible in polynomial time? The security level is based on the best known
algorithms to compute a key. Computing a key in ECC is equivalent to solving the
discrete-logarithm problem (see Chaum [15]). The best known algorithm for solving
discrete logarithms is Pollard Rho (see Pollard [68]). It performs the following
number of operations:

R(q) = log2(c
√

2q) , (6.8)

for some constant c > 0 and group order q. Its space requirement is proportional
to √q.

RSA and other public-key signature schemes generate keys based on the product
of two large primes. Security of these algorithms depends on the infeasibility of
factoring this large product. The general number field sieve (GNFS) is the best
known algorithm for factoring large integers (see Pomerance [69]). It performs the
following number of operations:

L(q, v, u) = e(v+o(1))ln(q)u ln(ln(q))(1−u)
, (6.9)

where constants v and u are determined by an optimised implementation. Its space
requirement is proportional to

√
L(q, v, u).

Equations (6.8) and (6.9) allow us in the next section to experiment using different
key sizes in order to determine security levels for ECC and RSA key schemes.
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6.5.1.2 Experiment 1

The National Institutes for Science and Technology (NIST)[5] recommends various
security levels for different key lengths based on different key generation schemes.
This experiment verifies these recommendations.

Equations (6.9) and (6.8) were tested for different key sizes and results are shown
in Table 6.1. Results confirm NIST recommendations and show that smaller ECC
keys have the same security level as bigger RSA keys.

Security level (bits) ECC (bits) RSA (bits)
80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 521 15630

Table 6.1: Equivalence of ECC and RSA keys based on security level.

A 256-bit ECC key has the same security level or strength as a 3072-bit RSA
key, while a 521-bit ECC key has the same security strength as a 15630-bit RSA
key. Smaller keys suggest ECC is better suited for securing communications in
distributed systems that have devices with limited processing power and memory.

Tables 6.2 and 6.3 show the results of GNFS and Pollard Rho used to approximate
values in Table 6.1.
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q Scurity level L(q, 64
9
, 1
3
)

1024 80 86.76611925027707
2048 112 116.88381329581011
3072 128 138.73628085271660
7680 192 203.01873594416484
15630 256 269.38477262126889

Table 6.2: RSA with L(q, 649 ,
1
3).

q Security level R(q)
160 80 79.82537860389353
224 112 111.82537860389377
256 128 127.82537860389390
384 192 191.82537860389439
521 256 260.32537860389491

Table 6.3: ECC with R(q) = log2(0.88
√
2q).

6.5.1.3 Experiment 2

We investigate the efficiency of RSA-based key generation and DSA signing algo-
rithm. And then compare them to ECC algorithms, namely, NIST curve P-256
and Signal’s Curve25519. P-256 and Curve25519 are both elliptic curves used for
generating signatures (see Adalier [3]). We determine the average time to generate
keys and then sign a 48-bit message. The experiment was run on an Intel Core i7
Generation laptop with 8GB RAM. We use Python NaCl and Crytodome libraries
which contain implementations of these cryptographic algorithms. Table 6.4 shows
the results.

DSA key generation is slower than RSA. DSA verification is also slower than RSA.
However DSA signing is faster than RSA. Notably, ECC Curve25519 generates,
signs and verifies much quicker than RSA-based algorithms. Again this suggests
that ECC is better suited for securing communications in distributed systems where
agents have limited resources.
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(secs) RSA (3072) DSA (3072) P-256 (256) Curve25519 (256)
Key generation 4.2× 10−1 2.6 4.2× 10−1 4.7× 10−5

Verify (encrypt) 8.1× 10−4 1.7× 10−3 1.3× 10−3 8.0× 10−5

Sign (decrypt) 3.7× 10−3 1.0× 10−3 4.8× 10−4 3.1× 10−5

Table 6.4: Benchmark results obtained with Python NaCl and Cryptodome libraries.
Comparing keys with the same security level.

Memory-wise, ECC keys are a better option than RSA keys. ECC keys are much
smaller than the longer RSA keys with the same security strength. So smaller,
stronger ECC keys could free up memory storing keys, and computational overhead
associated with computing keys locally.

6.6 Conclusion

This chapter has reasoned about Signal security by using probabilistic epistemic
logic to express its security properties, and by using the Z language to express state
transitions for the Extended Triple Diffie-Hellman (X3DH) key agreement and Dou-
ble Ratcheting algorithms. We have shown how the X3DH achieves authentication
and establishes sessions keys. And also shown how the Double Ratcheting scheme
updates these session keys and achieves forward and future secrecy.

Our methodology has shown that Signal is secure under the assumption of an
intruder whose goal is to learn session keys. Additionally we have presented ex-
perimental results which show that elliptic-curve functions used in Signal generate
session keys much quicker than standard cryptographic functions like RSA. The
functions also generate smaller session keys with the same security strength as
much larger keys generated by functions like RSA. These advantages make Signal
suitable for implementation on devices with limited computing power.
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Chapter 7

Vulnerability of LoRaWAN

We now apply our methodology to a lightweight security protocol. The purpose of
this chapter is to formalise and analyse the Long Range Wide Area Network (Lo-
RaWAN) protocol. According to the LoRaWAN documentation [4], the protocol is
designed for Internet of Things (IoT) applications like sensor networks. It provides
long-range communication for devices with limited resources while guaranteeing
certain security properties. The LoRaWAN protocol starts with a handshake to es-
tablish an authenticated connection that satisfies Authenticated, Definition ((3.4)),
continues with exchange of messages that are encrypted end-to-end. Unlike the
Signal protocol, LoRaWAN does not encrypt each new message with a new encryp-
tion key. Static keys are vulnerable to misuse. A new key-management scheme
is suggested to mitigate this vulnerability and thereby help to maintain secrecy of
messages (recall FFSec, Definition (3.8)).

This chapter extends our paper [47] on a key-management solution for LoRaWAN.

7.1 Internet of Things

The IoT is made up of objects embedded with processing chips that autonomously
connect to the internet and collect data. Innovations like automated mechanical
systems, smart metering, remote monitoring, and autonomous-guided vehicles are

104
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driven by networks of these devices. Typically, these devices have less processing
power, less memory, and use security protocols designed to minimise power con-
sumption. Bäumker et al. [6] showed how to minimise power consumption for
typical LoRaWAN sensor devices.

Devices tend to optimise their limited resources for data processing at the expense
of providing sufficient security guarantees. Security weaknesses arise like: devices
trust the local area network they are in to such an extent that no further authentica-
tion is done in order to preserve power; or devices that are not password-protected
or are protected with easy-to-guess default passwords in order to preserve memory.
Because these devices are connected to the internet, these weaknesses can easily
exploited by various attacks. A case in point is the Mirai attack that hijacked many
unsecured IoT devices like DVRs and cameras and used them to send a massive
1.2 terabits per second to Dyn, a domain name lookup company. The attack left
sites like PayPal, Twitter, Amazon and Netflix inaccessible for several hours (see
“The Mirai botnet explained” [32]).

The rest of this chapter uses our approach to specify and reason about the behaviour
of LoRaWAN and the security properties it achieves. It also highlights a known
key-management vulnerability in LoRaWAN and suggests a new way to fix it.

7.2 LoRaWAN

Battery-powered end-devices like sensors collect data (e.g., the temperature in a
building) and use the LoRaWAN protocol to transfer the data via gateways to
remote servers for processing. Then devices go into sleep mode when they are not
transmitting or receiving data. The devices, gateways and remote servers form a
LoRaWAN network.

End devices start sessions with remote servers over which they transmit encrypted
data. The devices and remote servers have identity keys called root keys, and use
them to derive session encryption keys.
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Before transmitting messages, a device requests to join the LoRaWAN network.
The device initiates a handshake with a remote server in order to establish an
authenticated session. The session is established using one of two handshake pro-
cedures: Over-The-Air Activation (OTAA) handshake; or Activation By Personal-
isation (ABP) handshake.

In an OTAA handshake, the end device sends a join-request message to the network
server, and waits for a response called a join-accept message. If the network server
approves the join request, it assigns the device a network address. The device and
server then use their root keys to derive shared session keys.

On the other hand, end devices using the ABP handshake are preloaded with root
keys, session keys and network addresses so there is no need to exchange join-request
and join-accept messages in order to derive session keys.

Both handshakes have security issues. They both end up using static session keys
to encrypt data. Updating these keys requires manual intervention like resetting
a device. If a device is physically captured or cloned, an intruder can learn root
keys and start computing session keys. One way to mitigate this vulnerability is to
frequently introduce fresh values in the key derivation process. These values can
then be used to update session keys. There is no clear indication in the LoRaWAN
specification [1] how frequently session keys are updated. The lack of an update
protocol for static session keys constitutes a vulnerability.

Selander et al. [76, 73] studied this vulnerability and proposed a key update mecha-
nism that uses the Diffie-Hellman key-exchange scheme to create new keys after the
OTAA handshake. In this work we propose updating session keys using a scheme
similar to Lamport’s One-Time Password Authentication Scheme (see Chapter 4).
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7.3 The network

The LoRaWAN network consists of end devices and gateways which communicate
with a core network. The core network consists of three servers, often co-located,
that perform different tasks: the network server routes messages through the net-
work; a join server handles join requests; and an application server processes data
from end-devices. We abstract details of the core network, and model it as a single
server.

The device and server each have a unique identifier, a network address, and nonce
values. The values are drawn from the subsets,

Id,Addr ,Nonce : D

As before, the type of keys is denoted K. Devices are assigned unique keys at
manufacture, called root keys. We call them Root and they consist of an application
key appKey for securing data, and a network key nwkKey for routing purposes.

Root
nwkKey, appKey : K

During the handshake devices derive session keys, which we call Sess, from the root
keys. The device-specific network session key, nwkSKey, is derived from nwkKey,
and an application-specific session key appSKey, is derived from appKey, which is
used by both the server and end device to encrypt messages.

Sess := Root[nwkSKey, appSKey/nwkKey, appKey] .

Messages exchanged consist of a header hdr : Header , payload pyl and message
integrity check bit mic. The message is similar that in Section 6.4.3.

Message
hdr : Header
pyl : Request | Accept
mic : D
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We omit other details and include in the only header the ids of orig and dest.

Header
orig, dest : Id

The message payload indicates the type of message, whether it is a join request or
join accept. The join request contains a join-server id jsid to handle join requests,
a device id did and device nonce devNonce.

Request
jsid, did : Id
devNonce : Nonce

The join accept contains the join-server nonce joinNonce, the server network ad-
dress svrAddr , and a device network address devAddr assigned by the server.

Accept
joinNonce : Nonce
svrAddr , devAddr : Addr

A connection between a device and server (similar to a TCP connecton in Section
5.1) has a unique id cid and network identified by endpoints orig and dest, a
connection mode that indicates whether connection is requested or accepted, and
session keys.

Connection
cid : Id
orig, dest : Addr
mode : req | acc | . . .
sess : Sess

An end-device has unique did, keeps a join server id jsid and its last received
nonce joinNonce, unique root keys r assigned by a manufacturer, and maintains a
connection c of which it is the orig.
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Device
did, jsid : Id
joinNonce : Nonce
r : Root
c : Connection

r .appKey 6= ⊥
r .nwkKey 6= ⊥
c.orig = did
c.dest = jsid

We omit details of the gateway and model instead a server which consists of:

• id, a unique id, and addr , a unique network address;

• supported, a database of device ids and their root keys;

• netAddrs, a database of device ids and their network address;

• db, a database of device ids and their nonces used during handshake; and

• cnx , a set of connections with other devices with which it is involved.

Server
id : Id
addr : Addr
supported : Id → Root
netAddrs : Id → Addr
db : Id → Nonce
cnx : PConnection

supported 6= ∅

7.4 The handshake

Before the start of OTAA, the end-device has no prior knowledge of network ad-
dresses and session keys but knows the preshared secret keys, namely the network
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key nwkKey and application key appKey. The server s also knows these keys (recall
Authenticated in Section 3.2.1). The network key ensures mutual authentication
and message integrity while the application key ensures secrecy of session keys. Fig.
7.1 shows the OTAA procedure with interaction occurs between a device A and a
server B.

1. A→ B : aid, did, dnon,mic1
B : if mic1 = HnwkKey(aid.did.dnon) ∧ dnon 6∈ db

then db := db ∪ {dnon} # compute session keys
else Error

2. B → A : {anon ++ nid ++ daddr ++ dnon ++ extra ++ mic2}appKey
A : if mic2 = HnwkKey(anon ++ nid ++ daddr ++ dnon ++ extra)

then compute session keys
else Error

Figure 7.1: Over-the-air activation (OTAA) handshake between end device A and server
B. The notation ++ between strings denotes their concatenation.

In Step 1, A sends to B a join request consisting of its id did, the application server
aid with which it wants to communicate (we abstract this to be the same as the
network server id), and a nonce value dnon.

When B receives the join request, it verifies that the message has not been tampered
with by computing a message integrity code from the contents of the message and
comparing the result with mic1 that arrived with the join request. If verification of
mic1 succeeds and the nonce dnon is fresh, B updates A’s nonce dnon and computes
new session keys; otherwise it invokes an error procedure. B now computes new
session keys as follows:

nwkSKey := HappKey(anon ++ nid ++ daddr ++ dnon), Definition (7.1)

appSKey := HappKey(anon ++ nid ++ daddr ++ dnon). Definition (7.2)

According to Lemma 2, successful verification means that B knows that A knows
the network session key nwkKey, KBKA nwkKey.
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In Step 2 B sends to A a join accept encrypted with appKey (recall encryption
from Section 3.1.4). The join accept consists of its an application nonce anon, its
network identifier nid, an end-device address daddr , an acknowledgement of A’s
nonce dnon, extra information related to the channel, and a message integrity code
mic2.

A now receives the join accept. Assuming A succeeds in decrypting the message, by
Acknowledgement Lemma 1, A now knows that B knows appKey used to encrypt
the message, KAKB appKey. If verification succeeds, according to Lemma 2, A
now knows that B knows nwkKey, KAKB nwkKey. A then computes the same
session keys as in (7.1) and (7.2). If verification of mic2 fails, an error procedure is
invoked. A can also increase its state of knowledge according to Acknowledgement
Lemma 1, whenever B acknowledges dnon then A knows that B knows dnon, i.e.,
KAKB dnon.

Lemma 7. The OTAA handshake achieves mutual authentication

Authenticated(A,B, nwkKey),

if communicating parties are honest and do not deviate from OTAA.

Proof According to Lemma 2, the communications in Figure 7.1 establish

KBKA nwkKey (Step 1)

KAKB nwkKey (Step 2) ,

which establish the first two conjuncts of Authenticated (3.4).

Suppose an intruder C eavesdrops communications between A and B. C learns all
the information in the join request, and knows the encrypted join accept message,
i.e.,

KC (aid, did, dnon,mic1), (7.3)

KC ({anon ++ nid ++ daddr ++ dnon ++ extra ++ mic2}appKey) . (7.4)
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Because A and B do not reveal any information about nwkKey and appKey, an
eavesdropper C does not know these values, ¬KC (nwkKey, appKey). It is therefore
infeasible for C to verify mic1 in Equation (7.3) without knowledge of the value
of nwkKey. It is also infeasible for C to decrypt the message in Equation (7.4)
without knowledge of appKey, and thereafter to verify mic2 without knowledge of
nwkKey. 2

7.4.1 Operation JoinReq

The establishment of a connection between a device D and server S starts with
D invoking a join-request JoinReq operation. We split JoinReq into operations
request Req at D and receive request ReqRec at S .

Req prepares the join-request message with the following inputs: the server sid,
join-request type and a mic. It sends these details to the join server.

Req
ΞDevice
sid? : Id
req? : Request
mic? : seqD
m! : Message

m!.hdr .orig = did
m!.hdr .dest = sid?
m!.pyl = req?
m!.mic = mic?

That operation is total.

Meanwhile, the message m? is received by S with operation ReqRec. The server
updates its database db only if the device id did and nonce devNonce are new and
are supported by the server. It also creates a connection for the device. The server
creates a connection with a fresh cid, an orig = id and dest = did, derives new
session keys, and sets connection mode to indicate this is a connection request. The
server then updates its list of connections with the new connection.
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ReqRec
∆Server(db, cnx)
m? : Message

(m?.pyl.did,m?.pyl.devNonce) 6∈ db
m?.pyl.did ∈ dom supported
db′ = db ∪ {m?.pyl.did 7→ m?.pyl.devNonce}

∃ c : Connnection ·



c.cid :∈ Id
c.orig = sid
c.dest = netAddr(m?.pyl.did)

c.sess = H (supported(m?.pyl.did).nwkKey, req?)

c.mode = req
cnx ′ = cnx ∪ {c}


The precondition for ReqRec is that the device nonce is not already in the database
and is supported by the network. The function H computes sessions keys (see
Definition (6)).

preReqRec
s : Server(db, supported)
m? : Message

∃ db : s.db, sp : s.supported ·
(

m?.pyl.devNonce) 6∈ db
m?.pyl.did ∈ dom sp

)

An internal operation Verify checks the message mic.

Verify
Server
mic? : D
nwkKey : K
pyl : seqD
mic? = H (nwkKey, pyl)

Once verification succeeds, an internal operation CreateNetAddr assigns the device
a new network address. If verification fails, an error procedure is invoked.
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CreateNetAddr
∆Server(netAddr)
did? : Id

did? 6∈ dom netAddr
∃ addr : Addr · netAddr ′ = netAddr ∪ {did? 7→ addr}

The precondition for CreateNetAddr is that the device does not already have a
network address.

7.4.2 Operation JoinAcc

We assume the server was successful in verifying themic and wishes to continue with
the connection. The server responds to the join-request operation with JoinAcc,
which we split into AckSend at S and AckRec at the device D.

In AckSend the server acknowledges the join request and prepares a join-accept
message. The server creates a message with the join server nonce joinNonce, the
new device address devAddr and a mic to be verified by the device.

AckSend
∆Server(cnx)
joinNonce? : Nonce
devAddr? : Addr
mic? : seqD
m! : Message

∃ c : cnx ·


c.dest = devAddr?

c.mode = req
c′.mode = acc


m!.hdr .orig = sid
m!.pyl.joinNonce = joinNonce?
m!.ply.svrAddr = svrAddr
m!.ply.devAddr = devAddr?
m!.mic = mic?

The precondition for AckSend is that there is a connection with destination given
as input devAddr? with mode equal req. The server sends to the device the message
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m! .

preAckSend
s : Server(cnx)
joinNonce? : Nonce
devAddr? : Addr
mic? : seqD

∃ c : s.cnx , m! : Message ·
(

c.dest = devAddr?

c.mode = req

)
∧

m!.hdr .orig = sid
m!.pyl.joinNonce = joinNonce?

m!.ply.svrAddr = s.svrAddr
m!.ply.devAddr = devAddr?

m!.mic = mic?



In operation AckRec device D receives the join accept message and updates its
connection information.

AckRec
∆Device(joinNonce, c)
m? : Message

m?.hdr .dest = did
m?.pyl.joinNonce > joinNonce
joinNonce′ = m?.pyl.joinNonce
c′.orig = m?.pyl.devAddr
c′.dest = m?.ply.svrAddr
c′.mode = acc
c′.sess = H (r .nwkKey,m?)

The precondition for AckRec is that the incoming message is meant for the device
d with incoming joinNonce strictly greater than the previous joinNonce.
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preAckRec
d : Device(joinNonce, c)
m? : Message

∃ conn : Connection ·


m?.hdr .dest = d.did
m?.pyl.joinNonce > d.joinNonce
conn = d.c



7.5 Key-management vulnerability

An attacker may learn a device’s root keys by cryptanalysis or physical capture of
the device. It can then impersonate the device and continue to compute session
keys. This violates the security requirement of mutual authentication, that only
authenticated users know certain shared values and no one else. Furthermore,
once computed session keys remain static throughout the lifetime of the device
and are reset only during special times, like when a device rejoins the network
(see LoRaWAN documentation [1]). This violates the requirement of secrecy. A
violation of the protocol’s security properties constitutes a vulnerability. Session
keys need to be updated frequently in order to preserve these security properties.

7.5.1 Mitigating the vulnerability

In this section we compare a lightweight key-exchange scheme in the literature[76,
77] with one that we design. The former uses elliptic-curve cryptography, to gen-
erate small session keys, and a compression algorithm, to create small message
packets. We propose a new key-management scheme that uses the approach dis-
cussed in Section 4.3 of Chapter 4. Finally we compare the two schemes in terms
of communication overhead, and memory requirements.

7.5.1.1 Elliptic-Curve Diffie-Hellman (ECDH) approach

The lightweight mitigation scheme proposed in the literature is called the Elliptic-
Curve Diffie-Hellman Over Concise Binary Object Representation Object (ED-
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HOC) scheme [76, 77]. EDHOC combines elliptic curve cryptography (ECC) and
the Diffie-Hellman key exchange to update session keys nwkSKey, appSKey. ECC
has the advantage of generating smaller encryption keys compared with larger
Rivest-Shamir-Adleman (RSA) keys with the same security strength [49, 61]. ED-
HOC has three mandatory messages added to the end of the OTAA handshake.
The extra messages increase communication overhead. However the scheme uses
a compression technique to decrease messages sizes to 1/6-th the size of a normal
LoRaWAN message. Coupled with the smaller ECC keys, this technique conserves
memory.

The scheme uses an elliptic curve E over a finite field Fp with order p (a large
prime), and generator g to generate a shared secret. The parameters g and p are
common knowledge between a device A and and network server B. Points over the
elliptic curve form a group with respect to scalar multiplication [49]. A selects a
random private key a : Fp and computes ephemeral public key ag; similarly for B
with b and bg. A then sends ag to B and B sends bg to A. A calculates shared
secret s = (bg)a = (ag)b, which is what B computes as well by association. The
scheme then uses the shared secret s to update session keys. Security of the scheme
relies on the infeasibility of computing abg unless an attacker knows either a or b
(see Definition (5)).
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BA

ag

bg, { idB, {idB, ag, bg} }k

{ idA, {idA, ag, bg} }k

Figure 7.2: The EDHOC scheme. The values a, b : Fp are private keys belonging to
A and B respectively; the values ag and bg are the ECDH ephemeral public keys (recall
encryption notation from Section 3.1.4).

7.5.1.2 Commitment approach

A network server periodically sends ping messages to a device to check its status.
We propose a scheme KeyUpdate that leverages these ping messages. When the
server sends a ping, it will also include a prompt to update session keys. This update
may be done every hour, every week, etc. depending on power requirements.

Before the ping is sent, the device A and server B have derived initial session keys
after the OTAA handshake. They must share hash function h that will be iterated
n times to produce new ephemeral network and application session keys. During
the ping operation, B sends to A the request for the i-th session key. A receives it
and computes new application and network session keys. It creates hashed targets
ya, yn of the new session keys and sends them to B, which it receives and stores. B
has a database that stores hashed targets for each user.

During Update, A sends new session keys xa, xn to B, which it receives and checks
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Post-OTAA := A,B : appSKey, nwkSKey, h, n :∈ N | n ≥ 2
Init := B : i := n − 1

B → A : i
A : i := n − 1#

xa = hi(appSKey) #
xn = hi(nwkSKey) #
ya := h(xa) #
yn := h(xn)

A→ B : ya, yn #
Update

Update := A : if i ≥ 1 then A→ B : xa, xn #
i := i − 1

else Init
B : if h(xa) = ya ∧ h(xn) = yn then B → A : Accept #

ya := xa #
yn := xn #
Update

else B → A : Error

Figure 7.3: The KeyUpdate algorithm, in which B sends a ping message containing a
request for the i-th session key to be computed.

that they match its stored values. If they do, B will update its database with the
new session keys.

Theorem 11. OTAA combined with KeyUpate is secure.

A proof of this theorem follows similar reasoning as the proof for Theorem 7 (see
Chapter 4). 2

7.5.2 Efficiency

EDHOC requires three additional but mandatory messages to establish session
keys with the ECDH approach. Our approach relies on existing LoRaWAN ping
messages to trigger the algorithm with i and update the hashed targets ya, yn. But
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it introduces two additional messages, the hashed targets xa, xn sent by A to B
and the Accept or Error message sent by B. KeyUpdate has less communication
overhead.

In terms of memory requirements, EDHOC and KeyUpdate both update session
keys of the same size, and therefore use the same amount of memory for storage.

7.6 Conclusion

Key management is vital in ensuring that messages are encrypted end-to-end. It
involves updating session keys regularly and hiding them from attackers.

This chapter has analysed the Long Range Wide Area Network (LoRaWAN) proto-
col and highlighted the functional properties of LoRaWAN, namely the Over-the-air
Activation (OTAA) handshake procedure and its join request and join accept op-
erations. We have found that the protocol does achieve mutual authentication
but does not have an explicit key-management strategy. Without it, there is no
guarantee of forward and future secrecy of session keys. If an attacker compro-
mises the session keys, it can decrypt past and future messages. This constitutes a
vulnerability.

We have used our methodology to highlight successfully this vulnerability in the
setting of the Internet of Things, and reason about its mitigation. Our mitigation
is new and uses the scheme introduced in Chapter 4, Section 4.3. This solution is
lightweight in terms of communication overhead and memory requirements.
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Conclusion

8.1 Summary

The current research has developed an approach to analysing security protocols,
which combines epistemic logic and the Z specification language. Epistemic logic
specifies precisely the security requirements of a protocol in terms of who knows
what here extended to feasibility. Z describes state and state transitions. The
approach makes certain hardness assumptions about the cryptographic primitives
underlying a protocol, and proves that the protocol as result achieves its security
goals in the context of the Internet of Things. As a result we have been able to
reason about privacy and security as functional properties.

We have used epistemic logic to express functional definitions for the following
security properties: mutual authentication; forward secrecy; and future secrecy.
The Z schema notation has been used to specify the protocols as abstract data types
with state and operations on state. The calculation of preconditions associated
with an abstract data type’s operations ensure the schemas are consistent. Where
possible we have augmented the schemas with epistemic expressions to express
what is achieved by the state operations. We have then reasoned algebraically that
protocols achieve their security properties given certain assumptions about the
cryptographic primitives underlying them, and assumptions about the capabilities

121

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. CONCLUSION 122

of adversaries that attack the protocols.

To demonstrate workability of our approach, we have applied it to benchmark
examples: Diffie-Hellman Key-Exchange Protocol; and Needham-Schroeder-Lowe
Protocol. We have then used it on Lamport’s One-Time Password Authentication
Scheme, for use later in the thesis. In each case we have been able to reason
algebraically to show these protocols meet their security goals. In case of standard
communications protocols, the methodology has proved it is able to give accounts
(specify, reveal flaws and express and reason about their mitigation) of man-in-the-
middle and split handshake attacks.

Of particular focus in this thesis was reasoning about security vulnerabilities in
lightweight distributed systems like the Internet of Things. Lightweight distributed
systems consist of devices with limited compute and memory resources, and so
must use these resources efficiently. In order to reason about vulnerabilities we
have considered an adversary or attacker that eavesdrops and remembers all com-
munications between agents but its computations are bounded by polynomial-time.
Security properties are made possible by cryptographic primitives underlying the
protocols. A feature of this thesis is that it focusses on specifying what these crypto-
graphic primitives achieve, not how they work. A case in point, is the assumptions
made about the hash function primitive that is used to establish certain hardness
properties like the infeasibility of invertability, independent of any particular hash
function.

As a result we have further demonstrated our approach on the Signal Protocol, and
the Long Range Wide Area Network (LoRaWAN) protocol each capable of operat-
ing on devices with limited resources. We have reasoned about security of these pro-
tocols under man-in-the-middle attack. In particular we have been able to reason
about the key-management vulnerability in LoRaWAN and suggested a mitigation
based on Lamport’s One-Time Password Authentication Scheme. Correctness of
our results follows directly from reasoning about execution of the protocol and rea-
soning about man-in-the-middle attacks that try to violate mutual authentication
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and secrecy properties. In the case of Lamport’s One-Time Password Authenti-
cation Scheme, the Signal and LoRaWAN protocols, we have provided theoretical
evaluations that indicate the feasibility of these schemes for lightweight distributed
systems.

8.2 Conclusions

Protocol implementation follows a straightforward approach: define a protocol,
write code and test it in the real world. Hackers find ways to exploit weaknesses
in protocols by subverting security requirements. So how do we ensure error-free
or strong security guarantees in implementations? Whilst confirming the impor-
tance of testing this is were our approach comes in. Overall we have been able
successfully to state security properties as functional properties and specify the
behaviour of security protocols as abstract data types consisting of state and op-
erations. Our proofs have shown that epistemic expressions extended to be true
with high probability can be successfully combined with state transitions to analyse
the security of protocols designed for lightweight distributed systems. Analysing
protocols as abstract data types circumvents the problem of reasoning about dif-
ferent implementations of the same protocol. However, it is challenging to capture
enough state such that schema observables and predicates do not become overly
complicated.

Little work has been done applying epistemic logic and Z specifications to the In-
ternet of Things protocols. We believe our approach contributes to the analysis
of similar security protocols and compliments that of model checking of a single
implementation. The epistemic definitions indicate that it is possible to specify
security goals as functional properties. However our analysis was applied in a spe-
cific context, that of the Internet of Things, and so proof of security is relative to
protocols in that context. Therefore it has not been possible to prove uncondi-
tionally that security properties hold in other contexts mainly because techniques
for generalisation of assumptions do not yet exist. However we believe our epis-
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temic definitions are general enough and contribute towards building universally
acceptable definitions for security properties.

The methodology proposed in this thesis has been shown to be appropriate for the
kinds of case study considered. This is due to its calibration on benchmarks which
have provided us with confidence to apply it to a new mitigation for LoRaWAN.

8.3 Future work

To explore further implications, future studies could extend our approach to include
more definitions of security properties. By modelling more security properties, it
could help make security properties more standard and thus easily included in the
analysis and design of security protocols. It would also be interesting to explore the
extent to which the epistemic approach could be made quantitative. Future work
could also be to examine the practical feasibility of the suggested key-management
solution for the Long Range Wide Area Network protocol.
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