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OPSOMMING 
 

Die analise van meerdimensionele (meerveranderlike) datastelle is ’n belangrike area van 

navorsing in toegepaste statistiek. Oor die afgelope dekades is daar verskeie tegnieke 

ontwikkel om sulke data te ontleed. Die meerveranderlike tegnieke wat ontwikkel is sluit 

in inferensie analise, regressie analise, diskriminant analise, tros analise en vele meer 

verkennende data analise tegnieke. Die meerderheid van hierdie metodes hanteer gevalle 

waar die data numeriese veranderlikes bevat. Daar bestaan ook kragtige metodes in die 

literatuur vir die analise van meerdimensionele binêre en telling data. 

 

Die primêre doel van hierdie tesis is om tegnieke vir verkennende en inferensiële analise 

van binêre en telling data te bespreek. In Hoofstuk 2 van hierdie tesis bespreek ons 

ooreenkoms analise en kanoniese ooreenkoms analise. Hierdie metodes word gebruik om 

data in gebeurlikheidstabelle te analiseer. Hoofstuk 3 bevat tegnieke vir tros analise. In 

hierdie hoofstuk verduidelik ons vier gewilde tros analise metodes. Ons bespreek ook die 

afstand maatstawwe wat beskikbaar is in die literatuur vir binêre en telling data. Hoofstuk 

4 bevat ’n verduideliking van metriese en nie-metriese meerdimensionele skalering. 

Hierdie metodes kan gebruik word om binêre of telling data in ‘n lae dimensionele 

Euclidiese ruimte voor te stel. In Hoofstuk 5 beskryf ons ’n inferensie metode wat bekend 

staan as die analise van afstande. Hierdie metode gebruik ’n soortgelyke redenasie as die 

analise van variansie. Die inferensie hier is gebaseer op ’n pseudo F-toetsstatistiek en die 

p-waardes word verkry deur gebruik te maak van permutasies van die data. Hoofstuk 6 

bevat toepassings van bogenoemde tegnieke op werklike datastelle wat bekend staan as 

die Biolog data en die Barents Fish data. 

 

Die sekondêre doel van die tesis is om te demonstreer hoe hierdie tegnieke uitgevoer 

word in the R sagteware. Verskeie R pakette en funksies word deurgaans bespreek in die 

tesis. Die gebruik van die funksies word gedemonstreer met toepaslike voorbeelde. 

Aandag word ook gegee aan die interpretasie van die afvoer en die grafieke. Die tesis 

sluit af met algemene gevolgtrekkings en voorstelle vir verdere navorsing.  
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SUMMARY 
 

The analysis of multidimensional (multivariate) data sets is a very important area of 

research in applied statistics. Over the decades many techniques have been developed to 

deal with such datasets. The multivariate techniques that have been developed include 

inferential analysis, regression analysis, discriminant analysis, cluster analysis and many 

more exploratory methods. Most of these methods deal with cases where the data contain 

numerical variables. However, there are powerful methods in the literature that also deal 

with multidimensional binary and count data. 

 

The primary purpose of this thesis is to discuss the exploratory and inferential techniques 

that can be used for binary and count data. In Chapter 2 of this thesis we give the detail of 

correspondence analysis and canonical correspondence analysis. These methods are used 

to analyze the data in contingency tables. Chapter 3 is devoted to cluster analysis. In this 

chapter we explain four well-known clustering methods and we also discuss the distance 

(dissimilarity) measures available in the literature for binary and count data.  Chapter 4 

contains an explanation of metric and non-metric multidimensional scaling. These 

methods can be used to represent binary or count data in a lower dimensional Euclidean 

space. In Chapter 5 we give a method for inferential analysis called the analysis of 

distance. This method use a similar reasoning as the analysis of variance, but the 

inference is based on a pseudo F-statistic with the p-value obtained using permutations of 

the data. Chapter 6 contains real-world applications of these above methods on two 

special data sets called the Biolog data and Barents Fish data.  

 

The secondary purpose of the thesis is to demonstrate how the above techniques can be 

performed in the software package R. Several R packages and functions are discussed 

throughout this thesis. The usage of these functions is also demonstrated with appropriate 

examples. Attention is also given to the interpretation of the output and graphics. The 

thesis ends with some general conclusions and ideas for further research. 
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Chapter 1 

 

Introduction 

 

 

1.1 Background and motivation for study 
 

Multivariate statistical techniques play a very important role in understanding data 

that are multidimensional in nature. Such data sets are often very complex to 

understand and very difficult to analyze. Over the last decades the literature on 

multivariate techniques in the areas of regression analysis, cluster analysis, ordination 

analysis, discriminant analysis and multivariate inference have been vastly expanded 

(see for example Mardia et al. (1979); Ter Braak (1986); Legendre and Legendre 

(1998); Cox and Cox (1994); Anderson (2001a); Anderson (2001b); Cox and Cox 

(2001); Quinn and Keough (2001); Greenacre (2007); Johnson and Wichern (2007); 

Nenadic and Greenacre (2007); de Leeuw and Mair (2009); etc.).  Many of these 

techniques are original and very sophisticated, while others are extentions of the 

univariate methods. These techniques have been applied in a variety of fields such as 

Biology, Ecology, Medicine, Marketing, Agriculture, Psychology, Economics, and 

many more. The great success with which it has been applied, is instrumental in the 

popularity of the techniques among statisticians and researchers in other fields.  

 

The number of techniques used for analyzing multivariate numerical data is much 

more than those for other types of data. Analyzing numerical data is usually easier 

than analyzing multivariate count, categorical and binary data sets. In this thesis we 

will look specifically at the analysis of multidimensional count and binary data. 

Researchers often make observations that involve counts or the presence (absence) of 

some phenomenon. How to analyze such data is often unfamiliar to them. A variety of 

techniques for the analysis of such data exists and in this thesis we will review many 

of them and also apply the techniques to data sets.  
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A large part of this thesis will be devoted to develop an understanding of how to 

analyse multidimensional count and binary data. A detailed explanation of popular 

techniques such as correspondence analysis, canonical correspondence analysis, 

cluster analysis, multidimensional scaling and analysis of distance will be given in 

subsequent chapters. The explanations are accompanied by practical applications in 

the R software. A detailed illustration of how these methods are performed in R is 

given using examples. A discussion of the available R packages and corresponding 

functions will also be given. 

 

Another important contribution of the thesis is the analysis of two data sets. The first 

data set is multidimensional binary data set from the South African Agricultural 

Research Council (ARC). This data set, referred to as the Biolog data, will be 

described in more detail in the Section 1.2. The second data set, referred to as the 

Barents Fish data, is a multidimensional data set containing count and numerical data. 

This data set will be used to perform a canonical correspondence analysis and was 

obtained from a multivariate statistics workshop by professors M. Greenacre and R. 

Primicerio presented at Stellenbosch University. A description of the data is given in 

Section 1.3.  

  

Throughout the thesis the advantages/ disadvantages of the methods and R functions 

will be highlighted. Emphasis is placed on the analysis of the data, graphical 

illustrations and the interpretation of the output. Many of the techniques make use of a 

distance or dissimilarity matrix. Choosing the appropriate distance or dissimilarity 

measure for the data (numerical, count or binary) also receives attention in this thesis. 

 

1.2 The Biolog data 
 

The Biolog data refers to an experiment that was conducted by researchers at the 

Nietvoorbij institute of the Agricultural Research Council (ARC) in Stellenbosch. The 

analysis of this data set, which will be discussed in Chapter 6, forms an important part 

of the thesis. The following is a description of how the experiment was conducted and 

how the data was obtained. See Figure 1.3 for an extraction of the Biolog data.  
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The experiment is about differently treated soil being used to study the activities of 

micro organisms in the soil. The soil was treated with 12 treatments using a 

randomized experimental design layout on a piece of land. Samples of the soil were 

collected at two depths (0-75mm and 150 – 300mm) to study the microbial activities 

at different layers in the ground. Samples were also collected for three months 

(February, September and December) to study the microbial activity over time. This 

experiment continued over the period 2006 to 2009. However, for the purpose of this 

thesis we will only analyze the data for 2006. Once the soil samples (for the 12 

treatments, 2 depths and 3 month) were collected, it was dissolved in water. If 

dissolved in water, the soil will sink to the bottom and the micro organism in the soil 

will rise to the top. A sample of this water was then put in a Biolog Ecoplate to 

observe the microbial activity. The following is a description of the Biolog Ecoplatea. 

 

The Biolog EcoPlate is a tool that is used a lot for community analysis and ecological 

studies. A picture of the plate is shown in Figure 1.1. This EcoPlate contains 31 of the 

most useful carbon sources (see Figure 1.2 for a description) for soil community 

analysis. It should be noted that water is included in the EcoPlate as the 32nd 

component of the EcoPlate. These 32 components of the EcoPlate are repeated 3 

times in order to give more replicates of the data.  

 

   
 

Figure 1.1: The picture of a physical Biolog EcoPlate during an experiment. The purple wells 

contain carbon sources that were used by the microbial community. The intensity of the 

purple coloration indicates the degree of carbon source usage by the community. There are 96 

wells in the plate comprising the 32 carbons which are each replicated 3 times. 

                                                   
a for more information visit the websites: www.biolog.com and   
http://sites.google.com/site/cellbiosciencesau/services/biolog-1 
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Figure 1.2: The Biolog EcoPlate with a description of the 32 carbon sources. 
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                      Figure 1.3: An Excel extraction of the binary measurements in the Biolog data. 
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The micro organisms found in the soil digests the carbon in the EcoPlate. If digested, 

the organism releases a substance that turns the chemicals in the EcoPlate into a 

purple colour. Thus, the purple colours in Figure 1.1 are indications that there was 

microbial activity. The data captured in this experiment are binary (presence or 

absence of microbial activity). The value 1 in the data indicates that the colour in the 

EcoPlate turned purple and the value 0 indicates that there was no activity at all. 

 

The data set from this experiment is multidimensional. The binary nature of the 

measurement makes it almost impossible to analyze the data with conventional 

multivariate statistical methods. Part of this thesis is to analyze the Biolog data using 

appropriate methods that have been developed for such data. In Chapter 6 we will 

perform an exploratory analysis on the data as well as an inferential analysis. 

 

1.3 The Barents Fish data 
 

The Barents Fish data was obtained from an observational study in the Barents Sea, 

north of Russia and Norway. A picture of the region is given in Figure 1.4.  The grey 

shaded area is the region in which the data was observed. The area was divided into 

89 sub-regions (stations) and each station was documented as an observation in the 

data. At each of the stations the following two sets of data were recorded. 

 

The first set consists of 4 numerical variables, which are Latitude, Longitude, Depth 

(in metres) and Temperature ( o C ). These environmental variables will be called the 

explanatory variables. The second set consists of count data. Different fish species, a 

total of 32, were observed at each of the 89 stations. The number of species observed 

at each station was counted. A list of these species is given in Table 1.1 together with 

the abbreviations that will be used for the data. An extraction of the Barents Fish data 

is given in Figure 1.5. This data were recorded in April-May 1997 over a 3 week 

period. 

 

The purpose of this study is to examine the relationship among the different fish 

species and the environmental variables. In Chapter 6 we will perform a canonical 

correspondence analysis on this data to obtain the necessary answers. 
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Figure 1.4: The map showing the sampling area in the Barents Sea. The site is north 

of Norway and Russia.  
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Table 1.1: List of species and their abbreviations in the data. 

 

Abb. Scientific name Family Common name 

An de Anarhichas denticulatus Anarhichadidae Jelly wolffish/Arctic catfish 
An lu Anarhichas lupus Anarhichadidae Wolffish/Atlantic cafish 
An mi Anarhichas minor Anarhichadidae Spotted wolffish/catfish 
Le de Leptagonus decagonus Agonidae Atlantic poacher 
Cl ha Clupea harengus Clupeidae Herring 
Ar at Artediellus atlanticus Cottidae Atlantic hookear sculpin 
Tr spp Triglops murrayi Cottidae Moustache/mailed sculpin 
Tr spp Triglops pingelii Cottidae Ribbed sculpin 
Ca re Careproctus reinhardti Cyclopteridae Longfin seasnail 
Cy lu Cyclopterus lumpus Cyclopteridae Lumpsucker 
Bo sa Boreogadus saida Gadidae Polar cod 
Ga mo Gadus morhua Gadidae Cod 
Me ae Melanogrammus 

aeglefinus 
Gadidae Haddock 

Mi po Micromesistius 
poutassou 

Gadidae Blue whiting 

Tr es Trisopterus esmarkii Gadidae Norway pout 
Be gl Benthosema glaciale Myctophidae Glacier lanternfish 
Ma vi Mallotus villosus Osmeridae Capelin 
Pa bo Pandalus borealis Pandalidae Shrimp 
No rk Notolepis rissoi krøyeri Paralepididae White barracudina 
Hi pl Hippoglossoides 

platessoides 
Pleuronectidae Long rough dab 

Re hi Reinhardtius 
hippoglossoides 

Pleuronectidae Greenland halibut 

Ra ra Raja radiata Rajidae Starry ray 
Se ma Sebastes marinus Scorpaenidae Golden redfish 
Se me Sebastes mentella Scorpaenidae Deepwater redfish 
Le ma Leptoclinus maculatus Stichaeidae Spotted snake blenny 
Lu la Lumpenus 

lampraetaeformis 
Stichaeidae Snake blenny 

Ly es Lycodes esmarkii Zoarcidae Esmark´s eelpout 
Ly eu Lycodes 

eudipleurostictus 
Zoarcidae Eelpout (ncn) 

Ly pa Lycodes pallidus Zoarcidae Pale eelpout 
Ly re Lycodes reticulatus Zoarcidae Arctic eelpout 
Ly se Lycodes seminudus Zoarcidae Eelpout (ncn) 
Ly va Lycodes vahlii Zoarcidae Vahl´s eelpout 
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        Figure 1.5: An Excel extraction of the numerical variables and fish counts in the Barents Fish data. 
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1.4 The aim of the thesis 
 

The aim of this thesis can be summarized by the following points: 

 

• To explain various popular multivariate techniques that can be used for the 

exploratory analysis of count and binary data. 

• To discuss a technique for inference when using count and binary data. This 

technique is equivalent to the analysis of variance for numerical data. 

• To illustrate how these techniques can be applied using the R software package 

(http://www.r-project.org/). Clear demonstrations of the functions, analysis and 

graphical features will be given.  

• These exploratory techniques will be employed to analyze the Biolog data. An 

inference method is also used to analyze and understand this data.   

• The Barents Fish data is used to demonstrate how to analyze two sets of data 

(numerical and count data). The aim here is to study the relationship between 

these to sets of data.  

 

1.5 Layout of the thesis  
 

Chapter 2 introduces correspondence analysis as well as canonical correspondence 

analysis. The algebraic development for these techniques is given in detail. This 

chapter not only shows how correspondence analysis is constructed, but also 

demonstrates how it extends to canonical correspondence analysis. An example is 

used to illustrate how these analyses are performed using the ca(), anacor() and 

cca() functions in R. In Chapter 3 we deal with cluster analysis. This chapter starts 

by discussing various distance and dissimilarity measures. Different distance  

(dissimilarity) measures are used for different types of data and choosing the 

appropriate measure will be explained. Four clustering methods are discussed and also 

illustrated with an example in R using the hclust() function. A metric as well as a 

nonmetric multidimensional scaling technique is given in Chapter 4. Applications of 

these techniques are performed using the packages cmdscale() and isoMDS(). In 

Chapter 5 we explain a non-parametric inference technique called the analysis of 

distance. This technique is similar to the analysis of variance in the univariate and 
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multivariate cases. An example of how this techniques is applied is given using the 

adonis() function. Chapter 6 is devoted to the analysis of the Biolog and Barents 

Fish data. The techniques discussed in Chapters 2 to 5 are employed to perform the 

analysis. Attention is also given to the interpretation of the output. Chapter 7 is a 

general conclusion of the thesis and some recommendations for future research are 

also given. 
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Chapter 2 
 

Simple and Canonical correspondence analysis 
 

 

2.1 Introduction 
 

Simple correspondence analysis (CA) is a multivariate statistical method which is 

used for exploratory data analysis. It was developed at the end of the 1960’s by a 

French statistician Jean-Paul Benzécri for linguistic applications (Benzécri, 1973). 

Correspondence analysis is used to analyse simple two-way and multi-way 

contingency tables. The aim of the correspondence analysis is to study the 

relationships between the rows and columns in a contingency table. 

 

Correspondence analysis is a nonparametric technique which makes no distributional 

assumptions. The type of variables used in a correspondence analysis is usually 

categorical variables and if continuous, the variables must be categorized into ranges. 

The raw data for a correspondence analysis is in the form of a contingency table with 

nonnegative counts (frequencies). 

 

Canonical correspondence analysis (CCA) on the other hand, is a correspondence 

analysis that is performed in a restricted or constrained spacea (Greenacre, 2007). 

While simple correspondence analysis uses only a contingency table, canonicial 

correspondence analysis requires an additional set of data in the form of numerical 

variables measured on the same observations from which the contingency table was 

obtained.  

 

The aim of canonical correspondence analysis is to include these additional numerical 

variables (often referred to as explanatory variables) as part of the CA solution. This 

has been made possible by “forcing the CA solution to be a linear function of 

explanatory variables” (Greenacre, 2007). By taking into account the explanatory 

                                                   
a For more information on CA and CCA, the constrained and unconstrained space see Greenacre (2007) 
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variables, CA becomes constrained and therefore the name canonical (or constrained) 

correspondence analysis.   

 

The results for CA and CCA are very similar. However, CCA can give us much more 

information using the explanatory variables. CCA originated from the field of 

Ecology (ter Braak, 1986) and has been applied quite extensively by Ecologists and 

many other scientists. In this chapter we will discuss both CA and CCA as methods of 

exploratory analysis. In Section 2.2 we explain the algebra underlying simple CA.  

This discussion is followed by a description of measures of goodness-of-fit for CA, 

called the inertia and Benzécri distances. Note that these goodness-of-fit measures can 

also be used for CCA. We also illustrate how CA can be applied in R using two 

packages, namely anacor and ca.  In Section 2.5 the formulation of CCA is discussed 

and its extension from simple CA is shown. In Section 2.6 we illustrate the 

application of CCA in the R packages anacor and vegan. Finally, in Section 2.7, we 

discuss some permutation test in CCA.  

 

2.2 Simple correspondence analysis 
 

Let X  denote an I J×  contingency table with elements ijx , where I J> . A matrix of 

proportions is derived from this contingency table by dividing each of the elements in 

X  by the grand total 
1 1

I J

ij
i j

n x
= =

= ∑∑ . This matrix is known as a correspondence matrix, 

denoted by  

 

1
I J n×

=P X , with elements ij
ij

x
p

n
= . 

 

The row totals and the column totals in the correspondence matrix are known as the 

row masses ( )1I×
r  and column masses ( )1J ×

c , respectively. These vectors are obtained 

from P  as follows: 
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1I J J× ×
=r P 1 , with elements 

1

J

i ij
j

r p
=

= ∑  for 1, 2,...,i I=   and  

1J I I× ×
′=c P 1 , with elements 

1

I

j ij
i

c p
=

= ∑  for 1, 2,...,j J= .  

 

Let rD  and cD  be diagonal matrices having r  and c on the diagonal respectively. 

Thus ( )1 2, ,...,r Idiag r r r=D  and ( )1 2, ,...,c Jdiag c c c=D .  These diagonal matrices are 

known as row mass and column mass diagonal matrices. From these diagonal 

matrices we define the following square root matrices which will be used for scaling 

(weighting) purposes later: 

 

(a) ( )1/ 2
1 2, ,...,r Idiag r r r=D  and 1/ 2

1 2

1 1 1, ,...,r
I

diag
r r r

−
 

=   
 

D . 

(b) ( )1/ 2
1 2, ,...,c Jdiag c c c=D  and 1/ 2

1 2

1 1 1, ,...,c
J

diag
c c c

−
 

=   
 

D . 

 

Correspondence analysis is formulated as a weighted least squares problem (Johnson 

and Wichern, 2007) where we want to determine the matrix { }ˆ ˆ ijp=P  by minimizing 

the sum of squares  

 

( ) ( )( ) ( )( )
2

1/2 1/2 1/2 1/2

1 1

ˆ ˆ ˆ
I J

ij ij
r c r c

i j i j

p p
tr

rc
− − − −

= =

−  ′
= − − 

 
∑∑ D P P D D P P D . 

  

To obtain P̂  that minimizes this equation a singular value decomposition based on P  

is commonly used (for the proof see Result 12.1 in Johnson and Wichern, 2007, 

p.719). This result shows that ˆ ′=P rc  is the best rank 1 approximation to P  and is 

often used as the estimate P̂  when performing CA. For our discussion and analyses 

(Section 2.4) we will use ˆ ′=P rc . Define the scaled matrix of ( )′−P rc  as  

 

( )1/2 1/2
r cI J

− −

×
′= −S D P rc D ,                                                                              (2.1) 
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which is also known as the matrix of standardized residuals. Because of this particular 

scaling, a singular value decomposition (SVD) is performed on S  such that 

  

1

J

k k k J JI I J Jk
λ

×× ×
=

′ ′= =∑S u v U Λ V ,                                                                             (2.2) 

 

where kλ  denote the singular values. The above matrices from the SVD are 

[ ]1,..., I=U u u , [ ]1,..., J=V v v  and  

 

1

2

0 0
0 0

0 0 J

λ
λ

λ

 
 
 =
 
 
 

Λ

L
L

M M O M
L

.                                                                                (2.3) 

 

It is common in correspondence analysis to plot the first two or three columns of the 

following matrices:  

 

( )1 1/ 2
r r
−=F D D U Λ  and ( )1 1/ 2

c c
−=G D D V Λ                                                   (2.4) 

 

(which can also be expressed as 1/ 2
k r kλ −D u  and 1/ 2

k c kλ −D v ) for k=1,2, or maybe 3. The 

plot of F  (row coordinates) and G (column coordinates) on the same graph is referred 

to as a joint plot, symmetric plot or a CA plot. This plot describes the relationship 

between the rows and the columns of the contingency matrix, X . Figures 2.1 and 2.3 

are examples of this CA plot. 

 

2.3 Inertia and Benzécri distances 
 

It is common in correspondence analysis to determine the goodness-of-fit. In other 

words, how well the variation in the CA plot describes the variation in the raw data. In 

this section we will discuss two measures of determining the goodness-of-fit in 

correspondence analysis. Firstly we will explain the inertia and secondly the Benzécri 

distances. 
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The total inertia is a measure of the variation in the contingency table or the raw data. 

It is formulated as the weighted sums of squares (see Johnson and Wichern, 2007)  

 

( ) ( )( ) ( )2
1

1/2 1/2 1/2 1/2 2

1 1 1

I J J
ij i j

r c r c k
i j ki j

p rc
tr

rc
λ

−
− − − −

= = =

− ′′ ′− − = =  
∑∑ ∑D P rc D D P rc D .   

                                                                                                                      (2.5) 

 

The total inertia is divided into two parts. The first part is the inertia associated with 

the first K dimensions and is obtained by 2

1

K

k
k

λ
=

∑ . The second part is the remaining 

portion of the total inertia which is not accounted for by the first K dimensions. This 

is obtained by 
1

2

1

J

k
k K

λ
−

= +
∑  and is known as the residual inertia. Thus a measure of 

goodness-of-fit in correspondence analysis is defined as the proportion of inertia 

explained by the first K dimensions relative to the total inertia and is given by  

 
1

2 2

1 1

K J

k k
k k

λ λ
−

= =
∑ ∑ .                                                                                               (2.6) 

 

A high value of this measure represents a good fit in simple (and canonical) 

correspondence analysis.  

 

A second (graphical) measure which is used to determine the goodness-of-fit makes 

use of Benzécri distances (de Leeuw and Mair, 2009). The Benzécri distance between 

rows i  and i′  in the contingency table X  is defined as  

 
2

2

1

( , ) /
J

ij i j
j

j i i

x x
i i x

x x
δ ′

•
= ′• •

 
′ = − 

 
∑ ,   , 1, 2,...,i i I′ = ,                                            (2.7) 

 

where   ix •   = total of row i  

ix ′•  = total of row i′  

jx•  = total of column j .  
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Next the Euclidean distance between rows i  and i′  of the first K dimensions of F  is 

obtained. Plotting the Benzécri distance and the Euclidean distance for each of the 

row pairs gives a Benzécri plot. In a similar way the Benzécri distance is obtained on 

the columns of X  and a Euclidean distance on the first K dimensions of G .  Figure 

2.2 contains examples of the Benzécri plot of the rows and columns.  If the plot of the 

distances lies close to the 045  line, then the correspondence analysis has a good fit.  

 

2.4 Performing a correspondence analysis in R 
 

In this section we explain the application of correspondence analysis using the R 

software (R Development Core Team, 2009). Two R packages are discussed namely 

the ca package developed by Nenadic and Greenacre (2007) and the anacor package 

developed by de Leeuw and Mair (2009). The ca package allows for the computation 

of simple correspondence analysis based on the SVD. The ca package also includes 

the multiple and joint correspondence analysis. Both these packages provide two and 

three dimensional plots (see Figure 2.2 and Figure 2.5). More details about the ca 

package can be found in Nenadic and Greenacre (2007). The anacor package also 

allows for the computation of simple and canonical CA for incomplete tables (tables 

with missing values) based on SVD.   

 

The ca package and the anacor package give similar output, but the anacor package 

has more features than the ca package. The anacor package performs both simple and 

canonical CA. It offers additional possibilities for scaling the row and column scores 

in simple and canonical CA (see Leeuw and Mair, 2009). Note that different scaling 

methods lead to different interpretations of the distances in the CA plot. It also has an 

additional graphical feature which includes ellipsoids and the Benzécri plots. It also 

allows for missing values, which are imputed using Nora’s algorithm (Nora, 1975). 

More details about the anacor package can be found in de Leeuw and Mair (2009). 
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To illustrate correspondence analysis using the two above mentioned packages, we 

will make use of the smoke data set (Greenacre, 2007). This data set is part of the ca 

package and the following R commands load the data set: 

 
R> library(ca)                               # loading the ca package  

R> data(smoke)                               # loading the data set 

R> smoke 

   none light medium heavy 
SM    4     2      3     2 
JM    4     3      7     4 
SE   25    10     12     4 
JE   18    24     33    13 
SC   10     6      7     2 
 

This data set contains frequencies (counts) of smoking habits (none, light, medium, 

and heavy) for different staff groups (senior managers (SM), junior managers (JM), 

senior employees (SE), junior employees (JE) and secretaries (SC)) in a fictional 

company.  The purpose of the correspondence analysis is to determine if there is any 

association between the smoking habits and staff groups. 

 

2.4.1 The anacor package 
 

This package contains the function also called anacor() which is used to perform 

correspondence analysis. The main arguments of the function is given below   

 
R> anacor(tab, ndim = 2, row.covariates, col.covariates,  

          scaling = c("Benzecri","Benzecri"), eps = 1e-06) 

 

where tab is the contingency table (missing values are coded as NA) and ndim is used 

to specify the number of dimensions. The following R instructions load the package 

and perform the correspondence analysis on the smoke data. 

 
R> library("anacor")                            # loading the package   

R> req1<-anacor(smoke,ndim=2) 
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R> req1                                        # CA output/results 

 
CA fit:  
Sum of eigenvalues:  0.08477629  
Benzecri RMSE rows:  2.412250e-05  
Benzecri RMSE columns:  7.797221e-06  
 
Total chi-square value: 16.442                 # total inertia 
 
Chi-Square decomposition:  
             Chisq Proportion Cumulative Proportion 
Component 1 14.429      0.878                 0.878 
Component 2  1.933      0.118                 0.995 
Component 3  0.080      0.005                 1.000 
 
The output above contains the squared singular values (2.3), the total inertia (2.5) and 

the proportion of variation explained by the dimensions (2.6). A total of 99.5% of the 

variation in the contingency table is explained by the first two dimensions. The next 

instruction plots the two dimensional CA plot, Figure 2.1:  

 
R> plot(req1) 

 

The blue labels represent the columns and the red labels represent the rows of the 

smoke data. It seems like the senior employees (SE) do not smoke (none). Junior 

managers (JM) seem to be heavy smokers while junior employees (JE) are medium 

type smokers. However, the senior managers (SM) and the secretaries (SE) do not 

seem to have any clearly identifiable smoking habits. They could be classified in any 

of the smoking categories. 
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Figure 2.1: CA plot (joint plot) of the smoke data set using anacor(). 

 

Additionally, the anacor package also allows us to create a three dimensional CA plot 

for correspondence analysis by using the function plot3d(). The main arguments for 

this plot function are, 

  
R> plot3d(x, plot.type, plot.dim = c(1,2,3), col.r = "RED",  

         col.c = "BLUE", arrows = TRUE, xlab, ylab, zlab, main, ...) 

 

where x is a correspondence analysis object obtained from the anacor() function and 

the plot.type option is used to specify the type of plot required (the joint plot is the 

default plot type). Note that object x in the plot3d() function needs to have ndim=3 

before using plot3d(). The following instructions are used to create a three 

dimensional CA plot of the smoke data (the plot is given in Figure 2.2): 
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R> req2<-anacor(smoke,ndim=3) 

R> plot3d(req2) 

 
The interesting property about the plot in R is that it can be rotated manually to obtain 

the best three dimensional view of the CA plot of the rows and column profiles. 

 

 
Figure 2.2: The three dimensional CA plot of the smoke data using plot3d(). 

 

To obtain the Benzécri plots, we use the following instruction (based on the two 

dimensional correspondence analysis object req1 ): 

 
R> plot(req1,plot.type="benzplot") 

 

The resulting figures for the rows and columns are displayed in Figure 2.3. The fitted 

distances are the Euclidean distances while the observed distances represent the 

Benzérci distances (2.7). The plot of the fitted vs the observed distances lie close to 

the straight line ( 045  line), indicating that the two dimensional correspondence 

analysis is a good display of the smoke data. This is in agreement with the high inertia 

value i.e. 99.5% of the variation explained by the first two dimensions.  
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Figure 2.3: Benzécri plots of rows and columns using anacor(). 
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2.4.2 The ca package 
 

This package uses the function ca(). Its main arguments are  

 
R> ca(obj, nd = NA, suprow = NA, supcol = NA, subsetrow = NA,  

      subsetcol = NA) 

  

In this function the argument obj is the contingency table and nd is used to specify 

the number of dimensions. The following R instructions load this package and 

perform the correspondence analysis: 

 
R> library(ca)                                  # loading the package  

R> req3<-ca(smoke,nd=2)                         # perform CA 

 

R> req3                                         # CA output 

 
 Principal inertias (eigenvalues): 
           1        2        3        
Value      0.074759 0.010017 0.000414 
Percentage 87.76%   11.76%   0.49%    
 
 Rows: 
               SM        JM        SE       JE        SC 
Mass     0.056995  0.093264  0.264249 0.455959  0.129534 
ChiDist  0.216559  0.356921  0.380779 0.240025  0.216169 
Inertia  0.002673  0.011881  0.038314 0.026269  0.006053 
Dim. 1  -0.240539  0.947105 -1.391973 0.851989 -0.735456 
Dim. 2  -1.935708 -2.430958 -0.106508 0.576944  0.788435 
 
 Columns: 
             none    light   medium     heavy 
Mass     0.316062 0.233161 0.321244  0.129534 
ChiDist  0.394490 0.173996 0.198127  0.355109 
Inertia  0.049186 0.007059 0.012610  0.016335 
Dim. 1  -1.438471 0.363746 0.718017  1.074445 
Dim. 2  -0.304659 1.409433 0.073528 -1.975960 
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The default output of ca() above is quite differently displayed to the output of 

anacor() showed in the previous section. However, the values of the inertia and the 

percentage of variation explained by the dimensions are given. Also given in the 

output are the row and column coordinates (labelled Dim.1 and Dim.2) of the CA 

plot, Figure 2.4. The next instruction creates the CA plot: 
 
R> plot(req3) 

 
The interpretation of this figure is the same as Figure 2.1. 
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Figure 2.4: CA plot of the smoke data set using ca(). 
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Similar to the anacor package, the ca package also allows us to create a three 

dimensional CA plot. This is done by using the function plot3d.ca(). The main 

arguments of this function are given below: 

 
R> plot3d.ca(x, dim = c(1, 2, 3), map = "symmetric",  

             what = c("all", "all"), contrib = c("none", "none"),  

             col = c("#6666FF","#FF6666"), labcol  = c("#0000FF",   

             "#FF0000"), pch = c(16, 1, 18, 9), labels = c(2, 2),  

             sf = 0.00002, arrows  = c(FALSE, FALSE), ...) 

 

The object x is an object obtained from the ca function. To create the three 

dimensional CA plot with plot3d.ca() we need to use to a three dimensional 

correspondence analysis object which can be done by using the following instructions.  

 
R> req4<-ca(smoke,nd=3)                          

R> plot3d.ca(req4) 

 
Figure 2.5 is an example of the three dimensional CA plot, which can also be rotated 

manually in R to obtain the best view of the row and column profiles. 
 

 
Figure 2.5: A three dimensional CA plot of the smoke data using plot3d.ca(). 
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2.5 Canonical correspondence analysis (CCA) 
 

Canonical correspondence analysis (CCA) was introduced by Cajo ter Braak (ter 

Braak, 1986) for use in Ecology. Canonical (constrained) correspondence analysis is 

an extension of simple correspondence analysis described in Section 2.2. It has 

become quite useful in many applications involving two sets of data i.e. a frequency 

table and set of numerical data (recall that simple CA is based only on a frequency 

table).  Another version of CCA was proposed by Legendre and Legendre (1998) and 

in this section we briefly explain this proposal.   

 

In simple correspondence analysis, an I J×  contingency table X  is used to obtain the 

correspondence matrix P . The correspondence matrix P  is then used to define the 

matrix  

 

( )1/2 1/2
r cI J

− −

×
′= −S D P rc D . 

 

Simple correspondence analysis is performed by doing a singular value 

decomposition on this matrix S . For canonical correspondence analysis we have an 

additional set of numerical data (explanatory variables), which we will denote by the 

I p×  matrix Y , where p represents the number of variables in Y . Performing a 

canonical correspondence analysis involves what is known as a weighted regression 

on the matrix of explanatory variables, Y . The following paragraph explains how this 

is obtained. 

 

Firstly Y  is centred by using the sums of the columns of rD Y . Secondly the 

projection matrix Q  is obtained from the projection of S  onto Y as follows: 

 

( ) 11/ 2 1/ 2
r r r

−′ ′=Q D Y Y D Y Y D . 

 

A weighted regression of the matrix Q  on the matrix Y  is performed, which result in 

the following matrix of fitted values 
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( ) ( )11/2 1/2 1/2 1/2ˆ
r r r r c

− − − ′ ′ ′ = −  Q D Y Y D Y Y D D P rc D  

    = QS . 

 

CCA now entails doing a singular value decomposition on Q̂  (as apposed to S  for 

simple CA). Once the SVD of  Q̂  is performed, the rest of CCA (see F  and G  in 

expression 2.4) is performed exactly the same as simple CA. A joint plot (or CCA 

plot) and the inertia for CCA are obtained in exactly the same way as for simple CA. 

However, it is customary to display the explanatory variables as arrows on the CCA 

plot in order to study the relationship between X  and Y . See Figure 2.6 as an 

example. The arrows explaining this relationship are obtained as follows. 

 

Using the row coordinates of the SVD on Q̂  (matrix F  in expression 2.4), we 

perform a regression analysis using one of the explanatory variables (as a dependent 

variable) and the row coordinates (as independent variables). The following illustrates 

how the regression works for the first two dimensions of ( )1 2,x x⇒F  and 

explanatory variable y  from Y . Let 1 2  y a bx cx= + + and 1 2y a bx cx= + +  then 

 

( ) ( )1 1 2 2y y b x x c x x− = − + −  

( ) ( )
1 2

1 2

1 1 2 2
x x

x x

x x x x
y y bs cs

s s
− −

− = +  

1 2

* *
1 2x xy y bs x cs x− = +  

1 2* * *
1 2

x x

y y y

s sy y y b x c x
s s s

   −
= = +      

   
. 

 

The standardized regression coefficients 
1x yb s s  and 

2x yc s s  are then used as 

coordinates for the arrows on the CCA plot (see Figure 2.7). The CCA plot with the 

arrows is also referred to as a triplot (Greenacre, 2007). Note that on standardized data 

the intercept of the regression analysis is zero.  
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2.6 Performing a canonical correspondence analysis in R 

 

CCA can be performed using one of the following two packages in R i.e. the anacor 

and vegan packages. As mentioned before, the anacor package was developed by 

Leeuw and Mair (2009) and it performs a CCA based on the method of ter Braak 

(1986). The vegan package (Oksanen et al., 2009) was developed for use in Ecology 

and contains a vast number of statistical techniques including CCA. The paper by one 

of its developers Oksanen (2011) and is good reference on understanding the vegan 

package. The CCA found in vegan is based in the method proposed by Legendre and 

Legendre (1998) discussed in the previous section. 

 

In this section we will first illustrate briefly how CCA is performed using the anacor 

package. This is followed by a more detailed CCA using the vegan package. The data 

set that will be used in our illustrations is a data set obtained from a Multivariate 

Statistical Modelling of Ecology data workshop. This workshop was held at the 

Statistics department of Stellenbosch University in December 2009 by Professors 

Michael Greenacre and Raul Primicerio. The Ecology data are displayed on the next 

page as two R objects biodata and envdata. 

 

These data sets represent a typical setup for a CCA. The object biodata refers to the 

contingency table while the object envdata refers set of explanatory variables. Both 

sets of data represent measurements taken on 30 different sites. Five different species 

labelled a, b, c, d and e were counted on the 30 sites while at the same time three 

numerical measurements named pollution, depth and temperature was also measured 

on the same sites.  The purpose of the CCA is now to study the relationships between 

species and the sites by incorporation the numerical measurements as well. Also we 

would like to study the relationship between the sites and the numerical 

measurements.    
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R> biodata 

 
     a  b  c  d  e 
s1   0  2  9 14  2 
s2  26  4 13 11  0 
s3   0 10  9  8  0 
s4   0  0 15  3  0 
s5  13  5  3 10  7 
s6  31 21 13 16  5 
s7   9  6  0 11  2 
s8   2  0  0  0  1 
s9  17  7 10 14  6 
s10  0  5 26  9  0 
s11  0  8  8  6  7 
s12 14 11 13 15  0 
s13  0  0 19  0  6 
s14 13  0  0  9  0 
s15  4  0 10 12  0 
s16 42 20  0  3  6 
s17  4  0  0  0  0 
s18 21 15 33 20  0 
s19  2  5 12 16  3 
s20  0 10 14  9  0 
s21  8  0  0  4  6 
s22 35 10  0  9 17 
s23  6  7  1 17 10 
s24 18 12 20  7  0 
s25 32 26  0 23  0 
s26 32 21  0 10  2 
s27 24 17  0 25  6 
s28 16  3 12 20  2 
s29 11  0  7  8  0 
s30 24 37  5 18  1 

R > envdata 

 
    Pollution Depth Temperature 
s1        4.8    72         3.5 
s2        2.8    75         2.5 
s3        5.4    59         2.7 
s4        8.2    64         2.9 
s5        3.9    61         3.1 
s6        2.6    94         3.5 
s7        4.6    53         2.9 
s8        5.1    61         3.3 
s9        3.9    68         3.4 
s10      10.0    69         3.0 
s11       6.5    57         3.3 
s12       3.8    84         3.1 
s13       9.4    53         3.0 
s14       4.7    83         2.5 
s15       6.7   100         2.8 
s16       2.8    84         3.0 
s17       6.4    96         3.1 
s18       4.4    74         2.8 
s19       3.1    79         3.6 
s20       5.6    73         3.0 
s21       4.3    59         3.4 
s22       1.9    54         2.8 
s23       2.4    95         2.9 
s24       4.3    64         3.0 
s25       2.0    97         3.0 
s26       2.5    78         3.4 
s27       2.1    85         3.0 
s28       3.4    92         3.3 
s29       6.0    51         3.0 
s30       1.9    99         2.9 

 
 

2.6.1 The anacor package 
 

As described before, the anacor() function performs simple CA, but we will now use 

it to perform CCA. The plot() function is used to obtain the CCA plot. The main 

arguments of the anacor() and plot() functions are given below respectively  
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R> anacor(tab, ndim = 2, row.covariates, col.covariates,  
          scaling = c("Benzecri","Benzecri"), eps = 1e-06) 
 
R> plot(x, plot.type, plot.dim = c(1,2), legpos = "top",  
        arrows = FALSE, conf = 0.95, wlines = 0, xlab, ylab,  
        main, type, xlim, ylim, cex.axis2, ...) 
 

CCA is performed by specifying the row.covariates or col.covariates option. 

The row covariates in our case refer to the numerical data. Again, tab is a table of 

frequencies (or contingency table), ndim is the number of dimensions and the default 

scaling option is the Benzecri scaling. More details about the scaling methods in 

anacor package can be found in de Leeuw and Mair (2009). 

 

In the plot() function, x is an CCA object obtained from the anacor() function and 

the default plot.type is the joint plot. In the anacor package, there is a variety of 

types of plots to choose from for two and three dimensional plots (see de Leeuw and 

Mair, 2009).  The following R instructions perform CCA on the Ecological data: 
 

R> library(anacor) 

R> req5<-anacor(biodata, ndim = 2, row.covariates = envdata) 
 

R> req5                                                 #CCA results 

 
CA fit:  
Sum of eigenvalues:  0.2351813  
Benzecri RMSE rows:  1.157468e-05  
Benzecri RMSE columns:  1.175089e-05  
 
Total chi-square value: 319.997  
 
Chi-Square decomposition:  
              Chisq Proportion Cumulative Proportion 
Component 1 266.504      0.367                 0.367 
Component 2  47.228      0.065                 0.433 
Component 3   6.266      0.009                 0.441 
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The results of the CCA are displayed above and we see that 98.04% 

( )( )266.504 47.228 319.997 0.9804+ =  of the variation in the contingency table is 

explained by the first two dimensions in the constrained space. The CCA plot can be 

obtained by using the instruction: 

 
R> plot(req5,plot.type="orddiag",main="") 

 

The resulting plot is displayed in Figure 2.6. Note that the CCA plot also goes by 

different names like ordination diagram or triplot. Figure 2.6 shows the CCA plot 

according to ter Braak (1986). The blue and red points represent ordinations of the 

species and sites respectively. Points lying close to each other represent a strong 

association, while points lying away from each other represent a weak association. 

For example s10, s13, s4, s15, s17 seems to be quite similar (they lie away from the 

rest) and is associated with specie c. The three arrows represent the direction for the 

three explanatory variables. A site lying in the direction of the arrow means that it is 

strongly associated with that particular explanatory variable. For example s10, s13, 

s4, s15, s17 seems to be associated with higher pollution, since they lie in the 

direction in which pollution increases. 
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Figure 2.6: The CCA plot (or triplot) using anacor(). 

 

2.6.2 The vegan package 
 

The vegan package contains a function called cca() which can perform both 

simple CA and CCA. In addition it can also perform partial constrained 

correspondence analysis. In this section we will illustrate its usage in performing a 

canonical correspondence analysis. The main arguments for the cca() function are: 

 
R> cca(X, Y, Z, ...)  

 

The argument X is a table of frequencies (contingency table), Y is a set of explanatory 

variables (usually numerical) and Z is an argument needed to perform partial 
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constrained correspondence analysis. Note that for a simple CA only X needs to be 

specified but for a CCA both X and Y needs to be specified. The following two 

functions are also quite useful to obtain the appropriate CCA output: 

 
R> plot(x, choices = c(1, 2), display = c("sp", "wa", "cn"), 

         scaling = 2, type, xlim, ylim, const, ...) 

 
R> summary(object, scaling = 2, axes = 6, display = c("sp", "wa",  

    "lc", "bp", "cn"), digits = max(3, getOption("digits") - 3), ...) 

 

The above two functions plot() and summary() produces a joint plot and a 

summary of the CCA results respectively. Both the arguments x and object in the 

above functions are objects from a CCA. In both functions plot() and summary() the 

default scaling=2 option is used. For more information on the scaling options and 

two dimensional displays of correspondence analysis see Nenadic and Greenacre 

(2007) and Greenacre (2007). The following instructions load the vegan package and 

perform a CCA using the Ecology data: 

 
R> library(vegan) 

R> req6<-cca(X=biodata,Y=envdata) 

 

The function summary() produces the output of CCA. The output contains the inertia, 

the row coordinates (site scores) and column coordinates (specie scores) for the joint 

plot, as well as the coordinates for the arrows (biplot scores) on the joint plot. In this 

output 98.04% of the variation in the contingency table is explained by the first two 

dimensions in the constrained space. The same was produced with anacor() in the 

previous section. Note that by using the function scores() on a CCA object one 

could also obtain the site scores and specie scores. 
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R> summary(req6,scaling=3) 

 
Call: 
cca(X = biodata, Y = envdata)  
 
Partitioning of mean squared contingency coefficient: 
              Inertia Proportion 
Total          0.5436     1.0000 
Constrained    0.2399     0.4412 
Unconstrained  0.3038     0.5588 
 
Eigenvalues, and their contribution to the mean squared contingency 
coefficient  
 
Importance of components: 
                       CCA1   CCA2    CCA3   CA1    CA2    CA3    CA4 
Eigenvalue            0.200 0.0354 0.00470 0.107 0.0865 0.0606 0.0495 
Proportion Explained  0.367 0.0651 0.00864 0.197 0.1592 0.1115 0.0911 
Cumulative Proportion 0.367 0.4326 0.44125 0.638 0.7975 0.9089 1.0000 
 
Accumulated constrained eigenvalues 
Importance of components: 
                       CCA1   CCA2   CCA3 
Eigenvalue            0.200 0.0354 0.0047 
Proportion Explained  0.833 0.1476 0.0196 
Cumulative Proportion 0.833 0.9804 1.0000 
 
Scaling 3 for species and site scores 
* Both sites and species are scaled proportional to eigenvalues 
 on all dimensions 
 
 
Species scores 
 
      CCA1     CCA2    CCA3     CA1     CA2     CA3 
a  0.53401  0.07068  0.3300  0.4620  0.6063 -0.2926 
b  0.39591 -0.32989 -0.2077 -0.2660  0.2799  0.8816 
c -1.31604  0.02584  0.1345 -0.7945 -0.1821 -0.1342 
d -0.01626 -0.25068 -0.2461 -0.1194 -0.5002 -0.4047 
e  0.19655  1.49814 -0.3632  1.3745 -1.2232  0.6000 
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Site scores (weighted averages of species scores) 
 
        CCA1     CCA2     CCA3        CA1      CA2       CA3 
s1  -0.90214 -0.18512 -1.82501 -0.5768481 -0.88834 -0.612124 
s2  -0.07539 -0.18733  1.83515 -0.3617725  0.13435 -0.749307 
s3  -0.66418 -0.99832 -1.53247 -1.0112038 -0.16277  0.839098 
s4  -2.45972 -0.10759  1.03706 -0.8324151 -0.08200 -0.301392 
s5   0.36426  1.02478 -0.51774  0.5417606 -0.27884 -0.016245 
s6   0.22067 -0.05690  0.31618 -0.0005908  0.26356  0.029981 
s7   0.59095 -0.20962 -0.89101  0.2138168  0.11343 -0.050405 
s8   0.94307  2.90449  1.44388  2.4075204  0.43967  0.037197 
s9  -0.01489  0.45570 -0.03332  0.0503420  0.02092 -0.268356 
s10 -1.81132 -0.42964  0.08885  0.2026437  0.36016  0.320583 
s11 -0.46928  1.20049 -2.31705  0.5084578 -0.56135  1.228181 
s12 -0.23308 -0.60802  0.10803 -0.3607828  0.09498 -0.159127 
s13 -2.13220  2.01530  0.21968  0.5808221 -0.43352  0.656807 
s14  0.69110 -0.32305  1.37655  1.1865938  0.34144 -1.137745 
s15 -0.96544 -0.50429 -0.16172  0.6270813 -0.51860 -0.732190 
s16  0.99188  0.34491  1.39532  0.7478954  0.83682  0.377614 
s17  1.19474  0.37566  4.81581  2.6954058  2.38567 -0.882785 
s18 -0.66873 -0.45532  0.54618 -0.6181937  0.02412 -0.140524 
s19 -0.73098 -0.09992 -1.45609 -0.9008934 -0.83448 -0.455599 
s20 -0.99064 -0.83637 -1.06528 -0.8421333 -0.14393  0.581667 
s21  0.66949  2.52494 -0.42435  1.6815855 -0.45848 -0.172920 
s22  0.81439  1.67580  0.22284  0.4226111 -0.34177  0.090086 
s23  0.34643  1.14856 -2.54662  0.7929498 -1.68711  0.292243 
s24 -0.47383 -0.36590  1.13029 -0.7272913  0.56991  0.003995 
s25  0.74599 -0.79267 -0.09015 -0.0040052  0.19590  0.111807 
s26  0.88228 -0.34147  0.67600  0.0242537  0.90862  0.186185 
s27  0.63140 -0.08783 -0.79904  0.0844378 -0.37140 -0.048733 
s28 -0.25298 -0.15703  0.17146 -0.0093878 -0.28727 -0.857990 
s29 -0.29845 -0.21403  1.46088  0.0356091  0.68496 -1.011445 
s30  0.54718 -0.83749 -0.66707 -0.3018168  0.02759  0.790620 
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Site constraints (linear combinations of constraining variables) 
 
        CCA1     CCA2      CCA3        CA1      CA2       CA3 
s1  -0.37757  0.30053 -0.404870 -0.5768481 -0.88834 -0.612124 
s2   0.42230 -0.08452  0.530858 -0.3617725  0.13435 -0.749307 
s3  -0.44882  0.29415  0.375189 -1.0112038 -0.16277  0.839098 
s4  -1.50692 -0.02419  0.136820 -0.8324151 -0.08200 -0.301392 
s5   0.04515  0.54999  0.017264  0.5417606 -0.27884 -0.016245 
s6   0.29753 -0.21457 -0.461555 -0.0005908  0.26356  0.029981 
s7  -0.14553  0.65292  0.223586  0.2138168  0.11343 -0.050405 
s8  -0.40728  0.53618 -0.182117  2.4075204  0.43967  0.037197 
s9  -0.02107  0.46358 -0.286171  0.0503420  0.02092 -0.268356 
s10 -2.19421 -0.29992  0.003115  0.2026437  0.36016  0.320583 
s11 -0.89150  0.54057 -0.184241  0.5084578 -0.56135  1.228181 
s12 -0.04431 -0.18491 -0.069345 -0.3607828  0.09498 -0.159127 
s13 -1.88995  0.27108  0.071688  0.5808221 -0.43352  0.656807 
s14 -0.30820 -0.51285  0.476683  1.1865938  0.34144 -1.137745 
s15 -1.15199 -1.10121  0.110191  0.6270813 -0.51860 -0.732190 
s16  0.32649 -0.14230  0.035318  0.7478954  0.83682  0.377614 
s17 -1.04969 -0.80510 -0.147499  2.6954058  2.38567 -0.882785 
s18 -0.17859 -0.05504  0.238091 -0.6181937  0.02412 -0.140524 
s19  0.18938  0.27256 -0.502708 -0.9008934 -0.83448 -0.455599 
s20 -0.62556 -0.03651  0.042530 -0.8421333 -0.14393  0.581667 
s21 -0.11651  0.71893 -0.256766  1.6815855 -0.45848 -0.172920 
s22  0.83432  0.81494  0.345560  0.4226111 -0.34177  0.090086 
s23  0.42034 -0.50899  0.090507  0.7929498 -1.68711  0.292243 
s24 -0.10649  0.37061  0.093066 -0.7272913  0.56991  0.003995 
s25  0.54468 -0.49131 -0.004393 -0.0040052  0.19590  0.111807 
s26  0.43039  0.26515 -0.306965  0.0242537  0.90862  0.186185 
s27  0.57407 -0.11215  0.040200  0.0844378 -0.37140 -0.048733 
s28  0.03793 -0.31462 -0.279395 -0.0093878 -0.28727 -0.857990 
s29 -0.65000  0.63928  0.121590  0.0356091  0.68496 -1.011445 
s30  0.57923 -0.59372  0.081443 -0.3018168  0.02759  0.790620 
 
 
Biplot scores for constraining variables 
 
                CCA1     CCA2     CCA3 CA1 CA2 CA3 
Pollution   -0.99290  0.08836  0.06858   0   0   0 
Depth        0.35241 -0.88787 -0.28627   0   0   0 
Temperature  0.01427  0.19071 -0.98160   0   0   0 
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To produce the CCA plot (Figure 2.7) we may use the instruction 

 
R> plot(req6,scaling = 3) 

 

This instruction uses the output (site scores, specie scores and biplot scores) displayed 

in the summary output to construct a two dimensional plot similar to Figure 2.6.  

Figure 2.7 is a plot of the first canonical variates and the arrows (biplot scores) give 

the direction in which the explanatory variable increases. This plot should be 

interpreted similar to Figure 2.6 and shows the associations between the two sets of 

data. However, it should be remembered that Figure 2.6 and Figure 2.7 use two 

different CCA procedures. The CCA produced by the vegan package follows the 

discussion of CCA outlined in Section 2.5. 
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Figure 2.7: The CCA plot using cca(). 
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The vegan package offers much more advantages than the anacor package in doing 

simple CA or CCA. Two very attractive graphical features are captured in the 

following two functions 

 
R> ordisurf(x, y, choices=c(1, 2), knots=10, family="gaussian",  
            col="red", thinplate = TRUE, add = FALSE,  
            display = "sites", w = weights(x), main, nlevels = 10,         
            levels, labcex = 0.6, bubble = FALSE, cex = 1, ...) 
 
R> ordirgl(object, display = "sites", choices = 1:3, type = "p",  
        ax.col = "red", arr.col = "yellow", text, envfit, ...) 
 

The function ordisurf() allows us to create contours on the existing CCA plot. The 

contours basically represent the relationship between an explanatory variable and the 

sites. The object x is an CCA object produced by the cca() function, while the object 

y is the explanatory variable of interest. The object knots allows to create a simple 

(knots=1) or a more complicated (knots>1) contour plot.  

 

The function ordirgl() uses a CCA object from cca() to produce a three 

dimensional CCA plot. This plot can be rotated manually to obtain the best view of 

the joint plot. We applied the above two functions to the Ecology data. The 

instructions to create the contours and the three dimensional plot are given next and 

the resulting graphs are displayed in Figure 2.8 and 2.9 respectively.    

 
R> ordisurf(plot(req6,scaling=3),envdata[,1],add=T,knots=1, 
           col="green") 

R> ordisurf(plot(req6, scaling=3),envdata[,1],add=T,knots=2, 

           col="green") 

R> ordirgl(req6, type="t") 

 

Note that knots 1 and 2 produce a linear and a quadratic contour plot respectively. The 

contours in Figure 2.8 increase in the direction of the pollution variable. These 

contours allow us to study the relationship between pollution and sites more carefully. 

Figure 2.9 was rotated to obtain the best view of the three dimensional plot. One can 

clearly see in this plot that the third dimension shows an interesting separation of sites 

s23, s11 and s17 from the rest. This was not visible in the two dimensional CCA plot 

in Figure 2.7. 
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Figure 2.8: The contours (knots=1 and 2) for the pollution variable showing the 
direction in which the pollution is increasing using ordisurf(). 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 2: Simple and Canonical correspondence analysis 
 

 40 

 

 
 
      Figure 2.9: The three dimensional CCA plot using ordigrl(). 
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As an alternative to the function ordirgl() one could also use the function 

ordiplot3d() to produce three dimensional CCA plots. However, the latter function 

is less flexible.  Figure 2.10 below is an example of a plot produced using the 

following instruction:  

 
R> ordiplot3d(req6) 

 
The three dimensional plots discussed in this section for CCA could also be used for 

simple CA using the function cca().  
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Figure 2.10: The three dimensional CCA plot using ordiplot3d(). 
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2.7 Permutation tests in CCA 
 

In this section we give a brief illustration of the use of permutation tests in CCA. The 

purpose of the permutation test here is to find out which of the explanatory variables 

are significant in the constrained space (Greenacre, 2007). The permutation test 

employs the coefficient of determination, 2r , to determine the significance of the 

explanatory variables. 

 

The permutation tests in CCA can be performed using the two functions anova()and 

envfit() in R. The anova() function uses a cca() object to perform a global test on 

the explanatory variables i.e. it tests whether all the explanatory variables are 

significant in the CCA model. The envfit() function (from the vegan package) is 

used to test which of the individual explanatory variables are significant. Both 

functions are displayed below. 
 

R> anova(object, alpha=0.05, beta=0.01, step=100, perm.max=9999, 

      by = NULL, ...) 

 
R> envfit(X, P, permutations = 0, strata, choices=c(1,2), ...) 

 

In the envfit() function the argument X is the cca() object and P is the matrix 

containing the explanatory variables. The number of permutations required can be 

specified in the argument perm.max. The following are the results of the permutation 

tests for significant explanatory variables. 

 
R> req6<-cca(biodata,envdata) 

 
R> anova(req6) 

 
Permutation test for cca under reduced model 
 
Model: cca(X = biodata, Y = envdata) 
         Df  Chisq      F N.Perm Pr(>F)    
Model     3 0.2399 6.8441    199  0.005 ** 
Residual 26 0.3038                         
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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The results of the ANOVA give a significant p-value (0.005). Thus the explanatory 

variables have significance in the analysis. To test which of the individual explanatory 

variables are significant, the following instructions can be used. 

 
R> fit<-envfit(req6,envdata, perm = 999) 

 

R> fit 

 
***VECTORS 
 
                 CCA1      CCA2     r2 Pr(>r)     
Pollution   -0.993267  0.115849 0.7119  0.001 *** 
Depth        0.725832 -0.687873 0.3621  0.004 **  
Temperature -0.011026  0.999939 0.0110  0.875     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
P values based on 999 permutations. 
 

As we can see from the results above, only two of the explanatory variables are 

actually significant. These variables are pollution (p-value=0.001) and depth             

(p-value=0.004). Temperature is not significant (p-value=0.875). Thus it can be 

concluded that the two environmental variables (pollution and depth) play a more 

important role than temperature. The significant explanatory variables can also be 

displayed graphically on the CCA plot. The following instructions create the CCA 

plot with only the significant variables. The results are given in Figure 2.11. 

  
R> plot(req6,display = c("sp", "wa") )            #without the arrows 

 
R> plot(fit,p.max = 0.05, col = "red")    #only significant variables 
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Figure 2.11: CCA plot of only the significant explanatory variables. 
 
 
2.8 Summary 
 
As mentioned in this chapter, the aim of the correspondence analysis is to study the 

relationships between the rows and columns of a contingency table. We have also 

explained the algebra behind correspondence analysis. In this chapter we have also 

shown how the correspondence analysis is extended to canonical correspondence 

analysis. Canonical correspondence analysis incorporates an additional set of 

numerical variables and the aim with this analysis was to study the relationship among 

the count data (contingency table) and the numerical variables (often called the 

environmental variables in Ecology). Goodness-of-fit measures like the inertia and the 

Benzécri plot were also discussed. These measures allow us to assess how well the 

variation in the original data is explained in these analyses. 
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The different R packages i.e. anacor, ca and vegan are useful packages to perform a 

correspondence analysis. The ca package is restricted to correspondence analysis 

only, while anacor and vegan offers much more possibilities and advantages. For 

example, the anacor package allows us to create Benzécri plots and it can also 

perform a canonical correspondence analysis. The vegan package, besides 

correspondence analysis, offers canonical correspondence analysis, permutation tests 

and a host of other techniques (see Oksanen, 2008). 
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Chapter 3 
 

Cluster analysis 
 

 

3.1 Introduction 
 

Cluster analysis is a multivariate statistical method which focuses on searching the 

data for group structures or other interesting patterns. It is a very useful tool in 

exploratory data analysis, which can provide an informal means for assessing 

dimensionality, identifying outliers and suggesting interesting hypotheses concerning 

relationships among observations or variables. Cluster analysis makes use of certain 

distance measures and employs step-by-step rules for grouping objects (observations 

or variables), which will be discussed in this chapter. Cluster analysis can be applied 

to different types of data such as numerical, count and binary data. For each data type 

an appropriate dissimilarity or distance measure is needed.  

 

In this chapter we start by describing the distance (dissimilarity) matrices that are 

required to perform cluster analysis. In Section 3.3 we also define different types of 

distance (dissimilarity) measures, which are used to obtain the above mentioned 

matrices. The choice of these measures usually depends on the type of data that is 

used. In Section 3.4 we explain four well-known clustering algorithms. Then finally 

we conclude this chapter by giving an illustration of these clustering methods by 

using different R functions. 

 

3.2 The data for cluster analysis 
 

The data can be obtained in two ways. One way is that the data can be collected 

directly from an experiment as proximities and the other way is that the data can be 

transformed into proximities. Most of the time, the data is transformed into a 

proximity matrix by taking into consideration the objects that we want to cluster and 
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also the type of data. Note that the objects can be the observations or variables (the 

usual dimensions of a multivariate data set).  

 

Proximity is defined as the nearness (closeness) of objects in space. There are two 

types of proximity measures which are dissimilarities and similarities (Cox and Cox, 

1994). The data for cluster analysis is most often a dissimilarity or distance matrix 

(see Section 3.3). When a similarity matrix, such as the correlation matrix, is 

available, it is first transformed into a dissimilarity matrix before clustering is 

performed. Similarity between objects i  and i′  ( )iis ′  measures how similar the two 

objects are, whereas the dissimilarity between objects i  and i′  ( )iid ′  measures how 

dissimilar the two objects are. Thus, similarity measures the degree of resemblance, 

whereas dissimilarity measures the degree of difference. Similarity usually ranges 

between -1 and 1, or can be normalized to range from 0 to 1.  

 

Distances also measure dissimilarity (Teknomo, 2006). The following are the 

properties of a true distance measure (Johnson and Wichern, 2007). Any distance 

measure ( ),d i i′  between two objects i  and i′ , is valid provided that it satisfies,  

 

1. ( ), ( , )d i i d i i′ ′=  

2. ( ), 0d i i′ >  if i i′≠  

3. ( ), 0d i i′ =  if i i′=  

4. ( ) ( ) ( ), , ,d i i d i j d j i′ ′≤ + ,          (called the triangle inequality) 

 

where j  is any other intermediate point. Some of the distance measures found in the 

literature do not obey the fourth property. Besides the fact that they are not true 

distances, they are still good measures of differences between possible pairs of objects 

and are known as dissimilarities (Greenacre, 2007). 

 

To conclude, the distance or dissimilarity matrices are used as input for cluster 

analysis. To obtain such matrices we need to define some distance or dissimilarity 

measure. The next section discusses examples of such measures.  
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3.3 The distance and dissimilarity matrix  
 

Let D  be an I I×  distance matrix (or dissimilarity matrix) with elements ( ), 0d i i′ ≥  

being the distance (or dissimilarity) between object i  and object i′  for , 1, 2,...,i i I′ = . 

Such a distance (or dissimilarity) matrix can be obtained from the raw I J×  data 

matrix X  as illustrated below: 

 

11 12 1

21 22 2

1 2

J

J

I J

I I IJ

x x x
x x x

x x x
×

 
 
 =
 
 
 

X

L
L

M M O M
L

 →  

11 12 1

21 22 2

1 2

I

I

I I

I I II

d d d
d d d

d d d
×

 
 
 =
 
 
 

D

L
L

M M O M
L

                           (3.1) 

 

Note that there are ( )1 1
2

M I I = −   distinct distances in matrix D . The question that 

remains is how do we obtain these distances (dissimilarities). It is important to note at 

this point that calculating ( ),d i i′  or iid ′  depends on the type of data in matrix X . In 

the next section we elaborate more on the distance and dissimilarity measures for 

numerical, count and binary data separately. 

 

3.3.1 Distance measures for numerical data 
 

Let X  be an I J×  data matrix with (numerical) elements ijx  for 1, 2,...,i I=  and 

1, 2,...,j J= . Then the following are distance measures between object i  and i′  in 

matrix X  (see Johnson and Wichern, 2007). 

 

(a) Euclidean distance: This is the most commonly used distance measure. It is 

defined as the straight line distance between object i  and i′ . This distance 

measure is defined as 

 

( ) ( )2

1

,
J

ij i j
j

d i i x x ′
=

′ = −∑  , 1, 2,...,i i I′ = .                                                            (3.2) 
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(b) Minkowski distance: This is a generalized metric distance measure defined by 

 

( )
1

1

,
J mm

ij i j
j

d i i x x ′
=

 
′ = − 

 
∑ .            

                                                                       

When m = 1, it becomes what is known as the “city-block” or Manhattan distance 

and when m = 2, it becomes the Euclidean distance (3.2).  

 

(c) Canberra metric: This is a popular measure of distance or dissimilarity for 

nonnegative variables only. It is defined as follows: 

 

( ) ( )1

,
J

ij i j

j ij i j

x x
d i i

x x
′

= ′

−
′ =

+
∑ . 

 

(d) Czekanowski coefficient: This measure of distance or dissimilarity for 

nonnegative variables is defined as 

 

( )
( )

( )
1

1

2 min ,
, 1

J

ij i j
j

J

ij i j
j

x x
d i i

x x

′
=

′
=

′ = −
+

∑

∑
. 

 

The Euclidean distance (3.2) will be used to obtain the distance matrix in Section 3.5 

and in Chapters 4 and 5, where two numerical data sets are analyzed in a cluster 

analysis, multidimensional scaling and analysis of distance separately. 

 

3.3.2 A dissimilarity and distance measure for count data 
 

Let X  be an I J×  data matrix with elements ijx  (frequencies or counts) for 

1, 2,...,i I=  and 1, 2,...,j J= . Then the following are a distance and dissimilarity 

measure, respectively, between observation i  and observation i′  in X . 
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(a) Bray-Curtis dissimilarity: This is the most commonly used dissimilarity for count 

data, especially in Ecology (Bray and Curtis, 1957; Greenacre, 2007). It is often 

called the Sorenson dissimilarity or the Canberra metric. It is defined as 

 

( )
1

1

( , )

J

ij i j
j
J

ij i j
j

x x
d i i

x x

′
=

′
=

−
′ =

+

∑

∑
.                                                                                        (3.3) 

 

(b) Chi-square distance: Is also a popular distance measure for count data (Greenacre, 

2007) and it is defined as 

 

( )2

1

( , )
J

ij i j

j j

x x
d i i

x
′

=

−
′ = ∑ , with jx  = 

1

1 I

ij
i

x
I =
∑  (the average of column j). 

 

3.3.3 Dissimilarity measures for binary data 
 

Let X  be an I J×  data matrix with (binary data) elements {0,1}ijx ∈  for 1, 2,...,i I=  

and 1, 2,...,j J= . Let iis ′  represent a similarity coefficient between objects i  and i′  of 

the binary data set X . The measures of similarity between objects i  and i′  described 

in this section is based on the following table: 

  
object i′  

 
 1 0 Total 

1 a b a+b 
0 c d c+d 

  
  
object i  
  
  Total a+c b+d p=a+b+c+d 

 

where 

a = the number of times when both objects have the value 0 

b = the number of times when object i  has value 0 and object i′  has value 1 

c = the number of times when object i  has value 1 and object i′  has value 0 

d = the number of times when both objects have value 1.   
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Based on this table, the following similarity measures between object i  and i′  in X  

for binary data are defined.  

 

(a) Jaccard similarity coefficient:  

 

ii
as

a b c′ =
+ +

. 

 

(b) Bray Curtis similarity coefficient:  

 

2
2ii

as
a b c′ =

+ +
. 

 

Note that similarity measures can be converted to dissimilarity measures by using the 

transformation, 1ii iid s′ ′= − . For the measures above, this transformation results in the 

following dissimilarity measures.  

 

(a) Jaccard dissimilarity coefficient:  

 

( , ) b cd i i
a b c

+′ =
+ +

.                                                                                              (3.4) 

 

(b) Bray-Curtis dissimilarity coefficient: 

 

( , )
2

b cd i i
a b c

+′ =
+ +

.                                                                                            (3.5) 

 

Note that (3.3) and (3.5) are the same measures. The Jaccard and Bay-Curtis 

dissimilarity measures will be used to obtain the dissimilarity matrix in the analysis of 

the Biolog data in Chapter 6. 
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3.4 Agglomerative hierarchical clustering methods 
 

Once the distance matrix for the objects has been obtained, the next step in cluster 

analysis is to group / cluster the objects based on these distances. There are several 

ways to perform cluster analysis. There are hierarchical clustering methods and non-

hierarchical clustering methods. For non-hierarchical clustering methods, the number 

of clusters has to be specified before hand, whereas hierarchical clustering methods 

do not require prior knowledge of the number of clusters. Two general methods of 

hierarchical clustering methods are agglomerative hierarchical methods and divisive 

hierarchical methods (see Johnson and Wichern, 2007). The agglomerative techniques 

start with the individual objects. Initially, there are as many clusters as objects. 

Firstly, the most similar objects are grouped and these initial groups are merged 

according to their similarities, until only one group remains. Thus, the agglomerative 

technique cluster objects from the bottom to the top and the results is usually 

displayed a dendrogram. A dendrogram is a tree-like structure (see Figure 3.1 as an 

example). The divisive techniques start from a single group, partitioning that group 

into subgroups, partitioning these subgroups further into subgroups and so on until 

each object forms its own subgroup. Thus, the divisive technique starts from the top to 

the bottom when constructing the dendrogram. In this chapter we will study only 

agglomerative hierarchical methods and we briefly describe four such algorithms in 

the next few sections. 

 

Johnson and Wichern (2007) give us the following general agglomerative hierarchical 

clustering algorithm for grouping N  objects (observations / variables): 

 

1. Start with N clusters, each containing a single entity and an N N×  symmetric 

matrix of distances (or dissimilarities) { }iid ′=D . 

2. Find the minimum entry in { }iid ′=D  and merge objects, U and V to get the first 

cluster ( )UV . 

3. The distance between cluster ( )UV  and any other cluster (or object) W is 

computed as 
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( ) { }min ,UW VWUV Wd d d=            for the single linkage method (Section 3.4.1) 

( ) { }max ,UW VWUV Wd d d=           for the complete linkage method (Section 3.4.2) 

( )
( ) ( )

1
iiUV W

i UV i WWUV

d d
N N ′

′∈ ∈

= ∑ ∑    for the average linkage method (Section 3.4.3) 

 

4. Update the entries in the distance matrix by first deleting the rows and columns 

corresponding to clusters U  and V . Secondly, adding a row and column giving 

the distances between cluster ( )UV  and the remaining clusters. 

5. Repeat Steps 3 and 4 until all objects are in one cluster. At this stage the algorithm 

stops. At each step, record the clustered objects and the distance when it is 

merged. 

 

3.4.1 Single linkage  
 

The single linkage method, which is also known as the nearest neighbour or shortest 

distance method, computes the distance between the two clusters (or objects) as the 

minimum distance between any two clusters (or objects). Using the general 

agglomerative algorithm above, we start by finding the minimum entry in { }iid ′=D  

and merging the corresponding objects, say U  and  V , to get  the first cluster ( )UV . 

For step 3 of the general agglomerative algorithm, the distance between ( )UV  and 

any other cluster W  are computed by 

 

  ( ) { }min ,UW VWUV Wd d d= , 

 

where UWd  and VWd  is the distance between the nearest neighbours of clusters U  and 

W  and clusters V  and W , respectively.  

 

The results of the single linkage method are displayed in a dendrogram containing the 

clusters as well as the distances at which the clusters were formed (see Figure 3.1). A 

disadvantage of the single linkage method is known as the chaining phenomenon. The 

chaining phenomenon occurs when clusters are formed in a long stringlike pattern. 
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Chaining occurs when the first cluster forms and then grows progressively larger by 

adding lone objects that have not been clustered yet. The chaining phenomenon 

appears in Figure 3.1 where there a no clear clustering of objects.  

 

3.4.2 Average linkage 
 

The average linkage method calculates the distance between two clusters (or objects) 

as the average distance between all pairs of objects where one object of a pair belongs 

to a cluster. Using the general agglomerative algorithm, we start by finding the 

minimum entry in { }iid ′=D  and merging the corresponding objects, say U  and  V , 

to get the first cluster ( )UV . For step 3 of the algorithm, the distances between cluster 

( )UV  and any other cluster (or object) W  are computed by  

 

( )
( ) ( )

1
iiUV W

i UV i WWUV

d d
N N ′

′∈ ∈

= ∑ ∑ , 

 

where iid ′  is the distance between object i  in the cluster ( )UV  and object i′  in the 

cluster W . ( )UVN  and WN  are the number of objects in the clusters ( )UV  and W , 

respectively. The results of the average linkage method are also displayed in a 

dendrogram (see Figure 3.2 as an example).  

 

3.4.3 Complete linkage  
 

The complete linkage method, which is also known as the farthest neighbour method, 

computes the distance between clusters (or objects) in each step as the maximum 

distance between any two different objects in a distance matrix. Again, using the 

general agglomerative algorithm, we start by finding the minimum entry in { }iid ′=D  

and merging the corresponding objects, such as U  and V , to get cluster ( )UV . For 

step 3 of the clustering algorithm, the distances between the cluster ( )UV  and any 

other cluster W  are computed using 
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( ) { }max ,UW VWUV Wd d d= , 

 

where UWd   and VWd  are the distances between the most distant members of clusters 

U  and W   and clusters V  and W , respectively. 

 

The results of the complete linkage method are displayed in a dendrogram as can be 

seen in Figure 3.3. This method of agglomerative hierarchical clustering is commonly 

used, since it produces clear clusters in the dendrogram and it is not affected by the 

chaining phenomenon. In Figure 3.1 the chaining occurred and the results do not 

show clear clusters being formed, while in Figure 3.3 there are clear clusters and no 

chaining present. 

 

3.4.4 Ward’s method 
 

Ward’s method is an alternative way of performing hierarchical cluster analysis. It 

uses an analysis of variance approach on the raw data ( )X , instead of the distance (or 

dissimilarity) matrix ( )D . Let the error sum of squares ( ESS ) for cluster k be defined 

by  

 

( ) ( )k i k i k
i k

ESS
∈

′= − −∑ x x x x ,  k =1, 2, …, K, 

 

where kx  is the mean vector of the k -th cluster. 

 

For Ward’s method we start out with each observation forming a cluster, thus K 

equals the number of observations (rows) in X . Note that at this stage 0kESS = . Step 

1 in Ward’s algorithm is to merge the two observations that minimizes kESS , thus 

creating cluster 1. Step 2 is to find the next two objects (where one of these objects 

maybe cluster 1) which minimizes kESS , thus forming the next cluster (or expanding 

cluster 1). At each step that follows, kESS  will be evaluated, until all the observations 
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are grouped one big cluster. The algorithm stops when all the observations are one 

cluster (K=1). 

 

Ward’s method is most appropriate for numerical data. The results of Ward’s method 

can also be displayed in a dendrogram, as can be seen in Figure 3.4. This is also a 

commonly used method which produces clear clustering results.  

 

3.5 Performing a cluster analysis in R 
 

In this section we will show the application of the four clustering methods discussed 

in Section 3.4 on a real-world data set. We will use the R functions dist(), 
as.dendrogram() and hclust(), which form part of the stats package.   

 

A data set of 25 U.S. universities is used to illustrate the cluster analysis (data is taken 

from Johnson and Wichern, 2007, p.729). This is a multivariate data set with six 

variables: 

  

• average SAT score of entering freshmen,  

• percentage of freshmen in top 10 % of high school class,  

• percentage of applicants accepted,  

• student-faculty ratio,  

• estimated annual expense and  

• graduation rate (%).  

 

The data of the 25 universities are displayed below as an R object.  
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R> universities               
                    
                 SAT Top10 Accept SFRatio Expenses Grad 
Harvard        14.00    91     14      11   39.525   97 
Princeton      13.75    91     14       8   30.220   95 
Yale           13.75    95     19      11   43.514   96 
Stanford       13.60    90     20      12   36.450   93 
MIT            13.80    94     30      10   34.870   91 
Duke           13.15    90     30      12   31.585   95 
CalTech        14.15   100     25       6   63.575   81 
Dartmouth      13.40    89     23      10   32.162   95 
Brown          13.10    89     22      13   22.704   94 
JohnsHopkins   13.05    75     44       7   58.691   87 
UChicago       12.90    75     50      13   38.380   87 
UPenn          12.85    80     36      11   27.553   90 
Cornell        12.80    83     33      13   21.864   90 
Northwestern   12.60    85     39      11   28.052   89 
Columbia       13.10    76     24      12   31.510   88 
NotreDame      12.55    81     42      13   15.122   94 
UVir           12.25    77     44      14   13.349   92 
Georgetown     12.55    74     24      12   20.126   92 
CarnegieMellon 12.60    62     59       9   25.026   72 
UMichigan      11.80    65     68      16   15.470   85 
UCBerkeley     12.40    95     40      17   15.140   78 
UWisconsin     10.85    40     69      15   11.857   71 
PennState      10.81    38     54      18   10.185   80 
Purdue         10.05    28     90      19    9.066   69 
TexasA&M       10.75    49     67      25    8.704   67 
 

To obtain the Euclidean distance matrix from the above data, we use the following 

instruction in R: 
 

R> Distance<- dist(universities, method = "euclidean") 
 

To perform the single linkage cluster analysis, we use the following R instruction:  

 
R> plot(as.dendrogram(hclust(Distance,method="single")),ylim=c(0,30), 

        main="Single linkage dendrogram",ylab="Euclidean distance") 

 

The resulting dendrogram is displayed in Figure 3.1 
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The average linkage cluster analysis is performed by changing argument method= in 

hclust() to "average": 

  
R> plot(as.dendrogram(hclust(Distance,method="average")), 

        main="Average linkage dendrogram",ylab="Euclidean distance") 

 

The output of this instruction are displayed in the dedrogram in Figure 3.2 

 

Similarly, we can perform cluster analysis using complete linkage and Ward’s method 

by changing the method= argument as follows:  

 

For complete linkage we use 
  

R> plot(as.dendrogram(hclust(Distance,method="complete")), 

       ylim=c(0,120), main=" Complete linkage dendrogram", 

       ylab="Euclidean distance") 

 

and for Ward’s method we use 
 

R> plot(as.dendrogram(hclust(Distance,method="ward")), 

        main="Ward linkage dendrogram",ylab="Euclidean distance") 

 

The dendrogam for complete linkage and Ward’s method are displayed in Figures 3.3 

and 3.4 respectively. 
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Figure 3.1: The single linkage dendrogram of the 25 U.S. universities. 
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Figure 3.2: The average linkage dendrogram of the 25 U.S. universities. 
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Figure 3.3: The complete linkage dendrogram of the 25 U.S. universities. 
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Figure 3.4: The dendrogram of Ward’s method of the 25 U.S. universities. 
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3.6 Interpreting the cluster analysis results 
 

By studying the dendrograms in Figures 3.1 to 3.4, one clearly sees some interesting 

cluster patterns for the universities. Figure 3.1, which represents the single linkage 

method, does not show any clear clusters. It almost seem like the whole data set is 

clustered as one group. In the case of the average linkage method (Figure 3.2), there 

appears to be two clusters. The first cluster contains 6 universities (Purdue, 

CarnegieMellon, UMichigan, PennState, UWisconsin and TexasA&M), while the rest 

of the universities form one large cluster. For the complete linkage and Ward’s 

method (Figures 3.3 and 3.4) it appears if there are 4 distinct clusters which are  

• Cluster 1: Purdue, CarnegieMellon, UMichigan, PennState, Uwisconsin and 

TexasA&M.  

• Cluster 2: Cornell, UPenn, NorthWestern, Columbia, Georgetown, UCBerkely, 

NotreDame and UVir.  

• Cluster 3: Harvard, Yale, MIT, Duke, Brown, Princeton, Stanford and Dartmouth. 

• Cluster 4: CalTech, JohnsHopkins and UChicago. 

These clusters are indicated by brackets on the above mentioned figures. 

 

3.7 Summary 
 

As mentioned before, the single linkage method has a drawback called the chaining 

phenomenon. For the single linkage and average linkage methods the clustering was 

not very effective for the universities. In the case of complete linkage and Ward’s 

method, the clusters are similar and these seem to be much more effective methods 

than the single and average linkage methods. Stuetzle (1995) argues that some 

statisticians prefer complete linkage because a clearer interpretable dendrogram is 

often produced. Ward’s method is limited to numerical data with an elliptical 

distribution. Complete linkage can be used for numerical and other types of data.  For 

the rest of this thesis we will make use of complete linkage method when ever a 

cluster analysis is performed. In Chapter 6 we will make use the complete linkage 

method together with the Bray-Curtis and Jaccard dissimilarity measures in the 

analysis of a multidimensional binary data set. 
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Chapter 4 
 

Metric and Nonmetric multidimensional scaling  
 

 

4.1 Introduction  
 

Multidimensional scaling (MDS) is a multivariate statistical technique, based on a 

distance or dissimilarity matrix, which allows us to visualise all the objects in a data 

set as points in a low dimensional space (or map). Note that the distance and 

dissimilarity matrices ( )D  mentioned here are the same as in Section 3.3. The points 

in this space represent the objects such that the distances between the points in this 

space correspond as closely as possible to the original distance, iid ′ , between objects 

(Cox and Cox, 2001). Similar to cluster analysis, MDS is also an exploratory data 

analytic technique, but with MDS originating in the field of Psychometrics.  

 

MDS can essentially be classified into two categories i.e. metric and nonmetric 

multidimensional scaling.  Metric MDS (sometimes referred to as the classical MDS 

solution) will be discussed in Section 4.2. This approach makes use of the spectral 

decomposition to obtain the low dimensional space (see Mardia et al., 1979). In 

Section 4.3 we will discuss the nonmetric MDS approach, which uses the metric MDS 

solution as a starting point in an optimization procedure. The idea with nonmetric 

MDS is to minimize the so-called stress function, proposed by Kruskal (1964), in 

order to obtain the low dimensional space.  

 

Section 4.4 contains an illustration of both these approaches by using the different R 

functions of the stats and MASS packages. The function cmdscale() will be used to 

perform metric MDS, while the function isoMDS() is used to perform nonmetric 

MDS. 
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4.2 Metric multidimensional scaling (MMDS)                                                                                   
 

For metric MDS we use the data matrix 
I J×
X  to calculate the distance matrix 

{ }( )iid ′=D  as described in Section 3.3. Each element in this matrix is then squared to 

obtain matrix of squared distances, { }* 2
iiI I

d ′×
=D , which also satisfy the distance 

properties stated in Section 3.2. To obtain the MMDS solution we first construct 

matrix 
I I×
A  from this distance matrix: 

 

*1
2

= −A D , with elements 21
2ii iia d′ ′= − .  

 

This matrix can be centred as follows:  

 
1 1 2I I I− − −= − − + =B A AJ JA JAJ HAH ,                                                    (4.1) 

 

where 1I −= −H I J  is the ( )I I×  centring matrix and   

 

1 1 1
1 1 1

1 1 1

I I×

 
 
 =
 
 
 

J

L
L

M M O M
L

. 

 

Consider the following results which can be found in Mardia et al. (1979): 

 

(a) Given that D  is a distance matrix and =B HAH  as defined in (4.1), then D  is 

Euclidean if and only if B  is positive semidefinite.  

 

(b) If B  is positive semidefinite, then a configuration of points in a Euclidean space 

can be obtained, using the spectral decomposition of B . The spectral 

decomposition is defined as  
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1

I

i i iI I I I I I I Ii
λ

× × × ×
=

′ ′= =∑B e e Γ Λ Γ , 

 

where ( )1 2, ,..., Idiag λ λ λ=Λ  is the diagonal matrix of eigenvalues and 

[ ]1 2, ,..., I=Γ e e e  is the matrix of corresponding eigenvectors. 

 

(c) If D  is a matrix of similarities or dissimilarities, then =B HAH  would still be 

positive semidefinite under certain conditions (see Mardia et al., 1979, p.402).  

 

Note that the distances, similarities and dissimilarities defined in Chapter 3 results in 

B  being a positive semidefinite matrix, making them applicable to MMDS. 

 

Once the spectral decomposition is applied to B ,  a scatterplot of the first q  (usually 

two or three) eigenvectors ( ), 1,2,3i i =e  is used to obtain a MDS map (see Figure 4.1 

as an example). The plot reveals how close or far the objects lie in space.  This plot 

can be helpful in identifying group structures or outliers in the data.  

 

To establish the goodness-of-fit of MMDS, we make use of the eigenvalues to obtain 

a screeplot and the proportion of variation explain by the first q  dimensions. The 

screeplot is a plot of the eigenvalues against the number of dimensions, q  (see Figure 

4.2). The purpose of the screeplot is to determine which number of dimensions is 

sufficient to represent the MDS map. The cut-off point for the number of dimensions 

is usually obtained where this graph makes the elbow shape. The proportion of 

variation explained by the first q  dimensions,  

 

1 1

q I

i i
i i

λ λ
= =
∑ ∑ ,                                                                                                 (4.2) 

 

gives a measure of the goodness-of-fit. A small value represents a bad fit and a large 

value a good fit.  
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4.3 Nonmetric multidimensional scaling (NMDS)                                                                              
  

The nonmetric MDS described in this section is an extension of the metric MDS given 

in Section 4.2.  Let { }iid ′=D  be an I I×  matrix of distances between the rows i  and 

i′  in  X  .  For the I objects in X  there are ( )1 1
2

M I I= −  distances between pairs of 

different objects which are ranked as follows, 

 

1 1 2 2

( ) ( ) ( )...
M M

q q q
i i i i i id d d′ ′ ′> > > ,                                                                                  (4.3) 

 

where 

( ) ( )1 1, ,..., ,M Mi i i i′ ′  = all pairs of objects of i  and i′ , i i′<  

q  = the number of dimensions in the low dimensional space. 

 

The following outlines the NMDS proposed by Kruskal (1964). Kruskal defines the 

stress function as 

 

( )

( ) ( )( )
( )

1/ 2
2

, 1

2

, 1

ˆ
M

q q
ii ii

i i
i i

M
q

ii
i i
i i

d d

Stress q
d

′ ′
′=
′<

′
′=
′<

 
− 

 
=  

  
  

 

∑

∑
,                                                               (4.4) 

 

where 
( )q
iid ′  is the original distances in (4.3) and 

( )ˆ q
iid ′  is the estimate of ( )q

iid ′  obtained from the low dimensional space. 

 

Firstly we need to find ( )ˆ q
iid ′  where,  

 

1 1 2 2

( ) ( ) ( )ˆ ˆ ˆ...
M M

q q q
i i i i i id d d′ ′ ′> > > ,                                                                                  (4.5) 
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such that ( )Stress q  is as small as possible. Thus the NMDS problem is an 

optimization problem, quite different to MMDS.  There is no algebraic solution to 

obtaining ( )ˆ q
iid ′  and therefore these values are obtained using an iterative procedure. 

Important to note here is that the starting values of (4.5) are the Euclidean distance 

obtained from the MMDS eigenvectors ( ), 1, 2,...,i i q=e . These values are then 

updated in each step as (4.4) is being minimized, while keeping the same ranked order 

as (4.3). Figure 4.5 contains the iteration plot showing the optimization process of 

NMDS. Note how the ( )Stress q  in this figure is high initially and then decreases 

(eventually reaching a minimum) as the number of iterations increase. 

 

Once the iteration process ends, a low dimensional space is obtained for NMDS based 

on the chosen number of dimensions, q. Basically, these are the configuration of 

points in MMDS ( ), 1, 2,...,i i q=e  that has moved around in space as the stress 

function (4.4) was being minimized. Figure 4.3 is an example of the low dimensional 

map of NMDS. 

 

Similar to MMDS we can define measures of goodness-of-fit for NMDS. A plot of  

( )Stress q  against the number of dimensions, q, gives us a screeplot similar to Figure 

4.2 in MMDS. An example of this NMDS screeplot are displayed in Figure 4.6. The 

following guidelines (Johnson and Wichern, 2007) can be used to determine the 

goodness-of-fit using ( )Stress q : 

 

Table 4.1: Guidelines for NMDS goodness-of-fit. 

Stress Goodness of fit 
20% Poor 
10% Fair 
5% Good 
2.5% Excellent 
0% Perfect 

 

Another useful graph that is used in NMDS to determine the goodness-of-fit is called 

the Shepard diagram (Shepard, 1980; Groenen and van de Velden, 2004). This graph 

contains a plot of the distances ( )ˆ q
iid ′  vs ( )q

iid ′  defined in (4.3) and (4.5). A monotone 
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regression line, which is a step function, is usually fitted on this plot to show the 

relationship between the distances.  If the plot resembles a straight line, the NMDS is 

considered a good fit in the q-dimensional space. An example of a Shepard diagram is 

given in Figure 4.7. 

 

4.4 Performing MMDS and NMDS in R 
 

This section is aimed at demonstrating the MMDS and NMDS using the R software. 

To perform the MMDS we will use the function cmdscale() which is part of the 

stats package. The main arguments of this function is  

 
R>   cmdscale(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE) 

 

with object d being the distance matrix and k being the chosen number of dimensions 

for the MDS map. The object eig allows us to obtain the eigenvalues for the 

screeplot. 

  

The function isoMDS(), which is part of the MASS package, will be used to perform 

NMDS. The following are its main arguments: 
 
R> library(MASS) 
R> isoMDS(d, y = cmdscale(d, k), k = 2, maxit = 50, trace = TRUE, 
       tol = 1e-3, p = 2) 
 
with objects d and k, the distance matrix and number of dimensions, respectively. The 

object y is a MMDS object containing initial values for ( )ˆ q
iid ′  in (4.5). The object 

maxit control the number of the iterations we want to use. The default number is 50 

iterations.  

 

Other important functions that is needed is the function dist() to obtain the distance 

matrix and the function Shepard() to obtain the Shepard diagram. The latter function 

is part of the MASS package and is applied using the instruction  

 
R> Shepard(d, x, p = 2) 
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The same data set of the 25 U.S. universities used in Chapter 3 will be used here to 

illustrate the use of the functions cmdscale() and isoMDS().  
 

The following function was written to perform metric MDS on the universities data. 

The output of the function is a two dimensional metric MDS plot (Figure 4.1) and a 

screeplot (Figure 4.2) 
 

R> fix(MMDS)                   # R instructions to perform metric MDS 

 
function (data)  
{ 
library(MASS) 
 
# Obtaining the Euclidean distances 
 
Distance<-dist(data) 
 
#Performing a Metric MDS 
 
fit1<-cmdscale(Distance,eig=TRUE,k=2) 
plot(fit1$points,type="n",xlab="Dimension 1", ylab="Dimension 2", 
     main="Metric MDS") 
     par(col="black",font=4,cex=0.50) 
     chs<-substring(rownames(data),1,6) 
     text(fit1$points,chs,col="red") 
     abline(v=0,lty=3,col="green") 
     abline(h=0,lty=3,col="green") 
 
windows() 
 
# Creating the Screeplot for MMDS 
 
plot(cmdscale(Distance,eig=TRUE,k=5)$eig,col="red",type="o", 
     ylab="Eigenvalue",xlab="number of dimensions, q",   
     main="Screeplot:Metric MDS") 
 
} 
 
 
R> MMDS(universities)                   # executing the MMDS function  
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Figure 4.1: The metric MDS plot of the 25 U.S. universities. 
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Figure 4.2: The screeplot of metric MDS. 
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The next function was written to perform nonmetric MDS on the universities data. 

The output of this function is a nonmetric MDS plot in two dimensions (Figure 4.3). 

 
R> fix(NMDS)                # R instructions to perform nonmetric MDS 

 
function (data)  
{ 
library(MASS) 
 
# Obtaining the Euclidean distances 
 
Distance<-dist(data) 
 
windows() 
 
# Performing a Non-metric MDS 
 
fit2<-isoMDS(Distance, k=2) 
plot(fit2$points,type="n",xlab="Dimension 1", ylab="Dimension 2",  
     main="Nonmetric MDS") 
     par(col="black",font=4,cex=0.50) 
     chs<-substring(rownames(data),1,6) 
     text(fit2$points,chs,col="red") 
     abline(v=0,lty=3,col="green") 
     abline(h=0,lty=3,col="green") 
 
} 
 
R> NMDS(universities)                   # executing the NMDS function 
   initial  value 6.884722  
   iter   5 value 5.403032 
   iter  10 value 4.606783 
   final  value 4.440003  
   converged 
 

By using the following instructions one can place clusters on the existing MDS plot 

produced by the above function. The plot with clusters is displayed in Figure 4.4. 

 
R> dis<-dist(universities,method="euclidean")  

R> cluster<-hclust(dis,method="complete") 

R> grps<-cutree(cluster,h=50) 

R> fit2<-isoMDS(dis, k=2,trace=FALSE) 

R> ordispider(fit2,grps,lty=2,col="red") 

 
The function cutree() allows us to select the number of cluster k= or the height h= at 

which the clusters should be chosen. The function ordispider(), which is part of the 

vegan package, uses the results from cutree() and hclust() to display the clusters 

as seen in Figure 4.4. Besides ordispider(), we could also use ordihull(). 
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Figure 4.3: The nonmetric MDS plot of the 25 U.S. universities. 
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Figure 4.4: The nonmetric MDS plot of the 25 U.S. universities with clusters 
obtained using ordispider(), hclust() and cutree(). 
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The function below performs nonmetric MDS on the universities data. The output of 

this function is the iteration plot (Figure 4.5), screeplot (Figure 4.6) and the Shepard 

diagram (Figure 4.7). 

 
R> fix(MDS.plots)           # R instructions for the diagnostic plots 
 
function (data)  
{ 
library(MASS) 
 
Distance<-dist(data) 
 
# Iteration plot 
 
STRESS<-rep(0,100) 
 
for( i in 1:100){ 
   STRESS[i]<-isoMDS(Distance,maxit=i,trace=FALSE)$stress 
} 
 
plot(1:100,STRESS,type="o",ylab="STRESS (q)",xlab="Number of   
     iterations",col="red",main="Iteration plot") 
 
# Screeplot 
STRESS2<-rep(0,5) 
 
for(i in 1:5){ 
  STRESS2[i]<-isoMDS(Distance,k=i,trace=FALSE)$stress 
} 
 
windows() 
 
plot(1:5,STRESS2,type="o",ylab="STRESS (q)",xlab="number of       
     dimensions, q",col="red",main="Screeplot: Nonmetric MDS") 
 
# Shepard diagram 
NMDS<-isoMDS(Distance,trace=FALSE) 
Shep<-Shepard(Distance,NMDS$points) 
 
windows() 
 
plot(Shep$x,Shep$y, cex=0.75,xlab="dissimilarities",ylab="distances", 
     main="Shepard diagram ") 
 
lines(Shep$x,Shep$yf,type="l",col="red") 
 
} 
 
 
R> MDS.plots(universities)                   # executing the function 
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Figure 4.5: The iteration plot of nonmetric MDS. 
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Figure 4.6: The screeplot for nonmetric MDS. 
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Figure 4.7: The Shepard diagram of nonmetric MDS. 
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4.5 Interpreting the MDS results 
 

The metric MDS plot is displayed in Figure 4.1 in two dimensions. It is clear from 

this plot that there are differences among the universities. The screeplot of the 

eigenvalues in Figure 4.2 displays the goodness-of-fit. From this plot we can clearly 

see that the first two dimensions is sufficient to explain most of the variation.  

 

The nonmetric MDS gives us quite similar results. Figure 4.3 is the nonmetric MDS 

plot in two dimensions. There were three major clusters in the data and this is shown 

in Figure 4.4 with the spider charts. The three clusters are the universities that are 

very similar. The screeplot in Figure 4.6 is a graph which displays the goodness-of-fit 

for the nonmetric MDS. The stress is used here as a measure of goodness-of-fit and 

Figure 4.6 shows that most of the variation is again explained by the first two 

dimensions. The final stress value was obtained as 4.44, which is a good fit according 

to Table 4.1. The iteration plot in Figure 4.5 shows the initial stress value of 6.8847 at 

the first iteration. The stress value dropped dramatically in the first 10 iterations and it 

reached a minimum at 4.44 after about 11 iterations. The Shepard diagram in Figure 

4.7 also shows how well the MDS fit. Since the points lie close to the step regression 

function, we can conclude that the two dimensional nonmetric MDS is a good 

representation of the original data in the lower space. 

 

The metric and non-metric MDS plots are very similar. They both contain the same 

groupings of the 25 universities and for both the two dimensional representation is 

sufficient. The groups identified in Figure 4.3 also agree with the clusters obtained for 

the complete linkage and Ward’s method in Figures 3.3 and 3.4. These clusters are 

depicted in Figure 4.4. 

 

4.6 Summary 
 

In this chapter we have demonstrated both metric and nonmetric multidimensional 

scaling. The nonmetric MDS can use metric MDS output (eigenvectors) as starting 

values for the distances in the stress function (expression 4.4). Thus, nonmetric MDS 

allows for a much better configuration of the raw data in a low dimensional space. 
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Both metric and nonmetric MDS use a distance or dissimilarity matrix as input. The 

output for both methods is a plot in a low dimensional space. For the metric MDS this 

plot is obtained by using the eigenvector solution. In the case of nonmetric MDS, this 

plot is obtained by using an iterative process in which the stress function is 

minimized. We have also discussed measures for assessing the goodness-of-fit of 

these methods. Metric MDS uses the eigenvalues to obtain a measure of the goodness-

of-fit. For nonmetric MDS we explained the stress value and the Shepard diagram as 

tools for assessing the goodness-of-fit.  

 

We also discussed the functions cmdscale() and isoMDS() which can be used for 

metric and nonmetric MDS respectively. Another R function which performs 

nonmetric MDS is the metaMDS() function in the vegan package. 
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Chapter 5 
 

Inference using distance matrices 
 

 

5.1 Introduction 
 

In the previous four chapters we have focused entirely on the exploratory analysis of 

multidimensional data. In this chapter we turn our focus to statistical inference with 

multiple populations. The aim of this chapter is to explain and understand three 

techniques which can be used to test for significant differences among several groups. 

The first technique that we will discuss is the well-known analysis of variance 

(ANOVA), which is used to test for differences among group means in the univariate 

case. The second inference technique is called multivariate analysis of variance 

(MANOVA), which is a direct extension of ANOVA to the multivariate case. Both 

the above mentioned methods are parametric techniques and are based on strict 

assumptions, which will be discussed in the sections to follow. For more detail on 

ANOVA and MANOVA see Johnson and Wichern (2007). In practice the 

assumptions for ANOVA and MANOVA are not always met. For reasons such as this 

an alternative to ANOVA and MANOVA is required. In this chapter we will discuss a 

third inferential technique called the analysis of distance (AOD). The AOD was 

proposed by Anderson (2001) and it offers an alternative to ANOVA and MANOVA. 

AOD is a non-parametric technique and is not based on any assumptions. We will also 

illustrate how the three techniques can be applied in R using the well-known Iris data 

set as an example. 

 

5.2 The one-way analysis of variance 
 

The univariate analysis of variance (ANOVA) is a very common and widely used 

method for statistical tests of factor effects and their interaction effects. This method 

is most often used to analyze the outcomes of designed experiments such as 

completely randomized designs, randomized block designs, Latin square designs and 
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factorial designs. Consider a single factor experiment (eg. randomized design) 

involving g factor levels (or treatments) and a single numerical response measured on 

n observations in each level. The data set for such an experiment are described in 

Table 5.1. For our discussion in this chapter we will assume that all the groups are of 

size n. 

 

Table 5.1: The data set for a single factor experiment 

Treatment 

(group) 
Observations Total Average 

1 11y  12y  13y    L    1ny  1y g  1y g  

2  21y  22y  23y    L    2ny  2y g  2y g  

M  M  M  M  

g  1gy  2gy  3gy    L    gny  gy g  gy g  

 Total ygg  ygg  

 

 

In this table, ijy  is the jth observation from the ith group, iy g  is the total of the ith 

treatment, iy g  is the average of the ith treatment, ygg  is the grand total and ygg  is the 

grand average. The hypothesis test of interest here is usually given by, 

 

0 1 2: gH µ µ µ= = =L  

1 :H  at least one of the ' sµ  are different,                                                    (5.1) 

 

where we test for the equality of the treatment means. The one-way ANOVA is used 

to perform this hypothesis test. The ANOVA is based on the following assumptions:  

 

• observations in each group are from a normally distributed population, 

• observations are drawn independently, 

• groups have equal population variances. 

 

If these assumptions are not fulfilled, the results of the ANOVA may be questionable. 
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The ANOVA partitions the total variability in the data into different components 

(Montgomery, 2005). The total sum of squares, ( )2

1 1

g n

Total ij
i j

SS y y
= =

= −∑∑ gg , contains 

this overall variability in the data. In one-way ANOVA the total sum of squares is 

decomposed into the sum of squares due to treatments ( )TreatmentsSS  and the sum of 

squares due to error (residual) ( )ErrorSS  , i.e. 

 

            Total Treatments ErrorSS SS SS= + , 

 

which is formulated as 

 

( ) ( ) ( )2 22

1 1 1 1 1

 
g g gn n

ij i ij i
i j i i j

y y n y y y y
= = = = =

− = − + −∑∑ ∑ ∑∑gg g gg g .                                 (5.2) 

 

The test statistic for this hypothesis test is derived from these components as the F-

ratio 

 

( )
( )0

1Treatments Treatments

Error Error

SS g MSF
SS ng g MS

−
= =

−
                                                             (5.3) 

 

and the corresponding critical value is obtained from the F-distribution with degrees 

of freedom 1 1df g= −  and 2df ng g= − . The output of the ANOVA is usually 

displayed in a table, see Table 5.2. If the data are normally distributed, the quantity 

(5.3) follows an F-distribution and therefore the associated p-value can be obtained 

from this distribution as: ( )0-valuep P F F= > . If the p-value is less than the specified 

level of significance, the null-hypothesis in (5.1) is rejected. Otherwise it is not 

rejected. 
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Table 5.2: One-way ANOVA table 

Source of variation 
Sum of 

squares 

Degrees of 

freedom 

Mean 

square 

 

-valueF  

 

Treatments TreatmentsSS  1g −  TreatmentsMS  0
Treatments

Error

MSF
MS

=  

Error (Residual) ErrorSS  ng g−  ErrorMS   

Total TotalSS  1ng −  
 

 

 

 

 

 

5.3 The one-way multivariate analysis of variance 

 

Next we consider the multivariate analysis of variance (MANOVA), which is a 

generalization of the univariate ANOVA described above. For a single factor 

experiment with g treatments, we now measure multiple numerical responses (p 

variables) on the n observations in a treatment group. Since there are p variables for 

each observation in each group, we have a multivariate setup and the hypotheses of 

interest are formulated as follows, 

 

0 1 2: gH = = =μ μ μL  

1 :H  at least one of the ' sμ  are different.                                                     (5.4) 

 

In this instance the one-way MANOVA is used to test for the equality of the mean 

vectors. Similar to the ANOVA, the MANOVA is based on the following 

assumptions: 

 

• observation vectors in each group are from a multivariate normal population, 

• observations vectors are drawn independently from each population, 

• groups have equal population covariance matrices. 
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The data for a one-way MANOVA are described in Table 5.3, where ijy  is the vector 

of p variables for the jth observation in the ith treatment, iy g  is a vector of totals for the 

ith treatment, iy g  is the average vector for the ith treatment, y gg  is the grand total and 

y gg  is the vector of  overall averages. 

 

Table 5.3: The data set for a single factor experiment with multivariate responses 

Treatment 

(group) 
Observations Total Average 

1 11y  12y  13y    L    1ny  1y g  1y g  

2  21y 22y  23y     L    2ny  2y g  2y g  

M  M  M  M  

g  1gy  2gy  3gy    L    gny  gy g  gy g  

 Total y gg  y gg  

 

 

The overall variation in the data can be summarized by the matrix total sum of squares 

and cross products, ( )( )
1 1

g n

ij ij
i j= =

′− −∑∑ y y y ygg gg . Similar to the decomposition in (5.2), 

we construct the decomposition of the matrix total sum of squares and cross products 

into two components: the treatment sum of squares and cross products and the error 

sum of squares and cross products i.e. 

 

( )( ) ( ) ( ) ( )( )
1 1 1 1 1

g g gn n

ij ij i i ij i ij i
i j i i j

n
= = = = =

′ ′′− − = − − + − −∑∑ ∑ ∑∑y y y y y y y y y y y ygg gg g gg g gg g g . 

(5.5) 

 

The above matrices are summarized in Table 5.4.  
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Table 5.4: One-way MANOVA table 

 

Source of variation 

Matrix of sum of 

squares and cross products 

Treatments ( )( )
1

g

i i
i

n
=

′= − −∑B y y y yg gg g gg  

Error (Residual) ( ) ( )
1 1

g n

ij i ij i
i j= =

′= − −∑∑W y y y yg g  

Total ( )( )
1 1

g n

ij ij
i j= =

′= − −∑∑B + W y y y ygg gg  

 

 

The next step in the MANOVA is to obtain the appropriate test statistic. For this we 

first need to obtain Wilks’ lambda (Wilks, 1932), which is defined by the following 

ratio of generalized variances 

 

( )( )

( )( )
1 1*

1 1

g n

ij i ij i
i j

g n

ij ij
i j

= =

= =

′− −
Λ = =

′− −

∑∑

∑∑

y y y y
W

B + W
y y y y

g g

gg gg

.                                                 (5.6) 

 

To perform the hypothesis test in (5.4) we need to find the distribution of *Λ , which 

can be derived for the cases given in Table 5.5 (Johnson and Wichern, 2007). Using 

Table 5.5 the test statistic and critical value for the hypothesis test can be obtained for 

any given number of groups and variables. Similar to the ANOVA, the corresponding 

p-value for the MANOVA is also based on the F-distribution. In the case of 

MANOVA, the degrees of freedom, 1df  and 2df , are dependent on the number of 

groups ( )g , the number of variables ( )p and the sample sizes ( )n  (see Table 5.5 for 

more detail). 
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Table 5.5: The distribution of Wilks’ lambda, assuming that the sample sizes in each 

group are the same 

 

Number of 

variables 

Number of 

groups 
Distribution 

1p =  2g ≥  ( ) ( )1 2

*

1 ;*

1 ~
1 df g df ng g

ng g F
g = − = −

  − − Λ
  − Λ  

 

2p =  2g ≥  ( ) ( )1 2

*

2 1 ; 1*

1 1 ~
1 df g df ng g

ng g F
g = − = − −

  − − − Λ
   − Λ  

 

1p ≥  2g =  
1 2

*

; 1*

1 1 ~ df p df ng p
ng p F

p = = − −

  − − − Λ
   Λ  

 

1p ≥  3g =  ( )1 2

*

2 ; 2 2*

2 1 ~ df p df ng p
ng p F

p = = − −

  − − − Λ
   Λ  
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5.4 The analysis of distance  
 

Anderson (2001) proposed a non-parametric hypothesis test using similar reasoning as 

in the cases of ANOVA and MANOVA. This approach to hypothesis testing of 

multiple groups involves a distance matrix (see Chapter 3). The idea here is to 

decompose the distance matrix rather than the variance. In Anderson (2001) both the 

one-way and two-way analysis of distance (AOD) is explained. In this section we will 

discuss only the one-way AOD. Similarities between AOD and ANOVA and 

MANOVA are also highlighted. 

 

As mentioned in the previous sections, ANOVA and MANOVA are based on several 

assumptions in order for the analysis to applicable. These assumptions are not 

important when we perform the AOD. The AOD allows us to compare treatments 

with different types of measurements (eg. numerical, count and binary). When we 

perform the AOD we test the hypotheses: 

 

0 :H  the locations of groups are the same 

1 :H  the locations of groups are different.                                                    (5.7) 

 

To obtain the test statistic and p-value we make use of a distance matrix. Given the 

setup of the data in Tables 5.1 or 5.3, obtain the N N× matrix of distances (or 

dissimilarities) D  with N ng= . The distance and dissimilarity measures discussed in 

Chapter 3 can be used to obtain this matrix. Within the matrix D  we can obtain the 

n n×  sub-matrices corresponding to each group. Define the following sum of squares 

based on the elements in D : 

 

• Total sum of squared distances 

 

21 N

Total ii
i i

SS d
N ′

′<

= ∑ .    
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• Treatment sum of squared distances 

 

21 N

Treatments ii ii
i i

SS d I
n ′ ′

′<

= ∑ ,  

 

      where I is an indicator function having 1 if objects i  and i′  are in the same group     

      and 0 otherwise. 

 

• Error sum of squared distances 

 

Error Total TreatmentSS SS SS= − . 

 

Thus we can decompose the total sum of squared distances similar to (5.2) and (5.5).  

The output of the AOD can also be summarized in a table. This summary table is 

displayed in Table 5.6. 

 

For the AOD a pseudo F-test statistic is used which is analogous to the F-test statistic 

(5.3). The pseudo F-value is obtained as the ratio 

 

( )
( )

1Treatments Treatments

Error Error

SS g MSF
SS ng g MS

−
= =

−
.                                                            (5.8) 

 

Note that the AOD follows the same idea as the ANOVA. However, it should be 

remembered that the AOD can be performed on a univariate as well as a multivariate 

data set having several groups. 
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Table 5.6: One-way AOD table 

Source of variation Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

 
Pseudo 

-valueF  
 

Treatments TreatmentsSS  1g −  TreatmentsMS  Treatments

Error

MSF
MS

=  

Error (Residual) ErrorSS  ng g−  ErrorMS   

Total TotalSS  1ng −  
 

 

 

 

 

 

The next step in the AOD is to obtain the p-value for the hypothesis test. Since we do 

not make any distributional assumptions when performing AOD, the p-value cannot 

be obtained from a known distribution function. In this case we make use of 

permutations to obtain the distribution. The following steps explain the process: 

 

1. Let F in (5.8) be the F-ratio from the original data.  

2. Perform a large number of permutations (say P) on the group label and each time 

calculate the distance matrix ( )1 2, ,..., PD D D  and the pseudo F-ratio 

( )1 2, ,..., PF F Fπ π π . 

3. The p-value is obtain as:  

number of   -value F Fp
P

π ≥
= .                                                                         (5.9) 

 

According to Anderson (2001) at least P=1000 permutations should be done when a 

0.05 level of significance is used and at least P=5000 permutations should be 

performed for a 0.01 level of significance. 
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5.5 Performing an analysis of variance in R 
 

To perform the analysis of variance we will make use of the Iris data set (Anderson, 

1935; Fisher, 1936). The data set consists of 3 groups (Iris species) and 4  numerical 

variables measured on 50 observations in each group. The analysis will be performed 

using the MANOVA and AOD techniques discussed in the previous sections. In both 

cases we test the hypotheses 

 

0 :H  the locations of the 3 groups are the same 

1 :H  the locations of the 3 groups are different.                                                            

 

To perform the MANOVA we will make use of the manova() function in the R 

package stats and to perform the AOD we will use the adonis() function in the 

vegan package. 

 

5.5.1 A multivariate analysis of variance in R 
 
A MANOVA is performed in R using the function manova() and the arguments of 

this function is a formula (as can be seen below). The function summary() is used 

together with the manova() function to obtain the MANOVA output.   

 
R> manova(formula,data,...) 

R> summary(object, 
         test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"), 
         intercept = FALSE, tol = 1e-7, ...) 

 

The summary() function uses the manova() object and one can also specify which test 

should be used. In Section 5.3 Wilks’ lambda was discussed and we will use this test 

in our illustration of the manova() function. The following R instructions are used to 

perform the one-way MANOVA. The object Y is the vector containing the labels of 

the three groups and X is a data matrix with the four numerical variables.  
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R> Y<-as.factor(iris[,5]) 

R> X<-as.matrix(iris[,1:4]) 

 

The output for the MANOVA is summarized below. 

 
R> manova(X~Y) 

Call: 
   manova(X ~ Y) 
 
Terms: 
                       Y Residuals 
resp 1           63.2121   38.9562 
resp 2           11.3449   16.9620 
resp 3          437.1028   27.2226 
resp 4           80.4133    6.1566 
Deg. of Freedom        2       147 
 
Residual standard error: 0.5147894 0.3396877 0.4303345 0.2046500  
Estimated effects may be unbalanced 
 
 
> summary(manova(X~Y),test="Wilks") 
           Df   Wilks approx F num Df den Df    Pr(>F)     
Y           2   0.023  199.145      8    288 < 2.2e-16 *** 
Residuals 147                                              
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
> 
 

The p-value for this analysis is <0.001, indicating that we reject the null hypothesis. 

Thus, there is enough evidence to conclude that the three groups (species) are 

significantly different.  
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5.5.2 An analysis of distance in R 
 

To perform the AOD in R we will use the function adonis(), which is part of the 

vegan package. Below are the arguments of this function   

 
R> adonis(formula, data, permutations = 999, method = "bray", 
          strata = NULL, contr.unordered = "contr.sum", 
          contr.ordered = "contr.poly", ...) 
 

The formula object is similar to the one used in manova(). The number of 

permutations can be specified in the permutations argument. This function performs 

an analysis of distance and therefore requires the calculation of a distance matrix on 

the data. To obtain the distance matrix the function vegdist(), which is also part of 

the vegan package, is used as default.  The argument method calls the vegdist() 

function. The function vegdist(), given below, works similar to the function dist() 

used in Chapter 3. 

 
R> vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE, 
        na.rm = FALSE, ...)  
 

The next instruction loads the vegan package and performs the AOD. The Euclidean 

distance is used since the data consists of numerical variables. For any other type of 

variable (eg. count or binary) the Bray-Curtis or Jaccard dissimilarity measures can be 

used.  

 
R> library(vegan) 
 
R> adonis(X~Y,permutations=999,method="euclidean") 
 
Call: 
adonis(formula = X ~ Y, permutations = 999, method = "euclidean")  
 
                 Df SumsOfSqs   MeanSqs   F.Model     R2 Pr(>F)     
Y           2.00000 592.07320 296.03660 487.33088 0.8689  0.001 *** 
Residuals 147.00000  89.29740   0.60747           0.1311            
Total     149.00000 681.37060                     1.0000            
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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From the AOD results we can conclude that the null hypothesis is rejected, since the 

p-value is <0.001. Thus, there are significant differences among the groups, which we 

also found with the MANOVA in the previous section. 

 

5.6 Summary 
 

This chapter illustrated the analysis of distance as an alternative to the conventional 

ANOVA and MANOVA. Even though ANOVA and MANOVA are very popular 

methods for comparing multiple groups, they only work well for numerical data from 

normal distributions.  The AOD on the other hand, does not make assumptions about 

the underlying distribution of the data and is completely non-parametric. AOD can be 

performed even if the number of variables exceeds the number of observations. AOD 

is not only applicable to numerical data, but can be used with count and binary data by 

choosing the appropriate measure of dissimilarity. Finally, it should be mentioned that 

AOD can also be used for other designed experiments, eg. factorial designs, 

randomized block designs and Latin square designs. 

 

The function adonis() was the only R function discussed in this chapter to perform 

AOD. Another function used to perform AOD is the function anosim() which is also 

part of the vegan package. 
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Chapter 6 
 

Real-world applications 
 

 

6.1 Introduction 
 

In this chapter we will apply the techniques, discussed Chapters 2 to 5, on the Biolog 

and the Barents Fish data described in Chapter 1. The Biolog data were obtained from 

an experiment involving 32 carbon sources and 12 treatments. The measurements for 

this experiment are binary (the presence or absence of microbial activity in soil; see 

Figure 1.3). The soil samples were taken for three months (February, September and 

December) and at two depths (0-75 mm and 150-300 mm). The Biolog data will be 

subjected to an exploratory analysis using the following methods: cluster analysis, 

multidimensional scaling and correspondence analysis. This data set will also be 

subjected to the analysis of distance method to test for differences among the 

treatments. The Jaccard and Bray-Curtis dissimilarities will be used for the clustering, 

multidimensional scaling and the analysis of distance. The Barents Fish data were 

obtained from an observational study (see Figure 1.5). This data set contains two 

numerical measurements of interest (temperature and depth). Furthermore, it also 

contains a set of count data for 32 fish species. Both the numerical variables and count 

data were measured at 89 sites in the Barents Sea. This data set will be subjected to a 

canonical correspondence analysis to study the relationship between the numerical 

variables and the count data. 

 

6.2 Exploratory analysis of the Biolog data  
 

6.2.1 Cluster analysis 
 

In this section we perform a cluster analysis using the complete linkage method 

described in Chapter 3. Firstly, the carbons are clustered using the Jaccard and the 

Bray-Curtis dissimilarities respectively. The clustering was done for the three months 
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and the two depths separately. The results of this cluster analysis are displayed as 

dendrograms in Figures 6.1 and 6.2. Secondly, the treatments were clustered using the 

same configuration described above. The results of this cluster analysis are displayed 

in Figures 6.3 and 6.4. 

 

6.2.2 Nonmetric multidimensional scaling 
 

We also performed a nonmetric multidimensional scaling, as discussed in Chapter 4. 

Again we will make use of both the Jaccard and the Bray-Curtis dissimilarities in our 

analysis. The multidimensional scaling was performed for the three months and the 

two depths separately. The results are displayed in Figures 6.5 and 6.6 for the carbons 

as well as Figures 6.7 and 6.8 for the treatments. Tables 6.1 and 6.2 contain the final 

stress values (see Chapter 4, Section 4.3) for the multidimensional scaling on the 

carbons and treatments respectively. These values will be used as a measure of the 

goodness-of-fit for the two dimensional plots. Note that in cases where the distance 

(dissimilarity) matrix contains zero values, nonmetric multidimensional scaling can 

not be performed. In such a case a small value (e.g. 0.0001) was added to each of the 

distances.  

 

6.2.3 Correspondence analysis 
 

Finally, the Biolog data was subjected to a simple correspondence analysis (see 

Chapter 2). The purpose of this analysis was to study the relationships/ associations 

between the carbons and the treatments. The results of the correspondence analysis 

are given in Figure 6.9 for the months and the depths separately. We also report the 

inertias for the two dimensional configurations in Table 6.3 as measures of the 

goodness-of-fit. Note that for cases where the row or column totals of the contingency 

table are zero, correspondence analysis can not be performed. For such a case the 

particular row or column can be removed from the contingency table and the analysis 

can be performed on the remaining data. 
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Figure 6.1: The complete linkage dendrograms of the 32 carbons per month and 

depth using the Jaccard dissimilarity. 
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Figure 6.1: Continued. 
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Figure 6.2: The complete linkage dendrograms of the 32 carbons per month and 

depth using the Bray-Curtis dissimilarity. 
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Figure 6.2: Continued. 
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Figure 6.3: The complete linkage dendrograms of the 12 treatments per month and 

depth using the Jaccard dissimilarity. 
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Figure 6.4: The complete linkage dendrograms of the 12 treatments per month and 

depth using the Bray-Curtis dissimilarity. 
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Figure 6.5: The nonmetric multidimensional scaling of the 32 carbons per month and 

depth using the Jaccard dissimilarity. 
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Figure 6.6: The nonmetric multidimensional scaling of the 32 carbons per month and 

depth using the Bray-Curtis dissimilarity. 
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Figure 6.7: The nonmetric multidimensional scaling of the 12 treatments per month 

and depth using the Jaccard dissimilarity. 
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Figure 6.8: The non-metric multidimensional scaling of the 12 treatments per month 

and depth using the Bray-Curtis dissimilarity. 
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Table 6.1: The final stress values for the nonmetric multidimensional scaling on the 

carbons for both Jaccard and Bray-Curtis dissimilarity. 

 

 
Month (depth) 

Stress value 

(Jaccard) 

Stress value 

(Bray-Curtis) 

(a) February (0-75 mm) 11.805 11.805 

(b) September (0-75 mm) 9.985 9.985 

(c) December (0-75 mm) 8.621 8.621 

(d) February (150-300 mm) 15.332 15.332 

(e) September (150-300 mm) 13.699 13.411 

(f) December (150-300 mm ) 10.928 10.928 

 

 

 

Table 6.2: The final stress values of the nonmetric multidimensional scaling on the 

treatments for both Jaccard and Bray-Curtis dissimilarity. 

 

 
Month (depth) 

Stress value 

(Jaccard) 

Stress value 

(Bray-Curtis) 

(a) February (0-75 mm) 14.029 14.029 

(b) September (0-75 mm) 10.652 10.652 

(c) December (0-75 mm) 12.197 12.197 

(d) February (150-300 mm) 13.245 13.245 

(e) September (150-300 mm) 15.561 15.561 

(f) December (150-300 mm ) 11.772 11.772 
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Figure 6.9: The correspondence analysis plots per month and depth. 
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Table 6.3: The inertia of the first two dimensions for the correspondence analysis. 

 

 Month (depth) Inertia (%) 

(a) February (0-75 mm) 51.4 

(b) September (0-75 mm) 45.6 

(c) December (0-75 mm) 45.7 

(d) February (150-300 mm) 42.2 

(e) September (150-300 mm) 40.8 

(f) December (150-300 mm ) 48.5 

 

 

6.3 Discussion of the Biolog data results 
 

For the discussion of the results given in Section 6.2, we will focus on the following 

five points. 

 

6.3.1 Comparing the results of the Jaccard and the Bray-Curtis  

dissimilarity  
 

These two measures were used for both the cluster analysis and the multidimensional 

scaling. Comparing the dedrograms for the cluster analysis in Figures 6.1 and 6.2 (the 

32 carbons), we observe that the Jaccard and the Bray-Curtis give almost identical 

answers. Similar conclusions are made when comparing Figures 6.3 and 6.4 (the 12 

treatments). The two dimensional configurations for the multidimensional scaling in 

Figure 6.5 and 6.6 represent the Jaccard and Bray-Curtis dissimilarity measures 

respectively for the 32 carbons. The configuration of the points here are very different 

for the two measures. Similar conclusions can be drawn for the 32 carbons. The same 

can be said about the configurations of points in Figures 6.7 and 6.8 for the 12 

treatments. Overall it seems as if the Jaccard and Bray-Curtis dissimilarity measures 

allow us to make quite similar conclusions whether we are working with the cluster 

analysis or the multidimensional scaling results. 
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6.3.2 Comparing the results of the three exploratory analysis 

methods 
 

Since the cluster analysis, multidimensional scaling and correspondence analysis are 

performed on the same data, we expect some agreement among the three exploratory 

methods concerning the carbons and treatments. For example, consider the 

dendrogram in Figure 6.1 (c) where cases C22, C20 and C21 are lying in a cluster, 

which are separated further from the rest. The same cases lie close to each other in 

Figure 6.5 (c) and Figure 6.9 (c). Consider Figure 6.1 (c) where cases C16, C31, C5, 

C19, C2, C18, C13, C7, C3, C8, C14, C9, C25 C15, C4, C26 and C32 form one large 

cluster. The same cases are clustered together in Figure 6.5 (c) and Figure 6.9 (c). 

Thus overall the three methods give us the same picture of relationships among the 

carbons. These methods also give similar grouping structures for the treatments. 

 

6.3.3 The goodness-of-fit for the multidimensional scaling and the 

correspondence analysis 
 

The final stress values for the multidimensional scaling are given in Table 6.1 and 6.2 

for the carbons and treatments respectively. The values for the Jaccard and the Bray-

Curtis dissimilarity measures are given for each month and depth separately. To 

determine the goodness-of-fit for the two dimensional configurations, we can compare 

these values to the guidelines in Table 4.1. The lowest and highest stress values in 

Tables 6.1 and 6.2 are 8.621 and 15.332 respectively. According to Table 4.1 this 

means that the multidimensional scaling represent a fair to poor fit in reproducing the 

original distances. 

 

The goodness-of-fit for the correspondence analysis are determined by using the 

inertias given in Table 6.3. As seen in Table 6.3, the proportion of inertia explained 

the first two dimensions for the correspondence analysis on the Biolog data ranges 

between 40% and 51%. These values show the percentage of variation in the raw data 

explained by the first two dimensions. The inertia is quite low, indicating that two 

dimensions may not be sufficient to study the relationship between the treatments and 

carbons. 
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6.3.4 Overall conclusion about the treatments 
 

There are no real clustering patterns among the treatments. An exception to this 

maybe Figure 6.3 (c) and 6.4(c) for December (0-75 mm). However, Figures 6.7 and 

6.8 show a random display of the treatments with no observable structure among 

them. Thus it seems like the microbial activity for the three months and the two 

depths are not different for the 12 treatments. The micro organisms display a similar 

activity in all the treatments.   

 

6.3.5 Overall conclusion about the carbons 
 

The clustering for the carbons seems to have more structure. There are definitely 

some clusters that can be identified from Figures 6.1 or 6.2, especially for December 

(0-75 mm).  In Figure 6.5 or 6.6 we also observe a small group of carbons clustering, 

while the rest are scattered. Thus we can conclude the microbial activity for the 32 

carbons are definitely showing a difference for the months and depths. 

 

Considering the correspondence analysis depicted in Figure 6.9, we can also conclude 

that there are no associations among the treatments and carbons. The cases (carbons 

and treatments) are clustered around the origin of the graphs. There are no real visible 

relational patterns among the treatments and carbons.  
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6.4 Analysis of distance using the Biolog data 
 

The aim of this section is to test for differences among the 12 treatments by using the 

analysis of distance method discussed in Chapter 5. As mentioned earlier, this method 

is similar to a MANOVA, but does not make the same assumptions. In fact, there are 

no assumptions when performing an analysis of distance. Since this analysis makes 

use of a distance (dissimilarity) matrix, we will again use the Jaccard and Bray-Curtis 

measures. The analysis of distance tests the following hypotheses in the Biolog data: 

 

0 : the locations of the treatments are the sameH  

1 : the locations of the treatments are differentH , 

 

for the three months and two depths separately. The p-values resulting from the 

analysis of distance are displayed in Table 6.4. 

 

 

Table 6.4: The p-values obtained from the analysis of distance of the 12 treatments 

for the Jaccard and Bray-Curtis dissimilarities.  

 

 
Month (depth) 

p-value 

(Jaccard) 

p-value 

(Bray-Curtis) 

(a) February (0-75 mm) 0.6533 0.7433 

(b) September(0-75 mm) 0.4885 0.5964 

(c) December (0-75 mm) 0.02098* 0.02897* 

(d) February (150-300 mm) 0.01898* 0.01998* 

(e) September (150-300 mm) 0.1369 0.3097 

(f) December (150-300 mm ) 0.961 0.962 
 

    * Significant p-values at a 5% level of significance. 
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As can be seen from Table 6.4, there are only significant differences among the 12 

treatments for December (0-75 mm) and February (150-300 mm) at a 5% level of 

significance. Thus, for these cases there were discrepancies among the microbial 

activities. There were no significant differences among the 12 treatments for the rest 

of the cases. This means there were no discrepancies among the microbial activities 

for these cases. Both the Jaccard and the Bray-Curtis dissimilarity measures produce 

similar conclusions. 

 

6.5 Canonical correspondence analysis of the Barents Fish data 
 

In this section we will analyze the Barents Fish data by using canonical 

correspondence analysis which was discussed in Chapter 2. There are two 

environmental variables (depth and temperature) and the count data of 32 different 

fish species from 89 different stations. The canonical correspondence analysis is 

designed to analyze such data in order to study the relationships or patterns among the 

environmental variables and the fish species. The CCA plot of the canonical 

correspondence analysis is given in Figure 6.10. The black three-digit numbers on the 

graph are the station numbers. The red abbreviations refer to the 32 fish species (see 

Table 1.1). The blue arrows show the direction in which those variables increase.  

 

It is clear from Figure 6.10 that there are seven sites that stand out among the 89 sites 

(sites number 356, 462, 386, 399, 459, 458, 465). Most of the other sites are scattered 

around the origin of the graph. Focusing our attention on the seven sites, we can see 

that three of these sites (356, 462 and 386) are associated with high temperatures. The 

other four sites (386, 399, 458, 459 and 465) are associated with lower depths. The 

contour lines in Figure 6.11 were created to identify the levels of the temperature at 

each site. The contour lines in Figure 6.12 on the other hand allow us to identify the 

levels of the depth. 

 

If we turn our attention to the fish species, it can be seen that the species labeled as 

An_lu (the Atlantic catfish – see Table 1.1) lies further away from the other species. 

This fish species seems to be associated especially with a lower depth level. Thus, the 

species occurs in the shallow part of the Barents Sea. On the other hand, some species 
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for example No_rk (the white barracudina), seem to be associated with a higher depth 

level, implying that it occurs more frequently in the deeper part of sea. In a similar 

way we can interpret the relationship among the other species and the depth variable. 

Studying the relationship of the species with the temperature level, one can see for 

example that species like Mi_po (Blue whiting), Tr_es (Norway pout) and Cl_ha 

(Herring) occur more frequently where the temperature levels are higher. Again the 

contour lines in Figure 6.11 and 6.12 are useful in determining the level of 

temperature and depth at which the fish species occur the most. 

 

If we study the association among the sites and species, we can see in Figure 6.10 that 

species An_lu seems to occur most at sites 386, 399, 458, 459 and 465. Overall it 

seems that most of the sites and species are clustered around the origin. This means 

that most sites and species, respectively, have on average the same profile. This also 

means that all the different fish species seems to occur at most of the sites in the 

Barents Sea. 

 

Judging the equivalent lengths of the two arrows, it seems as if the variables 

temperature and depth carries the same weight in the analysis. The following results 

show that both variables are highly significant in the analysis. 
 
> envfit(cca(X,Y),Y,perm=999) 
 
***VECTORS 
 
                CCA1     CCA2     r2 Pr(>r)     
Depth        0.37128  0.92852 0.4287  0.001 *** 
Temperature -0.83355  0.55244 0.3675  0.001 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
P values based on 999 permutations. 
 
Both p-values are 0.001 and therefore highly significance.  
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Figure 6.10: CCA plot from the canonical correspondence analysis of the Barents 

Fish data.  
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Figure 6.11: Contour plot of the depth levels. The contours in the plot increase in the 

direction of the depth variable. 
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Figure 6.12: Contour plot of the temperature levels. The contours in the plot increase 

in the direction of the temperature variable. 
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6.6 Summary 
 

The aim of the chapter can be summarized in the following points: 

 

• Firstly, the Biolog data was analyzed as an investigation into the data for 

interesting patterns (microbial activity) among the carbons and treatments based 

on the binary measurements. This was done by using the exploratory methods: 

clustering analysis, correspondence analysis and nonmetric multidimensional 

scaling. 

• Secondly we tested for significant differences among the treatments in the Biolog 

data. 

• Thirdly, we compared the results for the Jaccard and Bay-Curtis dissimilarity 

measures. These measures are popular measures for binary and count data. 

• Fourthly, the Barents Fish data was analyzed to demonstrate the usefulness of 

canonical correspondence analysis when we want to study the relationship among 

two sets of data. 

 

Overall it did not seem as if there were any clear patterns among the carbons and 

treatments in the Biolog data. However, there were a few cases where there were 

significant differences among the treatments (see Table 6.4). Both the Jaccard and 

Bray-Curtis dissimilarities gave similar results which lead to the same conclusions. 

The canonical correspondence analysis shows that most of the sites and species are 

clustered around the origin. This shows that all the different fish species seem to occur 

in most of the sites in the Barents Sea.   
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Chapter 7 
 

General conclusion  
 

The aim of this thesis was to explore and understand ways of analyzing 

multidimensional count or binary data. This task was accomplished by using two 

approaches, namely exploratory analysis and inferential analysis of the data. The 

methods used for exploratory data analyses were correspondence analysis, canonical 

correspondence analysis, cluster analysis and multidimensional scaling. These 

methods have been successfully applied to the Biolog data and the Barents Fish data. 

An analysis of distance method was used to perform an inferential analysis on the 

multidimensional Biolog data. This method by Anderson (2001a) is a quite powerful 

method and unlike the analysis of variance, this method makes no distributional 

assumptions. 

 

Correspondence analysis is an exploratory technique that studies the relationship 

between the rows and columns of a contingency table. The goodness-of-fit in 

correspondence analysis is determined by the proportion of inertia explained by the 

first two dimensions. The screeplot and the Benzécri plot can be used to identify the 

appropriate number of dimensions to obtain a good fit. Canonical correspondence 

analysis is a correspondence analysis in a restricted space. CCA is a very useful 

technique in investigating the relationship between the count data and the explanatory 

variables. The goodness-of-fit is also determined by the proportion of inertia 

explained in the constrained space. Correspondence analysis is quite an active area of 

research. Partial constrained correspondence analysis, joint and multiple 

correspondence analyses are more techniques which could be used for analyzing data 

in contingency tables (see Greenacre, 2007).  

 

Cluster analysis was used as an exploratory technique for identifying groups in the 

data. Cluster analysis uses a distance or dissimilarity matrix obtained from the data. In 

this way cluster analysis can be applied to any type of data by choosing the 

appropriate distance or dissimilarity measure. Several distance and dissimilarity 
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measures were given in this thesis. The Jaccard and Bray-Curtis were specifically 

used for binary or count data. Four agglomerative hierarchical clustering methods 

were discussed. In Chapter 6 only complete linkage clustering was used in the 

analysis of the Biolog data, since it tends to produce clearer dendrograms when 

compared to the other agglomerative hierarchical clustering methods. However, the 

literature on cluster analysis is very large. Other non-hierarchical methods for cluster 

analysis are also available, such as the K-means cluster method. Model-based 

clustering methods are also very powerful in finding clusters in the data by using 

statistical distributions (see Johnson and Wichern, 2007).  

 

A very attractive non-parametric technique is the analysis of distance discussed in 

Chapter 5. The conventional parametric analysis of variance approach is based on 

some assumptions which are: (1) the data in each group are from a normal population, 

(2) the observations in each group are independent and (3) the population variances in 

the groups are equal. Therefore, the data are assumed to be numerical data as well. 

However, the analysis of distance is not based on any such assumptions. This method 

can be applied to any type of data by employing the appropriate distance or 

dissimilarity measure. 

 

The statistical software R is available on the internet (http://www.r-project.org/) and 

can be downloaded free of charge. All the methods discussed in this thesis have been 

programmed in R and are readily available for usage. Any person with a basic 

knowledge of R will be able to apply the functions for the corresponding methods. 

Some functions are standard in R, while other functions can be obtained from the 

packages available on the R website. These packages can also be freely downloaded. 

The following is a summary of the methods and the functions used (with package 

name in brackets {}): 

 

• Correspondence analysis: ca() {ca}; anacor() {anacor}; cca() {vegan} 

• Canonical correspondence analysis: anacor() {anacor}; cca() {vegan} 

• Cluster analysis: dist(), hclust() {stats} 

• Multidimensional scaling: cmdscale() {stats}; isoMDS() {MASS}; metaMDS() 

{vegan} 
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• Analysis of distance: adonis() {vegan}. 

 

There are many other packages and functions to perform the above mentioned 

methods in R. This software is a powerful tool for many statistical applications. It 

contains the most recently developed techniques in statistics. The graphics are quite 

impressive and the option to write your own programs gives the user much freedom to 

explore his/ her own ideas.   

 

Open research questions: 

 

• The use of permutation tests in statistics has become quite popular with the 

development of computing software. In this thesis we have used permutation tests 

in canonical correspondence analysis to identify significant environmental 

variables (Chapter 2). In Chapter 5 we used permutation tests in the analysis of 

distance to obtain p-values for a hypothesis test. Using permutation tests in 

multidimensional scaling and cluster analysis should also be investigated. 

Permutation tests may for example be useful as a mechanism to determine the 

goodness-of-fit for clustering analysis or how many clusters are sufficient.  

• If the permutation test is applicable in these methods, bootstrap techniques may 

also be explored in future research concerning these methods. 

• Since there are various options to perform MDS (for example metric and non-

metric with different distance or dissimilarity measures), techniques like 

Procrustes analysis can be employed in a study to compare the performance of the 

different MDS options. 

• With count data we often have the case where the counts can be very high and 

very low in some cells. This causes large variation in the data. Clarke and 

Warwick (1994) argued that the 4th root transformations should be applied to 

count data to reduce the influence of very abundant species. How to transform the 

count data should also receive further attention. 
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