# On the existence and enumeration of sets of two or three mutually orthogonal Latin squares with application to sports tournament scheduling 

Martin Philip Kidd



Dissertation presented for the degree of
Doctor of Philosophy
in the Faculty of Science at Stellenbosch University

## Declaration

By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

Date: March 1, 2012

## Abstract

A Latin square of order $n$ is an $n \times n$ array containing an arrangement of $n$ distinct symbols with the property that every row and every column of the array contains each symbol exactly once. It is well known that Latin squares may be used for the purpose of constructing designs which require a balanced arrangement of a set of elements subject to a number of strict constraints. An important application of Latin squares arises in the scheduling of various types of balanced sports tournaments, the simplest example of which is a so-called round-robin tournament - a tournament in which each team opposes each other team exactly once.

Among the various applications of Latin squares to sports tournament scheduling, the problem of scheduling special types of mixed doubles tennis and table tennis tournaments using special sets of three mutually orthogonal Latin squares is of particular interest in this dissertation. A so-called mixed doubles table tennis (MDTT) tournament comprises two teams, both consisting of men and women, competing in a mixed doubles round-robin fashion, and it is known that any set of three mutually orthogonal Latin squares may be used to obtain a schedule for such a tournament. A more interesting sports tournament design, however, and one that has been sought by sports clubs in at least two reported cases, is known as a spouse-avoiding mixed doubles round-robin (SAMDRR) tournament, and it is known that such a tournament may be scheduled using a self-orthogonal Latin square with a symmetric orthogonal mate (SOLSSOM).

These applications have given rise to a number of important unsolved problems in the theory of Latin squares, the most celebrated of which is the question of whether or not a set of three mutually orthogonal Latin squares of order 10 exists. Another open question is whether or not SOLSSOMs of orders 10 and 14 exist. A further problem in the theory of Latin squares that has received considerable attention in the literature is the problem of counting the number of (essentially) different ways in which a set of elements may be arranged to form a Latin square, i.e. the problem of enumerating Latin squares and equivalence classes of Latin squares of a given order. This problem quickly becomes extremely difficult as the order of the Latin square grows, and considerable computational power is often required for this purpose. In the literature on Latin squares only a small number of equivalence classes of self-orthogonal Latin squares (SOLS) have been enumerated, namely the number of distinct SOLS, the number of idempotent SOLS and the number of isomorphism classes generated by idempotent SOLS of orders $4 \leq n \leq 9$. Furthermore, only a small number of equivalence classes of ordered sets of $k$ mutually orthogonal Latin squares ( $k-M O L S$ ) of order $n$ have been enumerated in the literature, namely main classes of 2 -MOLS of order $n$ for $3 \leq n \leq 8$ and isotopy classes of 8 -MOLS of order 9 . No enumeration work on SOLSSOMs appears in the literature.

In this dissertation a methodology is presented for enumerating equivalence classes of Latin squares using a recursive, backtracking tree-search approach which attempts to eliminate redundancy in the search by only considering structures which have the potential to be completed to well-defined class representatives. This approach ensures that the enumeration algorithm
only generates one Latin square from each of the classes to be enumerated, thus also generating a repository of class representatives of these classes. These class representatives may be used in conjunction with various well-known enumeration results from the theory of groups and group actions in order to determine the number of Latin squares in each class as well as the numbers of various kinds of subclasses of each class.
This methodology is applied in order to enumerate various equivalence classes of SOLS and SOLSSOMs of orders up to and including order 10 and various equivalence classes of $k$-MOLS of orders up to and including order 8 . The known numbers of distinct SOLS, idempotent SOLS and isomorphism classes generated by idempotent SOLS are verified for orders $4 \leq n \leq 9$, and in addition the number of isomorphism classes, transpose-isomorphism classes and RC-paratopism classes of SOLS of these orders are enumerated. The search is further extended to determine the numbers of these classes for SOLS of order 10 via a large parallelisation of the backtracking treesearch algorithm on a number of processors. The RC-paratopism class representatives of SOLS thus generated are then utilised for the purpose of enumerating SOLSSOMs, while existing repositories of symmetric Latin squares are also used for this purpose as a means of validating the enumeration results. In this way distinct SOLSSOMs, standard SOLSSOMs, transposeisomorphism classes of SOLSSOMs and RC-paratopism classes of SOLSSOMs are enumerated, and a repository of RC-paratopism class representatives of SOLSSOMs is also produced. The known number of main classes of 2-MOLS of orders $3 \leq n \leq 8$ are verified in this dissertation, and in addition the number of main classes of $k$-MOLS of orders $3 \leq n \leq 8$ are also determined for $3 \leq k \leq n-1$. Other equivalence classes of $k$-MOLS of order $n$ that are enumerated include distinct $k$-MOLS and reduced $k$-MOLS of orders $3 \leq n \leq 8$ for $2 \leq k \leq n-1$.
Finally, a filtering method is employed to verify whether any SOLS of order 10 satisfies two basic necessary conditions for admitting a common orthogonal mate with its transpose, and it is found via a computer search that only four of the 121642 class representatives of RC-paratopism classes of SOLS satisfy these conditions. It is further verified that none of these four SOLS admits a common orthogonal mate with its transpose. By this method the spectrum of resolved orders in terms of the existence of SOLSSOMs is improved in that the non-existence of such designs of order 10 is established, thereby resolving a longstanding open existence question in the theory of Latin squares. Furthermore, this result establishes a new necessary condition for the existence of a set of three mutually orthogonal Latin squares of order 10 , namely that such a set cannot contain a SOLS and its transpose.

## Uittreksel

' n Latynse vierkant van orde $n$ is ' $\mathrm{n} n \times n$ skikking van $n$ simbole met die eienskap dat elke ry en elke kolom van die skikking elke element presies een keer bevat. Dit is welbekend dat Latynse vierkante gebruik kan word in die konstruksie van ontwerpe wat vra na 'n gebalanseerde rangskikking van ' $n$ versameling elemente onderhewig aan ' $n$ aantal streng beperkings. 'n Belangrike toepassing van Latynse vierkante kom in die skedulering van verskeie spesiale tipes gebalanseerde sporttoernooie voor, waarvan die eenvoudigste voorbeeld 'n sogenaamde rondomtalietoernooi is - 'n toernooi waarin elke span elke ander span presies een keer teenstaan.

Onder die verskeie toepassings van Latynse vierkante in sporttoernooi-skedulering, is die probleem van die skedulering van spesiale tipes gemengde dubbels tennis- en tafeltennistoernooie deur gebruikmaking van spesiale versamelings van drie paarsgewys-ortogonale Latynse vierkante in hierdie proefskrif van besondere belang. In sogenaamde gemengde dubbels tafeltennis (GDTT) toernooi ding twee spanne, elk bestaande uit mans en vrouens, op 'n gemengde-dubbels rondomtalie wyse mee, en dit is bekend dat enige versameling van drie paarsgewys-ortogonale Latynse vierkante gebruik kan word om 'n skedule vir só 'n toernooi op te stel. 'n Meer interessante sporttoernooi-ontwerp, en een wat al vantevore in minstens twee gerapporteerde gevalle deur sportklubs benodig is, is egter ' n gade-vermydende gemengde-dubbels rondomtalie (GVGDR) toernooi, en dit is bekend dat só 'n toernooi geskeduleer kan word deur gebruik te maak van 'n self-ortogonale Latynse vierkant met ' $n$ simmetriese ortogonale maat (SOLVSOM).

Hierdie toepassings het tot 'n aantal belangrike onopgeloste probleme in die teorie van Latynse vierkante gelei, waarvan die mees beroemde die vraag na die bestaan van 'n versameling van drie paarsgewys ortogonale Latynse vierkante van orde 10 is. Nog 'n onopgeloste probleem is die vraag na die bestaan van SOLVSOMs van ordes 10 en 14. 'n Verdere probleem in die teorie van Latynse vierkante wat aansienlik aandag in die literatuur geniet, is die bepaling van die getal (essensieel) verskillende maniere waarop 'n versameling elemente in 'n Latynse vierkant gerangskik kan word, m.a.w. die probleem van die enumerasie van Latynse vierkante en ekwivalensieklasse van Latynse vierkante van 'n gegewe orde. Hierdie probleem raak vinnig baie moeilik soos die orde van die Latynse vierkant groei, en aansienlike berekeningskrag word dikwels hiervoor benodig. Sover is slegs 'n klein aantal ekwivalensieklasse van self-ortogonale Latynse vierkante (SOLVe) in die literatuur getel, naamlik die getal verskillende SOLVe, die getal idempotente SOLVe en die getal isomorfismeklasse voortgebring deur idempotente SOLVe van ordes $4 \leq n \leq 9$. Verder is slegs'n klein aantal ekwivalensieklasse van geordende versamelings van $k$ onderling ortogonale Latynse vierkante ( $k$-OOLVs) in die literatuur getel, naamlik die getal hoofklasse voortgebring deur 2-OOLVs van orde $n$ vir $3 \leq n \leq 8$ en die getal isotoopklasse voortgebring deur 8 -OOLVs van orde 9 . Daar is geen enumerasieresultate oor SOLVSOMs in die literatuur beskikbaar nie.

In hierdie proefskrif word 'n metodologie vir die enumerasie van ekwivalensieklasse van Latynse vierkante met behulp van 'n soekboomalgoritme met terugkering voorgestel. Hierdie algoritme poog om oorbodigheid in die soektog te minimeer deur net strukture te oorweeg wat die potensiaal het om tot goed-gedefinieerde klasleiers opgebou te word. Hierdie eienskap verseker dat die algoritme slegs een Latynse vierkant binne elk van die klasse wat getel word, genereer, en dus word 'n databasis van verteenwoordigers van hierdie klasse sodoende opgebou. Hierdie klasverteenwoordigers kan tesame met verskeie welbekende groepteoretiese telresultate gebruik word om die getal Latynse vierkante in elke klas te bepaal, asook die getal verskeie deelklasse van verskillende tipes binne elke klas.
Die bogenoemde metodologie word toegepas om verskeie SOLV- en SOLVSOM-klasse van ordes kleiner of gelyk aan 10 te tel, asook om $k$-OOLV-klasse van ordes kleiner of gelyk aan 8 te tel. Die getal verskillende SOLVe, idempotente SOLVe en isomorfismeklasse voortgebring deur SOLVe word vir ordes $4 \leq n \leq 9$ geverifieer, en daarbenewens word die getal isomorfismeklasse, transponent-isomorfismeklasse en RC-paratoopklasse voortgebring deur SOLVe van hierdie ordes ook bepaal. Die soektog word deur middel van 'n groot parallelisering van die soekboomalgoritme op 'n aantal rekenaars ook uitgebrei na die tel van hierdie klasse voortgebring deur SOLVe van orde 10. Die verteenwoordigers van RC-paratoopklasse voortgebring deur SOLVe wat deur middel van hierdie algoritme gegenereer word, word dan gebruik om SOLVSOMs te tel, terwyl bestaande databasisse van simmetriese Latynse vierkante as validasie van die resultate ook vir hierdie doel ingespan word. Op hierdie manier word die getal verskillende SOLVSOMs, standaardvorm SOLVSOMs, transponent-isomorfismeklasse voortgebring deur SOLVSOMs asook RC-paratoopklasse voortgebring deur SOLVSOMs bepaal, en word ' n databasis van verteenwoordigers van RC-paratoopklasse voortgebring deur SOLVSOMs ook opgebou. Die bekende getal hoofklasse voortgebring deur 2-OOLVs van ordes $3 \leq n \leq 8$ word in hierdie proefskrif geverifieer, en so ook word die getal hoofklasse voortgebring deur $k$ OOLVs van ordes $3 \leq n \leq 8$ bepaal, waar $3 \leq k \leq n-1$. Ander ekwivalensieklasse voortgebring deur $k$-OOLVs van orde $n$ wat ook getel word, sluit in verskillende $k$-OOLVs en gereduseerde $k$-OOLVs van ordes $3 \leq n \leq 8$, waar $2 \leq k \leq n-1$.
Laastens word daar van 'n filtreer-metode gebruik gemaak om te bepaal of enige SOLV van orde 10 twee basiese nodige voorwaardes om ' n ortogonale maat met sy transponent te deel kan bevredig, en daar word gevind dat slegs vier van die 121642 klasverteenwoordigers van RC-paratoopklasse voortgebring deur SOLVe van orde 10 aan hierdie voorwaardes voldoen. Dit word verder vasgestel dat geeneen van hierdie vier SOLVe ortogonale maats in gemeen met hul transponente het nie. Die spektrum van afgehandelde ordes in terme van die bestaan van SOLVSOMs word dus vergroot deur aan te toon dat geen sulke ontwerpe van orde 10 bestaan nie, en sodoende word 'n jarelange oop bestaansvraag in die teorie van Latynse vierkante beantwoord. Verder bevestig hierdie metode ' $n$ nuwe noodsaaklike bestaansvoorwaarde vir ' $n$ versameling van drie paarsgewys-ortogonale Latynse vierkante van orde 10 , naamlik dat só 'n versameling nie 'n SOLV en sy transponent kan bevat nie.

## Acknowledgements

The author wishes to acknowledge the following people for their various contributions towards the completion of this work:

- I wish to extend my deepest gratitude to my promoter, Prof Jan van Vuuren, for his excellent guidance throughout this project. I appreciate his time, patience and enthusiasm when listening to my ideas, as well as his dedication and hard work in ensuring that work of a high standard is delivered.
- I wish also to extend my deepest gratitude to my co-promoter, Dr Alewyn Burger, for his undying enthusiasm and accessibility, friendliness and his willingness to lend a helping hand (or two) whenever necessary.
- I wish to thank the Department of Logistics for the use of their excellent computing facilities, and I thank in particular every single one of the Operations Research staff members for their friendliness, accessibility and support during the past three years.
- I wish to thank the Harry Crossley Foundation and the National Research Foundation for much needed funding during the past three years.
- A big thanks also goes to the various masters and doctoral students with whom I shared a number of wonderful experiences throughout the past three years, and a special thanks to those whom I can now call friends.
- Finally, I extend my deepest thanks to my family, friends and girlfriend for their unwavering support during the past three years and their understanding during times of great unavailability on my part. Nothing would have been possible without those whom I love.


## Table of Contents

List of Reserved Symbols ..... xiii
List of Acronyms ..... xv
List of Figures ..... xvii
List of Tables ..... xix
List of Algorithms ..... xxi
1 Introduction ..... 1
1.1 Historical background ..... 1
1.2 Problem statement ..... 5
1.3 Scope and objectives ..... 5
1.4 Thesis organisation ..... 6
2 Latin squares ..... 9
2.1 Basic definitions ..... 9
2.2 Orthogonality between Latin squares ..... 14
2.3 Operations on Latin squares ..... 16
2.4 Recursive constructions of Latin squares ..... 22
2.5 Chapter summary ..... 28
3 Applications of Latin squares to sports tournament scheduling ..... 31
3.1 Scheduling sports tournaments using Latin squares ..... 31
3.2 An application of sets of orthogonal Latin squares ..... 35
3.2.1 Mixed doubles table tennis (MDTT) tournaments ..... 35
3.2.2 Constructions of pairs and triples of orthogonal Latin squares ..... 37
3.3 Self-orthogonal Latin squares and SOLSSOMs ..... 47
3.3.1 Spouse-avoiding mixed doubles round-robin tennis tournaments ..... 49
3.3.2 Constructions of self-orthogonal Latin squares and SOLSSOMs ..... 51
3.4 Chapter summary ..... 55
4 Enumeration methodology ..... 57
4.1 Classes of Latin squares ..... 57
4.2 Historical background on the enumeration of Latin squares ..... 62
4.3 Exhaustive enumeration of Latin square classes ..... 64
4.3.1 Enumeration of CS-paratopism classes of Latin squares ..... 70
4.3.2 Enumeration of main classes of MOLS ..... 72
4.4 Computation of autotransformation groups of Latin squares ..... 75
4.5 Group theoretic enumeration of Latin squares ..... 80
4.6 Chapter summary ..... 84
5 Enumeration results ..... 87
5.1 Two enumeration approaches for orthogonal Latin squares ..... 88
5.2 Enumeration of self-orthogonal Latin squares ..... 89
5.2.1 Enumeration of RC-paratopism classes of SOLS ..... 91
5.2.2 Enumeration of other classes of SOLS ..... 96
5.3 Enumeration of SOLSSOMs ..... 98
5.3.1 Enumeration of RC-paratopism classes of SOLSSOMs ..... 99
5.3.2 The non-existence of SOLSSOMs of order 10 ..... 104
5.3.3 Enumeration of other classes of SOLSSOMs ..... 106
5.4 Enumeration of MOLS ..... 107
5.4.1 Enumeration of main classes of MOLS ..... 108
5.4.2 Enumeration of distinct and reduced MOLS ..... 115
5.5 Chapter summary ..... 116
6 Conclusion ..... 119
6.1 Summary of work contained in this dissertation ..... 119
6.2 An appraisal of the contributions of this dissertation ..... 120
6.3 Future work ..... 121
6.3.1 Proposals regarding enumeration ..... 121
6.3.2 Proposals regarding existence and construction ..... 122
A Discrete mathematical preliminaries ..... 135
A. 1 Permutations ..... 135
A.1.1 Permutation cycles ..... 136
A.1.2 Conjugacy classes of permutations ..... 138
A. 2 Groups ..... 139
A.2.1 Basic definitions ..... 140
A.2.2 Group actions ..... 142
B A repository of SOLS, SOLSSOMs and MOLS ..... 147
B. 1 RC-paratopism class representatives of SOLS ..... 147
B. 2 RC-paratopism class representatives of SOLSSOMs ..... 150
B. 3 Main class representatives of $k$-MOLS ..... 152
C Contents of the accompanying compact disc ..... 157

## List of Reserved Symbols

| Symbols in this dissertation conform to the following font conventions: |  |  |
| :--- | :--- | :--- |
| $A$ | Symbol denoting a finite set | (Roman capitals) |
| $\mathcal{A}$ | Symbol denoting a set of Latin squares | (Calligraphic capitals) |
| $\boldsymbol{A}$ | Symbol denoting a matrix or Latin square | (Boldface capitals) |
| $\alpha$ | Symbol denoting a general mapping | (Greek lower case letters) |


| Symbol | Meaning |
| :---: | :---: |
| $\times$ | A binary operator symbol denoting the direct product between groups and Latin squares. |
| 2 | A binary operator symbol denoting the wreath product between permutation groups. |
| $\varnothing$ | A symbol used to denote the empty set. |
| $C(\boldsymbol{L})$ | The column indexing set of a Latin square $\boldsymbol{L}$. |
| $\gamma$ | The operation of replacing each column of a Latin square by its inverse permutation. |
| $\delta$ | A symbol used to specify that any conjugate operation may be used in the transformation of a Latin object of order $n$. |
| $D_{3}$ | The Dihedral group of order 6. |
| $e$ | The identity permutation. |
| $E(G)$ | The edge set of a graph $G$. |
| $\iota$ | The identity mapping. |
| $K_{n}$ | The complete graph on $n$ vertices. |
| L(i) | The $i$-th row of a Latin square $\boldsymbol{L}$. |
| $\boldsymbol{L}(i, j)$ | The entry in row $i$ and column $j$ of a Latin square $\boldsymbol{L}$. |
| $\boldsymbol{L}^{T}$ | The transpose of a Latin square $\boldsymbol{L}$. |
| $\boldsymbol{L}^{T}(j)$ | The $j$-th column of a Latin square $\boldsymbol{L}$. |
| N | The set of all natural numbers, i.e. $\{1,2,3, \ldots\}$. |
| $\pi$ | A symbol used to specify that a permutation of order $n$ is used in the transformation of a Latin object of order $n$. |
| $P_{n}$ | The set of all permutations of order $n$. |
| $\rho$ | The operation of replacing each row of a Latin square by its inverse permutation. |
| $R(\boldsymbol{L})$ | The row indexing set of a Latin square $\boldsymbol{L}$. |
| $\langle S\rangle$ | The group generated by the set $S$. |
| $S(\boldsymbol{L})$ | The symbol set of a Latin square $\boldsymbol{L}$. |
| $S_{n}$ | The symmetric group of order $n$. |
| $\tau$ | The operation of transposing a Latin square. |


| $T(\boldsymbol{L})$ | The set of triples $\left\{(i, j, \boldsymbol{L}(i, j)) \mid i, j \in \mathbb{Z}_{n}\right\}$ of a Latin square $\boldsymbol{L}$ of order $n$. |
| :---: | :---: |
| $T(\mathcal{M})$ | The set of tuples $\left\{\left(i, j, \boldsymbol{L}_{0}(i, j), \boldsymbol{L}_{1}(i, j), \ldots, \boldsymbol{L}_{k-1}(i, j)\right) \mid i, j \in \mathbb{Z}_{n}\right\}$ of a $k$ MOLS $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$. |
| $U(\mathcal{M})$ | The set of all universal permutations of the Latin squares in the $k$-MOLS $\mathcal{M}$. |
| $V(G)$ | The vertex set of a graph $G$. |
| $z_{i}^{a_{i}}$ | A symbol used to denote the fact that a permutation has $a_{i}$ cycles of length $i$. |
| $\mathbb{Z}_{n}$ | The set of residues modulo $n \in \mathbb{N}$, i.e. $\{0,1, \ldots, n-1\}$. |
| $\mathbb{Z}_{n}^{(2)}$ | The set of all 2-subsets of $\mathbb{Z}_{n}$ |
| $\left(\mathbb{Z}_{n},+\right.$ ) | The group over $\mathbb{Z}_{n}$ induced by the binary operation of addition performed modulo $n$. |
| $\left(\mathbb{Z}_{n}, \times\right.$ ) | The group over $\mathbb{Z}_{n}$ induced by the binary operation of multiplication performed modulo $n$. |
| $\left(\mathbb{Z}_{n}, \Theta\right)$ | The quasigroup over $\mathbb{Z}_{n}$ induced by the binary operation $\Theta$, defined as $a \Theta b=$ $a-b(\bmod n)$ for any $a, b \in \mathbb{Z}_{n}$. |
| $\left(\mathbb{Z}_{2 m+1}, \odot\right)$ | The quasigroup over $\mathbb{Z}_{2 m+1}$ induced by the binary operation of $\odot$, defined as $a \odot b=(m+1)(a+b)(\bmod 2 m+1)$, for $a, b \in \mathbb{Z}_{2 m+1}$. |
| $\left(\mathbb{Z}_{2 m}, \circledast\right)$ | The group over $\mathbb{Z}_{2 m}$ induced by the binary operation $\circledast$, defined as $a \circledast b=$ $a+b-2(\bmod 2 m)$ if both $a$ and $b$ are odd, or $a+b(\bmod 2 m)$ otherwise. |

## List of Acronyms

DTS: Directed Triple System
GF: Galois Field
MDTT: Mixed Doubles Table Tennis
MOLS: Mutually Orthogonal Latin Squares
OA: Orthogonal Array
OEIS: Online Encyclopedia of Integer Sequences
SAMDRR: Spouse-Avoiding Mixed Doubles Round-Robin
SDR: System of Distinct Representatives
SOLS: Self-Orthogonal Latin Square
SOLSSOM: Self-Orthogonal Latin Square with a Symmetric Orthogonal Mate

## List of Figures

2.1 A schematic representation of the layout of a singular direct product ..... 26
3.1 A 1-factorisation as a round-robin tournament ..... 32
4.1 A search tree for reduced Latin squares of order 5 containing no intercalates ..... 68
4.2 The CS-paratopism graph of a Latin square ..... 77
4.3 The paratopism graph of a pair of orthogonal Latin squares ..... 79
4.4 A representation of an autotransformation of a Latin object ..... 82
5.1 The search tree for SOLS of order 7 ..... 93
5.2 The search tree for SOLSSOMs of order 5, generating SOLS ..... 103
5.3 The search tree for SOLSSOMs of order 5, generating symmetric Latin squares ..... 103
A. 1 Applying a permutation to an ordered list of objects ..... 138
A. 2 The six symmetries of the equilateral triangle ..... 142

## List of Tables

1.1 A partial solution to the 36 officers problem ..... 2
1.2 An experiment designed by a French agronomist for the feeding of sheep ..... 3
2.1 The conjugates and conjugate operations of a Latin square ..... 20
2.2 The Cayley table of $D_{3}$ ..... 21
3.1 A schedule for a round-robin tournament of order 6 ..... 32
3.2 A schedule for an MDTT tournament of order 4 ..... 36
3.3 The matches of an MDTT tournament of order 4 as represented by a 2-MOLS ..... 36
3.4 The schedule of an MDTT tournament of order 4 as represented by a 3-MOLS ..... 37
3.5 A schedule for an SAMDRR tournament ..... 50
3.6 The matches of an SAMDRR tournament as represented by a SOLS ..... 50
3.7 A schedule for an SAMDRR tournament as represented by a SOLSSOM ..... 51
3.8 Existence history of SOLSSOMs ..... 55
4.1 Enumeration results for various classes of Latin squares ..... 65
4.2 The six reduced $N_{2}$-squares ..... 69
4.3 Colouring of the $\sigma$-transformation graph of a Latin square ..... 76
5.1 Comparison of approaches to the enumeration of $k$-MOLS of order $n$ ..... 89
5.2 The numbers of various classes of SOLS of orders $4 \leq n \leq 9$ ..... 90
5.3 Isomorphism classes either containing or not containing transposes ..... 90
5.4 SOLS of order 9 found in the first branch on the first level of the search tree ..... 94
5.5 SOLS of order 9 found in the second branch on the first level of the search tree ..... 94
5.6 SOLS of order 9 found in the third branch on the first level of the search tree ..... 94
5.7 SOLS of order 10 found in various branches of the search tree ..... 95
5.8 Orders of RC-autoparatopism groups of various classes of SOLS ..... 96
5.9 Enumeration of various classes of SOLS of orders $4 \leq n \leq 10$ ..... 99
5.10 The number of isomorphism classes of 1-factorisations of $K_{2 n}$ ..... 101
5.11 RC-paratopism classes of symmetric Latin squares of odd order ..... 102
5.12 RC-paratopism classes of SOLSSOMs containing certain symmetric mates ..... 104
5.13 Orders of RC-autoparatopism groups of various classes of SOLSSOMs ..... 107
5.14 Enumeration of various classes of SOLSSOMs of order $4 \leq n \leq 10$ ..... 108
5.15 Branches on each level of the search tree for $k$-MOLS of order 6 , for $k=2,3,4,5$ ..... 111
5.16 Branches on each level of the search tree for 2-MOLS of order 7 ..... 112
5.17 Branches on each level of the search tree for 3 -MOLS of order 7 ..... 112
5.18 Branches on the $1^{\text {st }}$ level of the search tree for $k$-MOLS of order 7 , for $k=4,5,6$ ..... 113
5.19 Branches on the $2^{\text {nd }}$ level of the search tree for $k$-MOLS of order 7 , for $k=4,5,6$ ..... 113
5.20 Branches on the $3^{\text {rd }}-7^{\text {th }}$ levels of the search tree for 4 -MOLS of order 7 ..... 113
5.21 Branches on each level of the search tree for $k$-MOLS of order 8 , for $k=2,3,4$ ..... 114
5.22 Branches on levels $1-2$ of the search tree for $k$-MOLS of order 8 , for $k=5,6,7$ ..... 115
5.23 Autoparatopism group orders for main classes of $k$-MOLS of order $n$ ..... 116
5.24 Autoparatopism group orders for main classes of 2 and 3 -MOLS of order 8 ..... 116
5.25 The number of main classes of $k$-MOLS and reduced $k$-MOLS of order $n$ ..... 116
5.26 The number distinct $k$-MOLS of order $n$ for $3 \leq n \leq 8$ and $2 \leq k \leq 4$. ..... 116
5.27 The number distinct $k$-MOLS of order $n$ for $3 \leq n \leq 8$ and $5 \leq k \leq 7$ ..... 117
6.1 OEIS reference numbers of enumeration results ..... 121
A. 1 The seven possible cycle structures of a permutation of order 5 ..... 137
A. 2 The Cayley table of $\left(\mathbb{Z}_{4},+\right)$ ..... 141
A. 3 The Cayley table of the quasigroup $\left(\mathbb{Z}_{4}, \ominus\right)$ ..... 141
A. 4 Non-isomorphic DTS of order 4 ..... 145

## List of Algorithms

4.1 ExhaustiveTreeSearch ..... 67
4.2 ExhaustiveAutotransformationGroupComputation ..... 76
5.1 GetTransversals ..... 105

## CHAPTER 1

## Introduction

## Contents

1.1 Historical background ..... 1
1.2 Problem statement ..... 5
1.3 Scope and objectives ..... 5
1.4 Thesis organisation ..... 6

### 1.1 Historical background

In 1782 the Swiss mathematician Leonhard Euler (1707-1783) posed the following problem in a research paper:

> "A very curious question that has taxed the brains of many inspired me to undertake the following research that has seemed to open a new path in Analysis and in particular in the area of combinatorics. This question concerns a group of thirty-six officers of six different ranks, taken from six different regiments, and arranged in a square in a way such that in each row and column there are six officers, each of a different rank and regiment." [52]

Euler used the Latin letters $a, b, c, d, e$ and $f$ to denote the six different regiments and the Greek letters $\alpha, \beta, \gamma, \delta, \epsilon$ and $\zeta$ to denote the six different ranks. The problem described by Euler has become known as the " 36 officers problem" [9], and in mathematical terms consists of finding a $6 \times 6$ array in which each entry contains an ordered pair of elements, one in $\{a, b, c, d, e, f\}$ and one in $\{\alpha, \beta, \gamma, \delta, \epsilon, \zeta\}$, so that no pair appears more than once within the array and so that no symbol appears twice in any row or column of the array. Euler was unable to find a solution to this problem, but gave a partial solution in [52], shown in Table 1.1, where each symbol appears exactly once in each row and column, but where the pairs $b \zeta$ and $d \epsilon$ appear twice, while the pairs $b \epsilon$ and $d \zeta$ do not appear at all.

Even earlier than 1782 Euler had considered the problem in general, where there are $n^{2}$ officers from $n$ different ranks and $n$ different regiments for some natural number $n$. Euler called the associated $n \times n$ array a Graeco-Latin square of order $n$ (derived from his usage of Latin and

| $a \alpha$ | $\frac{b \zeta}{}$ | $c \delta$ | $\frac{d \epsilon}{}$ | $e \gamma$ | $f \beta$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $b \beta$ | $c \alpha$ | $f \epsilon$ | $e \delta$ | $a \zeta$ | $d \gamma$ |
| $c \gamma$ | $\frac{d \epsilon}{}$ | $a \beta$ | $\frac{b \zeta}{}$ | $f \delta$ | $e \alpha$ |
| $d \delta$ | $f \gamma$ | $e \zeta$ | $c \beta$ | $b \alpha$ | $a \epsilon$ |
| $e \epsilon$ | $a \delta$ | $b \gamma$ | $f \alpha$ | $d \beta$ | $c \zeta$ |
| $f \zeta$ | $e \beta$ | $d \alpha$ | $a \gamma$ | $c \epsilon$ | $b \delta$ |

Table 1.1: A partial solution to the 36 officers problem given by Euler in [52]. The pairs $b \zeta$ and $d \epsilon$ appear twice (in the underlined positions), while the pairs $b \epsilon$ and $d \zeta$ are absent.

Greek letters) and used them in the construction of magic squares ${ }^{1}$ in [53] which, according to a statement on p. 593 of this paper, was presented to the St. Petersburg Academy in 1776. Euler also considered Graeco-Latin squares without the Greek letters, referring to them as Latin squares. He found many examples of Graeco-Latin squares, and in particular gave two general constructions of Graeco-Latin squares in [52], one for squares of odd order and another for squares of order a multiple of 4 . Euler could not, however, find a Graeco-Latin square of any other order (i.e. even orders which are not multiples of 4, including the case of the 36 officers problem), and conjectured that Graeco-Latin squares of order $n$ do not exist when $n=4 m+2$, for some integer $m$ :
> "Thus, I have not hesitated to conclude from this that we cannot produce a complete square with thirty-six entries, and that the same impossibility extends to the cases of $n=10, n=14$ and in general to all the oddly even numbers." [52]

It is easy to verify that a Graeco-Latin square of order 2 does not exist, but for orders 6 and upwards Euler's attempts at proving his conjecture were inconclusive, and remained so until his death in 1783.
Euler's conjecture remained unsolved for over a hundred years before a small step was taken towards confirming his predictions. In 1900 the French mathematician Gaston Tarry [136] proved that there is no solution to the 36 officers problem by an exhaustive elimination of all possible cases, thereby verifying Euler's conjecture for $n=6$. This still left the orders $n=10,14,18, \ldots$ unresolved, and it would only be 59 years later, when Indian mathematicians Raj Chandra Bose and Sharadchandra Shankar Shrikhande constructed a Graeco-Latin square of order 22 [22], that a special case of Euler's conjecture was disproven for the first time. By this time the term "Graeco-Latin square" was no longer in use; the concept of orthogonality between Latin squares had taken its place ${ }^{2}$. Soon thereafter, also in 1959, the American mathematician Ernest Tilden Parker constructed two orthogonal Latin squares of order 10 [115], and in 1960 Bose, Shrikhande and Parker finally disproved Euler's 177-year old conjecture for all other orders [23].
Although Euler does not cite any previous work on Latin squares, he was not the first to consider this type of design. According to Andersen [6] examples of Latin squares (as well as magic squares) were found on amulets and talismans belonging to Arab or Indian cultures dating back roughly 1000 years. Possibly the oldest examples of Latin squares in print may be found in the book Shams al-Maarif al-Kubra (The sun of great knowledge) written by Ahmad ibn Ali ibn Yusuf al-Buni no later than the year 1225 . In the $13^{\text {th }}$ century the Spanish philosopher

[^0]Ramón Lull also attempted to "explain the world" by using combinatorics and constructing Latin squares [6].
Another interesting occurrence of Latin squares (in fact, Graeco-Latin squares, possibly preceding Euler's work) appears in the form of a playing-card puzzle. The exact date of publication of the earliest work containing the puzzle is not known. According to Kendall [81], and Styan and Boyer [135], Henry Ernest Dudeney (1857-1930) believed that it is contained in a book dating back to 1624 by Claude Gaspar Bachet de Méziriac (1581-1638) entitled "Problèmes plaisants and délectables, qui se font par les nombres." The puzzle asks for the number of distinct ways in which the sixteen court cards (Jacks, Queens, Kings and Aces of all four suites) can be arranged in a square grid so that no royalty or suite is found more than once in any row, column or diagonal. Clearly such an arrangement gives rise to a Graeco-Latin square. Ball [12] gave a solution of 72 , which was, according to Gardner [61], a mistake; Gardner gave the correct answer as 144 (in both cases rotations and reflections of designs are not counted as different designs).

Early occurrences of Latin squares may also be found in a subfield of statistics to which the application of Latin squares are well known, namely the field of experimental design. According to Andersen [6] and Ullrich [138], one of the earliest applications of Latin squares in experimental design was published by French agronomist Francois Cretté de Palluel (1741-1798) who (seemingly unaware of this fact) used a Latin square to design an experiment involving the effects of different diets on different breeds of sheep. He used sixteen sheep for his experiment, four sheep of each of four different breeds, namely the breed of the country (Île de France), the breed of Beauce, the breed of Champagne, and the breed of Picardy. He fed the sheep four different kinds of food, namely potatoes, turnips, beets and corn, and had four of them slaughtered each consecutive month for four months following the start of the experiment. When four sheep were slaughtered, he wanted all four to be of different breeds and on different diets, and so constructed the design shown in Table 1.2, which is a Latin square of order 4.

|  | Potatoes | Turnips | Beets | Corn |
| :---: | :---: | :---: | :---: | :---: |
| Ile de France | 1 | 2 | 3 | 4 |
| Beauce | 4 | 1 | 2 | 3 |
| Champagne | 3 | 4 | 1 | 2 |
| Picardy | 2 | 3 | 4 | 1 |

Table 1.2: An experiment designed by agronomist Francois Cretté de Palluel for the feeding of sheep, where the entry in row $i$ and column $j$ gives the number of months after the experiment started on which a sheep of breed $i$ on diet $j$ was to be slaughtered.

The statistician Sir Ronald Fisher also described the design of experiments using Latin squares as well as orthogonal Latin squares in his celebrated books "Statistical methods for research workers" [55] and "The design of experiments" [56], and together with Frank Yates published some of the first work on the enumeration of Latin squares in [57], namely the enumeration of Latin squares of order 6 .
Orthogonal Latin squares indeed play an important part in the design of experiments, and especially so self-orthogonal Latin squares ${ }^{3}$ (SOLS), as discussed by Hedayat [72, 73]. SOLS were first systematically constructed by Mendelsohn [105] in 1971 and soon thereafter, in 1973, Brayton et al. [24] proved that a SOLS exists for any order except ${ }^{4}$ orders 2, 3 and 6 . In

[^1]the paper by Brayton et al. the authors describe how they came across another area in which Latin squares seem to have useful applications, namely in sports tournament scheduling. They noted that a SOLS may be used to schedule a spouse-avoiding mixed doubles round-robin tennis tournament ${ }^{5}$. A SOLS, however, can only give the matches for such a tournament, but cannot be used to group these matches into the minimum number of rounds so that each player plays exactly once in each round. In 1978 Wang [143] noted that if a symmetric Latin square is found which is orthogonal to a SOLS, then the matches given by the SOLS could be grouped into the minimum number of rounds so that each player plays exactly once in each round. Such a design is called a self-orthogonal Latin square with a symmetric orthogonal mate (SOLSSOM), and it was a special case of the logically next step in design construction beyond Graeco-Latin squares, namely the study of sets of mutually orthogonal Latin squares (MOLS), where a $k$ $M O L S$ is defined as a set of $k$ Latin squares, each two of which are orthogonal. Ever since the fall of Euler's conjecture, the search for larger sets of orthogonal Latin squares has become the breeding ground for new open questions in the theory of Latin squares. Order 10 has outlasted the other integers in the sense that it is currently the only order for which the existence of three mutually orthogonal Latin squares is undecided (see Colbourn et al. [38, Theorem 3.43]).
The search for SOLSSOMs has been as difficult as the search for MOLS; in fact, even more so since it is a special case of a 3 -MOLS. SOLSSOMs trivially do not exist for orders 2,3 and 6 , and Wang found constructions for SOLSSOMs of an infinite number of orders, but could not construct SOLSSOMs of order

```
n}\in{10,14,39,46,51,54,58,62,66,70,74,82,87,98,102,118,123,142,159,174,183,194, 202,
    214, 219, 230, 258, 267, 278, 282, 303, 394, 398, 402, 422, 1322}.
```

Only five years later, in 1983, this list of unresolved orders was reduced drastically by Lindner et al. [91] to $n \in\{10,14,39,46,54,58,62,66,70,87,102,194,230\}$, and in the following year Zhu [155] found SOLSSOMs of orders 39, 87, 102, 194 and 230. More than ten years elapsed before any further progress was made: In 1996 Bennet and Zhu constructed SOLSSOMs of orders 46, 54 and 58 in [16] and of order 62 in [17]. This left only orders 10, 14, 66 and 70 as unresolved cases, but the latter two were resolved when Abel et al. [1] constructed SOLSSOMs of these orders in the year 2000. Since 2000 no new results on the existence of SOLSSOMs have been published, and until now, 31 years after the first SOLSSOM was constructed, it was still not known whether SOLSSOMs of orders 10 and 14 exist ${ }^{6}$.

Notable applications of Latin squares, other than in experimental designs and sports tournament scheduling, include applications to cryptography and coding theory [88], and the very interesting and difficult problem of the enumeration of Latin squares, which is (next to the existence of a 3 -MOLS of order 10 and SOLSSOMs of orders 10 and 14) one of the great open problems in combinatorics, and has challenged mathematicians considerably during the past century. Although Euler was wrong in his conjecture that Graeco-Latin squares only exist for those orders for which he could construct them, he was more accurate in another, more subtle conjecture given in the last line of his crucial 1782 paper:

> "Here, I bring mine to an end on a question that, although is of little use itself, has led us to some observations as important for the doctrine of combinatorics as for the general theory of magic squares." [52]

[^2]
### 1.2 Problem statement

In the theory of combinatorics three important questions arise from the study of any combinatorial design, namely the question of existence (deciding whether a design can be found), the design methods of construction (determining how a design may be constructed) and the process of design enumeration (counting in how many different ways a design can be constructed). As may be expected, these questions do not always have trivial answers, and often remain unanswered for long periods of time.
In this dissertation these three questions are addressed in the context of three special classes of orthogonal Latin squares, namely SOLS, SOLSSOMs, and $k$-MOLS. Answers to the question of construction are reviewed for these designs from the literature, while the enumeration question for SOLS and $k$-MOLS of orders strictly less than 10 has only been partially resolved in the literature, and not at all for SOLSSOMs. A number of subclasses of SOLS that have previously not been enumerated are therefore enumerated in this dissertation, and enumeration results are also given for SOLS of order 10. Various subclasses of SOLSSOMs up to and including order 10 are enumerated as well, the numbers of which were previously unknown. Finally, various classes of $k$-MOLS up to and including order 8 are enumerated for $2 \leq k \leq 7$, of which $k=2$ is the only case where the results have previously been established.
Finally, the question of existence has been resolved completely for SOLS, but not for SOLSSOMs and $k$-MOLS. It was previously still unknown whether SOLSSOMs of orders 10 and 14 exist, and in this dissertation one of these orders, namely order 10, is completely resolved in that it is established that no SOLSSOM of order 10 exists. This existence question is related to the celebrated question of whether a 3 -MOLS of order 10 exists. A new necessary condition for this latter existence question is put forward, namely that such a set cannot contain a SOLS and its transpose.

### 1.3 Scope and objectives

The following objectives are pursued in this dissertation:

I To illustrate the importance and benefit of using Latin square designs in the scheduling of balanced sports tournaments.

II To review a selection of construction methods from the literature for special classes of orthogonal Latin squares.

III To document a number of transformations which may be applied to Latin squares without destroying their defining property.

IV To propose a general notation for describing any equivalence class of Latin squares induced by the group action of any transformation documented in Objective III.

V To design algorithms using the general notation mentioned in Objective IV for the purpose of enumerating equivalence classes of any type of Latin square.

VI To implement the algorithms mentioned in Objective V for the purpose of enumerating various subclasses of SOLS, SOLSSOMs and $k$-MOLS of small orders.

VII To resolve the question of the existence of a SOLSSOM of order 10.
VIII To contribute towards answering the celebrated question of whether a 3-MOLS of order 10 exists.

Combinatorial designs other than Latin squares are, for the most part, considered to fall beyond the scope of this dissertation. Except for a small number of special cases where certain designs may be used to better illustrate notions that are important in the study of Latin squares, structures such as block designs, triple systems, transversal designs and frame-type SOLSSOMs (although useful in the construction of Latin squares) are not considered. Furthermore, applications of Latin squares in areas other than sports tournament scheduling are not discussed in this dissertation, and the same holds for applications of other combinatorial designs to sports tournament scheduling.

### 1.4 Thesis organisation

The second chapter of this dissertation lays down fundamental groundwork from the theory of Latin squares. A number of basic definitions of various notions in the theory of Latin squares are provided in the first section, while the important notion of orthogonality between Latin squares is introduced in the second section. The notion of changing the structure of a Latin square or a set of orthogonal Latin squares via some operation is considered in the third section. In the fourth section a number of recursive constructions of Latin squares are given, and these recursive constructions are utilised for the purpose of reviewing constructions of sets of orthogonal Latin squares.
In the third chapter the importance of Latin squares in applications to sports tournament scheduling is highlighted. The first section of this chapter contains a brief overview of the application of Latin squares to the scheduling of sports tournaments, and the usefulness of utilising Latin squares for this purpose is illustrated. The second and third section each contains an application of special sets of two and three mutually orthogonal Latin squares to the scheduling of mixed doubles sports tournaments. These sections also contain a number of constructions of these designs for various orders.

In the fourth chapter a methodology is presented for the enumeration of subclasses of Latin squares in general. The first section of this chapter illustrates the use of operations on Latin squares to define group actions on Latin squares, which in turn give rise to equivalence classes of Latin squares. The second section contains a brief historical account of the problem of enumerating Latin squares, and in the third section a backtracking tree-search algorithm is presented for the purpose of enumerating Latin square subclasses. In the fourth section it is shown how graph theoretical methods may be utilised in order to determine the so-called autotransformation group of a Latin square, whereas in the fifth section it is illustrated how these groups may be used to provide theoretical counts of Latin squares and Latin square subclasses.
The results of an implementation of the enumeration methodology in Chapter 4, specifically for the purpose of enumerating self-orthogonal Latin squares, self-orthogonal Latin squares with symmetric orthogonal mates and ordered sets of mutually orthogonal Latin squares, are then presented in the fifth chapter. The numbers of the various classes enumerated are given, as well as additional information which may facilitate future validation of the results.

The dissertation closes, in Chapter 6, with a summary of the work contained therein, an appraisal of the contributions of the dissertation as well as a discussion on possibilities for future work in the area of Latin square equivalence class enumeration.

## CHAPTER 2

## Latin squares

Contents
2.1 Basic definitions ..... 9
2.2 Orthogonality between Latin squares ..... 14
2.3 Operations on Latin squares ..... 16
2.4 Recursive constructions of Latin squares ..... 22
2.5 Chapter summary ..... 28

In this chapter a basic introductory background to the design theoretic subfield of Latin squares is presented. In $\S 2.1$ a number of basic definitions of various aspects of Latin squares, such as subsquares, transversals and universals, are introduced and the connection between Latin squares and quasigroups is highlighted. In $\S 2.2$ the notion of orthogonal Latin squares is discussed. This notion is considered one of the most important and useful (in a practical application sense) notions in the theory of Latin squares, and some definitions and constructions of orthogonal Latin squares and sets of orthogonal Latin squares are given. In $\S 2.3$ transformations of Latin squares are considered, and a number of operations are presented which may be applied to a Latin square in order to obtain another Latin square as a result. The notions in this section play an important role in the classification of Latin squares, as will be discussed later in this dissertation. In $\S 2.4$ the possibility of building larger Latin squares from smaller ones is discussed together with a number of methods for achieving such constructions, and some applications to the construction of sets of orthogonal Latin squares are considered.

### 2.1 Basic definitions

A permutation may be viewed as a one-dimensional array in which no two symbols are equal (see $\S$ A.1). A natural extension of a permutation is to consider a two-dimensional array with a similar property; in other words, a two-dimensional array in which each row and column is a permutation. Laywine and Mullin [88, p. 3] noted that "a Latin square may be thought of as a two-dimensional analogue of a permutation." A formal definition of a Latin square follows.

Definition 2.1.1 Given a set $S$ of cardinality $n$, a Latin square of order $n$ is an $n \times n$ array in which each row and each column represents a permutation of the elements of $S$.

In simpler terms a Latin square of order $n$ is an array or matrix containing as entries $n$ symbols in such a way that each symbol is contained exactly once within each row and each column, a definition commonly found in the literature on Latin squares (see Colbourn et al. [38, p. 135] and Dénes and Keedwell [41, p. 15]). This defining property of a Latin square has been referred to as the latinness of the square (see Dénes and Keedwell [41, p. 439]). The $8 \times 8$ array

$$
\boldsymbol{L}_{2.1}=\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 0 \\
2 & 3 & 4 & 5 & 6 & 7 & 0 & 1 \\
3 & 4 & 5 & 6 & 7 & 0 & 1 & 2 \\
4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\
5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 \\
6 & 7 & 0 & 1 & 2 & 3 & 4 & 5 \\
7 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}\right]
$$

is an example of a Latin square of order 8 .
Let $S(\boldsymbol{L}), R(\boldsymbol{L})$ and $C(\boldsymbol{L})$ denote respectively the symbol set, row indexing set and column indexing set of a Latin square $\boldsymbol{L}$ such that, for any $i \in R(\boldsymbol{L})$ and $j \in C(\boldsymbol{L})$, the $(i, j)$-th element of $\boldsymbol{L}$ is denoted by $\boldsymbol{L}(i, j) \in S(\boldsymbol{L})$. The set of entries $\left\{(k+i, i) \mid i \in \mathbb{Z}_{n}\right\}$ in a Latin square $\boldsymbol{L}$ of order $n$ is called the $k$-th diagonal of $\boldsymbol{L}$, and the 0 -th diagonal is referred to as the main diagonal. The transpose of a Latin square $\boldsymbol{L}$ is again a Latin square, denoted by $\boldsymbol{L}^{T}$, for which $\boldsymbol{L}^{T}(i, j)=\boldsymbol{L}(j, i)$. Throughout this dissertation it is assumed that $R(\boldsymbol{L})=C(\boldsymbol{L})=S(\boldsymbol{L})=$ $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ for any Latin square $\boldsymbol{L}$ of order $n$. Whenever a sequence of $n$ distinct entries in a Latin square contains its elements in the order $0,1, \ldots, n-1$, this sequence is said to be in natural order.
Any row $i$ of a Latin square $\boldsymbol{L}$ of order $n$ may be viewed as a permutation of the form

$$
\left(\begin{array}{cccc}
0 & 1 & \ldots & n-1 \\
\boldsymbol{L}(i, 0) & \boldsymbol{L}(i, 1) & \ldots & \boldsymbol{L}(i, n-1)
\end{array}\right) .
$$

The $i$-th row of a Latin square $\boldsymbol{L}$ is henceforth denoted by $\boldsymbol{L}(i)$. Therefore $\boldsymbol{L}(i, j)$ is the image of the element $j$ under the permutation $\boldsymbol{L}(i)$. Similarly, the $j$-th column is denoted by $\boldsymbol{L}^{T}(j)$. The following theorem establishes the close connection between Latin squares and quasigroups ${ }^{1}$.

Theorem 2.1.1 ([41], Theorem 1.1.1) The Cayley table of a quasigroup is a Latin square.

Proof: Assume some element $a$ appears twice in row $i$ of the Cayley table of a quasigroup, say in columns $j$ and $k$. Then $i \circ j=a$ and $i \circ k=a$, contradicting the fact that $i \circ x=a$ has a unique solution $x$ for $i$ and $a$ known. Therefore each element appears only once in each row of the Cayley table of a quasigroup. A similar argument shows that each element appears only once in each column of the Cayley table of a quasigroup.

Any Latin square $\boldsymbol{L}$ may also be used to define a quasigroup, which is henceforth referred to as the underlying quasigroup of $\boldsymbol{L}$. Define on the set $\mathbb{Z}_{n}$ the operation ' $o$ ' by writing $a \circ b=c$ if $\boldsymbol{L}(a, b)=c$. Since $\boldsymbol{L}$ is a Latin square, the equation $a \circ b=c$ always has a unique solution, given any two of $a, b$ and $c$ in $\mathbb{Z}_{n}$. Hence $\left(\mathbb{Z}_{n}, \circ\right)$ forms a quasigroup.

[^3]It may readily be seen that each row of $\boldsymbol{L}_{2.1}$ is a shift to the left by one entry of the row preceding it. This gives a simple construction for a Latin square of any order, leading to the following existence result.

Theorem 2.1.2 A Latin square of order $n$ exists for any positive integer $n$.
Proof: Let $\boldsymbol{L}$ be the Cayley table of the group $\left(\mathbb{Z}_{n},+\right)$ as discussed in $\S$ A.2.1. Then, by Theorem 2.1.1, $\boldsymbol{L}$ is a Latin square. The group $\left(\mathbb{Z}_{n},+\right)$ clearly exists for all $n \in \mathbb{N}$.

A similar proof of Theorem 2.1.2 may be found in [88, Theorem 1.1]. In the Cayley table of $\left(\mathbb{Z}_{n},+\right)$ the first row is in natural order since it is the addition of 0 to all elements of $\mathbb{Z}_{n}$, and each row is a shift to the left by one position of the row preceding it. This is true since $\boldsymbol{L}(i+1, j)=i+1+j=\boldsymbol{L}(i, j)+1(\bmod n)$. Hence $\boldsymbol{L}_{2.1}$ is the Cayley table of the group $\left(\mathbb{Z}_{8},+\right)$. The Cayley table of $\left(\mathbb{Z}_{n},+\right)$ has the special property that the element in row $i$ and column $j$ of the table is also found in row $j$ and column $i$, and a formal definition of a Latin square with this property follows.

Definition 2.1.2 (Symmetric Latin square) A Latin square $\boldsymbol{L}$ is symmetric if $\boldsymbol{L}(i, j)=$ $\boldsymbol{L}(j, i)$ for all $i, j \in \mathbb{Z}_{n}$.

The Latin square $\boldsymbol{L}_{2.1}$ is therefore an example of a symmetric Latin square. The following theorem shows that a symmetric Latin square of any order exists.

Theorem 2.1.3 A symmetric Latin square of order $n$ exists for any positive integer $n$.
Proof: Since $a+b=b+a(\bmod n)$ for any $a, b \in \mathbb{Z}_{n}$, the Cayley table of $\left(\mathbb{Z}_{n},+\right)$ is a symmetric Latin square.

The fact that the first row of the Cayley table of the group $\left(\mathbb{Z}_{n},+\right)$ is in natural order implies that the first column is also in natural order. A formal definition of this type of Latin square follows.

Definition 2.1.3 (Reduced Latin square) A Latin square $\boldsymbol{L}$ of order $n$ is reduced (or in standard form) if $\boldsymbol{L}(0, i)=i=\boldsymbol{L}(i, 0)$ for all $i \in \mathbb{Z}_{n}$. Equivalently, the first row and first column of a reduced Latin square is in natural order, or $\boldsymbol{L}(i)=\boldsymbol{L}^{T}(i)=e$ (where $e$ is the identity permutation).

The notion of a reduced Latin square is commonly found in books on (or in chapters on) Latin squares (see, for instance, Colbourn et al. [38, p. 135] and Laywine and Mullin [88, p. 4]).
Since $\boldsymbol{L}(0, i)=i=\boldsymbol{L}(i, 0)$ for a reduced Latin square $\boldsymbol{L}$, the identities $0 \circ i=i=i \circ 0$ hold in the underlying quasigroup of $\boldsymbol{L}$, and 0 is consequently the identity element of the quasigroup. Hence the underlying quasigroup of a reduced Latin square is a loop, and is henceforth referred to as the underlying loop of the reduced Latin square. The existence of reduced Latin squares of all orders is guaranteed by the following corollary, which follows directly from Theorem 2.1.3.

Corollary 2.1.1 A reduced Latin square of order $n$ exists for any positive integer $n$.

It may also occur that a Latin square contains smaller Latin squares among some of its entries. This is similar to the notion of a subgroup of a group, and the definition below may also be found in Dénes and Keedwell [42, p. 102].

Definition 2.1.4 (Subsquare) If $R$ and $C$ are two subsets of $\mathbb{Z}_{n}$ both of cardinality $m$ for any $n, m \in \mathbb{N}$, then the set of entries $R \times C$ forms an $m \times m$ subsquare of a Latin square $\boldsymbol{L}$ if the set $\{\boldsymbol{L}(i, j) \mid(i, j) \in R \times C\}$ contains $m$ distinct elements of $\mathbb{Z}_{n}$.

Since the rows and columns of an $m \times m$ subsquare are taken from a Latin square, and since the subsquare can only contain $m$ distinct symbols, it is itself a Latin square. For example, the Latin square
$\left[\begin{array}{lllllll}0 & 5 & 3 & 6 & 1 & 4 & 2 \\ 2 & 1 & \mathbf{6} & 3 & \mathbf{4} & 0 & \mathbf{5} \\ 1 & 2 & \mathbf{5} & 0 & \mathbf{6} & 3 & \mathbf{4} \\ 4 & 6 & 1 & 5 & 3 & 2 & 0 \\ 5 & 3 & 0 & 4 & 2 & 6 & 1 \\ 3 & 0 & \mathbf{4} & 2 & \mathbf{5} & 1 & \mathbf{6} \\ 6 & 4 & 2 & 1 & 0 & 5 & 3\end{array}\right]$
of order 7 contains a subsquare of order 3 on the symbols $\{4,5,6\}$, as shown in boldface.
The following definition is also widely found in the literature on Latin squares. In particular, see Colbourn et al. [38, p. 143].

Definition 2.1.5 (Transversal) $A$ transversal $V$ in a Latin square $\boldsymbol{L}$ is a set of $n$ distinct ordered pairs $(i, j) \in \mathbb{Z}_{n}^{2}$, such that $(i, j)=(i, k)$ implies $j=k,(i, j)=(k, j)$ implies $i=k$ and $\boldsymbol{L}(i, j) \neq \boldsymbol{L}(k, \ell)$ for two distinct elements $(i, j)$ and $(k, \ell)$ of $V$.

Hence a transversal consists of $n$ entries in a Latin square, no two of which contain the same element and no two of which appear in the same row or column. Transversals in Latin squares are equivalent to complete mappings in quasigroups. A complete mapping of a quasigroup ( $G, \circ$ ) is a bijection $\alpha$ from $G$ to itself such that the mapping $\beta$, where $\beta(g)=g \circ \alpha(g)$ for any $g \in G$, is also a bijection from $G$ to itself. It is easy to verify that the set $\{(g, \alpha(g)) \mid g \in G\}$ of entries in the Cayley table of $(G, \circ)$ satisfies all the properties of a transversal.

An example of a transversal in the Latin square

$$
\boldsymbol{L}_{2.2}=\left[\begin{array}{lllll}
\mathbf{0} & 1 & 2 & 3 & 4 \\
4 & 0 & \mathbf{1} & 2 & 3 \\
3 & 4 & 0 & 1 & \mathbf{2} \\
2 & 3 & 4 & 0 & 1 \\
1 & 2 & 3 & \mathbf{4} & 0
\end{array}\right]
$$

is $V=\{(0,0),(1,2),(2,4),(3,1),(4,3)\}$, as shown above in boldface.
Consider the set of entries $V^{\prime}=\{(0,1),(1,2),(2,3),(3,4),(4,0)\}$ in $\boldsymbol{L}_{2.2}$. The set $V^{\prime}$ satisfies all the properties of a transversal, except for the fact that each entry contains the element 1. A formal definition of the notion of such a set follows.

Definition 2.1.6 (Universal) $A$ universal $U$ in a Latin square $\boldsymbol{L}$ is a set of $n$ distinct ordered pairs $(i, j) \in \mathbb{Z}_{n}^{2}$, such that $(i, j)=(i, k)$ implies $j=k,(i, j)=(k, j)$ implies $i=k$ and $\boldsymbol{L}(i, j)=\boldsymbol{L}(k, \ell)$ for all $(i, j),(k, \ell) \in U$.

Hence the universal of an element $k$ in a Latin square $\boldsymbol{L}$ is simply all the entries in $\boldsymbol{L}$ that contain $k$. The notion of a universal is a novel contribution of this dissertation; for the best knowledge of the author no such notion exists in the literature on Latin squares. As will be shown later in this dissertation, the notion of a universal may be used very effectively in the enumeration of equivalence classes of Latin squares.
Transversals and universals may also be written in permutation form. The transversal permutation of a transversal $V$ is a permutation $v$ such that $v(i)=j$ if $(i, j) \in V$. Similarly, the universal permutation of an element $k$ in a Latin square $\boldsymbol{L}$ is a permutation, denoted by $u_{k}$, for which $u_{k}(i)=j$ if $\boldsymbol{L}(i, j)=k$.
It may be noted that a Latin square of order $n$ has exactly $n$ distinct universals, all $n$ of which are disjoint. A Latin square may, however, contain more than $n$ distinct transversals, any number of which may intersect. Consider, for instance, the Latin squares

$$
\boldsymbol{L}_{2.3}=\left[\begin{array}{cccccccccc}
\mathbf{0} & 1 & \mathbf{2} & 3 & 4 & \mathbf{5} & 6 & \mathbf{7} & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
\mathbf{2} & 3 & 4 & 5 & 6 & \mathbf{7} & 8 & 9 & 0 & 1 \\
3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 \\
4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 \\
\mathbf{5} & 6 & \mathbf{7} & 8 & 9 & \mathbf{0} & 1 & \mathbf{2} & 3 & 4 \\
6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 \\
\mathbf{7} & 8 & 9 & 0 & 1 & \mathbf{2} & 3 & 4 & 5 & 6 \\
8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}\right] \quad \text { and } \quad \boldsymbol{L}_{2.4}=\left[\begin{array}{llllllllll}
\mathbf{5} & 1 & \mathbf{7} & 3 & 4 & \mathbf{0} & 6 & \mathbf{2} & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
\mathbf{7} & 3 & 4 & 5 & 6 & \mathbf{2} & 8 & 9 & 0 & 1 \\
3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 \\
4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 \\
\mathbf{0} & 6 & \mathbf{2} & 8 & 9 & \mathbf{5} & 1 & \mathbf{7} & 3 & 4 \\
6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 \\
\mathbf{2} & 8 & 9 & 0 & 1 & \mathbf{7} & 3 & 4 & 5 & 6 \\
8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}\right]
$$

of order 10. Euler [52] gave a simple proof of the fact that $\boldsymbol{L}_{2.3}$ (and, in fact, any Latin square which is the Cayley table of the group $\left(\mathbb{Z}_{2 n},+\right)$ for any $n \in \mathbb{N}$ ) does not contain any transversals, while Parker [116] showed that by simply rotating the elements of a number of $2 \times 2$ subsquares of $\boldsymbol{L}_{2.3}$ (namely a subsquare containing 0 and 5 and two subsquares containing 2 and 7 , as shown in boldface), the Latin square $\boldsymbol{L}_{2.4}$ may be produced which contains 5504 transversals. Transversals play an important part in orthogonality between Latin squares, as will be explained later in this dissertation.

A quasigroup satisfying the identity $a \circ a=a$ has the property that, if its Cayley table is bordered in natural order, the main diagonal of its Cayley table is in natural order. A formal definition of the notion of a Latin square with such an underlying quasigroup is given below and is also commonly found in literature on Latin squares (see, for instance, Colbourn et al. [38, p. 136]).

Definition 2.1.7 (Idempotent Latin square) A Latin square $\boldsymbol{L}$ is idempotent if $\boldsymbol{L}(i, i)=i$ for all $i \in \mathbb{Z}_{n}$, or equivalently if the main diagonal of the Latin square is a transversal in natural order.

For example, the Latin square

$$
\left[\begin{array}{lllllll}
0 & 4 & 1 & 5 & 2 & 6 & 3 \\
4 & 1 & 5 & 2 & 6 & 3 & 0 \\
1 & 5 & 2 & 6 & 3 & 0 & 4 \\
5 & 2 & 6 & 3 & 0 & 4 & 1 \\
2 & 6 & 3 & 0 & 4 & 1 & 5 \\
6 & 3 & 0 & 4 & 1 & 5 & 2 \\
3 & 0 & 4 & 1 & 5 & 2 & 6
\end{array}\right]
$$

is idempotent. In fact, let $\left(\mathbb{Z}_{2 m+1}, \odot\right)$ be a quasigroup where $\odot$ is defined as

$$
a \odot b=(m+1)(a+b)(\bmod 2 m+1)
$$

for $a, b \in \mathbb{Z}_{2 m+1}$ and $m \in \mathbb{N}$. Then, for any $a \in \mathbb{Z}_{2 m+1}$,

$$
a \odot a=(m+1) 2 a=(2 m+1+1) a=a(\bmod 2 m+1),
$$

and hence the Cayley table of $\left(\mathbb{Z}_{2 m+1}, \odot\right)$ is an idempotent Latin square (the idempotent Latin square above is the Cayley table of $\left.\left(\mathbb{Z}_{7}, \odot\right)\right)$. If the Cayley table of a quasigroup is an idempotent Latin square, then the quasigroup is also said to be idempotent. It will be shown later in this chapter that an idempotent Latin square exists for any order $n \neq 2$.

### 2.2 Orthogonality between Latin squares

A notion in the theory of Latin squares which has given rise to extremely challenging problems, as well as a number of useful applications in various fields, is that of orthogonality between Latin squares. In fact, as noted in §1.1, Latin squares were first studied by Euler with the notion of orthogonality in mind. The following definition may be found in Colbourn et al. [38, p. 160] and Dénes and Keedwell [41, p. 154].

Definition 2.2.1 (Orthogonality) Two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are orthogonal if $\boldsymbol{L}(i, j)=$ $\boldsymbol{L}(k, \ell)$ and $\boldsymbol{L}^{\prime}(i, j)=\boldsymbol{L}^{\prime}(k, \ell)$ imply that $i=k$ and $j=\ell$ for all $i, j, k, \ell \in \mathbb{Z}_{n}$, in which case $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are called orthogonal mates of one another.

In other words, two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are orthogonal if the ordered pair $\left(\boldsymbol{L}(i, j), \boldsymbol{L}^{\prime}(i, j)\right)$ is unique as $i$ and $j$ vary over $\mathbb{Z}_{n}$. Furthermore, if $U$ is a universal in $\boldsymbol{L}$ and $(i, j),(k, \ell) \in U$, then $\boldsymbol{L}^{\prime}(i, j)=\boldsymbol{L}^{\prime}(k, \ell)$ implies that $i=k$ and $j=\ell$ (by definition), and therefore $U$ represents a transversal in $\boldsymbol{L}^{\prime}$. Each universal in $\boldsymbol{L}$ is therefore associated with a transversal in $\boldsymbol{L}^{\prime}$, and it follows that a Latin square has an orthogonal mate if and only if it consists of $n$ transversals that are pairwise disjoint. The Latin squares

$$
\boldsymbol{L}_{2.5}=\left[\begin{array}{llll}
0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 \\
3 & 0 & 2 & 1 \\
2 & 1 & 3 & 0
\end{array}\right] \quad \text { and } \quad \boldsymbol{L}_{2.6}=\left[\begin{array}{cccc}
0 & 3 & 2 & 1 \\
3 & 0 & 1 & 2 \\
1 & 2 & 3 & 0 \\
2 & 1 & 0 & 3
\end{array}\right]
$$

are, for example, orthogonal. Notice that the set of entries $\{(0,0),(1,2),(2,1),(3,3)\}$ is a universal (of the element 0) in $\boldsymbol{L}_{2.5}$ and a transversal in $\boldsymbol{L}_{2.6}$, and the same is true for the other three universals of $\boldsymbol{L}_{2.5}$. The Latin square

$$
\boldsymbol{L}_{2.7}=\left[\begin{array}{lllll}
0 & 3 & 2 & 1 \\
3 & 0 & 1 & 2 \\
1 & 2 & 0 & 3 \\
2 & 1 & 3 & 0
\end{array}\right]
$$

is, however, not orthogonal to $\boldsymbol{L}_{2.5}$ since, whereas $\{(0,0),(1,2),(2,1),(3,3)\}$ is a universal in $\boldsymbol{L}_{2.5}$, it is not a transversal in $\boldsymbol{L}_{2.7}$.
It is also often useful to consider a set $\left\{\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right\}$ of $k$ Latin squares of order $n$ in which $\boldsymbol{L}_{i}$ and $\boldsymbol{L}_{j}$ are orthogonal for all $i, j \in \mathbb{Z}_{k}$, which is referred to as a set of $k$ mutually orthogonal Latin squares (MOLS) of order $n$ (see, for instance, Colbourn et al. [38, Definition 3.3]). For reasons that will be made clear later in this dissertation, it will be more convenient to define a set of MOLS to be ordered. In other words, an ordered $k$-tuple ( $\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}$ ) of mutually
orthogonal Latin squares of order $n$ will henceforth be considered instead of an unordered set, and such a tuple will be referred to as a $k$-MOLS of order $n$.

The next theorem provides an upper bound on the cardinality of a $k$-MOLS of order $n$.

Theorem 2.2.1 (Theorem 5.1.5, [41]) A $k$-MOLS of order $n$ can contain no more than $n-1$ Latin squares.

Proof: Assume, to the contrary, that $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{n-1}\right)$ is an $n$-MOLS of order $n$. Note, for any $\boldsymbol{L}_{i}$ and $\boldsymbol{L}_{j}$ where $i, j \in \mathbb{Z}_{n}$ and $i \neq j$, that $\boldsymbol{L}_{i}(1,0)=\boldsymbol{L}_{i}(0, k)$ and $\boldsymbol{L}_{j}(1,0)=\boldsymbol{L}_{j}(0, \ell)$ necessarily imply that $k \neq \ell$, since otherwise $\left(\boldsymbol{L}_{i}(1,0), \boldsymbol{L}_{j}(1,0)\right)=\left(\boldsymbol{L}_{i}(0, k), \boldsymbol{L}_{j}(0, k)\right)$, which contradicts the orthogonality of $\boldsymbol{L}_{i}$ and $\boldsymbol{L}_{j}$. Since there are $n$ Latin squares in this set, $\boldsymbol{L}_{i}(1,0)=\boldsymbol{L}_{i}(0,0)$ must follow for some $i \in \mathbb{Z}_{n}$, which contradicts the latinness of $\boldsymbol{L}_{i}$.

The following theorem (which utilises the notion of a finite field ${ }^{2}$ ) states that the upper bound given in Theorem 2.2 .1 is attainable for certain orders, in which case the set of MOLS is called a complete set of MOLS. This well-known theorem was originally established by Bose [21] in 1938, and may be found in most textbooks on the subjects of combinatorics, combinatorial designs and Latin squares (see, for instance, Grimaldi [67, Theorem 17.16], Wallis [142, Corollary 10.3.1] and Dénes and Keedwell [41, Theorem 5.2.3]).

Theorem 2.2.2 An $(n-1)-M O L S$ of order $n$ exists if $n=p^{r}$, where $p$ is prime and $r \in \mathbb{N}$.
Proof: Let $(G,+, \times)=G F\left(p^{r}\right)$ denote the finite field of order $p^{r}$ where $p$ is prime and $r \in \mathbb{N}$. For any $\lambda \in G \backslash\{0\}$ (where 0 is the additive identity), it is easy to see that the equation $a+\lambda b=c$ always has a unique solution, given any two of $a, b$ and $c$, and that a Latin square $\boldsymbol{L}_{\lambda}$ may be defined such that $\boldsymbol{L}_{\lambda}(i, j)=i+\lambda j$ for each $i, j \in G$. Furthermore, let

$$
\left(\boldsymbol{L}_{\lambda}(i, j), \boldsymbol{L}_{\mu}(i, j)\right)=\left(\boldsymbol{L}_{\lambda}(k, \ell), \boldsymbol{L}_{\mu}(k, \ell)\right)
$$

where $\lambda, \mu, i, j, k, \ell \in G$ and $\lambda \neq \mu$. Then $i+\lambda j=k+\lambda \ell$ and $(i-k)+\lambda(j-\ell)=0$, and similarly $(i-k)+\mu(j-\ell)=0$. Hence

$$
\lambda(j-\ell)=\mu(j-\ell)
$$

and since $\lambda \neq \mu$, it must hold that $j=\ell$. Since $(i-k)+\lambda(j-\ell)=0$, it follows that $i=k$, and therefore that $\boldsymbol{L}_{\lambda}$ and $\boldsymbol{L}_{\mu}$ are orthogonal. Hence the $p^{r}-1$ elements of $G \backslash\{0\}$ give $p^{r}-1$ Latin squares, any two of which are orthogonal.

For example, in $\left[67\right.$, pp. 846-847] it is shown that $\mathbb{Z}_{2}[x] /\left(1+x+x^{2}\right)=\{0,1, x, 1+x\}$ forms the finite field $G F(4)$. The three Latin squares of order 4 obtained by the method of Theorem 2.2.2 are

$$
\left[\begin{array}{cccc}
0 & 1 & x & 1+x \\
1 & 0 & 1+x & x \\
x & 1+x & 0 & 1 \\
1+x & x & 1 & 0
\end{array}\right]
$$

[^4]where the entry $(i, j)$ contains $i+j$,
\[

\left[$$
\begin{array}{cccc}
0 & x & 1+x & 1 \\
1 & 1+x & x & 0 \\
x & 0 & 1 & 1+x \\
1+x & 1 & 0 & x
\end{array}
$$\right],
\]

where the entry $(i, j)$ contains $i+x j$, and

$$
\left[\begin{array}{cccc}
0 & 1+x & 1 & x \\
1 & x & 0 & 1+x \\
x & 1 & 1+x & 0 \\
1+x & 0 & x & 1
\end{array}\right],
$$

where the entry $(i, j)$ contains $i+(1+x) j$. It may be verified that these three Latin squares form a 3-MOLS of order 4. In what follows the Latin square containing $i+\lambda j$ in row $i$ and column $j$ for $i, j, \lambda \in G F(n)$ is referred to as the $\lambda$-Latin square of $G F(n)$.

### 2.3 Operations on Latin squares

An aspect of Latin squares that has to be addressed before embarking on a search for Latin squares exhibiting certain properties is the question of when two Latin squares are different, and in what sense they are different. First of all, two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are equal, denoted by $\boldsymbol{L}=\boldsymbol{L}^{\prime}$, if and only if, for every $i, j \in \mathbb{Z}_{n}, \boldsymbol{L}(i, j)=\boldsymbol{L}^{\prime}(i, j)$; otherwise they are distinct. Consider, however, the distinct Latin squares

$$
\boldsymbol{L}_{2.8}=\left[\begin{array}{ccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right] \quad \text { and } \quad \boldsymbol{L}_{2.9}=\left[\begin{array}{ccc}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta
\end{array}\right]
$$

Upon inspection it may immediately be seen that these Latin squares essentially have the same structures; they are only represented by different symbol sets. It follows that any symbol change leaves the structure or some underlying properties of a Latin square unchanged. The Latin square

$$
\boldsymbol{L}_{2.10}=\left[\begin{array}{lll}
b & a & c \\
a & c & b \\
c & b & a
\end{array}\right]
$$

is also essentially the same as $\boldsymbol{L}_{2.8}$ and $\boldsymbol{L}_{2.9} ; a$ may be replaced by $b$ and vice versa to transform $\boldsymbol{L}_{2.10}$ to $\boldsymbol{L}_{2.8}$. Thus a symbol change may also imply a permutation on the symbol set.

Since Latin squares of order $n$ in this dissertation are represented by a single symbol set, namely $\mathbb{Z}_{n}$, the only symbol changes that are considered are permutations on the symbol set, and the symmetric group $S_{n}$ represents all $n$ ! possible permutations that may be performed on the symbol set of a Latin square of order $n$. Similar operations may be performed on the indexing sets of a Latin square as well. The rows or columns of a Latin square may be rearranged in any order according to any of the $n$ ! elements of the symmetric group $S_{n}$. It is easy to see that none of these operations destroys the defining property of a Latin square.

Consider applying a permutation $p$ to the columns of a Latin square $\boldsymbol{L}$ of order $n$ in order to obtain a Latin square $\boldsymbol{L}^{\prime}$. Hence, in the underlying quasigroup of $\boldsymbol{L}$ the operation $i \circ j=k$ becomes $i \circ p(j)=k$. This permutation implies that the column in position $i$ of $\boldsymbol{L}$ moves to position $p(i)$. Equivalently, since $\boldsymbol{L}^{\prime}(i, p(j))=\boldsymbol{L}(i, j)$ for all $i, j \in \mathbb{Z}_{n}, \boldsymbol{L}^{\prime}(i) \circ p=\boldsymbol{L}(i)$ for all $i \in \mathbb{Z}_{n}$. Hence if a permutation $p$ is applied to the columns of a Latin square $\boldsymbol{L}$, then $\boldsymbol{L}(i)$ is
replaced by $\boldsymbol{L}(i) \circ p^{-1}$ for all $i \in \mathbb{Z}_{n}$. Similary, applying $p$ to the rows of $\boldsymbol{L}$ replaces $\boldsymbol{L}^{T}(i)$ by $\boldsymbol{L}^{T}(i) \circ p^{-1}$. If $p$ is applied to the symbol set of $\boldsymbol{L}$, the operation $i \circ j=k$ becomes $i \circ j=p(k)$. Hence the symbol $k$ is replaced by the symbol $p(k)$ in $\boldsymbol{L}$. Also, since $p(\boldsymbol{L}(i, j))=\boldsymbol{L}^{\prime \prime}(i, j)$ for all $i, j \in \mathbb{Z}_{n}$ (where $\boldsymbol{L}^{\prime \prime}$ is the resulting Latin square after $p$ has been applied to the symbols of $\boldsymbol{L}), p \circ \boldsymbol{L}(i)=\boldsymbol{L}^{\prime \prime}(i)$ for all $i \in \mathbb{Z}_{n}$. Hence row $\boldsymbol{L}(i)$ is replaced by $p \circ \boldsymbol{L}(i)$ in this case
For example, consider the Latin square

$$
\boldsymbol{L}_{2.11}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right]
$$

and consider a permutation $p_{r}=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 3 & 3\end{array}\right)$ applied to the rows of $\boldsymbol{L}_{2.11}$, a permutation $p_{c}=\left(\begin{array}{lll}0 & 1 & 2\end{array} 3\right.$ applied to the columns of $\boldsymbol{L}_{2.11}$ and finally a permutation $p_{s}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right]$ set of $\boldsymbol{L}_{2.11}$. The resulting Latin square is

$$
\boldsymbol{L}_{2.12}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0 \\
2 & 3 & 0 & 1 \\
1 & 0 & 3 & 2
\end{array}\right]
$$

Since $p_{r}$ moves the row in position 3 in $\boldsymbol{L}$ to position $0, \boldsymbol{L}_{2.12}(0)=p_{s} \circ \boldsymbol{L}_{2.11}(3) \circ p_{c}^{-1}$. Indeed,

$$
\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2
\end{array}\right) \circ\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0
\end{array}\right) \circ\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
2 & 3 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3
\end{array}\right)
$$

The three permutations applied above may be applied in any order without altering the final outcome of the sequence of operations. This is true since these three permutations replace the triple $\left(i, j, \boldsymbol{L}_{2.11}(i, j)\right)$ with the triple $\left(p_{r}(i), p_{c}(j), p_{s}\left(\boldsymbol{L}_{2.11}\right)\right)$, from which it is clear that they may be applied in any order. Since these three permutations produce a Latin square of order $n$ when applied to a Latin square of the same order, they are collectively an element of the group $S_{n}^{3}$ acting on the set of all Latin squares of order $n$.
Let two permutations, $p$ and $q$, be applied consecutively to the rows of a Latin square $\boldsymbol{L}$. Since the row in position $i$ of $\boldsymbol{L}$ moves to position $p(i)$ and thereafter to position $q(p(i))$, applying $p$ and $q$ to $\boldsymbol{L}$ (in that order) is equivalent to applying $q \circ p$ to $\boldsymbol{L}$. A similar argument shows that the composition of permutations may also be applied to the rows and symbol set of a Latin square instead of applying the permutations individually. Furthermore, consider applying the two permutations $p$ and $p^{-1}$ to a Latin square $\boldsymbol{L}$. This is equivalent to applying $p \circ p^{-1}=e$, the identity permutation, to $\boldsymbol{L}$, leaving $\boldsymbol{L}$ unchanged. Hence each rearrangement of the rows is reversible. Similar arguments deliver the same result for the columns and symbol set of a Latin square.
Row, column and symbol permutations may also be defined for MOLS. For the purpose of defining these operations it is convenient to consider the so-called orthogonal array representation [99] of a Latin square. The following definition may be found in Colbourn et al. [38, Definition 3.5].

Definition 2.3.1 (Orthogonal array) An orthogonal array of strength 2, index 1, degree $k$ and order $n$, denoted by $O A(k, n)$, is a $k \times n^{2}$ array $\boldsymbol{A}$ containing elements from the set $\mathbb{Z}_{n}$ in such a way that any $2 \times n^{2}$ sub-array of $\boldsymbol{A}$ contains no repeated columns.

In what follows, the row and column indices of an $O A(k, n)$ are denoted by $\mathbb{Z}_{k}$ and $\mathbb{Z}_{n^{2}}$ respectively, and the notation $\boldsymbol{A}(i, j)$ is used to denote the entry in row $i$ and column $j$ of an $O A(k, n)$ $\boldsymbol{A}$. An example of an $O A(5,4)$ is

$$
\boldsymbol{A}_{2.1}=\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3 & 1 & 0 & 3 & 2 & 2 & 3 & 0 & 1 & 3 & 2 & 1 & 0 \\
0 & 1 & 2 & 3 & 2 & 3 & 0 & 1 & 3 & 2 & 1 & 0 & 1 & 0 & 3 & 2 \\
0 & 1 & 2 & 3 & 3 & 2 & 1 & 0 & 1 & 0 & 3 & 2 & 2 & 3 & 0 & 1
\end{array}\right]
$$

Since an $O A(k, n)$ has $n^{2}$ columns, and since no two columns of any $2 \times n^{2}$ sub-array are equal, it follows that for every ordered pair $(i, j) \in \mathbb{Z}_{n}^{2}$ and any two rows $a, b \in \mathbb{Z}_{k}$ there exists exactly one column $c \in \mathbb{Z}_{n^{2}}$ such that $\boldsymbol{A}(a, c)=i$ and $\boldsymbol{A}(b, c)=j$. This fact gives rise to the following theorem which establishes the connection between orthogonal Latin squares and orthogonal arrays.

Theorem 2.3.1 $A n O A(k+2, n)$ is equivalent to $a k$-MOLS of order $n$.
Proof: Let $\boldsymbol{A}$ be an $O A(k+2, n)$, and let $\boldsymbol{L}_{\ell}$ be an $n \times n$ array such that $\boldsymbol{L}_{\ell}(\boldsymbol{A}(0, c), \boldsymbol{A}(1, c))=$ $\boldsymbol{A}(\ell+2, c)$ for all $c \in \mathbb{Z}_{n^{2}}$ and $0 \leq \ell \leq k-1$. Since, for any $i, j \in \mathbb{Z}_{n}$, there is only one element $c \in \mathbb{Z}_{n^{2}}$ with the properties that $\boldsymbol{A}(0, c)=i$ and $\boldsymbol{A}(\ell+2, c)=\boldsymbol{L}_{\ell}(i, j)$, the ordered pair $\left(i, \boldsymbol{L}_{\ell}(i, j)\right)$ is unique as $i$ and $j$ vary over $\mathbb{Z}_{n}$. Each element of $\mathbb{Z}_{n}$ therefore appears exactly once in each row of $\boldsymbol{L}_{\ell}$, and it may similarly be shown that each element of $\mathbb{Z}_{n}$ appears exactly once in each column of $\boldsymbol{L}_{\ell}$. Hence $\boldsymbol{L}_{\ell}$ is a Latin square for all $0 \leq \ell \leq k-1$. Furthermore, for any $i, j \in \mathbb{Z}_{n}$ and any $\ell \neq m$, there is only one element $c \in \mathbb{Z}_{n^{2}}$ with the properties that $\boldsymbol{A}(\ell+2, c)=\boldsymbol{L}_{\ell}(i, j)$ and $\boldsymbol{A}(m+2, c)=\boldsymbol{L}_{m}(i, j)$, and hence the ordered pair $\left(\boldsymbol{L}_{\ell}(i, j), \boldsymbol{L}_{m}(i, j)\right)$ is unique as $i$ and $j$ vary over $\mathbb{Z}_{n}$. It therefore follows that $\boldsymbol{L}_{\ell}$ and $\boldsymbol{L}_{m}$ are orthogonal for any $\ell \neq m$, and $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ therefore forms a $k$-MOLS of order $n$.

Given a $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$, let $T\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ henceforth denote the set of tuples $\left(i, j, \boldsymbol{L}_{0}(i, j), \boldsymbol{L}_{1}(i, j), \ldots, \boldsymbol{L}_{k-1}(i, j)\right)$ for all $i, j \in \mathbb{Z}_{n}$. From the proof of Theorem 2.3.1 it is therefore clear that the elements of $T\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ represent the columns of an $O A(k+2, n)$. In the case of a single Latin square $\boldsymbol{L}, T(\boldsymbol{L})$ contains the triples $(i, j, \boldsymbol{L}(i, j))$ for all $i, j \in \mathbb{Z}_{n}$ which represent the columns of an $O A(3, n)$. The $O A(5,4) \boldsymbol{A}_{2.1}$, for example, is equivalent in this way to the 3 -MOLS

$$
\mathcal{M}_{2.1}=\left(\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0 \\
1 & 0 & 3 & 2
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1
\end{array}\right]\right)
$$

of order 4.
It is easy to verify that if a permutation of the elements of $\mathbb{Z}_{n}$ is applied to all the entries in any row of an $O A(k, n)$, then the resulting array is still an orthogonal array. This implies that any $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ may be transformed into another $k$-MOLS of order $n$ by applying $k+2$ permutations, namely one to the rows of $\boldsymbol{L}_{i}$ for all $i \in \mathbb{Z}_{k}$, one to the columns of $\boldsymbol{L}_{i}$ for all $i \in \mathbb{Z}_{k}$, and one to the symbols of each of the $k$ Latin squares individually. Hence the permutations applied to the rows and columns of all Latin squares in a $k$-MOLS of order $n$ must be equal in order to preserve orthogonality between them, while independent permutations may be applied to the symbol sets of the Latin squares without destroying the orthogonality between them.

Consider, for example, applying the permutation $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$ to the rows of the Latin squares in $\mathcal{M}_{2.1}$, the permutation $\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 2 & 3\end{array}\right)$ to the columns, and the permutation $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$ of the last Latin square in the set (in the order in which they are presented in $\mathcal{M}_{2.1}$ ). The resulting 3 -MOLS of order 4 is

$$
\left(\left[\begin{array}{llll}
1 & 3 & 0 & 2 \\
2 & 0 & 3 & 1 \\
3 & 1 & 2 & 0 \\
0 & 2 & 1 & 3
\end{array}\right],\left[\begin{array}{llll}
2 & 0 & 3 & 1 \\
3 & 1 & 2 & 0 \\
1 & 3 & 0 & 2 \\
0 & 2 & 1 & 3
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right]\right)
$$

The fact that independent permutations may be applied to the symbol sets of the Latin squares of a $k$-MOLS provides a useful tool in proving certain basic properties of MOLS, as illustrated by the following result.

Lemma 2.3.1 ([14]) If a $k$-MOLS of order $n$ exists, then $a(k-1)$-MOLS of order $n$ exists in which each Latin square is idempotent.

Proof: Let $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ be a $k$-MOLS of order $n$, and let the rows of all these Latin squares be permuted using one permutation in such a way that $\boldsymbol{L}_{k-1}$ is unipotent ${ }^{3}$. By the property of orthogonality it follows that $\boldsymbol{L}_{i}$ contains a transversal on its main diagonal for all $0 \leq i \leq k-2$, and the desired result follows by applying $k-1$ independent permutations to the symbol sets of $\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-2}$ in such a way that the resulting Latin squares are all idempotent.

Another operation that may be applied to an orthogonal array is to rearrange the rows of the array. It is easy to verify that this does not destroy the defining property of the array, and it corresponds to uniformly applying a single permutation of $\mathbb{Z}_{k+2}$ to each tuple in $T\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ for a $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$. This operation delivers a new set of tuples, $T\left(\boldsymbol{L}_{0}^{\prime}, \boldsymbol{L}_{1}^{\prime}, \ldots, \boldsymbol{L}_{k-1}^{\prime}\right)$ say, which defines a new $k$-MOLS $\left(\boldsymbol{L}_{0}^{\prime}, \boldsymbol{L}_{1}^{\prime}, \ldots, \boldsymbol{L}_{k-1}^{\prime}\right)$ of order $n$. In the case where $k=1$ (i.e. in the case of a single Latin square), the resulting Latin square is known in the literature as a conjugate of the original Latin square (see, for instance, Colbourn et al. [38, p. 135]). The following definition, however, also includes the cases where $1<k<n$.

Definition 2.3.2 (Conjugate) Given a $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$, the resulting $k$-MOLS of order $n$ obtained by uniformly permuting the elements of the tuples $\left(i, j, \boldsymbol{L}_{0}(i, j), \boldsymbol{L}_{1}(i, j), \ldots, \boldsymbol{L}_{k-1}(i, j)\right)$ for all $i, j \in \mathbb{Z}_{n}$ is a conjugate of $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$.

The underlying quasigroup of a conjugate of a Latin square $\boldsymbol{L}$ is a conjugate or parastrophic quasigroup of the underlying quasigroup of $L$ [41, p. 65]. The notion of a conjugate of a Latin square has also been referred to as an adjugate or parastrophe of the Latin square [99].
It is clear, by definition, that a $k$-MOLS of order $n$ has $(k+2)$ ! (not necessarily distinct) conjugates. In what follows, each of the six conjugates of a single Latin square $\boldsymbol{L}$ (i.e. where $k=1$ ) and their relationships with $\boldsymbol{L}$ are treated in detail. Naturally, the identity permutation of $S_{3}$ leaves $T(\boldsymbol{L})$ unchanged, and this conjugate, simply denoted by $\boldsymbol{L}$, is the identity conjugate of $\boldsymbol{L}$.
Consider the permutation $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2\end{array}\right)$ applied to $T(\boldsymbol{L})$. Here the roles of the rows and columns in $\boldsymbol{L}$ are swapped, and hence this conjugate is the transpose of $\boldsymbol{L}$, i.e. $\boldsymbol{L}^{T}$. To see this more

[^5]clearly, note that, since the permutation $\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)$ interchanges the first two elements of the triple $(i, j, \boldsymbol{L}(i, j))$, the conjugate has the property that if $\boldsymbol{L}(i, j)=k$, then $\boldsymbol{L}^{T}(j, i)=k$.
Next consider the permutation $\left(\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right)$ applied to $T(\boldsymbol{L})$. The resulting conjugate of $\boldsymbol{L}$, denoted by $\boldsymbol{L}^{-1}$ (see Dénes and Keedwell [41, p. 125]), has the property that if $\boldsymbol{L}(i, j)=k$, then $\boldsymbol{L}^{-1}(i, k)=j$. Hence if the image of $j$ under the permutation $\boldsymbol{L}(i)$ is $k$, then the image of $k$ under the permutation $\boldsymbol{L}^{-1}(i)$ is $j$, and $\boldsymbol{L}^{-1}(i)=(\boldsymbol{L}(i))^{-1}$ for all $i \in \mathbb{Z}_{n}$. In other words each row in $\boldsymbol{L}^{-1}$ represents the inverse permutation of each row in $\boldsymbol{L}$.
Let $\tau$ henceforth denote the operation of replacing a Latin square by its transpose and let $\iota$ henceforth denote an identity operation leaving a Latin square unchanged. Furthermore, let $\rho$ denote the operation of replacing each row in $\boldsymbol{L}$ by its inverse permutation.
Let the composition $\rho \tau$ denote the operation of first applying $\tau$ and then $\rho$ to a Latin square. It is easy to see that if the operation $\gamma=\tau \rho \tau$ is applied to a Latin square $\boldsymbol{L}$, each column of $\boldsymbol{L}$ is replaced by its inverse permutation. This is equivalent to applying the permutation

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right) \circ\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right) \circ\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 0
\end{array}\right)
$$

to $T(\boldsymbol{L})$, and it delivers a conjugate, denoted by ${ }^{-1} \boldsymbol{L}$. Hence, $\left({ }^{-1} \boldsymbol{L}\right)^{T}(i)=\left(\boldsymbol{L}^{T}(i)\right)^{-1}$, and the operation $\gamma$ therefore replaces each coloumn of a Latin square by its inverse. Note that this is also equivalent to applying the permutation

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right) \circ\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right) \circ\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 0
\end{array}\right)
$$

to $T(\boldsymbol{L})$, hence $\gamma=\tau \rho \tau=\rho \tau \rho$. Furthermore, consider application of the operation $\tau \rho$ to $\boldsymbol{L}$, which is equivalent to applying the permutation

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right) \circ\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right)
$$

to $T(\boldsymbol{L})$. It may easily be verified that $\tau \rho=\rho \gamma$. The conjugate arising from applying $\tau \rho$ to $\boldsymbol{L}$ is simply the transpose of $\boldsymbol{L}^{-1}$, denoted by $\left(\boldsymbol{L}^{-1}\right)^{T}$. Finally, consider application of the operation $\tau \gamma=\rho \tau$ to $\boldsymbol{L}$, which is equivalent to applying the permutation

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right) \circ\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1
\end{array}\right)
$$

to $T(\boldsymbol{L})$. The resulting conjugate is simply the transpose of ${ }^{-1} \boldsymbol{L}$, denoted by $\left({ }^{-1} \boldsymbol{L}\right)^{T}$. In summary, the six conjugates of a Latin square are listed in Table 2.1 together with the corresponding operations (henceforth referred to as the conjugate operations) applied to $\boldsymbol{L}$ and permutations applied to $T(\boldsymbol{L})$ in order to obtain each conjugate.
$\left.\begin{array}{ccccccc}\hline \text { Conjugate } & \boldsymbol{L} & \boldsymbol{L}^{T} & \boldsymbol{L}^{-1} & \left(\boldsymbol{L}^{-1}\right)^{T} & { }^{-1} \boldsymbol{L} & \left({ }^{-1} \boldsymbol{L}\right)^{T} \\ \hline \text { Operation } & \iota & \tau & \rho & \tau \rho & \gamma & \tau \gamma \\ \text { Permutation } & \left(\begin{array}{ll}0 & 1\end{array} 2\right. \\ 0 & 1 & 2\end{array}\right) ~\left(\begin{array}{cc}0 & 1\end{array} 2\right.$

TABLE 2.1: The six conjugates of a Latin square $\boldsymbol{L}$ together with the operations applied to $\boldsymbol{L}$ and the permutations applied to $T(\boldsymbol{L})$ by which they are formed.

Consider, for example, the six conjugates of the Latin square

$$
\boldsymbol{L}_{2.13}=\left[\begin{array}{llll}
0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 \\
3 & 0 & 2 & 1 \\
2 & 1 & 3 & 0
\end{array}\right]
$$

which are given by

$$
\begin{array}{cc}
\boldsymbol{L}_{2.13}=\left[\begin{array}{llll}
0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 \\
3 & 0 & 2 & 1 \\
2 & 1 & 3 & 0
\end{array}\right], & \boldsymbol{L}_{2.13}^{T}=\left[\begin{array}{llll}
0 & 1 & 3 & 2 \\
3 & 2 & 0 & 1 \\
1 & 0 & 2 & 3 \\
2 & 3 & 1 & 0
\end{array}\right], \\
\boldsymbol{L}_{2.13}^{-1}=\left[\begin{array}{llll}
0 & 2 & 3 & 1 \\
2 & 0 & 1 & 3 \\
1 & 3 & 2 & 0 \\
3 & 1 & 0 & 2
\end{array}\right], & \left(\boldsymbol{L}_{2.13}^{-1}\right)^{T}=\left[\begin{array}{llll}
0 & 2 & 1 & 3 \\
2 & 0 & 3 & 1 \\
3 & 1 & 2 & 0 \\
1 & 3 & 0 & 2
\end{array}\right], \\
{ }^{-1} \boldsymbol{L}_{2.13}=\left[\begin{array}{llll}
0 & 1 & 3 & 2 \\
2 & 3 & 1 & 0 \\
1 & 0 & 2 & 3 \\
3 & 2 & 0 & 1
\end{array}\right], & \left({ }^{-1} \boldsymbol{L}_{2.13}\right)^{T}=\left[\begin{array}{llll}
0 & 2 & 1 & 3 \\
1 & 3 & 0 & 2 \\
3 & 1 & 2 & 0 \\
2 & 0 & 3 & 1
\end{array}\right] .
\end{array}
$$

It is clear from Table 2.1 and the discussion above that the set $\{\iota, \tau, \rho, \tau \rho, \gamma, \tau \gamma\}$ forms a group isomorphic ${ }^{4}$ to the symmetric group $S_{3}$, and hence to the dihedral group $D_{3}$. The Cayley-table of $D_{3}$, as represented by the set of conjugate operations, is given in Table 2.2.

|  | $\iota$ | $\tau$ | $\rho$ | $\tau \rho$ | $\gamma$ | $\tau \gamma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\iota$ | $\iota$ | $\tau$ | $\rho$ | $\tau \rho$ | $\gamma$ | $\tau \gamma$ |
| $\tau$ | $\tau$ | $\iota$ | $\tau \rho$ | $\rho$ | $\tau \gamma$ | $\gamma$ |
| $\rho$ | $\rho$ | $\tau \gamma$ | $\iota$ | $\gamma$ | $\tau \rho$ | $\tau$ |
| $\tau \rho$ | $\tau \rho$ | $\gamma$ | $\tau$ | $\tau \gamma$ | $\rho$ | $\iota$ |
| $\gamma$ | $\gamma$ | $\tau \rho$ | $\tau \gamma$ | $\tau$ | $\iota$ | $\rho$ |
| $\tau \gamma$ | $\tau \gamma$ | $\rho$ | $\gamma$ | $\iota$ | $\tau$ | $\tau \rho$ |

Table 2.2: The Cayley table of $D_{3}$ as represented by the set $\{\iota, \tau, \rho, \tau \rho, \gamma, \tau \gamma\}$.
It is easy to verify that the non-trivial subgroups of $D_{3}$ are $\{\iota, \rho\},\{\iota, \gamma\},\{\iota, \tau\}$ and $\{\iota, \tau \rho, \tau \gamma\}$ when represented by the set $\{\iota, \tau, \rho, \tau \rho, \gamma, \tau \gamma\}$. As discussed in $\S$ A. 2.2, any single element of this set generates one of these subgroups and by Corollary A.2.1 any two elements from two different subsets generate the entire group $D_{3}$. For instance, if the transformation $\tau \rho$ is used to transform $\boldsymbol{L}$ into $\left(\boldsymbol{L}^{-1}\right)^{T}$, then $\boldsymbol{L}$ may also be transformed either into $\left({ }^{-1} \boldsymbol{L}\right)^{T}$ or into itself, since $\tau \rho$ generates the subgroup $\{\iota, \tau \rho, \tau \gamma\}$. It is also clear by this argument that any collection of the conjugate operations of a Latin square of order $n$ are actions of some subgroup of $D_{3}$ on the set of all Latin squares of order $n$.

Consider applying a permutation $p_{r} \in S_{n}$ to $R(\boldsymbol{L})$ (where $\boldsymbol{L}$ is a Latin square of order $n$ ), a permutation $p_{c} \in S_{n}$ to $C(\boldsymbol{L})$, a permutation $p_{s} \in S_{n}$ to $S(\boldsymbol{L})$ and a permutation $\alpha \in S_{3}$ to $T(\boldsymbol{L})$. Since $\alpha$ actually maps the sets $R(\boldsymbol{L}), C(\boldsymbol{L})$ and $S(\boldsymbol{L})$ to one another and since $p_{r}, p_{c}$ and $p_{c}$ are permutations of these sets respectively, these transformations together form the element $\left(p_{r}, p_{c}, p_{s}, \alpha\right)$ of a group known as the wreath product ${ }^{5}$ of $S_{n}$ and $S_{3}$, denoted by $S_{n} \swarrow S_{3}$. If the case is considered where $\alpha$ is restricted to be an element the subgroup of $D_{3}$ generated by $\tau$, namely $\langle\tau\rangle=\{\iota, \tau\} \cong S_{2}$, then the transformations $p_{r}, p_{c}, p_{s}$ and $\alpha$ form an element of the group $S_{n} \times S_{n} \imath S_{2}$ since $\tau$ only permutes the sets $R(\boldsymbol{L})$ and $C(\boldsymbol{L})$. It is clear that any collection

[^6]of operations applied to a Latin square of order $n$ is a group action on the set of all Latin squares of order $n$.

A similar study can be made of the conjugate operations that may be applied to a $k$-MOLS of order $n$ where $k>1$. For a 2 -MOLS of order $n$, however, there are already $(2+2)!=24$ conjugate operations, and it would be too lengthy to consider each one in detail.
Some interesting observations may still be made in general without considering each conjugate separately. First of all it may be noted that a permutation which interchanges the first two elements of each tuple $\left(i, j, \boldsymbol{L}_{0}(i, j), \boldsymbol{L}_{1}(i, j), \ldots, \boldsymbol{L}_{k-1}(i, j)\right)$ for all $i, j \in \mathbb{Z}_{n}$ for some $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ simply transposes $\boldsymbol{L}_{i}$ for all $i \in \mathbb{Z}_{k}$. Furthermore, a permutation which fixes the first two elements while permuting the last $k$ elements of each tuple $\left(i, j, \boldsymbol{L}_{0}(i, j), \boldsymbol{L}_{1}(i, j), \ldots, \boldsymbol{L}_{k-1}(i, j)\right)$ is equivalent to permuting the order of the Latin squares within the tuple $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$.

Consider a permutation $p \in S_{k+2}$ which interchanges the second element with an element within the last $k$ positions of the tuple, while fixing the remaining elements in the tuple. Hence $\left(i, j, \boldsymbol{L}_{0}(i, j), \boldsymbol{L}_{1}(i, j), \ldots, \boldsymbol{L}_{k-1}(i, j)\right)$ will be mapped to, say, $\left(i, \boldsymbol{L}_{\ell}(i, j), \boldsymbol{L}_{0}(i, j), \boldsymbol{L}_{1}(i, j), \ldots\right.$, $\left.j, \ldots, \boldsymbol{L}_{k-1}(i, j)\right)$ for all $i, j \in \mathbb{Z}_{n}$ and some $\ell \in \mathbb{Z}_{k}$. It may be noted from the discussion above relating to the conjugates of a single Latin square that this operation replaces $\boldsymbol{L}_{\ell}$ by one of its conjugates, namely $\boldsymbol{L}_{\ell}^{-1}$. Furthermore, for any $\boldsymbol{L}_{m}($ where $m \neq \ell)$ this operation maps the entry $\boldsymbol{L}_{m}(i, j)$ to $\boldsymbol{L}_{m}\left(i, \boldsymbol{L}_{\ell}(i, j)\right)$ for all $i, j \in \mathbb{Z}_{n}$. Hence each row $\boldsymbol{L}_{m}(i)$ is replaced by $\boldsymbol{L}_{m}(i) \circ \boldsymbol{L}_{\ell}(i)$ for all $i \in \mathbb{Z}_{n}$ and all $m \in \mathbb{Z}_{k} \backslash\{\ell\}$.
Similarly, interchanging the first element with the element in position $\ell>2$ in the tuple, while fixing the remaining elements, is equivalent to replacing each column $\boldsymbol{L}_{m}^{T}(i)$ by $\boldsymbol{L}_{m}^{T}(i) \circ \boldsymbol{L}_{\ell}^{T}(i)$ for all $i \in \mathbb{Z}_{n}$ and all $m \in \mathbb{Z}_{k} \backslash\{\ell\}$, while $\boldsymbol{L}_{\ell}$ is mapped to ${ }^{-1} \boldsymbol{L}_{\ell}$.

### 2.4 Recursive constructions of Latin squares

Recursive constructions of Latin squares refer to methods by which a collection of Latin squares may be combined in some sense, or by which a single Latin square may be extended in some sense, in order to produce a new Latin square of larger order (see, for instance, Dénes and Keedwell [42, §5]). Recursive constructions play an important role in the construction of orthogonal Latin squares, mainly due to the fact that these methods often carry over the property of orthogonality from the smaller to the larger Latin squares. In the past this has, for instance, enabled Euler to construct pairs of orthogonal Latin squares of orders which are multiples of four. Recursive constructions were also used by both Parker [115] and Zhu [154] in their disproofs of the Euler conjecture.
The notion of a transversal in a Latin square $\boldsymbol{L}$ of order $n$ may be used to extend $\boldsymbol{L}$ to a Latin square of order $n+k$ by a process known as prolongation ${ }^{6}$, which requires that $\boldsymbol{L}$ should have $k$ disjoint transversals. Let $\boldsymbol{L}$ be a Latin square of order $n$ with a transversal $V$, and let the entries of $V$ be denoted in two different ways, namely as $\left(i, v_{i}\right)$ or as $\left(v_{i}^{\prime}, i\right)$ for all $i \in \mathbb{Z}_{n}$. The row-projection of $V$ is defined as an ordered list of elements of $\mathbb{Z}_{n}$ such that the $i$-th position contains $\boldsymbol{L}\left(v_{i}^{\prime}, i\right)$, while the column-projection of $V$ is defined as an ordered list of elements of $\mathbb{Z}_{n}$ such that the $i$-th position contains $\boldsymbol{L}\left(i, v_{i}\right)$. If a Latin square $\boldsymbol{L}$ has $k$ disjoint transversals

[^7]$V_{0}, V_{1}, \ldots, V_{k-1}$, then prolongation may be performed by (i) replacing the entries of $V_{i}$ in $\boldsymbol{L}$ by the element $n+i$ (so that $V_{i}$ becomes a universal of an element not in $\boldsymbol{L}$ ) for all $0 \leq i \leq k-1$, (ii) by appending the row-projections (in any order) of $V_{i}$ for all $0 \leq i \leq k-1$ to the rows of $\boldsymbol{L}$ and the column-projections (in any order) of $V_{i}$ for all $0 \leq i \leq k-1$ to the columns of $\boldsymbol{L}$, and (iii) by filling the resulting $k \times k$ empty square in the bottom right corner of the resulting array using any Latin square of order $k$ containing the symbols $n, n+1, \ldots, n+k-1$.

Consider, for instance, prolongation of the Latin square
$\left[\begin{array}{lllllll}0 & 4 & 1 & 5 & 2 & 6 & 3 \\ 1 & 5 & 2 & 6 & 3 & 0 & 4 \\ 2 & 6 & 3 & 0 & 4 & 1 & 5 \\ 3 & 0 & 4 & 1 & 5 & 2 & 6 \\ 4 & 1 & 5 & 2 & 6 & 3 & 0 \\ 5 & 2 & 6 & 3 & 0 & 4 & 1 \\ 6 & 3 & 0 & 4 & 1 & 5 & 2\end{array}\right]$
using the three disjoint transversals

$$
\begin{aligned}
& V_{0}=\{(0,0),(1,3),(2,6),(3,2),(4,5),(5,1),(6,4)\} \\
& V_{1}=\{(0,4),(1,0),(2,3),(3,6),(4,2),(5,5),(6,1)\}
\end{aligned}
$$

and

$$
V_{2}=\{(0,1),(1,4),(2,0),(3,3),(4,6),(5,2),(6,5)\}
$$

as well as the Latin square

$$
\left[\begin{array}{lll}
7 & 8 & 9 \\
8 & 9 & 7 \\
9 & 7 & 8
\end{array}\right]
$$

Furthermore, consider appending the row-projection of $V_{0}$ first, then appending the row-projection of $V_{1}$, followed by the row-projection of $V_{2}$, and appending the column-projections in the same order. The resulting Latin square after the three steps of prolongation is

$$
\left[\begin{array}{llllllllll}
\mathbf{7} & \mathbf{9} & 1 & 5 & \mathbf{8} & 6 & 3 & 0 & 2 & 4 \\
\mathbf{8} & 5 & 2 & \mathbf{7} & \mathbf{9} & 0 & 4 & 6 & 1 & 3 \\
\mathbf{9} & 6 & 3 & \mathbf{8} & 4 & 1 & \mathbf{7} & 5 & 0 & 2 \\
3 & 0 & \mathbf{7} & \mathbf{9} & 5 & 2 & \mathbf{8} & 4 & 6 & 1 \\
4 & 1 & \mathbf{8} & 2 & 6 & \mathbf{7} & \mathbf{9} & 3 & 5 & 0 \\
5 & \mathbf{7} & \mathbf{9} & 3 & 0 & \mathbf{8} & 1 & 2 & 4 & 6 \\
6 & \mathbf{8} & 0 & 4 & \mathbf{7} & \mathbf{9} & 2 & 1 & 3 & 5 \\
0 & 2 & 4 & 6 & 1 & 3 & 5 & \mathbf{7} & \mathbf{8} & \mathbf{9} \\
1 & 3 & 5 & 0 & 2 & 4 & 6 & \mathbf{8} & \mathbf{9} & \mathbf{7} \\
2 & 4 & 6 & 1 & 3 & 5 & 0 & \mathbf{9} & \mathbf{7} & \mathbf{8}
\end{array}\right],
$$

where the entries containing the new symbols 7,8 and 9 (including the entries of $V_{0}, V_{1}$ and $V_{2}$ ) are shown in boldface. An interesting application of prolongation arises in the proof of the existence of idempotent Latin squares for all orders $n>2$, as illustrated by the following theorem.

Theorem 2.4.1 ([39], Lemma 1.2) An idempotent Latin square of order $n$ exists if and only if $n \neq 2$.

Proof: Let $\boldsymbol{L}$ be the Cayley table of $\left(\mathbb{Z}_{2 m+1}, \odot\right)$, where $m>0$. In $\S 2.1$ it was shown that this quasigroup is idempotent, and therefore an idempotent Latin square exists for any odd order.

Let $V$ be the set of distinct ordered pairs $(i, i+1)$ for all $i \in \mathbb{Z}_{2 m+1}$. By the definition of the operator $\odot$ it is easy to see that $\boldsymbol{L}(i, i+1)=\boldsymbol{L}(j, j+1)$ if and only if $i=j$. Hence $V$ is a transversal of $\boldsymbol{L}$. Let $\boldsymbol{L}^{\prime}$ be the resulting Latin square of order $2 m+2$ if $\boldsymbol{L}$ is extended via prolongation by $V$. Since $m \neq 0$, no entry on the diagonal of $\boldsymbol{L}$ is in $V$ and since $\boldsymbol{L}^{\prime}(2 m+$ $1,2 m+1)=2 m+1$ (there is only one Latin square of order 1 ), $\boldsymbol{L}^{\prime}$ is an idempotent Latin square. Hence an idempotent Latin square exists for any even order greater than 2. Finally, it is easy to verify that there exists no idempotent Latin square of order 2.

Another way to extend a Latin square is to use the direct product of quasigroups, which, given two quasigroups $(G, \circ)$ and $(H, \bullet)$, is the quasigroup $(G \times H, \star)$ where $\star$ is defined by

$$
\left(g_{1}, h_{1}\right) \star\left(g_{2}, h_{2}\right)=\left(g_{1} \circ g_{2}, h_{1} \bullet h_{2}\right)
$$

for all $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in G \times H$ (see, for example, Allenby [4, Definition 6.3.1]). Let the direct product between two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$, denoted by $\boldsymbol{L} \times \boldsymbol{L}^{\prime}$, be the Latin square represented by the Cayley-table of the direct product of the underlying quasigroups of $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$. Since $R(\boldsymbol{L})=C(\boldsymbol{L})=S(\boldsymbol{L})=\mathbb{Z}_{n}$ and $R^{\prime}(\boldsymbol{L})=C^{\prime}(\boldsymbol{L})=S^{\prime}(\boldsymbol{L})=\mathbb{Z}_{m}$ (if $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are of orders $n$ and $m$, respectively), it follows by definition of the direct product of quasigroups that $R\left(\boldsymbol{L} \times \boldsymbol{L}^{\prime}\right)=C\left(\boldsymbol{L} \times \boldsymbol{L}^{\prime}\right)=S\left(\boldsymbol{L} \times \boldsymbol{L}^{\prime}\right)=\mathbb{Z}_{n} \times \mathbb{Z}_{m}$. In order to conform to the convention of representing the elements of a Latin square of order $n$ by the elements of $\mathbb{Z}_{n}$, the elements of $\boldsymbol{L} \times \boldsymbol{L}^{\prime}$ are replaced by their images under some bijection from $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ to $\mathbb{Z}_{n m}$.
For example,

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccccc}
(0,0) & (0,1) & (0,2) & (1,0) & (1,1) \\
(0,1) & (1,2) \\
(0,2) & (0,0) & (1,1) & (1,2) & (1,0) \\
(0,2) & (0,0) & (0,1) & (1,2) & (1,0) \\
(1,0) & (1,1) & (1,2) & (0,0) & (0,1) \\
(1,1) & (1,2) & (1,0) & (0,1) & (0,2) \\
(1,2) & (1,0) & (1,1) & (0,2) & (0,0) \\
(0,0) \\
(0,1)
\end{array}\right],
$$

and using the bijection $\alpha$ where $\alpha(0)=(0,0), \alpha(1)=(0,1), \alpha(2)=(0,2), \alpha(3)=(1,0)$, $\alpha(4)=(1,1)$ and $\alpha(5)=(1,2)$, the resulting Latin square
$\left[\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 0 & 4 & 5 & 3 \\ 2 & 0 & 1 & 5 & 3 & 4 \\ 3 & 4 & 5 & 0 & 1 & 2 \\ 4 & 5 & 3 & 1 & 2 & 0 \\ 5 & 3 & 4 & 2 & 0 & 1\end{array}\right]$
of order 6 is found. The following result, utilising the direct product, is also useful when recursively constructing Latin squares.

Lemma 2.4.1 For any two Latin squares $\boldsymbol{L}$ and $\boldsymbol{M}$ of orders $n$ and $m$ respectively, $\boldsymbol{L}^{T} \times \boldsymbol{M}^{T}=$ $(\boldsymbol{L} \times \boldsymbol{M})^{T}$.

Proof: Let the elements of $\boldsymbol{L}^{T} \times \boldsymbol{M}^{T}$ be replaced by their images under a bijection $\alpha$ from $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ to $\mathbb{Z}_{n m}$, and let $i=\alpha\left(\left(i_{1}, i_{2}\right)\right)$ and $j=\alpha\left(\left(j_{1}, j_{2}\right)\right)$ for any $i, j \in \mathbb{Z}_{n m}$. Then

$$
\begin{aligned}
\boldsymbol{L}^{T} \times \boldsymbol{M}^{T}(i, j) & =\left(\boldsymbol{L}^{T}\left(i_{1}, j_{1}\right), \boldsymbol{M}^{T}\left(i_{2}, j_{2}\right)\right) \\
& =\left(\boldsymbol{L}\left(j_{1}, i_{1}\right), \boldsymbol{M}\left(j_{2}, i_{2}\right)\right) \\
& =\boldsymbol{L} \times \boldsymbol{M}(j, i)=(\boldsymbol{L} \times \boldsymbol{M})^{T}(i, j)
\end{aligned}
$$

for any $i, j \in \mathbb{Z}_{n m}$.

A product of quasigroups and Latin squares similar to the direct product was proposed by Sade [127], and the definition of this product and a proof that the product delivers a quasigroup is given by the following theorem.

Theorem 2.4.2 (Theorem 12.1.2, [41]) Let $(Q, \circ)$ be a quasigroup of order $n$ with a subquasigroup $(S, \circ)$ of order $m<n$, let $(Q \backslash S, \bullet)$ be a quasigroup of order $\ell=n-m$ and let $(R, \star)$ be an idempotent quasigroup of order $k$. Then the singular direct product $(Q \cup((Q \backslash S) \times R), *)$, defined by

$$
a * b=\left\{\begin{array}{cl}
a \circ b, & \text { if } a, b \in S, \\
\left(a \circ b_{1}, b_{2}\right), & \text { if } a \in S \text { and } b=\left(b_{1}, b_{2}\right) \in((Q \backslash S) \times R), \\
\left(a_{1} \circ b, a_{2}\right), & \text { if } b \in S \text { and } a=\left(a_{1}, a_{2}\right) \in((Q \backslash S) \times R), \\
\left(a_{1} \bullet b_{1}, a_{2} \star b_{2}\right), & \text { if } a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in((Q \backslash S) \times R) \text { and } a_{2} \neq b_{2}, \\
\left(a_{1} \circ b_{1}, c\right), & \text { if } a=\left(a_{1}, c\right), b=\left(b_{1}, c\right) \in((Q \backslash S) \times R) \text { and } a_{1} \circ b_{1} \in(Q \backslash S), \\
a_{1} \circ b_{1}, & \text { if } a=\left(a_{1}, c\right), b=\left(b_{1}, c\right) \in((Q \backslash S) \times R) \text { and } a_{1} \circ b_{1} \in S,
\end{array}\right.
$$

is also a quasigroup.

The proof of this theorem is not difficult, but requires verification of the quasigroup property for a large number of cases, and it is therefore omitted here. The fact that the singular direct product delivers a quasigroup will be made clear, however, by means of an example. A proof of the theorem may be found in Dénes and Keedwell [41, Theorem 12.1.2].
The singular direct product of a Latin square $\boldsymbol{L}$ of order $n$ which contains a subsquare $\boldsymbol{S}$ of order $m$, a Latin square $\boldsymbol{M}$ of order $\ell=n-m$ and an idempotent Latin square $\boldsymbol{N}$ of order $k$, denoted by $\boldsymbol{L} \otimes(\boldsymbol{M} \times \boldsymbol{N})$, is defined as the Latin square representing the Cayley table of the singular direct product of their underlying quasigroups.
Consider, for example, the Latin square

$$
\boldsymbol{L}_{2.14}=\left[\begin{array}{rrr:cccc}
5 & 6 & 4 & 1 & 2 & 0 & 3 \\
6 & 4 & 5 & 2 & 1 & 3 & 0 \\
4 & 5 & 6 & 3 & 0 & 2 & 1 \\
\hdashline 3 & \frac{1}{2} & \frac{0}{5} & 6 & 4 \\
1 & 3 & 0 & 4 & 6 & 5 & 2 \\
0 & 2 & 1 & 5 & 3 & 4 & 6 \\
2 & 0 & 3 & 6 & 4 & 1 & 5
\end{array}\right]
$$

which contains the Latin square

$$
\boldsymbol{L}_{2.15}=\left[\begin{array}{lll}
5 & 6 & 4 \\
6 & 4 & 5 \\
4 & 5 & 6
\end{array}\right]
$$

as a subsquare in its upper right-hand corner. Furthermore, let

$$
\boldsymbol{L}_{2.16}=\left[\begin{array}{llll}
0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 \\
2 & 1 & 3 & 0 \\
3 & 0 & 2 & 1
\end{array}\right] \quad \text { and } \quad \boldsymbol{L}_{2.17}=\left[\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

The structure of the Latin square $\boldsymbol{L}_{2.14} \otimes\left(\boldsymbol{L}_{2.16} \times \boldsymbol{L}_{2.17}\right)$ is best explained by using the schematic representation in Figure 2.1 of this Latin square, where each of the labelled regions denotes a part of the Latin square. In Figure 2.1 Region A contains $\boldsymbol{L}_{2.15}$, which corresponds to the first case (where $a, b \in S$ ) in Theorem 2.4.2. Region $B_{i}$ for $i=0,1,2$ contains the array

| $(1, i)$ | $(2, i)$ | $(0, i)$ | $(3, i)$ |
| :--- | :--- | :--- | :--- |
| $(2, i)$ | $(1, i)$ | $(3, i)$ | $(0, i)$ |
| $(3, i)$ | $(0, i)$ | $(2, i)$ | $(1, i)$, |

where the first elements of these ordered pairs give the upper right-hand part of $\boldsymbol{L}_{2.14}$. This corresponds to the second case in Theorem 2.4.2. Similarly, Region $C_{i}$ for $i=0,1,2$ contains the array

| $(3, i)$ | $(1, i)$ | $(2, i)$ |
| :--- | :--- | :--- |
| $(1, i)$ | $(3, i)$ | $(0, i)$ |
| $(0, i)$ | $(2, i)$ | $(1, i)$ |
| $(2, i)$ | $(0, i)$ | $(3, i)$, |

where the first elements of these ordered pairs give the lower left-hand part of $\boldsymbol{L}_{2.14}$. This corresponds to the third case in Theorem 2.4.2. Region $E_{i}$ for $i=0,1,2$ contains the array

| $(0, i)$ | $(3, i)$ | $(1, i)$ | $(2, i)$ |
| :--- | :--- | :--- | :--- |
| $(1, i)$ | $(2, i)$ | $(0, i)$ | $(3, i)$ |
| $(2, i)$ | $(1, i)$ | $(3, i)$ | $(0, i)$ |
| $(3, i)$ | $(0, i)$ | $(1, i)$ | $(2, i)$, |

where the first elements of these ordered pairs give $\boldsymbol{L}_{2.16}$. It may be noted that these arrays form part of the direct product $\boldsymbol{L}_{2.16} \times \boldsymbol{L}_{2.17}$. These regions correspond to the fourth case in Theorem 2.4.2. Finally, Region $D_{i}$ for $i=0,1,2$ contains the array

| $(0, i)$ | 5 | 6 | 4 |
| :---: | :---: | :---: | :---: |
| 4 | 6 | 5 | $(2, i)$ |
| 5 | $(3, i)$ | 4 | 6 |
| 6 | 4 | $(1, i)$ | 5, |

where the elements (if pairs occur, the first elements) give the lower right-hand corner of $\boldsymbol{L}_{2.14}$. This corresponds to the final two cases in Theorem 2.4.2.


Figure 2.1: A schematic representation of the layout of the singular direct product $\boldsymbol{L}_{2.14} \otimes\left(\boldsymbol{L}_{2.16} \times\right.$ $L_{2.17}$ ).

The Latin square $\boldsymbol{L}_{2.14} \otimes\left(\boldsymbol{L}_{2.16} \times \boldsymbol{L}_{2.17}\right)$ is given by
$\left[\begin{array}{ccccccccccccccc}5 & 6 & 4 & (1,0) & (2,0) & (0,0) & (3,0) & (1,1) & (2,1) & (0,1) & (3,1) & (1,2) & (2,2) & (0,2) & (3,2) \\ 6 & 4 & 5 & (2,0) & (1,0) & (3,0) & (0,0) & (2,1) & (1,1) & (3,1) & (0,1) & (2,2) & (1,2) & (3,2) & (0,2) \\ 4 & 5 & 6 & (3,0) & (0,0) & (2,0) & (1,0) & (3,1) & (0,1) & (2,1) & (1,1) & (3,2) & (0,2) & (2,2) & (1,2) \\ (3,0) & (1,0) & (2,0) & (0,0) & 5 & 6 & 4 & (0,2) & (3,2) & (1,2) & (2,2) & (0,1) & (3,1) & (1,1) & (2,1) \\ (1,0) & (3,0) & (0,0) & 4 & 6 & 5 & (2,0) & (1,2) & (2,2) & (0,2) & (3,2) & (1,1) & (2,1) & (0,1) & (3,1) \\ (0,0) & (2,0) & (1,0) & 5 & (3,0) & 4 & 6 & (2,2) & (1,2) & (3,2) & (0,2) & (2,1) & (1,1) & (3,1) & (0,1) \\ (2,0) & (0,0) & (3,0) & 6 & 4 & (1,0) & 5 & (3,2) & (0,2) & (2,2) & (1,2) & (3,1) & (0,1) & (2,1) & (1,1) \\ (3,1) & (1,1) & (2,1) & (0,2) & (3,2) & (1,2) & (2,2) & (0,1) & 5 & 6 & 4 & (0,0) & (3,0) & (1,0) & (2,0) \\ (1,1) & (3,1) & (0,1) & (1,2) & (2,2) & (0,2) & (3,2) & 4 & 6 & 5 & (2,1) & (1,0) & (2,0) & (0,0) & (3,0) \\ (0,1) & (2,1) & (1,1) & (2,2) & (1,2) & (3,2) & (0,2) & 5 & (3,1) & 4 & 6 & (2,0) & (1,0) & (3,0) & (0,0) \\ (2,1) & (0,1) & (3,1) & (3,2) & (0,2) & (2,2) & (1,2) & 6 & 4 & (1,1) & 5 & (3,0) & (0,0) & (2,0) & (1,0) \\ (3,2) & (1,2) & (2,2) & (0,1) & (3,1) & (1,1) & (2,1) & (0,0) & (3,0) & (1,0) & (2,0) & (0,2) & 5 & 6 & 4 \\ (1,2) & (3,2) & (0,2) & (1,1) & (2,1) & (0,1) & (3,1) & (1,0) & (2,0) & (0,0) & (3,0) & 4 & 6 & 5 & (2,2) \\ (0,2) & (2,2) & (1,2) & (2,1) & (1,1) & (3,1) & (0,1) & (2,0) & (1,0) & (3,0) & (0,0) & 5 & (3,2) & 4 & 6 \\ (2,2) & (0,2) & (3,2) & (3,1) & (0,1) & (2,1) & (1,1) & (3,0) & (0,0) & (2,0) & (1,0) & 6 & 4 & (1,2) & 5\end{array}\right]$.

Lindner [90] suggested a generalisation of this product, namely the generalised singular direct product, where (using the notation of Theorem 2.4.2) $|R|^{2}-|R|$ quasigroups $\left(Q \backslash S, \bullet_{a, b}\right)$ for each $(a, b) \in R^{2} \backslash\{(r, r) \mid r \in R\}$ are required instead of simply the quasigroup $(Q \backslash S, \bullet)$, and where $a * b=\left(a_{1} \bullet{ }_{a}, b_{2} b_{1}, a_{2} \star b_{2}\right)$ if $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in((Q \backslash S) \times R)$ and $a_{2} \neq b_{2}$. In the example above, for instance, the generalised singular direct product states that the $3^{2}-3=6$ regions denoted by $E_{i}$ for $i=0,1,2$ in Figure 2.1 may be populated using any six distinct Latin squares of order 4, instead of six copies of the Latin square $\boldsymbol{L}_{2.16}$.
A well-known application of recursive constructions of Latin squares was given by MacNeish [94], and it uses the direct product of Latin squares in order to construct MOLS of larger order from MOLS of smaller order. The following theorem forms the basis of the construction.

Theorem 2.4.3 (Theorem 12.1.1, [41]) If $\left(\boldsymbol{L}_{1}, \boldsymbol{L}_{2}, \ldots, \boldsymbol{L}_{k}\right)$ and $\left(\boldsymbol{M}_{1}, \boldsymbol{M}_{2}, \ldots, \boldsymbol{M}_{k}\right)$ are $k$ MOLS of order $n$ and $m$ respectively, then $\left(\boldsymbol{L}_{1} \times \boldsymbol{M}_{1}, \boldsymbol{L}_{2} \times \boldsymbol{M}_{2}, \ldots, \boldsymbol{L}_{k} \times \boldsymbol{M}_{k}\right)$ is a $k$-MOLS of order $n m$.

Proof: Replace the elements of $\boldsymbol{L}_{t} \times \boldsymbol{M}_{t}$ and $\boldsymbol{L}_{s} \times \boldsymbol{M}_{s}$ for any $t, s \in\{1,2, \ldots, k\}$ by their images under a bijection $\alpha$ from $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ to $\mathbb{Z}_{n m}$, and let

$$
\left(\boldsymbol{L}_{t} \times \boldsymbol{M}_{t}(i, j), \boldsymbol{L}_{s} \times \boldsymbol{M}_{s}(i, j)\right)=\left(\boldsymbol{L}_{t} \times \boldsymbol{M}_{t}(k, \ell), \boldsymbol{L}_{s} \times \boldsymbol{M}_{s}(k, \ell)\right),
$$

for some $i, j, k, \ell \in \mathbb{Z}_{n m}$. If $i=\alpha\left(\left(i_{1}, i_{2}\right)\right), j=\alpha\left(\left(j_{1}, j_{2}\right)\right), k=\alpha\left(\left(k_{1}, k_{2}\right)\right)$ and $\ell=\alpha\left(\left(\ell_{1}, \ell_{2}\right)\right)$, then

$$
\begin{aligned}
\left(\boldsymbol{L}_{t}\left(i_{1}, j_{1}\right), \boldsymbol{M}_{t}\left(i_{2}, j_{2}\right)\right) & =\boldsymbol{L}_{t} \times \boldsymbol{M}_{t}(i, j) \\
& =\boldsymbol{L}_{t} \times \boldsymbol{M}_{t}(k, \ell) \\
& =\left(\boldsymbol{L}_{t}\left(k_{1}, \ell_{1}\right), \boldsymbol{M}_{t}\left(k_{2}, \ell_{2}\right)\right)
\end{aligned}
$$

and $\boldsymbol{L}_{t}\left(i_{1}, j_{1}\right)=\boldsymbol{L}_{t}\left(k_{1}, \ell_{1}\right)$, while $\boldsymbol{M}_{t}\left(i_{2}, j_{2}\right)=\boldsymbol{M}_{t}\left(k_{2}, \ell_{2}\right)$. Similarly, it may be shown that $\boldsymbol{L}_{s}\left(i_{1}, j_{1}\right)=\boldsymbol{L}_{s}\left(k_{1}, \ell_{1}\right)$ and $\boldsymbol{M}_{s}\left(i_{2}, j_{2}\right)=\boldsymbol{M}_{s}\left(k_{2}, \ell_{2}\right)$. By the orthogonality between $\boldsymbol{L}_{t}$ and $\boldsymbol{L}_{s}$ it follows that $i_{1}=k_{1}$ and $j_{1}=\ell_{1}$, and by the orthogonality between $\boldsymbol{M}_{t}$ and $\boldsymbol{M}_{s}$ it follows that $i_{2}=k_{2}$ and $j_{2}=\ell_{2}$. Hence $i=k$ and $j=\ell$, and so $\boldsymbol{L}_{t} \times \boldsymbol{M}_{t}$ and $\boldsymbol{L}_{s} \times \boldsymbol{M}_{s}$ are by definition orthogonal for any $t, s \in\{1,2, \ldots, k\}$.

The next corollary follows naturally from Theorems 2.2.2 and 2.4.3.

Corollary 2.4.1 If $n=\prod_{i=1}^{q} p_{i}^{r_{i}}$ is the unique factorisation of $n \in \mathbb{N}$ into powers of distinct primes where $r_{1}, \ldots, r_{q}>0$, then there exists a $k-M O L S$ of order $n$ where $k=\min \left\{p_{i}^{r_{i}} \mid 1 \leq\right.$ $i \leq q\}-1$.

MacNeish [94] conjectured that for any $n=\prod_{i=1}^{q} p_{i}^{r_{i}}$ the largest set of MOLS of order $n$ is one containing $\min \left\{p_{i}^{r_{i}} \mid 1 \leq i \leq q\right\}-1$ Latin squares, which is indeed the case if $n=p^{r}$ for $p$ prime and $r \in \mathbb{N}$. His conjecture was, however, disproven by Parker [114] who showed that a 4-MOLS of order $21=3^{1} 7^{1}$ exists, while MacNeish's conjecture states that a MOLS of order 21 can only contain $\min \left\{3^{1}, 7^{1}\right\}-1=2$ Latin squares.
The next theorem states that the singular direct product may also be used to construct orthogonal Latin squares recursively.

Theorem 2.4.4 If $\boldsymbol{L}_{1}$ and $\boldsymbol{L}_{2}$ are orthogonal Latin squares of order $n$ which contain the orthogonal subsquares $\boldsymbol{S}_{1}$ and $\boldsymbol{S}_{2}$ of order $m$ respectively, and if $\boldsymbol{M}_{1}$ and $\boldsymbol{M}_{2}$ are orthogonal Latin squares of order $n-m$ while $\boldsymbol{N}_{1}$ and $\boldsymbol{N}_{2}$ are orthogonal idempotent Latin squares of order $k$, then the singular direct products $\boldsymbol{L}_{1} \otimes\left(\boldsymbol{M}_{1} \times \boldsymbol{N}_{1}\right)$ and $\boldsymbol{L}_{2} \otimes\left(\boldsymbol{M}_{2} \times \boldsymbol{N}_{2}\right)$ are orthogonal.

The proof of this theorem is lengthy in that it requires the verification of the orthogonality property for a large number of cases, and it is therefore omitted here. The proof may, however, be found in [41, Theorem 12.1.3]. The next corollary, originally due to Sade [127], follows naturally from Lemma 2.3.1 and Theorem 2.4.4.

Corollary 2.4.2 (Theorem 12.1.4, [41]) If each Latin square in an r-MOLS of order $n$ contains a subsquare of order $m$ such that these $r$ subsquares form an $r$-MOLS of order $m$, and if there exists an $s$-MOLS of order $\ell=n-m$ and $a t-M O L S$ of order $k$, then there exists a $\min (r, s, t-1)-M O L S$ of order $m+\ell k$.

### 2.5 Chapter summary

In this chapter the basic theory behind Latin squares was introduced, and definitions and constructions were reviewed that will be utilised in the remainder of the dissertation. The definition of a Latin square, as well as of special types of Latin squares, such as reduced and idempotent Latin squares, was given in §2.1. This section also contains a description of the notions of transversals and universals, both of which play an important role in the enumeration of special types of orthogonal Latin squares as will be demonstrated later in this dissertation. The connection between Latin squares and quasigroups was also highlighted in this section.
In $\S 2.2$ the important notion of orthogonality between Latin squares was discussed, a notion which Euler had in mind when he gave the very first constructions of Latin squares. This section also contains the definition of an ordered set of mutually orthogonal Latin squares (MOLS), and an upper bound on the cardinality of such a set is given. The usefulness of Galois fields in the construction of orthogonal Latin squares was illustrated by a construction of a set of MOLS that attains the upper bound.

The classification of Latin squares according to similarities in structure may be achieved by using various operations that transform a Latin square into other Latin squares, as described
in §2.3. In particular, it was noted that permutations may be used to rearrange the rows or columns or rename the symbols of a Latin square or a set of orthogonal Latin squares without destroying the defining property of the Latin square, while the roles of rows, columns and symbols are interchangeable. This leads to the important notion of group actions on the set of all Latin squares of a certain order, and some interesting connections between these operations and group theory were also highlighted.
A number of recursive constructions of Latin squares were reviewed in §2.4. Three such constructions were described, namely the method of prolongation, the direct product of Latin squares and the singular direct product of Latin squares. These construction methods have been used to settle some of the most important existence questions in the theory of orthogonal Latin squares, as will be explained in the next chapter, and it was shown in this section how these methods may be used to extend a set of MOLS to a set containing larger MOLS.

## CHAPTER 3

## Applications of Latin squares to sports tournament scheduling

Contents
3.1 Scheduling sports tournaments using Latin squares ..... 31
3.2 An application of sets of orthogonal Latin squares ..... 35
3.2.1 Mixed doubles table tennis (MDTT) tournaments ..... 35
3.2.2 Constructions of pairs and triples of orthogonal Latin squares ..... 37
3.3 Self-orthogonal Latin squares and SOLSSOMs ..... 47
3.3.1 Spouse-avoiding mixed doubles round-robin tennis tournaments ..... 49
3.3.2 Constructions of self-orthogonal Latin squares and SOLSSOMs ..... 51
3.4 Chapter summary ..... 55

In this chapter the use of Latin squares in the scheduling of sports tournaments is illustrated using two important practical examples. In $\S 3.1$ a brief review is given of the application of Latin squares to sports tournament scheduling, followed in $\S 3.2$ and $\S 3.3$ by two applications of specifically sets of two and three orthogonal Latin squares to mixed doubles sports tournament scheduling. In $\S 3.2 .1$ a tournament called a mixed doubles table tennis tournament is considered, and it is shown how such a tournament may be scheduled using a set of three mutually orthogonal Latin squares. A review of past attempts by researchers to construct sets of two and three mutually orthogonal Latin squares is thereafter presented in §3.2.2. In §3.3.1 a similar tournament is considered, namely a spouse-avoiding mixed doubles round-robin tennis tournament, and it is shown that such a tournament is equivalent to a special kind of set of three mutually orthogonal Latin squares. Previous attempts at constructing these sets are reviewed in §3.3.2.

### 3.1 Scheduling sports tournaments using Latin squares

Latin squares have been applied successfully to the problem of scheduling various types of sports tournaments for which a strict requirement is that the tournament should be balanced and fair with respect to the players or teams involved. The reason for this is that the defining property of a Latin square asks for a balanced arrangement of the elements of $\mathbb{Z}_{n}$; the design of a Latin square may be seen as "fair" in the sense that each element of $\mathbb{Z}_{n}$ has the opportunity to appear
in each row and column exactly once. Similarly, orthogonal Latin squares give rise to designs in which each element of $\mathbb{Z}_{n}^{2}$ has the opportunity of appearing exactly once in the superimposition of two Latin squares. In this chapter it is explained how these properties of Latin squares lead to interesting applications in sports tournament design, and they enable the scheduler of a sports tournament to construct schedules which may be extremely difficult to achieve by intuition.
The simplest and most common example of a balanced and fair sports tournament is a so-called round-robin tournament of order $2 n$, in which $2 n$ players $^{1}$ (for some $n \in \mathbb{N}$ ) take part in a tournament consisting of $2 n-1$ rounds, each of which consists of $n$ matches. Each match consists of two players opposing one another, and the tournament has the property that each player opposes each other player exactly once, and that each player plays in exactly one match per round. An example of a schedule for a round-robin tournament of order 6 is given in Table 3.1, where the elements of the set $\mathbb{Z}_{6}$ are used to represent the names of the players.

| Round 1 | Round 2 | Round 3 | Round 4 | Round 5 |
| :---: | :---: | :---: | :---: | :---: |
| 0 vs 1 | 0 vs 2 | 0 vs 3 | 0 vs 4 | 0 vs 5 |
| 2 vs 5 | 1 vs 3 | 1 vs 5 | 1 vs 2 | 1 vs 4 |
| 3 vs 4 | 4 vs 5 | 2 vs 4 | 3 vs 5 | 2 vs 3 |

Table 3.1: A schedule for a round-robin tournament of order 6 , where the names of the six players are represented by the set $\mathbb{Z}_{6}$.

A round-robin tournament of order $2 n-1$, for some $n \in \mathbb{N}$, is equivalent to a round-robin tournament of order $2 n$. Since in each round of a tournament of odd order some player has to sit out (i.e. receive a bye), a schedule for an even number of players may be used, where opposing some fixed player is equivalent to receiving a bye. For example, a round-robin tournament in which five players take part is also given by Table 3.1, where $\mathbb{Z}_{6} \backslash\{0\}$ may be used, for example, to represent the names of the players and where a player receives a bye if he/she is scheduled to oppose 0 .

It may be noted that a round-robin tournament for $2 n$ players is equivalent to a 1 -factorisation of the complete graph $K_{2 n}$, in which the vertices labelled by the elements of $\mathbb{Z}_{n}$ model the players, where each factor represents a round of the tournament, and where each edge corresponds to a match between two players. For example, Figure 3.1 shows the corresponding 1-factorisation for the round-robin tournament in Table 3.1.


- Round 1
... Round 2
--- Round 3
- Round 4
-     - Round 5

Figure 3.1: A 1 -factorisation of $K_{6}$ corresponding to the round-robin tournament in Table 3.1.

[^8]More importantly, however, a round-robin tournament may be represented by a special type of Latin square. Let $\left\{F_{1}, F_{2}, \ldots, F_{2 n-1}\right\}$ be a 1 -factorisation of $K_{2 n}$, and let $\boldsymbol{L}$ be a $2 n \times 2 n$ array such that $\boldsymbol{L}(i, j)=\boldsymbol{L}(j, i)=k$ for each $\{i, j\} \in F_{k}$ where $1 \leq k \leq 2 n-1$, and such that $\boldsymbol{L}(i, i)=0$ for $0 \leq i \leq 2 n-1$. Then $\boldsymbol{L}$ is symmetric and unipotent, and since the 1 factors are all pairwise disjoint, each entry in $\boldsymbol{L}$ contains exactly one symbol. Furthermore, if $\boldsymbol{L}(i, j)=\boldsymbol{L}\left(i, j^{\prime}\right)=k$, then $\{i, j\}$ and $\left\{i, j^{\prime}\right\}$ are both in $F_{k}$, contradicting the fact that $F_{k}$ forms part of a partition of $\mathbb{Z}_{n}$. Each element of $\mathbb{Z}_{n}$ therefore appears exactly once in each row of $\boldsymbol{L}$, and a similar argument shows that each element also appears exactly once in each column of $\boldsymbol{L}$. Hence $\boldsymbol{L}$ is a symmetric unipotent Latin square. It may similarly also be shown that a symmetric unipotent Latin square of order $2 n$ may be used to obtain a 1-factorisation of $K_{2 n}$, and therefore that the two designs are equivalent. For example, the round-robin tournament in Table 3.1 may also be represented by the symmetric Latin square

$$
\boldsymbol{L}_{3.1}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 0 & 4 & 2 & 5 & 3 \\
2 & 4 & 0 & 5 & 3 & 1 \\
3 & 2 & 5 & 0 & 1 & 4 \\
4 & 5 & 3 & 1 & 0 & 2 \\
5 & 3 & 1 & 4 & 2 & 0
\end{array}\right]
$$

where the entry in row $i$ and column $j$ gives the round in which $i$ opposes $j$. Such a table must be a Latin square in order to ensure that each player plays exactly once in each round, while it must be symmetric in order to ensure that each player opposes each other player exactly once. Furthermore, the diagonal of this Latin square may be ignored as it corresponds to a round where players oppose themselves.
It may also be noted that a symmetric unipotent Latin square of order $2 n$ is equivalent to a symmetric idempotent Latin square of order $2 n-1$, which is an especially useful representation if there are an odd number of players participating in a round-robin tournament. A symmetric idempotent Latin square may obtained from a symmetric unipotent Latin square $\boldsymbol{L}$ by reversing the process of prolongation discussed in $\S 2.4$, where the last $2 n-1$ entries of the first row and first column of $\boldsymbol{L}$ may be projected back to the diagonal (which is a universal in $\boldsymbol{L}$ ). For instance, the symmetric idempotent Latin square obtained in this way from $\boldsymbol{L}_{3.1}$ is

$$
\boldsymbol{L}_{3.2}=\left[\begin{array}{lllll}
1 & 4 & 2 & 5 & 3 \\
4 & 2 & 5 & 3 & 1 \\
2 & 5 & 3 & 1 & 4 \\
5 & 3 & 1 & 4 & 2 \\
3 & 1 & 4 & 2 & 5
\end{array}\right]
$$

As will be shown in the following sections, special types of round-robin tournaments may be scheduled by utilising Latin squares which are orthogonal to symmetric Latin squares. In such applications it is therefore more beneficial to consider a round-robin tournament in the form of a Latin square than in the form of a 1-factorisation.
Another benefit of considering the Latin square representation of round-robin tournaments arises from a very interesting problem in round-robin tournament scheduling, namely the problem of balancing so-called carry-over effects in round-robin tournaments. Let $\boldsymbol{L}$ be a symmetric unipotent Latin square representing a round-robin tournament schedule. A player $i \in \mathbb{Z}_{n}$ is said to receive a carry-over effect from player $j \in \mathbb{Z}_{n}$ if $\boldsymbol{L}(\ell, j)=k$ and $\boldsymbol{L}(\ell, i)=k+1$. The assumption is made in this case that the performance of player $\ell$ has been affected by the match between $\ell$ and $j$ in round $k$, and that this effect is "carried over" to the next round. For example, if $j$ is an extremely strong player, then $\ell$ might be both physically and psychologically
exhausted after opposing $j$, and $i$ might benefit from this since he/she is opposing a tired player in the next round.

The advantage of considering the Latin square representation of a round-robin tournament in this case is that, since $\boldsymbol{L}(\ell, j)=k$ and $\boldsymbol{L}(\ell, i)=k+1$, it follows that $\boldsymbol{L}^{-1}(\ell, k)=j$ and $\boldsymbol{L}^{-1}(\ell, k+1)=i$, and the carry-over effects are therefore given by consecutive elements in the rows of $\boldsymbol{L}^{-1}$. For example,

$$
\boldsymbol{L}_{3.1}^{-1}=\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 0 & 3 & 5 & 2 & 4 \\
2 & 5 & 0 & 4 & 1 & 3 \\
3 & 4 & 1 & 0 & 5 & 2 \\
4 & 3 & 5 & 2 & 0 & 1 \\
5 & 2 & 4 & 1 & 3 & 0
\end{array}\right]
$$

and from the consecutive pairs $\boldsymbol{L}_{3.1}^{-1}(1,1)=0$ and $\boldsymbol{L}_{3.1}^{-1}(1,2)=3$ in row 1 , it may be seen that 0 gives a carry-over effect to 3 . Hence this representation using a Latin square provides a much easier way of observing the various carry-over effects throughout the tournament, whereas it is difficult to see the carry-over effects when considering the corresponding 1-factorisation representation of a round-robin tournament. Furthermore, the problem under consideration is to balance the carry-over effects, i.e. to find a round-robin schedule where each player receives a carry-over effect from each other player at most once. Hence a symmetric unipotent Latin square $\boldsymbol{L}$ may be used, where $\boldsymbol{L}^{-1}$ has the property that each element of $\mathbb{Z}_{n}^{2} \backslash\left\{(a, a) \mid a \in \mathbb{Z}_{n}\right\}$ appears at most once as consecutive elements in its rows ${ }^{2}$.

For more detail on the problem of balancing the carry-over effects of a round-robin tournament, see, for instance, Anderson [7], Keedwell [80], Kidd [83] and Russel [125], all of which contain references to a number of other authors who have also considered the problem. Keedwell [80], in particular, not only considers the application of Latin squares to the problem of balancing carry-over effects, but also to a number of other special types of tournaments, such as tennis on unequal courts, home and away football, mixed doubles tennis tournaments and bridge tournaments.

An application of orthogonal Latin squares to the scheduling of a special type of golf tournament is considered (among others) by Robinson [122] and Wallis [140]. The tournament they consider consists of $2 n+1$ players taking part in $2 n-1$ round-robin tournaments, where each roundrobin tournament is scheduled in such a way that the round in which a player receives a bye takes place on that player's home ground. Such a tournament is simple to schedule by means of $2 n-1$ symmetric idempotent Latin squares of order $2 n+1$, but an additional requirement that each pair of players oppose one another exactly once on each of the other $2 n-1$ players' home grounds is imposed, which requires that the $2 n-1$ symmetric idempotent Latin squares form a $(2 n-1)$-MOLS of order $2 n+1$. Such a set of MOLS is known as a golf-design, and a detailed review of the constructions and uses of these designs may be found in Dinitz et al. [45, §VI.51.7].

A large number of other applications of various combinatorial designs (including Latin squares) to the scheduling of sports tournaments are reviewed by Dinitz et al. [45]. Examples include the application of Latin squares to mixed doubles tennis tournaments [45, §51.11] and whist ${ }^{3}$ tournaments [45, §51.9], where the former is of particular interest in this dissertation. Although whist tournaments have Latin square representations (see Bennet and Zhu [15]), they are usually

[^9]considered in the guise of various other combinatorial designs, such as Mendelsohn designs and balanced incomplete block designs (see, for example, Anderson and Finizio [8]).

### 3.2 An application of sets of orthogonal Latin squares

In this section an application to mixed doubles sports tournament scheduling (which arises in tennis and table tennis tournaments) is presented, where a mixed doubles tournament refers to a tournament with the requirement that two teams consisting of two players each oppose one another in each match, and where a team consists of a man and a woman. Such a match will henceforth be given in the tabular form

$$
\begin{array}{|l||l|}
\hline M & M^{\prime} \\
\hline W & W^{\prime} \\
\hline
\end{array}
$$

where $M$ and $M^{\prime}$ are men and $W$ and $W^{\prime}$ women, and where $\{M, W\}$ forms the first team and $\left\{M^{\prime}, W^{\prime}\right\}$ the second. In $\S 3.2 .1$ it is shown how such a tournament for $4 n$ players satisfying a number of additional properties is equivalent to a 3 -MOLS of order $n$, and a number of constructions of such designs are also presented.

### 3.2.1 Mixed doubles table tennis (MDTT) tournaments

In 1975 Pulleyblank [119] considered a special type of mixed doubles tournament in which two opposing teams participate, each of which consists of $n$ men and $n$ women for some $n \in \mathbb{N}$. The requirement to be satisfied by the tournament is similar to the requirement for a round-robin tournament, namely that each player opposes each player from the opposite team exactly once. However, it is also required that each man is in partnership with each woman from the same team exactly once. Hence there are $4 n$ players in total, each of whom participates in a total of $n$ matches throughout the tournament. The matches of the tournament may also be partitioned into a number of rounds in such a way that each player participates in exactly one match per round, and the tournament can therefore not consist of fewer than $n$ rounds. Pulleyblank simply referred to such a tournament for $4 n$ players as a mixed doubles table tennis (MDTT) tournament of order $n$, due to the fact that such a tournament was scheduled for table tennis by a local social club. Furthermore, an MDTT tournament of order $n$ is resolvable if it can be scheduled into $n$ rounds, each consisting of $n$ matches.

Consider, for example, a team consisting of four men, denoted by $M_{0}, M_{1}, M_{2}$ and $M_{3}$, and four women, denoted by $W_{0}, W_{1}, W_{2}$ and $W_{3}$, opposing another team consisting of four men, denoted by $M_{0}^{\prime}, M_{1}^{\prime}, M_{2}^{\prime}$ and $M_{3}^{\prime}$, and four women, denoted by $W_{0}^{\prime}, W_{1}^{\prime}, W_{2}^{\prime}$ and $W_{3}^{\prime}$. A schedule for a resolvable MDTT tournament consisting of four rounds is given in Table 3.2.

It may be noted that an MDTT tournament of order $n$ is equivalent to an orthogonal array (see $\S 2.2)$. If the entry in row $i$ and column $j$ of an $O A(4, n) \boldsymbol{A}$ is denoted by $\boldsymbol{A}(i, j)$ for all $i \in \mathbb{Z}_{4}$ and $j \in \mathbb{Z}_{n^{2}}$, then it is easy to see that the matches

$$
\begin{array}{|l||l|}
\hline \boldsymbol{A}(0, i) & \boldsymbol{A}(1, i) \\
\hline \boldsymbol{A}(2, i) & \boldsymbol{A}(3, i) \\
\hline
\end{array} \quad i \in \mathbb{Z}_{n^{2}}
$$

|  | nd 0 | Round 1 |  | Round 2 |  | Round 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{0}$ | $M_{0}^{\prime}$ | $M_{0}$ | $M_{1}^{\prime}$ | $M_{0}$ | $M_{2}^{\prime}$ | $M_{0}$ | $M_{3}^{\prime}$ |
| $W_{0}$ | $W_{0}^{\prime}$ | $W_{1}$ | $W_{1}^{\prime}$ | $W_{2}$ | $W_{2}^{\prime}$ | $W_{3}$ | $W_{3}^{\prime}$ |
| $M_{1}$ | $M_{3}^{\prime}$ | $M_{1}$ | $M_{2}^{\prime}$ | $M_{1}$ | $M_{1}^{1}$ | $M_{1}$ | $M_{0}^{\prime}$ |
| $W_{2}$ | $W_{1}^{\prime}$ | $W_{3}$ | $W_{0}^{\prime}$ | $W_{0}$ | $W_{3}^{\prime}$ | $W_{1}$ | $W_{2}^{\prime}$ |
| $M_{2}$ | $M_{1}^{\prime}$ | $M_{2}$ | $M_{0}^{\prime}$ | $M_{2}$ | $M_{3}^{\prime}$ | $M_{2}$ | $M_{2}^{\prime}$ |
| $W_{3}$ | $W_{2}^{\prime}$ | $W_{2}$ | $W_{3}^{\prime}$ | $W_{1}$ | $W_{0}^{\prime}$ | $W_{0}$ | $W_{1}^{\prime}$ |
| $M_{3}$ | $M_{2}^{\prime}$ | $M_{3}$ | $M_{3}^{\prime}$ | $M_{3}$ | $M_{0}^{\prime}$ | $M_{3}$ | $M_{1}^{\prime}$ |
| $W_{1}$ | $W_{3}^{\prime}$ | $W_{0}$ | $W_{2}^{\prime}$ | $W_{3}$ | $W_{1}^{\prime}$ | $W_{2}$ | $W_{0}^{\prime}$ |

TABLE 3.2: A schedule for an MDTT tournament of order 4.
satisfy all the requirements of an MDTT tournament. For instance, the orthogonal array

$$
\boldsymbol{A}_{3.1}=\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
0 & 1 & 2 & 3 & 3 & 2 & 1 & 0 & 1 & 0 & 3 & 2 & 2 & 3 & 0 & 1 \\
0 & 1 & 2 & 3 & 2 & 3 & 0 & 1 & 3 & 2 & 1 & 0 & 1 & 0 & 3 & 2 \\
0 & 1 & 2 & 3 & 1 & 0 & 3 & 2 & 2 & 3 & 0 & 1 & 3 & 2 & 1 & 0
\end{array}\right]
$$

gives the MDTT in Table 3.2 under four bijections $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and $\alpha_{3}$, where $\alpha_{i}$ is applied to the elements of row $i$ of $\boldsymbol{A}_{3.1}$, and where $\alpha_{0}(i)=M_{i}, \alpha_{1}(i)=M_{i}^{\prime}, \alpha_{2}(i)=W_{i}$ and $\alpha_{3}(i)=W_{i}^{\prime}$.
Hence an MDTT tournament of order $n$ in which a team of $n$ men, denoted by $M_{0}, M_{1}, \ldots, M_{n-1}$, and $n$ women, denoted by $W_{0}, W_{1}, \ldots, W_{n-1}$, oppose another team of $n$ men, denoted by $M_{0}^{\prime}, M_{1}^{\prime}, \ldots, M_{n-1}^{\prime}$, and $n$ women, denoted by $W_{0}^{\prime}, W_{1}^{\prime}, \ldots, W_{n-1}^{\prime}$, is equivalent to two orthogonal Latin squares $\boldsymbol{L}$ and $\boldsymbol{M}$ where $\boldsymbol{L}\left(M_{i}, M_{j}^{\prime}\right)=W_{k}$ and $\boldsymbol{M}\left(M_{i}, M_{j}^{\prime}\right)=W_{k}^{\prime}$ for each match of the form

| $M_{i}$ | $M_{j}^{\prime}$ |
| :--- | :--- |
| $W_{k}$ | $W_{\ell}^{\prime}$ |

For example, the corresponding pair of orthogonal Latin squares for the MDTT tournament in Table 3.2 is given in Table 3.3.

|  | $M_{0}^{\prime}$ | $M_{1}^{\prime}$ | $M_{2}^{\prime}$ | $M_{3}^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| $M_{0}$ | $W_{0}$ | $W_{1}$ | $W_{2}$ | $W_{3}$ |
| $M_{1}$ | $W_{1}$ | $W_{0}$ | $W_{3}$ | $W_{2}$ |
| $M_{2}$ | $W_{2}$ | $W_{3}$ | $W_{0}$ | $W_{1}$ |
| $M_{3}$ | $W_{3}$ | $W_{2}$ | $W_{1}$ | $W_{0}$ |


|  | $M_{0}^{\prime}$ | $M_{1}^{\prime}$ | $M_{2}^{\prime}$ | $M_{3}^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| $M_{0}$ | $W_{0}^{\prime}$ | $W_{1}^{\prime}$ | $W_{2}^{\prime}$ | $W_{3}^{\prime}$ |
| $M_{1}$ | $W_{2}^{\prime}$ | $W_{3}^{\prime}$ | $W_{0}^{\prime}$ | $W_{1}^{\prime}$ |
| $M_{2}$ | $W_{3}^{\prime}$ | $W_{2}^{\prime}$ | $W_{1}^{\prime}$ | $W_{0}^{\prime}$ |
| $M_{3}$ | $W_{1}^{\prime}$ | $W_{0}^{\prime}$ | $W_{3}^{\prime}$ | $W_{2}^{\prime}$ |

Table 3.3: The matches of the MDTT tournament of order 4 in Table 3.2, represented here by a pair of orthogonal Latin squares of order 4.

It therefore follows that if a pair of orthogonal Latin squares of order $n$ may be constructed, then an MDTT tournament schedule of order $n$ may be obtained. However, a pair of orthogonal Latin squares do not provide any means of scheduling the tournament into $n$ rounds, and for this purpose it follows that another Latin square is required which is orthogonal to the pair used to construct the matches.
Consider a resolvable MDTT tournament of order $n$, namely where the matches are partitioned into $n$ rounds so that no player plays twice in any round. Let $L$ and $\boldsymbol{M}$ be two orthogonal

Latin squares such that $\boldsymbol{L}(i, j)=k$ if $M_{i}$ (using the same notation as above) is in partnership with $W_{k}$ when opposing $M_{j}^{\prime}$ and $\boldsymbol{M}(i, j)=k$ if $M_{j}^{\prime}$ is in partnership with $W_{k}^{\prime}$ when opposing $M_{i}$, and let $\boldsymbol{N}$ be an $n \times n$ array such that $\boldsymbol{N}(i, j)$ gives the round in which $M_{i}$ opposes $M_{j}^{\prime}$ for all $i, j \in \mathbb{Z}_{n}$. Since each player participates in exactly one match per round, the ordered pairs $\left(M_{i}, \boldsymbol{N}(i, j)\right)$, i.e. the ordered pairs $(i, \boldsymbol{N}(i, j))$, are unique as $i$ and $j$ vary over $\mathbb{Z}_{n}$. For the same reason the ordered pairs $(j, \boldsymbol{N}(i, j)),(\boldsymbol{L}(i, j), \boldsymbol{N}(i, j))$ and $(\boldsymbol{M}(i, j), \boldsymbol{N}(i, j))$ are unique as $i$ and $j$ vary over $\mathbb{Z}_{n}$ (since the women $W_{\boldsymbol{L}(i, j)}$ and $W_{\boldsymbol{M}(i, j)}$ both play in round $\boldsymbol{N}(i, j)$ ). It therefore follows that $\boldsymbol{N}$ is a Latin square which is orthogonal to both $\boldsymbol{L}$ and $\boldsymbol{M}$.

It therefore follows that a resolvable MDTT tournament schedule for $4 n$ players may be obtained by constructing a 3 -MOLS of order $n$. For example, Table 3.4 shows the MDTT tournament given in Table 3.2 as represented by three mutually orthogonal Latin squares, the first two of which give the matches and the third of which gives the rounds of the MDTT tournament.

|  | $M_{0}^{\prime}$ | $M_{1}^{\prime}$ | $M_{2}^{\prime}$ | $M_{3}^{\prime}$ |  | $M_{0}^{\prime}$ | $M_{1}^{\prime}$ | $M_{2}^{\prime}$ | $M_{3}^{\prime}$ |  |  | $M_{0}^{\prime}$ | $M_{1}^{\prime}$ | $M_{2}^{\prime}$ | $M_{3}^{\prime}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{0}$ | $W_{0}$ | $W_{1}$ | $W_{2}$ | $W_{3}$ |  | $M_{0}$ | $W_{0}^{\prime}$ | $W_{1}^{\prime}$ | $W_{2}^{\prime}$ | $W_{3}^{\prime}$ |  | $M_{0}$ | 0 | 1 | 2 | 3 |
| $M_{1}$ | $W_{1}$ | $W_{0}$ | $W_{3}$ | $W_{2}$ |  | $M_{1}$ | $W_{2}^{\prime}$ | $W_{3}^{\prime}$ | $W_{0}^{\prime}$ | $W_{1}^{\prime}$ |  | $M_{1}$ | 3 | 2 | 1 | 0 |
| $M_{2}$ | $W_{2}$ | $W_{3}$ | $W_{0}$ | $W_{1}$ |  | $M_{2}$ | $W_{3}^{\prime}$ | $W_{2}^{\prime}$ | $W_{1}^{\prime}$ | $W_{0}^{\prime}$ |  | $M_{2}$ | 1 | 0 | 3 | 2 |
| $M_{3}$ | $W_{3}$ | $W_{2}$ | $W_{1}$ | $W_{0}$ |  | $M_{3}$ | $W_{1}^{\prime}$ | $W_{0}^{\prime}$ | $W_{3}^{\prime}$ | $W_{2}^{\prime}$ |  | $M_{3}$ | 2 | 3 | 0 | 1 |

Table 3.4: The schedule of the resolvable MDTT tournament of order 4 in Table 3.2, represented here by a triple of orthogonal Latin squares of order 4.

### 3.2.2 Constructions of pairs and triples of orthogonal Latin squares

It is easy to verify that a Latin square of order 2 cannot have an orthogonal mate, but the question of existence of Latin squares of orders larger than 2 admitting orthogonal mates is not trivial to resolve. The following theorem is, however, useful in the construction of pairs of orthogonal Latin squares.

Theorem 3.2.1 (Theorem 1.4.2, [41]) If a Latin square of order $n$ represents the Cayleytable of a group and exhibits at least one transversal, then it exhibits $n$ disjoint transversals.

Proof: Let $\boldsymbol{L}$ be the Cayley table of a group $(G, \circ)$ of order $n$, and let

$$
\left\{\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right), \ldots,\left(g_{n-1}, h_{n-1}\right)\right\}
$$

be a transversal in $\boldsymbol{L}$ where $g_{i}, h_{i} \in G$. If $a \in G$, then the set of entries

$$
\left\{\left(a \circ g_{0}, h_{0}\right),\left(a \circ g_{1}, h_{1}\right), \ldots,\left(a \circ g_{n-1}, h_{n-1}\right)\right\}
$$

also forms a transversal in $\boldsymbol{L}$. If it did not, then $a \circ g_{i} \circ h_{i}=a \circ g_{j} \circ h_{j}$ for some $i, j \in \mathbb{Z}_{n}$ would imply that $g_{i} \circ h_{i}=g_{j} \circ h_{j}$, contradicting the fact that

$$
\left\{\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right), \ldots,\left(g_{n-1}, h_{n-1}\right)\right\}
$$

is a transversal. Furthermore, let $a, b \in G$ and $a \neq b$. Then the transversals

$$
\left\{\left(a \circ g_{0}, h_{0}\right),\left(a \circ g_{1}, h_{1}\right), \ldots,\left(a \circ g_{n-1}, h_{n-1}\right)\right\}
$$

and

$$
\left\{\left(b \circ g_{0}, h_{0}\right),\left(b \circ g_{1}, h_{1}\right), \ldots,\left(b \circ g_{n-1}, h_{n-1}\right)\right\}
$$

in $\boldsymbol{L}$ are disjoint, since $\left(a \circ g_{i}, h_{i}\right)=\left(b \circ g_{i}, h_{i}\right)$ for any $i \in \mathbb{Z}_{n}$ implies that $a=b$. Therefore, letting $a$ vary over the elements of $G$, it follows that $\boldsymbol{L}$ has $n$ disjoint transversals.

The order of an element $a$ in a group ( $G, \circ$ ) is the smallest positive integer $m$ such that $a^{m}$ is the identity element of the group, and it is equal to the order of the subgroup generated by $a$. The following theorem provides a means of obtaining a pair of orthogonal Latin squares of any odd order.

Theorem 3.2.2 (Theorem 1.4.3, [41]) The Cayley-table of a group of odd order exhibits a transversal.

Proof: It is shown that the main diagonal of the Cayley-table of a group ( $G, \circ$ ) of odd order is a transversal. Assume that $a^{2}=b^{2}$ for some $a, b \in G$. The element $a^{2}$ must have odd order, since otherwise it generates a subgroup of even order which contradicts Lagrange's theorem [67, Theorem 16.9] (since ( $G, \circ$ ) has odd order). Therefore, let $\left(a^{2}\right)^{2 m-1}=e$ for some integer $m$ (where $e$ is the identity element of $(G, \circ)$ ). Then $a^{4 m-2}=e$, and since $a$ also has odd order, $a^{2 m-1}=e$. Furthermore, since $a^{2}=b^{2}$, it similarly follows that $b^{2 m-1}=e$. Hence, $a=a^{2 m}=b^{2 m}=b$, and therefore no element repeats on the diagonal of the Cayley-table of ( $G, \circ$ ).

It follows by Theorems 3.2.1 and 3.2.2 and from the fact that a group exists for any odd order, that a pair of orthogonal Latin squares exists for any odd order, as summarised in the following corollary.

Corollary 3.2.1 A pair of orthogonal Latin squares of order $n$ exists for any odd $n \in \mathbb{N}$.

For example, the Latin square

$$
\boldsymbol{L}_{3.3}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 \\
2 & 3 & 4 & 0 & 1 \\
3 & 4 & 0 & 1 & 2 \\
4 & 0 & 1 & 2 & 3
\end{array}\right]
$$

represents the Cayley-table of the group $\left(\mathbb{Z}_{5},+\right)$, and the Latin square

$$
\boldsymbol{L}_{3.4}=\left[\begin{array}{llllll}
0 & 4 & 3 & 1 & 1 \\
1 & 0 & 4 & 3 & 2 \\
2 & 1 & 0 & 4 & 3 \\
3 & 2 & 1 & 0 & 4 \\
4 & 3 & 2 & 1 & 0
\end{array}\right]
$$

is orthogonal to it by the construction given in Theorem 3.2.1. Euler [52] also gave a special case of this construction. He called a Latin square in which each row is a shift to the right of the row preceding it a single-step Latin square, and established a number of ways of obtaining a transversal in such a Latin square of odd order. Upon finding a transversal, Euler also noted that it could be used to obtain $n$ disjoint transversals as described in Theorem 3.2.1.
In addition to a construction of pairs of orthogonal Latin squares of odd order, Euler also gave constructions for pairs of orthogonal Latin squares of order $4 m$ for any $m \in \mathbb{N}$. He introduced
a two-step Latin square, which is equivalent to a Latin square of order $2 m$ obtained by taking the direct product of a Latin square square of order 2 and the Latin square representing the Cayley-table of the group $\left(\mathbb{Z}_{m},+\right)$. Since a Latin square of order 2 represents the Cayleytable of the group $\left(\mathbb{Z}_{2},+\right)$, a two-step Latin square represents the Cayley-table of the group $\left(\mathbb{Z}_{2},+\right) \times\left(\mathbb{Z}_{m},+\right)$. The following lemma provides a simple way of constructing such a Latin square, and is similar to the construction given by Euler [52].

Lemma 3.2.1 The group $\left(\mathbb{Z}_{2 m}, *\right)$ where

$$
a \circledast b=\left\{\begin{array}{cl}
a+b-2(\bmod 2 m), & \text { if both } a \text { and } b \text { are odd }, \\
a+b(\bmod 2 m), & \text { otherwise },
\end{array}\right.
$$

for $a, b \in \mathbb{Z}_{2 m}$ is isomorphic to the group $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{m}, \oplus\right)=\left(\mathbb{Z}_{2},+\right) \times\left(\mathbb{Z}_{m},+\right)$.
Proof: Let $\alpha$ be a bijection from $\mathbb{Z}_{2 m}$ to $\mathbb{Z}_{2} \times \mathbb{Z}_{m}$ such that

$$
\alpha(a)=\left\{\begin{aligned}
\left(0, \frac{a}{2}\right), & \text { if } a \text { is even } \\
\left(1, \frac{a-1}{2}\right), & \text { if } a \text { is odd }
\end{aligned}\right.
$$

Three cases are considered in what follows. Let $a, b \in \mathbb{Z}_{2 m}$.
Case 1: Both $a$ and $b$ are even.
Then

$$
\alpha(a) \oplus \alpha(b)=\left(0, \frac{a+b}{2}\right)=\alpha(a+b)=\alpha(a \circledast b)
$$

Case 2: Only one of $a$ or $b$ is even.
Then

$$
\alpha(a) \oplus \alpha(b)=\left(1, \frac{a+b-1}{2}\right)=\alpha(a+b)=\alpha(a \circledast b)
$$

Case 3: Both $a$ and $b$ are odd.
Then

$$
\alpha(a) \oplus \alpha(b)=\left(0, \frac{a+b-2}{2}\right)=\alpha(a+b-2)=\alpha(a \circledast b)
$$

Hence $\alpha(a) \oplus \alpha(b)=\alpha(a \circledast b)$ for any $a, b \in \mathbb{Z}_{2 m}$, and $\alpha$ is therefore an isomorphism from $\left(\mathbb{Z}_{2 m}, \circledast\right)$ to $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{m}, \oplus\right)$.

Euler [52] also established a number of methods for obtaining a transversal in a two-step Latin square of order a multiple of 4 . The following theorem illustrates one of these methods.

Theorem 3.2.3 The Cayley-table of $\left(\mathbb{Z}_{4 m}, \circledast\right)$ exhibits a transversal.
Proof: A transversal may be obtained as follows. For all $i \in\{2,4,6, \ldots, 2 m-2\}$ let $(i, i+2)$ form part of the transversal. Among these pairs the transversal intersects column $j$ for all $j \in\{4,6,8, \ldots, 2 m\}$ and contains the symbol $i \circledast(i+2)=2 i+2$ for all $i$, which are all the elements in the set $\{6,10,14, \ldots, 4 m-2\}$; in other words all distinct symbols which are odd multiples of two (since $i$ is even), except 2 .

For all $i \in\{1,3,5, \ldots, 2 m-3\}$ let $(i, i)$ form part of the transversal. Among these pairs the transversal intersects column $j$ for all $j \in\{1,3,5, \ldots, 2 m-3\}$ and contains the symbol $i \circledast i=2 i-2$ for all $i$, which are all the elements in the set $\{0,4,8, \ldots, 4 m-8\}$; in other words all distinct symbols which are even multiples of two (since $i$ is odd), except $4 m-4$.

For all $i \in\{2 m, 2 m+2,2 m+4, \ldots, 4 m-2\}$ let $(i, i-1)$ form part of the transversal. Among these pairs the transversal intersects column $j$ for all $j \in\{2 m-1,2 m+1,2 m+3, \ldots, 4 m-3\}$ and contains the symbol $i \circledast(i-1)=2 i-1$ for all $i$, which are all the elements in the set $\{4 m-1,4 m+3,4 m+7, \ldots, 8 m-5\}$; in other words all distinct symbols which are one less than a multiple of four.

Finally, for all $i \in\{2 m-1,2 m+1,2 m+3, \ldots, 4 m-3\}$ let $(i, i+3)$ form part of the transversal. Among these pairs the transversal intersects column $j$ for all $j \in\{2 m+2,2 m+4,2 m+6, \ldots, 4 m-$ $2,0\}$ and contains the symbol $i \circledast(i+3)=2 i+3$ for all $i$, which are all the elements in the set $\{4 m+1,4 m+5,4 m+9, \ldots, 8 m-3\}$; in other words all distinct symbols which are one more than a multiple of four.

Hence these four cases together provide a list of entries with the property that no row, column or symbol is repeated. Rows 0 and $4 m-1$, columns 2 and $4 m-1$, and symbols 2 and $4 m-4$ are, however, not yet part of this list. Since $0 \circledast 2=2$ and $(4 m-1) \circledast(4 m-1)=4 m-4$, this list forms a transversal with the addition of $(0,2)$ and $(4 m-1,4 m-1)$ to it.

The next result provides a method for constructing a pair of orthogonal Latin squares of any order which is a multiple of four.

Corollary 3.2.2 A pair of orthogonal Latin squares of order $n$ exists if $n$ is a multiple of four.
Proof: By Theorems 3.2.1 and 3.2.3 it follows that the Cayley table of the group $\left(\mathbb{Z}_{4 m}, \circledast\right)$ of order $4 m$ exhibits $4 m$ disjoint transversals.

For example, consider the Cayley-table of $\left(\mathbb{Z}_{8}, \circledast\right)$, which is represented by the Latin square

$$
\boldsymbol{L}_{3.5}=\left[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & \mathbf{0} & 3 & 2 & 5 & 4 & 7 & 6 \\
2 & 3 & 4 & 5 & \mathbf{6} & 7 & 0 & 1 \\
3 & 2 & 5 & 4 & 7 & 6 & \mathbf{1} & 0 \\
4 & 5 & 6 & \mathbf{7} & 0 & 1 & 2 & 3 \\
\mathbf{5} & 4 & 7 & 6 & 1 & 0 & 3 & 2 \\
6 & 7 & 0 & 1 & 2 & \mathbf{3} & 4 & 5 \\
7 & 6 & 1 & 0 & 3 & 2 & 5 & \mathbf{4}
\end{array}\right]
$$

The transversal obtained by the method described in Theorem 3.2.3 is

$$
\{(0,2),(1,1),(2,4),(3,6),(4,3),(5,0),(6,5),(7,7)\}
$$

as shown in boldface in $\boldsymbol{L}_{3.5}$. Using the method described in Theorem 3.2.1, another transversal is

$$
\{(1,2),(0,1),(3,4),(2,6),(5,3),(4,0),(7,5),(6,7)\},
$$

which is obtained by replacing each pair $(a, b)$ in the first transversal by $(1 \circledast a, b)$. It is interesting to note that if $(a, b)$ and $(a+1, c)$ are consecutive pairs in the original transversal, and if $a$ is
even, then $(a, b)$ is replaced by $(a+1, b)$ while $(a+1, c)$ is replaced by $(a, c)$. The remaining six transversals may be found in the same manner, resulting in the Latin square

$$
\boldsymbol{L}_{3.6}=\left[\begin{array}{cccccccc}
5 & 1 & 0 & 4 & 6 & 2 & 7 & 3 \\
4 & 0 & 1 & 5 & 7 & 3 & 6 & 2 \\
7 & 3 & 2 & 6 & 0 & 4 & 1 & 5 \\
6 & 2 & 3 & 7 & 1 & 5 & 0 & 4 \\
1 & 5 & 4 & 0 & 2 & 6 & 3 & 7 \\
0 & 4 & 5 & 1 & 3 & 7 & 2 & 6 \\
3 & 7 & 6 & 2 & 4 & 0 & 5 & 1 \\
2 & 6 & 7 & 3 & 5 & 1 & 4 & 0
\end{array}\right]
$$

which is orthogonal to $\boldsymbol{L}_{3.5}$.
Corollaries 3.2.1 and 3.2.2 together state that a pair of orthogonal Latin squares of order $n$ exists for any $n \neq 2(\bmod 4)$. Although Euler found constructions for these orders, he could not find a pair of orthogonal Latin squares of order $n=2(\bmod 4)$, and conjectured ${ }^{4}$ that they do not exist (as mentioned in §1.1).
A special case of the conjecture, namely that two orthogonal Latin squares of order 6 do not exist, was proven correct by Tarry [136] in 1900 via an exhaustive elimination of a large number of cases. Tarry found that there are 9408 reduced Latin squares of order six, and he grouped these into 17 distinct classes such that if a Latin square has an orthogonal mate, then any Latin square in its class also has an orthogonal mate. It therefore sufficed to show that among 17 Latin squares, one taken from each class, there does not exist one with an orthogonal mate. This proof of the non-existence of orthogonal Latin squares of order 6 was verified by Fisher and Yates [57], who also counted 9408 reduced Latin squares and 17 classes of Latin squares of order six. According to Norton [112] the same exhaustive enumeration proof was allegedly given even before 1900, but was left unpublished. Non-exhaustive proofs of this result were given by Yamamoto [152] and Stinson [133], while Appa et al. [10] used integer programming to show that no orthogonal Latin squares of order 6 exists.

Although Euler's conjecture was verified for the special case of $n=6$, it was disproven for the special case of $n=10$ in 1959 by Bose and Shrikhande [22] and Parker [115], who produced the pair

$$
\left(\left[\begin{array}{llllllllll}
0 & 4 & 1 & 7 & 2 & 9 & 8 & 3 & 6 & 5 \\
8 & 1 & 5 & 2 & 7 & 3 & 9 & 4 & 0 & 6 \\
9 & 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 & 0 \\
5 & 9 & 8 & 3 & 0 & 4 & 7 & 6 & 2 & 1 \\
7 & 6 & 9 & 8 & 4 & 1 & 5 & 0 & 3 & 2 \\
6 & 7 & 0 & 9 & 8 & 5 & 2 & 1 & 4 & 3 \\
3 & 0 & 7 & 1 & 9 & 8 & 6 & 2 & 5 & 4 \\
1 & 2 & 3 & 4 & 5 & 6 & 0 & 7 & 8 & 9 \\
2 & 3 & 4 & 5 & 6 & 0 & 1 & 8 & 9 & 7 \\
4 & 5 & 6 & 0 & 1 & 2 & 3 & 9 & 7 & 8
\end{array}\right],\left[\begin{array}{llllllllll}
0 & 7 & 8 & 6 & 9 & 3 & 5 & 4 & 1 & 2 \\
6 & 1 & 7 & 8 & 0 & 9 & 4 & 5 & 2 & 3 \\
5 & 0 & 2 & 7 & 8 & 1 & 9 & 6 & 3 & 4 \\
9 & 6 & 1 & 3 & 7 & 8 & 2 & 0 & 4 & 5 \\
3 & 9 & 0 & 2 & 4 & 7 & 8 & 1 & 5 & 6 \\
8 & 4 & 9 & 1 & 3 & 5 & 7 & 2 & 6 & 0 \\
7 & 8 & 5 & 9 & 2 & 4 & 6 & 3 & 0 & 1 \\
4 & 5 & 6 & 0 & 1 & 2 & 3 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 0 & 9 & 7 & 8 \\
2 & 3 & 4 & 5 & 6 & 0 & 1 & 8 & 9 & 7
\end{array}\right]\right)
$$

or orthogonal Latin squares of order 10. Bose and Shrikhande used so-called pairwise balanced block designs and Parker Galois fields in order to obtain constructions for pairs of orthogonal Latin squares of an infinite number of orders (but not all orders) of the form $n=2(\bmod 4)$. These two construction methods were combined by the three authors, and a complete disproof of Euler's conjecture was soon after published in [23]. Their theorem is not reproduced in

[^10]this dissertation due the fact that it requires a lengthy proof and notions from the field of combinatorial designs that fall beyond the scope of this dissertation.
Another (much shorter) disproof of Euler's conjecture was, however, given by Zhu [154], and this proof is partially reproduced here. The proof relies on the following construction using prolongation of the $\lambda$-Latin square of $G F(n)$ (see $\S 2.1$ and $\S 2.2$ ). Let $\boldsymbol{L}$ be the $\lambda$-Latin square of $G F(n)$. If $(G,+, \times)=G F(p)$, it may be noted that the $i$-th entry on the $k$-th diagonal of $\boldsymbol{L}$ contains $\boldsymbol{L}(k+i, i)=k+(1+\lambda) i$, and therefore that the $k$-th diagonal is a transversal (it is the $k$-th row of the $(1+\lambda)$-Latin square of $G F(n))$ provided, however, that $\lambda \neq p-1$. If $K=\left(k_{1}, k_{2}, \ldots, k_{q}\right) \in G^{q}$ for $q \leq n$ is an ordered $q$-tuple, $\alpha$ is a permutation of $K$ and $\boldsymbol{Q}$ is a Latin square of order $q$, then the ( $K, \alpha, \boldsymbol{Q}$ )-prolongation of $\boldsymbol{L}$ is the Latin square resulting from prolongation of $\boldsymbol{L}$ using the $k_{i}$-th diagonals for all $1 \leq i \leq q$, where the row-projection of the $k_{1}$-st diagonal is appended first, the row-projection of the $k_{2}$-nd diagonal second, and so on, while the column-projection of the $\alpha\left(k_{1}\right)$-st diagonal is appended first, the column-projection of the $\alpha\left(k_{2}\right)$-nd diagonal second, and so on. Finally, the Latin square $\boldsymbol{Q}$ is used to fill in the $q \times q$ empty square in the lower right-hand corner of the resulting array.

The following theorem shows that if the diagonals used to prolongate two such orthogonal Latin squares satisfy certain conditions, then the resulting Latin squares are also orthogonal.

Theorem 3.2.4 (Theorem 1, [154]) Let $\boldsymbol{L}_{\lambda}$ be the $\lambda$-Latin square and $\boldsymbol{L}_{\mu}$ the $\mu$-Latin square of $G F(p)$, where $p$ is prime and where $\lambda$ and $\mu$ are distinct elements of $G F(p) \backslash\{p-1\}$, and let $\boldsymbol{Q}_{1}$ and $\boldsymbol{Q}_{2}$ be two orthogonal Latin squares of order $q$. If $K=\left(k_{1}, k_{2}, \ldots, k_{q}\right) \in G^{q}$ and $L=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{q}\right) \in G^{q}$ are ordered $q$-tuples, and $\alpha$ and $\beta$ are permutations of $K$ and $L$ respectively, then the $\left(K, \alpha, \boldsymbol{Q}_{1}\right)$-prolongation of $\boldsymbol{L}_{\lambda}$ is orthogonal to the $\left(L, \beta, \boldsymbol{Q}_{2}\right)$-prolongation of $\boldsymbol{L}_{\mu}$ if $k_{i} \neq \ell_{j}$ for all $k_{i} \in K$ and $\ell_{j} \in L$, and if the set containing

$$
h_{i}=\frac{\left((1+\mu) k_{i}-(1+\lambda) \ell_{i}\right)}{(\mu-\lambda)}
$$

and

$$
h_{i}^{\prime}=\frac{\left((1+\mu)\left(-\lambda \alpha\left(k_{i}\right)\right)-(1+\lambda)\left(-\mu \beta\left(\ell_{i}\right)\right)\right)}{(\mu-\lambda)}
$$

for all $1 \leq i \leq q$ contains each element of $K \cup L$ exactly once.

In order to illustrate, to some extent, the usefulness of the preceding theorem, Zhu gave the following example of the construction of a pair of orthogonal Latin squares of order 18, which is an odd multiple of 2 . Consider the 4 -Latin square and the 10 -Latin square of $G F(13)$, which are given by

$$
\left[\begin{array}{ccccccccccccc}
0 & 4 & 8 & 12 & 3 & 7 & 11 & 2 & 6 & 10 & 1 & 5 & 9 \\
1 & 5 & 9 & 0 & 4 & 8 & 12 & 3 & 7 & 11 & 2 & 6 & 10 \\
2 & 6 & 10 & 1 & 5 & 9 & 0 & 4 & 8 & 12 & 3 & 7 & 11 \\
3 & 7 & 11 & 2 & 6 & 10 & 1 & 5 & 9 & 0 & 4 & 8 & 12 \\
4 & 8 & 12 & 3 & 7 & 11 & 2 & 6 & 10 & 1 & 5 & 9 & 0 \\
5 & 9 & 0 & 4 & 8 & 12 & 3 & 7 & 11 & 2 & 6 & 10 & 1 \\
6 & 10 & 1 & 5 & 9 & 0 & 4 & 8 & 12 & 3 & 7 & 11 & 2 \\
7 & 11 & 2 & 6 & 10 & 1 & 5 & 9 & 0 & 4 & 8 & 12 & 3 \\
8 & 12 & 3 & 7 & 11 & 2 & 6 & 10 & 1 & 5 & 9 & 0 & 4 \\
9 & 0 & 4 & 8 & 12 & 3 & 7 & 11 & 2 & 6 & 10 & 1 & 5 \\
10 & 1 & 5 & 9 & 0 & 4 & 8 & 12 & 3 & 7 & 11 & 2 & 6 \\
11 & 2 & 6 & 10 & 1 & 5 & 9 & 0 & 4 & 8 & 12 & 3 & 7 \\
12 & 3 & 7 & 11 & 2 & 6 & 10 & 1 & 5 & 9 & 0 & 4 & 8
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccccccccccccc}
0 & 10 & 7 & 4 & 1 & 11 & 8 & 5 & 2 & 12 & 9 & 6 & 3 \\
1 & 11 & 8 & 5 & 2 & 12 & 9 & 6 & 3 & 0 & 10 & 7 & 4 \\
2 & 12 & 9 & 6 & 3 & 0 & 10 & 7 & 4 & 1 & 11 & 8 & 5 \\
3 & 0 & 10 & 7 & 4 & 1 & 11 & 8 & 5 & 2 & 12 & 9 & 6 \\
4 & 1 & 11 & 8 & 5 & 2 & 12 & 9 & 6 & 3 & 0 & 10 & 7 \\
5 & 2 & 12 & 9 & 6 & 3 & 0 & 10 & 7 & 4 & 1 & 11 & 8 \\
6 & 3 & 0 & 10 & 7 & 4 & 1 & 11 & 8 & 5 & 2 & 12 & 9 \\
7 & 4 & 1 & 11 & 8 & 5 & 2 & 12 & 9 & 6 & 3 & 0 & 10 \\
8 & 5 & 2 & 12 & 9 & 6 & 3 & 0 & 10 & 7 & 4 & 1 & 11 \\
9 & 6 & 3 & 0 & 10 & 7 & 4 & 1 & 11 & 8 & 5 & 2 & 12 \\
10 & 7 & 4 & 1 & 11 & 8 & 5 & 2 & 12 & 9 & 6 & 3 & 0 \\
11 & 8 & 5 & 2 & 12 & 9 & 6 & 3 & 0 & 10 & 7 & 4 & 1 \\
12 & 9 & 6 & 3 & 0 & 10 & 7 & 4 & 1 & 11 & 8 & 5 & 2
\end{array}\right],
$$

respectively (hence $\lambda=4$ and $\mu=10$ ). Furthermore, let $K=(1,2,3,4,5), L=(9,12,11,10,8)$, $\alpha=\left(\begin{array}{ll}01 & 234 \\ 3 & 0\end{array} 124\right)$ and $\beta=\left(\begin{array}{l}0 \\ 1\end{array} 233044\right)$. It may easily be verified that the set containing

$$
\frac{\left((1+\mu) k_{i}-(1+\lambda) \ell_{i}\right)}{(\mu-\lambda)}=\frac{11 k_{i}-5 \ell_{i}}{6}=4 k_{i}-3 \ell_{i}
$$

and

$$
\frac{\left((1+\mu)\left(-\lambda \alpha\left(k_{i}\right)\right)-(1+\lambda)\left(-\mu \beta\left(\ell_{i}\right)\right)\right)}{(\mu-\lambda)}=\frac{8 \alpha\left(k_{i}\right)+11 \beta\left(\ell_{i}\right)}{6}=10 \alpha\left(k_{i}\right)+4 \beta\left(\ell_{i}\right)
$$

for all $1 \leq i \leq 5$ is the set $\mathbb{Z}_{13} \backslash\{0\}=K \cup L$, and therefore that the ( $K, \alpha, \boldsymbol{Q}_{1}$ )-prolongation of the 4-Latin square of $G F(13)$ is orthogonal to the ( $L, \beta, \boldsymbol{Q}_{2}$ )-prolongation of the 10 -Latin square of $G F(13)$, where $\boldsymbol{Q}_{1}$ and $\boldsymbol{Q}_{2}$ may be any two orthogonal Latin squares of order 5. Taking $\boldsymbol{Q}_{1}$ and $\boldsymbol{Q}_{2}$ as the 1-Latin square and the 4-Latin square of $G F(5)$ respectively, the two orthogonal Latin square of order 18 are

$$
\boldsymbol{L}_{3.7}=\left[\begin{array}{cccccccccccccccccc}
0 & 4 & 8 & 12 & 3 & 7 & 11 & 2 & 17 & 16 & 15 & 14 & 13 & 10 & 9 & 5 & 1 & 6 \\
13 & 5 & 9 & 0 & 4 & 8 & 12 & 3 & 7 & 17 & 16 & 15 & 14 & 2 & 1 & 10 & 6 & 11 \\
14 & 13 & 10 & 1 & 5 & 9 & 0 & 4 & 8 & 12 & 17 & 16 & 15 & 7 & 6 & 2 & 11 & 3 \\
15 & 14 & 13 & 2 & 6 & 10 & 1 & 5 & 9 & 0 & 4 & 17 & 16 & 12 & 11 & 7 & 3 & 8 \\
16 & 15 & 14 & 13 & 7 & 11 & 2 & 6 & 10 & 1 & 5 & 9 & 17 & 4 & 3 & 12 & 8 & 0 \\
17 & 16 & 15 & 14 & 13 & 12 & 3 & 7 & 11 & 2 & 6 & 10 & 1 & 9 & 8 & 4 & 0 & 5 \\
6 & 17 & 16 & 15 & 14 & 13 & 4 & 8 & 12 & 3 & 7 & 11 & 2 & 1 & 0 & 9 & 5 & 10 \\
7 & 11 & 17 & 16 & 15 & 14 & 13 & 9 & 0 & 4 & 8 & 12 & 3 & 6 & 5 & 1 & 10 & 2 \\
8 & 12 & 3 & 17 & 16 & 15 & 14 & 13 & 1 & 5 & 9 & 0 & 4 & 11 & 10 & 6 & 2 & 7 \\
9 & 0 & 4 & 8 & 17 & 16 & 15 & 14 & 13 & 6 & 10 & 1 & 5 & 3 & 2 & 11 & 7 & 12 \\
10 & 1 & 5 & 9 & 0 & 17 & 16 & 15 & 14 & 13 & 11 & 2 & 6 & 8 & 7 & 3 & 12 & 4 \\
11 & 2 & 6 & 10 & 1 & 5 & 17 & 16 & 15 & 14 & 13 & 3 & 7 & 0 & 12 & 8 & 4 & 9 \\
12 & 3 & 7 & 11 & 2 & 6 & 10 & 17 & 16 & 15 & 14 & 13 & 8 & 5 & 4 & 0 & 9 & 1 \\
1 & 6 & 11 & 3 & 8 & 0 & 5 & 10 & 2 & 7 & 12 & 4 & 9 & 13 & 14 & 15 & 16 & 17 \\
2 & 7 & 12 & 4 & 9 & 1 & 6 & 11 & 3 & 8 & 0 & 5 & 10 & 14 & 15 & 16 & 17 & 13 \\
3 & 8 & 0 & 5 & 10 & 2 & 7 & 12 & 4 & 9 & 1 & 6 & 11 & 15 & 16 & 17 & 13 & 14 \\
4 & 9 & 1 & 6 & 11 & 3 & 8 & 0 & 5 & 10 & 2 & 7 & 12 & 16 & 17 & 13 & 14 & 15 \\
5 & 10 & 2 & 7 & 12 & 4 & 9 & 1 & 6 & 11 & 3 & 8 & 0 & 17 & 13 & 14 & 15 & 16
\end{array}\right],
$$

and

$$
\boldsymbol{L}_{3.8}=\left[\begin{array}{cccccccccccccccccc}
0 & 14 & 15 & 16 & 13 & 17 & 8 & 5 & 2 & 12 & 9 & 6 & 3 & 10 & 7 & 4 & 1 & 11 \\
1 & 11 & 14 & 15 & 16 & 13 & 17 & 6 & 3 & 0 & 10 & 7 & 4 & 8 & 5 & 2 & 12 & 9 \\
2 & 12 & 9 & 14 & 15 & 16 & 13 & 17 & 4 & 1 & 11 & 8 & 5 & 6 & 3 & 0 & 10 & 7 \\
3 & 0 & 10 & 7 & 14 & 15 & 16 & 13 & 17 & 2 & 12 & 9 & 6 & 4 & 1 & 11 & 8 & 5 \\
4 & 1 & 11 & 8 & 5 & 14 & 15 & 16 & 13 & 17 & 0 & 10 & 7 & 2 & 12 & 9 & 6 & 3 \\
5 & 2 & 12 & 9 & 6 & 3 & 14 & 15 & 16 & 13 & 17 & 11 & 8 & 0 & 10 & 7 & 4 & 1 \\
6 & 3 & 0 & 10 & 7 & 4 & 1 & 14 & 15 & 16 & 13 & 17 & 9 & 11 & 8 & 5 & 2 & 12 \\
7 & 4 & 1 & 11 & 8 & 5 & 2 & 12 & 14 & 15 & 16 & 13 & 17 & 9 & 6 & 3 & 0 & 10 \\
17 & 5 & 2 & 12 & 9 & 6 & 3 & 0 & 10 & 14 & 15 & 16 & 13 & 7 & 4 & 1 & 11 & 8 \\
13 & 17 & 3 & 0 & 10 & 7 & 4 & 1 & 11 & 8 & 14 & 15 & 16 & 5 & 2 & 12 & 9 & 6 \\
16 & 13 & 17 & 1 & 11 & 8 & 5 & 2 & 12 & 9 & 6 & 14 & 15 & 3 & 0 & 10 & 7 & 4 \\
15 & 16 & 13 & 17 & 12 & 9 & 6 & 3 & 0 & 10 & 7 & 4 & 14 & 1 & 11 & 8 & 5 & 2 \\
14 & 15 & 16 & 13 & 17 & 10 & 7 & 4 & 1 & 11 & 8 & 5 & 2 & 12 & 9 & 6 & 3 & 0 \\
9 & 7 & 5 & 3 & 1 & 12 & 10 & 8 & 6 & 4 & 2 & 0 & 11 & 13 & 17 & 16 & 15 & 14 \\
12 & 10 & 8 & 6 & 4 & 2 & 0 & 11 & 9 & 7 & 5 & 3 & 1 & 14 & 13 & 17 & 16 & 15 \\
11 & 9 & 7 & 5 & 3 & 1 & 12 & 10 & 8 & 6 & 4 & 2 & 0 & 15 & 14 & 13 & 17 & 16 \\
10 & 8 & 6 & 4 & 2 & 0 & 11 & 9 & 7 & 5 & 3 & 1 & 12 & 16 & 15 & 14 & 13 & 17 \\
8 & 6 & 4 & 2 & 0 & 11 & 9 & 7 & 5 & 3 & 1 & 12 & 10 & 17 & 16 & 15 & 14 & 13
\end{array}\right] .
$$

The following two theorems, also due to Zhu [154], give infinite classes of orders for which the above construction is possible. The proofs are omitted since they require number theoretic methods beyond the scope of this dissertation.

Theorem 3.2.5 (Theorem 2, [154]) Suppose $p=3 k+1$ is prime for some integer $k>1$. Let $q=2$ if $k=2$ and let $q=a^{k}$ if $k>2$ for any $a \in G F(p)$. Then the conditions required in Theorem 3.2.4 are satisfied if $\lambda=q^{-1}(q-1), \mu=(q-1)^{-1} q, K=\left(1, q, q^{2}\right), L=\left(-q,-q^{2},-1\right)$, $\alpha=\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 1\end{array}\right)$ and $\beta=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$.

Theorem 3.2.6 (Theorem 3, [154]) If $p=3 k-1$ is prime for some integer $k>2$, let $q$ be the element of $\in G F(p)$ for which $q^{3}=10$. Then the conditions required in Theorem 3.2.4 are satisfied if $\lambda=-3, \mu=3^{-1}+2\left(3^{-1}\right) q, K=\left(0,1,-\mu^{-1} b\right), L=(a, b, c), \alpha=\binom{012}{012}$ and $\beta=\binom{012}{021}$, where $a=-(2 \mu)^{-1}(\mu+3) b, b=-2^{-1}(1+\mu)$ and $c=1-\left(\mu^{-1}+1\right) b-a$.

It follows from the two preceding theorems that a pair of orthogonal Latin squares of order $p+3$ exists if $p$ is not a multiple of 3 . This fact, together with a number of the results discussed in $\S 2.2$, may be used to disprove Euler's conjecture for all orders except 6, as follows.

Theorem 3.2.7 (Lemma 3, [154]) A pair of orthogonal Latin squares of order $n$ exists if $n=2(\bmod 4)>6$.

Proof: Two cases are considered, namely where $n=4 k+2$, for some integer $k$, is a multiple of 3 , and where it is not.

Case 1: $n$ is not a multiple of 3. In this case the odd integer $n-3=4 k-1$ is also not a multiple of 3 , and therefore must be an odd multiple of an odd prime which is not a multiple of 3 . Hence $n=p m+3$ where $p$ is prime and not a multiple of three, and where $m$ is an odd integer. Since $p$ is prime and not a multiple of 3 , it follows from Theorems 3.2.5 and 3.2.6 that a pair of orthogonal Latin squares of order $p+3$ exist with a pair of orthogonal Latin squares of order 3 as subsquares. Furthermore, by Corollary 3.2.1 a pair of orthogonal Latin squares of order $m$ exists, and therefore a pair of orthogonal Latin squares of order $n=p m+3$ exists by Corollary 2.4.2.
Case 2: $n$ is a multiple of 3. If $n$ is a multiple of an odd prime other than 3, then it is of the form $n=2(2 t+1) 3^{s}=(4 t+2) 3^{s}$, where $s$ and $t$ are integers. Since $4 t+2$ is not a multiple of 3 , a pair of orthogonal Latin squares of order $4 t+2$ exists by Case 1 above. Then by Corollary 2.4.1 a pair of orthogonal Latin squares of order $n$ exists. If $n$ is of the form $n=2\left(3^{s}\right)$ for some integer $s$, then $n$ may be written as $n=18\left(3^{s-2}\right)$, and since $\boldsymbol{L}_{3.7}$ and $\boldsymbol{L}_{3.8}$ are two orthogonal Latin squares of order 18 , a pair of orthogonal Latin squares of order $n$ exists by Corollary 2.4.1.

Since Euler's conjecture was settled in 1960 by Bose, Shrikhande and Parker [23], researchers turned their attention to the next step in the construction of sets of orthogonal Latin squares, namely the construction of 3-MOLS. A number of constructions of 3-MOLS of various orders have been given by Hanani [70], Mills [106], Wang and Wilson [144], Wallis [141] and Todorov [137]. In 1970 Hanani used constructions based on pairwise balanced designs to show that a 3 -MOLS exists for any order larger than 51, and also gave some constructions for 5-MOLS and 29-MOLS, while in 1972 Mills showed that a 3 -MOLS of order $n$ exists if $n=0,1(\bmod 4)$. The existence of 3 -MOLS for any $n \notin\{2,3,6,10,14\}$ was established by Wang and Wilson in 1978, while another proof of the same result was given by Wallis in 1984. The case of $n=14$ was the last case to be resolved; this was done in 1985 by Todorov, who found a 3 -MOLS of order 14 by means of a computer search.
In spite of various efforts by researchers to resolve this question, the question of the existence of a 3 -MOLS of order 10 is still open. Attempts at constructing a 3 -MOLS of order 10 have been
published, among various others, by Acketa and Matić-Kekić [2], Brown [26], Brown and Parker [27, 28], Delisle [43], Myrvold [109] and Parker [117], but so far only necessary conditions for the existence of a 3-MOLS of order 10 have been established.

The following theorem shows how some of the constructions of $\S 2.2$ may be used to guarantee a 3-MOLS for an infinite number of orders, the proof of which is similar to the proof of Theorem 2 in Mendelsohn [105].

Theorem 3.2.8 $A 3$-MOLS of order $n$ exists if $n \neq 2(\bmod 4), n \neq 3(\bmod 9)$ and $n \neq$ $6(\bmod 9)$.

Proof: Let $n=\prod_{i=1}^{q} p_{i}^{r^{i}}$ be the unique factorisation of $n \in \mathbb{N}$ into powers of distinct primes where $r_{1}, \ldots, r_{q}>0$. Since Theorem 2.2.2 guarantees the construction of a 3-MOLS of order $p^{r} \geq 4$, where $p$ is prime and $r>0$, a 3 -MOLS of order $n$ may be constructed using Theorems 2.2.2 and 2.4.3 provided that $n=2^{a} 3^{b} \prod_{i=1}^{q} p_{i}^{r^{2}}$ where $a \neq 1 \neq b$. This excludes the case where $n=2 \prod_{i=1}^{q} p_{i}^{r_{i}}$ (where $n$ is an odd multiple of 2 , i.e. $\left.n=2(\bmod 4)\right)$ and the case where $n=3 \prod_{i=1}^{q} p_{i}^{r_{i}}($ where $n=3 k$ such that $k$ is not divisible by 3 , i.e. $n=3(\bmod 9)$ or $n=6(\bmod 9))$.

An interesting construction of a 3-MOLS was given by Todorov [137], who used this construction to resolve the existence question for 3 -MOLS for the penultimate unresolved order, namely $n=14$. His construction utilises a so-called $(n+1, k)$-near-difference matrix ${ }^{5}$, which, given a group $(G, \circ)$ of order $n$, is a $k \times(n+2)$ matrix $\boldsymbol{D}$ containing elements of $G$, and $k$ empty cells, such that in any $2 \times(n+2)$ submatrix $\boldsymbol{D}^{\prime}$ there is exactly one column $j$ such that $\boldsymbol{D}^{\prime}(0, j) \circ \boldsymbol{D}^{\prime}(1, j)^{-1}=a$ for every $a \in G$, exactly one column $j$ for which $\boldsymbol{D}(0, j)$ is empty and $\boldsymbol{D}(1, j)$ non-empty, and exactly one column $j$ for which $\boldsymbol{D}(1, j)$ is empty and $\boldsymbol{D}(0, j)$ non-empty. An example of such an array (which is one of three found via a computer search by Todorov) containing elements from the group $\left(\mathbb{Z}_{13},+\right)$ is

$$
\left[\begin{array}{ccccccccccccccc}
\infty & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \infty & 0 & 1 & 3 & 2 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
0 & 0 & \infty & 2 & 12 & 10 & 7 & 9 & 5 & 4 & 1 & 11 & 8 & 3 & 6 \\
0 & 1 & 2 & \infty & 9 & 5 & 3 & 12 & 7 & 11 & 0 & 4 & 6 & 8 & 10 \\
0 & 3 & 12 & 9 & \infty & 6 & 2 & 7 & 11 & 1 & 5 & 10 & 0 & 4 & 8
\end{array}\right]
$$

where the symbol $\infty$ is used to denote an empty cell. Given any $(n+1, k)$-near-difference matrix $\boldsymbol{D}$ over the group $\left(\mathbb{Z}_{n},+\right)$, let $\boldsymbol{D}_{i}$, for some $i \in \mathbb{Z}_{n}$, denote the matrix such that $\boldsymbol{D}_{i}(j, k)=$ $\boldsymbol{D}(j, k)+i(\bmod n)$ for all $0 \leq j \leq k$ and $0 \leq k \leq n+2$, where the convention $\infty \pm a=a \pm \infty=\infty$ is henceforth assumed for all $a \in \mathbb{Z}_{n}$. It is easy to see that $\boldsymbol{D}_{i}$ for any $i \in \mathbb{Z}_{n}$ is also a $(n+1, k)$ -near-difference matrix, and the following theorem utilises this fact to show that a $(n+1, k)$ -near-difference matrix may be used to construct a $(k-2)$-MOLS of order $n+1$. This theorem is simply a combination of Lemma 4.6 and Corollary 4.16 in [18, pp. 546-551], and the proof of this theorem is achieved below by generalising the method for obtaining a 3-MOLS of order 14 from a $(14,5)$-near-difference matrix by Todorov [137].

Theorem 3.2.9 If $a(n+1, k)$-near-difference matrix exists, then an $O A(k, n+1)$ exists.

[^11]Proof: Let $\boldsymbol{D}$ be a $(n+1, k)$-near-difference matrix defined over the group $\left(\mathbb{Z}_{n},+\right)$, let $\infty$ be a column vector of length $k$ containing only the symbol $\infty$ and let

$$
\boldsymbol{A}=\left[\begin{array}{llllll}
\boldsymbol{\infty} & \boldsymbol{D}_{0} & \boldsymbol{D}_{1} & \boldsymbol{D}_{2} & \ldots & \boldsymbol{D}_{n-1}
\end{array}\right] .
$$

If $i$ and $j$ are any two rows of $\boldsymbol{A}$, then it is first of all easy to see that, by definition, no two columns in $\boldsymbol{D}+a$ are the same for any $a \in \mathbb{Z}_{n}$, and that the first column of $\boldsymbol{A}$ is the only column that contains the symbol $\infty$ more than once. Assume that $\boldsymbol{D}_{i}(a, k)=\boldsymbol{D}_{j}(a, \ell)$ and $\boldsymbol{D}_{i}(b, k)=\boldsymbol{D}_{j}(b, \ell)$ for any two rows $a$ and $b$ of $\boldsymbol{A}$ and $i<j$. Then

$$
\begin{aligned}
\boldsymbol{D}_{i}(a, k)-\boldsymbol{D}_{i}(b, k) & =\boldsymbol{D}_{j}(a, \ell)-\boldsymbol{D}_{j}(b, \ell) \\
& =\left(\boldsymbol{D}_{i}(a, \ell)+(j-i)\right)-\left(\boldsymbol{D}_{i}(b, \ell)+(j-i)\right) \\
& =\boldsymbol{D}_{i}(a, \ell)-\boldsymbol{D}_{i}(b, \ell),
\end{aligned}
$$

contradicting one of the defining properties of an $(n+1, k)$-near-difference matrix. Hence $\boldsymbol{A}$ is an orthogonal array with $k$ rows and $(n+1) n+1=(n+1)^{2}$ columns.

By Theorem 2.3.1, an $O A(k, n+1)$ is equivalent to a $(k-2)$-MOLS of order $n+1$. For example, the $(14,5)$-near-difference matrix

$$
\left[\begin{array}{ccccccccccccccc}
\infty & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \infty & 0 & 1 & 3 & 2 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
0 & 0 & \infty & 2 & 12 & 10 & 7 & 9 & 5 & 4 & 1 & 11 & 8 & 3 & 6 \\
0 & 1 & 2 & \infty & 9 & 5 & 3 & 12 & 7 & 11 & 0 & 4 & 6 & 8 & 10 \\
0 & 3 & 12 & 9 & \infty & 6 & 2 & 7 & 11 & 1 & 5 & 10 & 0 & 4 & 8
\end{array}\right]
$$

given by Todorov [137] may used to construct the three mutually orthogonal Latin squares
$\left[\begin{array}{cccccccccccccc}\infty & 2 & 10 & 12 & 7 & 9 & 5 & 4 & 1 & 11 & 8 & 3 & 6 & 0 \\ 7 & \infty & 3 & 11 & 0 & 8 & 10 & 6 & 5 & 2 & 12 & 9 & 4 & 1 \\ 5 & 8 & \infty & 4 & 12 & 1 & 9 & 11 & 7 & 6 & 3 & 0 & 10 & 2 \\ 11 & 6 & 9 & \infty & 5 & 0 & 2 & 10 & 12 & 8 & 7 & 4 & 1 & 3 \\ 2 & 12 & 7 & 10 & \infty & 6 & 1 & 3 & 11 & 0 & 9 & 8 & 5 & 4 \\ 6 & 3 & 0 & 8 & 11 & \infty & 7 & 2 & 4 & 12 & 1 & 10 & 9 & 5 \\ 10 & 7 & 4 & 1 & 9 & 12 & \infty & 8 & 3 & 5 & 0 & 2 & 11 & 6 \\ 12 & 11 & 8 & 5 & 2 & 10 & 0 & \infty & 9 & 4 & 6 & 1 & 3 & 7 \\ 4 & 0 & 12 & 9 & 6 & 3 & 11 & 1 & \infty & 10 & 5 & 7 & 2 & 8 \\ 3 & 5 & 1 & 0 & 10 & 7 & 4 & 12 & 2 & \infty & 11 & 6 & 8 & 9 \\ 9 & 4 & 6 & 2 & 1 & 11 & 8 & 5 & 0 & 3 & \infty & 12 & 7 & 10 \\ 8 & 10 & 5 & 7 & 3 & 2 & 12 & 9 & 6 & 1 & 4 & \infty & 0 & 11 \\ 1 & 9 & 11 & 6 & 8 & 4 & 3 & 0 & 10 & 7 & 2 & 5 & \infty & 12 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \infty\end{array}\right]$,
$\left[\begin{array}{cccccccccccccc}2 & \infty & 5 & 9 & 3 & 12 & 7 & 11 & 0 & 4 & 6 & 8 & 10 & 1 \\ 11 & 3 & \infty & 6 & 10 & 4 & 0 & 8 & 12 & 1 & 5 & 7 & 9 & 2 \\ 10 & 12 & 4 & \infty & 7 & 11 & 5 & 1 & 9 & 0 & 2 & 6 & 8 & 3 \\ 9 & 11 & 0 & 5 & \infty & 8 & 12 & 6 & 2 & 10 & 1 & 3 & 7 & 4 \\ 8 & 10 & 12 & 1 & 6 & \infty & 9 & 0 & 7 & 3 & 11 & 2 & 4 & 5 \\ 5 & 9 & 11 & 0 & 2 & 7 & \infty & 10 & 1 & 8 & 4 & 12 & 3 & 6 \\ 4 & 6 & 10 & 12 & 1 & 3 & 8 & \infty & 11 & 2 & 9 & 5 & 0 & 7 \\ 1 & 5 & 7 & 11 & 0 & 2 & 4 & 9 & \infty & 12 & 3 & 10 & 6 & 8 \\ 7 & 2 & 6 & 8 & 12 & 1 & 3 & 5 & 10 & \infty & 0 & 4 & 11 & 9 \\ 12 & 8 & 3 & 7 & 9 & 0 & 2 & 4 & 6 & 11 & \infty & 1 & 5 & 10 \\ 6 & 0 & 9 & 4 & 8 & 10 & 1 & 3 & 5 & 7 & 12 & \infty & 2 & 11 \\ 3 & 7 & 1 & 10 & 5 & 9 & 11 & 2 & 4 & 6 & 8 & 0 & \infty & 12 \\ \infty & 4 & 8 & 2 & 11 & 6 & 10 & 12 & 3 & 5 & 7 & 9 & 1 & 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \infty\end{array}\right]$
and

$$
\left[\begin{array}{cccccccccccccc}
12 & 9 & 6 & \infty & 2 & 7 & 11 & 1 & 5 & 10 & 0 & 4 & 8 & 3 \\
9 & 0 & 10 & 7 & \infty & 3 & 8 & 12 & 2 & 6 & 11 & 1 & 5 & 4 \\
6 & 10 & 1 & 11 & 8 & \infty & 4 & 9 & 0 & 3 & 7 & 12 & 2 & 5 \\
3 & 7 & 11 & 2 & 12 & 9 & \infty & 5 & 10 & 1 & 4 & 8 & 0 & 6 \\
1 & 4 & 8 & 12 & 3 & 0 & 10 & \infty & 6 & 11 & 2 & 5 & 9 & 7 \\
10 & 2 & 5 & 9 & 0 & 4 & 1 & 11 & \infty & 7 & 12 & 3 & 6 & 8 \\
7 & 11 & 3 & 6 & 10 & 1 & 5 & 2 & 12 & \infty & 8 & 0 & 4 & 9 \\
5 & 8 & 12 & 4 & 7 & 11 & 2 & 6 & 3 & 0 & \infty & 9 & 1 & 10 \\
2 & 6 & 9 & 0 & 5 & 8 & 12 & 3 & 7 & 4 & 1 & \infty & 10 & 11 \\
11 & 3 & 7 & 10 & 1 & 6 & 9 & 0 & 4 & 8 & 5 & 2 & \infty & 12 \\
\infty & 12 & 4 & 8 & 11 & 2 & 7 & 10 & 1 & 5 & 9 & 6 & 3 & 0 \\
4 & \infty & 0 & 5 & 9 & 12 & 3 & 8 & 11 & 2 & 6 & 10 & 7 & 1 \\
8 & 5 & \infty & 1 & 6 & 10 & 0 & 4 & 9 & 12 & 3 & 7 & 11 & 2 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \infty
\end{array}\right]
$$

of order 14.

### 3.3 Self-orthogonal Latin squares and SOLSSOMs

In 1957 Stein [131] considered, among other aspects of quasigroups, the implications (in terms of special properties that quasigroups may satisfy) of imposing various identities on quasigroups in an attempt to construct counterexamples to Euler's conjecture. The identities that he considered became known as Stein's laws in the theory of quasigroups (see, for instance, Dénes and Keedwell [41, §2] and Bennet and Zhu [15]). Two identities of particular interest in this section are $a \circ(a \circ b)=b \circ a$ (known as Stein's first law) and $(b \circ a) \circ(a \circ b)=a$ (known as Stein's third law), where $a$ and $b$ are elements of some quasigroup $(G, \circ)$.
Consider, for instance, a quasigroup ( $G, \circ$ ) which satisfies $a \circ(a \circ b)=b \circ a$ for each pair of elements $a, b \in G$, and let $\boldsymbol{L}$ be the Latin square representing the Cayley-table of $(G, \circ)$. Then $\boldsymbol{L}(i, \boldsymbol{L}(i, j))=\boldsymbol{L}(j, i)$ for all $i, j \in \mathbb{Z}_{n}$. Furthermore, if $\boldsymbol{L}(i, j)=\boldsymbol{L}(k, \ell)$ and $\boldsymbol{L}^{T}(i, j)=\boldsymbol{L}^{T}(k, \ell)$ $(i . e \boldsymbol{L}(j, i)=\boldsymbol{L}(\ell, k)$ ), then

$$
\boldsymbol{L}(i, \boldsymbol{L}(i, j))=\boldsymbol{L}(j, i)=\boldsymbol{L}(\ell, k)=\boldsymbol{L}(k, \boldsymbol{L}(k, \ell))=\boldsymbol{L}(k, \boldsymbol{L}(i, j))
$$

which implies that $i=k$ since $\boldsymbol{L}$ is a Latin square. Since now $\boldsymbol{L}(i, j)=\boldsymbol{L}(i, \ell)$, it also follows that $j=\ell$, and that $\boldsymbol{L}$ and $\boldsymbol{L}^{T}$ are, by definition, orthogonal. Furthermore, let ( $G, \circ$ ) be a quasigroup which satisfies the identity $(b \circ a) \circ(a \circ b)=a$ for all pairs of elements $a, b \in G$, and let $\boldsymbol{L}$ be the Latin square representing the Cayley-table of $(G, \circ)$. Hence $\boldsymbol{L}(\boldsymbol{L}(j, i), \boldsymbol{L}(i, j))=i$ for any $i, j \in \mathbb{Z}_{n}$, and if $\boldsymbol{L}(i, j)=\boldsymbol{L}(k, \ell)$ and $\boldsymbol{L}^{T}(i, j)=\boldsymbol{L}^{T}(k, \ell)$, then

$$
i=\boldsymbol{L}(\boldsymbol{L}(j, i), \boldsymbol{L}(i, j))=\boldsymbol{L}(\boldsymbol{L}(\ell, k), \boldsymbol{L}(k, \ell))=k
$$

It similarly follows that $j=\ell$. Hence $\boldsymbol{L}$ and $\boldsymbol{L}^{T}$ are again orthogonal. This gives rise to a very special case of a pair of orthogonal Latin squares, a formal definition of which follows (which may also be found in Colbourn et al. [38, §III.5]).

Definition 3.3.1 (Self-orthogonal Latin square) $A$ self-orthogonal Latin square (SOLS) is a Latin square orthogonal to its transpose. If the Cayley-table of a quasigroup is a SOLS, then the quasigroup is also said to be self-orthogonal ${ }^{6}$.

An example of a SOLS is

$$
\boldsymbol{L}_{3.9}=\left[\begin{array}{llll}
1 & 3 & 2 & 0 \\
2 & 0 & 1 & 3 \\
0 & 2 & 3 & 1 \\
3 & 1 & 0 & 2
\end{array}\right]
$$

and it may be noted that there exists a bijection $\alpha$ from $\mathbb{Z}_{n}^{(2)}$ (the set of all 2-subsets of $\mathbb{Z}_{n}$ ) to itself such that $\alpha(\{i, j\})=\{k, \ell\}$ if either $\boldsymbol{L}(i, j)=k$ and $\boldsymbol{L}(j, i)=\ell$, or $\boldsymbol{L}(i, j)=\ell$ and $\boldsymbol{L}(j, i)=k$ for any SOLS $\boldsymbol{L}$, while there exists a bijection $\beta$ from $\mathbb{Z}_{n}$ to itself such that $\alpha(i)=k$ if $\boldsymbol{L}(i, i)=k$. This provides a means for quickly verifying whether a Latin square is self-orthogonal. For example, for the SOLS $\boldsymbol{L}_{3.9}$ the bijections

$$
\alpha=\binom{\{0,1\}\{0,2\}\{0,3\}\{1,2\}\{1,3\}\{2,3\}}{\{2,3\}\{0,2\}\{0,3\}\{1,2\}\{1,3\}\{0,1\}}
$$

and $\beta=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$ satisfy the above-mentioned properties. Any SOLS is therefore a Latin square with the property that its diagonal is a transversal (henceforth referred to as a diagonal Latin

[^12]square), and also has the property that $\boldsymbol{L}(i, j)=\boldsymbol{L}(j, i)$ implies $i=j$. This property is summarised in the following theorem in terms of universal permutations in order to facilitate further referencing.

Theorem 3.3.1 The universal-permutation of an element in a SOLS has exactly one fixed point and no 2-cycles.

Sade's [127] use of the phrase "anti-abelian" to describe self-orthogonal quasigroups seems to imply that there exists some "opposite" relationship between Abelian quasigroups ${ }^{7}$ and selforthogonal quasigroups (i.e. between symmetric Latin squares and SOLS), or that they might be seen as counterparts of one another. Indeed, a Latin square cannot be both symmetric and self-orthogonal, since in the former case each universal permutation contains only fixed points and 2-cycles (it will soon be illustrated why this is the case), while in the latter case each universal permutation contains exactly one fixed point and no 2-cycles. However, in both cases a very special relationship exists between the Latin square and its transpose, namely equality and orthogonality, respectively. A natural question is therefore whether there exist symmetric Latin squares and SOLS exhibiting the special relationship of orthogonality between them. This notion was first considered by Wang [143] in his 1978 diploma thesis, and in 1979 Wallis [139] highlighted the fact that such designs may be used to schedule a special type of resolvable mixed doubles tournament. Since then these designs have been studied extensively in the field of Latin squares, and a formal definition of this notion follows which may also be found in Colbourn et al. $[38, \S 5.6]$.

Definition 3.3.2 (SOLSSOM) $A$ self-orthogonal Latin square with a symmetric orthogonal mate (SOLSSOM) of order $n$ is a pair of orthogonal Latin squares $(\boldsymbol{L}, \boldsymbol{S})$ of order $n$ such that $\boldsymbol{L}$ is self-orthogonal and $\boldsymbol{S}$ is symmetric.

It may easily be verified that the pair of orthogonal Latin squares

$$
\left[\begin{array}{llll}
0 & 2 & 3 & 1 \\
3 & 1 & 0 & 2 \\
1 & 3 & 2 & 0 \\
2 & 0 & 1 & 3
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right]
$$

form a SOLSSOM of order 4. It is important to note that the universal permutations of a symmetric Latin square are involutions, i.e. permutations which only admit fixed points and 2 -cycles. This is true since, if $\boldsymbol{S}$ is a symmetric Latin square, either $\boldsymbol{S}(i, i)=k$ or $\boldsymbol{S}(i, j)=k=$ $\boldsymbol{S}(j, i)$ for any $i, j, k \in \mathbb{Z}_{n}$, i.e. either $\boldsymbol{u}(i)=i$ or $\boldsymbol{u}(i)=j$ and $\boldsymbol{u}(j)=i$. Furthermore, if $n$ is even, it is easy to see that a universal permutation in a symmetric Latin square has an even number of fixed points, while for odd $n$ a universal permutation in a symmetric Latin square has an odd number of fixed points. Since no two universal permutations in a Latin square may have the same fixed point, and since a universal permutation in a symmetric Latin square of odd order cannot only have 2-cycles, each universal permutation in a symmetric Latin square of odd order has exactly one fixed point. A symmetric Latin square of odd order is therefore a diagonal Latin square. On the other hand, a symmetric Latin square of even order may contain repeated elements on the diagonal, provided that an even number of copies of each element

[^13]appears on the diagonal. For example, the symmetric Latin squares

$\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 4 & 7 & 2 & 6 & 5 & 3 \\ 2 & 4 & 0 & 5 & 1 & 3 & 7 & 6 \\ 3 & 7 & 5 & 0 & 6 & 2 & 4 & 1 \\ 4 & 2 & 1 & 6 & 0 & 7 & 3 & 5 \\ 5 & 6 & 3 & 2 & 7 & 0 & 1 & 4 \\ 6 & 5 & 7 & 4 & 3 & 1 & 0 & 2 \\ 7 & 3 & 6 & 1 & 5 & 4 & 2 & 0\end{array}\right] \quad$ and $\quad\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 5 & 0 & 2 & 6 & 7 & 3 \\ 2 & 5 & 7 & 4 & 1 & 3 & 0 & 6 \\ 3 & 0 & 4 & 7 & 6 & 2 & 5 & 1 \\ 4 & 2 & 1 & 6 & 5 & 7 & 3 & 0 \\ 5 & 6 & 3 & 2 & 7 & 0 & 1 & 4 \\ 6 & 7 & 0 & 5 & 3 & 1 & 4 & 2 \\ 7 & 3 & 6 & 1 & 0 & 4 & 2 & 5\end{array}\right]$
of order 8 contain one element and four elements on the diagonal, respectively.
For the purpose of enumerating SOLSSOMs (a problem considered later in this dissertation) it is necessary to define the notion of a standard form for SOLSSOMs. A SOLSSOM $(\boldsymbol{L}, \boldsymbol{S})$ is standard if $\boldsymbol{L}$ is idempotent and $\boldsymbol{S}$ is reduced. A $\operatorname{SOLSSOM}(\boldsymbol{L}, \boldsymbol{S})$ of order $n$ has also been called regular [38, Definition 5.34] if $\boldsymbol{S}$ is idempotent for odd $n$ and unipotent with $\boldsymbol{S}(i, i)=0$, for all $i \in \mathbb{Z}_{n}$, for even $n$. In this dissertation, however, standard SOLSSOMs are considered since in this case it is not necessary to distinguish between SOLSSOMs of even and odd order.

### 3.3.1 Spouse-avoiding mixed doubles round-robin tennis tournaments

An interesting application of Latin squares to mixed doubles tournament scheduling was first considered by Brayton et al. [24] in 1974, one of whom was approached by the director of the Briarcliff Racquet Club in Briarcliff, New York, who sought a schedule for such a tournament. The tournament consists of $n$ married couples taking part in a mixed-doubles tennis tournament in such a way that each player opposes each other player exactly once and each pair of players are in partnership exactly once, with the exception that no player may be in partnership with or oppose his/her own spouse. Brayton et al. referred to such a tournament in which $n$ players take part as a spouse-avoiding mixed doubles round-robin (SAMDRR) tournament of order $n$. More recently, in 2004, Laurie [87] was also approached by the Recreation Tennis Club in Somerset West, South Africa, which sought a schedule for the same type of tournament. This led to a popular publication by Burger and Van Vuuren [35], who utilised constructions from the literature on SOLSSOMs in order to provide schedules for SAMDRR tournaments of orders $4 \leq n \leq 20$ so that sports clubs could have access to such schedules without requiring prior mathematical knowledge of combinatorial design theory.
If $n$ couples participate in an SAMDRR tournament, then each player takes part in $n-1$ rounds, and each player receives a bye in exactly one round of the tournament if $n$ is odd. Hence an SAMDRR tournament cannot be scheduled in fewer than $2 \times\left\lceil\frac{n}{2}\right\rceil-1$ rounds, and if an SAMDRR tournament can be scheduled in exactly $2 \times\left\lceil\frac{n}{2}\right\rceil-1$ rounds, each consisting of $\left\lfloor\frac{n}{2}\right\rfloor$ matches, then the tournament is resolvable.

Consider, for example, an SAMDRR tournament in which 4 married couples take part, where $H_{i}$ denotes the husband of the $i$-th couple and $W_{i}$ the wife of the $i$-th couple for all $i \in \mathbb{Z}_{4}$. A schedule for a resolvable SAMDRR tournament of order 4 is shown in Table 3.5. It may easily be verified that this schedule indeed satisfies the requirements of an SAMDRR tournament.

The following well-known result establishes the connection between SAMDRR tournaments and Latin squares.

Theorem 3.3.2 ([38], Theorem 5.2) An SAMDRR tournament of order $n$ is equivalent to an idempotent SOLS of order $n$.

|  |  | Round 2 |  | Round 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $H_{0}$ | $H_{1}$ | $\mathrm{H}_{0}$ | $\mathrm{H}_{2}$ | $H_{0}$ | $\mathrm{H}_{3}$ |
| $W_{2}$ | $W_{3}$ | $W_{3}$ | $W_{1}$ | $W_{1}$ | $W_{2}$ |
| $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ | $H_{1}$ | $\mathrm{H}_{3}$ | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ |
| $W_{0}$ | $W_{1}$ | $W_{2}$ | $W_{0}$ | $W_{0}$ | $W_{3}$ |

TABLE 3.5: A schedule for an SAMDRR tournament of order 4.

Proof: Let $n$ couples participate in an SAMDRR tournament of order $n$, where $H_{i}$ denotes the husband of the $i$-th couple and $W_{i}$ the wife of the $i$-th couple, for all $i \in \mathbb{Z}_{n}$. Let $\boldsymbol{L}$ be an $n \times n$ array such that $\boldsymbol{L}(i, j)=k$ if $H_{i}$ is in partnership with $W_{k}$ when he opposes $H_{j}$ for all $i, j \in \mathbb{Z}_{n}, i \neq j$, and such that $\boldsymbol{L}(i, i)=i$ for all $i \in \mathbb{Z}_{n}$. If $\boldsymbol{L}(i, j)=k$ and $\boldsymbol{L}\left(i, j^{\prime}\right)=k$ for any $i, j, j^{\prime}, k \in \mathbb{Z}_{n}$, then $H_{i}$ is in partnership with $W_{k}$ in two distinct matches, and if $\boldsymbol{L}(i, j)=i$ for $i, j \in \mathbb{Z}_{n}, i \neq j$, then $H_{i}$ is in partnership with his own wife. These two contradictions imply that each element of $\mathbb{Z}_{n}$ appears exactly once in each row of $\boldsymbol{L}$. Similarly, it may be shown that each element of $\mathbb{Z}_{n}$ appears exactly once in each column of $\boldsymbol{L}$, and therefore that $\boldsymbol{L}$ is a Latin square. Finally, in the match where $H_{i}$ opposes $H_{j}, W_{\boldsymbol{L}(i, j)}$ opposes $W_{\boldsymbol{L}(j, i)}$, and since any two women only oppose one another once throughout the tournament, the pair $\left(W_{\boldsymbol{L}(i, j)}, W_{\boldsymbol{L}(j, i)}\right)$, or equivalently, the pair $(\boldsymbol{L}(i, j), \boldsymbol{L}(j, i))$, is unique as $i$ and $j$ vary over $\mathbb{Z}_{n}$. Hence $\boldsymbol{L}$ is an idempotent SOLS, and it may similarly be shown that any idempotent SOLS may be used to schedule an SAMDRR tournament.

For example, the idempotent SOLS corresponding the SAMDRR tournament shown in Table 3.5 is given in Table 3.6.

|  | $H_{0}$ | $H_{1}$ | $H_{2}$ | $H_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| $H_{0}$ | $W_{0}$ | $W_{2}$ | $W_{3}$ | $W_{1}$ |
| $H_{1}$ | $W_{3}$ | $W_{1}$ | $W_{0}$ | $W_{2}$ |
| $H_{2}$ | $W_{1}$ | $W_{3}$ | $W_{2}$ | $W_{0}$ |
| $H_{3}$ | $W_{2}$ | $W_{0}$ | $W_{1}$ | $W_{3}$ |

TABLE 3.6: The matches of an SAMDRR tournament of order 4 as represented by a SOLS of order 4 .
If an idempotent SOLS of order $n$ therefore exists, then an SAMDRR tournament schedule for $n$ couples may be obtained. It may be noted that since a SOLS of order $n$ is a special case of a pair of orthogonal Latin squares of order $n$, it may also be used to schedule an MDTT tournament of order $n$. Furthermore, the existence of an idempotent SOLS of order $n$ does not guarantee the existence of a resolvable SAMDRR tournament.
Consider a resolvable SAMDRR tournament of order $n$, namely a tournament where the matches are partitioned into the minimum number of rounds so that no player plays twice in any round, and where each couple receives a bye during exactly one round for odd $n$. Let $\boldsymbol{L}$ be an idempotent SOLS of order $n$ such that $\boldsymbol{L}(i, j)=k$ if $H_{i}$ (using the same notation as above) is in partnership with $W_{k}$ when opposing $H_{j}$, and let $\boldsymbol{S}$ be an $n \times n$ symmetric array such that $\boldsymbol{S}(i, j)=\boldsymbol{S}(j, i)$ gives the round in which $H_{i}$ opposes $H_{j}$, for all $i, j \in \mathbb{Z}_{n}$. Furthermore, let $\boldsymbol{S}(i, i)=0$ for all $i \in \mathbb{Z}_{n}$ if $n$ is even (where 0 is not used to denote any round), whereas $\boldsymbol{S}(i, i)=i$ for all $i \in \mathbb{Z}_{n}$ if $n$ is odd (where the couple $\left\{H_{i}, W_{i}\right\}$ receives a bye in round $i$ ). Since each player
participates in exactly one match per round, and since for odd $n$ each couple receives a bye in exactly one round, the ordered pairs $\left(H_{i}, \boldsymbol{S}(i, j)\right)$, i.e. the ordered pairs $(i, \boldsymbol{S}(i, j))$, are unique as $i$ and $j$ vary over $\mathbb{Z}_{n}$. For the same reason the ordered pairs $(j, \boldsymbol{S}(i, j))$ and $(\boldsymbol{L}(i, j), \boldsymbol{S}(i, j))$ are unique as $i$ and $j$ vary over $\mathbb{Z}_{n}$. It therefore follows that $\boldsymbol{S}$ is a symmetric Latin square which is orthogonal to $\boldsymbol{L}$, and that $(\boldsymbol{L}, \boldsymbol{S})$ is a SOLSSOM (which is unipotent if $n$ is even).
For example, the SOLSSOM in Table 3.7 represents the resolvable SAMDRR tournament in Table 3.5. If a SOLSSOM of order $n$ may be constructed (which is unipotent if $n$ is even), then a resolvable SAMDRR tournament of order $n$ may be obtained.

|  | $H_{0}$ | $H_{1}$ | $H_{2}$ | $H_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| $H_{0}$ | $W_{0}$ | $W_{2}$ | $W_{3}$ | $W_{1}$ |
| $H_{1}$ | $W_{3}$ | $W_{1}$ | $W_{0}$ | $W_{2}$ |
| $H_{2}$ | $W_{1}$ | $W_{3}$ | $W_{2}$ | $W_{0}$ |
| $H_{3}$ | $W_{2}$ | $W_{0}$ | $W_{1}$ | $W_{3}$ |


|  | $H_{0}$ | $H_{1}$ | $H_{2}$ | $H_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| $H_{0}$ | 0 | 1 | 2 | 3 |
| $H_{1}$ | 1 | 0 | 3 | 2 |
| $H_{2}$ | 2 | 3 | 0 | 1 |
| $H_{3}$ | 3 | 2 | 1 | 0 |

TABLE 3.7: A schedule for a resolvable SAMDRR tournament of order 4 as represented by a SOLSSOM of order 4.

### 3.3.2 Constructions of self-orthogonal Latin squares and SOLSSOMs

Further mention of SOLS in published work on Latin squares appear some time after Stein [131] presented his work on quasigroups ${ }^{8}$ in 1957, namely in 1963 by Weisner [145]. Weisner used the permutation $p=\binom{0123456789}{1234567809}$ to construct pairs of orthogonal Latin squares of order 10 where, given two permutations $r$ and $s$, the $i$-th rows of the two Latin squares are given by $p^{i} \circ r \circ\left(p^{i}\right)^{-1}$ and $p^{i} \circ s \circ\left(p^{i}\right)^{-1}$ respectively for $0 \leq i \leq 8$, while th 9 -th rows are given by powers of $r^{k}$ and $s^{\ell}$ respectively. Weisner constructed three pairs of orthogonal Latin squares of order 10, and noted that one of these pairs consists of a Latin square and its transpose, namely where $r=\binom{0123456789}{0258631974}$ and $s=\binom{0123456789}{0894725316}$, which results in the Latin squares
$\left[\begin{array}{llllllllll}0 & 2 & 5 & 8 & 6 & 3 & 1 & 9 & 7 & 4 \\ 8 & 1 & 3 & 6 & 0 & 7 & 4 & 2 & 9 & 5 \\ 9 & 0 & 2 & 4 & 7 & 1 & 8 & 5 & 3 & 6 \\ 4 & 9 & 1 & 3 & 5 & 8 & 2 & 0 & 6 & 7 \\ 7 & 5 & 9 & 2 & 4 & 6 & 0 & 3 & 1 & 8 \\ 2 & 8 & 6 & 9 & 3 & 5 & 7 & 1 & 4 & 0 \\ 5 & 3 & 0 & 7 & 9 & 4 & 6 & 8 & 2 & 1 \\ 3 & 6 & 4 & 1 & 8 & 9 & 5 & 7 & 0 & 2 \\ 1 & 4 & 7 & 5 & 2 & 0 & 9 & 6 & 8 & 3 \\ 6 & 7 & 8 & 0 & 1 & 2 & 3 & 4 & 5 & 9\end{array}\right] \quad$ and $\quad\left[\begin{array}{llllllllll}0 & 8 & 9 & 4 & 7 & 2 & 5 & 3 & 1 & 6 \\ 2 & 1 & 0 & 9 & 5 & 8 & 3 & 6 & 4 & 7 \\ 5 & 3 & 2 & 1 & 9 & 6 & 0 & 4 & 7 & 8 \\ 8 & 6 & 4 & 3 & 2 & 9 & 7 & 1 & 5 & 0 \\ 6 & 0 & 7 & 5 & 4 & 3 & 9 & 8 & 2 & 1 \\ 3 & 7 & 1 & 8 & 6 & 5 & 4 & 9 & 0 & 2 \\ 1 & 4 & 8 & 2 & 0 & 7 & 6 & 5 & 9 & 3 \\ 9 & 2 & 5 & 0 & 3 & 1 & 8 & 7 & 6 & 4 \\ 7 & 9 & 3 & 6 & 1 & 4 & 2 & 0 & 8 & 5 \\ 4 & 5 & 6 & 7 & 8 & 0 & 1 & 2 & 3 & 9\end{array}\right]$,
respectively. It may be verified that these two Latin squares are orthogonal and transposes of each other. Weisner did not, however, provide any conditions under which the permutations $r$ and $s$ may be used as above to construct pairs of orthogonal Latin squares in general, nor did he explain how he obtained the permutations used for his three constructions.
Early general constructions of SOLS were put forward during the same time by Sade [127] in 1960 using Galois fields, which is similar to the constructions of SOLS given by Mendelsohn [104, 105] in 1971 (see a discussion on these similarities by Dénes and Keedwell [42, pp. 458459]). The construction given in [105] is somewhat simpler than the one given in [104] and

[^14]covers a larger spectrum of SOLS. This simpler construction is summarised in the following theorem.

Theorem 3.3.3 ([105], Theorem 1) Let $p^{q}$ be any prime power other than $2^{1}$ and $3^{1}$, and let $\lambda$ be any element of $(G,+, \times)=G F\left(p^{q}\right)$ except 0,1 and $2^{-1}$. Then $(G, \circ)$ where $a \circ b=$ $\lambda a+(1-\lambda) b$ for any two elements $a, b \in G$ is a quasigroup whose Cayley-table is a self-orthogonal Latin square.

Proof: It is easy to see that, since $\lambda \neq 0$ and $\lambda \neq 1$, the equation $c=\lambda a+(1-\lambda) b$ has a unique solution, given any two of $a, b$ or $c$, and hence that $(G, \circ)$ is a quasigroup. Let $a \circ b=c \circ d$ and $b \circ a=d \circ c$. Then $\lambda a+(1-\lambda) b=\lambda c+(1-\lambda) d$ and $\lambda b+(1-\lambda) a=\lambda d+(1-\lambda) c$. Upon adding these two equations it follows that $a+b=c+d$. Substituting $a=c+d-b$ into the first equation delivers $(1-2 \lambda) b=(1-2 \lambda) d$. Since $\lambda \neq 2^{-1},(1-2 \lambda) \neq 0$ and therefore $b=d$. It may similarly be shown that $a=c$. Hence the Cayley-table of $(G, \circ)$ is a SOLS.

For example, let $n=7$ and $\lambda=2$. Then the SOLS constructed using the method of Theorem 3.3.3 is
$\left[\begin{array}{lllllll}0 & 6 & 5 & 4 & 3 & 2 & 1 \\ 2 & 1 & 0 & 6 & 5 & 4 & 3 \\ 4 & 3 & 2 & 1 & 0 & 6 & 5 \\ 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ 1 & 0 & 6 & 5 & 4 & 3 & 2 \\ 3 & 2 & 1 & 0 & 6 & 5 & 4 \\ 5 & 4 & 3 & 2 & 1 & 0 & 6\end{array}\right]$.

The following theorem elaborates on the spectrum of orders for which SOLS-constructions are covered by the above theorem.

Theorem 3.3.4 $([\mathbf{1 0 5}]$, Theorem 2) If $n \neq 2(\bmod 4), n \neq 3(\bmod 9)$ and $n \neq 6(\bmod 9)$, then a SOLS of order $n$ exists.

Proof: By Lemma 2.4.1 and Theorem 2.4.3 it follows that the direct product of two SOLS is again a SOLS, and hence that the existence of SOLS of orders $n$ and $m$ implies the existence of a SOLS of order $n m$. This result, together with the result of Theorem 3.3.3, states that if $n=2^{a} 3^{b} \prod_{i=1}^{q} p_{i}^{r_{i}}$ where $r_{i}>0$ is the unique factorisation of $n \in \mathbb{N}$ into powers of distinct primes such that $a \neq 1 \neq b$, then a SOLS of order $n$ exists. As in Theorem 3.2.8, this excludes the case where $n=2 \prod_{i=1}^{q} p_{i}^{r_{i}}($ where $n$ is an odd multiple of 2 , i.e. $n=2(\bmod 4))$ and the case where $n=3 \prod_{i=1}^{q} p_{i}^{r_{i}}$ (where $n=3 k$ such that $k$ is not divisible by 3 , i.e. $n=3(\bmod 9)$ or $n=6(\bmod 9))$.

At roughly the same time that Mendelsohn gave his constructions of SOLS, Németh [110] and Mullin and Németh [107, 108] presented some constructions of SOLS using so-called room squares (see, for instance, Laywine and Mullen [88, §11]), while Lindner [90] showed how the generalised singular direct product (see §2.4) may be used to construct SOLS recursively (a similar result for room squares was established by Horton [77]). This may be achieved by means of the following theorem, the proof of which is omitted here.

Theorem 3.3.5 ([90], Theorem 1) Let $(Q, \circ)$ be a self-orthogonal quasigroup of order $n$ with a subquasigroup $(S, \circ)$ of order $m$, let $\left(Q \backslash S, \bullet_{1}\right)$ and $\left(Q \backslash S, \bullet_{2}\right)$ be a pair of orthogonal quasigroups of order $\ell=n-m$ and let $(R, \star)$ be an idempotent self-orthogonal quasigroup of order $k$.

Furthermore, let $R^{2} \backslash\{(r, r) \mid r \in R\}$ be partitioned into two sets $R_{1}$ and $R_{2}$ such that if $(a, b) \in$ $R_{1}$, then $(b, a) \in R_{2}$ and vice versa. Then the generalised singular direct product $(Q \cup((Q \backslash S) \times$ $R), *)$ is a self-orthogonal quasigroup of order $\ell k+m$ where, for $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in$ $((Q \backslash S) \times R)$,

$$
a * b= \begin{cases}\left(a_{1} \bullet b_{1}, a_{2} \star b_{2}\right) & \text { if }\left(a_{2}, b_{2}\right) \in R_{1}, \\ \left(b_{1} \bullet 2 a_{1}, a_{2} \star b_{2}\right) & \text { if }\left(a_{2}, b_{2}\right) \in R_{2} .\end{cases}
$$

For example, let the Cayley table of a self-orthogonal quasigroup ( $Q, \circ$ ) be represented by the SOLS

$$
\left[\begin{array}{lllll}
0 & 4 & 3 & 2 & 1 \\
3 & 2 & 1 & 0 & 4 \\
1 & 0 & 4 & 3 & 2 \\
4 & 3 & 2 & 1 & 0 \\
2 & 1 & 0 & 4 & 3
\end{array}\right]
$$

where $S=\{0\}$ forms the trivial subquasigroup $(S, \circ)$ of order 1 (which is clearly self-orthogonal). Furthermore, let the Cayley-tables of two orthogonal quasigroups $\left(Q \backslash S, \bullet_{1}\right)$ and $\left(Q \backslash S, \bullet_{2}\right)$ be represented by the pair of orthogonal Latin squares

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2 \\
2 & 1 & 4 & 3 \\
4 & 3 & 2 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cccc}
1 & 4 & 2 & 3 \\
4 & 1 & 3 & 2 \\
3 & 2 & 4 & 1 \\
2 & 3 & 1 & 4
\end{array}\right]
$$

respectively, and let the Cayley-table of an idempotent self-orthogonal quasigroup $(R, \star)$ be the represented by the SOLS

$$
\left[\begin{array}{llll}
0 & 2 & 3 & 1 \\
3 & 1 & 0 & 2 \\
1 & 3 & 2 & 0 \\
2 & 0 & 1 & 3
\end{array}\right]
$$

where $R^{2} \backslash\{(r, r) \mid r \in R\}$ is partitioned into the two sets sets $R_{1}=\{(1,2),(1,3),(2,3)\}$ and $R_{2}=\{(2,1),(3,1),(3,2)\}$. Then the construction in Theorem 3.3.5 delivers a self-orthogonal quasigroup $(Q \cup((Q \backslash S) \times R), *)$ whose Cayley-table is given by the SOLS
$\left[\begin{array}{ccccccccccccccccc}0 & (4,0) & (3,0) & (2,0) & (1,0) & (4,1) & (3,1) & (2,1) & (1,1) & (4,2) & (3,2) & (2,2) & (1,2) & (4,3) & (3,3) & (2,3) & (1,3) \\ (3,0) & (2,0) & (1,0) & 0 & (4,0) & (1,2) & (2,2) & (3,2) & (4,2) & (1,3) & (2,3) & (3,3) & (4,3) & (1,1) & (2,1) & (3,1) & (4,1) \\ (1,0) & 0 & (4,0) & (3,0) & (2,0) & (3,2) & (4,2) & (1,2) & (2,2) & (3,3) & (4,3) & (1,3) & (2,3) & (3,1) & (4,1) & (1,1) & (2,1) \\ (4,0) & (3,0) & (2,0) & (1,0) & 0 & (2,2) & (1,2) & (4,2) & (3,2) & (2,3) & (1,3) & (4,3) & (3,3) & (2,1) & (1,1) & (4,1) & (3,1) \\ (2,0) & (1,0) & 0 & (4,0) & (3,0) & (4,2) & (3,2) & (2,2) & (1,2) & (4,3) & (3,3) & (2,3) & (1,3) & (4,1) & (3,1) & (2,1) & (1,1) \\ (3,1) & (1,3) & (4,3) & (2,3) & (3,3) & (2,1) & (1,1) & 0 & (4,1) & (1,0) & (2,0) & (3,0) & (4,0) & (1,2) & (2,2) & (3,2) & (4,2) \\ (1,1) & (4,3) & (1,3) & (3,3) & (2,3) & 0 & (4,1) & (3,1) & (2,1) & (3,0) & (4,0) & (1,0) & (2,0) & (3,2) & (4,2) & (1,2) & (2,2) \\ (4,1) & (3,3) & (2,3) & (4,3) & (1,3) & (3,1) & (2,1) & (1,1) & 0 & (2,0) & (1,0) & (4,0) & (3,0) & (2,2) & (1,2) & (4,2) & (3,2) \\ (2,1) & (2,3) & (3,3) & (1,3) & (4,3) & (1,1) & 0 & (4,1) & (3,1) & (4,0) & (3,0) & (2,0) & (1,0) & (4,2) & (3,2) & (2,2) & (1,2) \\ (3,2) & (1,1) & (4,1) & (2,1) & (3,1) & (1,3) & (4,3) & (2,3) & (3,3) & (2,2) & (1,2) & 0 & (4,2) & (1,0) & (2,0) & (3,0) & (4,0) \\ (1,2) & (4,1) & (1,1) & (3,1) & (2,1) & (4,3) & (1,3) & (3,3) & (2,3) & 0 & (4,2) & (3,2) & (2,2) & (3,0) & (4,0) & (1,0) & (2,0) \\ (4,2) & (3,1) & (2,1) & (4,1) & (1,1) & (3,3) & (2,3) & (4,3) & (1,3) & (3,2) & (2,2) & (1,2) & 0 & (2,0) & (1,0) & (4,0) & (3,0) \\ (2,2) & (2,1) & (3,1) & (1,1) & (4,1) & (2,3) & (3,3) & (1,3) & (4,3) & (1,2) & 0 & (4,2) & (3,2) & (4,0) & (3,0) & (2,0) & (1,0) \\ (3,3) & (1,2) & (4,2) & (2,2) & (3,2) & (1,0) & (4,0) & (2,0) & (3,0) & (1,1) & (4,1) & (2,1) & (3,1) & (2,3) & (1,3) & 0 & (4,3) \\ (1,3) & (4,2) & (1,2) & (3,2) & (2,2) & (4,0) & (1,0) & (3,0) & (2,0) & (4,1) & (1,1) & (3,1) & (2,1) & 0 & (4,3) & (3,3) & (2,3) \\ (4,3) & (3,2) & (2,2) & (4,2) & (1,2) & (3,0) & (2,0) & (4,0) & (1,0) & (3,1) & (2,1) & (4,1) & (1,1) & (3,3) & (2,3) & (1,3) & 0 \\ (2,3) & (2,2) & (3,2) & (1,2) & (4,2) & (2,0) & (3,0) & (1,0) & (4,0) & (2,1) & (3,1) & (1,1) & (4,1) & (1,3) & 0 & (4,3) & (3,3)\end{array}\right]$
of order 17 .
Further work on SOLS was conducted (among various others) by Hedayat [71] in 1973, who constructed a SOLS of order 10 utilising a recursive technique similar to prolongation, known as sum composition. In 1974 Brayton et al. [24] finally settled the existence question for SOLS
of all orders. Brayton et al. proved that a SOLS exists for any order $n \notin\{2,3,6\}^{9}$ using various constructions that were known at that time, most notably constructions using pairwise balanced designs (Brayton et al. [24] give a number of references to papers on such designs in which SOLS were also constructed). This proof is not discussed here since it requires notions from the field of combinatorial designs which fall beyond the scope of this dissertation.
Various other constructions of SOLS have been given since the early 1970s. In 1973 and 1975 Hedayat [72, 73] noted the importance of SOLS in terms of applications to experimental design and sports tournament scheduling, and in 1978 Hedayat [74] generalised his technique for constructing a SOLS of order 10, using sum composition, in order to obtain a construction of SOLS containing sub-SOLS for an infinte number of orders. Other interesting techniques for constructing SOLS include a method by McLaurin and Smith [103] which utilises so-called starters and skew adders in Abelian groups of odd order, as well as a method by Franklin [58] which cyclically develops the diagonals of a SOLS, given only the first column, before also using sum composition to construct SOLS recursively.
Some of the first constructions of SOLSSOMs were given by Wang [143] in 1978 and Wallis [139] in 1979. Wallis, in particular, gave a number of interesting constructions of SOLSSOMs, including constructions from Galois fields (based on Mendelsohn's [105] constructions of SOLS), constructions using so-called start sequences in Abelian groups of odd order and recursive constructions. Both these authors gave constructions for an infinite number of orders, and according to [91], Wang covered the largest set of integers, leaving only orders

$$
\begin{aligned}
n \in & \{10,14,39,46,51,54,58,62,66,70,74,82,87,98,102,118,123,142,159,174,183,194,202, \\
& 214,219,230,258,267,278,282,303,394,398,402,422,1322\} .
\end{aligned}
$$

unresolved (i.e. for any $n \neq 2,3,6$ not in this set, a construction was known, while the nonexistence of SOLSSOMs of orders $n=2,3,6$ is trivial). In 1983, Lindner et al. [91] used socalled frame-type SOLSSOMs and a recursive construction similar to the singular direct product, referred to as the singular indirect product, in order to construct SOLSSOMs recursively, thereby reducing the above list of unresolved orders to

$$
n \in\{10,14,39,46,54,58,62,66,70,87,102,194,230\} .
$$

Thereafter, in 1984, Zhu [155] also used a recursive construction of SOLSSOMs similar to the one presented by Lindner et al. [91] in order to construct SOLSSOMs of orders 39, 87, 102, 194 and 230. By 1996 no further orders had been resolved, and a new design known as a holey SOLSSOM (HSOLSSOM) (see Colbourn et al. [38, §5.9]) caught the attention of researchers in the field of Latin squares. In this year Bennet and Zhu $[16,17]$ resolved the existence question of HSOLSSOMs for various orders, and in the process were able to construct a SOLSSOM of order 62 in [17] and SOLSSOMs of orders 46, 54 and 58 in [16]. The last authors to resolve the existence of SOLSSOMs for previously undecided orders were Abel et al. [1], who constructed SOLSSOMs of orders 66 and 70 in a 2000 paper on incomplete and holey SOLS (see Colbourn et al. $[38, \S 5.3-5.4]$ ). The list of unresolved orders was thus reduced to only orders 10 and 14 , and at the time of writing this dissertation it was still not known whether SOLSSOMs of orders 10 and 14 exist. Table 3.8 gives a summary of the above discussion on the existence of SOLSSOMs.
A large number of constructions of SOLSSOMs have been proposed in the papers cited above, and others may also be found in $\mathrm{Du}[49]$ and Colbourn et al. [38, §5.7-5.8]. The following two theorems show how Mendelsohn's construction, given in Theorem 3.3.3, may be extended to also include a symmetric Latin square orthogonal to the constructed SOLS.

[^15]| Year | Orders resolved | Author(s) |
| :--- | :--- | :---: |
|  | $n \notin\{10,14,39,46,51,54,58,62,66,70,74,82,87,98,102,118$, |  |
| 1978 | $123,142,159,174,183,194,202,214,219,230,258,267$, | Wang [143] |
|  | $278,282,303,394,398,402,422,1322\}$ |  |
| 1983 | $n \notin\{10,14,39,46,54,58,62,66,70,87,102,194,230\}$ | Lindner, Mullin \& Stinson [91] |
| 1984 | $n \notin\{10,14,46,54,58,62,66,70\}$ | Zhu $[155]$ |
| 1996 | $n \notin\{10,14,46,54,58,66,70\}$ | Bennet \& Zhu [17] |
| 1996 | $n \notin\{10,14,66,70\}$ | Bennet \& Zhu [16] |
| 2000 | $n \notin\{10,14\}$ | Abel, Bennet, Zhang \& Zhu [1] |

Table 3.8: Existence history of SOLSSOMs.

Theorem 3.3.6 ([38], Construction 5.44) Let $p^{q}$ be any odd prime power, and let $\lambda$ be any element of $(G,+, \times)=G F\left(p^{q}\right)$ except 0,1 and $2^{-1}$. Then $(\boldsymbol{L}, \boldsymbol{S})$ forms a SOLSSOM, where $\boldsymbol{L}$ represents the Cayley table of the self-orthogonal quasigroup $(G, \circ)$ in which $a \circ b=\lambda a+(1-\lambda) b$ for any two elements $a, b \in G$, while $\boldsymbol{S}$ represents the Cayley-table of the Abelian quasigroup $(G, \bullet)$ where $a \bullet b=2^{-1}(a+b)$ for any two elements $a, b \in G$.

Theorem 3.3.7 ([38], Construction 5.45) Let $p^{q} \geq 4$ be any even prime power, and let $\lambda$ be any element of $(G,+, \times)=G F\left(p^{q}\right)$ except 0 and 1. Then $(\boldsymbol{L}, \boldsymbol{S})$ forms a SOLSSOM, where $\boldsymbol{L}$ represents the Cayley table of the self-orthogonal quasigroup $(G, \circ)$ where $a \circ b=\lambda a+(1-\lambda) b$ for any two elements $a, b \in G$, while $\boldsymbol{S}$ represents the Cayley-table of the Abelian group $(G,+)$.

For example, if $n=7$ and $\lambda=2$, then the pair of orthogonal Latin squares

$$
\left[\begin{array}{ccccccc}
0 & 6 & 5 & 4 & 3 & 2 & 1 \\
2 & 1 & 0 & 6 & 5 & 4 & 3 \\
4 & 3 & 2 & 1 & 0 & 6 & 5 \\
6 & 5 & 4 & 3 & 2 & 1 & 0 \\
1 & 0 & 6 & 5 & 4 & 3 & 2 \\
3 & 2 & 1 & 0 & 6 & 5 & 4 \\
5 & 4 & 3 & 2 & 1 & 0 & 6
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lllllll}
0 & 4 & 1 & 5 & 2 & 6 & 3 \\
4 & 1 & 5 & 2 & 6 & 3 & 0 \\
1 & 5 & 2 & 6 & 3 & 0 & 4 \\
5 & 2 & 6 & 3 & 0 & 4 & 1 \\
2 & 6 & 3 & 0 & 4 & 1 & 5 \\
6 & 3 & 0 & 4 & 1 & 5 & 2 \\
3 & 0 & 4 & 1 & 5 & 2 & 6
\end{array}\right]
$$

forms a SOLSSOM of order 7, constructed using the method of Theorem 3.3.6. If $n=4$, for example, the polynomials $0,1, x$ and $x+1$ may be used to represent the elements of $G F(4)$, and if $\lambda=x$, then the pair of orthogonal Latin squares

$$
\left[\begin{array}{cccc}
0 & 1+x & 1 & x \\
x & 1 & 1+x & 0 \\
1+x & 0 & x & 1 \\
1 & x & 0 & 1+x
\end{array}\right] \quad \text { and }\left[\begin{array}{cccc}
0 & 1 & x & 1+x \\
1 & 0 & 1+x & x \\
x & 1+x & 0 & 1 \\
1+x & x & 1 & 0
\end{array}\right]
$$

forms a SOLSSOM of order 4, constructed using the method of Theorem 3.3.7.

### 3.4 Chapter summary

This chapter contains a review of the application of Latin squares to the problem of scheduling various types of balanced sports tournaments. Round-robin tournaments were considered in $\S 3.1$, and the usefulness of representing such tournaments as Latin squares was highlighted using the problem of balancing carry-over effects in round robin tournaments as an example. A
number of references were also provided for further reading on the application of Latin squares (as well as other combinatorial designs) to sports tournament scheduling.
Two types of mixed doubles tournaments, in particular, were considered in this chapter, namely mixed doubles table tennis (MDTT) tournaments in $\S 3.2$ and spouse-avoiding mixed doubles round-robin (SAMDRR) tournaments in $\S 3.3$. In $\S 3.2 .1$ it was shown that an MDTT tournament schedule may be obtained by constructing a pair of orthogonal Latin squares, and that by constructing a third Latin square orthogonal to the first two, a resolvable MDTT tournament schedule may be obtained. In $\S 3.2 .2$ a review was presented on constructions of sets of two and three mutually orthogonal Latin squares, and in particular a disproof from the literature was given of Euler's well-known conjecture that a pair of orthogonal Latin squares of order $n=2(\bmod 4)$ does not exist. A number of constructions of sets of three mutually orthogonal Latin squares were also presented, and the unresolved question of the existence of a set of three mutually orthogonal Latin squares of order 10 was highlighted.
In §3.3.1 it was shown that a SAMDRR tournament schedule may be obtained by constructing a SOLS, and that by constructing a symmetric Latin square which is orthogonal to this SOLS (i.e. a SOLSSOM), a resolvable SAMDRR tournament may be obtained. In $\S 3.3 .2$ a review was presented on various constructions of SOLS, and the difficulties encountered in the construction of SOLSSOMs during the past 32 years was highlighted. In particular, it was mentioned that by the time of writing this dissertation it was still unknown whether SOLSSOMs of orders 10 and 14 exist; the former of these two questions is settled later in this dissertation.

## CHAPTER 4

## Enumeration methodology

Contents
4.1 Classes of Latin squares ..... 57
4.2 Historical background on the enumeration of Latin squares ..... 62
4.3 Exhaustive enumeration of Latin square classes ..... 64
4.3.1 Enumeration of CS-paratopism classes of Latin squares ..... 70
4.3.2 Enumeration of main classes of MOLS ..... 72
4.4 Computation of autotransformation groups of Latin squares ..... 75
4.5 Group theoretic enumeration of Latin squares ..... 80
4.6 Chapter summary ..... 84

In this chapter a number of methodologies for enumerating Latin squares and Latin square classes are presented. These methodologies include procedures for generating Latin squares by means of computer searches as well as theoretical counts via formulas derived from group theoretic results. The operations discussed in $\S 2.3$ are used in $\S 4.1$ to define various equivalence classes of Latin squares, and a standard notation for describing any equivalence class induced by a subset of the operations that may be applied to Latin squares without destroying their defining property is also presented. A number of important classes of Latin squares are also reviewed in this section. A brief historical background of Latin square enumeration is given in $\S 4.2$, highlighting the difficulty of the problem of counting Latin squares. In $\S 4.3$ a backtracking tree-search approach towards generating equivalence class representatives of Latin squares is described. An illustrative example is presented in order to clarify the working of the algorithm, followed by a discussion on how the algorithm may be implemented in order to enumerate certain classes of Latin squares and MOLS. In $\S 4.4$ a generalisation of a method from the literature on Latin squares is presented which may be used to compute stabilisers (see §A.2.2) for Latin squares under various operations, and further results from §A.2.2 are utilised in $\S 4.5$ to establish formulae which may be used to enumerate Latin squares and classes of Latin squares theoretically (i.e. without explicitly generating the squares).

### 4.1 Classes of Latin squares

In $\S 2.3$ it was shown that there are four operations which may be used to transform a Latin square $\boldsymbol{L}$ into another (not necessarily distinct) Latin square, namely a permutation on either the
rows, columns or symbol set of $\boldsymbol{L}$, or a permutation on the elements of $T(\boldsymbol{L})$. Any combination of these operations which may be applied to a Latin square is henceforth referred to as a transformation of the Latin square. The order of the transformation is equal to the order of the Latin square and the Latin square resulting from the transformation $\alpha$ applied to a Latin square $\boldsymbol{L}$ is denoted by $\boldsymbol{L}^{\alpha}$. By the discussions of $\S 2.3$ any transformation of order $n$ is a group action on the set of all Latin squares of order $n$, and the group acting on the set of all Latin squares of order $n$ is henceforth referred to as the transformation group. By Definition A.2.8 this group action results in a number of orbits on the set of all Latin squares of order $n$ which, by definition, are equivalence classes. Any equivalence class resulting from a transformation in this way is henceforth referred to as a transformation class of Latin squares of order $n$, and any transformation class containing a Latin square $\boldsymbol{L}$ is referred to as a transformation class generated by $\boldsymbol{L}$. Given a transformation group $G$, the stabiliser (see Definition A.2.9) of a Latin square $\boldsymbol{L}$ is called the autotransformation group of $\boldsymbol{L}$. The autotransformation group of $\boldsymbol{L}$ is therefore a subgroup $H$ of $G$ for which $\boldsymbol{L}^{\alpha}=\boldsymbol{L}$ for all $\alpha \in H$. Since a transformation is a mapping, two transformations $\alpha$ and $\beta$ applied to a Latin square (in that order) may be denoted by their composition, namely $\beta \alpha$. Therefore, $\left(\boldsymbol{L}^{\alpha}\right)^{\beta}=\boldsymbol{L}^{\beta \alpha}$.

The type of a transformation will henceforth be specified as $\left(\pi_{t_{1}}, \ldots, \pi_{t_{k}}, \epsilon\right)$ where $t_{i} \in\{r, c, s, r c$, $r s, c s, r c s\}, 1 \leq k \leq 3$ and $\epsilon \in\{\tau, \rho, \gamma, \tau \rho, \delta\}$. Here $\pi$ represents a permutation of the order of the Latin square to which a transformation is applied, and any of the symbols $r, c$ and $s$ appearing in the subscript of $\pi$ denote respectively a permutation applied to the rows, columns and symbols of the Latin square. If the symbol $\pi_{r c}$ is present in the definition of the type of the transformation, for example, then the same permutation is to be applied to the rows and columns. The symbols $\tau, \rho, \gamma, \tau \rho$ and $\delta$ represent the conjugate operations defined in $\S 2.3$, except for the symbol $\delta$ which represents the case where any conjugate operation may be applied to the Latin square. If the symbol $\tau \rho$ is present in the definition of the type of a transformation, for example, then the operation $\tau \rho$ may be applied to the Latin square, as well as the operations $\tau \gamma$ and $\iota$, since $\tau \rho$ generates the subgroup $\{\iota, \tau \rho, \tau \gamma\}$ of $D_{3}$.

If a type of transformation $\sigma$ specifies that some operation may be applied to a Latin square, then that operation is $\sigma$-permissible. The operation is also permissible by the specific symbol in $\sigma$ which specifies that the operation may be used. $\mathrm{A}\left(\pi_{t_{1}}, \ldots, \pi_{t_{k}}, \epsilon\right)$-transformation is henceforth denoted by a $(k+1)$-tuple $\left(p_{1}, p_{2}, \ldots, p_{k}, c\right)$, where $p_{i}$ is the operation permissible by $\pi_{t_{i}}$ and $c$ the operation permissible by $\epsilon$. It may also be noted that $\left(p_{1}, p_{2}, \ldots, p_{k}, c\right)$ is an element of the $\left(\pi_{t_{1}}, \ldots, \pi_{t_{k}}, \epsilon\right)$-transformation group.
A $\left(\pi_{r c}, \pi_{s}, \tau\right)$-transformation, for instance, is an element $(p, q, t)$ of the group $S_{n}^{2} \times S_{2}$ applied to a Latin square $\boldsymbol{L}$, where $p$ is applied to $R(\boldsymbol{L})$ and $C(\boldsymbol{L}), q$ to $S(\boldsymbol{L})$ and the Latin square may be transposed (or not). The group $S_{n}^{2} \times S_{2}$ is therefore the $\left(\pi_{r c}, \pi_{s}, \tau\right)$-transformation group, and two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are in the same $\left(\pi_{r c}, \pi_{s}, \tau\right)$-transformation class if two permutations, one applied to the rows and columns and one to the symbol set of $\boldsymbol{L}$ or $\boldsymbol{L}^{T}$, results in $\boldsymbol{L}^{\prime}$. Other examples include a $\left(\pi_{r}, \pi_{c}, \pi_{s}, \tau \rho\right)$-transformation, where $S_{n} \imath\langle\tau \rho\rangle$ is the transformation group, and a $\left(\pi_{r}, \pi_{c}, \pi_{s}, \delta\right)$-transformation, where $S_{n} \ell D_{3}$ is the transformation group.

Some of the designs considered in this dissertation, such as MOLS, SOLS and SOLSSOMs, consist of tuples of special types of Latin squares satisfying some property relating the Latin squares to one another. For the purpose of classifying these types of Latin squares, a Latin object, denoted by $\mathcal{O}=\left(\boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{m}\right)$, is defined as an ordered list of $m$ Latin squares of order $n$. The two parameters of a Latin object (namely the order of its members and its cardinality) are henceforth denoted by an ordered pair $(n, m)$, where $n$ is the order of the Latin squares in the object and $m$ is the number of Latin squares in the object. For all $1 \leq j \leq m$, the type of
transformation of a Latin object $\mathcal{O}=\left(\boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{m}\right)$ will include $\pi_{t_{i}}^{(j)}$ and/or $\epsilon^{(j)}$ if $\pi_{t_{i}}$ and/or $\epsilon$ are present in the definition of the type of transformation for $\boldsymbol{L}_{j}$. If, for any two Latin squares $\boldsymbol{L}_{k}$ and $\boldsymbol{L}_{\ell}$ in $\mathcal{O}$, the permutations permissible by $\pi_{t_{i}}^{(k)}$ and $\pi_{t_{j}}^{(\ell)}$ are restricted to be equal for some $t_{i}$ and $t_{j}$, then the symbol $\pi_{t_{i}}^{(k)} \pi_{t_{j}}^{(\ell)}$ is used to denote this restriction. In the special case where $t_{i}=t_{j}$, the notation $\pi_{t_{i}}^{(k, \ell)}$ is used instead. If the conjugate operations which may be applied to any two Latin squares $\boldsymbol{L}_{k}$ and $\boldsymbol{L}_{\ell}$ in $\mathcal{O}$ are permissible by the same element $\epsilon$, then the notation $\epsilon^{(k, \ell)}$ is used. Finally, in the case of a $k$-MOLS of order $n$, the symbol $\delta$ will also be used to specify that a transformation may include any one of the $(k+2)$ ! conjugate operations as discussed in §2.3.
For example, a $\left(\pi_{r}^{(1)} \pi_{c}^{(2)}, \pi_{s}^{(1)}, \rho^{(1)}, \tau^{(1,2)}\right)$-transformation of the Latin object $\left(\boldsymbol{L}_{1}, \boldsymbol{L}_{2}\right)$ requires that if a permutation $p$ is applied to the rows of $\boldsymbol{L}_{1}$, then $p$ is to be applied to the columns of $\boldsymbol{L}_{2}$. A permutation applied to the symbols of $\boldsymbol{L}_{1}$, however, does not have such a requirement. Each row of $\boldsymbol{L}_{1}$ may be replaced by its inverse without applying any transformation to $\boldsymbol{L}_{2}$. However, if $\boldsymbol{L}_{1}$ is transposed, then it is required that $\boldsymbol{L}_{2}$ is also transposed. If a permutation applied to the rows of $\boldsymbol{L}_{1}$ required the same permutation to be applied to the rows of $\boldsymbol{L}_{2}$ (instead of the columns), then the transformation would have been a $\left(\pi_{r}^{(1,2)}, \pi_{s}^{(1)}, \rho^{(1)}, \tau^{(1,2)}\right)$-transformation.
A transformation $\alpha$ applied to a Latin object $\mathcal{O}$ is henceforth denoted by $\mathcal{O}^{\alpha}$ and the set of transformations $\alpha$ for which $\mathcal{O}^{\alpha}=\mathcal{O}$ is the $\alpha$-autotransformation group of that Latin object. A Latin object with parameters $(n, 1)$ is referred to simply as a Latin square.
The following definitions introduce the three most important classes of Latin squares, namely isomorphism classes, isotopy classes and main classes. Similar definitions of these classes may be found in Colbourn et al. [38, p. 136] and in Dénes and Keedwell [41, §4.1].

Definition 4.1.1 (Isomorphism) An isomorphism of a Latin square is a ( $\pi_{r c s}$ )-transformation, and an isomorphism class of Latin squares is a $\left(\pi_{r c s}\right)$-transformation class of Latin squares. If two Latin squares are in the same isomorphism class, then they are isomorphic. The $\left(\pi_{r c s}\right)$ autotransformation group of a Latin square is the automorphism group of that Latin square.

Hence two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are isomorphic, henceforth denoted by $\boldsymbol{L} \cong \boldsymbol{L}^{\prime}$, if a single permutation $p \in S_{n}$ applied to the rows, columns and symbol set of $\boldsymbol{L}$ transforms it into $\boldsymbol{L}^{\prime}$. Since $p$ maps the triple $(i, j, \boldsymbol{L}(i, j)) \in T(\boldsymbol{L})$ to the triple $(p(i), p(j), p(\boldsymbol{L}(i, j))) \in T\left(\boldsymbol{L}^{\prime}\right)$, an isomorphism between two Latin squares is equivalent to an isomorphism between their underlying quasigroups. The two Latin squares

$$
\boldsymbol{L}_{4.1}=\left[\begin{array}{llll}
0 & 3 & 1 & 2 \\
1 & 2 & 0 & 3 \\
3 & 0 & 2 & 1 \\
2 & 1 & 3 & 0
\end{array}\right] \quad \text { and } \quad \boldsymbol{L}_{4.2}=\left[\begin{array}{llll}
1 & 2 & 0 & 3 \\
2 & 1 & 3 & 0 \\
3 & 0 & 2 & 1 \\
0 & 3 & 1 & 2
\end{array}\right]
$$

are isomorphic since the isomorphism $p=\binom{0123}{1320}$ maps $\boldsymbol{L}_{4.1}$ to $\boldsymbol{L}_{4.2}$.
An isomorphism $p$ from a Latin square $\boldsymbol{L}$ to a Latin square $\boldsymbol{L}^{\prime}$ also induces the relationship $p \circ \boldsymbol{L}(i) \circ p^{-1}=\boldsymbol{L}^{\prime}(p(i))$ between the rows of the two Latin squares (see $\left.\S 2.3\right)$. Hence each row in $\boldsymbol{L}$ is a conjugate permutation ${ }^{1}$ of some row in $\boldsymbol{L}^{\prime}$, and by Proposition A.1.2 it therefore follows that an isomorphism preserves the cycle structures of the rows.

[^16]The Latin square

$$
\boldsymbol{L}_{4.3}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 \\
2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2
\end{array}\right]
$$

is therefore not isomorphic to $\boldsymbol{L}_{4.1}$ since the first row of $\boldsymbol{L}_{4.3}$ contains only fixed points while $\boldsymbol{L}_{4.1}$ contains no row with such a cycle structure.
If a property exhibited by a Latin square is preserved (as above, for instance) by a transformation, then the property is said to be invariant under that specific transformation. In other words, if one Latin square in a transformation class exhibits a property invariant under that class, then all Latin squares in the class exhibit that property. Class invariant properties may therefore be used (as above) to show that two Latin squares are not in the same class.

The following class may be seen as a natural generalisation of an isomorphism class.
Definition 4.1.2 (Isotopy) An isotopism of a Latin square is a ( $\pi_{r}, \pi_{c}, \pi_{s}$ )-transformation, and an isotopy class of Latin squares is a $\left(\pi_{r}, \pi_{c}, \pi_{s}\right)$-transformation class of Latin squares. If two Latin squares are in the same isotopy class, then they are isotopic. The $\left(\pi_{r}, \pi_{c}, \pi_{s}\right)$ autotransformation group of a Latin square is the autotopy group of that Latin square.

Two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are therefore isotopic, henceforth denoted by $\boldsymbol{L} \simeq \boldsymbol{L}^{\prime}$, if there exists a transformation $\left(p_{r}, p_{c}, p_{s}\right) \in S_{n}^{3}$ (where $p_{r}$ is applied to $R(\boldsymbol{L}), p_{c}$ to $C(\boldsymbol{L})$ and $p_{s}$ to $S(\boldsymbol{L}))$ that transforms $\boldsymbol{L}$ into $\boldsymbol{L}^{\prime}$. The Latin squares $\boldsymbol{L}_{2.11}$ and $\boldsymbol{L}_{2.12}$ in $\S 2.3$ are isotopic since the isotopism $\left(\left(\begin{array}{c}0123 \\ 1\end{array} 2300\right),\left(\begin{array}{l}0123 \\ 23\end{array} 01\right),\binom{0123}{103}\right)$ maps $\boldsymbol{L}_{2.11}$ to $\boldsymbol{L}_{2.12}$, as discussed in that subsection.
An example of an isotopy class invariant is the number of intercalates of a Latin square. An intercalate in a Latin square $\boldsymbol{L}$ is an ordered quadruple $(i, j, k, \ell) \in \mathbb{Z}_{n}^{4}$ for which $\boldsymbol{L}(i, k)=\boldsymbol{L}(j, \ell)$ and $\boldsymbol{L}(i, \ell)=\boldsymbol{L}(j, k)$; in other words, it is a $2 \times 2$ subsquare of a Latin square. An example of an intercalate in the Latin square

$$
\boldsymbol{L}_{4.4}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2 & 0 \\
2 & 0 & 4 & 1 & 3 \\
3 & 2 & 0 & 4 & 1 \\
4 & 3 & 1 & 0 & 2
\end{array}\right]
$$

is $(0,1,2,3)$ (since $\boldsymbol{L}(0,2)=\boldsymbol{L}(1,3)=2$ and $\boldsymbol{L}(0,3)=\boldsymbol{L}(1,2)=3)$, as shown in boldface above. Consider applying an isotopism $\left(p_{r}, p_{c}, p_{s}\right)$ to a Latin square $\boldsymbol{L}$ with intercalate ( $i, j, k, \ell$ ). Since $\boldsymbol{L}(i, k)=\boldsymbol{L}(j, \ell)$ and $\boldsymbol{L}(i, \ell)=\boldsymbol{L}(j, k)$, it follows that $\boldsymbol{L}\left(p_{r}(i), p_{c}(k)\right)=\boldsymbol{L}\left(p_{r}(j), p_{c}(\ell)\right)$ and $\boldsymbol{L}\left(p_{r}(i), p_{c}(\ell)\right)=\boldsymbol{L}\left(p_{r}(j), p_{c}(k)\right)$, and the intercalate $(i, j, k, \ell)$ is mapped to the intercalate $\left(p_{r}(i), p_{r}(j), p_{c}(k), p_{c}(\ell)\right)$. No intercalate is therefore destroyed by any isotopism, and so the number of intercalates is preserved by an isotopism. It is a simple task to verify that the Latin square

$$
\boldsymbol{L}_{4.5}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 \\
2 & 3 & 4 & 0 & 1 \\
3 & 4 & 0 & 1 & 2 \\
4 & 0 & 1 & 2 & 3
\end{array}\right]
$$

contains no intercalates and is therefore not isotopic to $\boldsymbol{L}_{4.4}$.
The following class is the largest class of Latin squares in the sense that it includes all the operations discussed in $\S 2.3$, and this class may be defined not only for Latin squares, but also for MOLS.

Definition 4.1.3 (Main class) $A$ paratopism of a $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ is $a\left(\pi_{r}^{(0,1, \ldots, k-1)}, \pi_{c}^{(0,1, \ldots, k-1)}, \pi_{s}^{(0)}, \pi_{s}^{(1)}, \ldots, \pi_{s}^{(k-1)}, \delta\right)$-transformation, and a main class of $k$-MOLS of order $n$ is $a\left(\pi_{r}^{(0,1, \ldots, k-1)}, \pi_{c}^{(0,1, \ldots, k-1)}, \pi_{s}^{(0)}, \pi_{s}^{(1)}, \ldots, \pi_{s}^{(k-1)}, \delta\right)$-transformation class. If two $k$-MOLS of order $n$ are in the same main class, then they are paratopic. The $\left(\pi_{r}^{(0,1, \ldots, k-1)}\right.$, $\left.\pi_{c}^{(0,1, \ldots, k-1)}, \pi_{s}^{(0)}, \pi_{s}^{(1)}, \ldots, \pi_{s}^{(k-1)}, \delta\right)$-autotransformation group of a $k$-MOLS of order $n$ is the autoparatopy group of that $k$-MOLS.

Hence a paratopism of a $k$-MOLS of order $n$ potentially consists of all possible operations that may be applied to it in order to obtain another $k$-MOLS of order $n$ as a result. Furthermore, a Latin square $\boldsymbol{L}$ is paratopic to a Latin square $\boldsymbol{L}^{\prime}$, henceforth denoted by $\boldsymbol{L} \sim \boldsymbol{L}^{\prime}$, if $\boldsymbol{L}$ is isotopic to any conjugate of $\boldsymbol{L}^{\prime}$.
The number of intercalates of a Latin square is also paratopism-invariant. Let $(i, j, k, \ell)$ be an intercalate of a Latin square $\boldsymbol{L}$ for which $\boldsymbol{L}(i, k)=a=\boldsymbol{L}(j, \ell)$ and $\boldsymbol{L}(i, \ell)=b=\boldsymbol{L}(j, k)$. The intercalate may alternatively be represented by the four triples $(i, k, a),(j, \ell, a),(i, \ell, b)$ and $(j, k, b)$, which satisfy the necessary condition (for these triples to form an intercalate) that each pair of triples has only one element in common. It is easy to see that if any permutation is applied to these triples (hence if a conjugate operation is applied to the Latin square), then the resulting four triples still satisfy the necessary condition and therefore form an intercalate in the resulting Latin square. The Latin squares $\boldsymbol{L}_{4.4}$ and $\boldsymbol{L}_{4.5}$ are therefore non-paratopic.
An isomorphism is simply an isotopism ( $p_{r}, p_{c}, p_{s}$ ) for which $p_{r}=p_{c}=p_{s}$ and an isotopism is simply a paratopism $\left(p_{r}, p_{c}, p_{s}, c\right)$ for which $c=e$ (representing the identity conjugate operation). Hence, for any two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$, if $\boldsymbol{L} \cong \boldsymbol{L}^{\prime}$ then $\boldsymbol{L} \simeq \boldsymbol{L}^{\prime}$ and if $\boldsymbol{L} \simeq \boldsymbol{L}^{\prime}$ then $\boldsymbol{L} \sim \boldsymbol{L}^{\prime}$. Each main class of Latin squares is therefore a union of disjoint isotopy classes, each of which is, in turn, a union of disjoint isomorphism classes. Consequently, a main class is also a union of disjoint isomorphism classes. In fact, any transformation is a special case of a paratopism, and hence a main class is a union of $\sigma$-transformation classes for any transformation type $\sigma$. It is interesting to note that an isotopy class consisting of a Latin square which is the Cayley table of a group consists of a single isomorphism class. This follows from the fact that two isotopic groups are isomorphic (see Corollary 2 in Dénes and Keedwell [41, p. 27]).
The following transformation classes are of particular interest in this dissertation.
Definition 4.1.4 (CS-paratopy class) A CS-paratopism of a Latin square is a ( $\left.\pi_{r}, \pi_{c s}, \rho\right)$ transformation, and a CS-paratopy class of Latin squares is a $\left(\pi_{r}, \pi_{c s}, \rho\right)$-transformation class of Latin squares. If two Latin squares are in the same CS-paratopy class, then they are CSparatopic. The $\left(\pi_{r}, \pi_{c s}, \rho\right)$-autotransformation group of a Latin square is the CS-autoparatopy group of that Latin square.

The next definition is a special case of the above definition.
Definition 4.1.5 (Row-isomorphism class) A row-isomorphism of a Latin square is a $\left(\pi_{r c s}, \rho\right)$-transformation, and a row-isomorphism class of Latin squares is a $\left(\pi_{r c s}, \rho\right)$-transformation class of Latin squares. If two Latin squares are in the same row-isomorphism class, then they are row-isomorphic. The $\left(\pi_{r c s}, \rho\right)$-autotransformation group of a Latin square is the row-automorphism group of that Latin square.

Hence two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are CS-paratopic if two permutations, one applied to the columns and symbols, and one applied to the rows of $\boldsymbol{L}$ or $\boldsymbol{L}^{-1}$, results in $\boldsymbol{L}^{\prime}$. If the two
permutations are equal, then $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are row-isomorphic. It has been noted in $\S 2.3$ that if a permutation $p$ is applied to the columns and symbols of a Latin square, then any row $r$ of this Latin square is mapped to $p \circ r \circ p^{-1}$, i.e. one of its conjugate permutations. Also, any permutation and its inverse permutation have the same cycle structure. A CS-paratopism therefore preserves the cycle structures of the rows of a Latin square. Furthermore, it is the most general transformation with this property in the sense that any operation added to the definition of a CS-paratopism does not guarantee that the cycle structures of the rows are preserved. Similar transformations may be defined if the prefixes "CS" and " $\left.\pi_{r}, \pi_{c s}, \rho\right)$ " in Definition 4.1.4 are replaced by "RS" and " $\left.\pi_{r s}, \pi_{c}, \gamma\right)$," or by " RC " and " $\left(\pi_{r c}, \pi_{s}, \tau\right)$," respectively. These three definitions, however, are equivalent by the following proposition.

Proposition 4.1.1 For any two Latin squares $\boldsymbol{L}_{1}$ and $\boldsymbol{L}_{2}$ the following are equivalent:
(1) $\boldsymbol{L}_{1}$ and $\boldsymbol{L}_{2}$ are CS-paratopic,
(2) $\boldsymbol{L}_{1}^{T}$ and $\boldsymbol{L}_{2}^{T}$ are $R S$-paratopic,
(3) ${ }^{-1} \boldsymbol{L}_{1}$ and ${ }^{-1} \boldsymbol{L}_{2}$ are $R C$-paratopic.

Proof: It is easy to see that the following are equivalent for all $i, j \in \mathbb{Z}_{n}$ by simply performing the appropriate conjugate operations on the triples (where $p, q \in S_{n}$ ):
(1) $(i, j, k) \in T\left(\boldsymbol{L}_{1}\right)$ and either $(p(i), q(j), q(k)) \in T\left(\boldsymbol{L}_{2}\right)$ or $(p(i), q(k), q(j)) \in T\left(\boldsymbol{L}_{2}\right)$,
(2) $(j, i, k) \in T\left(\boldsymbol{L}_{1}^{T}\right)$ and either $(q(j), p(i), q(k)) \in T\left(\boldsymbol{L}_{2}^{T}\right)$ or $(q(k), p(i), q(j)) \in T\left(\boldsymbol{L}_{2}^{T}\right)$,
(3) $(k, j, i) \in T\left({ }^{-1} \boldsymbol{L}\right)$ and either $(q(k), q(j), p(i)) \in T\left({ }^{-1} \boldsymbol{L}_{2}\right)$ or $(q(j), q(k), p(i)) \in T\left(^{-1} \boldsymbol{L}_{2}\right)$.

The proposition follows by the actions of $p$ and $q$ on the triples in each of these three cases.

The prefixes "row" and " $\left.\pi_{r c s}, \rho\right)$ " in Definition 4.1 .5 may also be replaced by "column" and " $\left(\pi_{r c s}, \gamma\right)$," or by "transpose" and " $\left(\pi_{r c s}, \tau\right)$," respectively. Since these transformations are special cases of CS-paratopisms and RC-paratopisms respectively, the above proposition is true for these classes as well.

### 4.2 Historical background on the enumeration of Latin squares

In this section a brief historical account is given of the problem of enumerating Latin squares (i.e. determining the number of distinct ways to construct a Latin square of a given order). A more detailed historical account of the research activities in this area before 1974 may, however, be found in Dénes and Keedwell [41, §4.3], while Norton [112] gives an even more detailed description of activities in the area of Latin square enumeration before 1939. A historical background on Latin square enumeration has also been given by McKay et al. [99].
In 1782 Euler [52] not only considered the problem of constructing pairs of orthogonal Latin squares (as discussed in $\S 1.1$ and $\S 3.2 .2$ ), but also touched on the problem of enumerating Latin squares, a difficult problem that has since received almost as much attention in the literature as the problem of constructing sets of mutually orthogonal Latin squares. Euler found that there is only one reduced Latin square of orders 1,2 and 3 , while there are four reduced Latin squares of order 4 and 56 reduced Latin squares of order 5 . He also attempted to enumerate reduced Latin squares of order 6 , but without success.

The problem of enumerating Latin squares then remained untouched until Cayley [37] and Frolov [59] independently considered the problem in 1890. Cayley verified the numbers of reduced Latin squares up to order 5 obtained by Euler, and remarked on the difficulty of finding a simple formula for the number of Latin squares of any order. Frolov, on the other hand, attempted to enumerate reduced Latin squares of orders 6 and 7 , counting 9408 reduced Latin squares of order 6 and 221276160 of order 7 , while also providing two recurrence relations for the number of Latin squares of any order. It was later found, however, that both his formulae were in error, and that the number of reduced Latin squares of order 7 was incorrect (see Dénes and Keedwell [41, pp. 139-140] for more detail).

As briefly mentioned in $\S 1.1$ and $\S 3.2 .2$, Tarry [136] proved the non-existence of a pair of orthogonal Latin squares of order 6 by classifying all Latin squares of order 6 into classes. These classes were $\left(\pi_{r}, \pi_{c}, \pi_{s}, \tau\right)$-transformation classes [41] (i.e. two Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are in the same class if $\boldsymbol{L}^{\prime}$ is isotopic to either $\boldsymbol{L}$ or $\boldsymbol{L}^{T}$ ), and Tarry counted 17 of these classes. Exactly five of these classes contained Latin squares none of which is isotopic to its transpose, and these five $\left(\pi_{r}, \pi_{c}, \pi_{s}, \tau\right)$-transformation classes therefore constitute ten isotopy classes. The remaining $12\left(\pi_{r}, \pi_{c}, \pi_{s}, \tau\right)$-transformation classes contain only Latin squares which are isotopic to their transposes, and these classes are therefore simply isotopy classes. Hence there are 22 isotopy classes of Latin squares of order 6. These numbers determined for Latin squares of order 6 were later verified by Fisher and Yates [57] in 1934, who (possibly unaware of Tarry's work) also counted 9408 reduced Latin squares of order 6,22 isotopy classes and $17\left(\pi_{r}, \pi_{c}, \pi_{s}, \tau\right)$-transformation classes (which they referred to as "families" of Latin squares). They also established the important and useful relationship between the number of Latin squares and the number of reduced Latin squares of any given order, namely that the number of Latin squares of order $n$ is $n!(n-1)$ ! times the number of reduced Latin squares of order $n$ (the proof of this fact is recounted later in this dissertation).

In 1939 Norton [112] attempted the enumeration of Latin squares of order 7, and counted 146 main classes, 562 isotopy classes and 16927968 reduced Latin squares of order 7. He was, however, not able to prove that these 146 main classes are exhaustive, and conjectured that any Latin square of order 7 lies in one of these classes. A disproof to his conjecture was only presented much later, in 1951, by Sade [126], who determined that Norton omitted a single main class of Latin squares of order 7 , which contains two isotopy classes and 14112 reduced Latin squares. Sade then gave the correct number of main classes and isotopy classes of Latin squares of order 7 as 147 and 564 , respectively, and the number of reduced Latin squares as 16942080 (see Dénes and Keedwell [41, pp. 142-143] for more detail on Sade's enumeration methods).

The next step, namely enumerating Latin squares of order 8, was only taken much later, in 1967, by Wells [146] who used a computer adaptation of Sade's method in order to determine that there are 535281401856 reduced Latin squares of order 8. Wells also estimated that there are over a quarter of a million main classes of Latin squares of this order. Shortly thereafter, in 1968, Brown [25] incorrectly enumerated the isotopy classes of Latin squares of order 8 as 1676257 , and also incorrectly quoted the number of isotopy classes of Latin squares of order 7 (as 563 , where Norton counted 562 and Sade 564), two errors which unfortunately made their way into the authoritative work by Dénes and Keedwell [41] in 1974. The number of isotopy classes of Latin squares of order 8 was only corrected in 1990 by Kolesova et al. [85], who correctly enumerated 1676267 isotopy classes.

Latin squares of order 9 were enumerated in 1975 by Bammel and Rothstein [13], who gave the number of reduced Latin squares of this order as 377597570964258816 , and estimated that
there are more than $10^{10}$ main classes of Latin squares of order 9. Latin squares of order 10 were enumerated by McKay and Rogoyski [100] in 1995, and estimates were given by these authors for the number of Latin squares of orders larger than 10 up to and including order 15 , while McKay et al. [99] established the number of main classes of Latin squares, isotopy classes of Latin squares, isomorphism classes of Latin squares and isomorphism classes of reduced Latin squares of orders $1 \leq n \leq 10$. McKay et al. obtained their results by utilising the number of reduced Latin squares of orders $1 \leq n \leq 10$ together with various results from group theory, as will be discussed later in this chapter.

The largest order for which enumeration results have thus far been published is order 11. Reduced Latin squares of order 11 were enumerated by McKay and Wanless [102] in 2005, while the numbers of various classes of Latin squares of order 11 were determined by Hulpke et al. [78] in 2010. In particular, Hulpke et al. enumerated distinct Latin squares, reduced Latin squares, isomorphism classes of Latin squares, isomorphism classes of reduced Latin squares, isotopy classes of Latin squares and main classes of Latin squares of order 11.

The numbers of various classes of Latin squares of orders $2 \leq n \leq 11$ are given in Table 4.1, and these numbers may also be found in Tables 1.16 and 1.24 of Colbourn et al. [38], as well as in the Online Encyclopedia of Integer Sequences (OEIS) [129]. If a sequence appears in OEIS, the sequence number for each class of Latin squares is given together with the class name in Table 4.1.

In most work on the enumeration of Latin squares, Latin rectangles ${ }^{2}$ were also enumerated, as was done by, for instance, McKay and Rogoyski [100] and by McKay and Wanless [102], and these numbers may also be found in Table 1.24 of Colbourn et al. [38]. A number of formulae for the number of Latin squares have also been given (see, for instance, Shao and Wie [128], Stones [134], and Dénes and Keedwell [41, §4.3]), but these formulae are not in closed form and implementing them are often computationally more expensive than performing a brute force count. Formulae for the number of $3 \times n$ Latin rectangles were also proposed by Gessel [62, 63], and asymptotic enumeration results for the number of Latin rectangles of order $n$ were given by Erdös and Kaplansky [51] in 1946, by Yamamoto [151] in 1951, by Stein [130] in 1978 and by Godsil and McKay [64] in 1984.
Some work has also been done on the enumeration of sets of orthogonal Latin squares. Owens and Preece [113], for example, determined in 1995 that there are $19 \sigma$-transformation classes of 8-MOLS of order 9, where $\sigma$ permits a permutation applied to the rows and columns of all eight squares, as well as eight permutations applied to the symbol sets of each of the Latin squares in the set independently. Their results are tabulated in Table 3.77 of Colbourn et al. [38]. A list of main class representatives of 2-MOLS (i.e. Graeco-Latin squares) was also given by McKay [98] for orders $3 \leq n \leq 8$, while Graham and Roberts [66] enumerated distinct SOLS, idempotent SOLS and isomorphism classes of idempotent SOLS of orders $4 \leq n \leq 9$ in 2006. The latter work will be discussed in more detail in the next chapter.

### 4.3 Exhaustive enumeration of Latin square classes

The most popular means of exhaustive enumeration of combinatorial objects is the use of backtracking search trees, sometimes also referred to as recursive backtracking (see, for instance, Edmonds [50, §17] for the use of this term in particular as well as a discussion and examples

[^17]| $n$ | Distinct Latin squares of order $n$ (\#A002860) |  |
| :---: | :---: | :---: |
| 2 |  | 2 |
| 3 |  | 12 |
| 4 |  | 576 |
| 5 |  | 161280 |
| 6 |  | 812851200 |
| 7 |  | 61479419904000 |
| 8 |  | 108776032459082956800 |
| 9 |  | 5524751496156892842531225600 |
| 10 |  | 2437658213039871725064756920320000 |
| 11 | 7769668361717 | 0144107444346734230682311065600000 |
| $n$ |  | rphism classes of Latin squares of order $n$ |
| 2 |  | 1 |
| 3 |  | 5 |
| 4 |  | 35 |
| 5 |  | 1411 |
| 6 |  | 1130531 |
| 7 |  | 12198455835 |
| 8 |  | 2697818331680661 |
| 9 |  | 15224734061438247321497 |
| 10 |  | 2750892211809150446995735533513 |
| 11 | 194646 | 7391668924966791023043937578299025 |
| $n$ | Reduced Latin squares (\#A000315) | Isomorphism classes of reduced squares |
| 2 | 1 | 1 |
| 3 | 1 | 1 |
| 4 | 4 | 2 |
| 5 | 56 | 6 |
| 6 | 9408 | 109 |
| 7 | 16942080 | 23746 |
| 8 | 535281401856 | 106228849 |
| 9 | 377597570964258816 | 9365022303540 |
| 10 | 7580721483160132811489280 | 20890436195945769617 |
| 11 | 5363937773277371298119673540771840 | 1478157455158044452849321016 |
| $n$ | Isotopy classes of Latin squares (\#A040082) | Main classes of Latin squares (\#A003090) |
| 2 | 1 | 1 |
| 3 | 1 | 1 |
| 4 | 2 | 2 |
| 5 | 2 | 2 |
| 6 | 22 | 12 |
| 7 | 564 | 147 |
| 8 | 1676267 | 283657 |
| 9 | 115618721533 | 19270853541 |
| 10 | 208904371354363006 | 34817397894749939 |
| 11 | 12216177315369229261482540 | 2036029552582883134196099 |

TABLE 4.1: Enumeration results for various classes of Latin squares of order $2 \leq n \leq 11$, together with sequence numbers where the sequences of number appear in the Online Encyclopedia of Integer Sequences [129].
on the topic). In addition to enumerating all possible instances of a combinatorial object, this method also generates each object counted, and provides a means of cataloguing the objects in a repository.
Progression of the method may be described by means of a tree, where each vertex in the tree represents a partially completed object. The root of the tree represents an initial partially completed object (usually an empty object) and the branches of the tree represent all possible extensions (in some sense) of the partially completed object to a larger object (i.e. an object closer to a completed object). The leaves of the tree represent either completed objects or partially completed objects for which there are no extensions to larger partially completed objects. The leaves representing completed objects therefore represent all possible completions of the partially completed object represented by the root of the tree.

In what follows it is necessary to define the concept of a partially completed Latin square. A partial Latin square of order $n$ is an $n \times n$ array containing at most one symbol from $\mathbb{Z}_{n}$ in each position and each symbol from $\mathbb{Z}_{n}$ at most once in each row and column, and a Latin rectangle of order $n$ with $m$ rows is an $m \times n$ array (where $m \leq n$ ) in which each symbol from $\mathbb{Z}_{n}$ appears exactly once in each row and at most once in each column (see, for instance, Colbourn et al. [38, p. $141 \&$ p. 146] for these definitions). Hence a Latin rectangle is a special case case of a partial Latin square. A completion of a partial Latin square $\boldsymbol{P}$ is a Latin square $\boldsymbol{L}$ for which $\boldsymbol{L}(i, j)=\boldsymbol{P}(i, j)$ if $\boldsymbol{P}(i, j)$ is not empty, for all $i, j \in \mathbb{Z}_{n}$.

Latin squares may be enumerated by branching on the inclusion of either rows, columns or universals in a partial Latin square of order $n$, in which case the tree has $n$ levels. It may be noted, however, that each universal $U$ in a Latin square $\boldsymbol{L}$ corresponds to a row in ${ }^{-1} \boldsymbol{L}$. Since $\boldsymbol{L}(i, j)=k$ for every element $(i, j) \in U$ and some $k \in \mathbb{Z}_{n}$, it holds that ${ }^{-1} \boldsymbol{L}(k, j)=i$ for every element $(i, j) \in U$, and therefore $U$ represents row $k$ in ${ }^{-1} \boldsymbol{L}$. Hence, for some partial Latin square $\boldsymbol{L}$, if $\boldsymbol{L}_{1}, \boldsymbol{L}_{2}, \ldots, \boldsymbol{L}_{m}$ are the leaves on the $(n-1)$-st level of the tree with root $\boldsymbol{L}$ (on the 0 -th level) when branching on the inclusion of universals, then ${ }^{-1} \boldsymbol{L}_{1},{ }^{-1} \boldsymbol{L}_{2}, \ldots,{ }^{-1} \boldsymbol{L}_{m}$ are the leaves on the $(n-1)$-st level of the tree with root ${ }^{-1} \boldsymbol{L}$ when branching on the inclusion of rows. Similarly, branching on the inclusion of universals in $\boldsymbol{L}$ is equivalent to branching on the inclusion of columns in $\boldsymbol{L}^{-1}$, and vice verca. It follows that all three approaches are equivalent in the sense that the output of one may be derived from the output of another.
Branching on the inclusion of rows is discussed here, in which case each verticex of the tree represents a Latin rectangle. The method is generalised not only to count Latin squares, but Latin squares satisfying a set of properties $\mathbb{P}$. Hence on each level the tree branches on the inclusion of a row only if the inclusion of that row does not destroy any of the properties in $\mathbb{P}$. The method is given in pseudo code form as Algorithm 4.1.

Step 6 of Algorithm 4.1 is clearly computationally the most complex step since an exhaustive list of possible rows has to be generated. One way of achieving this is to generate a list of rows, no element of which destroys the latinness when inserted into the current Latin rectangle, and thereafter testing for each row whether its insertion into the current Latin rectangle satisfies all the properties in $\mathbb{P}$. Given an $m \times n$ Latin rectangle $\boldsymbol{L}$, all possibilities for the $(m+1)$ st row are simply all possible $\mathrm{SDRs}^{3}$ of $\left(\mathbb{Z}_{n} \backslash \ell_{0}, \mathbb{Z}_{n} \backslash \ell_{1}, \ldots, \mathbb{Z}_{n} \backslash \ell_{n-1}\right)$, where $\ell_{i}$ denotes the set $\{\boldsymbol{L}(0, i), \boldsymbol{L}(1, i), \ldots, \boldsymbol{L}(m-1, i)\}$ for all $0 \leq i \leq n-1$, i.e. the $i$-th column of $\boldsymbol{L}$. For instance, consider the $2 \times 4$ Latin rectangle

$$
\boldsymbol{L}_{4.6}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0
\end{array}\right]
$$

[^18]```
Algorithm 4.1 ExhaustiveTreeSearch
Input: A Latin rectangle \(\boldsymbol{L}\) which satisfies all properties in a set \(\mathbb{P}\).
Output: All possible completions of \(\boldsymbol{L}\) to Latin squares satisfying all properties in \(\mathbb{P}\).
    \(m \leftarrow\) the number of rows of \(\boldsymbol{L}\)
    \(n \leftarrow\) the number of columns of \(\boldsymbol{L}\)
    if \(m=n\) then
        print \(L\)
    else
        \(R \leftarrow\) the set of all possibilities for row \(m+1\) that contradicts no property in \(\mathbb{P}\) nor
        destroys the latinness when inserted into \(\boldsymbol{L}\)
        if \(R \neq \emptyset\) then
            for all \(r_{i} \in R\) do
                \(\boldsymbol{L}^{\prime} \leftarrow r_{i}\) inserted as row \(m+1\) in \(\boldsymbol{L}\)
                ExhaustiveTreeSearch \(\left(\boldsymbol{L}^{\prime}\right)\)
            end for
        end if
    end if
```

The only SDRs of the tuple $(\{2,3\},\{0,3\},\{0,1\},\{1,2\})$ are $(2,3,0,1)$, and $(3,0,1,2)$, and these are therefore the only possibilities for a third row in any extension of $\boldsymbol{L}_{4.6}$. The idea of extending Latin rectangles via SDRs is discussed by Dénes and Keedwell [42, $\S 8.2$ ] and by Roberts and Tesman [121, $\S 12.2 .2$ ], while Hall [68] used this idea to prove that any Latin rectangle may be extended in at least one way to a Latin square.

As an example of how Algorithm 4.1 may be used, consider enumerating reduced Latin squares of order 5 without any intercalates. The number of reduced Latin squares without intercalates (commonly known as $N_{2}$-squares [38, p. 144]) has been enumerated by McKay and Wanless [101] up to and including order 9, and the results are listed as sequence A000611 in Sloane [129]. According to their results, there are six distinct reduced $N_{2}$-squares of order 5. In order for Algorithm 4.1 to generate these reduced Latin squares, the initial partial Latin square may be taken as

$$
\left[\begin{array}{ccccc}
0 & 1 & 2 & \ldots & n-1 \\
1 & & & \\
2 & & & \\
\vdots & & &
\end{array}\right]
$$

If this partial Latin square represents the root of the tree, then all the leaves on the $(n-1)$-st level of the tree represent reduced Latin squares. Figure 4.1 shows the progression of the search if the above partial Latin square with $n=5$ is given as input to Algorithm 4.1 and if $\mathbb{P}$ prohibits any intercalates. Here all vertices on the $i$-th level of the tree represent partial Latin squares without intercalates and with rows 0 to $i$ filled, and each branch from a vertex on level $i$ represents a possible completion of row $i+1$, for $i=0,1,2,3,4$.

For instance, the root vertex represents the partial Latin square

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & & & & \\
2 & & & & \\
3 & & & & \\
4 & & & &
\end{array}\right]
$$



Figure 4.1: A search tree for reduced Latin squares of order 5 containing no intercalates. The root vertex represents a partial Latin square which is empty, except for the first row and first column which are both in natural order. Each branch represents the inclusion of another row in the current partial Latin square, and the six leaves on the 5-th level represent the six distinct reduced Latin squares of order 5 containing no intercalates.
while the left-most vertex on level 3 represents the partial Latin square

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2 & 0 \\
2 & 0 & 3 & 4 & 1 \\
3 & 4 & 0 & 1 & 2 \\
4 & & & &
\end{array}\right]
$$

The only possible completion of row 4 in the above partial Latin square is 2103 . This, however, is not allowed since it will result in the intercalate $(3,4,2,3)$ containing the symbols 0 and 1 . The six leaves on level 4 of this tree represent the six distinct reduced $N_{2}$-squares mentioned previously, which are shown in Table 4.2. Furthermore, this number agrees with the number found by McKay and Wanless [101].

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2 & 0 \\
2 & 4 & 1 & 0 & 3 \\
3 & 2 & 0 & 4 & 1 \\
4 & 0 & 3 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 \\
2 & 3 & 4 & 0 & 1 \\
3 & 4 & 0 & 1 & 2 \\
4 & 0 & 1 & 2 & 3
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 4 & 0 & 3 \\
2 & 4 & 3 & 1 & 0 \\
3 & 0 & 1 & 4 & 2 \\
4 & 3 & 0 & 2 & 1
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 3 & 0 & 4 & 2 \\
2 & 0 & 4 & 1 & 3 \\
3 & 4 & 1 & 2 & 0 \\
4 & 2 & 3 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 4 & 0 & 2 & 3 \\
2 & 0 & 3 & 4 & 1 \\
3 & 2 & 4 & 1 & 0 \\
4 & 3 & 1 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 4 & 3 & 0 & 2 \\
2 & 3 & 1 & 4 & 0 \\
3 & 0 & 4 & 2 & 1 \\
4 & 2 & 0 & 1 & 3
\end{array}\right]
$$

Table 4.2: The six reduced $N_{2}$-squares (Latin squares without intercalates) of order 5.

Given a transformation of type $\sigma$, one of the properties in $\mathbb{P}$ might be that the Latin square should be restricted to be the lexicographically smallest Latin square in its $\sigma$-transformation class, where the lexicographical ordering is defined in such a way that there is only one smallest square in each such class. Hence Algorithm 4.1 will produce exactly one Latin square satisfying all the other properties of $\mathbb{P}$ from each $\sigma$-transformation class, thereby enumerating the number of $\sigma$-transformation classes of Latin squares satisfying all other properties of $\mathbb{P}$. This method is known as orderly generation [97], and it is a common method used for the enumeration of combinatorial objects. See Faradžev [54] and Read [120] for more general discussions of this method.

A Latin square $\boldsymbol{L}$ is lexicographically smaller than a Latin square $\boldsymbol{L}^{\prime}$, denoted by $\boldsymbol{L}<\boldsymbol{L}^{\prime}$, if $\boldsymbol{L}(k)<\boldsymbol{L}^{\prime}(k)$ for some $k \leq n$ and $\boldsymbol{L}(i)=\boldsymbol{L}(i)$ for all $i<k$ (see $\S$ A. 1 for the definition of the lexicographical ordering of permutations). Not all the entries of two Latin squares are used when comparing them lexicographically, and the ordering of two partial Latin squares may therefore be determined if the necessary entries to compare them are present. If not, then the ordering is inconclusive. For instance, the two partial Latin squares

$$
\boldsymbol{L}_{4.7}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 \\
3 & 0 & 1 & 2
\end{array}\right] \quad \text { and } \quad \boldsymbol{L}_{4.8}=\left[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 \\
2 & & & \\
2 & 1
\end{array}\right]
$$

cannot be compared in respect of the lexicographical ordering mentioned above, since their ordering depends on the entries of row 2 , while the partial Latin square

$$
\boldsymbol{L}_{4.9}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & & & \\
& 1
\end{array}\right]
$$

is smaller than both $\boldsymbol{L}_{4.7}$ and $\boldsymbol{L}_{4.8}$. If a partial Latin square $\boldsymbol{L}$ is smaller than a partial Latin square $\boldsymbol{L}^{\prime}$, it simply means that any completion of $\boldsymbol{L}$ will be smaller than any completion of $\boldsymbol{L}^{\prime}$.

In order to ensure that Algorithm 4.1 generates only the smallest Latin squares in each $\sigma$ transformation class, a search may be employed to find a $\sigma$-transformation $\alpha$ such that $\boldsymbol{L}^{\alpha}<\boldsymbol{L}$ for any partial Latin square $\boldsymbol{L}$ at any stage of the algorithm. If such a transformation exists, then this transformation maps any completion of $\boldsymbol{L}$ to some completion of $\boldsymbol{L}^{\alpha}$, and the latter is smaller than the former. Hence no completion of $\boldsymbol{L}$ is the smallest Latin square in its class, and $\boldsymbol{L}$ becomes a leaf of the tree (i.e. the search does branch further from $\boldsymbol{L}$ ). If no such transformation exists, then the search continues since a completion of $\boldsymbol{L}$ may possibly be the smallest Latin square in its class.
Consider, for example, enumerating the isomorphism classes of $N_{2}$-squares of order 5 containing a reduced Latin square. The same approach as in Figure 4.1 may be used together with the additional requirement that, for each reduced $N_{2}$-square $\boldsymbol{L}, \boldsymbol{L}<\boldsymbol{L}^{\prime}$ for any $\boldsymbol{L}^{\prime}$ isomorphic to $\boldsymbol{L}$. Consider the left-most vertex on level 1 in Figure 4.1, which represents the partial Latin square

$$
\boldsymbol{L}_{4.10}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2 & 0
\end{array}\right]
$$

(the bottom three rows may be ignored for simplicity) and let $p \in S_{n}$ be an isomorphism for which $\boldsymbol{L}_{4.10}^{p}<\boldsymbol{L}_{4.10}$ (if such an isormophism exists). It is easy to see that the first row of $\boldsymbol{L}_{4.10}^{p}$ is also in natural order and that the first entry of row 2 contains the element 1 , otherwise it cannot be smaller than $\boldsymbol{L}_{4.10}$. Also, row 1 may not be empty, because in that case the two Latin squares cannot be compared. Hence $p(0)=0$ and $p(1)=1$. Utilising Wolfram's Mathematica [150], all permutations of order 5 which fix the first two elements may quickly be listed and applied to $\boldsymbol{L}_{4.10}$. It follows that the permutation $\binom{01234}{013}$ maps $\boldsymbol{L}_{4.10}$ to the partial Latin square

$$
\boldsymbol{L}_{4.11}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0
\end{array}\right]
$$

and that $\boldsymbol{L}_{4.10}$ is a leaf in the new tree. The same method applied to all partial Latin squares represented by the vertices on level 1 in Figure 4.1 shows that all of these vertices except one (the second one from the left) are leaves of the new tree. Hence there is only one isomorphism class of $N_{2}$-squares of order 5 containing a reduced Latin square.

### 4.3.1 Enumeration of CS-paratopism classes of Latin squares

Burger et al. [33] describe a method using orderly generation in order to enumerate the CSparatopism classes of special types of Latin squares for which it may be shown that there is at least one idempotent Latin square in each CS-paratopy class. The following lemma states that it is sufficient to only enumerate the row-isomorphism classes of idempotent Latin squares in order to enumerate the CS-paratopism classes containing idempotent Latin squares.

Lemma 4.3.1 If two idempotent Latin squares are CS-paratopic, then they are row-isomorphic.
Proof: Suppose $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are idempotent Latin squares and let the CS-paratopism ( $p, q, c$ ) map $\boldsymbol{L}$ to $\boldsymbol{L}^{\prime}$. Then, since $(i, i, i) \in T(\boldsymbol{L})$ for all $i \in \mathbb{Z}_{n},(p(i), q(i), q(i)) \in T\left(\boldsymbol{L}^{\prime}\right)$. Since $\boldsymbol{L}^{\prime}$ is also idempotent, $p(i)=q(i)$ for all $i \in \mathbb{Z}_{n}$, and therefore $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are row-isomorphic.

By Lemma 4.3.1 it follows that the number of row-isomorphism classes of idempotent Latin squares of order $n$ equals the total number of CS-paratopism classes containing idempotent Latin squares. Since the triple $(i, i, i) \in T(\boldsymbol{L})$ remains unchanged under any conjugate operation, the
above lemma also holds for RS-paratopisms and RC-paratopisms by Proposition 4.1.1. It is also useful to note that idempotency is a row-isomorphism class invariant.
The following lemma and theorem make use of the fact that the cycle structures of the rows of a Latin square are CS-paratopy class invariant, as discussed in $\S 4.1$ (see $\S A .1 .1$ for the notions of a lexicographical ordering of cycle structures and a cycle structure representative.).

Lemma 4.3.2 Any row in an idempotent Latin square $\boldsymbol{L}$ may be mapped to the first row and transformed into a cycle structure representative via a row-isomorphism.

Proof: Let $\boldsymbol{L}(i)$ be any row in $\boldsymbol{L}$. By Proposition A.1.3 there is at least one permutation $p$ such that $p \circ \boldsymbol{L}(i) \circ p^{-1}$ is a cycle structure representative. Since $\boldsymbol{L}$ is idempotent, $\boldsymbol{L}(i)$ fixes $i$ and $p \circ \boldsymbol{L} \circ p^{-1}$ fixes 0 (by the definition of a cycle structure representative). Since $p$ maps each cycle of $\boldsymbol{L}(i)$ to a cycle of the same length in $p \circ \boldsymbol{L}(i) \circ p^{-1}$ (see the proof of Proposition A.1.3), it follows that $p(i)=0$. Hence $p \circ \boldsymbol{L}(i) \circ p^{-1}$ is the first row of $\boldsymbol{L}^{(p, \iota)}$ where $(p, \iota)$ is a row-isomorphism.

The following theorem provides a means of quickly identifying when an idempotent Latin square is not the smallest idempotent Latin square in its row-isomorphism class.

Theorem 4.3.1 If $\boldsymbol{L}$ is the lexicographically smallest idempotent Latin square in its rowisomorphism class, then
(1) $\boldsymbol{L}(0)$ is a cycle structure representative,
(2) the cycle structure of $\boldsymbol{L}(i)$ is not lexicographically smaller than the cycle structure of $\boldsymbol{L}(0)$ for all $2 \leq i \leq n$.

Proof: If (1) is false, then, by Lemma $4.3 .2, \boldsymbol{L}(0)$ may be transformed into a cycle structure representative, resulting in a lexicographically smaller Latin square. If (2) is false, then, by Lemma 4.3.2, any row with a lexicographically smaller cycle structure than the first row may be mapped as a cycle structure representative to the first row. Even if the first row is a cycle structure representative (by Proposition A.1.1) the resulting Latin square is still lexicographically smaller than $\boldsymbol{L}$. Either case contradicts the fact that $\boldsymbol{L}$ is the lexicographically smallest idempotent Latin square in its row-isomorphism class.

By Theorem 4.3.1, the first row to be inserted in the search tree (initialised with an empty array) must be a cycle structure representative, otherwise no completion of it can be the lexicographically smallest idempotent Latin square in its row-isomorphism class. Also, the cycle structure of any row added at any stage of the search may not be lexicographically smaller than the cycle structure of the first row. If, at some stage of the search, a Latin rectangle $\boldsymbol{L}$ passes both these tests, it is then necessary to look for a row-isomorphism $\alpha$ for which $\boldsymbol{L}^{\alpha}<\boldsymbol{L}$, if such a transformation exists.

If such a row-isomorphism $\alpha$ exists, then, by Theorem 4.3.1 and the above two pruning rules, $\boldsymbol{L}^{\alpha}(0)=\boldsymbol{L}(0)$. Hence, if $i_{1}, i_{2}, \ldots, i_{r}$ are the indices of all the rows of $\boldsymbol{L}$ with the same cycle structure as the first row, then $\alpha$ maps $\boldsymbol{L}\left(i_{j}\right)$ to $\boldsymbol{L}(0)$ for some $1 \leq j \leq r$. Hence $\alpha$ consists of a permutation $p$ for which $p \circ \boldsymbol{L}\left(i_{j}\right) \circ p^{-1}=\boldsymbol{L}(0)$ (implying that $p\left(i_{j}\right)=0$ by the idempotency of $\boldsymbol{L}$ ). Proposition A.1.3 states that there are $\prod_{i=1}^{n} a_{i}!i^{a_{i}}$ distinct choices of $p$ for which $p \circ \boldsymbol{L}\left(i_{j}\right) \circ p^{-1}=$ $\boldsymbol{L}(0)$ and the proof of the proposition also provides a means of finding these permutations. Hence, for each $i_{j}$, these permutations may be used in a row-isomorphism in either of the two
forms $\alpha=(p, \iota)$ or $\alpha=(p, \rho)$ in order to verify that $\boldsymbol{L}^{\alpha}<\boldsymbol{L}$. If no such a row-isomorphism $\alpha$ exists, then the search continues to branch on $\boldsymbol{L}$. Otherwise $\boldsymbol{L}$ becomes a leaf of the search tree.

Although the method described above delivers row-isomorphism class representatives of idempotent Latin squares, these may also be taken as CS-paratopism class representatives by Lemma 4.3.1. By Proposition 4.1 .1 it follows that enumerating CS-paratopy classes of Latin squares is equivalent to enumerating either RS-paratopy classes or RC-paratopy classes. Hence, in order to enumerate either RS-paratopy classes or RC-paratopy classes, the CS-paratopy classes may be enumerated by the method described above, and appropriate conjugates of the resulting squares may be taken (as illustrated in Proposition 4.1.1) in order to obtain either RS-main class representatives or RC-main class representatives.

### 4.3.2 Enumeration of main classes of MOLS

In this section a method for the enumeration of main classes of $k$-MOLS of order $n$ using an orderly generation approach is discussed. A notion that proves useful in this regard is the relative cycle structure of two universals from two different Latin squares in a $k$-MOLS. If $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ is a $k$-MOLS of order $n$, let $U(\mathcal{M})$ denote the set of all universal permutations of $\boldsymbol{L}_{i}$ for all $i \in \mathbb{Z}_{n}$ and let $u_{i}^{(j)} \in U(\mathcal{M})$ denote the universal permutation of the element $i \in \mathbb{Z}_{n}$ in $\boldsymbol{L}_{j}$ for $j \in \mathbb{Z}_{k}$. Then the relative cycle structure of $u_{i}^{(j)} \in U(\mathcal{M})$ and $u_{\ell}^{(m)} \in U(\mathcal{M})$ for $i, \ell \in \mathbb{Z}_{n}$ and $j, m \in \mathbb{Z}_{k}$ is defined as the cycle structure of the permutation

$$
u_{\ell}^{(m)} \circ\left(u_{i}^{(j)}\right)^{-1}
$$

i.e. the permutation under which the image of $u_{i}^{(j)}(a)$ is $u_{\ell}^{(m)}(a)$. For example, consider the pair of orthogonal Latin squares

$$
\boldsymbol{L}_{4.12}=\left[\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
4 & 0 & 3 & 1 & 6 & 2 & 5 \\
5 & 6 & 0 & 4 & 2 & 1 & 3 \\
6 & 4 & 1 & 0 & 5 & 3 & 2 \\
1 & 3 & 5 & 2 & 0 & 6 & 4 \\
2 & 5 & 4 & 6 & 3 & 0 & 1 \\
3 & 2 & 6 & 5 & 1 & 4 & 0
\end{array}\right] \quad \text { and } \quad \boldsymbol{L}_{4.13}=\left[\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 0 & 4 & 2 & 1 & 3 \\
6 & 4 & 1 & 0 & 5 & 3 & 2 \\
1 & 3 & 5 & 2 & 0 & 6 & 4 \\
2 & 5 & 4 & 6 & 3 & 0 & 1 \\
3 & 2 & 6 & 5 & 1 & 4 & 0 \\
4 & 0 & 3 & 1 & 6 & 2 & 5
\end{array}\right]
$$

of order 7 , and consider the universal permutations $\binom{0123456}{1352064}$ and $\binom{01234456}{2463015}$ of the element 1 in $\boldsymbol{L}_{4.12}$ and the element 2 in $\boldsymbol{L}_{4.13}$ respectively. The relative cycle structure of these two universal permutations is the cycle structure of $\binom{0123456}{2463015} \circ\binom{0123456}{40316255}=\left(\begin{array}{ll}0123456 \\ 0 & 23456\end{array}\right)$, which is $z_{1}^{1} z_{6}^{1}$. It may be noted that there is always exactly one fixed point in the relative cycle structure of two universal permutations $u_{i}^{(j)}$ and $u_{\ell}^{(m)}$ in a $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$. This is true since, due to the orthogonality of $\boldsymbol{L}_{j}$ and $\boldsymbol{L}_{m}$, the universals of $i$ in $\boldsymbol{L}_{j}$ and $\ell$ in $\boldsymbol{L}_{m}$ must have exactly one entry, $(r, c)$ say, in common. Hence $u_{i}^{(j)}(r)=c$ is mapped to $u_{\ell}^{(m)}(r)=c$ in the product

$$
u_{\ell}^{(m)} \circ\left(u_{i}^{(j)}\right)^{-1}
$$

resulting in exactly one fixed point.
More importantly, however, the relative cycle structures of universals in a MOLS are invariant under row, column and symbol permutations. Let a permutation $p_{r} \in S_{n}$ be applied to the rows
of a Latin square $\boldsymbol{L}$ of order $n$ in order to obtain a Latin square $\boldsymbol{L}^{\prime}$ of order $n$ as result, and let $u_{k}$ and $u_{k}^{\prime}$ be the universal permutations of the element $k \in \mathbb{Z}_{n}$ in $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ respectively. Since each triple $(i, j, k) \in T(\boldsymbol{L})$ is replaced by $\left(p_{r}(i), j, k\right)$, it follows that $u_{k}(i)=u_{k}^{\prime}\left(p_{r}(i)\right)=j$ for all $(i, j, k) \in T(\boldsymbol{L})$, and consequently that $p_{r}$ replaces the universal permutation $u_{k}$ with $u_{k} \circ p_{r}^{-1}$. If $p_{c}$ is a permutation applied to the columns of $\boldsymbol{L}$, then each triple $(i, j, k) \in T(\boldsymbol{L})$ is replaced by $\left(i, p_{c}(j), k\right)$, and it follows that $u_{k}^{\prime}(i)=p_{c}(j)=p_{c}\left(u_{k}(i)\right)$ for all $(i, j, k) \in T(\boldsymbol{L})$. Hence in this case the universal permutation $u_{k}$ is replaced by $p_{c} \circ u_{k}$.
Consider two universal permutations $u_{i}^{(j)} \in U(\mathcal{M})$ and $u_{\ell}^{(m)} \in U(\mathcal{M})$ in a $k$-MOLS $\mathcal{M}=$ $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ for some $i, \ell \in \mathbb{Z}_{n}$ and $j, m \in \mathbb{Z}_{k}$. If a permutation $p_{r}$ is applied to the rows of $\boldsymbol{L}_{i}$ for all $i \in \mathbb{Z}_{k}$, then $u_{i}^{(j)}$ and $u_{\ell}^{(m)}$ are replaced by $u_{i}^{(j)} \circ p_{r}^{-1}$ and $u_{\ell}^{(m)} \circ p_{r}^{-1}$ respectively, while the product

$$
u_{\ell}^{(m)} \circ\left(u_{i}^{(j)}\right)^{-1}
$$

is mapped to

$$
u_{\ell}^{(m)} \circ p_{r}^{-1} \circ\left(u_{i}^{(j)} \circ p_{r}^{-1}\right)^{-1}=u_{\ell}^{(m)} \circ p_{r}^{-1} \circ p_{r} \circ\left(u_{i}^{(j)}\right)^{-1}=u_{\ell}^{(m)} \circ\left(u_{i}^{(j)}\right)^{-1}
$$

Hence the relative cycle structure of the universal permutations of two universals in a MOLS is preserved under a row permutation applied to all the Latin squares in the MOLS. Now let $p_{c}$ be a column permutation applied to the columns of $\boldsymbol{L}_{i}$ for all $i \in \mathbb{Z}_{k}$. Then $u_{i}^{(j)}$ and $u_{\ell}^{(m)}$ are replaced by $p_{c} \circ u_{i}^{(j)}$ and $p_{c} \circ u_{\ell}^{(m)}$ respectively, while the product

$$
u_{\ell}^{(m)} \circ\left(u_{i}^{(j)}\right)^{-1}
$$

is mapped to

$$
p_{c} \circ u_{\ell}^{(m)} \circ\left(p_{c} \circ u_{i}^{(j)}\right)^{-1}=p_{c} \circ u_{\ell}^{(m)} \circ\left(u_{i}^{(j)}\right)^{-1} \circ p_{c}^{-1}
$$

i.e. to one of its conjugate permutations. Since two conjugate permutations have the same cycle structure, the relative cycle structures are preserved under a column permutation as well.

Finally, since a symbol permutation applied to a Latin square simply renames the universals of the Latin square, it clearly does not change the relative cycle structures of the universals in a MOLS. It may also be noted that the conjugate operations of transposing all the Latin squares in a MOLS and of changing the order of the Latin squares in the MOLS do not change the relative cycle structures of the universals.
Another notion that will prove to be useful in the enumeration of MOLS is that of a row-reduced $k$-MOLS of order $n$. A $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ is row-reduced if $\boldsymbol{L}_{i}(0, j)=j$ for all $i \in \mathbb{Z}_{k}$ and $j \in \mathbb{Z}_{n}$, in other words if the first row of each Latin square in the MOLS is in natural order. It is easy to verify that any $k$-MOLS of order $n$ may be transformed into a row-reduced $k$-MOLS of order $n$ using $k$ symbol permutations, each applied to a different Latin square in the MOLS. Hence every main class of $k$-MOLS of order $n$ contains a row-reduced $k$ MOLS of order $n$, and it is sufficient only to consider row-reduced MOLS in order to enumerate main classes using an orderly generation approach. The fact that the operations discussed above preserve the relative cycle structures of the universals in a MOLS leads to the following useful lemma.

Lemma 4.3.3 For any $i, \ell \in \mathbb{Z}_{n}$ and $j, m \in \mathbb{Z}_{k}$ the universal permutations $u_{i}^{(j)} \in U(\mathcal{M})$ and $u_{\ell}^{(m)} \in U(\mathcal{M})$ in a row-reduced $k$-MOLS $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ may be mapped
to the universal permutations $v_{0}^{(0)} \in U\left(\mathcal{M}^{\prime}\right)$ and $v_{0}^{(1)} \in U\left(\mathcal{M}^{\prime}\right)$ of a new row-reduced $k$-MOLS $\mathcal{M}^{\prime}=\left(\boldsymbol{L}_{0}^{\prime}, \boldsymbol{L}_{1}^{\prime}, \ldots, \boldsymbol{L}_{k-1}^{\prime}\right)$ of order $n$, respectively, using a paratopism in such a way that $v_{0}^{(0)}$ is the identity permutation and $v_{0}^{(1)}$ is a cycle structure representative.

Proof: Let $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ be mapped to $\mathcal{M}^{\prime \prime}=\left(\boldsymbol{L}_{0}^{\prime \prime}, \boldsymbol{L}_{1}^{\prime \prime}, \ldots, \boldsymbol{L}_{k-1}^{\prime \prime}\right)$ by using symbol permutations $s_{1} \in S_{n}$ and $s_{2} \in S_{n}$ applied to $\boldsymbol{L}_{j}$ and $\boldsymbol{L}_{m}$, respectively, where $s_{1}(i)=s_{2}(\ell)=0$ and a conjugate permutation $c$ applied to $\mathcal{M}$ where $c(j)=0$ and $c(m)=1$. Hence $w_{0}^{(0)}=u_{i}^{(j)}$ and $w_{0}^{(1)}=u_{\ell}^{(m)}$ for $w_{0}^{(0)}, w_{0}^{(1)} \in U\left(\mathcal{M}^{\prime \prime}\right)$. A row permutation $r$ may now be applied to $\mathcal{M}^{\prime \prime}$ such that $w_{0}^{(0)} \circ r^{-1}$ is the identity permutation, and this may be followed by a permutation $p$ applied to the rows and columns of $\mathcal{M}^{\prime \prime}$ in such a way that $p \circ w_{0}^{(1)} \circ r^{-1} \circ p^{-1}$ is a cycle structure representative (by Proposition A.1.3). Finally, $k-1$ symbol permutations may be applied to $\boldsymbol{L}_{i}$ for $1 \leq i \leq k-1$ in order for the resulting MOLS to be row-reduced without changing the fact that $p \circ w_{0}^{(1)} \circ r^{-1} \circ p^{-1}$ is a cycle structure representative. If $\mathcal{M}^{\prime}=\left(\boldsymbol{L}_{0}^{\prime}, \boldsymbol{L}_{1}^{\prime}, \ldots, \boldsymbol{L}_{k-1}^{\prime}\right)$ is the resulting $k$-MOLS of order $n$ after these operations are applied to $\mathcal{M}^{\prime \prime}$, and if $v_{0}^{(0)}, v_{0}^{(1)} \in U\left(\mathcal{M}^{\prime}\right)$, then $v_{0}^{(0)}=p \circ w_{0}^{(0)} \circ r^{-1} \circ p^{-1}$ is the identity permutation and $v_{0}^{(1)}=p \circ w_{0}^{(1)} \circ r^{-1} \circ p^{-1}$ is a cycle structure representative.

In order for an orderly generation approach to be utilised for the enumeration of MOLS, it is necessary to define a lexicographical ordering on the set of all $k$-MOLS of order $n$. A $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ is lexicographically smaller than a $k$-MOLS $\left(\boldsymbol{L}_{0}^{\prime}, \boldsymbol{L}_{1}^{\prime}, \ldots, \boldsymbol{L}_{k-1}^{\prime}\right)$ of order $n$ if $\left({ }^{-1} \boldsymbol{L}_{i}\right)^{T}<\left({ }^{-1} \boldsymbol{L}_{i}^{\prime}\right)^{T}$ for some $i \in \mathbb{Z}_{k}$ and $\left({ }^{-1} \boldsymbol{L}_{j}\right)^{T}=\left({ }^{-1} \boldsymbol{L}_{j}^{\prime}\right)^{T}$ for all $0 \leq j \leq i-1$. Since row $i \in \mathbb{Z}_{n}$ of $\left({ }^{-1} \boldsymbol{L}\right)^{T}$ is the universal permutation of the element $i$ in a Latin square $\boldsymbol{L}, \mathrm{MOLS}$ are compared lexicographically by comparing the universals of their Latin squares lexicographically. The following theorem provides a means of quickly identifying when a rowreduced $k$-MOLS of order $n$ is not the smallest row-reduced $k$-MOLS of order $n$ in its main class.

Theorem 4.3.2 If $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ is the lexicographically smallest row-reduced $k$ MOLS of order $n$ in its main class, and if $u_{i}^{(j)} \in U(\mathcal{M})$ is the universal permutation of $i \in \mathbb{Z}_{n}$ in $\boldsymbol{L}_{j}$, then
(1) $u_{0}^{(0)}$ is the identity permutation,
(2) $u_{0}^{(1)}$ is a cycle structure representative, and
(3) the relative cycle structure of two universal permutations $u_{i}^{(j)}, u_{\ell}^{(m)} \in U(\mathcal{M})$ is not lexicographically smaller than the cycle structure of $u_{0}^{(1)} \in U(\mathcal{M})$ for all $i, \ell \in \mathbb{Z}_{k}$ and $j, m \in \mathbb{Z}_{n}$.

Proof: If (1) is false, then, by Lemma 4.3.3, $u_{0}^{(0)}$ may be transformed into the identity permutation, and the result will clearly be a lexicographically smaller $k$-MOLS of order $n$. Similarly, also by Lemma 4.3.3, if (2) is false (and assuming (1) is true) then $u_{0}^{(1)}$ may be transformed into a cycle structure representative which will also result in a lexicographically smaller $k$-MOLS of order $n$. Finally, if (3) is false, then, by Lemma 4.3.3, any pair of universal permutations $u_{i}^{(j)}$ and $u_{\ell}^{(m)}$ with a relative cycle structure smaller than the relative cycle structure of $u_{0}^{(0)}$ and $u_{0}^{(1)}$ (which is identical to the cycle structure of $u_{0}^{(1)}$ ) may be mapped to $u_{0}^{(0)}$ and $u_{0}^{(1)}$ as the identity permutation and a cycle structure representative, respectively, and the result will be a lexicographically smaller row-reduced $k$-MOLS of order $n$.

A partial $k$-MOLS $\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ is a MOLS in which $\boldsymbol{L}_{i}$ is a partial Latin square for all $i \in \mathbb{Z}_{k}$. The search tree for a $k$-MOLS $\mathcal{M}$ of order $n$ branches on the inclusion of a set of $k$ universals of a given symbol, one for each Latin square, into a partial $k$-MOLS of order $n$. These universals are generated as discussed earlier in this section, and a set $S$ of $k$ universals is only included if the relative cycle structure of every two universals in $S \cup U(\mathcal{M})$ has exactly one fixed point. This ensures that the tuples of Latin squares eventually generated all contain pairwise orthogonal Latin squares.

By Theorem 4.3.2, the universal permutation of the first universal in the first Latin square of a $k$-MOLS of order $n$ must be the identity permutation, and the first universal of the second Latin square must be a cycle structure representative. Furthermore, the relative cycle structure of no two universals already inserted may be lexicographically smaller than the cycle structure of the first universal of the second Latin square. As was the case in the previous section, if these requirements are met for a partial $k$-MOLS $\mathcal{M}$ of order $n$, then it is necessary to look for a paratopism that maps $\mathcal{M}$ to a lexicographically smaller partial $k$-MOLS of order $n$, if such a transformation exists.

Given a partial $k$-MOLS $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$, let $\bar{U}(\mathcal{M})$ be the set of all pairs $\left(u_{i}^{(j)}, u_{\ell}^{(m)}\right) \in U(\mathcal{M}) \times U(\mathcal{M})$ of universal permutations such that $j \neq m$ and such that the relative cycle structure of $u_{i}^{(j)}$ and $u_{\ell}^{(m)}$ is equal to the cycle structure of $u_{0}^{(1)}$. In order to determine whether $\mathcal{M}$ can be mapped to a lexicographically smaller partial $k$-MOLS of order $n$, all possible paratopisms should be considered which map each of these pairs of universal permutations to $u_{0}^{(0)}$ and $u_{0}^{(1)}$. This may be achieved by generating all possible paratopisms which include the necessary operations either to map $u_{i}^{(j)}$ to $u_{0}^{(0)}$ and $u_{\ell}^{(m)}$ to $u_{0}^{(1)}$, or to map $\left(u_{i}^{(j)}\right)^{-1}$ to $u_{0}^{(0)}$ and $\left(u_{\ell}^{(m)}\right)^{-1}$ to $u_{0}^{(1)}$, for each pair $\left(u_{i}^{(j)}, u_{\ell}^{(m)}\right) \in \bar{U}(\mathcal{M})$ (as discussed in Lemma 4.3.3). Mapping the inverses of these universal permutations may be achieved by applying the transpose conjugate operation to $\mathcal{M}$. Any of the conjugate operations which only permutes the order of the Latin squares in $\mathcal{M}$ may also be used. If any one of these paratopisms results in a lexicographically smaller partial $k$-MOLS of order $n$, then the current partial $k$-MOLS of order $n$ immediately becomes a leaf of the tree (i.e. the search tree is pruned or bounded at this point).
Except for the conjugate operations of transposing the Latin squares in $\mathcal{M}$ and permuting the order of the Latin squares in $\mathcal{M}$, no other conjugate operation can be applied if $\mathcal{M}$ is a partial $k$-MOLS of order $n$ since this will result in incomplete universals. Once $\mathcal{M}$ is a complete $k$ MOLS of order $n$ (i.e. once the search tree reaches level $n$ ), then all conjugates have to be considered in order to determine whether $\mathcal{M}$ is the lexicographically smallest MOLS in its main class. Let $\mathcal{C}$ be a conjugate of $\mathcal{M}$ which not only transposes the Latin squares or permutes their order. Then all pairs of universals in $\bar{U}(\mathcal{C})$ should be mapped to $u_{0}^{(0)} \in U(\mathcal{M})$ and $u_{0}^{(1)} \in U(\mathcal{M})$ in the same way as discussed above. In this way all leaves of the tree that are represented by complete $k$-MOLS of order $n$ and that are not pruned will give exactly one $k$-MOLS of order $n$ from each main class of $k$-MOLS of order $n$.

### 4.4 Computation of autotransformation groups of Latin squares

In this section various methods of computing the autotransformation groups of Latin squares are described. These methods play an essential part in enumerating Latin squares and Latin square classes theoretically, as will be discussed in the next section. Let $G_{\sigma}(n)$ be the $\sigma$-transformation
group acting on the set of all Latin objects of order $n$ for some transformation type $\sigma$. The simplest way of computing the $\sigma$-autotransformation group of a Latin square $\boldsymbol{L}$ is to apply all elements of $G_{\sigma}(n)$ to $\boldsymbol{L}$ exhaustively and to list those that map $\boldsymbol{L}$ to itself. This process is described in pseudo code form as Algorithm 4.2.

```
Algorithm 4.2 ExhaustiveAutotransformationGroupComputation
Input: A Latin square \(\boldsymbol{L}\).
Output: The \(\sigma\)-autotransformation group \(A_{\sigma}(\boldsymbol{L})\) of \(\boldsymbol{L}\).
    \(A_{\sigma}(\boldsymbol{L}) \leftarrow \varnothing\)
    for all \(\alpha \in G_{\sigma}(n)\) do
        if \(\boldsymbol{L}^{\alpha}=\boldsymbol{L}\) then
            \(A_{\sigma}(\boldsymbol{L}) \leftarrow A_{\sigma}(\boldsymbol{L}) \cup\{\alpha\}\)
        end if
    end for
```

The method described in Algorithm 4.2 becomes extremely inefficient rather quickly. For instance, computing the autoparatopy group of a Latin square requires $\left|S_{n} \prec D_{3}\right|=6(n!)^{3}$ executions of Steps 2 and 3, a number which grows quickly as $n$ increases. A method for computing the automorphism group, autotopy group and autoparatopy group of a Latin square was presented by McKay et al. [99]. This method makes use of the computer program nauty (noautomorphisms, yes?) [96], written by McKay, which computes the automorphism groups of vertex-coloured graphs. The method requires the representation of a Latin square $\boldsymbol{L}$ as a graph $G$ in such a way that the automorphism group of $G$ is isomorphic to the $\sigma$-autotransformation group of $\boldsymbol{L}$ for any given $\sigma$. The method proposed by McKay et al. [99] for computing the automorphism, autotopy and autoparatopy group of a Latin square is generalised here for computing any $\sigma$-autotransformation group of a given Latin square.
For any Latin square $\boldsymbol{L}$ of order $n$ and a type of transformation $\sigma$, the $\sigma$-transformation graph of $\boldsymbol{L}$ is a (possibly mixed, directed) graph $G$ with vertex set

$$
V(G)=\left\{\ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\{R, C, S\} .
$$

The elements of $V(G)$ are coloured by up to five colours. Colours 1 and 2 are assigned to the vertices in the subsets $\left\{\ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\}$ and $\{R, C, S\}$ of $V(G)$ respectively, while Colours 3 to 5 are assigned to the vertices in the three subsets $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\},\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$, respectively, only if none of the conjugate operations is $\sigma$-permissible. Table 4.3 shows the colouring of the vertices if only one of the conjugate operations $\rho, \gamma$ or $\tau$ is $\sigma$-permissible, while Colour 3 is assigned to the vertices in the subset $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ of $V(G)$ either if $\tau \rho$ is $\sigma$-permissible or if all the conjugate operations are $\sigma$-permissible.

| Operation | Colour 3 | Colour 4 |
| :---: | :---: | :---: |
| $\rho$ | $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\}$ | $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ |
| $\gamma$ | $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ | $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{\left\{_{i} \mid i \in \mathbb{Z}_{n}\right\}\right.$ |
| $\tau$ | $\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ | $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ |

TABLE 4.3: The colouring of the vertices of the $\sigma$-transformation graph of a Latin square according the specific conjugate operations that are $\sigma$-permissible.

The edges in $E(G)$ depend on the specifications of $\sigma$. If either a row, column or symbol permutation is $\sigma$-permissible, then it implies that $r_{i} \ell_{i j} \in E(G), c_{j} \ell_{i j} \in E(G)$ or $s_{k} \ell_{i j} \in E(G)$
for each triple $(i, j, k) \in T(\boldsymbol{L})$, respectively. If any one of $\pi_{r c}, \pi_{r s}$ or $\pi_{c s}$ are specified by $\sigma$, then it implies that $\left\{r_{i} c_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G),\left\{r_{i} s_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G)$ or $\left\{c_{i} s_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G)$, respectively, while all three of these cases are implied if $\pi_{r c s}$ is specified by $\sigma$. If any one of $\tau$, $\rho, \gamma$ and $\delta$ are $\sigma$-permissible, then it implies that $\left\{R r_{i}, C c_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G),\left\{C c_{i}, S s_{i} \mid i \in\right.$ $\left.\mathbb{Z}_{n}\right\} \in E(G),\left\{R r_{i}, S s_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G)$ and $\left\{R r_{i}, C c_{i}, S s_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G)$, respectively. If $\tau \rho$ is $\sigma$-permissible, then $E(G)$ contains three arcs, namely $(R, C),(C, S)$ and $(S, R)$.
For example, Figure 4.2 shows the CS-paratopism graph of the Latin square

$$
\boldsymbol{L}_{4.14}=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right] .
$$



Figure 4.2: The CS-paratopism graph of the Latin square $\boldsymbol{L}_{4.14}$.
The following theorem states a useful property of the $\sigma$-transformation graph of a Latin square.
Theorem 4.4.1 Two Latin squares are in the same $\sigma$-transformation class if and only if their $\sigma$-transformation graphs are isomorphic.

Proof: Let the $\sigma$-transformation graphs $G$ and $G^{\prime}$ of the Latin squares $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ have vertex sets

$$
V(G)=\left\{\ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\{R, C, S\}
$$

and

$$
V\left(G^{\prime}\right)=\left\{\ell_{i j}^{\prime} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{r_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{R^{\prime}, C^{\prime}, S^{\prime}\right\},
$$

respectively. Suppose further that a $\sigma$-transformation $\alpha$ maps $\boldsymbol{L}$ to $\boldsymbol{L}^{\prime}$. Let $p_{r} \in S_{n}, p_{c} \in S_{n}$, $p_{s} \in S_{n}$ and $c \in S_{3}$ be the row permutation, the column permutation, the symbol permutation and the conjugate operation in $\alpha$, respectively (note that if any of these operations are not $\sigma$-permissible, then they may be taken as the identity operations). Three cases are considered,
namely where $c=\iota$ (the identity conjugate operation), where $c=\rho$ (which is similar to the cases where $c=\gamma$ and $c=\tau$ ), and where $c=\tau \rho$.
Case 1: If no conjugate operations are $\sigma$-permissible, then the sets $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{r_{i}^{\prime} \mid\right.$ $\left.i \in \mathbb{Z}_{n}\right\}$ are each assigned Colour 1, the sets $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ are each assigned Colour 2, while the sets $\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ are each assigned Colour 3. Hence an isomorphism from $G$ to $G^{\prime}$ constitutes a permutation $p$ that maps $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\}$ to $\left\{r_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$, a permutation $q$ that maps $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ to $\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ and a permutation $r$ that maps $\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ to $\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$, which is equivalent to a ( $\pi_{r}, \pi_{c}, \pi_{s}$ )-transformation ( $p, q, r$ ) which maps $\boldsymbol{L}$ to $\boldsymbol{L}^{\prime}$.
Case 2: If the conjugate operation $\rho$ is $\sigma$-permissible, then the sets $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{r_{i}^{\prime} \mid\right.$ $\left.i \in \mathbb{Z}_{n}\right\}$ are each assigned Colour 1, while the sets $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$, $\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\},\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ are each assigned Colour 2 . Since in this case each vertex $c_{i}$ is joined to the vertex $C$ and each vertex $s_{i}$ is joined to the vertex $S$ for all $i \in \mathbb{Z}_{n}$ (the same also being true for $G^{\prime}$ ), $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is either mapped to $\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ or to $\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ (i.e. these sets cannot be partially mapped to one another). If $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is mapped to $\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ (in which case $\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is, in turn, mapped to $\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ ), then it is similar to Case 1 in that an isomorphism from $G$ to $G^{\prime}$ is equivalent to a $\left(\pi_{r}, \pi_{c}, \pi_{s}, \rho\right)$-transformation which maps $\boldsymbol{L}$ to $\boldsymbol{L}^{\prime}$. The cases where $\gamma$ and $\tau$ are $\sigma$-permissible follow in a similar manner.
Case 3: If the conjugate operation $\tau \rho$ is $\sigma$-permissible, then all of the sets $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\}$, $\left\{r_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\},\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\},\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\},\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ are each assigned Colour 1. However, the three arcs $(R, C),(C, S)$ and $(S, R)$ ensure that if the set $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is mapped to the set $\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$, then the set $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is mapped to the set $\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$, while the set $\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is mapped to the set $\left\{r_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$, which is equivalent to a ( $\pi_{r}, \pi_{c}, \pi_{s}, \tau \rho$ )-transformation which maps $L$ to $\boldsymbol{L}^{\prime}$. Similarly, it ensures that if the set $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is mapped to the set $\left\{s_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$, then the set $\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is mapped to the set $\left\{c_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$, while the set $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is mapped to the set $\left\{r_{i}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$.
It may be noted that the case where $c=\delta$ is covered by all three cases above. Furthermore, if $\left\{r_{i} c_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G)$, then the permutation applied to the set $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\}$ is equal to the permutation applied to the set $\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$, which is equivalent to stating that the permutation applied to the rows and columns of $\boldsymbol{L}$ must be equal. The same is true for the cases where $\left\{r_{i} s_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G)$ and $\left\{c_{i} s_{i} \mid i \in \mathbb{Z}_{n}\right\} \in E(G)$. Finally, the set $\left\{\ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\}$ can only be mapped to the set $\left\{\ell_{i j}^{\prime} \mid i, j \in \mathbb{Z}_{n}\right\}$, and this mapping is uniquely defined by the permutations applied to the sets $\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\},\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\}$.

The following corollary (which follows directly from the preceding theorem) may be used, together with the computer program nauty, to determine the $\sigma$-autotransformation group of a Latin square for any $\sigma$-transformation.

Corollary 4.4.1 Given any $\sigma$-transformation of Latin squares of order $n$, the automorphism group of the $\sigma$-transformation graph of a Latin square $\boldsymbol{L}$ of order $n$ is isomorphic to the $\sigma$ autotransformation group of $\boldsymbol{L}$.

In order to determine the $\sigma$-autotransformation group of a Latin object, the direct product of the automorphism groups of the $\sigma$-transformation graphs of the Latin squares in the object may be taken. However, in order to determine the autoparatopism group of a $k$-MOLS of order $n$ a graph similar to the one above is required. For any $k$-MOLS $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order
$n$, the paratopism graph of $\mathcal{M}$ is a mixed graph $G$ with vertex set

$$
V(G)=\left\{\ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{v_{i j} \mid i \in \mathbb{Z}_{n}, j \in \mathbb{Z}_{k+2}\right\} \cup\left\{V_{i} \mid i \in \mathbb{Z}_{k+2}\right\} .
$$

The elements of $V(G)$ are coloured by using three colours, where Colour 1 is assigned to $\left\{\ell_{i j} \mid\right.$ $\left.i, j \in \mathbb{Z}_{n}\right\}$, Colour 2 is assigned to $\left\{v_{i j} \mid i \in \mathbb{Z}_{n}, j \in \mathbb{Z}_{k+2}\right\}$ and Colour 3 is assigned to $\left\{V_{i} \mid i \in\right.$ $\left.\mathbb{Z}_{k+2}\right\}$. Furthermore, for each tuple $\left(i, j, \boldsymbol{L}_{0}(i, j), \boldsymbol{L}_{1}(i, j), \ldots, \boldsymbol{L}_{k-1}(i, j)\right) \in T(\mathcal{M})$ the edge set $E(G)$ contains the edges $v_{i 0} \ell_{i j}, v_{i 0} V_{0}, v_{j 1} \ell_{i j}, v_{j 1} V_{1}, v_{g h} \ell_{i j}$ and $v_{g h} V_{h}$, where $g=\boldsymbol{L}_{h-2}(i, j)$ for all $h \in \mathbb{Z}_{k+2} \backslash\{0,1\}$.
For example, the paratopism graph of the pair of orthogonal Latin squares

$$
\mathcal{M}_{4.1}=\left(\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{array}\right]\right),
$$

is shown in Figure 4.3.


Figure 4.3: The paratopism graph of the $2-\mathrm{MOLS} \mathcal{M}_{4.1}$.
The following theorem and corollary provide a means for determining the autoparatopism group of a $k$-MOLS of order $n$.

Theorem 4.4.2 Two $k$-MOLS of order $n$ are in the same main class if and only if their paratopism graphs are isomorphic.

Proof: Let $\mathcal{M}$ and $\mathcal{M}^{\prime}$ be $k$-MOLS of order $n$ with paratopism graphs $G$ and $G^{\prime}$, respectively, and let

$$
V(G)=\left\{\ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{v_{i j} \mid i \in \mathbb{Z}_{n}, j \in \mathbb{Z}_{k+2}\right\} \cup\left\{V_{i} \mid i \in \mathbb{Z}_{k+2}\right\}
$$

and

$$
V\left(G^{\prime}\right)=\left\{\ell_{i j}^{\prime} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{v_{i j}^{\prime} \mid i \in \mathbb{Z}_{n}, j \in \mathbb{Z}_{k+2}\right\} \cup\left\{V_{i}^{\prime} \mid i \in \mathbb{Z}_{k+2}\right\}
$$

It is easy to see that for each $j \in \mathbb{Z}_{k+2}$ an isomorphism from $G$ to $G^{\prime}$ maps the subset $\left\{v_{i j} \mid i \in\right.$ $\left.\mathbb{Z}_{n}\right\}$ of $V(G)$ (in some order) to some subset $\left\{v_{i j^{\prime}}^{\prime} \mid i \in \mathbb{Z}_{n}\right\}$ of $V(G)$, where $j$ not necessarily equals $j^{\prime}$. Since this is equivalent to a conjugate operation together with a permutation applied either to the row indices of all Latin squares in $\mathcal{M}$, to the column indices of all Latin squares in $\mathcal{M}$ or to the symbols of some Latin square in $\mathcal{M}$, an isomorphism between $G$ and $G^{\prime}$ is equivalent to a paratopism between $\mathcal{M}$ and $\mathcal{M}^{\prime}$.

Corollary 4.4.2 The automorphism group of the paratopism graph of a $k$-MOLS $\mathcal{M}$ of order $n$ is isomorphic to the autoparatopism group of $\mathcal{M}$.

### 4.5 Group theoretic enumeration of Latin squares

The main assumptions for this section, given any transformation of type $\sigma$ of Latin objects of order $n$, are (i) that a set $\mathcal{C}(\sigma, n)$ of Latin objects of order $n$ is given such that no two elements of this set are found in the same $\sigma$-transformation class, (ii) that there are exactly $|\mathcal{C}(\sigma, n)|$ $\sigma$-transformation classes of Latin objects of order $n$ and (iii) that the $\sigma$-autotransformation group of every Latin object in $\mathcal{C}(\sigma, n)$ is known. In the remainder of this section it is shown how Latin objects, Latin object classes as well as various types of Latin objects may be enumerated utilising results from abstract algebra under the above assumptions.

Theorem 4.5.1 Denote the $\sigma$-transformation group acting on the set of all Latin objects of order $n$ by $G_{\sigma}(n)$ and denote the $\sigma$-autotransformation group of a Latin object $\mathcal{O}$ by $A_{\sigma}(\mathcal{O})$. Then the total number of Latin objects of order $n$ is

$$
\sum_{\mathcal{O} \in \mathcal{C}(\sigma, n)} \frac{\left|G_{\sigma}(n)\right|}{\left|A_{\sigma}(\mathcal{O})\right|}
$$

Proof: Since $A_{\sigma}(\mathcal{O})=\left\{\alpha \mid \mathcal{O}^{\alpha}=\mathcal{O}\right\}$, this group is the stabiliser of the element $\mathcal{O}$ by Definition A.2.9. By the orbit-stabiliser theorem (see Lemma A.2.1), the number of Latin objects of order $n$ in the $\sigma$-transformation class containing $\mathcal{O}$ is $\left|G_{\sigma}(n)\right| /\left|A_{\sigma}(\mathcal{O})\right|$ since $G_{\sigma}(n)$ is a group acting on the set of all Latin objects of order $n$ and since $A_{\sigma}(\mathcal{O})$ is a stabiliser. By the assumptions on the properties of $\mathcal{C}(\sigma, n)$, the desired result follows.

For example, consider the two non-isotopic Latin squares

$$
\boldsymbol{L}_{4.15}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right] \quad \text { and } \quad \boldsymbol{L}_{4.16}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 1 & 0 \\
3 & 2 & 0 & 1
\end{array}\right]
$$

of order 4 (see Colbourn et al. [38, p. 137]). Since there are only two isotopy classes of Latin squares of order 4 , these two Latin squares together form the set $\mathcal{C}\left(\left(\pi_{r}, \pi_{c}, \pi_{s}\right), 2\right)$. Using Algorithm 4.2, the autotopy groups of each of these Latin squares may easily be computed via Mathematica. The orders of the autotopism groups of $\boldsymbol{L}_{4.15}$ and $\boldsymbol{L}_{4.16}$ are 96 and 32 respectively, and the total number of Latin squares of order 4 therefore is $(4!)^{3} / 96+(4!)^{3} / 32=576$.
Theorem 4.5.1 may also be used to establish relationships between the numbers of various types of Latin squares, as the following corollaries illustrate.

Corollary 4.5.1 The number of diagonal Latin squares of order $n$ is $n$ ! times the number of idempotent Latin squares of order $n$.

Proof: It is easy to see that any $\left(\pi_{s}\right)$-autotransformation class of diagonal Latin squares contains exactly one idempotent Latin square, and that the $\left(\pi_{s}\right)$-autotransformation group of any Latin square has order one. Hence the number of $\left(\pi_{s}\right)$-transformation classes of diagonal Latin squares of order $n$ equals the number of idempotent Latin squares of order $n$, and since the $\left(\pi_{s}\right)$-transformation group has order $n!$, the desired result follows from Theorem 4.5.1.

The next corollary is a well-known result. See Laywine and Mullin [88, Theorem 1.2] for an alternative proof of this result.

Corollary 4.5.2 The number of Latin squares of order $n$ is $n!(n-1)$ ! times the number of reduced Latin squares of order $n$.

Proof: Consider applying a column permutation to a Latin square and a row permutation only to the last $n-1$ rows of the Latin square. Hence the group $S_{n} \times S_{n-1}$ acts on the set of Latin squares of order $n$ in this way, and it is therefore a valid transformation (although no type has been defined for such a transformation). It is easy to see that the autotransformation group of any Latin square in this case has order one, and that any such class contains exactly one reduced Latin square. As in the proof of Corollary 4.5.1, the result follows since the group $S_{n} \times S_{n-1}$ has order $n!(n-1)$ !.

A similar relationship to the one given above may be established for $k$-MOLS of order $n$ and reduced $k$-MOLS of order $n$, where a reduced $k$-MOLS of order $n$ is a row-reduced $k$-MOLS $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$ such that $\boldsymbol{L}_{0}(i, 0)=i$ for all $i \in \mathbb{Z}_{n}$ (i.e. a row-reduced $k$-MOLS in which the first column of the first Latin square is in natural order).

Corollary 4.5.3 The number of $k-M O L S$ of order $n$ is $(n!)^{k}(n-1)!$ times the number of reduced $k$-MOLS of order $n$.

Proof: Consider the action of the group $S_{n}^{k} \times S_{n-1}$ on the set of all $k$-MOLS of order $n$ where, given a $k$-MOLS $\mathcal{M}=\left(\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, \ldots, \boldsymbol{L}_{k-1}\right)$ of order $n$, a unique symbol permutation is applied to each $\boldsymbol{L}_{i}$ for $0 \leq i \leq k-1$ and where a permutation of order $n-1$ is applied to the last $n-1$ rows of $\boldsymbol{L}_{i}$ for all $0 \leq i \leq k-1$. It is easy to see that the autotransformation group of any Latin square in this case has order one, and that any such class contains exactly one reduced $k$-MOLS of order $n$. Since the group $S_{n}^{k} \times S_{n-1}$ has order $(n!)^{k}(n-1)$ !, the desired result follows by Corollary 4.5.1.

It is also sometimes useful to enumerate the number of subtransformation classes of a transformation class. Given any transformation $\sigma$ of order $n$, the subtransformation of $\sigma$, denoted by $\bar{\sigma}$, is the resulting transformation if all symbols of the form $\pi_{t_{i}}^{(j)}$ for all $1 \leq i \leq 3$ and $1 \leq j \leq m$ are removed and replaced by the symbol $\pi_{r c s}^{(1, \ldots, m)}$. Hence all $\sigma$-permissible $n$-permutations are restricted to be equal. Any $\bar{\sigma}$-transformation is therefore a special case of a $\sigma$-transformation. In this case the transformation group will always be the direct product of $S_{n}$ and some subgroups of $D_{3}$. For example, if $\sigma=\left(\pi_{r c}^{(1)}, \pi_{s}^{(1)}, \pi_{r}^{(2)}, \pi_{c}^{(2)}, \pi_{s}^{(2)}, \tau^{(1)}, \delta^{(2)}\right)$ then $\bar{\sigma}=\left(\pi_{r c s}^{(1,2)}, \tau^{(1)}, \delta^{(2)}\right)$ and the $\bar{\sigma}$-transformation group is $S_{n} \times S_{2} \times D_{3}$. The most common example of a subtransformation
class, however, is a isomorphism class of Latin squares, which is a subtransformation class of an isotopy class of Latin squares.
The following lemma and theorem are an adaptation of Theorem 4 in McKay et al. [99], which counts the number of isomorphism classes of Latin squares in each isotopy class of Latin squares. The theorem was also adapted in [32] and [33] to count subtransformation classes of special types of Latin squares which are considered later in this dissertation. The theorem is extended here to the general case where the number of subtransformation classes within any given transformation class is to be counted.
Suppose the subtransformation classes within the $\sigma$-transformation class containing the Latin object $\mathcal{O}$, say $\mathcal{C}$, are to be enumerated, and let $A_{\sigma}(\mathcal{O})$ be the $\sigma$-autotransformation group of $\mathcal{O}$. Since the $\bar{\sigma}$-transformation classes are orbits on $\mathcal{C}$, it follows by the Cauchy-Frobenius Lemma (see Lemma A.2.2) that the number of $\bar{\sigma}$-transformation classes in $\mathcal{C}$ equals the sum of the number of $\bar{\sigma}$-autotransformations of each element in $\mathcal{C}$ divided by the size of the $\bar{\sigma}$ transformation group. The key to the proof of the following theorem is to represent each $\sigma$-autotransformation of each element of the class in terms of the elements of $A_{\sigma}(\mathcal{O})$, and to count those which are $\bar{\sigma}$-autotransformations.

If $\mathcal{O}^{\prime} \in \mathcal{C}$ then there exists some $\sigma$-transformation $\theta$ such that $\mathcal{O}^{\theta}=\mathcal{O}^{\prime}$, and Figure 4.4 illustrates how $\theta \alpha \theta^{-1}$ is an $\sigma$-autotransformation of $\mathcal{O}^{\prime}$ for any $\alpha \in A_{\sigma}(\mathcal{O})$. This is true since

$$
\left(\mathcal{O}^{\prime}\right)^{\theta \alpha \theta^{-1}}=\left(\mathcal{O}^{\theta}\right)^{\theta \alpha \theta^{-1}}=\mathcal{O}^{\theta \alpha}=\mathcal{O}^{\theta}=\mathcal{O}^{\prime}
$$



Figure 4.4: Suppose $\theta$ is a $\sigma$-transformation, that $\mathcal{O}$ and $\mathcal{O}^{\prime}=\mathcal{O}^{\theta}$ are both in the $\sigma$-transformation class $\mathcal{C}$ and that $\alpha$ is a $\sigma$-autotransformation of $\mathcal{O}$. The directed cycle starting at $\mathcal{O}^{\prime}$ following the arcs labelled $\theta^{-1}, \alpha$ and $\theta$ (in that order) terminates at $\mathcal{O}^{\prime}$, and therefore the product $\theta \alpha \theta^{-1}$ of these three transformations is a $\sigma$-autotransformation of $\mathcal{O}^{\prime}$.

Hence it is necessary, for all $\alpha \in A_{\sigma}(\mathcal{O})$, to count the number of ways in which $\theta \alpha \theta^{-1}$ is a $\bar{\sigma}$-autotransformation of some Latin object in $\mathcal{C}$ for all $\sigma$-transformations $\theta$. Denote the $\sigma$ transformation group by $G_{\sigma}$. Let $\alpha, \beta \in A_{\sigma}(\mathcal{O})$ and let $\mathcal{O}^{\theta}=\mathcal{O}^{\eta}=\mathcal{O}^{\prime}$ for $\theta, \eta \in G_{\sigma}$. If $\theta \alpha \theta^{-1}=\eta \beta \eta^{-1}$, then this $\sigma$-autotransformation is counted twice. The following lemma helps to overcome this obstacle.

Lemma 4.5.1 Let $A_{\sigma}(\mathcal{O})$ be the $\sigma$-autotransformation group of a Latin object $\mathcal{O}$ and let $G_{\sigma}$ be the $\sigma$-transformation group. Define an equivalence relation $\sim$ such that $(\theta, \alpha) \sim(\eta, \beta)$ if and only if $\theta \alpha \theta^{-1}=\eta \beta \eta^{-1}$ and $\mathcal{O}^{\theta}=\mathcal{O}^{\eta}$ for some $\theta, \eta \in G_{\sigma}$ and $\alpha, \beta \in A_{\sigma}(\mathcal{O})$. Then each equivalence class induced by this relation has cardinality $\left|A_{\sigma}(\mathcal{O})\right|$.

Proof: Let $(\theta, \alpha)$ be a pair for which $\theta \in G_{\sigma}$ and $\alpha \in A_{\sigma}(\mathcal{O})$. For any $\lambda \in A_{\sigma}(\mathcal{O})$, let $\eta=\theta \lambda$ and $\beta=\lambda^{-1} \alpha \lambda$. Then $\eta \beta \eta^{-1}=\theta \lambda \lambda^{-1} \alpha \lambda \lambda^{-1} \theta^{-1}=\theta \alpha \theta^{-1}$. Furthermore, $\beta \in A_{\sigma}(\mathcal{O}), \eta \in G_{\sigma}$ and $\mathcal{O}^{\eta}=\mathcal{O}^{\theta \lambda}=\mathcal{O}^{\theta}$, and therefore $(\theta, \alpha) \sim(\eta, \beta)$. Hence for any element of $A_{\sigma}(\mathcal{O})$ there exists a unique pair $(\eta, \beta)$ such that $(\theta, \alpha) \sim(\eta, \beta)$ and so the equivalence classes induced by $\sim$ has cardinality at least $\left|A_{\sigma}(\mathcal{O})\right|$.

Suppose $\left(\eta^{\prime}, \beta^{\prime}\right) \sim(\theta, \alpha)$ is not in the set of $\left|A_{\sigma}(\mathcal{O})\right|$ pairs equivalent to $(\theta, \alpha)$ counted above, for some $\eta^{\prime} \in G_{\sigma}$ and $\beta^{\prime} \in A_{\sigma}(\mathcal{O})$. Then $\theta^{-1} \eta^{\prime}=\lambda$, for some $\lambda \in A_{\sigma}(\mathcal{O})$, and

$$
\theta \alpha \theta^{-1}=\eta^{\prime} \beta^{\prime} \eta^{\prime-1}=\theta \lambda \beta^{\prime} \lambda^{-1} \theta^{-1}
$$

Hence $\beta^{\prime}=\lambda \alpha \lambda^{-1}$ and $\eta^{\prime}=\theta \lambda$, and so $\left(\eta^{\prime}, \beta^{\prime}\right)$ has already been counted above. The equivalence classes therefore also have cardinality at most $\left|A_{\sigma}(\mathcal{O})\right|$.

Utilising the above lemma, the following theorem enumerates the $\bar{\sigma}$-transformation classes in any $\sigma$-transformation class.

Theorem 4.5.2 Let $A_{\sigma}(\mathcal{O})$ be the $\sigma$-autotransformation group of a Latin object $\mathcal{O}$ with parameters $(n, m)$ and suppose there are $k \sigma$-permissible $n$-permutations. Then the number of $\bar{\sigma}$-transformation classes in the $\sigma$-transformation class of $\mathcal{O}$ is

$$
\sum_{\alpha \in A_{\sigma}(\mathcal{O})} \frac{\psi(\alpha)^{k-1}}{\left|A_{\sigma}(\mathcal{O})\right|}
$$

where

$$
\psi(\alpha)= \begin{cases}\prod_{i=1}^{n} a_{i}!i^{a_{i}}, & \text { if all } n \text {-permutations in } \alpha \text { are of the same type } \\ 0, & \text { otherwise. }\end{cases}
$$

Proof: Let $\hat{D}_{3}^{(i)}$ be the subgroup of $D_{3}$ from which the $\sigma$-permissible conjugate operations for $\boldsymbol{L}_{i} \in \mathcal{O}$ are taken. Then the transformation group of a $\bar{\sigma}$-transformation is $S_{n} \times \hat{D}_{3}^{(1)} \times \ldots \times \hat{D}_{3}^{(m)}$, henceforth simply denoted by $G_{\bar{\sigma}}$. Also, let $\mathcal{C}$ denote the $\sigma$-transformation class containing $\mathcal{O}$ and let $G_{\sigma}$ denote the $\sigma$-transformation group.

As noted before, it is necessary to count, for all $\alpha \in A_{\sigma}(\mathcal{O})$ and $\beta \in G_{\sigma}$, the number of ways in which $\theta \alpha \theta^{-1}$ is a $\bar{\sigma}$-autotransformation. There is no restriction on the conjugate operations of $\theta$, and they may be chosen in $\prod_{i=1}^{m}\left|\hat{D}_{3}^{(i)}\right|$ distinct ways. In order for $\theta \alpha \theta^{-1}$ to be a $\bar{\sigma}$ autotransformation, all $n$-permutations in $\theta \alpha \theta^{-1}$ should be equal, and, by Proposition A.1.2, all $n$-permutations in $\alpha$ should therefore be of the same type. One of the $n$-permutations of $\theta$ may be chosen in $n$ ! ways, but the remaining $k-1$ have to be chosen in such a way that all $n$-permutations of $\theta \alpha \theta^{-1}$ are equal. But this can only be true if all $n$-permutations of $\alpha$ are of the same type. If they are of the same type, say $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then by Proposition A.1.3 there are $\prod_{i=1}^{n} a_{i}!i^{a_{i}}$ distinct ways of selecting each of the remaining $k-1$ permutations of $\theta$. Otherwise there are zero ways of selecting the $n$-permutations of $\theta$.
Define, for any $\alpha \in A_{\sigma}(\mathcal{O})$, the function $\psi(\alpha)=\prod_{i=1}^{n} a_{i}!i^{a_{i}}$ if all $n$-permutations in $\alpha$ are of type $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, or zero otherwise. Then there are

$$
\psi(\alpha)^{k-1} \prod_{i=1}^{m}\left|\hat{D}_{3}^{(i)}\right|
$$

choices of $\theta$ for which $\theta \alpha \theta^{-1}$ is an $\bar{\sigma}$-autotransformation of some Latin object, for some $\alpha \in$ $A_{\sigma}(\mathcal{O})$.
Since any $\bar{\sigma}$-autotransformation of any Latin object in $\mathcal{C}$ may be written in the form $\theta \alpha \theta^{-1}$ for some $\sigma$-transformation $\theta$ and some $\alpha \in A_{\sigma}(\mathcal{O})$, the number

$$
n!\sum_{\alpha \in A_{\sigma}(\mathcal{O})} \psi(\alpha)^{k-1} \prod_{i=1}^{m}\left|\hat{D}_{3}^{(i)}\right|
$$

counts all $\bar{\sigma}$-autotransformations of each element in $\mathcal{C}$ at least once. As noted before, it is not guaranteed that no $\bar{\sigma}$-autotransformation has been counted more than once, and Lemma 4.5.1 may therefore be employed to remove these redundancies. It is easy to see that the type of the elements of $A_{\sigma}(\mathcal{O})$ are invariant under the equivalence classes considered in Lemma 4.5.1, and the equivalence classes consisting of $\bar{\sigma}$-autotransformations therefore have cardinality $\left|A_{\sigma}(\mathcal{O})\right|$. Hence there are exactly

$$
\frac{n!}{\left|A_{\sigma}(\mathcal{O})\right|} \sum_{\alpha \in A_{\sigma}(\mathcal{O})} \psi(\alpha)^{k-1} \prod_{i=1}^{m}\left|\hat{D}_{3}^{(i)}\right|
$$

$\bar{\sigma}$-autotransformations of the elements of $\mathcal{C}$. By the Cauchy-Frobenius Lemma (see Lemma A.2.2), this number has to be divided by $\left|G_{\bar{\sigma}}\right|=n!\prod_{i=1}^{m}\left|\hat{D}_{3}^{(i)}\right|$, thereby delivering the desired result.

Consider, for example, the set $\mathcal{C}\left(\left(\pi_{r}, \pi_{c}, \pi_{s}\right), 2\right)=\left\{\boldsymbol{L}_{4.15}, \boldsymbol{L}_{4.16}\right\}$ containing two non-isotopic Latin squares of order 4. Previously in this subsection the autotopy groups of these Latin squares were computed in Mathematica using Algorithm 4.2. By Theorem 4.5.2, if $A\left(\boldsymbol{L}_{4.15}\right)$ and $A\left(\boldsymbol{L}_{4.16}\right)$ are the isotopy groups of $\boldsymbol{L}_{4.15}$ and $\boldsymbol{L}_{4.16}$ respectively and since an isomorphism is a subtransformation of an isotopism, the number of isomorphism classes of Latin squares of order 4 is

$$
\sum_{\alpha \in A\left(\boldsymbol{L}_{4.15}\right)} \frac{\psi(\alpha)^{2}}{96}+\sum_{\alpha \in A\left(\boldsymbol{L}_{4.16}\right)} \frac{\psi(\alpha)^{2}}{32}
$$

The values for $\psi(\alpha)$ may be calculated in Mathematica by using the function PermutationType, from which it follows that $\sum_{\alpha \in A\left(\boldsymbol{L}_{4.15}\right)} \psi(\alpha)^{2}=1440$ and $\sum_{\alpha \in A\left(\boldsymbol{L}_{4.16}\right)} \psi(\alpha)^{2}=640$. Hence the number of isomorphism classes of Latin squares of order 4 is $1440 / 96+640 / 32=35$.

### 4.6 Chapter summary

In $\S 4.1$ the notion of a transformation class of Latin squares was defined. Such a class is the equivalence class of Latin squares induced by the group action of a transformation group on the set of all Latin squares of a certain order. The elements of such a transformation group are combinations of various operations that may be applied to Latin squares without destroying their defining property. Notation was introduced in order for various results on the enumeration of these transformation classes to be established in general (i.e. for any given transformation group) and so that various algorithms which may be utilised for enumeration purposes may also be described in general. A number of special types of equivalence classes of Latin squares were also introduced in this section, namely isomorphism classes, isotopy classes, main classes, RC-paratopism classes, transpose-isomorphism classes, as well as equivalents of the latter two.

A brief historical account of various attempts by researchers to enumerate Latin squares and various classes of Latin squares of orders $1 \leq n \leq 11$ was given in $\S 4.2$. A table of enumeration results for various classes of Latin squares was also provided in this section.
In $\S 4.3$ a backtracking tree-search approach towards enumerating any $\sigma$-transformation class of Latin squares was presented. Before branching on a partially completed Latin square, this method ensures that the square has the potential to be completed to the class leader of a $\sigma$-transformation class, where a class leader is defined uniquely for each class. This method therefore generates a class representative from each $\sigma$-transformation class, thereby enumerating the total number of $\sigma$-transformation classes. The working of the method was illustrated by
an enumeration of the isomorphism classes generated by reduced $N_{2}$-squares (Latin squares without $2 \times 2$-subsquares) of order 5 , and an application of this method to the enumeration of RC-paratopism classes of Latin squares and to the enumeration of main classes of MOLS was also discussed in detail.

In $\S 4.4$ it was illustrated how a graph may be constructed from a given Latin square $\boldsymbol{L}$ and a given transformation type $\sigma$ in such a way that the $\sigma$-autotransformation group of $\boldsymbol{L}$ is isomorphic to the automorphism group of the graph. This is useful for the computation of autotransformation groups of Latin squares since the well-known computer program nauty [96] may be used to determine the automorphism group of any graph. Once the $\sigma$-autotransformation group of a Latin square $\boldsymbol{L}$ is determined, results from group theory (in particular, the orbitstabiliser theorem and the Cauchy-Frobenius Lemma) may be used to compute the size of the $\sigma$-transformation class of which $\boldsymbol{L}$ is a member, as well as various special types of subclasses of this class, and methods for achieving these computations were presented in $\S 4.5$. An illustrative example was also presented in this section in which it was shown how the autotopy groups of the two non-isotopic Latin squares of order 4 may be used to count the total number of Latin squares in each of these classes, as well as the number of isomorphism classes within each class.

## CHAPTER 5

## Enumeration results

Contents
5.1 Two enumeration approaches for orthogonal Latin squares ..... 88
5.2 Enumeration of self-orthogonal Latin squares ..... 89
5.2.1 Enumeration of RC-paratopism classes of SOLS ..... 91
5.2.2 Enumeration of other classes of SOLS ..... 96
5.3 Enumeration of SOLSSOMs ..... 98
5.3.1 Enumeration of RC-paratopism classes of SOLSSOMs ..... 99
5.3.2 The non-existence of SOLSSOMs of order 10 ..... 104
5.3.3 Enumeration of other classes of SOLSSOMs ..... 106
5.4 Enumeration of MOLS ..... 107
5.4.1 Enumeration of main classes of MOLS ..... 108
5.4.2 Enumeration of distinct and reduced MOLS ..... 115
5.5 Chapter summary ..... 116

In this chapter the enumeration methodology presented in Chapter 4 is applied to the problem of enumerating SOLS (in §5.2), SOLSSOMs (in §5.3) and MOLS (in §5.4) of various orders, a task that in the literature on Latin squares has only been partly addressed for SOLS and MOLS, and not at all for SOLSSOMs. Two approaches to this problem are compared in §5.1, and some motivation is given as to why one approach may prove to be more efficient than the other in terms of the required enumeration computing time. In $\S 5.2 .1$ the RC-paratopism classes of SOLS of orders $4 \leq n \leq 10$ are enumerated (the trivial cases of $n=2,3$ are omitted), while §5.2.2 contains enumeration results on isomorphism classes and transpose-isomorphism classes generated by SOLS, as well as the number of distinct and idempotent SOLS of various orders. In $\S 5.3 .1$ the RC-paratopism classes of SOLSSOMs of orders $4 \leq n \leq 10$ are enumerated using two independent methods, and in $\S 5.3 .2$ a method is described by which it may be shown that there is no SOLSSOM of order 10. The number of distinct SOLSSOMs, standard SOLSSOMS and transpose-isomorphism classes of SOLSSOMs are thereafter determined in §5.3.3. In §5.4.1 the main classes of $k$-MOLS of orders $3 \leq n \leq 8$ are enumerated for $2 \leq k \leq 7$, and in $\S 5.4 .2$ the number of reduced and distinct $k$-MOLS of these orders are determined. Computing times are reported where methods performed on a computer required more than one second to complete, and computations were performed on two computing resources, namely on $3 \mathrm{GHz} \operatorname{Intel}(\mathrm{R})$ dual core processors, each with 4GB RAM (henceforth referred to as Computing Resource 1), and on Stellenbosch University's Rasatsha High Performance Computer [132], which consists of 168
2.83 GHz processors, each with 336 GB RAM (henceforth referred to as Computing Resource 2). Implementations of the methods in this chapter were done in parallel on both computing resources.

### 5.1 Two enumeration approaches for orthogonal Latin squares

In $\S 4.3$ an algorithm was presented for the enumeration of classes of Latin squares using a backtracking tree-search which branches on the inclusion of rows in a partially completed Latin square. When enumerating orthogonal Latin squares using this method there are two approaches to restricting the rows included in order for the Latin squares eventually generated to be orthogonal to one another, one of which is equivalent to branching on the inclusion of universals (as was the case in the algorithm described in $\S 4.3 .2$ ). In what follows each of these two approaches are discussed, and their efficiency in terms of the required enumeration computing times are compared.
Let $\boldsymbol{L}_{0}$ and $\boldsymbol{L}_{1}$ be Latin squares of order $n$ which have been obtained via the backtracking tree-search described in $\S 4.3$, where, for every pair of permutations $r_{1}$ and $r_{2}$ which were considered for inclusion as the $m$-th rows (for some $m<n$ ) of $\boldsymbol{L}_{0}$ and $\boldsymbol{L}_{1}$, respectively, a restriction has been enforced which requires that the sets of pairs $\left\{\left(r_{0}(i), r_{1}(i)\right) \mid i \in \mathbb{Z}_{n}\right\}$ and $\left\{\left(\boldsymbol{L}_{0}^{\prime}(i, j), \boldsymbol{L}_{1}^{\prime}(i, j)\right) \mid i \in \mathbb{Z}_{m}, j \in \mathbb{Z}_{n}\right\}$ are disjoint. Since this restriction ensures that the pairs $\left(\boldsymbol{L}_{0}^{\prime}(i, j), \boldsymbol{L}_{1}^{\prime}(i, j)\right)$ are unique as $i$ and $j$ vary over $\mathbb{Z}_{n}, \boldsymbol{L}_{0}$ and $\boldsymbol{L}_{1}$ are orthogonal. Hence in this approach rows are inserted as the search progresses, subject to the restriction that every partial universal formed in the one square must intersect (i.e. have an entry in common with) each partial universal in the other square at most once.

Now let $\boldsymbol{L}_{0}, \boldsymbol{L}_{1}, r_{0}$ and $r_{1}$ assume the same roles as above, but where a different restriction has been enforced, namely one which requires that, for any $i<m$, there exists exactly one element $j_{0} \in \mathbb{Z}_{n}$ such that $r_{0}\left(j_{0}\right)=\boldsymbol{L}_{1}\left(i, j_{0}\right)$, exactly one element $j_{1} \in \mathbb{Z}_{n}$ such that $r_{1}\left(j_{1}\right)=\boldsymbol{L}_{0}\left(i, j_{1}\right)$, and exactly one element $k \in \mathbb{Z}_{n}$ such that $r_{0}(k)=r_{1}(k)$. This restriction therefore ensures that, for each pair $\left(i_{0}, i_{1}\right) \in \mathbb{Z}_{n}^{2}$, there exists exactly one element $j \in \mathbb{Z}_{n}$ such that $\boldsymbol{L}_{1}\left(i_{0}, j\right)=\boldsymbol{L}_{1}\left(i_{1}, j\right)$, which implies that the pair $\left(\left({ }^{-1} \boldsymbol{L}_{0}\right)^{T}(i, j),\left({ }^{-1} \boldsymbol{L}_{1}\right)^{T}(i, j)\right)$ is unique as $i$ and $j$ vary $\mathbb{Z}_{n}{ }^{1}$. Hence $\left({ }^{-1} \boldsymbol{L}_{0}\right)^{T}$ and $\left({ }^{-1} \boldsymbol{L}_{1}\right)^{T}$ are orthogonal. Since the universal permutations of $\left({ }^{-1} \boldsymbol{L}_{0}\right)^{T}$ represent the rows of $\boldsymbol{L}_{0}$, this approach is equivalent to branching on the inclusion of universals, while ensuring that each universal included in one Latin square intersects each universal already included in the other Latin square exactly once.
The difference between the two approaches described above lies in the fact that in the first approach one entry of each universal is included on each level of the tree, while in the second approach all entries of one universal are included on each level of the tree. Furthermore, in the first approach every two universals that do not appear in the same Latin square must intersect at most once, while in the second approach every two universals that do not appear in the same Latin square must intersect exactly once. Hence the first approach is less restrictive (especially on the lower levels of the tree) than the second.
This phenomenon may be observed from Table 5.1, which gives the number of branches on each level of the search tree for reduced $k$-MOLS of order $n$ for both the above approaches. These numbers were obtained by utilising the backtracking algorithm described in $\S 4.3$ subject to the restrictions above together with an additional restriction which ensures that the $k$-MOLS generated are reduced. As may be seen from the table, the first approach gives rise to more

[^19]branches in the search tree than the second, as expected. Furthermore, the required computing time for finding these numbers is negligible for the second approach, whereas for the first approach it is negligible for $n<6$ only, while for $n=6$ the search already requires 11 seconds, 65 seconds, 20 seconds and 2 seconds for $k=2,3,4$ and 5 , respectively.

|  | First approach (rows) |  |  |  |  |  | Second approach (universals) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Level |  |  |  |  |  | Level |  |  |  |  |  |
| $(n, k)$ | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
| $(4,2)$ | 1 | 8 | 8 | 2 |  |  | 2 | 2 | 2 | 2 |  |  |
| $(4,3)$ | 1 | 8 | 2 | 2 |  |  | 2 | 2 | 2 | 2 |  |  |
| $(5,2)$ | 1 | 138 | 660 | 18 | 18 |  | 9 | 42 | 24 | 18 | 18 |  |
| $(5,3)$ | 1 | 336 | 36 | 36 | 36 |  | 24 | 48 | 36 | 36 | 36 |  |
| $(5,4)$ | 1 | 336 | 36 | 36 | 36 |  | 24 | 48 | 36 | 36 | 36 |  |
| $(6,2)$ | 1 | 4256 | 564608 | 965844 | 39600 | 0 | 44 | 6312 | 24396 | 2304 | 0 | 0 |
| $(6,3)$ | 1 | 78624 | 2897532 | 421728 | 5280 | 0 | 552 | 10512 | 36 | 0 | 0 | 0 |
| $(6,4)$ | 1 | 225792 | 237600 | 10560 | 9360 | 0 | 1344 | 432 | 0 | 0 | 0 | 0 |
| $(6,5)$ | 1 | 225792 | 0 | 0 | 0 | 0 | 1344 | 432 | 0 | 0 | 0 | 0 |

Table 5.1: The number of branches on each level of the search tree for each of the two approaches to enumerating reduced $k$-MOLS of order $n$, namely branching on the inclusion of rows and branching on the inclusion of universals.

By the discussions above and from the findings summarised in Table 5.1 it is clear that branching on the inclusion of universals is a more efficient approach to the enumeration of orthogonal Latin squares than branching on the inclusion of rows, and for this reason the enumeration algorithms in this dissertation for SOLS, SOLSSOMs and MOLS all follow this approach.

### 5.2 Enumeration of self-orthogonal Latin squares

For the purpose of enumerating classes of SOLS it is necessary to identify the transformations under which the property of self-orthogonality is invariant. In $\S 2.2$ it was shown that in order for a transformation to preserve the property of orthogonality between two Latin squares, any permutation applied to the rows (columns, respectively) of the one Latin square must also be applied to the rows (columns, respectively) of the other. Since a SOLS is orthogonal to its transpose, it therefore follows that any permutation applied to the rows of a SOLS must also be applied to the columns of the SOLS in order to guarantee that the resulting Latin square is again self-orthogonal. Furthermore, a permutation on the symbols may be performed independently of the permutation applied to the rows of the SOLS. It may also be noted that the only conjugate operation that necessarily preserves orthogonality is $\tau$ (the operation of transposition). Consider, for example, the SOLS

$$
\boldsymbol{L}_{5.1}=\left[\begin{array}{lllllll}
0 & 2 & 1 & 4 & 3 & 6 & 5 \\
3 & 1 & 6 & 0 & 5 & 2 & 4 \\
4 & 5 & 2 & 6 & 0 & 3 & 1 \\
5 & 6 & 4 & 3 & 1 & 0 & 2 \\
6 & 3 & 5 & 2 & 4 & 1 & 0 \\
2 & 4 & 0 & 1 & 6 & 5 & 3 \\
1 & 0 & 3 & 5 & 2 & 4 & 6
\end{array}\right]
$$

of order 7 . Since $\boldsymbol{L}_{5.1}(1,5)=2$ and $\boldsymbol{L}_{5.1}(2,6)=1$, it follows that $\boldsymbol{L}_{5.1}^{-1}(1,2)=5$ and $\boldsymbol{L}_{5.1}^{-1}(2,1)=$ 6. Similarly, since $\boldsymbol{L}_{5.1}(2,5)=3$ and $\boldsymbol{L}_{5.1}(3,6)=2$, it follows that $\boldsymbol{L}_{5.1}^{-1}(2,3)=5$ and $\boldsymbol{L}_{5.1}^{-1}(3,2)=6$, contradicting the property of self-orthogonality in $\boldsymbol{L}_{5.1}^{-1}$. Since $\boldsymbol{L}_{5.1}(6,0)=1$
and $\boldsymbol{L}_{5.1}(6,1)=0$, it follows that ${ }^{-1} \boldsymbol{L}_{5.1}(1,0)=6={ }^{-1} \boldsymbol{L}_{5.1}(0,1)$, and hence ${ }^{-1} \boldsymbol{L}_{5.1}$ cannot also be self-orthogonal. Finally, since the operation of transposition preserves orthogonality, neither $\left(\boldsymbol{L}_{5.1}^{-1}\right)^{T}$ nor $\left({ }^{-1} \boldsymbol{L}_{5.1}\right)^{T}$ is self-orthogonal, and so $\boldsymbol{L}_{5.1}^{T}$ is the only conjugate of $\boldsymbol{L}_{5.1}$ which is also self-orthogonal.
Hence the only specifications that may be included in the type of a transformation of a SOLS are $\pi_{r c}, \pi_{s}, \pi_{r c s}$ and $\tau$. Three classes which therefore preserve self-orthogonality include $\left(\pi_{r c s}\right)$ transformation classes (i.e. isomorphism classes), $\left(\pi_{r c s}, \tau\right)$-transformation classes (i.e. transposeisomorphism classes), as well as $\left(\pi_{r c}, \pi_{s}, \tau\right)$-transformation classes (i.e. RC-paratopism classes), the former two of which also preserve idempotency (as was mentioned in §4.3).

The problem of enumerating SOLS was first considered by Graham and Roberts [66] in 2006. They gave the numbers of distinct SOLS, idempotent SOLS and isomorphism classes generated by idempotent SOLS of orders $n \leq 9$ using a backtracking tree-search approach. They also considered complete sets of mutually orthogonal self-orthogonal Latin squares, and provided information on the sizes of the isomorphism classes and whether or not an isomorphism class contains a SOLS and its transpose. Their results are shown in Table 5.2.

| $n$ | Distinct SOLS | Idempotent SOLS | Isomorphism classes <br> generated by <br> idempotent SOLS |
| ---: | ---: | ---: | :---: |
| 4 | 48 | 2 | 1 |
| 5 | 1440 | 12 | 2 |
| 6 | 0 | 0 | 0 |
| 7 | 19353600 | 3840 | 8 |
| 8 | 4180377600 | 103680 | 8 |
| 9 | 25070769561600 | 69088320 | 283 |

Table 5.2: The numbers of distinct SOLS, idempotent SOLS and isomorphism classes of idempotent SOLS of orders $4 \leq n \leq 9[66]$.

It was noted by Graham and Roberts that the number of distinct SOLS of order $n$ is $n$ ! times the number of idempotent SOLS of order $n$, a fact that follows immediately from Theorem 3.3.1 and Corollary 4.5.1, and which may be observed in Table 5.2. Graham and Roberts also reported that all SOLS of order 4 are isomorphic to their transposes, while no SOLS of order $n \in\{5,7,8\}$ is isomorphic to its transpose. It is easy to see that if $\boldsymbol{L}$ and $\boldsymbol{L}^{T}$ are isomorphic, then $\boldsymbol{L}^{\alpha}$ and $\left(\boldsymbol{L}^{\alpha}\right)^{T}$ are isomorphic for any isomorphism $\alpha$. In other words, an isomorphism class of SOLS either contains the transposes of each SOLS in the class, or the transposes of no SOLS in the class. For $n=9$, Table 5.3 gives the number of isomorphism classes of idempotent SOLS (categorised according to cardinality) containing SOLS and their transposes and the number of classes not containing transposes.

| Cardinality | 5040 | 45360 | 60480 | 90720 | 120960 | 181440 | 362880 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of classes <br> containing transpose | 2 | 4 | 4 | 8 | 2 | 36 | 11 |
| Number of classes not <br> containing transpose | 2 | 20 | 6 | 12 | 0 | 50 | 126 |

Table 5.3: The numbers of isomorphism classes of idempotent SOLS of order 9 either containing or not containing the transposes of the SOLS in the class, categorised according to the cardinality of the class [66].

Graham and Roberts were not able to extend their search in order to enumerate SOLS of order 10. It is, however, possible to enumerate various classes of SOLS of order 10 utilising the methods discussed in $\S 4$, as will be done in the following subsections. The numbers of various other classes of SOLS not enumerated by Graham and Roberts are also given in these subsections for orders $4 \leq n \leq 10$. The methods and results of $\S 5.2 .1$ and $\S 5.2 .2$ were published in [33] and [32] respectively, while the methods and results of $\S 5.3$ have been submitted for publication [34]. All computations referred to in the following subsections were performed on Computing Resource 1.

### 5.2.1 Enumeration of RC-paratopism classes of SOLS

In $\S 4.3$ it was noted that the number of RC-paratopism classes generated by diagonal Latin squares of order $n$ is equal to the number of transpose-isomorphism classes generated by idempotent Latin squares of order $n$, and the same holds when these classes are generated by SOLS or idempotent SOLS, respectively.

It follows that the number of transpose-isomorphism classes generated by idempotent SOLS may be derived from the information given on the number of classes containing/not containing transposes. This may be achieved by noting that the isomorphism class generated by a SOLS $\boldsymbol{L}$ which also contains $\boldsymbol{L}^{T}$ is the transpose-isomorphism class generated by $\boldsymbol{L}$, while the transposeisomorphism class generated by a SOLS $\boldsymbol{L}$ which is not isomorphic to $\boldsymbol{L}^{T}$ is the union of the isomorphism classes generated by $\boldsymbol{L}$ and $\boldsymbol{L}^{T}$, respectively. Hence the number of transposeisomorphism classes of SOLS equals the number of isomorphism classes containing SOLS and their transposes plus half the number of isomorphism classes not containing transposes. From Table 5.2 the number of transpose-isomorphism classes generated by idempotent SOLS (i.e. RC-paratopism classes generated by SOLS) may be derived as 1 for $n=4$ (since all SOLS of order 4 are isomorphic to their transposes), and 1,4 and 4 for $n=5,7$ and 8 , respectively (since none of these SOLS is isomorphic to its transpose). It follows from Table 5.3 that there are

$$
(2+1)+(4+10)+(4+3)+(8+6)+(2+0)+(36+25)+(11+63)=175
$$

RC-paratopism classes generated by SOLS of order $n=9$.
These numbers may be verified, and the search extended to include $n=10$, using the orderly generation backtracking tree-search approach described in $\S 4.3$ and $\S 5.1$. Since self-orthogonality requires each universal in a Latin square to be a transversal in the transpose of the Latin square, branching on the inclusion of universals in a partially completed SOLS is potentially more restrictive than branching on the inclusion of rows and columns. Theorem 3.3.1, for instance, states that the universal permutation of a universal in a SOLS has exactly one fixed point and no two-cycles. Furthermore, to ensure that the insertion of a universal does not destroy the property of self-orthogonality when inserted into a partially completed SOLS, it is sufficient to verify that the universal forms at least a partial transversal in the transpose of the SOLS.

A complete methodology for the enumeration of row-isomorphism classes generated by idempotent Latin squares was presented in $\S 4.3$, and it was also noted that enumerating rowisomorphism classes by inserting rows is equivalent to enumerating transpose-isomorphism classes by inserting universals. Together with the restrictions placed on universals discussed above (where the one fixed point in the universal permutation of the universal of element $k$ should fix $k$ in order for the SOLS to be idempotent), this method therefore enumerates transpose-isomorphism classes generated by idempotent SOLS (i.e. RC-paratopism classes of SOLS).

As noted in $\S 4.3$, the first universal (the universal of the element 0 ) must be a cycle structure representative, and for $n=4$ the only permutations which have only one fixed point and no two-cycles have cycle structure $z_{1}^{1} z_{3}^{1}$. The first level of the search tree for $n=4$ therefore has only one node corresponding to the universal permutation $\left(\begin{array}{lll}0 & 1 & 2\end{array}\right]$. It is easy to then verify that there is only one possible universal for each of the elements 1,2 and 3 , resulting in the SOLS

$$
\left[\begin{array}{llll}
0 & 2 & 3 & 1 \\
3 & 1 & 0 & 2 \\
1 & 3 & 2 & 0 \\
2 & 0 & 1 & 3
\end{array}\right]
$$

which is the smallest SOLS (when lexicographically comparing the universal permutations in natural order) in the only RC-paratopism class generated by SOLS of order 4.

For $n=5$ the only permutations which have only one fixed point and no two-cycles have cycle structure $z_{1}^{1} z_{4}^{1}$, and once again there is only one possible universal for each element in $\mathbb{Z}_{5}$, resulting in the SOLS
$\left[\begin{array}{lllll}0 & 4 & 1 & 2 & 3 \\ 3 & 1 & 0 & 4 & 2 \\ 4 & 3 & 2 & 0 & 1 \\ 1 & 2 & 4 & 3 & 0 \\ 2 & 0 & 3 & 1 & 4\end{array}\right]$,
which is the smallest SOLS (when lexicographically comparing the universal permutations in natural order) in the only RC-paratopism class generated by SOLS of order 5 .

For $n=6$ the only permutations which have only one fixed point and no two-cycles conform to the cycle structure $z_{1}^{1} z_{5}^{1}$, and hence the first universal permutation is $\left(\begin{array}{ll}012345 \\ 023 & 3\end{array}\right)$. There are two possible universal permutations for the element 1 , namely $\left(\begin{array}{ll}0 & 123 \\ 2 & 14545\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 3 \\ 3\end{array} 123524\right)$. With the insertion of the former there is only one possible universal for the element 2 , but no possible universals for the element 3, while for the latter there is not even a possible universal for the element 2. The search tree therefore produces no SOLS of order 6 , as expected.
For $n=7$ the universal permutations may admit two distinct cycle structures, namely $z_{1}^{1} z_{3}^{2}$ and $z_{1}^{1} z_{6}^{1}$. The search tree for this case is not as trivial as for the previous cases discussed above, but is still small enough to present in its entirety; this search tree is shown in Figure 5.1. For each branch the universal to be inserted and its cycle structure is given in a shorthand notation where the universal permutation $\binom{0123456}{a b c d e f g}$ is written simply as abcdefg and where the cycle structure $z_{i}^{a_{i}}$ is written as $i^{a_{i}}$. The two partial SOLS are shown in which only the first universal have been inserted, and the four SOLS that were found by the search are shown at the four leaves of the tree on the seventh level, verifying the number derived above from the results of Graham and Roberts. A SOLS is also shown in which universals for all but one element have been inserted, and where the only possible universal permutation for the remaining element is $\binom{0123456}{2354106}$. This universal is not inserted, however, as its cycle structure $z_{1}^{1} z_{3}^{2}$ is smaller than that of the first universal, which is $z_{1}^{1} z_{6}^{1}$. Finally, for the leaves of the tree that are not on the seventh level it is either indicated [a] that there are no possible universals that would have preserved the property of orthogonality, or $[\mathrm{b}]$ that the insertion of any further universals would have resulted in a SOLS which cannot be completed to a class leader.
For $n=8$ the universal permutations also admit two distinct cycle structures, namely $z_{1}^{1} z_{3}^{1} z_{4}^{1}$ and $z_{1}^{1} z_{7}^{1}$. The tree in this case is significantly larger than for the case of $n=7$ (surprisingly so in spite of the fact that there are the same number of RC-paratopism classes for both these cases), and it is therefore not shown here. For the branch on the first level which inserts the universal permutation with cycle structure $z_{1}^{1} z_{3}^{1} z_{4}^{1}$ there are 26 branches on the second level,
 possible universals that would have preserved the property of orthogonality, or $[b]$ that the insertion of

 Figure 5.1: The orderly generation search tree for transpose-isomorphism classes generated by idem-

$$
\begin{aligned}
& \text { - } 6105243\left(1^{1} 6^{1}\right)-1420635\left(1^{1} 6^{1}\right)-2653014\left(1^{1} 6^{1}\right)-3516402\left(1^{1} 6^{1}\right)-4362150\left(1^{1} 6^{1}\right)-5041326\left(1^{1} 6^{1}\right) \quad------
\end{aligned}
$$

of which only the third branch eventually produces a SOLS (where the branches are ordered according to the lexicographical ordering of the universal permutations associated with them). For the branch on the first level which inserts the universal permutation with cycle structure $z_{1}^{1} z_{7}^{1}$ there are 32 branches on the second level, of which the sixth, fifteenth and twenty-seventh branches each eventually produces one SOLS. This results in a total of four RC-paratopism classes, as also found by Graham and Roberts.
For $n=9$ the universal permutations admit three distinct cycle structures, namely $z_{1}^{1} z_{3}^{1} z_{5}^{1}, z_{1}^{1} z_{4}^{2}$ and $z_{1}^{1} z_{8}^{1}$, and the branches corresponding to these cycle structures result in 148, 115 and 207 branches on the second level, respectively. The number of SOLS found among the 148 branches on the second level corresponding to the cycle structure $z_{1}^{1} z_{3}^{1} z_{5}^{1}$ (which amounts to a total of 138 SOLS) is given in Table 5.4. Here the branch number is given, together with the number of SOLS eventually found in that branch as well as the computing time in seconds required to traverse the subtree induced by the branch. Branches that produced no SOLS are not shown in the table.

| Branch | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 16 | 17 | 19 | 21 | 22 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SOLS | 2 | 7 | 3 | 6 | 4 | 5 | 2 | 2 | 1 | 4 | 1 | 4 | 2 | 2 | 1 | 1 | 1 | 7 |
| Time (s) | 4 | 2 | 2 | 2 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 3 | 3 | 2 | 3 | 2 | 2 |
| Branch | 23 | 24 | 25 | 27 | 29 | 30 | 31 | 33 | 34 | 35 | 38 | 41 | 44 | 47 | 50 | 52 | 57 | 58 |
| SOLS | 2 | 2 | 2 | 1 | 3 | 4 | 6 | 1 | 2 | 5 | 2 | 3 | 1 | 1 | 2 | 2 | 3 | 2 |
| Time (s) | 2 | 3 | 2 | 2 | 2 | 3 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
| Branch | 61 | 69 | 75 | 77 | 83 | 86 | 87 | 88 | 89 | 90 | 100 | 101 | 106 | 107 | 123 | 128 | 130 | 139 |
| SOLS | 2 | 12 | 1 | 1 | 1 | 1 | 6 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
| Time (s) | 2 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

TAbLE 5.4: The number of SOLS of order 9 eventually found for each branch on the second level of the subtree of the search tree corresponding to the cycle structure $z_{1}^{1} z_{3}^{1} z_{5}^{1}$ together with the required computing time in seconds. This section of the tree produced 138 SOLS in 93 seconds.

The number of SOLS found among the 115 branches on the second level corresponding to the cycle structure $z_{1}^{1} z_{4}^{2}$ (which amounts to a total of 19 SOLS) is given in Table 5.5 , while the same information for the 207 branches on the second level corresponding to the cycle structure $z_{1}^{1} z_{8}^{1}$ is given in Table 5.6.

| Branch | 3 | 8 | 10 | 11 | 27 | 35 | 36 | 92 | 98 | 105 | 107 | 110 | 113 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SOLS | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 4 | 1 | 1 | 1 |
| Time(s) | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

TAbLE 5.5: The number of SOLS of order 9 eventually found for each branch on the second level of the subtree of the search tree corresponding to the cycle structure $z_{1}^{1} z_{4}^{2}$ together with the required computing time in seconds. This section of the tree produced 19 SOLS in 7 seconds.

| Branch | 2 | 8 | 18 | 19 | 21 | 25 | 38 | 47 | 59 | 66 | 83 | 109 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SOLS | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | 1 | 1 | 1 | 1 |
| Time(s) | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 5.6: The number of SOLS of order 9 eventually found for each branch on the second level of the subtree of the search tree corresponding to the cycle structure $z_{1}^{1} z_{8}^{1}$ together with the required computing time in seconds. This section of the tree produced 18 SOLS in 3 seconds.

Hence a total of $138+19+18=175$ RC-paratopism classes of SOLS of order 9 were counted in 257 seconds, verifying the number derived from the results of Graham and Roberts. It should be noted that the 257 seconds includes the $93+3+7=103$ seconds reported in the tables above, which is only the total computing time required for transversing the tree from level 3 onwards. The remaining computing time of 138 seconds was required in order to generate the universals on the second level.
For $n=10$ the universal permutations admit four distinct cycle structures, namely $z_{1}^{1} z_{3}^{3}, z_{1}^{1} z_{3}^{1} z_{6}^{1}$, $z_{1}^{1} z_{4}^{1} z_{5}^{1}$ and $z_{1}^{1} z_{9}^{1}$, and the branches corresponding to these cycle structures resulted in 362, 1005 , 869 and 1589 branches on the second level, respectively. For each of the four branches on the first level, Table 5.7 gives the number of SOLS found, together with the required computing time, in each of a number of subsets of the branches on the second level. As may be seen from the table, 121642 RC-paratopism classes of SOLS of order 10 were counted in 6219149 seconds (approximately 72 days).

| $z_{1}^{1} z_{3}^{3}$ |  |  | $z_{1}^{1} z_{3}^{1} z_{6}^{1}$ |  |  | $z_{1}^{1} z_{4}^{1} z_{5}^{1}$ |  |  | $z_{1}^{1} z_{9}^{1}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Branches | SOLS | Time |
| [1, 18] | 9698 | 304891 | [1,50] | 27771 | 614642 | [1,43] | 2451 | 198222 | [1,79] | 115 | 95917 |
| [19, 36] | 6607 | 297067 | [ 51,100 ] | 18298 | 518376 | [44, 86] | 1357 | 169886 | [ 80,158 ] | 20 | 60879 |
| [37, 54] | 3922 | 216956 | [101, 150] | 12713 | 437095 | [87, 129] | 654 | 121036 | [159, 237] | 3 | 42924 |
| [55, 72] | 2600 | 189530 | [151, 200] | 8382 | 355696 | [130, 172] | 411 | 100776 | [238, 316] | 2 | 29371 |
| [73, 90] | 1252 | 125293 | [201, 250] | 6823 | 343787 | [173, 215] | 244 | 85123 | [317, 395] | 0 | 17984 |
| [91, 108] | 1073 | 134017 | [251, 300] | 4738 | 281390 | [216, 258] | 150 | 61984 | [396, 474] | 0 | 10435 |
| [109, 126] | 580 | 101888 | [301, 350] | 3269 | 223119 | [259, 301] | 75 | 45122 | [ 475,553$]$ | 0 | 5615 |
| [127, 144] | 309 | 81087 | [351, 400] | 2426 | 188832 | [302, 344] | 52 | 32205 | [554, 632] | 0 | 3433 |
| [145, 162] | 188 | 58965 | [401, 450] | 1605 | 132719 | [345, 387] | 41 | 23423 | [633, 711] | 0 | 2005 |
| [163, 180] | 128 | 40693 | [451, 500] | 1056 | 90017 | [388, 430] | 36 | 23588 | [712, 790] | 0 | 1204 |
| [181, 198] | 50 | 31118 | [501, 550] | 677 | 65138 | [431, 473] | 25 | 13884 | [791, 869] | 0 | 702 |
| [199, 216] | 27 | 21052 | [551, 600] | 574 | 52668 | [ 474,516$]$ | 8 | 8913 | [870, 948] | 0 | 598 |
| [217, 234] | 9 | 13283 | [601, 650] | 405 | 39774 | [517, 559] | 6 | 5386 | [949, 1027] | 0 | 371 |
| [235, 252] | 3 | 10292 | [651, 700] | 269 | 26627 | [560, 602] | 1 | 2104 | [1028, 1 106] | 0 | 159 |
| [253, 270] | 3 | 5652 | [701, 750] | 212 | 18102 | [603, 645] | 1 | 1005 | [1 107, 1 185] | 0 | 89 |
| [271, 288] | 2 | 2649 | [751, 800] | 152 | 13476 | [646, 688] | 1 | 534 | [1 186, 1264 ] | 0 | 58 |
| [289, 306] | 0 | 1071 | [801, 850] | 85 | 8007 | [689, 731] | 1 | 342 | [1265, 1343$]$ | 0 | 30 |
| [307, 324] | 0 | 653 | [851, 900] | 55 | 5049 | [732, 774] | 0 | 156 | [1344, 1422 ] | 0 | 14 |
| [ 325,342 ] | 1 | 237 | [901, 950] | 20 | 2225 | [775, 817] | 0 | 75 | [1 423, 1 501] | 0 | 8 |
| [343, 360] | 0 | 43 | [951, 1000 ] | 6 | 390 | [818, 860] | 0 | 19 | [1502, 1580$]$ | 0 | 3 |
| [361, 362] | 0 | 0 | [1001, 1005 ] | 0 | 0 | [861, 869] | 0 | 1 | [1581, 1589 ] | 0 | 0 |
|  | 26452 | 36437 |  | 89536 | 17129 |  | 5514 | 893784 |  | 140 | 271799 |

TABLE 5.7: The number of SOLS of order 10 found in a given range of branches on the second level of the search tree for each cycle structure type admitted by the first universal in a SOLS of order 10. A total of 121642 SOLS of order 10 were found in 6219149 seconds.

The exponential growth of the computing times (less than a second for orders $n \leq 8,257$ seconds for $n=9$ and approximately 72 days for $n=10$ ) provides strong circumstantial evidence that the case of $n=11$ is not resolvable within a realistic time frame using the current methodology and computing power. It is not even necessary to traverse the tree at a deeper level than the second level in order to obtain some form of quantifiable measure that this is indeed the case. For $n=11$ the universal permutations admit five cycle structures, namely $z_{1}^{1} z_{3}^{1} z_{4}^{1}, z_{1}^{1} z_{3}^{1} z_{7}^{1}$, $z_{1}^{1} z_{4}^{1} z_{6}^{1}, z_{1}^{1} z_{5}^{2}$ and $z_{1}^{1} z_{9}^{1}$, and for each of these five branches on the first level there are 5043 , 8131, 7137,6121 and 13891 branches on the second level, respectively. Furthermore, it was found that the average time to traverse the subtree induced by a node on the second level for $n=9$ was approximately 0.6 seconds, and for $n=10$ the same average time was determined as approximately 1626 seconds. If these average times are linearly extrapolated, a conservative
lower bound on the average time required to traverse the subtree induced by a node on the second level of the tree for $n=11$ is 4406460 seconds (approximately 51 days), which aggregates to approximately 5634 years as a conservative lower bound on the traversal of the entire tree for $n=11$.

### 5.2.2 Enumeration of other classes of SOLS

In order to enumerate the isomorphism classes of SOLS (Graham and Roberts only enumerated the isomorphism classes of idempotent SOLS), transpose-isomorphism classes of SOLS, as well as distinct and idempotent SOLS, the methods discussed in $\S 4.4$ and $\S 4.5$ may be used. In $\S 4.4$ a method was discussed for computing the autotransformation groups of Latin squares using nauty [96], and this method was used to compute the transpose-automorphism groups of the idempotent SOLS enumerated in the previous section. These groups may then be used to enumerate the various other classes of SOLS using the methods described in $\S 4.5$.

By the discussions of $\S 4.4$ the RC-paratopism graph of a Latin square $\boldsymbol{L}$ is a graph $G$ with vertex set

$$
V(G)=\left\{\ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{r_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{c_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{s_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\{R, C\}
$$

and edge set

$$
\begin{aligned}
E(G)= & \left\{r_{i} \ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{c_{j} \ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\} \cup\left\{s_{\boldsymbol{L}(i, j)} \ell_{i j} \mid i, j \in \mathbb{Z}_{n}\right\} \\
& \cup\left\{r_{i} c_{i} \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{r_{i} R \mid i \in \mathbb{Z}_{n}\right\} \cup\left\{c_{i} C \mid i \in \mathbb{Z}_{n}\right\} .
\end{aligned}
$$

It should be noted that the RC-autoparatopism group of an idempotent SOLS is also its transpose-automorphism group, and hence either the RC-paratopism graph or the transposeisomorphism graph may be used. Using nauty, the automorphism group of this graph was calculated for each class representative of RC-paratopism classes of SOLS generated in the previous section (all of which are idempotent), and the orders of these groups thus found are summarised in Table 5.8. For each order and for each group size, the number of RC-paratopism classes whose members have RC-autoparatopism groups of the specified order are given in this table ${ }^{2}$. The required computing time for determining these groups was less than a second for $n=4,5,7,8$, while it required one second for $n=9$ and 1859 seconds for $n=10$.


TABLE 5.8: The various orders exhibited by $R C$-autoparatopism groups of SOLS of various orders, as well as the number of $R C$-paratopism classes containing $S O L S$ with $R C$-autoparatopism groups of the given orders.

Let $\mathcal{P}(n)$ denote a set of idempotent class-representatives, one from each class, of RC-paratopism classes of SOLS of order $n$, and let $A(\boldsymbol{L})$ denote the RC-autoparatopism group of a SOLS $\boldsymbol{L}$. From Theorem 4.5.1 it follows that there are

$$
\sum_{\boldsymbol{L} \in \mathcal{P}(n)} \frac{2(n!)^{2}}{|A(\boldsymbol{L})|}
$$

[^20]distinct SOLS of order $n$, and from Corollary 4.5.1 it follows that there are
$$
\sum_{\boldsymbol{L} \in \mathcal{P}(n)} \frac{2 n!}{|A(\boldsymbol{L})|}
$$
idempotent SOLS of order $n$. Furthermore, from Theorem 4.5.2 it follows that there are
$$
\sum_{\boldsymbol{L} \in \mathcal{P}(n)} \sum_{\alpha \in A(\boldsymbol{L})} \frac{\psi(\alpha)}{|A(\boldsymbol{L})|}
$$
transpose-isomorphism classes of SOLS of order $n$, where $\psi(\alpha)=\prod_{i=1}^{n} a_{i}!!^{a_{i}}$ if the row and column permutation of the RC-paratopism $\alpha$ has the same type as the symbol permutation of $\alpha$ (which is always the case, since an RC-autoparatopism of an idempotent SOLS is a transposeautomorphism). Enumerating the number of isomorphism classes of SOLS of order $n$ may once again be performed by utilising information on which RC-paratopism classes contain SOLS and their transposes and which do not. Let $\mathcal{P}^{\prime}(n) \subset \mathcal{P}(n)$ be the subset of SOLS class-representatives which are isomorphic to their transposes, and let $\mathcal{P}^{\prime \prime}(n)=\mathcal{P}(n) \backslash \mathcal{P}^{\prime}(n)$. These sets may be determined by utilising the following lemma.

Lemma 5.2.1 An idempotent SOLS $\boldsymbol{L}$ is isomorphic to its transpose if an only if it admits a transpose-automorphism which transposes $\boldsymbol{L}$.

Proof: Let $\boldsymbol{L}$ be an idempotent SOLS of order $n$ and let $\alpha \in|A(\boldsymbol{L})|$ be an RC-autoparatopism that transposes $\boldsymbol{L}$. Hence $\alpha$ is of the form ( $p, p, \tau$ ) for some $p \in S_{n}$ (since $\boldsymbol{L}$ is idempotent). Since $(p, p, \tau) \in S_{n}^{2} \times S_{2}$, it is the product of ( $e, e, \tau$ ) and ( $p, p, \iota$ ), where $\iota$ is the identity conjugate operation and $e$ is the identity permutation. Therefore,

$$
\boldsymbol{L}=\boldsymbol{L}^{(p, p, \tau)}=\left(\boldsymbol{L}^{(e, e, \tau)}\right)^{(p, p, t)}=\left(\boldsymbol{L}^{T}\right)^{(p, p, e)},
$$

and $\boldsymbol{L}$ is isomorphic to its transpose via the isomorphism $p$. Conversely, let $\boldsymbol{L}=\left(\boldsymbol{L}^{T}\right)^{p}$ for some isomorphism $p \in S_{n}$. Since $p$ is a special case of an RC-paratopism, it may be written as ( $p, p, \iota$ ) , and since

$$
\boldsymbol{L}^{(p, p, \tau)}=\left(\boldsymbol{L}^{T}\right)^{(p, p, \iota)}=\left(\boldsymbol{L}^{T}\right)^{p}=\boldsymbol{L},
$$

$(p, p, \tau)$ is an RC-autoparatopism that transposes $\boldsymbol{L}$.

The sets $\mathcal{P}^{\prime}(n)$ and $\mathcal{P}^{\prime \prime}(n)$ may be determined via the RC-autoparatopism groups of the elements of $\mathcal{P}(n)$ since all these SOLS are idempotent. The following theorem gives the number of isomorphism classes of SOLS of order $n$.

Theorem 5.2.1 The number of isomorphism classes of SOLS of order $n$ is

$$
\sum_{\boldsymbol{L} \in \mathcal{P}^{\prime}(n)} \frac{1}{\left|A^{\prime}(\boldsymbol{L})\right|} \sum_{\alpha \in A^{\prime}(\boldsymbol{L})} \psi(\alpha)+\sum_{\boldsymbol{L} \in \mathcal{P}^{\prime \prime}(n)} \frac{2}{|A(\boldsymbol{L})|} \sum_{\alpha \in A(\boldsymbol{L})} \psi(\alpha),
$$

where $A^{\prime}(\boldsymbol{L}) \subset A(\boldsymbol{L})$ is the set of the transpose-automorphisms of $\boldsymbol{L}$ which do not transpose $\boldsymbol{L}$.

Proof: Let $\boldsymbol{L} \in \mathcal{P}^{\prime}(n)$ and let $\boldsymbol{L}^{\prime}=\boldsymbol{L}^{(q, r, \tau)}$ for some RC-paratopism $(q, r, \tau)$. Since $\boldsymbol{L} \in \mathcal{P}^{\prime}(n)$, there exists some RC-autoparatopism $(p, p, \tau) \in S_{n} \times S_{2}$ such that $\boldsymbol{L}^{(p, p, \tau)}=\boldsymbol{L}$, or equivalently $\boldsymbol{L}^{(p, p, \iota)}=\boldsymbol{L}^{T}$, which implies that

$$
\boldsymbol{L}^{\prime}=\boldsymbol{L}^{(q, r, \tau)}=\left(\boldsymbol{L}^{T}\right)^{(q, r, \iota)}=\left(\boldsymbol{L}^{(p, p, \iota)}\right)^{(q, r, \iota)}=\boldsymbol{L}^{(p q, p r, \iota)}
$$

Hence any SOLS in the RC-paratopism class of $\boldsymbol{L}$ may be mapped to $\boldsymbol{L}$ via an RC-paratopism that does not utilise the operation of transposition. Therefore the RC-paratopism class generated by $\boldsymbol{L} \in \mathcal{P}^{\prime}(n)$ is a $\left(\pi_{r c}, \pi_{s}\right)$-transformation class, and $A^{\prime}(\boldsymbol{L})$ is the $\left(\pi_{r c}, \pi_{s}\right)$-autotransformation group of $\boldsymbol{L}$. By Theorem 4.5.2 it follows that there are

$$
\sum_{\alpha \in A^{\prime}(\boldsymbol{L})} \frac{\psi(\alpha)}{\left|A^{\prime}(\boldsymbol{L})\right|}
$$

$\left(\pi_{r c s}\right)$-transformation classes (i.e. isomorphism classes) in the $\left(\pi_{r c}, \pi_{s}\right)$-transformation class generated by $\boldsymbol{L}$ (i.e. the RC-paratopism class generated by $\boldsymbol{L})$.
Next suppose $\boldsymbol{L} \in \mathcal{P}^{\prime \prime}(n)$ and let $\boldsymbol{L}^{\prime}=\left(\boldsymbol{L}^{\prime T}\right)^{p}$ where $p$ is an isomorphism. If $\boldsymbol{L}=\boldsymbol{L}^{\prime(q, r, t)}$ for some RC-paratopism $(q, r, t) \in S_{n} \times S_{2}$, then

$$
\boldsymbol{L}=\boldsymbol{L}^{\prime(q, r, t)}=\left(\left(\boldsymbol{L}^{\prime T}\right)^{p}\right)^{(q, r, t)}=\left(\left(\boldsymbol{L}^{T}\right)^{\left(q^{-1}, r^{-1}, t^{-1}\right)}\right)^{(p q, p r, t)}=\left(\boldsymbol{L}^{T}\right)^{\left(q^{-1} p q, r^{-1} p r, \iota\right)}
$$

Since both $\boldsymbol{L}$ and $\boldsymbol{L}^{T}$ are idempotent, they are isomorphic, which contradicts the property of the elements of $\mathcal{P}^{\prime \prime}(n)$. Hence no SOLS in the RC-paratopism class of $\boldsymbol{L}$ is isomorphic to its transpose, and therefore each transpose-isomorphism class in the RC-paratopism class of $\boldsymbol{L}$ is a union of two disjoint isomorphism classes, one containing the transposes of the SOLS in the other. Consequently there are twice as many isomorphism classes as transpose-isomorphism classes in the RC-paratopism class of $\boldsymbol{L}$. The desired result follows by taking the sum of the number of transpose-isomorphism classes over the sets $\mathcal{P}^{\prime}(n)$ and $\mathcal{P}^{\prime \prime}(n)$.

In summary, Table 5.9 gives the numbers of the various classes of SOLS of orders $4 \leq n \leq 10$ as enumerated by the methods discussed in this and the preceding section. Class representatives of RC-paratopism classes generated by SOLS of orders $4 \leq n \leq 9$ are available in Appendix B.1, and these SOLS, together with the class representatives of order 10 , are also available on the compact disc accompanying this dissertation.

### 5.3 Enumeration of SOLSSOMs

Once again it is necessary to first establish which transformations may be applied to a SOLSSOM in order for the resulting pair of Latin squares to remain a SOLSSOM. As was noted in the previous section, any $\left(\pi_{r c}, \pi_{s}, \tau\right)$-transformation may be applied to SOLS in order to guarantee that the resulting Latin square is also a SOLS. However, if such a transformation is applied to a SOLS $\boldsymbol{L}$ which forms part of a $\operatorname{SOLSSOM}(\boldsymbol{L}, \boldsymbol{S})$, then in order for the resulting pair of Latin squares to remain orthogonal, the permutation applied to the rows and columns of $\boldsymbol{L}$ must also be applied to the rows and columns of $\boldsymbol{S}$. Furthermore, it may be noted that if a permutation $p$ is applied to the rows and columns of $\boldsymbol{S}$, then since $\boldsymbol{S}(i, j)=\boldsymbol{S}(j, i)$, $\boldsymbol{S}^{p}(p(i), p(j))=\boldsymbol{S}^{p}(p(j), p(i))$, and hence $\boldsymbol{S}^{p}$ is also symmetric. In addition to the permutation applied to the rows and columns of $\boldsymbol{S}$, an independent permutation may be applied to the

| $n$ | $\begin{aligned} & \text { U } \\ & \text { 気 } \\ & \text { BO } \\ & \text { On } \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 48 | 2 | 1 | 6 | 5 | 1 |
| 5 | 1440 | 12 | 2 | 22 | 11 | 1 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 19353600 | 3840 | 8 | 3972 | 1986 | 4 |
| 8 | 4180377600 | 103680 | 8 | 104120 | 52060 | 4 |
| 9 | 25070769561600 | 69088320 | 283 | 69112956 | 34564884 | 175 |
| 10 | 3200285563453440000 | 881912908800 | 243284 | 881912947656 | 440956473828 | 121642 |

TABLE 5.9: Enumeration of various classes of $S O L S$ of orders $4 \leq n \leq 10$.
symbols of $\boldsymbol{S}$ neither destroying the orthogonality between $\boldsymbol{S}$ and $\boldsymbol{L}$ nor the symmetry of $\boldsymbol{S}$. In other words, any $\left(\pi_{r c}^{(1,2)}, \pi_{s}^{(1)}, \pi_{s}^{(2)}, \tau^{(1)}\right)$-transformation applied to a SOLSSOM will result in a pair of orthogonal Latin squares which also forms a SOLSSOM.
Furthermore, the only conjugate operation which necessarily preserves the symmetry of a Latin square is $\tau$, which for a symmetric Latin square is equivalent to the identity conjugate operation $\iota$. The symmetric Latin square

$$
\boldsymbol{L}_{5.2}=\left[\begin{array}{lllll}
0 & 4 & 3 & 1 & 2 \\
4 & 1 & 0 & 2 & 3 \\
3 & 0 & 2 & 4 & 1 \\
1 & 2 & 4 & 3 & 0 \\
2 & 3 & 1 & 0 & 4
\end{array}\right], \quad \text { for which } \quad \boldsymbol{L}_{5.2}^{-1}=\left[\begin{array}{lllll}
0 & 3 & 4 & 2 & 1 \\
2 & 1 & 3 & 4 & 0 \\
1 & 4 & 2 & 0 & 3 \\
4 & 0 & 1 & 3 & 2 \\
3 & 2 & 0 & 1 & 4
\end{array}\right] \quad \text { and } \quad{ }^{-1} \boldsymbol{L}_{5.2}=\left[\begin{array}{lllll}
0 & 2 & 1 & 4 & 3 \\
3 & 1 & 4 & 0 & 2 \\
4 & 3 & 2 & 1 & 0 \\
2 & 4 & 0 & 3 & 1 \\
1 & 0 & 3 & 2 & 4
\end{array}\right]
$$

has, for example, non-symmetric conjugates since neither $\boldsymbol{L}_{5.2}^{-1}$ nor ${ }^{-1} \boldsymbol{L}_{5.2}$ is symmetric. In fact, $\boldsymbol{L}_{5.2}^{-1}=\left({ }^{-1} \boldsymbol{L}_{5.2}\right)^{T}$, and hence the only conjugate of $\boldsymbol{L}_{5.2}$ that is symmetric is $\boldsymbol{L}_{5.2}^{T}$.
Since a $\left(\pi_{r c}^{(1,2)}, \pi_{s}^{(1)}, \pi_{s}^{(2)}, \tau^{(1)}\right)$-transformation applied to a $\operatorname{SOLSSOM}(\boldsymbol{L}, \boldsymbol{S})$ constitutes two RCparatopisms applied to $\boldsymbol{L}$ and $\boldsymbol{S}$ respectively, a $\left(\pi_{r c}^{(1,2)}, \pi_{s}^{(1)}, \pi_{s}^{(2)}, \tau^{(1)}\right)$-transformation applied to a SOLSSOM is henceforth also referred to as an RC-paratopism, which should cause no confusion since it will be clear from the context whether an RC-paratopism is applied to one or two Latin squares. Similarly, a $\left(\pi_{r c s}^{(1,2)}, \tau^{(1)}\right)$-transformation applied to a SOLSSOM is henceforth referred to as a transpose-isomorphism. In the following subsections methods are presented for enumerating these two classes of SOLSSOMs, as well as methods for enumerating distinct and standard SOLSSOMs.

### 5.3.1 Enumeration of RC-paratopism classes of SOLSSOMs

It is useful to note that any SOLSSOM may be mapped to a standard SOLSSOM by two permutations on the symbol sets of the SOLS and the symmetric Latin square, respectively. Hence any RC-paratopism class generated by SOLSSOMs contains a standard SOLSSOM, and so only standard SOLSSOMs are considered in this section.

RC-paratopism classes of SOLSSOMs may be enumerated by utilising existing repositories of SOLS and symmetric Latin squares. Two distinct enumeration methods may be employed, namely generating symmetric Latin square mates for a maximal set of SOLS, or generating SOLS mates for a maximal set of symmetric Latin squares. In what follows, let $\mathcal{P}(n)$ again denote a set of SOLS class representatives, one from each RC-paratopism class generated by SOLS, and let $\mathcal{Q}(n)$ denote a set of symmetric Latin square class representatives, one from each RC-paratopism class generated by symmetric Latin squares.

Let $\boldsymbol{S}$ be a symmetric Latin square of order $n$ and let $A(\boldsymbol{S})$ denote the RC-autoparatopism group of $\boldsymbol{S}$. Furthermore, let $(\boldsymbol{L}, \boldsymbol{S})$ and $\left(\boldsymbol{L}^{\prime}, \boldsymbol{S}\right)$ be standard SOLSSOMs in the same RCparatopism class. Then, for any RC-paratopism $(p, q, r, t) \in S_{n}^{3} \times S_{2}$ which maps $(\boldsymbol{L}, \boldsymbol{S})$ to $\left(\boldsymbol{L}^{\prime}, \boldsymbol{S}\right)$, it must hold that $(p, r) \in A(\boldsymbol{S})$. Furthermore, since $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are idempotent, $p=q$, and in order to test whether two standard SOLSSOMs $(\boldsymbol{L}, \boldsymbol{S})$ and $\left(\boldsymbol{L}^{\prime}, \boldsymbol{S}\right)$ which share the same symmetric mate are RC-paratopic, it is sufficient to test for each $(p, r) \in A(\boldsymbol{S})$ whether $p$ (taken as an isomorphism) maps $\boldsymbol{L}$ to $\boldsymbol{L}^{\prime}$. If no element of $A(\boldsymbol{S})$ maps $\boldsymbol{L}$ to $\boldsymbol{L}^{\prime}$, then $(\boldsymbol{L}, \boldsymbol{S})$ and $\left(\boldsymbol{L}^{\prime}, \boldsymbol{S}\right)$ are not RC-paratopic. Hence for each $(p, r) \in A(\boldsymbol{S})$, the isomorphism $p$ may also be used to test whether $(\boldsymbol{L}, \boldsymbol{S})$ is the standard SOLSSOM containing the smallest SOLS in the RC-paratopism class generated by all SOLSSOMs containing $\boldsymbol{S}$. This test may then replace the test for RC-paratopism class leadership (of RC-paratopism classes generated by SOLS) in the orderly generation backtracking tree-search approach for enumerating RC-paratopism classes generated by SOLS discussed in $\S 5.2 .1$. Together with the additional restriction that a universal may only be inserted in a partially completed SOLS if it forms a transversal in $\boldsymbol{S}$, this method then generates one SOLSSOM from each RC-paratopism class of SOLSSOMs containing $\boldsymbol{S}$. If this method is repeated for each element of $\mathcal{Q}(n)$, one SOLSSOM from each RC-paratopism class will therefore be generated.

Let $\boldsymbol{L}$ be an idempotent SOLS of order $n$ and let $A(\boldsymbol{L})$ denote the RC-autoparatopism group of $\boldsymbol{L}$. Consider testing whether two standard SOLSSOMs $(\boldsymbol{L}, \boldsymbol{S})$ and $\left(\boldsymbol{L}, \boldsymbol{S}^{\prime}\right)$ are RC-paratopic. Once again an RC-paratopism from $(\boldsymbol{L}, \boldsymbol{S})$ to $\left(\boldsymbol{L}, \boldsymbol{S}^{\prime}\right)$ will be of the form $(p, p, r, t) \in S_{n}^{3} \times S_{2}$, where $(p, p, t) \in A(\boldsymbol{L})$. If $(p, p, r, t)$ is applied to $(\boldsymbol{L}, \boldsymbol{S})$, then $\boldsymbol{S}^{(p, r)}(0)=r \circ \boldsymbol{S}\left(p^{-1}(0)\right) \circ p^{-1}$ (see $\S 2.3$ ). However, $\boldsymbol{S}^{(p, r)}$ must be reduced in order for $(\boldsymbol{L}, \boldsymbol{S})$ and $\left(\boldsymbol{L}, \boldsymbol{S}^{\prime}\right)$ to be RC-paratopic, and hence $\boldsymbol{S}^{(p, r)}(0)=r \circ \boldsymbol{S}\left(p^{-1}(0)\right) \circ p^{-1}=e$ (where $e$ is the identity permutation), and it follows that $r=p \circ \boldsymbol{S}\left(p^{-1}(0)\right)^{-1}$. Hence in order to test whether two standard SOLSSOMs $(\boldsymbol{L}, \boldsymbol{S})$ and $\left(\boldsymbol{L}, \boldsymbol{S}^{\prime}\right)$ which share the same SOLS are RC-paratopic, it is sufficient to test, for each $(p, p, t) \in A(\boldsymbol{L})$, whether the RC-paratopism $\left(p, p \circ \boldsymbol{S}\left(p^{-1}(0)\right)^{-1}\right)$ maps $\boldsymbol{S}$ to $\boldsymbol{S}^{\prime}$. Once again $\left(p, p \circ \boldsymbol{S}\left(p^{-1}(0)\right)^{-1}\right)$ may also be used to test whether $(\boldsymbol{L}, \boldsymbol{S})$ is the standard SOLSSOM containing the smallest symmetric Latin square in the RC-paratopism class generated by all SOLSSOMs containing $\boldsymbol{L}$.

An orderly backtracking tree search may also be used in this case to generate RC-paratopism class representatives of SOLSSOMs containing a fixed SOLS $\boldsymbol{L}$. Since symmetric Latin squares are generated in this case, only universal permutations consisting of one and two cycles are considered, and a universal is inserted into a partially completed symmetric Latin square only if it forms a transversal in $\boldsymbol{L}$. The method described above may then be used to test whether a partially completed symmetric Latin square may be mapped to a smaller partially completed Latin square which is also orthogonal to $\boldsymbol{L}$. If this method is repeated for each element of $\mathcal{P}(n)$, one SOLSSOM from each RC-paratopism class will be generated.

The two methods discussed above are completely independent of one another, and therefore provides a means of validation of the results. The set $\mathcal{P}(n)$ is available from the output of the backtracking tree-search discussed in $\S 5.2 .1$, while the set $\mathcal{Q}(n)$ is only partially available
in the literature. The only enumeration work in the literature which is related to symmetric Latin squares is the enumeration of non-isomorphic 1-factorisations of the complete graph $K_{2 n}$, where two 1-factorisations $\left\{F_{1}, F_{2}, \ldots, F_{2 n-1}\right\}$ and $\left\{F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{2 n-1}^{\prime}\right\}$ are isomorphic if there exists a permutation $p$ such that $\left\{p\left(F_{1}\right), p\left(F_{2}\right), \ldots, p\left(F_{2 n-1}\right)\right\}=\left\{F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{2 n-1}^{\prime}\right\}$, where $p\left(F_{i}\right)$ contains $\{p(a), p(b)\}$ if $F_{i}$ contains $\{a, b\}$. These numbers are given in Table 5.10, and details on the methods used to obtain these numbers are provided by Dinitz et al. [46].

| $2 n$ | 2 | 4 | 6 | 8 | 10 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of <br> classes | 1 | 1 | 1 | 6 | 396 | 526915620 |

Table 5.10: The number of isomorphism classes of 1-factorisations of $K_{2 n}$.
In $\S 3.1$ it was shown that a 1 -factorisation of $K_{2 n}$ is equivalent to a symmetric unipotent Latin square of order $2 n$. The following theorem shows that the number of isomorphism classes of 1-factorisations of $K_{2 n}$ is equal to the number of RC-paratopism classes of symmetric unipotent Latin squares of order $2 n$.

Theorem 5.3.1 Two symmetric unipotent Latin squares are RC-paratopic if and only if their corresponding 1-factorisations are isomorphic.

Proof: Let $\left\{F_{1}, F_{2}, \ldots, F_{2 n-1}\right\}$ and $\left\{F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{2 n-1}^{\prime}\right\}$ be two 1-factorisations of $K_{2 n}$ and let $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ be symmetric unipotent Latin squares such that $\boldsymbol{L}(i, j)=\boldsymbol{L}(j, i)=k$ if $\{i, j\} \in F_{k}$ and $\boldsymbol{L}^{\prime}(i, j)=\boldsymbol{L}^{\prime}(j, i)=k$ if $\{i, j\} \in F_{k}^{\prime}$, for all $1 \leq k \leq 2 n-1$ and all $i, j \in \mathbb{Z}_{n}$. Assume that there exists some permutation $p$ such that $\left\{p\left(F_{1}\right), p\left(F_{2}\right), \ldots, p\left(F_{2 n-1}\right)\right\}=\left\{F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{2 n-1}^{\prime}\right\}$. Hence there also exists some permutation $q$ of order $2 n$ such that $p\left(F_{i}\right)=F_{q(i)}^{\prime}$ for all $1 \leq i \leq 2 n-1$ and $q(0)=0$. Therefore, if $\{i, j\} \in F_{k}$, then $\{p(i), p(j)\} \in F_{q(k)}^{\prime}$, which is equivalent to stating that if $\boldsymbol{L}(i, j)=k$, then $\boldsymbol{L}^{\prime}(p(i), p(j))=q(k)$. Consequently the RC-paratopism $(p, q, t) \in S_{2 n}^{2} \times S_{2}$ maps $\boldsymbol{L}$ to $\boldsymbol{L}^{\prime}$ (where $t$ may either be $\iota$ or $\tau$ since $\boldsymbol{L}$ and $\boldsymbol{L}^{\prime}$ are symmetric).
Conversely, suppose that some RC-paratopism $(p, q, t) \in S_{2 n}^{2} \times S_{2}$ maps $\boldsymbol{L}$ to $\boldsymbol{L}^{\prime}$. If $\boldsymbol{L}(i, j)=$ $\boldsymbol{L}(j, i)=k$, then $\boldsymbol{L}^{\prime}(p(i), p(j))=\boldsymbol{L}^{\prime}(p(j), p(i))=q(k)$, which is equivalent to stating that if $\{i, j\} \in F_{k}$, then $\{p(i), p(j)\} \in F_{q(k)}^{\prime}$. Since $q$ is a bijection, $\left\{p\left(F_{1}\right), p\left(F_{2}\right), \ldots, p\left(F_{2 n-1}\right)\right\}=$ $\left\{F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{2 n-1}^{\prime}\right\}$, and the two 1-factorisations are therefore isomorphic.

The unipotent members of the set $\mathcal{Q}(2 n)$ for $n=2,3,4$ are therefore available (see, for instance, Andersen [5]), and these symmetric Latin squares may be used to validate the enumeration results for unipotent SOLSSOMs of even order. It seems, however, that no attempts have been made to enumerate symmetric Latin squares of odd order, and so the orderly generation method was used here in order to achieve this. Since the universal permutations of a symmetric Latin square only contains one- and two-cycles, it follows that for odd order each universal permutation must have at least one fixed point (it cannot only have two-cycles). Each universal in a symmetric Latin square therefore necessarily contains a diagonal entry, and hence each universal contains exactly one diagonal entry. This implies that all symmetric Latin squares of odd order are diagonal (as are SOLS), and therefore that the orderly generation method used to enumerate RC-paratopism classes generated by SOLS in $\S 5.2 .1$ may also be used to enumerate RC-paratopism classes generated by symmetric Latin squares of odd order. The test for orthogonality may simply be removed and a restriction introduced which ensures that each universal has only two-cycles and exactly one fixed point. The number of RC-paratopism
classes of symmetric Latin squares of odd order are given in Table 5.11, and the members of the set $\mathcal{Q}(2 n+1)$ for $n=2,3$ and 4 are therefore available. The required computing time for the enumeration of these symmetric Latin squares was less than a second for orders 5 and 7, while 58 seconds of computing time was required for order 9 .

| $n$ | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: |
| Number of <br> classes | 1 | 7 | 3460 |

TABLE 5.11: The number of RC-paratopism classes of symmetric Latin squares of odd order.
The search tree for symmetric Latin squares of order 11 has five branches on the second level, and these branches gave rise to $15,26,49,56$ and 80 branches on the third level, respectively. Furthermore, on the fourth level these five branches gave rise to a total of $2341,5028,3569$, 2667 and 2084 branches, respectively, while the very first branch on the fourth level gives rise to 108 branches on the fifth level. It was found that the first of these 108 branches results in 17938 symmetric Latin squares in 1492 seconds. The fact that these results were found in only one branch out of 108 , which in turn emanates from only one branch out of 15689 , is an indication that it would not be possible to enumerate the RC-paratopism classes of symmetric Latin squares of order 11 within a realistic time frame using the current methodology and computing power.

For $n=4$ there is only one RC-paratopism class of symmetric Latin squares (all of which are unipotent), and using the methods discussed above only one SOLS mate was found for this square. Also, for the only SOLS of order 4 only one symmetric mate was found, and hence exactly one RC-paratopism class is generated by SOLSSOMs of order 4.

For $n=5$ again only one SOLS mate and one symmetric mate were found for the only symmetric Latin square and the only SOLS of order 5, respectively. Hence only one RC-paratopism class is generated by SOLSSOMs of order 5 . Figures 5.2 and 5.3 show the search trees for finding SOLS mates for the symmetric Latin square

$$
\boldsymbol{L}_{5.3}=\left[\begin{array}{lllll}
0 & 4 & 3 & 1 & 2 \\
4 & 1 & 0 & 2 & 3 \\
3 & 0 & 2 & 4 & 1 \\
1 & 2 & 4 & 3 & 0 \\
2 & 3 & 1 & 0 & 4
\end{array}\right]
$$

of order 5 and symmetric mates for the SOLS

$$
\boldsymbol{L}_{5.4}=\left[\begin{array}{ccccc}
0 & 2 & 1 & 4 & 3 \\
3 & 1 & 4 & 0 & 2 \\
4 & 3 & 2 & 1 & 0 \\
3 & 4 & 0 & 3 & 1 \\
1 & 0 & 3 & 2 & 4
\end{array}\right]
$$

of order 5 , respectively. In Figure 5.2 the universals inserted preserve the self-orthogonality of the partially completed SOLS, but where a partially completed SOLS does not give rise to any further branches the last universal inserted destroys the orthogonality between the partially completed SOLS and the symmetric Latin square. Similarly, in Figure 5.3 the universals inserted preserve the symmetry of the partially completed symmetric Latin square, but where one does not give rise to any further branches the last universal inserted destroys the orthogonality between the partially completed symmetric Latin square and the SOLS. Two completed SOLS are shown in Figure 5.2; they are, however, transposes of one another, and thus RC-paratopic.


Figure 5.2: The backtracking search tree for SOLSSOMs of order 5, where the search branches on the inclusion of universals in a partially completed SOLS of order 5. Where a partially completed SOLS does not give rise to any further branches, the last universal inserted destroys the orthogonality between the partially completed $S O L S$ and the symmetric Latin square $\boldsymbol{L}_{5.4}$.


Figure 5.3: The backtracking search tree for SOLSSOMs of order 5, where the search branches on the inclusion of universals in a partially completed symmetric Latin square of order 5. Where a partially completed symmetric Latin square does not give rise to any further branches, the last universal inserted destroys the orthogonality between the partially completed symmetric Latin square and the SOLS $\boldsymbol{L}_{5.3}$.

For $n=7$ SOLS mates were found for only one of the seven symmetric Latin squares, namely the seventh ${ }^{3}$ symmetric Latin square, and two SOLS mates were found for this Latin square.

[^21]Furthermore, there are four SOLS of order 7, and one symmetric mate each was found for the first and fourth of these SOLS. Hence two RC-paratopism classes are generated by SOLSSOMs of order 7 .
For $n=8$ two SOLS mates were found (requiring one second of computing time) for each of the first, second and third symmetric unipotent Latin squares, and one SOLS mate was found for the fifth symmetric unipotent Latin square, resulting in seven RC-paratopism class generated by unipotent SOLSSOMs of order 8 . For the second SOLS of order 8 fourteen symmetric mates were found, two of which are unipotent, six are of type ${ }^{4} 2^{4}$, four are of type $2^{2} 4^{1}$ and two are of type $4^{2}$. For the fourth SOLS of order 8 eighteen symmetric mates were found, five of which are unipotent while thirteen are of type $4^{2}$. This therefore results in seven RC-paratopism classes generated by unipotent SOLSSOMs of order 8, and 32 RC-paratopism classes generated by SOLSSOMs of order 8 in general (including unipotent SOLSSOMS).

For $n=9$ the number of SOLS mates found for each of the 3460 symmetric Latin squares of order 9 which have SOLS orthogonal to them are given in Table 5.12, and 76 seconds of computing time was required to generate these SOLS. Interestingly only eight of the 3460 symmetric Latin squares of order 9 have SOLS that are orthogonal to them.

| Symmetric Latin square | 116 | 341 | 364 | 426 | 428 | 484 | 1744 | 2765 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of classes | 1 | 11 | 2 | 1 | 5 | 3 | 1 | 2 |

Table 5.12: For each symmetric Latin square of order 9 which admits orthogonal SOLS mates, the number of RC-paratopism classes generated by SOLSSOMs containing this symmetric Latin square is given.

Among the 175 SOLS of order 9 , only one symmetric mate was found for the $i$-th SOLS, where $i \in\{38,68,73,86,88,92,101,102,133,135,137,139,140,141,144,155,158,163,165,169,171,173\}$, while two symmetric mates where found each for the 172 -nd and 175 -th SOLS, in total requiring two seconds of computing time. In both the above cases, 26 RC-paratopism classes are therefore generated by SOLSSOMs of order 9 .

Class representatives of RC-paratopims classes of SOLSSOMs of orders $4 \leq n \leq 9$ are available in Appendix B.2, as well as on the compact disc accompanying this dissertation.

### 5.3.2 The non-existence of SOLSSOMs of order 10

Since it was not known at the time that work towards this dissertation commenced whether a SOLSSOM of order 10 exists, a filtering method was employed that determines which of the 121642 SOLS of order 10 satisfies two necessary (but not sufficient) conditions for having symmetric orthogonal mates (rather than attempting to enumerate something that possibly does not exist). This method utilises a simple backtracking procedure which, given a set of $k$ Latin squares, finds all possible $n$-sets of entries which form transversals in each of these $k$ Latin squares, a method which may, in general, be extremely useful in looking for sets of orthogonal Latin squares. This procedure is given in pseudocode form in Algorithm 5.1.

[^22]```
Algorithm 5.1 GetTransversals
Input: A set of Latin squares \(\left\{\boldsymbol{L}_{1}, \boldsymbol{L}_{2}, \ldots, \boldsymbol{L}_{k}\right\}\).
Output: A set \(\mathcal{V}\) such that if \(V\) is a transversal of \(\boldsymbol{L}_{i}\) for all \(1 \leq i \leq k\), then \(V \in \mathcal{V}\).
```

```
\(V \leftarrow \varnothing\)
```

$V \leftarrow \varnothing$
$r \leftarrow 0$
$r \leftarrow 0$
$c \leftarrow 0$
$c \leftarrow 0$
while $r \geq 0$ do
while $r \geq 0$ do
if $r=n$ or $c=n$ then
if $r=n$ or $c=n$ then
if $r=n$ then Print $V$
if $r=n$ then Print $V$
$r \leftarrow r-1$
$r \leftarrow r-1$
$c \leftarrow V(r)+1$
$c \leftarrow V(r)+1$
else
else
if $(r, c) \notin V$ and $\boldsymbol{L}_{i}(a, b) \neq \boldsymbol{L}_{i}(r, c)$ for all $1 \leq i \leq k$ and all $(a, b) \in V$ then
if $(r, c) \notin V$ and $\boldsymbol{L}_{i}(a, b) \neq \boldsymbol{L}_{i}(r, c)$ for all $1 \leq i \leq k$ and all $(a, b) \in V$ then
$V \leftarrow V \cup\{(r, c)\}$
$V \leftarrow V \cup\{(r, c)\}$
$r \leftarrow r+1$
$r \leftarrow r+1$
$c \leftarrow 0$
$c \leftarrow 0$
else
else
$c \leftarrow c+1$
$c \leftarrow c+1$
end if
end if
end if
end if
end while

```
    end while
```

In this algorithm $r$ and $c$ denote the current row and columns respectively (both of which are zero initially), and at any stage of the procedure it is attempted to insert the entry ( $r, c$ ) into the current partial transversal. This insertion is only performed if the resulting set of entries is still a transversal in each of the given Latin squares. If not, then the next column is considered, and if the last column is reached the procedure backtracks to the previous row. If a Latin square may be constructed using any $n$ of the transversals generated by this procedure, then this Latin square is orthogonal to each Latin square in the given set of Latin squares.

For each of the 121642 RC-paratopism class representatives of SOLS of order 10, the SOLS and its transpose are given as input to Algorithm 5.1, and a total of 143 seconds of computing time was required in order to calculate all possible transversals for all of these SOLS and their transposes. One necessary condition for a SOLS and its transpose to have a common orthogonal mate is certainly that at least 10 transversals is found by Algorithm 5.1, and 119288 of the 121642 SOLS did not even satisfy this condition. Another necessary condition is that each pair $(i, j) \in \mathbb{Z}^{2}$ must be part of at least one transversal (i.e. each entry of the SOLS must lie on at least one transversal), otherwise it is impossible to construct a complete Latin square using these transversals. Of the remaining 2354 SOLS, only four SOLS satisfied this condition (the 34641 -st, 120857 -th, 121427 -th and the 121642 -nd SOLS); these four SOLS are

|  |  |  |  | $\begin{array}{lllllllllll}0 & 9 & 6 & 1 & 8 & 4 & 2 & 3 & 5 & 7 \\ 3 & 1 & 8 & 9 & 5 & 7 & 4 & 6 & 2 & 0\end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| 825437 |  | $\begin{array}{llllllllll}9 & 1 & 7 & 4 & 8 & 2 & 5 & 6\end{array}$ |  | 31889574640 |
| 1027538964 | 027943658 | 802597163 |  | 1027689534 |
| 49603761885 | 4550388619927 | 17003849265 |  | 47032 |
| $\begin{array}{llllllllll}7 & 3 & 1 & 6 & 4 & 8 & 2 & 5 & 9 & 0\end{array}$ | $\begin{array}{lllllllllll}2 & 6 & 3 & 0 & 4 & 7 & 8 & 5 & 9 & 1\end{array}$ | $\begin{array}{lllllllllll}6 & 9 & 8 & 0 & 4 & 1 & 7 & 5 & 2\end{array}$ |  | 76304152 |
| $\begin{array}{llllllllll}3 & 8 & 9 & 0 & 4 & 1\end{array}$ | 874196544230 | 421865397 |  | 82 |
| 5 7 922306148 | 5982106374 | 73442506198 |  | 53 |
| 82346907 | 92543 | 5 |  | 2 |
| 1 | 34762199085 | $\begin{array}{llllllllll}3 & 6 & 5 & 1 & 9 & 0 & 8\end{array}$ |  | 945213708 |
| 45821730 | 634152780 | 2431765809 |  | 657432810 |

It is easy to verify by hand that the transversals found for these four SOLS cannot form a Latin square. For the first SOLS, for example, 19 transversals were found, and although each entry of the SOLS lies on at least one of these transversals, the entry $(0,1)$ lies on only one transversal, namely

$$
\{(0,1),(1,0),(2,2),(3,4),(4,3),(5,6),(6,5),(7,9),(8,8),(9,7)\} .
$$

Furthermore, the entry $(1,2)$ also lies on only one transversal, namely

$$
\{(0,3),(1,2),(2,1),(3,0),(4,6),(5,5),(6,4),(7,7),(8,8),(9,9)\}
$$

However, both these transversals contain the entry $(8,8)$, and therefore they cannot both be part of the same Latin square. Hence the first SOLS and its transpose have no common orthogonal mates. In a similar manner it may be shown that the remaining three SOLS and their transposes also do not have common orthogonal mates.

Hence not only do the findings discussed above show that a SOLS of order 10 cannot have a symmetric Latin square orthogonal to it, they also establish a more general result related to the hitherto unsolved problem of whether a 3-MOLS of order 10 exists, as summarised in the following theorem.

Theorem 5.3.2 If a 3-MOLS of order 10 exists, it does not contain a SOLS and its transpose.
The following corollary follows naturally from the above theorem.
Corollary 5.3.1 A SOLSSOM of order 10 does not exist.
Theorem 5.40 in Colbourn et al. [38] may therefore be updated to the following result.
Theorem 5.3.3 A SOLSSOM exists for any $n \notin\{2,3,6,10\}$ and possibly $n \neq 14$.

### 5.3.3 Enumeration of other classes of SOLSSOMs

In order to enumerate distinct SOLSSOMs, standard SOLSSOMs and transpose-isomorphism classes of SOLSSOMs, the methods of $\S 4.5$ may once again be employed. In order to determine the RC-autoparatopism group of a SOLSSOM $(\boldsymbol{L}, \boldsymbol{S})$, the RC-paratopism graphs of $\boldsymbol{L}$ and $\boldsymbol{S}$ may be used. Let the edges and colour classes of these graphs be defined as in $\S 5.2 .2$, where the RC-paratopism graph of $\boldsymbol{L}$ has vertices $\ell_{i j}, r_{i}, c_{i}, s_{i}, R$ and $C$ for all $i, j \in \mathbb{Z}_{n}$, while the RC-paratopism graph of $\boldsymbol{S}$ has vertices $\ell_{i j}^{\prime}, r_{i}^{\prime}, c_{i}^{\prime}, s_{i}^{\prime}, R^{\prime}$ and $C^{\prime}$ for all $i, j \in \mathbb{Z}_{n}$. If the edges $\left\{r_{i}, r_{i}^{\prime}\right\}$ and $\left\{c_{i}, c_{i}^{\prime}\right\}$ are used to connect the two graphs, then this will ensure that the elements of the RC-autoparatopism group of $(\boldsymbol{L}, \boldsymbol{S})$ permutes the rows and columns of both Latin squares using the same permutation. It should also be ensured that no vertex from the one graph is in the same colour class as any vertex from the other graph. The automorphism groups of these graphs may then be calculated, as before, using nauty. The various group orders determined for SOLSSOMs of orders $4 \leq n \leq 9$ are given in Table 5.13.
Let $\mathcal{R}(n)$ denote a set of idempotent class-representatives, one from each class, of RC-paratopism classes of SOLSSOMs of order $n$, and let $A((\boldsymbol{L}, \boldsymbol{S}))$ denote the RC-autoparatopism group of a $\operatorname{SOLSSOM}(\boldsymbol{L}, \boldsymbol{S})$. From Theorem 4.5.1 it follows that there are

$$
\sum_{(\boldsymbol{L}, \boldsymbol{S}) \in \mathcal{R}(n)} \frac{2(n!)^{3}}{|A((\boldsymbol{L}, \boldsymbol{S}))|}
$$

| $n$ | 4 | 5 | 7 |  | 8 | 9 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group order | 24 | 20 | 42 | 4 | 8 | 56 | 2 | 4 | 6 | 8 | 12 | 16 | 72 | | 144 |
| :---: |
| Number of <br> classes |

Table 5.13: The various orders that RC-autoparatopism groups of SOLSSOMs may exhibit for various orders, as well as the number of $R C$-paratopism classes containing SOLSSOMs with $R C$-autoparatopism groups of the given orders.
distinct SOLSSOMs of order $n$, and the following lemma (which is similar to Corollary 4.5.1) may be used to enumerate standard SOLSSOMs.

Lemma 5.3.1 The number of distinct SOLSSOMs is $(n!)^{2}$ times the number of standard SOLSSOMs.

Proof: It is easy to see that any $\left(\pi_{s}^{(1)}, \pi_{s}^{(2)}\right)$-transformation class generated by SOLSSOMs contains exactly one standard SOLSSOM, and that the $\left(\pi_{s}^{(1)}, \pi_{s}^{(2)}\right)$-autotransformation-group of a SOLSSOM has order one. Hence the number of $\left(\pi_{s}^{(1)}, \pi_{s}^{(2)}\right)$-transformation classes generated by SOLSSOMs of order $n$ is equal to the number of standard SOLSSOMs of order $n$, and since the $\left(\pi_{s}^{(1)}, \pi_{s}^{(2)}\right)$-transformation group has order $(n!)^{2}$, the desired result follows from Theorem 4.5.1.

It therefore follows that there are

$$
\sum_{(\boldsymbol{L}, \boldsymbol{S}) \in \mathcal{R}(n)} \frac{2 n!}{|A((\boldsymbol{L}, \boldsymbol{S}))|}
$$

standard SOLSSOMs of order $n$. Furthermore, it follows by Theorem 4.5.2 that there are

$$
\sum_{(\boldsymbol{L}, \boldsymbol{S}) \in \mathcal{R}(n)} \sum_{\alpha \in A((\boldsymbol{L}, \boldsymbol{S}))} \frac{\psi(\alpha)^{2}}{|A((\boldsymbol{L}, \boldsymbol{S}))|}
$$

transpose-isomorphism classes of SOLS of order $n$, where $\psi(\alpha)=\prod_{i=1}^{n} a_{i}!i^{a_{i}}$ if the row and column permutation of the RC-paratopism $\alpha$ has the same type as both the symbol permutations of $\alpha$. The final enumeration results for SOLSSOMs of orders $4 \leq n \leq 10$ are given in Table 5.14.

### 5.4 Enumeration of MOLS

As mentioned in $\S 4.2$, existing work in the literature on the enumeration of $k$-MOLS of order $n$ include the enumeration of 8 -MOLS of order 9 by Owens and Preece [113]. They determined that there are 19 isotopy classes ${ }^{5}$ of 8 -MOLS of order 9 utilising the fact that an $(n-1)$-MOLS of order $n$ exists if and only if a projective plane of order $n$ exists [41, p. 160], while projective planes have already been enumerated for $n=9$ by Lam et al. [86]. Colbourn et al. [38, pp. 172-175] provide 19 isotopy class representatives from the isotopy classes of 8 -MOLS of order

[^23]| $n$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 1152 | 2 | 31 | 1 |
| 5 | 172800 | 12 | 749 | 1 |
| 6 | 0 | 0 | 0 | 0 |
| 7 | 12192768000 | 480 | 1210622 | 2 |
| 8 | 608662978560000 | 374400 | 7547904042 | 32 |
| 9 | 464573723443200000 | 3528000 | 640121719688 | 26 |
| 10 | 0 | 0 | 0 | 0 |

TABLE 5.14: Enumeration of various classes of SOLSSOMs of order $4 \leq n \leq 10$.

9 , and by performing paratopism testing utilising nauty ${ }^{6}$ [96] it follows that there are 7 main classes of 8 -MOLS of order 9 .

To the best knowledge of the author no other published work exists on the enumeration of $k$-MOLS of order $n$. Brendan McKay provides main class representatives of pairs of orthogonal Latin squares of orders $3,4,5,7$ and 8 on his website [98], without reference, however, to how these squares were obtained. According to this repository there is one main class of 2-MOLS of orders 3 , 4 and 5 , while there are 7 main classes of 2 -MOLS of order 7 and 2165 main classes of 2 -MOLS of order 8 .

### 5.4.1 Enumeration of main classes of MOLS

The relative cycle structures of the universals in a 2 -MOLS of order 3 permit only one cycle structure, namely $z_{1}^{1} z_{2}^{1}$ (since the relative cycle structure of two universals in a $k$-MOLS of order $n$ has exactly one fixed point), and the first universal permutation of the second Latin square in a main class leader of 2 -MOLS of order 3 therefore is the cycle structure representative $\left(\begin{array}{ll}01 & 1 \\ 0 & 2\end{array}\right)$ (according the the algorithm described in §4.3.2). Furthermore, the first universal of the first Latin square is the identity permutation and both Latin squares are reduced. It is easy to verify that the resulting partial 2 -MOLS of order 3

$$
\left(\left[\begin{array}{lll}
0 & 1 & 2 \\
& 0 & \\
& & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 2 \\
& & \\
& &
\end{array}\right]\right)
$$

has only one feasible completion to a 2 -MOLS of order 3, namely

$$
\left(\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{array}\right]\right)
$$

Hence there is only one main class of 2-MOLS of order 3 .
For $n=4$ the relative cycle structures of the universals also permit only one cycle structure, namely $z_{1}^{1} z_{3}^{1}$. Hence the first universal permutation of the second Latin square is $\left.\left(\begin{array}{lll}0 & 1 & 2\end{array}\right] \begin{array}{ll}0 & 3\end{array}\right)$, and

[^24]it is also easy to verify that for both $k=2$ and $k=3$ there is only one completion to a reduced $k$-MOLS of order 4 if the first universal permutation of the first Latin square is the identity permutation. Hence there is only one main class of $k$-MOLS of order 4 for $k=2$ and $k=3$, and a main class representative for $k=3$ is
\[

\left(\left[$$
\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}
$$\right],\left[$$
\begin{array}{llll}
0 & 1 & 2 & 3 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0 \\
1 & 0 & 3 & 2
\end{array}
$$\right],\left[$$
\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1
\end{array}
$$\right]\right)
\]

whereas the first two Latin squares of this 3-MOLS form a main class representative for $k=2$.
For $n=5$ two relative cycle structures are admitted by universals in a $k$-MOLS of order 5, namely $z_{1}^{1} z_{2}^{2}$ and $z_{1}^{1} z_{4}^{1}$. For $k=2$ the branch in the search tree (as discussed in $\S 4.3 .2$ ) corresponding to the cycle structure $z_{1}^{1} z_{2}^{2}$ for the first universal permutation of the second Latin square gives rise to two branches on the second level, two branches on the third level, and then one branch each on the fourth and fifth levels. This section of the search tree therefore produces one 2 -MOLS of order 5 . The branch corresponding to the cycle structure $z_{1}^{1} z_{4}^{1}$, on the other hand, also has two branches on the second level, but has only one branch on the third and fourth levels, and no branches on the fifth level. This section of the tree therefore produces no MOLS, and consequently there is only one main class of 2-MOLS of order 5.

The backtracking search tree for 2-MOLS of order 5 is shown in Figure 5.4. On each level of the tree two partially completed Latin squares (referred to as Members 1 and 2, respectively) are shown, and in cases where a universal was only found for Member 1 only this partially completed Latin square is shown. Where branches are pruned (i.e. where there are no feasible universals that may be included in any of the members), it is either indicated [a] that there are no possible universals that would have preserved the orthogonality of the two members, or [b] that the current partially completed 2-MOLS cannot be completed to a class leader.

Two completed pairs of orthogonal Latin squares of order 5 are shown in Figure 5.4, but it can be shown that one of them is not a class leader, namely the pair

$$
\mathcal{M}_{5.1}=\left(\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
3 & 0 & 1 & 4 & 2 \\
4 & 3 & 0 & 2 & 1 \\
1 & 2 & 4 & 0 & 3 \\
2 & 4 & 3 & 1 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
4 & 3 & 0 & 2 & 1 \\
1 & 2 & 4 & 0 & 3 \\
2 & 4 & 3 & 1 & 0 \\
3 & 0 & 1 & 4 & 2
\end{array}\right]\right)
$$

of orthogonal Latin squares of order 5. This may be achieved by considering the conjugate of $\mathcal{M}_{5.1}$ which is obtained by applying the permutation $\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 2 & 3\end{array}\right)$ to the elements of $T\left(\mathcal{M}_{5.1}\right)$. This conjugate is given by the pair

$$
\mathcal{M}_{5.2}=\left(\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 4 & 0 & 3 \\
2 & 4 & 3 & 1 & 0 \\
3 & 0 & 1 & 4 & 2 \\
4 & 3 & 0 & 2 & 1
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
3 & 0 & 1 & 4 & 2 \\
4 & 3 & 0 & 2 & 1 \\
1 & 2 & 4 & 0 & 3 \\
2 & 4 & 3 & 1 & 0
\end{array}\right]\right)
$$

of orthogonal Latin squares of order 5. It may be noted that the relative cycle structure of the universals of the element 0 in $\mathcal{M}_{5.2}$ is $z_{1}^{1} z_{2}^{2}$, whereas the relative cycle structure of the universals of the element 0 in $\mathcal{M}_{5.1}$ is $z_{1}^{1} z_{4}^{1}$. Hence $\mathcal{M}_{5.2}$ may be mapped via a paratopism to a 2 -MOLS of order 5 which is lexicographically smaller than $\mathcal{M}_{5.1}$.
For $n=5$ and for each of the two cases $k=3$ and $k=4$ there are two branches on the first level of the search tree, both corresponding to the case where the first universal permutation of the
possible universals that would have preserved the orthogonality of the two members, or [b] that the
current partially completed $2-M O L S$ cannot be completed to a class leader.
 Figure 5.4: The orderly generation search tree for main classes generated by $2-M O L S$ of order 5 . Both

second Latin square has cycle structure $z_{1}^{1} z_{2}^{2}$, and in the case where this universal permutation has cycle structure $z_{1}^{1} z_{4}^{1}$ there are no feasible universals of the element 0 for the third Latin square (and in the case of $k=4$, the fourth Latin square). Furthermore, on the second level of each of the two trees there are two branches, while the remaining levels of the trees have only one branch each, eventually producing one 3-MOLS of order 5 and one 4-MOLS of order 5, respectively.
Finally, for $k=2,3,4$ a main class representative of the only main class of $k$-MOLS of order 5 is given by the first $k$ Latin squares in the 4 -MOLS of order 5 ,

$$
\left(\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
2 & 0 & 4 & 1 & 3 \\
1 & 3 & 0 & 4 & 2 \\
4 & 2 & 3 & 0 & 1 \\
3 & 4 & 1 & 2 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 3 & 0 & 4 & 2 \\
2 & 0 & 4 & 1 & 3 \\
3 & 4 & 1 & 2 & 0 \\
4 & 2 & 3 & 0 & 1
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
4 & 2 & 3 & 0 & 1 \\
3 & 4 & 1 & 2 & 0 \\
1 & 3 & 0 & 4 & 2 \\
2 & 0 & 4 & 1 & 3
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2 & 0 \\
4 & 2 & 3 & 0 & 1 \\
2 & 0 & 4 & 1 & 3 \\
1 & 3 & 0 & 4 & 2
\end{array}\right]\right)
$$

For $n=6$, only two relative cycle structures are admitted by universals, namely $z_{1}^{1} z_{2}^{1} z_{3}^{1}$ and $z_{1}^{1} z_{5}^{1}$. For $2 \leq k \leq 5$ Table 5.15 gives the number of branches on each level of the search tree corresponding to each of these two cycle structures, and as expected no MOLS of order 6 is found.

|  |  | Level |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | Cycle structure | 1 | 2 | 3 | 4 | 5 | 6 |  |
| 2 | $z_{1}^{1} z_{2}^{1} z_{3}^{1}$ | 1 | 27 | 38 | 11 | 0 | 0 |  |
|  | $z_{1}^{1} z_{5}^{1}$ | 1 | 9 | 8 | 1 | 0 | 0 |  |
| 3 | $z_{1}^{1} z_{2}^{1} z_{3}^{1}$ | 1 | 14 | 0 | 0 | 0 | 0 |  |
|  | $z_{1}^{1} z_{5}^{1}$ | 2 | 6 | 0 | 0 | 0 | 0 |  |
| 4 | $z_{1}^{1} z_{2}^{1} z_{3}^{1}$ | 1 | 0 | 0 | 0 | 0 | 0 |  |
|  | $z_{1}^{1} z_{5}^{1}$ | 2 | 1 | 0 | 0 | 0 | 0 |  |
| 5 | $z_{1}^{1} z_{2}^{1} z_{3}^{1}$ | 1 | 0 | 0 | 0 | 0 | 0 |  |
|  | $z_{1}^{1} z_{5}^{1}$ | 1 | 1 | 0 | 0 | 0 | 0 |  |

Table 5.15: For each cycle structure that the first universal of the second Latin square in a $k$-MOLS of order 6 may admit, the number of branches on each level of the search tree for $k$-MOLS of order 6 are given for all $k \in\{2,3,4,5\}$.

For $n=7$, four relative cycle structures are admitted by the universals in a $k$-MOLS of order 7 , namely $z_{1}^{1} z_{2}^{3}, z_{1}^{1} z_{2}^{1} z_{4}^{1}, z_{1}^{1} z_{3}^{2}$ and $z_{1}^{1} z_{6}^{1}$. For $k=2$ Table 5.16 gives the number of branches on each level corresponding to each of these four cycle structures. The search tree produced seven 2-MOLS of order 7 in 14 seconds, thereby verifying the number found by McKay [98].
For $n=7$ and $k=3$, there are three possible universals of the element 0 for the third Latin square if the first universal of the second Latin square has cycle structure $z_{1}^{1} z_{2}^{3}$, and this section of the tree produces one 3 -MOLS of order 7 . For the cycle structures $z_{1}^{1} z_{2}^{1} z_{4}^{1}$ and $z_{1}^{1} z_{3}^{2}$ there are five and six possible universals of the element 0 for the third Latin square, respectively. However, this section of the search tree produces no 3-MOLS. If the first universal of the second Latin square has cycle structure $z_{1}^{1} z_{6}^{1}$, then there are no feasible universals of the element 0 for the third Latin square. Hence there is only one main class of 3 -MOLS of order 7, and Table 5.17 provides more detail on the number of branches in various sections of the search tree for 3-MOLS of order 7. Each row in this table corresponds to a branch on the first level of the tree, and it gives the corresponding cycle structure, the number of branches on every other level, and the required computing time.

|  | Level |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cycle structure | 2 | 3 | 4 | 5 | 6 | 7 | Time (s) |  |
| $z_{1}^{1} z_{2}^{3}$ | 241 | 11371 | 11653 | 381 | 10 | 5 | 10 |  |
| $z_{1}^{1} z_{2}^{1} z_{4}^{1}$ | 388 | 9467 | 6141 | 118 | 3 | 1 | 4 |  |
| $z_{1}^{1} z_{3}^{2}$ | 98 | 296 | 7 | 3 | 1 | 0 | 0 |  |
| $z_{1}^{1} z_{6}^{1}$ | 95 | 492 | 37 | 5 | 2 | 1 | 0 |  |
| Total | 822 | 21626 | 17838 | 507 | 16 | 7 | 14 |  |

Table 5.16: The number of branches on each level of the search tree for 2-MOLS of order 7 for each cycle structure admitted by the first universal of the second Latin square in a $k$-MOLS of order 7 together with the required computing time. Level 1 is omitted since this level trivially has only one branch corresponding to each cycle structure, and the branches on Level 7 give the number of 2-MOLS of order 7 found in the corresponding section of the search tree.

|  | Level |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cycle structure | 2 | 3 | 4 | 5 | 6 | 7 | Time (s) |  |
| $z_{1}^{1} z_{2}^{3}$ | 1719 | 844 | 1 | 1 | 1 | 1 | 2 |  |
|  | 1459 | 592 | 0 | 0 | 0 | 0 | 2 |  |
|  | 3167 | 1854 | 0 | 0 | 0 | 0 | 4 |  |
|  | 315 | 117 | 0 | 0 | 0 | 0 | 1 |  |
| $z_{1}^{1} z_{2}^{1} z_{4}^{1}$ | 1098 | 219 | 0 | 0 | 0 | 0 | 1 |  |
|  | 1279 | 72 | 0 | 0 | 0 | 0 | 0 |  |
|  | 860 | 74 | 0 | 0 | 0 | 0 | 0 |  |
|  | 592 | 25 | 0 | 0 | 0 | 0 | 1 |  |
|  | 10 | 2 | 1 | 1 | 1 | 0 | 1 |  |
|  | 3 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| $z_{1}^{1} z_{3}^{2}$ | 14 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 11 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 1 | 1 | 1 | 1 | 1 | 0 | 0 |  |
|  | 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |

Table 5.17: The number of branches on every other level of the search tree for 3-MOLS of order 7 for each cycle structure that the first universal of the second Latin square in a $k-M O L S$ of order 7 may admit and each branch on the first level of the search tree corresponding to that cycle structure, together with the required computing time. Level 7 also gives the number of $3-M O L S$ of order 7 found in the corresponding section of the search tree.

The cases of $k=4,5$ and 6 (for $n=7$ ) are similar in that for the cycle structure $z_{1}^{1} z_{6}^{1}$ there are no feasible pairs of universals of the element 0 for the third Latin square (hence the cycle structure $z_{1}^{1} z_{6}^{1}$ does not give rise to any first level branches), while the cycle structure $z_{1}^{1} z_{3}^{2}$ does not give rise to any second level branches. Table 5.18 gives the number of branches on the first level of each of the three search trees corresponding to the cycle structures $z_{1}^{1} z_{2}^{3}, z_{1}^{1} z_{2}^{1} z_{4}^{1}$ and $z_{1}^{1} z_{3}^{2}$, while Table 5.19 gives the number of branches on the second level of each of the three search trees corresponding to the cycle structures $z_{1}^{1} z_{2}^{3}$ and $z_{1}^{1} z_{2}^{1} z_{4}^{1}$.

For $k=4$ and for the cycle structure $z_{1}^{1} z_{2}^{3}$ only a few first level branches give rise to branches on the third level, and Table 5.20 gives the number of branches on levels lower than the second for these first level branches. For $k=5$ and 6 only the very first branch of the search tree gives rise to branches on the third level and lower, and this branch gives rise to exactly one branch on each of the lower levels in both cases.

Consequently only one main class of $k$-MOLS of order 7 was counted for $k=4,5,6$, and the

|  |  | $k$ |  |
| :---: | :---: | :---: | :---: |
| Cycle Structure | 4 | 5 | 6 |
| $z_{1}^{1} z_{2}^{3}$ | 18 | 15 | 11 |
| $z_{1}^{1} z_{2}^{1} z_{4}^{1}$ | 19 | 13 | 5 |
| $z_{1}^{1} z_{3}^{2}$ | 7 | 5 | 1 |

TABLE 5.18: The number of branches on the first level of the search tree for $k$-MOLS of order 7 corresponding to each of the cycle structures $z_{1}^{1} z_{2}^{3}, z_{1}^{1} z_{2}^{1} z_{4}^{1}$ and $z_{1}^{1} z_{3}^{2}$ for $k=4,5,6$.

|  | Cycle | First level branch |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | structure | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| 4 | $z_{1}^{1} z_{2}^{3}$ | 16 | 142 | 170 | 56 | 75 | 112 | 77 | 27 | 106 | 93 | 175 | 38 | 91 | 80 | 121 | 104 | 168 | 121 |  |
|  | $z_{1}^{1} z_{2}^{1} z_{4}^{1}$ | 29 | 45 | 44 | 16 | 42 | 42 | 45 | 50 | 10 | 28 | 12 | 10 | 3 | 7 | 7 | 5 | 9 | 3 | 2 |
| 5 | $z_{1}^{1} z_{2}^{3}$ | 4 | 3 | 0 | 0 | 2 | 2 | 4 | 3 | 3 | 1 | 3 | 8 | 4 | 3 | 4 |  |  |  |  |
|  | $z_{1}^{1} z_{2}^{1} z_{4}^{1}$ | 7 | 4 | 7 | 4 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |
| 6 | $\begin{gathered} z_{1}^{1} z_{2}^{3} \\ z_{1}^{1} z_{2}^{1} z_{4}^{1} \end{gathered}$ | $\begin{aligned} & \hline 3 \\ & 2 \end{aligned}$ | $\begin{aligned} & \hline 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 2 \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 2 \\ & 0 \end{aligned}$ | $2$ |  |  |  |  | 4 |  |  |  |  |  |  |  |  |

Table 5.19: The number of branches on the second level of the tree for $k=4,5,6$ and for each branch on the first level of the search tree for $k$-MOLS of order 7 corresponding to the cycle structures $z_{1}^{1} z_{2}^{3}$ and $z_{1}^{1} z_{2}^{1} z_{4}^{1}$ respectively.

|  | Level |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| First level branch | 3 | 4 | 5 | 6 | 7 |
| 1 | 3 | 1 | 1 | 1 | 1 |
| 4 | 2 | 1 | 1 | 1 | 0 |
| 7 | 1 | 1 | 1 | 1 | 0 |
| 8 | 1 | 0 | 0 | 0 | 0 |
| 11 | 2 | 0 | 0 | 0 | 0 |
| 13 | 9 | 0 | 0 | 0 | 0 |
| 15 | 2 | 0 | 0 | 0 | 0 |

Table 5.20: The number of branches on the third to seventh levels of the search tree for each of the branches on the first level of the search tree for $4-M O L S$ of order 7 corresponding to the cycle structure $z_{1}^{1} z_{2}^{3}$ that give rise to branches on levels lower than the second.
required computing time was approximately five seconds for $k=4,5$ and 32 seconds for $k=6$ (utilising Computing Resource 1 in all cases). For $k=3,4,5,6$ a main class representative of the only main class of $k$-MOLS of order 7 is given by the first $k$ Latin squares in the 6 -MOLS of order 7
$\left(\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 0 & 4 & 1 & 5 & 6 & 3 \\ 1 & 3 & 0 & 6 & 2 & 4 & 5 \\ 4 & 2 & 5 & 0 & 6 & 3 & 1 \\ 3 & 6 & 1 & 5 & 0 & 2 & 4 \\ 6 & 5 & 3 & 4 & 1 & 0 & 2 \\ 5 & 4 & 6 & 2 & 3 & 1 & 0\end{array}\right],\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 0 & 6 & 2 & 4 & 5 \\ 2 & 0 & 4 & 1 & 5 & 6 & 3 \\ 3 & 6 & 1 & 5 & 0 & 2 & 4 \\ 4 & 2 & 5 & 0 & 6 & 3 & 1 \\ 5 & 4 & 6 & 2 & 3 & 1 & 0 \\ 6 & 5 & 3 & 4 & 1 & 0 & 2\end{array}\right],\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 0 & 6 & 3 & 1 \\ 3 & 6 & 1 & 5 & 0 & 2 & 4 \\ 6 & 5 & 3 & 4 & 1 & 0 & 2 \\ 5 & 4 & 6 & 2 & 3 & 1 & 0 \\ 2 & 0 & 4 & 1 & 5 & 6 & 3 \\ 1 & 3 & 0 & 6 & 2 & 4 & 5\end{array}\right],\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 5 & 0 & 2 & 4 \\ 4 & 2 & 5 & 0 & 6 & 3 & 1 \\ 5 & 4 & 6 & 2 & 3 & 1 & 0 \\ 6 & 5 & 3 & 4 & 1 & 0 & 2 \\ 1 & 3 & 0 & 6 & 2 & 4 & 5 \\ 2 & 0 & 4 & 1 & 5 & 6 & 3\end{array}\right],\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 3 & 4 & 1 & 0 & 2 \\ 5 & 4 & 6 & 2 & 3 & 1 & 0 \\ 2 & 0 & 4 & 1 & 5 & 6 & 3 \\ 1 & 3 & 0 & 6 & 2 & 4 & 5 \\ 4 & 2 & 5 & 0 & 6 & 3 & 1 \\ 3 & 6 & 1 & 5 & 0 & 2 & 4\end{array}\right],\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 6 & 2 & 3 & 1 & 0 \\ 6 & 5 & 3 & 4 & 1 & 0 & 2 \\ 1 & 3 & 0 & 6 & 2 & 4 & 5 \\ 2 & 0 & 4 & 1 & 5 & 6 & 3 \\ 3 & 6 & 1 & 5 & 0 & 2 & 4 \\ 4 & 2 & 5 & 0 & 6 & 3 & 1\end{array}\right]\right)$.

For $n=8$ four relative cycle structures are admitted by the universals in a $k$-MOLS of order 8, namely $z_{1}^{1} z_{2}^{2} z_{3}^{1}, z_{1}^{1} z_{2}^{1} z_{5}^{1}, z_{1}^{1} z_{3}^{1} z_{4}^{1}$ and $z_{1}^{1} z_{7}^{1}$. For $k=2,3,4$ Table 5.21 gives the number of branches on every level of the tree corresponding to each of the four cycle structures $z_{1}^{1} z_{2}^{2} z_{3}^{1}$, $z_{1}^{1} z_{2}^{1} z_{5}^{1}, z_{1}^{1} z_{3}^{1} z_{4}^{1}$ and $z_{1}^{1} z_{7}^{1}$, together with the required computing time. The search tree counted 2165 main classes of 2-MOLS of order 8 in approximately 38 days (once again verifying the number found by McKay [98]), 39 main classes of 3-MOLS of order 8 in approximately 36 days
and one main class of 4 -MOLS of order 8 in approximately $4 \frac{1}{2}$ days (in the first two cases Computing Resource 2 was utilised, while in the last case Computing Resource 1 was utilised).

| $k$ | Cycle |  |  |  | Level |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | structure | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Time (s) |
| 2 | $z_{1}^{1} z_{2}^{2} z_{3}^{1}$ | 1 | 12095 | 21661780 | 870780093 | 541480115 | 5213158 | 10182 | 2033 | 2969152 |
|  | $z_{1}^{1} z_{2}^{1} z_{5}^{1}$ | 1 | 11598 | 10228732 | 204152431 | 46047326 | 139706 | 5887 | 129 | 283347 |
|  | $z_{1}^{1} z_{3}^{1} z_{4}^{1}$ | 1 | 4001 | 681424 | 1050327 | 20172 | 370 | 132 | 0 | 2352 |
|  | $z_{1}^{1} z_{7}^{1}$ | 1 | 2163 | 205429 | 333755 | 10712 | 756 | 426 | 3 | 1130 |
|  | Total | 4 | 29857 | 32777365 | 1076316606 | 587558325 | 5353990 | 16627 | 2165 | 3255981 |
| 3 | $z_{1}^{1} z_{2}^{2} z_{3}^{1}$ | 17 | 12501028 | 1484518094 | 18814494 | 55 | 23 | 22 | 20 | 2980679 |
|  | $z_{1}^{1} z_{2}^{1} z_{5}^{1}$ | 14 | 3358273 | 61708802 | 63157 | 97 | 92 | 84 | 17 | 160494 |
|  | $z_{1}^{1} z_{3}^{1} z_{4}^{1}$ | 5 | 52059 | 5283 | 1 | 0 | 0 | 0 | 0 | 169 |
|  | $z_{1}^{1} z_{7}^{1}$ | 9 | 37403 | 9079 | 82 | 64 | 53 | 53 | 2 | 353 |
|  | Total | 45 | 15948763 | 1546241258 | 18877734 | 216 | 168 | 159 | 39 | 3141695 |
| 4 | $z_{1}^{1} z_{2}^{2} z_{3}^{1}$ | 419 | 86064551 | 3028409 | 1 | 0 | 0 | 0 | 0 | 380634 |
|  | $z_{1}^{1} z_{2}^{1} z_{5}^{1}$ | 322 | 5000070 | 2940 | 1 | 0 | 0 | 0 | 0 | 12757 |
|  | $z_{1}^{1} z_{3}^{1} z_{4}^{1}$ | 37 | 1314 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
|  | $z_{1}^{1} z_{7}^{1}$ | 30 | 1419 | 2 | 2 | 2 | 2 | 2 | 0 | 13 |
|  | Total | 808 | 91067354 | 3031351 | 3 | 2 | 2 | 2 | 1 | 393412 |

TABLE 5.21: The number of branches on each level of the search tree for $k$-MOLS of order 8 corresponding to each cycle structure that the first universal of the second Latin square in a $k$-MOLS of order 8 may admit for $k=2,3,4$, together with the required computing time. The branches on Level 8 give the number of $k$-MOLS of order 8 found in the corresponding section of the search tree.

For $n=8$ and $k=5,6,7$ only the very last branch on the first level corresponding to the cycle structure $z_{1}^{1} z_{7}^{1}$ gave rise to any branches on the third levels and lower, and this branch gave rise to exactly one branch on level $\ell$ for $3 \leq \ell \leq 8$. Table 5.22 gives the number of branches on levels 1 and 2 of the tree for $k=5,6,7$ corresponding to each of the four cycle structures $z_{1}^{1} z_{2}^{2} z_{3}^{1}$, $z_{1}^{1} z_{2}^{1} z_{5}^{1}, z_{1}^{1} z_{3}^{1} z_{4}^{1}$ and $z_{1}^{1} z_{7}^{1}$, together with the required computing time. The search tree counted one main class of 5 -MOLS of order 8 in approximately 1 day, one main class of 6 -MOLS of order 8 in approximately 2 hours and 20 minutes, and one main class of 7 -MOLS of order 8 in approximately 3 hours (in all three cases Computing Resource 1 was utilised). For $k=4,5,6,7$ a class representative of the only main class of $k$-MOLS of order 8 is given by the first $k$ Latin squares in the 7 -MOLS of order 8

$$
\left(\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 0 & 4 & 7 & 2 & 6 & 5 & 3 \\
2 & 4 & 0 & 5 & 1 & 3 & 7 & 6 \\
3 & 7 & 5 & 0 & 6 & 2 & 4 & 1 \\
4 & 2 & 1 & 6 & 0 & 7 & 3 & 5 \\
5 & 6 & 3 & 2 & 7 & 0 & 1 & 4 \\
6 & 5 & 7 & 4 & 3 & 1 & 0 & 2 \\
7 & 3 & 6 & 1 & 5 & 4 & 2 & 0
\end{array}\right],\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 4 & 0 & 5 & 1 & 3 & 7 & 6 \\
3 & 7 & 5 & 0 & 6 & 2 & 4 & 1 \\
4 & 2 & 1 & 6 & 0 & 7 & 3 & 5 \\
5 & 6 & 3 & 2 & 7 & 0 & 1 & 4 \\
6 & 5 & 7 & 4 & 3 & 1 & 0 & 2 \\
7 & 3 & 6 & 1 & 5 & 4 & 2 & 0 \\
1 & 0 & 4 & 7 & 2 & 6 & 5 & 3
\end{array}\right],\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 7 & 5 & 0 & 6 & 2 & 4 & 1 \\
4 & 2 & 1 & 6 & 0 & 7 & 3 & 5 \\
5 & 6 & 3 & 2 & 7 & 0 & 1 & 4 \\
6 & 5 & 7 & 4 & 3 & 1 & 0 & 2 \\
7 & 3 & 6 & 1 & 5 & 4 & 2 & 0 \\
1 & 0 & 4 & 7 & 2 & 6 & 5 & 3 \\
2 & 4 & 0 & 5 & 1 & 3 & 7 & 6
\end{array}\right],\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 2 & 1 & 6 & 0 & 7 & 3 & 5 \\
5 & 6 & 3 & 2 & 7 & 0 & 1 & 4 \\
6 & 5 & 7 & 4 & 3 & 1 & 0 & 2 \\
7 & 3 & 6 & 1 & 5 & 4 & 2 & 0 \\
1 & 0 & 4 & 7 & 2 & 6 & 5 & 3 \\
2 & 4 & 0 & 5 & 1 & 3 & 7 & 6 \\
3 & 7 & 5 & 0 & 6 & 2 & 4 & 1
\end{array}\right]\right.
$$

$\left.\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 3 & 2 & 7 & 0 & 1 & 4 \\ 6 & 5 & 7 & 4 & 3 & 1 & 0 & 2 \\ 7 & 3 & 6 & 1 & 5 & 4 & 2 & 0 \\ 1 & 0 & 4 & 7 & 2 & 6 & 5 & 3 \\ 2 & 4 & 0 & 5 & 1 & 3 & 7 & 6 \\ 3 & 7 & 5 & 0 & 6 & 2 & 4 & 1 \\ 4 & 2 & 1 & 6 & 0 & 7 & 3 & 5\end{array}\right],\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 7 & 4 & 3 & 1 & 0 & 2 \\ 7 & 3 & 6 & 1 & 5 & 4 & 2 & 0 \\ 1 & 0 & 4 & 7 & 2 & 6 & 5 & 3 \\ 2 & 4 & 0 & 5 & 1 & 3 & 7 & 6 \\ 3 & 7 & 5 & 0 & 6 & 2 & 4 & 1 \\ 4 & 2 & 1 & 6 & 0 & 7 & 3 & 5 \\ 5 & 6 & 3 & 2 & 7 & 0 & 1 & 4\end{array}\right],\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 6 & 1 & 5 & 4 & 2 & 0 \\ 1 & 0 & 4 & 7 & 2 & 6 & 5 & 3 \\ 2 & 4 & 0 & 5 & 1 & 3 & 7 & 6 \\ 3 & 7 & 5 & 0 & 6 & 2 & 4 & 1 \\ 4 & 2 & 1 & 6 & 0 & 7 & 3 & 5 \\ 5 & 6 & 3 & 2 & 7 & 0 & 1 & 4 \\ 6 & 5 & 7 & 4 & 3 & 1 & 0 & 2\end{array}\right]\right)$.

| $k$ | Cycle | Level |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Structure | 1 | 2 | Time (s) |
| 5 | $z_{1}^{1} z_{2}^{2} z_{3}^{1}$ | 2567 | 6401104 | 86508 |
|  | $z_{1}^{1} z_{2}^{1} z_{5}^{1}$ | 1071 | 41313 | 2298 |
|  | $z_{1}^{1} z_{3}^{1} z_{4}^{1}$ | 38 | 0 | 1 |
|  | $z_{1}^{1} z_{7}^{1}$ | 36 | 3 | 8 |
|  | Total | 3712 | 6442420 | 88815 |
| 6 | $z_{1}^{1} z_{2}^{2} z_{3}^{1}$ | 1565 | 6499 | 8330 |
|  | $z_{1}^{1} z_{2}^{1} z_{5}^{1}$ | 321 | 4 | 123 |
|  | $z_{1}^{1} z_{3}^{1} z_{4}^{1}$ | 3 | 0 | 0 |
|  | $z_{1}^{1} z_{7}^{1}$ | 6 | 2 | 28 |
|  | Total | 1895 | 6505 | 8481 |
| 7 | $z_{1}^{1} z_{2}^{2} z_{3}^{1}$ | 290 | 1101 | 19823 |
|  | $z_{1}^{1} z_{2}^{1} z_{5}^{1}$ | 31 | 0 | 99 |
|  | $z_{1}^{1} z_{3}^{1} z_{4}^{1}$ | 1 | 0 | 0 |
|  | $z_{1}^{1} z_{7}^{1}$ | 2 | 2 | 472 |
|  | Total | 324 | 1103 | 20394 |

Table 5.22: The number of branches on the first and second levels of the search tree for $k$-MOLS of order 8 corresponding to each cycle structure that the first universal of the second Latin square in a $k$-MOLS of order 8 may admit for $k=5,6,7$, together with the required computing time.

### 5.4.2 Enumeration of distinct and reduced MOLS

The number of reduced $k$-MOLS of order $n$ and the number of distinct $k$-MOLS of order $n$ may be determined utilising the methods presented in $\S 4.5$. Since a paratopism of a $k$-MOLS $\mathcal{M}$ of order $n$ consists of a permutation applied to the rows of all the Latin squares in $\mathcal{M}$, a permutation applied to the columns of all Latin squares in $\mathcal{M}, k$ permutations each applied to the symbols of some Latin square in $\mathcal{M}$ and $(k+2)$ ! conjugate operations, the transformation group of a main class of $k$-MOLS of order $n$, namely $S_{n}$ 亿 $S_{k+2}$, has order $(k+2)!(n!)^{k+2}$. Therefore it follows by Theorem 4.5.1 that there are

$$
\frac{(k+2)!(n!)^{k+2}}{|A(\mathcal{M})|}
$$

$k$-MOLS of order $n$ in the main class containing the $k$-MOLS $\mathcal{M}$ of order $n$, where $A(\mathcal{M})$ denotes the autoparatopism group of $\mathcal{M}$. Furthermore, it follows by Corollary 4.5.3 that there are

$$
\frac{1}{(n!)^{k}(n-1)!}\left(\frac{(k+2)!(n!)^{k+2}}{|A(\mathcal{M})|}\right)=\frac{(k+2)!(n!)^{2}}{|A(\mathcal{M})|(n-1)!}
$$

reduced $k$-MOLS of order $n$ in the main class containing $\mathcal{M}$.
The autoparatopism groups for the class leaders generated, as discussed in the previous section, may be determined using nauty [96] and the method described in §4.4. The orders of the autoparatopism groups of $k$-MOLS of order $n$ for which there is only one main class is given in Table 5.23.
The seven main classes of 2-MOLS of order 7 exhibit autoparatopism group orders of $6,6,126$, $48,2352,24$ and 3528 , respectively, while Table 5.24 gives the number of main classes of 2- and 3 -MOLS of order 8 which admit certain autoparatopism group orders.
Finally, the number of main classes of $k$-MOLS of order $n$, the number of reduced $k$-MOLS of order $n$ and the number of distinct $k$-MOLS of order $n$ are given in Tables 5.25, 5.26 and 5.27, respectively. Class representatives of main classes of $k$-MOLS of orders $3 \leq n \leq 8$ are available in Appendix B. 3 for $2 \leq k \leq n-1$ (except for 2-MOLS of order 8 ).

|  |  | $k$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 | 5 | 6 | 7 |  |
|  | 3 | 432 |  |  |  |  |  |  |
| $n$ | 4 | 1152 | 5760 |  |  |  |  |  |
| $n$ | 5 | 800 | 2000 | 12000 |  |  |  |  |
|  | 7 | - | 1764 | 3528 | 12348 | 98784 |  |  |
|  | 8 | - | - | 8064 | 18816 | 75264 | 677376 |  |

TABLE 5.23: The orders of the autoparatopism groups of $k$-MOLS of order $n$ for which there is exactly one main class for $n=3,4,5,7,8$.

|  | Group order |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | 1 | 2 | 3 | 4 | 6 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 84 | 96 | 128 | 192 | 256 | 3840 | 5376 |
| 2 | 434 | 852 | 18 | 419 | 34 | 229 | 7 | 109 | 10 | 31 | 2 | 12 | 1 | 1 | 0 | 4 | 1 | 0 | 1 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 10 | 0 | 10 | 0 | 3 | 5 | 3 | 2 | 1 | 1 |

TABLE 5.24: The number of main classes of 2 and $3-M O L S$ of order 8 which admit various autoparatopism group orders.

| $n$ |  | $k$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 | 5 | 6 |  | 7 |
|  | 3 | 1 |  |  |  |  |  |  |
|  | 4 | 1 | 1 |  |  |  |  |  |
|  | 5 | 1 | 1 | 1 |  |  |  |  |
|  | 6 | 0 | 0 | 0 | 0 |  |  |  |
|  | 7 | 7 | 1 | 1 | 1 | 1 |  |  |
|  | 8 | 2165 | 39 | 1 | 1 | 1 |  | 1 |
|  | 3 | 1 |  |  |  |  |  |  |
|  | 4 | 2 | 2 |  |  |  |  |  |
|  | 5 | 18 | 36 | 36 |  |  |  |  |
|  | 6 | 0 | 0 | 0 | 0 |  |  |  |
|  | 7 | 342480 | 2400 | 7200 | 14400 | 14400 |  |  |
|  | 8 | 7850589120 | 29854080 | 28800 | 86400 | 172800 | 172800 |  |

TABLE 5.25: The number of main classes of $k$-MOLS of order $n$ and the number of reduced $k$-MOLS of order $n$ for $3 \leq n \leq 8$ and $2 \leq k \leq 7$.

|  | $n$ | $k$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 |
| $\begin{aligned} & \stackrel{H}{\ddot{U}} \\ & . \ddot{Z} \\ & \ddot{\theta} \end{aligned}$ | 3 | 72 |  |  |
|  | 4 | 6912 | 165888 |  |
|  | 5 | 6220800 | 1492992000 | 179159040000 |
|  | 6 | 0 | 0 | 0 |
|  | 7 | 6263668776960000 | 221225582592000000 | 3344930808791040000000 |
|  | 8 | 64324116731941355520000 | 9862699452850608537600000 | 383623424598626795520000000 |

Table 5.26: The number distinct $k$-MOLS of order $n$ for $3 \leq n \leq 8$ and $2 \leq k \leq 4$.

### 5.5 Chapter summary

In this chapter distinct SOLS, idempotent SOLS, isomorphism classes of SOLS, transposeisomorphism classes generated by SOLS and RC-paratopism classes generated by SOLS have been enumerated for orders $4 \leq n \leq 10$, where the numbers of only some of these classes were previously known, and only for $n \leq 9$. The numbers of distinct SOLSSOMs, standard SOLSSOMS, transpose-isomorphism classes generated by SOLSSOMs and RC-paratopism classes

| $(n, k)$ | Distinct |
| :---: | ---: |
| $(6,5)$ | 33716902552613679978774528 |
| $(7,5)$ | 169933188865172974512094838784 |
| $(7,6)$ | 46403089439449893034343293517824 |
| $(8,5)$ | 3741945132397240250509786690481029120 |
| $(8,6)$ | $(8,7)$ | 150875227738256708086646531607528562753536

Table 5.27: The number distinct $k$-MOLS of order $n$ for $3 \leq n \leq 8$ and $5 \leq k \leq 7$.
generated by SOLSSOMs have also been established for $4 \leq n \leq 10$, and none of these numbers was previously known. In particular, it was shown that no SOLS of order 10 satisfies even the most basic of necessary conditions for having a common orthogonal mate with its transpose, which in turn establishes both the non-existence of a SOLSSOM of order 10 and of a 3-MOLS of order 10 containing a SOLS and its transpose. Both these non-existence results relate to the infamous problem of determining whether or not a 3 -MOLS of order 10 exists. Finally, distinct $k$-MOLS of order $n$, reduced $k$-MOLS of order $n$ as well as main classes of $k$-MOLS of orders $3 \leq n \leq 8$ have also been enumerated in this chapter for $2 \leq k \leq 7$.
The Latin squares generated by the methods in this chapter are available online at the repository [82] in a compact text file format. Computer code for all the algorithms and procedures presented and applied in this chapter is available on the compact disc accompanying this dissertation, as are repositories (in the form of text files) containing RC-paratopism class representatives of SOLS, symmetric Latin squares and SOLSSOMs of orders $4 \leq n \leq 10$, and main class representatives of $k$-MOLS of orders $3 \leq n \leq 8$ for $2 \leq k \leq 7$.

## CHAPTER 6

## Conclusion

Contents
6.1 Summary of work contained in this dissertation ..... 119
6.2 An appraisal of the contributions of this dissertation ..... 120
6.3 Future work ..... 121
6.3.1 Proposals regarding enumeration ..... 121
6.3.2 Proposals regarding existence and construction ..... 122

The dissertation closes here with a summary of the work contained therein, an appraisal of the contributions of the dissertation as well as a discussion on possibilities for future work in the area of Latin square subclass enumeration.

### 6.1 Summary of work contained in this dissertation

In this dissertation the numbers of various classes of SOLS and SOLSSOMs of orders $4 \leq n \leq 10$ and various classes of $k$-MOLS of orders $3 \leq n \leq 8$ for $2 \leq k \leq 7$ have been established. For this purpose, a number of preliminary mathematical definitions were required, and these were reviewed in Chapter 2 for the sake of completeness and self-containment. This chapter contains a general overview of the theory of Latin squares, and also provides a useful introduction to the theory of Latin squares for those not familiar with the field.
A number of important applications of Latin squares to sports tournament scheduling were described in Chapter 3. Two applications, in particular, were highlighted, namely mixed doubles table tennis tournaments, where two teams, each consisting of men and women, participate in a mixed doubles round-robin fashion, and spouse-avoiding mixed doubles round-robin tournaments, where married couples participate in a mixed doubles round-robin fashion in such a way that no person opposes or partners his/her spouse. It was shown that the former tournament may be scheduled using a 3 -MOLS, while the latter tournament may be scheduled using a SOLSSOM. A review was also given on the efforts of various researchers to obtain constructions for these designs, and three unsolved problems were highlighted, namely the question of whether a 3 -MOLS of order 10 exists, as well as whether SOLSSOMs of orders 10 and 14 exist.
In Chapter 4 a backtracking tree-search algorithm for enumerating $\sigma$-transformation classes of Latin squares was presented for any transformation of type $\sigma$. Before branching on the inclusion of universal into a partially completed Latin square, this algorithm verifies whether the partially
completed Latin square has the potential to be completed to a well-defined class representative of a $\sigma$-transformation class. In this way it is ensured that only one Latin square from each class is generated by the algorithm, thereby determining the total number of classes as well as building a repository of class representatives in the process. A method for determining the $\sigma$-autotransformation group of a Latin square associated with any transformation of type $\sigma$ was also presented in this chapter, and methods were reviewed which use these groups in order to determine class sizes and to enumerate special subclasses.

The main results of this dissertation are contained in Chapter 5, where the enumeration algorithms presented in Chapter 4 were utilised for the purpose of enumerating various subclasses of SOLS, SOLSSOMs and $k$-MOLS. In particular, distinct SOLS, idempotent SOLS, isomorphism classes generated by SOLS, transpose-isomorphism classes generated by SOLS and RCparatopism classes generated by SOLS of orders $4 \leq n \leq 10$ were enumerated using the backtracking tree-search algorithm presented in the preceding chapter. Repositories of SOLS and symmetric Latin squares were then utilised in order to enumerate distinct SOLSSOMs, standard SOLSSOMs, transpose-isomorphism classes generated by SOLSSOMs and RC-paratopism generated by SOLSSOMs of orders $4 \leq n \leq 9$. Finally, distinct $k$-MOLS, reduced $k$-MOLS and main classes of $k$-MOLS of orders $3 \leq n \leq 8$ were enumerated for $2 \leq k \leq n-1$, where these numbers were previously known only for $k=2$.

Furthermore, it was shown via a computerised filtering process that only four of the 121642 RCparatopism class representatives of SOLS of order 10 satisfy a necessary condition for admitting a common orthogonal mate with its transpose. It was easy to then verify by hand that these four SOLS of order 10 do not allow any common orthogonal mates with their transposes. This led to not only the establishment of the non-existence of a SOLSSOM of order 10, but also the non-existence of a set of three mutually orthogonal Latin squares of order 10 containing a SOLS and its transpose.

### 6.2 An appraisal of the contributions of this dissertation

The main contributions of this dissertation are threefold. The first contribution involves the extension of the work by Graham and Roberts [66] in 2006, who enumerated distinct SOLS, idempotent SOLS and isomorphism classes generated by idempotent SOLS of orders $4 \leq n \leq 9$. In this dissertation three additional classes of SOLS of orders $4 \leq n \leq 9$ were enumerated, namely isomorphism classes generated by all SOLS, transpose-isomorphism classes generated by all SOLS and RC-paratopism classes generated by all SOLS. This contribution was published in [32].

The second contribution involved the enumeration of all of the above-mentioned classes for SOLS of order 10, which was not previously possible to achieve within a realistic time frame. For this purpose the backtracking tree-search approach described in $\S 4.3$ was implemented on 12 computers in parallel in order to enumerate the RC-paratopism classes of SOLS of order 10. The search was, however, still not trivial to execute, as it required approximately 72 days of computing time. It was also shown that the next step in the enumeration of SOLS, namely the enumeration of SOLS of order 11, will not be possible to resolve using the current enumeration methods and computing power. This contribution was published in [33].
Another contribution involves the enumeration of SOLSSOMs of orders $4 \leq n \leq 9$ as well as the establishment of the non-existence of a SOLSSOM of order 10. SOLSSOMs were enumerated using existing repositories of SOLS and symmetric Latin squares, and the non-existence of

SOLSSOMs of order 10 was established using the SOLS of order 10 generated as mentioned above, and determining by computer which of them have the potential to admit a common orthogonal mate with their transposes. As it was found that no SOLS of order 10 can have a common orthogonal mate with its transpose, which not only shows that a SOLSSOM of order 10 does not exist (thereby settling a 32 -year old existence question), but also that if a set of three mutually orthogonal Latin squares of order 10 exists, then it does not contain a SOLS and its transpose. This result therefore represents a necessary condition to the celebrated problem of determining whether a set of three mutually orthogonal Latin squares of order 10 exists, and it may be used in future to reduce the search space for such a set of Latin squares. This contribution has been submitted for publication in [34].
The final contribution of this dissertation involves the enumeration of $k$-MOLS of orders $3 \leq n \leq$ 8 for $2 \leq k \leq n-1$. Three classes of $k$-MOLS of these orders were enumerated, namely distinct $k$-MOLS, reduced $k$-MOLS and main classes of $k$-MOLS utilising the backtracking tree-search approach described in $\S 4.3 .2$. Of these results, only the number of main classes of 2 -MOLS of orders $3 \leq n \leq 8$ had previously been established, and these numbers were verified in this dissertation.

The numbers of the various classes of SOLS and SOLSSOMs enumerated in this dissertation have been contributed as sequences to the Online Encyclopedia of Integer Sequences (OEIS) [129], and the reference numbers of these sequences together with the corresponding class descriptions are given in Table 6.1.

| Reference number | Class |
| :---: | :--- |
| \#A160368 | Distinct SOLS |
| \#A160367 | Idempotent SOLS |
| \#A181592 | Isomorphism classes of idempotent SOLS |
| \#A181593 | Isomorphism classes of SOLS |
| \#A160366 | Transpose-isomorphism classes of SOLS |
| \#A160365 | RC-paratopism classes of SOLS |
| \#A166490 | Distinct SOLSSOMs |
| \#A166489 | Standard SOLSSOMs |
| \#A166488 | Transpose-isomorphism classes of SOLSSOMs |
| \#A166487 | RC-paratopism classes of SOLSSOMs |

Table 6.1: Reference numbers to new sequences in the Online Encyclopedia of Integer Sequences (OEIS) [129] which contain the enumeration results of this dissertation.

### 6.3 Future work

This section contains a number of suggestions for possible future work in the area of Latin square enumeration with applications to sports tournament scheduling that emerged while research towards this dissertation was conducted. Two important areas are highlighted in what follows, namely open problems in the realm of enumeration of Latin squares and open problems centred around the existence and construction of Latin squares.

### 6.3.1 Proposals regarding enumeration

Due to the fact that obtaining an explicit formula for the number of Latin squares of any order is extremely unlikely, the enumeration of Latin squares is a step-by-step process where the
numbers for each order have to be determined individually (possibly using the same methods). It therefore follows that once any enumeration work has been conducted, a next step to be taken will always present itself. The first proposal follows naturally from this observation.

Proposal 1 Determine the number of $R C$-paratopism classes of $S O L S$ of order 11.

It was shown in $\S 5.3 .1$ that enumerating SOLS of order 11 is not within realistic reach using the methods presented in this dissertation and the current computer processing power. Another method is therefore required for this purpose, and one improvement may be to include additional operations in the definition of an RC-paratopism. This will allow for larger classes which, in turn, would decrease their numbers and possibly result in a traversable search space. Alternative representations of SOLS may also be considered, such as representations using graphs or orthogonal arrays.

If the number of RC-paratopism classes of SOLS may be enumerated, and class representatives generated, then the other classes of SOLS mentioned in this dissertation may be enumerated by determining the RC-autoparatopism groups of these class representatives. It was shown in Chapter 5 that the required time for computing these groups using the computer program nauty was one second for order 9 and 1859 seconds for order 10 . It therefore follows that computing the RC-autoparatopism groups of SOLS of order 11 may provide a further hurdle that needs to be overcome.

The same observation above may be made for SOLSSOMs, as follows.

Proposal 2 Determine the number of $R C$-paratopism classes of SOLSSOMs of order 11.

Using the methods presented in this dissertation, this enumeration problem may be solved only once SOLS or symmetric Latin squares of order 11 have been enumerated. As in the case of SOLS, it has also been shown that the current methods would not render the enumeration of RCparatopism classes of symmetric Latin squares of order 11 feasible within a realistic time frame. One may instead consider forming SOLSSOMs by generating the SOLS and symmetric mates simultaneously, rather than first generating one square and thereafter searching for possible orthogonal mates.

In this dissertation $k$-MOLS have only been enumerated up to and including order 8 , and it was mentioned in $\S 5.4$ that 8 -MOLS of order 9 have also been enumerated (in a theoretical fashion) in the literature. The next step in the enumeration of $k$-MOLS is therefore as follows.

Proposal 3 Determine the number of main classes of $k$-MOLS of order 9 , for $2 \leq k \leq 7$.

### 6.3.2 Proposals regarding existence and construction

There are still a large number of unsolved problems in the theory of Latin squares with applications to sports tournament scheduling. In particular, it was noted in this dissertation that, although the case of order 10 has now been settled, the existence of SOLSSOMs of order 14 is still undecided, and this gives rise to the following natural proposal for future work.

Proposal 4 Determine whether a SOLSSOM of order 14 exists.

Since no 3-MOLS of order 10 has yet been found (despite a large number of attempts by researchers), it was an expected result that no SOLSSOM of order 10 can be found. For the case of order 14, however, a construction of a 3-MOLS of order 14 has been given in the literature, and this provides some circumstantial evidence that a SOLSSOM of order 14 may possibly exist. To the practical sports tournament scheduler the fact that no SOLSSOM of order 10 exists, on the other hand, is of little use. Since it is known that a SOLS of order 10 exists, it follows that the matches of a spouse-avoiding mixed doubles round-robin (SAMDRR) tournament may be obtained for ten couples. However, it was shown that there exists no partition of these matches into 9 rounds so that no player plays twice in any round. Hence, in order to obtain a schedule for such a tournament, it is necessary to consider relaxations on some of the requirements of an SAMDRR tournament, as was done by Burger and Van Vuuren [35] in 2009 for the purpose of obtaining good schedules for (unbalanced) SAMDRR tournaments of orders 6, 10 and 14. The authors did not, however, prove the optimality (in some sense) of their schedules, and the following proposal is therefore put forward.

Proposal 5 Determine the smallest number of rounds in which a spouse-avoiding mixed doubles round-robin tournament may be scheduled for six, ten and fourteen married couples, or determine an optimal schedule (in some sense) for such a tournament where a number of the requirements have been relaxed.

The problem of balancing carry-over effects in round-robin tournaments was briefly mentioned in $\S 3.1$, and a number of references to work done in this area was given. In particular, it has been shown that a balanced tournament of order $n$ (one in which each player receives a carry-over effect from each other player at most once) exists if $n$ is a power of two or if $n=20$ or $n=22$ [80]. For all other orders, however, the existence of a balanced tournament is undecided, and this interesting problem is proposed for future work.

Proposal 6 Determine whether a round-robin tournament of order $n$ which is balanced with respect to carry-over effects exists if $n \neq 2^{r}, 20,22$, for some $r \in \mathbb{N}$.

It was also been found that existence and construction problems in the theory of Latin squares may be formulated as integer programming problems and solved using standard solution techniques and/or software from the operations research literature. This has proved to be useful in, for example, establishing the non-existence of a pair of orthogonal Latin squares of order 6 in the approach adopted by Appa et al. [10]. Such construction approaches may be especially useful since quasigroup identities may be used as constraints in an integer programming model in order to construct special Latin squares with applications to sports tournament scheduling, a connection that seems not yet to have been made in the literature. The following proposal is therefore put forward.

Proposal 7 Investigate integer programming formulations for the construction of special types of Latin squares with applications to sports tournament scheduling.

## Bibliography

[1] Abel RJR, Bennet FE, Zhang H \& Zhu L, 2000. A few more incomplete selforthogonal Latin squares and related designs, Australasian Journal of Combinatorics, 21, pp. 85-94.
[2] Acketa DM \& Matić-Kekić S, 1995. An attempt for construction of a triple of pairwise mutually orthogonal Latin squares on 10 elements, Zbornik Radova Prirodno-Matematički Fakulteta Serija Matematika, 25, pp. 141-153.
[3] Adamson IT, 1964. Introduction to field theory, Oliver and Boyd, Edinburgh.
[4] Allenby RBJT, 1983. Rings, fields and groups, Edward Arnold, London.
[5] Andersen LD, 2007. Factorisation of graphs, pp. 740-755 in Colbourn CJ \& Dinitz JH (EDs), The handbook of combinatorial designs, $2^{\text {nd }}$ Edition, CRC Press, Boca Raton (FL).
[6] Andersen LD, 2007. The history of Latin squares, (Unpublished) Technical Report R-2007-32, Aalborg University, Aalborg.
[7] Anderson I, 1999. Balancing carry-over effects in round robin tournaments, pp. 1-16 in Holroyd FC, Quinn KAS, Rowley C \& Webb BS (Eds), Combinatorial designs and their applications, CRC Press, Boca Raton (FL).
[8] Anderson I \& Finizio NJ, 2007. Whist tournaments, pp. 663-668 in Colbourn CJ \& Dinitz JH (Eds), The handbook of combinatorial designs, $2^{\text {nd }}$ Edition, CRC Press, Boca Raton (FL).
[9] Anderson I, Colbourn CJ, Dinitz JH \& Griggs TS, 2007. Design theory: Antiquity to 1950, pp. 11-22 in Colbourn CJ \& Dinitz JH (EDs), The handbook of combinatorial designs, $2^{\text {nd }}$ Edition, CRC Press, Boca Raton (FL).
[10] Appa G, Magos D \& Mourtos I, 2004. An LP-based proof for the non-existence of a pair of orthogonal Latin squares of order 6, Operations Research Letters, 32, pp. 336-344.
[11] Armstrong MA, 1988. Groups and symmetry, Springer-Verlag, New York (NY).
[12] Ball WWR, 1914. Mathematical recreations and essays, Macmillan and Company Limited, London.
[13] Bammel SF \& Rothstein J, 1975. The number of $9 \times 9$ Latin squares, Discrete Mathematics, 11, pp. 93-95.
[14] Barra JR, 1963. A propos d'un théorème de R.C. Bose, Comptes Rendus de l'Académie des Sciences, 256, pp. 5502-5504.
[15] Bennet FE \& Zhu L, 1992. Conjugate orthogonal Latin squares and related structures, pp. 41-96 in Dinitz JH \& Stinson DR (Eds), Contemporary design theory: A collection of surveys, John Wiley \& Sons, New York (NY).
[16] Bennet FE \& Zhu L, 1996. Further results on the existence of $\operatorname{HSOLSSOM}\left(h^{n}\right)$, Australasian Journal of Combinatorics, 14, pp. 207-220.
[17] Bennet FE \& Zhu L, 1996. The spectrum of $\operatorname{HSOLSSOM}\left(h^{n}\right)$ where $h$ is even, Discrete Mathematics, 158, pp. 11-25.
[18] Beth T, Jungnickel D \& Lenz H, 1999. Design theory, $2^{\text {nd }}$ Edition, Cambridge University Press, Cambridge.
[19] Biggs NL, 1985. Discrete mathematics, Oxford University Press, New York (NY).
[20] Bóna M, 2004. Combinatorics of permutations, CRC Press, Boca Raton (FL).
[21] Bose RC, 1938. On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares, Sankhyā: The Indian Journal of Statistics, 3(4), pp. 323-338.
[22] Bose RC \& Shrikhande SS, 1959. On the falsity of Euler's conjecture about the nonexistence of two orthogonal Latin squares of order $4 t+2$, Proceedings of the National Academy of Sciences of the United States of America, 45(5), pp. 734-737.
[23] Bose RC, Shrikhande SS \& Parker ET, 1960. Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Canadian Journal of Mathematics, 7(2), pp. 189-203.
[24] Brayton RK, Coppersmith D \& Hoffman AJ, 1974. Self orthogonal Latin squares of all orders $n \neq 2,3,6$, Bulletin of the American Mathematical Society, 80(1), pp. 116-118.
[25] Brown JW, 1968. Enumeration of Latin squares with application to order 8, Journal of Combinatorial Theory, 5, pp. 177-184.
[26] Brown JW, 1972. An extension of Mann's theorem to a triple of mutually orthogonal Latin squares of order 10, Journal of Combinatorial Theory, Series A, 12(3) pp. 316-318.
[27] Brown JW \& Parker ET, 1982. A try for three order-10 orthogonal Latin squares, Congressus Numerantium, 36, pp. 143-144.
[28] Brown JW \& Parker ET, 1984. Some attempts to construct orthogonal Latin squares, Congressus Numerantium, 43, pp. 201-202.
[29] Bruck RH, 1944. Some results in the theory of quasigroups, Transactions of the American Mathematical Society, 55(1), pp. 19-52.
[30] Budden FJ, 1972. The fascination of groups, Cambridge University Press, Cambridge.
[31] Burger AP, Kidd MP \& Van Vuuren JH, 2010. A graph-theoretic proof of the nonexistence of a self-orthogonal Latin square of order 6, Discrete Mathematics, 311(13), pp. 1223-1 228.
[32] Burger AP, Kidd MP \& Van Vuuren JH, 2010. Enumeration of isomorphism classes self-orthogonal Latin squares, Ars Combinatoria, 97, pp. 143-152.
[33] Burger AP, Kidd MP \& Van Vuuren JH, 2010. Enumerasie van self-ortogonale Latynse vierkante van orde 10, LitNet Akademies (Natuurwetenskappe), 7(3), pp. 1-22.
[34] Burger AP, Kidd MP \& Van Vuuren JH, 2011. Enumerasie van self-ortogonale Latynse vierkante met simmetriese ortogonale maats, submitted to Die Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie.
[35] Burger AP \& van Vuuren JH, 2009. Skedulering van gade-vermydende gemengdedubbels rondomtalie-tennistoernooie, Die Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, 28(1), pp. 35-63.
[36] Cayley A, 1877. On the theory of groups, Proceedings of the London Mathematical Society, 9, pp. 126-133.
[37] Cayley A, 1890. On Latin squares, Oxford, Cambridge and Dublin Messenger of Mathematics, 19, pp. 85-239.
[38] Colbourn CJ, Dinitz JH \& Wanless IM, 2007. Part III: Latin squares, pp. 133228 in Colbourn CJ \& Dinitz JH (Eds), The handbook of combinatorial designs, $2^{\text {nd }}$ Edition, CRC Press, Boca Raton (FL).
[39] Colbourn CJ \& Rosa A, 1999. Triple systems, Clarendon Press, Oxford.
[40] Chein O, Pflugfelder HO \& Smith JDH, 1990. Quasigroups and loops: Theory and applications, Heldermann Verlag, Berlin.
[41] Dénes J \& Keedwell AD, 1974. Latin squares and their applications, The English University Press Ltd, Akaémiai Kiadó, Budapest.
[42] DÉnes J \& Keedwell AD, 1991. Latin squares: New developments in the theory and applications, Elsevier Science Publishers, New York (NY).
[43] Delisle E, 2010. The search for a triple of mutually orthogonal Latin squares of order ten: Looking through pairs of dimension thirty-five and less, MSc Thesis, University of Victoria, Victoria.
[44] DEo N, 1974. Graph theory with applications to engineering and computer science, Prentice-Hall, Englewood Cliffs (NJ).
[45] Dinitz JH, Froneck D, Lamken ER \& Wallis WD, 2007. Scheduling a tournament, pp. 591-606 in Colbourn CJ \& Dinitz JH (Eds), The handbook of combinatorial designs, $2^{\text {nd }}$ Edition, CRC Press, Boca Raton (FL).
[46] Dinitz JH, Garnick DK \& McKay BD, 1994. There are 526,915,620 nonisomorphic one-factorisations of $K_{12}$, Journal of Combinatorial Designs, 2(4), pp. 273-285.
[47] Dinitz JH \& Williams HC, 2007. Number theory and finite fields, pp. 791-818 in Colbourn CJ \& Dinitz JH (Eds), The handbook of combinatorial designs, $2^{\text {nd }}$ Edition, CRC Press, Boca Raton (FL).
[48] Dixon JD \& Mortimer B, 1996. Permutation groups, Springer-Verlag, New York (NY).
[49] Du B, 1993. A few more resolvable spouse-avoiding mixed-doubles round robin tournaments, Ars Combinatoria, 36, pp. 309-314.
[50] Edmonds J, 2008. How to think about algorithms, Cambridge University Press, Cambridge.
[51] Erdös P \& Kaplansky I, 1946. The asymptotic number of Latin rectangles, American Journal of Mathematics, 68, pp. 230-236.
[52] Euler L, 1782. Recherches sur une nouvelle espèce de quarrés magiques, Verhandelingen uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen, 9, pp. 85239, (English translation by Ho A \& Klyve D).
[53] Euler L, 1849. De quadratis magicis, Commentationes Arithmeticae, 2, pp. 593-602.
[54] Faradžev IA, 1978. Constructive enumeration of combinatorial objects, Problèmes Combinatoires et Théorie des Graphes, CNRS, 260, pp. 131-135.
[55] Fisher RA, 1925. Statistical methods for research workers, Oliver and Boyd, Edinburgh.
[56] Fisher RA, 1935. The design of experiments, Oliver and Boyd, Edinburgh.
[57] Fisher RA \& Yates F, 1934. The $6 \times 6$ Latin squares, Proceedings of the Cambridge Philosophical Society, 30, pp. 492-507.
[58] Franklin MF, 1984. Cyclic generation of self orthogonal Latin squares, Utilitas Mathematica, 25, pp. 135-147.
[59] Frolov M, 1890. Sur les permutations carrées, Journal de Mathématiques Spéciales, 4, pp. 8-11, 25-30.
[60] Gallian JA, 1993. On the converse of Lagrange's theorem, Mathematics Magazine, 66(1), p. 23.
[61] Gardner M, 2000. Modeling mathematics with playing cards, The College Mathematics Journal, 31(3), pp. 173-177.
[62] Gessel IM, 1986. Counting three-line Latin rectangles, pp. 106-111 in Labelle G \& Leroux P (Eds), Combinatoire énumerative, Springer, Berlin.
[63] Gessel IM, 1987. Counting Latin rectangles, Bulletin of the American Mathematical Society, 16(1), pp. 79-82.
[64] Godsil CD \& McKay BD, 1984. Asymptotic enumeration of Latin rectangles, Bulletin of the American Mathematical Society, 10(1), pp. 91-92.
[65] Goulden IP \& Jackson DM, 1983. Combinatorial enumeration, John Wiley \& Sons, New York (NY).
[66] Graham GP \& Roberts CE, 2006. Enumeration and isomorphic classification of selforthogonal Latin squares, Journal of Combinatorial Mathematics and Combinatorial Computing, 59, pp. 101-118.
[67] Grimaldi RP, 1994. Discrete and combinatorial mathematics: An applied introduction, Addison-Wesley Publishing Company, Reading (MA).
[68] Hall M, 1945. An existence problem for Latin squares, Bulletin of the American Mathematical Society, 51, pp. 387-388.
[69] Hall M, 1959. The theory of groups, The Macmillan Company, New York (NY).
[70] Hanani H, 1970. On the number of orthogonal Latin squares, Journal of Combinatorial Theory, Series A, 8, pp. 247-271.
[71] Hedayat A, 1973. An application of sum composition: A self orthogonal Latin square of order ten, Journal of Combinatorial Theory, Series A, 14, pp. 256-260.
[72] Hedayat A, 1973. Self orthogonal Latin square designs and their importance, Biometrics, 29, pp. 393-395.
[73] Hedayat A, 1975. Self orthogonal Latin square designs and their importance, II, Biometrics, 31, pp. 755-759.
[74] Hedayat A, 1978. A generalization of sum composition: Self orthogonal Latin square designs with sub self orthogonal Latin square designs, Journal of Combinatorial Theory, Series A, 24, pp. 202-210.
[75] Herstein IN, 1975. Topics in algebra, John Wiley \& Sons, New York (NY).
[76] Holt DF, 2005. Handbook of computational group theory, CRC Press, Boca Raton (FL).
[77] Horton JD, 1970. Variations on a theme by Moore, Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge (LA), pp. 146-166.
[78] Hulpke A, Kaski P \& Östergård PRJ, 2010. The number of Latin squares of order 11, to appear in Mathematics of Computation.
[79] Kaplansky I, 1963. Solution to the "Problème des ménages", Bulletin of the American Mathematical Society, 49, pp. 784-785.
[80] Keedwell AD, 2000, Designing tournaments with the aid of Latin squares: A presentation of old and new results, Utilitas Mathematica, 58, pp. 65-85.
[81] Kendall MG, 1948. Who discovered the Latin square?, The American Statistician, 2(4), p. 13.
[82] Kidd MP, 2010. A repository of self-orthogonal Latin squares, [Online], [Cited October $27^{\text {th }}$, 2010], Available from http://www.vuuren.co.za $\rightarrow$ Repositories
[83] Kidd MP, 2010. A tabu-search for minimising the carry-over effects value of a roundrobin tournament, ORiON, 26(2), pp. 125-141.
[84] Kleiner I, 1986. The evolution of group theory: A brief survey, Mathematics Magazine, 59(4), рр. 195-215.
[85] Kolesova G, Lam CWH \& Thiel L, 1990. On the number of $8 \times 8$ Latin squares, Journal of Combinatorial Theory, Series A, 54, pp. 143-148.
[86] Lam CWH, Kolesova G \& Thiel L, 1991. A computer search for finite projective planes of order 9, Discrete Mathematics, 92, pp. 187-195.
[87] Laurie DP, 2004. Professor, Department of Mathematical Sciences, University of Stellenbosch, [Personal Communication], Contactable at dpl@sun.ac.za.
[88] Laywine CF \& Mullen GL, 1998. Discrete mathematics using Latin squares, John Wiley \& Sons, New York (NY).
[89] Ledermann W, 1949. Introduction to the theory of finite groups, Oliver and Boyd, Edinburgh.
[90] Lindner CC, 1971. The generalized singular direct product for quasigroups, Canadian Mathematical Bulletin, 14(1), pp. 61-63.
[91] Lindner CC, Mullin RC \& Stinson DR, 1983. On the spectrum of resolvable orthogonal arrays invariant under the Klein group $K_{4}$, Aequationes Mathematicae, 26, pp. 176-183.
[92] Lucas E, 1891. Théorie des nombres, Gauthier-Villars, Paris.
[93] Macmahon PA, 1960. Combinatory analysis, Chelsea Publishing Company, New York (NY).
[94] MacNeish HF, 1922. Euler squares, Annals of Mathematics, 23, pp. 221-227.
[95] Martin GE, 2001. Counting: The art of enumerative combinatorics, Springer, New York (NY).
[96] McKay BD, 1984. nauty, [Online], [Cited December 3rd 2009], Available from http://cs.anu.edu.au/~bdm/nauty/
[97] McKay BD, 1998. Isomorph-free exhaustive generation, Journal of Algorithms, 26, pp. 306-324.
[98] McKay BD, 2010. Latin squares, [Online], [Cited October $26^{\text {th }}$, 2010], Available from http://cs.anu.edu.au/~bdm/data/latin.html.
[99] McKay BD, Meynert A \& Myrvold W, 2007. Small Latin squares, quasigroups, and loops, Journal of Combinatorial Designs, 15, pp. 98-119.
[100] McKay BD \& Rogoyski E, 1995. Latin squares of order 10, The Electronic Journal of Combinatorics, 2, Note 3.
[101] McKay BD \& Wanless IM, 1999. Most Latin squares have many subsquares, Journal of Combinatorial Theory, Series A, 86, pp. 323-347.
[102] McKay BD \& Wanless IM, 2005. On the number of Latin squares, Annals of Combinatorics, 9, pp. 335-344.
[103] McLaurin SC \& Smith DD, 1989. Constructing transpose-orthogonal Latin squares, Journal of Combinatorial Theory, Series A, 51, pp. 221-226.
[104] Mendelsohn NS, 1971. Combinatorial designs as models of universal algebras, pp. 123132 in Tutte WT (Ed), Recent progress in combinatorics: Proceedings of the Third Waterloo Conference on Combinatorics, Academic Press, New York (NY).
[105] Mendelsohn NS, 1971. Latin squares orthogonal to their transposes, Journal of Combinatorial Theory, Series A, 11, pp. 187-189.
[106] Mills WH, 1972. Three mutually orthogonal Latin squares, Journal of Combinatorial Theory, Series A, 13, pp. 79-82.
[107] Mullin RC \& Németh E, 1969. On furnishing room squares, Journal of Combinatorial Theory, 7, pp. 266-272.
[108] Mullin RC \& Németh E, 1970. A construction for self orthogonal Latin squares from certain room squares, Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge (LA), pp. 231-226.
[109] Myrvold W, 2005. Negative results for orthogonal Latin squares of order 10, Journal of Combinatorial Mathematics and Combinatorial Computing, 29, pp. 95-105.
[110] NÉmeth E, 1969. A study of room squares, PhD Thesis, University of Waterloo, Waterloo.
[111] Neumann PM, 1979. A lemma that is not Burnside's, The Mathematical Scientist, 4, pp. 133-141.
[112] Norton HW, 1939. The $7 \times 7$ squares, Annals of Eugenics, 9, pp. 269-307.
[113] Owens PJ \& Preece DA, 1995. Complete sets of pairwise orthogonal Latin squares of order 9, Journal of Combinatorial Mathematics and Combinatorial Computing, 18, pp. 83-96.
[114] Parker ET, 1959. Construction of some sets of mutually orthogonal Latin squares, Proceedings of the American Mathematical Society, 10(6), pp. 946-949.
[115] Parker ET, 1959. Orthogonal Latin squares, Proceedings of the National Academy of Sciences, 45, pp. 859-862.
[116] Parker ET, 1963. Computer investigation of orthogonal Latin squares of order ten, Proceedings of Symposia in Applied Mathematics, 15, pp. 73-81.
[117] Parker ET, 1975. Nonexistence of a triple of orthogonal Latin squares of order 10 with group of order 25 - a search made short, Journal of Combinatorial Theory, Series A, 19, pp. 243-244.
[118] Pflugfelder HO, 1990. Quasigroups and loops: Introduction, Heldermann, Berlin.
[119] Pulleyblank WR, 1975. Mixed doubles table tennis tournaments, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics, Utilitas Mathematica Publishing Inc., Winnipeg, pp. 593-598.
[120] Read RC, 1978. Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations, pp. 107-120 in Alspach B, Hell P \& Miller DJ (Eds), Algorithmic aspects of combinatorics, North-Holland Publushing Company, Amsterdam.
[121] Roberts FS \& Tesman B, 2009. Applied combinatorics, $2^{\text {nd }}$ Edition, CRC Press, Boca Raton (FL).
[122] Robinson DF, 1981. Constructing an annual round-robin tournament played on neutral grounds, Mathematical Chronicle, 10, pp. 73-82.
[123] Roth RL, 2001. A history of Lagrange's theorem on groups, Mathematics Magazine, 74(2), pp. 99-108.
[124] Rotman JJ, 1984. An introduction to the theory of groups, Allyn and Bacon Inc., Boston (MA).
[125] Russel KG, 1980. Balancing carry-over effects in round robin tournaments, Biometrika, 67, pp. 127-131.
[126] Sade A, 1951. An omission in Norton's list of $7 \times 7$ squares, Annals of Mathematical Statistics, 22, pp. 306-307.
[127] SADE A, 1960. Produit direct-singulier de quasigroupes orthogonaux et anti-abéliens, Annales de la Société Scientifique de Bruxelles. Série I, 74, pp. 91-99.
[128] Shao JY \& Wei WD, 1992. A formula for the number of Latin squares, Discrete Mathematics, 110, pp. 293-296.
[129] Sloane N, 1995. The online encyclopedia of integer sequences, [Online], [Cited December 8th, 2009], Available from http://oeis.org.
[130] Stein CM, 1978. Asymptotic evaluation of the number of Latin rectangles, Journal of Combinatorial Theory, Series A, 25, pp. 38-49.
[131] Stein SK, 1957. On the foundations of quasigroups, Transactions of the American Mathematical Society, 85(1), pp. 228-256.
[132] Stellenbosch University, 2011. Rasatsha high performance computer, [Online], [Cited October 28th, 2011], Available from https://www0.sun.ac.za/hpc/ index.php?title=Main_Page.
[133] Stinson DR, 1984. A short proof of the nonexistence of a pair of orthogonal Latin squares of order six, Journal of Combinatorial Theory, Series A, 36, pp. 373-376.
[134] Stones D, 2010. The many formulae for the number of Latin rectangles, Electronic Journal of Combinatorics, 17, Article 1.
[135] Styan GPH \& Boyer C, 2009. Some comments on Latin squares and on Graeco-Latin squares, illustrated with postage stamps and old playing cards, Statistical Papers, 50, pp. 917-941.
[136] Tarry G, 1900. Le probleme des 36 officiers, Comptes Rendus Association Franqaise pour l'Advancement des Science, 29(2), pp. 170-203.
[137] Todorov DT, 1985. Three mutually orthogonal Latin squares of order 14, Ars Combinatoria, 20, pp. 45-48.
[138] Ullrich P, 2002. Officers, playing cards, and sheep, Metrika, 56, pp. 189-204.
[139] Wallis WD, 1979. Spouse-avoiding mixed doubles tournaments, Annals of the New York Academy of Sciences, 319, pp. 549-554.
[140] Wallis WD, 1983. The problem of hospitable golfers, Ars Combinatoria, 15, pp. 149-152.
[141] Wallis WD, 1984. Three orthogonal Latin squares, Congressus Numerantium, 42, pp. 69-86.
[142] Wallis WD, 1988. Combinatorial designs, Marcel Dekker, Inc., New York (NY).
[143] WANG SMP, 1978. On self-orthogonal Latin squares and partial transversals of Latin squares, PhD Thesis, Ohio State University, Columbus (OH).
[144] Wang SMP \& Wilson RM, 1978. A few more squares II, Congressus Numerantium, 21, p. 688.
[145] Weisner L, 1963. Special orthogonal Latin squares of order 10, Canadian Mathematical Bulletin, 6(1), pp. 61-63.
[146] Wells MB, 1967. The number of Latin squares of order eight, Journal of Combinatorial Theory, 3, pp. 98-99.
[147] Wikipedia Online Encyclopedia, 2010. Whist, [Online], [Cited October 29 ${ }^{\text {th }}, 2010$ ], Available from http://en.wikipedia.org/wiki/Whist.
[148] Whitelaw TA, 1988. Introduction to abstract algebra, $2^{\text {nd }}$ Edition, Blackie and Son Ltd, London.
[149] Wolfram Mathworld, 2009. Abelian, [Online], [Cited April 30 ${ }^{\text {th }}$, 2009], Available from http://mathworld.wolfram.com/Abelian.html
[150] Wolfram Research, 2010. Wolfram Mathematica 7, [Online], [Cited October 26 ${ }^{\text {th }}$, 2010], Available from http://www.wolfram.com/products/mathematica/index.html
[151] Yamamoto K, 1951. On the asymptotic number of Latin rectangles, Japanese Journal of Mathematics, 21, pp. 113-119.
[152] Yamamoto K, 1954. Euler squares and incomplete Euler squares of even degrees, Memoirs of the Faculty of Science, Kyūshū University, Series A, 8(2) pp. 161-180.
[153] Yamamoto K, 1961. Generation principles of Latin squares, Bulletin de l'Institut International de Statistique, 38, pp. 73-76.
[154] Zhu L, 1982. A short disproof of Euler's conjecture concerning orthogonal Latin squares, Ars Combinatoria, 14, pp. 47-55.
[155] Zhu L, 1984. A few more self-orthogonal Latin squares with symmetric orthogonal mates, Congressus Numerantium, 42, pp. 313-320.

## APPENDIX A

## Discrete mathematical preliminaries

## Contents

A. 1 Permutations ..... 135
A.1.1 Permutation cycles ..... 136
A.1.2 Conjugacy classes of permutations ..... 138
A. 2 Groups ..... 139
A.2.1 Basic definitions ..... 140
A.2.2 Group actions ..... 142

This appendix contains a number of notions from the field of abstract algebra which are used throughout this dissertation, especially in the enumeration algorithms presented in Chapter 4. In $\S$ A. 1 the notions of permutations, permutation cycles and conjugacy classes of permutations are reviewed. Permutation cycles allow for the classification of permutations into conjugacy classes according to their cycle structures, and the notion of conjugate permutations describe in what way permutations in the same conjugacy class may be mapped to one another. A method for determining all possible mappings between two permutations in the same conjugacy class is also presented. In $\S$ A. 2 a brief introduction to the field of group theory is given together with a number of basic definitions and examples, followed by a discussion on group actions. Two wellknown results concerning group actions are reviewed from the literature, and the important application of these results to enumerating classes of combinatorial objects and determining class sizes is illustrated by means of an example.

## A. 1 Permutations

This section contains a number of important mathematical prerequisites concerning permutations, most of which are used throughout this dissertation due to the fact that there is a strong relationship between the notions of permutations and Latin squares.

There are a number of different definitions for permutations in the combinatorial literature; see, for instance, Bóna [20, Definition 0.1], Dixon and Mortimer [48, p. 2] and Martin [95, p. 74].

Definition A.1.1 (Permutation) Given a set $S$ of cardinality $n$, a permutation of order $n$ is a one-to-one mapping from $S$ onto itself.

Hence a permutation of order $n$ may be used to rearrange a set of $n$ distinct, ordered objects [20]. Throughout this dissertation it is assumed (unless stated otherwise) that all permutations act upon the set $\mathbb{Z}_{n}$. The notation $p(i) \in \mathbb{Z}_{n}$ is used to denote the image of $i \in \mathbb{Z}_{n}$ under the permutation $p$. The image of a subset of $\mathbb{Z}_{n}$, say $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq \mathbb{Z}_{n}$ for some $k \leq n$, is denoted by $p(S)=\left\{p\left(s_{1}\right), p\left(s_{2}\right), \ldots, p\left(s_{k}\right)\right\}$. A permutation $p$ is lexicographically smaller than a permutation $q$, denoted by $p<q$, if $p(k)<q(k)$ for some $k \leq n$ and $p(i)=q(i)$ for all $i<k$.
A useful representation of a permutation $p$ involves a $2 \times n$ array in which the first row is a listing of the elements of $\mathbb{Z}_{n}$ in natural order and the second row is a listing of the elements of $p\left(\mathbb{Z}_{n}\right)$, and in which $i$ and $p(i)$ appear in the same column for all $i \in \mathbb{Z}_{n}$. It is customary (see, for instance, Dixon and Mortimer [48, p. 2] and Ledermann [89, p. 62]) to write this representation in the form

$$
p=\left(\begin{array}{cccc}
0 & 1 & \ldots & n-1 \\
p(0) & p(1) & \ldots & p(n-1)
\end{array}\right) .
$$

Provided that $p(i)$ is found below $i$ in this representation, the first row may be, in fact, written in any order [89, p. 63]. A permutation $p$ of order $n$ for which the image of $p(i)$ is $i$ for all $i \in \mathbb{Z}_{n}$ leaves the arrangement of a set of objects unchanged. This permutation is therefore called the identity permutation and is henceforth denoted by $e$.
Two notions that play especially important roles in most of the enumeration algorithms described in this dissertation is that of permutation cycles and conjugacy classes of permutations, which are discussed in detail in the next two subsections.

## A.1.1 Permutation cycles

The following important definition may be found in Bóna [20, p. 74] and Martin [95, p. 76] and allows for the classification of permutations into equivalence classes, as will be described in the next subsection.

Definition A.1.2 (Permutation cycles) $A k$-cycle of a permutation of order $n$ is an ordered $k$-tuple denoted by $\left(c_{0}, c_{1}, \ldots, c_{k-1}\right)$ for which $p\left(c_{i}\right)=c_{i+1}$ for all $0 \leq i \leq k-1$, where addition is performed modulo $k$.

For example, a 2 -cycle and a 3 -cycle of the permutation $p=\binom{01234}{34102}$ are $(0,3)$ and $(1,4,2)$, respectively. No distinction is made between the cycles $(1,4,2),(2,1,4)$ and $(4,2,1)$ since any one of these alternatives implies that the image of 1 is 4 , the image of 4 is 2 and the image of 2 is 1 . Hence $(0,3)$ and $(1,4,2)$ are the only cycles of $p$ and $p$ may be written in cycle notation [20, p. 74] as $(0,3)(1,4,2)$. An $n$-cycle of a permutation consists of all elements of $\mathbb{Z}_{n}$ and is also called a full-cycle, whereas a 1 -cycle is sometimes called a fixed point. A permutation is said to be of type $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ if it has $a_{i}$ cycles of length $i \in\{1,2, \ldots, n\}$, and the cycle structure of a permutation of type $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is denoted by $z_{1}^{a_{1}} z_{2}^{a_{2}} \ldots z_{n}^{a_{n}}$, where the symbol $z$ is simply a place holder. For simplicity, any factor $z_{i}^{a_{i}}$ in this notation for which $a_{i}=0$ is omitted for the sake of brevity. The permutation $p=\binom{0123456}{1032564}$, for example, has cycle structure $z_{2}^{2} z_{3}^{1}$ and is of type ( $0,2,1,0,0$ ) since it has two 2 -cycles and one 3 -cycle.
The cycle structure representative of a cycle structure $z_{1}^{a_{1}} z_{2}^{a_{2}} \ldots z_{n}^{a_{n}}$ is the lexicographically smallest permutation that exhibits the cycle structure. If $(a, b, c, d)$ is a cycle of a permutation, then it may be written as $\binom{a b c d}{b c d a}$ in regular permutation form. It is clear that this cycle would be represented in the lexicographically smallest way if $a<b<c<d$. Hence the elements of
each cycle of a cycle structure representative must appear in non-decreasing order when cycling over all elements of the cycle from the smallest element to the largest element. It is also easy to see that the cycles should appear in order of non-decreasing length. Hence given a cycle structure, say $z_{1}^{1} z_{2}^{2} z_{3}^{1}$, the cycles may be written in order of non-decreasing length, i.e
and the elements $0,1, \ldots, n-1$ may be filled into the empty spaces from left to right, resulting in the permutation

$$
(0)(1,2)(3,4)(5,6,7)
$$

or

$$
\binom{01234567}{02143675}
$$

in regular notation.
It is also useful to define a lexicographical ordering of cycle structures. The cycle structure $z_{1}^{a_{1}} z_{2}^{a_{2}} \ldots z_{n}^{a_{n}}$ is lexicographically smaller than the cycle structure $z_{1}^{b_{1}} z_{2}^{b_{2}} \ldots z_{n}^{b_{n}}$, denoted by $z_{1}^{a_{1}} z_{2}^{a_{2}} \ldots z_{n}^{a_{n}} \prec z_{1}^{b_{1}} z_{2}^{b_{2}} \ldots z_{n}^{b_{n}}$, if $a_{k}>b_{k}$ for some $k \leq n$ and $a_{i}=b_{i}$ for all $1 \leq i<k$. For instance, the cycle structure $z_{1}^{1} z_{2}^{2} z_{3}^{1}$ is lexicographically smaller than the cycle structure $z_{1}^{1} z_{2}^{1} z_{5}^{1}$. All possible cycle structures of permutations of order 5 are shown in Table A. 1 in lexicographical order, together with the cycle structure representative of each cycle structure.

| Cycle structure | Representative |
| :---: | :---: |
| $z_{1}^{5}$ | $\left(\begin{array}{llllll}0 & 1 & 3 & 3 & 4 \\ 0 & 1 & 3 & 4\end{array}\right)$ |
| $z_{1}^{3} z_{2}^{1}$ | $\left(\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 3\end{array}\right)$ |
| $z_{1}^{2} z_{3}^{1}$ | $\left(\begin{array}{llllll}0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 2\end{array}\right)$ |
| $z_{1}^{1} z_{2}^{2}$ | $\left(\begin{array}{llllll}0 & 1 & 3 & 3 & 4 \\ 0 & 2 & 4 & 3\end{array}\right)$ |
| $z_{1}^{1} z_{4}^{1}$ | $\left(\begin{array}{llllll}0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 1\end{array}\right)$ |
| $z_{2}^{1} z_{3}^{1}$ | $\left(\begin{array}{llllll}0 & 1 & 3 & 3 & 4 \\ 10 & 3 & 4 & 2\end{array}\right)$ |
| $z_{5}$ | $\left(\begin{array}{llllll}0 & 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 0\end{array}\right)$ |

Table A.1: The seven possible cycle structures of a permutation of order 5, together with the cycle structure representative of each cycle structure.

It may be observed from Table A. 1 that, when arranging the possible cycle structures of a permutation of a certain order lexicographically, the cycle structure representatives are also in lexicographical order. This observation is established in general in the following proposition.

Proposition A.1.1 If $p$ and $q$ are the cycle structure representatives of the cycle structures $z_{1}^{a_{1}} z_{2}^{a_{2}} \ldots z_{n}^{a_{n}}$ and $z_{1}^{b_{1}} z_{2}^{b_{2}} \ldots z_{n}^{b_{n}}$ respectively, and $z_{1}^{a_{1}} z_{2}^{a_{2}} \ldots z_{n}^{a_{n}} \prec z_{1}^{b_{1}} z_{2}^{b_{2}} \ldots z_{n}^{b_{n}}$, then $p<q$.

Proof: Since $z_{1}^{a_{1}} z_{2}^{a_{2}} \ldots z_{n}^{a_{n}} \prec z_{1}^{b_{1}} z_{2}^{b_{2}} \ldots z_{n}^{b_{n}}$, it follows that $a_{k}>b_{k}$ for some $k \leq n$ and $a_{i}=b_{i}$ for all $1 \leq i<k$. Hence (by definition of a cycle structure representative) all cycles of length $i$ for $1 \leq i<k$ are equal for $p$ and $q$, and so are the first $a_{k}-b_{k}$ cycles of length $k$. Hence $p(a)=\bar{q}(a)$ for all $0 \leq a \leq \sum_{i=1}^{k} a_{i}-b_{k}$. The next cycle of $p$ (the first cycle that is different from those of $q$ ) is also of length $k$, while the next cycle of $q$ is of length $k+1$. Without
loss of generality, these cycles may be written as $(0,1, \ldots, k-1)$ and $(0,1, \ldots, k)$, and for all $0 \leq a \leq k-2$ it follows that $p(a)=q(a)$. However, $p(k-1)=0$ and $q(k-1)=k$, and therefore $p<q$.

## A.1.2 Conjugacy classes of permutations

Consider an ordered list of objects $(a, b, c, d, e)$ and a permutation $p=\binom{01234}{34102}$ applied to it. The resulting rearrangement of the list may be found by indexing the list by means of $\mathbb{Z}_{5}$ (see Figure A.1(a)), rewriting the indices as their images under $p$ (as shown in Figure A.1(b)) and rearranging the objects in order for the indices again to be in natural order (as shown in Figure A.1(c)). From this it is clear that the object in position $i$ moves to position $p(i)$ if $p$ is applied to ( $a, b, c, d, e$ ).

$$
\left.\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 \\
\hline a & b & c & d & e
\end{array}\right)
$$

Figure A.1: Applying the permutation $p=\left(\begin{array}{lll}0 & 1 & 2\end{array} 34\right)$ to an ordered list $(a, b, c, d, e)$ of objects.
Now consider applying a second permutation, say $q=\binom{01234}{24031}$, to the list $(d, c, e, a, b)$, delivering a third rearrangement of the list $(a, b, c, d, e)$, namely the list $(e, b, d, a, c)$. In effect a composition of the permutations $p$ and $q$ has been applied to the list ( $a, b, c, d, e$ ), denoted by $q \circ p$. It is conventional to use the notation $q \circ p$ to denote the fact that $p$ is applied first and $q$ second (see Martin [95, p. 75]).
Since a permutation $p$ rearranges a set of objects such that the object in position $i$ moves to position $p(i)$, a second permutation $q$ applied to the resulting rearrangement will move the object in position $p(i)$ to position $q(p(i))$. The object in position $i$ of the initial arrangement therefore moves to position $q(p(i))$, and the composition of two permutations $p$ and $q$ is therefore given by

$$
q \circ p=\left(\begin{array}{cccc}
0 & 1 & \ldots & n-1 \\
q(p(0)) & q(p(1)) & \ldots & q(p(n-1))
\end{array}\right) .
$$

Consider, as an example, the composition
of the two permutations $p=\binom{01234}{34102}$ and $q=\binom{01234}{24031}$ in the above example. It may be found that 2 goes to 1 in $p$ while 1 goes to 4 in $q$, and therefore 2 goes to 4 in $q \circ p$, and so on. Applying $q \circ p=\binom{01234}{31420}$ to the list $(a, b, c, d, e)$ in the example above delivers the list $(e, b, d, a, c)$, as expected.
Given a permutation $p$, let $q$ be a permutation defined by $q(p(i))=i$ for all $i \in \mathbb{Z}_{n}$ and define the two permutations $r=q \circ p$ and $r^{\prime}=p \circ q$. Then $r(i)=q(p(i))=i$ for any $i \in \mathbb{Z}_{n}$ and therefore $q \circ p=e$ (the identity permutation). Also, for any $i, j \in \mathbb{Z}_{n}$, let $i=p(j)$. Hence $q(i)=j$ and $r^{\prime}(i)=p(q(i))=p(j)=i$ and $p \circ q=e$. Hence $q$ is the inverse permutation of $p$. The inverse permutation of a permutation $p$, denoted by $p^{-1}$, therefore has the property that if $p(i)=j$ for some $i, j \in \mathbb{Z}_{n}$, then $p^{-1}(j)=i$. It is also easy to show that $(p \circ q)^{-1}=\left(q^{-1} \circ p^{-1}\right)$. This is true since if $(p \circ q)(a)=p(q(a))=b$ for some $a, b \in \mathbb{Z}_{n}$, then $a=q^{-1}\left(p^{-1}(b)\right)=\left(q^{-1} \circ p^{-1}\right)(b)$.

The following definition provides a means of grouping permutations into equivalence classes called conjugacy classes, and the definition may also be found in Bóna [20, p. 80].

Definition A.1.3 (Conjugate permutation) A permutation $p$ of order $n$ is a conjugate permutation of a permutation $q$ of order $n$ if there exists a permutation $r$ of order $n$ such that $q=r \circ p \circ r^{-1}$, in which case $p$ and $q$ are in the same conjugacy class.

An even simpler classification of conjugate permutations is given by the following proposition.
Proposition A.1.2 ([20], Lemma 3.13) Two permutations are in the same conjugacy class if and only if they are of the same type.

Proof: Suppose $p$ and $q$ are conjugate permutations and suppose $r \circ p \circ r^{-1}=q$ for some permutation $r$. Let $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be any cycle of $p$. Hence $p\left(x_{i}\right)=x_{i+1}$ for all $1 \leq i \leq k$, where addition is performed modulo $k$. Then, since $q\left(r\left(x_{i}\right)\right)=r\left(p\left(r^{-1}\left(r\left(x_{i}\right)\right)\right)\right)=r\left(x_{i+1}\right)$, the sequence $\left(r\left(x_{1}\right), r\left(x_{2}\right), \ldots, r\left(x_{k}\right)\right)$ is a cycle in $q$. Hence the action of $r$ on $p$ preserves the cycles of $p$, and therefore $p$ and $q$ are of the same type.
Conversely, suppose two permutations $p$ and $q$ are of the same type $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Then for each cycle $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ in $p$ there is a corresponding cycle $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ in $q$ of the same length. Define a permutation $r$ such that $r\left(x_{i}\right)=y_{i}$ for all $1 \leq i \leq k$, where addition is performed modulo $k$. Then $r\left(p\left(r^{-1}\left(y_{i}\right)\right)\right)=r\left(p\left(x_{i}\right)\right)=r\left(x_{i+1}\right)=y_{i+1}=q\left(y_{i}\right)$. If this is done for each cycle of $p$, then it follows that $r \circ p \circ r^{-1}=q$.

The size of a conjugacy class is determined in the following proposition.
Proposition A.1.3 If two $n$-permutations $p$ and $q$ are both of type $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then the number of permutations $r$ for which $r \circ p \circ r^{-1}=q$ is $\prod_{i=1}^{n} a_{i}!i^{a_{i}}$.

Proof: Since the action of $r$ on $p$ above preserves the cycle structure of $p$, each of the $a_{i}$ cycles of length $i$ in $p$ are mapped to one of the $a_{i}$ cycles of length $i$ in $q$. This may be done in any order, i.e. in $a_{i}$ ! distinct ways. Consider mapping the cycle $\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ in $p$ to the cycle $\left(y_{1}, y_{2}, \ldots, y_{i}\right)$ in $q$. The permutation $r$ may be chosen such that $r\left(x_{1}\right)=y_{j}$ for any $1 \leq j \leq i$ in $i$ distinct ways. Then, since $q\left(y_{j}\right)=y_{j+1}$ (where addition is performed modulo $i), r\left(p\left(r^{-1}\left(y_{j}\right)\right)\right)=r\left(p\left(x_{1}\right)\right)=r\left(x_{2}\right)=y_{j+1}$. Continuing in this fashion it may be shown that $r\left(x_{3}\right)=y_{j+2}, r\left(x_{4}\right)=y_{j+3}$, and so on, mapping the entire cycle of $p$ to the cycle of $q$. Hence each of the $a_{i}$ cycles of length $i$ in $p$ may be mapped to one of the $a_{i}$ cycles of length $i$ in $q$ in $i^{a_{i}}$ distinct ways. Taking the product over all cycles in $p$ delivers the desired result.

## A. 2 Groups

Abstract algebra is to a large extent concerned with the notion of combining two elements of a set by some rule or process in order to obtain a unique new element of the set as a result [69, p. 1]. This rule of combination is most commonly referred to as composition [89, p. 1], denoted by the symbol ' 0 ', and is defined to be a binary operator in view of the fact that it combines two elements [19, p. 271]. The notation $a \circ b=c$ is used to denote the composition of two elements $a$ and $b$, where $c$, often called the product of $a$ and $b$ [89, p. 2], is the result after composition. This notion leads to the important notion of a group.

## A.2.1 Basic definitions

Given a set of elements $S$ and a binary operator $\circ$, if $a, b, a \circ b \in S$, then $S$ is closed with respect to $\circ[75$, p. 27]. The binary operator $\circ$ is said to be associative if $(a \circ b) \circ c=a \circ(b \circ c)$ for any three elements $a, b, c \in S$, and if there is an element $e \in S$ such that $e \circ a=a \circ e=a$ for all $a \in S$, the element $e$ is known as an identity element of $S$. If $e$ is an identity element of $S$ and $a \in S$, then an element $a^{-1} \in S$ for which $a \circ a^{-1}=a^{-1} \circ a=e$ is known as an inverse element of $a$ in $S$.
The notions defined above are often referred to as laws and may be found in most textbooks on group theory (see, for instance, Allenby [4, $\S 5.3]$ and Herstein $[75, \S 2.1]$ ). These laws may be used to define various combinatorial structures, the following of which represents the basis of group theory and which may be found in most books (or chapters) on group theory (see, for instance, Allenby [4, Definition 5.3.1] and Biggs [19, §13.1]).

Definition A.2.1 (Group) $A$ set $G$ consisting of $n$ distinct elements that are closed with respect to a binary operator $\circ$ forms a group of order $n$, denoted by $(G, \circ)$, if
(1) $\circ$ is associative,
(2) there exists an identity element in $G$, and
(3) for each element of $G$ there exists an inverse element.

An example of a group is the set of the integers $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ together with the binary operation of addition modulo $n \in \mathbb{N}$, denoted by $\left(\mathbb{Z}_{n},+\right)$. Since the remainder after division by $n$ is one of the integers $0,1, \ldots, n-1$, the set $\mathbb{Z}_{n}$ is closed with respect to addition modulo $n$. To show that this set forms a group, it may be shown that the required laws are satisfied. Since ordinary addition is associative, addition modulo $n$ is also associative, and the element 0 has the property that $a+0=a(\bmod n)$ and is therefore an identity element. Furthermore, for each element $a \in \mathbb{Z}_{n}$ there exists a unique element $b$ such that $a+b=0(\bmod n)$, given by $b=n-a$ in ordinary integer arithmetic. It is also easy to see that the group $\left(\mathbb{Z}_{n},+\right)$ exists for any $n \in \mathbb{N}$.
A simple representation of any group may be found via its so-called Cayley table.
Definition A.2.2 (Cayley Table) Given a group ( $G, \circ$ ) of order n, the Cayley table (such named due to investigations of such tables by Arthur Cayley [36]) of ( $G, \circ$ ) is an $n \times n$ table in which the rows and columns are indexed by the elements of $G$ and for which the intersection of the row indexed by a and the column indexed by $b$ contains the product $a \circ b$.

The Cayley table of the group $\left(\mathbb{Z}_{4},+\right)$ is given in Table A.2. It is customary to write the binary operator of the group in the top-left corner of the table (see Allenby [4, p. 64] and Grimaldi [67, p. 778]). The row and column indicating the indexing symbol of each row and column in the table are often referred to as the borders of the Cayley table [41, p. 15].

The following two definitions underpin the connection between Latin squares and group theory. These definitions may be found in Hall [69, p. 7] and Dénes and Keedwell [41, p. 16].

Definition A.2.3 (Quasigroup) A set $Q$ closed with respect to a binary operator $\circ$ is a quasigroup of order $n$, denoted by $(G, \circ)$, if $a \circ b=c$ has a unique solution in $Q$ when any two of $a$, $b$ or $c$ are specified in $Q$.

| + | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 2 | 3 | 0 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 0 | 1 | 2 |

Table A.2: The Cayley table of the group $\left(\mathbb{Z}_{4},+\right)$.

Definition A.2.4 (Loop) $A$ loop of order $n$ is a quasigroup $(Q, \circ$ of order $n$ containing an identity element.

An example of a quasigroup (that does not form a group) is $\left(\mathbb{Z}_{n}, \Theta\right)$, where $\Theta$ is a well-defined binary operator such that $a \Theta b=a-b(\bmod n)$ for any $a, b \in \mathbb{Z}_{n}$. To prove that $\left(\mathbb{Z}_{n}, \Theta\right)$ forms a quasigroup, let $a \Theta x=b$ and $a \Theta y=b$ for $a, b, x, y \in \mathbb{Z}_{n}$. Hence $a-x=b(\bmod n)$ and $a-y=b(\bmod n)$. Subtracting the second relation from the first delivers $y-x=0(\bmod n)$, and, since $x$ and $y$ were elements of $\mathbb{Z}_{n}$ to begin with, $x=y$. The Cayley table of the quasigroup $\left(\mathbb{Z}_{4}, \Theta\right)$ is given in Figure A.3.

| $\Theta$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 3 | 2 | 1 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 1 | 0 | 3 |
| 3 | 3 | 2 | 1 | 0 |

Table A.3: The Cayley table of the quasigroup $\left(\mathbb{Z}_{4}, \Theta\right)$.
Consider the set $P_{n}$ of all permutations of order $n$ together with the binary operation of composition of permutations. It is clear, by definition, that the set $P_{n}$ is closed with respect to the composition of permutations. The following theorem shows that $\left(P_{n}, \circ\right)$ is, in fact, a group commonly known as the symmetric group of order $n$, denoted by $S_{n}$ (see Bóna [20, p. 73] and Dixon and Mortimer [48, p. 2] for proofs of this theorem).

Theorem A. 2.1 ([89], Theorem 1) The set $P_{n}$ of all permutations of order $n$ forms a group with respect to the composition of permutations.

Throughout this dissertation it is assumed that all elements of the group $S_{n}$ are permutations of the set $\mathbb{Z}_{n}$, except where otherwise stated. In the case where the elements of $S_{n}$ are permutations of some other set $S$, this group is referred to as the symmetric group on $S$.

Consider the set $\{0,2\}$, which is a subset of $\mathbb{Z}_{4}$, together with the binary operation of addition modulo 4. It is easily verified that $\{0,2\}$ is closed with respect to addition modulo 4 , that associativity holds, that 0 is an identity element and that 2 has an inverse, i.e. itself. Hence $\{0,2\}$ forms a smaller group within the group $\left(\mathbb{Z}_{4},+\right)$. A formal definition of such a smaller group follows in general and may be found in, for instance, Armstrong [11, §5] and Budden [30, §14].

Definition A.2.5 (Subgroup) Given a group $(G, \circ)$, a subset $H$ of $G$ forms a subgroup ( $H, \circ$ ) of $(G, \circ)$ if $(H, \circ)$ forms a group.

Consider the subset $\{2\}$ of $\mathbb{Z}_{4}$ together with the binary operation of addition modulo 4 . Clearly this is not a group since $\{2\}$ is not closed with respect to addition modulo 4 . By performing addition modulo 4 the element 0 is obtained, and the group $(\{0,2\},+)$ is generated by this action. A formal definition of such an occurrence follows and a similar definition may be found in [4, Definition 5.6.11].

Definition A.2.6 (Generating set) Given a group ( $G, \circ$ ), a subset $H$ of $G$ is a generating set of another subset of $G$, denoted by $\langle H\rangle$, if any element of $\langle H\rangle$ may be written as a sequence (possibly with repetitions) of compositions of elements of $H$. If $(\langle H\rangle, \circ)$ forms a group, then $H$ generates the subgroup $(\langle H\rangle, \circ)$ of $(G, \circ)$.

It is known for a group $(G, \circ)$ that any subset of $G$ generates a subgroup of $(G, \circ)$ (see, for instance, Allenby [4, Theorem 5.6.12]). This gives rise to the following corollary which provides a means of finding a generating set for a group.

Corollary A.2.1 If $a$ and $b$ are elements of a group $(G, \circ)$ which do not appear together in any subgroup of $(G, \circ)$ except for $(G, \circ)$ itself, then $\{a, b\}$ generates $(G, \circ)$.

## A.2.2 Group actions

A group of particular interest when dealing with Latin squares is the symmetric group of order 6, namely $S_{3}$. Consider the six symmetries of the equilateral triangle shown in Figure A.2. If $T_{1}$ is regarded as the initial triangle, then $T_{2}$ and $T_{3}$ are the two distinct rotations of it, and $T_{4}$, $T_{5}$ and $T_{6}$ are reflections of it through the three axes shown. Equivalently the six symmetries of the equilateral triangle represent the six different ways of labelling the corners by using three distinct symbols.


Figure A.2: The six symmetries of the equilateral triangle.
Let $\theta$ be a mapping defined by $\theta\left(T_{i}\right)=T_{j}$ if $T_{j}$ is a clockwise rotation of $T_{i}$. Hence $\theta$ may be seen as a rotation operator and $\theta\left(T_{1}\right)=T_{2}$, for example. Note also that $\theta^{2}\left(T_{1}\right)=T_{3}$, for example, and that $\theta^{3}\left(T_{i}\right)=T_{i}$ for any $1 \leq i \leq 6$. Hence $\theta^{3}$ is an identity mapping, henceforth denoted by $\epsilon$. Define also the mapping $\phi$ by $\phi\left(T_{i}\right)=T_{j}$ if $T_{j}$ is a reflection of $T_{i}$ through the vertical axis. For example, $\phi\left(T_{1}\right)=T_{5}$. Therefore $\phi$ may be seen as a reflection operator. Note that, for example, $\phi\left(T_{3}\right)=T_{4}$ and $\phi^{2}\left(T_{i}\right)=T_{i}$ for any $1 \leq i \leq 6$, so that $\phi^{2}=\epsilon$.

Furthermore, it may be noted that $\epsilon\left(T_{1}\right)=T_{1}, \theta\left(T_{1}\right)=T_{2}, \theta^{2}\left(T_{1}\right)=T_{3}, \theta\left(\phi\left(T_{1}\right)\right)=T_{4}, \phi\left(T_{1}\right)=$ $T_{5}$ and $\theta^{2}\left(\phi\left(T_{1}\right)\right)=T_{6}$. Each operation in the set $\left\{\epsilon, \theta, \theta^{2}, \theta \phi, \phi, \theta^{2} \phi\right\}$ therefore corresponds to a different permutation of the symmetric group $S_{3}$, and since the composition of two mappings is equivalent to the composition of the corresponding permutations, this set forms a group with respect to composition of mappings, known as the dihedral group $D_{3}{ }^{1}$.
The act of the dihedral group $D_{3}$ transforming (i.e. rotating and/or reflecting) the equilateral triangle is an example of a group action, of which a formal definition follows and may be found in Holt [76, §2.2] and Martin [95, §37].

Definition A.2.7 (Group action) Given a group $(G, \bullet)$ and a set $S$, a group action of $(G, \bullet)$ on $S$ is a mapping $\alpha$ from $G$ to the symmetric group on $S$ such that $\alpha(a) \circ \alpha(b)=\alpha(a \bullet b)$, where o represents the composition of permutations.

Hence each element of $G$ is associated with a permutation of $S$. The image of an element $s \in S$ under the permutation $\alpha(g)$ is commonly denoted by $s^{g}$, and $s^{g} \in S$ may be seen as the result of $g$ acting upon $s$. Since $\alpha(g)$ is a permutation, $s^{g}=t^{g}$ implies that $s=t$ for $g \in G$ and $s, t \in S$. Note, however, that $s^{g}=s^{h}$ for $s \in S$ and $g, h \in G$ does not necessarily imply that $g=h$.
Since $a \bullet b=c$ for any $a, b, c \in G$ implies that $\alpha(a) \circ \alpha(b)=\alpha(c)$ (where $\circ$ denotes the composition of permutations), it follows that $\left(s^{a}\right)^{b}=s^{c}=s^{a \bullet b}$ for any $s \in S$. If $e$ is the identity element of $G$, then $a \bullet e=e \bullet a=a$ implies that $\alpha(a) \circ \alpha(e)=\alpha(e) \circ \alpha(a)=\alpha(a)$ and $\alpha(e)$ is the identity permutation of $S$. Therefore, $s^{e}=s$ for any $s \in S$. Also, if $g^{-1}$ is the inverse element of $g$, then $g^{-1} \bullet g=e$ implies $\alpha\left(g^{-1}\right) \circ \alpha(g)=\alpha(e)$ and therefore $\alpha\left(g^{-1}\right)=\alpha(g)^{-1}$. Hence, if $s^{g}=t$, then $s=t^{g^{-1}}$ for any $s, t \in S$.

Consider, for example the six triangles shown in Figure A.2. The dihedral group $D_{3}$ acts on the set $\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right\}$ by means of the rotation operator $\theta$, the reflection operator $\phi$ and the identity operator $\epsilon$. For instance, the element $\epsilon \in D_{3}$ is associated with the permutation

$$
\binom{T_{1} T_{2} T_{3} T_{4} T_{5} T_{6}}{T_{1} T_{2} T_{3} T_{4} T_{5} T_{6}}
$$

while the element $\theta$ is associated with the permutation

$$
\binom{T_{1} T_{2} T_{3} T_{4} T_{5} T_{6}}{T_{2} T_{3} T_{1} T_{6} T_{4} T_{5}}
$$

It may be verified that each element of $D_{3}$ is associated with a permutation of this set.
For a group $(G, \circ)$ acting on a set $S$, define a relation $\sim$ on $S$ such that $s \sim t$ for all $s, t \in S$ if and only if there exists an element $g \in G$ such that $s^{g}=t$. It is easy to see that the classes formed by the relation $\sim$ form equivalence classes, a formal definition of which may be found in Holt [76, Definition 2.14] and Biggs [19, p. 304].

Definition A.2.8 (Orbits) For a group ( $G, \circ$ ) acting on a set $S$, the equivalence classes formed by the relation $\sim$ on $S$ for which $s \sim t$ if and only if there exists an element $g \in G$ such that $s^{g}=t$ for all $s, t \in S$ are called orbits of the group action.

Two elements are therefore in the same equivalence class or orbit if and only if one may be transformed via a group action into the other. In particular, the orbit of a specific element

[^25]$s \in S$ is given by the set $s^{G}=\left\{s^{g} \mid g \in G\right\}$, and it may be noted that $s^{G}=t^{G}$ if and only if $s \sim t$. As noted before, $s^{g}=s^{h}$ for $s \in S$ and $g, h \in G$ does not necessarily imply that $g=h$. If $g \neq h$, then $s^{g \circ h}=s$, and the element $g \circ h \in G$ fixes the element $s$ (note that $g$ is also not necessarily equal to $h^{-1}$ ). This gives rise to the following definition which may also be found in Holt [76, Definition 2.15] and Biggs [19, p. 305].

Definition A.2.9 (Stabiliser) In a group ( $G, \circ$ ) acting on a set $S$, the set $G_{s}=\{g \in G \mid$ $\left.s^{g}=s\right\}$ is called the stabiliser of $s \in S$.

Given an element $g \in G$, the set $S_{g}=\left\{s \in S \mid s^{g}=s\right\}$ may also be defined and has been called the fix of $g$ by Martin [95, p. 91] and the fixed point set of $g$ by Holt [76, p. 19]. Furthermore, it may be noted that $\sum_{g \in G} S_{g}=\sum_{s \in S} G_{s}$.
The following two lemmas are extremely useful in the enumeration of various combinatorial designs, as noted by Holt $[76, \S 10.5]$. The proofs of these lemmas are neither long nor intricate, but are not given here since they rely on concepts not within the scope of this dissertation. See, for instance, Holt [76, pp. 19-20], Martin [95, pp. 90-92] and Biggs [19, pp. 307-310] for the proofs of these lemmas.

Lemma A.2.1 (Orbit-stabiliser theorem) If a group ( $G, \circ$ ) acts on a set $S$, then $|G|=$ $\left|s^{G}\right|\left|G_{s}\right|$ for any $s \in S$. Hence the order of the group is equal to the cardinality of any orbit multiplied by the order of the stabiliser of any element in that orbit.

A result that follows directly from the proof of the above lemma is that $\left|G_{s}\right|=\left|G_{t}\right|$ if $s^{G}=t^{G}$. In other words, the sizes of the stabilisers of elements in the same orbit are equal.
The following lemma, according to Rotman [124, p. 52], should be credited to Cauchy and Frobenius, since Frobenius first proved it by utilising some ideas put forth by Cauchy ${ }^{2}$.

Lemma A.2.2 (Cauchy-Frobenius Lemma) If a group ( $G, \circ$ ) acts on a set $S$, then the number of orbits on $S$ is $\frac{1}{|G|} \sum_{g \in G} S_{g}=\frac{1}{|G|} \sum_{s \in S} G_{s}$. Hence the number of orbits equals the average number of elements fixed by each element of the group.

As an example of the usefulness of these lemmas (as well as the concepts of group actions, orbits and stabilisers) in the enumeration of combinatorial designs, the isomorphism classes of a special type of triple system is considered here. A transitive triple $\|a, b, c\|$ on a set $S$ is a 3 -set of ordered pairs of the form $\{(a, b),(a, c),(b, c)\}$ for $a, b, c \in S$. A directed triple system (DTS) on a set $S$ is a set of transitive triples such that any ordered pair on $S$ appears in exactly one triple, and $|S|$ is said to be the order of the triple system. The set of triples $\{\|0,1,2\|,\|1,0,3\|,\|3,2,0\|,\|2,3,1\|\}$ is an example of a DTS on $\mathbb{Z}_{4}$. An isomorphism $\alpha$ of a DTS $D$ of order $n$ on the set $S$ is a permutation of $S$ which replaces each triple $\|a, b, c\|$ by $\|\alpha(a), \alpha(b), \alpha(c)\|$. It is easy to verify that an isomorphism applied to a DTS again produces

[^26]another (not necessarily distinct) DTS. An isomorphism of a DTS of order $n$ is therefore a group action of the group $S_{n}$ on the set of all DTS of order $n$. The orbits of this group action are called isomorphism classes. Hence if a DTS $D$ may be transformed into a DTS $D^{\prime}$ by an isomorphism, then they are in the same isomorphism class. The stabilisers of this group action are called automorphism groups, and the automorphism group of a DTS $D$, denoted by $A(D)$, are those isomorphisms which map $D$ onto itself.
There are three isomorphism classes (orbits) of DTS of order 4 (see Colbourn and Rosa [39, p. 433]), and three representatives of these classes (one from each class) are given in Table A.4.

| $D_{1}$ | $D_{2}$ | $D_{3}$ |
| :---: | :---: | :---: |
| $\\|0,1,2\\|$ | $\\|0,1,2\\|$ | $\\|0,1,2\\|$ |
| $\\|1,0,3\\| \\|$ | $\\|1,0,3\\|$ | $\\|1,3,0\\|$ |
| $\\|3,2,0\\| \\|$ | $\\|2,3,0\\|$ | $\\|2,0,3\\|$ |
| $\\|2,3,1\\|$ | $\\|3,2,1\\|$ | $\\|3,2,1\\|$ |

Table A.4: Three non-isomorphic directed triple systems of order 4
It is easily verified (by applying all possible permutations to each DTS) via Mathematica, for instance, that these three DTS are, in fact, non-isomorphic. Since it is of such a small order, the computing time is insignificant. The stabilisers of $D_{1}, D_{2}$ and $D_{3}$ (i.e. their automorphism groups), namely $A\left(D_{1}\right), A\left(D_{2}\right)$ and $A\left(D_{3}\right)$, may also easily be computed by considering all possible permutations. Lemma A.2.1 may now be employed in order to enumerate the total number of distinct DTS of order 4. It is found that $\left|A\left(D_{1}\right)\right|=\left|A\left(D_{2}\right)\right|=\left|A\left(D_{3}\right)\right|=4$ and therefore that each of the three orbits has size $\left|S_{4}\right| /\left|A\left(D_{1}\right)\right|=24 / 4=6$. There are therefore no more than 18 distinct DTS of order 4 . This result may also easily be verified computationally via Mathematica. Finally, since the sizes of the stabilisers of the elements in a single orbit are equal, all DTSs of order 4 have automorphism groups of order 4. Therefore, the number of orbits may be determined by Lemma A.2.2 as $\frac{1}{\left|S_{n}\right|} \sum_{D \in \mathcal{D}} A(D)=\frac{1}{24} \cdot 18 \cdot 4=3$, where $\mathcal{D}$ is the set of all DTS of order 4 .

## APPENDIX B

## A repository of SOLS, SOLSSOMs and MOLS

Contents
B. 1 RC-paratopism class representatives of SOLS ..... 147
B. 2 RC-paratopism class representatives of SOLSSOMs ..... 150
B. 3 Main class representatives of $k$-MOLS ..... 152

The following three sections contain lists of representatives from classes of SOLS, SOLSSOMs and MOLS. Below each SOLS, SOLSSOM or MOLS the size of the corresponding autotransformation group is given, and this value may be used together with the expressions in §5.2.2 and $\S 5.3 .3$ in order to determine the size of various other equivalence classes (as discussed in Chapter 5) of which the corresponding SOLS, SOLSSOM or MOLS is a member.

## B. 1 RC-paratopism class representatives of SOLS

| $n=4$ | $n=5$ | $n=7$ | $n=8$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0231 | 02143 | 0214365 | 0214365 | 0214563 | 0234561 | 02145673 | 02145673 | 02345671 | 02345671 |
| 3102 | 31402 | 3160542 | 3160524 | 3105624 | 6105243 | 31670245 | 31702456 | 31460752 | 41607352 |
| 1320 | 43210 | 4526013 | 4526031 | 4621035 | 1420635 | 43257016 | 46257301 | 65207413 | 53270146 |
| 2013 | 24031 | 5643201 | 5643102 | 6053241 | 2653014 | 20736154 | 57630124 | 74136205 | 67431025 |
| 24 | 10324 | 6351420 | 6352410 | 2536410 | 3516402 | 65314702 | 75364210 | 27654130 | 76154203 |
|  | 20 | 1032654 | 2401653 | 1460352 | 4362150 | 76402531 | 13076542 | 13072546 | 14726530 |
|  |  | 2405136 | 1035246 | 5342106 | 5041326 | 17523460 | 20413765 | 50721364 | 20513764 |
|  |  | 42 | 6 | 6 | 42 | 54061327 | 64521037 | 46513027 | 35062417 |
|  |  |  |  |  |  | 1 | 8 | 7 | 56 |

$$
n=9
$$

021436587021436587021436587021436587021436587021436587021436587021436587021436587021436587021436587 318507264318064725316078245316578420317502864315874260310257846318764250315784062310274856316278405 472061835472508361452801763482167305482067135432058716452803761472851306472013856472068135452617830 207358146280357416260387154570321864576328041578361024576382014560382741587360421586317240580362741 180642753107643852105742836605842731658140723607142835763148205706143825760148235758640321768143052 746185320764185203738165402748605213764285310786205143148675320187605432238605714207185463204785316 853724601835721640874523610837014652835714602843527601805714632854027613854271603835702614837051624 635810472653812074683254071154283076140853276150683472284560173635218074146852370164853072645820173 564273018546270138547610328263750148203671458264710358637021458243570168603527148643521708173504268

021436587021436587021436587021436587021436587021436587021436587021436587021436785021436785021436785 318027456316807425318607254318760425318720465316820754316507842314508762318654207310857246315872046 432810765582173064572184036562178034562871034582071463542873016562783014452718036472068351432761850 564378012170384256180362745180324756180364752178364205204358761206357841285367140548371062564380127 750641823765248310763548120705841362705148326705148326785642130783641250507142863687240513607548231 287165340208615743207815463273685140237615840237615840160785324140875326763085412136725804178205364 875204631834751602845273601834257601874253601840753612837124605857214603874503621854103627843057612 603582174453062871436051872456012873456082173463582071658210473638120475136820574263584170280614573 146753208647520138654720318647503218643507218654207138473061258475062138640271358705612438756123408

$$
\begin{array}{llllllllllll}
1 & 4 & 8 & 4 & 4 & 4 & 4 & 4 & 1 & 1 & 1
\end{array}
$$

021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785 314867520317052846314058267318264057315784206315782406315784206315784026317508462314687052317628504 402758361462587103402671853432687510432051867432057861432057861432057861462810357482703516462187350 560382147578314062578324106574301862587362041587361042587361042587361240586372041540378261548370162 678041253603748251683740521685740231608147352608143257608142357608142357758143206756140823785043216 243175806284605317237865410703825146870625134846275130876205134876205134134765820168025437134865027 837504612845271630850217634857013624143578620173508624143578620143578602870254613837512640870512643 185623074136820574146583072260158473264810573264810573264810573264810573203681574205861374653204871 756210438750163428765102348146572308756203418750624318750623418750623418645027138673254108206751438 $\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785 316870524318670254314602857316728450315628407317254806316728054315870246318267504316527804316807542 472058163532061847562087314502863147572104863502781364572804316572608134532671840532870416542713860 567384201174308526157328046164387502148367250185367240154360827157364802160384257104358267264380157 758241036685742310685741203675041823786540321763148052785143260708542361756148032785643021657048321 283605417867215403806175432837105264237085146278605413207685143263085417407825316467085132708125436 835127640240857631478513620458270631804753612854012637840517632840157623845710623853712640835271604 140563872406583172243860571283514076653812074640823571638052471684213570683052471648201573180654273 604712358753124068730254168740652318460271538436570128463271508436721058274503168270164358473562018 $\begin{array}{lllllllllll}1 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ 021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785 316758042316580427315867024318604257315874206318507264318627540314750862316587024310824567314708526 572810463542678130542703861542781036572168034502768341562871304582017436532078461582673140582167340 247361850207354861270384156286357401206357841246310857605384217647328510687354102765380214760382451 608143527670843512608541237765048312783041562875042136786142053876142053875643210673541802638541207 834075216863715204867125403470125863834605127184675023147205836738605124740215836138705426203875164 183527604158027643453078612807513624457283610457283610834750621150283647153802647847012653875014632 450682371485102376184652370134862570168520473630851472453068172205864371468120573406258371146250873 765204138734261058736210548653270148640712358763124508270513468463571208204761358254167038457623018 $\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ 021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785 315072864314807526315627840316078452316758402317864250310527846317528046318674520314678520314687520 562784130562180437532860417502814367572184063582071463542813067562873401562087314502163847502163847 746358201740351862740381256740351826758310246764352801865370124846310257857302146847352016847350216 653841027657248013867143502857643201807642531875240316673048512653047812685143207758240361758042361 478205316836725140186705324178265034463875120436185027187265403178205364473815062176085234186275034 804127653283074651258074631235187640184023657208517634438702651480751623204758631483517602473518602 180563472108562374604258173684520173230561874143608572254681370235684170146520873265804173265804173 237610548475613208473512068463702518645207318650723148706154238704162538730261458630721458630721458 $\begin{array}{lllllllllll}\mathbf{8} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{6} & \mathbf{1} & \mathbf{1} & \mathbf{2} & \mathbf{2}\end{array}$

021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785 314768502310678524310687524314257806316780452317052864514680327518674230513678240513872460513824067 502614837532761840532761840502768341532067841562807431652078413642158307642153807642153807672153804 857320416846352017846350217876314052865372014846320157786324501785362014785312064765318042764318520 738542061758240361758042361738641520708543126735648012805743162837240561837240516837240516837540216 176805243174085236184275036283105467240815367480175326247165830360715842370865421380765124380765142 483157620483517602473518602450872613457128603253781640173802654104587623204781653204587631245087631 265083174265804173265804173165083274183654270108264573438251076253801476168504372158604273158602473 640271358607123458607123458647520138674201538674513208360517248476023158456027138476021358406271358

| $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{6}$ | $\mathbf{1}$ | 4 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

021436785021436785021436785021436785021436785021436785021436785021436785021436785021436785021453786 516827034518674230518674230518627430517823460518623047513867420513687420513867420514863027318064527 642178503642158307602158347672158304682170534652170834642570831642570831642570813682751403432786105 764381250785361024785361024784361052764358012784362510768314052786314052768314052768324510285371064 835240167837240561837240561837540261835641207835741206875241306875241306875243106857640132156247830 380715426360715842364715802360215847376205841376805421386105247368105247386105247370185246670835241 278053641204587613240587613205784613208714653247018653204758613204758613204758631243078651847520613 153604872153802476153802476143802576140582376160584372130682574130862574130682574136502874564108372 407562318476023158476023158456073128453067128403257168457023168457023168457021368405217368703612458
$\begin{array}{llllllllll}\mathbf{2} & \mathbf{4} & \mathbf{2} & \mathbf{4} & \mathbf{2} & \mathbf{2} & \mathbf{2} & \mathbf{4} & \mathbf{4} & \mathbf{4} \\ \mathbf{2}\end{array}$
021453786021453786021453786021453786021453786021453786021453786021453786021453786021453786021453786 317560842317268054315208467316582407315820467318527064317806425316507842314876052318267054310286457 452786310462837501472681530472830561482567103472168305452731860682730451652784103672830415672518304 208374165576314820584376021604378125640372851605384127608314257168374025268307415265371840268371540 680241537608742135650847312768241350708246315750246831835647012270148563130542867157048362705642831 873605421740685312867135204187065234874615032864735210780265341834615207847165230846725103483705162 145827603853021647238710645853704612153708624247801653174528603507281634573018624583104627857024613 536018274184506273106524873540126873236184570583610472263180574453826170486230571430682571134860275 764132058235170468743062158235617048567031248136072548546072138745062318705621348704516238546137028

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

021453786021453786021453786021453786021453786021453786021453786021456783021456783021456783021456783 316278540316287450314876250314560827314562807310562847318726540317268450316572840314672850318627450 602781435602718534672180543682137450682137450682137450652870413462837105432168507482167305452168307 258367014258376041507362814740386215740386215704386215867304251576310824578314062547308162547301862 730846152837642105153248067875641032875641032875641032170548362608742531687240135765843021705843126 847625301740865312486715302168275304168075324168075324786215034240185367804735216803715246863075241 485130627584130627840527631503728641503728641543728601543182607835071642153807624258034617280734615 164502873165024873268034175256804173256804173256804173204631875184503276265083471136280574136280574 573014268473501268735601428437012568437210568437210568435067128753624018740621358670521438674512038

| $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{8}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

021456783021456783021456783021456783021456783021456783021456783021456783021456783021456783021456783 318627450318627450318627450318627450318627450318627450317628450315678420314708256314572860318527460 452168307452163807452163807452863017452861307452863107452863017432587061482617305482167305452168307 540371862547308162540378162540371862547308162540371862540371862608324517608372514647308152647301852 705843126705841326705841326705148326705143826705148326805147326160743852267540831765843021705843126 863705241860735241867035241867035241863075241867035241768035241874015236136085427803715246863075241 287034615283074615283704615283714605280734615283704615283714605587231604875123640258034617280734615 136280574136280574136280574136280574136280574136280574136280574243860175543861072136280574136280574 674512038674512038674512038674502138674512038674512038674502138756102348750234168570621438574612038 021456783021456783021456783021456783021456783021456783021456783021456783021456783021456783021456783 318527460318527460318527460318527460318527460315064827315678240317528460316508427317860542318724065 452163807452163807452863017452863107452863107482710536402783561452863017472180536452687130432687510 647308152640378152640371852647301852640371852648327150658307124640371852785321064704312856765308124 705841326705841326705148326705148326705148326756842301763842015805147326650847312673548201807142356 860735241867035241867035241860735241867035241873105462847165302768035241264735801840125367180265437 283074615283704615283714605283074615283704615230578614284031657283714605837214650238704615254873601 136280574136280574136280574136280574136280574164283075130524876136280574148063275586231074643510872 574612038574612038574602138574612038574612038507631248576210438574602138503672148165073428576031248

| $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{1}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{8}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

021456783021456783021456783021456783021456783021456783021456783021456783021456783023156784023156784 317608245314680257314687250316208547316287450316208457316287450317280546315867240317620845318574206 562830417572038461502738461682731450602738541682731540602873541642873150682170534142768503432761850 205387164658307124658370124258370164258370164258370164257318064576301824867312405485317026506328417 756243801867142305867142305867142305867142305867142305863742105205148367208543167670843251781642035 438175026743865012743865012743865012743865012743865012748065312468725031734685012734085162870415362 873014652285713640285013647475083621584013627574083621584130627834517602543708621851402637145087623 684521370130524876130524876130524876130524876130524876130524876180634275150234876268531470264803571 140762538406271538476201538504617238475601238405617238475601238753062418476021358506274318657230148

| 8 | 2 | 4 | 2 | $\mathbf{8}$ | $\mathbf{4}$ | $\mathbf{1 6}$ | $\mathbf{6}$ | $\mathbf{6}$ | $\mathbf{8}$ | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

023156784023156784023156784023156784023156784023156784023156784023156784023156784023156784023156784 315687420315467820415263807415263807415863027415863027415863207415863207418267305415863027415287360 432870156472683501582617430582617430582617430582617430582617430582617430542671830582417306562718403 607328541781324065674308251604378251604372851604372851604372851604372851674308251647302815684301257 861743205157840236750842316750842316730248516750248316730248516750248316756843012750648231750843126 748265013806735142806735142876035142876035142876035142876035142876035142830725146876035142837465012 580412637234508617138074625138704625158724603138724605158704623138704625185034627231784650208574631 156034872568012473261480573261480573261480375261480573261480375261480573261480573168520473146032875 274501368640271358347521068347521068347501268347501268347521068347521068307512468304271568371620548

| 16 | 8 | 4 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

023156784023156784023156784023156784023156784023156784023156784023156784023156784023156784023416785 415287360417580263415863027415863027415863207417683502416280537410783562415263807415863207315627840 562718403532604817572618430572618430572618430682517430672018453652478130682517430682517430562078413 684302517648372105604372851604372851604372851508362147587302146581307246574308261504372861701384526 750843126871243056830247516850247316830247516236740815760841325736841025750842316750248316876541032 837065241786015432786035142786035142786035142841075263234765801874265301806735142876035142480235167 208471635154837620158724603138724605158704623375408621805473612148032657138074625138704625138752604 146530872205468371261480375261480573261480375150824376158634270205614873261480573261480573654803271 371624058360721548347501268347501268347521068764231058341527068367520418347621058347621058247160358

| $\mathbf{1 6}$ | $\mathbf{8}$ | $\mathbf{4}$ | $\mathbf{1 2}$ | $\mathbf{4}$ | $\mathbf{8}$ | $\mathbf{4}$ | $\mathbf{8}$ | $\mathbf{1 6}$ | $\mathbf{8}$ | $\mathbf{1 2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

023416785023416785023416785023416785023416785023416785023416785023456781023456781023456781 314760852417082536415783026514683027514832067514638027517823460315780462315687402415863207 572184360182507463182604537652178403832570416862753401832671504632874105732061845582617430 805327146576321840504378162786324510761328540781324560764358012784312056681374520601372854 637548201651840327678140253835740162675143802657840312685140237206541837207148356750248316 481635027864735201847265301247065831386705124370185246340785126870165324148235067876035142 150872634208173654251837640371802654248057631248071653208537641158237640854702613138704625 268051473340658172360521874408251376150684273136502874156204873541608273560813274264180573 746203518735264018736052418160537248407261358405267138471062358467023518476520138347521068

| 8 | 4 | 4 | 72 | 4 | 12 | 144 | 12 | 4 | 144 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## B. 2 RC-paratopism class representatives of SOLSSOMs

$$
n=4 \quad n=5 \quad n=7
$$

0231012302143043120456123023156406123450345612 3102103231402410233160542214603521465303164025 1320230143210302411024365342560130251644621503 2013321024031124302503614165324045036215413260 2410324231046215430506241352604136052431 $20 \quad 4632051630415264310521206354$ 5341206451032613542062530146 42 42

$$
n=8
$$

074623150123456707462315012345670746231501234567074623150123456707462315012345670746231501234567 516432701047265351643270104736525164327014502673516432701540267351643270145036725164327015403672 102567342405137610256734240513761025673425741306102567342476130510256734257413061025673424761305 420376513750624142037651375062414203765130476251420376513067524142037651304762514203765130675241 753041264216073575304126431607257530412642165730753041264215673075304126431657207530412643156720 261705435632701426170543563270142617054356327014261705435632701426170543563270142617054356327014 347150626574310234715062657421033471506267053142347150626704315234715062670521433471506267042153 $\begin{array}{llllllllllllllllllll}63521407 & 73615420 & 63521407 & 72615430 & 63521407 & 73610425 & 63521407 & 73510426 & 63521407 & 72610435 & 63521407 & 72510436\end{array}$ $\mathbf{8} 8$ 8 4 8

074623150123456707462315012345670746231501234567074623150123456707462315012345670746231501234567 5164327015472603516432701547360251643270154026731516432701540367251643270154726035164327015473602 102567342416037510256734241603751025673424751306102567342475130610256734240613751025673424061375 420376513761524042037651376152404203765130576241420376513057624142037651376052414203765137605241 753041264205673175304126430567217530412642165730753041264316572075304126421567307530412643156720 261705435632701426170543563270142617054356327014261705435632701426170543563270142617054356327014 347150626074315234715062607421533471506267043152347150626704215334715062607431523471506260742153 635214077350142663521407725014366352140773610425635214077261043563521407735104266352140772510436

074623150123456707462315012345670671234501234567067123450123456706712345012345670671234501234567 516432701547260351643270154736025146327010362754514632701037265451463270104726535146327010472653 102567342405137610256734240513766025743123051476602574312305147660257431240513766025743124061375 420376513750624142037651375062417203615436507142720361543750614272036154375061427203615437605142 753041264216573075304126431657201530472642170635153047264216073515304726421607351530472642150736 261705435632701426170543563270142764051357416023276405135641702327640513563170242764051356317024 347150626074315234715062607421533417506265743201341750626574320134175062657432013417506265743201 635214077361042563521407726104354352160774625310435216077462531043521607736254104352160773526410 8 8 8 8 8

## 8

067123450123456706712345012345670671234501234567067123450123456706712345012345670671234501234567 514632701047265351463270104627535146327010472653514632701047265351463270104627535146327010472653 602574312405137660257431240513766025743124051376602574312406137560257431240513766025743124051376 720361543750624172036154365471027203615437546102720361543764510272036154365472017203615437546201 $\begin{array}{llllllllll}15304726 & 42160735 & 15304726 & 42170635 & 15304726 & 42160735 & 15304726 & 42150736 & 15304726 & 42170635 \\ 15304726 & 42160735\end{array}$ 276405135632701427640513573164202764051356317420276405135631742027640513573264102764051356327410 341750626574310234175062657032413417506265703241341750626570324134175062657031423417506265703142 435216077361542043521607736250144352160773625014435216077352601443521607736150244352160773615024 56
$\begin{array}{ll}8 & 8\end{array}$ 8

8
8
067123450123456706712345012345670671234501234567067123450123456706712345012345670671234501234567 514632701047265351463270104637525146327010473652514632701047365251463270104726535146327010472653 602574312406137560257431240513766025743124051376602574312406137560257431240573166025743124067315 720361543764520172036154365472017203615437546201720361543764520172036154375462017203615437645201 153047264215073615304726431706251530472643160725153047264315072615304726427601351530472642750136 276405135632741027640513573264102764051356327410276405135632741027640513563214702764051356321470 341750626570314234175062657021433417506265702143341750626570214334175062651037423417506265103742 435216077351602443521607726150344352160772615034435216077251603443521607736150244352160773516024 8 8 8 8

06712345012345670671234501234567 51463270104736525146327010473652 60257431240573166025743124067315 72036154375462017203615437645201 15304726437601251530472643750126 27640513563214702764051356321470 34175062651027433417506265102743 43521607726150344352160772516034

8
8

$$
n=9
$$

021436785086723541021436785063287154021436785034127856021436785064827153021453786068574312 315628407814567230310678524614523087514680327318076542513867420615034287318064527617430285 572104863642078315532761840342018765652078413482503761642570813452108736432786105872651430 148367250750386124846352017250371846786324501105362487768314052801376524285371064546312807 786540321267841053758240361821746530805743162270648315875243106230741865156247830735148026 237085146378615402174085236738165402247165830763285104386105247748615302670835241401285763 804753612523104687483517602107854623173802654857431620204758631127583640847520613324807651 653812074431250876265804173586430271438251076546810273130682574583260471564108372183026574 460271538105432768607123458475602318360517248621754038457021368376452018703612458250763148 $\begin{array}{ccccc}\mathbf{2} & \mathbf{4} & \mathbf{6} & \mathbf{4} & \mathbf{2}\end{array}$
021453786046718235021453786065824137021453786074268135021456783076581324021456783067128435 316582407413207856316287450614752083314876250710432586317608245715836402314687250618072543 472830561632154087602718534542687301672180543402853761562830417652704831502738461782601354 604378125721386504258376041876301254507362814248316057205387164587310246658370124106354287 768241350105842763837642105258043716153248067635147802756243801830142567867142305270543816 187065234874625310740865312427135860486715302823675410438175026164025783743865012821435760 853704612280573641584130627103278645840527631157084623873014652348257610285013647453287601 540126873358061472165024873380516472268034175386501274684521370203468175130524876345816072 235617048567430128473501268731460528735601428561720348140762538421673058476201538534760128 $\begin{array}{ccccc}\mathbf{4} & \mathbf{2} & \mathbf{2} & \mathbf{8} & \mathbf{4}\end{array}$
021456783064728135021456783064728135021456783047168235021456783063278145023156784067438125 316287450615872043316287450615872043317280546410853762315867240610752834315687420618573042 602738541452601387602873541452601387642873150702431586682170534302567481432870156782654301 258370164786354201257318064786354201576301824184326057867312405275384016607328541456301287 867142305270543816863742105270543816205148367653247801208543167756841203861743205375042816 743865012821435760748065312821435760468725031831675420734685012827415360748265013834125760 584013627103287654584130627103287654834517602275084613543708621184023657580412637103287654 130524876348016572130524876348016572180634275368502174150234876438106572156034872240816573 475601238537160428475601238537160428753062418526710348476021358541630728274501368521760438

023156784058461327023156784056874231023156784065724831023416785064821357023416785034127856 415287360517630482415863027518432706415263807610437285315627840618754032514683027318076542 562718403872154036572618430682751043682517430502861743562078413482503761652178403482503761 $\begin{array}{llllllllll}684302517 & 461378205 & 604372851 & 847316520 & 574308261 & 748316502 & 701384526 & 875360214 & 786324510 & 105362487\end{array}$ 750843126635742810850247316735140862750842316236148057876541032250647183835740162270648315 837065241104825763786035142421605387806735142471685320480235167143075826247065831763285104 208471635340287651138724605270583614138074625827503614138752604307218645371802654857431620 146530872283016574261480573304268175261480573384052176654803271536182470408251376546810273 371624058726503148347501268163027458347621058153270468247160358721436508160537248621754038

$$
16 \quad 12
$$ 16

12
72
023416785034127856023416785061278453023416785034127856023456781078563412023456781061237854 514638027315082764517823460610437825517823460316078245315780462714628305415863207610482735 862753401452601387832671504102584736832671504462503187632874105842716530582617430102574386 781324560106378245764358012245306187764358012105382764784312056567380124601372854245308167 $\begin{array}{llllllll}657840312 & 280746531 & 685140237 & 738042561 & 685140237 & 270846513 & 206541837 & 621847053 \\ 750248316 & 387046521\end{array}$ 370185246721865403340785126874625310340785126783265401870165324386075241876035142724865013 248071653873254610208537641487153602208537641821754630158237640435102687138704625873150642 136502874568430172156204873523861074156204873548610372541608273103254876264180573538621470 405267138647513028471062358356710248471062358657431028467023518250431768347521068456713208

## 12

4
144
12
4
023456781056781234
415863207517430826 582617430672854013 601372854748316502 750248316835142760 876035142104625387 138704625280573641 264180573321068475 347521068463207158 144

## B. 3 Main class representatives of $k$-MOLS

| $(\boldsymbol{n}, \boldsymbol{k})=(\mathbf{3}, \mathbf{2})$ | $(\boldsymbol{n}, \boldsymbol{k})=(\mathbf{4}, \mathbf{2})$ | $(\boldsymbol{n}, \boldsymbol{k})=(\mathbf{4}, \mathbf{3})$ | $(\boldsymbol{n}, \boldsymbol{k})=(\mathbf{5}, \mathbf{2})$ | $(\boldsymbol{n}, \boldsymbol{k})=(\mathbf{5}, \mathbf{3})$ | $(\boldsymbol{n}, \boldsymbol{k})=(\mathbf{5}, \mathbf{4})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 012012 | 01230123 | 012301230123 | 0123401234 | 012340123401234 | 01234012340123401234 |
| 201120 | 10322301 | 103223013210 | 2041313042 | 204131304242301 | 20413130424230134120 |
| 120201 | 23013210 | 230132101032 | 1304220413 | 130422041334120 | 13042204133412042301 |
| $\mathbf{4 3 2}$ | 32101032 | 321010322301 | 4230134120 | 423013412013042 | 42301341201304220413 |
|  | $\mathbf{1 1 5 2}$ | $\mathbf{5 7 6 0}$ | 3412042301 | 341204230120413 | 34120423012041313042 |
|  |  | $\mathbf{8 0 0}$ | $\mathbf{2 0 0 0}$ | $\mathbf{1 2 0 0 0}$ |  |

$(n, k)=(7,2)$
01234560123456012345601234560123456012345601234560123456012345601234560123456012345601234560123456 10652434201365105624342016352015634560134260145231305642204163513052641062543520436140316255604213 42013651065243540163260153241206543304261556013422054163130526420416353501624406251356042136410532 36105246534012461032554360124560312641502343602153546021426051335160426340215361504264105321352064 65340123610524653201423405613654021153026432450614610235351604242605134615032243610513520642546301 53426012456130236450136521406341205425613025361045462310645230156341202456301654123025463013265140 24561305342601324516015642035432160236450114526306231504563412064523015234160135062432651404031625 6
$\begin{array}{lll}6 & 126 & 48\end{array}$
$2352 \quad 24$
3528

$$
(n, k)=(7,3)
$$

$(n, k)=(7,4)$

$$
(n, k)=(7,5)
$$

012345601234560123456012345601234560123456012345601234560123456012345601234560123456 204156313062454250631204156313062454250631361502420415631306245425063136150246534102 130624520415633615024130624520415633615024425063113062452041563361502442506315462310 425063136150246534102425063136150246534102546231042506313615024653410254623102041563 361502442506315462310361502442506315462310653410236150244250631546231065341021306245 653410254623102041563653410254623102041563130624565341025462310204156313062454250631 546231065341021306245546231065341021306245204156354623106534102130624520415633615024 1764

3528
12348

$$
(n, k)=(7,6)
$$

012345601234560123456012345601234560123456 204156313062454250631361502465341025462310 130624520415633615024425063154623106534102 425063136150246534102546231020415631306245 361502442506315462310653410213062452041563 653410254623102041563130624542506313615024 546231065341021306245204156336150244250631 98784

Since there are 2165 main classes of 2 -MOLS of order 8 , representatives of these main classes are not listed here.

$$
(n, k)=(8,3)
$$

012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 104627356401537246107253104627356401537242507613106254736507123442307156106423757605321434507126 230154761032674557462031230154761032674567451032230167451032547654761032650217344051237613746052 547061237265043165023714547061237265043126013754324076517416032517652403345071265237064125461730 325706144610725323751406325706144610725353726401471503263240765123516740437106523460172567325401 763410522756310412675340763410522756310415672340745630125674210360425371723560412716540340613275 456273015347162030546172456273015347162030145276653721042351674076043215271654036542713056072314 671532403574201674310625671532403574201674360125567412304765301235170624564732101374605272150643 16 24 32

96

012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 103276542301547632106745103276542301547632106745103276542301547632106745104267536307214547605312 250413764052761357462031260713455042671375642031250413764052761357462031250431761056723452176043 321067455647023174653102321054764756023156473102524067313617024564753120673014257214035616453270 564702313210674565741320657402313210765447561320361702455240673175641302365702412570641374312605 475620137465310210327654746520136574310210325476475620137465310210327654726150344635170223067451 746531026574132023015476475631027465132023017654746531026574132023015476541673023741562065720134 637154201736205446570213534167201637204564750213637154201736205446570213437526105462307130541726 32

## 16

64
96

012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 307416252301547654602713703516242301547654602713607231547401532636402715105432767301265464105723 560724317014635245320176560724317014635245320176430652711074365227510436760521343064127557326041 146037524657021337061425156073424657021337061425741063253256074113025674346017254675013212573406 435102765746203162157304435102765746203162157304275104365647201360347152421706532450731675462130 274650131572360473516240274650131572360473516240564720136532710474651320253670415712640330741652 751263046235714010743652341267056235714010743652153476024765123052176043637154021546372026057314 623571403460172526475031627431503460172526475031326517402310647545763201574263106237504143610275
$128 \quad 64 \quad 192 \quad 32$
012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 104726532405137637506241301276452301547612306754301267542301547612307645301267542301547612307645 240513763750624142160735250413765042763147562013270613454052673175642013270613454052673175642013 375062414216073556327014425067131637025475641302627054131736024556471302627054131736024556471302 421607355632701465743102163702544250671364753120153402765240761347563120153402765240761347563120 563270146574310273615420574620317465310230127645746520316574310230125476465720317465310223015476 657431027361542010472653746531026574132023015476465731027465132023016754746531026574132030126754 736154201047265324051376637154203716204556470231534176203617205464750231534176203617205464750231 5376 64 32

128

012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 405267132405137612307645406251732507163412307456307421565602374164501273103276542301547632106745 230154761032674557462031230167451032547654761032250716341074632543617052470152361047265374560321 524076313617025474651320624073513416072547652103145063722735061435472106321067454756023165743102 173602546270541335146702371504266240735173516240436107253450127672165430235604715632701447651230 361720454351760260723154745630125674210360425371723650416517240320746315564720136574310210327654 647513027564312023015476153726047351624026043715561274037246513017053624657431027465132023015476 756431205746203146570213567412304765301235170624674532104361705256320741746513203210674556472013

012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 103276547401532647106235103276542301547632106745103276542301547674106325103276544701523674106325 740153261032765432560741470152361047265374560321470152361047265323560471470152361032765423560471 471062353256074165743102741063253256074156743012741063253256074156472013741063252356047156472013 325607415647201323651470235604715632701447651230235604715632701432651740235604715647201332651740 564720136574310210327654564720136574310210327654564720136574310210327654564720136574310210327654 657431022365147074015326657431027465132023015476657431027465132047015236657431023265174047015236 236514704710623556472013326517404710623565472103326517404710623565743102326517407410632565743102

012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 103276543201574623106475103276543201574647106235107436523201574647106235107436527401532623106475 740153261047265347560231740153261047265332560741230154761047265332560741230154761032765447560231 231064757456032156472013231064757456032156743012321067457456032156743012321067454756023156472013 325607415632701474651320325607415632701423651470475602315632701423651470475602315647201374651320 564720136574310210327654564720136574310210327654564720136574310210327654564720136574310210327654 657431024765123032015746657431024765123074015326653271044765123074015326653271042365147032015746 476512302310647565743102476512302310647565472103746513202310647565472103746513203210674565743102

012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 107436522301547674106325105432762506713434601725105432767506231434601725106437252607541334701652 320157461047265323560471260573143064127543710652260573141064372543710652260754133470165262157304 471062353256074156472013347016524257031675362041347016524351027675362041347016524351027675326140 745603215632701432651740436107251675304262475130436107252635704162475130435102765746203126075413 564720136574310210327654623750415712640310543276623750415712640310543276574620316215730410643725 653271047465132047015236751624036341572057026314751624036247513057026314621573047532614057462031 236514704710623565743102574261307430265126157403574261303470165226157403753261401064372543510276 64

64
128
3840

012345670123456701234567012345670123456701234567012345670123456701234567012345670123456701234567 405276132504137632106745506234711604723572401653306254717604123512407653406253712604173562407153 230154761032765457462031630127457032165436745012230167451032765456743012230167451032765456743012 123067544657021374653102124076534517032667352104124076534517032667352104624071533517042617352604 564702313210674565741320471503263260547123516740471503263260547123516740371504264260537173516240 371620457361540210327654347650122745610350123476547630126745210330125476547630126745210330125476 756413026475312023015476253761046351274014067235653721042351674074061235153726047351624024061735 647531205746203146570213765412305476301245670321765412305476301245670321765412305476301245670321 32

012345670123456701234567012345670123456701234567012345670123456701234567 207463511605372434501276105432767506231462301745104572367506231462301745 650731244072635153617042260573141064372557462031260754131064372557462031 345012765731064265472103347016524351027626075413347016524351027626075413 463207153540217672165430436107252635704175143602576103242635704175143602 731650426257140320746315623750415712640334657120625430715712640334657120 526174037416523017053624751624036247513010726354431627056247513010726354 174526302364701546320751574261303470165243510276753261403470165243510276

$$
(n, k)=(8,4)
$$

$$
(n, k)=(8,5)
$$

012345670123456701234567012345670123456701234567012345670123456701234567 104726532405137637506241421607351047265324051376375062414216073556327014 240513763750624142160735563270142405137637506241421607355632701465743102 375062414216073556327014657431023750624142160735563270146574310273615420 421607355632701465743102736154204216073556327014657431027361542010472653 563270146574310273615420104726535632701465743102736154201047265324051376 657431027361542010472653240513766574310273615420104726532405137637506241 736154201047265324051376375062417361542010472653240513763750624142160735

$$
(n, k)=(8,6)
$$

012345670123456701234567012345670123456701234567 104726532405137637506241421607355632701465743102 240513763750624142160735563270146574310273615420 375062414216073556327014657431027361542010472653 421607355632701465743102736154201047265324051376 563270146574310273615420104726532405137637506241 657431027361542010472653240513763750624142160735 736154201047265324051376375062414216073556327014 75264

$$
(n, k)=(8,7)
$$

01234567012345670123456701234567012345670123456701234567 10472653240513763750624142160735563270146574310273615420 24051376375062414216073556327014657431027361542010472653 37506241421607355632701465743102736154201047265324051376 42160735563270146574310273615420104726532405137637506241 56327014657431027361542010472653240513763750624142160735 65743102736154201047265324051376375062414216073556327014 73615420104726532405137637506241421607355632701465743102 677376

## APPENDIX C

## Contents of the accompanying compact disc

In this appendix a brief description of the contents of the compact disc included with this dissertation is given. The compact disc contains computer code of all enumeration algorithms presented in this dissertation, and this code enables the user to reproduce the main results of the dissertation. All code was written using the programming language C , and details on the compilation and usage of the computer code are provided on the compact disc. The compact disc contains the following five directories:

Enumeration of RC-paratopism classes. This directory contains four subdirectories, named "SOLS", "SOLSSOMs (generated from SOLS)", "SOLSSOMs (generate from symmetric Latin squares)" and "Symmetric Latin squares of odd order", which in turn contain computer code for generating RC-paratopism class representatives of SOLS, SOLSSOMs (using two different approaches) and symmetric Latin squares of odd order, respectively.

Enumeration of main classes of MOLS. This directory contains computer code for generating main class representatives of $k$-MOLS of order $n$.

Enumeration of other classes. This directory contains two subdirectories, named "SOLS", "SOLSSOMs" and "MOLS", which contain computer code for determining the numbers of various other classes of SOLS and SOLSSOMs, respectively, using the methods presented in §4.5.

SOLSSOMs of order 10. This directory contains computer code of a procedure which tests whether or not SOLS of order 10 satisfy two necessary conditions for admitting common orthogonal mates with their transposes. The procedure establishes the non-existence of SOLSSOMs and 3 -MOLS containing SOLS and their transposes.
nauty24r1. This directory contains all the necessary code for version 2.4 of the computer program nauty, the latest version available from [96].

Repository. In this directory text files are provided which contain RC-paratopism class representatives of SOLS, SOLSSOMs and symmetric Latin squares.


[^0]:    ${ }^{1}$ See $[88, \S 10]$ for a discussion on magic squares.
    ${ }^{2}$ Two Latin squares of order $n$ are said to be orthogonal if their superimposition yields $n^{2}$ distinct ordered pairs, as was the requirement for $n=6$ in Euler's 36 officers problem.

[^1]:    ${ }^{3}$ Latin squares which are orthogonal to their transposes
    ${ }^{4}$ The non-existence proof for $n=6$ is considerably more complicated than for $n=2$ and $n=3$. This has led to a number of alternative proofs for the case $n=6$ over the years. The author was involved in establishing a

[^2]:    very simple graph theoretic proof of the non-existence of a SOLS of order 6 [31].
    ${ }^{5}$ A mixed-doubles tennis tournament in which married couples take part, but may not oppose nor be partnered with their spouses.
    ${ }^{6}$ It is shown later in this dissertation that there is no SOLSSOM of order 10.

[^3]:    ${ }^{1}$ This chapter contains references to a number of notions from group theory, including quasigroups, loops, the Cayley table of a group, subgroups, permutations, symmetric groups, dihedral groups, generating sets of groups and group actions. For the definitions of and further discussions on these notions, the reader is referred to $\S$ A.2.1.

[^4]:    ${ }^{2}$ It is well known that finite fields (also known as Galois fields) are extremely useful in the construction of various types of combinatorial designs, as discussed in most books on (or containing chapters on) combinatorial designs. This notion is not discussed in detail in this dissertation; detailed discussions on the construction and application of finite fields (which includes the notions of irreducible polynomials and the division algorithm for polynomials) may, however, be found in Grimaldi [67, §17] and Wallis [142].

[^5]:    ${ }^{3}$ A Latin square $\boldsymbol{L}$ of order $n$ is unipotent if $\boldsymbol{L}(i, i)=k$ for all $i \in \mathbb{Z}_{n}$ and some $k \in \mathbb{Z}_{n}$.

[^6]:    ${ }^{4}$ Two groups $(G, \circ)$ and $(H, \bullet)$ are isomorphic if $|G|=|H|$ and there exists a one-to-one mapping $\alpha$ from $G$ to $H$ such that $\alpha(a \circ b)=\alpha(a) \bullet \alpha(b)$ for $a, b \in G$. Table 2.1 gives the isomorphism between $\{\iota, \tau, \rho, \tau \rho, \gamma, \tau \gamma\}$ and $D_{3}$, where the image of each conjugate operation is the corresponding permutation given below it.
    ${ }^{5}$ See, for instance, Hall [69, p. 81] and Rotman [124, p. 142] for a definition of this product of groups.

[^7]:    ${ }^{6}$ Dénes and Keedwell describe the method of prolongation for $k=1$ in [41, p. 39] and the more general version in [42, p. 103-104]. For $k=1$ this process has been called a 1-extension by Yamamoto [153] and a bordering procedure by Colbourn and Rosa [39, p. 16].

[^8]:    ${ }^{1}$ Participants of a round-robin tournament may in general also be referred to as teams.

[^9]:    ${ }^{2}$ Such a Latin square is known as a row-complete Latin square (see, for instance, Dénes and Keedwell [41, §2.3]).
    ${ }^{3}$ Whist is a so-called trick-taking playing card game similar to bridge [147].

[^10]:    ${ }^{4}$ It may be noted that Euler's conjecture is a special case of the MacNeish conjecture. If $n=2(\bmod 4)$, then $n$ is an odd multiple of 2 and $n$ therefore must be of the form $2^{1} \prod_{i=1}^{q} p_{i}^{r_{i}}$ where $p_{i} \neq 2$ is prime and $r_{i} \in \mathbb{N}$ for all $i=1, \ldots, q$. The MacNeish conjecture states that a MOLS of order $n=2(\bmod 4)$ can only contain $\min \left\{2^{1}, p_{1}^{r_{1}}, p_{2}^{r_{2}}, \ldots, p_{q}^{r_{q}}\right\}-1=1$ Latin square.

[^11]:    ${ }^{5}$ A near-difference matrix is a special case of a quasi-difference matrix, a general definition of which may be found in Beth et al. [18, p. 550].

[^12]:    ${ }^{6}$ It should be noted, however, that self-orthogonal quasigroups have also been called anti-abelian by Sade [127].

[^13]:    ${ }^{7}$ A quasigroup (or group) ( $G, \circ$ ) is Abelian if $a \circ b=b \circ a$ for all $a, b \in G$.

[^14]:    ${ }^{8}$ Stein himself made no explicit reference to SOLS, only to quasigroups with so-called orthogonal complements, a definition of which may be found in Dénes and Keedwell [41, p. 175].

[^15]:    ${ }^{9}$ See Burger et al. [31] for a very simple graph theoretic proof of the non-existence of a SOLS of order 6.

[^16]:    ${ }^{1}$ See $\S$ A. 1 for the definitions of permutation cycles and conjugate permutations.

[^17]:    ${ }^{2}$ A Latin rectangle is a $k \times n$ array in which each symbol from a set of $n^{2}$ symbols appears exactly once in each row and at most once in each column. A more formal definition is given later in this chapter.

[^18]:    ${ }^{3}$ A system of distinct representatives $(S D R)$ of a family of sets $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is an $n$-tuple ( $s_{1}, s_{2}, \ldots, s_{n}$ ) for which $s_{i} \in S_{i}$ for all $1 \leq i \leq n$ and $s_{i} \neq s_{j}$ for $i \neq j$.

[^19]:    ${ }^{1}$ Recall that $\boldsymbol{L}(i, j)=k$ implies that $\left({ }^{-1} \boldsymbol{L}\right)^{T}(j, k)=i$.

[^20]:    ${ }^{2}$ It follows by Lemma A.2.1 that the RC-autoparatopism groups of the members of an RC-paratopism class have the same size.

[^21]:    ${ }^{3}$ The SOLS and symmetric Latin squares that are used here to enumerate SOLSSOMs are available in a

[^22]:    number of text files on the compact disc accompanying this dissertation. Latin squares are referred to in the text above in the order in which they appear in these text files.
    ${ }^{4}$ A Latin square is of diagonal type $1^{d_{1}} 2^{d_{2}} \ldots n^{d_{n}}$ if it contains $d_{i}$ symbols that each appear $i$ times on the diagonal of the Latin square, where the term $i^{d_{i}}$ is omitted if $d_{i}=0$. A unipotent Latin square of order $n$, for example, is of type $n^{1}$, while an idempotent Latin square of order $n$ is of type $1^{n}$.

[^23]:    ${ }^{5} \mathrm{An}$ isotopy class of $k$-MOLS of order $n$ is a $\left(\pi_{r}^{(0,1, \ldots, k-1)}, \pi_{c}^{(0,1, \ldots, k-1)}, \pi_{s}^{(0)}, \pi_{s}^{(1)}, \ldots, \pi_{s}^{(k-1)}\right)$-transformation class.

[^24]:    ${ }^{6}$ Another tool provided by the computer program nauty allows the user to test whether or not two graphs are isomorphic. By Theorem 4.4.1 this tool may be used to test whether two Latin squares are in the same $\sigma$-transformation class for any transformation type $\sigma$.

[^25]:    ${ }^{1}$ See Budden [30, §13] for a complete discussion of dihedral groups, including the group $D_{3}$.

[^26]:    ${ }^{2}$ In spite of this there still seems to be some confusion as to the name of Lemma A.2.2. It has been called Burnside's Lemma by Martin [95, p. 92], the Frobenius-Burnside Lemma by McKay et al. [99] and the CauchyFrobenius Lemma by Holt [76, p. 20] and Rotman [124, p. 52]. Neumann [111], however, seems to be the most outspoken about the true identities of the persons who should receive credit for this lemma, namely Cauchy and Frobenius, and he summarises his reasons for the mistake of calling it Burnside's Lemma in his paper entitled $A$ lemma that is not Burnside's [111]. Neumann's paper, as well as the remark by Rotman, may stand as motivation for calling this lemma (in this dissertation, at least) the Cauchy-Frobenius Lemma.

