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SUMMARY 
 

With ever increasing pressure on wine producers to lower the financial costs involved in 

winemaking to be able to compete in the market, all while maintaining a high level of wine 

quality, the focus on maintaining control over all aspects of the winemaking process are 

greatly emphasized. 

Malolactic fermentation (MLF) is one of the important processes in red wine production.  

The advantages of this process, when performed successfully, is widely known and 

accepted.  One way to gain control over MLF is the use of MLF starter cultures.  Starter 

cultures usually consist of Oenococcus oeni that has been isolated from grapes or wines 

and is in most cases available in a freeze-dried form ready for direct inoculation into the 

wine when MLF is desired.  Starter cultures are induced into wine and usually ensure the 

immediate onset as well as a fast and clean execution of the process.  Starter cultures 

used in South Africa are in most cases isolated from cooler viticultural regions in the 

Northern hemisphere.  The constitution of wines from cooler viticultural regions, differ from 

those in South Africa, which has a warm climate.  The most important difference is the acid 

content of the wines which is lower in South African must/wines and results into a higher 

pH.  The three most important changes that develop in wine during MLF are a decrease in 

acidity due to the conversion of malic acid to the less harsh lactic acid, enhanced flavour 

and aroma of wine and an increase in the microbiological stability of wine.  The decrease 

in acidity is very important for wines produced for grapes grown in cool viticulture regions.  

In South Africa though, the climate is warm and higher pH’s are present in the musts and 

wines and the de-acidification due to MLF is not the main aim but rather the 

microbiological stabilisation.  One of the compounds that could be produced by lactic acid 

bacteria (LAB) is biogenic amines (BA’s).  These compounds can be hazardous to human 

health.  This thesis focussed on the performance of MLF starter cultures in high pH South 

African red wines. 

 The first objective of the study was to stretch MLF starter cultures in high pH red wines 

of South Africa.  Stretching means to use less than the prescribed dosage or the re-use of 

starter cultures.  The difference in MLF rate, the influence of the natural occurring LAB and 

the levels of biogenic amines formed during MLF were determined for the different 

stretching treatments.  The results showed that different rates in malic acid degradation 

were experienced between the treatments, but in all cases MLF fermentation was 
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completed.  Biogenic amines were formed at various levels and the influence of the natural 

occurring LAB also played a role. 

 The second objective of the study was the evaluation of the effect of a wine isolated 

LAB (Lactobacillus) and an acetic acid bacteria (AAB), inoculated with a MLF starter 

culture had on MLF at different wine pH’s.  It was found that especially in the case where 

the Lactobacillus was inoculated in combination with the MLF starter culture a possible 

stimulatory effect was experienced with regards to malic acid degradation rate.  Biogenic 

amine concentration was measured at the end of MLF and it was found that no histamine 

and tyramine were formed in any of the treatments, while the putrescine and cadaverine 

levels were found to be at approximately similar levels for the different treatments. 

 The third objective was to evaluate the possible influence of commercial tannin 

additions and a pectolytic enzyme on rate of MLF and phenolic composition of high pH red 

wine.  The commercial tannins had possible inhibitory as well as stimulatory effects on the 

rate of malic acid degradation especially during the initial stages of MLF, with the highest 

dosage having the significant effect.  The BA results showed difference in the levels 

produced due to tannin additions as well as strain differences could exist.  The phenolic 

content showed a decrease in colour density, total red pigments, total phenolics and 

anthocyanins between AF and MLF. 

 The fourth objective was to evaluate inoculation time of MLF starter cultures.  The 

results showed that the fastest AF/MLF time was with simultaneous inoculation of the 

yeast and MLF starter cultures.  It was also for this treatment where no histamine or 

tyramine was detected at the end of MLF compared to the other inoculation strategies 

(before the end of AF and after AF). 

 This study generated a large amount of novel data which made a valuable contribution 

with regards to MLF in high pH red wines of South Africa. 
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OPSOMMING 
 
Die druk om wyne van hoë gehalte teen lae insetkoste te lewer om deel te bly van ’n 

kompeterende mark, plaas die fokus weer sterk op onder andere die beheer van alle 

aspekte van die wynmaak proses. 

Appelmelksuurgisting (AMG) is een van die belangrikste prosesse van rooiwyn produksie.  

Die voordele van AMG, in die geval van die suksesvolle implementering daarvan is 

vandag bekend en word geredelik aanvaar.  Een van die metodes om beheer te verkry oor 

the proses van AMG is deur die gebruik van AMG aanvangskulture.  AMG 

aanvangskulture bestaan uit Oenococcus oeni wat geïsoleer word vanaf druiwe of 

mos/wyn en is in meeste gevalle beskikbaar in ’n gevries-droogte vorm wat direk in wyn 

geïnokuleer kan word.  Aanvangskulture word in wyn geïnduseer om die onverpose 

aanvang van AMG te bewerkstellig asook om ’n vinnige en skoon deurvoering van die 

proses te verseker.  Die aanvangskulture wat in Suid-Afrika vir hierdie doeleinde gebruik 

word is in meeste van die gevalle verkry uit koue wingerdbou gebiede in die Noordelike 

Halfrond.  Die samestelling van druiwe van koue wingerdbou gebiede en dié van 

Suid-Afrikaanse warm wingerdbou gebiede verskil.  Die belangrikste verskil word ervaar in 

die suur inhoud, wat laer is in Suid-Afrikaanse druiwe en dus lei tot ‘n hoër pH inhoud.  Die 

drie mees belangrikste veranderinge wat gedurende AMG in wyn plaasvind is die 

vermindering van die suur, as gevolg van die omskakeling van appelsuur na melksuur, die 

verbetering van die aroma en geur van wyn en die verbeterde mikrobiologiese stabiliteit.  

Die afname in suur is veral belangrik in wyne van koue wingerbou gebiede omdat die 

suur-inhoud daarvan soveel hoër is.  In Suid-Afrika kan hierdie verlaging in suur egter lei 

tot ’n verdere verhoging in die pH wat plat wyne en uiteindelik ’n verlaging in die kwaliteit 

van wyn tot gevolg kan hê.  Biogene amiene (BA) is verbinding wat melksuurbakterieë 

(MSB) kan vorm gedurende AMG en kan ernstige implikasies hê vir die mens se 

gesondheid. 

 Hierdie tesis fokus op die evaluering van AMG aanvangskulture in hoë pH rooi wyne 

van Suid-Afrika. 

 Die eerste doelwit gedurende hierdie studie was om AMG kulture te rek en die invloed 

daarvan in hoë pH rooiwyn te evalueer ten opsigte van the tempo van AMG, die rol van die 

natuurlike MSB te bestudeer asook om die vlak van biogene amiene te bepaal vir die 

verskillende behandelings.  Die resultate het aan die lig gebring dat die rek van kulture 
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verskille in die tempo van appelsuur afbraak tot gevolg het, maar dat AMG in alle gevalle 

wel suksesvol deurgevoer kon word.  Die BA’e wat gevorm is, was teenwoordig in 

verskillende hoeveelhede. 

 Die tweede doelwit was om die effekt van die gesamentlike inokulasie van ’n wyn 

geisoleerde MSB (Lactobacillus) asook ’n asynsuurbakterie (ASB) met ’n kommersiële 

AMG aanvangskultuur op AMG te evalueer.  Hierdie eksperiment is uitgevoer by 

verskillende pH’s.  Daar is gevind dat veral in die kombinasie inokulasie met die 

Lactobacillus, die tempo van appelsuur afbraak moontlik gestimuleer was.  Geen 

histamien of tiramien is tydens AMG gevorm in hierdie eksperiment gevorm nie, terwyl 

putresien en kadaverien teenwoordig was teen ongeveer gelyke vlakke vir die 

behandelings. 

 Die derde doelwit was om die moontlike invloed van kommersiële tannien toevoegings 

en die toevoeging van ’n pektolitiese ensiem te evalueer ten opsigte van AMG tempo die 

fenoliese samestelling van rooiwyn te bestudeer.  Verskillende kommersiële tanniene het 

’n moontlike sowel as inhiberende uitwerking gehad, veral gedurende die aanvanklike 

stadium AMG.  Die grootste verskille is waargeneem in die behandelings waar die hoogste 

dosisse tannien bygevoeg is.  Die BA resultate toon dat verkillende vlakke geproduseer 

was en dat hierdie verskille onstaan het as gevolg van verskille in tannien dosisse sowel 

as aanvangskulture.  Die fenoliese inhoud het ’n afname in kleur intensiteit, totale rooi 

pigmente, totale fenole en antosianiene getoon vir die periode vanaf AF tot die einde van 

AMG. 

 Die vierde doelwit was om the tyd van inokulasie van AMG aanvangskulture te 

bestudeer.  Die resultate het getoon dat die vinningste tydperk van AF/AMG was 

ondervind in die geval waar die gis aanvangskulture gelyktydig met die AMG 

aanvangskulture geïnokuleer was.  Geen histamine en tyramine het ook in hierdie 

behandeling ontwikkel nie, terwyl daar wel vlakke teenwoordig was in die ander 

behandelings (inokulasie net voor die einde van AF en na afloop van AF). 

 Tydens hierdie studie is ’n groot hoeveelheid nuwe data geskep wat ‘n groot bydrae 

ten opsigte van AMG in hoë pH rooi wyne vanaf Suid-Afrika kan lewer. 
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PREFACE 
 

This thesis is presented as a compilation of 7 chapters.  Each chapter is introduced 

separately. 

 

 

Chapter 1  General Introduction and Project Aims 

   

Chapter 2  Literature Review 

  Malolactic fermentation 

Chapter 3  Research Results 

  The stretching of malolactic fermentation starter cultures in high pH red 

wines 

Chapter 4  Research Results 

  Effect of a wine isolated Lactobacillus spp. and an Acetobacter 

pasteurianus in combination with a malolactic fermentation starter culture 

on MLF at different wine pH’s 

Chapter 5  Research Results 

  The effect of commercial tannins and a pectolytic enzyme on malolactic 

fermentation and phenolic composition of red wine 

Chapter 6  Research Results 

  Assessing different inoculation times of malolactic fermentation in high pH 

red wines 

Chapter 7  General Discussion and Conclusions 
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1.  GENERAL INTRODUCTION AND PROJECT AIMS 
 

1.1 INTRODUCTION 

With a history that dates back to 2 February 1659 (Thom, 1958), the South African wine 

industry has developed and adapted to become a strong competitor in the international 

wine arena of quality produced wines.  Today the emphasis falls on developing even more 

efficient production methods to facilitate the overall production process and meeting 

consumer demands, yet maintaining a high quality of wine production. 

 The two most important biological processes during winemaking where control can be 

exerted are alcoholic fermentation (AF) and malolactic fermentation (MLF). 

 MLF is required in the production of almost all red wines as well as certain white and 

sparkling wines.  MLF is performed by lactic acid bacteria (LAB) containing the malolactic 

enzyme (MLE).  It practically refers to a biological process of wine deacidification in which 

the dicarboxylic L-malic acid is converted to the monocarboxylic L-lactic acid with the 

production of CO2 (Davis et al., 1985).  This deacidification as a result of MLF is very 

favourable for wines produced in cool viticultural climates such as occurs in Germany, 

France and the Eastern United states (Beelman and Gallander, 1979; Kunkee, 1967, 

1974; Rice, 1974).  However, in wines with high pH produced in the warmer viticultural 

regions for example California, South Africa and Australia it can lead to insipid, flat wines 

and the growth of spoilage bacteria (Rankine, 1971, 1972).  As fermentative organisms, 

LAB can also catabolise sugar to form lactic acid (major end product) and other flavour 

compounds for example, acetaldehyde, acetic acid, ethanol, diacetyl, acetoin and 

2,3-butanediol, in a variety of fermented products.  Diacetyl for example can enhance or 

reduce the complexity of wines.  At concentrations of 1-4 mg/L, it adds to the complexity of 

wine, whilst between 5-7 mg/L it can cause a buttery aroma which is considered 

undesirable (Rankine, 1977, Rankine et al., 1969).  Microbial stability is another possible 

outcome of MLF, since wines that have undergone MLF are more microbiologically stable 

than those that have not (Kunkee, 1967, 1974; Rankine, 1972).  Extensive research has 

been done over the years on the process of MLF and its importance in wine quality. 

 MLF also results in the generation of a high proton motive force, which can drive ATP 

synthesis.  To generate this proton motive force three main modes of transport of L-malate 
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and L-lactate exits.  These are electrogenic malate/lactate antiport, electrogenic malate 

uptake and electrogenic lactate efflux (Poolman et al., 1991). 

 The LAB that has the ability to conduct MLF is mainly Oenococcus oeni, 

Lactobacillus spp. and Pediococcus spp.  O. oeni is the preferred species used to induce 

MLF commercially due to its acid tolerance (Drici-Cachon et al., 1996), increased 

resistance for high alcohol concentrations (Davis et al., 1988; Ribéreau-Gayon et al., 

1998), higher resistance to SO2 (Henick-Kling, 1988) and flavour profile produced 

(Kunkee, 1967; Davis et al., 1985; Liu, 2002).  It have been found by various authors that 

due to the above-mentioned preferences O. oeni is the LAB naturally selected during AF, 

since it is in most cases the only LAB present after AF. 

 MLF can occur naturally or be induced using MLF starter cultures.  Spontaneous MLF 

is very unpredictable as it can occur during AF or the onset may be delayed for several 

months after AF.  Starter cultures therefore provide the tool to at least control the onset of 

MLF and the type of LAB that performs MLF. 

 Kunkee (1967, 1974) found that there are advantages to controlling the organisms that 

conduct MLF by pure culture inoculation.  This idea sparked various studies into the kinds 

of bacteria that can perform MLF and the factors that influence MLF. 

 The first potential starter culture that was studied was ML-34, a Leuconostoc oenos 

(renamed to O. oeni by Dicks et al. (1995)) strain that was isolated from a Californian red 

wine by Ingraham et al. (1960).  PSU-1 was another early strain to be used in studies in 

connection with pure culture inoculation for MLF and was isolated by Beelman et al. in 

1977.  Since then various starter cultures have been developed and are mostly freeze-

dried cultures today.  A viability of >95% has been recorded for freeze dried cells (Henick-

Kling, 1993).  These early freeze dried starter cultures used to require a rehydration or 

reactivation step before inoculation into wine, but today some can even be directly 

inoculated into wine. 

 The optimal time for inoculation with MLF starter cultures has also sparked numerous 

studies.  It depends on various factors which include the type of wine/cultivar, SO2, alcohol 

content, pH and temperature (Henick-Kling, 1993).  Co-inoculation of yeast and MLF 

starter cultures versus inoculation near the end or after AF were studied by various 

authors like Grossman et al. (2002), Henick-Kling and Park (1994), Jussier et al. (2006) 

and Rauhut et al. (2001). 
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 New ways to improve MLF are constantly being researched.  Areas that have been 

investigated include the use of enzymatic reactors (Formisyn et al., 1997), genetic 

engineering of Saccharomyces cerevisiae strains to conduct MLF (Ansanay et al., 1996; 

Bauer, 2003; Bony et al., 1997; Denayrolles et al., 1995; Husnik et al., 2006; Volschenk 

et al., 1997), bioreactors based on high biomass of free cells, immobilised cells and on 

enzymes (Maicas et al. 1999, 2001; Maicas, 2001; Diviès et al., 1994).  The development 

of new and improved starter cultures is also continuously investigated. 

 Information regarding the performance of MLF starter cultures, specifically in high pH 

red wines of SA, and the practical implications thereof for the winemaker and winemaking 

process still needs some exploration. 

1.2 SPECIFIC PROJECT AIMS 

This study focused on the use of commercial starter cultures in high pH (3.7-4.0) red wines 

of South Africa.  The stretching or re-use of starter cultures, influence of natural LAB and 

acetic acid bacteria (AAB), the effect of commercial tannins and early inoculation will be 

evaluated during this study.   

 

Objective 1:  The stretching of MLF starter cultures in South African high pH red wines. 

Aims: (1)  to evaluate the difference in MLF rate between the different stretching  

    treatments; 

  (2)  to investigate the influence of the naturally occurring LAB within the 

different stretching treatments; and 

  (3) determine the levels of biogenic amines formed during MLF for the  

different stretching treatments. 

 

Objective 2:  The evaluation of the effect of lactic acid and acetic acid bacteria in 

combination with a malolactic fermentation starter culture at different wine pH’s. 

Aims: (1)  to evaluate the influence of a naturally occurring LAB and an AAB 

     strain on the growth of a MLF starter culture; 

   (2)  to investigate the influence on the MLF rate; and 

(3) to determine the levels of biogenic amines formed during MLF for the 

different treatments. 
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Objective 3:  The influence of commercial tannins and an enzyme on malolactic 

fermentation in high pH red wines. 

Aims: (1)  to evaluate the possible effects of commercial tannins and the 

    pectolytic enzyme on MLF rate; 

(2) to evaluate the impact on the phenolic composition; 

 

Objective 4:  The evaluation of early inoculation of MLF starter cultures 

Aims: (1)  to evaluate different inoculation times of MLF starter cultures in high 

    pH red wines 
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2.  LITERATURE REVIEW 

2.1 INTRODUCTION 

The winemaking process consists of two fermentations namely, alcoholic fermentation 

(AF) and malolactic fermentation (MLF).  AF is regarded as the primary fermentation and 

MLF the secondary fermentation.  MLF is required during the making of almost all red 

wines and also during the making of some white and sparkling wines, especially those 

destined to be aged in barrels and sparkling wines.  MLF is an important determinant of 

final wine quality.  It can occur spontaneously in wine or can be induced.  In either case a , 

the slightest delay in the onset of this process may lead to an alteration of the wine quality 

(Henick-Kling, 1995). 

 This secondary fermentation is based on a decarboxylation reaction where malate is 

converted to lactate by lactic acid bacteria (LAB) which possess the malolactic enzyme 

(MLE).  In addition to decreasing wine acidity, MLF improves the microbiological stability 

and the organoleptic characteristics of wines (Davis et al. 1988; Kunkee, 1991).  These 

aforementioned organoleptic changes are as a result of secondary bacterial metabolisms 

(Lonvaud-Funel, 1999).  The activity of wine LAB has been studied for more than three 

decades, with the focus mainly on the malic acid degradation by Oenococcus oeni 

species, the pre-dominant species of LAB involved with MLF (Lonvaud-Funel, 1995).  

Starter cultures for MLF, similar to active dried yeast used to induce AF, have been 

developed over the past two decades.  The starter cultures for MLF that are available 

today have mostly been isolated from winesgrapes cultivated in the northern hemisphere 

which have a different composition than those from South Africa.  In South Africa, the main 

role of MLF is the achievement of microbial stability and improvement of the aroma profiles 

of wines, whilst in the cooler climate winemaking regions MLF is mainly performed for de-

acidification purposes.  In South Africa the long hot summers result in musts with higher 

sugar concentrations and therefore wines with higher ethanol concentrations (14-16% v/v).  

The higher pH musts (3.4 - 4.0) require higher SO2 additions and cooling.   

 This literature review will focus on the use of starter cultures to perform MLF as well as 

the factors that influence this process. 
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2.2 LACTIC ACID BACTERIA ASSOCIATED WITH WINEMAKING 

2.2.1 General information and metabolism of LAB 

LABS are generally Gram- positive, aerobic to facultative anaerobic, asporogenous rods 

and cocci, oxidation-, catalase-, benzidine- and gelatine- negative.  TheyLAB also do no’t 

have cytochromes, reduce nitrate to nitrite or use lactate. 

 LAB are functionally related due to the production of lactic acid from glucose.  Based 

on their metabolism of glucose, LAB may be divided into three main groups namely, 

obligatory homofermentative, facultative heterofermentative and obligatory 

heterofermentative.  Homofermentative LAB reduce hexose sugar to lactic acid via the 

Embden Meyerhof Parnas (glycolytic pathway) (Figure 2.1) whilst heterofermentative 

lactobacilli, leuconostocs and oenococci produce D-lactic acid and acetic acid through the 

6-phosphogluconate pathway (Du Toit and Pretorius, 2000).  The main genera of wine 

LAB are Lactobacillus, Leuconostoc, Pediococcus and Oenococcus.  The 

homofermentative cocci are mainly P. damnosus, and P. pentosaceus.  Lactobacilli can be 

both facultative (L. plantarum, L. casei) and obligatory (L. hilgardii, L. brevis, 

L. fructivorans) heterofermentative species.  Leuc. mesenteroides and O. oeni are the 

heterofermentative cocco-bacilli in wine (Strasser de Saad and Manca de Nadra, 1992; 

Buckenhϋskes, 1993; Caplice and Fitzgerald, 1999; Du Toit and Pretorius, 2000; Mira de 

Orduña et al., 2000). 

 LAB can also convert malic acid into lactic acid via a unique energy producing 

pathway.  This pathway involves the energy gradient producing transport of malic acid into 

the cell, intracellular decarboxylation by the malolactic enzyme, and the efflux of lactic acid 

possibly with one accompanying hydrogen ion.  (Henick-Kling et al., 1998; Poolman et al., 

1991). 

 Another substrate utilised by LAB is L-arginine, one of the most abundant amino acids 

in grape must and wine.  Heterofermentative LAB can degrade L-arginine to produce 

ammonia, ornithine, ATP and CO2 via the arginine deiminase (ADI) pathway.  The 

possibility excits that urea could be formed in the arginase-urease pathway (Liu and 

Pilone, 1998).  An intermediate in the ADI pathway, citrulline, is also a precursor for the 

carcinogenic compound ethyl carbamate (EC).  Thus, the use of MLF starter cultures that 

are non-arginine degrading has been proposed by Mira de Orduña et al. (2001).  Another 

important metabolism of LAB is the metabolism of citrate.  Citrate is transformed to lactate, 
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acetate, diacetyl, acetoin and 2,3-butanediol and a small amount is converted to aspartate 

via oxaloacetate and aspartate aminotransferase (Liu, 2002).   
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Figure 2.1  (A) Embden-Meyerhof-Parnas pathway (glycolysis) of homofermentative LAB and (B) 
6-phosphogluconate pathway of heterofermentative LAB (adapted from Du Toit and Pretorius, 2000) 

Certain LAB areis also able to convert certain amino acids in wine into biogenic amines 

which could have a negative impact on human health when consumed in high amounts 

(Ten Brink et al., 1990).   
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2.2.2 The evolution of LAB during winemaking 

The concentration of viable LAB populations is approximately 102-104 cells/mL in must 

from healthy grapes, with variations due to conditions during the final days of ripening and 

harvest (Lonvaud-Funel, 1995).  Grape must, receives SO2 at crushing, which reduces the 

bacterial populations drastically.  At this stage, another factor affecting bacterial 

populations is the initiation of alcoholic fermentation (AF).  It leads to unfavourable 

conditions for bacterial growth due to an altered  

chemical and physical environment as well as competition with yeast (Lonvaud-Funel 

et al., 1988). 

 The species of LAB that occur naturally on grapes are Lactobacillus, Leuconostoc, 

Oenococcus and Pediococcus.  Viable populations of strains of LABthese species that are 

resistant to low pH (<3.5), high SO2 levels (50 ppm) and high ethanol levels are able to 

survive in wine (Van Vuuren & Dicks, 1993; Lonvaud-Funel, 1999).  After alcoholic 

fermentation the viable LAB cells numbers isare approximately 102-103 cells/mL.  

Lactobacillus spp., P. damnosus, Leuc. mesenteroides and O. oeni predominate during AF 

but after AF, O. oeni (formerly known as Leuconostoc oenos) (Dicks et al, 1995) 

dominates (Lonvaud-Funel et al., 1991; Van Vuuren and Dicks, 1993; Lonvaud-Funel, 

1999).  O. oeni is the species that is positively associated with MLF due to its tolerance of 

low pH (<3.5) and the resultant flavour profile.  Pediococcus and Lactobacillus species will 

more likely occur in wine with a high pH (3.5-4.0) after MLF and are usually associated 

with spoilage (Davis et al., 1985; Lonvaud-Funel, 1995). 
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Table 2.1:  The evolution of LAB species during alcoholic fermentation.  Cell numbers 
expressed as cfu/mL. (Lonvaud-Funel, 1995). 

Species Day 

0 3 6 10 18 

O. oeni nd nd nd 4.3X103 3.4X106 

Leuc. mesenteroides 2.9X102 1.7X104 9.6X104 3.2X103 nd

P. damnosus 6.0X102 3.8X104 3.7X104 4.9X103 nd 

L. hilgardii 1.1X103 8.0X104 4.0X104 4.4X103 nd 

L. brevis nd 2.0X104 4.5X103 nd nd

L. plantarum 7.5X101 2.0X104 nd nd nd

L. casei 7.7X101 2.0X104 nd nd nd 

Totaal 2.5X103 1.7X105 1.5X105 1.8X104 3.4X106 

nd:  not detected  
 

2.3 MALOLACTIC FERMENTATION 

2.3.1 Process of MLF 

MLF refers to the decarboxylation reaction where one molecule of LL-malic acid (malate) is 

converted to one molecule each of LL-lactic acid (lactate) and carbon dioxide (Davis et al. 

1985; Lonvaud-Funel, 1995) (Fig 2.2).  This conversion is performed by lactic acid 

bacteria (LAB) that contain the malolactic enzyme (MLE).  MLE is the only enzyme 

involved in MLF and has been purified from various LAB (Lonvaud-Funel and Strasser de 

Saad, 1982; Caspritz and Radler, 1983; Spettoli et al., 1984; Naouri et al., 1990).  In the 

presence of NAD+ and Mn2+, MLE reactsis similar to the malic enzyme combined with 

lactate dehydrogenase, but without the release of intermediate products.  The complete 

nucleic acid sequence of the mle gene has been determine for Lactococcus lactis 

(Denayrolles et al., 1994), O. oeni (Labarre et al., 1996) and Pp. damnosus (Bauer, 2003). 
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Figure 2.2  Conversion of LL-malic acid to LL-lactic acid and CO2 by LAB that contains the MLE, with 
NAD+ and Mn2+ acting as co-factors. 

 MLF leads to the de-acidification of wine as LL-malic acid has a much harsher taste 

than the LL-lactic acid that is produced.  This de-acidification is desirable in wines with high 

acidity from the cooler climate wine producing regions.  The conduction of MLF is 

promoted in wines that are to be aged in barrels, will undergo extended bottle maturation 

or when certain organoleptic qualities are desired (Bauer and Dicks, 2004).  As per 

example, wines from Germany, France and the Eastern United States which are cool 

viticultural regions will benefit from the de-acidification due to MLF.  Wines from warmer 

regions such aslike South Africa, California and Australia have a lower acidity (Davis et al., 

1985; Kunkee, 1967; Wibowo et al., 1985).  MLF could be detrimental to these wines, 

possibly resulting in spoilage by lactic acid bacterial species like pPediococci and 

lLactobacilli that could subsequently lead to flat, insipid wines (Rankine, 1972; Rankine 

and Bridson, 1971). 

 In addition to deacidification, MLF can also lead to definite changes in the organoleptic 

profile of a wine.  The metabolism of various other substrates that were not utilised during 

alcoholic fermentation may mediate these changes.  These products of MLF include 

mostly lactic acid, acetic acid (volatile acidity), diacetyl (buttery flavour), acetoin, 

2,3-butanediol, 2-acetolactate, 2-acetohydroxybutyrate, ethyl acetate and ethyl lactate (as 

cited by Delaquis et al., 2000)(Figure 2.32).   
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Figure 2.3.2  Metabolic pathways of LAB leading to important organoleptic compounds.  (Van Vuuren 
and Dicks, 1993). 

 

 Another effect of MLF is the increased microbiological stability of wine.  The 

explanation for this effect is the depletion of residual nutrients by the LAB during MLF and 

the production of antibacterial compounds (Lonvaud-Funel and Joyeux, 1993; 

Rammelsberg and Radler, 1990).   

 

2.3.2 Starter cultures 

Kunkee (1967; 1974) found that there are advantages to controlling the organisms that 

conduct MLF by pure culture inoculation, instead of waiting for spontaneous MLF to take 

its course.  This idea sparked various studies into the bacteria that can perform MLF and 

the factors that influence MLF.   
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 The first potential starter culture that was evaluated in this regard was ML-34, a 

Leuconostoc oenos strain that was isolated from a Californian red wine (Ingraham et al., 

1960).  ML-34 was first classified as Leuconostoc citrovorum (Pilone et al., 1966) but after 

Garvie (1967) re-organised the leuconostocs, Pilone and Kunkee (1972) re-classified it as 

Leuconostoc oenos.  PSU-1, isolated by Beelman et al. in 1977, was another strain used 

in early studies concerning pure culture inoculation for MLF.   

 Since then, various starter cultures have been developed and are either lyophilised or 

freeze dried cultures, the most effective ones consist of O. oeni strains that were originally 

isolated from wine.  Table 2.2 show some of the malolactic fermentation starter cultures 

that are available today.  The number of MLF starter cultures available on the SA market 

are much less than yeast starter cultures. 

 Viability of >95% has been recorded for freeze dried cells (Henick-Kling, 1993).  

Transport and long term storage of freeze dried cultures could be problematic in wineries if 

the proper cooling facilities for storage do not exist.  A solution to this problem could be to 

develop MLF starter cultures similarly to the method used to produce commercial yeast 

starter cultures, which is fluidised-bed drying.  Clementi and Rossi (1984) studied the 

effect of fluidised-bed drying and storage on the survival of O. oenios.  The cell viability 

was largely unaffected by the drying conditions and the total count recorded immediately 

after drying was a one to two decimal reduction.  When stored, the dry cultures had a 

higher survival rate when kept refrigerated than at room temperature conditions. 

 

 

 

 

 

 

 

 

Table 2.2:  Malolactic fermentation starter cultures that is commercially available today. 
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Culture Company Strain Characteristic 

Viniflora®oenos Chr.Hansen* O. oeni High fermentation speed 

Viniflora®CH16 

 

Chr.Hansen 

 

O. oeni 

Tolerance in high alcohol 

conditions 

Viniflora®CH35 

 

Chr.Hansen

 

O. oeni

Tolerance for low pH and high 

SO2

LALVIN 31 Lallemand** O. oeni Tolerance for low pH 

ENOFERM 

ALPHA 

 

Lallemand

 

O. oeni

 

Tolerance for high SO2 

LALVIN VP41 

 

Lallemand

 

O. oeni

Tolerance in high alcohol 

conditions

Biostart Oenos Erbsloh*** O. oeni  

Biostart Bianco 

SK3 

 

Erbsloh 

 

O. oeni 

 

Low diacetyl producer 

Microenos B16 

standard 

 

Laffort**** 

 

O. oeni 

 

White wines 

Microenos 

MBR.B1 

 

Laffort 

 

O. oeni

 

Lactoenos SB3 Laffort O. oeni High fermentation rate 

Lactoenos 450 

PreAc Laffort O.oeni

Extremely tolerant to most 

wine conditions
*www.chr-hansen.com 
**www.lallemandwine.co.za 
***www.erbsloeh.com 
****www.laffort.com 

 
2.3.2.1 Preparation for inoculation 

Lactic acid bacteria starter biomass is mostly produced by manufacturers in rich, synthetic 

media and often, the bacteria will find it difficult to survive after inoculation into wine.  The 

wine matrix may lack in the complex of nutrients needed by LAB to survive and the 

chemical (pH < 3.4; Ethanol > 14% v/v) as well as the physical (Temperature < 18ºC) 

parameters can sometimes be a harsh environment for LAB.  Rodriques et al. (1990) 

showed that the cell numbers could decreased by up to three log-cycles when inoculated 

into wine. 

 To compensate for this phenomenon, cells should go through a reactivation or re-

hydration step before inoculation into wine (as recommended by most manufacturers).  

Importantly, such a step should be quick and simple, it must not modify the characteristics 

of the wine in any way and it must bring the cells to a physiological state that will permit 

their survival and growth in the wine.  

Formatted: English (U.K.)

http://scholar.sun.ac.za/



Chapter 2     Literature Review 

 

 16

 Some of the first researches on reactivation and re-hydration showed that in order to 

prevent the death of cells, reactivation should occur in a medium that is supplemented with 

yeast extract and grape juice (Lafon-Lafourcade et al., 1970; as cited by Bauer and Dicks, 

2004); Lafon-Lafourcade et al., 1983).  Fornachon (1968) and Mascarenhas (1984) 

showed that nutrients produced during yeast autolysis may stimulate the growth of MLF 

bacteria, whilst Gallander (1979) obtained poor growth in the presence of yeast extract.  

Media enriched with 40-80% wine could also be used to activate/enhance the growth of 

O. oeni (Davis et al., 1985) or yeast (Kunkee, 1967).   

 Nault et al. (1995) studied the duration of the reactivation process as well as the initial 

reactivated cell population.  They found that reactivation in half strength wine followed by 

growth in a medium with 75% wine allowed a gradual readjustment of bacteria to counter 

balance the effect of wine component.  They also showed that the pre-culture mediuma 

has to be, at most, 107cfu/mL so that malic acid degradation follows cellular proliferation. 

 In a study by Semon et al. (2001) it was found that the rate of MLF did not vary 

according to the method by which bacterial starter cultures were prepared (re-hydration of 

freeze-dried forms or prior growth in diluted grape juice).   

 Today the inoculation of MLF bacterial starter cultures is very easy and fast.  Some of 

the MLF bactaria manufacturers have products that can be added directly to wine without 

re-hydration, for instance a typical inoculation protocol entails adding the cultures in its 

granulated form directly into wine, or it may be dissolved in a smaller volume and then 

added to the larger volume (Chr. Hansen, Lake Internation technologies; Lallemandd, 

South Africa).  Typical preservation of the cultures are to store it at +5 ºC to preserve it for 

6 months, or to preserve it for 36 months the storage temperature should be -18 ºC.  

Starter cultures like these have been developed through subjecting the cultures to various 

inhibitory conditions like could occur in wine, during the production process.   

 

2.3.2.2 Inoculation time 

The optimal time for inoculation is influenced by various factors which include the cultivar, 

wine type, SO2 and alcohol content, pH and temperature (Henick-Kling, 1993).  Inoculation 

at the end of AF is common practice amongst wine makers globally, but this may lead to a 

delay in the onset of MLF due to high ethanol concentrations (Lafon-Lafourcade et al., 

1983; Davis et al., 1985).  The time of inoculation is another important factor for a 

successful MLF that has been studied over the last two decades.  In 1979 Gallender 
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showed that inoculation during or after alcoholic fermentation was most favourable for the 

stimulation of malolactic fermentation.  Inoculation at the end of AF is common practice 

amongst wine makers globally, but this may lead to a delay in the onset of MLF due to 

high ethanol concentrations (Lafon-Lafourcade et al., 1983; Davis et al., 1985).  There 

have been various arguments in favour of inoculation after AF, because it could prevent 

the possible antagonism with yeast and production of undesirable metabolites (Lafon-

Lafourcade et al., 1983; Ribéreau-Gayon, 1985, Henick-Kling and Edinger, 1994).  

Inoculation of the bacteria during alcoholic fermentation is preferred by some winemakers 

(Davis et al., 1985; Gallander, 1979).  The rationale behind this is that at this stage most of 

the free SO2 is bound by organic acids produced during yeast growth (Davis et al., 1985).  

The optimal time for inoculation is influenced by various factors which include the variety of 

wine/cultivar, SO2 and alcohol content, pH and temperature (Henick-Kling, 1993).   

 

2.4 FACTORS THAT INFLUENCE MALOLACTIC FERMENTATION 

There are various chemical and physical factors that influence the successful completion 

of MLF in wine.  The four most important factors are pH, temperature, alcohol content and 

SO2 and other factors are carbohydrates, L-malate, L-lactate, citrate, other organic acids 

(tartaric acid, succinate), fatty acids, amino acids oxygen and carbon dioxide, 

acetaldehyde, phenolic compounds, pesticides, availability of nutrients and pre-culture 

conditions. 

 

2.4.1 The influence of pH 

Davis et al. (1986) showed that the growth rate of O. oeni increased as the wine pH 

increased from 3.2 .- 4.0, and MLF occurred in conjunction with growth, this was confirmed 

in a study by Wibowo et al. (1988), who showed that the rate of MLF, conducted by 

O. oeni, increased as wine pH increased from 3.1-3.8.  It has also been shown by Davis 

et al. (1986, 1988), that O. oeni is the species of LAB with the greatestr tolerance to low 

pH values, since this species is almost exclusively isolated at a pH < 3.5.  High pH (>3.5) 

contains more species of Lactobacillus and Pediococcus (Davis et al., 1986, Du Toit and 

Pretorius, 2000).  South African wines therefore are more likely to contain species of 

Lactobacillus and Pediococcus as the pH ’s are higher.  Inoculation with starter cultures 
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and the concomitant immediate onset of MLF are beneficial to avoid spoilage of high pH 

wines, which include South African red wines.   

 pH, ethanol and temperature have been found to work synergistically.  At pH 2.9-3.0 

growth is possible for LAB but extremely slow.  At pH > 3.5 growth is much quicker when 

the alcohol levels are less than 13% v/v and a temperature between 19-20˚C is 

maintained.  Growth conditions that do not support the growth of LAB in wine include a pH 

< 3.0, ethanol levels > 14% v/v and temperatures below 17˚C (as cited by Lonvaud-Funel, 

1995).  The optimal pH for malolactic activity for O. oeni is in the vicinity of pH 3.5-4.0 

(Davis et al., 1986). 

 

 

2.4.2 Temperature 

Temperature is a well known catalyser for chemical and biochemical reactions.  In a 

laboratory culture medium it was found that LAB grew in a temperature range between 15 

and 45˚C, with optimal growth occurring between 20 and 37˚C.  For O. oeni the optimal 

temperature range was 27-30˚C in laboratory medium but was 20-23˚C in wine (due to the 

alcohol in the medium).  This optimum temperature will decrease when the alcohol content 

of wine ranges between 13-14%.  Virtually no growth will occur at 14-15˚C.  The ideal 

temperature for malic acid degradation is approximately 20˚C.  At temperatures above 

25˚C and below 18˚C,  MLF times are delayed (Ribereau-Gayon et al., 1998). 

 Guzzo et al. (1994) found that when O. oeni was pre-incubated at 42˚C, the survival 

and ability of the strain to perform MLF was enhanced.  Incubation at this temperature 

induces the formation of stress proteins (Guzzo et al, 1997). 

 

2.4.3 Ethanol 

Ethanol and temperature have antagonistic effects on the growth of LAB.  In wines with 

high ethanol concentrations, the optimal growth temperature of the LAB will decrease.  

Ethanol tolerance is decreased at higher temperatures (Henick-Kling, 1993).  The ethanol 

levels found in wine (8-12% v/v) are not inhibitory for malolactic activity (Capucho and& 

San Romao, 1994).  The growth rate decrease linearly with the increase in the alcohol 

level and 14% v/v alcohol is the upper limit for growth of most of the strains of LAB (Davis 

et al., 1988; Henick-Kling, 1993).  At 25˚C growth will be completely inhibited in the 

presence of 10 to 14% v/v alcohol.  With the latter alcohol levels, optimum growth/yield will 
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be in the vicinity of 18-20˚C, compared to 30˚C when ethanol levels are 0-4% v/v (Henick-

Kling, 1993).  Ethanol and temperature have a greater affect on growth rate than biomass 

yield.   

 The level of ethanol tolerance differs between strains and is also dependant on the 

amount of nitrogen in the medium and the pH (Britz and Tracey, 1990).  Ribereau-Gayon 

et al. (1975) found that cocci are more sensitive to alcohol than other LAB species and 

Davis et al. (1988) went further to say that Lactobacillus spp. and Pediococcus spp. are 

generally more tolerant to ethanol than O. oeni. 

 The cell’s ability to tolerate high ethanol levels will primarily be located in the cell 

membrane, with lipids as the major target area (Jones, 1989).  Ethanol-induced changes in 

the lipid composition of the cell membrane have been described for O. oeni (Tracey and 

Britz, 1989a; Garbay et al., 1995) and other LAB.  In the presence of alcohol, the cell 

membrane fluidity is enhanced in O. oeni (Couto et al., 1996; Tourdot-Marechal et al., 

2000; Teixeira et al., 2002).  Tourdot-Marechal et al. (2000) found that the increase of 

lactic acid in the membrane is possibly involved in protecting the cell from high ethanol 

levels (> 8% v/v).  Lactobacillic acid is a ring containing fatty acid produced during late 

exponential to stationary phase growth and is formed by conversion of the unsaturated 

position of cis-vaccenic acid to a cyclo-propane ring.  Teixeira et al. (2002)  showed that 

ethanol levels > 8% increased the permeability of the cell membrane of resting cells, but 

not when cells was grown in these alcohol conditions.  The amount of protein in the latter 

was found to be lower.  Guzzo et al. (1997, 2000), Tourdot-Marechal et al. (2000) and 

Texiera et al. (2002) all showed that the synthesis of low-molecular weight stress proteins 

is induced and may also be involved in the adaptation of cells.   

 Thus, the resistance of O. oeni cells to alcohol involves an array of parameters that 

include media composition, pH, temperature and the severity and duration of the shock 

that is exerted on the cells.   

 

2.4.4 Sulphur dioxide 

2.4.4.1 Sulphur dioxide in wine 

Sulphur dioxide (SO2)  is added to wine and acts as an antioxidant and prevents the 

growth of detrimental micro-organisms (Amerine et al., 1980; Facio and Warner, 1990).  In 

wine, SO2sulphur dioxide (SO2) exists in equilibrium between its free and bound form.  The 
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free form is mainly responsible for the antimicrobial and anti-oxidative activity and consists 

of a molecular SO2, bisulphite and sulphite component (Du Toit et al., 2005) 

 The levels at which sulphur dioxide will influence the development of LAB, and 

consequently MLF, are:  total concentration between 100 and150 ppm SO2 and 1-10 ppm 

free SO2 (Wibowo et al., 1985). 

 

2.4.4.2 Effect of sulphur dioxide 

Carreté et al. (2002) showed that the SO2 concentration should not be too high in wine 

because in can inhibit the growth of LAB during MLF.  Constanti et al. (1998) even suggest 

that the use of SO2 could be eliminated if the yeast selected to conduct AF suppresses 

bacterial growth. 

Liu and Gallander (1983) found that SO2 levels affect the growth behaviour of malolactic 

bacteria and the rate of MLF and that it is strongly related to the initial pH of the wine.  

Kunkee (1968) also found that when must has a low pH and is treated with SO2, the 

inhibitory effect that occurs is related to the influence of the pH on the metabolic rate of 

LAB as well as to the antimicrobial activity of SO2.  Low pH and high SO2 levels greatly 

reduced survival of the inoculated bacteria and thus the MLF rate.  They also found that for 

the same SO2 levels, the rate of MLF was similar for pH 3.5 and 3.7 but slower in pH 3.3.  

For any given pH the lowest SO2 level resulted into the fastest MLF rate.  After inoculation 

with the MLF starter culture the bacterial numbers decreased until week three after 

inoculation for all the treatments but the lowest population count was found for pH 3.3.  

Therefore, the initial treatment of must with SO2 is an important factor to be considered 

when using pure culture inoculation to induce MLF. 

 In addition to adding sulphur dioxide to grape must, it can also be formed by the yeast 

during alcoholic fermentation.  Fuster et al. (2002) showed that some yeast strains, 

especially ones with low nutritional demands, can favour the onset of MLF while other 

yeast inhibits LAB and MLF.  This inhibition is a result of the yeast generating compounds 

that are toxic to LAB like SO2, higher ethanol and fatty acids (Guilloux-Benatier et al., 

1998; Henick-Kling and Park, 1994; Lonvaud-Funel et al., 1988).  Since the type and 

amount of fatty acids and other macromolecules that are released by yeast into the wine 

media is strain dependent, the evolution of LAB and subsequently MLF are also 

dependent on yeast strain (Fornachon, 1968; Huang et al., 1996; King and Beelman, 

1986; Larsen et al., 2003).   
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 SO2 could be a health risk for sulphite-sensitive individuals, there is an ever-increasing 

consumer demand to reduce SO2 levels in foods and beverages.  Studies combining the 

use of SO2 with other compounds that reduces oxidation and bacterial growth  

 

2.4.5Phenolic compounds 

Phenolic compounds can broadly be divided in into two groups namely, the non-flavonoids 

and the flavonoids.  The non-flavonoids are subdivided into the phenolic acids and their 

derivates namely p-hydroxy-benzoic acid, cinnamic acid derivatives (Figure.  2.43) and 

other compounds which include m-cresol and tyrosol.  These compounds occur at 

approximately 100-200 mg/L in red wine and 10-20 mg/L in white wine (Ribéreau-Gayon et 

al., 1998).  Mostly they occur as glucose esters. 

 The flavonoids are divided into flavonols, flavan-3-oles, flavan-3,4-dioles and 

anthocyanins.  The flavonols are flavonoid structures that are esterified with glucose at 

position 3.  Production of flavonols starts in the berry as soon as it has been exposed to 

sunlight and resides in the skin of the grape.  They protect the berry against UV light 

(Sweeny et al., 1981) and are yellow in colour.  Examples of important flavonols are 

Kaempherol and Quercetin (Figure 2.54) (Ribéreau-Gayon et al., 1998). 
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Figure 2.43  Different non-flavonoids of grapes and wine 
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Figure 2.54  Flavonols of wine Kaempherol and Quercetin 

 Flavan-3-ole, also called catechin, is characterised by an OH group on position 3 of a 

saturated C ring (Figure 2.65).  The forms of catechin and epicatechin that naturally occur 

in grapes are (+)-catechin and (-)-epicatechin.  These compounds can also occur as 

dimers, oligomers and polymers.  They form condensed tannins and play and important 

role in the taste of wine.  Singleton and Esau (1969) found that catechin and epicatechin 

concentration in white wines range from 10-50 mg/L and 200 mg/L in red wines. 

 Flavan-3,4-dioles are also known as leucoanthocyanidins.  These compounds are 

characterised by OH bonds in position 3 and 4 on the C-ring of the flavonoid structure 

(Figure 2.65).  When these compounds polymerise they form their corresponding 

condensed tannins (Ribéreau-Gayon et al., 1985; Zoecklein, et al., 1995).  These 

compounds are usually present in the form of oligomers for example, leucocyanidin, 

procyanidin, leucodelphinidin and prodelphinidin.   

 Anthocyanins are important for the colour of red wine (Figure 2.76).  Anthocyanins 

consist of a anthocyanidin esterified to glucose.  These compounds play a major role in the 

oxidation sensitivity of must and wine, and reside in the skins of the berries.  Anthocyanins 

are present at a level between 100-1500 mg/L in wine (Monangas et al., 2005; Ribéreau-

Gayon et al., 1998; Somers, 1971). 
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Figure 2.65  Flavan-3-ole and Flavan-3,4-diole 
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Figure 2.76  Anthocyanin structure 
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2.4.5.1The influence of phenolic compounds on LAB and MLF 

During winemaking, phenolic compounds are extracted whilst the must is in contact with 

the grape skins.  As early as 1970, Beelman and Gallander conducted an experiment 

where MLF was induced in grape must prepared by cold pressing, hot pressing and 

fermentation on the skins for 1, 3 and 5 days before pressing.  The results revealed that 

fermentation on the skins had a profound effect on MLF.  MLF was completed only in the 

5 day treatment of fermentation on the skins.  They stated that skin contact must have 

stimulated the growth of the MLF bacteria.   

 Later studies were mostly done with the phenolic acids and their potential influence on 

MLF.  Vivas et al. (1997) found that gallic acid enhanced cell growth and rate of MLF of 

O. oeni, whilst vanillic acid was slightly inhibiting.  Another study by Alberto et al. (2001) 

showed that gallic acid activated the rate of glucose and fructose utilization and that the 

gallic acid was consumed from the beginning of L. hilgardii growth.  Therefore gallic acid 

could potentially increase the formation of spoilage compounds in the presence of 

L. hilgardii.  Compos et al. (2002) monitored an ethanol containing medium supplemented 

with varying concentrations of hydroxybenzoic acids and hydroxycinnamic acids.  It was 

found that the hydroxycinnamic acid was more inhibitory to O. oeni than the 

hydroxybenzoic acids (gallic and vanillic acid).  The hydroxycinnamic acids (caffeic and 

ferulic acid), were more beneficial to the growth of L. hilgardii.  p-Coumaric acid had the 

strongest inhibitory effect on the growth and survival of both bacterial species.  

Hydroxycinnamic acids have also been found to have an inhibitory effect on O. oeni at 

high concentrations (Reguant et al., 2000).  They also showed that catechin and quercetin 

(flavonoids) stimulated MLF but delayed or inhibited the formation of acetic acid from citric 

acid.  This could suppress the increase in volatile acidity (VA) and therefore control MLF 

better.  Catechin also stimulated MLF (measured as malic acid consumption) for 

L. hilgardii (Alberto et al., 2001).  Vivas et al. (1997) also looked at the effect of 

anthocyanins on the growth of LO. oenios and the rate of malic acid degradation and 

found that it activated both processes.   

 It is important to note that in most of these studies, the phenolic compounds were used 

at concentrations higher than what would naturally occur in wine.  Another important factor 

to mention is that synthetic media were used in most cases.  This eliminated other 

interactions that could possibly have occurred in a complex medium like wine.   
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2.5 HEALTH RISKS ASSOCIATED WITH SPONTANEOUS MALOLACTIC 

FERMENTATION 

2.5.1 Biogenic amines in general 

Biogenic amines (BA) are toxic substances that have deleterious effects on the health of 

humans (Shalaby, 1996).  These substances can be found in various fermented foods and 

beverages such as fish, cheese, beer and meat products (Stratton et al., 1991; Shalaby, 

1996).  BA’s are undesirable in all food and beverage products in which they occur.  

Symptoms that are experienced as a result of the ingestion of BA’s are headaches, 

respiratory distress, heart palpitations, hyper- or hypotension, and several allergenic 

disorders (Sillo Santos, 1996). 

 The extents to which BA’s can be toxic to humans vary due to at least two important 

factors.  The first being the detoxifying effect of the human body on amines and the 

second, the inhibition of important enzymes that play a role in the formation of BA’s, 

through various drugs and ethanol.  Thus when the toxic effects of BA’s are to be 

estimated the following must be taken into account:  the quantity of food, the concentration 

of total BA’s, and the consumption of ethanol and drugs (Lonvaud-Funel, 2001). 

 Amines are formed by LAB during fermentation of foods and beverages by amino acid 

decarboxylation.  Various LAB genera are able to perform this reaction, which is thought to 

favour growth in acidic media. 

 With consumers demanding healthier and better controlled production of food 

products, there is a renewed interest surrounding the study of biogenic amines of wine.  

The best developed method for the determination of BA’s in especially wine, is high 

performance liquid chromatography (Rollan et al., 1995). 

 

2.5.1.1 Biogenic amines of wine 

The major BA’s in wine are histamine, tyramine, putrescine and cadaverine resulting from 

the decarboxylation of the the corresponding amino acids namely, histidine, tyrosine, 

ornithine and lysine.  Histamine is the most toxic amine and it can be potentiated by other 

amines (Chu and Bejdanes, 1981).  The levels of BA’s in wine are much lower than the 

levels at which they occur in other fermented products but the presence of other 

substrates such as ethanol, 1-methylhistamine, methylamine, ethylamine, tryptamine, 
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2-phenylethylamine, tyramine, putrescine, cedaverine and spermidine may increase the 

toxicity of histamine and exceed the limits for sensitive people (Guerrini et al., 2002).  

Putrescine is the amine that is generally found in the highest concentration in wine 

(Soufleros et al., 1998) and is also known as the most effective potential activator of 

histamine toxicity to humans (Taylor, 1986).  Putrescine and cadeverine are also potential 

precursors of carcinogenic nitrosamines (Bover-Cid and Holzapfel, 1999). 

 Since LAB are responsible for producing BA’s, it is assumed that all LAB contain 

decarboxylase and the transport system (the enzymatic equipment to allow the reaction). 

 Grape variety and viticultural practices influence the constitution of the grape must 

(Soufleros et al., 1998), which will undergo AF.  Therefore, the levels of BA’s present in 

wine will reflect a combination of factors which include the micro-flora present, the 

constitution of the grape must and yeast metabolism during AF.  LAB only develops after 

AF in wine, which means that the constitution of the must will have changed in terms of its 

nitrogen composition.  Another wine process that will influence the level of amines is 

extended lees contact, where various peptides and free amino acids are released into the 

wine that could be utilised by LAB.  It is also important to note that the ability of bacteria to 

decarboxylate amino acids is strain dependent (Coton et al., 1998).  Aside from the 

amount of precursor and the strain of LAB present in the wine, pH are another imThe most 

important factor influencing portant factor influencing the production of BA’s is pH.  Higher 

pH’s generally result in higher BA levels in wine (Lonvaud-Funel and Joyeux, 1994) as a 

high pH will allow for the development a more diverse range of micro-flora.  This effect of 

pH is illustrated by the observation that in white wines, which generally have a lower pH 

than red wines, the concentration of BA’s is lower (Lonvaud-Funel, 2001).   

 It has also been found that BA levels not only increase during MLF but also during 

ageing (Lonvaud-Funel, 2001).  This was the case with Chardonnay and Pinot noir wines 

studied by Garbaux and Monany (2000)as cited by Lonvaud-Funel, 2001).  They also 

showed that the most active phase was between the fourth and eight month after MLF.  As 

wine is treated with SO2 after MLF, these results show that not all biochemical reactions 

mediated by bacteria are effectively inhibited.  Sulphur dioxide is especially less effective 

in red wines with a high pH. 

 

2.5.1.2 Oenococcus oeni and biogenic amines 
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The first studies on biogenic amines showed higher levels occurring in European, 

American and South African red wines than in white wines (Zee et al., 1983; Cilliers and 

Van Wyk, 1985).  Histamine is the most important BA that occurs most frequently in wine.  

Some authors consider the increase of histamine levels to be as a result of MLF, whilst 

other authors do not connect the two.  Unfavourable LAB, Pediococcus spp., has always 

been differentiated from the favourable LAB, O. oeni and the prior mentioned was also 

solely held responsible for histamine production.  Pediococcus spp have been held 

responsible for histamine production for a long time and even still today (as cited by 

Lonvaud-Funel, 2001). 

 Lonvaud-Funel and Joyeux (1994) extensively studied the micro-flora of wine 

containing BA’s after MLF.  They isolated strains of O. oeni that tested positive for 

histamine production.  Landete et al. (2005) used a qualitative method based on pH 

changes in a plate assay to detect wine strains capable of producing high levels of 

histamine.  They found that O oeni showed the highest frequency to produce BA’s whilst 

Lactobacillus and Pediococcus spp. produced the highest concentration of BA’s.  Guerrini 

et al. (2002) also found that O. oeni could contribute significantly to the overall biogenic 

amine concentration in wine.  Of the 44 strains tested, 60% produced a level of histamine 

between 1.0-33 mg/L and about 16% produced additional putrescine and cadeverine.  In a 

study by Konings et al. (1997) it became clear that the production of histamine is 

enhanced in poor growth conditions for example, when fermentable substrates like sugar 

and malic acid are limited. 

 O. oeni has also been found to produce putrescine.  Mangani et al. (2005) found that 

O. oeni can produce this BA from ornithine as well as arginine. 

 

2.5.2 Ethyl carbamate 

Ethyl carbamate (EC) is found in wine amongst other foods and beverages and is an 

animal carcinogen (Ough, 1976).  It is formed through the chemical reaction of ethanol and 

an EC precursor, such as citrulline, urea or carbamyl phosphate (Ough et al., 1988).  

Citrulline is an intermediate in the degradation of arginine by wine LAB.  A correlation has 

been found between the excretion of citrulline and the formation of EC during the 

degradation of arginine by the wine LAB O. oeni and L. buchneri (Liu et al., 1994).  

Another precursor of EC is carbamyl phosphate.  Some LAB can synthesize carbamyl 

phosphate from glutamine and bicarbonate and ATP (Nicoloff et al., 2001). 
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2.6 CONCLUSION 

MLF is an important process during winemaking and the outcome of this process plays an 

important role on the over-all quality of wine (especially red wine).  O. oeni is the major 

LAB that conducts this process because of its greater tolerance of acidic wine conditions 

and the favourable attributes it makes to wine aroma.  Nevertheless, various factors can 

influence this process either positively or negatively and to a larger and lesser extent.  In 

an effort to control MLF and the LAB that conducts the process, factors that could 

negatively influence the process must be managed.  One possibility to reach this goal was 

the development of the MLF starter culture.  Starter cultures proposed a sure and 

successful MLF if wine properties are maintained within certain limits.  Overall, for desired 

growth and MLF by O. oeni it is optimum to have a low pH (<3.5), a temperature of 

20-25ºC, small amounts of SO2 (< 10 mg/L free), no or little pesticide residues and an 

alcohol level below 13.5%.  Starter cultures have been constantly improved with regards to 

their tolerance to winemaking practices, wine conditions and rate of MLF.  Research 

regarding factors that could enhance this process are not only beneficial to the production 

process of wines but can contribute to the quality of the end product.   
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3.  RESEARCH RESULTS 
 

The stretching of malolactic fermentation starter 
cultures in high pH red wines 
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ABSTRACT 

This study evaluated stretching of malolactic fermentation (MLF) starter cultures, methods 

regularly used in practice, in high pH South African red wines (Merlot, Pinotage and 

Cabernet Sauvignon).  Stretching of MLF starter cultures refers to using less of the 

recommended dosage of MLF starter cultures or the re-use of starter cultures.  Stretching 

may result in economical advantages but is also thought to be easy to apply on high pH 

wines, which are more favourable conditions for lactic acid bacteria (LAB) to exist in.  The 

objective of this study therefore was to evaluate the difference in MLF rate between the 

different stretching treatments as well as to investigate the influence of the naturally 

occurring LAB within the different stretching treatments.  The control for this study was a 

100% w/v inoculation with a starter culture as prescribed by the suppliers.  The stretching 

treatments included a 50% w/v and 25% w/v of the dosage inoculation as well as a 

mothertank and lees inoculation.  The parameters monitored included weekly monitoring of 

the malic acid degradation, enumeration of the wine LAB on selective media and biogenic 

amine (BA) levels at the end of MLF.  The results showed that the mother tank and lees 

treatments resulted in an increased rate of MLF, with the 25% w/v inoculation having the 

slowest rate in most instances.  The enumeration data showed that at the end of MLF 

Oenococcus oeni was the LAB species most likely present.  No definite trends for BA’s 

were found between the treatments.   
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3.1 INTRODUCTION 

Malolactic fermentation (MLF) in wine is a secondary fermentation that usually occurs at 

the end of alcoholic fermentation (AF).  MLF refers to the biological process of wine 

deacidification in which the dicarboxylic L-malic acid is converted to the monocarboxylic L-

lactic acid and carbon dioxide (Davis et al., 1985).   

 Besides the decrease in acidity, it also improves the microbiological stability and the 

organoleptic characteristics of wines (Davis et al. 1988; Kunkee, 1991).  These above-

mentioned organoleptic changes are due to secondary metabolisms (Lonvaud-Funel, 

1999), such as the metabolism of carbohydrates and amino acids.  The most important 

compounds apart from lactic acid that is formed are acetic acid, diacetyl (buttery flavour), 

acetoin, acetaldehyde, 2,3-butanediol, 2-acetolactate, 2-acetohydroxybutyrate, ethyl 

acetate and ethyl lactate (Fornachon and Lloyd, 1965; Henick-Kling et al., 1994; Kandler, 

1983; Mascarenhas, 1984). 

 Malolactic fermentation is conducted by lactic acid bacteria (LAB) that contains the 

malolactic enzyme (MLE).  Lactobacillus, Pediococcus, Leuconostoc and Oenococcus are 

all genera of LAB that are present in wine.  Towards the end of AF spontaneous MLF is 

mainly conducted by O. oeni (Van Vuuren and Dicks, 1993), a species formerly known as 

Leuconostoc oenos (Dicks et al., 1995). 

 Spontaneous MLF may occur any time during or several months after the completion 

of AF.  At the end of AF the wine is not protected with sulphur dioxide and it is therefore 

important that MLF commences as soon after AF as possible.  To resolve this issue, MLF 

starter cultures are used to induce MLF. 

 MLF starter cultures consist of pure culture O. oeni that was isolated from wine.  

Commercial starter cultures (freeze dried) are usually inoculated into the wine after 

completion of AF at a cell concentration of superior to 5 X 106 cfu/mL. 

 The stretching of starter cultures imply using less than the recommended dosage, but 

can also imply re-use of commercial starter cultures as in the case of mothertank 

inoculation as well as inoculation from the lees of wines that have finished MLF.  

Stretching of MLF starter cultures could lead to economical advantages, but the success of 

the starter cultures as well as the role of the natural occurring LAB have not been 

determined.  Earlier studies showed that when commercial starter cultures are directly 

inoculated into wine in the freeze dried form a decrease of down to 4 log units could be 

observed (Krieger et al., 1990).  Other authors obtained similar results with a reduction of 
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3-4 log cycles after direct inoculation with freeze dried cultures (Fugelsang and Zoecklein, 

1993; Henick-Kling, 1993), whilst Nielsen et al. (1996) demonstrated the 100% survival of 

a freeze dried starter culture after direct inoculation into wine.  Inoculation data as was 

found by the above-mentioned authors underline the sensitivity of different strains of LAB 

to the wine matrix. 

Therefore the stretching of commercial starter cultures could have a detrimental effect on 

the performance of bacteria during MLF.  The pH of South African wine is generally higher 

(3.4-4.0) than cool climate regions, due to the warmer climate.  Higher pH and lower 

sulphur dioxide levels could lead to unwanted LAB and even acetic acid bacteria (AAB) 

development in wine. 

 Biogenic amines (BA) are toxic substances that have deleterious effects on the health 

of humans (Shalaby, 1996).  Amines are formed by LAB during fermentation of foods and 

beverages by amino acid decarboxylation.  The most important factor affecting bacterial 

strain capability to produce BA’s is pH.  A high pH generally produces a higher BA level in 

wine (Lonvaud-Funel and Joyeux, 1994). 

 The specific aims of the study were to evaluate the difference in MLF rate, to 

investigate the influence of the natural microflora and to determine the levels of biogenic 

amines that wereas formed during the different stretching treatments in high pH South 

African red wines. 

3.2 MATERIALS AND METHODS 

3.2.1 Small-scale fermentation 

The experiments were performed during the 2005 and 2006 harvesting season on three 

red wine cultivars.  Merlot, Pinotage, and Cabernet Sauvignon grapes from the 

Stellenbosch (South Africa) wine region with high pH’s (3.7-4.0) were used.   

 The grapes were crushed and 30 mg/L sulphur dioxide was added to the must.  The 

juice was analysed for pH, titratable acidity (TA) and ºBrix.  The juice was fermented with 

WE 372 (30 g/hL) (Anchor Yeast Biotechnologies, South Africa) in 250 L open fermenters 

on the skins.  Punch downs were done twice daily throughout the AF.  When the residual 

sugar concentration was less than 5 g/L the skins were pressed and transferred into 

stainless steel tanks until completion of AF.  After this the wines were then divided for the 

different treatments.  Sample bottles consisted of 4.5 L glass bottles closed with rubber 

stoppers with S-shaped airlocks filled with water.  MLF was inoculated into these 
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containers for the different treatments.  These sample bottles were kept at a temperature 

of 23˚C for the duration of MLF.  Each treatment was carried out in triplicate for this study. 

 The experiment consisted of a control and four treatments.  The control was a 100% 

w/v inoculation with a commercial MLF starter culture as prescribed by the manufacturers 

(1.5 g/250 L or > 5 X 106 cfu/mL).  Treatment 1 refers to inoculation of a commercial MLF 

starter culture at 50% w/v of the recommended dosage.  Treatment 2 was inoculated at 

25% w/v of the recommended rate.  Treatment 3 was inoculated for MLF by using a 

mother tank (MT) inoculation.  Inoculationng of new wine proceeded at a rate of 10% v/v, 

after 10% of the malic acid was degraded in the mother tank wine at a 10% v/v rate.  

Treatment 4 consisted of inoculating new wine with the lees (L) from the control wine 

which completed MLF. 

 This layout was followed for all the cultivars in 2005 and 2006 except for the Merlot 

2006 where additional treatments were included.  These treatments consisted of a control, 

treatment 1 and treatment 2 with Velcorin (V) added to each.  The Velcorin (250 ppm) 

(Bayer, Germany) was added to these wines 48 hours before inoculating with the MLF 

starter cultures to sterilise the wine. 

 All treatments were performed in triplicate. 

 All treatments were conducted with the following freeze-dried starter cultures, 

Viniflora®oenos, Viniflora®CH16 and Viniflora®CH35 (ChrHansen, Denmark).  These 

cultures are produced to inoculate directly into the wine without an activation step.  Each 

starter culture was isolated because of a unique characteristic it consists of according to 

the supplier.  For instance Viniflora®oenos gives a clean and classic flavour profile, whilst 

Viniflora®CH16 has an excellent tolerance to high alcohol levels and Viniflora®CH35 is a 

strong fermenter in harsh white wines.  All three cultures do not produce BA’s according to 

the producer.  All treatments were performed in triplicate. 

 

 
3.2.2 Monitoring of wine parameters by FT-IR 

L-Malic acid was measured weekly from inoculation of the MLF starter culture using FT-IR 

spectroscopy (Foss Grape scan).  Samples were filtered with a Filtration Unit (type 79500, 

FOSS Electric, Denmark) connected to a vacuum pump.  The filter unit uses filter paper 

circles graded at 20 – 25 μm with diameter 185 mm (Schleicher & Schnell, reference 

number 10312714).  The filtered musts were used for FT-IR spectral measurements.  A 

Winescan FT120 equipped with a purpose built Michelson interferometer was used to 
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generate the FT-IR spectra (FOSS Electric A/S, Hillerød, Denmark).  Instrument settings 

included:  cell path length of 37 μm, sample temperature set to 40°C, and sample volume 

of 7 – 8 ml.  The sample is pumped through the heat exchanger and the CaF2-lined 

cuvette.  Samples are scanned from 5011 to 926 cm-1 at 4 cm-1 interval. 

 Global calibrations were used for the FT-IR spectroscopic analyseis,. although further 

calibration will be needed for South African conditions in terms of malic acid 

determinations.   

   Other analyseis that wereas done with FT-IR technology is the monitoring of routine 

wine parameters (pH, Total acidity (TA), Volatile acidity (VA), Lactic acid, Ethanol, 

Glucose, Fructose and Glycerol) at different stages of the winemaking process.  These 

stages were the juice after crushing and the wine after AF, during MLF up to the end of 

MLF. 

 

3.2.3 Media and culture conditions for enumeration of wine LAB 

The samples were enumerated on MRS agar (Biolab, Merck, South Africa) enriched with 

20% apple juice (containing no preservatives) (MRSA) (pH 5.2).  The addition of apple 

juice and lowering of the pH stimulates the g, rowth of to select for O. oeni.  Normal De 

Man, Rogosa and Sharpe (MRS) (Biolab, Merck, South Africa) agar was also used for the 

enumeration of potential naturally occurring LAB.  Both MRSA and MRS contained 100 

mg/L Actistab (50% glucose, 50% natamycin, Gist-brocades, France, S.A.), dissolved in 

methanol, for the inhibition of moulds and yeast.  Kanamycin sulphate (C18H36N4O11 X 

H2SO4, Roche Diagnostics, dissolved in sterile distilled water) at 25 mg/L were used for 

the inhibition of AAB.  The MRSA and MRS was incubated under facultative anaerobic 

conditions at 30˚C (Anerogen, Oxoid) in a rectangular anaerobic jar (Davies Diagnostics 

(Pty) Ltd).  

 Plating for this study was done on three pivotal stages of the winemaking process.  

Firstly, after crushing the juice, then after AF and also when MLF had been completed.  

The samples were diluted within a range of 10-1-10-6 using 1 mL of sample and test tubes 

filled with 9 mL distilled water (autoclaved).   

 

3.2.4 Biogenic amine analysis 

After MLF the biogenic amine level in the wines were measured for the Merlot and 

Cabernet 2005 samples as well as for the Cabernet 2006 samples, using high 
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performance liquid chromatography (HPLC) at Distell, South Africa (Alberto et al., 2002).  

Histamine, Tyramine, Putrescine and Cadaverine were determined.  The samples were 

filtered with a 0.22μm filter and diluted 10 times for these analyses.   

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Chemical properties of the wines 

After alcoholic fermentation the highest wine pH was found in the Pinotage 2006 (4.2) 

followed by the Cabernet Sauvignon 2005 (4.0) (Table 3.1).  The Pinotage 2005, Merlot 

and Cabernet Sauvignon 2006 had the same pH of 3.85, whilst the Merlot 2005 had the 

lowest pH of 3.77 (Table 3.1).  Ribereau-Gayon et al. (1998) have shown that the 

microflora of wine is more abundant and also more diverse in high pH conditions when 

compared to more acidic wines.  The ethanol concentration ranged from 12.3%–14.7% 

(Table 3.1).  High ethanol levels can be inhibitory for the growth of LAB in wine.  It has 

been shown that the growth rate decrease linearly with the increase in the alcohol level 

and 14% v/v alcohol is the upper limit for growth of most of the strains of LAB (Davis et al., 

1988; Henick-Kling, 1993). 

Table 3.1  pH, TA, VA and ethanol levels after AF for the Merlot, Pinotage and Cabernet 
Sauvignon used for the stretching experiments in the 2005 and 2006 harvesting seasons. 

 2005 2006 

 Merlot Pinotage 

Cabernet 

Sauvignon Merlot 

 

Pinotage 

Cabernet 

Sauvignon 

pH 3.77 3.85 4.00 3.85 4.20 3.85

TA (g/L) 6.75 5.20 5.65 6.25 5.63 6.60 

VA (g/L) 0.27 0.57 0.40 0.05 0.38 0.22 

Ethanol 

(%v/v) 

14.50 13.200 12.32 14.15 14.50 14.75 

 

3.3.2 Merlot 2005 and 2006 

For the Merlot 2005 inoculated with Viniflora®oenos the initial malic acid degradation was 

the fastest in the MT treatment.  The malic acid was reduced with 68% at week 1, in 

comparison to the other treatments that only showed a reduction of between 25%-50% 

(Figure 3.1).  The Control (100% inoculation) had the second highest degradation level of 
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malic acid (50%), followed by the Lees treatment (44%), the 50% treatment (28%) and the 

25% treatment (25%).   

 During week 2 the malic acid reduction of the MT, 50% and 25% was more or less the 

same level of 80%, followed by the Control and Lees treatment with a reduction 

percentage of 70%.   

 At week 3 the malic acid reduction percentages reached more or less the same level 

for all the treatments, which continued to week 4 with the exception of the MT treatment for 

which no malic acid was detected.  The MT treatment therefore finished MLF within 

3 weeks (therefore in week 4 no malic acid was detected for the MT, Figure 3.1).   

 Week 1 and week 2 was the points in time at which the treatments showed the 

greatest difference in malic acid degradation.  Malic acid degradation were faster in the 

100% inoculation than the 50%, 25% and L treatments for the first week, where after the 

50% and 25% treatments reached the same level and these treatments finished after 4 

weeks.  The L treatments had a faster rate than the 50% and 25% over the first week of 

MLF after which the rate decreased and took a week longer than the other treatments to 

finish MLF in the end.  The initial higher rate of malic acid degradation could be due to the 

reason that for the L treatment the starter culture was already adapted to the wine 

conditions in which it was inoculated.  Another reason could be that although the initial cell 

numbers were higher the growth phase of the cells were at the end of stationary phase 

and when inoculated into the wine a large percentage died-off and therefore a decrease in 

MLF rate were observed.  

 For the Merlot 2005 wine inoculated with Viniflora®CH16 and Viniflora®CH35 

(Figures 3.2 and 3.3 respectively) the pattern of malic acid reduction was the same as for 

the inoculations with Viniflora®Oenos, except in week 1 (for Viniflora®CH16) and for the 

MT treatments (Viniflora®CH16 and C35).  For the Viniflora®CH16 inoculation in week 1 

the order of malic acid reduction was MT>L>C>50%>25% (in the other two inoculations 

the Control had a higher reduction than the Lees treatment at week 1).  For both 

Viniflora®CH16 and CH35 malic acid was still detected in the MT treatment at week 4. 

 The cell numbers obtained at the end of MLF for all the treatments and starter cultures 

used did not show significant differences (Figure 3.4).  It varied between 5 X 106 and 

1.8 X 107 cfu/mL.  The MT treatments (with all three starter cultures) had higher cell 

numbers than the other treatments, which could explain the faster MLF rate.  In future to 

clarify the results cell numbers have to be determined during the course of MLF.  In the MT 
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and L treatments it will be important to determine the contribution of the natural LAB to 

MLF. 
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Figure 3.1  Degradation of malic acid during MLF in Merlot (2005) where different inoculation 
treatments were evaluated.  All treatments were inoculated with Viniflora ®oenos.  C represent the 
control samples that were inoculated with 100% of the recommended dosage (> 5 x 106 cfu/mL); 50% 
and 25% represent the samples that were inoculated at that percentage of the recommended dosage; 
MT represents the mother tank treatments; L represents the lees treatments that were inoculated from 
the control samples after MLF was finished.  Error bars indicate the standard deviation for the three 
repeats. 
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Figure 3.2  Degradation of malic acid during MLF in Merlot (2005) where different inoculation 
treatments were evaluated.  All treatments were inoculated with Viniflora®CH16.  C represents the 
control samples that were inoculated with 100% of the recommended dosage (> 5 x 106 cfu/mL); 50% 
and 25% represent the samples that were inoculated at that percentage of the recommended dosage; 
MT represents the mother tank treatments; L represents the lees treatments that were inoculated from 
the control samples after MLF have finished.  Error bars indicate the standard deviation for three 
repeats. 
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Figure 3.3  Degradation of malic acid during MLF in Merlot (2005) where different inoculation 
treatments were evaluated.  All treatments were inoculated with Viniflora®CH35.  C represents the 
control samples that were inoculated with 100% of the recommended dosage (> 5 x 106 cfu/mL); 50% 
and 25% represent the samples that were inoculated at that percentage of the recommended dosage; 
MT represents the mother tank treatments; L represents the lees treatments that were inoculated from 
the control samples after MLF have finished.  Error bars indicate the standard deviation for three 
repeats. 
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Figure 3.4  Cell concentrations at the end of MLF for the control and treatments of the Merlot 2005 
inoculated with all three starter cultures.  O, 16 and 35 represents treatments inoculated with 
Viniflora®oenos, CH16 and CH35.  C are the control samples that were inoculated with 100% of the 
recommended dosage (106 cfu/mL); 50% and 25% represents the samples that were inoculated at that 
percentage of the recommended dosage; MT are the mother tank treatments; L are the treatments that 
were inoculated with the lees from the control samples after MLF have concluded.  Each bar indicates 
the average of the cell concentrations for the three replicates. 
 

 

The biogenic amine levels were measured at the end of MLF for the Merlot 2005 (Table 

3.3).  No histamine or cadaverine was detected; except for the L treatments of all three 

starter cultures that showed low levels of histamine (between 1-2 mg/L) and the L 

treatment with Viniflora®CH16 that showed levels of cadaverine (0.405 mg/L).  These 

levels of histamine found in the L treatments of the Merlot 2005 were below average for 

South African red wine, which is approximately 4.8 mg/L (Cilliers and Van Wyk, 1985).  It 

is also below the upper limits for histamine that have been recommended by various 

countries which are (mg/L):  Germany, 5; Holland, 3; Finland, 5; Belgium, 5-6; France, 8; 

Switzerland and Austria, 10 (Busto et al., 1996; Lehtonen, 1996).  The L treatment had the 

longest MLF time in weeks.  The L treatments probably had the highest number of 

naturally occurring LAB and may therefore contain more isolates with amino acid 

decarboxylase activity.  The L treatments showed the highest diversity in the production of 

the biogenic amines and also the highest amount for two of the biogenic amines.  

Tyramine was also sporadically detected in the C, 50% and L treatments with 

Viniflora®oenos, the 50% with Viniflora®CH16 and the MT and L treatments with 

Viniflora®CH35.  These levels ranged from 0.5-1.1 mg/L which was higher than the 

average level of tyramine in South African red wines (0.5 mg/L) (Cilliers and Van Wyk, 
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1985).  The putrescine levels ranged between 4.3 mg/L and 7.7 mg/L for all the treatments 

except the L with Viniflora®oenos and Viniflora®CH16, where the level was found to be 

almost double that.  In Swedish red wine, putrescine was found to be present at higher 

levels than the other BA’s (Gafner, 2002). 

Putrescine had been found to be mainly associated with the grape or the must (Bertoldi 

et al., 2004; Marcobal et al., 2006). 

Table 3.3  Biogenic amines, concentration in mg/L, measured at the end of MLF for all three starter 
cultures (O Viniflora®oenos; 16 Viniflora®CH16; 35 Viniflora®CH35) and different treatments in 
Merlot 2005.  Each level indicates the average of 2 repeats.  C represents the control samples that 
were inoculated with 100% of the recommended dosage (> 5 x 106 cfu/mL); 50% and 25% 
represent the samples that were inoculated at that percentage of the recommended dosage; MT 
represents the mother tank treatments; L represents the lees treatments that were inoculated from 
the control samples after MLF have finished. 

 Histamine Tyramine Putrescine Cadaverine 

CO nd* 0.54 6.28 nd

C16 nd nd 7.28 nd 

C35 nd nd 7.68 nd

50%O nd 0.91 4.72 nd 

50%16 nd 0.72 4.79 nd 

50%35 nd nd 4.84 nd

25%O nd nd 4.30 nd 

25%16 nd nd 5.48 nd 

25%35 nd nd 4.72 nd 

MTO nd nd 6.37 nd

MT16 nd nd 5.97 nd 

MT35 nd 0.71 5.98 nd 

LO 2.02 1.12 12.4 nd

L16 1.94 nd 13.4 0.41 

L35 0.97 0.59 7.18 nd
*not detected 

 

The malic acid degradation for the Merlot 2006 showed the same tendency than in 2005 

with regards to the MT treatment that performed MLF the fastest, but in this case for all 

three starter cultures used (Figures 3.5, 3.6 and 3.7). 

 For the samples inoculated with Viniflora®oenos at week 1 the MT treatment showed 

a malic acid degradation percentagetion of 45% followed by the Lees and CV treatments 

with a reduction of 17% and 12% respectively.  At this stage the other treatments had a 

reduction rate of between 1% and 9% (Figure 3.5).  The MT treatment continued to have 
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the highest reduction during week 2 (83%) and no malic acid was detected for this 

treatment in week 3.  Therefore the MT finished MLF two weeks before all the other 

treatments. 

 During week 2 the malic acid degradation percentages for the CV, 50%V and 25%V 

treatments were 67%, 64% and 13% respectively, which were a much higher reduction 

level than their counterparts that were not treated with Velcorin before inoculation.  C, 50% 

and 25% had a reduction percentage of only 29%, 16% and 9% respectively.  It is possible 

that in the instances where Velcorin was used prior to inoculation the interaction or 

competition with the natural occurring LAB was reduced, which enabled the starter 

cultures to dominate the fermentation and conduct MLF faster.  The L treatment had the 

third highest reduction percentage at this stage with 55% and the S treatment had the 

lowest reduction rate of 4%.   

 During week 3 the reduction levels of the different treatments started to become more 

or less equal.  The CV, 50%V, 25%V and L were the treatments with the highest reduction 

percentage of approximately 80%, followed by the C, 50%, 25% and S treatments with 

approximately 72%.  At week 4 all the treatments had the same reduction level and the 

end of MLF was reached. 

 For the Viniflora®CH16 inoculations during the first week of MLF the MT reduced the 

malic acid concentration with approximately 65%, whilst the other treatments reduced the 

malic acid with less than 11% (Figure 3.6).  During week 2 the C, 50% and 25% reflects 

the difference in the inoculation rate of these treatments.  CV and 50%V, the samples that 

received Velcorin before inoculation with the starter culture, showed a more reduced malic 

acid concentration (75% and 74% respectively) than its counterparts without Velcorin, 

C and 50% (68% and 62%).  This was a difference of approximately 10%.  The 25%V and 

S had basically not started MLF in week 2 with a malic acid reduction of only 10% and 4% 

respectively.  In weeks 3 and 4 no malic acid was detected in the MT and also in the L at 

week 4.   

 For the Viniflora®CH35 inoculations the MT treatment again had the fastest reduction 

of malic acid over week 1 and 2 (56% and 84%) and no malic acid was detected in week 3 

(Figure 3.7).  The L treatment had the second highest malic acid reduction percentage 

followed by the treatments that received Velcorin (CV, 50%V and 25%V).  The C, 50%, 

25% and S treatments had a reduction of between 0 and 5% at this stage.  This pattern 

continued through week 2.  In week 3 the CV, 50%V and L showed a reduction of 80%, 
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followed by the 25%V treatment at 74% and then the C, 50%, 25% and S treatments with 

a 70% reduction of malic acid.  Week 4 marked the end of MLF for all the treatments 

(except the MT which was already finished with MLF after week 2), and the level of malic 

acid reduction was the same for all treatments at this stage.   

 In all three cases (three starter cultures) it is evident that the 25% of the recommended 

dosage had a longer lag phase before the onset of the MLF. 

 The cell numbers obtained from the MRS and MRS A media each week since the 

inoculation of MLF were more or less the same (Table 3.4) in the case of all three starter 

cultures.  The cell numbers of the MT treatments correlated with the fast reduction in malic 

acid concentration since the initial cell numbers (Week 3, Table 3.4) for this treatment was 

approximately 103 cfu/mL more than for the 50% and 25% (Week1, Table 3.4) treatments 

and also slightly higher than the other treatments.  From the cell numbers it is also evident 

that the LAB in the spontaneous MLF and the 25%35 treatments had a similar and longer 

lag phase than the other treatments.  Representative samples of colonies were removed 

from the two different media and examined microscopically; it was found that the colonies 

were similar cocci and most likely O. oeni. 
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Figure 3.5  Degradation of malic acid during MLF in Merlot (2006) where different inoculation 
treatments were evaluated.  All treatments were inoculated with Viniflora®oenos except the 
spontaneous fermentation(S).  C represents the control samples that were inoculated with 100% of the 
recommended dosage (> 5 x 106 cfu/mL); 50% and 25% represent the samples that were inoculated at 
that percentage of the recommended dosage; MT represents the mother tank treatments; L represents 
the lees treatments that were inoculated from the control samples after MLF have finished; V represent 
samples that was treated with Velcorin before MLF inoculation.  Error bars indicate the standard 
deviation for three repeats. 
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Figure 3.6  Degradation of malic acid during MLF in Merlot (2006) where different inoculation 
treatments were evaluated.  All treatments were inoculated with Viniflora®CH16 except the 
spontaneous fermentation (S).  C represents the control samples that were inoculated with 100% of the 
recommended dosage (> 5 x 106 cfu/mL); 50% and 25% represent the samples that were inoculated at 
that percentage of the recommended dosage for CH16; MT represents the mother tank treatments; L 
represents the lees treatments that were inoculated from the control samples after MLF have finished; 
V represent samples that was treated with 250 ppm Velcorin before MLF inoculation.  Error bars 
indicate the standard deviation for the three repeats. 
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Figure 3.7  Degradation of malic acid during MLF in Merlot (2006) where different inoculation 
treatments were evaluated.  All treatments were inoculated with Viniflora®CH35 except the 
spontaneous fermentation (S).  C represents the control samples that were inoculated with 100% of the 
recommended dosage (> 5 x 106 cfu/mL); 50% and 25% represent the samples that were inoculated at 
that percentage of the recommended dosage; MT represents the mother tank treatments; L represents 
the lees treatments that were inoculated from the control samples after MLF have finished; V represent 
samples that was treated with Velcorin before MLF inoculation.  Error bars indicate the standard 
deviation for three repeats. 
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Table 3.4 Cell numbers of Merlot 2006 wines obtained weekly since the inoculation of MLF in 
cfu/mL.  MLF was induced with Viniflora®oenos (O), Viniflora®CH16 (16) and Viniflora®CH35 (35),  
except for the spontaneous MLF (S).  C represents the control samples that were inoculated with 
100% of the recommended dosage (106 cfu/mL); 50% and 25% represent the samples that were 
inoculated at that percentage of the recommended dosage; MT represents the mother tank 
treatments; L represents the lees treatments that were inoculated from the control samples after 
MLF have finished; V represent samples that was treated with Velcorin before MLF inoculation.  
Each cell number represents the mean of the triplicate. 

 Week 1 Week 2 Week 3 Week 4 

 MRS MRSA MRSA MRS MRSA MRS MRSA 

CO 2.13E+05 2.61E+05 3.23E+06 1.32E+06 4.15E+06 2.77E+04 2.32E+06 

C16 5.77E+04 6.13E+04 6.25E+06 8.87E+05 3.15E+06 1.23E+05 1.17E+06 

C35 1.44E+03 4.63E+04 2.87E+05 1.09E+06 5.20E+06 8.25E+05 6.04E+06

50%O 6.03E+04 1.17E+05 6.55E+05 3.62E+06 4.49E+06 2.25E+06 3.67E+06 

50%16 1.83E+03 2.70E+04 4.64E+06 1.31E+06 1.98E+06 4.75E+05 2.01E+06 

50%35 1.53E+03 2.07E+04 1.65E+06 1.36E+06 3.33E+06 4.87E+05 1.14E+07 

25%O 1.42E+05 4.90E+04 4.21E+05 2.78E+06 2.89E+06 9.07E+05 5.65E+06 

25%16 4.27E+03 1.93E+04 3.50E+06 4.34E+06 3.90E+06 9.82E+05 4.24E+06

25%35 3.47E+03 1.40E+04 3.23E+04 6.45E+05 5.07E+06 2.29E+05 1.08E+07 

MTO 9.99E+05 2.87E+06 9.87E+04 3.48E+06    

MT16 1.97E+06 2.36E+06 1.23E+06 4.14E+06    

MT35 1.23E+06 4.82E+06 2.41E+06 9.19E+06    

LO 1.10E+07       

L16 1.65E+07       

L35 9.27E+06   

CVO 7.67E+04 4.55E+05 2.15E+06 2.67E+06 3.40E+06 1.51E+06 5.44E+06 

CV16 2.90E+04 3.87E+04 3.16E+06 6.47E+05 1.37E+06 1.17E+06 2.86E+06 

CV35 2.10E+03 2.93E+04 7.27E+05 2.83E+06 3.40E+06 2.49E+05 4.68E+06

50%VO 1.45E+05 1.13E+05 5.26E+06 1.68E+06 4.07E+06 8.12E+05 6.48E+06 

50%V16 2.17E+04 1.08E+06 4.51E+06 6.72E+06 2.24E+06 1.68E+05 7.03E+05

50%V35 1.05E+04 1.77E+04 1.83E+06 3.91E+06 4.30E+06 0.00E+00 6.67E+05 

25%VO 6.03E+03 1.31E+07 2.11E+06 9.60E+06 1.34E+07 1.76E+06 8.23E+06 

25%V16 5.04E+03 8.71E+06 1.53E+05 1.42E+07 2.26E+07 2.20E+06 6.05E+06

25%V35 8.37E+02 2.00E+06 1.01E+05 4.92E+06 6.07E+06 7.21E+05 6.27E+06 

S 8.87E+05 3.13E+03 3.47E+04 3.82E+06 8.10E+06 1.47E+07 5.42E+07 
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3.3.3 Pinotage 2005 and 2006 

During the 2005 season, the fermentation results of the Pinotage were inconsistent and 

therefore no conclusions could be made (data not shown).   

 For the Pinotage 2006 the L treatments for all three starter cultures used, had the 

fastest reduction of malic acid one week after inoculation (Figures 3.8, 3.9 and 3.10).  LO, 

L16 and L35 treatments showed a reduction of 68%, 79% and 75% respectively, whilst the 

malic acid reduction varied between 0.8% and 11% for the other treatments.   

 At week two the MT treatments reached the same level than the L treatments for all 

three starter cultures and showed virtually the same malic acid reduction percentage 

(81%-84%).  Also at week 2 the other treatments for Viniflora®oenos and Viniflora®CH16 

showed a higher reduction in malic acid than at week one with C > 50% > 25% treatment, 

but the reduction were still lower than for the L and MT treatments at this stage (Figures 

3.8 and 3.9).  The C, 50% and 25% treatments with Viniflora®oenos had a higher 

reduction of malic acid than the Viniflora®CH16 samples in week 2, with a difference of 

2.5%, 17% and 20% respectively (Figures 3.8 and 3.9).  The C35, 50%35 and 25%35 

(samples that were inoculated with Viniflora®CH35) only had a malic acid reduction of < 

3% at week 2 (Figure 3.10).   

 Week 3 marked the stage where all the treatments that were inoculated with 

Viniflora®oenos and Viniflora®CH16 reached more or less the same level of malic acid 

reduction.  These degradation percentages for CO/16, 50%O/16 and 25%O/16 were 

approximately 82% and for the LO/16 and MTO/16 treatments it were approximately 85% 

(Figures 3.8 and 3.9).  During week 3 the treatments that were inoculated with 

Viniflora®CH35 showed the same level of malic acid reduction for the MT and L 

treatments than the other two starter cultures at this stage (±85%) (Figure 3.10).  Week 3 

also marked the start of MLF (malic acid degradation) for the C, 50% and 25% treatments 

that were inoculated with Viniflora®CH35, with a reduction in malic acid of 14%, 9% and 

5% respectively.   
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Figure 3.8  Degradation of malic acid during MLF in Pinotage (2006) where different inoculation 
treatments were evaluated.  All treatments were inoculated with Viniflora oenos.  C represents the 
control samples that were inoculated with 100% of the recommended dosage (> 5 x 106 cfu/mL); 50% 
and 25% represent the samples that were inoculated at that percentage of the recommended dosage; 
MT represents the mother tank treatments; L represents the lees treatments that were inoculated from 
the control samples after MLF have finished.  During week 4 and 5 no malic acid was detected for the L 
treatment.  Error bars indicate the standard deviation for the three repeats. 
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Figure 3.9  Degradation of malic acid during MLF in Pinotage (2006) where different inoculation 
treatments were evaluated.  All treatments were inoculated with CH16.  C are the control samples that 
were inoculated with 100% of the recommended dosage (> 5 x 106 cfu/mL); 50% and 25% represent 
the samples that were inoculated at that percentage of the recommended dosage for CH16; MT are the 
mother tank treatments; L are the treatments that were inoculated from the control samples after MLF 
have concluded.  Error bars indicate the standard deviation for the three repeats. 
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Figure 3.10  Degradation of malic acid during MLF in Pinotage (2006) where different inoculation 
treatments were evaluated.  All treatments were inoculated with CH35.  C are the control samples that 
were inoculated with 100% of the recommended dosage (> 5 x 106 cfu/mL); 50% and 25% represent 
the samples that were inoculated at that percentage of the recommended dosage for CH35; MT are the 
mother tank treatments; L are the treatments that were inoculated from the control samples after MLF 
have concluded.  Error bars indicate the standard deviation for the three repeats 

At week 4 in the L treatment for all three starter cultures no malic acid was detected and 

therefore it had the fastest malic acid degradation for all the treatments of Pinotage 2006.  

The MT, C, 50% and 25% treatments with Viniflora®oenos and Viniflora®CH16 reached 

approximately the same level of malic acid degradation of 85% and 82% respectively.  

This tendency of equal levels of malic acid degradation for these treatments continued 

through week 5 where it reached 96% and 95% marking the end of MLF for these two 

starter cultures and treatments mentioned (Figures 3.8 and 3.9).  For the treatments with 

Viniflora®CH35 at week 4 the malic acid degradation was highest for the MT treatment 

(±97%), followed by the C (59%), 50% (38%) and 25% (31%) treatments (Figure 3.10).  In 

week 5 there was no malic acid detected for the MT35 treatment and the C35, 50%35 and 

25%35 treatments reached approximately the same level of malic acid degradation of 

84%.  This tendency carried over to week 6 where the degradation level was 

approximately 95%, which marked the end of MLF for these treatments.   

 The cell numbers that were obtained at the end of MLF for all three starter cultures 

and all the treatments are shown in Figure 3.11.  Cell numbers were obtained from MRS A 

media in all instances and were always higher than the cell numbers obtained from MRS 

media.  This indicates strongly that O. oeni played the major role in performing MLF or 

malic acid degradation during this experiment.  The C, 50% and 25% treatments with 

Viniflora®CH35 displayed a long lag phase before the onset of malic acid degradation 
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(approximately 2 weeks longer than for the same treatments with the other two starter 

cultures).  VinifloraCH35 starter culture was developed by the manufacturers for use in 

white wines and therefore this lag phase could be due to the more complex matrix of red 

wines.  The cell numbers obtained from the C35, 50%35 and 25%35 treatments indicated 

the possible presence of high levels of other LAB species as was also found in the CO, 

MTO, C16 and 50%16 treatments.  In the Pinotage 2006 the dosage effect is clearer with 

regard to cell numbers and the rate of MLF in the first weeks than in the Merlot.  The 

question that needs to be answered in future is the dominance of the inoculated starter 

cultures in the 50 and 25% inoculation.  The L treatments showed the lowest level of cell 

numbers at the end of MLF which could be due to a faster cell death cycle that could have 

occurred in this treatment, since the starter cultures were already at optimum cell capacity 

when it was inoculated into the wines for the L treatments. 
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Figure 3.11  Cell numbers at the end of MLF for the control and treatments of the Pinotage 2006.  This 
figure represents all three starter cultures Viniflora®oenos (O), Viniflora®CH16 (16) and 
Viniflora®CH35 (35).  C represents the control samples that were inoculated with 100% of the 
recommended dosage (106 cfu/mL); 50% and 25% represents the samples that were inoculated at that 
percentage of the recommended dosage; MT represents the mother tank treatments; L represents the 
lees treatments that were inoculated from the control samples after MLF had finished.  Each bar 
indicates the average of the cell concentrations for the three replicates. 
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3.3.4 Cabernet Sauvignon 2005 and 2006 

During the 2005 season, the fermentation results of the Cabernet Sauvignon were 

inconsistent and therefore no conclusions could be made (data not shown), but the 

biogenic amines measurements at the end of MLF will be shown.   

 For the Cabernet Sauvignon 2006 wine showed that the MT and L treatments, for all 

three starter cultures, finished malic acid degradation the fastest (Figures 3.12, 3.13 and 

3.14). 

 After the first two weeks of MLF, the treatments that were inoculated with 

Viniflora®oenos (Figure 3.12) showed a reduction in malic acid in the following order:  

C>50%>25%>L>MT.  At week 3 this order changed only with regards to the 25% 

treatment, which had the lowest reduction of malic acid at this stage.  At week 4 the 

scenario was changed completely since here the L, MT and C treatments were virtually the 

same (85%, 84%, 83%), whilst the 50% had a reduction of 77% and the 25% again had 

the lowest reduction of malic acid at only 54%.  At week 5 no malic acid were detected in 

the MT and L treatments whilst the C, 50% and 25% were more or less at the same level 

of malic acid degradation (±84%). 

 The treatments that were inoculated with Viniflora®CH16 (Figure 3.13) showed the 

following order from highest to lowest with regards to the percentage of malic acid 

reduction over the first two weeks of MLF:  C>L>50%>25%>MT.  At week 3 this order of 

malic acid reduction rate changed to C and MT being at the same level (±74%), followed 

by L at 73% with the 50% and 25% treatments being at 53% and 33% respectively.  At 

week 4 the MT and L treatment had the highest percentage reduction of malic acid (85%) 

with C at 80% and the 50% and 25% treatment both at 71%.  Week 5 marked the end of 

MLF for the MT and L treatments, since no malic acid was detected for these treatments, 

whilst the C, 50% and 25% reached approximately the same level of malic acid reduction 

at 85%.   

 For the treatments that were inoculated with Viniflora®CH35 (Figure 3.14) the 

reduction of malic acid occurred with basically the same trends than for the 

Viniflora®CH16 inoculations.  There were basically two differences between these two 

starter cultures.  Firstly in week 2 the order were C and L at the same level of malic acid 

reduction, followed by 50% and then 25% and MT at the same level with the lowest 

reduction (C>L>50%>MT>25% for Viniflora®CH16).  The second difference were that the 

level of malic acid reduction were lower over the first three weeks for the Viniflora®CH35 
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inoculations, even though the patterns of malic acid reduction were similar.  The same 

reasons for the lag phase with Viniflora®CH35 applies here that was mentioned in the 

case of the Merlot 2006 wine.  Strain differences with regards to the conducting of MLF 

have been previously reported and are a common occurrence.  MLF starter cultures can 

react different when induced into the same wines as a result of various reasons, which 

include winemaking techniques used as well as physical and chemical parameters of wine.  

In 1977 and 1980 Beelman et al. found that that the O. oeni strain PSU-1 was more 

effective than ML-34 (also O. oeni) in Pennsylvannia red wines.  The PSU-1 strain was 

isolated from Pennsylvannia grapes (Eastern US), whilst the ML-34 strain was isolated 

from the warmer southern region of California.  The reason for this was speculated to be 

that PSU-1 had a better adaptation in wines with higher acidity (lower pH) due to higher 

malic acid levels like those in Pennsylvannia red wines when compared to wines from the 

warmer Californian grape regions.   
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Figure 3.12  Degradation of malic acid during MLF in Cabernet Sauvignon (2006) where different 
inoculation treatments were evaluated.  All treatments were inoculated with Viniflora®oenos.  C 
represents the control samples that were inoculated with 100% of the recommended dosage (106 
cfu/mL); 50% and 25% represents the samples that were inoculated at that percentage of the 
recommended dosage; MT represents the mother tank treatments; L represents the lees treatment that 
were inoculated from the control samples after MLF had finished.  At week 5 no malic acid were 
detected for the MT and L treatments.  Error bars indicate the standard deviation for the three repeats. 

 

At the end of MLF cell numbers were only obtained from MRS A media, although the 

samples were also enumerated on MRS media (Figure 3.15).  This indicates that O. oeni 

was most likely the major LAB involved in MLF for this cultivar.  At the end of MLF all the 

treatments showed cell number > 106 cfu/mL, except for the CO treatment than had a 

slightly lower cell number.  No correlations could be drawn between the faster rate of malic 
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acid reduction of the MT and L treatments and the cell numbers at this stage as cell counts 

were only done at the end of MLF. 
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Figure 3.13  Degradation of malic acid during MLF in Cabernet Sauvignon (2006) where different 
inoculation treatments were evaluated.  All treatments were inoculated with Viniflora®CH16.  C 
represents the control samples that were inoculated with 100% of the recommended dosage (> 5 x 106 
cfu/mL); 50% and 25% represents the samples that were inoculated at that percentage of the 
recommended dosage; MT represents the mother tank treatments; L represents the lees treatment that 
were inoculated from the control samples after MLF had finished.  At week 5 no malic acid were 
detected for the MT and L treatments.  Error bars indicate the standard deviation for the three repeats. 
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Figure 3.14  Degradation of malic acid during MLF in Cabernet Sauvignon (2006) where different 
inoculation treatments were evaluated.  All treatments were inoculated with Viniflora®CH35.  C 
represents the control samples that were inoculated with 100% of the recommended dosage (> 5 x 106 
cfu/mL); 50% and 25% represents the samples that were inoculated at that percentage of the 
recommended dosage; MT represents the mother tank treatments; L represents the lees treatment that 
were inoculated from the control samples after MLF have finished.  At week 5 no malic acid were 
detected for the MT and L treatments.  Error bars indicate the standard deviation for the three repeats. 
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Figure 3.15  Cell concentrations at the end of MLF for the control and treatments of the Cabernet 
Sauvignon 2006.  This figure represents all three starter cultures Viniflora®oenos (O), Viniflora®CH16 
(16) and Viniflora®CH35 (35).  C represents the control samples that were inoculated with 100% of the 
recommended dosage; 50% and 25% represents the samples that were inoculated at that percentage 
of the recommended dosage; MT represents the mother tank treatments; L represents the lees 
treatments that were inoculated from the control samples after MLF have finished.  Each bar indicates 
the average of the cell concentrations for the three replicates. 
 

The biogenic amine levels that were measured at the end of MLF for the Cabernet 

Sauvignon 2006 showed no large differences, except for the lees treatments regarding 

histamine (Table 3.5).  No tyramine was produced in any of the treatments during MLF.  

The histamine levels range between 2 and 5 mg/L and was formed in all treatments except 

the lees treatments.  As mentioned earlier the average level of histamine in South African 

red wines were found to be approximately 4.8 mg/L, therefore these levels obtained are 

within this range.  The putrescine levels ranged between 29 and 42 mg/L.  Cadaverine 

was produced in all the treatments and the levels varied between 0.8 and 1.3 mg/L.  BA 

levels, especially the levels of histamine, in wine have come to play an important role 

regarding importing and exporting of wines.   
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Table 3.5  Biogenic amines, concentration in mg/L, measured at the end of MLF for all three starter 
cultures (O Viniflora®oenos; 16 Viniflora®CH16; 35 Viniflora®CH35) and different treatments in 
Cabernet Sauvignon 2005.  Each level indicates the average of 2 repeats.  C represents the 
control samples that were inoculated with 100% of the recommended dosage (> 5 x 106 cfu/mL); 
50% and 25% represent the samples that were inoculated at that percentage of the recommended 
dosage; MT represents the mother tank treatments; L represents the lees treatments that were 
inoculated from the control samples after MLF have finished. 

 Histamine Tyramine Putrescine Cadaverine 

CO 5.029 nd 35.332 1.307 

C16 3.491 nd 36.366 1.285

C35 4.254 nd 36.691 1.297 

50%O 4.537 nd 34.509 1.235 

50%16 3.590 nd 37.847 1.244

50%35 3.630 nd 36.300 1.143 

25%O 3.406 nd 29.950 1.020 

25%16 3.877 nd 34.587 1.140

25%35 3.801 nd 37.986 1.213

MTO 2.626 nd 33.780 1.200 

MT16 2.269 nd 33.550 1.169 

MT35 2.083 nd 31.781 0.843

LO nd* nd 34.124 1.036 

L16 nd nd 34.768 1.012

L35 nd nd 42.476 1.009
* not detected 

 

3.4 CONCLUSION 

The stretching of MLF starter cultures is used by winemakers in practice to lower costs 

with regards to MLF.  During this study the stretching treatments all resulted in a complete 

MLF.  Differences between the rates at which these treatments performed degraded malic 

acid degradation were observed, especially in the initial stages of MLF (Weeks 1 and 2).  

In most cases the MT and L treatments performed malic acid degradation the fastest.  In 

the Merlot 2005 the MT treatment inoculated with Viniflora®oenos finished MLF one week 

before the other treatments.  For the Merlot 2006 the MT and L treatments finished MLF 

after two and three weeks respectively, before the other treatments for all three starter 

cultures used in the study.  In Cabernet Sauvignon 2006 the MT and L treatments for all 

three starter cultures was finished a week before the other treatments.  In the Pinotage the 

L treatments with all three starter cultures was finished two weeks before the other 
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treatments whilest the MT treatment with Viniflora®CH35 was finished one week before 

the other treatments.  The increased degradation in malic acid for these two2 treatments 

could be explained due to the fact that in these treatments the starter culture was pre-

exposed to the wine conditions before it was inoculated into the wine.  The malolactic 

activity of the treatments was already at a high level at inoculation, which would explain 

this higher reduction levels especially after the first week of inoculation.  Other results 

observed for Merlot 2006 were the faster degradation rate for the CV and 50%V 

treatments when compared to their counterparts that did not receive Velcorin (to sterilise 

wine) before MLF.  The Velcorin could have reduced the natural occurring LAB, which 

could have enhanced the performance of the commercial starter cultures.   

 This is interesting good results from the perspective of the winemaker or producer, 

because any of these methods will result in a successful MLF.  This was true Eespecially 

in the case of the MT treatment that could perform MLF within 3 weeks under these 

specific conditions.  A fast MLF can increase the This could increase the production flow 

within the cellar to a great extent.   

 However, wBut when looking more holistically at these results, other aspects which 

areare extremely important to keep in mind.  Firstly, the bacteria used to perform MLF in 

this study were all from the same supplier and therefore the question arises whether the 

same results would be found when other starter cultures are used.  Secondly, the bacteria 

that performed the MLF were not identified to species level after MLF, but rather identified 

on a microscopic level on morphology.  Therefore uncertainties do exist with regards to 

which organisms did indeed perform the MLF and the cell number data were rendered 

inconclusive.  Thirdly, BA’s were also present at the end of MLF, while the selected starter 

cultures are not supposesupposed to do not produce BA’s according to the 

suppliersproducers.  This suggests that the natural LAB could have contributed to the 

process of MLF. 

 Therefore future work that could extend this study would be the identification of the 

microorganisms at the end of MLF by using PCR or to evaluate the wines for difference in 

aroma and volatile compounds that developed during MLF to determine the over-all quality 

difference of the wines.  The layout of the experiment should include a spontaneous MLF 

in all cases and the cell numbers of the bacteria must be obtained on a weekly basis to 

follow the evolution of the starter cultures as well as the natural occurring LAB throughout 

MLF. 
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ABSTRACT 

Must and wine host an array of natural occurring yeasts and bacteria apart from those that 

are inoculated into the must and wine to promote the processes of alcoholic fermentation 

and malolactic fermentation.  These indigenous microorganisms are able to contribute to 

the outcome of the wine and over-all wine quality.  For the purpose of this study Cabernet 

Sauvignon wine of the Western Cape region of South Africa was adjusted to pH 3.0, 3.4 

and 4.0 after completion of alcoholic fermentation.  The wine was inoculated with a 

combination of a malolactic fermentation starter culture Viniflora®CH16 (CH16) 

(Oenococcus oeni) with a Lactic acid bacterium (isolate 16.7) (Lactobacillus spp.) (AB) and 

an acetic acid bacterium (F14) (Acetobacter pasteurianus) (AC) isolated from wine 

respectively.  The controls for the experiment were CH16 (A), isolate 16.7 (B) and the F14 

(C) inoculated separately.  The rate of inoculation was 106 cfu/mL for the CH16 and 104 

cfu/mL for the isolate 16.7 and F14.  The progress of MLF and the possible interaction 

between the starter culture and the other inoculated bacteria was monitored by 

enumeration on selective media as well as measuring the malic acid degradation weekly 

using an enzymatic kit.  The wine was monitored over a period of 32 days.  On day 39 the 

wines was analysed using FT-IR spectroscopy and the biogenic amine levels was also 

measured at this stage.  The results showed no degradation of malic acid or any viable 

bacterial cells over the period of 32 days for pH 3 wine.  The pH 3.4 had viable bacterial 

cells over the course of the 32 days but it never reached significant levels to initiate the 
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degradation of malic acid.  In the pH 4.0 wines it was observed that malic acid degradation 

was the fastest for the combination of CH16 and isolate 16.7, followed by the CH16 control 

and lastly the combination of CH16 and F14.  The isolate 16.7 control did not degrade 

malic acid.  The malic acid concentration as measured by FT-IR spectroscopy confirmed 

these trends.  No significant differences were observed between the levels of biogenic 

amines between the treatments. 

4.1 INTRODUCTION 

Grape must and wine host a complex microflora comprising of yeasts and various bacteria.  

The natural occurring microorganisms of wine originate from the grapes and survive on 

cellar equipment.  These organisms are present throughout the winemaking process and 

must be controlled to ensure wine quality.  Alcoholic fermentation (AF) as well as 

malolactic fermentation (MLF) is processes that are completed by yeasts and lactic acid 

bacteria (LAB) respectively. 

 MLF usually occurs after AF, but can sometimes occur earlier.  MLF refers to the 

deacidification of wine by the decarboxylation reaction during which L-malic acid is 

converted to L-lactic acid (Davis et al., 1985).  LAB strains isolated from wine belong to the 

genera Oenococcus, Lactobacillus, Pediococcus and Leuconostoc (Wibowo et al., 1985).  

O. oeni starter cultures commercially prepared to use in the freeze dried form for the 

induction of malolactic fermentation.  Inoculation with such a starter culture, reduces the 

potential of spoilage by other LAB and/or bacteriophages, ensures a rapid onset of MLF 

and provide better control over the production of aromatic compounds and therefore wine 

flavour (Henick-Kling, 1988).  Wine pH is one of the most critical factors that influences the 

growth and viability of bacteria, with an increase in pH the wine environment becomes 

more stimulatory for growth of certain bacteria.  Wines from South Africa, California and 

Australia, for instance, are from warmer viticultural regions with consequently lower acidity 

(Davis et al., 1985; Kunkee, 1967; Wibowo et al., 1985) and therefore a higher pH.   

 The evolution of natural LAB and acetic acid bacteria (AAB) in wine, have been 

previously studied and is basically the result of viticultural practices, wine conditions and 

winemaking techniques.  LAB is present on the grape and grape leaves at low 

concentrations (102 cells/g) (Lafon-Lafourcade et al., 1983; Wibowo et al., 1985).  After 

crushing of the grapes this concentration increases to approximately 104 cfu/mL in the 

juice.  Leuc. mesenteroides, O. oeni, L. plantarum, L. casei and P. damnosus are the 
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major LAB species present after crushing.  These natural occurring LAB and wild yeasts 

then decrease in cell numbers due to the addition of SO2 (30-50 ppm) after crushing, as 

well as the inhibiting effect of alcohol that is formed during AF.  At the end of AF, LAB 

starts to grow again and can reach cell concentrations of approximately 107 cfu/mL.  At 

this stage O. oeni will dominate in low pH wines (< 3.5) with other LAB such as P. 

damnosus, growing in wines with higher pH, which could result in spoilage of the wine 

(Davis et al., 1985; Wibowo et al., 1985).   

 In a doctoral study by Joyeux (Joyeux, 1983) that was performed on various grape 

cultivars in three successive years (1978, 1979 and 1980) the following knowledge was 

obtained with regards to acetic acid bacteria (AAB).  AAB are present on grapes, and 

fluctuate in cell concentration due to the degree at which the grapes are infected.  The cell 

concentration is normally around 102 cfu/mL for healthy grapes with Gluconobacter 

oxydans being the main representative of AAB on such grapes (white and red).  

Acetobacter aceti and to a lesser extent, A. pasteurianus, become more prevalent as the 

grapes become spoilt, especially on grapes infected with Botrytis cinerea.  Freshly pressed 

must contain about 104 cfu/mL G. oxydans, which decrease during AF.  From this point 

through the winemaking the levels fluctuate with addition of sulphur dioxide and contact 

with air, which decrease and increase the levels respectively.  AAB produce acetic acid 

and acetaldehyde in wine.  A higher wine pH also leads to higher cell concentrations of 

AAB and therefore the resulting spoilage components (Du Toit and Lambrechts, 2002; Du 

Toit and Pretorius, 2002; Joyeux et al., 1984). 

The aim of this study was to start preliminary work with regards to the impact of a LAB and 

a AAB on the growth and metabolism of a MLF starter culture (O. oeni) and MLF rate at 

different pH’s. 

4.2 MATERIALS AND METHODS 

4.2.1 Preparation of samples 

Cabernet Sauvignon grapes from the Western Cape wine region was used for this 

experiment.  Approximately 120 kg of these grapes were de-stemmed and 30 ppm SO2 

was added.  The must were fermented on the skins with 30 g/hL WE 372 yeast (Anchor 

Yeast Biotechnologies, South Africa).  After AF, the skins were pressed and racked to 20 L 

stainless steel canisters for storage at 4˚C.  Before the start of the experiment the wine 

was brought to room temperature and subsequently sterilised by using 250 ppm Velcorin® 
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(Bayer, Germany).  After sterilization the wine pH was adjusted with tartaric acid or 1N 

NaOH to the respective pH’s of 3.0, 3.4 and 4.0.  The wine was then aliquoted into 100 mL 

sample bottles and closed with a rubber stopper and S-shaped airlocks.  The experimental 

design is showed in figure 4.1. 

 

 

 

Figure 4.1  Experimental design. 
 

4.2.2 Bacterial strains and culture conditions 

Three different bacteria were used during this study namely:  Viniflora®CH16, Isolate 16.7 

and F14. 

 Viniflora®CH16 is a MLF starter culture (CH16) (ChrHansen, Denmark) that had been 

isolated from a Petit Shiraz wine in the Russian River area of California USA.  It is a pure 

culture O. oeni in the freeze dried form.  CH16 was inoculated at 1.5 g/250 L in the 100 mL 

wine samples.  For enumeration of this culture MRS agar (Biolab, Merck, South Africa) 

enriched with 20% apple juice (containing no preservatives) (MRSA) (pH5.2) was used.  ).  

Cabernet Sauvignon 

Standard vinification 

Velcorin to sterilise 

pH 3.0 pH 3.4 pH 4.0 

Treatments:   A     inoculation with starter culture CH16 

    B     inoculation with Lactobacillus spp. 

    C     inoculation with Acetobacter pasteurianus 

    AB  combination of treatments A and B 

    AC  combination of treatments A and C 

Treatments performed in triplicate 
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The addition of apple juice and lowering of the pH stimulates the growth of O. oeni.  

Incubation took place under facultative anaerobic conditions at 30˚C (Anaerogen, Oxoid) in 

an anaerobic jar (Davies Diagnostics (PTY) Ltd). 

 Isolate 16.7 (16.7) is a Lactobacillus spp. from South African wine (Paarl region) 

(collection of IWBT, Stellenbosch University) was also used as a treatment.  This LAB was 

streaked out from a freeze culture onto pour plates of De Man, Rogosa and Sharpe (MRS) 

agar (De Man et al., 1960).  After 5-10 days of incubation under facultative anaerobic 

conditions (as described for CH16), single colonies from this media was inoculated into 9 

mL of liquid MRS.  This was allowed to grow for 48h after which the suspension was 

plated out onto the same media to calculate the cell concentration after 48 hours.  The cell 

concentration was found to be approximately 7.3 x 108 cfu/mL, which was used to 

inoculate at a rate of 104 cfu/mL into the 100 mL wine samples. 

 F14 is an Acetobacter pasterianus that was isolated from a rebate wine (collection of 

IWBT, Stellenbosch University) of South Africa.  A freeze culture of this strain was 

streaked out on MRS medium to which 2% v/v ethanol (MRSEtOH) was added after 

autoclaving.  F14 was also inoculated into the wine at a concentration of 104 cfu/mL.  For 

enumeration of F14  MRSEtOH medium as described above was used.  Incubation of F14 

was done aerobically at 30˚C.   

 
4.2.3 Analyses 

Enumeration of the wine samples started on day 8 after inoculation and was done every 

third day up to day 32.  Different dilutions of the samples were plated out for the different 

pH wines.  Ten fold dilutions were made by using test tubes filled with 9 mL of distilled, 

sterile water.  The same media mentioned under 4.2.2 was used for the plating.  L-Malic 

was analysed using FT-IR spectroscopy (Foss-Grapescan) before the onset of MLF and at 

day 39 (end of experiment).  These samples were filtered with a Filtration Unit (type 

79500, FOSS Electric, Denmark) connected to a vacuum pump.  The filter unit uses filter 

paper circles graded at 20 – 25 μm with diameter 185 mm (Schleicher & Schnell, reference 

number 10312714).  The filtered must were used for FT-IR spectral measurements.  A 

Winescan FT120 equipped with a purpose built Michelson interferometer was used to 

generate the FT-IR spectra (FOSS Electric A/S, Hillerød, Denmark).  Instrument settings 

included:  cell path length of 37 μm, sample temperature set to 40°C, and sample volume 

of 7 – 8 ml.  The sample is pumped through the heat exchanger and the CaF2-lined 

cuvette.  Samples are scanned from 5011 to 926 cm-1 at 4 cm-1 interval.  On day 39 
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samples were also collected for biogenic amine analysis with high performance liquid 

chromatography (HPLC) (Distell, South Africa) (Alberto et al., 2002). 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 pH 3.0 

In the case of pH 3.0 wine no culturable cells of the microorganisms tested were observed 

after enumeration of the samples through the course of the 32 days sampling period and 

also no malic acid reduction occured.  In 1986 Davis et al. already stated that pH has a 

profound and selective effect on LAB species that grow in wine.  A study by Davis et al. 

(1988), to determine the growth rate of LAB at different pH’s (3.0 - 5.5) showed that even 

though some of the O. oeni strains that was used did grow at a pH of 3.0, a substantial 

reduction occurred in the proportion of strains that were able to grow at this pH.  Britz and 

Tracey (1990) also found that a decrease in pH had a negative effect on the growth of O. 

oeni.  Liu et al. (1995) found that O. oeni could grow well at an initial pH of 3.2, but 

Lactobacillus plantarum was much more sensitive and could be inhibited by an initial pH of 

even 3.5.  All these studies were done in media and not wine.  AAB are also thought to be 

inhibited by lower pH values, although the anaerobic conditions probably played a large 

role here (Du Toit and Pretorius, 2002).  Anaerobic conditions as kept during this 

experiment, even though acetic acid bacteria was also tested, was done because it 

simulated most likely conditions in the industry. 

 

4.3.2 pH 3.4 

The pH 3.4 wines did have culturable cells in all the treatments with LAB, but the 

concentration of the cell numbers was < 104 cfu/mL which is not high enough to initiate the 

degradation of malic acid (Table 4.1).  Lonvaud-Funel (1995) stated that malic acid 

transformation actually begins when the bacterial population is more than about 106 

cells/mL.  A (CH16 alone), AB (CH16 + isolate 16.7) and AC (CH16 + F14) were the 

treatments that contained the commercial MLF starter culture.  CH16 in the combination 

treatments (AB and AC) dominated the wine matrix over the first 26 days at least, but all 

three treatments (A, AB and AC) showed a steady decline in cell numbers over the course 

of the 32 days.  Davis et al. (1986, 1988) illustrated that O. oeni had a greater tolerance to 

low pH values and that explains the almost exclusive isolation of this species from wine 
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with a pH below 3.5.  F14 never had any culturable cells for the duration of the 32 day 

period (Data of not shown in Table 4.1).  AAB are aerobic and the sample bottles were 

filled to capacity, therefore the growth of these bacteria was not only restricted by the low 

pH value, but also by the anaerobic conditions of the samples.  The cells of isolate 16.7 in 

treatment B decreased within the first 8 days after inoculation and was only present again 

from day 29 onwards and AB (the combination of CH16 and isolate 16.7) decreased to 

below 102 cfu/mL since inoculation and were only present again from day 29. 

Table 4.1  Cell concentrations obtained from the Cabernet Sauvignon pH 3.4 wine during the 
course of 32 days for the different treatments.  A  represent the samples inoculated with CH16; B  
is the sample set inoculated with isolate 16.7; AB  represents the combination treatment of CH16 
with isolate 16.7; AC  represents the treatment for the combination of CH16 with F14.  Each cell 
represents the average of the triplicates. 

 A B AB AB AC 

Day MRSA MRS MRSA MRS MRSA 

8 2.37E+03 nd* 3.13E+03 1.96E+03 4.17E+03 

11 8.67E+02 nd 5.53E+03 nd 2.30E+03 

14 4.67E+02 nd 7.50E+02 nd 1.25E+03 

17 3.20E+02 nd 4.30E+02 nd 6.23E+02 

20 6.33E+02 nd 4.00E+02 nd 8.67E+02 

23 1.87E+02 nd 1.00E+00 nd 5.20E+02 

26 1.47E+02 nd 3.23E+02 nd 1.10E+02 

29 5.33E+01 5.16E+03 1.07E+02 nd 2.20E+02 

32 8.00E+01 5.00E+03 8.67E+01 nd 1.43E+02 

*not detected 

 

4.3.3 pH 4.0 

At pH 4.0 malic acid degradation did take place in all the treatments that were inoculated 

with CH16 (Figure 4.2) (A, AB, AC).  On day 0 the malic acid level was 3.56 g/L as 

measured with the Foss Grape Scan.  At the end of MLF treatment AB (CH16+isolate 

16.7) had the highest malic acid reduction level of 71%, followed by the treatment AC 

(CH16+F14) and A (CH16) with 64% and 57% malic acid reduction percentage 

respectively.  Treatments B (isolate 16.7) and C (F14) did not show any reduction of malic 

acid over the period of 39 days.  A hypothesis that could be made from this is that in the 

case of the combination treatments it was in fact the starter culture (CH16) that performed 

the malic acid degradation.  From the malic acid reduction percentages it is clear that the 

combination treatment AB (CH16 + isolate 16.7), had a higher reduction level than 
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treatment A (CH16) where the starter culture was inoculated on its own into the wine.  This 

indicates that a possible competition could exist between the organisms when inoculated 

together, which could force the starter culture to perform better in the medium in order to 

survive. 

 These malic acid reduction levels at the end of MLF could also be correlated with the 

cell numbers obtained from enumeration (Figure 4.3), which showed the cell numbers of 

treatments A, AB and AC to be higher than treatments B and C.  In treatments B and C the 

cell numbers stayed below 104 cfu/mL, and as previously mentioned malic acid 

degradation only occur when cell number are approximately at 106 cfu/mL. 
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Figure 4.2  Malic acid degradation for all the treatments measured before MLF and after MLF.  A 
represents the sample that was inoculated with CH16; B was inoculated with isolate 16.7; AB is the 
combination of the organisms A and B; C represents F14 and AC are the combination between 
organisms A and C.  The error bars indicate the standard deviation of the triplicates. 
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Figure 4.3  Cell concentrations obtained from the Cabernet Sauvignon pH 4 wine during the course of 
32 days for the different treatments.  A  represent the samples inoculated with CH16; B  is the sample 
set inoculated with isolate 16.7; AB(MRSA)  is the combination treatment of CH16 with isolate 16.7 
plated on MRS A solid media; AB(MRS)  combination treatment of CH16 with isolate 16.7 plated on 
MRS solid media; C  represents the treatment with F14; AC(MRSA) is the cell counts obtained from 
MRS A media for the combination treatment of CH16 with F14; AC(E)  combination treatment of CH16 
with F14 plated on MRSetOH solid media.  The cell numbers for the acetic acid bacteria are not shown 
on this figure since no cell numbers were detected.  

 

The biogenic amine levels were measured on day 39 and only putrescine and cadaverine 

were detected (histamine and tyramine levels were also assessed).  In the case of 

putrescine (Figure 4.4) and cadaverine (Figure 4.5) levels, the highest amount was found 

in treatments A, followed by B, with AC having the lowest level.  Histamine and tyramine 

are the most toxic BA’s, whilst putrescine and cadaverine are important because it 

intensifies the effects of histamine (Stratton et al., 1991).  High levels of BA’s were often 

associated with strains of Lactobacillus and Pediococcus, but recently also O. oeni have 

been found to be capable of BA production (Lonvaud-Funel and Joyeaux, 1994; Lonvaud-

Funel, 2001; Guerrini et al., 2002; Gardini et al., 2005).   
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Figure 4.4  Putrescine in mg/L as measured by HPLC for all the treatments.  The error bars represents 
the standard deviation of the triplicates. 
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Figure 4.5  Cadaverine in mg/L as measured by HPLC for all the treatments.  The error bars represents 
the standard deviation of the triplicates. 

 

4.4 CONCLUSION 

In this experiment possible synergisms between natural LAB and AAB on MLF starter 

cultures were tested.  The results showed a possible synergistic working or activating 

effect of isolate 16.7 on starter culture CH16 with regard to the degradation of malic acid.  

This higher rate of malic acid degradation could be due to the accumulative cell 

concentration of the organisms that were inoculated together, or because of a competition 
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effect between the organisms with regards to nutrient availability.  The only two biogenic 

amines that were detected after 32 days were putrescine and cadaverine. 

 Future work could include a more extensive variation of natural occurring LAB 

inoculated in combination with more commercial starter cultures.  The pH range could also 

be altered, since the pH 3.0 wines were maybe too harsh conditions for the survival of the 

bacteria. 
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enzyme on malolactic fermentation and phenolic 
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ABSTRACT 

Commercial tannins and pectolytic enzymes are added to wine, amongst various other 

outcomes, to increase the total amount of phenolic compounds in wine as well as to aid 

colour stability. 

 The effect of four commercial tannins (condensed, hydrolysable and a mixture) and a 

pectolytic enzyme on malolactic fermentation induced by three different starter cultures 

was evaluated in Pinotage and Merlot wines.  This was done to evaluate the possible 

affect these additions might have on the rate of MLF as well as the phenolic constitution of 

the wine.  The malic acid degradation was monitored weekly from the inoculation of MLF.  

After AF and after MLF the colour density, total phenols, total anthocyanins and total 

tannins were also measured.  For the Pinotage wine the biogenic amine levels was 

measured after MLF.  The results showed a slight inhibitory effect, especially in the first 

week of MLF, of the tannins on the MLF starter cultures.  The colour density increased in 

the Pinotage due to the addition of tartaric acid after AF, whilst a decrease was found in 

the Merlot over the period from AF until the end of MLF.  The other phenolic 

measurements showed a decrease from AF to MLF in most cases. 

5.1 INTRODUCTION 

Tannins are phenolic compounds which are of great importance to wine.  Tannins are 

added to wine for the following purposes or corrections:  as a redox buffer; sun-damaged 

fruit; unripe grape tannins; structural/textural; mouth feel modification; increased substrate 

for micro-oxidation; limit the activity of laccase; assist to precipitate proteins; help to modify 
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aromas, including vegetative aromas; help increase ageing potential and stabilize red wine 

colour (Zoecklein, 2005).  Legislation exists with regards to tannin additions which differ 

with respect to countries.  Another manner which can be employed to increase the 

phenolic extraction (especially tannins and colour compounds) in wines is the addition of 

pectolytic enzymes. 

 Two groups of tannins excist namely:  1)  condensed tannins (also known as 

proanthocyanidins) which are derived from grapes and 2)  hydrolysable tannins that are 

present in oak and nutgalls.  Commercial tannins are classified as derived from grapes 

when the total flavanol content expressed as (+) catechin, is > 50 mg/g or when its 

proanthocyanic tannin content is > 0.5 mg/g.  Exogenous tannin has its origin from nutgall 

when the digallic acid content is between 4-8 mg/g and its origin from oak when the 

scopoletine content is > 4 μg/g (Solich et al., 1995; Resolution Oeno, 2002). 

 Condensed tannins consist of polymerized flavanol units.  Flavanol units consist of 

catechin, epicatechin, gallocatechin, epigallocatechin and epicatechin gallate (Prieur et al., 

1994; Souquet et al., 1996).  Tannins are classified either as procyanidins or as 

prodelphinidins.  Procyanidins are catechin- and epicatechin based polymers, while 

prodelphinidin also contain gallocatechin- and epigallocatechin units in addition to catechin 

and epicatechin (Hagerman, 2002).  The flavonol units can polymerise through either 

direct polymerisation (Allen et al., 1997; Prieur et al., 1994; Ribéreau-Gayon et al., 1998) 

or indirect polymerization (Drinkine et al., 2005; Fulcrand et al., 1997; Ribéreau-Gayon et 

al., 1998; Vidal et al., 2004).  Condensed tannins change in concentration and structure 

with grape maturity and also vary according to cultivar (Oberholster, 2003).  The highest 

levels are found to be just before vérasion after which it decreases through veraison up to 

harvesting (Harbertson et al., 2002; Oberholster, 2003).  Between 1-4 g/L 

proanthocyanidins are normally extracted from the grapes during fermentation (Ribéreau-

Gayon et al., 1998).  The extraction of tannins during fermentation depends on the 

technology used during winemaking, for instance vigorous crushing, pump-overs, punch 

downs, cold soaking and higher maceration temperatures can increase the extraction 

(Oberholster, 2003; Sun et al., 1999).  Condensed tannins play a role in the major 

organoleptic properties of wine namely astringency, browning and turbidity (Ricardo-da-

Silva et al., 1993). 

 Hydrolysable tannins consist of a polyhydric alcohol (typically based on D-glucose) as 

a basic structural unit of which the hydroxyl groups have been esterified by gallic acid or 
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hexahydroxydiphenic (HHDP) acid (Hagerman, 2002; Hagerman and Butler, 1991).  These 

tannins can be hydrolysed in either acid or base conditions or enzymatically to yield free 

gallic acid or HHDP, while the latter can spontaneously hydrolyse to yield ellagic acid.  

Hydrolysable tannins can be classified as either gallotannins or ellagitannins, according to 

the type of acid formed (Puech et al., 1999).  Ellagitannins are extracted from wood 

(Puech, et al., 1999) while gallotannins are extracted from nutgalls (from chest nut trees) 

and can be added to wine in the form of commercial tannin additions (Hagerman, 2002). 

 Investigations into the effect of commercial tannin additions to wine have not yet been 

extensively studied, but the effects of condensed tannin addition and hydrolysable tannin 

additions on its own in wine have been researched (Pocock et al., 1994; Puech et al., 

1999; Quinn and Singleton, 1985; Vidal et al., 2004). 

 Malolactic fermentation (MLF) is one of the two important fermentations during the 

winemaking process that could be affected by the addition of commercial tannins.  MLF is 

most of the time obligatory in the production process of red wine, which contains a large 

range of phenolic compounds.  In 1970, Beelman and Gallander, conducted an experiment 

where MLF was induced in grape must prepared by cold pressing, hot pressing and 

fermentation on the skins for 1, 3 and 5 days before pressing.  The results revealed that 

fermentation on the skins had a profound effect on MLF.  MLF was completed only in the 5 

day treatment with fermentation on the skins.  They concluded that skin contact must have 

stimulated the growth of the MLF bacteria. 

 Later studies were mostly done with the phenolic acids and their potential influence on 

MLF.  Vivas et al. (1996) found that gallic acid had an activating effect on cell growth and 

rate of fermentation of Oenococcus oeni, while vanillic acid was slightly inhibitory, which 

was also confirmed by Lonvaud-Funel (2001) (both benzoic acids).  The cinnamic acids all 

decreased the growth yield of O. oeni and Lactobacillus plantarum (Salih et al., 2000).  

Another study by Alberto et al. (2001) showed that gallic acid activated the rate of glucose 

and fructose utilization and that the gallic acid was consumed from the beginning of the 

growth of L. hilgardii.  Therefore gallic acid could potentially increase the formation of 

spoilage compounds in the presence of Lactobacillus hilgardii.  Campos et al. (2003) 

monitored an ethanol containing medium supplemented with varying concentrations of 

hydroxybenzoic and hydroxycinnamic acids.  It was found that the hydroxycinnamic acid 

was more inhibitory to O. oeni than the hydroxybenzoic acids (gallic and vanillic acid).  The 

hydroxycinnamic acids (caffeic and ferulic acid), were more beneficial to the growth of 
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L. hilgardii.  p-Coumaric acid had the strongest inhibitory effect on the growth and survival 

of both bacterial species.  Hydroxycinnamic acids have also been found to have an 

inhibitory effect on O. oeni at high concentrations (Reguant et al., 2000).  They also found 

that catechin and quercetin (flavonoids) stimulated MLF but delayed or inhibited the 

formation of acetic acid from citric acid.  This could potentially suppress the increase in 

volatile acidity (VA).  Catechin also stimulated MLF (measured as malic acid consumption) 

for L. hilgardii (Alberto et al., 2001).  Vivas et al. (1997) also studied the effect of 

anthocyanins on the growth of O. oeni and the rate of malic acid degradation and found 

that it activated both processes. 

 This study focussed on the effect of the addition of commercial tannins (condensed 

tannins, hydrolysable tannins and a combination) as well as a pectolytic enzyme on the 

performance of commercial MLF starter cultures.  Their influence on the malic acid 

degradation rate was be determined.  The colour density, total phenols, total anthocyanins 

and total tannins were also measured before and after MLF to determine if differences in 

these parameters occurred between the different tannin/enzyme treatments and the 

different starter culture strains. 

5.2 MATERIALS AND METHODS 

5.2.1 Experimental layout 

This study included four different commercial oenological tannin preparations as well as a 

pectolytic enzyme.  The methodology of the layout of the experiment is denoted in Table 

5.1.  A represents the duplicate samples that were prepared from the wine after AF with a 

single dosage of tannin/enzyme.  B represents the duplicate samples that were prepared 

from the wine after AF by adding another dosage of tannin/enzyme to create a double 

dosage of tannin, whilst C represents the duplicate samples prepared by adding a double 

dosage of tannin to the wine after AF, to establish a triple dosage of tannin. 
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Table 5.1  The experimental outline for this study 

Homogenised must of Pinotage and Merlot 

                                                     Alcoholic fermentation 

Add a single dosage of the respective tannin/enzyme to each fermenter at beginning of AF 

(except control) 

Control  

(C) 

Taniflora  

(T) 

Oenotan 

(Oe) 

QCTN  

(Q) 

VR Supra 

(V) 

Lafase HE 

(L) 

Malolactic fermentation 

 

*  inoculate wine for MLF after AF  

**  inoculate wine for MLF after adding another dosage of the respective tannin/enzyme 

***  inoculate wine for MLF after adding a double dosage of the respective tannin/enzyme 

 

The tannins and the enzyme were added at AF, as prescribed by the respective suppliers.  

The tannins used and maximum dosages as recommended by the suppliers are listed in 

Table 5.2. 

Table 5.2:  The type of commercial tannins/enzyme and the dosages at which it was added 
during AF for the Pinotage and Merlot.  

Treatment and commercial source Type of tannin/enzyme 

according to the supplier 

Dosage (mg/L) 

Lafase HE Grant Cru (L) (Laffort Œnologie) Pectolytic enzyme 50 

Oenotan (Oe) (Colombit) Hydrolysable 250 

QCTN (Q) (Warren chem.) Hydrolysable 500 

Tanin VR Supra (V) (Laffort Œnologie) Condensed and Hydrolysable 500 

Taniflora (T) (ChrHansen) Condensed 250 
 

Viniflora 

Oenos (O)* 

Triplicate 

O* 

 

Triplicate 

16* 

 

Duplicate 

16* 

 

Duplicate 

16* 

 

Duplicate 

16* 

 

Duplicate 

Viniflora 

CH16 (16)* 

Triplicate 

16* 

 

Triplicate 

16** 

+ Oe 

Duplicate 

16** 

+ Q 

Duplicate 

16** 

+ V 

Duplicate 

 

Viniflora 

CH35 (35)* 

Triplicate 

35* 

 

Triplicate 

16*** 

+ 2 X Oe 

Duplicate 

16*** 

+ 2 X Q  

Duplicate 

16*** 

+ 2 X V 

Duplicate 

 

A

B 

C 
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5.2.2 Preparation of must 

Pinotage and Merlot grapes from the Stellenbosch region (Western Cape, South Africa) 

were used to produce wines for this study during the 2006 season.  The grapes were 

destemmed and crushed and 30 ppm SO2 was added to the must.  The grapes were 

homogenised and the juice and skins were separated after crushing before they were 

divided equally into 6 fermenters.  A fermenter consisted of 40 L plastic bins with a lid.  

Approximately 40 kg skins and 18 L of free running juice were put into each fermenter.  

The pH and titratable acid (TA) were determined using a Metrohm titration unit (Metrohm 

Ltd. Switzerland) as well as the °Brix was measured with a balanced hydrometer. 

 

5.2.3 Wine fermentations 

The must in each of the six fermenters was inoculated with WE372 (Anchor Yeast 

Biotechnologies, South Africa) wine yeast at 30 g/hL.  Fermentation was conducted in a 

controlled fermentation room which were kept at approximately 25˚C.  Punch downs were 

done twice daily and the sugar content was measured once a day with a hydrometer.  

Approximately 3 days in AF, di-ammonium-phosphate (DAP) was added at 50 g/hL as a 

yeast nutrient.  The wines were fermented on the skins till dry (less than 5 g/L residual 

sugar) and then pressed.  The wine from each fermenter was respectively pressed and 

mixed before it was aliquoted into 2 L glass bottles.  This was done in triplicate for the 

control and Taniflora treatments, while the other treatments were performed in duplicate.  

The additional tannin treatments were added at this point (after pressing, before 

inoculation for MLF) to the wine and then the wines were inoculated for MLF.  MLF was 

conducted at 20˚C. 

 Three different starter culture was used namely, Viniflora®Oenos, Viniflora®CH16 and 

Viniflora®CH35 (ChrHansen, Denmark).  These cultures consist of O. oeni.  The cultures 

were inoculated into the wines, at a rate of greater than 5 x 106 cfu/mL, as prescribed by 

the supplier. 

 

5.2.4 Media and culture conditions 

The must and wine were plated on MRS agar (Biolab, Merck, South Africa) enriched with 

20% apple juice (containing no preservatives) (MRSA) (pH5.2).  ).  The addition of apple 

juice and lowering of the pH stimulates the growth of O. oeni.  Normal De Man, Rogosa 

and Sharpe (MRS) agar was also used for the enumeration of LAB.  Both MRSA and MRS 
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contained 100 mg/L Actistab (50% glucose, 50% natamycin, Gist-brocades, France, S.A.), 

dissolved in methanol,  for the inhibition of moulds, fungi and yeast.  Kanamycin sulphate 

(C18H36N4O11 X H2SO4, Roche Diagnostics) at 25 mg/L dissolved in distilled water, were 

used for the inhibition of acetic acid bacteria (AAB). 

 Yeast Peptone Dextrose (YPD) agar (Merck, Biolab Diagnostics (Pty) Ltd) was used 

for the enumeration of yeast.  Kanamycin sulphate was also used in the YPD media for the 

inhibition of AAB and 50 mg/L Nisin (Sigma-Aldrich Co., dissolved in methanol) for the 

inhibition of LAB.  MRS medium to which 2% v/v ethanol (MRSetOH) was added, was 

used for the enumeration of AAB.  100 mg/L Actistab and 50 mg/L Nisin were used to 

inhibit yeast and LAB respectively.  The MRSA and MRS were incubated under facultative 

anaerobic conditions at 30˚C (Anerogen, Oxoid) in a rectangular anaerobic jar (Davies 

Diagnostics (Pty) Ltd.), whilst YPD and MRSetOH media was incubated at 30˚C 

aerobically. 

 Enumeration was done for the juice at crushing, after AF on the wine and also after 

MLF.  The samples were diluted within a range of 10-1-10-6 depending on the stage of 

winemaking, using 1 mL of sample and standard test tubes with 9 mL sterile water. 

 

5.2.5 Analyses of wine parameters by FT-IR spectroscopy 

L-Malic acid was measured weekly from inoculation of the starter culture using Fourier 

Transformation Infrared Spectroscopy (FT-IR) (Foss Grape scan).  Samples were filtered 

with a Filtration Unit (type 79500, FOSS Electric, Denmark) connected to a vacuum pump.  

The filter unit uses filter paper circles graded at 20 – 25 μm with diameter 185 mm 

(Schleicher & Schnell, reference number 10312714).  The filtered must were used for 

FT-IR spectral measurements.  A Winescan FT120 equipped with a purpose built 

Michelson interferometer was used to generate the FT-IR spectra (FOSS Electric A/S, 

Hillerød, Denmark).  Instrument settings included: cell path length of 37 μm, sample 

temperature set to 40°C, and sample volume of 7 – 8 ml.  The sample is pumped through 

the heat exchanger and the CaF2-lined cuvette.  Samples are scanned from 5011 to 926 

cm-1 at 4 cm-1 interval. 

 Other analysis that was done with FT-IR technology is the monitoring of routine wine 

parameters (pH, Total acidity (TA), Volatile acidity (VA), Malic acid, Lactic acid, Ethanol, 

Glucose, Fructose and Glycerol) for the juice after crushing and the wine after AF. 
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5.2.6 Analyses of the phenolic compounds  

The colour density, total red pigments, total phenolics, total tannins and total anthocyanins 

were measured after AF and after MLF for all the treatments in both cultivars.  These 

measurements were done using a Heλios spectrophotometer (Thermo electron 

corporation Ltd., United Kingdom).  Depending on the wavelength of the analysis or 

density of the wine, 10 mm quartz, 1 mm glass or 10 mm plastic cuvettes were used.  The 

total tannins and total anthocyanins were determined by methods described by Ribéreau-

Gayon et al. (1998), while the colour density, total red pigments and total phenolics were 

determined by methods described by Iland et al. (2000). 

5.3 RESULTS AND DISCUSSION 

5.3.1 Pinotage 2006 

5.3.1.1 Malic acid degradation 

The malic acid reduction rate for the controls (no tannins added) with the three different 

starter cultures (CO, C16 and C35) was compared to the treatments that received taniflora 

commercial tannin (T) at alcoholic fermentation (single dosage of 250 mg/L) with the three 

different starter cultures (TO, T16, T35) (Figure 5.1).  After week 1 of malolactic 

fermentation the reduction rate was 74% for CO compared to the 60% reduction in TO.  

The same trend was found for the C16 and T16 samples with a reduction rate of 74% and 

67% respectively in week 1.  This indicates that Taniflora had no significant or major 

impact on the malolactic fermentation of these two MLF strains.  The control and treatment 

inoculated with Viniflora®CH35 (C35 and T35) had a slow initiation of MLF during week 1 

and 2.  This could be explained by the fact that Viniflora®CH35 is a starter culture that was 

isolated and produced for use in white grape cultivars by the suppliers and therefore it 

would find the more complex matrix of red wine as harsh conditions compared to the other 

two starter cultures.  At week 1 no malic acid reduction was observed in C35 while T35 

reduced it by 6%.  At week 2, C35 (control without tannin) had a reduction rate of 55%, 

while the treatment with Taniflora (T35) only had a 31% reduction.  This could be due to 

the initial inhibition of Taniflora on this starter culture.  At week 3 the malic acid 

degradation was more or less the same between C35 and T35 and also in the same range 

as for the other treatments.  The cell numbers after MLF varied between 4.28 x 105 and 
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2.13 x 106 cfu/mL for these treatments, levels which could be expected after MLF 

(Figure 5.2).  The C35 cell numbers were lower than the C16 and CO, which correlated 

with the slower rate of MLF. 
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Figure 5.1  Degradation of malic acid monitored during MLF in Pinotage 2006 for the controls (C) and 
treatments with Taniflora (T).  Taniflora was added to the wine at a concentration of 250 mg/L at 
fermentation.  MLF was inoculated at 1 g/hL with three different commercial starter cultures:  
Viniflora®oenos (O), Viniflora®CH16 (16) and Viniflora®CH35 (35).  Error bars indicate the standard 
deviation of the triplicates.   

 The treatments with Oenotan (Oe), QCTN (Q), VR Supra (V) and the pectolytic 

enzyme (L), were all inoculated with only Viniflora®CH16 and therefore will be compared 

only to the control treatment with Viniflora®CH16 (C16). 

 When comparing the treatments Oenotan (OeA, OeB and OeC) and C16 the results 

showed that the malic acid degradation rate was proportionally slower with the increase in 

dosage of the tannin (Figure 5.3).  Malic acid reduction for C16, OeA, OeB and OeC was 

74%, 64%, 55% and 43% respectively in week 1.  This indicated than each additional 

dosage decreased malic acid reduction with approximately 10% over week 1.  This 

inhibition by the tannin was continued over week 2 and 3 but the reduction rate of the three 

dosage treatments became more or less the same (84% for C16 and 77% for OeA, B and 

C). 

 The treatments with tannin QCTN showed a slight inhibition on the MLF starter culture 

(Figure 5.4), but in this case the treatments continued to reduce malic acid at a slower 

rate over all 3 weeks.  The malic acid reduction pattern was C16>QA>QB>QC, which 

indicated that the higher the dosage of tannin the lower the malic acid reduction rate.  The 

largest difference in malic acid degradation rate was found between C16 and QC, which 
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was 74% and 65% respectively in week 1, 79% and 67% respectively in week 2 and 84% 

and 74% respectively in week 3.  A constant difference of approximately 10% in the 

reduction rate was therefore maintained throughout MLF between the control and triple 

dosage treatment of QCTN.  The cell numbers obtained at the end of MLF showed no 

differences between the treatments (Figure 5.2). 

 Oenotan and QCTN are hydrolysable tannins as promoted by the suppliers, which 

means that the building blocks are the non-flavanoids or hydrocinnamic acids and 

hydrobenzoic acids.  Various studies have been done on the effects of these acids (in the 

pure form) on the growth of LAB and more specifically O. oeni.  Gallic acid was found to 

have an activating effect on cell growth and rate of fermentation of O. oeni, while vanillic 

acid was slightly inhibitory (Lonvaud-Funel, 2001; Vivas et al., 1996).  Hydroxycinnamic 

acids are more inhibitory to O. oeni than the hydroxybenzoic acids (Compos et al., 2003; 

Reguant et al., 2000; Salih et al., 2000).  The exact constitution of these commercial 

hydrolysable tannins is not known, but since a slight inhibitory effect of the tannins on the 

reduction rate of malic acid was found during this study, it could be speculated that it 

consists of more hydrocinnamic acids.  It could also be that the concentration of actual 

tannins in these products could be very low. 

 The treatment with VR Supra commercial tannin (V) showed a slight inhibitory effect 

on the MLF starter culture for the triple dosage (VC) but only in week 1 (Figure 5.5).  The 

reduction of malic acid for C16 was 74% in week 1 whilst the reduction was 58% for VC.  

The other treatments had more or less the same reduction level that the control and in 

week 2 and 3 all the treatments had more or less the same reduction level as the control 

(between 74% and 79% week 2 and between 81% and 84% in week3).  VR Supra is a 

mixture of hydrolysable and condensed tannins according to the supplier.  The major 

components of condensed tannins are flavan-3-ols and flavan-3,4-dioles.  In a study by 

Vivas et al. (1997) anthocyanins activated the growth of O. oeni and the rate of malic acid 

degradation.  As mentioned previously, the full constitution of this product is not known 

and therefore also not the ratio of hydrolysable tannin vs condensed tannin.  The treatment 

with Lafase (pectolytic enzyme) had no effect on the degradation of malic acid when 

compared to the control sample (Figure 5.6). 
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Figure 5.2  Cell numbers obtained after MLF for Pinotage 2006 wine for all the treatments.  C 
represents the control treatments and T represents the Taniflora treatment.  MLF was inoculated at 1.5 
g/250 L with three different commercial starter cultures:  Viniflora®oenos (O), Viniflora®CH16 (16) and 
Viniflora®CH35 (35) in these two treeatments.  Oe  represents sample to which Oenotan was added; Q  
represents samples with QCTN added; V  represent the samples to which VR Supra was added and L  
represents samples to which lafase pectolytic enzyme was added.  A represents a single dosage of 
tannin (at AF); B  represents a double dosage of tannin and C  represents a triple dosage of tannin after 
AF before MLF.  These samples were all inoculated only with with Viniflora®CH16 (16) for MLF.  Each 
bar indicates the average of the repeats. 
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Figure 5.3  Degradation of malic acid monitored during MLF in Pinotage 2006 for the control with (C) 
and treatments with Oenotan (Oe).  Oenotan was added to the wine at a concentration of 250 mg/L, 
treatment included a single dosage of tannin (at AF) (A) and a double dosage of tannin (B) and triple 
dosage of tannin (C) after AF before MLF.  MLF was inoculated at 1 g/hL with Viniflora®CH16 (16) in 
the control and treatment.  Error bars indicate the standard deviation of the repeats. 
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Figure 5.4  Degradation of malic acid monitored during MLF in Pinotage 2006 for the control with (C) 
and treatments with QCTN (Q).  QCTN was added to the wine at a concentration of 500 mg/L, 
treatment included a single dosage of tannin (at AF) (A) and a double dosage of tannin (B) and triple 
dosage of tannin (C) after AF before MLF.  MLF was inoculated at 1 g/hL with Viniflora®CH16 (16) in 
the control and treatment.  Error bars indicate the standard deviation of the repeats. 
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Figure 5.5  Degradation of malic acid monitored during MLF in Pinotage 2006 for the control with (C) 
and treatments with VR Supra (V).  VR Supra was added to the wine at a concentration of 500 mg/L, 
treatment included a single dosage of tannin (at AF) (A) and a double dosage of tannin (B) and triple 
dosage of tannin (C) after AF before MLF.  MLF was inoculated at 1 g/hL with Viniflora®CH16 (16) in 
the control and treatment.  Error bars indicate the standard deviation of the repeats. 
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Figure 5.6  Degradation of malic acid monitored during MLF in Pinotage 2006 for the control with (C) 
and treatment with Lafase pectolytic enzyme (L).  Lafase was added to the wine at a concentration of 
50 mg/L at AF in a single dosage (A).  MLF was inoculated at 1 g/hL with Viniflora®CH16 (16) in the 
control and treatment.  Error bars indicate the standard deviation of the repeats. 

 

5.3.2 Merlot 2006 

5.3.2.1 Malic acid degradation 
The degradation of malic acid in the Merlot wines did not show any large difference 

between most of the treatments (T, Oe and L) and the controls C.  During week 1 for most 

of these treatments the reduction percentage of malic acid was between 2% and 10%.  

Compared to the Pinotage, merlot had very little malic acid degradation in the first week.  

This similar level of reduction continued throughout MLF for these samples.   

 For the treatment with QCTN (Figure 5.7) the reduction of malic acid developed at 

approximately the same rate, but at week 4 no malic acid was detected for the treatment 

QB and QC, but the control had a reduction of 97% at this stage, which indicates that MLF 

was technically completed for these samples as well.   

 In the VR Supra treatments (VA, VB and VC) the malic acid reduction at week 1 

showed a 3% reduction in the control (C16), but a reduction of 50% for treatments with this 

tannin (Figure 5.8).  VR Supra is a mixture of hydrolysable and condensed tannins.  

Therefore this mixture could contain flavanoids as well as non-flavonoid phenols 

(Ribéreau-Gayon et al., 1998).  Compounds that have been found to stimulate the growth 

of LAB are for instance gallic acid, anthocyanins and vannilin (De Revel et al., 2004; Vivas 

et al., 1995).  At week 2 and 3 the reduction percentages were more or less similar, but in 

week 4 no malic acid was detected in the VA and VC treatments.  This could indicate that 

VR Supra stimulated the malic acid degradation, which was not found in the case of the 
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Pinotage.  From the plating out of the wine on MRS and MRS A media cell concentrations 

were found to be at the same level of approximately 106 cfu/mL for all the treatments.  The 

growth on MRS could also be Oenococcus. oeni since they are also able to grow on MRS. 

 No AAB was detected on the MRSEtOH media throughout the experiment and yeast 

cell numbers were only obtained for the juice after crushing and therefore are not shown. 
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Figure 5.7  Degradation of malic acid monitored during MLF in Merlot 2006 for the control with (C) and 
treatments with QCTN (Q).  QCTN was added to the wine at a concentration of 500 mg/L, treatment 
included a single dosage of tannin (at AF) (A) and a double dosage of tannin (B) and triple dosage of 
tannin (C) after AF before MLF.  MLF was inoculated at 1 g/hL with Viniflora®CH16 (16) in the control 
and treatment.  No malic acid detected for QB and QC in week 4.  Error bars indicate the standard 
deviation of the repeats. 
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Figure 5.8  Degradation of malic acid monitored during MLF in Merlot 2006 for the control with (C) and 
treatments with VR Supra (V).  VR Supra was added to the wine at a concentration of 500 mg/L, 
treatment included a single dosage of tannin (at AF) (A) and a double dosage of tannin (B) and triple 
dosage of tannin (C) after AF before MLF.  MLF was inoculated at 1 g/hL with Viniflora®CH16 (16) in 
the control and treatment.  Error bars indicate the standard deviation of the repeats. 

 

5.3.3 Pinotage and Merlot 2006 

5.3.3.1 Colour density 

During this study the CD was measured at the end of AF and then again at the end of 

MLF.  After alcoholic fermentation the highest CD level in the Pinotage wine was found in 

the fermentation with a single dosage of Taniflora, whilst the lowest CD level was found in 

the Oenotan fermentation (Table 5.3).  Taniflora is a condensed tannin, while Oenotan is a 

hydrolysable tannin.  Kovac et al. (1992, 1995) found that the addition of 60 g seeds per kg 

of grapes resulted in an increase in colour density, which collaborates with the higher CD 

in the Taniflora treatments.  During MLF an increase in CD was observed in the Pinotage 

wine for almost all the treatments except for the control with Viniflora®CH35 (C35) and the 

treatment with Taniflora and Viniflora®oenos (TO) (Table 5.3).  In the case of the Merlot 

wine the CD was found to decrease for almost all of the treatments except for the control 

with Viniflora®CH35 (C35) where a slight increase was observed (Table 5.4).  In a study 

by Keulder (2005) where commercial tannins were added to Shiraz and Merlot wines a 

decrease in CD was found from AF to MLF.  This collaborates with the Merlot data found 

in this study.  The reason for the decrease in CD during MLF is strongly related to the pH 

increase as a result of MLF, the red flavylium kation changes to the quinonic base form 

which is blue with an increase in pH (Ribéreau-Gayon et al., 2000).  This is further 
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collaborated by the fact that for the Merlot wine the red colour of all of the treatments 

(measured at 520nm) decreased, whilst the purple colour (measured at 620nm) increased 

from AF to the end of MLF (Table 5.4).  The greatest decrease in CD in the Merlot wine 

was found in the treatments with QCTN followed by the treatments with VR Supra and 

Lafase treatment.  Another reason for the decrease in red colour could be the 

polymerisation and precipitation of the anthocyanins (Gonzalez-Nevez et al., 2004; 

Monagas et al., 2006). 

 

Table 5.3:  Colour density (CD) measured at 420nm, 520nm and 620nm after AF and after 
MLF for Pinotage 2006.   

 After AF  After MLF  

 

 

ID 

 

 

420nm 

 

 

520nm

 

 

620nm 

 

 

CD 

 

 

ID 

 

 

420nm

 

 

520nm

 

 

620nm 

 

 

CD 

% 

increase/

decrease

C 0.364 0.594 0.185 11.4 CO 0.384 0.549 0.156 13.11 12.81 

     C16 0.432 0.679 0.200 13.11 12.81 

     C35 0.350 0.445 0.132 9.28 23.23 

T 0.404 0.646 0.175 12.3 TO 0.393 0.560 0.161 11.13 10.05 

     T16 0.436 0.669 0.237 13.41 8.68 

     T35 0.490 0.715 0.275 14.80 17.22 

Oe 0.299 0.486 0.128 9.1 OeA 0.479 0.707 0.300 14.86 38.57 

     OeB 0.394 0.595 0.223 12.12 24.66 

     OeC 0.491 0.714 0.287 14.92 38.80 

Q 0.338 0.513 0.145 10.0 QA 0.602 0.826 0.353 17.81 44.09 

     QB 0.552 0.746 0.303 16.01 37.81 

     QC 0.652 0.837 0.386 18.75 46.87 

V 0.361 0.549 0.157 10.7 VA 0.498 0.698 0.258 14.54 26.61 

     VB 0.557 0.777 0.326 16.60 35.72 

     VC 0.644 0.885 0.376 19.05 43.99 

L 0.333 0.522 0.139 9.9 LA 0.438 0.626 0.191 12.55 20.77 

 
The increase in CD for the Pinotage wine was due to of an increase in the red colour (520 

nm) for most of the treatments except for CO, C35 and TO (Table 5.4).  This increase in 

red colour could be due to the fact that the pH of the Pinotage was lowered during MLF by 

tartaric acid addition from pH 4.4 to 3.9.  The greatest increase in CD for the Pinotage 
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wines was found in treatments OeC, QC and VC where a triple dosage of tannins was 

added. 

Table 5.4:  Colour density (CD) measured at 420nm, 520nm and 620nm after AF and after 
MLF for Merlot 2006.   

 After AF  After MLF  

 

 

ID 

 

 

420nm 

 

 

520nm 

 

 

620nm 

 

 

CD 

 

 

ID 

 

 

420nm

 

 

520nm

 

 

620nm 

 

 

CD 

% 

Decrease/

increase 

C 0.584 1.185 0.190 19.59 CO 0.582 0.813 0.257 16.52 15.67

     C16 0.640 0.890 0.306 18.37 6.25

     C35 0.685 0.929 0.412 20.25 3.38

T 0.616 1.252 0.204 20.72 TO 0.692 0.936 0.334 19.62 5.33

     T16 0.637 0.933 0.301 18.72 9.68

     T35 0.635 0.931 0.290 18.56 10.42

Oe 0.581 1.193 0.189 19.63 OeA 0.603 0.916 0.294 18.13 7.62

     OeB 0.606 0.882 0.305 17.92 8.71

     OeC 0.599 0.866 0.298 17.63 10.17

Q 0.689 1.315 0.253 22.57 QA 0.546 0.819 0.224 15.88 29.65

     QB 0.563 0.809 0.227 15.99 29.14

     QC 0.582 0.793 0.249 16.23 28.11

V 0.581 1.187 0.187 19.55 VA 0.534 0.806 0.256 15.96 18.35

     VB 0.534 0.796 0.267 15.97 18.29

     VC 0.517 0.763 0.266 15.46 20.93

L 0.630 1.276 0.236 21.42 LA 0.596 0.874 0.315 17.85 16.68
 

 For the Pinotage wine the brown colour increased in almost all cases (measured at 

420nm), except for the controls with Viniflora®CH35 (C35) and the treatment with Taniflora 

tannin and Viniflora®oenos (Table 5.3).  For the Merlot wine an increase in brown colour 

was found in the controls and treatment with Taniflora (for all three starter cultures), while 

in the case of the QCTN, VR Supra and Lafase treatments a decrease was observed 

(Table 5.4).  This increase in brown colour could be the result of oxidation of the phenols 

in the wine (Castelari et al., 2000; Perez-Prieto et al., 2003), the formation of xanthylium 

salts (orange) (Dallas et al., 1996; Malien-Aubert et al., 2002) and polymerization of 

anthocyanins with tannins (Castillo-Sanchez et al., 2005). 
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5.3.3.2 Total red pigments 

In the measurement of the total red pigments (TRP) the pH are lowered to below 1.  In this 

acidious medium all the anthocyanins are in its coloured, flavylium form.  Therefore all the 

anthocyanins, copigmented anthocyanins and pigments are measured.  The total red 

pigments of all the treatments for the Pinotage and Merlot wine showed a decrease from 

AF to the end of MLF (Figures 5.9 and 5.10).  For the Pinotage wine the treatments with 

Oenotan and QCTN showed a greater loss of red pigment (70%), than the other 

treatments (< 55%) and in the Merlot wine the Oenotan treatment also had the highest 

reduction in TRP but in this case the VR Supra and Lafase treatments also had a high 

reduction level in relation to the other treatments.  This loss in red pigments could be the 

result of oxidation (Gómez-Plaza et al., 2004) and also the precipitation of the red 

pigments (Gil-Munoz et al., 1997; Perez-Prieto et al., 2003).  The loss in red pigment can 

also be due to their polymerization (Saucier et al., 2004) and differences in the extinction 

coefficients of the newly formed pigments compared to the monomeric anthocyanins 

(Boulton, 2001).  Oenotan and QCTN are hydrolysable tannins (according to the supplier), 

while VR Supra are a combination of hydrolysable and condensed tannin.  According to 

Vivas et al. (1996) hydrolysable tannins or wood tannins oxidise easier than grape derived 

tannins, leading to enhanced polymerization and possible precipitation of pigments, which 

was observed in some of the treatments with and increase in dosage. 
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Figure 5.9  Total red pigments (TRP) after AF and MLF for Pinotage 2006.  C represents the controls; 
T represents the treatment with Taniflora; Oe represents the treatment with Oenotan; Q represents the 
treatment with QCTN; V represents the treatments with VR Supra and L represents the pectolytic 
enzyme Lafase HE Grant Cru.  A represents a single dosage of tannin (at AF); B a double dosage of 
tannin and C a triple dosage of tannin.  Three MLF starter cultures Viniflora®oenos (O), CH16(16) and 
CH35(35) were used to inoculate for MLF in the control and Taniflora treatments, whilst the other 
treatments were all inoculated only with Viniflora®CH16.  The error bars indicate the standard deviation 
of the repeats. 
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Figure 5.10  Total red pigments (TRP) after AF and MLF for Merlot 2006.  C represents the controls; T 
represents the treatment with Taniflora; Oe represents Oenotan; Q represents QCTN; V represents VR 
Supra and L represents Lafase HE Grand Cru.  A represents a single dosage of tannin (at AF); B a 
double dosage of tannin and C a triple dosage of tannin.  Three MLF starter cultures Viniflora®oenos 
(O), CH16(16) and CH35(35) were used to inoculate for MLF in C and T, whilst the other treatments 
were all inoculated only with Viniflora®CH16.  The error bars indicate the standard deviation of the 
repeats. 
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5.3.3.3 Total Anthocyanins 

The total anthocyanin concentration for the Pinotage wine decreased for all the treatments 

from approximately 650mg/L to 200 mg/L between AF and MLF (Figure 5.7).  The 

percentation decrease was 48% for CO and C35 but 56% for C16.  The Taniflora 

treatments TO and T35 showed a percentation reduction in anthocyanin concentration of 

50%, while T16 reduced by 58%.  All the other treatments was inoculated with starter 

culture Viniflora®CH16 and showed reduction percentages that ranged from 61% to 87% 

in comparison to the 48% (CO, C35) and 50% (TO and T35) of the control and treatments 

with starter cultures Viniflora®oenos and Viniflora®CH35.   

 The total anthocyanins were observed to be approximately 100 mg/L less in the Merlot 

than in the Pinotage wine after AF.  For the Merlot wine there was also a decrease from 

520 mg/L to 150 mg/L in anthocyanin concentration between AF and MLF.  In the 

treatments with Oenotan and VR Supra tannins the anthocyanins decreased as the level 

of tannin addition increased.  Whilst in the decrease of anthocyanins in the controls 

showed a possible strain difference.  The control with Viniflora®oenos had a lower 

reduction followed by Viniflora®CH16 and then Viniflora®CH35.   

 This decrease in anthocyanins could be due to polymerization and precipitation of the 

anthocyanins (Gonzalez-Nevez et al., 2004; Monagas et al., 2006).  This decrease of 

anthocyanins was also found in the study by Keulder (2005) up to 6 months of maturation 

after which it started to stabilise.  In all cases the largest decrease was found where starter 

culture Viniflora®CH16 was used.  Vivas et al. (1997) showed that LAB can metabolise 

anthocyanins especially during the growth phase, which could indicate that CH16 have a 

higher affinity for metabolizing anthocyanins or that the were more cells of CH16 to 

metabolise it versus the other starter cultures. 
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Figure 5.11  Total anthocyanin concentration after AF and MLF for Pinotage 2006.  C represents the 
controls; T represents the treatment with Taniflora; Oe represents the treatment with Oenotan; Q 
represents the treatment with QCTN; V represents the treatments with VR Supra and L represents the 
pectolytic enzyme Lafase HE Grant Cru.  A represents a single dosage of tannin (at AF); B a double 
dosage of tannin and C a triple dosage of tannin.  Three MLF starter cultures Viniflora®oenos(O), 
Viniflora®CH16(16) and Viniflora®CH35(35) were used to inoculate for MLF in the control and Taniflora 
treatments, while the other treatments were all inoculated only with Viniflora®CH16. Each bar indicates 
the average of the repeats. 
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Figure 5.12  Total anthocyanin concentration after AF and MLF for Merlot 2006.  C represents the 
controls; T represents the treatment with Taniflora; Oe represents the treatment with Oenotan; Q 
represents the treatment with QCTN; V represents the treatments with VR Supra and L represents the 
pectolytic enzyme Lafase HE Grant Cru.  A represents a single dosage of tannin (at AF); B a double 
dosage of tannin and C a triple dosage of tannin.  Three MLF starter cultures Viniflora®oenos(O), 
Viniflora®CH16(16) and Viniflora®CH35(35) were used to inoculate for MLF in the control and Taniflora 
treatments, while the other treatments were all inoculated only with Viniflora®CH16.  Each bar indicates 
the average of the repeats. 

 

http://scholar.sun.ac.za/



Chapter 5         Research Results 

 

 87

5.3.3.4 Total phenols 

The total phenols decreased after MLF in all the treatments of Pinotage, except for QC 

and VC which showed a slight increase in phenols (Figure 5.13).  A decrease in total 

phenols after MLF was also observed in all the treatments for the Merlot wines, except for 

treatment QC (Figure 5.14). In the Pinotage and Merlot wine the increased dosage of 

commercial tannins (A, B and C) can be observed especially for QCTN (Q) and VR Supra 

(V), whilst the triple dosage of Oenotan (OeC) in the Pinotage wine also led to a higher 

level of total phenols. 

 The decrease could be as a result of polymerization and the resultant change in 

extinction coefficients and possible precipitation of these compounds (Mazza et al., 1999; 

Perez-Prieto et al., 2003).  The addition of pectolytic enzyme (LA) will increase total 

phenols in wine (Revilla and González-SanJosé, 2003), but this effect will be most 

prominent during AF and was not observed after MLF.  The decrease in total phenols 

during MLF could also be due to adhesion of the phenolic molecules to bacterial cell walls 

and should be investigated further. 
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Figure 5.13  Total phenols after AF and MLF for Pinotage 2006.  C represents the controls; T 
represents the treatment with Taniflora; Oe represents the treatment with Oenotan; Q represents the 
treatment with QCTN; V represents the treatments with VR Supra and L represents the pectolytic 
enzyme Lafase HE Grant Cru.  A represents a single dosage of tannin (at AF); B a double dosage of 
tannin and C a triple dosage of tannin.  Three MLF starter cultures Viniflora®oenos(O), 
Viniflora®CH16(16) and Viniflora®CH35(35) was used to inoculate for MLF in the control and Taniflora 
treatments, whilst the other treatments were all inoculated only with Viniflora®CH16.  Each bar 
indicates the average of the repeats 
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Figure 5.14  Total phenols after AF and MLF for Merlot 2006.  C represents the controls; T represents 
the treatment with Taniflora; Oe represents the treatment with Oenotan; Q represents the treatment 
with QCTN; V represents the treatments with VR Supra and L represents the pectolytic enzyme Lafase 
HE Grant Cru.  A represents a single dosage of tannin (at AF); B a double dosage of tannin and C a 
triple dosage of tannin.  Three MLF starter cultures Viniflora®oenos(O), Viniflora®CH16(16) and 
Viniflora®CH35(35) was used to inoculate for MLF in the control and Taniflora treatments, whilst the 
other treatments were all inoculated only with Viniflora®CH16.  Each bar indicates the average of the 
repeats and the error bars indicate the standard deviation of the repeats.   

5.4 CONCLUSION 

The commercial tannin additions to the Pinotage and Merlot wines did influence the malic 

acid degradation during MLF to a certain extent.  This influence was observed as a slight 

inhibition especially during the first week for the Pinotage wine in the case of all the 

commercial tannins.  In the Merlot wine a slight stimulatory effect of the tannin VR Supra 

could be observed on the degradation of malic acid, while no effects was visible for the 

other treatments.  In most cases the largest difference was found between the triple 

dosage of tannin and the control.  Therefore if commercial tannins are added to wine as 

prescribed by the suppliers no or little effect will be observed on MLF, since MLF finished 

at the same time for all the treatments.  The full constitution of these commercial tannin 

products used during the study is not known and it is effect on MLF must herefore be 

further investigated.  The biogenic amine data, revealed strain differences in the amount of 

BA’s produced as well as differences between BA levels and tannin dosage.  The phenolic 

compounds developed as expected accept in the case of the CD of the Pinotage which 

was influenced by the decrease of the pH with tartaric acid during MLF. 
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 Further work could entail monitoring of the development of the MLF starter cultures 

through enumeration on a weekly basis during MLF in an experimental layout similar to 

this one.  The pH increase of the wine during MLF could be monitored in comparison with 

the decrease in CD on a weekly basis, to observe the extent of CD loss through MLF.  

Wine could also be inoculated for MLF with LAB with β-Glucosidase activity in combination 

with condensed tannins, to assess it’s effect on anthocyanin esterified with glucose, which 

could be utilised by such bacteria. 
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ABSTRACT 

Spontaneous malolactic fermentation (MLF) during alcoholic fermentation (AF) often 

causes sluggish AF.  Early inoculation with selected Oenococcus oeni strains may reduce 

this risk, suppressing wild bacteria, and at the same time conducting a more controlled 

MLF without influencing the wine aroma or hazardous compounds (biogenic amines 

(BA’s)) for human health negatively.  This is especially important in red wine with a high 

pH, where spontaneous MLF occurs frequently, already during AF, causing stuck AF and 

rise in volatile acidity (VA).  Two different MLF starter cultures, Enoferm alpha and Lalvin 

VP41, were inoculated in combination with two different yeast cultures, Lalvin ICDV-254 

and Lalvin L2056.  The inoculation times were (A) simultaneous inoculation of the bacteria 

and yeast, (B) inoculation of the bacteria at 30 g/L residual sugar and (C) inoculation right 

after AF.  Balling readings, cell counts, and routine wine analysis were done as well as the 

measurement of the amount of BA’s after MLF.  The controls were inoculated for AF but 

MLF was left to occur spontaneously.  AF as well as MLF were finished within 21 days for 

all the treatment A’s, whilst treatment B and C finished MLF 2 weeks later and showed 

more or less the same degradation rate.  The BA levels were also lower for these 

treatments versus the other inoculations B and C. 
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6.1 INTRODUCTION 

Malolactic fermentation (MLF) starter cultures are inoculated into wine to initiate MLF and 

in most cases these starter cultures consist of pure culture of Oenococcus oeni isolated 

from wine.  As in the case of yeast starter cultures for alcoholic fermentation (AF), the use 

of MLF starter cultures enables the winemaker to have more control over the fermentation 

and the outcome thereof.  An important factor of controlling AF and MLF is the timely 

initiation of the process.   

 When MLF fails to start it could be very costly, since it would influence the aroma of 

wine and therefore wine quality.  After AF the wine is not protected by adequate levels of 

SO2 anymore and therefore, when LAB (spontaneous or starter cultures) fail to 

successfully induce MLF, the consequence could be infection by other microorganisms like 

spoilage strains of LAB, acetic acid bacteria (AAB) and Brettanomyces or Dekkera yeasts.  

Spoilage aromas of Brettanomyces/Dekkera yeasts, refer to compounds like 2-

ethyltetrahydopyridine, 2-acetethyltetrahydopyridine and 2-acetylpyroline, which manifest 

as a mousy off-flavour in wine (Snowdown et al., 2006).  LAB off-flavours such as boilt 

cabbage, cauliflower, rancid and buttery flavours could develop from amino acid 

catabolism (Ardö, 2006), as well as high levels of acetic acid, acetaldehyde, acetoin and 

diacetyl can develop (Fornachon and Lloyd, 1965; Henick-Kling et al., 1994; Kandler, 

1983; Mascarenhas, 1984).  AAB are known to convert ethanol to acetic acid in the 

presence of small concentration of oxygen (Greenshields, 1978; Drysdale and Fleet, 

1989). 

 MLF starter cultures are usually inoculated either at the beginning of AF with the yeast 

or after AF (Henick-Kling, 1993).  Starter culture failures are mostly the result of not 

implementing the proposed inoculation procedures as prescribed, but can sometimes also 

fail because of antagonistic interactions between yeasts and bacteria.  These antagonistic 

interactions can be due to ethanol production, SO2 and the competition for nutrients that 

may inhibit bacterial growth (Bisson and Kunkee, 1991; Lonvaud-Funel et al., 1988a; 

Lonvaud-Funel et al., 1988b).  The interactions between wine yeasts and malolactic 

bacteria are recognised as having a potential impact on bacterial growth and MLF activity 

(Fornachon, 1968; King and Beelman, 1986; Henick-Kling and Park, 1994; Nygaard and 

Praal, 1996). 

 During MLF biogenic amines (BA’s) are also formed by LAB.  It has been reported by 

various authors that the levels of BA’s increase after MLF (Granchi et al., 2005; 
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Lonvaud-Funel, 1999, 2001; Marcobal et al., 2006; Ribéreau-Gayon et al., 2000; Soufleros 

et al., 1998).  Histamine, tyramine, putrescine and cadaverine are the major BA’s found in 

wine (Lonvaud-Funel, 2001).  The formation of these BA’s has been associated with a lack 

of hygiene during the winemaking process. 

 The aim of this study is to evaluate different inoculation times of yeasts and bacteria in 

high pH red wines to possibly reduce the risks of spoilage due to spontaneous MLF. 

6.2 MATERIALS AND METHODS 

6.2.1 Experimental layout 

Cabernet Sauvignon grapes from South Africa (Stellenbosch region) with a high pH (3.9) 

was used for this experiment.  The wine was inoculated with two different yeast strains in 

combination with two different MLF starter cultures and three different inoculation 

strategies, namely  (A)  Simultaneous inoculation of bacteria and yeasts at the beginning 

of AF; (B)  inoculation of MLF starter culture when 30 g/L residual sugar still remaining in 

the must; (C)  inoculation after AF have been completed (RS < 3 g/L) (Table 6.1). Two 

different yeast strains, Lalvin ICV-D254 (254) and Lalvin L2056 (2056) (Lallemand, South 

Africa) and two MLF starter cultures, Enoferm alpha (α) and Lalvin VP41 (41) (Lallemand, 

South Africa), was used for this experiment.  The inoculation rates as prescribed on the 

packaging were used.  

Table 6.1  Sample layout and codes that will be used throughout the study 

 no Enoferm 

alpha 

no Lalvin VP41 no Enoferm 

alpha 

ICDV 

254* 

1 

2 

254αA1*** 

254αA2 

3 

4 

254.41.A1 

254.41.A2 

9 

10 

254αB1 

254αB2 

Lalvin 

2056** 

5 

6 

2056αA1 

2056αA2 

7 

8 

2056.41.A1 

2056.41.A2 

13 

14 

2056αB1 

2056αB2 

 

 
no 

Lalvin VP41 
no Enoferm 

alpha  

no 
Lalvin VP41 

ICDV 

254* 

11 

12 

254.41.B1 

254.41.B2 

17 

18 

254αC1 

254αC2 

19 

20 

254.41.C1 

254.41.C2 

Lalvin 

2056** 

15 

16 

2056.41.B1 

2056.41.B2 

21 

22 

2056αC1 

2056αC2 

23 

24 

2056.41.C1 

2056.41.C2 
*  controls for ICDV 254 are duplicates number 25 and 26 

**  controls for Lalvin 2056 are duplicates number 27 and 28 
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***  numbers 1 and 2 refers to the duplicate assigned 

 

6.2.2 Winemaking procedures 

The Cabernet Sauvignon grapes were harvested at a very high sugar level of 28 ˚B. If 

taken into account that the general conversion rate of sugar to ethanol by yeast is roughly 

55%, that will lead to an alcohol content of 15.6%. If MLF were to be conducted after AF 

on this wine it would be extremely difficult, since the MLF starter cultures might be 

inhibited by these high alcohol levels.  Therefore the juice was diluted by removing 10 L of 

juice and replacing it with 10 L of distilled water.  The juice was then 22.3 ˚B.  The pH and 

titratable acidity (TA) were only measured after the dilution and the TA then adjusted 

accordingly to 6.5 g/L. 

The Cabernet Sauvignon was crushed and 30 ppm SO2 was added.  The must was 

homogenised and then divided into 28 10 L buckets with lids.  Each sample bucket 

consisted of 3.8 kg skins and 1.2 L free running juice. The buckets were inoculated with 

the two different yeasts, which resulted into 14 buckets fermenting with Lalvin ICV-D254 

and 14 with Lalvin L2056.  Go-Ferm (Lallemand, South Africa) was used to re-hydrate the 

yeast in and Fermaid K (Lallemand, South Africa) was added at mid fermentation as a 

nutrient supplementation to the fermentation.   

The inoculation of the MLF starter cultures were then performed as described under 

6.2.1.  Controls (254C and 2056C) for this experiment were inoculated for AF (Lalvin ICV-

D254 and Lalvin L2056) and then left to undergo a spontaneous MLF.  After AF when the 

residual level were < 5˚B the sample buckets were pressed separately and the wine was 

homogenised and then divided into duplicate samples of 2 L glass containers which were 

closed with rubber stoppers containing a S-shaped airlocks. 

 

6.2.3 Yeast and bacterial strains and culture conditions 

MRS agar (Biolab, Merck, South Africa) enriched with 20% apple juice (containing no 

preservatives) (MRSA) (pH5.2).  The addition of apple juice and lowering of the pH 

stimulates the growth of O. oeni.  Normal De Man, Rogosa and Sharpe (MRS) agar was 

also used for the enumeration of LAB.  Both MRSA and MRS contained 100 mg/L Actistab 

(50% glucose, 50% natamycin, Gist-brocades, France, S.A.), dissolved in methanol, for 

the inhibition of moulds, fungi and yeast.  Kanamycin sulphate (C18H36N4O11 X H2SO4, 
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Roche Diagnostics, dissolved in sterile distilled water) at 25 mg/L, were used for the 

inhibition of AAB. 

 Yeast Peptone Dextrose (YPD) agar (Merck, Biolab Diagnostics (Pty) Ltd) was used 

for the enumeration of yeast.  Kanamycin sulphate was also used in the YPD media for the 

inhibition of AAB and 50 mg/L Nisin (Sigma-Aldrich Co., dissolved in methanol) for the 

inhibition of LAB. 

 GYC agar plates (5% glucose, 10% yeast extract, 3% CaCO3, 2% agar) were used for 

the enumeration of AAB.  Actistab and Nisin were used to inhibit yeast and LAB 

respectively.   

 The MRSA and MRS was incubated under facultative anaerobic conditions at 30˚C 

(Anerogen, Oxoid) in an anaerobic jar (Davies Diagnostics (Pty) Ltd.), whilst YPD and 

GYC media was incubated at 30˚C aerobically.   

 Test tubes filled with 9 mL distilled water, which was then autoclaved, was used to 

make dilution series from 10-1-10-6. 

 

6.2.4 Analyses of wine 

AF was monitored by measuring the sugar level of the must by using a hydrometer.  L-

Malic acid was measured weekly from inoculation of the starter culture using Fourier 

Transformation Infrared Spectroscopy (FT-IR) (Foss Grape scan).  Samples were filtered 

with a Filtration Unit (type 79500, FOSS Electric, Denmark) connected to a vacuum pump.  

The filter unit uses filter paper circles graded at 20 – 25 μm with diameter 185 mm 

(Schleicher & Schnell, reference number 10312714).  The filtered must were used for FT-

IR spectral measurements.  A Winescan FT120 equipped with a purpose built Michelson 

interferometer was used to generate the FT-IR spectra (FOSS Electric A/S, Hillerød, 

Denmark).  Instrument settings included:  cell path length of 37 μm, sample temperature 

set to 40°C, and sample volume of 7 – 8 ml.  The sample is pumped through the heat 

exchanger and the CaF2-lined cuvette.  Samples are scanned from 5011 to 926 cm-1 at 4 

cm-1 interval. 

 Other analysis that was done with FT-IR spectroscopy was the measurement of 

routine wine parameters (pH, Total acidity (TA), Volatile acidity (VA), Malic acid, Lactic 

acid, Ethanol, Glucose, Fructose and Glycerol) at different stages of the winemaking 

process.  For instance the juice after crushing and the wine after AF were analysed for 

these above mentioned parameters.  
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After completion of MLF samples were sent to Distell, South Africa to analyse the levels of 

biogenic amines by using high-pressure liquid chromatography (HPLC) (Alberto et al., 

2002).  

6.3 RESULTS AND DISCUSSION 

6.3.1 Rate of alcoholic and malolactic fermentation 

Alcoholic fermentation developed the same in all the treatments (Figures 6.1 and 6.2).  

This indicates that the inoculation time of different bacteria do not affect the yeast starter 

cultures, even if inoculated simultaneously.  In similar studies by Grossmann et al. (2002), 

Henick-Kling and Park (1994), Jussier et al. (2006) and Rauhut et al. (2001) it was also 

found that the addition of MLF starter cultures together with the yeast starter cultures did 

not inhibit the yeast and therefore the alcoholic fermentation. 
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Figure 6.1  Alcoholic fermentation.  In all the samples ICV D254 (254) were used to inoculate AF and 
Enoferm alpha (α) and Lalvin VP41 (41) was used to conduct MLF, except for the control sample which 
was a spontaneous MLF.  254C represents the control; A  simultaneous inoculation of AF and MLF 
starter cultures; B  Inoculation of MLF starter culture at < 30 g/hL RS; C  inoculation of MLF starter 
culture at the end of AF. 
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Figure 6.2  Alcoholic fermentation.  In all the samples Lalvin 2056 (2056) were used to inoculate AF 
and Enoferm alpha (α) and Lalvin VP41 (41) was used to conduct MLF, except for the control sample 
which was a spontaneous MLF.  2056C represents the control; A  simultaneous inoculation of AF and 
MLF starter cultures; B  Inoculation of MLF starter culture at < 30 g/hL RS; C  inoculation of MLF starter 
culture at the end of AF. 

 

The malic acid degradation was monitored in the samples from inoculation of the yeast 

starter cultures until the end of MLF (< 0.3 g/L malic acid).  After week 1 of MLF the two 

MLF starter cultures (Enoferm alpha, Lalvin VP41) that were inoculated in combination 

with ICV D254, showed the highest reduction in malic acid (Figures 6.3 and 6.4).  The 

reduction was 64% and 76% respectively for 254αA and 254.41.A, whilst the other 

treatments (254C, 254αB, C and 254.41.B, C) varied between 30%-38%.  This higher level 

of reduction for the A treatments continued through weeks 2 (81%) and 3 (89%) and no 

malic acid was detected from week 4 onwards.  The same results were found in the case 

where the two MLF starter cultures (Enoferm alpha and Lalvin VP41) were inoculated in 

combination with Lalvin 2056 yeast (Figures 6.5 and 6.6).  The percentage of malic acid 

reduction over the first 3 weeks of MLF was as follows for 2056αA and 2056.41.A 

respectively:  66% and 77% week1; 81% and 82% week 2 and 90% and 93% in week 3.  

No malic acid was detected for these treatments from week 4 to the end of the sampling 

period (week 6).  Therefore the treatments A for this study finished AF and MLF within 21 

days of inoculation.  In a similar experiment by Henick-Kling and Park (1994) done in 

grape juice medium, simultaneous inoculation of yeast and bacterial starter cultures were 

able to conduct and finish MLF within 9-20 days.  Grossmann et al. (2002), found that AF 

and MLF was finished in Riesling wine within 14 days since preparation of the must. 
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The results also correlate with cell numbers obtained at the end of MLF, since the 

treatment A’s had higher cell numbers than the other treatments (254C, 254αB, C and 

254.41.B, C)  at this stage (Figure 6.7). 

 The control and other 2 treatments (B and C) for the inoculation of Enoferm alpha and 

Lalvin VP41 in combination with yeast ICV D254 (Figures 6.3 and 6.4), the pattern for 

malic acid degradation rate over week 2 and 3 were similar, with B>C>Control.  Over 

weeks 4 and 5 the highest malic acid degradation rate shifted between treatments B and 

C, while the control samples remained at the lowest malic acid degradation rate.  In week 

6 no malic acid was detected for the control sample (spontaneous MLF), while treatments 

B and C were at a reduction level of 88% and 91% for Enoferm alpha and 86% (B and C) 

for LalvinVP41 (technically finished with MLF, since malic acid between 0.27 and 0.42 

g/L).  Gallander (1979) also found that inoculation during or after MLF led to approximately 

the same time for completing MLF.   

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Time in weeks

[M
al

ic
 a

ci
d
] 
(g

/L
)

254C

254αA

254αB

254αC

 

Figure 6.3  The degradation of malic acid from inoculation until the end of malolactic fermentation.  In 
all the samples ICV D254 (254) were used to inoculate AF and Enoferm alpha (α) was used to conduct 
MLF, except for the control sample which was a spontaneous MLF.  254C are the control; A  
simultaneous inoculation of AF and MLF starter cultures; B  Inoculation of MLF starter culture at < 30 
g/hL RS; C  inoculation of MLF starter culture at the end of MLF.  No malic acid was detected for 254αA 
during weeks 4, 5 and for 254C in week 6.  The error bars indicate the standard deviation of the 
duplicates. 
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Figure 6.4  The degradation of malic acid from inoculation until the end of malolactic fermentation.  In 
all the samples ICV D254 (254) were used to inoculate AF and Lalvin VP41 (41) was used to conduct 
MLF, except for the control sample which was a spontaneous MLF.  254C are the control; A  
simultaneous inoculation of AF and MLF starter cultures; B  Inoculation of MLF starter culture at < 30 
g/hL RS; C  inoculation of MLF starter culture at the end of MLF.  No malic acid was detected for 
254.41.A during weeks 4, 5 and for 254C in week 6.  The error bars indicate the standard deviation of 
the duplicates. 

 During week 2 and 3 of MLF for the samples where Enoferm alpha and VP 41 was 

inoculated with yeast Lalvin L2056 (Figure 6.5 and 6.6) the control and treatment B 

samples had a higher rate of malic acid degradation than treatment C.  These samples 

(Control, Treatment B and C) reached more or less the same level of malic acid 

degradation at week 4 of MLF.  This pattern continued over weeks 5 and 6 with the 

exception of treatment B that was not detected at week 6.  During this inoculation 

combination of the two MLF starter cultures (Enoferm alpha and Lalvin VP41) with Lalvin 

2056 yeast the treatment B’s finished MLF within 5 weeks.  The control which was 

inoculated AF with spontaneous MLF (2056C) got stuck at a level of 72% reduction of 

malic acid. 

 The cell numbers at the end of MLF for treatments B and C where yeast Lalvin L2056 

was inoculated with Enoferm alpha MLF starter culture (2056αB, C), is much lower than 

the treatment A (Simultaneous inoculation, 2056αA) (Figure 6.7).  This could be because 

of inhibitory effects due to the presence of the higher ethanol concentration in the wine at 

the stage when treatments B and C were inoculated.   
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Figure 6.5  The degradation of malic acid from inoculation until the end of malolactic fermentation.  In 
all the samples Lalvin 2056 (2056) were used to inoculate AF and Enoferm alpha (α) was used to 
conduct MLF, except for the control sample which was a spontaneous MLF.  2056C are the control; A  
simultaneous inoculation of AF and MLF starter cultures; B  Inoculation of MLF starter culture at < 30 
g/hL RS; C  inoculation of MLF starter culture at the end of MLF.  No malic acid was detected for 
2056αA during weeks 4, 5 and for 2056αB in week 6.  The error bars indicate the standard deviation of 
the duplicates. 
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Figure 6.6  The degradation of malic acid from inoculation until the end of malolactic fermentation.  In 
all the samples Lalvin 2056 (2056) were used to inoculate AF and Lalvin VP41 (41) was used to 
conduct MLF, except for the control sample which was a spontaneous MLF.  2056C are the control; A  
simultaneous inoculation of AF and MLF starter cultures; B  Inoculation of MLF starter culture at < 30 
g/hL RS; C  inoculation of MLF starter culture at the end of MLF.  No malic acid was detected for 
2056.41.A during weeks 4, 5 and 6 for 2056.41.B in week 6.  The error bars indicate the standard 
deviation of the duplicates. 
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Figure 6.7  Cell concentrations at the end of malolactic fermentation for the controls and treatments.  
254  represents ICD V254 yeast starter; 2056 represents the Lalvin 2056 yeast starter; α represents 
Enoferm alpha MLF starter culture; 41 represents the Lalvin VP41 MLF starter culture; C are the 
control; A  simultaneous inoculation of AF and MLF starter cultures; B  Inoculation of MLF starter 
culture at < 30 g/hL RS; C  inoculation of MLF starter culture at the end of MLF.  Each bar indicates the 
average of the cell concentrations of the duplicates.   

6.3.2 Biogenic amines 

In wine the level of biogenic amines (BA’s) that will develop, depends on various factors.  

For instance grape variety and viticultural practices (Soufleros et al., 1998), yeast 

metabolism and LAB.  LAB differs in their capability to produce BA’s on a strain level and 

the factor that mostly influences this capability is pH.  A high pH sometimes yields a higher 

BA level in wine (Lonvaud-Funel, 2001).  In this experiment a high pH (3.9) Cabernet 

Sauvignon was used and therefore BA’s could potentially occur at a higher level than at 

normal wine pH (3.4-3.6).  Enoferm alpha and Lalvin VP41 are both described by 

Lallemand to produce very low levels of biogenic amines.  The biogenic amine levels were 

measured after MLF for all the treatments (Table 6.2).  

All the simultaneous inoculated combinations resulted in no histamine and tyramine 

production (254α,41A; 2056α, 41A) (Figures 6.8 and 6.9).  Histamine have been found to 

be present before alcoholic fermentation in grape must (Bertoldi et al., 2004; Vidal Carou 

et al., 1990), but in a study by Marcobal et al. (2006) no histamine or tyramine was 

detected in the must even though it was rich in the precursor amino-acid histadine.  

Therefore their results suggested that these amines are mostly produced by biological 

decarboxylation during fermentation.  The fact that the simultaneous inoculations did not 

develop histamine or tyramine could be very important for winemaking, since these two 

amines are the most toxic amines found in wine (Stratton et al., 1991).  Legislation has not 

yet been established with regards to these amines but upper limits have been suggested 

for histamine in various countries. 
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Table 6.2  Biogenic amine levels in mg/L measured at the end of MLF for all the treatments.  Each 
level indicated the average of the duplicates. 

Sample ID Histamine Tyramine Putrescine Cadaverine

254αA nd* nd 3.22 0.64 

254αB 2.06 1.48 11.62 0.91 

254αC 2.85 2.20 20.88 1.44 

254.41.A nd nd 3.53 0.85 

254.41.B 10.03 5.52 13.47 1.36 

254.41.C 9.47 5.42 9.54 1.00 

2056αA nd nd 2.54 0.63 

2056αB nd nd 6.55 0.32 

2056αC nd 1.54 9.06 0.57 

2056.41.A nd nd 2.05 0.54 

2056.41.B 5.94 3.75 13.08 1.84 

2056.41.C 6.33 2.71 10.96 1.14 

254C 0.87 2.81 11.12 1.47 

2056C nd 2.13 8.32 0.63 
*not detected 

 

These upper limits are in mg/L:  Germany, 2; Holland, 3; Finland, 5; Belgium, 5-6; France, 

8; Switzerland and Austria, 10 (Busto et al., 1996; Lehtonen, 1996).  When looking at the 

remaining treatments, the combination of Lalvin ICV-D254 with Enoferm alpha of 

inoculation treatments B and C (254αB, C) and the combination of Lalvin ICV-D254 with 

Lalvin VP41 starter culture of inoculation treatments B and C (254.41.B, C) developed a 

histamine level of 2-3 mg/L and 10mg/L respectively (Figure 6.8).  These results show that 

strain differences exist with regards to the amount of amines that were produced, which 

have also previously been reported by other authors (Guerrini et al., 2002; Moreno-Arribas 

et al., 2003).  In the case of the combination of yeast Lalvin L2056 with the two starter 

cultures for inoculation treatments B and C it was found that the combination with starter 

culture Enoferm alpha (2056αB, C) had no histamine or tyramine production in 2056αB as 

well as no histamine, but a low level of tyramine produced in 2056αC (1.54 mg/L) (Figure 

6.9).  When Lalvin L2056 was inoculated with MLF starter culture Lalvin VP41 for 

inoculation treatments B and C (2056.41.B, C) histamine and tyramine was produced at 6 

mg/L and 3mg/L respectively.  This is possibly due to the natural LAB present in the 

fermentation that had a longer time to play a role before the inoculated MLF starter culture 
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to dominate.  This is also shown in the spontaneous MLF where histamine and tyramine, 

was produced by the same natural LAB. 

 The control that underwent AF with Lalvin ICV-D254 (254C) produced histamine (0.87 

mg/L) and tyramine (2.81 mg/L) (Figure 6.8) while the control that underwent AF with 

yeast Lalvin L2056 did not show histamine after MLF but tyramine was detected at 2.13 

mg/L (Figure 6.9).  These amines in the controls were most likely formed by the natural 

occurring LAB, since spontaneous MLF occurred.  It also showed that co-inoculation takes 

prevalence over spontaneous MLF since no histamine or tyramine was detected in the co-

inoculation treatments (A). 

 The other biogenic amines that were measured after MLF were putrescine and 

cadaverine.  These amines on their own are not very toxic but it potentiates the toxic 

effects of histamine and tyramine (Stratton et al., 1991).  Putrescine was the biogenic 

amine that was present at the highest levels of all the amines measured (2-20 mg/L).  

Marcobal et al. (2006) also found that putrescine was the most abundant in must and 

therefore must be mainly associated with grape variety as suggested by previous data 

(Bertoldi et al., 2004), and after vinification it was again the most abundant in the wine.  

Where MLF was performed with Enoferm alpha starter culture in combination with both 

yeast starter cultures (Lalvin ICV-D254 and Lalvin L2056) the levels of putrescine 

produced showed the following order:  254αC>254αB>254αA (21, 12 and 3 mg/L) (Figure 

6.8) and 2056αC>2056αB>2056αA (9, 7 and 3 mg/L) (Figure 6.9).  In the case where MLF 

was performed with Lalvin VP41 the pattern of putrescine levels had the following order:  

254.41.B>254.41.C>254.41.A (13, 10 and 4 mg/L) (Figure 6.8) and 

2056.41.B>2056.41.C>2056.41.A (13, 11 and 2 mg/L) (Figure 6.9).  Again in all instances 

the lowest amounts of putrescine was produced by the co-inoculation treatments.  The 

controls (254C and 2056C) had putrescine levels of 11 and 8 mg/L respectively which 

more or less correlated with the treatments C.  Cadaverine was present in all the 

treatments and controls but at very low levels.  It also seems that Enoferm alpha has a 

shorter lag phase and therefore suppresses the activity of the natural LAB faster.  This can 

be seen as Enoferm alpha in treatments B and C has lower biogenic amine levels in 

general. 
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Figure 6.8  Biogenic amine levels for treatment A, B and C after MLF.  254C represent the control 
sample that was fermented with Lalvin ICV-D254 but which underwent spontaneous MLF.  
A  represents simultaneous inoculation of yeast and bacteria; B  represents inoculation at <30 g/L RS; 
C  represents inoculation after AF; 254  Lalvin ICV-D254 yeast used for AF; α  represents MLF starter 
culture Enoferm alpha; 41 represents Lalvin VP41 MLF starter culture.  No histamine and tyramine was 
detected for the treatments A, as well as no histamine in control 2056.  Each bar indicates the average 
of the replicates. 
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Figure 6.9  Biogenic amine levels for treatment A, B and C after MLF.  2056C represent the control 
sample that was fermented with Lalvin L2056 but which underwent spontaneous MLF.  A  represents 
simultaneous inoculation of yeast and bacteria; B  represents inoculation at <30 g/L RS; C  represents 
inoculation after AF; 2056  Lalvin L2056 yeast used for AF; α  represents MLF starter culture Enoferm 
alpha; 41 represents Lalvin VP41 MLF starter culture.  No histamine and tyramine was detected for the 
treatments A, as well as no histamine in control 2056.  Each bar indicates the average of the replicates. 
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6.4 CONCLUSION 

Results obtained confirmed previous research that if a compatible yeast and MLF starter 

culture are used there will be no influence on the alcoholic fermentation when co-

inoculated.  The co-inoculation also reduced the risks associated with the natural LAB 

present at the beginning of fermentation.  This could be seen in the co-inoculated 

treatments where no histamine or tyramine was produced when compared to the standard 

practice (at the end or after alcoholic fermentation) were the natural LAB had a longer time 

to be part of the fermentation and this resulted in increased histamine and tyramine levels. 

 Future work to be done is the evaluation of the wines after MLF to determine possible 

differences in wine aroma and volatile compounds to determine the over-all quality of wine 

produced by the different inoculation strategies.  Also to evaluate the risks of VA 

production, when early inoculation of bacteria is practiced under high pH conditions. 
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7.  GENERAL DISCUSSION AND CONCLUSIONS 

7.1 CONCLUDING REMARKS 

Wine is a complex medium consisting of a spectrum of flavours, aromas and other 

organoleptic properties, when combined have to result into a high quality product.  The 

definition of a quality wine was always in the hands of the winemaker, however today with 

globalisation and the worldwide access to information resulted in more knowledgeable 

consumers with a greater understanding of product value and what wine quality entails.  

Consumer preference therefore will have to be the barometer for production decisions as 

well as for the marketing of wines (Bisson et al., 2002).  Control over the production of 

wine is of the utmost importance if the latter is to be pursued and successfully executed. 

 One of the important steps in the winemaking process that needs to be managed in 

order to ensure high quality of the end-product is malolactic fermentation (MLF).  MLF in 

wine is a secondary fermentation that usually occurs at the end of alcoholic fermentation 

(AF).  MLF refers to the biological process of wine deacidification in which the dicarboxylic 

L-malic acid (malate) is converted to the monocarboxylic L-lactic acid (lactate) and carbon 

dioxide (Davis et al., 1985).  Besides the decrease in acidity, it also improves the 

microbiological stability and the organoleptic characteristics of wines (Davis et al. 1988; 

Kunkee, 1991).  These above mentioned organoleptic changes are due to secondary 

bacterial metabolisms (Lonvaud-Funel, 1999), such as the metabolism of carbohydrates 

and amino acids.  The most important compounds apart from lactic acid that are formed 

are acetic acid, diacetyl (buttery flavour), acetoin, acetaldehyde, 2,3-butanediol, 

2-acetolactate, 2-acetohydroxybutyrate, ethyl acetate and ethyl lactate (Fornachon and 

Lloyd, 1965; Henick-Kling et al., 1994; Kandler, 1983; Mascarenhas, 1984).  Malolactic 

fermentation is conducted by lactic acid bacteria (LAB) that contains the malolactic 

enzyme (MLE).  Lactobacillus, Pediococcus, Leuconostoc and Oenococcus are all genera 

of LAB that are present in wine.  Towards the end of AF spontaneous MLF is mainly 

conducted by Oenococcus oeni (Van Vuuren and Dicks, 1993).  Spontaneous MLF may 

occur any time during or several months after the completion of AF.  Control of MLF entails 

the use of starter cultures to ensure the fast onset and execution of the process.  These 

MLF starter cultures consist of pure culture O. oeni that were isolated from grapes or wine. 

Starter cultures used in South Africa are mostly isolated from grape growing regions of the 

northern hemisphere or cooler viticultural climates.  The climate in South Africa is warm, 
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and therefore the resulting grapes differ in constitution resulting in different sugar and 

acidity levels.  With this higher sugar level and lower acidity the pH’s of South African 

wines are much higher that wines from cooler viticultural regions.  A higher pH leads to 

increased populations of LAB species to grow in wine (Lonvaud-Funel, 1999), which can 

then influence the MLF starter cultures and the process of MLF. 

 Another important compound that is formed by LAB is biogenic amines (BA’s).  If large 

amounts of these amines are ingested, they can cause health problems, such as 

hypertension, respiratory distress, migraine and psychiatric disorders, such as 

schizophrenia (Buckland et al., 1997; Ten Brink et al., 1990).  With consumers demanding 

healthier products and the legislation with regards to the regulation of these compounds in 

wine underway, knowledge of the levels of BA’s are increasingly important. 

 This study therefore in general focused on the evaluation of MLF starter cultures in 

high pH red wines of South Africa and the determination of BA levels that can possibly 

occur. 

 During the first part of this study MLF starter cultures was stretched.  We found that all 

the treatments were able to conduct and finish MLF, but that with stretching natural LAB 

has a greater chance in influencing the composition of the wine rendering it spoilt.  The 

mother tank and lees treatments in most cases conducted the fastest MLF.  The BA’s 

occurred in all treatments, but varied in level according to cultivar and treatments.  The 

identification of the MLF bacteria that was present at the end of MLF was not determined 

and could have aided the results greatly.  From such information one could have deducted 

to what extent the natural LAB played a role in the treatments where the MLF bacteria was 

stretched.  If the natural LAB does take part in the MLF it could happen that these bacteria 

perform MLF with success or off-flavours could develop.  In the case of the former it could 

result into a more complex wine.  In such a case the stretching of MLF bacteria by using 

mother tanks or lees inoculations could be useful when aiming to make a wine blend.  But 

it remains a gamble and therefore the risks involving the stretching of MLF starter cultures 

cannot be stressed enough. 

 During the second part of this study MLF starter cultures were evaluated with and 

without the competition of natural occurring LAB and acetic acid bacteria (AAB) at different 

wine pH’s.  We found that in the case of the combination of the MLF starter culture with the 

Lactobacillus spp. their seemed to be a stimulation of MLF and caused a higher rate of 

malic acid degradation.  This stimulation was speculated to exist due to competition with 
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regards to nutrient availability or it could be that their were more cells present than in the 

other treatments.  Biogenic amines were present after MLF, but only putrescine and 

cadaverine were observed (no histamine and tyramine developed).  The fact that 

inoculation of MLF starter cultures in combination with lower concentrations of other wine 

isolated bacteria (LAB and AAB) seem to enhance the performance of the starter cultures, 

opens the door to an array of studies to ensue.  The LAB selected for this combination with 

starter cultures should be tested for their ability to perform MLF separately, the compounds 

that they develop and the overall influence of the organism on wine quality.  Then the 

influence of the combination should also be tested to this regard.  If successful 

combination of different LAB that influences wine positively could result into more complex 

MLF aromas in wines, enhancing wine quality.  If possible commercial combinations could 

result from such work. 

 During the third part of this study the influence of the addition of commercial tannins 

and a pectolytic enzyme on MLF was evaluated.  We found that in some instances there 

were slight inhibitory effects and in other cases stimulatory effects occurred.  These effects 

were mostly present over the initial stages of MLF, but MLF was able to finish in all the 

treatments.  The phenolic compounds that were measured changed during the process of 

MLF, mostly decreasing during this period.  The BA levels that occurred showed an 

especially high level of putrescine in most of the treatments.  A difference in BA levels was 

found between strains.  Only one of the commercial tannin treatments led to production of 

histamine during this experiment.  Further studies could entail the obtaining of cell 

numbers on a weekly basis.  That could result in a more clear picture of the influence of 

the commercial tannin on the bacterial growth and not only the ability of the starter cultures 

to degrade malic acid.  This study clearly showed that the addition of commercial tannins, 

even at elevated dosages, does not significantly inhibit or stimulate MLF.  The use of 

commercial tannins is a common practice in the South African winemaking process and 

therefore all information with regards to the potential influence of these products on the 

wine is invaluable. 

 During the fourth part of this study inoculation time of MLF starter cultures was 

evaluated.  We found that co-inoculation of MLF starter cultures and yeast before the start 

of AF resulted into a much faster MLF rate than inoculating starter cultures just before the 

end of AF or after AF.  This was also the treatment that did not develop any histamine or 

tyramine.  These results in my opinion can greatly aid winemakers on a practical level.  
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This fast MLF time could ensure the faster movement of wine through the cellar system to 

ease production flow and lessen logistical problems that often occur in the cellars.  The 

only question that remains is if a faster MLF will lead to the loss of the aroma and 

character development in wine that occurs during MLF.  If this is the case, co-inoculation 

will still find a use in the production of wines that is not meant as your premium range. 

 The results of this study provides a wide rage of knowledge with regards to the use of 

MLF starter cultures in high pH red wines of South Africa. 
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