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Summary 
 

Future chemical production is faced with a challenge of limited material and energy 

resources. However, process intensification might play a significant role to alleviating this 

problem. Vision of process intensification through multifunctional reactors has stimulated 

research on membrane-based reactive separation processes, in which membrane separation 

and catalytic reaction occur simultaneously in one unit. These processes are rather attractive 

applications because they are potentially compact, less capital intensive, and have lower 

processing costs than traditional processes. Moreover, they often enhance the selectivity and 

yield of the target product.  

For about three decades, there has been a great evolution in p-Xylene production 

technology, with many equipment improvements being instituted in the industry. Typically, 

these improvements bring economic as well as processing advantages to the producers. Such 

developments are vital, as the capital costs for process equipment to produce and separate     

p-Xylene from xylene isomers, especially into high purity p-Xylene, still remain very high. 

However, with numerous advantages of membrane-based reactive separation processes 

compared to the conventional processes, the research focus has been channelled toward 

application of MFI-type zeolite membranes for in situ separation and isomerization of xylene 

in extractor-type catalytic membrane reactors. To contribute to this research line, this study 

has focused on characterization and optimization of an extractor-type catalytic membrane 

reactor (e-CMR) equipped with a nanocomposite MFI-alumina membrane as separation unit 

for m-Xylene isomerization over Pt-HZSM-5 catalyst. 

Nanocomposite MFI-alumina zeolite membranes (tubes and hollow fibres) used in 

this study were prepared via a so-called “hydrothermal pore-plugging synthesis technique” 

developed by Dalmon and his group more than a decade ago. In this concept, MFI material is 

grown by 'pore-plugging' direct hydrothermal synthesis in a porous matrix rather than forming 

thin films on top of the support. The advantages of this type of architecture over conventional 

film-like zeolite membranes include: (i) minimization of the effect of thermal expansion 

mismatch between the support and the zeolite, (ii) easy to scale-up, and (iii) easy module 

assembly, because the separative layer (zeolite crystals) are embedded within the pores of the 

ceramic support, reducing the effects of abrasion and thermal shocks. After membrane 

synthesis, the membrane quality and separation performance of these membranes were 

evaluated through single gas permeation (H2), binary gas separation (n-butane/H2) and ternary 

vapour mixture of xylene isomers using the vapour permeation (VP) method with p-Xylene as 

the target product. After evaluating the xylene isomer separation performance of the 
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membranes, the membranes were used in extractor-type catalytic membrane reactors to carry 

out m-Xylene isomerization over Pt-HZSM-5 catalyst with p-Xylene as the target product. 

This dissertation has shown that nanocomposite MFI-alumina membrane tubes and 

hollow fibre membranes were selective to p-Xylene from xylene isomers.  The dissertation 

also reports for the first time in open literature the excellent xylene separation performance of 

nanocomposite MFI-alumina membrane tubes at higher xylene loading (or vapour pressure). 

Unlike their film-like counterparts, the membranes still maintain increased selectivity to p-

Xylene at higher xylene vapour pressures without showing a drastic decrease in selectivity. 

This outstanding property makes it a promising choice for pervaporation applications where 

concentration profile is usually a major problem at higher loading of xylene.  

With the use of nanocomposite MFI-alumina hollow fibre membranes, this research 

has demonstrated that membrane configuration and effective membrane wall thickness play a 

prominent role in enhancing cross membrane flux. Results presented in the study show, for 

the first time in open literature, that nanocomposite MFI-alumina hollow fibre membrane 

could enhance p-Xylene fluxes during the separation of ternary vapour mixture of xylene due 

to the smaller effective wall thickness of the membrane (membrane thickness <1 µm) when 

compared to conventional randomly oriented MFI zeolite films (membrane thickness >3 µm). 

During xylene isomers separation with nanocomposite hollow fibre membrane, about 30% 

increase in p-Xylene flux was obtained compared to the membrane tubes, operated under the 

same conditions. Additionally, hollow fibres offer the added advantage of membrane surface-

to-volume ratios as high as 3000 m2/m3 compared to conventional membrane tubes. Using 

this type of system could be instrumental in reducing both the size and cost of permeating 

modules for future xylene separation processes. However, obtaining high quality 

nanocomposite MFI-alumina membrane fibres is subject to the availability of high quality 

fibre supports. 

Regarding the application of nanocomposite MFI-alumina membrane tubes as 

extractor-type catalytic membrane reactors (referred to as extractor-type zeolite catalytic 

membrane reactor (e-ZCMR) in this study) for m-Xylene isomerization over Pt-HZSM-5, the 

results presented in this study further substantiate and confirm the potentials of e-ZCMRs 

over conventional fixed-bed reactors (FBRs). In the combined mode (products in the 

permeate plus products in the retentate), the e-ZCMR displayed 16-18% increase in p-Xylene 

yield compared to an equivalent fixed-bed reactor operated at the same operating conditions. 

On the basis of the high p-Xylene-to-o-Xylene (p/o) and p-Xylene-to-m-Xylene (p/m) 

separation factors offered by the membranes, p-Xylene compositions in the permeate-only 

mode (products in the permeate stream) in the range 95%-100% were obtained in the             

e-ZCMR. When a defect-free nanocomposite MFI-alumina membrane tube with p-Xylene-to-

o-Xylene (p/o) separation factor >400 was used, ultra pure p-Xylene with p-Xylene purity 
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approaching 100% in the permeate-only mode was obtained. Moreover, the e-ZCMR 

displayed 100% para-selectivity in the permeate-only mode throughout the temperatures 

tested. This is not possible with conventional film-like MFI-type zeolite membranes. 

Therefore, the application of nanocomposite MFI-alumina membranes in extractor-type 

catalytic membrane reactors could catalyse the development of energy-efficient         

membrane-based process for the production of   high purity p-Xylene.  

Furthermore, in this dissertation, a report on modelling and sensitivity analysis of an 

e-ZCMR equipped with a nanocomposite MFI-alumina membrane tube as separation unit for 

m-Xylene isomerization over Pt-HZSM-5 catalyst is presented. The model output is in fair 

agreement with the experimental results with percentage errors (absolute) of 17%, 29%, 

0.05% and 19.5% for p-Xylene yield in combined mode, p-Xylene selectivity in combined 

mode, p-Xylene selectivity in permeate-only mode and m-Xylene conversion, respectively. 

Therefore, the model is adequate to explain the behaviour of e-ZCMR during m-Xylene 

isomerization over Pt-HZSM-5 catalyst. The model is also adaptable to e-ZCMRs of different 

configurations such as hollow fibre MFI-alumina membrane-based e-ZCMRs. To gain more 

insight into the behaviour of the model to small changes in certain design parameters, 

sensitivity analysis was performed on the model. As expected, the sensitivity analysis 

revealed that intrinsic property of membrane (porosity, tortuosity), membrane effective 

thickness and reactor size (indicated with reactor internal diameter) play a significant role on 

the performance of e-ZCMR during p-Xylene production from the mixed xylenes.              

MFI-alumina zeolite membranes with optimized parameters such as membrane porosity, 

membrane tortuosity, and membrane effective wall thickness might enhance transport of        

p-Xylene through the membrane and thus resulting in higher p-Xylene flux through the 

membrane. This eventually would translate into an increase in p-Xylene yield in          

permeate-only mode. As far as it could be ascertained, this is the first report in open literature 

on modelling study with sensitivity analysis of e-ZCMR equipped with nanocomposite     

MFI-alumina membrane tubes as separation unit for m-Xylene isomerization over  Pt-HZSM-

5 catalyst.  

 In addition, the results of this study have confirmed previous research efforts 

reported on the application of extractor-type catalytic membrane reactors, having MFI-type 

membranes as separation units, for p-Xylene production via m-Xylene isomerization over a 

suitable catalyst. Also, new ideas were developed, tested and proposed that now provide a 

solid basis for further scale-up and techno-economical studies.  Such studies are necessary to 

evaluate the competitiveness of the technology with the traditional processes for the 

production of high purity p-Xylene from mixed xylene. 

In summary, the encouraging results, as documented in this dissertation and also 

communicated to researchers in the area of membrane-based reactive separation (in the form 



_____________________________________________________________________ 

__________________________________________________________________ vi 

of four peer-reviewed international scientific publications and four conference proceedings), 

could provide a platform for developing a scaled-up membrane-based energy-efficient 

industrial process for producing high purity p-Xylene through isomerization. 
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Opsomming 
 

Die produksie van chemiese stowwe word belemmer deur die uitdaging van beperkte 

materiaal- en energiebronne. Prosesuitbreiding kan egter ‘n noemenswaardige rol in die 

verligting van hierdie probleem speel. Die moontlike gebruik van multi-funksionele reaktore 

in prosesuitbreiding het navorsing in membraan-gebaseerde reaktiewe skeidingsprosesse 

(waar membraanskeiding en die katalitiese reaksie gelyktydig in ‘n enkele eenheid plaasvind) 

aangemoedig. Hierdie prosesse is aantreklik omdat hulle potensieel kompak en minder 

kapitaal-intensief is en ook teen laer koste as tradisionele prosesse bedryf kan word. Dit is ook 

dikwels die geval dat die multi-funksionele reaktor die selektiwiteit en opbrengs van die 

gewenste produk verhoog.  

In die afgelope drie dekades was daar ’n sterk verandering in die tegnologie wat 

gebruik word in die produksie van p-Xileen, met vele verbeterings aan nuwe toerusting wat in 

die nywerheid in bedryf gestel is. Hierdie verbeteringe hou gewoonlik ekonomiese-, sowel as 

bedryfsvoordele vir die produsente in. Ontwikkelings in hierdie veld is noodsaaklik aangesien 

die kapitale uitgawes vir die toerusting om p-Xileen, veral baie suiwer p-Xileen, van 

xileenpolimere te produseer en te skei, steeds baie hoog is. Met talle voordele gekoppel aan 

membraangebaseerde reaktiewe skeidingsprosesse in vergelyking met normale prosesse, is 

die navorsing egter gekanaliseer na die gebruik van MFI-tipe zeolietmembrane vir die in-situ 

skeiding en isomerisasie van xileen in ekstraksie-tipe katalitiese membraanreaktore. As 

bydrae tot hierdie navorsingsveld het hierdie studie op die karakterisering en optimering van 

‘n ekstraksie-tipe katalitiese membraanreaktor (e-KMR), toegerus met ’n nanosaamgestelde 

MFI-alumina membraan as skeidingseenheid vir m-Xileen isomerisasie in die teenwoor-

digheid van ‘n Pt-HZSM-5 katalis, gefokus.  

Nanosaamgestelde MFI-alumina zeolietmembrane (buise en hol vesels) wat in hierdie 

studie gebruik is, is voorberei deur die sogenaamde “hidrotermiese porie-sperring sintese 

tegniek” wat meer as ‘n dekade gelede ontwikkel is deur Dalmon en sy groep. In hierdie 

tegniek word MFI-materiaal gekweek deur direkte hidrotermiese sintese in ‘n poreuse 

matriks, eerder as die vorming van dun films bo-op die ondersteuningsbasis. Die voordele van 

hierdie ontwerp bo dié van die konvensionele filmagtige zeolietmembrane sluit in: (i) 

minimering van die effek van termiese uitsetting op die gaping tussen die ondersteuningsbasis 

en die zeoliet, (ii) die gemak van opskalering, en (iii) die gemak waarmee die modules 

aanmekaar gesit kan word, omdat die skeidingslaag (zeolietkristalle) binne die porieë van die 

keramiek-ondersteuningsbasis geleë is, wat die effek van erodering en termiese skok 

verminder. Ná die membraansintese is die membraankwaliteit en skeidingsvermoë ge-

evalueer deur enkel-gas-deurdringing (H2), binêre-gas-skeiding (n-butaan/H2), en ternêre 
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dampmengsel van xileen-isomere deur die gebruik van die damp-deurdringingsmetode met 

p-Xileen as die teikenproduk. 

Hierdie tesis het gewys dat nanosaamgestelde MFI-alumina membraanbuise en hol 

vesel membrane selektief was ten opsigte van p-Xileen vanuit xileen-isomere. Die tesis doen 

ook, vir die eerste keer in die oop literatuur verslag, oor die uitstekende p-Xileen skeidings-

vermoë van nanosaamgestelde MFI-alumina buise by hoër xileenladings (of dampdrukke). 

Anders as hulle filmagtige eweknieë het die membrane steeds hul verhoogde selektiwiteit vir 

p-Xileen by hoër dampdrukke behou, sonder ‘n merkbare verlaging in die selektiwiteit. 

Hierdie merkwaardige eienskap maak dit ‘n belowende keuse vir pervaporasie toepassings, 

waar die konsentrasieprofiel (as gevolg van hoër xileenladings) gewoonlik ’n noemens-

waardige probleem is.  

Met die gebruik van nanosaamgestelde MFI-alumina membrane het hierdie navorsing 

gewys dat membraankonfigurasie en –wanddikte ‘n prominente rol speel in die verbetering 

van vloei oor die membraan. Resultate wat in die studie voorgelê word, wys, vir die eerste 

keer in oop literatuur, dat hol vesel nanosaamgestelde MFI-alumina membrane die deurvloei 

van p-Xileen kan verbeter gedurende die skeiding van ternêre dampmengsels van xileen, as 

gevolg van die kleiner effektiewe wanddikte van die membraan (<1 µm) wanneer dit vergelyk 

word met konvensionele kansgewys-geörienteerde MFI-zeoliet films met ‘n membraandikte 

van >3 µm. Tydens die skeiding van xileen-isomere met nanosaamgestelde hol vesel 

membrane is ‘n verbetering van ongeveer 30 % in die deurvloei van p-xileen verkry, 

vergeleke met membraanbuise, by identiese bedryfstoestande. Hol vesels bied ook die verdere 

voordeel van oppervlak-tot-volume verhoudings van so hoog as 3000 m2/m3 vergeleke met 

konvensionele membraanbuise. Die gebruik van hierdie tipe sisteem kan deurslaggewend 

wees in die vermindering van die grootte en koste van deurlatingseenhede in toekomstige 

xileen-skeidingsprosesse. Die vervaardiging van hoë-kwaliteit nanosaamgestelde MFI-

alumina membraanvesels is egter onderworpe aan die beskikbaarheid van  hoë-kwaliteit 

vessel-ondersteuningsbasisse.  

Wat die gebruik van nanosaamgestelde MFI-alumina membraanbuise as ekstraksie-

tipe katalitiese membraanreaktore betref (ekstraksie-tipe zeoliet katalitiese membraanreaktor, 

of e-ZKMR in hierdie studie) vir m-Xileen isomerisasie in die teenwoordigheid Pt-HZSM-5, 

bevestig die resultate die potensiaal van e-ZKM reaktore bo konvensionele vaste-bed reaktore 

(VBR). In die gekombineerde verstelling (met produkte in die permeaat sowel as die 

retentaat) toon die e-ZKMR ‘n 16 – 18% verbetering in die opbrengs van p-Xileen vergeleke 

met ‘n ekwivalente VBR by dieselfde bedryfskondisies. Gegrond op die hoë p-Xileen-tot-o-

Xileen (p/o) en p-Xileen-tot-m-Xileen (p/m) skeidingsfaktore wat deur die membraan gebied 

word, is p-Xileen-samestellings in die slegs-permeaat verstelling (produkte in die 

permeaatstroom) van tussen 95 en 100% in die e-ZKMR verkry. Toe ‘n defek-vrye 
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nanosaamgestelde MFI-alumina membraanbuis met ‘n (p/o) skeidingsfaktor van >400 gebruik 

is, is p-Xileen met ‘n suiwerheid na aan 100% in die slegs-permeaat verstelling verkry. Die 

e-ZKMR het ook 100% para-selektiwiteit in die slegs-permeaat verstelling getoon by alle 

toets-temperature, iets wat onmoontlik is met gewone filmagtige MFI-tipe zeolietmembrane. 

Om hierdie rede is dit moontlik dat die gebruik van MFI-alumina membrane in ekstraksie-tipe 

katalitiese membraanreaktore die ontwikkeling van energie-doeltreffende membraan-

gebaseerde prosesse vir die produksie van suiwer p-Xileen kan bevorder. 

Verder word daar in hierdie tesis verslag gedoen oor die modelering en 

sensitiwiteitsanalise van ‘n e-ZKMR wat toegerus is met ‘n nanosaamgestelde MFI-alumina 

membraanbuis as skeidingseenheid vir m-Xileen isomerisasie in die teenwoordigheid van ‘n 

Pt-HZSM-5 katalis. Die model-uitsette is redelik in ooreenstemming met eksperimentele 

resultate met absolute fout-persentasies van 17, 27, 0.05 en 19.5 % vir die p-Xileen opbrengs 

in die gekombineerde verstelling, p-Xileen selektiwiteit in die gekombineerde verstelling, 

p-Xileen selektiwiteit in die slegs-permeaat verstelling en m-Xileen omsetting, 

onderskeidelik. Om hierdie rede kan die model die gedrag van ‘n e-ZKMR verduidelik tydens 

die m-Xileen isomerisasie in die teenwoordigheid van ‘n Pt-HZSM-5 katalis. Die model kan 

ook aangepas word na e-ZKM reaktore met verskillende konfigurasies, soos hol vesel MFI-

alumina membraan-gebaseerde e-ZKMRe. Om meer insig te kry in die gedrag van die model 

op klein veranderinge in sekere ontwerpparameters, is ‘n sensitiwiteitsanalise op die model 

uitgevoer. Soos verwag, het die sensitiwiteitsanalise gewys dat die intrinsieke eienskappe van 

die membraan (porositeit, tortuositeit), die effektiewe van membraandikte en die 

reaktorgrootte (gemeet as die interne deursnit van die reaktor) ‘n noemenswaardige rol speel 

in die gedrag van die e-ZKMR gedurende p-Xileen produksie vanuit gemengde xilene.  

MFI-alumina zeolietmembrane met geoptimeerde parameters soos membraan-

porositeit, -tortuositeit, en –wanddikte mag dalk die oordrag van p-Xileen deur die membraan 

bevorder en sodoende ‘n hoër vloei van p-Xileen oor die membraan bewerkstellig. Dit sal 

uiteindelik lei tot ‘n verhoging in die opbrengs van p-Xileen in die slegs-permeaat verstelling. 

So ver dit vasgestel kon word, is hierdie die eerste verslag in die oop literatuur wat die 

modelering en sensitiwiteitsanalise van ‘n e-ZKMR, toegerus met nanosaamgestelde MFI-

alumina membraanbuise as skeidingseenheid vir m-Xileen isomerisasie in die 

teenwoordigheid van ‘n Pt-HZSM katalis, aanspreek.  

Verder ondersteun die resultate van hierdie studie vorige navorsingspogings op die 

gebruik van e-KMRe, met MFI-tipe membrane as skeidingseenhede, vir die produksie van 

p-Xileen deur middel van m-Xileen isomerisasie in die teenwoordigheid van ‘n geskikte 

katalis.  Verder is nuwe idees ontwikkel, getoets en voorgestel wat dien as ’n stewige basis vir 

verdere opskalering- en tegno-ekonomiese studies.  Sodanige studies is nodig om die 

vatbaarheid van die tegnologie relatief tot die tradisionele prosesse te bepaal.   
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Ter opsomming, die bemoedigende resultate, soos in die tesis gedokumenteer (en ook 

gepubliseer in vier ewe-knie beoordeelde internasionale wetenskaplike joernale en vier 

konferensiestukke), kan as ‘n platform dien vir die ontwikkeling van ’n opgeskaleerde 

membraan-gebaseerde energie-doeltreffende nywerheidsproses vir die produksie van suiwer 

p-Xileen deur middel van isomerisasie.  
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Chapter 1: Motivation for the study and research ob jective 

In this chapter, the motivation for this study and the research objectives are clearly 

defined. The benefits of the research effort to the scientific and industrial community are also 

highlighted. 

1.1  Motivation 

Energy efficiency and energy saving are becoming increasingly important 

components of government policies around the world in response to a range of challenges, 

which include perceptions of resource scarcity, high energy prices, security of energy supply 

and environmental protection. In 2006, the total world energy consumption was                  

495.6 quintillion Joule (J) and the industrial sector accounted for about one-half of the total 

world energy consumption [1]. Despite the current economic downturn, it is expected that the 

world energy consumption will increase up to 711.9 quintillion Joule (J) over the 2006 to 

2030 period due to the expected growth of the world’s real Gross Domestic Product (GDP) on 

the purchasing power parity averaged 3.5 percent annually [1]. Over the next 25 years, 

worldwide industrial energy consumption is expected to grow from 183.8 quintillion Joule (J) 

in 2006 to 257.9 quintillion Joule (J) in 2030 at an average annual rate of 1.4% [1]. In 

petrochemical industry, energy accounts for more than 60% of the industry’s cost structure. In 

2006, five industries accounted for about 68% of the total energy consumed in industrial 

sector while the chemical sector is the largest industrial consumer of energy with about 29% 

of the energy [1]. Therefore, more energy-efficient technologies in the chemical industry 

could contribute significantly to nationwide and worldwide energy savings and a reduction of 

CO2 emissions.  

One of the high energy-intensive industrial processes is the production of high purity 

p-Xylene via separation/isomerisation from mixed xylenes and in the last 30 years, there has 

been a great evolution in p-Xylene production technology, with many equipment 

improvements being instituted in the industry. Typically, these improvements bring economic 

as well as processing advantages to the producers. Such developments are vital, as the capital 

costs for process equipment to produce and separate p-Xylene from xylene isomers, 

especially into high-purity p-Xylene, still remain very high. 

Mixed xylenes (from the Greek xylon=wood), first discovered in crude wood spirit in 

1850 by Cahours, constitutes a family of C8-aromatics with molecular formula C8H10 

including three constitutional isomers: o-Xylene (OX), m-Xylene (MX) and p-Xylene (PX). 

These constitutional isomers are referred to as mixed xylenes. The xylene isomers differ from 

one another by the relative position of the two methyl groups in the benzene ring. The 

molecular structures of these isomers are depicted in Figure 1.1.  
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Figure1.1: Molecular structures of the three xylene isomers. 

Xylene isomers are important chemical intermediates. The world demand for xylene 

has been increasing steadily for more than a decade. For example, in 1999, the world demand 

for xylenes was about 22 Mt, p-Xylene holding about 80% of the market share [2]. The 

production value of mixed xylenes was estimated to approximately 5 billion US$ in 1999, 

second only to benzene in aromatic production [3]. P-Xylene is almost exclusively used as 

raw material in the production of terephthalic acid (TPA) and dimethyl terephthalate (DMT), 

which are reacted with ethyleneglycol to form polyethylene terephthalate (PET), the raw 

material for polyester resin. Polyester resin is used to manufacture polyester fibres, films and 

fabricated items (e.g. beverage bottles). According to Tecnon OrbiChem [4], world p-Xylene 

demands are expected to rise at an average rate of 7% per year in the period 2008-2013, 

driven mainly by TPA and PET demand increase in China, other Asian countries and in the 

Middle East (Figure 1.2) - other countries not affected by this occurrence are excluded from 

Figure 1.2. Asian markets are foreseen as particularly tight, with demands exceeding the 

supply. 
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Figure 1.2: World supply /demand for xylenes (especially PX) [5]. 
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The principal industrial sources of xylene isomer mixtures are high-severity 

catalytically reformed naphtha and pyrolysis distillates. The C8 aromatic cut obtained from 

these sources contains a mixture of xylenes (50-60 wt.% m-Xylene and 20-25 wt.% o- and     

p-Xylenes) and ethylbenzene (EB) (15-30 wt.%) in the C8 fractions obtained from naptha 

reforming and steam cracking [6]. The surplus o-Xylene and m-Xylene can be converted into 

more valuable p-Xylene through catalytic isomerization with further purification by using 

convenient separation techniques. 

The use of distillation is discouraged for p-Xylene separation and purification due to 

the close boiling points of xylene isomers (Table 1.1), translating into high energy demands. 

For example, petrochemical and chemical industries accounted for 13.7 quintillion Joule (J)  

in 1998 with about 35% of the energy consumption used in the manufacture and separation of 

organic chemicals (mainly for heating/cooling) [7]. Moreover, in 2004, the United States 

consumed nearly 105 quintillion Joule (J) on petrochemical and chemical industries’ 

processes, corresponding to approximately one fourth of the world energy demand [8]. 

Therefore, it becomes imperative to move to more energy-efficient and environmentally-

friendly processes for p-Xylene separation and purification involving the lowest number of 

heating/cooling steps.  

 

                         Table 1.1: Physical properties of xylene isomers 

Xylene isomers 
Mw  

(g.mol-1) 

Normal 
Boiling point 

(K) 

Normal 
Freezing 
point (K) 

∆Hvap 
(kJ.mol-1) 

PX 106.17 411.37 286.26 42.04 
MX 106.17 412.12 225.13 42.04 
OX 106.17 417.41 247.82 43.41 

 

 

For the production of high purity p-Xylene via separation from xylene isomers and/or 

isomerization of less used isomers, membrane technology might be a promising option to 

achieve this goal. The technology behind membrane applications is potentially an          

energy-saving one, because the separation process takes place without phase transition. 

Besides, it is better for the environment, since the membrane approach requires the use of 

relatively simple and non-harmful materials and the recovery of minor but valuable 

components from a main stream using membranes can be done without substantial additional 

energy costs. Therefore, compared with conventional techniques (such as adsorption or 

crystallization), membranes can offer a simple, easy-to-operate, low-maintenance process 
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option [9-12]. In addition, extractor-type catalytic membrane reactors (e-CMRs) for 

simultaneous xylene isomerization and p-Xylene separation are receiving increasing attention 

by researchers. A special benefit of these intensified reactors is that the removal of one of the 

products provides a shift in equilibrium and also an integrated product purification thus 

decreasing the number of process units. Moreover, activity improvements are possible 

through   selective removal of reaction rate inhibitors. 

  Against this background, therefore, this study contributes significantly in the research 

area through the further characterization and optimization of extractor-type catalytic 

membrane reactors, having nanocomposite MFI-type zeolite membranes as separation unit, 

for the production and purification of p-Xylene from xylene isomers.  

Production of p-Xylene via isomerization is a chemical-equilibrium restricted 

reaction process. To obtain total conversion during xylene isomerization process in 

conventional catalytic reactors (fixed-bed reactors) is impossible. Therefore, existing 

industrial technology could only produce equilibrium or near equilibrium xylene mixtures. 

Recycling the xylene streams back into the process lines might ensure higher p-Xylene 

productivity, but at the expense of higher operational costs due to higher energy consumption. 

However, the use of e-CMRs could eliminate equilibrium restriction associated with 

production of p-Xylene in fixed-bed reactors with a drastic reduction in operational costs 

resulting from a reduction in energy consumption. The enormous potential of large-scale 

applications of xylene isomerization in oil and petrochemical industries promises major 

advances and development of such systems in a near future. However the development of 

such systems for high purity p-Xylene from xylene isomerization is retarded due partly to 

inadequate understanding of the system and to the absence of high-flux MFI-type zeolite 

membranes that have high selectivity for p-Xylene, especially at high loadings/partial 

pressures of xylene. To overcome this obstacle, in-depth understanding of the fundamental 

behaviour of the system and availability of high-flux membranes, having high selectivity for 

p-Xylene, is essential. 

Regarding the use of nanocomposite MFI-ceramic membranes in e-CMRs for 

isomerization of m-Xylene to p-Xylene, the first preliminary study was reported by              

van Dyk et al. [13]. However, the study was limited to selectivity improvement in e-ZCMR, 

having a nanocomposite MFI-alumina membrane tube as separation unit, but with little detail 

on the influence of the operating variables on the performance of the system during the 

isomerization. Additionally, influence of operating variables (sweep gas, xylene 

loadings/partial pressures and sweep gas flow rate) on the separation performance of 

nanocomposite MFI-alumina membranes during xylene isomer separation has not been 

evaluated and reported. Furthermore, modelling and simulation study of an extractor-type 

catalytic membrane reactor, having a nanocomposite MFI-alumina membrane as separation 
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unit, has not been done and reported in open literature. Having in-depth understanding of all 

the aforementioned suggestions could be instrumental to optimization of the system and thus 

pave the way for speedy development of membrane-based reactive separation system for the 

production of high purity p-Xylene from mixed xylene.  

As a result of this, the objective of this research was to characterize and optimize 

extractor-type zeolite catalytic membrane reactor (e-ZCMR), having nanocomposite         

MFI-alumina membranes as separation unit, for p-Xylene production and purification via 

separation and meta-xylene isomerization over Pt-HZSM-5 catalyst. Therefore, to realize the 

aforementioned objective, the study was divided into three parts:  

• Characterization, performance evaluation and optimization of nanocomposite             

MFI-alumina membranes (tube and hollow fibres) during xylene isomers separation,  

• Characterization, performance evaluation and optimization of e-ZCMR, having 

nanocomposite MFI-alumina membranes as separation unit, during m-Xylene 

isomerization over a Pt-HZSM-5 catalyst via experimental study and ;  

• Modellling and sensitivity analysis of e-ZCMR, having nanocomposite MFI-alumina 

membranes as separation unit, during m-Xylene isomerization over a Pt-HZSM-5 

catalyst to understand better the fundamental behaviour of e-ZCMR during xylene 

isomerization.  

1.2  Dissertation overview  

The dissertation is subsequently organized thus: Chapter 2 discusses the state of the 

art of the technology and reviews the literature on membrane technology and its application to 

the production and purification of p-Xylene from xylene isomers. The emphasis was on the 

application of MFI-type zeolite membranes for production and purification of   p-Xylene from 

xylene isomers.  

Chapter 3 outlines the preparation and characterization of MFI-type zeolite 

membranes with more emphasis on MFI-type zeolite membranes with nanocomposite 

architectures. The chapter also describes instrumentation and calibration as well as the 

experimental procedures used to produce the results described in subsequent chapters. 

Chapter 4 reports a study of the influence of operating variables on the separation 

performance of tubular nanocomposite MFI-ceramic membrane during the separation of 

ternary vapour mixture of xylene isomers. This chapter also showcases for the first time the 

relative goodness of MFI-Zeolite membrane with nanocomposite architecture over “film-like” 

type, particularly at higher loading of xylene. Chapter 5 reports for the first time in open 

literature, the performance of tubular nanocomposite MFI-ceramic at higher partial pressure 

of xylene isomers during ternary vapour mixture separation of xylene isomers. 

Chapter 5 reports the evaluation of the separation performance of nanocomposite        
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MFI-ceramic hollow fibre during the separation of ternary vapour mixture of xylene. In this 

chapter, advantages of hollow fibre configuration over the tubular are demonstrated via 

experimental study. The study also reports, for the first time, the application of 

nanocomposite MFI-ceramic hollow fibre membranes for the separation of xylene vapour 

isomers 

In Chapter 6, report of studies of the performance of extractor-type zeolite catalytic 

membrane reactors (e-ZCMR), which have nanocomposite MFI-ceramic membrane tube as a 

separation unit, during the production of p-Xylene from m-Xylene isomerization over             

Pt-HZSM-5 catalyst is presented. The chapter further provides information on the influence of 

operating variables on the performance of e-ZCMR during m-Xylene isomerization with a 

view to understanding the fundamental behaviour of e-ZCMR for m-Xylene isomerization 

and to optimizing the process. From this study, the best catalyst packing in e-ZCMR was 

obtained while the membrane displayed 100% p-Xylene selectivity with p-Xylene purity 

reaching 100% at the permeate side.  

For in-depth understanding of the fundamental behaviour of e-ZCMR during            

m-Xylene isomerization over Pt-HZSM-5 catalyst, modelling and simulation study of the            

e-ZCMR for m-Xylene isomerization over Pt-HZSM-5 catalyst is presented in Chapter 7. 

Sensitivity anaylsis was also conducted on the model to understand the behaviour of the 

model to changes in certain parameters. The model output was compared with the 

experimental results for model validation and to understand the e-CMR during m-Xylene 

isomerization over Pt-HSZM-5 catalyst.  

Chapter 8 summarizes the novel contributions of this research and suggests some 

useful recommendations for future research work. 

1.3  Research benefits and novel contributions 

This study is an extension of a previous study which looked at the application of 

catalytic membrane reactors based on MFI-type zeolite membranes for the production of       

p-Xylene [13]. Preliminary work done in the previous study has provided solid evidence and 

platform for further extension of the study and optimization of the system. In this dissertation, 

new ideas were proposed. The ideas were developed and tested. The novel contributions from 

this research, as highlighted below, could be a platform upon which further researches in this 

area can be built: 

• Separation performance of nanocomposite MFI-alumina membrane tube, at higher 

loadings/higher partial pressures of xylenes, during xylene isomers separation has 

been demonstrated and reported for the first time in open literature. Unlike their   

“film-like” counterparts, the membranes still maintain increased selectivity to           
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p-Xylene at higher xylene vapour pressures without showing a drastic decrease in 

selectivity.   

• For the first time in open literature, the study has demonstrated and reported the 

performance evaluation of nanocomposite MFI-alumina hollow fibre membranes 

during xylene isomer separation. Furthermore, nanocomposite hollow fibre 

membrane prepared and evaluated displayed high selectivity to p-Xylene and showed 

about 30% increase in p-Xylene flux compared to a nanocomposite membrane tube 

prepared in a similar way as hollow fibre and operated at the same conditions. 

• The study reports, in details, the influence of operating variables on the performance 

of an e-ZCMR, having a nanocomposite MFI-alumina membrane tube as separation 

unit, during m-Xylene isomerization over Pt-HZSM-5 catalyst. Furthermore, the 

study has shown a significant improvement on p-Xylene yield compared to the work 

of van Dyk et al.[13] and also for the first time in open literature, possibility of 

producing  ultra-pure p-Xylene (~100%) in e-ZCMR during m-Xylene isomerization 

over Pt-HZSM-5 has been demonstrated and reported. 

• The study reports, for the first time, modelling, simulation and sensitivity analysis of      

e-ZCMR, having a nanocomposite MFI-alumina membrane tube as separation unit, 

during m-Xylene isomerization to p-Xylene. The sensitivity analysis revealed that 

intrinsic property of the membrane (porosity, tortuosity), membrane effective 

thickness and reactor size play a significant role on the performance of e-ZCMR 

during p-Xylene production from the mixed xylenes. 

 

 In summary, the outcome of this research open up a research line to scale-up and 

optimize catalytic membrane reactors based on MFI-type zeolite membranes for p-Xylene 

production. The encouraging results, as documented in this dissertation, can provide a 

platform for developing scaled-up energy-efficient industrial process for producing p-Xylene 

through isomerization based on membrane technology. Furthermore, for quick and easy 

access to the novel contributions from this study, the novel contributions have been 

communicated to researchers working in the same research area and other related areas 

through articles published in international scientific journals (four published, two under 

review) and in conference proceedings (four conference proceedings). The published journal 

articles can be found in Appendix E.  

 

 

 



_____________________________________________________________________ 

__________________________________________________________________ 8 

 

Chapter 2: Literature review and state of the art  

In this chapter, relevant literature highlighting the current trends in the development 

and applications of MFI-type zeolite membranes to xylene isomer separation and 

isomerization are critically discussed. 

2.1  Commercial technologies for production and pur ification of p-Xylene 

The existing commercial technologies for separation and production of high purity           

p-Xylene from its isomers can be divided into three main groups: (1) fractional crystallization,   

(2) adsorption and (3) hybrid crystallization/adsorption [14]. Fractional crystallization and 

adsorption are currently commercially available, accounting, respectively, for about 40 and 

60% of the p-Xylene world production. Although, the hybrid crystallization/adsorption 

process is yet to be commercialized, it has been successfully field-demonstrated and the first 

commercial unit is expected to be put in service in the near future. In addition to separation of 

p-Xylene from the C8 cut, p-Xylene can be industrially produced via toluene 

disproportionation or o-Xylene and m-Xylene isomerization. This latter process is especially 

interesting for valorisation of leftover streams coming from adsorption and/or crystallization 

processes, highly enriched in o- and m-Xylenes. Currently, the industrial process for 

producing this involves either isomerization of the m-Xylenes or o-Xylene or 

disproportionation of toluene. Approximately, 40% of the currently used p-Xylene production 

processes, relying on either isomerization or toluene disproportionation, are based on 

ExxonMobil technology [15]. 

2.1.1  Fractional crystallization 

Low temperature fractional crystallization was the first and for many years the only 

commercial technique for separating p-Xylene from mixed xylenes. A number of 

crystallization processes have been commercialized over the years (e.g., Chevron, Krupp, 

Amoco, ARCO [Lyondell] and Phillips). A typical commercial crystallization process is 

shown in Figure 2.1. 

This technology relies on the freezing point of p-Xylene which is much higher than 

that of the other xylene isomers (see Table 1.1). Thus, upon cooling, a pure solid phase of     

p-Xylene crystallizes first. Upon further cooling, a temperature is eventually reached where 

solid crystals of other isomers also form (eutectic point). P-Xylene usually begins 

crystallization at about 269 K and the p-Xylene/m-Xylene eutectic point is reached at about 

205 K. In commercial practice, p-Xylene crystallization is carried out at a temperature just 

above the eutectic point. At that condition, p-Xylene is still soluble in the remaining C8 
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aromatics mother liquor solution. This limits the efficiency of crystallization processes to a 

per-pass p-Xylene recovery of about 60–65%. 

 

 
Figure 2.1: Chevron p-Xylene crystallization process [16]. 

 
 

The solid p-Xylene crystals are typically separated from the mother liquor by 

filtration or centrifugation. With regards to this step, achieving good separation depends on 

the  p-Xylene crystal size distribution, thus, improving larger crystals. The p-Xylene crystal 

size is affected by the degree of supersaturation (and therefore by nucleation mechanism) 

upon crystallization, which is affected in turn by a number of parameters including 

temperature, agitation and the presence of crystal nuclei. To obtain good separation, p-Xylene 

is typically crystallized in one or two consecutive steps and further separated by 

centrifugation.  

Commercial crystallisers use either direct contact or indirect refrigeration to promote 

crystallization. The latter has the disadvantage that the walls of the cooled surface tend to 

foul, which reduces heat transfer. The first crystallization step is usually carried out at the 

lowest temperature, the p-Xylene cake from this step reaching a purity of about 80–90%. The 

impurities in the p-Xylene cake arise from the mother liquor, wetting the crystal surface or 

being occluded in the cake. The efficiency of the solid–liquid separation depends on the 

temperature and the loading of the centrifuges. As the temperature falls, the viscosity and 
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density of the mother liquor rise sharply, making it more difficult to achieve effective 

separation. 

In the second crystallization step, p-Xylene crystals are usually re-slurried from the 

former cake with a higher purity p-Xylene stream coming from the latter purification step. 

This second centrifugation step is enough in most cases to reach a p-Xylene purity >99%. 

2.1.2  Adsorption process 

Adsorption constitutes the second and the most recent method for separating and 

producing high-purity p-Xylene. In this process, adsorbents such as molecular sieves are used 

to produce high-purity p-Xylene by preferential adsorption of p-Xylene from a mixed xylene 

stream. Separation is accomplished by exploiting the differences in affinity of the adsorbent for 

p-Xylene relative to the other C8 isomers. The adsorbed p-Xylene is subsequently desorbed by 

displacement with a desorbent liquid stream. Typical p-Xylene recovery per-pass is >95% in a 

single step. Recycle rates to separation and isomerization units are much smaller in adsorption 

units than in crystallization systems. 

At present, three processes based on adsorption are commercially available for         

p-Xylene separation and purification: UOP's Parex, IFP's Eluxyl and Toray's Aromax (this 

latter should not be confused with the Chevron's Aromax process for reforming of naphtha 

into aromatics). A comprehensive description of these processes is given by Minceva and 

Rodriguez [17]. In all of them, the feed and desorbent inlet and the product outlet ports are 

moved around the bed, simulating a moving bed (SMB). For example, Figure 2.2 shows the 

flowsheet diagram of the UOP's Parex adsorption process. Several adsorbent/desorbent 

combinations have been proposed in the literature to promote p-Xylene recovery from 

different mixtures. Typically, Ba- and K-exchanged zeolite molecular sieves are used as 

adsorbent and toluene (or tetraline) as desorbent [18]. Other examples of processes relying on 

selective adsorption for xylene separation and purification from the C8 cut have been reported 

in the patent literature [19,20]. 
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Figure 2.2: UOP Parex simulated moving bed for adsorptive separation. Nomenclature: AC, 
adsorbent chamber; RV, rotary valve; EC, extract column; RC, raffinate column.                   
Lines: 2-desorbent; 5-extract; 9-feed; 12-raffinate. All other ports are closed at this time [21]. 

 

2.1.3  Hybrid crystallization / adsorption process   

In 1994, the Institut Français du Pétrole (IFP) and Chevron announced the 

development of the Eluxyl hybrid process that reportedly combines the best features of 

adsorption and crystallization. In this process, a high concentrated p-Xylene stream (90-95%) 

is first produced from an adsorption unit and further purified in a small single-stage 

crystallizer with the filtrate recycled back to the adsorption unit [22]. Ultra-pure (>99.9%)            

p-Xylene can be easily and economically produced with this scheme for both retrofits of 

existing crystallization units as well as grass-roots units. This process has been successfully 

field-demonstrated but is yet to be commercialized. 

2.1.4  P-Xylene from xylene isomerization 

In 1975, ExxonMobil introduced into the market its first generation of xylene 

isomerization processes called Mobil Vapour Phase Isomerization (MVPISM), relying on the 

use of a high-activity xylene isomerization catalyst (acid zeolite). The process was further 

improved in 1978 by introducing the Mobil Low Pressure Isomerization process (MLPISM) 

with lower xylene losses and longer catalyst lifetime. In 1981, aromatics production was 

revolutionized by the introduction of the Mobil High Temperature Isomerization process 

(MHTISM), capable of operating at higher ethylbenzene (EB) conversions and with lower 
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xylene losses than in MLPISM, providing increased p-Xylene yields. To further reduce xylene 

losses, the Mobil High Activity Isomerization Process (MHAISM) and the Advanced Mobil 

High Activity Isomerization Process (AMHAISM) were introduced to the market in 1990 and 

1999, respectively. In 2002, ExxonMobil introduced the most recent technology to date called 

XyMax (see flowsheet in Figure 2.3). This process includes the conversion of EB to benzene 

and ethylene, cracking of non-aromatics and isomerization of the p-Xylene-depleted 

feedstock to an equilibrium xylene mixture. 

 

 

Figure 2.3: Flowsheet of the ExxonMobil XyMax isomerization process [22]. 

2.2  Catalysts for xylene isomerization  

The choice of a catalysts for a particular reaction depends largely on some factors 

such as activity, selectivity, stability and even cost. A high activity is reflected either in the 

high productivity from relatively small reactors and catalysts volume or mild operating 

conditions, particularly temperatures, which enhance selectivity and stability if the 

thermodynamics is more favourable [23]. Moreover, high selectivity produces high yields of a 

desired product while suppressing undesirable competitive and consecutive reactions. 

Therefore, to make a catalyst highly selective for a target product, its pore volume and pore 

size distribution should be improved toward reducing limitations by internal diffusion. In 

addition, a catalyst with good stability changes only slowly over the course of time under 

conditions of use and regeneration. At the same time the catalysts must withstand comparison 

with competitive catalysts or processes with equivalent functions from the point of view of 

cost [23]. 
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The most currently used catalysts in xylene isomerization plants are based to date on 

acid zeolites HMOR [24-26] and HZSM-5 [27, 28]. Other catalysts that have been studied for 

this reaction include zirconia modified with tungsten oxide [29], amorphous silica [30], and 

zeolites HY [31-34], beta [31], ITQ-13 [34], UZM-5 and UZM-6 [35], and HFER [36]. The 

reaction takes place at operating temperatures in the range 543-653 K. Acid-catalyzed xylene 

isomerization can occur either through an intramolecular mechanism involving       

bensonium-ion intermediates or through an intermolecular mechanism involving successive 

xylene disproportionation reactions and fast transalkylation between trimethylbenzene (TMB) 

and xylene molecules. The former mechanism is favoured when steric constraints in the 

vicinity of the acid sites inhibit the formation of bulky diphenylmethane intermediates of 

transalkylation (e.g., zeolite beta) or in the case of catalysts possessing very strong acid sites 

(e.g., zeolite HY). As a general rule, irrespective of their Si/Al ratios, larger pore size opening 

zeolites provide lower selectivities for   p-Xylene compared to ZSM-5 zeolites, promoting 

TMB production by disproportionation. However, Henriques et al. [24] reported that H-MOR 

with Si/Al ratio of 75 provides higher resistance to deactivation (coking) due to its large pore 

size. Suppression of disproportionation reaction and promotion of secondary isomerization 

reaction for p-Xylene is enhanced by inactivation of non-selective acid sites on the external 

surface, leading to an increase in internal acid sites [37]. Dealuminated Y zeolites (DAY) with 

high Na content catalyze primarily the isomerization of m-Xylene and improve the 

conversion, but as the cation is exchanged by NH4
+, disproportionation becomes more 

pronounced [38,39], promoting formation of toluene and TMB. Laforge et al. [40] have used 

zeolite MCM-22 (Si/Al=10) dealuminated with ammonium hexafluorosilicate for m-Xylene 

isomerization. Their results reflect that cups + sinus form of the catalyst give higher p-Xylene 

yields due to pore mouth poisoning  of the sinusoidal active sites  or poisoning of the 

hemicages by adsorbed 2,4-DMQ which  hinders the activity  of the neighbouring inner sites 

and that isomerization of m-Xylene occurs preferentially in sinusoidal channels. 

Para-selectivity in xylene isomerization by zeolites has been improved by doping the 

zeolites with metals such as Pt, Ga and Zr through surface modification [37, 41]. At these 

conditions, in the presence of metals, m-Xylene isomerization proceeds via an intermolecular    

1,2-methyl group shift model [37]. Hsu et al. [42] have reported a gradual activity in the order 

Pt/MOR<<Pt/USY<Pt/ZSM-5<Pd/ZSM-5 for m-Xylene and EB isomerization, increasing 

with temperature. The higher activity of Pt/ZSM-5 compared to USY is attributed to the 

higher acidity of the former, while the modest activity of Pt/modernite is attributed to a fast 

catalytic deactivation by coking. P-Xylene selectivity of Pt/ZSM-5 and Pd/ZSM-5 can reach 

values >90% at 573 K, but decreasing with temperature. Incorporation of oxides, P [43-45], 

Mg [46, 47] or B [47, 48] in the zeolite framework allows tuning of the diffusivity of xylenes 

into the zeolite pores [27]. 
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2.3  Membrane-based technology for the production a nd purification of PX  
 

The crystallization and adsorption techniques for p-Xylene separation and 

purification, discussed in section 2.1 of this chapter, are highly energy intensive (although to a 

lesser extent than in fractional distillation) and make use of batch processes. In an attempt to 

design less energy-intensive and more environmentally-friendly processes for p-Xylene 

production and purification, membrane-based technology has been proposed recently, as a 

promising alternative.  

A membrane is defined essentially as a barrier, which separates two phases and 

restricts transport of various chemicals in a selective manner. A membrane can be 

homogenous or heterogeneous, symmetric or asymmetric in structure, solid or liquid; it can 

either carry a positive or negative charge or it can be neutral or bipolar. Transport through a 

membrane can be affected by convection or by diffusion of individual molecules, induced by 

an electric field or concentration, pressure or temperature gradient. The membrane thickness 

may vary from as small as 10 microns to few hundred micrometers.  

In gas-separation membranes, classification has included porous and dense 

membranes [49-52]. Materials such as ceramic and metals have been used as supports. In 

some cases, the driving force in a gas-separation membrane is the pressure difference between 

the feed/retentate and the permeate; the heating/cooling costs can be dramatically reduced 

compared to crystallization or adsorption techniques. Furthermore, due to their modular 

nature and compact size, membranes can be integrated easily in already existing plants, 

offering the possibility of continuous operation without requiring sorbent regeneration. 

Despite these general advantages compared to crystallization and adsorption 

techniques for p-Xylene separation and purification, the technico-economical feasibility of a 

membrane-based process will depend on the development of membrane materials with good 

affinity for p-Xylene for selective separation from its isomers. A first possibility deals with 

the use of polymers. Although specific xylene isomer separation has been studied with 

polyurethane [53], polyvinyl alcohol (PVA) [54] and polyamides [55-57], so far, none of 

these materials has provided substantial p/o and p/m xylene selectivities at reasonable 

permeabilities. Furthermore, whereas some researchers have proposed the introduction of side 

groups displaying strong interaction with xylenes to the polymer matrix [58-63], no 

remarkable improvement has been reported. This lack of selectivity, in addition to the 

inherent limitations of polymers in terms of thermal, chemical and mechanical stability, has 

triggered off the development of porous ceramic membranes for p-Xylene separation and 

purification. A general comparison of the characteristics of polymeric and ceramic 

membranes is provided in Table 2.1. 
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In particular, zeolites have been the major materials employed in the preparation of 

ceramic membranes for the separation of aromatics and several reviews on their synthesis and 

applications have been published [64-66], including a small overview by Fong et al. [67] 

focusing on catalytic membrane reactors (CMRs) applications for xylene isomerization. 

Although, the use of zeolite membranes for gas separation is still in an early technological 

stage (only one application of solvent dehydration by pervaporation has been commercialized 

to date [68]), they are expected to encounter applications at large scale and compete with 

other existing technologies in the coming years. The future gas separation applications will 

rely on their selectivity, permeability and stability characteristics. Moreover, the development 

of such materials will depend on the availability of high quality, defect-free membranes, 

preferentially synthesized through simple protocols leading to cost-effective processes [69]. 

                 Table 2.1: Comparison between polymeric and ceramic membranes 
Ceramic  membranes Polymeric membranes 

Do not swell Do swell 
Possibility of uniform, molecular 
sized pores allowing for molecular 
sieving 

Do not have uniform molecular 
sized pores 

Chemically resistant to solvents and 
low pH 

Not chemically stable. 
Denatured at low pH 

Thermally stable 
Not thermally stable, denatured 
at high temperature 

High cost of production Lower cost of production 
More brittle Less brittle 

 
 

Among the different available membrane technologies, xylene isomer separation 

using MFI membranes has been carried out either by pervaporation (PV) or vapour 

permeation (VP). These techniques rely both on the higher affinity of one or more species in a 

mixture to the membrane material and only differ from the phase of the feed (liquid in PV and 

vapour in VP, see Figure 2.4) and the permeate pressure (use of primary vacuum in PV). In 

addition, in VP, a sweep gas is applied to the permeate’s side to reduce the surface coverage 

and thus it enhances the cross membrane flux of the permeating molecules due to an increase 

in the driving force. A detailed description of the fundamentals and applications of both 

processes can be found in some reference books and reviews [66, 70-73]. 
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Figure 2.4: Schematic representation of pervaporation (left handside) and vapour permeation 
(right handside) across a membrane. 
 

2.3.1  MFI-type zeolite membranes for xylene isomer  separation 

Zeolites are tridimensional crystalline aluminosilicates constituted by Si and Al 

tetrahedra linked through bridging oxygen atoms giving rise to the so-called secondary 

building units (SBUs), constituted by rings and prisms of various sizes. These units combine 

to generate frameworks with a regular distribution of molecular-sized pores and cavities. The 

general formula of zeolites is Mx/n[(AlO 2)x (SiO2)y].zH2O, with M defining the compensating 

cation (usually from groups I or II) with valence n. The Si/Al ratio of the zeolite structure and 

amount of cations control the surface properties of zeolites (e.g., hydrophobicity and acidity), 

and determine their adsorbent, catalytic and ion-exchange properties. 

Among the different natural and artificial zeolite frameworks, the MFI structure 

consists of two main types namely ZSM-5 (Zeolite Socony Mobil-Five), discovered by Mobil 

in 1972 [74,75], with a natural analog (mutinaite) [76], and silicalite-1, developed by Union 

Carbide a few years later [77,78]. Both structures differ in their Si/Al ratio, showing a value 

in the range 10-10000 for ZSM-5 and >10000 for silicalite-1. The higher Si content of 

silicate-1 provides a higher thermal stability and higher hydrophobic character than in the 

case of zeolite ZSM-5. 

 The elementary mesh in MFI zeolites contains 96 TO4 tetrahedic units (T = Si or Al), as 

can be deduced from the chemical formula [79]: 

 

    
M x / n H2O( )

16[ ] Alx Si96−x O192[ ] with   x<27                                                    (2.1) 
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MFI-type zeolites possess a channel network based on near-circular straight       

(0.54x0.56 nm2) and elliptical sinusoidal (0.51x0.55 nm2) channels both defined by                

10-membered rings (medium-pore zeolite) [80,81]. Straight and elliptical channels run 

parallel, respectively, to crystallographic directions a(1 0 0) and b(0 1 0), generating 

perpendicular intersections with diameter of 0.89 nm. The key morphological features of MFI 

zeolite are schematically depicted in Figure 2.5. The pores provide three potential adsorption 

sites: (1) at the intersections, (2) along the cross (zig-zag) channels and (3) in the straight 

channels between the intersections (see Figure 2.6). Given the available pore sizes of its 

channel network, MFI is expected to promote diffusion of p-Xylene (kinetic diameter=5.8 Å) 

over bulkier o- and m-Xylene isomers (kinetic diameter=6.8 Å). This offers unique shape 

selectivity properties in adsorption and catalysis compared to larger pore zeolites. 

 

Figure 2.5: Key features of MFI zeolite: (1) crystal morphology, (2) straight and sinusoidal 
channels with intersections, (3) crystal framework and (4) detailed atomic structure (with 
permission from [82]). 

               

 

                               Figure 2.6: P-Xylene adsorption in the MFI zeolite framework. 
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All MFI-type zeolites show a polymorphic, monoclinic to orthorhombic, phase 

transition. Phase transitions are induced by temperature changes and the presence of adsorbed 

molecules (for instance aromatics or branched alkanes) within the framework. The transition 

temperature and mechanism are closely linked to the composition (Al content and other 

substituted elements) and defect density of the tetrahedral framework, besides the size and 

nature of the molecules adsorbed in the zeolite cavities. For instance, at room temperature, the 

as-synthesized ZSM-5 is orthorhombic (space group Pnma), although H-containing ZSM-5 

has monoclinic structure (space group P21/n.1.1) [83]. Silicate-1 is monoclinic at 

temperatures below 225-275 K (space group Pn21a) and reversibly transforms into 

orthorhombic (space group Pnma) at higher temperatures [82, 84]. Moreover, upon heating, it 

has been shown through molecular dynamics (MD) that the thermal expansion coefficient of 

silicalite-1 becomes negative above 450 K, indicating the existence of a higher temperature 

orthorombic phase [82]. 

2.3.1.1  Adsorption of xylenes in MFI-type zeolites  

As stated in section 2.3.1, the framework symmetry of MFI zeolites is strongly related 

to the nature and amount of guest molecules adsorbed in the channel network. It has been 

reported in the literature that at higher temperatures (>323-353 K), aromatic species (e.g., 

benzene, toluene, xylenes) adsorb in MFI zeolites following a Langmuirian adsorption pattern 

with a maximum adsorption capacity of 4 molecules/unit cell (silicalite-1 and HZSM-5). This 

adsorption pattern is similar to what is observed for most zeolites irrespective of their nature 

(i.e. cage-like or channel-like) and pore size [85-93]. At lower temperatures, however, the 

isotherms of benzene, toluene and p-Xylene on MFI display increased capacities with a step 

or inflection point at about 4 molecules/unit cell [94-96] (see Figure 2.7), giving an overall 

characteristic step-isotherm sometimes referred to as Type VI according to the classification 

of the IUPAC [85]. These abnormal adsorption properties of MFI at lower temperatures can 

be ascribed to a subtle interplay of increased sorbate-sorbate interactions and to the role of 

highly energetically heterogeneous surfaces. 
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Figure 2.7: Characteristic inflection in p-Xylene adsorption isotherms on silicalite in the 
temperature range 273-323 K. Adapted from [84]. 

A number of XRD/neutron diffraction and calorimetric studies has revealed that 

orthorombic MFI undergoes a phase transition from the so-called ORTHO phase         

(orthorombic Pnma, 2<molecules/uc<4) to the PARA phase at higher p-Xylene loadings                   

(orthorombic P212121, 4<molecules/uc<8) [97-106]. Besides the fact that the cross channels in 

PARA MFI are rather skewed, there is little structural difference between the ORTHO and 

PARA phases. In both cases, the differential heat and entropy of p-Xylene adsorption show 

similar values, about -80 kJ.mol-1 and -32 J.mol-1.K-1, respectively, for HZSM-5 [107,108]. 

Moreover, the adsorption strength and transition temperature of the zeolite framework 

induced by p-Xylene adsorption can be strongly affected by the Al content and nature of the 

exchangeable cation present in the ZSM-5 framework [107]. 

A series of FTIR, Raman and NMR experimental studies [109-111], supported by 

theoretical calculations (Molecular Dynamics and Monte Carlo) [112-117] supports the effect 

of size entropy effects (i.e. the ability of a molecule to fit in a confined space) on the observed 

inflection of the p-Xylene adsorption isotherm on MFI, the sorbate-sorbate interaction driving 

the phase change in the zeolite structure. In the case of silicalite-1 and HZSM-5, below                       

4 molecules/unit cell, the sorbate p-Xylene molecules are mainly located in the channel 

intersections, while above 4 molecules/unit cell, sorbate molecules tend to occupy sites along 

the cross channels. The sites along the straight channels between intersections are left largely 

unoccupied owing to steric hindrance by the sorbate molecules at the intersections. 

 The preference of certain aromatic molecules to adsorb in different MFI sites giving 

rise to an inflection in their corresponding adsorption isotherm can be modelled using a     
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dual-site Langmuir adsorption isotherm [118]: 

 

    
q = qM ,A

Κ A P

1+ Κ A P
+ qM ,B

ΚB P

1+ ΚB P
                                                                     (2.2) 

 

where subscripts A and B indicate independent adsorption sites, corresponding to the channels 

and intersections in the MFI framework (see Figure 2.6 for details). This isotherm has also 

been used to model the adsorption of long-chain and branch alkanes in MFI [119-121].  

Discrimination of the active sites can be done by performing adsorption experiments 

at low loadings. In this situation, Eq. 2.2 can be linearized to a Henry's adsorption isotherm 

with a characteristic slope or Henry's coefficient: 

 

    
HA = lim

P →0

q

P
= lim

P →0

dq

dP
→ qM ,A KA                                                                      (2.3) 

 

where, according to the nomenclature of Eq. 2.2, the subscript A refers to channels. Table 2.2 

collects some values of Henry's constants reported in the literature for p-Xylene adsorption at 

several temperatures. 

In the case of co-adsorption of aromatic mixtures including p-Xylene or mixtures of 

xylene isomers, p-Xylene adsorbs preferentially at higher enough p-Xylene partial pressures 

by locating specifically in the MFI channel intersections [122-126]. The adsorption behaviour 

of aromatic mixtures is highly competitive and non ideal due to structural (and energetic) 

heterogeneity of MFI zeolite channels ascribed to the tight fit of the aromatic molecules in the 

MFI channels. This particular behaviour can be modelled using the classical Ideal Adsorbed 

Solution Theory (IAST) developed by Myers and Prausnitz [127]. Unlike the extended 

Langmuir isotherm, the approach provides a thermodynamically consistent framework for 

modelling mixture adsorption in zeolites without the need of detailed physical models for the 

sorbate. This model has been applied with success by Chempath et al. [116] and Li and Talu 

[122] for modelling, respectively, p/m-Xylene/toluene and p-Xylene/benzene binary 

adsorption in silicalite-1 at 300 K. 
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                    Table 2.2: Henry's constants (mmol.g-1.Pa-1) for p-Xylene adsorption in silicalite 

T (K) 
Talu et al. 

[95]* 
Richard and Rees 

[108]* 
Li and Talu 

[128]* 
Grahn et al. 

[129]† 
323 0.022 1.06 0.53 0.18 
343 0.0054 0.18 0.11 0.029 
368 0.0010 0.022 0.016 5.7x10-3 
393 2.2x10-4 0.0037 0.0032 9.4x10-4 
423 2.6x10-5 3.0x10-4 3.2x10-4 5.5x10-5 

                        * Extrapolated from the complete isotherm data.  †  Ultrathin silicalite layer 
 

 

Following the guidelines of solution thermodynamics, the IAST approach relies on an 

analogy with the Raoult’s Law for vapor-liquid equilibria through the expression: 

 

  
P yi = Pi

o T ,Φ( )xi                                                                      (2.4) 

 

where yi and xi are the molar fractions of the i th species in the gas and 'fluid' phases, 

respectively, T is the absolute temperature, Φ is the surface potential, and P is the total 

pressure of the gas phase. This equation allows the representation of a y-x equilibrium 

diagram using the following definition of surface potential (formally equivalent to the 

classical spreading pressure): 

 

    
Φ = q

Pi

dPi0

Pi∫  with   Φ i = Φ   for   ∀i                           (2.5) 

 

It is noteworthy that, taking into account the ideal character of aromatic mixtures, no 

further correction of Eq. 2.4 including 'surface' activity coefficients is necessary. Moreover, 

compared to the Raoult’s Law, there is a subtle difference in the meaning of Pi°. In the case of 

vapour-liquid equilibria, Pi°(T) is the saturation vapour pressure of species i at the 

temperature of the solution, while Pi°(T,Φ) is the adsorptive saturation pressure (actual 

saturation vapour pressure) at the solution temperature and surface potential Φ. Beyond the   

y-x equilibrium diagram, a loading diagram is also necessary, which connects the total 

adsorbed amount, qi, with the gas phase mole fraction of species i. The following expressions 

are proposed: 
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1

qT
= xi

qi
o Φ( )i=1

N

∑   ;     q i = x i qT
                                                                     (2.6) 

 

where qT is the total loading, qi
o(Φ) is the loading of pure species i at surface potential Φ, and 

qi is the loading of species i for the given mixture. 

2.3.1.2  Diffusion of xylenes in MFI-type zeolites 

Two types of diffusivities can be measured in zeolites [130]: Fick or transport 

diffusivities, DT, and self-diffusivities, D*. The fundamental difference between both relies on 

the presence of finite gradients. Transport diffusivities are measured under non-equilibrium 

conditions in which finite gradients of loading exist (∇qT≠0), while self-diffusivities are 

measured under equilibrium conditions (∇qT=0) where finite gradients of loading do not exist 

and involve mass transfer of identical but labelled molecules. 

The channels (straight and sinusoidal) in MFI zeolites are sufficiently wide to allow 

diffusion of single aromatic molecules with a kinetic diameter approaching the pore size. 

Transport diffusivities of aromatics in zeolites can be measured using conventional 

macroscopic techniques (e.g., zero-length column, gravimetry, FTIR) [131-137], while self-

diffusivities have been measured using microscopic techniques (e.g., pulsed-field gradient 

NMR, quasi-elastic neutron scattering, neutron spin echo, frequency response) [138-142]. 

Figure 2.8 shows an example of uptake curves measured by gravimetry for the diffusion of 

several aromatics in HZSM-5 at low vapour pressures. In contrast to this diffusion pattern, at 

sufficiently high xylene loadings distortion of the MFI framework leads to faster diffusion of 

bulkier xylene isomers (i.e. o- and m-Xylene) [143]. Table 2.3 summarizes some of the values 

reported in the literature for transport diffusivities of aromatics in MFI zeolites at low 

loadings (<1 molec/unit cell). The diffusivity values listed in Table 2.3 should be considered 

as only indicative for comparison purposes between different sorbates, since the measured 

values depend strongly on the analytical technique and on the pre-treatment of the zeolite 

samples prior to the adsorption measurements. 
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Table 2.3: Transport diffusion coefficients of pure aromatics on silicalite-1 and ZSM-5 
single crystals at low coverage (<1 molec/uc) 

Aromatic 
species 

Zeolite (Si/Al) D at 400 K (m2/s) Ea (kJ/mol) Technique Refs. 

Benzene Silicalite-1 5.0x10-13 7.4 ZLC [131] 
Benzene Silicalite-1 5.0x10-13 4.3 TGA [132] 
Benzene HZSM-5 (135) ~10-13 6.2 TGA [132] 
Benzene Silicalite-1 6.0x10-14 6.7 TGA [133] 
Benzene Silicalite-1 2.0x10-13 6.5 ZLC [134] 
Benzene HZSM-5 (335) 1.5x10-15 5.5 FTIR [135] 
Benzene Silicalite-1 2.5x10-14 5.8 CS [151] 
Benzene Silicalite-1 2.7x10-15 19.4 TGA [153]* 
Benzene Silicalite-1 9.0x10-15 16.0 CVM [154] 
Benzene Silicalite-1 8.0x10-15 - CVM [155] 
Benzene HZSM-5 (40) 1.8x10-15 48.0 CVM [155] 
Benzene HZSM-5 (1000) 4.5x10-15 44.0 CVM [155] 
Benzene HZSM-5 (39.7) 4.5x10-11 5.3 VOL [144]* 
Benzene Silicalite-1 5.6x10-11 21.0 TGA [156] 
Toluene Silicalite-1 1.2x10-14 - CVM [155]* 
Toluene HZSM-5 (40) 2.1x10-15 51.0 CVM [155]* 
Toluene HZSM-5 (39.7) 9.0x10-12 5.5 VOL [144]* 
p-Xylene Silicalite-1 8.0x10-12 6.4 ZLC [131] 
p-Xylene Silicalite-1 1.8x10-15 7.2 FTIR [151] 
p-Xylene Silicalite-1 ∼10-12 7.2 ZLC [152] 
p-Xylene Silicalite-1 1.0x10-14 19.0 TGA [153]* 
p-Xylene Silicalite-1 3.2x10-15 18.0 DRP [154] 
p-Xylene Silicalite-1 9.0x10-15 - CVM [155]* 
p-Xylene HZSM-5 (40) 7.0x10-16 58.0 CVM [155]* 
p-Xylene HZSM-5 (39.7) 9.0x10-12 18.1 VOL [144]* 
p-Xylene Silicalite-1 3.1x10-11 15.0 TGA [156] 
o-Xylene Silicalite-1 1.1x10-15 24.0 DRP [154] 
o-Xylene HZSM-5 (39.7) 3.0x10-13 35.5 VOL [144]* 
m-Xylene HZSM-5 (39.7) 8.0x10-15 37.7 VOL [144]* 
EB HZSM-5 (39.7) 1.2x10-12 21.9 VOL [144]* 
EB Silicalite-1 5.0x10-11 22.0 TGA [156] 

* 323 K,  ZLC, zero-length column; TGA, thermogravimetric analysis; VOL, Microvolumetry; CS, 
circulating system; CVM, constant volume method; DRP, constant-pressure desorption. 
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Figure 2.8: Adsorption kinetics of benzene, toluene, ethylbenzene and p/o/m-Xylenes in 
HZSM-5 at low loadings (<1 molec/uc). Adapted from [144]. 

 
Self- and transport diffusivities have also been calculated by molecular simulations 

(Monte Carlo and Molecular Dynamics). In general terms, self-diffusivities tend to agree 

fairly well with the values measured by microscopic methods [145,146]. The diffusivities 

measured by macroscopic methods are often found between one and three orders of 

magnitude lower than the values measured by microscopic methods, especially for p-Xylene. 

Ruthven [147] has interpreted this discrepancy in terms of anisotropic diffusion behaviour. 

The diffusivity of aromatics in MFI depends strongly on the degree of 

polycrystallinity of the sample and on the particle shape. For instance, Muller et al. [148], 

using time-resolved FTIR spectroscopy, have shown that the p-Xylene diffusivity on 

silicalite-1 single crystals is about three orders of magnitude higher than the value measured 

on polycrystalline samples. Furthermore, using a frequency response method (FR), Song et al. 

[149] have reported self-diffusivities between 1-3 orders of magnitude higher in spheric 

(twinned) than in cube-shaped silicalite-1 particles at the same loading and temperature 

conditions. In addition, the acidity of the MFI framework, as well as the history of the 

samples (number of calcination steps between consecutive xylene uptake experiments), might 

also affect the diffusion behaviour of aromatic species [137]. 

The generalized Maxwell-Stefan theory (GMS) earlier developed by Krishna 

[145,150] from mixture diffusion on bulk fluids provides an adequate basis for the description 

of multi-component mass transfer of adsorbed species in zeolites when surface diffusion 

along the surface within the zeolite  pores is the rate limiting step. Since the size of the 
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permeating molecules is of the same order as that of the micropores, the GMS theory 

conventionally assumes that movement of a species is caused by a driving force, which is 

balanced by the friction experienced from the other species and the pore walls. Taking the 

isothermal gradient of chemical potential of the i th species, -∇Tµi, as the driving force, and 

treating vacancy sites as active species. The general form of the GMS equations applied to 

surface diffusion is described as follows: 

 

    

−ρ p

qi

RT
∇Tµ i =

q j N i
S − qi N j

S( )
qM , j D ij

S
j=1
j≠ i

C

∑ + N i
S

D iV
S

      i,j=1,…,C                                        (2.7) 

 

where qi and Ni
S are the molar loading and the surface flux of the i th species, respectively. 

Note that in this equation, the MS formalism involves the use of MS diffusivities rather than 

Fickian or transport diffusivities, because surface fluxes are related to chemical potential 

gradients instead of loading gradients. 

The first term on the right-hand side in Eq. 2.7 reflects the friction exerted between 

two sorbate molecules, while the second term represents the friction between a sorbate 

molecule and the pore wall. Both interactions can be modelled, respectively, by means of MS 

counterexchange diffusivities, ðij
S, and MS surface or 'jump' diffusivities, ði

S. Note that, in the 

particular case that ðij
S→∞ the first term in the right-hand side of Eq. 2.7 vanishes. This 

implies that the surface motion of the sorbate species i does not affect the motion of sorbate 

species j. 

Mechanistically, the MS surface diffusivity, ði
S, can be related to the displacement of 

the sorbate molecules,λ, and the jump frequency, ν(qT), which, for strongly confined aromatic 

molecules, is expected to depend on the number of occupied sites, qT as follows [157]: 

 

    
D i

S qT( )= 1
z

λ2ν i qT( )= 1
z

λ2ν i 0( ) f qT( )                                                                      (2.8) 

 

The expression of function f(qT) depends on the degree of confinement of the 

diffusing molecules within the zeolite host and on the sorbate-sorbate interactions [158]. In 

the case of multicomponent diffusion, the MS counterexchange diffusivities can be modelled 

using the Vignes relationship [157]: 
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D ij

S qT( )= D i
S 0( )[ ]θ i θ i +θ j( )

D j
S 0( )[ ]θ j θ i +θ j( )

                          (2.9) 

 

The temperature-dependence of the MS surface diffusivities at zero coverage, ði
S(0) 

can be modelled according to an Arrhenius-type equation [159,160]: 

 

    
D i

S 0( )= D i,T →∞
S 0( )exp − Ei

S

RT

 

 
 

 

 
                                                                    (2.10) 

where  ( )0S
Ti, ∞→D  = Ai

S , the pre-exponential factor and Ei
S is the activation energy. 

 

The surface chemical potential gradients may be expressed in terms of the molar 

loadings gradients by introduction of the matrix of thermodynamic factors, Γij [157]: 

 

    

qi

RT
∇µi = Γij

qi ,M

q j ,M

∇q j

j=1

N

∑                                                                    (2.11) 

 

  

  
Γ ij ≡

q j , M

q i , M

 

 
 

 

 
 

q i

Pi

∂ Pi

∂ q j

              i,j = 1,…,C                  (2.12) 

 

The form of the thermodynamic factors is determined by the form of the mixture 

adsorption isotherm. In the case of pure p-Xylene diffusion, Krishna et al. [161] have 

developed an expression to account for the inflection of the adsorption isotherm on the 

thermodynamic factors by using the dual-site Langmuir isotherm (Eq. 2.2). This expression 

turns into the classical Darken equation at sufficiently low loadings (<4 molec/uc) relating 

Fickian and MS surface diffusivities (Di
S vs. ði

S) as follows [162,163]: 

 

 

    

D i
S = D i

S

1 − θ i

j = 1

C

∑

                                                                   (2.13) 
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For example, Figure 2.9 illustrates the evolution of the p-Xylene 'Fickian' surface 

diffusivity as a function of loading. In the particular situation of infinite dilution                 

(<<1 molec/uc), both diffusivities converge are expected to be equal (i.e. Di
S → ði

S). 
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Figure 2.9: Intracrystalline diffusion time constant for p-Xylene at 283 K in a fresh sample. 
Adapted from [83]. 

2.3.1.3  Xylene pervaporation (PV) within MFI-type zeolite membranes 

Only few useful studies which deal with the PV separation of xylene isomers using 

zeolite membranes have been published in the literature. Table 2.4 collects the most 

representative separation data obtained at ambient pressure and near-room temperature. In a 

series of papers, Nishiyama and co-workers [164-166] have studied the PV performance of 

aromatics within ferrierite (FER) and mordenite (MOR) membranes synthesized by dry gel 

conversion. The highest selectivities have been reported on FER membranes, achieving 

values as high as 600 for benzene/PX separation (benzene feed concentration=0.5 mol%) at 

303 K and higher than 16 for p/m-Xylene separation. However, in all cases, the pervaporated 

fluxes are very low, showing values lower than 0.01 µmol.m-2.s-1 in the case of p/m-Xylene 

separation. Moreover, PV fluxes can be drastically reduced as a result of fouling probably due 

to the role of nanosized defects and grain boundaries, as has been pointed out by           

Wegner et al. [167]. 

In the case of MFI-type zeolite membranes, the main limitation of PV for p-Xylene 

separation is ascribed to the high xylene loadings that are achieved in the MFI structure, 
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especially at near-room temperature. As stated in sub-section 2.3.1.2 high xylene loadings 

might cause a distortion of the MFI unit cell (transition from ORTHO to PARA phase) 

involving channel 'swelling', leading to single-file diffusion, xylene isomers not being able to 

diffuse one another in the zeolite channels. Single-file diffusion of xylene isomers can also be 

promoted in nanosized grain boundaries between adjacent zeolite grains. In this diffusional 

regime, xylene isomers with the slowest permeation rate (i.e. o-Xylene and m-Xylene) might 

limit diffusion, blocking p-Xylene separation and reducing (or even inversing) p-Xylene 

selectivity. Unlike the separation of lighter gases, energetic and entropic effects play a major 

role in xylene isomer separation and ultimately determine the membrane performance 

The best p-Xylene separation performance by PV from xylene isomer mixtures has 

been reported to date by Yuan et al. [168] on template-free hydrothermally synthesized 

silicalite-1 membranes, showing p-Xylene fluxes and p/o-selectivities up to 13.7 µmol.m-2.s-1 

and 40, respectively. Xiang and Ma [169] have also reported MFI membranes displaying 

partial selectivity to p-Xylene, but with much higher p-Xylene fluxes (about 75 µmol.m-2.s-1).              

Yuan et al. [168] have reported that the room-temperature p-Xylene selectivity of MFI 

membranes depends strongly on the p-Xylene concentration in the liquid feed                       

(see Figure 2.10). At higher p-Xylene loadings, single-file diffusion is promoted due to an 

increased distortion of the MFI unit cell, the membrane losing its ability to discriminate         

p-Xylene among the other xylene isomers. The same authors have also reported extremely 

long stabilisation periods (>24 h) to achieve steady-state p-Xylene selectivities on the grounds 

of a slow and progressive distortion of the MFI unit cell upon p-Xylene adsorption and 

diffusion. 
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Figure 2.10: Membrane response as a function of p-Xylene feed concentration during PV of 
an equimolar p/o xylene feed at 298 K. Adapted from [170]. 

 

Table 2.4: Separation of xylene binary/ternary mixtures by PV at ambient pressure using 
zeolite membranes prepared on α-alumina support 

Membrane 
type 

Thickness 
(µm) 

Mixture 
(%) 

T (K) 
Flux     

(µmol.m-2.s-1) 
Selectivity 

(-) 
Ref. 

MFI 1.5 
p-Xylene (50) 
o-Xylene (50) 

299 
200 
200 ∼1 [167] 

MFI* - 
p-Xylene 
m-Xylene 

299 
75 
4.9 

15 [169] 

MFI 3-5 
p-Xylene (50) 
o-Xylene (50) 

323 
13.7 
0.3 

40 [168] 

MFI 20 
p-Xylene (24) 
m-Xylene (51) 
o-Xylene (25) 

303 
2.3 
1.0 
0.2 

p/m: 2.3 
p/o: 11.5 

[171] 

MFI 15 
p-Xylene (50) 
o-Xylene (50) 

303 
1.3 
0.8 ∼2 [170] 

MOR 10 
benzene 
p-Xylene 

295 
130 
2.6 

164 [164] 

FER 10 
benzene (50) 
p-Xylene (50) 

303 
37 
2 

100 [165] 

FER - 
p-Xylene 
o-Xylene 

303 
0.0021 

<0.0004 
>16 [166] 

  * Experiments performed at 17 atm.  
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2.3.1.4  Xylene vapour permeation (VP) in MFI membr anes 

A relatively higher number of studies compared to PV have been published in the past 

years reporting on the xylene isomer separation performance of MFI membranes by VP. 

Table 2.5 collects the most representative results. Unlike PV, at sufficiently low xylene partial 

pressures (<2 kPa) and in the temperature range 295-673 K, MFI membranes can show 

optimal selectivity for p-Xylene separation by VP. The permeation performance of these 

membranes is more dependent on molecular sieving than on preferential adsorption. In 

particular, Lai et al. [172] and Xomeritakis et al. [106,173] have shown that b-oriented MFI 

membranes show much better p-/o-Xylene separation factors (up to 480) than in the case of   

c-oriented or random MFI membranes, the p-Xylene permeance achieving a value of            

200 nmol.m-2.s-1.Pa-1 at 473 K for a feed mixture of 0.45 and 0.35 kPa p- and o-Xylene partial 

pressures, respectively. 

The evolution of pure p-, m- and o-Xylene fluxes with temperature shows a 

characteristic maximum in the range 523-673 K (denoted as Tmax) for all the membranes 

considered in Table 2.5. In the case of xylene isomer separation from ternary mixtures,         

p-Xylene still shows a maximum with temperature; m-Xylene and o-Xylene fluxes now 

displaying minimum values (for example, see Fig. 4.4). The value of the maximum 

temperature for  p-Xylene flux depends not only on the competition between adsorption and 

surface diffusion phenomena in the zeolite channels, but also on the amount and 

characteristics of nanosized defects and grain boundaries in the zeolite matrix. A detailed 

parametric study on the effect of temperature and feed partial pressure on the xylene 

permeation and separation performance of MFI membranes has been recently published by 

Yeong et al.  [174]. 

In the case of randomly oriented MFI membranes, the highest p/o and p/m-Xylene 

separation factors and fluxes at low xylene partial pressures have been reported by                  

Gump et al. [175] on self-supported isomorphous BZSM-5 films. If we consider supported 

MFI membranes, the best trade-off between p-Xylene selectivity and flux has been reported 

on nanocomposite materials either in tubular or hollow-fibre configurations (see Table 2.5 

and Table 5.2).  

Unlike membrane films, the improved separation performance of these materials 

should be ascribed to a reduction of intercrystalline defects in the zeolite material due to its 

intimate confinement in the porous network of the support. The p-Xylene separation capacity 

of ZSM-5 zeolite membranes can be tuned to a certain extent by exchanging the cation in the 

zeolite framework. Tarditi et al. [176] have reported that Ba-exchanged ZSM-5 membranes 

show much higher p/o and p/m-Xylene separation factors compared to Na and Sr-exchanged 
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counterparts (up to the double, see Fig. 2.11), despite a strong reduction of p-Xylene fluxes 

probably  due to the decrease in the pore size of the channels. 

 

Table 2.5: Literature survey on xylene isomer separation by VP at low xylene partial 
pressures (<1 kPa) using MFI-type zeolite membranes 

aPrepared via seeded hydrothermal synthesis  
bPrepared via in situ seeded hydrothermal synthesis 
cPrepared via hydrothermal synthesis 
dPrepared via pore-plugging  in situ  hydrothermal synthesis 
ePrepared via in situ seeded hydrothermal synthesis (3 cycles) 
fPrepared via secondary growth   
gPrepared via in situ  hydrothermal crystallization   
 
 
 
 

Membrane 
Support material / 

geometry 
Thickness 

(µm) 
Tmax 

(K) 
 Πmax p-Xylene 
(nmol.m-2.s-1.Pa-1) 

SF (p/o) 
 (-) 

Refs. 

b-oriented MFI 
filmsa α-alumina / disk 1 423 200 480 

[172] 
[179] 

c-oriented MFI 
filmsa α-alumina / disk 30 423 30 3 

[172] 
[179] 

h0h-oriented 
MFI filmsa α-alumina / disk 2 403 40 60 

[172] 
[179] 

B-ZSM-5 filmb 
SS / tubular  

(inner surface) 
30 425 2.6 60 [175] 

MFI film (self-
supported)b 

Temporary TeflonR 
support 

90 473 82 250 [178] 

Ultra thin MFI 
filmsa α-alumina / disk 0.5 663 

300 (663 K) 
600 (373 K) 

3 
16 

[180] 

Silicalite-1 filmb α-alumina / disk 3 400 12 60 [177] 

Silicalite-1 filma γ-alumina / tubular 
(outer surface) 

2-10 480 4 1 [181] 

Silicalite-1 filmb SS/disk 4 373 1220 2.4 [182] 
HZSM-5b SS/disk 7 373 711 2.3 [182] 
MFI film b α-alumina / tubular  573 9.5 (523 K) 17.8 [183] 
MFI film a α-alumina / disk 1-40 548 20 (398 K) 60-300 [106] 

ZSM-5 filma 
SS / tubular (outer 

surface) 
15-20 673 51 4 [184] 

Silicalite-1 filmc 
SS / tubular (outer 

surface) 
25 673 11.9 8 [185] 

HZSM-5-
alumina 
nanocomposited 

α-alumina / tubular 2-3 673 10 (450 K) 7.0 [186] 

ZSM-5 (b-
oriented) α-alumina / disk - 493 200  483 [187] 

Al-ZSM-
5/Silicalite-1  
(bi-layered)e 

Sintered porous 
SS/disk 

12 373 0.4 ∼5 [188] 

BaZSM-5 (100% 
Ba2+)f 

SS / tubular  15-20 543 65 19 
[176]  
[189] 

Silicalite-1 filmg α-alumina / disk 2-3 573 23 ∼20 [190] 
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The xylene permeation and separation performance of zeolite membranes can be 

modelled on the basis of the Maxwell-Stefan (MS) equation as in the case of xylene diffusion 

modelling within zeolite crystals. Combining Eq. 2.11 and Eq. 2.12 and using the single-site 

Langmuir isotherm to derive the thermodynamic factors, Γij, the following classical 

expression is obtained for pure xylene permeation under 'weak confinement' [189,191]: 

 

      
J =

ε ρMFI D S 0( )qM

τl
ln

1+ K PR

1+ K PP

 

 
 

 

 
                                                                              (2.14) 

 

where RP and PP  are the retentate and permeate pressures, respectively and K and ði
S are the 

adsorption constant and the MS surface diffusivity at zero loading: 

 

  
K = exp

∆S°
R

− ∆H°
RT

 

 
 

 

 
                                                                                           (2.15) 

 

    
D i

S 0( )= D i,T →∞
S 0( )exp − Ei

S

RT

 

 
 

 

 
                                                                              (2.16) 

 

The set of   Eq. 2.14 to Eq. 2.16 has also been used for modelling p-Xylene 

permeation in ternary xylene mixtures at low xylene partial pressures, at the conditions where 

the membranes show higher selectivity. This approach is, however, restricted to systems with 

moderate distortion of the MFI framework. Otherwise, important discrepancies are observed 

when using the set of Eq. 2.14 to Eq. 2.16 for modelling xylene mixture permeation, as has 

been reported by Tarditi et al. [189] from their study on BaZSM-5/SS membranes. 

Gardner et al. [192] have shown through modelling of n-butane permeation that 

xylene permeation within MFI membranes can be significantly enhanced compared to single 

supported films when zeolite films are on both sides of the porous support (see Figure 2.12). 

It is well known that partial pressure drop across the support makes the loadings higher on the 

downstream side of the zeolite in the presence of a support, the lower driving forces resulting 

in lower fluxes. Depositing films on both sides of the support might reduce the effect of the 

support at high loadings, far from Henry's regime. 
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Figure 2.11: Effect of cation exchange on the VP performance of ZSM-5 zeolite membranes 
in the separation of ternary xylene isomer mixtures at 673 K and for p/m/o partial pressures of 
0.23/0.83/0.26 kPa. Adapted from [176]. 
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                                       (a)                                                        (b) 

Figure 2.12: Normal-butane fluxes through an unsupported (F), a single supported (FS), and a 
double-sided (FSF) zeolite membrane as a function of (a) the sweep gas flow rate (the shaded 
region represents common sweep gas flow rate reported in literature), and (b) the adsorption 
equilibrium constant. Graph reproduced from [192]. 

2.3.2 CMRs for xylene isomerization 

Limited material and energy resources have increasingly become a challenge for 

future chemical production. Process intensification can contribute to the solution of this 

problem. From an engineering point of view, the vision of process intensification through 

multifunctional reactors has activated research on catalytic membrane reactors. According to 

the IUPAC definition, a membrane reactor is a device combining a membrane-based 

separation and a chemical reaction in one unit [193]. So far this engineering vision of a 

chemical membrane reactor could not be realized due to a lack in temperature resistant and 

chemically stable highly selective membranes. During the last few years, inorganic 
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membranes based on ceramics, zeolites, metals, carbon or as a hybrid material have been 

developed so that the realization of a chemical membrane reactor is increasingly possible. 

Catalytic membrane reactors (CMRs), where membrane separation is coupled with a 

catalytic reaction in the same unit, are attractive applications because they are potentially 

compact, less capital intensive and have lower operating costs than more conventional 

processes. On the basis of the way the membrane and the catalyst are combined, CMRs have 

been broadly classified [194] as: (1) extractor-type (e-CMR), (2) distributor-type (d-CMR), 

and (3) contactor-type (c-CMR which also include flow-through or interfacial), these latter 

being operated in either flow-through or interfacial configurations. Figure 2.13 compares 

schematically these three CMR configurations. In all cases, the membrane can show inherent 

catalytic character or only act as a separation/contactor unit between the phases and the 

catalyst. More specific details about these configurations and application domains can be 

found in reference books and reviews [195-197]. 

 

 

Figure 2.13: Classification of CMRs: (a) extractor, (b) distributor, (c) flow-through contactor 
and (d) interfacial contactor. A and B represent reactants while P, P1, P2 are the products. 

Extractor-type CMRs are by far the most widespread application of CMRs. Classical 

applications of this configuration range from dehydrogenation, isomerization and 

esterification/etherification reactions to hormone synthesis and wastewater biological 

treatment. In this configuration, selective removal of one/more products from the reaction 

zone enhances the conversion of the reaction by shifting the equilibrium position or by 

promoting the catalytic activity. 
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The combination of a MFI membrane with an isomerization catalyst in an e-CMR has 

been proposed by several authors to promote p-Xylene recovery. Table 2.6 compiles the 

available data published in the literature. In this concept, selective p-Xylene by the membrane 

promotes the p-Xylene yield and productivity when compared to a convectional fixed-bed 

reactor. The scheme of this concept is represented in Fig. 2.14. Figure 2.15 shows the 

evolution of the equilibrium reaction constants as well as the equilibrium product distribution 

for the three xylene isomers. Note that from this figure the influence of temperature on           

o-Xylene and m-Xylene equilibrium conversions is higher than in the case of p-Xylene. 

 

 
Figure 2.14: Schematic representation of the p-Xylene selective extraction in a MFI 
membrane from an isomerization reactor. The isomerization mechanism considered here 
corresponds to a metal-doped HZSM-5 catalyst. 
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                                         (a)                                                           (b) 

Figure 2.15: Chemical equilibrium for the o/m/p-Xylene ternary system as a function of 
temperature in the range 250-1500 K. (b) evolution of equilibrium constants Kx [x=1           
(m-Xylene ⇔ o-Xylene), x=2 (p-Xylene ⇔ m-Xylene) and x=3 (p-Xylene ⇔ o-Xylene)];             
(b) equilibrium product distribution (molar basis) at the standard state [199]. 
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Table 2.6: Literature survey on xylene isomerization using extractor -type zeolite CMR based 
on MFI membranes compared to fixed-bed reactors. 

  
p-Xylene yield 

(%) 
p-Xylene selectivity 

(%) Membrane type 
T 

(K) 
e-CMR FBR e-CMR FBR 

Ref. 

Inert silicalite / α-alumina 
tubea 

577 11.2 10.2 65 58 [186] 

Inert Ba-ZSM-5/SSb 643 25 21 69 52 [198] 

Inert silicalite / α-alumina 
diska 

603 21.3 18.5 44.6 35 [190] 

Catalytic H-ZSM-5/SS diskc 673 11.8 9.45 - - [182] 
Catalytic H-ZSM-5/SS diska 673 6.9 5.87 66.7 55.6 [182] 
Catalytic H-ZSM-5/SS diskd 673 7.3 6.98 30.1 30.1 [182] 
Feed composition: am-Xylene feed; bternary mixture of xylene feed; cp-Xylene feed; do-Xylene feed 

 

An application relying on this combined membrane-catalyst concept for xylene 

isomerization has been recently patented by MobilExxon [200]. A general scheme of this 

process is depicted in Fig. 2.16. In this process, the fresh feed containing a mixture of xylene 

isomers is fed into a xylene splitter where the isomers are separated. The exit stream from the 

splitter (which contains xylenes and EB) enters a xylene recovery unit relying on fractional 

crystallization and/or molecular sieving to separate p-Xylene from other components. The      

p-Xylene depleted stream is sent to an e-CMR to be converted into benzene and/or xylenes,    

p-Xylene being selectively extracted from the reaction zone using a zeolite membrane. 

In all the above stated applications, the MFI membrane acts as a non-catalytic            

p-Xylene extractor. Nevertheless, the MFI membrane can also display catalytic activity. 

Figure 2.17 illustrates the different membrane-to-catalyst combinations in e-CMRs for xylene 

isomerization [188]: (a) combination of a catalyst with an inert MFI membrane used as 

separation unit, (b) an   e-CMR provided with a catalytically active membrane (the membrane 

acts both as a catalyst and a separation unit), and (c) bi-functional zeolite membrane where a 

catalyst thin film (e.g., HZSM-5) is placed on top of an inert silicalite-1 membrane. 
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Figure 2.16: ExxonMobil patented process for p-Xylene production [200]. 

 

 

 
Figure 2.17:  Different extractor-type zeolite CMRs (e-ZCMRs) for xylene isomerization: (a) 
Inert Zeolite CMR (IZCMR), (b) Active Zeolite CMR (AZCMR) and (c) Bi-functional 
Zeolite CMR (BZCMR) reactor. Adapted from [188]. 
 

 

Tarditi et al. [198] have reported isomerization of m-Xylene and ternary xylene 

vapour in a ZCMR using a Ba-exchanged HZSM-5 membrane and a commercial                  

Pt/ silica-alumina catalyst. In the case of ternary xylene mixtures, the feed p/m/o xylene 

partial pressures were kept at the values 0.23 kPa / 0.83 kPa / 0.26 kPa. These authors have 

reported an enhancement of about 26% of p-Xylene yield during m-Xylene isomerization at 
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643 K compared to a fixed-bed reactor operated at comparable experimental conditions     

(see Fig. 2.18). Comparable results have been reported by Zhang et al.[190] in a  recent paper 

(see Fig. 2.19). 
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Figure 2.18: P-Xylene yield (top) and p-Xylene production increase (bottom) as a function of 
temperature for xylene isomerization in an inert ZCMR based on Ba-ZSM-5/SS membrane 
[198]. 
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Figure 2.19: M-Xylene isomerization in a e-ZCMR with varying module temperature (Feed 
flow rate: 20mL/min, sweep flow rate: 20mL/min; for FBR, feed flow rate: 20mL/min) [190]. 
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In the case of xylene isomerization using MFI membranes with nanocomposite 

architecture, van Dyk et al. [186] have reported an increase of about 10% of p-Xylene yield 

(when retentate and permeate amounts are combined) over a conventional FBR. In this study, 

xylene isomerization was carried out at 577 K with m-Xylene saturated in dry N2 up to a total 

feed gas flow rate of 7 mL(STP)/min and with a sweep gas flow rate of 10 mL(STP)/min. 

Additionally, 100% p-Xylene selectivity at the permeate side was reported when the reactor 

was operated at permeate-only mode. Again, when the temperature was increased to 633 K 

and sweep gas flow rate decreased to 7 mL(STP)/min, a decrease in p-Xylene yield was 

observed while the p-Xylene selectivity remained unchanged. 

Deshayes et al. [201] have reported a simulation and modelling study of xylene 

isomerization reaction in an industrial FBR and the effect of the incorporation of multi-tubes 

containing Na-ZSM-5/SS membranes upon the catalytic performance of the reactor. In the 

latter case, an increase of about 12% in p-Xylene production over a conventional FBR has 

been computed.  

In the case of catalytically active MFI membranes, the only example of application in 

the open literature has been reported by Haag and co-workers [182]. In this study, the 

membrane consisted of a HZSM-5 layer grown on top of a porous stainless steel (SS) disk. 

The authors have reported an increase by 15% of m-Xylene conversion at 673 K compared to 

a FBR, while p-Xylene selectivity is enhanced by 10%. At higher temperatures, however, no 

further improvement of either conversion or p-Xylene selectivity was achieved, probably due 

to the poor separation quality of the membrane ascribed to a high number of intercrystalline 

defects. 

2.4  Concluding remark and scope for research  

In this chapter, a short overview of the state of the art of the application of MFI-type 

zeolite membranes for gas/vapour separation, especially xylene isomer separation and 

purification has been presented. Various challenges have been highlighted. Above all, it has 

been shown that the use of MFI-type zeolite membranes for p-Xylene separation/production is 

promising. However, availability of high-flux selective membranes for the production of high 

purity p-Xylene from mixed xylenes is still a major problem. Furthermore, in-depth 

understanding of the fundamental behaviour of e-CMRs, having nanocomposite MFI-type 

zeolite membranes as separation units, during the production of high purity p-Xylene via 

isomerization of m-Xylene is essential.  

Based on the aforementioned problems, the remaining chapters of this dissertation 

will demonstrate the promising potentials of nanocomposite MFI-type zeolite membranes for 

the production and purification of p-Xylene from mixed xylenes through: 
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• The study of the influence of operating variables (temperature, sweep gas flow rate 

and xylene loading/partial pressures) on the separation performance of 

nanocomposite MFI-alumina membranes during xylene isomer separation. Results 

from this study might provide useful information on the behaviour of these 

membranes, especially, at higher xylene loadings. The information might be 

instrumental in optimizing preparation protocol of the membranes for high selectivity.  

• Preparation and evaluation of the separation performance of nanocomposite          

MFI-alumina hollow fibre membranes during xylene isomers separation. The results 

of the investigation will provide information about the behaviour of nanocomposite              

MFI-alumina hollow fibre membranes during xylene isomers separation. Furthemore, 

the results might give insight into the possibility of enhancing p-Xylene flux in          

e-CMR having nanocomposite MFI-alumina hollow fibre membrane as separation 

unit.   

• Investigation of the influence of operating variables and reactor configuration on the 

performance of an e-CMR, having nanocomposite MFI-alumina membrane as 

separation unit, during m-Xylene isomerization to p-Xylene over Pt-HZSM-5 

catalyst. The investigation will provide detailed information on the fundamental 

behaviour of the e-ZCMR during m-Xylene isomerization to p-Xylene. 

Understanding the role played by the aforementioned variables on the performance of 

the e-CMR might be helpful in the optimization of the operating conditions and as 

well as the reactor configuration. 

• Modelling and sensitivity analysis of e-CMR, having nanocomposite MFI-alumina 

membrane as separation unit, during m-Xylene isomerization to p-Xylene over        

Pt-HZSM-5 catalyst. Results from the investigation will explain and solidify the 

observations from the experimental studies. Furthermore, results from the sensitivity 

analysis might give insight into the scaling-up of the system. 
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Chapter 3: Membrane preparation, characterization a nd experimental 

procedures 

In this chapter, a short overview of techniques for preparing MFI-type zeolite 

membranes is presented with a focus on the preparation of nanocomposite MFI-alumina 

membranes (hollow fibres and tubes). Also, experimental procedures and methods of result 

analysis employed in this study are presented. 

3.1  Membrane preparation techniques 

Several strategies have been proposed for the synthesis of MFI zeolite membranes on 

porous supports (most usually α-alumina). Among them, dry-gel conversion and liquid-phase 

hydrothermal synthesis are commonly used for the synthesis of zeolite films onto a porous 

support in one or several batch cycles. The former method consists of the deposition of a layer 

containing the Si and Al precursors as a dry amorphous aluminosilicate gel onto the support 

using sol-gel techniques, followed by zeolitization under the presence of vapours [202,203]. 

This has the advantage of promoting nucleation on the support, avoiding crystal nucleation in 

the homogeneous phase and reducing the waste reactants. The advantage of this technique is 

that it allows strict control of the zeolite amount deposited but formation of cracks in the 

amorphous layer could be a major setback. 

Most often, MFI zeolite membranes have been prepared by direct or in situ 

hydrothermal synthesis in an autoclave at 443-473 K under autogeneous pressure using an 

organic template as structure-directing agent (SDA), usually tetrapropylammoniunhydroxide 

(TPAOH) and/or tetrapropylammoniumbromide (TPABr) [204]. In this one-step process, 

nucleation and growth processes take place in the presence of a support. However, this simple 

strategy presents some drawbacks. As a matter of fact, the zeolite layer should be formed 

from nuclei that appear during the hydrothermal treatment. Their number and distribution 

homogeneity on the support depend on a number of parameters, such as the surface 

properties, that are difficult to control. Moreover, the formation of nuclei competes with 

crystal growth processes, which might limit the nuclei density due to mass-transfer 

limitations. This implies in practice the need to grow thick zeolite films to obtain continuous 

and well-intergrown layers. 

The quality and reproducibility of zeolite membranes can be improved by seeding the 

support prior to hydrothermal synthesis, decoupling the nucleation and growth steps 

[205,206]. This method is referred to in the literature as 'seed hydrothermal synthesis' or 

'secondary growth method' [205,206]. Since the nutrient concentration needed for secondary 

growth is lower than that required for in situ hydrothermal synthesis, further nucleation is 
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strongly reduced and almost all crystal growth takes place over the existing crystal seeds. 

Furthermore, by carefully controlling the seed layer coating the support using a convenient 

technique, crystallization of undesired zeolite phases can be discouraged, and the rate and 

direction of crystal growth can be controlled to a certain extent. 

3.2  Preparation of MFI zeolite membrane by “pore-p lugging” technique 

For more than a decade, the engineering group at the Institute of Research on 

Catalysis and Environment, Lyon (IRCELYON) situated in France, has been actively 

involved in the development of nanocomposite MFI-type zeolite membranes for separation 

and catalytic reaction processes [191,207-210]. In this concept, the MFI material is grown by                

'pore-plugging' direct hydrothermal synthesis in a porous matrix rather than forming thin 

films on top. The advantages of this type of architecture over conventional film-like zeolite 

membranes include: (i) reduced effect of thermal expansion mismatch between the support 

and the zeolite, (ii) easier to scale-up, and (iii) easier module assembly because the separative 

layer (zeolite crystals) are embedded within the pores of the ceramic support, reducing the 

effects of abrasion and thermal shocks. Moreover, unlike film-like zeolite membranes 

[211,212], the confinement of the zeolite material at the nanoscale avoids pore opening at 

high temperatures (>400 K). 

3.2.1  Preparation of tubular and hollow fibre nano composite MFI-alumina 
membranes 

At IRCELYON, standard procedure for preparation of nanocomposite MFI-alumina 

zeolite membranes involves 5 stages: 

3.2.1.1  Support characterization 

  The membrane supports are usually asymmetrical Pall-Exekia α-alumina tube              

(o.d. 10 mm, i.d. 7 mm, length 15 cm) for membrane tubes and alumina supports of 

dimensions (o.d. 1.65 mm, i.d. 1.44 mm) with porosity 43% for  nanocomposite MFI-alumina 

hollow fibres. The quality of the supports could be determined using porosimetry technique. 

In this study, the membrane supports used were asymmetrical α-alumina supports 

supplied by Pall-Exekia for the tubes and asymmetrical α-alumina fibres supplied by Dr. 

Thomas Schiestel of Interfacial Engineering and Matreial Science Group in Fraunhofer 

Institute for Interfacial Engineering and Biotechnology in Germany. The cross-section of the 

supports and a picture of the typical supports (tubes and fibres) are depicted in Fig. 3.1 and 

Fig. 3.2. 
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Figure 3.1: The cross-section of the tubular support supplied by Pall-Exekia. 

 

 

Figure 3.2: Picture of the typical supports (tube and fibre) (picture not to scale). 

 
 

At IRCELYON, the technique used to evaluate the quality of support is gas-liquid 

displacement test. During the test as performed in this study, one end of the support was 

sealed and the other end was connected to an automatic porometer (WSI, USA). In the case of 

hollow fibres’ supports, one end was sealed with glue, while the other was connected to the 

porometer via a Swagelok connector (see Fig. 3.3). The mounted supports were then soaked 

in ethanol for at least 24 hours to ensure proper pore filling by capillarity in a similar way as 

that proposed by the ASTM standard procedure F316-86 [213]. Subsequently, the wetted 

supports were subjected to an increasing differential pressure across the support and the N2 

flux through the support was monitored. Figure 3.4 shows the typical curves of N2 flux versus 

differential pressure across the support obtained in these tests. The 'wet' curve represents the 

N2 flux for the wetted sample starting at the first bubble point (FBP) and showing a rapid 

increase with the pressure across the support as the solvent is expelled from the support pores. 
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After complete removal of the solvent, the pressure was automatically reduced to the starting 

value and then increased again, thereby obtaining the 'dry' curve. At sufficiently high 

pressures across the support, the 'wet' and 'dry' curves should converge, the trend becoming 

linear as expected from the Hagen-Poiseuille equation for a system accomplishing the 

heuristic condition dPm.  >0.1 Pa.m (omission of Knudsen contribution) [214], where mP  is 

the mean pressure between the retentate and permeate sides of the fibre, being computed as: 

 

  

2

P
PP retm

∆+=                                                                                                             (3.1) 

 

 

The pore size distribution was obtained from the experimental trend of the N2 flux with the 

pressure across the support by solving the Fredholm equation of the 1st kind defined by        

Eq. 3.2: 

 

( ) ( ) ddfPPdKJ mN δ∫
∞

∆=
0

,,                                                                   (3.2) 

 

where 
2NJ  is the N2 flux, K is the Kernel, f(d) is the number pore size distribution and d is the 

pore size, the latter being related to the differential pressure across the support by Laplace 

Law: 

 

    
d = 4γ cosθ

∆P
                                                                     (3.3) 

 

where d is the pore size, γ is the surface tension of ethanol (taken as 23.0 mN·m-1), θ is the 

contact angle (taken as 0) and P∆ is the transsupport  differential pressure.  
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Figure 3.3: Picture of a fibre support sealed with swagelok connector before porosimetry test) 
(picture not to scale). 

 

 
 

Figure 3.4: Typical curves of N2 flux versus transsupport differential pressure obtained from 
gas-liquid displacement and corresponding pore size distribution obtained after data 
processing according to the set of Eq.3.1 to Eq.3.3. 
 

3.2.1.2  Precursor preparation and maturation 

In this study, the precursor solution consisted of structure directing agent (SDA,                               

1 M tetrapropylammonium hydroxide, TPAOH, supplied by Sigma-Aldrich), and the silica 

source (Aerosil 380 from Degussa). For the synthesis of zeolite, 45 ml of the SDA (TPAOH) 

1M (Aldrich) and 6.0 g of the source of silica, Aerosil 380 (Degussa) were mixed and slightly 

diluted with 5 ml of demineralized/distilled water  to form a clear solution of the molar 

composition 1.0 SiO2: 0.45 TPAOH: 27.8 H2O (pH ~ 14).  The solution was then stirred on a 

magnetic stirrer at 500 rpm for 72 hours at room temperature for maturation. To prepare 

hollow fibre membranes, the quantity of precursor required was calculated on the basis of a 

previous experiment on membrane tubes, considering the ratios of volume of 

precursor/porous volume/surface of the membrane (for examples of the calculation, see 

[215]). 
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3.2.1.3  Hydrothermal synthesis of nanocomposite MF I membranes 

  At the expiration of the 72 hours, the resulting clear solution was centrifuged at 4000 

rpm for 30 minutes using a Universal-32 centrifuge (Hettich Zentrifugen). After centrifuging, 

the support was inserted in a TeflonR-lined autoclave (see Fig 3.5) and the clear precursor 

solution carefully poured on it until the TeflonTM was filled up. The TeflonTM tube was left for 

about 10 minutes and then covered with the lid. The unit was placed in a stainless steel 

autoclave. Some water drops were added into the space between the TeflonTM tube and the 

stainless steel autoclave to avoid a reduction in the solution during the synthesis by 

condensation. Then the stainless steel autoclave was carefully sealed with 6 nuts and bolts and  

put into a pre-programmed oven for synthesis according to the temperature programme 

depicted in Fig. 3.6. During this stage, there was crystallization of zeolite MFI inside the 

pores of the alumina matrix. Subsequently, the synthesis was subjected to an interruption for 9 

hours at ambient temperature, and then increased to 443 K for 72 hours after which the 

temperature was reduced to ambient temperature. For the preparation of hollow fibre MFI-

alumina membrane, nine fibres of 23 cm length each were inserted entirely in a Teflon 

autoclave containing approximately 25 ml of the solution of precursor in order to maintain the 

conditions as close as possible to the preparation of the membrane tubes. 

At the end of the hydrothermal synthesis, the tube or fibres containing zeolite were 

recovered. The membrane tubes or fibres then underwent three successive washings with 

demineralized/distilled water to get rid of the zeolite which crystallized outside the support, 

until the pH of water is neutral. The sample was then dried at 373 K in a furnace under 

nitrogen flow for 12 hours to remove water condensed in the mesopores, before measuring 

their weights. The fibres/ membrane tubes were weighed before and after the synthesis to 

obtain the mass of zeolite deposited. 

 

 

 

                                     

Figure 3.5: Pictures of TeflonR-lined autoclave used for hydrothermal synthesis:for membrane 
tubes (left  handside), for hollow fibre membranes (right handside) (pictures not to scale). 
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Figure 3.6: Temperature programme for membrane synthesis. 

 

3.2.1.4  Single gas permeation before calcination  

After the hydrothermal synthesis, in order to ensure that the precursor penetrated well 

in all the pores, the single gas permeation with nitrogen gas was conducted and measured. At 

this juncture, it is expected that the membrane material should not show N2 gas permeation in 

as much as the porosity of the support is occupied by the zeolite whose pores themselves are 

occupied by the molecules of the structuring agent (TPAOH). This test of nitrogen permeation 

conducted at ambient temperature is an indicator that there are no defects in the membrane. 

During the test, the pressure difference was fixed at 400 mbar. To indicate that the precursor 

penetrates well in the pores, the nitrogen flow must be zero or very low ≤ 0.02 mL(STP)/min 

(lower than the limit of detection of the apparatus). 

3.2.1.5  Membrane calcination   

In order to release/void the porosity of the crystals of zeolite, it is necessary to 

eliminate the molecules of TPAOH imprisoned in the micropores. This is done by calcination 

of the membrane. To calcinate the membranes (both hollow fibres and tuubes), the membrane 

was placed in a quartz cell and subjected to calcination under air flow at 773 K for 4 hours 

based on the procedure of previous studies [191,207-210]. This condition was adopted to 
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avoid any damage to the structure of the support and the zeolitic matter. The temperature 

profile adopted for the calcination is depicted in Fig. 3.7. 

 
 
 

 
 

Figure 3.7: Temperature programme for membrane calcination. 

 

3.3  Membrane characterization techniques 

Several techniques have been used for defect characterization in polycrystalline 

zeolite membranes. Such techniques include microscopy (e.g. SEM, HRTEM, AFM) 

[216,217], Mercury porosimetry [218] and permporometry [219,220]. Concerning 

permporometry, it has been shown that dynamic desorption of a gas adsorbed beforehand 

(e.g., water or n-butane) under pressure difference of a non-adsorbing gas (e.g., hydrogen) 

provides valuable information of the defective structure of a membrane. Separation properties 

of a zeolite membrane are determined by the presence of defects, their adsorption 

characteristics and the gas properties in the mixture [221]. In zeolite membranes, permeating 

molecules are able to pass through both the intra-crystalline pores (zeolite pores) and        

inter-crystalline pore (gaps between the zeolite crystals). Some techniques for characterization 

of porous media have surfaced in literature. Permporometry technique [222], bubble point 

technique [223], Coulter porosimetry [224], adsorption-desorption technique [221,225-228], 

mercury penetration [229,230] have been successfully applied [219,221,223,231]. However, 
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some of these methods are complicated and yield unsatisfactory results for asymmetric 

ceramics [223]. 

Meanwhile on adsorption/desorption technique, Pachtova and his co-workers [221] 

described a simpler technique for characterization of zeolite membrane. This method involves 

dynamic desorption of a gas adsorbed beforehand on zeolite membrane, under pressure 

difference of a non-adsorbed gas. 

During the adsorption process, zeolite membrane, after high temperature pretreatment 

to remove moisture, is submitted to a certain partial pressure of an adsorbing gas. At this 

stage, different types of pores are filled up and thus plugged for all sizes up to a certain 

diameter called “critical diameter”[221]. With the assumption that zeolite pores are totally 

plugged by the adsorbing gas (such as n-butane) during adsorption (because the kinetic 

diameter of n-butane is within the range of intra-crystalline pores of MFI zeolite:               

0.51-0.56 nm), the remaining opened pores after the adsorption will be inter-crystalline pores 

or defects. Therefore, during the desorption process, any defects larger than the critical 

diameter, which are not plugged easily during adsorption process, allow non-adsorbed gas 

(such as N2 or H2) to permeate. The permeation significantly increases with time and it could 

be attributed to desorption of the adsorbed gas from the inter-crystalline pores or channels 

smaller than the critical diameters into the passageways resulting from the defects. Thus, it is 

expected that the relative and absolute permeance must be very low with slight increase with 

time for a higher quality membrane while a poor quality membrane should show a higher 

relative and absolute permeance with time. 

At the same time, single-gas permeance measurements provides rapid and rough 

assessment of the quality of zeolite membranes towards the determination of the presence of 

defects [232-234] but this method does not allow direct discrimination of intercrystalline 

domains.Therefore, the most reliable and straightforward way to do this is by mixture gas 

separation such as n-butane/hydrogen mixture separation [235]. The low-temperature                 

n-butane/H2 separation is so sensitive that different laboratories have reported different 

separation factors on the very same material. This suggests a role of adsorbed species in grain 

boundaries, either by blocking [236] or promoting permeation [221] of the non-adsorbing 

species (H2 in this case).  

3.3.1  Physico-chemical techniques for characterizi ng MFI membranes 

  Various techniques are used for physicochemical characterization of MFI membranes, 

such as  (i) the adsorption of nitrogen, (ii) diffractometry with X-rays, and (iii) Scanning 

Electron Microscopy (SEM) coupled with the microanalysis by x-emission. 
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3.3.1.1  Adsorption of Nitrogen gas 

  The complete isotherms of N2 adsorption-desorption allows the characterization of 

the porous texture of a material: the specific surface, porous volume and the shape of the 

pores. The properties of the texture of fibres/membrane tubes crushed before and after the 

synthesis of zeolite are obtained through  complete isotherms of adsorption-desorption of N2 

at 77 K on an entirely automatic equipment, ASAP 2020-Micromeritics. A computer makes it 

possible to exploit the isotherms to extract the various characteristics texturally from the 

studied materials (specific surface, total porous volume, microporous volume, distribution of 

the diameter of pores). This technique makes it possible to study the microporosity and the 

mesoporosity of the membranes.  

3.3.1.2  X-ray Diffraction (XRD) 

This technique allows the determination of the nature of the crystallized phases by 

measuring the angles of diffraction of X-rays by the crystalline plane of the solid. These 

angles of diffraction are related to the characteristics of the crystal lattice                         

(dhkl= inter-reticular distance from the families of the plane HKL) and to the incidental 

radiation (wavelength L) by the law of Bragg:  

 

  2dhklsin θ =k λ                                 (3.4) 

 

where “dhkl” is the  distance between 2 planes of index of Miller HKL in Å; θ is the Bragg 

angle; λ is the wavelength of radiation in Å. In this study, the zeolitic structure of synthesized 

material was analyzed by using a diffractometer Philips PW 1050/81 (Cu Kα.1+2 radiation). 

The analyses were carried out on the powder obtained before and after the hydrothermal 

synthesis. 

3.3.1.3  Scanning Electron Microscopy (SEM) and EDX  

Scanning Electron Microscopy makes it possible to observe the morphology of the 

membranes (thickness, infiltration in the support, defects, homogeneity) and also to have           

first-hand information about the size and shape of the grains of supported samples (ZSM-5). 

To examine the morphology of the zeolite crystals in the synthezised zeolitic                   

fibres/ membrane, a small part of the membrane is cut and examined with HITACHI S800 

functioning at 10 KV.  

3.3.1.4  Characterization of the synthesized membra nes in this study 

In this study, the physical characterization of the synthesised membranes was done 

using Scanned Electron Microscopy (SEM) and X-ray Diffraction (XRD). For these tests, 
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some crushed membrane supports (tube or fibre), synthesized membranes (tube or fibre) and 

zeolite powder collected from the bottom of the autoclave were X-ray diffracted with a 

Philips PW1050/81 diffractometer (Cu Kα1+2 radiation) to qualify the structure of the 

synthesized zeolite material. The morphology of the raw membrane supports (tube or fibre) 

and membranes was inspected by SEM using a HITACHI S800 microscope operated at 15 

kV. A typical result from X-ray diffraction analysis showing the XRD pattern for hollow fibre 

membranes is presented in Fig. 3.8. 

 

 

 

Figure 3.8: XRD image analysis of the membrane fibre showing the formation of the 
membrane. 

 

To evaluate the transport or dynamic property of the membranes, single gas 

permeation measurement (H2 gas permeation), Basic Desorption Quality Test (BDQT) and 

binary gas mixture separation test (n-butane/H2) were used. Figure 3.9 depicts the process 

flow diagram of the set-up used for BDQT and n-butane/H2 mixture separation.  
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Figure 3.9:  Process Flow Diagram (PFD) for BDQT. 

Before any gas permeation or separation, firstly, the membrane was mounted into a 

stainless steel module depicted in Fig. 3.10 and subjected to high temperature pre-treatment 

(HTP) under the flow of 20 mL(STP)/min-N2 gas, at both the tube side and the shell side as 

proposed by Ashebani et al.[232]. High temperature pre-treatment, carried out according to 

the temperature programme depicted in Fig.3.13 is necessary to desorb any moisture or 

contaminants from the membrane as this might affect the transport performance of the 

membrane. Figure 3.11 and Figure 3.12 also show the diagrams of a typical stainless steel 

module, the PID controlled electrical oven and the graphite seal used in this study.   

 

 

tube 
side 
inlet

Shell side inlet Shell side outlet

tube 
side 
outlet

membrane

graphite seals  
Figure 3.10:  Schematic of the permeation test module, showing the nanocomposite MFI-
ceramic membrane unit sealed inside the module with graphite seals. 



_____________________________________________________________________ 

__________________________________________________________________ 53 

 

   

Figure 3.11: Pictures of the stainless steel module showing its components: A&C are  O-rings 
and B is the stainless steel module (picture not to scale).   

 

         
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12: Pictures of the controlled electrical oven (left hand side) and the graphite seals 
(right hand side) used in this study (picture not to scale).   

 
 



_____________________________________________________________________ 

__________________________________________________________________ 54 

 
Figure 3.13: Temperature programme used for high temperature pre-treatment of membranes 
pre-treatment. 
 

3.4  Experimental set-up for xylene isomers separat ion   

This research was conducted at two different locations namely the Department of 

Process Engineering situated at Stellenbosch University, Stellenbosch, South Africa and the 

Institute of Research on Catalysis and Environment, Lyon (IRCELYON), France. At these 

locations, two different experimental set-ups were used. Both set-ups consist of a saturation 

system, PID controlled oven, mass flow controllers (Brooks (5840 series) or Hastings 

(HFM/HFC 200 series))/flow meters, and a GC equipped with FID. All these major units are 

linked with 0.25 inch stainless piping. Process Flow Diagrams (PFDs) for these set-ups are 

shown in Fig. 3.14 and Fig. 3.15 and their pictures and operational procedures are presented 

in Appendix D. The lines were heated with heating tapes to a desired temperature and 

maintained at this temperature (393 K in this study) to avoid vapour condensation and thus 

ensure proper xylene vapour during experimentation/test. The GC coupled with the set-up 

made online analysis of the feed, retentate and permeate streams possible because samples 

can be sent directly to the GC online without any interruption.  
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Figure 3.14: Process Flow Diagram (PFD) of the modified set-up used for separation and 
isomerization tests at IRCELYON. 
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Figure 3.15: Process Flow Diagrams (PFD) of the modified set-up used for separation and 
isomerization tests at the Department of Proceess Engineering, Stellenbosch University. 
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The mass flow controllers/flow meters used in this study were pre-calibrated Brooks 

meters and Hastings meters. For accuracy of flow measurements, the mass flow controllers 

were re-calibrated for N2 gas (used as carrier and sweep gas), and H2 gas (used as feed gas 

and during activation of the catalyst). The calibration was carried out with the use of gas flow 

meters (ADM1000 and soap bubble flow meter). A description of the calibration technique is 

pretented in Appendix B. 

Two types of Gas Chromatograph (GC) were used in this research. The first was 

Shimadzu GC-14A (Fig. 3.16) and the second, a Varian 3400 (Fig. 3.17). Both GCs were 

equipped with Solgel Wax capillary column and Flame Ionization Detection (FID) that ensure 

organic vapour detection and separation (see Table 3.1. for the characteristics of the column 

and Table 3.2. for the GC operating conditions). Before any analysis with the GCs, the GCs 

were calibrated using a multiple point external standard method. Detailed information on GC 

calibration can be found in   Appendix B. 

 

 

 

 
Figure 3.16: Pictures of the Shimadzu GC-14A used in this study. 
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Figure 3.17: Picture of the Varian 3400 used in this study. 

 

           Table 3.1: Column characteristics 
Column feature                      Value 
Code SOLGEL WAX 054785 
Film thickness (µm) 1 
Internal diameter (ID) (mm) 0.53 
Cross-sectional area (cm2) 2.21x10-3 
Length (m) 30 

 

                 Table 3.2: Operating condition for GC analysis 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Operating condition                   FID 

Carrier gas Helium 

Carrier gas pressure (  kPa )  24  

Oven temperature (K) 343  

Analytes o-,m- and p-Xylene liquid 

Temperature of the FID (K) 553  

Carrier gas flow rate into the column ( ml/min) 3  

Flow into the splitter ( ml/min) 60  

Split ratio  1:20 

Injector Temperature (K) 523  
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The saturation system consists of two saturation units combined in series (see        

Fig. 3.18). The saturation system was equipped with a controlled heating system (at SU, a 

waterbath was used) to raise the temperature of the liquid in the saturation system to the 

desired temperature. After coupling the system to the separation/isomerization testing bench, 

the saturation efficiency of the system was evaluated. The detailed procedure employed in the 

evaluation of the saturation efficiency is described in Appendix A. After evaluating the 

saturation system, the GCs were calibrated. Detailed procedure employed in the GC 

calibration is described in Appendix B. 

 

 

 
 

Figure 3.18:  Schematic of the saturation system for xylene vapour saturation in N2 gas. 

 

3.5  Result analysis and evaluation of membrane per formance  

Evaluation of membrane separation performance is usually based on (i) the flux or the 

permeance of the species through the membrane; (ii) membrane separation factor and               

(iii) membrane ideal selectivity.  
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3.5.1  Membrane flux and permeance 

In this study, the permeance was obtained using the following equations:  
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The change in partial pressure was estimated using the log mean partial pressure 

difference (analogous to the estimation of temperature difference (the driving force) in shell 

and tune heat exchanger) as shown by Eq. 3.10: 
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Since the sweep contains no xylene, Pi,in
sweep= 0.Therefore: 
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∆Pi
2 = Pi,out

retentate                                                                                                                (3.13) 
 
 

3.5.2  Membrane separation factor (SF) 

In this study, membrane separation factor (SF) is defined as the enrichment factor of 

one component to another in the permeate, as compared to the feed composition ratio: 
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where y is the mole fraction and in this case, i =p-Xylene; j =m-Xylene or o-Xylene  

 

3.5.3  Membrane ideal selectivity 

Membrane ideal selectivity was defined as the ratio of the permeance of one 

component to another. Thus, the selectivity is: 
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In this study, i  is p-Xylene and j  refers to m-Xylene and o-Xylene as the case may be. 

 

3.6  Concluding remark 

In this chapter, a short overview of the techniques employed in the synthesis and 

characterization of MFI-type zeolite membranes is presented. Also, procedures for the series 

of experiments conducted in this study are described. However; some of the experimental 

procedures that are not described in detailed here are discussed in subsequent chapters, where 

necessary. In subsequent chapters, results obtained from the experimental protocols described 

in this chapter are displayed and discussed. 
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Chapter 4: Tubular MFI-alumina membranes for xylene  isomer separation 

In this chapter, results of the study of the influence of operating variables on the 

separation performance of a nanocomposite MFI-alumina membrane tube during the 

separation of ternary vapour mixture of xylene isomers are presented. Specifically, we shall 

focus on the evaluation of the behaviour of the membrane at higher loadings of xylene/higher 

partial pressures of xylene. 

4.1  Introduction  

The relevance of p-Xylene as intermediate in the synthesis of polymers necessitates 

the development of processes for its separation and purification. Because of their similar 

physical properties, xylene isomers can hardly be separated by distillation [3,237,238]. 

Currently, industry relies on fractional crystallization and preferential adsorption to separate 

xylene isomer mixtures. Both techniques are batch processes and energy-intensive, therefore 

inflating the production costs and their environmental impact. For example, the United States 

consumed nearly 105 x 1018 J in 2004, corresponding approximately to one fourth of the 

world’s energy [8]. Petrochemical and chemical industries accounted for 13.7 x 1018 J  in 

1998 with about 35% of the energy consumption being used in manufacturing and separating 

organic chemicals (mainly for heating/cooling) [7]. It seems therefore imperative to move to 

more energy-efficient and environmentally-friendly processes involving less heating/cooling 

steps (and operating in continuous mode) for p-Xylene separation.  

Membrane technology constitutes a promising option to achieve this goal. As the 

driving force in a gas-separation membrane is the pressure difference between the 

feed/retentate and permeate, the heating/cooling costs can be dramatically reduced compared 

to more conventional separation processes (e.g., distillation, crystallization or adsorption). 

Furthermore, the combination of membrane separation with (reactive) distillation in hybrid 

separation processes (for instance for distillate/residue separation) can also help to reduce 

cooling/heating costs and promote process intensification (see references [239,240]). 

 For the fact that polymeric membranes (e.g., PVA) have not proven to be successful 

for xylene isomer separation, researchers have moved to zeolites and other molecular sieve 

membranes. Several recent studies have pointed out the potential of MFI zeolite membranes 

for xylene separation and purification, either by pervaporation (PV) [168] or by vapour 

permeation (VP) [171,175,177,178,180,181,183,184,241]. As the kinetic diameter of p-

Xylene (5.8 Å) is smaller than that of o- and m-Xylene (6.8 Å each) and close to the pore size 

of the MFI channels (5.4 x 5.6 Å and 5.1 x 5.6 Å) [78], p-Xylene is expected to diffuse faster 

within the MFI framework therefore allowing its separation from a mixture of isomers. 
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Moreover, the lower size and ordered packing of p-Xylene promotes its adsorption in MFI 

channels, mainly driven by configurational entropy effects [144].  

It has been established that the MFI framework can experience distortions induced by 

p-Xylene adsorption [81,104,106,115]. These distortions translate into phase changes, 

especially pronounced at near-ambient temperature and high p-Xylene loadings, leading to 

channel 'swelling' that renders the material unable to distinguish between the different xylene 

isomers. As a result, single-file diffusion may occur in the zeolite channels. This implies that 

xylene isomers with the slowest permeation rate (i.e. o- and m-Xylenes) might limit diffusion, 

blocking p-Xylene separation and reducing therefore membrane selectivity. This strong 

limitation of MFI materials hinders the application of MFI membranes for xylene separation 

at high loadings, for instance in PV separations. 

Nevertheless, at sufficiently low xylene partial pressures (<2 kPa) and in the 

temperature range 295-673 K, MFI membranes can show optimal selectivity for p-Xylene 

separation by VP. By now, the best separation and permeation results have been obtained by 

Lai et al. [172] using 'microstructurally optimized' b-oriented MFI films prepared by 

secondary growth hydrothermal synthesis using a b-oriented seed layer and trimer-TPA as a 

template in the secondary growth step. The membranes offer p-Xylene permeances of  about 

200 nmol.m-2.s-1.Pa-1 at 473 K for a feed mixture of 0.45 and 0.35 kPa p- and o-Xylene, 

respectively, with p/o-Xylene separation factors between 200-500.  

Meanwhile first preliminary results reported on application of MFI-alumina zeolite 

membranes with nanocomposite architecture for xylene isomer separation via PV [186] 

showed very encouraging xylene isomer vapour separation properties. P-Xylene permeances 

of about 10 nmol.m-2.s-1.Pa-1 with p/o and p/m of 7 and 21, respectively, have been reported at 

473 K [186]. Compared to most commonly used film-like MFI membranes (either with 

preferential or random channel orientation), the membranes prepared here consist of randomly 

oriented MFI crystal nanocomposite grown inside an alumina porous matrix via a             

pore-plugging hydrothermal synthesis technique. 

Therefore, this section reports additional mixture permeation data on xylene isomer 

separation using nanocomposite MFI-alumina tubular membranes, focusing specifically on 

the effect of the main operational variables (temperature, xylene vapour pressure and sweep 

gas flow rate). The goal was to show that, by confining the zeolite material, a nanocomposite 

MFI-alumina membrane can show high selectivity to p-Xylene at high xylene loadings 

compared to more conventional film-like MFI membranes. 

4.2  Membrane preparation, characterization and sep aration test 

The nanocomposite MFI-alumina membrane used in this study was prepared by          

pore-plugging hydrothermal synthesis technique using an asymmetrical Pall-Exekia              
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α-alumina tube (o.d. 10 mm, i.d. 7 mm, length 15 cm, active permeation area 26 cm2) as 

support. Details of this technique have been described in Chapter 3. The cross-sectional layers 

of the support have pore dimensions: outer layer, 12 µm; intermediate layer, 0.8 µm and 

innermost layer, 0.2 µm. Characterization as well as the quality test of the membranes was by 

scanning electron microscopy with SEM (JSM-5800LV, 20 kV) coupled with EDX analysis 

(Edax Phoenix, 1-µm microprobe); single gas hydrogen permeation, binary mixture 

separation with n-butane/H2 and BDQT. These techniques have been described in detail in 

Chapter 3 of this dissertation. 

Before the membrane quality test, the membrane was mounted on the membrane 

module and subjected to HTP at 673 K under a 20 mL(STP)/min N2 flow on the retentate and 

permeate sides as described in Chapter 3 to remove adsorbed moisture and other 

contaminants. This pre-treatment was also carried out before each series of xylene VP tests. 

The set-up used for membrane separation has been described in Chapter 3. Ternary 

mixture of xylene (p-Xylene, 99% purity; m-Xylene, 99% purity; o-Xylene, 97% purity) 

purchased from Sigma-Aldrich were saturated in dry N2 at a 10-mL(STP)/min carrier flow at 

atmospheric pressure using two saturators combined in series. The first bubbler was kept at 

323 K-363 K (depending on the desired xylene partial pressure) while the second bubbler was 

maintained at a temperature of about 6 K lower than the first to ensure saturation.  

The permeate side of the membrane was swept using N2 at several flow rates in the 

range 5-30 mL(STP)/min to investigate the influence of sweep gas flow rate. After attaining 

steady-state in about 5 hours, the compositions of the feed, retentate and permeate streams 

were analyzed online GC (Shimadzu GC-14A) equipped with a solgel-WAX capillary column 

and a flame ionization detector (FID). To avoid any condensation and ensure proper xylene 

partial pressure throughout the system, all the lines were heated and maintained at 393 K 

using heating tapes. Xylene vapour separation and permeation experiments were performed in 

Wicke-Kallenbach mode to prevent occurrence of viscous flow. In all the experiments, mass 

balances of each xylene isomer were closed with an experimental error <15%.  

The membrane performance was evaluated in terms of permeation flux (or xylene 

permeance), p/o and p/m xylene permselectivity (or ideal selectivity), and p/o and p/m 

mixture separation factor following Eq. 3.5   to Eq. 3.15 presented in Chapter 3. 

4.3  Results and discussion 

The results obtained in this section are presented, discussed and compared with 

existing literature in subsections 4.3.1 and 4.3.2. 
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4.3.1  Membrane quality  

The membrane prepared in this study showed a room-temperature pure hydrogen 

permeance of 0.49 µmol.m-2.s-1.Pa-1 and a n-butane/H2 separation factor as high as 100 after     

pre-treatment. This latter value reflects good membrane quality in terms of low amount of 

intercrystalline defects. The good quality of the membrane prepared in this study can also be 

inferred from the extremely slow n-butane desorption dynamics under the presence of a 

transmembrane pressure of pure hydrogen at room temperature (see Fig. 4.1). The desorption 

dynamics is especially slow in the first 4 hours, the membrane taking about         29 hours to 

recover at least 90% of its original pure hydrogen permeance. As a matter of fact, in a 

standard desorption test, n-butane is expected to desorb faster from intercrystalline domains 

than from zeolite pores (intracrystalline), where adsorption forces are expected to be stronger. 

A slow desorption dynamics, especially at short times, is therefore an indicator of a low 

number of intercrystalline domains.  

Furthermore, the SEM micrographs (see Fig. 4.2 and Fig. 4.3) confirm the formation 

of a nanocomposite material on the substrate, that is, no continuous MFI film is formed on top 

of the support. In addition, Fig. 4.2 shows the cross-section of the membrane support with the 

three layers while Fig. 4.3 shows good pore-plugging of the 0.2-µm layer with zeolite 

crystals. The EDX analysis shows an average Si/A1ratio about 10-20 (semi-quantitative 

analysis) on the inner active layer. The material in the active layer corresponds accordingly to 

an Al-enriched H-ZSM-5 zeolite. 

 

 

Figure 4.1: Hydrogen permeance as a function of time in a n-butane room-temperature 
desorption experiment. Adapted from [242]. 
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Figure 4.2: SEM micrograph of the membrane showing cross-section of the membrane 
support with the three layers with formation of nanocomposite material on the support. 

 

Figure 4.3: SEM micrograph of the membrane showing surface view of the 0.2 µm-layer 
pore-plugged with zeolite crystals. 

 



_____________________________________________________________________ 

__________________________________________________________________ 67 

4.3.2  Xylene vapour permeation 

 The results obtained are presented in the subsequent sub-sections 4.3.2.1 through 

4.3.2.3. Parameter fitting was also attempted based on the Maxwell-Stefan (MS)      

adsorption-diffusion model. The temperature-dependence of the transmembrane p-Xylene 

flux has been well represented by a pure gas Maxwell-Stefan (MS) adsorption-diffusion 

model under weak confinement (the MS surface diffusivity does not depend on the xylene 

loading) neglecting the influence of the other xylene isomers as shown in Eq. 4.1: 
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where RP  and PP , are the p-Xylene  partial pressure in the retentate and permeate, 

respectively; 
MFI

ρ , the MFI density (kg.m-3);ε , the  porosity of the nanocomposite            

MFI / alumina structure [-]; csat , the p-Xylene loading at saturation (mol.kg-1);τ , the  

membrane tortuosity; OP , the reference  atmospheric pressure(Pa); N  is the flux in       

mol.m-2 .s-1 and l , the membrane effective thickness (m). 

In the fitting process, zero-loading MS surface diffusivity at refT  { ( )refO TD } and the 

diffusion activation energy ( DE ) were expressed by an Arrhenius-type equation using, 

respectively, Eq. 4.2 and Eq. 4.3: 
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where ( )TK , ( )refTK , the adsorption constant of p-Xylene on MFI at T and refT , 

respectively (Pa-1); ads
OH∆ , the standard adsorption enthalpy (J.mol-1); DE , the diffusion 
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activation energy; { ( )refO TD } , the zero-loading MS surface diffusivity at refT  ; R, the ideal 

gas constant  (J.mol-1.K-1)  and  T and refT , the main temperature and the  mean temperature 

of the series, respectively, in this case, refT = 473 K. 

A Least-square non-linear optimization method, based on the Levenberg-Marquardt 

algorithm, was used to fit the zero-loading MS surface diffusivity at refT  ( ( )refO TD ) and the 

diffusion activation energy ( DE ) by comparing the predicted and experimental p-Xylene 

fluxes. The parameters used in the fitting are presented in Table 4.1. 

Table 4.1: Constant values used for parameter estimation 

*value obtained with loading correction;   l : effective MFI thickness (m, fitted parameter); ED: diffusion 
activation energy (J·mol-1, fitted parameter). 
 
 
 

5.3.2.1  Effect of Temperature 

Figure 4.4 plots the evolution of the p-Xylene, m-Xylene and o-Xylene fluxes and p-

Xylene to o-Xylene (p/o) and p-Xylene to m-Xylene (p/m) separation factors as a function of 

temperature in the range 373 K-700 K for the membrane prepared in this study. Since m-

Xylene and o-Xylene signals in the permeate stream were below the detection limit of our 

GC,  the p/o and p/m separation factors were computed from the minimum detectable o- an 

m-Xylene partial pressures in the permeate (10-3 kPa for m-Xylene and 10-4 kPa for o-

Xylene). 

The p-Xylene transmembrane flux shows a maximum value of about 3.5 µmol.m-2.s-1 

at 473 K, corresponding to a permeance of about 11 nmol.m-2.s-1.Pa-1. As expected for a 

nanocomposite material [208], the p-Xylene flux decreases monotonically after the maximum 

with no further increase at temperatures higher than 700 K.  

Property value Refs. 

Ideal gas constant (J.mol-1.K-1) 8.314 - 

MFI density (kg.m-3) 1700 - 

Porosity of the nanocomposite MFI / alumina structure [-] 0.13 - 

P-Xylene loading at saturation (mol.kg-1) 0.25 [95] 

MS surface diffusivity at zero coverage atrefT  (m
2.s-1) at 473 K 3.4 x 10-13 [207] 

Tortuosity 1.2 - 

Reference to atmospheric pressure(Pa) 101325 - 

Adsorption constant of p-Xylene on MFI at Tref (Pa-1) at 473 K 4.1 x 10-4 [235] 
 Standard adsorption enthalpy (J.mol-1) -72000 [95,128] 
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Figure 4.4: Xylene ternary vapour mixture separation as a function of temperature within a 
nanocomposite MFI-alumina membrane. Experimental conditions: p-/m-/o-Xylene feed 
partial pressures, 0.63 kPa / 0.27 kPa / 0.32 kPa; sweep gas flow rate, 15 mL(STP)/min; feed 
flow rate, 10 mL(STP)/min. The straight line corresponds to the MS fittings for p-Xylene 
flux, while the dashed lines for separation factors are a guide to the eye. Adapted from [242]. 

 

Regarding the MS fitting, the values obtained for the fitted MFI effective thickness 

and activation energy for p-Xylene diffusion are, respectively,   l  = 0.83 ± 0.04 µm and                       

ED = 60 ± 2 kJ.mol-1. The latter value compares well with the value of about 55 kJ.mol-1 

measured by Masuda et al. [155] on H-ZSM-5 powders using the constant volume method, 

but is significantly higher than the value of about 30 kJ.mol-1 measured by                   

Ruthven et al. [152] and Niessen et al. [135] on large silicalite-1 single crystals. 

The good prediction level of the MS model for the range of xylene total pressures 

considered here suggests that, as put forward by several authors [95,106], no relevant 

structural change of the MFI framework occurs upon p-Xylene adsorption at temperatures 

higher than 373 K (the 'critical' temperature). Moreover, as suggested by Grahn et al.[129] in 

a recent paper, the typical p-Xylene adsorption pattern can be altered due to size effects when 

tuning from microsized to nanosized particles, the isotherm not showing the typical 2 steps 

(S-form) at low temperatures. The presence of MFI crystals of size <200 nm in a 

nanocomposite MFI-alumina membrane (the size of the support top layer), together with their 

strong confinement in the porous alumina network, might compensate the distorsion of the 

MFI framework upon p-Xylene adsorption, avoiding the phase change traditionally observed 

for MFI powder at temperatures <400 K. 
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4.3.2.2  Effect of sweep gas flow rate  

Figure 4.5 plots the effect of the sweep gas flow rate on the membrane permeation 

and separation performance in the separation of ternary p/m/o-Xylene mixtures. As expected, 

the p-Xylene flux increases with the N2 flow rate up to a plateau value beyond 20 

mL(STP)/min. The trend should be ascribed to a reduction of the p-Xylene permeate partial 

pressure as the sweep gas flow rate increases. This might contribute to a decrease of the p-

Xylene surface coverage at the membrane/permeate surface and in its turn to an increase of 

the p-Xylene driving force across the membrane. This trend is qualitatively predicted by the 

MS model (Eq. 4.1) using the parameters obtained from the fittings of p-Xylene flux with the 

temperature (Fig.4.4). The p/m and p/o separation factors show an increase with the sweep 

gas flow rate, reaching a value as high as 1000 (practically infinite) at 473 K for sweep gas 

flow rates higher than 30 mL(STP)/min. 
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Figure 4.5: Xylene ternary vapour mixture separation as a function of N2 sweep gas flow rate 
within a nanocomposite MFI-alumina membrane. Experimental conditions: p-/m-/o-Xylene 
feed partial pressures, 0.59 kPa / 0.45 kPa / 0.40 kPa; temperature, 473 K; feed flow rate, 10 
mL(STP)/min. The straight line corresponds to the p-Xylene flux predicted by Eq. 4.1, while 
the dashed lines for separation factors are a guide to the eye. Adapted from [242]. 
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4.3.2.3  Effect of xylene feed partial pressure 

Figure 4.6 shows the effect of the total xylene vapour pressure on the p/m/o xylene molar 

fluxes and the p/o and p/m separation factors at 473 K (the temperature corresponding to the 

maximum flux). As can be seen for an increase in total xylene pressure up to 150 kPa, the p-

Xylene flux increases steadily with the total xylene vapour pressure for p/m/o-Xylene ternary 

mixtures up to 15 kPa and p-Xylene-to-m-Xylene-to-o-Xylene (p/m/o) ratios of 1 : 1 : 3 

beyond 30 kPa. However, the permeance decreases steadily from 11 to 1 µmol.m-2.s-1.Pa-1.The 

p/m separation factor remains practically invariable at a value of 200 with the xylene vapour 

pressure up to 150 kPa. In the case of the p-Xylene/o-Xylene (p/o) separation factor, after 

showing a maximum value of about  5000 at 30-kPa xylene vapour pressure, it drops 

drastically to a value lower than 100 at 130 kPa. 

 

 
Figure 4.6: Xylene ternary vapour mixture separation as a function of total xylene vapour 
pressure within a nanocomposite MFI-alumina membrane. Experimental conditions: p-/m-/o-
Xylene feed composition, 1 : 1 : 1 up to 15 kPa and 1: 1 : 3 beyond 30 kPa; temperature, 473 
K; feed flow rate, 10 mL(STP)/min, sweep flow rate, 15 mL(STP)/min. The ratios1:1:1 &  
1:1:3  refer to the composition ratio of the xylene isomer in the feed (p-Xylene:m-Xylene:     
o-Xylene) The straight and dashed lines, respectively, for xylene fluxes and separation factors 
are a guide to the eye. 

The trend observed for the p-Xylene flux should be attributed to the higher surface 

coverage of p-Xylene and the retentate/membrane surface, enhancing therefore the p-Xylene 

driving force across the membrane as predicted by the MS model (Eq. 4.1). At lower xylene 

partial pressures, keeping the xylene isomers at equimolar composition, selective adsorption 

of   p-Xylene on MFI blocks adsorption of other xylene isomers, thereby paving the way for 
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them to permeate. At higher xylene vapour pressure, however, o-Xylene adsorption becomes 

promoted, showing a slight permeation and contributing therefore to the observed decrease of 

the p/o xylene separation factor.  

This result seems to indicate that, at high xylene coverage, distortion of the MFI 

framework occurs, higher xylene isomers being transported through the MFI layer. At this 

juncture, taking into account the similar adsorption properties of the three xylene isomers on 

MFI zeolites, single-file diffusion can become promoted, the three isomers competing then for 

passage through the zeolite pores. As a result, the slower permeating isomers (i.e. m-Xylene 

and o-Xylene) can reduce the permeance of the fastest one (p-Xylene), the membrane 

selectivity being therefore drastically reduced. Moreover, as put forward by                

O’Brien-Abraham et al. [170], sorbate-sorbate competition for passage within the MFI pores 

in xylene mixture vapour permeation might also reduce the accessibility of p-Xylene to MFI 

channels, hindering therefore its permeation. 

4.4  Role of MFI confinement on the xylene vapour p ermeation performance 

Unlike film-like membranes, where the membrane selectivity is strongly affected by 

the xylene vapour pressure, the membranes prepared in this study still exhibit high p/o and 

p/m separation factors for xylene pressures as high as 150 kPa and for a p/m/o ratio of            

1 : 1 : 3. The improved selective character of the membranes prepared in this work should be 

attributed to their nanocomposite architecture, minimizing long term stresses and in its turn 

the distortion of the MFI framework at high xylene loadings. Note that the same property of 

nanocomposite materials enable them to avoid crystal opening at high temperature due to 

thermal expansion mismatch between MFI crystals and the alumina support. 

In keeping with the results reported using PV, higher xylene concentrations might 

promote single-file diffusion within the MFI layer due to distortion of the MFI unit cell, thus 

making the material not being able to distinguish between the different xylene isomers xylene 

in the zeolite channels [168,172]. This fact might explain why, compared to pure xylene VP,           

o-Xylene flux is greatly enhanced over its pure value at comparable partial pressure in the 

presence of p-Xylene, as well as the long xylene flux transients (even longer than 24 hours). 

This general behaviour can be compensated to a certain extent when using nanocomposite 

materials. For example, Fig. 4.7 shows the p-Xylene permeation and separation performance 

from a mixture of isomers for film-like MFI membrane. This can be compared with the results 

for nanocomposite MFI-alumina membranes presented in Fig. 4.6. In general terms, due to 

confinement of the MFI material at the nanoscale, nanocomposite MFI-alumina membranes 

appear to minimize the intrinsic distortion of the unit cell upon p-Xylene adsorption. This 

fact, accompanied by a reduction of the number of nanosized grain boundaries, might limit    

single-file diffusion in such architectures, allowing higher separation factors at xylene vapour 
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pressures as high as 30 kPa and a drastic reduction of stabilization time to attain steady state. 

Experimental evidence of this hypothesis has been provided recently by Grahn et al. [129]. 

These authors have reported the disparities of the characteristic critical point of the                

p-Xylene/MFI system as long as the MFI particle size is reduced down to a few nanometers. 
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Figure 4.7: Xylene VP as a function of total xylene vapour pressure with a film-like 
membrane at 373 K. Adapted from [183]. 

Indeed, the high p-Xylene separation performance of the membranes prepared and 

tested in this study opens up a possible application of these materials to carry out xylene 

separation by PV, involving high xylene loadings. As far as we know, only Yuan et al. [168] 

have reported in the open literature, a p/o selectivity of 60 at 323 K during the separation of 

an equimolar p/o xylene binary mixture via PV. These authors used MFI membranes prepared 

via templateless seeded hydrothermal synthesis.  

4.5. Concluding remark 

The results presented in this chapter report, for the first time in open literature, the 

excellent xylene separation performance of nanocomposite MFI-alumina membranes at high 

xylene loadings and high m- and o-Xylene compositions. The intimate contact of alumina and 

the MFI nanoparticles at the nanoscale allows compensation of long-term stresses, attenuating 

the distortion of the MFI framework upon xylene adsorption. This property of nanocomposite       

MFI-alumina membranes is outstanding, since, unlike their film-like counterparts, the 
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membranes can be operated at higher xylene vapour pressures without showing a dramatic 

decrease of their selectivity. 

Furthermore, the hydrodynamics at the permeate side of the membranes plays a 

prominent role in their permeation and separation performance. As a matter of fact, the 

increase of turbulence in the permeate allows a drastic reduction of xylene partial pressures, 

promoting therefore permeation fluxes and selectivity to p-Xylene. It is also expected, 

although it was not investigated, that the use of vacuum pressure in the permeate side might 

further improve the permeation and separation performance. Regarding the modelling part of 

this study using Maxwell-Stefan’s (MS) model, the aim was to support the absence of crystal 

swelling of the membranes at high p-Xylene partial pressures compared to more conventional 

film-like MFI membranes and, therefore, to enable reasonable conclusions about their 

potential use in industrial applications for p-Xylene purification and even in pervaporation. 

Actually, xylene/MFI system modelling is quite complex and therefore might not be 

described adequately with a simple model like the MS. This could explain the deviation 

observed between the model results and the experimental results. Furthermore, in this study, 

the effect of possible interactions among the operating variables is neglected. Therefore, it is 

recommended that this is considered by subsequent studies. It can be explored with the use of 

response surface methodology approach, and understanding it may pave the way for the 

optimization of the process.  

Finally, the novel contribution described in this chapter has been published in 

Separation Science & Technology journal (Sep. Sci. Tech.). A sample of the 

publication is included in Appenddix E. 
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Chapter 5: Hollow fibre MFI-alumina membranes for x ylene isomer separation 

Evaluation of separation performance of a nanocomposite MFI-alumina hollow fibre 

membrane, prepared via pore-plugging technique during xylene isomer separation, is reported 

in this chapter. Separation performance of the hollow fibre membrane was compared to the 

performance of an equivalent membrane tube operated under the same operating conditions.   

5.1  Introduction 

Two common materials used for membrane supports are stainless steel (SS) and 

alumina [184]. As difference in thermal expansion of the zeolite and the support layer could 

cause stress at the interface and thus cracks in the zeolite layer at high temperature, alumina 

of much lower thermal expansion than the stainless steel is preferred. Although SS is more 

ductile and compatible to most commonly used plant equipment parts, its higher thermal 

expansion is a great disadvantage. Moreover, to increase transmembrane flux of p-Xylene 

during xylene isomer separation, both the geometry of the support and the membrane 

thickness play a vital role [184]. 

Previous researchers in this area have reported the use of composite disks 

[106,175,179,180,181,241,243] for xylene isomer separation. All the above-stated studies 

dealing with MFI-type membranes have focused on the synthesis of continuous and           

well-intergrown thin films on top of a porous support that ensures mechanical resistance. In a 

series of previous studies by Dalmon and his group [191,207,208,209], reports on a different 

concept have emanated: the synthesis of 'nanocomposite' MFI-alumina membranes. In this 

architecture, which is compared to a film, the active phase is embedded into the host ceramic 

alumina porous network via pore-plugging hydrothermal synthesis. This does not only avoid 

individual membrane defects to exceed the size of the support pores, but it also provides a 

better mechanical resistance as well as a higher resistance to thermal shocks. Another 

consequence is that mass transfer within these membranes at high temperature is still 

governed by zeolite pores instead of intercrystalline openings that may appear in film-like 

configurations. Nanocomposite MFI-alumina membranes have already shown high potential 

for xylene isomer separation and for xylene isomerization when combined with a catalyst in 

extractor-type membrane reactors [186,242]. 

Recently, this concept was extended to the development and preparation of 

nanocomposite MFI-ceramic hollow fibre membranes for gas separation. Nanocomposite        

MFI-ceramic hollow fibre membranes have been reported to give pure gas permeance of 

about three times higher than those that are obtained with MFI tubular zeolite membranes. At 

the same time, these fibers offer higher module surface area/volume ratios [210]. As far as 
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could be ascertained, application of nanocomposite MFI-ceramic hollow fibre membranes for 

xylene isomer separation has not appeared in any open literature before. Therefore, this 

chapter reports the performance evaluation of nanocomposite MFI-alumina hollow fibre 

membranes during xylene isomer separation with p-Xylene being the target product. 

Compared to more conventional single tubes and planar geometries, hollow fibres present 

lower costs and larger surface-to-volume ratios (>1000 m2.m-3). Furthermore, this 

configuration also allows higher gas permeances due to their much lower effective membrane 

wall thickness. 

5.2  Membrane preparation, characterization and sep aration test 

The nanocomposite MFI-alumina hollow fibre membranes used in this study                

(o.d. 1.65 mm, i.d. 1.44 mm, porosity 43%) were prepared via a pore-plugging synthesis 

technique following the experimental protocol developed in previous studies [191,207,209] 

and described in Chapter 3.  Figure 5.1 indicates the relevant dimensions of the fibres and  

Fig. 5.2 shows the micrograph of the cross-section of the membrane support. The MFI zeolite 

was synthesized by mixing together the structure directing agent (SDA, 1 M 

tetrapropylammonium hydroxide, TPAOH, supplied by Sigma-Aldrich), and the silica source 

(Aerosil 380 from Degussa). This mixture was slightly diluted with deionised water to form a 

clear solution with the molar composition 1.0 SiO2: 0.45 TPAOH: 27.8 H2O (pH close to 14) 

and matured for 3 days at room temperature under mild stirring. To ensure that the 

experimental conditions were kept as close as possible to the conditions used for preparation 

of conventional tubes, nine 23-cm long ceramic hollow fibres were inserted into a        

TeflonR-lined autoclave containing about 25 ml of precursor solution, and submitted to an 

interrupted hydrothermal synthesis at 423 K for 4 days. After the synthesis, the fibres were 

washed with deionised water, dried at 373 K for 12 hours, and calcined at 773 K for 4 hours 

under air flow.  

The structure and purity of the synthesized zeolite material was confirmed by X-ray 

diffraction (XRD). Scanning Electron Microscopy (SEM) confirmed the formation of a 

nanocomposite material, that is, no continuous MFI film is formed on top of the support            

(see Li et al. [209] for further information). Table 5.1 lists the main properties of a 

representative MFI-alumina hollow fibre membrane after synthesis, further evaluated for 

xylene isomers separation. 
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1.65 mm

 

 

Figure 5.1: Pictures of the support fibre used for membrane synthesis. 

 

 

 Figure 5.2: SEM image of the cross-section of the support used for membrane synthesis. 

 

 

Table 5.1: Properties of the nanocomposite MFI-alumina hollow fibre and MFI-alumina 
tubular membranes used in this study 

Property Hollow fibre membrane Membrane tube 
Separation factor (H2/n-butane)(-) 101 >100 

H2 permeance (µmol.m-2.s-1.Pa-1) 1.33 0.49 

Permeation length (cm) 13 13 
Internal diameter (mm) 1.2 7 

Effective thickness (µm) <1 2-3 

Permeation area (cm2) 9.94 26 
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After the synthesis, the as-calcined hollow fibres were immobilized on a supporting 

dense alumina perforated tube using a homemade low-temperature glaze, as shown in         

Fig. 5.3. The final ensemble was then mounted inside a graphite-sealed stainless steel module 

(see Fig. 5.4) and subjected to a high temperature pre-treatment at 673 K for 6 hours under 20 

mL(STP)/min N2 flow on both sides of the membrane to remove any adsorbed species       

(see Alshebani et al. [235] for further detail). The quality of the fibres was evaluated in terms 

of pure H2 permeation and   room-temperature n-butane/H2 separation. 

 

        

 

Figure 5.3: Fibres mounted into their mechanical support tubes. 
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Figure 5.4: Schematic showing the section of a fibre mounted inside its mechanical fibre 
supports. 
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For the sake of comparison, the results obtained with the fibre were compared with 

the separation performance of a nanocomposite MFI-alumina membrane prepared on a      

Pall-Exekia tube operated under the same standard protocol as in the case of hollow fibres. 

The main characteristics of this membrane compared to those of the hollow fibres are listed in 

Table 5.1. 

Separation testing was conducted with the rig described in Chapter 3.                            

Pure o-Xylene and p-Xylene, as well as a mixture of xylene isomers (m-Xylene and p-Xylene, 

99% purity; o-Xylene, 97% purity), all supplied by Sigma-Aldrich, were saturated in a          

10-mL(STP)/min N2 carrier flow at atmospheric pressure using the saturation system 

described in Chapter 3. The second saturator was maintained at a temperature of about 6 K 

lower than the former to ensure saturation. The permeate side of the membrane was swept 

with a counter-current 15-mL(STP)/min N2 flow. The o- and p-Xylene partial pressures were, 

respectively, 3.38 kPa and 3.77 kPa in the pure xylene vapour permeation (VP) tests. 

 In the case of the ternary xylene mixture separation, the feed p-Xylene, m-Xylene 

and     o-Xylene partial pressures were, respectively, 0.62, 0.27 and 0.32 kPa. In all cases, the 

temperature of the membrane system was varied from 423 to 673 K by increments of 50 K. In 

the experiments dealing with membrane tubes, the temperature was directly measured in the 

tube lumen while in the experiments using hollow fibres; the temperature was measured on 

the outer surface of the alumina supporting tube.  

After attaining steady state in about 5 hours, the permeate and retentate streams were 

diverted to a gas chromatograph (Shimadzu GC-14A), equipped with a solgel-wax capillary 

column and a FID detector, for analysis. To avoid any condensation and ensure proper xylene 

partial pressure throughout the setup, all the lines were heated and maintained at 393 K with 

heating tape. Further, to prevent the occurrence of viscous flow within the fibres during the 

separation, the transfibre/transmembrane pressure was kept as low as possible (∆P≈0,   

Wicke-Kallenbach method). The effect of the temperature was evaluated in these experiments 

by decreasing the module temperature by increments of 50 K from 673 K to 423 K. The 

vapour permeance, flux of a given xylene (either pure or in a xylene isomer mixture) and 

separation factors (a xylene isomer mixture) were computed following Eq. 3.5 to Eq. 3.15 

stated in Chapter 3. In all the experiments, mass balances of each xylene isomer were closed 

with an experimental error <3%.   

5.3  Results and discussion 

Separation performance of the hollow fibre membrane compared to that of a 

membrane tube under the influence of changes in temperatures is presented in subsections 

5.3.1 through 5.3.3.   
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5.3.1  Formation of nanocomposite MFI membrane and quality test  

In keeping with the results previously reported on MFI-alumina membrane tubes 

[208,242], the nanocomposite MFI-alumina hollow fibres presented in this section do not 

show an increase of either pure hydrogen or p-Xylene and o-Xylene fluxes at temperatures 

higher than 673 K. This trend differs from what is usually found in film-like MFI membranes 

(silicalite-1 and ZSM-5) grown on alumina and stainless steel supports, where a sharp 

increase of flux is observed above 400 K [244-246]. For the two temperature points tested, the 

results showed a decrease in hydrogen permeance from 1.33 µmol.m-2.s-1.Pa-1 obtained at 

room temperature (298 K) to about 0.8 µmol.m-2.s-1.Pa-1 at 490 K. In addition, at room 

temperature, the n-butane/H2 separation factor obtained for the hollow fibre is as high as 101 

(see Table 5.1). Note that  n-butane/H2 separation factor higher than 25 is usually considered 

an indicator of good membrane quality at IRCE. 

As reported by Gualtieri et al. [247] using high resolution X-ray diffraction, unlike     

film-like MFI membranes, a sample prepared by embedding MFI crystals in the pores of a 

support shows no contraction upon heating, namely the MFI cell keeps unchanged. This is an 

interesting feature of nanocomposite membranes, since, as proposed by Miachon et al. [208], 

contraction of MFI crystals could translate into inter-crystalline pore opening, contributing to 

a drastic reduction of membrane selectivity. In nanocomposite architecture, the zeolite 

crystals are constrained by the surrounding alumina grains, the support ruling the thermal 

behaviour of the zeolite material. Thus, the nanocomposite MFI-alumina hollow fibre 

membranes prepared and used in this study are thermally stable. For more information about 

the membrane, a sample of the  XRD image analysis showing the formation of the membrane 

is depicted in Fig. 3.8 and a SEM image of the cross-section of the innermost layer of the 

hollow fibre membrane showing total pore-plugging of the layer with zeolite crystals is 

depicted in Fig. 5.5. 
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Figure 5.5: SEM image of the cross-section of the innermost layer of the hollow fibre              
MFI-alumina membrane. 

5.3.2  Xylene vapour permeation and separation test   

The evolution of p-Xylene and o-Xylene permeation fluxes with temperature is 

presented in Fig. 5.6. As can be seen, the p-Xylene flux shows a maximum flux with 

temperature of  13.2 µmol.m-2.s-1 at 573 K without further increase at temperatures higher 

than 700 K. The o-Xylene flux decreases monotonically with temperature in the range        

523-673 K, showing a maximum value of 109 nmol.m-2.s-1 at 523 K. The maximum computed 

p/o permselectivity obtained with these fibres is 210 at 623 K. 

Figure 5.7 and Figure 5.8  show the evolution of the p-Xylene, m-Xylene and o-

Xylene fluxes as a function of temperature (Fig. 5.7), as well as the p/o and p/m xylene 

separation factors (Fig. 5.8) in the separation of ternary xylene isomer mixtures using the 

hollow fibre prepared in this study. As can be seen, the p-Xylene flux shows a maximum with 

temperature of about 5 µmol.m-2.s-1 at 573 K, the m-Xylene flux showing in this temperature 

a minimum of 37 nmol.m-2.s-1. The o-Xylene permeances are extremely low,                           

< 0.37 nmol.m-2.s-1, showing a slightly increasing trend with temperature. 
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Figure 5.6: Single vapour permeation flux as a function of temperature. Experimental 
conditions: p-/o-Xylene feed partial pressures, 3.77 kPa / 3.38 kPa; feed gas flow rate, 10 
mL(STP)/min; sweep gas flow, 15 mL(STP)/min. Adapted from [248]. 
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Figure 5.7: Xylene ternary vapour mixture separation as a function of temperature with 
nanocomposite MFI-alumina hollow fibre showing the permeation fluxes;(b) p/o and p/m 
separation factors. Experimental conditions: p-/m-/o-Xylene feed partial pressures, 0.62 kPa / 
0.27 kPa / 0.32 kPa; sweep gas and feed flow rates as in Fig. 5.6. The straight and dashed 
curves are a guide to the eye. Adapted from [248]. 
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Figure 5.8: Xylene ternary vapour mixture separation as a function of temperature with 
nanocomposite MFI-alumina hollow fibre showing the p/o and p/m separation factors. 
Experimental conditions: p-/m-/o-Xylene feed partial pressures, 0.62 kPa / 0.27 kPa / 0.32 
kPa; sweep gas and feed flow rates as in Fig.5.6. The straight and dashed curves are a guide to 
the eye. Adapted from [248]. 

The temperature dependence of pure p-Xylene flux within the synthesized hollow 

fibres prepared in this study (see Fig. 5.6) is qualitatively consistent with the trend reported by            

Gu et al. [183] for film-like MFI membranes at temperatures < 400 K. The flux pattern of 

pure   p-Xylene is characterized by the presence of a maximum, which should be attributed to 

a competition between xylene adsorption and surface diffusion within the zeolite pores  

(adsorption-diffusion mechanism). This permeation behaviour is consistent with that 

commonly found for permeation of light hydrocarbons within film-like MFI membranes at 

temperatures lower than 400 K [246,249-251]. Although no maximum is observed in Fig. 5.6 

for o-Xylene flux in the range of the temperature tested, it is expected that a maximum is 

observed at temperatures lower than 473 K. The pure p-Xylene fluxes obtained in this study 

are up to 160 times higher than those obtained for o-Xylene at 573 K. The permeation 

observed for o-Xylene should be ascribed, at least partially, to the presence of small 

intercrystalline defects and grain boundaries in the zeolite material.  

Regarding the ternary mixture separation test, the results plotted in Fig. 5.7 confirm 

that, under lower enough xylene loadings, p-Xylene permeates selectively from mixtures of 

the three isomers within the MFI-alumina hollow fibres prepared in this study on the basis of 

the much higher diffusivity of p-Xylene compared to that of m-Xylene and o-Xylene. Under 

an adsorption-diffusion mechanism, raising the temperature reduces the surface coverage of 

xylene molecules, lowering therefore the driving force for mass transfer, but increasing the 
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surface diffusivity of the adsorbed xylenes. The presence of a minimum of m-Xylene flux at 

573 K in Fig. 5.8, where the maximum of p-Xylene flux is located, should be attributed to 

competitive adsorption and diffusion between both isomers. Note that this result is 

qualitatively consistent with the observation reported by Xomeritakis et al. [106] for film-like 

alumina-supported MFI membranes. Moreover, as put forward by O’Brien-Abraham et al. 

[170], sorbate-sorbate competition for passage within the MFI pores in xylene mixture vapour 

permeation might hinder, to some extent, p-Xylene permeation, reducing thereby p-Xylene 

fluxes compared to pure p-Xylene vapour permeation. In the case of the MFI-alumina hollow 

fibres prepared in this study, the maximum p-Xylene flux at 573 K is reduced from              

13.2 to  4.5 µmol.m-2.s-1 (see Fig. 5.6 and Fig. 5.7). 

5.3.3  Hollow fibres MFI vs.  MFI membrane tubes 

To compare the separation performance of the nanocomposite MFI-alumina hollow 

fibres over conventional MFI-alumina tubular membranes, ternary vapour mixture separation 

was carried out using a tubular MFI-alumina membrane described in Chapter 4. 

Figure 5.9 and Figure 5.10 show the xylene permeation and separation performance of 

the MFI-alumina membrane tube. The p-Xylene flux shows a similar qualitative trend with 

temperature to that obtained for MFI-alumina hollow fibres, with a maximum value of about     

3.5 µmol.m-2.s-1 at 473 K.  

The results plotted in Fig. 5.7 and Fig. 5.9 show that both nanocomposite MFI-alumina 

hollow fibres and membrane tubes prepared via pore-plugging hydrothermal synthesis show 

similar trends of p-Xylene mixture fluxes as a function of temperature. The displacement of 

the maximum p-Xylene flux from 573 K in MFI-alumina hollow fibres to 473 K in            

MFI-alumina tubes could be ascribed to a lack of accuracy in the temperature measurement in 

the former case (the temperature could not be directly measured in the lumen of the hollow 

fibres). The membrane tubes show better p/o xylene separation factors than the hollow fibres, 

probably due to a better sealing of the permeation module in the former case during the 

xylene vapour permeation tests. 
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Figure 5.9: Xylene ternary vapour mixture separation as a function of temperature with 
nanocomposite MFI-alumina membrane tube showing permeation fluxes.Experimental 
conditions: p-/m-/o-Xylene feed partial pressures, 0.62 kPa / 0.27 kPa / 0.32 kPa; sweep gas 
and feed flow rates as in Fig.5.6. The straight and dashed curves are a guide to the eye. 
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Figure 5.10: Xylene ternary vapour mixture separation as a function of temperature with 
nanocomposite MFI-alumina membrane tube showing p/o and p/m separation factors. 
Experimental conditions: p-/m-/o-Xylene feed partial pressures, 0.62 kPa / 0.27 kPa / 0.32 
kPa; sweep gas and feed flow rates as in Fig.5.6. The straight and dashed curves are a guide to 
the eye.  



_____________________________________________________________________ 

__________________________________________________________________ 86 

 

Furthermore, although the MFI-alumina hollow fibres show that mixture p-Xylene 

fluxes are about 30% higher than those of MFI-alumina membrane tubes, the p-Xylene 

vapour permeances show the same order of magnitude, about 10 nmol.m-2.s-1.Pa-1. Table 5.2 

compares the mixture permeation and separation results obtained in this study on hollow fibre 

and membrane tube with some of the comparable results reported in Table 2.5 on xylene 

separation using MFI-type zeolite membranes. Excluding b-and c-oriented well-intergrown 

supported MFI films, among the results reported in the literature on randomly-oriented MFI 

membranes prepared on tubular geometries, the hollow fibres prepared in this study offer an 

excellent trade-off between p/o-Xylene separation factors and mixture p-Xylene permeances. 

The p-Xylene permeances obtained in this study on hollow fibres are about 4 times higher 

than the values obtained by Gump et al. [175] on MFI membranes tubes. Furthermore, the 

nanocomposite nature of the fibres renders the synthesis extremely reproducible. 

 

Table 5.2:  Previous studies on xylene separation from binary p/o-Xylene and ternary            
p/m/o-Xylene mixtures using MF-type zeolite membranes 

Membrane 
Zeolite 

thickness 
(µm) 

Tmax  

(K) 
maxΠ   

 (nmol.m-2.s-1.Pa-1) 

SF 
 (p/o)  

Refs. 

Silicalite-1 filmb 3 400 12 60 [177] 
BZSM-5 filmb 30 425 2.6 60 [175] 
MFI film (self-
supported) b 

90 473 82 250 [178] 

Ultra thin MFI 
filmsa 

0.5 663 
300 (663 K) 
600 (373 K) 

3 
16 

[180] 

MFI film a 1-40 548 20 (398 K) 60-300 [106] 

b-oriented MFI 
filmsa 1 423 200 480 

[172] 
[179] 

c-oriented MFI 
filmsa 30 423 30 3 

[172] 
[179] 

h0h-oriented MFI 
filmsa 2 403 40 60 

[172] 
[179] 

Silicalite-1 filma 2-10 480 4 1 [181] 
ZSM-5 filma 15-20 673 51 4 [184] 
HZSM-5 alumina 
nanocompositec 

2-3 673 10 (450 K) 7.0 [186] 

HZSM-5 alumina 
nanocompositesc 

1.5-4 473 11 >400 This study 

HZSM-5 alumina 
nanocompositesc 

0.5-1.5 573 9 107 This study 
a Prepared via seeded hydrothermal synthesis ;bPrepared via in situ  hydrothermal synthesis cPrepared 

via pore-plugging  in situ  hydrothermal synthesis. maxΠ : maximum p-Xylene permeance; SF: 

separation factor. 
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5.4 Influence of porous structure of hollow fibres on separation performance 

As presented in the preceeding sections of this chapter, the extension of 

nanocomposite MFI-alumina concept to hollow-fibre geometries could enhance separation 

performance of xylene isomers in terms of the p-Xylene flux compared to the membrane 

tubes. Besides, the higher surface-to-volume ratio can be exploited to develop a compact 

separation unit for xylene isomer separation. Notwithstanding the optimal reproducibility of 

the synthesis protocols for MFI membrane synthesis, the synthesis of MFI-alumina hollow 

fibres usually suffers from lower reproducibility than in the case of membrane tubes. This 

shortcoming could be mainly ascribed to the intrinsic complexity of the porous structure of 

hollow fibres (presence of different pore families differing in size and shape), whose nature 

depends strongly on the manufacturing conditions. As a matter of fact, the strong sensitivity 

of the pore plugging efficiency in the preparation of MFI-alumina membrane tubes on the 

support pore size has been reported with the maximum admissible value being about 0.5 µm 

[207]. Extending this conclusion to hollow fibres, the maximum 'effective' pore size of these 

supports should not exceed, in principle, this critical value. Based on this hypothesis, a 

preliminary assessment was carried out of the role of the porous structure of hollow fibres on 

the separation performance of nanocomposite MFI-alumina hollow fibres during xylene 

isomer separation. The goal was to draw correlations between the maximum pore size and/or 

the form of the pore size distribution of raw hollow fibres on the further separation 

performance of the MFI-alumina materials that help for a rapid process intensification.  

Alumina hollow fibres with dimensions described in section 5.2., prepared by a wet 

spinning process following the methodology described by Goldbach et al. [252], were used to 

prepare membranes used for this preliminary study and the membranes were synthesized 

following the protocol described in Chapter 3. The quality of the synthesized membranes was 

assessed by using n-butane/H2 binary mixture separation test, SEM analysis and XRD 

analysis. First and foremost, before membrane synthesis, the quality of the hollow fibre 

supports was evaluated by gas-liquid displacement using an automated porometer (WSI, 

USA) operated in dead-end mode as described in Chapter 3. Based on the results of these 

tests, the fibre supports were grouped into 4 families according to their pore size distributions. 

Figure 5.11 depicts the results obtained from the support quality test while Fig. 5.12 and Fig. 

5.13 show the morphology of the fibre supports and the MFI-alumina hollow fibre 

membranes as obtained from SEM analysis. After membrane quality test, the membranes 

were subjected to xylene isomers separation following the procedure described in section 5.2 

of this chapter. The results of the separation tests are shown in Table 5.3. 
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Figure 5.11: Evolution of the N2 flux with the transfibre pressure in gas-liquid displacement 
tests for four representative hollow fibre supports belonging to families A-D and 
corresponding pore size distributions obtained after data processing. Adapted from [253]. 

 

 

         
 

                                                                                                                   
Figure 5.12: SEM image of the cross-section of the hollow fibre support. 
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Figure 5.13: SEM image of the cross-section of the nanocomposite MFI-alumina hollow fibre 
membrane after synthesis. 
 

5.4.1  Discussion of results 

The XRD analysis (see Fig. 3.8 for a sample) indicates that a highly pure MFI zeolite 

phase was synthesized. Furthermore, from the SEM micrographs corresponding to the raw 

hollow fibres (Fig. 5.12), the support exhibits large finger-like pores in the central part of the 

wall thickness and smaller pores near the inner and outer surfaces. Taking into account the 

principle of measurement in the gas-liquid displacement tests, relying on Laplace Law (Eq. 

3.3), only these latter pores are expected to be duly characterized by this technique, but not 

the largest central ones. At the same time, the SEM micrographs obtained on the hollow fibres 

after synthesis reflect the formation of large MFI crystals in the finger-like pores, while the 

smallest pores near the inner and outer surfaces appear to be completely plugged (see          

Fig. 5.13). However, incomplete pore plugging in larger surface pores, which is difficult to 

visualize by SEM microscopy, cannot be ruled out, providing potential non-selective 

shortcuts during gas separation. 
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Table 5.3: Membrane quality of the four hollow-fibre membrane families identified in this 
study as evaluated from room-temperature n-butane/H2 and separation and p/m and p/o 
separation factors at the maximum temperature (range 473-523 K). 

 

Hollow fibre 
family 

Largest pore 
size (µm) 

SF  
n-C4H10/H2 

SF 
p/m 

SF  
p/o 

A 0.3-0.5 >300 70 ± 25 9 ± 1 
B 0.5-0.6 50-300 19 ± 5 7 ± 1 
C 0.5-0.6 20-50 12  ± 5 7 ± 1 
D >0.6 <20 <7 <3 

 
 
 
      The results of the preliminary investigation collected in Table 5.3 suggest an 

important role of the porous structure of the raw hollow fibres (surface pores) on the final 

membrane quality after synthesis. In principle, hollow fibres displaying maximum pore sizes 

larger than 0.6 µm, corresponding to First Bubble Point (FBPs) in ethanol lower than 130 

kPa, appear to be detrimental to achieving complete pore plugging. This observation can be 

linked to the  n-butane/H2 separation factors of the MFI-alumina hollow fibres. As can be 

inferred from  Table 5.3, the n-butane/H2 separation factor shows a decreasing trend in the 

order A→D, being <20 for D-type supports. Note that, as a reference, a n-butane/H2 

separation factor higher than 25 is usually considered as an indicator of good membrane 

quality in terms of an absence of a large amount of intercrystalline defects [208]. The results 

obtained from xylene isomers separation test also corroborated the results obtained from 

butane/H2 test (see Table 5.3). For this separation, the use of A-type supports gave p-Xylene 

to m-Xylene (p/m) separation factors of at least 50. In all cases, the p/o separation factors 

remain lower than 15, being slightly promoted for the MFI-alumina samples prepared on A-

type supports. The fact that the hollow fibre membranes prepared here show preferential 

permeation of o-Xylene rather than m-Xylene in the separation of ternary xylene isomer 

mixtures might be attributed to higher steric constraints of o-Xylene than m-Xylene in the 

passage within grain boundaries and/or small-sized mesopores, thereby promoting single-file 

diffusion of the former one.  

From this preliminary study, the mean pore size of the support top layer was found to 

play a crucial role on the final membrane quality. The membranes showing the best quality 

correspond to those prepared with 0.1 and 0.2-µm toplayer supports, being gas-tight before 

template removal and showing n-butane/H2 separation factor of about 60 after calcinations. In 

contrast, the membranes synthesized with 0.5 and 0.8-µm support toplayers were not 

statistically gas-tight before template removal, reflecting an absence of complete pore 

plugging. These latter materials show, accordingly, extremely low n-butane/H2 separation 

factors (<20). To derive a logical conclusion as regards the influence of porous structure of 
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hollow fibre on separation performance of nanocomposite MFI-alumina hollow fibre 

membranes, a detailed investigation by another student was going on at the time this 

dissertation was compiled. However, this study serves as an impetus to the on-going 

investigation.  

5.5 Concluding remark 

As it has been demonstrated in this chapter, nanocomposite MFI-alumina hollow 

fibres are promising candidates for selective p-Xylene separation from a ternary vapour 

mixture of xylene isomers. The MFI-alumina fibres show a maximum p-Xylene flux of        

4.5 µmol.m-2.s-1 at 573 K, with no indication of possible further increase in flux beyond this 

temperature. As far as could be ascertained, a report on the evaluation of separation 

performance of nanocomposite MFI-alumina hollow fibre membranes for xylene vapour 

mixture separation has not surfaced in any open literature until now.The advantage of 

nanocomposite MFI-ceramic hollow fibre is not only limited to the possibility of performing 

selective separations at high temperatures, but its higher fluxes over conventional randomly 

oriented MFI zeolite films due to their thin effective thickness (<1 µm) is an addition. Hollow 

fibres also offer the added advantage of membrane surface-to-volume ratios as high as 3000 

m2/m3 compared to more conventional membrane tubes. For instance, a 5-fibre bundle 

occupying the volume meant for a single alumina tube could double the p-Xylene 

productivity operating at the temperature where the maximum flux is obtained, taking into 

account the higher separation surface of the bundle (5 x 9.94 ∼ 50 cm2 vs. 26 cm2 for alumina 

tubes). Using this type of system might be instrumental in reducing both the size and cost of 

permeating modules for future xylene separation processes.  

On the influence of porous structure of hollow fibres on the gas/vapour separation 

performance, the results of the preliminary study, as reported in this chapter, have shown that 

good fibre supports are necessary to obtain defect-free and high separation-performance 

nanocomposite MFI-alumina hollow fibre membranes for xylene vapour mixture separation. 

However, the results presented in this work open up a research line to scale-up the fibre 

preparation process aimed at obtaining fibre bundles for xylene isomers separation. 

For quick dissemination of the novel contributions described in this chapter to the 

scientific community, two articles have evolved. One is already published in the Journal of 

Membrane Science (J.  Membr.  Sci.) and the second has been accepted for publication in  the 

same journal. 
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Chapter 6: Experimental study of m-Xylene isomeriza tion in e-ZCMR 

This chapter reports the study of the influence of operating variables and reactor 

configuration on the performance of an extractor-type zeolite catalytic membrane reactor, 

having a nanocomposite MFI-alumina membrane tube as separation unit, during m-Xylene 

isomerization over Pt-HZSM-5 catalyst. Results obtained were compared with existing 

literature to arrive at logical conclusions.   

6.1 Introduction 

Limited material and energy resources have increasingly become a challenge for 

future chemical production but process intensification can contribute to the solution of this 

problem. From an engineering standpoint the vision of process intensification through 

multifunctional reactors has activated research on catalytic membrane reactors. According to 

the IUPAC definition, a membrane reactor is a device combining a membrane-based 

separation and a chemical reaction in one unit [193]. So far this engineering vision of a 

chemical membrane reactor could not be realized due to a lack in temperature resistant and 

chemically stable and highly selective membranes. During the last few years, inorganic 

membranes based on ceramics, zeolites, metals, carbon or as a hybrid material have been 

developed so that the realization of a chemical membrane reactor is increasingly possible. 

Regarding p-Xylene production via xylene isomerization in extractor-type zeolite 

catalytic membrane reactor (e-ZCMR), limited study has appeared in the literature. The 

combination of a supported MFI membrane (film-like) with an isomerization catalyst in an   

e-CMR (hereinafter referred to as 'e-ZCMR') to promote p-Xylene production has been 

proposed in a few number of previous studies [190,198,201]. In the case of catalytically 

active MFI membranes, the only example of application in the literature has been reported by 

Haag et al. [182]. Film-like MFI membranes have some shortcomings such as a mismatch 

between the thermal expansion coefficients of the support and the zeolite material at higher 

operation temperatures. This enhances permeation of undesirable isomers through            

inter-crystalline defects, contributing to a reduction of the membrane selectivity. The 

occurrence becomes more pronounced if the membrane support is stainless steel because of 

the higher disparity between its thermal expansion coefficients and that of the MFI phase. 

Taking into account that xylene separation and isomerization is industrially carried out at 

temperatures about 673 K, this limitation acts, in practice, as a hindrance for the 

industrialization of MFI membranes. 

Nevertheless, as pointed out in a series of  previous studies [191,207-209], the 

shortcoming ascribed to film-like membranes can be overcome by using nanocomposite          
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MFI-alumina membranes, where the zeolite crystals are embedded within the support pores 

instead of forming a film. The advantages of nanocomposite architectures compared to zeolite 

films include defect control and higher mechanical and thermal stability. These membranes 

have shown promising xylene isomer separation performance [186,242,248]. 

 Regarding the xylene isomerization using MFI-alumina membranes with 

nanocomposite architecture, a report of a preliminary study has shown an increase of about 

10% p-Xylene yield (when retentate and permeate amounts are combined) over a 

conventional FBR [13,186]. Therefore, this chapter reports further research efforts on           

m-Xylene isomerization over Pt-HZSM-5 catalysts in e-ZCMRs with nanocomposite        

MFI-alumina membrane tubes as separation and catalyst packing units. The influence of 

operating variables such as the gas hourly space velocity (GHSV = feed volumetric flow per 

catalyst volume), the reaction time and the catalyst location (i.e. packed in the membrane 

lumen or in the module shell) were also investigated. The results reported in this study open 

up an avenue for promoting the performance of e-ZCMRs when applied to m-Xylene 

isomerization. 

6.2  Experimental 

6.2.1  Membrane preparation, characterization and s eparation test  

The membrane used in this study was prepared via a pore-plugging synthesis 

technique on an asymmetrical Pall-Exekia α-alumina tube (o.d. 10 mm, i.d. 7 mm,          

length 15 cm, active permeation area 26 cm2) as described in Chapter 3 of this dissertation. 

Detailed description can be obtained from Refs. [191,207].  The cross-sectional layers of the 

support have the following mean pore diameters: outer layer, 12 µm; intermediate layer,     

0.8 µm; inner layer, 0.2 µm. The nanocomposite nature of the fibres was inspected by SEM 

(JSM-5800LV, 20 kV) coupled with EDX analysis (Edax Phoenix, 1-µm microprobe). The 

resulting nanocomposite membrane from this support has equivalent membrane thickness 

<3µm. The estimation of the membrane effective thickness was done indirectly through 

Maxwell-Stefan modelling of the pure N2 and CO2 permeance on the guidance of a previous 

study [209]. 

The quality of the membrane was evaluated by single gas hydrogen permeation and   

room-temperature n-butane/H2 binary mixture separation. The quality of the membrane was 

further confirmed with xylene ternary vapour mixture separation tests. The tests were 

conducted as described in the previous chapters. The p/m/o-Xylene vapour pressures feeding 

the membrane were, respectively, 0.51, 0.34 and 0.59 kPa. Nitrogen gas was swept over the 

permeate side of the membrane. Before isomerization, the influence of the sweep gas flow 

rate was investigated within the range 5-40 mL (STP)/min to obtain sweep gas flow rates 
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beyond which improvement on p-Xylene production (as a function of sweep gas flow 

rate on the permeate side) is not practically possible in e-ZCMR; that is, the sweep gas 

flow rate on the permeate side at which the xylene partial pressure became considerably low 

or null. More details on the set-up and experimental protocol used for performing the 

xylene separation tests can be found in Daramola et al.  [248].  

Prior to the separation tests, the membrane was mounted into the membrane module 

and subjected to a high temperature pre-treatment for 6 hours at 673 K to remove adsorbed 

species on the guidance of a previous study [235], and in all the xylene VP experiments, mass 

balances of each xylene isomer were closed with an experimental error <3%. Moreover, to 

prevent occurrence of viscous flow within the fibres during the separation, the transmembrane 

pressure (total) was kept as low as possible (∆P≈0, Wicke-Kallenbach method). 

6.2.2  Meta-xylene isomerization  

To evaluate the performance of extractor-type catalytic membrane reactors for xylene 

isomerization effectively, it is essential to avoid side reactions. Therefore, to avoid or 

minimise side reactions during m-Xylene isomerization in extractor-type catalytic membrane 

reactors, xylene isomerization is always carried out below equilibrium position [198]. 

Operating below the equilibrium position depends on: (i) the amount of catalysts; and (ii) the 

flow rate or gas hourly space velocity (GHSV) of the feed.  

In the preliminary study with e-CMR having a nanocomposite MFI-alumina 

membrane tube as separation unit, 2.18 g of Pt-HZSM-5 catalyst was used and the reactor was 

fed with feed at very high feed flow rate [13,186]. However, there was no indication as to 

whether the amount of the catalyst ensured conversion below equilibrium. To clarify this, an 

experimental investigation was conducted in this study to ensure that suitable amount of 

catalyst ensuring conversion below equilibrium, was used in the e-ZCMR. 

 In most of the previous kinetic studies of xylene isomerization over a catalyst, 

laboratory-scale integral reactor of stainless steel (id 2 cm) [42]; pulse microreactor 

[254,255]; gradientless reactor [256]; a riser simulator [39]; and continuous flow microreactor 

[257] have been used. However, in this study, a fixed-bed reactor (FBR) made of stainless 

steel tube having equivalent dimensions as the e-ZCMR was used to isomerize m-Xylene to 

p-Xylene. The lumen of the FBR was packed with 2.18 g of commercial Pt-HZSM-5 catalyst 

supplied by Süd-Chemie (specific surface > 500 m2.g-1; density, 0.53 g.cm-3). The catalyst 

was mixed with inert glass beads, increasing the total weight of the bed to 4.86 g. The 

catalytic bed was activated by passing H2 over the catalytic bed for 3 hours at 673 K [13,186]. 

The feed containing 2.30 kPa m-Xylene saturated in N2 gas was sent into the reactor at a flow 

rate of 10 mL(STP)/min, and the isomerization was carried out at a temperature range        
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573 K-673 K at a step increase of 50 K. The results obtained were compared with literature to 

ensure that the conversion was, indeed, below equilibrium position. 

Table 6.1 shows the results obtained from this investigation and Table 6.2 depicts the    

m-Xylene isomerization equilibrium product distribution as reported in open literature. When 

the results in the tables are compared, it is clear that the amount of catalyst, 2.18 g, will enable         

m-Xylene conversion below equilibrium at the feed flow rate of 10 mL (STP)/min. As a result 

of this, subsequent isomerization experiments reported in this study were carried out at the 

established condition (mass of catalyst: 2.18 g; total weight of the bed: 4.8 6 g; and feed flow 

rate: 10 mL (STP)/min). 

 

     Table 6.1: Near equilibrium product distribution in FBR obtained in this study  

Near equilibrium product distribution for m-Xylene isomerization (%) 
T (K) MX OX PX 
573 52.8 27.4 19.8 
623 51.9 28.5 19.6 
673 50.7 29.6 19.7 

 

     Table 6.2: Equilibrium product distribution obtained from open literature 

Equilibrium product distribution for m-Xylene isomerization (%) 
T (K) MX OX PX Refs. 
573 53.6 22.5 23.9 [258,259] 
623 52.9 23.4 23.7 [260] 
673 52.3 24.1 23.5 [258,259] 

 

 

The set-up used for carrying out the m-Xylene isomerization experiments with e-

ZCMR is the same as one used above and for the VP tests. Specifically, in the catalytic tests, 

the lumen of the tubular MFI-alumina membrane was packed with 2.18 g of commercial           

Pt-HZSM-5 catalyst to the configuration schematically depicted in Fig. 6.1 and Fig. 6.2. The 

catalyst was mixed with glass beads, increasing the total weight of the bed to 4.86 g and the 

catalytic bed was activated as described in section 6.2.2. Meta-xylene saturated in N2 was fed 

into the reactor at a partial pressure in the range 2.45-2.84 kPa and at a flow rate of               

10 mL(STP)/min, while the permeate side (for e-ZCMR) was swept with N2 at a flow rate of 

40 mL(STP)/min. The temperature was kept in the range 523-673 K. For comparison with a 

conventional FBR, a stainless steel tube with the same dimensions as the e-ZCMR was used 

and packed with the same amount of fresh Pt-HZSM-5 catalyst, while the isomerization 

reaction was carried out at the same operating conditions. Again, for comparison, some 
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experiments were carried out packing the catalyst between the outer side of the membrane 

tube, close to the outermost layer and the module shell. After attaining stability in 4 hours, the 

streams were sent to GC for analysis. 

 

  

Figure 6.1: Schematic of an e-ZCMR based on MFI-alumina catalytic membrane reactor with 
the catalyst packed in the lumen of the membrane tube.  

 

 

Figure 6.2: Schematic of an e-ZCMR based on MFI-alumina catalytic membrane reactor with 
the catalyst packed between the outer side membrane tube and the module shell. 
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For each experiment, m-Xylene conversion (XMX), p-Xylene yield (YPX) and p-Xylene 

selectivity (SPX) were calculated using the set of Eq. 6.1 to Eq. 6.7: 
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where Q, x, Y , and S   represent the volumetric flow rate in mL(STP)/min, mole 

fraction, yield and selectivity, respectively, of either, PX, MX or OX. The analysis of results 

was based on permeate-only mode and combined mode operations. Permeate-only mode 

considers products in the permeate stream and the combined mode considers both the 

permeate stream and the retentate. Some replicated experiments showed that m-Xylene 

conversion, p-Xylene yield and selectivity were accurate to within ±10%. 
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6.3  Results and discussion 

6.3.1  Membrane preparation, characterization and s eparation test  

After pre-treatment, the membrane prepared in this study showed a room-temperature 

pure hydrogen permeance of 0.31 µmol.m-2.s-1.Pa-1 and a separation factor of 66 for                

n-butane/H2 separation. This latter value reflects a good membrane quality in terms of low 

amount of inter-crystalline defects. Furthermore, the SEM micrograph (Fig.6.3) confirm the 

formation of a nanocomposite material on the substrate, that is, no continuous MFI film 

formation on the top of the support and good pore plugging of the 0.2 µm layer with zeolite 

crystals. The EDX analyses show an average Si/Al ratio of about 10-20 (semi-quantitative 

analysis) on the inner active layer. The material in the active layer corresponds accordingly to 

an Al-enriched HZSM-5 zeolite. 

Figure 6.4 shows the xylene coverage (in terms of xylene partial pressures) in the 

permeate side of the membrane as a function of sweep gas flow rate. From Fig.6.4, it can be 

observed that the xylene coverage (indicated by the p-Xylene partial pressures) decreased to a 

value of about  0.02 kPa from the value of about 0.18 kPa as sweep gas flow rate increased to 

40 mL(STP)/min (where the partial pressure of p-Xylene is small or ideally null) from            

5 mL(STP)/min. Beyond 40 mL(STP)/min, no further decrease in partial pressure of p-Xylene 

or xylene coveragre is practically possible. Thus, 40 mL(STP)/min was used throughout for 

isomerization in this study. Figure 6.5 confirms the p-Xylene preferential separation of the 

membrane, achieving a maximum p-Xylene flux of about 3.5 µmol.m-2.s-1 with a maximum   

p-Xylene permeance of about 10 nmol.m-2.s-1.Pa-1 at about 450 K, with p/o and p/m mixture 

separation factors up to 50 and 55, respectively. In most permeation experiments, no            

m-Xylene was found in the permeate streams. Accordingly, the corresponding partial 

pressures have been estimated from the detection limit of the GC (0.001 kPa). Furthermore, 

during the separation test, no isomerization products were detected in the permeate and the 

retentate streams indicated that the membrane was inert to xylene isomerization during this 

period. It should be emphasized also that the membrane maintained a repeatable separation 

performance despite several thermal cycles it went through to conduct the separation test. 

This testifies to the high thermal stability of the membrane. 

The permeation behaviour of p-Xylene as a function of temperature depicted in       

Fig. 6.4 is qualitatively consistent with the trends already found in previous studies on either 

nanocomposite MFI-alumina membranes or hollow fibres [186,242,248]. The p-Xylene flux 

shows a maximum value of 3.5 µmol.m-2.s-1, at about 450 K, corresponding to a permeance of 

about 9.5 nmol.m-2.s-1.Pa-1. The highest attainable p/o and p/m xylene separation factors are 

about 50 and 55, respectively. It is noteworthy that, compared to  the  previous studies 

[186,242,248], the membrane shows comparable p/o and p/m separation factors at the 
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maximum temperature, while usually the former separation factors are about one order of 

magnitude higher. The lower capacity of this membrane, to discriminate o-Xylene, should be 

attributed to a higher amount of intercrystalline defects in the membrane, as can be deduced 

from the lower n-butane/H2 separation factors at room temperature (66 vs. >100). 

Additionally, this observation might be attributed to the higher concentration of o-Xylene in 

the feed in this study compared to the previous study [242]. At higher comcenration of o-

Xylene, o-Xylene flux through the membrane is enhanced due to its higher coverage at the 

feed side. 

 

 

 

 
 

Figure 6.3: SEM micrograph of the membrane showing formation of a nanocomposite zeolite 
material embedded in the 0.2 µm layer of the support. 
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Figure 6.4: Separation performance of nanocomposite MFI-alumina membranes as a function 
of sweep gas flow rate.  
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Figure 6.5: Separation performance of nanocomposite MFI-alumina membranes as a function 
of temperature. Experimental conditions: Feed flow rate, 10 mL(STP)/min; sweep gas flow 
rate for an e-ZCMR, 15 mL(STP)/min; feed composition (p/m/o), 0.51 / 0.34 / 0.59 kPa. 

 



_____________________________________________________________________ 

__________________________________________________________________ 101 

6.3.2  Meta-xylene isomerization 

Figure 6.6 plots the results for a representative m-Xylene isomerization experiment 

performed on an e-ZCMR at 573 K. A significant transformation of m-Xylene into p-Xylene 

is obtained, with a p-Xylene yield and selectivity, about 25 and 45%, respectively, for 

combined mode operation. 

Figure 6.7 to Figure 6.9 plot the influence of temperature (range 523-673 K), GHSV, 

reaction time and catalyst position in the reactor (i.e. in the tube lumen or in the module shell) 

on the m-Xylene isomerization performance of a FBR and an e-ZCMR packed with               

Pt-HZSM-5 catalyst in terms of p-Xylene yield, selectivity and m-Xylene conversion. As can 

be seen in Fig. 6.7 to Fig 6.9, higher m-Xylene conversions and p-Xylene yields can be 

obtained in the e-ZCMR compared to the FBR with the catalyst packed in the tube lumen due 

to selective p-Xylene extraction from the reaction zone by the membrane. The m-Xylene 

conversion reaches a value of about 62% at 523 K in the ZCMR, the p-Xylene yield and 

selectivity attaining values, up to 28% and 46%, respectively, in combined mode. 

Table 6.5 lists the p-Xylene and o-Xylene productivities at 573 K at permeate-only 

mode and combined mode for the three reactor configurations considered in this study, 

namely FBR, e-ZCMR-IN and e-ZCMR-OUT. As can be seen, the higher p-Xylene 

productivity corresponds to the e-ZCMR-IN configuration, approaching a value of about    

12.1 nmol.s-1.gcat
-1 at combined mode operation. 
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Figure 6.6: m-Xylene isomerization over Pt-HZSM-5 in an e-ZCMR at 573 K with the 
catalyst packed in the tube lumen.The combined mode corresponds to the addition of the 
retentate and permeate streams. Experimental conditions: feed composition, 2.30 kPa m-
Xylene in 10 mL(STP)/min N2; sweep gas flow rate into e-ZCMR, 40 mL(STP)/min; reaction 
time, 30 min. 
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Figure 6.7: m-Xylene isomerization over Pt-HZSM-5 in an e-ZCMR and a FBR as a function 
of temperature and catalyst packing (IN, catalyst packed in the tube lumen; OUT, catalyst 
packed in the shell) showing the p-Xylene yield. Experimental conditions: feed composition, 
2.30 kPa m-Xylene in 10 mL(STP)/min N2; sweep gas flow rate into e-ZCMR, 40 
mL(STP)/min; reaction time, 30 min. 
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Figure 6.8: m-Xylene isomerization over Pt-HZSM-5 in an e-ZCMR and a FBR as a function 
of temperature and catalyst packing (IN, catalyst packed in the tube lumen; OUT, catalyst 
packed in the shell) showing the p-Xylene selectivity. Experimental conditions: feed 
composition, 2.30 kPa m-Xylene in 10 mL(STP)/min N2; sweep gas flow rate into e-ZCMR, 
40 mL(STP)/min; reaction time, 30 min. 
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Figure 6.9: m-Xylene isomerization over Pt-HZSM-5 in an e-ZCMR and a FBR as a function 
of temperature and catalyst packing (IN, catalyst packed in the tube lumen; OUT, catalyst 
packed in the shell) showing the m-Xylene conversion. Experimental conditions: feed 
composition, 2.30 kPa m-Xylene in 10 mL(STP)/min N2; sweep gas flow rate into e-ZCMR, 
40 mL(STP)/min; reaction time, 30 min. 



_____________________________________________________________________ 

__________________________________________________________________ 104 

. 

0.0

0.2

0.4

0.6

0.8

1.0

560 580 600 620 640 660 680

M
ol

ar
 c

om
po

si
tio

n 
(p

er
m

ea
te

)

T (K)

o-xylene, ZCMR-IN

p-xylene, ZCMR-IN

m-xylene, e-ZCMR-OUT

p-xylene, ZCMR-OUT

o-xylene, ZCMR-OUT

m-xylene, e-ZCMR-IN

 

Figure 6.10: p-Xylene, m-Xylene and o-Xylene molar composition in permeate in ZCMR-IN 
and ZCMR-OUT configurations as a function of temperature. Experimental conditions: feed 
composition, 2.30 kPa m-Xylene in 10 mL(STP)/min N2; sweep gas flow rate into e-ZCMR, 
40 mL(STP)/min; reaction time, 30 min.  
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Figure 6.11: m-Xylene isomerization over Pt-HZSM-5 in an e-ZCMR at 673 K as a function 
of the GHSV. Experimental conditions: sweep gas flow rate into e-ZCMR, 40 mL(STP)/min; 
reaction time, 30 min. 
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Figure 6.12: m-Xylene isomerization over Pt-HZSM-5 in an e-ZCMR at 673 K and                  
2.84-kPa m-Xylene feed partial pressure as a function of the reaction time. Experimental 
conditions: sweep gas flow rate into e-ZCMR, 40 mL(STP)/min. 

 

Table 6.3: Productivities in FBR, e-ZCMR-IN and e-ZCMR-OUT configurations at         
permeate-only mode (top values) and combined mode (bottom values). Experimental 
conditions: temperature, 573 K; m-Xylene feed partial pressure, 2.84 kPa; feed flow rate, 10 
mL(STP)/min; sweep gas flow rate, 40 mL(STP)/min 

Productivity (nmol.s-1.gcat
-1) Product 

FBR e-ZCMR-IN e-ZCMR-OUT 

p-Xylene 
- 

10.7 
2.0 
12.1 

1.4 
11.2 

o-Xylene 
- 

14.9 
0.1 
15.4 

0.8 
15.4 

 

 

The results plotted in Fig. 6.7 show that, packing the catalyst in the membrane lumen, 

an increase of about 18% in the p-Xylene yield (from 18 to 28%) at 523 K can be reached in 

an  e-ZCMR over a conventional FBR due to selective p-Xylene removal by the membrane 

(the p-Xylene selectivity in permeate-only mode approaches 100% < 573 K). The difference 

matches the p-Xylene yield measured for permeate-only mode (∼5%). The higher p-Xylene 

yield at lower temperatures (i.e. 523 K) can be attributed to a higher concentration between 

the membrane and catalyst activities, providing a higher efficiency of the membrane reactor 

and consequently a higher differential in terms of p-Xylene yield compared to a FBR. Note 
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that the maximum p-Xylene permeance and membrane selectivity to p-Xylene is obtained at 

about 473 K. Moreover, lower temperatures are also beneficial due to the reduction of 

formation of by-products (i.e. toluene, trimethylbenzene and ethybenzene).  

Regarding the effect of GHSV on the isomerization in e-ZCMR, Fig. 6.11 shows that 

residence time does not exert a remarkable influence on either the p-Xylene yield or the 

selectivity. This observation, also reported by Zhang et al. [190], can be attributed to a 

reduced influence of p-Xylene production through an intermolecular transalkylation 

mechanism responsible for toluene and trimethylbenzene formation, the diphenylmethane 

intermediates of this reaction acting as promoters of coke formation on strong acid sites [261]. 

6.3.3  Catalyst and membrane stability  

As depicted in Fig.6.12, the p-Xylene yield, p-Xylene selectivity and m-Xylene 

conversion remain practically unchanged by increasing the reaction time from 10 to 90 min, 

this reflecting that a 'true' steady state was attained during the period. It is good to note that 

the experiment was conducted continuously for about 8 hours to collect the data for the data 

points reported in Fig. 6.12. Therefore, the time indicated in Fig. 6.12 is the reaction time 

before sampling to obtain data for each data point. The observation suggests that, although 

coke might be formed on the catalyst surface during the reaction, as evidenced from the 

mismatch in mass balances (see Fig. 6.7 to Fig. 6.9); this does not promote catalyst 

deactivation throughout the experimental period. As a matter of fact, the maximum computed 

coke loading on the catalyst after 90 minutes continuous operation is lower than 0.1 wt.% for 

both FBR and e-ZCMR configurations (see Daramola et al.  [262]). 

As explained in Daramola et al. [262], the coke formation rate is inhibited at lower 

temperatures (i.e. 523 K) in configuration e-ZCMR-IN compared to the FBR. This result is 

accompanied by a reduction of the m-Xylene conversion and an increase of the p-Xylene 

yield, as shown in Fig. 6.7 and Fig. 6.9. As reported and explained in [262], a reduction of 

coke formation occurred at lower temperatures in e-ZCMR-IN configuration. The reduction 

of coke formation in e-ZCMR-IN configuration at lower temperatures suggests a higher role 

of m-Xylene isomerization through an intramolecular catalytic mechanism based on 

benzenium-ion intermediates instead of an intermolecular transalkylation mechanism 

promoting coke generation by disproportionation. Therefore, the reduction of coke formation 

in e-ZCMR-IN configuration should necessarily involve a reduction of diphenylmethane 

intermediates due to the selective p-Xylene extraction by the membrane, promoting 

isomerization through an intramolecular mechanism. This effect is expected to be more 

intense in the case of HZSM-5 catalysts than for HFAU zeolites due to the reduced pore size 

of the ZSM-5 channels, providing higher steric hindrance and inhibiting therefore the 

formation of bulky diphenylmethane intermediates. 
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6.3.4  Effect of reactor configuration  

Regarding the effect of reactor configuration, Fig. 6.7 shows that, for the three 

configurations considered (i.e. e-ZCMR-IN, e-ZCMR-OUT and FBR), the p-Xylene yield 

decreases with temperature in the range 523-673 K (combined mode). However, while the          

p-Xylene yield evolves practically linearly with temperature in configuration e-ZCMR-IN 

while reducing the temperature, the trend becomes inhibited at lower temperatures for the 

other two configurations, showing almost a plateau.Furthermore, Fig. 6.10 depicts the molar 

compositions of p-Xylene, m-Xylene and o-Xylene in the permeate stream. As can be seen in 

Fig. 6.10, in e-ZCMR-IN, molar composition of p-Xylene approached 1.0 at about 600 K, but 

decreased as temperatures increased. But the molar composition of o-Xylene at this 

temperature was <0.1. At 600 K, the molar compositions of p-Xylene and o-Xylene in e-

ZCMR-OUT were <0.2. These observations should be ascribed to the positive role of the 

membrane in p-Xylene extraction in the former case. In the case of configuration e-ZCMR-

OUT, the trend of the p-Xylene yield with the temperature suggests a reduced effect of the 

membrane on the catalytic performance. The lack of membrane efficiency might be explained 

on the basis of diffusion limitations in the membrane support, as permeation proceeds from 

the outer surface to the inner top layer. Similar conclusions have been addressed recently by 

Zhang et al. [190]. 

6.3.5  Results compared with literature 

Table 6.4 shows the results of this study compared with comparable results listed in 

Table 2.6 and  reported in the literature on m-Xylene isomerization in e-ZCMRs using          

Pt-HZSM-5 and Pt/alumina-silica catalysts. Despite the different reaction conditions 

considered by these authors (e.g., GHSV, feed composition, membrane geometry), the results 

presented are comparable in terms of p-Xylene yield and selectivity enhancement. This could 

be attributed to the higher quality of the nanocomposite membranes prepared and used in this 

study, with permeances up to   9.5 nmol.m-2.s-1.Pa-1 and p/o and p/m-Xylene separation factors 

>50. Another interesting outcome of the selectivity of these membranes is the high purity of            

p-Xylene in the permeate, achieving molar fractions of about 95% at 573 K. Note that, for 

comparison, Zhang et al. [190] achieved p/m separation factors of only 16. The results 

presented in this study also improve significantly on the p-Xylene yields previously reported 

by van Dyk et al. [186]. 
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Table 6.4: Comparison of the results obtained in this study with the literature  

P-Xylene yield (%) 
P-Xylene sel. 

 (%) Membrane type/support T (K) 

e-ZCMR FBR e-ZCMR FBR 

Refs. 

Film-like Inert Ba-ZSM-
5/SS e-CMRb 

643 25 21 69 52 [198] 

Inert silicalite/α-alumina 
diska 

603 21.3 18.5 44.6 35 [190] 

Catalytic H-ZSM-5/SS 
disk e-CMRa 

673 6.9 5.87 66.7 55.6 [182] 

Nanocomposite inert 
silicalite-1/ tubular ∝-
alumina e-ZCMRa 

577 11.2 10.2 65 58 [186] 

Nanocomposite MFI-
alumina e-ZCMRa 

523 27 23 49 42 This 
study 

am-Xylene as feed; bternary mixture of xylene isomer as feed 

 

6.4  Ultra-pure p-Xylene production via m-Xylene is omerization in e-ZCMR 

In the previous section, an attempt was made to investigate the performance of           

e-ZCMR during m-Xylene isomerization over Pt-HZSM-5 catalyst and to compare the 

performance of e-ZCMR with a FBR for the transformation of m-Xylene to p-Xylene via 

isomerization reaction over a Pt-HZSM-5 catalyst. Furthermore, the influence of operating 

variables on the performance of the system was studied. Overall, the results have shown that 

e-ZCMR perform better than the FBR. The study has shown also that the p-Xylene purity in 

the permeate could reach 95%. However, for industrial application of p-Xylene, p-Xylene 

purity >95% is required. To achieve this purity level based on membrane technology,     

defect-free MFI membranes are necessary.  

In Chapter 4 of this dissertation, separation performance of a tubular nanocomposite   

MFI-alumina membrane is reported. The separation performance indicated that the membrane 

has little or no inter-crystalline defects. Hence, the membrane is “defect-free”. The membrane 

was used in an e-ZCMR to explore the possibility of obtaining ultra-pure (~100% purity)       

p-Xylene from m-Xylene isomerization over Pt-HZSM-5 catalyst. The experimental 

procedure in this test followed the procedure described in sub-section 6.2.2. Moreover, for 

better understanding of the behaviour at lower reaction temperature, the reaction was 

conducted from 473 K to 573 K. To provide concrete evidence for the influence of sweep gas 
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flow rate on the performance of e-ZCMR during m-Xylene isomerization, the experiment was 

conducted at sweep gas flow rate of 5 mL(STP)/min. 

6.4.1  Results and discussion  

Figure 6.13 showed that the p-Xylene yield increases with decrease in temperature. 

This is consistent with the observation reported in sub-section 6.3.2. The p-Xylene yield 

increased from 2.2% at 573 K approaching  a maximum of  about 2.7 % at 473 K               

(see Fig 6.13) with p-Xylene purity in the permeate approaching  molar fractions of about 

100% (see Figure 6.14 and Table 6.5) in the permeate-only mode. Figure 6.14 also plots the 

results for a representative m-Xylene isomerization experiment performed on the e-ZCMR at 

473 K. At 473 K, purity of p-Xylene and para-selectivity of the membrane were both 100% in 

permeate-only mode (see Fig. 6.14). In the combined mode operation, a maximum p-Xylene 

yield of 19.0 % was obtained at 473 K (see Figure 6.14). The relative increase in p-Xylene 

selectivity and p-Xylene purity, obtained with this membrane tube in the permeate-only mode 

compared to the previous studies (see section 6.3 and  [262]), could be attributed to its higher 

separation factors (p/o and p/m) and p-Xylene permeance. In fact, throughout the temperature 

range investigated, the membrane displayed 100% selectivity to p-Xylene in permeate-only 

mode, but the selectivity reduced to about 48% at combined mode (Fig. 6.15). 
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 Figure 6.13: p-Xylene yield as a function of temperature Experimental conditions: feed 
composition, 2.30 kPa m-Xylene in 10 mL(STP)/min N2; sweep gas flow rate into e-ZCMR, 5 
mL(STP)/min; reaction time, 30 min.  
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Figure 6.14: Xylene distribution in the feed and the product streams (permeate and retentate) 
at combined mode in e-ZCMR. Experimental conditions: Feed composition: 0.37 mL/min-
MX. Sweep gas flow rate: 5mL (STP)/min. Reaction temperature: 473 K. 

 

 
Figure 6.15: p-Xylene selectivity and m-Xylene conversion as a function of temperature in     
e-ZCMR.  Experimental conditions: feed composition, 2.30 kPa m-Xylene in 10 
mL(STP)/min N2; sweep gas flow rate into e-ZCMR, 5 mL(STP)/min; reaction time, 30 min. 
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                          Table 6.5: Representative performance of e-ZCMR  at 473 K 
 e-ZCMR 
 Permeate-only mode Combined mode 

PX yield (%) 2.7 19.0 
PX selectivity (%) 100.0 46.7 

MX conversion (%) - 56 
 
 

Comparing the p-Xylene yield in the permeate-only mode with the results reported in 

a previous study [262], a disparity of about 1.4% was observed (although at a lower 

temperature, 473 K; see Fig. 6.14 and Table 6.5). This disparity could be attributed to the 

lower quality of the membrane used in the previous study compared to this study (p/o>400 vs 

p/o=50) and partly to the sweep gas flow rate used (5 mL(STP)/min in this study versus             

40 mL(STP) in ref. [262]. It is expected that at a higher sweep gas flow rate, the p-Xylene 

flux through the membrane is enhanced due to the decrease in xylene coverage on the 

permeate side [242]. Furthermore, Table 6.6 shows the productivity of p-Xylene and              

o-Xylene in e-ZCMR in permeate-only mode (top values) and combined mode (bottom 

values) at 473 K. As can be seen in Fig. 6.6, the p-Xylene productivity is 1.8 nmol.s-1.gcat
-1  in 

permeate-only mode with no o-Xylene. But in combined mode, p-Xylene and o-Xylene 

productivities are 17.8 nmol.s-1.gcat
-1   and 22.5 nmol.s-1.gcat

-1 , respectively.  

Nevertheless, the results presented in this study are consistent with the behaviour 

observed in the previous studies and have shown that it is possible to produce ultra-pure        

p-Xylene with e-ZCMR. The results have shown also the possibility of obtaining an increase 

in p-Xylene yield in e-ZCMR compared to a FBR at operating temperature lower than the 

operating temperature currently applied in the industry (about 673 K), but with a trade-off 

between p-Xylene yield and p-Xylene selectivity at this temperature i.e., as far as       

combined-mode operation is concerned. Regarding the p-Xylene purity, at 473 K an 

improvement of 4.5% is obtained compared to the previous studies. Results presented in this 

section also affirm the possibility of p-Xylene purity enhancement in e-ZCMR even at a lower 

temperature. At the same time, the results of the study further substantiate the relative 

advantages of the nanocomposite architecture over the “film-like” in MFI-type zeolite 

membranes. 
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Table 6.6 Productivity in e-ZCMR in permeate only mode (top values) 
and combined mode (bottom values) in (nmol.s-1.gcat-1) at 473 K. 

 

 

 
 

 

6.5  Concluding remark 

The results presented in this study further substantiate and confirm the potential of          

e-ZCMRs compared to the conventional FBRs for m-Xylene selective isomerization to          

p-Xylene. The membrane reactor has displayed a maximum p-Xylene yield of 5.1% at 523 K 

when computed at permeate-only mode, decreasing with temperature. At combined mode, the 

p-Xylene yield was about 28%, showing an increase of about 18% over an equivalent       

fixed-bed reactor. The selectivity of the membrane approached 100% towards p-Xylene at 

permeate-only mode, displaying a maximum value of about 42% at 523 K during combined 

mode. Higher performance was obtained when the catalyst packing was close to the inner top 

layer of the membrane support. Furthermore, the study revealed that gas-hourly-space-

velocity (GHSV) does not have significant influence on the performance of e-ZCMR.  

On the basis of the high p/o and p/m- xylene separation factors offered by the 

membrane, xylene compositions of about 95% can be achieved in the permeate stream for 

both membrane reactor configurations. Additionally, using a defect-free MFI-alumina 

membrane tube with p/o separation factor >400, it is shown that ultra-pure p-Xylene with 

xylene composition approaching 100% in the permeate side can be obtained even at a lower 

temperature of 473 K. However, more research efforts are needed in terms of membrane 

development to increase p-Xylene flux through the membrane while keeping the p-Xylene 

selectivity at present values. It is noteworthy to mention that during the experiments described 

in this chapter, about 16-20% of xylene was lost to formation of by-products such as  

trimethylbenzenes (TMBs) or Toluene (T) or ethylbenzene (EB) via disproportionation of m-

Xylene in the retentate side (as vividly shown by the discrepancies in the mass balance in Fig. 

6.6 and Fig. 6.14). Interestingly, none of these by-products permeated through the membrane 

into the permeate side (no related peaks observed in the GC analysis of the permeate stream). 

Inability of these products to permeate through the membrane could be attributed to the good 

quality of the membranes used in this study, which could be attributed to the nanocomposite 

architecture of the membranes. Additionally, the utmost goal of the experimental studies was 

Product e-ZCMR 

PX   1.8 
17.8 

OX   0.0 
22.5 
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to evaluate the performance of the membranes (in terms of paraselectivity, p-Xylene yield and 

p-Xylene purity) rather than the performance of the catalyst during the m-Xylene 

isomerization, therefore, the contribution of the by-products toward the mass balance in the 

retentate side was neglected. This explains the discrepancy observed in the mass balance 

between the compositions in feed and in the combined mode operation as depicted in Fig. 6.6 

and Fig. 6.14., respectively. This observation is a pointer to the fact that development of e-

ZCMR-adaptable high selective catalysts is essential for xylene isomerization in e-ZCMR 

because the catalyst used in this study was originally designed for fixed-bed reactors. Also, it 

is noteworthy to mention that the membranes were inert during the separation test because no 

isomerization product was detected in both the retentate and permeate streams. 

The results presented in this chapter also have shown that it is possible to obtain 

100% purity for p-Xylene in the permeate-only mode operation with p-Xylene selectivity 

approaching 100% in an e-ZCMR. With these results, the possibility of cutting down 

operational cost via a reduction in energy consumption could be feasible with the application 

of e-CMR because no additional units are needed to get ultra-pure p-Xylene. However,  

“defect-free” MFI-type zeolite membranes with appreciable p-Xylene flux are necessary to 

make this technology attractive and competitive with existing technologies. Furthermore, 

compared to conventional “film-like” membranes, MFI-type membranes with nanocomposite 

architecture could be a promising option to obtain defect-free MFI membranes for application 

in e-ZCMR to produce high purity p-Xylene.  

To improve on p-Xylene flux through the membrane, membranes with smaller 

effective membrane wall thickness are essential. As demonstrated in Chapter 5 of this 

dissertation and also reported by Daramola et al. [248], the application of nanocomposite 

MFI-ceramic hollow fibre membranes for xylene isomer separation could increase p-Xylene 

flux by about 30% over conventional membrane tubes due to their much lower MFI effective 

thickness (<1 µm vs. >3 µm). Another advantage of hollow fibres is their higher           

surface-to-volume ratios. These fibres could be optimized into fibre modules. The modules, 

when used in e-CMR, could increase p-Xylene productivity while reducing module layouts. 

Alternatively, the retentate streams can be recycled, leading into increased production of 

ultra-pure p-Xylene in the permeate side. The novel contributions described in this chapter 

have resulted into two scientific manuscripts publishable in international scientific journals. 

One has been accepted for publication in Catalysis Today and the second one is under review 

in Applied Catalysis A: General. 
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Chapter 7: Modelling of e-ZCMR during m-Xylene isom erization 

Modelling and sensitivity analysis of m-Xylene isomerization over Pt-HZSM-5 

catalyst in an e-ZCMR equipped with a nanocomposite MFI-alumina membrane tube as 

separation unit, are reported in this chapter. Model output was compared with experimental 

results while sensitivity analysis was also carried out to evaluate the sensitivity of the model 

to changes in certain process/design parameters. It must be stressed that this modelling study 

was of a preliminary nature and not the main focus of the work.  Nevertheless, it provided 

useful assistance in understanding the fundamental behaviour of e-ZCMR during m-Xylene 

isomerization and offered a platform upon which further modelling studies on m-Xylene 

isomrization in e-ZCMR could be built.  

 7.1  Introduction  

Mathematical modelling of chemical and biochemical processes plays an increasing 

role in today's competitive industries. Such models are typically needed for various tasks 

including process design, process analysis and optimization of process conditions, as well as 

for model-based control [263]. Application of mathematical models to the design of 

membrane processes is considered to be a useful tool in understanding these processes      

[264-267]. 

In the area of catalytic membrane reactors for xylene isomerization, modelling studies 

are still limited. For the application of e-ZCMR for xylene isomerization to p-Xylene, the first 

and perhaps the only work in open literature was reported by Deshayes et al. [201]. These 

authors reported a modelling study of the xylene isomerization reaction in an industrial FBR, 

focusing on the effect of incorporating multi-tubes containing Na-ZSM-5/SS membranes on 

the catalytic performance of the reactor. They predicted a 12% increase in p-Xylene yield 

over an equivalent FBR. However, to gain more insight into the behaviour of extractor-type 

catalytic membrane reactors for xylene isomerization, an extensive modelling study is 

essential. In view of the aforementioned comments, this chapter presents mathematical 

modelling and simulation of a laboratory-scale e-ZCMR having a nanocomposite              

MFI-alumina membrane tube as separation unit. The overall goal was to understand the 

fundamental behaviour of the system and to compare the simulation results with experimental 

results for model validation. Compared to the study of Deshayes et al. [201] and a recent 

study by Yeong et al. [268], where an acid functionalized catalytic membrane reactor 

prepared on disk shape configuration was modelled, in this study a nanocomposite           

MFI-alumina membrane prepared on α-alumina support via pore-plugging technique was 

used. Advantages of nanocomposite architecture over "film-like" have been highlighted and 

motivated in the previous chapters. 
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7.2  Model development and formulation  

 The e-ZCMR modelled in this study consists of a catalyst packed-bed membrane 

reactor. The lumen of the membrane tube is packed with catalyst, while the permeate side of 

the membrane is kept under counter-current sweep gas flow. In solving reaction engineering 

problems, mass balance, rate law and transport law are important. These are dealt with in the 

subsequent sections. 

7.2.1  Reaction model 

Two reaction schemes, 1,3-methyl shift and 1,2-methyl shift, have been proposed and 

used in literature to model xylene isomerization reactions [42,255,269-271]. In the 1,3-methyl 

shift, o-Xylene could be converted directly into p-Xylene and vice versa (o-Xylene to              

p-Xylene). This phenomenon is explained by the fast movement of the para isomer inside the 

porous catalyst which might cause an apparent 1,3 shift of the methyl group in the benzene 

ring [47]. The second scheme on the other hand, assumes that the reaction proceeds via       

1,2-methyl shift only (o-Xylene to m-Xylene to p-Xylene) where one of the methyl groups in 

m-Xylene might shift to the adjacent positions through a series of consecutive, reversible     

1,2-methyl shift mechanism and become  o-Xylene or p-Xylene [272-278]. 

 In the study of the kinetics of xylene isomerization over zeolitic catalysts, several 

modeling techniques have been applied to obtain numerous kinetic parameters of this 

complex reaction system. Techniques that have been used include analytical methods such as 

the Wei-Prater method [271,273,274], Laplace transform [278] and finite integral transform 

[255,256], Curve fitting method [42] and least-squares method [256,279]. Numerous kinetic 

parameters have been reported by these authors, adopting 1,3-methyl shift pathway             

(see Fig .7.1)  or 1,2-methyl shift pathway (see Fig.7.2) for xylene transformation over 

zeolitic catalysts.  

 In the scientific community, there has been a controversy on which pathway is the 

most suitable. In this regard, a recent work by Al-Khattaf et al. [280] provides ample evidence 

to suggest that direct inter-conversion between o- and p-Xylene isomers (a 1,3-methyl shift) 

occurs with the same rate as the conversion of m- to o-Xylene (a 1,2-methyl shift) over ZSM-

5 zeolite catalyst. The authors also argued that the 1,3-methyl shift reaction path is a better 

representation of the xylene isomerization mechanism in ZSM-5 zeolite than the 1,2-methyl 

shift. Therefore, going by the outcome of the work of Al-Khattaf et al. [280], the reaction 

modelling in this section adopts 1,3-Methyl shift  for the transformation of m-Xylene over      

Pt-HZSM-5 catalyst  as reported  in the experimental study described in Chapter 6 of this 

dissertation. 
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Figure 7.1: Xylene isomerization pathways of 1,3-methyl shift pathway (adapted from [280]). 

 

 

 

Figure 7.2: Xylene isomerization pathways of 1,2-methyl shift pathway(adapted from [280]). 
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 Based on the 1,3-methyl shift and for model simplification, it was assumed that no 

toluene (T), ethylbenzene (EB) or trimethylbenzene (TMBs) is present in the product streams 

because in the experimental studies, the aim was to evaluate the separation performance of the 

inert MFI-aumina membrane during e-ZCMR operation rather than investigating the catalyst 

performance. It is good to emphasize here that by-products such as T, EB and TMBs are 

usually produced at the equilibrium point of m-Xylene isomerization reaction due to 

disproportionation of m-Xylenes [67,280]. Thus, in this model, 0654 === kkk . The kinetic 

model based on the 1,3-methyl shift, as presented in this chapter, assumes first order kinetics. 

The overall kinetic model is presented below: 

 

Rate of formation of p-Xylene:  

( ) PXOXMXPX CkkCkCkr 3131 +−+= −−                                                                               (7.1) 

 

Rate of consumption of m-Xylene: 
 
 ( ) OXPXMXMX CkCkCkkr 2121 +++−= −                                                                            (7.2) 

 
 
Rate of formation of o-Xylene: 
 
 ( ) OXPXMXOX CkkCkCkr 3232 −− +−+=                                                                             (7.3) 

 

If the xylene vapours are assumed to behave as ideal gases, then: 

 

RT

P
C PX

PX =                                                                                                                              (7.4) 

 
 

RT

P
C MX

MX =                                                                                                                             (7.5) 

 
 

RT

P
C OX

OX =                                                                                                                              (7.6) 

 
 

PXC , MXC , OXC  are the molar concentration in mol.m-3 of PX , MX  and OX , respectively.   

1k , 1−k , 2k , 2−k , 3k , 3−k  are the reaction rate constants in 1−s and PXr , OXr , MXr  are the rate 

of reaction  in mol.m-3.s-1. Moreover, if OXMXPXi ,,= ,  the partial pressures in the tube 

side and the shell side are given as : 
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Incorporating Eq. 7.4 to Eq. 7.7 into Eq. 7.1 to Eq. 7.3, gives: 
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PXP , MXP  and OXP  are the partial pressures ofPX , MX  andOX , respectively, in N.m-2. 
t

iQ is the molar flow rate of component i ( i = PX , MX orOX ) in mol.s-1 in the tube side  

and OP  is the operating  pressure in N.m-2.  

7.2.2  Reactor model  

The model presented here is based on the modification of the model presented by 

Kumar et al. [281]. The steady-state mass balance for component i  was made for the tube 

side and the shell side using the schema presented in Fig. 7.3. 
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Figure 7.3: Schematic of the e-ZCMR packed with catalyst. 

1R , 2R  and 3R  are internal radius of the membrane tube, external radius of the membrane 

tube and internal radius of the shell, respectively. 

7.2.2.1  Flux model 

Figure 7.4 depicts the schema of the transport (flux) across a typical membrane (in this 

study, a nanocomposite MFI-alumina membrane incorporated in e-ZCMR).  

 

Figure 7.4: Schematic showing the transport (flux) across a membrane in e-ZCMR. 
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where mε  is the porosity of the membrane; mτ , the membrane tortuosity [-]; mδ , the 

membrane effective wall thickness [m]; iJ  , the cross-membrane flux (mol.s-1 .m-2).
t

iP  and 

s
iP  is the partial pressures [Pa] of component  i  in the tube side and permeate side, 

respectively. 

The flux through the membrane is based on Fickian diffusion model. In this case, the 

flux of component i  across the membrane is defined as: 
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Incorporating Eq. 7.7 and Eq. 7.8 in Eq. 7.12, gives: 
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iD iD , the diffusivity (diffusion coefficient) of component i  in m2.s-1 was obtained 

according to Eq.4.3. irefD ,  and iDE ,  used in the computation of iD  were obtained from  

[242]. Computed iD  are presented in Appendix C. 

 

7.2.2.2  Mass balance 

The mass balance equations presented in this study include the transport through the 

tube space, transport through the shell space, transport inside the catalyst particles and 

transport through the membrane. The mass balance equations presented were based also on the 

following assumptions: 

• Retentate and permeate sides of the reactor are operated under steady-state 

condition ( 0===
dt

dT

dt

dQ

dt

dQ ts

) 

• Isothermal condition ( 0=dT ) 

• The behaviour of bulk gas is assumed to be ideal in both sides. 

• Plug flow concept of reactor design is assumed. Axial diffusion of mass and heat 

and radial concentration gradients on both sides are considered to be negligible. 
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• Catalyst pellet equations are not considered because according to                 

Gobina et al. [282], concentration gradients in catalyst pellets are negligible due 

to small pellet size. 

• Sweep gas is non reactive. Therefore, no reaction occurs in the shell side. 

• Stagnant gas films on both sides of membrane are considered, while radial 

temperature gradients across the membrane are neglected. 

• Effectiveness factors with reaction rates are taken to be equal to unity              

(i.e. 1=iη ) because  the size of the catalyst pellet was < 0.8 mm. Although no 

information about the catalyst crystal was provided by the supplier, it is expected 

that the crystal size should be so small to the extent that external and internal 

diffusion limitations will not be a problem.  

• Pressure drop across the reactor length is neglected. 

 
Tube side: 
 
 

( ){ } 02 1
2

1 =+±− iiiicat

t
i JRrR

dz

dQ πνηρπ                                                                        (7.14) 

 
 
where 1R  is the internal radius of the membrane tube [m]; catρ , the density of the catalyst             

[ kg.m-3] and  ir  is the rate of reaction in molkg-1s-1. For dimensional homogeneity, ir  in     

Eq. 7.14 is related to ir  in Eq. 7.1 to Eq. 7.3 as shown below: 

 
 

ir [mol.kg-1.s-1]= ir [mol.m-3.s-1]  . 
cat

reactor

W

V
[m3.kg-1]                                                            (7.15) 

 
 
Substituting Eq. 7.13 in Eq. 7.14 gives: 
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For instance, for isomerization of m-Xylene to PX and OX in e-ZCMR, the profile in the tube 

side is given by the following equations: 
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Shell side 
 
For inert sweep gas on the shell side, the component mass balance at the shell side is given as:  
 
 

02. 2 =− if

s
i

s JR
dz

dQ πββ                                                                                                 (7.20) 
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where 2R  is the external radius of the membrane [m]; sβ  dictates the direction of flow of the 

sweep gas. If the sweep flows co-currently, sβ = -1. However, for counter-current flow,    

sβ = +1. fβ  is a factor that dictates the direction of flux. If the permeation is from the tube to 

the shell side, 2β = +1, but if the opposite is considered, 2β = -1. For this model,           

counter-current sweep flow is considered. Thus, sβ = +1. Therefore, for permeation of PX, 

MX and OX through the membrane to the shell side, the following equations apply: 
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Boundary conditions 
 
The boundary conditions in the tube side and shell side are defined as:  
 

At z = 0, ( ) t
i

t
i QQ 0,0 =  and ( ) s

i
s

i QQ 0,0 =  

 

At z = L, ( ) t
fi

t
i QLQ ,=  and ( ) s

fi
s

i QLQ ,=  

 

7.2.3  Model implementation and validation 

The rate of reaction constants for the reactions was adjusted values obtained from          

Al-Kattaf et al. [280]. Influence of temperature on the reaction rate parameters of the reaction 

was accounted for using Arrhenius equation of the form: 
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 The adjusted rate of reaction constants are given in Table 7.1 and in also       

Appendix C. Table 7.2 gives the values of the constant parameters used for the simulation. To 

implement the model described above, the set of model equations was solved using the 

fourth-order Runge-Kutta method implemented in matlab within the ODE45 environment. 

The model was validated with the experimental results (m-Xylene isomerization in e-ZCMR 

at 673 K) presented in Chapter 6. Experimental results obtained at 673 K were selected 

because m-Xylene isomerization to p-Xylene occurs at about 673 K in the industry. The 

experimental results used for model validation are presented in Appendix C: 

 

Table 7.1: Rate of reaction constants used for reaction modelling at                           
673 K [280]. 

         Rate of reaction  constant ki (×104), (m3.(kg of catalyst)-1.s-1) 

1k  1−k  2k  2−k  3k  3−k  

2.39 5.48 1.91 3.68 1.71 1.76 

               

                         Table 7.2: Constant parameters used for reactor modeling. 

 
 
 
 
  
 
 
 
 
 
 
 
 
 

7.3  Results and discussion 

Figure 7.5 presents the predicted profile of molar flow rate of xylene in the tube side 

during m-Xylene isomerization over Pt-HZSM-5 catalyst in e-ZCMR and Fig. 7.6 depicts the 

profile of molar flow rate of xylene in the shell side. P-Xylene yield, p-Xylene selectivity and       

m-Xylene conversion as computed from the simulation results are presented in Table 7.3. The 

Universal gas constant ( J.mol-1K-1) 8.314 
Density of the MFI (k.gm-3) 1700 
Porosity of the membrane (-) 0.13 
Membrane tortuosity (-) 1.2 
Membrane effectiveness thickness (m) 3x10-6 
Reference atmospheric pressure (Pa) 101325 
Membrane permeation length (m) 130x10-3 
Internal radius of the membrane (m) 3.5x10-3 
External radius of the membrane  (m) 3.505x10-3 
Internal radius of the stainless module (m) 5x10-3 
Density of the catalyst (k.gm-3) 530 
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simulation results were compared with the results obtained from m-Xylene isomerization 

experiment conducted at 673 K. 

 

 

 

Figure 7.5: Molar flow rate profile of xylene in e-ZCMR at the tube side during isomerization 
at 673 K (Line=simulation; points=experimental). 

 

 
Figure 7.6: Molar flow rate profile of xylene in e-ZCMR at the shell side during isomerization 
at 673 K. (Lines=simulation; points=experimental).  
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    Table 7.3: Comparison of experimental results with simulation results.  
Performance 
indicator 

Simulation Experimental % Error 

* YPX  (%) 20.50 17.50 17.1 
* SELPX  (%) 53.05 41.00 29 
** SELPX   (%) 99.95 100.00 0.05 
Conversion (%) 56.8 69.7 19.5 

*Combined mode operation; **Permeate-only mode operation; YPX : PX yield ; SELPX : PX 
selectivity  

 
 

The results as presented in the Table 7.3 show that the simulation results are in fair 

agreement with the experimental results with percentage errors (absolute) of 17%, 29%, 

0.05% and 19.5% for p-Xylene yield in combined mode, p-Xylene selectivity in combined 

mode, p-Xylene selectivity in permeate-only mode and m-Xylene conversion, respectively.  

As depicted in Fig. 7.5, the molar flow rate profile of m-Xylene in the tube side 

shows a decrease across the length of the reactor while the molar flow rate profile of p-Xylene 

and o-Xylene shows an increase across the reactor length. This is expected because m-Xylene 

is consumed and converted to p-Xylene and o-Xylene, respectively, during the isomerization. 

The observation in Fig. 7.5 is consistent with the results reported by Deshayes et al. [201]. 

Through modelling study, Deshayes et al. [201] investigated the influence of incorporating 

Na-ZSM-5/SS membranes on the performance of an industrial fixed-bed reactor during        

m-Xylene isomerization over Pt/silica catalyst. But in this study, a laboratory-scale e-ZCMR 

equipped with a nanocomposite MFI-alumina tube as the separation unit was modelled to 

understand its behaviour during m-Xylene isomerization over Pt/HZSM-5 catalyst. Despite 

the big difference in the size of reactors modelled, the two reactors showed similar trend in 

xylene molar flow rate profile in the tube side. Moreover, in Fig. 7.6, the predicted molar flow 

rate profiles in the shell side increase drastically for p-Xylene, m-Xylene and o-Xylene across 

the reactor length. The p-Xylene molar flow rate profile is much higher compared to those of     

m-Xylene and o-Xylene. This behaviour could be attributed to the excellent separation 

performance of the nanocomposite MFI-alumina membrane tube incorporated in the reactor.  

At Lz = , the simulation results agree perfectly with the experimental results with  

percentage error (absolute) of 0.05% in the permeate-only mode operation. 

The discrepancy observed between the model output and the experimental results can 

be attributed to the assumptions made in the model development and formulation and also to 

the quality of data (i.e. kinetics data, diffusion data) used in the simulation. This suggests that 

the model is sensitive to quality of data and assumptions. Nevertheless, it can be concluded 

that the model presented in this chapter can explain the fundamental behaviour of an e-ZCMR 

during m-Xylene isomerization over Pt-HZSM-5 catalyst. In addition, it is noteworthy to 

mention again that this is a first and somewhat preliminary attempt to model e-ZCMR 
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behaviour (when equipped with nanocomposite MFI-alumina membrane tubes) during m-

Xylene isomerization. Hence the model is not void of discrepancies due to various 

assumptions made and the quality of kinetic data employed during model formulation and 

implementation. It nevertheless provides useful insight and a protocol towards further 

development of related concenpts. 

Furthermore, sensitivity analysis was conducted on the model to understand how the 

model respond to changes in some specific design parameters such as membrane thickness, 

membrane porosity, membrane tortuosity and internal diameter of the reactor tube (i.e. 2R1). 

This is described in the following section. 

7.4  Effect of design variables on e-ZCMR performan ce  

In e-ZCMR, enhancement of p-Xylene yield is expected due to the in situ extraction 

of p-Xylene from the reaction zone by the membrane. This in turn enhances more 

consumption of m-Xylene leading to enhancement of p-Xylene yield. However, the reactor 

performance depends on some parameters such as membrane parameters (membrane 

thickness, membrane porosity, membrane tortuosity); reactor design parameters (reactor 

size(tube and shell diameter), length etc.) and operating variables (feed flow rate, sweep gas 

flow rate, mass of catalyst, catalyst packing, reaction temperature and operating pressure). 

Membrane thickness is controllable during membrane preparation. Membrane porosity and 

tortuosity are intrinsic properties of membrane supports and can be controlled during the 

production of these supports.  

Reactor design involves selecting the reactor configuration/geometry, sizing the 

reactor, selecting and optimizing reactor operating conditions, optimizing the reactor 

performance, selecting suitable material of construction, costing and scaling-up [283]. Often 

the reactor design is based on some reactor design equations that provide relationships 

relating the reactor operation with aforementioned reactor properties [284]. Reactor sizing 

basically involves specifying the reactor geometry such as vessel size and type, which 

depends on reactor diameter and length (for tubular) or reactor diameter and height (for 

Continuous Stirred Tank Reactors (CSTR) or batch reactors). During reactor sizing, a 

designer has control over these reactor dimensions. Although, specifying the dimensions 

depends largely on the reactor operating parameters such as the rate equation, feed flow rates, 

amount of catalyst, catalyst packing and sweep gas flow rates (in case of e-ZCMR) [284]. 

Furthermore, during the operation of an e-ZCMR, operating variables such as reaction 

temperature, operating pressure, feed flow rate, sweep gas flow rate can be manipulated to 

optimize the reactor performance. Manipulation of operational variables toward enhanced       

e-ZCMR performance was dealt with and described in Chapter 6 of this dissertation.  
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 Furthermore, membrane thickness, membrane porosity and membrane tortuosity 

depend on the membrane preparation techniques/protocols and the quality of membrane 

supports, as the case is in the preparation of MFI-type alumina membranes-“film-like” or 

nanocomposite architecture-types. Regarding the reactor operating variables, at constant 

reaction temperature and operating pressure, as the case is in this study, other controllable 

operating variables are the feed flow rate and sweep gas flow rate. In Chapter 6, the effect of 

these variables on e-ZCMR performance has been demonstrated experimentally. 

In this chapter, sensitivity of e-ZCMR performance to changes in properties 

describing the membrane morphology and the reactor geometry is presented. In the 

performance evaluation, response of p-Xylene yield in both combined mode and         

permeate-only mode operations and response of m-Xylene conversion to small perturbations 

in effective membrane thickness, membrane porosity, membrane tortuosity and reactor size ( 

in terms of internal radius of the e-ZCMR tube) were studied. The advantage of this 

sensitivity analysis is not limited to better understanding of the fundamental behaviour of the 

e-ZCMR during m-Xylene isomerization, but provides further information on the 

optimization approach for the reactor design and perhaps the operational condition. 

Sensitivity analysis is a general concept that aims at quantifying the variations of an 

output parameter of a system with respect to changes imposed to some input parameters 

[285,286]. Sensitivity analysis is therefore an excellent technique to help in understanding and 

preparing for “what to do” and “how to do” regarding the optimization of e-ZCMR process.  

For instance, if  φ   is the output function (such as p-Xylene yield, p-Xylene 

selectivity,   m-Xylene conversion) such that φ  depends on n  input parameters iδ (such as 

membrane thickness, membrane porosity, membrane tortuosity, reactor diameter;               

i =1, 2,… n  ):    

                                               

φ =φ ( )nδδδ ,...,, 21                                                                                                            (7.25) 

 

The differential form of Eq. 7.25 using the chain rule of differentiation yields: 
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The gradient for the parameter 1δ  then follows as: 
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If it is assumed that the parameters iδ  are mutually independent of one another then: 
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Therefore, the derivative of φ  with respect to 1δ  can be approximated as: 
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Therefore, the partial derivative,
1δ

φ
∂
∂

, is  the sensitivity coefficient of the function φ  for the 

input parameter1δ .  If the function φ  is not linear with respect to parameter1δ , 
1δ

φ
∂
∂

 will 

vary from point to point [287]. To obtain the sensitivity coefficients of the aforementioned 

parameters with respect to the input variables as considered in this study, Eq. 7.29 was used. 

Variables considered in this study are contained in Table 7.4. The sensitivity analysis was 

based on ±20% changes in the variables considered in Table 7.4. The variables are              

sub-divided into categories: (1) Variables influencing the membrane morphology and, (2) 

Variables influencing the reactor design. Model output at 673 K presented in the previous 

setions of this chapter was used as a reference (see Table 7.5).         

                   

                   Table 7.4:  Design variables considered for sensitivity analysis. 
 Membrane property  Reactor property  Model  Response 
Membrane effective 

thickness 
Internal radius of the 

reactor tube 
P-Xylene yield at 

permeate-only mode 
Membrane mean 

porosity 
- P-Xylene yield at combine 

mode 
Membrane tortuosity - Conversion 
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              Table 7.5:  Model output at 673 K and at the reference values of the design variables. 
Variables Reference 

variables 
* YPX  at     

permeate-only 
mode (%) 

* YPX  at 
combined 

mode   
(%) 

Membrane effective 
thickness (µm) 

 
3.0 

 
13.0 

 
20.5 

Membrane mean 
porosity (-) 

 
0.13 

 
13.0 

 
20.5 

Membrane tortuosity 
(-) 

 
1.2 

 
13.0 

 
20.5 

Internal radius of  the 
tube (mm) 

 
3.5 

 
13.0 

 
20.5 

              * model output  at  at 673 K and at the reference values of the design variables 

 

7.4.1  Effect of membrane effective thickness 

As shown in Table 7.6, changing the membrane effective thickness by ±20% has no 

effect on the p-Xylene yield in combined mode operation and in the m-Xylene conversion but 

it has a significant effect on the p-Xylene yield in the permeate-only mode operation. The 

effect of change in membrane effective thickness on the p-Xylene yield in permeate-only 

mode is depicted in Fig. 7.7. 

                Table 7.6: Effect of membrane effective thickness. 
Thickness  

(µm) 
** YPX   

(%) 
* YPX   
(%) 

Conv. 
 (%) 

SC wrt 
** YPX  

3.6 12.9 20.5 56.8 - 
3.0 13 20.5 56.8 -0.17 
2.4 15.9 20.5 56.8 -4.83 

*Combined mode operation; **Permeate-only mode operation; YPX : PX yield ; Conv.: 
conversion;   SC: sensitivity coefficient; wrt: with-respect-to. 
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Figure 7.7: Effect of membrane effective thickness on p-Xylene yield in permeate-only mode. 

 

Figure 7.7 shows that increasing the membrane effective thickness from 3 µm to      

3.6 µm decreased the p-Xylene yield in the permeate-only mode by 0.1%.  However, when 

the membrane effective thickness was reduced from 3 µm to 2.4 µm the p-Xylene yield in the 

permeate-only mode increased by 2.9% (see Fig. 7.7). Moreover, from the sensitivity 

coefficients (Table 7.6), the p-Xylene yield in the permeate-only mode is significantly 

affected by a reduction in membrane effective thickness rather than an increase in membrane 

effective thickness. The increase in p-Xylene yield in the permeate-only mode could be 

attributed to the increase in p-Xylene flux through the membrane. Considering Eq. 7.12, it is 

expected that the flux will be enhanced when the membrane effective thickness is reduced, 

holding other parameters constant. Therefore, the observation in this study is supported by 

Eq.7.12. Furthermore, the observation supports the observation described in Chapter 5 where 

a nanocomposite MFI-alumina hollow fibre membrane with membrane effective thickness of  

less than 1 µm enhanced p-Xylene flux by 30% over a membrane tube with effective 

membrane thickness of  3 µm. In this study, m-Xylene isomerization in an e-ZCMR, having a 

nanocomposite MFI-alumina hollow fibre membrane as separation unit is not presented. The 

present configuration of the hollow fibre membrane makes the application in e-ZCMR 

impractical and research is going on to optimize the configuration and also the preparation 

protocol. However, it is expected that p-Xylene yield will be enhanced in permeate-only 

mode if nanocomposite MFI-alumina hollow fibre membrane is used. 
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7.4.2  Effect of membrane porosity and tortuosity 

As depicted in Table 7.7 changing the membrane mean porosity by ±20% only shows 

a significant effect on the p-Xylene yield in permeate-only mode operation with no effect on 

the p-Xylene yield in the combined mode operation and on the m-Xylene conversion. The 

effect of change in membrane mean porosity on the p-Xylene yield in permeate-only mode is 

further explained with Fig. 7.8.  Table 7.8 and Figure 7.9 depict the effect of changes in 

membrane tortuosity on e-ZCMR performance.  

 

         Table 7.7: Effect of membrane porosity on e-ZCMR performance 
Porosity  

(-) 
** YPX   

(%) 
* YPX  
 (%) 

Conv.  
(%) 

SC wrt YPX  

0.156 13.3 20.5 56.8 - 
0.130 13.0 20.5 56.8 11.54 
0.104 12.9 20.5 56.8 3.85 

*Combined mode operation; **Permeate-only mode operation; YPX : PX yield ; Conv.: 
conversion;  SC: sensitivity coefficient; wrt: with-respect-to 

 
 
 
 
 
 

          Table 7.8: Effect of membrane tortuosity on e-ZCMR performance  
Tortuosity  

(-) 
** YPX  
 (%) 

* YPX   
(%) 

Conv.  
(%) 

SC wrt YPX  

1.44 12.9 20.5 56.8 - 
1.20 13.0 20.5 56.8 -0.42 
0.96 15.9 20.5 56.8 -12.08 

*Combined mode operation; **Permeate-only mode operation; YPX : PX yield ;SC: sensitivity    
coefficient; wrt: with-respect-to; Conv.: conversion. 
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Figure 7.8: Effect of membrane porosity on p-Xylene yield in permeate-only mode. 

 

 

Figure 7.9: Effect of membrane tortuosity on p-Xylene yield in permeate-only mode. 
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As can be seen in Fig. 7.8 and Table 7.7, p-Xylene yield in the permeate-only mode is 

more sensitive to positive (+20%) changes in membrane mean porosity, displaying sensitivity 

coefficient of 11.5 compared to negative (-20%) changes in membrane mean porosity with 

sensitivity coefficient of 3.9. Furthermore, as depicted in Table 7.8 and Fig. 7.9, membrane 

tortuosity has a positive significance on the p-Xylene yield in permeate-only mode operation 

of   e-ZCMR. However, p-Xylene yield in permeate-only mode is more sensitive to negative 

20% (-20%) changes in tortuosity than positive 20% (+20%) changes in membrane tortuosity. 

At tortuosity of 0.96, an increase in p-Xylene yield of 2.9% was obtained over the tortuosity 

of 1.2. However, at tortuosity of 1.44, an increase of 0.1% was obtained. This observation is 

expected because membrane porosity and membrane tortuosity are intrinsic properties of the 

membrane.  In the case of e-ZCMR, the membrane is associated with the performance 

enhancement in the permeate-only mode, although the effect is culminated in the performance 

of the reactor in combined mode,  because the membrane selectively extract p-Xylene from 

the reaction zone into the permeate side. Furthermore, the extraction efficiency of the 

membrane depends on the membrane morphology, which determines the membrane 

selectivity towards the target product (p-Xylene) and perhaps the p-Xylene flux through the 

membrane. Membrane morphology is a factor, among others, of the membrane porosity and 

membrane tortuosity.  

Comparison between the effect of change in membrane mean porosity and effect of 

change in membrane tortuosity on the p-Xylene yield in permeate-only mode shows “almost” 

an inverse relationship. Highest p-Xylene yield of 13.3% is obtained at positive 20% (+20%) 

changes in the membrane while the highest p-Xylene yield of 15.9% is obtained at negative 

20% (-20%) changes in the membrane tortuosity (Table 7.7 and Table 7.8).  Interestingly, 

changing the membrane mean porosity or membrane tortuosity has no effect on the p-Xylene 

yield in combined mode. Moreover, the relationship displayed here has been established by 

Matyka et al. [288]. The authors studied numerically the tortuosity-porosity relation in a 

porous medium at microscopic level. According to the authors, the relation between tortuosity 

and porosity can be represented as:  

 

)ln(1 ετ ∝−                                                                                                                       (7.30) 

 

As observed in this study, interplay between membrane porosity and membrane 

tortuosity dictates to some extent the p-Xylene yield in permeate-only mode. Therefore, 

careful manipulation of these membrane properties is very essential to increasing p-Xylene 

yield in e-ZCMR. 
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7.4.3  Effect of  reactor size  

           Table 7.9, Fig 7.10 and Fig. 7.11 show the effect of change in the reactor size ( by 

changing the internal diameter of the reactor tube) on an e-ZCMR performance. In Table 7.9,   

Fig. 7.10 and Fig. 7.11, ±20% change in reactor diameter shows significant influence on the 

p-Xylene yield in permeate-only mode, p-Xylene yield in combined mode and in the m-

Xylene conversion. At  reactor internal radius of 4.2 mm, the e-ZCMR displays an increase of 

2.7%, 6.6% and 12.8% for p-Xylene yield in permeate-only mode, p-Xylene yield in 

combined mode and m-Xylene conversion in combined mode , respectively, over the 

performance at 3.5 mm. Furthermore, at 2.8 mm internal radius, e-ZCMR displays a decrease 

of 0.8%, 6.5% and 15% for p-Xylene yield in permeate-only mode, p-Xylene yield in 

combined mode and m-Xylene conversion, respectively, compared to these values at 3.5 mm. 

For p-Xylene yield in both permeate-only mode and combined mode, e-ZCMR is more 

sensitive to an increase in internal diameter of the reactor tube than a decrease in the internal 

diameter of the reactor tube (Fig. 7.10 and Fig. 7.11). However, the m-Xylene conversion in 

combined mode is more sensitive to a decrease in the internal diameter of the reactor tube 

(Table 7.9) than an increase in the internal diameter of the reactor tube.  

            In a reactor operation, in which feed flow rate and amount of catalyst are fixed, 

enhancement of conversion is expected when the volume of reactor is increased due to an 

increase in the reactor diameter. Furthermore, when operating at fixed feed flow rate and 

fixed amount of catalyst but at increased reactor volume, it is expected that the superficial 

velocity of the feed into the reactor will reduce. Reduction in the superficial velocity suggests 

longer residence time. At a longer residence time, contact time is enhanced, resulting into an 

increase in conversion. Hence, increase in productivity and yield. However, if the contact 

time is prolonged more than necessary, side reactions might be promoted. 

             It is noteworthy to emphasize that both feed flow rate and the amount of catalyst are 

fixed during the sensitivity analysis. therefore going by the aforementioned thought, the 

model suggests that, at positive 20% (+20%) change in the internal diameter of e-ZCMR, the 

contact time between m-Xylene and the Pt-HZSM-5 catalyst is enhanced, thereby resulting 

into an increase in m-Xylene conversion (increase in p-Xylene productivity) and p-Xylene 

yield on the tube side. The reverse of this behaviour is expected at negative 20% (-20%) 

change in the reactor internal diameter. However, disproportionation of m-Xylene to toluene 

and trimethylbenzene might be promoted if the contact time is prolonged more than 

necessary. As a result of increased m-Xylene conversion (increase in p-Xylene productivity) 

on the tube side, p-Xylene flux through the membrane increases due to an increase in p-

Xylene concentration on the tube side. As a result of increased p-Xylene flux through the 

membrane, an increase in p-Xylene yield is expected in permeate-only mode operation. The 
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reverse of this behaviour is expected also at reduced reactor volume. Large reactor diameter 

also indicates large reactor volume. Eventually, this translates into large space occupation and 

an increase in capital cost for construction and maintenance. Therefore, a balance point 

between reactor size and costs (capital and operational cost) is needed to make the technology 

attractive and competitive with existing ones. 

 

      Table 7.9: Effect of reactor size on e-ZCMR performance. 
Rint  

(mm) 
** YPX  

(%) 
* YPX  
(%) 

Conv. 
(%) 

SC 
wrt Cov. 

SC wrt 
** YPX  

SC wrt 
* YPX  

4.2 15.7 27.1 69.6 - - - 
3.5 13.0 20.5 56.8 18.29 3.86 9.43 
2.8 11.2 14.0 41.8 21.43 2.57 9.29 

*Combined mode operation; **Permeate-only mode operation; YPX : PX yield ; Rint :Internal radius 
of  the reactor tube; SC: sensitivity coefficient; Conv.: conversion (%); wrt: with-respect-to. 

 
 

 

 

 

 

                    Figure 7.10: Effect of reactor size on p-Xylene yield in permeate-only mode. 
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                         Figure 7.11: Effect reactor size on p-Xylene yield in combined mode. 

 
 

Based on the sensitivity analysis described above, tornado plots depicted in Fig. 7.12 

and 7.13 were made.  In Fig. 7.12, at  positive 20%  (+20%) changes in the internal diameter 

of the reactor tube; in the membrane effective thickness; in the membrane mean porosity and 

in the membrane tortuosity, the p-Xylene yield in the permeate-only mode is significantly 

influenced positively by the membrane mean porosity followed by internal diameter of reactor 

tube. As can be seen in Fig. 7.13, at negative 20% (-20%) changes in these design parameters, 

the p-Xylene yield in the permeate-only mode is significantly influenced positively by the 

membrane tortuosity followed by the membrane effective thickness. The p-Xylene yield in 

combined mode is significantly influenced positively by positive 20% (+20%) changes in the 

internal diameter of the reactor tube while  m-Xylene conversion in the reactor is significantly 

influenced negatively by negative 20% (-20%) changes in the internal diameter of the reactor 

tube.  

In conclusion, from the sensitivity analysis it is obvious that enhancement of 

performance of e-ZCMR depends on the presence of membranes with optimized membrane 

properties. Such membrane properties are membrane mean porosity, membrane tortuosity and 

membrane effective wall thickness. At the same time, design parameters of the reactor such as 

the reactor volume/size also should be optimized.  
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Figure 7.12: A tornado diagram showing sensitivity of p-Xylene yield in permeate-only mode 
to positive 20% (+20%) changes in design variables. 
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Figure 7.13: A tornado diagram showing sensitivity of p-Xylene yield in permeate-only mode 
to negative 20% (-20%) changes in design variables. 
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7.5  Concluding remark  

An attempt has been made to model and simulate e-ZCMR for m-Xylene 

isomerization over Pt-HZSM-5. This is a preliminary study and it is expected that various 

assumptions made during model formulation and implementation might have signoificant 

influence on the model output. However, the model results are in fair agreement with 

experimental results with percentage errors (absolute) of 17%, 29%, 0.05% and 19.5% for p-

Xylene yield in combined mode, p-Xylene selectivity in combined mode, p-Xylene selectivity 

in permeate-only mode and m-Xylene conversion, respectively. Thus, the model presented in 

this chapter is able to explain the behaviour of e-ZCMR during m-Xylene isomerization over 

Pt-HZSM-5 catalyst. In addition, the model is adaptable to e-ZCMR of different configuration 

such as a hollow fibre MFI-alumina membrane based e-ZCMR. Furthermore, the modeling 

study has provided the reader with modeling procedure that can be used as basis for further 

improved modelling studies.  

As expected, the sensitivity analysis conducted on the model revealed that membrane 

mean porosity, membrane tortuosity, membrane effective wall thickness and reactor size play 

important role in optimizing the performance of an e-ZCMR equipped with a nanocomposite      

MFI-alumina membrane tube as separation unit, during m-Xylene isomerization over           

Pt-HZSM-5 catalyst. Furthermore, it is noteworthy to mention that membrane mean porosity, 

membrane tortuosity are intrinsic properties of the membrane. Membrane mean porosity and 

membrane tortuosity depend on the pore size distribution of membrane support while the 

membrane effective wall thickness depends on the membrane synthesis technique. However, 

it is expected that optimizing the aforementioned parameters will be instrumental in 

enhancing the performance of e-ZCMR during p-Xylene production. 

This is the first open report, although somewhat of a preliminary nature, on the 

modelling and sensitivity analysis of an e-ZCMR equipped with a nanocomposite MFI-

alumina membrane tube as separation unit for m-Xylene isomerization over Pt-HZSM-5 

catalyst. Although the model presented in this study is sensitive to quality of data employed, it 

offers a fair description of the behaviour of e-ZCMR equipped with a nanocomposite MFI-

alumina tube during m-Xylene isomerization over Pt-HZM-5 catalyst.  It is recommended 

that, in subsequent studies, a series of experiments should be conducted to generate accurate 

kinetics and diffusion data for model implementation and also to validate and improve various 

assumptions employed in the model formulation.  
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Chapter 8: Conclusions, recommendations and future outlook  

8.1. Conclusions 

Based on the goals highlighted in Chapter 1 of the dissertation, the following studies 

have been carried out and reported: 

• Influence of operating variables (temperature, sweep gas flow rate and xylene 

loading/partial pressures) on the separation performance of nanocomposite          

MFI-alumina membranes during xylene isomer separation. 

• Evaluation of the separation performance of nanocomposite MFI-alumina hollow 

fibre membranes during xylene isomers separation.  

• Influence of operating variables and reactor configuration on the performance of an 

extractor-type zeolite catalytic membrane reactor, having nanocomposite              

MFI-alumina membrane as separation unit, during m-Xylene isomerization over       

Pt-HZSM-5 catalyst to p-Xylene. 

• Modelling, simulation and sensitivity analysis of an extractor-type zeolite catalytic 

membrane reactor, having nanocomposite MFI-alumina membrane as separation unit, 

during m-Xylene isomerization over Pt-HZSM-5 catalyst to p-Xylene. 

 

The results obtained from the aforementioned studies have yielded the following 

novel contributions toward further research efforts on the development of membrane-based 

reactive separation system for the production of p-Xylene from mixed xylene: 

• Excellent xylene isomer separation performance of nanocomposite MFI-alumina 

membranes at higher xylene loadings (or higher xylene compositions) over their        

“film-like” counterparts has been demonstrated. The membrane displayed continuous 

increase in selectivity at increased xylene loadings/partial pressures. This observation 

is contrary to the behaviour of their “film-like”counterparts at higher xylene 

loadings/vapour pressures. This is the first time this outstanding behaviour of        

MFI-type membranes based on nanocomposite architectures will be reported in the 

open literature. Thus, the outstanding behaviour of nanocomposite MFI-alumina 

membranes over their “film-like” counterparts will make them better candidates for 

application in the future development of energy-efficient process for xylene isomer 

separation based on membrane technology. 

• The use of hollow fibre geometry has long been a solution for improving the 

performance of membrane-based separation processes but industrial application of 

this type of configuration is limited to water treatment where polymer hollow fibres 

are commonly used. Polymer hollow fibres are unsuitable for xylene isomers 
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separation because they are not chemically and thermally stable compared to 

inorganic/ceramic membranes. The results from the evaluation of separation 

performance of nanocomposite MFI-alumina hollow fibre membranes during xylene 

isomer separation showed that the membrane is highly selective to p-Xylene at higher 

temperature and also displayed about 30% increase in p-Xylene flux over an 

equivalent membrane tube prepared via this same technique as the fibres and operated 

at the same operating conditions. The enhancement of p-Xylene flux could be 

attributed to smaller membrane effective wall thickness (<1 µm) compared to 

membrane effective thickness of 3 µm for the membrane tube. This is the first time 

that a report on the evaluation of separation performance of nanocomposite          

MFI-alumina hollow fibre membrane will appear in open literature. Hollow fibres 

also offer the added advantage of membrane surface-to-volume ratios as high as  

3000 m2/m3 compared to more conventional membrane tubes. For example, a 5-fibre 

bundle occupying the volume meant for a single alumina tube could double the         

p-Xylene productivity operating at the temperature where the maximum flux is 

obtained, taking into account the higher separation surface of the bundle                    

(5 x 9.94 ∼ 50 cm2 vs. 26 cm2 for alumina tubes). Therefore, the results presented in 

this study open up a research line to scale-up the fibre preparation process aimed at 

obtaining fibre bundles for xylene isomer separation. Using this type of system might 

be instrumental in enhancing p-Xylene flux in e-ZCMR and in reducing both the size 

and cost of permeating modules for future xylene separation processes. 

• None of previous studies reported p-Xylene purity during m-Xylene isomerization in 

e-ZCMR. Perhaps due to the low quality of the membranes used by these researchers, 

no appreciable p-Xylene purity could be obtained in the permeate stream. To obtain 

high-purity p-Xylene, a demanded form of p-Xylene for industrial applications, via 

conventional processes such as distillation is a difficult and laborious task. 

Furthermore, the current processes used to do this are energy consuming because of 

the similarity in the physical properties of these isomers [289]. Therefore, the results 

of this study has demonstrated, for the first time, the possibility of obtaining ultrapure 

p-Xylene (~100%) in e-ZCMR, having a nanocomposite MFI-alumina membrane 

tube as separation unit, during m-Xylene isomerization over Pt-HZSM-5 catalyst. 

Moreover, these results showed significant improvement on the p-Xylene yields 

previously reported by van Dyk et al. [186]. Furthermore, the results presented in this 

study are encouraging and can provide a platform for developing scaled-up      

energy-efficient industrial processes for producing ultra-pure p-Xylene through 

catalytic isomerization of m-Xylene over Pt-HZSM-5 catalyst.  
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• Application of mathematical models to the design of membrane processes is essential 

to understanding the process design, the process analysis, the optimization of process 

conditions, and, even, for model-based control. However, in the area of packed-bed 

catalytic membrane reactors for xylene isomerization, modelling study is still limited. 

For the application of e-ZCMR for xylene isomerisation to p-Xylene, the first and 

perhaps the only modelling and simulation without sensitivity analysis study in 

literature was by Deshayes et al. [201]. In view of this, this dissertation reports on the 

preliminary modelling and sensitivity analysis of an e-ZCMR equipped with a 

nanocomposite MFI-alumina membrane tube as separation unit during m-Xylene 

isomerization over Pt-HZSM-5. The simulation results are in fair agreement with 

experimental results with percentage errors (absolute)of 17%, 29%, 0.05% and 19.5% 

for p-Xylene yield in combined mode, p-Xylene selectivity in combined mode, p-

Xylene selectivity in permeate-only mode and m-Xylene conversion, respectively. 

Therefore, the model could explain the fundamental behaviour of e-ZCMR during m-

Xylene isomerization over Pt-HZSM-5 catalyst. However, the model presented in this 

study is sensitive to the quality of data employed for model implementation and the 

assumptions employed during model development. In light of this, it is recommended 

that, in subsequent studies, a series of experiments should be conducted to generate 

accurate kinetics and diffusion data for simulation and to validate or improve 

assumptions employed in the model development and formulation. As expected, the 

sensitivity analysis performed on the model also revealed that intrinsic membrane 

property (porosity, tortuosity), membrane effective thickness and reactor size play a 

vital role in the performance of e-ZCMR during p-Xylene production from the mixed 

xylenes. 

 

Additionally, the results of this work provide a platform to develop feasible and 

energy-efficient process for producing high purity p-Xylene from mixed xylene based on the 

application of MFI-type zeolite membranes with nanocomposite architecture. Furthermore, in 

other applications of MFI membranes for gas separation, the use of nanocomposite 

architecture rather than “film-like” configuration could increase the life in service of the 

membranes.  

In summary, the aforementioned novel contributions have been communicated to 

fellow researchers in the area of membrane-based reactive process as articles in international 

scientific journals (three published, two in press and one accepted) and in conference 

proceedings (four conference proceedings). Samples of the published articles can be found in 

Appendix E.  
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8.2. Recommendations and future outlook 

To obtain total conversion during the xylene isomerization process, a                    

chemical-equilibrium restricted reaction in conventional catalytic reactors is impossible. 

Thus, the existing industrial technology could only produce equilibrium or near equilibrium 

xylene mixtures. Recycling the xylene streams back into the process lines might ensure higher 

p-Xylene yield, but only at the expense of higher operation costs due to higher energy 

consumption. As documented in this dissertation, the use of e-ZCMRs could ensure 

production of high-purity p-Xylene above the equilibrium yield with a drastic reduction of 

operation costs due to a reduction of energy consumption. The enormous potential of       

large-scale applications of xylene isomerization in oil and petrochemical industries promises 

major advances and developments of such systems in the near future.  

Due to the higher energy-efficiency of membrane-based reactive separation process 

compared to other commercial techniques, development of an industrial process based on the 

application of membrane-based reactive separation for the production of p-Xylene is foreseen. 

Furthermore, the use of MFI-alumina membranes with nanocomposite architectures could be 

an impetus to accelerating this development. However, further research efforts are essential in 

the development of defect-free MFI zeolite membranes for xylene isomer separation, and, in 

the process optimization.  

In the area of process optimization, this dissertation has proposed the application of 

nanocomposite MFI-alumina hollow fibres in a membrane-based reactive separation process 

for the production of high-purity p-Xylene from mixed xylene because of (i) the high    

surface-to-volume ratios of the hollow fibres (as high as 3000 m2/m3) compared to randomly 

ordered MFI membrane tubes; (ii) their  higher p-Xylene flux through the membrane from 

their lower effective membrane thickness compared to randomly ordered MFI membrane 

tubes [248]. Optimization of the fibre preparation protocol and development of such materials 

towards obtaining fibres bundle and fibre module appears to be a promising option for the 

development of energy-efficient process for p-Xylene production in the near future. With the 

development of fibre modules, development of compact and cost-effective units for 

production of p-Xylene from mixed xylenes based on membrane-based reactive separation 

technology might be fast-tracked. As documented in this dissertation, nanocomposite       

MFI-alumina membranes could be a promising candidate for PV application to separate 

xylene isomers. Thus, evaluation of the separation performance of nanocomposite            

MFI-alumina membranes (tubes and fibres) in pervaporation application might be interesting. 

Furthermore, catalytically active MFI membranes may be a good option. In general 

terms, catalytically active membranes are thought to be about 10 times more active than when 

the catalyst pellets are used in the fixed-bed reactors provided that the membrane thickness 
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and porous texture, as well as the quantity and location of the catalyst in the membrane are 

adapted to the reaction kinetics [290,291]. However, research effort in the application of 

catalytically active membranes for p-Xylene production is still limited. 

In parallel, research and development of new efficient materials duly put in 

membrane form may help to address new research lines for xylene separation and/or 

isomerization. For instance, metal-organic frameworks (MOFs), which seem to be attracting 

increasing attention from the scientific community and industry, could be used as alternatives 

to classical MFI-type zeolites for gas separation, and alternatives to other zeolites              

(e.g. faujasites) for molecular sieving. As far as it has been ascertained, no application of 

MOF materials to xylene isomer separation and/or isomerization has been reported in either 

open or patent literature. Therefore, research effort in this area will be quite interesting and 

productive. 

Finally, virtually all the research efforts involving the use of membranes for 

separation and production of p-Xylene from mixed xylenes are still limited to laboratory scale 

studies. In view of this, scale-up studies and techno-economic studies of the technology are 

necessary to evaluate the competitiveness of the technology with existing processes. 
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Symbols  
 
T    Absolute temperature [K] 

AK      Adsorption coefficient in site A [Pa-1] 

BK        Adsorption coefficient in site B [Pa-1] 

( )Φ,TPo
i     Adsorptive saturation pressure of thi  species in the gas phase at the solution 

temperature and surface potential  

( )refTK   Adsorption constant of p-Xylene on MFI at refT  [Pa-1] 

iE    Activation energy component i   [J.mol-1] 

-1    Conversion of PX to MX 

1    Conversion of MX to PX 

2   Conversion of MX to OX 

-2   Conversion of OX to MX 

3     Conversion of PX to OX 

-3    Conversion of OX to PX  

CMR      Catalytic membrane reactors 

iµ      Chemical potential of thi  species 

µ      Chemical potential  

θ   Contact angle [degree] 

MFIρ   Density of the MFI [kg.m-3] 

catρ   Density of the catalyst [kg.m-3] 

DE    Diffusion activation energy [Jmol-1] 

ρ   Density  

iD       Diffusion coefficient of species i [m2.s-1] 

iη     Effectiveness factor for the catalyst [-] 

vapH∆   Enthalpy of vapourization [J.mol-1] 

e-CMR   Extractor-type catalytic membrane reactors 

e-ZCMR  Extractor-type zeolite catalytic membrane reactors 

e-ZCMR-IN  Extractor-type CMR with catalyst packed inside the membrane 

e-ZCMR-OUT  Extractor-type CMR with catalyst packed outside the membrane 

2R   External radius of the membrane [m] 
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FID   Flame Ionization Detector 

feed Feed stream  

f     Final  

TD      Fick or transport diffusivity [m2.s-1] 

FBR   Fixed-bed reactor  

GC        Gas chromatograph 

AH        Henry coefficient [mol.g-1 .Pa-1] 

o   Initial 

1R   Internal radius of the membrane [m] 

3R   Internal radius of the stainless module [m] 

K      Kernel 

satc        Loading at saturation [mol.kg-1] 

mτ   Membrane tortuosity [-] 

mδ   Membrane effectiveness thickness [m] 

L   Membrane permeation length [m] 

wM      Molecular weight [gmol-1] 

o
iq   Molar loadings of pure species i  [mol] 

iq        Molar loading of thi  species for a given mixture [mol] 

iJ   Molar flux of species / component i  [mol. m-2.s-1] 

iC   Molar concentration of   component i  in the reaction [mol.m-3] 

  l     MFI effective thickness [m] 

( )refO TD  MS surface diffusivity at zero coverage at refT  [m
2.s-1] 

MXX        m-Xylene conversion [-] 

x        Mole fraction [-] 

iQ     Molar flow rate of component  i   [mol.s-1] 

MX   Meta-xylene (m-Xylene) 

( )df   Number pore size distribution 

OX    Ortho-Xylene (o-Xylene) 

mε   Porosity of the membrane [-] 

iP                      Partial pressure of component i  [Pa] 

iΠ   Permeance of species/ component i  [mol. m-2.s-1 .Pa-1] 
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PP    Permeate pressure [Pa] 

PXY       p-Xylene yield [%] 

PXS       p-Xylene selectivity [%] 

d    Pore size [m] 

PX     Para-xylene (p-Xylene) 

π                     pi  (3.142) 

PV   Pervaporation  

Perm   Permeate stream 

ir   Rate of reaction of component i   [mol.kg-1.s-1] 

reactorV    Reactor volume [m3] 

ik      Rate of reaction constant for component i [m3.(kg of catalyst)-1.s-1] 

OP    Reference atmospheric pressure [Pa] 

ret Retentate stream 

RP    Retentate pressure [Pa] 

iν  Stoichiomteric coefficient component i    in the reaction [-] 

ads
oH∆   Standard adsorption enthalpy [J.mol-1] 

γ   Surface tension of ethanol [N/m] 

z        Spatial coordinate [m] 

SF   Separation factor  

Φ         Surface potential  

γ    Surface tension 

∗D      Self diffusivity [m2.s-1] 

s
iN   Surface flux of thi  species [mol.m-2.s-1] 

P∆   Transfibre differential pressure [Pa] 

t   Tube side 

R   Universal gas constant (8.314) [J.mol-1.K-1] 

VP   Vapour permeation 

catW    Weight of catalyst [kg] 

ZSM-5   Zeolite Socony Mobil-Five 
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                                        Appendix 
 

Appendix A: Evaluation of saturation system 

 
To evaluate saturation efficiency of the saturation system, equimolar mixture of 

xylene was saturated in N2 (carrier gas) with carrier gas flow rates varied between                    

2 mL(STP)/min and 16 mL(STP)/min using the two bubblers combined in series. The liquid 

volume in each saturator was about 100ml. Time to fill up the gas space in the unit and in the 

line connecting it to the GC was calculated by dividing the gaseous volume by the carrier gas 

flow rate.  

Then time to attain saturation was obtained by multiplying the time to fill up the 

gaseous space by 3. The values obtained were overestimated to accommodate some 

uncertainties. A steady state of about 2 hours was allowed at a desired temperature before the 

vapour was sent to the GC for analysis. The peak areas obtained at these carrier gas flow rates 

were plotted against the carrier gas flow rates. A plateau region in the plot signifies the 

saturation region. And the N2 flow rates at this region were taken as saturation flow rates for 

the saturation unit. Samples of the results obtained for the evaluation of the saturation unit are 

depicted in Fig. A1 and Fig. A2. The variation of the carrier gas flow rate was between 4 

mL(STP)/min and 17 mL(STP)/min. The result, as presented in the Figure A1 below, shows a 

plateau between 4 mL(STP)/min and 11mL(STP)/min. The plateau region is the region of 

saturation. The plateau region widened as saturation temperature increased. Similar results 

were obtained for saturation of ternary liquid mixture of xylene. 
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  Figure A1: Evaluation of saturation unit at 315 K. Run 1: Decrease N2 gas flow rate from 
17mL(STP)/min to 4 mL(STP)/min. Run 2: Increase N2 gas flow rate from 4 mL(STP)/min to 17 
mL(STP)/min. 
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               Figure A2: Evaluation of saturation unit at 335 K  with ternary mixture of xylene isomers. 
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Appendix B: Calibration of mass flow controller and  flow meters and GC  
 
Calibration of the mass flow controller and flow meter 

The calibration of the mass flow controller and flow meters was done at ambient 

temperature and pressure. These conditions were referred to as Normal Temperature and 

Pressure (NTP).  The values at Standard Temperature and Pressure (STP) were obtained with 

Eq. B1. During the calibration, the valve opening of the mass flow controller was controlled 

between 0% and 100% and the flow rate of the gas through the valve was measured with 

ADM1000. To ensure accuracy, the measurements were repeated 3 times and the values 

averaged. Plots of the average flow rate/ were made against the valve openings:  

 
 

 FgSTP =
TSTP ∗ FgNTP( )

TNTP

                                                                                            (B1)

  
 
where STPT  is the temperature at STP, NTPT  is the temperature at NTP, gSTPF  and gNTPF are 

the gas flow rate in mL/min at STP and NTP, respectively. The sample calibration equations 

are presented in Table B1. 

                

                           Table B1: Sample of GC calibration equations 

 
 

 

 

 

 

Calibration of the GC 

Each component of xylene isomers was calibrated. The Calibration of the GC was 

done at a carrier gas flow rate chosen within the saturation region. At the constant feed flow 

rate, the saturation temperature was varied in such a way that the saturation region was not 

exceeded. The GCs were calibrated using multiple point external standard method. 

 In this method, xylene liquid (single component) was saturated in N2 at a desired 

temperature and at N2 flow rate obtained in Appendix A. The saturated partial pressure of the 

xylene vapour (single component) was obtained from Antoine equation at that temperature. 

After attaining a steady-state at this temperature, xylene vapour was sent to GC for analysis to 

Component Calibration Equation R2 
Saturator  N2 0.2231 * (MFC%): 0.9998 

Feed  N2 0.9706 * (MFC%): 0.9999 
Feed H2 1.0579 * (MFC%)-11.062 0.9999 

Sweep N2 1.4092 * (MFC%): 0.9994 
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obtain its peak area. This procedure was repeated for at least twice for different temperatures 

within the range 293 K-363 K.  

The saturated partial pressures of xylene vapour (each component) at the desired 

temperatures as obtained from Antoine equation were plotted against the peak areas obtained 

from the GC at those temperatures to obtain calibration curves/equations. Samples of the 

calibration equations are presented in the Table B2. Throughout the calibration, all lines to the 

GC were heated with heating tapes and maintained at 393 K to prevent condensation of 

xylene vapour and to ensure accurate xylene vapour pressures. Detailed step-by-step 

procedure and assumptions during GC calibration is presented below: 

 
The saturation vapour pressure of each component at the temperature point was obtained from 

the Antoine equation: 

 

 

lnPi
sat = A− B

T + C
                                                                                                              (B2) 

 

A, B and C are the Antoine constants.  

 

In vapour liquid equilibrium (VLE), for every component i  in the mixture, the condition of 

thermodynamic equilibrium will be given by (Poling et al., 2001): 

 

y i ∗ P = x i ∗ γ i ∗ Pvpi ∗ ϕ i                                                                           (B3) 

 

where  γ i  is the activity coefficient of component i , yi  and xi  are the vapour mole fraction 

and the liquid mole fraction, respectively. P  is the system total pressure and Pvpi is the 

vapour pressure of component i .  ϕ i    is the correction factor Thus the partial pressure of 

component i .  in the vapour-liquid equilibrium depends on the temperature, pressure, activity 

coefficient, its composition in the mixture. However, if a pure liquid mixture is assumed 

(which was the case in this study), γ i  =1 . Also if the pressure is assumed to be sufficiently 

low, ϕ i =1. Therefore, Eq. B3 becomes the popular Raoult’s law. With Raout’s law assumed, 

composition corresponding to the temperature and saturation vapour pressure was obtained:   
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Pyi = Pi
sat T,Φ( )xi    (for a component, xi=1)                                                                      (B4) 

 

Pyi = Pi
sat T,Φ( )                                                                                                                   (B5) 

 

yi =
Pi

sat T,Φ( )
P

                                                                                                                     (B6) 

 

 

where P  is the operating pressure (in this case, atmospheric pressure) and Pi
sat T,Φ( ), the 

saturation vapour pressure. 

 

For each component, the compositions obtained at different temperatures were plotted against 

the peak areas obtained from the GC analysis. With the calibration equations, partial pressures 

(compositions) of p-Xylene, m-Xylene and o-Xylene in the feed, the permeate and the 

retentate were obtained. 

             Table B2: Sample of GC calibration equations 

 

 

 

 

PXP , MXP  and OXP  are saturation partial pressures [Pa] of PX, MX and OX, respectively, at 

specific temperature. A  is the peak area obtained from the GC at that particular saturation 

temperature. 

 
 
 
 
 
 

 
 
 
 
 
 

Component Calibration Equation R2 
PX AAPPX 0176.0.0002.0 2 +=  0.9918 

MX AAPMX 0191.0.00002.0 2 +=  0.9920 

OX AAPOX 0015.0.0014.0 2 +=  0.9817 
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Appendix C: Diffusivity and rate of reaction consta nts for reactor modelling   
 

     Table C1: Diffusivities of component i  at 673 K for reactor modelling 

Component 
refD  a 

( m2 .s-1) 
refT  

(K) 
DE  

(KJ.mol-1) 
R  

(J.mol-1.k-1) 
iD  

(m2.s-1) 
PX  3.10x10-11 400 60a 8.314 2.268x10-10 
MX  8.00x10-15 400 60* 8.314 5.855x10-14 
OX 1.10x10-15 400 60* 8.314 8.050x10-15 

refD  for the isomers were obtained from Daramola et al.[241]. *assumed for MX and OX. 

aObtained from Daramola et al.[241]. 
 
 

    Table C2: Rate of reaction constant of component i  at 673 K for reactor modelling 

    ( )refi Tk  was obtained from ref. [278] and ik  computed using Eq. 8.23. 

 

   Table C3:  Isomerization performance of e-ZCMR at 673 K at combined mode operation 
Reactor Feed  

(kPa MX ) 
Mass of 

catalyst (g)  
PX yield 

(%) 
PX 

selectivity 
(%) 

Yield 
increase 

(%) 

MX 
conversion 

(%) 
e-ZCMR       2.4       2.18    17.5       40.5    1.8     69.7 

 
 
 

ik  

(m3.(kg 
of 

catalyst)-
1.s-1 

( )refi Tk x104 

( m3.(kg of 
catalyst)-1.s-1) 

refT  

(K) 
iE  

(KJ.mol-1) 
Rx103 

(J.mol-1.k-1) 

( )KTki 673= x104 

(m3.(kg of catalyst)-1.s-1) 

1k  2.00 623 12.37 8.31 2.38829 

1−k  4.84 623 8.75 8.31 5.48722 

2k  1.47 623 18.14 8.31 1.90685 

2−k  2.71 623 21.23 8.31 3.67467 

3k  1.33 623 17.31 8.31 1.70483 

3−k  1.33 623 19.47 8.31 1.75848 
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Appendix D: CMR testing rigs and operational proced ures 

The experimental rigs used for this study were modified to comply with current 

operational and safety standards at the IRCE, Lyon and the Department of Process 

Engineering, Stellenbosch University. These rigs were test-run thoroughly by peforming 

series of preliminary experiments to ensure the efficiency and accuracy of the rigs for the 

studies. Photographs and operational procedures of the modified rigs are presented below.    

 
Operational procedure for CMR rig at IRCE, Lyon, France 

 
Below are the photographs of the CMR rig at IRCE. Figure D1 is the front view showing 

the control panel and Fig. D2 shows the front view of the hot-box (oven) in which the pipes 

are heated and maintained at a constant temperature. Figure D3 depicts valve positions with 

direction. 

 

 

 
                                                                    
 
Figure D1: The photograph of the CMR rig at IRCE, Lyon with the front view showing the 
control panel. 
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Figure D2: The photograph of the CMR rig at IRCE, Lyon, showing the front view of the   
hot-box. 

 
Below are the valves with flow direction: 
 
 

V6

V2

V1V3

V4V5

To vent 1

 vent 2

Sweep 
countercurrently 

to the reactor

Sweep 
co-currently to 

the reactor

Internal Position
1. Permeate to GC
2. Feed to flowmeter
3. Retentate to flowmeter

Reactor testing/
pretreatment

Reactor 
bypass

Feed flow

External Position
1. Feed to GC
2. Permeate to flowmeter
3. Retentate to GC

Bypass flowmeter 
to vent 2

To flow meter 
to vent 2

Flow to V4
during internal 

position

Flow to V4
during external 

position

 
 

                             Figure D3: Valves showing positions and flow direction. 
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Valves and operation procedure 
 
A. During GC calibration, saturator evaluation and feed analysis 

1. Put V6 in Feed flow position 
2. Put V5 in Reactor bypass position 
3. Put V4 in External position (feed straight to GC) and V2 in Flow to V4 during 

external position 
4. To measure the flow rate, put V4 in Internal position, V2 in Flow to V4 during 

internal position and V1 in Flow meter to vent position 
 
B. Reactor testing and Pre-treatment 

1. Put V6 in Feed flow position 
2. Put V5 in Reactor testing position 
3. Put V3 in  Sweep countercurrently to reactor position 

Feed analysis as described in A. 
 
 
Operational procedure for CMR rig at the Department of Process Engineering, Stellenbosch 
University, Stellenbosch, South Africa. 
 

The side view of the CMR rig at the Department of Process Engineering, 

Stellenbosch University is presented in Fig. D4, while Fig. D5 shows the front view of the rig 

with control valves/ knobs.  

 

 
 

Figure D4: The photograph of the CMR rig at the Department of Process Engineering, 
Stellenbosch University, South Africa showing the side view. 
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Figure D5: The photograph of the CMR rig at the Department of Process Engineering, 
Stellenbosch University, South Africa; shwoing the front view of the control panel. 

 
Operational procedure 

A. Membrane pre-treatment 

• Put V1 in Pre-treatment position 

• Close VB 

• Close VA 

• Open VC 

• Open VD with the arrow end pointing Backward  

• Put V3 in Retentate/Permeate analysis  position 

• Put V4 in External- GC-Vent  position 

• Put V5 in Counter-current position 

• Use V7 & V8 to regulate TMP 

• Open the feed gas  and put at  the set point 

• Open the sweep gas and put at  the set point 

• Set oven temperature having fixed the module to the oven and set the temperature 

according to the HTP programme 

B. Membrane/separation testing  

• Put V1 in Membrane testing position 
• Close VC 

• Open VA 

• Open VB 

• Open feed/carrier gas and  put at  the set point using MFC 
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• Open VD with arrow end pointing Forward to analyse feed and later inverse to do 

separation testing, and wait to attain a steady state. After attaining a steady state, 

analysis the feed stream. 

• To analyse feed, put V3 in Feed analysis position , wait for about 10min and inject to 

the GC 

• To do separation, Put V3 in Retentate/Permeate analysis position , open sweep gas 

and put at the set point,  V4 in External-GC-Vent position , V5 in Counter-current 

position , set the module temperature and wait to attain the set-point, regulate TMP by 

using V7 & V8 , and wait for a pre-determined time before sampling. 

• To analyse the permeate stream, put V3 in Retentate/Permeate analysis position, 

put V4 in External-GC-Vent position (retentate stream flows to the soap bubble flow 

meter to measure flow rate), V5 remains in Counter-current position. Inject the 

sample into the GC and analysis. Measure retentate flow rate. 

• To analyse the retentate stream, put V3 in Retentate/Permeate analysis position, put 

V4 in Internal-GC-Vent position (permeate stream flows to the soap bubble flow 

meter to measure flow rate), V5 remains in Counter-current position. Inject the 

sample into the GC and analysis. Measure permeate flow rate.  
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