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Abstract 

 

Novel gold(I) trithiophosphite complexes were synthesised by utilising the ligands P(SR)3 (R 

= Me, Ph) and 1,2-bis(1,3,2-dithiaphospholan-2-ylthio)ethane (
2
L). Reaction with (tht)AuCl 

or (tht)AuC6F5 readily yielded the corresponding complexes (RS)3PAuX and 2L(AuX)2 (X = 

Cl, C6F5) as well as {Au[P(SMe)3]2}CF3SO3. Structural characterisation by X-ray diffraction 

revealed linear complexes in part associating by Au…Au and/or Au…S contacts, two poly-

morphs of one compound associating by either Au…S interactions or π-stacking was also 

obtained. (MeS)3PAuCl and (MeO)3PAuCl were found to be isostructural in the solid state. 

 

The complex chloro[tris(4-methylthiazol-2-yl)phosphane]gold, A, was used to probe the 

electronic influence tris(azol-2-yl)phosphanes exert upon gold(I) by substituting the chloride 

with various thiolates. In contrast to Ph3PAuCl, only NCS
–
 and PhC(O)S

–
 afforded stable 

compounds which could be attributed to a weaker donating capability of the tris-

(azolyl)phosphane ligand class. The compounds A and chloro[tris(thiazol-2-yl)phosphane]-

gold, B, were shown to crystallise in 4 new polymorphs and solvates bringing the total to an 

exceptional seven. Among the solid-state structures of A the rare instance of a polymorph and 

a thf solvate not exhibiting aurophilic interactions as opposed to the original structure were 

observed. Complex B was shown to crystallise in polymorphs where dimers are associated 

either by Au…Au or Au…Cl interactions but otherwise exhibit similar arrangements of the 

ligand, this set of polymorphs is unprecedented amongst gold complexes. An NMR 

experiment proved that tris(thiazolyl)phosphane complexes are subject to hydrolysis under 

alkaline conditions. 

 

A trimeric gold(I) heterometallacycle, obtained by reacting (tht)AuCl with 4,4-dimethyl-2-(2-

thienyl)oxazoline deprotonated at C-5 of the thiophene ring, was structurally characterised. 

Intramolecular Au…S interactions were found to be present which precluded interaction of the 

gold atoms with other metal centres such as Me3CNCAuCl or AgNO3. A second solvate 

obtained additionally exhibits Au…Au interactions. The scope of uncommon bis-imine co-

ordination to AuI was expanded by utilising 1,2-bis(1-imidazolylmethyl)-2,4,6-trimethyl-

benzene (2L) to synthesise the [Au2(µ-2L)2]
2+ cation. The triflate salt forms the first porous 

crystal structure of gold and the co-crystallised solvent could be partially removed by 

evacuation at elevated temperatures. Utilising a ditopic phosphite ligand instead of the 

commonly used ditopic phosphane ligands, a new cationic species of the type [Au2(µ-
2
L)3]

2+
 

was characterised in the solid state for the first time. 
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Finally, employing 2-phenylthiazole and 1-(thiazol-2-yl)piperidine which can be deprotonated 

at C-5 of the thiazole ring, Fischer-type pentacarbonyltungsten carbeniate complexes were 

prepared and structurally characterised. Starting from these complexes, the analogous Fischer-

type methoxycarbene as well as carbyne complexes could be obtained by alkylation and 

formal oxide abstraction, respectively. The latter products readily formed dinuclear adducts 

with AuCl. 

A Fischer-type methoxycarbene could be transferred to Au
I
 affording the first such gold(I) 

complex exhibiting Au…Au interactions in the solid state as well as a rare agostic Au…H 

interaction which was examined by low-temperature 1H NMR measurements. Transfer of the 

carbeniate ligand derived from 1-(thiazol-2-yl)piperidine to Ph3PAu
+
 afforded an aurated 

thiazole product (by an unprecedented loss of CO) which may be represented as a pseudo-

abnormal azolylidene complex owing to W(CO)5-coordination at a distant nitrogen. The 

carbeniate originating from 2-phenylthiazole, on the other hand, afforded, by rare W(CO)5-

trapping and without CO-loss, a pseudo Fischer-type carbene complex. 

Carbene transfer to gold was complemented by the first transfers of rNHC ligands from 

chromium and tungsten to gold(I) affording a novel class of complexes, all of which were 

structurally characterised. This work bridges the unnatural divide created between Fischer and 

N-heterocyclic carbene complexes. 
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Opsomming 

 

Nuwe goud(I) tritiofosfietkomplekse met die ligande P(SR)3 en 1,2-bis(1,3,2-ditiafosfolaan-2-

ieltio)etaan (
2
L) is gesintetiseer. Reaksie met (tht)AuCl of (tht)AuC6F5 lei geredelik tot die 

vorming van ooreenkomstige komplekse (RS)3PAuX en 2L(AuX)2 sowel as {Au[P(SMe)3]2}-

CF3SO3. Strukturele karakterisering met X-straal diffraksie toon lineêre komplekse wat ge-

deeltelik deur Au…Au en/of Au…S kontakte assosieer. Twee polimorfe van een verbinding, 

wat deur Au…S interaksies of π-pakking assosieer, is beskryf. Ondersoek van die molekulêre 

strukture van (MeS)3PAuCl en (MeO)3PAuCl het getoon dat die verbindings isostruktureel is 

in die vaste toestand. 

 

Die kompleks chloro[tris(4-metieltiasool-2-iel)fosfaan]goud, A, is gebruik in ‘n ondersoek na 

die elektroniese invloed wat tris(asool-2-iel)fosfane op goud(I) uitoefen deur substitusie van 

die chloried met verskeie tiolate. In teenstelling met Ph3PAuCl, het net NCS
–
 en PhC(O)S

–
 

stabiele verbindings gelewer. Hierdie resultaat kan toegeskryf word aan die swakker 

donasievermoë van die tris(asool-2-iel)fosfaan ligandgroep. Verbinding A en chloro[tris-

(tiasool-2-iel)fosfaan]goud, B, kristalliseer in 4 nuwe polimorfe en solvate, in totaal sewe. 

Tussen die verskeie vastetoestand strukture van A is die ongewone gevalle van ‘n polimorf en 

‘n thf solvaat, wat nie aurofiliese interaksies bevat nie in teenstelling met die situasie in die 

oorspronklike struktuur, waargeneem. Kompleks B kristalliseer in polimorfe wat óf in Au…Au 

óf in Au∴Cl interaksies betrokke is maar andersyds dieselfde rangskikking as die ligand het. 

‘n KMR eksperiment het bewys dat hidrolise van tris(tiasoliel)fosfaankomplekse onder 

alkaliese toestande voorkom. 

 

‘n Trimeriese goud(I) heterometaalasiklus, verkry deur die reaksie van (tht)AuCl met C-5-

gedeprotoneerde 4,4-dimetiel-2-(tiëen-2-iel)oksasolien, is struktureel gekarakteriseer. Intra-

molekulêre Au…S interaksies is teenwoordig en het die reaksie van die heterometaalasiklus 

met ander metaalverbindings soos Me3CNCAuCl of AgNO3 verhoed. Die omvang van bis-

imien koördinasie aan Au
I
 is uitgebrei deur die gebruik van 1,2-bis(imidasool-1-ielmetiel)-

2,4,6-trimetielbenseen (
2
L) om die [Au2(µ-

2
L)2]

2+
 katioon te sintetiseer. Die triflaat sout toon 

die eerste poreuse kristalstruktuur van goud en oplosmiddel kon onder vakuum by ‘n hoë 

temperatuur deelsgewys verwyder word. ‘n Ander kationiese spesie, [Au2(µ-2L)3]
2+, is vir die 

eerste keer in die vaste toestand gekarakteriseer deur gebruik te maak van ‘n ditopiese 

fosfietligand in plaas van die algemene ditopiese fosfaanligande. 
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Ten laaste, het die gebruik van 2-fenieltiasool en 1-(tiasool-2-iel)piperidien, wat op C-5 van 

die tiasoolring gedeprotoneer kan word, die isolasie van Fischer-tipe pentakarboniel-

wolframkarbeniaatkomplekse wat struktureel gekarakteriseer kon word verseker. Deur hierdie 

komplekse as uitgangstowwe te gebruik kon analoë Fischer-tipe metoksiekarbeen- sowel as 

karbynkomplekse verkry word deur alkilering en formele oksiedverwydering, onderskeidelik. 

Een Fischer-tipe metoksiekarbeenkompleks kon omgeskakel word in ‘n AuI kompleks, die 

eerste voorbeeld van só ‘n goud(I) kompleks wat Au…Au interaksies in die vastetoestand het. 

Buitengewone agostiese Au…H interaksies is ondersoek met lae-temperatuur 
1
H KMR analise. 

Die oordrag van die karbeenligand afgelei van 1-(tiasool-2-iel)piperidien na Ph3PAu+, het ‘n 

goud-tiasoolproduk, wat voorgestel kan word as ‘n pseudo abnormale asolielideen kompleks 

as gevolg van die koördinasie van die W(CO)5 fragment op ‘n verwyderde stikstof atoom, tot 

gevolg deur die ongekende verlies van CO uit ‘n gekoördinieerde asielgroep. Die karbeen-

ligand berei uit 2-fenieltiasool, het in teenstelling via ‘n buitengewone skaars W(CO)5 vas-

vanging sonder CO verlies, tot die vorming van ‘n pseudo Fischer tipe karbeen kompleks 

gelei. 

Karbeen oordragreaksies na goud is uitgebrei deur die eerste oordragte van rNHC ligande van 

chroom en wolfram na AuI om aanleiding te gee tot die vorming van ‘n nuwe groep van 

komplekse wat almal met enkel-kristal X-straal diffraktometrie gekarakteriseer is. Hierdie 

werk oorbrug die onnatuurlike skeiding tussen Fischer en N-heterosikliese karbeenkomplekse. 
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Zusammenfassung 

 

Neuartige Gold(I) Trithiophosphitkomplexe wurden von den Liganden P(SR)3 (R = Me, Ph) 

und 1,2-Bis(1,3,2-dithiaphospholan-2-ylthio)ethan (
2
L) erhalten. (tht)AuCl oder (tht)AuC6F5 

reagieren bereitwillig mit diesen Liganden zu den jeweiligen Komplexen (RS)3PAuX und 

2
L(AuX)2 (X = Cl, C6F5) sowie {Au[P(SMe)3]2}CF3SO3. Strukturelle Charakterisierung durch 

Einkristallröntgendiffraktometrie zeigte lineare Komplexe, die teilweise unter Ausbildung 

von Au…Au- oder Au…S-Kontakten assoziieren; zwei Polymorphe eines Komplexes, die je-

weils unter Ausbildung von Au…S-Kontakten oder π-Stapel kristallisieren, konnten erhalten 

werden. (MeS)3PAuCl und (MeO)3PAuCl sind im Festzustand isostrukturell. 

 

Der Komplex Chloro[tris(4-methylthiazol-2-yl)phosphan]gold, A, wurde herangezogen, um 

den elektronischen Einfluss von Tris(azolyl)phosphanen auf Gold(I) zu untersuchen; dazu 

wurde der Chloridligand durch verschiedene Thiolate substituiert. Im Gegensatz zu Ph3PAuCl 

zeigte sich, dass nur NCS
–
 und PhC(O)S

–
 stabile Verbindungen liefern; dies konnte auf eine 

verringerte Elektronendonorfähigkeit der Tris(azolyl)phosphane zurückgeführt werden. Die 

Komplexe A und Chloro[tris(thiazol-2-yl)phosphan]gold, B, konnten in vier neuen Poly-

morphen und Solvaten kristallisiert werden, insgesamt wurden damit sieben solche Strukturen 

bestimmt. Die Strukturen von A stellen den selten zu beobachtenden Fall dar, in dem eine 

Verbindung als neues thf-Solvat und Polymorph im Gegensatz zur ursprünglichen Struktur 

ohne Au…Au-Kontakte kristallisiert. Von Komplex B konnte ein neues Polymorph kris-

tallisiert werden, das über Au…Cl-Kontakte verbrückte Dimere enthält. Ein schon bekanntes 

Polymorph kristallisisert mti einer ähnlichen Andordnung der Liganden, ist aber über Au…Au-

Interaktionen stabilisiert. Diese Ausbildung von unterschiedlichen Kontakten in verschie-

denen Polymorphen wurde zum ersten Mal beobachtet. Ein NMR-Experiment konnte zeigen, 

dass Komplexe von Tris(azolyl)phosphanen im alkalischen Medium hydrolyseempfindlich 

sind. 

 

Ein trimerer Gold(I) Heterometallacyclus wurde durch die Reaktion von (tht)AuCl mit 4,4-

Dimethyl-2-(2-thienyl)oxazolin, das am C-5 des Thiophenrings deprotoniert wurde, erhalten 

und die Kristallstruktur bestimmt. Intramolekulare Au…S-Kontakte verhindern eine Reaktion 

des Heterometallacyclus mit anderen Metallzentren, zB Me3CNCAuCl oder AgNO3. Ein 

weiteres thf-Solvat der Verbindung zeigt zusätzlich intermolekulare Au…Au-Interaktionen. 

Die wenigen Literaturbeispiele von bis-Imin-Koordination zu Gold(I) wurden durch die Syn-

these des [Au2(µ-2L)2]
2+-Kations [2L = 1,3-Bis(imidazol-1-ylmethyl)-2,4,6-trimethylbenzen]  
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erweitert. Das Triflatsalz zeigt im Festzustand die erste poröse Kristallstruktur eines Gold-

komplexes. Cokristallisiertes Lösungsmittel konnte teilweise im Vakuum bei erhöhter Tem-

peratur unter Erhaltung der Struktur entfernt werden. Eine weitere kationische Spezies des 

Typs [Au2(µ-2L)3]
2+ wurde erstmalig mit einem zweizähnigen Phosphitliganden statt der 

üblicherweise verwendeten Phosphanliganden im Festzustand charakterisiert. 

 

Schliesslich wurden Pentacarbonylwolfram-Carbeniatkomplexe des Fischer-Typs dargestellt 

und strukturell charakterisiert. 2-Phenylthiazol und 1-(Thiazol-2-yl)piperidin wurden an C-5 

des Thiazolrings deprotoniert und mit W(CO)6 und wässrigem [NMe4]Cl zu den Produkten 

umgesetzt. Ausgehend von diesen Verbindungen konnten die analogen Methoxycarben-

komplexe sowie Carbinkomplexe durch Alkylierung bzw. formale Oxidabspaltung erhalten 

werden. Die Carbinkomplexe bildeten binucleare Addukte mit AuCl. 

Ein Methoxycarbenkomplex konnte auf Au
I
 übertragen werden und der erste solche Gold-

komplex – der Au…Au-Kontakte im Festzustand sowie agostische Au…H-Interaktionen, die 

durch 1H NMR-Spektroskopie bei niedriger Temperatur untersucht wurden, zeigt – konnte 

erhalten werden. Transfer eines Carbeniatliganden [gebildet aus 1-(Thiazol-2-yl)piperidin] 

auf Ph3PAu
+
 führte in einem Fall zu einem aurierten Thiazol (durch einen in der Literatur 

beispiellosen CO-Verlust), dieses kann durch den fernen Stickstoff als pseudo-abnormaler 

Azolylidenkomplex beschrieben werden. Der aus 2-Phenylthiazol gebildete Carbeniatligand 

ergab andererseits durch ein selten beobachtetes Abfangen eines W(CO)5-Fragments ohne 

Verlust von CO einen Carbenkomplex des pseudo-Fischer-Typs. 

Carbenübertragung auf Gold wurde weiters durch den ersten Transfer eines rNHC-Liganden 

von Chrom und Wolfram zu Au
I
 ergänzt. Alle Komplexe dieser neuen Verbindungsklasse 

wurden strukturell charakterisiert. Diese Ergebnisse verbinden die unnatürliche Trennung von 

Carbenkomplexen des Fischer-Typs und N-heterocyclischen Carbenkomplexen. 
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General remarks 

 

Nomenclature 

Nomenclature in this thesis has been kept as systematic as viable and trivial names 

have been largely avoided. The IUPAC recommendations of the Commission on 

Nomenclature of Inorganic Chemistry in A. Salzer: “Nomenclature of organometallic 

compounds of the transition elements (IUPAC Recommendations 1999)”, Pure Appl. 

Chem. 1999, 71, 1557–1585, have been incorporated. All alkanes and alkyl groups, 

unless noted otherwise, are unbranched. “Hexanes” refers to the commercial mixture 

of isomers. 

When referring to specific atoms in a compound, the numbers resemble the scheme 

applied in nomenclature, e.g. the carbon atom between the nitrogen and sulfur atoms 

in a thiazole ring is C-2. 

 

Crystallography 

In place of the obsolete estimated standard deviation (e.s.d.) the measure of 

uncertainty of bond lengths and angles is referred to as the standard uncertainty (s.u.) 

(symbol u) which is now the preferred term. Values of s.u.s have always been rounded 

up to the nearest single digit. For readability, the unit Ångström (Å, 10–10 m) is used 

instead of the picometre. Differences in bond parameters have been deemed 

significant if the intervals of 3 s.u.s, counting from each value in the appropriate 

direction, do not overlap. Data collection and figure drawing parameters are 

summarised in Section 2.4.1, p. 57. 

Associated with this thesis a crystallographic information (CIF) file containing all 

crystal structures reported will be deposited electronically and can be obtained via the 

J. S. Gericke Library, Stellenbosch University. If published, these CIF files can also 

be obtained via the Cambridge Crystallographic Data Centre, 12 Union Road, 

Cambridge CB2 1EZ, United Kingdom; data_request@ccdc.cam.ac.uk; via 

www.ccdc.cam.ac.uk/data_request/cif or supplementary material of the appropriate 

journal. The CIF entries of published structures that are deposited with the J. S. 

Gericke Library have been edited for consistent nomenclature but are otherwise 

identical to those with the CCDC. 
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Abbreviations used in this thesis 

 

bipy 2,2′-bipyridine 

bitmb 1,3-bis(imidazol-2-ylmethyl)-2,4,6-trimethylbenzene 

br broad (referring to peak shape) 

Bu butyl 

Bz benzoyl 

Cp η5-cyclopentadienyl 

CP cross-polarisation 

dcm dichloromethane 

dec. decomposition 

dmpm bis(dimethylphosphanyl)methane 

dmso dimethylsulfoxide [(methylsulfinyl)methane] 

dppe 1,2-bis(diphenylphosphanyl)ethane 

dppm bis(diphenylphosphanyl)methane 

EI electron impact 

eq. equivalent 

ESI electrospray ionisation 

Et ethyl 

FAB fast atom bombardment 

Fc ferrocenyl 

IR infrared; abbreviations used in conjunction with infrared spectroscopy: 

 m medium strength 

 s strong 

 sh shoulder 

 vs very strong 

 w weak 

L generic ligand 

M generic metal 

MAS magic angle spinning 

Me methyl 

MALDI matrix-assisted laser desorption ionisation 
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MS mass spectrometry 

NMR nuclear magnetic resonance; abbreviations used in conjunction with NMR: 

 CP cross-polarisation 

 d doublet 

 m multiplet 

 MAS magic angle spinning (54.7° against B0) 

 q quadruplet 

 s singlet (if a coupling constant is given it was obtained from the 

  satellite doublet signal) 

 t triplet (generally of 1:2:1 intensity pattern, for coupling 

  with 
14

N a 1:1:1 pattern is observed) 

Ph phenyl 

py (N-coordinated) pyridine 

R any organic residue (if not specified) 

s.u. standard uncertainty, replaces the obsolete e.s.d. (estimated standard 

deviation) 

Tf trifluoromethylsulfonyl, trifyl 

thf tetrahydrofuran (oxacyclopentan) 

tht tetrahydrothiophene (sulfacyclopentan) 

tmdpd tetramethyldiphosphane disulfide [Me2P(S)P(S)Me2] 

tmeda N,N,N′,N′-tetramethylethan-1,2-diamine 

triflate trifluoromethanesulfonate 

X generic halogen (if not specified) 
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General Introduction 

 

 

 

 

 
1.1 Gold and relativistic effects 

 

The heavier members of the periodic table of the elements, especially the transition 

metals following the lanthanides, are noticeably affected by relativistic effects. Those 

effects reach a pronounced maximum for gold. Its neighbours platinum and mercury 

are significantly less influenced by this phenomenon.1 

 

A consequence of relativistic effects is the similar energy of the 6s and 5d electrons 

caused by relativistic contraction of the former and expansion of the latter orbitals. 

Both levels are thus accessible for hybridisation and are actively involved in bonding. 

The colour of gold is also a result of relativistic effects, though definitive results are 

surprisingly elusive.1 The coinage metals Cu, Ag and Au form group 11 in the 

periodic table and would be expected to show the oxidation state I in their compounds, 

which is indeed observed. While the “unorthodox” oxidation state II for copper is 

attributed to its compact, nodeless d-orbitals experiencing electron-electron repul-

sion,1 gold can exhibit any oxidation state from –I to V, most commonly I and III in 

complexes, as a consequence of the chemically non-inert d electrons and the low-

lying 6s orbital that can accommodate an additional electron.2 Proof of the latter is 

manifested in the existence of the auride anion, Au
–
, a unique feature amongst tran-

sition metals.
3
 This anion is capable of replacing Br

–
 and I

–
 in crystal lattices.

4
 

                                                
1 P. Pyykkö, Angew. Chem., Int. Ed. Engl. 2004, 43, 4412–4456 

 (Angew. Chem. 2004, 116, 4512–4557). 

2 P. Pyykkö, Angew. Chem., Int. Ed. Engl. 2002, 41, 3573–3578 

 (Angew. Chem. 2002, 114, 3723–3728). 

3 A. H. Sommer, Nature 1943, 152, 215. 

4  (a) R. Wormuth and R. W. Schmutzler, Thermochim. Acta 1990, 160, 97–102; 

 (b) C. Feldmann and M. Jansen, Z. Anorg. Allg. Chem. 1995, 621, 1907–1912. 

1 
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Apart from peculiar oxidation states, the coordination geometry of gold is special in 

that the Au
I
 oxidation state, with which this thesis will deal exclusively, strongly 

prefers linear dicoordinate 14-valence electron complexes.
5
 In contrast to its lighter 

group members, it is reluctant to expand its coordination sphere to trigonal-planar or 

tetrahedral coordination which – in unchelated complexes – can only be achieved with 

the strongest donors such as phosphanes and is usually prone to dissociation in 

solution or decomposition in the solid state by release of ligand.
6
 Theoretical studies 

show that the energy released upon coordination of phosphanes to Au
I
 plunges 

sharply after two ligands have been accommodated (Scheme 1.1). The relativistically 

calculated Au–P bond energies for successive PH3 coordination to Au+ are 270 and 

245 kJ mol–1 for the first two and only 60 and 75 kJ mol–1 for the last two PH3 

ligands.
7
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Scheme 1.1 Schematic representation of stepwise phosphane coordination to Au
I
. 

 

The trend not to readily coordinate to more than two ligands, however, does not dis-

courage the gold atoms in AuI complexes to associate in the solid state and in 

concentrated solutions, a phenomenon Schmidbaur has termed “aurophilicity”.8 These 

attractive closed-shell d
10

–d
10

 interactions are also a consequence of relativistic effects 

and occur in the metal–metal separation range of 2.8 to ca. 3.5 Å. Their strength (up 

to 46 kJ mol
–1

) is comparable to hydrogen bonds.
1
 In some gold(I) complexes a 

Au…Au distance of less than 2.88 Å is observed9 which is the interatomic distance in 

gold metal, proof of a bonding interaction between these atoms. Two ligands bridging  

                                                
5 P. Schwerdtfeger, P. D. W. Boyd, A. K. Burrell, W. T. Robinson and M. J. Taylor, 

 Inorg. Chem. 1990, 29, 3593–3607. 

6 (a) H. Schmidbaur and R. Franke, Chem. Ber. 1972, 105, 2985–2997; 

 (b) P. G. Jones, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1980, 36, 3105–3107. 

7 P. Schwerdtfeger, H. L. Hermann and H. Schmidbaur, Inorg. Chem. 2003, 42, 1334–1342. 

8 (a) F. Scherbaum, B. Huber, G. Müller and H. Schmidbaur, 

 Angew. Chem., Int. Ed. Engl. 1988, 27, 1542–1544 (Angew. Chem. 1988, 100, 1600–1602); 

 (b) F. Scherbaum, A. Grohmann, B. Huber, C. Krüger and H. Schmidbaur, 

 Angew. Chem., Int. Ed. Engl. 1988, 27, 1544–1546 (Angew. Chem. 1988, 100, 1602–1604). 

9 See for example: (a) M. A. Bennett, S. K. Bhargava, K. D. Griffiths, G. B. Robertson, 

 W. A. Wickramasinghe and A. C. Willis, Angew. Chem., Int. Ed. Engl. 1987, 26, 258–260 

 (Angew. Chem. 1987, 99, 261–262); (b) F. Scherbaum, B. Huber, G. Müller and H. Schmidbaur, 

 Angew. Chem., Int. Ed. Engl. 1988, 27, 1542–1544 (Angew. Chem. 1988, 100, 1600–1602); 

 (c) M. Desmet, H. G. Raubenheimer and G. J. Kruger, Organometallics 1997, 16, 3324–3332. 
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the gold centres greatly facilitate the formation of such a close contact. The only 

example where an unbridged Au
I
 may engage in this kind of aggregation is a penta-

nuclear complex, but the assignment of oxidation states are ambiguous and the 

authors suggest that it may also be regarded as a AuIII centre.10 

 

 

1.2 Usage of gold in medicine 

 

Medicines containing gold have been administered since the early ages in Egypt and 

China as described in the scriptures of a contemporary alchemist.
11

 In the late 19
th

 

century, Na[AuCl4] was used in the treatment of syphilis where it might have had 

some advantage over the mercury compounds used at that time. Only when Koch 

discovered the antibacterial action of [Au(CN)2]
–
 in 1890, chrysotherapy was re-

investigated with an increasingly scientific approach. As this complex was in time 

proven to act against the tubercle bacillus [which was then believed to cause 

rheumatoid arthritis (RA)], gold compounds, notably Au
I
 thiolates, were used against 

this disease. In 1960 the efficacy of this therapy was finally proven and chrysotherapy 

remains one of the effective measures against RA even though the action of gold is 

not well understood. In 1985 the then new compound Auranofin
TM

 (Scheme 1.2) was 

introduced, the first orally administrable gold drug12 in contrast to the other injectable 

thiolates. New fields for medical applications of gold complexes are the treatment of 

cancer, malaria and HIV. For the former a relationship between the established Pt
II
 

drugs and the isoelectronic Au
III

 compounds can be envisaged.
13

 

 

O

CH3COO

CH3COO

OCOCH3

S

CH3COO
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Scheme 1.2 Structural formula of the drug Auranofin
TM

. 

                                                
10 R. Usón, A. Laguna, M. Laguna, J. Jiménez and P. G. Jones, Angew. Chem., Int. Ed. Engl. 

 1991, 30, 198–199 (Angew. Chem. 1991, 103, 190–191). 

11 (a) T. L. Davis and L.-C. Wu, J. Chem. Educ. 1936, 13, 103–105; 

 (b) Z. Huaizhi and N. Yuantao, Gold Bull. 2001, 34, 24–29. 

12 G. J. Higby, Gold Bull. 1982, 15, 130–140. 

13 (a) M. J. Abrams and B. A. Murrer, Science 1993, 261, 725–730; (b) C. F. Shaw III, 

 Chem. Rev. 1999, 99, 2589–2600; (c) E. R. T. Tiekink, Gold Bull. 2003, 36, 117–124. 
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1.3 Gold in catalysis 

 

For a long time gold was neglected in the field of catalysis. Due to its most noble 

status it was perceived to be unreactive. Only scattered reports of reactions catalysed 

by gold and its complexes have thus surfaced in the 20
th

 century. This potential of 

gold was acknowledged only recently ensuing an explosive growth of the numbers of 

contributions published in this field.
14

 

 

In the 1980s Haruta started developing the catalytic oxidation of CO to CO2 by gold 

on oxide supports;
15

 a very important reaction in fuel cell design as CO poisons 

platinum electrodes and has to be removed from the gas feed. Another important 

heterogeneous reaction is the hydrochlorination of alkenes for which Au
III

 was 

predicted to be the superior catalyst, which was later verified.16 

 

Homogeneous applications of gold catalysis now focus on the activation of alkynes 

and allenes, as well as activated alkenes to a lesser extent. The catalysts [AuCl4]
–
 and 

AuCl3 used initially have now mostly been replaced with phosphanegold(1+) species 

with weakly coordinating counter-ions. A great advantage of these compounds is their 

inertness against oxidation by O2 and against interference by moisture and most 

common functional groups. As a soft metal cation, Au
I
 does not interact strongly with 

these mostly hard donor atoms and the reactions can be performed without the need 

for adherence to special conditions.
14d

 The action of Au
I
 is thought to result from its 

alkynophilia (even though structurally characterised alkyne π complexes of this metal 

are rarities)
17

 paired with its preference of linear-dicoordinate geometry. This attack 

by Au
I
 renders one carbon atom of the alkyne electrophilic and thus susceptible to 

attack by various nucleophiles, always affording the Markovnikov product for  

                                                
14 (a) A. S. K. Hashmi, Angew. Chem., Int. Ed. Engl. 2005, 44, 6990–6993 (Angew. Chem. 2005, 

 117, 7150–7154); (b) G. J. Hutchings, Catal. Today 2005, 100, 55–61; (c) A. S. K. Hashmi 

 and G. J. Hutchings, Angew. Chem., Int. Ed. Engl. 2006, 45, 7896–7936 (Angew. Chem. 2006, 

 118, 6297–6300); (d) H. C. Shen, Tetrahedron 2008, 64, 3885–3903. 

15 M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 1987, 405–408. 

16 B. Nkosi, N. J. Coville and G. J. Hutchings, Appl. Catal. 1988, 43, 33–39. 

17 See for example: (a) D. M. P. Mingos, J. Yau, S. Menzer and D. J. Williams, 

 Angew. Chem., Int. Ed. Engl. 1995, 34, 1894–1895 (Angew. Chem. 1995, 107, 2045–2047); 

 (b) K. Köhler, S. J. Silverio, I. Hyla-Kryspin, R. Gleiter, L. Zsolnai, A. Driess, G. Huttner 

 and H. Lang, Organometallics 1997, 16, 4970–4979; 

 (c) P. Schulte and U. Behrens, Chem. Commun. 1998, 1633–1634. 
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Scheme 1.3 Example of a nucleophilic addition to an alkyne catalysed by AuCl3.
18

 

 

terminal alkynes. Typical reactions of alkynes proceed by attack of the gold at the 

alkyne, addition of an electrophile and hydrolysis of the organogold product (Scheme 

1.3).
14d 

 

If, however, an alkene adds to an alkyne activated by a gold catalyst, formally a 

carbocation results that may rearrange to a gold-substituted α-cyclopropyl cation. 

(Scheme 1.4). This species may also be drawn as a (cyclopropylmethylidene)gold(1+) 

complex. Based on evidence from reaction pathways Fürstner and Morency,19 

however, postulate that the carbocation resonance form more closely relates to reality. 

In a report of Hashmi some additional data
20

 is compiled that confirm the findings of 

the former authors. Different substitution of the attacked double bond always gives 

products derived from the more stable carbocation, while a carbene intermediate 

would sometimes mean that attack would be more efficient on the sterically more 

crowded cyclopropane site as shown in Scheme 1.4 (b): From sterical considerations, 

the carbene structure shown to the left should be expected to react with both cyclo-

propane carbons. However, efficient synthesis of the product on the right indicates 

that a carbocationic structure has the higher contribution. The last step is a proto-

deauration yielding the exo-double bond. 

                                                
18 M. D. Milton, Y. Inada, Y. Nishibayashi and S. Uemura, Chem. Commun. 2004, 2712–2713. 

19 A. Fürstner and L. Morency, Angew. Chem., Int. Ed. Engl. 2008, 47, 5030–5033 

 (Angew. Chem. 2008, 120, 5108–5111). 

20 A. S. K. Hashmi, Angew. Chem., Int. Ed. Engl. 2008, 47, 6754–6756 

 (Angew. Chem. 2008, 120, 6856–6858). 
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Scheme 1.4 Activation of a triple bond by gold and addition of a double bond: (a) different possible 

structures of the intermediate resulting from the attack are shown, L = tertiary 

phosphane; (b) see discussion. 

 

This evidence is in support of the view that gold carbene complexes, at least those of 

the Schrock-type invoked in gold catalysis, resemble gold-stabilised carbocations 

rather than carbenes and that π back-donation from the metal is negligible.21 This 

result is also reflected in the bond lengths of gold carbene complexes which feature in 

Chapter 5 and is discussed in more detail in the introduction of that Chapter. 

 

Stereospecific catalysis by gold has also been investigated;
22

 an early report on a gold-

catalysed stereoselective aldol condensation involved the reaction of CNCH2COOMe 

with aldehydes to form 4,5-disubstituted oxazolines shown in Scheme 1.5 which are 

extremely useful precursors for enantiomerically pure amino acids and -alcohols. As 

catalyst a substituted 1,1′-bis(diphenylphosphanyl)ferrocene gold complex that both 

comprises a substituent of point chirality and is axially chiral in itself was used.23 

 

R
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O N
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Scheme 1.5 Gold-catalysed enantioselective aldol condensation. 

                                                
21 P. K. Hurlburt, J. J. Rack, J. S. Luck, S. F. Dec, J. D. Webb, O. P. Anderson and S. H. Strauss, 

 J. Am. Chem. Soc. 1994, 116, 10003–10014. 

22 N. Bongers and N. Krause, Angew. Chem., Int. Ed. Engl. 2008, 47, 2178–2181 

 (Angew. Chem. 2008, 120, 2208–2211). 

23 Y. Ito, M. Sawamura and T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405–6406. 
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Other reactions of interest to organometallic chemistry have been shown to be 

catalysed by gold as well, e.g. the oxidative dimerisation of triorganostannanes to 

hexaorganodistannane and dihydrogen
24

 as well as the oxidative silylation of hydroxyl 

groups by triethylsilane affording the triethylsilyl ester or ether and dihydrogen.25 

Aldehyde, alkyne, alkene and halide groups are unaffected by the latter reaction 

(Scheme 1.6). Gold(I) hydrides have been implicated in the catalytic cycle, but eluded 

detection. 
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Scheme 1.6 Oxidative coupling reactions catalysed by Au
I
 phosphane complexes. 

 

 

1.4 Polymorphism in gold complexes 

 

When a given compound crystallises it will most often afford crystals of fairly 

uniform appearance and a characteristic spatial arrangement of the molecules within 

the associated unit cell. Sometimes, the molecules are arranged differently in the 

lattice of two crystals formed and hence different unit cell dimensions are observed. 

The space group and/or crystal system may also be different but this is not a necessity. 

When such different forms of a compound in the solid state are observed that fulfil the 

conditions above, they are called polymorphs. True polymorphs must therefore have 

exactly the same molecular composition, i.e. the same cations, anions and neutral 

molecules are present in the same ratio in both crystalline forms. Usually polymorphs 

will give themselves away by crystals of different shape and/or colour. This 

 

                                                
24 H. Ito, T. Yajima, J. Tateiwa and A. Hosomi, Tetrahedron Lett. 1999, 40, 7807–7810. 

25 H. Ito, K. Takagi, T. Miyahara and M. Sawamura, Org. Lett. 2005, 7, 3001–3004. 
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definition, however, has certain intrinsic limitations and e.g. for conformational 

isomers other definitions exist;
26

 for the scope of this dissertation the definition above 

is sufficient. 

 

A different situation ensues when a compound crystallises with enclosed solvent that 

merely occupies a cavity formed by inefficient packing of the host. These co-

crystallised solvent molecules can often be substituted for other molecules of similar 

size, e.g. by crystallisation from a different solvent.
27

 Such crystals do not constitute 

true polymorphs as they do not comprise the same molecular species but are merely 

different solvates of the same compound; sometimes in the literature the term pseudo-

polymorphism is used. 

 

In the pharmaceutical industry polymorphism, the formation of solvates and co-

crystals (similar to a solvate but the co-crystallised species is a solid at room 

temperature) are major factors that must be considered.26,28 On the one hand, these 

different crystalline forms – be it a polymorph, solvate or co-crystallisate – may 

exhibit different solubilities and hence bioavailabilities.
29

 On the other hand, such a 

material may be considered a new invention and therefore not be protected by patents 

that may only apply to a specific crystalline form of the drug. The latter enables 

competitors to essentially market the same drug without associated research and 

development expenses. 

 

Polymorphism is especially interesting when observed with gold compounds. 

Variations in aggregation by aurophilic contacts usually lead to different luminescent 

behaviour and several studies in this field have been published.30 For Ph3AsAuCl, 

examination of the luminescence spectra has led to the discovery of polymorphic  

                                                
26 J. Bernstein, in Polymorphism in Molecular Crystals (IUCr Monographs on Crystallography, 14), 

 Clarendon Press, Oxford, 2002. 

27 S.-S. Yun, J.-K. Kim, J.-S. Jung, C. Park, J.-G. Kang, D. R. Smyth and E. R. T. Tiekink, 

 Cryst. Growth Des. 2006, 6, 899–909. 

28 R. Hilfiker, in Polymorphism in the Pharmaceutical Industry, Wiley, New York, 2006. 

29 J. K. Haleblian, J. Pharm. Sci. 1975, 64, 1269–1288. 

30 (a) R. L. White-Morris, M. M. Olmstead and A. L. Balch, J. Am. Chem. Soc. 2003, 125, 

 1033–1040; (b) W. Lu, N. Zhu and C.-M. Che, J. Am. Chem. Soc. 2003, 125, 16081–16088; 

 (c) E. M. Gussenhoven, J. C. Fettinger, D. M. Pham, M. M. Malwitz and A. L. Balch, 

 J. Am. Chem. Soc. 2005, 127, 10838–10839; (d) R. L. White-Morris, M. M. Olmstead, 

 S. Attar and A. L. Balch, Inorg. Chem. 2005, 44, 5021–5029. 
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forms of this complex.
31

 Given that hydrogen bonds are of similar strength than 

aurophilic interactions,
1
 such interactions have been utilised in the design of poly-

morphs.
32

 

 

 

1.5 General aims and dissertation outline 

 

New ligands that have not found application in the field of gold chemistry are 

presented in this dissertation and their interaction with AuI centres is investigated. 

Some of these ligands are rather simple and readily available, it is thus surprising that 

they have not found use in gold chemistry before. A summary of the aims regarding 

the investigations presented in the Chapters is presented below, detailed aims and 

summaries will be given in separate sections in the respective Chapters. 

 

Trithiophosphites of the general formula P(SR)3, related to normal phosphites by 

replacing oxygen with sulfur, have not received much attention as ligands in 

coordination chemistry. The chemistry of these potentially multidentate, but yet 

simple, ligands towards several gold(I) fragments was thus to be developed. Structural 

characterisation of the complexes synthesised would elucidate how the trithio-

phosphite ligands bond to AuI, since coordination to soft phosphorus and sulfur atoms 

is available. Finally, extension of trithiophosphite coordination chemistry to Ag
I
 and 

Cu
I
, in the latter case with hard counter ions, was envisaged. 

 

In the instance of tris(azol-2-yl)phosphanes, the same points made above apply: These 

ligands are polydentate with a central soft phosphorus as well as soft sulfur and harder 

imine nitrogen centres in the heterocyclic residues. Yet, they have not been exten-

sively explored in coordination chemistry, especially P-coordinated metal complexes 

are rare. It was anticipated that chloride substitution from the simple chloro[tris(azol-

2-yl)phosphane]gold compounds by sulfur nucleophiles can be used as a method to 

synthesise new compounds and give insight into the stability of complexes of this 

                                                
31 B. Weissbart, L. J. Larson, M. M. Olmstead, C. P. Nash and D. S. Tinti, 

 Inorg. Chem. 1995, 34, 393–395. 

32 D. R. Smyth, B. R. Vincent and E. R. T. Tiekink, Cryst. Growth Des. 2001, 1, 113–117. 
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new ligand class. As these simple gold chloride complexes were also shown to exhibit 

polymorphism,
33

 another goal was to isolate new polymorphs of these compounds 

which would give insight into the factors governing the respective crystal lattices. A 

last aim of this chapter was to investigate the propensity of such tris(azol-2-

yl)phosphanegold complexes to undergo hydrolysis. 

 

The synthesis of (hetero)metallacycles incorporating gold(I) is a field of ever in-

creasing importance. These compounds exhibit a multitude of useful properties; from 

the battle against cancer, HIV and malaria to crystal engineering in the search for 

novel materials that exhibit desirable and specifically tailored properties. The first aim 

associated with the synthesis of heterometallacycles was to complete the charac-

terisation of a trimeric 18-membered heterometallacycle of the general formula 

[AuL]3, especially the molecular structure needed to be secured by single crystal  

X-ray diffraction. Secondly, utilising a bis(imidazol-1-ylmethyl)benzene the scope of 

imidazole bis-imine coordination of AuI was to be explored with the goal to obtain a 

porous crystal structure. Removal of co-crystallised solvent and analysis of the lattice 

changes was a further aim. A last target was the structural determination of a  

[Au2(µ-
2
L)3]

2+
 dication where two Au

I
 centres are coordinated in a trigonal-planar 

fashion by three bidentate ligands. As only few structures of such dications are known 

and all are phosphane complexes, the employment of different ligands for this task 

was envisioned. 

 

Finally, another topic that has not been explored is carbene and carbyne complexes 

bearing heterocyclic residues at the carbon bonded to the metal. These complexes are 

valuable starting materials for reactions with gold(I) electrophiles which can proceed 

under transfer of the ligand to gold. Again, thiazolyl groups in the complex offer soft 

sulfur and harder imine nitrogen atoms as additional sites for metal coordination. 

Therefore, the chemistry of tungsten Fischer-type carbene and carbyne complexes 

with heterocyclic substituents was to be investigated. Firstly, suitable conditions had 

to be found to isolate tungsten carbyne complexes with thiazole groups attached to the 

 

                                                
33 W. F. Gabrielli, Ph.D. thesis, Stellenbosch University, 2006. 
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carbyne carbon. Furthermore, the interaction of these compounds as well as the 

related Fischer-type carbene complexes with gold(I) reagents then had to be probed to 

again gain insight into the behaviour of Au
I
 when exposed to a variety of different 

donor centres. A focus would also be the verification of a proposed transient reaction 

product. Finally, the exploration of remote N-heterocyclic carbene transfer from group 

6 metals to Au
I
 would complement the known classes of gold carbene complexes. The 

use of different analytical methods was expected to determine which canonical form 

of the rNHC ligand, the classic pyridinylidene carbene resonance structure with a  

Au–C double bond or the charge-separated metalated pyridinium cation form with a 

formal Au–C single bond, has the higher contribution. 

 

In Chapter 2, the synthesis and characterisation of trithiophosphite complexes of 

gold(I) are reported. The compounds could be prepared by reacting the ligands with 

(tht)AuCl (tht = tetrahydrothiophene); they are fairly stable and differences as well as 

similarities to their normal phosphite analogues were observed. Most compounds 

could be characterised by single crystal X-ray diffraction and are linear dicoordinate 

complexes. Au…Au and Au…S contacts could be observed in the solid state structures 

of several complexes. A copper(I) trithiophosphite complex with triflate counter ions 

crystallised in a chain motif exhibiting rare Cu
I
 centres bridged by two triflate anions. 

 

The preparation of novel tris(azol-2-yl)phosphane complexes of gold(I) is reported in 

Chapter 3. All compounds were characterised by single crystal X-ray diffraction, P-

coordination of the ligands was always observed. Only the tris(imidazol-2-

yl)phosphane ligand is capable of coordinating to another Au
I
 centre. Tris(thiazol-2-

yl)phosphanegold(I) complexes are less stable than their tris(aryl)phosphane ana-

logues and decompose when a chloride ligand is substituted for alkyl- or arylthiolates. 

Four new polymorphs and solvates were found for the compounds chloro[tris(thiazol-

2-yl)phosphane]gold and chloro[tris(4-methylthiazol-2-yl)phosphane]gold that exhibit 

strikingly different association phenomena in the solid state. 
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In Chapter 4, two different thf solvates of cyclo-tris{[4,4-dimethyl-2-(2-thienyl-κC
5
)-

oxazoline-κN]gold} could be structurally characterised exhibiting different associ-

ation in the solid state. The cyclo-bis{1,3-bis[(imidazol-2-yl-κN)methyl]-2,4,6-tri-

methylbenzene}digold(2+) cation could be crystallised with tetrafluoroborate and 

triflate counter ions, the latter yielded a porous crystal structure in the solid state and 

the solvent could be partially removed. A novel [Au2(µ-
2
L)3]

2+
 cation was synthesised 

using N,N-bis(1,3,2-dioxaphospholan-2-yl)methanamine as the ditopic ligand (
2
L), the 

compound exhibits stronger Au…Au interactions as well as Au–P bonds than similar 

compounds with ditopic phosphane ligands. 

 

Finally, the synthesis of Fischer-type carbeniate, carbene and carbyne complexes 

incorporating unusual 5-substituted thiazole precursors is reported in Chapter 5. The 

carbeniate and carbene complexes react with selected AuI electrophiles to yield 

gold(I) acyl- and carbene complexes. Most notably, the first Fischer-type carbene 

complex exhibiting aurophilic interactions in the solid state was found; one carbeniate 

transfer reaction to Ph3PAu
+
 proceeded with unprecedented loss of CO to yield a 

pseudo-abnormal gold(I) carbene complex. A different carbeniate salt afforded a gold 

acyl complex that still retains the W(CO)5 fragment coordinated to the acyl oxygen, 

thus forming a pseudo-carbene complex. This compound substantiates earlier pro-

posals of the structure of this intermediate product on the way to gold acyl complexes. 

Transfer of rNHC ligands from group 6 pentacarbonylmetal fragments to Au
I
 

proceeded similarly, stable rNHC gold complexes were obtained and all were 

characterised, amongst other methods, by single crystal X-ray diffraction. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   … neue Verbindungen herzustellen und Strukturen zu erforschen, die noch nie ein 

Mensch zuvor gesehen hat. 
 

alternative Zielsetzung, frei nach Gene Roddenberry 



 

Trithiophosphite Complexes of Gold(I)1 

 

 

 

 

 
2.0 Abstract 

 

The first trithiophosphite complexes of gold(I) were synthesised and fully charac-

terised. Reaction of (tht)AuX (X = Cl or C6F5; tht = tetrahydrothiophene) with 

trithiophosphites P(SR)3 (R = Me or Ph) and the bicyclic [(SCH2CH2S)PSCH2]2 (
2
L) 

afforded the corresponding molecular complexes (RS)3PAuX [R = Me and X = Cl (1); 

R = Me and X = C6F5 (2); R = Ph and X = Cl (3); R = Ph and X = C6F5 (4)], and 

2
L(AuX)2 [X = Cl (5) or X = C6F5 (6)]. Reacting (tht)AuCl consecutively with two 

mole equivalents of P(SMe)3 and then with AgOTf, yielded the ionic compound 

{Au[P(SMe)3]2}OTf, 7. Additionally, (MeS)3PCuOTf, 9, was synthesised to explore 

the effect of a harder metal on these ligands. The compounds were characterised by 

multinuclear NMR spectroscopy, IR measurements and mass spectrometry, and the 

crystal and molecular structures of 1, 3, 6, 9, two polymorphs of 2 as well as the 

known (MeO)3PAuCl, 8, were determined by X-ray diffraction. The halide complexes 

1 and 8 are isostructural and exhibit infinite chains of ‘‘crossed-sword’’-type 

aurophilic interactions with Au…Au contact distances of 3.2942(3) and 3.1635(4) Å, 

respectively. Additionally, in the structure of 1 Au…S contacts are present. Complex 6 

exhibits a long Au…Au contact of 3.4671(9) Å. Au…S interactions between 3.3455(7) 

and 3.520(2) Å are present in the structures of 1 and one polymorph of 2. Complex 9 

represents a rare example of doubly triflate-bridged Cu
I
. 

                                                
1 All gold complexes in this Chapter have been described in a publication: C. E. Strasser, S. Cronje, 

 H. Schmidbaur and H. G. Raubenheimer: “The preparation, properties and X-ray structures of gold(I) 

 trithiophosphite complexes”, J. Organomet. Chem. 2006, 691, 4788–4796. The compound numbers 

 in this Chapter correspond to those used in the publication. 

2
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2.1 Introduction 

 

Even though trithiophosphites were reported for the first time in 1872 as the main 

product of heating ethanethiol with phosphorus trichloride in an attempt to synthesise 

dichloro(ethylthio)phosphane,
2
 relatively little coordination chemistry with these 

ligands is known. This may in part be ascribed to the properties of trithiophosphites 

whose dreadful odour resembling organic sulfanes and phosphites as well as their 

toxicity render them unattractive substrates to study. Furthermore, the P–S bond of 

trithiophosphites is not only susceptible to hydrolysis, but also not very strong and 

cleavage may occur during reactions with metal cations. This property was used as an 

approach towards the synthesis of copper clusters where trithiophosphite complexes 

of Cu
I
 halides were slowly converted to Cu

I
 dialkyldisulfane complexes.

3
 Further-

more, the potentially multidentate (Scheme 2.1) nature of trithiophosphites may allow 

metal cations to form polymers.4 An article by Kataeva et al. summarises the known 

coordination chemistry of trithiophosphites.5 
 

S

P

S

S

R

R

R

 

Scheme 2.1 Trithiophosphite coordination takes place first at the phosphorus centre; sulfur atoms 

 may then be utilised. 

 

A limited number of crystal structures, shown in Scheme 2.2, have been determined 

for a series of trithiophosphite (L) complexes of Cu
I
 halides and pseudohalides.

4,6 

                                                
2 A. Michaelis, Chem. Ber. 1872, 5, 6–9. 

3 L. I. Kursheva, O. N. Kataeva, D. B. Krivolapov, E. S. Batyeva 

 and O. G. Sinyashin, Heteroat. Chem. 2006, 17, 542–546. 

4 L. I. Kursheva, O. N. Kataeva, A. T. Gubaidullin, F. S. Khasyanzyanova, 

 E. V. Vakhitov, D. B. Krivolapov and E. S. Batyeva, 

 Russ. J. Gen. Chem. 2003, 73, 1516–1521. 

5 O. N. Kataeva, D. B. Krivolapov, A. T. Gubaidullin, I. A. Litvinov, 

 L. I. Kursheva and S. A. Katsyuba, J. Mol. Struct. 2000, 554, 127–140. 

6 (a) O. N. Kataeva, I. A. Litvinov, V. A. Naumov, L. I. Kursheva 

 and E. S. Batyeva, Inorg. Chem. 1995, 34, 5171–5174; 

 (b) P. G. Jones, A. K. Fischer, L. Frolova and R. Schmutzler, 

 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, 54, 1842–1844. 
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Scheme 2.2 Crystallographically characterised trithiophosphite complexes. (a) typical catena-struc-

ture obtained with Cu
I
 halides: R

1
 = Et and X = Cl, Br or I; R

1
 = C3H7 or Bu and X = Br; 

R
1
 = C3H7 and X = SCN (S- and N-coordinating); (b) catena-[CuCl{P(SPh)3}] showing 

asymmetrical bridges, (c)–(e); the sterically bulky P(SCHMe2)3 ligand gives rise to a 

cluster, (c), cubane, (d), the only trithiophosphite structure, (e), with a solvent co-

ordinating to Cu
I
; ( f )–(i) other complexes, R

2
 = Ph, CHMe2. 

 

These comprise two [MnCp(CO)2L]-type compounds,
7
 a [Cr(η6

-arene)(CO)2L]
8
 and 

one each of a di- and trinuclear iron carbonyl complex.9 

 

Other organometallic trithiophosphites, e.g. tris(ferrocenyl)trithiophosphite and tris-

(cymantrenyl)trithiophosphite [cymantrene = tricarbonyl(η5-cyclopentadienyl)man-

ganese]
10

 and 1,1′-bis{{[1,1′-ferrocenediylbis(thio)]phosphanyl}thio}ferrocene [struc-

turally similar to 1,2-bis(1,3,2-dithiaphospholan-2-ylthio)ethane by replacing the 

                                                
7 O. G. Sinyashin, I. Yu. Gorshunov, V. A. Milyukov, E. S. Batyeva, I. A. Litvinov, O. N. Kataeva, 

 A. G. Ginzburg and V. I. Sokolov, Izv. Akad. Nauk., Ser. Khim. 1994, 1116–1119. 

8 V. A. Milyukov, A. V. Zverev, S. M. Podlesnov, D. B. Krivolapov, 

 I. A. Litvinov, A. T. Gubaidullin, O. N. Kataeva, A. G. Ginzburg 

 and O. G. Sinyashin, Russ. J. Gen. Chem. 2000, 70, 698–703. 

9 (a) B. Wu, H. Su, X. Yan, X. Hu, Q. Liu, Jiegou Huaxue 1992, 11, 339–342; 

 (b) Q. Liu, B. Wu, X. Hu, S. Liu, X. Yan and J. Shi, Huaxue Xuebao 1992, 50, 778–782. 

10 V. A. Milyukov, A. V. Zverev, S. M. Podlesnov, D. B. Krivolapov, I. A. Litvinov, 

 A. T. Gubaidullin, O. N. Kataeva, A. G. Ginzburg and O. G. Sinyashin, 

 Eur. J. Inorg. Chem. 2000, 225–228. 
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ethylene groups by 1,1′-ferrocenediyl], that could themselves act as ligands have been 

described.11 

 

Addition compounds of AuCl3 with trithiophosphites have been mentioned but have 

only been characterised via their melting points.
12

 No other gold–trithiophosphite 

interactions have been investigated. 

 

Organic tetrathiophosphates – in contrast to the related trithiophosphites – have 

virtually found no application in coordination chemistry. One example of an adven-

titious isolation of a [tris(1-methylethyl)tetrathiophosphate]copper(1+) complex was 

reported by the same Russian group that has developed Cu
I
 trithiophosphite 

chemistry.13 The only other example is that of diiodo(tridodecyltetrathiophosphate)-

mercury, again only used to identify the tetrathiophosphate ligand by the melting 

point of a metal complex derivative.
14

 

 

2.1.1 Aims 

 

Trithiophosphite complexes of Cu
I
 are known and the chemistry is well established 

(vide supra), but the group of Krivolapov and Litvinov never reported complexes with 

other coinage metals. Therefore, the main aims of the investigation described in this 

Chapter were to synthesise new trithiophosphite complexes of Au and Ag, charac-

terise the products by means of multinuclear NMR, far IR spectroscopy and mass 

spectrometry. Secondly, we planned to investigate the molecular structures of the new 

complexes by single crystal X-ray diffraction. As mentioned above, trithiophosphites 

are potentially multidentate ligands, able to form coordinative bonds with their 

phosphorus and sulfur atoms, thus elucidation of the coordination sphere around the 

metal centres in complexes with these ligands is of great interest. The tendency of AuI 

to form discrete, 14-e– linear dicoordinate complexes15 and the possibility of 

additional stabilisation by interaction with available sulfur atoms – leading ultimately 

                                                
11 M. Herberhold, C. Dörnhöfer, A. Scholz and G.-X. Jin, 

 Phosphorus, Sulfur Silicon Relat. Elem. 1992, 64, 161–168. 

12 A. Lippert and E. E. Reid, J. Am. Chem. Soc. 1938, 60, 2370–2371. 

13 L. I. Kursheva, A. M. Il'in, E. S. Batyeva, O. N. Kataeva and A. T. Gubaidullin, 

 Russ. J. Gen. Chem. 2001, 71, 484. 

14 L. C. F. Blackman and M. J. S. Dewar, J. Chem. Soc. 1957, 169–171. 

15 P. Schwerdtfeger, H. L. Hermann and H. Schmidbaur, Inorg. Chem. 2003, 42, 1334–1342. 
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to 18-e
–
 tetrahedral complexes as is commonly observed in the case of Cu

I
 – should be 

considered. Furthermore, expanding the utilisation of trithiophosphites by including 

silver to simultaneously fill the gap between Cu and Au and assist in understanding 

the different forces present in complexes of these metals was envisioned. To com-

plement these findings, the synthesis of trithiophosphite complexes with CuI and non- 

or weakly coordinating anions was another target. 

 

It was foreseen that the results obtained for all these complexes could then be 

compared with the widely known trialkylphosphite analogues thus allowing 

assessment of the influence of the exchange of oxygen for sulfur on the properties of 

these compounds. 

 

Lastly, the results obtained from trithiophosphite complexes of gold could be 

extended to include the possibility of complex formation with tetrathiophosphates; not 

only to extend the variety of ligands used in gold chemistry but in particular to gather 

more extensive information on a family of curiously neglected ligands in coordination 

chemistry. 

 

 

2.2 Results and discussion 

 

2.2.1 Synthesis of the compounds 

 

The ligands were synthesised according to literature
16

 by reacting appropriate 

amounts of disulfanes with white phosphorus in MeCN, induced by a drop of 

saturated aqueous KOH. The bicyclic ligand, 1,2-bis(1,3,2-dithiaphospholan-2-

ylthio)ethane was obtained by addition of ethane-1,2-dithiol to an Et2O solution of 

pyridine and PCl3. Employment of NEt3 was found to precipitate the 

triethylammonium thiolate salt and was unsuccessful. However, it was found out later 

that a better method is reacting neat ethane-1,2-dithiol with PCl3;
17

 initially it was 

thought that liberated HCl would induce side reactions, however, this is not the case. 

                                                
16 C. Wu, J. Am. Chem. Soc. 1965, 87, 2522. 

17 L. C. Gomes de Lima, M. B. Gomes de Lima, R. M. Matos, M. do Rosário Menezes, D. S. Raslan, 

 E. de Souza and A. L. A. B. de Souza, Phosphorus, Sulfur Silicon Relat. Elem. 2000, 166, 1–14. 
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The preparation of the complexes is outlined in Scheme 2.3. The syntheses of the 

neutral simple, monomolecular and dimolecular complexes, 1–6, were readily 

achieved in high yields by substituting tetrahydrothiophene from either (tht)AuCl or 
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S
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S
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Scheme 2.3 Synthesis of the compounds 1–9; conditions: (a) thf, r.t. for X = Cl and Et2O, 0 °C 

 for X = C6F5   (b) thf, r.t.   (c) ethanenitrile/thf, r.t. 

 

(tht)AuC6F5 with the respective trithiophosphite ligand. The substitutions were carried 

out in thf at room temperature for the chloro complexes or in Et2O solution at 0 °C for 

the pentafluorophenyl compounds. Evaporation of all volatile matter afforded micro-

crystalline product mixtures that were, especially in the case of the pentafluorophenyl 

derivatives, contaminated with some metallic gold. Filtration through Celite yielded 

the complexes as colourless microcrystalline compounds after stripping of the solvent 

in vacuo. Preparation of the cationic compound, 7, was effected by reacting two mole 

equivalents of P(SMe)3 with (tht)AuCl and AgOTf in a mixture of ethanenitrile and 

thf. The known18 phosphite complex (MeO)3PAuCl, 8, was prepared analogously to 1. 

Compound 9, wherein P-, S-, and O-donors feature (vide infra) was prepared from 

[Cu(CH3CN)4]OTf in thf. This starting material itself was prepared by anion exchange 

in ethanenitrile. As CuCl is minutely soluble but NaCl virtually insoluble
19

 in 

ethanenitrile, the reaction proceeds readily towards the products. 

                                                
18 (a) M. Levi-Malvano, Atti Accad. Naz. Lincei. Cl. Sci. Fis., Mat. Nat. Rend. 1910, 17, 847–857; 

 (b) A. E. Arbuzov, V. M. Zoroastrova, Izv. Akad. Nauk. SSSR, Ser. Khim. 1952, 809–817; 

 (c) H. Schmidbaur and R. Franke, Chem. Ber. 1972, 105, 2985–2997. 

19 T. Pavlopoulos and H. Strehlow, Z. Phys. Chem. 1954, 202, 474–479. 
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Compounds 1–4 are stable for months without any signs of decomposition when 

stored at –16 °C. Stability at room temperature, however, is lower and slow de-

terioration with deposition of metallic gold occurs within days. Complexes of the 

bicyclic ligand, 5 and 6, as well as the homoleptic 7 are more sensitive and turn 

yellow within weeks upon storage in the freezer. This might be caused by P–S bond 

cleavage which was observed in the synthesis of iron carbonyl complexes of 

trithiophosphites.
9
 While 1 and 3 are soluble in polar, aprotic solvents, complexes 2 

and 4 are also soluble in Et2O; all compounds are insoluble in aliphatic hydrocarbons. 

The solubility of the binuclear complexes is poor; 5 does not dissolve at all and 6 only 

dissolves in thf when freshly prepared but after prolonged storage becomes insoluble; 

this may be attributed to decomposition. The complexes exhibit a faint odour of the 

parent thiol and are decomposed slowly by moisture indicating the higher tendency of 

P–S bond cleavage over P–C bond cleavage encountered in Chapter 3 (see Section 

3.2.4.2). Protic solvents like methanol effect fast decomposition indicating a de-

stabilising effect of the coordinated gold on the ligand. This pathway has been used to 

convert coordinated trithiophosphites to phosphonates by hydrolysis of copper(I) 

halide complexes.
20

 

 

Attempts were made to synthesise silver complexes of trithiophosphites employing 

AgBr or AgOTf, but in all cases only insoluble coordination polymers were obtained 

that could not be structurally characterised. It is thought that Ag may form similar 

complicated complexes to the Cu complex (c) in Scheme 2.2 which are insoluble and 

difficult to characterise by any other means than by single crystal X-ray diffraction. 

The only compounds known that contain a silver centre P-bonded to a PS3 group are 

complexes of P4S3 which is described in the reports as only weakly coordinating.21 

 

The synthesis of gold tetrathiophosphate complexes was also investigated but these 

ligands were found to be of inferior donating ability compared to dialkylsulfanes and 

therefore could not substitute tht from the gold starting compounds (tht)AuCl and 

(tht)AuC6F5. A reaction of Me3PS4 with Ph3PAuNO3 is thought to have furnished a 

                                                
20 L. I. Kursheva, L. V. Frolova, M. V. Bykova and E. S. Batyeva, 

 Zh. Obshch. Khim. 1996, 66, 1458–1459. 

21 (a) A. Adolf, M. Gonsior and I. Krossing, J. Am. Chem. Soc. 2002, 124, 7111–7116; 

 (b) I. Raabe, S. Antonijevic and I. Krossing, Chem. Eur. J. 2007, 13, 7510–7522. 
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complex based on the observation of an infrared absorption assigned to free NO3
–
, 

however no crystals were obtained and the compound emitted such a strong odour that 

further analyses were not possible. Na[AuCl4] reacts with Ph3PS4 to form a red oil 

which exhibits at least 8 signals in its 31P{1H} NMR spectrum, indicating 

fragmentation of the ligand by the gold centre; crystallisation was again unsuccessful. 

 

2.2.2 Thermal gravimetric analysis 

 

A crystalline sample of complex 1 (4.0 mg) was heated at a rate of 10 °C min
–1

 to 

400 °C. The sample mass was constant up to the melting point (114 °C) when rapid 

loss (44.3%) of weight set in until 176 °C was reached. Thereafter the mass remained 

fairly constant up to 400 °C when a final loss of 45.7% occurred. A yellow solid 

remained in the pan. The observed weight loss (45.7%) falls within the theoretical loss 

to afford the possible decomposition products Au2S (47.4%) and AuCl (42.6%). 

 

2.2.3 Spectroscopic analyses 

 

The signals of multinuclear NMR analysis of the reported compounds are summarised 

in Table 2.1. The fragment ions observed in the mass spectrometric analyses are 

reported in Table 2.2. 

 

2.2.3.1 
31

P{
1
H} NMR spectroscopy. 

The coordination of the trithiophosphite ligands to the Au
I
 centre could be verified by 

comparison of the 
1
H and 

31
P NMR spectra of the free ligands and complexes. 

Coordination to the AuCl moiety does not greatly affect the 
31

P NMR chemical shift, 

∆δ 
22 2.3 to lower field for 1 and 2.2 to higher field for 3. This result is in contrast to 

the large ∆δ (38 to 48) to lower field observed for AuCl adducts of simple tertiary 

phosphanes23 and with the 31P NMR upfield change in chemical shift (∆δ 20) 

associated with normal phosphite coordination to AuCl.
23a

 Upon coordination to the 

AuC6F5 fragment, however, a pronounced downfield change in chemical shift ∆δ, 

                                                
22 To avoid confusion, all ∆δ values are quoted as absolute values, 
 the direction of the shift must be obtained from context. 

23 (a) M. J. Mays and P. A. Vergnano, J. Chem. Soc., Dalton Trans. 1979, 1112–1115; 

 (b) G. H. Woehrle, L. O. Brown and J. E. Hutchison, J. Am. Chem. Soc. 2005, 127, 2172–2183. 
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Table 2.1 NMR data of compounds 1–9
a
 

 

Compound  (MeO)3PAuCl 
8 

(MeS)3PAuCl 
1 

(MeS)3PAuC6F5 
2 

[(MeS)3P]2AuOTf 
7 

(MeS)3PcuOTf 
9 

(PhS)3PAuCl 
3 

(PhS)3PAuC6F5 
4 

2L(AuC6F5)2 
6 

          

Nucleus Solvent CDCl3 CDCl3 CDCl3 CDCl3 CD3CN CD2Cl2 CDCl3 C4D8O 
          

1H (300 MHz) CH3 3.74 (d, 3JPH 

14.0, 1
JCH 150)b 

2.43 (d, 2JPH 

17.6, 1JCH 144)b 

2.51 (d, 3JPH 

16.4, 1
JCH 143)b 

2.40 (d, 3JPH 

14.7, 1JCH 144)b 

2.31 (d, 3JPH 

12.1, 1JCH 155)b 

   

 o-Ph      7.64 (m, 6 H) 7.60 (m, 6 H)c  

 m-Ph      7.46 (m, 6 H) 7.37 (m, 6 H)c  
 p-Ph      7.54 (m, 3 H) 7.43 (m, 3 H)c  

 ring-CH2        3.65 (m, 8 H)c 
 bridge-CH2        3.46 (m, 4H)c 
          

13C{1H} (75 MHz)a CH3 53.1 (br s) 16.1 (s) 15.4 (s) 15.2 

(d, 2JPC 4.0) 

14.2 

(d, 2JPC 10.1) 

   

 i-C6H5      136.9 
(d, 2JPC 5.0) 

136.6 
(d, 2JPC 3.7) 

 

 o-C6H5      131.5 
(d, 3JPC 3.6) 

130.7 
(d, 3JPC 3.3) 

 

 m-C6H5      130.6 
(d, 4JPC 2.8) 

130.0 
(d, 4JPC 2.8) 

 

 p-C6H5      129.0 (br s) 128.5 (br s)  
          

 o-C6F5   149.3 

(d⋅m, 1JFC 229) 

   148.6 

(d⋅m, 1JFC 230) 

 

d 

 m-C6F5   140.0 

(d⋅m, 1JFC 248) 

    139.4 

(d⋅m, 1JFC 248) 

 

d 

 p-C6F5   137.6 

(d⋅m, 1JFC 253) 

   137.0 

(d⋅m, 1JFC 253) 

 

d 

 ring-CH2        41.3 (s)e 
 bridge-CH2        36.6 (br s)e 
          

19F (376 MHz) o-C6F5   –116.7 (m, 2 F)    –115.9 (m, 2 F) –115.4 (m, 4 F) 

 m-C6F5   –162.2 (m, 2 F)    –162.7 (m, 2 F) –163.7 (m, 4 F) 

 p-C6F5   –157.4 (m, 1 F)    –158.2 

(t, 3JFF 20.0, 1 F) 

–159.6 

(t, 3JFF 19.6, 2 F) 
          

31P{1H} (121 MHz) P(SR)3 121.0 (s) 123.4 (s) 144.3 (s) 128.1 (s) 108.64 (br s) 142.1 (s) 161.3 (s) 134 (br s) 
 

a
 i-C6F5 and CF3SO3

–
 carbons were not observed due to low intensity and signal splitting   

b
 
1
JCH coupling constants obtained from 

13
C satellites 

c
 at 400 MHz   

d
 not observed due to low solubility of the compound   

e
 at 101 MHz 
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averaging 20 for the trithiophosphite ligands, was observed. All 
31

P NMR signals 

appear as sharp singlets except for the binuclear complex 6 which shows a broad 

signal. Homoleptic rearrangement is common in LAuC6F5 complexes, has been 

observed with other ligands24 and is reported in this dissertation (Chapter 5, p. 178). A 

homoleptic rearrangement of complex 6 would afford a cyclic, cationic 

bis(trithiophosphite) complex that has not been isolated (Scheme 2.4). 

 

S
P

S

S S P
S

S

Au Au

C6F5 C6F5

S

P

S S S

P

S

S

Au

F5C6 Au C6F5  

Scheme 2.4 Possible homoleptic rearrangement of complex 6 that would cause the 

 
31

P NMR signal to be broadened. 

 

2.2.3.2 
1
H and 

13
C{

1
H} NMR spectroscopy. 

The proton NMR spectra for 1, 2 and 7 show a very small downfield shift of the 

methyl signal by 0.2–0.3 ppm. The 
1
JCH coupling constants obtained from the 

13
C 

satellites also remain essentially unchanged at an average value of 143 Hz upon 

coordination of P(SMe)3 in the gold complexes. In the copper compound 9 a 

substantial increase in the coupling constant to 155 Hz was observed which could be 

attributed to additional S-coordination of P(SMe)3 operative in solution. The aromatic 

protons in 3 and 4 are minutely shifted to lower field (ca. ∆δ 0.1–0.2 vs. free ligand) 

but, nevertheless, allowing the discrimination between meta- and para-signals that 

overlap in the spectrum of the free ligand. 

 

In the 
13

C NMR spectra of 2 and 4 the ipso-carbon atoms of the pentafluorophenyl 

groups and the CF3SO3-carbon in 7 were not observed due to too low intensity. 

Binuclear 6 was not soluble enough to detect any carbon resonances of the C6F5 

groups. Unexpectedly, the JPC coupling constants of all ligands decrease upon co-

ordination, again showing dissimilarity to the simple phosphanes
23b

 and the results 

reported in Chapter 3 (p. 77). Though the protons of the trimethyltrithiophosphite 

complexes 1, 2 and 7 all indicate coupling with the 31P nucleus, a substantial 2
JPC in 

                                                
24 (a) K. Coetzee, M.Sc. thesis, Stellenbosch University, 2005; (b) W. F. Gabrielli, Ph.D. thesis, 

 Stellenbosch University, 2006; (c) L. de Jongh, M.Sc. thesis, Stellenbosch University, 2008. 
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the 
13

C NMR spectra is only observed for the free ligand (
2
JPC 18 Hz). The gold 

complexes with the exception of 7 (
2
JPC 4 Hz) only exhibit a sometimes broadened 

singlet for the methyl carbon atoms, similar to the methyl resonance of 8. This could 

be due to fast ligand exchange in the complexes as was observed for phosphane and 

phosphite complexes.18c The copper complex 9 again shows a 2
JPC coupling constant 

of 10 Hz which may be a result of additional S-coordination by the ligand. 

 

For the P(SPh)3 ligand the 
13

C NMR signals are split into doublets up to the meta 

carbon atoms. The para carbons appear as broad singlets and the values of the JPC 

coupling constants especially for the ipso carbons (2
JPC 5–6 Hz), are lower than for 

the free ligand (13 Hz). With the cyclic ligand, 1,2-bis(1,3,2-dithiaphospholan-2-

ylthio)ethane, the sharp doublet of doublets of the two bridging carbon atoms at 

higher field strength in the free ligand spectrum
17

 is again reduced to a broad singlet 

in 6. 

 

2.2.3.3 
19

F NMR spectroscopy. 

The pentafluorophenyl groups of 2, 4 and 6 were examined by 
19

F NMR spectroscopy 

and the usual pattern of chemical shifts and multiplicities for the AuC6F5 moiety was 

observed.25 The ortho-fluorine atoms in the C6F5 group resonate at ca. δ –116 while 

the meta- and para-signals are observed around δ –163 and –158, respectively. The 

latter signal is usually present as a triplet caused by a 
3
JFF coupling of ca. 20 Hz with 

the pair of meta-fluorine atoms; the other signals are multiplets. A 5JFF coupling of the 

para-fluorine to the ortho pair is small and usually not observed, the exception being 

2 in which the para-signal is further split into a multiplet. 

 

2.2.3.4 Infrared spectroscopy. 

Routine IR spectra essentially show the absorptions of the ligand groups for 

complexes 1, 3 and 5. Compounds 2, 4 and 7 in addition exhibit the characteristic 

ν(C–F) vibrations of the C6F5- or CF3SO3-groups (cf. Scheme 2.3 above for the struc-

tures of the compounds). 

                                                
25 F. Mohr, E. Cerrada and M. Laguna, Organometallics 2006, 25, 644–648. 
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Far-IR spectra in the frequency range 600–200 cm
–1

 of compounds 1, 3 and 5 were 

recorded in polyethylene discs in attempts to locate Au–Cl vibrations. Compound 1 

exhibits a sharp ν(Au–35Cl) band at 315 cm–1 with a ν(Au–37Cl) satellite at 308 cm–1 

consistent with theory; ν(Au–Cl) for the phosphite complex 8 has been reported at 

326 cm
–1

.
26

 Combined with the crystallographic findings (vide infra) these results 

suggest that the Au…S contacts in 1 could weaken the Au–Cl bonds compared to those 

in the known phosphite complex, 8. 

 

The spectrum of 3 shows two vibrations at 339 and 318 cm
–1

, but only the band at 

higher wavenumber has a shoulder indicative of an unresolved ν(Au–37Cl) vibration. 

The Au–Cl stretching band for (PhO)3PAuCl was reported at 340 cm
–1

,
26

 suggesting 

that both ligands induce a similar electronic effect since no close intermolecular 

contacts are observed in the molecular structures of these compounds (vide infra). 

 

Compound 5 shows a broad ν(Au–Cl) band at larger wavenumber, 323 cm
–1

, sug-

gesting that Au…Au interactions are present as would be expected from the 

insolubility of the compound and the effect of intermolecular Au…S contacts in 1. 

 

2.2.3.5 Mass spectrometry. 

The FAB mass spectra of compounds 2, 4 and 6 show the loss of a pentafluorophenyl 

unit but the molecular ion was only observed for 2 and 4. For compounds 1 and 3 

FAB-MS measurements failed to give interpretable patterns – at least [M – Cl]
+
 peaks 

similar to those of rNHC complexes discussed in Chapter 5 would have been expected 

– and thus ESI-MS in thf/ethanenitrile solution was employed. Fragmentation of the 

trithiophosphite ligand was observed leading to strong signals for clusters of the type 

[(RS)3PAu⋅(AuSR)n]
+
 (n = 1 or 2) along with other ions. However, due to the 

insolubility of 5 no mass spectrum could be obtained with any of above ionisation 

methods. 

 

Notably, 1 does lose the trithiophosphite ligand on heating but then rather fragments 

by Au–Cl bond cleavage under ionising conditions. Observed m/z values and cor-

responding ions are shown in Table 2.2. 

                                                
26 D. R. Williamson and M. C. Baird, J. Inorg. Nucl. Chem. 1972, 34, 3393–3400. 
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Table 2.2 MS data of 1–9
a
 

 

 

Compound 
P AuCl

MeS

MeS

MeS

 
1 

P AuC6F5

MeS

MeS

MeS

2 

P AuCl

PhS

PhS

PhS

 
3 

P AuC6F5

PhS

PhS

PhS

4 

S

P P

SS

S S

S

Au Au

C6F5 C6F5  
6 

P Au P

MeS

MeS

MeS

SMe

SMe

SMe

S

O

O

O

F

F

F

7 

P CuOSO2CF3

MeS

MeS

MeS

 
9 

        

Formula C3H9Au–

ClPS3 

C9H9Au–

F5PS3 

C18H15Au–

ClPS3 

C24H15Au–

F5PS3 

C18H12Au2–

F10P2S6 

C7H18Au–

F3O3P2S7 

C4H9Cu–

F3O3PS4 
Exact mass 403.90 535.92 589.94 721.97 1065.79 689.84 383.84 

        

Method ESI FAB ESI FAB FAB ESI FAB 

M+  536 (9)  722 (15)    
(RS)3PAu+ 369 (30)b       

[Au{P(SR)3}2]
+ 541 (15)b  913  (30)d  535 (1)h 541 (90)b  

        

[M – C6F5]+  369 (18)  555 (20) 899 (1)   

[(RS)3PAu⋅AuSR]+ 613 (62)b  861 (100)d     

[(RS)3PAu⋅2AuSR]+   1167 (30)d     
        

Other ions 567 (40) 522 (10)c 1123 (30) 
0817 (70) 

613   (5)e
 

446   (8)f 
249 (58)g 

595   (1) 
164 (15) 
162 (24) 

785  (7)i 
583 (12) 

385 (10)j
 

401 (15) 

 

a
 All m/z based on 

35
Cl and 

63
Cu isotopes   

b
 R = Me   

c
 [M – C6F5 + C7H7NO3]

+ 

d
 R = Ph   

e
 [M – SPh]

+
   

f
 [M – C6F5 – SPh]

+
   

g
 [P(SPh)2]

+ 

h 2LAu+   i [{(MeS)3P}2Au⋅AuSMe]+   j [M + H]+ 

 

 

2.2.4 Crystallography 

 

Compounds 1, 2, 3, 6, 8 and 9 (cf. Scheme 2.3 above) furnished crystals suitable for 

X-ray diffraction. For compound 2 two polymorphs, both in the space group P, were 

determined. Polymorphism in gold complexes was subsequently again observed in a 

number of other compounds reported in the next Chapters, it therefore may be a quite 

common phenomenon. Important bond lengths and angles of complexes 1–8 are given 

in Table 2.3. 

 

First, a modification with two independent molecules in the asymmetric unit [referred 

to in the following discussion as polymorph 2(i) with molecules 2(i)-1 and 2(i)-2] was 

crystallised by diffusing pentane vapour into an Et2O solution of 2; later, crystals of 

the more symmetric polymorph, 2(ii), with only one molecule in the asymmetric unit 

were obtained by layering a thf solution of 2 with pentane. Complex 1, the 

isostructural 8 as well as 6 exhibit Au…Au interactions.  
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Table 2.3 Bond lengths/Å and angles/° of compounds 1–6. 
 

 

Compound P AuCl

MeS

MeS

MeS

 
1 

P AuCl

MeO

MeO

MeO

 
8 

P AuC6F5

MeS

MeS

MeS

 
2(i) 

P AuC6F5

MeS

MeS

MeS

 
2(ii) 

P AuCl

PhS

PhS

PhS

 
3 

S

P P

SS

S S

S

Au Au

C6F5 C6F5

6 
       

Au–P 2.2352(8) 2.211(2)0 2.266(2) 

2.272(2) 

2.270(2) 2.218(2) 2.271(2)0 

Au–Cl 2.3100(8) 2.311(2)0   2.282(2)  
Au–C   2.043(5) 

2.049(6) 

2.041(5)  2.06(1)00 

Au…Au 3.2942(3) 3.1635(4)    3.4671(9) 

Au…S 3.3455(7)   3.520(2)   

P–S 

(1, 2, 3) 

2.077(2)0 

2.090(1)0 

2.074(1)0 

1.579(4)
a
 

1.578(4)
a
 

1.582(3)a 

2.073(2) 

2.080(2) 

2.074(2) 

2.082(2) 

2.076(2) 

2.070(2) 

2.081(2) 

2.068(2) 

2.081(2) 

2.094(2) 

2.090(2) 

2.084(2) 

2.081(3)0 

2.067(4)0 

2.086(4)0 

       

P–Au–Cl 178.55(3) 175.90(4)   176.99(6)  

P–Au–C   178.9(2) 

174.2(2) 

178.6(2)  171.7(3) 

Au–P–S 

(1, 2, 3) 

118.59(4) 

119.37(4) 

106.57(4) 

117.0(2)
a
 

106.7(2)
a
 

119.0(2)
a
 

116.16(8) 

112.87(8) 

107.47(8) 

121.42(8) 

116.83(8) 

108.08(8) 

117.37(7) 

107.06(7) 

118.34(7) 

115.13(8) 

114.64(9) 

108.53(8) 

118.8(2) 

114.7(2) 

113.6(2) 

 

a P–O distances and Au–P–O angles 

 

In general, it was noted that even though it is potentially possible for trithiophosphite 

ligands to adopt local C3 symmetry in the crystal (see discussion of 3 below), in 

agreement with Au
I
 complexes of tertiary phosphanes e.g. Et3PAuCl

27
 or Ph3PAuCl,

28
 

it was not observed. Two of the SMe or SPh moieties in the trithiophosphite 

complexes are bent more or less towards the gold while the S–C axis of the third 

group points away from the metal centre. This observation is also echoed by the Au–

P–S angles which are in the order of 116–118° for the former and 108° for the latter 

moieties. 

 

The crystal structures of 1 and 8 (Figure 2.1), in the orthorhombic space group Pbca 

are isostructural and exhibit infinite, slightly bent chains along the a-axis owing to  

                                                
27 E. R. T. Tiekink, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1989, 45, 1233–1234. 

28 N. C. Baenziger, W. E. Bennett and D. M. Soboroff, Acta Crystallogr., Sect. B: 

 Struct. Crystallogr. Cryst. Chem. 1976, 32, 962–963. 
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Figure 2.1 Molecular structure of 1: symmetry codes ′ = x – ½, y, ½ – z; ″ = ½ + x, y, ½ – z; the 

asterisked atoms are related by one translation in a. Compound 8 is completely iso- 

structural but naturally lacks the Au
…

S contacts. 

 

Figure 2.2 Molecular arrangement of 1 viewed along the chains of aurophilic interactions parallel to 

the a axis; the packing of compound 8 is identical. 

 

Au…Au interactions. Au1′…Au1…Au1″ angles are 170.783(8)° for 1 and 166.17(2)° for 

8 (′ = x – ½, y, ½ – z; ″ = ½ + x, y, ½ – z), with the P–Au–Cl axes oriented in the 

‘‘crossed-sword’’ motif (Figure 2.2). The Cl1–Au1…Au1′–Cl1′ torsion angles are 
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103.88(4)° and 100.96(6)°, for 1 and 8, respectively. It is clear from Au–P bond 

lengths [2.2352(8) and 2.211(2) Å for 1 and 8, respectively] that the 

trimethylphosphite ligand is both more strongly bonded to the AuI centre and causes 

stronger aurophilic interactions between the molecules. The differences in bond 

lengths are more pronounced than for the triphenyltrithiophosphite and 

triphenylphosphite ligands (vide infra). 

 

One sulfur atom of 1 is also involved in an intermolecular sub-van der Waals contact 

[Au1…S3′ 3.3455(7) Å; ′ = ½ + x, y, ½ – z] ‘‘supporting’’ the Au chain and may in 

part be responsible for weakening the Au–P bond and affording longer aurophilic 

interactions in 1 [3.2942(3) Å compared to 3.1635(4) Å in 8]. Au…S contacts have 

previously been found to play a role in the packing of other gold(I) complexes in this 

dissertation (see the following Chapters) and in literature.
29

 The compounds 

Me3PAuCl
30

 [Au…Au distances 3.271(1), 3.386(1) and 3.356(1) Å] and Et3PAuCl
27

 

[shortest Au…Au distance 3.615(2) Å] which have tertiary phosphane ligands of 

similar or less steric requirement than P(SMe)3 or P(OMe)3, crystallise in space 

groups of lower symmetry suggesting that the sulfur and oxygen lone pairs could be 

involved in directing the crystallisation of compounds 1 and 8. 

 

Triphenyltrithiophosphite crystallises in the trigonal space group R and the 

molecules exhibit local C3 symmetry at the phosphorus atom.31 Upon coordination to 

AuCl, the P–S bonds, uniformly 2.1168(7) Å in the free ligand,
31c

 undergo significant 

shortening to 2.094(2) (P1–S1), 2.090(2) (P1–S2) and 2.084(2) Å (P1–S3) for the 

three independent PhS groups in 3 (Figure 2.3). The P–S–C angles, 99.99(5) Å in the 

free ligand, are not greatly affected by coordination and remain at 99.1(2)° (P1–S1–

C11) to 103.8(2)° (P1–S3–C31). In contrast to the isostructural 1 and 8, monoclinic 3 

(space group P21/c) is not isostructural with triclinic chloro(triphenylphosphite)gold  

                                                
29 M. Preisenberger, A. Schier and H. Schmidbaur, J. Chem. Soc., Dalton Trans. 1999, 1645–1650. 

30 K. Angermaier, E. Zeller and H. Schmidbaur, J. Organomet. Chem. 1994, 472, 371–376. 

31 (a) V. A. Al'fonsov, I. A. Litvinov, O. N. Kataeva, D. A. Pudovik and S. A. Katsyuba, 

 Zh. Obshch. Khim. 1995, 65, 1129–1133; two other crystal structure determinations 

 were reported by (b) N. Burford, B. W. Royan and P. S. White, Acta Crystallogr., Sect. C: 

 Cryst. Struct. Commun. 1990, 46, 274–276; and (c) M. Nieger, E. Niecke and U. Fischer, 

 Private communication to the Cambridge Crystallographic Data Centre, No. 115547, 1999. 
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Figure 2.3 Molecular structure of 3. 

 

(space group P).32 This may be due to the absence of Au…Au and Au…S interactions 

in these structures; thus classical forces prevail in the crystals and lead to different 

structures. The Au–Cl and Au–P distances and the P–Au–Cl angles in 3 and 

(PhO)3PAuCl are comparable at 2.282(2), 2.218(2) Å and 176.99(6)° for 3 and 

2.273(5), 2.192(5) Å and 178.5(2)° for the oxo-analogue, respectively. 

 

In contrast to 1, polymorphs 2(i) and 2(ii) [both in the triclinic space group P, Z = 4 

for (i) and Z = 2 for (ii)] shown in Figures 2.4 and 2.5 do not exhibit aurophilic 

interactions, which may be due to the prevalence of other association phenomena 

discussed below as steric repulsion is not likely to contribute. Instead, 2(i) exhibits 

infinite AA′BB′ stacks of pentafluorophenyl groups (distances between the phenyl 

centroids AA′ = BB′ 3.668, A′B 3.534, and B′A 3.541 Å) for both crystallo-

graphically independent molecules running in the direction of the spatial vector 

defined by the cell axes as shown in Figure 2.6. The pentafluorophenyl groups of 

2(ii), on the other hand, exhibit no π…π interaction, but Au…S contacts between 

molecules related by an inversion centre are observed which are in the range of the 

sum of the van der Waals radii [Au1…S3′ 3.520(2) Å; ′ = –x, 1 – y, 1 – z]. 

                                                
32 P. B. Hitchcock and P. L. Pye, J. Chem. Soc., Dalton Trans. 1977, 1457–1460. 
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Figure 2.4 Molecular structure of 2(i). 

 

 

Figure 2.5 Molecular structure of 2(ii); primed atoms are related by a centre of inversion 

 located between the Au atoms. 

 

Even though the packing of the molecules in both polymorphs is governed by 

different modes of interaction, the normalised cell volumes (Vn = V/Z) differ by less 

than 1%. Molecule 2(i)-2 exhibits significantly distorted geometry at the gold centre 

174.2(2)° compared to 2(i)-1 whose angle [178.9(2)°] is close to the expected 180°, as 

it is for 2(ii). The plane of the C6F5 ring in 2(i)-1 is nearly eclipsed with the P1–S13 

bond while the C6F5 ring in 2(i)-2 adopts a staggered conformation also found in 

polymorph (ii). 
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Figure 2.6 Packing diagram of 2(i) viewed along the spatial vector of the unit cell. 

 

The bond lengths in both polymorphs are the same within experimental error, the  

Au–P distances in both polymorphs of 2 [2.266(2), 2.272(2) in 2(i) and 2.270(2) Å in 

2(ii)] are longer than the Au–P distance in 1 [2.2352(8) Å], resembling the situation in 

Ph3PAuCl [Au–P 2.235(3) Å]28 and Ph3PAuC6F5 [Au–P 2.27(1) Å].33 

 

The crystal structure of 1,2-bis(1,3,2-dithiaphospholan-2-ylthio)ethane (the ligand in 

6) has been reported.34 It crystallises in the space group P21/c with two molecules in 

the unit cell. Only half of the molecule is unique and an inversion centre is located at 

the bridging C–C bond. Two P–S distances [2.120(3) and 2.126(3) Å] and the 

exocyclic P–S–C angle [98.7(3)°] are comparable to the values in P(SPh)3. In the five-

membered ring the P–S–C angles [96.9(3)° and 101.8(3)°] are slightly distorted. 

 

In the molecular structure of the binuclear complex 6 shown in Figure 2.7, the 

conformation of the ligand has changed: instead of the arrangement with an inversion 

centre, a structure with a C2 axis through the C1–C1′ and Au1…Au1′ bonds is 

observed which allows intramolecular aurophilic bonding with an Au…Au distance of 

3.4671(9) Å and leading to a pseudo-cyclic complex. The P1–Au1…Au1′–P1′ torsion 

angle is 110.2(2)°. Again, coordination causes the P–S bonds to shorten to 2.067(4),  

                                                
33 R. W. Baker and P. J. Pauling, J. Chem. Soc., Dalton Trans. 1972, 2264–2266. 

34 M. G. Newton, H. C. Brown, C. J. Finder, J. B. Robert, J. Martin and D. Tranqui, 

 J. Chem. Soc., Chem. Commun. 1974, 455–456. 
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Figure 2.7 Molecular structure of 6. Primed atoms are related by a two-fold rotation; 

 a C2 axis bisects the Au…Au′ and C1–C1′ bonds. 

 

2.081(3) and 2.086(4) Å. The Au–P–S angles do not follow the trend of the other 

compounds with two angles at ca. 117° and one at 108° but have intermediate values 

[118.8(2)°, 114.7(2)° and 113.6(2)°], probably caused by restraints associated with the 

five-membered ring. The P1–Au1–C11 angle of 171.7(3)° deviates from linearity, a 

result of the attractive intramolecular interaction between the gold atoms. Such 

deviations have been observed in other structures.
35

 

 

The molecular structure of the copper complex prepared for comparison, 9, is shown 

in Figure 2.8. Bond lengths and angles are given in Table 2.4. The structure consists 

of chains of tetrahedrally coordinated Cu
I
 centres that are bridged by two P(SMe)3 

ligands in a κ2
P:S fashion forming 6-membered rings in the chair conformation. Two 

triflate molecules each employ two oxygen atoms to bridge two copper atoms, 

yielding 8-membered rings (Scheme 2.5). Both motives alternate along each chain 

running parallel to the a axis in the crystal. This result came as a surprise as triflate is 

usually regarded as a non- or weakly-coordinating ligand and crystallisation occurred 

from thf. The structure can be compared to that of other (trialkyltrithiophosphite)-

copper(I) halides which usually crystallise in this alternating bridging motif if the 

alkyl substituents are not too bulky [see Scheme 2.2 (a)].5,6c 

                                                
35 U. E. I. Horvath, S. Cronje, J. M. McKenzie, L. J. Barbour and H. G. Raubenheimer, 

 Z. Naturforsch., B: Chem. Sci. 2004, 59, 1605–1617. 
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Scheme 2.5 Connectivity of the chains formed by compound 9 in the solid state. 

 

The Cu–P [2.1895(7) Å] and Cu–S [2.2943(8) Å] bonds in 9 are shortened con-

siderably compared to other copper trithiophosphite complexes with averaged Cu–P 

and Cu–S distances of 2.22 and 2.39 Å,
4,5,6

 respectively (the notable exceptions are 

the Cu–P bonds in structure of [CuBr{P(SC3H7)3}]6c which a comparable length and 

in the structure of [CuBr{P(SBu)3}]6c associated with large s.u. values). This is most 

likely due the poor donating nature of the triflate bridges, hence copper demands more 

electron density from the softer donor atoms. Two Cu–S bonds in the structure of 

P(SCHMe2)3 coordinated to a (CuCl)4 cluster [Scheme 2.2 (c)] are also significantly 

shorter [2.207(7) and 2.185(8) Å] than in 9.
4
 This result might originate from a similar 

effect of electron demand from the CuCl moieties within the cluster. The effect of the 

Cu–S bond to the trithiophosphite ligand in 9 is still noticeable in the adjacent P–S 

bond which is expectedly elongated [2.1192(9) Å  

 

Figure 2.8 Part of the infinite coordination polymer formed by 9 (symmetry codes: 

 ′ = 1 – x, 1 – y, 1 – z; ″ = –x, 1 – y, 1 – z); unlabeled atoms are related 

 by one unit cell translation along the a axis. 
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Table 2.4 Bond lengths/Å and angles/° of compound 9. 
 

P1

S1'

Cu1

O2"

O1

P1' C1'

Cu1'

S1

S4"

S4

F3C O

CF3O

O1"

O2

S2 S3

C2 C3

S2'S3'

C3' C2'

Cu

O

O

n  
 

    

  P1–Cu1–S1′ 121.88(3) 

Cu–P 2.1895(7) P1–Cu1–O1 104.59(6) 

Cu–S′ 2.2943(8) P1–Cu1–O2″ 123.32(7) 

Cu–O (1, 2) 2.147(2), 2.065(2) S1′–Cu1–O1 105.35(5) 

  S1′–Cu1–O2″ 102.03(7) 

  O1–Cu1–O2″ 095.18(8) 
    

P1–S1(Cu) 2.1192(9) P1–S1–C1 104.48(9) 

P1–S (2, 3) 2.0941(9), 2.089(1) P1–S–C (2, 3) 98.7(1), 101.75(9) 
    

(Cu)S1–C1 1.816(3)0 S1–P1–S2 100.09(4) 

S–C (2, 3) 1.815(3), 1.814(3) S2–P1–S3 099.29(4) 

  S3–P1–S1 107.89(4) 
 

Symmetry codes: ′ –x, 1 – y, 1 – z; ″ 1 – x, 1 – y, 1 – z. 

 

compared to 2.0941(9) and 2.089(1) Å in the uncoordinated groups] due to the 

presence of adjacent positive charges; the appropriate S–C bond is not significantly 

different from the other two. 

 

The fact that two triflate anions bridge two CuI centres is a very rare observation, only 

two other structures (tetrahedral with P:P′- or N:N′-coordination at the other two sites) 

are exclusively bridged by triflate.
36

 One additional structure is known for Cu
II
.
37

 This 

result is in stark contrast to the wealth of structurally characterised Ag
I
 complexes that 

exhibit this motif. Compared to the Cu–O distances in 9 [2.147(2) and 2.065(2) Å], 

the analogous distances in the N:N′-bonded structure are longer at 2.336(6) and 

2.350(7) Å; the P:P′-bonded structure has one slightly longer and a comparable bond 

[2.111(4) and 2.189(4) Å] while the O–Cu–O angles are 88.9(2)° and 98.0(2)°, 

respectively. 

                                                
36 (a) R. T. Stibrany, H. J. Schugar and J. A. Potenza, Private communication to the Cambridge 

 Crystallographic Data Centre, No. 603057, 2006; (b) R. T. Stibrany and J. A. Potenza, 

 Private communication to the Cambridge Crystallographic Data Centre, No. 639034, 2007. 

37 E. D. Blue, T. B. Gunnoe, J. L. Petersen and P. D. Boyle, 

 J. Organomet. Chem. 2006, 691, 5988–5993. 
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The O1–Cu–O2′ (′ = 1 – x, 1 – y, 1 – z), P–Cu–O2′ and P–Cu–S″ (″ = –x, 1 – y, 1 – z) 

angles in 9 [95.18(8)°, 123.32(7)° and 121.88(3)°] are significantly distorted from the 

tetrahedral ideal of 109.5°. 

 

Bis(triphenylphosphane)copper(1+) trifluoromethanesulfonate has been shown to 

crystallise as the salt [Cu(CH3CN)2(PPh3)2]CF3SO3 from ethanenitrile, which spon-

taneously recrystallises as the neutral complex [Cu(CF3SO3)(PPh3)2(thf)] when it is 

dissolved in thf. The latter compound exhibits Cu–O(thf) and Cu–O(triflate) bond 

lengths of 2.125(2) and 2.168(2) Å, respectively, showing that thf is indeed capable of 

forming a bond with CuI that is shorter than the triflate Cu–O bond despite the 

additional Coulomb attraction in the latter instance.
38

 

 

 

2.3 Conclusions 

 

The first gold(I) trithiophosphite complexes were isolated, characterised and the 

crystal and molecular structures of an array of different complexes could be 

determined. The complexes of the monodentate ligands are fairly stable when kept at 

low temperatures, the bidentate ligand employed furnishes more sensitive compounds. 

Protic solvents effect decomposition due to hydrolysis. The structural analysis 

revealed that contrary to most Cu
I
 complexes of trithiophosphites, wherein one sulfur 

atom is used as a coordination site as well, Au
I
 does not expand its coordination 

number beyond the classic linear coordination and therefore does not engage in 

coordinate bonds from sulfur atoms. Au…S contacts could, however, be observed in 

some compounds influencing their solid state structures. 

 

Related silver(I) trithiophosphite complexes could not be crystallised, a result partly 

ascribed to the tendency of Ag
I
 to aggregate into clusters. Synthesis of such 

complexes could maybe succeed employing other silver centres that are already 

coordinatively nearly saturated and do not contain labile ligands. 

                                                
38 D. A. Knight and S. W. Keller, J. Chem. Crystallogr. 2006, 36, 531–542. 
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An example of a trithiophosphite complex of Cu
I
 that also contains a weakly 

coordinating anion was also isolated, surprisingly exhibiting a chain motif and not 

incorporating any solvent. 

 

Finally, tetrathiophosphates proved to be unable to form complexes with AuI probably 

being too weak donors. 

 

 

2.4 Experimental 

 

2.4.1 Crystallography 

 

All crystal structures in this dissertation were determined at T = 100 K with a Bruker 

SMART Apex diffractometer
39

 using graphite-monochromated Mo-Kα radiation (λ = 

0.71073 Å). Intensities were measured using the ω-scan mode and were corrected for 

Lorentz and polarisation effects. The structures were solved with direct methods or 

the heavy atom(s) were located by a Patterson synthesis and refined by full-matrix 

least-squares on F
2 using the SHELXL-97 set of programmes within the X-SEED 

environment.40 All non-hydrogen atoms were refined with anisotropic displacement 

parameters and all hydrogen atoms were placed in calculated positions except where 

noted otherwise. Figures were created using X-SEED and all thermal displacement 

ellipsoids drawn at the 50% probability level. Thickness of normal bonds was set to 

0.1 Å while for sub-van der Waals interactions and hydrogen bonds fragmented bonds 

of 0.08 Å diameter are used throughout. The colours of the respective elements are 

consistent in all Figures. Data and parameters associated with crystal structures 

presented in this Chapter are summarised in Table 2.5. 

                                                
39 (a) R. H. Blessing, Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1995, 51, 33–38; 

 (b) SADABS Absorption correction software (v. 2.05), Bruker AXS Inc., Madison WI, 2002; 

 (c) SMART Data collection software (v. 5.629), Bruker AXS Inc., Madison WI, 2003; 

 (d) SAINT Data reduction software (v. 6.45), Bruker AXS Inc., Madison WI, 2003. 

40 (a) G. M. Sheldrick, SHELX97, Programmes for crystal structure solution and refinement, 

 University of Göttingen, Germany, 1997; (b) L. J. Barbour, J. Supramol. Chem. 2001, 1, 189–191; 

 (c) J. L. Atwood and L. J. Barbour, Cryst. Growth Des. 2003, 3, 3–8. 
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Table 2.5 Crystallographic parameters of 1–3, 6, 8 and 9. 
 

Compound (MeS)3PAuCl 1 (MeO)3PAuCl 8 (MeS)3PAuC6F5 2(i) (MeS)3PAuC6F5 2(ii) (PhS)3PAuCl 3 
2L(AuC6F5)2

b 6 (MeS)3PCuOTf 9 
        

Empirical formula C3H9AuClPS3 C3H9AuClO3P C9H9AuF5PS3 C9H9AuF5PS3 C18H15AuClPS3 C18H12Au2F10P2S6 C4H9CuF3O3PS4 
Mr 404.69 356.49 536.30 536.30 590.90 1066.5 384.89 

Crystal habit Needle Needle Block Block Block Block Block 
        

Crystal dimensions/mm 0.2 × 0.1 × 0.05 0.5 × 0.1 × 0.1 0.05 × 0.04 × 0.03 0.1 × 0.1 × 0.005 0.2 × 0.2 × 0.15 0.1 × 0.08 × 0.04 0.1 × 0.08 × 0.04 

Crystal system Orthorhombic Orthorhombic Triclinic Triclinic Monoclinic Monoclinic Monoclinic 

Space group Pbca (No. 61) Pbca (No. 61) P (No. 2) P (No. 2) P21/c (No. 14) I2/a (No. 15) P21/c (No. 14) 
        

a/Å 6.5671(6) 6.2810(8) 11.739(2) 7.705(2) 15.156(2) 9.0659(15) 8.835(2) 
b/Å 15.651(2) 14.507(2) 11.757(2) 10.060(2) 13.119(2) 17.155(3) 18.306(3) 

c/Å 18.314(2) 17.324(2) 12.672(2) 11.014(2) 10.147(2) 17.061(3) 8.173(2) 
        

α/° 90 90 103.971(2) 65.077(2) 90 90 90 

β/° 90 90 105.090(2) 82.579(3) 100.834(2) 94.020(4) 102.674(3) 

γ/° 90 90 110.925(2) 69.830(3) 90 90 90 
        

V/Å3 1882.3(3) 1578.6(3) 1464.9(3) 726.6(2) 1981.7(5) 2646.8(8) 1289.6(4) 

Z, Dc/Mg m–3 8, 2.856 8, 3.000 4, 2.432 2, 2.451 4, 1.980 4, 2.676 4, 1.982 

µ(MoKα)/mm–1 16.670 19.119 10.614 10.699 7.953 11.749 2.488 

No. of reflections, unique 10206, 2007 8198, 1604 8780, 6057 7786, 2963 11766, 4510 7592, 2726 7349, 2612 

Rint 0.0259 0.0268 0.0201 0.0282 0.0443 0.0510 0.0208 
        

hkl index range ± 8, –19 to 16, –21 to 

23 

± 7, –14 to 18, –18 to 

21 

± 14, ± 14, –15 to 16 ± 9, ± 12, ± 13 ± 19, –17 to 16, –12 to 

13 

± 11, –21 to 20, –21 to 

14 

± 11, –14 to 22, –9 to 

10 

θ range/° 2.22–26.75 2.35–26.36 1.79–26.79 2.04–26.41 2.07–28.28 1.69–26.43 2.23–26.35 

Data, restraints, parameters 1924, 0, 85 1514, 0, 85 5267, 0, 349 2770, 0, 175 3815, 0, 217 2308, 0, 172 2425, 0, 148 
        

F(000) 1488 1296 1000 500 1128 1976 768 

R1, wR2 [I > 2σ(I)]a 0.0163, 0.0395 0.0218, 0.0446 0.0341, 0.0813 0.0279, 0.0632 0.0462, 0.0856 0.0531, 0.1002 0.0303 0.0734 

R1, wR2 (all data)a 0.0173, 0.0399 0.0239, 0.0453 0.0407, 0.0845 0.0310, 0.0644 0.0588, 0.0890 0.0666, 0.1047 0.0326, 0.0746 
        

Goodness-of-fit 1.101 1.188 1.029 1.079 1.130 1.139 1.044 

Max. and min. 
transmission 

0.436, 0.151 0.821, 0.285 0.727, 0.482 0.586, 0.382 0.305, 0.174 0.625, 0.397 0.907, 0.789 

Largest differential peak 

and hole/eÅ–3 

1.613, -1.059 1.347, -1.590 2.505, -1.403 2.037, -1.088 2.222, -2.641 2.748, -2.048 0.865, -0.419 

        

CCDC ref. No. 609872 609877 609873 609874 609875 609876  
 

a w = 1/[σ2(Fo
2) + (aP)2 + bP] where P = (Fo

2 + 2Fc
2)/3   b 2L = 1,2-bis(1,3,2-dithiaphospholan-2-ylthio)ethane 
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2.4.2 Instrumentation 

 

1
H, 

13
C, 

15
N, 

19
F and 

31
P NMR spectra (δ in ppm) were recorded on Varian VXR 300, 

Varian VNMRS 300, Varian Unity Inova 400 or Varian Unity Inova 600 instruments 

at the indicated frequency. 
1
H and 

13
C NMR spectra were referenced relative to 

residual solvent peaks; 15N, 19F and 31P NMR spectra were referenced externally to 

neat MeNO2, neat CFCl3 or 85% H3PO4, respectively. IR spectra were recorded at  

4 cm
–1

 resolution on a Nicolet Avatar 300 FT-IR instrument equipped with a Smart 

Performer ZnSe disk ATR accessory. The spectra were corrected for ATR effects 

using Omnic software supplied with the spectrometer. Far-IR spectra were recorded in 

polyethylene discs at 4 or 2 cm–1 resolution on a Nicolet Nexus FT-IR spectrometer 

using a solid substrate beam splitter and a DTGS polyethylene detector. EI mass 

spectra were recorded on an AMD 604 instrument at 70 eV. ESI mass spectra were 

recorded on a Waters API Quattro Micro instrument at 15–50 V cone voltage. FAB 

mass spectra were recorded in (nitrophenyl)methanol matrices on a VG 70 SEQ mass 

spectrometer by the University of the Witwatersrand. Thermal gravimetric analyses 

were conducted on a TA instruments TGA Q500 device. Melting points were 

determined on a Stuart Scientific SMP3 instrument or on a Fischer Scientific 

(Pittsburgh PA, St. Louis MO) and Eimer & Amend (New York NY) hot stage 

apparatus and are uncorrected. Elemental analyses were performed by the University 

of Cape Town or the University of the Witwatersrand. 

 

2.4.3 General procedures and reagents 

 

Cooling baths at –78 °C were prepared with a propan-1-ol/dry ice slush. All work was 

conducted under an atmosphere of dry argon using standard Schlenk- and vacuum-

line techniques. All solvents were distilled under a dry dinitrogen atmosphere,
41

 

CH2Cl2 and MeCN were distilled from CaH2; pentane, hexane, hexanes and methyl-

benzene were distilled from sodium; Et2O and thf were dried with sodium wire and 

sodium benzophenone ketyl radical. Anhydrous propanone was distilled from 3 Å 

molecular sieves. Methanol and ethanol were dried by distillation from the respective 

magnesium alkoxides. Ethane-1,2-diol, CHCl3 and NEt3 were distilled and stored over 

                                                
41 R. J. Errington, in Advanced Practical Inorganic and Metalorganic Chemistry, 

 Chapman & Hall, London, 1997, p. 92. 
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3 Å molecular sieves. Pyridine was distilled, stored over 3 Å molecular sieves and re-

distilled prior to use. Butyllithium and methyllithium were standardised in the 

appropriate solvent prior to use following the procedure of Winkle.
42

 Supplied 

chemicals were used without further purification except when noted otherwise. 

 

Bromopentafluorobenzene, butyllithium in hexanes, phosphorus trichloride, silver(I) 

triflate and pyridine were obtained from Aldrich Chemical Co.; Celite (diatomaceous 

earth), crude copper(I) chloride, dimethyldisulfane, diphenyldisulfane, ethane-1,2-

dithiol, sodium triflate and trimethylphosphite were obtained from Fluka AG; 

tetrahydrothiophene from ACROS and anhydrous magnesium sulfate and sodium 

sulfate from Saarchem. 

 

2.4.4 Synthesis of the compounds 

 

The trithiophosphite ligands P(SMe)3 and P(SPh)3 were prepared in a modification of 

the simple literature procedure,
16

 propanone was replaced with ethanenitrile. 

(tht)AuCl
43

 and (tht)AuC6F5
43b

 were prepared according to the literature procedure. 

CuCl was prepared according to the procedure of Vaidya
44 by heating impure greenish 

CuCl with propane-1,2,3-triol furnishing a colourless powder. 

 

A gift of Ph3PAuCl by Jacorien Coetzee is greatly acknowledged. 

 

2.4.4.1 – 1,2-bis(1,3,2-dithiaphospholan-2-ylthio)ethane. 

An Et2O solution (40 ml) of ethane-1,2-dithiol (2.25 g, 24 mmol) was added dropwise 

to a stirred solution of freshly distilled PCl3 (2.05 g, 15 mmol) and pyridine (4.07 g, 

52 mmol) in Et2O (60 ml) at 0 °C. After 2 h pyridine hydrochloride was removed by 

filtration and washed with CH2Cl2 (60 ml). The solvents were removed in vacuo and 

the remaining colourless solid extracted with methylbenzene (100 ml) and again 

                                                
42 M. R. Winkle, J. M. Lansinger and R. C. Ronald, J. Chem. Soc., Chem. Commun. 1980, 87–88. 

43 (a) A. Haas, J. Helmbrecht and U. Niemann, in Handbuch der Präparativen 

 Anorganischen Chemie, ed. G. Brauer, Stuttgart, Enke 1978, p. 1014; 

 (b) R. Uson, A. Laguna and M. Laguna, Inorg. Synth. 1989, 26, 85–91. 

44 B. K. Vaidya, Nature 1929, 123, 414. 
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filtered. The solvent was removed in vacuo affording a colourless microcrystalline 

solid (0.789 g, 31%). 

M.p. 123 °C 

The compound is soluble in CH2Cl2 and thf, slightly soluble in methylbenzene and 

insoluble in Et2O or alkanes. 

 

2.4.4.2 Tetrakis(ethanenitrile)copper(1+) trifluoromethanesulfonate. 

A solution of NaOTf (1.21 g, 7.03 mmol, 1 eq.) in 20 ml ethanenitrile was degassed 

by repeatedly applying a vacuum and filling the Schlenk tube with argon. Solid white 

CuCl (701 mg, 7.08 mmol, 1 eq.) was added, the reaction mixture was heated to 80 °C 

to initiate the reaction and then left stirring overnight at room temperature. The 

suspension was filtered through Celite pre-treated with Et2O and the colourless 

solution thus obtained was concentrated to ca. 7 ml. Addition of methylbenzene  

(20 ml) caused precipitation of the colourless crystalline product and the vessel was 

cooled to –30 °C for another 30 min to effect further crystallisation. Removal of the 

yellowish mother liquor furnished 2.57 g (97%) of the title compound. 

 

2.4.4.3 Chloro(trimethyltrithiophosphite)gold, 1. 

Ligand P(SMe)3 (0.146 g, 0.85 mmol) was dissolved in thf (15 ml) and (tht)AuCl 

(0.272 g, 0.85 mmol) was added. The resulting homogeneous slightly yellowish 

solution was stirred for 1 h. All volatiles were removed in vacuo during which the 

compound started to precipitate from the solution. The obtained solid was again 

dissolved in thf (15 ml), filtered through Celite and stripped of solvent affording the 

target compound as a colourless microcrystalline solid in quantitative yield (0.342 g). 

Crystals suitable for an X-ray diffraction measurement were grown by layering a 

trichloromethane-d solution with pentane. Found: C, 8.7; H, 2.3. C3H9AuClPS3 re-

quires C, 8.90; H, 2.24%. ν/cm–1 2920 s (CH3), 1415 vs (CH3), 694 s, 566 vs, 512 vs, 

503 vs, 315 s (Au
35

Cl) and 308 m (Au
37

Cl). 

M.p. 114 °C (dec.) 

The compound is soluble in CH2Cl2, trichloromethane and thf, it is insoluble in Et2O 

and alkanes and decomposes in protic solvents. 
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2.4.4.4 (Pentafluorophenyl)(trimethyltrithiophosphite)gold, 2. 

A solution of P(SMe)3 (0.107 g, 0.62 mmol) in Et2O (30 ml) was cooled to 0 °C and 

transferred via a Teflon cannula to a second Schlenk tube charged with (tht)AuC6F5 

(0.273 g, 0.60 mmol). The mixture was stirred for 45 min at 0 °C followed by fil-

tration of the purplish solution through Celite previously washed with Et2O. After 

removal of the volatiles in vacuo a crude purple product was obtained. The filtration 

procedure was repeated to afford a colourless microcrystalline solid (0.283 g, 87%). 

Crystals of polymorph A suitable for an X-ray diffraction measurement were grown 

by diffusing pentane vapour into an Et2O solution. Polymorph B crystallised from a 

thf solution layered with pentane. Found: C, 20.1; H, 1.7. C9H9AuF5PS3 requires  

C, 20.2; H, 1.7%. ν/cm–1 2917 s (CH3), 1634 m, 1501 s, 1454 vs, 1419 vs (CH3), 

1061 s, 952 vs, 790 s and 693 m. 

M.p. 92 °C (dec.) 

The compound is soluble in all common organic solvents except alkanes, it decom-

poses in protic solvents. 

 

2.4.4.5 Chloro(triphenyltrithiophosphite)gold, 3. 

The complex was prepared in an analogous manner to 1 employing P(SPh)3 (0.346 g, 

0.97 mmol) and (tht)AuCl (0.315 g, 0.98 mmol) affording a viscous colourless oil 

which slowly crystallised over several days at –16 °C yielding a colourless solid 

(0.539 g, 95%). A crystal suitable for an X-ray structure determination was grown 

from a thf solution layered with Et2O at –16 °C. Found: C, 36.4; H, 2.7. C18H15Au–

ClPS3 requires C, 36.6; H, 2.6%. ν/cm
–1

 3044 m (CH), 1572 m, 1470 vs, 1436 vs, 

1082 s, 1023 s, 745 vs, 687 vs, 461 vs, 339 s (AuCl), 318 s, 262 m and 235 m. 

M.p. 63 °C (dec. without melting) 

The compound is soluble in CH2Cl2, CHCl3 and thf, but insoluble in Et2O or alkanes. 

 

2.4.4.6 (Pentafluorophenyl)(triphenyltrithiophosphite)gold, 4. 

The compound was prepared in an analogous manner to 2 employing P(SPh)3 

(0.145 g, 0.40 mmol) and (tht)AuC6F5 (0.189 g, 0.42 mmol). After evaporation of all 

volatiles a colourless crystalline solid was obtained (0.283 g, 97%). Found: C, 40.0; 
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H, 2.1. C24H15AuF5PS3 requires C, 39.9; H, 2.1%. ν/cm
–1

 3054 m (CH), 1638 m, 

1609 m, 1503 s, 1456 vs, 1438 vs, 1355 s, 1060 s, 952 vs, 741 s and 683 s. 

M.p. 86 °C (dec.) 

The compound is soluble in all common organic solvents except alkanes. Protic 

solvents effect decomposition. 

 

2.4.4.7 Dichloro{µ-[1,2-bis(1,3,2-dithiaphospholan-2-ylthio)ethane]}digold, 5. 

A solution of (tht)AuCl (0.218 g, 0.68 mmol) and 1,2-bis(1,3,2-dithiaphospholan-2-

ylthio)ethane (0.115 g, 0.34 mmol) in thf (15 ml) was stirred at r.t. A precipitate was 

observed and after 1.5 h the volatiles were removed in vacuo affording a yellowish 

solid (0.263 g, 96%). Only limited analytical data could be obtained due to the 

insolubility of the material. Found: C, 8.9; H, 1.5%. C6H12Au2Cl2P2S6 requires C, 9.0; 

H, 1.5%. ν/cm
–1

 2958 s (CH2), 2922 s (CH2), 1416/1411 vs (CH2), 1288 m, 1202 vs, 

938 s, 837 vs, 728 m, 673 s, 433 m, 371 m and 323 s (AuCl). 

M.p. 95 °C (dec. without melting) 

The compound is insoluble. 

 

2.4.4.8 {µ-[1,2-Bis(1,3,2-dithiaphospholan-2-ylthio)ethane]}-

bis(pentafluorophenyl)digold, 6. 

A solution of 1,2-bis(1,3,2-dithiaphospholan-2-ylthio)ethane (0.077 g, 0.23 mmol) in 

thf (10 ml) was cooled to 0 °C and (tht)AuC6F5 (0.210 g, 0.46 mmol) was added. 

After stirring the homogeneous solution for 30 min the volatiles were removed in 

vacuo during which the product started to precipitate. The dry solid was again 

dissolved in thf (30 ml), filtered through Celite and stripped of solvent to afford a 

colourless crystalline product (0.216 g, 87%). Crystals suitable for X-ray diffraction 

were obtained by layering a thf solution with pentane. Found: C, 20.4; H, 1.2. 

C18H12Au2F10P2S6 requires C, 20.3; H, 1.1%. ν/cm–1 2924 w (CH2), 1638/1632 m, 

1502 vs, 1452 vs, 1357 s, 1199 m, 1061 s, 952 s and 789 s. 

M.p. 158 °C (dec. without melting) 

The compound is only soluble in thf when freshly prepared. It ages within days 

turning yellow and becomes insoluble. 
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2.4.4.9 Bis(trimethyltrithiophosphite)gold(1+) trifluoromethanesulfonate, 7. 

Ligand P(SMe)3 (0.139 g, 0.81 mmol) was dissolved in ethanenitrile (10 ml) and 

(tht)AuCl (0.130 g, 0.41 mmol) was added which yielded a yellow precipitate. After  

1 h, thf (10 ml) was added which dissolved the precipitate affording a hazy yellowish 

solution. A solution of AgOTf (0.102 g, 0.40 mmol) in ethanenitrile (5 ml) was added 

causing immediate precipitation of AgCl. The suspension was stirred for another hour 

and then filtered through Celite. The filter was washed with thf (20 ml) and the filtrate 

evaporated in vacuo affording a yellow oil which slowly crystallised at –16 °C. 

Treatment of the crude product with Et2O (40 ml), inverse filtration and drying in 

vacuo afforded a hygroscopic yellow solid (0.153 g, 56%) which is very sensitive to 

moisture. Found: C, 12.5; H, 2.9. C7H18AuF3O3P2S7 requires C, 12.2; H, 2.6%.  

ν/cm
–1

 2916 m (CH3), 2847 m (CH3), 1422/1418 s (CH3), 1253 s (CF3SO3
–
), 1219 vs 

(CF3SO3
–), 1155 s, 1140 s, 1026 s and 955 m. 

M.p. 60 °C (dec. with evolution of gas) 

The compound is soluble in ethanenitrile and CH2Cl2, it is insoluble in Et2O and 

alkanes. 

 

2.4.4.10 Chloro(trimethylphosphite)gold, 8. 

In an analogous manner to the preparation of 1 the reaction of trimethylphosphite 

(0.041 g, 0.33 mmol) and (tht)AuCl (0.108 g, 0.34 mmol) afforded a crystalline 

powder after evaporation of all volatiles. It was re-dissolved in thf (7 ml), the solution 

layered with pentane and stored at –16 °C whereupon the target compound crys-

tallised as colourless needles (0.104 g, 90%). A suitable crystal was mounted for  

X-ray diffraction. 

M.p. 101 °C 

 

2.4.4.11 catena-(µ-Trifluoromethanesulfonato-κ2
O:O′)(µ-trimethyltrithio- 

  phosphite-κP:κS)copper, 9. 

Ligand P(SMe)3 (202 mg, 1.2 mmol) was dissolved in thf (20 ml) and 

[Cu(CH3CN)4]OTf (440 mg, 1.2 mmol, 1 eq.) was added furnishing a homogeneous 

solution. After stirring for 15 min., a slight turbidity was observed and after 1.5 h all 

volatiles were removed in vacuo affording a yellowish oil. Trituration with Et2O  
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(ca. 20 ml) and twice with ca. 20 ml methylbenzene caused the oil to solidify giving a 

colourless powder in quantitative yield. A crystal suitable for X-ray diffraction was 

grown from thf layered with pentane. Found C, 12.6; H, 2.2. C4H9CuF3O3PS4 requires 

C, 12.5; H, 2.4%. ν/cm–1 2999 w (CH3), 2924 m (CH3), 1605 w, 1421 m (CH3), 1284 

s (CF3SO3
–
), 1220 vs (CF3SO3

–
), 1169 vs (CF3SO3

–
), 1049 w, 1019 vs, 962 s, 764 w, 

734 w, 668 m, 626 s and 577 w. 

M.p. 140 °C (dec. to a rust-brown powder without melting) 

The material is soluble in ethanenitrile and thf, it is insoluble in Et2O and alkanes. 

 



 

Tris(azol-2-yl)phosphane Complexes of Gold(I)1 

 

 

 

 

 
3.0 Abstract 

 

Various tris(azol-2-yl)phosphanes PR3 (R = 1-methylimidazol-2-yl, thiazol-2-yl, 4-

methylthiazol-2-yl or 4,5-dimethylthiazol-2-yl), 1a–d, were utilised to prepare com-

plexes of the type R3PAuCl, 2a–d. The donor strength of the nitrogen atoms in the 

ligands was assessed with natural-abundance 
15

N{
1
H} NMR spectroscopy of 1a–c. 

The chloride of 2c could be successfully substituted by the anions NCS
–
 and 

PhC(O)S
–
 affording products 3a, and 3b, respectively. Sulfurisation of ligand 1c 

furnished the phosphane sulfide 1e. Crystal and molecular structures were determined 

of compounds 1c–e, 2a–d, 3a, 3b and 4. Intriguingly, 2b and 2c crystallise in a total 

of seven polymorphs and solvates exhibiting different modes of intermolecular 

association. Compound 2b crystallises in three polymorphs; two known polymorphs 

and the new solvate 2b⋅0.5CH2Cl2 exhibit aurophilic interaction while the new third 

polymorph is stabilised by short Au…Cl interactions of 3.2660(9) Å. The newly 

discovered additional polymorph of 2c, as well as the solvate 2c⋅C4H8O, lack any 

Au…Au contacts. Product 2b is the first simple gold compound known to exhibit both 

Au…Au and Au…Cl contacts in different polymorphs. Compound 1e is an inferior 

ligand for AuI and reaction with (tht)AuCl (tht = tetrahydrothiophene) and 

(tht)AuC6F5 sets up an equilibrium situation between 1e and tht competing for 

coordination to gold. 

                                                
1 All gold complexes presented in this Chapter as well as ligand 1d have been described in a publi-

cation: C. E. Strasser, W. F. Gabrielli, C. Esterhuysen, O. B. Schuster, S. D. Nogai, S. Cronje and 

H. G. Raubenheimer: “Preparation of tris(azolyl)phosphine gold(I) complexes: digold(I) coordina-
tion and variation in solid state intermolecular interactions”, New J. Chem. 2008, 32, 138–150. 

 

In addition, the crystal and molecular structures of ligands 1a, 1c and 1e have been submitted for 

publication: Christoph E. Strasser, William F. Gabrielli, Oliver B. Schuster, Stefan D. Nogai, 

Stephanie Cronje and Helgard G. Raubenheimer: “Crystal and molecular structures of tris(1-

methylimidazol-2-yl)phosphine, tris(4-methylthiazol-2-yl)phosphine and its sulfide”, J. Chem. 

Crystallogr. 2008, submitted for publication. 

3 
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3.1 Introduction 

 

Alkyl- and arylphosphanes count amongst the most useful ligands in coordination 

chemistry. However, complexes of phosphanes with one or more azolyl residues have 

received much less attention. The available literature deals mainly with complexes of 

(1-alkylimidazol-2-yl)diphenylphosphanes where cationic, bridged, binuclear coinage 

metal complexes with P:N-coordination are a popular motif.
2
 A mixed Ag

I
/Au

I
 

complex has been reported in which the gold centre is selectively coordinated to the 

phosphorus atoms and the silver centre solely by the imidazole nitrogen atoms 

(Scheme 3.1).
3
 

PPh2M
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NMPh2P

N

N
R2

R2

N

N

N

N

N

PPh2
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Au

N
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2 + 2 +L

L

 

Scheme 3.1 Complexes of 1-alkylimidazol-2-ylphosphanes; M = Ag, Au and L = MeCN in the Ag 

complex, the Au complex does not entail ancillary ligands. 

 

Metal complexes of tris(imidazolyl)phosphane ligands have mainly been used in 

molecular models for carbonic anhydrase (Scheme 3.2).
4
 This enzyme is vital in 

living organisms as it accelerates the simple reaction of CO2 hydration and ionisation
5
 

(Equation 3.1) by a factor of 10
7
. The enzyme contains a Zn centre coordinated by 

three histidine residues; tris(imidazolyl)phosphanes are convenient scaffolds for 

studying this simple but important reaction on the scale of a comparatively small 

 

H2O + CO2                           HCO3
-
 + H3O

+                                   
(3.1)

 

                                                
2 (a) A. Burini, B. R. Pietroni, R. Galassi, G. Valle and S. Calogero, Inorg. Chim. Acta 1995, 229, 

 299–305; (b) F. Bachechi, A. Burini, M. Fontani, R. Galassi, A. Macchioni, B. R. Pietroni, 

 P. Zanello and C. Zuccaccia, Inorg. Chim. Acta 2001, 323, 45–54. 

3 V. J. Catalano and S. J. Horner, Inorg. Chem. 2003, 42, 8430–8438. 

4 (a) C. Kimblin, B. M. Bridgewater, D. G. Churchill and G. Parkin, J. Chem. Soc., Dalton Trans. 

 2000, 2191–2194; (b) T. B. Koerner and R. S. Brown, Can. J. Chem. 2002, 80, 183–191; 

 (c) P. C. Kunz, G. J. Reiß, W. Frank and W. Kläui, Eur. J. Inorg. Chem. 2003, 3945–3951. 

5 R. G. Khalifah, J. Biol. Chem. 1971, 246, 2561–2573. 
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complex that allows for facile handling and accumulation of spectroscopic 

information.
6
 

 

In these instances only the imine nitrogen atoms are utilised as coordination centres 

resembling the κ3
N,N′,N″-coordination mode found in similar complexes of the 

hydridotris(pyrazol-2-yl)borate (scorpionate) ligands, with the phosphorus serving 

mainly as a probe for convenient 31P NMR analysis. 

 

Employment of tris(imidazolyl)phosphanes as P-coordinating ligands has only been 

reported twice encompassing one complex each of Au
I
 (Scheme 3.2) and Pt

II
.
7
 The 

former is the only P-coordinated tris(azolyl)phosphane complex so far characterised 

by X-ray diffraction. 

 

O

CH3COO

CH3COO

OCOCH3

S

OCOCH3

Au
P N

N

3

PN

N

N

N

N

Co N

H2O OClO3

CH3OH

+

a b  

Scheme 3.2 (a) Structure of the Auranofin
TM

 analogue and only P-coordinated structure of a tris-

(imidazolyl)phosphane reported to date;
7b

 (b) typical κ3
N,N′,N″ scorpionate-coordina-

tion of a tris(imidazolyl)phosphane as a model for the catalytic site of carbonic an-

hydrase.4a 

 

Examples of phosphane complexes with thiazolyl moieties are even less common and 

for the AuI centre only diphenyl(thiazol-2-yl)phosphane8 and, recently, (perfluoro-

benzothiazol-2-yl)diphenylphosphane have been utilised. As both benzothiazole and 

gold have advantageous properties in this regard, complexes of the latter ligand were 

employed in a phosphorescence study.
9
 

                                                
6 W. Kläui, C. Piefer, G. Rheinwald and H. Lang, Eur. J. Inorg. Chem. 2000, 1549–1555. 

7 (a) S. S. Moore and G. M. Whitesides, J. Org. Chem. 1982, 47, 1489–1493; 

 (b) R. A. Bell, C. J. L. Lock, C. Scholten and J. F. Valliant, Inorg. Chim. Acta 1998, 274, 137–142. 

8 A. Antiñolo, F. Carrillo-Hermosilla, E. Diez-Barra, J. Fernández-Baeza, A. Lara-Sánchez, 

 A. Otero and J. Tejeda, J. Organomet. Chem. 1998, 570, 97–105. 

9 E. J. Fernández, A. Laguna, J. M. López-de-Luzuriaga, M. Monge, M. Montiel, M. E. Olmos 

 and M. Rodriguez-Castillo, Dalton Trans. 2006, 3672–3677. 
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Other examples that were found to exhibit N-coordination of one (benzo)thiazole 

moiety in addition to phosphane coordination, include complexes of Rh
I
 and Rh

II
,
10

 as 

well as the combinations Fe
0
/Cd

II
 and Fe

0
/Hg

II 11
 which have been characterised by  

X-ray crystal structure determinations (Scheme 3.3). The ligand bis[bis(benzothiazol-

2-yl)phosphanyl]ethane chelates a Rh
I
 centre by P:P′-coordination. The complex is, 

however, unstable and yields a unique mixed Rh
II
/Rh

III
 complex salt when left in 

chlorinated solvents.
10b

 Intriguingly, in the binuclear Fe
0
/Cd

II
 and Fe

0
/Hg

II
 complexes, 

Fe0 is P-coordinated while HgII/CdII are N-coordinated which may be a result of the 

fact that the group 12 metals were introduced last and ligand rearrangement is 

inhibited. 
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P
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a b  

Scheme 3.3 (a) Binuclear Fe
0
/M

II
 (M = Hg, L = SCN or M = Cd, L = I) complexes synthesised from 

tricarbonylbis[diphenyl(thiazol-2-yl)phosphane]iron and ML2; (b) A P:P′-coordinated 

Rh
I
 complex (R = benzothiazol-2-yl) undergoes oxidation in chlorinated solvents to yield 

a binuclear cationic RhII complex and a RhIII anion; two benzothiazole groups in the 

cation are not fully shown. 

 

Tris(thiazol-2-yl)phosphane, in turn, has only found applications in two reports of RhI 

and Pt
II
 complexes.

7a,12
 The latter complex was the first example to demonstrate the 

tris(thiazolyl)phosphane ligand class. No crystal and molecular structures of 

complexes with this ligand have been determined. 

                                                
10 (a) M. F. M. Al-Dulaymmi, P. B. Hitchcock and R. L. Richards, J. Organomet. Chem. 1988, 338, 

 C31–C34; (b) M. F. M. Al-Dulaymmi, A. Hills, P. B. Hitchcock, D. L. Hughes and R. L. Richards, 

 J. Chem. Soc., Dalton Trans. 1992, 241–248; (c) M. F. M. Al-Dulaymmi, D. L. Hughes 

 and R. L. Richards, J. Organomet. Chem. 1992, 424, 79–86. 

11 S.-M. Kuang, Z.-Z. Zhang, F. Xue and T. C. W. Mak, J. Organomet. Chem. 1999, 575, 51–56. 

12 A. Neveling, G. R. Julius, S. Cronje, C. Esterhuysen and H. G. Raubenheimer, 

 Dalton Trans. 2005, 181–192. 
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Ligands 1a–c were examined by natural abundance 
15

N{
1
H} NMR spectroscopy in 

addition to the spectra of the complexes 2a–c already described
13

 since no reference 

data is available for this class of ligands. 

 

Hydrolysis of a tris(imidazol-2-yl)phosphane ligand by adventitious water was 

previously reported by Gabrielli.
13

 In this instance, hydrolytic cleavage of one  

1-methylimidazole group was accompanied by oxidation of the P-coordinated gold 

centre to form a binuclear Au
II
 complex as shown in Scheme 3.4 (a). Other examples 

of phosphane hydrolysis occurring in the coordinated form have only been observed 

before for OsII complexes in an intramolecular manner where a simultaneous 

migration of one phenyl group has been proposed [Scheme 3.4 (b)].
14
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Scheme 3.4 (a) Hydrolysis of compound 2a and subsequent oxidation by (tht)AuC6F5 leads to a tetra-

nuclear Au
I
/Au

II
 complex; (b) Intramolecular hydrolysis of a phosphane ligand by a co-

ordinated water molecule in an Os
II
 complex. 

                                                
13 W. F. Gabrielli, Ph.D. thesis, Stellenbosch University, 2006. 

14 D. Carmona, C. Vega, N. García, F. J. Lahoz, S. Elipe, L. A. Oro, M. P. Lamata, 

 F. Viguri and R. Borao, Organometallics 2006, 25, 1592–1606. 
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Sulfurisation products of heterocyclic azolylphosphanes have also attracted little 

attention. Only a Ukrainian group is pursuing the synthesis of heterocyclic 

phosphanes and their oxidation products.15 However, coordination complexes of 

tris(azolyl)phosphane sulfides are unprecedented. 

 

3.1.1 Aims 

 

Following initial results obtained by Gabrielli,13 the chemistry of tris(azol-2-yl)-

phosphanes, which have not received much attention as ligands, had to be further 

explored. The first objective was to determine the electronic influence of a selected 

tris(thiazol-2-yl)phosphane on the Au
I
 centre to which it is coordinated. Towards this 

end, substitution of the chloride ligand with soft sulfur nucleophiles and examination 

of the stability of the products was anticipated to yield qualitative insight into how 

much electron density this ligand is able to supply. This data then enables comparison 

of the novel tris(azol-2-yl)phosphanegold(I) complexes with their well established 

triarylphosphane congeners. 

 

Related to the aim mentioned above and with reference to a previous isolation of a 

Au
II
 complex where a tris(1-methylimidazol-2-yl)phosphane underwent hydrolysis of 

one 1-methylimidazole group,
13

 the hydrolytic stability of tris(thiazol-2-

yl)phosphanegold(I) complexes needed further investigation. The aim was to establish 

a new pathway for the synthesis of R2P(O)AuL complexes by controlled hydrolysis of 

such complexes. 

 

Focusing on early results indicating a tendency of chloro[tris(azol-2-yl)phosphane]-

gold complexes to form polymorphs, it was also planned to investigate this behaviour 

in more detail in order to gain insight into the determining factors that affect the 

crystal packing in these complexes. 

 

                                                
15 (a) A. A. Tolmachev, S. P. Ivonin, A. A. Anishenco and A. M. Pinchuk, Heteroat. Chem. 1998, 

 9, 461–470; (b) A. A. Tolmachev, A. A. Yurchenko, A. S. Merculov, M. G. Semenova, 

 E. V. Zarudnitskii, V. V. Ivanov and A. M. Pinchuk, Heteroat. Chem. 1999, 10, 585–597; 

 (c) A. M. Pinchuk, S. A. Kovalyova, S. P. Ivonin, A. S. Merkulov, T. N. Kudrya, 

 A. A. Chaikovskaya and A. A. Tolmachev, Heteroat. Chem. 2001, 12, 641–651; 

 (d) A. A. Chaikovskaya, Yu. V. Dmitriv, S. P. Ivonin, A. M. Pinchuk and A. A. Tolmachev, 

 Heteroat. Chem. 2005, 16, 599–604. 
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3.2 Results and discussion 

 

3.2.1 Preparation of the ligands and complexes 

 

The ligands 1b and 1c were prepared according to the literature protocol by reacting 

three mole equivalents of 2-lithioazole with PCl3 at –60 °C.7a Compound 1d required 

a lower reaction temperature of –78 °C. At higher temperatures oxidative coupling of 

the lithium reagent by PCl3 becomes a competing reaction and 4,4′,5,5′-tetramethyl-

2,2′-bithiazolyl can be isolated.
16

 Also at low temperatures the lithiated thiazole form 

is prevalent while at higher temperatures the ring-opened lithium (Z)-2-isocyanobut-2-

en-3-thiolate is the main species present.17 Compound 1e was prepared by sulfuri-

sation of 1c by stirring a thf solution with excess sulfur for 8 days. Subsequently, 

synthesis of the gold complexes 2a–d was effected by substitution of tht in (tht)AuCl 

in dichloromethane solution (Scheme 3.5). 
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Scheme 3.5 Synthesis of complexes, 2a–d, from ligands, 1a–d, and synthesis of the sulfurisation pro-

duct 1e from 1c. Reaction conditions: (x) (tht)AuCl, CH2Cl2, r.t.;   (y) S8, thf, 8d, 45 °C. 

 

The resulting compounds are generally soluble in polar aprotic solvents such as thf 

and dichloromethane but the tris(imidazolyl)phosphane complex 2a is somewhat less 

soluble in these solvents although well soluble in methanol. The products are 

thermally stable and can be stored at room temperature for prolonged periods of time 

without noticeable decomposition. Attempts to substitute the chloride in the 

                                                
16 Y. Uchida, Y. Takaya and S. Oae, Heterocycles 1990, 30, 347–351. 

17 C. Hilf, F. Bosold, K. Harms, M. Marsch and G. Boche, Chem. Ber./Recueil 1997, 130, 1213–1221. 
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tris(4-methylthiazol-2-yl)phosphane complex 2c by using aqueous NaNCS in a bi-

phasic reaction
18

 or by treatment with LiSR [R = CH2Ph, Ph or C(O)Ph] in anhydrous 

thf, produced only the two complexes 3a and 3b that contain electron-withdrawing 

residues attached to the sulfur (Scheme 3.6). With phenylmethanethiolate and 

benzenethiolate precipitation of (AuSR)n and liberation of the free phosphane was 

observed. Decomposition with the former reagent was instantaneous while employing 

the latter thiolate a precipitate was only observed after several minutes. The electronic 

nature of chloro[tris(thiazol-2-yl)phosphane]gold complexes thus differs greatly from 

Ph3PAuCl (Ph3PAuSPh can be readily prepared)
19

 and is comparable to that of 

chloro{tris[3,5-bis(trifluoromethyl)phenyl]phosphane}gold. Employment of the latter 

complex and substitution of the chloride with benzenethiolate, gave the product in 

only 6% yield due to fast decomposition in solution.
20

 Reaction of 2c with 

NaCH(CN)2 in anhydrous thf yielded a mixture; a reaction occurred according to 
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Scheme 3.6 Syntheses of the compounds 3a and 3b as well as attempted related syntheses: 

 (a) NaCH(CN)2, thf   (b) PhCH2SLi, thf   (c) NaNCS, K2SO4, CH2Cl2/H2O 

 (d) PhC(O)SLi, thf   (e) PhSLi, thf. 

                                                
18 D. Schneider, S. Nogai, A. Schier and H. Schmidbaur, Inorg. Chim. Acta 2003, 352, 179–187. 

19 M. Nakamoto, W. Hiller, and H. Schmidbaur, Chem. Ber. 1993, 126, 605–610. 

20 K. Nunokawa, S. Onaka, T. Tatematsu, M. Ito and J. Sakai, Inorg. Chim. Acta 2001, 322, 56–64. 
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the changes in the 
31

P{
1
H} NMR spectrum but, again, attempts to isolate a pure 

product failed. This could be the result of partial bis-auration of the activated 

methylene carbon that occurs relatively easy.
21

 

 

Compounds 3a and 3b are somewhat less stable than 2a–d at room temperature and 

slow decomposition with deposition of metallic gold occurs. Subsequently, the 

possibility of the imine nitrogen atoms acting as additional coordination centres 

towards gold(I) was explored. In reactions between the new phosphane complexes and 

(tht)AuC6F5 a clear discrimination was found in that only 2a, which contains a 

tris(imidazolyl)phosphane ligand, coordinated to another gold centre. Previous results 

indicated that addition of an excess of (tht)AuC6F5 to 2a afforded a mixture of pro-

ducts of which two – one a hydrolysis product containing a Au2
4+

 core and the other, 

compound 4 (Scheme 3.7) – could be isolated.
13 
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Scheme 3.7 Synthesis of compound 4 by the initial attempt to coordinate all imine nitrogen centres of 

2a
13

 via the conditions (a) and rational synthesis of 4 via conditions (b); reagents and 

conditions: (a) 3 (tht)AuC6F5, propanone; (b) 2 (tht)AuC6F5, thf. 

 

Following these results, complex 4 was independently synthesised by reacting 

tris(imidazolyl)phosphane 1a with two mole quantities of (tht)AuC6F5 to obtain an 

analytically pure compound. In the solid form, both the propanone solvate crystals 

                                                
21 H. Schmidbaur, S. Cronje, B. Djordjevic and O. Schuster, Chem. Phys. 2005, 311, 151–161. 
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and the solvent-free powder are stable at –16 °C but decompose slowly when 

dissolved and stored at room temperature. An investigation of the hydrolytic be-

haviour of the oxides and alkylphosphonium salts of tris(2-furyl)- and tris(thien-2-yl)-

phosphane have shown that these compounds to effect the formation of the cor-

responding phosphanic acids R2P(O)OH.
22

 

 

As hydrolysis was not observed during the preparation of 3a, the hydrolysis of 

tris(thiazol-2-yl)phosphanes was further investigated. For this purpose an NMR 

probing experiment (vide infra) was used with 2c as the starting material. 

 

As initial P-coordination of the ligands was always observed it is apparent that the 

coordination chemistry of AuI to tris(imidazolyl)phosphanes is markedly different 

when compared to that of the isoelectronic HgII. A cationic tris[1-(1-methylethyl)-4-

(1,1-dimethylethyl)imidazol-2-yl]phosphane complex of Hg
II
 has been shown to ex-

hibit κ3
N,N′,N″-coordination by the imidazole nitrogen atoms but no coordination to 

the phosphorus takes place.23 Consequently, it appears that with tris(imidazolyl)-

phosphanes phosphorus is the superior donor atom for AuI and PtII but not for other 

metals examined so far. On the other hand, in the few examples that have been 

investigated, tris(thiazol-2-yl)phosphanes have only been found to coordinate through 

the phosphorus atom and no involvement of the nitrogen atoms was detected.
7a,12

 It is 

anticipated that in future work coordination of tris(thiazol-2-yl)phosphanes to hard 

metal centres could lead to interesting coordination bonding patterns and compounds. 

 

An attempt was made to utilise 1e in preparing gold complexes, but this compound 

proved to be an inferior donor and tht was not substituted quantitatively from the Au
I
 

starting materials. However, some reaction of 1e with (tht)AuC6F5 was corroborated 

by FAB MS analysis. Signals at m/z 721 and 722 were observed possibly 

corresponding to 2e and its H+ adduct, albeit no crystal structure could be obtained 

which would have been particularly interesting in this case as S- and N-coordination 

                                                
22 (a) D. W. Allen, B. G. Hutley and M. T. J. Mellor, J. Chem. Soc., Perkin Trans. 2 1972, 63–67; 

 (b) D. W. Allen, B. G. Hutley and M. T. J. Mellor,  

 J. Chem. Soc., Perkin Trans. 2 1977, 1705–1708. 

23 C. Kimblin, V. J. Murphy, T. Hascall, B. M. Bridgewater, J. B. Bonanno and G. Parkin, 

 Inorg. Chem. 2000, 39, 967–974. 
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(the latter, likely with a lateral S-contact, see Scheme 3.8) should be in mutual 

competition. 
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Scheme 3.8 Possible N- or S-coordinated structures for product 2e. 

 

3.2.2 Infrared spectroscopy 

 

Most of the new compounds do not produce strong diagnostic peaks in their IR 

spectra, the notable exceptions are the gold thiocyanate 3a and thiobenzoate 3b. The 

ν(C–N) in the thiocyanate group of 3a is observed at 2122, 2114 (vs) and 2075 (w) 

cm–1. The vibration frequencies are slightly lower than in Ph3PAuSCN (2130 and 

2075 cm–1)18 which shows aggregation by Au…S contacts in the solid state as opposed 

to the dimers of 3a that are linked by aurophilic interactions (vide infra). Complex 3b 

shows a very strong strong split ν(C–O) signal at 1622 and 1616 cm
–1

 for the thio-

benzoate. The carbonyl frequency for Ph3PAuSC(O)Ph24 was found at 1611 cm–1 

which would be the result of the greater σ-donating ability of PPh3 compared to 1c. A 

ν(P–S) vibration could not be identified upon analysis of the solid-state IR spectra of 

1c and 1e. 

 

3.2.3 Mass spectrometry 

 

The ligands were examined by EI ionisation and the gold complexes by FAB 

ionisation, m/z values of fragments are reported in Table 3.1. Typical fragmentation 

patterns in EI include the loss of thiazole groups. In the FAB spectra the [M + H]
+
 

peak and the loss of the anionic ligand was always observed. It is not clear whether 

oxidation of 1e and 1d giving rise to [Fragment + O]+ peaks occurred during sample 

preparation or during ionisation in the mass spectrometer. 

                                                
24 B. R. Vincent, D. J. Clarke, D. R. Smyth, D. de Vos and E. R. T. Tiekink, 

 Metal-Based Drugs 2001, 8, 79–84. 
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Table 3.1 Mass spectrometric data of 1d–3b.
a
  

 

 

Compound 

N

S

P

3  
1d 

N

S

P

3

S

 
1e 

N

S

P

3

AuCl

 
2d 

N

S

P

3

Au SCN

 
3a 

N

S

P

3

Au S

Ph

O  
3b 

      

Formula C15H18N3PS3 C12H12N3PS4 C15H18AuClN3PS3 C13H12AuN4PS4 C19H17AuN3OPS4 

Exact mass 367.04 356.97 598.97 579.93 658.97 
      

Method EI EI FAB FAB FAB 
      

[M + H]
+
   600 (16) 581 (5) 660 (7) 

M
+
 367 0(30) 357 0(20)    

R3PAu
+
   564 (27) 522 (7) 522 (4) 

[M – C4H4NS]
+
 255 (100)

b
 259 00(7)    

      

Others 383 0(15)
c
 

224 0(25)
d
 

341 00(8)
e
 

325 00(7)
f
 

243 00(8)
g
 

227 (100)h 

 675 (1)
i
  

 

a
 Base peak in FAB spectra at m/z 154 [(3-nitrophenyl)methanol + H]

+
   

b
 [M – C5H6NS]

+
 

c
 [M + O]

+
   

d
 [C5H6NS]2

+
   

e
 [M – S + O]

+
   

f
 [M – S]

+
   

g
 [M – S – C4H4NS + O]

+ 

h
 [M – S – C4H4NS]

+
   

i
 [M – SCN + C7H7NO3]

+
 

 

3.2.4 NMR spectroscopy 

 

All ligands have been investigated by multinuclear NMR spectroscopy including 

natural-abundance 
15

N{
1
H} NMR for the ligands 1a–c. Data for 

1
H, 

13
C{

1
H} and 

31
P{

1
H} NMR spectroscopy are summarised in Table 3.2, 

15
N{

1
H} NMR data are 

reported in Table 3.3. The tris(thiazol-2-yl)phosphane ligands and complexes all 

furnish the expected 1H, 13C and 31P NMR spectra. In the 1H NMR spectrum the 

methyl resonances of tris(4,5-dimethylthiazol-2-yl)phosphane, 1d, are isochronous, 

their different nature was only revealed in the 
13

C NMR spectrum where they are well 

separated. In the gold(I) chloride complex 2d the two inequivalent methyl resonances 

in the 1H NMR spectrum are just resolved. 

 

In the tris(thiazol-2-yl)phosphane ligands coupling of the different hydrogens to each 

other and sometimes to the phosphorus was resolved. JHH and JPH are enhanced by 

coordination to the Au
I
 centre. Similar observations have been made with other 

heterocyclic phosphanes.6,25 Enhancement of the JPC couplings of the ligand were also 

noted, especially for the ipso-carbon atom; this is in agreement with similar trends in 

 

                                                
25 (a) T. N. Sorrell, W. E. Allen and P. S. White, Inorg. Chem. 1995, 34, 952–960; 

 (b) M. Enders, O. Fritz and H. Pritzkow, Z. Anorg. Allg. Chem. 2004, 630, 1501–1506. 
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Table 3.2 NMR data of compounds 1d–3b. 
 

 

Compound C-4

C-5
S

C-2

N
Me

H/Me  

N

S

P

3  
1d 

N

S

P

3

S

 
1e 

N

S

P

3

AuCl

 
2d 

N

S

P

3

Au SCN

 
3a 

N

S

P

3

Au S

Ph

O

3b
b
 

       

Nucleus Solvent CD2Cl2 CD2Cl2 CD2Cl2 CD2Cl2 CD2Cl2 
       

1H (300 MHz) Me 2.35 (s, 4/5-Me) 2.52 (s, 9 H)a 2.42 (s, 9 H, 4-Me) 

2.40 (s, 9 H, 5-Me) 

2.54 (s, 9 H) 2.56 (s, 9 H)c 

 H-5 thiazole  7.40 (dq, 
4
JPH = 2.77,  

4
JHH = 0.88) 

 7.48 (s, 3 H) 7.43 (d, 
4
JPH 1.05, 3 H)

c
 

 o-Ph     8.05 (m, 2 H)
c
 

 m-Ph     7.37 (m, 2 H)
c
 

 p-Ph     7.48 (m, 1 H)
c
 

       
13

C{
1
H} (75.4 MHz) Me 14.7 (s, 4-Me) 

11.4 (s, 5-Me) 

17.0 (s) 14.9 (s, 4-Me) 

11.6 (s, 5-Me) 

17.0 (m) 17.2 (s)
d
 

 C-2 thiazole 152.7 (d, 
1
JPC 12.9) 162.2 (d, 

1
JPC 131.9) 151.7 (d, 

1
JPC 99.0) 155.6 (d, 

1
JPC 94.9) 156.5 (d, 

1
JPC 85.5)

d
 

 C-4 thiazole 161.3 (d, 
3
JPC 9.7) 158.5 (d, 

3
JPC = 24.5) 155.4 (d, 

3
JPC 21.0) 159.0 (d, 

3
JPC 22.3) 158.5 (d, 

3
JPC 20.5)

d
 

 C-5 thiazole 133.7 (s) 122.9 (d, 3JPC = 3) 137.6 (s) 123.6 (s) 122.8 (s)d 

 other signals    117.1 (m, SCN) 
c 

 i-C6H5     141.5 (s)
d
 

 o/m-C6H5     128.5 (s); 128.2 (s)
d
 

 p-C6H5     132.3 (s)
d
 

       

31
P{

1
H} (121 MHz) P –33.2 (s) 12.7 (s) –0.2 (s) 5.7 (s) 4.0 (br s)

e
 

 

a
 Coupling with H-4 of the thiazole ring was not resolved   

b
 Thiobenzoate carbonyl resonance in 

13
C{

1
H} spectrum was not observed due to low intensity 

c
 At 400 MHz   

d
 At 101 MHz   

e
 At 162 MHz  
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simple arylphosphanes but the effect is more pronounced in the heterocyclic ligands. 

The ipso-
1
JPC for 2d, 3a and 3b are in the range of 85.5–99.0 Hz compared to 62.4 Hz 

in Ph3PAuCl.
26

 The 
31

P NMR spectra of these complexes show a substantial down-

field chemical shift difference (∆δ ca. 35)27 compared to the free ligands which is 

generally observed on complexation of tertiary phosphanes to Au
I
. Possible η1

-κN-co-

ordination of AuI should give only a slight upfield shift as chelating κ3
N,N′,N″-

scorpionate coordination results in strong shielding of the 
31

P nucleus (∆δ 50) for a 

variety of metals.25b,28 Still, the phosphorus atom is the softer coordination site and 

thus preferred to the imine nitrogen lone pairs by the soft AuI centre. However, 

tetrahedral coordination of Au
I
 has been observed with the hydridotris(pyrazol-1-yl)-

borate ligand class
29

 and a scorpionate-type coordination of tris(azol-2-yl)phosphanes 

to Au
I
 cannot a priori be ruled out. 

 

While there is little difference in the 31P chemical shift between the ligand pairs 1b 

and 1c as well as 2b and 2c indicating little influence of the additional methyl group, 

introducing a second methyl group effects significant shifts to higher field for 1d and 

2d. 

 

3.2.4.1 
15

N NMR spectroscopy. 

The reluctance of the azole nitrogen atoms in tris(azol-2-yl)phosphanes to coordinate 

to Au
I
 which was observed for the tris(thiazol-2-yl)phosphanes

13
 and which is in 

contrast with previous results for azoles,
30

 was a motivation to determine the 
15

N 

chemical shifts of 2a–c by natural abundance 
1
H detected 

1
H,

15
N gHMQC spectra to 

estimate their donor strength.13 However, spectra of the free ligands were not recorded 

and it seemed worthwhile to also determine their spectral parameters to estimate the 

change in donating ability ligands 1a–c experience with P-coordination of Au
I
. The 

15
N NMR spectrum of 4-methylthiazole was determined for comparison by direct 

detection of the 
15

N nucleus as a gHMQC experiment failed to yield a signal even at 

                                                
26 G. H. Woehrle, L. O. Brown and J. E. Hutchison, J. Am. Chem. Soc. 2005, 127, 2172–2183. 

27 Again, all ∆δ are given in absolute values; the direction of change must be obtained from context. 
28 G. A. Gray and T. A. Albright, J. Am. Chem. Soc. 1976, 98, 3857–3861. 

29 (a) H. V. R. Dias and W. Jin, Inorg. Chem. 1996, 35, 3687–3694; (b) G. Gioia Lobbia, J. V. Hanna, 

 M. Pellei, C. Pettinari, C. Santini, B. W. Skelton and A. H. White, Dalton Trans. 2004, 951–958. 

30 S. Cronje, H. G. Raubenheimer, H. S. C. Spies, C. Esterhuysen, H. Schmidbaur, 

 A. Schier and G. J. Kruger, Dalton Trans. 2003, 2859–2866. 
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Table 3.3 15N-NMR chemical shifts and coupling constants at 61 MHz for free hetero-

cycles and compounds 1a–1c. Compounds 2a–2c are included for comparison. 
 

Compound Solvent δδδδ (ppm), J/Hz 
   
 

1-Methylimidazole
31

 
(CD3)2SO 

CDCl3 

–119.1 (N-3); –219.2 (N-1) 

–124.1 (N-3); –221.7 (N-1) 
   

 

Thiazole 
Neat32 

CDCl3
31 

–57.2 

–62.0 
   

4-Methylthiazole 80% v/v in CDCl3 –52.9
a
 

   

1a (CD3)2SO –97.5, 
2
JPN 50 ± 5 (N-3); –208.1 (N-1) 

1b CD2Cl2 –41.3 

1c CD2Cl2 –35.4 
   

2a
13

 (CD3)2SO –90.6, 
2
JPN 89.3 (N-3); –206.3 (N-1) 

2b
13

 CD2Cl2 –33.9, 
2
JPN 27.8 

2c
13

 CD2Cl2 –29.5, 
2
JPN 89.4 

 

a
 Direct detection 

 

low temperature probably due to proton exchange. The nitrogen nuclei become less 

shielded in the order free azole >> tris(azol-2-yl)phosphane > chloro[tris(azol-2-yl)-

phosphane]gold. As expected, nitrogen atoms in the thiazole rings were less shielded 

than N-3 in the imidazole rings. As no N-coordination could be achieved with tris-

(thiazol-2-yl)phosphanes, it was estimated that tht coordinated to AuI is only sub-

stituted by the azole nitrogen if the 
15

N chemical shift occurs upfield from ca. δ –60. 

 

Since the JPC and JPH coupling constants become larger upon coordination of the 

ligand, the question arose whether this trend would also be reflected for JPN coupling 

constants. While complexes 2a–c all show P–N coupling,
13

 this coupling was only 

clearly resolved in free ligand 1a. It seems that the coupling is again enhanced by 

coordination of the phosphorus, yet further examples would be necessary to confirm 

the trend. The limited literature available on P–N coupling constants mainly deals 

with 1
JPN values of phosphoramidite and phosphanous amide derivatives and their 

oxidation products with oxygen, sulfur or selenium. In these instances, either minor 

changes or a substantial decrease in the coupling constants is associated with the 

increase in coordination from tri- to tetracoordinate phosphorus.
28,33

 

                                                
31 B. C. Chen, W. von Philipsborn and K. Nagarajan, Helv. Chim. Acta 1983, 66, 1537–1555. 

32 J. P. Warren and J. D. Roberts, J. Phys. Chem. 1974, 78, 2507–2511. 

33 (a) B. Wrackmeyer, G. Kehr and H. Zhou, Fresenius’ J. Anal. Chem. 1997, 357, 489–493; 

 J. Mol. Struct. 1997, 442, 121–123; (c) J. Peralta-Cruz, V. I. Bakhmutov 

 and A. Ariza-Castolo, Magn. Reson. Chem. 2001, 39, 187–193. 
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3.2.4.2 Hydrolysis of 2c followed by 
31

P{
1
H} NMR spectroscopy. 

A solution of 2c in (CD3)2SO was prepared and the 
31

P NMR spectrum recorded to 

confirm the known resonance of the complex. Then 1.2 mole equivalents of aqueous 

NaOH were added. The solution became hot instantly and a colourless precipitate 

formed. Measurement of 31P{1H} NMR spectra every 6 min. (Figure 3.1) proved the 

practically instantaneous consumption of 2c and the observation of two products and 

some free 1c. Workup of the reaction mixture indicated the formation of new products 

(see Experimental section) but none of them could be isolated in pure form and 

characterised. 

 

 

 

Figure 3.1 Offset of 
31

P{
1
H} NMR spectra for the hydrolysis reaction of 2c with 1.2 mol eq. NaOH 

in (CD3)2SO. The resonance belonging to 2c at δ 0.6 in the spectrum recorded just before 

the addition of NaOH (lowest spectrum), disappears completely and gives rise to two 

major hydrolysis products at δ 49.1 and 80.6. The peak at δ –33.1 corresponds to free 

phosphane from decomposition reactions (one fid was accumulated each 6 minutes over 

3 hours). The y axis corresponds to arbitrary units of intensity, the chemical shift scale 

corresponds with the initial spectrum, others are offset by 3 ppm each for visibility. 
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3.3 Crystallography 

 

Most polymorphs of 2b and 2c as well as 3a exhibit aurophilic interactions while no 

Au…Au contacts are observed in the structures of 2a, 2d and 3b⋅0.5C6H12. This may, 

amongst other factors, be due to the steric demand of the phosphane ligands or the 

thiobenzoate group, respectively. The molecular structure of 4⋅0.83CDCl3 exhibits 

short aurophilic interactions facilitated by a bridging ligand. Selected bond lengths 

and angles are summarised in Tables 3.4 and 3.5. 

 

Polymorphism has already been described in the Chapter 2, Section 2.2.4 in one 

example. In the discussion below a whole array of polymorphs and solvates are 

encountered. While compounds 2b and 2c may be especially susceptible to poly-

morphism, the comparatively scarce literature data could be explained by the fact that 

crystallisations of complexes are not usually followed up further after the first crystal 

structure has been obtained. As is evident by the results presented below, it is often 

worth the effort to have a second look at a specific crystallisation; most often, 

additional polymorphs or solvates will give themselves away by their different crystal 

shapes. 

 

At first, the polymorphs and solvates of compounds 2b and 2c are discussed together, 

followed by the crystal and molecular structures of the other compounds. 

 

3.3.1 Polymorphs and solvates of 2b and 2c 

 

Different polymorphs are indicated by addition of (i), (ii) etc. after the compound 

number while solvates are shown in the usual way. Of the compound chloro[tris-

(thiazol-2-yl)phosphane]gold, 2b, two polymorphs 2b(i) and 2b(ii) as well as one 

structure of chloro[tris(4-methylthiazol-2-yl)phosphane]gold, 2c(i), were reported by 

Gabrielli.13 Both polymorphs 2b(i) and 2b(ii) comprise dimers of 2b linked by auro-

philic interactions with distances of 3.4563(2) and 3.3459(3) Å, respectively. In 2c(i), 

molecules related by a C2 axis form dimers which associate by a short aurophilic 

contact of 3.0394(4) Å. 
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Table 3.4 Bond lengths/Å and angles/° of tris(thiazol-2-yl)phosphane compounds 1c–3b⋅0.5C6H14. 
 

 

Compound 
N

S

P

3  
1c 

N

S

P

3

S

 
1e 

N

S

P

3

AuCl

 
2b(iii) 

N

S

P

3

AuCl

Cl Cl

 
2b⋅0.5CH2Cl2 

N

S

P

3

AuCl

 
2c(ii) 

N

S

P

3

AuCl

O

2c⋅C4H8O 

N

S

P

3

Au SCN

 
3a

b
 

N

S

P

3

Au S

Ph

O

3b⋅0.5C6H14 

N

S

P

3  
1d 

N

S

P

3

AuCl

 
2d 

N

S

P

3

AuCl

 
2b(i)

d
 

N

S

P

3

AuCl

 
2b(ii)

d
 

N

S

P

3

AuCl

 
2c(i)

d
 

              

Au–P   2.2096(8) 2.214(2) 2.212(2) 2.214(2) 2.211(1) 2.211(1) 2.237(5) 2.228(6) 

2.241(5) 2.253(6) 

2.250(2)  2.218(1) 2.2184(9) 2.217(1) 2.2260(9) 2.2169(8) 

Au–Cl   2.2921(8) 2.285(2) 2.275(2) 2.283(1) 2.277(1) 2.271(1) 2.339(5)
c
 2.320(7)

c
 

2.334(5)
c
 2.350(7)

c
 

2.298(2)
c
  2.281(1) 2.2774(9) 2.276(1) 2.2900(9) 2.2901(8) 

P–C(1,2,3) 1.820(2) 

1.820(2) 

1.820(2) 

1.810(5) 

1.811(3) 

1.811(3) 

1.805(3) 

1.810(3) 

1.810(3) 

1.772(9) 1.799(8) 

1.805(9) 1.82(1)– 

1.813(9) 1.811(9) 

1.796(5) 1.795(5) 

1.803(5) 1.808(5) 

1.809(5) 1.809(5) 

1.804(5) 

1.807(5) 

1.801(5) 

 1.801(6) 

1.793(6) 

1.818(6) 

1.826(2) 

1.831(2) 

1.823(2) 

1.813(5) 

1.800(6) 

1.786(6) 

1.804(4) 1.801(4) 

1.800(4) 1.807(4) 

1.807(4) 1.808(4) 

1.819(4) 

1.812(4) 

1.798(4) 

1.810(3) 

1.803(3) 

1.797(3) 
              

Au…Au    3.2044(5)   3.007(2) 3.064(2)    3.4563(2) 3.3459(3) 3.0394(4) 

Cl…S   3.472(2) 3.334(3)  3.534(2)     3.373(2) 3.389(2)   

Other bonds  1.939(2) 

(P=S) 

3.2660(9) 

(Au…Cl) 

    1.205(9) (C=O) 

1.755(7) (CO-S) 

     

              

P–Au–Cl   176.36(3) 168.97(9) 

174.00(9) 

178.49(4) 

176.59(4) 

178.92(6) 177.0(2)
c
 175.3(2)

c 

175.3(2)
c
 172.4(2)

c
 

174.53(6)
c
  179.34(5) 174.06(4) 

178.03(4) 

174.30(3) 167.83(3) 

Au–P–C  

(1,2,3) 

  115.5(2) 

111.5(2) 

116.9(2) 

121.7(3) 113.0(3) 

109.1(3) 112.0(3) 

111.5(3) 118.1(3) 

112.4(2) 110.2(2) 

117.8(2) 116.6(2) 

112.5(2) 114.1(2) 

114.0(2) 

113.9(2) 

113.1(2) 

 116.9(2) 

113.0(2) 

112.6(2) 

 115.1(2) 

114.1(2) 

112.3(2) 

119.1(2) 115.4(2) 

113.6(2) 114.6(2) 

110.5(2) 112.1(2) 

110.9(2) 

119.3(2) 

113.3(2) 

108.4(1) 

121.4(2) 

113.7(2) 

C–P–C  

(1,2,3) 

100.56(7) 

100.56(7) 

100.56(7) 

105.1(2) 

105.3(2) 

105.1(2) 

103.4(2) 

103.6(2) 

104.5(2) 

103.5(4) 102.0(4) 

103.0(4) 104.4(4) 

106.3(4) 105.8(4) 

104.1(2) 105.7(2) 

102.6(2) 103.5(2) 

106.3(2) 106.0(2) 

105.9(2) 

104.3(2) 

104.6(2) 

 104.0(3) 

105.2(3) 

103.9(3) 

99.45(7) 

99.83(7) 

101.59(7) 

103.1(2) 

104.9(3) 

106.4(2) 

103.9(2) 103.8(2) 

104.0(2) 104.3(2) 

104.4(2) 105.5(2) 

103.5(2) 

106.5(2) 

101.6(2) 

101.5(2) 

105.3(2) 

104.7(2) 
              

Cl–Au
…

Au–Cl   180
a
 161.21(9)   94.8(2)

c
 97.9(2)

c
    162.5(4) 180

a
 74.65(4) 

 

a Imposed by centre of inversion located between Au atoms   b Only data associated with anisotropic atoms is given 
c
 Au–S distance, Cl–Au–S angle and S–Au…Au–S torsion angle   

d
 Data taken from ref.

13
 for comparison. 
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Table 3.5 Bond lengths/Å and angles/° of compounds 2a and 4⋅0.83CDCl3. 
 

Compound 

N

N

P

3

AuCl

 
2a 

P

N

N

N

N

Au

C6F5

Au

C6F5

2

D Cl

Cl

Cl

 
4⋅0.83CDCl3 

N

N

P

3

 
1a

b
 

P

N

N

N

N

Au

C6F5

Au

C6F5

2

O

4⋅(CH3)2CO
b
 

     

Au–P 2.218(2) 2.265(2) 2.275(2) 2.266(2)  2.264(2) 

Au–Cl 2.276(2)    

Au–N  2.060(5) 2.062(5) 2.060(5)  2.076(7) 
     

(P)Au–C  2.047(6) 2.046(6) 2.045(6)  2.028(8) 

(N)Au–C  2.004(6) 2.003(6) 2.008(6)  2.018(8) 

Au…Au  3.0240(4) 3.0170(4) 2.9903(4)  2.9619(5) 
P–C 

(1, 2, 3) 

1.800(5) 

1.806(6) 

1.798(6) 

1.808(6) 1.793(6) 1.804(6) 

1.797(6) 1.794(6) 1.797(6) 

1.805(6) 1.799(6) 1.791(6)  

1.829(2) 

1.817(2) 

1.820(2) 

1.808(8) 

1.78(1)– 

1.811(8) 

Other bonds  3.181(9) (C1- - -N13)
a
   

     

P–Au–C 178.59(5) 172.2(2) 174.5(2) 170.1(2)  175.9(2) 

N–Au–C  178.5(2) 173.0(2) 179.0(2)  178.4(3) 
     

Au–P–C 

(1, 2, 3) 

110.5(2) 

116.3(2) 

115.1(2) 

112.0(2) 110.8(2) 109.9(2) 

119.0(2) 115.5(2) 112.4(2) 

113.5(2) 117.8(2) 123.7(2) 

 110.3(3) 

120.9(3) 

113.9(3) 
     

C–P–C 

(1, 2, 3) 

103.9(2) 

104.7(3) 

105.2(3) 

103.7(3) 106.4(3) 107.0(3) 

101.1(3) 101.6(3) 102.5(3) 

106.1(3) 103.4(3) –99.8(3) 

104.45(7) 

–99.85(7) 

–98.66(7) 

102.3(4) 

102.4(4) 

105.4(4) 
     

P–Au…Au–N  –23.5(2) –27.1(2) –20.1(2)  –20.9(2) 
 

a
 Hydrogen-bonded CDCl3 (C1–D1…N13)   

b
 Data from ref.

13
 for comparison 

 

An additional polymorph and a hemi-dichloromethane solvate were obtained from 

complex 2b. Furthermore, another polymorph of 2c and a thf solvate were found in 

crystallisations of compound 2c, but only the known 2c(i) exhibits a rather short 

aurophilic interaction.
13

 The other crystal structures exclusively contain discrete mole-

cules. Polymorphism in gold compounds focusing on luminescence has been studied 

previously and was summarised in a review.34 In an attempt to utilise the 

comparatively weak aurophilic interactions
13

 of 2b [exhibited in the polymorphs 2b(i) 

and 2b(ii)] with the strong interaction
13

 but greater steric hindrance of 2c [as in 2c(i)] 

to crystallise a dimer consisting of both molecules,
35

 15 mg of each compound was 

                                                
34 A. L. Balch, Gold Bull. 2004, 37, 45–50. 

35 Obtaining co-crystals of different Au
I
 complexes and studying their structural properties was 

 an early aim of this thesis. However, no such co-crystallisate was ever obtained despite a few 

 serendipitous discoveries by other students within the research group. For examples of 

 co-crystallisates, see ref.
13

 and T. K. Hagos, M.Sc. thesis, Stellenbosch University, 2006. 
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dissolved in the minimum amount of CH2Cl2, the solution was layered with pentane 

and kept at –16 °C. Needles of a new habit were indeed observed in the Schlenk tube. 

The compound, however, was 2b⋅0.5CH2Cl2 shown in Figure 3.2. It consists of two 

crystallographically independent molecules associated by an aurophilic interaction 

[Au…Au 3.2044(5) Å] and a close contact of 3.334(3) Å between Cl2 and S61′  

(′ = ½ + x, ½ – y, ½ + z). While in every complex of ligands 1b and 1c at least one 

sulfur atom of the thiazole rings points towards the Au
I
 centre with typical distances 

of 3.57–3.89 Å in what could amount to a weak Au…S interaction, 2b⋅0.5CH2Cl2 is the 

only structure where nitrogen atoms (N21 and N61) are positioned in such a manner. 

The P–Au–Cl angles are appreciably more distorted by the aurophilic interaction 

[168.97(9)° and 174.00(9)°] than in the other structures. 

 

 

Figure 3.2 Molecular structure of 2b⋅0.5CH2Cl2. 

 

Intriguingly, blocks of the already known triclinic 2b(ii) were found alongside the 

needles of 2b⋅0.5CH2Cl2 in the same crystallisation vessel. Later, a crystal of the third 

polymorph, 2b(iii), in the space group P was found, again originating from the same 

vessel as 2b⋅0.5CH2Cl2. In the crystals of 2b(iii) (Figure 3.3) no sign of Au…Au 

interactions like in all other structures of 2b
13

 are observed. The structure is instead 

stabilised by relatively short and rather unusual intermolecular Au…Cl contacts of 

3.2660(9) Å between molecules ordered into dimers (symmetry operator 1 – x, 2 – y, 

–z). This mode of stabilisation is observed for a few other gold(I) complexes of  
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Figure 3.3 Molecular structure of 2b(iii); primed atoms are related by a centre of inversion located 

between the Au atoms. 

 

tertiary phosphanes with heterocyclic substituents such as chloro[tris(2-furyl)phos-

phane]gold,
36

 chloro[tris(thien-2-yl)arsane]gold
37

 and fluorinated derivatives of 

Ph3PAuCl.
38

 In the present structure 2b(iii), furthermore a weak contact between Cl1 

and S21′ (′ = 1 + x, 1 + y, z) of 3.472(1) Å is observed. Compound 2b is believed to 

be the first example of a complex exhibiting both kinds of aggregation in different 

polymorphs, with 2b(iii) showing one of the closest intermolecular Au…Cl contact 

distances known for a neutral Au
I
 compound. 

 

The rather similar structures of 2b(ii)13 and 2b(iii) (they are generally related by 

moving one molecule of the dimer along the P–Au–Cl vector; minor differences in the 

conformation of the thiazole rings are also present) allow a direct comparison of the 

effects of the different associations. Especially the Au–P bond in 2b(iii) [2.2096(8) Å] 

is significantly shortened by the intermolecular Au…Cl interaction [compared to the 

distance of 2.2260(9) Å in 2b(ii)] while the Au–Cl bonds are of comparable length 

[2.2900(9) and 2.2921(8) Å for 2b(ii) and 2b(iii), respectively]. While association via 

halogen bridges is common for CuI and AgI, ab initio calculations suggest that AuI 

                                                
36 S. Y. Ho and E. R. T. Tiekink, Z. Kristallogr. – New Cryst. Struct. 2002, 217, 591–592. 

37 U. Monkowius, S. Nogai and H. Schmidbaur, Z. Naturforsch., B: Chem. Sci. 2003, 58, 751–758. 

38 (a) H. W. Chen and E. R. T. Tiekink, Acta Crystallogr., Sect. E: Struct. Rep. Online 2003, 59, 

 m50–m51; (b) P. Tasker, D. Coventry, S. Parsons and D. Messenger, Private communication 

 to the Cambridge Crystallographic Data Centre, No. 276800, 2005. 
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prefers aurophilic interaction to other means of aggregation.
39

 However, replacement 

of the model ligand PH3 by tris-heterocyclic phosphanes might influence this affinity 

towards the chloride-bridged type. 

 

Several compounds are known where solvate formation is accompanied by changes in 

the type or strength of aurophilic interactions.
40

 Yet, only one example is known of a 

compound that crystallises unsolvated with and solvated without aurophilic inter-

actions.
41

 These authors crystallised the [Au{C(NHMe)(OMe)}2]
+
 cation with the 

anion of 2,3-dichloro-5-cyano-6-hydroxy-p-benzoquinone. The molecular structure of 

the solvent-free salt consists of dimers of the cation held together by an aurophilic 

interaction of 3.1955(3) Å, while crystals of the trichloromethane solvate consist of 

single cations sandwiched between two anions. Hydrogen bonds are present in both 

structures.
42

 

 

Two crystal structures that contain compound 2c were determined in addition to the 

already known 2c(i), which was obtained by crystallisation of the compound from 

dichloromethane/Et2O.
13

 The second crystal structure, 2c⋅C4H8O, shown in Figure 3.4, 

was obtained by crystallisation of 2c from thf/pentane. It crystallises in the chiral 

orthorhombic space group P212121 and consists of discrete molecules arranged around 

channels running parallel to the b axis that incorporate the thf guests. The P–Au–Cl 

angle approaches linearity [178.92(6)°] as is expected for an undisturbed coordination 

sphere around a AuI centre. Cooperative interaction of 2c with the thf molecule is 

therefore sufficiently strong to override the attraction between the Au centres. A 

contact between Cl1 and S21′ [′ = x, y – 1, z; 3.534(2) Å], roughly equal to the sum of 

the van der Waals radii, is also observed. It is longer and weaker than similar 

associations in the crystal structures 2b(i) and 2b(ii).13 Without the influence of the 

aurophilic interaction, the Au–P [2.211(1) Å] and particularly the Au–Cl [2.271(1) Å] 
 

                                                
39 (a) P. Schwerdtfeger, H. L. Hermann and H. Schmidbaur, Inorg. Chem. 2003, 42, 1334–1342; 

 (b) E. O’Grady and N. Kaltsoyannis, Phys. Chem. Chem. Phys. 2004, 6, 680–687. 

40 (a) Z. Assefa, B. G. McBurnett, R. J. Staples, J. P. Facker, Jr., B. Assmann, K. Angermaier 

 and H. Schmidbaur, Inorg. Chem. 1995, 34, 75–83; 

 (b) Z. Assefa, M. A. Omary, B. G. McBurnett, A. A. Mohamed, H. H. Patterson, R. J. Staples 

 and J. P. Fackler, Jr., Inorg. Chem. 2002, 41, 6274–6280. 

41 F. Jiang, M. M. Olmstead and A. L. Balch, J. Chem. Soc., Dalton Trans. 2000, 4098–4103. 

42 A. Codina, E. J. Fernández, P. G. Jones, A. Laguna, J. M. López-de-Luzuriaga, M. Monge, 

 M. E. Olmos, J. Pérez and M. A. Rodríguez, J. Am. Chem. Soc. 2002, 124, 6781–6786. 
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Figure 3.4 Molecular structure of 2c⋅C4H8O. 

 

bond in 2c⋅C4H8O are significantly strengthened as is reflected in shorter bond lengths 

compared to those found in 2c(i) [2.2169(8) and 2.2901(8) Å,13 respectively]. 

 

A second polymorph, 2c(ii), was found alongside crystals of 2c(i) in another 

crystallisation from dichloromethane/hexane and was later also isolated amongst 

2c⋅C4H8O in a repeated crystallisation from thf/pentane. Monoclinic 2c(ii) crystallises 

in the space group P21/c with two crystallographically independent molecules that 

exhibit similar arrangement of the thiazole moieties (Figure 3.5). In the crystal, the 

molecules form crystallographically independent alternating layers parallel to the ac 

plane as is shown in Figure 3.6. It came as somewhat of a surprise that the molecular 

structure of this polymorph did not exhibit any aurophilic interactions or sub-van der 

Waals contacts except the usual thiazole ring aligned with the Au–Cl axis affording a 

distance of 3.430 Å between Au2 and S41. There are only two other examples of 

compounds crystallising in polymorphs with and without aurophilic interactions, 

chloro[tris(4-methylphenyl)phosphane]gold43 and [(AuCl)2(µ-dppm)] [dppm = bis-

(diphenylphosphanyl)methane].
44

 The lengths of the Au–Cl and Au–P bonds in 2c(ii) 

                                                
43 (a) P. D. Cookson and E. R. T. Tiekink, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1994, 

 50, 1896–1898; (b) R. C. Bott, P. C. Healy and G. Smith, Aust. J. Chem. 2004, 57, 213–218. 

44 (a) H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orama, and G. Huttner, 

 Chem. Ber. 1977, 110, 1748–1754; 

 (b) P. C. Healy, Acta Crystallogr., Sect. E: Struct. Rep. Online 2003, 59, m1112–m1114. 
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Figure 3.5 Molecular structure of 2c(ii) 

 

[on average 2.213(2) and 2.280(3) Å, respectively] are intermediate between those in 

2c(i)13 and the thf solvate [the Au–P bonds in 2c(ii) and 2c⋅C4H8O are similar]. 

 

Crystallisation from dichloromethane is believed to yield polymorph 2c(i) as the 

major product, but crystals of 2c(ii) may in fact be quite similar in energy. The struc-

tures of 2b(ii) and 2b(iii) as well as 2c(i) and 2c(ii) constitute concomitant poly- 

morphs45 by virtue of their simultaneous isolation from the same crystallisation 

 

Figure 3.6 Packing diagram of 2c(ii) viewed along the c axis. Each layer (parallel to the bc plane 

 and stacked in an AB pattern) is exclusively formed by one of the two unique molecules. 

                                                
45 J. Bernstein, R. J. Davey and J.-O. Henck, Angew. Chem., Int. Ed. Engl. 1999, 38, 3440–3461 

 (Angew. Chem. 1999, 111, 3646–3669). 
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vessels. This raises the question to what extent concentration, temperature and solvent 

choice influence the crystallisation process, and hence variations in intermolecular 

interaction of these compounds. 

 

3.3.2 Molecular structures of the ligands 1c, 1d and 1e 

 

Compound 1c shown in Figure 3.7 is the only tris(azol-2-yl)phosphane amongst 1a,
13

 

1c and 1d that indeed crystallises exhibiting a threefold axis of rotation that passes 

through the phosphorus atom enabled by the polar trigonal space group R3c. 

Intriguingly, compounds 1a and 1e also crystallise in polar space groups. A similar 

symmetry among heterocyclic phosphanes has only been observed for tris(benzo-

thiazol-2-yl)phosphane,
46

 but here the planes of the benzothiazole groups are almost 

normal to the phosphorus’ lone pair, thus rather resembling a cone surface than the 

propeller conformation of 1c. The thiazolyl nitrogen atoms in 1c are roughly pointing 

towards the phosphorus, an arrangement that is possibly dictated by lattice constraints 

incurred by the methyl groups. 

 
Figure 3.7 Molecular structure of 1c 

 

Compound 1e crystallises in the polar orthorhombic space group Cmc21 where two 

thiazolyl substituents are asymmetric and the third is generated by the proper mirror 

plane defined by P1, S1 and C11. The molecular structure shown in Figure 3.8 

exhibits thiazole rings parallel to the P1–S1 vector with the thiazolyl sulfur atoms 

engaging in S…S contacts of 3.450(2) (S1…S11) and 3.448(2) Å (S1…S21 and 

S1…S21′; ′ = –x, y, z) and thus resembles a conformation found in complexes of the 

scorpionate type. The P–S bond distance [1.939(2) Å] is shorter than in 

                                                
46 T. Stey, M. Pfeiffer, J. Henn, S. K. Pandey and D. Stalke, Chem. Eur. J. 2007, 13, 3636–3642. 
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Figure 3.8 Molecular structure of 1e. Primed atoms (symmetry code –x, y, z) are generated by a 

mirror plane passing through S1, P1 and C11. 

 

triphenylphosphane sulfide (1.9554(7) Å in the monoclinic and 1.9545(9) Å in the 

triclinic polymorph).
47

 The P–C bond distances in 1e are comparable to those found in 

1c [on average 1.811(5) and 1.820(2) Å for 1e and 1c, respectively], the P–C bond 

shortening caused by AuI coordination in complexes of 1c is thus not reflected in 1e – 

which can be rationalised as 1c coordinating to a sulfur atom. 

 

Ligand 1d crystallises in the centrosymmetric monoclinic space group P21/n and is 

therefore an exception amongst the other ligands 1a,
13

 1c and 1e which crystallise in 

polar space groups. All atoms in the molecule of 1d shown in Figure 3.9 are 

crystallographically unique, all thiazole groups are unambiguously located in their 

respective positions and no indication of positional disorder by flipping of a thiazole 

ring by 180° is observed. 

 

Compared to the average values in the triclinic
47b

 and monoclinic
48

 polymorphs of 

triphenylphosphane, the P–C bonds and C–P–C angles in 1c and 1d exhibit 

comparable values. Even though the phenyl group is more symmetric than any 

thiazole group, PPh3 never aligns with threefold rotational symmetry in any 

polymorph; the triclinic structure even comprises four independent molecules. 

                                                
47 (a) C. Foces-Foces and A. L. Llamas-Saiz, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 

 1998, 54, IUC9800013 [sic]; (b) B. Ziemer, A. Rabis and H.-U. Steinberger, 

 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2000, 56, e58–e59. 

48 B. J. Dunne and A. G. Orpen, Acta Crystallogr., Sect. C: 

 Cryst. Struct. Commun. 1991, 47, 345–347. 
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Figure 3.9 Molecular structure of 1d. 

 

3.3.3 Molecular structures of 2a, 2d, 3a, 3b⋅⋅⋅⋅0.5C6H14 and 4⋅⋅⋅⋅0.83CDCl3 

 

The molecular structure of 2a displayed in Figure 3.10 consists of discrete molecules. 

Tris(2-methylphenyl)phosphane has a similar steric requirement compared to ligand 

1a and also inhibits Au…Au contacts even in bridged binuclear complexes.
49

 

Polyaurated onium species are the only structures where such contacts are present.
50

  

 

 

Figure 3.10 Molecular structure of 2a. The other orientation of the imidazole ring is only shown in a 

stick representation. 

 

                                                
49 M. Preisenberger, A. Schier and H. Schmidbaur, Z. Naturforsch., B: Chem. Sci. 1998, 53, 781–787. 

50 (a) A. Kolb, P. Bissinger and H. Schmidbaur, Z. Anorg. Allg. Chem. 1993, 619, 1580–1588; 

 (b) Y. Yang, V. Ramamoorthy and P. R. Sharp, Inorg. Chem. 1993, 32, 1946–1950. 
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The individual orientations of the imidazole rings conform to the structures of 1a and 

4⋅(CH3)2CO
13

 and is also observed in all unique molecules of 4⋅0.83CDCl3. One of 

the imidazole rings in 2a is disordered and occupies two positions within the plane of 

the ring. 

 

The molecular structure of 2d shown in Figure 3.11 exhibits a thiazole ring that 

occupies two different positions that are flipped by 180°. The lack of discrimination 

between the SN- and NS-orientations can most likely be attributed to the two methyl 

substituents in the thiazole ring, given that no such disorder was found in any 

structures of ligand 1b where the thiazole rings are unsubstituted. In the unsubstituted 

rings, the lone pair of the thiazolyl nitrogen atoms may thus have some directing 

influence on the conformation of the ring as disorder was again observed in com-

plexes of the sterically similar tris(thien-2-yl)phosphane
37

 which naturally lacks the 

imine nitrogen atoms. Such an influence of the nitrogen lone pair may thus be 

overridden by the methyl groups in the structure of 2d. The absolute structure of 2d in 

the polar space group Pna21 could not be established due to this disorder yielding an 

ambiguous Flack x parameter. The steric bulk of the ligand is just enough to render 

aurophilic interactions unfavourable and complex 2d crystallises as discrete mole-

cules. The Au–Cl [2.281(1) Å] and Au–P [2.218(1) Å] bond lengths are roughly 

comparable to the values in 2c(ii) but longer than in 2c⋅C4H8O. 

 

 

Figure 3.11 Molecular structure of 2d. 
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Aurophilic interactions are however present in the molecular structure of 3a which is 

unusual as it contains four independent molecules in the asymmetric unit (shown in 

Figure 3.12), arranged in pairs bonded by aurophilic interactions. The dimers them-

selves are ordered around pseudo-C2 axes roughly similar to the structure of 2c(i)13 

and a pseudo-centre of inversion is located between these pairs; this symmetry, 

however, is not reflected in the crystal space group as is apparent from among other 

factors, the systematic absences in the diffraction pattern and the well defined Au…Au 

distances of 3.007(2) Å (Au1…Au2) and 3.064(2) Å (Au3…Au4) that are significantly 

different and would necessarily have to be equal if the dimers were related by 

crystallographic symmetry. The quality of the dataset collected is hampered by the 

very small third dimension of the crystal, the low data to parameter ratio thus does not 

allow anisotropic treatment of all atoms. The absolute structure could also not be 

determined due to an ambiguous Flack x parameter. An array of other solvents used 

for crystallisation of 3a all furnished the same thin plates and no polymorph or solvate 

was found. The molecular structure determination underlined the general inclination 

of ligand 1c to form compounds that exhibit aurophilic interactions. In 3a the smallest 

Au…Au distances of all existing complexes of thiazol-2-ylphosphanes were found. 

 

 

Figure 3.12 Molecular structure of 3a. Only anisotropically refined atoms are shown as ellipsoids, 

atoms refined isotropically are represented in stick form. 
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The disorder observed for one imidazole ring in the structure of 2a may also be 

present in the structure of 3b⋅0.5C6H14 (Figure 3.13) where the direction of the 

thermal displacement ellipsoids suggest a minute mobility of the C11 thiazole ring 

within its plane, but this “wagging” could not be resolved. Complex 3b⋅0.5C6H14 

crystallises in discrete molecules without any Au…Au interactions which may be a 

result of the more bulky thiobenzoate group compared to the chloride or thiocyanate 

ligands of other structures of ligand 1c. The porous structure consists of alternating  

 

Figure 3.13 Molecular structure of 3b⋅0.5C6H14; disordered hexane solvent and a second orientation 

of the benzene ring are not shown for clarity. 

 

Figure 3.14 Packing diagram of 3b⋅0.5C6H14 viewed along the a axis showing the channels occupied 

by the solvent and the alternating ligand/gold and thiobenzoate domains parallel to the ab 

plane; only one conformer of the benzene ring and no hexane solvent is shown. 
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layers of the phosphanegold and solvent/thiobenzoate domains along the c axis as 

depicted in Figure 3.14, whereas the hexane molecules are ordered into channels 

running along the a axis. The phenyl ring of the thiobenzoate is disordered into two 

positions, probably influenced by the highly disordered co-crystallised solvent which 

could not be modeled and – as judged from the size of the channels and amount of 

disorder – could approach a state found in the liquid. 

 

The molecular structure of compound 4 had already been determined from crystals 

obtained from propanone/pentane which afforded the propanone solvate 

4⋅(CH3)2CO.13 

 

Crystals of 4⋅0.83CDCl3 were isolated from a trichloromethane-d solution (wherein 4 

is initially well soluble) prepared for NMR spectroscopic study. The sample, however, 

gave only spectra of low quality evidently caused by spontaneous crystallisation 

during acquisition, as was seen on completion of the experiment. The structure of 

4⋅0.83CDCl3 shown in Figure 3.15 is remarkable in that it consists of three 

crystallographically independent molecules all showing a comparable arrangement as 

in the propanone solvate.
13

 A notable exception is the N31–Au4 bond vector which is 

bent out of the plane of the imidazole ring by ca. 19°. The molecules group around 

channels occupied by trichloromethane-d. One solvent molecule is disordered caused 

by a centre of inversion located between two of its chlorine atoms, thus giving rise to 

 

 

Figure 3.15 Molecular structure of 4⋅0.83CDCl3; only one trichloromethane-d engaging in a hydro-

gen bond is shown; to avoid overlap the three unique molecules depicted belong to 

different unit cells. 



Chapter 3 – Tris(azol-2-yl)phosphane Complexes of Gold(I) 97
 

the unusual 5:6 stoichiometry. A hydrogen bond is observed from D1 to N13 with  

C1--N13′ 3.181(9) Å and C1–D1…N13′ 156.01° (′ = 2 – x, 1 – y, 1 – z). Compared to 

the known 4⋅(CH3)2CO, all Au…Au distances are significantly extended [3.0240(4), 

3.0170(4) and 2.9903(4) Å in the CDCl3 solvate and 2.9619(5) Å in the propanone 

solvate] but other bond lengths are all comparable. 

 

3.4 Conclusions 

 

The tris(thiazol-2-yl)phosphanes 1b–d have been prepared in a modification of the 

literature procedure, for 4,5-dimethylthiazole the reported temperature was too high 

and oxidative coupling of the 2-lithiated material was observed which was overcome 

by carefully maintaining a temperature of –78 °C throughout lithiation and reaction 

with PCl3. Gold(I) complexes of these ligands could be prepared by facile substitution 

of tetrahydrothiophene from (tht)AuCl or (tht)AuC6F5. Usually only the phosphorus 

atom coordinates to gold when tris(thiazol-2-yl)phosphanes are employed, however, 

tris(1-methylimidazol-2-yl)phosphane also employs one imine nitrogen atom in 

coordination to gold, forming the first C6F5AuN(imidazole)-type of compound. 

 

Sulfurisation of tris(4-methylthiazol-2-yl)phosphane proceeded very slowly compared 

to the reaction times usually observed for tris(aryl)phosphanes and took 8 days to 

reach completion even with a large excess of sulfur. Low nucleophilicity was then 

also observed in the inability of this ligand to form stable Au
I
 complexes. Utilisation 

of different, harder metal centres with this multidentate ligand could yield interesting 

results. 

 

15
N{

1
H} NMR spectroscopy revealed that the resonance of the imine nitrogen of 

tris(azol-2-yl)phosphanes appears at much lower field than in the free azoles. The 

downfield shift upon coordination of the ligands to Au
I
 is less pronounced. 

 

Chloride substitution reactions of chloro[tris(4-methylthiazol-2-yl)phosphane]gold 

showed that a labilising effect of tris(thiazol-2-yl)phosphanes towards polymerisation 

to [Au(SR)]n species can be observed compared to triphenylphosphane. Chloride 

could only be substituted by anions bearing electron-withdrawing groups at the sulfur  
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such as thiocyanate and thiobenzoate while alkylthiolate and, to a lesser extent, 

arylthiolate expelled the heterocyclic phosphane and condensed into polymeric 

[Au(SR)]n species. 

 

Earlier clues indicating facile hydrolysis of tris(azol-2-yl)phosphane complexes were 

confirmed in an NMR experiment, although the hydrolysis products proved elusive 

and none of them could be crystallised. 

 

In particular – and this was the main focus of this Chapter – the structural solid state 

chemistry of tris(azol-2-yl)phosphane complexes of gold proved to be very rich in that 

a unique and large array of different polymorphs and solvates could be isolated. The 

results showed that the energy of the aurophilic bonding present in these structures 

may sometimes be overcome by normal van der Waals forces or packing effects to 

yield lattices containing unassociated molecules. Chloro[tris(4-methylthiazol-2-yl)-

phosphane]gold is only one of now three known compounds to crystallise in poly-

morphs with and without aurophilic interactions and the thf solvate is only the second 

gold compound in which aurophilic interactions are not observed in the solvate, but in 

the unsolvated structure. Furthermore, an unusual, and in this context unique, 

polymorph of chloro[tris(thiazol-2-yl)phosphane]gold exhibiting Au…Cl interactions 

was discovered that complements another structure which only exhibits Au…Au 

interactions in almost the same relative arrangement. The only major difference in the 

molecular structures of the two polymorphs is the position of the molecules along 

their respective Cl–Au–P vectors. 

 

 

3.5 Experimental 

 

3.5.1 Crystallography 

 

Data associated with the crystal structures are summarised in Tables 3.7 and 3.8. For 

details on the measuring conditions and data processing see Chapter 2, p. 57. While 

solving the structure of 2d, the thiazole ring containing C11 was found to be 

disordered in two positions related by a 180° rotation and populated 3:1, satisfactory 
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Table 3.6 Crystallographic parameters of 1c–e, 2a and the different structures of 2b. 
 

Compound 1c 1e 1d 2a 2b(iii) 2b⋅0.5CH2Cl2 
       

Empirical formula C12H12N3PS3 C12H12N3PS4 C15H18N3PS3 C12H15AuClN6P C9H6AuClN3PS3 C9H6AuClN3PS3⋅CH2Cl2 

Mr 325.41 357.48 367.49 506.68 515.73 558.22 
Crystal habit Needle Block Prism Prism Block Needle 

       

Crystal dimensions/mm 0.30 × 0.05 × 0.05 0.50 × 0.30 × 0.20 0.10 × 0.03 × 0.03 0.31 × 0.10 × 0.07 0.33 × 0.15 × 0.14 0.34 × 0.08 × 0.05 

Crystal system Trigonal Orthorhombic Monoclinic Monoclinic Triclinic Monoclinic 
Space group R3c (No. 161) Cmc21 (No. 36) P21/n (No. 14) P21/n (No. 14) P (No. 2) P21/n (No. 14) 

       

a/Å 15.238(1) 13.466(3) 12.760(2) 7.765(2) 8.611(2) 7.9518(9) 

b/Å 15.238(1) 9.308(2) 9.7885(9) 18.867(5) 8.701(2) 20.261(2) 
c/Å 10.588(2) 12.207(3) 13.923(2) 11.069(3) 9.512(2) 19.413(2) 

       

α/° 090 90 90 90 90.821(3) 90 

β/° 090 90 101.800(2) 90.540(4) 97.446(3) 96.018(2) 

γ/° 120 90 90 90 106.515(3) 90 
       

V/Å3 2129.2(3) 1530.0(6) 1702.3(3) 1621.6(7) 676.5(2) 3110.6(6) 
Z, Dc/Mg m–3 6, 1.523 4, 1.552 4, 1.434 4, 2.075 2, 2.532 8, 2.384 

µ(MoKα)/mm–1 0.623 0.717 0.528 9.337 11.634 10.296 

No. of reflections, unique 4087, 949 4346, 1355 9941, 3606 8961, 3253 7937, 3162 17633, 6344 
Rint 0.0153 0.0390 0.0206 0.0269 0.0281 0.0675 

       

hkl index range –19 to 18, –14 to 19, 
–13 to 12 

–16 to 15, ± 11, –15 to 9 –16 to 14, ± 12, –15 to 17 ± 9, –22 to 23, –13 to 8 ± 11, ± 11, ± 12 ± 9, –25 to 17, –22 to 24 

θ range/° 2.67–27.08 2.66–26.36 2.43–26.73 2.13–26.44 2.16–28.28 2.01–26.44 

Data, restraints, parameters 948, 1, 59 1273, 1, 105 3327, 0, 205 2740, 8, 215 3073, 0, 163 4748, 0, 352 
Flack x parameter 0.07(8) 0.1(2)     

       

F(000) 1008 736 768 960 480 2088 

R1, wR2 [I > 2σ(I)]a 0.0193, 0.0526 0.0387, 0.0844 0.0296, 0.0766 0.0308, 0.0657 0.0187, 0.0349 0.0481, 0.0833 

R1, wR2 (all data)a 0.0194, 0.0526 0.0423, 0.0865 0.0320, 0.0783 0.0412, 0.0699 0.0195, 0.0442 0.0739, 0.0909 
       

Goodness-of-fit 1.115 1.068 1.076 1.042 1.054 0.991 

Max. and min. transmission 0.970, 0.835 0.870, 0.661 0.987, 0.858 0.522, 0.335 0.196, 0.091 0.596, 0.117 
Largest differential peak and 

hole/eÅ–3 

0.238, –0.175 0.470, –0.257 0.505, –0.194 2.173, –0.895 1.293, –1.119 1.663, –2.172 

       

CCDC ref. no. 676984 676985 659052 659053 659056 659057 
 

a
 w = 1/[σ2

(Fo
2
) + (aP)

2
 + bP] where P = (Fo

2
 + 2Fc

2
)/3 
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Table 3.7 Crystallographic parameters of the different structures of 2c as well as 2d, 3a, 3b⋅0.5C6H14 and 4⋅0.83CDCl3. 
 

Compound 2c(ii) 2c⋅C4H8O 2d 3a 3b⋅0.5C6H14 4⋅0.83CDCl3 
       

Empirical formula C12H12AuClN3PS3 C12H12AuClN3PS3⋅C4H8O C15H18AuClN3PS3 C13H12AuN4PS4 C19H17AuN3OPS4⋅0.5C6H14 C24H15Au2F10N6P⋅0.83CDCl3 

Mr 557.81 629.94 599.91 580.44 702.62 1103 
Crystal habit Needle Prism Block Block Block Prism 

       

Crystal dimensions/mm 0.96 × 0.28 × 0.21 0.04 × 0.03 × 0.01 0.05 × 0.03 × 0.01 0.10 × 0.05 × 0.005 0.03 × 0.01 × 0.01 0.24 × 0.13 × 0.11 

Crystal system Monoclinic Orthorhombic Orthorhombic Orthorhombic Orthorhombic Triclinic 

Space group P21/c (No. 14) P212121 (No. 19) Pna21 (No. 33) Pca21 (No. 29) Pbca (No .61) P (No. 2) 
       

a/Å 19.822(2) 9.0405(9) 12.954(2) 19.091(3) 10.6209(8) 12.325(2) 

b/Å 10.333(1) 9.653(1) 11.294(2) 19.891(3) 17.664(2) 19.123(2) 
c/Å 17.544(2) 24.273(3) 13.366(2) 19.781(3) 27.839(2) 20.242(2) 

       

α/° 90 90 90 90 90 101.251(2) 

β/° 109.950(1) 90 90 90 90 98.052(2) 

γ/° 90 90 90 90 90 100.106(2) 
       

V/Å3 3377.7(6) 2118.3(4) 1955.6(4) 7511(2) 5222.7(7) 4530.7(8) 

Z, Dc/Mg m–3 8, 2.194 4, 1.975 4, 2.038 16, 2.053 8, 1.787 6, 2.425 

µ(MoKα)/mm–1 9.329 7.454 8.064 8.366 6.035 10.069 

No. of reflections, unique 35125, 6921 12563, 4472 11189, 3661 33095, 11670 29548, 5534 47479, 18211 
Rint 0.0409 0.0326 0.0261 0.0759 0.0393 0.0334 

       

hkl index range 

 
± 24, ± 12, ± 21 –11 to 7, –12 to 10, ± 30 –16 to 15, –10 to 14, –16 

to 14 
± 21, –13 to 22, ± 22 –10 to 13, –20 to 22, 

–34 to 35 
± 15, ± 23, ± 25 

θ range/° 1.09–26.46 1.68–26.73 2.36–26.81 1.02–24.00 2.31–26.73 1.69–26.47 

Data, restraints, parameters 6630, 0, 385 4210, 0, 238 3469, 9, 236 9310, 1, 502 4937, 12, 266 14419, 0, 1270 
Flack x parameter  0.015(5) 0.519(7) 0.55(1)   

       

F(000) 2112 1216 1152 4416 2744 3074 

R1, wR2 [I > 2σ(I)]a 0.0263, 0.0620 0.0245, 0.0489 0.0237, 0.0581 0.0635, 0.1485 0.0470, 0.1051 0.0288, 0.0622 

R1, wR2 (all data)a 0.0277, 0.0626 0.0268, 0.0495 0.0255, 0.0591 0.0905, 0.1584 0.0531, 0.1075 0.0450, 0.0761 
       

Goodness-of-fit 1.170 0.906 1.046 1.049 1.207 1.083 

Max. and min. transmission 0.142, 0.036 0.925, 0.655 0.922, 0.653 0.984, 0.534 0.937, 0.750 0.331, 0.240 
Largest differential peak and 

hole/eÅ–3 
2.029, –1.001 1.429, –0.499 2.831, –0.680 8.375, -1.975 3.370, –1.154 1.525, –1.451 

       

CCDC ref. no. 659059 659060 659061  659062 659064 
 

a
 w = 1/[σ2

(Fo
2
) + (aP)

2
 + bP] where P = (Fo

2
 + 2Fc

2
)/3 
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modeling of the rings could only be achieved by splitting S11 and N11, thus giving 

average positions of the two orientations for the carbons in the thiazole ring, and 

constraining the rings to be flat. The anisotropic displacement parameters of S11 and 

N11, respectively, were constrained to be equal. It is also possible to solve the crystal 

structure in the space group Pnma but this imposes the same disorder on the other 

thiazole rings which have a defined orientation in space group Pna21. After estab-

lishing the connectivity of 3b, additional diffuse electron density which belongs to the 

co-crystallised hexane solvent was located on the difference map, but could not be 

modeled. It was removed using the Squeeze routine in the Platon set of programmes.
51

 

The phenyl ring of the thiobenzoate was also found to be disordered populating two 

different orientations in a 3:2 ratio which were constrained as flat regular hexagons 

and only the major orientation was refined anisotropically constraining C42A and 

C43A to have similar anisotropic displacement parameters. 

 

3.5.2 Synthesis of the complexes 

 

For a summary of general procedures and instrumentation cf. Chapter 2, p. 59. 

 

Lithium phenylmethanethiolate, lithium benzenethiolate and lithium thiobenzoate 

were prepared by treatment of the respective free thiol with butyllithium solution in 

thf or Et2O solution and were isolated as solids. NaCH(CN)2 was prepared from 

propanedinitrile and sodium methoxide in methanol. Tris(thiazol-2-yl)phosphane, 

tris(4-methylthiazol-2-yl)phosphane,
7a

 (tht)AuCl
52

 and (tht)AuC6F5
52b

 were prepared 

according to described procedures. 

 

The gift of tris(1-methylimidazol-2-yl)phosphane by Dr. William Gabrielli is greatly 

acknowledged. 

 

Bromopentafluorobenzene, butyllithium in hexanes, 4,5-dimethylthiazole, 4-methyl-

thiazole, phosphorus trichloride, and thiobenzoic acid were obtained from Aldrich. 

Benzenethiol, Celite (diatomaceous earth), propanedinitrile and thiazole were 

                                                
51 A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13. 

52 (a) A. Haas, J. Helmbrecht and U. Niemann, in Handbuch der Präparativen 

 Anorganischen Chemie, ed. G. Brauer, Stuttgart, Enke, 1978, p. 1014; 

 (b) R. Uson, A. Laguna and M. Laguna, Inorg. Synth. 1989, 26, 85–91. 
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obtained from Fluka. Ammonium chloride and potassium sulfate were supplied by 

BDH; sulfur by Saarchem; tetrahydrothiophene by ACROS and phenylmethanethiol 

as well as sodium thiocyanate by Merck. Thin layer chromatography plates were 

supplied by Macherey-Nagel GmbH & Co. KG. 

 

3.5.3.1 Tris(4,5-dimethylthiazol-2-yl)phosphane, 1d. 

In a procedure similar to that reported by Moore and Whitesides
7a

 an ethereal solution 

of 4,5-dimethylthiazole (1.60 ml, 15.1 mmol) was added to an ethereal solution of 

BuLi (10.0 ml 1.51 M in hexanes, 15.1 mmol) cooled to –78 °C via a dropping fun-

nel. Addition of PCl3 (0.40 ml, 4.6 mmol) dissolved in Et2O, workup with saturated 

aqueous NH4Cl and extraction with CH2Cl2 afforded a yellow powder which was 

triturated with hexane (ca. 50 ml) to remove excess dimethylthiazole. Precipitation of 

the product with hexane from a dichloromethane solution and storage of the 

suspension overnight yielded well defined crystals amongst the amorphous precipitate 

(0.30 g, 18%); Found: C, 49.2; H, 4.7; N, 11.3. C15H18N3PS3 requires C, 49.0; H, 4.9; 

N, 11.4%. 

M.p. 99 °C 

The compound is soluble in CH2Cl2, thf, methanol, slightly soluble in Et2O but 

insoluble in alkanes. 

 

3.5.3.2 Tris(4-methylthiazol-2-yl)phosphane sulfide, 1e. 

In a Schlenk tube 1c (177 mg, 0.54 mmol) and sulfur (154 mg, 0.60 mmol, 8.8 eq.) 

were dissolved in 15 ml thf and heated to 45 °C. Reaction progress was monitored 

daily by tlc (silica gel, hexane/Et2O 1:1; Rf: 1c 0.25, 1e 0.18). After 8 days all starting 

material had reacted and the solvent was removed in vacuo. The residue was re-

suspended in 30 ml methanol and the suspension was filtered through Celite. 

Evaporation of the solvent gave a crude product which was recrystallised from 

CH2Cl2/pentane to afford yellow needles (174 mg, 82%). A crystal suitable for X-ray 

diffraction was obtained from Et2O/pentane. 

M.p. 141 °C 

The compound is soluble in CH2Cl2, thf and methanol, it is slightly soluble in Et2O 

but insoluble in alkanes. 
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3.5.3.3 Chloro[tris(4,5-dimethylthiazol-2-yl)phosphane]gold, 2d. 

Solid (tht)AuCl (0.30 g, 0.94 mmol) was added to a solution of 1d (0.35 g, 0.95 

mmol) in dichloromethane (20 ml). After 1 h the clear solution was filtered through 

Celite, the filter was washed with dichloromethane (20 ml) and the filtrate reduced to 

dryness. The residue was dissolved in dichloromethane, layered with hexane and 

stored at –16 °C for 2 days. The mother liquor was removed and the greenish solid 

was again dissolved in dichloromethane, the solution was filtered over Celite and the 

filtrate reduced to dryness yielding yellowish crystals suitable for X-ray diffraction 

(0.39 g, 67%); Found: C, 30.2; H, 2.8; N, 6.8. C15H18AuClN3PS3 requires C, 30.0; H, 

3.0; N, 7.0%. 

M.p. 86 °C (dec.) 

The compound is soluble in CH2Cl2 and thf, but insoluble in Et2O or alkanes. 

 

3.5.3.4 (Thiocyanato-κS)[tris(4-methylthiazol-2-yl)phosphane]gold, 3a. 

A solution of 2c (247 mg, 0.44 mmol) in CH2Cl2 (10 ml) was added via a Teflon 

cannula to a degassed aqueous solution of NaNCS (55 mg, 0.68 mmol, 8 ml) 

containing 58 mg K2SO4 and the biphasic mixture was stirred vigorously for 3.5 h. 

The phases were separated with the help of a separating funnel and the aqueous phase 

was extracted with CH2Cl2 (3 × 3 ml). The combined organic phases were dried with 

Na2SO4, filtered and the filter washed with dichloromethane (3 × 5 ml). Removal of 

the solvent in vacuo gave a colourless solid (0.24 g, 92%). Found: C, 26.7; H, 2.0;  

N, 9.4. C13H12AuN4PS4 requires C, 26.9; H, 2.1; N, 9.65%. ν/cm–1 3067 s, 2961 w, 

2918 w, 2130 s, 2122 vs, 2114 vs, 2075 w, 1497 m, 1437 m, 1387 s, 1360 s, 1287 m, 

1261 w, 1055 m, 953 s, 859 s, 765 s and 709 m. 

M.p. 105 °C (dec.) 

The compound is soluble in CH2Cl2, thf, slightly soluble in Et2O and insoluble in 

alkanes. 

 

3.5.3.5 (Thiobenzoato)[tris(4-methylthiazol-2-yl)phosphane]gold, 3b. 

Lithium thiobenzoate (71 mg, 0.49 mmol) was dissolved in thf (25 ml). The mixture 

was stirred for 1.5 h after the addition of 2c (245 mg, 0.44 mmol). After removal of 

the solvent the foamy residue was triturated with pentane and dissolved in CH2Cl2  
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(15 ml), filtered through Celite and the filter washed with again with CH2Cl2. The 

solution was concentrated in vacuo, layered with pentane and stored at –16 °C 

yielding a yellowish microcrystalline solid (0.25 g, 86%). Crystals of 3b⋅0.5C6H14 

suitable for X-ray diffraction were grown from a small sample dissolved in CH2Cl2 

and layered with hexane. Found: C, 34.4; H, 2.6; N, 6.6. C19H17AuN3OPS4 requires  

C, 34.6; H, 2.6; N, 6.4%. ν/cm–1 3070 s, 2953 m, 2918 m, 2856 m, 1622/1616 s,  

1594 w, 1577 m, 1495 s, 1439 s, 1388 s, 1362 s, 1288 m, 1199 vs, 1167 s, 1063 m, 

1045 m, 953 s, 906 vs, 860 m, 773 s, 757 s, 714 s and 688 vs. 

M.p. 72 °C 

The compound is soluble in CH2Cl2 and thf, slightly soluble in Et2O but insoluble in 

alkanes. 

 

3.5.3.6 Bis(pentafluorophenyl)[µ-tris(1-methylimidazol-2-yl)phosphane-κ2
-P:N]-

digold, 4. 

The compounds (tht)AuC6F5 (261 mg, 0.58 mmol) and 1a (79 mg, 0.29 mmol) were 

dissolved in thf (15 ml) and the purplish suspension was stirred for 30 min. All 

volatiles were removed in vacuo and the remaining solids were extracted with thf  

(25 ml) and filtered through Celite under an inert atmosphere. Some decomposition 

occurred during evaporation, thus the solid was re-dissolved in dichloromethane and 

filtered through Celite. The crude product was recrystallised from propanone layered 

with pentane and dried in vacuo. Yield 0.17 g (29%) of a colourless powder. Found: 

C, 28.9; H, 1.4; N, 8.2. C24H15Au2F10N6P requires C, 28.8; H, 1.5; N, 8.4%. 

M.p. 174 °C 

The compound is soluble in thf, propanone and CH2Cl2. It is also soluble in 

trichloromethane-d forming a supersaturated solution stable for some time. Solubility 

in Et2O is poor and alkanes do not dissolve the compound. 

 

3.5.3.7 Hydrolysis of 2c with aqueous NaOH. 

Complex 2c (50 mg, 90 µmol) was dissolved in (CD3)2SO. After initial acquisition of 

a 31P{1H} NMR spectrum, NaOH (50 µl, 2.12 M, 1.2 eq.) was added. Data collection 

was complete after 3 h and the sample was partitioned in CH2Cl2/H2O after addition 

of a few drops of 50% MeCOOH. The organic phase was washed with water twice 
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and evaporated to dryness. The remaining solid was triturated with Et2O to remove 

traces of dmso-d6. An excess of [NMe4]Cl (15 mg, 0.14 mmol) was added to the 

combined aqueous phase from the partitioning above and it was subsequently 

extracted with CH2Cl2 (3×) and the organic phase was stripped of solvent. Both 

products tested positively for presence of gold, yet crystallisations from 

CH2Cl2/pentane (original organic phase) or CH2Cl2/Et2O (original aqueous phase) 

only afforded amorphous precipitates. 

 



 

Heterometallacyclic Complexes of Gold(I) 

 

 

 

 

 
4.0 Abstract 

 

Heterometallacyclic complexes of Au
I
 were prepared by using various classes of 

ditopic ligands. Deprotonation at C-5 of the thiophene ring in 4,4-dimethyl-2-(thien- 

2-yl)oxazoline and reaction with (tht)AuCl (tht = tetrahydrothiophene) afforded 

18-membered rings of the 3:3 complex, 1, exhibiting intramolecular Au…S contacts, 

and in another polymorph additional intermolecular Au…Au interactions, in the solid 

state. The heterometallacycle cannot incorporate another Au
I
 complex to form a 

rotaxane as the Au…S interactions prevent the thiazole rings to flip out of the plane. 

 

By employing 1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (bitmb) the 

[Au2(µ-bitmb)2]
2+

 cation (a 24-membered heterometallacycle) was obtained with 

counter ions [BF4]
–
, 2a, and CF3SO3

–
, 2b. The compounds are the first gold hetero-

metallacycles comprising N-coordinated imidazole and crystallise in a “box”-shape 

hosting solvent molecules in the cavity created. The crystal structure of 2b⋅2CH2Cl2 

exhibits channels in the solid state structure and the solvent could partially be 

removed in a vacuum at 90 °C. 

 

Employment of 4,4-dimethyl-2-(pyridin-4-yl)oxazoline as a ligand towards Ag
I
 and 

Au
I
 did not yield similar compounds to 1 as was intended. With AgNO3 a solid-state 

structure of the 1:1 complex, 3, exhibiting infinite chains was obtained. Reaction with 

AuI gave compounds 4a (the CF3SO3
– salt) and 4b (the [BF4]

– salt) whose structures 

could not be elucidated. 

4 
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A range of ditopic ligands (
2
L), N,N-bis(1,3,2-dioxaphospholan-2-yl)methanamine, 

1,2-bis(diphenylphosphanyl)ethane (dppe) and tetramethyldiphosphane disulfide were 

employed in attempts to obtain further examples of rare [Au2(µ-2L)3]
2+-type cations. 

Only the first ligand afforded the solid-state structure of such a 3:2 complex, 

5⋅0.5CH3CN, while dppe gave a 2:2-complex, 6, and tetramethyldiphosphane di-

sulfide a 2:1-complex, 7. The molecular structure of the latter complex exhibits a 

roughly tetrahedral arrangement of the sulfur donor atoms but the gold atom is 

situated towards the two sulfur atoms to which it forms true coordinative bonds rather 

than having equal bond lengths to all sulfur atoms. 

 

 

4.1 Introduction 

 

This chapter deals with heterometallacyclic rings wherein Au
I
 is homoleptically 

coordinated to ditopic ligands with the general formula [Aum(L
^
N)n].

1
 A broad range 

of bonding modes of such ditopic ligands can be defined and many of them have been 

explored. Ligands such as RS–, R2P
– and R2N

– that can afford heterometallacycles via 

a single bridging atom, have been excluded from the discussion. 

 

4.1.1 Heterometallacycles containing gold 

 

4.1.1.1 N
^
C-, N

^
N- and related ligands. 

Many examples are known of metallacycles exhibiting homoleptic N
^
C 

–
 and N

^
N 

–
 

coordination which includes the usually trimeric Au
I
 carbene

2
 and pyrazolate com-

plexes3 (Scheme 4.1). As all these compounds comprise three gold atoms in close 

proximity, they are exploited for crystal engineering by virtue of their different 

association by aurophilic contacts and/or π…π stacking. They have been shown to react 

                                                   
1 The notation “L

^
N” in this Chapter shall represent a ditopic ligand coordinating through atoms 

 L and N, thus forming a cyclic compound. 

2 In literature, these complexes are sometimes called ‘carbeniates’. As the nitrogen atom is 

 “aurylated” by the gold centre, the term ‘carbene’ is used here. See also Schemes 4.1(a) and 4.2(a). 

3 Representative examples include: (a) F. Bonati, G. Minghetti and G. Banditelli, J. Chem. Soc., 

 Chem. Commun. 1974, 88–89; (b) R. G. Raptis, H. H. Murray III and J. P. Fackler, Jr., 

 J. Chem. Soc., Chem. Commun. 1987, 737–739; (c) J. Barberá, A. Elduque, R. Giménez, L. A. Oro 

 and J. L. Serrano, Angew. Chem., Int. Ed. Engl. 1996, 35, 2832–2835 (Angew. Chem. 1996, 108, 

 3048–3051); (d) G. Yang and R. G. Raptis, Inorg. Chem. 2003, 42, 261–263; (e) P. Ovejero, 
 M. J. Mayoral, M. Cano and M. C. Lagunas, J. Organomet. Chem. 2007, 692, 1690–1697. 



Chapter 4 – Heterometallacyclic Complexes of Gold(I) 108
 

Au

N

N Au

N

Au

R1

O

R1 O

R1

O R2

R
2

R2

N

Au

N N

N Au N

N

Au

a b  

Scheme 4.1 (a) A typical trimeric cyclic gold carbene complex exhibiting intramolecular aurophilic 

interactions, intermolecular interactions are often observed as well, and (b) a trimeric Au
I
 

pyrazolate; the heterocycles/carbene ligands may be substituted according to the desired 

property in the product. 

 

with Ag+ and Tl+ cations to form sandwiches held together by metallophilic inter-

actions.4 π-Acids such as perfluorinated aromatic compounds5 and HgII complexes of 

fluorinated arenes yield interstition compounds that crystallise in assemblies showing 

π-stacking or metallophilic interactions.6 

 

The phenomenon of solvoluminescence, i.e. the emission of light on dissolution in a 

suitable solvent after irradiation of the solid, has also been discovered with the cyclic 

carbene compound class.7 Associated with their strong tendency to form columns with 

Au…Au interactions, research has also focused on the design of liquid crystals from 

trimeric carbenes and pyrazolates by introducing appropriate substituents.
3c,e

 Certain 

carbenes and pyrazolates also form other ring sizes than the usual 9-membered ring of 

the 3:3 complex; engineering the sterical demand of the ligands employed yielded an 

unusual 18-membered ring system in [Au6(µ-3,5-diphenylpyrazolate)6] (Scheme 4.2) 

rather than the expected trimer. Aurophilic interactions play a role as the six gold 

centres form two tetrahedra with a common edge, the two Au atoms of this common 

edge form a metallophilic contact.
3b

 The same directive effect was observed in a 

tetrameric carbene-imidate where a pyridine group coordinates to gold instead of the 

                                                   
4 A. Burini, R. Bravi, J. P. Fackler, Jr., R. Galassi, T. A. Grant, M. A. Omary, B. R. Pietroni 

 and R. J. Staples, Inorg. Chem. 2000, 39, 3158–3165. 

5 M. A. Rawashdeh-Omary, M. A. Omary and J. P. Fackler, Jr., 

 J. Am. Chem. Soc. 2001, 123, 9689–9691. 

6 A. Burini, J. P. Fackler, Jr., R. Galassi, T. A. Grant, M. A. Omary, M. A. Rawashdeh-Omary, 

 B. R. Pietroni and R. J. Staples, J. Am. Chem. Soc. 2000, 122, 11264–11265. 

7 J. C. Vickery, M. M. Olmstead, E. Y. Fung and A. L. Balch, 
 Angew. Chem., Int. Ed. Engl. 1997, 36, 1179–1181 (Angew. Chem. 1997, 109, 1227–1229). 
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imine-nitrogen of the ligand and each two adjacent gold centres engage in an 

aurophilic contact (Scheme 4.2).
8 
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Scheme 4.2 (a) A tetrameric carbene-imidate complex with a pyridine substituent affording a tetra-

meric instead of a trimeric structure; (b) the hexameric gold 3,5-diphenylpyrazolate, 

phenyl substituents are omitted for clarity. 

 

Other examples of ring formation with N
^
C 

– donors, albeit using AuIII, include the 

spontaneous metalation of 2-(pyridin-2-yl)-6-(thien-2-yl)pyridine by [AuCl4]
–
 to give 

a [(AuCl2)2(µ-
2
L)2] compound shown to be metalated at C-5 of the thiophene ring and 

the central pyridine ring left uncoordinated. This result is in contrast to similar 

complexes with isoelectronic PtII and PdII which selectively metalate C-3 of the 

thiophene ring to give monomeric [MClL] (M = Pd, Pt) complexes in which the 

central pyridine is also employed in coordination to the metal.
9
 

 

Dimeric and trimeric metallacycles of AuI with a selectively deprotonated N
^
C

– 

thienyloxazoline ligand have been reported by Desmet et al.10 

 

Amine N
^
N-coordination of gold, although known, is uncommon. Complexes of the 

well-known ligands dien [N-(2-aminoethyl)ethane-1,2-diamine]
11

 or cyclam (1,4,8,11-

tetraazacyclotetradecane)12 typically yield [Au2(µ-dien)2]
2+ or [Au2(µ-cyclam)2]

2+ 

                                                   
8 C. Bartolomé, M. Carrasco-Rando, S. Coco, C. Cordovilla, P. Espinet and J. M. Martín-Alvarez, 

 Organometallics 2006, 25, 2700–2703. 

9 (a) E. C. Constable, R. P. G. Henney and T. A. Leese, J. Organomet. Chem. 1989, 361, 277–282; 

 (b) E. C. Constable, R. P. G. Henney, P. R. Raithby and L. R. Sousa, 

 Angew. Chem., Int. Ed. Engl. 1991, 30, 1363–1364 (Angew. Chem. 1991, 103, 1401–1403). 

10 (a) M. Desmet, Ph.D. thesis, Rand Afrikaans University, 1996; 

 (b) M. Desmet, H. G. Raubenheimer and G. J. Kruger, Organometallics 1997, 16, 3324–3332. 

11 J. Yau, D. M. P. Mingos, S. Menzer and D. J. Williams, 

 J. Chem. Soc., Dalton Trans. 1995, 2575–2576. 
12 J. Yau, D. M. P. Mingos and H. R. Powell, Polyhedron 1996, 15, 367–369. 
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wherein Au
I
 is coordinated in a linear fashion despite the presence of additional free 

nitrogen centres. 

 

Combined NHC13 and amine/imine C^
N,14 ligands have also received attention mainly 

focused on structural chemistry in conjunction with aurophilic interactions and the 

development of macromolecular arrays by utilising polydentate ligands comprising 

these donor atoms. 

 

Homoleptic cationic cyclic bis-imine N
^
N-complexes of AuI surprisingly have not 

been synthesised, but bis-imidazoles have been combined with diphosphanes to 

furnish [Au2(µ-P
^
N)2]

2+
 heterometallacycles. These complexes have been synthesised 

in the search for Au complexes that may be used as drugs against cancer and HIV.15 

Examples of imidazolyl(diphenyl)phosphanes, also exhibiting P
^
N(imine) coordina-

tion in the products that have been prepared for envisioned medical applications, are 

known as well.
16

 P
^
N(amine) coordination has been observed in the 2:2 complex of 

Au
I
 with (2-aminophenyl)diphenylphosphane in a study of the luminescence pro-

perties of group 11 metals.
17

 

 

4.1.1.2 Ligands with phosphorus donor atoms. 

The most common cationic (or overall neutral, if there is the possibility of 

deprotonating the ligand at a non-coordinating site, e.g. as in P–NH–P backbones) 

metallacycles of Au
I
 comprise diphosphanes with the classic P

^
P coordination. These 

compounds have found application in many fields, the most important being crown 

ether derivatives18 and cryptates for the determination of other cations by 

characteristic luminescence,19 research of structural properties such as chiral helical 

                                                   
13 For a definition of N-heterocyclic carbenes (NHCs) see Chapter 5, Section 5.1.1, p. 161. 

14 (a) B. Liu, W. Chen and S. Jin, Organometallics 2007, 26, 3660–3667; 

 (b) M. K. Samantaray, K. Pang, M. M. Shaikh and P. Ghosh, Inorg. Chem. 2008, 47, 4153–4156. 

15 F. Bachechi, A. Burini, R. Galassi, B. R. Pietroni and M. Severini, 

 J. Organomet. Chem. 1999, 575, 269–277. 

16 A. Burini, B. R. Pietroni, R. Galassi, G. Valle and S. Calogero, 

 Inorg. Chim. Acta 1995, 229, 299–305. 

17 O. Crespo, E. J. Fernández, M. Gil, M. C. Gimeno, P. G. Jones, A. Laguna, 

 J. M. López-de-Luzuriaga and M. E. Olmos, J. Chem. Soc., Dalton Trans. 2002, 1319–1326. 

18 A. M. Gibson and G. Reid, J. Chem. Soc., Dalton Trans. 1996, 1267–1274. 

19 (a) V. J. Catalano, H. M. Kar and B. L. Bennett, Inorg. Chem. 2000, 39, 121–127; 
 (b) V. J. Catalano, M. A. Malwitz and B. C. Noll, Chem. Commun. 2001, 581–582. 
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structures in the solid state,
20

 dynamic behaviour of such metallacycles
21

 or catalytic 

and medical uses.
22

 

 

Reports from the group of Puddephatt deal with heterometallacycles that can be 

exploited to form [2]-catenanes.23 These are usually designed by utilising bidentate 

phosphane and bidentate alkyne ligands. The conditions of formation of such inter-

locked rings depend on the final size of the heterometallacycle and the nature of the 

group linking the two (2-propynyloxy)arene moieties commonly used as building 

blocks. It has been found that linker functionalities which can participate in delocali-

sation of the electrons in the aromatic rings will not produce catenanes due to 

resulting unfavourable interactions with other arene groups.
23a,b

 The compounds are 

useful in the elucidation of luminescence often observed concomitant with aurophilic 

contacts
24

 and are precursors of self-organised polymeric gold-containing structures.
25

 

 

Homoleptic P
^
C

– type compounds were obtained by reacting 2-monolithiated 

triphenylphosphane with a Au
I
 complex. The resulting heterometallacycle was useful 

in preparing Au
II
 and Au

III
 compounds.

26
 Neutral cyclic compounds with P

^
S

–
 

coordination were isolated with 2-(diethylphosphanyl)ethane-1-thiol to explore their 

antiarthritic properties, but were inferior to Auranofin
TM

 in which the monomeric gold 

centre is coordinated by a phosphane and thiolate as well.27  

                                                   
20 A. Deák, T. Megyes, G. Tárkányi, P. Király, L. Biczók, G. Pálinkás and P. J. Stang, 

 J. Am. Chem. Soc. 2006, 128, 12668–12670. 

21 J. H. K. Yip and J. Prabhavathy, Angew. Chem., Int. Ed. Engl. 2001, 40, 2159–2162 

 (Angew. Chem. 2001, 113, 2217–2220). 
22 M. C. Gimeno, A. Laguna, C. Sarroca and P. G. Jones, Inorg. Chem. 1993, 32, 5926–5932. 

23 (a) W. J. Hunks, J. Lapierre, H. A. Jenkins and R. J. Puddephatt, J. Chem. Soc., Dalton Trans. 

 2002, 2885–2889; (b) F. Mohr, D. J. Eisler, C. P. McArdle, K. Atieh, M. C. Jennings 

 and R. J. Puddephatt, J. Organomet. Chem. 2003, 670, 27–36; (c) N. C. Habermehl, M. C. Jennings, 

 C. P. McArdle, F. Mohr and R. J. Puddephatt, Organometallics 2005, 24, 5004–5014. 

24 (a) M.-C. Brandys, M. C. Jennings and R. J. Puddephatt, J. Chem. Soc., Dalton Trans. 2000, 

 4601–4606; (b) W. J. Hunks, M. C. Jennings and R. J. Puddephatt, 

 Z. Naturforsch., B: Chem. Sci. 2004, 59, 1488–1496. 

25 T. J. Burchell, D. J. Eisler, M. C. Jennings and R. J. Puddephatt, Chem. Commun. 2003, 2228–2229. 

26 M. A. Bennett, S. K. Bhargava, K. D. Griffiths, G. B. Robertson, W. A. Wickramasinghe and 

 A. C. Willis, Angew. Chem., Int. Ed. Engl. 1987, 26, 258–260 (Angew. Chem. 1987, 99, 261–262). 

27 J. Weinstock, B. M. Sutton, G. Y. Kuo, D. T. Walz and M. J. DiMartino, 
 J. Med. Chem. 1974, 17, 139–140. 
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Further examples include bis(phosphane sulfide) (S
^
S)

28
 and phosphane/phosphane 

selenide (P
^
Se) coordinated metallacycles

29
 which have been synthesised particularly 

to explore the scope of Au chemistry with soft ditopic ligands, research group 11 

metallophilic interactions or gain further insight into rare gold–selenium bonds, 

respectively. 

 

4.1.1.3 Heterometallacycles from C
^
C-ligands. 

Schmidbaur and coworkers have reported phosphorus-ylide complexes of gold which 

can be converted to C
^
C

–
 coordinated heterometallacycles when stirred with excess 

ylide.30 Due to the adjacent phosphonium group, the Au–C bonds are very stable and 

the compounds are not decomposed by air or moisture. Various reactions of this 

heterometallacyclus have been studied. It readily adds one or two equivalents of 

halogen to afford Au
II
 and Au

III
 complexes, respectively, the former with an intra-

molecular Au–Au bond. Another unique feature of this heterometallacyclus is its 

ability to add CH2X2 and form the bicyclic scaffold shown in Scheme 4.3. 

 

Au

Cl

P

2 Me3P=CH2
Au

P

Au

P

CH2X2
Au

P

Au

P

XX2

 

Scheme 4.3 Synthesis of heterometallacycles with ylide coordination of Au
I
; X = Cl, Br or I. 

 

Recent examples of cationic metallacycles include complexes of cyclic biscarbenes of 

the type [Au2(µ-C
^
C)2]

2+
 (two ditopic NHC ligands linked by two Au centres, Scheme 

4.4). Such complexes have been obtained instead of the targeted intramolecularly 

chelated [Au(C^
C)]+ coordination compound. Even linear biscarbene ligands yield  

                                                   
28 M. C. Gimeno, A. Laguna, M. Laguna and F. Sanmartín, Organometallics 1993, 12, 3984–3991. 

29 H. Schmidbaur, J. Ebner von Eschenbach, O. Kumberger and G. Müller, 

 Chem. Ber. 1990, 123, 2261–2265. 

30 (a) H. Schmidbaur and R. Franke, Angew. Chem., Int. Ed. Engl. 1973, 12, 416–417 

 (Angew. Chem. 1973, 85, 449–450); (b) P. Jandik, U. Schubert and H. Schmidbaur, 
 Angew. Chem., Int. Ed. Engl. 1982, 21, 73 (Angew. Chem. 1982, 94, 74–75). 
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[Au2(µ-C
^
C)2]

2+
 complexes. Owing to their lipophilic character, such compounds are 

selectively transported into the mitochondria of carcinoma cells.31 

 

N N

N

Au

N

N

N N

Au

N

2 +

 

Scheme 4.4 An example of a heterometallacycle comprising bis-NHC coordination of Au
I
. 

 

 

4.1.1.4 Other ligands. 

 

Some cyclic compounds that do not fit into the classification used above, are shown in 

Scheme 4.5. Some of them contain more than one metal centre.
32

 

 

Finally, the two examples (c) and (d) in Scheme 4.5 illustrate rare species of anionic 

cyclic compounds of gold.33 
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Scheme 4.5 Metallacycles with gold–transition metal bonds (a), (b); and anionic cyclic 

   compounds that contain gold (c), (d). 

                                                   
31 (a) P. J. Barnard, M. V. Baker, S. J. Berners-Price, B. W. Skelton and A. H. White, 

 Dalton Trans. 2004, 1038–1047; (b) X. Hu, I. Castro-Rodriguez, K. Olsen and K. Meyer, 

 Organometallics 2004, 23, 755–764; (c) J.-W. Wang, H.-B. Song, Q.-S. Li, F.-B. Xu 

 and Z.-Z. Zhang, Inorg. Chim. Acta 2005, 358, 3653–3658. 

32 (a) A. Pons, O. Rossell, M. Seco and A. Perales, Organometallics 1995, 14, 555–557; 

 (b) B. Brumas-Soula, F. Dahan and R. Poilblanc, New J. Chem. 1998, 1067–1074. 

33 (a) A. Müller, H. Dornfeld, G. Henkel, B. Krebs and M. P. A. Viegers, Angew. Chem., 

 Int. Ed. Engl. 1978, 17, 52 (Angew. Chem. 1978, 90, 57–58); (b) A. Müller, M. Römer, 
 H. Bögge, E. Krickemeyer and K. Schmitz, Inorg. Chim. Acta 1984, 85, L39–L41. 
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4.1.2 Porous crystalline compounds 

 

Solvent co-crystallisation is usually undesirable when examining a crystal by X-ray 

diffraction and often gives rise to complicated problems during refinement due to 

disorder caused by excessive mobility. The disorder can be so pronounced that the 

solvent molecule does not occupy discrete positions anymore but behaves similar to a 

liquid filling cavities or pores in the crystal. If the co-crystallised solvent is removed, 

e.g. by heating and/or by applying a vacuum, a crystal structure normally collapses to 

yield an amorphous solid (‘efflorescence’). This can be nicely demonstrated with blue 

crystals of CuSO4⋅5H2O which, on gentle heating, afford a white amorphous powder 

of anhydrous copper(II)sulfate. As the water molecules evaporate, the structure lacks 

supporting hydrogen bonds and collapses. 

 

Cyclic complexes, on the other hand, are able to crystallise in “box”- or “doughnut”-

shapes and, given the right size, can incorporate solvent in the cavities created if the 

molecules are unable to form an efficient packing that utilises these cavities. If the 

solvent also occupies suitable interconnected sites, a porous crystal structure results. 

Owing to a pre-formed scaffold less likely to collapse, loss of solvent can possibly be 

tolerated and crystallinity be preserved. The possibility of additional stabilisation 

introduced by aurophilic bonding
34

 could further assist in supporting the solid-state 

structure when solvent has been removed. 

 

Heterometallacyclic compounds with ditopic bis[(benz)imidazol-1-ylmethyl]benzene 

ligands have been reported by Dobrzańska et al. The products are porous crystal 

structures that contain metals such as Ag
I
 as the central atom.

35
 The question arose 

whether such compounds can also be obtained employing the heavier group member, 

Au. Crystal structures of porous materials containing this metal have not yet been 

reported. 

                                                   
34 H. Schmidbaur, S. Cronje, B. Djordjevic and O. Schuster, Chem. Phys. 2005, 311, 151–161 

 and references cited therein. 

35 (a) L. Dobrzańska, G. O. Lloyd, H. G. Raubenheimer and L. J. Barbour, J. Am. Chem. Soc. 2005, 

 127, 13134–13135; (b) L. Dobrzańska, G. O. Lloyd, H. G. Raubenheimer and L. J. Barbour, 

 J. Am. Chem. Soc. 2006, 128, 698–699; (c) L. Dobrzańska, G. O. Lloyd and L. J. Barbour, 
 New J. Chem. 2007, 669–676. 
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4.1.3  Digold(I) compounds bridged by three ditopic P
^
P ligands – 

  a special type of heterometallacyclic gold complex 

 

Unexpectedly, bicyclic [Au2(µ-2L)3]
2+-type complexes (2L being a bidentate ligand, 

Scheme 4.6) are still a laboratory curiosity and have received little attention, while 

structurally characterised mononuclear trigonal-planar Au
I
 complexes are more 

common.
17,36 

P

Au

P P

P

Au

P P

 

Scheme 4.6 The general structure of a [Au2(µ-
2
L)3]

2+
 complex shown for a ditopic bis(phosphanyl)-

methane ligand; substituents at the phosphorus atoms are not shown. 

 

So far, only compounds where the bidentate ligand is a bisphosphane are known. The 

first crystallographically characterised compound, tris[µ-bis(dimethylphosphanyl)-

methane]digold(2+) tetrafluoroborate, was reported in 1986.37 The existence of such 

compounds in solution was further corroborated by 31P NMR spectroscopy38 and 

electrospray mass spectrometry.
39

 However, MS cannot distinguish between [Au2(µ-

2L)3]
2+ and [2LAu(µ-2L)Au2L]2+ species. The latter was found in the solid state when 

the sterical demand of 
2
L is too great

22,40
 or the spacing between the ligating 

phosphorus atoms too extensive.
41

 

 

Among the molecular structures reported (Scheme 4.7) are derivatives with the ligand 

motif R2PCH2PR2 (R = methyl37 or phenyl42). The former compound was examined as 

a catalyst in the C–C coupling of alkyl halides.
43

 Complexes with a functional spacer 

                                                   
36 See for example: (a) P. G. Jones, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1980, 

 36, 3105–3107; (b) F. Olbrich and R. J. Lagow, Z. Anorg. Allg. Chem. 1995, 621, 1929–1932; 

37 W. Bensch, M. Prelati, W. Ludwig, J. Chem. Soc., Chem. Commun. 1986, 1762–1763. 

38 S. Al-Baker, W. E. Hill and C. A. McAuliffe, J. Chem. Soc., Dalton Trans. 1985, 2655–2659. 

39 R. Colton, K. L. Harrison, Y. A. Mah and J. C. Traeger, Inorg. Chim. Acta 1995, 231, 65–71. 

40 T. M. McCleskey, L. M. Henling, K. A. Flanagan and H. B. Gray, 

 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993, 49, 1467–1469. 

41 M.-C. Brandys and R. J. Puddephatt, J. Am. Chem. Soc. 2001, 123, 4839–4840. 

42 U. E. I. Horvath, unpublished results. 

43 (a) H.-R. C. Jaw, M. M. Savas, R. D. Rogers and W. R. Mason, Inorg. Chem. 1989, 28, 1028–1037; 

 (b) D. Li, C.-M. Che, H.-L. Kwong and V. W.-W. Yam, J. Chem. Soc., Dalton Trans. 1992, 

 3325–3329; (c) K. H. Leung, D. L. Phillips, Z. Mao, C.-M. Che, V. M. Miskowski and C.-K. Chan, 
 Inorg. Chem. 2002, 41, 2054–2059. 
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Scheme 4.7 Ligands employed for the syntheses of [Au2(µ-2L)3]
2+ complexes that have been crys-

tallographically characterised. P-coordination of Au
I
 was observed in all cases. R = Me 

or Ph. 

 

between the phosphorus atoms, 2,6-bis(diphenylphosphanyl)pyridine,
44

 2,7-bis(di-

phenylphosphanyl)-1,8-naphthyridine19a,45 and 2,9-bis(diphenylphosphanyl)-1,10-

phenanthroline19b,46 were all utilised in the preparation of metallocryptands as 

mentioned in Section 4.1.1. For the metallocyptand complexes of naphthyridine and 

phenanthroline incorporation of a monovalent metal cation coordinating to the nitro-

gen atoms in the azine rings seems to be crucial in isolating crystals of the compound 

as the authors of one report failed to obtain such compounds in absence of M
+
. 

Crystals obtained were cryptates generated from the adventitious presence of the 

ubiquitous Na+.19a An unusual example was a 2:2 binuclear complex of AuI with 

tritopic tris[2-(diphenylphosphanyl)ethyl]amine where trigonal coordination at each 

gold centre is effected by two arms of one and one arm of another ligand; no amine 

coordination occurred.
47

 

 

The complexes have usually been obtained by reacting (tht)AuCl with 1.5 equivalents 

of ligand, followed by exchange of the halogen for a non-coordinating anion with 

Na[BF4], Na[BPh4] or LiClO4 in aqueous or organic solution. Intramolecular 

aurophilic interactions were only observed in those complexes with only one atom 

placed between the two phosphorus centres. As a result of the employment of 

diphenylphosphanyl groups with a large steric demand in most complexes, 

intermolecular Au…Au interactions were absent. 

                                                   
44 S.-J. Shieh, D. Li, S.-M. Peng and C.-M. Che, J. Chem. Soc., Dalton Trans. 1993, 195–196. 

45 R.-H. Uang, C.-K. Chan, S.-M. Peng and C.-M. Che, 

 J. Chem. Soc., Chem. Commun. 1994, 2561–2562. 

46 V. J. Catalano, B. L. Bennett, H. M. Kar and B. C. Noll, 

 J. Am. Chem. Soc. 1999, 121, 10235–10236. 

47 Md. N. I. Khan, R. J. Staples, C. King, J. P. Fackler, Jr. and R. E. P. Winpenny, 
 Inorg. Chem. 1993, 32, 5800–5807. 
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Binuclear tetracoordinate Au
I
 complexes with three bridging ligands of the type 

[(AuX)2(µ-
2
L)3] have been reported for 

2
L = bis(diphenylphosphanyl)ethyne (X = Cl) 

– synthesised in conjunction with a study on luminescent gold complexes48 – and for 

2
L = 1,4-bis(diphenylphosphanyl)pyridazine, (X = I).

49
 The latter compound only 

adopts this type of configuration in the presence of iodide; with non-coordinating 

[PF6]
–
 counter anions the structure consists of two-dimensional sheets of trigonal Au

I
 

centres bridged by 1,4-bis(diphenylphosphanyl)pyridazine. The intended cryptation of 

additional metal centres by the pyridazine rings has not succeeded. The only complex 

reported that contains phosphonite ligands {2L = [(CF3CH2O)2P]2CH2 and X = Cl} 

was used in a study on the photoactivation of M–X bonds.
50

 The gold centres are 

distorted towards tetrahedral geometry by the terminal chloride ligands, therefore only 

a very weak aurophilic contact of 3.5295(7) Å is observed. 

 

4.1.4 Aims 

 

The most important aims and secondary objectives for the investigations described in 

the present Chapter can be summarised as follows: 

 

(a) To re-prepare a trimeric thienyloxazolinegold(I) heterometallacycle and com-

plete the previously unsuccessful structural characterisation as well as verify its 

proposed connectivity and bonding structure. Elucidation of the fact why the 

trimer forms selectively and no polymeric material is obtained during 

preparation was anticipated. Furthermore, in the light of the results in Chapter 

3, attention would also focus on the presence of polymorphs in crystallisations; 

 the suitability of this complex to incorporate additional metal centres should 

also be probed as such reactions were observed for structurally related trimeric 

cyclic carbene complexes; 

to further explore the scope of gold(I) heterometallacycles, for this goal the 

employment of related ligands was planned. 

                                                   
48 M. Bardají, M. T. de la Cruz, P. G. Jones, A. Laguna, J. Martínez and M. D. Villacampa, 

 Inorg. Chim. Acta 2005, 358, 1365–1372. 

49 V. J. Catalano, M. A. Malwitz, S. J. Horner and J. Vasquez, Inorg. Chem. 2003, 42, 2141–2148. 

50 J. L. Dempsey, A. J. Esswein, D. R. Manke J. Rosenthal, J. D. Soper and D. G. Nocera, 
 Inorg. Chem. 2005, 44, 6879–6892. 
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(b) By utilising a bis(imidazolylmethyl)benzene for the synthesis of the first hetero-

metallacycles of Au
I
 with N

^
N bis-imine coordination the preparation methods 

and stability of the products should come under the spotlight; 

characterisation of the complexes synthesised then requires finding suitable 

conditions that yield a porous crystal structure; 

the study of a porous crystal structure further entails removal of the solvent by 

suitable means and determination of the impact of this loss onto the lattice. 

 

(c) The final goal of this Chapter was to synthesise and characterise new  

[Au2(µ-
2
L)3]

2+
-type complexes where 

2
L is not a simple phosphane ligand to 

complement the small number of related phosphane complexes already known. 

 

 

 

4.2 Results and discussion 

 

4.2.1  Synthesis and structural characterisation of a trimeric, 

18-membered heterometallacycle with N
^
C

–
 coordination: cyclo-

tris{[µµµµ-4,4-dimethyl-2-(thien-2-yl-κκκκC
5
)oxazoline-κκκκN]gold}, 1 

 

The compound, shown in Scheme 4.8, has been isolated before by Desmet et al. but 

was incompletely characterised.
10

 Only the connectivities within the compound could 

be established from unsatisfactory crystal data; space group problems prevented a 

more thorough investigation. The compound is related to other cyclic carbenes [cf. 

Scheme 4.1 (a)] and two important resonance structures can be drawn as is shown in 

Scheme 4.8 The compound is related to a remote carbene complex51 since the active 

nitrogen atom (bonded to Au
I
) is distant from the carbene carbon atom, stabilisation 

through the α-sulfur atom will be less pronounced. 

                                                   
51 Compare the complexes in: H. G. Raubenheimer, M. Desmet, P. Olivier and G. J. Kruger, 
 J. Chem. Soc., Dalton Trans. 1996, 4431–4438. 
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Scheme 4.8 Connectivity of carbene compound 1 [(ionic representation (a)] and its neutral re-

sonance structure, (b); formal electron pair movements are only shown for one thienyl-

oxazoline unit in (a). 

 

4.2.1.1 Synthesis and spectroscopic characterisation of complex 1. 

The ligand 4,4-dimethyl-2-(thien-2-yl)oxazoline can be deprotonated either at C-3 or 

C-5 of the thiophene ring, depending on whether butyllithium or the sterically 

hindered lithium bis(methylethyl)amide is employed.
52

 Upon deprotonation at C-5 

and reaction with (tht)AuCl the ligand cleanly formed a colourless cyclic trimer, 1, in 

high yield. 

 

NMR data are reported in Table 4.1, assignments are in accordance with related 

literature values.
53

 The 
13

C chemical shift at δ 165.3 of the thiophene ring at C-5 (free 

ligand: δ 126.5; ∆δ 38.8) suggests only a small contribution from resonance structure 

(b) of Scheme 4.8. The resonance of the aurated C-3 of the typical remote carbene 

complex, N-protonated [4,4-dimethyl-2-(thien-2-yl-κC
3)oxazoline](triphenylphos-

phane)gold occurs at much lower field strength at δ 190.9
10

 (∆δ 61.4). Further proof 

of the predominance of the imine-coordinated thienylgold structure of 1 was obtained 

from the crystal structure determination described below. 

                                                   
52 A. J. Carpenter and D. J. Chadwick, J. Chem. Soc., Perkin Trans. 1 1985, 173–181. 
53 S. Selvaratnam, K. M. Lo and V. G. K. Das, J. Organomet. Chem. 1994, 464, 143–148. 
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Table 4.1 NMR data of compound 1 recorded in CDCl3
a 

 

N

O

S

3

2

3

4

5

2

4

5

CH3

Au

 
   

Nucleus   
   

1
H (300 MHz) H-4 thiophene (C11H) 7.90 (d, 

3
JHH 3.65, 3 H) 

 H-3 thiophene (C12H) 7.04 (d, 
3
JHH 3.65, 3 H) 

 CH2 oxazoline (C15H2) 4.30 (s, 6 H) 

 CH3 oxazoline (C27H3, C28H3) 1.56 (s, 18 H) 
\   

13
C{

1
H} (75.4 MHz) C-5 thiophene (C10) 165.3

b
 

 C-4 thiophene (C11) 125.9- 

 C-3 thiophene (C12) 134.6
c
 

 C-2 thiophene (C13) 136.0
c
 

   

 C-2 oxazoline (C14) 164.4b 

 C-4 oxazoline (C15) 79.7 

 C-5 oxazoline (C16) 67.8 

 CH3 oxazoline (C17, C18) 28.9 
 

a The atom numbering in brackets corresponds to the atom labels in Figures 4.1 and 4.3 
bb,cc

 These assignments are uncertain due to very similar shifts 

 

ESI-mass spectrometric analysis of 1 did not exhibit m/z values corresponding to a 

molecular ion. The base peak at m/z 559 was assigned to [AuL2]
+
. 

 

Encouraged by the recent isolation of an unprecedented gold rotaxane in our 

laboratory comprising an 18-membered ring trapping a [Au(PMe3)2]
+ group in the 

centre by aurophilic interactions (Scheme 4.9),
42

 the possible incorporation of metal 

cations into the heterometallacyclic ring system of 1 was investigated. 

 

N
N

Au
N

N
Au

N

N

Au

Au

(H3C)3P

P(CH3)3

PF6

Cl

0.5

0.5

 

Scheme 4.9 Cationic rotaxane complex comprising an 18-membered ring. 
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As the distance between the Au atoms in the structures of 1 is such that it would allow 

accommodation of another gold atom in the centre of the cycle forming three auro-

philic interactions of ca. 3.65 Å, such a reaction was attempted as well. However, 1 

does not react with chloro(2-isocyano-2-methylpropane)gold (Scheme 4.10) which 

was selected as a reagent due to its linear shape precluding any steric disturbances in 

the reaction. 
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Scheme 4.10 Possible reaction of 1 with Me3CNCAuCl. 

 

Solely crystals identified as 1⋅0.75C4H8O were recovered when the reaction mixture 

was crystallised. The failure to react could possibly be ascribed to the stabilising 

Au…S contacts within the macrocycle (vide infra), as a consequence the thiophene 

rings are held in place and do not twist 90° out of the cycle’s plane to allow entrance 

of another AuI centre and formation of a rotaxane. Alternatively, breaking of one  

Au–N bond and re-closure of the heterometallacycle would also allow the guest 

molecule to be accommodated, again the favourable Au…S interactions most likely 

preclude this pathway. The three Au…S contacts averaging distances of 3.29 Å in both 

molecular structures of 1 could be stronger than three aurophilic contacts at 3.65 Å. 

 

4.2.1.2 Crystallography. 

The crystallisation of compound 1 from thf/pentane afforded monoclinic yellowish 

crystals of 1⋅0.75C4H8O (space group C2/c). Based on the similar normalised volume 

(874 Å
3
 in 1⋅0.75C4H8O vs. 862 Å

3
 in the previous attempt) it is possible that the 

previous attempt to determine the crystal and molecular structure
10a

 also furnished this 

6:8 thf solvate; albeit the data was solved for a wrong, triclinic lattice and space group  
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P which could only establish the connectivities of the molecule. Selected bond 

lengths and angles of the structures of 1 are presented in Table 4.2. 

 

The crystal and molecular structure of 1⋅0.75C4H8O consists of neutral, isolated 

molecules shown in Figure 4.1. The C2 axis of the C2/c space group is necessarily 

separated from the molecule affording 8 molecules per unit cell. A possible threefold 

rotation symmetry in a trigonal or hexagonal lattice is not realised and the whole 

heterometallacycle is asymmetric and appears somewhat curved rather than being flat. 

The molecules of 1⋅0.75C4H8O are ordered so that columns of thienyloxazoline 

groups form along the b axis, but closer association (e.g. π-stacking) is rendered 

impossible by the methyl substituents at the oxazoline, see Figure 4.2. 

 

The thf molecules located in channels could not be modeled owing to their high 

disorder and their electron density was removed using the Squeeze routine in the 

Platon set of programmes.
54

 A rough estimate of the number of thf molecules per unit 

cell was obtained from this process; to gain further evidence and unambiguously 

determine the identity of the co-solvent (as thf and pentane comprise 40 and 42 

electrons, respectively, identification by electron density is impossible) several 

crystals were harvested and an 1H NMR spectrum recorded. From the integrals of the 

 

Table 4.2 Bond lengths/Å and angles/° of the solvates of compound 1. 
 

Solvate 1⋅0.75C4H8O 1⋅2C4H8O  1⋅0.75C4H8O 1⋅2C4H8O 
      

Au1–C10 1.985(5) 1.982(6) N1–C14  1.286(6) 1.280(8) 

Au2–C20 1.990(5) 1.981(6) N2–C24 1.272(6) 1.286(8) 

Au3–C30 1.981(5) 1.989(6) N3–C34 1.270(6) 1.276(8) 
      

Au1–N2 2.059(4) 2.049(5) Au1…Au1′  3.4988(6) 

Au2–N3 2.058(4) 2.048(5) Au3…Au3″  3.5172(7) 

Au3–N1 2.051(4) 2.056(5)    
      

Au1…S2 3.270(3) 3.249(2) C10–Au1–N2 175.1(2) 174.5(2) 

Au2…S3 3.275(2) 3.358(2) C20–Au2–N3 175.4(2) 174.2(2) 

Au3…S1 3.277(2) 3.338(2) C30–Au3–N1 172.1(2) 174.5(2) 
      

 Angles of the thiophene 

ring planes with the 

Au1 Au2 Au3 plane  

 24.0(2) 

08.6(2) 

06.8(2) 

21.0(2) 

23.5(3) 

17.6(3) 
 

Symmetry codes: ′ = –x, 1 – y, 2 – z; ″ = –x, 1 – y, 1 – z. 

 

                                                   
54 A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13. 
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Figure 4.1 Molecular structure of 1⋅0.75C4H8O, disordered thf is not shown. 

 

 

Figure 4.2 Packing diagram of 1⋅0.75C4H8O showing stacks of the thienyloxazoline moieties; 

  the channels in between are occupied by thf solvent (not shown). 

 

solvent signals, now clearly identified as thf by their chemical shift and multiplicity, 

relative to the methyl peaks of 1 the crystal stoichiometry was unambiguously shown 

to be 1⋅0.75C4H8O, which is also completely in agreement with the residual electron 

density removed per unit cell. 
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From the molecular structure of 1⋅0.75C4H8O it is immediately apparent why the 

ligands form cyclic trimers with gold, the geometry is predestined for three short 

Au…S contacts ranging from 3.270(3) to 3.277(2) Å. Such interactions are commonly 

observed with compounds containing gold and thiazole or thiophene rings,
55

 further 

examples involving thiazole groups are discussed in Chapters 3 and 5. During syn-

thesis these contacts are thought to direct the mutual orientation of the two hetero-

cycles in the ligand to an (E)-configuration finally closing the ring rather than form 

polymeric chains, as was observed with other related compounds (cf. Section 4.2.3.2). 

 

The Au–C distances in 1⋅0.75C4H8O measure 1.985(5) Å on average which is 

comparable to the related dimeric heterometallacycle where C-3 of the thiophene ring 

is metalated [Au–C distances 2.01(1) and 2.04(1) Å]10 and significantly shorter than 

in the C-2 aurated deprotonated thienylgold(I) complex Ph3PAuC4H3S [Au–C distance 

2.038(3) Å].
56

 The Au–N bond lengths in 1⋅0.75C4H8O average at 2.056(4) Å, again 

comparable to the C-3 aurated dimeric heterometallacycle [Au–N distances 2.065(8) 

and 2.081(8) Å], but are significantly longer than in a polyaurated cluster where one 

Au
I
 is coordinatd by two imine nitrogen atoms of 2,4,4-trimethyloxazoline [1.99(1) 

Å].
57

 However, this latter gold centre is cationic and additional effects from 

polyauration may also influence the bond length. 

 

Later, in an attempt to co-crystallise 1 with chloro(2-isocyano-2-methylpropane)gold, 

colourless plates of triclinic 1⋅2C4H8O in space group P, shown in Figure 4.3, were 

isolated. The structure contains two thf solvent molecules in the asymmetric unit and 

thus strictly is not a polymorph of the original 1⋅0.75C4H8O. Apart from the different 

stoichiometry of the co-crystallised solvent, the main difference between the two 

structures is the presence of weak Au…Au interactions to neighbouring molecules in 

1⋅2C4H8O with Au…Au distances of 3.4988(6) and 3.5172(7) Å. These aurophilic 

bonds to symmetry-generated atoms link individual cycles to infinite chains running 

                                                   
55 See for example: (a) S. Y. Ho and E. R. T. Tiekink, Z. Kristallogr. – New Cryst. Struct. 2003, 218, 

 73–74; (b) U. Monkowius, S. Nogai and H. Schmidbaur, Z. Naturforsch., B: Chem. Sci. 2003, 58, 

 751–758; (c) E. J. Fernández, A. Laguna, J. M. López-de-Luzuriaga, M. Monge, M. Montiel, 

 M. E. Olmos and M. Rodriguez-Castillo, Dalton Trans. 2006, 3672–3677. 

56 K. A. Porter, A. Schier and H. Schmidbaur, Organometallics 2003, 22, 4922–4927. 

57 F. Scherbaum, B. Huber, G. Müller and H. Schmidbaur, 
 Angew. Chem., Int. Ed. Engl. 1988, 27, 1542–1544 (Angew. Chem. 1988, 100, 1600–1602). 
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Figure 4.3 Molecular structure of 1⋅2C4H8O, two neighbouring cycles linked to 1 by aurophilic 

interactions are represented as stick-models; symmetry codes ′ = – x, 1 – y, 2 – z; 

″ = –x, 1 – y, 1 – z; * = –x, y, 1 + z; ** = x, y, z – 1; co-crystallised thf is not shown. 

 

parallel to the c axis (Figure 4.4). This motif has been observed in the much simpler 

trimeric carbene complex [Au{µ-[C(NCH2Ph)(OMe)]}]3, albeit with on average 

longer intermolecular Au…Au distances, the shortest being 3.698 Å.
58

 

 

 

Figure 4.4 Packing diagram of 1⋅2C4H8O viewed along the c axis, atoms are shown in stick repre-

sentation, no Au…Au or Au…S contacts are indicated; the molecules are linked by auro-

philic interactions into chains running parallel to the c axis, surrounded by channels that 

contain molecules of thf. 

                                                   
58 A. L. Balch, M. M. Olmstead and J. C. Vickery, Inorg. Chem. 1999, 38, 3494–3499. 



Chapter 4 – Heterometallacyclic Complexes of Gold(I) 126
 

A higher degree of twisting of the thiophene rings out of the plane defined by the gold 

centres [average 20.7°] is also noted, which may be as a result of the additional 

stabilisation by aurophilic interactions thus weakening the Au…S contacts. Two of 

these Au…S contacts in 1⋅2C4H8O consequently are notably longer [3.338(2) and 

3.358(2) Å; one Au…S contact of 3.249(2) Å is similar to 1⋅0.75C4H8O] than in the 

other solvate. In the structure of 1⋅0.75C4H8O only one thiophene ring exhibits a twist 

angle of 24.0(2)° while the other two align closely with the Au3-plane with twist 

angles of 8.6(2)° and 6.8(2)°. The Au–C and Au–N bonds [average values 1.984(6) 

and 2.051(5) Å] in 1⋅2C4H8O are virtually identical to those in the 6:8 thf solvate. 

 

The question to what extent both molecular structures of 1 exhibit carbene character 

can be answered by comparing distinctive bond lengths within the thienyloxazoline 

backbone; Au–C bond lengths, on the other hand, are not useful as they are usually 

insensitive to the nature of the bond and/or ligand.59 As indicated in Scheme 4.8, the 

resonance form (b) that contains a metal-carbon double bond also requires double 

bonds between the thiophene and oxazoline rings (labeled C13–C14 in Figure 4.1) as 

well as a double bond between C-3 and C-4 (C11–C12) of the thiophene unit; in 

addition the C-2–N bond (C14–N1) in the oxazoline fragment should be longer than a 

double bond. 

 

The average bond lengths of these bonds in the two solvates of 1 are 1.443(6), 

1.404(9) and 1.278(7) Å, respectively. The first bond linking both heterocycles in the 

ligand moiety is clearly longer than the average length of a conjugated C–C double 

bond (1.345 Å) and the C-3–C-4 (C11–C12) bond of the thiophene ring (which should 

be shortened if the resonance structure incorporating the Au–C double bond was 

prevalent) is comparable to the average in thiophenes (1.424 Å). Finally, the latter 

separation is in accordance with the typical value for a Csp
2
–Nsp

2
 double bond  

(1.279 Å).
60

 The bond lengths found in both solvates of 1 also closely resemble those 

found in organotin derivatives of 4,4-dimethyl-2-(thien-2-yl)oxazoline which should 

                                                   
59 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, 

 J. Chem. Soc., Dalton Trans. 1989, S1–S83. 

60 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, 
 J. Chem. Soc., Perkin Trans. 2 1987, S1–S19. 



Chapter 4 – Heterometallacyclic Complexes of Gold(I) 127
 

not exhibit any carbene character.
53,61

 Together with the 
13

C NMR data (vide supra), it 

is concluded that the imine-coordinated thienylgold resonance structure [Scheme 4.8 

(a)] is the main contribution to the actual bonding situation in 1. 

 

Taking both solvates of 1 presented above into account, it is again evident that having 

another look at crystallisations can be worthwhile and indeed often more than one 

structure of a given compound could be isolated when more than one crystallisation 

was set up. In this case, the second solvate was obtained from a failed reaction attempt 

and the presence of other chemical species might have had an influence in the 

crystallisation process of 1. Differences and similarities between the structures 

obtained can lead to a greater understanding of the factors that influence a compound 

to crystallise in the way it is found in a specific polymorph or solvate. 

 

 

4.2.2  Synthesis of gold complexes of bitmb – 

  the [Au2(µµµµ-bitmb)2]
2+

 cation, 2 

 

Homoleptic heterometallacycles incorporating Au
I
 coordinated by imine nitrogen 

atoms from imidazole moieties have not been reported so far. Complexes of 

bis[(benz)imidazol-1-ylmethyl]benzenes are generally obtained by allowing the ligand 

and a suitable metal salt to crystallise during evaporation of the chosen solvent.
35,62

 

This approach, however, is unsuitable for Au
I
 as binary salts of weakly or non-

coordinating anions are not available and, furthermore, exposure to the atmosphere 

during crystallisation may lead to decomposition of the complex. The latter concern 

proved to be insubstantial since it was found out later that AuI complexes derived 

from bitmb are certainly amongst the most stable compounds reported in this 

dissertation and can be stored at room temperature without noticeable decomposition 

for years. 

                                                   
61 K. M. Lo, S. Selvaratnam, S. W. Ng, C. Wei and V. G. K. Das, 

 J. Organomet. Chem. 1992, 430, 149–166. 

62 L. Dobrzańska, G. O. Lloyd, T. Jacobs, I. Rootman, C. L. Oliver, M. W. Bredenkamp 
 and L. J. Barbour, J. Mol. Struct. 2006, 796, 107–113. 
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Synthesis, therefore, started from (tht)AuCl with both the chloride and labile tht 

ligand to be substituted. Initially, a reaction was conducted by dissolving (tht)AuCl in 

ethanenitrile and adding 1.2 mole equivalents tht to stabilise the gold against loss of 

chloride. Subsequent addition of Ag[BF4], filtration of precipitated AgCl and addition 

of a bitmb solution in MeCN afforded compound 2a with the cation shown in Scheme 

4.11. However, this procedure was found to be unsuitable and upon crystallisation, a 

crystal of a mixed [AgAu(µ-bitmb)2]
2+

 species was isolated in place of the expected 

[Au2(µ-bitmb)2]
2+ complex, a pure crystal was isolated only after an additional 

recrystallisation. 

 

N

N

N

N

N

N

N

NAu

Au

 

Scheme 4.11 Structure of the cation in compounds 2a and 2b. 

 

To avoid further interference from Ag
+
, it was substituted by Na

+
 in a subsequent 

preparation using NaOTf that readily effected reaction in ethanenitrile. Owing to the 

negligible solubility of NaCl63 – which precipitates and drives the reaction – in this 

solvent and the minimal affinity for Na+ towards the ligands employed, clean and high 

yield reactions were found. The same approach was subsequently used for all other 

reactions reported in the following chapters when chloride had to be exchanged under 

anhydrous conditions. 

 

The products obtained by the two methods (with Ag+ or Na+ salts) both contained the 

cyclic cation shown in Scheme 4.11 but differ in the counter ions ([BF4]
–
 in 2a and 

CF3SO3
–
 in 2b, respectively). 

 

4.2.2.1 Spectroscopic characterisation. 

The compounds cyclo-bis{[µ-1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene]}-

digold(2+) tetrafluoroborate, 2a, and -triflate, 2b, were characterised by 
1
H and, for 

                                                   
63 T. Pavlopoulos and H. Strehlow, Z. Phys. Chem. 1954, 202, 474–479. 
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2b, 
13

C NMR spectroscopy as well as ESI-mass spectrometry. NMR data are given in 

Table 4.3. The solubility of the tetrafluoroborate salt was too low to allow recording 

of a 
13

C NMR spectrum. 

 

Table 4.3 NMR data of compounds 2a and 2b in CD2Cl2 solution.a 
 

 
 

Compound 

N

N

N

N

N

N

N

NAu

Au

2
B

F

FF

F

 
2a 

N

N

N

N

N

N

N

NAu

Au

S

F

F

F

O

O

O

2

1

2

3
4

5

6

 
2b

c
 

    

Nucleus Frequency 300 MHz 600 MHz (
1
H) 

151 MHz (13C) 
    

1
H H-2 imidazole (C11H) 7.80 (m, 4 H) 7.95 (m, 4 H) 
 H-4 imidazole (C12H) 7.36 (m, 4 H) 7.34 (m, 4 H) 
 H-5 imidazole (C13H) 7.18 (m, 6 H)b 7.16 (m, 4 H) 

 H-5 benzene (C34H) 7.18 (m, 6 H)
b
 7.14 (s, 2 H) 

    

 1/3-CH2 (C14H2) 5.22 (s, 8 H) 5.19 (s, 8 H) 
 2-CH3 (C33H3) 2.17 (s, 6 H) 2.14 (s, 6 H) 

 4/6-CH3 (C43H3) 2.27 (s, 12 H) 2.27 (s, 12 H) 
    

13
C{

1
H} C-2 imidazole (C11)  140.3 (s) 

 C-4 imidazole (C12)  121.0 (s) 
 C-5 imidazole (C13)  130.0 (s) 
 

C-1/3 benzene (C31)  140.4 (s) 
 

C-2 benzene (C32)  138.4 (s) 
 

C-4/6 benzene (C35)  132.3 (s) 
 

C-5 benzene (C34)  127.6 (s) 
    

 1/3-CH2 (C14)  047.6 (s) 

 2-CH3 (C33)  015.6 (s) 

 4/6-CH3 (C34)  019.5 (s) 
 

a
 The atom numbers in brackets correspond to the atom labels in Figures 4.5 and 4.7 

b
 The signals are not resolved at 300 MHz   

c
 The CF3SO3

–
 carbon was not observed due to 

low signal intensity and signal splitting. Aromatic carbon assignments are ambiguous 

 

The mass spectroscopic data of 2a and 2b, summarised in Table 4.4, unambiguously 

confirmed the structures of the compounds as 2:2 complexes of the [Au2(µ-bitmb)2]
2+ 

type. These cations were observed as base peaks at a 15 V cone voltage. Especially 

the additional [Au2(anion)(µ-bitmb)2]
+
 signals are interesting as they already suggest 

cavities within the crystals wherein suitable guests can be accommodated. No 

evidence of mixed [AgAu(µ-bitmb)2]
2+

-species was obtained from the mass spectrum 

of 2a. 
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Table 4.4 ESI mass spectrometric data of 2a and 2b; L = bitmb. 
 

Compound 2a 2b 
   

Empirical formula C34H40Au2B2F8N8 C36H40Au2F6N8O6S2 

Exact mass 1128.28
a
 1252.17 

   

m/z (Int.) [Au2(µ-
2
L)2]

2+ b
 0477 (100) 0477 (100) 

m/z (Int.) [Au2(anion)(µ-2L)2]
+ 1041 0(68) 1103 0(20) 

   

m/z (Int.) Others 0715 0(60) 0281 (10)
c
 

 0685 0(50)  
 

a
 Calculated with 

11
B isotope   

b
 Cation: [C34H40Au2N8]

2+
, exact mass 954.27   

c
 [L + H]

+
 

 

Attempts were made to utilise the two gold centres of 2a in attracting another metal 

fragment towards the centre of the heterometallacyclic ring system. The distance 

between the gold atoms of ca. 2 × 3.5 Å should be suitable to accommodate metallo-

philic interactions. Furthermore, the flexible bis(imidazole)gold groups should be able 

to move closer to each other thus adjusting to the required distances for a particular 

situation. As a co-crystallising guest, chloro(2-isocyano-2-methylpropane)gold was 

selected. Crystallisation from ethanenitrile afforded only crystals having the same unit 

cell as the already known structure of 2a⋅2MeCN. 

 

Allowing for a too bulky dimethylethyl group, HgCl2 was then utilised in another 

attempted co-crystallisation with compound 2b from MeCN layered with Et2O. Only 

an amorphous precipitate was obtained whereas 2b always furnished crystals under 

these conditions. 

 

4.2.2.2 Crystallographic characterisation of the complexes. 

Bond lengths, angles and, for comparison, unit cell parameters of all structures 

obtained are summarised in Table 4.5. All products crystallise in the orthorhombic 

space group Pnma and exhibit a proper mirror plane that bisects the benzene rings and 

solvent molecules when contained in the cavity. Aurophilic interactions occur 

between the metal centres of different molecules. 

 

Complex 2a was crystallised from MeCN/Et2O and colourless needles of 2a⋅2CH3CN 

were obtained. The [Au2(µ-bitmb)2]
2+

 cations form “boxes” (Figure 4.5) that accom-

modate the solvent guests ordered in an antiparallel manner as expected for the highly 
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Table 4.5 Bond lengths/Å, angles/° and unit cell parameters of structures of 2a and 2b 
 

Compound 2a⋅2CH3CN 2a⋅2CH2Cl2 2b⋅2CH2Cl2 2b⋅0.7CH2Cl2 
     

Au…Au′ 3.5490(5) 3.3580(7) 3.2885(8)
c
 3.4444(5) 

Au–N1 1.996(3)0 2.013(7)0 2.001(6)0 1.987(4)0 

Au–N2 2.001(3)0 2.000(7)0 2.007(6)0 2.002(4)0 

Box dimension
a
 x/Å 7.060 7.107 6.806 6.719 

Box dimension
b
 y/Å 9.996 9.954 9.975 10.0050 

     

N1–Au–N2 176.9(2) 175.9(3) 175.4(2) 177.1(2) 
     

Interplanar angle defined by   

the benzene rings of a box 

 

19.4(3)0 
 

19.1(7) 
 

22.8(6) 
 

19.5(4) 

Interplanar angle defined by 

Au(imidazole)2 fragments 

 

88.31(7) 
 

79.5(2) 
 

43.0(2) 
 

53.9(1) 

     

Unit cell axes a/Å 19.296(3) 19.691(3) 21.860(6) 21.076(3) 

Unit cell axes b/Å 20.243(3) 19.921(3) 18.886(5) 19.034(3) 

Unit cell axes c/Å 11.081(2) 11.292(2) 11.726(3) 11.665(2) 

Unit cell volume/Å
3
 4328(1) 4429(2) 4841(2) 4680(2) 

 

Symmetry code: ′ –x, 1 – y, –z 
a
 Intramolecular distance between Au atoms 

b
 Intramolecular benzene ring centroid distance   

c
 Symmetry code 1 – x, – y, 1 – z. 

 

 

Figure 4.5 Two cationic metallacycles of 2a⋅2CH3CN linked by aurophilic interactions which are 

propagated along the b axis; the solvent molecules occupying the space within the cycles 

are not shown, only two representative [BF4]
–
 anions are drawn and others are omitted 

for clarity; symmetry codes ′= –x, 1 – y, 1 –z; ″ = x, 
3
/2 – y, z; ″′ = –x, y – ½, 1 –z; 

* = –x, ½ + y, 1 – z and ** = x, ½ – y, z; inversion centres are located halfway along 

aurophilic bonds and mirror planes bisect atoms C32, C33, C34, C42, C43 and C44. 

 

dipolar ethanenitrile. Tetrafluoroborate counter ions are located outside the cation 

rings next to the gold centres, most likely attracted by Coulomb forces. The  



Chapter 4 – Heterometallacyclic Complexes of Gold(I) 132
 

heterometallacycles are themselves interlinked by relatively weak aurophilic inter-

actions at 3.5490(5) Å. Owing to this attraction the N–Au–N angle [176.9(2)°] 

slightly deviates from the ideal linear geometry. The Au–N bond distances of 1.996(3) 

and 2.001(3) Å, respectively, are comparable to the only other report of a structure of 

a proper bis(imidazole-κN) coordination of Au
I
, bis[4-(hydroxymethyl)-1,5-dimethyl-

imidazole]gold(1+) chloride [2.011(5) and 2.000(5) Å].64 

 

The one objective of obtaining a porous structure was not realised. The individual 

boxes are oriented at ca. 90° towards each other in the ac plane and possible channels 

running in the c direction are partially obstructed by the trimethylbenzene rings. 

 

Complex 2a was therefore recrystallised from dichloromethane which yielded crystals 

of 2a⋅2CH2Cl2 similar in appearance and unit cell dimensions to the previous crystal. 

A packing diagram of the crystal structure is shown in Figure 4.6. The aurophilic 

interactions linking the cations together along the b axis now occur at a much shorter 

distance [3.3580(7) Å] and are thus stronger than in the bis-ethanenitrile solvate. The 

Au–N bonds are not altered [2.000(7) and 2.013(7) Å] and are virtually the same as in 

bis[4-(hydroxymethyl)-1,5-dimethylimidazole]gold(1+) chloride.64 

 
Figure 4.6 Packing of 2a⋅2CH2Cl2 viewed along the b axis showing the orientation of the cations 

(linked by Au…Au interactions parallel to the b axis) towards each other, in this arrange-

ment trimethylbenzene rings obstruct possible movement of CH2Cl2 in the channels. 

 

                                                   
64 C. J. L. Lock and Z. Wang, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 
 1993, 49, 1330–1333. 
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One of the CH2Cl2 solvent molecules is disordered over two sites sharing the same 

chlorine atoms. The ensuing mutual parallel/antiparallel disorder of the solvent is 

obviously tolerated. However, the overall orientation of cations, solvent and anions 

are very much the same as in 2a⋅2CH3CN which means that potential channels are 

again partially obstructed by the trimethylbenzene groups. The molecular structure of 

2a⋅2CH2Cl2 is therefore not shown. 

 

No porous crystal structures of 2a were obtained, therefore the triflate salt of  

[Au2(µ-bitmb)2]
2+

, 2b, was synthesised. Crystals of 2b suitable for X-ray diffraction 

studies were more difficult to grow than the different solvates of 2a. Only the 

CH2Cl2/pentane solvent system furnished crystals of 2b⋅2CH2Cl2 that were suitable 

for data collection. 

 

The general arrangement is similar to that in the molecular structures with 

tetrafluoroborate counter ions, two CH2Cl2 solvent molecules are hosted inside the 

cavity created by the heterometallacycle which is bisected by a proper mirror plane. 

The structure of 2b⋅2CH2Cl2 is shown in Figure 4.7. The aurophilic attraction is 

stronger than in the structures of 2a as indicated by a shorter intermolecular Au…Au 

separation [3.2885(8) Å]. 

 

 

Figure 4.7 Molecular structure of 2b⋅2CH2Cl2, only one dichloromethane solvent bisected by a 

mirror plane is shown, the triflate anions are omitted for clarity; symmetry codes: 

′ = x, ½ – y, z; ″ = –x, –y, –z; ″′ = –x, –y – ½, –z; * = –x, ½ + y, –z and ** = x, –y – ½, z. 
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Compared to both solvates of 2a, the interplanar angle of the two Au(imidazole)2 

fragments forming the “walls” of the box is smaller [43.0(2)° in 2b⋅2CH2Cl2 com-

pared to 79.5(2)° and 88.31(7)° for the structures of 2a] leading to a smaller intra-

molecular separation of the Au centres. Accordingly, the b axis (along which the 

cations are arranged by aurophilic interactions) is significantly shorter in the crystal 

structure of 2b⋅2CH2Cl2 compared to the solvates of 2a. 

 

One dichloromethane solvent molecule is heavily disordered and electron density 

belonging to it was removed using the Squeeze routine in the Platon set of 

programmes.54 The other CH2Cl2 molecule, however, is firmly held in place by what 

could amount to agostic Au…H interactions (Au…H distance 2.77 Å, similar to those 

found for compound 8b in Chapter 5 where the interaction is intramolecular and thus 

observable in the 
1
H NMR spectrum) and the halogen may interact with the benzene 

rings (distance between Cl atoms and the benzene centroids 3.594 and 3.518 Å). 

 

Although the metallacycles are again stacked at an angle against each other in the ac 

plane, pores are found to be running along the c axis that are not seriously obstructed 

by the benzene rings (Figure 4.8) and experiments exploring the porous character of 

the crystal were performed. 

 

 

Figure 4.8 Packing diagram of 2b⋅2CH2Cl2 seen along the c axis and showing the pores occupied by 

the dichloromethane solvent; only one CH2Cl2 is shown per asymmetric unit. 
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4.2.2.3 Removal of solvent from 2b⋅2CH2Cl2. 

Crystals of 2b⋅2CH2Cl2 obtained from dichloromethane/pentane were heated under 

vacuum and the crystals then re-examined by X-ray diffraction. It was noted that 

evacuation causes the crystals to ‘crack’ and somewhat lose their shine. The 

diffraction pattern, however, clearly indicates preserved crystallinity in the material 

after removal of the solvent – the data quality obtained from the ‘cracked’ crystal was 

actually better than that of 2b⋅2CH2Cl2. 

 

After evacuation of 2b⋅2CH2Cl2 for 45 min. at 72 °C the crystals were still found to 

contain 1.2 molecules of dichloromethane per [Au2(µ-bitmb)2]
2+

 unit. Subsequent 

heating at 90 °C for another hour under dynamic vacuum reduced the dichloro-

methane content to 0.7 per cation. Even prolonged heating and evacuation at this 

temperature for 12 hours did not lower the CH2Cl2 content any further, indicative of 

unusually strong host-guest interactions. It is not clear whether the Au…H interactions 

mentioned above play a role in this behaviour. Applying higher temperatures during 

evacuation was prohibitive due to the sensitivity of gold complexes. However, the 

possibility to remove 1.3 CH2Cl2 is proof that the pores in the crystal structure do 

allow migration of the solvent. 

 

During removal of solvent the crystal structure underwent significant changes as is 

reflected in altered unit cell dimensions: the a and c axes are shortened by 0.78(1) Å 

and 0.061(5) Å, respectively, while the b axis increased by 0.15(1) Å resulting in a net 

decrease in unit cell volume of ca. 3%. The most notable difference in interaction is 

the much weaker aurophilic contact between the molecules, the Au…Au distance is 

lengthened from 3.2885(8) Å in 2b⋅2CH2Cl2 to 3.4444(5) Å in 2b⋅0.7CH2Cl2. The 

individual cations are also moved with respect to one another as is reflected in the 

N1–Au…Au′ (′ = –x, –y, –z) angle that changes from 83.0(2)° to 76.8(2)°, as 

schematically shown in Scheme 4.12. The Au–N bonds are unchanged on removal of 

the dichloromethane and the N–Au–N angle approaches 180° as a result of the weaker 

aurophilic interaction. 
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Scheme 4.12 Movement of cations perpendicular to the b axis upon removal of some co-crystallised 

CH2Cl2 (at 90 °C, 12 h). 

 

Summarising the results presented above, the cyclic cation 2 can be readily syn-

thesised using the bidentate ligand bitmb and several crystal and molecular structures 

hosting MeCN and CH2Cl2 solvents were determined. The triflate salt 2b crystallises 

in a porous lattice which accommodates two dichloromethane solvent molecules per 

heterometallacycle. Yet, only 1.3 molecules of CH2Cl2 can be removed by heating the 

crystals at 90 °C (cf. b.p. of CH2Cl2 40 °C) in a dynamic vacuum for 12 h showing 

unusually strong interaction of the heterometallacycle with CH2Cl2. Removal of 

solvent is accompanied by changes in the arrangement of heterometallacycles in 

respect of each other as expressed by the significantly different unit cells. 

 

 

4.2.3  Ag
I
 and Au

I
 complexes of 4,4-dimethyl-2-(pyridin-4-yl)- 

  oxazoline, 3 and 4 

 

The scope of different oxazoline ligands to also form cyclic oligomers was probed by 

synthesising Ag
I
 and Au

I
 complexes of 4,4-dimethyl-2-(pyridin-4-yl)oxazoline (see 

Scheme 4.13), wherein the 2-thienyl group of the ligand used for complex 1 is 

replaced by a 4-pyridinyl group. The new ligand thus afforded cationic complexes via 

N
^
N-coordination as opposed to 4,4-dimethyl-2-(thien-2-yl)oxazoline which afforded 

neutral compounds with an N
^
C 

–
 motif. 
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Scheme 4.13 Structures of compounds 3 and 4a. 

 

At first, a silver complex was prepared by reacting the bidentate ligand with one 

equivalent of AgNO3 in MeCN to afford a precipitate of the silver complex, 3, which  
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is fairly stable to ambient light in the solid state. The compound is only soluble in 

dmso or water, hinting at a polymeric nature that was later verified by the deter-

mination of its crystal and molecular structure. 

 

4.2.3.1 Spectroscopic characterisation. 

NMR data of 3 is summarised in Table 4.6. The coordinated pyridine ring signals of 

the ligand are broadened compared to those in the free ligand which could be a sign of 

exchange in solution. The crystal and molecular structure of 3 (vide infra) revealed 

that the Ag
I
 bond to the pyridine is weaker than to the oxazoline and might be broken 

by dmso or water in 3 or traces of tht for the Au–N bond in the analogous AuI 

complex, 4. 

 

Table 4.6 NMR data of compounds 3 and 4a.
a
 

 

 
 

Compound N

O

N

Ag

O

NO2

n

2 3

4

2

4

5

 
3 

N

O

N

Au

n

2 3

4

2

4

5
S

F F

F

OO

O
n

 
4a 

    

Nucleus Solvent (CD3)2SO CDCl3 

 
 

Frequency 
300 MHz (

1
H) 

75.4 MHz (
13

C{
1
H}) 

600 MHz (
1
H) 

151 MHz (
13

C{
1
H}) 

    

1H H-2/6 pyridine (C4H, C8H) 8.9 (vbr s, 2 H)b 8.9 (vbr s, 2 H)b 
 

H-3/6 pyridine (C5H, C7H) 7.90 (br s, 2 H) 7.94 (br s, 2 H) 
    

 CH3 (C31H3, C32H3) 1.30 (s, 
1
JCH 127.5, 6 H) 1.37 (s, 6 H) 

 CH2 (C2H2) 4.21 (s, 1JCH 151.7, 2 H) 4.24 (s, 2 H) 
    

13
C{

1
H} C-2/6 pyridine (C4, C8) 150.9 (s) 150.5 (br s) 

 
C-3/5 pyridine (C5, C7) 122.5 (br s) 124.5 (br s) 

 C-4 pyridine (C6) 135.0 (s) 137.7 (s) 
 

   

 
C-2 oxazoline (C1) 160.1 (s) 162.6 (s) 

 
C-4 oxazoline (C2) 67.9 (s) 69.0 (s) 

 
C-5 oxazoline (C3) 71.3 (s) 80.8 (s) 

 CH3 (C31, C32) 27.9 (s) 28.2 (s) 
 CF3SO3

–  121.8 (q, 1JFC 319.7) 
    

 

a
 The numbering in brackets corresponds to the atom labels in Figure 4.9 (for 3) 

b
 The presence of signals is supported by an integral curve with a maximum slope at 8.9 ppm. 

 

Mass spectrometric analysis of 3 using electrospray ionisation showed the protonated 

ligand (L) as a base peak (m/z 177), fragments containing silver were observed 

starting at m/z 324 (LAg+⋅MeCN; 100), other clusters containing various amounts of 



Chapter 4 – Heterometallacyclic Complexes of Gold(I) 138
 

Ag
+
 and whose composition could not be elucidated, were observed at m/z 373 (Ag3, 

60), 416 (Ag2, 40), 457 (Ag2, 30). 

 

4.2.3.2 Crystallography. 

Well defined polygons of 3 were obtained from a dmso solution layered with MeCN. 

The molecular structure exhibits infinite chains, the silver centres are each co-

ordinated by one pyridine and one oxazoline nitrogen atom as well as three oxygen 

atoms from two different nitrate anions (Figure 4.9). Bond lengths and angles are 

given in Table 4.7. This arrangement is in contrast to PdII complexes of a chiral  

2-(pyridin-4-yl)oxazoline which forms monomeric trans-[PdCl2L2] and tetrameric 

cyclic all-trans-[(PdCl2)4(µ-
2
L)4] complexes wherein each palladium atom is exclu-

sively coordinated by either pyridine- or oxazoline-nitrogen atoms and no head to tail 

arrangement is observed. In the monomeric Pd complex the pyridine nitrogen is also 

the preferred coordination site.65 Examination of the relevant bond lengths reveals that 

the PdCl2 fragment does not discriminate between the pyridine and oxazoline rings 

upon coordination. All Pd–N bonds in both complexes are in the range of 2.007(3)–

2.029(4) Å while in 3 both Ag–N bonds [2.178(2) and 2.228(2) Å for oxazoline and 

 

Table 4.7 Bond lengths/Å and angles/° of compound 3. 
 

N2 C1

O1

N1

Ag

Ag'

N1*

O3

N3

O2

O4

Ag" O3"

n

 
 

    

N1–Ag′ (oxazoline) 2.178(2) N1*–Ag–N2- 151.18(6) 

N2–Ag (pyridine) 2.228(2) N1*–Ag–O2- 109.93(5) 

Ag–O2 2.740(2) N1*–Ag–O3- 115.34(6) 

Ag–O3 2.528(2) N1*–Ag–O3″ 109.09(5) 

Ag–O3″ 2.792(2)   
    

N3–O2 1.257(2) N2–Ag–O2- 088.35(5) 

N3–O3 1.262(2) N2–Ag–O3- 093.48(6) 

N3–O4 1.241(2) N2–Ag–O3″ 080.40(5) 

O1–C1 1.342(2) O2–Ag–O3
-
 048.41(4) 

N1–C1 1.271(2) O2–Ag–O3″ 115.96(4) 
    

pyridine-oxazoline interplanar angle 26.54(9)  
 

Symmetry codes: ′ 1 – x, ½ + y, ½ – z; ″ 1 – x, 1 – y, 1 –z; * 1 – x, y – ½, ½ – z. 

                                                   
65 M. Hatano, T. Asai and K. Ishihara, Chem. Lett. 2006, 35, 172–173. 
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pyridine coordination, respectively] are longer and significantly different to each other 

indicating that in this instance, Ag
I
 not only discriminates between coordination by 

pyridine- and oxazoline nitrogen, but also probably prefers the latter yielding the 

shorter bond. 

 

The nitrate counter ion engages in one strong Ag–O3 bond of 2.528(2) Å and further 

forms a Ag…O2 contact of 2.740(2) Å to the same Ag centre with O2. The oxygen 

atom forming the shorter bond is further loosely bonded to a second silver centre 

[Ag′…O3 2.792(2) Å, ′ = 1 – x, 2 – y, –z] of a neighbouring chain and vice versa, 

effectively bridging two Ag atoms with two nitrate counterions and affording a 3 + 2 

coordination number at the metal (Figure 4.9). However, even the short Ag–O2 bond 

is not strong enough to effect a true trigonal-planar geometry thus the strongly 

bonding coordination environment around Ag resembles an intermediate situation 

between linear and trigonal planar coordination with an N–Ag–N angle of 151.18(6)°. 

 

Figure 4.9 Section of a infinite [Ag(µ-NO3)(µ-L)]n chain of 3, the nitrate counterions bridge two 

neighbouring chains; symmetry codes ′ = 1 – x, 2 – y, –z; ″ = x, 
3
/2 – y, x – ½; 

″′ = 1 – x, ½ + y, ½ – z and * = 1 – x, y – ½, ½ – z. 

 

The connectivity motif exhibited by 3 has been observed before for the related com-

pound catena-(µ-nitrato)[µ-2-(pyridin-4-yl)pyridine]silver in which the Ag–N(py) 

bonds [2.192(2) and 2.199(2) Å] are of intermediate length compared to the Ag–N  
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bonds found in 3.
66

 The chains in the bis(pyridine) complex furthermore show a 

helical arrangement while in 3 the chains are essentially flat (Figure 4.10). 

 

Figure 4.10 Packing diagram of 3 seen along the b axis showing layers of flat chains running parallel 

to the b axis that are bridged by nitrate anions along the c axis. 

 

4.2.3.3 Au
I
 complexes of 4,4-dimethyl-2-(pyridin-4-yl)oxazoline, 4a and 4b. 

The ligand 4,4-dimethyl-2-(thien-2-yl)oxazoline was also used in an attempt to 

prepare AuI complexes by employing (tht)AuCl and NaOTf in MeCN to afford the 

gold complex [4,4-dimethyl-2-(pyridin-4-yl-κN)oxazoline-κN]gold(1+) triflate, 4a. 

No crystals of this complex could be obtained and the reaction was repeated with 

Na[BF4] to supply the counter ion [BF4]
–
 yielding 4b in an attempt to obtain a salt 

with a better ability to crystallise. Both compounds exhibit greatly enhanced solubility 

compared to the silver complex 3 which could be caused by the non-coordinating 

anions and the reluctance of Au
I
 to raise its coordination number beyond the common 

linear dicoordinate complexes. However, the better solubility also points to species of 

lower molecular weight that could mimic the palladium complexes discussed in 

Section 4.2.3.2 with 3.
65

 

 

Unlike the silver complex, both products, 4a and 4b, are very unstable in solution and 

deposit metallic gold mirrors on the walls of crystallisation vessels after several days 

even at ca. –20 °C and a strong smell of tht is apparent. NMR chemical shifts of 4a 

are reported in Table 4.6 (vide supra). 
                                                   
66 M.-L. Tong, X.-M. Chen, B.-H. Ye and S. W. Ng, Inorg. Chem. 1998, 37, 5278–5281. 
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4.2.4  A novel tricyclic digold(I) complex: tris[µµµµ-N,N-bis(1,3,2-dioxa-

phospholan-2-yl-κκκκP)methanamine]digold(2+) triflate, 5 

 

N,N-Bis(dichlorophosphanyl)methanamine was chosen as a starting material with low 

steric demand for the synthesis of a bidentate phosphite-type ligand with one bridging 

atom between the phosphorus donors, sterically similar to dmpm [bis(dimethylphos-

phanyl)methane]. At first, ethane-1,2-dithiol was utilised in the synthesis of a dithio-

phosphoramidite ligand aimed at complementing the investigation in Chapter 2. The 

ligand N,N-bis(1,3,2-dithiaphospholan-2-yl)methanamine, however, was too unstable 

in the presence of Au
I
 and a precipitate was observed soon after reacting the ligand 

with (tht)AuCl. The yellow colour of the precipitate indicated Au
I
 thiolate formation 

and showed that the P–S bonds were readily cleaved by gold. 

 

For the synthesis of a more stable ligand, ethane-1,2-diol was utilised to only offer 

one type of soft atom in the ligand while benefiting from stronger P–O bonds.  

N,N-bis(1,3,2-dioxaphospholan-2-yl)methanamine was obtained in the form of a 

colourless solid as opposed to a previous report67 of a yellowish oil. Numerous crystal 

structures of phosphite ligands incorporating the P–N–P backbone have been reported, 

usually bridging two metal centres. However, only one crystal structure of a 

dioxaphospholane-type ligand, in which two N-ethyl homologues of the ligand used in 

this work bridge a hexacarbonyldicobalt fragment, is known.
68

 A related bicyclic 

[(AuCl)2(µ-2L)2]
2+-type complex of N,N-bis[bis(2,2,2-trifluoroethoxy)phosphanyl]-

methanamine with Au
I
 has been reported only recently.

69
 

 

The synthesis of the gold complex tris[µ-N,N-bis(1,3,2-dioxaphospholan-2-yl-κP)-

methanamine]digold(2+) triflate, 5, shown in Scheme 4.14, proceeded without pre-

cipitation, even though the reaction mixture became light yellow indicating slight 

decomposition of the ligand by gold. It was effected by the usual method of dissolving 

the ligand and CF3SO3Na in MeCN and adding (tht)AuCl. 

                                                   
67 S. Kim, M. P. Johnson and D. M. Roundhill, Inorg. Chem. 1990, 29, 3896–3898. 

68 G. de Leeuw, J. S. Field and R. J. Haines, J. Organomet. Chem. 1989, 359, 245–254. 
69 A. J. Esswein, J. L. Dempsey and D. G. Nocera, Inorg. Chem. 2007, 46, 2362–2364. 
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Scheme 4.14 Drawing of the structure of 5⋅0.5CH3CN. 

 

 

4.2.4.1 Spectroscopic characterisation. 

The NMR parameters of 5 are summarised in Table 4.8. Due to its symmetry, the 

cation in 5 only yields two signals in its 
1
H and 

13
C NMR spectra. Compared to the 

free ligand, these signals are somewhat less shielded; the largest chemical shift 

difference ∆δ expectedly being that of the 31P resonance with a ∆δ of 8.3 which is a 

bit more than the chemical shift difference between (MeS)3P and [Au{P(SMe)3}2]
+
 

(∆δ 2.5; see Chapter 2). 

 

Table 4.8 NMR data of compound 5 in CD3CN. 
 

P
N

P

O

OO

O

Au Au

3
S

F F

F

OO

O
2

 
   

Nucleus   
   

1
H (400 MHz) ring-CH2 4.40 (m, 24 H) 

 bridge-NCH3 2.71 (s, 9 H) 
   

13C{1H} (101 MHz)a ring-CH2 68.4 (s) 

 bridge-NCH3 28.2 (br s) 
   

31
P (162 MHz) P 149.0 (br s) 

 

a
 a signal of the CF3SO3

–
 carbon was not observed due to low intensity and signal splitting 

 

Mass spectrometry of 5 with electrospray ionsation shows different peaks to that of 

the ligand at low cone voltage (15V). At higher cone voltages the spectra of the free 

ligand and 5 are identical. However, the peaks cannot be interpreted. 
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4.2.4.2 Crystallography. 

Crystallisation of 5 was difficult task and eventually only a few well defined, 

colourless crystals were fished from the amorphous precipitate obtained from an 

MeCN solution layered with Et2O. The crystals obtained were very brittle indicating 

little cohesion of the lattice and contributing to a structure with inherent low 

precision. Bond lengths and angles are summarised in Table 4.9. 

 

Complex 5, shown in Figure 4.11, crystallises as a hemi-ethanenitrile solvate, only 

half of the [Au2(µ-2L)3]
2+ core is asymmetric with a C2 axis passing through one C–N 

vector of a methanamine group. A possible three-fold rotation axis, as was found in 

hexagonal [Au2(µ-dppm)3]
2+

,
42

 is not formed along the Au…Au′ (′ = –x, y, ½ – z) bond 

of 2.874(1) Å. 

 

Table 4.9 Bond lengths/Å and angles/° of compound 5⋅0.5CH3CN. 
 

N1

P1 P3

O11

O12 O32

O31

Au Au'

2

S

F

F

F

O

O1

O

S

F

F

F

O

O1'

O

N

0.5

N2

P2 P2'

O22

O21 O22'

O21'

 
 

    

Au–P1 2.337(3) P1–N1 1.66(2)0 

Au–P2 2.337(4) P2–N2 1.664(9) 

Au–P3 2.318(3) P3–N1′ 1.70(2)0 

Au…Au′ 2.874(1) P2–O21 1.60(2)0 

Au…O1 3.10(2)0 P2–O22 1.59(1)0 
P1–O11 1.606(9) P3–O31 1.60(1)0 

P1–O12 1.606(9) P3–O32 1.595(9) 
    

Au–P1–N1 118.0(4) O11–P1–O12 96.3(5) 

Au–P2–N2 115.7(6) O21–P2–O22 95.3(6) 

Au–P3–N1′ 114.4(4) O31–P3–O32 97.4(5) 
    

Au–P1–O11 115.3(4) P1–N1–P3 123.9(7) 

Au–P1–O12 115.5(4) P2–N2–P2′ 126.(2)0 

Au–P2–O21 115.7(5) Au–P1–O31 117.4(4) 

Au–P2–O22 117.4(4) Au–P1–O32 116.1(4) 
    

P1–Au–P2 116.0(2)   

P2–Au–P3 122.2(2)   

P1–Au–P3 121.7(2)   
 

Symmetry code: ′ –x, y, ½ – z 
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Figure 4.11 Molecular structure of 5⋅0.5CH3CN, the solvent molecule and one triflate anion are 

omitted for clarity; primed atoms are related by a twofold rotation of symmetry code  

–x, y, ½ – z. C21 is disordered in a 3:2 (A:B) ratio by an envelope-flip of the dioxaphos-

pholane ring; C23 equally occupies two orientations caused by non-planarity of N2 

which lies on a two-fold rotation axis. The thermal ellipsoid of C13 (and thus also that of 

symmetry image C13′) suggests a similar situation that is not resolved. 

 

This distance is shorter than in both [Au2(µ-dmpm)3]
2+ and [Au2(µ-dppm)3]

2+ with 

separations of 3.040(1) and 3.050(1) Å37 for the two asymmetric molecules in the 

former and 2.968(2) Å in the latter complex,
42

 but in the range of a multitude of other 

binuclear linear Au
I
 complexes where the gold atoms are bridged by ligands with one 

atom in between the donating atoms.
70

 

 

The triflate counter ions are located above and below each gold centre, also related by 

the C2 axis, and engaging in weak Au…O contacts of 3.10(2) Å. The coordination 

geometry around the gold centres is ideally trigonal planar showing no significant 

influence of the triflate counter anions. In molecular structures that contain halide 

counter anions, severe distortion of the geometry towards tetrahedral coordination has 

been observed.48–50 The Au–P distances in 5⋅0.5CH3CN [2.337(3), 2.337(4) and 

2.318(3) Å] are in good agreement with one another. Some other compounds with 

phosphane ligands show significantly longer distances.
45,47

 

                                                   
70 See for example: (a) J. Vicente, M.-T. Chicote, I. Saura-Llamas, P. G. Jones, K. Meyer-Bäse 

 and C. F. Erdbrügger, Organometallics 1988, 7, 997–1006; (b) M. Bardají, N. G. Connelly, 

 M. C. Gimeno, P. G. Jones, A. Laguna and M. Laguna, J. Chem. Soc., Dalton Trans. 1995, 
 2245–2250; (c) R. J. Staples, J. P. Fackler, Jr. and Z. Assefa, Z. Kristallogr. 1995, 210, 379–380. 
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In such phosphane complexes distances range from 2.338(4) Å for the shortest Au–P 

bond in the {tris[µ-2,6-bis(diphenylphosphanyl)pyridine]}digold(2+) cation
44

 to 

2.400(2) Å in the Hg
0
 cryptate of the {tris[µ-1,10-bis(diphenylphosphanyl)phen-

anthroline]}digold(2+) cation.
46

 However, in most of these structures there are signi-

ficant differences amongst the lengths of crystallographically independent Au–P 

bonds, the longest Au–P distance in the former cation is 2.384(4) Å, almost 0.05 Å 

longer than the shortest bond. Most mononuclear trigonal planar tris(phosphane)-

gold(1+) complexes also exhibit longer Au–P bonds at ca. 2.36 Å
17,36

 which can be 

attributed to steric demand as most ligands employed comprise the sterically bulky 

Ph2P-group. Furthermore, phosphite Au–P bonds are usually shorter when compared 

to phosphane Au–P bonds (see also crystallography in Chapter 2).
71

 

 

The ethanenitrile solvent molecule in 5⋅0.5CH3CN was found to be disordered, a C2 

axis passes through its methyl carbon atom and the geometry refined unsatisfactorily. 

The solvent was thus removed using the Squeeze routine in the Platon set of 

programmes.54 

 

The three bidentate ligands in 5⋅0.5CH3CN are all eclipsed in line with low twist φ 

and buckle δ angles as defined in the literature
68

 [φ = Au–P--P–Au; δ is the 

interplanar angle between the Au–P--P–Au and the P–N–P planes; in 5⋅0.5CH3CN  

φ = 9° for Au–P1--P3′–Au′ and 3° for Au–P2--P2′–Au′, δ = 10(2)° and 1(1)°, respec-

tively; ′ = –x, y, ½ – z]. 

 

4.2.5 The attempted syntheses of other [Au2(µµµµ-
2
L)3]

2+
 compounds 

 

4.2.5.1 The attempted synthesis of [Au2(µ-dppe)3](CF3SO3)2. 

Other ligands principally capable of forming [Au2(µ-2L)3]
2+ cations were considered 

as well, but no such structures could be obtained. Since such a complex with dppm 

has been isolated, the synthesis of the complex [Au2(µ-dppe)3](CF3SO3)2 [dppe = 1,2-

bis(diphenylphosphanyl)ethane] was attempted by a similar method as used in the 

preparation of 5. The clear colourless solution in ethanenitrile was layered with Et2O, 
                                                   
71 See for example the structures of Ph3PAuCl and (PhO)3PAuCl: (a) N. C. Baenziger, W. E. Bennett 

 and D. M. Soboroff, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1976, 32, 
 962–963; (b) P. B. Hitchcock and P. L. Pye, J. Chem. Soc., Dalton Trans. 1977, 1457–1460. 



Chapter 4 – Heterometallacyclic Complexes of Gold(I) 146
 

however only crystals of the cyclic [Au2(µ-dppe)2](CF3SO3)2⋅2CH3CN, the 2:2 

adduct, 6, were obtained. Examination of many other crystals gave the same unit cell 

which confirms that the structure obtained is the major product. It can therefore be 

concluded that even though [Au2(µ-dppe)3]
2+

 may exist in the solid state,
38

 isolation 

of crystals was not possible in the system selected. The molecular structure of the 

cyclic cation proved to be closely similar to the methanol solvate already reported72 

and is unexceptional. 

 

4.2.5.2 The attempted synthesis of [Au2(µ-tmdpd)3](CF3SO3)2 –  

  crystal structure of [Au(tmdpd)2]CF3SO3, 7. 

Another ligand suitable for the formation of a [Au2(µ-
2
L)3]

2+
-type of complex of Au

I
 

is tetramethyldiphosphane disulfide (tmdpd). Again, during the reaction of (tht)AuCl, 

tmdpd and NaOTf in ethanenitrile the formation of a yellow precipitate was observed 

indicative of ligand decomposition. Crystals were obtained but proved to be 

[Au(tmdpd)2]CF3SO3, 7 (shown in Scheme 4.15), a 2:1 rather than 3:2 coordination 

compound. Bond lengths and angles are given in Table 4.10. 
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Scheme 4.15 (a) The different geometries of coinage metal tmdpd complexes (M = Cu, Ag); 

  (b) connectivity of 7. 

 

Tetraalkyldiphosphane disulfides are potentially ditopic ligands but enjoy only limited 

use in coordination chemistry. There are few crystal and molecular structures known, 

among them the CuI and AgI complexes with 2:1 stoichiometry.73 These complexes 

are, in line with [ML4]
+
 species of the coinage metals, tetrahedral. However, the Au

I
 

complex 7 shown in Figure 4.12 only exhibits distorted tetrahedral geometry where 

the gold atom has moved from the centre of the tetrahedron defined by the sulfur 

atoms of tmdpd to a position where it is nearly located in the middle between those  

                                                   
72 W. Schuh, H. Kopacka, K. Wurst and P. Peringer, Chem. Commun. 2001, 2186–2187. 
73 H. Liu, M. J. Calhorda, M. G. B. Drew and V. Félix, Inorg. Chim. Acta 2003, 347, 175–180. 
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Table 4.10 Bond lengths/Å and angles/° of compound 7. 

 

P3

P4

S4

S3

P2

P1

S1

S2

Au

S

F F

F

OO

O

 
 

    

Au–S1 2.3099(7) Au–S1–P1 101.88(4) 

Au–S3 2.3044(7) Au–S3–P3 102.65(4) 

Au…S2 3.3939(8) Au…S2–P2 080.28(3) 

Au…S4 3.2472(8) Au…S4–P4 086.97(3) 
    

P1–S1 2.009(1)0 S1–Au–S3 161.49(3) 

P2–S2 1.949(1)0 S1–Au…S2 095.59(2) 

P3–S3 2.011(1)0 S1–Au…S4 099.84(2) 
P4–S4 1.948(2)0 S3–Au…S2 094.99(2) 

P1–P2 2.229(1)0 S3–Au…S4 095.71(2) 

P3–P4 2.214(2)0 S2…Au…S4 087.73(2) 
    

S1–P1–P2–S2 81.71(5)0 S3–P3–P4–S4 072.24(6) 
    

 

 

Figure 4.12 Molecular structure of 7. 

 

two sulfur atoms to which it forms true coordinative bonds. The other two phosphane 

sulfide groups only engage in close contacts of 3.3939(8) and 3.2472(8) Å with gold. 

 

Compared to the Ag
I
 complex [Ag(η2

-tmdpd)2][PF6] [Ag–S 2.534(2) to 2.676(2) Å],
73

 

the different geometry in 7 causes a significant shortening of the Au–S bond lengths 

to 2.3099(7) (Au–S1) and 2.3044(7) Å (Au–S3) and the S1–Au–S3 angle of 

161.49(3)° deviates sharply from the ideal 109.5° in a tetrahedron. In the Ag
I
 complex 

the S–Ag–S angles range from 99.03(5)° to 123.28(6)°. A comparison to other Au
I
 

complexes where AuI is coordinated to two phosphane sulfide ligands show that the 

additional Au…S contacts in 7 enlarge the Au–S bond lengths and at the same time  
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distort the ideal linear geometry at the gold centre. [1,1′-Bis(diphenylthiophosphoryl)-

ferrocene]gold(1+) tetrachloroaurate(1–) exhibits Au–S bond lengths of 2.281(5) and 

2.299(5) Å as well as a S–Au–S angle of 174.5(2)°;
74

 and bis(triphenylphosphane 

sulfide)gold(1+) difluorophosphate shows geometric parameters of 2.277(2) Å for the 

single unique Au–S bond and 172.4(2)° for the S–Au–S angle,75. 

 

The structure of 7 also hints at the cause why no 3:2 complex was obtained even 

though the ligand has little steric demand: the phosphane sulfide is too weak a ligand 

to effect expansion of the usual linear dicoordinate geometry to form three proper 

coordinative bonds to the gold atom which would result in a trigonal planar centre. 

 

When the structures of 5, 6 and 7 are compared to other results,
37,42

 three conditions 

can be rationalised that should be fulfilled to obtain a [Au2(µ-2L3)]
2+ complex: (a) The 

ligand must not be sterically demanding, (b) the ligating atoms must be strong enough 

to effect expansion of the usual linear coordination around Au
I
 and (c) only one atom 

should bridge the ligating atoms. There are, however, exceptions to the last rule with 

more rigid ligands.
44,45,47

 While compound 5 fulfils all requirements, 6 fails on (c) and 

possibly (a), 7 fails on (b) and (c). 

 

 

4.3 Conclusions 

 

A trimeric thienyloxazoline heterometallacycle, 1, was successfully prepared and 

characterised. The crystal and molecular structures of two solvates, one of which 

shows intermolecular aurophilic interactions, were also determined by X-ray 

diffraction. Due to the presence of gold–sulfur interactions in both solid-state 

structures of the cyclic trimers, accommodation of other AuI or AgI centres within the 

cycle was not observed as the thiophene rings are held in place parallel to the plane. 

The necessary cavities to accommodate guests inside the macrocycle do not exist. 

                                                   
74 M. C. Gimeno, P. G. Jones, A. Laguna and C. Sarroca, J. Organomet. Chem. 2000, 596, 10–15. 

75 D. J. LeBlanc, J. F. Britten and C. J. L. Lock, Acta Crystallogr., Sect. C: 

 Cryst. Struct. Commun. 1997, 53, 1204–1206. 
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The first heterometallacyclic complexes with bis-imidazole N
^
N-coordination of Au

I
, 

2a and 2b, were prepared and shown to be very stable. The cations host solvent inside 

a cavity created by the heterometallacyclus. While porosity is obstructed in the struc-

tures of 2a, compound 2b exhibits interconnected channels in its bis-dichloromethane 

solvate. Despite significant changes in the unit cell parameters upon partial removal of 

the crystal solvent, the triflate salt retains its general structural arrangement. This 

feature was for the first time demonstrated for a gold complex. The pores of the 

crystal, however, could not be emptied completely due to unusually strong interaction 

of the residual dichloromethane with the cyclic cation. 

 

A related ligand, 4,4-dimethyl-2-(pyridin-4-yl)oxazoline formed an adduct with 

AgNO3, 3, that crystallised as a coordination polymer. Au
I
 complexes of this ligand 

gave no suitable crystals for an X-ray diffraction study. This failure of the ligand to 

form heterometallacycles could possibly be attributed to the absence sulfur donors 

that otherwise could encourage cyclisation. 

 

Utilising a phosphite ligand for the first time, synthesis of a novel [Au2(µ-
2
L)3]

2+
 

complex revealed stronger Au…Au interactions and shorter Au–P bonds than in related 

phosphane complexes and resemble the findings in the structure of the phosphite 

complex (MeO)3PAuCl compared to phosphane analogues discussed in Chapter 2. 

Reactions with other ligands brought a better understanding as to which conditions 

must be met to obtain such compounds: Sufficiently strong donor atoms which are 

only bridged by one additional atom and little steric crowding. Tetramethyldiphos-

phane disulfide was shown to be too weak a ligand to effect coordination beyond the 

linear-dicoordinate geometry, bis(diphenylphosphanyl)ethane (dppe) is sterically 

unable to do so. The 2:1 complex of tetramethyldiphosphane disulfide with Au
I
 ex-

hibits a geometry that is linear-dicoordinate, but somewhat distorted towards 

tetrahedral coordination (which is more generally observed for the Cu
I
 and Ag

I
 com-

plexes) by two additional sub-van der Waals Au…S contacts. 
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4.4 Experimental 

 

4.4.1 Crystallography 

 

For details on collection and solution of the datasets see Chapter 2, p. 57.  

 

Data and parameters associated with the structures reported in this Chapter are 

summarised in Tables 4.11 and 4.12. All gold complexes afforded colourless crystals. 

In the structures of 1⋅2C4H8O, 2b⋅2CH2Cl2 and 5⋅0.5CH3CN solvent molecules proved 

to be severely disordered (only one CH2Cl2 molecule in 2b⋅2CH2Cl2) and could not be 

modeled satisfactorily, residual electron density belonging to these solvent molecules 

was thus removed using the Squeeze routine in the Platon set of programmes.
54

 In 

2a⋅2CH2Cl2 and 2b⋅2CH2Cl2 the Cl–C distances of the CH2Cl2 molecule(s) as well as 

the F–C and S–O distances of the triflate counter ion were restrained to be equal using 

a SADI command; in 1⋅2C4H8O the C–C bonds of one thf molecule (one carbon 

disordered in an up/down envelope flip) were restrained to be equal by using the 

SADI command while those of the other thf molecule were constrained at a target 

value of 1.54 Å together with the O–C distances at 1.40 Å by DFIX instructions. In 

5⋅0.5CH3CN one dioxaphospholan ring was also disordered by an up/down envelope 

flip of a carbon atom; the appropriate C–C bond distances were restrained to be equal 

with SADI. 

 

4.4.2 Preparation of the compounds 

 

For details on the instrumentation used see Chapter 2, p. 59. 

 

Chemicals were obtained from the following suppliers and used without further puri-

fication if not stated otherwise: Butyllithium solution in hexanes, 2-isocyano-2-

methylpropane, phosphorus trichloride, pyridine and thiophene-2-carbonyl chloride 

were obtained from Aldrich Chemical Co. Mercury and silver nitrate were obtained 

from Merck KG. 1,2-Bis(diphenylphosphanyl)ethane, Celite (diatomaceous earth), 

methylammonium chloride, pyridine-4-carboxylic acid, sodium tetrafluoroborate and 

sodium trifluoromethanesulfonate were obtained from Fluka AG. 
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Table 4.11 Crystallographic parameters of the solvates of 1 and 2a as well as 2b⋅2CH2Cl2 
 

Compound 1⋅0.75C4H8O 1⋅2C4H8O 2a⋅2CH3CN 2a⋅2CH2Cl2 2b⋅2CH2Cl2 
      

Empirical formula C27H30Au3N3O3S3⋅0.75C4H8O C27H30Au3N3O3S3⋅2C4H8O C34H40Au2B2F8N8⋅2C2H3N C34H40Au2B2F8N8⋅2CH2Cl2 C36H40Au2F6N8O6S2⋅2CH2Cl2 

Mr 1185.7 1275.8 1210.4 1298.2 1337.7 

Crystal habit Polygon Plate Needle Needle Needle 
      

Crystal dimensions/mm 0.15 × 0.12 × 0.11 0.21 × 0.20 × 0.09 0.28 × 0.07 × 0.06 0.26 × 0.03 × 0.03 0.24 × 0.07 × 0.05 

Crystal system Monoclinic Triclinic Orthorhombic Orthorhombic Orthorhombic 

Space group C2/c (No. 15) P (No. 2) Pnma (No. 62) Pnma (No. 62) Pnma (No. 62) 
      

a/Å 28.72(2) 10.901(2) 19.296(3) 19.691(3) 21.860(6) 
b/Å 10.001(7) 13.921(3) 20.243(3) 19.921(3) 18.886(5) 

c/Å 26.06(2) 14.061(3) 11.081(2) 11.292(2) 11.726(3) 
      

α/° 90 90.951(3) 90 90 90 

β/° 110.98(1) 103.407(3) 90 90 90 

γ/° 90 110.896(3) 90 90 90 
      

V/Å3 6990(8) 1927.5(6) 4328(1) 4429(2) 4841(2) 
Z, Dc/Mg m–3 8, 2.253b 2, 2.198 4, 1.857 4, 1.947 4, 1.952b 

µ(MoKα)/mm–1 12.771b 11.595 6.847 6.930 6.437b 

No. of reflections, unique 19877, 7075 20635, 7866 24538, 4553 24514, 4676 27684, 5161 

Rint 0.0298 0.0329 0.0376 0.0737 0.0542 
      

hkl index range –35 to 22, –11 to 12, –30 to 32 ± 13, ± 17, ± 17 –23 to 24, ± 25, –13 to 9 –24 to 13, –22 to 24, ± 14  -21 to 27, ± 23, -14 to 13 

θ range/° 1.67–26.38 1.58–26.41 2.01–26.38 2.04–26.45 1.86–26.56 

Data, restraints, parameters 6504, 0, 358 7188, 11, 453 3747, 0, 295 3024, 6, 297 4122, 7, 302 
      

F(000) 4416b 1204 2336 2496 2752b 

R1, wR2 [I > 2σ(I)]a 0.0251, 0.0567 0.0323, 0.0823 0.263, 0.579 0.0467, 0.0985 0.0447, 0.1132 

R1, wR2 (all data)a 0.0285, 0.0578 0.0360, 0.0843 0.357, 0.617 0.0875, 0.1187 0.0580, 0.1205 
      

Goodness-of-fit 1.089 1.054 1.044 1.032 1.042 

Max. and min. transmission 0.244, 0.114 0.425, 0.194 0.668, 0.496 0.810, 0.386 0.726, 0.494 

Largest differential peak and 
hole/eÅ–3 

1.549, –0.906 3.961, –0.999 1.228, –0.402 4.399, –3.876 2.174, –2.647 

 

a
 w = 1/[σ2

(Fo
2
) + (aP)

2
 + bP] where P = (Fo

2
 + 2Fc

2
)/3   

b
 Including crystal solvent removed by the Squeeze routine. 
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Table 4.12 Crystallographic parameters of 2b⋅0.7CH2Cl2, 3, 5⋅0.5CH3CN, 6⋅2CH3CN and 7. 
 

Compound 2b⋅0.7CH2Cl2 3 5⋅0.5CH3CN 6⋅2CH3CN 7 
      

Empirical formula C36H40Au2F6N8O6S2⋅0.7CH2Cl2 C10H12AgN3O4 C17H33Au2F6N3O18P6S2 

⋅0.5C2H3N 

C54H48Au2F6O6P4S2⋅2C2H3N C9H24AuF3O3P4S5 

Mr 1312.3 346.10 1345.7 1571.0 718.43 
Crystal habit Needle Prism Block Block Plate 

      

Crystal dimensions/mm 0.43 × 0.07 × 0.05 0.25 × 0.20 × 0.20 0.16 × 0.08 × 0.04 0.21 × 0.15 × 0.07 0.22 × 0.17 × 0.108 

Crystal system Orthorhombic Monoclinic Monoclinic Monoclinic Monoclinic 

Space group Pnma (No. 62) P21/c (No. 14) C2/c (No. 15) P21/c (No. 14) P21/c (No. 14) 
      

a/Å 21.076(3) 9.4727(8) 23.006(3) 11.7942(9) 13.012(1) 

b/Å 19.034(3) 11.4339(9) 13.102(2) 37.016(3) 12.680(1) 
c/Å 11.665(2) 11.3210(9) 17.256(3) 14.384(2) 14.289(2) 

      

α/° 90 90 90 90 90 

β/° 90 108.250(1) 130.924(2) 113.011(1) 90.800(1) 

γ/° 90 90 90 90 90 
      

V/Å3 4680(2) 1164.5(2) 3930(1) 5779.7(8) 2357.2(3) 
Z, Dc/Mg m–3 4, 1.863b 4, 1.974 4, 2.275b 4, 1.805 4, 2.024 

µ(MoKα)/mm–1 6.507b 1.742 7.910b 5.325 6.986 

No. of reflections,  unique 25769, 4956 6525, 2369 11141, 4037 33365, 11786 13530, 4790 

Rint 0.0494 0.0147 0.0432 0.0469 0.0251 
      

hkl index range –26 to 12, ± 23, ± 14 –11 to 10, –14 to 7, ± 14 –14 to 28, ± 16, –21 to 20 ± 14, –46 to 36, –18 to 17 –15 to 16, ± 15, –16 to 17 

θ range/° 1.93–26.43 2.26–26.37 1.95–26.42 1.63–26.41 2.15–26.42 

Data, restraints, parameters 3665, 0, 284 2281, 0, 165 3194, 2, 253 9710, 0, 723 4513, 0, 234 
      

F(000) 2534b 688 2580b 3072 1392 

R1, wR2 [I > 2σ(I)]a 0.0363, 0.0841 0.0194, 0.0469 0.0748, 0.1636 0.0398, 0.0846 0.0210, 0.0509 

R1, wR2 (all data)a 0.0556, 0.0901 0.0204, 0.0475 0.0960, 0.1723 0.0526, 0.0898 0.0229, 0.0517 
      

Goodness-of-fit 1.003 1.070 1.174 1.028 1.047 

Max. and min. transmission 0.726, 0.400 0.705, 0.614 0.778, 0.328 0.692, 0.506 0.499, 0.305 
Largest differential peak and 

hole/eÅ–3 

2.196, –0.876 0.476, –0.282 3.755, –4.091 2.059, –0.708 1.100, –0.627 

 

a
 w = 1/[σ2

(Fo
2
) + (aP)

2
 + bP] where P = (Fo

2
 + 2Fc

2
)/3   

b
 Including crystal solvent removed by the Squeeze routine. 
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2-Amino-2-methylpropan-1-ol and thionyl chloride were obtained from Riedel-de 

Haën. Anhydrous sodium sulfate was obtained from Saarchem, mercury(II) chloride 

from ACE c.c., tetrahydrothiophene from ACROS and tetramethyldiphosphane 

disulfide from Strem. Thin layer chromatography plates were supplied by Macherey-

Nagel GmbH & Co. KG. 

 

Chloro(tetrahydrothiophene)gold,
76

 N,N-Bis(dichlorophosphanyl)methanamine,
77

 

N,N-bis(1,3,2-dithiaphospholan-2-yl)-methanamine,
67

 4,4-dimethyl-2-(thien-2-yl)ox-

azoline,52 cyclo-tris{[µ-4,4-dimethyl-2-(thien-2-yl-κC
5)oxazoline-κN]gold},10 1, and 

4,4-dimethyl-2-(pyridin-4-yl)oxazoline,
78

 were prepared according to literature. 

 

A gift of bitmb by Dr. Liliana Dobrzańska is greatly acknowledged. 

 

4.4.2.1 Attempted reaction of 1 with silver nitrate. 

In a Schlenk tube 1 (73 mg, 65 µmol) was dissolved in 15 ml thf and AgNO3 (18 mg, 

0.11 mmol, 1.6 eq.) was added. The reaction mixture was protected from light and 

stirred for 3 days at room temperature. The suspension was filtered under inert 

conditions and the filtrate evaporated to dryness yielding 69 mg of a colourless solid. 

It was crystallised from thf layered with pentane, but only crystals of 1⋅2C4H8O could 

be isolated. 

 

4.4.2.2 Attempted co-crystallisation of 1 with Me3CNCAuCl. 

In a Schlenk tube 1 (40 mg, 35 µmol) and chloro(2-isocyano-2-methylpropane)gold 

(11 mg, 35 µmol, 1 eq.) were dissolved in 15 ml thf and stirred for 2 h. The solution 

was brought to dryness, the grey solid dissolved in 4 ml thf and layered with 25 ml 

pentane. Crystals of 1⋅2C4H8O could later be isolated, no other crystal species was 

found. 

M.p. of 1⋅2C4H8O: 175°C (dec. without melting) 

                                                   
76 (a) A. Haas, J. Helmbrecht and U. Niemann, in Handbuch der Präparativen 

 Anorganischen Chemie, ed. G. Brauer, Enke, Stuttgart, 1978, p. 1014; 

 (b) R. Uson, A. Laguna and M. Laguna, Inorg. Synth. 1989, 26, 85–91. 

77 J. F. Nixon, J. Chem. Soc. A 1968, 2689–2692. 
78 A. I. Meyers and R. A. Gabel, J. Org. Chem. 1982, 47, 2633–2637. 
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4.4.2.3 Cyclo-bis{µ-1,3-bis[(imidazol-1-yl-κN)methyl]-2,4,6-trimethylbenzene}-

digold(2+) tetrafluoroborate, 2a. 

Method A: 

In a Schlenk tube (tht)AuCl (212 mg, 0.66 mmol) was dissolved in 30 ml MeCN, 0.07 

ml tht and Ag[BF4] (129 mg, 0.66 mmol, 1 eq.) were added subsequently. After 

stirring for 1 h the resulting AgCl precipitate was filtered off. In a separate Schlenk 

tube, bitmb (189 mg, 0.67 mmol, 1.0 eq.) was dissolved in 20 ml MeCN and the 

solution transferred to the gold(I) solution via a Teflon cannula. The clear solution 

was stirred for 1 h and then evaporated to dryness yielding a colourless solid. To 

remove last traces of AgCl it was re-dissolved in MeCN (ca. 50 ml) and inversely 

filtered under inert conditions affording 267 mg (71.3%) of a colourless solid. 

Crystals were grown from both ethanenitrile layered with Et2O and CH2Cl2 layered 

with Et2O. In the former case, a crystal of bad quality was obtained initially in which 

some Au was substituted for Ag. After recrystallising a small quantity in the same 

solvent system, a crystal of 2a⋅2CH3CN that gave a satisfactory crystal structure was 

obtained. Found: C, 32.3; H, 4.0; N, 8.9. C34H40Au2B2F8N8⋅2.6CH2Cl2 requires C, 

32.6; H, 3.4; N, 8.3%. 

M.p. 188 °C (dec. without melting) 

The compound is soluble in MeCN and CH2Cl2 but is insoluble in Et2O and alkanes. 

The solubility of 2a is generally noticeably lower than that of 2b. 

 

4.4.2.4 Cyclo-bis{µ-1,3-bis[(imidazol-1-yl-κN)methyl]-2,4,6-trimethylbenzene}-

digold(2+) trifluoromethanesulfonate, 2b. 

Method B: 

In a Schlenk tube were placed bitmb (114 mg, 0.41 mmol, 1.2 eq.), NaOTf (58 mg, 

0.34 mmol, 1 eq.) and the solids were dissolved in 20 ml MeCN. A small quantity of 

NaCl crystals to seed precipitation of NaCl during the reaction was added as well. A 

solution of (tht)AuCl (110 mg, 0.34 mmol, 1 eq.) in 20 ml thf was subsequently added 

to the ligand solution via Teflon cannula upon which the reaction mixture gradually 

became hazy. After stirring for 2 h, the suspension was filtered through Celite, the 

filter pad washed with a little MeCN and all volatiles were removed in vacuo. The 

obtained crude product was thoroughly digerated with Et2O (ca. 50 ml) to remove  
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excess ligand. Found: C, 32.3; H, 3.3; N, 7.7. C36H40Au2F6N8O6S2⋅2CH2Cl2 requires 

C, 32.1; H, 3.1; N, 7.9%. 

M.p. 185 °C (dec. without melting) 

The compound is soluble in MeCN and CH2Cl2, soluble with difficulty in trichloro-

methane and propanone but insoluble in Et2O and alkanes. 

 

4.4.2.5 Catena-[µ-4,4-dimethyl-2-(pyridin-4-yl-κN)oxazoline-κN]- 

  [µ-nitrato-κ3
O(Ag):O(Ag′):O′(Ag)]silver, 3. 

In a Schlenk tube 4,4-dimethyl-2-(pyridin-4-yl)oxazoline (328 mg, 1.86 mmol, 1 eq) 

was dissolved in 30 ml MeCN, the vessel covered with aluminium foil and AgNO3 

(312 mg, 1.84 mmol, 0.99 eq.) was added as a solid. A colourless precipitate formed 

immediately and the suspension was stirred for 30 min whereupon the solvent was 

removed in vacuo. The compound was obtained in quantitative yield. Two crys-

tallisations were set up from water layered with methanol and dmso layered with 

MeCN. Faceted crystals suitable for X-ray diffraction were obtained from the latter 

vessel, while no crystals grew in the former. Found C, 34.3; H, 4.1; N, 11.9. 

C10H12AgN3O4 requires C, 34.7; H, 3.5; N, 12.1%. 

M.p.: Irreversible decomposition with discolouring to yellow at 184 °C, to orange at 

210 °C and black at 240 °C without melting or losing crystalline luster. 

The compound exhibits mediocre solubility in water and dmso and is insoluble in 

MeCN, methanol, ethanol, propanone, thf, Et2O or CH2Cl2. It is fairly stable against 

sunlight for limited periods of time and stable indefinitely when protected from light. 

 

4.4.2.6 [4,4-dimethyl-2-(pyridin-4-yl-κN)oxazoline-κN]gold(1+) 

trifluoromethanesulfonate, 4a. 

A Schlenk tube was charged with 4,4-dimethyl-2-(pyridin-4-yl)oxazoline (80 mg, 

0.45 mmol), NaOTf (78 mg, 0.45 mmol, 1 eq.) and some NaCl crystals. The reagents 

were dissolved in 40 ml MeCN and (tht)AuCl (146 mg, 0.46 mmol, 1 eq.) was added 

as a solid. The clear solution was stirred for 1 h and all volatiles were removed in 

vacuo yielding a colourless solid which was subsequently re-dissolved in 30 ml 

MeCN and inversely filtered under inert conditions. The compound did not give a 

satisfactory elemental analysis. 
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M.p. 75 °C 

The compound is soluble in MeCN and CH2Cl2 but insoluble in Et2O and alkanes. It 

is stable as a solid at low temperatures, however in solution it decomposes readily 

within days even at low temperature. 

 

4.4.2.7 [4,4-dimethyl-2-(pyridin-4-yl-κN)oxazoline-κN]gold(1+) 

  tetrafluoroborate, 4b. 

The compound was prepared in the same way as 4a using 4,4-dimethyl-2-(pyridin-4-

yl)oxazoline (100 mg, 0.57 mmol), Na[BF4] (62 mg, 0.57 mmol, 1 eq.) and (tht)AuCl 

(182 mg, 0.57 mmol, 1 eq.). 

M.p. 86 °C 

The compound shows similar solubility and stability properties as the triflate salt. 

 

4.4.2.8 N,N-Bis(1,3,2-dioxaphospholan-2-yl)methanamine. 

The compound was prepared in a modified literature procedure.
67

 A Schlenk flask 

equipped with a dropping funnel was charged with N,N-bis(dichlorophosphanyl)-

methanamine (1.145 g, 4.92 mmol) and the compound was dissolved in CH2Cl2  

(80 ml). NEt3 (2.9 ml, 21 mmol, 4.2 eq.) was subsequently added to the solution via 

syringe and a solution of 0.55 ml absolute 1,2-ethanediol in 50 ml thf/CH2Cl2 3:2 was 

placed into the dropping funnel. The contents of the Schlenk flask were cooled to 0°C 

and the 1,2-ethanediol solution was slowly added with stirring. After 1 h all volatiles 

were removed in vacuo, the remaining colourless solid was extracted with 70 ml 

methylbenzene and inversely filtered under inert conditions. After bringing the 

methylbenzene solution to dryness in vacuo, 0.83 g of a colourless solid (the 

literature67 reports a yellowish oil) was obtained. 31P NMR showed a purity of 85%, 

the yield was thus 68%. As the literature states the compound is very sensitive, no 

attempt was made to further purify it. 

 

4.4.2.9 Tris[µ-N,N-bis(1,3,2-dioxaphospholan-2-yl-κP)methanamine]digold(2+) 

trifluoromethanesulfonate, 5. 

In a Schlenk tube N,N-bis(1,3,2-dioxaphospholan-2-yl)methanamine (264 mg, 1.1 

mmol, 1.6 eq. based on 85% purity) was dissolved in MeCN (70 ml), subsequently 
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(tht)AuCl (216 mg, 0.67 mmol, 1 eq.) and NaOTf (116 mg, 0.67 mmol, 1 eq.) were 

added. The solution turned yellow immediately and a slight haze was observed. Some 

NaCl crystals were added to seed NaCl precipitation. After stirring for 1 h the solution 

was filtered under inert conditions and the obtained apricot yellow filtrate was 

brought to dryness in vacuo affording 0.54 g of crude product still containing MeCN. 

A crystal suitable for X-ray diffraction was obtained from an MeCN solution layered 

with Et2O. Found: C, 13.5; H, 4.4; N, 3.3. C17H33Au2F6N3O18P6S2 requires C, 15.4; H, 

2.5; N, 3.2%. MS (ESI): m/z 353 (18), 454 (15), 469 (60), 515 (100), 544 (35), 590 

(85), 619 (58), 665 (25), 711 (8). 

M.p. 90 °C. 

The solid is soluble in MeCN but insoluble in Et2O and alkanes. 

 

4.4.2.10 Synthesis of [Au2(µ-dppe)2](CF3SO3)2⋅2CH3CN, 6. 

A Schlenk vessel was charged with dppe (184 mg, 0.46mmol, 1 eq.), NaOTf (53 mg, 

0.31 mmol, 1 eq.) and 20 ml ethanenitrile. The suspension was stirred briefly and 

solid (tht)AuCl (99 mg, 0.31 mmol, 1 eq.) and several NaCl crystals were added. 

After 1 h the suspension was brought to dryness, the solid was re-dissolved in 20 ml 

ethanenitrile, filtered and reduced to ca. 7 ml in vacuo. Layering with Et2O and 

storing in a freezer furnished crystals of the title compound. 

M.p. 255 °C 

The compound is soluble in ethanenitrile but insoluble in Et2O. 

 

4.4.2.11 Synthesis of [Au(tmdpd)2]CF3SO3, 7. 

Synthesis was performed as described in 4.4.2.10 with tetramethyldiphosphane 

disulfide (129 mg, 0.69 mmol), NaOTf (86 mg, 0.50 mmol) and (tht)AuCl (150 mg, 

0.47 mmol). Isolated crystals were washed with methylbenzene to remove precipi-

tated yellow amorphous solids prior to X-ray diffraction measurement. 

M.p. 185 °C (dec.) 

The compound is soluble in ethanenitrile but insoluble in Et2O and methylbenzene. 



 

Carbene and Carbyne Complexes with 

Unconventional N-heterocyclic Side Chains: 

Interaction with Gold(I) Fragments 

 

 

 
5.0 Abstract 

 

The chemistry of tungsten carbene and carbyne complexes that contain heterocyclic 

substituents as well as their interactions with chosen Au
I
 compounds, were investi-

gated. It was found that tungsten carbyne complexes with 2-thiazolyl substituents are 

unstable and cannot be prepared in pure form. Related carbene and carbyne com-

plexes were subsequently isolated using 1-(thiazol-2-yl)piperidine, 1a, and 2-phenyl-

thiazole, 1b, which can be lithiated in the 5-position of the thiazole ring. Utilising 

both ligands, a variety of complexes were characterised, among them the tetramethyl-

ammonium pentacarbonyl(thiazol-5-ylcarbonyl)tungstate(1–) salts, 5a and 5b; Fischer 

carbene complexes pentacarbonyl[methoxy(thiazol-5-yl)methylidene]-tungsten, 6a 

and 6b, and the N-donor stabilised carbyne complexes cis-dicarbonyl-chloro-cis-bis-

(pyridine)(thiazol-5-ylmethylidyne)tungsten, 7a and 7b. The carbene ligand in 6b 

could be transferred to AuCl yielding 8b, the first Fischer-type carbene complex of 

gold that exhibits aurophilic interactions. Reaction of the carbeniate complexes 4a 

(Li
+
-analogue of 5a) and 5b with Ph3PAuCl afforded a unique CO-expulsion in 4a to 

give a novel 5-aurated pseudo-abnormal carbene complex, 9a, with the W(CO)5 frag-

ment from the starting material retained and coordinated to an imine nitrogen of a 

thiazolyl group. In the case of 5b, a previously postulated product in related anionic 

carbene transfer reactions from tungsten to gold with the W(CO)5 fragment coordi-

nated to the carbene oxygen, 10b, could be isolated for the first time. Reaction of 7a 

with (tht)AuCl (tht = tetrahydrothiophene) yielded an addition product, 11a, wherein 

the AuCl moiety coordinates to the W–C triple bond; reaction of (tht)AuC6F5 with 7b 

is not straightforward and ligand scrambling made identification of reaction products 

difficult. 

5 
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To further investigate carbene transfer reactions to Au
I
, remote N-heterocyclic car-

bene (rNHC) complexes of chromium and tungsten, pentacarbonyl(1,2-dimethyl-5-

phenyl-1H-pyridin-4-ylidene)chromium, 12Cr, and -tungsten, 12W, prepared by 

cyclisation methods, were reacted with a variety of gold compounds affording the first 

examples of rNHC gold complexes with the fragments AuCl, 13, and AuPPh3
+, 14. 

Reaction of pentacarbonyl(1-methyl-1H-pyridin-4-ylidene)chromium, 15, with 

(tht)AuCl yielded the rNHC complex 16 by ligand transfer. From NMR investigations 

it was concluded that in these novel, stable complexes the charge-separated 

pyridinium rather than 1H-pyridin-4-ylidene resonance structure clearly is the more 

important contributing structure. 

 

 

5.1 Introduction 

 

5.1.1 Carbenes 

 

Carbenes are a molecular species that contain a divalent carbon atom, usually 

assumed to be sp
2-hybridised with two electrons in a free sp

2-orbital (singlet state). 

This orbital is available for coordination to a suitable metal centre, the bond is further 

strengthened by the carbon’s vacant p-orbital which acts as an acceptor of electron 

density from the metal (Scheme 5.1).
1
 Some carbenes, like dichlorocarbene, CCl2, 

exist in a triplet state where both sp
2
 and p orbitals are occupied by a single electron; 

triplet carbenes are a highly reactive and thus elusive species.2 A detailed study on the 

electronic structure of some transition metal (including Au) carbene complexes has 

been published by Frenking.
1 
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Scheme 5.1 (a) Electronic structure of a singlet- and (b) triplet-carbene; and (c) the idealised bonding 

  situation in a metal–singlet carbene bond. 

                                                   
1 G. Frenking, M. Solà and S. F. Vyboishchikov, J. Organomet. Chem. 2005, 690, 6178–6204. 

2 W. Kirmse, Angew. Chem., Int. Ed. Engl. 2003, 42, 2117–2119 
 (Angew. Chem. 2003, 115, 2165–2167). 
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Carbenes, while acting as ligands in organometallic complexes, can be divided into 

two large classes, the Schrock-type and the Fischer-type. The former class comprise 

‘divalent’ carbon atoms that are bonded to other carbon or hydrogen atoms with the 

first example synthesised by Schrock
3 in 1975 by deprotonating the bis(cyclopenta-

dienyl)dimethyltantalum(1+) cation with a base yielding bis(cyclopentadienyl)methyl-

(methylene)tantalum. The second class incorporates a heteroatom adjacent to the 

carbene carbon and was discovered by E. O. Fischer
4
 in 1964 by reaction of hexa-

carbonyltungsten with phenyllithium and subsequent alkylation of the resulting 

benzoyl(pentacarbonyl)tungstate(1–) anion with sulfuric acid and diazomethane. The 

latter steps are now usually replaced by reaction with Meerwein salts such as 

[Me3O][BF4] allowing convenient and safe handling. The heteroatom in the carbene 

complex is able to donate electron density from its free electron pair(s) giving rise to 

mesomeric structures representing the so-called carbene and zwitterionic/cationic 

contributions. Fürstner and Morency supplied evidence
5
 suggesting the canonic form 

(a) in Scheme 5.2 has little weight in Au
I
 carbene complexes which is better repre-

sented by (b) and (c) (see also Chapter 1, p. 25). Although this conclusion was drawn 

in conjunction with Schrock-type carbene complexes, it can be inferred that in 

heteroatom-stabilised Fischer-type carbenes it will have at least some validity.
6
 

 

M
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M
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a b c  

Scheme 5.2 Canonic contributions to a Fischer-type carbene complex; Q represents a heteroatom 

with a free electron pair, R is an organic residue. 

 

Carbenes form a very important ligand class found in numerous organometallic 

complexes. They appear as intermediates in catalytic processes (see Chapter 1, p. 24) 

as well as in organic synthesis where carbenes are very powerful reagents that allow 

                                                   
3 R. R. Schrock, J. Am. Chem. Soc. 1975, 97, 6577–6578. 

4 E. O. Fischer and A. Maasböl, Angew. Chem., Int. Ed. Engl. 1964, 3, 580–581 

 (Angew. Chem. 1964, 76, 645). 

5 A. Fürstner and L. Morency, Angew. Chem., Int. Ed. Engl. 2008, 47, 5030–5033 

 (Angew. Chem. 2008, 120, 5108–5111). 

6 A. S. K. Hashmi, Angew. Chem., Int. Ed. Engl. 2008, 47, 6754–6756 
 (Angew. Chem. 2008, 120, 6856–6858). 
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access to a vast variety of cycloadditions,
7
 heterocycles

8
 and enable alkene meta-

thesis.
9
 

 

A third class of carbene ligands that are related to the Fischer-type are N-heterocyclic 

carbenes (NHCs). They comprise a heterocycle containing at least one nitrogen 

adjacent to the carbene carbon. Imidazol-2-ylidenes are most common but other  

5-membered heterocycles such as pyrazole, 1,2,4-triazole and thiazole are now also 

employed.
10

 The discovery of this ligand class has been made independently by 

Öfele
11 and Wanzlick.12 

 

Recently, a review on the antimicrobial activity of silver NHC complexes has been 

published.
13

 Despite having comparable donor properties to phosphanes,
9a,14

 carbenes 

are usually not stable on their own; the discovery of Arduengo
15

 that imidazol-2-

ylidenes are indeed stable compounds came as a surprise. This greatly facilitated 

certain organometallic syntheses because carbenes were now available as free ligands, 

as opposed to having to assemble the carbene step by step at the metal centre – a 

synthetic approach that is still without alternative in the case of group 6 Fischer 

carbene complexes. 

                                                   
7 (a) L. S. Hegedus, Tetrahedron 1997, 53, 4105–4128; (b) A. de Meijere, H. Schirmer 

 and M. Duetsch, Angew. Chem., Int. Ed. Engl. 2000, 39, 3964–4002 (Angew. Chem. 2000, 

 112, 4124–4162); (c) Y.-T. Wu, T. Kurahashi and A. de Meijere, 

 J. Organomet. Chem. 2005, 690, 5900–5911. 

8 (a) R. Aumann and P. Hinterding, Chem. Ber. 1992, 125, 2765–2772; 

 (b) J. Barluenga, J. Santamaría and M. Tomás, Chem. Rev. 2004, 104, 2259–2283. 
9 (a) W. A. Herrmann, Angew. Chem., Int. Ed. Engl. 2002, 41, 1290–1309 (Angew. Chem. 2002, 114, 

 1342–1363); (b) C. M. Crudden and D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247–2273; 

 (c) T. J. Katz, Angew. Chem., Int. Ed. Engl. 2005, 44, 3010–3019 (Angew. Chem. 2005, 117, 

 4630–4633); (d) R. R. Schrock and C. Czekelius, Adv. Synth. Catal. 2007, 349, 55–77. 

10 See for example: H. Braband, T. I. Kückmann and U. Abram, 

 J. Organomet. Chem. 2005, 690, 5421–5429. 

11 K. Öfele, J. Organomet. Chem. 1968, 12, P42–P43. 

12 H.-W. Wanzlick and H.-J Schönherr, Angew. Chem., Int. Ed. Engl. 1968, 7, 141–142 

 (Angew. Chem. 1968, 80, 154). 

13 A. Kascatan-Nebioglu, M. J. Panzner, C. A. Tessier, C. L. Cannon and W. J. Youngs, 

 Coord. Chem. Rev. 2007, 251, 884–895. 

14 R. H. Crabtree, J. Organomet. Chem. 2005, 690, 5451–5457. 
15 A. J. Arduengo III, R. L. Harlow and M. Kline, J. Am. Chem. Soc. 1991, 113, 361–363. 
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Recently much attention was paid to remote-NHC (rNHC) complexes in this 

laboratory and by various collaborators.
16

 These carbenes are different from the 

classic Fischer-carbene and NHCs in that the single nitrogen heteroatom is not located 

α to the carbene carbon but generally occurs in the β - or γ - position of a 5- or 6-

membered ring. (Scheme 5.3) While for the one-N, 6-membered carbenes with the 

metal bonded in the γ - position, both classic carbene and 6π-aromatic pyridinium 

structures can be drawn in what effectively amounts to a vinylogous Fischer-type 

carbene, the β - bonded carbenes afford an “unusual” or “abnormal” carbene complex 

as it is impossible to draw a classic carbene complex resonance structure with a M–C 

double bond for this species without undue charge separation. The same holds true for 

the illustrated 5-membered example coordinated in the β - position. 

 

N

M

N

M

N

M

N

N

M

a b c  

Scheme 5.3 Examples of rNHC ligands where a nitrogen atom is located at the β - or γ - position: 

(a) can exist in either the classic “carbene” or the charge-separated “pyridinium” 

structure while for (b) and (c) charge separation is necessary and the former structure 

cannot be drawn. 

 

It was later shown that such rNHCs with one nitrogen atom induce a higher trans-

effect at the metal centre and are better σ-donors as well as π-acceptors com-pared to 

their classic normal-NHC-counterparts owing to a HOMO at higher energy enhancing 

σ-donation and a HOMO–1 of p-character that is less centered on the carbene carbon, 

thus facilitating π-back donation by the metal.
16c

 These effects give rise to a 

                                                   
16 (a) H. G. Raubenheimer, M. Desmet, P. Olivier and G. J. Kruger, J. Chem. Soc., Dalton Trans. 

 1996, 4431–4438; (b) W. H. Meyer, M. Deetlefs, M. Pohlmann, R. Scholz, M. W. Esterhuysen, 

 G. R. Julius and H. G. Raubenheimer, Dalton Trans. 2004, 413–420; (c) S. K. Schneider, 

 P. Roembke, G. R. Julius, C. Loschen, H. G. Raubenheimer, G. Frenking and W. A. Herrmann, 

 Eur. J. Inorg. Chem. 2005, 2973–2977; (d) S. K. Schneider, G. R. Julius, C. Loschen, 

 H. G. Raubenheimer, G. Frenking and W. A. Herrmann, Dalton Trans. 2006, 1226–1233; 

 (e) S. K. Schneider, P. Roembke, G. R. Julius, H. G. Raubenheimer and W. A. Herrmann, 

 Adv. Synth. Catal. 2006, 348, 1862–1873; ( f ) O. Schuster and H. G. Raubenheimer, 

 Inorg. Chem. 2006, 45, 7997–7999; (g) S. K. Schneider, C. F. Rentzsch, A. Krüger, 
 H. G. Raubenheimer and W. A. Herrmann, J. Mol. Catal. A: Chem. 2007, 265, 50–58. 
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significant strengthening of the metal–carbene bond by ca. 84 kJ mol
–1

 leading to 

superior activities in the case of palladium-catalysed cross-coupling reactions.
17

 

 

Today rNHC complexes are known – to name the most important examples – with 

[M(CO)5] (M = Cr, W)8a and [MX(PR3)2] (M = Ni, Pd, Pt)16 fragments. An unusual 

example is the coordination of a N-alkylated 2-(thien-2-yl)-4,4-dimethyl-oxazoline to 

[FeCp(CO)2] at the C-5 carbon atom of the thiophene ring
16a

 that can be rationalised 

as an oxazolinylidene-NHC with a thiophene ring inserted as a spacer between the 

metal and the carbene functionality. 

 

5.1.2 Carbynes 

 

Carbyne complexes contain formal metal–carbon triple bonds. Such complexes can be 

rationalised as alkynes wherein one carbon atom has been replaced by an isolobal 

organometallic fragment, the carbon atom is sp hybridised and its geometry thus 

linear. The oxidation state of the metal is somewhat hard to define; while Fischer 

carbene ligands are thought to be neutral in respect of oxidation state of the metal, 

carbyne ligands are counted as if they carry a triple negative charge. These 

formalisms, however, do not represent the real situation in these complexes.18 

 

The first carbyne complex was discovered in 1973 in the group of E. O. Fischer
19

 

when the then well-known group 6 Fischer carbene complexes were treated with 

boron trihalides in an attempt to synthesise the analogous halocarbene complexes. 

Instead, formal abstraction rather than substitution of methoxide afforded a metal–

carbon triple bond. In the course of this reaction, the initially generated (alkylidyne)-

pentacarbonylmetal complex cation subsequently loses the trans-CO ligand which is 

substituted by a halide affording a neutral complex. 

                                                   
17 H. G. Raubenheimer and S. Cronje, Dalton Trans. 2008, 1265–1272. 

18 J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, in Principles and Applications of 

 Organotransition Metal Chemistry, University Science Books, Mill Valley CA, 1987, pp. 22–30. 

19 E. O. Fischer, G. Kreis, C. G. Kreiter, J. Müller, G. Huttner and H. Lorenz, 
 Angew. Chem., Int. Ed. Engl. 1973, 12, 564–565 (Angew. Chem. 1973, 85, 618–620). 
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Later the synthetic pathway was simplified by Mayr and coworkers
20

 when a formal 

oxide dianion was directly abstracted from anionic (acyl)pentacarbonylmetallates(1–) 

using COCl2, ClC(O)OCCl3 or (COX)2 (X = Cl, Br) thus obliterating the alkylation 

step. The group 6 trans-[M(≡CR)X(CO)4] species that form are not very stable 

compared to their carbene precursors and decomposition is already noticeable at 

temperatures below room temperature. However, two adjacent carbonyl ligands and 

the halide are relatively labile and susceptible to substitution with other donors such 

as amines,20 tertiary phosphanes, imines,21 phosphites,21a cyclopentadienide22 or 

tris(pyrazolyl)borate21b,23, the resulting products exhibit largely improved stabilities. 

 

Complexes prepared via this route are called Fischer-carbynes by inference of their 

origin, even though there is no heteroatom bonded to the carbyne carbon. However, it 

is possible to synthesise heteroatom-containing species following the same metho-

dology by simply replacing the lithium alkyl reagent by an alkyl amide to finally 

afford an aminoalkylidyne ligand.
24

 

 

Schrock has described carbyne ligands derived from his type of carbene complexes in 

1978 after deprotonating a cationic tantalum carbene complex with a base.25 A most 

remarkable example of synthetic determination was the isolation and structural 

characterisation of [W{C(CMe3)}{CH(CMe3)}{CH2(CMe3)}(dmpe)] [dmpe = 1,2-

bis(dimethylphosphanyl)ethane], a compound that contains an alkyl, an alkylidene 

and an alkylidyne substituent. A comparative study of bonding parameters for alkyl, 

carbene and carbyne substituents simultaneously without the interference that would 

be introduced by the synthesis of three different complexes, is thus 

                                                   
20 A. Mayr, G. A. McDermott and A. M. Dorries, Organometallics 1985, 4, 608–610. 

21 (a) E. O. Fischer, A. Ruhs and F. R. Kreißl, Chem. Ber. 1977, 110, 805–815; 

 (b) G. A. McDermott, A. M. Dorries and A. Mayr, Organometallics 1987, 6, 50–55. 

22 E. O. Fischer, T. L. Lindner and F. R. Kreissl, J. Organomet. Chem. 1976, 112, C27–C30. 

23 (a) T. Desmond, F. J. Lalor, G. Ferguson and M. Parvez, J. Chem. Soc., Chem. Commun. 1984, 

 75–77; (b) D. C. Brower, M. Stoll and J. L. Templeton, Organometallics 1989, 8, 2786–2792. 

24 E. O. Fischer, G. Kreis, F. R. Kreissl, W. Kalbfus and E. Winkler, 

 J. Organomet. Chem. 1974, 65, C53–C56. 

25 S. J. McLain, C. D. Wood, L. W. Messerle, R. R. Schrock, F. J. Hollander, W. J. Youngs 
 and M. R. Churchill, J. Am. Chem. Soc. 1978, 100, 5962–5964. 
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possible.
26 

The chemistry of Schrock carbynes has been the subject of a number of 

review articles.
9d,27

 

 

Only a few examples of Fischer carbyne complexes that contain heterocyclic 

substituents bonded to the carbyne carbon have been reported. Amongst the 

compounds described are complexes incorporating heterocyclic 2-furyl
28

 and thien-2-

yl
28,29

 substituents as well as the organometallic residues ferrocenyl,
30

 ruthenocenyl,
30d

 

(phenyl-η6)tricarbonylchromium31 as well as cymantrenyl {cymantrene = 

[MnCp(CO)3]}.
29c,32

 The halide and/or CO ligands are sometimes substituted by 

hydridotris(pyrazolyl)borate,
28a

 1,1′-bis(diphenylphosphanyl)ferrocene
28b

 or hydrido-

tris(2-thionoimidazol-1-yl)borate.29c 

 

5.1.3 Carbene and carbyne transfer to gold fragments 

 

Carbene ligands can be transferred from one metal centre to another, thus enabling the 

synthesis of complexes that would otherwise not have been accessible. For the 

instance of gold, two methodologies are of interest, namely the transfer of Fischer-

type carbenes
33

 which cannot readily be synthesised starting with metal centres other 

than Cr, Mo or W; and NHCs which can be synthesised directly but are more easily 

accessible by preparing the appropriate silver NHC complex in situ before reacting it 

with a gold compound. This latter methodology is applicable for the synthesis of AuI, 

Pd
II
, Pt

II
, Rh

I
, Ru

II
, Ru

III
, Ir

I
 and Cu

I
 carbene complexes.

34
 

                                                   
26 M. R. Churchill and W. J. Youngs, Inorg. Chem. 1979, 18, 2454–2458. 

27 R. R. Schrock, Acc. Chem. Res. 1986, 19, 342–348. 

28 (a) J. H. Davis, Jr., C. M. Lukehart and L. Sacksteder, Organometallics 1987, 6, 50–55; 

 (b) M. Sekino, M. Sato, A. Nagasawa and K. Kikuchi, Organometallics 1994, 13, 1451–1455. 

29 (a) E. O. Fischer and T. Selmayr, Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1977, 32, 105–107; 
 (b) S. Anderson, D. J. Cook and A. F. Hill, J. Organomet. Chem. 1993, 463, C3–C4; 

 (c) M. R. St.-J. Foreman, A. F. Hill, A. J. P. White and D. J. Williams, 

 Organometallics 2003, 22, 3831–3840. 

30 (a) E. O. Fischer, M. Schluge and J. O. Besenhard, Angew. Chem., Int. Ed. Engl. 1976, 15, 683–684 

 (Angew. Chem. 1976, 88, 719–720); (b) E. O. Fischer, T. L. Lindner, G. Huttner, P. Friedrich, 

 F. R. Kreißl and J. O. Besenhard, Chem. Ber. 1977, 110, 3397–3404; (c) E. O. Fischer, M. Schluge, 

 J. O. Besenhard, P. Friedrich, G. Huttner and F. R. Kreißl, Chem. Ber. 1978, 111, 3530–3541; 

 (d) E. O. Fischer, F. J. Gammel, J. O. Besenhard, A. Frank and D. Neugebauer, 

 J. Organomet. Chem. 1980, 191, 261–282. 

31 E. O. Fischer, F. J. Gammel and D. Neugebauer, Chem. Ber. 1980, 113, 1010–1019. 

32 E. O. Fischer, V. N. Postnov and F. R. Kreissl, J. Organomet. Chem. 1977, 127, C19–C21. 

33 S.-T. Liu and K. R. Reddy, Chem. Soc. Rev. 1999, 28, 315–322. 
34 I. J. B. Lin and C. S. Vasam, Comment. Inorg. Chem. 2004, 25, 75–129. 
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The transfer of a Fischer-type carbene group to a gold metal centre has been effected 

by reacting a suitable starting compound of Cr, Mo or W with either H[AuCl4],
35

 

Ph3PAuCl
36

 or (R2S)AuCl.
37

 The pathway when using tetrachloroauric acid is thought 

to proceed via the oxidation of the pentacarbonyltungsten moiety to ultimately yield 

cis-[WCl2(CO)4] and the AuI carbene complex; although AuIII species have also been 

observed as products. To date, only a few reports of Fischer-type carbenes of gold 

were published and as a consequence the knowledge in this field remains limited. 

 

Transfer reactions employing rNHCs have not attracted the attention of the scientific 

community yet. In our group, an rNHC complex of chromium prepared by the method 

of Aumann
8a

 was employed recently for the first time as a source of a carbene ligand 

when transferred to [Rh2(µ-Cl)2(CO)4] to afford a novel rNHC Rh
I
 complex.

38
 

 

Carbyne transfer reactions from one metal centre to another, however, are rare which 

may be attributed to the strong metal–ligand bond in this case. A single example, 

involving a Fischer-type carbyne complex, involves reaction between trans-

[Cr(≡CR)Br(CO)4] and [Co2(CO)8] furnishing [Co3(µ3-RC)(CO)9].
39 However, 

alkylidyne ligands participate in alkyne metathesis
27,40

 and thus cannot be considered 

inert. 

                                                   
35 (a) R. Aumann and E. O. Fischer, Chem. Ber. 1981, 114, 1853–1857; (b) E. O. Fischer, M. Böck 

 and R. Aumann, Chem. Ber. 1983, 116, 3618–3623; (c) E. O. Fischer and M. Böck, 

 Monatsh. Chem. 1984, 115, 1159–1164; (d) E. O. Fischer and M. Böck, J. Organomet. Chem. 1985, 
 287, 279–285; (e) R.-Z. Ku, J.-C. Huang, J.-Y. Cho, F.-M. Kiang, K. R. Reddy, Y.-C. Chen, 

 K.-J. Lee, J.-H. Lee, G.-H. Lee, S.-M. Peng and S.-T. Liu, Organometallics 1999, 18, 2145–2154. 

36 (a) H. G. Raubenheimer, M. W. Esterhuysen, A. Timoshkin, Y. Chen and G. Frenking, 

 Organometallics 2002, 21, 3173–3181; (b) H. G. Raubenheimer, M. W. Esterhuysen, G. Frenking, 

 A. Y. Timoshkin, C. Esterhuysen and U. E. I. Horvath, Dalton Trans. 2006, 4580–4589. 

37 F. Kessler, N. Szesni, C. Maaß, C. Hohberger, B. Weibert and H. Fischer, 

 J. Organomet. Chem. 2007, 692, 3005–3018. 

38 E. Stander-Grobler, Ph.D. thesis, Stellenbosch University, 2008. 

39 (a) E. O. Fischer and A. Däweritz, Angew. Chem., Int. Ed. Engl. 1975, 14, 346–347 

 (Angew. Chem. 1975, 87, 360–361); 

 (b) E. O. Fischer and A. Däweritz, Chem. Ber. 1978, 111, 3525–3529. 

40 For a review on recent advances in alkyne metathesis see: W. Zhang and J. S. Moore, 
 Adv. Synth. Catal. 2007, 349, 93–120. 
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5.1.4 Aims of this study 

 

The aims of the investigation described in this Chapter were to synthesise and fully 

characterise tungsten carbyne complexes that bear thiazole groups at the carbyne 

carbon atom and to explore their properties and inclination towards interaction with 

chosen Au
I
 compounds. 

 

The synthesis of these novel carbyne complexes necessarily involves the formation of 

pentacarbonyl(thiazolylcarbonyl)tungstates(1–) which are suitable as precursors for 

the synthesis of a wide variety of other compounds such as the corresponding carbene 

complexes and also transfer products from their reaction with gold electrophiles. It 

was foreseen that characterisation of the former products complements earlier reports 

of Fischer-type carbene complexes in our laboratory41 that have been utilised in the 

‘complex-of-complexes’ concept.
42

 In the latter case the question arose whether 

during ligand transfer the displaced W(CO)5 group would remain attached to the 

formed Au
I
 complex given that the thiazole ring present would offer N- or possibly S-

coordination. 

 

A final goal was to broaden the scope of group 6 metal to gold carbene transfer 

reactions to also include rNHC ligands, such complexes have not been described for 

gold. Apart from their usual characterisation, further insight into the bonding situation 

in the Au
I
–carbene bond [see Scheme 5.3 (a)] was expected from these complexes. 

 

 

5.2 Results and discussion 

 

5.2.1 The attempted synthesis of 2-thiazolyl carbyne complexes 

 

Initially attention was directed towards the preparation of 2-thiazolyl carbyne com-

plexes and as starting material tetramethylammonium (benzothiazol-2-ylcarbonyl)-

pentacarbonyltungstate(1–), 2, was prepared.41 Following a modified procedure of 

                                                   
41 H. G. Raubenheimer, Y. Stander, E. K. Marais, C. Thompson, G. J. Kruger, S. Cronje 

 and M. Deetlefs, J. Organomet. Chem. 1999, 590, 158–168. 

42 H. G. Raubenheimer, A. du Toit, M. du Toit, J. An, L. van Niekerk, S. Cronje, C. Esterhuysen 
 and A. M. Crouch, Dalton Trans. 2004, 1173–1180. 
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Mayr
20

 and for the first time employing the self-purifying (all products from hydro-

lysis are gaseous) bis(trichloromethyl)carbonate (“triphosgene”) as a convenient solid 

reagent (Scheme 5.4) rather than gaseous COCl2 (whose handling is dangerous and 

cumbersome) or (trichloromethyl)chlorocarbonate (which can be contaminated with 

HCl). Subsequently the product of a possible carbyne formation was stabilised by the 

addition of pyridine affording the cis-bis(pyridine) derivatives because trans-

[M(≡CR)X(CO)4] complexes are relatively labile compounds (their stability increases 

in the series M = Mo < Cr < W and X = Cl < Br < I). 
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Scheme 5.4 R
1
 = Me and R

2
 = H or R

1
R

2
 = –(CH)4–  Reaction conditions: (CCl3O)2CO, –78 °C to 

0 °C, pyridine, r.t., CH2Cl2. 

 

During this unsuccessful probing of the viability of the reaction procedure and 

reagents it became evident that the starting material had indeed been consumed but 

only a black solid could be isolated that yielded virtually no neutral products when 

subjected to chromatography under inert conditions at –30 °C employing silica gel as 

a stationary phase and CH2Cl2/thf mixtures of increasing thf content as eluents. 

 

The fact that attempts to prepare 2-thiazolyl carbyne complexes were unsuccessful, 

could probably be attributed to the hetercycle’s strong electron-withdrawing effect on 

the carbyne ligand, hence destabilising the complex.  

 

Subsequently, synthesis of cis-dicarbonylchloro[(4-methylphenyl)methylidyne]-cis-

bis(pyridine)tungsten, 3, was achieved under the chosen conditions to test their 

viability. Two crystal and molecular structures were determined for 3, a solvent-free 

structure and a thf solvate obtained from a failed reaction. 
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5.2.2 Syntheses of 5-thiazolyl carbyne and carbene complexes 

 

Other possibilities to prepare thiazolyl carbyne complexes were envisaged considering 

the results above. For such complexes to be stable, the heterocycle bound to the 

carbyne carbon atom should not exert a too strong electron-withdrawing effect. Two 

straightforward options allow for the electronic tuning of a thiazole ring: firstly, 

introduction of electron-donating substituents at appropriate positions and, secondly, 

performing the lithiation at a less electron-withdrawing position. Such a site can 

simply be identified by comparison of the 1H NMR chemical shifts of the three 

thiazole protons; for the 2-, 4- and 5-positions the respective chemical shifts are 8.88, 

7.98 and 7.41 ppm.
43

 Thiazoles can easily be lithiated in the 5-position, provided the 

more acidic 2-position is blocked by appropriate substituents (a methyl group was 

found unsuitable);
44

 the 2-position, furthermore, lends itself to facile incorporation of 

substituents with free electron pairs, in turn alleviating electron demand within the 

heterocycle. 

 

1-(Thiazol-2-yl)piperidine, 1a, was selected as a ligand incorporating both 

“improvements” of the initial concept. The compound is readily accessible by reacting 

2-bromothiazole with piperidine.45 In addition, 2-phenylthiazole, 1b, was chosen as a 

ligand without additional electron push into the ring; again lithiation proceeds readily 

at the 5-position. It was prepared by a modified literature synthesis from benzene 

thiocarboxamide and 2-bromo-1,1-diethoxyethane.
46

 Scheme 5.5 summarises the 

synthetic pathways and conditions employed in the synthesis of the new heterocyclic 

carbenes and carbynes. 

                                                   
43 E. Pretsch, P. Bühlmann, C. Affolter and M. Badertscher, in Spektroskopische Daten zur 

 Strukturaufklärung Organischer Verbindungen, 4
th
 edn., Springer, Berlin, 2001, p. 104. 

44 M. Schlosser, in Organometallics in Synthesis. A Manual, ed. M. Schlosser, 

 Wiley, Chichester, 2002, p. 244. 

45 T. E. Young and E. D. Anstutz, J. Am. Chem. Soc. 1951, 73, 4773–4775. 

46 G. J. Durant, C. R. Ganellin, D. W. Hills, P. D. Miles, M. E. Parsons, E. S. Pepper and G. R. White, 
 J. Med. Chem. 1985, 28, 1414–1422. 
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Scheme 5.5 Synthetic pathways leading to the carbene and carbyne complexes 4 to 11; R = 1-

piperidinyl (a) and phenyl (b); reaction conditions:   (a) BuLi, –78 °C, thf;   (b) W(CO)6, 

–78 °C to r.t., thf;   (c) aqueous [NMe4]Cl;   (d) (Cl3CO)2CO, –78 °C to r.t., pyridine, 

CH2Cl2;   (e) [Me3O][BF4], 0 °C, CH2Cl2/MeCN;   ( f ) Ph3PAuCl, –78 °C to r.t., thf;    

(g) (tht)AuCl, –5 °C, thf;   (h) (tht)AuCl, –10 °C to r.t., thf. 

 

5.2.2.1 Syntheses of (acyl)pentacarbonyltungstates(1–) 4a, 4b and 5a, 5b. 

Lithiation of the ligand precursors and reaction with W(CO)6 afforded the orange or 

red lithium salts of the (acyl)pentacarbonyltungstates(1–), 4a and 4b, which could be 

converted to the tetramethylammonium salts, 5a and 5b, by aqueous [NMe4]Cl. 

Structures of the compounds are shown in Scheme 5.6. 
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Scheme 5.6 Structures of compounds 4a, 4b and 5a, 5b. 

 

An interesting property of 5a is its low solubility in dichloromethane and tendency to 

initially form a black supersaturated solution when it is extracted from the aqueous 

phase with small amounts of solvent. It thus readily precipitates during evaporation of 
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the solvent forming an ochre solid. Extraction from the aqueous solution must be 

performed with 20% ethanenitrile in CH2Cl2 to dissolve the residual precipitate which 

yields a crystalline orange product of analytical purity. Products prepared from 4a, 5a 

and 5b were all purified by inert column chromatography, and 4a could be utilised 

without any further purification in most reactions. On the other hand, the more stable 

compound 5b dissolves freely in dichloromethane affording blood-red crystals upon 

removal of the solvent. This is a general finding for the colours of complexes derived 

from 1a and 1b, the former are generally of a translucent orange and the latter are of a 

much darker red colour, presumably caused by the different thiazole substituents. 

 

The tetramethylammonium carbeniate salts, 5a and 5b, are fairly stable to air as solids 

and can be exposed to the atmosphere for short periods of time. This behaviour is in 

stark contrast to the 2-thiazolyl carbeniate complexes which, as solids, decompose 

rapidly upon contact with air and virtually immediately in solution. The use of lithium 

and tetramethylammonium salts for synthesis in one instance resulted in markedly 

different products (vide infra). 

 

5.2.2.2 Syntheses of Fischer-type methoxy carbene complexes 6a and 6b. 

Due to the novelty of substitution at the 5-position of the thiazole rings in this group 

of complexes, the corresponding Fischer-type carbene compounds, 6a and 6b, were 

also prepared (Scheme 5.7). 
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Scheme 5.7 Compounds 6a and 6b. 

 

To exclude the possibility of competing N-alkylation of the respective carbeniate salt, 

preparation of 6a was first attempted by acylating the lithium carbeniate salt 4a with 

ethanoyl chloride and then methanolysing the intermediary (ethanoyloxy)carbene 

complex. While this method has its merits especially with the introduction of sub-

stituents unsuitable as direct alkylating reagents or to protect other sensitive groups in 
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the complex from attack by the Meerwein salt,
47

 the cumbersome chromatographic 

separation of 6a from the (ethanoyloxy)carbene, results in a yield of 6a that was not 

significantly higher than that obtained by alkylation of 4a which is a much simpler 

process (Scheme 5.8). 

 

N

S

N
OC

W

CO

CO
OC

OC

O
[NMe4]

5a

N

S

N
OC

W

CO

CO
OC

OC

O

O

O

N

S

N
OC

W

CO

CO
OC

OC

O

a

bc

6a

 

Scheme 5.8 Synthetic pathways for 6a – the analogue, 6b, was only prepared via (c);   (a) MeCOCl, 

NEt3, –40 °C MeCN;   (b) MeOH, NEt3, –40 °C to r.t., MeCN;   (c) [Me3O][BF4], 0 °C, 

CH2Cl2/MeCN. 

 

Both carbene complexes were isolated from the product mixtures by flash chromato-

graphy under inert conditions at –20 °C on a silica gel column in poor to modest yield 

(6a 7.4%, 6b 35%). Serious competition from N-alkylation could be responsible, 

especially during the formation of 6a. Stability of the compounds at room temperature 

and upon exposure to air for short periods is fair; decomposition occurs slowly and is 

indicated by the characteristic odour of the respective ligand precursors. Again, an 

observation already made for carbeniate complexes 5a and 5b is the much deeper 

colour of 6b (purplish-black as a solid and purplish-red in solution) compared to the 

colour of orange 6a. Yet, single crystals of 6b appear dark orange when separated 

from the bulk product material.  

 

5.2.2.3 Syntheses of the carbyne complexes 7a and 7b. 

The carbyne complex 7a was obtained by first acylating the lithium carbeniate salt 4a 

with (Cl3CO)2CO furnishing a dark-red solution. Upon warming to 0 °C the (chloro-

carbonyloxy)carbene complex believed to had formed
20

 collapsed liberating CO2 and 

the trans-CO ligand of the pentacarbonyl group. Addition of excess pyridine and  

                                                   
47 J. W. Herndon and J. J. Matasi, J. Org. Chem. 1990, 55, 786–788. 
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warming to room temperature afforded 7a by substitution of a set of cis-CO ligands. 

The product was obtained as a brownish-orange solid in ca. 49% yield but was still 

contaminated with highly coloured trace impurities even after purification by flash 

chromatography on Florisil under inert conditions at –30 °C. Single crystals appeared 

orange and are much lighter in colour than the bulk powder. 

 

Carbyne complex 7b was prepared from the [NMe4]
+-carbeniate salt 5b and isolated 

as a pure amorphous red paste in 54% yield after column chromatography under inert 

conditions. The compound can be obtained as a foam by trituration with Et2O and 

quick evacuation of the solvent but crystallises only in the presence of dichloro-

methane to form red needles of 7b⋅CH2Cl2. The carbyne complexes shown in Scheme 

5.9 are reasonably stable at room temperature, albeit decomposition is observed after 

several days. In solution the compounds are markedly less stable; even at low 

temperature decomposition ensues over a period of weeks. The carbynes do not 

display similar Rf values on thin layer chromatographic plates than on low tem-

perature inert silica gel columns. Much more polar solvent mixtures are needed to 

elute the compounds preparatively from the latter than would appear necessary by 

preliminary tlc testing. 
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Scheme 5.9 Structures of compounds 7a and 7b. 

 

 

5.2.3 Transfer to gold(I) centres 

 

5.2.3.1 Transfer of heterocyclic carbene ligands to the gold fragments 

  AuCl and Ph3PAu
+
 – isolation of 8b, 9a, and 10b. 

 

Compounds formed by transfer of carbene ligands to Au
I
 centres or coordination of 

Au
I
 fragments to carbyne complexes are summarised in Scheme 5.10. 
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Scheme 5.10 Structures of compounds 8b–11b. 

 

The Fischer-type carbene complex 6b was selected to probe the feasibility of 

transferring the new type of carbene ligand from W
0
 to Au

I
. When equimolar amounts 

of (tht)AuCl and 6b were dissolved in thf at –5 °C, a black precipitate formed after 

several hours. Monitoring of the reaction progress by tlc was made impossible by the 

sensitivity of both (tht)AuCl and especially chloro[methoxy(2-phenylthiazol-5-yl)-

methylidene]gold, 8b; the former decomposes rapidly, the latter instantly when 

spotted onto a tlc plate. Crystallisation of the crude product afforded a modest yield 

(62%) of beautifully faceted orange-red crystals. 

 

In the solid state the molecules of 8b associate via aurophilic interactions (vide infra) 

rendering the compound only slightly soluble in dichloromethane or thf, whereas the 

crude product could be dissolved quite readily. In addition, both 1H and 13C NMR 

spectra as well as X-ray crystallography supplied evidence for Au…H agostic inter-

actions involving H-4 of the thiazole group. Complex 8b is therefore not only a rare 

example of a compound exhibiting agostic Au…H interactions but also the only 

Fischer-type carbene complex of gold known to undergo aurophilic interactions in the 

solid state. 

 

Encouraged by these results, the reactions of the carbeniates 4a and 5b with another 

gold complex, Ph3PAuCl, were examined (Scheme 5.5). Addition of the lithium 

carbeniate salt 4a to a solution of Ph3PAuCl in thf at –78 °C and allowing the reaction 

vessel to reach room temperature, gave rise to several products as evidenced by tlc. In 

stark contrast to the gold carbene complex 8b, these products were extremely stable  
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and could easily be separated by column chromatography under inert conditions on 

Florisil at –30 °C, a rare phenomenon among compounds of gold. Two fractions were 

obtained, the less polar one yielded crystals of the aurated thiazole complex, 9a, (now 

suitable for X-ray crystallography) in poor yield (16%). The identity of the more polar 

fraction could not be determined. 

 

Yellow crystals of 9a are fairly stable but decompose when exposed to the atmosphere 

for longer periods of time. The detailed mechanism for the formation of 9a is not 

known. Scheme 5.11 shows a working mechanism for the process: nucleophilic attack 

on Ph3PAu
+
 could initially [by W(CO)5-migration] lead to “10a”, a structure similar 

to 10b which has been fully characterised (vide infra). When CO is expelled, the more 

nucleophilic thiazole nitrogen scavenges the W(CO)5 group. The formation of this 

compound is the first example of a AuI acyl complex that undergoes a decarbonyl-

ation reaction. Furthermore, 8b is a pseudo-abnormal carbene complex since the 

W(CO)5 fragment is isolobal to H
+
. 
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Scheme 5.11 Possible mechanism for the formation of 9a via an intermediate similar to 10b. 

 

CO Insertion into a Au–C bond has been shown to occur when forced by pressure and 

heat in one example by Cinellu et al., but no reaction is observed under standard 

conditions.
48

 Komiya et al. have reported the reversible carbonylation of a Au
III

 

complex, iodo-cis-dimethyl(triphenylphosphane)gold. This compound then affords  

                                                   
48 M. A. Cinellu, A. Zucca, S. Stoccoro, G. Minghetti, M. Manassero and M. Sansoni, 
 J. Chem. Soc., Dalton Trans. 1995, 2865–2872. 
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(methoxycarbonyl)-cis-dimethyl(triphenylphosphane)gold upon reaction with NaOMe 

and CO; the product could be decarbonylated again by reaction with acids.
49

 

Ph3PAuCl was also reported to undergo methoxycarbonylation in methanol to afford 

(methoxycarbonyl)(triphenylphosphane)gold.49b Proof of the reactivity of AuI com-

plexes towards CO is also provided by the catalysis of the formylation of amines by 

[Au(PPh3)2]
+
 and other related compounds.

50
 

 

The propensity of the [NMe4] tungsten carbeniate salt, 5b, to also expel CO upon 

transfer to Ph3PAu+ was subsequently investigated. To facilitate progress of the reac-

tion, Na[BF4] was added as scavenger of free chloride; in this reaction no Li+ was 

present that could, otherwise, have served this purpose. Two reaction products were 

identified by tlc and could in part be separated by column chromatography under inert 

conditions on Florisil at –30 °C. 

 

A first, apolar fraction consisted of two compounds in an approximate 3:1 ratio, 

identified by their respective 
13

C NMR carbene carbon signals at δ 252.3 (d, JPC 134 

Hz, 3 C) and 251.5 (d, JPC 136 Hz, 1 C), and by the characteristic coupling indicative 

of Ph3PAu
+
 groups coordinated to this carbene complex. However in the 

1
H NMR 

spectrum, the ratio of phenyl o-CH groups belonging to the heterocyclic ligand to 

PPh3 was exactly 1:2 hence pointing towards the presence of more than one Ph3PAu
+
 

unit per carbeniate molecule in at least one of the two species detected. A necessary 

charge for a species comprising more than one Ph3PAu+ fragment per carbeniate 

contradicts the very apolar behaviour during chromatography. The presence of uncon-

sumed Ph3PAuCl cannot be excluded, but would be unlikely given that no crystals 

could be obtained from this fraction; Ph3PAuCl is known to crystallise most readily. 

Given these facts and the presence of two products in the mixture no structure can be 

rationalised without reasonable doubt. 

 

The second fraction contained the main product of the reaction, 10b. The carbeniate 

ligand was transferred to a Ph3PAu
+
 fragment while the W(CO)5 group migrated to 

the carbeniate oxygen atom (cf. “10a” in Scheme 5.11). The resulting complex 

                                                   
49 (a) S. Komiya, M. Ishikawa and S. Ozaki, Organometallics 1988, 7, 2238–2239; (b) S. Komiya, 

 T. Sone, S. Ozaki, M. Ishikawa and N. Kasuga, J. Organomet. Chem. 1992, 428, 303–313. 
50 F. Shi, Y. Deng, H. Yang and T. SiMa [sic], Chem. Commun. 2001, 345–346. 
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exhibits surprising stability given that O-bonded W(CO)5 arrangements are normally 

prone to decomposition. This compound structurally represents the proposed product 

previously assumed to initially form in the synthesis of Ph3PAu–C(O)Ph in which the 

W(CO)5 group is later scavenged by [NBu4]Cl by forming [NBu4][WCl(CO)5] which 

precipitates from the ethereal reaction solution.51 Related isostructural products have 

been characterised for carbene-imidate complexes in the same report. This proposed 

mechanism has now been largely substantiated for O-containing carbeniates as well. 

 

The isolation of this complex is very surprising given that oxygen is not an ideal 

ligating atom for the W(CO)5 fragment; however, migration of this group to the 

thiazole imine nitrogen atom was not observed. It is not clear why the W(CO)5 group 

is not lost in the preparation of 10b. One cause may be the addition of Na[BF4] 

intended to promote chloride abstraction from Ph3PAuCl which could ultimately 

precipitate NaCl and [NMe4][BF4], as side products and not [NMe4][WCl(CO)5] 

(Scheme 5.12). Solvent and substituent effects (the piperidinyl group is replaced by a 

phenyl group). 
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Scheme 5.12 Formation of acylgold complexes: (a) R = Ph, Q
+
 = [NBu4]

+
, conditions: Ph3PAuCl, 

Et2O, –78 °C;   (b) R = 2-phenylthiazol-5-yl, Q
+
 = [NMe4]

+
, conditions: Ph3PAuCl, 

Na[BF4], thf, –78 °C. 

 

Further, loss of CO did not occur which may have electronic grounds related to the 

replacement of the piperidinyl with the phenyl group in the ligand. Utilisation of 5b 

instead of 4b, furthermore, did not introduce Li
+
 into the reaction mixture; this cation 

might have assisted in the decarbonylation reaction. 

                                                   
51 (a) M. W. Esterhuysen, Ph.D. thesis, Stellenbosch University, 2003; (b) H. G. Raubenheimer, 
 M. W. Esterhuysen and C. Esterhuysen, Inorg. Chim. Acta 2005, 358, 4217–4228. 
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5.2.3.2 Interaction of carbyne complexes 7a and 7b with gold centres. 

Interaction of the carbyne complexes 7a and 7b with gold centres (Scheme 5.13) was 

also studied to elucidate which of the two donor positions (formal W–C triple bond or 

imine nitrogen) that presented themselves would be preferred. The first reaction of 7a 

with (tht)AuCl proceeded readily and an orange-brown adduct, 11a, could be isolated. 

The reaction involved coordination of the AuCl fragment to the formal metallaalkyne. 

However, the tungsten centre did not separate from the alkyne carbon and no transfer 

was effected – owing to the somewhat longer W–C bond in heterocyclic carbynes, it 

was considered that gold fragments could be successful in replacing the tungsten 

carbonyl on the ligand. 
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Scheme 5.13 Interaction of gold fragments with carbynes 7a and 7b: (a) 7a, (tht)AuCl, –10 °C, thf; 

  (b) 7b, (tht)AuC6F5, –60 °C, thf;   R = piperidin-1-yl for (a) and phenyl for (b). 

 

Carbyne complex 7b was then reacted with (tht)AuC6F5 in thf at –60 °C. Two 

products containing gold were identified by tlc (silica gel plate, CH2Cl2 as mobile 

phase; Rf 0.72 and Rf 0). Their stability was sufficient for column chromatography 

under inert conditions and they were separated on a Florisil column at –30 °C. Two 

fractions were obtained corresponding to the tlc analysis, again highlighting the 

difference in behaviour of these substances on a column compared to tlc plates; in this 

case the product with Rf 0 on the silica tlc plate could be eluted at low temperature. 

However, the crystals obtained from the less polar fraction were 7b⋅CH2Cl2. In the 
13

C 

NMR spectrum of the first fraction two signals for carbene carbons at δ 243.0 and 

240.7 were observed corroborating existence of 7b (δ 240.8) as well as indicating the 

presence of another gold complex as the signal at δ 243, possibly attributable to 11b. 

The CO signals for the products were observed at δ 220.0 (7b: 220.1) and 212.9. The 

isolation of crystals of free 7b may result from a homoleptic rearrangement of 11b as 
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such rearrangements have frequently been observed for the AuC6F5 fragment.
52

 The 

resulting cation [Au(7b)2]
+
 may have undergone solvolysis, which was reported for 

similar complexes,
53

 liberating 7b that crystallised under these conditions. 

 

The second fraction failed to yield any crystals and only NMR evidence supported the 

formation of a complex similar to that in the first fraction. 
13

C NMR signals for 

carbyne and CO species are similar to those in the first fraction to within ± 0.1 ppm. 

 

5.2.3.3 Transfer of rNHC ligands to Au
I
. 

Carbene transfer from chromium and tungsten is well documented in the literature
35–37

 

and given the successful synthesis of 8b, 9a and 10b above, the transfer of rNHC 

ligands to gold was also attempted after it was recently found in a preliminary 

investigation that transfer of a rNHC occurs from a rNHC chromium complex to 

[Rh2(µ-Cl)2(CO)4] as shown in Scheme 5.14.
38 
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Scheme 5.14 Product obtained by transfer of a rNHC ligand to Rh
I
. 

 

Utilising the same chromium complex and (tht)AuC6F5 as a substrate, a crystalline 

product was obtained but the fine colourless needles were too small for X-ray crys-

tallography. Proof of transfer could therefore only be obtained by FAB mass spectro-

metry showing signals at m/z 360 [AuL]+, 523 [AuL2]
+, 887 [AuL2⋅AuC6F5]

+ and 

1054 [AuL2⋅Au(C6F5)2]
+
 (L = 5-butyl-1,2-dimethyl-1H-pyridin-4-ylidene), the only 

question that remains unanswered is whether the product exists as neutral LAuC6F5 or 

in the form of the homoleptically rearranged salt [AuL2][Au(C6F5)2]. The rearranged 

fragment ions observed might have formed during the ionisation process. Owing to  

                                                   
52 (a) K. Coetzee, M.Sc. thesis, Stellenbosch University, 2005; 

 (b) W. F. Gabrielli, Ph.D. thesis, Stellenbosch University, 2006, pp. 106 and 163; 

 (c) L. de Jongh, M.Sc. thesis, Stellenbosch University, 2008. 

53 G. A. Carriedo, V. Riera, G. Sánchez, X. Solans and M. Labrador, 
 J. Organomet. Chem. 1990, 391, 431–437. 
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the thermal movement of the butyl group it is unlikely that compounds containing this 

rNHC ligand would crystallise readily. To overcome this possible limitation, two new 

pentacarbonyl rNHC chromium, 12Cr, and rNHC tungsten, 12W, complexes were 

prepared (Scheme 5.15). 
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Scheme 5.15 Synthetic pathway to substituted group 6 rNHC complexes 12–14 starting from penta-

carbonyl(1-methoxyethylidene)chromium and -tungsten complexes as well as the gold 

complexes obtained after ligand transfer; conditions: (a) BuLi, [MeCNMe][BF4], –78 °C, 

thf;   (b) PhC≡CH, 70 °C, thf, 12 h;   (c) (tht)AuCl, –35 °C to r.t., CH2Cl2; (d) Ph3PAuCl, 

NaOTf, –45 °C to r.t., MeCN. 

 

Following the protocol established in the synthesis of 8b, the rNHC gold chloride 

complex 13 was synthesised from 12W and (tht)AuCl at –35 °C by mixing 

homogeneous CH2Cl2 solutions of the reagents. The product was obtained by simple 

workup due to its lower solubility compared to the pentacarbonylmetal side product. 

 

Likewise, 12Cr was reacted with Ph3PAuCl and NaOTf in ethanenitrile affording a 

cationic rNHC gold complex, 14, in 78% yield. Intriguingly, workup in the usual 

manner (precipitation of product with Et2O or pentane) was not possible as this com-

pound is more soluble than its neutral counterparts and tends to form supersaturated 

solutions. Crystallisation from CH2Cl2/pentane yielded the pure complex in the form 

of long colourless needles. 

 

Both 12Cr and 12W are thus suitable carbene sources for the transfer reactions, 

although the employment of chromium compounds is preferred. The reaction of the 

precursor of 12W with ethynylbenzene does not go to completion and  
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chromatographic separation is exceedingly difficult given the minute difference in Rf 

values of product and starting material. Transfer itself, however, proceeds similarly 

with both reagents. 

 

Following Stone,54 the simplest member of remote pyridinylidene carbene complex 

family, pentacarbonyl(1-methyl-1H-pyridin-4-ylidene)chromium, 15, was synthesised 

according to a method never again utilised since 1974 despite its inherent simplicity. 

After Cr(CO)6 had been conveniently reduced to Na2[Cr(CO)5] by sodium naph-

thalenide, addition of 4-chloro-1-methylpyridinium triflate yielded 15 in a one-pot 

reaction. Purification by flash chromatography under inert conditions followed. 

Although the product was obtained in poor yield (11%), this procedure is much more 

convenient than the method of Aumann
8a

 which, starting with M(CO)6, requires 4 

reaction steps and at least two chromatographic purifications. However, the former 

protocol requires access to the selected pyridinium salt. 

 

When the novel rNHC complex 15 and (tht)AuCl were dissolved together in CH2Cl2, 

immediate surfacial decomposition of the solid gold compound was observed; 

nonetheless 16 could be isolated in 20% yield (Scheme 5.16). 
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Scheme 5.16 Synthesis of 16 from 15; conditions: (tht)AuCl, r.t., CH2Cl2. 

 

 

5.3 Spectroscopic characterisation 

 

The compounds were characterised by a number of techniques, most notably 

multinuclear NMR spectroscopy and single crystal X-ray diffraction. Infrared 

spectroscopy yielded unrivaled information about the electronic environment of the  

                                                   
54 P. J. Fraser, W. R. Roper and F. G. A. Stone, J. Chem. Soc., Dalton Trans. 1974, 760–764. 
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carbonyl ligands and mass spectrometry gave valuable information on the stability of 

the compounds, especially towards decarbonylation. 

 

5.3.1 Infrared spectroscopy 

 

From the location, intensity and number of the vibration bands of the CO ligands, 

information on the local geometry can be obtained. For the compounds reported here, 

this involves the M(CO)5 and cis-M(CO)2 fragments. For pentacarbonylchromium and 

pentacarbonyltungsten complexes, theory predicts three IR-active bands of symmetry 

A1
(1)

, A1
(2)

 and E, while for cis-dicarbonyltungsten complexes two bands of A1 and B1 

symmetry should be observed.
55

 

 

Table 5.1 contains the wavenumbers of the new carbonyl complexes. In the actual 

solid-state spectra the A1
(1)

 bands could be assigned unambiguously and the (IR-

inactive but often observed) B1 band with relative safety, the assignment of the E and 

A1
(2)

 bands was not always without ambiguity, as more than two bands were often 

observed. In certain cases where two molecules were found in the asymmetric unit 

(5b and 6a) additional bands may in fact be caused by the different environment 

experienced by the CO ligands of each unique molecule. Solution spectra in 

dichloromethane only furnished A1
(1)

 and E bands. 

 

For carbene complexes it is obvious that the piperidine substituent at the thiazole ring 

influences the carbonyl frequencies to an appreciable extent compared to the phenyl 

analogues. The A1
(1) band is always found at lower frequencies for the 

piperidinylthiazole-derived compounds 5a and 6a compared to phenylthiazole-derived 

compounds 5b and 6b. Both heterocyclic ligands cause a shift of the A1
(1)

 band to 

lower frequencies compared to the A1
(1)

 band in Ph(MeO)C=W(CO)5,
56

 although for 

6b this difference is only 3 cm
–1

. 

 

In the instance of the carbynes, the A1 band is shifted to somewhat lower 

wavenumbers compared to the 4-methylphenyl carbyne complex 3. The piperidine 

substituent of 7a again donates electron density to the tungsten centre causing a shift 

                                                   
55 M. Bigorgne, J. Organomet. Chem. 1975, 94, 161–180. 
56 R. M. Dahlgren and J. I. Zink, J. Am. Chem. Soc. 1979, 101, 1448–1454. 
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Table 5.1 IR band wavenumbers ν/cm
–1

 of carbonyl compounds 3–15
a
 

 

Band A1
(1)

 B1 E A1
(2)

 
     

5a (solid) 2044 (s) 1949 (m) 1881, 1859 (vs) 1840 (vs) 

6a (solid) 2058 (s) 1969, 1952 (m) 1891 (vs) 1884 (vs) 

6a (solution) 2062 (s)  1929 (vs)  

9a (solid) 2065 (w) 1903 (br)   

5b (solid) 2046 (s) 1941, 1919 (m) 1870 (vs) 1835 (vs) 

5b (solution) 2050 (s)  1907 (vs)  

6b (solid) 2070 (s) 1969, 1948 (s) 1880 (vs) b 

6b (solution) 2068 (vs)  1942 (vs) 
 

10b (solid) 2067 (w) 1923   

Ph(MeO)C=W(CO)5
56

 2073  1944 1961 
     

15 (solid) 2043 (s) 1962 (s) 1909 (vs) 1857 (vs) 

15 (solution) 2044 (s)  1917 (vs)  

12Cr (solid) 2037 (s) 1958 (w) 1931 (m) 1883 (vs) 

12Cr (solution) 2041 (s)  1917 (vs)  

12W (solid) 2049 (s) 1963 (s)  1875 (vs) 

12W (solution) 2052 (s)  1929 (vs)  
     

3 (solid) 1978 (vs)
c
 1876 (vs)   

7a (solid) 1965 (vs)
c
 1877 (vs)   

7b (solid) 1972 (vs)c 1886 (vs)   
 

a
 All solid spectra are recorded on a ZnSe ATR accessory, all liquid spectra were recorded as 

CH2Cl2 solutions in NaCl cells. Assignments: (vs) very strong, (s) strong, (m) medium, 

(w) weak;   
b
 Obscured by broad E band;   

c
 A1 band. 

 

to even lower frequency. The B1 band of 7a and 7b follows this trend of a lower 

wavenumber for the piperidine-substituted complex. In 3, the B1 band is of 

comparable energy to that in 7b. Therefore, the heterocyclic substituent additionally 

effects a smaller ∆ν between the A1 and B1 vibrations. 

 

5.3.2 Mass spectrometry 

 

The ionisation method found to be most suitable for mass spectrometric assay of the 

compounds discussed above, was Fast Atom Bombardment (FAB). Matrix Assisted 

Laser Desorption Ionisation (MALDI) was also used but gave no interpretable results. 

 

Using FAB ionisation, the molecular ions of most complexes as well as the associated 

fragmentation patterns could be identified. The successive loss of up to 4 CO groups 

is common for carbonyl complexes. Peaks and intensities are shown in Table 5.2. 

Negative mode FAB for the carbeniate salts 5a and 5b was not recorded and 
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Table 5.2 FAB mass spectra of compounds 5a–14. All m/z are based on 

184
W and 

35
Cl isotopes, intensities in parentheses. Base peak at m/z 154 [(3-

nitrophenyl)methanol + H]
+
 if no other fragment at 100% intensity. 

 

Compound 5a 5b 6a 6b 7a 7b 8b 9a 10b 11a 12Cr 12W 13 14 15 16 
                 

 

Empirical formula 

C18H23N3–

O6SW 

C19H18N2–

O6SW 

C15H14N2–

O6SW 

C16H9N–

O6SW 

C21H21Cl–

N4O2SW 

C22H16Cl–

N3O2SW 

C11H9Au–

ClNOS 

C31H26Au–

N2O5PSW 

C33H21Au–

NO6PSW 

C21H21Au–

Cl2N4O2SW 
C13H13–

CrNO5 

C18H13–

NO5W 

C13H13–

AuClN 

C31H28–

AuNP
l
 

C11H7–

CrNO5 

C6H7Au–

ClN 
                 

Exact mass 593.08 586.04 534.01 526.96 612.06 605.02 434.98 950.05 971.00 843.99 375.02 507.03 415.04 642.12
l
 284.97 324.99 

                 

(M + H)
+
 520 (12)

a,b
  535 (3)

a
 528 (10)

a
 613  (0.5)

a
 606  (2)

a
    845 (0.3)

a
       

M
+
 519  (5)

a,b
 512 (2)

a,b
 534 (3)

a
 527   (8)

a
 612  (1)

a
 605  (3)

a
    844 (0.9)

a
 375 (10) 507  (5)  642 (100)

l
 285 (100)  

(M – CO + H)
+
 492  (7)

a
 485 (1)

a
               

(M – CO)
+
 491  (7)

a
 484 (1)

a
 506 (3) 499 (16) 584  (3) 577 (16)    816 (1) 347 (16) 479  (7)   257  (52)  

                 

(M – 2CO + H)
+
 464 (17)

a
 457 (1)

a
  472   (7)

a
             

(M – 2CO)
+
 463  (2)

a
 456 (2)

a
 478 (8) 471 (11)

a
  549 (15)           

(M – 3CO + H)
+
 436  (7)

a
                

                 

(M – 3CO)
+
 435  (7)

a
   443 (12)       887   (1)   423 (14)     

(M – 4CO + H)
+
 408  (8)

a
                

(M – 4CO)
+
 407 (10)

a
          263 (23)      

                 

(M – Cl)
+
     577  (2) 570  (7)    809 (0.5)   380 (100)   290 (100) 

(M – py + H)
+
      527  (3)

a
           

(M – py )
+
      526  (1)

a
           

                 

(M – py – CO)
+
     505  (3) 498  (5)           

(M – py – 2CO + H)
+
      471  (2)

a
    710 (0.5)

a
       

(M – py – 2CO)
+
     477  (3) 470  (4)

a
    709 (1.5)

a
       

                 

Ph3PAu
+
          459 (21)   459 (100)     459  (17)   

[Au(PPh3)2]
+
          721 (13)   721  (22)        

[M – W(CO)5 + H]
+
          627  (1)   648  (25)        

                 

Others 667 (12)
c
 660  (8)

c 

301 (26) 

450 (1)
a,d

 

449 (1)
a,d

 

422 (3)
e
 

  

 

367 (18)
f
 386 (4)

g
 

377 (3) 

358 (3)
h
 

341 (3) 

1409  (2) 

0642  (6) 

 

1078   (4)
i
 630 (0.8)

a,j
 

629 (1.2)
a,j

 

 

235 (19)
k
   380  (47)

m
  615 (11)

n
 

 

a
 Approximate ratio calculated from the overlapping pattern of the R

+
 and [R + H]

+
 peaks;   

b
 M

+
 refers to mass of the anion after loss of two electrons 

c
 [M + NMe4]

+
   

d
 [M – C5H11N]

+
 and H

+
 adduct   

e
 [M – CO – C5H11N]

+
   

f
 [Cl(CO)2(py)W≡CH]

+
   

g
 [M – Cl – CH3 + H]

+
   

h
 [M – Cl – CH3 – CO + H]

+
 

i
 [M – W(CO)5 + Ph3PAu – CO]

+
   

j
 [M – 2CO – 2py]

+
 and H

+
 adduct   

k 
[M – 5CO]

+
   

l 
Cation only   

m
 [M – PPh3]

+
   

n
 [2M – Cl]

+
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unexpectedly was not even necessary to observe a molecular ion. Intriguingly, clusters 

of the type [2NMe4⋅anion]
+
 (m/z 667 for 5a, 660 for 5b) comprising three ions in total, 

were found in the positive ion spectrum. 

 

Since thiazoles can be protonated at the imine nitrogen (for complexes of ligand 1a 

possibly also at the piperidinyl group) a multitude of peaks show a pattern resembling 

an overlay of the radical cation and the protonated species and an approximate ratio 

could be deduced from the intensities (I) of the two peaks at lowest m/z of each cluster 

according to Equation (5.1): 

 

I(m) = (M
+
, 

182
W);  I(m + 1) = [(M + H)

+
, 

182
W  +  M

+
, 

183
W]              (5.1) 

 

With I(M+, 182W) and therefore I(M+, 183W) known, I[(M + H)+, 182W] could be 

calculated assuming negligible interference from 180W (0.12% abundance) species and 

noise. Unexpectedly, complexes derived from phenylthiazole, 1b, showed protonation 

to the same extent as the piperidinylthiazole compounds. However, the order of basi-

city of simple compounds was shown to follow entirely different rules when going 

from solution to the gas phase, e.g. H2O(g) is a weaker base than H2S(g).
57

 Therefore, 

higher gas-phase basicity of compounds derived from piperidinylthiazole 1a cannot 

be accepted and the extent of protonation of the complexes cannot be predicted. 

 

The carbyne complexes 7a and 7b either lose pyridine or chloride yielding two 

fragmentation pathways by successively losing CO ligands; pyridine and chloride loss 

was never observed (Scheme 5.17). Pyridine loss affords radical cations (unless 

protonated) while chloride loss yields an even-electron species. The Fischer-type 

carbene complex 6a and the AuCl-coordinated carbyne complex 11a also fragment by 

expelling piperidine, which is not observed with any other complex derived from 1a, 

though carbyne complex 7b gave a peak at m/z 367 indicative of cleavage of the 

carbyne carbon–thiazole bond. 

 

                                                   
57 E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 1998, 27, 413–656. 
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Scheme 5.17 Proposed fragmentation pathways of carbyne complex 7b; compound 7a exhibits similar 

patterns, but not all the corresponding species are observed. 

 

The Fischer-type gold carbene complex 8b yielded neither a molecular ion peak nor 

an [M – Cl]+ peak which is usually observed with LAuCl compounds. Fragmentation 

quickly proceeded beyond this probably very unstable intermediate to also expel a 

methyl group giving the hydroxycarbene (or N-protonated carbeniate) at m/z 386 

which then further loses the CO group yielding protonated (2-phenylthiazol-5-

yl)gold(1+) (m/z 358). 

 

In the gold carbene transfer products 9a and 10b the W(CO)5 unit is lost during frag-

mentation (m/z 627 and 648, respectively). Compound 10b also exhibits a fragment 

resulting from a triple CO loss from the O-coordinated W(CO)5 group (m/z 887); the 

O–W(CO)2 bond seems to be sufficiently strong to allow this fragmentation. Further-

more, 10b yields a synthetically not accessible CO-expulsion (m/z 1078) from the 

carbeniate complex forming a complex similar to 9a, but lacking the W(CO)5 group in 

favour of a second Ph3PAu+ fragment. 

 

The rNHC gold complexes yield an [M – Cl]
+
 base peak (m/z 380 for 13 and 290 for 

16) while 16 also affords a chloride-bridged [(AuL)2(µ-Cl)]+ fragment (m/z 615).  
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Ionic 14 naturally yields the cation as the base peak (m/z 642) accompanied by 

[AuPPh3]
+
 (m/z 459) and [AuL]

+
 (m/z 380) in a ratio of 1:3. 

 

5.3.3 NMR spectroscopy 

 

The nuclear magnetic resonance data of the compounds reported are summarised in 

Tables 5.3 (complexes obtained from 1a), 5.4 (1b) and 5.5 (rNHC complexes). 

 

From the measured 
1
H and 

13
C NMR spectra it can be concluded that the electronic 

distribution within the heterocycle in the Cr and W rNHC complexes has a higher 

contribution of the canonic pyridinylidene form than the Au rNHC complexes which 

more resemble metalated pyridinium salts. 

 

5.3.3.1 
1
H NMR spectroscopy. 

With the only probe near the metal centre being the H-4 proton of the thiazole ring, 

the proton magnetic resonance spectra of the compounds 5a–10b are of limited use in 

estimating their electronic properties. The chemical shift of this proton in the carbene 

and carbyne complexes, except for carbyne complex 7b, is observed at a somewhat 

lower field compared to the free ligand. This effect is most pronounced in the Fischer-

type gold carbene complex 8b (∆δ 1.34)
58

 and carbyne complex 7a (∆δ 1.52). Usually 

it was possible to extract a 
1
JCH coupling constant from the 

13
C-satellite signals of the 

sharp thiazolyl proton resonance. 

 

The H-4 proton of 8b, however, shows a very broad signal at room temperature which 

is unusual for thiazole protons and prompted an investigation into its shape as a 

function of temperature (Figure 5.1). A significant decrease of the signal half-width 

from 10.5 Hz at 10 °C (283 K) to 0.93 Hz at –55 °C (218 K) is observed while the 

shapes of other peaks are not affected, except for a loss of resolution at lower 

temperatures likely due to precipitation from the saturated solution. The chemical 

shifts of all proton resonances vary slightly with temperature assuming that the 

reference signal of CHDCl2 is constant. Again the thiazole proton shows odd 

 

                                                   
58 Chemical shift differences are quoted as absolute values to avoid confusion. 
 The actual sign must be obtained from context. 



Chapter 5 – Carbene and Carbyne Complexes of Tungsten, Transfer to Gold 188

Table 5.3 NMR data of compounds 5a–9a. Coupling constants are given in Hz. 
 

 

 

Compound 

 

C-4

C-5
S

C-2

N

N

C-2 C-3

C-4

C-5C-6

 

N

N

S

O

CO

W

CO

OC
OC

OC

N

 
5a 

N

N

S

O

CO

W

CO

OC
OC

OC

 
6a 

N

N

S

W

Cl

py

OC
CO

py

 
7a 

N

N

S
Au

Ph3P

W CO

CO

OC

OC
CO

 
9a 

      

Nucleus Solvent CD3OD CDCl3 CDCl3 CDCl3 
      

1H (400 MHz) CH thiazole 7.80 (s, 1 H) 8.50 (s, 1JCH 184.0, 1 H) 8.69 (br s, 1 H)a 7.54 (m, 16 H)a,d 
 4- and 3/5-CH2 piperidine 1.66 (m, 6 H) 1.73 (m, 6 H) 1.68 (m, 6 H)a 1.83 (m, 4 H, 3/5-pip);a 

1.62 (m, 2 H, 4-pip)a 
 2/6-CH2 piperidine 3.48 (m, 4 H) 3.67 (m, 4 H) 3.52 (m, 4 H)a 3.01 (m, 4 H)a 

 NMe4
+ / OMe 3.18 (t, 2J14NH 0.59, 12 H, NMe4

+) 4.49 (s, 1JCH 146.7, 3 H, OMe)   
 o-CH PPh3/pyridine   9.08 (m, 4 H, py)a 7.54 (m, 16 H, o-Ph)a,d 

 m-CH PPh3/pyridine   7.33 (m, 4 H, py)a 7.54 (m, 16 H, m-Ph)a,e 

 p-CH PPh3/pyridine   7.81 (tt, 3
JHH 7.65, 

4
JHH 1.67,  2 H, py)a 

7.54 (m, 16 H, p-Ph)a,d 

      

13C{1H} (101 MHz) Carbene / Carbyne 271.8 (s, 1J183WC 85.8) 274.3 (s, 1J183WC 97.4) 245.1 (s)b,c  
 

trans-CO 206.8 (s, 1J183WC 133.1) 202.1 (s, 1J183WC 124.2)  203.5 (s, 1J183WC 151.1)b 
 

cis-CO 203.1 (s, 1J183WC 127.3) 198.1 (s, 1J183WC 126.7) 220.9 (s, 1J183WC 170.7)b 199.4 (s, 1J183WC 131.1)b 

 C-2 thiazole 174.7 (s) 176.6 (s) 169.7 (s)b 182.1 (d, 4JPC 3.9)b 
 C-4 thiazole 148.8 (s) 163.5 (br s) 149.6 (br s)b 150.2 (d, 3JPC 3.4)b 

 C-5 thiazole 150.8 (s, 1J183WC 21.2) 140.2 (s) 142.2 (s)b 156.0 (d, 2JPC 125.2)b 
      

 i-CH phenyl    130.1 (i-C6H5)
b,e 

 o-CH phenyl/pyridine   152.8 (s, py)b 134.3 (d, 2JPC 13.7, PPh3)
b 

 m-CH phenyl/pyridine   125.0 (s, py)b 129.3 (d, 3JPC 11.3, PPh3)
b 

 p-CH phenyl/pyridine   138.1 (s, py)b 131.7 (d, 4JPC 2.0, PPh3)b 
      

 4-CH2 piperidine 50.3 (s) 49.9 (s) 49.5 (s)b 55.3 (s)b 

 3/5-CH2 piperidine 26.2 (s) 25.3 (s) 25.1 (s)b 24.8 (s)b 
 2/6-CH2 piperidine 25.0 (s) 23.8 (s) 24.0 (s)b 23.7 (s)b 

 NMe4
+ / OMe 55.9 (t, 1J14NC 4, NMe4

+) 67.2 (s, OMe)   
      

31P{1H} (121 MHz) PPh3    43.2 (s) 
 

a
 at 300 MHz   

b
 at 75.4 MHz   

c
 
183

W satellites not observed due to low intensity   
d
 multiplet at 7.54 ppm contains both PPh3 and H-4 thiazole signals   

e
 presumably the low-

field part of the expected doublet, the high-field part is obscured by the m-C6H5 signal 
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Table 5.4 NMR data of compounds 5b–10b. Coupling constants are given in Hz. 
 

 

 

Compound 

 

C-4

C-5
S

C-2

N

 

N

S

O

CO

W

CO

OC
OC

OC

N
 

5b 

N

S

O

CO

W

CO

OC
OC

OC

 
6b 

N

S

W

Cl

py

OC
CO

py

 
7b 

N

S

O

Au

Cl

8b 

N

S

O

OC
W

OC
CO

CO

OC

Au

Ph3P

 
10b 

       

Nucleus Solvent CD2Cl2 CDCl3 CDCl3 CD2Cl2 CDCl3 
       

1H (400 MHz) CH thiazole 8.38 (s, 1JCH 187.3, 1 H) 8.83 (s, 1JCH 187.0, 1 H) 7.79 (s, 1 H) 9.21 (br s, 1JCH 192)c 8.62 (s, 1JCH 184.4, 1 H) 

 o-Ph 7.98 (m, 2 H) 8.07 (m, 2 H) 7.91 (m, 2 H) 8.14 (m, 2 H) 8.01 (m, 2 H) 

 m-Ph and p-Ph 7.42 (m, 3 H) 7.51 (m, 3 H) 7.44 (m, 3 H) 7.64 (m, 1 H, p-C6H5); 7.54 
(m, 2 H, m-C6H5) 

7.52 (m, 18 H)b 

 NMe4
+ / OMe 3.35 (m, 12 H, NMe4

+) 4.70 (s, 1JCH 147.8, OMe)  4.84 (s, 1JCH 150.4, OMe)  

 o-CH PPh3/pyridine   9.09 (m, 4 H, py)  7.52 (m, 18 H, PPh3)b 
 m-CH PPh3/pyridine   7.36 (m, 4 H, py)  7.52 (m, 18 H, PPh3)b 

 p-CH PPh3/pyridine   7.83 (tt, 3JHH 7.65, 
4
JHH 1.71, py) 

 7.52 (m, 18 H, PPh3)b 

       

13C{1H} (101 MHz) Carbene / Carbyne 268.2 (s)a 291.6 (s, 1J183WC 103.8) 240.8 (s, 1J183WC 205.7) 248.6 (s) 252.3 (d, 2JPC 133.7) 
 

trans-CO 207.2 (s, 1J183WC 134) 202.1 (s, 1J183WC 117.2)   202.6 (s)a 
 

cis-CO 203.1 (s, 1J183WC 127.4) 197.1 (s, 1J183WC 127.4) 220.1 (s, 1J183WC 168.8)  198.7 (s, 1J183WC 131.2) 
 

      

 C-2 thiazole 168.7 (s) 174.8 (s) 165.7 (s) 183.1 (s) 171.6 (s) 

 C-4 thiazole 160.9 (s) 156.7 (s) 143.9 (s) 168.9 (br s) 150.1 (s) 
 C-5 thiazole 147.7 (s) 152.7 (s) 148.0 (s) 144.4 (br s) 143.6 (s) 

 NMe4
+ / OMe 56.9 (t, 1J14NC 3.8, NMe4

+) 68.7 (s, OMe)  71.7 (s, OMe)  
       
 i-CH phenyl 135.1 (s) 132.8 (s) 133.4 (s) 134.1 (s) 133.8 (s) 

 o-CH phenyl 127.0 (s) 131.9 (s) 130.2 (s) 132.7 (s) 128.9 (s) 
 m-CH phenyl 129.4 (s) 129.2 (s) 129.0 (s) 130.1 (s) 126.9 (s) 

 p-CH phenyl 130.6 (s) 127.1 (s) 126.4 (s) 128.6 (s) 130.7 (s) 
       

 i-CH PPh3     129.8 (d, 1JPC 50.3, PPh3) 

 o-CH PPh3/pyridine   152.7 (s, py)  134.2 (d, 2JPC 13.4, PPh3) 

 m-CH PPh3/pyridine   125.2 (s, py)  129.2 (d, 3JPC 10.8, PPh3) 
 p-CH PPh3/pyridine   138.4 (s, py)  131.5 (d, 4JPC 1.3, PPh3) 
       

31P{1H} (162 MHz) PPh3     38.8 (s) 
 

a
 
183

W Satellites not observed due to low intensity   
b
 Multiplet with m/p-phenyl and PPh3 proton resonances   

c
 Coupling constant obtained from 

1
H NMR spectrum at –55 °C 
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Table 5.5 NMR data of compounds 12–16. Coupling constants are given in Hz. 
 

 

Compound 
C-5

C-6

N

C-2

C-3

C-4

CH3

M

(H3C)

(Ph)

 

N

OC Cr

OC

CO

CO

CO

 
12Cr 

N

OC W

OC

CO

CO

CO

 
12W 

N

Au

Cl

 
13 

N

Au

PPh3

S

O

O O F

F

F

 
14 

N

OC

Cr

CO

COOC

CO

 
 

15 

N Au Cl

 
 

16 
        

Nucleus Solvent CDCl3 CDCl3 / CD2Cl2 (CD3)2CO CD2Cl2 CDCl3 (CD3)2CO 
        

1H (400 MHz) H-2/6 pyridinylidene 8.74 (s, 1 H) 8.74 (s, 1 H) 7.99 (s, 1 H) 8.40 (s, 1JCH 183.8, 1 H) 8.47 (d, 3JHH 4.9, 2 H) 8.32 (d, 3JHH 6.5, 2 H) 

 H-3/5 pyridinylidene 7.38 (s, 1 H) 7.36 (s, 1 H) 7.96 (s, 1 H) 8.06 (s, 1JCH 167.9, 1 H) 7.07 (d, 3JHH 4.9, 2 H) 7.92 (d, 3JHH 6.5, 2 H) 

 o-CH phenyl 7.82 (m, 2 H) 7.81 (m, 2 H)   
 m/p-CH phenyl 

 

7.50 (m, 5 H) 
 

7.45 (m, 5 H) 
7.48 (m, 3 H) 7.44 (m, 15 H)   

 NCH3 3.96 (s, 3 H) 3.86 (s, 3 H) 3.98 (s, 3 H) 4.20 (s, 1JCH 144, 3 H) 3.93 (s, 3 H) 4.30 (s, 1JCH 144, 3 H) 
 CCH3 2.67 (s, 3 H) 2.56 (s, 3 H) 2.55 (s, 3 H) 2.73 (s, 1JCH 130.5, 3 H)   
 PPh3    7.44 (m, 15 H), 

7.55 (m, 2 H, o-PPh3 

  

        

13C{1H} (101 MHz) Carbene 238.0 (br s) 218.9 (s)a 186.5 (s) 199.5 (br s) 241.2 (s) 185.3 (s) 
 

trans-CO 225.7 (s) 206.3 (s, 1JWC 127.3)   226.1 (s)  
 

cis-CO / CF3SO3
– 219.9 (s) 201.5 (s, 1JWC 127.3)  121.5 (q, 1JFC 321, CF3SO3

–) 220.0 (s)  
        

 C-2 pyridinylidene 155.1 (s) 155.6 (s) 149.0 (s) 149.4 (s) 144.2 (s) 140.1 (s) 

 C-3 pyridinylidene 130.9 (s) 133.3 (s) 141.2 (s) 140.2 (s) 
 C-5 pyridinylidene 143.3 (s) 145.0 (s) 146.1 (s) 147.7 (s) 

 

128.5 (s) 
 

139.7 (s) 

 C-6 pyridinylidene 147.0 (s) 149.6 (s) 141.8 (s) 140.4 (s) 144.2 (s) 140.1 (s) 
        

 i-CH phenyl 134.7 (s) 138.6 (s) 138.7 (s) 141.1 (s)   
 o-CH phenyl 129.9 (s) 130.7 (s) 129.5 (s) 129.7 (s)   
 m-CH phenyl 128.2 (s) 129.1 (s) 129.0 (s) 129.3 (s)   

 p-CH phenyl 127.9 (s) 128.9 (s) 128.9 (s) 129.0 (s)   
        

 NCH3 42.7 (s) 43.9 (s) 45.0 (s) 45.7 (s) 45.4 (s) 47.2 (s) 

 CCH3 18.8 (s) 19.7 (s) 19.9 (s) 20.1 (s)   
        

 i-CH PPh3    130.3b   
 o-CH PPh3    134.4 (d, 2JPC 14.0)   

 m-CH PPh3    129.7 (d, 3JPC 11.5)   
 p-CH PPh3    132.3 (d, 4JPC 1.9)   
        

31P{1H} (121 MHz) P(C6H5)3    41.8 (s)   
 

a
 
183

W Satellites not observed due to low intensity   
b
 Presumably the low-field part of the expected doublet, the high-field part is obscured by the m-PPh3 signal 
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 Figure 5.1 
1
H NMR spectrum of 8b (400 MHz) in the region between 4.5 and 9.5 ppm at different temperatures; the spectrum at 298 K has 

  been collected with an independent sample and is not included in the discussion. The y axis shows arbitrary units of intensity. 
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behaviour in that the signal appears at the lowest field at –10 °C (263 K) and slightly 

moves to higher field on both cooling and warming (dδ/dT ≈ 7 ⋅ 10–4 and –6 ⋅ 10–4  

δ K
–1

 on warming to and from –10 °C, respectively). The other signals also ex-

perience slight and sometimes insignificant variations in chemical shift with tem-

perature, however, their trend is always monotonic (cf. dδ/dT values for: OMe 5 ⋅ 10
–4

 

δ K
–1

; ortho-Ph 5 ⋅ 10
–4

 δ K
–1

; meta-Ph 3 ⋅ 10
–4

 δ K
–1

 and para-Ph: 2 ⋅ 10
–4

 δ K
–1

). 

 

It was suspected that in 8b an agostic interaction of H-4 with the gold centre was 

responsible for this anomaly, this phenomenon could then be verified by determining 

the molecular structure in the solid state (vide infra). As there is no coupling partner 

for this proton, no analysis of the line shapes of multiplets or determination of 

coalescence temperature is possible. Agostic Au…H interactions have received little 

attention in literature and only Baukova et al. have reported low-temperature NMR 

spectroscopic experiments.
59

 

 

In the rNHC complexes 12 to 16 proton magnetic resonance spectroscopy is more 

useful. The chemical shift difference of H-2/6 vs. H-3/5 of the organic pyridine ring, 

which are separated by ca. ∆δ 1.4 in the group 6 metal complexes, decreases in the Au 

complexes resulting in an average separation of only ∆δ 0.4 in 16 and 14 and just ∆δ 

0.03 in 13. The phenyl- and N-methyl group resonances experience a small shift to 

lower field indicating a stronger electronic pull by the heterocycle in the gold 

complexes. 

 

5.3.3.2 
13

C{
1
H} NMR spectroscopy. 

A naturally more useful tool for elucidating the electronic and bonding situation in the 

complexes reported are proton-decoupled carbon-13 NMR spectra. In the tungsten 

compounds, 
183

W satellites (natural abundance 26.4%, I = ½) and associated JWC 

coupling constants allow further insight into the metal–carbene, metal–carbyne and 

metal–CO bonding. The carbeniate carbons of 5a and 5b and carbene carbon of 6a 

resonate around δ 270. The carbene signal of 6b appears at lower field (δ 291.6) with  

                                                   
59 (a) T. V. Baukova, L. G. Kuz'mina, N. A. Oleinikova and D. A. Lemenovskii, Izv. Akad. Nauk., 

 Ser. Khim. 1995, 2032–2034; (b) T. V. Baukova, L. G. Kuz'mina, N. A. Oleinikova, 
 D. A. Lemenovskii and A. L. Blumenfel'd, J. Organomet. Chem. 1997, 530, 27–38. 
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JWC coupling constants of 85–100 Hz. In the related complex Ph(MeO)C=W(CO)5 the 

carbene carbon is observed at δ 321.9
60

 thus showing the marked shielding effect of 

the thiazolyl group (∆δ ca. 30 to 48) compared to the phenyl group. 

 

The resonances of the carbyne carbons are observed at δ 245.1 and 240.8 for 7a and 

7b, respectively. The analogous phenyl carbyne signal is observed at higher field  

(δ 263) again showing the shielding effect (∆δ 18 to 23) of the thiazolyl group at the 

carbene carbon, albeit less pronounced than in the carbene complexes. Carbyne 7b 

shows a 
1
JWC of 207 Hz in line with the larger s character of the C(carbyne) hybridi-

sation. The signals for the cis- and trans-CO groups in Fischer-type carbeniates 5a 

and 5b as well as carbenes 6a and 6b are commonly observed at ca. δ 200 and 204, 

respectively, with typical 1
JWC coupling constants of 130 Hz. Carbyne complexes 7a 

and 7b exhibit signals for the cis-CO ligands at δ 220 with a larger coupling constant 

1
JWC of 170 Hz. 

 

The spectrum of the CO-loss product 9a does not exhibit a signal in the carbene 

region but the signals of the thiazole ring are split by JPC coupling (
2
JPC 125 Hz) with 

the triphenylphosphane ligand which is higher than in Ph3PAuBu (
2
JPC 95.4 Hz)

36b
 

indicating more s-character in the overlapping orbitals of the heterocyclic carbene 

complex. Another feature of 9a is the resonance of C-2/6 in the piperidine ring that 

resonates at lower field (δ 55.3) compared to all other compounds derived from 1a (δ 

ca. 50). 

 

The gold carbene signals of the carbene transfer products 8b and 10b at (δ 248.6 and 

252.3, respectively) are observed at higher field strength than in their group 6 

analogue 6b (δ 291.6). In addition, 8b exhibits the most deshielded signals for C-2 

and C-4 (δ 183.1 and 168.9, respectively) in the thiazole ring of the phenylthiazole 

complexes. The C-4 signal of 8b is also broadened to an appreciable extent at room 

temperature – at –25 °C the peak shape is visibly sharper – but a good signal to noise 

ratio could not obtained due to the low solubility of the compound at this temperature; 

a value for the line width is therefore not available. 

                                                   
60 J. A. Connor, E. M. Jones, E. W. Randall and E. Rosenberg, 
 J. Chem. Soc., Dalton Trans. 1972, 2419–2424. 
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The carbene carbon atoms in the rNHC ligands 1,2-dimethyl-5-phenyl-1H-pyridin-4-

ylidene and 1-methyl-1H-pyridin-4-ylidene in 12–16 appear at significantly higher 

field strength (δ 238.0, 218.9, 186.5, 198.5, 241.2 and 185.3 for 12Cr, 12W and 13–

16, respectively) than the Fischer-type carbene signals with heterocyclic side chains in 

6a, 6b, 8b and 10b (at ca. δ 250–290), caused by the absence of an α-hetero atom and 

the concomitant contribution of the pyridinium resonance structure. Again, transfer of 

the ligands to gold causes a greater shielding of the carbon in 13, 14, and 16, the 

difference being most extensive between 15 and 16, showing a ∆δ of 56 towards 

higher field strength. This evidence is most reliable in determining the contributions 

of the respective canonical forms for the 1H-pyridin-4-ylidene ligand; compared to 

the group 6 rNHC complexes, the rNHC gold complexes thus show a higher contri-

bution of the charge-separated 6π-aromatic pyridinium form. 

 

As reflected in the 1H NMR spectra, the 13C NMR chemical shift difference for the 

signals between C-2/6 and C-3/5 of the pyridinylidene group becomes smaller upon 

transfer of the ligand from Cr or W to Au: ∆δ 15.7 in 15 compared to 0.4 in 16. The 

chemical shifts for the carbene carbon and the shift differences of the 2/6- and 3/5-

pyridinylidene carbons of the rNHC gold complexes are also reflected in the 

corresponding resonances for trans-chloro(1-methyl-1H-pyridin-4-ylidene)bis(triphe-

nylphosphane)nickel(1+).
16d

 This chemical shift difference could be attributed to a 

higher contribution of the charge-separated pyridinium form for 13, 14 and 16 

compared to their group 6 metal analogues. 

 

5.3.3.3 
31

P{
1
H} NMR spectroscopy. 

Compounds 9a, 10b and 14 all incorporate a triphenylphosphane ligand and were also 

examined by 
31

P{
1
H} NMR spectroscopy. The data are reported in Tables 5.3–5.5. All 

compounds show one singlet resonance of the phosphorus atom, the signals are all 

observed at a lower field compared to Ph3PAuCl (δ 33.0).61 The cationic rNHC 

complex 14 shows the most deshielded phosphorus (δ 41.8) and Fischer-type gold 

carbene 10b exhibits a resonance (δ 38.8) upfield of the CO-loss product 9a (δ 43.2). 

                                                   
61 G. H. Woehrle, L. O. Brown and J. E. Hutchison, J. Am. Chem. Soc. 2005, 127, 2172–2183. 
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5.3.3.4 Solid-state CPMAS 
13

C NMR spectroscopy. 

The carbeniate complex 5b crystallised with two unique molecules in the asymmetric 

unit (vide infra) and the question then arose whether the environment around them 

was different enough for split signals to be observed in the solid state. Therefore, a 

sample was measured with the Cross-Polarisation Magic Angle Spinning (CPMAS) 

technique utilising spinning frequencies of 5 to 11 kHz for identification of the 

usually observed, strong spinning side bands. Data are summarised in Table 5.6. 

Figure 5.2 shows an array of the measured spectra. 

 

The signals for the thiazole carbons are well resolved while the resonances for the 

phenyl carbon signals, however, do not allow identification of each unique carbon 

atom except for the ipso-peaks, as the signals overlap due to small shift differences. 

Two signals were observed for the [NMe4]
+
 counter ions, which are thought to rather 

stem from different carbons in each unique cation than represent each unique cation. 

In the molecular structure determined by single crystal X-ray diffraction, both 

[NMe4]
+ ions are aligned so that the carbeniate oxygen is equally surrounded by 3 

methyl groups. These methyl groups and the lone CH3 at the “apex” of the [NMe4]
+
-

tetrahedron might give rise to different resonances. 

 

Table 5.6 Solid-state 
13

C NMR data (δ in ppm) at 126 MHz of compound 5b. 

∆δ values (in ppm and Hz) in brackets. 
 

 
N

S

O

CO

W

CO

OC
OC

OC

N

 

 

   

 CP-MAS solid-state NMR spectrum Liquid NMR in CD2Cl2
c
 

   

cis-CO 202.8b 203.1 
   

C-2 thiazole (C2)
a
 171.0, 168.1 (2.92, 367) 168.7 

C-4 thiazole (C3)a 160.7, 160.0 (0.65, 82)0 160.9 

C-5 thiazole (C4)a 148.3, 147.7 (0.65, 82)0 147.9 
   

i-phenyl 134.7, 132.5 (2.26, 284) 135.1 
 

o,m,p-phenyl peak group 
 130.2, 129.2, 128.6,  

127.3, 125.7, 124.4 

 

130.6, 129.4, 127.0 

   

[NMe4]
+
 56.1, 54.4 (1.62, 204) 56.9 

 

a
 See Figure 5.2 for numbering in brackets 

b
 Observed only without cross-polarisation   

c
 see also Table 5.4 
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. Figure 5.2 Solid-state 13C CPMAS NMR spectrum of 5b at different spinning frequencies and conditions, the y axis shows 

.  arbitrary units of intensity. Arrows indicate movement of a spinning side band as the frequency is increased. 
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Signals for the pentacarbonyl group could not be identified in the CP experiments due 

to interfering spinning side bands, but in an experimental run without cross-

polarisation, the cis-CO carbons appear as a broad peak at δ 202.8 while the 

intensities of the thiazolyl and phenyl signals are much weaker. The carbeniate carbon 

and trans-CO, however, could not be observed in any of the spectra. 

 

 

5.4 Single crystal X-ray diffraction 

 

Most complexes and atom connectivities therein were characterised by single-crystal 

X-ray diffraction. Some complexes represent the first examples of their kind while for 

others only few related structures have been reported. Bond lengths and angles for 

compounds 5a–9a are reported in Table 5.7, of compounds 5b–10b in Table 5.8 and 

of rNHC complexes 12–16 in Table 5.9. 

 

5.4.1 Molecular structure of the carbeniate complexes 5a and 5b 

 

Molecular structures of unassociated tungsten carbeniate complexes have not been 

reported before. The only example in the Cambridge Crystallographic Database is a 

report of a hydrogen-bonded dimer of benzoylpentacarbonyltungstate(1–) and the 

related hydroxycarbene H[WBz(CO)5]2
– as a lithium salt.62 Therefore, the crystal and 

molecular structures of 5a (shown in Figure 5.3) and 5b (Figure 5.4) cannot be 

compared to existing data. 

 

The W–C(carbeniate) bonds with values of 2.251(5) Å in 5a and 2.251(3) and 

2.248(3) Å in 5b fall at the longer end of the range for Fischer W–C(carbene) bonds 

(see Section 5.4.3 for an evaluation of the W–C bond lengths of Fischer-type 

pentacarbonyltungsten alkoxycarbenes), although the bonding situation in 5a and 5b 

may also be considered that of an anionic acyl complex. The W–C bonds of the trans-

CO ligands [1.994(5) Å in 5a and 1.994(4) and 2.019(4) Å in 5b] are shortened 

 

                                                   
62 M. W. Esterhuysen and H. G. Raubenheimer, Eur. J. Inorg. Chem. 2003, 3861–3869. 
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Table 5.7 Bond lengths/Å and angles/° of compounds 5a–9a. 
 

N2

C17

C13

C12

N1
C11

C10
S1

W1

O6C6

O5C5 C4O4

C3O3

C2O2

C1

C10O1

W1

O1C21

O2C22 N4py

N3py

Cl1

C1

C10
(C7)

C1

5a, 6a 7a 9a

C10

Au1

P1

W1

O6C6

O5C5 C4O4

C3O3

C2O2

C1

C10O1

H1

O1' 5c

S1

C12

N1
C11

W1
O6C6

O5C5

C4O4

C3O3

C2O2

N2

 
 

 

Compound 
N

N

S

O

CO

W

CO

OC
OC

OC

N  
5a 

N

N

S

OH

CO

W

CO

OC
OC

OC

N

N

N

S

O

OC

W

OC

CO
CO

CO

5c⋅2CHCl3 

N

N

S

O

CO

W

CO

OC
OC

OC

 
6a 

N

N

S

W

Cl

py

OC
CO

py

 
7a 

N

N

S
Au

Ph3P

W CO

CO

OC

OC
CO

 
9a 

      

M1–C1
a
 2.251(5) 2.246(7) 2.231(8), 2.240(9) 1.841(4) 2.042(8), 2.046(8)

f
 

W1–C2
b
 1.994(5) 2.012(7) 2.02(1),0 2.02(1)0  1.95(1),0 1.953(9) 

W1–C3 2.040(6) 2.022(9) 2.06(1),0 2.06(1)0 1.996(4)
c
 2.068(9), 2.08(1)0 

W1–C4 2.031(5) 2.012(8) 2.04(1),0 2.048(9) 1.990(4)
d
 2.03(1),0 2.051(8) 

W1–C5 2.042(6) 2.033(8) 2.053(9), 2.03(1)0  2.042(9), 2.040(9) 

W1–C6 2.027(5) 2.028(8) 2.04(1),0 2.04(2)0  2.03(1),0 2.060(9) 
      

C1–O1 1.248(5) 1.284(8) 1.37(1), 1.34(2)   

C1–C10 1.467(6) 1.437(9) 1.41(2), 1.40(2) 1.411(5)  

N1–C11 1.371(5) 1.362(9) 1.33(2), 1.33(2) 1.359(5) 1.37(1), 1.41(1) 

N1–C12 1.320(6) 1.335(9) 1.36(2), 1.34(2) 1.325(5) 1.33(1), 1.29(2) 

N2–C12 1.358(5) 1.332(9) 1.33(2), 1.33(2) 1.337(5) 1.39(1), 1.37(1) 
      

S1–C10 1.756(4) 1.756(7) 1.759(9), 1.764(8) 1.760(4) 1.725(8), 1.718(8) 

S1–C12 1.743(4) 1.733(7) 1.734(9), 1.75(1)0 1.762(4) 1.726(9), 1.759(9) 

C10–C11 1.367(6) 1.35(1) 1.40(2),0 1.38(2)0 1.367(6)  

N2–ε,  

ε ≡ C12C13C17 

 

0.185(5) 
 

0.146(8) 
 

0.06(2), 0.06(2) 
 

0.074(5) 
 

0.413(9), 0.38(1) 

Other bond 

lengths and 

angles 

 2.418(9) 

(O1–O1′) 
 

3.09(1)0 

(C7–N1) 

 2.523(2) 

(W1–Cl1) 
 

2.276(3) 

(W1–N3) 
 

2.269(3) 

(W1–N4) 

2.265(7), 2.271(7)
 

(W1–N1) 
 

2.283(2), 2.298(2) 

(Au1–P1) 
 

3.2117(5) 

(Au1…Au2) 
 

3.267(2), 3.285(2) 

(Au1A/B…S1A/B)
g
 

3.392(2),3.315(2) 

(Au1A/B…S1B/A)h 
 

177.7(2), 177.9(2) 

(P–Au–C) 
      

C1–W1–C2 173.6(2) 178.9(3) 179.1(4), 178.1(4) 176.7(2)
e
 173.8(3), 176.4(3)

i
 

W1–C1–C10 125.0(3) 124.4(5) 125.2(6), 125.5(6) 175.1(3)  

W1–C1–O1 121.9(3) 125.2(5) 127.5(6), 127.0(7)   
 

Symmetry code: ′ 1 – x, y, 3/2 – z (related by C2-axis) 
a
 M = W for 5a–7a and Au for 9a   

b
 trans-CO of the pentacarbonyltungsten group 

c
 W1–C21   

d
 W1–C22   

e
 Cl1–W1–C1    

f
 Au1–C10 

g
 Intramolecular contact   

h
 Intermolecular contact   

i
 N1–W1–C2 
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Table 5.8 Bond lengths/Å and angles/° of compounds 5b–8b. 
 

C13C12

N1
C11

C10
S1

W1

O6C6

O5C5 C4O4

C3O3

C2O2

C1

C10O1

C1

Au1

Cl1

O1

C10
C1

Au1

P1

O1

C10

W1

O6C6

O5C5

C4O4

C3O3

C2O2

W1

O1C21

O2C22 N4py

N3py

Cl1

C1

C10
C7

(C7)

C1

5b, 6b 7b 8b 10b  
 

 

Compound 
N

S

O

CO

W

CO

OC
OC

OC

N  
5b 

N

S

O

CO

W

CO

OC

OC

OC

 
6b 

N

S

W

Cl

py

OC
CO

py

 
7b⋅CH2Cl2 

N

S

O

Au

Cl

 
8b 

N

S

O

OC
W

OC
CO

CO
OC

Au

Ph3P

 
10b⋅C5H12 

      

M1–C1
a
 2.251(3), 2.248(3) 2.195(5) 1.822(3) 1.976(4), 1.959(4) 2.053(7) 

W1–C2
b
 1.994(4), 2.019(4) 2.029(5)   1.953(7) 

W1–C3 2.040(3), 2.039(4) 2.037(5) 2.001(3)c  2.015(8) 

W1–C4 2.025(4), 2.032(4) 2.041(5) 1.993(3)
d
  2.027(8) 

W1–C5 2.037(4), 2.029(4) 2.053(5)   2.045(8) 

W1–C6 2.040(4), 2.039(4) 2.055(5)   2.045(8) 

      

C1–O1 1.245(4), 1.246(4) 1.330(5)  1.296(5), 1.302(5) 1.247(8) 

C1–C10 1.495(5), 1.507(4) 1.447(7) 1.418(5) 1.430(6), 1.433(6) 1.460(9) 

N1–C11 1.363(4), 1.375(4) 1.356(6) 1.364(4) 1.343(6), 1.350(5) 1.351(9) 

N1–C12 1.316(4), 1.311(4) 1.323(6) 1.308(4) 1.323(5), 1.316(5) 1.314(9) 
      

S1–C10 1.730(3), 1.735(3) 1.746(5) 1.735(3) 1.734(4), 1.730(4) 1.729(7) 

S1–C12 1.731(3), 1.735(3) 1.733(5) 1.729(3) 1.730(4), 1.738(4) 1.740(7) 

C10–C11 1.360(5), 1.353(4) 1.370(7) 1.374(5) 1.374(6), 1.383(6) 1.365(9) 

C12–C13 1.468(5), 1.470(4) 1.455(7) 1.468(4) 1.468(6), 1.469(6) 1.453(9) 
      

Other bond 

lengths and 

angles 

  2.5107(8) 

(W1–Cl1) 
 

2.246(3) 

(W1–N3) 
 

2.254(3) 

(W1–N4) 

2.289(1), 2.279(2) 

(Au1–Cl1) 
 

3.3866(3) 

(Au1A…Au1B),  
 

3.4871(4) 

(Au1B…Au1B′) 
 

2.87, 2.97 

(Au1…H11) 

 

2.205(5) 

(W1–O1) 
 

2.301(2) 

(Au1–P1) 
 

173.1(2) 

(P1–Au1–C1) 
 

127.1(5) 

(O1–C1–Au1) 

 
      

C1–W1–C2 177.7(2), 174.4(2) 175.2(2) 170.9(1)e 174.8(2), 177.5(2)f 175.0(2)g 

W1–C1–C10 123.7(2), 123.1(2) 124.6(3) 169.4(3)   

W1–C1–O1 122.6(2), 123.9(2) 129.4(3)   132.1(4)
h
 

C6H5-C3HNS 

interpl. angle 

005.2(2), 016.3(2) 008.2(2) 021.9(2) 001.9(3), 013.8(3) 005.2(4) 

 

Symmetry code: ′ 2 – x, 1 – y, –z (related by centre of inversion) 
a
 M = W for 5b–7b and Au for 8b and 10b   

b
 trans-CO of the pentacarbonyltungsten group 

c
 W1–C21   

d
 W1–C22   

e
 Cl1–W1–C1   

f
 Cl1–Au1–C1    

g
 O1–W1–C2   

h
 W1–O1–C1 
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Table 5.9 Bond lengths/Å and angles/° of compounds 12W–16. 
 

C6

N1

C2 C3

C4

C5

C1

(C7)

(Ph)

M

 
 

 

 

Compound 

N

OC W

OC

CO

CO

CO

 
 

12W 

N

Au

Cl

 
 

13 

N

Au

PPh3

S

O

O O F

F

F

 
 

14 

N Au Cl

 
 

 

16 
     

Au–P   2.2888(8)  

Au–Cl  2.304(2)  2.314(2) 

M–C4
a
 2.271(4) 1.991(7) 2.049(3)0 1.979(6) 

     

W–C21
b
 2.003(4)    

W–C22 2.031(4)    

W–C23 2.032(4)    

W–C24 2.036(4)    

W–C25 2.038(4)    
     

N1–C2 1.357(5) 1.36(2) 1.359(4) 1.354(8) 

N1–C6 1.355(5) 1.35(2) 1.346(4) 1.361(8) 

C2–C3 1.378(5) 1.38(2) 1.389(4) 1.362(9) 
C3–C4 1.416(5) 1.42(1) 1.395(4) 1.414(9) 

C4–C5 1.414(5) 1.41(2) 1.408(4) 1.422(8) 

C5–C6 1.377(5) 1.38(2) 1.381(4) 1.371(9) 
     

N1–C1 1.475(5) 1.48(1) 1.476(4) 1.472(8) 

C2–C7 1.492(5) 1.50(2) 1.486(4)  
     

C4–Au1–Cl1  178.7(2) 176.92(9) 179.1(2) 

C4–W1–C21 176.1(2)    
C3–C4–C5 113.0(3) 115.2(7) 116.6(3)0 114.2(6) 

C2–N1–C6 119.5(3) 120.1(7) 121.1(3)0 118.8(6) 
     

C6H5-C5H2N 

interplanar angle 

 

068.8(2) 
 

043.3(3) 
 

48.9(2) 
 

 

a
 M = Au or W   

b
 trans-CO of the pentacarbonyltungsten group 

 

compared to the analogous cis-CO bond lengths (this is not significant in the latter 

unique molecule of 5b) owing to the internal electron-donating properties of the 

carbeniate and is in good agreement with the values in H[WBz(CO)5]2
– [1.996(6) Å]. 

 

Another effect seen in the molecular structures of 5b is the significant elongation of 

the C1–C10 bond [1.495(5) and 1.507(4) Å in 5b, cf. 1.467(6) Å in 5a] compared to 

the other carbene complexes derived from ligand 1b with the notable exception of the 

distance in 10b⋅C5H10 [1.460(9) Å]. 
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Figure 5.3 Molecular structure of 5a. 

 

Figure 5.4 Molecular structure of the two asymmetric molecules of 5b. 

 

For all complexes in which the piperidine nitrogen lone pair participates in electron 

delocalisation across the complex molecule, 5a has the largest distance of the piper-

idine nitrogen to the plane generated by its three bonded carbon atoms [0.185(5) Å] 

The angles C12–N2–C13 [118.6(4)°] and C12–N2–C17 [120.0(3)°] are smaller than 

in 7a [121.1(3)° and 122.7(3)°, respectively]. The nitrogen thus exhibits sp
2 hybridi-

sation that has a low, but significant, sp
3
 contribution. The thiazolyl group can still be  
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regarded as an equatorial substituent of the piperidine ring which is arranged in the 

chair conformation. In all other complexes except 9a⋅0.5CH2Cl2 (where the piperidine 

ring is forced out of plane) discrimination between equatorial and axial substitution is 

lost due to an essentially planar nitrogen centre. Electron density supplied by the 

piperidine nitrogen should also be reflected in the bond lengths within the thiazole 

ring which show appropriate trends, yet the differences are always comparable to the 

uncertainties; the angles of N2 with its bonded carbon atoms are also not a sharp 

measure compared to the associated s.u.s. This leaves the distance of N2 to the plane 

of its bonded carbon atoms as a measure of lone pair delocalisation that can be 

estimated with greater confidence. 

 

5.4.2 Molecular structure of H
+
-bridged carbeniate 5c⋅⋅⋅⋅2CHCl3 

 

In an attempt to crystallise the Fischer carbene complex 6a from the crude product 

obtained by method A (see Section 5.6.3.3, p. 231), crystals of a proton-bridged bis-

carbeniate, 5c⋅2CHCl3 shown in Scheme 5.18 and Figure 5.5, were isolated in the 

crystallisation vessel. 
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Scheme 5.18 Schematic representation of 5c⋅2CHCl3. 

 

The formation of 5c⋅2CHCl3 is ascribed to the initial method used in the synthesis. 

With traces of ethanoic acid present, the partial protonation of the carbeniate group 

can be explained. The basicity of 5a may also be large enough to deprotonate 

[HNEt3]
+
 formed in the course of the synthesis. A similar complex – and the only one 

reported thus far, but with a phenyl group bonded to the carbene carbon – was isolated 

after column chromatography on silica gel where OH groups present on the adsorbent 

are thought to have protonated the carbeniate.62 
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Figure 5.5 An asymmetric and symmetry generated molecule constituting 5c⋅2CHCl3; primed atoms 

are related by a two-fold rotation of symmetry code 1 – x, y, 
3
/2 – z; H1 has been arbi-

trarily located at the right-hand molecule, the disordered [NMe4]
+
 cation has been 

omitted for clarity. 

 

Complex 5c⋅2CHCl3 crystallises in the monoclinic space group C2/c with one 

molecule in the asymmetric unit. By applying a two-fold rotation the other molecule 

involved in the hydrogen bond is generated with the C2 axis located between the 

oxygen atoms forming the hydrogen bond. This also strictly means that the symmetry 

of the crystal is higher than that of the molecule and the proton must therefore 

randomly be located on either of the oxygen atoms leading to space group symmetry 

in the overall crystal structure. 

 

One N–C bond of the cation lies on a C2 axis which induces a higher symmetry than 

[NMe4]
+
 possesses in this orientation, leading to disorder of the other thee methyl 

groups equally over two sites. The imine nitrogen within the thiazolyl group is 

engaged in an interaction with a hydrogen atom of a trichloromethane solvent 

molecule. 

 

Given the overall half-protonated state of the carbeniate, the C–O bond distance of the 

heterocyclic ligand [1.284(8) Å] is a roughly intermediate between an effective dou-

ble bond as in the carbeniate complexes [1.248(5) Å in 5a; 1.245(4) and 1.246(4) Å in 

5b] and more of a single bond as in the carbene complexes [1.37(1) and 1.34(2) Å in  
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6a and 1.330(5) Å in 6b]. There is no evidence that different discrete locations (and 

hence differing C–O bond lengths) of the oxygen atom exist for the hydroxycarbene 

and carbeniate of the dimer. 

 

The W–C bond of the trans-CO ligand [2.012(7) Å] has a comparable bond length to 

the W–C bond of the cis-CO ligands [averaged 2.02(1) Å] which is in contrast to the 

structures of the carbeniates 5a and 5b as well as of H[WBz(CO)5]2
– 62

 where the 

trans- and cis-CO W–C bonds are of different length, but in agreement with the 

carbene complexes 6a and 6b which also show no difference between these bond 

lengths in the cis- and trans-CO ligands. In line with a structure intermediate between 

a carbeniate and carbene complex, the distance of the piperidine nitrogen to the plane 

of its three bonded carbons in 5c⋅2CHCl3 [0.148(8) Å] is comparable to 5a and 5b 

[0.185(5) Å] and shorter than in 9a⋅0.5CH2Cl2 [0.413(9) and 0.38(1) Å, however, the 

piperidine rings are turned out of plane in this complex], but higher than in all other 

complexes. 

 

5.4.3  Crystal and molecular structures of the Fischer-type methoxy-

carbene complexes 6a and 6b 

 

The tendency of 6a and 6b to crystallise varies widely. While long needles of 6b can 

be obtained easily by the usual layering technique, this approach failed for 6a due to 

its high solubility and a crystal was only found when a side fraction of the chromato-

graphic purification that only contained a few mg of an oil, was left for several weeks 

at room temperature. The dataset of the crystal, although of low quality, nonetheless 

gave valuable insight into the bonding situation. The two asymmetric molecules of 6a 

shown in Figure 5.6 are related by a pseudo-centre of symmetry that is not reflected in 

the space group symmetry while 6b crystallises with one molecule per asymmetric 

unit (Figure 5.7). The W–C(carbene) bonds [2.231(8) and 2.240(9) Å in 6a and 

2.195(5) Å in 6b] fall within the typical range observed for Fischer-type penta-

carbonyltungsten alkoxycarbene complexes [average bond length 2.20(4) Å for 99 

compounds in the Cambridge Crystallographic Database]. One bond length in 6a is 

significantly elongated compared to that in 6b in what may reflect the influence of the 

piperidine nitrogen atom. 
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Figure 5.6 Molecular structure of 6a. 

 

 

Figure 5.7 Molecular structure of 6b. 

 

A similar effect is observed in the molecular structure of the synthetic intermediate 

pentacarbonyl[(Z)-1-methoxy-3-(methylamino)but-2-en-1-ylidene]tungsten, used in 

preparing the rNHC complex 12W, in which the W–C bond [2.255(3) Å] is also at the 

longer end of the range found as a result of the lone pair on the methylamino group 

supplying additional electron density. In this complex the formal C–C double bond 

[1.416(4) Å] is longer than the formal C–N single bond [1.319(4) Å] to the 

methylamino group (Scheme 5.19).
63 

                                                   
63 E. Stander, S. Cronje and H. G. Raubenheimer, Dalton Trans. 2007, 424–429. 
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Scheme 5.19 (a) Resonance structures for compound 6a and (b) a related tungsten carbene complex; 

the structures to the right cause elongation of the W–C(carbene) bond. 

 

In the molecular structure of 6a and 6b, the W–C bonds of the trans-CO ligands are 

similar [2.02(1) Å each; average for cis-CO 2.05(2) Å in 6a as well as 2.029(5) Å for 

trans-CO and 2.047(9) for the average cis-CO in 6b, respectively]. The C–O bond in 

the carbene ligand is further lengthened [1.37(1) and 1.34(2) Å for 6a and 1.330(5) Å 

for 6b] when compared to 5a and 5b [average 1.246(5) Å] showing the lower bond 

order, though still being shorter than a regular C–O single bond.
64

 

 

The distances of N2A and N2B to the plane of their bonded atoms in 6a are 0.06(2) Å 

each, these atoms thus essentially exhibit trigonal planar geometry in contrast to 5a or 

5c⋅2CHCl3, where N2 is still somewhat pyramidal [analogous distances 0.185(5) and 

0.146(8) Å]. 

 

The packing of 6b is shown in Figure 5.8. The domains of pentacarbonyl- and 

phenylthiazole groups ordered by π-stacking of the thiazole rings (distance of the ring 

centroids 3.715 Å) each run along the c-axis. 

 

Comparison with the molecular structure of 6b with that of Ph(EtO)C=W(CO)5
65

 

reveals the same W–C bond length [2.20(2) Å] as in 6b. The carbene–phenyl bond 

[1.59 Å] is elongated by > 0.1 Å compared to 6a [1.41(2) and 1.40(2) Å] and 6b 

[1.447(7) Å] showing lacking electronic participation of the phenyl group. However, 

as only atom positions but, strangely, neither bond lengths (which were calculated 

                                                   
64 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, 

 J. Chem. Soc., Perkin Trans. 2 1987, S1–S19. 
65 R. J. Staples, D. M. Potts and J. C. Yoder, Z. Kristallogr. 1995, 210, 381–382. 
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Figure 5.8 Packing diagram of 6b viewed along the c-axis showing alignment of the molecules to 

form carbonyl and (hetero)aromatic domains. 

 

from the positions in this discussion) or associated s.u.s were given for these bonds, 

the uncertainty associated with them cannot be estimated but it is believed that the 

difference is significant as bond length s.u.s for the elements involved in 

contemporary determinations are in the range of 0.03 Å.
66

 

 

The ethoxy(phenyl)methylidene ligand also exerts little effect on the trans-CO, the 

W–CO bond length is similar to the cis-CO ligands. The situation in 

Fc(MeO)C=W(CO)5
67

 is more like that in the heterocyclic carbenes with W–C 

[2.215(4) Å], C–O [1.315(5) Å] and C(carbene)–C(Fc) bond [1.465(6) Å] bond 

lengths similar to those of 6a and 6b. The latter bond length suggests electronic parti-

cipation of the ferrocene sandwich in contrast to that in the phenyl(ethoxy)carbene 

discussed above. Again, the trans-W–CO bond [2.018(5) Å] is not significantly 

different than those for the cis-CO ligands [average 2.04(1) Å]. 

                                                   
66 (a) G. J. Kruger, P. J. Olivier and H. G. Raubenheimer, Acta Crystallogr., Sect. C: Cryst. Struct. 

 Commun. 1996, 52, 624–626; (b) G. J. Kruger, P. J. Olivier, R. Otte and H. G. Raubenheimer, 

 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996, 52, 1159–1161. 

67 J. G. López-Cortés, L. F. Contreras de la Cruz, M. C. Ortega-Alfaro, R. A. Toscano, 
 C. Alvarez-Toledano and H. Rudler, J. Organomet. Chem. 2005, 690, 2229–2237. 
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5.4.4 Molecular structures of the carbyne complexes 7a and 7b 

 

Carbyne complexes 7a and 7b were characterised by X-ray diffraction. Both 

compounds crystallise in the triclinic space group P with one molecule in the 

asymmetric unit. In contrast to 6a and 6b, 7a (shown in Figure 5.9) crystallises more 

readily. Complex 7b (Figure 5.10) was originally isolated as an oil but crystallised 

from a failed reaction (the attempted synthesis of AuC6F5-adduct of 7b; vide supra) as 

the dichloromethane solvate forming red needles of 7b⋅CH2Cl2. The W–C(carbyne) 

bond of 7a [1.841(4) Å] is comparable to that in 7b [1.822(3) Å], ∆ 5 s.u. 

 

Overall, the metal–carbyne carbon bonds of both the new complexes are com- 

parable other carbyne complexes. [W(≡CPh-4-I)Cl(CO)2{tris(pyridin-2-yl)phosphane-

κ2
N:N′}] is the only determined molecular structure for a tungsten carbyne with cis-

pyridine substituents, the W–C bond length is 1.806(6) Å.68 For the two crystal 

structures determined of the (4-methylphenyl)carbyne complex 3, the solvent-free 

molecular structure has a W–C(carbyne) bond of 1.806(9) Å while in the thf solvate it 

is 1.83(2) Å similar to 7a and 7b. Related bond lengths in two crystallographically 

independent molecules of [W(≡CPh-4-I)Cl(CO)2(tmeda)] (tmeda = N,N,N′,N′-tetra-

methylethan-1,2-diamine), 1.807(8) and 1.818(8) Å,69 are comparable to that in 

7b⋅CH2Cl2, but this observation might be affected by the absence π-acceptor ligands 

on the metal. 

 

The cis-CO groups in 7a and 7b are not affected by the nature of the carbyne ligand. 

Their average W–CO bond length of 1.995(5) Å is in line with other pyridine- and 

tmeda-chelated carbyne complexes
68,69

 suggesting the presence (but not the nature) of 

a trans-nitrogen donor as the only significant influence on the CO ligands. The better 

electron-donating ability of 1a owing to the exocyclic piperidinyl nitrogen atom is 

only observed in the W–Cl bond distance which is significantly longer in 7a [W–Cl 

2.523(2) Å] when compared to 7b⋅CH2Cl2 [2.5107(8) Å]. Both W–Cl distances in 7a 

and 7b are nonetheless sometimes significantly shorter than in other reported tungsten 

carbyne complexes such as the above mentioned complexes where bond lengths of 

                                                   
68 F.-W. Lee, M. C.-W. Chan, K.-K. Cheung and C.-M. Che, 

 J. Organomet. Chem. 1998, 563, 191–200. 
69 M. P. Y. Yu, K.-K. Cheung and A. Mayr, J. Chem. Soc., Dalton Trans. 1998, 2373–2378. 
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Figure 5.9 Molecular structure of 7a. 

 

Figure 5.10 Molecular structure of 7b⋅CH2Cl2; the solvent molecule is omitted for clarity. 

 

2.542(2), 2.536(2) and 2.534(2) Å are found for the tris(pyridin-2-yl)phosphane- and 

the two unique molecules of the tmeda-chelated complexes. The former complex is 

the only one suitable for comparison of the W–N distances, 2.254(5) and 2.255(5) Å, 

which are comparable with the values in 7a [2.276(3) and 2.269(3) Å] and 7b 

[2.246(3) and 2.254(3) Å]. The structures of the 4-methylphenyl carbyne complex, 3, 

also contain W–N bonds of similar length, on average 2.26(1) Å. 
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The angle at the carbyne carbon deviates from the expected linearity in 7a [175.1(3)°] 

and 7b⋅CH2Cl2 [169.4(3)°], this might be attributed to packing forces and thus a 

hybridisation deviating from the ideal sp-model. Compound 7b exhibits the largest 

interplanar angle between the thiazolyl and phenyl groups [21.9(2)°] in all complexes 

derived from ligand 1b, albeit still less pronounced than in phenylpyrazolinylidene 

Fischer-type carbenes of gold (vide infra).
37

 

 

The distance of N2 to the plane of its bonded carbon atoms in 7a is 0.074(5) Å and 

thus comparable to the situation found in 6a [0.06(2) Å], but different to 5a [0.185(5) 

Å] and 5c⋅2CHCl3 [0.146(8) Å]. 

 

5.4.5  Crystal and molecular structure of a gold Fischer-type carbene 

complex, 8b 

 

Complex 8b crystallises with two unique molecules in the asymmetric unit, that are 

linked by aurophilic interactions [Au1A…Au1B 3.3866(3) Å]. This dimer is further 

linked to its symmetry-generated image (related to the former by a centre of inver-

sion located between Au1B and Au1B′, Figure 5.11), via an aurophilic bond 

[Au1B…Au1B′ 3.4871(4) Å, ′ = 2 – x, 1 – y, z]. The molecules of 8b thus form an 

ABB′A′ pattern of four gold atoms in a chain. In this manner Au1A experiences only 

a single crossed-sword type aurophilic bond while Au1B bridges both Au1A by a 

shorter as well as symmetry generated Au1B′ by a longer Au…Au interaction of  
 

 
Figure 5.11 Complex 8b forming a tetrameric zigzag chain in the solid state, two molecules are 

  asymmetric; primed atoms are related by an inversion centre located between Au1B and 

  Au1B′ (symmetry code 2 – x, 1 – y, –z). 
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crossed-sword [Cl1A–Au1A…Au1B–Cl1B 88.20(4)°] and (necessitated by the centre 

of inversion) antiparallel [Cl1B–Au1B…Au1B′–Cl1B′ 180°] orientations, respectively. 

Compound 8b is the only neutral Fischer-type carbene complex of gold known to 

undergo aurophilic interactions in the solid state. 

 

The determination of the bonding parameters in the molecular structures of 6b and 8b 

allow comparison of the different ways in which the units W(CO)5 and AuCl 

influence the carbene ligand. Only a few reports have dealt with molecular structures 

of related gold carbene complexes. The complex Ph(Me2N)C=AuCl
70

 and a series of 

pyrazolin-3-ylidene complexes
37

 (Scheme 5.20) have been reported. The various  

Au–C distances in these compounds [2.02(3) for the former and 1.981(6) and 1.991(5) 

Å for the latter complexes] are comparable to those in 8b [1.976(4) and 1.959(4) Å]. 

Comparison of 8b to Ph(Me2N)C=AuCl is hampered by the large s.u. and the better 

electron-donating property of the NMe2 group compared to the OMe group. 

 

N N

Au
Cl

R 

Scheme 5.20 Pyrazolin-3-ylidene gold(I) complexes synthesised by Kessler et al.
37

 R = phenyl or 

  4-(dimethylamino)phenyl. 

 

The Au–Cl bond of the unique molecule engaging in two aurophilic interactions 

[Au1B–Cl1B 2.279(2) Å] is shorter than in the pyrazolylidene complexes mentioned 

above [Au–Cl 2.307(2) and 2.299(2) Å], in the instance of Ph(Me2N)C=AuCl [Au–Cl 

2.30(1) Å] comparison is again hampered by the same shortcomings mentioned 

above. This is in contrast to findings for the polymorphs of chloro[tris(4-methyl-

thiazol-2-yl)phosphane]gold (see Chapter 3, p. 87) where aurophilic interactions cause 

lengthening of the Au–Cl bond distances. 

 

Another feature that discriminates between 8b and the pyrazolinylidene complexes, is 

the torsion angle between the heterocycle and the phenyl group. For 8b, as in most 

other complexes derived from ligand 1b, the angles are 1.9(3)° and 13.8(3)° but for 

the pyrazolinylidene compounds they ranges between 45.9° and 47.7°. 

 

                                                   
70 U. Schubert, K. Ackermann and R. Aumann, Cryst. Struct. Commun. 1982, 11, 591–594. 
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Already observed in the 
1
H NMR spectrum of 8b, the agostic Au…H interaction of the 

thiazole hydrogen atom with the gold centre [Au…H distances 2.87 and 2.97 Å] was 

verified in the molecular structure of the compound. This additional stabilising effect 

could be larger than that of a Au…S interaction which, in principle, would be possible 

if the thiazole ring was flipped by 180° and which is usually observed in gold com-

plexes containing thiazole rings, e.g. 9a⋅0.5CH2Cl2 (vide infra) and all but one of the 

tris(thiazol-2-yl)phosphane gold complexes in Chapter 3. The crystal structures of bis-

aurated diphenylmethane and 1,2-diphenylethane, which were examined by low-

temperature NMR, show Au…H distances of 2.6 to 3.0 Å.
59

 Additionally, Friedrichs 

and Jones published a comprehensive study of hydrogen interactions in the crystal 

structures of bis(thione)gold(1+) complexes with different anions,
71

 the authors found 

Au…H contacts of similar length (2.80–3.07 Å) as in 8b. In a more recent study, 

agostic Au…H interactions (distances 2.83–2.88 Å), that also compare favourably with 

8b, were found in the crystal structures of Au
I
 pyridinethiolate complexes.

72
 The 

experimental results in the latter publication were also accompanied by theoretical 

calculations. 

 

The C–O bond distances of the carbene ligands in 8b [1.296(5) and 1.302(5) Å] may 

be shorter compared to the tungsten carbene complex 6b [1.330(5) Å] (the former 

difference is just significant, the latter just not). Whether this is caused by the lower 

ability of AuI to effect π-back donation5,6,73 cannot be answered based on this data 

alone but probably requires theoretical calculations.  

 

5.4.6  Molecular structure of the decarbonylated gold complex 

9a⋅⋅⋅⋅0.5CH2Cl2 

 

The crystallised product of an unprecedented CO-elimination (cf. Scheme 5.11)  

from a gold acyl complex that occurred on transfer of the carbene ligand from 

W(CO)5 to Ph3PAu
+
, 9a⋅0.5CH2Cl2, is shown in Figure 5.12. The structure also  

                                                   
71 (a) S. Friedrichs and P. G. Jones, Z. Naturforsch. B: Chem. Sci. 2004, 59, 49–57; 

 (b) S. Friedrichs and P. G. Jones, Z. Naturforsch. B: Chem. Sci. 2004, 59, 793–801; 

 (c) S. Friedrichs and P. G. Jones, Z. Naturforsch. B: Chem. Sci. 2004, 59, 1429–1437. 

72 M. T. Räisänen, N. Runeberg, M. Klinga, M. Nieger, M. Bolte, P. Pyykkö, M. Leskelä 

 and T. Repo, Inorg. Chem. 2007, 46, 9954–9960. 

73 P. K. Hurlburt, J. J. Rack, J. S. Luck, S. F. Dec, J. D. Webb, O. P. Anderson and S. H. Strauss, 
 J. Am. Chem. Soc. 1994, 116, 10003–10014, and references cited therein. 
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Figure 5.12 Molecular structure of 9a⋅0.5CH2Cl2; a pseudo-C2 axis passes between the Au and S 

atoms; for clarity, one phenyl ring each of the triphenylphosphane ligands is only repre-

sented as the ipso carbon atom and the CH2Cl2 solvent molecule has been omitted. 

 

incorporates a nitrogen atom of a C-5-aurated thiazole ring coordinating to a W(CO)5 

fragment. Despite readily accessible 5-lithiothiazoles,44 no complexes of this kind 

have been reported, only carbenes and carbeniates of gold comprising 2-thiazolyl 

ligands are known.
66,74

 The Au–C bond lengths for the two unique molecules of 9a are 

2.042(8) and 2.046(8) Å; Au–C distances of known 2-thiazolylidene complexes vary 

from 1.92(2) Å in the cationic complex bis(4-methyl-3H-thiazol-2-ylidene)gold(1+) 

tetrachlorozincate(2–)
66b

 to 2.05(1) Å in bis(3,4-dimethyl-3H-thiazol-2-ylidene)-

gold(1+) triflate,66a averaging 2.00 Å. 

 

The neutral complex 9a⋅0.5CH2Cl2 crystallises in the chiral orthorhombic space group 

P212121 despite being achiral itself, two molecules are crystallographically indepen-

dent. They are, however, approximately related by a pseudo-C2 axis of rotation. An 

aurophilic bond of 3.2117(5) Å links the two asymmetric molecules which is 

astoundingly short given the steric demand of the ligands – the less crowded 

Ph3PAuCl crystallises without any aurophilic interaction.
75

 Such associations of bulky 

                                                   
74 (a) H. G. Raubenheimer, F. Scott, M. Roos and R. Otte, J. Chem. Soc., Chem Commun. 1990, 

 1722–1723; (b) H. G. Raubenheimer, F. Scott, G. J. Kruger, J. G. Toerien, R. Otte, W. van Zyl, 

 I. Taljaard, P. Olivier and L. Linford, J. Chem. Soc., Dalton Trans. 1994, 2091–2097. 

75 N. C. Baenziger, W. E. Bennett and D. M. Soboroff, Acta Crytallogr., Sect. B: Struct. Crystallogr. 

 Cryst. Chem. 1976, 32, 962–963. 
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molecules have been observed before. An example is Ph3PAuS[Cr(CO)5]Ph, where a 

benzenethiolate bridges Cr(CO)5 and Ph3PAu
+
 fragments, two molecules are them-

selves linked by an aurophilic bond of 3.1869(4) Å.
36b

 

 

Due to steric restraints ensuing from the tight association of dimers of 9a⋅0.5CH2Cl2, 

the piperidine rings are twisted out of plane relative to the thiazole ring, thus hamper-

ing the delocalisation of the nitrogen lone pair as is reflected in the large distances of 

N2A and N2B to the plane of their bonded carbon atoms. The C–N2–C angles are in 

the range of 110.3(6)° to 115.5(7)° which is closest to sp
3
-hybridisation for all com-

plexes derived from 1a, as well as N2–C12 bond distances [1.39(1) and 1.37(1) Å] 

that are close to the value of a C–N single bond.64 The concomitant shortening of the 

N1–C12 bonds [1.33(1) and 1.29(2) Å] that should be observed in this case is – as 

was mentioned with compounds 5a and 5b – small compared to the s.u.s involved. 

The same drawback holds true for the N1–C11 bonds [1.37(1) and 1.41(1) Å] in the 

thiazole ring, which should be longer owing to greater localisation of the formal 

double bonds (C10–C11 and N1–C12). 

 

The pentacarbonyltungsten fragment is coordinated to the imine nitrogen atom of the 

thiazole ring and is consequently not lost during carbene transfer like in the Fischer-

type gold carbene 8b. Crystal and molecular structures incorporating W(CO)5 groups 

coordinated to a thiazole nitrogen atom have not been published, but de Jongh has 

prepared a series of N-3-coordinated 2-aminoazole pentacarbonylchromium and 

tungsten complexes for the first time and also reported their crystal- and molecular 

structures.
52a

 The W–N bond lengths in 9a⋅0.5CH2Cl2 [2.265(7) and 2.271(7) Å] are 

comparable to the similar bond in (2-aminobenzothiazole-κN
3)pentacarbonyltungsten, 

2.274(4) Å. The trans-CO ligand forms a very short W–C bond in 9a⋅0.5CH2Cl2 

[1.95(1) and 1.953(9) Å] compared to the analogous distances for the cis-CO ligands 

[2.03(1) to 2.08(1) Å] which is corroborated in the results for the 2-

aminobenzothiazole complex mentioned above [1.960(5) Å and 2.026(5)–2.054(5) Å 

for cis- and trans-W–CO bonds, respectively]. 

 

As has been documented in the chapters preceding this one (see Chapters 3 and 4, pp. 

88 and 124), the structure of 9a⋅0.5CH2Cl2 is no exception when it comes to Au…S 
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interactions with a thiazole or thiophene sulfur atom. The Au and S atoms are located 

at the corners of a distorted tetrahedron involving Au1A, Au1B, S1A and S1B in 

which the intramolecular Au…S contacts [3.267(2), 3.285(2) Å] are shorter than the 

intermolecular associations [3.392(2) and 3.315(2) Å]; nevertheless, all are below the 

sum of the van der Waals radii of the concerned atoms. The distance between the 

sulfur atoms in the dimer is 3.943 Å and therefore longer than the sum of the van der 

Waals radii, it was not refined. Despite being very poor donors for the formation of 

coordinative bonds (no S-coordination of thiophenes or any thia-azoles to gold has 

been reported), the thiazole sulfur atoms apparently assist in stabilising the dimer and 

in overcoming steric repulsion. 

 

5.4.7 Molecular structure of the carbene transfer product 10b⋅⋅⋅⋅C5H12 

 

Compound 10b was isolated as crystals of a red pentane solvate. The Ph3PAu
+
 group 

coordinates to what essentially amounts to be an acyl carbon while the displaced 

W(CO)5 fragment becomes uniquely attached to the acyl oxygen atom. A reaction 

process wherein Ph3PAu+ first attacks the W–C(carbene) bond and W(CO)5 sub-

sequently migrates to the oxygen atom affording a C(Au)/O(W) product has been 

postulated after this reaction was first explored by Esterhuysen.
51a

 However, con-

clusive proof in support of this mechanism was not available and the products isolated 

could not be unequivocally characterised. N-coordination of W(CO)5 was observed in 

the related carbene-imidate complexes. 

 

Compound 10b⋅C5H12 shown in Figure 5.13 therefore confirms the existence of the 

proposed intermediate product on the way to W(CO)5-free gold acyls. This result is 

even more surprising when the presence of a free imine-nitrogen in 10b, that is unable 

to keep the W(CO)5 fragment away from the carbeniate oxygen, is taken into account. 

Such an association probably occurred in the related process when the pseudo-

abnormal carbene complex 9a was formed. Complex 10b may also be seen as a 

pseudo-carbene complex since W(CO)5 is isolobal to H
+
. 
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Figure 5.13 Molecular structure of 10b⋅C5H12. 

 

The Au–C bond length in 10b⋅C5H12 [2.053(7) Å] is comparable to the uncoordinated 

complex Ph3PAu–C(O)Ph [2.085(5) Å],51b the W(CO)5 fragment is therefore not as 

effective as an alkyl cation in discouraging the acyl structure (c) in Scheme 5.21 and 

does not enhance the contribution of the carbene structure (a). The Au–C distance is 

therefore longer than the same distances in the proper Fischer-type carbene complex 

8b [1.976(4) and 1.959(4) Å]. 

 

Au

O

R

W(CO)5

Au

O

R

W(CO)5

Au

O

R

W(CO)5

a b c  

Scheme 5.21 Contributing resonance structures in 10b. 

 

The Au–P bond in 10b⋅C5H12 is somewhat shorter [2.301(2) Å] than that found in the 

free benzoyl complex Ph3PAu–C(O)Ph [2.313(1) Å] while the C–O bond in 

10b⋅C5H12 [1.247(8) Å] is just longer compared to Ph3PAu–C(O)Ph [1.200(7) Å].
51b

 

This effect may be caused by both the influence of the coordinated W(CO)5 group as 

well as the heteroaromatic substituent. 

 

Another report of a structurally related, O-metal coordinated gold carbene complex is 

that of a (pentanoyl)(triphenylphosphane)gold moiety O-coordinating to one rhenium  
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atom of the heptacarbonylbis(µ-diphenylphosphanido)dirhenium fragment.
76

 The di-

mensions at the gold centre [Au–C 2.05(2) Å, Au–P 2.301(3) Å] and the Re–O–C 

angle [131.1(7)°] are virtually identical to related bonds and angles in 10b⋅C5H12  

[W–O–C 132.1(4)°]; the C–O [1.23(2) Å] bond in the pentanoylgold complex is 

comparable to that in 10b⋅C5H12 [C–O 1.247(8) Å]. 

 

Oxygen, classified as a hard donor atom, is usually not suitable for coordination to a 

W(CO)5 fragment and only a few structure determinations have been reported, often 

with the statement that the complex was only of limited stability or had to be handled 

in a CO atmosphere. Ph3PO–W(CO)5 is the only neutral structurally characterised 

complex known.
77

 The W–O distance in this complex is longer [2.244(3) Å], but the 

W–O–P angle of 134.3(2)° is comparable to the situation in 10b⋅C5H12. The anion 

[W(OPh)(CO)5]
–
 in its [Et4N]

+
-salt, on the other hand, exhibits W–O bond distances 

of 2.18(2) Å and 2.20(2) Å from two asymmetric molecules and W–O–C angles of 

131(2)° and 134(2)°78
 that are similar to the situation in 10b⋅C5H12. A comparable  

W–O distance of 2.168(9) Å but somewhat more acute W–O–C angle [128.4(7) °] 

than in 10b⋅C5H12 is found in the sterically crowded [Et4N]+-salt of pentacarbonyl-

(2,6-diphenylphenoxy)tungstate(1–).79 

 

The W–C bond length of the trans-CO group in 10b⋅C5H12 is shortened considerably 

[1.953(7) Å] compared to the analogous cis-CO bond lengths in the compound 

[2.015(8)–2.045(8) Å], it is of the same length as the analogous bonds in 

9a⋅0.5CH2Cl2 [1.95(1) and 1.953(9) Å], Ph3PO–W(CO)5 and [W(phenolate)(CO)5]
–
 

compounds. 

 

In 10b⋅C5H12 the thiazole group is oriented the same way as in 8b, i.e. their alignment 

enables a possible Au…H (distance 2.84 Å) rather than a Au…S contact which would 

be in line with the distances observed in other crystal structures.71 The 1H NMR 

spectrum at room temperature, however, yields a sharp signal for the proton involved. 

                                                   
76 H.-J. Haupt, D. Petters and U. Flörke, J. Organomet. Chem. 1998, 553, 497–501. 

77 J. B. Cook, B. K. Nicholson and D. W. Smith, J. Organomet. Chem. 2004, 689, 860–869. 

78 D. J. Darensbourg, K. M. Sanchez, J. H. Reibenspies and A. L. Rheingold, 

 J. Am. Chem. Soc. 1989, 111, 7094–7103. 

79 D. J. Darensbourg, B. L. Mueller, C. J. Bischoff, S. S. Chojnacki and J. H. Reibenspies, 
 Inorg. Chem. 1991, 30, 2418–2424. 
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5.4.8 Molecular structure of 11a⋅⋅⋅⋅0.50.50.50.5C4H8O 

 

Various complexes wherein a Au
I
 centre coordinates to a tungsten carbyne have been 

reported. The product 11a⋅0.5C4H8O, however, is the first AuCl adduct to be 

crystallographically characterised. Selected bond lengths and angles are reported in 

Table 5.10. Given the low quality of the diffraction dataset, comparison of the 

structure must be limited to the distances of the heavier atoms. 

 

The structure shown in Figure 5.14 contains a W–Au–C metallacycle with the  

W–C1–C10 angle now bent and C1, concomitantly, re-hybridised to allow efficient 

coordination to the AuCl moiety. The gold atom forms bonds to both tungsten and 

carbon atoms [Au–W 2.7826(7), Au–C 2.03(1)] and is also stabilised by a, now 

familiar, Au…S interaction [Au…S 3.361(3) Å] with the thiazole ring. The bond  

lengths in the triangle are almost identical to those in [µ-(4-MePh)C][AuC6F5]-

[WBr(bipy)(CO)2],
80

 [Au–W 2.7829(1), Au–C 2.080(3) Å]  

 

Table 5.10 Bond lengths/Å and angles/° of compound 11a⋅0.5C4H8O. 
 

C17

N2

C13

C12

N1
C11

C10
SC1WCl1

py

OC CO

py Au

Cl2  
 

    

W–Au 2.7826(7) S–C10 1.75(2) 

W–C1 1.89(2) S–C12 1.75(2) 

W–Cl1 2.451(3) C1–C10 1.45(2) 

Au–C1 2.03(1) C10–C11 1.37(2) 
    

Au–Cl2 2.281(3) N1–C11 1.36(2) 

Au…S 3.361(3) N1–C12 1.31(2) 

W–N3 2.269(9) C12–N2 1.33(2) 
W–N4 2.246(9) Au–W–C1 42.9(4) 

    

W–C21 (CO) 1.97(1) Au–C1–C10 117.1(8) 

W–C22 (CO) 1.98(2) Cl1–W–C1 152.3(3) 
    

W–Au–Cl2 146.01(9) C1–Au–W 42.8(4) 

W–C1–Au1 90.4(5) C1–Au–Cl2 171.2(4) 

W–C1–C10 152.4(8) 

Cl1–W–Au 160.85(8) 
N2–ε 

ε ≡ C12 C13 C17 

 

0.17(2) 

    

 

                                                   
80 G. A. Carriedo, V. Riera, G. Sánchez and X. Solans, 
 J. Chem. Soc., Dalton Trans. 1988, 1957–1962. 
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Figure 5.14 Molecular structure of 11a⋅0.5C4H8O, the thf molecule has been omitted for clarity. 

 

suggesting little influence of the carbyne ligand. Indeed, the distance of N2 to the 

plane defined by its three bonded carbon atoms [0.17(2) Å] is comparable to the 

tungsten carbeniate 5a [0.185(5) Å]. 

 

Compared to the free carbyne complex, 7a [W–Cl 2.523(2) Å], the W–Cl bond in 

11a⋅0.5C4H8O [2.451(3) Å] is shortened considerably upon coordination of AuCl. The 

other bond lengths at the tungsten centre are fairly similar to those in 7a, and the  

Au–Cl [2.281(3) Å] bond is of similar length to the ones found in 8b [2.289(1) and 

2.279(2) Å]. 

 

5.4.9 Molecular structures of rNHC complexes 12W, 13 and 14 
 

As mentioned previously no gold complexes of rNHCs are known the first X-ray 

crystal and molecular structures of such compounds were determined in this study. In 

the molecular structure of 13, which is a substituted rNHC complex (shown in Figure 

5.15), the Au–C bond distance [1.991(7) Å] is comparable to and the Au–Cl bond 

[2.304(2) Å] insignificantly shorter (5 s.u.) than in the simple unsubstituted example 

16 (vide infra). 

 

The Au–C bond of cationic 14 (Figure 5.16), is significantly longer [2.049(3) Å] than 

in the neutral rNHC gold chloride compounds 13 [1.991(7) Å] and 16 [1.979(6) Å] 

and comparable to those found in the two asymmetric molecules of the cationic NHC  
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Figure 5.15 Molecular structure of 13. 

 

 

Figure 5.16 Molecular structure of 14. 

 

complex [1,3-bis(1,1-dimethylethyl)imidazol-2-ylidene](triphenylphosphane)gold(1+) 

hexafluorophosphate [2.044(4) and 2.034(4) Å], also showing the trans influence of a 

phosphane ligand.
81

 The Au–P distance in 14 [2.2888(8) Å] is significantly longer 

than the same distances in the latter NHC compound [2.275(1) and 2.274(1) Å] 

highlighting the greater trans-influence of the one-N, six-membered rNHC ligand. 

                                                   
81 M. V. Baker, P. J. Barnard, S. J. Berners-Price, S. K. Brayshaw, J. L. Hickey, B. W. Skelton 
 and A. H. White, J. Organomet. Chem. 2005, 690, 5625–5635. 
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Though first synthesised in 1992 by Aumann,
8a

 structures of rNHC–W(CO)5 adducts 

have not yet been reported. In order to establish the first such molecular structure and 

to examine the influence the rNHC ligand exerts on the W(CO)5 fragment, the 

molecular structure of 12W, wherein the AuCl or AuPPh3
+ fragments are replaced by 

isolobal W(CO)5, has been determined. Furthermore, the structural elucidation of this 

complex would possibly enable the observation of differences in the ligand geometry 

when coordinated to different metals and aid in the assignment of the main con-

tributing canonic structure. It has been mentioned above that the gold complexes show 

smaller chemical shift differences between the 2/6- and 3/5-CH resonances in their 
1
H 

and 13C NMR spectra when compared to their W(CO)5 analogues. The carbene 13C 

NMR resonances also appear at higher field strength in the rNHC gold complexes. 

 

The impact of the transition metal fragment on the bond lengths in the pyridinylidene 

backbone was of particular interest, especially as reflected in the C–N bond lengths of 

the six-membered heterocycle that should decrease owing to the higher bond order if 

the charge-separated pyridinium resonance becomes more important compared to the 

classic neutral carbene contributing structure in one of the two complex families. 

However, only insignificant positive and negative differences within the molecular 

structures of the rNHC complexes can be observed when the individual structures are 

compared. X-ray crystallographic analysis, therefore, does not seem an effective 

method for determining the main contributing structures in rNHC complexes or  

for discrimination between different contributions in a series of compounds.16f 

Differences highlighted by NMR measurements are thus not coherently substantiated 

by bond distance variations from X-ray studies. 

 

Complex 12W shown in Figure 5.17 exhibits the expected octahedral geometry 

around the tungsten centre, the largest deviation from linearity for a given set of 

mutually trans-located ligands is between two CO ligands [C22–W–C24 170.7(2)°]. 

This deviation can be explained by steric influence of the nearby phenyl- and 

pyridinylidene groups as the other related angle, where the CO groups are further 

away from the rNHC ligand, is close to the ideal value [C23–W–C25 178.0(2)°] The 

pyridinylidene ring forms an angle of 26.5(2)° with the C21-C22-C24-W (i.e. the 

carbon atoms of the CO ligands whose C–W–C angle deviates most from linearity and 
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Figure 5.17 Molecular structure of 12W. 

 

the carbon atom of the trans-CO ligand) plane, thus resembling an intermediate 

between staggered and eclipsed conformation. 

 

The effect of the rNHC ligand on the trans-CO W–C distance [2.003(4) Å] in 12W is 

comparable to the related one-N six-membered normal-NHC complexes of tungsten 

where the distance was found to be 2.014 and 2.007 Å for two asymmetric molecules 

in one complex82 and 1.993 Å in another.83 The W–C(carbene) distances of the latter 

complexes, 2.287 and 2.285 Å as well as 2.277(5) Å, are also comparable to the same 

distance in 12W [2.271(4) Å]. 

 

The interplanar angle of the phenyl group with the pyridinylidene ring is larger in 

12W [68.8(2)°] than in the rNHC gold complexes [43.3(3)° in 13 and 48.9(2)° in 14] 

reflecting the higher steric demand of the W(CO)5 fragment. 

 

5.4.10 Molecular structure of rNHC complex 16 

 

It came as somewhat of a surprise that the molecular structure of 16, shown in Figure 

5.18, consists of discrete molecules, devoid of any close, sub-van der Waals inter-

actions. Given the low steric demand of the 1-methyl-1H-pyridin-4-ylidene ligand, 

this complex seemed a natural and almost certain candidate for Au…Au interactions 

(or possibly Au…Cl contacts as in the molecular structure of 2b(iii) in Chapter 3). 

                                                   
82 R. Aumann, M. Kößmeier, K. Roths and R. Fröhlich, Synlett 1994, 1041–1044. 
83 R. Aumann, K. Roths and M. Grehl, Synlett 1993, 669–671. 
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Figure 5.18 Molecular structure of 16. 

 

Indeed, as no such interactions were found in any of the rNHC gold complexes 

reported here, further examples are needed to determine whether this is an intrinsic 

feature of these complexes or an incidental result. The Au–C bond length in 16 

[1.979(6) Å] is comparable to the NHC complex bis(1H-pyridin-2-ylidene)gold(1+) 

chloride [2.03(2) and 2.02(2) Å],
84

 and is also similar to the same bond in 8b 

[1.976(4) and 1.959(4) Å]. However, the Au–Cl bond in 16 [2.314(2) Å] is clearly 

longer than in 8b [2.289(1) and 2.279(2) Å] and Ph3PAuCl
73

 [2.279(3) Å] but roughly 

comparable to the same separation in gold pyrazolin-3-ylidene complexes [2.307(2) 

and 2.299(2) Å],37 indicating the superior trans-influence of the rNHC ligand com-

pared to the heterocyclic carbene in compound 8b. 

 

 

5.5 Conclusions 

 

It was demonstrated for the first time that relatively stable heterocyclic carbene and 

carbyne complexes can be synthesised by reacting 5-thiazolyllithium reagents with 

W(CO)6 and then subjecting the obtained carbeniate to either alkylation or formal 

oxide abstraction. The metal–carbon triple bond of the obtained carbyne complexes 

acts as a ligand towards various AuI centres, it was shown to be a better coordination 

site for AuCl than the imine nitrogen of the 2(1-piperidinyl)thiazole group. However, 

complications from homoleptic rearrangement arise when (tht)AuC6F5 is used. 

                                                   
84 H. G. Raubenheimer, J. G. Toerien, G. J. Kruger, R. Otte, W. van Zyl and P. Olivier, 
 J. Organomet. Chem. 1994, 466, 291–295. 
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Neutral and anionic heterocyclic Fischer-type carbene complexes derived from such 

thiazoles deprotonated in an unusual position were also prepared, although the 

necessary final alkylation step afforded only poor yields which might be a result of 

competing N-alkylation. The carbene ligands in these complexes were readily trans-

ferred to gold(I) electrophiles in some unexpected pathways: the thiazolyl substituent, 

for example, is effective in stabilising the first characterised product of an acyl trans-

fer to gold in which a W(CO)5-fragment becomes attached to an oxygen atom of  

the carbene group. This molecular structure is unprecedented. Additionally, with a 

different ligand a unique CO-expulsion reaction occurred during carbene transfer to 

AuI. This result complements rare synthetic CO-insertion reactions found by Cinellu 

et al. and Komiya et al. and the discovery could provide a further incentive to ratio-

nalise and develop this neglected area in gold chemistry. Furthermore, the new 

tungsten and gold carbene complexes with heterocyclic side chains supplement the 

limited data available for this class of compounds, or, as for the carbeniate salts and 

the pseudo-carbene complexes 9a and 10b, are the first ones structurally charac-

terised. 

 

Finally, carbene transfer reactions could be successfully expanded to include the 

unusual remote N-heterocyclic carbenes (rNHCs) to afford the first examples of 

rNHC gold complexes. The compounds are very stable and could find further appli-

cation in homogeneous catalysis as has been already shown for rNHC-complexes of 

group 10 metals. Based on observations in the NMR spectra it was concluded that 

relative to the group 6 metal rNHC complexes, a higher contribution of the metalated 

pyridinium structure with a formal Au–C single bond is found in the gold rNHC com-

plexes. As other techniques are not able to discriminate between the pyridinium- and 

classic carbene structures of the ligand, theoretical calculations could shed more light 

on the bonding situation in this compound class. All transfer products as well as a 

tungsten rNHC complex have been structurally characterised and constitute the first 

molecular structures of rNHC complexes determined for these metals, again 

expanding the data available on this topic. 
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5.6 Experimental 

 

5.6.1 Crystal structure determinations 

 

For measurement and data processing conditions refer to Chapter 2, p. 57. Data and 

parameters of the crystal structure determinations are summarised in Tables 5.11 to 

5.13. 

 

In the structure of 3⋅C4H8O, the thf molecule could not be modeled due to extensive 

disorder. The thf molecule in 11a⋅0.5C4H8O was disordered across an inversion 

centre, and the geometry did not refine satisfactorily. Both solvent molecules were 

removed using the Squeeze routine in the Platon set of programmes.
85

 

 

In the structure of 5c⋅2CHCl3 the bridging H1 was refined with an occupancy factor of 

0.5 resembling the bulk average. The N–C bond distances of the tetramethyl-

ammonium cation were restrained by a SADI instruction to have the same length in 

the case of the disordered carbon atoms. 

 

The pentane in 10b⋅C5H12 did not exhibit satisfactory bond lengths and the pairs of 

CH3–CH2 and CH2–CH2 bonds were hence each restrained by a SADI instruction to 

have the same length. Slight disorder of the solvent molecule was not resolved and 

only the main site was refined. 

 

In the crystal structure of 13, the carbene carbon became non-positive definite upon 

anisotropic refinement, it was restrained to approximate isotropic behaviour by an 

ISOR instruction. The identity of the atom to be indeed carbon can be secured by the 

synthetic pathway and the structure of 12W, to which it is directly related, as well as 

NMR and MS measurements. 

 

                                                   
85 A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13. 
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Table 5.11 Crystallographic parameters of 3–7a. 
 

Compound 3 3⋅C4H8O 5a 5c⋅2CHCl3 6a 7a 
       

Empirical formula C20H17ClN2O2W C20H17ClN2O2W⋅C4H8O C18H23N3O6SW C18H24N3O6SW⋅C14H11–

N2O6SW⋅2CHCl3 

C15H14N2O6SW C21H21ClN4O2SW 

Mr 536.66 608.76 593.30 1352.2 534.19 612.78 

Crystal habit Needle Needle Prism Needle Block Prism 

Crystal colour Orange Orange Orange Orange Orange Orange 
       

Crystal dimensions/mm 0.32 × 0.09 × 0.04 0.43 × 0.10 × 0.07 0.19 × 0.15 × 0.13 0.10 × 0.03 × 0.01 0.44 × 0.34 × 0.06 0.18 × 0.10 × 0.03 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic Triclinic 

Space group C2/c (No. 15) P21/c (No. 14) C2/c (No. 15) C2/c (No. 15) P21/n (No. 14) P (No. 2) 
       

a/Å 26.655(4) 7.1554(7) 22.688(4) 26.273(7) 7.363(2) 8.657(2) 
b/Å 7.127(2) 12.665(2) 9.098(2) 11.491(3) 19.382(4) 8.917(2) 

c/Å 23.559(4) 25.983(3) 21.294(3) 16.925(5) 24.478(6) 16.718(4) 
       

α/° 90 90 90 90 90 98.687(4) 

β/° 121.419(2) 95.697(2) 92.674(2) 111.940(4) 90.636(3) 96.490(4) 

γ/° 90 90 90 90 90 118.054(3) 
       

V/Å3 3819(1) 2343.0(4) 4391(2) 4740(2) 3493(2) 1100.5(4) 

Z, Dc/Mg m–3 8, 1.867 4, 1.726 8, 1.795 4, 1.895 8, 2.032 2, 1.849 

µ(MoKα)/mm–1 6.205 5.072 5.395 5.336 6.767 5.490 

No. of reflections, 

 unique 

10600,  

3889 

12751,  

4730 

12017,  

4456 

13592,  

5220 

18558,  

6943 

11537,  

4490 
Rint 0.0431 0.0343 0.0351 0.0507 0.0428 0.0289 

       

hkl index range –33 to 23, ± 8, –20 to 29 ± 8, –11 to 15, ± 32 ± 28, –8 to 11, –24 to 26 –33 to 27, –14 to 12, ± 21 –9 to 8, –17 to 24, ± 30 ± 10, ± 11, –20 to 21 

θ range/° 1.79–26.40 1.79–26.38 1.80–26.42 1.67–27.18 1.66–26.43 2.52–26.62 

Data, restraints, parameters 3340, 0, 236 4387, 0, 237 4102, 0, 266 4051, 6, 290 6190, 0, 451 4202, 0, 271 
       

F(000) 2064 1192 2320 2616 2048 596 

R1, wR2 [I > 2σ(I)]a 0.0500, 0.1295 0.0658, 0.1414 0.0387, 0.0974 0.0525, 0.1153 0.0589, 0.1613 0.0268, 0.0661 

R1, wR2 (all data)a 0.0586, 0.1349 0.0704, 0.1429 0.0415, 0.1000 0.0731, 0.1245 0.0642, 0.1660 0.0293, 0.0671 
       

Goodness-of-fit 1.064 1.392 1.080 1.025 1.079 1.082 

Max. and min. transmission 0.789, 0.514 0.718, 0.560 0.497, 0.314 0.949, 0.576 0.679, 0.278 0.852, 0.627 
Largest differential peak and 

hole/eÅ–3 

4.715, –2.208 2.242, –2.587 3.448, –3.509 3.446, –1.245 3.998, –4.155 2.535, –0.883 

 

a
 w = 1/[σ2

(Fo
2
) + (aP)

2
 + bP] where P = (Fo

2
 + 2Fc

2
)/3 



Chapter 5 – Carbene and Carbyne Complexes of Tungsten, Transfer to Gold 227

Table 5.12 Crystallographic parameters of 5b–10b⋅C5H12 
 

Compound 5b 6b 7b⋅CH2Cl2 8b 9a⋅0.5CH2Cl2
b 10b⋅C5H12 

       

Empirical formula C19H18N2O6SW C16H9NO6SW C22H16ClN3O2SW⋅CH2Cl2 C11H9AuClNOS C31H26AuN2O5PSW 

⋅0.5CH2Cl2 

C33H21AuNO6PSW⋅C5H12 

Mr 586.26 527.15 690.66 435.67 992.85 1043.5 
Crystal habit Needle Needle Needle Prism Prism Prism 

Crystal colour Orange Dark orange Red Orange Yellow Orange 
       

Crystal dimensions/mm 0.48 × 0.12 × 0.03 0.56 × 0.05 × 0.03 0.57 × 0.08 × 0.07 0.21 × 0.13 × 0.10 0.29 × 0.11 × 0.04 0.13 × 0.09 × 0.07 

Crystal system Orthorhombic Orthorhombic Triclinic Monoclinic Orthorhombic Triclinic 

Space group Pbca (No. 61) Pccn (No. 56) P (No. 2) P21/c (No. 14) P212121 (No. 19) P (No. 2) 
       

a/Å 12.602(1) 17.336(2) 9.1923(7) 14.223(2) 10.952(2) 11.5111(7) 
b/Å 19.302(2) 26.055(3) 9.2850(8) 11.5834(9) 21.853(2) 12.0437(8) 

c/Å 34.983(3) 7.4114(9) 15.704(2) 14.811(2) 26.999(3) 13.8342(9) 
       

α/° 90 90 101.302(1) 90 90 100.005(1) 

β/° 90 90 92.103(1) 106.345(1) 90 102.850(1) 

γ/° 90 90 105.720(1) 90 90 94.026(1) 
       

V/Å3 8510(2) 3347.5(7) 1259.4(2) 2341.5(3) 6462(2) 1829.6(2) 

Z, Dc/Mg m–3 16, 1.830 8, 2.092 2, 1.821 8, 2.472 8, 2.041 2, 1.894 

µ(MoKα)/mm–1 5.565 7.059 5.013 12.947 8.332 7.293 

No. of reflections, unique 47050, 8711 17901, 3425 13500, 5154 13330, 4783 36568, 13206 19796, 7474 

Rint 0.0383 0.0406 0.0237 0.0287 0.0435 0.0346 
       

hkl index range –8 to 15, –23 to 24, ± 43 ± 21, –28 to 32, –9 to 8 ± 11, ± 11, ± 19 ± 17, –9 to 14, ± 18 –12 to 13, –26 to 27, –25 

to 33 
± 14, ± 15, ± 17 

θ range/° 1.99–26.40 2.35–26.39 2.31–26.45 2.27–26.39 1.51–26.43 1.73–26.42 

Data, restraints, parameters 7556, 0, 531 3009, 0, 226 4908, 0, 298 4444, 0, 291 12003, 0, 784 6485, 2, 444 
       

F(000) 4544 2000 668 1616 3768 1000 

R1, wR2 [I > 2σ(I)]a 0.0241, 0.0547 0.0312, 0.0697 0.0241, 0.0572 0.0234, 0.0548 0.0365, 0.0815 0.0397, 0.0870 

R1, wR2 (all data)a 0.0309, 0.0572 0.0366, 0.0719 0.0257, 0.0579 0.0260, 0.0560 0.0427, 0.0837 0.0473, 0.0898 
       

Goodness-of-fit 1.049 1.102 1.081 1.040 1.022 1.075 

Max. and min. transmission 0.855, 0.548 0.806, 0.468 0.703, 0.469 0.273, 0.190 0.715, 0.406 0.598, 0.462 
Largest differential peak and 

hole/eÅ–3 

1.606, –0.409 2.371, –1.309 1.616, –0.541 1.211, –0.625 3.471, –1.147 3.713, –1.101 

 

a
 w = 1/[σ2

(Fo
2
) + (aP)

2
 + bP] where P = (Fo

2
 + 2Fc

2
)/3; 

b
 Flack x parameter –0.005(7) 
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Table 5.13 Crystallographic parameters of 11a⋅0.5C4H8O–16. 
 

Compound 11a⋅0.5C4H8O 12W 13 14 16 
      

Empirical formula C21H21AuCl2N4O2SW⋅0.5C4H8O C18H13NO5W C13H13AuClN C32H28AuF3NO3PS C6H7AuClN 

Mr 881.25 507.14 415.66 791.55 325.54 
Crystal habit Plate Prism Needle Needle Prism 

Crystal colour Orange Yellow Colourless Colourless Colourless 
      

Crystal dimensions/mm 0.10 × 0.09 × 0.04 0.10 × 0.06 × 0.06 0.28 × 0.09 × 0.03 0.51 × 0.08 × 0.07 0.06 × 0.04 × 0.02 

Crystal system Triclinic Monoclinic Monoclinic Monoclinic Triclinic 
Space group P (No. 2) P21/c (No. 14) P21/n (No. 14) P21/c (No. 14) P (No. 2) 

      

a/Å 10.603(2) 12.5486(8) 10.412(2) 8.4149(4) 5.7342(7) 

b/Å 11.881(2) 10.1357(6) 7.227(1) 16.9169(9) 7.3911(8) 
c/Å 11.932(2) 14.7976(9) 17.365(2) 21.224(2) 9.257(2) 

      

α/° 70.039(2) 90 90 90 109.679(2) 

β/° 83.042(2) 112.760(1) 104.892(2) 97.182(1) 101.668(2) 

γ/° 69.143(3) 90 90 90 92.292(2) 
      

V/Å3 1320.2(3) 1735.54(18) 1262.8(3) 2997.6(3) 359.27(7) 
Z, Dc/Mg m–3 2, 2.126 4, 1.941 4, 2.186 4, 1.754 2, 3.009 

µ(MoKα)/mm–1 10.208 6.683 11.832 5.084 20.748 

No. of reflections,  unique 14111, 5400 18120, 3557 6755, 2567 17310, 6109 3852, 1462 

Rint 0.0489 0.0367 0.0338 0.0258 0.0284 
      

hkl index range ± 13, ± 14, ± 14 ± 15, ± 12, ± 18 –12 to 13, –7 to 9, –17 to 21 ± 10, –20 to 21, –23 to 26 ± 7, ± 9, ± 11 

θ range/° 1.82–26.48 1.76–26.40 2.08–26.43 1.93–26.40 2.40–26.35 

Data, restraints, parameters 4425, 6, 289 3175, 0, 228 2377, 6, 147 5499, 0, 381 1386, 0, 83 
      

F(000) 828 968 776 1552 292 

R1, wR2 [I > 2σ(I)]a 0.623, 0.1199 0.0255, 0.0551 0.0388, 0.0814 0.0235, 0.0553 0.0254, 0.0530 

R1, wR2 (all data)a 0.806, 0.1259 0.0306, 0.0570 0.0435, 0.0832 0.0276, 0.0568 0.0279, 0.0540 
      

Goodness-of-fit 1.218 1.089 1.149 1.055 1.080 

Max. and min. transmission 0.666, 0.489 0.669, 0.569 0.704, 0.128 0.700, 0.471 0.662, 0.469 
Largest differential peak and 

hole/eÅ–3 

2.242, –2.976 1.352, –0.544 3.038, –2.448 1.315, –0.389 1.274, –0.784 

 

a
 w = 1/[σ2

(Fo
2
) + (aP)

2
 + bP] where P = (Fo

2
 + 2Fc

2
)/3;
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5.6.2 General procedures and reagents 
 

For a summary of used instrumentation refer to Chapter 2, p. 59. 

 

Water was deoxygenised by boiling it for a short time and then bubbling nitrogen 

through the hot liquid for 15 min. Excess 1-bromo-2,2-diethoxyethane was destroyed 

in an ammonia/propan-1-ol solution, excess methyl triflate was destroyed with a 

propan-1-ol/potassium 1-propoxide solution. 

 

Chromatography under inert conditions was conducted in jacketed columns with 

propan-1-ol circulating at the appropriate temperature. The adsorbent was flushed 

with dry Et2O, dried overnight in vacuo and all apparatus was kept under an argon 

atmosphere during the separation. The dimensions of the columns refer to adsorbent 

height × column diameter. 

 

Chemicals were obtained from the following suppliers and used without further 

purification if not stated otherwise: Aluminium oxide for chromatography (150 mesh 

Brockmann grade I), butyllithium solution in hexanes, 1-iodo-4-methylbenzene, 

methyllithium solution in Et2O, Florisil (synthetic magnesium silicate adsorbent) 100–

200 mesh, hexacarbonyltungsten, 4-methylbenzenesulfonic acid monohydrate and 

benzene thiocarboxamide were obtained from Aldrich Chemical Co. 1-Bromo-2,2-

diethoxyethane, ethanoyl chloride, silica gel 60 for column chromatography and 

tetramethylammonium chloride were obtained from Merck KG. Trimethyloxonium 

tetrafluoroborate, (2,5-dimethoxyphenyl)methanol, sodium tetrafluoroborate and so-

dium trifluoromethanesulfonate were obtained from Fluka AG. Anhydrous sodium 

sulfate and anhydrous magnesium sulfate were obtained by Saarchem. Thin layer 

chromatography plates on polyethylene or aluminium support were obtained by 

Macherey-Nagel GmbH & Co. KG. 

 

The gifts of 4-chloro-1-methylpyridinium triflate and (5-butyl-1,2-dimethylpyridin-4-

ylidene)pentacarbonylchromium by Dr. Elzet Stander-Grobler and chloro(dimethyl-

sulfane)gold by Dr. Ulrike E. I. Horvath are greatly acknowledged. 
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5.6.3 Syntheses of the compounds 

 

cis-Dicarbonylchloro[(4-methylphenyl)methylidyne]-cis-bis(pyridine)tungsten, 3,86 4-

methylphenyllithium,
87

 pentacarbonyl(1-methoxyethylidene)chromium,
88

 N-methyl-

ethanenitrilium tetrafluoroborate,
89

 pentacarbonyl(1-methoxyethylidene)tungsten,
88

 

pentacarbonyl[(Z)-1-methoxy-3-(methylamino)but-2-en-1-ylidene]chromium,
63

 penta-

carbonyl[(Z)-1-methoxy-3-(methylamino)but-2-en-1-ylidene]tungsten,
63

 1-(thiazol-2-

yl)piperidine,45 chloro(tetrahydrothiophene)gold90 and (pentafluorophenyl)(tetra-

hydrothiophene)gold90b were prepared according to the literature procedures. 

 

5.6.3.1 Lithium pentacarbonyl{[2-(1-piperidinyl)thiazol-5-yl]carbonyl}-

tungstate(1–), 4a. 

The compound was prepared separately following the procedure for 5a (vide infra) 

employing 1-(thiazol-2-yl)piperidine (872 mg, 5.18 mmol), butyllithium (3.40 ml of a 

1.54 M solution in hexanes; 5.24 mmol, 1.01 eq.) and W(CO)6 (1.86 g, 5.29 mmol, 

1.02 eq.) in 30 ml thf. The golden-red foam obtained after evaporation of the solvent 

in vacuo was washed with 50 ml pentane. The yield was not determined as the solid 

still contained unknown amounts of thf, due to this no further analyses were per-

formed. 

The compound is nearly insoluble in dichloromethane once aged (colour changes 

from orange-red to ochre). 

 

5.6.3.2 Tetramethylammonium pentacarbonyl{[2-(1-piperidinyl)thiazol-5-yl]-

carbonyl}tungstate(1–), 5a. 

In a Schlenk tube 1-(thiazol-2-yl)piperidine (1.068 g, 6.35 mmol) was dissolved in 30 

ml thf and cooled to –78 °C. Butyllithium (6.1 ml, 1.05 M in hexanes, 6.41 mmol, 1.0 

eq.) was added dropwise via syringe and after stirring for 1 h solid W(CO)6  

(2.172 g, 6.17 mmol, 0.97 eq.) was added, whereupon the light yellow solution slowly 

                                                   
86 G. A. McDermott, A. M. Dorries and A. Mayr, Organometallics 1987, 6, 925–931. 

87 M. P. R. Spee, J. Boersma, M. D. Meijer, M. Q. Slagt, G. van Koten and J. W. Geus, 

 J. Org. Chem. 2001, 66, 1647–1656. 

88 T. Ito, in Synthesis of Organometallic Compounds: A Practical Guide, ed. S. Komiya, 

 Wiley, Chichester, 1997. 

89 S. C. Eyley, R. G. Giles and H. Heaney, Tetrahedron Lett. 1985, 26, 4649–4652. 

90 (a) A. Haas, J. Helmbrecht and U. Niemann, in Handbuch der Präparativen 

 Anorganischen Chemie, ed. G. Brauer, Enke, Stuttgart, 1978, p. 1014; 
 (b) R. Uson, A. Laguna and M. Laguna, Inorg. Synth. 1989, 26, 85–91. 
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turned brownish-red. After 2.5 h the temperature had risen to –25 °C and the cooling 

bath was removed. The suspension was stirred for another 1.5 h at r.t., whereupon the 

solvents were removed in vacuo. A golden-red foam of the lithium salt of the title 

compound was obtained which was washed with 60 ml pentane to remove excess 

W(CO)6. In an extraction funnel under inert atmosphere, [NMe4]Cl (819 mg,  

7.47 mmol, 1.2 eq.) was dissolved in 20 ml deoxygenised water and 100 ml CH2Cl2 

was added. The lithium salt of the title compound was dissolved in 50 ml deoxy-

genised water affording a blood-red solution which was filtered through a pad of 

Celite into the extraction funnel. A first black-red organic phase was separated, some 

yellow precipitate of the title compound remained in the extraction funnel. Another 

extraction with CH2Cl2/ethanenitrile 4:1 yielded a red organic phase. Both fractions 

were evaporated to dryness, the CH2Cl2 extract formed an ochre precipitate while the 

MeCN/CH2Cl2 fraction yielded an orange crystalline solid. Total yield 2.0 g (55%). 

Crystals suitable for X-ray diffraction were grown from the MeCN/CH2Cl2 fraction in 

ethanenitrile layered with Et2O. Found: C, 36.4; H, 4.0; N, 7.1. C18H23N3O6SW 

requires C, 36.4; H, 3.9; N, 7.1%. 

M.p. 145 °C (dec.) 

The compound is soluble in ethanenitrile and methanol, sparingly soluble in CH2Cl2 

and thf but insoluble in Et2O or alkanes. 

 

5.6.3.3 Pentacarbonyl{methoxy[2-(1-piperidinyl)thiazol-5-yl]methylidene}-

tungsten, 6a. 

Method A: 

A Schlenk tube was charged with 5a (1.016 g, 1.71 mmol), the solid dissolved in 40 

ml ethanenitrile and the solution cooled to –40 °C. NEt3 (0.25 ml, 1.73 mmol, 1 eq.) 

and freshly distilled MeCOCl (0.15 ml, 2.1 mmol, 1.2 eq.) were added in quick 

succession, the ethanoyl chloride caused the solution to become purple instantly. 

Stirring was continued for 1 h after which 1 ml methanol was added and the solution 

warmed to r.t. The reaction mixture was allowed to stir for another 30 min., after 

which reaction progress was checked by tlc (silica adsorbent, Et2O as eluent). A 

yellow (Rf 0.63) and a purple (Rf 0.41) product was observed, attributed to the title 

compound and unreacted (ethanoyloxy)carbene, respectively. Stirring was continued 

for 2.5 h with another quantity of MeOH (ca. 5 ml), after which all volatiles were 



Chapter 5 – Carbene and Carbyne Complexes of Tungsten, Transfer to Gold 232
 

removed in vacuo with help of methylbenzene to azeotropically remove any ethanoic 

acid present. Most of the crude product was purified by chromatography under inert 

conditions on silica gel (25 × 5 cm) at –30 °C, the column was first eluted with Et2O 

and then CH2Cl2. Only very little pure product could be obtained, a mixed fraction 

contained both products. After evaporating all fractions to dryness, the mixed fraction 

was dissolved in methanol and stored in the freezer overnight which yielded more 

product. Total yield 150 mg (16%). A crystal suitable for X-ray diffraction was 

obtained by storing a side fraction from the chromatographic purification at r.t. which 

caused the oily residue to yield few orange needles. Recrystallisation of the crude 

product from trichloromethane layered with hexane afforded only few crystals of 

5c⋅2CHCl3. 

 

Method B: 

In a Schlenk flask 5a (927 mg, 1.56 mmol) was suspended in 20 ml CH2Cl2 and  

the suspension was cooled in an ice bath. A solution of [Me3O][BF4] (250 mg,  

1.69 mmol, 1.08 eq.) in 40 ml ethanenitrile was slowly added via a dropping funnel. 

The first drops added caused dissolution of 5a. After 3 hours all solvents were re-

moved in vacuo. The crude product was subjected to chromatography under inert con-

ditions on a silica gel column (9 × 5 cm) at –20 °C eluting with 150 ml 

CH2Cl2/pentane 1:1 and 150 ml CH2Cl2/Et2O 1:1. Two fractions were collected, a first 

light yellow fraction contained mainly W(CO)6 and an orange second fraction the 

desired product. After evaporation to dryness 62 mg (7.4%) of 6a was isolated. 

Found: C, 33.8; H, 3.2; N, 5.5. C15H14N2O6SW requires C, 33.7; H, 2.6; N, 5.2%. 

M.p. 106 °C (dec.) 

The substance is soluble in CH2Cl2, Et2O, methylbenzene and methanol but sparingly 

soluble in alkanes. 

 

5.6.3.4 cis-Dicarbonylchloro{[2-(1-piperidinyl)thiazol-5-yl]methylidyne}-cis-

bis(pyridine)tungsten, 7a. 

Two Schlenk tubes were prepared and charged with 4a (499 mg, ≤ 0.95 mmol) and 

(Cl3CO)2CO (104 mg, 0.35 mmol, ≥ 1.1 eq.), respectively. The lithium salt was 

suspended in 30 ml CH2Cl2 and the triphosgene dissolved in 10 ml CH2Cl2. After 
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cooling the orange suspension and clear solution, respectively, to –78 °C the triphos-

gene solution was transferred to the lithium acyl suspension via a Teflon cannula. The 

colour of the suspension immediately changed to dark red. Stirring was continued for 

1.5 h, after which the Schlenk tube was immersed in an ice bath for 30 min. Freshly 

distilled pyridine (3 ml; the pyridine must be handled excluding contact to metal) was 

added, the solution warmed to r.t. and stirred for another 2.3 h. All volatiles were 

removed in vacuo, facile removal of pyridine by azeotrope formation was effected by 

adding methylbenzene; excessive triphosgene was quenched with 5 drops of MeOH. 

The orange-brown solid obtained was subjected to flash chromatography under inert 

conditions on silica gel (7 × 5 cm) at –30 °C. W(CO)6 and other apolar impurities 

were eluted with 100 ml CH2Cl2, the eluent was subsequently changed to 

CH2Cl2/methanol 19:1 (50 ml) and CH2Cl2/methanol 16:1 (80 ml). Removal of all 

solvents of the product fraction yielded 285 mg (49% calculated with starting material 

free of thf, the actual yield is lower) of an orange-brown solid. Crystals suitable for  

X-ray diffraction were grown by layering a CH2Cl2 solution with hexanes. Found: C, 

41.3; H, 3.4; N, 9.2. C21H21ClN4O2SW requires C, 41.2; H, 3.45; N, 9.1%. 

M.p. 73 °C (dec. with evolution of gas) 

The compound is soluble in CH2Cl2 and thf, sparingly soluble in Et2O and methyl-

benzene but insoluble in alkanes. 

 

5.6.3.5 Pentacarbonyl-2κ5
C-[µ-2-(1-piperidinyl)thiazol-5-yl-1κC

5
:2κN

3
]-

(triphenylphosphane-1κP)goldtungsten, 9a. 

In a Schlenk tube Ph3PAuCl was synthesised in situ by reacting (tht)AuCl (154 mg, 

0.48 mmol) with PPh3 (124 mg, 0.47 mmol, 0.99 eq.) in 20 ml thf, all volatiles were 

removed in vacuo after 10 min. The product was re-dissolved in 40 ml thf, cooled to  

–78 °C and solid 4a (300 mg, ≤ 0.57 mmol, ≤ 1.2 eq.) was added. The orange 

suspension was stirred for 1 h while the mixture became homogeneous and paler in 

colour. Warming to r.t. caused the colour to darken again and the Schlenk tube was 

protected from light while the solution stirred for another hour. Evaporation of the 

solvent yielded a honey-brown oil, tlc was performed to check for Au-containing 

species (CH2Cl2, silica adsorbent), a yellow product at Rf 0.9 was identified. The 

crude product was purified on a Florisil column (6 × 5 cm) under inert conditions,  
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eluting with CH2Cl2/hexanes 2:1 (70 ml), CH2Cl2 (50 ml) and finally CH2Cl2/thf 2:1. 

Two yellow fractions and an orange fraction were collected. The first yellow fraction 

contained 197 mg, the second 16 mg and the third orange fraction 194 mg product; 

the major fractions were crystallised from CH2Cl2 layered with hexanes, only the first 

yielded crystals (74 mg, 16 %) of the title compound. Found: C, 41.0; H, 3.8; N, 3.4. 

C31H26AuN2O5PSW⋅0.5C6H14 requires C, 41.1; H, 3.4; N, 2.8%. 

M.p. 104 °C (dec. with evolution of gas) 

The yellow prisms are soluble in CH2Cl2, thf and trichloromethane, but insoluble in 

alkanes. 

 

5.6.3.6 cis-Dicarbonyl-2κ2
C-dichloro-1κ,2κ-{µ-[2-(1-piperidinyl)thiazol-5-yl]-

methylidyne-1κC
1
:2κC

1
}-cis-bis(pyridine-2κN)goldtungsten(Au–W), 11a. 

A solution of 7a (52 mg, 85 µmol) in 10 ml thf was cooled to –10 °C and solid 

(tht)AuCl (27 mg, 84 µmol) was added. After stirring for 1 h the cooling bath was 

removed and after another hour the reaction mixture was brought to dryness. The 

product was crystallised from CH2Cl2 layered with hexane. The compound did not 

give a satisfactory elemental analysis. 

M.p. 105 °C (dec. without melting) 

The substance is soluble in CH2Cl2 and thf, it is insoluble in Et2O or alkanes. 

 

5.6.3.7 – 2-Phenylthiazole, 1b. 

A procedure described in literature
46

 was modified. In a round-bottom flask equipped 

with a reflux condenser were placed benzene thiocarboxamide (4.33 g, 31.6 mmol) 

and 30 ml propanone yielding a canary yellow solution. 1-Bromo-2,2-diethoxyethane 

(5.0 ml, 32 mmol, 1.0 eq.) was added via syringe followed by 2 ml water and a 

catalytic quantity (< 5 mg) of 4-methylbenzenesulfonic acid monohydrate. The homo-

geneous solution was heated to reflux for 5 hours and progress was checked by tlc 

(silica adsorbent with Et2O as eluent). Product (Rf 0.67) had formed and only little 

benzene thiocarboxamide (Rf 0.50) remained. All volatiles were thus removed in 

vacuo, 40 ml CH2Cl2 was added and the resulting suspension was transferred into an 

extraction funnel charged with 18 ml 2 M aqueous NaOH solution and 50 ml water. 

Extraction was repeated twice with 20 ml CH2Cl2 aliquots. The combined organic  
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phases were reduced in vacuo and the crude product was distilled in an oil pump 

vacuum. The fraction distilling at 96.5 to 98.5 °C was collected, 3.82 g (75.1%) of the 

title compound was obtained as a slightly yellowish oil. 

 

5.6.3.8 Tetramethylammonium pentacarbonyl[(2-phenylthiazol-5-yl)carbonyl]-

tungstate(1–), 5b. 

The title compound was obtained following the same procedure as described for 5a 

employing 2-phenylthiazole (1.681 g, 10.4 mmol), 7.0 ml butyllithium in hexanes  

(1.4 M, 9.8 mmol, 0.94 eq.) and W(CO)6 (3.71 g, 10.5 mmol, 1.01 eq.). The product 

was extracted with CH2Cl2/MeCN 4:1 yielding a blood-red solution. Upon removal of 

the solvents, the blood-red (purple when wet with solvent) crystals were washed with 

methylbenzene to remove residual W(CO)6 and free 2-phenylthiazole. Yield 5.78 g 

(ca. 75%), still containing ca. 20% W(CO)6 (as judged by 
13

C NMR). Crystals 

suitable for X-ray diffraction were grown from CH2Cl2 layered with hexanes. Found: 

C, 38.6; H, 3.5; N, 4.5. C19H18N2O6SW requires C, 38.9; H, 3.1; N, 4.8%. 

M.p.: Onset of decomposition from 80 °C, fast decomposition with evolution of gas at 

124 °C. 

The compound is soluble in CH2Cl2 and ethanenitrile, to a lesser extent in 

trichloromethane. It is insoluble in Et2O, methylbenzene and alkanes. 

 

5.6.3.9 Pentacarbonyl[methoxy(2-phenylthiazol-5-yl)methylidene]tungsten, 6b. 

The compound was prepared following method B (described in 5.6.3.3) using 5b 

(1.140 g, 1.94 mmol) and [Me3O][BF4] (293 mg, 1.98 mmol, 1.02 eq.). Column 

chromatography under inert conditions on silica gel (11 × 5 cm) at –20 °C was per-

formed with 150 ml CH2Cl2/hexanes 1:1 initially and 200 ml CH2Cl2/hexanes/Et2O 

2:1:1 subsequently. A first light yellow fraction of 150 ml contained mainly W(CO)6 

and was discarded, a second dark purple fraction of 150 ml contained the desired 

product. Yield 356 mg (34.7%) of a purplish-black microcrystalline solid. Crystals 

suitable for X-ray diffraction were grown from CH2Cl2 layered with hexanes and 

individually are of a dark orange colour. Found C, 33.7; H, 2.3; N, 3.7. C16H9NO6SW 

requires C, 36.5; H, 1.7; N, 2.7%. 

M.p. 147 °C 
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The compound is freely soluble in CH2Cl2, trichloromethane, Et2O and thf; alkanes 

still dissolve it to an appreciable extent. 

 

5.6.3.10 cis-Dicarbonylchloro[(2-phenylthiazol-5-yl)methylidyne]-cis-

bis(pyridine)tungsten, 7b. 

The compound was prepared following the procedure described for 7a (5.6.3.4), 

employing 5b (1.015 g, 1.73 mmol) and (Cl3CO)2CO (208 mg, 0.70 mmol, 1.2 eq.). 

When the Schlenk tube was warmed to r.t., a freshly distilled mixture of pyridine and 

2-methyl-2-propanol (ca. 2:1; the pyridine must not come into contact with metal) was 

added to quench excessive triphosgene and effect substitution of two carbonyl groups 

simultaneously. After removing all volatiles in vacuo a red oil was obtained. The 

crude product was purified by flash chromatography under inert conditions on Florisil 

(5 × 5 cm) at –30 °C eluting with 80 ml CH2Cl2, 100 ml CH2Cl2/MeCN 19:1 and 100 

ml CH2Cl2/MeCN 9:1. A yellowish side fraction (120 ml) was collected first, follow-

ed by an orange-red fraction of the product (ca. 100 ml). Evaporation to dryness 

afforded 562 mg (54%) of a red oil. Triturating with Et2O (ca. 20 ml) and drying in 

high vacuum furnished an orange foam. A crystal of the dichloromethane solvate 

suitable for X-ray diffraction was obtained from the crystallisation of fraction 1 of 

11b. Found: C, 43.6; H, 2.7; N, 6.9. C22H16ClN3O2SW requires C, 43.2; H, 2.8; N, 

8.0%. 

M.p. of 7b⋅CH2Cl2: 84 °C (dec. with evolution of gas) 

The compound is soluble in CH2Cl2, ethanenitrile and methylbenzene, sparingly 

soluble in Et2O but insoluble in alkanes. 

 

5.6.3.11 Chloro[methoxy(2-phenylthiazol-5-yl)methylidene]gold, 8b. 

Compound 6b (145 mg, 0.28 mmol) was dissolved in 10 ml thf in a Schlenk tube. The 

blood-red solution was cooled to –5 °C and solid (tht)AuCl (89 mg, 0.28 mmol, 1 eq.) 

was added. The reaction mixture was stirred for 1 h finally reaching 5 °C and all 

volatiles were subsequently removed in vacuo. The resulting solid was re-dissolved in 

30 ml CH2Cl2 and inversely filtered under inert conditions. tlc Analysis was rendered 

impossible by the highly sensitive compound which yielded a purple spot indicative 

of Au precipitate immediately upon spotting onto the tlc plate. The CH2Cl2 solution  
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was layered with 60 ml hexanes and stored in a freezer. Well-defined red, faceted 

crystals (75 mg, 62%) could be isolated which were suitable for X-ray diffraction. No 

further crop could be obtained. Found: C, 29.9; H, 2.1; N, 4.0. C11H9AuClNOS 

requires C, 30.3; H, 2.1; N, 3.2%. 

M.p. 75 °C (dec.) 

The substance was initially well soluble in thf and CH2Cl2 possibly owing to im-

purities inhibiting crystallisation, once the crystals were isolated, they dissolve only in 

dichloromethane with difficulty and are insoluble in thf, propanone, ethanenitrile, 

trichloromethane and methanol. 

 

5.6.3.12 Pentacarbonyl-2κ5
C-[µ-(2-phenylthiazol-5-yl)carbonyl-1κC:2κO]- 

(triphenylphosphane-1κP)goldtungsten, 10b. 

In a Schlenk tube Ph3PAuCl was prepared in situ from PPh3 (202 mg, 0.77 mmol)  

and (Me2S)AuCl (227 mg, 0.77 mmol, 1 eq.) as described for 9a. The solution of 

Ph3PAuCl was cooled to –50 °C and 5b (568 mg, 0.78 mmol based on 80 % purity) 

was added as a solid, after 2 h the mixture reached 10 °C and Na[BF4] (88 mg,  

0.80 mmol, 1.04 eq.) was added to aid the abstraction of chloride from Ph3PAuCl. The 

slightly turbid orange solution was stirred for another hour at r.t., tlc analysis (silica 

plate with CH2Cl2 as eluent) of the reaction mixture revealed two products containing 

Au at Rf 0.69 (main product) and Rf 0.81 (side product). The solvent was removed in 

vacuo affording an orange-brown oil which was subjected to column chromatography 

under inert conditions on Florisil (15 × 5 cm) at –30 °C eluting with CH2Cl2 (200 ml), 

CH2Cl2/thf 19:1 (100 ml) and CH2Cl2/thf 12:1. Two product fractions were obtained, 

the first one contained a mixture of two products, the second contained 414 mg  

(57 %) of the title compound. Crystals suitable for X-ray diffraction were obtained 

from a thf solution layered with pentane. Found: C, 40.8; H, 2.3; N, 1.2. 

C33H21AuNO6PSW requires C, 40.8; H, 2.2; N, 1.4%. 

M.p. 90 °C (dec. with evolution of gas) 

The orange-red compound is soluble in CH2Cl2 and thf, sparingly soluble in Et2O but 

insoluble in alkanes. 
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5.6.3.13 Reaction of 7b with (tht)AuC6F5 – attempted synthesis of 11b. 

Compound 7b (155 mg, 0.26 mmol) was dissolved in 10 ml thf and cooled to –60 °C 

whereupon solid (tht)AuC6F5 (114 mg, 0.25 mmol, 0.98 eq.) was added resulting in a 

deep orange-red solution. The cooling bath temperature reached 0 °C after 3 h and the 

reaction mixture was stirred for another 30 min. at room temperature. Methylbenzene 

(ca. 10 ml) was added to allow efficient removal of tht and the solution was brought 

to dryness. The solid was re-dissolved in 40 ml Et2O, inversely filtered under inert 

conditions and brought to dryness affording an orange foam. The crude product was 

purified by chromatography under inert conditions on Florisil at –30 °C eluting with 

CH2Cl2 (150 ml) and CH2Cl2/thf 4:1 (150 ml). Two fractions containing gold were 

obtained, the first yielded 74 mg of an orange product while the second afforded 100 

mg of a yellow solid. A crystal obtained from the first fraction proved to be 

7a⋅CH2Cl2. 

 

5.6.3.14 Pentacarbonyl(1,2-dimethyl-5-phenyl-1H-pyridin-4-ylidene)chromium, 

12Cr. 

The compound was prepared according to literature procedures.
8a,63,88

 Care must be 

taken as the Rf values of the title compound and its precursor pentacarbonyl[(Z)-3-

(methylamino)-1-methoxybut-2-en-1-ylidene]chromium are virtually identical. Yield 

(based on last alkyne addition step) 32%. Found: C, 55.4; H, 3.8; N, 3.3. 

C18H13CrNO5 requires C, 57.6; H, 3.5; N, 3.7%. 

M.p. 130 °C (dec. without melting) 

The compound is soluble in most organic solvents except alkanes where it is only 

sparingly soluble. 

 

5.6.3.15 Pentacarbonyl(1,2-dimethyl-5-phenyl-1H-pyridin-4-ylidene)tungsten, 

12W. 

The compound was prepared according to literature procedures.
8a,63,88

 The same 

remarks as for 12Cr (5.6.3.14) apply. Yield (based on last alkyne addition step) 20 %. 

Found: C, 40.1; H, 3.1; N, 2.5. C18H13NO5W requires C, 42.6; H, 2.6; N, 2.8%. 

M.p. 178 °C (dec. with evolution of gas) 
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5.6.3.16 Chloro(1,2-dimethyl-5-phenyl-1H-pyridin-4-ylidene)gold, 13. 

Two Schlenk tubes were charged with (tht)AuCl (93 mg, 0.29 mmol) and 12W (150 

mg, 0.29 mmol, 1 eq.), respectively. Both compounds were dissolved in 10 ml CH2Cl2 

each and the solutions were cooled to –35 °C. The (tht)AuCl solution was transferred 

to the carbene complex solution via a Teflon cannula. After the cooling bath had 

reached 0 °C (2 h), it was removed and the solution stirred at r.t. for another 1.5 h. 

Completion of the reaction was indicated by tlc (silica adsorbent, CH2Cl2/Et2O 1:1 as 

mobile phase) when starting material was not detected any more and instead a spot at 

Rf 0.83 was attributed to [W(CO)5(tht)], Rf(13) 0. All volatiles were removed in 

vacuo, the residue re-dissolved in 30 ml CH2Cl2, inversely filtered under inert 

conditions and concentrated to about 7 ml. Layering the solution with pentane yielded 

85 mg (71%) of a cream-coloured microcrystalline solid. A crystal suitable for X-ray 

diffraction was obtained by recrystallising a small quantity from thf layered with 

pentane. Found: C, 37.5; H, 3.3; N, 3.1. C13H13AuClN requires C, 37.6; H, 3.2; N, 

3.4%. 

M.p. 154 °C (dec.) 

The compound is moderately soluble in CH2Cl2 and thf but is insoluble in Et2O and 

alkanes. 

 

5.6.3.17 (1,2-Dimethyl-5-phenyl-1H-pyridin-4-ylidene)(triphenylphosphane)-

gold(1+) trifluoromethanesulfonate, 14. 

The complex Ph3PAuCl was prepared in situ from (Me2S)AuCl (58 mg, 0.20 mmol) 

and PPh3 (52 mg, 0.20 mmol, 1 eq.) in 10 ml ethanenitrile and the suspension was 

stirred at r.t. for 45 min. Separately, a solution of 12Cr in 20 ml ethanenitrile was 

prepared. Both Schlenk tubes were cooled to –45 °C. To the solution of Ph3PAuCl, 

solid NaOTf (34 mg, 0.20 mmol, 1 eq.) was added. After 10 min. the solution of 12Cr 

was transferred to the Schlenk tube containing Ph3PAuCl via a Teflon cannula. Stir-

ring continued for 4 h whereupon the cooling bath reached room temperature and the 

colour of the solution lightened to lemon yellow. tlc Analysis (silica gel adsorbent, 

Et2O as eluent) showed that almost all chromium carbene had reacted and an apolar 

yellow side product, assumed to be [Cr(CO)5(Me2S)], had formed. All volatiles were 

removed in vacuo and the resultant solid was re-dissolved in CH2Cl2. Inverse filtration 
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under inert conditions and evaporation to dryness afforded a yellow residue which 

was extracted with methylbenzene to remove most of the side product. Crystallisation 

from a CH2Cl2 solution layered with pentane gave 0.12 g (78 %) colourless needles 

suitable for X-ray diffraction. Found: C, 49.0; H, 3.5; N, 1.6. C32H28AuF3NO3PS 

requires C, 48.6; H, 3.6; N, 1.8%. 

M.p. 225 °C (dec.), slight onset of decomposition noticeable from 205 °C. 

The compound is soluble in CH2Cl2, ethanenitrile and thf but insoluble in Et2O, 

methylbenzene or alkanes. Precipitation from solutions by adding alkanes or Et2O is, 

however, slow due to supersaturation and not suitable for fast purification. 

 

5.6.3.18 Pentacarbonyl(1-methyl-1H-pyridin-4-ylidene)chromium, 15. 

A 0.2 M solution of sodium naphthalenide was prepared by adding an appropriate 

amount of finely diced sodium metal to a solution of naphthalene in thf (100 ml in 

total) and stirring overnight. In a Schlenk tube, Cr(CO)6 (730 mg, 3.32 mmol) was 

suspended in 20 ml thf and cooled to –50 °C. Sodium naphthalenide solution (33 ml, 

6.6 mmol, 1 eq.) was added dropwise via syringe and the naphthalenide radical anion 

was consumed quickly indicated by the colour changing from green to brown. After  

1 h the temperature had reached –30 °C and solid 4-chloro-1-methylpyridinium 

triflate (782 mg, 2.8 mmol, 0.85 eq.) was added and stirring was continued for another 

2 h at r.t. furnishing a black suspension. To separate any insoluble and explosive 

disodium ethynediolate (Na2C2O2), the suspension was filtered under inert conditions 

before evaporating to dryness. The black oil obtained was purified by inert column 

chromatography on Florisil (12 × 5 cm) eluting with CH2Cl2/pentane 1:1 (200 ml), 

CH2Cl2/pentane/Et2O 3:2:1 (100 ml), CH2Cl2/Et2O 1:1 (100 ml), and CH2Cl2/Et2O 4:3 

(100 ml). The yellow product fraction was collected and upon evaporation gave  

101 mg (11%) of a yellow crystalline solid. Found: C, 43.9 H, 2.9; N, 4.3. 

C11H7CrNO5 requires C, 46.3; H, 2.5; N, 4.9%. 

M.p. 143 °C (dec.) 

The compound is soluble in CH2Cl2, trichloromethane, thf and Et2O, it is slightly 

soluble in alkanes. 
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5.6.3.19 Chloro(1-methyl-1H-pyridin-4-ylidene)gold, 16. 

A Schlenk tube was charged with 15 (45 mg, 0.15 mmol), (tht)AuCl (51 mg, 0.16 

mmol, 1.0 eq.) and 5 ml CH2Cl2 was added. Partial decomposition of (tht)AuCl was 

immediately observed by the characteristic purple gold precipitate, the suspension was 

stirred for 2 h at r.t. Inverse filtration under inert conditions, evaporation of all 

volatiles in vacuo and extraction of side products with Et2O (ca. 20 ml) afforded  

14 mg (27 %) of a colourless microcrystalline solid. Crystals just big enough for  

X-ray diffraction were obtained from a thf solution layered with pentane. Found: C, 

22.0; H, 2.3; N, 4.2. C6H7AuClN requires C, 22.1; H, 2.2; N, 4.3%. 

M.p. 140 °C (dec.) 

The compound is soluble in propanone, only sparingly soluble in CH2Cl2 and thf but 

insoluble in Et2O and alkanes. 
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