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SUMMARY 
 
 
The rapid expansion of the world wine industry has increased the pressure on wine producers to 
produce high quality, distinguishable wines. The use of sensory evaluation alone as a tool to 
distinguish between wines is limited by its subjective nature. Chemical characterisation using 
analytical methods and data analysis techniques are increasingly being used in conjunction with 
sensory analysis for comprehensive profiling of wine. Analytical chemistry and chemometric 
techniques are important and inextricable parts of the chemical characterisation of wine. Through 
this process insight into the inherent composition of wines, be it in a general sense or related to a 
particular wine category is gained. Data generated during chemical characterisation are typically 
compiled into electronic databases. The application of such information towards wine quality 
control includes the establishment of industry benchmarks and authentication.  
 The current project is part of The South African Young Wine Aroma Project, a long term 
research initiative funded by the South African Wine Industry with the ultimate aim to establish a 
comprehensive, up-to-date, database of the volatile composition of young wines. The data 
generated during this thesis represent the first contribution towards realising this ambition. 
 Three clearly defined aims were set for this project, the first of which is the chemical 
characterisation of South African young wines in terms of selected volatile and non-volatile 
compounds and Fourier transform infrared spectra, with particular focus on the volatile 
composition. FTMIR spectra are information rich and non-specific instrumental signals that could 
provide invaluable information of the inherent composition of the wines. The second aim is the 
evaluation of the analytical methods used to generate the data and in the last instance, the 
optimisation of FTMIR spectroscopy for rapid quantification of major wine parameters and volatile 
compounds.  
 The concentrations of 27 volatile compounds in South African young wines were determined 
by gas chromatography coupled to flame ionisation detection (GC-FID) using liquid-liquid 
extraction of the analytes. Wine samples of the 2005 and 2006 vintages produced from six of the 
most important cultivars in the South African wine industry, namely Sauvignon blanc, Chardonnay, 
Pinotage, Cabernet Sauvignon, Merlot and Shiraz were used. The producing cellars were from four 
major South African wine producing regions, namely Stellenbosch, Paarl, Robertson and 
Worcester. The data captured made a significant contribution to the establishment of the Aroma 
Project Database. Univariate statistics showed wide variations in the chemical composition of the 
wines. Red wines were generally characterised by high levels of higher alcohols and white wines 
by high levels of esters. Most of the differences between vintages were cultivar dependent and 
phenological differences between cultivars were suggested as a possible cause. Fusel alcohols, 
iso-acids and esters of fusel alcohols were particularly responsible for differences between red 
wines. A combination of fatty acids and higher alcohols were responsible for differences between 
production regions. However, using univariate statistics alone was limited in identifying 
characteristic features of the chemical composition of the wines. 



 

 In order to explore the correlations between the volatile components, FTMIR spectra and non-
volatile components the data were further investigated with multivariate data analysis. Principal 
component analysis was successfully employed to distinguish between wines of different vintages 
and cultivars. The role of the volatile composition was more influential in the separation of vintage 
and red wine cultivar groupings than the non-volatile components or the FTMIR spectra. Almost all 
the individual volatile components contributed to the separation between the vintages and cultivars, 
thereby highlighting the multivariate nature required to establish the distinguishing features 
pertaining to each of these categories. The FTMIR spectra and the non-volatile components were 
more important than the volatile components to characterise the differences between the white 
cultivars. It was not surprising that both the volatile components and the FTMIR spectra were 
needed to distinguish between both red and white cultivars simultaneously. It was of interest the 
full spectrum, including all wavenumbers were required for a powerful classification model. This 
finding supports the initial expectation that the non-selective but information rich signal captured in 
the FTMIR spectra is indispensable. No distinction could be made between the production regions, 
which was not surprising since the wines used in this study was not of guaranteed origin. 
Furthermore, no clear correlation could be established between the chemical composition or the 
FTMIR spectra and the quality ratings of the wines. Limitations in the dataset were pointed out that 
must be taken into account during further investigations in the future. 
 The liquid-liquid extraction method used during the analysis of the volatile components was 
evaluated for precision, accuracy and robustness. Generally good precision and accuracy were 
observed. There were slight indications of inconsistencies in the recoveries of analytes between 
the red and white wine matrices. Certain parameters of the protocol, namely sample volume, 
solvent volume, sonication temperature and sonication time, were identified as factors that had a 
major influence on quantification. The results obtained in this study made a major contribution 
towards establishing this technique for routine GC-FID analysis in our environment. 
 Due to the high sample throughput in wine laboratories, the use of rapid quantitative analytical 
methods such as FTMIR spectroscopy is becoming increasingly important. Enzymatic-linked 
spectrophotometric assays and high performance liquid chromatography (HPLC) methods were 
evaluated for their suitability to serve as reference methods for optimising and establishing FTMIR 
calibrations for glucose, fructose, malic acid, lactic acid and glycerol. Pigmented and phenolic 
compounds were identified as sources of interference in the determination of organic acids in red 
wines with both enzymatic assays and HPLC. The use of fining treatments for the decolourisation 
of red wine samples was investigated. Activated charcoal was more efficient in terms of colour 
removal than polyvinyl polypyrrolidone (PVPP), but neither were compatible with the specific 
enzymatic method used in this study. Solid phase extraction (SPE), a method commonly used 
during sample clean-up prior to HPLC analysis of organic acids in wine, and PVPP fining were 
evaluated as sample preparation methods for HPLC analysis to optimise the quantification of 
organic acids in red wine. Four different types of SPE cartridges were evaluated and the SPE 
method was optimised in order to recover the maximum amount of organic acids. However, low 
recoveries, in some instance less than 50%, for the organic acids in wine were reported for the 
optimised SPE method. In this respect one was the worst. On average, excellent recoveries were 



 

observed for the organic acids using the PVPP method that were in excess of 90%. This method 
therefore provides a very valuable and simple alternative to SPE for sample-cleanup prior to HPLC 
analysis. One aspect that still needs to be investigated is the reproducibility of the method that 
should still be optimised. In general, enzymatic analysis was more suitable for the determination of 
glucose and fructose, while HPLC analysis were more suitable for the quantification of organic 
acids. Efficient glycerol quantification was observed with both enzymatic and HPLC analysis, 
although a lower measurement error was observed during the HPLC analysis.  
 Apart from reliable reference methods, successful FTMIR calibrations also rely on the 
variability present in the reference sample set. The reference sample set used to establish FTMIR 
calibrations must ideally be representative of the samples that will be analysed in the future. 
Commercial, or so-called global, FTMIR calibrations for the determination of important wine 
parameters were evaluated for their compatibility to a South African young wine matrix. The 
prediction pH, titratable acidity, malic acid, glucose, fructose, ethanol and glycerol could be 
improved by establishing a brand new FTMIR calibration, thereby clearly indicating that the South 
African young wine matrices were significantly different from the samples of European origin that 
were used to establish the commercial calibrations. New preliminary calibration models were 
established for a young wine sample matrix and were validated using independent test sets. On 
average the prediction errors were considered sufficient for at least screening purposes. The effect 
of wavenumber selection was evaluated. Relatively successful models could be established for all 
the compounds except glucose. Wavenumber selection had an influence on the efficiency of the 
calibration models. Some models were more effective using a small amount of highly correlated 
wavenumbers, while others were more effective using larger wavenumber regions. 
 Preliminary FTMIR calibration models for the screening of volatile compound groups in young 
wines were evaluated. Compound groups were compiled based on chemical similarity and flavour 
similarity. Good linearity were observed for the “total alcohol”, “total fatty acids”, “esters” models 
while an interesting polynomial trend was observed for the “total esters” model. Relatively high 
prediction errors indicated the possibility of spectral interferences, but the models were 
nevertheless considered suitable for screening purposes. These findings are a valuable 
contribution to our environment where fermentation flavour profiles must often be examined.  
 The important role sound and validated analytical methods to generate high quality analytical 
data, and the subsequent application of chemometric techniques to model the data for the purpose 
of wine characterisation has been thoroughly explored in this study. After a critical evaluation of the 
analytical methods used in this study, various statistical methods were used to uncover the 
chemical composition of South African young wines. The use of multivariate data analysis has 
revealed some limitations in the dataset and therefore it must be said that wine characterisation is 
not just reliant on sophisticated analytical chemistry and advanced data analytical techniques, but 
also on high quality sample sets. 



 

 

OPSOMMING 
 
Die geweldige uitbreiding wat die afgelope tyd in die internasionale wynbedryf plaasgevind het 
plaas geweldige druk op wynprodusente om uitnemende en kenmerkende produkte te lewer. Die 
gebruik van slegs sensoriese evaluering om tussen wyne te onderskei word beperk deur die 
subjektiewe aard van die tegniek. Chemiese karakterisering deur die gebruik van analitiese 
metodes en data analitiese tegnieke word toenemend gebruik in samewerking met sensoriese 
analise om omvattende profiele vir wyne saam te stel. Analitiese chemie en chemometriese 
tegnieke, ‘n onlosmakende kombinasie, speel ‘n belangrike rol in die chemiese karakterisering van 
wyn. Deur chemiese karakterisering kan nuwe insigte ten opsigte van die natuurlike samestelling 
van wyn verkry word, hetsy dit oor die algemeen of spesifiek ten opsigte van ‘n sekere wyn tipe is. 
Data wat tydens die chemiese karakterisering van wyn gegenereer word kan saamgevoeg word in 
‘n elektroniese databasis. So ‘n databasis kan aangewend word om standaarde vir die wynbedryf 
vas te stel of vir egverklaring.  
 Die huidige projek is deel van Die Suid-Afrikaanse Jongwyn Aroma Projek, ‘n langtermyn 
navorsingsinitiatief wat deur die Suid-Afrikaanse wynbedryf befonds word. Die uiteindelike doel van 
die projek is om ‘n oorsigtelike, opgedateerde databasis van die vlugtige samestelling van Suid-
Afrikaanse jong wyne saam te stel. Die data wat tydens hierdie studie gegenereer is 
verteenwoordig die eerste bydrae om hierdie mikpunt te verwesenlik. 
 Drie duidelik onderskeibare mikpunte is vasgestel vir hierdie projek. Die eerste daarvan is die 
chemiese karakterisering van Suid Afrikaanse jong wyne ten opsigte van vlugtige verbindings, 
sekere belangrike vaste verbindings en Fourier transform mid-infrarooi (FTMIR) spektra, met 
spesifieke fokus op die vlugtige verbindings. Die FTMIR spektra is ‘n informasie ryke en nie-
selektiewe instrumentele sein wat onontbeurlike inligting ten opsigte van die inherente samestelling 
van wyn kan verskaf. Die tweede mikpunt is die evaluaring van die analitiese metodes wat gebruik 
is om die bogenoemde data te genereer en die optimisering van FTMIR kalibrasie modelle vir die 
vinnige bepaling van belangrike wyn parameters sowel as vlugtige verbindings, wat dan ten einde 
die derde mikpunt is. 
 Die konsentrasies van 27 vlugtige verbindings in Suid Afrikaanse jongwyne is bepaal met gas 
chromatografie gekoppel aan vlam-ioniserende deteksie (GC-FID) saam met die gebruik van 
vloeistof ekstraksie. Wynmonsters van die 2005 en 2006 oesjare, berei van ses van die 
belangrikste kultivars van die Suid Afrikaanse wynbedryf in naamlik Sauvignon blanc, Chardonnay, 
Pinotage, Cabernet Sauvignon, Merlot en Shiraz is gebruik. Die wyne was afkomstig van 
wynkelders uit vier belangrike Suid-Afrikaanse produksie streke naamlik Stellenbosch, Paarl, 
Robertson en Worcester. Hierdie data is ‘n belangrike bydrae tot die samestelling van die Aroma 
Projek databasis. Enkelveranderlike statistiese metodes het groot variansie in die samestelling van 
Suid-Afrikaanse jongwyne aangedui. Rooi en witwyne het hoofsaaklik verskil op grond van hoër 
alkohole en ester inhoud. Meeste van die verskille tussen oesjare was kultivarafhanklik en 
fenologiese verskille tussen die kultivars is as rede hiervoor aangevoer. Iso-vetsure, fusel alkohole 



 

en iso-esters het ‘n noemenswaardige bydrae gemaak tot die verskille tussen kultivars. Daar was 
ook verskille tussen produksie streke veral ten opsigte van Robertson en Worcester. Hierdie 
verskille was oorwegend toegeskryf aan veskille in vetsuur en hoër alkohol konsentrasies. Die 
gebruik van enkelveranderlike statistiek was egter nie voldoende om die die kenmerkende 
eienskappe van die chemiese samestelling van die wyne te identifiseer nie. 
 Multiveranderlike data analise is aangewend om die verband tussen die vlugtige samestelling, 
FTMIR spektra en die samestelling van sekere belangrike vaste verbindings verder te ontleed. 
Verskille in die samestelling van oesjare en kultivars is uitgewys deur hoofkomponent analise. Die 
rol van die vlugtige verbindings met betrekking tot die onderskeiding tussen oesjare en rooiwyn 
kultivars was meer invloedryk as die van die FTMIR spektra en die vaste verbindings. Bykans al 
die individuele verbindings het ‘n bydrae gelewer tot die skeiding tussen die oesjare en kultivars, 
wat die multiveranderlike aard van die datastel bevestig. Die rol van die FTMIR spektra en die 
vaste verbindings was meer beduidend met betrekking tot die witwyn kultivars. Dit was nie 
verbasend dat ‘n kombinasie van FTMIR spektra en vlugtige verbindings die sleutel was tot ‘n 
suksesvolle klassifikasie model van beide wit en rooi kultivars nie. Inteendeel, die beste 
klassifikasie model is verkry waar FTMIR golflengtes wat normaalweg met geraas geassosieer 
word ingesluit word in die model. Hierdie bevinding bevestig die onontbeerlike rol van FTMIR 
spektra as ‘n informasie ryke, nie-selektiewe analitiese tegniek. Geen verband kon bevestig word 
tussen chemiese samestelling en die produksie areas of ten opsigte van wynkwaliteit nie. Sekere 
beperkings in die datastel is uitgewys wat in ag geneem moet word tydens verdere ondersoeke. 
 Die vloeistofekstraksie metode wat tydens die bepaling van die vlugtige verbindings gebruik is, 
is evalueer ten opsigte van noukeurigheid, akkuraatheid, en robuustheid. Oor die algemeen is 
goeie noukeurigheid en akkuraatheid waargeneem. Daar was enkele aanduidings van ongelyk-
hede tussen die herwinnings wat tydens rooi- en witwyn analise waargeneem is. Sekere aspekte 
van die ekstraksie protokol, naamlik monstervolume, oplosmiddelvolume asook die temperatuur en 
duur van sonikasie, is geindentifiseer as faktore wat ‘n wesenlike invloed het op die resultate. 
Hierdie resultate is ‘n beduidende bydrae tot die daarstelling van ‘n gevestigde GC-FID tegniek vir 
roetine analise in ons omgewing. 
 Weens die groot aantal monsters in wyn laboratoriums geanaliseer word is die gebruik van 
vinnige analitiese metodes soos FTMIR spektroskopie van groot belang. Die bruikbaarheid van 
ensiematiese bepalings en HPLC (hoëdruk vloeistof chromatografie) analises as verwysings-
metodes vir die bepaling van glukose, fruktose, appelsuur, melksuur en gliserol is ondersoek. 
Gekleurde en fenoliese verbindings is geindentifiseer as wesenlike bronne van analitiese geraas 
tydens die bepaling van organiese sure in rooiwyne met beide ensiematiese metodes en HPLC 
analises. Die gebruik van breimiddels as ontkleurmiddels vir rooiwyne is ondersoek. Geaktiveerde 
koolstof was ‘n meer effektiewe ontkleurmiddel as polivinielpolipyrillodoon (PVPP), maar nie een 
van die behandelings was versoenbaar met die ensiem metode wat gebruik is nie. Vastestof fase 
ekstraksie (Solid phase extraction; SPE) word algemeen gebruik om organiese sure van fenoliese 
komponente te skei voor HPLC analise om sodoende die bepaling van organiese sure te 
optimiseer. Verskeie SPE kolomme is ondersoek en die voorgestelde SPE metode is geoptimiseer 
om die maksimum herwinning van organiese sure te verkry. Ten einde was lae herwinning vir 



 

organiese sure, soms laer as 50%, met die verbeterde SPE metode gemerk. Die PVPP metode het 
baie groter hoeveelhede organiese sure herwin, meestal meer as 90%. Hierdie metode is ‘n 
waardevolle en eenvoudige alternatief tot SPE vir monstervoorbereiding voor HPLC analise. Die 
reprodiseerbaarheid van die metode moet egter geoptimiseer word. Oor die algemeen is 
ensiematiese metodes as meer geskik beskou vir die bepaling van glukose en fruktose terwyl 
HPLC analise meer geskik was vir die bepaling van appelsuur en melksuur. Beide metodes was 
geskik vir die bepaling van gliserol, hoewel ‘n laer laboratorium fout waargeneem is tydens HPLC 
analises. 
 Suksesvolle FTMIR kalibrasie modelle is nie net afhanklik van goeie verwysingsmetodes nie, 
maar ook van omvattende verwysings monsters. Kommersieële, of globale, kalibrasies vir die 
bepaling van belangrike wyn parameters is ondersoek ten opsigte van hul geskiktheid in ‘n Suid 
Afrikaanse jongwyn matriks. In sommige gevalle is beduidende matriks effekte opgemerk en die 
voorspelling van pH, titreerbare suur, appelsuur, glukose, fruktose, etanol en gliserol kon verbeter 
word met die opstelling van splinternuwe kalibrasie modelle. Voorlopige kalibrasie modelle vir 
jongwyne is opgestel en die effek van golfgetal seleksie is ondersoek. Redelike suksesvolle 
kalibrasie modelle is verkry vir die meeste van die wyn parameters, met die uitsondering van 
glukose. Golfgetal seleksie het beslis ‘n rol gespeel. Sommige modelle was meer effektief indien ‘n 
klein aantal, hoogs gekorreleerde golfgetalle gebruik is, terwyl ander modelle meer effektief was 
wanneer groter dele van die mid-infrarooi spektra gebruik is.  
 Die bepaling van groepe vlugtige verbindings in wyn met behulp van voorlopige FTMIR 
kalibrasies is ondersoek. Die vlugtige verbindings is gegroepeer volgens chemiese struktuur en 
volgens geurbydrae. Liniere kalibrasie modelle vir “totale alkohole”, “totale vetsure” en “esters” is 
verkry terwyl die kalibrasie model vir “total esters” ‘n polinomiese tendens gevolg het. Relatief hoë 
prediksie foute is waargeneem wat moontlik deur inmenging in die spektra veroorskaak is. Ten 
spyte daarvan is die modelle goedgekeur vir die sifting van vlugtige verbindings in jong wyne. 
Hierdie resultate is ‘n waardevolle bydrae tot ons omgewing waar die fermentasie profiele van 
wyne gereeld ondersoek moet word. 
 Die rol van goeie analitiese metodes om hoë gehalte analitiese data te genereer en die 
daaropvolgende rol chemometriese metodes in wyn karakterisering is deeglik bestudeer in hierdie 
studie. Na afloop van ‘n kritiese ondersoek van die analitiese metodes is verskeie statistiese 
metodes gebruik om die chemiese samestelling van Suid Afrikaanse jongwyne te ontdek. Die 
gebruik van meervoudige veranderlike data analise het beperkinge in die datastel uitgewys. Die 
uiteindelike afleiding is dat wyn karakterisering nie net afhanklik is van gesofistikeerde analitiese 
chemie en gevorderde data analise nie, maar ook van hoë gehalte datastelle. 
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INTRODUCTION AND AIMS 

1.1 INTRODUCTION 

Substantial knowledge on the chemical composition of wine is one of the key factors required to 
monitor and improve wine quality. Understandably, wine quality can be viewed from many 
perspectives, but for most it certainly would include aspects related to wholesomeness, authenticity 
and flavour. The term ‘flavour’ generally refers to the entirety of sensorial perceptions, including 
taste, smell and mouth-feel (Francis and Newton, 2005) and in chemical terms both volatile and 
non-volatile wine components are implicated.  
  The somewhat loosely defined concept of chemical characterisation of wine goes by many 
names in the published literature: profiling, fingerprinting and authentication, among others (Bevin 
et al., 2006; Marini et al., 2006; Setkova et al., 2007). The concept as such remains the same and 
can be best described by its two-fold purpose. Firstly, the term chemical characterisation refers to 
the generation of quantitative data on specific chemical compounds, followed by analysis of the 
data using descriptive statistics such as means, standard deviations and analysis of variance. This 
result in the description of the wine in terms of the distribution of concentration ranges of the 
chemical compounds tested and wines are frequently characterised in the context of specific 
categories such as wine style, grape cultivars, geographical origin, process technology, age and so 
forth. Data are typically captured in electronic databases to facilitate easy comparison and an 
example is the European Wine Database project that was recently launched by the European 
Office for Wine, Alcohol and Spirit Drinks (Wine inspection and quality, n.d). In the second instance 
wine characterisation refers to the application of multivariate techniques to chemical data and/or 
instrumental signals of wine samples in order to extract the maximum useful information about their 
distinguishing or unique features. Information gained in this way is typically used to develop 
multivariate mathematical models that define the membership of the samples to known classes or 
groups (Berrueta et al., 2007). New unknown samples are then classified in one of the known 
classes on the basis of similar instrumental or chemical measurements. This approach was used 
successfully to determine the geographical origin of wines from four different countries, using the 
chemical values of 63 wine parameters (Capron et al., 2006). 
 At present most major wine producing countries have extensive research programs on the 
chemical characterisation of wine and application of the information to flavour and aroma analysis 
amongst other fields. Spain is a major contributor to research in this field (Calleja and Falqué, 
2005; Díaz et al., 2003; Ferreira et al., 2000; Lopéz et al., 1999; Marti et al., 2004). Other countries 
that have contributed include France and Germany (Danzer et al., 1999; Fischer, et al., 1999; 
Preys et al., 2005); Australia (Cozzolino et al., 2005); Portugal (Câmara et al., 2007); Italy (Buratti 
et al., 2004) and Greece (Makris et al., 2006).  
 Several research projects funded by the South African Wine Industry are focussed on the 
characterisation of wines. Different approaches, focussing on wholesomeness, authenticity and 
flavour related issues, have been taken. The determination of the ethyl carbamate, a potential 
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carcinogenic substance, in South African wines is an important contribution to the characterisation 
of the wholesomeness of wine (WW-08-20). Authenticity is an important driving force in the South 
African wine research industry and South Africa has contributed to the establishment of a database 
of analytical parameters of wines from Third World countries (WW-08-26) as part of the EU Wine 
Database Project. The authentication of the origin of wine using multi-element analysis has 
received particular attention (WW-08-28). Other projects focussed on the characterisation of aroma 
and flavour and/or the related chemical constituents in wine, although several of these studies 
were limited to small sample sets and selected compounds. The characterisation of the sensory 
properties of South African wines have resulted in the development of Aroma Wheels for South 
African brandies (Jolly and Hattingh, 2001) as well as the South African cultivar, Pinotage (Marias 
and Jolly, 2004). From a chemical point of view, both volatile components and phenolic 
components have been investigated (Marais et al. 1981; Rossouw and Marias, 2004) 
 South African research groups have made important contributions in development of analytical 
methods for the analysis of important wine constituents. Examples include stirbar sorptive 
extraction methods for the determination of wine contaminants (David et al., 2000; Sandra et al., 
2001); a solid phase extraction method for the determination of polyphenols, organic acids and 
sugars in wine (de Villiers et al., 2004); capillary electrophoresis methods for the determination of 
organic acids in wine (de Villiers et al., 2003) and a headspace sorptive extraction method for the 
determination of volatile compounds in wine (Weldegergis et al., 2007). 
 The use of Fourier transform mid-infrared (FTMIR) spectroscopy as a rapid analycal tool for 
wine chemistry related issues, has recently been introduced in the South African Wine Industry and 
several projects are currently underway. Reports on these projects have been presented at the 3rd 
International Viticulture and Oenology Conference of the South African Society for Enology and 
Viticulture, Somerset West, South Africa, 14-17 November 2006. The identification of wines 
produced by genetically modified organisms with FMTIR spectroscopy and chemometrics was 
presented (Osborne et al., 2006a). Other projects include investigations of the use of FMTIR 
spectroscopy as a rapid quality control method for spirit products (Kleintjies et al., 2006) and 
fortified wines (Lochner et al., 2006); the identification of problem fermentations (Malherbe et al., 
2006) and the authentication of Sauvignon blanc wines (Treurnicht et al., 2006). Furthermore, 
chemical profiles of South African young wines, based on chemical data generated with FTMIR 
spectroscopy, and the compositional trends and differences between cultivars, vintages and 
production region have been presented (Louw et al., 2006). In addition, the usefulness of ATR-
FTMIR spectroscopy for the discrimination between untransformed and genetically modified wine 
yeasts and the discrimination between wine spoilage organisms (Osborne et al., 2006b) have been 
reported. 
 The Winetech Aroma Project (WW-08-31, 2006) which includes this current project, is a recent 
initiative to characterise South African young wines in terms of volatile components. Young wines 
are defined as unwooded single-varietal wines that have not been bottled and are therefore not yet 
commercially available, are of specific interested as complexity caused by blending, ageing and 
oak maturation are not included in the sample matrix. Four research groups are involved in the 
project namely the ARC-Nietvoorbij, the Department of Chemistry of the University of Cape Town, 
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the Department of Chemistry of Stellenbosch University and the Institute for Wine 
Biotechnology/Department of Viticulture and Oenology of Stellenbosch University. The ultimate aim 
of the Winetech Aroma project is the construction of a comprehensive up-to-date database 
containing the chemical profiles of perceived aroma compounds of SA wine cultivars and styles 
originating from the various wine producing areas in SA. The information captured in the database 
will serve as a benchmark for studies focussed on specific authenticity issues and for the industry. 
The outcomes of the Winetech Aroma Database project include the development of several 
methods (Weldegergis et al., 2007) for the analysis of volatile components, one of which forms part 
of this current study. 

1.2 PROJECT AIMS 

Three clearly defined goals were identified for this project. The main aim of this project was to 
generate analytical data and Fourier transform mid-infrared spectra of South African young wines 
in order to describe and characterise the wines based on their chemical composition. The 
particular focus was on the determination of volatile compounds and selected non-volatile 
parameters namely pH, titratable acidity, organic acids, sugars, ethanol and glycerol.  
The data were captured in an electronic database and analysed by univariate and multivariate 
statistical techniques to identify trends, similarities and differences in the chemical profiles related 
to vintage, cultivar and origin. Furthermore it was attempted to classify the wines into varietal and 
geographic origin classes based on chemical and FTMIR spectral characteristics using multivariate 
data analysis. Multivariate data analysis was also used to investigate the possibility of using 
chemical data to predict the quality of South African young wines as allocated by judges at the 
South African Young Wine Show.  
 The secondary aims of this project were to evaluate and optimise the analytical methods used 
to generate the data. These methods include the liquid-liquid extraction method used for the 
determination of the volatile compounds as well as the enzymatic methods and HPLC methods 
used as reference methods for the FTMIR calibrations of the mentioned non-volatile components. 
In addition, some sample preparation procedures used during the enzymatic, HPLC and FTMIR 
analyses were evaluated.  
 An additional aim of this project was to evaluate FTMIR calibration models for the prediction of 
chemical data from spectroscopic data in terms of their performance in a young wine matrix. In 
addition the usefulness of FTMIR spectroscopy as a screening method for the general volatile 
composition of wines was investigated.  
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LITERATURE REVIEW 

2.1 INTRODUCTION  

During the last two decades the world wine industry grew substantially and has become 
increasingly competitive. The modern day consumer is confronted with a vast selection of wines 
from across the globe. Apart from the European Old World wines, younger wine producing 
countries, such as the United States of America, Australia, Argentina, Chile and South Africa also 
compete in the international wine market with New World wines. On a global scale it has become 
more and more important for wine industries to produce distinguishable wines.  
 Traditionally, wines were compared by sensorial evaluation. However it was obvious that this 
method’s subjective nature was a major pitfall. A need was established for a more objective way of 
characterising wine, especially in terms of varietal and geographic origin. The 1950’s and 1960’s 
saw the introduction of advanced analytical methods, including gas chromatography and high 
pressure liquid chromatography, that allowed the quantification of several analytes at the same 
time (Reneinicus, 1998; Rounds and Gregory, 1998) . The successful application of these methods 
to wine analysis increased the potential for their use in the objective characterisation of wine (Kwan 
et al., 1979; Noble et al., 1980).  
 Another driving force behind the chemical characterisation of wine was the fact that wine 
composition and the role of some wine constituents were still largely unclear. With the advances 
made in analytical chemistry it became possible to accumulate large amounts of data per wine 
sample and thereby getting a very necessary overview of the chemical composition of wine in the 
form of a chemical “profile”.  
 The masses of data generated with the newly developed technology still needed to be 
interpreted and explained. It soon became clear that investigating wine properties in terms of 
individual analytes was not sufficient. The complexity of the wine matrix and the various viticultural 
and oenological factors that influence it could be better explained by taking the interaction between 
variables into account. The application of chemometric techniques, or multivariate data analysis, in 
food science complied with this need. Multivariate data analysis provided the means to contract 
datasets with multiple variables in order to present the data in a way that could be easily 
interpreted without compromising the inherent variability in the dataset. Pattern recognition 
techniques could be used to correlate specific chemical constituents to wine characteristics that 
could not be directly characterised with analytical methods. The work of Kwan and Kowalski in the 
late 1970’s was a groundbreaking and well-acclaimed contribution to the application of pattern 
recognition techniques to distinguish between wines based on their chemical properties (Kwan and 
Kowalski, 1978; Kwan et al., 1979). 
 The combination of pattern recognition techniques with analytical techniques had a further 
application. The advances made in chromatographic analysis enabled the separation of many 
unknown compounds that needed identification. Chemometric techniques could be used to 



 14

determine the weight or influence of the unidentified compounds on the discrimination between 
different classes of wines. Compounds that did not contribute to the wine characteristics could be 
eliminated. In this way, only the compounds that were highly significant could be analysed with 
mass spectrometry for identification, thereby avoiding redundant efforts (Kwan and Kowalski, 
1980). 

2.2 WINE CHARACTERISATION 

Chemical profiles can be constructed for many wine classes, the most important being 
geographical origin and grape variety. Other properties to consider is wine style, for instance dry 
table wines, ice wines, brandies etc. Wines could also be profiled according to the relative age of 
the wine. The characterisation of wine has an important role in wine quality control and could be 
used to identify adulterated products. 
 When the possibilities of chemical analysis as a more objective way to characterise wine were 
identified, the question of which analytes could be best linked to specific wine properties 
immediately followed. The complex nature of wine and the influence of viticultural and winemaking 
practices on its composition had to be considered. Several types of compounds have already been 
identified as important constituents in wine. These include phenolic compounds, macro and trace 
elements, amino acids, classic wine quality parameters such as ethanol, glucose, organic acids 
and SO2, sensory data, volatile components and isotopic compounds. These compounds are all 
influenced by viticultural and oenological practices to a certain extent, but their influence on the 
inherent characteristics of specific cultivars or wines of origin was yet to be determined.  

2.2.1 GRAPE CULTIVAR 

The most obvious transition from sensory evaluation to chemical characterisation is the analysis of 
the volatile compounds responsible for the aroma of wine. The main analytical method used to 
quantify volatile compounds in wines is gas chromatography. These instruments can be coupled to 
various detectors, of which the flame ionisation detector (GC-FID)1 is the most common. This 
detector responds well to organic compounds, has a wide linear range and a high level of 
sensitivity, but its major limitation is the need of references to identify substances (Reineccius, 
1998). By coupling a gas chromatograph to a mass spectrometer (GC-MS) the mass spectra 
generated can be used to identify the compounds that were chromatographically separated. 
Analysis with these methods allows insight into the composition of a wine, but does not give 
information on sensory properties. The sensory attributes of the individual compounds can be 
determined by capturing and evaluating the chromatographic effluent of each compound through a 
sniff port. This technology, gas chromatography olfactometry, or GC-O, were used in combination 
with GC-FID and GC-MS in one of the first studies to distinguish between wines made from 
different grape varieties (Noble et al., 1980). In this study, sixty compounds were identified, 

                                                 
1 A complete list of abbreviations used in this review is presented in section 3. 
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including one never previously reported in wine. Separated groups of samples could be observed 
on PCA score plots, each associated with a different cultivar. The compounds that corresponded to 
the Riesling wines were associated with spicy and floral aromas, which are consistent with typical 
Riesling characteristics.  
Although the role of compound groups like methoxypyrazines and norisoprenoids in specific 
cultivars have been identified (Lacey et al., 1991; Sefton et al., 1993) it seems that the backbone of 
the volatile composition of all wines are based on alcohols, esters and fatty acids (Schreier, 1979). 
Most of these compounds are by-products of alcoholic fermentation although some can be grape 
derived or formed by microbes other than yeasts. Examples are hexanol that can be grape-derived 
and acetic acid that can be formed by acetic acid bacteria (Schreier, 1979). Strong correlations 
have been found between grape variety and the main groups of by-products from yeast amino acid 
metabolism, namely isoacids and higher alcohols, ethyl esters of isoacids and acetate esters of 
higher alcohols. (Ferreira et al., 2000) The authors suggested that the amino acids profiles of 
grapes greatly contribute to the aromatic differences between cultivar wines (Ferreira et al., 2000). 
This statement can be supported by studies in which strong correlations have been found between 
grape variety and amino acid composition (Soufleros et al., 2003; Vasconcelos and Chaves das 
Neves, 1989) Other studies support the influence of higher alcohols and short-chain ethyl esters in 
varietal differentiation. (Falqué et al., 2001; Lopéz et al., 1999) Principal component analysis 
showed that higher alcohols, especially 2-phenylethanol, butanol and hexanol were influential in 
distinguishing between Portuguese cultivars, Boal, Malvasia, Sercial and Verdelho. The same was 
noted for propionic acid, hexanoic acid and octanoic acid and ethyl esters (Câmara et al., 2006). 
German cultivars, Riesling, Silvaner and Mueller Thurgau, could successfully be classified by a 
combination of volatile components including terpenes, hexanol, phenylethyl alcohol, diethyl 
succinate and hexanoic acids (Danzer et al., 1999). Marti (Marti et al., 2004) noted from the mass 
spectrometry analysis of different Catalonian wines that ion fragments associated with medium 
chain fatty acids differed significantly between Cabernet Sauvignon and Merlot wines (Marti et al., 
2004). In South Africa, a successful discrimination between Pinotage and Cabernet Sauvignon 
wines could be made based on their hexanol and amyl alcohol content using stepwise discriminant 
analysis (Marias et al., 1981a). 
 The development of electronic nose and tongue technology provided an innovative way to 
directly link sensory data to chemical data. Very few studies have been conducted to classify 
cultivar wines with data generated by electronic sensors and different opinions exist on the matter. 
Roussel et al. (2003) declared that electronic nose sensors were not suitable for classification of 
grape musts into cultivar classes as nearly 50% of the samples were incorrectly classified with 
PLS-D. Cozzolino et al. (2005) was able to use data from aroma sensors to successfully classify 
Riesling and unwooded Chardonnay with 90% accuracy. The authors of this study also claimed 
that the combination of electronic nose technology with mass spectrometry contributed to the 
success of their results as interferences normally caused by ethanol in aroma sensor studies were 
thereby excluded (Cozzolino et al., 2005). 
 The role of phenolic compounds in wine flavour and quality has been very well established. 
Phenolic compounds form during grape ripening and contribute to the visual, flavour and mouth 
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feel characteristics of wine (Castillo-Sanchez et al., 2006; Péres-Magariño and Gonzáles-SanJosé, 
2006). Although the phenolic composition of a wine can be altered during winemaking processes 
(Castillo-Sanchez et al., 2006) the grape variety could still play an influential role in the final 
phenolic composition of a wine. Cyanidin, procyanidin B2, coutaric acid, epicatechin and delphinine 
were identified as the main discriminant factors between Shiraz, Cabernet Sauvignon and Merlot 
wines produced in Greece (Makris et al., 2006). Similar results were observed in a study done on 
the phenolic composition of South African wines (Rossouw and Marias, 2004). It was observed that 
the monomeric flavan-3-ols, catechin and epicatechin were much more influential in the 
discrimination between red cultivars than the polymeric phenols.  
 An interesting link was found between the phenolic characterisation of varietal wines and wine 
classification based on spectroscopy. The first study in which the UV-vis and MIR spectra of wines 
and their phenolic extracts were investigated with multivariate data analysis in order to classify 
cultivar wines showed promising results (Edelmann et al., 2001). Although the UV-vis spectra (250-
600 nm) of the phenolic extracts could only distinguish the Pinot noir wines from the other varieties, 
namely Cabernet Sauvignon, Merlot, Blaufränkisch, St. Laurent and Zweigelt, the MIR (940-1760 
cm-1)2 spectra of the phenolic extracts allowed the classification of nearly all the varieties into 
separate groups using hierarchical cluster analysis. Some overlaps between varieties of close 
genetic similarity, (Blaufränkisch and Zweigelt) were observed. Where SIMCA was applied to the 
MIR spectra of the phenolic extracts of the wines, 97% of the wines could be correctly classified 
into their varietal classes. However, poor classification results were obtained when the MIR spectra 
of the directly analysed wines were compared, and it was concluded that for successful 
classification, interfering carbohydrates and organic acids should be removed with SPE prior to 
analysis. The reason given for this statement was that major wine constituents like sugars, ethanol 
and organic acids, that absorbs strongly in the MIR spectral region, are present at higher 
concentrations compared to phenolic compounds and therefore causes difficulties in the analysis 
of phenolic compounds with MIR spectroscopy (Edelmann et al., 2001). The use of a combination 
of UV and FTIR spectra for the classification of grape musts according to grape variety has also 
been investigated. Roussel et al. (2003) processed fused UV and FTIR spectra with genetic 
algorithms, but could not achieve the same classification success rate than the rates achieved with 
FTIR spectra alone. It was found that using FTIR spectra pre-processed with genetic algorithms, 
grape musts could be classified according to their grape variety with a prediction error of 9.6%. 
This was achieved using selected infrared wavenumbers (Roussel et al., 2003). In both these 
studies it was found that mid-infrared spectroscopy could distinguish better between grape 
varieties than UV spectroscopy. 
 Near infrared spectroscopy (NIR) (800 nm – 2500 nm) has also been successfully applied in 
the classification of wine. Arana et al. (2005) obtained a 97% correct classification between two 
white grape varieties, Viura and Chardonnay, using discriminant analysis and the NIR spectra of 

                                                 
2 Electromagnetic waves can be referred to by their wavelength (in nm) or by their wavenumber (in cm-1). Wavenumbers 
indicates the number of waves per centimeter. In other words, electromagnetic waves with longer wavelengths like 
infrared waves will have smaller wavenumbers. Mid-infrared waves are generally referred to by their wavenumber while 
near infrared waves are referred to by their wavelength.  
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wines. The value of NIR spectroscopy for the classification of grape varieties is emphasised when 
these results are compared to the 86.1% correct classification that was reached using classical 
ripening parameters, berry weight and total soluble solids in the same study (Arana et al., 2005). 

2.2.2  GEOGRAPHICAL ORIGIN 

The geographical origin of wines is economically very important. The influence of climate, 
topography and soil composition of wine quality means that wines produced in different areas are 
often distinctly different. This phenomenon is also visible in wine prices as wines from certain 
regions are often considered to be of higher quality than others. Most European wine producing 
countries have strict origin control systems in place that ranks wines from different production 
areas according to quality. Origin quality control systems typically dictate the viticultural and 
oenological practices to be used in each region. Due to the economical implications of the origin 
control systems, the authentication of the origin of wine in European countries is of major 
importance. Although New World wine producing countries like South Africa do not have rigidly 
applied origin control systems, the geographical origin their wines still have major market related 
implications, both locally and internationally.  
 There are several reasons why macro and trace elements could be useful for the 
characterisation of wines of origin. The mineral content of wine grapes is mainly due to the uptake 
of nutritional elements from the soil (Kwan et al., 1979). The differences in the mineral composition 
in the variety of soil types used for the cultivation of wine grapes could be reflected in the mineral 
composition of the resulting wines. Furthermore, the mineral concentration of wines remained 
relatively stable during the course of wine production, compared to other wine constituents 
(Etiévant et al., 1988). This implicates that the information about the soil on which the vines were 
cultivated would not be lost due to changes in the mineral composition that occur during wine 
production.  
 In a preliminary study, the mineral composition of 40 Pinot noir wines was used to discriminate 
between the origins of the wines. The levels of 17 elements was determined with atomic emission 
spectrometry and indicated that barium significantly contributed to the differentiation between 
French and American Pinot noir wines. The aluminium content of the wines was identified as an 
important distinguishing factor between Pinot noir from California and the Pacific North West 
(Kwan et al., 1979). The elements rubidium and lithium, measured with flame emission 
spectrophotometry were found to be important in the characterisation of French red wines from the 
Narbonne, Bordeaux and Angers production areas based on results obtained with PCA and SDA 
(Etiévant et al., 1988). These two elements were also highly significant in the discrimination of 
Galician (Spanish production region, where the Ribeira Sacra sub-region is of high economic 
importance) wines based on abovementioned chemometric techniques as well as the classification 
procedures, KNN, LDA and SIMCA (Latorre et al., 1994; Rebolo et al., 2000). 
 Technological development in analytical chemistry as well as chemometric methods 
introduced new ways to optimise the use trace elements for the classification of the origin of wine. 
The development of inductively coupled plasma spectrometry methods (ICP) for the analysis of 
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elements expanded the numbers and concentration range of elements that can be analysed 
simultaneously (Günzler and Williams, 2001). In 1997 the combination of ICP-OES (inductively 
coupled plasma optical emission spectrometry) analysis and pattern recognition techniques were 
evaluated for its suitability in the classification of wines from different German wine research 
institutes. Based on the high classification success rates achieved with a variety of pattern 
recognition techniques, the use of ICP-OES for the characterisation of wine origin was found highly 
feasible. The use of the chemometric technique, artificial neural networks gave the best 
classification results, but was time-consuming to compute. Results obtained with Bayes stepwise 
discriminant analyses and Fischer discrimination were also satisfactory and quicker to determine 
(Sun et al., 1997). ICP-OES analysis also indicated that Al, Ba, Ca, Co, K, Li, Mg, Mn, Mo, Rb, Sr 
and V were highly significant in the discrimination between wines from the four most important 
Bohemian wine regions (Czech Republic) (Sperkova and Suchánek, 2005). Using these elements 
a 100% correct classification for all the red wines were accomplished with discriminant analysis. 
Similar efficient classifications were obtained with the elemental analysis, using ICP coupled to 
mass spectrometry, of South African wines of origin. Swartland, Robertson and Stellenbosch wines 
could be completely classified with stepwise and pair wise discriminant analysis. The minerals Li, 
B, Al, Sc, Mn, Ni, Se, Rb, Sr, Cs, Ba, W and Tl were found to be the most influential (Coetzee et 
al., 2005).  
 At first, the role of phenolic compounds in the distinction between wines from different 
geographic origin seemed unimportant (Gambelli and Santaroni, 2004; Kallithraka et al., 2001). No 
correlation could be observed between phenolic composition, although some distinction could be 
made in terms of the anthocyanin content of wines from Northern and Southern Greece (Gambelli 
and Santaroni, 2004; Kallithraka et al., 2001). These results were obtained using univariate data 
analysis and PCA. When more powerful data mining techniques like discriminant analysis and 
SIMCA were used in later studies, correlations between wine origin and phenolic composition 
could be clearly observed (Makris et al., 2006; Marini et al., 2006). Flavanols, the major 
anthocyanins and caftaric acid had a strong discriminant influence on the geographical origin of 
Grecian wine (Makris et al., 2006). Furthermore, procyanidin B1 and B2, total polyphenols and 
quercetin and vanillic acid were important for the discrimination of wines from different Italian 
denominations (Marini et al., 2006). 
 One of the first studies that successfully used volatile composition and pattern recognition 
techniques to characterise wines from different production areas was published by Kwan and 
Kowalski in 1980. Using gas chromatographic data and pattern recognition techniques they were 
up to 98 % successful in classifying Pinot noir wines from France and USA and between 77 and 
92% between wines from Pacific Northwest and California. Hexanol and 2-phenylethanol were 
identified as important compounds (Kwan and Kowalski, 1980). These two alcohols were also 
reported as the most influential in the differentiation between South African Chenin blanc wines 
from respectively the Stellenbosch, Robertson and Lutzville regions (Marais et al., 1981b). Hexanol 
can be found in grape skins and Marais proposed that the different winemaking procedures 
performed in different regions might influence the amount of hexanol extracted from the grape skin 
into the wine. Alternatively, the differences observed in the hexanol content of wines production 
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regions might be due to the different concentrations of the precursors present in the grapes 
(Marias et al., 1981b). In the same study, which was based on gas chromatographic data and 
discriminant analysis, isoamyl acetate was identified as an important factor in the discrimination 
between Colombar wine from Robertson and Lutzville (Marais et al., 1981b). Both isoamyl acetate 
and 2-phenylethanol is formed by yeast from amino acid precursors during alcoholic fermentation 
(Lambrechts and Pretorius, 2000). The efforts of Marais et al. was extended to the geographical 
characterisation of South African red wines and again amino acid derived compounds were found 
influential in the discrimination between the origin of the wines (Marais et al., 1981a). In this case, 
Cabernet Sauvignon wines from the Stellenbosch and McGregor production areas could 
successfully be separated using iso-valeric acid, isoamyl acetate and ethyl butyrate as discriminant 
factors. The proposed role of amino acid profiles in the discrimination between wines of origin is 
supported by the relative success with which amino acids were used to classify wines of origin 
(Soufleros et al., 2003). More recently, gas chromatography was used to distinguish between 
Spanish wines from Ribeira Sacra and Monterrei (Calleja and Falque, 2005). In this case, volatile 
compounds with chain lengths of four and six carbons respectively were found especially 
influential.  
 In addition to the use of gas chromatography, other advanced analytical methods were 
investigated for its feasibility to distinguish between the volatile composition of wine origin classes. 
Head space mass spectrometry have also been used to characterise wines and it was observed 
that ion fragments associated with fatty acids such as isobutyric acid, butyric acid, hexanoic acid 
and octanoic acid contributed to differences between wines from Priorat and Terra Alta in Spain 
(Marti et al., 2004). The use of HS-SPME-GC-TOF-MS in combination with sophisticated 
chemometric technique, Kohonen self organising maps, were successfully used to discriminate 
between Canadian and Czech ice wines (Giraudel et al., 2007). As with the characterisation of 
wine cultivars, electronic sensors have been used to classify wines of origin. Data captured by the 
electronic nose sensors represents the volatile composition of the sample, while the electronic 
tongue represents the non-volatile flavour related constituents. Italian Barbera wines from in 
various production areas could be 100% correctly classified with electronic nose and tongue data 
using LDA (Buratti et al., 2004). 
 Several studies that have used quantitative data, like ethanol and sugar concentrations, that 
were determined through infrared spectroscopy were unsuccessful in classifying wines by regions 
(Arana et al., 2005; Minnaar and Booyse, 2004). However, by using spectral data as variables in 
stead of quantitative data, Arana et al. were able to increase the classification rate of Chardonnay 
grapes from two Spanish sub-regions from 59.0% to 79.2%. However, when discriminant analysis 
was performed on data collected near the end of harvesting, the classification rate was 100% 
(Arana et al., 2005). 
 Ultraviolet-visible spectroscopy proved to be more effective for the classification of Spanish 
wines according to origin, where more than 89% of the samples were classified correctly, than 
according to grape cultivar compared (75%). These results were obtained with SIMCA (Urbano et 
al., 2006). Another Spanish study indicated that UV-vis data could be applied more effectively 
towards discriminating between wines of origin with the partitioning based classification methods 
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SVM and ANN (Acevedo et al., 2007). Vis-NIR spectroscopy (400-2500 nm) have also been 
applied towards the classification between wines from different geographical origin (Liu et al., 
2007) Riesling wines from Australia, New Zealand and Europe were classified with stepwise-LDA 
with a overall correct classification of 78%. Better results were obtained using PLS-D where the 
percentage correct classifications were between 70-98%. Considering the small sample set used 
these results shows great promise for spectroscopy and wine origin classification (Liu et al, 2007). 
 As previously mentioned, amino acids have been used with relative success to classify wines 
of origin (Soufleros et al., 2003). However, the characterisation of wines by their geographical 
origin using the amino acid derivatives, biogenic amines, was less successful (García-Villar et al., 
2007). 

2.2.3  WINE STYLE 

The chemical characterisation of wines has also been applied to distinguish between broader wine 
categories than cultivars and origin of table wines. Several studies have also focussed on the 
volatile compositional differences between red, white and rosé table wines. The aim of these 
studies were focussed on the establishment of chemical profiles and the identification of 
compounds of interest rather than objectively distinguishing between these wine classes, which 
can of course easily be done without advanced technology. Furthermore, studies on wine 
characterisation are not limited to dry table wines, also includes research on other wine styles such 
as ice wines and fortified wines. 
 The concentration ranges and variations of higher alcohols, esters and fatty acids were found 
to differ significantly between red white and rose wines. Isoamylic acids, higher major alcohols, 
ethyl hexanoate, acetates, ethyl octaonate and decanoic acid were found to be most significant in 
the differentiation between these wine styles from the Spanish Denomination of Origin “Vinos de 
Madrid” (Gil et al. 2006). Similar results, where the higher major alcohols were significantly higher 
in red wines than white and rosé wines, were found in wines from the Canary Islands, another 
Spanish Denomination of Origin (Díaz et al., 2003). These results are in accordance with the 
literature on the formation of these compounds by yeasts during the production of the respective 
wine styles (Lambrechts and Pretorius, 2001).  
 Canadian ice wines have been successfully distinguished from late harvest wines from the 
same winery, vintage and variety using principle component analysis. In this case 2-phenyl ethyl 
acetate, the unsaturated 2-propenol and ethyl-9-decenoate as well as pentadecyl-2-furancarboxylic 
acid was mostly responsible for the variation in the data model (Setkova et al., 2007).  
 Different styles of fortified wines and their spectroscopic attributes were investigated by Palma 
and Barroso (2002). It was found that wavelengths 3626-5000cm-1 were effective in the 
classification of armagnacs, cognacs and brandies according to beverage type, and the 
classification of Spanish, South African and French brandies according to their geographical origin. 
(Palma and Barroso, 2002) 



 21

2.2.4  AGEING 

Several wine production countries apply categorical labels to wines that have been subjected to a 
specified ageing regime. These categories have a major influence on the market value of the 
wines. Such is the case of the Spanish red wine classes Crianza, Reserva and Gran Reserva3. 
From an authentication viewpoint it can be very valuable to chemically distinguish between such 
wine classes. 
 Wine age classes are largely administrative and a large degree of variance within each wine 
class can be expected. This was observed when the mass spectrometry data of the 
abovementioned Spanish wine classes were compared to young Spanish wines in order to 
distinguish between the age groups (Martí et al., 2004). In many cases the interclass difference as 
determined with SIMCA was quite small, making it difficult to discriminate between the groups. The 
PCA scores of these groups showed some sample groupings, but large degree of overlapping 
occurred between groups. Although the largest percentage of wines was classified correctly, a 
quarter of the wines could not be classified at all due to the small interclass differences. In a 
separate study, some distinction between young Spanish wines and Crianza and Reserva wines 
could be made based on biogenic amine content. Differences between Crianza and Reserva 
classes were less pronounced (García-Villar et al., 2007). 
 An alternative to distinguishing between specific wine age classes would be to simply 
distinguish between aged and non-aged wines. In terms of spectroscopy the ultraviolet and visible 
light regions seems especially promising for this purpose as it would indirectly capture information 
on the changes in phenolic composition and colour properties that occur during ageing of red 
wines. In an effort to discriminate between aged and non-aged wines based on UV-vis 
spectroscopy it was indeed found that the most significant information was present in the ultraviolet 
region (Urbano et al., 2006). Unfortunately only 75% of the samples used in that specific study 
were classified correctly. 
 Palma and Barroso (2002) achieved a 99.5% correlation between the FTIR spectra and the 
age of Fino sherry wines by subjecting selected wavelength regions to partial least square 
regression. The same wavelengths were considered efficient to classify Jerez brandies according 
to their relative age (Palma and Barosso, 2002). 

2.2.5  QUALITY CONTROL AND AUTHENTICATION 

Traceability is an important part of quality control procedures. Recently, FTIR have been applied to 
fingerprint wines from different cellars in order to trace the wines after transportation (Bevin et al., 
2006). The wines were scanned with similar instruments at its departure location and at its arrival 
location. Between instrument noise could be eliminated by excluding the wavenumbers 1543-1717 

                                                 
3 Young Spanish red wines have been aged for less than 12 months in oak barrels. Crianza wines have to be aged in 
barrels for at least 12 months. Reserva wines have to be matured for at least 36 months of which a minimum of 12 
months must occur in barrels. Gran Reserva wines must be aged for more than 60 months: 24 months in barrels 
followed by 36 months in bottles (Marti et al., 2004) 
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cm-1 and 2971-3627 cm-1. These wavenumbers are generally associated with water absorbance. 
By comparing the infrared spectra all the wines could be traced back to their original cellars. The 
only exceptions were the wines undergoing malolactic fermentation in which case high levels of 
CO2 gas caused some spectral interference. 
 The demand for a link between sensory evaluation and objective analytical techniques has 
also been created in terms of wine quality assessment. During the sensory analysis of wine, a 
panel of judges has to be trained to assess wines in terms of specific characteristics. Outlier 
judges, who experience the sensory characteristics of wines differently compared to the other 
judges, can significantly influence the results from a sensory evaluation. By applying principle 
component analysis to data from sensory evaluation, outlier judges could be identified (Scaman et 
al., 2001).  
 Colour measurements have already been connected to wine quality control and Spanish red 
wines could be classified according to colour acceptability with a prediction error of 4.6% (Ortiz et 
al., 1995). The combination of colour measurements and powerful classification techniques such 
as SIMCA also showed potential to detect blends of red and white wines that have been presented 
as rosé wines (Meléndez et al., 2001). 
 The detection of illegal additives in wine is highly relevant to the current situation in the wine 
industry. The use of analytical techniques and chemometrics to detect adulterated wines has been 
widely investigated. Studies have shown that wines containing added glycerol, beetroot sugar, 
ethanol and methanol can easily be identified with chemometric techniques (Dixit et al., 2005; Kosir 
et al., 2001; Penza and Cassano, 2004).  
 The rising number of incidents involving adulterated wines has contributed to value of large 
databases of wine compositional data. The Australian Wine Research Institute was established in 
1955 and, by providing analytical services to more than 3000 clients from the Australian wine 
industry since then, they have managed to compile a large database of wine composition. In a 
publication by Godden and Gishen, data from 1984 to 2004 have been investigated and several 
compositional trends could be observed during this period. The authors suggested that, apart from 
the data’s historical and academical significance, the varietal and regional averages could also be 
used to by industry members as a standard to compare their own wines by. (Godden and Gishen, 
2005). The European office for wine, alcoholic and spirit beverages (BEVABS) launched a 
database project containing isotopic data of wines in 1993 as an answer to the increase in 
fraudulent winemaking practices in Europe. Each year the deuterium content of more than 1000 
wines from all the European wine producing regions are analysed with NMR (nuclear magnetic 
resonance) and added to the database. In addition several other parameters like origin, year, 
cultivar, vinification, chemical analysis, earth quality, climatic conditions, etc. After the development 
of IRMS (isotope ratio mass spectroscopy) techniques, the analysis of isotopes like carbon 13 and 
oxygen 18 were included in the project. This project allows authorities to compare wines to reliable 
references in order to identify adulterated samples (Wine inspection and quality, n.d.) 
 A thorough knowledge of the composition and inherent attributes of wines is vital for wine 
quality control. The role of advanced analytical and chemometric techniques for the objective 
assessment of wines is evident from the discussed studies. Based on the results from the research 
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studies discussed in this review, the chemical characterisation of wine can be successfully applied 
to uphold industry standards. 

2.3 ABBREVIATIONS USED 

ANN: Artificial neural networks 
Al: Aluminium 
B: Boron 
Ba: Barium 
Cs: Caesium 
FTIR: Fourier transform infrared 
GC-FID: Gas chromatography coupled to a flame ionisation detector 
GC-MS: Gas chromatography coupled to mass spectrometry 
GC-O: Gas chromatography olfactometry 
HS-SPME-GC-TOF-MS: Head space solid phase microexraction gas chromatography time of flight 
mass spectrometry 
ICP: Inductively coupled plasma spectrometry methods 
ICP-OES: Inductively coupled plasma optical emission spectrometry 
IRMS: Isotope ratio mass spectrometry 
KNN: K-nearest neighbour 
LDA: Linear discriminant analysis 
Li: Lithium 
MIR: Mid-infrared electromagnetic region 
Mn: Manganese 
NIR: Near infrared electromagnetic region 
Ni: Nickel 
NMR: Nuclear magnetic resonance 
PCA: Principal component analysis 
PLS-D: Partial least square regression – discriminant analysis 
Rb: Rubidium 
Sc: Scandium 
Se: Selenium 
SIMCA: Soft independent modelling of class analogies 
SPE: Solid phase extraction 
Sr: Strontium 
SVM: Support vector machines 
Tl: Thallium 
UV: Ultraviolet electromagnetic region 
UV-vis: Ultraviolet and visible electromagnetic regions 
Vis-NIR: Visible and near infrared electromagnetic regions 
W: Tungsten 
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LITERATURE REVIEW 

3.1 INTRODUCTION  
 
Data generation and data analysis are two inextricable parts of the scientific process. The past fifty 
years have seen great advances in analytical chemistry. With the sophistication of analytical 
techniques such as chromatography and spectroscopy, and its application in the wine laboratory, a 
myriad of chemical data has become accessible. However, due the inextricability of data 
generation and data analysis, the wide variety of available data necessitates an extensive range of 
data analytical techniques (Kaufmann, 1997). 
 As is the case in any applied science, the choice of data analytical techniques is dependent on 
the type of problem at hand. One of the first issues to address during the compositional 
characterisation of wine is to determine the accuracy of the analytical method and therefore the 
reliability of the data. When this has been established, the characterisation of wine can be 
approached in a stepwise manner. Firstly, the general structure of the data can be described in 
terms of the number of samples and variables, the value range of each variable, the distribution of 
the value ranges and so forth (Gil et al., 2006). A further step would be to identify trends and 
patterns in the data set. One could attempt to find significant differences between groups of 
samples, i.e. cultivars or vintages, based on a specific characteristic such as ethanol content or pH 
(Gil et al,. 2006). Furthermore it could be established whether or not it is possible to distinguish 
between groups of samples based on their chemical qualities (Liu et al., 2007). This could lead to 
the classification of samples into specified groups or classes (Liu et al., 2007). 
 Several statistical techniques are available to investigate these issues. Univariate statistics 
deal with one variable at a time. It can provide very useful information on the properties of the data 
set and relationships between samples in terms of single variables. However, in most cases there 
are also interesting interactions between variables which can be best explained with multivariate 
data analysis (Kaufmann, 1997). The univariate and multivariate statistics that are discussed in this 
chapter have been described in standard statistical textbooks and software packages (Esbensen, 
2002; Otto, 1999; Statsoft. Inc., 2003). 

3.2 UNIVARIATE STATISTICS 

3.2.1  ERROR MEASUREMENTS 

The precision of an analytical method can be evaluated based on several parameters. Standard 
error of laboratory (SEL) is commonly used in literature to determine the measuring error of the 
analytical method based on two measurements of the same sample (Nieuwoudt et al., 2004; 
Urbano-Cuadrado et al., 2004). An alternative to SEL is the standard deviation of difference (SDD) 
(Esbensen, 2002). While SEL (Eq. 1) is based on the difference between the two measurements in 
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terms of the size of the sample set, SDD (Eq. 2) is based on the difference between two 
measurements of a sample in terms of the average difference between measurements.  
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Where y1 and y2 are duplicate measurements of a sample and n is the number of samples (Fern, 
1996). 
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Where d1 is the difference between duplicate measurements of a sample, dm is the average 
difference between duplicate measurements and n is the number of samples. 

3.2.2  DISCRIPTIVE STATISTICS 

3.2.2.1 Data distribution 

Any given data range have a minimum and a maximum value, and the way the individual data 
points are spread in between is called the data distribution. Most statistical tests are based on the 
assumption that data is distributed in a specific way. Therefore, the distribution of the dataset must 
be determined to ensure that the statistical tests that are used are valid. The easiest way to 
determine the distribution of measurement values in a dataset is to plot a histogram, where value 
intervals are plotted against the number of observations in each interval (Figure 1). Techniques 
that rely on the assumption that the data follow a normal distribution, like the example in Figure 1a, 
are called parametric tests. However, in complex matrices such as wine, data sets often do not 
follow a normal distribution (Figure 1b). In such a case, parametric tests can be substituted by non-
parametric tests that are not influenced by the distribution of the data set. Normal-probability plots 
are another way of determining whether a data set follows a normal distribution. Data that follows a 
normal distribution will be represented in a straight line on a normal probability plot. The normal-
probability plot in Figure 3a shows data that follows a normal distribution with a slight deviation at 
the lower end of the data range. In Figure 3b, the data do not follow a normal distribution at all. 
Statistical tests, such as the Shapiro-Wilk test, can be used to support observations made from 
histograms or normal-probability plots.  
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Figure 1. Example of a histogram where the data follow a normal distribution (a) and where the data do 
not follow a normal distribution (b) (Own data).  
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Figure 2. Example of a normal-probability plot where the data follow a normal distribution with a slight 
deviation at the lower end of the data range (a) and where the data do not follow a normal distribution at 
all (b)(Own data). 

3.2.2.2 Location parameters 

Datasets can be quantitatively described by certain location parameters. These parameters 
indicate the position of majorities of samples in the data set and can easily be graphically displayed 
by means of a box plot (Fig. 3). Box plots also can be used for data sets that do not follow a normal 
distribution as they are calculated by rank order statistics, in other words the values in the data set 
are ranked from lowest to highest. Box plots consist of several components, namely the median or 
middle quartile (Q2), the lower quartile (Q1), the upper quartile (Q3) and the whiskers. The median 
is a very robust measurement and represents the value where 50% of ranked samples are smaller 
than the median and 50% are larger than the median. The median is generally calculated as the 
value of the ranked sample in position (n+1)/2. The lower quartile represents the point where 25% 
of the data sets have lower values and the upper quartile where 75% of the dataset has lower 
values. The whiskers normally add 1.5 times the interquartile range (Q3-Q1) to the top and the 
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bottom of the box respectively and indicate the non-outlier value range of the data set. The upper 
and lower whiskers are calculated as follows: 
 
Upper whisker = Q3 +1.5 (Q3-Q1) (5) 
Lower whisker = Q1 +1.5 (Q3-Q1) (6) 
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Figure 3. An example of box plots. In this case the ethanol ranges in red and white wines are 
compared. Some outliers can be observed (Own data). 

3.2.2.3 Variation  

The two most common descriptive statistics used to describe variation in a data range is the 
standard deviation and the coefficient of variation (CV). The standard deviation describes the 
variance in the data set in terms of the typical value with which a given sample will deviate from the 
sample average (Eq. 3). CV is the ratio of the standard deviation (s) and the sample average and 
is expressed as a percentage (Eq. 4). 
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Where s is the standard deviation, xi is sample i, bar x is the sample mean and n is the number of 
samples. 
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CV (%) = ×
x
s

100 (4)  

 
Where s is the standard deviation and bar x is the sample mean. 
 
The coefficient of variance can also be used to express the variation between replicate measure-
ments of the same sample, thereby giving an indication of the precision of the measurements.  

3.2.3 ANOVA 

An important issue during the chemical characterisation of food and beverage products are 
whether or not a specific group of samples is significantly different from another in terms of certain 
characteristics. In the event of a dataset following a normal distribution, analysis of variance 
(ANOVA) is used to determine significant differences. The total variance in a dataset is defined as 
the sum of squares of the deviation of each sample from the grand mean. In ANOVA, the total 
variance (SS2

total) is partitioned into variance between groups (SS2
groups) and variance within groups 

or the residual variance (SS2
R) (Eq. 7-11). 
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Where q is the number of groups, nj the number of replicate determinations per group j, and n is 
the total number of measurements. 
 
To determine whether there is a significant difference between groups, an F-test is performed: 
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The groups are significantly different if the calculated F value is higher than the predetermined 
critical F value (Fcrit). The F test is usually accompanied by a probability test, where the p value 
indicates the probability the F test is false. Probabilities are normally determined at a 95% 
confidence interval. In other words, if the probability that the F test is false is more than 5%, the 
results of the F test are rejected.  
 Post-hoc tests can be performed after ANOVA analysis to determine the extent of the 
differences between groups. Several post-hoc tests are available and each is calculated based on 
a different set of assumptions. If the assumptions are very strict or conservative, it is likely that 
differences between specific groups will not be regarded as significant. On the other hand, if a 
post-hoc test is too lenient, significant differences may be falsely indicated. Two examples are the 
Bonferonni test and the Tukey test. The Bonferonni test is very conservative, especially if there are 
many groups included in the analysis, while the Tukey test is more lenient. Therefore, if there are 
only two or three groups that are compared, a Bonferonni test will give reliable results but if there 
are a large number of groups, the less conservative Tukey test will be more realistic. There are 
many different tests available, and the choice between post-hoc tests should be guided by the type 
of problem. 
 ANOVA tests can also be performed using more than one set of groups. In the case of 
factorial ANOVA tests, the between group variance is analysed for each set of groups individually. 
This is called the main effects. Additionally, the interaction between the main effects is also 
investigated. In the event where the interaction between main effects is significant, it means that 
the differences between groups based on one main effect are dependent on the value of the other 
effect. In the example in Table 1, the p values, marked in red, indicate that there are significant 
differences between the samples in the various cultivar groups and between the samples from the 
various region groups. It also indicates that there is a significant interaction between the cultivar 
and region categorical predictors, in other words, the differences between cultivars in one region is 
not the same as in another region and vice versa.  

Table 1. Example of a factorial ANOVA (Own data). 

 SSa dFb  MSc F p 
Intercept 718332.7 1 718332.7 2629.213 0.000000 
Cultivar 226781.2 4 56695.3 207.514 0.000000 
Region 11158.8 3 3719.6 13.614 0.000000 
Cultivar*Region 6750.7 12 562.6 2.059 0.018647 
Error 110377.7 404 273.2   
aSum of squares; bDegrees of freedom; cMean sum of squares 
 

The use of ANOVA as a statistical tool to chemically characterise wine have been widely reported 
(Ferreira et al., 2000; Gil et al., 2006) 
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In the event where the data do not follow a normal distribution, ANOVA can be substituted with 
non-parametric tests such as the Kruskall-Wallis test and the median test. Non-parametric tests 
transform numerical data into rank order data. The advantage of this is that these tests do not rely 
on conservative assumptions regarding the distribution of the data. However, the disadvantage is 
that some possibly relevant information may be lost during the transformation from numerical to 
rank order data. 

3.3. MULTIVARIATE DATA ANALYSIS 
In more complex data sets containing multiple variables, it becomes difficult to visually represent 
patterns and trends. A very useful way of showing trends based on multiple variables is graphical 
representations like radar plots. For these types of graphs the values of the variables must be 
standardised. The use of radar plots (Figure 4) is an efficient method to represent profiles of a 
specific object in terms of certain variables. Radar plots are frequently used in wine 
characterisation studies to present compositional profiles of different wine types (Ferreira et al., 
2000; Kim et al., 1996) 
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Figure 4. An example of a radar plot, indicating different profiles for the average higher alcohol content 
of red and white wines (Own data). 

In wine characterisation, one would expect a certain wine characteristic to be dependant on 
several factors. Moreover, it is very likely that the factors are influenced by each other factors. In 
fact, interaction between factors was already evident from the factorial ANOVA example. The 
complexity of the variation in such data sets is best explained with multivariate data analysis. 
Multivariate data analysis can be roughly divided into two groups (Lavine, 2006). Unsupervised 
classification techniques are used to identify structures in the data set, such as distinct groups of 
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samples and the variables that influences the sample groupings as well as groups of highly 
correlated variables. Supervised classification techniques are used to classify samples into a 
known number of classes based on the composition of the samples. Classification models can be 
established to classify unknown wines with techniques such as linear discriminant analysis (LDA) 
or soft independent modelling of class analogies (SIMCA). 

3.3.1  UNSUPERVISED CLASSIFICATION 

3.3.1.1 Principal component analysis 

The use of principal component analysis (PCA) in the chemical characterisation of wine have been 
widely reported (Garcia-Villar et al., 2007; Liu et al., 2007). The purpose of PCA is to compress the 
dataset without compromising the information within it. This is done by transforming the variables 
in the dataset to a reduced number of new variables called principal components (PC’s). Principal 
components are linear functions of the original variables and therefore contain all the information 
that was present in the original variables. 
 The first step in PCA is to plot the data, consisting of n samples and p variables into a p-
dimensional plot. There will be n number of points in the plot. The first PC, or PC 0, is in fact the 
n+1th sample and is characterised by the mean value for each variable. There will now be n+1 
points on the plot. If the variables in the dataset are in some way correlated to each other, the 
points in the data space will appear to have a linear trend to some degree. This trend is defined as 
the direction of the largest variance in the dataset. PC 1 is a straight line through PC 0 in the 
direction of this largest variance. If a point in the data matrix is projected onto the plane of PC 1, 
the distance between the projected point and PC 1 is called the score (t). The distance between 
the original point and the projected point is called the residual. The residual is also equal to the 
perpendicular distance between each point in the data space and a given PC. The exact location of 
PC 1 in the data space is where the sum of all the squared residuals is the smallest. The 
subsequent PC’s are calculated in a similar way. PC 2 is defined as the PC orthogonal to PC 1 and 
in the direction of the second largest variance in the dataset. The number of PC’s needed to 
explain the variation in the dataset depends on the level of correlation between the original 
variables.  
 The scores, as described earlier, is a projection of the samples in the data matrix onto a PC. If 
the dataset is transposed (in other words, the variables are seen as the “samples” so that the data 
matrix contains p “samples” and n “variables”) the variables can now be projected on the PC plane. 
These projected variables are called loadings (pt). Therefore, PCA decomposes the original data 
matrix (X) into a score matrix (T) a loadings matrix (PT) for each PC.  
 The score and loading matrices for two PC’s can be plotted in comprehendible two-
dimensional plots called scores plots and loadings plots. The position of the scores and loadings 
on these plots gives an indication of the structure in the data. Samples that share similar properties 
will have scores close to one another on the score plot. Loadings that are grouped together 
indicate that the corresponding variables are closely related. Figure 6 shows an example of a 
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scores plot. In the scores plot, two groups of scores can be seen. The red group on the left hand 
side belongs to white wines and the blue group on the right hand side belongs to red wines. One 
outlier red wine can be seen in the top right hand corner. It is clear that the red and white wines 
forms two groups based on variation in PC 1. Some interesting correlations can also be observed 
between the variables on the PC 1 axis on the loading plot (Figure 7). Malic acid can be observed 
on the negative end of the PC 1 axis. It is said that “malic acid has a negative high loading on PC 
1”. Lactic acid and pH can be observed on the positive end of PC 1 and therefore “lactic acid and 
pH have high positive loadings on PC 1”. The high loadings of these three variables indicate that 
they contribute to the variation between the red and white wines on PC 1 that was seen on the 
scores plot. In fact, the malic and lactic acid concentration of white and red wines are very different 
due to the process of malolactic fermentation that is commonly applied to red wines but not to 
white wines. The relation between the positions of pH, lactic acid and malic acid on the loadings 
plot indicated that pH and lactic acid are positively correlated to each other and negatively 
correlated to malic acid. These correlations make sense in the context of the separation between 
red and white wines based on malolactic fermentation. Malolactic fermentation is a de-acidification 
process and therefore a high pH and high lactic acid concentration are both products of malolactic 
fermentation while malic acid is the substrate.  
 On the loading plot volatile acidity has “a high positive loading on the PC 2 axis”. Interestingly, 
the outlier on the scores plot has a corresponding high positive score on PC 2. Upon closer 
investigation, the outlier red wine sample has a lot higher volatile acidity compared to the other red 
wines  

 
Figure 6. Example of a PCA scores plot. Each marker represents the PCA scores of a specific wine on 
PC 1 and PC 2. White and red wine samples form two groups on the left and right hand side of the plot 
respectively. An outlier red wine sample can be observed in the top right hand corner (Own data). 

 red 

white 
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Figure 7. An example of a PCA loadings plot (right). Each marker represents the PCA loadings of a 
specific variable on PC 1 and PC 2. Lactic acid and pH have high positive loadings on PC1 and are 
negatively correlated to malic acid that has high negative loadings on PC 1. Volatile acidity has a high 
positive loading on PC 2 (Own data). 

3.3.1.2 Partial least square regression 

A method that is very similar to PCA is partial least square regression (PLS). This method finds a 
correlation between one set of variables called x-variables and another set of variables called y-
variables. The x-variables can be instrumental measurements like spectra or chemical data 
whereas the y-variables can also be chemical measurements or it can be sensory observations or 
varietal classes for example. Depending on the degree of correlation between the x-variables and 
y-variables, PLS-regression models are used to predict the values of the y-variables from the 
values of the x-variables of unknown samples. The PLS algorithm decomposes the X-matrix in the 
same way as PCA, but based on information from the Y-matrix. This is done according to the 
NIPALS (nonlinear iterative partial least squares) algorithm as explained in the book: Multivariate 
data analysis in practice (Esbensen, 2002).  
 PLS regression models need to be validated to test their efficiency and some examples of 
validation methods include test set validation and cross-validation. The most reliable validation 
method is test set validation where an independent sample set is fitted onto the calibration. In the 
case of cross validation, the sample set used to build the PLS model is also used to validate it. The 
calibration sample set is randomly divided into segments after which the set is fitted onto the 
algorithm leaving out one segment at a time until each segment has been left out once. Since 
cross validation is based on the original calibration sample set, the results can sometimes be too 
optimistic. 
 The performance of the PLS models can be evaluated in terms of bias, coefficient of 
determination (R2) and the relationship between the precision of the reference method and the 
calibration. The bias (Eq. 13) gives an indication of the systematic error of the calibration and is 
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calculated as the average difference between the reference and predicted values and should 
ideally be equal to zero. 
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The precision of a calibration with R2 values higher than 0.9 can be considered excellent, between 
0.9 and 0.7 is good enough for quantification and between 0.7 and 0.5 is suitable for screening 
between low, medium and high values but not for quantification.  
 The standard error of cross validation (SECV) is an indication of the prediction error of a 
calibration model as determined with cross-validation. It is suggested that SECV values lower than 
1.5 × SEL indicate excellent precision, while values between 2 × SEL and 3 × SEL indicate good 
precision. The standard error of prediction (SEP) represents the prediction performance as 
determined with test set validation. SEP and SECV are calculated as follows: 
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The ratio of the standard deviation in the dataset to the SEP of the dataset is referred to as the 
residual prediction deviation (Williams, 1995). The guidelines for the interpretation of this 
parameter state that calibrations with RPD values exceeding 5 are suitable for quantification while 
calibrations with RPD values between 3 and 5 are suitable for screening purposes. The major 
drawback of the RPD criterion is that standard deviation, which forms part of the calculation, is 
influenced by the concentration range of the sample set. The standard deviation provides 
information on the variance within the sample set as opposed to the variance between 
measurements. An alternative criterion is the relationship between SEP and SDD where the SEP 
should be smaller than 2 × SDD (Esbensen, 2002). A summary of the abovementioned 
performance criteria is given in Table 2. 

Table 2. Summary of performance criteria for the precision of infrared calibrations 

Performancea parameter Fit for quantification Fit for quantification Fit for screening Unsuitable 
R2 b >0.9 0.7 - 0.9 0.5 – 0.7 > 0.5 
SECV:SELb <1.5 2 - 3 n/a n/a 
SEP:SDDc <2 <2 n/a n/a 
RPDd >5 >5 3-5 <3 
a Abbreviations: R2 = Coefficient of determination; SECV = Standard error of cross validation; SEL = Standard error of laboratory; SEP = 
Standard error of prediction; SDD = Standard deviation of difference; RPD = Residual prediction deviation  
b (Shenk and Westerhaus) 
c (Esbensen, 2002) 
d (Williams, 1995) 
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In terms of wine characterisation, PLS regression have been used to determine the correlation 
between the chemical composition of wine and wine classes, such as cultivar or vintage (Garcia-
Villar et al., 2007; Palma and Barosso, 2002)). Alternatively, PLS have been used to quantify 
chemical compounds from spectroscopic data, which was consequently used to investigate the 
chemical properties of wine (Minaar and Booyse, 2004). 

3.3.1.3 Cluster analysis 

Cluster analysis is an unsupervised classification technique that is used to re-organise a data set 
to reveal structural information within it. Hierarchical cluster analysis is the most popular of these 
types of algorithms. The basic principle of this, and other, clustering methods is the assumption 
that the closer two points in a multi-dimensional space are to each other, the more similar they are. 
The distance between each two points in the data matrix is calculated and represented as a 
distance matrix. The two closest points in the distance matrix are then combined to form a new 
point. Using this new point, a new distance matrix is calculated. The two closest points in this new 
matrix are again combined to form a new point and the process is repeated until each point has 
been linked. The results are presented in the form of a dendogram that shows the relationship 
between the samples in the dataset. Cluster analysis is especially useful if the similarities between 
samples are slightly unclear and have been used to discriminate between the phenolic extracts of 
different cultivar wines (Edelmann et al., 2001) . 

3.3.2  SUPERVISED CLASSIFICATION 

3.3.2.1 Linear discriminant analysis 

Linear discriminant analysis (LDA), like PCA and PLS, compresses a given data set into a smaller, 
more meaningful, data matrix consisting of discriminant functions. The discriminant functions are a 
linear function of the original x-variables and eigenvectors, which will not be discussed at present. 
A score for each object in the data set is calculated for each discriminant function. The scores of 
two discriminant functions can be plotted against each other in order to observe groupings of 
objects. For each group a centroid, an object defined by the mean value of all the x-variables for an 
object group, is plotted. The distance between a group centroid and any given object on the 
discriminant function plot is called the Mahalonobis distance. The Mahalonobis distances between 
each sample and each group centroid are calculated. A sample is classified into the group with the 
nearest centroid. The performance of a LDA model is evaluated by the classification of another, 
independent, known sample set. The results are often given in the form of a table indication the 
number of correctly classified samples per group (Table 3).  
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Table 3. Example of LDA results, indicating the percentage correct classification per class, the 
number of samples in each class and the classes they were assigned to. 

 Percent Chardonnay Cabernet Pinotage Sauvignon blanc Shiraz Merlot 
Chardonnay 59 17 0 0 12 0 0 
Cabernet 63 0 22 0 0 11 2 
Pinotage 92 0 0 23 0 2 0 
Sauvignon blanc 94 2 0 0 31 0 0 
Shiraz 70 0 3 2 0 21 4 
Merlot 88 0 1 1 0 1 21 
Total 77 19 26 26 43 35 27 
 
Palma and Barosso (2002) have used LDA to discriminate between brandies and sherries of 
different ages. Discriminant analysis can also be applied to identify variables that contribute the 
most to the distinction between classes. With step-wise discriminant analysis (SDA), a selection of 
variables is kept out of calculation in a step-wise fashion until all possible combinations of variables 
have been kept out. The most important variables will be the selection that is able to classify the 
samples the most accurately. This technique to identify important discriminant variables are often 
used during the chemical characterisation of wine (Coetzee et al., 2005). Sometimes SDA is 
referred to as Bayes SDA. This prefix refers to the Bayes’s theorem which is used to determine the 
optimal classification during SDA if the samples in all the classes obey a multivariate normal 
distribution. Bayes SDA have been used by Sun et al. to discriminate between German wines from 
different producers (Sun et al., 1997). Discriminant analysis can also be performed in a pair-wise 
fashion where samples are classified into pairs of classes i.e. Class A and not Class A as opposed 
to Class A, Class B and Class C. Such a pair-wise discriminant analysis was used by Coetzee et 
al. to discriminate between South African wines from different production regions based on their 
mineral composition (Coetzee et al., 2005). 

3.3.2.2 Soft independent modelling of class analogies 

SIMCA (soft independent modelling of class analogies) is based on similarities between class 
members. This method uses PCA models of samples in known classes to describe a box (model) 
around each class in the data space and to calculate specific statistical criteria for each box. The 
SIMCA models for each class are calculated as follows: 
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Where 

q
jx  = mean of variable j in class q 

qA  = number of significant principal components in class q 
q
iat  = score of object i on component a in class q 
q
jal  = loading of variable j on principal component a in class q 
q
ije  = residual error of object i and variable j 
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The classification of samples is based on the residual variance of a specific sample (s2

i) and the 
total residual variance (s2

0) of each class: 
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Where n is the number of objects and p is the number of variables 
 
If the residual variance of the sample exceeds the total residual variance of the class, it is rejected 
as a member of the class. One very important difference between SIMCA and LDA is that SIMCA 
can assign unknown samples to more than one class. SIMCA is commonly used to classify wine 
samples during the chemical characterisation of wine (Edelmann et al., 2001).  

3.3.2.3 K-nearest neighbour 

K-nearest neighbour (K-NN) is a supervised classification technique based on the similarities 
between samples in much the same way as LDA. When samples are plotted in a multidimensional 
space, as defined by multiple independent variables, the geometrical distance between the 
samples is called the Euclidean difference. For K-NN analysis, the Euclidean distance between 
each sample in the data set and all the other samples are calculated. For each sample, the other 
samples are listed from the nearest to the most distant. The sample is classified into the class to 
which the majority of the k closest samples belong, where the odd number k was chosen based on 
specific attributes of the dataset. K-NN was used in some of the first studies on the chemical 
characterisation of wine (Kwan and Kowalski, 1978) 

3.3.2.4 Artificial neural networks and support vector machines 

As LDA and K-NN are based on the similarity between samples, artificial neural networks and 
support vector machines are based on partitioning of the data space. These types of methods 
divide the data space into a number of divisions. Samples that share similar properties will occur in 
the same data space division. Ideally these samples would belong to the same known class. 
 Artificial neural networks are based on the principles of biological neurons. In very simple 
terms, the method collects input data (x-variables) for each sample, mathematically transforms it 
through a series of neuron layers to a certain output which is then used to allocate samples to a 
section or class in the data space (Figure 8). This technique is very powerful, but relies on large 
training sets to avoid chance classifications. Support vector machines are a very recently 
developed method based on the partitioning of the data space and always act as a binary 
classifier. Both artificial neural networks and support vector machines deal well with noisy data. 
Compared to artificial neural networks, support vector machines are much more simple and 
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requires a smaller training data set. Artificial neural networks have been successfully used to 
classify wines from different origins (Sun et al., 1997). The application of support vector machines 
to the chemical characterisation of wine was investigated by Acevedo et al. (2007) and promising 
results were obtained.  
 

 

 
Figure 8. Structure of an artificial neural network (top) and the operation of a single neuron (bottom) 
(Adapted from: Otto, 1999) 
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RESEARCH RESULTS 

ABSTRACT 

Higher alcohols, esters and fatty acids have been identified as the backbone of the volatile 
composition of wine and have a important influence on wine quality. The objective of this study was 
to present an overall view of the volatile composition of South African wines, specifically regarding 
higher alcohols, esters and fatty acids. The first part of the study concerned the validation of a 
liquid-liquid extraction method to be used for the analysis of 27 volatile compounds in wine with 
gas chromatography. The method was validated in terms of accuracy, precision and robustness. 
The method performed well in terms of accuracy and precision and some parts of the protocol 
were identified where deviations caused a significant influence on the results. The second part of 
the study involved the statistical investigation of trends and patterns in the volatile composition of 
South African young wines made from six cultivars in four important production regions over two 
vintages. Wines were compared in terms of style, cultivar, vintage and geographic origin using 
descriptive statistics, ANOVA and radar plots. Significant differences were observed between the 
chemical composition of red and white wines, different vintages, cultivars and production regions. 
Differences between vintages were cultivar dependant. Important findings were made in terms of 
the volatile composition of Pinotage wines in relation to the other red and white wine cultivars. 

4.1 INTRODUCTION 

The continuous growth of the world wine industry, now spread over all six continents, has made it 
increasingly important to produce high quality wines. Although wine quality is largely influenced by 
viticultural and winemaking practices, knowledge of the inherent natural composition of wine can 
give valuable additional insight that could be used to maintain a competitive edge.  
 The volatile composition of wine is directly linked to aroma, and therefore the quality, of wine. 
Although the role of compound groups like methoxypyrazines and norisoprenoids in specific 
varietal characteristics have been identified (Lacey et al., 1991; Sefton et al., 1993) it seems that 
the backbone of the volatile composition of all wines are based on alcohols, esters and fatty acids. 
The most abundant alcohols in wine, apart from ethanol, are 1-propanol, isobutanol, isoamyl-
alcohol and 2-phenylethanol. Higher alcohols have a pungent smell at high concentrations, but at 
less than 0.3 g/L they add to the complexity of wine (Lambrechts and Pretorius, 2000). The 
alcohol, 2-phenylethanol can contribute to the honey, spicy, rose-like aromas in wine (Francis and 
Newton, 2005). The most important esters present in wine are ethyl esters of saturated carboxylic 
acids, such as hexanoic acid, and acetate esters of higher alcohols, of which isoamyl acetate is an 
example. Esters are generally associated with pleasant, fruity, floral aromas (Lambrechts and 
Pretorius, 2000). Aliphatic saturated fatty acids are the most common fatty acids found in wine and 
chain lengths of up to 14 carbon atoms have been reported (Schreier, 1979). Acetic, hexanoic, 
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octanoic and decanoic acids are some of the most important fatty acids in wine. At high 
concentrations, these compounds are associated with rancid, cheesy and vinegar-like aromas, but 
are usually present below their detection threshold in healthy wines (Lambrechts and Pretorius, 
2000; Schreier, 1979). 
 Most of these compounds are by-products of alcoholic fermentation although some can be 
grape derived or formed by microbes other than yeasts (Schreier, 1979). Strong correlations have 
been found between grape variety and the main groups of by-products from yeast amino acid 
metabolism, namely isoacids and higher alcohols, ethyl esters of isoacids and acetate esters of 
higher alcohols (Ferreira et al., 2000). It was suggested that the amino acids profiles of grapes 
greatly contributes to the aromatic differences between cultivar wines (Ferreira et al., 2000). 
Several studies support the influence of higher alcohols, esters and fatty acids in varietal 
differentiation (Camara et al., 2006; Danzer et al., 1999; Falqué et al., 2001; Lopéz et al., 1999). It 
has been established that the differences between the volatile compositions of wine cultivars are 
quantitative rather than qualitative (Ferreira et al., 2000). In several studies it was possible to 
distinguish between wines from different wine producing areas based on their composition of 
higher alcohols, esters and fatty acids, confirming the underlying importance of these wine 
constituents (Calleja and Falqué 2005; Marais et al., 1981 a and b). 
 Gas chromatography coupled to flame ionisation detectors (GC-FID) is a common work horse 
in volatile analysis. This detector responds well to organic compounds, has a wide linear range and 
a high level of sensitivity which makes it very suitable for volatile analysis. The major limitation of 
GC-FID is the need of references to identify substances (Gil et al. 2006; Reineccius, 1998). 
 One of the main problems with quantification of volatile compounds in wine is the wide range 
of concentration at which these compounds are present. Concentration ranges of volatile 
compounds include values from ng/L (3-isobutyl-2-methoxypyrazine at levels of 9-42 ng/L) to 
several mg/L (acetic occurring at levels exceeding 300 mg/L) (Francis and Newton, 2005). It has 
therefore become essential to extract and concentrate the compounds of interest prior to analysis. 
Several extraction methods have been used during the sample preparation step of volatile analysis 
methods. These include headspace sampling methods, solid phase micro extraction, simultaneous 
distillation/extraction and liquid-liquid extraction methods (Reineccius, 1998). Liquid-liquid 
extractions are often the preferred method of extraction for analysis of volatile compounds in wine. 
Depending on the solvent used, it has higher sensitivity for trace components than headspace 
analysis and is less prone to contamination than head space analysis and distillation processes 
(Reineccius, 1998).  
 The sample sets used in quantitative volatile research studies are mostly small and do not 
provide a general overview of wine composition. Data sets often consist of less than 100 wines, the 
exceptions containing up to 200 wines, and usually less than 20 wines per cultivar (Ferreira et al., 
2000; Gil et al., 2006). There are no recent data available on the basic volatile composition of 
South African wines as most studies have focused on specific cultivars and the unique compounds 
that characterizes them (Marais and Swart, 1999; Van Wyk et al., 1979).  
 The aim of this study is to present a global perspective on the volatile composition of six of the 
most important South African grape varieties from the four major wine production areas. This 
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project forms part of the Winetech Aroma Project, which involves the establisment of a database of 
the volatile composition of South African young wines as determined with a variety of analytical 
methods. This paper also includes information on the validation of the liquid-liquid extraction 
method used for the gas chromatographic analysis of the volatile compounds in this study. 

4.2  MATERIALS AND METHODS 

4.2.1  WINES 

A total of 496 single varietal young wines from the 2005 and 2006 South African Young Wine 
Shows were analyzed. The sample set contained wines from cellars located in four wine producing 
regions, namely Paarl, Stellenbosch, Robertson and Worcester and were made from either 
Sauvignon blanc, Chardonnay, Pinotage, Merlot, Cabernet Sauvignon or Shiraz grapes. Table 1 
shows a detailed distribution of the sample set.  

Table 1. Distribution of samples between cultivar, origin and vintage 

 2005 2006 
Cultivar Paarl Stellenbosch Robertson Worcester Paarl Stellenbosch Robertson Worcester 

Sauvignon blanc 9 13 20 14 13 14 10 10 

Chardonnay 5 1 20 18 5 1 10 10 

Pinotage 10 7 4 14 9 3 5 10 

Shiraz 14 9 12 17 13 4 10 10 

Cabernet Sauvignon 16 13 15 13 5 8 9 10 

Merlot 10 10 12 17 7 7 10 10 

4.2.2  CHEMICALS, STANDARDS AND WINE SIMULANT 

4.2.2.1 Chemicals and standards  

Ethyl Acetate and isoamyl acetate was purchased from Riedel de Haën (Seelze, Germany). 
Methanol, hexanol, acetic acid and 2-phenylethanol standards were from Merck (Darmstadt, 
Germany). Ethyl butyrate, propanol, isobutanol, butanol, hexyl acetate, ethyl lactate, propionic 
acid, iso-butyric acid butyric acid, iso-valeric acid, diethyl succinate, valeric acid, 2-phenylethyl 
acetate, 4-methyl-2-pentanol and hexane were from Fluka (Buchs, Switzerland). Hexanoic acid, 
octanoic acid, isoamyl alcohol, ethyl caprylate, ethyl caprate were from Aldrich (Steinheim, 
Germany). Decanoic acid and ethyl hexanoate were purchased from Sigma (St. Louis, USA). 
Diethyl ether, ethanol and NaSO4 were also purchased from Merck (Darmstadt, Germany). 

4.2.2.2 Wine simulant 

The internal standard and volatile standards were dissolved in a wine simulant consisting of 12% 
v/v ethanol and 2.5 g/L tartaric acid (Merck, Darmstadt, Germany) in de-ionised water from a MilliQ 



 48

water purifying system (from Millipore, Billeric, MA, USA) with the pH adjusted to 3.5 with 0.1 M 
NaOH (Merck, Darmstadt, Germany).  

4.2.3  EXTRACTION PROCEDURE 

Five milliliters of wine with internal standard, 4-methyl-2-pentanol, (100 µl of 0.5 mg/l solution in 
wine simulant) were extracted with 1 mL of diethyl ether by sonicating the ether/wine mixture for 
five minutes. The wine/ether mixture was then centrifuged at 3600 g for 3 minutes. The ether layer 
was removed and dried on NaSO4. Each extract was injected into the GC-FID instrument in 
triplicate. 

4.2.4  GAS CHROMATOGRAPHY CONDITIONS 

Instrumentation: A J & W DB-FFAP capillary GC column (Agilent, Little Falls, Wilmington, USA) 
with dimensions 60 m Length × 0.32 mm i. d. × 0.5 μm f.t was used. The initial oven temperature 
was 33°C for 17 minutes after which the temperature was increased by 12°C /min to 240°C, at 
which it was held for 5 minutes. 3 μl of the dietyl extract was injected at 200°C. The split ratio was 
15:1 and the split flow rate 49.5 ml/min. The column flow rate was 3.3 ml/min and the total run time 
was 50 minutes. The detector temperature was 250°C. After each sample run, a post run of 5 
minutes at oven temperature 240°C, with a column flow of 6 ml/min cleaned the column from high 
boiling contaminants. After every 30 samples the column was thermally cleaned by injecting 
hexane several times isothermally, holding it for 10 minutes per injection at an oven temperature of 
220°C.  

4.2.5  METHOD VALIDATION PROCEDURE  

The selectivity of the procedure was tested by injecting a 9% dilution mixture of all the standards, 
the matrices (red and white wines), and the spiked matrices (red and white wines spiked with a 
6.25% dilution of the mixture of standards) in consecutive runs. The concentration ranges for the 
calibration curves and evaluation of linearity was based on results from Distell Ltd. (South Africa) 
for the same analysis. The limit of detection and limit of quantitation were determined with a signal 
to noise ratio of 3 and 10 respectively. Recovery experiments were performed on a red and white 
wine by injecting an extract of the wine and of the same wine spiked with a mixture of standards for 
all the compounds analysed. The difference between the concentration of the analytes in the 
spiked wine and the non-spiked wine were calculated as a percentage of the amount with which it 
was spiked. Several factors were identified that could possibly be influence the efficiency of the 
extraction procedure in the event of deviations from the protocol: the amounts of salt, ether and 
wine, the length of sonication, the pH of the wine, the temperature of the water in the ultrasonic 
bath, the ethanol concentration of the wine as well as the wine matrix (red or white). The influence 
of the variation of these parameters was evaluated comparing the concentrations obtained for the 
different analytes in question. The effect that differences in the matrix for red and white wines can 
have on analyte concentration was evaluated using the results from the recovery experiment. The 
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effect of natural variations in wine pH was investigated by adjusting the pH of the same sample to 
3, 3.5 and 4 respectively. The effect of variations in ethanol concentration on extraction efficiency 
were determined by preparing synthetic wine samples containing 16%, 14%, 12% or 10% ethanol. 
Sample volumes of 4.5, 5.0 and 5.5 ml and ether volumes of 0.75, 1.0 and 1.25 ml were compared. 
The sonication lengths examined were 4.5. 5.0 and 5.5 minutes and the temperature of the 
sonication bath were 14°C, 28°C and 41°C. A workable amount of NaSO4 was chosen as 0.15 g, 
and different amounts of salt varying between 0.05 and 0.25 g were used to determine whether this 
influences the concentrations obtained for the analytes. The repeatability of the extraction 
procedure were determined by injecting seven individual extracts of the same wine and the same 
extract five times consecutively and five extracts of the same synthetic wines on five different days. 

4.2.6  STATISTICS 

One way ANOVA and factorial ANOVA were performed with Statistica 7. Box plots were drawn 
with the same software to determine non-outlier concentration ranges. The data that was used for 
the radar plots, which were plotted in Excel 2002 (Microsoft Corporation, www.microsoft.com) were 
standardized in Statistica 7.0 (Statsoft Inc., www.statsoft.com) 

4.3 RESULTS AND DISCUSSION 

4.3.1  EVALUATION OF EXTRACTION PROCEDURE 

Selected highlights of the validation procedure will be discussed in this section. Refer to Addendum 
A for a full validation report.  

4.3.1.1 Selectivity, linearity, limit of detection, limit of quantitation and recovery 

Good separation between analytes were observed and peaks were identified by the retention times 
of authentic standards. The corrected peak areas gave linear responses over the concentration 
intervals tested. Correlation coefficients, R2, were above 0.990 for all analytes (data not shown). 
The limits of detection and quantitation for each analyte are given in Table 2. 
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Table 2. Selected results from validation of the liquid-liquid extraction method 

White wine Red wine 
Compound LOD LOQ % Recovery % Recovery 
Ethyl Acetate 0.10 0.35 59.11 47.21 
Methanol 10.98 36.59 74.50 54.17 
Ethyl Butyrate 0.02 0.06 62.41 65.89 
Propanol  0.25 0.82 44.39 35.70 
Isobutanol 0.05 0.16 70.55 69.22 
Isoamyl Acetate  0.01 0.05 86.38 62.62 
Butanol 0.06 0.20 42.68 51.24 
Isoamyl Alcohol  0.02 0.06 63.75 50.96 
Ethyl Hexanoate  0.02 0.07 68.13 63.98 
Hexyl Acetate 0.02 0.07 64.28 67.36 
Ethyl Lactate  0.52 1.72 55.49 34.43 
Hexanol 0.02 0.05 82.69 75.62 
Ethyl Caprylate 0.02 0.06 132.69 74.63 
Acetic Acid 1.21 4.04 50.58 42.42 
Propionic Acid 0.22 0.73 43.17 31.83 
Iso-Butyric Acid 0.06 0.20 62.23 64.17 
Ethyl Caprate  0.07 0.23 59.01 84.52 
Butyric Acid 0.02 0.07 76.91 83.37 
Iso-Valeric Acid 0.03 0.10 92.52 91.95 
Diethyl Succinate 0.03 0.09 61.08 60.42 
Valeric Acid 0.03 0.10 71.03 72.32 
2-Phenylethyl Acetate 0.01 0.04 82.97 88.65 
Hexanoic Acid  0.02 0.05 96.58 86.46 
2-Phenylethanol 0.06 0.20 63.10 38.25 
Octanoic Acid 0.04 0.12 107.46 97.66 
Decanoic Acid 0.04 0.12 105.18 107.75 

 
Most recoveries were in the interval 60-110% with the exceptions of ethyl acetate, propanol, 
butanol, isoamyl alcohol, ethyl lactate, acetic acid and propionic acid. There is also a slight 
difference in recovery between the white wine matrix and the red wine matrix for methanol, isoamyl 
acetate, ethyl lactate, ethyl caprylate butyric acid and 2-phenyl ethanol. The recoveries for each 
analyte in red and white wines are shown in Table 2. 

4.3.1.2 Robustness 

The influence of the factors described in section 2.1.4 was determined by comparing the 
percentage standard deviation between analyte concentrations determined with each variation on 
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the procedure. Percentage standard deviations larger than 10% were considered unacceptable 
and indicated that variation of that specific factor should be minimized. From the recovery 
experiment (Table 2) it was seen that the wine matrix influences the extraction process for the 
analytes, methanol, isoamyl acetate, ethyl lactate, ethyl caprylate butyric acid and 2-phenyl 
ethanol. All the other analytes are extracted in similar amounts from white and red wine matrices. 
Unacceptably large percentage standard deviations indicated that the following factors in the 
protocol should be closely adhered to: amount of diethyl ether, sample volume, length of sonication 
and temperature of sonication water bath. The amount of NaSO4 salt, concentration ethanol and 
pH of the sample did not influence the extraction efficiency significantly (data not shown).  

4.3.1.3 Repeatability 

The repeatability of the extraction procedure was evaluated in the same way as the robustness. 
Good repeatability was observed in the consecutive injections of the same extract and the extracts 
of the same sample. Generally good results were observed for the repeatability over five days, 
except for methanol concentration which varied more than 20% on day four from the other days 
(data not shown).  

4.3.2  COMPARISON OF WINES 

4.3.2.1 Red and white wines 

The differences between red and white wines and cultivar wines were investigated with ANOVA. In 
order to exclude the variance caused by wine colour and cultivar, the differences between wine 
producing areas were investigated separately within each cultivar group. Box plots were drawn in 
order to determine the non-outlier concentration ranges for the groups of samples. These 
concentration ranges of the measured analytes in red and white wines are shown in Table 3. 
 High standard errors (data not shown) were observed for acetic acid, isoamyl alcohol, 
methanol and propanol. These compounds have a relatively high polarity. Diethyl ether is relatively 
non-polar in comparison and therefore the polarity of the compounds would lead to less efficient 
extraction with ether.  
 The red wines contained more higher alcohols compared to the white wines. In turn, the white 
wines contained more esters. Both higher alcohols and esters are produced by yeast during 
alcoholic fermentation. The production of higher alcohols is favoured by higher fermentation 
temperatures while esters are formed at higher concentrations at lower fermentation temperatures 
(Jackson, 1994). In South Africa, red wines are generally fermented at 28°C and white wines at 
15°C, thus explaining the differences between these compounds. Diethyl succinate and ethyl 
lactate, although esters, were found in higher concentrations in red wines than white wines. These 
esters are linked to lactic acid bacteria activities and are formed during malolactic fermentation, a 
process that is mainly used during red wine production (Ugliano and Moio, 2005). The red and 
white wines contained similar amounts of 2-phenylethyl acetate. The white wines contained the 
most butyric, octanoic and decanoic acids while the red wines had higher concentrations acetic, 
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hexanoic, isobutyric, iso-valeric, and propionic acids. These results were consistent with previous 
results in literature (Gil et al., 2006).  

Table 3. Concentration ranges in mg/L of analytes in red and white wines 

  Red White 
 Analyte Range Std Dev Range Std Dev 
2-Phenylethanol 7.76 - 126.09 ± 27.50 5.84 - 17.62 ± 5.02 
2-Phenylethyl Acetate nd - 0.54 ± 0.18 nd - 0.39 ± 0.13 
Acetic Acid 234.57 - 845.61 ± 135.86 101.52 - 764.73 ± 198.46 
Butanol 0.85 - 3.15 ± 0.64 0.33 - 1.90 ± 0.42 
Butyric Acid 0.38 - 1.85 ± 0.37 0.78 - 3.01 ± 0.61 
Decanoic Acid nd - 1.69 ± 0.54 0.41 - 2.38 ± 0.54 
Diethyl Succinate 1.03 - 19.15 ± 4.03 nd - 1.50 ± 0.60 
Ethyl Acetate 20.19 - 119.26 ± 20.64 30.22 - 158 .29 ± 35.54 
Ethyl Butyrate nd - 0.52 ± 0.55 0.17 - 0.89 ± 0.37 
Ethyl Caprate nd - 0.30 ± 0.09 nd - 0.43 ± 0.12 
Ethyl Caprylate nd - 0.57 ± 0.25 nd - 1.01 ± 0.49 
Ethyl Hexanoate nd - 0.88 ± 0.39 0.27 - 1.41 ± 0.38 
Ethyl Lactate 19.64 - 194.70 ± 35.82 nd - 29.65 ± 15.74 
Hexanoic Acid 0.52 - 2.57 ± 0.52 3.25 - 7.36 ± 1.53 
Hexanol 0.18 - 3.19 ± 0.72 nd - 2.14 ± 0.54 
Hexyl Acetate nd ± 0.09 nd - 0.57 ± 0.24 
Isoamyl Acetate nd - 3.34 ± 1.17 0.51 - 9.12 ± 2.54 
Isoamyl Alcohol 119.55 - 543.75 ± 88.19 103.69 - 219.23 ± 44.16 
Isobutanol 2.34 - 97.88 ± 24.75 2.26 - 35.29 ± 8.30 
Isobutyric Acid 0.35 - 3.54 ± 0.84 nd- 1.83 ± 0.41 
Iso valeric Acid 0.37 - 4.58 ± 0.99 0.13 - 2.00 ± 0.41 
Methanol 70.65 - 389.25 ± 71.33 nd - 164.15 ± 44.34 
Octanoic Acid 0.28 - 2.98 ± 0.63 1.15 - 10.35 ± 1.90 
Propanol 2.62 - 114.38 ± 34.98 19.20 - 86.80 ± 22.35 
Propionic Acid 0.76 - 7.23 ± 34.35 nd - 43.85 ± 13.79 
Valeric Acid nd - 0.56 ± 0.24 nd ± 0.09 

4.3.2.2 Vintage 

The 2005 vintage was overall characterized by much higher levels of valeric acid, propionic acid, 
methanol, iso-valeric acid, isobutyric acid, butyric acid and butanol than the 2006 vintage. The 
white wines of this vintage also contained significantly more hexyl acetate, hexanol, ethyl lactate, 
ethyl butyrate, ethyl acetate and diethyl succinate. The 2005 red wines had statistically higher 
concentrations of hexanoic acid, ethyl hexanoate, ethyl caprylate, decanoic acid and 2-phenylethyl 
acetate than those of 2006. The 2006 wines showed significantly higher amounts of octanoic acid 
and isobutanol and the white wines also contained more isoamyl acetate and ethyl caprate than 
the previous vintage. The concentration ranges of the compounds that differed significantly 
between vintages are given in Table 4. 
 Factorial ANOVAs were performed to determine the influence of vintage, cultivar and origin on 
the concentration of the volatile compounds, as well as the interaction between vintage and 
cultivar, vintage and origin and cultivar and origin. The significance of these factors is shown in 
Table 5. 
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 More than half of the compounds were influenced by the vintage, but interestingly, only five 
compounds were not influenced by the interaction between vintage and cultivar. This means that 
the changes that occur over time in the concentration of most of the compounds are not consistent 
for each cultivar. This could be due to the fact that the different cultivars follow a different ripening 
schedule and that the effect of climatic conditions, such as the heavy precipitation in October 2004 
(Boom, 2005) would be different depending on the stage of ripening. However, only two vintages 
were examined in this study, and it would therefore be of great value to examine further vintages to 
see if this phenomenon persists. Only three compounds, 2-phenylethyl acetate, butyric acid and 
hexanoic acid were significantly influenced by the interaction between vintage and region. 

Table 4. Concentration ranges in mg/L of compounds that differ significantly between vintages as 
calculated with ANOVA’s 

All wines 
2005 2006  Compound  

Range Std Dev Range Std Dev 
Butanol nd - 3.39 ± 0.68 0.33 - 3.29 ± 0.81 
Butyric acid nd - 3.01 ± 0.67 0.38 - 2.60 ± 0.50 
Isobutyric acid nd - 3.88 ± 0.89 0.13 - 2.43 ± 0.56 
Iso valeric acid nd - 4.58 ± 1.05 0.13 - 3.87 ± 0.98 
Propionic acid nd - 69.41 ± 35.63 1.42 - 4.73 ± 0.98 
Valeric acid nd - 0.59 ± 0.25 nd nd 

White wines  Compound  2005 2006 
Diethyl Succinate 0.28 - 1.50 ± 0.63 nd - 0.72 ± 0.31 
Ethyl acetate 51.53 - 171.29 ± 38.49 30.22 - 112.82 ± 20.77 
Ethyl Butyrate nd - 1.91 ± 0.43 nd - 1.91 ± 0.12 
Ethyl Caprate nd - 0.42 ± 0.13 0.09 - 0.35 ± 0.07 
Ethyl Lactate 8.17 - 23.26 ± 15.34 nd - 12.24 ± 14.31 
Hexanol 0.64 - 2.23 ± 0.56 0.13 - 1.53 ± 0.34 
Hexyl Acetate nd - 0.57 ± 0.29 nd - 0.35 ± 0.10 
Isoamyl Acetate 0.51 - 7.16 ± 2.15 1.12 - 11.26 ± 2.81 

Red Wines  Compound  2005 2006 
2-Phenylethyl acetate nd - 0.46 ± 0.14 nd ± 0.22 
Decanoic acid nd - 1.69 ± 0.47 nd ± 0.13 
Ethyl Caprylate nd - 0.75 ± 0.31 nd - 0.33 ± 0.09 
Ethyl Hexanoate nd - 0.88 ± 0.43 nd - 0.37 ± 0.12 
Hexanoic Acid 0.84 - 2.46 ± 0.40 0.52 - 2.71 ± 0.64 
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Table 5. The p-values at a significance level of 5%. Degrees of freedom for each factor indicated 
by dF. Significant p-values are highlighted.  

 Compound 
Vintage 
(dF=1) 

Cultivar 
(dF=5) 

Origin 
(dF=3) 

Vintage*Cultivar 
(dF=5) 

Origin*Cultivar 
(dF=15) 

Vintage*Origin 
(dF=3) 

2-Phenylethanol 0.6829 0.0000 0.0000 0.1678 0.0018 0.6517 
2-Phenylethyl 
Acetate 0.0000 0.0001 0.3454 0.0000 0.9199 0.0443
Acetic Acid 0.1832 0.0000 0.0179 0.6302 0.2803 0.9745 
Butanol 0.0000 0.0000 0.3029 0.0441 0.3672 0.6407 
Butyric Acid 0.0000 0.0000 0.3973 0.0000 0.0039 0.0045
Decanoic Acid 0.0000 0.0000 0.5513 0.0000 0.9513 0.1370 
Diethyl Succinate 0.5146 0.0000 0.8688 0.0142 0.9165 0.1753 
Ethyl Acetate 0.0000 0.0000 0.0684 0.0000 0.0028 0.0784 
Ethyl Butyrate 0.4660 0.0000 0.1355 0.0000 0.7026 0.0932 
Ethyl Caprate 0.0040 0.0000 0.0974 0.0000 0.8905 0.0728 
Ethyl Caprylate 0.0455 0.0000 0.9046 0.0000 0.5863 0.7559 
Ethyl Hexanoate 0.0000 0.0000 0.0384 0.0000 0.2236 0.6066 
Ethyl Lactate 0.9715 0.0000 0.5874 0.0003 0.1408 0.0924 
Hexanoic Acid 0.1711 0.0000 0.4710 0.0052 0.0043 0.0509
Hexanol 0.0000 0.0000 0.0000 0.0001 0.1304 0.5339 
Hexyl Acetate 0.1628 0.0000 0.6614 0.0000 0.4216 0.8816 
Isoamyl Acetate 0.0000 0.0000 0.1900 0.0000 0.8420 0.9522 
Isoamyl Alcohol 0.6106 0.0000 0.0004 0.0968 0.0548 0.2739 
Isobutanol 0.0000 0.0000 0.3856 0.0000 0.8041 0.7925 
Isobutyric Acid 0.0000 0.0000 0.0000 0.0125 0.2108 0.7744 
Iso valeric Acid 0.0000 0.0000 0.0005 0.5828 0.0257 0.5884 
Methanol 0.0017 0.0000 0.0511 0.0000 0.3824 0.0838 
Octanoic Acid 0.0000 0.0000 0.8301 0.0000 0.6107 0.1171 
Propanol 0.7243 0.0000 0.0435 0.0814 0.0235 0.5755 
Propionic Acid 0.0000 0.0000 0.4221 0.0000 0.5893 0.5553 
Valeric Acid 0.0000 0.0000 0.5535 0.0000 0.9929 0.6687 

4.3.2.3 Cultivars 

All the compounds were significantly different between cultivars. Pinotage were more comparable 
to the white cultivars than the red cultivars in the case of several volatile compounds, namely 2-
phenylethanol, butyric acid, ethyl acetate, isoamyl acetate, isoamyl alcohol, isobutyric acid and 
propionic acid (Figure 2). Three of these compounds were subject to a matrix effect between red 
and white wines, emphasising the similarity between Pinotage and the white wines. In some cases 
Merlot also stood apart from the other red cultivars, having much lower amounts of 2-phenyl ethyl 
acetate and much higher amounts of isobutanol, propionic acid and valeric acid. Shiraz differed 
significantly from the other red cultivars in terms of 2-phenylethanol, isoamyl alcohol and iso-valeric 
acid. Cabernet Sauvignon were comparable to at least one red cultivar except in terms of ethyl 
hexanoate, of which it contained significantly lower amounts. The differences between the volatile 
profiles of the red cultivars are shown in Figure 2 and 3. There were no significant differences 
between the red cultivars in the case of butanol or hexyl acetate. The differences observed 
between Pinotage wines and Cabernet Sauvignon wines are in accordance with results from a 
previous study conducted on South African wines, except in the case of ethyl lactate and 2-
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phenylethyl acetate (Marias et al., 1981a). Furthermore, in a previous study, the fusel alcohol 
acetates, isoacids and fusel alcohols listed above were found to contribute significantly to the 
differences between grape varieties, confirming the results of this study (Ferreira et al., 2000). 
These compounds are linked to the amino acid metabolism of yeast cells and, as Ferreira et al. 
(Ferreira et al., 2000) suggested, the differences in the concentration of these yeast metabolites 
could be due to the unique amino acid profiles of the cultivars. The fact that many of the 
compounds discussed above have common amino acid precursors supports this statement.  
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Figure 2. Volatile profiles of the six wine cultivars. The Pinotage profile is more comparable with the 
white wines than the other red wines. 
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Figure 3. Volatile profile of the four red wine cultivars for some significant compounds 

Sauvignon blanc contained significantly more decanoic acid, hexyl acetate and octanoic acid 
compared to Chardonnay. In turn, Chardonnay contained significantly higher amounts of ethyl 
hexanoate. The differences between Sauvignon blanc and Chardonnay in terms of these 
compounds are illustrated in Figure 4. The fatty acids mentioned here are derived from acetyl-CoA, 
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which is formed from pyruvic acid, an important by-product of alcoholic fermentation. Hexyl acetate 
is derived from hexanol, which can be a grape constituent or formed from hexanoic acid. Hexanoic 
acid is also the precursor of ethyl hexanoate. It is clear that the fermentation compounds 
responsible for the differences between Chardonnay and Sauvignon blanc are metabolically linked. 
No statistical differences were observed between the white cultivars based on the concentrations 
of the other volatile compounds. 
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Figure 4. Volatile profiles of Chardonnay and Sauvignon blanc wines for some significant compounds. 

4.3.2.4 Geographic origin 

Some significant differences between regions could be observed, although the compounds that 
differed were not the same within each cultivar, as predicted by factorial ANOVA. Within the Shiraz 
group, the only difference that could be observed was between the hexanol content of the Paarl 
wines and the Worcester and Robertson wines. Among the other cultivars, the Worcester wines 
were most different from the other areas based on higher alcohol content, and differed especially 
from Stellenbosch wines. Fatty acid concentrations were mostly responsible for the differences 
between Worcester and Robertson wines. Paarl wines differed more from Robertson wines than 
wines from the other areas. Paarl wines and Stellenbosch wines were the most similar. In fact, the 
only statistical differences that could be observed were between the Pinotage wines from these 
regions and then only based on the concentration of ethyl acetate and isobutyric acid. This 
similarity can possibly be linked to the fact that the two regions are situated next to each other. The 
Robertson and Worcester wine growing regions are both very large and a range of climatic 
conditions can be observed within each region. It also needs to be mentioned that the information 
of the origin of the wines used in this study is based on the geographic location of the cellar. South 
African wine cellars are allowed to purchase grapes from other wine producing areas and it can 
therefore not be guaranteed that the grapes used to produce the wines are actually from the same 
region. The trends that were observed in this study need to be supported in a study where the 
geographical origins of the wines are guaranteed. 
 The results of this study gave an overview of the volatile composition of South African young 
wines. The study showed that there were significant differences between the composition of the 
2005 and 2006 vintage wines and that these differences were cultivar dependant. It would be 
beneficial to confirm these results by analysis of another vintage. There were also significant 
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differences between the red and white wines which were in accordance to findings in previous 
studies. The compounds responsible for varietal difference were consistent with literature. An 
interesting observation was made in terms of the composition of Pinotage wines, where these red 
wines were more comparable to the white cultivar wines than the other red cultivar wines. There 
were significant differences between wines from the different regions and it was observed that 
higher alcohols and fatty acids were the most important compounds in this regards. Wines from 
Paarl and Stellenbosch very similar and wines from Robertson and Worcester were in many cases 
different from each other and from the other regions.  
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RESEARCH RESULTS 

ABSTRACT 

The powerful combination of analytical chemistry and chemometrics and its application to wine 
analysis provided a way to gain knowledge and insight into the inherent chemical composition of 
wine and to objectively distinguish between wines. Extensive research programs are focussed on 
the chemical characterisation of wine in order to establish industry benchmarks and authentication 
systems. The aim of this study was to investigate the chemical composition of South African young 
wines with chemometrics in order to identify compositional trends and to distinguish between 
different wine classes. Data was generated by gas chromatography and FTMIR spectroscopy and 
investigated using principal component analysis (PCA), partial least square (PLS) regression and 
linear discriminant analysis (LDA). Differences between wines were investigated in terms of style, 
vintage, cultivar, geographic origin and quality. The volatile composition were the most influential in 
discriminating between wine classes using PCA, although the FTMIR spectra contributed to the 
discrimination between cultivars using LDA. Distinctions could be made between wine styles, 
vintages and cultivars but not between geographic origins. There was no correlation between 
chemical composition and the wine quality indicators used in this study. The characterisation of 
geographic origin and wine quality could be optimised by using data sets with guaranteed origin 
and a higher number of very high and very low quality wines. 

5.1 INTRODUCTION 

During the last two decades the world wine industry grew substantially and has become 
increasingly competitive. On a global scale it is becoming more and more important to be able to 
produce distinguishable wines. Traditionally the only way to distinguish wines was by sensorial 
evaluation, but, due to the subjective nature thereof, chemical analysis were introduced as an more 
objective alternative to compare wines. In the past, analysts were limited to the number of 
compounds they were able to analyse, due to costly and time consuming analytical methods, 
making it hard to identify compounds that are significant in the wine matrix. Recent technological 
advances have enabled analysts to quantify a multitude of components within a relatively short 
amount of time, effectively enlarging the possibilities of the chemical characterisation of wine. 
Parallel to the development of analytical techniques, advances were also made in the field of data 
analysis. The use of multivariate data analysis or chemometrics has empowered the analyst to 
gain more insight into complex data sets and to comprehensively represent multi-dimensional 
variability. Several studies investigating the chemical composition of wine were launched in order 
to distinguish between wines from different varietal and geographical origin. Multi-element analysis 
were done to compare different wines of origin as a wine’s mineral composition could possibly be 
related to the soil the grapes were cultivated on (Coetzee et al., 2005; Rebolo et al., 2000). 
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Phenolic compounds are influenced by the grape variety, ripening conditions, winemaking 
practices and maturation and their impact on the differentiation between wines have been 
extensively studied (Makris et al., 2000; Rossouw and Marias, 2004). The volatile composition of 
wine, alongside phenolic composition, can possibly be linked the strongest to the traditional 
sensorial analysis, as these compounds are primarily responsible for the distinct flavour of wine. 
Several types of volatile components have been identified in wine. Of these, higher alcohols, esters 
and volatile fatty acids are probably the most useful in chemical profiling as they appear to be 
generic to most wine cultivars. However, the quantitative composition of these compounds are very 
different between cultivar wines (Ferreira et al., 2000). Most of these volatile compounds are 
formed by yeast metabolism, but their precursors are often grape derived and could therefore be 
linked to varietal differences. In addition to the chemical analysis of flavour compounds, electronic 
nose and tongue detectors have also been coupled to analytical instruments in order to combine 
sensory and chemical data (Cozzolino et al., 2005; Buratti et al., 2004). A further technological 
advancement that allowed additional insight into wine composition is spectroscopy. By measuring 
the wine’s absorbance of light at different wavelengths, a global image of the wine can be collected 
in the form of a spectrum. Wavelengths from the entire light range have been employed in these 
studies, ranging from UV light, visible light, near infrared and mid infrared as well as fluorescent 
spectrospcopy (Cozzolino et al., 2003; Edelmann et al., 2001; Roussel et al., 2006; Urbano et al., 
2006). By correlating the absorbance values at a specific wavelength to specific compounds with 
chemometric algorithms, spectroscopy could successfully be applied towards chemical 
quantification (Kupina and Shrikhande, 2003).  
The knowledge of the chemical composition of wine can be applied in many different ways. The 
ability to generate large amounts of data in a relatively short period of time with advanced 
technology allows the compilation of chemical databases. These can serve as a benchmark to 
which producers can compare their wines. The combination of chemical data and pattern 
recognition techniques can be applied to the authentication of wine, whether it is to determine 
wrongful labeling in order to protect denominations of origin or to detect fraudulent vinification 
activities. If wine composition can be linked to consumer preference or wine quality, compositional 
information can also play a very important role in market related issues.  
Unfortunately, very few attempts have been made to characterize South African wines based on 
chemical composition. In 1981 Marais described the volatile composition of some SA red and white 
wines and used the data to distinguish between wines from different production areas (Marias et 
al., 1981). More recently, Coetzee et al. (2005) classified some SA wines according to their 
geographical origin based on their elemental composition, while Rossouw and Marias investigated 
the phenolic composition of South African red wine cultivars (Rossouw and Marias, 2004). An 
unsuccessful attempt have been made to classify South African red wines according to their 
geographical origin with chemical data quantified with FTIR spectroscopy, but the spectra were not 
included during the data analysis (Minnaar and Booyse, 2004).  
 The aim of this study is to firstly contribute to a large scale database of the volatile composition 
of South African young wines as part of a project launched by Winetech. Secondly the study aims 
to identify trends and inherent compositional differences between wines of different varieties, 
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vintage and origin. A third aim is to classify wines into abovementioned groupings by means of 
chemometric techniques and lastly it will be attempted to predict the quality of the wines based on 
their chemical or spectral attributes. 

5.2 MATERIALS AND METHODS 

5.2.1  WINES  

A total of 496 single varietal young wines from the 2005 and 2006 South African Young Wine 
Shows were analyzed. The sample set contained wines from cellars located in four wine producing 
regions, namely Paarl, Stellenbosch, Robertson and Worcester and were made from either 
Sauvignon blanc, Chardonnay, Pinotage, Merlot, Cabernet Sauvignon or Shiraz grapes. Table 1 
shows a detailed distribution of the sample set.  

Table 1. Distribution of samples between cultivar, origin and vintage 

5.2.2 CHEMICALS, STANDARDS AND WINE SIMULANT 

5.2.2.1 Chemicals and standards 

Ethyl Acetate and isoamyl acetate was purchased from Riedel de Haën (Seelze, Germany). 
Methanol, hexanol, acetic acid and 2-phenylethanol standards were from Merck (Darmstadt, 
Germany). Ethyl butyrate, propanol, isobutanol, butanol, hexyl acetate, ethyl lactate, propionic 
acid, iso-butyric acid butyric acid, iso-valeric acid, diethyl succinate, valeric acid, 2-phenylethyl 
acetate, 4-methyl-2-pentanol and hexane were from Fluka (Buchs, Switzerland). Hexanoic acid, 
octanoic acid, isoamyl alcohol, ethyl caprylate, ethyl caprate were from Aldrich (Steinheim, 
Germany). Decanoic acid and ethyl hexanoate were purchased from Sigma (St. Louis, USA). 
Diethyl ether, ethanol and NaSO4 were also purchased from Merck (Darmstadt, Germany). 

5.2.2.2 Wine simulant  

The internal standard and volatile standards were dissolved in a wine simulant consisting of 12 
%v/v ethanol and 2.5 g/L tartaric acid (Merck, Darmstadt, Germany) in de-ionised water from a 

 2005 2006 
Cultivar Paarl Stellenbosch Robertson Worcester Paarl Stellenbosch Robertson Worcester 
Sauvignon blanc 9 13 20 14 13 14 10 10 
Chardonnay 5 1 20 18 5 1 10 10 
Pinotage 10 7 4 14 9 3 5 10 
Shiraz 14 9 12 17 13 4 10 10 
Cabernet 
Sauvignon 

16 13 15 13 5 8 9 10 

Merlot 10 10 12 17 7 7 10 10 
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MilliQ system water purifying system (from Millipore, Billeric, MA, USA), pH adjusted to 3.5 with 
0.1M NaOH (Merck, Darmstadt, Germany).  

5.2.3  EXTRACTION PROCEDURE  

Five millilitres of wine with internal standard, 4-Methyl-2-Pentanol, (100 µl of 0.5 mg/l solution in 
wine simulant) were extracted with 1 millilitres of diethyl ether by sonicating the ether/wine mixture 
for five minutes. The wine/ether mixture was then centrifuged at 3600 g for 3 minutes. The ether 
layer was removed and dried on NaSO4. Each extract was injected into the GC-FID in triplicate. 

5.2.4  GAS CHROMATOGRAPHY CONDITIONS 

Instrumentation: A J & W DB-FFAP capillary GC column (Agilent, Little Falls, Wilmington, USA) 
with dimensions 60 m Length × 0.32 mm i. d. × 0.5 μm f.t was used. The initial oven temperature 
was 33°C for 17 minutes after which the temperature was increased by 12°C/min to 240°C, at 
which it was held for 5 minutes. 3 μl of the dietyl extract was injected at 200°C. The split ratio was 
15:1 and the split flow rate 49.5 ml/min. The column flow rate was 3.3ml/min and the total run time 
was 50 minutes. The detector temperature was 250°C. After each sample run, a post run of 5 
minutes at oven temperature 240°C, with a column flow of 6ml/min cleaned the column from high 
boiling contaminants. After every 30 samples the column was thermally cleaned by injecting 
hexane several times isothermally, holding it for 10 minutes per injection at an oven temperature of 
220°C.  

5.2.5  FTMIR SPECTROSCOPY 

The samples were degassed using vacuum filtration. Red wines were filtered twice and white wine 
samples were filtered three times. A WineScan FT 120 spectrometer equipped with a Michelson 
interferometer (Foss Analytical, Denmark; http://www.foss.dk) were used to generate spectra in the 
wavenumber region 5011-929 cm-1. Commercial calibrations were used to quantify glucose, 
fructose, pH, total acidity, volatile acidity, malic acid, lactic acid, ethanol and glycerol. The 
wavenumbers 5011-2970 cm-1 and 1543-1716 cm-1, which are associated with the absorption by 
water molecules, were excluded in the data analysis unless stated otherwise. 

5.2.6  STATISTICS 

Principle component analysis (PCA) were performed in The Unscrambler 9.2 (CAMO Process AS, 
Oslo, Norway) in order to observe underlying trends in the data. Partial least square regression 
(PLS) were used to evaluate the correlation between wine quality (the score out of 20 that the wine 
received at the Young Wine Show) and chemical composition. These tests were also done in The 
Unscrambler 9.2. Linear discriminant analysis (LDA) were performed in Statistica 7.0 (Statsoft Inc., 
www.statsoft.com) to classify the wines into their respective cultivar or origin groupings. LDA with 
spectral data were preceded by principle component analysis.  
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5.3 RESULTS AND DISCUSSION 

A summary of all the analysed compounds and their concentration ranges in the wines are given in 
Table 2. 

Table 2. The concentration ranges of all the analytes in red and white wines. 

Volatile compounds (mg/L) 
Red White 

Compound Range Std Deva Range Std Dev 
2-Phenylethanol 7.76 - 126.09 27.50 5.84 - 17.62 5.02 
2-Phenylethyl Acetate nd - 0.54 0.18 nd - 0.39 0.13 
Acetic Acid 234.57 - 845.61 135.86 101.52 - 764.73 198.46 
Butanol 0.85 - 3.15 0.64 0.33 - 1.90 0.42 
Butyric Acid 0.38 - 1.85 0.37 0.78 - 3.01 0.61 
Decanoic Acid nd - 1.69 0.54 0.41 - 2.38 0.54 
Diethyl Succinate 1.03 - 19.15 4.03 nd - 1.50 0.60 
Ethyl Acetate 20.19 - 119.26 20.64 30.22 - 158 .29 35.54 
Ethyl Butyrate nd - 0.52 0.55 0.17 - 0.89 0.37 
Ethyl Caprate nd - 0.30 0.09 nd - 0.43 0.12 
Ethyl Caprylate nd - 0.57 0.25 nd - 1.01 0.49 
Ethyl Hexanoate nd - 0.88 0.39 0.27 - 1.41 0.38 
Ethyl Lactate 19.64 - 194.70 35.82 nd - 29.65 15.74 
Hexanoic Acid 0.52 - 2.57 0.52 3.25 - 7.36 1.53 
Hexanol 0.18 - 3.19 0.72 nd - 2.14 0.54 
Hexyl Acetate nd ± 0.09 nd - 0.57 0.24 
Isoamyl Acetate nd - 3.34 ± 1.17 0.51 - 9.12 2.54 
Isoamyl Alcohol 119.55 - 543.75 88.19 103.69 - 219.23 44.16 
Isobutanol 2.34 - 97.88 24.75 2.26 - 35.29 8.30 
Isobutyric Acid 0.35 - 3.54 0.84 0.13 - 1.83 0.41 
Isovaleric Acid 0.37 - 4.58 0.99 0.13 - 2.00 0.41 
Methanol 70.65 - 389.25 71.33 21.54 - 164.15 44.34 
Octanoic Acid 0.28 - 2.98 0.63 1.15 - 10.35 1.90 
Propanol 2.62 - 114.38 34.98 19.20 - 86.80 22.35 
Propionic Acid 0.76 - 7.23 34.35 nd - 43.85 13.79 
Valeric Acid nd - 0.56 0.24 nd 0.09 

Major chemical compounds (g/L) 
Red White 

Compound Range Std Dev Range Std Dev 
pH 3.21-4.55 0.1833 3.19-4.18 0.1944 
Volatile Acidity 0.14-0.84 0.1239 0.24-0.76 0.1030 
Total Acidity 4.19-7.20 0.3823 4.33-7.55 0.5761 
Malic Acid nd - 2.28 0.2553 0.39-5.8 0.7418 
Lactic Acid nd-2.58 0.3749 nd-1.19 0.1884 
Glucose nd-2.91 0.4691 nd-4.14 0.5948 
Fructose nd-6.39 0.7788 0.35-4.31 0.8594 
Ethanol (%v/v) 10.79-16.61 0.8270 10.38-15.18 0.8887 
Glycerol 8.64-16.29 1.0166 4.55-11.68 1.0205 

a Standard deviation 



 65

5.3.1 PRINCIPLE COMPONENT ANALYSIS 

The largest variation in the dataset as a whole was due to wine style and various degrees of 
separation between red and white wines could be observed using any combination of volatile 
components, major chemical compounds or spectra. The best separation could be obtained with 
PC 1 and PC 2 using the volatile components as variables (Figure 1). The negative end of PC 1, 
relating to the white wines, on the loadings plot were dominated by hexanoic acid, octanoic acid 
and some esters, while the positive end, relating to the red wines, were dominated by higher 
alcohols. This corresponds to results from previous studies (Gil et al., 2006). Good separation 
could also be obtained with the classical wine parameters and or spectra when looking at PC 1 and 
PC 3 (data not shown). The most influential classical wine parameters were malic acid, pH, 
titratable acidity, lactic acid. The influence of malolactic fermentation, a process mainly used in red 
wine production, on these parameters is well established. Glycerol also contributed to the 
differences. This contribution can be confirmed by previous findings (Nieuwoudt et al., 2002) 
Glucose and fructose did not contribute to the distinction between red and white wines at all.  
 

 
Figure 1. The PCA score plot indicates the separation between red and white wines along the first PC. 
The volatile compounds were used as variables for the PCA. Of the total variance in the dataset, 36% is 
explained by PC 1 and 10% by PC 2. 

When the dataset was divided into subsections, better separation could be observed between 
vintages and cultivars. In the subsets containing only white or red wines, a clear distinction 
between vintages could be made only when using the volatile components as variables (Fig. 2). 
Isobutanol, butanol and decanoic acid were influential in the separation of the 2005 and 2006 red 
wines while diethyl succinate and isoamyl acetate where important for differences between the 
2005 and 2006 white wines. The spectral data or classical parameters did not contribute to 
separations between the vintages. 
 

White wines Red wines 
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Figure 2. The 2005 and 2006 white wines separated along PC 1 in the PCA done with the volatile 
compounds as variables. PC 1 and PC 2 explains 18% and 17% of the variance in the dataset 
respectively. 

Good separation could be observed between the Chardonnay and Sauvignon blanc wines when 
the spectra (Figure 3) or classical wine parameters were used, but the separation worsened when 
volatile compounds were included in the variable set. Ethanol, pH and lactic acid were strongly 
associated with Chardonnay wines while titratable acid and malic acid where associated with 
Sauvignon blanc.  
 

Sauvignon blanc                                     ChardonnaySauvignon blanc                                     ChardonnaySauvignon blanc                                     Chardonnay

 
Figure 3. The two white cultivars separated along the first PC axis when the selected spectral 
wavenumbers were used as variables. PC 1 and PC 2 explains 62% and 28% of the total variance in 
the data set respectively. 

2005 2006
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The volatile components contributed the most to the differences between red wines. Very good 
separation good be observed between vintages in PC1 and PC3, as well as in PC2 and PC3. 
Separation between cultivar groups were not as clear. Pinotage separated the most from the rest 
and, as shown in Fig 4, generally correlated well with the PC’s where isoamyl acetate had high 
positive loadings and the isoacids and isoamyl alcohol had high negative loadings. It has been 
established that isoamyl acetate plays an important role in the varietal characteristics of Pinotage 
wines (Van Wyk et al., 1979). The high negative correlation between isoamyl alcohol and the 
isoacids and Pinotage is consistent with the results from Chapter 4. The Merlot wines formed a 
clear grouping in the 2005 vintage, based on high positive loadings of propionic and decanoic 
acids and high negative loadings of 2-phenylethyl acetate. However, the Merlot wines could not be 
separated from the Shiraz or Cabernet wines in the 2006 vintage. The Shiraz and Cabernet wines 
were difficult to separate when both vintages were used but better results were obtained when the 
vintages were split up. The separation was mainly due to high loadings of 2-phenylethanol, 
isovaleric acid and isoamyl alcohol which were negatively correlated with Shiraz. These results are 
also consistent with the findings in Chapter 4.  
 

 
Figure 4. Separation between red cultivars from the 2005 vintage along PC 1 and PC 2. PCA were 
performed with volatile compounds as variables and PC 1 and PC 2 each explains 21% and 18% of the 
total variance respectively. The loadings plot of the X variables in a PCA investigating the influence of 
the volatile compounds on the differences between red wine cultivars from the 2005 vintage.  

Merlot 

 
 
 
 
 

Pinotage

Shiraz Cabernet 
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When the classical wine parameters were used in combination with the volatile compounds, the 
high loadings of volatile acidity contributed slightly to the separation of Pinotage wines. No cultivar 
groupings could be observed when the spectra was used as variables. 
 No clear geographical origin groupings could be observed with PCA, regardless of the 
variables. Principle component analysis were performed within each cultivar group as well as in 
vintage subsets within each cultivar group. No visible trends in terms of the rating the wines 
received at the Young Wine Shows could be observed.  

5.3.2  PARTIAL LEAST SQUARE REGRESSION 

Calibrations with PLS regression was also performed, but there were almost no correlation 
between wine quality and quantitative or spectral information. This could be an indication of the 
subjective nature of sensory evaluation of wines. However, most of the wines were scored 15 out 
of 20 marks, and the extreme ends of the score range were poorly represented. Such a calibration 
could benefit from a larger sample set that includes more highly scored and low scored wines. 

5.3.3  LINEAR DISCRIMINANT ANALYSIS 

Linear discriminant analysis (LDA) was applied in order to classify the wines into their respective 
cultivar and origin classes. Generally good classification results were achieved between the 
cultivar wines. The classification success rate was between 91% and 100% when the entire 
spectral range was used (Table 3).  

Table 3. The percentage correct classification between cultivar wines with different variable sets 

Cultivar Full 
Spectra 

Selected 
Wavenumbers 

Volatile 
Compounds 

Volatile Compounds + 
Selected Spectra 

Volatile Compounds + 
Full Spectra 

Chardonnay 100 93 59 97 100 
Cabernet 91 69 63 89 94 
Pinotage 96 92 92 100 100 
Sauvignon blanc 100 97 94 100 100 
Shiraz 97 97 70 93 100 
Merlot 100 88 88 96 100 
Total 97 89 77 95 99 

 
Interestingly, classification success rate dropped when wavenumbers 5011-2970 cm-1 and 1543-
1716 cm-1, which are associated with noise caused by water absorption, were excluded from the 
analysis. When these selected wavenumbers were used, the wines were classified correctly 
between 88-97% with the exception of Cabernet Sauvignon, which were only 69% correctly 
classified. When the volatile components were used, the classifications was between 59 and 94% 
correct. The combination of the volatile compounds and the selected wavenumbers were better 
than the two separate variable sets, with a classification success rate of 87-100%. The best 
results, a 100% correct classification except for Cabernet (94%), was achieved using a 
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combination of the entire spectral range and the volatile components. The results for this variable 
combination is shown in Figure 5.  

 

 Chardonnay
 Cabernet 
 Pinotage
 Sauvignon blanc
 Shiraz
 Merlot

 
Figure 5. The results from the discriminant analysis of the cultivars wines based on volatile composition 
and the full spectral range. The graph shows the scores for the first three discriminant functions. 

The geographical origin of the wines could not be successfully classified with the volatile 
compounds, spectra or classical parameters. The percentage correct classification varied between 
36% and 55% (data not shown). The wines were divided into subsets containing red wines, white 
wines, or cultivar wines, but the classification rates did not improve significantly. It needs to be 
mentioned that the information of the origin of the wines used in this study is based on the 
geographic location of the cellar. Since South African wine cellars are allowed to purchase grapes 
from other wine producing areas and it can not be guaranteed that the grapes used to produce the 
wines are actually from the same region. However, the value of volatile compounds and infrared 
spectra could be better evaluated with samples of guaranteed origin. Previous studies have shown 
that volatile compounds could be successfully used to classify wines according to geographical 
origin (Marias et al., 1981). The use of spectroscopy in the classification of the geographical origin 
of wine have not been widely explored, but some promising results have been reported (Urbano et 
al., 2006). 
 In this study, the role of yeast derived volatile components, infrared spectra and major wine 
parameters predicted with FTMIR technology on the variability of South African young wines were 
investigated. Based on PCA, it seemed that most of the variability was due to the volatile 
constituents of the wines, although the spectra did contribute to cultivar groupings between the 
white wines. However, the role of the infrared spectra was much more pronounced in terms of the 
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classification of the cultivar wines, where the most successful classification rate was achieved with 
a combination of the entire infrared spectra and volatile compounds. Unfortunately, neither the 
volatile components or the infrared data could indicate differences between wine regions, although 
this is most likely to due to the limitations of the dataset. Lastly, it was not possible to predict the 
score of the wines from PLS regression models of the chemical or spectral data. 
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RESEARCH RESULTS 

ABSTRACT 

Enzymatic assays and high performance liquid chromatography (HPLC) are often used for the 
determination of organic acids, sugars and glycerol in wine. Enzymatic assays are highly specific 
but time consuming. On the other hand, HPLC analyses allows the simultaneous determination of 
a variety of compounds, but previous reports indicated that the determination of organic acids are 
subject to substantial matrix effects, in especially red wines. The objective of this study was to 
evaluate and compare spectrophotometric enzymatic assays and HPLC methods for the 
determination of malic acid, lactic acid, glucose, fructose and glycerol. The effect of fining agents 
for the decolourisation of red wines as a sample preparation procedure were evaluated. Solid 
phase extraction and PVPP treatments were evaluated as sample preparation procedures to 
minimise interferences during the HPLC analysis of organic acids. Each method were evaluated in 
terms of matrix effects, sample preparation procedures, accuracy, repeatability and practicality. 
The current enzymatic assay procedures were considered suitable for the analysis of glycerol, 
glucose and fructose, but unsuitable for the determination of L-malic and L-lactic acid with regards 
to the monitoring of malolactic fermentation to the endpoint. HPLC analysis were considered 
suitable for the analysis of all the analytes, although higher measurement errors were observed for 
glucose and fructose determination compared to the enzyme assays. Low recoveries were 
observed for organic acids in wines treated with SPE. Higher recoveries were observed for the 
organic acids in wines treated with PVPP, but the method must be optimised to increase 
reproducibility. It was concluded that different approaches should be considered for the 
quantification of organic acids and alcoholic fermentation related components. 

6.1 INTRODUCTION 

Alcoholic fermentation and malolactic fermentation are two of the most important biological 
processes of winemaking and they need to be closely monitored for the purpose of exerting 
effective quality control. It is common practice in the wine industry to measure amongst other, pH 
glucose, fructose, ethanol, selected organic acids and glycerol in order to gain insight into the 
progress of these processes. During alcoholic fermentation, yeasts convert glucose and fructose, 
the two major sugars in grape must, to ethanol, CO2 and other by-products. The changes in the 
glucose and fructose concentrations in fermenting must be monitored to identify problematic 
sluggish or stuck fermentations that can lead to off-flavours and wine spoilage (Ribereau-Gayon et 
al., 2000). The residual sugar left in the wine after fermentation most often consists of fructose and 
small amounts of glucose that was unutilised by the yeast. Apart from the obvious flavour 
implications, high levels of residual sugar can stimulate the growth of unwanted spoilage micro-
organisms, especially after bottling. During alcoholic fermentation, yeast cells also produce glycerol 
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during the metabolism of a small amount of sugar through the glyceropyruvic pathway (Ribereau-
Gayon et al., 2000). Although the sensory impact of glycerol in wine is unascertained, the role of 
the by-products of glyceropyruvic fermentation, including acetic acid, diacetyl and acetaldehyde, is 
associated with decreased wine quality (Ribereau-Gayon et al., 2000). 
 Malolactic fermentation (MLF) is used particularly during red winemaking for the purpose of 
converting malic acid to lactic acid, a process mainly mediated by lactic acid bacteria (Zoeklein et 
al., 1995). This process influences wine flavour by de-acidification and altering wine aroma and 
also increases the microbial stability of wine (Ribereau-Gayon et al., 2000). MLF monitoring can be 
particularly cumbersome since its onset is frequently unpredictable and the progress slow which 
result in significant variation in the duration from batch to batch. This complicates the simultaneous 
monitoring of several fermentation vessels and also implies that large numbers of chemical 
analyses must be done.  
 The large amounts of samples that need to be analysed in industrial wine cellars, especially to 
monitor malolactic fermentation, requires methods that are fast and cost effective. In recent years 
Fourier transform mid-infrared (FTMIR) spectroscopy has been shown to be a suitable method for 
the determination of several of the major compounds in wine, including ethanol, sugars, organic 
acids, glycerol and pH (Kupina and Shrikhande, 2003; Nieuwoudt et al., 2004; Patz et al., 2004). 
The main advantages of the method resides in its speed, low analysis cost and simple sample 
preparation procedures, thereby making it a particularly attractive option for large-scale high 
sample throughput analysis. FTMIR spectroscopy is a indirect analytical method and relies on 
calibration models for quantification. Calibration models are established using data collected from 
the analysis of real samples, that are representative of samples that will be analysed in the future, 
with a suitable reference method. This typically involves the measurement of large numbers of 
samples in order to capture as much natural variance as possible. The evaluation of the suitability 
of analytical methods as reference methods for FTMIR calibration not only relies on the accuracy 
and precision of the methods, but also on practical considerations, robustness, time efficiency and 
sample throughput capacity. 

Two commonly used analytical techniques for the quantification of organic compounds in 
wine are high performance liquid chromatography (HPLC) and enzyme-linked spectrophotometric 
assays. Both techniques are often cited in the literature as reference method of choice for the 
development of infrared spectroscopy-based calibration models (Guggenbichler et al., 2006; Patz 
et al., 2004; Urbano Cuadrado et al., 2005). Enzymatic assays have high specificity and are 
relatively easy to use. However, each compound are analysed separately with this method, 
contrary to HPLC that allows the simultaneous analysis of several compounds (Mato et al., 2005). 
Numerous HPLC methods have been reported for the analysis of organic acids and major 
fermentation products such as sugars and glycerol, although the most common methods are based 
on ion exclusion chromatography (Castellari et al., 2000; Dopico-García et al., 2007). However, 
HPLC analysis requires specialist training and the accuracy of the analyses relies on the purity of 
the peak that elutes at the retention time associated with the analyte of interest.  

The UV-visible absorption detectors that are usually used for the HPLC analysis of organic 
acids also provide response for other common organic molecules, notably the phenolic compounds 
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present in wine. This detection method relies on the chromaphoric properties of the measured 
analytes (Rounds and Gregory, 1998). The chromaphoric properties of especially aromatic organic 
molecules are stronger than that of the carboxylic acid groups of the organic acids (Zotou et al., 
2004). Therefore, it is often observed that the large amounts of organic constituents present in red 
wines interfere with the analysis of organic acids (Zotou et al., 2004). Solid phase extraction (SPE) 
is commonly used to separate organic acids and carbohydrates from phenolic compounds prior to 
HPLC analysis (de Villiers et al., 2004). The extraction procedure is normally based on the 
principles of reversed phase chromatography, where a polar mobile phase and a non polar 
stationary phase, nowadays available in convenient pre-packed cartridge format, is used. 
Octadecylsilyl (C18) is the most common packing material for these SPE cartridges. The use of 
polymeric packing materials such as polystyrene-divinylbenzene eliminates the presence of 
residual silanols and also provides better pH stability and selectivity (Rounds and Gregory, 1998). 
Recent technology in reversed phase SPE also includes packing materials made from macro-
porous copolymers. Combinations of lipophilic divinylbenzene and hydrophilic N-vinylpyrrolidone 
monomers provide added wetting properties, thereby protecting the packing material from drying 
out due to air contact (Waters information center, n.d.). However, the use of extraction procedures 
for the determination of organic acids in wine are generally regarded as tedious, expensive and 
time-consuming and poor recoveries for organic acids are often reported (Mato et al., 2005). 

Preliminary results of PVPP treatments as an alternative sample clean-up procedure have 
been reported (Zotou et al., 2004). In winemaking, several types of fining agents are used to 
remove excessive amounts of phenolic compounds from wine. Of these, polyvinyl polypyrrolidone 
(PVPP) and activated charcoal form the least amount of lees, making them the most practical to 
use in laboratory conditions. Activated charcoal adsorbs weak polar molecules, especially small 
phenolic compounds, and is considered the most effective colour removing agent (Zoeklein et al., 
1995). However, PVPP can bind larger phenolic compounds than activated charcoal making it 
more suitable for the removal of phenolic compounds in general (Zoeklein et al., 1995). 
 In this paper HPLC and enzyme-linked spectrophotometric assays were evaluated as 
reference methods for FTMIR calibrations that can be used for the quantification of malic acid, 
lactic acid, glucose, fructose and glycerol. The evaluation was based on performance criteria that 
includes precision, accuracy, complexity of sample preparation, sample throughput and time 
efficiency. Sample preparation techniques that include methods to eliminate the interferences 
caused mainly by phenolic compounds in red wines were investigated. The optimisation of a SPE 
method in order to improve the recovery of the organic acids for this study was conducted in two 
parts: the comparison of four types of SPE cartridges, and the optimisation of the rinsing volume 
needed to maximise the recovery of organic acids on the optimal phase. The use of PVPP for the 
removal of phenolic compounds was also investigated. 
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6.2 METHODS AND MATERIALS 

6.2.1  STANDARDS AND REAGENTS 

R-Biopharm enzymatic analysis kits (AEC-Amersham, Sandton, South Africa) were used for 
analysis of D-glucose and D-fructose, glycerol, L-malic acid and L-lactic acid respectively. PVPP 
and GAT1 activated charcoal were used for decolourisation and removal of phenolic compounds in 
wine and were obtained from Merck (Darmstadt, Germany) and CJ Petrow Chemicals (Cape 
Town, South Africa) respectively. Methanol (99.8%) was obtained from Merck (Darmstadt, 
Germany). Water was de-ionised with a Milli-Q A10 water purifying system (from Millipore, Billeric, 
MA, USA) and adjusted to pH 2.5 with 1M HCl Merck (Midrand, South Africa). Analytical grade 
standards for L-malic acid (99.5%) and succinic acid (99.5%) were purchased from Fluka (Buchs, 
Switzerland). Standard solutions for L-lactic acid were prepared from sodium L-lactate (99.0%) 
from the same manufacturer. Tartaric acid (99.5%) and citric acid (99.5%) were from Aldrich 
(Steinheim, Germany). Acetic acid standard solutions were prepared from glacial acetic acid 
obtained from Saarchem (Wadeville, South Africa). D-Glucose, D-fructose and glycerol standards 
were also obtained from Saarchem. Ethanol was obtained from Merck (Midrand, South Africa). 
H2SO4 (50%) was purchased from Fluka (Buchs, Switzerland). 

6.2.2  DECOULORISATION AND REMOVAL OF PHENOLIC COMPOUNDS IN WINE  

Fining with activated charcoal was performed by mixing GAT1 with a red wine at a concentration of 
20 g/L and allowing a two hour reaction time at room temperature. An aliquot of the red wine to 
which no GAT1 was added, served as control. After this treatment the wine was centrifuged for 2 
minutes at 14 558 g and the supernatant was removed to be analysed further. A noticeable pellet 
of activated charcoal particles was observed in each wine sample after centrifugation. PVPP fining 
was done on the same red wine according to the method described by Zotou et al. (2004). PVPP 
powder was added to red wine at a 50 g/L dosage and stirred for 15 minutes. Following this, the 
murky samples were centrifuged for 15 minutes at 1055.2 g. A noticeable pellet was observed after 
centrifugation and the supernatant was removed and filtered with a 0.2 μm disposable syringe filter 
(Lased, South Africa). As in the case of activated charcoal treatment, an aliquot of the wine that 
was not treated by PVPP, served as control. The colour and phenol removing properties of PVPP 
and activated charcoal were evaluated through absorbance measurements of the supernatants at 
280 nm, 420 nm, 520 nm and 720 nm in quartz cuvettes, using an Ultraspec 2000 UV/Visible 
spectrophotometer (Pharmacia Bio-Tek Instruments, Cambridge, England). The optimal PVPP 
dosage was determined by comparing the percentage colour loss caused by PVPP dosages of 10 
g/L, 25 g/L, 50 g/L, 100 g/L and 150 g/L respectively. Absorbance readings were corrected for 
sample dilutions and for path length differences between the various cuvettes used for the 
spectrophotometric readings. All treatments were performed in duplicate. 
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6.2.3 ENZYME-LINKED SPECTROPHOTOMETRIC ASSAYS 

The enzyme assays used rely on the generation or loss of spectrophotometrically active 
metabolites such as NADH and NADPH and in the enzyme reaction mixtures the final amounts of 
these compounds are stoichiometric to the initial amounts of the respective substrates. The 
analysis of D-glucose and D-fructose is based on the conversion of NADP+ to NADPH, while 
glycerol quantification is based on the oxidation of NADH to NAD+. The analysis of L-lactic acid as 
well as L-malic acid is based on the reduction of NAD+ to NADH. Full details of the enzymatic 
reactions are described in Addendum B of this thesis. Typically, two absorbance readings are 
taken for the enzymatic analysis, one before the onset of an enzymatic reaction (A1), and one after 
completion of the reaction (A2). In order to attain sufficient precision, wines were diluted with de-
ionised H2O where necessary, so that the absolute difference in absorbance lA1-A2l between the 
two readings was at least 0.1 AU and not exceeding 1.0 AU. Absorbance readings were taken at 
340 nm using an Ultraspec 2000 UV/Visible spectrophotometer (Pharmacia Bio-Tek Instruments, 
Cambridge, England). Each wine sample was analysed by at least two independent assay repeats 
in disposable plastic cuvettes (with path length 1 cm) after verification that the cuvettes do not 
absorb light at 340 nm. The precision of replicate determinations was expressed as the coefficient 
of variation that was calculated as:  

CV (%) = ×
x
s

100    

where s is the standard deviation and bar x is the sample mean. 
The assay volume recommended by the manufacturer, namely 3 mL, was reduced to 1 mL in order 
to increase the number of determinations performed per kit. The accuracy of the down-scaling 
procedure was tested on the assay controls provided with the kits.  

6.2.4  HPLC 

6.2.4.1 SPE equipment and optimisation of extraction conditions 

Oasis HLB, C-18 Bond Elut, Chromabond HR-P and Strata SDB-L cartridges were obtained from 
Waters (Milford, MA, USA), Varian (Harbor City, CA, USA), Machery-Nagel (Düren, Germany) and 
Phenomenex (Torrance, CA, USA) respectively. The Oasis HLB cartridge is based on hydrophilic-
lipophylic technology while the C-18 Bond Elut cartridge is packed with octadecylsilyl packing 
material. The Chromabond HR-P and Strata SDB-L cartridges both contain polystyrene-
divinylbenzene packing material. 
 SPE was carried out at an elution rate of one drop per three seconds using a vacuum manifold 
(Supelco Visiprep 24 from Sigma Aldrich, Aston Manor, South Africa). The cartridges were pre-
conditioned with 3 x 1 ml methanol followed by 3 x 1 ml deionised water (pH 2.5 with HCl). 
Subsequently, 1 ml of sample, acidified to pH 2.5 with HCl, was passed through the cartridge 
followed by either 2 × 1 ml, 4 × 1 ml, 6 × 1 ml or 8 × 1 ml of deionised water (pH 2.5) in order to 
determine the optimal solvent volume. The sample fraction and water fraction were pooled. For 
comparison of the different SPE cartridges the organic acids were eluted with 4 × 1 ml acidified 
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water. The recovery for a given treatment were determined as the ratio of the measured 
concentration of the treated sample to the measured concentration the control sample, i.e. a 
sample of the same wine that were directly injected. The composition of the mixture of standards 
used during the evaluation of the SPE methods are shown in Table 1. 

Table 1. Concentrations of the components in the standard mixture that was used for the 
optimisation of the SPE method. 

Standard Concentration (g/L) 
Citric acid 2.25 
Tartaric acid 4.50 
Malic acid 4.50 
Succinic acid 2.25 
Lactic acid 2.25 
Acetic acid 1.80 
Glucose 4.50 
Fructose 4.50 
Glycerol 7.17 
Ethanol 11.14a 
aMeasured in %v/v 

6.2.4.2 Chromatography 

6.2.4.2.1 Standards solutions 

Individual stocks solutions of D-glucose, D-fructose, tartaric acid and citric acid (100 g/L each); L-
malic acid (90 g/L); succinic acid and acetic acid (40 g/L each) and lactic acid (25 g/L) were 
prepared and stored at 4°C. Mixtures of standards for the organic acids and for the sugars were 
prepared to establish calibrations. Ethanol and glycerol calibrations were established with separate 
individual standards, prepared from stock solutions with concentrations of 48 %v/v and 48 g/L 
respectively. The concentration ranges used to establish the calibrations were as follows: 0.05 – 5 
g/L for citric acid; 0.10 – 10 g/L for tartaric acid and malic acid; 0.05 – 5 g/L for succinic acid and 
lactic acid; 0.04 – 4 g/L for acetic acid; 0.2 – 10 g/L for glucose and fructose; 3.2 – 16.1 g/L for 
glycerol and 9.65 – 24.13 %v/v for ethanol. These intervals span the concentration ranges typically 
found for the respective components in wine. Individual standard solutions (10 g/L) were injected of 
each compound for peak identification by retention time.  

6.2.4.2.2 Liquid chromatography (LC) 

All samples were filtered through a 0.22 μm disposable syringe filter (type of filter) (Lasec, South 
Africa) before HPLC analysis. Isocratic LC analysis of sugars, alcohols and acids was performed in 
the same run using an Aminex HPX-87H ion exclusion column with dimensions 300 mm × 7.8 mm 
(Biorad, Hercules, CA, USA) and an Agilent 1100 Series (Waldron, Germany) HPLC instrument 
equipped with diode array- (DAD) and refractive index (RID) detectors with the same 
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manufacturing specifications. The mobile phase was 5 mM H2SO4 in de-ionised water. The flow 
rate was 0.5 ml/min, the injection volume 10 μl unless indicated otherwise and a constant oven 
temperature of 55°C was maintained. The total run time for each analysis was 28 minutes. DAD 
quantification of organic acids was performed at 210 nm and peak integration was performed using 
HP Chemstation software.  

6.2.5  STATISTICS  

Statistical analyses were done in Microsoft Excel 2002 (Microsoft Corporation, www.microsoft.com) 
and Statistica 7.0 (Statsoft Inc., www.statsoft.com) software packages. Coefficient of variance (CV) 
and standard error of laboratory (SEL) values were calculated as described.  
 

CV (%) = ×
x
s

100   

Where s is the standard deviation and bar x is the sample mean. 
 

SEL 
( )

n
yy

2

2
21∑ −

=     

Where y1 and y2 are duplicate measurements of a sample and n is the number of samples (Fern, 
1996). 

6.3 RESULTS AND DISCUSSION 

6.3.1  DECOLOURISATION AND REMOVAL OF PHENOLIC COMPOUNDS IN WINE 
BY PVPP AND ACTIVATED CHARCOAL  

The colour removing properties of the two fining agents were tested on a red wine. Dosages of 
10g/L, 25 g/L, 50 g/L, 100 g/L and 150 g/L of PVPP were used to determine the optimal dosage for 
maximum removal of colour and phenolic compounds. After treatment with activated charcoal, the 
samples were nearly colourless, with some very fine but visible particles, and a thick, black 
precipitate was observed after centrifugation. After treatment with PVPP, samples were clear and 
light pink in colour with a substantial amount of precipitate. Samples treated with 150 g/L PVPP 
were visibly oversaturated.  
 Colour was determined by absorbance at 420 nm, 520 nm and 720 nm and phenolic 
compounds at 280 nm. Measured absorbance values were corrected to compensate for sample 
dilutions and differences in the path lengths of the various cuvettes used. In order to facilitate 
comparison between the different readings, the corrected absorbance values were normalised by 
considering the absorbance of the control samples (not subjected to PVPP treatment) as 100%. 
The absorbance of the treated samples at each recorded wavelength was normalised and 
expressed as a percentage loss in colour and phenolic compounds after treatments with different 
PVPP dosages (Figure 1). Results showed that a PVPP dosage of 50 g/L resulted in a decrease of 
almost 90% in the colour (measured at 420 nm and 520 nm) and a 70 % decrease in the phenolic 
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content of the red wine. At PVPP dosages higher than 50 g/L, the absorbance values increased, 
possibly due to spectral interferences caused by over-saturation of the sample with PVPP. The use 
of PVPP at a 10 g/L dosage was suggested by the manufacturers of the enzymatic kits for 
decolouring of highly pigmented samples such as wine, but from the results shown in Figure 1, this 
was clearly too low for optimal removal of phenolic compounds. The results of this study are more 
comparable to the PVPP dosage used in the publication of Zotou et al. (2004) prior to HPLC 
analysis, namely 50 g/L.  
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Figure 1. Percentage colour (420 nm and 520 nm) and phenolic compounds (280 nm) left in a red wine 
treated with different PVPP dosages in comparison to an untreated control wine. Red wine colour was 
measured at 420 nm and 520 nm and phenolic content at 280 nm. Error bars denote 95% confidence 
intervals.  

A dosage of 20 g/L activated charcoal was recommended by the suppliers for 100% removal of 
colour in red wines. This dosage was compared to the 50 g/L dosage PVPP for the removal of 
coloured compounds. At these dosages, activated charcoal removed up to 22% more colour than 
PVPP (Figure 2) under the laboratory conditions used in this experiment.  
 Activated charcoal has been cited as a better colour removing agent than PVPP by some 
(Zoecklein et al., 1995), yet it has been shown that PVPP can bind larger phenolic compounds 
than activated charcoal, thereby making it more suitable for the removal of phenolic compounds in 
general (Morris and Main, 1995).  
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Figure 2. Percentage colour loss in red wine due to treatment with 20 g/L activated charcoal and 50 g/L 
PVPP. Colour measurements were made at 420 nm, 520 nm and 720 nm. Total colour density was 
calculated as determined as absorbance at 420nm +520nm +720nm. Error bars denote standard 
deviation.  

6.3.2  ENZYME ASSAYS 

All enzymatic analyses were performed in duplicate and a overall measurement error of less than 
5% were maintained. 

6.3.2.1 Downscaling of enzyme assay volumes  

The effect of the downscaling of the enzyme assay volume was tested for D-glucose, L-lactic acid, 
L-malic acid and glycerol using the assay controls of known concentration provided with the 
enzyme kits. An assay control for D-fructose could not be included as it is unstable in an aqueous 
solution and therefore not provided as part of the D-glucose/D-fructose kit. When evaluating the 
effect of downscaling on the accuracy of the assays, the measurement error in the 3 ml volume 
assay volumes (recommended by the manufacturer) were comparable to the measurement error in 
the 1 ml assay volumes (Table 3). The percentage deviation of the measured concentration from 
the reference concentration was unbiased and lower than 4% for D-glucose, L-lactic acid and L-
malic acid. For glycerol the percentage deviation was lower than 6%. It could be concluded that 
downscaling of the assay volume did not affect the performance of any of the abovementioned 
enzymatic assays.  
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Table 3. Evaluation of the accuracy of the enzymatic assays using 3 ml and 1 ml assay volumes 
respectively. 

Assay volume 
3 mlb 

Assay volume 
1 ml 

Compound Concentration of 
reference solutionsa Measured 

concentration 
% Deviation from 

reference 
concentrationc 

Measured 
concentration 

% Deviation from 
reference 

concentrationc 
D-glucose g/L 0.499 0.509 -2.0 0.493 1.2 
L-lactic acid g/L 0.199 0.189 5.0 0.196 1.5 
L-malic acid g/L 0.198 0.203 -2.5 0.206 -4.0 
Glycerol g/L 0.393 0.372 5.3 0.367 6.5 
aReference solutions refer to the assay control solutions of known concentrations provided with the respective enzyme kits; bAssay 
volume recommended by manufacturer; cCalculated as the difference between the concentration of the reference solutions (provided 
by the manufacturer) and the average of the measured concentrations (duplicate determinations).  

6.3.2.2 Matrix effects 

The performance of the D-glucose/D-fructose kit in both red and white wine matrices was 
satisfactory. In each case absorbance values below 1.0 absorbance units (AU) could be 
maintained by using the appropriate dilution, while maintaining absorbance differences between 
0.1 and 1.0 AU for the reactions. The standard error of laboratory (Table 4) was 0.04 g/L and 0.09 
g/L for D-glucose and D-fructose respectively. These values are low in comparison to the average 
concentration of these analytes present in the samples. 
 
Table 4. The standard error of laboratory (SEL) of the enzymatic assays in relation to the average 
concentration of the measured samples. 
Compound Sample no. (white wines; red wines) Concentration range (mean ± SD) SEL (g/L) 
Malic acid g/L 13  0.06 – 4.18 (2.20 ± 1.90) 0.05 
Lactic acid g/L 27 0.00 – 5.12 (1.00 ±1.12 ) 0.23 
Glucose g/L 29 0.11 – 2.24 (0.51 ± 0.47) 0.04 
Fructose g/L 24 0.07 – 5.32 (1.29 ± 1.77)  0.09 
Glycerol g/L 27 4.02 – 16.15 (7.71 ± 3.03 ) 0.32 
aStandard deviation 
 
Absorbance differences between 0.1 and 1.0 AU could easily be achieved with the glycerol kits for 
red and white wines. The absorbance values were in most cases in the order of 1.5 AU, which 
would normally be too high. However, relatively high absorbance values were also observed in the 
blank samples and the assay control samples, for which fairly accurate results were observed, as 
indicated in Table 1. Therefore, it is unlikely that the high absorbance values observed in the wine 
samples were related to a matrix effect. As it did not seem to influence the accuracy of the assays, 
the absorbance values were considered satisfactory. The SEL for the glycerol assays were very 
good. 
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 In the case of L-lactic acid determinations the observed absorbance values and absorbance 
differences were acceptable. However, the repeatability between duplicates was very poor as the 
SEL indicated a error margin up to 23% based on the average concentration of the samples (data 
not shown). This was observed for both red and white wines. Considering the high accuracy 
observed for the analysis of the assay control sample, it is possible that the poor repeatability is 
due to a matrix effect of the wines. However, the cause of such a matrix effect is unclear. 
 The suitability of the L-malic acid enzymatic kit for analysis of wine was tested on a red and 
white wine. The repeatability between duplicate wines of both the red and white wine was good, 
with a SEL of 0.05 g/L. However, the absorbance values of the red wines were very high, in the 
order of 1.5 to 3.0 AU. Unlike the case of the glycerol assays, these unacceptably high absorbance 
values were only observed during the red wine analyses and not during the analysis of the white 
wines, blank samples or assay control samples. Therefore, the high absorbance values were 
considered a matrix effect, possibly caused by the pigmented phenolic compounds present in the 
red wines. 
 It was further attempted to decrease the abovementioned matrix effect observed by diluting 
the red wine samples with de-ionised water. A red wine was spiked with 0.2 g/L L-malic acid and 
analysed undiluted, diluted two-, five- , ten- and fifteen times. In the case of the undiluted and twice 
diluted samples, the matrix effect was too strong, resulting in absorbance values of higher than 
1.000 AU. The dilution effect was too strong at 10 and 15 times dilutions respectively and 
absorbance differences of below 0.100 AU were observed between successive readings. 
Adequate absorbance values and absorbance differences were achieved with the five times diluted 
sample and the malic acid in this sample was determined as 0.32 g/L. It can therefore be said that 
red wines with malic acid concentration exceeding 0.32 g/L can successfully be analysed with 
enzymatic assays using the experimental conditions as described. However, it is generally 
accepted that red wines that have completed malolactic fermentation normally contains less than 
0.3 g/L L-malic acid. Therefore, an alternative sample preparation method will be required in order 
to use L-malic acid enzymatic assays as a reference method for the development of a FTMIR 
calibration model to monitor malolactic fermentation up to the endpoint of the fermentation process. 
 The effects of the colour removing sample treatments with 20 g/L activated charcoal and 50 
g/L PVPP on the performance of enzymatic analysis of L-malic acid in red wines were investigated. 
When these fining agents were tested in an L-malic acid assay, both fining agents caused heavy 
spectral interferences, despite the fact that the fined samples were now nearly colourless (data not 
shown). These dosages of PVPP and activated charcoal are therefore not compatible with 
enzymatic assays of L-malic acid without further sample clean-up to remove PVPP and activated 
charcoal traces. However, given the objective of evaluating FTMIR calibrations, additional sample 
clean-up procedures would be too cumbersome. Alternatively, enzymatic assay kits from various 
manufacturers can be compared.  
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6.3.3  HPLC 

HPLC analyses were done in duplicate. The overall measurement error between duplicates, 
calculated as CV%, were less than 5%.  

6.3.3.1 Standards 

Standard solutions were analysed to determine retention times and the degree of separation of the 
individual compounds. The peaks are identified in Figure 3 and Table 5. Fructose (peak no. 8) co-
eluted with malic acid (peak no. 3). Good linearity and recovery were observed for each of the 
analytes. 

Table 5. Relevant chromatographic information for the HPLC analysis of standard compounds. 
Peaks numbers correspond to those in Figure 3.  

Peak Compound Retention time (min) Concentration Range (g/L) R2 % Recoverya 
1 Citric acid 9.57 0.05 - 5.00 0.998 96 
2 Tartaric acid 10.17 0.10 -10.00 0.997 97 
3 Malic acid 11.41 0.10 - 10.00 0.999 97 
4 Succinic acid 14.28 0.05 - 5.00 0.998 97 
5 Lactic acid 14.95 0.05 - 5.00 0.998 97 
6 Acetic acid 18.01 0.04 - 4.00 0.997 95 
7 Glucose 10.83 0.2 - 10.00 0.997 95 
8 Fructose 11.80 0.2 - 10.00 0.998 95 
9 Glycerol 15.89 3.20 - 16.01 0.998 100 
10 Ethanol 25.48 9.65 - 24.13b 0.996 91 
aDetermined as the ratio of the measured concentration to the actual concentration of a given compound in the mixture of standards; 
bMeasured in %v/v 
 

6.3.3.2 Matrix effects 

During HPLC analysis of especially red wine, co-elution of phenolic compounds and organic acids 
takes place, which interferes with the quantification of the organic acids. This can clearly be seen 
in Figure 4 a-b, where the interference in the directly injected red wine (b) is more substantial than 
for the directly injected white wine (a). Therefore it was considered necessary to remove phenolic 
compounds from red wine samples to ensure accurate analysis of the organic acids. Solid phase 
extraction (SPE) on reversed phase packing materials, where the compounds are separated 
according to hydrophobicity, has been used for this purposes in several studies (Dopico-García et 
al., 2007; de Villiers et al., 2004).  
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Figure 3A and B. Analysis of a mixture of standards containing organic acids, sugars and alcohols on 
a Aminex HPX-87H ion exclusion column with 5 mM H2SO4 mobile phase at a flow rate of 0.5 ml/min. 
Organic acid detection was performed using UV detection at 210 nm (a); sugar and alcohol detection 
was done with RID (b). Peak identification, using external standards, as presented in Table 1. Peak 3 
(malic acid) clearly co-elutes with Peak 8 (fructose). 

6.3.3.3 Comparison between SPE cartridges 

During SPE some organic acids may be retained on the column and this reduces the recovery of 
these compounds. A selection of reversed phase cartridges, Oasis HLB, C-18 Bond Elut, 
Chromabond HR-P and Strata SDB-L, was compared with the objective to achieve optimal 
retention of phenolic compounds and maximum recovery of organic acids. Based on visual 
inspection of the cartridges, the Oasis HLB cartridge clearly retained a red pigmented band on the 
cartridge before the phenolic compounds were eluted. The SDB-L cartridge also retained the 
pigmented compounds fairly well, although not in a clear band. The C-18 Bond Elute cartridge did 
not retain the pigmented compounds as effectively, although better than the Chromabond HR-P 
cartridge for which elution of pigmented compounds was observed during the first rinsing step.  
 Compared to the control red wine (direct injection) (Figure 4b); all the cartridges removed the 
phenolic interferences to some extent (Figure 4c-f). Significantly more interfering compounds are 
detected by UV detection for the sample treated on the Chromabond HR-P cartridge (Figure 4c) 
compared to the Bond Elute cartridge (Figure 4d). A large, unidentified peak (b), which was also 
visible in the control sample, eluted at 25.09 minutes in the C-18 Bond Elute sample but did not 
elute in the Chromabond HR-P sample. It seems as if some of the organic acid peaks are larger in 
the C-18 Bond Elut sample than the Chromabond HR-P sample. The peak areas of all organic 
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acids were higher in the Oasis HLB (Figure 4e) and Strata SDB-L (Figure 4f) samples, compared 
to the C-18 Bond Elute and Chromabond HR-P samples, indicating higher recovery on the former 
two cartridges. Moreover, the unknown peak (a) detected at 6.9 minutes, presumably representing 
unretained organic molecules, was smaller in the Oasis HLB and Strata SDB-L chromatograms 
compared to the other two. This indicates more effective removal of interfering compounds on 
these cartridges. Based on these results, the Oasis HLB and Strata SDB-L cartridges were 
considered preferable to the other two cartridges. Differences could also be observed between the 
Oasis HLB and Strata SDB-L cartridges in terms of the two unknown peaks (a) and (b). Both of 
these peaks were less prominent on the Oasis HLB chromatogram than the Strata SDB-L 
chromatogram. However, the peak area of tartaric acid was higher in the Strata SDB-L 
chromatogram. The differences between the Oasis HLB cartridge and the Strata SDB-L cartridge 
seemed arbitrary and the Strata SDB-L was chosen for further analysis. 
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Figure 4a - f Comparison of sample clean-up treatments using SPE for improved quantification of 
organic acids in wine with HPLC analysis using an Aminex HPX-87H ion exclusion column (Biorad) 
with 5 mM H2SO4 mobile phase at a flow rate of 0.5 ml/min. Peak a and b denotes unidentified 
interfering peaks, while peak 2 is identified as tartaric acid in Table 1. Figures 4a and b represents 
the analysis of a direct injected white and red wine respectively. Figure 4c-f represents a red wine 
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that underwent SPE sample clean-up with Chromabond HR-P, C-18 Bond Elut, Oasis HLB and 
Strata SDB-L SPE cartridges respectively. 

6.3.3.4 Optimisation of solvent volume for elution of organic acids 

After conditioning of the Strata SDB-L cartridge, 1 ml of sample was passed through followed by 2 
ml, 4 ml, 6 ml and 8 ml acidified water (each were passed through 1 ml at a time) to determine the 
smallest solvent volume that provides the highest recoveries for the compounds of interest. The 
experiment was executed using a red wine (spiked with 2 g/L of each organic acid, glucose and 
fructose using individual standards) and on a mixture of standards to exclude any matrix effects 
(Table 1). For the standards mixture, the highest recoveries were obtained in the 8 ml rinse 
fraction, although high recoveries (larger than 90% except for citric acid which was 84%) were 
achieved in the 6 ml rinse fraction. In the red wine, the recoveries were extremely poor for the 
organic acids (Table 6). The recoveries for glycerol and ethanol were better, around 100%, and 
although the recoveries for the sugars were high, the dilution effect on the 6 ml and 8 ml fractions 
were so strong that these peaks were below the limit of detection. The wines were then diluted 2 
times and 10 times prior to SPE in order to improve the recoveries by reducing the matrix effect. 
The organic acids were eluted with 6 ml of acidified water as a compromise between the dilution 
effect on the sugars and the recovery of the organic acids. The recoveries of the 2 times diluted 
wine was still very poor, mostly around 60% (Table 6). The dilution effect was too severe in the 
case of the 10 times diluted wine where glucose, fructose, malic acid and lactic acid were below 
the limit of detection, even though the injection volume was doubled (data not shown).  

Table 6. Average percentage recovery for the various analytes during sample clean up of a 
standard solution, a red wine and a twice diluted red wine with SPE as well as a red wine fined with 
50 g/L PVPPa. SPE analyses were performed in duplicate while PVPP analyses were carried out in 
six repeat measurements. Quantification was done by HPLC analysis as described in the text. 

  SPE with Standardsb SPE with Wine SPE with Diluted wine PVPP 
Citric Acid 84% 32% 44% 94% 
Tartaric acid 97% 56% 49% 95% 
Glucose 97% nd nd 101% 
Malic Acid 96% 31% 91% 100% 
Fructose 99% nd 110% 103% 
Succinic Acid 91% 44% 69% 89% 
Lactic Acid 97% 43% 66% 94% 
Glycerol 95% 91% 85% 104% 
Acetic Acid 102% 34% 62% 97% 
Ethanol 104% 122% 102% 100% 

aSPE was performed using a Strata SDB-L cartridge with an elution volume of 6 ml acidified water; bRefer to 

Table 1. 

6.3.3.5 PVPP fining for the removal of phenolic compounds 

A red wine spiked with 2 g/L of each organic acid, fructose and glucose were treated eight 
independent times with 50 g/L PVPP (Figure 5). Six of the samples were diluted two times while 
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the other two were analysed undiluted. No difference were observed between the diluted and 
undiluted wines. In both cases the recoveries were between 89% and 104% for all the compounds 
and the repeatability was excellent. The reproducibility, determined by treating five different non-
spiked wines, was somewhat inconsistent. Despite this, the recoveries for each compound in at 
least three of the wines corresponded by more than 98 % (Table 7). Poor recoveries were 
observed for malic acid in these five wines.  
 

 

 
Figure 5. HPLC analysis of an undiluted red wine before (top) and after (bottom) treatment with 50 g/L 
PVPP. 

Table 7. Recoveries of organic compounds in five independent wines after treatment with 50 g/L 
PVPP. Quantification was done with HPLC analysis as described in the text. 
  Wine 1 Wine 2 Wine 3 Wine 4 Wine 5 
Citric Acid 186% 113% 114% 31% 112%
Tartaric acid 85% 101% 114% 103% 102%
Glucose 102% 98% nd 95% 99%
Malic acid nd 49% 26% 25% 40%
Fructose 111% 94% 75% 98% 96%
Lactic acid 84% 74% 92% 89% 92%
Glycerol 109% 102% 58% 101% 102%
Acetic acid 96% 99% 106% 106% 97%
Ethanol 92% 100% 98% 99% 100%

6.3.4. WINE ANALYSIS 

Enzymatic assays and HPLC methods were compared based on the precision of wine analysis. 
The standard error of laboratory (SEL) indicates the measurement error between duplicate 
samples. A summary of the SEL values for the enzymatic and HPLC analyses of malic acid, lactic 

min0 5 10 15 20 25

mAU

0

50

100

150

200

250

300

350

400

 DAD1 B, Sig=210,16 Ref=off (200707\LL000044.D)
min0 5 10 15 20 25

mAU

0

250

500

750

1000

1250

1500

1750

2000

 DAD1 C, Sig=220,8 Ref=off (200707\LL000042.D)



 88

acid, glucose, fructose and glycerol is given in Table 8. In the case of glucose and fructose, lower 
measurement errors were observed during enzymatic analysis. In the case of lactic acid, malic acid 
and glycerol, lower laboratory errors were observed during HPLC analysis.  
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Table 8. Summary of the standard error of laboratory (SEL) for the determination of selected 
quality control analytes with enzymatic assays and HPLC. 

Analyte SELa for enzymatic assays (g/L) SEL for HPLC analysis (g/L) 
Malic acid 0.05 0.034 
Lactic acid 0.23 0.089 
Glucose 0.04 0.112 
Fructose 0.09 0.229 
Glycerol 0.32 0.058 
aStandard error of laboratory. 

6.4 CONCLUSIONS 

Enzymatic assays were found suitable for the determination of glucose, fructose and glycerol in red 
and white wines as well as malic acid in white wines and red wines containing more than 0.32 g/L 
malic acid. It was determined that six samples could be measured in duplicate simultaneously. The 
accumulated reaction time for the determination of all these compounds in six duplicate samples is 
estimated as 41 to 63 minutes. The time spent preparing the enzymatic reactions, performing the 
spectrophotometric analyses and changing between assay kits still needs to be taken into account. 
The total runtime of the HPLC analyses is 28 minutes during which the abovementioned 
compounds as well as lactic acid, ethanol and additional organic acids are determined in a single 
sample. Therefore, the accumulated runtime for six samples analysed in duplicate is estimated at 
336 minutes or 5 hours and 36 minutes. This excludes the amount of time spent preparing mobile 
phases, establishing calibration curves, sample preparation and integration of the resulting 
chromatograms. Therefore, ion exclusion HPLC analysis should not be regarded a quick and easy 
way to determine a variety of reference values in a single run. For the determination of glucose, 
fructose, glycerol and malic acid it seems that enzymatic assays are a faster method, although 
HPLC holds the advantage of a lower limit of quantification for malic acid in red wines as well as 
the ability to generate data for additional compounds. 
 The two sample clean-up methods for HPLC analysis evaluated in this study, SPE and PVPP 
fining, both effectively removed interfering phenolic compounds. On a practical level, both methods 
were time consuming and labour intensive. The PVPP fining method was considerably less 
expensive than the SPE method and provided better recoveries for the organic acids. 
 None of these methods are ideal and the choice between these methods involves a 
compromise between limit of quantification, recovery, and reproducibility as well as time and cost 
efficiency. Based on standard error of laboratory, glucose and fructose can be measured more 
reliably with enzymatic assays than with HPLC while the opposite is true for glycerol, malic acid 
and lactic acid. Ideally, the suitability of the two methods should have been evaluated by the 
performance of preliminary calibration models established with data from each method 
respectively. According to results reported by Blieke in 2005, better calibration models were 
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obtained for enzymatically determined analytes than for HPLC determined analytes. However, it 
was suggested that the automation of the enzymatic method used increased the stability of the 
calibrations (Blieke, 2005). Although not the ideal practical solution, it is clearly more reliable to use 
different approaches for the determination of organic acids and alcoholic fermentation related 
analytes. 
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RESEARCH RESULTS 

ABSTRACT 

Fourier transform mid-infrared (FTMIR) spectroscopy plays an important role in wine quality control 
by providing a rapid and cost effective method to determine a range of major wine constituents. 
The objective of this study was to optimise the quantification of major wine constituents with 
FTMIR. A sample selection procedure based on principal component analyses was used to 
optimise the degree of variance in the calibration sample set. A selection of degassing procedures 
were evaluated and compared in terms of efficient CO2 removal. The performance of commercial 
FTMIR calibrations in a young wine matrix were evaluated. New preliminary calibration models 
were established for young wines and evaluated in terms of coefficient of determination, bias and 
prediction error. The effect of wavenumber selection were also evaluated. Vacuum filtration was 
regarded as the most efficient degassing procedure. The commercial calibration models for VA, 
malic acid and lactic acid performed well in a young wine matrix. The new preliminary models for 
the prediction of titratable acidity, malic acid, VA, lactic acid, glucose, fructose and glycerol 
performed better using a small selection of highly correlated wavenumbers. Better prediction 
models for pH and ethanol were obtained using a larger wavenumber region. In conclusion, the 
establishment of FTMIR calibrations should not be performed using a recipe-like approach but with 
careful consideration of the limitations of the datasets, matrix effects and wavenumber selection. 

7.1 INTRODUCTION 

There are several chemical parameters that need to be monitored during wine production. 
Titratable acidity and pH play an important role in the organoleptic properties and microbial stability 
of the wine. Volatile acidity (VA) influences the quality of a wine and large amounts of this 
parameter can indicate microbial spoilage. The malic acid and lactic acid content in wine are 
influenced by malolactic fermentation, a process during which lactic acid bacteria converts malic 
acid to lactic acid. This process plays an important role in the sensory properties and stability of 
wine and therefore, it is important to monitor the levels of malic and lactic acid in wine during 
malolactic fermentation. Winemakers need to measure the glucose and fructose levels in wine 
during alcoholic fermentation to monitor the process and to identify problematic fermentations. 
High levels of residual sugar in wine can stimulate the growth of unwanted spoilage micro-
organisms, which can have detrimental results, especially after bottling. The fermentation process 
can also be followed by the increase in ethanol concentration in the wine. The final ethanol 
concentration in wine is also of high importance as there are certain legal limits that need to be 
adhered to. In addition, ethanol plays a subtle but important role in the flavour of wine. The 
organoleptic impact of glycerol in wine is debatable, but the by-products formed during glycerol 



 93

production play an important role. These by-products include acetic acid, acetaldehyde and 
diacetyl which are all associated with decreased wine quality (Ribereau-Gayon et al., 2000). 
 Due to the high sample throughput in wine laboratories during the harvest season, it is 
important to be able to determine these compounds in a time and cost effective way. The 
advantages of Fourier transform infrared (FTMIR) spectroscopy for rapid wine screening and 
quality control during winemaking have already been reported by several authors (Patz et al., 
2004; Kupina and Shrikhande, 2003; Gishen and Holdstock, 2000). This technique measures the 
absorption of infrared radiation by covalent bonds contained in molecules such as C-H, O-H, C-O, 
C=O and N-H groups in the mid-infrared region of the electromagnetic spectrum that is usually 
defined as ranging from 4000 to 400 cm-1, or in terms of nanometers from 25000 to 2500 nm 
(Skoog et al., 1997). The absorption data at all the infrared wavenumbers are captured 
simultaneously at the detector in the form of an interferogram which is then converted with the 
Fourier transform algorithm to a transmittance or absorbance spectrum. The resulting spectrum 
can be converted to quantitative data by means of a calibration process that involves chemometric 
techniques such as partial least square regression (PLS) (Wehling, 1998). This process 
establishes a correlation between the amount of absorption of infrared radiation at specific 
wavenumbers and the concentrations of a specific compound as measured with an appropriate 
reference method. The correlation is typically described by a linear algorithm. The concentrations 
of a compound of interest in future samples are then predicted on the basis of the algorithm and 
the FTMIR spectrum of the sample. The selection of suitable wavenumbers is an important part of 
the calibration process. Not all wavenumbers in the mid infrared spectral region contains useful 
information that can be correlated to wine compounds of interest. The wavenumber regions 3626-
2970 cm-1 and 1716-1543 cm-1 has been reported to contain spectral noise largely caused by water 
absorbance, while very little useful wine-related information is captured in the 5011-3630 cm-1 
regions (Nieuwoudt, et al., 2004; Patz, et al., 2004).  
 The first purpose-built FTMIR spectrometer dedicated to wine analysis was marketed in 1998 
(Foss Analytical, Denmark) and the instrument is fitted with useful ready-to-use commercial 
calibrations, with the software accompanying the instrumentation. These calibrations were 
developed using wine samples mostly from European origin and are to be used as a starting point 
for the quantitative analysis in a wine laboratory. The software of the instrumentation does facilitate 
adjustment of the slope and/or intercept of the calibration algorithms if it is necessary to improve 
the prediction error of samples analysed in the laboratory (WineScan FT120 Type 77110 and 
77310 Reference Manual, Foss Analytical, Denmark, 2001). The software can also be used to 
create new calibration algorithms for compounds of interest. 
 The success of quantification using FTMIR spectroscopy relies on the quality of the spectra 
and the quality of the reference sample set. The quality of mid-infrared spectra can be negatively 
influenced by high levels of CO2 in the sample. Poor spectral repeatability has been reported for 
samples containing high levels of CO2 (Bevin et al., 2006).  
 The reference sample set that will be used to establish the calibration prediction models must 
meet two very important criteria. Firstly the reference values must be accurate and will therefore 
rely on the performance of the reference method. Secondly, it is also important that the reference 
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samples are representative of the samples that will be analysed in the future and all variation to be 
expected in future unknown samples analysed by FTMIR must be accounted for in the calibration 
model. Several aspects of the sample matrix must be taken into account, including the 
concentration range of the compounds of interest, the colour and style of the wine, the cultivar and 
the production stage (Nieuwoudt et al., 2004).  
 Young wines used in this study are defined as single cultivar, unwooded wines that have not 
been bottled for commercial release yet. Although young wines contain similar amounts of the 
abovementioned analytes as bottled wines, they have not necessarily been subjected to blending, 
ageing, fining treatments or stabilisation processes. The inherent instability of young wines could 
be the source of a matrix effect that might influence the prediction abilities of commercial 
calibrations.  
This study had two main aims. The first was to evaluate the performance of global FTMIR 
calibrations of the Winescan FT 120™ spectrometer (Foss Analytical, Denmark) for quantification 
of pH, titratable acidity, volatile acidity, malic acid, lactic acid, glucose, fructose, ethanol and 
glycerol in South African young wines. Secondly, preliminary new calibrations set up specifically for 
a young wine matrix were established and the performance of the respective calibration models 
was evaluated and optimised using different strategies of wavenumber selection and sample 
selection procedures. In addition, some elementary sample preparation methods, particularly 
efficient CO2 removal in wine samples which is required for FTMIR spectroscopy were evaluated.  

7.2 MATERIALS AND METHODS 

7.2.1  WINE SAMPLES  

Wines were collected from the 2005 and 2006 South African Young Wine Shows and 
supplemented with wines from the Stellenbosch University experimental cellar and stored at 4-8°C 
till analysed. Wines were specifically chosen to include important South African cultivars in order to 
be representative of South African wines. The wine samples included Sauvignon blanc, 
Chardonnay, Chenin blanc, Pinotage, Merlot, Cabernet Sauvignon and Shiraz wines. Wines were 
selected from 4 main winemaking regions in South Africa, namely Paarl, Stellenbosch, Robertson 
and Worcester in order to include spectral variation related to the geographic origin of the samples 
in the FTMIR spectra. 

7.2.2  REFERENCE ANALYSES 

Reference analyses for pH, titratable acidity, volatile acidity and ethanol were done using methods 
recommended by the Office International de la Vigne et du Vin (http://www.oiv.com). pH was 
determined using a Unitrode pH meter (Metrohm, Switzerland). Certified buffers (pH 7.00 and pH 
4.00, LASEC, SA) were used to calibrate the electrode. Titratable acidity (expressed as g/L tartaric 
acid) measured by potentiometric titration using a 702 SM Titrino (Metrohm, Switzerland) and 
standardised 0.33 N sodium hydroxide (LASEC, Cape Town, SA) to the end point of pH 7.00 as 
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described by Zoecklein et al. (1999). Volatile acidity and ethanol analyses were outsourced and 
were determined by cash still distillation and pycnometry respectively. Glycerol was determined by 
enzymatic analysis using a R-Biopharm Glycerol kit (AEC Amersham, Sandton, South Africa). 
Malic acid, lactic acid, glucose and fructose determinations were done by HPLC analyses(refer to 
sections 2.4.2.1 and 2.4.2.2 in Chapter 6).  

7.2.3  FTMIR SPECTROSCOPY 

7.2.3.1 Sample preparation 

Centrifugation, sonication and multiple filtration were evaluated for efficient CO2 removal on a 
commercial wine. Samples were centrifuged for five minutes at 2993.3 g (RC 5C centrifuge with a 
S1-50T rotor from Sorvall, Newtown, South Africa). Sonication was performed in an ultrasound 
water bath for ten minutes. Samples were filtered with a filtration unit (type 79500, FOSS 
Analytical, Denmark) connected to a vacuum pump. Filter paper disks graded with pore size 20 to 
25 μm and diameter 185 mm (Schleicher & Schuell, Germany, catalogue No. 10312714) were 
used for filtration. The amounts of CO2 present in the wine after these treatments were measured 
with FTMIR spectroscopy. Wines used for the calibrations were filtered two and three times for red 
and white wines respectively. Statistical analysis (ANOVA) of the sample preparation treatments 
was done in Statistica 7.0 (StatSoft. Inc, Tulsa, USA). 

7.2.3.2 Generation of FTMIR spectra 

Instrument: The FTMIR spectra of the wines were generated in the wavenumber region 5011-929 
cm-1 with a WineScan FT 120 spectrometer (Foss Analytical, Denmark, 2001). 
Spectral acquisition and processing: Samples (7 mL) were pumped through the CaF2-lined 
cuvette (path length 37 μm) at a constant temperature of 40°C. Samples were scanned from 5011-
929 cm-1 at 4 cm-1 intervals. The amount of infrared radiation transmitted by the sample were 
recorded at the detector and used to generate an interferogram that is calculated from a total of 20 
scans. Subsequently the interferogram is converted to a single beam transmittance spectrum by 
the Fourier transformation. (WineScan FT120 Type 77110 and 77310 Reference Manual, Foss 
Analytical, Denmark, 2001). 

7.2.4  EVALUATION OF GLOBAL FTMIR SPECTROSCOPY CALIBRATION MODELS  

The descriptive statistics of the wine samples used to establish the global WineScan FTMIR 
calibrations are given in Table 1. 
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Table 1. Descriptive statistics of wine samples used to establish global WineScan FTMIR 
calibrationsa. 

Parameter 
Value range of calibration 

samples mean (min.- max.)b 
Reference method Referencea 

pH 3.55 (2.82 -4.04) potentiometer Application note 137b P/N 1025274 
Titratable Acidity g/Lc 4.01 (2.45 – 10.31) titration using NaOH Application note 139, P/N 1025275 
Volatile Acidity g/L 0.37 (0.04 – 1.07) distillation and titration; 

titration using NaOH 
Application note 140, P/N 1025277 

Malic Acid g/L 0.82 (0.0 – 5.20) HPLC, enzymatic Application note 136, P/N 1025273 
Lactic Acid g/L 1.16 (0.0 – 3.87) HPLC, enzymatic Application note 135, P/N 1025272 
Glucose g/L 2.23 (0.0 – 15.70) enzymatic Application note 134, P/N 1025271 
Fructose g/L 3.38 (0.0 – 23.30) enzymatic Application note 132, P/N 1025269 
Ethanol %v/v 12.12 (8.5 – 14.75) electronic density meter, 

distillation 
Application note 131, P/N 1025268 

Glycerol g/L 5.11 (3.40 – 10.78) enzymatic Application note 191, P/N 1025415 
aApplication notes for WineScan FT 120 Type 77110 and 77310, Issue 2GB, October 2001, Foss Analytical, Denmark. 
http://www.foss.dk; bminimum to maximum range; cmeasured as g/L tartaric acid. 
 
The suitability of the global calibrations for the South African young wine matrix was evaluated by 
fitting the reference sample set (consisting of FTMIR wine spectra and corresponding reference 
values for the compounds of interest) as an independent validation set onto the global calibrations. 
Goodness-of-fit was evaluated by partial least squares regression 1 (PLS1) using the Advanced 
Performance software module version 2.2.2 of the FTMIR spectrometer (WineScan FT120 Type 
77110 and 77310 Reference Manual, Foss Analytical, Denmark, 2001). The performance of the 
global calibrations was evaluated by the statistical indicators describes in section 2.6. 

7.2.5  ESTABLISHMENT OF NEW FTMIR SPECTROSCOPY CALIBRATION MODELS  

7.2.5.1 Selection of calibration sample sets 

For the evaluation of the preliminary new young wine calibration models, the reference sample set 
for each compound was divided into a calibration and validation set containing 60% and 40% of the 
samples respectively. The samples for the calibration set was selected by performing principal 
component analysis (PCA) on the FTMIR spectra and selecting equal numbers of samples from 
each quadrant of the resulting score plot (Naes et al., 2002). Histograms were plotted of the full 
reference sample set and the calibration set to ensure that the latter covers the entire 
concentration range of the former. The calibration set selection procedure was performed with The 
Unscrambler 9.2 software (Camo ASA, Trondheim, Norway).  
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7.2.5.2 Establishment of new FTMIR calibration models 

New calibrations were established in the Advanced Performance software package of the 
WineScan instrument using PLS1 regression. The calibration errors were calculated using ten-
segmented cross-validation as pre-programmed by the software. By default the software 
automatically selects 15 filters that consist of single wavenumbers or a small number of adjacent 
wavenumbers that collectively capture the maximum variation in the concentrations of the analyte, 
or y-variable, under investigation. Typically with this selection strategy typically not more than 25 
individual wavenumbers are selected for calibration out of a total spectrum based on 1056 
wavenumbers. Each new calibration model was validated using an independent validation sample 
set and PLS1.  
 Calibration models were also established by using larger wavenumber regions than those 
recommended by the WineScan software in order to evaluate the impact of wavenumer selection 
on the accuracy of the predicted values generated by the respective calibration models. These 
calibrations were performed with The Unscrambler 9.2 software using PLS1 regression and the 
same calibration and validation sample sets, established before. Ten-segmented cross validation 
was used in order to mimic the Advanced Performance software calibration procedure as closely 
as possible. These calibrations were also validated further with independent validation sample 
sets.  

7.2.6  STATISTICAL INDICATORS 

Standard error of laboratory (SEL) and standard deviation of difference between repeated 
measurements of the reference values (SDD) values were calculated for each reference method 
as discussed in Chapter 3. The accuracy of the predictive ability of the calibration model, relative to 
the reference data, was expressed as standard error of cross validation (SECV) when based on 
the calibration samples and as standard error of prediction (SEP) when based on independent 
validation sets. The performance of the calibrations was evaluated in terms of bias (which gives an 
indication of a systematic error in the predicted data), coefficient of determination (R2), and the 
ratio between SECV:SEL and SEP:SDD. The residual predictive deviation (RPD) was used as 
broad indicator of the performance of the calibration models when using independent validation 
(Williams, 1995). RPD is defined as the ratio of the standard deviation of the reference values to 
the standard error of the predicted values. These criteria are discussed in detail in Chapter 3 and a 
summary of the criteria and the proposed interpretation thereof are given in Table 2. The criteria 
limits are categorised according to the suitability of a calibration for a specific purpose. 
Quantification refers to the determination of a quantitative value while screening refers to ability to 
distinguish between high, medium and low values.  
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Table 2. Summary of criteria used to interpret the for performance the precision of infrared 
calibrations 

Performance criterium Fit for quantification Fit for quantification Fit for screening Unsuitable for quantification 

R2 a  >0.9 0.7 - 0.9 0.5 – 0.7 > 0.5 
SECV:SELb <1.5 2 - 3 n/a n/a 
SEP:SDDc <2 <2 n/a n/a 
RPDd >5 >5 3-5 <3 
aR2 Coefficient of determination (Shenk and Westerhaus, 1996); bSECV: SEL: ratio of standard error of cross validation to standard error 
of laboratory (Shenk and Westerhaus, 1996); cSEP: SDD: ratio of standard error of prediction to standard deviation of difference for 
reference samples (Esbensen, 2002); dRPD: Residual prediction deviation (Williams, 1995). 

7.3 RESULTS AND DISCUSSION 

7.3.1  DESCRIPTIVE STATISTICS OF REFERENCE SAMPLES 

The descriptive statistics of the wine samples used in this study are given in Table 3. The 
concentration range of the reference sample sets for all the wine parameters, except pH, were 
representative of healthy South African dry table wines. The pH values of the sample set used in 
this study covers a range up to 3.90 units (Table 3) and therefore the pH calibration models 
discussed in this section are only valid up to pH 3.9. This is not entirely representative of the pH 
ranges found in South African wines, which have been known to have pH values well over 4 units.  

Table 3. Descriptive statistics of South African young wines used as a refrence set to evaluate the 
performance of the global WineScan FTMIR calibrationsa and to establish new calibration models 
for quantification of pH, titratable acidity, volatile acidity, malic acid, lactic acid, glucose, fructose, 
ethanol and glycerol for the young wines.  

Wine parameter Sample No. 
(white;red)b 

Value range  
(min. – max.)c Mean ± SDd SDDe SELf 

pH 38 (20;18) 3.19 -3.90 3.58 ± 0.17 0.093 0.045 
Titratable acidity 
g/Lg 38 (20;18) 4.93 - 8.67 5.90 ± 0.73 0.063 0.068 

Volatile acidity g/L 20 (10;10) 0.19 -0.81 0.49 ± 0.16 n/a  
Malic acid g/L 61 (41;20) 0.11 – 5.72 2.42 ± 1.89 0.056 0.034 

Lactic acid g/L 61 (40;21) 0.09 – 3.55 0.65 ± 0.75 0.121 
 0.089 

Glucose g/L 62 (54;8) 0.22-4.05 2.14 ± 0.85 0.104 0.112 
Fructose g/L 67 (54;13) 0.21-6.39 2.52 ± 1.35 0.265 0.229 
Ethanol %v/v 27 (14;13) 11.43-15.24 13.34 ± 0.82 n/a n/a 
Glycerol g/L 27 (14;13) 4.02-16.15 7.71 ± 3.03 0.460 0.321 
aFoss Analytical, Denmark. http://www.foss.dk; bSample number (white wine; red wine); cMinimum to maximum value; 
dStandard deviation; eStandard deviation of difference for reference samples; fStandard error of laboratory; gMeasured 
as g/L tartaric acid 
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A comparison between the concentration ranges for the global calibrations (Table 1) and the 
ranges for South African samples (Table 3) showed that for malic acid, alcohol and glycerol the 
wines used in this study fell outside the calibration ranges of the global models. This result 
indicated that new calibration models would have to be established for the South African samples. 

7.3.2  SELECTION OF CALIBRATION SAMPLES 

A typical spectrum of a wine sample is shown in Figure 1. The two areas where water absorbs, 
respectively 3626 – 2970 cm-1 and 1716 - 1543 cm-1, could be clearly distinguished by visual 
inspection. These regions were typically broad and covered several hundreds of wavenumbers.  
 In selecting calibration samples, it is important to capture as much of the spectral variation in 
the FTMIR spectra as possible. The variation can reside in both the x-variables (wavenumbers in 
this study) and the y-variables (reference values for the respective compounds in this study) a 
useful way of modeling the total variability is through principal component analysis of the spectra 
(Esbensen, 2002). The outcomes of this selection strategy are illustrated for the selection of 
calibration samples for malic acid (Figure 2). Samples with highest loadings on principal 
component 1 (PC1) and PC2 were chosen first. The calibration sets for all components consisted 
of the 60% of the number of samples in the reference set. Calibration samples that had relatively 
high loadings on PC1 and PC2 were selected first in such a way that the selected samples were 
evenly distributed over all four quadrants of the PCA score plot. 
 

 
Figure 1. A typical FTMIR spectrum of an young wine generated in the wavenumber region 929 to 
5011 cm-1. The water 1 and water 2 regions refer to the wavenumber regions 1716-1543 cm-1 and 
2970-3626 cm-1 respectively and is considered to contain largely spectral noise caused by intense 
water absorbance. 
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Figure 2. Graphic illustration of the selection strategy used to select calibration samples for establishing 
a FTMIR spectroscopy calibration. Markers in the PCA score plot represent FTMIR spectra of wines 
and the encircled markers represent samples selected for the calibration set. Uncircled markers 
represent samples that were used in an independent validation set. 

The reference sample sets were each split up into a calibration set and a validation set by using a 
PCA-based sample selection method where samples were selected from. The concentration range 
of the calibration set samples were compared to the range of the entire reference set. A 
comparison between the malic acid reference set and calibration set are shown in Figure 3. The 
malic acid calibration samples covered the same concentration range as the reference sample set. 
Similar results were observed for calibration and reference sets for the other wine parameters.  
 In the case of fructose, the red samples clustered in one quadrant of the score plot leading to 
the selection of red and white calibration samples in separate PCA score plots. 

 

 
Figure 3. The malic acid distribution in the reference sample set (top) and the calibration sample set 
(bottom).  
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7.3.3  SAMPLE PREPARATION FOR FTMIR SPECTROSCOPY 

Sample CO2 levels of less than 300 mg/L were considered acceptable for FTMIR analyses. Three 
different procedures to remove CO2 gas from wine samples were compared as shown in Figure 4. 
The control wine already contained a relatively low amount of CO2 compared to the values that can 
be expected from young wines. All treatments contained significantly lower amounts of CO2 
compared to the control. The best results were obtained after multiple filtrations under vacuum, 
after which the sample contained just more than a third of the CO2 present in the control sample. 
This method was chosen to degas the wine samples in all further analysis, with spot checks at 
regular intervals to ensure that the CO2 levels in the sample wines are in fact below the required 
300 mg/L. 
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Figure 4. The CO2 levels in a red wine after three different sample treatment procedures. Treatments 
were performed in triplicate using FTMIR spectroscopy. Error bars denote 95% confidence intervals . 

7.3.4  EVALUATION OF GLOBAL CALIBRATIONS 

The performance of the WineScan FT 120 global calibrations were evaluated in terms of the 
performance parameters indicated in Table 3. A summary of the validation statistics using South 
African young wines are given in Table 4. 

7.3.4.1 pH 

The pH reference values fitted reasonably well onto the commercial calibration model (Table 4). 
The R2 for the pH model was close to 0.9, the bias was fairly low and the SEP was smaller than 2 
× SDD. However, the prediction error was large relative to the standard deviation in the sample 
set, resulting in a RPD value much lower than 3. This could be expected, considering that the 
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sample set covers a relatively small range of pH values. Nevertheless, the model can be 
considered fit for the quantification of pH in young wines. 

7.3.4.2 Titratable acidity 

There was almost no correlation between the titratable acidity values determined with the 
reference method and the values predicted by the commercial calibration model (data not shown). 
The model was characterised by a high prediction error and could not be used for either screening 
of quantification or titratable acidity in young wines.  

Table 4. The validation statistics of the performance of the WineScan FT 120 global calibrations 
using young South Africa wines as independent test sets.a 

Parameter pH 
Titratable 

Acidity 
g/Lb 

Volatile 
Acidity g/L 

Malic 
Acid 
g/L 

Lactic 
Acid 
g/L 

Glucose 
g/L 

Fructose 
g/L 

Ethanol 
v/v% 

Glycerol 
g/L 

Number of 
samples 
(white;red)c 

20;18 20;18 10;10 41;20 40;21 54;8 54;13 14;13 14;13 

Min-Max.d 3.19-
3.90 

4.93- 
8.67 0.19-0.81 0.11-

0.72 
0.09-
3.55 0.22-4.05 0.21-6.39 11.43-

15.24 
4.02-
16.15 

Mean ±  
SDe 

3.58 ± 
0.17 

5.90 ± 
0.73 0.49 ± 0.16 2.42 ± 

1.89 
0.65 ± 
0.75 

2.14 ± 
0.85 

2.52 ± 
1.36 

13.34 ± 
0.82 

7.71 ± 
3.03 

R2f 0.90 0.32 0.92 0.99 0.97 0.00 0.38 0.79 0.83 

Bias 0.13 -0.42 -0.01 -0.41 -0.30 -1.72 -1.03 0.25 1.61 

SEPg 0.14 0.64 0.05 0.60 0.13 1.99 1.48 0.50 2.05 

SEP:SDDh 1.52 10.16 n/a 10.75 1.03 19.13 5.78 n/a 4.45 

RPDi 1.21 1.14 3.25 3.13 6.00 0.43 1.07 1.63 1.48 

aFoss Analytical, Denmark. http://www.foss.dk; bMeasured as g/L tartaric acid; cNumber of white wines; number of red wines; 
dMinimum to maximum range; eStandard deviation; fCoefficient of determination; gStandard error of prediction; hRatio of standard 
error of prediction to standard deviation of difference for reference samples; iResidual predictive deviation. 

7.3.4.3  Volatile acidity 

The high R2 value indicates that the commercial calibration was suitable to quantify volatile acidity 
in young wines. In addition, the bias was very low. The prediction error was reasonable, being 
smaller than 10% of the average VA concentration of the reference samples. However, the RPD 
value was below 5, suggesting that the calibration was only suitable for the screening of young 
wines. The model for volatile acidity prediction could not be evaluated in terms of the SEP:SDD 
ratio as only one reference analysis was done per sample. At best it can be stated that the 
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calibration is suitable for screening and possibly for quantification. However, additional evidence of 
the accuracy of the reference method would be required to come to a final conclusion.  

7.3.4.4 Malic acid 

The reference values for malic acid fitted very well onto the commercial calibration model, with a 
R2 of 0.99. Due to a high prediction error, the RPD was between 3 and 5, indicating that the model 
is suitable for screening only. Moreover, the SEP value was more than 2 × SDD, showing that, 
despite the high coefficient of determination, the prediction error had to be decreased to ensure 
accurate quantitative determination of malic acid in young wines.  

7.3.4.5 Lactic acid 

The commercial calibration was suitable for the quantification of lactic acid in young wines, with a 
RPD value of 6 and a SEP:SDD ratio very close to 1. In addition, the R2 was 0.97, indicating a 
excellent correlation between the lactic acid concentration measured with the reference method 
and lactic acid concentration predicted with the commercial calibration model.  

7.3.4.6 Glucose 

The commercial calibration was not suitable for the quantification or screening of glucose in young 
wines. There was no correlation between the glucose concentration measured with the reference 
and the concentrations predicted by the commercial calibration. Moreover, the RPD value was very 
low and indicated that the model was not suitable for a young wine matrix. The bias of the 
commercial calibration was also very high. Nevertheless, the prediction error was lower than 2 × 
SDD.  

7.3.4.7 Fructose 

The fit of the calibration sample set onto the commercial fructose calibration was very poor. The R2 
value was very low and the bias was very high. Furthermore, the calibration was characterised by 
a high prediction error. These factors indicated that the commercial calibration was unsuitable for 
screening or quantification of fructose in young wines.  

7.3.4.8 Ethanol 

The performance of the commercial calibration in a young wine matrix was dubious. The R2 was 
reasonable at 0.79, indicating that the model was fit for quantification. The bias was low and the 
prediction error of the commercial calibration was comparable to the legal limit for laboratory error 
of 0.5 v/v%. However, the RPD was well below 3, showing that the model is not suitable for 
screening. Unfortunately, it was not possible to determine the SDD of the reference method, and 
therefore the SEP:SDD ratio, as samples were not analysed in replicates.  
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7.3.4.9 Glycerol 

The correlation between the glycerol concentrations determined with the reference method and the 
values predicted from the commercial calibration model was suitable for quantification. However, 
the prediction error was too high to be suitable for quantification or screening, as can be observed 
from the low RPD value and high SEP:SDD ratio. Moreover, the bias was very high, indicating a 
large systematic error. Hence, the prediction abilities of the commercial calibration was negatively 
influenced by the young wine matrix. 

7.3.5  EVALUATION OF NEW PRELIMINARY YOUNG WINE CALIBRATIONS 

New, preliminary calibration models were established for the determination of the abovementioned 
parameters in young wines. Each calibration model was established using PLS-regression and 
validated with an independent validation sample set. In order to improve the quality of the 
calibrations that did not sufficiently comply to the precision criteria, the number of wavenumbers 
used for the calibrations were enlarged. It is possible that all the variance in the data were not 
modeled with the selected wavenumbers calculated by the instrument software. Calibrations were 
performed according to the procedure of the instrument software. Two options were investigated, 
using the full spectral range as variables and using the intervals 2966-1720 cm-1 and 1539-925 cm-

1 as variables. The latter intervals are the spectral regions that remains after the water absorbance 
regions were discarded and will henceforth be referred to as the extended spectral region. Results 
are shown in Table 5.  

Table 5. A comparison of important validation statistics for calibrations using a variety of spectral 
regions. 

Filter Selection Full Spectrum Extended Spectrum Model 
R2a SEPb RPDc R2 SEP RPD R2 SEP RPD 

pH 0.85 0.09 3.32 -0.17 0.16 1.98 0.95 0.04 8.20 
Titratable 
acidity 

0.92 0.24 2.35 0.82 0.34 1.66 0.87 0.30 1.91 

VAd  0.89 0.07 2.47 0.39 0.14 1.16 0.65 0.11 1.49 
Glucose 0.84 0.29 2.16 0.79 0.40 1.57 0.86 0.44 1.43 
Ethanol 0.51 0.50 1.14 0.73 0.36 1.60 0.89 0.31 1.83 
Glycerol 0.97 1.01 2.94 0.77 1.74 1.71 0.88 1.33 2.24 
a Coefficient of determinatin; b Standard error of prediction; c Residual prediction deviation d 
Calculated with The Unscrambler Software using the entire reference sample set 

7.3.5.1 pH 

The new preliminary calibration model for pH performed well. The Coefficient of determination 
indicated good precision and the bias was close to zero (Table 6). Furthermore, the SEP:SDD and 
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SECV:SEL ratios denoted excellent precision. The RPD value was between 3 and 5, judging the 
model suitable for screening purposes. Overall the model was fit for quantification. 
 The model for pH based on the extended spectral region was a significant improvement on the 
previous model (Figure 5). The validation statistics show a coefficient of determination larger than 
0.9 and a RPD value much larger than 5, indicating that this model can be used for quantification. 
The SEP of this model was in fact much lower than the SDD, confirming the excellent performance 
of the model. However, the sample set should be expanded to include pH values higher than 4 
units.  

Table 6. The calibration and validation statistics for the evaluation of the new preliminary young 
wine calibrations of pH, titratable acidity and malic acid. 

Calibration Validation 

Parameter pH Titratable 
acidity (g/L) 

Malic acid 
(g/L Parameter pH Titratable 

acidity (g/L) 
Malic acid 

(g/L) 
Number of 
Samples 23 24 36 Number of 

Samples 10 11 22 

Range  3.20 -3.90 5.01 - 8.68 0.11 -5.72 Range 3.32 -3.74 5.12 -6.69 0.12 -4.49 
Mean ± SDa 3.59 ± 0.20 6.03 ± 0.80 2.53 ± 1.93 Mean ± SDa 3.56 ± 0.31 5.97 ± 0.57 2.28 ± 1.86 
Number of 
Components 7 15 10 R2e 0.85 0.92 0.98 

ARb 0.00 0.05 0.03 Bias -0.04 0.19 -0.03 
SECVc 0.05 0.13 0.20 SEPf 0.09 0.24 0.26 
SECV:SELd 1.21 1.85 5.92 SEP:SDDg 1.01 3.84 4.66 
    RPDh 3.32 2.35 7.13 
a Standard deviation; b Absolute repeatability; c Standard error of cross validation; d Standard error of cross validation to standard error 
of laboratory; e Coefficient of determination; f Standard error of prediction; g Standard error of prediction to standard deviation of 
difference; h Residual prediction deviation 

 

Figure 5. The preliminary new FTMIR calibration model for pH in young wines using PLS-regression 
and the extended area of the mid-infrared spectra. 
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7.3.5.2 Titratable acidity 

The titratable acidity model based on young wines performed well in the calibration phase 
(Figure 6). The combination of a R2 exceeding 0.9 and a SECV:SEL ratio of 1.8 indicates good 
precision (Table 6). However, the SEP of the young wine model did not compare well to the 
standard deviation or the SDD value of the independent validation set. This implies that the model 
was not strong enough to uphold its performance when applied to independent samples. The 
performance parameters worsened when enlarged spectral regions were used for the calibration 
model. 
 

R2: 0.92
Slope: 0.95
Offset: 0.23
SEP: 0.24
Bias: 0.19

R2: 0.92
Slope: 0.95
Offset: 0.23
SEP: 0.24
Bias: 0.19

 
Figure 6. The preliminary new FTMIR calibration model for titratable acidity in young wines using PLS-
regression and selected highly correlated wavenumber filters. 

7.3.5.3 Malic acid 

The preliminary calibration set up with the young wine sample set performed very well (Figure 7). 
The bias was close to zero and the R2 was excellent. The SEP was low and the RPD value was 
above 7. The model did not meet the SEP:SDD ratio or SECV:SEL criteria, suggesting that the 
RPD value, based on a high standard deviation, might be an overoptimistic indication of the 
model’s prediction abilities. However, in the light of the high coefficient of determination the model 
was considered suitable for quantification of malic acid in young wines. 
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Figure 7. Performance of a preliminary new FTMIR calibration model for malic acid in young wines 
using PLS regression and a selection of highly correlated wavenumber filters  

7.3.5.4 Volatile acidity 

The number of samples in the reference set was too little to validate a calibration model 
established with young wines with an independent validation set. Instead, the calibration was set 
up with the entire reference set and validated with cross validation (Figure 8). The R2 was sufficient 
for quantification. However, the prediction error was high compared to the average of the reference 
set and the RPD was too low to be considered suitable for screening (Table 4). It could be possible 
that a larger sample set might improve the results. The preliminary calibrations using the full 
spectral region or the extended region were considerably worse than the calibration using selected 
wavenumber filtiers. In the case of volatile acidity, the use of a refined selection of wavenumbers 
seems to be the most efficient. 

 

Figure 8. Performance of a preliminary new FTMIR calibration model for volatile acidity in young wines 
using PLS regression and a selection of highly correlated wavenumber filters  

R2: 0.98 

Slope: 0.98 

Offset: 0.12 

SEP: 0.26 

Bias: -0.03 

 

R2: 0.89 

Slope: 0.97 

Offset: 0.01 

Bias: -0.01 

SEP: 0.07 
 
 



 108

Table 7. The calibration and validation statistics for the evaluation of the new preliminary young 
wine calibrations of lactic acid, glucose and fructose. 

Calibration Validation 
Parameter Lactic acid 

(g/L) 
Glucose 

(g/L) 
Fructose 

(g/L) Parameter Lactic 
acid (g/L) Glucose (g/L) Fructose 

(g/L) 
Number of 
Samples 42 27 36 Number of 

Samples 25 26 23 

Range 0.09-3.55 0.22-4.05 0.21-6.38 Range 0.15-1.94 0.34-3.11 0.22-4.83 

Mean ± SDa 0.70 ± 
0.84 

2.03 ± 
1.00 2.56 ± 1.44 Mean ± SDb 0.44 ± 

0.51 2.18 ± 0.62 2.41 ± 1.27 

Number of 
Components 10 6 8 R2e 0.96 0.84 0.98 

ARb 0.04 0.06 0.06 Bias 0.04 0.07 -0.10 
SECVc 0.19 0.32 0.26 SEPf 0.16 0.29 0.20 
SECV:SELd 2.18 2.81 1.12 SEP:SDDg 1.29 2.78 0.40 
    RPDh 3.28 2.16 6.22 
aStandard deviation; bAbsolute repeatability; cStandard error of cross validation; dStandard error of cross validation to standard error 
of laboratory; eCoefficient of determination; fStandard error of prediction; gStandard error of prediction to standard deviation of 
difference; hResidual prediction deviation. 

7.3.5.5 Lactic acid 

The preliminary lactic acid model for young wines performed well in terms of R2 and bias (Figure 
9). In addition, the SECV:SEL and SEP:SDD ratios indicated good precision (Table 7). Although 
the RPD value was below 5, the model was considered suitable for quantification.  

 

Figure 9. Performance of a preliminary new FTMIR calibration model for lactic acid in young wines 
using PLS regression and a selection of highly correlated wavenumber filters  
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7.3.5.6 Glucose 

The calibration statistics for the preliminary glucose calibration for young wine samples were 
satisfactory, with a R2 of 0.84 and the ratio of SECV to SEL was between 2 and 3 (Table 7). After 
validation with an independent sample set, the prediction error was too high, causing a RPD value 
below 3 and a SEP:SDD ration higher than 2. This indicated that the calibration (Figure 10) could 
not be used for quantification. It was attempted to improve the calibration statistics by using less 
restricted spectral areas to build the regression model. The validation statistics worsened where 
the whole mid-infrared wavenumber range was used. Although the coefficient of determination 
improved slightly when using the extended spectral region, the prediction error was much higher 
than that of the model using the wavenumber filters. None of the calibration options attempted in 
this study was suitable for the quantification of glucose in young wines. It has previously been 
reported that spectral interferences could occur during the quantification of sugars in dry wines with 
FTMIR (Moreira, 2004). It was stated that the most important absorption bands for sugar 
determination (C-O and H-O) are similar to that of organic acids, which occurs in much larger 
quantities in dry wines. It would be more sensible to include off-dry wines (> 5g/L residual sugar) 
into the sample set with the purpose to establish a screening model to distinguish between dry and 
non-dry wines.  
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Offset: 0.61
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Figure 10. Performance of a preliminary new FTMIR calibration model for glucose in young wines using 
PLS regression and a selection of highly correlated wavenumber filters  

7.3.5.7 Fructose 

The preliminary calibration with the young wine sample set performed very well (Figure 11). The 
coefficient of determination was 0.98 and the RPD value 6.2 meaning that the calibration can be 
used for the quantification of fructose in young wines (Table 7). These results were supported by 



 110

the SEP:SDD and SECV:SEL ratios which also complied to the requirements for good precision in 
a calibration model. 

 
Figure 11. Performance of a preliminary new FTMIR calibration model for fructose in young wines 
using PLS regression and a selection of highly correlated wavenumber filters  

Table 8. The calibration and validation statistics for the evaluation of the new preliminary young 
wine calibrations of ethanol and glycerol. 

Calibration Validation 
Parameter Ethanol (v/v%) Glycerol (g/L) Parameter Ethanol (v/v%) Glycerol (g/L) 
Number of Samples 18 16 Number of Samples 10 9 
Range 11.43-15.24 4.02-16.18 Range 12.28-14.11 4.52-12.99 
Mean ± SDa 13.40± 0.95 7.48± 3.37 Mean ± SDb 13.25±0.57 8.42± 2.98 
Number of Components 15 15 R2e 0.52 0.97 
ARb 0.05 0.09 Bias -0.24 -0.42 
SECVc 0.22 1.11 SEPf 0.50 1.02 
SECV:SELd n/a 3.47 SEP:SDDg n/a 2.20 
   RPDh 1.14 2.94 
aStandard deviation; bAbsolute repeatability; cStandard error of cross validation; dStandard error of cross 
validation to standard error of laboratory; eCoefficient of determination; fStandard error of prediction; 
gStandard error of prediction to standard deviation of difference; hResidual predictive deviation. 

7.3.5.8 Ethanol 

Unsatisfactory results were obtained when the preliminary calibration was set up using young wine 
samples with selected wavenumbers and the calibration was unsuitable for screening. The results 
improved slightly when the spectral range used for the calibration was enlarged. The full spectral 
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range resulted in a coefficient of determination suitable for quantification, and the SEP was much 
lower than the legal limit for the laboratory error of ethanol determinations (Table 4). The best 
calibration model was achieved using the extended spectral region, where a fairly good coefficient 
of determination of 0.89 was observed (Figure 12). The RPD value was still below the limit for 
screening purposes. A better indication of the precision of the calibrations would have been 
possible if the reference samples were measured in duplicate. 
 

 
Figure 12. The preliminary new FTMIR calibration model for ethanol in young wines using PLS-
regression and the extended spectral area of the mid-infrared spectra. 

7.3.5.9 Glycerol 

The coefficient of determination of the new preliminary calibration for glycerol in young wines was 
satisfactory at 0.96 (Figure 13). However, the prediction error was too high compared to the error 
of the reference method. The results could not be improved by using larger areas of the spectral 
region. 
 A possible solution was to set up separate calibrations for red and white wines, as red wines 
usually contain much more glycerol than white wines. This would result in a more specified range 
of values in the calibration model and possibly a smaller prediction error. However, the sample set 
used in this study is too small to be split up as this without compromising the use of an 
independent validation set. A very rough calibration model was established for white and red wines 
individually using selected wavenumber filters. After three badly predicted samples were removed, 
the cross validation error of the rough red wine model (Table 9) was lower than that of the model 
for both types of wines. The ratio of SECV to SEL for the preliminary red wine model was 2.6, 
indicating good precision. The absolute repeatability of the red wine model was also lower than the 
model for all the wines and the red wine model also needed fewer components to reach the 
minimum residual variance level. It seems promising to investigate the use of a separate glycerol 
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calibration for young red wines. Unfortunately, the calibration results for glycerol in young white 
wines were worse than the calibration for all the wines. However, these results are based on very 
small sample sets without proper validation with an independent sample set.  
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Figure 13. Performance of a preliminary new FTMIR calibration model for glycerol in young wines using 
PLS regression and a selection of highly correlated wavenumber filters  

Table 9. Comparison between selected calibration statistics of Glycerol prediction models for all 
wines, red wines and white wines. 

Model Number of Components ARa SECVb SECV: SELc 
All Samples 15 0.094 1.114 3.470 
Red Samples 4 0.036 0.835 2.601 
White Samples 1 0.018 1.256 3.912 
aAbsolute repeatability; bStandard error of cross validation; cStandard error of cross validation to standard error of 
laboratory. 

 
To conclude the results of this study it is most important to note that all compounds can not be 
quantified in a generic fashion with FTMIR, as was seen with the young wines used in this study. 
Some of the components could be quantified with a global commercial calibration, even though it 
was not set up for a young wine matrix, while others were better suited to a more specific 
calibration. In some cases the calibrations performed better when only a few highly correlated 
wavenumbers were used, while in other cases a larger selection of wavenumbers gave more 
precise results. In future studies, where the samples that need to be analysed deviates from the 
samples used to establish the calibration, the matrix effects on the performance of the calibration 
needs to be established. It also seems useful to evaluate the effect of varying spectral ranges in 
order to avoid over- or under fitting of the model. In addition, the performance of calibration models 
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should not be evaluated with a recipe-like approach, but rather by comparing various performance 
criteria while keeping the properties of the sample set in mind.  
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RESEARCH RESULTS 

ABSTRACT 

Yeast starter cultures and fermentation related products are continuously being developed to 
improve amongst other, the efficiency of alcoholic fermentation and flavour properties of wine. 
Volatile compounds formed during alcoholic fermentation have an important impact on wine quality 
and aroma. The objective of this study was to evaluate Fourier transform infrared spectroscopy 
(FTMIR) as a rapid analytical tool to predict the concentrations of yeast derived volatile 
compounds. The volatile compounds that served as reference values for these calibrations were 
determined with gas chromatography flame ionisation detection (GC-FID) in young South African 
wines. FTMIR spectroscopy calibration models for four groups of volatile compounds ,namely total 
alcohols, total fatty acids, total esters and esters (total esters, but excluding ethyl acetate) were 
developed. The performance of the models was evaluated in terms of R2, bias, prediction error and 
the relationship between the prediction error and the measurement error of the reference analytical 
method (GC-FID). Good linearity were observed for the “total alcohols”, “total fatty acids” and 
“esters” groups. An interesting polynomial trend was observed for the “total esters group”. Some 
possible spectroscopic interferences were observed. All four preliminary calibration models were 
considered suitable for screening purposes, although further investigations with regards to sample 
matrices should be investigated.  

8.1 INTRODUCTION 

During wine production, product development and quality control play an important role in 
maintaining a competitive edge. The most important process during winemaking is alcoholic 
fermentation where yeast converts sugar to ethanol. Apart from the conversion of sugar to ethanol, 
yeasts have an enormous influence on the aroma characteristics of wine (Lambrechts and 
Pretorius, 2000). 
 Several of the most abundant aroma compounds present in wine are formed by yeast 
metabolism during alcoholic fermentation. Among these compounds are higher alcohols, fatty 
acids and esters. The most prominent alcohols in wine, besides ethanol, are 1-propanol, 
isobutanol, isoamylalcohol and 2-phenylethanol. Higher alcohols have a strong, heady smell at 
high concentrations, but at less than 0.3 g/L they add to the complexity of wine. The alcohol, 2-
phenylethanol is associated with honey, spicy and rose-like aromas in wine (Francis and Newton, 
2005). The most important esters present in wine are ethyl esters and acetate esters. Esters are 
generally associated with a fruity, pleasant aroma. The low molecular weight ester, ethyl acetate, 
tends to smell like varnish and is generally associated with wine spoilage (Lambrechts and 
Pretorius, 2000). Aliphatic saturated fatty acids are the most common fatty acids found in wine and 
chain lengths of up to 14 carbon atoms have been reported. Some of the most common fatty acids 
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in wine are acetic, hexanoic, octanoic and decanoic acids. At high levels, these compounds are 
associated with rancid, cheesy and vinegar-like aromas, but in healthy wines they are usually 
present below their detection threshold (Schreier, 1979). 
 The advantages of Fourier transform mid-infrared (FTMIR) spectroscopy for rapid wine 
screening and quality control have been reported by several authors (Patz et al., 2004; Kupina and 
Shrikhande, 2003; Gishen and Holdstock, 2000). FTMIR spectroscopy determines the absorption 
of infrared radiation by molecules that contain amongst other, C-H, O-H, C-O, C=O and N-H 
molecular bonds and typically the data are presented in the form of a spectum of absorbance or 
transmittance versus wavenumbers. The spectra can be used to establish algorithms or calibration 
models to predict the concentration of organic components of interest, by the application of 
chemometric techniques such as partial least squares regression1 (PLS1.) (Wehling, 1998). This is 
done by correlating the concentration of a specific compound measured with a reference method to 
the absorption of infrared radiation at specific wavenumbers. The selection of suitable 
wavenumbers is an important part of the calibration process. The wavenumber regions 3626-2970 
cm-1 and 1716-1543 cm-1 are mostly associated with interference caused by water absorbance, 
while it has also been reported the 5011-3630 cm-1 regions contains very little useful wine-related 
information (Nieuwoudt, et al., 2004; Patz, et al., 2004).  
 The use of GC-FID to quantify volatile compounds in wine is possibly one of the most 
frequently used techniques for routine analysis of these compounds in wine. Some situations 
require that large numbers of samples must be analysed, typically where experimental wines are 
produced in yeast development programs. In these cases some aspects of GC-FID analysis are 
time consuming and expensive. The aim of this study was to investigate the use of FTMIR 
spectroscopy for the rapid screening of yeast derived volatile compounds in young wines. Due to 
the low concentrations of some individual volatile compounds, the FTMIR screening abilities were 
evaluated for groups of compounds defined by common chemical characteristics. Three main 
groups were defined: total alcohols, consisting of higher alcohols and the aromatic alcohol 2-
phenylethanol, total fatty acids and total esters. Another group, esters, was also defined. The latter 
group does not include ethyl acetate due to its association with wine spoilage. The role of FTMIR 
as a rapid screening method for volatile composition in wine has not been previously reported in 
the literature to our knowledge. 

8.2 METHODS AND MATERIALS 

8.2.1  WINE SAMPLES 

Bottled wine samples (n = 200) were collected from the South African Young Wine Show 2006 and 
were stored at 4-8°C till analysed. Wines were specifically chosen to include important South 
African cultivars in order to be representative of South African wines. The wine samples included 
Sauvignon blanc, Chardonnay, Pinotage, Merlot, Cabernet Sauvignon and Shiraz wines.  
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8.2.2   GC-FID ANALYSIS 

8.2.2.1 Chemicals, standards and wine simulant  

Ethyl acetate and isoamyl acetate was purchased from Riedel de Haën (Seelze, Germany). 
Methanol, hexanol, acetic acid and 2-phenylethanol standards were from Merck (Darmstadt, 
Germany). Ethyl butyrate, propanol, isobutanol, butanol, hexyl acetate, ethyl lactate, propionic 
acid, iso-butyric acid butyric acid, iso-valeric acid, diethyl succinate, valeric acid, 2-phenylethyl 
acetate, 4-methyl-2-pentanol and hexane were from Fluka (Buchs, Switzerland). Hexanoic acid, 
octanoic acid, isoamyl alcohol, ethyl caprylate, ethyl caprate were from Aldrich (Steinheim, 
Germany). Decanoic acid and ethyl hexanoate were purchased from Sigma (St. Louis, USA). 
Diethyl ether, ethanol and NaSO4 were also purchased from Merck (Darmstadt, Germany). 
 The internal standard and volatile standards were dissolved in a wine simulant consisting of 
12 %v/v ethanol and 2.5 g/L tartaric acid (Merck) in de-ionised water from a MilliQ system, pH 
adjusted to 3.5 with 0.1 M NaOH (Merck).  
Calibrations for quantification of individual volatile compounds were established as described in 
Addendum A. 

8.2.2.2 Extraction of volatile compounds 

Five millilitres of wine with internal standard, 4-Methyl-2-Pentanol, (100µl of 0.5mg/l solution in 
wine simulant) were extracted with 1 millilitres of diethyl ether by sonicating the ether/wine mixture 
for five minutes. The wine/ether mixture was then centrifuged at 3600 g for 3 minutes. The ether 
layer was removed and dried on NaSO4. Each extract was injected into the GC-FID in triplicate. 

8.2.2.3 Gas Chromatography conditions  

A J & W DB-FFAP capillary GC column (Agilent, Little Falls, Wilmington, USA) with dimensions 60 
m length × 0.32 mm i. d. × 0.5 μm f.t was used. The initial oven temperature was 33°C for 17 
minutes after which the temperature was increased by 12°C/min to 240°C, at which it was held for 
5 minutes. Three μl of the dietyl extract was injected at 200°C. The split ratio was 15:1 and the split 
flow rate 49.5 ml/min. The column flow rate was 3.3 ml/min and the total run time was 50 minutes. 
The detector temperature was 250°C. After each sample run, a post run of 5 minutes at oven 
temperature 240°C, with a column flow of 6 ml/min cleaned the column from high boiling 
contaminants. After every 30 samples the column was thermally cleaned by injecting hexane 
several times isothermally, holding it for 10 minutes per injection at an oven temperature of 220°C.  

8.2.3  FTMIR SPECTROSCOPY 

8.2.3.1 Sample preparation 

Samples were filtered with a filtration unit (type 79500, FOSS Analytical, Denmark) connected to a 
vacuum pump. Filter paper disks graded with pore size 20 to 25 μm and diameter 185 mm 
(Schleicher & Schuell, Germany, catalogue No. 10312714) were used for filtration. Red wines were 
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filtered twice and white wines three times before FTMIR spectroscopy in order to keep the CO2 

levels of the wines lower than 300 mg/L. Quantification of CO2 was done using the WineScan FT 
120 spectrometer. 

8.2.3.2 Generation of FTMIR spectra 

Instrument: A WineScan FT 120 spectrometer (WineScan FT120 Type 77110 and 77310 
Reference Manual, Foss Analytical, Denmark, 2001). 
Spectral acquisition and processing: Degassed wine samples (7 mL) were pumped through the 
CaF2-lined cuvette (path length 37 μm) of the spectrometer at a constant temperature of 40°C. 
Samples were scanned from 5011 - 929 cm-1 at 4 cm-1 intervals. The amounts of infrared radiation 
transmitted by the samples were recorded at the detector and used to generate an interferogram 
that is calculated from a total of 20 repeat scans. Subsequently the interferogram was converted to 
a single beam transmittance spectrum by Fourier transformation (WineScan FT120 Type 77110 
and 77310 Reference Manual, Foss Analytical, Denmark, 2001). 

8.2.4  FTMIR SPECTROSCOPY CALIBRATIONS 

8.2.4.1 Definition of groups of volatile compounds 

The amounts of the individual compounds analysed with gas chromatography were added together 
to form four analyte groups: total alcohols, total fatty acids, total esters and esters, respectively. 
The compound groups and their composites are listed in Table 1. The esters group consisted of all 
esters analysed under the specific GC-FID conditions used in this study, except ethyl acetate. 
Each of these groups of compounds was considered as a new y-variable for the purposes of the 
PLS1 calibration discussed in section 2.4.3. 

Table 1. Volatile compounds included in each group of volatile compounds . 

Total Alcohols Total Fatty Acids Total Esters Esters 
Methanol 
Propanol  
Isobutanol 
Butanol 
Isoamyl Alcohol  
Hexanol 
2-Phenylethanol 

Acetic Acid 
Propionic Acid 
Iso-Butyric Acid 
Butyric Acid 
Iso-Valeric Acid 
Valeric Acid 
Hexanoic Acid  
Octanoic Acid 
Decanoic Acid 

Ethyl Acetate 
Ethyl Butyrate 
Isoamyl Acetate  
Ethyl Hexanoate  
Hexyl Acetate 
Ethyl Lactate  
Ethyl Caprylate 
Ethyl Caprate  
Diethyl Succinate 
2-Phenylethyl Acetate 

Ethyl Butyrate 
Isoamyl Acetate  
Ethyl Hexanoate  
Hexyl Acetate 
Ethyl Lactate  
Ethyl Caprylate 
Ethyl Caprate  
Diethyl Succinate 
2-Phenylethyl Acetate 
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8.2.4.2 Selection of calibration samples 

The reference sample set of 200 wines was divided into a calibration and validation set containing 
116 and 84 samples respectively. The samples for the calibration set was selected by sample 
selection method using principal component analysis as described in section 2.3 in Chapter 7. The 
concentration range of the full sample set and the calibration set were compared with histograms 
to ensure that they cover the same concentration range for each of the analyte groups. The 
statistical analysis for the sample selection was performed with The Unscrambler 9.2 software 
(Camo ASA, Trondheim, Norway).  

8.2.4.3 Establishment of calibration models for groups of volatile compounds 

New calibrations were set up using PLS1 regression in the Advanced Performance software 
module version 2.2.2 supplied by the manufacturers of the FTIR spectrometer (WineScan FT120 
Type 77110 and 77310 Reference Manual, Foss Analytical, Denmark, 2001). PLS1 has been 
described in detail in Chapter 3 of this thesis. Calibration models were validated using ten 
segmented cross-validation as pre-programmed by the WineScan software. Fifteen filters 
(individual wavenumbers or small groups of adjacent wavenumbers) were automatically selected 
by the software in such a way that the selected wavenumbers collectively captured the maximum 
information related to the variation in the concentrations of the y-variables. Each new calibration 
was validated using independent test set validation sample sets.  

8.2.5  STATISTICAL INDICATORS  

The precision of the reference methods were evaluated by calculating the standard error of 
laboratory (SEL) and the standard deviation of difference (SDD) as discussed in Chapter 3. The 
performance of the calibrations were evaluated in terms of bias, coefficient of determination (R2), 
standard error of cross validation (SECV) and standard error of prediction (SEP). In order to 
interpret these errors the ratios of SECV:SEL, SEP:SDD and residual predictive deviation 
(RPD)were used. These criteria are discussed in detail in Chapter 3 and a summary of the 
interpretations attached to these ratios are given in Table 2. 

Table 2. Summary of performance criteria for evaluating the FTMIR spectroscopy calibrations. 

Performance 
criterium 

Excellent for 
quantification 

Good for 
quantification 

Reasonable for 
screening 

Unsuitable for 
quantification 

R2 a >0.9 0.7 – 0.9 0.5 – 0.7 > 0.5 
SECV:SELb <1.5 2 – 3 n/ac n/ac 
SEP:SDDd <2 <2 n/ac n/ac 
RPDe >5 >5 3-5 <3 
aR2: Coefficient of determination; bRatio standard error of cross validation (SECV) to standard error of laboratory (SEL) (Shenk and 
Westerhaus, 1996); cn/a: not applicable; dRatio of standard error of prediction (SEP) to standard deviation of differences between repeat 
reference measurements (Esbensen, 2002); eRPD: Residual predictive deviation (Williams, 1995). 
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8.3 RESULTS AND DISCUSSION 

8.3.1 VOLATILE COMPOSITION OF WINES 

Descriptive statistics of the wine samples classified according to the groups of components are 
given in Table 3. Histograms of the distribution of concentrations for each group of compounds in 
the calibration set were compared to the reference set. In each case the calibration sets covered a 
similar range of values as the corresponding reference set (data not shown).  

Table 3. Descriptive statistics of South African young wines used as a reference set for the 
establishment of FTMIR calibrations of volatile compounds in young wines.  

Group of compoundsa Sample No. 

(white;red)b 
Value range 
(min. – max.)c 

Mean ± SDd 

Total alcohols (g/L) 200 
(73;127) 

0.22 – 1.14 0.56 ± 0.22 

Total fatty acids (g/L) 200 
(73;127) 

0.12 – 1.02  0.50 ± 0.16 

Total esters (g/L) 200 
(73;127) 

0.33 – 1.62  0.77 ± 0.28 

Esters (g/L) 200 
(73;127) 

0.28 – 1.57 0.70 ± 0.28 

aDefinition of groups of compounds according to Table 1; bsample number (white wine; red wine); 
cMinimum to maximum value; dStandard deviation. 

8.3.2 TOTAL ALCOHOLS 

The first three wave number filters that were selected accounted for 83% of the total explained 
variance in the dataset (Table 4). These wave numbers corresponded to the absorption areas of 
O-H and C-O molecular bonds (Wehling, 1998). The fact that the most important wave number 
corresponded to absorbance by the O-H bond was expected as -OH is the functional group of 
alcohols. The importance of the C-O stretch probably refers to the molecular bond between the 
main carbon chain of the alcohol and the O-H group. 
 The linearity of the calibration indicated good precision (Shenk and Westerhaus, 1996), 
especially considering the low concentrations of higher alcohols present in the wines (Table 5 and 
Figure 1). The bias of the regression curve was close to zero. The precision parameters referring 
to the ratio of the prediction errors to the error of the reference in each case just fell short of the 
criteria limits. The SECV and SEP values are less 15% of the average concentration of the 
calibration and validation set respectively. In this context the prediction error of the calibration 
curve is not excessively large. However, when compared to the very small error associated with 
the reference measurements, the prediction error is out of bounds. It is important to note that the 
quantification of the “total alcohols” in wine will rely on similar wave numbers as for the 
quantification of ethanol. Ethanol occurs in ten times higher concentration in wine compared to 
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other alcohols and absorbance by ethanol bonds are likely to overshadow that of the other 
alcohols. According to Moreira and Santos (2004) interferences could be expected in the infrared 
calibration of analytes that occur in low concentrations if their major absorbance wavelengths are 
similar to that of more abundant compounds. In this light the “total alcohols” calibration curve 
seems quite positive and could be used to screen wines in terms of high, medium or low 
concentrations of higher alcohols. 
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Figure 1. Regression curve of measured vs. predicted concentrations of the total alcohols in young 
wines. 

Table 4. The wave numbers that explained the most variance within each compound group and 
the functional groupings they are associated with.  

Total Alcohols Total Fatty Acids Total Esters Esters 
Wave 

Number 
Accumulated 

Explained 
Variance 

Wave 
Number 

Accumulated 
Explained 
Variance 

Wave 
Number 

Accumulated 
Explained 
Variance 

Wave 
Number 

Accumulated 
Explained 
Variance 

1412 63% 1412 21% 1412 54% 1412 56% 
1118 71% 1118-1122 24% 1118-

1122 
64% 1342 73% 

1087 83% 1184-1188 31% 1342 72% 1736 75% 

1339 86% 1265-1269 48% 1073 75% 1068-1072 77% 

1728-1730 87% 1523 52% 1736 76% 1119-1120 79% 

1146-1148 87% 1736 56% 1524 78% 1524 82% 

1524 89% 1342 63% 1181 80% 1154 84% 

1069 90% 1087 73% 2180 80% 1717 86% 
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Table 5. Validation and Calibration Statistics 

Parameter Total alcohols Total esters 
Esters excl. ethyl 

acetate Total Fatty Acids 
Number of components 15 15 15 12 

Number of Filters 15 15 15 15 
Number of Samples: 

Calibration (white; red) 
111 

(41; 70) 
110 

40; 70) 
108 

(40; 68) 
109 

(39; 70) 
SECV 0.077 0.1025 0.100 0.065 

AR 0.015 0.0146 0.016 0.0141 

Range (g/L) 0.220-1.092 0.331-1.615 0.284 – 1.159 0.120-0.922 
Mean ± SD 0.533± 0.228 0.742 ± 0.281 0.637 ± 0.252 0.483 ± 0.172 

SEL 0.016 0.004 0.001 0.008 
SECV:SEL 4.813 25.625 100 8.112 

Number of Samples: 
Validation (white; red) 

75  
(27; 48) 

79 
(29;50) 

75 
(27;48) 

78 
(28;50) 

Concentration range 0.271 – 1.008 0.389 -1.273 0.337-1.14 0.197-1.025 
Mean ± SDa 0.573 ± 0.198 0.801 ± 0.248 0.680 ± 0.250 0.503 ± 0.142 

Bias 0.003 0.001 0.013 0.003 
R2,b 0.845 0.866f 0.875 0.818 

SEPc 0.077 0.122 0.089 0.061 
SDDd 0.030 0.012 0.011 0.006 

SEP:SDD 5.5 30.5 89 6.1 
RPDe 2.571 2.033 2.809 2.323 

aStandard deviation; bCoefficient of determination; cStandard error of prediction; dStandard deviation of difference; 
eResidual predictive deviation; fPolynomial trend line 

8.3.3 TOTAL FATTY ACIDS 

Each of the selected wave number filters explained only a small amount of the variance in the 
dataset (Table 4). These wave numbers corresponded to the absorption areas of –OH, C-O and 
C=O molecular bonds which are characteristic of the –COOH functional group of fatty acids 
(Wehling, 1998). 
 The coefficient of determination of the “total fatty acid” calibration indicated good precision 
(Shenk and Westerhaus, 1996), especially considering the low concentrations of fatty acids 
present in the wines (Table 5 and Figure 2). The bias of the regression curve was very low. The 
SECV and SEP values were lower than 14% of the average concentration of the calibration and 
validation set respectively. When the low concentrations of the fatty acids are taken into account, 
these error parameters are reasonable. However, like with the “total alcohols”, when compared to 
the very small error associated with the reference measurements, the prediction error does not 
reflect well in terms of the precision criteria. Some spectroscopic interference could be caused by 
other, non-volatile, organic acids in wine. Important acids like tartaric acid, malic acid and lactic 
acid contains more than one –COOH functional group and/or additional –OH groups, as opposed 
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to the volatile fatty acids that contain only a single –COOH group. This, together with the high 
levels of these acids present in wine would cause the absorbance by these acids to be stronger 
than that of the fatty acids at the specified wave numbers. In the light of these observations, 
especially considering that the coefficient of determination was reasonable, this calibration curve 
could be used to screen wines in terms of high, medium or low concentrations of fatty acids. 
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Figure 3. Fatty acid concentration measured with the reference method vs. concentration predicted 
with FTIR. 

8.3.4  ESTERS AND TOTAL ESTERS 

More than 70% of the variance in the “esters” data set was accounted for by three wave number 
filters. These filters corresponded to absorbance by –OH and C-O molecular bonds. Of the “total 
esters” filters, 70% of the total variance were explained by two wave numbers in the –OH 
absorbance region. The next two filters explained only 4% additional variance and were 
characteristic of absorbance by C-O and C=O bonds (Wehling, 1998). It is interesting that the –OH 
bonds were more influential than the C-O and C=O bonds, as the latter are more characteristic of 
the COCOOH functional group of esters. Unlike fatty acids and alcohols, esters do not share their 
particular molecular structure with any major wine constituent. The fact that the most important 
wave numbers used in the calibration of both ester groups corresponds with –OH absorbance 
means that more interference can be expected from alcohols and acids. 
 The regression plot for “esters” showed good linearity (Figure 5) according to Shenk and 
Westerhaus. Interestingly, the calibration curve for “total esters” followed a polynomial trend rather 
than a linear trend (Figure 5). It seems as if the curve follows a linear trend up to concentrations of 
0.9 g/L while higher concentrations enforced a more polynomial trend. The bias of the regression 
curve was very low. The SECV values was 13% and 16% of the average concentration of the 
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calibration set of total esters and esters calibrations respectively. The SEP values was 15 and 13% 
of the average concentration of the validation set of the total esters and esters calibrations 
respectively. When samples with total ester concentrations higher than 0.9 g/L were excluded from 
the validation set, the SEP for total esters dropped from 0.122 to 0.104 (data not shown). In this 
context the prediction error of the calibration curves are not ideal yet not excessively large. 
However, when compared to the very small error associated with the reference measurements, the 
prediction error is out of bounds. Spectroscopic interferences could be expected from alcohols and 
acids present in wine. 
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Figure 4. Calibration curve for esters predicted with FTIR. 
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Figure 5. Calibration curve for Total esters. The curve follows a polynomial trend, although it seems as 
if concentrations below 0.9 g/L follow a linear trend. 
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8.4 CONCLUSION 

The preliminary calibrations for the volatile compound groups “total alcohols”, “total fatty acids”, 
“total esters” and “esters” are promising for the screening purposes in wine and should definitely be 
investigated further. The ability of the models to distinguish between high, medium and low values 
for these groups could be evaluated with SIMCA models (soft independent modelling of class 
analogies). As discussed in Chapter 4, the levels at which these compounds occur in red and white 
wines are very different, and high levels of higher alcohols in white wines are close to the value of 
low levels of higher alcohols in red wines. This would make the distinction between high, medium 
and low levels of these compound groups more difficult. Possible research strategies include the 
analysis of more reference samples in order to establish separated screening models for red and 
white wines. Alternatively, the compound groups could be refined in order to minimise the variation 
between wine types. Screening models for volatile compounds in synthetic fermentation media 
could also be investigated.  
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GENERAL DISCUSSION AND CONCLUSION 

Wine characterisation relies on two equally important fields of study: chemical analysis and data 
analysis. The sophisticated analytical techniques provide a wealth of chemical information while a 
combination of univariate and multivariate data analysis allows the interpretation of the chemical 
information. Thus, the first issue to address in a study on wine characterisation is the performance 
of the analytical method and therefore the reliability of the data. Two analytical methods were used 
in this study, Fourier transform infrared spectroscopy and gas chromatography. 
 Fourier transform infrared spectroscopy can be applied toward wine characterisation in two 
different ways. Firstly, the spectra generated during analysis can be examined with multivariate 
data analysis to gather information inherent to the sample matrix. As infrared spectroscopy is a 
measurement of the response of molecular bonds to infrared radiation, infrared spectra contain a 
wealth of compositional information that does not necessarily have to be connected to a specific 
compound. To fully exploit the amount of information present in the spectra it is important to limit 
the amount of noise present in the spectra. CO2 is a common cause of spectral noise and must be 
eliminated during sample preparation. Several sample preparation techniques have been explored 
in this study and it was concluded that multiple filtrations using a vacuum filter was more efficient 
than centrifugation or sonication to decrease the CO2 levels in young wines to below 300 mg/L.  
 Fourier transform infrared spectroscopy can also be used as a quantitative method. The 
spectral information can be correlated to the concentration of specific compounds by means of 
PLS regression. FTMIR calibration models was used for the of characterising South African young 
wines in terms of the most important wine constituents, namely tartaric acid, pH, volatile acidity, 
malic acid, lactic acid, glucose, fructose, ethanol and glycerol. These parameters are of paramount 
importance during wine quality control. In order to establish a good calibration model for the 
prediction of compositional information it is of crucial to obtain good reference values. Two 
commonly reported reference methods for infrared calibrations of organic acids, sugars and 
glycerol are HPLC and enzymatic analysis. These two methods were evaluated and several 
important observations were made.  
 Enzymatic assays were found suitable for the determination of glucose, fructose and glycerol 
in red and white wines as well as malic acid in white wines and in red wines containing more than 
0.32 g/L malic acid. The enzymatic analysis of lactic acid was characterised by high laboratory 
errors. The reason for this could be explored further. The analysis of malic acid in red wine was 
hampered by a matrix effect, presumably caused by the red pigments in wine. The matrix effect 
could not be reduced by dilution if the samples contained low amounts of malic acid. Decolouring 
of the samples with activated charcoal and PVPP both resulted in heavy spectral interferences. 
 HPLC was more effective for the analysis of organic acids than enzymatic assays. However, a 
matrix effect was observed during the analysis of red wines which was caused by interfering 
organic molecules, especially phenolic compounds. This matrix effect and the necessity of sample 
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clean-up methods have been widely reported (de Villiers et al., 2004; Zotou et al., 2004). The two 
sample clean-up methods evaluated in this study, SPE and PVPP fining, both effectively removed 
interfering phenolic compounds. Although both methods were labour intensive and time 
consuming, PVPP fining was notably less expensive than SPE and provided better recoveries for 
the organic acids. However, the reproducibility of PVPP fining must still be optimised. None of 
these methods are ideal and the choice between these methods involves a compromise between 
limit of quantification, recovery, and reproducibility as well as time and cost efficiency. There are 
also other SPE methods to consider. The reverse phase SPE cartridges used in this study could 
be replaced with ion exchange cartridges such as SAX (strong anion exchange) cartridges. The ion 
exchange separation mechanism relies on the pH and ionic strength of the mobile phase rather 
than on polarity (Rounds and Gregory, 1998). It should be noted that varying results in terms of the 
precision and recovery of organic acid analysis using SAX cartridges has been reported. Moreover, 
the neutral carbohydrates and alcohols will be removed with the phenolic compounds during 
sample clean-up. However, this fraction could be analysed separately to quantify the sugars and 
alcohols and would not require additional sample clean-up steps as the phenolic compounds has 
no influence during the refractive index detection of sugars and alcohols. Alternatively, if the 
organic acids are analysed using SAX cartridges, the sugars and glycerol could successfully and 
reliably be determined with enzymatic assays (Castellari et al., 2000; Mato, et al., 2005; Zotou et 
al., 2004). 
 An alternative method for the determination of organic acids is capillary electrophoresis (CE). 
The method is sensitive enough to determine low concentrations of malic acid and requires little 
sample preparation. However, CE analysis requires specific expertise and is characterised by poor 
reproducibility compared to HPLC (de Villiers et al., 2003; Santalad et al., 2007). Furthermore, 
large prediction errors have been reported for FTIR organic acid calibrations using CE analysis as 
a reference method (Kupina and Shrikhande, 2003). 
  Although not the ideal practical solution, it is evident from the results of this study that the 
determination of reference values for FTMIR calibrations should be approached differently. 
 The same statement can be made regarding the establishment of FTMIR calibrations. Young 
wines were analysed with reference methods in order to determine whether commercial FTMIR 
calibrations are suitable for a South African young wine matrix. In the cases of total acidity, pH, 
glucose, fructose, malic acid, ethanol and glycerol, better performance were observed for brand 
new calibrations based on young wine reference samples. This clearly indicated that the South 
African conditions had a significant effect on the quantification abilities of the commercial 
calibrations that was set up under European conditions. The efficiency of wavenumber selection for 
the establishment of preliminary young wine calibrations was evaluated. Very refined wavenumber 
selections were the most suitable for total acidity, volatile acidity and glycerol, while the use of 
broader spectral regions was more efficient for the calibration of pH and ethanol. From the glycerol 
calibration statistics it was observed that a separate calibration for red wine samples performed 
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better than a calibration including both red and white wines. Thus, it seems that FTMIR calibration 
models should not be approached in a generic fashion for all analytes. 
 Promising results were obtained for the preliminary calibration models for the determination of 
volatile compounds in young wines. Four compound groups, based on chemical structure and 
sensory impact on wine, were chosen: total alcohols, fatty acids, total esters and esters. A 
distinction was made between “esters” and “total esters”, where the former does not include ethyl 
acetate. The reason for this is that the sensory contribution of ethyl acetate in wine is often 
associated with volatile acidity rather than esters. In the case of total alcohols and fatty acids, the 
most significant wavenumbers corresponded to the absorbance areas of molecular bonds that are 
characteristic of these compounds. Interestingly, the wavenumbers corresponding to O-H bonds 
were more influential than those corresponding to C-O and C=O bonds, which are more 
characteristic of the COCOOH functional group of esters. The preliminary calibrations for total 
alcohols, fatty acids and esters performed well in terms of linearity and bias. The total esters 
calibration followed an interesting polynomial trend. The prediction errors of the calibration were 
high, but not excessively so in terms of the average concentration of the sample sets. However, 
compared to the analytical error of the reference method, the prediction error of all four calibrations 
were unacceptable. The high prediction errors can partially be explained by spectroscopic 
interferences caused by more abundant wine constituents that absorbs strongly in similar spectral 
regions. 
 The proposed gas chromatography method for the analysis of volatile compounds was 
considered suitable after validation. Slight matrix effects were observed between red and white 
wines. The following factors in the protocol had a significant influence on the results and should be 
closely adhered to: amount of diethyl ether, sample volume, length of sonication and the 
temperature of the water bath. The amount of NaSO4 salt, ethanol concentration and pH of the 
sample did not influence the extraction efficiency significantly. No trends were observed between 
analyses of the same extract or wine on the same day or over time. Large variations in 
concentrations were observed during methanol analyses over time. These results are a major 
contribution towards the establishment of a routine analytical method for the quantification of 
volatile compounds in our environment. 
 The data analysis aspect of wine characterisation can be approached in terms of descriptive 
analysis and pattern recognition. Young South African wines from six cultivar groups and four 
production areas were analysed with FTMIR spectroscopy and gas chromatography over two 
vintages. An overview of the volatile composition of South African young wines was described by 
univariate statistics. In addition, FTMIR spectra, major chemical composition determined with 
FTMIR spectroscopy and the volatile composition determined with GC-FID were subjected to 
pattern recognition techniques to identify trends and patterns in the data relating to vintage, wine 
style, grape cultivar, production region and wine quality. 
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 The main source of variation between the wines was the distinction between red and white 
wines. Significant differences were observed between the volatile composition of red and white 
wines that were in agreements with results from previous studies (Gil et al., 2006). PCA scores 
plots showed a clear distinction between the volatile and major chemical composition and FTMIR 
spectra of red and white wines. The most influential volatile compounds in the separation between 
red and white wines were in agreement with the results obtained from univariate statistics. The 
most important major chemical components responsible for the distinction between red and white 
wines were related to malolactic fermentation. 
 Significant differences were observed between the composition of the 2005 and 2006 vintage 
wines. These differences were cultivar dependent, which means that the changes in the chemical 
composition of wines between different vintages are not consistent for each cultivar. A probable 
reason for this observation is that the different climatic events that occurred during each ripening 
season, such as the heavy precipitation in October 2004 (Boom, 2005), did not affect cultivars that 
were in different phenological stages to the same extent. It would be beneficial to confirm these 
results by analysis of another vintage. Red and white wines had to be separated to observe 
differentiation between these two vintages with PCA. The FTMIR spectra and major chemical 
components did not contribute to the distinction observed between vintages on PCA scores plots. 
The 2005 and 2006 white wines were mostly separated by diethyl succinate and isoamyl acetate. 
Butanol, decanoic acid and isobutanol caused the distinction between the 2005 and 2006 red 
wines. The role of isobutanol was especially interesting, since the univariate statistics indicated 
that the isobutanol content of the 2005 and 2006 red wines were not significantly different. 
However, significant cultivar-vintage interaction was observed between the variance in isobutanol 
levels. The role of multivariate data analysis to uncover the influence of isobutanol concentration 
on the differences between vintages underlines the fact that multivariate statistics are more 
appropriate where there are correlations between variables than univariate statistics.    
 The compounds that were most influential in the differentiation between cultivar wines could 
be linked by their role in yeast metabolism. Their roles in the differentiation between red wines 
were confirmed by previous studies (Ferreira et al., 2000; Marias et al., 1981). Interestingly, the 
volatile composition of Pinotage wines was more comparable to white wines than the other red 
wines. Results from univariate statistics and PCA shows that isoamyl acetate, isobutanol, 
isobutyric acid and 2-phenyethyl acetate were influential in the distinction between Pinotage and 
the other red wines. The fact that Pinotage specifically stands apart from the other red wine 
cultivars could have important implications for the production and marketing strategies of Pinotage 
wines. Pinotage wines have long been the proverbial black sheep of South African red wine 
cultivars, and perhaps the preliminary results from this study is another indication that Pinotage 
wines should be considered in a class of their own. It seems valuable to investigate the use of 
winemaking strategies that deviates from the standard red winemaking practices for the production 
of Pinotage and to establish Pinotage as a unique and distinguishable wine style.  
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 The role of infrared spectra in the discrimination between cultivar wines with PCA was limited 
to the white cultivars. It was observed from PCA that the volatile composition contributed more to 
the differences between red wine cultivars than the spectra. However, the role of the spectra was 
more pronounced in LDA, where the most powerful classification model for cultivar groupings was 
achieved with a combination of the entire infrared spectra and volatile compounds. Surprisingly, 
better classification results were obtained using the entire FTMIR spectra than using selected 
spectral regions containing minimum amounts of noise. This highlights the value of FTMIR spectra 
as an information rich and non-selective instrumental signal. 
 Higher alcohols and fatty acids contributed the most to differences between production 
regions. Based on univariate analysis of their volatile composition, Paarl and Stellenbosch wines 
were very similar, whereas Robertson and Worcester wines differed from each other and from the 
other regions. However, no differences were observed between the regions through multivariate 
data analysis of the FTMIR or volatile data. This could be due to the fact that the regions were 
allocated to each wine based on the location of the wine cellar. South African wine cellars may 
lawfully buy grapes from other production regions, and therefore the actual origin of the wines used 
in this study is not guaranteed. In future studies it would be advisable to use estate wines, or wines 
of which the origin is guaranteed.  
 Lastly, it was not possible to predict the score of the wines from PLS regression models of the 
chemical or spectral data. Wines with very high and very low score ratings were under represented 
in the calibrations, a fact that possibly hampered the prediction abilities of the models. Further 
attempts to calibrate wine quality from chemical data should ideally include a larger number of high 
and low quality wines. 
 The important role of sound and validated analytical methods to generated high quality 
analytical data, and the subsequent application of chemometric techniques to model the data for 
the purpose of wine characterisation have been thoroughly explored in this study. After critical 
evaluation of the analytical methods used in this study, a variety of statistical methods were applied 
to uncover the chemical core of South African cultivar wines. The use of multivariate data analysis 
has revealed some limitations in the dataset. From the observations made in terms of the 
unsuccessful classification of production region and wine quality, it must be said that wine 
characterisation is not just reliant on sophisticated analytical chemistry and advanced data 
analytical techniques, but also on high quality sample sets. 
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ADDENDUM A 

 
 
OBJECTIVE AND SCOPE OF THE METHOD 
A method suitable for the extraction, analysis and quantification of aroma compounds 
(volatile alcohols, esters and acids) with gas chromatography and Flame Ionization 
Detection.   
 
 
TYPE OF COMPOUNDS AND MATRIX 
Volatile alcohols, esters and acids in red and white wine, using 4-Methyl-2-Pentanol as 
internal standard (IS).  
 
 
CHEMICALS / MATERIALS 
All chemicals were of the highest purity as obtained from the manufacturer and were used 
without further purification. 
 
Standards: 
Ethyl Acetate, Riedel de Haën, 99.7%; Methanol, Merck, 99.8%; Ethyl Butyrate, Fluka, 
99%; Propanol, Fluka, 99%; Isobutanol, Fluka, 99.5%; Isoamyl Acetate, Riedel de Haën, 
98%; Butanol, Fluka, GC grade; Isoamyl Alcohol, Aldrich, 99%; Ethyl Hexanoate, 
Schuchardt Munchen, 98%; Hexyl Acetate, Fluka, 99%; Ethyl Lactate, Fluka, 99%; 
Hexanol, Merck, Synthesis grade; Ethyl Caprylate, Aldrich, 99%; Acetic Acid, Merck, 
98%; Propionic Acid, Fluka, 99.5%; Iso-Butyric acid, Fluka, 99.5%; Ethyl Caprate, Aldrich, 
99%; Butyric Acid, Fluka, 99.5%, Fluka; Iso-Valeric Acid, Fluka, 98%; Diethyl Succinate, 
Fluka, 99%; Valeric Acid, Fluka, 99%; 2-Phenylethyl Acetate, Fluka, 98%; Hexanoic Acid, 
Aldrich, 99.5%; 2-Phenylethanol, Merck, 99%; Octanoic Acid, Aldrich, 99.5%; Decanoic 
Acid, Sigma, 98%.   
 
Internal Standard:  
4-Methyl-2-Pentanol, Fluka 
 
Wine simulant  
12% Ethanol (Merck, 99.7-100%), 2.5g/L tartaric acid (Merck, 99.5%), pH adjusted to 3.5 
with a solution of NaOH 0.1M (Merck). 
Deionized water was obtained with a Millipore system. 
Volatile components were extracted from the wine with diethyl ether (Merck, 99.5%). 
The ether extract was dried on NaSO4 (Merck, 99%).  
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Gas: 
 
UHP hydrogen was used as carrier gas, UHP Nitrogen as make up flow for the detector 
and UHP Air for the Flame Ionization detector.  All these were purchased from AFROX.   
 
Column:  
 
A J & W DB-FFAP capillary GC column (Agilent, Little Falls, Wilmington, USA) with 
dimensions 60 m Length × 0.32 mm i. d. × 0.5 μm f.t, was used.   
 
METHOD PARAMETERS 
 
• Instrumental Parameters 

Initial temperature: 33°C   
Initial time: 17 min 
Ramp:  12°C/min to 240°C, hold for 5 minutes       

Front inlet: 
Injection volume: 3 μl  
Mode: Split 
Split Ratio: 15:1 
Split Flow: 49.5 ml/min 
Injector temperature: 200°C 
Initial pressure:  84.5 kPa 
Flow mode: constant flow 
Column flow: 3.3 ml/min 

Column:   
DB-FFAP, 60 m × 0.32 mm × 0.5 μm f.t 

Detector: 
Temperature: 250°C   
H2 flow: 30 ml/min 
Air flow: 350 ml/min 
Make up flow: N2 30 ml/min 

 
 
After each sample run, a post run of 5 minutes at oven temperature 240oC, with a gas 
flow of 6ml/min cleans the column.  After every 30 samples the column is thermally and 
chemically cleaned by injecting hexane at an oven temperature of 220oC.  
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• STANDARDS AND SAMPLES 
Five millilitres of wine with internal standard, 4-Methyl-2-Pentanol, (100μl of 0.5mg/l 
solution in wine simulant) is extracted with 1 millilitre of diethyl ether by placing the 
ether/wine mixture in an ultrasonic bath for 5 minutes.  The wine/ether mixture is then 
centrifuged at 4000 rpm for 3 minutes.  The ether layer is removed and dried on NaSO4.  
This extract is then injected into the GC-FID. 
 
 
EQUIPMENT 
Hewlett Packard 6890 Plus GC (Little Falls, USA) equipped with a split\splitless injector 
and an FID detector.  
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PROCEDURES 
 
• STANDARDS AND SAMPLE PREP 
 
Concentration of standards in calibration solutions were as follows:  
 
Table 1. Concentrations and amounts of standards (in 100 ml wine simulant) used to 
prepare Standard solution 1  
 
Compound  Concentration, ppm  Amounts  
Ethyl Acetate 360.8 36.08 
Methanol 901.74 90.174 
Ethyl Butyrate 21.95 2.195 
Propanol  201 20.1 
Isobutanol 100.38 10.0375 
Isoamyl Acetate  19.27 1.9272 
Butanol 20.28 2.0275 
Isoamyl Alcohol   477.31 47.731 
Ethyl Hexanoate  30.56 3.0555 
Hexyl Acetate 21.9 2.19 
Ethyl Lactate  500.16 50.016 
Hexanol 30.93 3.0932 
Ethyl Caprylate 3.51 0.3512 
Acetic Acid 1804.79 180.428 
Propionic Acid 29.79 2.979 
Iso-Butyric Acid 20.90 2.09 
Butyric Acid 21.21 2.1208 
Ethyl Caprate  3.45 0.3448 
Iso-Valeric Acid 31.41 3.141 
Diethyl Succinate 39.35 3.9354 
Valeric Acid 20.66 2.0658 
2-Phenylethyl Acetate 20.6 2.06 
Hexanoic Acid  29.664 2.9664 
2-Phenylethanol 50.95 5.095 
Octanoic Acid 40.04 4.004 
Decanoic Acid 50.01 5.64 
 
Standard solution 1 is prepared by dissolving the appropriate standards amounts in 
100mL wine simulant in a volumetric flask. 
 
 
The other standard solutions were prepared by diluting standard solution 1 to the 
following solutions with wine simulant.  
 



 6 

Table 2. Dilution levels of standard solutions 
 
Standard Solution no. Level, % 
1 100 
2 95 
3 50 
4 33 
5 16 
6 9 
7 5 
 
 
IS solution is prepared by adding 619µL of 4-Methyl -2-Pentanol to 10mL Ethanol. This 
solution is diluted a thousand times by adding 100μL of this solution to 10 mL wine 
simulant.  A 100μL of this diluted standard is used during sample preparation.  
 
 
STATISTICS 
 
Equations for regression, standard deviations (STD) and relative standard deviations 
(%RSD) were calculated with Microsoft Excel.  
 
Data analysis was performed using the ChemStation software; integration was done with 
the enhanced integrator, using the suitable integration parameters function. 
 
The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as follows1:  

 
Where y = detector response (i.e. area), a = slope, x = concentration and b = y-intercept 
at origin. 

Therefore:  

 
 

And                                          ysensitivit
noiseLOQ 10×

=
 

                                          
1 Quantitative Chemical Analysis, Daniel C Harris, WH Freeman and Company, NY, 2000 

x
y

ionconcentrat
areaysensitivit ==

ysensitivit
noiseLOD 3×

=

baxy +=
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In the data analysis, all compound peak areas are divided by the area of the internal 
standard.   

 

areaIS
areapeakCompoundAreaCorrected =  

 
 
For recovery experiments, the following calculations were used: 
 
 
 

withspiked

winespikednonwineSpiked

ionConcentrat
ionConcentrationConcentratery )(100covRe%

−−×
=  

 
 
RESULTS 
 
• Selectivity  
 
The selectivity was tested by injecting in consecutive runs, a 9% dilution mixture of all the 
standards, the matrices (red and white wines), and the spiked matrices (red and white 
wines spiked with a 6.25% dilution of the mixture of standards). Peaks were identified by 
the retention times resulting from the injection of authentic standards. Peaks detected in 
the sample matrices corresponded to the retention times of the injected standards. Peak 
identities and retention times are given in Figure 1, Figure 2 and Table 3. 
 
 
 
 
 



Figure 1. GC-FID analysis of a mixture of standards in a wine simulant solution from 5 - 22 minutes. Peak identities are 
given in Table 3. 
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Figure 2. GC-FID analysis of a mixture of standards in a wine simulant solution from 22-35 minutes. Peak identities are 
given in Table 3. 
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• Linearity 
 
Table 3. Calibration was performed for standards at the following levels: 
 
Compound  Peak 

no 
Retention  
Time (min) 

Calibration levels, 
ppm 

Ethyl Acetate 1 5.374 17.2  - 360.8   
Methanol 2 5.784 42.9  - 901.7   
Ethyl Butyrate 3 12.911 1.0    - 22.0     
Propanol  4 13.520 9.6    - 201.0   
Isobutanol 5 18.597 4.8    - 100.4   
Isoamyl Acetate  6 19.926 0.9    - 19.3     
Butanol 7 20.878 1.0    - 20.3     
4-Methyl-2-pentanol 8 21.515 Internal standard 
Isoamyl Alcohol   9 22.533 22.7  - 477.3   
Ethyl Hexanoate  10 23.048 1.5    - 30.6     
Hexyl Acetate 11 23.814 1.0    - 21.9     
Ethyl Lactate  12 25.010 23.8  - 500.2   
Hexanol 13 25.089 1.5    - 30.9  
Ethyl Caprylate 14 26.180 0.2    - 3.5  
Acetic Acid 15 26.454 85.9  - 1804.8  
Propionic Acid 16 24.457 1.4    - 29.8  
Iso-Butyric Acid  17  27.736 1.0    - 20.9  
Butyric Acid  18 28.383 1.0    - 21.2  
Ethyl Caprate 19 28.444 0.2    - 3.5  
Iso-Valeric Acid 20 28.781 1.5    - 31.4  
Diethyl Succinate 21 28.898 1.9    - 39.4  
Valeric Acid 22 29.454 1.0    -  20.7  
2-Phenylethyl Acetate 23 30.366 1.0    - 20.6  
Hexanoic Acid  24 30.438 1.4    - 29.7  
2-Phenylethanol 25 31.218 2.4    - 51.0  
Octanoic Acid 26 32.256 1.9    - 40.0  
Decanoic Acid 27 33.912 2.7    - 50.0  
 
The value range for the concentrations was determined by evaluating results 
from Distell, South Africa for the same analysis.  
 
 
The corrected peak areas gave linear responses over the concentration 
intervals tested. For results, see tables and figures below. 
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Table 4. Equations and R2 of the calibration curves for the individual analytes  
 
Compound  Equation  R2 Area 
Ethyl Acetate Y = 0.2004x + 0.0392 0.99839 
Methanol Y = 0.0056x - 0.0184 0.99011 
Ethyl Butyrate Y = 0.7806x - 0.0056 0.99974 
Propanol  Y = 0.0943x - 0.0430 0.99853 
Isobutanol Y = 0.3348x - 0.0285 0.99972 
Isoamyl Acetate  Y = 1.0021x - 0.0101 0.99985 
Butanol Y = 0.3174x - 0.0089 0.99951 
Isoamyl Alcohol   Y = 0.7569x - 0.0805 0.99988 
Ethyl Hexanoate  Y =  1.1331x - 0.0224 0.99987 
Hexyl Acetate Y = 1.1394x - 0.0144 0.99989 
Ethyl Lactate  Y = 0.0632x - 0.0492 0.99903 
Hexanol Y = 1.3512x - 0.0032 0.99993 
Ethyl Caprylate Y = 1.3493x - 0.0075 0.99949 
Acetic Acid Y = 0.0277x - 0.1207 0.99775 
Propionic Acid Y = 0.1241x - 0.0061 0.99910 
Iso-Butyric Acid Y = 0.3987x - 0.0104 0.99976 
Butyric Acid Y = 1.5416x - 0.0129 0.99766 
Ethyl Caprate Y = 0.3859x - 0.0115 0.99966 
Iso-Valeric Acid Y = 0.7824x - 0.0201 0.99993 
Diethyl Succinate Y = 0.7519x - 0.0116 0.99991 
Valeric Acid Y = 0.8159x - 0.0156 0.99991 
2-Phenylethyl Acetate Y = 1.7003x + 0.0144 0.99960 
Hexanoic Acid  Y = 1.3154x - 0.0219 0.99997 
2-Phenylethanol Y = 1.1614x - 0.0459 0.99982 
Octanoic Acid Y = 1.7327x - 0.0354 0.99995 
Decanoic Acid Y = 2.5490x - 0.2904 0.99810 
 
Where Y = area ratio and x = amount ratio  
Each calibration level was injected three times.   
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                  Figure 3. Calibration curve for Ethyl Acetate.                     Figure 4. Calibration curve for Methanol. 
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 13 

                Amount Ratio0 5

Area Ratio

0

0.5

1

1.5

2

2.5

3

7 6
5

4

3 2

1

 Isobutanol, FID1 A

Correlation: 0.99972

 Rel. Res%(7): 9.385      

 Area Ratio = 0.33475994*AmtRatio -0.0284861

           Amount Ratio0 1

Area Ratio

0
0.25

0.5
0.75

1
1.25

1.5
1.75

7 6
5

4

3 2

1

 Isoamyl Acetate, FID1 A

Correlation: 0.99985

 Rel. Res%(7): 3.483      

 Area Ratio = 1.00211199*AmtRatio -0.0100073

 
             
             Figure 7. Calibration curve for Isobutanol.                                 Figure 8. Calibration curve for Isoamyl Acetate. 
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              Figure 9. Calibration curve for Butanol.                                   Figure 10. Calibration curve for Isoamyl Alcohol. 
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                    Figure 11. Calibration curve for Ethyl Hexanoate.           Figure 12. Calibration curve for Hexyl Acetate. 
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                 Figure 13. Calibration curve for Ethyl Lactate.                         Figure 14. Calibration curve for Hexanol. 
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               Figure 15. Calibration curve for Ethyl Caprylate.                           Figure 16. Calibration curve for Acetic Acid. 
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              Figure 17. Calibration curve for Propionic Acid.                       Figure 18. Calibration curve for Isobutyric Acid. 
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           Figure 20. Calibration curve for Butyric Acid.                                  Figure 19. Calibration curve for Ethyl Caprate. 
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          Figure 21. Calibration curve for Iso-Valeric Acid.                 Figure 22. Calibration curve for Diethyl succinate. 
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          Figure 23. Calibration curve for Valeric Acid.                             Figure 24. Calibration curve for 2-Phenylethyl Acetate. 
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        Figure 26. Calibration curve for 2-Phenylethanol.                        Figure 25. Calibration curve for Hexanoic Acid. 
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         Figure 27. Calibration curve for Octanoic Acid.                           Figure 28. Calibration curve for Decanoic Acid. 
 
 



LOD and LOQ were calculated as described in STATISTICS; the results 
are given below:  
 
Table 5: Limit of detection and limit of quantification values in mg/L for 
each compound. 
 
Compound LOD LOQ 
Ethyl Acetate 0.104 0.348
Methanol 10.978 36.594
Ethyl Butyrate 0.016 0.055
Propanol 0.246 0.820
Isobutanol 0.048 0.160
Isoamyl Acetate 0.014 0.047
Butanol 0.060 0.200
Isoamyl Alcohol 0.018 0.061
Ethyl Hexanoate 0.022 0.072
Hexyl Acetate 0.021 0.069
Ethyl Lactate 0.517 1.723
Hexanol 0.016 0.054
Ethyl caprylate 0.017 0.058
Acetic acid 1.211 4.035
Propionic Acid 0.220 0.732
Iso-Butyric Acid 0.061 0.203
Butyric Acid 0.068 0.228
Ethyl Caprate 0.020 0.067
Iso-Valeric Acid 0.028 0.095
Diethyl Succinate 0.028 0.094
Valeric Acid 0.028 0.095
2-Phenylethyl Acetate 0.010 0.035
Hexanoic Acid 0.016 0.054
2-Phenylethanol 0.061 0.203
Octanoic Acid 0.038 0.125
Decanoic Acid 0.037 0.124

 
 
• Recovery  
The recovery of the extraction process was investigated by injecting the 
ether extract of a wine as well as the extract of the same wine spiked with 
a mixture of all the abovementioned standards.  This was done for red 
and white wine. Calculations as described in STATISTICS. Results are 
given in the table below: 
 
Each extract was injected three times and the average of the three 
injections was calculated.  The wines were spiked with a synthetic wine 
mixture at concentration level 5 in the calibration curve.    
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Table 6:  Percentage recovery of analytes in white and red wine.   
 
 White wine Red wine 
Compound % Recovery  % Recovery 
Ethyl Acetate 59.108 47.210 
Methanol 74.504 54.170 
Ethyl Butyrate 62.407 65.889 
Propanol 44.393 35.698 
Isobutanol 70.551 69.221 
Isoamyl Acetate 86.377 62.624 
Butanol 42.676 51.235 
Isoamyl Alcohol 63.754 50.959 
Ethyl Hexanoate 68.131 63.976 
Hexyl Acetate 64.283 67.359 
Ethyl Lactate 55.485 34.433 
Hexanol 82.689 75.620 
Ethyl caprylate 132.688 74.629 
Acetic acid 50.582 42.416 
Propionic Acid 43.174 31.834 
Iso-Butyric Acid 62.230 64.173 
Butyric Acid 59.014 84.513 
Ethyl Caprate 76.906 83.374 
Iso-Valeric Acid 92.518 91.945 
Diethyl Succinate 61.081 60.423 
Valeric Acid 71.026 72.318 
2-Phenylethyl Acetate 82.967 88.652 
Hexanoic Acid 96.575 86.460 
2-Phenylethanol 63.097 38.248 
Octanoic Acid 107.463 97.662 
Decanoic Acid 105.184 107.746 

 
 
As can be observed from the table, most recoveries are in the interval 60-
110%. The exceptions are ethyl acetate, propanol, butanol, isoamyl 
alcohol, ethyl lactate, acetic acid and propionic acid.  There is also a 
slight difference in recovery between the white wine matrix and the red 
wine matrix for methanol, isoamyl acetate, ethyl lactate, ethyl caprylate 
butyric acid and 2-phenyl ethanol.   
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• Robustness  
The sample preparation can possibly be influenced by a number of 
factors, like the amounts of salt, ether and wine, the length of sonication, 
the pH of the wine, the temperature of the water in the ultrasonic bath, the 
ethanol concentration of the wine as well as the wine matrix (red or 
white).  The influence of the variation of these parameters was evaluated 
comparing the concentrations obtained for the different analytes in 
question.   
 
Amount of NaSO4 used to dry extract.  
 
A workable amount of NaSO4 was chosen as 0.15 g, and different 
amounts between 0.05 and 0.25 g were used to determine whether this 
influences the concentrations obtained for the analytes.  Each extract was 
injected three times and the average of the concentrations for the three 
injections was determined for each amount of salt. The results are 
summarised in Table 7.   
 
No clear trend could be linked to the different amounts of salt used. 
Therefore, it is assumed that the amount of salt has no influence on the 
method.    
 
Amount of Diethyl Ether used to extract the volatile compounds from the 
wine.  
 
During sample preparation a variance in the amount of diethyl ether used 
will influence the concentration of the analytes injected.  Normally one 
milliliter of diethyl ether is used and the maximum variance was estimated 
as 0.25 ml to either side.  The average of the three injections for each 
extract is shown in Table 8. 
 
Unacceptably large percentage standard deviations indicated that the 
amount of diethyl ether used for extraction definitely influences the 
results.    
 
Amount of wine used for extraction.  
 
A variance in the amount of wine as sample will affect the concentration 
of the analytes extracted from the wine and can lead to incorrect 
concentration readings from the calibration curve, as the curve was 
calibrated per 5ml of wine.  The maximum variance in the amount was 
estimated as 0.5ml to either side.  Each extract from a specific amount of 
wine, was injected three times and the average concentrations for each 
compound in the three injections are given in Table 9.   
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Although the percentage standard deviation was not as detrimental 
compared to the variances due to difference in ether amounts, variances 
due to incorrect sample amounts should be minimized by ensuring 
accurate measurements.  



Table 7:   Layout of the concentrations obtained for the analytes after extracts of the same wine was dried on different amounts of NaSO4.   
 
Compound 0.183 g 0.127 g 0.097 g 0.24 g 0.175 g 0.053 g Average STD %RSD 
Ethyl Acetate 200.665 222.193 213.738 194.129 194.289 207.294 205.385 11.207 5.457 
Methanol 375.633 406.778 428.304 347.748 368.626 380.706 384.633 28.673 7.455 
Ethyl Butyrate 11.756 11.674 12.220 12.287 11.658 11.976 11.928 0.277 2.321 
Propanol 90.548 100.971 99.809 90.294 83.114 95.945 93.447 6.759 7.233 
Isobutanol 54.867 60.346 59.676 54.212 52.148 57.785 56.506 3.267 5.782 
Isoamyl Acetate 10.709 10.178 10.647 11.278 10.780 10.502 10.682 0.361 3.384 
Butanol 10.580 11.361 11.289 10.408 10.168 10.971 10.796 0.487 4.508 
Isoamyl Alcohol 245.945 250.818 252.514 245.069 245.195 246.984 247.754 3.152 1.272 
Ethyl Hexanoate 17.364 16.180 17.005 18.485 17.615 16.900 17.258 0.774 4.487 
Hexyl Acetate 13.145 12.267 12.879 14.030 13.288 12.796 13.067 0.589 4.504 
Ethyl Lactate 258.947 271.977 264.814 255.363 255.678 255.568 260.391 6.733 2.586 
Hexanol 16.832 16.135 16.694 17.551 16.937 16.579 16.788 0.466 2.774 
Ethyl caprylate 3.410 3.167 3.368 3.702 3.464 3.366 3.413 0.174 5.094 
Acetic acid 844.189 898.825 884.381 833.195 835.895 845.155 856.940 27.625 3.224 
Propionic Acid 17.672 18.631 17.962 17.417 17.442 17.549 17.779 0.462 2.601 
Iso-Butyric Acid 12.397 12.865 12.602 12.521 12.401 12.509 12.549 0.173 1.381 
Butyric Acid 12.438 12.884 12.676 12.541 12.424 12.607 12.595 0.172 1.362 
Ethyl Caprate 2.063 1.927 2.041 2.257 2.087 2.051 2.071 0.107 5.155 
Iso-Valeric Acid 22.507 22.233 22.737 23.322 22.663 22.768 22.705 0.360 1.587 
Diethyl Succinate 19.144 18.661 19.466 20.305 19.476 19.435 19.414 0.537 2.765 
Valeric Acid 12.461 12.308 12.652 13.043 12.627 12.693 12.631 0.248 1.963 
2-Phenylethyl Acetate 12.549 11.776 12.614 13.785 12.952 12.679 12.726 0.651 5.119 
Hexanoic Acid 16.919 16.143 17.069 18.370 17.392 17.181 17.179 0.724 4.212 
2-Phenylethanol 29.191 29.633 29.977 30.294 29.525 29.855 29.746 0.384 1.290 
Octanoic Acid 26.049 24.347 26.376 29.181 27.198 26.604 26.626 1.578 5.925 
Decanoic Acid 20.952 19.461 21.174 23.401 21.810 21.335 21.355 1.279 5.987 



Table 8:   Layout of concentrations obtained for the analytes after the 
same wine was extracted using    0.75 ml, 1 ml and 1.25 ml diethyl ether.   
 
  0.75ml 1ml 1.25ml   
Compound Average Average  Average  STD %RSD 
Ethyl Acetate 126.034 209.3391 56.66615 76.442 58.496
Methanol 215.524 421.3532 62.80262 179.930 77.148
Ethyl Butyrate 0.301 nd 0.547264 0.174 41.051
Propanol 25.926 46.98845 75.7699 25.021 50.485
Isobutanol 38.925 63.53858 15.42713 24.058 61.221
Isoamyl Acetate 0.377 0.284718 0.622788 0.175 40.785
Butanol 2.001 2.948375 1.572458 0.704 32.391
Isoamyl Alcohol 234.165 304.0942 154.6702 74.763 32.368
Ethyl Hexanoate 0.588 0.472203 1.822335 0.748 77.891
Hexyl Acetate nd nd nd nd nd 
Ethyl Lactate 139.879 271.8085 32.73345 119.751 80.836
Hexanol 1.414 1.431769 1.239164 0.106 7.820
Ethyl caprylate 0.428 0.320231 1.779879 0.813 96.520
Acetic acid 371.429 695.8859 195.8203 253.698 60.254
Propionic Acid 70.566 123.7479 35.78199 44.302 57.762
Iso-Butyric Acid 1.157 1.745192 0.83182 0.463 37.191
Butyric Acid 0.912 1.208653 2.125284 0.632 44.675
Ethyl Caprate 0.185 nd 0.463783 0.197 60.826
Iso-Valeric Acid 2.072 2.631782 1.151639 0.747 38.290
Diethyl Succinate 34.796 37.5 7.750443 16.451 61.655
Valeric Acid 0.464 0.717605 nd 0.179 30.314
2-Phenylethyl Acetate nd nd nd nd nd 
Hexanoic Acid 1.313 1.129091 5.700782 2.588 95.342
2-Phenylethanol 35.320 46.36292 11.33872 17.906 57.748
Octanoic Acid 1.619 1.180298 6.793072 3.122 97.637
Decanoic Acid 1.372 1.286832 2.13551 0.467 29.254

 
nd = not detected 
 
 
Length of sonication 
 
The wine\ether mixture is sonicated for five minutes.   Variance in the 
time of sonication may occur and the effect of these variances was 
investigated by sonicating the mixture for 4.5 min, 5 min and 5.5 min. 
Each extract was injected three times and the average of the 
concentrations for the three injections is given for each treatment.    
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Table 9:   Layout of concentrations obtained for the analytes after 
different volumes of the same wine was extracted.   
 
Compound 4.5ml wine 5ml wine  5.5ml wine STD %RSD 
Ethyl Acetate 184.747 222.870 205.304 19.081 9.339
Methanol 86.883 91.822 95.312 4.236 4.637
Ethyl Butyrate 0.306 0.348 0.414 0.054 15.286
Propanol 120.276 133.431 129.324 6.731 5.272
Isobutanol 25.625 26.341 29.409 2.010 7.410
Isoamyl Acetate 6.734 8.211 9.773 1.520 18.445
Butanol 1.943 1.945 2.187 0.140 6.933
Isoamyl Alcohol 138.427 147.403 159.833 10.749 7.236
Ethyl Hexanoate 0.678 0.810 0.896 0.110 13.833
Hexyl Acetate 0.269 0.310 0.330 0.031 10.335
Ethyl Lactate 77.978 77.872 75.456 1.427 1.850
Hexanol 1.278 1.538 1.591 0.167 11.385
Ethyl caprylate 0.590 0.764 0.825 0.122 16.802
Acetic acid 303.521 292.098 286.305 8.760 2.980
Propionic Acid 20.207 21.645 19.841 0.953 4.636
Iso-Butyric Acid 1.180 1.194 1.172 0.011 0.946
Butyric Acid 1.227 1.279 1.104 0.090 7.475
Ethyl Caprate 0.326 0.402 0.443 0.059 15.171
Iso-Valeric Acid 0.859 0.951 0.892 0.047 5.174
Diethyl Succinate 0.432 0.494 0.511 0.041 8.651
Valeric Acid 0.440 0.453 0.417 0.018 4.127
2-Phenylethyl Acetate 0.058 0.100 0.115 0.029 32.343
Hexanoic Acid 2.442 3.001 3.073 0.345 12.169
2-Phenylethanol 7.025 8.143 7.890 0.586 7.630
Octanoic Acid 2.813 3.635 3.903 0.568 16.456
Decanoic Acid 1.978 2.227 2.328 0.180 8.288

 
Differences in the length of sonication influence the results and should 
therefore be avoided.   
 
pH of the wine 
 
Natural variances of wine pH regularly occur and the influence of this was 
investigated by adjusting the pH of the same wine to 3, 3.5 and 4 
respectively.  Each treatment was extracted and this extract was injected 
three times.  The averages of the three injections for each treatment are 
given for the different pH values in Table 5.  
 
The percentage standard deviations for all the compounds were 
considered to be acceptable and no pH adjustment of samples is needed.   
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Table 10:   Layout of concentrations obtained for the analytes after the 
wine was sonicated for 4.5min, 5min or 5.5min.   
 
 4.5 min 5min 5.5min   
Compound Average  Average  Average  STD %RSD 
Ethyl Acetate 52.249 56.666 53.310 2.306 4.264 
Methanol 70.816 62.803 69.788 4.360 6.431 
Ethyl Butyrate 0.446 0.547 0.432 0.063 13.272 
Propanol 88.376 75.770 83.667 6.370 7.711 
Isobutanol 16.959 15.427 15.525 0.857 5.369 
Isoamyl Acetate 0.507 0.623 0.469 0.080 15.056 
Butanol 1.699 1.572 1.607 0.065 4.018 
Isoamyl Alcohol 157.153 154.670 152.962 2.107 1.360 
Ethyl Hexanoate 1.397 1.822 1.398 0.245 15.945 
Hexyl Acetate nd nd nd nd nd 
Ethyl Lactate 34.740 32.733 33.926 1.009 2.986 
Hexanol 1.186 1.239 1.200 0.027 2.268 
Ethyl caprylate 1.275 1.780 1.286 0.289 19.944 
Acetic acid 213.873 195.820 208.308 9.245 4.488 
Propionic Acid 39.431 35.782 37.588 1.825 4.853 
Iso-Butyric Acid 0.849 0.832 0.850 0.010 1.212 
Butyric Acid 2.129 2.125 2.153 0.015 0.714 
Ethyl Caprate 0.354 0.464 0.354 0.063 16.257 
Iso-Valeric Acid 1.162 1.152 1.139 0.012 1.018 
Diethyl Succinate 7.504 7.750 7.727 0.136 1.778 
Valeric Acid nd nd nd nd nd 
2-Phenylethyl Acetate nd nd nd nd nd 
Hexanoic Acid 5.424 5.701 5.570 0.138 2.485 
2-Phenylethanol 11.204 11.339 11.401 0.101 0.893 
Octanoic Acid 6.418 6.793 6.507 0.196 2.980 
Decanoic Acid 2.036 2.136 2.046 0.055 2.650 

 
Temperature of the water in the ultrasonic bath.  
 
The ultrasonic bath can take only ten samples at a time, therefore if more 
than ten samples are prepared, the ultrasonic bath is in use for a longer 
period of time and therefore the water in the bath may heat up.  This can 
influence the extraction process.  This was investigated by extracting the 
wines at three different temperatures of the water in the ultrasonic bath.  
Each extract was injected three times and the average concentrations of 
the analytes for these three runs are given for each temperature.   
 
 
The temperature of the water should be kept constant to minimise 
variances in data due to different extraction temperatures. 
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Table 11:   Layout of concentrations obtained for the analytes after the 
pH of the wine was adjusted to 3, 3.5, and 4.  
 
 pH 3 pH 3.5 pH 4   
Compound Average Average Average STD %RSD 
Ethyl Acetate 153.4475 144.3999 153.3083 5.183926 3.447 
Methanol 293.0674 287.5588 298.4494 5.445433 1.858 
Ethyl Butyrate nd nd nd nd nd 
Propanol 36.05147 32.24963 40.2757 4.014887 11.093 
Isobutanol 49.81305 46.98932 54.82992 3.971091 7.857 
Isoamyl Acetate 0.273362 nd nd nd nd 
Butanol 2.434028 2.332557 2.586185 0.127655 5.208 
Isoamyl Alcohol 270.6326 262.6133 270.1463 4.496092 1.679 
Ethyl Hexanoate 0.45725 0.453327 0.42421 0.01805 4.057 
Hexyl Acetate nd nd nd nd nd 
Ethyl Lactate 205.3762 189.8441 205.8442 9.105575 4.545 
Hexanol 1.394217 1.38063 1.352887 0.021065 1.531 
Ethyl caprylate 0.295528 0.289133 0.257317 0.020466 7.292 
Acetic acid 518.9315 467.0814 475.8782 27.7471 5.694 
Propionic Acid 93.93859 91.38681 97.91624 3.29056 3.485 
Iso-Butyric Acid 1.622462 1.540788 1.556356 0.043365 2.756 
Butyric Acid 1.113353 1.067559 1.068706 0.026114 2.411 
Ethyl Caprate nd nd nd nd nd 
Iso-Valeric Acid 2.418142 2.312433 2.313997 0.060585 2.580 
Diethyl Succinate 37.09645 36.5411 35.27573 0.933147 2.570 
Valeric Acid 0.597285 0.567696 0.586505 0.014975 2.565 
2-Phenylethyl Acetate nd nd nd nd nd 
Hexanoic Acid 1.230788 1.241468 1.172115 0.037342 3.074 
2-Phenylethanol 42.97542 41.90176 41.32316 0.838401 1.993 
Octanoic Acid 1.337465 1.360598 1.262596 0.051226 3.880 
Decanoic Acid 1.320557 1.311885 1.292353 0.014446 1.104 

   
Ethanol Concentration of the wine 
 
The effect of various alcohol concentrations on the extraction efficiency 
was investigated by making up synthetic wine mixtures in wine simulant 
with 16%, 14%, 12% or 10% ethanol.  These synthetic wines were 
extracted as normal and injected three times each.  The averages of the 
concentrations of the compounds for each wine were determined and 
compared.    
 
The ethanol concentration of the samples does not seem to influence the 
concentration of the analytes extracted.  Therefore no adjustment of 
ethanol is needed during sample preparation.   
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Table 12:   Layout of concentrations obtained for the analytes after the 
temperature of the water in the ultrasonic bath has been adjusted.  
 
 14°C 28°C 41°C   
Compound Average  Average  Average  STD %RSD 
Ethyl Acetate 53.239 56.666 43.063 7.075 13.876 
Methanol 71.119 62.803 64.162 4.461 6.756 
Ethyl Butyrate 0.480 0.547 0.445 0.052 10.550 
Propanol 62.787 75.770 109.541 24.135 29.184 
Isobutanol 12.300 15.427 18.897 3.300 21.233 
Isoamyl Acetate 0.573 0.623 0.481 0.072 12.831 
Butanol 1.292 1.572 1.915 0.312 19.602 
Isoamyl Alcohol 144.066 154.670 157.636 7.134 4.690 
Ethyl Hexanoate 1.783 1.822 1.340 0.268 16.234 
Hexyl Acetate nd nd nd nd nd 
Ethyl Lactate 29.512 32.733 39.518 5.108 15.058 
Hexanol 1.352 1.239 1.186 0.085 6.737 
Ethyl caprylate 1.740 1.780 1.294 0.270 16.809 
Acetic acid 185.529 195.820 216.299 15.664 7.863 
Propionic Acid 33.927 35.782 58.409 13.631 31.917 
Iso-Butyric Acid 0.886 0.832 0.852 0.027 3.195 
Butyric Acid 2.273 2.125 2.172 0.076 3.447 
Ethyl Caprate 0.446 0.464 0.367 0.051 12.095 
Iso-Valeric Acid 1.243 1.152 1.151 0.053 4.497 
Diethyl Succinate 8.843 7.750 7.641 0.665 8.226 
Valeric Acid nd nd 0.287 nd nd 
2-Phenylethyl Acetate nd nd nd nd nd 
Hexanoic Acid 6.822 5.701 5.381 0.756 12.674 
2-Phenylethanol 12.456 11.339 11.426 0.622 5.294 
Octanoic Acid 8.157 6.793 6.256 0.980 13.861 
Decanoic Acid 2.352 2.136 2.031 0.164 7.533 

 
 
 
Wine matrix  
 
From the recovery experiment it was seen that the wine matrix influences 
the extraction process for the analytes, methanol, isoamyl acetate, ethyl 
lactate, ethyl caprylate butyric acid and 2-phenyl ethanol.  All the other 
analytes are extracted in more or less the same amounts from white and 
red wine matrices.   
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Table 13:  Layout of concentrations obtained for the analytes after the 
ethanol concentration of the synthetic wine has been adjusted. 
 

 
16% 
Ethanol  

14% 
Ethanol  

12% 
Ethanol  

10% 
Ethanol    

Compound Average  Average  Average  Average  STD %RSD 
Ethyl Acetate 38.330 36.009 34.750 38.564 1.847 5.003
Methanol 113.924 89.760 88.818 89.423 12.301 12.883
Ethyl Butyrate 2.256 2.211 2.186 2.216 0.029 1.317
Propanol 17.149 15.546 14.314 16.034 1.175 7.454
Isobutanol 9.594 9.102 8.537 9.196 0.436 4.786
Isoamyl Acetate 2.131 2.074 2.044 1.975 0.065 3.167
Butanol 1.707 1.629 1.537 1.641 0.070 4.299
Isoamyl Alcohol 41.859 41.365 39.651 40.236 1.013 2.483
Ethyl Hexanoate 3.421 3.326 3.278 3.124 0.124 3.766
Hexyl Acetate 2.512 2.448 2.403 2.286 0.095 3.947
Ethyl Lactate 46.254 42.838 40.326 40.176 2.846 6.712
Hexanol 2.959 2.980 2.948 2.885 0.041 1.398
Ethyl caprylate 0.610 0.608 0.593 0.565 0.021 3.512
Acetic acid 166.895 146.392 143.168 139.888 12.166 8.160
Propionic Acid 3.078 2.959 2.714 2.630 0.209 7.332
Iso-Butyric Acid 1.868 1.891 1.815 1.840 0.033 1.763
Butyric Acid 1.824 1.886 1.822 1.854 0.030 1.638
Ethyl Caprate 0.391 0.395 0.385 0.371 0.010 2.637
Iso-Valeric Acid 3.569 3.699 3.626 3.638 0.053 1.468
Diethyl Succinate 3.032 3.150 3.100 3.116 0.050 1.607
Valeric Acid 1.938 2.050 2.020 2.034 0.050 2.468
2-Phenylethyl Acetate 2.163 2.242 2.238 2.158 0.046 2.094
Hexanoic Acid 2.896 3.096 3.105 3.057 0.097 3.204
2-Phenylethanol 4.548 4.587 4.430 4.476 0.070 1.562
Octanoic Acid 4.648 4.911 4.958 4.826 0.137 2.830
Decanoic Acid 4.441 4.607 4.616 4.534 0.081 1.784

 
 
 
PERFORMANCE 
 
The repeatability data shows a variance of between 0.5 and 15% and therefore, it was 
decided to inject each extract three times for each sample and to determine the average 
of these three injections for each analyte.   
 



Table 14.  Averages of concentrations obtained for the analytes in 7 different extractions of the same wine.   
 

Compound 1 2 3 4 5 6 7 Average STD %RSD 
Ethyl Acetate 82.196 84.996 97.062 76.055 90.620 80.629 73.202 83.537 8.249 9.875 
Methanol 73.046 70.897 75.171 67.184 74.146 68.760 67.318 70.932 3.281 4.626 
Ethyl Butyrate 0.309 0.315 0.307 0.316 0.321 0.314 0.305 0.312 0.006 1.810 
Propanol 126.739 129.218 145.895 127.962 125.536 129.800 118.625 129.111 8.285 6.417 
Isobutanol 34.388 34.619 36.078 34.537 31.585 33.786 32.885 33.983 1.429 4.206 
Isoamyl Acetate 4.992 5.191 5.012 4.938 5.052 4.845 5.056 5.012 0.108 2.146 
Butanol 1.925 1.956 1.918 1.947 1.761 1.907 1.897 1.902 0.066 3.446 
Isoamyl Alcohol 174.189 174.765 171.960 170.457 170.009 169.372 173.168 171.988 2.123 1.235 
Ethyl Hexanoate 0.668 0.687 0.688 0.670 0.707 0.664 0.660 0.678 0.017 2.488 
Hexyl Acetate 0.248 0.259 0.250 0.249 0.265 0.248 0.251 0.253 0.007 2.609 
Ethyl Lactate 11.693 11.580 11.542 11.609 11.682 11.603 11.619 11.618 0.054 0.461 
Hexanol 1.277 1.312 1.319 1.247 1.341 1.252 1.273 1.289 0.036 2.765 
Ethyl caprylate 0.495 0.520 0.529 0.502 0.512 0.471 0.491 0.503 0.019 3.853 
Acetic acid 184.455 180.164 182.708 177.889 175.593 189.089 181.687 181.655 4.423 2.435 
Propionic Acid 46.749 46.173 44.612 46.418 47.924 45.200 48.414 46.499 1.362 2.928 
Iso-Butyric Acid 1.846 1.791 1.920 1.761 1.878 1.730 1.761 1.812 0.070 3.874 
Butyric Acid 1.630 1.627 1.666 1.615 1.649 1.585 1.627 1.628 0.026 1.566 
Ethyl Caprate 0.206 0.203 0.182 0.191 0.171 0.177 0.192 0.189 0.013 6.816 
Iso-Valeric Acid 1.354 1.364 1.363 1.334 1.435 1.333 1.328 1.359 0.037 2.701 
Diethyl Succinate 0.450 0.452 0.437 0.436 0.442 0.419 0.432 0.438 0.011 2.525 
Valeric Acid 0.558 0.553 0.566 0.532 0.564 0.534 0.549 0.551 0.014 2.452 
2-Phenylethyl Acetate 0.085 0.091 0.094 0.080 0.098 0.079 0.086 0.087 0.007 7.956 
Hexanoic Acid 2.635 2.722 2.774 2.595 2.825 2.612 2.667 2.690 0.087 3.216 
2-Phenylethanol 13.953 14.123 14.608 13.483 14.319 13.357 13.618 13.923 0.461 3.308 
Octanoic Acid 2.680 2.812 2.901 2.694 2.842 2.680 2.708 2.760 0.091 3.287 
Decanoic Acid 1.672 1.699 1.721 1.671 1.695 1.668 1.678 1.686 0.020 1.158 
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Figures 29 – 32.  Repeatability data for Ethyl Acetate, Methanol, Ethyl butyrate and Propanol.  
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Figures 33 - 36.  Repeatability data for Isobutanol, Isoamyl Acetate, Butanol and Isoamyl Alcohol.  
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Figures 37 - 40.  Repeatability data for Ethyl Hexanoate, Hexyl Acetate, Ethyl Lactate and Hexanol.  
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Figures 41 - 44.  Repeatability data for Acetic Acid, Ethyl Caprylate, Iso-Butyric Acid and Propionic Acid.  
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Figures 45 - 48.  Repeatability data for Ethyl Caprate, Butyric Acid, Diethyl Succinate and Iso-Valeric Acid.  
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Table 15. Layout of the averages of the concentrations obtained for each analyte after injecting the same extract 
consecutively for five times. 
 

Compound 1 2 3 4 5 Average STD %RSD 
Ethyl Acetate 36.07664 31.82894 37.50097 34.80686 37.98166 35.639 6.924 2.468 

Methanol 103.9816 100.5109 106.4382 98.97222 106.0435 103.189 3.225 3.327 
Ethyl Butyrate 0.235425 0.228219 0.225775 0.211483 0.262169 0.233 8.025 0.019 

Propanol 70.89167 69.96135 72.00772 69.74086 73.65504 71.251 2.266 1.614 
Isobutanol 53.25962 52.72182 52.79322 51.56768 53.20259 52.709 1.293 0.681 

Isoamyl Acetate 1.490095 1.514268 1.491007 1.43398 1.41033 1.468 2.977 0.044 
Butanol 3.457814 3.524348 3.475241 3.38377 3.5049 3.469 1.564 0.054 

Isoamyl Alcohol 528.2907 529.5953 523.234 524.001 525.8397 526.192 0.518 2.723 
Ethyl Hexanoate 0.368404 0.323228 0.325986 0.31002 0.327638 0.331 6.645 0.022 

Hexyl Acetate nd nd nd nd nd nd nd Nd 
Ethyl Lactate 40.8192 41.79259 41.12145 40.85046 41.00633 41.118 0.964 0.396 

Hexanol 1.884328 1.915591 1.892433 1.86544 1.84385 1.880 1.446 0.027 
Ethyl caprylate nd nd nd nd nd nd nd nd 

Acetic acid 189.9809 191.2981 164.4094 167.8501 165.432 175.794 7.746 13.617 
Propionic Acid 50.15046 53.847 49.53107 53.26755 52.53119 51.865 3.699 1.919 

Iso-Butyric Acid 1.8056 2.081216 1.928013 2.14819 1.98132 1.989 6.711 0.133 
Butyric Acid 1.219421 1.264819 1.26944 1.25194 1.23123 1.247 1.726 0.022 

Ethyl Caprate nd nd nd nd nd nd nd nd 
Iso-Valeric Acid 3.834515 3.855418 3.510364 3.80114 3.71567 3.743 3.760 0.141 

Diethyl Succinate 3.878717 3.945852 3.82004 3.94023 3.90569 3.898 1.319 0.051 
Valeric Acid 0.349169 0.338932 0.353736 0.338377 0.351165 0.346 2.064 0.007 

2-Phenylethyl Acetate 0.134971 0.122017 0.135076 0.132792 0.129238 0.131 4.173 0.005 
Hexanoic Acid 1.716155 1.646868 1.690059 1.67589 1.56734 1.659 3.444 0.057 

2-Phenylethanol 114.1835 117.5684 117.2358 116.7973 114.5622 116.069 1.360 1.578 
Octanoic Acid 1.591552 1.598404 1.538519 1.56666 1.52635 1.564 2.026 0.032 
Decanoic Acid 1.455932 1.321328 1.316905 1.3068 1.30318 1.341 4.830 0.065 

                      nd = not detected  
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Figures 57 – 60.  Repeatability data for Ethyl Acetate, Methanol, Ethyl butyrate and Propanol.  
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Figures 61 – 64.  Repeatability data for Isobutanol, Isoamyl Acetate, Butanol Isoamyl Alcohol.  
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Figures 65 – 68.  Repeatability data for Ethyl Hexanoate, Hexanol, Ethyl Lactate and Acetic Acid.  
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Figures 69 – 72.  Repeatability data for Propionic Acid, Iso-Butyric Acid, Butyric Acid and Iso-Valeric Acid.  
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Figures 73 – 76.  Repeatability data for Diethyl Succinate, Valeric Acid, 2-Phenyl Ethyl Acetate and Hexanoic Acid.  
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Figures 77 – 80.  Repeatability data for 2-Phenylethanol, Octanoic Acid and Decanoic Acid.  
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Table 16.  Averages of the concentrations obtained for each analyte after injecting five different extracts of the 
same synthetic wine on five different days. 
 
Compound Day 1 Day 2 Day 3 Day 4 Day 5 Average STD %RSD 
Ethyl Acetate 222.101 232.928 234.378 237.738 221.529 229.735 7.440 3.239 
Methanol 441.189 523.830 456.980 725.179 494.911 528.418 114.642 21.695 
Ethyl Butyrate 11.312 10.656 10.869 8.942 9.085 10.173 1.086 10.672 
Propanol 82.583 88.418 88.502 87.270 78.811 85.117 4.277 5.025 
Isobutanol 50.408 51.977 51.312 47.237 46.004 49.388 2.623 5.312 
Isoamyl Acetate 9.752 9.214 9.332 7.831 8.109 8.848 0.832 9.399 
Butanol 9.045 9.333 9.221 8.538 8.340 8.896 0.435 4.890 
Isoamyl Alcohol 218.806 221.726 219.494 207.289 204.825 214.428 7.767 3.622 
Ethyl Hexanoate 14.931 14.260 14.614 12.875 12.870 13.910 0.976 7.020 
Hexyl Acetate 11.031 10.599 10.828 9.588 9.544 10.318 0.703 6.818 
Ethyl Lactate 217.656 226.502 219.817 225.974 210.601 220.110 6.553 2.977 
Hexanol 14.746 14.662 14.764 13.809 13.724 14.341 0.527 3.673 
Ethyl caprylate 2.688 2.527 2.587 2.264 2.252 2.463 0.196 7.966 
Acetic acid 735.398 749.061 717.352 742.875 706.731 730.283 17.743 2.430 
Propionic Acid 13.999 14.411 14.399 14.949 14.169 14.386 0.359 2.494 
Iso-Butyric Acid 9.983 10.267 10.189 10.273 9.974 10.137 0.149 1.467 
Butyric Acid 9.846 10.377 10.281 10.451 10.082 10.208 0.245 2.398 
Ethyl Caprate 1.572 1.345 1.363 1.188 1.190 1.332 0.158 11.849 
Iso-Valeric Acid 18.968 19.205 19.144 18.564 18.322 18.841 0.383 2.032 
Diethyl Succinate 15.614 15.755 15.685 14.983 14.865 15.380 0.422 2.742 
Valeric Acid 10.346 10.502 10.495 10.144 10.014 10.300 0.217 2.103 
2-Phenylethyl Acetate 10.561 10.588 10.657 9.687 9.736 10.246 0.489 4.775 
Hexanoic Acid 14.518 14.709 14.796 13.744 13.731 14.299 0.523 3.656 
2-Phenylethanol 23.360 23.706 23.318 22.968 22.572 23.185 0.431 1.859 
Octanoic Acid 21.689 22.149 22.373 20.171 20.179 21.312 1.067 5.006 
Decanoic Acid 17.169 17.334 17.439 15.726 15.526 16.639 0.932 5.604 
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Figures 81 – 84.  Repeatability data for five different extractions injected on five different days for Ethyl Acetate, Methanol, Ethyl 
Butyrate and Propanol.   
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Figures 85 – 88.  Repeatability data for five different extractions injected on five different days for Isobutanol, Isoamyl Acetate, 
Butanol and Isoamyl Alcohol.   
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Figures 89 – 92.  Repeatability data for five different extractions injected on five different days for Ethyl Hexanoate, Hexyl Acetate, 
Ethyl Lactate and Hexanol.   
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Figures 93 – 96.  Repeatability data for five different extractions injected on five different days for Ethyl Caprylate, Acetic Acid, 
Propionic Acid and Iso-Butyric Acid.   
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Figures 97 – 100.  Repeatability data for five different extractions injected on five different days for Butyric Acid, Ethyl caprate, Iso-
Valeric Acid and Diethyl Succinate.   
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Figures 101 – 104.  Repeatability data for five different extractions injected on five different days for Valeric Acid, 2-Phenylethyl 
Acetate, Hexanoic Acid and 2-Phenylethanol.   
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Figures 105 – 106.  Repeatability data for five different extractions injected on five different days for Octanoic Acid, and Decanoic 
Acid.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
The repeatability for methanol varied more than 20% on day 4.   
 
 
ROUTINE QC 
After each sample run, a post run of 5 minutes at oven temperature 240°C, with a gas 
flow of 6ml/min cleans the column.  After every 30 samples the column is thermally and 
chemically cleaned by injecting hexane at an oven temperature of 220°C. Once a day, a 
mixture of all the standards is injected to check if the calibration curve is still valid. 
 
 
CONCLUSIONS 
The proposed method was found suitable for the analysis of volatile compounds in wine. 
Slight matrix effects were observed between red and white wines. The following factors 
in the protocol have a significant influence on the results and should be closely adhered 
to: amount of diethyl ether, sample volume, length of sonication and the temperature of 
the water bath. The amount of NaSO4 salt, ethanol concentration and pH of the sample 
did not influence the extraction efficiency significantly. No trends were observed 
between analysis of the same extract or wine on the same day or over time. Large 
variations in concentrations were observed during methanol analysis over time.   



AAddddeenndduumm  BB  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enzymatic assays 
Reactions and calculations 

 
 



 

ADDENDUM B 

L-MALIC ACID (R-BIOPHARM CAT. NO. 10 139 068 035)  

The method is based upon the oxidation of L-malic acid (L-malate) to oxaloacetate by 
nicotinamide-adenine dinucleotide (NAD+) in the presence of L-malate dehydrogenase (L-MDH) 
(1). This reversable reaction favours the production of L-malate. By removing the oxaloacetate 
from the system, the reaction system causes the equilibrium to shift towards the production of 
oxaloacetate. This can be achieved by the conversion of oxaloacetate to L-aspartate in a reaction 
catalysed by glutamate-oxaloacetate transaminase (GOT) in the presence of L-glutamate (2). The 
resulting stimulation of oxaloacetate production as indicated in reaction 1, causes the production of 
NADH. The amount of NADH formed is stoichiometric to the amount of L-malate present in the 
sample and is measured by its light absorbance at 334, 340 or 365 nm. The maximum absorbance 
of NADH occurs at 340nm. 
 
L-Malate + NAD+ ⎯⎯⎯ →← −MDHL  Oxaloacetate +NADH + H+ (1) 
 
Oxaloacetate + L-glutamate ⎯⎯ →←GOT  L-aspartate + 2-oxoglutarate (2) 
 
The L-Malic content of a sample is quantified by measuring the absorbance of NADH after the 
removal of oxaloacetate (A1) and after the completion of the oxidation reaction of L-Malate in the 
presence of an excess L-MDH (A2). Absorbance values should ideally be lower than 1.000. The 
absorbance difference (ΔA) is calculated as indicated in equation 3. An absorbance difference of at 
least 0.100 absorbance units are considered acceptable to produce precise results. The 
abovementioned specifications in terms of absorbance values and absorbance differences is 
applicable to all further mentioned enzymatic assays 
 
ΔA = (A2-A1)sample – (A2-A1)blank (3) 
 
The concentration of L-malic acid is calculated as follows: 
 

A
vd
MWVC Δ×
×××

×
=

1000ε
 (4) 

 
Where V = final volume (ml) 
  MW = molecular weight: for L-Malic acid = 134.09 g/mol  
  e = extinction coefficient of NADH: at 340nm = 6.3 (l × mmol-1 × cm-1) 
  d = light path (cm) 
  v = sample volume (ml) 



L-LACTIC ACID (R-BIOPHARM CAT. NO. 10 139 084 035) 

L-lactic acid is determined by the oxidation of L-lactate to pyruvate by NAD+ in the presence of L-
lactate dehydrogenase (L-LDH) (5). This equilibrium of this reaction is in favour of the production of 
L-lactate. By removing the pyruvate from the system, the reaction system causes the equilibrium to 
shift towards the production of pyruvate. To determine L-lactic acid, pyruvate is converted to 2-
oxogluterate in a reaction catalysed by glutamate-pyruvate transaminase (GPT) in the presence of 
L-glutamate (6). The resulting stimulation of pyruvate production as indicated in reaction 5, causes 
the production of NADH. The amount of NADH formed is stoichiometric to the amount of L-lactate 
present in the sample and is measured by its maximum light absorbance at 340nm. 
 
L-Lactate + NAD+ ⎯⎯⎯ →← −LDHL  pyruvate +NADH + H+ (5) 
 
Pyruvate + L-glutamate ⎯⎯ →←GPT  L-aspartate + 2-oxoglutarate (6) 
 
The L-lactic acid content of a sample is quantified by determining the absorbance of NADH after 
the removal of pyruvate (A1) and after the completion of the oxidation reaction of L-lactate in the 
presence of an excess L-LDH (A2). The absorbance difference (ΔA) is calculated as indicated in 
equation 3. The concentration of L-lactic acid is calculated as indicated in equation 4 where the 
molecular weight of L-lactic acid is 90.1 g/mol. 

D-GLUCOSE/D-FRUCTOSE (R-BIOPHARM CAT. NO. 10 139 106 035) 

The enzymatic determination of D-glucose and D-fructose is accomplished in a three step 
enzymatic reaction. First, D-glucose and D-fructose are simultaneously phosphorylated by the 
enzyme hexokinase (HK) and adenosine-5’-triphosphate (ATP) to G-6-P (D-glucose-6-phospate) 
and F-6-P (D-fructose-6-phosphate) respectively (7,8).  
 
D-glucose + ATP ⎯→⎯HK  G-6-P +ADP (7) 
 
D-fructose + ATP ⎯→⎯HK  F-6-P +ADP (8) 
 
 
In a subsequent reaction catalysed by the enzyme glucose-6-phosphate dehydrogenase (G6P-
DH), G-6-P is oxidised by nicotinamide-adenine dinucleotide phosphate (NADP+) to D-gluconate-6-
phosphate (9). 
 
G-6-P + NADP+ ⎯⎯⎯ →⎯ −DHPG6  D-gluconate-6-phosphate + NADPH + H+ (9) 
 
The amount of NADP H formed is stoichiometric to the amount of D-glucose present in the sample 
and is measured by its maximum light absorbance at 340nm. 



 Following this reaction, F-6-P is converted to G-6-P by the enzyme phosphoglucose 
isomerase (PGI) (10). 
 
F-6-P ⎯⎯→←PGI  G-6-P (10) 
 
The reaction shown in equation 9 is repeated and in this case the amount of NADPH formed is 
stoichiometric to the amount of D-fructose present in the sample and is measured by its maximum 
light absorbance at 340nm. 
 The quantification of D-glucose is calculated from the absorbance difference before and after 
the simultaneous induction of reactions 7-9. The quantification of D-fructose is calculated from the 
absorbance difference before and after reaction 10 takes place. Calculations are based on 
equation 3 and 4 where the molecular weight of D-glucose and D-fructose is 180.16 g/mol. 

GLYCEROL (R-BIOPHARM CAT. NO. 10 148 270 035) 

Glycerol is phosphorylated by ATP in the presence of glycerokinase (GK) to L-glycerol-3-
phosphate (11). The ADP formed during this reaction is reconverted to ATP by 
phosphoenolpyruvate in the presence of pyruvate kinase (PK) (12). This reaction results in the 
formation of pyruvate. In a subsequent reaction, pyruvate is reduced by NADH to L-lactate with the 
simultaneous formation of NAD+ (13). The decrease in NADH in this last reaction is stoichiometric 
to the amount of glycerol present in the sample and is measured by its maximum light absorbance 
at 340nm. 
 
Glycerol + ATP ⎯→⎯GK  L-glycerol-3-phosphate + ADP (11) 
 
ADP + PEP ⎯→⎯PK  ATP + pyruvate (12) 
 
Pyruvate + NADH + H+ ⎯⎯ →⎯ −LDHL  L-lactate + NAD+ (13) 
 
The glycerol content of a sample is quantified by measuring the absorbance of NADH after the 
formation of pyruvate (A1) and after the completion of the oxidation reaction of pyruvate in the 
presence of an excess L-MDH (A2). The absorbance difference (ΔA) is calculated as indicated in 
equation 14. The concentration of glycerol is calculated as indicated in equation 4 where the 
molecular weight of glycerol is 92.1 g/mol. 
 
ΔA = (A1-A2)sample – (A1-A2)blank (14) 
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