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Abstract 

Reinforced concrete structures, designed according to proper capacity design guidelines, can deform 

inelastically without loss of strength.  Therefore, such structures need not be designed for full elastic 

seismic demand, but could be designed for a reduced demand.  In codified design procedures this 

reduced demand is obtained by dividing the full elastic seismic demand by a code-defined behaviour 

factor.  There is however not any consensus in the international community regarding the appropriate 

value to be assigned to the behaviour factor.  This is evident in the wide range of behaviour factor 

values specified by international design codes. 

 

The purpose of this study is to assess the seismic drift of reinforced concrete structural walls in order 

to evaluate the current value of the behaviour factor prescribed by SANS 10160-4 (2009).  This is 

done by comparing displacement demand to displacement capacity for a series of structural walls. 

 

Displacement demand is calculated according to equivalency principles (equal displacement principle 

and equal energy principle) and verified by means of a series of inelastic time history analyses (ITHA).  

In the application of the equivalency rules the fundamental periods of the structural walls were based 

on cracked sectional stiffness from moment-curvature analyses. 

 

Displacement capacity is defined by seismic design codes in terms of inter storey drift limits, with the 

purpose of preventing non-structural damage in building structures.  In this study both the 

displacement demand and displacement capacity were converted to ductility to enable comparison. 

 

The first step in seismic force-based design is the estimation of the fundamental period of the 

structure.  The influence of this first crucial step is investigated in this study by considering two period 

estimation methods.  Firstly, the fundamental period may be calculated from an equation provided by 

the design code which depends on the height of the building.  This equation is known to overestimate 

acceleration demand, and underestimate displacement demand.  The second period estimation 

method involves an iterative procedure where the stiffness of the structure is based on the cracked 

sectional stiffness obtained from moment-curvature analysis.  This method provides a more realistic 

estimate of the fundamental period of structures, but due to its iterative nature it is not often applied in 

design practice. 

 

It was found that, regardless of the design method, the current behaviour factor value prescribed in 

SANS 10160-4 (2010) is adequate to ensure that inter storey drift of structural walls would not exceed 

code-defined drift limits.  Negligible difference between the equivalency principles and ITHA was 

observed.    
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Opsomming 

Gewapende beton strukture wat ontwerp is volgens goeie kapasiteitsontwerp-riglyne kan plasties 

vervorm sonder verlies aan sterkte.  Gevolglik hoef hierdie strukture nie vir die volle elastiese 

seismiese aanvraag ontwerp te word nie, maar kan vir ŉ verminderde aanvraag ontwerp word.  In 

gekodifiseerde ontwerpriglyne word so ŉ verminderde aanvraag verkry deur die volle elastiese 

aanvraag te deel deur ŉ kode-gedefinieerde gedragsfaktor.  Wat egter duidelik blyk uit die wye reeks 

van gedragsfaktor waardes in internasionale ontwerp kodes, is dat daar geen konsensus bestaan in 

die internasionale gemeenskap met betrekking tot die geskikte waarde van die gedragsfaktor nie. 

 

Die doel van hierdie studie is om seismiese verplasing van gewapende beton skuifmure te evalueer 

ten einde die waarde van die gedragsfaktor wat tans deur SANS 10160-4 (2009) voorgeskryf word te 

assesseer.  Dit word gedoen deur verplasingsaanvraag te vergelyk met verplasingskapasiteit. 

 

In hierdie studie word verplasingsaanvraag bereken deur middel van gelykheidsbeginsels (gelyke 

verplasingsbeginsel en gelyke energiebeginsel) en bevestig deur middel van nie-elastiese 

tydsgeskiedenis analises (NTGA).  Die effek van versagting as gevolg van nie-elastiese gedrag word 

in aanmerking geneem in die toepassing van die gelykheidsbeginsels. 

 

Verplasingskapasiteit word deur seismiese ontwerpkodes gedefinieer deur perke te stel op die 

relatiewe laterale beweging tussen verdiepings, met die doel om nie-strukturele skade te verhoed.  

Om verplasingsaanvraag en -kapasiteit te vergelyk in hierdie studie, word beide omgeskakel na 

verplasingsduktiliteit. 

 

Die eerste stap in kraggebaseerde seismiese ontwerp is om die fundamentele periode te beraam.  Die 

invloed van hierdie eerste kritiese stap word in hierdie studie aangespreek deur twee 

periodeberamingsmetodes te ondersoek.  Eerstens kan die fundamentele periode bereken word deur 

‘n vergelyking wat ‘n funksie is van die hoogte van die gebou.  Dit is egter algemeen bekend dat 

hierdie vergelyking versnellingsaanvraag oorskat en verplasingsaanvraag onderskat.  Die tweede 

metode behels ‘n iteratiewe prosedure waar die styfheid van die struktuur gebaseer word op die 

gekraakte snit eienskappe, verkry vanaf ‘n moment-krommingsanalise.  ‘n Beter beraming van die 

fundamentele periode word verkry deur hierdie metode, maar as gevolg van die iteratiewe aard van 

die metode word dit selde toegepas in ontwerppraktyk. 

 

Die resultate van hierdie studie toon dat die huidige waarde van die gedragfaktor soos voorgeskryf in 

SANS 10160-4 (2010) geskik is om te verseker dat die relatiewe laterale beweging tussen verdiepings 

binne kode-gedefinieerde perke sal bly.  Onbeduidende verskil is waargeneem tussen die resultate 

van gelykheidsbeginsels en NTGA.  
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1 Introduction 

1.  Introduction 

Buildings, in which structural walls resist most or all lateral loads, have in the past frequently 

been called shear wall buildings.  This name may be misleading since it may imply that the 

structural wall’s response may be dominated by shear action, whereas the desired response 

is ductile flexural action (Paulay & Priestley, 1992, p.362).  Therefore, following the lead of 

Paulay & Priestley (1992, p.362), the term structural wall will be used in preference to shear 

wall in this study. 

 

In the 1960’s, with the development of inelastic time history analysis (ITHA), came the 

realization that well designed structures can deform inelastically without loss of strength 

(Priestley, Calvi & Kowalski, 2007, pp. 1-4).  Engineers realized that structures need not be 

designed for the full elastic seismic demand, but could be designed for a reduced demand.  

This reduced demand is obtained by dividing the full elastic seismic demand by a code-

defined behaviour factor.  There does however not seem to be any consensus in the 

international community regarding the appropriate value to be assigned to the behaviour 

factor.  This is evident in the wide range of behaviour factor values specified by international 

design codes (Priestley et al., 2007, p. 13). 

 

The purpose of this study is to assess the seismic drift of reinforced concrete structural walls 

to evaluate the current value of the behaviour factor, which according to SANS 10160-4 

(2009) is equal to five.  This study is a continuation of a study by Spathelf (2008) who 

computationally determined behaviour factor values for a series of structural walls. 

 

The main influence of the behaviour factor becomes evident in seismic displacement 

demand.  Therefore, in order to assess the current behaviour factor value, a comparison 

between seismic displacement demand and seismic displacement capacity is required.  A 

series of structural walls will be assessed in this study.  A first estimate of displacement 

demand of these walls will be obtained from the equal displacement and equal energy 

principles.  The displacement demand will be verified by means of a series of ITHA on these 

walls.  Displacement capacity is defined by seismic design codes in terms of inter storey drift 

limits to prevent non-structural damage in building structures.  Thus, in essence, this study 

will assess if structural walls, designed with the current behaviour factor value, would suffer 

non-structural damage under the design earthquake.  If it is found to be so, a lower 

behaviour factor value will be prescribed. 

 



 

 
 

2 Introduction 

Additionally, this study will evaluate the way in which the fundamental period of a structure is 

estimated.  Seismic design codes, including SANS 10160-4 (2009), provide a simple 

equation by which the fundamental period of a structure may be calculated.  It is well known 

that this equation overestimates seismic design forces, and underestimates lateral 

displacement demand (Priestley et al., 2007, p.11).  The influence of this equation on both 

the design and displacement prediction will be assessed in this study.  An alternative period 

calculation procedure, based on moment-curvature analysis, will also be assessed.  This 

method provides a more realistic estimate of the fundamental period of structures, but due to 

its iterative nature it is not often applied in design practice. 

 

This document is laid out as follows: 

 

The literature review is presented in Chapter 2.  It is divided into three sections.  Firstly, 

some key principles are introduced.  The second section deals with the methodology 

followed by Spathelf (2008) in the computational evaluation of the behaviour factor and the 

difference between static and dynamic analysis procedures.  In Chapter 2.3 the concept of 

ductility demand and capacity, which forms the basis of the behaviour factor assessment, is 

discussed. 

 

Chapter 3 deals with good conceptual design strategies that should be followed in the design 

of structural wall buildings, with the purpose of defining a generic structural wall which could 

be used throughout this study. 

 

In Chapter 4 the scope of this study is discussed.  Eight walls are defined which are used 

throughout this study. 

 

Chapter 5 lays down the methodology by which the behaviour factor is assessed. 

 

Chapter 6 introduces the assumptions regarding material properties used in the design and 

analysis of the structural walls. 

 

In Chapter 7 the algorithm used for moment-curvature analysis of wall cross sections is 

introduced.  The moment-curvature analysis results of the walls of this study are shown.  

Also, in light of the moment-curvature results, some parameters are identified which would 

not influence the outcome of this study. 

 



 

 
 

3 Introduction 

Chapter 8 deals with the design requirements of structural walls.  The structural walls defined 

in Chapter 4 are designed according to these requirements. 

 

In order to compare displacement demand and capacity, both are converted to ductility.  This 

is the purpose of Chapter 9, which deals with the derivation of ductility capacity from code 

drift limits, and the derivation of ductility demand from ITHA results. 

 

Chapter 10 deals with all aspects regarding ITHA used in this study.  As stated previously, 

ITHA will be used to validate the initial estimate of ductility demand obtained from the equal 

displacement and equal energy principles. 

 

Finally, in Chapter 11 the ductility demand and capacity of the walls are compared.  A 

conclusion regarding the current behaviour factor value is made. 

 

Chapter 12 serves to introduce background information on current code displacement 

prediction methods.  The results of different assumptions regarding stiffness and lateral force 

are compared. 

 

Finally, in Chapter 13, conclusions are made and some suggestions are given for future 

research. 
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2.  Literature review 

This chapter is divided into three sections: Chapter 2.1 introduces some key principles.  In 

2.2 the study by Spathelf (2008) is discussed.  Differences between static and dynamic 

analysis procedures are identified.  This leads to 2.3 which deals with the basis of the 

behaviour factor assessment, namely ductility demand and capacity. 

2.1 Definition of key principles 

2.1.1 Dynamic equation of motion 

In dynamic analysis, the first vibration mode is dominant in buildings when they are regular in 

plan and elevation, as discussed in Chapter 8.1.  In other words, higher modes do not 

significantly influence the dynamic response or internal forces of the structure.  The dynamic 

response of such a structure may be modelled using a single degree of freedom (SDOF) 

system. 

 

The general dynamic equation of motion of a SDOF system is given by Eq. 2.1. 

											B∗+�&F( 								+ 													;I&F( 												+ 											 @∗G&F( 										= 										�&F(   ............. 2.1 

&7,XDF7+	<YD;X(							&-+BZ7,[	<YD;X(							&EℎX+D	<YD;X( 

\ℎXDX 

B∗ is the mass of the system 

+�&F( is the total, or absolute, acceleration of the mass B∗ 
; is the damping coefficient 

I&F( is the velocity of the mass B∗ relative to the ground 

@∗ is the lateral stiffness of the system 

G&F( is the displacement of the mass B∗ relative to the ground 

�&F( is an externally applied dynamic force (typically wind loads on a building) 

 

In the case where the SDOF system is subjected to an earthquake ground motion, the 

externally applied dynamic force �&F( = 0, while the base of the system is subjected to 

ground acceleration +9&F(.  For this case the dynamic equation of motion may be derived by 

considering that the total acceleration of the mass +�&F( is the sum of the ground acceleration 

+9&F( and the acceleration relative to the ground +&F(. 
+�&F( = +9&F( + +&F(       ............. 2.2 
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Substitution of Eq. 2.2 in Eq. 2.1 results in Eq. 2.3: 

B∗+&F( + ;I&F( + @∗G&F( = 	^B∗+9&F(     ............. 2.3 

Eq. 2.3 thus represents a SDOF system with an applied dynamic force �&F( = ^B∗+9&F(.  
Since the ground acceleration +9&F( varies arbitrarily with time, Eq. 2.3 can only be solved 

using a time-stepping method such as Newmark’s method (Chopra, 2007, p.165).  The time-

stepping analysis would deliver +&F(, I&F(, and G&F(.  The absolute acceleration +�&F( is 

calculated from Eq. 2.2. 

2.1.2 Elastic earthquake spectra 

An elastic response spectrum represents the demand of an earthquake ground motion on an 

elastic SDOF system as a function of the natural period and viscous damping ratio of the 

system.  The response spectrum may either be a displacement-, velocity-, or acceleration 

spectrum. The generation of an elastic response spectrum for a specific damping ratio is 

illustrated in Figure 2.1.  For seismic design 5 % viscous damping is typically assumed. 

 

Figure 2.1: Generation of elastic response spectra 

2.1.3 Peak ground acceleration (PGA) 

Figure 2.2 shows one component of the acceleration time history as well as the 

corresponding 5 % damped displacement spectrum and 5 % damped acceleration spectrum 

of the 1957 San Francisco earthquake. 
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Figure 2.2: Earthquake spectra of 1957 San Francisco earthquake 

An important property which can be read from the acceleration spectrum is the peak ground 

acceleration (PGA).  The mass of a very stiff SDOF system (�XD7Y-	 _ 0) would essentially 

accelerate by the same amount as the ground.  Thus the PGA can be read from the 

intersection of the acceleration spectrum with the vertical axis. 

2.1.4 Elastic shear force 

From Eq. 2.1 it can be seen that the internal shear force 02&F( of the SDOF system is 

obtained from the product of the stiffness and displacement of the system: 

02&F( = @∗G&F(       ............. 2.4 

If one were to design a SDOF system to resist the 1957 San Francisco earthquake for 

example, the period can be calculated from Eq. 2.5: 

% = 2abH∗
c∗         ............. 2.5 

The peak displacement G&%( can simply be read from the displacement spectrum, and the 

design base shear calculated according to Eq. 2.6: 

02 = @∗G&%(       ............. 2.6 
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In seismic design, this is however done differently.  Seismic design codes provide only 

pseudo acceleration spectra ($	&%().  The shear force on an elastic SDOF system is 

calculated as: 

02 = B∗$	&%(       ............. 2.7 

Pseudo acceleration is defined as 

$	 = U
G        ............. 2.8 

\ℎXDX	U = bc∗
H∗       ............. 2.9 

is the circular natural frequency in rad/s. 

 

It should be noted that pseudo acceleration spectra are equal to acceleration spectra for 

systems with zero damping (Chopra, 2007, p. 244).  This is evident from Eq. 2.3, which for 

systems with zero damping simplifies to: 

 B∗+&F( + @∗G&F( =	^B∗+9&F(     ........... 2.10 

Substitute Eq. 2.2 and 2.9 in Eq. 2.10: 

 B∗+�&F( + B∗U
G&F( = 	0      ........... 2.11 

 +�&F( = ^U
G&F( = ^$	&F(    ........... 2.12 

Thus, the absolute value of acceleration and pseudo acceleration are equal for systems with 

zero damping. 

 

The reason why seismic design codes currently base design forces on acceleration (Eq. 2.7) 

instead of displacement (Eq. 2.6) is found in the history of seismic design (Priestley et al., 

2007, p. 4).  In the 1920’s and 1930’s it was observed that buildings which were designed to 

resist wind loads performed better under earthquake loads than those without wind load 

design.  As a consequence, building codes specified a typical value of 10 % of the building 

weight as lateral design load.  In the 1940’s to 1960’s the importance of dynamic 

characteristics of buildings became understood, leading to the development of period-

dependant seismic loads (Priestley et al., 2007, p. 4). 

2.1.5 Force reduction and ductility 

In the 1960’s, with the development of ITHA, came the realization that well designed 

structures can deform inelastically without loss of strength (Priestley et al., 2007, pp. 1-4).  
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Engineers realized that structures need not be designed for the full elastic seismic demand, 

but could be designed for a reduced demand.  This led to the development of the force 

reduction factor.  Relationships between ductility and the force reduction factor were 

subsequently developed (Priestley et al., 2007, p. 4). 

 

The following discussion of the concepts of force reduction and ductility is based on Chopra 

(2007, pp. 264-295).  Figure 2.3 shows the force-displacement plot of an elastoplastic SDOF 

system and its corresponding elastic system. 

 

Figure 2.3: Force-displacement of elastoplastic SDOF system and its corresponding elastic 

SDOF system 

The force reduction factor is defined as: 

# = dedf        ........... 2.13 

\ℎXDX	0� and G� are the peak seismic base shear and displacement demand on the 

corresponding elastic system.  0! is the base shear force corresponding to the yield moment 

of the elastoplastic SDOF system. 

 

Ductility is defined as: 

S = �g�f 	 	 	 	 	 	 	 	...............	2.14 
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\ℎXDX	GH is the peak seismic displacement demand on the elastoplastic SDOF system, and 

G! is the yield displacement of the elastoplastic SDOF system. 

2.1.6 R-μ-T relationship 

The relationship between the force reduction factor and ductility is of interest.  Two such 

relationships are called the equal energy principle and equal displacement principle.  The 

equal energy principle has been observed to apply to short period systems, while the equal 

displacement principle applies to medium and long period systems (Chopra, 2007, p. 289).  It 

should be noted that the validity of these principles has recently been questioned.  This is 

discussed in Chapter 10.7.  These principles are however sufficient to be used for initial 

estimation of displacements.  The implications of these two principles are illustrated in Figure 

2.4. 

 

Figure 2.4: Equal energy and equal displacement principles 

Mathematically these principles are expressed as (Chopra, 2007, p. 289): 

# = k 1l2S ^ 1S 																	 % m %n%) m % m %�o% p %.
													 "Y	<YD;X	DX-G;F7Y,	+AAY\X-�CG+A	X,XD[q	ZD7,;7ZAX�CG+A	-7EZA+;XBX,F	ZD7,;7ZAX  ........... 2.15 

\ℎXDX % is the period of the system 

 %n = 1 33s  seconds 

 %)	+,-	%. are defined in Table 2.1 

%�o is obtained by the construction of acceleration, velocity, and displacement 

spectra on a four-way logarithmic graph paper (Chopra, 2007, pp. 118-119).  %�o 
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is only marginally smaller than %., and since Eq. 2.15 is used in this study only as 

an initial estimate of inelastic displacement demand, it was decided to choose 

%�o = %.. 

2.1.7 Behaviour factor and design spectra 

The behaviour factor (C) employed in seismic design codes acts in a similar fashion to the 

force reduction factor.  Equations 2.16 to 2.19 define the design pseudo acceleration 

spectrum (SANS 10160-4, 2009, pp. 11-12).  The elastic pseudo acceleration spectrum 

($	&%( of Eq. 2.8) is obtained by setting C = 1. 

0 ≤ % ≤ %):  $�&%( = +9 × $ w
J + �
�x y
.z

N ^ 

J{|    ........... 2.16 

%) ≤ % ≤ %. : $�&%( = +9 × $ 
.z
N      ........... 2.17 

%. ≤ % ≤ %/: $�&%( = }+9 × $ 
.z
N w�~� |� :GF ≥ P × +9   ........... 2.18 

%/ ≤ %:  $�&%( = }+9 × $ 
.z
N w�~×���� |� :GF ≥ P × +9   ........... 2.19 

\ℎXDX +9 is the PGA, 

 $, %), %. , +,-	%/ are defined in Table 2.1, 

 %)	+,-	%. define the limits of the constant acceleration branch (see Figure 2.5), 

%/ define the beginning of the constant displacement range of the spectrum (see 

Figure 2.5 and Figure 4.3), and 

 C is the behaviour factor. 

 P is a lower bound factor of the design spectra.  A value of 0.2 is recommended. 

Table 2.1: Values of the parameters which define the design pseudo acceleration spectrum 

(SANS 10160-4, 2009, p. 13) 

Ground type  $  %) [s]  %. [s]  %/ [s] 

1 1.00 0.15 0.4 2.0 

2 1.20 0.15 0.5 2.0 

3 1.15 0.20 0.6 2.0 

4 1.35 0.20 0.8 2.0 
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Ground types 1 to 4 are defined in Table 2.2. 

Table 2.2: Description of seismic ground types (SANS 10160-4, 2009, p. 10) 

Ground type Description of stratigraphic profile 

1 Rock or other rock-like geological formation, including at most 5 m of weaker material 
at the surface. 

2 Deposits of very dense sand, gravel, or very stiff clay, at least several tens of m in 
thickness, characterised by a gradual increase of mechanical properties with depth. 

3 Deep deposits of dense or medium dense sand, gravel or stiff clay with thickness from 
several tens to many hundreds of m 

4 Deposits of loose-to-medium cohesion-less soil (with or without some soft cohesive 
layers), or of predominantly soft-to-firm cohesive soil 

 

The elastic pseudo acceleration spectrum, defined by equations 2.16 to 2.19 with C	 = 	1, are 

plotted in Figure 2.5 for ground types 1 to 4. 

 

Figure 2.5: Elastic pseudo acceleration spectra (q = 1) (SANS 10160-4, 2009, p. 12) 

Thus we see that the behaviour factor is similar to the force reduction factor, in that it 

reduces the elastic force demand.  There are however two fundamental differences between 

the force reduction factor and the behaviour factor: 

 

1. The yield strength of the structure (0!) is normally higher than predicted during design.  

This is due to overstrength, which according to Dazio & Beyer (2009, p. 3-21) is caused by, 

among others, these three factors: 

a. Mean material strengths being higher than characteristic material strengths (see 

Chapter 6.1). 
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b. Partial material and load factors.  According to SANS 10160-1 (2009, p. 36) all 

partial factors for seismic design should be equal to unity (see Chapter 6.1).  

Thus, this factor does not contribute to overstrength in South Africa. 

c. Provided reinforcement is always more than needed reinforcement. 

Thus, the behaviour factor could be related to the force reduction factor according to: 

 C = Ω#       ........... 2.20 

\ℎXDX 

Ω is the overstrength factor. 

2. In Figure 2.3 and Figure 2.4 it was assumed that the elastoplastic system has the same 

stiffness as the elastic system.  However, if the strength of an elastic system is reduced, the 

resulting elastoplastic system would have a lower stiffness than the elastic system.  This is 

due to the interdependency of strength and stiffness.  According to Priestley et al. (2007, p. 

9), “detailed analysis, and experimental evidence show ... that stiffness is essentially 

proportional to strength, and the yield curvature is essentially independent of strength, for a 

given section...”.  One fundamental problem with force-based design is that the fundamental 

period, corresponding to an elastic system, is applied to a structure of which the strength 

(and stiffness) is reduced by the behaviour factor.  This problem is addressed in Chapter 4.4.  

The influence of this problem on displacement prediction is assessed in Chapter 12. 

2.2 Computational evaluation of the behaviour factor 

2.2.1 Calculation of the behaviour factor for timber structural walls 

This study is a continuation of a previous study by Spathelf (2008) who computationally 

determined values for the behaviour factor.  Spathelf (2008) applied and adapted a method 

by Ceccotti (2008) which was developed for the calculation of behaviour factors for timber 

structural walls.  Ceccotti’s method may be summarized in four steps (Ceccotti, 2008, pp. 

157-158): 

1. Design the structural wall for elastic seismic demand (C	 = 	1) corresponding to a 

peak ground acceleration (����,���		) prescribed by the code. 

2. Define failure criteria.  This may be based on material strain limits or inter storey drift 

limits. 

3. Analyze a finite element model, which incorporates nonlinear hysteresis 

characteristics of the structure, according to an incremental dynamic analysis (IDA).  

An IDA is performed by subjecting the structural model to a set of ground motion 

records, each scaled to multiple levels of intensity, thus producing a set of curves of 
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intensity measure (IM) (e.g. PGA) versus damage measure (DM) (e.g. peak 

displacement) (Vamvatsikos & Cornell, 2002, p.491). 

4. The PGA at which the failure criteria is reached, is defined as ����,	

.  The behavior 

factor is the ratio between ����,	

 and ����,���	. 

 C = ��n�,�����n�,�e��      ........... 2.21 

2.2.2 Calculation of the behaviour factor through the capacity spectrum method 

Spathelf (2008) used the same method, but instead of an IDA, he used the capacity 

spectrum method (Freeman, 2004).  The main advantage of this method is that it is much 

less time consuming.  A very brief summary of Spathelf’s methodology is provided here.  For 

more information please refer to (Spathelf, 2008). 

 

1. The structural wall is designed for elastic seismic demand (q = 1).  A static pushover 

analysis provides pushover curves which relate base shear force and MDOF 

displacement of the structure.   The SDOF equivalent pushover curve can be 

calculated from the MDOF pushover curves.  By dividing the base shear by the first 

modal mass, it is possible to draw a relationship between pseudo acceleration and 

displacement.  This is the so called capacity spectrum. 

2. Since a displacement response spectrum can be derived from the elastic pseudo 

acceleration spectrum, it is possible to plot pseudo acceleration versus displacement.  

This forms the demand spectrum. 

3. The capacity spectrum can now be superimposed on the demand spectrum as shown 

in Figure 2.6.  The elastic demand spectrum is scaled up to the point where it 

intersects the failure point on the capacity spectrum.  PGA is defined as the 

intersection of the spectrum with the vertical axis, and thus the behaviour factor can 

easily be calculated according to Eq. 2.21. 
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Figure 2.6: Proposed computational definition of the maximum value of the behaviour factor 

(Spathelf, 2008, p. 112) 

Spathelf (2008) calculated the behaviour factor for a number of walls using the 

abovementioned method.  If one however applies Ceccotti’s method (Ceccotti, 2008) directly, 

i.e. by doing IDA, one finds that significantly higher levels of ����,	

 are reached, resulting 

in much higher behaviour factor values.  Possible reasons for this difference and the 

implication thereof are discussed below. 

2.2.3 Comparison between pushover analysis and incremental dynamic analysis (IDA) 

Vamvatsikos & Cornell (2002, p. 510) drew a comparison between pushover results and IDA 

results.  This is shown in Figure 2.7 for a 20-storey steel moment resisting frame.  The 

median IDA curve is obtained by calculating the median of the damage measure (DM) results 

for each level of intensity measure (IM).  The equal displacement principle, which states that 

the peak displacement of an inelastic system is equal to the peak displacement of an 

equivalent elastic system, is also shown. 

 

It may be seen that the median IDA curve rises much higher than the pushover curve.  The 

reason for this is not provided, but Vamvatsikos & Cornell (2002) provide two reasons for the 
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hardening phenomenon which is often seen in IDA (see Figure 2.8).  It may be that these 

same two reasons account for the difference between IDA and pushover results. 

 

Figure 2.7: Comparison between median IDA and pushover (Vamvatsikos & Cornell, 2002, p. 

510) 

 

Figure 2.8: Hardening behaviour in IDA (Vamvatsikos & Cornell, 2002, p. 498) 

 

Reason 1: “As the accelerogram is scaled up, weak response cycles in the early part of the 

response time-history become strong enough to inflict damage (yielding) thus altering the 



 

 
 

16 Literature review 

properties of the structure for the subsequent, stronger cycles” (Vamvatsikos & Cornell, 

2002, p. 499).  This applies to multi-storey buildings where a lower storey that yields, acts as 

a fuse for higher storeys. 

 

Reason 2: Hardening behaviour is not only observed for MDOF systems.  SDOF oscillators 

have also been observed to exhibit hardening behaviour, which could perhaps be attributed 

to “period-elongation” (Vamvatsikos & Cornell, 2002, p. 499).  An increase in fundamental 

period (called period-elongation) occurs when a structure softens due to yielding of its 

members.  This increase in period leads to a reduction in acceleration demand and an 

increase in displacement demand (Freeman, 2004, p. 5). 

 

As part of the initial investigation for this study a similar comparison between pushover 

analysis and IDA was done for a reinforced concrete structural wall.  Seismostruct 

(Seismosoft, 2010) was used for the analysis.  Failure was defined as the point where the 

confined concrete reaches a compressive strain of 0.015.  Twenty ground motions, obtained 

from Dhakal, Mander & Mashiko (2006), were used for the IDA of which eight caused the 

structure to fail below a PGA of 10 m/s2.  A viscous damping ratio of 5 percent was assumed 

throughout.  The results are shown in Figure 2.9. 

 

Figure 2.9: IDA versus pushover analysis as part of initial investigation 
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It is interesting to observe from Figure 2.9 that the mean of the eight IDA failure point 

displacements correspond very well with the failure displacement predicted by the pushover 

analysis.  The PGA at which the IDA failures occur is however much larger than the PGA 

corresponding to the pushover analysis failure.  Vamvatsikos & Cornell (2002, p. 509) had 

made a similar observation. 

 

Whatever the reasons for the difference between IDA and pushover analysis might be, it is 

clear from Figure 2.9 that the pushover analysis predicts the absolute worst case response of 

a structure.  This explains why IDA predicts higher behaviour factor values than pushover 

analysis.  The discussion below explains why the high behaviour factor values predicted by 

IDA could not be trusted. 

 

This author does not agree with the application of Ceccotti’s method (Ceccotti, 2008) to 

reinforced concrete structural walls.  The fundamental problem lies with starting the 

procedure with a behaviour factor of 1 and then obtaining as result a much higher behaviour 

factor (of 5 for example).  A structure designed with a behaviour factor of 1 would have a 

much lower fundamental period than a structure designed with a behaviour factor of 5, and 

thus the dynamic response of the two structures would be completely different.  In fact, the 

structure designed with a behaviour factor of 5 would displace more than the structure 

designed with a behaviour factor of 1.  If one were to repeat Ceccotti’s method, this time 

starting with a behaviour factor of 5, the result of the method should be a lower behaviour 

factor value (of 3 for example).  It would thus seam that Ceccotti’s procedure would have to 

be repeated numerous times, each time starting with the behaviour factor determined in the 

previous run of the procedure.  This iteration process would have to be repeated until the 

difference between the start and end behaviour factor values are below an acceptable limit. 

 

Since this iterative procedure would include IDA on a set of walls (see Chapter 4), it would be 

an almost insurmountable task.  Instead of calculating a unique value for the behaviour 

factor, it would make more sense to rather only assess the current value of the behaviour 

factor.   

2.3 Assessment of the behaviour factor – the concept of ductility demand and 

capacity 

The behaviour factor represents the measure of overstrength and displacement ductility.  

Therefore, the assessment of the current behaviour factor value could best be accomplished 

by comparing displacement demand and displacement capacity.  Displacement demand may 
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be calculated by using the equal displacement and equal energy principles (R-µ-T 

relationship of Eq. 2.15) or through ITHA, while displacement capacity is defined by code 

inter storey drift limits.  Both the displacement demand and displacement capacity may be 

expresses in terms of ductility (defined in 2.1.5) for comparison purposes. 

2.3.1 Ductility demand 

It will be shown in Chapter 12 that the displacement calculation method prescribed by 

seismic design codes such as SANS 10160-4 (2009) is based on the equal displacement 

principle.  However, the validity of the equal displacement principle has recently been 

questioned.  The equal displacement principle was derived from the average results of sets 

of ITHA.  Priestley et al. (2007, pp. 26-29) question the assumptions regarding the damping 

model assumed in these analyses.  This is discussed in more detail in Chapter 10.7.  

Therefore, in this study ductility demand will be calculated according to the equal 

displacement or equal energy principles (depending on the fundamental period), and then 

verified by means of ITHA.  This concept is addressed in step 4 of the methodology (Chapter 

5). 

2.3.2 Ductility capacity 

In order to identify the applicable drift limits upon which ductility capacity should be based, an 

understanding of the seismic design strategies of current seismic codes is required.  It will be 

shown that performance-based design forms the design strategy of both EN 1998-1 (2004) 

and SANS 10160-4 (2009). 

 

FEMA 273 (ATC, 1997) is a guideline for the seismic rehabilitation of buildings.  However, it 

serves to illustrate the following two key characteristics of any performance-based design 

guideline: 

1. Building performance levels are made up of structural and non-structural performance 

levels.  This is shown in Figure 2.10. 

2. Building performance levels are matched with seismic hazard levels to define “limit 

states” or “safety objectives”.  This is shown in Table 2.3.  One such safety objective, 

called the basic safety objective (BSO), is satisfied when a structure complies with 

the “Life safety” performance level under a BSE-1 earthquake, and the “Collapse 

prevention” performance level under a BSE-2 earthquake (see Table 2.3). 
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Figure 2.10: Definition of building performance levels according to FEMA 273 (ATC, 1997, p. 

1-2) 
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Table 2.3: Rehabilitation objectives according to FEMA 273 (ATC, 1997, p. 2-5) 

  Building Performance Levels 
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EN 1998-1 (2004) and SANS 10160-4 (2009) are based on the same principle.  EN 1998-1 

(2004) defines two performance requirements (equivalent to building performance levels in 

FEMA 273), namely the “damage limitation requirement” and the “no-collapse requirement”.  

SANS 10160-4 (2009) does not explicitly define any performance level, but implicitly 

conforms to the no-collapse requirement of EN 1998-1 (2004). 

 

The desired structural performance for the no-collapse requirement of EN 1998-1 is 

described in EN 1998-1 (2004) as: “the structure shall be designed and constructed to 

withstand the design seismic action ... without local or global collapse, thus retaining its 

structural integrity and a residual load bearing capacity after the seismic events”. 

 

Priestley et al. (2007, p. 71) describes the desired structural performance at this limit state as 

follows: 
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At this limit state, a certain amount of repairable damage is acceptable, but the cost should 

be significantly less than the cost of replacement.  Damage to concrete buildings and bridges 

may include spalling of cover concrete requiring injection grouting to avoid later corrosion.  

Fracture of transverse or longitudinal reinforcement, or buckling of longitudinal reinforcement 

should not occur, and the core concrete in plastic hinge regions should not need 

replacement. (Priestley et al., 2007, p. 71) 

 

As stated in the extract from EN 1998-1 (2004) above, the structural performance is deemed 

to be satisfied if the structural system is designed in the ultimate limit state for the design 

seismic action.  For this limit state the design seismic action is defined, in both EN 1998-1 

(2004) and SANS 10160-4 (2009), by an earthquake with a return period of 475 years.  The 

design spectrum is defined by Eqs. 2.16 to 2.19.  Design to satisfy this limit state is 

discussed in Chapter 8. 

 

Non-structural performance criteria however also need to be assessed at this limit state.  

Priestley et al. (2007, p. 71) states that “it is difficult to avoid excessive damage when the 

drift levels exceed about 0.025, and hence it is common for building design codes to specify 

drift limits of 0.02 to 0.025”.   

 

The following drift limits are specified by EN 1998-1 (2004): 

• For buildings having non-structural elements of brittle materials attached to the 

structure: 

 -�I ≤ 0.005ℎ�      ........... 2.22 

• For buildings having ductile non-structural elements: 

 -�I ≤ 0.0075ℎ�      ........... 2.23 

• For buildings having non-structural elements fixed in a way so as not to interfere with 

structural deformations, or without non-structural elements: 

 -�I ≤ 0.01ℎ�      ........... 2.24 

\ℎXDX -� is the relative displacement between the top and bottom of a storey in the 

structure 

 ℎ�	is the storey height 
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 I is a reduction factor which is equal to between 0.4 and 0.5, depending on the 

importance class of the structure. 

 

SANS 10160-4 (2009, p. 27) imposes the following drift limits: 

 

-� ≤ 0.025ℎ� if % m 0.7	E      ........... 2.25 

-� ≤ 0.02ℎ� if % p 0.7	E      ........... 2.26 

\ℎXDX % is the fundamental period of the structure, defined in Eq. 4.1 

 

It will be shown in Chapter 3 that separating non-structural infill panels from the structural 

system forms part of good conceptual design practice.  Thus, Eq. 2.24 would apply.  It may 

be seen that for a I value of 0.5, Eq. 2.24 yields a drift limit of 0.02, which corresponds to the 

SANS drift limit for fundamental periods longer than 0.7 seconds.  Thus, in this study ductility 

capacity is based on the period-dependent drift limits of Eqs. 2.25 and 2.26.  The calculation 

of the ductility capacity as a function of drift limits is described in Chapter 9.3. 

 

This chapter has served to introduce key principles and defines the purpose of this study, 

which is to assess the current value of the behaviour factor by comparing displacement 

demand and capacity.  It was argued that the calculation of an exact behaviour factor value 

is not feasible.  In Chapter 3 a generic structural wall is defined by considering good 

conceptual design guidelines. 
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3.  Structural wall buildings 

In order to perform a comprehensive study which is manageable within the time frame of a 

Master’s thesis it becomes necessary to consider an individual structural wall which would be 

representative of all structural walls designed according to SANS 10160-4 (2009).  It is 

possible, for analysis purposes, to isolate such a generic structural wall from a building as 

long as the conceptual design of the building is sound. 

3.1 Good conceptual design 

SANS 10160-4 (2009) and other sources such as (Bachmann, 2003) provide guidelines for 

conceptual design of structural wall buildings.  The following description of conceptual design 

guidelines, relevant to structural walls and this study are based on Bachmann (2003). 

3.1.1 Adequate foundation 

The structural walls are anchored in sufficiently rigid foundations, such as raft foundations, 

which would transmit loads from the superstructure without allowing the walls to rock. 

3.1.2 Avoid discontinuities along the height of the building 

Discontinuities in the stiffness of the structural walls along the height of the building should 

be avoided.  All walls should extend over the full height of the structure.  It is preferable that 

the wall cross section remains constant over the height of the wall.  Discontinuities in 

stiffness cause irregular dynamic behaviour and disrupt the flow of forces through the 

structural system.  An increase in stiffness and strength from the bottom up, such as in the 

left of Figure 3.1, is less favourable than a decrease in stiffness, such as in the right of Figure 

3.1.  In both cases, however, the calculation of forces, design, and detailing should be done 

very carefully. 

 

Figure 3.1: Discontinuous structural walls 

3.1.3 Do not offset structural walls 

Bracing offsets should be absolutely avoided (see Figure 3.2).  This includes both in plane 

bracing offsets (top of the plan figure) or out of plane offsets (bottom of the plan figure).  

ELEVATION 
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Internal forces and displacement of beams and columns are greatly increased.  The seismic 

resistance of such a structure is usually also noticeably reduced. 

 

Figure 3.2: Bracing offsets 

3.1.4 Reinforced concrete slabs should act as rigid diaphragms 

Floor slabs should be connected to all vertical structural elements and ensure that all lateral 

loads are distributed to the structural walls.  Slabs made of prefabricated elements are not 

adequate unless they are covered with reinforced concrete of sufficient thickness.  

“Monolithic reinforced concrete slabs with eventual additional boundary reinforcement bars 

are much better suited to act as diaphragms” (Bachmann, 2003). 

3.1.5 Place at least two walls in two orthogonal directions 

Place at least two structural walls in each of two orthogonal directions as close as possible to 

the perimeter of the building.  This assures adequate lateral resistance in both directions as 

well as torsional stability. 

3.1.6 Avoid asymmetric bracing 

Asymmetric bracing should be avoided.  Each floor plan in Figure 3.3 has a centre of mass 

‘M’ through which inertia forces act.  The point marked ‘S’ represents the centre of stiffness.  

Where the centre of mass and the centre of stiffness do not coincide, twisting motion about 

the centre of stiffness occurs.  This has the most adverse effect on the columns furthest 

away from the centre of stiffness which often fail rapidly. 

ELEVATION 

 

 

 

 

PLAN 
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3.1.7 Separate non-structural masonry walls by joints 

In order to prevent damage to brittle masonry infill panels, which could cause serious injury 

or fatalities, it is necessary to provide joints between masonry walls and reinforced concrete 

members (see Figure 3.4).  Such joints should consist of a very soft soundproof material, 

such as soft rubber.  Styrofoam or cork would be too stiff.  Often it would also be necessary 

to secure the masonry walls against out of plane action, e.g. by support angles. 

 

 

Figure 3.4: Separation of non-structural masonry walls (Elevation) 

3.2 Generic structural wall 

Based on the above mentioned conceptual design guidelines (3.1.1 – 3.1.7) it is possible, for 

analysis purposes, to isolate a structural wall from a structural wall building in the following 

way (see Figure 3.5): 

1. The wall is assumed to be built on a rigid foundation allowing no rotation or 

movement of the base of the wall. 

Figure 3.3: Asymmetric vs. symmetric bracing (Plan view) 

PERSPECTIVE 
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2. The cross section of the wall remains constant over the full height of the wall.  The 

wall extends to the roof of the building. 

3. No offsets occur over the height of the wall. 

4. Reinforced concrete slabs act as rigid diaphragms.  It is thus possible to consider 

floor masses as lumped masses at each storey (Figure 3.5(d)). 

5. At least two structural walls are placed in each of two orthogonal directions on the 

perimeter of the building.  If more than two walls are placed in a direction, the 

additional walls may be internal, i.e. not near the perimeter of the building. 

6. Bracing is perfectly symmetric: 

a. Due to twisting motion, structural walls which form part of an asymmetric 

building would experience a greater force demand than walls that form part of 

a symmetric building.  SANS 10160-4 (2009, p. 26) does however make 

provision for such walls.  In addition, SANS 10160-4 (2009, p. 26) makes 

provision for accidental eccentricities.  Both of these provisions increase the 

force capacity of such walls.  Since both force demand and force capacity of 

asymmetric walls would increase, it was assumed for this study that all 

bracing is perfectly symmetric.  Additional loads due to torsional effects are 

thus ignored. 

b. The earthquake is assumed to act in one of the orthogonal directions.  SANS 

10160-4 (2009, p. 18) specifies that the design seismic load in each direction 

should be increased by adding 30 % of the seismic load of the other 

orthogonal direction.  This is to take into account the event in which the 

earthquake acts in a non-orthogonal direction.  The same argument as in 6(a) 

holds true: both the force demand and force capacity would increase. For this 

reason, this provision is ignored in this study. 

c. At least two walls on opposite sides of the building work in parallel to resist the 

seismic load.  The responses of the walls are equal and thus only one of the 

two walls needs to be analyzed (Figure 3.5(b)). 

7. It is assumed that the structural wall resists the total lateral seismic load.  The 

contribution from the reinforced concrete frame is assumed to be negligible (Paulay & 

Priestley, 1992, p.363) (Dazio & Beyer, 2009, p.5-25).  Non-structural masonry walls 

do not contribute to the lateral resistance since they are separated by means of 

isolation joints as discussed in 3.1.7. 

It is thus possible to define a structural wall as a cantilever beam with lumped masses at the 

storey heights (see Figure 3.5(d)).  An axial load P, representing the vertical floor loads 

transferred into the wall, is applied at each storey.  Both the axial load and the lumped mass 
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depend on the value of the distributed floor load.  The axial load depends on the column 

spacing, while the lumped mass associated with each wall depends on the distance between 

parallel walls.  In Chapter 5 it will be shown that the magnitude of the lumped mass, and thus 

the hypothetical wall spacing used in the analyses, is influenced by the period calculation 

method used in design. 

 

Figure 3.5: Generic wall 

It will be shown in Chapter 7.5 that the value of the axial load does not affect the outcome of 

this study, and could thus be chosen arbitrarily.  However, to estimate a realistic value for the 

axial load, the following calculations were carried out using SANS 10160-2 (2009): 

• A slab thickness of 250 mm results in a self-weight of 6 kPa.  A self-weight distributed 

load of 5 kPa is added which is representative of all non-structural components and 

equipment, which could include screed, infill wall panels, and services.   An imposed 

load of 5 kPa is assumed, which corresponds to the maximum distributed floor load 

according to SANS 10160-2 (2009, p. 11). 

• The combination factor for variable actions in occupancy class category A to D and G 

is 0.3 (SANS 10160-1, 2009, p. 29). 

• The value of the permanent distributed floor load is thus: 

\ = � + 0.3� = &6 + 5( + 0.3&5( = 12.5	@�+ 

• Assuming a column spacing of 6 m and a wall section length of 6 m, the tributary area 

for vertical load is 72 m2 (See Figure 3.6). 

• The generic wall may be either internal or on the perimeter of the building.  To adopt 

a reasonable axial load value to represent both cases, the value of the axial load 

contribution from each floor is calculated as � = 0.75\� = 0.75&12.5(&72( = 675@".  

This value of P was used for all walls throughout this study. 
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Figure 3.6: Tributary area for axial load P 

The value of the lumped mass will be calculated individually for each wall.  This will be 

discussed in Chapter 5. 

 

Thus we have seen how, for analysis purposes, a structural wall can be isolated from a 

structural wall building.  In this chapter the structural wall was of rectangular cross sectional 

shape and no particular dimensions.  The next chapter will look at parameters which define 

the characteristics of structural walls and would influence the outcome of this study.  
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4.  Scope of the study 

The purpose of this chapter is to identify parameters which would influence the outcome of 

this study.  A suitable selection of these parameters is made to arrive at a set of structural 

walls which would define the scope of this study.  The following parameters are identified: 

• Wall section shapes 

• Ground types 

• Wall aspect ratio 

• Period calculation method 

• Number of storeys 

Other parameters which are identified, but not treated in this chapter are the following: 

• The reinforcement content of the wall section 

• The axial load on the section 

• The width of the wall section (:�) 

• Material strengths 

The influence of these parameters on the outcome of this study can only be fully understood 

in the light of moment-curvature analysis results.  Thus, these parameters are only discussed 

in Chapter 7.5. 

4.1 Wall sectional shapes 

Figure 4.1 shows some of the most commonly used sectional shapes of structural walls 

(Dazio & Beyer, 2009, p.7-8).  The rectangular section is by far the simplest section to 

design.   Walls with boundary elements such as shown in Figure 4.1(b) are subject to high 

shear stresses (Dazio & Beyer, 2009, p.7-8).  Unsymmetrical walls, such as a T or L sections 

require very careful design, since their strength and stiffness differ depending on the loading 

direction (Priestley et al., 2007, p.314). 

 

It would thus be very difficult, if at all possible, to create a generic wall of any of the sectional 

shapes in Figure 4.1 (b) to (d).  The rectangular cross section is the simplest form, and a 

component of any of the other more complex forms.  For this reason, and since Bachmann 

(2003, p.26) states that “reinforced concrete structural walls of rectangular cross-section 

constitute the most suitable bracing system against seismic actions”, only walls with 

rectangular cross-section is considered in this study.   
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Figure 4.1: Wall sectional shapes (Dazio & Beyer, 2009, p.7-8) 

4.2 Ground types 

In Chapter 2.1.7 the pseudo acceleration design spectra were defined for ground types 1 to 4 

(see Figure 2.5).  It can be seen that Ground Types 1 and 4 define the envelope of all 

acceleration demand.  Thus only these two ground types are considered in this study. 

4.3 Wall aspect ratio 

The aspect ratio of the wall, defined as the height of the wall ℎ� divided by the length of the 

wall section A� (see Figure 4.2), is another variable to be considered. 
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Figure 4.2: Definition of wall dimensions 

The aspect ratio determines the extent to which a wall responds in flexure or shear.  A wall 

with an aspect ratio of less than three responds predominantly in shear (Paulay & Priestley, 

1992, p.371).  As already stated, a structural wall should preferably respond in ductile 

flexural action. 

 

The aspect ratio should also not be too large.  Priestley et al. (2007, p.326) have shown that 

the elastic seismic force should not be reduced at all (behaviour factor ≤ 1) for walls with an 

aspect ratio of more than approximately 9.  This is discussed in Chapter 9.3.2. 

 

For the two abovementioned reasons it was decided to consider walls with aspect ratios of 3, 

5 and 8.  Bachmann (2003, p. 26) states, as part of conceptual design guidelines, that wall 

aspect ratios should preferably be between 3 and 5.  The aspect ratio of 8 is considered to 

assess the impact of such a high aspect ratio on the ductility capacity. 

4.4 Period calculation method 

The walls in this study are designed according to the two period calculation methods 

discussed below. 

ℎ�	

A� 	
:�	
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4.4.1 Method 1 

According to SANS 10160-4 (2009, p. 24) the fundamental period of a structure may be 

calculated using Eq. 4.1: 

%� = ��ℎ�
��          ............. 4.1 

\ℎXDX: 
%� is the fundamental period of the structure according to SANS 10160-4 (2009) 

�� = 1.1�z
ln�  for structural walls       ............. 4.2 

\ℎXDX	�� is, among other, a function of the number of structural walls in the 

direction under consideration.  Since a generic wall will be used in this study, the 

number of walls is unknown.  Few walls would imply a large period, which is 

covered by Method 2 described below.  A short period implied by a large number 

of walls would lead to a significant underestimation of displacement (see Chapter 

12).  Thus it was decided to use �� = 0.05, which corresponds to roughly eight 

walls and is recommended by the code for use on “all other buildings” (SANS 

10160-4, 2009, p. 24). 

ℎ� is the height of the building, in meters, from the top of the foundation or rigid 

basement (see Figure 4.2). 

 

Eq. 4.1 has been shown to correspond well to measured building periods (Priestley et al., 

2007, p.11).  These measurements were however taken at very low levels of vibration 

(normally resulting from wind vibration), where nonstructural participation is high and 

concrete sections are uncracked (Priestley et al., 2007, p.11).  Under seismic excitation, 

however, sections are allowed to crack and thus structures respond at much higher 

fundamental periods.  It has often been argued that using a too low period is conservative, 

since the acceleration demand is then overestimated (see Figure 4.3(a)) (Priestley et al., 

2007, p.11).  This is however not true, since an underestimation in period results in an 

underestimation of displacements as shown in Figure 4.3(b) (Dazio & Beyer, 2009, p.5-15).  

More information on this topic is provided in Chapter 12. 
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Figure 4.3: Overestimation of acceleration and underestimation of displacement 

Because Eq. 4.1 underestimates the fundamental period, Dazio & Beyer (2009, p.5-16) state 

that it “should never be used”.  Eigenvalue analyses based on the stiffness derived from the 

cracked section should rather be used (Dazio & Beyer, 2009, pp.5-16 – 5-18) (Priestley et 

al., 2007, p.11). 

4.4.2 Method 2 

The stiffness of a cracked reinforced concrete section can be obtained from a moment-

curvature analysis of the section.  This is done by drawing a bilinear approximation to the 

moment-curvature curve as shown in Figure 4.4.  This is described in Chapter 7. 
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Figure 4.4: Effective cracked section stiffness from moment-curvature results 

The fundamental period is obtained from an eigenvalue analysis, assuming the same 

sectional stiffness, ��	

, over the height of the wall.  The design of a wall, using this method, 

is unfortunately iterative, since the moment curvature analysis cannot be done unless the 

reinforcement content and layout of the section is known, and the demand on the section 

depends on the stiffness of the section.  The iterative method depicted in Figure 4.5 should 

thus be followed. 
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Figure 4.5: Design method 2 

4.5 Number of storeys 

This study will focus on the series of walls shown in Figure 4.6.  The storey height was 

chosen as 3.23 m.  Eq. 4.1 is only applicable for buildings up to a height of 40 m.  It was 

initially decided to study walls with heights of approximately 20, 40, and 60 m.  The 60 m wall 

is designed according to Method 2 only.  The shorter walls were later added to the study to 

obtain structures with short fundamental periods. 

 

The reason that the aspect ratio increases with height is that the wall section lengths needed 

to remain within reasonable limits.  The wall section lengths are shown in Table 4.1.  It may 

be seen that only the shaded cells contain reasonable section lengths. 
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Table 4.1: Wall section lengths 

Length of wall section (A�) [m] 

Number of storeys Height [m] 
Aspect ratio 

3 5 8 

1 3.230 1.080 0.640 0.400 

2 6.460 2.160 1.300 0.800 

3 9.690 3.240 1.940 1.220 

6 19.380 6.460 3.880 2.420 

12 38.760 12.920 7.760 4.840 

18 58.140 19.380 11.620 7.260 

 

 

Figure 4.6: Generic wall range 
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For easy reference the walls were labelled as indicated in Figure 4.6.  The first two digits of 

the name is the number of storeys, while the last digit is the aspect ratio of the wall. 

 

Thus, the scope of this study is composed of the eight walls shown in Figure 4.6.  These 

walls will be designed according to both period calculation methods discussed earlier.  

Ground types 1 and 4 of SANS 10160-4 (2009) will be used to define the range of seismic 

ground types.  The methodology according to which seismic drift will be assessed for these 

eight walls is discussed in the next chapter. 
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5.  Methodology 

As stated in the introduction, the purpose of this study is to assess the seismic drift of 

reinforced concrete structural walls designed according to SANS 10160-4 (2009).  This is 

done by comparing ductility demand to ductility capacity, where the ductility capacity 

corresponds to code drift limits.  For the definition of ductility refer to Chapter 2.1.5. 

 

The key parameter which, during design, influences the ductility demand is the behaviour 

factor (refer to Chapter 2.1.7).  The purpose of this investigation therefore, is to assess if the 

use of the current value of the behaviour factor, as provided in SANS 101060-4 (2009, p. 22), 

results in the design of walls of which the seismic drift would be within acceptable limits.  If 

not, revision of the behaviour factor might be necessary. 

 

The methodology used in this study is illustrated in Figure 5.1 and is listed in steps 1 through 

6 below.  These steps are applied to each of the eight walls defined in the scope of this study 

for both ground types 1 and 4 (refer to Chapter 4).  Thus, the steps are applied a total of 16 

times.  Steps 1 to 3 describe the design of the walls, while steps 4 to 6 describe the 

assessment of the walls. 

 

Two period calculation methods were introduced in Chapter 4.4.  The difference between 

these two methods will be evaluated by using both these period calculation methods in the 

design of the walls. 

 

Different period calculation methods would produce different force demands.  In practice, the 

mass of a structure is fixed, and thus different force demands would be reflected in the 

longitudinal reinforcement content of the structural wall, or the wall cross-section dimensions.  

For this study however, the cross-sectional dimensions are fixed (for purpose of 

comparison), and thus it was decided to use an “inverse” design method, where the capacity 

of the cross-section is fixed at the start (step 1) and the associated floor masses are obtained 

as the final result of the design (step 3).   

 

1. From Figure 4.6 the height of the wall and the aspect ratio is known.  Thus the length of 

the wall section A� can be calculated.  The width of the wall section :� is chosen such 

that wall instability due to out-of-plane buckling in the plastic hinge region does not occur 

(see Chapter 8.3). 
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An amount of reinforcement must be provided to comply with codified criteria, 

somewhere between the maximum and minimum allowable limits.  It will be shown in 

Chapter 7.5 that the amount of reinforcement chosen in this step does not affect the 

outcome of the study. 

2. The axial load at the base of the wall is known, and thus the moment capacity can be 

determined using either the design equations (see Chapter 8.4.1) or a moment curvature 

analysis (see Chapter 7).  The moment capacity calculated using the design equations 

(�� ) corresponds to characteristic material strengths, while the nominal yield moment 

(��) obtained from moment-curvature analysis corresponds to mean material strengths 

(see Chapter 6). 

3. The purpose of this step is to calculate the floor masses B� and B
 corresponding to 

the two period calculation methods described in Chapter 4.4. 

3.1. Method 1 

3.1.1 The fundamental period (%�) is calculated using Eq. 4.1. 

3.1.2 The design pseudo acceleration (+�) is obtained from the design spectrum. 

3.1.3 The floor mass B� should be of such a magnitude that the resulting base 

moment is slightly less than the nominal yield moment (�’�) obtained from the 

design equations.  This is to take the additional strength due to reinforcement choice 

into consideration (see the discussion on overstrength in Chapter 2.1.7). 

3.1.4 A better estimate of the fundamental period at which the wall would respond 

(%�&�	�'() is obtained by means of an eigenvalue analysis based on the cracked 

sectional stiffness obtained from the moment-curvature analysis. 

3.2. Method 2 

3.2.1 This step starts by assuming a value for %
.  A good estimate is %�&�	�'(, 
obtained in the previous step. 

3.2.2 The design acceleration demand (+
) is obtained from the design spectrum. 

3.2.3 Similar to 3.1.3 above, the floor mass B
 can be obtained. 

3.2.4 A new estimate of %
 is calculated using an eigenvalue analysis.  Iteration, 

such as shown in Figure 4.5, is required until the value of B
 does not change 

significantly between two iterations. 

4. The purpose of this step is to estimate the ductility demand according to the equal 

displacement and equal energy principles (see Chapter 2.1.6).  For this purpose the 

MDOF wall is converted into an equivalent SDOF wall. 

4.1. Firstly, the properties of the equivalent SDOF system need to be calculated.  This 

includes the equivalent SDOF height ℎ∗ and the effective first modal masses B�∗ and 
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B
∗.  The equivalent height is obtained from Eq. 9.23, while the effective first modal 

masses may be obtained from finite element modal analyses. 

4.2. The shear (0�) corresponding to nominal yield moment can be calculated from the 

nominal yield moment (��) obtained from moment-curvature analysis. 

4.3. For both methods the acceleration (+�&�	�'(8 , +
8) corresponding to the yield shear can 

be calculated. 

4.4. The elastic acceleration demand (�� and �
) can be calculated from the elastic 

pseudo acceleration spectrum. 

4.5. The force reduction factors (#� and #
) are calculated as the ratio between elastic 

demand (�� and �
) and yield capacity (+�&�	�'(8  and	+
8).  Refer to Chapter 2.1.5 for 

the definition of the force reduction factor. 

4.6. The ductility demand can now be calculated as a function of the force reduction 

factor according to the R-µ-T relationship presented in Eq. 2.15. 

5. The ductility capacity based on code drift limits can be determined as set out in 

Chapter 9.3.1 and 9.3.2.   

6. Compare the ductility demand and capacity.   

6.1. If the demand is greater than the capacity, choose a lower behaviour factor and 

repeat from step 3. 

6.2. If the demand is less than the capacity, the ductility demand needs to be verified by 

means of ITHA.  ITHA is discussed in Chapter 10.  The calculation of ductility 

demand from ITHA results is discussed in Chapter 9.4.  If the ductility demand is 

found to be less than the ductility capacity the current behaviour factor is adequate.  

The current behaviour factor value (C = 5) is higher than most behaviour factor 

values in other codes.  Refer to Priestley et al. (2007, p. 13) for a comparison 

between international seismic codes.  Hence, it is not the intention of the code 

committee to suggest the use of an even higher value. 



 

 
 

41 Methodology 

 

Figure 5.1: Methodology 
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6.  Material properties 

In this chapter the material properties of the concrete and steel used in this study are 

discussed.  Material strengths are discussed in 6.1, while material stress-strain models, used 

in moment-curvature analyses, are discussed in 6.2. 

6.1 Material strengths 

SANS 10160-1 (2009, p. 36) states that if sufficient ductility for structural resistance can be 

provided the partial material factors should be taken as 1.0.  Paulay & Priestley (1992, p.362) 

state that if special detailing measures are adopted, reliable ductile response can be 

achieved for reinforced concrete structural walls.  This is confirmed by Dazio, Beyer & 

Bachmann (2009).  Such special detailing measures are included in SANS 10160-4 (2009) 

and are explained in more detail in Chapter 8.3.  Thus, since sufficient ductility can be 

provided by designing walls in accordance with SANS 10160-4 (2009), characteristic material 

strengths should be used for design. 

 

For this study all concrete has a characteristic cylinder strength of 25 MPa and a 

characteristic cube strength of 30 MPa.  The design equations, derived in Chapter 8.4.1 

which are used for the design of the walls, are based on concrete cube strength.  The 

moment-curvature analysis, however, uses the concrete cylinder strength.  The characteristic 

yield strength of steel was taken as 450 MPa. 

 

In order to predict the most likely strength and stiffness of a wall cross section it is necessary 

to use the mean material strengths.  Therefore, mean material strengths are used for 

moment-curvature analysis (refer to Chapter 7).  Characteristic strengths are used only in the 

design of the walls (refer to Chapter 8). 

 

For steel the mean yield strength is obtained by multiplying the characteristic yield strength 

by 1.1 (Mirza & MacGregor, 1979).  For concrete the mean compressive strength is obtained 

by adding 8 MPa and 9 MPa to the characteristic compressive cylinder and cube strengths 

respectively (SIA 262, 2004, p.25).  The 9 MPa increment in cube strength corresponds to a 

standard deviation of 5.5 MPa which corresponds to an average degree of quality control 

according to the Cement and Concrete Institute (1998).  The material strengths are 

summarized in Table 6.1. 
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Table 6.1: Material strengths 

 Concrete 
Reinforcement yield strength 

 Cube Cylinder 

Characteristic strength [MPa] 30 25 450 

Design strength [MPa] 30 25 450 

Mean strength [MPa] 39 33 495 

 

6.2 Stress-strain curves 

6.2.1 Concrete 

Mander’s stress-strain relationship is used for unconfined and confined concrete (Mander, 

Priestley & Park, 1988, pp.1807-1808).  Both stress-strain curves are shown in Figure 6.1. 

 

Figure 6.1:  Mander’s stress-strain relationship for concrete 

 6.2.1.1 Unconfined concrete 

The stress-strain relationship for unconfined concrete is defined by Eq. 6.1: 

 

<� = 
�eo 4�
���84�         ............. 6.1 
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<� is the concrete stress, 

<��  is the cylinder strength, and 

 

6 = ����e          ............. 6.2 

\ℎXDX	 
Q� is the concrete strain, 

Q�� = 0.002 is the strain at peak stress, and 

 

D = ���������         ............. 6.3 

\ℎXDX 

�� = 4	700l<��′ is the modulus of elasticity of the unconfined concrete (Paulay & Priestley, 

1992, p.96), and 

��	� = 
�eo��e         ............. 6.4 

 

The value for the ultimate strain Q�� according to SABS 0100-1 (2000) is 0.0035.  However, 

this value is based on experiments where concrete is subjected to uniform compression or 

constant moment.  Critical regions of concrete members under seismic loading are usually 

subjected to significant moment gradients.  Experiments on such elements have shown that 

crushing of concrete occurs only at strains well in excess of 0.003 and sometimes as high as 

0.006 to 0.008 (Paulay & Priestley, 1992, p.98).  Paulay & Priestley (1992, p.98) recommend 

a conservative value of 0.004 be used for Q��.   

 

In order to model the spalling of cover concrete realistically the stress is assumed to 

decrease linearly with strain from the ultimate strain Q�� to the spalling strain Q��.  The value 

of the spalling strain was assumed to be 0.0064 in accordance with the default values of the 

moment-curvature analysis program CUMBIA (Montejo & Kowalsky, 2007). 

6.2.1.2 Confined concrete 

The strength and ultimate strain of ordinary concrete may be significantly increased by using 

confining transverse reinforcement.  This is typically done in the boundary regions of 

structural wall cross sections.  This is discussed in Chapter 8.3. 
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The stress-strain equations used for confined concrete are exactly the same as that of 

unconfined concrete.  However, the peak stress, strain at peak stress, and ultimate strain 

have higher values.  The confined concrete strength is directly related to the effective 

confining stress that can be developed at the yield of confining reinforcement, which is given 

by 

 

<'� = �	T�<!�        ............. 6.5 

<'
 = �	T
<!�        ............. 6.6 

 

\ℎXDX 

�	 is a confinement effectiveness coefficient, which according to Paulay & Priestley (1992, 

p.102) is typically 0.6 for rectangular wall sections,  

 

<!� = 450	��+ is the yield strength of the confining reinforcement, and 

 

T� and T
 are the volumetric ratios of confining material, defined in Eqs. 6.7 and 6.8 and 

Figure 6.2. 

 

T� = n�������         ............. 6.7 

T
 = n�������         ............. 6.8 

\ℎXDX	E� is the vertical spacing of the confining reinforcement. 
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Figure 6.2: Confinement in a wall boundary element 

With the confining stresses known the confined concrete strength can be read from Figure 

6.3.  Note that the labels <'�  and <'
′ in Figure 6.3 are the smallest and largest confining 

stresses respectively and therefore do not necessarily coincide with those in Eqs. 6.5 and 

6.6. 

 

Figure 6.3: Confined strength determination from lateral confining stresses for rectangular 

sections (Mander et al., 1988, p. 1813) 
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The strain at peak stress may be obtained from Eq. 6.9 (Mander et al., 1988, p. 1807): 

Q�� = 0.002 w1 + 5 y
��o
�eo ^ 1{|      ............. 6.9 

The ultimate strain of the confined concrete is defined as the point where the confining 

reinforcement fractures.  This point is determined by equating the strain energy capacity of 

the confining reinforcement at fracture to the energy absorbed by the confined concrete.  

Paulay & Priestley (1992, p.103) propose the following conservative estimate: 

Q��� = 0.004 + �.���
f���g
��o       ........... 6.10 

\ℎXDX 

T� =	T� + T
       ........... 6.11 

\ℎXDX	T� and T
 are defined in Eqs. 6.7 and 6.8, and Q�H is the strain at peak stress of the 

confining reinforcement. 

 

The stress-strain relationship of confined concrete is defined by Eqs. 6.12 to 6.15. 

<� = 
��o 4�
���84�         ........... 6.12 

 

\ℎXDX 

<� is the concrete stress, 

<��  is obtained from Figure 6.3, and 

 

6 = �����          ........... 6.13 

\ℎXDX	 
Q� is the concrete strain, 

Q�� is the strain at peak stress defined in Eq. 6.9, and 

 

D = �����������         ........... 6.14 

\ℎXDX 

��� = 4	700l<��′ is the modulus of elasticity of the confined concrete (Paulay & Priestley, 

1992, p.96), and 
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��	� = 
��o���         ........... 6.15 

6.2.2 Reinforcing steel 

According to SIA 262 (2004) reinforcing steel used for seismic application should have a 

minimum strain at peak stress Q�H of 7.5 % and a strain-hardening ratio <�/<! of between 

1.15 and 1.35 (See Figure 6.4).  SANS 920 (2005) specifies a minimum elongation of 14 %, 

presumably referring to the ultimate fracture strain Q��, and also a minimum strain-hardening 

ratio of 1.15. 

 

The purpose for the limit on Q�H is to ensure that premature fracture of reinforcement does 

not occur.  Dazio et al. (2009) showed that walls built using steel with Q�H > 7.5 % performed 

very well under cyclic loading tests.  The hardening ratio should be greater than 1.15 to 

ensure sufficient spread of inelastic deformations over the wall height in the plastic zone 

(refer to Chapter 8.3).  A wall built using steel with a low hardening ratio would form a 

horizontal crack at the base.  Since very little hardening takes place, all inelastic 

deformations would be concentrated at this crack, reducing the ductility capacity of the wall 

(Dazio et al., 2009).  A hardening ratio of greater than 1.35 on the other hand might cause 

the plastic zone to spread to higher parts of the wall not specifically designed for inelastic 

deformation. 

 

 

Figure 6.4: Stress-strain relationship for reinforcing steel 

Q!											Q�� 																																																						Q�H																																	Q�� 

<! 

<� 
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For the purpose of this study it was necessary to determine if South African steel conforms to 

the above mentioned requirements.  Within the scope of this study only a small number of 

tests were carried out on Y10 and Y16 bars.  Three of the Y10 bars and the Y16 bars came 

from the same batch.  A fourth Y10 bar was taken from a second batch.  The results of the 

tests are summarized in Table 6.2 and may be seen in Figure 6.5.  The last column in Table 

6.2 lists the mean material properties assumed for the material model used for moment-

curvature analyses. 

Table 6.2: Reinforcement experimental results 

Bar diameter 10 mm 16 mm Chosen 

material model Batch no. 1 2 1 

Yield stress <! [MPa] 540 556 550 520 494 498 496 498 495 

Peak stress <� [MPa] 630 643 643 719 658 659 659 659 569 

Hardening ratio <�/<! 1.17 1.16 1.17 1.38 1.33 1.32 1.33 1.32 1.15 

Strain at peak stress Q�H [%] 8.4 8.4 9.3 12.6 11.6 12.3 12.2 12.6 7.5 

Ultimate strain Q�� [%] 9.0 9.0 9.9 15.9 17.8 18.1 17.9 15.3 7.5 

 

 

Figure 6.5: Experimental stress-strain curves of reinforcing steel 

It has already been stated that the mean yield strength is 495 MPa (Refer to Table 6.1).  

Judging from the experimental results it would seem safe (and conservative) to assume a 
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hardening ratio of 1.15, resulting in a peak stress of 569 MPa.  All test specimens have a 

strain at peak stress of more than 7.5%, and thus this would seem to be a conservative, yet 

large enough value to assume for the material model.  The downward sloping tail of the 

stress-strain curve is unreliable and could thus be ignored.  Thus Q�H = Q�� = 7.5%.  The 

modulus of elasticity is 200 GPa, resulting in a yield strain of 0.2475%.  The strain at which 

strain hardening starts was chosen as 1.5%. 

 

The stress-strain relationship equations used for the steel material model are taken from 

Priestley et al. (2007, p.140): 

 

Elastic:  <� = ��Q�   Q� ≤ Q!   ........... 6.16 

Yield plateau: <� = <!   Q! m Q� ≤ Q��  ........... 6.17 

Strain hardening: <� = <� ^ �<� ^ <!� y �������������{

	 Q�� m Q� ≤ Q��  ........... 6.18 

 

This chapter has defined the material properties of the concrete and steel used in the design 

and analysis of the eight walls of this study.  It was seen that characteristic material strengths 

should be used for design, while mean material strengths should be used in analysis so as to 

predict the most likely response of a structure.  It was stated that concrete cube strength is 

used in design, while concrete cylinder strength is used in moment-curvature analysis.  The 

stress-strain curves for concrete and steel material models were defined.  These will be 

implemented in moment-curvature analysis, which is the topic of the next chapter. 
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7.  Moment-curvature analysis 

This chapter summarises the calculation steps which are followed in the MATLAB code 

developed for this study.  Although various moment-curvature analysis programs are readily 

available, they are not necessarily sufficient for the analysis of structural wall cross-sections.  

Cumbia (Montejo & Kowalski, 2007) which was developed for the analysis of columns and 

beams does not allow the definition of unconfined concrete in the web region of the wall.  

Another program which was considered is Response-2000 (Bentz & Collins, 2009).  While 

this is a very good program, obtaining the output required for the bilinear approximation is a 

rather tedious process.  For these reasons it was decided to develop a custom MATLAB 

code for this study. 

 

The material models derived in Chapter 6 are implemented to obtain moment-curvature 

relationships.  The derivation of a bilinear approximation to the moment-curvature curve is 

also discussed.  The moment-curvature results of the eight walls of this study are presented, 

and based on these results a number of factors which would not influence the outcome of 

this study are identified.  

7.1 Section discretization 

The discretization of the cross section is illustrated in Figure 7.1.  The cross section is 

divided into a number of concrete layers.  Each layer is assigned either a confined or an 

unconfined concrete material model.  The appropriate reinforcement area is subtracted at the 

correct coordinates.  Reinforcement bars, to which the steel material model is assigned, are 

added to the concrete layers. 
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Figure 7.1: Discretization of section 

7.2 Calculation steps 

The calculation process starts at zero moment and curvature.  Moment is calculated as a 

function of curvature, which is a discrete variable (M = 0, ΔM, 2ΔM,…).  The curvature 

increment, ΔM, is supplied by the user as an input variable.  The (compressive) axial load 

must be resisted by the concrete layers and reinforcement bars.  The following steps are 

followed: 

1. Calculate the strain across the section which corresponds to the current curvature 

value and neutral axis position. 

2. For each concrete layer and reinforcement bar obtain from the material model the 

stress corresponding to the strain in that layer or bar. 

3. Calculate the force in each concrete layer and steel bar by multiplying the stress with 

the area of the layer or bar. 

4. Compare the axial load value to the total force in the concrete layers and 

reinforcement bars. 

a. If equilibrium is satisfied, 

i. calculate the bending moment.  For the first time this step is reached 

the calculated bending moment should be zero, since the curvature is 

zero. 

ii. Increase the curvature by ΔM. 

iii. Return to step 1. 
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b. If not, 

i. reposition the curvature profile by a predetermined amount in an 

attempt to obtain equilibrium and 

ii. return to step 1.  (Iteration through steps 1 to 4 will be necessary.  

Continue until force equilibrium is satisfied). 

By repeating these steps a set of curvature versus moment values are obtained.  The 

calculations are stopped when either the outermost reinforcement bar or the outermost 

confined concrete layer reaches its ultimate strain.  Figure 7.2 shows a screenshot of the 

program output for the single storey wall W013 with an axial load of 675 kN. 

 

Figure 7.2:  MATLAB moment-curvature program screenshot 

7.3 Bilinear approximation to the moment-curvature curve 

In order to use the moment-curvature results it is necessary to fit a bilinear approximation to 

the moment-curvature curve.  This is done in the following way (Priestley et al., 2007, p.144): 

• The point where the outermost reinforcement bar yields in tension defines the “First 

yield” point with coordinates ( ’!, �’!) (See Figure 7.3). 

• The first instance that the strain in the outermost concrete layer is greater than 0.004 

(spalling of cover concrete) or the strain in the outermost reinforcement bar is greater 

than 0.015 (start of strain hardening) defines the nominal moment ��. 

• The nominal yield curvature is found by extrapolation of the fist yield point: 

o M! =	M! ¡¢¡fo        ............. 7.1 
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• The ultimate point is defined as the point where either the outermost reinforcement 

bar or the outermost confined concrete layer reaches its ultimate strain. 

• The bilinear approximation is found by connecting a line from the origin through the 

nominal yield point to the ultimate point as shown in Figure 7.3. 

 

Figure 7.3:  Bilinear approximation to moment curvature curve 

7.4 Moment-curvature results 

The moment-curvature results of the eight walls of this study, introduced in Chapter 4.5, are 

presented here.  Figure 7.4 shows the bilinear approximations of the moment-curvature 

curves.  In Chapter 8.4.1 design equations will be introduced, by which the bending moment 

capacity of a section can be estimated.  These calculated capacities are also shown in 

Figure 7.4 to the right of each bilinear curve.  It can be seen that good correlation exists 

between moment-curvature curves and the design equation results. 
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Figure 7.4: Bilinear moment-curvature results 

It was stated in Chapter 2.1.7 that “the yield curvature is essentially independent of strength, 

for a given section...”(Priestley et al., 2007, p. 9).  Priestley et al. (2007, p. 158) have found 

that the yield curvature may be represented by: 

M! = 
�f'£         ............. 7.2 

\ℎXDX Q! = 0.00225 is the yield strain of the longitudinal reinforcement, and 

 A� is the length of the wall section 

 

Figure 7.5 shows the values of the yield curvature obtained for the eight walls of this study.  It 

can be seen that the results correspond to Eq. 7.2. 
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Figure 7.5: Dimensionless yield curvature as a function of axial load ratio 

The interrelation of strength and stiffness is shown in Figure 7.6 and Figure 7.7.  Figure 7.6 

shows the bilinear moment curvature curves of wall W063 with varying reinforcement ratio.  

Figure 7.7 shows the bilinear moment-curvature curves of wall W063 with varying axial load.  

In both figures it can clearly be seen that the yield curvature is relatively independent of 

strength and that strength and stiffness are interrelated. 

 

Figure 7.6: Influence of reinforcement content on strength and stiffness 
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Figure 7.7: Influence of axial load on strength and stiffness 

7.5 Parameters which would not influence the outcome of this study 

Bearing in mind the aforementioned interrelation of strength and stiffness, it is of interest to 

identify parameters which would affect the outcome of this study.  Ductility capacity is related 

to a fixed drift limit, and is therefore constant. Ductility demand, on the other hand, is related 

to the period of the structure (T) and the force reduction factor (R), as described by the R-µ-T 

relationship of Eq. 2.15.  Since the behaviour factor is constant, and therefore also the force 

reduction factor, only parameters that could influence the fundamental period need to be 

investigated.  The following parameters may at first glance appear to influence the 

fundamental period: 

• The reinforcement content of the wall section 

• The axial load on the section 

• The width of the wall section (:�) 

• Material strengths 

All four of these parameters would influence the stiffness, and therefore also the strength, of 

the cross section.  With reference to step 3.1 and 3.2 of the methodology, the floor masses 

(B� and B
) are directly related to the moment capacity of the cross section (�’�).  Since all 

the above mentioned parameters would influence the stiffness and strength in equal 

proportions, they would also influence the stiffness and mass in equal proportions.  The 

fundamental period is related to the stiffness and mass of a system according to the familiar 

equation: 

% = 2alB∗/@∗       ............. 7.3 
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Thus it can be seen in Eq. 7.3 that any parameter which influences the stiffness and mass in 

equal proportions would not affect the fundamental period, and thus also not the ductility 

demand.  The four above mentioned parameters are therefore not included in the scope of 

this study.  Parameters that would influence the fundamental period are included in the 

scope of this study and were discussed in Chapter 4. 

 

Thus, in this chapter we have seen an algorithm that could be used for moment-curvature 

analysis.  The derivation of the bilinear moment-curvature approximation was introduced.  

This bilinear moment-curvature results are used in the design of the walls, as described in 

step 3.1.4 and 3.2.4 of the methodology (Chapter 5).  It is also used in the assessment of the 

walls as described in step 4.2 of the methodology, and in defining the characteristics of the 

finite element members used in ITHA (see Chapter 10).  Finally we saw how the interrelation 

of strength and stiffness proved that some parameters would not influence the outcome of 

this study. 
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8.  Design 

In this chapter all aspects of the design of structural walls required for this study are 

discussed.  Firstly, the calculation of bending moment demand is discussed.  The second 

section deals with capacity design, where a specific part of a structure is designed for 

inelastic action.  The final part of this chapter discusses bending moment capacity.  Design 

equations are derived for the calculation of bending moment capacity. 

8.1 Equivalent static lateral force 

According to SANS 10160-4 (2009, p. 23) buildings which are not significantly affected by 

higher modes of vibration may be designed according to the equivalent static lateral force 

procedure.  Such buildings have the following characteristics (SANS 10160-4, 2009, p. 23): 

 

a) The fundamental period of vibration %� m 4%. or %� m 2 seconds (refer to Table 2.1 

for %. and to Eq. 4.1 for %�	); 
b) All lateral load resisting systems (cores, walls, frames) run without interruption from 

their base to the top of the building, or if setbacks at different heights are present, to 

the top of the relevant zone of the building; 

c) Both lateral stiffness and the mass of the individual storeys remain constant or 

reduce gradually, without abrupt changes, from the base to the top; 

d) The sum of setbacks at any storey is less than 30% of the plan dimension at the 

first storey and less than 10% of the previous plan dimension and 

e) The plan layout of the building regarding the stiffness of the lateral force resisting 

elements, and the distribution of mass are approximately symmetric with respect to 

the two orthogonal directions and without significant discontinuities throughout the 

height of the building. 

 

All of the structural walls of this study, defined in Chapter 4, comply with these five 

requirements.  According to SANS 10160-4 (2009, p. 24) the equivalent static lateral force is 

obtained from Eq. 8.1: 

02 = B���$�&%(       ............. 8.1 

\ℎXDX B��� is the total mass of the structure, which is equal to the sum of the individual 

floor masses.  For design purposes it is sufficiently accurate to ignore the weight 

of the structural wall itself. 

 $�&%( is the design pseudo acceleration defined in Eqs. 2.16 to 2.19. 
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Using the total mass of the structure in the calculation of the equivalent static lateral force is 

a contradiction of the assumption that higher modes do not significantly affect the structures 

mentioned above.  If higher modes had no effect on the structure whatsoever, the equivalent 

static lateral force could be calculated according to: 

02 = B∗$�&%(       ............. 8.2 

\ℎXDX B∗ is the effective first modal mass.  See Chapter 9.2.1. 

 

The total structural mass is used in Eq. 8.1 to account in some way for higher mode effects, 

since higher modes will always have some effect on any MDOF structure.  This measure is 

however conservative, leading to additional strength.  This additional strength becomes 

evident in the design results (see Figure 11.1 to Figure 11.4). 

 

Figure 8.1 shows the ratio of the effective first modal mass (B∗) to the total mass (B���) as a 

function of the number of degrees of freedom for a MDOF cantilever beam.  Bachmann, 

Dazio,   Bruchez,   Mittaz,  Peruzzi & Tissières (2002, p. 132) obtained similar results.  In 

Chapter 12 it will be seen that SANS 10160-4 (2009) assumes an average mass ratio of 0.7. 

 

Figure 8.1: Mass ratio as a function of the number of degrees of freedom 

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
a

ss
 r

a
ti

o
 (

m
*

/m
to

t)

Number of degrees of freedom

SANS assumption 



 

 
 

61 Design 

8.2 Bending moment demand 

To calculate the bending moment demand over the height of the wall it is necessary to 

distribute the total base shear along the height of the wall.  According to SANS 10160-4 

(2009, p. 25) the lateral seismic force �> acting on a storey at level ? should be calculated 

from the following equation: 

�> = ¤¥×�¥∑ ¤§×�§¢§¨� 	× 02       ............. 8.3 

\ℎXDX 3> ,35 is the weight assigned to level ? and 7 respectively 

 ℎ> , ℎ5 is the height above the base to level ? and 7 respectively 

 7 is the storey number 

 , is the total number of storeys 

 

It may be seen that for equal floor weights Eq. 8.3 results in a force distribution which varies 

linearly with height.  The resulting bending moment demand is shown in Figure 8.3.  The 

design bending moment, labelled “Design requirement”, takes higher mode effects and 

tension shift (see description below) into account.  The higher mode effects are taken into 

account by changing the curved moment profile to a linear profile (Paulay & Priestley, 1992, 

p. 394).   
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Tension shift is discussed in detail in Paulay & Priestley (1992, pp. 155-156) and Park & 

Paulay (1975, pp. 304-307).  It is briefly explained here with the aid of Figure 8.2. 

 

Figure 8.2: Tension shift 

According to the assumption that plane cross-sections remain plane and normal to the 

neutral axis, the cracks which form in the wall should be horizontal as shown in Figure 8.2.  

Due to shear force the cracks are however inclined at an angle O and thus the tension force 

in the reinforcing steel occurs at a level F = © tanO higher than predicted by the plane cross-

sections assumption.  Conservatively it may be assumed that © = A� and O = 45°, which 

results in F = A�.  Thus tension shift may be taken into account by lifting the linear moment 

profile by the wall section length (A�) (Paulay & Priestley, 1992, p. 395) (see Figure 8.3). 

 

The bending moment capacity of a wall with constant reinforcement content over the height 

of the wall is also shown in Figure 8.3.  It can be seen that the capacity reduces as the axial 

load reduces.  In tall walls the reinforcement content may gradually decrease with height so 

that the “capacity” matches the “design requirement” over the height of the wall. 
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Figure 8.3: Bending moment demand and capacity 

8.3 Capacity design 

Once the bending moment demand is known it is necessary to capacity design the structural 

wall.  In capacity design of structures specific structural members are chosen and detailed for 

energy dissipation.  Critical regions of these members, called plastic hinges, are detailed for 

inelastic flexural action (Paulay & Priestley, 1992, pp. 39-39). 

 

In structural wall buildings the only available members for capacity design are the structural 

walls themselves.  The critical region of a structural wall is located at the base of the wall.  

The minimum plastic region length (ℎ�') should comply with the following requirements 

(SANS 10160-4, 2009, p. 36): 

1. ℎ�' p A� 

2. ℎ�' p �£®  

3. If ℎ� p 2A� 3⁄  and ℎ� p ℎ�/9 are both complied with, then ℎ�' = ℎ� may be assumed 

(see Figure 8.4) 
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Figure 8.4: Height of plastic region (SANS 10160-4, 2009, p. 38) 

The bending moment capacity is usually supplied by concentrating reinforcement in so-called 

boundary elements of the wall section (see Figure 8.5).  In the plastic region confinement 

reinforcement should however be provided around the boundary elements to fulfil the 

following functions (Dazio & Beyer, 2009, p. 7-24): 

1. Stabilize the longitudinal reinforcement 

2. Confine the concrete in the boundary elements 

3. Transfer shear 

 

Figure 8.5: Reinforcement layout of structural wall section (SANS 10160-4, 2009, p. 38) 

To fulfil these three functions the confining reinforcement should comply with the following 

requirements (SANS 10160-4, 2009, p. 37): 
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1. ���5 p 0.077E�ℎ5 
��
f�      ............. 8.4 

2. E� m 100 + Jz1��±J       ............. 8.5 

3. E� m ℎ4/4       ............. 8.6 

4. E� m 6 × longitudinal bar diameter     ............. 8.7 

5. 100 m E� m 150	BB      ............. 8.8 

\ℎXDX ���5 and ℎ5 are defined in Figure 6.2 (repeated here as Figure 8.6 for 

convenience) for 7 = 1 and 2. 

 E� is the vertical spacing of the confining reinforcement 

 <�� is the concrete characteristic cube strength 

 <!� is the characteristic yield strength of the confining reinforcement 

ℎ4 is the maximum horizontal spacing of the legs of the confining reinforcement.  

In the case of Figure 8.6 this would be the maximum of ℎ� and ℎ
/3. 

 

Figure 8.6: Confinement in a wall boundary element 

The size of the boundary element is determined by the parameter A� in Figure 8.5.  According 

to SANS 10160-4 (2009, p. 37) “the boundary element should extend horizontally from the 

extreme compression fibre a distance A� of not less than the larger of 6� ^ 0.1A� and 6�/2”, 

where 6� is the depth of the neutral axis.  For the design of the walls of this study the neutral 

axis depth (6�) was calculated using design equations (developed in 8.4.1). 

 

In order to prevent wall instability due to out-of-plane buckling in the plastic hinge region of 

the wall, the wall section should be wide enough.  Reference is here made to the dimension 
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defined as :� (see Figure 4.2).  The critical section width (:�) may be determined from 

Figure 8.7, assuming a value for the ductility demand S.  A good assumption is S = C. 

 

Figure 8.7: Critical wall thickness ductility relationship (Paulay & Priestley, 1992, p.403) 

8.4 Bending moment capacity 

8.4.1 Design equations 

The moment capacity of a wall cross section may be determined using an equivalent stress 

block method such as the one set out by Bachmann et al. (2002, p.137).  In Figure 8.8 it is 

adapted to conform to the assumptions of the stress block method of SANS 10100-1 (2000): 
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Figure 8.8: Equivalent stress block 

In this method the following assumptions are made: 

• The steel is elastic-perfectly plastic. 

• The reinforcement in the boundary regions yields in both tension and compression. 

• The reinforcement in the web yields only in tension for all positive strain values. 

• The concrete compressive stress is modelled using the compression block of SANS 

10100 (2000). 

• It was shown in Figure 7.4 that the design equations compare well with moment-

curvature analysis results.  Therefore it is sufficiently accurate to ignore the effect of 

confinement on concrete properties. 

Definitions 

• N Internal axial load 

• M Internal bending moment 

• <�� Design compressive cube strength 

• <! Design steel yield strength 

• A� Length of wall section 

²�	 	= 	O	A�:�<!T		 ²�� 	= 	 &1 ^ O	 ^ O4(A�:�<!T�	

&0.5 ^ 0.45O4(A�	
&1 ^ O	(A�/2	 + 	0.05O4A�	&1 ^ O	(A�	

0.9	O4A�	
0.67<��	

³� 	= 	0.9O4A�:�0.67<��	
³�	 	= 	O	A�:�<!T		

6	 = 	O4A�	

O	A� = A�         &1	 ^ 	2O	(A�             A� = 	O	A�     

A�	

:� 



 

 
 

68 Design 

• A� = O	A� is equal to A� of Figure 8.5 plus concrete cover, so that the distance from 

the end of the section to A�/2 coincides with the center of the boundary element (see 

Figure 8.9). 

• :� Width of wall section 

• 6 Distance from the outer compressive concrete fibre to the neutral axis 

• E Horizontal spacing of the web reinforcement 

• ��� Total reinforcement area 

• ��� Web reinforcement area per pair of bars 

• ��	 Boundary element reinforcement area 

• Total reinforcement content: 

o T� = n�´2£'£	      ............. 8.9 

o U� = T� 
f
��      ........... 8.10 

• Web reinforcement content: 

o T� = n�£2£�      ........... 8.11 

o U� = T� 
f
��      ........... 8.12 

• Boundary element reinforcement content: 

o T	 = n��µ�2£'£      ........... 8.13 

o U	 = T	 
f
��      ........... 8.14 

• Axial load ratio: , = ¶
'£2£
��      ........... 8.15 

• Bending moment ratio: B = ¡
'£� 2£
��     ........... 8.16 

The two unknowns to be solved are the depth of the neutral axis and the moment capacity.  

These are obtained from force equilibrium and moment equilibrium of the section. 

 

Force equilibrium of the section forces: 

0.9O4A�:� × 0.67<�� = " + &1 ^ O	 ^ O4(A�:�<!T�    ........... 8.17 

In Eq. 8.17 O4 can be found by utilizing Eqs. 8.9 to 8.16.  Thus, the neutral axis depth ratio 

O4 is defined by Eq. 8.18: 
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⇒ O4 = �8&��µ�(¸£1.®1J8¸£        ........... 8.18 

 

Moment equilibrium of the section forces around the centre of the concrete compression 

block: 

� = &1 ^ O	(A� × O	A�:�<!T	 + &0.5 ^ 0.45O4(A�" 

+w&��µ�('£
 + 0.05O4A�| × &1 ^ O	 ^ O4(A�:�<!T�    ........... 8.19 

Eq. 8.19 can be rewritten to find an equation for B: 

B = y��µ�
 {U� + &0.5 ^ 0.45O4(, + wµ��µ��
 + 0.45&O	 ^ 1(O4 ^ 0.05O4
|U�  ........... 8.20 

With the reinforcement content and wall dimensions as input, the moment capacity of the 

section can be calculated. 

8.4.2 Design example 

To illustrate the implementation of the above equations a design example is provided.  This 

is in fact the design of the base of wall W033 as defined in Chapter 4. Figure 8.9 shows the 

end of the cross section of the wall and the layout of the reinforcement. 

 

Figure 8.9: Design example 

The following are the wall dimensions: 

Wall section width  :� = 230	BB 

Wall section length  A� = 3240	BB 
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Boundary element length A� = 400	BB 

 

The following defines the reinforcement content: 

Reinforcement spacing in boundary element E	 = 150	BB 

Reinforcement spacing in web region E� = 195	BB 

Reinforcement diameter in boundary element M	 = 20	BB 

Reinforcement diameter in web region M� = 10	BB 

 

Axial load at the base of the wall  " = 2	025	@" 

 

Boundary element length ratio  O	 = '�'£ = �11
J
�1 = 0.123 

Boundary element reinforcement area ��	 = 6 × ¹×
1�
� = 1	885	BB
 

Web reinforcement area per pair of bars ��� = 2 × ¹×�1�
� = 157	BB
 

Boundary element reinforcement ratio T	 = n��µ�2£'£ = �	»»z
1.�
J×
J1×J	
�1 = 0.0205	&2.05%( 

    U	 = T	 
f
�� = 0.0205 �z1
J1 = 0.307 

Web reinforcement ratio  T� = n�£2£� = �z�

J1×�½z = 0.0035	&0.35%( 

    U� = T� 
f
�� = 0.0035 �z1
J1 = 0.052 

Total reinforcement ratio  T�  = 2O	T	 + &1 ^ 2O	(T� 

          = 0.246 × 0.0205 + 0.754 × 0.0035 

          = 0.00769	&0.769%( 
    U� = T� 
f
�� = 0.00769 �z1

J1 = 0.115 

Axial load ratio   , = ¶
'£2£
�� = 
	1
z×�1�

J
�1×
J1×J1 = 0.091 

Neutral axis depth ratio   O4 = �8&��µ�(¸£1.®1J8¸£  

          = 1.1½�8&��1.�
J(1.1z

1.®1J81.1z
  

          = 0.208 

Bending moment ratio 

B = y��µ�
 {U� + &0.5 ^ 0.45O4(, + wµ��µ��
 + 0.45&O	 ^ 1(O4 ^ 0.05O4
|U� 

     = y��1.�
J

 {0.115 + �0.5 ^ 0.45&0.208(�0.091 

 +w1.�
J�1.�
J�

 + 0.45&0.123 ^ 1(0.208 ^ 0.05&0.208(
| 0.052 

     = 0.086 
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The bending moment capacity of the section can then be obtained by inverting Eq. 8.16: 

� = BA�
 :�<�� = 0.086 × 3240
 × 230 × 30 = 6	213	@"B 

 

Good correlation between these design equations and moment-curvature analysis results 

was observed in Figure 7.4. 

 

8.5 Longitudinal reinforcement content 

It was stated in step 1 of the methodology (Chapter 5) that an amount of reinforcement, 

somewhere between maximum and minimum allowable limits, is provided for each structural 

wall cross section.  The allowable limits of reinforcement content are obtained from a 

recommendation by Dazio & Beyer (2009, p. 7-12): 

• 0.3% m T� m 0.5% 

• T	 m 4% 

• 0.3% m T� m 1% 

The design equations of 8.4.1 were implemented in a spreadsheet, and with all the capacity 

design requirements of 8.3 taken into account, the reinforcement for each wall cross section 

was chosen so as to comply with the three abovementioned reinforcement limits. 
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9.  Ductility capacity and demand 

The purpose of this chapter is to describe ductility capacity in terms of a code defined inter 

storey drift limit and to derive ductility demand from a set of ITHA results.  For this purpose it 

is necessary to discuss the calculation of force-displacement responses of SDOF and MDOF 

walls from moment-curvature results. 

9.1 Force-displacement response of a SDOF wall from moment-curvature 

analysis  

The purpose of this section is to describe the derivation of the force-displacement response 

of a SDOF wall from the moment-curvature results of the wall cross section.  This discussion 

is extended to MDOF walls in the next section. 

 

As shown in Figure 9.1, the primary purpose is to write equations for the yield- and ultimate 

displacements, ¾! and ¾�, in terms of the yield- and ultimate curvatures, M! and M�. 

 

Figure 9.1: Conversion from moment-curvature to force-displacement 

A method for determining the force-displacement relationship of a SDOF structural wall from 

a moment-curvature relationship is illustrated in Figure 9.2. 



 

 
 

73 Ductility capacity and demand 

 

Figure 9.2:  Calculating the displacement profile from applied forces 

The bending moment distribution can be obtained from the applied force.  In this case it is a 

linear distribution.  For each bending moment value, the corresponding curvature value can 

be read from the moment-curvature curve, to produce the curvature distribution.  The 

curvature distribution can then be integrated twice to produce the displacement profile. 

 

This process unfortunately does not produce force-displacement responses which 

correspond to experimental results.  According to Priestley et al. (2007, p.148) some reasons 

for this are: 

• The effect of tension shift, discussed in Chapter 8.2, is ignored.   

• The effect of shear deformation is ignored. 

• Strain penetration into the foundation is ignored.  The curvature profile in Figure 

9.2(c) implies an immediate curvature reduction to zero immediately below the base 

of the wall.  The strain in the tension reinforcement would however only reduce to 

zero below a depth equal to the full development length of the reinforcement.  On the 

other side of the wall section the concrete strain would also not drop to zero 

immediately. 

The solution to these problems is to use a simplified approach where the curvature profile is 

approximated as shown in Figure 9.3. 
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Figure 9.3: Plastic hinge method 

This method, known as the plastic hinge method, assumes that a plastic hinge exists at the 

base of the wall over which the plastic curvature M� is constant.  The length of the plastic 

hinge �� includes the depth of strain penetration ���, as shown in Figure 9.3.  Furthermore, 

the linear approximation of the yield curvature compensates for the increase in displacement 

due to tension shift, and at least partially for shear displacement (Priestley et al., 2007, 

p.148). 

 

According to Priestley et al. (2007, pp.148-149) the following equations may be used: 

��� = 0.022<!-2'        ............. 9.1 

\ℎXDX	<!	+,-	-2' are the yield strength (in MPa) and diameter of the longitudinal 

reinforcement in the boundary elements of the wall. 
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�� = @ℎ� + ��� ≥ 2���        ............. 9.2 

\ℎXDX 

@ = 0.2 ¿
�
f ^ 1À ≤ 0.08		 	 	 	 	  ............. 9.3	
As indicated in Eq. 9.2, the plastic hinge should be longer than at least twice the strain 

penetration depth.  It can also be seen that the variable @ takes account of the strain 

hardening ratio of the reinforcing steel (Refer to Chapter 6.2.2). 

 

To obtain the yield displacement ¾! the yield curvature could be integrated twice.  The linear 

yield curvature profile may be expressed as follows: 

M!&ℎ( = 	M! ¿1 ^ �
�£8Á�ÂÀ     [1/m]  .... 9.4 

Integrating the curvature with respect to the height results in an equation for the drift profile: 

R!&ℎ( = M! ¿ℎ ^ ��

&�£8Á�Â(À + ;�     [rad]  ..... 9.5 

Integration of the drift over the height produces an equation for the displacement profile: 

ΔÃ&ℎ( = 	M! ¿��

 ^ ��

®��£8Á�Â�À + ;�ℎ + ;
    [m]  ....... 9.6 

Both integration constants, c1 and c2, are zero since R&0( = 0 and Δ&0( = 	0. 

 

For a SDOF wall the yield displacement ¾! is the displacement at ℎ	 = 	ℎ� 	+ 	���: 

Δ! = ΔÃ&ℎ� + ���( = M! ��£8Á�Â��
J        ............. 9.7 

 

The plastic displacement ¾� is derived in the same way, except that the integration is greatly 

simplified.  Integration of the plastic curvature over �� produces the plastic drift R� = M���.  

The plastic displacement at the top of the wall is then simply Δ� = R�ℎ�.  ............. 9.8 

 

The ultimate displacement ¾� is the sum of the yield displacement and plastic displacement. 

Δ� = Δ! + Δ� = M! ��£8Á�Â��
J + M���ℎ� = M! ��£8Á�Â��

J + �M� ^ M!���ℎ�   ............. 9.9 
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Eq. 9.8 implies that the centre of the plastic hinge is at the base of the wall.  This is only 

exact when �� 	= 	2���, but is an acceptable approximation in all cases (Priestley et al., 

2007, p.150). 

9.2 Force-displacement response of a MDOF wall from moment-curvature 

analysis  

We now extend the discussion from SDOF to MDOF walls.  The purpose is to find an 

equation for the ductility capacity in terms of an allowable drift limit, and to calculate the 

ductility demand from inelastic time history analysis (ITHA) results. 

9.2.1 Conversion from MDOF to SDOF 

As shown in Figure 9.4, the displacement of a MDOF wall can be measured by an equivalent 

SDOF wall (Chopra, 2007, pp. 522-532).  This equivalent SDOF wall must have the same 

dynamic characteristics as the first mode of the MDOF wall.  In addition, the height of the 

wall is chosen such that the base moment of the SDOF wall due to the concentrated force �∗ 
is equal to the base moment of the MDOF wall due to the distributed force (Priestley et al., 

2007, p.316).  This height ℎ∗ is referred to as the effective height. 
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Figure 9.4:  Equivalent SDOF wall 

Given a displaced shape of the MDOF wall, described by a set of values Δ5, it is of interest 

for the discussion to follow to calculate the equivalent SDOF displacement Δ∗.  The equation 

for the SDOF displacement in terms of the MDOF displacement (Eq. 9.19) was derived by 

Kowalski (2010).  It is repeated here: 

 

Assumptions 

• Let ;5 be a shape function that, when multiplied by ¾∗, results in the MDOF 

displacement pattern, ¾5. 
• Assume accelerations are controlled by the same shape function: 

o ¾5 = ;5¾∗      ........... 9.10 

o +5 = ;5+∗      ........... 9.11 

Derivation 

 Apply force equilibrium between the MDOF wall and the equivalent SDOF wall: 
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 �∗ = ∑�5 = ∑B5+5 = ∑B5;5+∗  

                 = +∗ ∑B5;5     ........... 9.12 

 Since �∗ = +∗B∗, from Eq. 9.12 the SDOF mass must be: 

 B∗ = ∑B5;5 = ∑H§Ä§Ä∗       ........... 9.13 

 The force function on the MDOF wall is: 

 �5 = B5+5 = B5;5+∗      ........... 9.14 

 Solve Eq. 9.12 for +∗ and substitute into Eq. 9.14: 

 �5 = H§�§Å∗
∑H§�§ = �∗ H§�§∑H§�§      ........... 9.15 

 Solve Eq. 9.10 for ;5 and substitute into Eq. 9.15: 

 �5 = �∗ H§Ä§/Ä∗
∑H§Ä§/Ä∗ = �∗ H§Ä§∑H§Ä§     ........... 9.16 

 Define ¾∗ by requiring equivalence in work between SDOF and MDOF walls: 

 �∗¾∗ = ∑�5¾5      ........... 9.17 

     ¾∗  = ∑�5¾5 /�∗      ........... 9.18 

 Substitute Eq. 9.16 into Eq. 9.18: 

 	¾∗ 			= 			∑�∗ H§Ä§∑H§Ä§ ¾5 �∗Æ 			= 			∑H§Ä§�∑H§Ä§ 	    ........... 9.19 

The equation for the effective height may be derived by bearing in mind that the base 

moment of the SDOF wall should be equal to the base moment of the MDOF wall. 

 

The base moment of the MDOF and SDOF walls is: 

� = ∑�5ℎ5        ........... 9.20 

Substitute Eq. 9.16 into Eq. 9.20: 

� = ∑�∗ H§Ä§∑H§Ä§ ℎ5 = Å∗
∑H§Ç§ ∑B5Δ5ℎ5      ........... 9.21 

The base shear force of the MDOF and SDOF walls is: 
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02 = ∑�∗ H§Ä§∑H§Ä§ = Å∗
∑H§Ç§ ∑B5Δ5      ........... 9.22 

Thus, the effective height is: 

ℎ∗ = ¡
dÈ = ∑H§Ç§�§∑H§Ç§ 	       ........... 9.23 

\ℎXDX	Δ5, for the calculation of ℎ∗, is the 7�� value of the first mode shape. 

9.2.2 Validity of linear curvature profile 

In the previous section we approximated the yield curvature by a linear profile (see Figure 

9.3).  For a MDOF wall one would expect such an approximation to be invalid, since the 

bending moment distribution corresponds to distributed lateral forces (Figure 9.4(a)), and 

thus the yield curvature profile would be curved, not linear. 

 

This curved curvature profile, labelled “Design forces”, obtained from an inverted triangular 

force distribution is shown in Figure 9.5.  Another profile which is shown is similar except that 

in the upper half of the wall the section may be uncracked, resulting in much lower 

curvatures in this region.  This is labelled “Uncracked”.  The “Linear” curvature profile is also 

shown.  Priestley et al. (2007, pp.317-319) calculated the displacement at an effective height 

of 0.7ℎ� for these three curvature profiles and found that the displacement corresponding to 

the linear profile is 14.9% and 16.8% higher than the displacement corresponding to the 

“Design forces” and “Uncracked” curvature profiles respectively. 
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Figure 9.5:  MDOF wall curvatures at yield 

Tension shift may however be taken into consideration by lifting the curvature profile by a 

distance equal to A�/2.  This profile is also shown in Figure 9.5.  When tension shift was 

taken into account, the displacement corresponding to the linear profile was found to be only 

2.7% lower than the displacement corresponding to the curved profile, and almost equal to 

that of the uncracked section.  “It is thus seen that for typical conditions the linear curvature 

profile provides a reasonable prediction of the yield displacement at the effective height” 

(Priestley et al., 2007, p.319). 

 

For MDOF walls the strain penetration length is usually very small in comparison to the 

height of the wall and may thus be neglected.  Similar to Eqs. 9.4 to 9.6, the equations for 

curvature, drift, and displacement may be derived by integration.  Here the equations are 

written in index notation with the index 7 indicating the degree of freedom ( 7	 = 	0, 1, 2,… ,"). 

 

The equation for the linear curvature profile is: 
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M!5 = M! y1 ^ �§�£{        ........... 9.24 

Integration of Eq. 9.24 produces an equation for the yield drift profile: 

R!5 = M! yℎ5 ^ �§�
�£{        ........... 9.25 

Integration of Eq. 9.25 produces an equation for the yield displacement profile: 

Δ!5 = Éf�§�
 y1 ^ �§J�£{        ........... 9.26 

9.3 Defining ductility capacity in terms of a code drift limit 

9.3.1 Plastic hinge method 

The yield displacement can be obtained from Eq. 9.19 by setting Δ5 = Δ!5: 

Δ! = ∑H§Çf§�
∑H§Çf§         ........... 9.27 

\ℎXDX	Δ!5 is obtained from Eq. 9.26.   The effective height can be calculated from Eq. 9.23: 

ℎ∗ = ∑�§H§Ç§∑H§Ç§         ........... 9.28 

\ℎXDX	Δ5 is the 7�� value of the first mode shape vector. 

 

The maximum yield drift can be calculated from Eq. 9.25: 

R!¶ = M! yℎ� ^ �£�
�£{ = Éf�£
        ........... 9.29 

Since this would be the maximum yield drift for all values of 7, the allowable plastic rotation is 

the difference between the code drift limit R� and R!¶.  Having obtained the allowable plastic 

rotation, the plastic displacement at the effective height is 

Δ� = &R� ^ R!¶(ℎ∗        ........... 9.30 

The ductility capacity in terms of the code drift limit is then SÊ = ÇË8ÇÌÇË     ........... 9.31 

9.3.2 Approximate equation 

Priestley et al. (2007, pp. 325-326) derived a convenient equation which relates ductility to 

code drift limit.  The following simplifying assumptions are made: 
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From a series of moment-curvature analyses the yield curvature of rectangular reinforced 

concrete structural walls has been found to be represented by Eq. 9.32 (Priestley et al., 

2007, p. 158): 

M! = 
�f'£         ........... 9.32 

Thus, from Eq. 9.29 the maximum yield drift is: 

R!¶ = Éf�£
 = �f�£'£ = Q!��      ........... 9.33 

\ℎXDX	�� is the aspect ratio of the wall.  From Eq. 9.26 the yield displacement profile can be 

described by: 

Δ!5 = Éf�§�
 y1 ^ �§J�£{ = �f�§�'£ y1 ^ �§J�£{ = Q!��ℎ� y �§�£{
 y1 ^ �§J�£{   ........... 9.34 

The equivalent yield displacement can be obtained by substituting Eq. 9.34 in Eq. 9.27 and 

assuming equal floor masses: 

Δ! = ∑H§Çf§�
∑H§Çf§ _ 0.45Q!��ℎ�      ........... 9.35 

The effective height at yield, from Eq. 9.23, is ℎ∗ _ 0.77ℎ�.  Thus, by substituting Eq. 9.33 in 

Eq. 9.30, the plastic displacement is: 

∆�= 0.77ℎ�&R� ^ Q!��(       ........... 9.36 

Hence, from Eq. 9.31, the ductility capacity is: 

SÊ = ÇË8ÇÌÇË = 1.�z�fn��£81.���£�Î���fn��1.�z�fn��£ = 1 + 1.71 Î���fn��fn�     ........... 9.37 

Both the plastic hinge method and Eq. 9.37 can be used to calculate the ductility capacity in 

terms of the code drift limits prescribed by SANS 10160-4 (2009, p. 27) (see Figure 11.5 to 

Figure 11.8). 

9.4 Calculating ductility demand from inelastic time history analysis (ITHA) 

results 

As stated in step 6.2 of the methodology (Chapter 5), ITHA is used to validate the ductility 

demand obtained from the equal displacement and equal energy principles.  For each wall, 

ITHA is performed for a number of ground motion records (refer to Chapter 10.5).  For each 

ground motion record the peak displacement of each degree of freedom (DOF) is recorded.  
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The equivalent displacement of the average of the peak displacements can be obtained from 

Eq. 9.38: 

ΔÏÐ = ∑H§Ç§�∑H§Ç§         ........... 9.38 

\ℎXDX	∆5 is the average of the peak displacement values of the 7�� DOF.  The yield 

displacement is known from Eq. 9.27, and thus the ductility demand can be calculated using 

Eq. 9.39: 

S� = ÇÑÒÇf          ........... 9.39 

Thus we have seen in this chapter that inter storey drift limits can be expressed in terms of 

ductility.  This is done in step 5 of the methodology (Chapter 5) according to both the plastic 

hinge method (9.3.1) and the approximate equation (9.3.2). 

 

It was also shown that ductility demand can be calculated from a set of ITHA.  This 

corresponds to step 6.2 of the methodology.  All aspects of ITHA are discussed in Chapter 

10. 
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10.  Inelastic time history analysis 

ITHA is used in step 6.2 of the methodology (Chapter 5) to validate ductility demand 

predicted by means of the equal displacement and equal energy principles (Chapter 2.1.6).  

The calculation of ductility from a set of ITHA results was discussed in Chapter 9.4. 

 

All aspects of ITHA, including member properties, hysteresis rules, and damping is 

discussed in this chapter.  Background information regarding the modelling of a plastic hinge 

is also provided (10.3).  In 10.5 the selection and manipulation of ground motion records are 

discussed.  Finally, in 10.7, the validity of the equal displacement principle is investigated. 

10.1 Degree of sophistication in element modelling 

The two primary finite elements used to model beam-column structural members are line and 

fibre elements (Priestley et al., 2007, p. 193).  Line elements are beam-column elements with 

the ability to form plastic hinges at the ends of the member.  With a suitable moment-

curvature hysteresis rule assigned to the plastic hinges, the structural response can be 

predicted with remarkable accuracy (Priestley et al., 2007, p. 193).  The moment-curvature 

envelope which is assigned to the plastic hinges is obtained from moment-curvature 

analysis.  Line elements have the advantage of not requiring much computation time. 

 

Fibre elements are beam-column elements of which the cross section is divided into a 

number of fibres.  Each fibre is assigned the material hysteresis rule of either concrete or 

steel.  Thus, no prior moment-curvature analysis is required and no assumption regarding 

the appropriate moment-curvature hysteresis rule is required (Priestley et al., 2007, p. 195).  

Fibre elements are however less computationally efficient. 

 

Since this study required a large number of inelastic time history analyses, and since line 

elements predict structural response with adequate accuracy (Priestley et al., 2007, p. 193), 

it was decided to use line elements.  For this purpose the free 2D student version of 

Ruaumoko (Carr, 2007) was used. 

10.2 Beam properties 

The two types of line elements available in Ruaumoko are the elastic beam and the Giberson 

beam.  The first storey was modelled with a Giberson beam element which contains a 

rotational spring at each end of the member.  The top spring is disabled (by defining a high 

yield moment), while the bottom spring represents the plastic hinge which forms at the base 
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of the wall.  An equation which relates the stiffness of this spring to the hysteresis rule is 

developed in 10.3 (Eq. 10.2).  

 

The upper part of the wall is required to remain elastic.  Thus all higher storeys were 

modelled with elastic beam elements.  An illustration of a typical finite element model of one 

of the walls of the study is shown in Figure 10.1.  Lumped floor masses were used in 

accordance with the assumptions of Chapter 3.1.4.   

 

Figure 10.1: Typical finite element model of a structural wall  

10.2.1 Elastic properties 

The input required for the elastic beam is summarized in Table 10.1: 

Table 10.1: Elastic beam properties 

Elastic section properties 

Symbol Name Equation or value �� Young’s Modulus of concrete 27 GPa � Shear modulus of concrete � 2&1 + Ó(			⁄ &Ó = 0.2(  � Cross-sectional area :� × A� �� Shear area 5�/6 �	

 Sectional moment of inertia ��/�M! (see Figure 10.2) 
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As indicated in Table 10.1, the cracked sectional moment of inertia is obtained from the pre-

yield branch of the bilinear moment-curvature relationship.  Only one moment-curvature 

analysis was done, namely for the base of the wall (Dazio & Beyer, 2009).  The stiffness 

obtained from this analysis was applied over the full height of the wall.  The properties 

obtained from the moment curvature analysis are illustrated in Figure 10.2. 

 

Figure 10.2: Moment-curvature properties 

10.2.2 Inelastic properties 

In addition to the elastic section properties the Giberson beam requires the input listed in 

Table 10.2: 

Table 10.2: Giberson beam properties 

Bilinear factors and hinge properties 

Symbol Name Equation or value < Bilinear factor See Figure 10.2 �� Plastic hinge length (end 1) Defined in Chapter 9.1. (Eq. 9.2) 

 Plastic hinge length (end 2) Any value. A zero length is interpreted as a length of 1.0. 
The hinge is disabled under Yield moment (end 2) below. 

Beam yield conditions 

Symbol Name Equation or value �� Yield moment (end 1) See Figure 10.2 

 Yield moment (end 2) Choose a very large value so that yield does not occur. 

10.2.3 Hysteresis rule 

The envelope of the response of the plastic hinge is determined by the bilinear moment-

curvature relationship, but the hysteretic behaviour of the hinge is determined by a hysteresis 

rule.  The Modified Takeda Rule shown in Figure 10.3 is appropriate for reinforced concrete 

and reinforced masonry structures (Priestley et al., 2007, p. 201).  It may be seen that the 

shape of the hysteresis response depends on the value of P.    For members without axial 
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load, such as reinforced concrete beams a P value of 0.6 is generally considered to be 

appropriate, while a P value of zero applies to members with high axial load, such as 

columns, bridge piers, and structural walls (Priestley et al., 2007, pp. 201-202). 

 

Figure 10.3: Modified Takeda Hysteresis rule (Priestey et al., 2007, p. 202) 

The unloading stiffness @� is a function of the elastic stiffness @1 and the ductility at the onset 

of unloading (S = GH/G!) (Priestley et al., 2007, p. 201): 

@� = @1S�µ        ........... 10.1 

\ℎXDX	O = 0.5 is appropriate for reinforced concrete structural walls (Priestley et al., 2007, p. 

201).  Table 10.1 to Table 10.3 thus contain all input required for the Giberson beam. 

Table 10.3: Hysteresis rule properties 

Hysteresis rule 

Symbol Name Equation or value O Unloading stiffness factor 0.5 P Reloading stiffness factor 0.0 
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10.3 Representation of the plastic hinge in the finite element model 

It was stated in Chapter 9.1 that we assume that all inelastic deformation is concentrated at 

the base of the wall over a length ��, called the plastic hinge length.  We assume that the 

plastic curvature within the plastic hinge is constant.  This plastic hinge is modelled in the 

finite element model with a rotational spring of appropriate stiffness connected to a beam 

with elastic section properties.  This combination is contained within the Giberson beam and 

therefore does not need to be modelled explicitly.  This section therefore serves only to 

inform the interested reader about the inner working of the Giberson beam.  The following 

paragraphs present the derivation of the equation relating the spring stiffness @� to the plastic 

hinge length �� and bilinear factor < (Figure 10.2). 

 

Figure 10.4 shows the finite element model near the base of the wall and the corresponding 

plastic hinge assumption.  The stiffness of the spring is such that the rotation of the spring 

together with the deflection of the beam (with stiffness ��	

) produces the same rotation R 

as the deflection of the beam alone (with stiffness < × ��	

). 

 

Figure 10.4: Plastic hinge spring 
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Assuming a constant bending moment M over the plastic hinge length, the total rotation R 

may be equated for both cases as: 

 

Finite element model Plastic hinge assumption R = R� + R2 R = M��� 

 = �@� + �����	

 
 = ���<��	

 

    

 ∴ �&��	

 + @���(@���	

  = ���<��	

 

 
��	

 + @���@�  = ��<  

 <��	

 + <@��� = @��� 

 

∴ @� = �Õ���ÁÂ y 

��
{       ........... 10.2 

(The same equation appears in the Theory Manual of Ruaumoko (Carr, 2007)).  Thus, for 

any point on the hysteresis curve (Figure 10.3) the appropriate stiffness of the rotational 

spring can be found by substituting the current value of the bilinear factor < into Eq. 10.2.  It 

may be seen that for the elastic part of the hysteresis rule < = 1, and thus the spring stiffness 

is infinitely large according to Eq. 10.2.  This is the expected result since the spring rotation 

R� should be zero when the wall is still elastic. 

10.4 Time step integration parameters 

For the ITHA Newmark’s average acceleration time-stepping method was used (Chopra, 

2007, p. 175).  The ground motion records used in this study had been recorded in a time 

interval of 0.005 seconds.  The same time-step was used in the time-stepping method. 

10.5 Ground motions 

10.5.1 Number of records 

According to Priestley et al. (2007, p. 210) it is sufficient to use the result of the average 

response of a minimum of seven ground motion records.  Initially twenty ground motion 

records were used in this study to enable possible probabilistic future studies.  It was soon 

realized however that twenty ground motions were very time consuming.  It was 

subsequently found that the result obtained from seven ground motions did not differ much 

from the result obtained from twenty ground motions, and thus the number of ground motions 

were reduced to seven. 
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10.5.2 Selection of records 

According to Priestley et al. (2007, p. 211) three basic means exist of obtaining spectrum-

compatible accelerograms: 

• Amplitude scaling of acceleration records from real earthquakes to provide a “best fit” 

to the design spectrum over the period range of interest. 

• Generating artificial spectrum-compatible records using special purpose programs. 

• Manipulating existing “real” records to match the design spectrum over the full range 

of periods. 

Records obtained through amplitude scaling of existing records are likely to have large 

scatter between records.  A large number of records might therefore be necessary to obtain 

a reliable result.  It is also important to carefully select the period range over which the 

scaling is done so as to include longer periods at which the structure would respond 

inelastically (Priestley et al., 2007, p. 211). 

 

Artificial accelerograms can be generated to match the design spectrum over the full period 

range.  Thus a lesser number of records are required to obtain a reliable average response 

(Priestley et al., 2007, p. 211). 

 

Obtaining artificial records by manipulating real records has recently become more common.  

It has the advantage over purely artificial records that it preserves the essential character of 

the original real records (Priestley et al., 2007, p. 211). 

 

Thus it was decided to obtain real records with characteristics similar to that of ground types 

1 and 4, and to manipulate these records to match the SANS 10160-4 (2009) elastic spectra.  

For this purpose the free student version of Oasys Sigraph (Oasys Limited, 2010a) was 

used. 

 

According to the Sigraph manual (Oasys Limited, 2010b) the manipulation of a real ground 

motion is done as follows:  The user specifies the starting time history, target spectrum, and 

damping.  Sigraph calculates the response spectrum and the Fast Fourier Transform of the 

starting time history.  The response spectrum is then compared to the target spectrum and 

the spectral values are adjusted up or down in proportion to the difference in the target and 

actual repose spectra.  An inverse Fast Fourier Transform is then used to generate a new 

time history.  This procedure is repeated until the difference between the target and actual 

spectra is less than a user-specified tolerance. 
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The primary variable which differentiates ground types is I�,J1, which is defined as “the 

average value of propagation of S-waves in the upper 30 m of the soil profile at shear strains 

of 10-5 or less” (SANS 10160-4, 2009, p. 10).  Ground type 1 is defined by I�,J1 p 800	B/E 

and ground type 4 by I�,J1 m 180	B/E.  Ground motion records were also selected based on 

PGA.  The design PGA for the Cape Town region is 0.15 g.  Thus, ground motions with a 

PGA between 0.1 g and 0.2 g were chosen so that the minimum amount of scaling would be 

required.  The selected ground motions are listed in Table 10.4.  Each earthquake has two 

orthogonal components.  The seven ground motions were thus obtained from both 

components of the first three earthquakes and one component of the fourth.  The records 

were obtained from the PEER NGA Database (2007). 

Table 10.4: Selected ground motions 

Ground type 1 

Record Earthquake Magnitude PGA [g] I�,J1 [m/s] 

NGA0023 San Francisco 1957-03-22 19:44 5.28 0.107 874 

NGA0098 Hollister-03 1974-11-28 23:01 5.14 0.117 1428 

NGA0146 Coyote Lake 1979-08-06 17:05 5.74 0.120 1428 

NGA0680 Whittier Narrows-01 1987-10-01 14:42 5.99 0.102 969 

Ground type 4 

Record Earthquake Magnitude PGA [g] I�,J1 [m/s] 

NGA0201  Imperial Valley-07 1979-10-15 23:19 5.01 0.141 163 

NGA0780  Loma Prieta 1989-10-18 00:05 6.93 0.121 170 

NGA0808  Loma Prieta 1989-10-18 00:05 6.93 0.132 155 

NGA1866  Yountville 2000-09-03 5.00 0.150 155 

 

These fourteen records were manipulated to match the SANS 10160-4 (2009) spectra.  The 

tolerance on the convergence error was specified as a root mean square of 10 percent.  

Damping was specified as 5% of critical in accordance with the 5% damped code spectra.  

The pseudo acceleration spectra of the manipulated records are plotted with the elastic 

SANS 10160-4 (2009) spectra in Figure 10.5. 



 

 
 

92 Inelastic time history analysis 

 

Figure 10.5: Artificial ground motion spectra 

10.6 Damping 

In elastic and inelastic time history analyses a certain level of viscous damping is defined, 

expressed as a ratio of critical damping (typically 5%).  Hysteresis rules assume linear elastic 

response below the yield moment.  This is not absolutely correct, since some hysteretic 

action takes place within this range.  Viscous damping thus represents the energy dissipated 

in the elastic range by the hysteretic action of structural components.  Viscous damping also 

represents energy dissipated by the hysteretic response of non-structural components and 

the relative movement between structural and non-structural components (Priestley et al., 

2007, p. 204). 

 

Additional energy is dissipated in the inelastic range through the hysteretic action of plastic 

hinges.  This energy dissipation is accounted for by the hysteresis rule defined in 10.2.3. 

 

A commonly used viscous damping model is Raleigh damping, which defines damping as a 

combination of stiffness proportional and mass proportional damping (Chopra, 2007, pp. 455-

458): 

Ö�× = +1Ö�× + +�Ö�×       ........... 10.3 

\ℎXDX +1 = 2Ø5U5       ........... 10.4 
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 +� = 2Ø>/U>      ........... 10.5 

 Ö�× is the system damping matrix 

 Ö�× is the system mass matrix 

 Ö�× is the system stiffness matrix 

+,- Ø5, Ø> are the damping ratios of mode 7 and ? 
 U5, U>	are the circular natural frequencies of mode	7	and	? 
Mode 7 and ? are typically chosen so that the damping ratio for all the significant modes are 

approximately equal to the desired damping ratio Ø = Ø5 = Ø>.  For a five degree of freedom 

system for instance this damping ratio could be specified for the first and fourth mode.  Mode 

2 and 3 would thus have a slightly lower damping ratio, while mode 5 will have a higher 

damping ratio (Chopra, 2007, pp. 457-458).  This is illustrated in Figure 10.6 for Ø5 = Ø> =
0.05: 

 

Figure 10.6: Raleigh damping 

Since viscous damping represents energy dissipation in the elastic range of response, and 

all inelastic energy dissipation is accounted for by the plastic hinge hysteresis, it would make 

sense that the viscous damping should be zero in the post-yield range, except when the 

structure unloads or reloads elastically (Priestley et al., 2007, p. 204).  One way to 

accomplish this is to base the viscous damping on the tangent stiffness matrix.  Since the 

stiffness reduces greatly in the post-yield range, the damping would reduce by the same 

ratio.  For this reason Priestley et al. (2007, p. 207) state that the most appropriate damping 
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model for structural response is tangent-stiffness proportional damping.  Refer to Priestley et 

al. (2007, pp. 203-210) for a detailed discussion on the subject. 

 

Stiffness proportional damping should however not be confused with Raleigh damping with a 

stiffness proportional component, since most of the viscous damping in the critical first mode 

would be mass proportional, which is constant with inelastic action (Priestey et al., 2007, pp. 

208-210).  This can clearly be seen in Figure 10.6 where U5 is the first modal circular 

frequency. 

 

Thus it was decided to use a tangent-stiffness proportional damping ratio of 0.05 for the first 

mode.  When applying stiffness proportional damping, one should also be careful that the 

damping of highest mode is less than 100% (Carr, 2007).  Thus, the damping in the highest 

mode was limited to 100%, resulting in some cases in a damping of less than 5% in the first 

mode. 

 

10.7 The validity of the equal displacement principle 

Damping models based on initial-stiffness have been used extensively in the past.  The 

equal displacement and equal energy principles were based on ITHA conducted with these 

damping models.  In recent years the use of initial-stiffness damping has been questioned, 

and instead, the use of tangent-stiffness proportional damping has been proposed by 

Priestley et al. (2007), Petrini, Maggi, Priestley & Calvi (2008), and Priestley & Grant (2005). 

 

Priestley & Grant (2005) performed time history analyses on elastic and inelastic SDOF 

systems for various hysteresis rules, force reduction factors, post-yield stiffness ratios, and 

fundamental periods, using five synthetic time histories and one real ground motion record.  

The synthetic ground motions were matched to the ATC-32 spectrum for ground type C.  The 

average of the peak displacements obtained from inelastic analyses was compared to that of 

the elastic analyses.  The displacement ratio (∆/∆	'���5�) of peak inelastic displacement to 

peak elastic displacement is shown on the vertical axes of Figure 10.7.  The fundamental 

periods of the SDOF systems are shown on the horizontal axes.  In Figure 10.7 (a) the post 

yield stiffness was 0.2% of the initial stiffness, and in Figure 10.7 (b) the post yield stiffness 

was 5% of the initial stiffness.   

 

For the equal displacement principle to be valid, the displacement ratio (∆/∆	'���5�) should be 

equal to unity.  Since the displacement ratio is significantly larger than one, it can clearly be 

seen in Figure 10.7 that the equal displacement principle is generally unconservative if 
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damping is assumed to be tangent-stiffness proportional.  It can also be seen that the post-

yield stiffness does not influence the results significantly, since the difference between Figure 

10.7 (a) and (b) is small. 

 

 

Figure 10.7: Average ratio of peak inelastic displacement to elastic displacement for modified 

Takeda hysteresis. (TS = tangent-stiffness proportional damping, IS = initial stiffness 

proportional damping, R = force reduction factor) (Priestley & Grant, 2005, p. 242) 

In order to validate the ITHA of this study a similar investigation was performed using the 

seven manipulated records of ground type 1 shown in Figure 10.5.  This was done for force 

reduction factors of 2 and 4 and a post yield stiffness of 5% (in kN/m).  The results are 

compared in Figure 10.8 to that of Priestley & Grant (2005). 
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Figure 10.8: Comparison of displacement ratios 

It can be seen that the results compare fairly well.  The greatest discrepancy lies within the 

short period range.  In Chapter 11 it will be shown that the structural walls of this study 

respond at fundamental periods of more than approximately 0.7 seconds (see Figures 11.1 

to 11.8), for which the discrepancy is small.  Moreover, as a final validation for the ITHA of 

this study the artificial time histories used by Priestley & Grant (2005) were obtained from 

Grant (2010).  These time histories delivered results equal to that of Priestley & Grant (2005). 

 

This chapter has discussed all major aspects of ITHA.  It was shown that a very important 

parameter is the type of damping assumed in ITHA.  It was argued that tangent-stiffness 

proportional viscous damping should be used for ITHA, since inelastic energy dissipation is 

accounted for by the plastic hinge hysteresis, and thus viscous damping should reduce in 

proportion to the stiffness in the post-yield range.  It was also shown that the equal 

displacement principle is relatively unconservative if damping is assumed to be tangent-

stiffness proportional. 

 

In Chapter 11 the results of this study are discussed.  The results of the ITHA, converted to 

ductility demand according to Chapter 9.4, are compared to that of the equal displacement 

and equal energy principles in Chapter 11.2. 
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11.  Results 

In this chapter the behaviour of the eight walls of this study (refer to Chapter 4) are 

assessed.  This chapter is divided into two sections:  Firstly the design results are discussed 

with the aid of pseudo acceleration spectra which relate the design assumptions of the walls, 

capacity of the walls, and demand on the walls.  The second section compares the ductility 

demand to ductility capacity.  Ductility demand is obtained from the equal displacement and 

equal energy principles and ITHA.  Ductility capacity is based on inter storey drift limits, as 

described in Chapter 9.3.1 and 9.3.2.  The chapter concludes with a discussion regarding the 

value of the behaviour factor. 

11.1 Design results (Figure 5.1 (3) of the methodology) 

Figure 11.1 to Figure 11.4 show the elastic, capacity, and design spectra of ground types 1 

and 4.   

• The design acceleration (+) of the eight walls of this study, each with a different 

fundamental period, are shown on the design spectrum.   

• The names of the walls, defined in Chapter 4.5, are included in the figures.  It may be 

seen that for design method 1, the design acceleration values (+�) is the same for 

walls of equal height since Eq. 4.1 depends only on the height of the wall (refer to 

Chapter 4.4.1). 

• The capacity of the walls is also shown in Figure 11.1 to Figure 11.4.  For the 

purpose of this discussion, we refer to this as the capacity spectrum1.  The pseudo 

acceleration capacity was calculated from the yield moment capacity as described in 

step 4 of the methodology (Chapter 5). 

 

The relationship between the design spectrum and the capacity spectrum is influenced by 

three factors, namely overstrength, design conservatism, and period shift. 

 

Overstrength 

The capacity spectrum is higher than the design spectrum due to overstrength.  Overstrength 

was discussed in Chapter 2.1.7.  It was pointed out that the main factors which lead to 

overstrength are: 

(a) Mean material strengths, which are used to predict the most likely bending 

moment capacity of a section, are higher than the characteristic material 

                                                
1
 Not to be confused with the “Capacity Spectrum Method” by Freeman (2004). 
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strengths, used to predict bending moment capacity during design.  Refer 

to Chapter 6.1 for material strengths. 

(b) The provided reinforcement is always more than the required 

reinforcement. 

Design conservatism 

In this study Design conservatism is the name given to the assumption made during design 

that the design force is related to the total mass of the structure.  This was discussed in 

Chapter 8.1.  The equivalent static lateral force design is based on the assumption that 

higher modes do not significantly influence the dynamic response of the structure.  However, 

to account in some way for the effect that higher modes inevitably have on the structure, the 

design seismic force is based on the total building mass, instead of the effective first modal 

mass.  The effect of design conservatism is most clearly seen in Figure 11.2 by the steadily 

increasing capacity spectrum with increasing period. 

 

Period shift 

The term “period shift” here refers to the difference in fundamental period predicted by the 

code (SANS 10160-4, 2009) in Eq. 4.1 and the “true” period predicted by moment-curvature 

analysis of the cross section.  Period shift only occurs for design method 1 (refer to Chapter 

5).  The fundamental period calculated according to design method 2 is based on moment-

curvature analysis, and thus no period shift can occur. 

 

The relation of the demand spectrum to the capacity spectrum determines the extent to 

which the walls respond inelastically.  As stated in step 4 of the methodology, the force 

reduction factor (#) is equal to the ratio between acceleration demand (�� or �
) and 

capacity (+�&�	�'(8  or +
8).  Thus, if the demand is less than the capacity, the force reduction 

factor is less than one, and thus no inelastic action is expected.  This is illustrated in Figure 

11.1 to Figure 11.4 by the dividing line which intersects at the intersection of the demand and 

capacity spectra. 
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Figure 11.1: Design results for ground type 1, design method 1 

 

Figure 11.2: Design results for ground type 1, design method 2 

&��(	&+�&�	�'(8 (	
&+�( 

&�
(	&+
8(	
&+
( 



 

 
 

100 Results 

 

Figure 11.3: Design results for ground type 4, design method 1 

 

Figure 11.4: Design results for ground type 4, design method 2 
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11.2 Analysis results (step 4 to 6 of the methodology) 

With the force reduction factor (#) known, the ductility demand can be calculated using the 

R-µ-T relationship (E.q 2.15).  This is however only an estimate and therefore the ductility 

demand is verified with ITHA.  As discussed in Chapter 9.3.1 to 9.3.2 the ductility capacity is 

based on code drift limits and is calculated according to the plastic hinge method and an 

approximate equation (Eq. 9.37).  Figure 11.5 to Figure 11.8 show the comparison between 

ductility demand and capacity for ground types 1 and 4, and design methods 1 and 2. 

 

What is evident in Figure 11.5 to Figure 11.8, on the capacity side, is that the plastic hinge 

method and the approximate equation (Eq. 9.37) predict similar results.  The approximate 

equation is however slightly conservative since it predicts a lower ductility capacity.  The 

effect of the wall aspect ratio (��) on the ductility capacity is also evident.  It was shown in 

Eq. 9.37 (repeated here as Eq. 11.1) that the ductility capacity reduces as the aspect ratio 

increases. 

SÊ = 1 + 1.71 Î���fn��fn�        ........... 11.1 

It may also be seen that the ductility demand predicted by the R-µ-T relationship corresponds 

to that of the ITHA.  Any difference between the two methods is small in comparison to the 

difference observed for the ductility capacity. 

 

The only wall which complied with the defined criteria of the equal energy principle is the 

single storey wall on ground type 4.  For this wall its ductility demand exceeds its ductility 

capacity.  This implies that the drift of the single storey wall would exceed the code drift 

limits, and would thus suffer non-structural damage in excess of the design limit state.  This 

does however only apply to walls with an aspect ratio of three or higher.  As stated in 

Chapter 4.5, this wall was only included in the scope of this study to obtain structural walls 

with a very short period.  The aspect ratio was limited to three, since flexural response was 

desired of structural walls.  In general, structural walls used for single storey construction 

have aspect ratios of less than three, and would therefore fall outside the scope of this study.  

The reader is referred to Paulay & Priestley (1992, p. 473) for the design of squat structural 

walls. 

 

For all of the other walls the ductility demand is less than the ductility capacity.  Inter storey 

drift levels for these walls are thus below code drift limits.  It can be seen that the ductility 

demand reduces as the period increases.  This is due to the artificial acceleration plateau of 

the design spectrum (see Figure 11.1 to Figure 11.4).  It can also be seen that method 1 
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produces “safer” structures than method 2 because of its assumption of a short period, and 

thus higher acceleration demand.  It will however be shown in the next chapter that method 1 

severely underestimates structural displacement. 

 

Figure 11.5: Analysis results for ground type 1, design method 1 
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Figure 11.6: Analysis results for ground type 1, design method 2 

 

Figure 11.7: Analysis results for ground type 4, design method 1 
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Figure 11.8: Analysis results for ground type 4, design method 2 

It may therefore be concluded that the current value of the behaviour factor, defined by 

SANS 10160-4 (2009) as five, is adequate to ensure that code drift limits are not exceeded, 

whether design is done according to method 1 or 2.  The designer is however still required by 

the code to calculate structural displacements as the final step in the seismic design process 

(SANS 10160-4, 2009, p. 27).  It will be shown in Chapter 12 that this final step requires 

careful consideration. 
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12.  Assessment of displacement prediction methods 

The purpose of this chapter is to evaluate the accuracy of the displacement prediction 

method prescribed by SANS 10160-4 (2009) and to point out some pit falls in seismic 

displacement prediction. 

 

According to SANS 10160-4 (2009, p. 27) the maximum inelastic response displacement, -� 

should be calculated using Eq. 12.1: 

-� = 0.7C-	       ........... 12.1 

\ℎXDX 

 C is the behavior factor, and 

-	 “is the displacements from the static elastic analysis in meters” (SANS 10160-

4, 2009, p. 27). 

Eq. 12.1 is based on the equal displacement principle (refer to Chapter 2.1.6).  Figure 2.4 

illustrated the equal displacement principle.  It is repeated here as Figure 12.1. 

 

Figure 12.1: Equal displacement principle 

Since the equal displacement principle states that the peak displacement of the inelastic 

system (GH) is equal to the peak displacement of the elastic system (G�), it would make 

sense that Eq. 12.1 should read: -� = -	.  The reasons for the 0.7C factor in Eq. 12.1 are the 

following: 
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1. In determining the design load the elastic demand was reduced by the behaviour 

factor C.  It is thus necessary to multiply the design load by C to obtain the elastic force 

demand (01). 

2. In the calculation of the design load the spectral pseudo acceleration was multiplied by 

the full mass of the building (B���) instead of the effective first modal mass (B∗).  This 

was done to account for higher mode effects (refer to Chapter 8.1).  The effective first 

modal mass is approximately 70 % of the total building mass over the full period range 

(see Figure 8.1).  Thus, it is possible that the 0.7 factor serves to reverse the 

conservatism applied during design. 

The code does not make provision for very short period structures to which the equal energy 

principle applies.  In Chapter 11.2 it was seen that the equal energy principle applied only to 

the single storey wall built on ground type 4. 

 

The displacement of the equivalent elastic system (-	) is obtained from a static elastic 

analysis of the structure.  Such an analysis of the structure could be as complicated as a 3D 

finite element analysis of a MDOF structure to as simple as one equation.  For the sake of 

this discussion, the following SDOF equation will be used: 

-	 = 0�/@∗        ........... 12.2 

\ℎXDX @∗ is the stiffness of the SDOF system, and 

 0� is the design shear force, and is obtained, in accordance with equivalent static 

lateral force design (Chapter 8.1), from: 

0� = B���+        ........... 12.3 

\ℎXDX B��� is the total mass of the structure, and 

 + is the design pseudo acceleration (as a function of period) 

 

It is however unclear on which period the force (0�) and the stiffness (@∗) should be based.  

SANS 10160-4 (2009) provides two estimates of the fundamental period.  In addition to the 

height dependent equation (Eq. 4.1) provided by SANS 10160-4 (2009, p. 24) the code also 

states that the fundamental period may be obtained from an analysis which takes the 

cracked sectional properties into account.  In the absence of a more accurate analysis it may 

be assumed that the cracked sectional stiffness is equal to half of that of the un-cracked 

section (SANS 10160-4, 2009, p. 24).  The period calculated in this manner may however not 

be more than 40 % greater than the period calculated according to Eq. 4.1. 
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Thus, there exist three possible interpretations as to what period the stiffness (@∗) and/or 

force (0�) should be based: 

1. % = ��ℎ�
J �s  (Eq. 4.1) 

2. Period obtained from eigenvalue analysis based on cracked sectional stiffness 

(assumed =	0.5��).  The period calculated in this way should, according to the code, 

be limited to 1.4	��ℎ�
J �s .  However, since the code does not provide any other 

guidance, some designers might base the stiffness (@∗) on this assumption. 

3. Period obtained from eigenvalue analysis based on cracked sectional stiffness, where 

the cracked sectional stiffness is obtained from moment-curvature analysis (see 

Chapter 7).  This period was labelled %�&�	�'( in Figure 5.1 (3). 

The stiffness (@∗) is related to the period (%) by the familiar relationship: 

@∗ = �¹�H∗
��         ........... 12.4 

 

The design pseudo acceleration value is required to be greater than 0.2	+9 (see Chapter 

2.1.7).  It should be noted that this requirement is purely artificial and therefore does not have 

any physical interpretation.  When displacement is calculated this artificial plateau should be 

ignored to avoid overestimation of displacement (Dazio & Beyer, 2009, p. 8-28). 

 

Taking all the above mentioned factors into account, five cases are identified of which only 

one leads to a reasonable prediction of displacement.  These are summarized in Table 12.1: 

Table 12.1: Displacement prediction methods considered 

Method Force (01) based on: Stiffness (@∗) based on: Comment 

1 % = ��ℎ�
J �s  (Eq. 4.1) % = ��ℎ�

J �s  (Eq. 4.1) This is the most obvious assumption. 

2 % based on 0.5�� % based on 0.5�� Quick assumption which accommodates 
cracked sectional stiffness. 

3  % = %�&�	�'(  % = %�&�	�'( The most correct assumption which leads to 
the best prediction of displacement. 

4 % = ��ℎ�
J �s  (Eq. 4.1)  % = %�&�	�'( 

The designer realizes that the stiffness is 
based on cracked sectional stiffness, but 

applies the design forces obtained from Eq. 
4.1 to the static elastic analysis. 

5 
 % = %�&�	�'( with $�&%( ≥ 0.2+9 

 % = %�&�	�'( with $�&%( ≥ 0.2+9 

This case illustrates the error made when 
the artificial acceleration plateau of 0.2+9 is 

applied in displacement prediction. 
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Displacement was predicted for seven of the walls of this study using these five methods.  

The elastic displacement -	 was calculated using Eq. 12.2, and the inelastic displacement -� 

was calculated from Eq. 12.1.  In Figure 12.2 and Figure 12.3 the results of ductility (S =
-�/∆!) are compared to the ductility calculated according to the R-µ-T relationship presented 

in the previous chapter (cp. Figure 11.5). 

 

Figure 12.2: Displacement prediction – methods 1 to 4 

With displacement calculated according to the R-µ-T relationship taken as reference, it can 

clearly be seen that method no. 1 leads to a severe underestimation of displacement.  This is 

due to the assumption that the stiffness is based on the un-cracked sectional stiffness (Eq. 

4.1). 

 

Method no. 2 leads to a better estimate of displacement, but since the cracked sectional 

stiffness is usually less than 50 % of the un-cracked sectional stiffness (Priestley et al., 2007, 

p. 11), there still exists some underestimation. 

 

Method no. 3 leads to the best estimate of displacement, but since the effective first modal 

mass (B∗) is greater than 70 % of the total building mass (B���) for short periods, the 

displacement is underestimated.  An accurate estimate of displacement may be obtained if 

the crude estimate of the effective first modal mass is replaced by the true effective first 

modal mass, which can easily be obtained from a finite element modal analysis. 
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The effective sectional stiffness ��	

, used in the calculation of the true fundamental period 

%�&�	�'(, is usually obtained from moment-curvature analysis.  There is however an easier 

method by which ��	

 may be obtained: 

• At this stage of the design the moment capacity of the section is known.  With 

appropriate assumptions regarding the mean material strengths (refer to Chapter 6) it 

is possible to calculate the nominal yield moment ��.  This may be accomplished 

through the design equations of Chapter 8.4.1. 

• Eq. 7.2, repeated here as Eq. 12.5, may be used to calculate the yield curvature of a 

rectangular structural wall section: 

 M! = 
�f'£        ........... 12.5  

• Thus, the effective sectional stiffness may be obtained from: 

 ��	

 = ¡¢Éf       ........... 12.6 

Thus it is possible to estimate displacement accurately according to method no. 3. 

 

Method no. 4 and 5 show the two most common mistakes that could be made in 

displacement prediction.  The results of these two methods are illustrated in Figure 12.3. 
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Figure 12.3: Displacement prediction – methods 3 to 5 

In method no. 4 the designer based the stiffness on either 0.5�� or a moment-curvature 

analysis, according to the recommendation of the code.  However, the designer used the 

design force, which is based on the period of Eq. 4.1, in the calculation of the elastic 

displacement -	. 

 

Method no. 5 illustrates what happens if the artificial plateau of the design pseudo 

acceleration spectrum is not ignored.  The true acceleration spectrum is much lower than the 

plateau in the longer period range.  Thus, an overestimation, such as shown in Figure 12.3, 

results. 

 

Thus we have seen that it is very important for designers to understand the background of 

equations such as Eq. 12.1.  To apply Eq. 12.1 without consideration of the appropriate force 

and stiffness to use in elastic displacement analysis, could lead to severe underestimation or 

overestimation of displacement, depending on the assumptions made.  However, 

displacement can only be predicted accurately if a realistic estimate of the fundamental 

period is obtained.  Even with a realistic estimate of the fundamental period, however, it was 

shown that displacement is underestimated in the short period range due to an 

underestimation of the effective first modal mass.  It is recommended that the effective first 
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modal mass be obtained from modal analysis.  A simple method for the accurate calculation 

of the fundamental period was also introduced.  
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13.  Conclusion 

The purpose of this study was to assess the value of the behaviour factor currently 

prescribed by SANS 10160-4 (2009) for the seismic design of reinforced concrete structural 

walls.  The behaviour factor is used in seismic design to reduce the full elastic seismic 

demand on structures, since well designed structures can dissipate energy through inelastic 

response.  The behaviour factor was evaluated by comparing displacement demand with 

displacement capacity for eight structural walls. 

 

Displacement demand was calculated by means of the equal displacement and equal energy 

principles and confirmed by inelastic time history analyses (ITHA).  Displacement capacity 

was based on inter storey drift limits specified by SANS 10160-4 (2009).  These drift limits 

serve to protect building structures against non-structural damage. 

 

Displacement demand was evaluated for two period estimation methods.  Firstly, the 

fundamental period may be calculated from an equation provided by the design code (SANS 

10160-4, 2009) which depends on the height of the building.  This equation is known to 

overestimate acceleration demand, and underestimate displacement demand.  The second 

period estimation method involves an iterative procedure where the stiffness of the structure 

is based on the cracked sectional stiffness obtained from moment-curvature analysis.  This 

method provides a more realistic estimate of the fundamental period of structures, but due to 

its iterative nature it is seldom applied in design practice. 

 

The conclusion of this study is that the current behaviour factor value of 5, as found in SANS 

10160-4 (2009), is adequate to ensure that structural walls comply with code-defined drift 

limits.  This applies to both period estimation methods.  For some of the walls in this study 

the behaviour factor may even be increased.  However, since the behaviour factor is 

relatively large, it is not the intention of the code committee to increase the value of the 

behaviour factor. 

 

The designer is required by the code (SANS 10160-4, 2009), as the final step in the seismic 

design process, to calculate displacement demand and evaluate it.  If displacement demand 

exceeds drift limits, redesign is required.  Chapter 12 provided background information on 

the displacement prediction equation prescribed by SANS 10160-4 (2009, p. 27) and 

identified the mistakes designers can make in displacement prediction.  It was shown that it 

is only possible to accurately predict displacement if the fundamental period is based on the 
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cracked sectional stiffness.  An easy and quick method of obtaining the cracked sectional 

stiffness was introduced. 

 

This study has focussed on reinforced concrete structural walls with rectangular cross 

sections.  Some topics for further research may include the assessment of the behaviour 

factor for: 

• reinforced concrete structural walls with more complex cross sectional shapes (see 

Chapter 4.1), 

• coupled structural walls (walls coupled by coupling beams or slabs), and 

• reinforced concrete moment resisting frames. 
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