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OPSOMMING

Die analise van meerdimensionele (meerveranderlike) datastelle is’n belangrike area van
navorsing in toegepaste statistiek. Oor die afgelope dekades is daar verskeie tegnieke
ontwikkel om sulke data te ontleed. Die meerveranderlike tegnieke wat ontwikkel is sluit
in inferensie analise, regressie analise, diskriminant analise, tros analise en vele meer
verkennende data analise tegnieke. Die meerderheid van hierdie metodes hanteer gevalle
waar die data numeriese veranderlikes bevat. Daar bestaan ook kragtige metodes in die
literatuur vir die anaise van meerdimensionele binére en telling data.

Die primére doel van hierdie tesis is om tegnieke vir verkennende en inferensiéle analise
van binére en telling data te bespreek. In Hoofstuk 2 van hierdie tesis bespreek ons
ooreenkoms analise en kanoniese ooreenkoms analise. Hierdie metodes word gebruik om
data in gebeurlikheidstabelle te analiseer. Hoofstuk 3 bevat tegnieke vir tros analise. In
hierdie hoofstuk verduidelik ons vier gewilde tros analise metodes. Ons bespreek ook die
afstand maatstawwe wat beskikbaar isin die literatuur vir binére en telling data. Hoofstuk
4 bevat 'n verduideliking van metriese en nie-metriese meerdimensionele skalering.
Hierdie metodes kan gebruik word om binére of telling data in ‘n lae dimensionele
Euclidiese ruimte voor te stel. In Hoofstuk 5 beskryf ons’n inferensie metode wat bekend
staan as die analise van afstande. Hierdie metode gebruik 'n soortgelyke redenasie as die
anadlise van variansie. Die inferensie hier is gebaseer op 'n pseudo F-toetsstatistiek en die
p-waardes word verkry deur gebruik te maak van permutasies van die data. Hoofstuk 6
bevat toepassings van bogenoemde tegnieke op werklike datastelle wat bekend staan as
die Biolog data en die Barents Fish data.

Die sekondére doel van die tesis is om te demonstreer hoe hierdie tegnieke uitgevoer
word in the R sagteware. Verskeie R pakette en funksies word deurgaans bespreek in die
tesis. Die gebruik van die funksies word gedemonstreer met toepaslike voorbeelde.
Aandag word ook gegee aan die interpretasie van die afvoer en die grafieke. Die tesis

dluit af met algemene gevolgtrekkings en voorstelle vir verdere navorsing.
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SUMMARY

The analysis of multidimensional (multivariate) data sets is a very important area of
research in applied statistics. Over the decades many techniques have been developed to
dea with such datasets. The multivariate techniques that have been developed include
inferential analysis, regression analysis, discriminant analysis, cluster anaysis and many
more exploratory methods. Most of these methods deal with cases where the data contain
numerica variables. However, there are powerful methods in the literature that aso ded
with multidimensional binary and count data

The primary purpose of this thesis is to discuss the exploratory and inferential techniques
that can be used for binary and count data. In Chapter 2 of this thesis we give the detail of
correspondence anaysis and canonica correspondence anaysis. These methods are used
to analyze the data in contingency tables. Chapter 3 is devoted to cluster analysis. In this
chapter we explain four well-known clustering methods and we also discuss the distance
(dissimilarity) measures available in the literature for binary and count data. Chapter 4
contains an explanation of metric and non-metric multidimensional scaling. These
methods can be used to represent binary or count data in a lower dimensional Euclidean
space. In Chapter 5 we give a method for inferentia analysis called the anaysis of
distance. This method use a similar reasoning as the analysis of variance, but the
inference is based on a pseudo F-statistic with the p-value obtained using permutations of
the data. Chapter 6 contains real-world applications of these above methods on two
special data sets caled the Biolog data and Barents Fish data.

The secondary purpose of the thesis is to demonstrate how the above techniques can be
performed in the software package R. Several R packages and functions are discussed
throughout this thesis. The usage of these functionsis also demonstrated with appropriate
examples. Attention is also given to the interpretation of the output and graphics. The

thesis ends with some genera conclusions and ideas for further research.
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Chapter 1: Introduction

Chapter 1

I ntr oduction

1.1 Background and motivation for study

Multivariate statistical techniques play a very important role in understanding data
that are multidimensional in nature. Such data sets are often very complex to
understand and very difficult to analyze. Over the last decades the literature on
multivariate techniques in the areas of regression analysis, cluster analysis, ordination
analysis, discriminant analysis and multivariate inference have been vastly expanded
(see for example Mardia et al. (1979); Ter Braak (1986); Legendre and Legendre
(1998); Cox and Cox (1994); Anderson (2001a); Anderson (2001b); Cox and Cox
(2001); Quinn and Keough (2001); Greenacre (2007); Johnson and Wichern (2007);
Nenadic and Greenacre (2007); de Leeuw and Mair (2009); etc.). Many of these
techniques are original and very sophisticated, while others are extentions of the
univariate methods. These techniques have been applied in a variety of fields such as
Biology, Ecology, Medicine, Marketing, Agriculture, Psychology, Economics, and
many more. The great success with which it has been applied, is instrumenta in the

popularity of the techniques among statisticians and researchers in other fields.

The number of techniques used for analyzing multivariate numerical data is much
more than those for other types of data. Anayzing numerical data is usually easier
than analyzing multivariate count, categorical and binary data sets. In this thesis we
will look specifically at the analysis of multidimensional count and binary data
Researchers often make observations that involve counts or the presence (absence) of
some phenomenon. How to analyze such data is often unfamiliar to them. A variety of
techniques for the analysis of such data exists and in this thesis we will review many

of them and also apply the techniques to data sets.
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A large part of this thesis will be devoted to develop an understanding of how to
analyse multidimensional count and binary data. A detailed explanation of popular
techniques such as correspondence analysis, canonical correspondence analysis,
cluster analysis, multidimensional scaling and analysis of distance will be given in
subsequent chapters. The explanations are accompanied by practical applications in
the R software. A detailed illustration of how these methods are performed in R is
given using examples. A discussion of the available R packages and corresponding
functions will also be given.

Another important contribution of the thesis is the analysis of two data sets. The first
data set is multidimensional binary data set from the South African Agricultural
Research Council (ARC). This data set, referred to as the Biolog data, will be
described in more detail in the Section 1.2. The second data set, referred to as the
Barents Fish data, is a multidimensional data set containing count and numerical data.
This data set will be used to perform a canonica correspondence analysis and was
obtained from a multivariate statistics workshop by professors M. Greenacre and R.
Primicerio presented at Stellenbosch University. A description of the datais given in
Section 1.3.

Throughout the thesis the advantages/ disadvantages of the methods and R functions
will be highlighted. Emphasis is placed on the anaysis of the data, graphica
illustrations and the interpretation of the output. Many of the techniques make use of a
distance or dissimilarity matrix. Choosing the appropriate distance or dissimilarity
measure for the data (numerical, count or binary) also receives attention in this thesis.

1.2 The Biolog data

The Biolog data refers to an experiment that was conducted by researchers at the
Nietvoorbij institute of the Agricultural Research Council (ARC) in Stellenbosch. The
analysis of this data set, which will be discussed in Chapter 6, forms an important part
of the thesis. The following is a description of how the experiment was conducted and
how the data was obtained. See Figure 1.3 for an extraction of the Biolog data.
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The experiment is about differently treated soil being used to study the activities of
micro organisms in the soil. The soil was treated with 12 treatments using a
randomized experimental design layout on a piece of land. Samples of the soil were
collected at two depths (0-75mm and 150 — 300mm) to study the microbial activities
at different layers in the ground. Samples were also collected for three months
(February, September and December) to study the microbial activity over time. This
experiment continued over the period 2006 to 2009. However, for the purpose of this
thesis we will only analyze the data for 2006. Once the soil samples (for the 12
treatments, 2 depths and 3 month) were collected, it was dissolved in water. If
dissolved in water, the soil will sink to the bottom and the micro organism in the soil
will rise to the top. A sample of this water was then put in a Biolog Ecoplate to

observe the microbial activity. The following is a description of the Biolog Ecoplat€®.

The Biolog EcoPlate is atool that is used alot for community analysis and ecological
studies. A picture of the plate is shown in Figure 1.1. This EcoPlate contains 31 of the
most useful carbon sources (see Figure 1.2 for a description) for soil community
analysis. It should be noted that water is included in the EcoPlate as the 32™
component of the EcoPlate. These 32 components of the EcoPlate are repeated 3

times in order to give more replicates of the data

Figure 1.1: The picture of a physical Biolog EcoPlate during an experiment. The purple wells
contain carbon sources that were used by the microbial community. The intensity of the
purple coloration indicates the degree of carbon source usage by the community. There are 96

wells in the plate comprising the 32 carbons which are each replicated 3 times.

&for more information visit the websites: www.biol og.com and
http://stes.qgoogl e.com/site/cel | bi osci encesau/services/biol og-1
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BiOLOG

Microbial Community Analysis

EcoPlate™

Al AZ A3 Ad A1 AZ A3 Ad Al A2 A3 Ad
Water B-Methyl-D- D-Galactonic |L-Arginine Water B-Methyl-D- D-Galactonic |L-Arginine Water B-Methyl-D- D-Galactonic |L-Arginine
Glucoside Acid Glucoside Acid Glucoside Acid
¥lactone ylactone y-Lactone
B1 B2 B3 B4 B1 B2 B3 B4 B1 B2 B3 B4
Pyruvic Acid D-Xylose D- L-Asparagine |Pyruvic Acid D-Xylose D- L-Asparagine |Pyruvic Acid D-Kylose 0- L-Asparagine
Methyl Ester Galacturonic Methyl Ester Galacturonic Methyl Ester Galacturonic
Acid Acid Acid
c1 c2 C3 C4 C1 c2 C3 c4 C1 c2 C3 c4
Tween 40 i-Erythritol 2-Hydroxy L- Tween 40 i-Erythritol 2-Hydroxy L- Tween 40 i-Erythritol 2-Hydroxy L-
Benzoic Acid |Phenylalanine Benzoic Acid |Phenylalanine Benzeic Acid |Phenylalanine
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4
Tween 80 D-Mannitol 4-Hydroxy L-Serine Tween 80 D-Mannitol 4-Hydroxy L-Serine Tween 80 D-Mannitol 4-Hydroxy L-Serine
Benzoic Acid Benzoic Acid Benzoic Acid
E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4
o MN-Acetyl-D- L-Threonine o N-Acetyl-D- - L-Threonine o« M-Acetyl-D- - L-Threonine
Cyclodextrin  [Glucosamine |Hydroxybutyric Cyclodextrin | Glucosamine |Hydroxybutyric Cyclodextrin | Glucosamine |Hydroxybutyric
Acid Acid Acid
F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4
Glycogen D- Itaconic Acid | Glycyl-L- Glycogen D- Itaconic Acid  |Glycyl-L- Glycogen D- Itaconic Acid | Glycyl-L-
Glucosaminic Glutamic Acid Glucesaminic Glutamic Acid Glucosaminic Glutamic Acid
Acid Acid Acid
G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4
D-Cellobiose |Glucose-1- aKetobutyric (Phenylethyl- |D-Cellobiose |Glucose-1- o-Ketobutyric |Phenylethyl- |D-Cellobiose |Glucose-1- o-Ketobutyric | Phenylethyl-
Phosphate Acid amine Phosphate Acid amine Phosphate Acid amine
H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4
o-D-Lactoze D,L-o-Glycerol | D-Malic Acid |Putrescine o-D-Lactose D,L-@-Glycercl | D-Malic Acid (Putrescine oD-Lactose D,L-&-Glycerol | D-Malic Acid |Putrescine
Phosphate Phosphate Phosphate

Figure 1.2: The Biolog EcoPlate with a description of the 32 carbon sources.
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Figure 1.3: An Excel extraction of the binary measurements in the Biolog data.
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The micro organisms found in the soil digests the carbon in the EcoPlate. If digested,
the organism releases a substance that turns the chemicals in the EcoPlate into a
purple colour. Thus, the purple colours in Figure 1.1 are indications that there was
microbial activity. The data captured in this experiment are binary (presence or
absence of microbia activity). The value 1 in the data indicates that the colour in the
EcoPlate turned purple and the value 0 indicates that there was no activity at all.

The data set from this experiment is multidimensional. The binary nature of the
measurement makes it almost impossible to analyze the data with conventional
multivariate statistical methods. Part of this thesis is to analyze the Biolog data using
appropriate methods that have been developed for such data. In Chapter 6 we will

perform an exploratory analysis on the data as well as an inferential anaysis.

1.3 The Barents Fish data

The Barents Fish data was obtained from an observationa study in the Barents Sea,
north of Russia and Norway. A picture of the region is given in Figure 1.4. The grey
shaded area is the region in which the data was observed. The area was divided into
89 sub-regions (stations) and each station was documented as an observation in the
data. At each of the stations the following two sets of data were recorded.

The first set consists of 4 numerical variables, which are Latitude, Longitude, Depth

(in metres) and Temperature (°C). These environmental variables will be called the
explanatory variables. The second set consists of count data. Different fish species, a
total of 32, were observed at each of the 89 stations. The number of species observed
at each station was counted. A list of these speciesis given in Table 1.1 together with
the abbreviations that will be used for the data. An extraction of the Barents Fish data
is given in Figure 1.5. This data were recorded in April-May 1997 over a 3 week

period.

The purpose of this study is to examine the relationship among the different fish
species and the environmental variables. In Chapter 6 we will perform a canonical
correspondence analysis on this data to obtain the necessary answers.




Stellenbosch University http://scholar.sun.ac.za

Chapter 1: Introduction

)

T

s

TRIN|

!

7o S

FIM L

20°C T 4TS TS

Figure 1.4: The map showing the sampling area in the Barents Sea. The site is north
of Norway and Russia
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Table 1.1: List of species and their abbreviations in the data.

Abb. Scientific name Family Common name
An de Anarhichas denticulatus | Anarhichadidae | Jelly wolffish/Arctic catfish
Anlu Anarhichas lupus Anarhichadidae | Wolffish/Atlantic cafish
An mi Anarhichas minor Anarhichadidae | Spotted wolffish/catfish
Lede Leptagonus decagonus | Agonidae Atlantic poacher
Cl ha Clupea harengus Clupeidae Herring
Ar at Artediellus atlanticus Cottidae Atlantic hookear sculpin
Tr spp Triglops murrayi Cottidae Moustache/mailed sculpin
Tr spp Triglops pingelii Cottidae Ribbed sculpin
Care Careproctus reinhardti | Cyclopteridae | Longfin seasnail
Cylu Cyclopterus lumpus Cyclopteridae | Lumpsucker
Bosa Boreogadus saida Gadidae Polar cod
Gamo Gadus morhua Gadidae Cad
Me ae Melanogrammus Gadidae Haddock
aeglefinus
Mi po Micromesistius Gadidae Blue whiting
poutassou
Tr es Trisopterus esmarkii Gadidae Norway pout
Begl Benthosema glaciale Myctophidae Glacier lanternfish
Mavi Mallotus villosus Osmeridae Capdlin
Pa bo Pandalus borealis Pandalidae Shrimp
No rk Notolepisrissoi krgyeri | Paralepididae | White barracudina
Hi pl Hippoglossoides Pleuronectidae | Long rough dab
pl atessoides
Re hi Reinhardtius Pleuronectidae | Greenland halibut
hi ppogl ossoi des
Rara Raja radiata Rajidae Starry ray
Sema Sebastes marinus Scorpaenidae Golden redfish
SEme Sebastes mentella Scorpaenidae Deepwater redfish
Lema Leptoclinus maculatus Stichaeidae Spotted snake blenny
Lula Lumpenus Stichaeidae Snake blenny
lampraetaeformis
Ly es Lycodes esmarkii Zoarcidae Esmark’s eel pout
Lyeu Lycodes Zoarcidae Eelpout (ncn)
eudipleurogtictus
Ly pa Lycodes pallidus Zoarcidae Pale ed pout
Ly re Lycodes reticulatus Zoarcidae Arctic ed pout
Ly se Lycodes seminudus Zoarcidae Eelpout (ncn)
Ly va Lycodes vahlii Zoarcidae Vahl’s eelpout
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Station

356
357
358
354
363
364
365
366
367
368
364
370
371
a7z
373
375
376
ary
378
374
380
381
382
383
384
385
386

Environmental characteristics

Latitude
71.10
71.32
7160
T1.27
71452
7148
71.10
71.03
71.32
71.30
7122
71.58
7168
7172
7202
7225
7245
7273
7283
7240
T2 62
7235
7208
7182
7155
71493
7223

Longitude

2243
2368
2490
256188
2812
2810
28492
30487
31.20
32158
33158
3237
3125
3077
3167
3243
3432
3560
34 .68
33.33
3205
30.78
2843
2817
27.00
26.07
2725

348
382
284
304
384
344
347
300
260
iilal
254
287
332
368
320
285
285
234
228
227
268
285
280
308
350
280
234

Temperature

3495
3.75
345
365
3.35
365
3.55
3.85
285
3.35
255
2 B5
285
185
1 65
125
0.15
0 65
0.55
0.35
0495
285
3.05
3.25
3.35
3.35
3.15

Station

386
347
348
348
363
364
365
366
367
368
368
370
371
a7
a7a
375
376
arT
378
378
380
381
382
383
384
385
386

Species abundance

Pa_ha

kD4

3 607
1 B4
2 24p
9 a04
4 690
7473
2874
700
1023
204
2322
b4
1 B598
17 BBB
8291
27 62
7 465
2E27
3 3B
9733
4459
5an2
3 6RO
13 337
27275
231

Re_hi

oo oo 0O — — O 0O 0O Mmoo oo —- OO oo 0O 0

An_de

o R s T s e e o Y e s e e Y S e e s [ s R N e ol e e o e s s [ s o e
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Figure 1.5: An Excel extraction of the numerical variables and fish counts in the Barents Fish data.
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1.4 The aim of thethesis

The am of this thesis can be summarized by the following points:

To explain various popular multivariate techniques that can be used for the
exploratory analysis of count and binary data.

To discuss a technique for inference when using count and binary data. This
technique is equivalent to the analysis of variance for numerica data.

To illustrate how these techniques can be applied using the R software package

(http://www.r-project.org/). Clear demonstrations of the functions, anaysis and

graphical features will be given.

These exploratory techniques will be employed to analyze the Biolog data. An
inference method is aso used to analyze and understand this data.

The Barents Fish data is used to demonstrate how to analyze two sets of data
(numerical and count data). The aim here is to study the relationship between

these to sets of data.

1.5 Layout of thethesis

Chapter 2 introduces correspondence analysis as well as canonical correspondence
analysis. The agebraic development for these techniques is given in detail. This
chapter not only shows how correspondence analysis is constructed, but also
demonstrates how it extends to canonical correspondence anaysis. An example is
used to illustrate how these analyses are performed using the ca(), anacor () and
cca() functionsin R In Chapter 3 we deal with cluster analysis. This chapter starts
by discussing various distance and dissimilarity measures. Different distance
(dissimilarity) measures are used for different types of data and choosing the
appropriate measure will be explained. Four clustering methods are discussed and also
illustrated with an example in R using the hcl ust () function. A metric as well as a
nonmetric multidimensional scaling technique is given in Chapter 4. Applications of
these techniques are performed using the packages cndscal e() and i soMDS() . In
Chapter 5 we explain a non-parametric inference technique called the analysis of

distance. This technique is similar to the analysis of variance in the univariate and

10
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multivariate cases. An example of how this techniques is applied is given using the
adoni s() function. Chapter 6 is devoted to the analysis of the Biolog and Barents
Fish data. The techniques discussed in Chapters 2 to 5 are employed to perform the
analysis. Attention is also given to the interpretation of the output. Chapter 7 is a
genera conclusion of the thesis and some recommendations for future research are

also given.

11
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Chapter 2

Simple and Canonical correspondence analysis

2.1 Introduction

Simple correspondence analysis (CA) is a multivariate statistical method which is
used for exploratory data analysis. It was developed at the end of the 1960's by a
French statistician Jean-Paul Benzécri for linguistic applications (Benzécri, 1973).
Correspondence analysis is used to analyse simple two-way and multi-way
contingency tables. The aim of the correspondence anaysis is to study the

rel ationships between the rows and columns in a contingency table.

Correspondence analysis is a nonparametric technique which makes no distributional
assumptions. The type of variables used in a correspondence analysis is usually
categorical variables and if continuous, the variables must be categorized into ranges.
The raw data for a correspondence analysis is in the form of a contingency table with

nonnegative counts (frequencies).

Canonical correspondence anaysis (CCA) on the other hand, is a correspondence
analysis that is performed in a restricted or constrained space® (Greenacre, 2007).
While simple correspondence analysis uses only a contingency table, canonicial
correspondence analysis requires an additional set of data in the form of numerical
variables measured on the same observations from which the contingency table was
obtained.

The aim of canonical correspondence analysis is to include these additional numerical
variables (often referred to as explanatory variables) as part of the CA solution. This
has been made possible by “forcing the CA solution to be a linear function of
explanatory variables’ (Greenacre, 2007). By taking into account the explanatory

& For moreinformation on CA and CCA, the constrained and unconstrained space see Greenacre (2007)
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variables, CA becomes constrained and therefore the name canonical (or constrained)

correspondence analysis.

The results for CA and CCA are very similar. However, CCA can give us much more
information using the explanatory variables. CCA originated from the field of
Ecology (ter Braak, 1986) and has been applied quite extensively by Ecologists and
many other scientists. In this chapter we will discuss both CA and CCA as methods of
exploratory analysis. In Section 2.2 we explain the agebra underlying simple CA.
This discussion is followed by a description of measures of goodness-of-fit for CA,
called the inertia and Benzécri distances. Note that these goodness-of-fit measures can
also be used for CCA. We also illustrate how CA can be gpplied in R using two
packages, namely anacor and ca. In Section 2.5 the formulation of CCA is discussed
and its extension from simple CA is shown. In Section 2.6 we illustrate the
application of CCA in the R packages anacor and vegan. Finally, in Section 2.7, we
discuss some permutation test in CCA.

2.2 Simple correspondence analysis

Let X denotean |~ J contingency table with elements X, , where | > J . A matrix of

proportions is derived from this contingency table by dividing each of the elementsin

| J
X by the grand total n=g § X, . This matrix is known as a correspondence matrix,
i=1 j=1

denoted by

P :lx,withelements of :ﬁ.
'3 n n

The row totals and the column totals in the correspondence matrix are known as the
row masses (ltl) and column masses (J(;l) , respectively. These vectors are obtained

from P asfollows:

13
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J
r= IPJJll,with elementsr = § p, fori=12..,1 and

=1

|
c=P¢1, with elements c, =amp for j=1,2,..,J.
i=1
Let D, and D, be diagona matrices having r and con the diagona respectively.
Thus D, =diag(r,,1,,....r,) and D, =diag(c,,C,,....c,). Thesediagonal matrices are

known as row mass and column mass diagonal matrices. From these diagonal
matrices we define the following square root matrices which will be used for scaling

(weighting) purposes later:

: @1 1 10
D, =diag (/1,1 senn/ d D, Y*=diagg—~—,—,...——+.
(@ D, |ag( PPV rl) an |agg\/E \/E \/EE

& 0]
(b) DC”Z:diag(\/a,\/g,...,\/a) and DC'”Z:diagé\/la,\/lg,...,\/(lTi.
)@

Correspondence analysis is formulated as a weighted least squares problem (Johnson

and Wichern, 2007) where we want to determine the matrix P :{ f)ij} by minimizing

the sum of squares

e

~ \2 . .
55—( p”'rfCP”') :tré(D;m(P- P)D;*?)(D;*2 (P- )02 ) g

[}

H
oc

i=1l j=

Toobtain P that minimizes this equation a singular value decomposition based on P
is commonly used (for the proof see Result 12.1 in Johnson and Wichern, 2007,

p.719). This result shows that P =rct is the best rank 1 approximation to P and is
often used as the estimate P when performing CA. For our discussion and analyses

(Section 2.4) we will use P =rc(. Define the scaled matrix of (P- rc) as

S =D;"*(P- rcD."?, (2.1)

1”3
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which is aso known as the matrix of standardized residuals. Because of this particular

scaling, asingular value decomposition (SVD) is performed on S such that

¢

J

(2.2)

J
S=3!l.uve=UAYV
k=1 J

171373

where |, denote the singular values. The above matrices from the SVD are

U=[u,...u,], V=[v,..,v,] and

d, 0 L 0y
é ¥
0 1, L ot

A=€" 2 u, 2.3
&l Il O 23)
g0 0 L I,§

It is common in correspondence analysis to plot the first two or three columns of the

following matrices:
F=D;*(D*U)A and G =D,*(D¥*V)A (2.4)

(which can also be expressed as | ,D;Y?u, and |,D;"?v, ) for k=1,2, or maybe 3. The
plot of F (row coordinates) and G (column coordinates) on the same graph is referred
to as a joint plot, symmetric plot or a CA plot. This plot describes the relationship
between the rows and the columns of the contingency matrix, X . Figures2.1 and 2.3

are examples of this CA plot.
2.3 Inertia and Benzécri distances

It is common in correspondence analysis to determine the goodness-of-fit. In other
words, how well the variation in the CA plot describes the variation in the raw data. In
this section we will discuss two measures of determining the goodness-of-fit in
correspondence analysis. Firstly we will explain the inertia and secondly the Benzécri

distances.
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The total inertiais a measure of the variation in the contingency table or the raw data.
It is formulated as the weighted sums of squares (see Johnson and Wichern, 2007)

2
€. .12 “u2 ~u2 2\0U_ 8 & (pij_ricj) _%t
tr 3 P-rcdD D P-rcdD o= A -7 =3
P 9D, (D, *( G)C)Hgﬂ% oAk
(2.5)

The total inertiais divided into two parts. The first part is the inertia associated with
the first K dimensions and is obtained by 5 | 2. The second part is the remaining
k=1
portion of the total inertia which is not accounted for by the first K dimensions. This
is obtained by 51 | 2 and is known as the residual inertia. Thus a measure of
k=K +1

goodness-of-fit in correspondence analysis is defined as the proportion of inertia
explained by the first K dimensions relative to the total inertiaand is given by

5 31
alf/alf- (2.6)

A high value of this measure represents a good fit in simple (and canonical)

correspondence analysis.

A second (graphical) measure which is used to determine the goodness-of-fit makes
use of Benzécri distances (de Leeuw and Mair, 2009). The Benzécri distance between

rows i and i¢in the contingency table X isdefined as

I X X, 8
dz(i,iQZélg-%Elx_j, =121, 2.7)
4 ¢ X

where x. =total of row i
X, =total of row i¢

X ; =total of column j.

16
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Next the Euclidean distance between rows i and i¢ of the first K dimensions of F is
obtained. Plotting the Benzécri distance and the Euclidean distance for each of the
row pairs gives a Benzécri plot. In asimilar way the Benzécri distance is obtained on
the columns of X and a Euclidean distance on the first K dimensions of G. Figure

2.2 contains examples of the Benzécri plot of the rows and columns. If the plot of the

distances lies close to the 45° line, then the correspondence analysis has a good fit.

2.4 Performing a correspondence analysisin R

In this section we explain the agpplication of correspondence analysis using the R
software (R Development Core Team, 2009). Two R packages are discussed namely
the ca package developed by Nenadic and Greenacre (2007) and the anacor package
developed by de Leeuw and Mair (2009). The ca package allows for the computation
of simple correspondence analysis based on the SVD. The ca package also includes
the multiple and joint correspondence analysis. Both these packages provide two and
three dimensiona plots (see Figure 2.2 and Figure 2.5). More details about the ca
package can be found in Nenadic and Greenacre (2007). The anacor package aso
allows for the computation of simple and canonical CA for incomplete tables (tables
with missing values) based on SVD.

The ca package and the anacor package give similar output, but the anacor package
has more features than the ca package. The anacor package performs both simple and
canonical CA. It offers additiona possibilities for scaling the row and column scores
in simple and canonical CA (see Leeuw and Mair, 2009). Note that different scaling
methods lead to different interpretations of the distances in the CA plot. It aso has an
additional graphical feature which includes ellipsoids and the Benzécri plots. It also
allows for missing values, which are imputed using Nora's agorithm (Nora, 1975).

More details about the anacor package can be found in de Leeuw and Mair (2009).
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To illustrate correspondence analysis using the two above mentioned packages, we
will make use of the smoke data set (Greenacre, 2007). This data set is part of the ca

package and the following R commands |oad the data set:

R> |ibrary(ca) # | oadi ng the ca package
R> dat a( snoke) # | oadi ng the data set
R> snoke

none |ight nedi um heavy

SM 4 2 3 2
JM 4 3 7 4
SE 25 10 12 4
JE 18 24 33 13
SC 10 6 7 2

This data set contains frequencies (counts) of smoking habits (none, light, medium,
and heavy) for different staff groups (senior managers (SM), junior managers (JM),
senior employees (SE), junior employees (JE) and secretaries (SC)) in a fictiond
company. The purpose of the correspondence analysis is to determine if there is any
association between the smoking habits and staff groups.

2.4.1 The anacor package

This package contains the function also called anacor () which is used to perform

correspondence analysis. The main arguments of the function is given below

R> anacor (tab, ndim= 2, row covariates, col.covariates,

scaling = c("Benzecri","Benzecri"), eps = le-06)

wheret ab is the contingency table (missing values are coded as NA) and ndi mis used
to specify the number of dimensions. The following R instructions load the package
and perform the correspondence analysis on the smoke data.

R> |ibrary("anacor") # | oadi ng the package
R> regl<-anacor ( snoke, ndi m=2)
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R> reql # CA output/results

CA fit:

Sum of ei genval ues: 0.08477629
Benzecri RMBE rows: 2.412250e- 05
Benzecri RMSE col unms: 7.797221e-06

Total chi-square val ue: 16.442 # total inertia

Chi - Squar e deconpositi on:
Chi sq Proportion Curul ative Proportion

Conmponent 1 14.429 0.878 0.878
Conponent 2 1.933 0.118 0. 995
Conponent 3 0.080 0. 005 1. 000

The output above contains the squared singular values (2.3), the total inertia (2.5) and

the proportion of variation explained by the dimensions (2.6). A total of 99.5% of the

variation in the contingency table is explained by the first two dimensions. The next

instruction plots the two dimensional CA plot, Figure 2.1:

R> pl ot (reql)

The blue labels represent the columns and the red labels represent the rows of the

smoke data. It seems like the senior employees (SE) do not smoke (none). Junior

managers (JM) seem to be heavy smokers while junior employees (JE) are medium

type smokers. However, the senior managers (SM) and the secretaries (SE) do not

seem to have any clearly identifiable smoking habits. They could be classified in any

of the smoking categories.
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Figure 2.1: CA plot (joint plot) of the smoke data set using anacor () .

Additionally, the anacor package also allows usto create a three dimensional CA plot
for correspondence analysis by using the function pl ot 3d() . The main arguments for
this plot function are,

R> plot3d(x, plot.type, plot.dim= c(1,2,3), col.r = "RED",
col.c = "BLUE", arrows = TRUE, xlab, ylab, zlab, main, ...)

where x is a correspondence analysis object obtained from the anacor () function and
the pl ot . t ype option is used to specify the type of plot required (the joint plot is the
default plot type). Note that object x in the pl ot 3d() function needs to have ndi m=3
before using pl ot3d(). The following instructions are used to create a three
dimensiona CA plot of the smoke data (the plot is given in Figure 2.2):
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R> reqg2<- anacor ( smoke, ndi m=3)
R> pl ot 3d(req2)

The interesting property about the plot in Ris that it can be rotated manually to obtain
the best three dimensional view of the CA plot of the rows and column profiles.

/ 0z
Difidhsion 1

0.2

-

Figure 2.2: The three dimensional CA plot of the smoke data using pl ot 3d() .

To obtain the Benzécri plots, we use the following instruction (based on the two

dimensional correspondence anaysisobject reql ):
R> pl ot (reql, pl ot.type="benzpl ot")

The resulting figures for the rows and columns are displayed in Figure 2.3. The fitted
distances are the Euclidean distances while the observed distances represent the
Benzérci distances (2.7). The plot of the fitted vs the observed distances lie close to
the straight line (45° ling), indicating that the two dimensional correspondence
analysis is agood display of the smoke data. Thisis in agreement with the high inertia
valuei.e. 99.5% of the variation explained by the first two dimensions.
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Figure 2.3: Benzécri plots of rows and columns using anacor () .
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2.4.2 The ca package

This package uses the function ca() . Its main arguments are

R> ca(obj,
subset col =

nd = NA, suprow = NA, supcol = NA, subsetrow = NA

NA)

In this function the argument obj is the contingency table and nd is used to specify

the number of dimensions. The following R instructions load this package and

perform the correspondence anaysis:

R> |ibrary(ca)
R> req3<- ca(snoke, nd=2)

R> req3

Princi pal

Val ue

Per cent age

Rows:
Mass 0.
Chi Dist 0.
Inertia O.
Dm 1 -0.
Dm 2 -1.

Col umms:
Mass 0.
Chi Dist 0.
Inertia O.
Dm 1 -1.
Dm 2 -0.

i nertias (eigenval ues):

1

2 3

0. 074759 0.010017 0.000414

87.76%

SM
056995
216559
002673
240539
935708

none
316062
394490
049186
438471
304659

11.76% 0.49%

JM SE
0. 093264 . 264249
0. 356921 . 380779
0. 011881 . 038314
0.947105 -1.391973
-2.430958 -0.106508

o O O

li ght nmedi um
0. 233161 0. 321244
0.173996 0.198127
0. 007059 0.012610
0. 363746 0.718017
1.409433 0.073528 -

# | oadi ng t he package

# perform CA

# CA out put

JE SC
0. 455959 0.129534
0.240025 0.216169
0. 026269 0.006053
0. 851989 -0. 735456
0.576944 0. 788435

heavy
0. 129534
0. 355109
0. 016335
1. 074445
1. 975960

23



Stellenbosch University http://scholar.sun.ac.za

Chapter 2: Simple and Canonical correspondence analysis

The default output of ca() above is quite differently displayed to the output of
anacor () showed in the previous section. However, the values of the inertiaand the
percentage of variation explained by the dimensions are given. Also given in the
output are the row and column coordinates (labelled bi m 1 and Di m 2) of the CA

plot, Figure 2.4. The next instruction creates the CA plot:
R> pl ot (req3)

The interpretation of this figure is the same as Figure 2.1.

N |
o
Llight
— _]
o .SC
JE
®
o Amedium
R O ] L O
© Arﬂ)ne
—
S
g i .SM Aheavy
JM
®
™
S -
I I I I I I I I
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Figure 2.4: CA plot of the smoke data set using ca() .
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Similar to the anacor package, the ca package aso allows us to create a three
dimensional CA plot. This is done by using the function pl ot 3d. ca() . The main

arguments of this function are given below:

R> plot3d.ca(x, dim= c(1, 2, 3), map = "symetric",

what = c("all", "all"), contrib = c("none", "none"),
col = c("#6666FF","#FF6666"), |abcol = c("#0000FF",
"#FF0000"), pch = c(16, 1, 18, 9), labels = c(2, 2),
sf = 0.00002, arrows = c(FALSE, FALSE), ...)

The object x is an object obtained from the ca function. To create the three
dimensiona CA plot with pl ot 3d.ca() we need to use to a three dimensiona

correspondence analysis object which can be done by using the following instructions.

R> req4<- ca(snoke, nd=3)
R> pl ot 3d. ca(req4)

Figure 2.5 is an example of the three dimensional CA plot, which can also be rotated

manually in Rto obtain the best view of the row and column profiles.

Figure 2.5: A three dimensional CA plot of the smoke datausing p! ot 3d. ca().
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2.5 Canonical correspondence analysis (CCA)

Canonical correspondence analysis (CCA) was introduced by Cajo ter Braak (ter
Braak, 1986) for use in Ecology. Canonical (constrained) correspondence anaysis is
an extension of simple correspondence analysis described in Section 2.2. It has
become quite useful in many applications involving two sets of data i.e. a frequency
table and set of numerical data (recall that simple CA is based only on a frequency
table). Another version of CCA was proposed by L egendre and Legendre (1998) and
in this section we briefly explain this proposal.

In simple correspondence analysis, an | © J contingency table X isused to obtain the
correspondence matrix P. The correspondence matrix P is then used to define the

matrix

S =D;"*(P- rc§D.*.

Simple correspondence analysis is performed by doing a singular value
decomposition on this matrix S. For canonical correspondence analysis we have an
additional set of numerical data (explanatory variables), which we will denote by the
|~ p matrix Y, where p represents the number of variables in Y . Performing a
canonical correspondence analysis involves what is known as a weighted regression
on the matrix of explanatory variables, Y . The following paragraph explains how this
IS obtained.

Firstly Y is centred by using the sums of the columns of D,Y. Secondly the

projection matrix Q is obtained from the projection of S onto Y as follows:
Q=D?Y(YD,Y) ' YO!2,

A weighted regression of the matrix Q on the matrix Y is performed, which result in

the following matrix of fitted values
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Q=£DV*Y(Y®,Y) " YO*UgD ¥ (P- re§ D7

=QS.

CCA now entails doing a singular value decomposition on Q (as apposed to S for

simple CA). Once the SVD of Q is performed, the rest of CCA (see F and G in
expression 2.4) is performed exactly the same as simple CA. A joint plot (or CCA
plot) and the inertia for CCA are obtained in exactly the same way as for simple CA.
However, it is customary to display the explanatory variables as arrows on the CCA
plot in order to study the relationship between X and Y . See Figure 2.6 as an
example. The arrows explaining this relationship are obtained as follows.

Using the row coordinates of the SVD on Q (matrix F in expression 2.4), we

perform a regression analysis using one of the explanatory variables (as a dependent
variable) and the row coordinates (as independent variables). The following illustrates

how the regression works for the first two dimensions of FP (x,%,) and

explanatory variable y from Y . Let y=a+bx +cx, and y =a+bx +cX, then

y- ¥=bs,x +cs, X

YYo= 0
S, &, X1+§ S, 5

The standardized regression coefficients bs, /s, and cs /s, are then used as

coordinates for the arrows on the CCA plot (see Figure 2.7). The CCA plot with the
arrows is aso referred to as atriplot (Greenacre, 2007). Note that on standardized data
the intercept of the regression analysisis zero.
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2.6 Performing a canonical correspondence analysisin R

CCA can be performed using one of the following two packagesin R i.e. theanacor
and vegan packages. As mentioned before, the anacor package was developed by
Leeuw and Mair (2009) and it performs a CCA based on the method of ter Braak
(1986). The vegan package (Oksanen et al., 2009) was developed for use in Ecology
and contains a vast number of statistical techniques including CCA. The paper by one
of its developers Oksanen (2011) and is good reference on understanding the vegan
package. The CCA found in vegan is based in the method proposed by Legendre and
Legendre (1998) discussed in the previous section.

In this section we will first illustrate briefly how CCA is performed using the anacor
package. Thisis followed by a more detailed CCA using the vegan package. The data
set that will be used in our illustrations is a data set obtained from a Multivariate
Statistical Modelling of Ecology data workshop. This workshop was held at the
Statistics department of Stellenbosch University in December 2009 by Professors
Michael Greenacre and Raul Primicerio. The Ecology data are displayed on the next

page as two R objects bi odat a and envdat a.

These data sets represent a typical setup for a CCA. The object bi odat a refers to the
contingency table while the object envdat a refers set of explanatory variables. Both
sets of data represent measurements taken on 30 different sites. Five different species
labelled a, b, ¢, d and e were counted on the 30 sites while at the same time three
numerical measurements named pollution, depth and temperature was also measured
on the same sites. The purpose of the CCA is now to study the relationships between
species and the sites by incorporation the numerical measurements as well. Also we
would like to study the relationship between the sites and the numerica

measurements.
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R> bi odat a R > envdat a

d e Pol | uti on Depth Tenperat ure
sl 0 2 914 2 sl 4.8 72 3.5
s2 26 413 11 O s2 2.8 75 2.5
s3 010 9 0 s3 5.4 59 2.7
s4 0 0 15 0 s4 8.2 64 2.9
s6 13 5 310 7 s5 3.9 61 3.1
s6 31 21 13 16 5 s6 2.6 94 3.5
s7 6 011 2 s7 4.6 53 2.9
s8 0 0 1 s8 5.1 61 3.3
s9 17 7 10 14 6 s9 3.9 68 3.4
s10 5 26 0 s10 10.0 69 3.0
sl1 8 8 7 sl1 6.5 57 3.3
s12 14 11 13 15 O sl12 3.8 84 3.1
s13 0 0 19 6 s13 9.4 53 3.0
sl4 13 0 O 0 sl4 4.7 83 2.5
sl5 4 010 12 O s15 6.7 100 2.8
s16 42 20 6 s16 2.8 84 3.0
sl7 4 O 0 s17 6.4 96 3.1
s18 21 15 33 20 O s18 4.4 74 2.8
s19 2 5 12 16 3 s19 3.1 79 3.6
s20 010 14 9 O s20 5.6 73 3.0
s21 8 O 6 s21 4.3 59 3.4
s22 35 10 0 9 17 s22 1.9 54 2.8
s23 6 7 1 17 10 s23 2.4 95 2.9
s24 18 12 20 7 O s24 4.3 64 3.0
s25 32 26 023 O s25 2.0 97 3.0
s26 32 21 0 10 2 s26 2.5 78 3.4
s27 24 17 0 25 6 s27 2.1 85 3.0
s28 16 3 12 20 2 s28 3.4 92 3.3
s29 11 0 7 8 O s29 6.0 51 3.0
s30 24 37 5 18 1 s30 1.9 99 2.9

2.6.1 The anacor package

As described before, the anacor () function performs simple CA, but we will now use
it to perform CCA. The pl ot () function is used to obtain the CCA plot. The main

arguments of the anacor () and pl ot () functions are given below respectively
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R> anacor (tab, ndim= 2, row covariates, col.covariates,
scaling = c("Benzecri","Benzecri"), eps = le-06)

R> plot(x, plot.type, plot.dim= c(1,2), |egpos = "top",
arrows = FALSE, conf = 0.95, wWines = 0, xlab, ylab,
main, type, xlim ylim cex.axis2, ...)

CCA is performed by specifying the row. covari ates or col . covari at es option.
The row covariates in our case refer to the numerical data. Again, tab is a table of
frequencies (or contingency table), ndi mis the number of dimensions and the default
scaling option is the Benzecri scaling. More details about the scaling methods in

anacor package can be found in de Leeuw and Mair (2009).

In the pl ot () function, x isan CCA object obtained from the anacor () function and
the default pl ot . t ype is the joint plot. In the anacor package, there is a variety of
types of plots to choose from for two and three dimensional plots (see de Leeuw and

Mair, 2009). The following Rinstructions perform CCA on the Ecologica data:

R> | i brary(anacor)
R> reg5<-anacor (bi odata, ndim= 2, row covariates = envdat a)

R> reg5 #CCA resul ts
CAfit:

Sum of ei genval ues: 0.2351813

Benzecri RMSBE rows: 1.157468e- 05

Benzecri RMBE col ums: 1. 175089e- 05

Total chi-square val ue: 319.997

Chi - Squar e deconpositi on:
Chi sq Proportion Curul ative Proportion

Conponent 1 266. 504 0. 367 0. 367
Conmponent 2 47.228 0. 065 0.433
Conponent 3 6. 266 0. 009 0. 441
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The results of the CCA are displayed above and we see that 98.04%
((266.504+47.228) /319.997 :0.9804) of the variation in the contingency table is

explained by the first two dimensions in the constrained space. The CCA plot can be
obtained by using the instruction:

R> pl ot (regs, plot.type="orddiag", mai n="")

The resulting plot is displayed in Figure 2.6. Note that the CCA plot also goes by
different names like ordination diagram or triplot. Figure 2.6 shows the CCA plot
according to ter Braak (1986). The blue and red points represent ordinations of the
species and sites respectively. Points lying close to each other represent a strong
association, while points lying away from each other represent a weak association.
For example s10, s13, s4, s15, s17 seems to be quite similar (they lie away from the
rest) and is associated with specie c. The three arrows represent the direction for the
three explanatory variables. A site lying in the direction of the arrow means that it is
strongly associated with that particular explanatory variable. For example s10, s13,
A, s15, s17 seems to be associated with higher pollution, since they lie in the

direction in which pollution increases.
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Figure 2.6: The CCA plot (or triplot) using anacor () .

2.6.2 The vegan package

The vegan package contains a function called cca() which can perform both
simple CA and CCA. In addition it can aso perform partiad constrained
correspondence analysis. In this section we will illustrate its usage in performing a

canonical correspondence analysis. The main arguments for the cca() function are:
R> cca(X, Y, Z, ...)

The argument X is atable of frequencies (contingency table), Y is a set of explanatory

variables (usually numerical) and z is an argument needed to perform partial
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constrained correspondence analysis. Note that for a simple CA only X needs to be
specified but for a CCA both X and Y needs to be specified. The following two

functions are also quite useful to obtain the appropriate CCA output:

R> plot(x, choices = c(1, 2), display = c("sp", "wa", "cn"),

scaling = 2, type, xlim ylim const, ...)
R> sunmary(object, scaling = 2, axes = 6, display = c("sp", "wa",
“lc", "bp", "cn"), digits = max(3, getOption("digits") - 3), ...)

The above two functions pl ot () and sunmmary() produces a joint plot and a
summary of the CCA results respectively. Both the arguments x and obj ect in the
above functions are objects from a CCA.. In both functions pl ot () and sunmary() the
default scal i ng=2 option is used. For more information on the scaling options and
two dimensiona displays of correspondence analysis see Nenadic and Greenacre
(2007) and Greenacre (2007). The following instructions load the vegan package and
perform a CCA using the Ecology data:

R> | i brary(vegan)
R> r eqg6<- cca( X=bi odat a, Y=envdat a)

The function summar y() produces the output of CCA. The output contains the inertia,
the row coordinates (site scores) and column coordinates (specie scores) for the joint
plot, as well as the coordinates for the arrows (biplot scores) on the joint plot. In this
output 98.04% of the variation in the contingency table is explained by the first two
dimensions in the constrained space. The same was produced with anacor () in the
previous section. Note that by using the function scores() on a CCA object one

could also obtain the site scores and specie scores.
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R> sunmary(req6, scal i ng=3)

Cal |l :
cca(X = biodata, Y = envdata)

Partitioning of nean squared contingency coefficient:
Inertia Proportion

Tot al 0. 5436 1. 0000
Constr ai ned 0. 2399 0. 4412
Unconstrai ned 0.3038 0. 5588

Ei genval ues, and their contribution to the nean squared contingency
coef fi ci ent

| nportance of conponents:

CCA1  CCA2 CCA3 CAl CA2 CA3 Cad
Ei genval ue 0. 200 0.0354 0.00470 0.107 0.0865 0.0606 0.0495
Proportion Explained 0.367 0.0651 0.00864 0.197 0.1592 0.1115 0.0911
Currul ati ve Proportion 0.367 0.4326 0.44125 0.638 0.7975 0.9089 1.0000

Accumul at ed constrai ned ei genval ues
| nportance of conponents:

CCA1 CCA2 CcCA3
Ei genval ue 0.200 0.0354 0.0047
Proportion Explained 0.833 0.1476 0.0196
Cunul ati ve Proportion 0.833 0.9804 1.0000

Scaling 3 for species and site scores
* Both sites and species are scal ed proportional to eigenval ues

on all dinensions

Speci es scores

CCA1 CCA2 CCA3 CAl CA2 CA3
a 0.53401 0.07068 0.3300 0.4620 0.6063 -0.2926
b 0.39591 -0.32989 -0.2077 -0.2660 0.2799 0.8816
c -1.31604 0.02584 0.1345 -0.7945 -0.1821 -0.1342
d -0.01626 -0.25068 -0.2461 -0.1194 -0.5002 -0.4047
e 0.19655 1.49814 -0.3632 1.3745 -1.2232 0.6000
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Site scores (weighted averages of species scores)

CCA1 CCA2 CCA3 CAl CA2 CA3
sl -0.90214 -0.18512 -1.82501 -0.5768481 -0.88834 -0.612124
s2 -0.07539 -0.18733 1.83515 -0.3617725 0.13435 -0.749307
s3 -0.66418 -0.99832 -1.53247 -1.0112038 -0.16277 0.839098
s4 -2.45972 -0.10759 1.03706 -0.8324151 -0. 08200 -0.301392
s5 0.36426 1.02478 -0.51774 0.5417606 -0.27884 -0.016245
s6 0.22067 -0.05690 0.31618 -0.0005908 0.26356 0.029981
s7 0.59095 -0.20962 -0.89101 0.2138168 0.11343 -0. 050405
s8 0.94307 2.90449 1.44388 2.4075204 0.43967 0.037197
s9 -0.01489 0.45570 -0.03332 0.0503420 0.02092 -0. 268356
s10 -1.81132 -0.42964 0.08885 0.2026437 0.36016 0.320583
s11 -0.46928 1.20049 -2.31705 0.5084578 -0.56135 1.228181
s12 -0.23308 -0.60802 0.10803 -0.3607828 0.09498 -0. 159127
s13 -2.13220 2.01530 0.21968 0.5808221 -0.43352 0.656807
s14 0.69110 -0.32305 1.37655 1.1865938 0.34144 -1.137745
s15 -0.96544 -0.50429 -0.16172 0.6270813 -0.51860 -0.732190
s16 0.99188 0.34491 1.39532 0.7478954 0.83682 0.377614
s17 1.19474 0.37566 4.81581 2.6954058 2.38567 -0.882785
s18 -0.66873 -0.45532 0.54618 -0.6181937 0.02412 -0. 140524
s19 -0.73098 -0.09992 -1.45609 -0.9008934 -0.83448 -0.455599
s20 -0.99064 -0.83637 -1.06528 -0.8421333 -0.14393 0.581667
s21 0.66949 2.52494 -0.42435 1.6815855 -0.45848 -0. 172920
s22 0.81439 1.67580 0.22284 0.4226111 -0.34177 0.090086
s23 0.34643 1.14856 -2.54662 0.7929498 -1.68711 0.292243
s24 -0.47383 -0.36590 1.13029 -0.7272913 0.56991 0.003995
s25 0.74599 -0.79267 -0.09015 -0.0040052 0.19590 0.111807
s26 0.88228 -0.34147 0.67600 0.0242537 0.90862 0.186185
s27 0.63140 -0.08783 -0. 79904 0.0844378 -0.37140 -0.048733
s28 -0.25298 -0.15703 0.17146 -0.0093878 -0.28727 -0.857990
s29 -0.29845 -0.21403 1.46088 0.0356091 0.68496 -1.011445
s30 0.54718 -0.83749 -0.66707 -0.3018168 0.02759 0.790620
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Site constraints (linear conbi nati ons of constraini ng vari abl es)

CCAl CCA2 CCA3 CAl CA2 CA3
sl -0.37757 0.30053 -0.404870 -0.5768481 -0.88834 -0.612124
s2  0.42230 -0.08452 0.530858 -0.3617725 0.13435 -0.749307
s3 -0.44882 0.29415 0.375189 -1.0112038 -0.16277 0.839098
s4 -1.50692 -0.02419 0.136820 -0.8324151 -0.08200 -0.301392
s5 0.04515 0.54999 0.017264 0.5417606 -0.27884 -0.016245
s6  0.29753 -0.21457 -0.461555 -0. 0005908 0.26356 0.029981
s7 -0.14553 0.65292 0.223586 0.2138168 0.11343 -0.050405
s8 -0.40728 0.53618 -0.182117 2.4075204 0.43967 0.037197
s9 -0.02107 0.46358 -0.286171 0.0503420 0.02092 -0.268356
s10 -2.19421 -0.29992 0.003115 0.2026437 0.36016 0.320583
s11 -0.89150 0.54057 -0.184241 0.5084578 -0.56135 1.228181
s12 -0.04431 -0.18491 -0.069345 -0.3607828 0.09498 -0. 159127
s13 -1.88995 0.27108 0.071688 0.5808221 -0.43352 0.656807
s14 -0.30820 -0.51285 0.476683 1.1865938 0.34144 -1.137745
s15 -1.15199 -1.10121 0.110191 0.6270813 -0.51860 -0.732190
s16 0.32649 -0.14230 0.035318 0.7478954 0.83682 0.377614
s17 -1.04969 -0.80510 -0.147499 2.6954058 2.38567 -0.882785
s18 -0.17859 -0.05504 0.238091 -0.6181937 0.02412 -0.140524
s19 0.18938 0.27256 -0.502708 -0.9008934 -0.83448 -0. 455599
s20 -0.62556 -0.03651 0.042530 -0.8421333 -0.14393 0.581667
s21 -0.11651 0.71893 -0.256766 1.6815855 -0.45848 -0.172920
s22 0.83432 0.81494 0.345560 0.4226111 -0.34177 0.090086
s23 0.42034 -0.50899 0.090507 0.7929498 -1.68711 0.292243
s24 -0.10649 0.37061 0.093066 -0.7272913 0.56991 0.003995
s25 0.54468 -0.49131 -0.004393 -0.0040052 0.19590 0.111807
s26 0.43039 0.26515 -0.306965 0.0242537 0.90862 0.186185
s27 0.57407 -0.11215 0.040200 0.0844378 -0.37140 -0.048733
s28 0.03793 -0.31462 -0.279395 -0.0093878 -0.28727 -0.857990
s29 -0.65000 0.63928 0.121590 0.0356091 0.68496 -1.011445
s30 0.57923 -0.59372 0.081443 -0.3018168 0.02759 0.790620
Bi pl ot scores for constraining variabl es
CCAl CCA2 CCA3 CAl CA2 CA3
Pollution -0.99290 0.08836 0.06858 0 O O
Dept h 0.35241 -0.88787 -0.28627 O O O

Tenperature 0.01427 0.19071 -0.98160 O O O
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To produce the CCA plot (Figure 2.7) we may use the instruction

R> pl ot (req6, scaling = 3)

This instruction uses the output (site scores, specie scores and biplot scores) displayed
in the summary output to construct a two dimensional plot similar to Figure 2.6.
Figure 2.7 is a plot of the first canonical variates and the arrows (biplot scores) give
the direction in which the explanatory variable increases. This plot should be
interpreted similar to Figure 2.6 and shows the associations between the two sets of
data. However, it should be remembered that Figure 2.6 and Figure 2.7 use two
different CCA procedures. The CCA produced by the vegan package follows the
discussion of CCA outlined in Section 2.5.
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Figure 2.7: The CCA plot using cca() .
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The vegan package offers much more advantages than the anacor package in doing
simple CA or CCA. Two very attractive graphical features are captured in the

following two functions

R> ordi surf(x, y, choices=c(1, 2), knots=10, fam |y="gaussi an"
col ="red", thinplate TRUE, add = FALSE
display = "sites", w = weights(x), main, nlevels = 10,
| evel s, | abcex = 0.6, bubble = FALSE, cex =1, ...)

R> ordirgl (object, display = "sites", choices = 1:3, type = "p",
ax.col = "red", arr.col = "yellow', text, envfit, ...)

The function or di sur f () allows us to create contours on the existing CCA plot. The
contours basically represent the relationship between an explanatory variable and the
sites. The object x is an CCA aobject produced by the cca() function, while the object
y is the explanatory variable of interest. The object knot s alows to create a ssmple

(knots=1) or amore complicated (knots>1) contour plot.

The function ordirgl () uses a CCA object from cca() to produce a three
dimensional CCA plot. This plot can be rotated manually to obtain the best view of
the joint plot. We applied the above two functions to the Ecology data. The
instructions to create the contours and the three dimensional plot are given next and

the resulting graphs are displayed in Figure 2.8 and 2.9 respectively.

R> ordi surf (plot(reg6, scal i ng=3), envdat a[, 1], add=T, knot s=1
col ="green")

R> ordi surf(plot(reg6, scaling=3), envdata[, 1], add=T, knot s=2,
col ="green")

R> ordirgl (req6, type="t")

Note that knots 1 and 2 produce a linear and a quadratic contour plot respectively. The
contours in Figure 2.8 increase in the direction of the pollution variable. These
contours alow us to study the relationship between pollution and sites more carefully.
Figure 2.9 was rotated to obtain the best view of the three dimensional plot. One can
clearly seein this plot that the third dimension shows an interesting separation of sites
s23, s11 and s17 from the rest. This was not visible in the two dimensional CCA plot
in Figure 2.7.
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direction in which the pollution isincreasing using or di sur f () .
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Temperature
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Figure 2.9: The three dimensional CCA plot using or di gr! ().

40



Stellenbosch University http://scholar.sun.ac.za

Chapter 2: Simple and Canonical correspondence analysis

As an aternative to the function ordirgl () one could also use the function
or di pl ot 3d() to produce three dimensiona CCA plots. However, the latter function
is less flexible. Figure 2.10 below is an example of a plot produced using the

following instruction:

R> ordi pl ot 3d(reqg6)

The three dimensional plots discussed in this section for CCA could also be used for

simple CA using the function cca() .
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Figure 2.10: The three dimensional CCA plot using or di pl ot 3d() .
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2.7 Permutation testsin CCA

In this section we give a brief illustration of the use of permutation tests in CCA. The
purpose of the permutation test here is to find out which of the explanatory variables
are significant in the constrained space (Greenacre, 2007). The permutation test
employs the coefficient of determination, r?, to determine the significance of the

explanatory variables.

The permutation tests in CCA can be performed using the two functions anova() and
envfit() in R Theanova() function usesacca() object to perform a global test on
the explanatory variables i.e. it tests whether al the explanatory variables are
significant in the CCA model. The envfit () function (from the vegan package) is
used to test which of the individual explanatory variables are significant. Both
functions are displayed below.

R> anova(obj ect, al pha=0.05, beta=0.01, step=100, perm nax=9999,
by = NULL, ...)

R> envfit(X, P, pernmutations = 0, strata, choices=c(1,2), ...)

In the envfit() function the argument X is the cca() object and P is the matrix
containing the explanatory variables. The number of permutations required can be
specified in the argument per m max. The following are the results of the permutation

tests for significant explanatory variables.

R> reqg6<-cca( bi odat a, envdat a)
R> anova(req6)
Permut ati on test for cca under reduced node
Model : cca(X = biodata, Y = envdata)

Df  Chisq F N. Perm Pr (>F)
Model 3 0.2399 6.8441 199 0.005 **

Resi dual 26 0. 3038

Signif. codes: 0 ‘**** (0.001 ‘**’ 0.01 “** 0.05 “.” 0.1 ° ' 1
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The results of the ANOVA give a significant p-value (0.005). Thus the explanatory
variables have significance in the analysis. To test which of the individual explanatory
variables are significant, the following instructions can be used.

R> fit<-envfit(reg6, envdata, perm = 999)

R> fit
** % VECTORS
CCAL ccA2 r2 Pr(>r)
Pol lution -0.993267 0.115849 0.7119 0.001 ***
Dept h 0.725832 -0.687873 0.3621 0.004 **

Tenperature -0.011026 0.999939 0.0110 0.875

Signif. codes: 0 ‘**** (0.001 ‘**’ 0.01 “** 0.05 “.” 0.1 ° ' 1
P val ues based on 999 pernutations.

As we can see from the results above, only two of the explanatory variables are
actually significant. These variables are pollution (p-value=0.001) and depth
(p-value=0.004). Temperature is not significant (p-value=0.875). Thus it can be
concluded that the two environmental variables (pollution and depth) play a more
important role than temperature. The significant explanatory variables can aso be
displayed graphicaly on the CCA plot. The following instructions create the CCA
plot with only the significant variables. The results are given in Figure 2.11.

R> pl ot (req6, display = c("sp", "wa") ) #W t hout the arrows

R> plot(fit,p.max = 0.05, col = "red") #only significant variabl es
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Figure 2.11: CCA plot of only the significant explanatory variables.

2.8 Summary

As mentioned in this chapter, the aim of the correspondence analysis is to study the
relationships between the rows and columns of a contingency table. We have also
explained the algebra behind correspondence anaysis. In this chapter we have also
shown how the correspondence analysis is extended to canonical correspondence
analysis. Canonical correspondence anaysis incorporates an additional set of
numerical variables and the aim with this analysis was to study the relationship among
the count data (contingency table) and the numerical variables (often called the
environmental variables in Ecology). Goodness-of-fit measures like the inertia and the
Benzécri plot were also discussed. These measures allow us to assess how well the

variation in the origina datais explained in these analyses.
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The different R packagesi.e. anacor, ca and vegan are useful packages to perform a
correspondence analysis. The ca package is restricted to correspondence analysis
only, while anacor and vegan offers much more possibilities and advantages. For
example, the anacor package allows us to create Benzécri plots and it can also
perform a canonical correspondence analysis. The vegan package, besides
correspondence analysis, offers canonical correspondence analysis, permutation tests
and a host of other techniques (see Oksanen, 2008).
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Chapter 3

Cluster analysis

3.1 Introduction

Cluster analysis is a multivariate statistical method which focuses on searching the
data for group structures or other interesting patterns. It is a very useful tool in
exploratory data analysis, which can provide an informal means for assessing
dimensionality, identifying outliers and suggesting interesting hypotheses concerning
relationships among observations or variables. Cluster analysis makes use of certain
distance measures and employs step-by-step rules for grouping objects (observations
or variables), which will be discussed in this chapter. Cluster analysis can be applied
to different types of data such as numerical, count and binary data. For each data type
an appropriate dissimilarity or distance measure is needed.

In this chapter we start by describing the distance (dissimilarity) matrices that are
required to perform cluster analysis. In Section 3.3 we also define different types of
distance (dissimilarity) measures, which are used to obtain the above mentioned
matrices. The choice of these measures usually depends on the type of data that is
used. In Section 3.4 we explain four well-known clustering agorithms. Then finaly
we conclude this chapter by giving an illustration of these clustering methods by

using different R functions.

3.2 Thedatafor cluster analysis

The data can be obtained in two ways. One way is that the data can be collected
directly from an experiment as proximities and the other way is that the data can be
transformed into proximities. Most of the time, the data is transformed into a

proximity matrix by taking into consideration the objects that we want to cluster and
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also the type of data. Note that the objects can be the observations or variables (the
usual dimensions of amultivariate data set).

Proximity is defined as the nearness (closeness) of objects in space. There are two
types of proximity measures which are dissimilarities and similarities (Cox and Cox,
1994). The data for cluster analysis is most often a dissimilarity or distance matrix
(see Section 3.3). When a similarity matrix, such as the correlation matrix, is

available, it is first transformed into a dissimilarity matrix before clustering is

performed. Similarity between objects i and i¢ (s,,) measures how similar the two

objects are, whereas the dissimilarity between objects i and i¢ (d,,) measures how

dissimilar the two objects are. Thus, similarity measures the degree of resemblance,
whereas dissimilarity measures the degree of difference. Similarity usually ranges

between -1 and 1, or can be normalized to range from 0 to 1.

Distances also measure dissimilarity (Teknomo, 2006). The following are the
properties of a true distance measure (Johnson and Wichern, 2007). Any distance

measure d (i,i®) between two objects i and i¢, isvalid provided that it satisfies,

1 d(i,ig=d(¢i)

2. d(i,ig>0ifiti¢

3. d(i,ig=0if i=i¢

4. d(i,ig£d(i,j)+d(].i9, (called the triangle inequality)

where j is any other intermediate point. Some of the distance measures found in the

literature do not obey the fourth property. Besides the fact that they are not true
distances, they are still good measures of differences between possible pairs of objects
and are known as dissimilarities (Greenacre, 2007).

To conclude, the distance or dissimilarity matrices are used as input for cluster
analysis. To obtain such matrices we need to define some distance or dissimilarity

measure. The next section discusses examples of such measures.
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3.3 Thedistance and dissimilarity matrix

Let D bean | | distance matrix (or dissimilarity matrix) with elements d(i,i9)3 0
being the distance (or dissimilarity) between object i and object i¢ for i,i¢=1,2,...,1 .

Such a distance (or dissimilarity) matrix can be obtained from the raw |~ J data
matrix X asillustrated below:

eXy X L XU édll d, L dyu

. x, L x.Y 9, d, L d,Y
x =&n 2 20 @ _e'n Yz 21 (] 3.1)
N (EZ‘M O Nu 1 (EZ‘M I O N

e u e u

&X: X, L X0 ed, d, L d g

Note that there are M :%gl (1 - 1)g distinct distances in matrix D. The question that

remains is how do we obtain these distances (dissmilarities). It is important to note at
this point that calculating d (i,i®) or d,, depends on the type of datain matrix X . In

the next section we elaborate more on the distance and dissimilarity measures for
numerical, count and binary data separately.

3.3.1 Distance measur es for numerical data

Let X bean |I”J data matrix with (numerical) elements x; for i=12,..,1 and

] =12,...,J . Then the following are distance measures between object i and i¢ in

matrix X (see Johnson and Wichern, 2007).

(@ Euclidean distance: This is the most commonly used distance measure. It is
defined as the straight line distance between object i and i¢. This distance

measure is defined as

d(ii9=\/8 (% - x;) Qit=12..1. (32)

J
j=1
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(b) Minkowski distance: Thisis a generalized metric distance measure defined by

1

o éJ um
d(l,ld):eé|>gj - >gq|mg .
8= a

When m =1, it becomes what is known as the “city-block” or Manhattan distance
and when m = 2, it becomes the Euclidean distance (3.2).

(c) Canberra metric: This is a popular measure of distance or dissimilarity for
nonnegative variables only. It is defined as follows:

(d) Czekanowski coefficient: This measure of distance or dissimilarity for
nonnegative variables is defined as

The Euclidean distance (3.2) will be used to obtain the distance matrix in Section 3.5
and in Chapters 4 and 5, where two numerical data sets are analyzed in a cluster
analysis, multidimensional scaling and analysis of distance separately.

3.3.2 A dissimilarity and distance measurefor count data

Let X be an 1 J data matrix with elements x; (frequencies or counts) for

i=142..,1 and j=1,2,..J. Then the following are a distance and dissimilarity

measure, respectively, between observation i and observation i¢in X.
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(& Bray-Curtis dissimilarity: Thisis the most commonly used dissimilarity for count
data, especially in Ecology (Bray and Curtis, 1957; Greenacre, 2007). It is often
called the Sorenson dissimilarity or the Canberra metric. It is defined as

J

alx - xl
di,ig=—"——. (3.3)
a (% +x)

j=1

(b) Chi-square distance: Is aso apopular distance measure for count data (Greenacre,
2007) and it is defined as

2
o= X |
a M %é—l x; (the average of column j).

, with X, =

Il
iy

3.3.3 Dissimilarity measuresfor binary data

Let X bean |~ J datamatrix with (binary data) elements x, T {0,1} for i =12,...,1
and j=12,..,J.Let s, represent asimilarity coefficient between objects i and i¢ of

the binary data set X . The measures of similarity between objects i and i¢ described
in this section is based on the following table:

object i¢
1 0 Total
object i 1 a b a+b
0 c d c+d
Total| atc | b+d p=a+b+c+d

where
a = the number of times when both objects have the value O
b = the number of times when object i hasvalue 0 and object i¢ has value 1
¢ = the number of times when object i hasvalue 1 and object i¢ hasvalue 0

d = the number of times when both objects have vdue 1.
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Based on this table, the following similarity measures between object i and i¢in X

for binary data are defined.

(&) Jaccard similarity coefficient:

a
a+b+c’

Sie =

(b) Bray Curtis similarity coefficient:

2a

ST Satbrc’

Note that similarity measures can be converted to dissimilarity measures by using the

transformation, d.,=1- s... For the measures above, this transformation results in the

following dissimilarity measures.
(&) Jaccard dissimilarity coefficient:

b+c

d(i,i9 = : 34
(i9=—"— (34)
(b) Bray-Curtisdissimilarity coefficient:

. b+c

d@i,ig=———. 35

(i,i9 2a+bic (3.5)

Note that (3.3) and (3.5) are the same measures. The Jaccard and Bay-Curtis
dissimilarity measures will be used to obtain the dissimilarity matrix in the analysis of
the Biolog datain Chapter 6.
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3.4 Agglomer ative hierarchical clustering methods

Once the distance matrix for the objects has been obtained, the next step in cluster
analysis is to group / cluster the objects based on these distances. There are severd
ways to perform cluster analysis. There are hierarchical clustering methods and non-
hierarchical clustering methods. For non-hierarchical clustering methods, the number
of clusters has to be specified before hand, whereas hierarchical clustering methods
do not require prior knowledge of the number of clusters. Two genera methods of
hierarchical clustering methods are agglomerative hierarchical methods and divisive
hierarchical methods (see Johnson and Wichern, 2007). The agglomerative techniques
start with the individual objects. Initialy, there are as many clusters as objects.
Firstly, the most similar objects are grouped and these initial groups are merged
according to their similarities, until only one group remains. Thus, the agglomerative
technique cluster objects from the bottom to the top and the results is usualy
displayed a dendrogram. A dendrogram is a tree-like structure (see Figure 3.1 as an
example). The divisive techniques start from a single group, partitioning that group
into subgroups, partitioning these subgroups further into subgroups and so on until
each object forms its own subgroup. Thus, the divisive technique starts from the top to
the bottom when constructing the dendrogram. In this chapter we will study only
agglomerative hierarchical methods and we briefly describe four such agorithms in
the next few sections.

Johnson and Wichern (2007) give us the following general agglomerative hierarchical

clustering algorithm for grouping N objects (observations/ variables):

1. Start with N clusters, each containing a single entity and an N° N symmetric

matrix of distances (or dissimilarities) D ={d.,} .

2. Find the minimum entry inD ={d,¢ and merge objects, U and V to get the first

cluster (UV).

3. The distance between cluster (UV) and any other cluster (or object) W is

computed as
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Aoy = Min{dyy, da} for the single linkage method (Section 3.4.1)

Aoy = Max{ dyy , o} for the complete linkage method (Section 3.4.2)

o = 1 N A ad. fortheaveragelinkage method (Section 3.4.3)
(uv) w it (uv)i¢w

4. Update the entries in the distance matrix by first deleting the rows and columns

corresponding to clusters U and V . Secondly, adding a row and column giving
the distances between cluster (UV) and the remaining clusters.

5. Repeat Steps 3 and 4 until all objects are in one cluster. At this stage the algorithm
stops. At each step, record the clustered objects and the distance when it is
merged.

3.4.1 Singlelinkage

The single linkage method, which is aso known as the nearest neighbour or shortest
distance method, computes the distance between the two clusters (or objects) as the

minimum distance between any two clusters (or objects). Using the genera
agglomerative algorithm above, we start by finding the minimum entry in D ={d,}
and merging the corresponding objects, say U and V , to get the first cluster (UV) :
For step 3 of the general agglomerative algorithm, the distance between (UV) and

any other cluster W are computed by
Aovw = Min{dyy, A},

where d,,, and d,,, isthe distance between the nearest neighbours of clusters U and

W and clusters V and W, respectively.

The results of the single linkage method are displayed in a dendrogram containing the
clusters as well as the distances at which the clusters were formed (see Figure 3.1). A
disadvantage of the single linkage method is known as the chaining phenomenon. The
chaining phenomenon occurs when clusters are formed in a long stringlike pattern.
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Chaining occurs when the first cluster forms and then grows progressively larger by
adding lone objects that have not been clustered yet. The chaining phenomenon

appearsin Figure 3.1 where there ano clear clustering of objects.
3.4.2 Average linkage

The average linkage method calculates the distance between two clusters (or objects)
as the average distance between all pairs of objects where one object of apair belongs
to a cluster. Using the genera agglomerative algorithm, we start by finding the

minimum entry in D ={d,J} and merging the corresponding objects, say U and V,

to get the first cluster (UV) . For step 3 of the algorithm, the distances between cluster

(UV) and any other cluster (or object) W are computed by

where d,, is the distance between object i in the cluster (UV) and object i¢ in the

cluser W. N, and N,, are the number of objects in the clusters (UV) and W,

(uv
respectively. The results of the average linkage method are aso displayed in a
dendrogram (see Figure 3.2 as an example).

3.4.3 Complete linkage

The complete linkage method, which is also known as the farthest neighbour method,
computes the distance between clusters (or objects) in each step as the maximum
distance between any two different objects in a distance matrix. Again, using the

general agglomerative algorithm, we start by finding the minimum entry in D ={d,}
and merging the corresponding objects, such as U and V , to get cluster (UV) . For

step 3 of the clustering algorithm, the distances between the cluster (UV) and any

other cluster W are computed using
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d(uv)w = max{duw’d\/W} !

where d,, and d,, arethe distances between the most distant members of clusters

U and W and clusters V and W, respectively.

The results of the complete linkage method are displayed in a dendrogram as can be
seen in Figure 3.3. This method of agglomerative hierarchical clustering is commonly
used, since it produces clear clusters in the dendrogram and it is not affected by the
chaining phenomenon. In Figure 3.1 the chaining occurred and the results do not
show clear clusters being formed, while in Figure 3.3 there are clear clusters and no
chaining present.

3.4.4Ward' s method

Ward's method is an alternative way of performing hierarchical cluster analysis. It

uses an analysis of variance approach on the raw data (X) , instead of the distance (or
dissimilarity) matrix (D). Let the error sum of squares ( ESS) for cluster k be defined

by

ESS =4 (x - %)¥x - %), k=1,2, ..., K,

il k
where X, isthe mean vector of the k -th cluster.

For Ward's method we start out with each observation forming a cluster, thus K
equal s the number of observations (rows) in X . Note that at this stage ESS, =0. Step
1 in Ward's agorithm is to merge the two observations that minimizes ESS_, thus
creating cluster 1. Step 2 is to find the next two objects (where one of these objects

maybe cluster 1) which minimizesSS_, thus forming the next cluster (or expanding

cluster 1). At each step that follows, ESS, will be evaluated, until all the observations
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are grouped one big cluster. The algorithm stops when all the observations are one
cluster (K=1).

Ward's method is most appropriate for numerical data. The results of Ward's method
can aso be displayed in a dendrogram, as can be seen in Figure 3.4. Thisis aso a

commonly used method which produces clear clustering results.

3.5 Performing a cluster analysisin R

In this section we will show the application of the four clustering methods discussed
in Section 3.4 on a real-world data set. We will use the R functions di st (),

as. dendr ogran() and hcl ust (), which form part of the st at s package.

A data set of 25 U.S. universitiesis used to illustrate the cluster analysis (datais taken
from Johnson and Wichern, 2007, p.729). This is a multivariate data set with six

variables:;

average SAT score of entering freshmen,

percentage of freshmen in top 10 % of high school class,
percentage of applicants accepted,

student-faculty ratio,

estimated annual expense and

graduation rate (%).

The data of the 25 universities are displayed below as an R object.
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R> uni versities

SAT ToplO Accept SFRati o Expenses G ad

Har var d 14. 00 91 14 11 39.525 97
Princet on 13. 75 91 14 8 30. 220 95
Yal e 13. 75 95 19 11 43.514 96
St anf ord 13. 60 90 20 12 36.450 93
MT 13. 80 94 30 10 34.870 91
Duke 13. 15 90 30 12 31.585 95
Cal Tech 14. 15 100 25 6 63.575 81
Dart nout h 13. 40 89 23 10 32.162 95
Br own 13. 10 89 22 13 22.704 94
JohnsHopki ns 13. 05 75 44 7 58. 691 87
UChi cago 12.90 75 50 13 38.380 87
UPenn 12. 85 80 36 11 27.553 90
Cor nel | 12. 80 83 33 13 21.864 90
Nort hwest er n 12. 60 85 39 11 28. 052 89
Col unbi a 13. 10 76 24 12 31.510 88
Not r eDane 12.55 81 42 13 15. 122 94
Wir 12. 25 77 44 14 13. 349 92
Geor get own 12. 55 74 24 12 20. 126 92
Car negi eMel | on 12. 60 62 59 9 25.026 72
UM chi gan 11. 80 65 68 16 15.470 85
UCBer kel ey 12. 40 95 40 17 15.140 78
UW sconsi n 10. 85 40 69 15 11. 857 71
PennsSt at e 10. 81 38 54 18 10.185 80
Pur due 10. 05 28 90 19 9.066 69
TexasA&M 10. 75 49 67 25 8.704 67

To obtain the Euclidean distance matrix from the above data, we use the following

instructionin R;

R> Di stance<- dist(universities, method = "euclidean")

To perform the single linkage cluster analysis, we use the following R instruction:

R> pl ot (as. dendr ogr an( hcl ust (D st ance, met hod="si ngl e")), yl i m=c(0, 30),
mai n="Si ngl e | i nkage dendr ogran', yl ab="Eucl i dean di stance")

The resulting dendrogram is displayed in Figure 3.1
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The average linkage cluster analysis is performed by changing argument net hod= in

hcl ust () to"average":

R> pl ot (as. dendr ogr an( hcl ust (D st ance, met hod="aver age")),
mai n="Aver age |i nkage dendrograni, yl ab="Eucl i dean di stance")

The output of thisinstruction are displayed in the dedrogram in Figure 3.2

Similarly, we can perform cluster analysis using complete linkage and Ward’s method

by changing the met hod= argument as follows:

For complete linkage we use

R> pl ot (as. dendr ogr an( hcl ust (D st ance, met hod="conpl ete")),

ylimec(0, 120), mai n=" Conpl ete |inkage dendrogrant,

yl ab="Eucl i dean di st ance")

and for Ward’ s method we use

R> pl ot (as. dendr ogr an{ hcl ust (D st ance, net hod="ward")),
mai n="Ward | i nkage dendrograni, yl ab="Eucl i dean di st ance")

The dendrogam for complete linkage and Ward's method are displayed in Figures 3.3
and 3.4 respectively.
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Single linkage dendrogram
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Figure 3.1: The single linkage dendrogram of the 25 U.S. universities.
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Figure 3.2: The average linkage dendrogram of the 25 U.S. universities.
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Figure 3.4: The dendrogram of Ward’s method of the 25 U.S. universities.
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3.6 Interpreting the cluster analysisresults

By studying the dendrograms in Figures 3.1 to 3.4, one clearly sees some interesting
cluster patterns for the universities. Figure 3.1, which represents the single linkage
method, does not show any clear clusters. It amost seem like the whole data set is
clustered as one group. In the case of the average linkage method (Figure 3.2), there
appears to be two clusters. The first cluster contains 6 universities (Purdue,
CarnegieMellon, UMichigan, PennState, UWisconsin and TexasA& M), while the rest
of the universities form one large cluster. For the complete linkage and Ward's
method (Figures 3.3 and 3.4) it appearsif there are 4 distinct clusters which are
Cluster 1. Purdue, CarnegieMellon, UMichigan, PennState, Uwisconsin and
TexasA&M.
Cluster 2: Cornell, UPenn, NorthWestern, Columbia, Georgetown, UCBerkely,
NotreDame and UVir.
Cluster 3: Harvard, Yale, MIT, Duke, Brown, Princeton, Stanford and Dartmouth.
Cluster 4: CalTech, JohnsHopkins and UChicago.
These clusters are indicated by brackets on the above mentioned figures.

3.7 Summary

As mentioned before, the single linkage method has a drawback called the chaining
phenomenon. For the single linkage and average linkage methods the clustering was
not very effective for the universities. In the case of complete linkage and Ward’'s
method, the clusters are similar and these seem to be much more effective methods
than the single and average linkage methods. Stuetzle (1995) argues that some
statisticians prefer complete linkage because a clearer interpretable dendrogram is
often produced. Ward’s method is limited to numerical data with an elliptical
distribution. Complete linkage can be used for numerica and other types of data. For
the rest of this thesis we will make use of complete linkage method when ever a
cluster analysis is performed. In Chapter 6 we will make use the complete linkage
method together with the Bray-Curtis and Jaccard dissimilarity measures in the
analysis of amultidimensional binary data set.
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Chapter 4

Metric and Nonmetric multidimensional scaling

4.1 Introduction

Multidimensional scaling (MDS) is a multivariate statistical technique, based on a
distance or dissimilarity matrix, which alows us to visualise al the objects in a data
set as points in a low dimensional space (or map). Note that the distance and

dissimilarity matrices (D) mentioned here are the same as in Section 3.3. The points

in this space represent the objects such that the distances between the points in this

space correspond as closely as possible to the original distance, d.,, between objects

(Cox and Cox, 2001). Similar to cluster analysis, MDS is also an exploratory data
analytic technique, but with MDS originating in the field of Psychometrics.

MDS can essentially be classified into two categories i.e. metric and nonmetric
multidimensional scaling. Metric MDS (sometimes referred to as the classical MDS
solution) will be discussed in Section 4.2. This gpproach makes use of the spectral
decomposition to obtain the low dimensional space (see Mardia et al., 1979). In
Section 4.3 we will discuss the nonmetric MDS approach, which uses the metric MDS
solution as a starting point in an optimization procedure. The idea with nonmetric
MDS is to minimize the so-called stress function, proposed by Kruskal (1964), in

order to obtain the low dimensional space.

Section 4.4 contains an illustration of both these approaches by using the different R
functions of the st at s and MASS packages. The function cndscal e() will be used to
perform metric MDS, while the function i soMdsS() is used to perform nonmetric
MDS.
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4.2 Metric multidimensional scaling (MMDYS)

For metric MDS we use the data matrix IXJ to calculate the distance matrix

(D :{dm}) as described in Section 3.3. Each element in this matrix is then squared to

obtain matrix of squared distances, D' ={d?} ., which dso satisfy the distance

properties stated in Section 3.2. To obtain the MMDS solution we first construct

matrix IAI from this distance matrix:
— 1 * - — 1 2
A=- ED , with elements a,, = - Edim'

This matrix can be centred as follows:

B=A-1"AJ- I'"JA+1"2JAJ=HAH, 4.2
where H=1- 1"'J isthe (I " I) centring matrix and
él 1 L 1y
& a
ngt 1L 1
- AWl
g 1 L 1§

Consider the following results which can be found in Mardiaet al. (1979):

(8 Given that D is adistance matrix and B=HAH as defined in (4.1), then D is

Euclidean if and only if B is positive semidefinite.

(b) If B is positive semidefinite, then a configuration of points in a Euclidean space
can be obtained, using the spectral decomposition of B. The spectra

decomposition is defined as
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where A =diag(l,,!,,...I,) is the diagona matrix of eigenvalues and

I =[e,e,,....e | isthe matrix of corresponding eigenvectors.

(c) If D isamatrix of similarities or dissimilarities, then B=HAH would still be

positive semidefinite under certain conditions (see Mardiaet al., 1979, p.402).

Note that the distances, similarities and dissimilarities defined in Chapter 3 results in
B being a positive semidefinite matrix, making them applicable to MMDS.

Once the spectral decomposition is applied to B, a scatterplot of the first g (usually
two or three) eigenvectors (e,i =1,2,3) is used to obtain aMDS map (see Figure 4.1

as an example). The plot reveals how close or far the objects lie in space. This plot
can be helpful in identifying group structures or outliersin the data.

To establish the goodness-of-fit of MMDS, we make use of the eigenvalues to obtain
a screeplot and the proportion of variation explain by the first q dimensions. The
screeplot is aplot of the eigenvalues against the number of dimensions, q (see Figure
4.2). The purpose of the screeplot is to determine which number of dimensions is
sufficient to represent the MDS map. The cut-off point for the number of dimensions
is usually obtained where this graph makes the elbow shape. The proportion of

variation explained by thefirst g dimensions,
g 3
ali/ali, 4.2
i=1 i=1

gives a measure of the goodness-of-fit. A small value represents a bad fit and alarge
value agood fit.
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4.3 Nonmetric multidimensional scaling (NMDYS)

The nonmetric MDS described in this section is an extension of the metric MDS given

in Section 4.2. Let D:{dim} bean |~ | matrix of distances between the rows i and

i¢in X . Forthel objectsin X there are M :%I (1 - 1) distances between pairs of

different objects which are ranked as follows,

(@ 5 g@ (a)
dye >dil >...>d %, (4.3

where
(i,i9,...(iy,i§) = al pairsof objectsof i and i¢, i <i¢

g = the number of dimensionsin the low dimensional space.

The following outlines the NMDS proposed by Kruskal (1964). Kruska defines the

stress function as

u
|
;, , (4.4)
i
p

where
d'® isthe original distancesin (4.3) and

d(? isthe estimate of d!¥ obtained from the low dimensional space.
Firstly we need to find d!¥ where,

di? >d >...>d% (4.5)
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such that Sress(q) is as smal as possible. Thus the NMDS problem is an
optimization problem, quite different to MMDS. There is no algebraic solution to
obtaining afi? and therefore these values are obtained using an iterative procedure.
Important to note here is that the starting values of (4.5) are the Euclidean distance
obtained from the MMDS eigenvectors (e,i=12,...,q). These values are then
updated in each step as (4.4) is being minimized, while keeping the same ranked order
as (4.3). Figure 4.5 contains the iteration plot showing the optimization process of
NMDS. Note how the Stress(q) in this figure is high initially and then decreases

(eventually reaching a minimum) as the number of iterations increase.

Once the iteration process ends, alow dimensional space is obtained for NMDS based

on the chosen number of dimensions, g. Basicaly, these are the configuration of
points in MMDS (e,i=12,...,q) that has moved around in space as the stress

function (4.4) was being minimized. Figure 4.3 is an example of the low dimensional
map of NMDS.

Similar to MMDS we can define measures of goodness-of-fit for NMDS. A plot of
Streﬁ(q) against the number of dimensions, g, gives us a screeplot similar to Figure

4.2 in MMDS. An example of this NMDS screeplot are displayed in Figure 4.6. The

following guidelines (Johnson and Wichern, 2007) can be used to determine the

goodness-of-fit using Stress(q):

Table 4.1: Guidelines for NM DS goodness-of-fit.

Stress Goodness of fit
20% Poor

10% Fair

5% Good

2.5% Excellent

0% Perfect

Another useful graph that is used in NMDS to determine the goodness-of-fit is called
the Shepard diagram (Shepard, 1980; Groenen and van de Velden, 2004). This graph

contains a plot of the distances afi? vs d{¥ defined in (4.3) and (4.5). A monotone
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regression line, which is a step function, is usualy fitted on this plot to show the
relationship between the distances. If the plot resembles a straight line, the NMDS is
considered a good fit in the g-dimensional space. An example of a Shepard diagram is

givenin Figure 4.7.
4.4 Performing MM DS and NMDSin R

This section is aimed at demonstrating the MMDS and NMDS using the R software.
To perform the MMDS we will use the function cndscal e() which is part of the

st at s package. The main arguments of thisfunction is
R> cndscal e(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE)

with object d being the distance matrix and k being the chosen number of dimensions
for the MDS map. The object ei g alows us to obtain the eigenvalues for the

screeplot.

The function i soMdS(), which is part of the MASS package, will be used to perform
NMDS. The following are its main arguments:

R> |i brary( MASS)
R> i soMDS(d, y = cndscal e(d, k), k = 2, nmaxit = 50, trace = TRUE,
tol = 1le-3, p = 2)

with objects d and k, the distance matrix and number of dimensions, respectively. The
object y is a MMDS object containing initial values for afi? in (4.5). The object
maxi t control the number of the iterations we want to use. The default number is 50

iterations.

Other important functions that is needed is the function di st () to obtain the distance
matrix and the function Shepar d() to obtain the Shepard diagram. The latter function
is part of the MASS package and is applied using the instruction

R> Shepard(d, x, p = 2)
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The same data set of the 25 U.S. universities used in Chapter 3 will be used here to

illustrate the use of the functionscndscal e() and i soMDS() .

The following function was written to perform metric MDS on the universities data
The output of the function is a two dimensional metric MDS plot (Figure 4.1) and a

screeplot (Figure 4.2)

R> fi x( MVDS) # Rinstructions to performnetric MS

function (data)

I{i br ar y( MASS)

# otaining the Euclidean distances
Di st ance<-di st (dat a)

#Performng a Metric MDS

fitl<-cndscal e(D stance, ei g=TRUE, k=2)

pl ot (fitl$points,type="n", x|l ab="Di nension 1", ylab="D mension 2",
mai n="Metric MDS")
par (col ="bl ack", f ont =4, cex=0. 50)
chs<-substring(rownanes(data), 1, 6)
text (fitl$points, chs, col ="red")
abl i ne(v=0,1ty=3, col ="green")
abl i ne( h=0, 1 ty=3, col ="green")

wi ndows()

# Creating the Screeplot for MVDS

pl ot (crdscal e(Di st ance, ei g=TRUE, k=5) $ei g, col ="red", type="0",
yl ab="Ei genval ue", xI ab="nunber of di nmensions, q",
mai n="Screepl ot: Metric MDS")

R> MVDS(uni versities) # executing the MVDS function
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Metric MDS
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Figure 4.1: The metric MDS plot of the 25 U.S. universities.
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Screeplot:Metric MDS
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Figure 4.2: The screeplot of metric MDS.
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The next function was written to perform nonmetric MDS on the universities data
The output of this function is anonmetric MDS plot in two dimensions (Figure 4.3).

R> fi x( NVDS) # Rinstructions to perform nonnmetric MS

function (data)

{

['i brary( MASS)

# Ootaining the Euclidean distances

Di st ance<-di st (dat a)

wi ndows()

# Performing a Non-netric MDS

fit2<-isoMDS(Di stance, k=2)

pl ot (fit2%points,type="n", xl ab="Di mensi on 1", ylab="Di nmension 2",
mai n="Nonmetric MDS")
par (col ="bl ack", f ont =4, cex=0. 50)
chs<-substring(rownanes(data), 1, 6)
text (fit2%points, chs, col ="red")

abl i ne(v=0,1ty=3, col ="green")
abl i ne( h=0, 1 ty=3, col ="green")

}

R> NVDS(uni versities) # executing the NVDS function
initial value 6.884722
iter 5 val ue 5.403032
iter 10 value 4.606783
final value 4.440003
conver ged

By using the following instructions one can place clusters on the existing MDS plot
produced by the above function. The plot with clustersis displayed in Figure 4.4.

R> di s<-di st (universities, nethod="eucl i dean")
R> cl ust er<- hcl ust (di s, net hod="conpl et e")

R> gr ps<-cutree(cl uster, h=50)

R> fit2<-isoMDS(dis, k=2,trace=FALSE)

R> ordi spider(fit2,grps,|lty=2,col="red")

The function cut ree() allows usto select the number of cluster k= or the height h= at
which the clusters should be chosen. The function or di spi der (), which is part of the
vegan package, uses the results from cut ree() and hcl ust () to display the clusters

as seen in Figure 4.4. Besides or di spi der (), we could also useor di hul | ().
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Figure 4.3: The nonmetric MDS plot of the 25 U.S. universities.
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Nonmetric MDS
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Figure 4.4: The nonmetric MDS plot of the 25 U.S. universities with clusters
obtained using or di spi der (), hcl ust () and cutree().
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The function below performs nonmetric MDS on the universities data. The output of
this function is the iteration plot (Figure 4.5), screeplot (Figure 4.6) and the Shepard
diagram (Figure 4.7).

R> fi x(MDS. pl ot s) # Rinstructions for the diagnostic plots

function (data)
I{i br ar y( MASS)
Di st ance<-di st (dat a)
# Iteration plot
STRESS<- r ep( 0, 100)
for( i in 1:100){
STRESS[ i ] <-i soMDS( Di st ance, naxit=i,trace=FALSE) $stress
}
pl ot (1: 100, STRESS, t ype="0", yl ab="STRESS (q)", x| ab="Nunber of

iterations",col="red", min="Iteration plot")

# Screepl ot
STRESS2<-rep(0, 5)

for(i in 1:5){

STRESS2[ i ] <-i soMDS( Di st ance, k=i, trace=FALSE) $stress
}
wi ndows()

pl ot (1:5, STRESS2, t ype="0", yl ab="STRESS (q)", xl ab="nunber of
di rensi ons, ", col ="red", mai n="Screepl ot: Nonnetric MS")

# Shepard di agram

NVDS<- i soMDS( Di st ance, trace=FALSE)
Shep<- Shepar d( Di st ance, NVDS$poi nt s)
wi ndows()

pl ot (Shep$x, Shep$y, cex=0. 75, x|l ab="dissim larities", yl ab="di st ances",
mai n="Shepard di agram ")

[ i nes( Shep$x, Shep$yf, type="1", col ="red")
}

R> MDS. pl ot s(uni versities) # executing the function
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Figure 4.5: Theiteration plot of nonmetric MDS.
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Screeplot: Nonmetric MDS
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Figure 4.6: The screeplot for nonmetric MDS.
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Shepard diagram
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Figure 4.7: The Shepard diagram of nonmetric MDS.
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4.5 Interpreting the M DS results

The metric MDS plot is displayed in Figure 4.1 in two dimensions. It is clear from
this plot that there are differences among the universities. The screeplot of the
eigenvalues in Figure 4.2 displays the goodness-of-fit. From this plot we can clearly

see that the first two dimensions is sufficient to explain most of the variation.

The nonmetric MDS gives us quite similar results. Figure 4.3 is the nonmetric MDS
plot in two dimensions. There were three major clusters in the data and this is shown
in Figure 4.4 with the spider charts. The three clusters are the universities that are
very similar. The screeplot in Figure 4.6 is a graph which displays the goodness-of-fit
for the nonmetric MDS. The stress is used here as a measure of goodness-of-fit and
Figure 4.6 shows that most of the variation is again explained by the first two
dimensions. The final stress value was obtained as 4.44, which is a good fit according
to Table 4.1. The iteration plot in Figure 4.5 shows the initial stress value of 6.8847 at
the first iteration. The stress value dropped dramatically in the first 10 iterations and it
reached a minimum at 4.44 after about 11 iterations. The Shepard diagram in Figure
4.7 also shows how well the MDS fit. Since the points lie close to the step regression
function, we can conclude that the two dimensional nonmetric MDS is a good
representation of the original datain the lower space.

The metric and non-metric MDS plots are very similar. They both contain the same
groupings of the 25 universities and for both the two dimensional representation is
sufficient. The groups identified in Figure 4.3 also agree with the clusters obtained for
the complete linkage and Ward's method in Figures 3.3 and 3.4. These clusters are
depicted in Figure 4.4.

4.6 Summary

In this chapter we have demonstrated both metric and nonmetric multidimensional
scaling. The nonmetric MDS can use metric MDS output (eigenvectors) as starting
values for the distances in the stress function (expression 4.4). Thus, nonmetric MDS

allows for a much better configuration of the raw data in a low dimensiona space.
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Both metric and nonmetric MDS use a distance or dissimilarity matrix as input. The
output for both methods is aplot in alow dimensional space. For the metric MDS this
plot is obtained by using the eigenvector solution. In the case of nonmetric MDS, this
plot is obtained by using an iterative process in which the stress function is
minimized. We have also discussed measures for assessing the goodness-of-fit of
these methods. Metric MDS uses the eigenvalues to obtain a measure of the goodness-
of-fit. For nonmetric MDS we explained the stress value and the Shepard diagram as

tools for assessing the goodness-of-fit.

We also discussed the functions cndscal e() and i sovdS() which can be used for
metric and nonmetric MDS respectively. Another R function which performs

nonmetric MDS isthe met avMDS() function in the vegan package.

79



Stellenbosch University http://scholar.sun.ac.za

Chapter 5: Inference using distance matrices

Chapter 5

I nfer ence using distance matrices

5.1 Introduction

In the previous four chapters we have focused entirely on the exploratory analysis of
multidimensional data. In this chapter we turn our focus to statistical inference with
multiple populations. The aim of this chapter is to explain and understand three
techniques which can be used to test for significant differences among several groups.
The first technique that we will discuss is the well-known anaysis of variance
(ANOVA), which is used to test for differences among group means in the univariate
case. The second inference technique is called multivariate analysis of variance
(MANOVA), which is a direct extension of ANOVA to the multivariate case. Both
the above mentioned methods are parametric techniques and are based on strict
assumptions, which will be discussed in the sections to follow. For more detail on
ANOVA and MANOVA see Johnson and Wichern (2007). In practice the
assumptions for ANOV A and MANOVA are not dways met. For reasons such as this
an alternative to ANOVA and MANOVA isrequired. In this chapter we will discuss a
third inferential technique called the analysis of distance (AOD). The AOD was
proposed by Anderson (2001) and it offers an alternative to ANOVA and MANOVA.
AOD is anon-parametric technique and is not based on any assumptions. We will also
illustrate how the three techniques can be applied in R using the well-known Iris data

set as an example.
5.2 The one-way analysis of variance

The univariate analysis of variance (ANOVA) is a very common and widely used
method for statistical tests of factor effects and their interaction effects. This method
is most often used to analyze the outcomes of designed experiments such as

completely randomized designs, randomized block designs, Latin square designs and
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factorial designs. Consider a single factor experiment (eg. randomized design)
involving g factor levels (or treatments) and a single numerical response measured on
n observations in each level. The data set for such an experiment are described in
Table 5.1. For our discussion in this chapter we will assume that all the groups are of

sizen.

Table5.1: The data set for a single factor experiment

Treatment )
Observations Total | Average
(group)
1 Yu Yo Yz L Vi, Yy Vla
2 Yoo Yoo Yz L Yo Yo Yo
1 1 1 1
g Yor Yoo Yoz L Y Yoy Yo
TOtal ygg VQQ

In this table, y; is the j"" observation from the i" group, v, is the total of the i"”

treatment, Y, is the average of the i™ treatment, Y, isthe grand total and Y, is the

grand average. The hypothesis test of interest here is usually given by,

Hoom=m=L=m,
H,: at least one of the m's are different, (5.1

where we test for the equality of the treatment means. The one-way ANOVA is used
to perform this hypothesis test. The ANOV A is based on the following assumptions:

observations in each group are from anormally distributed population,
observations are drawn independently,

groups have equal population variances.

If these assumptions are not fulfilled, the results of the ANOV A may be questionable.

81



Stellenbosch University http://scholar.sun.ac.za

Chapter 5: Inference using distance matrices

The ANOVA partitions the total variability in the data into different components

(Montgomery, 2005). The total sum of squares, SS,,, :5 a (yij -V, )2 , contains

i=1 j=1
this overall variability in the data. In one-way ANOVA the total sum of squares is

decomposed into the sum of sgquares due to treatments (S'Sr and the sum of

reatments )

squares due to error (residual) (SSg,,, ) . i.€.

$I'otaJ = $I'reatmants + $Error !

which isformulated as

Qoe

(Vig B 799)2 + én- (yij B 7ig)z' (5.2)

1 i=1 j=1

Qo
Qoe

J
a

i=1 j=1

(yij B 799)2 = ni

The test statistic for this hypothesis test is derived from these components as the F-
ratio

_ Ssrreatments/(g - 1) _ MS; qimens
F = = 2 5.3
° $Error /(ng - g) MSError ( )

and the corresponding critical value is obtained from the F-distribution with degrees
of freedom df,=g-1 and df,=ng- g. The output of the ANOVA is usualy

displayed in atable, see Table 5.2. If the data are normally distributed, the quantity
(5.3) follows an F-distribution and therefore the associated p-value can be obtained

from thisdistribution as: p-value=P(F >F,). If the p-valueisless than the specified

level of significance, the null-hypothesis in (5.1) is rejected. Otherwise it is not
rejected.

82



Stellenbosch University http://scholar.sun.ac.za

Chapter 5: Inference using distance matrices

Table5.2: One-way ANOVA table

o Sum of Degrees of Mean

Source of variation F-vaue
sguares freedom sguare
M
Treatments SSircatrens G-1 | MS, s | Fo = o
MSEHOT

Error (Residual) SSor ng-g MS;,
Total SSroua ng-1

5.3 The one-way multivariate analysis of variance

Next we consider the multivariate analysis of variance (MANOVA), which is a
generalization of the univariate ANOVA described above. For a single factor
experiment with g treatments, we now measure multiple numerical responses (p
variables) on the n observations in a treatment group. Since there are p variables for
each observation in each group, we have a multivariate setup and the hypotheses of

interest are formulated as follows,

Ho3ll1:llz:|—:ug
H,: at least one of the p's are different. (5.49)

In this instance the one-way MANOVA is used to test for the equality of the mean
vectors. Similar to the ANOVA, the MANOVA is based on the following

assumptions:

observation vectors in each group are from amultivariate normal population,
observations vectors are drawn independently from each population,

groups have equal population covariance matrices.
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The data for a one-way MANOVA are described in Table 5.3, where y;; is the vector
of p variables for the j"" observation in the i"" treatment, y;, is avector of totals for the
i trestment, V,, is the average vector for the i treatment, y,, is the grand total and

y,, isthevector of overall averages.

Table 5.3: The data set for a single factor experiment with multivariate responses

Treatment .
Observations Total | Average
(group)

1 Yiu Yo Yis L Y Yy 719
2 Ya¥Yn Yz L Yo Yo Yo
1 1 1 1
g Yo Yoz Yoz L Y Yoy Yoy

TOtal ygg 799

The overall variation in the data can be summarized by the matrix total sum of squares

and cross products, 5 é'{ (yij - Vgg)(yij -V, )¢. Similar to the decomposition in (5.2),
i=1 j=1

we construct the decomposition of the matrix total sum of squares and cross products

into two components: the treatment sum of squares and cross products and the error

sum of squares and cross productsi.e.

Qo

J = - S 1 _\e o Jd d = =
a. (yij - ygg)(yij - ygg )¢: na. (yig - ygg)(yig - ygg)¢+a a. (yij - yig)(yij - yig)q'

i=1 j=1 i=1 i=1 j=1

The above matrices are summarized in Table 5.4.
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Table 5.4: One-way MANOVA table

Source of variation

Matrix of sum of

sguares and cross products

s _ _ —
B= na (yig - ygg)(yig - y99)¢

Treatments
i=1
Error (Residual) W= g. é. (yij - Vig)(yij - Vig)(t
=1 j=1
Totd B+W = g. én. (yij } Vgg)(yij - Yy )(I

i=1 j=1

The next step in the MANOVA is to obtain the appropriate test statistic. For this we
first need to obtain Wilks' lambda (Wilks, 1932), which is defined by the following

ratio of generalized variances

| QJQQ
Qo

i
U
Il
U

L*— |W| —

“B+w|

“QDow
Qo

I
N
I
N

(yi,r-vig)(yu-vig)j
|

(v - 7.)(v; - V)

(5.6)

To perform the hypothesis test in (5.4) we need to find the distribution of L™, which

can be derived for the cases given in Table 5.5 (Johnson and Wichern, 2007). Using
Table 5.5 the test statistic and critical value for the hypothesis test can be obtained for

any given number of groups and variables. Similar to the ANOV A, the corresponding
p-value for the MANOVA is adso based on the F-distribution. In the case of

MANOVA, the degrees of freedom, df, and df,, are dependent on the number of

groups (g), the number of variables ( p) and the sample sizes (n) (see Table 5.5 for

more detail).
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Table 5.5: The distribution of Wilks' lambda, assuming that the sample sizesin each

group are the same
Number of Number of o
_ Distribution
variables groups
_ ang- god-L 6
p=1 g3 2 ég 1% L ; Fdflgl)dfz(ngg)
p 3 9 ang- g- 16A- \/—O _E
p= g é g- 1 Eé \/F B df,=2(g- 1);df,=(ng- g-1)
_ ang- p-16ad-L" 6
" T E e mU e
031 g=3 aeng-p-2('_53q-\/F9~F
g p Eé \/L7 B df, =2 p;df,=2(ng- p- 2)
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5.4 The analysis of distance

Anderson (2001) proposed a non-parametric hypothesis test using similar reasoning as
in the cases of ANOVA and MANOVA. This approach to hypothesis testing of
multiple groups involves a distance matrix (see Chapter 3). The idea here is to
decompose the distance matrix rather than the variance. In Anderson (2001) both the
one-way and two-way analysis of distance (AOD) is explained. In this section we will
discuss only the one-way AOD. Similarities between AOD and ANOVA and
MANOVA are aso highlighted.

As mentioned in the previous sections, ANOVA and MANOVA are based on several
assumptions in order for the analysis to applicable. These assumptions are not
important when we perform the AOD. The AOD allows us to compare treatments
with different types of measurements (eg. numerical, count and binary). When we
perform the AOD we test the hypotheses:

H, : thelocations of groups are the same

H, : thelocations of groups are different. (5.7)

To obtain the test statistic and p-value we make use of a distance matrix. Given the
setup of the data in Tables 5.1 or 5.3, obtain theN" N matrix of distances (or
dissimilarities) D with N =ng . The distance and dissimilarity measures discussed in
Chapter 3 can be used to obtain this matrix. Within the matrix D we can obtain the
n" n sub-matrices corresponding to each group. Define the following sum of squares
based on the elementsin D:

Total sum of squared distances

_18 0
S =7y A 0
i<i¢
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Treatment sum of squared distances

2
dii¢|ii¢’

- Qo=

$I'reatrrrants =

Sl

i¢

n

where | is an indicator function having 1 if objects i and i¢ are in the same group
and 0 otherwise.

Error sum of squared distances

$Error = $I'otal - $I'reatmant'

Thus we can decompose the total sum of squared distances similar to (5.2) and (5.5).
The output of the AOD can also be summarized in a table. This summary table is
displayed in Table 5.6.

For the AOD a pseudo F-test statistic is used which is analogous to the F-test statistic
(5.3). The pseudo F-value is obtained as the ratio

E= Ssrreatrrmts/(g ) 1) — MS: caiments .
$Error/(ng - g) MSError

(5.8)

Note that the AOD follows the same idea as the ANOVA. However, it should be
remembered that the AOD can be performed on a univariate as well as a multivariate
data set having several groups.
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Table 5.6: One-way AOD table

Source of variation Sum of Degreesof | Mean Pseudo
Squares Freedom Square F-value
M
Treatments $I'reatmants g - 1 Msl'reatments F = Sl'reatmants
MSEHOT
Error (Residud) SSerra ng- g .
Total SSroua ng-1

The next step in the AOD is to obtain the p-value for the hypothesis test. Since we do
not make any distributional assumptions when performing AOD, the p-value cannot
be obtained from a known distribution function. In this case we make use of

permutations to obtain the distribution. The following steps explain the process:

1. LetFin (5.8) bethe F-ratio from the original data
2. Perform alarge number of permutations (say P) on the group label and each time

caculate the distance matrix (D,,D,,..,D,) and the pseudo F-ratio
(FP.F... FE).
3. Thep-vaueisobtan as:

P 3
o-value = number Oll; FP3 F . (5.9)

According to Anderson (2001) at least P=1000 permutations should be done when a
0.05 level of significance is used and at least P=5000 permutations should be
performed for a0.01 level of significance.
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5.5 Performing an analysis of variancein R

To perform the analysis of variance we will make use of the Iris data set (Anderson,
1935; Fisher, 1936). The data set consists of 3 groups (Iris species) and 4 numerical
variables measured on 50 observations in each group. The analysis will be performed
using the MANOVA and AOD techniques discussed in the previous sections. In both
cases we test the hypotheses

H, : thelocations of the 3 groups are the same

H, : thelocations of the 3 groups are different.

To perform the MANOVA we will make use of the manova() function in the R
package stats and to perform the AOD we will use the adoni s() function in the

vegan package.
5.5.1 A multivariate analysis of variancein R
A MANOVA is performed in R using the function nanova() and the arguments of

this function is a formula (as can be seen below). The function sunmary() is used

together with the manova() function to obtain the MANOV A output.

R> manova(fornmnul a, data, ...)

R> sunmar y( obj ect
test = c("Pillai", "WIks", "Hotelling-Law ey", "Roy"),
intercept = FALSE, tol = le-7, ...)

The sumary() function usesthe manova() object and one can also specify which test
should be used. In Section 5.3 Wilks' lambda was discussed and we will use this test
in our illustration of the manova() function. The following R instructions are used to
perform the one-way MANOVA. The object Y is the vector containing the labels of
the three groups and X is adata matrix with the four numerical variables.
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R> Y<-as.factor(iris[,5])
R> X<-as.matrix(iris[,1:4])

The output for the MANOV A is summarized below.

R> manova( X~Y)
Cal Il :
manova( X ~ Y)

Ter ns:

Y Resi dual s
resp 1 63. 2121 38. 9562
resp 2 11. 3449 16. 9620
resp 3 437.1028  27. 2226
resp 4 80. 4133 6. 1566
Deg. of Freedom 2 147

Resi dual standard error: 0.5147894 0.3396877 0.4303345 0.2046500

Esti mated effects nay be unbal anced

> sunmar y( manova( X~Y), test ="W | ks")

Df W ks approx F num Df den Df Pr (>F)
Y 2 0.023 199.145 8 288 < 2.2e-16 ***
Resi dual s 147

Signif. codes: 0 ‘**** (0.001 ‘**’ 0.01 “** 0.05 “.” 0.1 ° ' 1

>

The p-value for this analysis is <0.001, indicating that we reject the null hypothesis.
Thus, there is enough evidence to conclude that the three groups (species) are

significantly different.
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5.5.2 An analysis of distancein R

To perform the AOD in R we will use the function adoni s(), which is part of the

vegan package. Below are the arguments of this function

R> adoni s(fornul a, data, pernutations = 999, nethod = "bray",
strata = NULL, contr.unordered = "contr.sunt
contr.ordered = "contr.poly", ...)

The fornul a object is similar to the one used in nmanova(). The number of
permutations can be specified in the per mut at i ons argument. This function performs
an analysis of distance and therefore requires the calculation of a distance matrix on
the data. To obtain the distance matrix the function vegdi st (), which is aso part of
the vegan package, is used as default. The argument net hod calls the vegdi st ()
function. The function vegdi st (), given below, works similar to the function di st ()
used in Chapter 3.

R> vegdi st (x, mnethod="bray", binary=FALSE, di ag=FALSE, upper=FALSE
na.rm= FALSE, ...)

The next instruction loads the vegan package and performs the AOD. The Euclidean

distance is used since the data consists of numerical variables. For any other type of

variable (eg. count or binary) the Bray-Curtis or Jaccard dissimilarity measures can be

used.

R> | i brary(vegan)

R> adoni s( X~Y, per nmut ati ons=999, net hod="eucl i dean")

Cal | :

adoni s(formula = X ~ Y, pernutations = 999, nethod = "euclidean")
Df SumsOF Sgs MeanSgs F. Model R2 Pr (>F)

Y 2. 00000 592. 07320 296. 03660 487.33088 0.8689 0.001 ***

Resi dual s 147. 00000 89.29740 0.60747 0. 1311

Tot al 149. 00000 681. 37060 1. 0000

Signif. codes: 0 ‘**** (0.001 ‘“**’ 0.01 “** 0.05 “.” 0.1 ° ' 1
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From the AOD results we can conclude that the null hypothesis is rejected, since the
p-value is <0.001. Thus, there are significant differences among the groups, which we
also found with the MANOVA in the previous section.

5.6 Summary

This chapter illustrated the analysis of distance as an aternative to the conventional
ANOVA and MANOVA. Even though ANOVA and MANOVA are very popular
methods for comparing multiple groups, they only work well for numerical data from
normal distributions. The AOD on the other hand, does not make assumptions about
the underlying distribution of the data and is completely non-parametric. AOD can be
performed even if the number of variables exceeds the number of observations. AOD
is not only applicable to numerical data, but can be used with count and binary data by
choosing the appropriate measure of dissimilarity. Finaly, it should be mentioned that
AOD can aso be used for other designed experiments, eg. factorial designs,
randomized block designs and L atin square designs.

The function adoni s() was the only R function discussed in this chapter to perform
AOD. Another function used to perform AOD is the function anosi n() which is also
part of the vegan package.
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Chapter 6

Real-wor|d applications

6.1 Introduction

In this chapter we will apply the techniques, discussed Chapters 2 to 5, on the Biolog
and the Barents Fish data described in Chapter 1. The Biolog data were obtained from
an experiment involving 32 carbon sources and 12 treatments. The measurements for
this experiment are binary (the presence or absence of microbia activity in soil; see
Figure 1.3). The soil samples were taken for three months (February, September and
December) and at two depths (0-75 mm and 150-300 mm). The Biolog data will be
subjected to an exploratory analysis using the following methods:. cluster analysis,
multidimensional scaling and correspondence analysis. This data set will also be
subjected to the analysis of distance method to test for differences among the
treatments. The Jaccard and Bray-Curtis dissimilarities will be used for the clustering,
multidimensional scaling and the analysis of distance. The Barents Fish data were
obtained from an observationa study (see Figure 1.5). This data set contains two
numerical measurements of interest (temperature and depth). Furthermore, it also
contains a set of count data for 32 fish species. Both the numerical variables and count
data were measured at 89 sites in the Barents Sea. This data set will be subjected to a
canonical correspondence analysis to study the relationship between the numerical

variables and the count data.
6.2 Exploratory analysis of the Biolog data

6.2.1 Cluster analysis

In this section we perform a cluster analysis using the complete linkage method
described in Chapter 3. Firstly, the carbons are clustered using the Jaccard and the

Bray-Curtis dissimilarities respectively. The clustering was done for the three months
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and the two depths separately. The results of this cluster analysis are displayed as
dendrogramsin Figures 6.1 and 6.2. Secondly, the treatments were clustered using the
same configuration described above. The results of this cluster analysis are displayed

in Figures 6.3 and 6.4.

6.2.2 Nonmetric multidimensional scaling

We aso performed a nonmetric multidimensional scaling, as discussed in Chapter 4.
Again we will make use of both the Jaccard and the Bray-Curtis dissimilarities in our
analysis. The multidimensiona scaling was performed for the three months and the
two depths separately. The results are displayed in Figures 6.5 and 6.6 for the carbons
as well as Figures 6.7 and 6.8 for the treatments. Tables 6.1 and 6.2 contain the final
stress values (see Chapter 4, Section 4.3) for the multidimensiona scaling on the
carbons and treatments respectively. These values will be used as a measure of the
goodness-of-fit for the two dimensional plots. Note that in cases where the distance
(dissimilarity) matrix contains zero values, nonmetric multidimensional scaling can
not be performed. In such a case a small value (e.g. 0.0001) was added to each of the
distances.

6.2.3 Correspondence analysis

Finally, the Biolog data was subjected to a simple correspondence analysis (see
Chapter 2). The purpose of this analysis was to study the relationships/ associations
between the carbons and the treatments. The results of the correspondence analysis
are given in Figure 6.9 for the months and the depths separately. We aso report the
inertias for the two dimensiona configurations in Table 6.3 as measures of the
goodness-of-fit. Note that for cases where the row or column totals of the contingency
table are zero, correspondence analysis can not be performed. For such a case the
particular row or column can be removed from the contingency table and the analysis
can be performed on the remaining data.
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Figure 6.1: The complete linkage dendrograms of the 32 carbons per month and

depth using the Jaccard dissimilarity.
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Figure 6.1: Continued.
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Figure 6.2: The complete linkage dendrograms of the 32 carbons per month and

depth using the Bray-Curtis dissimilarity.
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Figure 6.7: The nonmetric multidimensional scaling of the 12 treatments per month

and depth using the Jaccard dissimilarity.
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Figure 6.8: The non-metric multidimensional scaling of the 12 treatments per month

and depth using the Bray-Curtis dissimilarity.
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Table 6.1: The final stress values for the nonmetric multidimensional scaling on the

carbons for both Jaccard and Bray-Curtis dissmilarity.

Month (depth) Stressvalue Streﬁsvalu-e

(Jaccard) (Bray-Curtis)
(@ | February (0-75 mm) 11.805 11.805
(b) | September (0-75 mm) 9.985 9.985
(c) | December (0-75 mm) 8.621 8.621
(d) | February (150-300 mm) 15.332 15.332
(e) | September (150-300 mm) 13.699 13411
(f) | December (150-300 mm) 10.928 10.928

Table 6.2: The final stress values of the nonmetric multidimensional scaling on the

treatments for both Jaccard and Bray-Curtis dissimilarity.

Month (depth) Stressvalue Streﬁsvalu-e

(Jaccard) (Bray-Curtis)
(@ | February (0-75 mm) 14.029 14.029
(b) | September (0-75 mm) 10.652 10.652
(c) | December (0-75 mm) 12.197 12.197
(d) | February (150-300 mm) 13.245 13.245
(e) | September (150-300 mm) 15.561 15.561
(f) | December (150-300 mm ) 11.772 11.772
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Figure 6.9: The correspondence analysis plots per month and depth.
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Table 6.3: Theinertiaof the first two dimensions for the correspondence analysis.

Month (depth) Inertia (%)
(@ | February (0-75 mm) 514
(b) | September (0-75 mm) 45.6
(c) | December (0-75 mm) 457
(d) | February (150-300 mm) 42.2
(e) | September (150-300 mm) 40.8
(f) | December (150-300 mm) 48.5

6.3 Discussion of the Biolog data results

For the discussion of the results given in Section 6.2, we will focus on the following
five points.

6.3.1 Comparing the results of the Jaccard and the Bray-Curtis

dissimilarity

These two measures were used for both the cluster analysis and the multidimensional
scaling. Comparing the dedrograms for the cluster analysisin Figures 6.1 and 6.2 (the
32 carbons), we observe that the Jaccard and the Bray-Curtis give ailmost identical
answers. Similar conclusions are made when comparing Figures 6.3 and 6.4 (the 12
treatments). The two dimensional configurations for the multidimensional scaling in
Figure 6.5 and 6.6 represent the Jaccard and Bray-Curtis dissimilarity measures
respectively for the 32 carbons. The configuration of the points here are very different
for the two measures. Similar conclusions can be drawn for the 32 carbons. The same
can be said about the configurations of points in Figures 6.7 and 6.8 for the 12
treatments. Overall it seems as if the Jaccard and Bray-Curtis dissimilarity measures
allow us to make quite similar conclusions whether we are working with the cluster
anaysis or the multidimensional scaling results.
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6.3.2 Comparing the results of the three exploratory analysis
methods

Since the cluster analysis, multidimensional scaling and correspondence analysis are
performed on the same data, we expect some agreement among the three exploratory
methods concerning the carbons and treatments. For example, consider the
dendrogram in Figure 6.1 (c) where cases C22, C20 and C21 are lying in a cluster,
which are separated further from the rest. The same cases lie close to each other in
Figure 6.5 (c) and Figure 6.9 (c). Consider Figure 6.1 (c) where cases C16, C31, C5,
C19, C2, C18, C13, C7, C3, C8, C14, C9, C25 C15, C4, C26 and C32 form one large
cluster. The same cases are clustered together in Figure 6.5 (c) and Figure 6.9 (c).
Thus overall the three methods give us the same picture of relationships among the
carbons. These methods also give similar grouping structures for the treatments.

6.3.3 The goodness-of-fit for the multidimensional scaling and the

correspondence analysis

The final stress values for the multidimensional scaling are given in Table 6.1 and 6.2
for the carbons and treatments respectively. The values for the Jaccard and the Bray-
Curtis dissmilarity measures are given for each month and depth separately. To
determine the goodness-of-fit for the two dimensional configurations, we can compare
these values to the guidelines in Table 4.1. The lowest and highest stress values in
Tables 6.1 and 6.2 are 8.621 and 15.332 respectively. According to Table 4.1 this
means that the multidimensional scaling represent a fair to poor fit in reproducing the

origina distances.

The goodness-of-fit for the correspondence anaysis are determined by using the
inertias given in Table 6.3. As seen in Table 6.3, the proportion of inertia explained
the first two dimensions for the correspondence analysis on the Biolog data ranges
between 40% and 51%. These values show the percentage of variation in the raw data
explained by the first two dimensions. The inertia is quite low, indicating that two
dimensions may not be sufficient to study the relationship between the treatments and

carbons.
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6.3.4 Overall conclusion about the treatments

There are no real clustering patterns among the treatments. An exception to this
maybe Figure 6.3 (c) and 6.4(c) for December (0-75 mm). However, Figures 6.7 and
6.8 show a random display of the treatments with no observable structure among
them. Thus it seems like the microbia activity for the three months and the two
depths are not different for the 12 treatments. The micro organisms display a similar
activity in all the treatments.

6.3.5 Overall conclusion about the carbons

The clustering for the carbons seems to have more structure. There are definitely
some clusters that can be identified from Figures 6.1 or 6.2, especialy for December
(0-75 mm). In Figure 6.5 or 6.6 we aso observe a small group of carbons clustering,
while the rest are scattered. Thus we can conclude the microbial activity for the 32
carbons are definitely showing a difference for the months and depths.

Considering the correspondence analysis depicted in Figure 6.9, we can also conclude
that there are no associations among the treatments and carbons. The cases (carbons
and treatments) are clustered around the origin of the graphs. There are no real visible
relational patterns among the treatments and carbons.
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6.4 Analysis of distance using the Biolog data

The aim of this section is to test for differences among the 12 treatments by using the
analysis of distance method discussed in Chapter 5. As mentioned earlier, this method
issimilar to aMANOVA, but does not make the same assumptions. In fact, there are
no assumptions when performing an analysis of distance. Since this analysis makes
use of a distance (dissimilarity) matrix, we will again use the Jaccard and Bray-Curtis
measures. The analysis of distance tests the following hypotheses in the Biolog data:

H, : the locations of the treatments are the same

H, : the locations of the treatments are different ,

for the three months and two depths separately. The p-vaues resulting from the
analysis of distance are displayed in Table 6.4.

Table 6.4: The p-values obtained from the analysis of distance of the 12 treatments

for the Jaccard and Bray-Curtis dissimilarities.

p-value p-value
Month (depth) _
(Jaccard) (Bray-Curtis)
(@ | February (0-75 mm) 0.6533 0.7433
(b) | September(0-75 mm) 0.4885 0.5964
(c) | December (0-75 mm) 0.02098* 0.02897*
(d) | February (150-300 mm) 0.01898* 0.01998*
(e) | September (150-300 mm) 0.1369 0.3097
(f) | December (150-300 mm) 0.961 0.962

* Significant p-values at a 5% level of significance.
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As can be seen from Table 6.4, there are only significant differences among the 12
treatments for December (0-75 mm) and February (150-300 mm) at a 5% level of
significance. Thus, for these cases there were discrepancies among the microbial
activities. There were no significant differences among the 12 treatments for the rest
of the cases. This means there were no discrepancies among the microbial activities
for these cases. Both the Jaccard and the Bray-Curtis dissimilarity measures produce

similar conclusions.

6.5 Canonical correspondence analysis of the Bar ents Fish data

In this section we will anayze the Barents Fish data by using canonical
correspondence anaysis which was discussed in Chapter 2. There are two
environmental variables (depth and temperature) and the count data of 32 different
fish gpecies from 89 different stations. The canonical correspondence analysis is
designed to analyze such datain order to study the relationships or patterns among the
environmental variables and the fish species. The CCA plot of the canonical
correspondence analysisis given in Figure 6.10. The black three-digit numbers on the
graph are the station numbers. The red abbreviations refer to the 32 fish species (see

Table 1.1). The blue arrows show the direction in which those variables increase.

It is clear from Figure 6.10 that there are seven sites that stand out among the 89 sites
(sites number 356, 462, 386, 399, 459, 458, 465). Most of the other sites are scattered
around the origin of the graph. Focusing our attention on the seven sites, we can see
that three of these sites (356, 462 and 386) are associated with high temperatures. The
other four sites (386, 399, 458, 459 and 465) are associated with lower depths. The
contour lines in Figure 6.11 were created to identify the levels of the temperature at
each site. The contour lines in Figure 6.12 on the other hand allow us to identify the
levels of the depth.

If we turn our attention to the fish species, it can be seen that the species labeled as
An_lu (the Atlantic catfish — see Table 1.1) lies further away from the other species.
This fish species seems to be associated especially with alower depth level. Thus, the
species occurs in the shallow part of the Barents Sea. On the other hand, some species
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for example No_rk (the white barracuding), seem to be associated with a higher depth
level, implying that it occurs more frequently in the deeper part of sea. In a similar
way we can interpret the relationship among the other species and the depth variable.
Studying the relationship of the species with the temperature level, one can see for
example that species like Mi_po (Blue whiting), Tr_es (Norway pout) and Cl_ha
(Herring) occur more frequently where the temperature levels are higher. Again the
contour lines in Figure 6.11 and 6.12 are useful in determining the level of

temperature and depth at which the fish species occur the most.

If we study the association among the sites and species, we can see in Figure 6.10 that
species An_|u seems to occur most at sites 386, 399, 458, 459 and 465. Overall it
seems that most of the sites and species are clustered around the origin. This means
that most sites and species, respectively, have on average the same profile. This aso
means that al the different fish species seems to occur at most of the sites in the
Barents Sea

Judging the equivalent lengths of the two arrows, it seems as if the variables
temperature and depth carries the same weight in the analysis. The following results
show that both variables are highly significant in the analysis.

> envfit(cca(X Y),Y, pernm=999)
*** VECTORS

CCAL CCA2 r2 Pr(>r)
Dept h 0.37128 0.92852 0.4287 0.001 ***
Tenperature -0.83355 0.55244 0.3675 0.001 ***

Signif. codes: 0O “**** (0.001 “**’ 0.01 “*" 0.05 ‘.” 0.1 ° "' 1
P val ues based on 999 pernutations.

Both p-vaues are 0.001 and therefore highly significance.
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Figure 6.10: CCA plot from the canonical correspondence analysis of the Barents
Fish data.
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Figure 6.11: Contour plot of the depth levels. The contours in the plot increase in the
direction of the depth variable.
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Figure 6.12: Contour plot of the temperature levels. The contours in the plot increase

in the direction of the temperature variable.
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6.6 Summary

The aim of the chapter can be summarized in the following points:

Firstly, the Biolog data was analyzed as an investigation into the data for
interesting patterns (microbial activity) among the carbons and treatments based
on the binary measurements. This was done by using the exploratory methods:
clustering analysis, correspondence analysis and nonmetric multidimensional
scaling.

Secondly we tested for significant differences among the treatments in the Biolog
data

Thirdly, we compared the results for the Jaccard and Bay-Curtis dissimilarity
measures. These measures are popular measures for binary and count data.
Fourthly, the Barents Fish data was analyzed to demonstrate the usefulness of
canonical correspondence analysis when we want to study the relationship among

two sets of data.

Overall it did not seem as if there were any clear patterns among the carbons and
treatments in the Biolog data. However, there were a few cases where there were
significant differences among the treatments (see Table 6.4). Both the Jaccard and
Bray-Curtis dissimilarities gave similar results which lead to the same conclusions.
The canonical correspondence analysis shows that most of the sites and species are
clustered around the origin. This showsthat al the different fish species seem to occur
in most of the sitesin the Barents Sea.
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Chapter 7

General conclusion

The am of this thesis was to explore and understand ways of analyzing
multidimensional count or binary data. This task was accomplished by using two
approaches, namely exploratory analysis and inferential analysis of the data. The
methods used for exploratory data analyses were correspondence analysis, canonical
correspondence analysis, cluster analysis and multidimensional scaling. These
methods have been successfully applied to the Biolog data and the Barents Fish data.
An analysis of distance method was used to perform an inferential analysis on the
multidimensional Biolog data. This method by Anderson (2001a) is a quite powerful
method and unlike the analysis of variance, this method makes no distributional

assumptions.

Correspondence analysis is an exploratory technique that studies the relationship
between the rows and columns of a contingency table. The goodness-of-fit in
correspondence analysis is determined by the proportion of inertia explained by the
first two dimensions. The screeplot and the Benzécri plot can be used to identify the
appropriate number of dimensions to obtain a good fit. Canonica correspondence
analysis is a correspondence analysis in a restricted space. CCA is a very useful
technique in investigating the relationship between the count data and the explanatory
variables. The goodness-of-fit is also determined by the proportion of inertia
explained in the constrained space. Correspondence analysis is quite an active area of
research. Partial constrained correspondence analysis, joint and multiple
correspondence analyses are more techniques which could be used for analyzing data
in contingency tables (see Greenacre, 2007).

Cluster analysis was used as an exploratory technique for identifying groups in the
data. Cluster analysis uses a distance or dissimilarity matrix obtained from the data. In
this way cluster analysis can be applied to any type of data by choosing the
appropriate distance or dissimilarity measure. Several distance and dissimilarity
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measures were given in this thesis. The Jaccard and Bray-Curtis were specifically
used for binary or count data. Four agglomerative hierarchical clustering methods
were discussed. In Chapter 6 only complete linkage clustering was used in the
analysis of the Biolog data, since it tends to produce clearer dendrograms when
compared to the other agglomerative hierarchical clustering methods. However, the
literature on cluster analysis is very large. Other non-hierarchical methods for cluster
analysis are aso avalable, such as the K-means cluster method. Model-based
clustering methods are also very powerful in finding clusters in the data by using
statistical distributions (see Johnson and Wichern, 2007).

A very attractive non-parametric technique is the analysis of distance discussed in
Chapter 5. The conventional parametric analysis of variance approach is based on
some assumptions which are: (1) the datain each group are from a normal population,
(2) the observations in each group are independent and (3) the population variances in
the groups are equal. Therefore, the data are assumed to be numerical data as well.
However, the analysis of distance is not based on any such assumptions. This method
can be applied to any type of data by employing the appropriate distance or

dissimilarity measure.

The statistical software R is available on the internet (http://www.r-project.org/) and

can be downloaded free of charge. All the methods discussed in this thesis have been
programmed in R and are readily available for usage. Any person with a basic
knowledge of R will be able to apply the functions for the corresponding methods.
Some functions are standard in R, while other functions can be obtained from the
packages available on the R website. These packages can also be freely downloaded.
The following is a summary of the methods and the functions used (with package
name in brackets{}):

Correspondence analysis: ca() {ca}; anacor () {anacor}; cca() {vegan}
Canonical correspondence analysis: anacor () {anacor}; cca() {vegan}

Cluster analysis: di st (), hcl ust () {stats}

Multidimensional scaling: cndscal e() {stats}; i soMdS() { MASS}; net aMDS()

{vegan}
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Analysis of distance: adoni s() {vegan}.

There are many other packages and functions to perform the above mentioned
methods in R. This software is a powerful tool for many statistical applications. It
contains the most recently developed techniques in statistics. The graphics are quite
impressive and the option to write your own programs gives the user much freedom to

explore his/ her own ideas.
Open research questions:

The use of permutation tests in statistics has become quite popular with the
development of computing software. In this thesis we have used permutation tests
in canonical correspondence analysis to identify significant environmental
variables (Chapter 2). In Chapter 5 we used permutation tests in the analysis of
distance to obtain p-values for a hypothesis test. Using permutation tests in
multidimensional scaling and cluster analysis should aso be investigated.
Permutation tests may for example be useful as a mechanism to determine the
goodness-of-fit for clustering analysis or how many clusters are sufficient.

If the permutation test is applicable in these methods, bootstrap techniques may
also be explored in future research concerning these methods.

Since there are various options to perform MDS (for example metric and non-
metric with different distance or dissimilarity measures), techniques like
Procrustes analysis can be employed in a study to compare the performance of the
different MDS options.

With count data we often have the case where the counts can be very high and
very low in some cells. This causes large variation in the data Clarke and
Warwick (1994) argued that the 4™ root transformations should be applied to
count data to reduce the influence of very abundant species. How to transform the

count data should also receive further attention.
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