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ABSTRACT 

 

Thermal pasteurisation failures in the dairy industry have often been found to cause 

end-products of poor quality and short shelf-life.  Therefore, alternative methods to 

eliminate microbial contaminants in raw milk are being studied.  Ultrasonication is one 

such non-thermal technology that could offer the dairy industry an alternative to 

traditional pasteurisation.   

The main objective of this dissertation was to evaluate the use of high-power low-

frequency ultrasound (20 kHz, 750 W, 124 µm) applied in batch mode to eliminate a 

selection of spoilage and potentially pathogenic microbes, commonly associated with 

milk.  These included Gram-positive and negative microbes, comprising of rods and 

cocci, an endospore-former, and a yeast (Escherichia coli, Bacillus cereus, 

Chryseobacterium meningosepticum, Lactobacillus acidophilus, Lactococcus lactis, 

Listeria monocytogenes, Micrococcus luteus, Pseudomonas fluorescens and 

Saccharomyces cerevisiae).   

 Three strains of E. coli (1 x 106 cfu.ml-1) tested, viz. ATCC 11775, a wild strain 

from raw milk, and an O157:H7 strain from milk were sensitive to ultrasonication.  

Complete elimination of viable cells occurred within 10 min.  Viable counts of  

P. fluorescens were reduced by 100% within 6 min of ultrasonication and  

L. monocytogenes was reduced by 99.0% within 10 min.  Lactococcus lactis was 

reduced by 97.0% and M. luteus, B. cereus and C. meningosepticum by 88.0%, 87.0% 

and 85.0% respectively.  Lactobacillus acidophilus showed the most resistance to 

ultrasound with only 78.0% of viable cells being eliminated.  Under similar conditions,  

S. cerevisiae was reduced by 99.7%.  Microbial cell morphology, size and Gram status 

did not necessarily influence the efficacy of ultrasonication.  Sterile saline solution and 

UHT milk were used as the suspension media, and the reputed protective effect of milk 

fat was not observed under the parameters used in this study.  A higher wave amplitude 

(100%; 124 µm) was found to be more efficient in eliminating microbes than a lower 

wave amplitude (50%; 62 µm).  Pulsed-ultrasonication did not enhance the efficiency of 

ultrasonication indicating that standing waves were absent.   

Limited success was achieved by ultrasonication itself, and the long batch 

treatment time (10 min or more) was found to be unrealistic for industrial 

implementation.  Hence the simultaneous application of ultrasound and heat (thermo-

ultrasonication) was examined.   
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Thermo-ultrasonication proved to be more effective than either an ultrasonic or 

heat treatment with all viable M. luteus cells being eliminated within 4 min (100% 

amplitude at 72°C).  Similarly, to eliminate E. coli and Lb. acidophilus from milk, only 2 

min and 4 min thermo-ultrasonication was required, respectively.  Bacillus cereus 

endospores remained resistant and after a 10 min thermo-ultrasonic treatment only 

78.04% were eliminated.   

 During this investigation both extensive surface (SEM) and internal (TEM) cell 

damage caused by ultrasonication were observed in E. coli, Lb. acidophilus and  

S. cerevisiae.  Hence ultrasonication physically/mechanically damages these microbial 

cells causing cell death/injury.   

Microbial proteins and DNA released from cells into the environment after an 

ultrasonic treatment was measured and an increase in released microbial proteins and 

DNA was found to be indicative of a decrease in the number of viable cells, providing 

that the initial cell concentration was high enough.  It was, however, not possible to 

correlate the concentration of released microbial proteins and DNA with the exact 

number of viable cells eliminated, rendering it an ineffective quality indicator for the 

industry.   

 Ultrasonication had no statistically significant influence on the protein, fat and 

lactose content of both raw and pasteurised milk.  The somatic cell count of raw and 

pasteurised milk was found to decrease after ultrasonication.  Unlike with heating, 

activity of alkaline phosphatase and lactoperoxidase were not reduced by 

ultrasonication.  Hence neither enzyme can be used to indicate a successful ultrasonic 

treatment of milk.   

 This study has demonstrated that ultrasonication offers a viable alternative to 

pasteurisation as it is effective in eliminating microbes, and does not alter native milk 

components.  However, to attain a more effective killing, thermo-ultrasonication is 

recommended for the treatment of milk to be used for the production of different dairy 

products.   
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UITTREKSEL 

 

Oneffektiewe hitte pasteurisasie in die suiwelindustrie word gereeld verbind met 

eindprodukte met 'n swak kwaliteit en kort rakleeflyd.  Alternatiewe metodes om 

mikrobiese kontaminante te elimineer word dus ondersoek.  Ultrasonikasie is so 'n nie-

hitte tegnologie wat vir die suiwelindustrie 'n alternatief vir tradisionele pasteurisasie kan 

bied.   

 Die hoof doelwit van hierdie dissertasie was die evaluasie van die vermoë van 

hoë-krag lae-frekwensie ultraklank (20 kHz, 750 W, 124 µm) om a seleksie van bederf 

en potensiële patogeniese mikrobes, algemeen met melk geassosieer elimineer.  Dit 

sluit Gram-positiewe en -negatiewe mikrobes, bestaande uit stafies en kokki, 'n 

endospoor vormer, en 'n gis (Escherichia coli, Bacillus cereus, Chryseobacterium 

meningosepticum, Lactobacillus acidophilus, Lactococcus lactis, Listeria 

monocytogenes, Micrococcus luteus, Pseudomonas fluorescens and Saccharomyces 

cerevisiae).   

 Drie E. coli (1 x 106 cfu.ml-1) stamme is getoets, nl. ATCC 11775, 'n wilde stam 

wat uit melk geïsoleer is, en 'n O157:H7 stam uit melk, en daar is gevind dat al drie 

stamme sensitief is vir ultrasonikasie.  Alle lewensvatbare selle is binne 10 min 

geëlimineer.  Lewensvatbare tellings van P. fluorescens is met 100% verminder binne  

6 min van ultrasonikasie en L. monocytogenes is met 99.0% verminder binne 10 min.  

Lactococcus lactis is met 97.0% verminder en M. luteus, B. cereus en  

C. meningosepticum met onderskeidelik 88.0%, 87.0% en 85.0%.  Lactobacillus 

acidophilus was die meeste bestand teen ultraklank met net 78.0% van die 

lewensvatbare selle wat geëlimineer is.  Saccharomyces cerevisiae is onder 

soortgelyke omstandighede met 99.7% verminder.  Mikrobiese selmorfologie, grootte en 

Gram-status het nie noodwendig die effektiwiteit van ultrasonifikasie beïnvloed nie.  

Steriele fisiologiese sout oplossing en UHT melk is as suspensie media gebruik, en die 

sogenaamde beskermende effek van melkvet is nie, met die parameters soos in hierdie 

studie gebruik, waargeneem nie.  Daar is gevind dat 'n hoër golf amplitude (100%; 124 

µm) mikrobes meer effektief elimineer as 'n laer golf amplitude (50%; 62 µm).  Die 

effektiwiteit van ultraklank is nie verhoog deur dit te puls nie wat aandui dat staande 

golwe nie gevorm het nie.   

 Beperkte sukses is met ultrasonikasie behaal, en daar is bevind dat die lang 

behandelings tye (10 min of meer) onrealisties is vir die suiwelindustrie.  Die gelyktydige 

toepassing van ultraklank en hitte (termo-ultrasonikasie) is dus ondersoek.   
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 Termo-ultrasonikasie was meer effektief as slegs 'n ultraklank of hitte 

behandeling en het alle lewensvatbare M. luteus selle binne 4 min (100% amplitude 

teen 72°C) geëlimineer.  Slegs 2 min en 4 min termo-ultrasonikasie was nodig om 

onderskeidelik E. coli en Lb. acidophilus in melk te elimineer.  Bacillus cereus 

endospore was steeds bestand, en na termo-ultrasonikasie van 10 min kon slegs 

78.04% selle geëlimineer word.   

 Gedurende hierdie ondersoek is beide ekstensiewe oppervlak (SEM) en interne 

(TEM) selskade a.g.v. ultrasonikasie in E. coli, Lb. acidophilus en S. cerevisiae 

waargeneem.  Dus beskadig ultrasonikasie die mikrobiese selle fisies/meganies wat lei 

tot sel doding/beskadiging.   

 Mikrobiese proteïene en DNS wat na 'n ultraklank behandeling uit die selle in die 

omgewing vrygestel word is gemeet en 'n verhoging in die vrygestelde mikrobiese 

proteïene en DNS was 'n aanduiding van 'n vermindering in die aantal lewensvatbare 

selle, mits die aanvanklike selkonsentrasie hoog genoeg was.  Dit was egter nie 

moontlik om die konsentrasie vrygestelde mikrobiese proteïene en DNS met 'n presiese 

aantal lewensvatbare selle te korreleer nie, wat hierdie metode 'n oneffektiewe 

kwalteitsindikator vir die industrie maak.   

 Ultrasonikasie het geen statisties beduidende invloed op die proteien, vet of 

laktose inhoud van rou of gepasteuriseerde melk gehad nie.  Die somatiese seltelling 

van rou en gepasteuriseerde melk het na ultrasonikasie afgeneem.  Anders as met 

hitte, is die aktiwiteit van alkaliese fosfatase en laktoperoksidase nie deur ultrasonikasie 

verminder nie.  Geen van die ensieme kan dus gebruik word om die sukses van 'n 

ultraklank behandeling van melk aan te dui nie.   

 Hierdie studie het gedemonstreer dat ultrasonikasie 'n geldige alternatief vir 

pasteurisasie is, aangesien dit mikrobes effektief kan elimineer, en ook nie die melk 

komponente verander nie.  Om egter 'n meer effektiewe doding van selle te verseker 

word aangeraai dat termo-ultrasonikasie gebruik word vir die behandeling van melk wat 

gebruik kan word vir die produksie van 'n verskeidenheid suiwelprodukte.   
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Explanation for nomenclature usage 

 

To prevent confusion between older organism names and recent official genus and 

species nomenclature, the following species names were used: 

 

Chryseobacterium meningosepticum = Elizabethkingia meningoseptica 

Lactococcus lactis    = Lactococcus lactis subsp. lactis 

Streptococcus thermophilus  = Streptococcus salivarius subsp. thermophilus 
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CHAPTER 1 

 

INTRODUCTION 

 

Milk production for human consumption began more than 6 000 years ago (Anon., 

2003), and milk may be considered nature's perfect food as it is such a rich source of 

proteins, fats, vitamins and minerals (Frõlich, 2002).  Unfortunately, milk is also ideal for 

sustaining microbial life (Buffa et al., 2001) which could lead to spoilage of the milk and 

in extreme cases could be hazardous when ingested.  Over the years many methods 

have thus been evaluated in order to extend the shelf-life of milk.   

A heat treatment is most commonly applied to milk to eliminate spoilage and 

potentially pathogenic microbes (Buffa et al., 2001).  The type of heat treatment may be 

classified as thermisation (63° - 65°C for 15 s) (Anon., 2003), low temperature long time 

(LTLT) pasteurisation (63°C for 30 min), high temperature short time (HTST) 

pasteurisation (72°C for 15 s) (Anon., 1997), or ultra high temperature (UHT) treatment 

(130 - 150°C for a few seconds) (Anon., 2003).  The "Extended Shelf-life" process and 

"ultra-pasteurisation" (125° - 138°C for 2 - 4 s) are also being applied more frequently, 

although these products still need to be refrigerated after the heat treatment has been 

applied (Anon., 2003).   

 High temperature short time pasteurisation is the most commonly applied heat 

treatment for the extension of the shelf-life of milk.  However, despite its popularity, 

there have been numerous reports of microbes isolated from pasteurised milk 

(Ternström et al., 1993; García-Armesto & Sutherland, 1997; Grant et al., 2001; 

Stopforth et al., 2003), which could lead to pasteurisation failures.   

 Alternative milk treatment methods have been investigated, each with its own 

advantages and disadvantages.  One such an application is bactofugation which is the 

removal of microbes by using centrifugal forces (Kosikowski & Mistry, 1997).  Although 

it works well for eliminating bacterial endospores, this method requires very high 

centrifugal forces (in excess of 10 000 x g) to be effective (Su & Ingham, 2000).  The 

specialised and expensive equipment needed to produce such high centrifugal forces 

on industrial scale makes bactofugation a questionable alternative.   

Another alternative method is the lactoperoxidase (LP) system, which is a 

naturally occurring antimicrobial system in milk (Wolfson & Sumner, 1994).  Three 

components are needed to activate the LP system of which only lactoperoxidase is 
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found in sufficient concentration in raw milk.  Thiocyanate and hydrogen peroxide need 

to be added to the raw milk (Reiter, 1985).  Although the LP system is effective in 

eliminating some Gram-negative microbes (e.g. coliforms and pseudomonads) (Reiter 

et al., 1976), this system can only inhibit some of the Gram-positive microbes such as 

lactobacilli (Oram & Reiter, 1966).  Furthermore, the food legislation of some countries, 

including South Africa (Anon., 1977), does not permit the addition of these components 

to raw milk, rendering this method of preservation illegal (Muir, 1996).   

 Microwave processing is not a new method for eliminating microbes with reports 

dating back to the 1940's (Flemming, 1944).  In 1969, Hamid et al. proposed microwave 

processing as a viable alternative for pasteurising milk.  The main advantage of using 

microwaves for processing milk is the faster start-up and shut-down times with 

consequent energy savings (Decareau, 1985).  There are, however, several 

disadvantages when using the microwaves to extend the shelf-life of milk.  These 

include:  cost of equipment; low efficiency of conversion of electrical energy to 

microwave energy; and probably the most important for the consumer, organoleptic 

changes in the product (Vasavada & Cousin, 1993).   

 Ultraviolet (UV) irradiation of milk has also been investigated as a possible 

alternative to traditional heat treatments.  Although UV is regularly used for disinfecting 

air (Bintsis et al., 2000), it is a known fact that microbes suspended in a liquid are more 

resistant to UV than microbes suspended in air (Koller, 1965).  Some of the factors that 

have limited the application of UV in the dairy industry are the lack of penetration of UV 

in opaque liquids (Snowball & Hornsey, 1988; Lodi et al., 1996) and also the 

development of off-flavours in milk (Koller, 1965).   

Microbial survival has been associated with all the above "alternative" options, 

including the different heat treatments.  This has encouraged the search for new, non-

thermal alternatives such as pulsed electric field inactivation, high pressure and 

ultrasonication (Piyasena et al., 2003).  Although the elimination of microbes by 

ultrasonication was reported as early as the 1930's, the scant lethal effect of 

ultrasonication has limited its application as a "sterilisation" method.  Improvements in 

ultrasound technology during the last decade have, however, renewed the interest of 

researchers in using ultrasonication to study the effective elimination of microbes from 

food products/liquids.   

Renewed interest in ultrasonication led to several aspects that need to be 

answered before successful utilisation of this technique.  The questions include:  Which 

soundwave frequency is best for the elimination of microbes?  What makes ultrasound 
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lethal to microbes and what happens to the microbes physically?  Is it effective for the 

elimination of microbes?  Is ultrasound effective against spoilage and potentially 

pathogenic microbes?  Does ultrasonication affect the native milk components?  Is a 

single treatment of ultrasound lethal enough, or will it be necessary to use ultrasound in 

combination with another method?   

 Ultrasound is defined as sound waves with a frequency of 20 kHz or more (Butz 

& Tauscher, 2002).  High-power low frequency ultrasound, which is recommended for 

the elimination of microbes, refers to ultrasound at frequencies of between 20 and  

100 kHz, also known as "power-ultrasound" (Mason & Lorimer, 2002).  Although 

consensus has not been reached among researchers, the main killing mechanism of 

ultrasound is thought to be cavitation.  During ultrasonication, longitudinal sound waves 

are formed in the liquid medium creating regions of alternating compressions and 

rarefactions (Sala et al., 1995).  The constant change of pressure between the two 

regions causes cavitation to occur.  Gas bubbles are formed in the liquid medium and 

grow in size after each rarefaction stage until a critical size is reached after which some 

of the cavitating bubbles violently collapse (Goldman & Lepschkin, 1952).  As these 

bubbles collapse, shock waves occur creating micro-regions of very high temperature 

and pressure.  Some researchers are of the opinion that it is rather these very high 

temperatures (5 500°C) and pressures (50 000 kPa) that are responsible for the 

elimination of microbes (Suslick, 1990).  Other researchers argue that the life-time of 

these localized "hotspots" are too short to have any bactericidal effect and that it is 

rather the violent collapse of the cavitating bubbles and associated powerful eddies in 

the aqueous milieu that causes the microbial cell walls to rupture and shear, resulting in 

cell death (Alliger, 1975; Morton et al., 1982).  It has also been suggested that as 

bubbles collapse, the formation of free radicals, such as various species of oxygen, as 

well as hydrogen peroxide could inactivate microbes (Piyasena et al., 2003).   

 There are reports of ultrasound being more effective against Gram-negative 

microbes than Gram-positives (Hülsen, 1999; Villamiel & de Jong, 2000), and also that 

smaller and cocci shaped microbes are more resistant to elimination by ultrasound 

(Alliger, 1975).  Scherba et al. (1991) has, however, found that there is no correlation 

between the effectiveness of ultrasonication and the size, morphology or Gram status of 

microbes.  Apart from the type and number of microbes to be treated, there are also 

other factors that are known to affect the efficacy of microbial elimination by ultrasound.  

These include:  the amplitude of the ultrasonic waves; treatment time; treatment 

volume; treatment temperature; and the composition of the food (Hoover, 2000).   
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Although there is some information available on ultrasonication as applied as a 

microbicide in milk, it is evident that more research needs to be done on the 

effectiveness and impact of ultrasound in a dairy milieu before the dairy industry will 

consider investing in this new and powerful alternative to traditional thermal 

pasteurisation.   

Before ultrasonication can be recommended as an alternative to thermal 

pasteurisation, it is essential to know if ultrasound can effectively eliminate microbes 

that are commonly associated with dairy products from milk.  Furthermore, assuming 

that ultrasonication is effective, knowledge of any adverse effects of ultrasound on 

native milk components is imperative as this will influence the application of this method 

for the treatment of milk intended for cheese or yogurt production.   

The main objective of this study was to evaluate the impact of high-power low-

frequency ultrasound as an alternative to thermal pasteurisation in the dairy 

environment.  This will be done by:  investigating the effectiveness of ultrasound to 

eliminate Escherichia coli from milk; determining the impact of ultrasound on the 

survival of a selection of spoilage and potentially pathogenic microbes commonly 

associated with milk; determining if an ultrasonic treatment would lead to an increase in 

released microbial protein and DNA, which could possibly be used for the quantification 

of ultrasonically induced cell damage; and also to visualise (SEM and TEM) 

ultrasonically inflicted cell damage to gain some insight on the damage mechanism of 

ultrasound; determining if ultrasound has any detrimental impact on native milk 

components.  Should ultrasound not be enough to ensure a microbiologically safe 

product, ultrasonication will be investigated as part of a hurdle treatment by assessing 

the microbicidal effects of a simultaneous application of ultrasound and heat (thermo-

ultrasonication).   
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CHAPTER 2 

 

LITERATURE REVIEW 

 

A. Background 

 

Milk is an important part of the human diet and may even be considered to be "nature's 

perfect food", as it is an extremely rich source of nutrients (Frõlich, 2002).  It is also an 

important source of vitamins and minerals, although, the two principle nutrients of milk 

are lipids and proteins (Frõlich, 2002).  Unfortunately, it is also near perfect for 

sustaining microbial life (Buffa et al., 2001).  Although milk should be practically free 

from microbes after milking of a clean, healthy cow, it is almost impossible to maintain 

this status.  Microbes from the milking equipment, container, milker or air may 

contaminate the product (Fox & Cameron, 1982) and lead to spoilage.  This limits the 

quality and shelf-life of fresh milk and it may also spread human pathogens (Cerf, 

1986).  Heat treatment is the oldest and most widely used technological process applied 

to extend the shelf-life of milk by eliminating spoilage and pathogenic microbes (Buffa et 

al., 2001).   

The growth of pathogenic microbes is not a determinant of the shelf-life of fresh 

milk, however, the growth of spoilage microbes is.  These microbes will degrade milk 

constituents by means of extracellular and intracellular enzyme activity.  Four types of 

enzyme activity are encountered:   

• lactose may be fermented to lactic acid during acidification of the product;  

• rancidity may develop when lipids are hydrolysed by lipases - both microbial and 

the native milk enzymes;  

• proteinase activity may result in breakdown of milk proteins and the development 

of intense bitter flavours; and  

• phospholipases may attack the milk fat globule membrane which stabilises the 

native emulsion of milk fat, resulting in churning of the fat and this is generally 

referred to as 'bitty cream'. 

 

The determinants of shelf-life of fresh dairy products are usually the spoilage 

microbes, which are capable of growth, even at refrigeration temperatures.  Natural milk 

enzymes or non-microbially induced chemical reactions in milk seldom lead to spoilage 
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(Muir, 1996).  In general, spoilage of fresh raw milk by lipolysis, do not occur until 

microbial counts in excess of 5 x 106 cfu.ml-1 (colony forming units per ml) are reached.  

The shelf-life may thus be regarded as the time taken for the microbial count to reach 

this threshold level (Muir et al., 1978).   

The International Dairy Federation (IDF) recommends raw milk to be pasteurised 

by either using the batch, low temperature long time (63°C for 30 min) or the high 

temperature short time (72°C for 15 s) option (Cerf, 1986).  The two most heat resistant 

milk pathogens, Mycobacterium tuberculosis and Coxiella burnetii, were used as 

reference strains to determine the minimum heat treatment to render milk free of 

pathogens.  The problem with pasteurisation is that especially endospore-formers such 

as Bacillus cereus (Choma et al., 2000), and also some other spoilage microbes (e.g. 

micrococci, lactobacilli and some streptococci) (Burton, 1986) are able to survive 

minimum treatments.  The ability of psychrotrophs to grow at refrigeration temperature 

is a further limiting factor, in terms of keeping quality, if they are not eliminated during 

pasteurisation (Cousin, 1982).  Spoilage microbes such as Pseudomonas and also 

pathogens like Listeria do not normally survive pasteurisation and their presence is 

rather ascribed to post-pasteurisation contamination (Aaku et al., 2004; Kells & Gilmour, 

2004).   

 Pasteurisation failures and the consumers' increasing demand for minimally 

processed, additive-free, shelf-stable products motivated the investigation of physical 

treatments as potential alternatives to traditional heat treatments.  These alternatives 

include new ways of applying heat such as microwave heating, and also non-thermal 

methods such as sonication, pulsed electric fields and high pressure (Smelt, 1998).  

Non-thermal processes have the advantage of low processing temperatures, low energy 

utilisation and thus better retention of flavours, nutrients and a 'fresher' taste, while 

inactivating the spoilage and pathogenic microbes and enzymes (Vega-Mercado et al., 

1995a).   

 

B. Heat treatment technologies 

 

The single most effective and straightforward way of reducing microbial numbers in milk 

is to apply a heat treatment (Muir, 1996).  The heating time and temperature 

combination will determine the efficiency of the treatment.  It was also found that higher 

processing temperatures require shorter times to kill microbes that may be present in 
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milk (Anon., 2003).  There are three main categories of heat treatment of milk, namely 

thermisation, pasteurisation and ultra high temperature treatments.   

 

Thermisation 

The most moderate heat treatment with a significant practical application is 

"thermisation", a term used to describe a heating process that prevents raw milk 

spoilage during storage at refrigeration temperatures (Muir, 1996) by decreasing the 

number of psychrotrophic microbes (Shah, 1994).  Although thermisation is effective for 

inhibiting spoilage it does, however, offer no guarantee of microbial safety.  

Thermisation does not stand on its own as a heat treatment in the same sense as 

pasteurisation, but must rather be seen as a means of extending the shelf-life of raw 

milk until it can undergo pasteurisation or a more severe heat treatment (Anon., 2003).  

As far as can be concluded from the literature, there is no legal definition for 

thermisation and also no consensus of the thermal specifications.   

Shah (1994) reported thermisation to be a heat treatment of 74°C for 20 s.  In 

contrast, it has been reported (Anon., 2003) that thermisation is a pre-heat treatment of 

milk to temperatures below pasteurisation, in the range of 63° - 65°C for 15 s.  This 

time/temperature combination does not inactivate the phosphatase enzyme, but, 

aerobic endospore-forming microbes are prevented from multiplying by rapidly cooling 

the milk to 4°C or below.  Thermisation also has a favourable effect on certain 

endospore-forming microbes by activating the endospores to revert back to vegetative 

cells, which may then be destroyed by the subsequent pasteurisation.  According to the 

IDF (Cerf, 1986), thermisation involves heating to 63° - 65°C for 15 - 20 s, with the aim 

of improving the keeping quality of milk at the plant pending its final use.  Researchers 

at the Hannah Research Institute (Muir, 1996) did extensive research on thermisation 

and found temperatures in excess of 65°C to be the most effective.  It is now generally 

accepted that the term 'thermisation' applies to a heat treatment in the 65° - 70°C for  

15 - 30 s range.  After the heat treatment the thermised milk must be promptly cooled to 

below 6°C to be effective (Muir, 1996).   

The organisms which grow in thermised milk during refrigerated storage are 

similar to those found in raw milk with pseudomonads being the predominant microbes 

found in thermised milk after prolonged storage (Muir, 1996).  Pseudomonads are a rich 

source of extracellular enzymes and their presence and activity will limit the shelf-life of 

thermised milk.  It has also been reported that Streptococcus thermophilus may reach 

high numbers in the regeneration section of plate heat exchangers over long, 
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continuous processing times (in excess of 5 h).  These increases of S. thermophilus 

could lead to spoilage of the thermised milk (Muir, 1996).  Thus, subsequent microbial 

growth in thermised milk is highly temperature dependent and, therefore, to ensure the 

efficiency of the treatment, it is vital that the temperature of the thermised milk be 

lowered as fast as practically possible to below 6°C and that the milk be stored at low 

temperatures (2° - 4°C) (Muir, 1996).   

 

Pasteurisation 

Pasteurisation is the most commonly applied heat treatment of milk products (Muir, 

1996).  If pasteurisation is properly applied, it may reduce the health risks associated 

with raw milk by the almost complete elimination of pathogenic microbes, and it also 

inhibits spoiling by microbes.  Pasteurisation processes have been given clear legal 

definitions because of its importance in guaranteeing the safety of milk and milk 

products (Muir, 1996).  The IDF has given the following definition for pasteurisation 

(Cerf, 1986):  "Pasteurization - Is a process applied to a product with the aim of avoiding 

public health hazards arising from pathogenic microorganisms associated with milk by 

heat treatment which is consistent with minimal chemical, physical and organoleptic 

changes in the product".  The pasteurisation process may include two heat treatments:   

 

Low temperature long time (LTLT) 

According to the South African "milk law" (Anon., 1997):  "pasteurisation of milk shall be 

performed by heating every particle of the milk to a temperature of at least 63°C (not 

exceeding 65,5°C) and keeping it at that temperature for at least 30 minutes, which 

heating shall be followed by cooling within 30 minutes to a temperature lower than 5°C 

(this process is referred to as the "holder method" or the "batch method")".  The Scottish 

designation for LTLT pasteurisation recommends that milk must be held at not less than 

62.8°C and not more than 65.6°C for at least 30 min, followed by immediate cooling to 

6°C (Muir, 1996).   

 

High temperature short time (HTST) 

The SA "milk law" (Anon., 1997) further states that:  "pasteurisation of milk shall be 

performed by heating every particle of the milk to a temperature of at least 72°C and 

keeping it at that temperature for at least 15 seconds, which heating shall be followed 

immediately by cooling to a temperature lower than 5°C (this process is referred to as 

the "high-temperature short-time method")".  The Scottish designation for HTST 
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pasteurisation recommends that milk must be held at not less than 71.7°C and not more 

than 78.1°C for at least 15 s, followed by immediate cooling to 6°C (Muir, 1996).   

 

General comments on pasteurisation 

Pasteurisation not only kills most common pathogens in milk but also eliminates the 

Gram-negative psychrotrophs which are the most common cause of spoilage in raw and 

thermised milk (Muir, 1996).  One major shortcoming of the pasteurisation process is 

the failure to eliminate the thermoduric microbes which may grow at refrigeration 

temperatures.  These microbes are mostly bacilli and include strains of Bacillus cereus, 

B. circulans and B. mycoides which are all capable of rapid germination and growth in 

refrigerated dairy products (Muir, 1996).  Bacillus cereus may be considered to be a 

pathogen as the endospores and toxins survive pasteurisation and may cause serious 

food related illnesses (Granum & Lund, 1997).   

It is generally accepted that although pasteurisation eliminates all but the 

endospore-forming organisms from the psychrotrophic population of milk, the process 

does not destroy their extracellular degradative enzymes.  Roughly a third of the 

phospholipase and two thirds of the proteinase and lipase enzymes survive HTST 

pasteurisation (Patel & Blankenagel, 1972).  Therefore, if the psychrotrophic count 

exceeds 5 x 106 cfu.ml-1 in raw milk before pasteurisation, there is a definite chance that 

shelf-life will be shortened (Patel & Blankenagel, 1972).   

Fundamentally the time/temperature combination of the pasteurisation process 

reaches an equilibrium between sterility and shelf-life on the one hand, and nutrition and 

palatability on the other.  Pasteurisation is effective because the heating applied causes 

individual microbial cells to die randomly.  Two effects are at work:  firstly, the longer the 

milk is held at an elevated temperature, the more organisms die, however, this may be 

detrimental to nutrition and taste; and secondly, the rate of death increases with 

increases in temperature.  Brief heating, as applied during HTST pasteurisation, 

reduces microbial populations to acceptable levels without excessive destruction of the 

delicate substances that are valuable to milk nutrition and flavour (Harrison, 2002).   

There is no significant difference between the nutritional quality of raw and 

pasteurised milk.  Even though most of the pathogenic microbes are destroyed during 

pasteurisation, the total number of microbes is only reduced, and only certain enzymes 

are inactivated.  This results in pasteurised milk having only a limited keeping capacity.  

One advantage of pasteurisation is that it converts hydroxy acids into lactones, resulting 

in a product with improved sensory characteristics.  Pasteurisation has very little effect 
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on the nutritional quality of vitamins, although storage could lead to loss of some 

vitamins.  The fat-soluble vitamins, A, D and E, and some of the vitamins in the  

B-complex (nicotinic acid, pantothenic acid, biotin and riboflavin) are relatively heat 

stable and generally only minor losses have been reported when milk is pasteurised 

(Frõlich, 2002).  Heat treatments have not proved to have a negative influence on the 

availability of minerals (Weeks, 1985).   

 

General pasteurisation equipment 

LTLT – Although LTLT or "batch" pasteurisation has to a large extent been replaced by 

HTST pasteurisation, it is still widely practised in some parts of the world, and especially 

in laboratories, due to its simplicity and simple equipment requirements (Potter & 

Hotchkiss, 1995).   

 In this process, milk is heated and held in one vessel usually made of stainless 

steel fitted with a paddle for agitation of the milk.  The holder vessel is insulated with 

some form of material, for example cork, to maintain the milk temperature.  There are 

three methods used for batch pasteurisation:  hot water is circulated in the jacket 

surrounding the holding vessel to heat the milk; or low-pressure steam is used directly 

for heating; or a combination of water and steam may be used.  Once the desired 

temperature (63°C) has been reached, the milk is held for 30 min before being cooled to 

the required temperature (Harvey & Hill, 1967).   

 

HTST – The two principles of heating applied by the dairy industry for this process are 

direct and indirect heating.  Direct heating is efficient for rapid heating and is normally 

used to sterilise milk by steam injection, or infusion of milk into a steam-filled vessel.  

Heat is transferred by convection or conduction from the heating medium to the milk.  

Direct heating as a means of pasteurisation is forbidden by law in some countries on the 

grounds that foreign matter may be introduced into the product (Anon., 2003).   

 Indirect heat transfer is the most popular method used for pasteurisation of milk.  

In this method, there is always a partition of some sort between the product and the 

heating/cooling medium (Anon., 2003).   

There are three classes of heat exchangers generally used for HTST 

pasteurisation:  plate heat exchangers (PHE); tubular heat exchangers (THE); and 

scraped-surface heat exchangers (SSHE).  The latter is used for viscous, sticky and 

lumpy products such as jams, chocolate, peanut butter etc. and will, therefore, not be 

discussed (Burton, 1988; Anon., 2003).   
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 Plate heat exchangers are the most popular type of heat exchangers used by the 

dairy industry.  Plate heat exchangers consist of a set of thin rectangular corrugated 

metal plates fitted into a frame.  These metal plates act as heat-transfer surfaces and 

when they are fitted together, the corrugations on consecutive plates interlock to form 

narrow flow channels, in which hot and cold streams flow alternatively.  The distance 

between the plates is determined by the thickness of the gasket surrounding each plate.  

The gasket seals the fluids in the PHE to prevent external leakage and internal mixing.  

Several flow patterns are possible, depending on the gaskets' configuration (Ribeiro & 

Caño Andrade, 2002; Anon., 2003).   

 Tubular heat exchangers are used for both pasteurisation and UHT treatment of 

dairy products.  The THE may be operated for longer periods between cleaning cycles 

than the PHE during UHT treatment.  The THE does however, need a higher flow 

velocity than the PHE to create efficient heat transfer.  There are two fundamentally 

different types of THE:  multi/mono tube and concentric tube (Anon., 2003).   

 In multitube THE, the product flows through a group of parallel tubes and the 

service medium between and around the tubes.  The monotube is a version with only 

one inner tube and will permit particles with a diameter of up to 50 mm to pass through.  

Multi/mono tubes are suited for processes operating at very high pressures and high 

temperatures (Burton, 1988; Anon., 2003).  In contrast, concentric tube THE's give 

efficient heating or cooling as there is heating/cooling media on both sides of the 

annular product channel.  This type of THE is well suited for high viscous fluids with 

strong non-Newtonian behaviour (Anon., 2003).   

 Fouling can be a serious problem encountered during pasteurisation.  During the 

heating process, protein, mineral and fat deposits (also known as milk stone) may 

accumulate on the contact surfaces of the equipment (Burton, 1988).  This reduces 

efficiency by lowering heat transfer, and may also be a possible source of 

contamination.  To overcome this problem, extensive and regular cleaning is required, 

especially when PHE are used.  This process may be time consuming as the PHE have 

to be taken apart and the plates cleaned individually (Anon., 2003).   

 

Monitoring pasteurisation 

The IDF (Cerf, 1986) defined pasteurised milk as follows:  "Milk which has been 

subjected to pasteurization; which if retailed as such has been cooled without delay and 

has then been packaged with minimum delay under conditions which minimize 

contamination.  The product must give a negative phosphatase test immediately after 



Chapter 2 15 

heat treatment".  Thus, alkaline phosphatase is used as a statutory index of effective 

pasteurisation (Muir, 1996).  These enzymes are believed to have a thermal resistance 

greater than that of the most heat-resistant non-endospore-forming pathogens 

commonly found in milk (Murthy et al., 1993).  In contrast, thermisation does not 

inactivate the phosphatase enzyme (Anon., 2003).  A negative test for alkaline 

phosphatase indicates proper pasteurisation.  The test is negative if, after 

pasteurisation, milk is incubated with a colorimetric reagent susceptible to phosphatase 

action and a residual level of less than 10 µg of ρ-nitrophenol per ml of milk is found 

(Muir, 1996).   

 

Heat treatments of above 100°C 

There are several options available when a heat treatment of above 100°C is required 

or considered essential.  "Extended Shelf-life" (ESL) is a process frequently applied in 

Canada and the United States of America (USA).  Although there is no single definition 

for ESL, a typical temperature/time program is 125° - 130°C for 2 - 4 s (Anon., 2003).  

This type of heat treatment is sometimes also referred to as "ultra-pasteurisation" (UP) 

which is considered to be a heat treatment of 125° - 138°C for 2 - 4 s, with cooling to 

below 7°C.  Both the ESL and UP heat treatments require the final product to be 

refrigerated (Anon., 2003).   

 According to the SA "milk law" (Anon., 1997):  "'UHT' or 'ultra high temperature 

treatment' means the process whereby milk or a dairy product is subjected to heat 

treatment above 100°C and aseptically packaged so that the end product, after 

incubation for not less than 14 days at a temperature of 30°C ± 1°C, is free from 

spoilage by micro-organisms".   

 

General comments on heat treatments of above 100°C 

The shelf-life of pasteurised milk is normally measured in days, depending on the 

storage temperature and the number of microbes remaining (Harrison, 2002).  In order 

to extend the storage time to several months, all microbes and enzymes need to be 

inactivated.  This may be achieved by using UHT treatments (Frõlich, 2002).  It has 

been suggested (Anon., 2003) that the UHT process ensures food safety via 

commercial sterility and a long shelf-life at ambient temperatures.  Souring (or 

acidification), due to microbial metabolic processes, may be greatly slowed by 

processing at much higher temperatures, with a trade-off in reduced nutrition and 

palatability, however, even this above-boiling temperature (>100°C) does not kill all 
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microbes and souring will still occur after a few months (Harrison, 2002).  Griffiths et al. 

(1986) suggested that a heat treatment of 115°C for 5 s is the most promising for the 

control of endospore-forming microbes.   

The UHT process is, however, not always recommended as a replacement for 

pasteurisation, since it adversely affects amino acid bioavailability and, consequently, 

nutritional value (Efigênia et al., 1997).  Frõlich (2002) also reported that UHT 

treatments may result in considerable losses of some selected nutrients.  Heating at 

higher temperatures produces higher concentrations of lactones which lead to improved 

sensory characteristics, but also leads to the formation of aldehydes and methyl 

ketones which may have an adverse effect on the flavour of the final product.  During 

prolonged heat treatments at high temperatures and/or storage, oxidation may cause 

loss of the fat-soluble vitamins.  Ultra high temperature treatment of milk may also lead 

to a significant decrease of some of the vitamins (Frõlich, 2002), however, more rapid 

heating and cooling has less impact on chemical changes that might occur including 

taste, colour and nutritional value.  It was also found that the higher processing 

temperatures required shorter times to kill the microbes present in the milk (Anon., 

2003).   

Extended heat treatments have been studied as a means of controlling the 

growth of psychrotrophic endospore-forming microbes, as other heating methods have 

limited efficiency in controlling this specific problem.  Simply increasing the temperature 

of pasteurisation is ineffective because the higher temperatures often result in activation 

of otherwise dormant endospores (Brown et al., 1980).   

Double HTST heat treatments have also been studied.  The application principle 

of such combined heat treatments is that the first heat treatment activates the microbial 

endospores which, after a suitable incubation period, germinate.  The vegetative cells 

are then readily destroyed by the second HTST pasteurisation.  In contrast, the 

application of double pasteurisation, coupled with a range of intermediate incubation 

conditions, has not been successful to control spoilage (Brown et al., 1979).  The lack of 

success of double heat treatment may be explained by two factors.  Firstly, it has been 

found to be impossible to achieve complete germination of all endospores by a single 

heat treatment.  Secondly, even when maximum germination has been achieved some 

new sporulation may occur in the period of incubation allowed for the activated 

endospores to convert into true vegetative cells.  Thus, double pasteurisation does not 

hold a considerable advantage over single HTST pasteurisation in terms of the 



Chapter 2 17 

elimination of endospores, and may be deemed unnecessary and cost-

ineffective/uneconomical.   

There are two ways of producing long-life milk for ambient storage, either by 

sterilisation or UHT treatment.  Milk is given an in-container heat treatment at  

115° - 120°C for 20 - 30 min to produce sterilised milk.  The bottles (either glass or 

plastic) may be sterilised in bulk in an autoclave, or may be sterilised continuously in 

horizontal or vertical hydrostatic towers.  Ultra high temperature milk requires a heat 

treatment of 135° - 140°C for a few seconds, followed by aseptic filling, normally in 

carton boxes (Anon., 2003).   

There are two ways of giving milk an UHT treatment, either by direct or by 

indirect heating.  During direct heating the product comes in direct contact with the 

heating medium, followed by flash cooling in a vacuum.  Steam can be injected into the 

milk (steam injection), or the milk can be introduced into a steam-filled vessel (steam 

infusion) (Anon., 2003).   

 Indirect heating is more cost-effective than direct heating.  There are two main 

methods used for the UHT treatment of milk:  plate heat exchangers and tubular heat 

exchangers (Burton, 1988; Anon., 2003).  The main principles have already been 

discussed.   

 

C. Alternative treatments technologies 

 

Membrane treatment 

Membrane processes have been employed by the dairy industry for many years 

(Rosenberg, 1995).  Membrane separation is a logical choice for the fractionation of 

milk as many milk components may be separated on the basis of size (Brans et al., 

2004).  The four main membrane processes employed by the dairy industry are 

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) 

(Rosenberg, 1995).  The illustration in Fig. 1 shows the differences between these 

processes in terms of size and milk components that may be separated.  The dairy 

industry uses MF for different purposes:  preservation of the functional properties of milk 

proteins; fractionating caseins and whey proteins (Rosenberg, 1995); and the 

elimination or reduction of microbes and endospores from milk (Eckner & Zottola, 1991; 

McSweeney et al., 1991; Rosenberg, 1995; Guerra et al., 1997; Saboya & Maubois, 

2000).  When dealing with membrane processing in the dairy industry, MF is generally  

 



Chapter 2 18 

 
 
 
 
 
 
 
 
  Size range     Membrane process 
 

 
 

 

 

Figure 1 Different membrane processes and size indication of the milk components 

that may be separated.  MF – microfiltration; UF – ultrafiltration; NF – nanofiltration;  

RO – reverse osmosis (combination of data taken from Rosenberg, 1995 and Brans et al., 2004). 
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used for the elimination of microbes, therefore, only MF will be discussed in this 

dissertation.   

 Microfiltration (MF) is a pressure-driven membrane process that uses 

membranes with a pore size of 0.2 - 2 µm (Rosenberg, 1995).  Raw milk that has been 

subjected to MF is usually divided into two fractions:  the fluid retained by the 

membrane (the retentate) which consists of mainly fat globules, microbes and 

endospores; and the liquid passing through the membrane (the permeate or 

microfiltrate) (Saboya & Maubois, 2000).  Theoretically, this permeate may be 

considered to be fat-free and bacteria-free milk (Maubois, 1991).   

 A major disadvantage of MF is the build-up of foulants on the membrane surface 

and also inside the pores.  This leads to significant reductions in the efficiency of the 

process (Sheldon et al., 1991).  The foulants include fat globules, proteins, microbes 

and endospores (Malmberg & Holm, 1988).  Fouling of the system necessitates 

frequent membrane cleaning which may be time consuming, costly and it also shortens 

the 'lifetime' of the filters (Nyström, 1989).   

Rosenberg (1995) reported that although MF is efficient in removing microbes 

and endospores, the MF process cannot be used to guarantee the removal of all 

pathogenic microbes present in milk, and thus cannot be considered an alternative to 

pasteurisation.   

 

Bactofugation 

Bactofugation is mainly used for removing microbes present in milk by a centrifugal 

force based on the difference between the density of the microbial cell and that of the 

milk serum (Kosikowski & Mistry, 1997).  In the USA, pasteurisation is legally required 

to be part of a hurdle technology where bactofugation is used for the treatment of fresh 

milk (Kosikowski & Mistry, 1997).  During bactofugation the force steers the microbes to 

the outer wall of the centrifuge where they exit through several ports, while the milk 

leaves at points nearer the centrifuge centre.  This method is preferred to traditional 

pasteurisation especially when the typical flavour of raw milk is required for "ripened" 

cheese.  During bactofugation, milk is subjected to centrifugal forces of approximately  

9 000 x g to remove microbes and endospores (Kosikowski & Mistry, 1997; Sarkar, 

1999).  The resulting pellet may be heat treated and added back to the milk to avoid 

yield losses associated with bactofugation (Kosikowski & Mistry, 1997).   

Ingham et al. (1998) showed that Clostridium endospores may be present in raw 

milk, and subsequently survive pasteurisation.  Members of the genus Clostridium may 
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metabolise lactic acid to produce butyric and acetic acid, carbon dioxide, and hydrogen 

(Cato et al., 1986; Su & Ingham, 2000).  Importantly, it has been shown (Klijn et al., 

1995) that C. tyrobutyricum may cause late blowing in cheese.   

Bactofugation has been well studied as a means of removing endospores from 

milk (Su & Ingham, 2000; Harrison, 2002).  Su & Ingham (2000) reported that the higher 

the centrifugal force, the greater the degree of endospore removal.  They reported a 

66.2% reduction in C. tyrobutyricum endospores after centrifugation at 3 000 x g for  

30 s compared to a 98.6% reduction for a 30 s treatment at 12 000 x g.   

 

Lactoperoxide 

The lactoperoxidase (LP) system is a naturally occurring antimicrobial system found in 

raw milk (Kamau et al., 1990; Wolfson & Sumner, 1994).  To activate the LP system 

three components are required:  LP, thiocyanate (SCN¯) and hydrogen peroxide (H2O2).  

Lactoperoxidase is normally found in sufficient concentrations in raw milk, however, 

thiocyanate and hydrogen peroxide need to be added (Reiter, 1985).  The enzyme 

lactoperoxidase catalyses the oxidation of thiocyanate by H2O2, resulting in intermediate 

products with antimicrobial properties that may cause the inhibition of different spoilage 

and pathogenic organisms, thus enhancing the microbiological quality of the raw milk 

(Björck, 1978; Wolfson & Sumner, 1993).  Apart from the importance of preserving the 

quality of raw milk, the LP system may also be used to extend the shelf-life of 

pasteurised milk (Barrett et al., 1999).   

The antimicrobial activity of the LP system against psychrotrophic (Björck, 1978) 

and mesophilic (Zajac et al., 1983) microbes has been investigated.  In these studies it 

was found that the LP system exerts both bacteriostatic and bactericidal activities 

against Gram-negative catalase positive microbes such as coliforms, pseudomonads 

and salmonellae depending on the pH, temperature, incubation time and cell density 

(Björck et al., 1975; Reiter et al., 1976).  Gram-positive, catalase negative microbes 

(e.g. lactobacilli and streptococci) are, however, usually only inhibited by the LP system 

(Oram & Reiter, 1966).  Zajac et al. (1981) also reported that the LP system was 

ineffective against the endospores of Bacillus cereus.  This is in accordance with the 

hypothesis that the site of action of the LP system is on the bacterial plasma membrane 

and thus does not impact the endospores.   

The timespan of the antimicrobial effect achieved by the LP system is inversely 

related to the storage temperature of the milk.  When milk is stored at 15°C the 

antimicrobial effect lasts for 24 - 26 h, whereas it only lasts for 7 - 8 h when milk is 
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stored at 30°C (IDF, 1988).  Therefore, the LP system, when allowed (Kamau et al., 

1990; 1991) is usually used in conjunction with a heat treatment.  Muir (1996) reported 

that legislation in the United Kingdom does permit the use of the LP system for 

preservation of raw milk.   

 

Microwave 

Microwave pasteurisation of milk is by no means a new treatment.  In 1969, Hamid et al. 

reported the use of a microwave system for pasteurising milk.  Since then several 

researchers have done work on the microbiological impact of this system (Knutson et 

al., 1988; Thompson & Thompson, 1990; Heddleson & Doores, 1994).  Microwaves are 

generated by a magnetron and are then absorbed by the food being treated; the dipole 

molecules in the food align with the microwave field which cause friction among the 

molecules resulting in heating of the product (Knutson et al., 1987).   

There is some controversy as to the exact microbial killing mechanism of 

microwaves.  Flemming (1944) treated an unknown concentration of Escherichia coli 

cells with electromagnetic fields at various frequencies (11 - 350 MHz) and found that 

the system had a lethal effect, with no significant rise in temperature, on the microbes.  

In another study, Brown & Morrison (1954) tried to duplicate Flemming's studies without 

success.  After extensive research, they concluded that any microbial reduction was 

rather brought about by thermal effects and not the microwaves as such.  This was later 

confirmed by other researchers (Goldblith & Wang, 1967; Lechowich et al., 1969; 

Hamrick & Butler, 1973).  Similarly, Vela & Wu (1979) exposed lyophilised microbial 

cultures to microwaves, with no detrimental effect.  They theorised that without free 

water, the cells could not absorb enough energy to generate heat to inactivate the 

microbes.  Decareau (1985) reviewed a considerable amount of literature and 

concluded that the majority of research supports the argument that heat, and not 

microwave radiation alone, kills the microbes.   

 Merin & Rosenthal (1984) compared raw milk heated for 30 min in a microwave 

oven (2 450 MHz, 700W) to raw milk heated for 30 min in a waterbath at 63°C.  The 

chemical composition of the two batches of milk was similar, both tested negative for 

phosphatase, and no coliforms could be detected.  Plate counts done according to 

standard methods (Merin & Rosenthal, 1984) revealed a decrease in numbers by a six 

log value.  A five log reduction was observed for psychrotrophs.  Knutson et al. (1988) 

found that a microwave process that simulated high temperature short time (HTST) 

pasteurisation (71.1°C for 15 s) did not inactivate all cells of Salmonella typhimurium, 
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Pseudomonas fluorescens or E. coli at an inoculation concentration of 103 - 104 cfu.ml-1.  

Similarly, they found that the simulated LTLT process (62.8°C for 30 min) did not 

eliminate Streptococcus faecalis (1 x 106 cfu.ml-1 inoculum) to the same level as 

conventional batch pasteurisation of milk.  They suggested that uneven heating in 

microwave ovens might be the reason.  Chiu et al. (1984) also studied the extension of 

the shelf-life of pasteurised milk by microwave heating.  They found that microwave 

heating of eight day old milk to 60°C reduced the psychrotrophic microbial count  

(1.8 x 106 cfu.ml-1) to zero, thus extending the shelf-life of milk.   

 It has in the past been claimed that the rapid temperature rise in microwave 

heating results in less destruction of nutrients compared with conventional processes 

(Datta & Hu, 1992).  There is, however, some disagreement between researchers on 

the effect of microwave heating on vitamins.  Sieber et al. (1996) reported no loss of 

vitamins A, E, B1, B2, and B6 in milk, with Sigman-Grant et al. (1992) reaching the same 

conclusion for vitamins B2 and C in infant formula milk.  Medrano et al. (1994), however, 

reported a significant loss of vitamins A and B2 in milk.  Vidal-Valverde & Redondo 

(1993) reported a significant loss of vitamin B1 and found a thiamine loss of >50% in full 

cream milk and 65% in skimmed milk after microwave treatment at 80°C for 4 min.   

 It has been proposed that microwave treatment be considered an alternative 

method for heating milk and milk products (Gallmann & Eberhard, 1993; Valero et al., 

2000).  The technical advantages of microwave processing include the speed of 

operation, energy savings, precise process control and faster start-up and shut-down 

times (Decareau, 1985).  Heat exchangers foul and this reduces the heat transfer and 

causes flavour changes in pasteurised milk while with the microwave process, milk 

heats directly.  Fouling may, therefore, be avoided by elimination of the steep 

temperature gradient of conventional pasteurisation (Kudra et al., 1991; Aktas & 

Özilgen, 1992).  Although there are advantages for using microwaves in milk 

processing, several disadvantages, especially the cost of equipment and operation, low 

efficiency of conversion of electrical energy to microwave energy and uneven product 

heating and organoleptic changes in products, have prevented widespread adoption of 

this technology (Vasavada & Cousin, 1993).  Heddleson & Doores (1994), however, 

reported that uneven heat distribution could be avoided by the use of a continuous 

system.  Similarly, Aktas & Özilgen (1992) reported satisfactory levels of microbial 

destruction by microwave treatment of milk in a continuous system.   
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Ultraviolet irradiation 

Ultraviolet (UV) irradiation may be used for the sterilisation of surfaces, air and liquids 

(Bintsis et al., 2000).  The UV spectrum may be subdivided into three categories:  long-

wave (UVA) with wavelengths of 320 - 400 nm; medium-wave (UVB) with wavelengths 

of 280 - 320 nm; and short-wave (UVC) with wavelengths of 200 - 280 nm (Giese, 

1964).  Most microorganisms, including bacteria, viruses, fungi, yeasts and algae are 

killed by UV irradiation at wavelengths between 250 - 260 nm (UVC), with the maximum 

bactericidal effect being at 254 nm.  The microbial DNA is directly altered by UVC, 

which leads to a large decrease in the microbial population (Giese, 1992).  It may, 

however, happen that microbes that were presumably killed by UV irradiation may be 

revived when exposed to visible wavelength light and will, therefore, contribute to the 

spoilage of the product.  This phenomenon is called photoreactivation (Cords et al., 

2001).   

 The advantages of UVC irradiation are that the process is not pH or temperature 

dependant (Cords et al., 2001), and cause no change in either colour, flavour or odour 

when used for the disinfection of water (Snowball & Hornsey, 1988).  There are, 

however, several disadvantages when using UV, especially in the dairy industry:  the 

development of off-flavours in milk (Koller, 1965); lack of penetration in opaque liquids 

(Snowball & Hornsey, 1988; Lodi et al., 1996); the presence of fat molecules which may 

lead to rancidity; variable antimicrobial efficiency and long exposure to UV irradiation 

may cause damage to the eyes and skin (Cords et al., 2001).   

 Temperatures of between 5° and 37°C have little influence on the antimicrobial 

action of UV irradiation; however, moisture may drastically decrease its efficiency.  

Microbes that are suspended in a liquid such as milk or water are much more resistant 

than those suspended in air, even after making allowance for absorption of UV by the 

medium (Koller, 1965).   

 In 2002, Smith et al. proposed the use of pulsed UV laser light as an effective 

means for the cold pasteurisation of milk.  They did, however, only use a 1 ml sample 

which might be too small for any conclusive results.  They suggested that their process 

was capable of controlling endospore-forming microbes, without conducting any 

appropriate tests.  Furthermore, they reported a 21 d shelf-life of the treated product 

after no growth was detected on trypticase soy broth plates (inoculated with only 50 µl 

milk) (Smith et al., 2002).  From the above assumptions made by them, one may 

question the validity of the results and recommendations.   
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D. Microbial survival 

 

According to the IDF standards, milk is pasteurised to render it free from pathogenic 

microbes, which may pose as a health risk to the consumer (Cerf, 1986).  However, the 

use of industrial pasteurisation processes cannot guarantee milk to be free of 

pathogenic microbes, either because they are present in too large numbers in the raw 

milk, or it might have entered the milk as post-pasteurisation contamination (Grant et al., 

1996).  Thermoduric microbes also lead to pasteurisation failures (Schröder, 1984; Muir, 

1990).   

 Bacillus, Aerococcus, Staphylococcus, Flavobacterium, Enterobacter, 

Pseudomonas, Micrococcus, Lactococcus, Lactobacillus, Enterococcus, 

Microbacterium, Propionibacterium, Leuconostoc, Streptococcus, Proteus and coliforms 

have all been isolated from raw milk (ICMSF, 1980; Frank et al., 1993; Jay, 1996).  In 

addition, members of Bacillus cereus, Pseudomonas, Enterobacteriaceae, Aeromonas 

(Ternström et al., 1993), Citrobacter freundii (Lindberg et al., 1998), Enterobacter 

sakazakii (Skladal et al., 1993), Listeria monocytogenes (Doyle et al., 1987) and 

Mycobacterium paratuberculosis (Grant et al., 2001) have been isolated from 

pasteurised milk.   

 Salmerón et al. (2002) reported the presence of Lactobacillus, Lactococcus and 

Pseudomonas in HTST pasteurised milk.  Ternström et al. (1993) indicated that at least 

half of the consumer milk on sale in Sweden and Norway have in the past been spoilt by 

Gram-negative psychrotrophs, especially members of the genus Pseudomonas.  The 

ability of these microbes to grow at refrigeration temperatures holds serious 

consequences in terms of shelf-life.   

Bacillus cereus is a common contaminant of raw (Lin et al., 1998) and 

pasteurised milk (Griffiths & Phillips, 1990; Larsen & Jørgensen, 1997), and has been 

reported to be the leading cause of food poisoning in several countries (Beattie & 

Williams, 1999).  The endospores of B. cereus have a decimal reduction time of  

2.2 - 5.4 min at 100°C (Choma et al., 2000) and will thus be able to survive 

pasteurisation.  Dufrenne et al. (1994) reported the average generation time of a 

psychrotrophic B. cereus strain to be 8.2 h at 7°C.  Some of the psychrotrophic strains 

are also known to grow in food at temperatures as low as 4° - 6°C (Andersen Borge et 

al., 2001).   

 The presence of B. cereus can lead to spoilage of pasteurised milk by the 

production of protease enzymes which lead to coagulation of the milk and a bitter 
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tasting product.  Furthermore, lipolysis may also be found, which will result in fat 

aggregation of the cream (Andersson et al., 1995; Frank, 2001).  Bacillus cereus has 

also been classified as a pathogen producing at least three diarrhoeal toxins 

(enterotoxins) (Granum, 2001) and an emetic (vomit-inducing) toxin (Kramer & Gilbert, 

1989; Andersson et al., 1995).  Andersson et al. (1995) reported that B. cereus levels of 

between 103 and 104 cfu.ml-1 have been implicated in food poisoning outbreaks.   

 Listeria monocytogenes is a pathogenic microbe responsible for human listeriosis 

(Loncarevic et al., 1997), and has been described as the most important pathogen 

isolated from milk (Lovett et al., 1987).  It is commonly found in raw milk (Harvey & 

Gilmour, 1992), and has the ability to grow well at refrigeration temperatures (Rosenow 

& Marth, 1987).  Although it is generally believed that L. monocytogenes does not 

survive pasteurisation (Piyasena et al., 1998) there are several studies reporting its heat 

resistance and subsequent survival of pasteurisation (Fenlon et al., 1996; Senczek et 

al., 2000).  This is mainly ascribed to the protective nature of leukocytes present in milk 

and to the survival advantage of the pathogen (Doyle et al., 1987; Lovett et al., 1987).  

A further serious health safety aspect is that biofilm cells of Listeria are reported to be 

more resistant to disinfectants than planktonic cells (Chae & Schraft 2000).   

 It is somewhat alarming that pathogens, such as B. cereus, L. monocytogenes, 

Escherichia coli O157:H7, Salmonella typhimurium and Campylobacter jejuni can 

readily form biofilms (Somers et al., 1994; Joseph et al., 2001; Stopforth et al., 2003).  

Food spoilage microbes such as Pseudomonas aeruginosa, P. fragi, Micrococcus spp. 

and B. subtilis have also been associated with biofilms (Abrishami et al., 1994).  

Biofilms on heat exchangers may seriously decrease the efficiency of heat transfer.  

Carpentier & Cerf (1993) reported that microbes within biofilms are more resistant to 

heat, which may lead to pasteurisation failures (Schmid et al., 2004), and subsequently 

lower the shelf-life of the product and cause the spreading of diseases (Zottola, 1994; 

Mittelman, 1998).   

 

E. New technologies 

 

Pulsed electric field processing 

Pulsed electric field (PEF) processing is one of the promising new technologies for the 

production of fluid milk (Jeyamkondan et al., 1999).  This form of processing works by 

direct inactivation of microbes (Gould, 1996).  The product to be processed is placed 

between two electrodes and the high-voltage pulses (typically 20 - 80 kV.cm-1) are 
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applied to the product.  The pulses are very short (µs), thus minimum heat is generated 

and the process remains non-thermal.   

The PEF process is based on the fact that food normally contains ions, and these 

will cause a current to flow through the product which then causes microbial inactivation 

by dielectrical breakdown and electroporation of the cell membrane (Zhang et al., 

1995a; Pothakamury et al., 1997).  When an external electric field is applied to a cell, a 

transmembrane potential is induced across the cell membrane.  Free charges build up 

on both sides of the membrane and attract each other, which compresses the cell 

membrane.  When the generated transmembrane potential is greater than the cell's 

natural potential (1 V), the cell membrane looses stability and dielectric breakdown of 

the membrane occurs (Castro et al., 1993).  This causes pore formation in the cell 

membrane with subsequent membrane permeability changes.  There are several 

theories that explain pore formation but it is still unclear whether it occurs in the lipid or 

the protein matrices (Barbosa-Cánovas et al., 1999).  The inability of a cellular 

membrane to function properly and regulate electron transport that controls small 

molecule movement in and out of the cells would, in time, result in microbial inactivation 

(Hamilton & Sale, 1967).  Pothakamury et al. (1997) observed that the mechanism of 

inactivation by PEF differed from the mechanism for thermal inactivation which, at a 

temperature of 66°C for 10 min, damaged the cell organelles but no cell walls were 

ruptured as was the case for PEF treatments.   

 The effectiveness of PEF on the inactivation of microbes depends on several 

processing parameters:  electric field strength; treatment time; treatment temperature; 

pulse length; pulse frequency; flow rate of the liquid product; pulse shape; and the 

number of pulses per chamber (Barbosa-Cánovas et al., 1999).   

 Pothakamury et al. (1996) reported that when E. coli cells are in the growth 

phase they are more sensitive to the effect of PEF than cells in the lag or stationary 

phases.  Zhang et al. (1995b) observed that the initial concentration  

(1.15 x 103 - 7.14 x 108 cfu.ml-1) of E. coli in simulated milk ultrafiltrate (SMUF) did not 

influence the rate of inactivation.  Yeasts were found to be more susceptible to PEF 

than bacteria (Wouters & Smelt, 1997), while Gram-positive microbes are more 

resistant than Gram-negative microbes (Evrendilek et al., 1999; Rodrigo et al., 2001).  

Grahl & Märkl (1996) reported that endospore inactivation was not significant as no 

lethal effects were observed with Clostridium tyrobutyricum, Bacillus cereus and B. 

nivea endospores after a PEF treatment.   
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Grahl & Märkl (1996) noticed a decrease in efficiency of PEF when skimmed milk 

was used as substrate compared to when a buffer solution was used under the same 

processing parameters.  They concluded that the presence of the fat particles of milk 

seemed to protect microbes against PEF.  However, Reina et al. (1998) while 

evaluating the effect of the fat content of skimmed, 2% fat and full cream milk, reported 

no differences in the microbial elimination results.   

No dangerous chemical reactions have been observed during PEF treatments, 

and the process also leads to minimal loss of fat and water soluble vitamins (Calderón-

Miranda et al., 1999; Bendicho et al., 2002).  Similarly, no significant flavour changes 

have been reported (Grahl & Märkl, 1996).  Undesirable enzymes required more severe 

PEF treatments than microbes to obtain significant inactivation (Ho et al., 1997).   

There are disagreements in the literature as to the levels of enzyme inactivation 

that may be obtained during PEF treatments, and especially the process parameters 

must be taken into consideration when comparing results between different authors.  It 

has been shown that the degree of reduction of enzyme activity depends on the 

intensity of the electric field, the number of pulses applied, and also the characteristics 

of the particular enzyme (Vega-Mercado et al., 1995b; Grahl & Märkl, 1996; Bendicho et 

al., 2002).  The media containing the enzyme, the treatment temperature and the 

enzyme concentration also influences the degree of enzyme inactivation (Castro et al., 

2001).  Castro et al. (2001) reported a 65% decrease in alkaline phosphatase activity in 

SMUF and 59% in 2% and full cream milk.  In contrast, Grahl & Märkl (1996), Ho et al. 

(1997) and Van Loey et al. (2002) did not find any significant enzyme inactivation in 

either milk or aqueous solution.  The differences in inactivation results might be due to 

differences in electrical parameters.  Vega-Mercado et al. (2001) reported an 80% 

reduction in microbial protease (from P. fluorescens) activity when the enzyme was 

suspended in tryptic soy broth enriched with yeast extract.  A 62% inactivation of 

commercial lipase from P. fluorescens suspended in SMUF was reported after a batch 

treatment, however, with a continuous process only a 13% inactivation was reached 

(Bendicho et al., 2002).   

 Although PEF can hold its own as a non-thermal method for the pasteurisation of 

milk, it has been reported that a simultaneous mild heat treatment (<50°C) enhances 

the efficiency of PEF (Sensoy et al., 1997; Reina et al., 1998).  Sepulveda et al. (2005) 

found that the shelf-life of HTST pasteurised milk could be extended to 60 d at a storage 

temperature of 4°C when pasteurisation of the milk was immediately followed by a PEF 
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treatment at 35 kV.cm-1.  When HTST pasteurised milk was treated with PEF eight days 

after pasteurisation, a 78 d shelf-life was reached with storage at 4°C.   

 

High pressure processing 

High pressure (HP) of up to 1 000 MPa may be considered a non-thermal method of 

food preservation with the advantage of inactivating microbes in the food without 

adversely affecting the nutritional and sensory qualities or the colour of the product 

(Farkas & Hoover, 2000; Furukawa et al., 2001).  Although the mechanism of 

inactivation of microbes by HP is not clearly understood, it is thought to induce changes 

in the morphology, biochemical reactions, genetic mechanisms and cell membrane and 

cell walls of microbes (Hoover et al., 1989).  Smelt et al. (1994) showed changes in 

biochemical reactions when an increase in extracellular ATP was found in pressure-

treated cells.  Benito et al. (1999) confirmed this increased uptake of propidium iodide 

and ethidium bromide.   

 There are a number of factors influencing the resistance of microbes to high 

pressure treatments and include:  treatment temperature; magnitude; treatment time; 

growth stage of microbes; and the composition of the suspension medium.  The 

presence of lipids, carbohydrates, proteins and a low water activity influences the 

sensitivity of microbes to the lethal effect of high pressure (Isaacs & Chilton, 1995).   

 Mackey et al. (1995) found that microbes in the exponential phase are more 

sensitive to pressure.  They reported a 7 log reduction for Listeria monocytogenes in the 

exponential phase after a 10 min treatment at 400 MPa, but only a 1.3 log reduction 

when viable cells in the stationary phase had undergone the same treatment.  Gram-

positive microbes are more resistant to high pressure than Gram-negative microbes 

(Patterson et al., 1995; Smelt, 1998).  Yeasts and moulds are inactivated by pressures 

between 200 and 300 MPa.  At 25°C, Gram-negative microbes require a pressure 

treatment between 300 - 400 MPa for inactivation, while Gram-positive microbes need 

at least 500 - 600 MPa for 10 min to achieve inactivation.   

It is a well known fact that endospores may survive pressure treatments in 

excess of 1 000 MPa (Smelt, 1998).  However, Hayakawa et al. (1994) reported that 

endospores may be destroyed by a combination of high temperatures (80°C) and high 

pressure (600 MPa), but the combination was only effective when the pressure 

treatment was applied in short pulses.  Pressures between 50 and 300 MPa leads to the 

initiation of germination of endospores which may then be inactivated by further 

pressure or heat treatments.   
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Several research groups have reported that a combination of high pressure with 

heat increases any subsequent microbial inactivation (Earnshaw et al., 1995; Patterson 

& Kilpatrick, 1998).  The use of such hurdle combinations has the advantage of 

reducing energy costs and also the production of safer and more palatable products 

(Black et al., 2005).   

As with most non-thermal pasteurisation alternatives, a method to determine an 

adequate treatment is a serious problem where HP treatments are concerned.  Alkaline 

phosphatase is not sensitive to HP, and can therefore not be used to indicate efficient 

'pasteurisation' (Mussa & Ramaswamy, 1997).  Up to now, HP has found little 

application in the dairy industry.  This is mainly due to the initial capital expenditure 

(Smelt, 1998) and also the non-availability of large-scale commercial equipment 

(Mertens & Deplace, 1993).   

 

F. High-power low-frequency ultrasound 

 

There is a continuous industrial interest in developing alternative food preservation 

methods which may be used to replace the severe heat-based methods that are 

commonly used.  Recent advances in the search for such non-thermal processing 

methods led researchers to investigate the application of ultrasound.  The "killing" 

potential of ultrasound was realised when sonar was being investigated for use in anti-

submarine warfare, and it was noticed that the sound waves caused fish to die 

(Earnshaw et al., 1995; Earnshaw, 1998).   

Ultrasound can be defined as the energy generated by sound waves of 20 kHz to 

800 kHz (Hoover, 1997).  Large-scale applications involve high energy, low-frequency 

waves (between 20 and 100 kHz) and are often referred to as "power ultrasound".  

There is also an increasing interest in higher frequencies, however, these are normally 

well below the MHz range where it is difficult to achieve cavitation (Mason & Lorimer, 

2002).  Most macroscopic applications of ultrasound depend on compound acoustic 

phenomena occurring in matter, which, in turn, are caused by primary vibratory inputs.  

Thus, as acoustic pressure causes cavitation and microstreaming in liquids, vibratory 

stress causes heating and fatiguing in solids, and ultrasonic acceleration causes 

surface instability at the liquid-liquid and liquid-gas interfaces (Shoh, 1988).   

 The physics of ultrasound is complex and despite information available, many 

aspects of the mechanism remain obscure (Suslick, 1988).  There are numerous 

theories as to the precise mechanism of microbial inactivation by ultrasound, with 
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cavitation being the most popular theory.  An ultrasonic wave travelling through a liquid 

consists of alternate compressions and rarefactions.  If the amplitude of the ultrasonic 

wave is high enough, cavitation, which is the making and breaking of microscopic 

bubbles, will occur (Goldman & Lepschkin, 1952).  The cavitation bubbles grow by a 

process known as rectified diffusion.  This is where small amounts of vapour from the 

medium enter the bubble during its expansion phase that is not fully expelled during 

compression.  The bubbles grow over the period of a few cycles to an equilibrium size 

for the particular frequency applied.  It is the fate of these bubbles when they intensely 

collapse in succeeding compression cycles that generates the energy for chemical and 

mechanical effects (Neppiras, 1984; Henglein, 1987; Suslick, 1990).  There are two 

types of cavitation, stable and transient cavitation, and each exhibits different kinds of 

bubble behaviour in response to an acoustic field (Frizzell, 1988).  

During stable cavitation, bubbles oscillate in response to the ultrasonic pressure 

field.  The bubble radius varies about an equilibrium value, and the bubble exists for a 

number of acoustic cycles without collapsing or otherwise leaving the field.  Acoustic 

streaming and high shear stresses may be associated with such stable cavitation 

activity (Ter Haar, 1988).  During oscillation, stable cavitation can, under given 

circumstances, change to transient cavitation, and vice versa (Scherba et al., 1991).  It 

has been reported that the killing of cells relies on transient cavitation (Leighton, 1995).   

Transient cavitation occurs during the compression phase in media that 

experience a tension stress during a portion of the rarefaction phase of the acoustic 

disturbance (Frizzell, 1988).  The bubble oscillates in an unstable manner about the 

equilibrium radius, grows several times its equilibrium size, and collapses violently (Ter 

Haar, 1988).  Each bubble collapse acts as a localised 'hotspot' generating 

temperatures of above 5 000°C and pressures of roughly 500 MPa, depending on the 

liquid medium being treated (Suslick, 1988; 1989; 1990).  These high pressures and 

temperatures, as well as high pressure shockwaves that radiate from the location of the 

bubble are capable of causing mechanical damage to the surrounding material (Frizzell, 

1988).  Butz & Tauscher (2002) proposed that the mechanism of microbial killing is 

mainly due to the thinning of cell membranes, localised heating and the production of 

free radicals.  The high temperatures may cause bond dissociations in molecules, thus 

producing free radicals that can react with biomolecular species in much the same way 

as those produced by ionising radiations (Frizzell, 1988).  There is also evidence that 

sonication of cells in a suspension may lead to cell lysis, and subsequently, complete 

cell destruction.  Cavitation has been shown to be the major cause of this effect 
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(Kaufman et al., 1977; Morton et al., 1982).  Where cell lysis occurs, it is an immediate 

consequence of ultrasonic exposure, and eukaryotic cells in mitosis may be more 

susceptible than those in other stages of the cell cycle (Clarke & Hill, 1970).   

 The inhomogeneous cyclic field around stably oscillating bubbles can cause 

microcurrents by creating a steady flow of the liquid medium surrounding the bubbles.  

This phenomenon is known as microstreaming (Frizzell, 1988).  The effect of 

microstreaming near bubbles can be one of mixing, however, if the streaming velocities 

are great enough, it may be sufficient to damage cells (Hughes & Nyborg, 1962; 

Frizzell, 1988).   

Scherba et al. (1991) reported that is has been mathematically demonstrated that 

practically the whole of the lethal effect of sonication is due to the pressure changes 

responsible for the disruption of cellular structures.  They proposed that the target of 

ultrasonic damage may be the cytoplasmic membrane, which consists of a lipoprotein 

bilayer, since the structure of the peptidoglycan layer did not appear to be a factor.  

Davies (1959) suggested that mechanical disruption is the most probable mechanism of 

action of ultrasound.  It has been observed that microbes can survive high pressures; 

however, they are incapable of withstanding the quick alternating pressures produced 

during cavitation.   

 

Critical processing factors 

When ultrasound is applied in the food industry as a "pasteurising" or "sterilising" 

technology the critical processing factors will probably be the amplitude of the ultrasonic 

waves, contact time with the microbes, the type and number of microbes present, and 

the volume and temperature of the liquid to be processed (Hoover, 2000).   

It is generally assumed that the larger the microbial cells are in size, the more 

sensitive to the effects of ultrasound they will be.  It has been reported that coccoids 

show more resistance when compared to rods (Jacobs & Thornley, 1954).  Gram-

positive microbes have also been found to be more resistant to sonication, as opposed 

to Gram-negatives.  Similarly, aerobic microbes are more resistant than anaerobes 

(Ahmed & Russell, 1975).  The age of the cells is another important factor affecting 

sensitivity.  Kinsloe et al. (1954) reported that young (4 h) Saccharomyces cerevisiae 

cells were more sensitive than older cells (24 h).  Sanz et al. (1985) reported that 

endospores are much more resistant than vegetative cells, and even questioned the 

ability of ultrasound to disrupt endospores.   
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Jacobs & Thornley (1954) reported, after studying different microbes, that 

resistance to ultrasound was always greater in food than in nutritive broth.  They also 

found that E. coli was more resistant when treated in milk containing more fat.  Lee et 

al. (1989) reported that when treating Salmonella in either peptone water or chocolate 

milk, the chocolate milk had a definite protective effect.  When Salmonella eastbourne 

was treated in peptone water (0.1%), a D-value of 3.8 min was achieved for a  

6.3 x 106 cfu.ml-1 inoculum, and the population was reduced to 2.0 x 104 cfu.ml-1 after a 

10 min treatment.  When S. eastbourne was inoculated in milk chocolate, a 0.78 log 

reduction (74%) was achieved after 30 min of sonication.   

 

Parameters influencing cavitation 

The cavitational threshold of a medium can be defined as the minimum oscillation of 

pressure that is required to produce cavitation.  There are a number of factors 

determining the cavitational threshold of a medium including: dissolved gas; hydrostatic 

pressure; specific heat of the gas in the bubble; specific heat of the liquid; and also the 

tensile strength (Atchley & Crump, 1988).  It has also been reported that there is an 

inverse relationship between the cavitational threshold of a medium and the reciprocal 

of temperature.  As temperature increases, the cavitational threshold decreases and 

becomes zero at the boiling point of the liquid (Atchley & Crump, 1988).  Liquids should 

therefore be processed at the lowest possible temperature.   

 Berlan & Manson (1992) reported that the cavitational threshold will increase as 

the concentration of solids in a liquid medium decrease, or when the ion concentration 

increases.  However, it will ultimately depend on the frequency of the sonic waves.  The 

frequency of sonication in the usable range is an important parameter as it determines 

the maximum bubble size before implosion (Suslick, 1989).  The lower the frequency, 

the bigger the critical size of the bubbles, and therefore, the intensity of collapse will be 

bigger.  At very high frequencies (1 MHz) cavitation is more difficult, and above 2.5 MHz 

cavitation does not occur (Alliger, 1975).  As the frequency of sound waves increases, 

the amplitude decreases, resulting in a decrease in size of the cavitating bubbles that 

may form.  This leads to less violent collapses once the equilibrium sizes of the bubbles 

are reached (Alliger, 1975; Berliner, 1984).   

 The lethal effects of ultrasound also depend on the intensity of the implosions.  

Energy liberated by cavitation depends on the ratio of the radius of a bubble at 

maximum size to the initial ratio (Berliner, 1984).  Intensity is a measure of the energy 

available per unit volume of sample, and it is directly related to amplitude.  It is normally 
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assumed that "more electrical power is better", however, this is often not the case.  As 

stated above, it is the intensity of cavitation that breaks cells, shears DNA strands and 

mixes immiscible liquids, not the total power applied to the system.  Intensity is directly 

related to the amplitude of the radiating face of the tip or horn, thus, it is the amplitude 

that must be provided, maintained and monitored (Berliner, 1984).   

 Another limiting factor is the temperature of the liquid.  Cavitation nuclei and 

bubbles form and grow quicker at higher liquid temperatures, because the vapour 

pressure increases and the tensile strength decreases.  However, although more 

bubbles are formed, the violence of collapse is smaller because the high vapour tension 

acts as a cushion (Alliger, 1975; Berliner, 1984).  For this reason cell disruption 

processes should be carried out at the lowest possible temperature.  Low temperature 

sonication, does however, require more power to overcome the lower vapour pressure, 

and results in higher intensity shock front propagation (Berliner, 1984).  Higher 

pressures, viscosity, surface tension or concentrations require more power to produce 

cavitation.  Power can be defined as the energy required to drive the radiating surface 

of a given horn per unit time (Berliner, 1984).   

 It is evident that there are many different parameters influencing the effect of 

cavitation, and most need to be optimised in order to maximise cavitation for food 

processing (Berlan & Mason, 1992).   

 

Power ultrasound equipment 

When an alternating voltage is applied to a piezoelectric crystal, the crystal changes 

shape in relation to the electric field (Alliger, 1975).  The crystal acts as an ultrasonic 

transducer converting electrical energy into mechanical or acoustic energy (Mason, 

1998).  This is known as the piezoelectric effect.  These continuous changes in shape 

or length are the pulsations which travel through the liquid (Alliger, 1975).   

There are two main types of ultrasonic transducers, magnetostrictive transducers 

and piezoelectric transducers.  Piezoelectric transducers are utilised most frequently for 

the generation of ultrasound, and use ceramics containing piezoelectric materials such 

as barium titanate or lead meraniobate.  Lead zirconate titanate (PZT) is the most 

commonly used ceramic.  It has a polarisation temperature of 350°C (Curie 

temperature) and can operate over the whole ultrasonic range (Shoh, 1988).  Shoh 

(1988) reported the electromechanical conversion efficiency to be 98%.  However, the 

PZT crystals have unique geometrics for different frequencies that need to be taken in 
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consideration when manufacturing a crystal for processing at any specified frequency 

(Mason, 1998).   

 Irrespective of the transducer used, the equipment needed to deliver the 

ultrasonic energy to the liquid system under investigation can be separated into three 

essential parts:   

• a generator to convert electricity (220V ac) into high frequency voltage to drive 

the transducer;  

• a transducer which converts the high frequency voltage into mechanical 

(ultrasonic) vibrations.  The power available through a given transducer changes 

inversely with the square of the frequency, therefore, for higher power 

applications, equipment operating at lower frequencies is preferred; and  

• a delivery system which matches the vibration to the liquid.  Typically, in higher 

power systems the acoustic vibration is amplified and conducted into the liquid by 

the attachment of a 'horn' to the transducer.  After prolonged high power use the 

tip of the horn may become eroded, thereby altering the overall length of the 

horn.  Therefore, horns are normally fitted with a replaceable tip (Mason, 1998).  

Titanium alloy is the best horn material, combining outstanding acoustical 

properties with lightness, strength, abrasion resistance, and a chemical inertness 

better than that of stainless steel (Berliner, 1984).   

 

G. Remarks on problems and applications 

 

There are numerous options for the treatment of milk with the aim of rendering it free of 

spoilage and potentially pathogenic microbes.  These options vary in terms of initial 

capital investment, operating costs, efficiency, treatment time, etc.  One such technique 

that clearly stands out from the rest is sonication as the nature of this application makes 

ultrasound a very attractive option for the dairy industry.  When ultrasound is compared 

to other treatment methods, there is not an abundance of data available on the lethality 

of ultrasound.  However, promising results from the older literature, albeit quite dated, 

merits further research into the application of ultrasound as a pasteurisation alternative.   

Ultrasound as a processing technique could possibly be installed in-line as part 

of an existing milk processing system.  Equipment presently available to the dairy 

industry can be considered to be light and portable, it is easy to clean with fouling of 

pipes being eliminated, electrical efficiency is better than when compared to traditional 

heating processes, and no additional equipment, such as boilers, is needed.   
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 The main crux of sonication as a means of lowering microbial levels is the 

kinetics of the process.  In this case D-values are essential when comparing results 

from different researchers.  The lack of D-values in research papers from the literature 

makes comparisons and conclusions between results from the literature difficult or even 

impossible.  Furthermore, there is also difficulty and some confusion involved when 

evaluating published results as researchers use different types of sonication apparatus.  

To add to these comparison problems, different power levels are used by different 

researchers and this result in different cavitation intensities, subsequently influencing 

the efficiency/lethality of the technique.   

 Ultrasound has enormous potential as a sterilisation technique.  However, the 

need exists for data obtained under standardised and reproducible conditions before the 

dairy industry will fully recognise the immense potential of this economical and eco-

friendly alternative to traditional thermal pasteurisation.   
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CHAPTER 3 

 

IMPACT OF LOW-FREQUENCY HIGH-POWER ULTRASONICATION ON 

THE SURVIVAL OF ESCHERICHIA COLI  

 

Abstract 

 

Numerous reports in the literature suggest pasteurisation failures in the dairy industry as 

a possible cause for an end product with a poor quality.  The aim of this study was to 

evaluate the use of ultrasonication as an alternative to heat pasteurisation.  Three 

Escherichia coli strains, a reference strain (ATCC 11775), a wild strain isolated from 

"raw" milk, and an O157:H7 strain, were used as "test" microbes.  The suspension 

media included a saline solution and UHT milk inoculated with the "test" microbes in the 

exponential growth phase to give a final microbial concentration of either 1 x 104 or  

1 x 106 cfu.ml-1.  The samples were then subjected to ultrasound for different time 

intervals using low-frequency high-power ultrasound (20 kHz, 750 W).  Viable cell 

counts of E. coli were reduced by 100% after 10.0 min for a 1 x 104 cfu.ml-1 inoculum.  

Ultrasonication with low cell inoculations (2 x 103 cfu.ml-1) was very effective with a 

100% elimination of E. coli cells within 5.0 min.  It was also found that pulse-

ultrasonication did not enhance the killing effect of ultrasound.  A higher wave amplitude 

(100%) was found to be more efficient when compared with a lower wave amplitude 

(50%).  No difference in sensitivity to the effect of ultrasound was detected between the 

different E. coli strains tested.  The composition of the suspension media (saline 

solution or milk) did not influence the success of ultrasonication.   

 

Introduction 

 

Traditional thermal pasteurisation and sterilisation processes are the most common 

methods used by the food and dairy industry for the inactivation of microorganisms 

(Ciccolini et al., 1997; Piyasena et al., 2003).  Although E. coli is reported to be 

destroyed by pasteurisation (Muir, 1996; Holsinger et al., 1997), there are reports on its 

ability (including the pathogenic strain O157:H7) to form biofilms within pasteurisation 

equipment, leading to pasteurisation failures (Dewanti & Wong, 1995; Stopforth et al., 

2003).   
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Increases in temperature can irreversibly modify milk components, for example 

the degradation of vitamins, precipitation of Ca2+ and the denaturation of serum 

proteins.  Heating may also disrupt the physiochemical equilibrium of milk components 

(Eckner & Zottola, 1991; Simon & Hansen, 2001).  Consumer demands for food 

products that are fresher, more natural, healthier (Mertens & Knorr, 1992), with a better 

nutritional content and higher overall quality, are increasing (Piyasena et al., 2003).  

Thus, new preservation techniques including ultrasonication, which can eliminate 

microbial activity at lower or even without heat addition, are being developed (Qin et al., 

1996; Piyasena et al., 2003).   

Ultrasonication may be considered an alternative to the heat treatment of milk as 

it is less energy-intensive and therefore more cost-efficient and environmentally friendly 

(Piyasena et al., 2003).  High-power ultrasound is known to damage or disrupt biological 

cell walls which will result in the destruction of living cells.  Unfortunately, very high 

intensities are required if ultrasound alone is to be used for complete sterilisation 

(Mason et al., 1996).  The bactericidal effect of ultrasound is generally attributed to 

intracellular cavitation (Hughes & Nyborg, 1962).  It has also been suggested that 

micro-mechanical shocks are created by the making and breaking of microscopic 

bubbles generated by fluctuating pressures during the ultrasonication process.  These 

shocks disrupt cellular structural and functional components and result in cell lysis 

(Hoover, 2000; Butz & Tauscher, 2002).  According to Ciccolini et al. (1997), the effects 

of cavitation on microbial suspensions include:  dispersion of microbial clumps; cell wall 

puncturing; modification of cellular activity; and increased sensitivity to heat.  However, 

it must always be remembered that the effectiveness of ultrasonication is known to be 

influenced by the microbial strain tested, the suspending medium and the size of the cell 

(Wase & Patel, 1985; García et al., 1989; Lee et al., 1989).   

Other advantageous effects of ultrasonic waves in milk include:  fat may be 

homogenised; gases are removed (Burger & Winder, 1954); and the antioxidant activity 

enhanced (Taylor & Richardson, 1980).  Villamiel & de Jong (2000) reported that 

continuous-flow ultrasonic treatment could be a promising technique for milk 

processing.   

 The aim of this study was to investigate the effectiveness of high-power, low-

frequency ultrasound (20 kHz, 750 W) to eliminate Escherichia coli from milk.   
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Materials and methods 

 

Bacterial cultures 

The following E. coli strains where evaluated in this study:  a standard reference strain 

ATCC 11775 obtained from the University of Stellenbosch, Department of Food Science 

Culture Collection (USFSCC); a strain isolated from "raw" milk using VRB agar (Merck); 

and an O157:H7 strain obtained from Prof. T.J. Britz, Department of Food Science, 

University of Stellenbosch.  Strain purity was regularly checked by microscopy and 

Gram stains, and the identity confirmed using the API 20E system (bioMérieux sa, 

Marcy-l’Etiole, France).   

A broth subculture of the appropriate E. coli strain was prepared by inoculating 

10 ml sterile nutrient broth (Merck) with a "test" microbe, and incubating for 24 h at 

37°C.  A 100 ml sterile container, containing 90 ml broth was inoculated with 5 ml of the 

24 h culture and incubated for a further 24 h prior to the ultrasonic treatments.   

 

Standard growth curves 

The optical density (OD) of each strain was determined spectrophotometrically at  

500 nm (Spectronic 20 Genesys, Spectronic Instruments, Cape Town).  A dilution series 

was made in 0.85% (m/v) sterile saline solution (SSS).  Growth curves were done in 

triplicate.   

 

Ultrasonication 

Two ml of the appropriate E. coli culture was centrifuged for 10 min at 6 000 x g 

(Eppendorf 5415D).  The pellet was suspended in SSS and the data from the standard 

curve was used to determine the desired cell concentration for inoculation of the 

suspension media.  The suspension media, either full cream (3.4% milk fat) UHT (ultra 

high temperature) milk or SSS, were inoculated with an aliquot of culture to yield an 

approximate inoculum level of either 1 x 104 or 1 x 106 colony forming units per ml 

(cfu.ml-1) (initial concentration = N0).   

 For ultrasonication, a 40 ml sample of the inoculated suspension media was 

pipetted into a sterile, jacketed glass sample holder connected to an ice-waterbath to 

maintain a temperature of between 24° and 26°C.  A 750 W, 20 kHz Vibra-Cell High 

Intensity Ultrasonic Processor VCX 750 (Sonics & Materials, Inc., Newtown, CT USA), 

fitted with an autoclavable 13 mm diameter probe fitted with a replaceable titanium tip 
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was used for ultrasonication.  With this unit, feedback from the probe was continuously 

evaluated, and the frequency and power were automatically adjusted to ensure 

optimum ultrasonic delivery.  The Vibra-Cell is also able to monitor the energy (in 

Joules) and the temperature of the sample being processed.  In most studies E. coli 

ATCC 11775 was used.  Samples were treated using five different time regimes:   

1. 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave amplitude;  

2. 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 min at 100% wave amplitude;  

3. 2.5, 5.0, 10.0 and 15.0 min at either 50% or 100% wave amplitude;  

4. 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 6.0, 7.5 and 10.0 min at 100% wave 

amplitude on low microbial levels;  

5. 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave amplitude with on/off pulsing 

combinations of 5 s/5 s, 10 s/5 s or 10 s/10 s;  

6. 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave amplitude on all three 

different E. coli strains. 

All ultrasonic treatments were done in duplicate.  Duplicate dilutions were made from 

each treated sample; the pour-plate technique and plate count agar (PCA) (Merck) were 

used for enumeration.  Plates with between 30 and 300 colonies were selected for 

counting (Anon., 1997).  UHT milk and SSS samples that had not been inoculated with 

a "test" microbe, served as controls.  The controls showed no microbial growth after  

24 h of incubation.   

The efficacy of ultrasonic treatments in terms of eliminating microbes was 

measured by their decimal reduction time (D) which, for this study, was defined as the 

time (min) of a given treatment for the number of survivors to be reduced by one log 

cycle.  D-values were calculated from the slope of the regression line plotted with the 

counts (cfu.ml-1) of the straight portion of the survival curve.  In this study, the D-value at 

20 kHz/750 W was abbreviated as DUS. 

 

Results and discussion 

 

The dairy industry generally consider the presence of E. coli in dairy products as an 

indication of faecal and post-pasteurisation contamination (Holsinger et al., 1997).  The 

SA "milk law" states that when the VRB MUG agar method is used, no E. coli may be 

present in 1.0 ml of milk (Anon., 1997).  Gram-negative microbes have been reported to 

be very sensitive to ultrasonication (Ahmed & Russell, 1975); however, small microbes 

tend to be more resistant despite their Gram-status (Jacobs & Thornley, 1954).  
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Although the use of ultrasound as a "sterilisation" technique, with reports dating back to 

before 1954, is not new, recent advances in acoustic technology has enabled 

researchers to construct equipment that is able to deliver more power than a decade 

ago.  This increase in available power ultimately results in better cavitation, increasing 

the lethality of this technique.   

The standard growth curve of E. coli ATCC 11775 (Fig. 1) was used as a 

reference to determine the cell inoculation size, after the appropriate dilutions 

(exponential phase), for the ultrasonication studies.   

 

Study 1 - Ultrasonication for 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave amplitude  

The actual counts (cfu.ml-1) are given in Fig. 2 and the recalculated data are given in the 

form of log graphs (Fig. 3).  In this study (Fig. 2), a 99.99 - 100% elimination of E. coli 

was achieved after 10.0 min of ultrasonication for all five batch inoculum concentrations 

(1 x 104 cfu.ml-1 or 1 x 106 cfu.ml-1, in both the SSS and milk).  The 1 x 104 cfu.ml-1 

inoculum in SSS was reduced to zero cfu.ml-1 after the 10.0 min treatment (Fig. 2); this 

is equivalent to a 3.88 log reduction (Fig. 3).  Similar results were obtained for the other 

initial concentrations (No) where 1 x 106 cfu.ml-1 in SSS was reduced to 142 (a 3.93 log 

reduction), 2 x 104 cfu.ml-1 in milk was reduced to zero (a 4.32 log reduction),  

1 x 105 cfu.ml-1 in milk was reduced to zero (a 4.42 log reduction) and 1 x 106 cfu.ml-1 in 

milk was reduced to zero (a 5.34 log reduction) (Figs. 2 and 3).  The DUS values for  

E. coli were, depending on the starting concentration, 2.0 min (1 x 104 cfu.ml-1) and 2.7 

min (1 x 106 cfu.ml-1) in SSS and 2.3 min (2 x 104 cfu.ml-1), 2.0 min (1 x 105 cfu.ml-1) and 

1.9 min (1 x 106 cfu.ml-1) in milk.  The steeper slope of the regression line for the  

1 x 106 cfu.ml-1 inoculum in milk (Fig. 3), and the subsequent lower DUS value of  

1.9 min, is ascribed to a different, newer set of apparatus used for this specific set of 

data.  This is an important technical aspect that will be addressed in a later study.   

In 1979, Utsunomiya & Kosaka reported a 0.83% survival of E. coli (99.17% 

reduction) in saline after 10 min when treated at 700 kHz, but surprisingly, they reported 

no inactivation of E. coli in milk.  In their article Utsunomiya & Kosaka (1979) did not 

mention which type of milk was used, which would also influence the efficacy of 

ultrasonication.  The results obtained in this study compares well with the findings of 

Utsunomiya & Kosaka (1979) in terms of the % reduction achieved after a 10 min 

treatment in saline.  However, the initial inoculation concentration was not mentioned, 

and a very high initial concentration or unavailability of enough power at a frequency of  
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700 kHz might be the reason why 100% elimination was not achieved.  Contrary to the 

findings of Utsunomiya & Kosaka (1979), the suspension media had no effect on the 

efficiency of ultrasonication during this study.  Jacobs & Thornley (1954) suggested that 

the fat globules present in milk might have a protective effect, rendering ultrasonication 

inefficient.  This proclaimed protective effect of milk was not observed under the 

parameters used during this study.   

 

Study 2 - Ultrasonication for 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 min at 100% wave 

amplitude  

In Study 1, it was found that the first 2.5 min of ultrasonication often resulted in the 

highest elimination of viable cells (Fig. 2).  To confirm this observation, the first 2.5 min 

of the treatment was split into 30 s sections to determine at which time the bacteria 

were the most sensitive to the effect of ultrasound.  The actual counts (cfu.ml-1) are 

given in Fig. 4 and the recalculated data are given in the form of log graphs (Fig. 5).   

 The results from this study confirmed the findings of Study 1, where 93.23% of 

viable E. coli cells were inactivated during the first 2.5 min, compared to 90.64% for this 

study when 1 x 104 cfu.ml-1 was sonicated in SSS and 95.85% when 1 x 105 cfu.ml-1 

was sonicated in milk (Fig. 5).  Thus, ultrasonication of 1 x 104 (SSS) and 1 x 105 (milk) 

viable E. coli cells for 3.0 min resulted in 1.15 and 1.75 log reductions, respectively (Fig. 

5).  The DUS was calculated to be 2.6 min (1 x 104 cfu.ml-1 in SSS) and 1.6 min  

(1 x 105 cfu.ml-1 in milk).   

 

Study 3 - Ultrasonication for 2.5, 5.0, 10.0 and 15.0 min at either 50% or 100% 

wave amplitude 

The impact of wave amplitude was investigated with an extended maximum treatment 

time of 15.0 min.  The actual counts (cfu.ml-1) are given in Fig. 6 and the recalculated 

data are given in the form of log graphs (Fig. 7).   

 In this study, ultrasonication of E. coli for 10.0 min at 100% wave amplitude in 

SSS resulted in a 4.02 log reduction (100%) for a 1 x 104 cfu.ml-1 inoculum.  When 50% 

wave amplitude was used, a 99.29% or 2.15 log reduction of initial viable counts was 

observed for a 1 x 104 cfu.ml-1 inoculum after a 15.0 min ultrasonic treatment (Fig. 7).  

The DUS at 100% wave amplitude was calculated to be 2.6 min, and at 50% wave 

amplitude the DUS for E. coli was 7.0 min.  The longer DUS for the sample treated at 50%  
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wave amplitude is probably due to the lower power available during ultrasonication, 

resulting in cavitation at a lower intensity than when 100% wave amplitude was applied.   

 

Study 4 - Impact of ultrasonication for 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 6.0, 7.5 and 

10.0 min at 100% wave amplitude on milk with a low microbial load 

The effect of ultrasound on low initial microbial loads was investigated in this study.  

This was done to determine what effect ultrasound would have on good quality "raw" 

milk, with an initial E. coli load of 2 x 103 cfu.ml-1.  The actual counts (cfu.ml-1) are given 

in Fig. 8 and the recalculated data are given in the form of log graphs (Fig. 9).   

Ultrasonication of milk containing E. coli at lower initial levels proved to be very 

effective with a 100% elimination (3.38 log cycles) being reached after 5.0 min.  The 

DUS was calculated to be 1.6 min (Fig. 9).  Thus, it was concluded from the data that the 

use of ultrasonication for milk with a low initial bacterial load shows great promise for 

the implementation of this technique with a 100% elimination of the dairy faecal 

contamination indicator, E. coli.   

 

Study 5 - Pulse-ultrasonication for 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave 

amplitude with on/off pulsing combinations of 5 s/5 s, 10 s/5 s or        

10 s/10 s 

One question that arose as this study progressed was whether a pulsing scenario would 

lead to an enhancement of cell destruction.  To exclude any possible protective effect of 

proteins and lipids present in milk, this study was done in SSS only.  The actual counts 

(cfu.ml-1) are given in Fig. 10 and the recalculated data are given in the form of log 

graphs (Fig. 11).   

 

No pulsing 

As described in the previous studies. 

 

Duty cycle:  5 s on/5 s off 

The first pulsing combination of the samples was for 5 s, followed by a 5 s off period.  

This process was repeated for the indicated treatment times:  2.5, 5.0, 6.0, 7.5 and 10.0 

min.  Pulse-ultrasonication of E. coli for 10.0 min in SSS resulted in a 3.39 log reduction 

(99.96%) of the initial 1 x 106 cfu.ml-1 inoculum (Fig. 11).  The DUS was calculated to be 

3.0 min.   
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Duty cycle:  10 s on/5 s off 

Pulse-ultrasonication with a 5 s off period, but with a longer ultrasonication period of  

10 s achieved similar results over a period of 10.0 min.  Escherichia coli in SSS with an 

initial load of 1 x 106 cfu.ml-1 was reduced by 99.88% (a 2.91 log reduction) after  

10.0 min of pulse-ultrasonication (Fig. 11).  The DUS was calculated to be 3.4 min.   

 

Duty cycle:  10 s on/10 s off 

At this pulsing combination, a 99.91% elimination of E. coli in SSS was achieved after 

10.0 min (Fig. 11).  This was equivalent to a 3.07 log reduction of the 1 x 106 cfu.ml-1 

inoculum.  The DUS was calculated to be 3.3 min.   

 

Discussion of the data from Study 5 

The 5 s/5 s pulsing combination was found to be most effective against E. coli, with a 

99.96% or 3.39 log reduction in viable cells, however, ultrasonication without any 

pulsing resulted in the lowest DUS (2.7 min) (Fig. 11).  A pulsing combination of 10 s/5 s 

was found to be the least effective against the E. coli strain tested.   

 

Study 6 - Ultrasonication for 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave amplitude 

of three different E. coli strains 

Three different E. coli strains were evaluated in SSS to determine whether there is any 

variation in the sensitivity of different strains.  The three strains tested included the 

reference strain (ATCC 11775), a wild strain isolated from "raw" milk, and the O157:H7 

pathogenic strain.  The actual counts (cfu.ml-1) are given in Fig. 12 and the recalculated 

data are given in the form of log graphs (Fig. 13).   

 In this study a 1 x 104 cfu.ml-1 inoculum (in SSS) was used, and was reduced to 

zero viable cells after a 10.0 min treatment for all three strains tested (Fig. 12).  This is 

equivalent to log reductions of 4.08, 4.05 and 3.80 for the reference, wild and O157:H7 

strain, respectively.  The DUS for both the reference and the wild strains was calculated 

to be 2.5 min and the DUS for the O157:H7 strain was 2.4 min.   

 

Conclusions 

 

When all the data generated for the reference strain (1 x 104 cfu.ml-1 in SSS) were 

combined, it was found that ultrasonication for 10.0 min reduced E. coli levels to zero  
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(n = 29).  It could therefore be concluded that the "killing effect" of the ultrasonication 

process is reproducible under standardised and controlled conditions.   

From the data generated in this study it is evident that ultrasonication is an 

efficient method for the elimination of E. coli from milk.  The data obtained also showed 

that E. coli (at an N0 = 1 x 104 cfu.ml-1) could be reduced to zero, however, when using 

a higher N0 in a batch system it is recommended that an extended processing time of 

up to 15.0 min should be used to ensure total elimination.  The data also showed that 

100% wave amplitude, and thus the maximum power available to the system, was more 

effective than 50% wave amplitude.   

 In this study no difference was found when using either UHT milk or SSS as 

suspension media.  The protective effect of milk claimed in the literature was not 

observed with the parameters as used in this study.  It was also found that pulsing did 

not improve the efficiency in comparison to an uninterrupted treatment.  From a 

practical point of view, it would be easier to implement a system without the hassle of 

using different pulsing programs, thereby eliminating possible human errors.   

Consideration of the data obtained from the three different E. coli strains used in 

this study showed that the strains responded in a similar way to ultrasonication.  No 

major differences, in terms of the rate of elimination of viable cells, were observed 

between the different strains tested.  It can therefore be concluded that any strain of  

E. coli should respond in a similar way to the effect of ultrasound.   

One limit found during this study was that at times one or two microbes remained 

after the ultrasonic treatment.  This was ascribed to the experimental setup used in this 

study as it was found that when the process was started, unavoidable splashing of the 

inoculated suspension medium occurred.  In time these untreated, "splashed" droplets 

from the side of the sample holder and probe re-entered the treated sample resulting in 

the one or two cfu's found on PCA plates.  These untreated microbes from the 

"splashed" droplets would then lead to a false impression that this process was not 

efficient.  In these cases where final counts (one or two of the quadruplicates) were 

below five, the values were taken as zero.  If the ultrasound apparatus could be used as 

a continuous treatment and the equipment built into a dairy processing line, this sort of 

problem would be eliminated.   
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CHAPTER 4 

 

IMPACT OF ULTRASOUND ON THE SURVIVAL OF A SELECTION OF 

MICROBES COMMONLY ASSOCIATED WITH MILK 

 

Abstract 

 

Consumers' continued demand for products with improved quality has led to a search 

for non-thermal processing methods as alternatives to heat pasteurisation.  The aim of 

this study was, therefore, to evaluate the use of ultrasonication as an alternative 

technique.  Eight spoilage and potentially pathogenic microbes previously isolated from 

pasteurised milk were used as "test" microbes.  Saline solution and UHT milk were used 

as suspension media and were inoculated with exponential growth phase "test" 

microbes at microbial concentrations of either 1 x 104 cfu.ml-1 or 1 x 106 cfu.ml-1.  The 

samples were subjected to low-frequency high-power ultrasound (20 kHz, 750 W) for 

different time intervals.  The data obtained showed that viable counts of Pseudomonas 

fluorescens were reduced by 100% after 6.0 min.  Saccharomyces cerevisiae and 

Listeria monocytogenes were reduced by 99.7% and 99%, respectively after 10.0 min.  

Lactococcus lactis was reduced by 97% and Micrococcus luteus, Bacillus cereus and 

Chryseobacterium meningosepticum by 88%, 87% and 85%, respectively.  

Lactobacillus acidophilus showed the most resistance to ultrasound with only 78% of 

the viable cells being eliminated after 10.0 min.  Lactococcus lactis and B. cereus were 

further tested extensively and it was found that pulse-ultrasonication did not enhance 

the effect of ultrasound.  Ultrasonication at low cell inoculations (2 x 103 cfu.ml-1) was 

found to be very effective with 98% of viable Lc. lactis cells being eliminated.  

Ultrasonication, as used in this study, was not found to be effective against B. cereus 

probably as a result of the presence of endospores.  The composition of the suspension 

media (saline solution and milk) did not influence the success of ultrasonication, nor did 

the cell morphology and size or Gram characteristics influence the effectiveness of 

ultrasonication.   
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Introduction 

 

Heat treatment of milk is primarily used as a means of inactivating spoilage or 

pathogenic microbes (Piyasena et al., 2003).  There are, however, numerous reports of 

bacteria surviving pasteurisation.  Microorganisms that have been reported to survive 

commercial pasteurisation include Pseudomonas spp. (Ternström et al., 1993), Listeria 

monocytogenes (Doyle et al., 1987), Chryseobacterium spp. (Ternström et al., 1993), 

Mycobacterium paratuberculosis (Grant et al., 2001) and the heat resistant endospores 

of Bacillus cereus (Griffiths, 1992; Ternström et al., 1993; García-Armesto & Sutherland, 

1997).   

Heat can cause deterioration of the organoleptic properties and also the 

nutritional value of milk (Efigênia et al., 1997; Frõlich, 2002).  To avoid the unwanted 

effects of heat, efforts are being made to find new methods of food preservation, either 

based on new inactivation procedures (Evrendilek & Zhang, 2005) or by combining 

existing techniques like heat in combination with ultrasound or pulsed electric fields 

(Pagán et al., 1999a; Sepulveda et al., 2005).   

The use of ultrasound to inactivate microbes was reported in the late 1920's 

(Harvey & Loomis, 1929), but its limited lethal effect on spoilage microbes prohibited it 

from being used as a sterilisation method.  Improvements in ultrasound generation 

technology over the last decade have again stimulated interest in microbial inactivation 

by ultrasound (Pagán et al., 1999a).   

Ultrasonic waves are generated by mechanical vibrations of frequencies between 

20 kHz and 800 kHz (Hoover, 1997).  When these waves propagate into liquid media, 

alternating compressions and rarefactions are produced.  If the amplitude of the 

ultrasonic wave is high enough, cavitation, which is the making and breaking of 

microscopic bubbles, will occur (Goldman & Lepschkin, 1952).  When the bubbles reach 

a critical size, they collapse violently.  This violent collapse is thought to be mechanical 

forces resulting in the breaking and shearing of cell walls leading to cell death.   

In Chapter 3 of this dissertation the impact of ultrasonication on Escherichia coli 

was investigated.  The promising results obtained indicated that further research on the 

response of other microbes frequently associated with pasteurised milk was required.  

The aim of this study was to determine the effectiveness of high-power, low-frequency 

ultrasound (20 kHz, 750 W) on the survival of a selection of spoilage and potentially 

pathogenic microbes.   
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Materials and methods 

 

Bacterial cultures 

The eight different "test" microbes used in this study and their specific growth 

requirements are summarised in Table 1.  A broth subculture was prepared by 

inoculating 10 ml sterile broth with a specific "test" microbe and incubating for 24 h at 

the appropriate temperature (Table 1).  A 100 ml sterile container, containing 90 ml 

broth was then inoculated with 5 ml of the 24 h culture and incubated for a further 24 h 

prior to the ultrasonic treatments.   

 

Standard growth curves 

The optical density (OD) of each culture was determined spectrophotometrically at  

500 nm (Spectronic 20 Genesys, Spectronic Instruments, Cape Town).  Three standard 

growth curves were obtained for each "test" microbe.   

 

Ultrasonication 

Two ml of each batch culture was centrifuged for 10 min at 6 000 x g (Eppendorf 

Centrifuge 5415D, Hamburg).  The pellets were suspended in sterile saline solution 

(SSS) and the data from the standard curves were used to determine the desired cell 

concentration for inoculation of the suspension medium.  The suspension medium, 

either SSS or full cream (3.4% milk fat) UHT (ultra high temperature) milk, was 

inoculated with a "test" microbe to give a final concentration of as near as possible to 

either 1 x 104 colony forming units per ml (cfu.ml-1) or 1 x 106 cfu.ml-1.   

 A 750 W, 20 kHz Vibra-Cell High Intensity Ultrasonic Processor VCX 750 (Sonics 

& Materials, Inc., Newtown, CT USA) was used for ultrasonication.  This apparatus was 

fitted with an autoclavable 13 mm diameter probe with a replaceable titanium tip.  A  

40 ml sample of the inoculated suspension medium was pipetted into a sterile, jacketed 

glass sample holder connected to an ice-waterbath (4° - 6°C) to maintain a sample 

temperature of between 24° and 26°C.  With this unit, optimum ultrasonic delivery is 

ensured by continuous monitoring of feedback from the probe and automatic 

adjustments made to the frequency and power.  Samples were treated at 100% wave 

amplitude using five different time regimes:   

1. 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave amplitude;  

2. 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 min at 100% wave amplitude;  
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Table 1 Growth media, incubation times and temperatures used for cultivation of the different "test" microbes 

 

 
                 Incubation 
          ___________________________ 
Microbe     USFSCCa Medium Time (h) Temperature (°C) Gram  Morphology 
 
 
Bacillus cereus    1335  NBb/PCAc     24   35°     +  Rod (endospores) 

Chryseobacterium meningosepticum  1336  NB/PCA     24   37°     -  Rod 

Lactobacillus acidophilus   1348  MRSd      24   35°     +  Rod (chains) 

Lactococcus lactis    315  MRS      24   30°     +  Cocci (chains) 

Listeria monocytogenes   1273  NB/PCA     24   35°     +  Rod 

Micrococcus luteus    173  NB/PCA     24   35°     +  Cocci (single) 

Pseudomonas fluorescens   62  NB/PCA     24   35°     -  Rod 

Saccharomyces cerevisiae   462  YDPe/MEAf     24   25°    NA  Yeast 
 
 
aUSFSCC = University of Stellenbosch, Food Science Culture Collection. 
bNB = Nutrient Broth (Biolab). 
cPCA = Plate Count Agar (Biolab). 
dMRS = de Man, Rogosa & Sharpe broth (Biolab). 
eYDP = Yeast Dextrose Peptone broth (Biolab). 
fMEA = Malt Extract Agar (Biolab). 

NA = not applicable. 
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3. 2.5, 5.0, 10.0 and 15.0 min at either 50% or 100% wave amplitude;  

4. 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 6.0, 7.5 and 10.0 min at 100% wave 

amplitude on a low microbial load; and  

5. 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave amplitude with duty cycle 

combinations of 5 s/5 s, 10 s/5 s or 10 s/10 s. 

Duplicate ultrasonic treatments were done and duplicate dilutions were made from each 

treated sample.  The pour-plate technique and appropriate media were used for 

enumeration.  Plates with between 30 and 300 colonies were selected for counting 

(Anon., 1997).  UHT milk and SSS samples that were not inoculated with any "test" 

microbes served as controls.  In all cases no microbial growth was observed after 48 h 

of incubation on the controls.   

The efficacy of ultrasonic treatments, in terms of microbial elimination, was 

measured by their decimal reduction time (D) which, for this study, was defined as the 

time (min) of a given treatment required to reduce the bacterial population by 90% or by 

a single log cycle.  A minimum of two and a maximum of five (where possible) D-values 

were calculated for each curve.  For this study, the D-value at 20 kHz/750 W was 

abbreviated to DUS. 

 

Results and discussion 

 

To simplify the discussion of the results generated in this study, some of the data as 

illustrated in Figs. A1 to A18, were rather included as a separate Appendix (A) and 

placed at the end of this chapter.   

The standard curves for each culture, as given in Figs. A1 and A2 in Appendix A, 

were used as a reference to determine the cell inoculation size (exponential phase) for 

the ultrasonication studies.   

 

Study 1 - Ultrasonication for 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave amplitude 

In the first part of the ultrasonication study the impact of ultrasound on the eight "test" 

microbes (Table 1) was investigated.  To simplify the comparisons between the 

cultures, the data illustrating the viable counts vs. time (Figs. A3 to A10 in Appendix A) 

have been summarised in Figs. 1 (A-D) and 2 (A-D) and Table 2.   
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Table 2 Summary of the DUS-values, and log reductions obtained for the different "test" microbes evaluated in Study 1 over a 10 min 

treatment time 

 
 
           SSS      Milk 
    Treatment time Inoculum ___________________________  ___________________________ 
Study Microbe           (min)  (cfu.ml-1) DUS (min) log red. % red.  DUS (min) log red. % red. 
 
 
    1 Lc. lactis   10  2 x 105  5.0  1.69  97.98% 2.6  2.58  97.34% 

    1 B. cereus   10  2 x 104  nc  0.64  77.35% nc  1.43  96.27% 

    1 C. meningosepticum  10  1 x 104  nc  0.79  83.73% nc  0.94  88.50% 

     10  1 x 105  nc  0.75  82.07% nc  0.11  23.08% 

    1 Lb. acidophilus  10  1 x 104  nc  0.55  72.08% nc  0.82  65.17% 

     10  1 x 106  nc  0.46  84.73% nc  0.90  87.48% 

    1 L. monocytogenes  10  1 x 104  4.4  2.10  99.20% 5.3  2.00  99.00% 

     10  1 x 106  4.7  1.80  98.42% 4.7  2.07  99.14% 

    1 M. luteus   10  1 x 104  nc  0.79  83.70% 8.0  1.18  93.39% 

     10  1 x 106  nc  0.73  81.18% 6.1  1.32  95.23% 

    1 P. fluorescens   10  1 x 104  1.2  4.05  100%  1.5  3.26  100% 

     10  1 x 105  1.2  5.70  100%  1.2  5.64  100% 

    1 S. cerevisiae   10  1 x 104  2.8  3.62  100%  4.3  2.10  99.42% 
 
 

nc = not calculated (DUS-value could not be calculated as a single log reduction was not reached). 
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Lactococcus 

In milk Lc. lactis metabolises lactose to lactic acid with the subsequent acidification of 

the milk (Frees et al., 2003).  Therefore, Lc. lactis may under certain conditions also be 

considered a spoilage microbe of fresh milk.  In this study, ultrasonication of the  

Lc. lactis strain for 10.0 min in SSS and milk resulted in a 1.69 and 2.58 log reduction, 

respectively (Fig. 1A).  Viable cells in SSS, with an initial bacterial load of  

2 x 105 cfu.ml-1, were reduced by 97.98% and in milk the initial bacterial load was 

reduced by 97.34%.  The DUS as calculated for these studies using Lc. lactis was  

5.0 min (non-typical logarithmic death curve) in SSS and 2.6 min in milk (for this specific 

microbe the DUS was taken as the average of two values as a result of a non-typical 

logarithmic death curve) (Table 2).   

Results from this study are in disagreement to those reported by Jacobs & 

Thornley (1954).  They inoculated reconstituted skim milk (8%) with "Streptococcus 

lactis" (200 - 400 cfu.ml-1); treated the strain for 20 min at either 20.5 Kc.s-1 or 1 Mc.s-1 

and found no reduction in viable counts.  In this study, however, Lc. lactis counts were 

reduced by more than 97% for both the suspension media tested.  This was ascribed to 

technological advances during the past 50 years, e.g. power output leading to higher 

wave amplitudes.   

 

Bacillus 

Bacillus cereus is a major spoilage and pathogenic microbe in the dairy industry, and 

the enterotoxins produced may lead to a diarrhoeal illness (Wouters, 1993; Granum & 

Lund, 1997).  It has also been shown by research done elsewhere that conventional 

pasteurisation processes are not effective against this endospore-former (García-

Armesto & Sutherland, 1997).   

In this study, ultrasonication of the B. cereus strain for 10.0 min resulted in the 

elimination of 77.35% of the initial 2 x 104 cfu.ml-1 in SSS and 96.27% of the initial  

1 x 105 cfu.ml-1 in milk.  This is equivalent to 0.64 and 1.43 log reductions for the SSS 

and milk, respectively (Fig. 1B).  The DUS for B. cereus in SSS could not be determined 

as a single log reduction was not reached.  When milk was used as suspension 

medium, a single log reduction was achieved within the first 2.5 min of ultrasonication 

where after there was no further reduction.  It was therefore decided that a DUS-value 

would not give a true reflection of the results (Table 2).   

García et al. (1989) similarly reported no negative effect on the survival of 

Bacillus subtilis after ultrasonic treatments of 60 min at 20 kHz and 150 W in water, 
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"whole milk" and glycerol.  In this study, 750 W of power and a wave amplitude of  

124 µm were used for ultrasonication.  More power leads to better cavitation (Alliger, 

1975) which would explain why in this study ultrasonication was found to damage  

B. cereus, albeit only to a limited extent.  Berger & Marr in 1960, reported that a 

treatment time of 1 h (75 acoustical watts in a Raytheon 10 kc. sonic oscillator) was 

necessary to remove most of the exosporium surrounding the spores of some strains of 

B. cereus.  They did, however, report a 75% reduction in viable counts after a 2 h 

treatment.  Their aim was not to destroy the cells but rather to make the cells more 

sensitive to the effect of heat.  Sensitivity to heat falls outside the scope of this study, 

therefore, the results obtained in this study cannot be compared to those of Berger & 

Marr (1960).   

 

Chryseobacterium 

Chryseobacterium meningosepticum is a spoilage bacterium commonly found in raw 

milk (Muir, 1996) and may cause a variety of defects such as surface taint and an apple 

flavour in butter (Jooste et al., 1986).  In this study, ultrasonication of  

C. meningosepticum for 10.0 min in SSS resulted in a 0.79 log reduction (83.73%) for a 

1 x 104 cfu.ml-1 inoculum and a 0.75 log reduction (82.07%) when the initial bacterial 

load was 1 x 105 cfu.ml-1 (Fig. 1C).  When milk was used as the suspension medium, an 

88.50% or 0.94 log reduction in initial viable counts was observed for a 1 x 104 cfu.ml-1 

inoculum.  Milk with an initial bacterial load of 1 x 105 cfu.ml-1 resulted in the elimination 

of only 23.08% of the viable cells after 10.0 min of ultrasonication.  This is equivalent to 

a 0.11 log reduction.  No DUS could be determined for C. meningosepticum as a single 

log reduction was not achieved, even after 10.0 min of ultrasonication (Table 2).   

 

Lactobacillus 

Lactobacillus acidophilus, when grown in raw milk produces lactic acid which leads to a 

decrease in pH (Kleerebezem & Hugenholtz, 2003).  This microbe can thus be 

considered as a dairy spoilage microbe in terms of fresh milk production.  After 

ultrasonicating Lb. acidophilus for 10.0 min, 72.08% of the initial 1 x 104 cfu.ml-1 and 

65.17% of the initial 1 x 106 cfu.ml-1 count in SSS were eliminated.  This is equivalent to 

a 0.55 and 0.46 log reduction, respectively (Fig. 1D).  In milk, 84.73% or 0.82 log cycles 

of the initial 1 x 104 cfu.ml-1 and 87.48% or 0.90 log cycles of the initial 1 x 106 cfu.ml-1 

were eliminated.  The DUS for Lb. acidophilus could not be determined as a single log 

reduction was not achieved (Table 2).   
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Listeria 

Listeria monocytogenes is considered to be an important dairy pathogen with the ability 

to grow at refrigeration temperatures (Griffiths, 1989; Pearson & Marth, 1990).  In this 

study ultrasonication of L. monocytogenes for 10.0 min in SSS resulted in an elimination 

of 99.20% of an initial load of 1 x 104 cfu.ml-1 (a 2.10 log reduction), and a 98.42% 

reduction for a 1 x 106 cfu.ml-1 inoculum (a 1.80 log reduction) (Fig. 2A).  The DUS in 

SSS was calculated to be 4.4 min (1 x 104 cfu.ml-1) and 4.7 min (1 x 106 cfu.ml-1) (for 

this study the DUS was taken as the average of two values).  When milk was used as the 

suspension medium, 99% of the initial 1 x 104 cfu.ml-1 was reduced to only 111 viable 

cells (a 2.00 log reduction), and 99.14% of the initial 1 x 106 cfu.ml-1 was reduced to  

7 975 viable cells (a 2.07 log reduction) after 10.0 min of ultrasonication.  The DUS for  

L. monocytogenes in milk was 5.3 min (1 x 104 cfu.ml-1) and 4.7 min (1 x 106 cfu.ml-1) 

(for this specific microbe the DUS was taken as the average of two values) (Table 2).   

Pagán et al. (1999b) reported a D-value of 4.3 min for L. monocytogenes 

ultrasonicated (20 kHz and an amplitude of 117 µm) at ambient temperature.  It was not 

clear what the initial cell concentration (cfu.ml-1) used by Pagán et al. (1999b) had been, 

and that could explain the slight difference between the D-values obtained in this study 

and those obtained by Pagán et al. (1999b).  There are a number of factors influencing 

the efficiency of ultrasonication (strain of microbe, initial concentration, treatment 

medium, amplitude of sound waves, growth phase, etc.), and omitting or neglecting to 

mention them makes comparisons between the results of different research groups 

difficult.   

 

Micrococcus 

Micrococcus spp. has been associated with raw milk (Frank, 1997; Sablé et al., 1997), 

and has also been isolated from pasteurised milk (Jay, 1996).  In this study, 

ultrasonication of the M. luteus strain for 10.0 min eliminated 83.70% of the initial  

1 x 104 cfu.ml-1 (0.79 log reduction), and 81.18% of the initial bacterial load of  

1 x 106 cfu.ml-1 (0.73 log reduction) in SSS (Fig. 2B).  In milk, ultrasonication reduced 

the initial 2 x 104 cfu.ml-1 by 93.39% and 1 x 106 cfu.ml-1 were reduced by 95.23%.  This 

is equivalent to a 1.18 and 1.32 log reduction, respectively.  The DUS in milk was 

calculated to be 8.0 min (2 x 104 cfu.ml-1) and 6.1 min (1 x 106 cfu.ml-1), but the DUS in 

SSS could not be determined as a single log reduction was not reached (Table 2).   
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Pseudomonas 

Pseudomonas is frequently present in raw milk (Frank et al., 1993; Jay, 1996), however, 

it is not reported to survive pasteurisation, and its presence in pasteurised milk is 

usually ascribed to post-pasteurisation contamination (Aaku et al., 2004).  In this study, 

ultrasonication of P. fluorescens resulted in a 100% elimination of all viable cells (Fig. 

2C).  In SSS all viable cells of a 1 x 104 cfu.ml-1 inoculum were eliminated after only a 

5.0 min ultrasonic treatment.  This is equivalent to a 4.05 log reduction.  When the initial 

inoculum in SSS was increased to 1 x 105 cfu.ml-1, a treatment time of 6.0 min was 

required to eliminate all viable cells (a 5.70 log reduction).  When milk was used as the 

suspension medium, similar results were obtained with 5.0 min required to eliminate 

100% of the 1 x 104 viable cells (a 3.26 log reduction), and a treatment time of 6.0 min 

needed to eliminate 100% of the 1 x 105 viable cells (a 5.64 log reduction).  The DUS 

was calculated to be 1.2 min (1 x 104 cfu.ml-1 and 1 x 105 cfu.ml-1) in SSS and 1.5 min  

(1 x 104 cfu.ml-1) and 1.2 min (1 x 105 cfu.ml-1) in milk (for this specific microbe the DUS 

was taken as the average of at least five values) (Table 2).   

 The results obtained from this study compares well to some of the results 

reported by Villamiel & de Jong (2000).  They reported log reductions of between 0.6 

and 4.2 for P. fluorescens in Trypticase Soy Broth with an initial concentration of  

6.9 - 7.7 log.cfu.ml-1.  The ultrasonication apparatus they used had a fixed frequency of 

20 kHz, and a maximum power output of 150 W.  They used a continuous system with 

flow rates of 50 and 33 ml.min-1.  In addition to this, they used ultrasound in combination 

with a heat treatment.  The differences in treatment parameters used in this study and 

those used by Villamiel & de Jong (2000) make it difficult to explain why they obtained 

such a very low log reduction (0.6).   

 

Saccharomyces 

In this study, ultrasonication of the S. cerevisiae strain for 10.0 min in SSS resulted in a 

100% elimination of the initial 1 x 104 cfu.ml-1 (a 3.62 log reduction), and 99.42% of the 

initial 1 x 104 cfu.ml-1 (a 2.10 log reduction) in milk (Fig. 2D).  The DUS in SSS was 

calculated to be 2.8 min, and in milk 4.3 min (for this specific microbe the DUS was taken 

as the average of two values) (Table 2).   

Ciccolini et al. (1997) reported a D-value for S. cerevisiae of 1.6 min (100 W) and 

2.4 min (180 W) (initial concentration of approximately 1 x 108 cfu.ml-1 in sterile water).  

The difference between this study and theirs was that, although they used a frequency 

of 20 kHz, they combined ultrasound with a heat treatment (55°C) and this accounts for 
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the differences in D-values obtained.  Guerrero et al. (2001; 2005) also used ultrasound 

in a hurdle system with three different temperature combinations (35°, 45° and 55°C), 

and reported D-values of 21.4 min (35°C), 14.1 min (45°C) and 1.3 min (55°C) at 90% 

wave amplitude.  The differences in process parameters used by the different authors 

make comparisons of the results obtained difficult.   

 

Discussion of the data obtained in Study 1 

In Study 1, the P. fluorescens strain was clearly found to be the most sensitive to 

ultrasound, followed by S. cerevisiae, L. monocytogenes and Lc. lactis.  Lactobacillus 

acidophilus, a Gram-positive rod and dairy spoilage microbe, was found to be the most 

resistant to the effect of ultrasonication.  The Gram-positive microbe that was found to 

be the most sensitive to ultrasonication was L. monocytogenes.  Micrococcus luteus (a 

Gram-positive coccus) was also found to be more sensitive to the effect of 

ultrasonication than the Gram-positive rods, B. cereus and Lb. acidophilus.  

Chryseobacterium meningosepticum, a Gram-negative rod-shaped dairy spoilage 

microbe was found to be the more resistant of the two Gram-negative microbes tested.   

Jacobs & Thornley reported in 1954 that fresh unhomogenized milk gave more 

protection to the damaging effect of ultrasonication than homogenized milk, which in 

turn gave more protection to bacteria than when broth was used as the suspension 

liquid.  The protective effect observed in milk was ascribed to the milk fat molecules and 

their size.  This is contrary to the results obtained in this study where the variation in 

results between SSS and UHT milk as suspension media was so small that it was 

considered omissible.  In some cases (C. meningosepticum, Lb. acidophilus, Lc. lactis 

and M. luteus) the microbes were less resistant when treated in milk, and therefore less 

'protected' in milk, as a larger log reduction was achieved when comparing the results 

for the same microbes in SSS.  No specific explanation can be given for milk being 

slightly less 'protective' than SSS. 

It has been reported that smaller sized bacteria are more resistant to the effect of 

ultrasound (Jacobs & Thornley, 1954; Alliger, 1975), and that rods are more easily 

eliminated.  Gram-positive bacteria have also been reported to be more resistant 

(Alliger, 1975; Hülsen, 1999; Villamiel & de Jong, 2000).  The results from this study 

suggest that there was no direct correlation between size or Gram characteristic of 

bacteria and resistance to ultrasonication.  Although the specific strain of S. cerevisiae 

used in this study was found to be more sensitive than most of the bacteria tested, the 

small (0.5-1.0 x 1.5-5.0 µm) Gram-negative rod, P. fluorescens, was found to be most 
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susceptible to elimination by ultrasonication under the conditions applied in this study.  

Scherba et al. (1991) also reported no difference in ultrasound resistance between 

Gram-positive and negative bacteria.  Although Gram-positive bacteria have a thicker 

and more tightly adherent peptidoglycan layer than Gram-negative bacteria, Scherba et 

al. (1991) suggested that it is not the cell wall thickness that protects against ultrasound.  

They proposed that the "target" of ultrasonic damage might rather be the cytoplasmic 

membrane, which normally consists of a lipoprotein bilayer.  Similarly, Ciccolini et al. 

(1997) found that the cavitation field in the microbial suspension generated by ultrasonic 

waves does not deactivate, break up or kill the cells when using a very high inoculum  

(2 x 1010 cfu.ml-1), but rather that cavitation damages the cell wall and possibly the 

cytoplasmic membrane, thus affecting the cellular permeability.  The cytosol and 

intracellular contents would then leak out of the damaged cytoplasmic membrane and 

cell wall and they thus ascribed this “leakage” as the cause of bacterial inactivation and 

ultimately elimination.  To verify the results of Scherba et al. (1991) and Ciccolini et al. 

(1997) it would be advisable to visually examine ultrasonically induced microbial cell 

damage.   

Based on the data obtained in Study 1, where eight "test" microbes were 

ultrasonicated for at least 10.0 min, it was decided to use only two of the "test" microbes 

in the subsequent studies.  The selected bacteria were:  Lc. lactis, a Gram-positive 

coccus and fresh milk spoilage bacterium, and B. cereus, a Gram-positive rod, 

endospore-former and potential pathogen.   

 

Study 2 - Ultrasonication for 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 min at 100% wave 

amplitude 

In Study 1, it was found that the first 2.5 min of ultrasonication often resulted in the 

highest percentage of viable cells being eliminated (Figs. A3 and A4 in Appendix A).  

This gave rise to the second study, where the first 2.5 min were divided into 30 s 

intervals to determine at which time the bacteria were most sensitive to the effect of 

ultrasound.  To simplify comparisons between the cultures used in this study, the data 

illustrating viable counts vs. time (Figs. A11 and A12 in Appendix A) have been 

summarised in Fig. 3 (A and B) and Table 3.   

 Ultrasonication of Lc. lactis for 3.0 min resulted in 57.27% of the 1 x 104 viable 

cells in milk being eliminated.  This is equivalent to a 0.37 log reduction (Fig. 3A).  The  
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Table 3 Summary of the DUS-values, and log reductions obtained for the different "test" microbes evaluated in Studies 2-5 
 
 
           SSS      Milk 
    Treatment time Inoculum _____________________________  _____________________________ 
Study Microbe           (min)  (cfu.ml-1) DUS (min) log red. % red.  DUS (min) log red. % red. 
 
 
    2 Lc. lactis   3  1 x 104  -  -  -  nc  0.37  57.27% 

    2 B. cereus   3  1 x 104  -  -  -  nc  0.12  24.18% 

    3 Lc. lactis (50%, 62 µm) 15  2 x 104  nc  0.74  99.54% -  -  - 

   (100%, 124 µm)15  2 x 104  5.3  2.33  81.74% -  -  - 

    3 B. cereus (50%, 62 µm) 15  2 x 104  nc  0.12  49.17% -  -  - 
   (100%, 124 µm)15  2 x 104  nc  0.29  23.46% -  -  - 

    4 Lc. lactis   10  2 x 103  -  -  -  4.9  1.91  98.77% 

    4 B. cereus   10  2 x 103  -  -  -  nc  0.20  37.66% 

    5 Lc. lactis (5 s/5 s) 10  1 x 104  4.3  1.72  98.08% -  -  - 

   (10 s/5 s) 10  1 x 104  6.0  1.70  98.01% -  -  - 

   (10 s/10 s) 10  1 x 104  5.1  1.93  98.82% -  -  - 

   no pulsing 10  2 x 105  5.0  1.69  97.98% -  -  - 

    5 B. cereus (5 s/5 s) 10  1 x 104  nc  0.17  32.04% -  -  - 

   (10 s/5 s) 10  1 x 104  nc  0.19  35.63% -  -  - 

   (10 s/10 s) 10  1 x 104  nc  0.07  14.48% -  -  - 

   no pulsing 10  2 x 104  nc  0.64  77.35% -  -  - 

 
 

nc = not calculated (DUS-value could not be calculated as a single log reduction was not reached). 
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DUS could not be calculated as a single log reduction was not reached within 3.0 min.  It 

is interesting to note that the data in Fig. 3A clearly shows an increase in viable  

Lc. lactis cells after ultrasonication for 0.5 min.  In 1997, Ciccolini et al. reported the 

dispersion of microbial clumps/chains through the action of cavitation.  Cells that are 

clumped together in chains in the untreated samples grow as single colonies in pour 

plates which would lead to an underestimation of the initial microbial load of the 

inoculum.  Based on this it is, therefore, suggested that in this study the initial rise in 

viable cell counts after 0.5 min of ultrasonication may be ascribed to dispersion of cell 

chains as can be seen in the micrograph in Fig. 4.  This 'dispersion of chains' of  

Lc. lactis was not observed in Fig. 1A, and it was ascribed to the longer ultrasonic 

treatment times used in Study 1.   

 After ultrasonication of the B. cereus strain for 3.0 min in milk, only 24.18% or 

0.12 log cycles of the initial bacterial load of 1 x 104 cfu.ml-1 (Fig. 3B) was eliminated.  A 

single log reduction was not reached after 3.0 min and, therefore, the DUS could not be 

calculated.  It can thus be concluded that an ultrasonic treatment of 3.0 min or less is 

insufficient for the treatment of B. cereus by the dairy industry.   

 The results from Study 2 are similar to those obtained in Study 1 where it was 

found that Lc. lactis was more sensitive to the effect of ultrasonication than B. cereus.  

The results from Study 2 did not indicate a single treatment time at which the "test" 

strains were the most sensitive to ultrasonication as viable Lc. lactis cells showed an 

increase after 0.5 min of ultrasonication, whereas for B. cereus the highest elimination 

in viable cells was achieved within the first 0.5 min of ultrasonication.   

 

Study 3 - Ultrasonication for 2.5, 5.0, 10.0 and 15.0 min at either 50% (62 µm) or 

100% (124 µm) wave amplitude 

The impact of two different wave amplitudes was investigated over a treatment time of 

15.0 min.  The amount of power used during an ultrasonic treatment is proportional to 

the wave amplitude; therefore, it is assumed that a higher wave amplitude will result in 

more intense cavitation and greater cell disruption.  To simplify comparisons of the 

results between the cultures used in this study, the data illustrating viable counts vs. 

time (Figs. A13 and A14 in Appendix A) have been summarised in Fig. 5 (A and B) and 

Table 3.   

 In this study, ultrasonication of the Lc. lactis strain in SSS for 15.0 min at 100% 

wave amplitude (124 µm) eliminated 99.54% of the initial 2 x 104 cfu.ml-1 (a 2.33 log  
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Figure 4 Dispersion of Lactococcus lactis chains after ultrasonication (x1000 

enlargement) (A = no ultrasonication showing numerous chains; B = 0.5 min 

ultrasonication with few chains remaining). 
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reduction).  In contrast, only 81.74% of the initial bacterial load of 2 x 104 cfu.ml-1 (a 

0.74 log reduction) was eliminated at 50% wave amplitude (62 µm) after 15.0 min (Fig. 

5A).  The DUS for Lc. lactis at 100% wave amplitude (124 µm), was 5.3 min (for this 

study the DUS was taken as the average of three values as a result of a non-typical 

logarithmic death curve).  A single log reduction was not achieved for ultrasonication at 

50% wave amplitude (62 µm); therefore, the DUS could not be calculated. 

 A 0.29 log reduction (49.17%) was achieved for B. cereus when SSS with an 

initial bacterial load of 2 x 104 cfu.ml-1 was ultrasonicated for 15.0 min at 100% wave 

amplitude (124 µm), and the elimination of only 23.46% (0.12 log cycles) when a  

2 x 104 cfu.ml-1 inoculum was ultrasonicated in SSS for 15.0 min at 50% wave 

amplitude (62 µm) (Fig. 5B).  The DUS could not be calculated for B. cereus at either of 

the two amplitudes tested, as a single log reduction in viable counts was not reached.  

Bacillus cereus was again found to be resistant to the effect of ultrasound (Fig. 5B), 

even with an extended treatment time of 15.0 min, irrespective of the percentage 

amplitude used.   

 The importance of power (wave amplitude) for effective ultrasonication is evident 

from this study, where both "test" microbes showed higher sensitivity to ultrasound 

delivered at higher power levels (100% wave amplitude rather than 50%).  Lactococcus 

lactis was still more sensitive to ultrasonication than B. cereus.  It is therefore suggested 

to use the maximum amplitude available for the elimination of microbes from milk.  

Similar results were obtained for Escherichia coli in Chapter 3 where a wave amplitude 

of 100% proved to be more efficient at eliminating viable cells than a 50% wave 

amplitude.   

 

Study 4 - Ultrasonication for 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 6.0, 7.5 and 10.0 min at 

100% wave amplitude on milk with a low microbial load 

The effect of ultrasound on low initial counts was investigated in this study.  This was 

done to determine what effect ultrasound would have on high quality raw milk (i.e. raw 

milk with a low initial bacterial load).  Tests were performed in milk with an initial 

bacterial load of 2 x 103 cfu.ml-1.  To simplify comparisons between the cultures used in 

this study, the data illustrating viable counts vs. time (Figs. A15 and A16 in Appendix A) 

have been summarised in Fig. 6 (A and B) and Table 3.   

A 1.91 log reduction (98.77%) of viable Lc. lactis cells was achieved after 

ultrasonication for 10.0 min (Fig. 6A).  The DUS for Lc. lactis was calculated to be  
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4.9 min (for this study the DUS was taken as the average of two values as a result of a 

non-typical logarithmic death curve).   

Bacillus cereus was again found to be resistant to the effect of ultrasonication, 

even at low counts.  Only a 0.20 log reduction (37.66%) could be reached after 10.0 min 

of ultrasonication, therefore, the DUS could not be calculated (Fig. 6B).   

Lactococcus lactis at a low microbial load proved to be a bit more sensitive to the 

effect of ultrasonication.  However, even at low inoculation concentrations the data 

showed B. cereus to be of some concern with the endospores being very resistant to 

ultrasound.  These results are in accordance with those obtained for E. coli in Chapter 3 

of this dissertation which also confirmed that ultrasonication is very effective against low 

microbial loads.   

 

Study 5 - Pulse-ultrasonication for 2.5, 5.0, 6.0, 7.5 and 10.0 min at 100% wave 

amplitude with on/off pulsing combinations of 5 s/5 s, 10 s/5 s or        

10 s/10 s 

One question that arose as this study progressed, was whether a pulsing scenario 

might not enhance the effect of ultrasonication, especially on B. cereus endospores.  

Bearing in mind the dispersion of clumps/chains, pulsing might also eliminate the 

increase in survivors noted after 0.5 min of ultrasonication, as was found with Lc. lactis 

in Study 2.  To simplify comparisons between the cultures used in this study, the data 

illustrating viable counts vs. time (Figs. A17 and A18 in Appendix A) have been 

summarised in Fig. 7 (A and B) and Table 3.   

During ultrasonication the cells that are being treated may become suspended in 

an ultrasonic standing wave.  Ultrasonic standing waves reduce the energy efficiency of 

the system by forming cavitationally active and passive zones (Tatake & Pandit, 2002).  

The cells experience time-independent radiation forces that move them to preferred 

regions of the field separated by half-wavelength intervals (Limaye & Coakley, 1998) 

where they are protected from cavitation.   

Ultrasonic standing waves are beneficial when the system involves applications 

of physical phenomena such as particle separation, mixing, or emulsification, etc. (Holl, 

1978; Kuhn et al., 1985) as it creates a pressure gradient resulting in efficient mixing or 

emulsification due to particle/droplet migration (Tatake & Pandit, 2002).  However, when 

ultrasound is applied as a means of "sterilisation", the formation of standing waves is 

not desirable.  Ultrasound in the mega-range (MHz), which does not promote the  
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formation of cavitating bubbles, is frequently used to create standing waves (Kilburn et 

al., 1989; Whitworth et al., 1991).  The use of pulse-ultrasonication would eliminate the 

aggregation of viable cells in standing waves, should they form at the frequency used in 

this study.  The aim of Study 5 was therefore to indirectly determine the possible 

existence of standing waves.   

 

No pulsing 

As described in Study 1.  Viable Lc. lactis cells were reduced by 97.98% (1.69 logs).  

The initial inoculum was 2 x 105 cfu.ml-1 in SSS.  The DUS was calculated to be 5.0 min 

(non-typical logarithmic death curve).   

 A 0.64 log reduction (77.35%) was described in Study 1 for B. cereus in SSS with 

an initial concentration of 2 x 104 cfu.ml-1.  The DUS could not be calculated for B. cereus 

as a single log reduction was not reached (Table 3).   

 

Duty cycle:  5 s on/5 s off 

The first pulsing combination of the samples was for 5 s, followed by a 5 s off-period.  

This process was repeated for the above mentioned treatment times.   

 Pulse-ultrasonication of Lc. lactis in SSS with an initial bacterial load of  

1 x 104 cfu.ml-1 for 10.0 min resulted in a 98.08% reduction (1.72 log cycles) (Fig. 7A).  

The DUS was found to be 4.3 min.   

The data showed that B. cereus was more resistant to pulse-ultrasonication than 

Lc. lactis, with only a 32.04% (0.17 log cycles) of the initial 1 x 104 cfu.ml-1 being 

eliminated after 10.0 min of pulse-ultrasonication (Fig. 7B).  The DUS for B. cereus could 

not be calculated (Table 3).   

 

Duty cycle:  10 s on/5 s off 

Pulse-ultrasonication with a 5 s off-period, but with a longer ultrasonication period of  

10 s achieved similar results over a period of 10.0 min.  A 1.70 log reduction (98.01%) 

of a 1 x 104 cfu.ml-1 inoculum was achieved after pulse-ultrasonicating Lc. lactis in SSS 

for 10.0 min (Fig. 7A).  The DUS as calculated for Lc. lactis for this pulse-ultrasonic 

treatment was 6.0 min.   

Bacillus cereus in SSS with an initial bacterial load of 1 x 104 cfu.ml-1 was 

reduced by 35.63% (0.19 log cycles) after 10.0 min of pulse-ultrasonication (Fig. 7B).  

The DUS for B. cereus could not be calculated as a single log reduction was not reached 

(Table 3).   
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Duty cycle:  10 s on/10 s off 

In this study an initial Lc. lactis load of 1 x 104 cfu.ml-1 in SSS was reduced by 98.82% 

(1.93 logs) after 10.0 min of pulse-ultrasonication (Fig. 7A).  The DUS was found to be 

5.1 min.   

The DUS for B. cereus could not be determined as only a 0.07 log reduction 

(14.48%) was achieved after 1 x 104 viable cells in SSS were pulse-ultrasonicated for 

10.0 min (Fig. 7B) (Table 3).   

 

Discussion of the data from Study 5 

In this study, Lactococcus lactis was found to be the most sensitive to a pulsing 

combination of 10 s/10 s with a 1.93 log reduction (98.82%), followed by the 5 s/5 s 

(98.08%) and 10 s/5 s (98.01%) pulsing combinations.   

The pulsing of ultrasound did not affect the survival of B. cereus, however, a 

pulsing combination of 10 s/5 s with a 0.19 log reduction (35.63%) was slightly more 

effective than the 5 s/5 s (32.04%) or 10 s/10 s (14.48%) combinations.  The results 

from this study suggest that 10 s/5 s was the best average pulsing combination for both 

"test" microbes.  As with Lc. lactis, a pulse-treatment did not enhance the destructive 

effect of ultrasound on B. cereus.  These results are similar to those obtained for E. coli 

in Chapter 3 where pulsing of ultrasound was also not found to enhance the lethality of 

ultrasonication.   

Standing waves will lead to the aggregation of viable cells in regions where they 

are protected from the lethality of ultrasound.  By pulsing the ultrasound, the formation 

of standing waves is eliminated, which should lead to an increase in the efficiency of 

ultrasonication.  As pulsing did not enhance the efficiency of ultrasound, it was thus 

concluded that ultrasonic standing waves are not formed at a frequency of 20 kHz.   

 

Conclusions 

 

There are numerous reports in the literature suggesting "pasteurisation failures" in the 

dairy industry as a possible cause for an end-product with a poor quality.  A wide range 

of microbes have attributed to a decrease in shelf-life.  Cronje (2003) reported on 

pasteurised milk with high counts and isolated B. cereus, C. meningosepticum,  

Lb. acidophilus and Lc. lactis.  Therefore these isolates, as well as other spoilage and 

potential pathogenic cultures were evaluated in this study.   
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From the data obtained in this study it is clear that each microbe evaluated 

showed a unique response to ultrasonication and that the microbe size, morphology and 

the Gram characteristics should not be used as a guaranteed indication of sensitivity to 

ultrasonication.   

One of the problems encountered while using cultures with the ability to form 

chains, was that an increase in viable cells was noted after a short ultrasonic treatment.  

In 1997, Ciccolini et al. reported that ultrasound could be employed to disperse chains.  

In cases where this happens, it would lead to a false impression that either the number 

of cells are increasing after an ultrasonic treatment, or that there is no reduction in the 

number of viable cells.  In Study 2 it was showed that the number of viable cells 

increased after the first 30 sec of ultrasonication.  This phenomenon was ascribed to the 

dispersion of clumps.   

In Chapter 3 of this dissertation it was found that E. coli behaved linearly as the 

time of treatment was lengthened.  It is generally accepted that the number of survivors 

after ultrasonication is an exponential function of time (Davies, 1959; Mett et al., 1988), 

and therefore should produce a linear logarithmic curve.  In this study, however, all the 

microbes used did not show a linear death curve.  The presence of endospores explains 

the non-linear behaviour of B. cereus.  The disruption of Lc. lactis chains also led to a 

non-linear death curve obtained in Study 2 for this microbe.  As with heat inactivation, it 

can thus be concluded that there is some deviation from linearity when ultrasound is 

used.   

When ultrasonication data is graphically illustrated in logarithmic format, the 

formation of 'tails' has been reported.  Some authors (Jacobs & Thornley, 1954; Lee et 

al., 1989) were of the opinion that this is not due to cell recovery or a more resistant 

fraction of the population, but rather to the progressive loss of efficacy of an ultrasonic 

treatment.  According to these authors dissolved gas, and also bacteria would stop 

acting as cavitation nuclei due to the destructive effect of ultrasound.  If this statement 

was true, it should be seen for all the microbes tested and not only for B. cereus.   

The SA “milk law” (Anon., 1997) states that raw milk with contamination levels of 

200 000 cfu.ml-1 or less must be reduced to less than 50 000 cfu.ml-1 prior to selling as 

pasteurised milk.  This is equivalent to a 75% reduction in viable counts.  This study 

indicated that the number of viable cells for all microbes evaluated were reduced by 

more than 75% with P. fluorescens (100% elimination) and S. cerevisiae (99.7% 

elimination) being the most sensitive. Listeria monocytogenes (99% elimination) and  

Lc. lactis (97% elimination) were also very sensitive to the destructive effect of 
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ultrasound.  Bacillus cereus (87% elimination), C. meningosepticum (85% elimination) 

and M. luteus (88% elimination) were more resistant to ultrasonication.  The data 

showed that Lb. acidophilus (78% elimination) was the most resistant to low-frequency 

high-power ultrasound.  Based on the results from this study, it is recommended that the 

dairy industry consider low-frequency high-power ultrasound as an alternative to 

thermal pasteurisation as this could lead to the elimination of the entire microbial 

population.   

To achieve complete elimination of all microbes and to extend the shelf-life 

beyond that of normal pasteurised milk, it might be feasible to consider using a mild 

heat treatment in combination with ultrasound.  It is also recommended that the effect of 

ultrasonication on different milk components (proteins and enzymes) should be 

determined.  These different milk components are very important when pasteurised milk 

is intended to be further processed (cheese, ice-cream, yogurt, etc.).   
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APPENDIX A 

 

To Chapter 4 

 

 

To simplify the discussion of the results, the data illustrated in Figs. A1 - A18 have been 

included in this Appendix.   
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CHAPTER 5 

 

QUANTIFICATION OF ULTRASONICALLY INDUCED CELL DAMAGE 

 

Abstract 

 

Ultrasonication is a non-thermal method of food preservation that has the advantage of 

inactivating microorganisms in food without causing the common side-effects 

associated with conventional heat treatments, such as nutrient and flavour loss.  The 

aim of this study was to determine if microbial protein and DNA are released from cells 

after ultrasonication, and if the concentrations released give an indication as to the 

"degree" of microbial damage as a result of ultrasonication.  Electron microscopy (SEM 

and TEM) was used to gather visual information as to the type and extent of structural 

damage inflicted on microbial cells after an ultrasonic treatment.  It was found that 

Escherichia coli and Lactococcus lactis protein and DNA are released and indicate 

microbial damage.  It was, however, found to be impossible to correlate the protein or 

DNA concentrations released to the exact number of viable cells eliminated.  Scanning 

electron microscopy micrographs showed that ultrasonication damages the cell wall of 

E. coli, whilst with TEM it was possible to observe both internal as well as external 

damage inflicted on E. coli, Lactobacillus acidophilus and Saccharomyces cerevisiae 

cells.   

 

Introduction 

 

Milk is generally given some form of a heat treatment to control microbial growth.  Heat 

processing is not effective against all microbes (Ternström et al., 1993; Larsen & 

Jørgensen, 1997; Salmerón et al., 2002) associated with milk and may trigger unwanted 

reactions such as loss of flavour, nutrient and vitamins (Aronsson et al., 2001).  These 

short-comings have led to renewed interest in non-thermal preservation methods that 

can effectively eliminate microbial activity (Piyasena et al., 2003).  Ultrasonication is a 

non-thermal method of food preservation that has the advantage of inactivating 

microorganisms in food without causing the common side-effects associated with 

conventional heat treatments.   
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There are numerous ways of evaluating the lethality of thermal or non-thermal 

treatments on microbial populations present in food products.  A suitable microbial 

plating medium is generally used for the enumeration of surviving microbes to ensure 

that correct counts of microbes are recorded (Foegeding & Ray, 1992).  Although 

enumeration of microbes before and after a treatment (e.g. ultrasonication) provides 

information on the effectiveness of the treatment on cell viability, no information is 

available on the type or extent of morphological or physical damage to the microbial 

cells.  Visual information would provide extremely useful insight on the cell wall and cell 

organelles.  Visual information can also assist in characterising the type and magnitude 

of changes that occur to cell composition in response to the treatment, and it enhances 

the understanding of how and why a given treatment is effective against a particular 

microbe (Hajmeer et al., 2006).   

The aim of this study was to determine if an ultrasonic treatment would lead to 

increases in released microbial protein and DNA, and also to determine if these 

increases could be used to quantify ultrasonically induced cell damage.  Transmission 

(TEM) and scanning electron microscopy (SEM) was furthermore used to gain visual 

information on ultrasonically inflicted cell damage.   

 

Materials and methods 

 

Bacterial cultures 

The four "test" microbes used and their growth requirements, are listed in Table 1.  

Sterile growth medium (10 ml) was inoculated with a pure culture of the selected "test" 

microbe and incubated at the appropriate temperature (Table 1) for 24 h.  Five ml of 

each 24 h culture was then used as inoculum (150 ml sterile growth medium) and 

incubated for a further 24 h prior to ultrasonication.  Standard growth curves of each 

"test" microbe were prepared as described in Chapters 3 and 4 and were used to 

determine the inoculum size of the samples to be ultrasonicated.   

 

Sample preparation 

The growth medium (150 ml) containing specific levels of cells in the exponential phase 

were centrifuged at 5 000 x g (Beckman Coulter TJ-25 Centrifuge, Beckman Coulter 

Inc., USA) for 10 min.  The supernatant was discarded and the pellet washed twice by 

resuspension in sterile saline solution (SSS) (0.85% m/v) followed by centrifugation.   
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Table 1 Growth media, incubation times and temperatures used for the four "test" microbes 

 

 
                   Incubation 
            _________________________ 
Microbe      USFSCCa  Medium  Time (h) Temperature (°C) 
 

 
Escherichia coli     11775   NBb/PCAc  24   37° 

Lactobacillus acidophilus    1348   MRSd   24   35° 

Lactococcus lactis     315   MRS   24   30° 

Saccharomyces cerevisiae    462   YDPe/MEAf  24   25° 
 
 
aUSFSCC = University of Stellenbosch, Food Science Culture Collection. 
bNB = Nutrient Broth (Biolab). 
cPCA = Plate Count Agar (Biolab). 
dMRS = de Man, Rogosa & Sharpe broth (Biolab). 
eYDP = Yeast Dextrose Peptone broth (Biolab). 
fMEA = Malt Extract Agar (Biolab). 
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The cell pellet was washed to remove any traces of growth medium which may interfere 

with protein determinations.  The final pellet was resuspended in 500 ml saline solution 

and this was used as the sample to determine changes in released microbial protein 

and DNA.  An inoculum of (as near as possible to) either 1 x 106 colony forming units 

per ml (cfu.ml-1) or 1 x 108 cfu.ml-1 was used for Escherichia coli.  The Lactococcus 

lactis strain was treated at an initial concentration of either 1 x 105 cfu.ml-1 or  

1 x 107 cfu.ml-1.   

For the TEM and SEM studies, the samples were prepared as described for 

protein and DNA determinations, except the final pellets were resuspended in 150 ml 

SSS.   

 

Ultrasonication 

Forty ml of the sample was placed in a jacketed glass sample holder that were 

connected to an ice-water bath (4° - 6°C) to maintain the sample temperature at  

24° - 26°C.  A 750 W, 20 kHz Vibra-Cell High Intensity Ultrasonic Processor VCX 750 

(Sonics & Materials, Inc., Newtown, CT USA), fitted with an autoclavable 13 mm 

diameter probe and a replaceable titanium tip, was used for ultrasonication.  Samples 

were treated at 100% wave amplitude for different times (0 - 10 min).  All ultrasonic 

treatments were done in duplicate as part of three sets.   

 

Determination of released microbial protein and DNA 

Four ml of each treated sample, as well as an untreated sample (control), was 

centrifuged for 10 min at 5 000 x g (Force 7 Microcentrifuge, Denver Instrument 

Company, USA).  Increases in released microbial protein and DNA were measured as 

possible indicators of cell damage.   

To determine the DNA concentration of the treated samples, 1.5 ml of the 

supernatant was pipetted into matched quartz cuvettes and the absorbance read at  

260 nm (Beckman Coulter DU 530 Life Sciences UV/Vis Spectrophotometer, Beckman 

Instruments Inc., USA).  The value obtained was divided by 20 to convert the 

concentration from molarity to mg.ml-1 [Concentration (mg.ml-1) = A260/20] (Johnson, 

1994).   

The Bio-Rad protein assay (Bio-Rad Protein Assay manual, 2005) was used to 

quantify the concentration of released microbial protein in the supernatant.  This protein 

assay is a dye-binding assay based on the colour change of the Coomassie Brilliant 
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Blue dye in response to the concentration of protein (Bradford, 1976).  The absorbance 

of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when it is bound to 

protein (Sedmak & Grossberg, 1977).  A standard curve, using bovine serum albumin, 

was prepared for each protein assay (Fig. 1).  A total of 12 standard curves were 

prepared during this study.   

 

Scanning and transmission electron microscopy 

Scanning electron microscopy 

Four ml of the ultrasonicated sample was centrifuged (5 000 x g; 10 min) (Force 7 

Microcentrifuge, Denver Instrument Company, USA).  Cells were fixed by suspending 

the pellet in 10% glutaraldehyde (BDH) (in 0.1 M K2HPO4, KH2PO4 buffer; pH 7.0) 

(BDH) and this was stored at 4°C.  Cells that received no ultrasonication served as 

controls.  After fixation, cells were collected on 12 mm diameter Nucleopore membranes 

(pore diameter 0.2 µm).  The cells on the membranes were dehydrated in a series of 

ethanol solutions for 10 min each:  35%, 50%, 70%, 80%, 90%, 95% and 100%.  The 

samples were fixed onto aluminium stubs using carbon glue.  Before drying, 3 x 100 µl 

hexamethyldisilazane (Sigma) were added to each membrane and left to dry in a fume 

hood.  The samples were coated with a gold/palladium alloy (40:60) to a thickness of 

10-20 nm using a Polarium sputter coater.  Samples were viewed with a LEO 440 Fully 

Analytical scanning electron microscope using the secondary detector at 10.00 kV with 

a working distance of 15 mm.  This was done at the Electron Microscope Unit at the 

University of Cape Town (UCT) (M. Waldron, Electron Microscope Unit, University of 

Cape Town, Cape Town, South Africa, personal communication, 2006).   

 

Transmission electron microscopy 

Eight ml of each of the ultrasonicated samples were centrifuged (5 000 x g; 10 min) 

(Force 7 Microcentrifuge, Denver Instrument Company, USA) and the cells fixed by 

suspending the pellet in 2.5% glutaraldehyde (BDH) (in 0.1 M K2HPO4, KH2PO4 buffer; 

pH 7.0) (BDH) and stored at 4°C.  Cells that received no ultrasonic treatment served as 

the control.  After aldehyde fixation, the samples were washed twice with phosphate 

buffered saline (PBS) (pH 7.4).  Cells were post-fixed with 1% osmium tetroxide for 30 

min.  Cells were again washed with PBS and the pellet suspended in 10 µl distilled 

water.  The cells were allowed to set in 20 µl 2% low melting agarose at 4°C.  The gel 

was cut into blocks and dehydrated for 10 min in ethanol in a series of solutions:  30%, 

50%, 60%, 70%, 80%, 90%, 95% and 100%.  The cells were then allowed to dehydrate  
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in 100% acetone for a further 10 min.  The dehydrated cells were infiltrated with 

increasing concentrations of Agar Low Viscosity Resin (Agar Scientific), a replacement 

for Spurr's resin, over 3 days (Spurr, 1969).  The polymerisation of the resin to form 

specimen blocks was accomplished in an oven at 60°C for 24 h.  The specimen blocks 

were hand trimmed with a razor blade and sectioned with a glass knife using a Reichert 

Ultracut S Ultramicrotome (Leica).  Microtome sections of 120 nm were placed on 200 

mesh copper grids.  The sections were stained with 2% uranyl acetate and lead citrate 

(Reynolds, 1963), and viewed with a Leo 912 transmission electron microscope 

operating at 120 kV.  This was done at the Electron Microscope Unit at UCT under the 

supervision of M. Jaffer (M. Jaffer, Electron Microscope Unit, University of Cape Town, 

Cape Town, South Africa, personal communication, 2006).   

 

Enumeration of bacteria 

To determine the number of viable cells present before and after each ultrasonic 

treatment, a sample was serially diluted.  The pour-plate technique was used, and the 

plates incubated according to each microbe's requirements as specified in Table 1.   

 

Results and discussion 

 

The four "test" microbes used in this study were chosen for different reasons.  

Escherichia coli was included in the protein and DNA, SEM and TEM studies as it is 

considered to be an indicator of faecal contamination by the dairy industry.  

Furthermore, this small Gram-negative rod grows rapidly and well on simple, non-

specific growth media, is easy to detect and was found, in Chapter 3, to be sensitive to 

ultrasonication.  Lactococcus lactis was included in the protein and DNA study because 

it is a Gram-positive coccus and was found to be more resistant to the effect of 

ultrasound than E. coli (Chapter 4).  Lactobacillus acidophilus was included in the TEM 

study as it is a Gram-positive rod and was found to be resistant to ultrasonication as 

described in Chapter 4.  This microbe produces lactic acid, and may therefore, be 

considered a potentially spoilage microbe of fresh milk.  In Chapter 4, Saccharomyces 

cerevisiae was found to be sensitive to the effect of ultrasonication.  This, coupled with 

the considerable size of this eukaryote led to its inclusion in the TEM study.   
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Increase of released microbial protein and DNA 

When cells in a liquid are physically damaged, the cell contents leak out and into the 

suspension medium.  This "disintegration" of cells can be observed by measuring an 

increase in intracellular components released into the supernatant.  As the number of 

survivors decreases during a treatment such as ultrasonication at 20 kHz, it should be 

possible to measure an increase in both the protein and DNA concentrations of the 

supernatant.  The data obtained for released microbial protein and DNA from E. coli and 

Lc. lactis cells resulting from the ultrasonic treatment is shown in Fig. 2.   

One technical problem encountered during this study was that it was "impossible" 

to obtain the same initial cell concentration for the three sets of data used for each 

culture and as a result, the differences in the starting inoculum led to unacceptable 

variations.  Therefore, for obvious reasons, the triplicate data sets were not shown in 

the figures.   

 In the first study using E. coli, an initial inoculum of about 1.5 x 106 cfu.ml-1 was 

used but it was found (as shown in Fig. 2A) that when a sample with a low E. coli 

inoculum was ultrasonicated, no changes in the protein concentrations could be 

detected in the supernatant.  It could be argued that either the method was not 

sensitive, or that the amount of protein released was too low to be quantified by the 

protein assay (protein detection range of 1 - 25 µg.ml-1) (Bio-Rad Protein Assay manual, 

2005) used in this study.  Similarly, spectrophotometric results also showed that no 

increase in released microbial DNA could be detected.  It was thus decided to repeat 

the ultrasonically released microbial protein and DNA determinations using a sample 

with a higher initial inoculum of 1 x 108 cfu.ml-1.   

Ultrasonication of the higher initial E. coli inoculum (1 x 108 cfu.ml-1) resulted in a 

measurable increase in both the protein and DNA concentrations of the supernatant.  

This was accompanied by a concurrent decrease in viable cell numbers (Fig. 2A).  The 

protein concentration was found to increase from 0.2 µg.ml-1 before ultrasonication to 

17.5 µg.ml-1 after 4 min of ultrasonication.  The results showed that after 4 min of 

ultrasonication, the protein concentration stabilised and only small variations in the 

protein concentration were observed during the remainder of the treatment.   

Similarly, the DNA concentration in the supernatant was found to increase from 

1.85 µg.ml-1 at 0 min to 11.85 µg.ml-1 after 4 min of ultrasonication.  As was found with 

the protein concentration, the DNA concentration varied only slightly after the ultrasonic 

treatment from 5 to 10 min (Fig. 2A).   
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After 4 min of ultrasonication the E. coli protein and DNA concentrations 

stabilised with only slight variation for the remainder of the ultrasonic treatment.  It is 

clear from the data in Fig. 2A that the number of viable cells had decreased to less than  

1 x 106 cfu.ml-1 when the protein concentration stabilised after 4 min of ultrasonication.  

In the first trial, when a low inoculum (1 x 106 cfu.ml-1) was used, no released protein or 

DNA could be detected, and it is therefore concluded that the amount of protein 

released when there were less than 1 x 106 viable cells (after 4 min) was too low to be 

quantified with the methods described in this study.   

In the first trial with Lc. lactis, a sample with an initial inoculum of  

3 x 105 cfu.ml-1 was ultrasonicated.  Similar to E. coli, no increase in either the protein or 

DNA concentrations of the supernatant could be observed (Fig. 2B).  It was concluded 

that the amount of protein and DNA released from damaged Lc. lactis cells when using 

a low inoculum (1 x 105 cfu.ml-1) was insufficient and could not be quantified by the 

methods used in this study.  When a higher Lc. lactis inoculum (3 x 107 cfu.ml-1) was 

used, increases in both protein and DNA concentrations were observed (Fig. 2B).  The 

data showed that the increase in both the protein (0 µg.ml-1 - 16.4 µg.ml-1) and DNA  

(1.4 µg.ml-1 - 19.5 µg.ml-1) concentration during the first 5 min of ultrasonication was 

higher than the increase observed from 5 to 10 min of ultrasonication (16.4 µg.ml-1 - 

19.0 µg.ml-1 for protein and 20.9 µg.ml-1 - 24.05 µg.ml-1 for DNA).  This reduced rate of 

microbial protein and DNA release after ultrasonication was attributed to a continued 

lowering in the number of viable cells as the treatment progressed.  A problem 

experienced with Lc. lactis was that the logarithmic death curves were "wobbly" 

(unpredictable).  After numerous repetitions, the logarithmic death curves remained 

non-linear.  As was discussed and shown photographically in Chapter 4, the increase in 

viable cells from 1 min to 2 min of treatment was ascribed to dispersion of the chains of 

Lc. lactis as a result of ultrasonication (Fig. 3).  Furthermore, in Chapter 4, 2.5 min 

ultrasonication intervals were used, while in this study 1 min intervals were used, and 

this lead to a more prominent "wobbly" effect that was noticeable in the logarithmic 

death curves.   

It was hypothesised that by measuring an increase in microbial protein and DNA 

released after ultrasonication, it would give an indication as to the occurrence of cell 

damage.  This was shown in Fig. 2, and it is therefore evident that ultrasonication 

physically "breaks" the microbial cells, resulting in the proteins and DNA to leak out of 

the cells, and ultimately cell death.   
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Figure 3 Dispersion of Lactococcus lactis chains after ultrasonication (x1000 

enlargement) (A = no ultrasonication showing numerous chains; B = 1 min 

ultrasonication with few chains remaining). 

 
 

 

A 
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Scanning and transmission electron microscopy 

Scanning electron microscopy 

Scanning electron microscopy is used as a valuable tool to observe the presence of 

superficial damage of microbial cells.  In this study the SEM was used to show the 

external cell damage inflicted on E. coli cells during the ultrasonic treatment (Fig. 4).  In 

the micrographs, E. coli cells which had received no ultrasonic treatment are shown 

(Figs. 4A and B), and it was clear that there was no visual damage to the external 

surfaces of the cells.   

Escherichia coli cells that had received a 2 min ultrasonic treatment are shown in 

Fig. 4 (A-F).  In Fig. 4C specifically, the whole cell had a "wrinkled" and "fuzzy" 

appearance.  Figure 4D shows a cell with an indented cell wall.  The cell in Fig. 4E 

appears badly damaged and the cell content has probably leaked out with just the cell 

wall remaining.  In Fig. 4F it is clear that the cell wall ruptured during ultrasonication and 

that a fragment of the cell had probably been removed by cavitational forces.   

 

Transmission electron microscopy 

Transmission electron microscopy is generally used to investigate the internal structure 

of microbial cells.  For this study, thin (<120 nm) sections were made from cells 

embedded in resin to observe any possible microstructural changes resulting from 

ultrasonication.  Untreated (Figs. 5, 7 and 9) and treated (Figs. 6, 8 and 10) E. coli,  

Lb. acidophilus and S. cerevisiae cells were examined using TEM.  Both external and 

internal cell damage caused by ultrasonication was visible in the micrographs.   

Viable E. coli cells before ultrasonication, with both the cell wall and cell 

membrane intact are shown in Fig. 5 (A-F).  An array of badly damaged cells after a  

2 min ultrasonic treatment is shown in Fig. 6 (A-H).  The cell wall of one of the cells in 

Fig. 6B has the same "wrinkled" and "fuzzy" appearance as was observed with the SEM 

(Fig. 4C).  Some of the cells appear to be empty with only the cell wall remaining (Figs. 

6C, E and F).  It is clear that ultrasonication is an effective method for eliminating viable 

E. coli cells.   

 Viable untreated Lb. acidophilus cells with the distinct Gram-positive cell wall 

(Kandler & Weiss, 1986) are shown in Fig. 7 (A-E), and ultrasonicated cell are shown in 

Fig. 8 (A-H).  An ultrasonic treatment of 5 min proved to be damaging to viable  

Lb. acidophilus cells, although not all the cells were extensively damaged as can be 

seen in the micrographs in Figs. 7A, D, E, F, G, and H.  In keeping with cfu counts, the 
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presence of cells appearing intact after a 5 min ultrasonic treatment indicated that a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 SEM micrographs of E. coli before and after ultrasonication for 2 min (A 

and B = normal cells no ultrasonication; C to F = external cell damage after 2 min of 

ultrasonication). 
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Figure 5 TEM micrographs of E. coli showing normal cells before ultrasonication 

(bar = 1 000 nm). 
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Figure 6 TEM micrographs of E. coli showing cell damage after 2 min of 

ultrasonication (bar = 1 000 nm). 
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Figure 7 TEM micrographs of Lb. acidophilus showing normal cells with no 

ultrasonication (bar = 1 000 nm).   
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Figure 8 TEM micrograph of Lb. acidophilus showing cell damage after 5 min of 

ultrasonication (bar = 1 000 nm).   
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Figure 9 TEM micrographs of S. cerevisiae showing normal cells with no 

ultrasonication (bar = 2 000 nm).   
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Figure 10 TEM micrographs of S. cerevisiae showing cell damage after 2 min of 

ultrasonication (bar = 2 000 nm).   
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5 min treatment is still insufficient to render the sample used in this study free from any 

viable cells.  In Fig. 8C it can be seen that the end of one of the rod-shaped cells was 

"sheared off" during ultrasonication.  The entire cell content had leaked out, leaving just 

the cell wall.  Similar cell damage is shown in Figs. 8D and E.   

 Yeast cells that were subjected to ultrasonication provided visual results 

comparable to those obtained for E. coli and Lb. acidophilus.  In Fig. 9 (A-D) viable 

untreated S. cerevisiae cells are shown, and cells that received an ultrasonic treatment 

of 2 min are shown in Fig. 10 (A-H).  In Fig. 10A an enlarged vacuole, probably as a 

result of the ultrasonic treatment (2 min), is visible.  In this micrograph, the adjacent cell 

is devoid of content except for a few membrane fragments.  In Figs. 10B, C, F and G 

the cells are badly damaged with the cell walls having a "wrinkled" appearance, and the 

cell organelles damaged or completely missing.  In Figs. 10E and H only fragments of 

the cell wall are visible.   

The TEM studies indicate that the cells have been severely damaged both 

internally and externally.  It is thus evident that ultrasonication kills microbial cells by 

damaging the cell wall and cell membrane and probably the microstructures of the cells.   

 

Conclusions 

 

The visual information (by means of SEM and TEM) obtained in this study showed that 

ultrasound structurally damages microbial cells.  SEM is a relatively easy technique to 

show surface damage as little sample preparation is needed.  However, no internal 

damage can be observed.  With TEM the destructive effect of ultrasound on both the 

cell wall, as well as the different cell organelles is visible, thus providing insight on the 

type and magnitude of damage due to the treatment.  It can be concluded, based on the 

visual information, that due to the destructive power of ultrasound, this technique could 

be employed as a successful pasteurisation/sterilisation method.   

During this study it was found that the amount of microbial protein and DNA 

released during ultrasonication does give an indication as to the occurrence of cell 

damage.  The aim of this study, however, was to try and accurately measure the 

release of microbial protein and DNA and thereby quantify the exact "degree" of cell 

damage.  This study showed that it is only possible to observe, but not quantify, the cell 

damage.  One limitation that was evident from this study was that it must be ensured 

that the inoculum is large enough.  When the cell inoculum was too low  

(<1 x 106 cfu.ml-1) it became more difficult and even impossible to observe cell damage 
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as the protein assay used in this study was only sensitive enough to detect protein 

concentrations between 1 and 25 µg.ml-1.  It was also found to be impossible to detect 

any variations in the DNA concentration at such low inoculum levels.   

Results from this study indicated that it was impossible to correlate the amount of 

released microbial protein and DNA with a specific number of inactivated cells.  

Because of the low levels of protein and DNA in microbial cells, it is therefore suggested 

that when this method is used as an indicator of cell damage, to always ensure that the 

inoculum is high enough to be able to detect changes in the concentration of released 

protein and DNA.   

When applying ultrasound to milk it is possible that native milk proteins may 

interfere, rendering this method of measuring cell damage unsuitable.  A question which 

does arise from this study is what the impact of ultrasonication would be on the much 

higher concentration of native milk proteins and other milk components.  When milk is 

intended for further processing (cheese, yogurt, etc.), the effect of a given treatment on 

the milk components are important, as a deterioration in some components (especially 

proteins), may lead to yield losses.   
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CHAPTER 6 

 

IMPACT OF ULTRASOUND ON MILK COMPONENTS 

 

Abstract 

 

Ultrasonication offers the dairy industry a non-thermal alternative to pasteurisation.  The 

effect of a "pasteurisation" method on the different milk components is important as it 

can impact the yield of processed milk products.  The aim of this study was to determine 

if ultrasonication has any detrimental effect on the different milk components.  An infra-

red based apparatus was used to analyse raw and pasteurised milk after an ultrasonic 

treatment.  Ultrasonication was found to have no impact on the protein or lactose 

content of both raw and pasteurised milk.  This study indicated that ultrasonication has 

a homogenising effect on the fats of raw milk, but no effect on pasteurised/homogenised 

milk.  Kjeldahl nitrogen determinations confirmed that ultrasonication had no detrimental 

effect on the total protein or casein content of pasteurised milk.  Alkaline phosphatase 

and lactoperoxidase activity was also investigated as potential indicators of an effective 

ultrasonic treatment.  Ultrasonication was, however, found to be ineffective in 

deactivating both enzymes used regularly by the dairy industry as indicators of effective 

thermal processes.   

 

Introduction 

 

Milk, being such a rich source of nutrients, has been an important part of the human diet 

for thousands of years (Frõlich, 2002).  Protein is probably the most valuable constituent 

of milk, due to its high nutritional quality and unique physico-chemical and functional 

properties.  These properties are fundamental to the production and characteristics of 

many dairy products, such as cheese or yogurt (Rattray & Jelen, 1996; Huppertz et al., 

2006).   

 Enzymes are another important component of milk, although not from a 

nutritional point of view.  The two enzymes that are regularly utilised from a practical 

point of view by the dairy industry, are alkaline phosphatase and lactoperoxidase.  

Alkaline phosphatase (ALP) has a thermal resistance greater than that of most non-

endospore-forming microbes commonly found in milk.  This enzyme is deactivated 



Chapter 6 148 

when heated to 71.6°C for 15 s.  Therefore, ALP is used universally as an indicator of 

successful implementation of high temperature short time (HTST) pasteurisation 

(McKellar et al., 1994; Lombardi et al., 2000).   

Lactoperoxidase in contrast, is used for assessing the effectiveness of an ultra 

high temperature (UHT) treatment of milk as this enzyme is inactivated by temperatures 

higher than 80°C (Anon., 2003).  Thus, UHT milk after an effective heat treatment would 

test negatively for lactoperoxidase activity, whilst HTST pasteurised milk remains 

lactoperoxidase positive (Villamiel et al., 1999).   

 Ultrasonication is one of the non-thermal alternatives to pasteurisation.  The 

formation of cavitating bubbles during ultrasonication is thought to inactivate microbes 

(Morton et al., 1982).  An ultrasonic treatment offers several additional benefits, among 

them, low energy utilisation (Neppiras, 1984; Ciccolini et al., 1997), and no sensory 

losses that have been ascribed to thermal processes.  The importance of different milk 

components when processing milk to produce cheese, yogurt, etc. has lead to extensive 

studies on the effect of heat on the different milk components.  Ultrasonication is a 

relatively new alternative to pasteurisation, and therefore, the need exists to further 

evaluate the impact of ultrasonication on the different milk components.  The aim of this 

study was to determine if ultrasound has any detrimental impact on native milk proteins, 

fats and lactose, and whether ultrasound inactivates the alkaline phosphatase and 

lactoperoxidase enzymes.   

 

Materials and methods 

 

Milk sources 

Commercially pasteurised full cream milk, obtained from a local supermarket, and raw 

milk collected from the Welgevallen Experimental Farm of the University of Stellenbosch 

were used during this study. 

 

Ultrasonication 

A 20 kHz, 750 W Vibra-Cell High Intensity Ultrasonic Processor VCX 750 (Sonics & 

Materials, Inc., USA), fitted with an autoclavable 13 mm diameter probe, was used for 

ultrasonication.  A 40 ml sample and a jacketed sample holder were used for all 

treatments.  The sample holder was connected to an ice-waterbath (4° - 6°C) to keep 
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the sample temperature between 24° and 26°C.  Samples were treated at 100% wave 

amplitude for different times (0 to 10 min).   

 

MilkoScan determinations 

All milk samples were preserved with Bronopol Mircotabs (D & F Control Systems, Inc.) 

and analysed for protein (%), fat (%), lactose (%), total solids (%) and somatic cell 

counts (SCC) (cells per ml) within 24 h of the applied ultrasonic treatment.  Analyses 

were done at the Dairy Institute of the Agricultural Research Council (ARC) at 

Elsenburg using a MilkoScan FT 6000 (FOSS, Denmark) and a Fossomatic FC 6000 

(FOSS, Denmark).  Samples were subjected to ultrasonication for 0, 1, 5, 10 and 15 min 

and five samples were analysed for each treatment time.   

 

Total protein 

Total protein determinations were done using the IDF 20B (1993) standard method with 

a few modifications.  One gram of commercially pasteurised full cream milk was 

weighed into a Kjeldahl flask, and to this 18 ml H2SO4 (98.08% m/v) (Saarchem) and  

1 Kjeldahl tablet (Saarchem) were added.  A 1 g water sample served as the control.  

Digestion was carried out for 1.5 h using a Büchi Digestion Unit K-424 (Büchi, Flawil, 

Switzerland).  After digestion was completed, the samples were allowed to cool to room 

temperature and 45 ml distilled water was added to each flask.  The flasks were 

connected to a Büchi Distillation Unit K-350 (Büchi, Flawil, Switzerland) and 85 ml 

NaOH (32% m/v) (Merck) were automatically added followed by a 4 min distillation.  The 

distillate was collected in a 20 ml H3BO3 (4% m/v) (BDH) solution containing 100 µl 

indicator.  The indicator was a mixture of 0.59 g methyl red (Merck) and 0.29 g 

methylene blue (Merck) in 500 ml 96% (v/v) ethanol (Merck).  This was then titrated with 

0.05 N H2SO4 to the first trace of pink.  The burette reading was recorded and the 

nitrogen content was determined using the following formula (IDF 20B, 1993): 

 

Nitrogen =  __1.4 x N x TV___ 
       sample weight (g) 

    =   g nitrogen. 100 g-1 milk 

 

where  1.4 = 1.4 mg nitrogen neutralised by 1 ml 0.1 N H2SO4 

  N = normality of H2SO4 
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  TV = titration value 

 

The crude protein content, expressed as a percentage by mass, was obtained by 

multiplying the nitrogen content by 6.38 which is the reciprocate of the % nitrogen in 

protein for dairy products (IDF 20B, 1993).  Four samples were analysed for each 

treatment time (0, 1, 5, 10 and 15 min).   

 

Casein 

The casein fraction of the total protein content was obtained by determining the portion 

of non-casein nitrogen and subtracting this value from the total nitrogen (Robertson, 

1999).  For the non-casein nitrogen determination, the samples received a pre-

treatment before Kjeldahl nitrogen determinations were done.  A ten gram milk sample 

was weighed into a volumetric flask and 70 - 80 ml distilled water (40°C) and 1 ml of a 

10% (v/v) acetic acid (Saarchem) solution added and mixed.  After 10 min, 1 ml of a 1 N 

sodium acetate (Saarchem) solution was added.  The sample was allowed to cool to 

room temperature before the volume was adjusted to 100 ml with distilled water.  The 

mixture was filtered (Whatman no. 40) and 20 ml of the filtrate was poured into a 

Kjeldahl flask, and a nitrogen determination was done.  A 20 ml water sample served as 

the control.   

 The non-casein nitrogen (NCN) was determined using the following formula 

(Robertson, 1999): 

 

NCN =   _______1.4 x N x TV_______ 
      1/5 of sample weighed (g milk) 

 =   g nitrogen.100 g-1 milk 

 

where  1.4 = 1.4 mg nitrogen neutralised by 1 ml 0.1 N H2SO4 

  N = normality of H2SO4 

  TV = titration value 

 

The crude protein content, expressed as a percentage by mass, was obtained by 

multiplying the nitrogen content by 6.38 which is the reciprocate of the % nitrogen in 

protein for dairy products (IDF 20B, 1993).  Four samples were analysed for each 

treatment time (0, 1, 5, 10 and 15 min).   
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Alkaline phosphatase 

Alkaline phosphatase activity was determined according to the standard method of the 

International Dairy Federation (IDF 82A, 1987).  Five ml of a buffered 4-nitrophenyl 

disodium orthophosphate solution (BDH) was added to 1 ml milk, and incubated in a 

waterbath at 37°C for 2 h.  After 2 h the samples were visually compared with the 

control.  Commercially pasteurised milk was used as a negative control.  All 

determinations were done in duplicate.   

 

Lactoperoxidase 

Lactoperoxidase activity was determined by adding 1 ml of a 0.5% (v/v) guaiacol 

solution (BDH) to 5 ml milk.  One drop of hydrogen peroxide (ACE Chemicals) was 

added and the mixture left to stand at room temperature for 3 min, after which the 

samples were visually inspected for colour changes.  UHT milk served as a negative 

control.  Duplicate determinations were done for each sample.   

 

Statistical analysis 

Statistical analysis (using Statistica 7.1 software) was done on the data obtained from 

the MilkoScan for both the pasteurised and raw milk, as well as the data obtained from 

the Kjeldahl protein determinations.  One-way ANOVA was used to determine if there 

were significant differences between average measurements for the different time 

treatments.  The Bonferroni post-hoc test was used to compare pairwise treatments.  In 

cases where violations from the ANOVA assumptions were suspect, non-parametric 

bootstrap was performed.  In all cases however, the non-parametric results were the 

same as the ANOVA results, and therefore only the ANOVA results were reported.  

Every point on the graphs for the MilkoScan results indicates the average value 

calculated from 5 repetitions.  For the Kjeldahl results, averages were calculated from 4 

repetitions.  The error-bars represent the 95% confidence interval.   

 

Results and discussion 

 

The dairy industry routinely uses an infra-red based apparatus (MilkoScan) to analyse 

and evaluate the quality of each supplier's milk.  The MilkoScan was therefore used in 

this study to determine whether possible changes to the composition of both raw and 

pasteurised milk after ultrasonication could be detected.   
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Protein 

Milk protein is an important milk component in the production of a variety of dairy 

products as it is linked to total yield of the final product (Soryal et al., 2004).  An 

increase in the protein content of milk leads to a higher yield when, for instance, cheese 

is manufactured.  The protein content of milk is dependant on the breed of cow, 

individual cows of the same breed, lactation stage as well as the season.  The protein 

content of milk is known to vary between 2.9 - 5.0% (Anon., 2003).   

 The protein (%) data obtained from the MilkoScan for raw and pasteurised milk 

after ultrasonication were statistically analysed and are given in Fig. 1.  Data obtained 

from the MilkoScan for raw milk after an ultrasonic treatment are summarised in Table 

1, and the data from the MilkoScan for pasteurised milk that had been ultrasonicated 

are summarised in Table 2.   

The data for raw milk showed a statistically significant increase (p=<0.01) in the 

protein content from 0 min (3.030%) to 1 min (3.218%) of the ultrasonic treatment, after 

which there were no further statistically significant changes noted for the protein content 

for the remainder of the ultrasonic treatment (Fig. 1A).  The increase observed for the 

protein content of raw milk after ultrasonication is within the fluctuation range for protein 

(2.9 - 5.0% as given by Anon. (2003)).  Therefore, the increase in the protein content as 

observed with the MilkoScan would be acceptable to the dairy industry (L. van der 

Westhuizen, Dairy Institute, ARC-Elsenburg, Stellenbosch, South Africa, personal 

communication, 2006).  The slight (0.171%) increase in protein content observed for 

raw milk after ultrasonication would not have a negative impact on total cheese yield if 

the milk was intended for the manufacturing of cheese, as an increase in protein content 

is generally accepted to increase the cheese yield.   

A statistically significant decrease (p=0.01) in the protein content of pasteurised 

milk after ultrasonication was observed from a 1 min (3.116%) to a 10 min (3.106%) 

treatment (Fig. 1B).  Although a statistically significant decrease was found, the 

measurements still fall within the acceptable 0.05% fluctuation for replicates analysed 

with the MilkoScan (FOSS Integrator IMT software e-manual) (L. van der Westhuizen, 

Dairy Institute, ARC-Elsenburg, Stellenbosch, South Africa, personal communication, 

2006).  The protein component of milk is one of the main contributors to total cheese 

yield (Pulina et al., 2006), with an increase in protein content resulting in an increase in 

total cheese yield.  The slight decrease (0.010%) in the protein content noted for 

pasteurised milk after ultrasonication would have no negative impact on cheese yield.   
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Figure 1 Statistical analysis of the data (MilkoScan) of the protein content (%) of 

raw (A) and pasteurised (B) milk after ultrasonication (Each data point 

represents five values.  The standard deviation was used as the error-bar.  Means with 

different letters are statistically significantly different, p≤0.05).   

B 
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Table 1 MilkoScan results of the different milk components after an ultrasonication 

treatment of raw milk 

 

 
        Treatment time 
  _________________________________________________ 
Fraction  0 min  1 min  5 min  10 min 15 min 
 

 
Protein (%)  3.030b  3.218a  3.252a  3.250a  3.236a 

  (3.03)  (3.19-3.25) (3.22-3.28) (3.22-3.28) (3.20-3.25) 
 
Fat (%)  2.544c  2.624a  2.668b  2.668b  2.656ab 

  (2.53-2.56) (2.60-2.66) (2.66-2.68) (2.63-2.69) (2.61-2.67) 
 
Lactose (%)  4.798c  4.812a  4.824ab 4.828b  4.826b 

  (4.79-4.80) (4.80-4.83) (4.82-4.83) (4.82-4.83) (4.82-4.83) 
 
Total solids (%) 11.092b 11.374a 11.404a 11.466a 11.438a 

  (11.07-11.11) (11.31-11.45) (11.17-11.50) (11.40-11.52) (11.36-11.47) 
 
SCC (cells.ml-1) 229 400b 12 800a 7 000a  6 800a  8 000a 

  (216 000-240 000)(9 000-15 000) (3 000-11 000) (6 000-8 000) (4 000-15 000) 

 
 
The values given are averages (n = 5); values in parentheses are the minimum and maximum values of 
five samples. 
SCC = somatic cell count. 
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Table 2 MilkoScan results of the different milk components after an ultrasonication 

treatment of pasteurised milk 

 

     
        Treatment time 
  _________________________________________________ 
Fraction  0 min  1 min  5 min  10 min 15 min 
 
 
Protein (%)  3.114ab 3.116a  3.110ab 3.106b  3.110b 

  (3.11-3.12) (3.11-3.12) (3.11)  (3.10-3.11) (3.11) 
 
Fat (%)  3.478a  3.478a  3.518b  3.518b  3.520b 

  (3.47-3.48) (3.47-3.48) (3.51-3.52) (3.51-3.52) (3.52) 
 
Lactose (%)  4.800a  4.808a  4.818a  4.814a  4.810a 

  (4.79-4.81) (4.80-4.82) (4.80-4.83) (4.81-4.83) (4.80-4.82) 
 
Total solids (%) 12.112a 12.122a 12.166b 12.158b 12.160b 

  (12.10-12.12) (12.10-12.14) (12.15-12.17) (12.14-12.18) (12.15-12.17) 
 
SCC (cells.ml-1) 71 200b 27 000c 9 400a  5 800a  4 600a 

  (66 000-77 000) (24 000-32 000) (7 000-13 000) (3 000-7 000) (4 000-6 000) 
 
 
The values given are averages (n = 5); values in parentheses are the minimum and maximum values of 
five samples. 
SCC = somatic cell count. 
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Kjeldahl protein 

Kjeldahl nitrogen analysis was used to determine the crude protein as well as the casein 

fraction of the total protein.  Total milk protein contains about 80% casein (Anon., 2003), 

and the casein is the dominant factor affecting curd firmness, syneresis rate, moisture 

retention, and ultimately the cheese quality and yield (Guo et al., 2001; Zeng et al., 

2006).   

Data obtained for Kjeldahl protein determinations on pasteurised milk are given 

in Fig. 2 and the data are summarised in Table 3.  The results indicated that there was 

no statistically significant changes in either the total protein content (p=0.93) (Fig. 2A) or 

the casein fraction of the total protein content (p=0.82) (Fig. 2B) after ultrasonication of 

pasteurised milk.  The large error-bars depicted in Fig. 2 are a result of the small range 

of the values on the Y-axis.  It was decided not to do Kjeldahl protein determinations on 

raw milk, due to possible interference by the large fat globules of the unhomogenised 

milk.  The results obtained from this study indicate that, based on the fact that there was 

no decrease in the protein content, the use of ultrasonicated milk for the production of 

cheese would probably have no negative effect on cheese yield.   

 

Fat 

Milk fat is another component of milk that is positively correlated to cheese yield (Soryal 

et al., 2004).  A higher milk fat content ultimately leads to a higher yield of the final 

product.  The fat content of milk typically varies between 2.5% and 6.0% depending on 

the breed of cow, stage of lactation and season (Anon., 2003).   

The data obtained from the MilkoScan for the fat content (%) of raw and 

pasteurised milk that had been ultrasonicated were statistically analysed and are given 

in Fig. 3, and the fat content data obtained for the raw and pasteurised milk that had 

been ultrasonicated, are summarised in Tables 1 and 2, respectively.   

The fat content of raw milk showed a statistically significant increase (p=<0.01) from 0 

min (2.544%) to a 1 min (2.624%) ultrasonic treatment and also from 1 min (2.624%) to 

5 min (2.668%) of ultrasonication (Fig. 3A).  The total increase in fat content from 0 min 

to 5 min of ultrasonication was 0.124%.  After 5 min of ultrasonication, no further 

statistical changes in the fat content were observed for the remainder of the treatment 

time.  The homogenisation of fats caused by ultrasonication (Villamiel & de Jong, 2000; 

Wu et al., 2001) leads to a decrease in the fat globule size, with a subsequent increase 

in the surface area of the milk fat globule membrane (MFGM) (Lopez, 2005).  The 

MilkoScan uses an infra-red light-based method and the increase in  
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Figure 2 Statistical analysis of the data (Kjeldahl) of the total protein content (%) (A) 

and casein fraction (%) of total protein content (B) of pasteurised milk after 

ultrasonication (Each data point represents four values.  The standard deviation was 

used as the error-bar.  Means with different letters are statistically significantly different, 

p≤0.05).   
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Table 3 Kjeldahl protein results for pasteurised milk after an ultrasonication 

treatment 

 

 
        Treatment time 
  _________________________________________________ 
Fraction  0 min  1 min  5 min  10 min 15 min 
 

 
Total protein (%) 3.6650 3.6750 3.6675 3.6700 3.6675 
  (3.65-3.69) (3.66-3.69) (3.65-3.69) (3.65-3.70) (3.66-3.68) 
 
Casein (%) of 80.600 80.550 80.450 80.525 80.550 
total protein  (80.4-80.8) (80.3-80.8) (80.3-80.6) (80.4-80.8) (80.4-80.7) 
 
 
The values given are averages (n = 4); values in parentheses are the minimum and maximum values of 
four samples. 
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Figure 3 Statistical analysis of the data (MilkoScan) of the fat content (%) of raw (A) 

and pasteurised (B) milk after ultrasonication (Each data point represents five 

values.  The standard deviation was used as the error-bar.  Means with different letters 

are statistically significantly different, p≤0.05).   
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MFGM surface area leads to higher fat content readings.  The same trend is observed 

when raw and pasteurised/homogenised milk is analysed by the MilkoScan (L. van der 

Westhuizen, Dairy Institute, ARC-Elsenburg, Stellenbosch, South Africa, personal 

communication, 2006).  Homogenisation is employed by the dairy industry to reduce the 

size of the fat globules, thereby preventing creaming and coalescence during storage 

(Huppertz et al., 2003).  The homogenisation effect of ultrasonication is therefore an 

added benefit, as it might be possible to eliminate the homogenisation step during fresh 

milk processing.  Replacing both thermal pasteurisation and homogenisation with one 

process, i.e. ultrasonication could probably be cost effective in terms of initial equipment 

expenses as well as maintenance of the equipment.   

The data obtained indicated a statistically significant increase (p=<0.01) in fat 

content for pasteurised milk from a 1 min (3.478%) to a 5 min (3.518%) ultrasonic 

treatment, after which no statistically significant changes were observed for the 

remainder of the ultrasonic treatment (Fig. 3B).  Although a statistically significant 

increase was found, the measurements fall within the acceptable 0.05% fluctuation for 

replicates analysed with the MilkoScan (FOSS Integrator IMT software e-manual) (L. 

van der Westhuizen, Dairy Institute, ARC-Elsenburg, Stellenbosch, South Africa, 

personal communication, 2006).  The slight increase in the fat content of pasteurised 

milk after ultrasonication would thus not negatively impact the yield of any processed 

milk product.   

 

Lactose 

Lactose is a carbohydrate found exclusively in milk and is utilised as a carbon source 

during fermentation processes for the production of yogurt, cheese, etc. (Williams et al., 

2000; Chammas et al., 2006).  The lactose content of milk varies between 3.6 and 5.5% 

(Anon., 2003).   

The MilkoScan data obtained for the lactose content (%) of raw and pasteurised 

milk after an ultrasonic treatment were statistically analysed and are given in Fig. 4, and 

the data obtained for the raw and pasteurised that had been ultrasonicated are 

summarised in Tables 1 and 2, respectively.   

The results obtained for the lactose content of raw milk (Fig. 4A) indicated a statistically 

significant increase (p=<0.01) in lactose from 0 min (4.798%) to 1 min (4.812%) of 

ultrasonication, and also from 1 min (4.812%) to 5 min (4.824%) of the ultrasonic 

treatment.  Although a statistically significant increase was found, the measurements fall 

within the acceptable 0.05% fluctuation for replicates analysed with  
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Figure 4 Statistical analysis of the data (MilkoScan) of the lactose content (%) of 

raw (A) and pasteurised (B) milk after ultrasonication (Each data point 

represents five values.  The standard deviation was used as the error-bar.  Means with 

different letters are statistically significantly different, p≤0.05).   
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the MilkoScan (FOSS Integrator IMT software e-manual) (L. van der Westhuizen, Dairy 

Institute, ARC-Elsenburg, Stellenbosch, South Africa, personal communication, 2006).  

No further statistically significant increase was observed after 5 min of ultrasonication of 

the raw milk.   

The data obtained showed no statistically significant changes for the lactose 

content (p=0.06) (Fig. 4B) of pasteurised milk after the ultrasonic treatment.  During 

yogurt processing, lactose is fermented by the lactic acid bacteria (LAB) (Chammas et 

al., 2006), to produce lactic acid, resulting in a lowering of the pH (Sánchez et al., 

2005).  As no statistically significant difference was observed for the lactose content of 

both pasteurised and raw milk after ultrasonication, it is suggested that it would be safe 

to use ultrasonicated milk for the manufacturing of yogurt.  The availability of 

carbohydrates for fermentation by the LAB remains unchanged, therefore, the same 

tempo of lactic acid production during yogurt processing should be achieved.   

 

Total solids 

The term total solids (TS) of milk is a collective name given to the main components of 

milk excluding water.  These include proteins, fat, lactose and minerals (Anon., 2003).   

The TS (%) data obtained from the MilkoScan for raw and pasteurised milk that 

had been ultrasonicated were statistically analysed and are given in Fig. 5.  Data 

obtained from the MilkoScan for raw milk after an ultrasonic treatment are summarised 

in Table 1, and the ultrasonication of pasteurised milk data from the MilkoScan are 

summarised in Table 2.   

The TS content of raw milk showed a statistically significant increase (p=<0.01) 

from 0 min (11.092%) to a 1 min (11.374%) ultrasonic treatment, after which no further 

statistically significant changes were observed for the remainder of the ultrasonic 

treatment (Fig. 5A).  The TS content of milk obtained with the MilkoScan is a 

combination of the data obtained for the protein, fat and lactose content.  The increases 

previously observed for the protein (Fig. 1A) and fat content (Fig. 3A) of raw milk after 

ultrasonication explain the significant increase in the TS content observed for raw milk 

after it had been treated ultrasonically.  Thus it was concluded that the increases noted 

for the TS are linked to the increases observed for the protein and fat content, which 

was ascribed to the homogenisation effect of ultrasonication.  Milk with a high TS leads 

to a higher cheese yield (Soryal et al., 2004), therefore, it is suggested that the increase 

in TS would not negatively impact cheese yield, should ultrasonicated milk be used for 

cheese production.   
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Figure 5 Statistical analysis of the data (MilkoScan) of the total solids (%) of raw (A) 

and pasteurised (B) milk before and after ultrasonication (Each data point 

represents five values.  The standard deviation was used as the error-bar.  Means with 

different letters are statistically significantly different, p≤0.05).   
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A statistically significant increase (p=<0.01) was observed for the TS content of 

pasteurised milk from a 1 min (12.122%) to a 5 min (12.166%) ultrasonic treatment, 

after which no statistically significant changes were observed for the remainder of the 

ultrasonic treatment (Fig. 5B).  This increase in the TS content falls well within the 

0.05% fluctuation for replicates (FOSS Integrator IMT software e-manual) (L. van der 

Westhuizen, Dairy Institute, ARC-Elsenburg, Stellenbosch, South Africa, personal 

communication, 2006).  As stated above, the TS of milk, as measured by the MilkoScan 

is a combination of the proteins, fats and lactose, and therefore, the increase in TS from 

1 min to 5 min of ultrasonication could again be linked to the increase in the fat and 

protein content of pasteurised milk observed from a 1 min to a 5 min ultrasonic 

treatment (Fig. 3B) (L. van der Westhuizen, Dairy Institute, ARC-Elsenburg, 

Stellenbosch, South Africa, personal communication, 2006).  The slight (0.044%) 

increase in the TS content of pasteurised milk after an ultrasonic treatment would 

therefore not have any negative impact on the total yield of dairy products.   

 

Somatic cell count 

The somatic cell count (SCC) of milk is commonly used as an indicator of mastitis in 

dairy cows, and results in reduced milk quality and milk yield (Santos et al., 2003).   

The data obtained from the MilkoScan for the somatic cell count (SCC)  

(cells.ml-1) of raw and pasteurised milk after an ultrasonic treatment were statistically 

analysed and are given in Fig. 6.  The data obtained for the raw milk that had been 

ultrasonicated as well as for pasteurised milk after an ultrasonic treatment are 

summarised in Tables 1 and 2, respectively.   

A statistically significant decrease (p=<0.01) in SCC was also observed when 

raw milk was given an ultrasonic treatment.  Cell counts decreased from 229 400 

cells.ml-1 (0 min) to 12 800 cells.ml-1 after 1 min of ultrasonication (a 94.42% reduction), 

after which no further statistically significant decreases were observed.  The SCC of the 

raw milk was found to be 8 000 cells.ml-1 after a 15 min ultrasonic treatment (Fig. 6A).   

The data obtained for the SCC of pasteurised milk after the ultrasonic treatment showed 

a statistically significant decrease (p=<0.01) in SCC from 0 min (71 200 cells.ml-1) to 1 

min (27 000 cells.ml-1) and also from 1 min (27 000 cells.ml-1) to 5 min  

(9 400 cells.ml-1) of treatment.  The SCC of the pasteurised milk was 4 600 cells.ml-1 

after 15 min of ultrasonication (Fig. 6B).  The reduction in SCC after ultrasonication of 

pasteurised milk would, however, not improve the sensory quality or the shelf-life of the 

milk.  It is well known that milk with a high SCC has a reduced sensory quality (Munro et  
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Figure 6 Statistical analysis of the data (MilkoScan) of the somatic cell counts 

(cells.ml-1) of raw (A) and pasteurised (B) milk after ultrasonication (Each 

data point represents five values.  The standard deviation was used as the error-bar.  

Means with different letters are statistically significantly different, p≤0.05).   

A 

B 
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al., 1984) and shelf-life (Ma et al., 2000).  Although the SCC was reduced by 

ultrasonication, it would however, not improve the low quality of milk associated with 

milk with high SCC levels.  It is of utmost importance that the quality of raw milk be 

considered before accepting milk, as no processing method can compensate for milk of 

a poor quality.   

 

Alkaline phosphatase 

Alkaline phosphatase (ALP) is an endogenous enzyme that is always present in raw 

milk, with 30 - 40% of the enzyme bound to the milk fat globule membranes.  The rest of 

the enzyme is dispersed throughout the skimmed milk fraction, and probably associated 

with the lipoproteins (Painter & Bradley, 1997).  This enzyme splits certain phosphoric 

acid-esters into phosphoric acid and the corresponding alcohols (Anon., 2003).  Alkaline 

phosphatase is destroyed by pasteurisation at 72°C for 15 s (Anon., 2003), therefore, 

the ALP test is commonly used for assessing the effectiveness of pasteurisation and 

also the safety of dairy products (Scharer, 1938; Griffiths, 1986).   

The results for alkaline phosphatase activity of ultrasonicated and non-

ultrasonicated milk are given in Fig. 7.  In this study, it was found that ultrasonication of 

raw milk does not decrease ALP activity.  It is clear from the data in Fig. 7 that untreated 

raw milk, raw milk that had been ultrasonicated for 5 min, and raw milk that had been 

ultrasonicated for 10 min all remained positive for ALP activity.  Villamiel & de Jong in 

2000 also showed that ultrasonication of milk, without the addition of heat, results in a 

positive ALP test.  As would be expected, the commercially pasteurised milk tested 

negative for phosphatase activity.  It can, therefore, be concluded that the ALP test 

cannot be used for assessing the effectiveness of ultrasonication as APL enzymes are 

not inactivated during ultrasonication.   

 

Lactoperoxidase 

Lactoperoxidase is an enzyme found mainly in the whey fraction of milk (Harper, 1976) 

and catalyses the transfer of oxygen from hydrogen peroxide to other substrates (Anon., 

2003; Fox & Kelly, 2006).  Lactoperoxidase enzymes are used as an indicator of 

successful ultra high temperature treatments as these enzymes are inactivated by heat 

treatments above 80°C (Griffiths, 1986; Anon., 2003).  Therefore, HTST pasteurised 

milk remains peroxidase positive.  Ultra high temperature milk tests as peroxidase 

negative (Villamiel et al., 1999) as UHT milk is heated to temperatures of above 100°C.   
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Figure 7 Impact of ultrasonication on the alkaline phosphatase activity in milk (A = 

raw milk; B = raw milk + 5 min ultrasonication; C = raw milk + 10 min ultrasonication; D = 

negative control - pasteurised milk).   

 

      
 
Figure 8 Impact of ultrasonication on the lactoperoxidase activity in milk (A = raw milk; 

B = raw milk + 5 min ultrasonication; C = raw milk + 10 min ultrasonication; D = negative 

control - UHT milk; E = pasteurised milk).   
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The results obtained for the peroxidase test of ultrasonicated and non-

ultrasonicated milk are given in Fig. 8.  This study showed that ultrasonicating raw milk 

for either 5 min or 10 min reduces peroxidase activity to a degree/extent comparable 

with that found in pasteurised milk.  However, total inactivation of peroxidase, as was 

found when UHT milk was tested, could not be achieved with an ultrasonic treatment 

time of 10 min.  It is thus clear that the peroxidase test cannot be used as a fast 

indicator of an effective ultrasonic treatment.   

 

Conclusions 

 

This study clearly shows that ultrasound does not have a negative impact on the total 

protein or casein content of milk.  Ultrasonication has a homogenising effect on the milk 

fat and has no negative effect on the lactose content of milk.  It is therefore, suggested 

that ultrasonication may be employed effectively as a means of "pasteurisation" with no 

adverse effects on e.g. cheese yield.   

 Unfortunately, ultrasound does not inactivate alkaline phosphatase or 

lactoperoxidase enzymes.  These enzymes can thus not be used to indicate a 

successful ultrasonic treatment.  If ultrasonication is to be used as an alternative to 

thermal pasteurisation, a need exists to find a quick and efficient method to indicate 

whether ultrasonication was sufficient in terms of ensuring a microbiologically safe 

product.  The method should be comparable to the phosphatase and peroxidase tests in 

terms of simplicity and accurateness.   

Catalase was among the indicators of pasteurisation investigated.  The amount 

of catalase in milk is relatively high, and therefore it might be feasible to investigate the 

sensitivity of this enzyme to inactivation by ultrasonication as a possible means of 

indicating a successful treatment.   

If ultrasonication was to be used in combination with a mild heat treatment to 

target the heat-resistant microbes found in milk, the heat would allow the phosphatase 

enzymes to be inactivated.  In this case, the phosphatase test could still be employed 

as a quick and efficient method to indicate the elimination of spoilage and possible 

pathogenic bacteria, and therefore, a successful treatment.   
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CHAPTER 7 

 

IMPACT OF ULTRASONICATION, HEAT OR THERMO-

ULTRASONICATION ON THE SURVIVAL OF SELECTED DAIRY 

MICROBES 

 

Abstract 

 

Milk is generally given a heat treatment to extend the shelf-life and to ensure the 

microbiological safety.  Combining heat with other methods could further extend the 

shelf-life and may potentially reduce the treatment time.  The aim of this study was to 

determine if a combination of ultrasound and heat, rather than each treatment on its 

own, would be more effective at eliminating Escherichia coli, Bacillus cereus, 

Lactobacillus acidophilus and Micrococcus luteus from milk.  Milk samples inoculated 

with selected microbes were treated with ultrasound only, heat only (63° or 72°C), or 

simultaneous treatments of ultrasound and heat (thermo-ultrasonication) at 52°, 63° or 

72°C.  Complete elimination of all viable cells (1 x 106 cfu.ml-1) was achieved within  

4 min for E. coli, Lb. acidophilus and M. luteus when thermo-ultrasonicated at 72°C, 

although heat only applied at 72°C for 4 min was also sufficient to ensure total 

elimination of Lb. acidophilus.  Escherichia coli was not treated at 72°C, due to its 

known sensitivity to heat.  Thermo-ultrasonication at 63°C was also more effective at 

eliminating viable E. coli, Lb. acidophilus and M. luteus cells than when only ultrasound 

or heat at 63°C was applied.  Neither ultrasound, nor heat, nor thermo-ultrasonication 

regimes used in this study was enough to ensure total elimination of all viable B. cereus 

cells/endospores.  A 78% elimination of B. cereus (1 x 104 cfu.ml-1) was achieved by  

10 min thermo-ultrasonication at 72°C.  When only ultrasound was applied for 10 min, 

96% of the 1 x 105 cfu.ml-1 viable B. cereus cells/endospores in milk were eliminated.   

 

Introduction 

 

Heat is the most commonly applied pasteurisation or sterilisation method for extending 

the shelf-life of food products such as milk (Raso et al., 1998a).  Combining heat with 

other methods have many advantages in food processing, including reduction of energy 

costs and the production of safer, more palatable products (Black et al., 2005).  Any 
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reduction in the temperature applied or the treatment time would result in lower energy 

consumption and reduce any detrimental effect of heat on the food.  Therefore, 

combining heat with other physical or chemical methods in order to increase the 

process efficiency in terms of eliminating microbes continue to be a subject of interest 

especially for the dairy industry (Ciccolini et al., 1997).   

The lethal effect of ultrasound has been attributed to cavitation.  Cavitation is the 

result of high power ultrasound, and is the growth, and subsequent collapse of 

microscopic bubbles as ultrasonic waves travel through a liquid (Scherba et al., 1991).  

The violent collapse of the cavitating bubbles causes the microbial cell walls to shear 

and rupture, resulting in cell lysis, and ultimately cell death (Hoover, 2000).  This 

method could be used to eliminate microbial cells/endospores from milk, aiding in 

extension of shelf-life.   

In this dissertation (Chapters 3 and 4) it was shown that ultrasonication can be 

employed for the elimination of microbial cells.  All viable Escherichia coli cells were 

eliminated when subjected to a 10 min ultrasonication treatment.  A 10 min treatment 

was shown to be effective at eliminating Bacillus cereus, Lactobacillus acidophilus and 

Micrococcus luteus cells with a 96%, 87% and 95% elimination achieved, respectively.  

The demand for all microbial cells to be eliminated, and also to reduce the required 

treatment time of ultrasonication necessitates further investigations.   

 The impact of a combination of ultrasound and heat on microbes has been 

investigated (Ordoñez et al., 1984; 1987; Raso et al., 1998b; Villamiel & de Jong, 2000).  

However, only the study of Villamiel & de Jong (2000) was aimed at the elimination of 

microbes associated with milk, and also at the industrial application of this method by 

the dairy industry.  There is thus a need for more research on the impact of thermo-

ultrasonication aimed specifically at dairy microbes.   

The aim of this study was to determine if a combination of ultrasound and heat 

would be more efficient at eliminating microbes from milk than a single treatment of 

either method.  The effect of thermo-ultrasonication on the survival of E. coli and the 

more ultrasound and/or heat resistant B. cereus, Lb. acidophilus and M. luteus cells was 

evaluated.   
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Materials and methods 

 

Bacterial cultures 

The four "test" microbes (E. coli, B. cereus, Lb. acidophilus and M. luteus) used in this 

study and their specific growth requirements are summarised in Table 1.  Sterile growth 

medium (10 ml) (Table 1) was inoculated with a "test" microbe and incubated at the 

appropriate temperature for 24 h.  Five ml of each 24 h culture was then used to 

inoculate 90 ml sterile growth medium and this was incubated for a further 24 h prior to 

the ultrasonic and/or heat treatment.  Standard growth curves of each "test" microbe 

were prepared as described in Chapters 3 and 4 and was used as a reference to 

standardise cell inoculum sizes.   

 

Ultrasonication 

Two ml of each batch culture was centrifuged for 10 min at 6 000 x g (Eppendorf 

Centrifuge 5415D, Hamburg).  Bacterial pellets were suspended in sterile saline solution 

(SSS) and the data from the standard curves used to determine the desired cell 

concentration for inoculation of the suspension medium.  Full cream (3.4% milk fat) UHT 

(ultra high temperature) milk, was inoculated with a "test" microbe to give a final 

concentration of as near as possible to 1 x 106 colony forming units per ml (cfu.ml-1).   

 For ultrasonication, a 60 ml sample of the inoculated milk was pipetted into a 

sterile, jacketed glass sample holder connected to a waterbath to maintain a sample 

temperature of either 52°C, or 63°C or 72°C.  Where ultrasound only was used, the 

jacketed glass sample holder was connected to an ice-waterbath (4° - 6°C) to maintain 

a sample temperature of 24° - 26°C.  A 750 W, 20 kHz Vibra-Cell High Intensity 

Ultrasonic Processor VCX 750 (Sonics & Materials, Inc., Newtown, CT USA), fitted with 

an autoclavable 13 mm diameter probe with a replaceable titanium tip was used for 

ultrasonication.  With this unit, feedback from the probe was continuously evaluated, 

and the frequency and power were automatically adjusted to ensure optimum ultrasonic 

delivery (100%, 124 µm).  The Vibra-Cell is also able to monitor the energy (in Joules) 

as well as the temperature of the sample being processed.  Samples were treated at 

100% wave amplitude for different times (0 - 10 min) at the specified temperatures.   

All ultrasonic treatments were done in duplicate and duplicate dilutions were 

made from each treated sample.  The pour-plate technique and appropriate media 

(Table 1) were used for enumeration.  Plates with between 30 and 300 colonies were  
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Table 1 Growth media, incubation times and temperatures used for the four "test" microbes 

 

 
                   Incubation 
            _________________________ 
Microbe      USFSCCa  Medium  Time (h) Temperature (°C) 
 

 
Escherichia coli     11775   NBb/PCAc  24   37° 

Bacillus cereus     1335   NB/PCA  24   35° 

Lactobacillus acidophilus    1348   MRSd   24   35° 

Micrococcus luteus     173   NB/PCA  24   35° 
 
 
aUSFSCC = University of Stellenbosch, Food Science Culture Collection. 
bNB = Nutrient Broth (Biolab). 
cPCA = Plate Count Agar (Biolab). 
dMRS = de Man, Rogosa & Sharpe broth (Biolab). 
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selected for counting (Anon., 1997).  Ultra high temperature milk samples that had not 

been inoculated with a "test" microbe, served as the controls.  The controls showed no 

microbial growth after incubation.   

The efficacy of ultrasonic treatments in terms of eliminating microbes was 

measured by their decimal reduction time (D) which, for this study, was defined as the 

time (min) of a given treatment for the number of survivors to be reduced by one log 

cycle.  D-values were calculated from the slope of the regression line plotted with the 

counts (cfu.ml-1) of the straight portion of the survival curve.  The D-value at 20 kHz/750 

W was abbreviated as DUS, and the D-value for the combinations of ultrasound and heat 

as DUS + 52°C, DUS + 63°C and DUS + 72°C. 

 

Heat treatment 

Three "test" microbes (B. cereus, Lb. acidophilus and M. luteus) were used for the heat 

only experiment.  Ultra high temperature milk was inoculated with each microbe 

separately and these were treated at two different temperatures (63° and 72°C) using a 

waterbath to maintain the required treatment temperature.  Duplicate samples were 

taken before the inoculated milk received any heat treatment, as well as duplicate 

samples every 2 min at each treatment temperature, with 10 min being the maximum 

treatment time.  Ultra high temperature milk samples (for each "test" microbe) that had 

not been inoculated with a "test" microbe, served as the controls.  The controls showed 

no microbial growth after incubation.  It was decided not to include a heat treatment of 

52°C as a separate single heat treatment as 63° and 72°C are used for low-temperature 

long-time (LTLT) and high-temperature short-time pasteurisation (HTST), respectively.   

The efficacy of heat treatments in terms of eliminating microbes was measured 

by their decimal reduction time (D).  The D-value at either 63° or 72°C was abbreviated 

as either D63°C or D72°C.  

 

Results and discussion 

 

The four "test" microbes used in this study were chosen for different reasons.  

Escherichia coli was included due to its importance in the dairy industry as the indicator 

of faecal contamination, even though it is known to be sensitive to heat treatments as 

well as ultrasonication (Chapter 3).  Bacillus cereus is associated with "blowing" of 

cheese (Hull et al., 1992).  In addition, B. cereus was included as this microbe forms 
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heat-resistant endospores.  Lactobacillus acidophilus and M. luteus were previously 

(Chapter 4) found to be resistant to ultrasonication and were considered suitable 

candidates for thermo-ultrasonication.  Microbes used for this study varied with respect 

to Gram characteristics, cell morphology and endospore formation.   

 

Escherichia coli 

The presence of E. coli in dairy products generally serves as an indication of faecal 

and/or post-pasteurisation contamination (Holsinger et al., 1997).  Escherichia coli also 

has the ability to readily form biofilms on equipment surfaces (Stopforth et al., 2003).  

The SA "milk law" clearly states that no E. coli may be present in 1.0 ml of pasteurised 

milk (Anon., 1997).  It is therefore important to ensure that milk receives the correct 

treatment to eliminate all E. coli cells that may be present.   

The actual cell counts (cfu.ml-1) for ultrasonication at four different operating 

temperatures (no heat, 52°, 63° and 72°C) are given in Fig. 1.  The recalculated data 

are given in the form of log graphs in Fig. 2 and the results are summarised in Table 2.   

In this study, ultrasonication of E. coli (1 x 106 cfu.ml-1) without the addition of 

heat resulted in a 100% elimination of viable cells (a 5.72 log reduction) after 10 min of 

treatment (Fig. 2).  Thermo-ultrasonication at 52°C for 10 min resulted in a 3.96 log 

reduction (a 99.99% elimination of viable cells) (Fig. 2), and a 5.99 log reduction (100% 

elimination) of viable cells was recorded within 4 min for a thermo-ultrasonic treatment 

at 63°C (Fig. 2).  When cells were thermo-ultrasonicated at 72°C, a 100% elimination (a 

6.17 log reduction) of viable cells was recorded within 2 min of treatment (Fig. 2).  The 

D-values, as calculated for this study, were found to be:  DUS = 1.93 min; DUS + 52°C = 

2.14 min; DUS + 63°C = 0.75 min and; DUS + 72°C = 0.26 min (Table 2).   

Thermo-ultrasonication (52°C) was least effective for the elimination of E. coli 

from milk.  An ultrasonic treatment without the addition of heat was slightly more 

efficient at eliminating E. coli.  Dumalisile et al. (2005) reported that E. coli, with an initial 

concentration of 1 x 106 cfu.ml-1, was reduced to 9 viable cells after a 20 min heat 

treatment at 63°C.  In this study, thermo-ultrasonication at 63°C gave a 100% 

elimination within 4 min of treatment.  Thermo-ultrasonication at 72°C, as used in this 

study, proved to be even more efficient than a combination using 63°C with a 100% 

elimination within 2 min of treatment.  Escherichia coli was not treated with heat at 52°C 

as this temperature is not used for either LTLT or HTST pasteurisation, and was 

considered to be too low to have any impact on viable cells as a single treatment.   
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Table 2 Summary of the D-values, log reductions and % reductions of Escherichia 

coli in milk obtained over 10 min ultrasound and/or heat treatments 

 

 

Treatment Time (min)      D-value (min)     log reduction     % reduction 

 

 
US         10   1.93   5.72   100 

 

US + 52°C        10   2.14   3.96   99.99 

 

*63°C         10   4.61   1.44   96.41 

US + 63°C         4   0.75   5.99   100 

 

US + 72°C         2   0.26   6.17   100 

 
 
US = ultrasonication.   
* Data adapted from Dumalisile (2004). 
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Due to the known heat sensitivity of E. coli (Holsinger et al., 1997), this "test" 

microbe was not given singular heat treatments at 63° and 72°C.  This study clearly 

indicates that thermo-ultrasonication at either 63° or 72°C reduces the required 

treatment time when compared to only ultrasonication to ensure the total elimination of 

the E. coli strain used in this study.  Processing at lower temperatures is more cost-

effective and by reducing the treatment time, a dairy processing plant may also increase 

the volumes processed per day by using thermo-ultrasonication as opposed to a heat 

treatment only.  Escherichia coli is known to be heat sensitive, and is destroyed by 

HTST pasteurisation (Holsinger et al., 1997), however, a thermo-ultrasonic treatment 

applied to milk may be effective in eliminating the more heat resistant spoilage and 

potentially pathogenic microbes.   

The high initial inoculum used in this investigation (1 x 106 cfu.ml-1) must be 

taken into consideration when evaluating the results.  According to the SA “milk law” 

only raw milk with a microbial load of less than 200 000 cfu.ml-1 may be used for further 

processing.  Although the initial microbial load in this study was five times higher than 

the permitted legal limits, a 100% elimination of viable E. coli cells was still achieved.  It 

is thus evident that thermo-ultrasonication (63° or 72°C) can be implemented for the 

production of milk surpassing the quality control requirements for pasteurised milk.   

 

Bacillus cereus 

Bacillus cereus is a potential foodborne pathogen and is renowned for being one of the 

leading causes of bacterial food poisoning in several countries, with milk frequently 

being implicated as one of the carriers (Notermans et al., 1997; Beattie & Williams, 

1999).  It is thus important for the dairy industry to ensure that fresh milk sold to the 

public should not contain any viable B. cereus cells.   

The actual cell counts (cfu.ml-1) for ultrasonication at four different operating 

temperatures (no heat, 52°, 63° and 72°C) and heat treatments at two different 

temperatures (63° and 72°C) are given in Figs. 3 and 4, respectively.  The recalculated 

data are given in the form of log graphs in Fig. 5 and the results are summarised in 

Table 3.  It should be noted that a microscopic investigation revealed that the B. cereus 

inoculum used in this study consisted of a mixture of vegetative cells and endospores.   

A technical problem that arose during this study was that a 1 x 106 cfu.ml-1 

inoculum could not be reached within the prescribed incubation time, and it was, 

therefore, decided to use an inoculum size of as close to 1 x 104 cfu.ml-1 as possible.   
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Table 3 Summary of the D-values, log reductions and % reductions of Bacillus 

cereus in milk obtained over 10 min ultrasound and/or heat treatments 

 

 

Treatment Time (min)      D-value (min)     log reduction     % reduction 

 

 
US         10   nc   1.41   96.27 

 

US + 52°C        10   nc   0.31   50.00 

 

63°C         10   nc   0.06   12.70 

US + 63°C        10   nc   0.56   72.06 

 

72°C         10   nc   0.07   15.18 

US + 72°C        10   nc   0.65   78.04 
 
 
US = ultrasonication.   
nc = not calcutated (D-value could not be calculated as a single log reduction was not reached). 
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In this study, Bacillus cereus, at an initial concentration of 1 x 104 cfu.ml-1 

showed some resistance to the effect of ultrasonication, heat and thermo-

ultrasonication.  A 10 min ultrasonic treatment of a B. cereus inoculum consisting of 

both vegetative cells and endospores eliminated 96.27% of the inoculum (a 1.41 log 

reduction) (Figs. 5A-C).  Thermo-ultrasonication (52°C) did not improve the efficiency of 

ultrasound, with only a 0.31 log reduction (50% elimination) recorded (Fig. 5A).  Heat at 

52°C was not used as a single treatment as 52°C is not used as a pasteurisation 

temperature, contrary to 63°C (LTLT) and 72°C (HTST).   

When the inoculum was subjected to 63°C for 10 min, a 12.70% elimination (a 

0.06 log reduction) of viable cfu's was recorded (Fig. 5B).  Thermo-ultrasonication at 

63°C increased the efficiency of the process when compared to US + 52°C and resulted 

in a 72.06% elimination of this microbe (a 0.56 log reduction) after 10 min of treatment 

(Fig. 5B).   

A single heat treatment at 72°C improved the elimination of B. cereus when 

compared to a heat treatment at 63°C with a 15.18% elimination, or a 0.07 log reduction 

achieved after 10 min at 72°C (Fig. 5C).  Thermo-ultrasonication at 72°C resulted in a 

78.04% elimination (a 0.65 log reduction) after 10 min of treatment (Fig. 5C).  Due to the 

non-linear response of B. cereus to ultrasonication, it was decided that a DUS-value 

would not give a true reflection of the results.  The D-values for B. cereus treated with 

heat, or thermo-ultrasonication could also not be determined as a single log reduction 

was not reached (Table 3).   

The data obtained from this study showed that thermo-ultrasonication is not more 

effective in the elimination of B. cereus cfu's when compared to a singular ultrasonic 

treatment.  The higher initial concentration of viable cells used when no heat was added 

to ultrasonication (1 x 105 cfu.ml-1) could explain the higher efficiency in terms of % 

elimination of that treatment when compared to the different combinations of thermo-

ultrasonication (1 x 104 cfu.ml-1).  It is also difficult to determine the ratio of vegetative 

cells to endospores of the inoculum, and a higher concentration of B. cereus vegetative 

cells will result in a seemingly more efficient process.   

Data showed that when a B. cereus inoculum was ultrasonicated without the 

addition of heat, a single log reduction was achieved within the first 2.5 min of 

ultrasonication whereafter no further reduction occurred (Fig. 5).  It was hypothesised 

that all the vegetative B. cereus cells were eliminated within the first 2.5 min of 

ultrasonication, with only the resistant endospores (Berger & Marr, 1960) remaining.  It 

was, therefore, concluded that B. cereus is sensitive to the damaging effect of 
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ultrasound if the cells are in a vegetative phase.  Thus, it is recommended to treat raw 

milk as soon as possible to try and combat the development of heat and ultrasound 

resistant microbial endospores.   

This study indicates that thermo-ultrasonication is more effective at eliminating  

B. cereus from milk when compared to a singular heat treatment.  The addition of 

ultrasound to an existing thermal processing plant would, therefore, increase the 

efficiency of a heat treatment in eliminating B. cereus from milk.  Unfortunately, a 

combination of these two microbial inactivation methods failed to ensure the total 

elimination of this endospore-former.   

 

Lactobacillus acidophilus 

Lactobacillus acidophilus is a lactic acid producing microbe with a thick Gram-positive 

cell wall (Kleerebezem & Hugenholtz, 2003).  The dairy industry classifies  

Lb. acidophilus as a spoilage microbe in terms of fresh milk as it produces lactic acid.   

The actual cell counts (cfu.ml-1) after ultrasonication at four different operating 

temperatures (no heat, 52°, 63° and 72°C) and of heat treatments at two different 

temperatures (63° and 72°C) are given in Figs. 6 and 7, respectively.  The recalculated 

data are given in the form of log graphs in Fig. 8 and the results are summarised in 

Table 4.   

In this study, ultrasonication of Lb. acidophilus at an initial concentration of  

1 x 106 cfu.ml-1 without the addition of heat, resulted in an 87.48% elimination of viable 

cells (a 0.91 log reduction) after a 10 min treatment (Figs. 8A-C).  Thermo-

ultrasonication at 52°C resulted in a 1.58 log reduction (97.26% elimination) in viable 

cells after 10 min of treatment (Fig. 8A).  Lactobacillus acidophilus was not treated with 

heat at 52°C as this temperature is not generally used for either LTLT or HTST 

pasteurisation, and additionally it was thus considered to be too low to have any 

significant impact on viable cells as a single treatment.   

A 10 min heat treatment at 63°C eliminated 97.88% of viable Lb. acidophilus 

cells (a 1.68 log reduction) (Fig. 8B), and thermo-ultrasonication (63°C) resulted in a 

4.68 log reduction (a 99.99% elimination) of viable cells after 10 min of treatment (Fig. 

8B).   

Heat at 72°C, as well as thermo-ultrasonication at 72°C eliminated 100% of the 

viable cells (a 6.24 and 6.48 log reduction, respectively) within 4 min of treatment (Fig. 

8C).  Due to the heat sensitivity of Lb. acidophilus at 72°C, the enhanced efficiency of  
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Table 4 Summary of the D-values, log reductions and % reductions of 

Lactobacillus acidophilus in milk obtained over 10 min ultrasound and/or 

heat treatments 

 

 

Treatment Time (min)      D-value (min)     log reduction     % reduction 

 

 
US         10   nc   0.91   87.48 

 

US + 52°C        10   5.53   1.58   97.26 

 

63°C         10   3.68   1.68   97.88 

US + 63°C        10   2.20   4.68   99.99 

 

72°C          4   0.45   6.24   100 

US + 72°C         4   0.42   6.48   100 
 
 
US = ultrasonication.   
nc = not calcutated (D-value could not be calculated as a single log reduction was not reached). 
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thermo-ultrasonication at 72°C was not as prominent.  However, thermo-ultrasonication 

was found to be more efficient than only an ultrasonic treatment.   

The D-values as calculated for Lb. acidophilus after exposure to the different 

treatments were:  DUS = could not be calculated as a single log reduction was not 

reached within 10 min of treatment; DUS + 52°C = 5.53 min; D63°C = 3.68 min; DUS + 63°C = 

2.20 min; D72°C = 0.45 min and; DUS + 72°C = 0.42 min (Table 4).   

This study indicated that for Lb. acidophilus a thermo-ultrasonic treatment (52° or 

63°C) was more effective at eliminating Lb. acidophilus than only an ultrasonic or heat 

treatment (63°C).  The D-values (Table 4) indicated that thermo-ultrasonication 72°C 

was found to be only slightly more effective than a 72°C heat only treatment.  Thermo-

ultrasonication at 72°C was not found to improve the efficiency of a heat treatment at 

72°C, however, at lower temperatures such as 63°C the efficiency of the process, in 

terms of microbial elimination, was improved by including ultrasonication as part of the 

treatment.  It seems plausible to speculate that milk may be processed at lower 

temperatures if used in combination with ultrasound.   

 

Micrococcus luteus 

Micrococcus spp. have been isolated from both raw (Sablé et al., 1997) and pasteurised 

milk (Aaku et al., 2004).  This thermoduric psychrotroph can grow at refrigeration 

temperatures and produce enzymes, toxins and other metabolites and is considered a 

fresh milk spoilage microbe (Aaku et al., 2004).   

The actual cell counts (cfu.ml-1) for ultrasonication at four different operating 

temperatures (no heat, 52°, 63° and 72°C) and heat treatments at two different 

temperatures (63° and 72°C) are given in Figs. 9 and 10, respectively.  The recalculated 

data are given in the form of log graphs in Fig. 11 and the results are summarised in 

Table 5.   

A 95.23% elimination in viable cells (a 1.32 log reduction) was achieved when  

M. luteus, at an initial concentration of 1 x 10 6 cfu.ml-1, was ultrasonicated for 10 min 

without the addition of heat (Figs. 11A-C).  When M. luteus was thermo-ultrasonicated 

at 52°C for 10 min, 85.47% of the viable cells were eliminated (a 0.84 log reduction) 

(Fig. 11A).  A single heat treatment at 52°C was not included as this temperature is not 

used for pasteurisation, and was considered too low to have any impact on cell survival.   

A 10 min heat treatment at 63°C resulted in a 0.02 log reduction (2.84% 

elimination), whilst thermo-ultrasonication at 63°C resulted in a 97.34% elimination of 

viable cells (a 1.59 log reduction) after a 10 min treatment (Fig. 11B).   
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Table 5 Summary of the D-values, log reductions and % reductions of 

Micrococcus luteus in milk obtained over 10 min ultrasound and/or heat 

treatments 

 

 

Treatment Time (min)      D-value (min)     log reduction     % reduction 

 

 
US         10   5.85   1.32   95.23 

 

US + 52°C        10   nc   0.84   85.47 

 

63°C         10   nc   0.02   2.84 

US + 63°C        10   2.93   1.59   97.34 

 

72°C         10   3.14   3.16   99.93 

US + 72°C         4   0.76   6.22   100 
 
 
US = ultrasonication.   
nc = not calcutated (D-value could not be calculated as a single log reduction was not reached). 
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When cells were heat treated at 72°C, a 99.93% elimination was achieved after a 

10 min treatment (a 3.16 log reduction) (Fig. 11C).  Thermo-ultrasonication at 72°C was 

found to be very effective against M. luteus with a 100% elimination of viable cells (a 

6.22 log reduction) achieved within 4 min of treatment (Fig. 11C).   

The D-values calculated for M. luteus under the different treatment conditions 

used in this study were:  DUS = 5.85 min; DUS + 52°C = could not be calculated as a single 

log reduction was not reached within 10 min of treatment; D63°C could not be calculated 

as a single log reduction was not reached within 10 min of treatment; DUS + 63°C = 2.93 

min; D72°C = 3.14 min and; DUS + 72°C = 0.76 min (Table 5).   

The legally required temperature time combination for HTST pasteurisation (72°C 

for 15 s) (Anon., 1997) was found, in this study, to be ineffective at achieving total 

elimination of M. luteus cells.  Not all viable M. luteus cells were eliminated even when 

the heat treatment time was extended to 10 min.  In contrast, when combining 

ultrasound and heat at 72°C, the required treatment time for total elimination of all viable 

M. luteus cells was reduced to less than 4 min.  Reduced processing times would result 

in an increase in the volume of milk that can be treated in a given time.  Processing for 

a shorter time and increasing the production volume per day holds obvious economic 

rewards for the dairy industry, in terms of less processing expenditure and a higher 

sales volume.   

 

Conclusions 

 

In South Africa, the legal definition of pasteurisation (HTST and LTLT) requires a 75% 

reduction in the standard plate count of the permitted 200 000 cfu.ml-1 in raw milk 

(Anon., 1997).  In this study, HTST pasteurisation was found to be ineffective in 

reducing B. cereus counts by at least 75%.  Thermo-ultrasonication at 72°C, however, 

satisfied pasteurisation requirements according to the SA “milk law” (Anon., 1997) for all 

the microbes evaluated in this study.   

 The results from this study indicate that thermo-ultrasonication can be employed 

successfully as an alternative to conventional pasteurisation.  Alkaline phosphatase 

would be inactivated by thermo-ultrasonication at 72°C, resulting in a final product that 

complies with the current SA "milk law" in terms of the phosphatase test requirements.  

Thermo-ultrasonication, as a method of eliminating microbes from milk also has other 

advantages including reduced treatment times, reduced energy costs and increased 

production volumes, which will in turn be associated with economic rewards.  



Chapter 7 198 

Furthermore, the complete elimination of three of the "test" microbes, and therefore 

sterilisation, suggests that thermo-ultrasonication may have some potential as a 

possible treatment option for future production of extended shelf-life milk.   
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CHAPTER 8 

 

GENERAL DISCUSSION AND CONCLUSIONS 

 

Background 

Consumers are increasingly demanding minimally processed foods that are fresher, 

more natural (Mertens & Knorr, 1992) and with a better nutritional content and higher 

overall quality.  There is also a growing demand for alternatives to replace thermal 

pasteurisation of milk and this has led to investigations on the use of ultrasonication to 

eliminate microbes.  Ultrasonication is a non-thermal, physical method that works by 

directly eliminating microbes.  In addition, ultrasonication has been shown to be less 

energy-intensive and therefore more cost-effective and environmentally friendly than 

conventional pasteurisation (Piyasena et al., 2003).  Ultrasonication has one major 

advantage in that it does not result in adverse side-effects (such as nutrient and flavour 

loss) on milk that are associated with heat treatments.   

 The main objective of this study was to evaluate the impact of ultrasound  

(20 kHz, 750 W) on a selection of microbes commonly associated with milk and on the 

native milk components.   

 

Impact of ultrasound on dairy microbes 

There are only a few older reports available on the effect of ultrasonication as a 

treatment option to eliminate or reduce the microbial load of raw milk (Jacobs & 

Thornley, 1954; Utsunomiya & Kosaka, 1979).  Recent advances in ultrasound 

technology thus necessitate a re-investigation into the potential of this promising non-

thermal pasteurisation alternative.  The first aim of this dissertation was to evaluate the 

impact of ultrasound at non-lethal temperatures (24° - 26°C) on nine spoilage and 

potentially pathogenic microbes generally associated with milk.   

 The data obtained showed that ultrasonication can successfully be employed for 

reducing viable cell numbers of a range of microbes from milk including, Gram-positive's 

and negative's, rods and cocci, an endospore-former and a yeast.  Viable cells of all the 

"test" microbes were reduced by 78% or more (100% elimination for Escherichia coli 

and Pseudomonas fluorescens) after a 10 min treatment.  The DUS-values obtained for 

E. coli and P. fluorescens were 2.0 min and 1.2 min, respectively.   
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The SA "milk law" (Anon., 1997) allows a maximum contamination load of  

200 000 cfu.ml-1 for raw milk, and requires pasteurisation to reduce viable counts to less 

than 50 000 cfu.ml-1 (a 75% reduction in viable cell counts).  The Grade "A" Pasteurized 

Milk Ordinance of America stipulates that commingled raw milk may contain  

300 000 cfu.ml-1 (100 000 cfu.ml-1 for individual suppliers) and pasteurisation must 

reduce counts to less than 20 000 cfu.ml-1 (a 93% reduction in viable counts for milk 

from multiple suppliers) (Anon., 2003).  In addition, British law requires raw milk 

intended for heat treatment to contain less than 100 000 cfu.ml-1.  Pasteurised milk must 

contain less than 50 000 cfu.ml-1 (Anon., 1995).  With the above mandatory 

requirements for milk, ultrasound, as used in this study, was found to effectively 

eliminate all the "test" microbes from milk to levels acceptable by both the SA and 

British milk legislation although initial inoculum loads of at least five times higher than 

that permitted by both countries' laws were used as initial concentration.  Furthermore, 

five of the nine "test" microbes (E. coli, P. fluorescens, Saccharomyces cerevisiae, 

Listeria monocytogenes and Lactococcus lactis) were reduced after ultrasonication to 

less than the 20 000 cfu.ml-1 maximum level stipulated by USA regulations.  It is 

however important to note that in this study, inocula exceeding 1 000 000 cfu.ml-1 were 

used as the initial microbial load and thus it is evident that ultrasonication can effectively 

eliminate microbes from milk to give a final product that complies with the regulations of 

different countries.   

From the data obtained in this study it is recommended that ultrasound is rather 

applied as a continuous, as opposed to a pulsed-ultrasonic treatment.  The continuous 

ultrasonic treatment of microbes in milk was shown to enhance the efficacy of 

ultrasound.  One further aspect is that it is advisable to treat raw milk as soon as 

possible as ultrasound was found to be more effective in eliminating cells when low 

initial levels were treated.  This, of course, would reduce the required treatment time.  

The maximum wave amplitude possible was found to render ultrasonication more 

efficient in terms of the number of viable cells eliminated.  From the basic data it was 

clear that sensitivity to ultrasonication did not vary between three E. coli strains that 

were tested, suggesting that different strains of the same species would probably 

respond similarly to the "killing effect" of ultrasound.   

This study also revealed that ultrasound is generally ineffective against Bacillus 

cereus endospores.  This poses a problem for the dairy industry as it is vital to remove 

B. cereus endospores from raw milk, especially for milk to be used in the manufacturing 
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of cheese where the presence of B. cereus endospores are known to cause blowing 

defects.   

It was also found in this study that the microbial elimination achieved after 

ultrasonication is constant for different batches (1 x 104 cfu.ml-1 E. coli reduced to 0  

(n = 29)) and that ultrasonication can be used to effectively eliminate faecal microbes 

from milk, thereby leading to an extended shelf-life of fresh milk.   

Although ultrasonication was shown to be effective and implementable, it is 

recommended that the required batch-scale treatment time as used in this study be 

shortened before any constructive implementation suggestions of this technology is 

made to the dairy industry.  The rather extended treatment times (10 min) used in this 

study are impractical as it would reduce the volumes of milk that can be treated per day 

and also increase the cost of treatment for each "batch".  A decrease in production 

would require larger milk storage facilities and would ultimately result in huge economic 

losses for any processing plant.   

 

Damage mechanisms 

Results showing that ultrasonication can effectively eliminate most microbial 

contaminants from milk are not sufficient to conclude that ultrasonication is a suitable 

alternative for the treatment of milk.  Visual data of the physical damage of the microbial 

cells as caused by ultrasonication could also probably be used to give an indication as 

to the possibility of microbial cell repairs.  Scanning (SEM) and transmission electron 

microscopy (TEM) were used to gain visual confirmation of the physical damage that 

occurs in microbial cells after an ultrasonic treatment.  Scanning electron microscopy 

micrographs indicated extensive surface damage to viable E. coli cells.  Cell damage to 

E. coli, Lactobacillus acidophilus and S. cerevisiae, both internally and externally, was 

additionally visualised with TEM micrographs.  Ultrasonication was shown to damage 

both the cell wall and cell membrane of the bacteria and the cell wall of the yeast 

investigated, thereby explaining the destruction of the viable cells.  Cell lysis, and 

therefore, cell death as caused by the ultrasonication makes this technology a lucrative 

alternative to conventional pasteurisation and could serve as proof to the dairy industry 

that this technology can successfully be used to eliminate microbial contaminants from 

milk.   

The release of microbial proteins and DNA into the environment was also 

measured.  The original hypothesis was to use the release of internal microbial 

components (indicative of cell lysis) as a simpler method to correlate the presence of 
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intracellular microbial components to decreases in viable cell numbers.  Even though it 

was proved that microbial proteins and DNA were released after ultrasonication, it was, 

however, not possible to correlate the concentration of released proteins and DNA to 

the number of viable cells being eliminated and it was concluded that released proteins 

or DNA concentrations in solution would not be an effective measurement of "microbial 

quality" for the dairy industry.   

 The data from this section of the study did not "appear" to suggest that the 

ultrasonic treatment have any detrimental impact on the chemical composition of the 

released intracellular proteins and DNA.  However, from a food processing standpoint 

and before this method can be recommended for the treatment of milk, especially milk 

intended for further processing (cheese, yogurt, etc.) it is important to know what, if any, 

impact ultrasound would have on native milk components.  A significant decrease in e.g. 

the protein or fat content of milk would result in yield losses during follow-up cheese or 

yogurt manufacturing.  Thus, any decrease in milk components would render this 

method a non-viable option to heat treatments.   

 

Impact of ultrasound on milk components 

In this part of the study the impact of ultrasonication on the main milk components of 

both raw and pasteurised milk was assessed.  The results confirmed that no statistically 

significant changes could be detected in either the total protein or the casein contents of 

milk.  Similarly, there were no statistically significant changes in the lactose content of 

either raw or pasteurised milk after ultrasonication.  An increase observed in the fat 

content of raw milk after ultrasonication was explained to be as a result of the breaking 

of the milk fat globule membranes by the ultrasound.  It is possible that ultrasound acts 

as a homogeniser.  In contrast, ultrasonication was found to have little or no impact on 

the milk fat of pasteurised (and homogenised) milk.  Similarly, ultrasonication was found 

to statistically significantly reduce the somatic cell count (SCC) of both raw and 

pasteurised milk.  A decrease in the SCC after ultrasonication will of course not improve 

the quality of milk, associated with high SCC levels.  It is thus important for the dairy 

industry to always source the best possible quality raw milk as no processing 

technology can compensate for raw milk with a sub-standard quality.   

 The fact that ultrasonication did not lead to decreases in the native milk 

components indicates that this method could be employed as a suitable alternative for 

pasteurisation of milk intended for e.g. cheese manufacturing.  As no decreases in milk 
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components was found, ultrasonication should not have any negative influence on the 

yield of dairy products that utilise milk protein and milk fat.   

 In terms of food safety control, an equivalent to the phosphatase test that is used 

to determine the effectiveness of pasteurisation, must be identified.  This "control 

parameter" must be able to indicate effective ultrasonication in terms of the elimination 

of microbes.  In this study alkaline phosphatase and lactoperoxidase enzymes were 

found not to be inactivated by the ultrasonic treatment of raw milk.  For the 

implementation of ultrasonication as a single treatment method for milk, it is essential to 

have a fast and reliable "test" to indicate a microbiologically safe product.  The answer 

might not be enzymatic of nature, however, it should still be simple, accurate and 

require the minimum in specialised equipment for it to be successful in routine dairy 

laboratories.   

 

Hurdle technology 

Ultrasonication, as a single treatment, was not always found to eliminate 100% of the 

viable cells of the different microbial strains used throughout this dissertation.  In 

addition the treatment times were found to be too long, and therefore, less 

implementable.  It was thus deemed necessary to combine ultrasound with another 

existing method in order to provide the dairy industry with a practical and effective 

alternative to traditional heat pasteurisation.  Most milk processing plants have a heat 

treating system in place, and the addition of an ultrasonic system could lead to an 

enhancement of the overall quality of heat treated milk.  This would require a minimum 

in capital expenditure as well as "new" running costs with huge advantages in terms of a 

better and safer end-product.  As heat is frequently utilised by the dairy industry, this 

was the method of choice to complement ultrasonication.   

A heat treatment is generally given to milk to extend the shelf-life.  A combination 

of ultrasound and heat should result in a final product with an even longer shelf-life and 

the combination might also reduce the required treatment time leading to operational 

savings.  In an effort to reduce the treatment time, the impact of a combined thermo-

ultrasonication scenario was investigated.  The impact of three different treatment 

methods (ultrasonication, heat and thermo-ultrasonication) on four "test" microbes in 

milk was thus evaluated.  Of the four "test" microbes only the DUS-value of  

Lb. acidophilus was reduced by combining ultrasound with heat at 52°C.  A temperature 

of 52°C, in combination with ultrasound is regarded to be too low to enhance the 
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efficacy of ultrasound, and it was decided to evaluate the two pasteurisation 

temperature options (63°C - LTLT and 72°C - HTST) in combination with ultrasound.   

 Although thermo-ultrasonication at 63°C was found not to eliminate all viable 

cells for all four "test" microbes, the data obtained showed that, with the exception of  

B. cereus, a combination of ultrasound and heat at 63°C could produce a final product 

that complied to the SA "milk law" (Anon., 1997).  According to the SA "milk law" only 

raw milk with a standard plate count of less than 200 000 cfu.ml-1 is acceptable for 

pasteurisation, and only pasteurised milk with a standard plate count of less than  

50 000 cfu.ml-1 may be sold.  The results from this study clearly showed that it would be 

possible to process milk for a considerably shorter time by adding ultrasound to an 

existing treatment process operating at 63°C.  Shortening the treatment time would be 

economically profitable as it would be possible to process larger volumes of milk and 

thus would reduce treatment costs.   

When the third treatment combination, thermo-ultrasonication at 72°C, was 

applied it was found to be the most effective thermo-ultrasonic combination against all 

the "test" microbes used in this section of the study.  The treatment time for E. coli was 

reduced from 10 min (ultrasonication) (1 x 106 cfu.ml-1 inoculum, Chapter 3) to 4 min 

(thermo-ultrasonication at 72°C).  Similar results were achieved for Lb. acidophilus and 

Micrococcus luteus where total elimination was achieved by a 2 and 4 min thermo-

ultrasonic (72°C) treatment, respectively.  In Chapter 4 of this dissertation ultrasound 

was shown to be incapable of eliminating all viable cells of these two microbes after a 

10 min ultrasonic treatment.  Thus it was concluded that thermo-ultrasonication (72°C) 

is more efficient at eliminating these microbes than ultrasonication at non-lethal 

temperatures.  High temperature short time (HTST) pasteurisation requirements (72°C 

for 15 s) (Anon., 1997) were found to be ineffective in ensuring a final product that 

complied to the legal requirements for milk that was inoculated with B. cereus.  When 

the treatment time was extended to 10 min using HTST pasteurisation temperatures 

only 15% of viable B. cereus cells/endospores were eliminated.  Thermo-ultrasonication 

(72°C), however, reduced viable B. cereus counts by 78%.  Thus, a combination of 

ultrasound and heat at 72°C was found to more effectively eliminate microbes, 

especially the more heat resistant M. luteus and B. cereus.   

The successes achieved when using the thermo-ultrasonication at 72°C 

combination confirms the potential of this hurdle technology.  By implementing this 

hurdle combination it would be possible to process milk at the same temperature as 

normal HTST pasteurisation, but with the exception that the milk would be free of all 
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vegetative cells.  Such milk will have the advantage of having a longer shelf-life, whilst 

still being a minimally processed product.  Ultra-high temperature (UHT) processing is 

generally used to eliminate all viable cells from milk, however, UHT milk is known to 

have a "cooked" flavour.  Thermo-ultrasonication would thus eliminate the 

disadvantages of UHT processing (flavour and cost) and produce a product similar in 

terms of microbial specifications.   

 

Concluding remarks 

The limited successes achieved in this study with ultrasonication led to the evaluation of 

a thermo-ultrasonication option.  The overwhelmingly positive results of this hurdle 

combination support the recommendation of this hurdle technology for implementation 

by the dairy industry.  With minor modifications, an existing HTST pasteurisation plant 

would be able to produce a final product comparable to UHT milk.   

 In this study, microbial endospores were shown to be a treatment problem for 

batch ultrasonication and HTST pasteurisation as well as for the thermo-ultrasonication 

combinations.  In future studies it might be of value to investigate the physiology of 

endospore germination as impacted by ultrasound to better understand the mechanism.  

From such information it may be possible to develop other treatment scenario's as to 

the simultaneous application of heat and ultrasound, or if milk should rather receive the 

two treatments successively.   

 A lack of suitable equipment and scale-up strategies has prevented the 

application of thermo-ultrasound for industrial processing.  But even with the recent 

advances in ultrasound technology, future research is still required to ensure the 

industrial implementation of thermo-ultrasonication.  One aspect that needs further 

research is that the system design must allow for maximum contact between the milk 

and the "cavitation" zone.  It may also be feasible to investigate the use of multiple 

ultrasonic probes with different driving frequencies.  By processing milk with a range of 

ultrasonic frequencies within the "power ultrasound" range of 20 - 100 kHz, it may be 

found to increase the scope of microbes "sensitive" to ultrasonication.  In addition, a 

closed, continuous flow design, as opposed to the open-system used throughout this 

study, would be more ideal for the dairy industry, especially where re-contamination is a 

high risk.   
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