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Abstract

Probability density functions (PDFs) and cumulative distribution functions (CDFs)
play a central role in statistical pattern recognition and verification systems. They allow
observations that do not occur according to deterministic rules to be quantified and mod-
elled. An example of such observations would be the voice patterns of a person that is
used as input to a bicmetric security device.

In order to model such non-deterministic observations, a density function estimator
is employed to estimate a PDF or CDF from sample data. Although numerous density
function estimation techniques exist, all the techniques can be classified into one of two
groups, parametric and non-parametric, each with its own characteristic advantages and
disadvantages.

In this research, we introduce a novel approach to density function estimation that
attempts to combine some of the advantages of both the parametric and non-parametric
estimators. This is done by considering density estimation using an abstract approach in
which the density function is modelled entirely in terms of its moments or characteristic
function. New density function estimation techniques are first developed in theory, after
which a number of practical density function estimators are presented.

Experiments are performed in which the performance of the new estimators are com-
pared to two established estimators, namely the Parzen estimator and the Gaussian mixture
model (GMM). The comparison is performed in terms of the accuracy, computational re-
quirements and ease of use of the estimators and it is found that the new estimators does
combine some of the advantages of the established estimators without the corresponding
disadvantages.
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Opsomming

Waarskynlikheids digtheidsfunksies (WDFs) en Kumulatiewe distribusiefunksies (KDF's)
speel 'n sentrale rol in statistiese patroonherkenning en verifikasie stelsels. Hulle maak dit
moontlik om nie-deterministiese observasies te kwantifiseer en te modelleer. Die stempa-
trone van 'n spreker wat as intree tot 'n biometriese sekuriteits stelsel gegee word, is 'n
voorbeeld van so ’n observasie.

Ten einde sulke observasies te modelleer, word 'n digtheidsfunksie afskatter gebruik om
die WDF of KDF vanaf data monsters af te skat. Alhoewel daar talryke digtheidsfunksie
afskatters bestaan, kan almal in een van twee katagoriee geplaas word, parametries en
nie-parametries, elk met hul eie kenmerkende voordele en nadele.

Hierdie werk 1& 'n nuwe benadering tot digtheidsfunksie afskatting voor wat die voordele
van beide die parametriese sowel as die nie-parametriese tegnieke probeer kombineer. Dit
word gedoen deur digtheidsfunksie afskatting vanuit 'n abstrakte oogpunt te benader waar
die digtheidsfunksie uitsluitlik in terme van sy momente en karakteristieke funksie gemo-
delleer word. Nuwe metodes word eers in teorie ondersoek en ontwikkel waarna praktiese
tegnieke voorgelé word. Hierdie afskatters het die vermoé om 'n wye verskeidenheid digt-
heidsfunksies af te skat en is nie net ontwerp om slegs sekere families van digtheidsfunksies
optimaal voor te stel nie.

Eksperimente is nitgevoer wat die werkverrigting van die nuwe tegnieke met twee geves-
tigde tegnieke, naamlik die Parzen afskatter en die Gaussiese mengsel model (GMM), te
vergelyk. Die werkverrigting word gemeet in terme van akkuraatheid, vereiste numeriese
verwerkingsvermoé en die gemak van gebruik. Daar word bevind dat die nuwe afskatters
wel voordele van die gevestigde afskatters kombineer sonder die gepaardgaande nadele,
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Chapter 1

Introduction

1.1 Motivation and topicality

We have grown accustomed to computers easily performing tasks that we, as humans,
consider to be difficult. It is known that a computer can be relied upon to produce the exact
same answer each time it performs the same arbitrarily complex numerical calculation, this
being due to the extreme deterministic nature of the machine and the problem.

Humans, on the other hand, excel at different kinds of tasks, such as recognising some-
one we have met before from their voice. This comes so naturally to us that we consider it
to be a trivial exercise. However, attempting to duplicate such behaviour using a computer
is not a trivial task at all as the problem can only be represented in a non-deterministic
fashion. Consider the task of recognising a person from their voice as an example: although
a certain phrase spoken by a certain individual never sounds exactly the same as previ-
ously, it does contain some characteristics that enable humans (and even some animals)
to uniquely identify the person (and the phrase) from their voice. This is sometimes even
possible after the sound was severely distorted by, for example, a telephone or recording
device.

One way of solving such non-deterministic problems using a computer is to employ
some form of statistical model that allows non-deterministic observations to be quantified.
An example is found in a speaker verification system which verifies the claimed identity of a
person (speaker) based on their voice [1, p. 621]. A recording of the person claiming some
identity is presented to the system, which then extracts statistical features from it. These
features are then compared to stored values, which are known to represent the claimed

person, to ensure that they are within certain specified tolerances. If they are found to be



sufficiently close to the known values, the claimed identity is accepted, else it is rejected.
The sensitivity of the system is adjusted in order to minimise a certain cost function (or

maximise a utility function), which takes into account the following:
e the probability of the system making certain types of incorrect decisions and
o the practical implications associated with each type of incorrect decision.

Research into this and related fields is far from its infancy and has been going on for
many decades. The dream of a machine capable of understanding spoken human language
was envisioned as early as the 1950s [1, p. 604]. Although continual and impressive
progress has been made ever since then, research in this field is still far from exhausted
and only recently have we started encountering everyday consumer products employing
these techniques. Examples include biometric security devices, voice portals and electronic
devices responding to voice commands.

Research into techniques allowing us to address non-deterministic pattern recognition
problems, such as depicted in the example above, is formalised in the field of statistical
pattern recognition. This allows us to address these problems systematically and within an
abstract mathematical framework.

1.1.1 Density function estimation

At the heart of statistical pattern recognition are the probability density function (PDF)
[2] and cumulative distribution function (CDF). These functions allow observations that
do not follow a deterministic pattern to be characterised and quantified. They are closely
related to each other, with the PDF being the derivative of the CDF, and whether a pattern
recogniser directly employs a PDF or CDF depends on its implementation details. For the
purposes of the following paragraphs, the terms PDF and CDF can be used interchangeably.

In the speaker recognition example presented earlier, a PDF would be used to quantify
the probability that a statistical feature takes on values in different ranges of its value
space. In doing this, the feature is not associated with a single “correct” value, but is
rather specified in terms of how likely it is to attain a value within a certain range. If the
values that the feature assume is concentrated in a single dense cluster, the PDF provides
information about the location, size and shape of the cluster. Such a single feature that can
be represented by a real scalar is referred to as a univariate (or one dimensional) random

variable, with its associated PDF being a univariate real function of the random variable.



A PDF can also describe the values that is simultaneously attained by N feature vari-
ables, in which case the features under consideration are combined into an N-dimensional
feature vector. These underlying features comprising the feature vector are usually related
to each other in some way (if not, they could be treated independently from each other as
N separate features). A PDF corresponding to such a feature vector, and its underlying
random variable, is referred to as multivariate (or N-dimensional).

In order for a practical recogniser to characterise a feature (which represents a random
variable), it is required to estimate a PDF from a number of data samples representing
possible outcomes of the feature. This task is performed by the density function estima-
tor during the training phase of the system. For example, the speaker verification system
introduced above would be presented with a number of voice recordings, obtained in a con-
trolled environment, all from a certain known speaker. Features would then be calculated
from these inputs and a PDF would be trained to correspond to this speaker. These PDFs
are then later used when verifying the claimed identity of an unknown speaker.

The density function estimator therefore infers characteristics about the underlying
density function of a random variable from a number of random samples that represent
outcomes of the random variable. Once it is trained, it has the ability to provide the value
of the density function at any point within its domain (the sample space). Estimators
differ in the way in which they obtain the estimate, the internal representation used to
store information about the estimate and the constraints imposed on the density functions
that it can accurately approximate. 'Two important factors that characterise an estimator
is its bias and its consistency. Bias refers to whether the expected value of the estimate
tends to the actual PDF in the limit where the number of samples from which it is trained
tends to infinity. If it does tend to the actual PDF, then the estimator is said to be
unbiased, which is a desirable property. Consistency refers to whether the variance of the

estimate disappears (tends to zero) in the same limit, which also is a desirable property.

1.1.2 Our research

Established techniques that estimate PDFs from sample data can be broadly characterised
according to the basic approach that they follow:

1. Estimate the PDF in terms of some (possibly highly complex) function with a number
of free parameters which are selected in order to optimally fit the PDF to the sample
(training) data (we include mixture models [3] in this approach).



2. Estimate the PDF in terms of a function or rule that is defined directly on the training
samples.

The first approach is known as the parametric approach and the second one known as the
non-parametric approach. Although a number of established and respected techniques,
each falling into one of these groups, exist, none are without their disadvantages. Further-
more, as each of these two approaches has its own set of unique advantages and disadvan-
tages, we did not attempt to develop another estimator along the lines of one of the above
approaches. Instead, we chose to follow a novel approach which resulted in estimators that
combine aspects of both of the above approaches. These estimators manage to combine ad-
vantages of existing estimators without the disadvantages normally associated with them.
The new estimators were based on the following concepts characterising random variables
at a very fundamental level:

Moments These are real-valued scalars, characterised by their order, which are often used
to characterise aspects of families of PDFs. For example, a Gaussian random variable
is characterised by its mean and variance, both of which are moments. Inspired by
the Principle of moments [4], which states that PDFs encountered in practice are
determined entirely in terms of their moments {(up to infinite order), we consider

ways of estimating arbitrary PDF's using the values of a finite number of moments.

Characteristic function This is a complex-valued function that is related to the PDF
through the Fourier transform and which uniquely determines the PDF. Motivation
for using this is drawn from the fact that it provides a frequency domain representa-
tion of the PDF, which often allows a more efficient approximation to be constructed
than one based in the spatial domain. Using this does, however, require a way of

estimating a characteristic function from sample data, which is also presented.

As the work is novel, it was decided to limit all research to univariate random variables
(and therefore univariate density functions). This is due to the “curse of dimensionality” [3,
p. 7] that is associated with multivariate random variables. It is recommended that ways
of extending the techniques developed in this thesis to the muitivariate case be considered

for future research.



1.2 Background

The following sections provide background information that is required to view the rest of
the chapter in perspective. An overview of random variables, moments and the character-
istic function is provided. This is followed by some examples showing the application of
PDFs and CDFs to pattern classification and hypothesis tests which illustrates the central
role that PDF and CDF estimators fulfil in pattern recognisers.

1.2.1 Random variables

A real random variable maps all points in a sample space, representing outcomes of a
random experiment, onto the real line [2]. When dealing with random variables, we are
usually not concerned about the mapping itself, but mostly with the values that the random
variable attains. This transforms the problem from the domain of the sample space to the
domain of the random variable, allowing the treatment of different types of events (from
different sample spaces) in an abstract and consistent fashion without requiring knowledge
of the actual sample space. For the remainder of the document, the term “sample space”
is used interchangeably to refer to both the domain of the random variable as well as the
domain representing the sample space of the actual outcomes (with the exact meaning
depending on the context). Important concepts related to random variables, required
during the remainder of this document, are now presented in greater detail.

Let X be a real univariate random variable, with z a single outcome {corresponding to
some outcome in the sample space). It is fully characterised by its cumulative distribution
function (CDF), Fx(z), which is defined as follows:

Fx(z) = P{X < z}. (1.1)

We see that the CDF characterises X in a non-deterministic fashion by specifying the
probability of the outcomes of X attaining values within a certain range, without limiting
a specific outcome in any way (in terms of all possible outcomes). The probability density
function (PDF) of X,

d
T) = —
fx(@) = -

is related to the CDF and provides an indication of the concentration of the outcomes at

Fx(z), (1.2)

some point in the sample space.
Moments are scalars, defined entirely by the PDF, that roughly characterise the location



and spread of a random variable with regards to a specific reference point (usually the origin
or the mean value). The moments of a univariate random variable are characterised entirely
in terms of their order and the point around which they are calculated, with the n’th order
moment around zy defined by:

o0
o) = [ (o~ ) fx(o) do (13)
-0

Some examples of well-known moments are the mean (first moment around the origin) and

the variance (second moment around the mean). Parametric density functions are often

characterised in terms of their moments (such as the mean, variance, skew and kurtosis).
The characteristic function, ®x(w), is a complex-valued function that is also defined

entirely in terms of the PDF,

By (w) = f_ " fel@)eeds. (1.4)

The above expression shows the characteristic function to be equal to the complex conjugate
of the Fourier transform [5, p. 82]. It is usually used analytically to calculate the moments
of a PDF as it often provides an easter to use alternative to the expression defining the

moments.

1.2.2 Pattern classification

In order to illustrate an application of density functions, we now present a short introduc-
tion to pattern classification. Highly detailed accounts of this can be found in Duda and
Hart [6], Bishop {3], Fukunaga [7] and Devijver and Kittler [8].

A pattern classification system classifies unlabelled input data as belonging to a class
selected from a closed set of candidate classes [9]. We limit ourselves to non-deterministic
classifiers that operate on random input data, allowing the use of statistical pattern recog-
nition techniques.

Each class is represented by a probability density function (PDF) that describes out-
comes of the data, z, associated with the class. The PDF corresponding to the ¢’th class

{known as the class-conditional density function) is given by

Fx(z|my). (1.5)



If we also know the prior probability of the i’th class, P(m;), we can express the posterior
probability of the ¢'th class, conditioned on the observation z, using Bayes’ Theorem [2, p.
17):

2 fx(z{my) P(my)

This provides an expression for the probability that the ’th class generated the observed

(1.6)

data z. Note that this quantity is automatically normalised so that >, P(m;{z) =1 (due
to the denominator term). If we further assume all misclassifications to carry the same
penalty, the observed data is selected as belonging to the class ¢, the one with the highest
posterior probability:
¢ = argmax {P{m; | z)}. (1.7)
i

As the denominator term in the expression defining the posterior probability is the
same for all values of i, this classification only depends on the prior probability and the
class-conditional density function. If it is further assumed that all classes have equal prior
probability, which is a reasonable choice in the absence of any evidence indicating the
contrary, the above expression reduces to

c = argmax {fx(z|mi)}, (1.8)

which shows that the classification is performed entirely in terms of the class-conditional
PDFs. These last two expressions represent classifiers that minimise the expected loss (i.e.
the long-term misclassification error) and correspond to the Bayes rule (for minimum loss)
[8, p. 24] [7, p. 52]. Although it is likely that they would still misclassify some inputs,
they represent the optimal classifier solution for a given set of class-conditional PDFs and
prior probabilities.

In both these classifiers, the class-conditional density function played a fundamental
role in controlling the operation of the classifier and in ensuring optimal performance. In
practice, each of these PDFs would be estimated, from labelled sample data with known
class membership, by some PDF estimator. The PDF estimator therefore plays a central
role in determining the accuracy of a classifier.

1.2.3 Hypothesis tests

Another application of PDF estimation is found in hypothesis testing. A simple, but
complete definition of hypothesis testing is encountered in [10, p. 75]:

7



Hypothesis testing is the process of inferring from a sample whether or not to
accept a certain statement about the population.

The output of a hypothesis test is a binary value, either indicating the acceptance of
some hypothesis (called the null hypothesis or Hp) or the rejection of it (which implies
acceptance of the alternative hypothesis or H)). In order to construct a hypothesis test, a
test statistic, ¢, is first selected: this is a random variable, that is defined as a function of
a number of observations from the sample space, with a known PDF under the condition
that the null hypothesis holds. The space containing the values of the test statistic is then
partitioned into two regions by the discriminant function 4(t), one corresponding to the
null hypothesis and one corresponding to alternative hypothesis (called the critical region).
Although this also partitions the sample space into two regions, there are good reasons to
prefer the use of a test statistic above simply partitioning the sample space directly:

1. By combining multiple, possibly multivariate, observations into a single number, a
reduction in the dimensionality of the problem is achieved [11, p. 50]. Ideally, the
test statistic summarises only enough information about the observation so that the
truth (or falsehood) of the null hypothesis can be established.

2. Often, the PDF of the test statistic is known even though the PDF of the underlying
sample space is not {10, p. 31]. An example of this is the creation of a test statistic by
summing a large number (typically more than 100) of independent observations all
corresponding to the same unknown PDF. According to the central limit theorem [2,
p. 118, the test statistic would have a Gaussian (normal) distribution with a mean
and variance that can be obtained from the mean and variance of the underlying PDF
(describing the sample space). As the mean and variance of the underlying PDF may
be estimated without any knowledge of the underlying PDF, this test statistic can
be used with any underlying PDF.

In the case of a one-tailed test, the discriminant function simply compares the value of

the test statistic to some threshold:

J(t) _ Hy: t>1, ' (19)

H, : elsewhere,

where
Pt<ts) =0 (1.10)

8



and « is known as the significance level. This level provides a value for the false rejection
rate (FRR), which is defined as the probability of rejecting a correct hypothesis. From the
definition of the CDF, the threshold, ¢,, can be expressed entirely in terms of the CDF of
the test statistic:

Fr(t,) = a. (1.11)

This allows a hypothesis test with a fixed FRR to be constructed from knowledge of the
CDF of the test statistic. It should, however, be noted that the accuracy with which
the FRR can be controlled (by selecting o) depends directly on the accuracy of the CDF
estimate. Inaccurate estimates would therefore result in values of FRR that could greatly
differ from the required significance level.

In classical hypothesis tests [12], the form of the PDF (or CDF) of the test statistic
is often known, due to the nature of the problem or the way in which the test statistic
is constructed. In applications where this is not the case, the PDF (or CDF) of the
test statistic has to be estimated from sample data. Consequently, the accuracy of the
hypothesis test is strongly dependent on the accuracy of the CDF estimator.

1.3 Existing techniques

Density function estimators can be broadly classified into two categories: parametric
and non-parametric. Although Bishop [3] prefers an additional category, namely semi-
parametric {which is used to classify mixture densities), we consider the semi-parametric
techniques together with the parametric (viewing what Bishop refers to as a parametric
estimator simply as a highly constrained parametric estimator). This is done for a sim-
ple reason: we investigate existing techniques in order to determine their strengths and
weaknesses (in order to attempt improvements). As far as that criteria is concerned, this
classification divides the estimators into two broad categories, each with its own distinc-
tive advantages and disadvantages. Also, we do not consider techniques which are highly
constrained in terms of the density functions that they can estimate (such as one repre-
senting a PDF using only a single Gaussian PDF). We focus our attention exclusively on
techniques that have the ability to (at least in principle) estimate arbitrary PDFs, although
they may have drawbacks in practice. We select a single estimator, that is representative
of the class of estimators, from each class of estimators in order to illustrate the philosophy
behind each of the two classes of estimators. '

In the following sections, we assume X to be a univariate random variable with fx(z)




representing its PDF estimate and Fy (x) its corresponding CDF estimate. z; represents
the #’th sample (from a total of N, samples) drawn from the sample set from which the

estimates are obtained.

1.3.1 Non-parametric estimators

Well-known non-parametric density function estimators include the Parzen (a special case
of generalised kernel techniques), & Nearest Neighbour and histogram methods [8] [3] [7].
All these estimators utilise the sample data directly when calculating an estimate and
provides no way (except for sampling of the estimate itself) of representing the sample data
in a more compact fashion. The advantage of this approach is that, as these techniques
assume very little about the PDF, they are applicable to a wide range of PDFs. Obtaining
an estimate is also easy as it does not involve complicated or iterative parameter estimation
techniques. Unfortunately, these techniques suffer from problems relating to computational
requirements: as their computational requirements increase with the size of the sample
space, they do not scale very well to large sample sizes.

In Chapter 4, experiments were conducted to compare new estimation techniques
with established ones. The Parzen estimator was selected as representative of the non-
parametric estimators as it provides a good balance between simplicity of use (the k Nearest
Neighbour algorithm involves a search which complicates it) and the accuracy of estimates
(the histogram is a rather crude technique to use on continuous random variables). A
Parzen PDF estimate is obtained by expressing the PDF as a weighted sum of kernel
functions, each one centered at the location of a sample:

. 1 Nz-1
fx(@) = 5 2 (o - ), (1.12)
T =0

where () represents the kernel function used in the approximation. In order for this
estimate to represent a valid PDF, each kernel function should also be a valid PDF. From
[8] we see that this estimate is biased, as fx(z) tends to fx(x) convolved with ¢(z) in
the limit where N, — oo. Also, the variance of the estimate tends to zero as N, — o0,
proving it to be a consistent estimator (as the estimate improves with an increase in the
number of samples). The kernel therefore plays an important role in the accuracy of the
estimator as it determines the amount of smoothing that is applied to the estimate: if too
little smoothing takes place, the estimate will be over-fitted to the samples (and therefore
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seem noisy), while too much smoothing may hide small (but possibly important) features
of the PDF.

1.3.2 Parametric estimators

Mixture models present a practical technique that provides a good balance between the
non-parametric estimators and the highly constrained traditional parametric estimators.

A mixture model approximates a PDF using a weighted sum of density functions:

M-1
fx(@) = wipi(a), (1.13)
i=0
where ;{z) represents the i’th mixture density, w; its corresponding weight and M the
number of mixtures. Although this expression looks similar to that defining the Parzen
estimator, there are two major differences:

1. The shape and location of each mixture density does not correspond directly to a
single sample (as the Parzen estimator kernel functions did), but is selected to be
optimal according to some criteria. An important implication of this is that the
parameters defining the mixture density are not as easily determined as in the case
of the Parzen estimator.

2. There are usually significantly fewer mixture components than there are data sam-
ples. If the evaluation of each mixture density requires the same computational
resources as the evaluation of each Parzen kernel function, the mixture model would
be significantly more efficient. The computational requirements of this estimator are
also independent of the sample size and only a function of the number of mixtures.

The above two differences also represent, respectively, the biggest disadvantage and advan-
tage that the mixture models have above the non-parametric estimators. A popular choice
of density function used in mixture models is the Gaussian density function, which is char-
acterised only by its mean and variance. In order to train the estimator from a sample set,
the number of mixtures is first selected (usually using some heuristic rule or with the aid of
a clustering algorithm). Parameter values are then calculated so that the resulting mixture
PDF estimate shows a good correspondence to the sample set. Training algorithms often
select the parameters according to some rule that maximises the likelihood of the mixture

estimate with respect to the parameter values.
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The Ezpectation-Mazimisation (or EM) algorithm [13] [3, p. 65] is an elegant iterative
algorithm that allows one to obtain such a maximum likelihood solution. One drawback
of this algorithm is that it converges to a maximum likelihood solution corresponding to
a local maximum of the likelihood function (i.e the estimate improves up to a certain
maximum which may or may not represent the optimal solution). An estimator could
therefore, for a certain choice of PDF, sometimes provide highly optimal results, while
at other times provide less optimal results. The outcome of a specific training run is
highly dependent on the specific sample set and the (often random) initial conditions
characterising the training. Estimators employing such iterative training algorithms would
generally exhibit higher values of variance in their estimates that estimators that employ

closed-form solutions (such as the Parzen estimator).

1.3.3 Other techniques

A number of techniques that address the shortcomings of traditional estimators or prob-
lems related to density function estimation are now considered. Preference was given to
techniques that exhibited some similarity to those presented in this work (e.g. the use of
moments or Fourier series representations) or that addressed problems stated in previous
sections. A short overview of the operation of each technique is provided and similarities
and differences between these techniques and the new techniques presented in this work
are briefly considered.

Some of these techniques represent improved training algorithms or employ paramet-
ric estimators using mixtures of flexible basis functions. In other examples, solutions to
problems from other branches of engineering and mathematics are applied to the density

estimation problem by identifying parallels between these fields.

Improved training algorithms Bors and Pitas [14) consider the robust estimation of
parameters characterising a Radial Basis Function (RBF) neural network (15, p.
256] that represents a density function using a Gaussian mixture model. The mix-
ture models are usually trained using an iterative algorithm based on second-order
statistics (such as the EM algorithm). A drawback of second-order statistics are
their sensitivity towards outliers in the training sample set and their large bias when
approximating distributions with long tails. They propose the use of robust statis-
tics, based on the median instead of the mean, in order to more accurately estimate
the parameters of the mixture density function. Their algorithm (Median RBF)
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outperforms estimators based on classical statistics in terms of accuracy when esti-
mating univariate and bivariate density functions. Although this does not reduce the
complexity of the mixture model training procedure, it does reduce the bias of the
estimate.

Viasssis and Likas [16] also address the training of mixture densities by considering
the selection of the optimal number of mixtures to use in a univariate Gaussian
mixture model density function. They present a modified training algorithm that
dynamically adapts the number of mixture components while iteratively estimating
the mixture parameters. Their solution involves the use of the sample kurtosis,
which provides a measure of how closely a sample set corresponds to a Gaussian
distribution {as the kurtosis of a Gaussian distribution is equal to 0). The mixture
model is initialised with a small number of mixtures and the optimal parameter values
are estimated using the EM algorithm. Once the training algorithm converges, the
weighted kurtosis is computed (as a linear combination of the sample kurtosis of
each mixture component). If the absolute value of the weighted kurtosis is found
to be too large, implying that at least one significant mixture component is not
modelling Gaussian-distributed data, the number of mixtures are increased. This
procedure is repeated until the absolute weighted kurtosis attains an acceptably low
value. Estimates obtained using this procedure are expected to exhibit lower bias
than those obtained by selecting the number of mixtures using a less systematic
approach.

Although these algorithms address some of the concerns associated with mixture
models (as they reduce the bias of the estimates and improve robustness) they still
do not provide a closed-form solution to the estimate. The possibility of the algorithm
converging to a locally optimal solution therefore still exists. Also, both algorithms
are biased towards estimating a density function that is a linear combination of
Gaussian density functions. Therefore, there are still applications in which a Gaussian
mixture model, even with the improved training algorithms, would not represent the

optimal choice of estimator.

Spectral density estimation Pagés-Zamore and Lagunas [17] present a technique for
multivariate density function estimation based on established spectral estimation
techniques. They obtain a density function ‘estimate using a memoryless non-linear
system (NLS) that expresses the estimate in terms of a Fourier series. The Fourier
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series coeflicients are inferred from a set of data samples (independently and identi-
cally distributed according to some underlying density function) so that the expected
mean-squared error between the underlying density function and the estimate is min-
imised. Parallels are drawn between power spectral density (PSD) estimation and
density function estimation: the relationship between the PSD and the autocorre-
lation function of a random process is similar to the relationship between a density
function and its characteristic function (both are Fourier transform relationships).
By employing established PSD estimation techniques, a density function estimate
is obtained from the empirical characteristic function estimate. An optimal filter
is computed that provides an estimate of the density function at a single location
in the sample space from a set of training samples. Three methods of obtaining
the filters are considered: minimum variance method (MVM), normalised minimum
variance method (NMVM) and periodogram method (PM). The accuracy of the new
techniques are compared to the histogram method by estimating a bivariate density
function from sample data and it is found to outperform it in terms of accuracy.

Bercher and Vignat (18] and Kay [19] also follow an approach based on the rela-
tionship between PSD estimation and density function estimation. They model the
density function as an auto-regressive {AR) process [20] and consider ways in which
to estimate the model parameters so as to produce an accurate estimate. It is stated
that density function encountered in practice are not likely to be exactly modelled
by an AR process and would require a large number of coeflicients in order to obtain
an accurate estimate. As such long estimates suffer from low stability, regularization
techniques are combined with a long AR estimate in order to obtain a stable and
accurate estimate. Regularization, however, requires some prior knowledge about
the smoothness of the density function. The AR estimator is used to estimate the
density function and the entropy of the random variable from sample data and its
accuracy is compared to a kernel estimator, a histogram estimator and Vasicek’s es-
timate. It is found to compare favourably with these techniques in terms of accuracy

and computational requirements.

Although these techniques express the estimate in terms of a Fourier series, which is
similar to some of the new techniques presented in this work, very little consideration
is given to the effect that this has on the estimate. Also, no consideration is given to
the relationship between an estimate obtained using these PSD techniques and one

obtained using an established estimator (such as the Parzen estimator).
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Orthogonal series Silverman [21] considers a number of density function estimation
techniques of which the orthogonal series estimator, originally attributed to Cen-
cov in 1962, is one. It operates by expressing a density function in terms of a linear
combination of orthogonal basis functions. The weight associated with each basis
function is obtained by considering an empirical estimate of the projection of the
data samples onto the function. Estimating a density function on a closed interval
from a number of samples using a Fourier series is presented as an example. Although
the necessity of a frequency domain windowing function is mentioned, no regard is
given to the requirements of windowing functions, the effect of truncation of the se-
ries and the selection of the fundamental frequency. All these issues are considered
in detail in the remainder of this work, when new density function techniques that

also employ a Fourier series, are introduced.

Wavelets Vannucei [22] consider the estimation of density functions using wavelets. Al-
though these estimators are strictly a special case of orthogonal series estimators,
they hold advantages above techniques employing histograms, kernels and (classical)
orthogonal series when representing discontinuities and local oscillations. This is due
to the property of wavelets that allow functions that are localised in space and in
frequency to be accurately approximated. Although consideration is given to the
multivariate case, the techniques are only treated in detail for the case of univariate
density functions. Experimental results show that linear wavelet estimators are able
to accurately estimate smooth density functions while non-linear estimators are best
suited towards discontinuities. The accuracy of the estimates are, however, depen-
dent on choice of wavelet family and no single family performs optimally over a range
of different density functions.

Another problem with wavelet estimators is selection of the number of wavelets to
use in the approximation: too few terms would cause the estimate to neglect details
and too many terms would cause over-fitting (the so-called “Dirac disaster”). The
latter problem is addressed in a related publication by Vannucci and Vidakovic [23].
A technique that penalises the roughness of an estimate is developed and the Fisher

information functional is proposed as a measure of roughness.

Similar to the new techniques presented in this work, these estimators attempt to
combine the advantages of both the parametric and non-parametric estimators while
omitting the disadvantages. The new techniques consider the mathematical relation-
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ship between density functions and other quantities characterising them (moments
and the characteristic function), while the wavelet approach employs a flexible para-
metric model. However, both sets of techniques have the ability, in principle, to
estimate arbitrary density functions with the minimum of prior knowledge.

Moments Lindsay, Pilla and Basak [24] present a technique of estimating a univariate
distribution function when the values of a number of moments of a random variable
are known. It expresses the distribution function in terms of a mixture distribution
function and presents techniques for obtaining optimal values of mixture distribution
parameters. The parameters are calculated so that the moments of the resulting
distribution function, up to order p, are the same as the moments estimated from
the training sample set. A way of optimally selecting the number of moments to use
is also presented. Experimental results shows the technique to produce reasonably
accurate approximations of linear combinations of chi-square variables when using
a mixture of gamma distributions. The selection of basis functions employed in the
mixture distribution does however influence the accuracy of the approximation. Prior
knowledge of the distribution function being approximated is therefore a requirement
for obtaining an optimal estimate.

One of the new techniques presented in this work also computes a distribution func-
tion from the values of a number of moments, but using a fundamentally different
approach: a distribution estimate is obtained directly in terms of the values of num-
ber of moments by using the mathematical relationship between the moments and

the distribution function of a random variable.

Inversion integrals Abate and Whitt [25] [26] consider applications in operations re-
search and queueing models where probability density and distribution functions are
often characterised in terms of transforms (of the density functions). Although some
transforms can be inverted using analytical techniques or tabulated formulas, there
are many transforms which can only be solved by numerically evaluating the in-
version integral. Techniques for evaluating such an integral is considered and it is
shown that employing the trapezoidal rule is equivalent to using a Fourier series ap-
proximation. The Fourier series coeflicients are calculated in terms of the analytical
representation characteristic function and a lot of attention is paid to calculation the
approximation error bounds. A similar approach is taken by Witkousky [27] where
they employ an inversion formula that expresses the CDF in terms of an integral
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involving the characteristic function. This integral is numerically evaluated in order
to compute accurate confidence intervals of a linear combination of Student’s ¢ and
Fisher-Snedecor’'s F' random variables. Although these techniques of evaluating the
inversion integral also considers the relationship between the density function and
its characteristic function (similar to some of the new techniques presented in this
work), they cannot be directly applied towards density function estimation as they

require the characteristic function to be known analytically.

1.3.4 Requirements for a new estimator

From the properties of existing PDF estimation techniques, we can deduce a list of require-

ments that any new estimator should meet if it is to improve on the established techniques.

The following requirements are obtained by considering the combined advantages and dis-

advantages from both the parametric and the non-parametric estimators:

Ability to estimate arbitrary PDFs with little or no prior knowledge about their
shape.

Easy to train, preferably employing a closed-form solution. Iterative training schemes

are undesirable.

Computational requirements (for the evaluation of a density height) should prefer-
ably be independent from the training sample-size. This would most likely imply a

parametric technique.
Exhibit low variance (when compared to techniques having similar accuracy).

Consistent (implying that the variance of the estimate decreases as the sample size

increases).

It should be amenable to practical implementation.

1.4 Objectives

Our research objectives were focussed on considering theoretical and practical PDF and

CDF estimators, based entirely on moments and the characteristic function, using an

abstract mathematical approach. The following research objectives were set:
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e Determine the feasibility, suggested by the Principle of Moments, of estimating a
PDF and a CDF entirely in terms of the values of a finite number of moments.

¢ Consider practical techniques of estimating a PDF and a CDF directly in terms of
the values of a finite number of moments.

e Determine the feasibility of estimating a PDF and a CDF in terms of a sampled

characteristic function.

s Consider practical techniques of estimating a PDF and a CDF directly in terms of a
sampled characteristic function, estimated from sample data.

o Consider ways in which the characteristic function can be estimated from sample
data.

e Experimentally compare new estimators, that were developed in the course of this

work, with established techniques.

1.5 Contributions

The following contributions, published here for the first time (except for a conference
publication by the author [28]), is a result of the research that was conducted within the

scope of this project:

o Expressions, derived from basic principles, for PDFs and CDFs in terms of a finite

number of moments.
¢ Practical techniques for estimating PDFs and CDFs from a finite set of moments.

e Expressions, derived from basic principles, for PDFs and CDF's in terms of a sampled
and windowed characteristic function. This includes a result which presents the
Parzen density function estimator from a frequency domain perspective.

¢ Practical techniques for estimating PDFs and CDFs from a number of samples, by
using the characteristic function estimator.

¢ A consistent estimator for a sampled and windowed characteristic function that op-

erates from sample data.
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e A qualitative comparison between these parametric estimators and established para-

metric and non-parametric estimators.

1.6 Overview of the document

The remainder of the document is organised, as follows, into 4 further chapters:

Chapter 2 The feasibility of estimating a probability density function (PDF) in terms of
the values of sample moments is considered and practical techniques are developed
to this end. This leads to consideration of the feasibility of estimating a PDF from
the characteristic function, also including the development of practical techniques.
Section 2.4.5 and Section 2.5.3 provide practical techniques for obtaining a PDF
estimate in terms of a finite number of moments and in terms of sample data.

Chapter 3 Cumulative distribution functions (CDFs) are developed in the same fashion
as was done for PDFs in the previous chapter. A large part of the theory is inherited
from Chapter 2 and this chapter mostly addresses issues specific to CDF estimation
from moments and the characteristic function. Again, a number of practical tech-
niques are developed for estimating the CDF using moments of sample data. Section
3.4.3 and Section 3.5.2 provide practical techniques for obtaining a PDF estimate in
terms of a finite number of moments and in terms of sample data.

Chapter 4 Experiments that compare the new techniques to established ones (Parzen
and GMM) are conducted and the results are shown. Experiments were conducted
on synthetic data and an experiment that employed data from a speaker verification
system was also conducted. It was found that the new techniques did combine some
of the advantages of the established techniques, as was desired. A summary of the

characteristics of all the estimators is presented in Section 4.7.

Chapter 5 Conclusions about the work and recommendations for future work are stated.
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Chapter 2

Novel probability density function

estimators

2.1 Introduction

A novel univariate parameterised density function estimator is now developed. It employs
a technique that estimates the probability density function (PDF) in terms of a finite
number of sample moments. The feasibility of estimating a PDF in terms of moments is
first considered from a theoretical perspective. After the feasibility of this idea is asserted,
a number of practical techniques that express a PDF estimate directly in terms of a finite
number of moments are then developed.

During the investigation of the feasibility of estimating a PDF from moments, it is
noted that the characteristic function plays a central role. The second part of the chapter
devotes itself to the estimation of PDFs using the characteristic function, without requiring
the use of moments, allowing the estimate to be obtained directly in terms of sample data.
The feasibility of this is also first confirmed, after which a practical technique employing
a Fourier series is presented. It is compared to the technique employing moments and it
is concluded that it is to be preferred above the moments technique in cases where actual

sample data is available.

2.2 Motivation

In the previous chapter, two established density function estimators, the GMM and the
Parzen estimator, were introduced. We saw that, although both possessed highly desirable
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characteristics, each one suffered from some disadvantages that the other one did not. It
was stated that it would be desirable to find a density function estimator that combines
the advantages of both estimators but omit the disadvantages.

Such an estimator would follow a parametric approach, allowing it to compactly rep-
resent the information contained in a sample set, in order to limit the computational
requirements. It is also desirable for it to employ some generic parametric model with
basis functions that is not based on some specific PDF, allowing it to perform equally well
over different PDFs. As the moments of a random variable are often used to define and
characterise a random variable, it was decided to attempt the creation of a PDF estimator
based on moments (for which a more detailed motivation is found in Section 2.4). The
values of a finite number of moments would then replace the sample data representing the
PDF and an estimate, that can be evaluated anywhere in the sample domain, would be

obtained in terms of these moments.

2.3 Definitions and Background

Some general statistical definitions and mathematical background relating to the PDF
estimation techniques presented in this chapter are now presented. Unless otherwise stated,
all random variables are assumed to be univariate (with their outcomes taking on scalar
values). In-depth explanations of the theory presented here are found in Peebles [2], Kendall
and Stuart [4], Stremler [5] and Proakis and Manolakis [20].

2.3.1 Moments

The expected value (or expectation) of a function, g(x), of a random variable, X, with
known PDF, fx(z), is defined by an integral expression:

E {g(X)} = [ : 9(@) fx (@) d. (2.1)

It is seen that, for a given function g(x), the expected value is only dependent on the PDF.
Furthermore, a set of functions, each corresponding to a different g(x), can be used to
calculate a set of expected values that characterise the PDF. Through careful selection of
the set of functions, each expected value can contain unique information about the PDF
that is not contained in any of the other values. This is an important conclusion as it

allows a finite number of properties characterising a PDF to be represented by a finite set
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of real numbers, making parameterised PDF models possible. An example of this is the
classification of a PDF in terms of its mean, variance and skew: these values are referred
to as moments and simply correspond to certain choices of g{x).

Moments are characterised by their order, n, and a constant representing the point
around which they are calculated, zy. In this text, u/,(zo) refers to the n’th moment of X

around zg and is calculated by the integral

o0

potoo) = [z -0 fxta) do (22
—o0

Two special sets of moments are often encountered in practice: first are the moments

around the origin, designated by m,,,

mo= [ ::x"fx(w) dz (2.3)

= 1,(0),

followed by those calculated around the mean value (referred to as central moments),
designated by u,. As the mean value of a random variable is simply the first moment
around the origin, my, the n’th central moment is expressed by

o = f _@-m)"ix(o)ds (2.4)

= i (m1).

The importance of the central moments stems from the fact that they are invariant
under a coordinate translation and therefore characterise the shape of the distribution
around its mean. Characteristics like variance, skew and kurtosis are all central moments
and it is evident that the mean cannot be a central moment, as it should change under a
coordinate translation. Qur interest in moments around the origin becomes apparent when
we later consider the characteristic function, which is related to the Fourier transform of
the PDF, and can be approximated in terms of moments around the origin.

A moment of order N, p/(a), calculated around an arbitrary point e, can be represented
as a linear combination of a set of moments, up to order N, {1/, (b) : 0 < n < N}, calculated
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around b (by applying the binomial theorem [29, p. A-1]):
pn(a) = E{(a:— a)N} = E{(a:— b + b—a)N}
N
- E{Z (’:) (& — BV a)"}

n=0

N
Y (JZ) (b—ay E{(z - )"}

n=0

N
=3 (M)o- oo

ned \ 7
This allows a set of moments calculated around any arbitrary point, e.g. the mean, to
be expressed in terms of a set of moments around the origin. As we can always perform
such a transformation, moments around the origin act as an ideal standard reference set by
removing the need to remember the point around which a set of moments were calculated.

An important consideration to take into account when calculating moments, is their
existence: as moments are calculated as integrals, a moment only exists if its defining
integral converges. This is dependent on the function defining the PDF and distribution
functions exist that do not possess moments of all orders, [4, p. 55]. The following general
rule can prove useful when contemplating the existence of moments: if p(xo) exists, it
implies that u!(zo) exists for all s < r. Conversely, if u,(xy) does not exist, it implies that
i (zo) does not exist for all s > 7.

2.3.2 Characteristic function

An alternative way of calculating the moments is by using the characteristic function,
@ x (w), which is also defined in terms of an expectation [2, p 81},

dx (w) = E{e*}. (2.6)
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By substituting this into the definition of expectation (Equation 2.1) and using the defini-
tion of the Fourier transform (reviewed in Appendix A),

@X(w) = E{eij}

_ f b (o) ds

= f [fx( Je "“’“’]*dﬂc (2.7)

/ fx(z)e ""”d:c]

= [Fix@)]

it is seen (by taking the complex conjugate on both sides of the above expression) that
fx(x) and ®% (w) constitute a Fourier transform pair where

% (w) = F{fx(z)}
(2.8)
f fx(z e”’"‘dw

expresses $% (w) using the Fourier transform and

fx(@) = FH{®x (W)}
1 [~ e (2.9)
= | @X(w)e dw
expresses fy(z) using the inverse Fourier transform.
The n’th moment around the origin is obtained from ®x(w) by evaluating its n'th

derivative at the origin [2, p. 81],

, (2.10)

dw™

where ®{(0) = M\ .
W=
As the PDF only attains positive values and has a unity area, it is absolutely integrable:

ﬁmlfx(x)l dz < 0o . (2.11)
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Consequently, its Fourier transform, and therefore the characteristic function, always exists
(as the defining integral always converges). The characteristic function provides a way of
calculating the moments of a random variable in situations where the Fourier transform of
the PDF and its derivatives (if they exist) are available or can be calculated.

2.3.3 Fourier series

The Fourier series expresses a periodic function f'(z), with period za, in terms of an
infinite weighted sum of harmonically related complex exponential basis functions [5, p.
83], (20, p. 233 _

fi(x)= Z Feikwor (2.12)

k=—c0

where Fy is a complex number that represents the A’th Fourier series coefficient charac-
terising f'(x) and wy represents the fundamental frequency, which is related to the period
by

27
Wy = —

= o (2.13)
All functions f'(z) satisfying the following conditions, known as Dirichlet conditions [20,

p. 234], can be expressed in terms of such a Fourier series:
1. f'(z) has a finite number of discontinuities over any xa-wide interval.
2. f'(z) contains a finite number of minima and maxima in any za-wide interval.

3. f'(z) is absolutely integrable over any z-wide interval:

Aza
f |f'(z}|dz < oo, (2.14)
by

for any choice of A.

For functions satisfying these conditions, values of the series coeflicients characterising the
function are calculated by evaluating an integral expression over a single period of the

function (za):
1 Az a .
F, = —/ Fl(z)e Ihwordy, (2.15)
TA Ji
As the above result does not depend on a specific choice of periodic interval, the choice of

A is arbitrary. Furthermore, if f/(z) is a real-valued function, the series coefficients always
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occur in complex conjugate pairs (with the exception of Fy which is always a real number):
fl(z) e R = F, = F*,. (2.16)

Of particular interest to us is the relationship between the Fourier series representation
of f'(z) and the Fourier transform (reviewed in Appendix A} of an aperiodic function,
f(x), that is related to f'(z) by the following:

o0

fl@)y= > flz—nza). (2.17)

n=—0co

f'(z) is therefore a periodic extension of f(z) with period za. If F(w) is the Fourier
transform of f(z),

F(w) = F{f(2)}, (2.18)
then Fj is related to F(w) by the following:
1
Fk = —F(k(.do)
s (2.19)
S im
= :rAF(k“’A)'

This allows the Fourier series coeflicients of a periodic extension of a function to be calcu-
lated by uniformly sampling and scaling its Fourier transform, with the sampling interval

inversely proportional to the period.

2.4 Estimators based on moments

We now investigate the feasibility of estimating a PDF entirely in terms of its moments. We
first introduce the concept in principle and justify it using basic mathematical principles.
A theoretical investigation follows, with the result being a novel expression for a PDF
estimate in terms of a finite number of moments. Finally, a number of practical techniques
that allow the PDF estimate to be evaluated anywhere within its domain, are developed
from this theory. All these techniques only require the values of a number of moments
(which can in turn be estimated from sample data) in order to produce an estimate.
Throughout the entire investigation, potential problems are identified and their possible

consequences are acknowledged and addressed.
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2.4.1 Motivation

We are accustomed to using moments to describe some aspects of PDFs of interest to us.
Examples of this includes the mean, variance, skew, kurtosis or a combination of these
which often provide valuable information about a random variable when describing or
characterising it. In the case of Gaussian random variables, only the mean and variance
are required in order to fully describe the random variable. We therefore feel intuitively
attracted to using moments as a way of characterising PDFs and feel that they should
provide at least some information allowing a PDF estimate to be constructed.

A second, and more substantiated, motivation for using moments to estimate a PDF
stems from the so-called Principle of Moments. This is presented by Kendall and Stuart in
The Advanced Theory of Statistics [4, pp. 86-88] where it is argued that PDF's encountered
in practice are entirely characterised by their moments and that two distributions having
a number of moments in common would bear some resemblance to each other. They
furthermore consider the case of having two practical PDFs with the first N, moments
equal to each other and states that, as N,, tends to infinity, the two distributions tend to
be identical to each other. From this is then concluded that two distributions, having a
number of low-order moments in common, can be expected to be at least approximately
equal to each other.

A proof of this (slightly modified from [4]) is obtained by considering a PDF, fx(z),
that is continuous in the interval x € [—%2, 2}, in which most of its area is contained.
As a PDF is a non-negative function with unity area, a value of x4 can always be found
that satisfies these conditions. It is then approximated by f x(z) in this interval by using
a finite power series:

fx@ =) a® , zel-%2,%) (2.20)

The integral-squared error, €, introduced by the approximation and calculated over z €
[—%2, %), is written in terms of this power series expansion and the original PDF:

Zo Nm—1
2 m

= /_ﬂ{fx(:s) -3 an$“}2 dz. (2.21)

n=0

We now find fx(z) as the least-squares approximation of fx(z) by calculating the set of

power series coefficients, {ag, a1, ...,an,, 1}, that minimises the integral-squared error, £.
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This is done by equating the partial derivative of the error with respect to each coefficient,

) : _
3e» b0 zero and solving for a;:

Oe 7 Naull
=2 ) — anz” vzt dz
da; /_ 22Q{fx( ) g } (2.22)

= 0.

By reorganising the terms, a general solution to this equation is obtained as

) g N, -1

LI _ |2 nti : _
/_ﬂxfx(l‘)diﬂ-—f_%u g az" T dr i€{0,1,..., N, — 1}. (2.23)

2

This represents N, equations (corresponding to different values of ¢) that has to be satisfied
simultaneously in order for the least squares approximation to be solved. As most of the
area of fx(z) is concentrated within the interval z € [~22, ], the integration limits of the
left-hand side expression in the above equation can be changed to oo without introducing
a large error:

%0- Npm-1

i =1 nti : e, Ny — 114 2.24
[ dixiops /sz e, ie{0,L..,Na-1}.  (224)

The left-hand side is identified as the expression for the 7’th moment of fx(z) around the
origin (m;), allowing the least-squares approximation of fx(z) to be expressed entirely in

terms of the first N, moments around the origin:

£ N, -1

fj S ae™ide o~ omg,  i€{0,1,...,Nn—1}. (2.25)
i)
— 2 n=0

The power series coefficients corresponding to the least-squares approximation of fx(x) are

then found by minimising the following expression simultaneously for all: € {0,1,..., N,,—

1}:

f2 E a2t dr — my \ i€{0,1,..., Ny~ 1}. (2.26)
_Z
2

n=0
Although the above result does not represent a practical solution to the least-squares
approximation (as it is difficult to solve), it is still theoretically significant: an N,-term
least-squares approximation of fx(z) over the interval z € [—%2, 2] is seen to be only
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a function of the first N,, moments of fx(z). A direct consequence of this is that two
distribution functions having the first NV, moments in common, have a similar least squares
approximation at least up to order N,,. This Principle of Moments prompted further
investigation into using moments as a means of completely describing and characterising
a PDF.

2.4.2 A PDF in terms of moments

We now use the mathematical relationship between the moments of a PDF and the function
describing the PDF to obtain an estimate of the PDF, f x (), from the values of a number of

moments. In order to simplify the equations slightly, we impose the following restrictions:

1. The random variable, X, represented by the PDF, is assumed to be standardised
and to therefore have a mean value of zero and unity variance. This is a reasonable
assumption, as any random variable, X’, can be standardised as follows, using a

simple linear transform:
X'—E{X"}

X =
VE(X} ~EIXP

This does, however, require that we are able to estimate accurate values of the first

(2.27)

two moments of X around the origin (E{X’} and E{X"*}). As our procedure requires
a number of finite moments up to order Ny,, this is implied.

2. We know the values of all moments up to order N,, around the origin, {mn 0 <
n < Nm}. Equation 2.5 can be used to convert the first moments up to order N,
calculated around an arbitrary point to the required set of N,, + 1 moments around
the origin.

In Equation 2.10, we expressed moments of X around the origin, m,, in terms of the
characteristic function, ® x (w). We now wish to do the inverse of that, and express @ x (w)
in terms of a finite number of moments. We start by expressing the characteristic function

in terms of Taylor polynomials [29, p. 624]:

ey
Bx(w) = Z:O ——%-!-—-w + Ry, (w) (2.98)

= &X(w) + Ry, (w),
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where ®x(w) is a power series approximation of the characteristic function,

N=1 g (n)

R oy (0

Ox(w) = § : Xn—,()w", (2.29)
n=0 '

and is the same for all random variables having identical values for the first /V,, moments.
Ry, (w) is the remainder and indicates the error introduced by this approximation. Equa-

tion 2.10 allows us to express @ﬂ?)(o) in terms of the n’th moment:
' (0) = j*m,. (2.30)

Substituting this into Equation 2.29 allows us to express it in terms of the first N, mo-

ments: N1
mT—Lon
- my
dxw) =Y Jn, w", (2.31)
n=0 '

Using Equation 2.9, the approximate PDF is expressed in terms of this approximate char-
acteristic function through the Fourier transform relationship:

N1
=7 Zz;) ;‘T;!wn} (2.32)
=1 oo{NmZI n w"}e”‘"dw

21 J_ oo jrn!

This equation expresses an approximation of the PDF, fx (z), directly in terms of the first
N, moments. As ®x(—w) = &% (w) always holds', fx(z) is always a real function (from a
property of the Fourier transform), which is expected as a PDF is always a real function.
Unfortunately, this integral cannot be evaluated, as the integrand diverges to plus and
minus infinity as w — *oo. Regardless of the order of the polynomial, a value of w always

_ !This is seen by noting that (7°)* = (—#)" and (—z)* = (=1)"z" and then comparing & x(—w) and
O ().
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exists for which the highest powered term dominates as w increases,

Nm—1 .
lim &x(w) = lim Z J nf"w"
W W—roG n!
n=0 (2.33)
— jnmﬂ 4]
n! n=Nm—1

Figure 2.1 illustrates the divergence of the approximation of the characteristic function
of a Gaussian PDF, corresponding to three different values of N,,.

This is a property of the finite-order polynomial approximation and there is no direct
way of avoiding this. It is an undesirable property, as it introduces unwanted high-frequency
components into the estimate. These components severely distort the PDF, introducing
artifacts such as oscillations and negative values into the estimate. A way of dealing with
this is to only reconstruct ®x(w) within a symmetrical region centered at the origin, for
which we know the reconstruction to be well-behaved, and to assume values of zero for
the function otherwise. As ®y(w) is a frequency function that is related to fx(z), this
imposes a direct constraint in terms of the energy of the high frequency components that
are present in fx (z) and any further estimates using this & x (w) would reflect this. Without
more detailed knowledge of the actual characteristic function, ®x(w), it is impossible to

quantify the error introduced by truncating é x(w) in this way.

1o (o)l

5 terms

32 tarms

1
1
|
i
1
\

Figure 2.1: Successive Taylor series approximations to characteristic function of Gaussian PDF
using 5, 14, and 32 terms.
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However, the structure of the Fourier transform does provide us with valuable informa-
tion as to the type of approximation errors we can expect as high frequency components
play the most important role in the realisation of entities comprising the micro structure
of the PDF. Information regarding macroscopic structure, on the other hand, are mostly
contained in the lower frequency components. Elimination of high frequencies would there-
fore imply smoothing of the PDF estimate, with the smaller features being affected most.
This becomes apparent when we consider the mathematical effect that multiplication of
the spectrum by a rectangular windowing function, which is exactly what this proposed
truncation does, has on the PDF. The rectangular windowing function is defined as follows:

1 lw| € wy
@rect(wu:w) - (2'34)
0 |w| > wy

where w, is referred to as the upper frequency. The convolution property of the Fourier
transform states that multiplication in the frequency domain amounts to convolution in

the spatial domain, i.e.

F‘l{él(w)ég(w)} -/ c:fl(f)fz(x—f)df
= fi(z) x fa(z),

(2.35)

where ®,(w) = F{f.(x)} and fi(z) * fo(x) denotes the convolution of f,(z) and fa(z).
Substituting the characteristic function and the windowing function for ®;{w) and
®,(w) respectively in Equation 2.35, shows the PDF to be equal to the inverse Fourier

transform of the characteristic function convolved with the inverse Fourier transform of
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the windowing function, S2uz).

T

Npp—1

)= o [T{3 Fman)eran
-.—0 *

— Wy

Nm—1

_ 1 = Mp g jwzr
= %[_w@rect(wu:W){ Z j"n!w }6 dw

n=0

= % f_oo O rect(t, w) &% (w)e % dw (2.36)
= F N Oreatlirn, ) B ()}

= FHOrualwn )}« 7 {E5()}

_ sin wy, *F‘l{(i)}(w)}.

T

A higher value of w, results in a narrower function applied in the convolution, therefore
causing less smoothing. A rectangular window is not the only option and other windows,
for instance Hamming, Hanning or Bartlett (triangular) windows can also be employed.
A general windowing function, ©{w,,w), is incorporated into Equation 2.32, resulting in a
PDF estimate that contains no energy above the upper frequency (w,):

1 Ny -1

fx(z) = o - @(wu,w){ Z T w“}ejmdw. (2.37)

p—
—wn = jn!

This allows an appropriate choice of windowing function to completely mask the effect of
the polynomial divergence. The general windowing function depicted above, ©(wy,w), is
an even real-valued function attaining the value of zero outside of a symmetrical range

centered at the origin, |w| > wy:

wy, |w]) ;5 |w|l < wy
O Wy, w) = (W ] vl (2.38)
0 D w| > W,
and its inverse Fourier transform, #(w,,z), is also a real-valued even function:
0wy, z) = FH{O(wy, w)}. (2.39)
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Figure 2.2 illustrates the smoothing effect that the truncation of the characteristic
function by a Hamming window has on the density function approximation. It features
the reconstruction of a PDF, consisting of a mixture of a Gaussian and a uniform density
function, from a truncated characteristic function. As w, 1s selected to have a low value,
the smoothing significantly degrades the uniform density function, which requires high-

frequency components to realise its discontinuities.

Probabilty Dansfty & Characteristi Functien
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u u

Figure 2.2: The smoothing effect of a Hamming window on the characteristic function.

In principle we are not overly concerned about this smoothing effect, as it aids the
estimator in generalising across the sample data by averaging (smoothing) over it. Even
if we had an expression for the actual characteristic function describing the sample data,
we would still prefer to generate an estimate with suppressed high frequency components.
This is because the PDF reconstructed using the entire spectrum would reflect the exact
distribution of the observed sample set, and would therefore be over-specialised. One of the
reasons for using density functions is for their generalisation abilities in obtaining a more
general picture of the underlying process than the raw data provides. Smoothing does,
however, become a problem if the highest frequency component is so low that important
discriminating features and characteristics of the PDF are obscured.

Elimination of the high frequencies unfortunately also has a second, and more prob-
lematic, side-effect, namely leakage [20, pp. 623-629]. As the windowing is performed in
the frequency domain, leakage is observed in the spatial domain, with the effects visible in
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the reconstructed PDF. Although this is the inverse of the scenario involving time-domain
windowing, popularly encountered in signal processing, the same principles hold and sim-
ilar problems are therefore still experienced. Our concern stems from the fact that a PDF
may never attain negative values, as this is undefined and wreaks havoc with any method
that considers density functions in the logarithmic domain. Doing this would also cause
the estimate to violate one of the principle properties of a valid PDF. The inverse Fourier
transformed windowing function, 8(w,, =) in Equation 2.39, can attain negative values, for
example when using rectangular, Hamming or Hanning windowing functions. As this is
convolved with a PDF that is a non-negative function, the resulting function is therefore
almost guaranteed to also attain negative values. Leakage has a further tendency to in-
troduce ripple into a density function at regions of constant probability density. This is
due to windowing functions exhibiting (damped) oscillatory behaviour in the spatial do-
main. Regions of low and near-constant probability density, expected far (> 5 standard
deviations) away from the mean value, is mostly affected by this.

We address this problem by taking the absolute value of fx(z) in Equation 2.37 as the
value of the PDF estimate,

R 1 Wy Nm—1 m‘fl .
fx{z) = %/. G(wu,w){ Z jnn'w"}ej“’”dw‘. (2.40)
—Wu n=0 ’

Figure 2.3 illustrates the effect of leakage introduced by rectangular windowing of the
characteristic function. This should be compared with Figure 2.2, which used the same
upper frequency, w,, and PDF, but which displayed much less leakage. On the other
hand, the rectangular windowing function results in significantly less smoothing due to
the narrower main lobe. There is therefore always a trade-off between the main lobe
width (principally responsible for smoothing) and the normalised side lobe magnitudes
(principally responsible for ripple) [20, p. 436).

Some solutions to fx(z), obtained by evaluating the integral in Equation 2.40, are
only accurate over a subset of their domain surrounding the origin (the reasons for this
is discussed in detail in the following sections where it is encountered). In such an event
the definition of fx(z) is further amended so that it attains a value of zero outside the

interval, |z| < Z&:

) = [ O(wy,w { N =1 %%w"}ej‘“dw jz| < Za
O RS N2 ? (2.41)
0 ;x| > =8
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Figure 2.3: Leakage introduced by rectangular windowing of the characteristic function.

In performing the truncation illustrated above, a part of the sample space is effectively
neglected and all data that may have been observed in that part is simply disregarded.
Justification for this action is found in the Bienaymé — Tchebycheff inequality [4, p. 88].
It provides an upper bound for the probability of observing data outside a symmetrical

interval surrounding the mean, uy, for a specified variance, o%:

1
P{IX — px[ 2 dox} < . (2.42)

Recalling that X is standardised, we consider the inequality with pgx = 0 and oy =1
to obtain an upper bound for the error introduced by truncating fx(m), to the range

z € {52, 58]
9\ 2
=|—]. 2.4
¢ (»’CA) ( 3)

s ]
This error is interpreted as the probability of assigning a zero probability density to
a sample that may have a non-zero probability density. In other words, it indicates the
fraction of the sample space (located in the tails of the PDF) that is effectively ignored
in this approximation. Larger values of za produces better results and, depending on the
application, it is recommended to use a value of at least 5 times the standard deviation.
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We now have the ability to express a PDF estimate mathematically in terms of a
number of sample moments, using Equation 2.41. The expression allows the introduction
of an arbitrary frequency-domain windowing function, which determines the overall level
of detail of the approximation and requires the selection of a value determining the size of
an interval over which the estimate is calculated.

In the following sections, we devote our attention towards practical ways of solving
this integral expression. The objective is to obtain one or more closed-form solutions
that expresses fx(z) in terms of a number of elementary mathematical functions of a
finite number of moments. A number of symbols from Equation 2.41 are used throughout
and retain the meanings they had there: fx(:v), O(wy, w), Npn, My, Wy, Ta, w and z.
Additionally, wy indicates the fundamental frequency, applicable to techniques employing

a discrete frequency approximation.

2.4.3 The anti-derivative

We start by attempting to solve the integral directly using the anti-derivative. By inter-
changing the order of summation and integration in Equation 2.40, assuming a rectangular
windowing function for ©(w,,w) and expanding the complex exponential into a real sine

and cosine term, we obtain the following expression:

1 =t “u :
o Z j"n!{j: whel™® dw}

n=0 W

fx(z) =

N (2.44)

1 M o Y AR
=15 Z T w™ cos(wz) dw+3/ w"sin(wz) dw p|.

n=0 —@u —W

This expresses fx(z) in terms of a weighted sum of basis functions, where the n’th
basis function is the inverse Fourier transform of w/® multiplied by a rectangular windowing
function. Evaluating this expression requires that the anti-derivatives of the integrands be

evaluated:

n n—k k
/w“ cos{wz) dw = Z k! (:) :k+1 sin{fwz + ——;—r—)

fw sin(wz) =—Zk'( ) e cos(wa:-!-]%r)

(2.45)
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Evaluating the anti-derivative for values of x close to the origin proves to be problematic,
due to the divergent nature of the terms. All but one term (corresponding to k¥ = 0) tends
to oo in the limit as as £ — 0. This results in numerical instability as attempts are made
to evaluate fx(z) near the origin.

The anti-derivative also poses another problem: a higher-order Taylor polynomial ap-
proximation to the characteristic function would usually be preferable to a lower-order one,
as it provides a better approximation further away from the origin. In this case, increasing
the order of the approximation, n, also increases the maximum value of the arguments to
the factorial and combinatory term. This introduces additional numerical instability into
the calculations. Unfortunately, this is also not solved by transforming the problem to the
logarithmic domain, as it requires the accurate summation of a number terms of differing
order of magnitude.

This leads to a conflicting requirement, as a higher number of moments is preferred
in order to improve the approximation to the characteristic function, while it leads to
increased numerical instability when evaluating the anti-derivative. It is therefore not
recommended that the anti-derivative be used to evaluate the integral and more practical

alternatives are now considered.

2.4.4 Numerical integration techniques

Employing a numerical integration technique eliminates the problems associated with the
anti-derivative. The restriction on the maximum number of moments vanishes, thereby
allowing a reconstruction exhibiting a high level of detail. It also solves the problem of the
value of the approximation at small values of z (i.e. close to the origin), as the integral itself
is defined there, although the anti-derivative is not. A further advantage is the ability to
seamlessly integrate almost any windowing function, without adding complexity. The only
requirement is the ability to obtain values of the windowing function sampled at regular
intervals in its domain, while using the anti-derivative required analytical introduction of
the windowing function expression into the solution. Careful use of windowing functions,
as well as the ability to obtain an estimate rich in high frequencies, contains the error
introduced by taking the absolute value in Equation 2.40.

Numerical integration techniques partition the domain of integration into a finite num-
ber of intervals, N;, and then approximate the integral over each interval in terms of the
value of the integrand at the interval boundaries. These approximate integrals are then
accumulated to approximate the original integral. Techniques differ in the way that the
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integration domain is partitioned as well as the way in which the integral is approximated
in terms of the boundary values.

We can, however, obtain a general expression that facilitates the evaluation of Equation
2.40 by means of different numerical integration techniques. This requires the following

changes to the integral expression:

1. The continuous integration over the interval w € [—wy, w,] is replaced by an (N; +1)-
term discrete sum. This requires that all occurrences of the integration variable, w,
be replaced by a discrete variable, {7 : 0 < k < N;}.

2. A weight, 5 is added to each term comprising the sum. This accounts for the specific
way in which the technique combines the values at the interval boundaries to estimate

the integrand over the interval.

3. A scaling term, a, is added to account for loss of the differential (dw) and also to

balance any scaling factors introduced by the 3, factors.

Expressions for o, ¢ and - are dependent on the details of the numerical integration
technique that is employed. Certain techniques may even impose restrictions on the values
that V; may attain. The changes proposed above are applied to Equation 2.40 and the
resulting expression is simplified, resulting in a general expression:

Nm—1

N,

n=0
Np—1

1 i my n TR
_ %agﬁk@(wu,%){ Z jnng(7k) }eﬂ

(2.46)

n=_(
Np—1

N;
= gﬁk%@(wu,%){ Z ;L;!(’Yk)n}ej%x

n=0

By factoring out the part of the expression that is not a function of z,

Nm~—1

Yk = ﬁk%e(wm 'Wc){ Z

n=0

My

(w)"}. (247)

j*n!

fx(z) can be expressed in a form resembling a Fourier series:
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N;
§ : 1Y% T
Soke.")"k

k=0

fx(z) = : (2.48)

In order to use the above equations one only needs to determine suitable expressions
for v, By and «, corresponding to the desired integration technique. This is now performed
for a popular integration technique.

Simpson’s rule {29] is a numerical integration technique that uses parabolas to approx-
imate the areas under the curve being integrated. The integration domain, [—w,,w,] is
partitioned by an odd number of equidistant points, into N; bins. In order to apply this

rule to the solution of the integral, define the unknown expressions as follows:

o 2y
~ 3N
1 k=0,
B = (2.49)
J~(-1)* ; k=123,...,N; -1
_ 2k—Niw
T = Ni u-

Considering the expression for « leads to an interesting observation of major practical
importance: Equation 2.48 expresses fx (x) in terms of a finite sum of a number of weighed
complex exponential functions. If the frequencies of the exponential terms, vy, are har-
monically related, the sum constitutes a Fourier series [5, p. 83] resulting in fx(z) being
a periodic function (with the period being the inversely proportional to the fundamental
frequency). When employing Simpson’s rule, 7 is always an integer multiple of %‘F, and it
is therefore expected that fx () would be periodic with period zq = ’L—Nl This is verified

u
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by combining Equation 2.48 and Equation 2.49 and substituting z = z + 2—:’%

N;
- - 2nN;
oo+ ) =3 gm0
k=0

r

2

N.
I35 (e (22)
k=0

N;

= |3 greimeein -
k=0

N;
k=0

(2.50)

Care should therefore be taken to guard against artifacts introduced by the numerical inte-
gration procedures. Periodicity, illustrated above, is encountered when using any technique
that samples the integrand uniformly and symmetrically around the origin, i.e. if v can
be expressed as vy, = kwg, with £ =0,1,2,.... In this case, the estimate is only valid over
an interval defined in terms of the fundamental frequency, wy, and the PDF is assumed to

be zero outside the interval |zf < I

A Chsoprel™®| o] < X
fx(z) = ‘ wo (2.51)
0 el > 2

2.4.5 Fourier series approximation

A solution that expresses fx (z) as a sum of harmonic complex exponential functions is
now considered. This is accomplished by sampling the characteristic function at discrete
intervals in the frequency domain, and using this discretised function to obtain the PDF
estimate. As the resulting function is periodic, we only define fx(x) to be equal to the
periodic function over a single period, and to be zero everywhere else.

Let f(z) be a function that is defined in terms of the integral in Equation 2.40 and let
F(w) be its Fourier transform:

Ny -1

flz) = % /j: G(wu,w){ Z JT;;!w”}ej‘”dw. (2.52)

n=0
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As O{wy,w) is equal to zero outside the interval |w| < w,, the integration bounds can be
changed to oo without changing the value of the integral. The integral in then identified
as an inverse Fourier transform, allowing F(w) to be isolated:

n=0

1 o0 noon it
2 Mo mer)e o5
1 o0

F(w)e'™*dw,

=E .

:F'I{F(w)}

with
Npm—1

Flw) = e(wu,w){ Yy w“}. (2.54)

j*n!

n=0

Let f'(z) be a periodic extension of f(z) with a period of za:

Fi@)y= " flz—kaa). (2.55)

k=—c0

From the relationship between the Fourier series and the Fourier transform (Section 2.3.3),
f'(z) can be expressed in terms of a Fourier series, with the series coefficients calculated
in terms of F(w), the Fourier transform of f(z):

o0

f@= Y Rd%T, (2.56)
k=—00
with . ok
w
= —F[—). 2.57
Fy xAF( xa) (2.57)

Furthermore, as F(w) is zero outside the interval |w| < w,, the Fourier series only contains
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a finite number of terms:

flz) = Z Fid7°

k=—00

o (2.58)
.mx
= Z er TA
k=—a
where
o = {max(k) : %’% <wy, kEN}. (2.59)

If z is selected so that f(z) =~ 0if || > %2, then f(z) = f'(z) in the interval |z| < 2.
If f(z) represents a PDF estimate, such a value of £ can always be found (with the help
of the Bienaymé — Tchebycheff inequality), as a PDF has finite area. We can therefore
express f(r) approximately in terms of a Fourier series as follows (by substituting the
definitions of F(w) and Fy):

flz) =~ f(z)
o 12wk
= EE:Pkg;Zm
k=—a
o i 2.60
- Z lp(@)eﬁ; ( )
he—a Ta  TA
o 1 Nm—-1 m ek
= _e u)m { _n m n} JEL:G.
k:z_:a% o3 ; J“ﬂ!(“) °

The above approximates f(x) in terms of a finite Fourier series that only involves a finite
number of moments and a windowing function. By substituting this approximation for the
integral expression in Equation 2.40, we express the PDF estimate in terms of a Fourier

series that only involves a finite number of moments and a windowing function:

o Nm—1

2 1 n pomkyn) gk
fx@y =13 —O(w, ?gﬁ){ 3 %(%) }esiﬂ
heme =0 (2.61)
= Z ﬁkej%m .
k=—r
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Nm—1

B = — O, ZE){ 37 ()], (2.62)

x !
A n=0 J

This represents fx () as a periodic function. As a PDF always has unity area and can
therefore never be periodic, the resulting periodic function cannot be directly used as a
PDF. An aperiodic PDF is obtained by defining the PDF to be equal to the above function

in the interval |z| < & and zero outside of it:

ﬁ e.%m
—a B

. >

0 po x| > B8

(2.63)

Obtaining a PDF estimate in terms of a Fourier series therefore required the following
steps:

1. Sampling the characteristic function to express the PDF estimate in terms of an
(infinite) Fourier series. This causes the PDF estimate to be periodically extended
and requires correct selection of za to minimise the distortion caused by this.

2. Windowing of the characteristic function (by multiplying the characteristic function
estimate by a windowing function, ©{w,,w)). This introduces smoothing into the
PDF estimate as it is convolved with the inverse Fourier transformed windowing

function.
3. Truncation of the PDF estimate to zero outside its first period.

Figure 2.4 illustrates the discretisation of the characteristic function and the relation-

ship between the period of the PDF and the sampling frequency of @ 5 (w).

2.4.6 Estimating moments from sample data

Although the moments played a central role in the calculations in the preceding section,
no mention was made as to how they were obtained. The methods for calculating ap-
proximations to density functions are applied directly when the values of the moments are
known beforehand or can be calculated for a finite number of moments. If, however, only
sample data are available, the moments have to be obtained by estimating it from the
sample data. These estimates are then substituted for values of the moments in all the
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Figure 2.4: Discretisation of the characteristic function.

preceding expressions. Assume that the sample set consists of N, samples, with the 7'th

sample indicated by z;. An estimate for the n’th order moment is then obtained by

.1 n
o = 5 Z z". (2.64)

In order to establish the validity of this estimation, we consider the mean value and

variance of the estimate in terms of the actual (population) moments. This is obtained
from [4, p. 229]:

E{ritn} = ma. (2.65)
E{ (i — ma)?} = 5 (man = 102). (2.66)

T
As the mean value of the estimate is equal to the value being estimated, this represents
an unbiased estimate [30, p. 119]. The variance vanishes in the limit as the number of
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samples, N, tends to infinity, which is a sufficient condition for the estimate to be weakly
consistent. These properties of the estimator, unbiasedness and consistency, are desirable

and causes the accuracy of the estimate to increase as the sample size is increased.

2.5 Estimators based on the characteristic function

We now present a PDF estimator that follows a direct approach to estimating a PDF from
sample data, without using moments at all. It is presented in this section as it is a direct
result of the previous estimator that expresses a PDF in terms of its moments. It builds
on the theory presented in the previous sections and follows a similar line of reasoning.
As such, most of the theory from the previous sections are not repeated here although the
following works relies on it.

The biggest advantage of this new technique is that it eliminates the complications as-
sociated with the Taylor polynomial approximation of the characteristic function. In order
to remove the dependence on the Taylor polynomial, a technique that directly estimates
the characteristic function from the sample data is proposed and investigated. The PDF
estimator derived from this characteristic function estimator is then shown to be identical
to the Parzen estimator. We therefore manage to arrive at the Parzen estimator by using a
frequency domain approach (which is contrary to the more popular approach that is based
in the spatial domain). From this, a practical PDF estimator that uses a Fourier series
and represents a parametric approximation to the Parzen estimator is developed.

As the new estimator operates directly from sample data, it is recommended that it be
used in situations where sample data is available and the moments-based one be used if
the moments present the only available information.

2.5.1 Motivation

In the previous sections we estimated a PDF from the values of a finite number of moments.
Although our motivation for this course of action was taken from the Principle of Moments
and all the techniques presented expressed the PDF estimate in terms of the moments, the
characteristic function plaved a central role throughout: the PDF estimate was always
obtained directly from the characteristic function, which was estimated from the moments
using a Taylor polynomial approximation.

Unfortunately the Taylor approximation held a number of disadvantages, most notably

being the large number of moments required to obtain an accurate PDF estimate (which is
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impractical). It also diverges when not evaluated close to the origin, thereby complicating
implementations and limiting the amount of detail that an estimate can contain.

If it is, however, assumed that sample data is available, alternative techniques of esti-
mating the characteristic function may be considered. These characteristic function esti-
mators can then be combined with the theory presented in the previous sections to create

a PDF estimator that operates directly from sample data.

2.5.2 A PDF in terms of a characteristic function

Peebles [2, p 81] defines the characteristic function of X in terms of the expected value of

a complex exponential function of X:
dx(w) = E{e™¥}. (2.67)

Obtaining an expression for E{e/*X } requires that an expression for the PDF of X, fx ()
be known. Since we are trying to estimate it, we unfortunately do not possess such an
expression. We do, however, assume to be in possession of a number of IID (independently
and identically distributed) samples corresponding to the distribution fx(z). An approx-
imation of ®x(w) is obtained by estimating E{e?*} from the samples as follows (where

z; denotes the i’th sample and N, the number of samples):

) 1 Np—-1 .
Py(w) = 5 > e, | (2.68)

T =0

Substituting this expression into Equation 2.9 expresses an approximation of the PDF in

terms of the inverse Fourier transform of this approximate characteristic function:
fx(z) = F {5 ()}

=7 { "NL Nil e_jwzi} (2.69)

€T 2=0
1 [ { 1 e } -
= — — e 7T e dw.
27 J_oo U N2 ;

Exchanging the order of summation and integration in the above equation, and evaluating
the resulting inverse Fourier integral (by using a transform pair from Appendix A) produces
an interesting result: the PDF is realised as a sum of impulse (dirac-delta) functions, each
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one located at the position of a data sample,

A 1 Bl e
fX(_’_E) e :I-\Z; Z: {E,;f e—meierzdw}

T

= 3 f’“l{e"jw”"} (2.70)
& D
2

= > 8@ -z,

fx(a:) therefore provides an eract representation of the sample data, without introduc-
ing any assumptions about its distribution or performing any modelling and is therefore
of limited practical use. This issue was addressed in Section 2.4.2 when smoothing of the
PDF, introduced by the truncation of the high frequency components of the characteristic
function, was discussed. It was concluded that smoothing of a PDF that ezactly represents
a set of sample data is required to aid generalisation.

In order to smooth the PDF, we introduce a windowing function to suppress the high
frequency components of the characteristic function. Let ©(u,, w) denote the real frequency
domain windowing function, which attains a value of zero outside the interval |w| < wy,
and #(w,, z) its inverse Fourier transform, also a real function. We apply this windowing
function by incorporating it into the characteristic function estimator, thereby obtaining

a new estimate:

~ A

Px(w) = Owy,w) Py (w)
Ne-1
1 «— (2.71)
= O(wy,w) — el %,
A new PDF estimate is now obtained by taking the inverse Fourier transform of the complex
conjugate of this estimate. The convolution/multiplication duality of the Fourier trans-
form, discussed in Section 2.4.2, is utilised to express the PDF in terms of the windowing

function and the data samples:
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A~

Fulo) = 7 {85 ()

- f—l{e(wmw) (i")?(w)}

=F- {@(wuaw)}N:‘_-T_ {@;(w)} (2.72)
= 0 2) * 3= 3 6@~ )

i=0
1 Nl
= — z 8wy, z — ;).
Ny i=0

This function is seen to be similar to Equation 2.70, but with the impulse functions
replaced by the inverse Fourier transformed windowing function, #(w,, ). This causes the
presence of a data sample at some location to be spread out into the neighbourhood of
the sample, instead of being concentrated at a single point. A consequence of this is that
each sample contributes globally to the estimate, instead of having a localised effect, which
allows the estimate to generalise over more than one sample set.

By comparing Equation 2.72 to the Parzen density function estimator [6, p. 88] [8,
p. 425], shows them to be identical. The major difference between this estimate and the
Parzen estimate is that this one was derived from o purely frequency domain perspective,
while the Parzen estimator is specified entirely in the spatial domain. The Parzen estimator
is a biased and consistent estimator, with its bias determined by selection of the kernel
function, 6{w,,z). It will be seen later, when considering the limiting properties of the
characteristic function estimator in Equation 2.68, that Equation 2.72 also represents a
biased and consistent estimator, that is in all aspects identical to the Parzen estimator.

Figure 2.5 illustrates the operation of the estimator in Equation 2.72 by reconstructing
a PDF using only a small number of data samples (10). The PDF is the mixture of a
Gaussian and a uniform density that was introduced in the previous section. Two cases
are illustrated, one using a low upper frequency {(w, ) and the other using a higher frequency.
In the case of the high value of wy, the presence of the windowing function centered at
each data sample is clearly visible, and the estimate severely differs from the actual PDF.
This effect decreases as w, is lowered and more smoothing is introduced, allowing a fair
approximation to be produced. It is seen that this approximation deviates most from
the actual PDF at places of sharp discontinuity. This is expected as this is where high
frequency components are required most.
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This example employed a triangular windowing function, ©a (w,,w), with width 2w,.
An important property of this function is that its Inverse Fourier transform, 0a(w,,w),
never attains a negative value, ensuring that the resulting estimate is a non-negative
function (which is an important property of a PDF):

jﬁl+1 o wl < w,
Oa(wy,w) = ¢ P wls (2.73)
0 P w] > wy
2 sin?(Lw,
B (e, w) = M (2.74)
TWy T

N =10

® sampk data
== v aetual
-——~ approximation

x  samph data
- owoc actusl

mppraximation

| %

Figure 2.5: Reconstructing a PDF directly from data samples, using a triangular windowing
function.

Unfortunately, there is no guarantee against the estimate, fx (z), not attaining negative
values in general, as it is dependent on the choice of windowing function. The absolute
value of Equation 2.72 is therefore taken as the PDF estimate in order to ensure that it

only takes on non-negative values:
1 Nemt

N,
T =0

fx(x) = B (wu, & — ;). (2.75)

This provides a conceptually simple expression for the PDF estimate and expresses it
directly in terms of the inverse Fourier transformed windowing function and the values of
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a number of data samples. Unfortunately, it does not provide a parametric representation
of the PDF over and above that provided by the raw data samples. Next, we consider
an alternative solution that infers a set of parametric constants that acts as parameters,
thereby replacing the sample data. This has the advantage of providing a more compact

representation of the sample data, thereby reducing computational requirements.

2.5.3 Fourier series

The technique presented in this section is similar to the one presented in Section 2.4.5: the
characteristic function is sampled at a number of equidistant points in order to produce
a Fourier series solution that expresses a PDF estimate in terms of a number of complex
exponential basis functions.

An alternative way of representing the PDF in terms of the data samples and the
windowing function is obtained by expanding the, inverse Fourier transform in Equation
2.72, instead of invoking the convolution/multiplication duality. Again the absolute value
is taken to ensure that the PDF does not attain negative values:

fx(z) = {F‘I{G(wu,w) ()}
W Nz-1
- %/_wu {@(wu,w) Niw g e‘jm"}ejw"’dw‘.

This provides us with an expression for the PDF estimate, expressed directly in terms of

(2.76)

the sample data and some windowing function that smoothes over the observed data. In
order to construct a parametric estimator, the argument of the inverse Fourier transform
in the above equation is sampled at a number of equally spaced intervals, each i—z apart.
This changes the integral into a summation and adds a scaling constant, as the inverse

Fourier transform becomes a Fourier series:

u 1 Na-1 ek i2mk
fx(z) = _Ee ua;‘:r_kﬁ e Veatieglaa
A T =0
o Ne—1
1 1 O~ _jomk,, s2xk
=S 0w, k)= Y e T (2.77)
koo A AN o
~ 27rk
Fx(z) = Z Bre’=a ",
k=—ao
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o = {max(k) : & < w,, k€ N}, (2.78)

x
1 27k = —jink g,
ﬁ":a:ANm@(w —)ge el (2.79)

(SR

It was noted earlier that a Fourier series always represents a periodic function. In the above
expression for fx(z), the resulting PDF estimate has a period of z, (which is therefore
related to the sampling interval %) and represents a periodically extended version of the
estimate in Equation 2.72. The distortion introduced by the periodic extension can be
limited by selecting za to be large enough. The resulting function is again truncated to a
symmetrical single-period interval centered at the origin (which is where most of its area

is contained as it has a zero mean):

: 2wk

. ank
R Bk AT o] < %A
fx(@) = ‘Ek ) 2 (2.80)
0 L ol > =

This technique is identical to the one presented Section 2.4.5, with the only difference
being the way in which the values of the characteristic function are obtained: where it was
previously expressed as a function of a number of moments and a windowing function, it

is now a function of a number of observed data samples and a windowing function.

2.5.4 Limiting case where N, —

We now consider the behaviour of the characteristic function (CF) estimator presented
in Equation 2.71 in the limiting case where the number of samples, N, tends to infin-
ity. This proves it to be a biased and consistent estimator of the characteristic function
and PDF. Let X; be a random variable representing the value of the i'th sample that is
used in the characteristic function estimate. It is assumed that all X; are independent
random variables with PDF fx(z) and characteristic function ®x(w) (which is what we
are trying to estimate). The characteristic function estimator is then also represented as
a random complex-valued function, A(w), in terms of these random variables representing

the outcomes of the sample data:
No—1

Alw) = Ni 3 0w, w)e . (2.81)

¥ =0
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We now find the expected value of this random function (representing the expected value
of the estimator) as the product of the windowing function and the actual characteristic

function:

B(aw) = Bf 1 3" O,

i={
z2—1

= HZ|,_.

Il

Ol w) E{ejWXi } (2.82)

2z .
|
L

Fx e(wuaw)q))((w)

i=0

O(wy, w)Px(w).

As the expected value of the estimate is not equal to the actual CF, we conclude that the
estimator is biased. The PDF estimate that is associated with this expected CF estimate
corresponds to a smoothed version of the actual PDF| as the actual PDF is convolved with

the inverse Fourier transformed windowing function, 8(w,, z):

fx(@) = F{ O, w)@%(w) }
= FH{O(ws,w) } + FH{ox ()} (2.83)
= Ow,, ) * fx(z).
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We next obtain the variance of the CF estimate, {}(w), in order to characterise its behaviour

)

E{ [A(w) _ E)(wu,w)(I)X(w)] [/_\*(w) - @*(wu,w)q)}(w)] }

in the limit as N, — oo

w) = E{\A(w) O ) Bx ()

E{A(w)A*(w) — O(wy, w)Px (WA™ (W) — A(w)O* (wy, w) D% (w)

+ O(wy, w)Px (W)O" (wy, w)@}(w)}
= E{A(w)A*(w) — O(wy, w)Px (WA (W) — A(w)O* (wy, w)P% (w)

+ ]e W, )P (w )‘2}

{ E{ Wy ) B (w )}—E{A(w)@*(wu,w)é}(w)}
{yc-a(w W)Ox(w )l}
~ E{ 8()87(0) | - 01 ) (6 (w0, )5 (0) — Ot ) x(W)O" w0 )5 )
+ .@ Wy, w) B x (w )’
{ } (w0 )2x ()] [B(un,w)0x ()]

+|6w W)y (w )‘

5880} - ot ent

(2.84)
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To simplify the process, we evaluate the argument of the first term (involving the expec-
tation) separately:

1 Nezl ' ] Nezl ‘
A(w)A*(w) = [m Z G(wu,w)ewx‘] [Kf; @(wu,w)e‘f“’xk]

i=0

g Np—1Nz—1
— @ w‘!“ ) § : 5 : eij, —jwXg
=0 k=0
g Nz—1p Nz—-1 (285)
_ 9(‘-;\";“2&3) edwXip=jwXi 4 Z WX e‘j“’X*]
T i=0 b k=0
k¥
g Nz—1rp Nz—1
— e(wu’w) 1 JwX; —jwXy
—N 3 + e e ,
z i=0 * k=0

ki

after which the expected value is then calculated:

E{A(w)A*(w)} - E{ %A;“;’f Nf [1 N Nf ejux.-e—juxk] }

=0 =
. Nm_l oot (2.86)
— w‘u? [1 + Z {eij"e—ijk }] \
1=0 k;é;
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As the two random variables, X; and X, are independent, the single expectation above
can be factored into two separate expectation operations:

E{A(w)/_\*(w)} = @(‘;’v;m’f)g 2:1 :1 + A’g E{ej“’x"} E{e‘j“’xk }]

Ouw ) §-T; L 33 ]

7 1+ ) Ox(w)Px(w)
. =
O(wu w)* [, | o~ 2]

= D X 1+ Y [@x(w)

N,? go i ’izi"i ‘ (2.87)

2 2

- 6(1;’;))]\; [1+(N:,—1){=1>X(w) ]
_ O(wy,w)? | Ofwy,w)? 2 O(wy,w)? 2
==, ‘T, - q’X(“’)‘ TN, “I’X(“")I

2
O(wy, w)®
ze(w;w)z_\ (v u;\)r x(@)| Bl

This is substituted back into Equation 2.84 to obtain an expression for the variance of the
estimate in terms of the actual characteristic function, the windowing function and the

number of samples:

e )2 [O(wn, w)Px{w) i 2 2
) = 2ol T 4 o)) - [0 w)@x(
_ B(wy,w)? [Pl w)Ox(w) : (2.88)
N, N,
_ @—(&}Kiﬂ[l - [@x(w) 2].

The variance therefore vanishes as the number of samples (N,) tends to infinity. This
makes the characteristic function estimator consistent and implies that an increase in the
number of samples, from which the estimator is trained, always leads to a decrease in the

expected estimation error (for a given windowing function and PDF).
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2.6 Conclusions

Estimating a probability density function (PDF) only in terms of only a finite number of
moments was found to be entirely feasible in theory as well as in practice (Section 2.4). This
is possible due to the Fourier relationship existing between the characteristic function and
the PDF as well as the ability to approximate the characteristic function from a number
of moments using a Taylor series. From a theoretical perspective, an integral expression
(Equation 2.40) was derived that expresses a PDF estimate in terms of a finite number
of moments and a function that controls the accuracy trade-offs involved in the estimate
(the windowing function). Three practical techniques of evaluating this integral expression

were considered i detail:

Anti-derivative This evaluated the integral by considering the anti-derivative of the in-
tegrand (Section 2.4.3). It suffers from problems regarding accuracy and sensitivity

towards the sample data distribution and its use is therefore not recommended.

Numerical integration These techniques evaluated the integral using some numerical
integration technique (Section 2.4.4) and was developed to be applicable to a wide
range of numerical integration techniques. Although it is recommended above the
anti-derivative technique, care should still be taken as certain choices of parameters
can introduce artifacts in the estimate.

Fourier series The characteristic function estimate (which is obtained in terms of a num-
ber of moments) is uniformly sampled and then used to express the PDF estimate in
terms of a Fourier series (Section 2.4.5). As a Fourier series is best suited to repre-
senting a periodic function and a PDF can never be periodic, care had to be taken
to ensure a robust technique that produces valid results. Fortunately, all challenges
in this regard were addressed and successfully resolved, resulting in a practical tech-
nique with favourable characteristics. This technique should be preferred above the
other ones that were considered.

Estimating a density function using only the characteristic function (Section 2.3), with-
out involving moments at all, was also considered and was found to be feasible in theory as
well as in practice. A characteristic function estimator that operates directly from sample
data was first presented (Equation 2.71), after which a theoretical relationship between
this estimator and the PDF estimate was established (Equation 2.72). A surprising result

was that this estimator was found to be identical to the Parzen estimator (even in terms
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of its bias and consistency), although it was derived from a frequency domain perspective
contrary to the Parzen estimator that is defined in the spatial domain. In order to allow
practical application of this estimator, a technique involving the Fourier series was devel-
oped (Section 2.5.3). As this technique has favourable characteristics making it well suited
to practical application, alternatives involving the anti-derivative or numerical integration

techniques were not considered.

2.6.1 Comparison between characteristic function and moments

techniques

Estimating the density function directly using the characteristic function holds numer-
ous advantages above the techniques that employ moments. Omitting the Taylor series
approximation of the characteristic function eliminates a prime source of errors: a higher-
order Taylor polynomial is generally preferred as it provides a better approximation than
a lower-order one. But, a higher-order approximation is also a function of higher-order
moments, which introduces complications if the moments are estimated from sample data
(as opposed to accurate values being available from some other source). From Equation
2.66 it is seen that the variance of the estimate of the n’th order central moment, mi,, is
a function of the moment of order 2n. This causes the variance to rapidly increase as the
order is increased, weakening the approximation. The robustness of the moment estimator
also decreases rapidly as the order is increased due to the sensitivity towards outlier data.

Another problem encountered with the Taylor polynomial stems from the the fact
that the accuracy of the reconstructed function decreases as the function is evaluated
further away from the origin, due to the polynomial diverging. This was addressed by
only evaluating the characteristic function over a subset of its domain (by introducing a
windowing function), which also decreases the accuracy of the estimate as it introduced
smoothing into the estimate.

None of these complications arise when estimating the characteristic function directly
from the sample data, and no trade-off exists. There is no lower limit on the amount of
smoothing that the estimator imposes and an artificial limit would be required in practice,
to prevent over-specialisation of the estimator. Consequently, it is recommended that the
Fourier series PDF estimator based on the characteristic function always be preferred above
the moments-based estimator in the presence of sample data. If the only available data
is in the form of the values of a number of moments, it is recommended that the Fourier

series PDF estimator based on moments be used.
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2.6.2 Comparison with the Parzen estimator and Gaussian mix-
ture model (GMM)

It is insightful to compare these new techniques based on moments and the characteristic
function with two established techniques, namely the Parzen estimator and the Gaussian
mixture model {(GMM). Both the Parzen estimator and the GMM are specialised cases
of mixture models, in which the density function is represented by a number of weighted
density functions. They differ in the way in which each one determines the parameters
defining the component density functions and their corresponding weights from a training
dataset.

The Parzen estimator places a mixture density component at the location of each
data sample in the training dataset. All components are identical and get assigned the
same weight that is inversely proportional to the training set size (and therefore number
of components). Although this estimator is desirable in terms of accuracy and ease of
training (it simply stores the data), it suffers from complexity problems as its computational
complexity is proportional to the size of the training dataset.

The GMM, on the other hand, is able to compactly represent a dataset using a (rela-
tively) small number of mixture components. It achieves this by iteratively optimising a
cost function so as to provide an optimal fit between the estimate and the training dataset,
using a fixed number of mixture components. This has the ability to combine the ef-
fect of a cluster of closely-spaced data samples, thereby removing the one-to-one mapping
between data samples and mixture components that characterised the Parzen estimator.
Consequently, it can achieve accuracy that is similar to the Parzen estimator, but with
a large reduction in the number of mixture components, as redundancies in the training
set are ignored. Its largest disadvantage does, however, also lie in its training algorithm:
the iterative training procedure is prone to converging to a solution that is only locally
optimal, yielding inaccurate estimates and increasing the overall variance of the estimator.

The techniques presented in this chapter combine favourable characteristics from both
these estimators by taking a frequency domain approach to density estimation. In terms
of training requirements, they employ a closed-form training algorithm that calculates the
values of a number of parameters directly in terms of the values of a number of data
samples or moments (without requiring any optimisation or iteration). In this regard
they are similar to the Parzen estimator as they have a predictable and simple training
procedure (that the GMM lacks). Their similarities to the GMM stems from the fact that
they are able to represent the information in the training dataset using a fixed number
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of parameters, independent from the training set size. This provides them with good
scalability (which was lacking in the Parzen estimator).

The end result is a family of PDF estimators, derived using a frequency domain per-
spective, that combine the scalability of the GMM with the predictability of the Parzen
estimator.
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Chapter 3

Novel cumulative distribution

function estimators

3.1 Introduction

Cumulative density functions (CDFs) are closely related to probability density functions
(PDFs), with the latter simply being the derivative of the former. Although it is possible
to obtain a CDF from a PDF by using some numerical integration technique, this does not
always present a practical or sufficiently accurate solution. In this chapter we investigate
the possibility of estimating cumulative density functions from moments and sample data
in the same way that was done for PDFs in the previous chapter. The object is to again
establish the theoretical feasibility of such an approach as well as the creation of techniques
that can be implemented and applied in practice.

Due to the similarities between the PDF and CDF, a large part of the theory developed
in the previous chapter is inherited by this chapter without repetition. Consequently, the
work in this chapter relies on the theory presented in the previous chapter, with only
additional theory relating exclusively to CDF estimation included here.

This chapter follows a similar layout to the previous one, where the techniques based
on moments are first presented, followed by those based on the characteristic function.
For both techniques, the problem is first approached from a purely theoretical point of
view after which attention is paid to the development of techniques that can be used in
practice. As was the case with the PDF estimators, two estimators employing Fourier

series techniques are developed.
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3.2 Motivation

CDF estimators based on existing PDF estimators (such as Parzen and GMM) also suffer
from the same problems as their PDF counterparts. Inspired by the success achieved in
designing PDF estimators using a frequency domain approach, we wish to apply the same
principles to the investigation of CDF estimators. As PDFs and CDF's are mathematically
very closely related, it is natural to expect that, by applying the same principles used to
develop PDF estimators, similar CDF estimators can also be developed.

From our experience with PDF estimators, we have a prior indication of the problems
associated with different approaches, allowing them to be addressed in advance. Also, a
great deal of the theory introduced in the previous chapter is equally applicable to CDF
estimation, as it was developed within a more general framework than was required for
PDF estimation only. This should allow us to developed CDF estimators being comparable

to the PDF estimators from the previous chapter with a minimum of additional work.

3.3 Definitions and background

‘The techniques presented in this chapter extends those presented in Section 2.4 and Section
2.5. The cumulative distribution function, Fx(z), is defined in terms of a probability

function, which can be expressed in terms of the PDF, fx(z):

Fx(z) =P(X <2)

/ fe(h (3.1)

A property of the Fourier transform allows us to express the Fourier transform of the
definite integral of a function in terms of the Fourier transform of the function and the

frequency variable [5]:

.7-“{ f_ ’ f()\)d)\} ~ J—_EJ—F(w) +nF(0)8(w)
where F(w) = F{f(z)}.

(3.2)

The above two equations are combined, after taking the Fourier transform on both sides
of the first equation, to relate the Fourier transform of the CDF to the Fourier transform
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of the PDF:

F{Fx(z)} = J"—“{ /_ m fx(,\)d,\}
—.—1—]-'{ fx(x)} + 7r.7-'{ fx(:z:)}

Jw

(3.3)

d(w).

w=0

Recalling the relationship between the PDF and the characteristic function and noting that
®%(0) = 1(from a property of the characteristic function [2, p. 81]), allows us to obtain a
relationship between the CDF and the characteristic function:

d(w)

w=0

F{Fx(@)} = o { fxla)} + 7 { 1x(a)}
1

Py (w) + 7P%{(w)

JWw

0

1

= —] &3 )
I (@) + 1% (0)d(w)

1
= — &% (w) + 7é(w).
I x{(w) + mé(w)
Taking the inverse Fourier transform on both sides of the above equation allows it to be
simplified and enables us to express the CDF directly in terms of the characteristic function

and a constant term:

jw

= f—l{i¢}(w)} s

Jjw
3.4 Estimators based on moments

The above expression allows us to obtain a CDF estimate entirely in terms of a character-
istic function estimate. Using similar reasoning to that followed in Section 2.4, an integral
expression for the CDF in terms of the values of a finite number of moments are derived.

Two practical techniques of evaluating this integral are then considered: one using a
numerical integration technique and one using a Fourier series. Unlike the case of the
PDF estimator, no technique involving the anti-derivative is considered, as it was deemed
impractical. The derivation of the numerical integration technique is only slightly more
complicated than that done for the PDF estimator, while the Fourier series technique proves
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to be a great deal more complicated. This is due to the impossibility of approximating a

CDF directly using a periodic function, as it is a monotonic function by definition.

3.4.1 A CDF in terms of moments

We now consider the relationship between the CDF and the moments of a random variable,
X, and use that to derive an expression for the CDF directly in terms of a finite number
of moments.

Consider Equation 3.5: using a Taylor series expansion, the characteristic function is
expressed as a polynomial in terms of the moments of the random variable (Equation 2.31),

1., 1

:f"‘l limnwn +l
Jjw “~ j7n! 2

n=0

e Fl{ (3.6)

The le term is multiplied by this polynomial, thereby resulting in another polynomial of
lower order, allowing the CDF to be expressed in terms of an infinite number of moments,

afv= Ma
FX(IL‘)EF I{ZWN 1}+

n=0

(3.7)

DO |

Note that this polynomial expresses the CDF identically (and is therefore not an approx-
imation), but requires moments of infinite order, which presents problems in practice. In
order to use this expression in a practical estimator, the series expansion is truncated to
a finite number of terms (N,,), resulting in an expression for a CDF estimate that only

requires a finite number of moments (also Ny,),

Np—1

- - My o 1
n=0

This expression is undefined as the Fourier transform integral fails to converge due to

the divergent polynomial series. This problem was also encountered when we expressed

the PDF in terms of a finite number of moments. Multiplying the series by a windowing

function with finite support, ©(w,,w), remedies this problem, as it forces the argument of
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the Fourier transform to zero outside the interval |w| < w,,

Np—1
9 _ -1 My n—1 1
Fx(z)=F {@(wu,w) 2 e }+ 3 (3.9)
where
O(wy,w)=0 if lw| > wy. (3.10)

By expanding the inverse Fourier transform, a CDF estimate is expressed entirely in terms

of a finite number of moments and a windowing function:

Nm—1

- 1 Mp  aet) iwr 1
Fx@) =5 | @(wu, ){Z0 S Herrdo + 3. (3.11)

In order to consider the effect of the windowing function on this approximation, we compare
the expression for the CDF estimate in Equation 3.9 with the one representing the actual
CDF in Equation 3.7. As the power series in these expressions have identical coefficients
and only differ in their number of terms, a value of w, can be found so that they are

approximately equal to each other in the interval jw| < w,,

Nm=—1

Z: j"’+1n' R Z n+1n| ' Iw[ < Wy | (3.12)

n=0

Furthermore, as the windowing function in Equation 3.9 attains a value of zero outside
the interval |w| < w,, the power series can be modified to contain an infinite number of
terms, leading only to the introduction of a small error (from the approximate equality in

the previous expression):

Nm—1
. - m 1
Fx(ﬂ’:) = f”l{@(wu,w) E an_l} + §,
n=0 )

o0
- My 1
~ F I{B(wu,w) > i 1}-{-5.

n=0 J

(3.13)

By now applying the convolution/multiplication property of the Fourier transform, the
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above can be expressed as follows:

- - > My 1
Fy(x) = F l{e(wu,w)zjnﬂn!w 1} +§

n=0
(= o) - 1
= f‘l{e(wu,w)} *f‘l{Z jn’fln.w"“} +5 (3.14)
n==() ’
= m 1
= B(wy, ) *f'"l{z j““I“Fn!wn_l} + 2
n=0

By comparing this to the expression for the CDF (Equation 3.7), it is seen that this
CDF estimate represents a smoothed version of the actual CDF, as it is convolved with the
inverse Fourier transformed windowing function, #(w,, ). This convolution also introduces
a complication in the form of leakage, thereby placing a restriction on the windowing
function: if the CDF estimate is to be a monotonic function, the convolution kernel,
8(wy, z), should be non-negative. In the case of the PDF estimator, this was addressed by
simply taking the absolute value of the estimate. Unfortunately, we cannot do the same
in this situation as the same problem manifests itself in terms of the estimate becoming
non-monotonic {as opposed to non-negative). It is therefore recommended that a Bartlett
(triangular) window always be employed by the CDF estimators.

We next direct our attention to ways of solving the integral in Equation 3.11 (repre-
senting a CDF estimate in terms of a number of moments) in order to obtain the value of
the CDF at any point in its domain, when presented with a number of moments. Direct
evaluation using the anti-derivative, even when using a rectangular windowing function,
is not feasible and was therefore not attempted. This was noted earlier when a similar
integral was encountered when the PDF was estimated in terms of a number of moments.
We do, however, consider a numerical integration technique as well as one based on the

Fourier series.

3.4.2 Numerical integration techniques

Evaluating Equation 3.11 using a numerical integration technique is similar to the proce-
dure followed to calculate the PDF estimate using a numerical integration technique. Care
should, however, be taken as the integrand possesses a singularity at the origin. This is due
to the w term in the denominator, corresponding to n = (. Fortunately, the integrand is
continuous in the limit as w — 0 and exists (as the Dirichlet Integral exists, [31, p. 394]).

66



In order to apply a numerical integration technique, the value of the integrand should

therefore be defined in terms of its limiting value at the origin, in the case where n = 0.

This is best accomplished by evaluating the integral of the term corresponding to n = 0

separately from the rest:

Nm-l

jrtin! 2

Fy(z) —m+—f O(wy, w) Z in w"'l}ej”mdw+l,

with
-1 JT

/ O(wy, w 10' }e’ dw

= _]_/ e wm

sinwx
= — O (wy, w dw
2r _/_wu ( ) w

d

(3.15)

(3.16)

This results in two integrals, one real and one complex, of which only one contains a

singularity in the integrand that requires special consideration. The integral expression for

« is approximated using a numerical integration technique by partitioning the integration

domain, {~w,,w,], into N; intervals, replacing the integral by a discrete summation and

introducing scaling factors. As this results in the integrand being evaluated at a number

of points in its domain, it is assigned the limiting value at the origin, w = 0, in order to

account for the singularity:

sin Vi

N.
1 &
K= 57}'05 Z: /Bke(wu: Tk)

Tk

sin v,z
“‘Zﬁk wua k) il

Y&

with
BrO(wy, v) ZHBE Y 7 0

Tk

Pe=y
Br- O(wy, V)T ; Y =

(3.17)

(3.18)

The remaining integral, from Equation 3.15, is also approximated by a numerical inte-
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gration technique, using the same method as above, and the result is combined with the
above result. As this integrand contains no singularities it can simply be evaluated any-
where in its domain. This expresses the CDF, fx(x), directly in terms of a finite number

of sample moments:

N; Np—1
~ 1 ~ = My n—1 — 1
Fy(z)=x+ gagﬁk@(%,%){ > m(%) }Bm +3

n=1
Nm—1

N.
- @ m n-1) i 1
KD Bl w{ > = (%) e 4 =
k=0 n=1 J ' (3 19)

Ni N; 1
=S as Do+
k=0 k=0

with
Np—1

ok = Brp-Owu, ) { D s (W)} (3.20)

in+1p1
el ¥) n.

Note that the discretisation of the continuous integrand can introduce unwanted arti-
facts into the resulting expression for F x(z). Any technique that samples the integrand
uniformly and symmetrically (with respect to the origin), results in F (z) being a periodic
function. This is always the case when 7, only attains constant-scaled integral values, i.e.
vy = kwy where wy acts as the fundamental frequency. The period of Fix(z) is then equal
to xzp = 3—2’ In order to account for this, the function is only calculated within an interval
corresponding to half its first period, |z| < o and is assigned the theoretical limiting values
attained at +o00 (0 and 1) outside the interval:

0 ;T < ;—3

Fx(@) = [T+ Thtooee™ s+ 41 1 || < £ (3.21)
i x> &
wp

In order to apply Simpson’s rule, NN; is selected to be an even number and o, 8, and
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are obtained by the following expressions (identical to Equation 2.49):

a_2wu
=N
1 ’ k=0,Ni
Br = (3.22)
3—(-1)F ; k=1,23,..,N;—1
_2k—N,-w
Ye = Ni U

Asy = k%‘%, the resulting function is periodic and the fundamental period is identified
to be wy = 2—§:L The resulting CDF, Fx(z), should therefore only be calculated over the

period || < X%,

3.4.3 Fourier series approximation

We now obtain an expression for Fy(z) in terms of a Fourier series that involves a finite
number of moments. Although this is similar to techniques developed in Section 2.4.5 and
Section 2.5.3, complications arise due to the frequency (w) term present in the denominator.
A general result is first obtained and this is then applied to the problem at hand to obtain
the desired expression.

Assume f(z) to be a continuous real finite-energy function with most of its energy
concentrated in an xA-wide interval surrounding the origin and F'(w), a complex continuous

function, to be its Fourier transform:

[f @) pyeza > [f@)] 20 =0

x) dx ydr =0 .
flmls%f() »f f(@) (3.23)

|| >4
Fw)=F{f(z)}.
Obtain the periodic function f'(z) by periodically extending f(z) with a period of za,

o

fl@y= 3 fla—kza). (3.24)

k=—00

Note that f'(z) ~ f(x) in the interval |z| < £, due to the above constraints placed on
f{z). This periodic extension of f(z) can now be expressed as a Fourier series, with series

69



coefficients related to F(w), the Fourier transform of f(z):

1 i2mk
fllz) = - > F(E)eaa . (3.25)
k=—00

This Fourier series is used to obtain, F'(w), the Fourier transform of f/(z), in terms of
an infinite sum of weighted impulse functions, with their weights obtained from the above

Fourier series coefficients:

o
Fl(w) = :‘;—Zkz F(22)5(w — 22) (3.26)
=—00
In order to confirm that this expression represents the Fourier transform of f'(z), its inverse
Fourier transform should be taken and the sifting property of the impulse function applied.
F'(w) therefore consists of an infinite sum of impulse functions located at integer multiples
of the fundamental frequency wy = 5—2 The impulse function located at the origin of F'(w),
corresponding to & = 0 in the above expression, is only responsible for the mean value of
f'(z), calculated over an integral number of periods. Removing it therefore only results in
the removal of a constant term from f'(z), without having any other effect on its overall
shape or periodicity. It is isolated from the above expression, thereby introducing another

funetion, F'(w), representing the Fourier transform of f'(z} without the constant term:

2n

F'w) = F'(w) + ZF(0)6(s), (3.27)
where -
@)= 2= 3 F(E8)5(o - 2 (3.28)
[
and
F"(0) = 0. (3.29)

F"(w) therefore represents the Fourier transform of a continuous, za-periodic, zero-mean
function, f”(x), which is identical to f'(z), except for a constant term. Taking the inverse

Fourier transform on both sides of the above expression expresses f/(z) in terms of f"(z)
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and a constant term:

f(a) =
@ =7 {F'@)} + F{ ZFO6)) -
i)+ 22

A graphical representation of f(x), f'(z) and f"(z), their Fourier transforms and their
relationships are presented in Figure 3.1.
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Figure 3.1: Relationship between f(z), f'(z)and f"(z)

We next consider expressions involving integrals of the functions introduced above. It
was noted earlier that f(z) ~ f’(z) in the interval || < ZA. This allows us to conditionally
equate definite integrals over these two functions in an interval near the origin:

RGN N (3.3

Recall that constraints were also placed on the integral of f(z), requiring it to have most
of its area concentrated in the xa-wide interval centered at the origin. As a consequence of
this, the lower bound of the integral involving f(x) in the above emxpression can be changed
from -Z& to —oc with only slight effect, as f__ifA fl&)dE <« f__ii:& f(&)d¢. This is done
and the right-hand side terms are successively substituted from above expressions until the
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integral of f'(z) is expressed approximately in terms of the integral of f"(x):

IRGERYS A Fle)de el

~ [ A £'(6)de ;<2

:f_;{f”(gwr ‘I;(f)}df L lal< 22
=fA F1(€)de + (O ){iA +3) CRl<® @)

= [ e f ©d+FO{Z+35} i lbl<P

=g"(:c)—g"(—T)-f-F(O){a-i'%} ; lasls%“s

- ') ;_%wm){%%} SRR

where .

_ /_ RAGLS (3.33)

We now proceed to express ¢"(z) in terms of F(w), the Fourier transform of f(z).
Consider the above integral defining ¢”(z): a property of the Fourier transform allows an
improper integral of this form to be expressed in terms of the Fourier transform of the
integrand and a term involving the mean value of the integrand. As the mean value of
f"{x) is zero, ¢"(x) can be expressed entirely in terms of F”(w), the Fourier transform of
f"{z), which was defined earlier:

= F o F) + nF(060) )
) f—l{jin”(w)} (3.34)
= LIS Rk - )

By moving the Fourier transform into the summation and evaluating the resulting expres-
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sion (by expanding the Fourier transform into its defining integral and employing the sifting
property of the impulse function), we express g”(z) in terms of an infinite sum involving

F(w):

o0

1 27
" — F 21rk _ 2xk }
o'@ = 2)
Je;eo
o
211'.’: - _ 2nk
j.’E_/_\ k_z F '7: { 5(w IA)} (3-35)
k;é”
_ Z 21rk JL;LAIE
Rl 27T]k

The above expression represents g”(x) as a Fourier series and is substituted back into
Equation 3.32:

T ¥ T 1 Ia
e " — - <_
| s O, O +3) el
oo 3.36)
1 ok JEERE r 1 TA (
= — 4+ = ; < —=.
2 g Ees Ez_%wm){%u} <3
k#O

This provides the result we are seeking: it expresses the integral of a function with finite
support directly in terms of a sum involving its Fourier transform and, implicitly, its mean
value. In order to apply it to CDF estimation, we let f(z) represent a PDF with finite
support, implying a mean value, F(0), of unity. As most of the area under a PDF is
concentrated within a few standard deviations from the mean value, this restriction is not
unreasonable and should produce a fair approximation. The integral then represents a

CDF estimate, Fx(x), which is expressed in terms of the Fourier transform of the PDF,
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the conjugate characteristic function &% (w):

Fx(:l}) = fX(E)dE
o0 1 2rk T T 1 A
~ TN O —+5) i WIS
=, 2mik Xhea = {M 2} 2 (3.37)
_ _ b e omky ke = 4= ; < =
k=z:—cao 2mjk (e £=—32A+ Ta 2 I ?

k#0

Implementing an infinite sum such as the one in the above expression is not feasible in
practice. Multiplying ®% (w) with a windowing function, &(w,,w), ensures its value to be
zero outside the interval |w| € w, and allows the sum to be truncated to a finite number of
terms. @(w,,w) should be a real symmetrical function attaining a maximum value of 1 at
the origin and should have a non-negative inverse Fourier transform. Substituting this new
frequency function, @(w,, w)®% (w), for the characteristic function in the above expression
has two effects on fx(z): it is smoothed and it is spread out. The smoothing does not pose
a problem, but care should be taken, as excessive leakage, caused by spreading out fx(z),
can result in a weakened estimate. Fortunately, a large enough value of x5 can always be
selected so that the leakage is negligible. Due to the periodicity of the resulting Fy (z), it
should never be evaluated outside the interval |z| < %2, but rather assigned its limiting
values of 0 and 1. We express the CDF estimate as a finite sum involving the characteristic
function and windowing function:

[/
2

; _ 1 2k y g% (2ak j,—”ﬁ-fm r 1 Ta
Fx(z) = Zm (wa, 3 ) BX (50 )e" =2 §_£A+;Z+§ ; |$|57

k=—a = 5

k0

(3.38)

az{max(k):%jr—kSwu, kEN}.
A

In order to obtain a CDF estimate in terms of a number of moments, an expression for the

characteristic function estimate in terms of N, moments is substituted for ®% (w) in the
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above expression:

Nm—1

T
2nk { M (gﬂ)n}ejﬁf
,é?mk =) ; gt Ta g=-2p
x 1 A
— 4+ = < —. .
ST A O CEY)

Finally, common terms are factored out to simplify the estimator and the estimate is

assigned limiting values outside the interval {z| < 28

0 ; T< A
Fx(z) = kz_aﬁke e +2= ;5 2l < E (3.40)
1 ;o> I8
with ) Nt
O Z S w2y} ¢ k0
ﬂk = { (3.41)
o
% __E (=1)"B ; k=0,
| ﬂn—?‘:'DC!

This represents a practical estimator that expresses a CDF estimate directly in terms of a
number of finite moments, using a Fourier series. Care should be taken when determining
wy, specifying the highest frequency that is used in the estimate (which determines the
number of frequency components): as the characteristic function is expressed as a Taylor
series {in terms of a number of moments), it diverges above a certain frequency, thereby
placing a limit on the maximum value of w,. Unfortunately the value of this maximum is
highly dependent on the actual CDF being estimated and implementations should therefore
determine w, dynamically by testing for divergence of the Taylor series.

3.5 Estimators based on the characteristic function

Using a similar approach to that followed in Section 2.5, we now consider ways of estimating
a CDF directly from sample data using a simple characteristic function estimator. Some

of the theory presented in the previous sections was developed within a more general
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framework than was required at that stage, allowing it to be reused in this section.

In the chapter dealing with PDF estimators, we found that direct estimation of the
characteristic function from sample data held numerous advantages above techniques em-
ploying moments. This was due to complications introduced by estimation of the charac-
teristic function from moments (using a Taylor series). As the same complications were
encountered with the CDF estimator employing moments, we now consider a method of
estimating the CDF directly from sample data. This results in a more usable alternative
to the moments-based technique in cases where sample data is available.

Estimation of a CDF using a characteristic function estimator that operates directly
from sample data, thereby eliminating the use of moments, is first considered. It is shown
that the proposed characteristic function estimator represents the Parzen estimator iden-
tically (in that it estimates a CDF by placing a kernel function at the location of each
data sample). A practical technique of estimating a CDF using a Fourier series is then
presented. This technique operates directly from sample data and represents a parametric
approximation to the Parzen CDF estimate. It is recommended that it be used instead of

the moments technique in applications where actual sample data is available.

3.5.1 A CDF in terms of a characteristic function

From Equation 3.5 we obtain an expression for a CDF estimate, Fix (z), in terms of a

characteristic function estimate, ®x (w):

1

i(i;;((w)} + 35 (3.42)

ﬁ X(:r) =F _1{ s

jw
By using the characteristic function estimator introduced in Section 2.5, the characteristic
function estimate is expressed directly in terms of N, data samples (where z; refers to the

i’th data sample):

Ny—1

x(w)=— D e (3.43)

i=0
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Combining these last two equations allows us to express a CDF estimate in terms of a

number of data samples:

. ] Nzl ]
Fx(z) =.7:_1{;5—I ; e"“”"} +3
- g A
- 3 [pmta— ] +5 (349
= Niz A;i;l [% sgn(z — z;) + %]

where sgn(z) represents the signum (sign) function, which is defined [5, p. 90] as:

-1 z<0
sgn(z) =0 z=0 (3.45)
1 T >0,
with its Fourier transform given by
2
F{sgn(x)} = o
’2 (3.46)
F — ) = & piwm
{sgn(:z: x,)} jwe
u(z) is the unit step function, which is defined in terms of the signum funection,
1 1
u{z) = 5 + 3 sgn(x)
=<3 =0
1 z>0.
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Compare this expression for the CDF estimate to Equation 2.70 which expressed the PDF
in terms of a number of impulse functions: they are similar except for the choice of kernel
function, the one employed by the CDF estimator being the integral of the one employed
by the PDF estimator.

Equation 3.44 therefore represents the CDF counterpart of Equation 2.70 and, as in
the case of the PDF estimator, has limited practical application as it does not provide
any additional information above that provided by the raw data samples. In order to
improve the estimator, a real windowing function with finite support, ©(w,,w), is intro-
duced into the characteristic function estimator and a new CDF estimate is obtained (by
interchanging the order of the summation and the inverse Fourier transform and using the

multiplication/convolution property of the Fourier transform):

3 LfOwnw) 1R L ]
= [ gt et Jwe; 1
Fx(r)=F { o N ;e +2
Ne-1
1 - Ow 1
_ 1) b O (wn, w) —sz. 1
Na-1_
"% f*{e“”“’ "‘“'}] 4
= -1 -wa:,-
SN CR) S v I
No—1
1 &7 !
= E- ; -8(0-11“33) —Sgn T — & ] 5
Nz—1
1 = r o 1 1
%> [ BNy sene — - V] + 5.

In order to evaluate this convolution integral, it is first separated into two integrals, one
corresponding to positive values of the sighum function and one to negative values. The
fact that #(wy, z) has unit area (as ©{wy,w), which represents its Fourier transform, was
constrained to attain a value of unity at the origin) is then used to express the second

integral in terms of the first integral. After simplifying, the constant term is then moved
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into the summation and the expression is again simplified:

. 1 i 1 1
Fx(z) = A ; _/;oo B(wu,/\)§ sgn(z — x; — /\)d/\] + 3
Ny—1 o
1 &1 [ 1
:_xg_gf_m O (we, A) 5/“% Wy, A d)\]—l—_
Ny—1 .
1 &7l [ 1 1
- 2 [z /_m (wuy A 5{ / wu,,\)d)\}] +5
= (3.49)
1 ety e 17 1
=.N:§_f_w O VA =~ 2] + 2
Nz—1 —
1 o= /™ 1 1
= O(wy, A)dA — = + =
N, gﬂ: ./,w (@, AJdA =5+ 2]
1 Nz—1 L—I;
= E 2 /;oo H(wu,)«)d/\

This expresses the CDF estimate in terms of a number of kernel functions that are obtained
by integrating the inverse Fourier transformed windowing function, #{w,,z), and is the
CDF counterpart of Equation 2.72 (the Parzen PDF estimator). It is seen that, in order
for the CDF estimate to be monotonic, #(wy, z) should be a non-negative function. This
restriction was not required by the PDF estimator. Consequently, windowing functions
that qualifies for use in the PDF estimator does not necessarily qualify for use in the CDF

estimator.

3.5.2 Fouriler series

In Section 2.5.3, we presented a PDF estimator that expressed a PDF in terms of sample
data using a Fourier series. Using the same approach, a CDF estimator is now presented
that combines the characteristic function estimator considered in the previous section (and
introduced in the previous chapter) with theory developed in order to estimate a CDF
directly from sample data.

Equation 3.38, reproduced here, expresses an approximation of the CDF, F‘X(x), in

terms of the characteristic function, ®x(w), and a windowing function, ©(w,,w), which
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are both uniformly sampled:

Fex) = [ © Fe(e)de

1 nk e | T 1 Ta
= 3 O, B (BT 4z <2
o Lo =3 a2 2 (350)
o= { max(k) : % <, kEN ).
A

This is combined with the characteristic function estimator presented in Equation 3.43
by substituting the characteristic function estimate for the characteristic function in the
above expression. The result is an expression for Fy (z) directly in terms of a number of
data samples:

A i el 1 ok & . 27rkE T 1 TA
Fx) = 3 gopon (SR +meg el <2
k20 2
Y e (L S o] Il e
& ok o %) i=0 =-p Ts 2 BEA
k£0
(3.51)

Common terms are factored out, all the constant terms are consolidated® and the estimate
is assigned limiting values outside the interval |z| < A

0 ;T <A
Fx(z) = Z Bee’¥a” +E x| L3 (3.52)
k=—a
1 ;T > 28,
18, is obtained by expressing the sum corresponding to £ = —%2 in terms of the other B¢ and noting

that ¢’ =AE|E = (—1)*.
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with

B = ¢ (3.53)

\ n#o

This represents a practical CDF estimator that operates from sample data only and over-
comes the problems associated with the techniques employing moments. It should be
preferred above the moments-based techniques in applications where sample data is avail-
able. Due to the additional constraints placed on the windowing function {when compared
to the PDF estimators), the CDF estimator presented above should normally require a
higher value of w, than the corresponding PDF estimator would in order to obtain an esti-
mate of comparable accuracy (this being due to the restricted windowing functions causing

more smoothing).

3.6 Conclusions

Although a large part of the theory required by this chapter was inherited from the pre-
vious chapter, estimating a cumulative density function (CDF) using moments and the
characteristic function presented its own challenges.

Estimating a CDF only in terms of a finite number of moments was found to be feasible
in theory as well as in practice (Section 3.4) and an integral expression for the CDF
estimate, involving the values of a finite number of moments, was obtained (Equation 3.11).
As evaluating the integral using the anti-derivative did not prove to be a desirable course
of action in the previous chapter (dealing with PDF estimation), it was not attempted
here. Instead only a numerical integration technique and a Fourier series technique were
considered. The former technique was developed in a generic fashion and can be applied
to different numerical integration techniques (Section 3.4.2).

However, developing a CDF estimator employing a Fourier series solution proved to
be more challenging. This was due to the asymmetry of a CDF and the fact that it does
not have finite support, combined with the Fourier series being optimal for representing
periodic functions or functions with finite support. Fortunately all these challenges were
addressed and successfully resolved and the result is a practical technique that allows a
CDF estimate (involving a Fourier series) to be obtained in terms of a finite number of
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moments (Section 3.4.3). As the numerical integration technique is more difficult to apply
than the Fourier series one, it is recommended that the Fourier series technique be preferred
in practice. The numerical integration technique should, however, be used in applications
where the approximations introduced by the Fourier series technique are undesirable.

Extending the techniques to make use of the characteristic function estimator presented
in the previous chapter only required the combination of the moments technique with re-
sults from the previous chapter. The theoretical result was an integral expression for a
CDF estimate in terms of sample data only, without involving moments (Equation 3.49).
This produced a CDF estimate that was identical to the result produced by the Parzen
estimator, but derived using a frequency domain perspective. From this, a practical tech-
nique involving the Fourier series, that has the ability to estimate the CDF using sample
data only, was developed. This technique can be viewed as a parametric approximation to
the Parzen estimator and it combines the desirable accuracy and ease of use of the Parzen
estimator with the desirable computational complexity of a parametric technique. In the
presence of sample data, this technique should be preferred above the one employing mo-
ments, with the moments technique reserved for applications where only moments data is
available.

The result is a family of scalable CDF estimators that are simple to train and have
the ability to either operate directly from sample data or from the values of a number of

moments only.
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Chapter 4

Experimental results

4.1 Introduction

In the previous chapters, two types of estimators were introduced for both probability den-
sity functions (PDFs) and cumulative density functions (CDFs): the first type estimated
these functions from a set of moments characterising a random variable while the second
type utilised the characteristic function, which it estimated from a set of data samples.
Although the theory behind each type of PDF and CDF estimator was extensively de-
veloped, a number of practical techniques (or algorithms) that allowed the theory to be
implemented in practice were also presented.

One such technique provided an estimate in the form of a Fourier series expansion and
was derived for both the PDF and CDF estimators. Software implementations were created
for the following four Fourier series techniques in order to evaluate the performance of the
techniques and also to verify the validity of the theory from which it was derived:

1. PDF estimate using moments, Section 2.4.5.
2. PDF estimate from sample data using the characteristic function, Section 2.5.3.
3. CDF estimate using moments, Section 3.4.3.
4. CDF estimate from sample data using the characteristic function, Section 3.5.2.

As the theory presented in the previous chapters is novel and derived from basic prin-
ciples, experiments were designed to provide a quantitative and critical evaluation of the

theory. The object was to verify the correctness of the theory presented in the previous
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chapters and to obtain an indication of the performance that could be expected from esti-
mators based on this theory. In order to provide a broad perspective on the performance
of the estimators, a comparison was drawn between the performance of the techniques
listed above and two well-known and established density function estimators, namely the
Gaussian Mixture Model (GMM) and the Parzen estimator. Most of the experiments were
conducted on synthetic data, which allowed comparison of the techniques under controlled
conditions. Each estimator’s performance can be characterised in a number of different
ways, with the importance of a certain aspect of its performance dependent on the details
of the actual application in which the estimator is deployed. Experiments were designed
to compare the following characteristics of the estimators:

Accuracy This indicates the extent to which the PDF (or CDF) estimate corresponds to
the actual PDF (or CDF) from which the samples, on which the estimate is based,
was drawn. It is quantified by some distance or error measure that indicates the
amount by which the estimate differs from the actual function.

Computational requirements This indicates the amount of computing resources that
is required to train and evaluate the estimate. As an estimator with lower compu-
tational complexity requires a shorter time to perform a certain task than one with
higher complexity, experiments were designed in which the time taken to perform
certain estimates were measured for each estimator. These figures provide impor-
tant information when selecting a technique to be used in situations where execution
speed is an important factor, e.g. a real-time system or a problem that involves the
processing of large amounts of data.

Sensitivity to parameters Each estimator possesses a number of degrees of freedom or -
parameters that has to be specified by the user of the estimator. As unsuitable
choices of parameters can produce undesirable results, it is advantagecus to find a
range of “safe” parameter values which provide adequate (and in some cases optimal)
performance over a range of conditions. The experiments involving the accuracy and
computational complexity were all performed over ranges of parameter values in order
to determine choices of parameter values that optimise some aspect of each estimator
or causes it to perform satisfactorily over a range of conditions.

Training requirements Each estimator collects information, mostly in the form of statis-
tics, from the training set in order to estimate a PDF or CDF. Details of this training
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procedure differ between the estimators and is an important consideration in appli-
cations where the estimate is often updated.

At the end of the chapter, one of the estimators is compared to the GMM by construct-
ing a practical example of a classifier that can function as part of a speaker verification

application.

4.2 Experimental setup

4.2.1 Input data

In order to evaluate the density function estimators, random data was used as inputs to
the experiments and synthetic data corresponding to five different PDFs were generated
by a computer. PDFs with strong characteristics were selected, thereby emphasising the
strengths and weaknesses of each estimator with regards to certain PDF characteristics
encountered in practice. Furthermore, as each PDF possessed unique characteristics, it
allowed a controlled test to be performed over a range of operating conditions. Input data

corresponding to the following density functions were used in the experiments:

normal A symmetrical, continuous and unimodal density function defined by a Gaussian
density function.

uniform A symmetrical, unimodal density function containing sharp discontinuities.

skew An asymmetrical continuous and unimodal density function defined by a Rayleigh

density function.

bimodal A symmetrical, continuous and bimodal density function consisting of two trans-

lated Gaussian density functions.

mixture An asymmetrical, discontinuous and bimodal density function defined by a mix-
ture between a Gaussian and a uniform density function.

In order to be able to provide a fair comparison between the performance of each
estimator on different PDF's, the above density functions were all normalised to have zero
means and unity variance (or values very close to these).

Sample data corresponding to each of the above PDFs was generated by independently
drawing samples from a uniform or Gaussian random process and then applying the nec-
essary transforms to obtain the desired distribution. A number of datasets (20), each
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containing the same number of samples, were generated for each PDF. This allowed statis-
tics about the performance of each estimator to be collected by repeating an experiment

over all the datasets corresponding to a certain PDF.

4.2.2 Estimation error measure

For each PDF estimator, an estimation error was calculated as the Kullback-Leibler {3, p
59] distance between the actual PDF and the PDF estimate:

fx(x)
fx(z)

Ep = _foo fx(z)In dz, (4.1)
-0

where fx(z) denotes the actual PDF and fx(z) an estimate. This is an asymmetrical

distance that is only equal to zero if fx(z) and f x (z) are identical. The above integral was

evaluated using a numerical method (the trapezoid rule [29]) which evaluated the integrand

over 1000 points uniformly spaced in the interval [—8, 8).

For each estimator and PDF combination a number of trials were performed, each time
calculating £p over a number of datasets corresponding to the same PDF. The mean and
variance of the estimation error was then calculated, providing a realistic indication of the
ability of a particular estimator to estimate a particular PDF with certain characteristics.
This operation was repeated over all PDFs and for each estimator.

A similar process was followed to evaluate the CDF estimators, except that a different
distance measure was employed. In this case, the distance was defined as the integral
absolute difference between the actual CDF and the CDF estimate:

0
co = — f |Fx() - Fx(a)|da, (4.2)
~o0
where Fx(x) denotes the actual CDF and Fx(z) an estimate. This error was also inte-
grated over 1000 steps using the trapezoid rule in the interval [—8, 8]. As with the PDF
estimates, the mean and variance of the estimation error was calculated for all combinations
of estimators and PDFs over a number of trials.

These error rates were calculated over a range of parameter values, characterising each
estimator, in order to illustrate the performance of each estimator over a subset of its
operating range. The ranges were selected to include optimal working points or to show
asymptotic behaviour (where applicable) and were limited to values that could typically
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be used in practice. Evaluating the estimators over a range of operating conditions also
ensured a fair comparison between estimators as it prevented a selection of parameters
that only favoured some estimators.

Details of each estimator as well as the parameters that were varied and their ranges

are now provided.

4.2.3 PDF and CDF estimate using moments

The expressions for the PDF and CDF estimators are given by Equations 2.62-2.63 and
Equations 3.40-3.41 respectively. Values for the adjustable parameters were selected as

follows, with the number of frequency components being varied over a range of values:

o N,,: All estimates employed 100 moments, as working with higher order moments is

impractical due to numerical instability and the high varance of the estimators.

e o: The number of frequency components used in the approximation was varied in
the range [4, 30].

e 7' The reconstruction period was selected to be equal to 16.

¢ O(wy,w): A Hamming window was selected for the PDF estimator as it resulted in
less smoothing than the Bartlett (triangular) window did (due to the narrower convo-
lution kernel). This improved the accuracy of the approximation, most notably in the
tail regions where smoothing often introduces large errors. The CDF estimate did,
however, employ a Bartlett window due to additional constraints on the windowing
function (that the convolution kernel should be non-negative) in order to ensure that
the CDF estimate is monotonic.

4.2.4 PDF and CDF estimate using characteristic function

The expressions for the PDF and CDF estimators are given by Equations 2.79-2.80 and
Equations 3.52-3.53 respectively. Values for the parameters were selected as follows, with
the number of frequency components being varied over a range of values:

o «: The number of frequency components used in the approximation was varied in
the range (2, 100].

e z,: The reconstruction period was selected to be equal to 16.
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¢ Owy,,w): A Hamming window was selected for the PDF estimator and a Bartlett
(triangular) window for the CDF estimator (using the same motivation that was used

for the moments technique).

4.2.5 Parzen estimator

A Gaussian density function was used as kernel for the PDF estimator and a Gaussian
cumulative density function was used for the CDF estimator. Each kernel only has a
single parameter, corresponding to the variance of the Gaussian density function, which

was varied in the range [1, 100}~

4.2.6 Gaussian Mixture Model

The PDF was approximated using a mixture of Gaussian density functions. The mixture
density parameters were estimated from data using the iterative Expectation-Maximisation
(EM) algorithm. The CDF was approximated from the same mixture parameters that was
used for the PDF estimate, but using Gaussian cumulative density functions as bases. The

number of mixtures was varied in the range [1, 20].

4.3 Mean estimation error

A number of graphs showing the mean estimation error plotted against values of the op-
erational parameter which were varied are now presented for each estimator. Each result
was obtained by performing 20 trials in which PDF estimates were obtained from 100 data
samples.

A total of 8 graphs are shown, one corresponding to each PDF estimator and one
corresponding to each CDF estimator. Each graph contains 5 plots of the mean estimation
error, each one corresponding to one of the input data PDFs (normal, uniform, skew,
bimodal, mixture). The minimum mean estimation error is also indicated individually
for each PDF plot and represents the optimal working point for a particular PDF and
estimator combination when estimating a PDF from 100 samples.

4.3.1 PDPF estimators

Graphs showing the estimation errors corresponding to the 4 different PDF estimators
are shown in Figure 4.1 (GMM), Figure 4.2 (Parzen), Figure 4.3 (characteristic function)
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and Figure 4.4 (moments). Plots of typical PDF estimates, obtained from 100 samples

corresponding to the Gaussian/uniform mixture PDF, are shown in Figure 4.5.
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Figure 4.1: Mean estimation error: PDF estimate using GMM from 100 samples.

All 4 estimators exhibited similar performance when evaluated in terms of the relative
performance on datasets corresponding to different PDFs, values of the minimum errors
and the grouping and location of the optimal working points. Table 4.1 summarises the
minimum mean estimation errors for each technique/PDF combination. A combined mean
estimation error was also calculated by averaging the mean estimation errors corresponding
to the 5 different types of PDF. The minimum value of this combined error is indicated in
the last column of the table (along with its corresponding combined standard deviation in
brackets). The minimum error in each column is indicated using bold typeface.

From this table, we note that all the estimators are sensitive to the actual PDF and
that no single one performs optimally on all the PDFs. By considering the optimal working
points, we note that all the estimators show an affinity towards smooth and continuous
PDFs and require more parameters or degrees of freedom to optimally estimate a PDF
containing discontinuities. For cases where no prior knowledge exists about the actual
PDF, it is desirable to find a working point that provides optimal performance over more

than one PDF. Such a point is found by considering the parameter value at which the
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Figure 4.2: Mean estimation error: PDF estimate using Parzen estimator from 100 samples.

N:urrnal [ D—

Skew —— .

: : : : : : : Uniform - - -
0'6._ ........ ' ......... . ........ . ......... . ..... ......... .......... ...... Bimoﬁﬂ ‘__‘___.:_:‘ XRRN :
: : - : : Mixture —6—

jMinimanjaarker Cow

o o o
2 & [

Kullback-Leibler divergence

0.1

v} 10 20 30 40 50 60 70 8o 90 100
Number of frequency components

Figure 4.3: Mean estimation error: PDF estimate using characteristic function from 100 sam-
ples.

90



Nomial —e—
Skew ——f-——

: : : Uniform <

O_E_ - ...... . ..... : ..... Bimod.l T
: : : : Mixture —&——

Minima marker ] :

o
o
T

b
s
T
v

=
s

Kuilback~-Leibler divergence

0.1

5 10 15 2I0 2I5 3IO
Number of frequency components

Figure 4.4: Mean estimation error: PDF estimate using moments from 100 samples.

Normal | Uniform | Skew | Bimodal | Mixture | Combined
Moments | 1.60 9.77 3.69 | 3.29 7.32 523 (1.36)
CF 160 |7.02 |370 |2.93 6.11 | 4.90 (1.43)
GMM 1.22 8.71 3.95 | 4.26 8.60 6.23 (3.11)
Parzen 1.70 7.05 428 |2.99 6.21 547  (1.72)

Table 4.1: PDF estimators: minimum mean estimation errors, minimum combined mean esti-
mation errors and corresponding combined standard deviations (in brackets) from
100 samples (100x Kullback-Leibler divergence is indicated}.
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combined estimation error of each estimator attains a minimum.

It is interesting to note that performance of the estimators are very similar when the
combined error is considered, with the difference between the smallest and largest error
being within 30% of the smallest error. This is quite remarkable, considering the difference
in the underlying approaches followed by the different techniques. Of special interest
is the fact that the two estimators presented in the previous chapters outperform the
two established estimators on average. In terms of the standard deviations (indicated
in brackets in the last column), the new estimators also exhibited the two lowest values,
providing assurance that the reduced mean error does not come at a cost in terms of the
variance of the estimates. Also note the high standard deviation exhibited by the GMM,
compared to the other estimators. This can be ascribed to the iterative training algorithm
that is prone to being caught in local minima (of the loss function) and is sensitive to the
initial conditions of the training procedure, causing it to sometimes produce inaccurate
estimates. This highlights a major advantage that the other techniques share above the
GMM: they all provide closed-form solutions to the estimates that do not require iteration
or careful setup of initial conditions.

This close match in overall performance instills confidence in the fact that the theory
presented in the previous chapters is correct as well as applicable in practice (over a range
of operating conditions). It is unlikely that these results would be obtained if the theory
had been incorrect or if relevant facts had been omitted from consideration.

Furthermore, the fact that the two new estimators outperform the established estima-
tors for this specific selection of PDFs and number of samples indicates that there are
situations where these new estimators are better suited to the problem at hand than the
established ones (when considering performance in terms of mean approximation error).

For the PDF estimator using moments, there is a restriction on the maximum value
of the number of frequency components (which is the parameter that was varied during
the experiment) that can be used in the approximation. This is due to the fact that each
frequency component represents a value sampled from a characteristic function approxi-
mation, that was generated using a Taylor series expansion. This function starts to diverge
at a certain frequency, which is dependent on the actual PDF. This explains the reason
for the premature termination of some of the plots in Figure 4.4. An implication of this
is that the number of frequency components should not be a fixed number in practice,
but rather be adapted to the actual characteristic function approximation. Alternatively,
if a fixed number of components are required, a conservative (low) number of frequency
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components should be selected. Unfortunately, imposing a maximum value on the number
of frequency components causes a certain minimum amount of smoothing to always take
place. Although this can be beneficial in the case of sparse sample data, as it prevents
over-fitting to the dataset, one would expect the performance of this estimator to show a
less marked improvement, when compared to the other estimators, as more data samples
are added. This restriction makes the technique using moments impractical to use in sit-
uations where other methods (such as the one using the characteristic function) can be
used and it should only be used in situations where the only available data are the values
of a number of moments. Nonetheless, we have demonstrated that under such conditions
accurate estimates can still be obtained.

Both the Parzen estimator and the characteristic function technique showed tendencies
of over-fitting to the data for choices of parameters beyond the optimal points. In both
cases this was due to a decrease in the amount of smoothing applied to the estimate,
allowing loss of continuity between neighbouring samples. This effect is most pronounced
when the sample data sparsely populates the sample space. Examples of over-fitting by the
Parzen estimator and characteristic function technique are seen in Figure 4.6. In particular,
note an interesting resemblance between the Parzen estimate and the characteristic function
estimate in the part of the estimate representing the uniform density: what might have been
mistaken for the Gibbs phenomenon [20, p. 259] in the characteristic function approach

(as it uses a Fourier series expansion and the estimate resembles an oscillation) is actually
just a symptom of over-fitting.

Parzen estimator Characteristic function technique

\ j E.x,‘. ............. : iP\; _ E,::,,,
¥ ,f". R ual .E.:,.—..-H:'... 0.4 ,{!1 . T
Mok i I l:
0.35 - "!" !'l g 035 ,’Hl ‘ fl'
R B (\
” RIS R
0% . '."-' '{. f‘%.flt.f.'l . _;n.zs-‘ :'figl\'\ f”_i
= IRk > g Er
e.zr gl (RECET] [} o R AR O [T
’ ARy ;1

~
b
[
<
~
ko

o

Figure 4.6: Examples of over-fitted PDF estimates (obtained from 100 samples).
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In order to determine the influence that the number of samples from which the PDF
is estimated has on the performance of each technique, the experiments were repeated
using 1000 input samples. Doing this also allows us to verify the general applicability of
conclusions drawn from the results based on 100 samples.

Each experiment (corresponding to a combination of estimator and PDF) was again
repeated over 20 trials and the mean approximation errors and standard deviations were
calculated. A combined mean error and standard deviation was also again calculated
for each PDF by averaging the mean estimation error and standard deviation over the 5
different types of PDF. Generally, the results followed a similar pattern to the experiments
using 100 data samples, but with an overall reduction in the values of the approximation
errors. The graphs of the mean approximation errors corresponding to 1000 input samples
are not shown, as it does not provide any particular additional insight. However, a summary

of the minimum mean estimation errors are provided in Table 4.2.

Normal | Uniform | Skew | Bimodal | Mixture | Combined
Moments | 0.53 10.46 2.12 | 3.39 7.45 479 (0.33)
CF 0.41 2.34 0.85 | 0.55 2.11 1.66 (0.29)
GMM 0.09 5.65 0.78 | 0.65 3.01 2.32 (0.97)
Parzen 0.45 3.18 1.19 | 0.59 2.38 2.04 (0.41)

Table 4.2: PDF estimators: minimum mean estimation errors, minimum combined mean esti-
mation errors and corresponding combined standard deviations (in brackets) from
1000 samples {100x Kullback-Leibler divergence is indicated).

All the estimators, with the exception of the moments technique showed a large im-
provement (between 60 and 70 percent) in terms of their average error rates. This was
predicted earlier when it was noted that the estimates obtained using the moments tech-
nique (which improved by less than 10 percent) suffered from extreme bias due to the
limit on the maximum number of frequency components that may be used. Using a larger
number of samples did, however, improve the variance of the estimator on the same scale
as it did for the other estimators (between 65 and 80 percent).

Also of interest, is the performance of the estimators on 1000 samples, when using values
of the optimal operating points determined from 100 samples. This provides an indication
of the sensitivity of the estimator to the number of samples. Ideally, an estimator would
have a single optimal operating point regardless of the number of samples used in the
estimate. Unfortunately this is not a very realistic expectation. It is, however, still feasible

to require that when using the optimal working point corresponding to 100 input samples

95



to obtain an estimate from 1000 samples, that

o the error would not be significantly worse than at the optimal working point corre-
sponding to 1000 samples, and

o that the error would not be worse than that obtained from 100 samples.

Table 4.3 contains values of estimation errors corresponding to optimal and sub-optimal
working points. Each column contains the minimum combined mean estimation errors (and
corresponding standard deviations) that was obtained by estimating the PDFs from either
100 or 1000 samples using a choice of parameters corresponding to a working point that is
optimally suited for an estimate from either 100 or 1000 samples. Estimates were obtained
for all 5 PDFs and the mean estimation errors and standard deviations were calculated
over the results corresponding to 20 datasets (the first two columns were therefore copied
from the last columns of Table 4.1 and Table 4.2).

Working point optimal for
100 samples | 1000 samples | 100 samples
Estimate obtained from
100 samples | 1000 samples | 1000 samples
Moments | 523 (1.36) | 4.79 (0.33) N/A
CF 4.90 (1.43) | 1.66 (0.29) | 2.80 (0.26)
GMM 6.23 (3.11) | 2.32 (0.97) | 8.26 (3.43)
Parzen 547 (1.72) | 2.04 (0.41) | 3.28 (0.28)

Table 4.3: PDF estimators: the effect of selecting a sub-optimal working point.

Both the characteristic function technique and Parzen estimator showed an improve-
ment in accuracy when using 1000 samples than when using 100 samples (when performing
estimates at the optimal working point corresponding to 100 samples). The accuracy of
estimates obtained from 1000 samples using the optimal working point for 100 samples
also showed acceptable values when compared to the optimal values corresponding to 1000
samples. This allows us to conclude that operating points corresponding to a number of
samples can be used when estimating a PDF from a larger number of samples, without
undue loss of accuracy, in the cases of the characteristic function technique and Parzen
estimator (at least in some situations).

Unfortunately, the results show this not to be the case for the GMM and moments
technique. In the case of the moments technique, the optimal working point corresponding
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to 100 samples could not be used to estimate the PDF from 1000 samples as it required
too high frequency components. Therefore, the number of parameters should always be
selected based on the actual sample data at hand and never use a fixed number,

The GMM actually showed a degradation in accuracy (past the accuracy obtained from
100 samples), when using a sub-optimal working point to determine an estimate from 1000
samples. The GMM therefore seems to be more sensitive towards choices of parameter
values than the Parzen and characteristic function techniques.

4.3.2 CDF estimators

Graphs showing the estimation errors corresponding to the 4 different CDF estimators
are shown in Figure 4.7 (GMM), Figure 4.8 (Parzen), Figure 4.9 (characteristic function)
and Figure 4.10 (moments). Plots of typical CDF estimates, obtained from 100 samples
corresponding to the Gaussian/uniform mixture PDF, are shown in Figure 4.11. |
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Figure 4.7: Mean estimation error: CDF estimate using GMM from 100 samples.

Compared to the PDF estimators, all the CDF estimators exhibited a general apathy
towards the choice of parameters as well as the actual PDF being estimated. For all the
estimators except the GMM, the plots corresponding to the different PDFs, are barely
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Figure 4.8: Mean estimation error: CDF estimate using Parzen estimator from 100 samples.
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Figure 4.10: Mean estimation error: CDF estimate using moments from 100 samples.

discernible from each other. Furthermore, all the estimators with the exception of the
moments technique, reached a point after which the graphs essentially became flat, thereby
removing nearly all the dependence of the error on the value of the parameter.

These estimators therefore had a lower limit, independent from the type of CDF be-
ing estimated, on their mean approximation errors. This guards against over-fitting, to
which some of the PDF estimators (notably the Parzen estimator and characteristic func-
tion technique) were prone, as a wide range of parameter values produce near-optimal
results. However, in the case of the moments technique, the graph does not flatten out
completely over the range of parameter values that was tested. It is therefore expected
for this estimator to show a higher minimum approximation error as it never reaches its
optimal point. ! This is confirmed by the error rates shown in Table 4.4, which shows the
estimation error corresponding to the different estimators for different density functions,
as well as the combined error (obtained by averaging the mean estimation error over the 5
types of PDFs).

From this table we again see that all the estimators, with the exception of the moments

'Increasing the number of frequency components would not improve the situation, as this would re-
quire an increase in the number of moments used in the characteristic function estimate. This is not
recommended due to the impracticality of estimating high order moments.
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Figure 4.11: Typical CDF estimates.
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technique, perform similarly in terms of their minimum approximation errors. Also, by
comparing the graphs we note that the characteristic function and moments techniques
exhibit similar performance. Based on these observations, we draw the conclusion that
these new CDF estimators, presented in previous chapters, do perform correctly and pro-
duce estimates with accuracy that is comparable to established estimators. Use of the
moments technique is, however, discouraged in applications where another estimator (such
as the characteristic function technique) can be used.

Normal | Uniform | Skew | Bimodal | Mixture | Combined

Moments | 1.37 | 1.47 1.45 | 1.42 1.43 143 (0.29)
CF 0.77 0.80 0.81 |0.76 0.82 0.79 (0.29)
GMM 0.63 0.72 0.78 | 0.66 0.92 0.78 (0.38)
Parzen 0.66 0.67 0.69 | 0.65 0.70 0.68 (0.31)

Table 4.4: CDF estimators: minimum mean estimation errors, minimum combined mean esti-
mation errors and corresponding combined standard deviation (in brackets) from 100
samples (10x integral absolute difference is indicated).

The Parzen estimator outperforms all the estimators, except the GMM in the case
of a single Gaussian PDF. As the Parzen estimator provides the least parametric (i.e.
corresponding to a reduction in information when compared to the raw data samples)
estimate it has the ability to provide the best fit to the data, thereby ensuring the highest
accuracy. This should be contrasted to the case of the PDF estimators, where a certain
amount of generalisation (smoothing) helped to reduce the problem of over-fitting (which
plagued the Parzen estimator for certain choices of parameter and sample set size).

Recall that the characteristic function and moments techniques used a different fre-
quency domain windowing function for the CDF estimate than for the PDF estimate. The
one that was selected for the CDF estimate was required to have a non-negative inverse
Fourier transform (which was not required for the PDF estimator). This choice resulted
in a windowing function which applied more smoothing to the estimate than the PDF
estimator did. Consequently, we expect it to perform worse when compared to the other
estimators. This constraint on windowing function would, unfortunately, also be present
in practice.

Table 4.5 shows the minimum mean and minimum average mean approximation errors
corresponding to 1000 input samples. The error rates of the GMM, Parzen estimator and
characteristic function technique show a reduction in the error rate, when compared to the

results corresponding to 100 input samples, while the moments technique shows virtually
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no change. However, as the standard deviation of all the estimators decreased with an
increase in the number of samples, we can conclude that all the estimators show consistent

behaviour, thereby deriving benefit from an increase in sample size.

Normal | Uniform | Skew | Bimodal | Mixture | Combined
Moments | 1.43 1.37 1.51 | 1.40 1.34 1.41  (0.09)
CF 034 |0.38 0.37 | 0.36 0.34 0.36  (0.10)
GMM 0.20 0.30 0.23 ; 0.23 0.26 0.25 (0.10)
Parzen 0.23 0.23 0.23 | 0.22 0.21 0.23 (0.09)

Table 4.5: CDF estimators: minimum mean estimation errors, minimum combined mean es-
timation errors and corresponding combined standard deviation (in brackets) from
1000 samples (10x integral absolute difference is indicated).

4.4 Computational requirements

When selecting an algorithm for use in an application where computational resources are
expensive, such as a real-time or embedded application, the computational requirements are
an important consideration. In this section we compare the computational requirements
of the four estimators considered in the previous section: GMM, Parzen, characteristic
function and moments technique. The aim is again to find out how the new estimators,
introduced in the previous chapters, measure up against some established estimators. We
assume throughout that the algorithms would be implemented as software targeted for
a modern and ubiquitous microprocessor architecture (and therefore do not consider the
performance implications on dedicated or unusual hardware architectures). This is done
to ensure that any results obtained here reflect practical usage considerations and that
they can be implemented in real-life systems with the minimum of effort. Furthermore,
we measure the amount of computational power required by an estimator in terms of the
time required to perform a certain task as this is one of the chief constraints in a real-time
system.

Determining the amount of time to execute a certain algorithm on a specified modern
computing platform theoretically proves to be a daunting task. This is due to the nature
of modern microprocessor architectures and the large difference in performance that can
be extracted by even seemingly meaningless optimisations. It was therefore decided to
determine the computational requirements of each algorithm empirically by constructing
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software benchmark applications. By drawing on the similarities in the operations that
different estimators perform, the task was narrowed down to the construction of a set
of benchmarks that allowed a comparison between all of the estimators. The following

assumptions were made:

1. As all the CDF estimators considered here are nearly identical to their PDF coun-
terparts, their comparative performance can be considered to be the same as that of
their respective PDF estimators. This removed the need to benchmark any of the
CDF estimators.

2. Furthermore, as the PDF and CDF estimators for the characteristic function and
moments techniques are identical (as they both employ Fourier series and only differ
in the way that the series coefficients are calculated), they are assumed to have

identical computational requirements.

Three benchmark implementations were therefore constructed: one implementing the
GMM PDF estimator, one implementing the Parzen PDF estimator and one implementing
the characteristic function technique PDF estimator (which also represented the moments
technique). FEach benchmark application measured the time required to evaluate a PDF
estimate at a fized number of positions in the sample space.

All benchmarks were written in the C programming language and the execution time
was then measured on a number of different hardware platforms. The tests were executed
on the Linux operating system and the programs were compiled using the GNU C Compiler
at its highest optimisation level (level 6).

In order to determine the influence that selectable parameters had on the computa-
tional requirements of each estimator, all the benchmarks were repeated over a range of
parameters. The parameter which was varied, as well as the range over which it was varied,

being again specific to each estimator:
GMM The number of mixtures was varied in the range [5, 100].
Parzen The number of training data samples was varied in the range [5, 100].

Characteristic function / moments The number of Fourier series coefficients was var-
ied in the range [5, 100}.

Note that the parameter that was varied in the case of the Parzen estimator is not the

same one that was varied in the experiments involving the approximation error.
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4.4.1 PDF Estimators

Figure 4.12 contains graphs of the normalised execution times of the different estimators
plotted against their parameter values. These results were obtained by executing the
benchmarks on an Intel Pentium III 700 MHz computer and normalising it so that the
execution time of the characteristic function and moment estimators are equal to 1 at its

highest parameter value.
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Figure 4.12: Comparison of normalised execution times of PDF estimators: Pentium III 700
MHz.

On their own, these execution times do not provide an adequate basis for comparison
between the estimators, as the different parameters are completely unrelated to each other
and cannot be compared. It is, however, possible to use this information to compare the
speed /accuracy trade-offs of some of the techniques, thereby providing us with a practically
relevant comparison.

In the case of the GMM, characteristic function and moments techniques, the same
parameters that were varied during the accuracy trials were also varied during the com-
putational requirement trials. This allows a direct comparison between the accuracy of
these estimators and their computational requirements: by mapping between the param-
eter value and the computational requirements and between the parameter value and the

estimation error, the relationship between the estimation error and computational require-
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ments are obtained. Furthermore, as the mapping between the parameter value and the
computational requirements (represented by the execution time) are linear, from Figure
4.12, it is easily calculated from the gradients of the graphs.

The same benchmarks were also repeated on two other hardware platforms (an Intel
Pentium II 233 MHz and an Intel Pentium IV 1700 MHz), and the results again normalised.
The gradients of the graphs of the computation time vs parameter values for each estimator
/ hardware platform are tabulated in Table 4.6. Combining these values with the results of
the previous section allows us to generate graphs of the mean approximation error (in terms
of the Kullback-Leibler divergence) against the computational requirements (in terms of
the normalised execution time). Figure 4.13 shows these graphs comparing the GMM and
the characteristic function and moments techniques, for estimates that were derived from
100 samples as well as for those derived from 1000 samples. The mean estimation error

averaged over all PDFs were used as an indication of the approximation error.

Pentium II 233 | Pentium III 700 | Pentium IV 1700
Moments / CF | 1.000 1.000 1.000
GMM 1.558 1.585 4.505
Parzen 1.373 1.430 3.441

Table 4.6: Gradient (x100) characterising the relationship between the computation time and
the parameter value.
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Figure 4.13: PDF estimators: estimation error against computational requirements (Parzen is
excluded as its computational requirements are too high}.
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From the graph we observe that the higher accuracy of the characteristic function
and moments technique estimators come at a price as they require more computational
resources. Note, however, that the graph corresponding to the GMM does not intersect the
other graphs close to the optimal working points of the other estimators. Consequently, the
new techniques allow us to improve on the estimates produced by the GMM in applications
where the computational requirements allow it.

The optimal choice of estimator is also highly dependent on the hardware platform and
the number of samples from which the estimate is obtained (with the difference between
the GMM and the other estimators being most pronounced on the Pentium IV using 1000
samples). The locations at which the graphs representing the GMM intersect with those
representing the characteristic function and moments techniques corresponded to a number
of mixtures between 2 and 5 and to between 8 and 13 frequency components.

Results corresponding to the Parzen estimator are excluded from the graphs as its
performance is not comparable to that of the other estimators over the range of values
that was considered. As this estimator uses all the sample data directly to produce an
estimate, the computational resources it requires is proportional to the size of the training
set. Consequently, it requires a significantly larger amount of computing power than the
other estimators when obtaining estimates from large sample sets. For the case of 100
samples, the Parzen estimator requires between 5 and 10 times (dependent on the hardware
architecture) the computing power that the characteristic function and moments techniques
require. It is therefore recommended to only use the Parzen estimator in applications where
the sample size is not larger than the number of parameters required by a parametric
estimator to produce an adequate estimate.

4.4.2 CDVF Estimators

Figure 4.14 contains graphs comparing the estimation error against the computational re-
quirements for different CDF estimators. The mean estimation error averaged over all
PDFs was again used as a measure of the approximation error and the normalised com-
puting time used to quantify the computational requirements.

From these results we conclude that from a performance perspective that is quanti-
fied wholly in terms of the approximation accuracy and computational requirements, the
GMM CDF estimator outperforms all the other estimators. In order for the characteristic
function technique to show the same accuracy as the GMM requires a large increase in

the computation time. This degradation in performance, when compared to the results
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Figure 4.14: CDF estimators: estimation error against computational requirements (Parzen is
excluded as its computational requirements are too high).

obtained for the PDF estimators, is again explained by the choice of frequency domain
windowing function that was employed in the characteristic function and moments tech-
niques. Note, however, that the characteristic function and moments techniques still hold
some other advantages above the GMM in terms of their simplified training procedure.

When used as a CDF estimator, the Parzen estimator suffers from the same disad-
vantages that was encountered with it as a PDF estimator. As its performance is also
proportional to the size of the sample set, it should only be selected above the GMM in
applications where the sample set is smaller than the number of mixtures that is required
to provide an estimate of adequate accuracy.

4.5 Training requirements

Ease of training is an important consideration in applications where the density function of-
ten changes during the operation of the system, requiring the estimator to adapt to the new
density function. In these situations, the training requirements of the estimators should
also be given some consideration (along with accuracy and computational requirements).
Although we do not wish to compare the training algorithms of the different techniques
in detail (as the selection of a training algorithm is dependent on the specific application
of the technique), we briefly present some general considerations to be kept in mind when
training each of the estimators.
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Parzen Of all the estimators considered so far, the Parzen estimator requires the least
amount of training. Although a Parzen estimate can be obtained without any training
by simply using a predefined kernel function, this could produce poor results (in terms
of approximation error). This was seen in situations where estimates were obtained
using parameter values that were not close to the optimal working points. In order to
improve this situation, it is recommended that the kernel employed by the estimator
be matched to the dataset by considering the expected distance between data samples
and ensuring that the kernel width is compatible with this value. Doing this need
not be a complex operation and sensible values can be obtained by only considering
the standard deviation and size of the sample set. Even if this is done, the Parzen

estimator still requires the least amount of training.

Characteristic function technique The estimator based on the characteristic function
technique allows the parameters (Fourier series coeflicients} to be directly trained
from the sample data using the expressions in Equation 2.79 and Equation 3.53.
Both operations involve the evaluation of a number of complex exponential functions,
defined over the sample set. The complexity of these operations are linear with
respect to the sample set size and the number of parameters and training algorithms
provide a closed-form solution to the parameter values that does not require any
iterative training procedure. Furthermore, the training procedure is deterministic

and does not depend on the selection of initial conditions.

Moments technique Training the estimator using the moments technique requires a two-
step approach: first the moments are estimated from the sample data, after which
the Fourier series coefficients are estimated using the values of the moments. Care
should be taken to ensure that the expression for the characteristic function, which
is approximated as a Taylor series with coefficients that is expressed in terms of the

values of the moments, does not diverge.

GMM A popular way of training GMMs is to use the Expectation-Maximisation algo-
rithm {3, p.65]. This is an iterative training algorithm that is prone to complications
involving singularities and convergence towards local optima. Knowing in advance
how many iterations would be required to produce adequate results is also difficult
due to its sensitivity towards initial conditions. This makes it difficult to design a
general training procedure for use in practice: if the training is prematurely termi-

nated it results in an increased approximation error and variance, while leaving the
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procedure until the estimate attains sufficient accuracy might violate some real-time
constraint.

The GMM training algorithm does not perform particularly well when the size of the
sample set is not much larger than the number of parameters (by at least an order
of magnitude). If this is not ensured, singularities can occur if a mixture component
represents only a few isolated samples unless proper care is taken {usually in the form

of some heuristic rules).

4.6 Application to speaker verification

An experiment was conducted to evaluate the performance of one of the estimators on
data obtained from a speaker verification application. This application either accepts or
rejects the claimed identity of a person that presents speech to the system. It functions by
calculating a score (in the form of a likelihood) from a sequence of feature vectors extracted
from the speech and a model corresponding to the claimed identify of the person.

It is expected that scores corresponding to correct claimed identities would generally
be concentrated at different values than those corresponding to impostors. Two gaussian
mixture models (GMMSs) are then trained to represent class-conditional density functions:
one corresponding to known speakers and one corresponding to impostors. When presented
with speech from an unknown speaker claiming some identity, the score is first calculated
and then classified as belonging to either the impostors or the known speakers. The
experiment involved replacing the GMM by the PDF estimator based on the characteristic
function (CF) and then comparing the performance of the new classifier with the one
employing the GMM.

The input data consisted of 60000 data samples, corresponding to scores, that were
labelled as either belonging to impostors or to speakers with correctly claimed identities.
This dataset was divided into a training set (consisting of 6000 samples) and a test set
(consisting of the remaining 54000 samples). From the labelled training set, two models
were trained, one corresponding to the impostors and one to the known speakers. Estimates
of the class-conditional PDF's obtained from the PDF estimator using the CF technique is
shown in Figure 4.15. All the data in the test set were then classified using these models
(according to Equation 1.6) as either belonging to the impostors or the known speakers.

In order to compare the performance of the classifier using the new estimator to the one

using the GMM, the McNemar test was employed: this test allows one to compare whether
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Figure 4.15: Typical class-conditional PDFs of scores corresponding to impostors and known
speakers.

differences in accuracy between two classifiers are significant or can simply be ascribed to
chance (as neither classifier is perfect and therefore bound to make random errors). It
only considers results where the two classifiers differ in correctness (with the one providing
a correct verdict and the other one an incorrect verdict). If both estimators are equally
accurate, it is expected that the probability of estimator A being correct and estimator B
being wrong would be the same as the probability of B being correct and A being wrong.
This is the same as saying that the number of results where A is correct and B is wrong
(z) is binomially distributed [2]:

Py =3 (V) - (43)

k=0

with N (the number of trials) being equal to the total number of results where A and B
differ and p = 0.5. This allows us to construct a two-tailed test against which we can test
the null hypothesis stating that the two classifiers are equally accurate.

Values for £ and N were calculated over a number of trials, corresponding to different
parameter values characterising the estimators, and the McNemar test {with a significance
level of 5%) was performed to determine under which circumstances one estimator outper-
formed another one. The results of these trials are summarised in Table 4.7.

It is seen that, when using 8 frequency components or more, the CF estimator shows lit-

tle difference in performance from the GMM. The fact that it is easier to train and exhibits
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GMM: Number of Mixtures

CF: Number of [ 1 {23 (45|67 [8|9]10
frequency com-

ponents

2 EIE|E|E|E|E|E|E|E | E
4 E(E|E|E|E|E[{E|E|E|E
6 x|x|E{x|E|E|E|x|E|E
8 x| x|x[x|x|x|x|x!x|x
10 x|x|x|x|x{E|E|E|x| x
12 Nix|x|x|x|E|x|x|x]|x
14 Nix|x|x|[x|x|x{x|x|x
16 Nix|x|x|[x|x|x|{x|x]|x
18 Nixix|x|x|x|x|x|x]|x
20 Nixi{x|x|E|x|x|x|x]|x

E: GMM better N: CF better x: Equal

Table 4.7: Comparison between GMM and CF technique in a speaker verification application.

less variance than the GMM (from earlier experiments) makes it a suitable replacement
for the GMM in this application.

4.7 Conclusions

We will now present a comparison between the characteristics of the estimators, based
on a number of practically relevant criteria, from information which was obtained in the
previous sections. This serves as a summary of this chapter and may be consulted when
selecting an estimator for a specific application.

The comparison is presented in Table 4.8, with features of the estimators in the rows
and the different estimators in the columns. All features are positive (advantageous) and a
mark 1n a cell indicates that the corresponding estimator possesses a certain feature (when
compared to the other estimators). Characteristic features, which are not associated with
at least one of the GMM or the Parzen estimators but which are associated with one
of other estimators, are indicated in bold. This indicates the features upon which the
new estimators improve on at least one of the old estimators. The following features are
tabulated:

111



Easy to train An unsupervised training algorithm exists that is not overly complicated,
in terms of the ease of implementation, when compared to the algorithm that evalu-
ates the PDF or CDF. The training should also be able to proceed in an unsupervised
fashion without requiring external intervention and should provide near optimal re-

sults over a range of input conditions {density functions).

Compact data representation The estimator provides a more compact representation
of the sample data than the raw data does after the training phase. This would imply

that the estimator is of a parametric nature.
Accurate PDF estimate The estimator produces accurate PDF estimates.
Accurate CDF estimate The estimator produces accurate CDF estimates.
Low variance PDF estimate The PDF estimates exhibit low variance.
Low variance CDF estimate The CDF estimates exhibit low variance.

Low computational requirements The estimator requires low computational overhead

to produce an accurate estimate.

Moments only The estimator is capable of producing an estimate from the values of a
number of moments only.

Easy to select parameters It is possible to select values of parameters that provide
acceptable results over a wide range of operating conditions. This also implies that

the estimator is not overly sensitive to the values of the parameters.

Resistant to PDF over-fitting The estimator is resistant to over-fitting when estimat-
ing a PDF.

Resistant to CDF over-fitting The estimator is resistant to over-fitting when estimat-
ing a CDF.

Suitable for small datasets The estimator is suitable for use on datasets containing less
than 100 samples.

Suitable for medium datasets The estimator is suitable for use on datasets containing
between 100 and 1000 data samples.
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Suitable for large datasets The estimator is suitable for use on datasets containing

more than 1000 data samples.

GMM | Parzen
Easy to train v
Compact data representation
Accurate PDF estimate

Accurate CDF estimate

Low variance PDF estimate

Low variance CDF estimate

Low computational requirements
Easy to select parameters
Moments only

Resistant to PDF over-fitting
Resistant to CDF over-fitting
Suitable for small datasets
Suitable for medium datasets
Suitable for large datasets

Moments
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Table 4.8: Feature matrix for all the estimators.

The experiments attempted to provide an objective view of the capabilities and strong
and weak points of each estimator. It was shown that no single estimator is capable of
performing all tasks equally well and some are simply suited better to a specific task than
any other estimator. Nonetheless, from the table it is evident that the new estimators
are able to combine positive features from both the Parzen estimator and the GMM. This
is heartening as it allows it to be used in situations where neither one of the established
estimators would provide adequate performance, either in terms of accuracy, computational
requirements or training complexity.

We therefore conclude that the theory presented in the previous chapters are correct and
present theoretical and practical contributions to the field of density function estimation.
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Chapter 5

Conclusions and recommendations

5.1 Conclusions

'This work presents contributions to the field of density function estimation by considering

a novel approach to density function estimation from the following perspectives:

Theoretical study The estimation of density functions (PDFs and CDFs) using only
moments or the characteristic function was shown to be feasible in theory. The
problem of density function estimation was considered from a frequency domain per-
spective which produced positive results. Expressions for density function estimates,
with desirable characteristics, were obtained entirely in terms of a finite number of
moments (Section 2.4.2 and Section 3.4.1) and in terms of a characteristic function
estimate from sample data (Section 2.5.2 and Section 3.5.1). Both types of estima-
tors produced an estimate that represented a smoothed version of the actual density
function (to which the moments or characteristic function corresponded), with the
exact amount of smoothing being controlled by the choice of a windowing function.
Even though the level of detail that the moments-based estimator is able to attain is
limited by the impracticalities of estimating high order moments from sample data,
it was still found capable of providing results comparable to existing estimators in
terms of accuracy. The estimators based on the characteristic function estimate was
shown to be identical to the Parzen estimator, although the derivation was done
from a frequency-domain perspective. This estimator also overcame the limits asso-
ciated with the accuracy of the moments-based technique, thereby presenting a more
practically feasible estimator.
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Practical estimators A number of ways were considered in which the theory can be
applied to the creation of new practical estimators that employ moments or the char-
acteristic function. Four new parametric techniques that employ a Fourier series
were developed, allowing the PDF and CDF to be estimated from both moments
and sample data (using the characteristic function estimator). All these techniques
represented estimators that are easy to train from sample data and have the abil-
ity to approximate arbitrary density functions. As they are parametric techniques,
they also provide a compact representation of the sample data and have the abil-
ity to generalise over the sample set. The amount of smoothing employed by each
estimator is controlled by the selection of a windowing (or kernel) function. Fur-
thermore, the techniques based on the characteristic function estimator represent a
parametric approximation to the Parzen estimator, thereby eliminating one of its
greatest disadvantages (high computational requirements due to non-parametric na-
ture) while retaining its major advantages (the ability to estimate arbitrary PDFs
using a closed-form estimator that does not require an iterative training procedure).

Experimental validation The validity of the theory as well as the new estimation tech-
niques were established by comparing the performance of the new estimators to
two established ones, one representing parametric estimators (the Gaussian mixture
model) and the other representing non-parametric estimators (the Parzen estima-
tor). The comparison was done in terms of accuracy, computational requirements
and training requirements as well as other factors such as ease of implementation. It
was found that the new estimators exhibited performance that compared favourably
with that of the established ones. Some of the new estimators also cutperformed the
established estimators in terms of accuracy, computational requirements or ease of
use under certain conditions, thereby showing that there are applications in which
they represent better choices than the established estimators that were considered.
From this it was concluded that the theory developed during this work is indeed
correct and that the new estimators can be used in practice to complement existing

estimators.

By comparing the above to the statement of our research objectives (Section 1.4) it is seen
that all the objectives have been met and some even superseded (due to the successful

application of the theory and the positive experimental results).
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5.2 Recommendations

As a lot of the work presented in this thesis is novel, there is potential for further research

along similar paths. It is recommended that research be continued on one of the following:

1. The basis functions from which the estimates employing the characteristic function
is constructed, is determined by the characteristic function estimator presented in
Equation 2.71. By experimenting with different estimators, different basis functions
may be employed. The objective would be to find basis functions more suitable to
PDF and CDF estimation than the sinusoidal ones employed by the current estimator.

2. All the estimators presented in this work featured a frequency domain windowing
function with finite support, ©(w,,w). This function determined the degree of
smoothing that the estimator applied and also allowed the estimate to be repre-
sented using a parametric representation (as it limited the free parameters to a finite
number). By considering alternative windowing functions than those presented in
the previous chapters, estimates which are more optimal in terms of the estimation

error or computational requirements may be found.

3. Extending this work to multivariate random variables would allow it to be applied
to a much wider range of problems. Due to the “curse of dimensionality”, this gen-
eralisation would not necessarily be a trivial exercise. In order to construct practical
techniques for use in higher dimensions, it should be attempted to construct tech-
niques with complexity that is linear in the number of dimensions (instead of the
exponential relationship predicted by the “curse”). It is expected that work in this
regard would concentrate on the selection of suitable windowing functions and the
normalisation of the sample data, as this could allow the estimate to be compactly
represented in the frequency domain, thereby breaking the “curse”.
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Appendix A

A review of the Fourier transform

A short overview of the Fourier transform is now presented. More detailed accounts are
found in Folland {32], Stremler [5] and Proakis and Manolakis [20].
Let f(z) be real- or complex-valued function defined on the real line. Its Fourier

transform, denoted by F(w), is a complex-valued function that is defined by

Flw) = /_ " H@)em v, (A1)

where w is a real scalar representing radial frequency. The Dirichlet conditions provide a

set, of sufficient conditions that guarantee existence of the Fourier transform:
1. f(z) has a finite number of discontinuities in any finite interval.
2. f(z) has a finite number of minima and maxima in any finite interval.

3. f(z) is absolutely integrable:

/_00 | f(x)ldz < oc. (A.2)

oc

If these conditions are met, f{x) can be reconstructed from its Fourier transform using the

inverse Fourier transform that is defined by

f(z) 1/°°F(w)ejwmdw. (A.3)

=§_7F—_m

The Fourier transform and inverse Fourier transform operations are denoted using a
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cursive letter F,

F(w) = F{f(2)},

(A.4)
flz) = FH{F(w)}

and f(z) and F(w) constitute a Fourier transform pair, which is denoted using a double

arrow,

f(@) & Flw). (A.5)

It is customary to refer to F(w) as the frequency domain representation of f(z) and to
f(x) as the time or spatial domain representation of F(w) (depending on the definition of

A number of Fourier transform properties allow operations in the one domain to be
related to operations in the other. Table A.1 contains a list of some of the properties that
are often encountered:
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Operation flz) F(w)

Linearity kifi(z) + ko fa(x) ki Fi{w) + ko Folw)
Translation flx — xq) F(w)e=iwwo
f{x)efo® F(w — wy)
Conjugation  f*(z) F*(~w)
fr(-1) F*(w)
Duality F(z) 27 f(—w)
Convolution [0 filA) fa(z — N)dA Fy(w) Fa(w)
hi{@) falz) 3= [ oo Fi(§) Falw — £)dg
Integration [ f()\)dA TF(0)3(w) + S
mf(0)8(x) — L2 Jo L F)de
Differentiation 4= f(z) ( jr?))“F(w)
(—gt)" f (=) ar F(w)

Table A.1: Selected Fourier transform properties.
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Appendix B

Summary of algorithms

A summary of the algorithms deseribing the following four practical estimators are now

presented:
e Table B.1: PDF from moments (Section 2.4.5).
e Table B.2: PDF from sample data (Section 2.5.3).
¢ Table B.3: CDF from moments (Section 3.4.3).

¢ Table B.4: PDF from sample data (Section 3.5.2).
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Inputs:
Values of the first N,,, moments: S = {mo,ml, ...,mNm_l}.

Known parameters:
O{w,,w): real windowing function with G{wy, w)= 0 if |w| > w,.
za: width of interval over which estimate attains non-zero values.
K: number of parameters.

Training procedure:
Compute the mean: p, = m,.
Compute the parameters:
y @(—[—-H” e -”—"){Nflﬂl(m)"} k=01, K—1
Ta L 3 Lyreny .

Tk = za ' za AFEIAEN
n=

Estimate:
K1 jmx T
. %:{ )’Yke A ’ |$ - U‘:J:I S _éa
- = (K-1
fx{(z) =
0 ; lCC - Mm' > £2A

Table B.1: PDF estimate from moments using Fourier series.
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Inputs:
Values of N, samples: S = {zo, %1, ..., Tn,-1}-

Known parameters:
O(w,,w): real windowing function with &(w,, w)= 0if |w| > w,.
za: width of interval over which estimate attains non-zero values.
K: number of parameters.

Training procedure:
Ng—1
Compute the sample mean: p, = Ni: >z

Compute the parameters:

Ng-1 jamky
%zmalNze(zw[IK ll,i’c){ze E7N }, k=01,..,.K - 1.

n=0
Estimate:
K1 jomk
(E )’Yke S R [ T
2 =—(K-1
fx(z) =
0 o= | >

Table B.2: PDF estimate from samples using Fourier series.
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Inputs:
Values of the first N,, moments: S = {mg,ml, vny mNm_l}.

Known parameters:
©(wy,w): real windowing function with O (w,, w)= 0 if |w| > wy.
zA: width of interval over which estimate attains non-terminal values.
K: number of parameters.

Training procedure:
Compute the mean: p, = my.
Compute the parameters:
-1

L @(2_75&11 M){Ni &(Zﬁ)ﬂ} i k=1,2,..,K -1

Imik za ?zA = FEL IR TN
Yk = 4
3 K-1
7 (_1)”"}/11 ' k=0
n=—(K=1)
\ n#EQ
Estimate:
{ —
r Kt jmx T T
Fx(z) =¢ 2 me=a +5 5 |lz-m[<H
k=—(K-1}
1 yT = e > TR

Table B.3: CDF estimate from moments using Fourier series.
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Inputs:
Values of N, samples: § = {xg,a:l, .4.,:ENI_1}.

Known parameters:
O(wy, w): real windowing function with O{w,,w)= 0 if |w| > wy.
za: width of interval over which estimate attains non-zero values.
K: number of parameters.

Training procedure:
Np—1
Compute the sample mean: p; = 7= Y Ti.
F =0
Compute the parameters:

r_1__®(2_1r[ﬂ M){LNfle"ﬁ’.%mi} - k=1.2 K -1
EA 1 H AR |

ik vea )\ M &
Yk = ﬁ 1 Kot
i— 2 (=1)"nm ; k=0
n=—{K-1)
\ n#d
Estimate:
(0 DT = e < '—;’A
n K= J"z_ﬂ'z T z
Fx(z) =< X me=a += 5 |lo—pm|<%H
k=—(K—1)
(1 ;T — g > FA

Table B.4: CDF estimate from samples using Fourier series.
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