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ABSTRACT 
 

Afrosoricida is a 65 million years old (my) eutherian order that together with the 

Tubulidentata (aardvark) and Macroscelidea (elephant shrews) form the 

Afroinsectiphillia, a subclade of Afrotheria. It includes two families – Chrysochloridae 

(nine genera of golden moles) and Tenrecidae (11 genera of tenrecs) – that collectively 

represent ~59% of the afrotherian generic diversity. This study presents the first 

comprehensive cytogenetic comparison between members of these two families (seven 

genera and 11 species/subspecies of golden moles, and two genera and 11 species of 

tenrecs) using G- and C-banding and chromosome painting. All detected 

rearrangements are interpreted in a strict cladistic framework. In the case of 

Chrysochloridae, this provides evidence for a sister relationship between Chrysochloris 

and Cryptochloris, the monophyly of the Amblysomus genus, and for the elevation of A. 

hottentotus meesteri to specific rank. The detection of telomeric-like repeats in the 

centromeres of all chromosomes of the Amblysomus species/subspecies but not in those 

of A. h. meesteri further strengthens its recognition as a distinct species. Parsimony 

analysis of chromosomal rearrangements within Tenrecidae, the second Afrotheria 

assemblage studied, showed that rearrangements which could be interpreted as Whole 

Arm Reciprocal Translocations (WARTs) were more likely to be the result of 

Robertsonian translocations. Four interspecific associations are recovered within 

Microgale that are consistent with morphological and molecular characters. It was also 

possible to infer ancestral karyotypes for the Chrysochloridae, Oryzorictinae and the 

two tenrecid genera, Oryzorictes and Microgale. Given the relatively high karyotypic 

diversity observed among some Microgale species and the prevailing debates on 

chromosomal evolution and regional palaeoenvironmental fluctuations, it is suggested 

that Microgale be added to the list of taxa where structural rearrangements are likely to 

have played a role in speciation. Using Genbank sequences and a relaxed Bayesian 

clock method, we estimate the age of the family Chrysochloridae at ~28.5 my and that 

of the genus Microgale at ~9.9 my. Based on these dates, it can be shown that most of 

the evolutionary branches are characterized by a slow rate of chromosomal change, but 

that markedly high rates are observed in some Microgale species and to a lesser extent 

in the lineage leading to A. robustus. The rates of chromosomal evolution and other 

cytogenetic features highlighted in this study are discussed in light of recent advances in 

understanding the molecular mechanims that underpin changes to genomic architecture. 
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OPSOMMING 
 
Die Afrosoricida is ‘n eutheriaanse orde wat ongeveer 65 miljoen jaar oud is en wat 

saam met die Tubulidentata (aardvark) en Macroscelida (klaasneuse) geklassifiseer 

word as die Afroinsectiphillia, ‘n subklade binne die Afrotheria. Dit sluit twee families 

in – Chrysochloridae (nege genera van goue molle) en Tenrecidae (11 genera van 

tenreks) wat gesamentlik ~ 59% van die afrotheriaanse generiese diversiteit bevat. 

Hierdie studie is die eerste van sy soort wat ‘n sitogenetiese vergelyking tref tussen lede 

van die twee families (sewe genera en 11 species/subspecies van goue molle, en twee 

genera en 11 species van tenreks) met die gebruik van G- en C-bandbepaling asook 

chromosoom fluoressent hibridisasie. Alle chromosoom veranderinge word 

geinterpreteer in ’n streng kladistiese raamwerk.  In die geval van Chrysochloridae is 

daar bewyse vir ‘n suster verwantskap tussen Chrysochloris en Cryptochloris, die 

monofilie van Amblysomus, en vir die opheffing van A. hottentotus meesteri tot 

spesiesvlak.  Die waarneming van telomeriese-tipe herhalings in die sentromere van alle 

chromosome van die Amblysomus spesies/subspesies maar nie in die van A. h. meesteri 

nie, dien as addisionele bewys vir ‘n unieke species. Filogenetiese analise van 

chromosoom herrangskikkings binne die Tenrecidae, die tweede Afrotheria groep wat 

bestudeer is, het getoon dat die veranderinge wat geinterpreteer kon word as “Whole 

Arm Reciprocal Translocations (WARTs)” meer waarskynlik die resultaat van 

Robertsoniaanse translokasies is. Vier interspesifieke assosiasies was binne Microgale 

teenwoordig wat ooreenstem met morfologiese en molekulêre kenmerke. Dit was ook 

moontlik om die oerouer kariotipe vir die Chrysochloridae, Oryzorictinae en die twee 

tenrek genera, Oryzorictes en Microgale te bepaal. Gegee die hoë kariotipiese diversiteit 

waargeneem tussen sommige van die Microgale spesies en die debat oor chromosoom 

evolusie en streeks paleo-omgewings fluktuasies, word voorgestel dat Microgale 

gevoeg moet word tot die lys van taksa waar strukturele herrangskikkings waarskynlik 

’n rol gespeel het in spesiasie. Met die gebruik van DNS basis bepaling vanaf 

“Genbank” en ‘n “Bayesian” klok metode is die ouderdom van die familie 

Chrysochloridae te bepaal. Dit word voorgestel dat die familie ongeveer  ~28.5 my 

onstaan het en dat die genus Microgale ~ 9.9 my oud is. Gebaseer op hierdie data kan 

getoon word dat die evolusionêre takke gekenmerk word deur ‘n stadige tempo van 

chromosoom veranderinge, maar dat hoë tempos teenwoordig is binne sommige 

Microgale spesies en tot ‘n mindere mate binne die groep wat gelei het tot A. robustus. 

Die tempo van chromosoom evolusie en die ander sitogenetiese kenmerke teenwoordig 
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in die studie word bespreek in die lig van onlangse veranderinge ten opsigte van 

molekulêre meganismes wat genomiese veranderinge ondeskryf.       
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CHAPTER I 
 

GENERAL INTRODUCTION 
 
 

Afrosoricida and the eutherian tree 

During the last decade, the two families Chrysochloridae (golden moles) and 

Tenrecidae (tenrecs) have been among the pivotal taxa involved in changing our way of 

thinking about eutherian (or crown-group placental) phylogenetic relationships and 

evolution (Robinson and Seiffert 2004, Springer et al. 2004). For more than a century, 

morphologists have debated their relationships within Lipotyphla (formerly Insectivora) 

(Haeckel 1866, Simpson 1945, Butler 1988, MacPhee and Novacek 1993), a group that 

also includes hedgehogs (Erinaceidae), moles (Talpidae), shrews (Soricidae) and 

solenodons (Solenodontidae). However, there is now a considerable body of DNA 

sequences data and other molecular characters that group these two families within 

Afrotheria which, together with Laurasiatheria, Euarchontoglires and Xenarthra, form 

the four supraordinal mammalian clades that are currently recognized (Springer et al. 

1997, Murphy et al. 2001a, b, Scally et al. 2001, Waddell et al. 2001, Amrine-Madsen et 

al. 2003) (Figure 1). Strongly supported evidence resulting from these studies 

challenges all morphological synapomorphies previously used to define the Lipotyphla. 

For example, hindgut simplification (with loss of the caecum), a pronounced reduction 

of the pubic symphysis, and a large maxillary contribution to the orbit and extrinsic 

snout musculature (Butler 1988, MacPhee and Novacek 1993, Whidden 2002) have 

either evolved independently or were ancestral characters that were retained in two of 

the most distantly related clades, Afrotheria and Laurasiatheria. Even more strikingly, 

these new relationships involve extreme ecological and behavioral convergence in the 

two clades with, among others, adaptation to a subterranean lifestyle shown both in 

golden moles (Chrysochloridae) and true moles (Talpidae), and the semi aquatic 
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carnivory developed both by otters (Carnivora) and otter shrews (Tenrecidae) (Madsen 

et al. 2001, Helgen 2003).  

 

Figure 1. A dated phylogeny of eutherian mammals taken and modified from Murphy et al. 
(2007). Most of the nodes correspond to those obtained after the Bayesian analysis of a 
concatenation of 19 nuclear gene segments, the two complete mitochondrial ribosomal RNA 
subunit genes (12S rRNA and 16S rRNA) plus the intervening valine tRNA (Murphy et al. 
2001a, Roca et al. 2004). In addition, the node supporting Atlantogenata derives from an 
analysis of coding indels and retroposon insertions (Murphy et al. 2007), while that grouping 
perissodactyls and bats (i.e. Pegasoferae) is from the analysis of retroposon insertions 
(Nishihara et al. 2006). Strong support was recently found for all clades indicated in capital 
letters based on an anlalysis of 1698 protein-encoding loci (Wildman et al. 2007). 
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In addition to Tenrecidae and Chrysochloridae, Afrotheria also includes 

elephant-shrews, aardvark and paenungulates (i.e., elephant, manatee and dugong, and 

hyrax) all of whom have an Afro-Arabian origin. Given the almost universal support 

provided by the sequence data, the grouping of Tenrecidae and Chrysochloridae as 

sister taxa within Afrotheria is largely favoured above alternative hypotheses (Robinson 

and Seiffert 2004, Springer et al. 2004, Helgen 2003 and references therein). The 

resulting clade has been named Afrosoricida after Stanhope et al. (1998) (but see 

Bronner and Jenkins 2005 for a discussion of this name). Together with Afrosoricida, 

Paenungulata is also a well-supported clade. Moreover, long concatenations of sequence 

data (Murphy et al. 2001b, Amrine-Madsen et al. 2003), a synapomorphic chromosomal 

association (Robinson et al. 2004), and a single SINE insertion (Nishihara et al. 2005) 

support the recognition of Afroinsectiphillia (after Waddell et al. 2001), a clade that 

groups Afrosoricida with the aardvark and elephant shrews. However, morphological 

characters are in conflict with the molecular signal since the analysis of 378 

craniodental, postcranial and soft-tissue characters scored across 53 living and extinct 

afrotherians yielded support for a paenungulate + macroscelidean association (Seiffert 

2003). The situation is more confused within Afroinsectiphillia. Whereas Amrine-

Madsen et al. (2003) provided support for a clade termed “Afroinsectivora” (i.e., 

Afrosoricida + Macroscelidea) (Waddell et al. 2001) based on the analysis of ~18 kb of 

mitochondrial and nuclear DNA sequences, Robinson et al. (2004) found two 

chromosomal associations that unite aardvark and elephant shrews to the exclusion of 

golden moles. Nishihara et al. (2005) found two SINE insertions supporting the 

alternative hypothesis (Tubulidentata + Afrosoricida).  

Molecular dating shows that the ancestor of Afrosoricida diverged from other 

Afrotheria approximately 75 millions years (my) ago (Springer et al. 2003, Murphy et 

al. 2007) (Figure 1). The subsequent split, which occurred at the Cretaceous/Tertiary 
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boundary (65 my), has given rise to two families, Tenrecidae and Chrysochloridae, that 

differ from each other in many evolutionary aspects and which together represent 59% 

of the afrotherian biodiversity (Figure 2). 

    

        

 

Figure 2. Number of genera in each of the six afrotherian orders showing that Afrosoricida 
contain the greatest diversity (~59%).  

 

 
Phylogenomics, cytogenetics and cladistics 

The recent “molecular revolution” in mammalian phylogenetics described above 

has benefited from the considerable progress made in genome-wide comparisons 

(Murphy et al. 2004, 2007). This relatively new field of investigation, known as 

phylogenomics, has been led by whole genome sequencing projects. The genomes of 

seven mammalian species (human, mouse, rat, dog, chimp, rhesus macaque, opossum) 

are now completely sequenced, although with different degrees of coverage 

(International Human Genome Sequencing Consortium 2001, Venter et al. 2001, Mouse 

Genome Sequencing Consortium 2002, Rat Genome Sequencing Consortium 2004, 

Lindblad-Toh et al. 2005, Mikkelsen et al. 2007, Rhesus Macaque Genome Sequencing 
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and Analysis Consortium 2007), and the genomes of several other species covering the 

whole diversity of the mammalian tree are currently well on their way (see Broad 

Institute website: http://www.broad.mit.edu/mammals/ and Ensembl website: 

http://www.ensembl.org).  

Together with developments in large-scale sequencing, various analytical and 

experimental tools have been produced to make sense of the genomic architecture of 

these various species. Among the latter, comparative molecular cytogenetics involving 

the development and extensive use of Zoo-FISH (‘zoo’ Fluorescent In Situ 

Hybridization) or cross-species chromosome painting (see Speicher and Carter 2005 for 

the general principles underlying the method) has proved very useful in inferring the 

evolutionary history of genomes among and within the different eutherian orders (Ried 

et al. 1998, Wienberg 2004). This technique allows one to visualize homologies 

between chromosomes of distantly related species, and to identify conserved synteny 

blocks directly at the molecular level.  

A large number of studies using Zoo-FISH have been published since its 

discovery nearly 20 years ago (Lichter et al. 1988, Wienberg et al. 1990). These 

investigations can generally be classified into two categories: (1) those aimed at 

constructing chromosomal maps between human and specific taxa and (2) those dealing 

with the karyotypic evolution of a particular clade of eutherian mammals. There is now 

at least one category 1 study published for all eutherian orders except Hyracoidea and 

Dermoptera (Table 1). Together these provide a good picture of the synteny associations 

in these taxa thus allowing for the reconstruction of a putative eutherian ancestral 

karyotype (Frönicke et al. 2003, Richard et al. 2003, Yang et al. 2003, Svartman et al. 

2004, 2006, Ferguson-Smith and Trifonov 2007). These results, together with the details 

contained in category 2 studies that generally focus on lower taxonomic levels, allow 

for a precise description of the mode and tempo of chromosomal change characterizing 
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various branches of the eutherian tree (O’Brien et al. 2001, Murphy et al. 2004, 

Ferguson-Smith and Trifonov 2007).  

Table 1. Human chromosomes have been mapped on the chromosomes of at least one 
representative of each of the eutherian orders with the exception of Dermoptera and Hyracoidea 
(the reference list is non-exhaustive). 
 
Order  Reference 
Afrosoricida Robinson et al. (2004) 
Macroscelidea Robinson et al (2004), Svartman et al. (2004) 
Tubulidentata Yang et al. (2003) 
Hyracoidea no published map 
Proboscidea Frönicke et al. (2003), Yang et al. (2003) 
Sirenia Kellogg et al. (2007) 
Xenarthra Svartman et al. (2006) 
Scandentia Mueller et al. (1999) 
Dermoptera no published map 
Primates reviewed in Wienberg (2005) 
Rodentia Stanyon et al. (2003), Li et al. (2004) 
Lagomorpha Korstanje et al. (1999) 
Eulipotyphla Dixkens et al. (1998), Yang et al. (2006) 
Chiroptera Volleth et al. (2002) 
Pholidota Yang et al. (2006) 

Carnivora Frönicke et al. (1997), Nash et al. (1998), Yang et al. (2000), 
Graphodatsky et al. (2002), Perelman et al. (2005) 

Perissodactyla Richard et al. (2001) 

Cetartiodactyla Bielec et al. (1998), Frönicke and Wienberg (2001), Biltueva et al. 
(2004),  Chaves et al. (2004) 

 

The non-ambiguous assessment of homology between genomic segments of 

different species provided by Zoo-FISH also allows for genome rearrangements to be 

used as phylogenetic characters, expanding on investigations that rely on morphology, 

amino-acids and DNA sequences to infer phylogenetic relationships. As the tempo of 

karyotypic evolution (at the level of detection by FISH) is slower than that of nucleotide 

evolution, chromosomal rearrangements provide rare, but powerful signatures to 

common ancestry which serve as Rare Genomic Changes sensu Rokas and Holland 

(2000). These signatures (synapomorphic syntenic segmental associations) have been 

reported for many clades, and have proved useful in helping to decipher several 

unresolved nodes in the eutherian tree (see for example Frönicke et al. (2003), Robinson 
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et al. (2004), Svartman et al. (2004), Kellogg et al. (2007) and Pardini et al. (2007) for 

cases pertinent to Afrotheria). As the taxon sampling is often too limited, or the 

karyotypes too conserved, several studies simply map the chromosomal rearrangements 

to an existing, well resolved tree and/or discuss the chromosomal signatures in respect 

to previously formulated phylogenetic hypotheses (for example, Graphodatsky et al. 

2001, 2002, Rambau et al. 2003, Bosma et al. 2004). However, some studies provide a 

comprehensive phylogenetic matrix by explicitly coding chromosomal rearrangements 

in different character states and base the analysis on parsimony (Ortells 1995, de 

Oliveira et al. 2002, Gerbeault-Serreau et al. 2004, Li et al. 2004, Veyrunes et al. 2006). 

The usefulness, value, and analysis of chromosomal rearrangements using different 

types of coding is reviewed in Dobigny et al. (2004).  Their conclusions argue strongly 

for considering structural changes as characters, and their presence/absence as the 

character states.   

 

Speciation and chromosomes 

Speciation is a central issue in evolution and identifying the processes that lead 

to the origin of species has been a fundamental question since the origin of evolutionary 

biology. The intensity of the debates on this topic is well illustrated by the lack of 

consensus on a definition of the species, and the difficulties in testing hypotheses 

concerning proposed modes of speciation (for a general review on speciation, see Coyne 

and Orr 1998, Turelli et al. 2001).  

The simple observation that reproduction between two different karyotypic 

forms can result in hybrids that exhibit a decrease in fertility (or viability) has led 

several authors to argue that chromosomal rearrangements are a primary cause of 

reproductive isolation, thus playing a key role in speciation (White 1978, King 1993). 

Various models of chromosomal speciation have been formulated (reviewed in Sites 
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and Moritz 1987, Rieseberg 2001). Most of them invoke the fixation of strongly 

underdominant rearrangements that causes a decrease in fitness of structural 

heterozygotes that result from the malsegregation of homologous chromosomes during 

the meiosis (White 1978, King 1993). Yet these models contain an unsolved paradox –

the more meiotically disruptive a chromosomal mutation (for example by causing the 

complete sterility of heterozygotes), the less probable is its fixation in a population (see 

Robinson and Roux 1985). Consequently, several authors have argued that their 

applicability is contingent on drastic ecological, demographic and geographical 

prerequisites, and that karyotypic differences between species are more likely to be 

coincidental to speciation (Sites and Moritz 1987, Coyne and Orr 1998). Counter 

arguments to these criticisms are: (1) irrespective of whether rearrangements occur prior 

to or after speciation, they are nonetheless evident in extant karyotypes, implying that if 

drastic conditions are indeed necessary for fixation, these conditions must have been 

present at some stage during the evolutionary time span of the species (Dobigny et al. 

2005); (2) some of the proposed models do not invoke strong underdominant mutations. 

This is perhaps best exemplified by Baker and Bickham (1986) who argue that if 

different neutral (or weakly underdominant) centric fusions are fixed in two isolated 

populations, the resulting monobrachial homologies induced in structural hybrids can 

impede normal segregation, and thus lead to speciation.  

Most recently it has been proposed that underdominance of chromosomal 

rearrangements is not related to structural mispairing at meiosis but is rather associated 

with a recombination-suppression effect (Noor et al. 2001, Rieseberg 2001). The model 

described by Noor et al. (2001) considers two Drosophila species that display alleles 

which confer hybrid sterility on a heterospecific genetic background. The model 

predicts that long-term hybridization between two such species that do not differ by any 

chromosomal rearrangement will lead to the complete assimilation of the two species, 
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because recombination will eliminate deleterious alleles and retain only those alleles 

that are compatible with both genetic backgrounds. If these alleles are however situated 

in an inverted region where recombination is suppressed, it will be impossible to 

eliminate them and a barrier to gene flow will persist between the two species. 

In conclusion, many models of chromosomal speciation remain largely untested 

and the relative importance of chromosomal versus genic and/or other factors in 

speciation still cannot be firmly assessed (Rieseberg 2001). 

 

General aims of the study 

Intraordinal comparative molecular cytogenetic studies within eutherians 

(category 2 studies described above) were, prior to the present investigation, largely 

limited to laurasiatherian and euarchontogliran taxa. The chromosomes of several 

afrotherian species had, however, already been mapped to the human genome (Yang et 

al. 2003, Robinson et al. 2004) as part of a large collaborative Wellcome Trust project 

between Professors T.J. Robinson and M.A. Ferguson-Smith (Center for Veterinary 

Science, University of Cambridge, Cambridge, UK). This led to the isolation of 

chromosome painting probes for each of the seven afrotherian families (see above) 

providing a valuable resource that could be used to investigate chromosomal 

relationships within each of these. Three projects were consequently initiated in our 

laboratory (Evolutionary Genomics Group, University of Stellenbosch) to address 

questions on chromosomal evolution within polytypic orders. The first on Paenungulata 

is complete (Pardini 2007, Pardini et al. 2007), and the second on Macroscelidae is 

nearing completion (Smit submitted). The final aspect entails the detailed analysis of the 

Afrosoricida which forms the substance of my dissertation.  

In broad terms, the investigation concentrated on the analysis of karyotypic 

diversity in Afrosoricida using conventional (banding) cytogenetic techniques. It also 
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comprises a comprehensive comparative molecular cytogenetic investigation that 

utilizes chromosome painting probes that were isolated from the Cape golden mole 

(Chrysochloris asiatica; Chrysochloridae) and the Taiva’s shrew tenrec (Microgale 

taiva; Tenrecidae) by Cambridge (Center for Veterinary Science, University of 

Cambridge), and their subsequent characterization in Stellenbosch as part of my study. 

In broad terms the aims were first, to describe the mode (i.e., the type of 

rearrangements) and tempo (the rate of accumulation) of chromosomal evolution in 

these two afrotherian families. Secondly, the data were examined for utility in 

deciphering the phylogenetic relationships of the constituent species, and the potential 

role of chromosomal rearrangements in their speciation.  

 

Organization of the thesis 

Most of the information contained in this thesis has been published. Citations to 

the papers encapsulated in the various chapters are: 

Chapter II 

Gilbert C, O'Brien PC, Bronner G, Yang F, Hassanin A, Ferguson-Smith MA, Robinson 

TJ (2006) Chromosome painting and molecular dating indicate a low rate of 

chromosomal evolution in golden moles (Mammalia, Chrysochloridae).  

Chromosome Research 14: 793-803.  

Gilbert C, Maree S, Robinson TJ (Submitted) Chromosomal evolution and distribution 

of telomeric repeats in golden moles (Chrysochloridae, Mammalia).  

Cytogenetics and Genome Research. 

Chapter III 

Gilbert C, Goodman SM, Soarimalala V, Olson LE, O’Brien PCM, Elder FFB, Yang F, 

Ferguson-Smith MA, Robinson TJ (In press) Chromosomal evolution in tenrecs 
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(Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of 

Madagascar.  Chromosome Research. 
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CHAPTER II 
 

CHROMOSOMAL EVOLUTION IN GOLDEN MOLES 
 
 

INTRODUCTION 

General biology, taxonomy and geographic distribution  

Golden moles are small subterranean mammals that somewhat resemble true 

moles in appearance. All species are morphologically very similar and display a mix of 

characters that are considered to be either plesiomorphic or highly derived within 

mammals. For example, they have retained a single urogenital opening (cloaca) (Butler 

1988) but are the only mammals that show hyoid-dentary articulation (Bronner et al. 

1990) and their hypertrophied malleus is the largest of all mammals relative to body 

size (Mason 2001). Their body length and weight varies from 76 mm/25 g in Grant’s 

golden mole (Eremitalpa granti) to 235 mm/500 g in the giant golden mole 

(Chrysospalax trevelyani). They have no externally visible tail, their ears are small and 

concealed within the pelage, and their eyes are vestigial and covered by hairy skin; they 

are completely blind. Digging involves the short forelimbs (which bear a third digit 

armed with a powerful claw), and the muzzle which ends in a smooth, leathery pad 

(Nowak 1999, Bronner 1995a). Golden moles prefer deep sandy soils in a wide 

spectrum of biomes (desert to mountain forest), climates (arid to subtropical) and 

altitudes (sea level to >2 500m) (Bronner 1995b, 1997). They present relatively low and 

very labile body temperatures (Withers 1978, Fielden et al. 1990), and display K-

selected reproductive strategies characterized by small litter size, slow post-natal 

development and extended periods of parental care (Bronner 1992, Bernard et al. 1994). 

According to the IUCN 2007 red list (http://www.iucn.org/themes/ssc/redlist2007 
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/index_redlist2007.htm), more than half of the species are considered threatened, the 

most likely reason being habitat fragmentation due to anthropogenic activities (Maree et 

al. 2003).  

The family comprises 21 species grouped in two subfamilies (Bronner and Jenkins 

2005). Chrysochlorinae that includes six genera (Carpitalpa, Chlorotalpa, 

Chrysochloris, Chrysospalax, Cryptochloris and Eremitalpa), and Amblysominae with 

three genera (Amblysomus, Calcochloris and Neamblysomus). The majority of the 

species (18 of 21) occur only in Southern Africa (Figure 3); with the three remaining 

species belonging to different genera that show a fragmented distribution in other parts 

of Africa. Chrysochloris stuhlmani is recorded locally in the Cameroon, Central African 

Republic, Congo, Burundi, Kenya, Rwanda, Tanzania and Uganda. Calcochloris 

leucorhinus also occurs in the Cameroon, Central African Republic and Congo, but its 

distribution extends southwards into northern Angola. In contrast, Calcochloris tytonis 

is known from only one specimen collected in Somalia. Several of the southern African 

species are relatively widely dispersed. For example, Chrysochloris asiatica is rather 

common in the southwestern Cape region, and Amblysomus hottentotus is found in the 

eastern parts of South Africa. 

 

Phylogenetic relationships 

After more than a century of research on golden moles, their taxonomy and 

phylogenetic relationships remain contentious. Here I follow Bronner and Jenkins 

(2005), the most recent nomenclatural work on the family, but include a brief historical 

perspective to facilitate interpretations of the evolutionary relationships suggested by 

the different hypotheses.   

Broom (1907) was the first to provide a comprehensive and argued classification 

for Chrysochloridae. He recognized two main groups on the shape of the malleus.  One 
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that includes Chrysospalax, Cryptochloris and Chrysochloris where the head of the 

malleus comprises a vesicular bulla, and the other that includes Eremitalpa, 

Chlorotalpa, Calcochloris and Amblysomus in which there is no vesicular bulla. Within 

this latter group he distinguished Eremitalpa and Chlorotalpa, both with an adult 

dentition of 40, and Calcochloris and Amblysomus with 36 teeth. However, Ellerman et 

al. (1953) argued that dental formulae were not valid generic characters within 

Chrysochloridae, and they consequently synonymized Calcochloris, Chlorotalpa and 

Neamblysomus with Amblysomus. This treatment was followed by Petter (1981) who 

included Carpitalpa (described by Lundholm in 1955) within Amblysomus.  

 

 
Figure 3. Geographic distribution of 17 species of golden moles in Southern Africa (redrawn 
from Bronner 1997, Kingdon, 1997).  
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Roberts (1924, 1951) showed that Calcochloris, Chrysochloris, Cryptochloris 

and Eremitalpa all share the lack of talonids on the lower molars and argued that they 

should be placed in a group distinct from the other genera. After analyzing several 

quantitative (body, mandibular and skull sizes) and discrete (malleus and epitympanic 

recess shape; presence/absence of talonid on lower molars) characters, Simonetta (1968) 

divided the family into the Chrysochlorinae (Chrysochloris, Cryptochloris, Carpitalapa 

and Chlorotalapa), the Amblysominae (Amblysomus, Neamblysomus and Calcochloris) 

and the Eremitalpinae (Chrysospalax and Eremitalpa). Meester (1974) and Meester et 

al. (1986) followed by Skinner and Smithers (1990) recognized Chlorotalpa and 

Calcochloris on the basis of cranial and dental characters, but retained Neamblysomus 

within Amblysomus, and Carpitalpa within Chlorotalpa.  

The most recent treatment of Chrysochloridae entailed the cladistic analysis of 

eight binary and multistate characters from the hyoid bones of nine species of golden 

moles; regrettably this gives little resolution (Bronner 1991). Whereas the final 

consensus tree places Calcochloris obtusirostris sister to all other ingroup species, 

Bronner (1991) indicates that hyoid characters have little value for resolving 

intergeneric relationships. He bases his new classification (Bronner and Jenkins 2005) 

on the cladistic analysis of 10 quantitative craniometric ratios and five qualitative 

characters involving hyoid, dental and malleus morphology, and chromosomal data 

(Bronner 1995). Most importantly, however, there is still no published molecular 

phylogeny for Chrysochloridae. Preliminary results (Maree et al. 2003) based on 

complete mitochondrial cytochrome b and 12S rRNA sequences strongly confirmed the 

monophyly of all nine genera proposed by Bronner and Jenkins (2005), but failed to 

resolve the intergeneric relationships.  
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Paleontology and biogeography 

The origins and biogeography of golden moles have not previously been 

addressed; in fact, none of the investigations that included eutherian divergence times 

has involved more than a single species of golden mole (Springer et al. 2003, Delsuc et 

al. 2004, Murphy et al. 2007). The most ancient chrysochlorid fossil (consisting of the 

anterior part of a skull) is found from the Lower Miocene in Kenya (Butler and 

Hopwood 1957). According to Butler and Hopwood (1957) and Butler (1984) 

differences in nine dental and two cranial characters justify its recognition as a new 

genus (Prochrysochloris miocaenicus), and its placement in a different subfamily 

(Prochrysochlorinae). Two fossils that date back to the Middle Pleistocene of South 

Africa (Broom 1941) are chronologically the next most ancient. According to Broom 

(1941) one resembles Amblysomus in general structure but its temporal region and 

tympanic bulla are sufficient to warrent placement in a new genus, Proamblysomus 

antiquus. He attributes the second fossil to a new species of Chlorotalpa (C. spelea) 

based on the general structure and measurements of the skull. Fossil evidence seems to 

favour an East African origin for the family and a subsequent dispersion and 

diversification in central and southern Africa. However, as morphological characters 

have been of little value in resolving intergeneric relationships within the family (and 

considering the relative paucity of characters available from the fossils), their position 

cannot be unambiguously assessed within Chrysochloridae. For example, Miocene 

fossils could represent independent lineages belonging to a stem group Chrysochloridae 

and so their distribution would not necessarily reflect that of the most recent ancestor of 

the extant species. 
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Cytogenetic data 

Conventional karyotypes are available for 12 golden mole species representing 

six of nine genera (Amblysomus, Neamblysomus, Calcochloris, Chlorotalpa, 

Chrysochloris, and Chrysospalax) (Bronner 1995a, b). G-banded chromosomes have 

been reported only for Chrysochloris asiatica (2n=30 Robinson et al. 2004). Diploid 

numbers range from 2n=28 (Calcochloris obtusirostris) to 2n=36 in Amblysomus 

robustus (Bronner 1995a, b). It is noteworthy that Bronner (1995a) originally regarded 

A. hottentotus as comprising three allopatric cytotypes (2n=30, 34 and 36) but, based on 

morphometric evidence, the 2n=34 cytotype was subsequently described as a valid 

species, A. septentrionalis (Bronner 1996) with the 2n=36 form being assigned to A. 

robustus (Bronner 2000).  

 

Context 

This study represents the first comprehensive cytogenetic comparison among 

species within the Chrysochloridae. Standard G-banded karyotypes are reported for 10 

species/subspecies representing 6 genera of golden moles and a comprehensive half-

karyotype comparison between them and the chromosomes of Chrysochloris asiatica is 

established based on a combination of G-banded patterns and chromosome painting. 

The distribution of telomeric repeats among species is also described. Chromosomal 

rearrangements, the evolution of telomeric and other repeat sequences, and the potential 

support for several phylogenetic relationships are discussed in a cladistic framework. 

Finally, this study provides the first molecular time estimate for the origin of the 

Chrysochloridae allowing for the rigorous discussion of rates of chromosomal evolution 

in this unusual assemblage of mammals.   
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MATERIAL AND METHODS 

Specimens, cell culture and chromosome preparation 

A list of specimens included in this study and their associated voucher numbers 

is presented in Table 2. Cell lines were established from ribs and/or kidney fibroblasts 

using DMEM or Amniomax (Gibco) culture medium supplemented with 15 % foetal 

calf serum. Incubation was at 37°C with 5% CO2. Chromosome harvests and slide 

preparation followed conventional procedures. G- and C-banding was by trypsin and 

barium hydroxide, respectively (Seabright 1971, Sumner 1972, Henegariu et al. 2001). 

Animals were collected under permits from the relevant conservation authorities issued 

to Prof N.C. Bennett, Dr S. Maree (both from the University of Pretoria) and Dr G. 

Bronner (University of Cape Town). 

 

Table 2. Voucher numbers and origin of the golden mole specimens included in this study. All 
specimens were trapped in South-Africa and are kept in the Iziko museum (Cape Town). 

 

 
Museum voucher 

numbers Location Co-ordinates 

Amblysomus hottentotus longiceps SAM ZM 41631 Clarens 28º31’S - 28º25’E
A. h. pondoliae SAM ZM 41632 Margate 30º51’S - 30º22’E
A. h. meesteri SAM ZM 41634 Pilgrims Rest 24º25’S - 30º45’E
A. h. hottentotus SAM ZM 41552 - - 
A. robustus SAM ZM 41635 Dullstroom 25º25’S - 30º07’E
Calcochloris obtusirostris SAM ZM 41636 Sodwana Bay 28º07’S - 32º46’E
Chrysospalax trevelyani SAM ZM 41548 - - 
Cryptochloris zyli SAM ZM 41550 - - 
Eremitalpa granti SAM ZM 41551 - - 
Neamblysomus julianae SAM ZM 41633 Pretoria 25º42’S - 28º13’E

Flow-sorting and generation of labeled chromosome-specific painting probes from 

Chrysochloris asiatica. 

Chromosomes of C. asiatica were sorted on a dual laser cell sorter (FAC-Star 

Plus, Becton Dickinson) by fluorescence activated cell sorting. Flow-sorted 

chromosomes were amplified by degenerate oligonucleotide primed PCR (DOP-PCR, 
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Telenius et al. 1992). The primary PCR products were subsequently reamplified by 

DOP-PCR to make stock solutions; fluorescent labeling was with biotin- or 

digoxigenin-dUTP antigens (Roche) (Yang et al. 1997). 

 

Chromosome painting 

The fluorescence in situ hybridization (reviewed in Rens et al. 2006) was 

performed using painting probes from C. asiatica on metaphase chromosomes of 10 

golden mole species. A total of 100-150 ng of probe was precipitated together with 50 

ng of salmon sperm DNA in 1/10 volume of Na-Acetate and four volumes of 100% 

ethanol (-70°C for 2 hours). After 15 min centrifugation at 13000 rpm the pellet was 

washed in ice-cold 70% ethanol, dried for 30 min at 37°C and resuspended in 15µl 

hybridization buffer (50% deionised formamide, 10% dextran sulphate, 2x SSC, 0.5 M 

phosphate buffer, pH 7.3). There was an improvement in the quality of the hybridization 

signal when one volume of unlabeled probe (corresponding to one or two different 

chromosomes) was added to the precipitation mixture as a background suppressor. 

Probes were denaturated at 70°C for 10 min and preannealed at 37°C for 15-40 min 

depending on the painting probe used and the target species. Chromosome preparations 

were denaturated in a formamide 70%/0.6X SSC solution at 65°C for 10 - 45s and 

quenched in 70% ice cold ethanol for one min. Slides were dehydrated in an ethanol 

series (70%, 80%, 90% and 100% for 2 min in each) and dried at room temperature. 

The preannealed probe mixture was dropped onto the slide, cover-slipped and the edges 

sealed with rubber cement. Hybridization took place in a humid chamber for one or two 

nights at 37°C.  After hybridization, slides were washed twice in formamide 50%/SSC 

1X and SSC 1X or 2X for 5 min each and then in 4XT (SSC 4X, 0. 05% Tween 20) for 

10 min. All five washes were at 40 - 45°C (variation dependent on the painting probe 

used). Detection involved 250 µl of a solution comprising 4XT/antibody (avidin-Cy3 
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for biotin, anti-DIG-FITC for DIG) at 37°C for 20 min. The slides were subsequently 

washed three times in 4XT at 37°C, counterstained with DAPI (6 µl DAPI 2 mg/ml in 

50 ml SSC 2X) and mounted using an antifade solution (Vectashield).  

 

FISH using telomeric probes 

A telomeric probe containing the repeat motif (TTAGGG)n was constructed and 

biotin-labeled by PCR as decribed by Ijdo et al. (1991) with minor modification.  We 

used the following primers: TR-A: 5’ GGTTAGGGTTAGGGTAG 3’ and TR-B: 5’ 

AACCCTAACCCTAACCCT 3’.  PCR was carried out at 95°C, 1 min; 30°C, 1 min; 

72°C, 1 min (3 cycles); 94°C, 30 sec; 50°C, 1 min; 72°C, 1 min (17 cycles).  

Specifications for the amplification of the telomeric motif were: Buffer (10X): 2.5 µl, 

MgCl2 (25 mM): 2.5 µl, dNTP (20 mM): 2.5 µl, TR-A + TR-B (20 µM): 6 µl, Taq: 1.25 

U, H2O: 11.25 µl.  Those used for the labeling mix were: Buffer (10X): 2.5 µl, MgCl2 

(25 mM): 2.5 µl, dACG (20 mM): 2.5 µl, dT (20 mM) 2 µl, biotin (1 mM): 2 µl, TR-A 

+ TR-B (20 µM): 1.2 µl, Taq: 1.25 U, DNA (PCR product of the first amplification): 1-

2 µl, H2O: 11.25 µl.  Program: 94°C, 1 min; 50°C, 1 min; 72°C, 1 min (20 cycles). 

 

Capture of images 

Images were captured using the Genus software (Applied Imaging). Signals 

were assigned to specific chromosomes according to size, morphology and DAPI-

banding. When the DAPI-bands were not sufficient to distinguish specific 

chromosomes, FISH was done on G-banded preparations. In these instances, and 

following capture of the G-banded images, slides were destained serially in methanol 

and 100% ethanol for 10 min in each. The times and temperatures used in the 

denaturation step (above) were decreased to 20s and 65°C, respectively.  
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Molecular dating  

Molecular dating (the conversion of genetic distances into temporal framework) 

is widely used as a complement to the paleontological record to infer divergence times 

between taxa. This approach is based on the molecular clock principle, i.e., genetic 

distances between taxa are proportional to the time separating them (for a recent review 

on molecular dating, see Kumar 2005). In order to assess the rates of chromosomal 

change in golden moles we utilized nucleotide sequences available in Genbank 

(http://www.ncbi.nlm.nih.gov).  Nucleotide sequences from five gene fragments (the 

subunit 2 of cytochrome oxidase (CO2), the subunit 2 of NADH dehydrogenase 

(NADH2), 12S and 16S rRNAs and tRNA-Valine (tRNA-Val)) were available for 

Amblysomus and Chrysochloris. Sequences from a further four gene fragments (12S 

rRNA, 16S rRNA, tRNA-Val and the 3’ UTR of the nuclear gene CREM) were 

retrieved for Amblysomus and Chrysospalax. Our analyses could not accommodate all 

three species simultaneously since (1) the gene fragments (above) are not completely 

complimentary, and (2) the method used (see below) requires an input tree that is fully 

resolved which is presently not available for golden moles (see above). We thus 

conducted two separate analyses. In our first analysis (which included five gene 

fragments) Amblysomus and Chrysochloris were examined together with homologous 

sequences derived from the 39 other mammals species presented in Springer et al. 

(2003) but this excluded the two bat genera Tadarida and Megaderma for which CO2 

sequences were not available. Our second analysis (four gene fragments) included 

Amblysomus and Chrysospalax together with 38 of the 39 mammal species referred to 

above. The rabbit, Oryctolagus, was excluded from the data set since the CREM 

sequence is unavailable. Accession numbers (and the associated references) of the 

sequences used in this study are provided in the Supplementary Data S1 of Gilbert et al. 
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(2006). Sequences were aligned using Bioedit v5.0.6 (Hall 2004). For the 12S rRNA, 

16S rRNA, tRNA-Val and CREM sequences, we used the Springer et al. (2003) 

alignment as a reference (see the supporting data set 1 on the PNAS website) and 

simply added one new genus of golden mole (Amblysomus or Chrysospalax) and 

excluded the two bat genera (Tadarida and Megaderma) and the rabbit without 

changing the number and position of gaps. The alignment of the CO2 and NADH2 

protein coding genes did not pose homology problems since it was based on the amino 

acid translation.  

Molecular estimates were performed using a relaxed Bayesian molecular clock 

method for multigene datasets (Thorne et al. 1998, Thorne and Kishino 2002) which 

takes into account potential changes and differences in the rate of evolution of different 

genes. The parameters were set following the authors’ instructions. We used the same 

input topology and calibration points as Springer et al. (2003) with the exception of the 

bat node (Pteropodidae + Megadermatidae) which was not included in our tree (see 

above). The Markov chains were sampled 10,000 times every 100 generations, and the 

“burn in” period was set at 100,000 generations.  

 

RESULTS AND DISCUSSION 

General description of the karyotypes and flow-sorted karyotype 

G-banded karyotypes obtained for the ten new species or subspecies of golden 

moles described in this study (Table 2) are presented in Figure 4. The karyotype of C. 

asiatica was presented in Robinson et al. (2004). Diploid numbers of four species (C. 

obtusirostris, C. trevelyani, N. julianae, A. robustus) are consistent with the earlier 

report by Bronner (1995a) based on standard giemsa preparations. Out of the eleven 

species, only three have a diploid number that deviates from 2n = 30. These are E. 

granti (2n = 26), C. obtusirostris (2n = 28) and A. robustus (2n = 36). The G-banding 
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patterns were generally well conserved between taxa allowing the confident assessment 

of homology among chromosomes.  However, in order to resolve any possible 

ambiguities and to strengthen phylogenetic inferences as well as to provide a more 

detailed understanding of the chromosomal rearrangements detected herein, we verified 

our G-band assessment by cross-species chromosome painting using C. asiatica (CAS) 

flow-sorted painting probes.  This was done for all species except N. julianae (due to 

insufficient material).  

The 30 chromosomes of a female C. asiatica specimen were resolved into 13 

peaks (Figure 5). Nine peaks each contained a single chromosome (CAS 1, 2, 3, 7, 10, 

11, 12, 13, 14), three peaks included two chromosomes each (CAS X+9, 4+5, 6+7), and 

one peak included three different chromosomes (CAS 8+9+X). It was possible to isolate 

CAS 8 in a subsequent attempt to separate single chromosomes from the impure flow 

sorts. Thus, the probes allow for the distinction of 10 of 15 CAS chromosomal pairs. 

Although a complete coverage of all 15 pairs of chromosomes, each by a specific 

painting probe was not possible (paints for CAS 4, 5, 6, 9, X were not obtained), we 

were able to resolve all ambiguities in the G-banded comparisons.  

 

Description and polarization of intrachromosomal rearrangements 

Figure 6 shows the half-karyotype comparisons among the 10 species/subspecies 

described in this study compared to that of C. asiatica (described in Robinson et al. 

2004).  Contrary to the other taxa included herein, chromosomes homologous to CAS 1-

5, 10 and X in all species/subspecies of Amblysomus unambiguously show large, G-

negative pericentric regions that correspond to C-positive heterochromatin (Figure 7) 

that are not hybridized by any of the CAS painting probes (e.g., Figure 8a, c, d, e).  In 

the absence of a comprehensive phylogeny of golden moles, two equally parsimonious 

hypotheses must be considered a priori in order to explain this difference: (i) the large 
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pericentric regions correspond to a derived condition within Chrysochloridae and are 

the result of an increase in the amount of pericentric heterochromatin that occurred in 

the lineage leading to Amblysomus, and (ii) these large pericentric regions are 

plesiomorphic (= ancestral) within Chrysochloridae, and the amount of pericentric 

heterochromatin has been reduced in a common lineage that is ancestral to the other 

taxa. 

 

(a) (b) 

(c) (d) 

Figure 4. G-banded karyotypes of 10 species/subspecies of golden moles: (a) female C. 
obtusirostris (2n=28), (b) male A. robustus (2n=36), (c) female N. julianae (2n=30), (d) female 
A. h. longiceps (2n=30), (e) female C. zyli (2n=30), (f) female A. h. hottentotus (2n=30), (g) 
female C. trevelyani (2n=30), (h) female E. granti granti (2n=26), (i) female A. h. meesteri 
(2n=30), (j) female A. h. pondoliae (2n=30). 
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Figure 4 (continued). 

 

(e) (f) 

(h) (g) 
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Figure 4 (continued).  
 
 
 

 

(i) (j) 

 
 
 

     

  
Figure 5. Flow-sorted karyotype of C. asiatica (CAS, 2n=30, XX) showing the correspondence 
between the peaks and CAS chromosomes. The probe set made from this flow-sort allows the 
clear distinction of 10 of the 14 autosomes in C. asiatica (see text for details). 
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Using the aardvark as an outgroup does not resolve which of these two 

hypotheses is more likely because homology between aardvark and golden mole 

centromeres cannot be assessed.  Indeed, none of the aardvark centromeres is situated 

between the same synteny blocks as in golden moles (see Figure 3 in Robinson et al. 

2004).  That said, however, the two hypotheses are equally parsimonious only where the 

genus Amblysomus is sister to a clade that groups all other golden moles which, 

although feasible, would be in conflict with all previously published classifications 

based on morphology (Roberts 1951, Ellerman et al. 1953, Meester et al. 1986). Based 

on these considerations it is suggested that hypothesis (i) is more likely than hypothesis 

(ii), and that the large pericentric heterochromatin regions observed in chromosomes 

homologous to CAS 1-5, 10 and X of all Amblysomus spp. are cladistic characters that 

support the monophyly of the genus Amblysomus (Figure 9), a view that is consistent 

with an unpublished molecular phylogeny (S. Maree et al. unpublished). 

Chromosomes homologous to CAS 10 in A. h. hottentotus, A. h. meesteri, A. h. 

longiceps, A. h. pondoliae and A. robustus differ significantly in G-banded pattern and 

morphology from the homologues in the other species (Figure 6). The homology of this 

chromosome to that of C. asiatica was unambiguously assessed by FISH (Figure 8b), 

showing that the difference in banding pattern is not due to an interchromosomal 

rearrangement, but is rather likely to result from intrachromosomal restructuring. Since 

the region homologous to CAS 10 in the aardvark has retained the same banding pattern 

as the six golden mole species Calcochloris obtusirostris, N. julianae, E. granti, 

Cryptochloris zyli, Chrysospalax trevelyani and Chrysochloris asiatica, we can infer 

that this rearrangement is indicative of Amblysomus common ancestry, and whatever the 

nature of this change, it constitutes an additional synapomorphy confirming the 

monophyly of this genus (Figure 9).  

 27



Similar reasoning applies to the chromosome homologous to CAS 7 where two 

distinct G-banded patterns can be observed. This time, however, although four 

species/subspecies of the genus Amblysomus (namely A. h. hottentotus, A. h. longiceps, 

A. h. pondoliae and A. robustus) show a pattern that differs from the other genera, A. h. 

meesteri shows the same pattern as the other genera (Figure 6). Again, the homology of 

this chromosome to that of C. asiatica was unambiguously assessed by FISH (Figure 

8a), showing that the difference in banding pattern is not due to an interchromosomal 

rearrangement but is rather likely to be the result of an intrachromosomal 

rearrangement. Moreover, since the region homologous to CAS 7 in the aardvark has 

retained the same G-banded pattern as in the seven golden mole species Calcochloris 

obtusirostris, N. julianae, E. granti, Cryptochloris zyli, Chrysospalax trevelyani, 

Chrysochloris asiatica, and A. h. meesteri, we can infer that this rearrangement 

occurred in the common ancestor of A. h. hottentotus, A. h. longiceps, A. robustus and 

A. h. pondoliae and it, thus, constitutes a further synapomorphy supporting the grouping 

of these species (Figure 9). This conclusion is supported by Maree et al. (unpublished), 

and by the distribution of telomeric repeats (see below).  

The two painting probes CAS 11 and 12 produced particularly interesting signals 

on metaphase chromosomes of C. zyli. These two probes not only hybridized to their 

homologues CZY 11 and 12, but they also produced strong cross-signals in the C. zyli 

karyotype. Specifically CAS 11 hybridized to the heterochromatic CZY 12p (Figure 

8g), and CAS 12 to the heterochromatic CZY 11p (Figure 8h). In addition to these 

cross-signals, CAS 11 and 12 also hybridized to the centromeric regions of CZY 3 and 

4 (Figure 8g, h). These cross-signals were also observed on CAS 3 and 4 when 

hybridizing CAS 11 and 12 onto C. asiatica metaphases. This indicates that the satellite 

sequences that constitute these heterochromatic regions are shared between the p arms 
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of chromosomes 11 and 12 and the centromeres of chromosomes 3 and 4 of C. zyli and 

C. asiatica. 

As shown in Figure 8i, j, CAS 11 and 12 did not hybridize to the p arms of their 

homologues in any other species included here, nor did they produce signals on the 

centromeres of the other chromosomes in these species. These data indicate that the 

satellite sequences are shared by C. asiatica and C. zyli, but not by the other species 

(Figure 9). This character provides the first unambiguous evidence of a generic level 

phylogenetic association within Chrysochloridae. Interestingly, at first glance there is 

morphological support for a sister taxon relationship between Chrysochloris and 

Cryptochloris.  These two genera are the only small-bodied golden moles which present 

temporal bullae that house hypertrophied, club-shaped malleus bones (Roberts 1951, 

Ellerman et al. 1953, Meester et al. 1986, Mason 2003). However, a strict cladistic 

assessment of the morphological characters used in the available identification schemes 

(Roberts 1951, Ellerman et al. 1953, Meester et al. 1986) is not possible since they all 

rely on plesiomorphic and apomorphic characters in their construction, and therefore 

remain equivocal on this issue.  

As illustrated on Figures 6 and 10, the G-banding patterns of chromosomes 

homologous to CAS 1 and 2 in Calcochloris obtusirostris are clearly distinct from the 

other species. Although the centromere of both chromosomes is situated in region 2 in 

C. obtusirostris, it is situated between region 1 and 2 in the other species (Figure 10). 

The homology of these two chromosomes to those of Chrysochloris asiatica was 

unambiguously assessed by FISH (Figure 8k, l), showing that these differences are 

likely to be due to intrachromosomal rather than to interchromosomal rearrangements. 
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Figure 6. G-banded half-karyotype comparison among the species/subspecies analysed herein showing the genome wide correspondence defined by painting and banding 
homologies.



 

 
 

Figure 7. C-banding pattern of A. h. meesteri (a) and A. h. hottentotus (b).  No significant 
difference in the amount of pericentric heterochromatin is observed between the two species. 

 
Two types of rearrangements could explain these differences: (1) a pericentric 

inversion, or (2) a centromeric shift. The definitive polarization of this character using 

the aardvark as outgroup is not possible because the position of these two centromeres 

is not conserved between the aardvark and golden moles (see Figure 3 in Robinson et al. 

2004). In other words, at present it is equally parsimonious to infer a shift in centromere 

position either (1) on the lineage leading to C. obtusirostris or (2), in the ancestor of a 

clade grouping the remaining genera. As was the case for the differences in pericentric 

heterochromatin content between Amblysomus spp. and the other species (see above), 

hypothesis (2) would imply a topology that is in conflict with all previously published 

morphological classifications of golden moles. We thus believe that hypothesis (1) is 

more likely (Figure 9). It will be interesting to see whether these rearrangements are 

shared by the two other recognized species of Calcochloris (C. leucorhinus and C. 

tytoni). 
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Figure 8. Examples of FISH using C. asiatica (CAS) chromosome specific painting probes on 
other species of golden moles. White arrows indicate regions of interest. Chromosome numbers 
of the target species are indicated in white while CAS probes are indicated in green (DIG-
labelled) or red (biotin-labelled). White bars indicate absence of hybridization in the large G-
negative pericentric regions of A. h. hottentotus (AHO) and A. robustus (ARO). Panels (a) and 
(b) present FISH of CAS 7 and CAS 10 on metaphase chromosomes of A. h. hottentotus 
showing that hybridization extends along the full length of the euchromatic portion of AHO 7 and 
AHO 10 respectively. (c) FISH of CAS 10 and 8 on metaphase chromosomes of A. robustus 
showing the split of CAS 8, the conservation of CAS 10, and the hybridization of repeat 
sequences (R) from CAS 10 on the p arm of the submetacentric ARO 9 and on those of ARO 8. 
(d) hybridization of CAS 9 and X and CAS 10 on metaphase chromosomes of A. robustus 
showing the conservation of CAS X and 10, the split of CAS 9 and the hybridization of repeat 
sequences (R) from CAS 10 on the p arm of the submetacentric ARO 9 and on those of ARO 8. 
(e) and (f) same metaphase of A. robustus hybridized with (e) CAS 2 and (f) CAS 10 showing 
the conservation of CAS 10, the split of CAS 2 and the overlapping hybridization of repeat 
sequences (R) from CAS 2 and CAS 10 on the p arm of the submetacentric ARO 9 and on 
those of ARO 8 and 10. (g) and (h) hybridization of CAS 12 and 11 on metaphase 
chromosomes of C. zyli indicating that these two chromosomes and CZY 11 and CZY 12 share 
the same family of repeat sequences (R) on their small heterochromatic arms. 
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Figure 8 (continued). (i) and (j) hybridization of CAS 12 and CAS 11 on metaphase 
chromosomes of C. trevelyani (CTR) (i) and A. h.  hottentotus (AHO) (j). The heterochromatic 
arms of CTR11 and AHO12 are not hybridized. (k) and (l) hybridization of CAS 1 and CAS 2 on 
C. obtusirotris metaphase chromosomes showing complete conservation of these 
chromosomes between the two species. (m) and (n) hybridization of CAS 13 and 7 on 
metaphase chromosomes of C. obtusirostris (m) and E. granti (n) showing that these two 
chromosomes are fused in both species. (o) hybridization of CAS 11 and 12 on E. granti 
metaphase chromosomes showing the fusion of these two chromosomes. (p) Enlargement of 
EGR 4 and COB 4 showing painting results using CAS 13 and 7 painting probes.  The fusion of 
two chromosomes corresponding to CAS 13 and 7 giving rise to chromosome 4 of E. granti 
(EGR) and C. obtusirostris (COB) (taken from panel m and n) is evident, as are the differences 
in the location of the breakpoint region (red arrow) and that of the centromere (yellow arrow) 
between the two species. 
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Figure 9. Cladogram depicting the phylogenetic relationships between the 11 
species/subspecies of golden moles included in this study based on the cladistic interpretation 
of each of the rearrangements detected. The numbering corresponds to the chromosomes of C. 
asiatica.  Cent = centromeric shift or pericentric inversion (see Figures 8k, l and 10); Fu = 
fusion; Fi = fission; Intra = indeterminant intrachromosomal rearrangement; Het exp = 
heterochromatic expansion (see Figures 4, 5 and 8); Sat = sharing of the same satellite DNA 
family (see Figure 8g, h); Telo = presence of telomeric-like sequences in the pericentromeric 
region of most chromosomes (see Figure 11).   = rearrangements of the euchromatin;   = 
rearrangements of the heterochromatin.  Question marks indicate the ambiguity regarding the 
fusion 13+7 (see text for details).   
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Description and polarization of interchromosomal rearrangements 

No interchromosomal rearrangements could be detected between the eight 

species/subspecies that have 2n = 30 chromosomes (Figure 6). Interchromosomal 

variation is thus restricted to differences between a group comprising these eight species 

and A. robustus, E. granti and C. obtusirostris.  

 

 
Figure 10. Detailed comparison of the G-banding patterns of chromosome 1 and 2 of C. 
obtusirostris (COB) with those of E. granti (EGR1) and C. trevelyani (CTR2) showing a shift in 
the position of the centromeres. EGR1 and CTR2 show the same pattern as all other species 
(see Figure 6). Three chromosomal regions are delimited in order to facilitate the comparison 
(see text). The ovals indicate the position of the centromeres. 

 

Differences in A. robustus concern chromosomes homologous to CAS 2, 8 and 

9. As illustrated by the G-banding alignment (Figure 6) and the painting results (Figure 

8c, d, e, f), each of these chromosomes corresponds to two autosomal elements in the A. 

robustus karyotype.  Given that the genus Amblysomus is monophyletic (this study), and 

that all other Amblysomus species/subspecies show the same state for these three 

chromosomes as Calcochloris, Cryptochloris, Chrysochloris, Chrysospalax, Eremitalpa 

and Neamblysomus, the differences between A. robustus and other taxa can be 
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interpreted to result from three autapomorphic fissions that must have occurred in the A. 

robustus lineage (Figure 9).  

The fission of the chromosome homologous to CAS 2 gave rise to ARO 2 and 

16. ARO 2 has a very large G-negative pericentric region (Figure 4) that failed to 

hybridize when using the probe corresponding to CAS 2 as painting probe (Figure 8e). 

However, the fact that this probe produced a signal on the small G-positive p arm of 

ARO 2 indicates that the breakpoint of the fission was situated in the p arm of the 

chromosome homologous to CAS 2.  

The fission of the chromosome homologous to CAS 8 gave rise to ARO 8 and 

15, and that of the chromosome homologous to CAS 9 to ARO 9 and 16. The ARO 9 

pair is heteromorphic comprising one submetacentric and one acrocentric chromosome 

(Figure 4). Chromosomal regions corresponding to the p arm of the submetacentric 

ARO 9 and to those of ARO 8 do not have homologues in the other species (Figure 6) 

suggesting that they are comprised of repetitive sequences that were accumulated in the 

lineage leading to A. robustus. The painting results support this hypothesis. The two 

painting probes corresponding to CAS 10 and CAS 2 produced overlapping signals on 

the p arm of the submetacentric ARO 9 and on the p arm of ARO 8 and 10 (Figure 8c, 

d, e, f). Moreover, the probe corresponding to CAS 9 did not hybridize the p arm of the 

submetacentric ARO 9 and that corresponding to CAS 8 did not hybridize ARO 8p 

(Figure 8c, d). Overlapping signals were not observed using these probes in any of the 

other species of Amblysomus (not shown). Together these observations indicate that the 

p arm of the submetacentric ARO 9, and those of ARO 8 and 10, are made of repeat 

sequences of which at least some components are shared between ARO 8, 9 and 10 and 

CAS 2 and 10, and that within Amblysomus, the amplification of these sequences is 

restricted to A. robustus. Moreover, as illustrated in Figure 8d the probe corresponding 

to CAS 9 + X not only hybridizes homologous regions in A. robustus, but it also 
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produced a signal on the Y chromosome of this species. Since the flow-sorted C. 

asiatica specimen was female, the most likely explanation for this pattern is that the A. 

robustus Y contains repetitive sequences of which at least some components are shared 

with CAS 9 and/or X. In summary, the three fissions detected in A. robustus are not 

phylogenetically informative. It will, however, be interesting to see whether A. 

septentrionalis with 2n = 34 (Bronner 1995b, 1996) which was not available to us, 

shares some of the fissions observed in this species, or whether the increase in diploid 

number is the result of independent rearrangements. 

G-banding comparisons suggest that COB 4 and EGR 4 correspond to two 

separate autosomal elements in the other taxa (Figure 6). Painting results show that 

these differences involve the same chromosomes in C. granti and C. obtusirostris, i.e., 

chromosomes homologous to CAS 13 and 7 (Figure 8m, n). The FISH also confirms 

that these two chromosomes are retained as single chromosomes in all other 

species/subspecies of golden moles (not shown). As a syntenic association involving 

these two chromosomes is not observed in the aardvark and human, we can infer that 

the association between CAS 13 and 7 identified in C. obtusirostris and E. granti is the 

result of a fusion. At first glance it is tempting to suggest that Eremitalpa and 

Calcochloris are closely related, and that the fusion of CAS 13 and 7 occurred only 

once in their common ancestor. However, as illustrated in Figure 8p, EGR 4 and COB 4 

differ in the position of their centromeres. Whereas the centromere of EGR 4 lies in the 

region that is homologous to CAS 13, that of COB 4 is situated in the region 

homologous to CAS 7. Although it is likely that both EGR 4 and COB 4 are the result 

of the same type of fusion, i.e., an end-to-end fusion (telomere:telomere fusion), two 

equally parsimonious hypotheses must be considered to explain the difference in 

centromeric position between EGR 4 and COB 4: (1) the end-to-end fusion effectively 

occurred only once in the ancestor of a clade grouping C. obtusirotris and E. granti 
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followed by an intrachromosomal rearrangement (most probably a centromeric shift) 

that occurred in one of the two the species, or (2) that  C. obtusirostris and E. granti are 

not closely related, and each of these independently underwent an end-to-end fusion 

between CAS 13 and CAS 7. According to this hypothesis the difference in centromeric 

position would best be explained by the fact that the inactivated centromere is not the 

same in both species, i.e., it corresponds to that of CAS 7 in E. granti, and to that of 

CAS 13 in C. obtusirostris.  

These two species occur in areas that are very distant from each other in 

Southern Africa. Eremitalpa granti occurs in the coastal dunes from Western and 

Northern Cape Provinces of South Africa as well as in the Namib Desert in Namibia, 

whereas C. obtusirostris occurs in the KwaZulu-Natal and Northern Province in South 

Africa as well as in the south of Zimbabwe and south of Mozambique (Bronner and 

Jenkins 2005). In addition, morphological characters are equivocal on a possible sister 

relationship between Calcochloris and Eremitalpa. Similarities between the two genera 

include the lack of talonids on the lower molars (Roberts 1924, 1951) and the absence 

of vesicular bulla on the head of the malleus (Broom 1907). It is, however, not clear 

whether these characters are plesio- or apomorphic within Chrysochloridae. A sister 

relationship between Calcochloris and Eremitalpa has not been proposed and the two 

genera have often been separated into different taxonomic categories (Ellerman et al. 

1953, Simonetta 1968, Petter 1981) as is evident from the recent Bronner and Jenkins 

(2005) classification in which Calcochloris has been assigned to the Amblysominae and 

Eremitalpa to Chrysochlorinae. Given the lack of evidence suggesting a close 

relationship between the two genera, a definitive statement on which of the two 

phylogenetic interpretations of the CAS 7 and 13 fusion discussed above accurately 

reflects the natural situation must await the generation of a well resolved molecular 

phylogeny for chrysochlorids.  
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The second and last difference observed in E. granti concerns EGR 12. Each 

arm of this chromosome has been unambiguously mapped to CAS 11q and CAS 12q 

using FISH (Figure 8o). CAS 11 and 12 are retained as two separate autosomal 

elements in all other species (e.g., Figure 8g, h, i, j) and syntenic associations involving 

these two chromosomes are not observed in the aardvark or human genome. We can 

thus infer that the association observed in E. granti is the result of an autapomorphic 

fusion. As mentioned previously, the painting probes CAS 11 and 12 hybridize to only 

one arm of the chromosome resulting from their fusion in E. granti (EGR 12) (Figure 

8o). The p arms of these two chromosomes are fully heterochromatic in C. asiatica 

(Robinson et al. 2004) as well as in most of the other species (not shown). It is therefore 

likely that these heterochromatic regions have been lost during the fusion leading to 

EGR 12.  

 

Distribution of telomeric sequences 

As is the case in all other vertebrates, telomeric signals were detected at the ends 

of all chromosomes in golden moles (Figure 11).  This is consistent with suggestions 

that telomeres are essential for maintaining the integrity and stability of the genome 

(recently reviewed in Bolzan and Bianchi 2006).  In addition to the expected pattern, 

several studies have shown that interstitial telomeric sequences (ITS) can sometimes be 

detected at breakpoint sites of ancient fusions (Lee et al. 1993, Lear 2001, Metcalfe et 

al. 2002, Dobigny et al. 2003 among others), but this observation is by no means 

universal (Meyne et al. 1990, Garagna et al. 1995, Viera et al. 2004 among others). No 

telomeric signals were noted at the breakpoint sites of the three fusions involved in the 

genesis of EGR 12, EGR 4 and COB 4 (Figure 11a, b). This was anticipated in EGR 12 

since the heterochromatic arms of each of the chromosomes was lost during the fusion 

process (see above). However, the absence of telomeric signals at the EGR4 and COB4 
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breakpoint regions may reflect (1) that these sequences have been completely lost 

during the fusion events, implying that the breaks occurred in a region proximal to the 

telomeres, (2) that the telomeric sequences have decayed since the fusion event, or (3) 

that the amount of telomeric repeat sequence remaining at the fusion site is too small to 

be detected by FISH.  

Although ITSs were not detected at the breakpoints of the three fusions, strong 

signals were observed in the large G-negative pericentromeric regions of most 

chromosomes in all Amblysomus species/subspecies (Figure 11f, g, h, j) – the only 

exception being A. h. meesteri (Figure 11e).  More specifically, pericentric telomeric 

signals were observed in all A. h. longiceps chromosomes as well as in all A. h. 

hottentotus chromosomes except the X.  The patterns observed in A. h. pondoliae were 

similar except that the telomeres of the X, 3, 5, and Y showed no hybridization, whereas 

in A. robustus the Y and the acrocentric 9 failed to fluoresce.  

As is evident from Figure 7, no significant difference in C-banding patterns was 

detected between A. h. meesteri and the other Amblysomus spp. suggesting that the 

presence/absence of pericentric telomere signal reflects differences in the sequence 

composition of the pericentromeric heterochromatin, rather than differences in the 

amounts of this material.  As pericentric regions are not involved in fusions in 

Amblysomus species, the presence of telomeric sequences in the pericentric region of A. 

h. hottentotus, A. h. pondoliae, A. h. longiceps and A. robustus does not correlate with 

the location of ancient breakpoints. Similar patterns have been reported in other taxa 

(see for example Garagna et al. 1997, Faravelli et al. 1998, Metcalfe et al. 2004) and in 

these cases, the telomeric motif is thought to be a component of a satellite family 

constituting these heterochromatic regions, an observation that has been substantiated at 

the sequence level in unrelated species (Southern 1970, Arnasson and Widegren 1989).  

Interestingly, since pericentric telomeres were not observed in A. h. meesteri or in any 
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of the other golden mole genera, it is possible to infer that the pericentric telomere 

motifs were amplified only once in an ancestor common to A. h. hottentotus, A. 

robustus, A. h. longiceps and A. h. pondoliae.   

 

Figure 11. Distribution of telomeric repeats (TTAGGG)n on metaphase chromosomes of (a) E. 
granti (b) C. obtusirostris, (c) C. trevelyani, (d) C. zyli, (e) A. h. meesteri, (f) A. h. pondoliae (g) 
A. robustus, (h) A. h. longiceps, (i) C. asiatica, and (j) A. h. hottentotus. Note the absence of 
interstitial telomeric sequences at the breakpoint of the fusion between CAS 13 and 7 in E. 
granti and C. obtusirostris and between CAS 11 and 12 in E. granti (panels (a) and (b), white 
arrow) and the absence of telomeric sequences in the pericentromeric region of all 
chromosomes of A. h. meesteri and in some chromosomes of the other Amblysomus species.  
Numbers and letters on panels (f), (g), (j) refer to the chromosome numbers in Figures 4 and 6. 
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Consequently, in addition to the sharing of an intrachromosomal rearrangements (see 

above), the presence of telomeric repeat motifs around the centromeres represents yet 

another character supporting the grouping of these four species/subspecies to the 

exclusion of A. h. meesteri (Figure 9). This indicates that A. hottentotus is currently 

paraphyletic and in order to resolve this, A. h. meesteri should be recognized as a full 

species. 

Because centromeric specific satellites are thought to undergo recurrent fixation 

of new variants and expansions and/or contractions that can increase the probability of a 

centromere being pulled towards the meiotic pole in oogenesis, they have been viewed 

as selfish structures which can make use of female meiotic drive to increase their 

frequency in natural populations (Henikoff et al. 2001, Henikoff and Malik 2002, Malik 

and Henikoff 2002, see also Pardo Manuel de Villena and Sapienza 2001).  In this 

context it has been shown that centromeric-specific histones have adaptatively evolved 

to counterbalance the potentially deleterious effects associated with the resulting 

distortion in centromere segregation (Malik and Henikoff 2001, Talbert et al. 2002, 

2004). The two centromeric components (satellite sequences and histones) are 

consequently believed to have coevolved in a host/parasite-like fashion.  An extension 

of this model is that the independent coevolution of centromeric specific proteins and 

satellite sequences in two isolated populations of the same species could lead to 

speciation (Henikoff et al. 2001).  Indeed, if the two populations remain isolated for a 

sufficient period of time, the two centromeric components may become incompatible 

when present together in hybrids leading to reproductive isolation.  Irrespective of 

whether this process is a cause or consequence of speciation within Amblysomus, it can 

realistically be invoked to explain the differences in the composition of pericentric 

satellites (i.e., whether telomeric motifs are present or absent) among the different 

species/subspecies of this genus.  There are, regrettably, no data available on A. h. 
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meesteri hybridization and its effects; however, since the composition of pericentric 

sequences in all or most chromosomes differ among the Amblysomus species/subspecies 

taxa, it is not unlikely that hybrids, should they occur, would be expected to show 

centromeric histone/centromeric sequence incompatibility.  The differences in 

pericentric sequences between A. h. meesteri and other Amblysomus species/subspecies 

therefore reinforces suggestions that A. h. meesteri is indeed reproductively isolated 

from its conspecifics (interestingly, it can unambiguously be distinguished from other 

Amblysomus by the presence of a mid-dorsal reddish black stripe; Bronner 1996, 2000) 

and that it therefore warrants consideration as a full species.   

Should this hold, the effects of centromeric incompatibility discussed above 

would be anticipated to be less pronounced in hybrids among any two of the four 

remaining species/subspecies (i.e., A. h. hottentotus, pondoliae, longiceps and A. 

robustus) since the composition of the pericentric repeats was found to differ only in a 

subset of their chromosomes (at least at the level of detection permissable in our study).  

However, as pointed out by Henikoff et al. (2001), the effects of centromeric 

incompatibility on reproductive isolation are expected to be stronger in the 

heterogametic sex since the centromeres of the sex chromosomes would always be the 

most dissimilar.  Interestingly, in most instances the differences in the pericentric repeat 

composition among the Amblysomus species/subspecies involved the sex chromosomes, 

and if these differences are sufficiently pronounced, it is possible that other Amblysomus 

subspecies too may warrant specific rank.   

 

Age, ancestral karyotype, and rate of chromosomal evolution of the 

Chrysochloridae 

The molecular dating analysis based on gene fragments NADH2, CO2, 12S 

rRNA, 16S rRNA, tRNA-Val for Amblysomus, Chrysochloris and 39 other mammals 
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(see Material and Methods) resulted in an estimated divergence of 28.5 my (Cred. Int. = 

21.5 - 36.5 my) for golden moles (i.e. Chrysochloridae). The second analysis, which 

was based on gene fragments 12S rRNA, 16S rRNA, tRNA-Val and the 3’UTR of 

CREM for Amblysomus, Chrysospalax and 38 other mammals suggested a divergence 

of 26.9 my (Cred. Int. = 14.7 - 41.8 my). The average differences between these two 

estimates and that of Springer et al. (2003), which was calculated on all the nodes 

outside Chrysochloridae, was 4.8 my on the first analysis and 4.4 my on the second 

analysis. Moreover, most of the divergence times that we obtained within Afrotheria 

were comparable to those of Springer et al. (2003). For example, we estimate the origin 

of the Afrosoricida at 67.9 my (Cred. Int = 58.5 - 77.7) cf. 66.36 my (Cred. Int. = 59.5 - 

72.4 my) in Springer et al. (2003). Thus, although we included far less gene fragments 

than Springer et al. (2003), our results are reasonably consistent with this study 

suggesting that the reduction in gene sampling did not lead to significant biases in 

estimating divergence times. Although both results place the origin of the extant 

Chrysochloridae in the Oligocene, they differ substantially in their credibility intervals 

(21.5 - 36.5 my vs. 14.7 - 41.8 my). This is to be expected since the second analysis is 

based on a smaller dataset (2049 bp vs. 3366 bp); therefore preference is given to the 

former when placing the rates of chromosomal change in a temporal context.  

The oldest Chrysochloridae fossils date back to the lower Miocene (16-24 my) 

of Kenya (Butler and Hopwood 1957, Butler 1984) which marginally overlaps with our 

older molecular estimate (i.e. 28.5 my; Cred. Int. = 21.5 - 36.5 my). However, these 

fossils strikingly resemble the extant species in overall morphology of the skull 

suggesting that all the distinctive cranial features of the extant species were already 

present at the beginning of the Miocene (Butler and Hopwood 1957, Butler 1984). This 

indicates that the origin of extant species is probably older than that intimated by the 

fossil dating, which is in keeping with suggestions that although the fossil record 
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provides a definitive date by which individual clades must have been present, this does 

not define when they arose (see Smith and Peterson 2002 for an excellent review of the 

shortcomings of both molecular and paleontological dating). 

We have shown that four genera of golden moles (Chrysochloris asiatica, 

Chrysospalax trevelyani, Cryptochloris zyli, N. julianae) included in our investigation 

have identical karyotypes in terms of diploid number, morphology and banding patterns. 

Moreover, all rearrangements identified among the other species are autapomorphies. 

Commonality does not necessarily imply the ancestral condition, but it is noteworthy 

that at least one species in each of the two genera of Chrysochloridae (Carpitalpa and 

Chlorotalpa) not included in our study also has a diploid number of 2n = 30 (Bronner 

1995a). It is therefore not unlikely that the ancestral karyotype of the family had 2n = 30 

and, given the highly conserved karyotypes within chrysochlorids, that this was very 

similar to that retained in the extant Chrysochloris asiatica, Chrysospalax trevelyani, 

Cryptochloris zyli, and N. julianae. Taking only the rearrangements of the euchromatic 

parts of the genome into consideration, this suggests an average rate of 0.7 

rearrangements per 10 my (Cred. Int. = 0.54 - 0.93) for the branches leading to E. granti 

(two fusions in 28.5 my) and to A. h. hottentotus, A. h. longiceps and A. h. pondoliae 

(two intrachromosomal rearrangements). An average rate of 0.35 rearrangements per 10 

my (Cred. Int. = 0.27 – 0.46) can also be calculated for the branches leading to C. 

obtusirostris (one fusion in 28.5 my) and A. h. meesteri (one intrachromosomal 

rearrangement in 28.5 my). These rates are clearly lower than the “default rate” of 

mammalian chromosomal evolution which has been estimated at one change per 10 

million years (O’Brien and Stanyon 1999, O’Brien et al. 1999, Murphy et al. 2001b, 

Weinberg 2004). Moreover, they are at least twice as low as the average eutherian rate 

of ~ 1.9 chromosomal rearrangements /10 my (Frönicke 2005). In addition to these low 

rates, the chromosomal stasis observed in Chrysochloris, Cryptochloris, Chrysospalax 
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and Neamblysomus during the 28.5 my that separate them from their common ancestor 

clearly place the Chrysochloridae among the most karyotypically conserved families of 

mammals.  

Given this extreme karyotypic conservatism, the three fissions observed in A. 

robustus (see above) are noteworthy for two reasons.  First, the three fissions occurred 

along the A. robustus branch after its divergence from the ancestor of a clade that unites 

A. h. hottentotus, longiceps and pondoliae.  Although the age of this clade cannot be 

calculated on present data, it is certainly less than the ~28.5 my estimated for the origin 

of Chrysochloridae, implying that the rate of chromosomal change significantly 

increased in the A. robustus lineage.  Secondly, only one type of interchromosomal 

rearrangement (a fusion) was detected among all other golden mole species studied 

indicating that other rearrangements such as fissions are very unlikely, or have a very 

low probability of fixation in Chrysochloridae.  One of the possible factors that might 

have facilitated the accelerated fixation of fissions in A. robustus is the presence of 

telomeric motifs in the pericentric area of most of its chromosomes. Following a fission 

in this region, the location of these motifs at the ends of the resultant two independent 

chromosomes may have facilitated the genesis and activation of neotelomeres, thereby 

increasing the probability for the two chromosomes to be viable (see Zhdanova et al. 

2005).  This hypothesis might apply to ARO 8, 9, 15 and 17 (Figure 4).  In this context, 

the heterochromatic short arms of ARO 8 and that of the submetacentric ARO 9 would 

have been amplified subsequent to their fissioning in A. robustus.  The recruitment of 

pericentric telomeric motifs to generate neotelomeres after fission is, however, less 

evident in ARO 2 and 16 since the fission breakpoint is not situated in the pericentric 

region but rather in the p arm of CAS 2.  

In conclusion, the pattern of chromosomal evolution evidenced by comparative 

molecular and conventional cytogenetic studies of seven of the nine golden mole genera 
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is one of constrained change.  While it seems unlikely that the inclusion of the 

outstanding Chlorotalpa and Carpitalpa will significantly alter this (given that two of 

the three species included in these genera have unbanded karyotypes whose morphology 

is very similar to that of C. asiatica, see Bronner 1995a), we are nonetheless of the 

opinion that intraspecific cytogenetic investigations should continue to be encouraged.  

The detection of cytogenetic evidence supporting the elevation of A. h. meesteri to 

specific status in the present study underscores the utility of this approach in the search 

for cryptic species among these afrotherians, many of which are highly endangered.    
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CHAPTER III 

CHROMOSOMAL EVOLUTION IN TENRECS 

 

INTRODUCTION 

Biology, taxonomy, and geographical distribution 

The family Tenrecidae comprises 34 species that are divided into four 

subfamilies and 10 genera (Bronner and Jenkins 2005, Goodman et al. 2006). One 

subfamily, Potamogalinae, includes the only two genera occurring in Africa: 

Potamogale (one species: P. velox) that is found throughout a large part of central 

Africa, and Micropotamogale (two species), which occurs in west (M. lamottei) and 

central (M. ruwenzori) Africa (Kingdon 1997) (Figure 12). These two genera are otter-

like in appearance and have developed a semi- or completely aquatic carnivorous way 

of life, foraging mainly by night in a rather large variety of stream-types (Nowak 1999). 

All their relatives are endemic to Madagascar (Figure 12). Their colonization of the 

ecological niches usually occupied by the eulipotyphlans (true shrews, hedgehogs, 

moles and solenodon) elsewhere, has been accompanied by an impressive range of 

morphological and ecological adaptations (Olson and Goodman 2003). Among them the 

subfamily Geogalinae is monotypic and includes only Geogale aurita which occurs in 

the western and southern dry forests of the island. It is mouse-like in appearance and is 

unique in that females have a post-partum oestrous (Stephenson 2003a). The Tenrecinae 

comprise four genera of spiny tenrecs, of which one, Tenrec ecaudatus, is the largest of 

the family with males weighing up to 2 kg and measuring up to 40 cm in length (Nicoll 

2003). The second spiny-tenrec, Hemicentetes, includes two species, H. semispinosus 

which lives in the lowlands of the eastern rainforest and H. nigriceps which is restricted 

to a smaller, more elevated area of the central plateau (Stephenson 2003b). These two 

“streaked tenrecs” frequently live in family groups of approximately 20 individuals 
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(covering three related generations) that communicate by mean of non-vocal sounds 

produced by specialized quills situated on the middle of the back behind the neck, the 

so-called stridulating organ. In addition, these animals can produce a tongue click that is 

probably a form of echolocation that is used in prey localization (Eisenberg and Gould 

1970).  

 

Figure 12. Geographic distribution of Tenrecidae on Madagascar and continental Africa 
(redrawn from Garbutt 1999, Kingdon 1997). 
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The two remaining genera of the subfamily greatly resemble the eulipotyphlans 

hedgehogs with their rounded, short-legged bodies and spiny fur. Setifer setosus is 

found throughout the island and Echinops telfairi is found only in the western and 

southwestern dry forest (Garbutt 1999). The subfamily Oryzorictinae includes 

Limnogale mergulus, sole mammalian occupant of an aquatic niche on Madagascar. 

Limnogale occurs in the vicinity of the faster flowing streams of the central highlands 

(Benstead and Olson 2003). Within this subfamily, two species of Oryzorictes, O. hova 

and O. tetradactylus are adapted to a fossorial lifestyle, and strikingly resemble true 

moles of the family Talpidae. Oryzorictes hova is broadly distributed in the humid 

forest zone of the island and in marshes of the bottom land, while O. tetradactylus is 

thought to be restricted to montane areas of the central eastern portion of the central 

highlands (Goodman 2003). Finally, the subfamily Oryzorictinae includes Microgale, 

the most speciose mammalian genus on Madagascar with no less than 21 currently 

recognized species (Goodman et al. 2006). Most of these small, shrew-like tenrecs 

(between 3 and 40 g) are found in the eastern humid forests of the island where they 

generally have a broad distribution, with many species occurring sympatrically (Jenkins 

2003).  

The taxonomy of Microgale has undergone extensive revision since its original 

description by Thomas (1882). For example, MacPhee (1987) retained only 10 of the 22 

species described during the preceding century. During the past 20 years, however, 

extensive field surveys coupled with comprehensive morphometric and/or molecular 

investigations resulted in a considerable refinement of their taxonomy and patterns of 

distribution, with 11 new or resurrected species recognised in newer treatments (e.g., 

Jenkins 1993, Jenkins et al. 1997, Jenkins and Goodman 1999, Goodman and 

Soarimalala 2004, Olson et al. 2004, Goodman et al. 2006). 
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Phylogenetic relathionships 

Recent phylogenies based on molecular and morphological characters are in 

good agreement with the classification of Bronner and Jenkins (2005) (Figure 13). They 

strongly support the monophyly of the Malagasy tenrecs and their further division in 

two main clades, the Tenrecinae and the Oryzorictinae (Poux et al. 2005, Asher and 

Hofreiter). The placement of Geogale is however uncertain, being either sister to all 

Malagasy tenrecs (Olson and Goodman 2003), consistent with the recognition of the 

subfamily Geogalinae, or occupying an unresolved position within Oryzorictinae (Asher 

and Hofreiter 2006) which implies paraphyly of the Oryzorictinae. Within 

Oryzorictinae, Olson and Goodman (2003) found Limnogale nested within Microgale, a 

position supported by several non-ambiguous molecular characters. Moreover, although 

subsequent studies included only one species of Microgale and could therefore not test 

the monophyly of this genus, strong support was found for a Limnogale + Microgale 

clade (Asher and Hofreiter 2006, Poux et al. 2005). Although intergeneric relationships 

of the Tenrecidae are rather well resolved, there is no well-supported phylogenetic 

hypothesis detailing interspecific relationships within Microgale. Olson and Goodman’s 

(2003) cladistic analysis of the Tenrecidae is the most comprehensive in terms of 

taxonomic sampling, including as it does a large number of species of shrew tenrecs. 

Importantly, however, relationships within Microgale were not discussed in this study. 

Finally, although two recent studies have utilised both molecular and morphometric 

characters to define species limits in selected shrew tenrec taxa (Olson et al. 2004, 

Goodman et al. 2006), neither was intended to produce a comprehensive phylogeny of 

the genus. 
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Figure 13. Single most parsimonious tree of the family Tenrecidae recovered from an analysis 
of the mitochondrial genes 12S rRNA, tRNA-Valine, and ND2, and exon 28 of the nuclear von 
Willebrand Factor gene (taken from Olson and Goodman 2003). Asterisks indicate nodes that 
are consistent with the study of Poux et al. (2005) and Asher and Hofreiter (2006) which 
included only a single representative of each genus. Taxa included in this study are shown in 
red. In addition, the present investigation also includes M. majori and M. taiva. 

 
. 
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Paleontology and biogeography 

The question of which biogeographical scenario best explains the actual 

partitioning of tenrecs on the African continent and Madagascar is part of a wider issue 

dealing with the origin and diversification of the Malagasy biota. Given that the island 

has a very ancient origin, and was once connected to all the other continents (de Witt 

2003), a fundamental question concerns which of the two biogeographical models – 

vicariance or dispersal – best explains the composition of the modern fauna. 

Biophysical and geological evidence suggest that Madagascar broke-off from its 

African connections ~160 my ago and subsequently its direct link with Antarctica 20 

my later. It finally severed its ties with India ~50 my ago (de Witt 2003). In a recent 

review, Yoder and Nowak (2006) showed that most of the modern Malagasy biota 

originated during the Cenozoic and have an African sister group. They therefore 

concluded that dispersion from Africa, rather than vicariance or dispersion from another 

continent, was the predominant mode of colonization of the island. Malagasy tenrecs 

follow this rule. Their sister group is African (i.e. the Potamogalinae and other 

Afrotheria), and their origin is estimated to have taken place 25.3 myr ago (Cred. Int. = 

31.8 - 19.7) (Poux et al. 2005). Given this time estimate, as well as the time at which the 

ancestor of Malagasy tenrecs split from their closest sister group, the African tenrecs, 

Poux et al. (2005) calculated that tenrecs dispersed from Africa to Madagascar between 

42 and 25 my ago. However, just how the ancestors of the Malagasy tenrecs crossed the 

Mozambique Channel is a matter of controversy. McCall (1997) suggested that a land 

bridge along the Davie Fracture Zone of the Mozambique Channel could have 

connected Africa to Madagascar between the mid-Eocene and the early Miocene. If the 

four endemic Malagasy clades of terrestrial mammals (tenrecs, rodents, carnivorans, 

primates) were to disperse through this, one would expect that they would all have 

colonized the island during the same period, i.e., when the land bridge was present 
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(mid-Eocene – early Miocene). In contrast, under the hypothesis of sweepstake 

dispersal a more random pattern of colonization is expected as these could have 

occurred at any time subsequent to the divergence of the Malagasy clade from its 

African sister group. Poux et al. (2005) tested this hypothesis and found that the 

colonization times of the four Malagasy clades of terrestrial mammals overlap only 

marginally, thereby suggesting that the ancestors of these taxa most probably dispersed 

from Africa to Madagascar by rafting on flotsam. The results of this study, coupled to 

more recent geological evidence (Rogers et al. 2000), challenge the hypothesis of the 

presence of a land bridge that provided a dispersal route from Africa as suggested by 

McCall (1997). However, the results of Poux et al. (2005) are also contradictory with 

Stankiewicz et al. (2006) who recently showed that the directions of the surface currents 

and prevailing winds were probably not favourable for rafting from Africa to 

Madagascar during the Cenozoic, and that other dispersal models including crossing by 

McCall’s (1997) hypothesized land bridge should be sought.  

Tenrec fossil material has been described from the Miocene of East Africa 

(Protenrec, Erythrozootes, Parageogale) (Butler and Hopwood 1957, Butler 1969, 

1984) and of Namibia (Mein and Pickford 2003). Parsimony analyses of morphological 

characters, including the three east African fossils, support a close relationship between 

these taxa and Geogale rendering Malagasy tenrecs paraphyletic (Asher and Hofreiter 

2006). Although this topology similarly implies only one dispersal event from Africa to 

Madagascar, it also requires one reversal from Madagascar back to Africa. It is worth 

noting that the suggestion of a single Africa to Madagascar event could not be 

statistically rejected in this study. Interestingly, however, according to Stankiewicz et al. 

(2006) surface currents and winds were much more favourable for movement from 

Madagascar to Africa. Clearly, the discovery of well-preserved fossils on both the 
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African continent and Madagascar would greatly help in clarifying this fascinating 

issue.  

 

Cytogenetic data 

Diploid numbers are known for all genera with the exception of Potamogale and 

Limnogale. They vary from 2n = 14 (G. aurita, Olson et al. unpublished) to 2n = 54 (M. 

cowani, Borgaonkar and Gould 1969). Unbanded karyotypes are available for T. 

ecaudatus (2n = 38), M. dobsoni, M. talazaci (2n = 30) (Borgaonkar and Gould 1968), 

(2n = 54), E. telfairi (2n = 42) and H. nigriceps (2n = 38) (Hsu and Bernischke 1974).  

 

Context 

The present investigation represents the first comprehensive cytogenetic 

comparison of the family Tenrecidae. New standard G-banded karyotypes are reported 

for 10 species of the genus Microgale and for O. hova. A comprehensive half-karyotype 

comparison between the 10 Microgale species and O. hova was established based on a 

combination of G-banding patterns and chromosome painting. The observed 

rearrangements are placed in a cladistic framework and these are examined with respect 

to two hypotheses of chromosomal evolution - one involving Whole Arm Reciprocal 

Translocations (WARTs), and the other involving only Robertsonian translocations. We 

place our findings in a temporal framework by expanding the Poux et al. (2005) 

molecular clock analysis and show that extreme rate differences exist in the 

chromosomal evolution of the Microgale species. Using these data we critically 

examine a role for chromosomal rearrangements in tenrec speciation. 
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MATERIAL AND METHODS 

Tissues samples and cytogenetics 

Tissue samples were collected during three inventory surveys of study sites 

situated in the rainforests of the central highlands of Madagascar (Table 3). 

Establishment of fibroblast cell lines, chromosome harvest and preparation, as well as 

G- and C-banding, followed the same protocols as for the golden moles (see Chapter II) 

except that the concentration of the trypsin was decreased to 0.0025% for G-banding. 

Chromosomes were ordered in decreasing size and centromere position, or according to 

the M. taiva format when the chromosome complement was conserved. FISH followed 

the protocol described in Chapter II with the exception that chromosome preparations 

were denatured for 10 s in 70 % formamid/0.6 % SSC solution at 65°C rather than 30-

45 s at the 70 °C. 

 

Table 3. List of species included in this study and associated voucher numbers of specimens. 
Site 1: surveyed in November 2003, Province de Fianarantsoa, Parc National de Midongy-Sud, 
NE slope of Mt. Papango, 3.5 km SW Befotaka, 23º50.3’S, 46º 57.5’E, alt. 1250. Site 2: 
surveyed in January 2006, Province d’Antananarivo, Fivondronana d’Anjozorobe, Forêt 
d’Iaban’Ikoto, 5.5 km E Alakamisy, 18º31.3’S, 47º58.4’E, alt. 1280 m. Site 3: surveyed in 
January 2007, Province d’Antananarivo, Réserve Spéciale d’Ambohitantely, Jardin Botanique, 
18º10.3’S, 47º16.9’E, alt. 1450 m. The locations of Anjozorobe and Ambohitantely are illustrated 
in Olson et al. (2004). All specimens are housed in the Field Museum of Natural History 
(FMNH). 

 
Species Site # Voucher number 
Microgale cowani 3 FMNH 194138 
M. dobsoni 3 FMNH 194140 
M. fotsifotsy 2 FMNH 188723 
M. longicaudata 3 FMNH 194143 
M. majori 2 FMNH 188726 
M. parvula 2 FMNH 188729 
M. principula 3 FMNH 194146 
M. soricoides 2 FMNH 188732 
M. thomasi 2 FMNH 188744 
Oryzorictes hova 3 FMNH 194150 
M. taiva 1 FMNH 178756 
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Parsimony analysis 

Parsimony analyses of the chromosomal rearrangements characterising the 

interspecific relationships within Microgale were conducted by scoring chromosomal 

changes as characters and their presence/absence as the character state (Dobigny et al. 

2004). Ancestral karyotypes for Microgale, Oryzorictes and the Oryzorictinae could be 

inferred a priori (see Results and Discussion). These ancestral karyotypes were used to 

polarize the characters. Consistent differences in G-banding patterns were observed in 

two instances that probably reflect complex intrachromosomal rearrangements. We 

could not assess the precise nature of these rearrangements but included them in the 

analyses since they result in distinct, easily identifiable G-banding patterns, and could 

therefore potentially be of interest to future studies that include other species of 

Microgale. These rearrangements were coded as “presence/absence of an undetermined 

intra-chromosomal change” (Table 4). Additionally, patterns corresponding to what 

would be anticipated following a Whole Arm Reciprocal Translocation (WART) were 

observed in some instances (Winking 1986, Searle et al. 1990). This type of 

rearrangement necessitates an exchange between chromosomal arms of two 

metacentrics, between one metacentric and one acrocentric, or between two 

metacentrics and one acrocentric chromosome (respectively type a, b and c WART in 

Hauffe and Pialek 1997). The effect of these rearrangements on fitness is thought to 

vary depending on the type of WART involved in the rearrangement, with type c and b 

likely to be more detrimental than type a (Searle 1993, Hauffe and Pialek 1997). 

WARTs are considered rare in mammals. They are thought to result in complex meiotic 

pairing configurations (such as chromosomal rings or chains) when in the heterozygous 

condition, but detailed information on the expected underdominance associated with 

these types of rearrangements is scarce.  
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When there is no additional information other than simply the presence of 

monobrachial homology (as it is the case in our study), it is impossible to distinguish 

between a WART on one hand, and a series of simple Robertsonian (Rb) translocations 

on the other. The same pattern is expected after a WART between two metacentrics, 

and after two fissions of these metacentrics followed by two fusions of the resultant four 

acrocentrics. The fission/fusion hypothesis generally implies a greater number of steps 

and thus seems less parsimonious (Dobigny et al. 2004). However, since it has been 

shown that Rb translocations have a minimal impact on the fitness (for example in the 

house mouse, Nachman and Searle 1995), this class of rearrangement could, in spite of 

the greater number of steps, be considered more likely than WARTs.  

We have therefore erred on the side of caution and for this reason two character 

matrices were constructed. In the first, all interchromosomal rearrangements were coded 

as fissions or fusions; in this case, WARTs, if present, were viewed to have resulted 

from two fissions followed by two fusions. In the second matrix, WARTs were coded as 

such (i.e., one step) wherever possible. The results obtained under these two hypotheses 

of chromosomal evolution are critically discussed and compared to other studies in 

order to determine whether one hypothesis received greater support than the other in our 

analyses. The two matrices are provided in Table 4. The most parsimonious tree 

inferred from each matrix was retrieved using an exhaustive search in PAUP* 4.0b10 

(Swofford 2002). Bootstrap analyses were performed using 1000 replicates of the 

original matrices.  

 
RESULTS AND DISCUSSION 

G-banded karyotypes of 11 species of the Oryzorictinae are presented in Figure 

14. They represent the first banded karyotypes published for the Tenrecidae. Diploid 

numbers vary from 30 to 56 with five species characterised by 2n = 32 (M. fotsifotsy, M. 

parvula, M. soricoides, M. taiva and O. hova), four with 2n = 30 (M. dobsoni, M. 
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longicaudata, M. majori and M. principula), one with 2n = 38 (M. cowani), and one 

having 2n = 56 chromosomes (M. thomasi). Although an early report by Borgaonkar 

and Gould (1968) confirms the 2n=30 recorded by us for M. dobsoni, in a subsequent 

paper these authors document a 2n=54 for M. cowani (Borgaonkar and Gould 1969), a 

diploid number that differs markedly from the 2n=38 observed in the present study. The 

ambiguity is compounded by the fact that no voucher specimens were collected or 

reported by these authors. In many ways, M. cowani exemplifies the complicated 

taxonomic history of shrew tenrecs. MacPhee (1987) synonymized five nominal species 

and one subspecies with M. cowani, two of which (M. taiva and M. drouhardi) have 

since been resurrected (see Jenkins 2003). Given the absence of a preserved voucher, 

the identification of the specimen karyotyped by Borgaonkar and Gould (1969) cannot 

be confirmed, and the notable difference in 2n between their specimen and FMNH 

194138 (present study) will remain a mystery.   

Although diploid numbers most commonly varied between 2n=30 and 2n=32 in 

the species examined, it was nonetheless often difficult to establish chromosomal 

homologies among them and the more rearranged (2n=38 and 2n=56) karyotypes using 

only the G-banding patterns. Consequently chromosome painting using the flow-sorted 

chromosomes of M. taiva as painting probes was implemented to clarify homologies, 

and to identify complex rearrangements among species. Figure 15 shows the flow-

karyotype of a male M. taiva specimen (MTA). The 30 chromosomes were resolved 

into 12 peaks. Eight peaks each contained a single chromosome pair (MTA 1-3, 4, 7, 

13-15) and four peaks each contained a mix of two different chromosomes (MTA 9+8, 

5+6, 11+12, X+10). The complete resolution of all 15-chromosome pairs was thus not 

possible, but this suite of painting probes in conjunction with the G-bands was sufficient 

to confidently resolve all chromosomal homologies among the tenrecids examined 

herein. 

 59
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(d) (c) 

 
 
 
 
Figure 14. G-banded karyotypes of the 11 species of the Oryzorictinae included in this study: 
(a) male M. dobsoni (2n = 30; FMNH 194140), (b) male M. cowani (2n = 38; FMNH 194138), (c) 
female M. fotsifotsy (2n = 32; FMNH 188723), (d) female M. soricoides (2n = 32; FMNH 
188732), (e) male M. taiva (FMNH 178756), (f) male O. hova (FMNH 194150), (g) female M. 
thomasi (FMNH 188744), (h) male M. parvula (FMNH 188729), (i) male M. longicaudata (FMNH 
194143), (j) female M. principula (FMNH 194146), (k) female M. majori (FMNH 188726). 
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Figure 14 (continued).  
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Figure 14 (continued). 
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Ancestral karyotypes of Microgale, Oryzorictes and the Oryzorictinae  

Chromosomal homologies between the 10 Microgale species and O. hova (a 

representative of the closely-related genus Oryzorictes) are illustrated in Figure 16. All 

the homologies are supported by chromosome painting data, several examples of which 

are presented in Figure 17. A striking result to emerge from these comparisons is that 

not a single interchromosomal rearrangement was detected between M. taiva, M. 

parvula and O. hova (see Figure 16 and 17a-e) underscoring their karyotypic 

conservatism since common ancestry. Moreover, the G-banding patterns are rather well 

conserved suggesting little internal rearrangement within chromosomes. These data 

suggest therefore, that the common ancestor of Oryzorictes and Microgale had a 

karyotype that was virtually identical to that observed in these three extant species, both 

with respect to diploid number (2n = 32) and G-banding pattern.  

 

 

Figure 15. Flow-sorted karyotype of M. taiva FMNH 178756 (MTA, 2n = 32, XY) showing the 
correspondence between the peaks and MTA chromosomes (see text for details). 
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Interestingly, the ancestral karyotypes of the two genera Oryzorictes and Microgale are 

also likely to reflect the ancestral karyotype of the subfamily Oryzorictinae because the 

only other genus of this subfamily, the monotypic Limnogale mergulus, is nested within 

Microgale (Olson and Goodman 2003). It follows therefore, that all rearrangements 

detected within Microgale can consequently be polarized using these inferred ancestral 

karyotypes as the outgroup. It is not possible to undertake a detailed comparison of the 

karyotypes described here with those of other tenrecids since only limited data are 

available for these taxa (i.e., unbanded karyotypes or only the diploid numbers). 

Interestingly, however, it is possible to infer that the oryzorictine ancestral karyotype is 

not found outside Oryzorictinae since all non-oryzorictines tenrecids have diploid 

numbers that differ from the 2n=32 of the ancestral oryzorictine (Borgaonkar and Gould 

1965, Borgaonkar 1967, Borgaonkar and Gould 1968, Bernischke 1969, Borgaonkar 

and Gould 1969).  

 

WARTs vs. fissions/fusions 

Chromosomal changes detected in 12 of the 15 M. taiva (MTA, 2n = 30) 

chromosomes (Figure 16) were polarized as detailed above and coded as either present 

or absent in order to infer interspecific relationships within the genus Microgale (Table 

4). Irrespective of whether WARTs were included to explain differences in 

chromosomal states between the species, or excluded in favour of the alternative 

hypothesis of Robertsonian (Rb) translocations, the same single most parsimonious tree 

was obtained in both instances (Figure 18). The length of the “WART tree” was three 

steps shorter than that of the “Rb tree” (22 cf. 25 steps). Both matrices were homoplasy 

free as inferred by the high consistency indexes (CI = 1 for all characters and both 

matrices), but bootstrap values increased when only Rb translocations were considered. 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. G-banded half-karyotype comparison between 11 species of the Oryzorictinae showing the genome-wide chromosomal correspondence defined by 
painting and banding homologies. Closed circles indicate chromosomes that have undergone intrachromosomal rearrangements. Chromosome numbers are 
indicated for M. taiva and for the rearranged chromosomes of the other species in order to facilitate the correspondence with the diploid karyotypes (Figure 14).
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Figure 17. Examples of FISH using M. taiva (MTA) chromosome-specific painting probes. White 
arrows highlight the chromosome of interest on all panels. Numbers refer to MTA 
chromosomes. Panels (a), (b), (c), (d), (e) present FISH of MTA 14, 5/6, 11/12, 2 and 4 
respectively on metaphase of Oryzorictes hova showing that no interchromosomal break 
occurred in these chromosomes between M. taiva and O. hova. As illustrated by the following 
panels, these chromosomes are however, all rearranged in other Microgale species. Panel (f) 
shows that MTA 2 has undergone a fission in M. soricoides. The same pattern was observed in 
M. fotsifotsy, M. cowani and M. thomasi. Panel (g) shows that MTA 14 (green) is fused with 
MTA 12 (red) in M. longicaudata. The same pattern was observed in M. principula and M. 
majori. Panel (h) illustrates the monobrachial homologies of MTA 4 (green) and MTA 5 (red) 
observed in M. fotsifotsy. MTA 6 (red) is not rearranged in this species. The same pattern was 
observed in M. soricoides. Panel (i) illustrates monobrachial homologies of MTA 9 (red) and 6 
(green) observed in M. cowani and the fission of MTA 8 (red). The fission of MTA 8 was also 
observed in M. thomasi. Panel (j) illustrates monobrachial homologies of MTA 5 (red) and 12 
(green) and of MTA 6 (red) and 11 (green) observed in M. cowani. Panel (k) shows that MTA 3 
has undergone a fission in M. thomasi and panel (l) shows that MTA 9 has been fused to MTA 
14 in M. dobsoni. 
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These findings are strikingly different to those obtained for the house mouse 

races from the Raethian Alps of northern Italy and southern Switzerland (Hauffe and 

Pialek 1997), as well as those from the Island of Madeira (Britton-Davidian et al. 2005). 

The inclusion of WARTs in these studies resulted in tree topologies that were not only 

different to those based on Rb translocations, but were also much more parsimonious 

being characterised by a maximum of nine (in Alpine mice) and five (in Madeiran mice) 

mutational steps less than what were retrieved using the Rb translocations data. 

Additionally, the inclusion of WARTs reduced the level of homoplasy from a maximum 

of eight convergent events to only one in Madeiran mice, and increased support for all 

nodes (as measured by bootstrap and Bremer decay indexes) in this population (Britton-

Davidian et al. 2005), both trends that contrast strongly with our analysis of the tenrec 

data. Thus, while these observations strongly suggest that WARTs, in addition to Rb 

translocations, occurred in the house mouse (Hauffe and Pialek 1997, Britton-Davidian 

et al. 2005, Pialek et al. 2005), this clearly begs a more detailed analysis in Microgale.  

The fact that the analysis of the Rb translocations data matrix resulted in an 

increase in the bootstrap values for the Microgale species’ nodes does not appear 

sufficient in itself to favour this hypothesis. This increase is simply the result of a more 

homogeneous distribution of rearrangements along the branches of the tree (Figure 18), 

and there is no a priori justification for choosing this above the heterogeneous 

distribution evident when testing the WART hypothesis. Interestingly, however, in the 

case of the house mouse, the WART hypothesis is upheld by the fact that the fissions of 

Rb metacentrics are thought unlikely since telomeric and large amounts of centromeric 

satellite sequences are lost during Rb fusions in this species, and thus the subsequent 

fission of these Rb metacentrics would lead to acrocentrics deficient in these sequences 

(Garagna et al. 1995, Nanda et al. 1995). In contrast, fissions seem to be likely in 

Microgale as they are the most common rearrangements detected in our study. 
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Table 4. Matrices of taxa/characters, (a) including whole arm reciprocal translocations 
(WARTs), or (b) considering only fusion and fissions. Characters in bold are present in both 
matrices. Chromosomal changes are considered to be characters and their presence (1) / 
absence (0) the character states. Fi = fission; Fu = fusion; W(a) = WART between two 
metacentric chromosomes (type a WART in Hauffe and Pialek 1997); W(b) = WART between 
one metacentric and one acrocentric chromosome (type b WART in Hauffe and Pialek 1997); 
W(c) = WART between two metacentric chromosomes and one acrocentric chromosome (type c 
WART in Hauffe and Pialek 1997); undet. intra-chr. change = undetermined chromosomal 
change  (see Material and Methods for more details). Numbers associated with rearrangements 
refer to Microgale taiva chromosomes. 

a. 

 

Characters  OHO MTA MPA MDO MMA MLO MPR MSO MFO MCO MTH
1 Fi 2 0 0 0 0 0 0 0 1 1 1 1 
2 Fi 3 0 0 0 0 0 0 0 0 0 0 1 
3 Fi 4 0 0 0 0 0 0 0 0 0 1 1 
4 Fi 5 0 0 0 0 0 0 0 0 0 0 1 
5 Fi 6 0 0 0 0 0 0 0 0 0 0 1 
6 Fi 7 0 0 0 0 0 0 0 0 0 0 1 
7 Fi 8 0 0 0 0 0 0 0 0 0 1 1 
8 Fi 9 0 0 0 0 0 0 0 0 0 0 1 
9 Fi 10 0 0 0 0 0 0 0 0 0 0 1 
10 Fi 10dist 0 0 0 0 0 0 0 0 0 0 1 
11 Fi 11 0 0 0 0 0 0 0 0 0 0 1 
12 Fi 13 0 0 0 0 0 0 0 0 0 0 1 
13 Fu 12+14 0 0 0 0 1 1 1 0 0 0 0 
14 Fu 9+14 0 0 0 1 0 0 0 0 0 0 0 
15 Fu 7q+14 0 0 0 0 0 0 0 1 1 0 0 
16 undet. intra-chr. change 1 0 0 0 0 0 0 1 0 0 0 0 
17 undet. intra-chr. change 2 0 0 0 0 1 1 1 0 0 0 0 
a W(a) 4/5  0 0 0 0 0 0 0 1 1 0 0 
b W(b) 5/12  0 0 0 0 0 0 0 0 0 1 0 
c W(b) 7/12 0 0 0 0 0 0 0 1 1 0 0 
d W(a) 3/7 0 0 0 0 0 0 0 0 0 1 0 
e W(c) 6/11/9 0 0 0 0 0 0 0 0 0 1 0 

 

All chromosomes potentially involved in WARTs are also fissioned in at least one other 

species (Figure 16). This finding, together with the fact that WARTs (especially those 

of type b and c) are considered to be highly detrimental when in the heterozygous 

condition (Hauffe and Pialek 1997), would tend to support the observation that what 

holds true for the house mouse, does not apparently do so for Microgale. Put succinctly, 

WARTs are much less likely to have occurred in Microgale than is the case with the 

house mouse. 
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Table 4 (continued). 

b.  

Characters  OHO MTA MPA MDO MMA MLO MPR MSO MFO MCO MTH
1 Fi 2 0 0 0 0 0 0 0 1 1 1 1 
2 Fi 3 0 0 0 0 0 0 0 0 0 1 1 
3 Fi 4 0 0 0 0 0 0 0 1 1 1 1 
4 Fi 5 0 0 0 0 0 0 0 1 1 1 1 
5 Fi 6 0 0 0 0 0 0 0 0 0 1 1 
6 Fi 7 0 0 0 0 0 0 0 1 1 1 1 
7 Fi 8 0 0 0 0 0 0 0 0 0 1 1 
8 Fi 9 0 0 0 0 0 0 0 0 0 0 1 
9 Fi 10 0 0 0 0 0 0 0 0 0 0 1 
10 Fi 10dist 0 0 0 0 0 0 0 0 0 0 1 
11 Fi 11 0 0 0 0 0 0 0 0 0 1 1 
12 Fi 13 0 0 0 0 0 0 0 0 0 0 1 
13 Fu 12+14 0 0 0 0 1 1 1 0 0 0 0 
14 Fu 9+14 0 0 0 1 0 0 0 0 0 0 0 
15 Fu 7q+14 0 0 0 0 0 0 0 1 1 0 0 
16 undet. intra-chr. change 1 0 0 0 0 0 0 1 0 0 0 0 
17 undet. intra-chr. change 2 0 0 0 0 1 1 1 0 0 0 0 
f Fu 7p+12 0 0 0 0 0 0 0 1 1 0 0 
g  Fu 5q+4q 0 0 0 0 0 0 0 1 1 0 0 
h Fu 5p+4p 0 0 0 0 0 0 0 1 1 0 0 
i Fu 5q+12 0 0 0 0 0 0 0 0 0 1 0 
j Fu 3p+7q 0 0 0 0 0 0 0 0 0 1 0 
k Fu 3q+7p 0 0 0 0 0 0 0 0 0 1 0 
l Fu 6p+9 0 0 0 0 0 0 0 0 0 1 0 
m Fu 6q+11p 0 0 0 0 0 0 0 0 0 1 0 
 

Interspecific relationships within Microgale 

Both matrices were homoplasy free (see above) resulting in four species clades 

with generally high bootstrap values (BPW = BPWARTS; BPfi/fu = BPfusion/fission) despite the 

inclusion of a relatively low number of characters (Table 4, Figure 18). The first node 

groups M. longicaudata, M. majori and M. principula (BPW = 87; BPfi/fu = 87) on the 

basis that they share one fusion and one intrachromosomal rearrangement. The second 

node recovers M. fotsifotsy and M. soricoides as sister taxa (BPW = 96; BPfi/fu = 99) 

supported by either four fusions, or one fusion and two WARTs (depending on which 

matrix is considered in the analysis), and the third groups M. cowani and M. thomasi 

(BPW = 88; BPfi/fu = 99) on the basis of either four or two shared fissions. Finally, the 

last node clusters the fotsifotsy + soricoides lineage as sister to cowani + thomasi (BPW 
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= 63; BPfi/fu = 99), an association supported by either one or four fissions (depending on 

the matrix used).   

 

 

 
 
 

Figure 18. Single most parsimonious cladogram obtained after analysis of the two matrices 
presented in Table 4. Numbers and letters on branches refer to characters described in Table 
4a (WART; bottom of the branches) and 4b (fusions/fissions; top of the branches). Bootstrap 
values based on the analysis of the two matrices are given at each node (Table 4a, bottom; 
Table 4b, top). Both matrices are homoplasy free (Consistency Indexes = 1). 

 

These groupings are in perfect agreement with the topology obtained by Olson 

and Goodman (2003) (see also Figure 13) derived from parsimony analysis of 

mitochondrial and nuclear gene sequences. In addition, the recognition of M. 

longicaudata and M. principula as sister species is supported by the parsimony analysis 

of morphological characters (Olson and Goodman 2003) and, interestingly, both (M. 

soricoides + M. fotsifotsy) and (M. longicaudata + M. principula) groupings correspond 

 70



 
to distinct phenetic clusters based on overall similarities in their craniodental 

morphology, and the proportions thereof (MacPhee 1987, Jenkins 1993, Jenkins et al. 

1997). It is important to note that M. majori was not considered in these earlier studies 

given that it has only recently been resurrected from synonymy with M. longicaudata 

(based on molecular and morphometric analyses of a large number of specimens, see 

Olson et al. 2004). Unfortunately, the chromosomes are not informative in this regard 

since M. majori and M. longicaudata are karyotypically identical at the level of 

resolution permitted by their G-band patterns. However, the G-banded pattern of the 

chromosome resulting from the fusion of MTA 12 and 14 clearly differentiates M. 

principula from M. majori and M. longicaudata (Figure 16) representing as it does an 

autapomorphy for M. principula.  

Finally, the last of the chromosomally distinct lineages, that of M. dobsoni, is 

characterised by a fusion between MTA 9 and 14 (Figures 17 and 18), which represents 

an autapomorphy for this species. Although not informative in our tree, this character 

may prove to be phylogenetically important in future studies involving other Microgale 

spp. In particular it will be interesting to see whether this rearrangement is present in M. 

talazaci, a species which is phenotypically (MacPhee 1987) and genetically (Olson and 

Goodman 2003) thought most closely associated to M. dobsoni. 

 

Rates of chromosomal evolution within the Oryzorictinae 

The subfamily Oryzorictinae includes the Malagasy tenrecs Limnogale, 

Microgale and Oryzorictes; Limnogale has, however, recently been considered to be 

nested within Microgale (see Olson and Goodman 2003). Poux et al. (2005) provide a 

molecular date for the Oryzorictes and Limnogale divergence (and thus an estimate for 

the Oryzorictinae). They calculated the divergence at 18.9 my (Cred. Int. = 14.1 - 24.7) 

using sequences from the nuclear exonic ADRA2B, AR and vWF gene fragments. 
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Although M. brevicaudata was sequenced in the Poux et al. (2005) study, the species 

was not included in their dating analysis because of missing vWF sequence. Since 

Limnogale is nested within Microgale, the analysis of sequences from M. brevicaudata 

as well as L. mergulus provides a means for dating the origin of Microgale, and thus a 

more refined timeframe for the discussion of the rates of chromosomal evolution within 

Oryzorictinae. We therefore repeated Poux et al.’s (2005) analysis using their sequence 

matrix (available in Treebase; accession number: M2279) and the same criterion for 

discarding ambiguous regions in the alignment, the same calibration points and identical 

Bayesian methods (which can handle missing data, see Thorne et al. 2002), but 

including M. brevicaudata (i.e., the ADRA2B and AR sequences that were not analysed 

in the original study). We estimate the L. mergulus /M. brevicaudata split at ~9.9 my 

(Cred. Int. = 6.3 - 14.8) which can be interpreted as a minimum age for Microgale.  

To place our discussion in context, it is important to emphasize (i) that no 

interchromosomal change occurred during the ~18.9 my that separates O. hova from the 

oryzorictine ancestor (Poux et al. 2005), and (ii) that chromosomal stasis similarly 

characterises both the 9 my (i.e., 18.9 - 9.9 my) separating the oryzorictine ancestor 

from the Microgale ancestor, and the ~9.9 my distinguishing the Microgale ancestor 

from M. taiva and M. parvula. Moreover, during the same period (i.e., ~9.9 my), only 

one interchromosomal change was detected in the lineage leading to M. dobsoni and 

two were detected in the lineage leading to M. longicaudata, M. majori and M. 

principula (Figure 18). These observations are in keeping with the low rates that have 

been reported in the Chrysochloridae (See Chapter II), sister family to the Tenrecidae, 

and are consistent with a more generalised slow rate for the Afroinsectiphillia 

(Afrosoricida + Macroscelidae + Tubulidentata). In contrast 12 chromosomal changes 

are detected in M. thomasi, and between 6 and 13 (depending on which matrix is 

considered) in M. cowani punctuate the ~9.9 my that separate these two species from 
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the Microgale ancestor (Figure 18), mimicking the karyotypic megaevolution of certain 

bat species (Baker and Bickham 1980). Although these rates are lower than those 

observed in several mammals (e.g., Britton-Davidian et al. 2000, Wang and Lan 2000, 

Dobigny et al. 2005), they are clearly accelerated with respect to most Afrotheria, the 

only exception being the Sirenia where at least four chromosomal changes separate 

Trichechus inunguis and T. manatus (Pardini et al. 2007), taxa that are thought to have 

diverged 1-4 my ago (Catanhede et al. 2005; Vianna et al. 2005). 

 

 Chromosomal speciation in Microgale 

The tenrec species included in our study all occur in sympatry in the humid 

forests of the central highlands of Madagascar (Goodman and Rakotondravony 2000, 

Jenkins 2003 and references therein).  Contemporary distributions do not, however, 

necessarily reflect the ancestral condition, requiring that temporal as well as climatic 

aspects must be considered in any discussion of the potential causes of speciation in a 

specific group of taxa. Wilmé et al. (2006) have recently provided a compelling 

biogeographic model to explain the high number of speciation events that the extant 

vertebrate fauna of Madagascar has undergone. These authors suggest that during the 

Quaternary glacial maxima, when climatic conditions were cooler and drier and animals 

sought refuge in more mesic riverine forest, watersheds with their sources at lower 

elevations would have been dispersal dead ends resulting in areas in which extensive 

allopatric speciation could have occurred. In addition, a recent study by Olivieri et al. 

(2007) involving a comprehensive taxonomic sample of mouse lemur species 

(Microcebus) argued that factors such as ancestral distribution, species-specific habitat 

preference, as well as the role of rivers and mountains as barriers to gene flow (initially 

proposed by Martin et al. 1972, 1995), are fundamental to understanding the 

diversification and present distribution of mouse lemurs.  
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Interestingly, our estimated minimum age for the origin of Microgale (9.9 my, 

Cred. Int. = 6.3 - 14.8) is close to that calculated for the lemur genera Microcebus (8.9 

my, Cred. Int. = 5.5 - 13.2) and Eulemur (9.7 my, Cred. Int. = 6.5 - 13.7) (Yoder and 

Yang 2004). Although we may have underestimated the age of Microgale, and this may 

be refined through greater taxonomic representation, it nonetheless shows that the 

evolutionary histories of Microcebus, Eulemur and Microgale are largely concordant, 

and thus that the mechanisms that have shaped the diversification of lemurs might have 

also influenced the evolutionary history of shrew tenrecs. Should this hold, the observed 

sympatric patterns exhibited by most species of shrew tenrecs are the result of 

secondary contact that occurred subsequently to allopatric speciation.  

Although chromosomal speciation is not ubiquitous in Microgale (two sets of 

well defined species, M. taiva/M. parvula, and M. fotsifotsy/M. soricoides have an 

identical karyotype), a causal role for chromosomal rearrangements in speciation is 

plausible where marked differences in karyotypes are found. When inferring a causal 

mechanisms of speciation it is clearly necessary to ascertain that it is really pairs of 

sister species where we find such distinct chromosomal differences and, at this point, 

there are no data on geographic karyotypic variation and no independent, reliable 

information on the identity of definitive sister species in this genus. In spite of these 

limitations, however, it is not unreasonable to suggest that the extensive chromosomal 

rearrangements detected in our study may have driven speciation in Microgale through 

the negative effects of underdominance (heterozygote meiotic breakdown, White 1978, 

Baker and Bickham 1986, King 1993, see Rieseberg 2001 for critical discussion),  

forming as it does, an hypothesis that can be tested empirically in subsequent studies.  

In most models, it is generally assumed that chromosomal rearrangements must 

be somewhat deleterious in the heterozygous condition requiring extreme conditions for 

their fixation. These include small population size and inbreeding among others (the 
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monobrachial homology model of Baker and Bickham [1986] being an exception), 

factors that could quite plausibly have existed under the Wilmé et al. (2006) model, at 

least during the climatic shifts of the Pliocene/Pleistocene. 

During this period populations of a previously widespread species of Microgale 

may have been isolated in several low elevation watersheds in a glacial maximum. In 

the subsequent glacial minimum, hybrids carrying heterozygous rearrangements that 

resulted from crosses between specimens from previously isolated populations could 

have exhibited reduced fertility or, in extreme instances, complete reproductive 

breakdown. The complex meiotic configurations anticipated to result from the multiple 

rearrangements that define many of the species examined herein (chains and/or rings of 

chromosomes) could reasonably be expected to result in malsegregation and/or germ 

cell death.  

 

Table 5. Number and type of abnormal meiotic configurations expected in all possible hybrids 
resulting from theoretical crossings of any pair of chromosomally different species of Microgale 
included herein (based on Figure 16). Only interchromosomal rearrangements are considered. 

 

 MSO,MFO MPR,MMA,MLO MTH MCO MDO 

MTA,MPA 
1 chain of 3       
1 chain of 5       
1 ring of 4 

    

MSO,MFO 1 chain of 3 1 chain of 3         
2 rings of 4    

MPR,MMA,MLO 10 chains of 3     
1 chain of 4 

11 chains of 3       
1 chain of 4 

11 chains of 3    
1 chain of 4   

MTH 

3 chains of 3      
1 ring of 4        

1 chain of 4       
1 chain of 6 

1 chain of 9         
3 chains of 3        
1 chain of 6         
1 chain of 4 

3 chains of 3 
1chain of 5       
1 chain of 6      
1 ring of 4 

5 chains of 3   
2 chains of 4  

MCO 1 chain of 3 
1 chain of 3         
1 chain of 6         
1 ring of 4 

1 chain of 4 9 chains of 3   
2 chains of 4 

3 chains of 3   
1 chain of 4    
1 chain of 7    
1 ring of 4 

In the case of the house mouse races, hybrid fertility varies considerably with 

respect to the number of heterozygous rearrangements present in carriers (Nachman and 
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Searle 1995). In some instances a single heterozygous rearrangement may be sufficient 

to adversely affect fertility (Hauffe and Searle 1998) while in others, those carrying few 

heterozygous rearrangements do not generally show a decrease in fertility (Winking et 

al. 1988, Viroux and Bauchau 1992, Wallace et al. 1992). On the contrary, however, 

hybrids heterozygous for more than three rearrangements generally show elevated 

levels of aneuploidy and/or germ cell death (Redi and Capanna 1978, Garagna et al. 

1990, Saïd et al. 1993). It is also anticipated that meiotic chains are more detrimental 

than rings of chromosomes since they present unpaired axes and the more meiotic 

abnormal configurations present, the less fertile the hybrid (Hauffe and Pialek 1997). 

We determined the number of complex meiotic configurations theoretically expected in 

hybrids that would result from crosses among the chromosomally distinct shrew tenrec 

species identified by our investigation (Table 5). Nine of the possible 15 interspecific 

crosses would result in hybrid meiosis characterised by a high number of chains and/or 

rings (between 6 and 11 abnormal pairing configurations per specimen), an observation 

that warrants further detailed empirical analysis, among others, through captive 

breeding experiments.  

We recognize that it could be argued that the final arbiter of correct segregation 

is the meiotic spindle (Eichenlaub-Ritter and Winking 1990, King 1993) and that not all 

instances of shrew tenrec hybridization depicted in Table 5 may have been possible (due 

to geographic or the development of other premating barriers before the possibility of 

secondary contact). Nonetheless, given Madagascar’s paleoclimatic oscillations and the 

spectacular shrew tenrec species diversity, which is often underpinned by marked 

differences among karyotypes, a case can be made for including Microgale in the suite 

of taxa (Spalax: Nevo et al. 1994, Muntiacus: Wang and Lan 2000, Mus musculus 

domesticus: reviewed in Capanna and Castiglia 2004, Taterillus: Dobigny et al. 2005 
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among others) for which the fixation of underdominant chromosomal rearrangements 

may have played a role in cladogenesis.  

 77



 

CHAPTER IV 
 

CONCLUDING COMMENTS 
 
 

Information on the chromosomes of the 55 afrosoricidan species was previously 

restricted to one G-banded karyotype, that of C. asiatica (Robinson et al. 2004), and 

few unbanded karyotypes or reports of diploid numbers (Borgaonkar and Gould 1965, 

1968, 1969, Borgaonkar 1967, Hsu and Bernishke 1974, Bronner 1995a, b). The 

description of G-banded karyotypes of 18 new species and three subspecies of 

Afrosoricida presented here thus provides solid basis for understanding chromosomal 

evolution within this mammalian order. Although this study provides a comprehensive 

picture of the chromosomal evolution within the Chrysochloridae (seven of nine genera 

included), a large portion of generic diversity within Tenrecidae nonetheless remains to 

be described (only two of 10 genera were included). 

The study of chromosomal evolution at the cytogenetic level does not generally 

allow hypotheses concerning the detailed mechanisms involved in chromosomal 

rearrangements since the level of resolution provided by these techniques is low. As a 

consequence, and as emphasized by White (1973) ‘‘Eventually the story of the 

chromosomal mechanisms and its evolution will have to be entirely rewritten in 

molecular terms’’. Since there has been an exponential growth in the knowledge of the 

molecular mechanisms underlying the structural modifications of mammalian genomes 

since White (1973) wrote this sentence, I would like to conclude by placing the 

outcomes of this study in a broader context, one that concerns and discusses several 

hypotheses pertaining to the molecular mechanisms and forces that drive chromosomal 

evolution. 
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Fissions and telomeres 

The comprehensive assessment of chromosomal homologies among golden 

moles and between the relatively large number of tenrec species included in this study 

reveals that fusions and fissions are the predominant structural rearrangements that have 

shaped the evolution of the karyotypes in these taxa. This observation is, in itself, not 

surprising given that these two types of rearrangements are the most frequent in 

mammals (Slijepcevic 1998, Kolnicki 2000). As discussed in Chapter II, the fixation of 

the fissions in Amblysomus robustus may have been facilitated by the presence of 

telomeric-like repeats in the centromeres of the chromosomes. In contrast to the 

situation in golden moles, the centromeres of Microgale taiva, M. thomasi and M. 

cowani are devoid of telomeric-like sequences (not shown) and thus the fixation of 

fissions in these species was probably not enhanced by the recruitment of pre-existing 

telomeric motifs at the neo-chromosomal ends. Alternatively, one could argue that the 

ends of chromosomes resulting from fissions in these taxa might have been “capped” by 

the de novo formation of telomeres, or by the capture of telomeric repeats situated on 

other chromosomes through non-reciprocal translocation (reviewed in Murnane 2006). 

De novo formation of telomeres is frequent in yeast where it involves the action of the 

telomerase coupled with several co-factors (reviewed in Pennaneach et al. 2006). 

Although the underlying mechanisms are not well described in mammals, de novo 

addition of telomeres on broken chromosomes has been observed in human tumour cells 

(Fouladi et al. 2000) and mouse embryonic stem cells (Sprung et al. 1999). This process 

has also been invoked to explain the presence of telomeres at the proximal end of the 

neo-acrocentric chromosome 12 that resulted from a WART in one specimen of the 

house mouse (Catalan et al. 2000).  
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Chromosomes, speciation and centromere drive 

As mentioned in the introduction to this study (Chapter I), the role of 

chromosomal rearrangements in speciation through heterozygous underdominance has 

been extensively debated. The data presented here clearly do not provide conclusive 

evidence of this but nonetheless suggest that given Madagascar’s paleoclimatic 

fluctuations, chromosomal speciation is plausible in Microgale. In large part this is 

underpinned by the observation that the karyotypes of several species-pairs show levels 

of difference that are at least as high as those observed between parents of hybrid mice 

showing reduced fertility and/or germ cell death. It will be interesting to further test this 

hypothesis by exhaustively determining the phylogenetic relationships and divergence 

times among all Microgale species and, secondly, by experimentally assessing the 

potential role of factors such as behaviour and genetic divergences on breeding and 

reproductive success, and hence their potential impact on speciation.  

Similarly, comprehensive information on the divergence times within 

Chrysochloridae may also prove useful in future debate on golden mole speciation. In 

particular, knowledge on the A. h. meesteri and the other Amblysomus 

species/subspecies divergences would provide some indication, albeit untested, as to 

whether these taxa are likely to produce viable hybrids. If hybridization could be 

manipulated under captive conditions, it would allow for observation on the coexistence 

of two different sets of centromeres in vivo and, in conjunction with hybrid fertility, 

could provide insights on whether one set of centromeres is more frequently transmitted 

than the other. In essence, therefore, it could serve as a model to test the hypothesis of 

centromere drive (Henikof and Malik 2001) and its possible consequences on the 

speciation of golden moles. 
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Genome-wide homogenization of centromeric tandem repeats 

In addition, estimates of the degree of separation between A. h. meesteri and the 

other Amblysomus species/subspecies will allow inferences on the spread of a telomeric-

like motif containing satellite family that is present in the centromeres of all, or most 

chromosomes in A. h. hottentotus, A. h. longiceps, A. h. pondoliae and A. robustus. The 

principal mechanism thought to explain the formation/homogenization of a tandem 

repeat array is unequal crossover between sister chromatids during meiosis and germ 

cell mitosis (Smith 1976, and see below). This mechanism, together with conversion, 

slippage, transposition and retrotransposition is responsible for the non-Mendelian 

increase in the frequency of a genetic variant in a population through a process called 

molecular drive (Dover et al. 1982, Dover 2002). This results in an observed pattern of 

concerted evolution, i.e. all copies of a satellite family are more identical within a 

species than between species (Dover 1982 et al., Dover 2002). Although sister 

chromatid recombination can (at least partially) explain the evolution of a satellite 

family within a chromosome, there seem to be no clear consensus in the literature on 

which mechanism is responsible for the genome-wide homogenization of centromeric 

satellites. This phenomenon is indirectly observed in this study (Chapter II) since 

knowing that telomeric-like motifs are present in the centromere of every chromosomes 

of a species does not necessarily imply that the satellite family constituting these 

chromosomes have a common ancestor. In other words, it could be argued that 

telomeric-like motifs have been independently inserted in different satellite families that 

are found at the centromeres of each chromosome.  

However, genome wide homogenization of satellite families is a well known 

phenomenon and this is well illustrated by the presence of α-satellites at all centromeres 

of primate (including human) chromosomes (Willard 1991, Alexandrov et al. 2001). 

Intuitively, genome-wide homogenization patterns could be explained by the formation 
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of non-homologous (between different chromosomes) meiotic crossovers. However, as 

meiotic crossovers are suppressed at centromeres (Choo 1998, Gerton et al. 2000), this 

mechanism is believed to have little if any impact on the evolution of centromeric 

satellites (Ma and Bennetzen 2006). The most likely mechanism involved in genome 

wide homogenization of centromeric repeats thus appears to be equal and unequal 

conversion events, a type of recombination that does not involve the formation of 

crossovers (Baudat and de Massy 2007, Chen et al. 2007). Clear evidence of this 

mechanism has been found in the centromere of rice chromosome 8 for example (Ma 

and Bennetzen 2006). This mechanism could operate not only between chromosomes, 

but also between chromosomes and extrachromosomal circular DNA (eccDNA).  

Extrachromosomal circular DNA is found in a wide variety of eukaryotes 

(Gaubatz 1990) and is thought to derive from rolling circle amplification of 

chromosomal DNA (Cohen et al. 2005). In Drosophila, eccDNA varies in length (<1kb 

and >20kb) and can constitute up to 10% of the total repetitive DNA content; many 

show high similarity to centromeric satellites (Cohen et al. 2003). Indeed, Walsh (1987) 

proposed that rolling circle amplification of eccDNA was the principal mechanism of 

the formation of a tandem array, rather than unequal crossover between sister 

chromatids (Smith 1976). Although the relative importance of the two mechanisms has 

not been critically assessed in any organism, empirical evidences for both have been 

observed (e.g., Rossi et al. 1990 for rolling circle amplification of eccDNA; Kapitonov 

et al. 1998 for unequal crossover). Intuitively therefore, it seems likely that equal and 

unequal conversion events between chromosomes and eccDNA - rather than between 

chromosomes - could be a highly efficient mechanism leading to the genome wide 

expansion and homogeneisation of satellite families such as the centromeric α-satellite 

of primates, or the telomere-containing satellites of golden moles. A simple test of this 
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hypothesis would be to characterize the population of eccDNA in these species as has 

been done in Drosophila (Cohen et al. 2003).  

 

The rate of chromosome evolution 

Overall, the rates of chromosomal rearrangement calculated in this study are 

slow and in line with the generally constrained trend observed across the mammalian 

tree. A global or “default” rate of one rearrangement per 10 my was suggested by 

Murphy et al. (2001b) based on the fact that the karyotypes of several distantly related 

species of boreoeutherians such as cat, mink, ferret, dolphin and human were highly 

conserved. Indeed, the high karyotypic conservation recently observed in the two-toed 

sloth (Svartman et al. 2006) and in the aardvark (Yang et al. 2003), two Atlantogenata 

representatives, have largely confirmed Murphy et al. (2001b) hypothesis on an 

ancestral slow rate for eutherian mammals. However, as has been repeatedly suggested, 

high rates of change are observed on many branches of the eutherian tree (reviewed in 

Murphy et al. 2001b, Ferguson-Smith and Trifonov 2007). This phenomenon is 

particularly well documented in Microgale species with a ten-fold increase in M. 

thomasi compared to M. dobsoni, for example, and to a lesser extent in golden moles 

where the tempo increases in the lineage leading to Amblysomus robustus. When both 

slow and high rates documented for eutherians are taken into account, a value of 1.9 

rearrangements per 10 my has been estimated (Frönicke 2005) which is almost the 

double of the ancestral rate. Together, these observations lead to what is perhaps the 

most fascinating question related to chromosomal evolution: what are the factors that 

can explain the contrasting rates of rearrangements on different branches of the 

eutherian tree? 

Knowledge of the molecular mechanisms that underlie both large and small-

scale chromosomal rearrangements has grown considerably during the last 20 years 

 83



 
following the exponential availability of genomic sequences. Comparisons between 

several mammalian species whose genomes are fully or partially sequenced have clearly 

shown that evolutionary breakpoints are not randomly distributed in the genome but 

tend to cluster in hotspots that are enriched in tandem repeats that are significantly 

associated with fragile sites (Murphy et al. 2005, Robinson et al. 2006, Ruiz-Herrera et 

al. 2006, Gordon et al. 2007, Ruiz-Herrera and Robinson, 2007). It is also now well 

accepted that one of the major mechanism leading to rearrangement of chromosomal 

segments is ectopic recombination at meiosis between repetitive sequences such as 

transposable elements and low copy repeats (or segmental duplications) (Lupski and 

Stankiewicz 2005, Han et al. 2007, Kehrer-Sawatski and Cooper 2007). A recent study 

also shows that the erroneous repair of staggered double strand breaks (DSB) seems to 

be another major source of rearrangements, at least with respect to inversions in 

Drosophila (Casals and Navarro 2007, Ranz et al. 2007). More generally, any 

chromosomal rearrangement can simply be viewed as staggered DSB that are not 

properly repaired (Morgan et al. 1998, Agarwal et al. 2006). Evolutionary 

rearrangements only represent a small fraction of those that occur since they need to 

occur in germ cell mitotic divisions and/or during meiosis to have an evolutionary 

effect.  

The two main pathways of DSB repair acting in mammalian cells are 

respectively non-homologous end joining, which includes single-strand annealing, and 

homologous recombination (Burma et al. 2006). The latter mechanism also occurs 

during meiotic crossovers (Helleday et al. 2007). Recent evidence suggests that the 

mechanism through which retrotransposons insert in a new genomic locus also plays a 

role in DSB repair, although the relative importance of this pathway compared to the 

two highlighted above is unknown (Eickbush 2002, Sen et al. 2007). Interestingly, 

given that meiotic recombination is suppressed at centromeres in mammals, and given 
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that evolutionary breakpoints are concentrated in centromeres, erroneous repair of DSB 

that would not involve illegitimate meiotic recombination, such as those illustrated in 

Ranz et al. (2007) in Drosophila, could also have had a major impact on the dynamics 

of mammalian chromosomes.  

Despite these enormous advances in the knowledge of the mechanistic aspects of 

chromosomal rearrangements, to my knowledge no convincing explanation exists to 

explain the different rates of chromosomal evolution observed in mammals. The rate of 

chromosomal evolution is a fascinating issue since it embraces a myriad of complex 

biological processes. In the context of the above discussion, rates of chromosomal 

evolution can be expressed as the rate of improperly repaired DSBs x the rate of 

fixation. The rate of improperly repaired DSB can be further expressed as the product of 

the rate of DSB x the rate of improper repair. In turn, the rate of fixation depends on 

several forces such as selection (as measured by the impact of a rearrangement on the 

fitness), genetic drift (which is directly dependent on population size) and meiotic drive.  

There is good, though indirect, evidence to show that variation in genetic drift 

may have been the major force leading to accelerated rates of change in some mammals, 

perhaps the most striking example of which is the house mice on Madeira Island 

(Britton-Davidian et al. 2000). Likewise, selection (e.g., Nevo et al. 1994) and meiotic 

drive (e.g., Pardo-Manuel de Villena and Sapienza, 2001) are believed to have had a 

significant impact on chromosome evolution, however their precise influence on the 

rates at which rearrangements occur has never been comprehensively ascertained. One 

of the most exciting unanswered questions is whether genomic traits (i.e., rate of DSB 

and rate of improper repair) have had a significant influence when compared to factors 

influencing the rate of fixation. In other words, does an increase in the number of DSBs 

or a decrease in the accuracy of repair mechanisms lead to an increase in the number of 

rearrangements, or are these factors negligible compared to genetic drift, selection and 
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meiotic drive? A recent elegant experimental study shows that female mice with a 

defective DSB repair mechanism produce a significantly higher proportion of 

chromosomal aberrations after mating with males irradiated with ionising radiation 

(Marchetti et al. 2007). Although this suggests that variation in the accuracy of DSB 

repair can indeed lead to variation in rates of chromosomal rearrangements, the extent 

to which accuracy in DSB repair can vary through time is unknown.  

The mediation of rearrangements by transposable elements (TEs) through 

numerous mechanisms is well demonstrated (see above and also Hedges and Deininger 

2007). Interestingly, the activity level of these elements generally varies greatly through 

time (e.g., Khan et al. 2006, Pace and Feschotte 2007) in a fashion that could provide an 

explaination of the variation in the rate of chromosome breaks and, by extension, rates 

of rearrangements. Indeed, it seems straightforward that an increase in transposition of 

one or more different families of TEs would lead to an increase in DSBs in the host 

genome, simply because insertion of both classes of TEs (DNA transposons and 

retrotransposons) starts with the creation of at least one DSB (or two staggered single 

strand breaks, Craig et al. 2002). Moreover, since the efficiency of meiotic 

recombination depends somewhat on similarity between the two recombining sequences 

(see Carrington and Cullen 2004), a burst of transposition leading to the spread of many 

highly similar or even identical TE sequences throughout the genome in a short period 

should, theoretically, lead to a considerable increase in the probability of ectopic 

meiotic recombination, and thus to more rearrangements during this short period.  

Although attractive, hypotheses linking variation in TE activity to the rate of 

chromosomal evolution are not yet supported by any experimental evidence. The 

absence of evidence does not necessarily imply the evidence of the absence, and despite 

the considerable advances in molecular biology the data necessary to test these 

hypotheses are not yet available. More precisely, the number and taxonomic diversity of 
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complete mammalian genome sequence assemblies is still too limited to accurately 

estimate the relative importance of the different factors that could have triggered the 

observed variatioin in rates of rearrangements over the eutherian tree. However, given 

that the costs of producing a whole genome sequences will decrease dramatically in the 

near future (Pennisi 2006), it should be possible to provide insights to these and other 

fascinating questions that are pertinent to mammalian genome evolution.  
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