
 

 

THE EFFECT OF TGF-β ISOFORMS ON PROGENITOR CELL RECRUITMENT 

AND DIFFERENTIATION INTO CARDIAC AND SKELETAL MUSCLE 

 

Elske Jeanne Schabort 

 

 

 

 

 

 

Dissertation presented for the degree of Doctor of Physiological Sciences 

at the University of Stellenbosch 

 

 

 

 

Promoter: Doctor Carola U. Niesler 

 

December 2007 

 

 



 

DECLARATION 

 

 

I, the undersigned, hereby declare that the work contained in this dissertation  

is my own original work and that I have not previously in its entirety or in part 

submitted it at any university for a degree. 

 

 

Signature - …………………………………………. 

 

Date -  …………………………………………. 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright ©2007 Stellenbosch University 

All rights reserved 

 



 

SUMMARY 

 
Definition: Stem cells are unspecialised cells with the capacity for long-term self-renewal and 

the ability to differentiate into multiple cell-lineages. 

 
The potential for the application of stem cells in clinical settings has had a profound effect on 

the future of regenerative medicine.  However, to be of greater therapeutic use, selection of 

the most appropriate cell type, as well as optimisation of stem cell incorporation into the 

damaged tissue is required.  In adult skeletal muscle, satellite cells are the primary stem cell 

population which mediate postnatal muscle growth.  Following injury or in diseased 

conditions, these cells are activated and recruited for new muscle formation.  In contrast, the 

potential of resident adult stem cell incorporation into the myocardium has been challenged 

and the response of cardiac tissue, especially to ischaemic injury, is scar formation.   

 
Following muscle damage, various growth factors and cytokines are released in the afflicted 

area which influences the recruitment and incorporation of stem cells into the injured tissue.  

Transforming Growth Factor-β (TGF-β) is a member of the TGF-β-superfamily of cytokines and 

has at least three isoforms, TGF-β1, -β2, and -β3, which play essential roles in the regulation 

of cell growth and regeneration following activation and stimulation of receptor-signalling 

pathways.  By improving the understanding of how TGF-β affects these processes, it is 

possible to gain insight into how the intercellular environment can be manipulated to improve 

stem cell-mediated repair following muscle injury.  Therefore, the main aims of this thesis 

were to determine the effect of the three TGF-β isoforms on proliferation, differentiation, 

migration and fusion of muscle progenitor cells (skeletal and cardiac) and relate this to 

possible improved mechanisms for muscle repair. 

 
The effect of short- and long-term treatment with all three TGF-β isoforms were investigated 

on muscle progenitor cell proliferation and differentiation using the C2C12 skeletal muscle 

satellite and P19 multipotent embryonal carcinoma cell-lineages as in vitro model systems.  

Cells were treated with 5 ng/mℓ TGF-β isoforms unless where stated otherwise.  In C2C12 

cells, proliferating cell nuclear antigen (PCNA) expression and localisation were analysed, and 

together with total nuclear counts, used to assess the effect of TGF-β on myoblast 

proliferation (Chapter 5).  The myogenic regulatory factors MyoD and myogenin, and structural 

protein myosin heavy chain (MHC) were used as protein markers to assess early and terminal 

differentiation, respectively.  To establish possible mechanisms by which TGF-β isoforms 

regulate differentiation, further analysis included determination of MyoD localisation and the 

rate of MyoD degradation in C2C12 cells.   



 

To assess the effect of TGF-β isoforms on P19 cell differentiation, protein expression levels of 

connexin-43 and MHC were analysed, together with the determination of embryoid body 

numbers in differentiating P19 cells (Chapter 6).  Furthermore, assays were developed to 

analyse the effect of TGF-β isoforms on both C2C12 and P19 cell migration (Chapter 7), as 

well as fusion of C2C12 cells (Chapter 8). 

 
Whereas all three isoforms of TGF-β significantly increased proliferation of C2C12 cells, 

differentiation results, however, indicated that especially following long-term incubation,  

TGF-β isoforms delayed both early and terminal differentiation of C2C12 cells into myotubes.  

Similarly, myocyte migration and fusion were also negatively regulated following TGF-β 

treatment.  In the P19 cell-lineage, results demonstrated that isoform-specific treatment with 

TGF-β1 could potentially enhance differentiation.  Further research is however required in this 

area, especially since migration was greatly reduced in these cells.  

 
Taken together, results demonstrated variable effects following TGF-β treatment depending 

on the cell type and the duration of TGF-β application.  Circulating and/or treatment 

concentrations of this growth factor could therefore be manipulated depending on the area of 

injury to improve regenerative processes.  Alternatively, when selecting appropriate stem or 

progenitor cells for therapeutic application, the effect of the immediate environment and 

subsequent interaction between the two should be taken into consideration for optimal 

beneficial results. 

 



 

OPSOMMING 

 
Definisie: Stamselle is ongespesialiseerde selle met die kapasiteit vir langtermyn 

selfvernuwing asook die vermoë om in veelsoortige seltipes te differensieer.  

 
Die potensiaal wat die aanwending van stam- en voorloperselle vir kliniese behandeling 

geskep het, bied unieke moontlikhede vir die toekoms van herstellende genesing.  Om  

egter van groter genesende waarde te wees, is daar ’n behoefte om die gebruik van die  

geskikste seltipe vir behandeling te bepaal, asook om meer doeltreffende stam-  

en voorlopersel insluiting in die beskadigde weefsel te bewerkstellig.  In volwasse 

skeletspierweefsel dien satellietselle as die primêre stamselbron wat groei ná geboorte 

bemiddel.  Hierdie selle word tydens siektetoestande of na beserings aktiveer om by te dra  

tot groei en herstel prosesse van die beskadigde weefsel.  In teenstelling hiermee, is die 

natuurlike toepassing van reserwe volwasse stamselle in die hartspier minimaal, met die 

gevolg dat veral isgemiese beserings hoofsaaklik littekenweefsel in die hartspier vorm.     

  
Verskeie groeifaktore en sitokiene word tydens siektetoestande of weens beserings in die 

aangetaste spier vrygestel wat die werwing en insluiting van stam- en voorloperselle in die 

beskadigde weefsel beïnvloed.  Die Transformasie Groeifaktor-β (TGF-β) vorm ’n subklas van 

die TGF-β-superfamilie van sitokiene en het drie isovorme, TGF-β1, -β2, and -β3, wat 

noodsaaklike funksies verrig om die regulering van selgroei en regenerasie te beïnvloed.  

Beter kennis van die meganismes waardeur TGF-β hierdie prosesse reguleer kan help  

met die ontwikkeling van prosedures wat die intersellulêre omgewing tot so ’n mate sal 

manipuleer dat verbeterde genesing deur middel van stam- en voorloperselle sodoende 

bewerkstellig kan word.  Die bepalende doelwitte van hierdie tesis was derhalwe om die effek 

van die drie TGF-β isovorme te ondersoek met betrekking tot proliferasie, differensiasie, 

migrasie en fusie, spesifiek ten opsigte van skelet- en hartspiervoorloperselle.   

 
Die effek van beide kort- en langtermyn toediening van die drie TGF-β isovorme is ondersoek 

op proliferasie en differensiasie van C2C12 skeletspier voorloperselle en P19 multipotensiële 

embrioniese karsinoomselle wat as in vitro modelsisteme gedien het.  Selle is behandel met  

5 ng/mℓ TGF-β isovorme tensy anders vermeld.  In C2C12 selkulture is die ekspressie en 

lokalisering van die proliferasie sel nukleêre antigeen analiseer, asook die selkerntotaal-

tellings om sodoende die effek van TGF-β op proliferasie van dié seltipe te bepaal (Hoofstuk 

5).  Die miogeniese reguleringsfaktore MyoD en myogenien, asook die strukturele proteïen 

miosien swaar ketting (MSK) is gebruik as proteïenmerkers om onderskeidelik vroeë en finale 

differensiasie te analiseer.  



 

Om vervolgens moontlike regulerende prosesse vas te stel waardeur die TGF-β isovorme hul 

uitwerking op C2C12 differensiasie bewerkstellig, is die lokalisering en afbrekingstempo van 

MyoD in hierdie selkultuur bepaal.  Die effek van TGF-β isovorme op differensiasie in die P19 

selkultuur is bepaal deur proteïen ekspressie vlakke van konneksien-43 en MSK te analiseer, 

asook om tellings van embrioniese-liggaampie vorming te bepaal (Hoofstuk 6).  Protokolle is 

verder ontwikkel om die effek van TGF-β isovorme op migrasie van beide C2C12 en P19 

miosiete te bepaal (Hoofstuk 7), asook om fusie in die C2C12 selkultuur te analiseer 

(Hoofstuk 8).   

 
Al drie TGF-β isovorme het tot ’n beduidende toename in C2C12 miosiet proliferasie gelei.  In 

die geval van differensiasie, het resultate egter daarop gedui dat veral langtermyn toediening 

van TGF-β beide die vroeë en finale differensiasie van dié selkultuur benadeel het en 

sodoende is verdere ontwikkeling van miosiete na miobuisies vertraag.  Net so is die migrasie 

en fusie van C2C12 miosiete ook negatief beïnvloed deur die TGF-β isovorme.  In die P19 

selkultuur het resultate getoon dat TGF-β1 ’n moontlike isovorm-spesifieke effek demonstreer 

wat potensieël differensiasie sou kon bevorder.  Verdere navorsing is egter nodig om hiedie 

effek te bevestig, veral met inagneming dat P19 miosietmigrasie, in teenstelling, hoogs 

onderdruk was deur alle TGF-β isovorme. 

 
In samevatting dui resultate op die veranderlike effek van behandeling met TGF-β isovorme 

wat grotendeels beïnvloed word deur die spesifieke selkultuur, asook die duur van TGF-β-

toediening.  Deur sirkulerende vlakke en/of terapeutiese konsentrasies van hierdie 

groeifaktor te manipuleer na gelang van die weefseltipe wat beskadig of aangetas is, kan 

regenererende behandeling meer doeltreffend toegepas word.  Vervolgens, wanneer geskikte 

stam- of voorloperselle klinies of terapeuties aangewend word, sal dit noodsaaklik wees om 

die invloed van die omliggende mikro-omgewing in ag te neem wat grotendeels die 

doeltreffendheid van die behandeling sal bepaal.  
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LAP   latency-associated peptide 

LIF  leukaemia inhibitory factor 

Lin-   lineage commitment 

LLC  large latent complex  

LTBP  latent TGF-β binding protein 

L-TGF-β  latent TGF-β form  

 

MAPC  multipotent adult progenitor cells 

MAPK   mitogen-activated protein kinase 

MDR1  multi-drug resistance protein 1 

MDSC(s)  muscle-derived stem cell(s) 

MEF-2C   myocyte enhancer factor-2C 

MHC  myosin heavy chain 

MIAMI  marrow-isolated adult multilineage inducible cells 

MNF  myocyte nuclear factor 

mpc(s)   myogenic precursor cell(s) 

MRF(s)  myogenic regulatory (also transcription) factor(s) 

MSC(s)   mesenchymal stem cell(s) 

mSP  muscle side-population 

MTT   myoblast transfer therapy 

 

N-CAM  neural cell adhesion molecule 

 

PBS  phosphate buffered saline 

PCNA  proliferating cell nuclear antigen 

PDGF  platelet-derived growth factor 

PGC   primordial germ cells 

PKC  protein kinase C 

PSC(s)  pluripotent stem cell(s) 

PVDF  polyvinylidene difluoride 



 v. 

RGD   Arg-Gly-Asp specific amino acid sequence 

RIPA  radio-immuno precipitation assay 

ROCK  Rho-associated protein kinase  

ROS   reactive oxygen species 

 

SC(s)  stem cell(s) 

Sca-1  stem cell antigen-1 

SCF  stem cell factor 

SDF-1  stromal cell-derived factor-1 

SDS  sodium dodecyl sulphate 

SFM  serum free medium 

SKP  skin-derived precursors 

SLC  small latent complex 

Smad  “Mothers against decapentaplegic homolog” 

SSC  somatic stem cells or self-renewing satellite cells 

 

TAK1  TGF-β-activated kinase 1 

TBS   tris-buffered saline 

TCSC(s)  tissue-committed stem cell(s) 

TGF-β RI-III TGF-β receptors I-III 

TGF-β  transforming growth factor-β 

TNC  total nuclear count 

TNF-α   tumour necrosis factor-α 

 

USSC(s)  unrestricted somatic stem cell(s) 

UTF1   undifferentiated embryonic cell transcription factor 1 

 

VCAM-1 vascular cell adhesion molecule-1 

VEGF   vascular endothelial growth factor 

VSEL SC(s)  very small embryonic-like stem cell(s)  

 

γ3-AMPK  γ3-isoform of AMP-activated protein kinase 
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CHAPTER 1 

INTRODUCTION 

 

Stem cells are primitive, unspecialised cells, capable of dividing and generating multiple cell 

types of most tissues in the body depending on the developmental stage of the stem cell.  

This ability of stem cells to differentiate into mature, more specialised cell types, as well as to 

self-renew, have made them attractive potential agents for use in enhanced tissue repair and 

regenerative medicine of diseases and disorders for which no, or only partially effective 

treatments are currently available.  The broad spectrum of potential therapeutic applications 

in which stem cells can be applied, has resulted in the rapid advancement of research in the 

hope of finding treatment for these genetic and degenerative diseases, as well as for 

improving the regenerative capacity of diseased and injured tissue.   

 

Essential to the successful use and manipulation of stem cells, is understanding the 

importance of the niche in which stem cell populations are established.  Such stem cell 

niches are anatomic locations that regulate the participation of stem cells in processes of 

regeneration, maintenance and repair, and constitute a basic unit of micro-environmental 

cells which co-ordinate tissue homeostasis and integrate inter- and intracellular signals to 

mediate a balanced response depending on the need of the organism.  Importantly, the niche-

environment protects stem cells from apoptotic stimuli, excessive stem cell production  

and other stimuli that would challenge stem cell reserves.   

 

Interaction between stem cells and their niche creates a system necessary to maintain the 

balance between stem cell quiescence and activity and is therefore an essential attribute of a 

functional environment.  Knowledge of this interaction is also required for the design of stem 

cell therapeutics.  Elements of the local environment that participate in the regulation of stem 

cell activity in their niche include physical interaction of cell membranes with tethering 

molecules on neighbouring cells or surfaces, interaction with the extracellular matrix, 

signalling interactions between stem cells and several other cells in the immediate micro-

environment, paracrine or endocrine signals from distant sources, neural input and metabolic 

products of tissue activity.   
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It is well known that adult skeletal muscle contains a population of resident stem cell-like cells 

called satellite cells which mediate postnatal muscle growth and regeneration.  Following 

injury, satellite cells are activated and recruited for new muscle formation.  Unlike skeletal 

muscle which is capable of essentially scar-free regeneration by means of these satellite cells, 

the response of cardiac tissue to especially ischaemic injury is scar formation.  However, 

although the myocardium has long been regarded as a post-mitotic organ, a series of recent 

studies have indicated that autologous adult stem cells can be activated to promote at least 

partial reconstruction (and decrease scar formation) of the myocardium following an 

ischaemic insult.  

 

The Transforming Growth Factor-β (TGF-β)-superfamily of cytokines plays a role in the 

regulation of cell proliferation, differentiation, migration and apoptosis by means of receptor-

signalling pathways and can either promote or inhibit these processes depending on the local 

conditions and/or individual cytokine released.  Specifically, the three isoforms of TGF-β have 

been shown to regulate growth and regeneration processes in both skeletal and cardiac 

muscle.  Few studies, however, have characterised the isoform-specific effects of TGF-β on 

muscle stem and progenitor cell recruitment and differentiation.  

 

The healing of impaired function of the human system is the goal of regenerative medicine, 

requiring knowledge and integration of diverse disciplines.  The need is not only to replace 

that which is malfunctioning, but also to provide the elements required for in vivo repair and 

to devise replacements that interact with the living body without rejection.  Mechanisms to 

stimulate the body’s intrinsic capacity for regeneration, together with cell replacement 

therapy, have become elemental in regenerative medicine.  An increased understanding of 

both the extrinsic and intrinsic signals recruiting and directing stem and progenitor cells in 

vitro and in vivo, as well as the identification of tissue-specific factors and signalling 

components that are required to generate and manipulate the stem cell progeny into the 

relevant tissue, are therefore essential for therapeutic applications to be successful.   

 

In the following chapters, processes of proliferation, differentiation, migration and fusion are 

discussed, specifically analysing the effect of the three TGF-β isoforms on skeletal and cardiac 

progenitor cell growth and development.  By improving the understanding of how the TGF-β 

isoforms affect these processes, it could become possible to gain insight into how the micro-

environmental conditions can be manipulated to improve stem cell-mediated repair following 

muscle injury.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

2.1  PROPERTIES OF STEM CELLS  

 

A stem cell (SC) can be defined by three main criteria: (A) long-term proliferation and self-

renewal while remaining totally unspecialised; (B) the ability to differentiate into multiple 

mature, functionally specialised cell types when stimulated under particular physiological or 

experimental conditions; and (C) the ability to reconstruct a given tissue in vivo (Lakshmipathy 

and Verfaillie, 2005).  Of particular interest, especially regarding their therapeutic 

applicability, are the activation-mechanisms and signalling pathways required to induce SCs 

to develop into specific cell types in vivo.  A true SC is capable of asymmetric division, dividing 

into one daughter cell which remains a true SC while the other becomes specialised and 

forms a progenitor cell capable of further differentiation along a particular cell-lineage 

depending on the environmental stimuli.   

 

SCs can be found at various stages of embryogenesis, from the inner cell mass (ICM) of  

the embryo, through to various foetal and adult tissues, with a corresponding decline in 

differentiation potential as these cells become more specialised.  As such, SCs can be classed 

as embryonic, (originating from the embryo; embryonic stem cells, ESCs), foetal (originating 

from foetal blood and haematopoietic organs; foetal stem cells, FSCs) or adult (originating 

from the umbilical cord or adult tissues; adult stem cells, ASCs). 

 

At the top of the SC hierarchy is the totipotent fertilized egg (zygote), as well as the morula, 

which constitutes eight cells or less.  Each cell of the zygote or morula has the ability to 

generate an entire organism (i.e. can generate both embryonic and supportive extra-

embryonic tissue).  Subsequent cell differentiation results in the formation of the blastocyst, 

composed of outer trophoblast cells and undifferentiated inner cells, referred to as the ICM 

(Figure 2.1). 
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Figure 2.1.  Stem cell hierarchy. 

[Adapted with modifications from Price et al., 2006; Wobus and Boheler, 2005] 
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ESCs are derived from the undifferentiated ICM of the blastocyst stage of the embryo (Evans 

and Kaufman, 1981; Martin, 1981) and although both ESC and cells from the ICM are no 

longer totipotent and cannot form extra-embryonic tissues, they retain the capacity to give rise 

to cells of all three primary germ layers of the embryo: ectoderm, mesoderm and endoderm, 

as well as the primordial germ cells (PGC).  The pluripotent ESCs are immortal and seemingly 

capable of unlimited self-renewal and proliferation in vitro, maintaining a non-committed state 

until stimulated to differentiate into a particular cell type (Lakshmipathy and Verfaillie, 2005; 

Thomson et al., 1998; Wobus and Boheler, 2005).  In this respect, ESCs differ from the ICM 

cells: whereas both cell types have similar differentiation capacities, ICM cells within the 

embryo do not exhibit prolonged self-renewal abilities.  

 

SCs isolated from various adult organs are multipotent and have the potential to self-renew 

and differentiate into multiple organ-specific cell types.  Cells committed to a particular cell-

lineage with limited or no self-renewal ability, are termed progenitor or precursor cells 

(Lakshmipathy and Verfaillie, 2005) (Table 2.1). 

 

Embryonic and adult stem cells have demonstrated great potential for generating tissues of 

therapeutic value.  The characteristics of these cells reveal the benefits, as well as 

deficiencies associated with each and can be applied to establish the best strategy for clinical 

use.  It remains to be determined whether embryonic and adult SCs will be equivalent in their 

capacity to produce large numbers of specific cell types for transplantation purposes, as well 

as retain their function over long periods, thereby optimising their therapeutic potential 

(Passier and Mummery, 2003). 
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Table 2.1.  Stem and progenitor cell definitions. 

 

DIFFERENTIATION The process by which a cell, in response to stimuli, becomes more specialised. 

TRANSDIFFERENTIATION 

The ability of a cell of one tissue, organ or system, to differentiate into a cell 

type of another tissue, organ or system, with the concomitant loss of the 

tissue-specific markers and function of the original cell type. 

DE-DIFFERENTIATION The regression of a normally specialised cell to a less specialised cell. 

PLASTICITY 

The potential to differentiate into other cell types not originally thought to be 

within the differentiation spectrum of that cell; OR 

The capacity to adapt or change. 

TOTIPOTENCY 
Ability to differentiate into all cell types, both embryonic and extra-embryonic.  

Totipotent cells can create a complete organism.  

PLURIPOTENCY 

Ability to grow into any cell type except for totipotent stem cells.  Pluripotent 

stem cells are therefore able to differentiate into stem cells of all three germ 

layers and are only unable to form a complete organism. 

MULTIPOTENCY 

Ability to produce cells of a subset of cell-lineages; OR 

Cells that are committed to producing cells that have a particular function, e.g. 

blood stem cells are multipotent: they can produce red blood cells, white blood 

cells and platelets. 

OLIGOPOTENT 
Ability to give rise to a more restricted subset of cell-lineages than multipotent 

stem cells, e.g. lymphoid progenitors can give rise to B- and T-lymphocytes.  

UNIPOTENT Ability to contribute only one mature cell type. 

STEM CELL 
Capable of self-renewal, differentiation into at least one cell type and 

functional reconstitution of the tissue of origin. 

EMBRYONIC STEM CELL 

Pluripotent stem cells derived from the ICM of the blastocyst, capable of self-

renewal and differentiation into all somatic cell types, germ cells and 

progenitors of all three germ layers. 

ADULT STEM CELL 

An unspecialised cell derived from adult tissue which can greatly and 

efficiently be expanded in culture and is capable of self-renewal and 

differentiation into specialised mature cells. 

HAEMATOPOIETIC STEM CELL A stem cell which can proliferate and differentiate into all mature blood cells. 

MESENCHYMAL STEM CELL 
A stem cell which can proliferate and differentiate into mesenchymal tissues 

such as bone, cartilage and muscle. 

MESODERMAL PROGENITOR 

CELL 

An unspecialised cell capable of yielding mesodermal tissue such as muscle; 

progenitor cells are not capable of self-renewal. 

HEMANGIOBLAST Earliest mesodermal precursor of both blood and vascular endothelial cells. 

ANGIOBLAST An endothelial progenitor cell. 
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2.1.1 Embryonic Stem Cells and their Characteristics 

As mentioned above, human ESCs are pluripotent cells derived from the ICM of in vitro 

fertilised human blastocysts.  When cultured in vitro or injected into a host, ESCs 

spontaneously differentiate and form embryoid bodies composed of the three embryonic  

germ layers (Itskovitz-Eldor et al., 2000).  Despite the versatility of ESCs to differentiate into 

all tissues of the adult body, their direct use in cell therapy is currently restricted because of 

issues such as immune rejection (except in the central nervous system), tumour formation 

and ethical objections.  In addition, because ESCs can differentiate into any cell type, they 

need to be directed down a particular cell-lineage prior to use in vivo.  In vitro, this can be 

achieved by maintaining culture conditions with specific growth factors, however in vivo, 

precise mechanisms directing ESCs down the desired cell-lineage remains to be fully 

determined.  

 

Techniques developed to establish murine embryonic stem cell-lines have been critical in the 

generation of human embryonic stem cell-lines (hESC-lines).  However, many of these hESC-

lines are inappropriate for therapeutic applications due to retroviral infections and xenogenic 

contamination (often from the culture medium using animal products).  In addition, due to the 

variability among hESC-lines (growth characteristics, directing differentiation potential, 

culturing techniques), reliable molecular- and cellular markers need to be established to 

distinguish undifferentiated pluripotent SCs from the differentiated state.  Although such cell 

surface and molecular markers have been identified critical for the identification of 

undifferentiated mouse and human ESCs, many are still inadequate to characterise the 

specific stages of differentiation (Wobus and Boheler, 2005).  Such markers defining these 

cells’ pluripotentiality include the transcription factors Oct-3/4, Sox2 and Nanog, and the 

transcriptional co-activator UTF1 (Wei et al., 2005).  The expression of selected SC markers is 

further outlined in Chapter 4. 

 

An additional source of ESCs is genetically matched pluripotent ESCs generated from nuclear 

transfer or parthenogenesis (Kim et al., 2001).  Parthenogenesis involves the development of 

an embryo directly from an oocyte without fertilisation.  Together with pluripotent SCs 

produced from fertilised embryos or embryos created by somatic-cell nuclear transfer (Rideout 

et al., 2002), parthenogenesis provides a method for creating pluripotent SCs that could 

potentially serve as a source of tissue for transplantation with less risk of tissue rejection 

(Taylor et al., 2005). 
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2.1.2 Foetal Stem Cells and their Characteristics 

In addition to being isolated from foetal blood and haematopoietic organs during early 

pregnancy, FSCs can also be isolated from a variety of foetal somatic organs (liver, lung, bone 

marrow, pancreas, skeletal muscle, and kidney), and amniotic fluid and the placenta 

throughout gestation.  Foetal blood is a rich source of haematopoietic SCs which proliferate 

more rapidly than those found in cord blood or adult bone marrow, as well as mesenchymal 

SCs, which also appear to be more primitive and with greater multipotentiality than the 

mesenchymal SCs found in adult tissue (Guillot et al., 2006). 

 

Where the use of ESCs in therapeutic applications have resulted in ethical and safety  

concerns, and with ASCs having a more limited regeneration capacity, FSCs may represent  

an intermediate cell type and prove to be advantageous in cell-based therapy, taking into 

consideration the advantages these cells have over ASCs. 

 

2.1.3 Adult Stem Cells and their Characteristics 

ASCs (also referred to as somatic SCs because they can additionally be located in foetuses, 

the umbilical cord and infants) reside in most mammalian tissues and have been found in all 

three embryonic germ layers (Mays et al., 2007; Serafini and Verfaillie, 2006).  Under non-

stimulated conditions they are considered to be quiescent, however, similar to ESCs, ASCs are 

capable of self-renewal and differentiation when stimulated in vitro, or when influenced by 

their immediate environment in vivo (Lin, 1997).  ASCs are however more rare than ESCs and 

methods of growing them in culture also more complicated, limiting their use when large cell 

numbers are needed for SC therapies. 

 

Unlike ESCs which are totally unspecialised, the differentiation potential of ASCs is more 

limited.  ASCs are generally regarded as being multipotent, but committed to a particular cell 

fate and only able to produce cells from the tissue of origin and not cross tissue or germ layer 

boundaries to generate cell types of different lineages (Lakshmipathy and Verfaillie, 2005; 

Moraleda et al., 2006; Wagers and Weissman, 2004).  Recent studies have however 

demonstrated that ASCs can, when stimulated under certain micro-environmental conditions, 

give rise to cell types different to those in the tissue of origin.  Such transdifferentiation  

(Table 2.1) would potentially result in cells being able to contribute to a much wider field of 

differentiated tissues, and as such, greater use for clinical application.  The suggestion that 

ASCs may transdifferentiate has given rise to the concept of tissue plasticity, which holds that 

the lineage-determination of ASCs is flexible and allows them to direct their differentiation 

depending on the environmental conditions (Blau et al., 2001).     
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Adult bone marrow, brain, skeletal muscle, liver, pancreas, fat and skin have all shown to 

possess stem or progenitor cells with the capacity to differentiate or transdifferentiate into 

cell types other than their tissue of origin (Table 2.2).  Of these tissues, bone marrow has 

shown the greatest potential for multi-lineage differentiation.  The majority of studies 

presented have been performed both in vitro and in vivo in rodents.  Importantly, most reports 

on ASC plasticity are only based on the expression of genetic markers and therefore, the 

tissue-specific functionality of possible transdifferentiated cell types still remain to be 

substantiated to determine their potential for clinical use.  It also needs to be taken into 

consideration that a number of studies have reported a failure to detect transdifferentiation 

between cell-lineages (Choi et al., 2003; Ono et al., 2003; Vallieres and Sawchenko, 2003; 

Wagers et al., 2002; Wagers and Weissman, 2004).  Inconsistent results could be due to 

differences in injury models, cell types analysed, culture conditions, as well as purification and 

identification strategies or protein markers applied.  As an example, with regards to circulating 

haematopoietic SCs, it is possible that these cells can be located in many non-haematopoietic 

tissues, and therefore may confound interpretation of results (Asakura et al., 2002). 

 

Figure 2.2 illustrates possible mechanisms for plasticity (Lakshmipathy and Verfaillie, 2005; 

Wagers and Weissman, 2004) which could involve: (A) cell transdifferentiation where SCs 

potentially contribute to cell types of different lineages; (B) cell fusion of transplanted and 

local cells (Terada et al., 2002; Ying et al., 2002); (C) the use of heterogeneous cell 

populations where infusion of a non-purified population could result in co-infusion of multiple 

different SCs; (D) de-differentiation of a tissue-specific cell to a more primitive cell type with 

subsequent re-differentiation along a new lineage [in this instance, nuclei from the 

transplanted cell undergoes re-programming during which the existing genetic information is 

removed and replaced by newly expressed genes and proteins consistent with the new cell-

lineage (Wilmut et al., 1997)]; and (E) a single, rare, pluripotent SC present in bone marrow or 

other tissues could possibly co-purify in protocols designed to enrich for tissue-specific SCs.  
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Figure 2.2.  Potential mechanisms for ASC plasticity. Tissue-specific stem cells are represented by red or green 

ovals, pluripotent stem cells by blue ovals and differentiated cells by yellow ovals and green pentagons.  

[Adapted with modifications from Wagers and Weissman, 2004] 
 

(A) Transdifferentiation        (B) Fusion           (C) Multiple stem cells       (D) De-differentiation    (E) Pluripotent 
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Transdifferentiation-studies have been contested by several research groups who have 

questioned the concept of plasticity since it defies developmental principles of lineage 

restriction being imparted during morphogenesis (Goodell, 2003; Hawley and Sobieski, 2002; 

Holden and Vogel, 2002; Lemischka, 2002; Verfaillie et al., 2002).  In addition, most studies 

have not shown that the apparent lineage deviation is derived from the same cell that 

differentiates into the expected cell type (Lakshmipathy and Verfaillie, 2005).  With regards to 

myocardial repair strategies, while some models claim transdifferentiation of adult bone 

marrow cells results in functional repair (Leri et al., 2005; Orlic et al., 2001b), other studies 

have failed to demonstrate such effects (Murry et al., 2004; Nygren et al., 2004).  

 

Nevertheless, the ability of ASCs to possibly adapt and change depending on external signals, 

could potentially add to tissue regeneration strategies once the concept of plasticity is better 

characterised.  This illustrates the importance of understanding the micro-environmental 

effects on cell fate before any in vivo therapeutic SC applications can be applied.   
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Table 2.2.  The ability of selected adult stem cells to change by processes of differentiation or transdifferentiation. 
TISSUE OF ORIGIN NEWLY FORMED TISSUE REFERENCES (et al.) 
Resident connective tissue cells 
Mesenchymal committed progenitors 
and pluripotent stem cells 

 
skeletal muscle 

 
Young 1995, 2001 

 
Circulating bone marrow-derived ASC 
Unfractionated 
 
 
 
Bone marrow stromal cells or 
Mesenchymal stem cells 
 
 
 
 
 
Haematopoietic stem cells 
 
 
 
 
 
 
Endothelial progenitor cells 
 
MAPC  
 
 
TCSC 
 
 
Bone marrow-derived satellite cells  or 
Bone marrow side-population cells 
 
BMESL 

 
 
brain 
kidney 
skeletal muscle 
 
bone 
fat, haematopoietic stem or progenitor cells 
skeletal, cardiac and smooth muscle, neovascularisation 
cartilage and tendon 
brain 
ectoderm- and mesoderm-derived tissue 
 
platelets, all lineages of mature blood cells 
liver 
epithelium of lung, skin, kidney, GI-tract 
endothelial cells 
skeletal and cardiac muscle 
brain, pancreas 
 
vasculogenesis 
 
brain, retina, lung, skeletal and cardiac muscle, liver, 
intestine, kidney, spleen, bone marrow, blood and skin 
 
skeletal and cardiac muscle, neural, epidermal and 
hepatic tissue 
 
skeletal and cardiac muscle 
 
 
ectodermal, endodermal and mesodermal lineages 

 
 
Mezey 2000; Brazelton 2000 
Poulsom 2001; Imasawa 2001 
Ferrari 1998 
 
Owen and Friedenstein 1988 
Umezawa 1992 
Grounds 2002; Toma 2002; Devine 2003 
Ashton 1980 
Azizi 1998; Kopen 1999 
Pittenger and Martin 2004 
 
Morrison 1995; Kondo 2003 
Petersen 1999; Theise 2000 
Krause 2001; Kale 2003 
Jackson 2001 
Jackson 2001; Brazelton 2003 
Priller 2001; Ianus 2003 
 
Asahara 1999; Murohara 2000 
 
Reyes and Verfaillie 2001; Jiang 2002; 
Schwartz 2002 
 
Ratajczak 2004 
 
 
LaBarge and Blau, 2002; Dreyfus 2004 
 
 
Terada 2002 

 
Skeletal muscle 
Satellite cells 
 
 
Skeletal muscle side-population 
 

 
 
skeletal muscle 
fat, bone, cartilage 
 
skeletal and cardiac muscle 
blood 
fat, bone 

 
 
Cornelison and Wold 1997 
Asakura 2001; Wada 2002 
 
Murry 1996; Ghostine 2002 
Gussoni 1999; Seale 2001 
Asakura 2002 

 
Central nervous system 
Neural stem cells 

 
 
neural progenitors 
skeletal and cardiac muscle, kidney, stomach, intestine 
and liver 
blood 

 
 
Palmer 2001 
Clarke 2000; Condorelli 2001 
 
Bjornson 1999; Shih 2001 

 
Liver  
Liver stem cells 

 
 
hepatocyte progenitors 
bile duct, pancreas, cardiac muscle 

 
 
Semino 2003 
Petersen 1998; Malouf 2001 

 
Adipose tissue 
Adipose progenitors 

 
 
adipocytes 
pancreas, chondrogenic and osteogenic differentiation 
skeletal and cardiac muscle 

 
 
Zuk 2001 
Zuk 2001 
Mizuno 2002; Di Rocco 2006 

 
Vascular system 
Vascular endothelial stem cells;  
Mesangioblasts 

 
 
blood vessels 
skeletal and cardiac muscle 

 
 
Liu 2007 
Condorelli 2001; Sampaolesi 2003 

 
Skin 
Dermal stem cells  
(skin-derived precursors) 
 
Dermal fibroblasts 

 
 
ectodermal progeny 
bone, brain, fat, skeletal and smooth muscle 
 
skeletal muscle 

 
 
Toma 2005 
Toma 2001; Musina 2005 
 
Gibson 1995 

 
Pancreas  
Pancreatic progenitors (pancrea-
derived multipotent precursors) 

 
 
pancreatic tissue 
fat, brain, muscle, liver 

 
 
Seaberg 2004 
Dabeva 1997 

 

BMESL, bone marrow-derived embryonic stem-like cells; MAPC, multipotent adult progenitor cells; 

TCSC, tissue-committed stem cells.  Red font indicates differentiation of multipotent stem cells and blue font 

postulates transdifferentiation of pluripotent stem cells. 
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ASCs can be isolated from various sources and as such be divided into several sub-

populations.  These are discussed below and summarised in Figure 2.3.  It is important to 

consider, however, that within a tissue there may be micro-environments where closely 

related or identical cells express different markers, and also, that cells isolated directly from 

the tissue may differ in surface molecule expression after a period of being cultured in vitro 

(Pittenger and Martin, 2004). 

 

2.1.3.1 Bone marrow-derived adult stem cells 

 2.1.3.1 (A) Mesenchymal stem cells 

Bone marrow contains different ASCs, one of the most important populations being the 

mesenchymal stem cells (MSCs) that give rise to various mesodermal tissues.  Despite being 

present as a very rare population (0.001% to 0.01% of the nucleated cells), MSCs can readily 

be grown in culture (Pittenger and Martin, 2004).  These MSCs can also be isolated from 

stroma of the spleen and thymus, cartilage, trabecular bone, periosteum, synovial membrane 

and fluid, dermis, blood vessels, muscle, tendon, foetal lung, adipose tissue (Deans and 

Moseley, 2000; Zuk et al., 2002) and cord blood (Bieback et al., 2004).  Under appropriate 

conditions, MSCs have multi-lineage differentiation potential and depending on the tissue in 

which they reside, they can be stimulated to differentiate into adipocytes, neural cells, 

myocytes, chondrocytes, hepatocytes, osteoblasts, marrow stromal cells, fibroblasts or tendon 

cells (Jiang et al., 2002a; Tuan et al., 2003), as well as skeletal and smooth muscle cells 

(Devine et al., 2003) (Table 2.2).  MSCs have shown potential for therapeutic use in the 

cardiovascular system where improved recovery has been observed following injection of 

MSCs either directly into the infarct, or via the intracoronary artery (Pittenger and Martin, 

2004).  A major advantage of these MSCs is the option of autologous usage and thereby full 

immune tolerance.   

 

Sub-populations of MSCs have been characterised.  Marrow-derived stromal cells also found 

in bone marrow should not be confused with MSCs, but rather be classified as an early 

differentiated progeny of MSCs (Tuan et al., 2003).  A population of rapidly dividing cells, 

termed recycling stem cells, has also been characterised as a sub-population, although only in 

culture.  
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 2.1.3.1 (B) Haematopoietic stem cells 

In addition to the bone marrow, haematopoietic stem cells (HSCs) can also be isolated from 

peripheral and cord blood (Broxmeyer et al., 1989) and are stromal cells that can differentiate 

into all blood cell types, as well as megakaryocytes.  Despite the successful use of these cells 

to treat haematopoietic disorders via autologous bone marrow or allogenic umbilical cord 

blood, they are unfortunately rare.  HSCs may also differentiate into other major cell types 

from the endoderm, ectoderm and mesoderm (Table 2.2).  

 
 2.1.3.1 (C) Multipotent Adult Progenitor Cells 

A further sub-population of bone marrow cells that has been described, is the multipotent 

adult progenitor cells (MAPC).  These cells, isolated from postnatal bone marrow, can be 

expanded in vitro for extended periods, and differentiate into mesodermal, neuro-ectodermal 

and endodermal cells in vitro and into all embryonic lineages in vivo (Jiang et al., 2002b; 

Reyes and Verfaillie, 2001).  When injected into the early blastocyst, MAPC have shown to 

contribute to most somatic cell types.  Despite their versatility, the long growth delay of MAPC 

in bone marrow cultures has suggested the possibility that these cells may represent a tissue 

culture-specific cell with no source in vivo (Passier and Mummery, 2003).   

 
 2.1.3.1 (D) Endothelial progenitor cells 

Endothelial progenitor cells (EPC), which have also been identified in adult peripheral and 

umbilical cord blood, can be expanded for long periods in vitro and engraft into areas of injury 

where they contribute to postnatal vasculogenesis (Asahara et al., 1999; Murohara et al., 

2000).  There is evidence, at present only in mice, that a precursor for EPC, the 

hemangioblast, may exist in the bone marrow.  These hemangioblasts have shown to give rise 

to HSCs, EPC and smooth muscle cells (Bailey and Fleming, 2003; Forrai and Robb, 2003; 

Pelosi et al., 2002; Pelton et al., 1991).   

 
  2.1.3.1 (E) Bone marrow side-population cells 

Similar to the skeletal muscle side-population cells [section 2.1.3.2 (B)], are the bone marrow-

derived multipotent SCs termed bone marrow side-population cells (bmSP), or bone marrow-

derived satellite cells.  This population, which can be incorporated into both skeletal and 

cardiac muscle, also contains HSCs (Gussoni et al., 1999).  Although it has been 

demonstrated that bmSP can contribute to both regenerating myofibers, as well as to the 

muscle satellite cell pool (Dreyfus et al., 2004; LaBarge and Blau, 2002), this contribution 

seems to be below functional significance (Wernig et al., 2005).   
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 2.1.3.1 (F) Bone marrow-derived embryonic stem like cells 

Co-culture of bone marrow cells with ESCs have produced colonies with an ESC-morphology 

(Terada et al., 2002).  These ASCs, which have been termed bone marrow-derived embryonic 

stem-like cells (BMESL), differentiate in vitro into endodermal-, ectodermal- and mesodermal- 

lineages. 

 

 2.1.3.1 (G) Tissue-committed stem cells 

The bone marrow also contains sub-populations of non-haematopoietic cells capable of 

differentiating into neural, epidermal and hepatic tissue, as well as skeletal and cardiac 

muscle, termed tissue-committed stem cells (TCSCs) and perhaps even more primitive, 

pluripotent stem cells (PSCs) (Kucia et al., 2005; Ratajczak et al., 2004).  These TCSCs and 

PSCs, when released from the bone marrow, circulate at low levels in the blood and 

accumulate in peripheral tissues under normal steady-state conditions to maintain a pool of 

SCs.  Possibly, their circulating levels increase during periods of stress or tissue injury to allow 

them to take part in regeneration processes.  Cardiac TCSCs, a sub-population of TCSCs 

expressing cardiac-specific markers, have recently been identified in both mice and humans 

(Kucia et al., 2004).  Taken together, due to their enhanced differentiation potential, the 

possibility exists that TCSCs can be expanded in culture to be utilised in multiple therapeutic 

applications (Dawn and Bolli, 2005a).  

 

2.1.3.2 Skeletal muscle adult stem cells 

Various SC populations which contribute to postnatal muscle growth, repair and regeneration, 

have been identified for skeletal muscle.  Such stem and precursor cells include both resident 

muscle SCs, as well as non-muscle SCs. 

 

  2.1.3.2 (A) Satellite cells 

These resident cells, located on the surface of the myofiber beneath the basal lamina, are 

capable of self-renewal and myogenic differentiation in response to physiological and 

pathological stimuli.  Satellite cells are the main source of myoblasts for postnatal skeletal 

muscle regeneration (section 2.2.1.1).  

 

  2.1.3.2 (B) Muscle side-population cells 

A population of multipotent ASCs, termed muscle side-population (mSP) cells isolated from 

skeletal muscle, has shown to commit to myogenic conversion in vivo, give rise to satellite 

cells, as well as reconstitute the haematopoietic system (Asakura et al., 2002; Gussoni et al., 

1999).   
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A sub-type of mSP cells, Sk-34 cells, has been characterised as a population distinct from 

satellite cells, located in the interstitial spaces of skeletal muscle (Tamaki et al., 2002).  

These Sk-34 cells are presumed myo-endothelial progenitor cells which possibly serve as a 

reservoir for satellite cells.   

 

  2.1.3.2 (C) Muscle-derived stem cells 

Multipotential muscle-derived stem cells (MDSCs) are highly proliferative, late adhering cells 

also with a high regenerative capacity which contribute to both the satellite cell pool and 

myonuclei, although only at a low frequency (Torrente et al., 2001).  Observations do however 

suggest that they are progenitors of satellite cells (Jankowski et al., 2002; Qu-Petersen et al., 

2002).  In addition, MDSCs represent a heterogeneous population and have shown to contain 

haematopoietic- (Asakura et al., 2002), as well as neurogenic potential (Alessandri et al., 

2004). 

 

  2.1.3.2 (D) Somatic stem cells or self-renewing satellite cells 

Somatic stem cells, also known as self-renewing satellite cells (SSC) (Baroffio et al., 1996) are 

small, self-renewing myoblasts that do not divide or fuse unless they are induced to do so.  

 

  2.1.3.2 (E) Post-mitotic myonuclei 

The efficient salvage of myonuclei from damaged myofibers could provide a large pool of 

nuclei for generation of new myoblasts during muscle repair.  However, the extent to which 

such post-mitotic myonuclei within the sarcoplasm of damaged myofibers would contribute  

to the reversal of myonuclear fate, remains to be determined (Grounds et al., 2002).   

 

Non-muscle SCs which have demonstrated myogenic potential by means of potential 

transdifferentiation are indicated in Table 2.2 and include neural SCs, MSCs and various bone 

marrow-derived populations (Charge and Rudnicki, 2004; Grounds et al., 2002).  Such 

plasticity of SCs however still needs to be justified.  

 

2.1.3.3 Cardiac muscle adult stem cells 

Despite previous beliefs that the damaged myocardium can only be replaced by scar tissue, 

various cardiac stem and progenitor cell populations have been identified to show that 

potential for in vivo cardiac regeneration does exist.  This has promoted a shift in paradigm of 

the heart from being a terminally differentiated, post-mitotic organ to one which is self-

renewing (Anversa et al., 2007).       
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The existence of Lin-/c-kit+ (a known marker for HSCs), self-renewing, multipotent cells with 

SC properties have been reported in the myocardium.  After in vitro treatment, these early 

committed cells (ECC) differentiate into cardiomyocytes, smooth muscle and endothelial cells 

(Beltrami et al., 2003; Urbanek et al., 2005), and when injected into an ischaemic heart, 

contribute to regeneration of the damaged myocardium (Dawn and Bolli, 2005b).  

 
A small population of adult heart-derived cardiac progenitor cells, expressing the cell surface 

marker Sca-1+ (a cardiac and HSC maker), has also been isolated from the myocardium 

(postnatal mouse) (Oh et al., 2004).  Although these cells don’t express cardiac structural 

genes or Nkx2.5, they have shown to differentiate in vitro into beating cardiomyocytes.   

 
In both the embryonic and postnatal heart (from mouse, rat and human), another small 

population of cardioblasts has been identified on the basis of expressing a cardiac 

transcription factor, Isl1 (Laugwitz et al., 2005).  These myocardial-derived SCs can be 

isolated and transplanted into the damaged heart with evidence of functional improvement 

(Messina et al., 2004).  

 
Bone marrow-derived stromal cells with cardiac potential (Sca-1+) have been characterised 

which can give rise to cardiomyocytes after injection into the damaged myocardium (Bittner et 

al., 1999; Jackson et al., 2001).  In addition, cardiomyocytes can also be formed from bone 

marrow-derived HSCs, MSCs and endothelial SCs (Jackson et al., 2001; Toma et al., 2002).  

Similar to skeletal muscle, the possibility of transdifferentiation of other non-resident SCs, 

such as neural and hepatocyte SCs into cardiomyocytes, can be debated (Table 2.2). 

 
2.1.3.4 Cord blood-derived stem cells 

Together with HSCs, MSCs and EPC, human cord blood contains an additional, essentially 

pluripotent SC population termed unrestricted somatic stem cells (USSCs) (Koblas et al., 

2005; Kogler et al., 2004).  In vitro cultures of these USSCs have shown differentiation into 

osteoblasts, chondroblasts, adipocytes, neural precursors and haematopoietic cells, whereas 

mesodermal and endodermal differentiation have been demonstrated in vivo.  

 
A second small population, the cord blood-derived embryonic-like (CBE) stem cells has also 

been isolated from umbilical cord blood (McGuckin et al., 2003; Zhao et al., 2006).  These 

cells display ESC characteristics such as a high potential for self-renewal and the expression 

of ESC-specific markers (e.g. Oct4 transcription factor).  CBE SCs have shown in vitro 

differentiation into hepatocytes, haematopoietic and neuroglial progenitors (McGuckin et al., 

2004).    
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2.1.3.5 Very small embryonic-like stem cells 

Similar to CBE SCs, a population of non-haematopoietic, “very small embryonic-like” (VSEL) 

stem cells has been characterised in murine bone marrow (Ratajczak et al., 2006).  These 

cells are rare, display features of primary ESCs (their nuclei are large, surrounded by a  

narrow rim of cytoplasm and contain open-type chromatin, all typical of ESCs) and 

immunohistochemical analysis revealed the presence of pluripotent SC markers (Kucia et al., 

2006a).  It has been suggested that VSEL SCs are deposited into the bone marrow during 

stages of early development and could be a reserve population of embryonic-like, pluripotent 

SCs for tissue and organ regeneration.  Their ability to differentiate and expand into cells from 

all three germ-cell layers when plated into cultures promoting tissue differentiation, potentially 

suggests a source for therapeutic intervention as an alternative to ESCs (Kucia et al., 2006b).  

 

2.1.3.6 Primitive embryonic-like adult stem cells or Blastomere-like stem cells 

Scientists at a research company (Moraga Biotechnology) have recently discovered a very 

primitive SC in adult tissues with properties similar to that of ESCs.  These primitive 

“Embryonic-like Adult Stem Cells” (EASCs) or “Blastomere-Like Stem Cells” (BLSCs) have 

shown to differentiate into most tissues and organs of the body, including spermatogonia.  In 

contrast to most ASCs, these SCs normally reside in large numbers in peripheral blood and 

adult tissues, making them easy to isolate and purify for clinical use.  Using very specific 

treatment conditions and reagents, the scientists were able to clone these ASCs into various 

cell-lines from a single cell.  Without sufficient scientific data, these results remain to be 

confirmed and the cells’ characteristics established. 

 

2.1.3.7 Additional sources of adult stem cells 

Various other populations of multipotent ASCs have been characterised, including oval cells 

(liver), pancreatic SCs, and cells isolated from the central nervous system, intestine, lung, and 

skin.  Vessel-associated ASCs include vascular-endothelial SCs and multipotential 

mesangioblasts (Sampaolesi et al., 2003).  Fibroblastic MSCs isolated from adipose tissue 

can differentiate into mesenchymal lineages with similar characteristics and behaviour to 

bone marrow-derived MSCs and have been termed adipose stromal, adipose progenitor or 

processed lipoaspirate cells (Gronthos et al., 2001; Zuk et al., 2002).  All these ASCs have 

shown the ability to regenerate cells from the tissue in which they reside, as well as in some 

instances, to potentially transdifferentiate into other cell-lineages following transplantation 

into the host-tissue (Passier and Mummery, 2003; Serafini and Verfaillie, 2006). 
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In addition to the in vivo ASC populations, more potent SC cultures have recently been 

developed in vitro (Serafini and Verfaillie, 2006).  Multi- and pluripotent SC populations have 

been cultured from skin, bone marrow, muscle, umbilical cord blood and embryos.  These 

purified SCs include human bone marrow-derived multipotent stem cells (hBMSCs) (Yoon et 

al., 2005), foetal somatic stem cells (FSSCs) (Kues et al., 2005), marrow-isolated adult 

multilineage inducible (MIAMI) stem cells (D'Ippolito et al., 2004), and skin-derived precursors 

(SKP) (Toma et al., 2001).  These cells are all capable of differentiation into various cell types 

of different embryonic germ layers, and although they have been cultured by extensive 

manipulation and therefore might not exist in vivo, they could be of future use in clinical 

medicine.   

 

Taken together, ASCs seem to possess a much greater capacity for differentiation than 

previously thought, and are directly influenced by the immediate environment and local 

signalling factors.  This makes them good candidates for clinical transplantation.  The various 

in vitro and in vivo sources of ASCs described above are summarised in Figure 2.3.   
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Figure 2.3.  In vivo and in vitro sources of adult stem cells.  
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2.2 MYOGENIC GROWTH, DIFFERENTIATION, REPAIR AND REGENERATION 

 

It has always been assumed that both skeletal and cardiac muscle are composed of 

terminally differentiated myocytes, incapable of, or having very limited capacity for 

regeneration (Wollert and Drexler, 2005).  As discussed in the above section, progress in the 

field of SC research has however confirmed the potential use of both embryonic and adult SCs 

in skeletal (Charge and Rudnicki, 2004; Ferrari et al., 1998) and cardiac (Etzion et al., 2001; 

Herreros et al., 2003; Marin-Garcia et al., 2006; Pittenger and Martin, 2004) repair strategies 

and regeneration.   

 

Although various muscle precursor cells have been identified in skeletal muscle (section 

2.1.3.2), regeneration has been found to be largely dependent on the satellite cell population 

(Hawke and Garry, 2001; Partridge, 2004).  Similarly, in cardiac muscle (section 2.1.3.3), 

evidence have been presented that a fraction of resident cardiomyocytes may be activated to 

re-enter the cell cycle (Beltrami et al., 2003; Urbanek et al., 2003) and furthermore, that 

regeneration, even though limited, can occur through the recruitment of circulating 

extracardiac progenitor cells (Anversa and Nadal-Ginard, 2002; Jackson et al., 2001; Kucia et 

al., 2004; Orlic et al., 2001c).  Therefore, possible treatment options to restore muscle 

function during phases of regeneration, could include: (A) activation of local (stem) cells in the 

injured or diseased muscle; (B) recruitment and migration of endogenous myogenic precursor 

(stem) cells of a different cell-lineage; or (C) the exogenous application (cell grafting) of 

myoblasts or other myogenic precursor (stem) cells as a cellular transplantation mechanism.   

 

2.2.1 Skeletal Muscle Regeneration and Repair in Disease and Injury  

Postnatal muscle growth in terminally differentiated adult skeletal muscle fibers is made 

possible by various sources of skeletal muscle precursor cells, which include: (A) satellite 

cells, the population of reserve stem cell-like cells on the surface of mature myofibers and 

primary SC source in adult skeletal muscle; (B) other local myogenic precursor cells (mpcs) 

within the myofiber; (C) “post-mitotic” myonuclei within the sarcoplasm of damaged myofibers 

that may re-enter the cell cycle; and (D) cell types originating beyond the muscle.  These 

sources of skeletal muscle stem and precursor cells are outlined in Figure 2.4.   
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Figure 2.4.  Sources of skeletal muscle stem and progenitor cells.   
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2.2.1.1 Contribution of satellite cells to skeletal muscle repair and regeneration 

Satellite cells supply myonuclei to growing myofibers before becoming mitotically quiescent in 

the muscle as it matures.  They are then activated from this quiescent state when influenced 

by extrinsic signals such as exercise, muscle damage, or disease to function in routine 

maintenance, hypertrophy and repair of adult muscle (Grounds et al., 2002; Sabourin et al., 

1999).   

 

 2.2.1.1 (A) Satellite cell origin and identification 

During embryogenesis, the paraxial mesoderm gives rise to the somite from which all skeletal 

musculature is generated (Hawke and Garry, 2001; Mauro, 1961; Ordahl, 1999; Schultz and 

McCormick, 1994).  Mononuclear satellite cells were already identified in 1961 (Mauro, 

1961) based on their distinct location at the periphery of multinucleated myofibers, between 

the basal lamina and sarcolemma (Ordahl, 1999).  Two paradigms exist for the developmental 

origin of satellite cells.  Initial studies hypothesised that all muscle precursors, including the 

satellite cell population, originate from multipotential mesodermal cells of the somite (Schultz 

and McCormick, 1994).  A more recent hypothesis suggests that satellite cells may be derived 

from endothelial cells or a precursor common to both satellite and endothelial cells (De 

Angelis et al., 1999; Ordahl, 1999).  Given the differences in myogenic programs between 

muscle of different embryological origin, it is possible that satellite cells in different muscle 

groups have different embryological origins themselves (Tajbakhsh, 2005) and display 

functional and phenotypic heterogeneity (Zammit et al., 2006a). 

 

Satellite cells are produced at ~day 17 of development and make up 2-7% of the nuclear 

fraction of a myofiber (Cossu et al., 1985).  This proportion varies with age (reduces with age, 

as well as in diseased muscle), species, muscle group and fiber-type, based on which they can 

be divided into further sub-classes (Rosenblatt et al., 1996; Schultz and McCormick, 1994).  

The number of satellite cells, however, remains relatively constant due to their ability to self-

renew following repeated bouts of muscle damage which would otherwise deplete the satellite 

cell-reserve.  One postulated mechanism for such self-renewal involves asymmetric cell 

division where a daughter cell differentiates, while the other continues to proliferate, or else 

returns to quiescence (Moss and Leblond, 1971).  A further mechanism is dependent on 

expression of specific myogenic regulatory (also transcription) factors and involves possible 

de-differentiation of committed mpcs (Seale and Rudnicki, 2000).  Following activation, 

satellite cells can therefore adopt different fates depending on the micro-environmental 

conditions and either continue proliferation, initiate a programme of differentiation, or return 

to quiescence (Zammit et al., 2004).
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Although these cells have long been regarded as being monopotential and only able to give 

rise to cells of the myogenic lineage (Bischoff and Heintz, 1994), evidence suggests that 

satellite cells represent a multipotential SC population (Asakura et al., 2001; Price et al., 

2007; Smith et al., 1994; Wada et al., 2002).  Satellite cells activated in skeletal muscle 

could therefore give rise to myoblasts and continue differentiation into mature myofibers, or, 

depending on a different micro-environment and the circulating growth factors, contribute to 

non-muscle lineages (Gussoni et al., 1999; Seale et al., 2001).  Satellite cells therefore fulfil 

the basic SC definition in that they are maintained by self-renewal and can give rise to a 

differentiated cell type. 

 

The difficult morphological identification of satellite cells has resulted in the use of molecular 

markers to characterise these cells at various stages of commitment (outlined in Chapter 4, 

Table 4.2).  None of these markers are however absolute to quiescent, activated or 

proliferating satellite cell stages and their identification is further complicated by the 

expression of these molecular markers also in other cell types that may be present in the 

muscle tissue.  The majority of quiescent satellite cells express M-cadherin, the tyrosine-

kinase receptor for hepatocyte growth factor (HGF), c-met, Pax-3, Pax-7 and/or CD34, which is 

also an established marker of HSCs (Beauchamp et al., 2000; Charge and Rudnicki, 2004; 

Grounds et al., 2002).  Schultz (1996) demonstrated that M-cadherin+-cells comprised only a 

small fraction (~20%) of satellite cells at a time when all cells were c-met+ and suggested that 

these M-cadherin+/c-met+ cells represent a sub-population of quiescent satellite cells, 

possibly able to differentiate quickly upon stimulation.  Other established satellite cell 

markers include syndecan-3, syndecan-4 and myostatin, while more recent markers reported 

to identify quiescent and activated satellite cells include lysenin, a sphingomyelin-specific 

binding protein (Nagata et al., 2006) and caveolin-1, a structural protein-component of 

caveolar-membrane domains and a novel regulator of satellite cell functions (Volonte et al., 

2005). 

 

 2.2.1.1 (B) Mechanisms of satellite cell activation 

All processes of muscle growth, regeneration or adaptation to training require satellite cells to 

become activated, proliferate, form myoblasts and differentiate, finally fusing with existing 

myofibers or with other myoblasts to form multinucleated myotubes which then undergo 

terminal differentiation to develop into mature, functional muscle fibers (Grounds et al., 2002; 

Seale and Rudnicki, 2000).  The exact molecular mechanisms that regulate these processes, 

specifically activation and entry into the cell cycle, remain to be clarified.  Satellite cell 

activation may result from the ligation of integrin molecules, such as VLA-4 on infiltrating 
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leukocytes with VCAM-1 on the resident satellite cells (Jesse et al., 1998; Rosen et al., 1992), 

which would then initiate genetic responses within satellite and immune cells to promote 

regeneration processes.  Furthermore, damage to the basal lamina and extracellular matrix of 

myofibers may result in the release of HGF, a potent mitogen and chemotactic agent.  It is 

postulated that HGF activates satellite cells through its associated receptor c-met which is 

predominantly expressed in quiescent satellite cells (Allen et al., 1995).   

 

Furthermore, chemotaxins are released from the damaged cells resulting in an inflammatory 

response.  Lymphocytes and macrophages migrate to the area of tissue damage where the 

macrophages, the dominant immune cell, function to remove cell debris and secrete 

mitogenic growth factors, including the cytokines interleukin (IL)-6 and leukaemia inhibitory 

factor (LIF) which subsequently results in the stimulation of mpc proliferation (Cantini et al., 

1994; Merly et al., 1999).  Other growth factors involved in the expansion of the mpc-

compartment include HGF, fibroblast growth factor (FGF) and insulin-like growth factor-I  

(IGF-1).  IGF-1 has also shown to stimulate muscle hypertrophy simultaneously with satellite 

cell activation (Adams and McCue, 1998).   

 

The activation of satellite cells from their state of quiescence and subsequent progression 

along the myogenic lineage are controlled by various transcription factors, the most important 

being the myogenic regulatory factors (MRFs) MyoD, Myf-5, myogenin and MRF4. 

 

 2.2.1.1 (C) Myogenic regulatory factors in satellite cell activation and differentiation 

Myogenic differentiation involves the withdrawal of myoblasts from the cell cycle, induction of 

muscle-specific gene expression and formation of myotubes following fusion of myoblasts.  

These processes are controlled by a family of basic helix-loop-helix transcription factors which 

have proven to be essential in the determination and differentiation of mpcs into mature 

skeletal muscle (Rudnicki and Jaenisch, 1995; Weintraub et al., 1991).  These MRFs, which 

include MyoD, Myf-5, myogenin and MRF4 (also known as Myf-6 or herculin) (Dias et al., 

1994) are expressed exclusively in skeletal muscle and function by activating muscle-specific 

genes in response to extracellular growth factors to initiate myogenic differentiation.  Whereas 

Myf-5 and MyoD are known as the primary MRFs, required for determination of myoblasts into 

the myogenic lineage, myogenin and MRF4 are the two secondary MRFs and function to 

regulate terminal differentiation (Arnold and Winter, 1998; Cooper et al., 1999). 
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In established muscle cell-lines and during development, only subsets of the MRFs are active 

rather than all being expressed simultaneously.  Once activated, satellite cells will first 

express either Myf-5, one of the earliest markers of myogenic commitment in dormant 

satellite cells (Beauchamp et al., 2000; Grounds et al., 1992; Megeney et al., 1996) and/or 

MyoD, at which time daughter mpcs are generated, with subsequent transcription of both 

these genes.  Nuclei only expressing Myf-5 are limited, although despite this early down-

regulation of Myf-5, both MyoD and Myf-5 can still be detected during the early stages of 

myotube differentiation (Cornelison and Wold, 1997; Thayer et al., 1989). 

 

Following this proliferative burst, MRF4 and myogenin are exclusively expressed in cells 

entering their differentiation programme (Hollenberg et al., 1993; Megeney and Rudnicki, 

1995).  These MRFs are required for mpcs to progress through stages of myogenic 

commitment, the formation of myotubes and subsequent terminal differentiation and fusion 

to form mature post-mitotic, multinucleated myofibers.  Only myogenin is expressed during 

phases of early differentiation (Cornelison and Wold, 1997; Vivian et al., 2000).  To complete 

the terminal differentiation programme, muscle-specific proteins, including myosin heavy 

chain, are activated.   

 

Studies analysing muscle regeneration in mice deficient of specific MRFs have revealed the 

essential role which these factors have on successful satellite cell progression through the 

process of myogenic differentiation.  Myf-5 and MyoD deficient mice have neither 

differentiated skeletal muscle, nor a mpc population (Rudnicki et al., 1993).  Although the 

myoblasts of mice lacking MyoD grow more quickly, they show reduced numbers of 

proliferating mpcs, reduced fusion of myoblasts, a reduction in the number of generated 

myotubes, and therefore inefficient differentiation (Megeney et al., 1996; Miller, 1990; 

Sabourin et al., 1999).  They do however show an increased number of satellite cells because 

of the greater tendency of these cells to self-renew rather than progressing further through 

the developmental programme (Megeney et al., 1996).  Conversely, Myf-5-null myoblasts 

proliferate poorly and differentiate inadequately (Montarras et al., 2000).  Results therefore 

suggest that Myf-5 functions toward myoblast self-renewal and proliferation, whereas MyoD 

promotes satellite cell progression to terminal differentiation (Charge and Rudnicki, 2004; 

Ishibashi et al., 2005; Sabourin et al., 1999; Seale et al., 2001).  The importance of MyoD as 

an essential regulator primarily responsible for inducing myogenic differentiation has been 

demonstrated in various studies: MyoD has the ability to activate muscle-specific genes in a 

variety of differentiated cell-lines, suggesting that no additional muscle-specific factors are 

needed to activate terminal muscle differentiation; MyoD-deficient myoblasts are incapable of 
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successfully differentiating into myotubes and have reduced regenerative capacity both in 

vitro and in vivo; and cells positive for differentiation markers express MyoD, but not Myf-5 

(Cornelison et al., 2000; Kitzmann et al., 1998; Megeney et al., 1996; Weintraub et al., 

1989).   

 

Myogenin-deficient mice are capable of generating normal numbers of myoblasts, but these 

populations are arrested in their terminal differentiation programme, resulting in highly 

reduced myofiber formation (Arnold and Braun, 1996).  Severe defects in embryonic muscle 

development of myogenin-knock-out mice have however prevented further study of the exact 

role of this MRF, as well as MRF4, in muscle regeneration since these mice usually die shortly 

after birth.  Mice generated with a mutated myogenin gene are born immobile with severely 

reduced skeletal muscle mass (Hasty et al., 1993; Nabeshima et al., 1993).  Since normal 

numbers of myoblasts are still produced in these mice, results from these studies indicate the 

importance of myogenin for initiating terminal differentiation, rather than for the commitment 

of cells to the myogenic lineage. 

 

Additionally, Pax3 and Pax7, members of the paired-box transcription factor family, have also 

proven to play an essential role in muscle regeneration.  Whereas Pax3 is required for the 

migration of muscle precursors from the somite during development (Tajbakhsh et al., 1997), 

Pax7, which functions upstream of MyoD, is required for satellite cell specification (Seale et 

al., 2000).  Although its exact role in activation and regeneration has not yet been fully 

characterised, it has been suggested that Pax7 may be involved in maintaining proliferation 

and prevent selected differentiation, although it does not promote quiescence (Zammit et al., 

2006b).  The unique requirement for this transcription factor is indicated in embryonic and 

foetal myogenesis which is largely not affected in Pax--mice, in contrast to postnatal muscle 

growth which is severely impaired (Seale et al., 2000).  
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 2.2.1.1 (D) Responses of satellite cells to physiological stimuli and disease  

Understanding the functional responses of satellite cells to physiological stimuli and diseased 

conditions could contribute to the improved use of these cells in the development of 

therapeutic strategies. 

 

Satellite cells are stimulated in response to hypertrophic stimuli, such as resistance training, 

to participate in proliferative and repair processes following exercise-induced myotrauma so 

that the nett result of the stimulus is greater force production (Nathan, 1987).  
 

The initial response to atrophic stimuli, such as decreased muscle activity (e.g. caused by 

denervation of the muscle, malnutrition or muscle disuse), is an increase in satellite cell 

number.  However, a prolonged period of inactivity will ultimately result in a significant 

decrease in satellite cell number, possibly due to satellite cell apoptosis or the lack of 

neurotrophic and growth factor input which negatively influences satellite cell function and 

content (McGeachie, 1989; Viguie et al., 1997). 
 

In pathological conditions, such as congenital myopathies and diseases causing muscle 

atrophy, satellite cell numbers and proliferation may decrease (Jejurikar and Kuzon, 2003) in 

an effort to restore muscle function: repeated cycles of muscle regeneration are brought on by 

repeated loss of differentiated tissue, and as such, failure to maintain muscle homeostasis 

(Luz et al., 2002).   
 

Aging results in a reduced capacity of skeletal muscle to regenerate following injury or disease 

(Grounds, 1998) which can be explained by a decline in satellite cell numbers, impairment of 

their intrinsic regenerative potential (Conboy and Rando, 2005; Mouly et al., 2005), as well as 

effects of the aged immediate environment on satellite cell function.  Such influences include 

reduced neural activation (Carlson and Faulkner, 1996), a declining systemic environment, 

increased fibrosis within the skeletal muscle (Marshall et al., 1989), reduced vascularisation 

(Coggan et al., 1992), and decreased levels of inflammatory and growth factors which are 

required for efficient immune responses (Danon et al., 1989).   

 

These physiological responses suggest that the self-renewal capacity of satellite cells is 

limited.  Determining therapeutic applications which could negate these responses and 

enhance the muscle’s regenerative potential are therefore required for the successful 

treatment of tissue injury and degenerative diseases. 

 



 28. 

2.2.1.2 Contribution of other stem cells to skeletal muscle repair and regeneration 

Since its identification, the satellite cell has been presumed to be the only source of 

myonuclei in skeletal muscle repair.  In regenerating muscle, however, the number of 

myogenic precursors exceeds that of resident satellite cells, implying migration and/or 

recruitment of undifferentiated progenitors from other sources (Ferrari et al., 1998).  As 

indicated in sections 2.1.3.1 and 2.1.3.2, multipotential SCs in various adult tissues have 

been characterised which have demonstrated potential to contribute to myogenic repair and 

regeneration (Figure 2.4). 

 

  2.2.1.2 (A) Muscle resident stem cells 

Skeletal muscle contains a side-population (mSP) similar to that found in bone marrow, 

possibly derived from MSCs, migratory bone marrow cells or from the vasculature (Zammit 

and Beauchamp, 2001).  MDSCs have shown multipotential capacity and myogenic 

conversion both in vivo and in vitro (Qu-Petersen et al., 2002).  Other muscle resident SCs 

include post-mitotic nuclei, SSC and Pax3+-cells which have recently been identified in the 

interstitial compartment of the muscle (Kuang et al., 2006).  It has been suggested that these 

Pax3+ interstitial cells represent a novel myogenic population that is distinct from the satellite 

cell-lineage. 

 

  2.2.1.2 (B) Non-muscle resident stem cells 

Transplanted progenitor cells isolated from the bone marrow have proven to contribute to 

muscle regeneration, although only to a limited extent (Bittner et al., 1999; Ferrari et al., 

1998; Gussoni et al., 2002; LaBarge and Blau, 2002).  The possibility remains that under 

certain micro-environmental conditions or treatment with appropriate growth factors, the 

frequency of conversion can be increased.  In addition, bmSP cells have also shown potential 

to give rise to skeletal muscle (Hawke and Garry, 2001; Zammit and Beauchamp, 2001), as 

well as contribute to the satellite cell pool (LaBarge and Blau, 2002).  Whereas neural (Clarke 

et al., 2000; Galli et al., 2000) and mesenchymal (Young et al., 2001) progenitor cells have 

shown differentiation potential into muscle cells in vitro, adipose tissue-derived MSCs can be 

directed towards a myogenic phenotype both in vitro and in vivo (Di Rocco et al., 2006). 

 

Research therefore confirm the capacity various ASC sources to contribute to myogenic 

differentiation.  However, it remains to be determined to what extent these cells can 

contribute to functional regeneration and incorporation into regenerating musculature in vivo.  



 29. 

2.2.1.3  Stem cell applications to improve skeletal muscle repair and regeneration 

 2.2.1.3 (A) Transplantation of satellite cell-derived myoblasts 

Primary myoblasts have been the principle source of muscle progenitors for cell-based 

therapies.  The application of myoblast transfer therapy (MTT) has been used where skeletal 

myoblasts have been isolated, expanded in vitro and transplanted into the muscle, usually  

via intramuscular injection, to replace defective genes and cells of various myopathies.  

Successful MTT requires survival of the injected donor myoblasts in the host-environment  

and although this method is advantageous in that muscle biopsies are easily obtainable, a 

concern when applying MTT is overcoming the in vitro-induced immune problems (Morgan et 

al., 1996; Watt et al., 1982).  Results from MTT have shown that there is a rapid rate of 

necrosis of the injected cultured myoblasts which can be as high as 90% (Beauchamp et al., 

1999; Smythe et al., 2001).  This massive myoblast death could be the result of tissue culture 

conditions affecting the cells to such an extent that when transferred to in vivo conditions, it 

elicits an acute adverse host-immune response.  For consideration as a viable treatment 

option, enhanced myoblast-contribution, capable of multiple rounds of regeneration, and 

functional incorporation throughout the musculature therefore needs to be improved.  

 

 2.2.1.3 (B) Satellite cell transplantation 

The ability to directly isolate a pure satellite cell population was only recently achieved 

(Montarras et al., 2005).  When injected into dystrophic muscle of mice, these cells have 

shown to restore dystrophin expression and contribute to the satellite cell-compartment.   

The use of a pure satellite cell population requires a smaller number of cells to obtain similar 

levels of regeneration when compared to the use of donor cells isolated from whole muscle.  

Limiting to this approach however is that in vitro cultivation of isolated satellite cells 

significantly reduces their in vivo myogenic regeneration potential (Price et al., 2007).  

Changing the host environment to be more conducive to donor satellite cell migration could 

therefore improve the effectiveness of this transplantation strategy (Smythe et al., 2001).   

 

 2.2.1.3 (C) Single muscle fiber 

Resident satellite cells in whole muscle have shown the ability to initiate regeneration and 

contribute to the satellite cell compartment following transplantation into a new host (Hansen-

Smith and Carlson, 1979; Roberts et al., 1989).  These transplanted satellite cells appear to 

migrate throughout the muscle in which the myofibers were implanted.  Transplantation of 

donor whole muscle grafts into host muscle has also proven to be successful without adverse 

immune responses as an alternative approach to cell transplantation, also without the need 

for prior exposure to tissue culture conditions (Fan et al., 1996a; Smythe et al., 2000).   
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 2.2.1.3 (D) Application of adult stem cells 

In addition to satellite cells, as indicated in section 2.2.1.2 (Figure 2.4), other resident and 

non-resident muscle SC sources have been identified which have shown myogenic potential, 

although only to a variable degree.  In contrast to satellite cells and primary myoblasts, mSP 

cells and MDSCs are able to migrate from the vasculature into the muscle, a desirable feature 

for a therapeutic cell type, as is their multipotential nature. 

 

Taken together, identifying the mechanisms responsible for satellite and adult stem cell 

activation and differentiation, maintenance in their quiescent state and self-renewal, are 

required to establish optimal satellite and stem cell-based therapies.  In addition, for 

transplantation therapies to be successful, it would be required to determine greater levels of 

transplanted cell integration into the host, together with methods for long-term regeneration.  

 

2.2.2 Cardiac Muscle Regeneration and Repair in Disease and Injury  

Unlike skeletal muscle where injury can be repaired by the proliferation, differentiation and 

fusion of satellite cells and other mpcs, the response of cardiac tissue to ischaemic injury is 

predominantly scar formation (Sun et al., 2000).  To restore the structural integrity of the 

myocardium post-injury, myofibroblasts appear in the wounded area which originate from 

either interstitial fibroblasts, or from mesenchymal progenitor cells such as fibrocytes (Bucala 

et al., 1994).  Collagen (specifically type I and type III) is laid down by these myofibroblasts, 

accumulating in the wound and remodels the tissue to form a mature infarct scar.  The 

problem facing individuals following myocardial infarction is that the scar does not function as 

normal contractile tissue, and as a result remodelling of non-injured tissue occurs, leading to 

a further reduction in cardiac output and ultimately heart failure.  As previously outlined 

(section 2.1.3.3), there is however evidence for in vivo proliferation of cardiomyocytes after 

damage, either from pre-existing mature cardiomyocytes, or from resident cardiac SCs.  

Together with the recruitment of endogenous, extracardiac progenitor (stem) cells and cellular 

transplantation mechanisms, these local cardiac SCs provide potential for cardiac 

regeneration and repair strategies (Figure 2.5). 
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Figure 2.5.  Sources of cardiac muscle stem and progenitor cells.  
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2.2.2.1 Contribution of resident stem cells in cardiac repair and regeneration 

Growth of the heart during initial stages of embryonic and foetal development is generally 

characterised by cell-division, after which it enters a post-mitotic state.  Further growth during 

normal development or in diseased conditions is achieved by means of the enlargement of 

cardiomyocytes (hypertrophy) rather than proliferation (hyperplasia).   

 

Evidence of resident cardiac SCs has however revealed the presence of ECC or multipotent 

cardiac SCs capable of differentiating into cardiomyocyte or vasculature lineages (Beltrami et 

al., 2003; Messina et al., 2004).  The presence of primitive cardiac SCs has also been 

demonstrated from evidence of myocyte hyperplasia which has shown to contribute to cardiac 

growth (Kajstura et al., 1998; Urbanek et al., 2003).  Additionally, the use of cell proliferation 

markers such as Ki67 and PCNA has made it possible to identify replicating myocytes within 

the myocardium which supports the notion that a population of adult cardiac SCs can re-enter 

the cell cycle as a source for tissue self-renewal (Anversa and Nadal-Ginard, 2002).  Two 

small populations, adult heart-derived cardiac progenitor cells (Oh et al., 2004) and 

cardioblasts (Laugwitz et al., 2005), have also been identified in the myocardium.  Recently, a 

pool of embryonic late plate mesoderm progenitor cells were identified which yield both 

myocardial and endocardial cells during normal cardiac development (Ott et al., 2007).  These 

cells have shown the potential to differentiate both in vivo and in vitro into smooth muscle, 

endothelial- and cardiomyocyte lineages.  It needs to be clarified whether these progenitor 

cells are related or form distinct myocardial cell populations. 

 

 2.2.2.1 (A) Cardiac-specific transcription factors 

Similar to skeletal muscle, the expression of cardiac gene products occurs in a controlled 

programme during myocardial development.  During early embryogenesis, the expression of 

cardiac-specific transcription factors GATA-4, Nkx2.5 and members of the myocyte enhancer 

family (MEF-2C) precedes and mediates the expression of markers for early, intermediate and 

terminal cardiac cell differentiation, including atrial natriuretic factor (ANF), myosin light chain, 

α- and β-myosin heavy chain and cardiac troponin-C.  GATA-4, one of the first cardiac 

transcription factors, plays a key role in cardiomyocyte differentiation.  Blocking GATA-4 

transcription eliminates the formation of beating cardiac muscle cells, prevents the 

transcription of cardiac-specific markers and reduces levels of MEF-2C and Nkx2.5 (Marin-

Garcia et al., 2003).  Nkx2.5 is expressed in cardiac progenitor cells during early 

development, acts downstream of GATA-4 and possibly plays a role in late cardiac 

differentiation events.  MEF-2C likely acts downstream of both GATA-4 and Nkx2.5.  
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Despite being expressed at different stages of myocardial development, the transcription 

factors works in combination, also with other transcription factors, to activate the promoters 

of several critical genes involved in cardiac differentiation and postnatal development.  The 

mechanisms by which these transcription factors are regulated, however, remain to be 

determined. 

 

 2.2.2.1 (B) Signalling pathways regulating growth in adult cardiomyocytes 

Cardiomyocytes of the adult myocardium increase their cellular volume in response to various 

growth stimuli, including growth hormones, neuro-endocrine factors and increases in 

mechanical load (Schluter and Piper, 1999).  Various signalling pathways have been 

characterised as important transducers of the growth response, including activation of  

G-protein-mediated pathways with further downstream signalling by protein kinase-C (PKC), 

mitogen-activated protein kinase (MAPK) and PI3-kinase.  Growth factor-receptor pathways, 

such as that of transforming growth factor-β (TGF-β), have also been implicated as a potential 

hypertrophic transducer of cardiac signalling (Molkentin and Dorn, 2001).  Downstream of 

TGF-β-receptor activation, intracellular signalling involves TGF-β-activated kinase (TAK1) which 

also regulates MAPK-kinase, leading to JNK and/or p38 signalling.  Importantly, these 

signalling pathways, in addition to others, operate together to co-ordinate the relevant 

response (Solloway and Harvey, 2003). 

 

2.2.2.2 Contribution of extracardiac stem cells in cardiac repair and regeneration 

The generation of cardiomyocytes from various extracardiac ASC sources has received much 

attention as an alternative option to increase cell delivery to the damaged myocardium  

(Figure 2.5) and has been discussed above (section 2.1.3).  Such ASC sources include various 

bone marrow-derived-, endothelial- and skeletal stem and progenitor cells.  Also, the 

possibility of transdifferentiation of other non-resident SCs into cardiomyocytes, including 

neural-, adipose- or hepatic stem and/or progenitor cells, can be debated (Table 2.2). 

 

2.2.2.3 Stem cell applications to improve cardiac muscle repair and regeneration 

Experimental and clinical studies have focussed on three main approaches to improve cardiac 

repair and regeneration using SCs.  Essentially, these include: (A) identification and activation 

of resident cardiac (stem) cells; (B) improvement in the recruitment, mobilisation and 

migration of endogenous SCs residing either in the bone marrow, circulation, or other 

extracardiac SC niches; and (C) cellular transplantation. 
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 2.2.2.3 (A) Activation of resident cardiomyocytes  

Studies from Quaini et al. (2002) and Laflamme et al. (2002) were the first to describe the 

presence of progenitor cells in the myocardium, although with large discrepancies regarding 

the number of cardiomyocytes (0.04%-18%).  It has now been established that the heart 

contains different resident (stem) cell populations which can reconstitute the myocardium 

(section 2.2.2.1).  Although these cells show variability in their capacities to contribute to 

cardiac regeneration, they are intrinsically programmed to generate cardiac tissue and 

therefore SC therapy directed to activate these resident SCs could prove to be beneficial in 

the treatment of heart disease (Barile et al., 2007; Laflamme et al., 2002; Quaini et al., 

2002). 

 

 2.2.2.3 (B) Recruitment of extracardiac progenitor cells  

An initial study by Bittner et al. (1999) demonstrated that healthy bone marrow cells 

transplanted into dystrophic muscle, were found in the heart, indicating that these cells could 

migrate to the injured myocardium and differentiate into cardiac tissue.  Subsequently, 

various bone marrow cell populations have shown the ability to repair the infarct heart, 

improving both function and survival of adult mice (Goodell et al., 2001; Jackson et al., 2001; 

Orlic et al., 2001c; Toma et al., 2002).  The use of bone marrow-derived cells has been 

preferred mainly due to their autologous origin and potential for cardiomyocyte/endothelial 

transdifferentiation in response to the necessary environmental factors (Menasche, 2003).  In 

these studies, cardiomyocytes were formed in vivo from circulating bone marrow-derived 

MSCs, HSCs or endothelial cells following engraftment of the transplanted cells into the 

irradiated bone marrow of the animal.  It needs to be clarified whether transplanted 

endothelial cells improve cardiac function by means of these cells’ contribution to improved 

vasculature-, rather than cardiomyocyte regeneration (Kocher et al., 2001).  For SCs recruited 

from distant niches, however, it is possible that the presence of myofibroblasts and the 

deposition of fibrous tissue post-infarct could prevent (A) these SCs from moving into the 

injured myocardium, and (B) the formation of new blood vessels in the scar tissue.   

 

As alternative sources to bone marrow-derived SCs, a hepatocyte stem cell-line (Malouf et al., 

2001) and SCs from neural tissue (Clarke et al., 2000) have shown to differentiate into 

cardiomyocytes in vivo, whereas a SC population within lipoaspirates has demonstrated in 

vitro myogenic potential (Zuk et al., 2001).  In addition to ASC sources, embryonic, neonatal 

and endothelial cells isolated from human umbilical veins have also shown good conversion 

potential into cardiomyocytes both in tissue co-culture and in vivo (Condorelli et al., 2001). 
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2.2.2.3 (C) Transplantation of skeletal myocytes or alternative progenitor cells 

In a further effort to replace cardiomyocytes lost after ischaemia, cellular transplantation has 

been investigated as a potential therapy.  This approach, termed cellular cardiomyoplasty 

(Suzuki et al., 2002) or myogenic cell grafting, involves the extraction of donor stem or 

precursor cells from a selected in vivo source, after which the cells are expanded in culture 

and then either injected into the myocardium bordering the infarct, or delivered via the 

circulation (intracoronary or intravenous).  During intra-coronary delivery, cells must be 

delivered slowly to prevent cell clumping or embolism (Forrester et al., 2003).  In addition to 

the method of delivery, is the importance of timing, site of delivery, number and population of 

cells, and optimisation of cell survival, essential to ensure maximal engraftment.  When ASCs 

or progenitor cells are transplanted into the myocardium, it is also essential that they 

encounter a suitable environment which will promote their appropriate differentiation and 

discourage any uncontrolled proliferation.   

 

The selection of appropriate candidates for cardiac repair by means of cellular transplantation 

is essential as distinct stem or progenitor cells may respond differently to the post-infarct 

environment that prevails.  Preferably, autologous SCs are selected to prevent problems of 

immune rejection.  For transplanted cells to improve cardiac function, they must also feature 

contractile properties, therefore, although some positive data has been reported for 

transplantation of fibroblasts (Hutcheson et al., 2000), smooth muscle cells (Sakai et al., 

1999), endothelial cells (Kim et al., 2001) and mesenchymal stem and progenitor cells 

(Fukuda, 2001; Toma et al., 2002), the best results have been obtained from contractile cells 

such as foetal cardiomyocytes and skeletal myoblasts.  Foetal or neonatal cardiomyocytes 

can be regarded as a primary source for cellular transplantation since, being of myocardial 

origin, these cells differentiate towards an adult cardiomyocyte phenotype in the appropriate 

environment, whereas less differentiated cells delivered to the injured myocardium still need 

to undergo differentiation (Muller-Ehmsen et al., 2002; Ruhparwar et al., 2002; Scorsin et al., 

2000).  Since Chiu et al. (1995) demonstrated the ability of skeletal myoblasts to be 

successfully delivered to the injured myocardium, these cells have extensively been examined 

and applied in both animal models of cardiac injury, as well as in human clinical trials (Chiu et 

al., 1995; Hagege et al., 2006; Menasche et al., 2001; Menasche et al., 2003; Murry et al., 

1996).  The use of skeletal myoblasts are favourable since they can also be autologous of 

origin, are ischaemia-resistant which is essential in a post-infarct hypoxic environment, are 

highly proliferative, and form larger grafts in the injured heart (Murry et al., 2002).  
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Skeletal myoblast transplantation studies were first initiated in humans by Menasche et al. 

(2001).  Subsequently, the use of these cells for transplantation has demonstrated to be 

beneficial in humans over the short-term (Gavira et al., 2006; Herreros et al., 2003; 

Menasche et al., 2003; Siminiak et al., 2004) and for an extended period after 

transplantation (Dib et al., 2005; Hagege et al., 2006).  Although these studies demonstrate 

that autologous skeletal myoblast transplantation is a feasible, straightforward procedure,  

a concern regarding their long-term clinical application is the risk of developing cardiac 

arrhythmias.  Solutions to treat arrhythmias would include the co-implantation of defibrillators, 

prophylactic drugs, or possibly engineering skeletal muscle to express gap-junction proteins  

in vivo which may induce coupling with the host myocardium (Menasche et al., 2006). 

 

The use of bone marrow-derived stem cells, whether HSCs, MSCs or total unfractionated bone 

marrow (Shintani et al., 2001; Tomita et al., 1999) also holds certain advantages for cellular 

transplantation.  They can be transplanted autologously without the need of immuno-

suppression, and since they are multipotent, these cells can contribute to angiogenesis in 

addition to cardiogenesis.  Similar to skeletal myoblast transplantation, several short-term 

and extended follow-up human clinical trials have applied intracoronary bone marrow cell-

transfer to determine the extent to which these cells enhance recovery following myocardial 

infarction (Meyer et al., 2006; Schachinger et al., 2004; Strauer et al., 2002).  Most short-

term studies, covering 3-6 months, have demonstrated improved functional regeneration to 

various extents.  Although the long-term safety and benefits of multiple dosages of 

intracoronary bone marrow SC transfer still need to be established, cell-therapy trials using 

bone marrow-transplantation strategies in patients with myocardial infarction are on-going.  

These trials include BOOST I and II [bone marrow-derived] (Meyer et al., 2006; Wollert et al., 

2004), REPAIR-AMI [bone-marrow-derived] (Schachinger et al., 2006c), STEMI [bone marrow-

derived] (Engelmann et al., 2006), TOPCARE-AMI [bone marrow- and circulating blood-derived 

progenitor cells] (Assmus et al., 2002; Schachinger et al., 2004), REVIVAL-2 [bone marrow-

derived] (Zohlnhofer et al., 2007), and MAGIC [peripheral blood stem cells] (Kang et al., 2007; 

Kang et al., 2004).  Some of these trials suggest that mobilisation of bone marrow SCs by 

granulocyte-colony-stimulating factor can be used to improve cardiac regeneration (Ince and 

Nienaber, 2007).   
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Despite evidence that these ASCs can generate new cardiomyocytes after implantation, 

controversy still exists regarding the ability of transplanted cells, especially bone marrow-

derived cells, to transdifferentiate into functional muscle fibers after injection into the 

myocardium (Davani et al., 2005).  Orlic et al. (2001) reported extensive cardiac regeneration 

after direct injection of Lin-/c-kit+ cells (haematopoietic cells) into infarcts.  Similarly, Kajstura 

et al. (2005) also demonstrated that bone marrow-derived cells efficiently differentiate into 

myocytes and coronary vessels with no detectable differentiation into haematopoietic 

lineages or indications of cell fusion.  In contrast, other studies have failed to detect tissue 

regeneration or transdifferentiation of either HSCs (Kuethe et al., 2004; Murry et al., 2004) or 

engrafted myoblasts/skeletal myocytes (Murry et al., 1996; Reinecke et al., 2002) when 

injected into normal and injured mouse hearts.  Also, Nygren et al. (2004) demonstrated high 

levels of HSC engraftment into the ischaemic myocardium, however, on this occasion, 

engraftment was transient and haematopoietic in nature and although bone marrow-derived 

cardiomyocytes were indeed observed, this was at a low frequency outside the infarcted 

myocardium.  These cells were derived exclusively through cell fusion, therefore also 

challenging the concept of transdifferentiation.  

 

Taken together, despite progress, neither the ideal source and progenitor cell type, nor the 

cellular effect of the cytokine milieu present post-injury, has been identified satisfactorily to 

enhance skeletal and cardiac muscle regeneration.  Stimuli that drive SCs into myogenesis 

and produce a highly proliferative environment therefore need to be identified which would 

improve the potential of efficient and functional repair and regeneration.  Also, cellular 

transplantation strategies to improve migration from the injection site, integration into the 

host and complete functional differentiation, need to be established.    
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2.3 GROWTH FACTORS INFLUENCING MYOGENIC DEVELOPMENT, REPAIR AND 

 REGENERATION 

 

The regeneration processes following muscle damage or injury involve the activation of 

various cellular responses which require controlled regulation of muscle transcription factors 

and muscle-specific genes.  Mechanisms which initiate these responses involve cell-to-cell 

and cell-to-matrix interactions.  In vitro studies have indicated various secreted factors to be 

involved in both regeneration processes and maintaining a balance between growth and 

differentiation of mpcs (Hawke and Garry, 2001; Husmann et al., 1996).  The most prominent 

of these comprise cytokines and growth factors, including the interleukin-family member 

group, superfamily of transforming growth factor-β (TGF-β), tumour necrosis factor-α (TNF-α), 

hepatocyte growth factor (HGF), fibroblast growth factor (FGF), leukaemia inhibitory factor 

(LIF), insulin-like growth factor-1 (IGF-1) and platelet-derived growth factor (PDGF).   

 

The effect of growth factors on myogenesis has been examined using mostly in vitro myoblast 

cultures and either individual, or a combination of growth factors.  Such studies provide 

valuable information regarding the regulation of these cells.  However, in vitro studies are 

limited when taking into consideration that the in vivo environment may exert different 

regulatory influences on cellular activity (Tatsumi et al., 1998).  
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2.3.1 Cytokines and Important Growth Factors 

Cytokines are small secreted protein growth factors which are classically known to mediate 

and regulate immunity, inflammation and haematopoiesis.  Due to the different cells that 

secrete these cytokines, other names include lymphokines (cytokines produced by 

lymphocytes), monokines (cytokines produced by macrophages or monocytes), chemokines 

(cytokines with chemotactic activity) and interleukins (cytokines produced by one leukocyte to 

act on other leukocytes).  In general, they act over short distances and time spans, and at very 

low plasma concentrations.  Cytokines induce their effects by binding to membrane receptors, 

subsequently activating a signalling cascade to initiate gene expression in the cell nucleus 

(Lutz and Knaus, 2002).  

 

The largest group of cytokines, the interleukins (ILs), regulates immune cell proliferation and 

differentiation, thereby playing an essential function in cellular immunity and inflammation.  

An important IL includes LIF which is regulated by serum- and other growth factors, including 

IL-1α, IL-1β, TNF-α, FGF-2 and members of the TGF-β-superfamily.  Studies have shown LIF to 

stimulate myoblast growth in vitro, without affecting differentiation or fusion (Bower et al., 

1995; Spangenburg and Booth, 2002).  In vivo administration of LIF results in enhanced 

myoblast proliferation, as well as increased myofiber size and number (Austin et al., 2000; 

Barnard et al., 1994).   

 

Another group of cytokines, the TGF-β-superfamily, consists of over 40 diverse, multifunctional 

cell-to-cell signalling proteins (Kingsley, 1994; Meno et al., 1996).  Members of this family 

regulate a wide range of cellular functions, including proliferation, differentiation, migration, 

apoptosis, extracellular matrix (ECM) deposition and development (Derynck and Feng, 1997; 

O'Kane and Ferguson, 1997; Whitman, 1998).   

 

FGF has shown, both in vitro and in vivo, to stimulate mpc proliferation, and together with 

HGF, these factors expand the mpc compartment for regeneration to occur, rather than to 

target the differentiation of myoblasts, a process which these factors inhibit (Allen and 

Boxhorn, 1989; Olwin and Rapraeger, 1992; Sheehan et al., 2000).  Similar to TGF-β, FGF is 

stored in the ECM in an inactive form.  The inflammatory response following damage or injury 

to skeletal muscle is one method of FGF activation (Husmann et al., 1996), while increased 

levels can also be measured in necrotic or regenerating muscle cells (DiMario and Strohman, 

1988).  Because of this factor’s angiogenic properties, it additionally contributes to 

regeneration by means of revascularisation (Lefaucheur et al., 1996).   
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HGF is an important regulator of satellite cell activity during muscle regeneration.  Both  

in vitro and in vivo, this growth factor has shown to stimulate quiescent satellite cell 

activation, enabling these cells to enter the cell cycle and increase mpc proliferation, while 

simultaneously inhibiting differentiation (Allen et al., 1995; Gal-Levi et al., 1998).  More over, 

HGF also functions to promote satellite cell migration to the site of injury.  It therefore appears 

that HGF increases the mpc population by means of mitogenic and chemotactic activities to 

produce an optimal myoblast density after which fusion can commence (Zarnegar and 

Michalopoulos, 1995).  Similarly, in cardiac tissue, HGF has also shown to promote 

mobilisation and facilitate the migration of cardiac stem and progenitor cells to an injured 

area (Urbanek et al., 2005). 

 

In vitro, IGF-1 and -2 are already well known for their function in promoting both the 

proliferation and differentiation/fusion of myoblasts.  This hypertrophic effect of IGF-1 can  

be attributed to the increase in myonuclei numbers following satellite cell activation and 

proliferation, thereby regulating the cytoplasmic:myonuclei ratio.  Also, together with insulin, 

IGFs have a general effect on muscle metabolism, specifically by stimulating protein synthesis 

which results in increased muscle protein and therefore augmentation of muscle mass 

(Adams and McCue, 1998; Bark et al., 1998; Barton-Davis et al., 1999). 

 

Together with its main growth promoting activity in human platelets in vitro, PDGF has also 

shown to significantly promote proliferation of mpcs, whereas it inhibits their differentiation.  

In vivo, PDGF is released from injured vessels, macrophages and platelets to promote 

angiogenesis (Husmann et al., 1996).  

 

TNF-α acts as a mediator of muscle wasting, specifically by inhibiting processes of myogenic 

differentiation at the cell cycle level, the expression of muscle-specific transcription factors 

such as MyoD, and myotube formation (Langen et al., 2004). 

 

Many growth factors interact simultaneously during the process of muscle regeneration to 

activate muscle-specific transcription factors, thereby allowing new myofibers to be rebuilt 

after injury or disease.  To various extents, most of these growth factors stimulate the 

proliferation of satellite cells and other mpcs while inhibiting their differentiation and fusion, 

with the exception of IGF, which promotes differentiation.  The TGF-β-superfamily will be 

discussed in more detail in the next section.        
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2.4 TGF-β SUPERFAMILY 

 

As mentioned earlier, the TGF-β-superfamily comprises a large and diverse group of proteins, 

the most prominent being the TGF-β isoforms, the bone morphogenetic proteins (BMPs), 

activins (A, B, and AB) and their negative regulators, the inhibins (A and B), myostatin, 

decorin, growth and differentiation factors (GDFs), and Mullerian-inhibiting substances (MIS) 

(Massague, 1990).  The importance of this group of polypeptide proteins is exposed by the 

range of activities which they control as illustrated by the ability of a single factor to be 

responsible for diverse processes, including immuno-suppression and regulation of 

proliferation and differentiation to various extents depending on the cell type and 

environmental conditions. 

 

The TGF-β isoforms were the first to be isolated from human platelets (Assoian et al., 1983) 

and were named transforming growth factors after inducing morphologic transformation of 

fibroblastic cells in culture (de Larco and Todaro, 1978a; de Larco and Todaro, 1978b; 

Goustin et al., 1986).  They are multifunctional, pleiotropic proteins which play critical roles  

in the regulation of cell growth and development, especially in proliferation, differentiation, 

migration and angiogenesis, where the isoforms can induce both stimulatory and inhibitory 

effects (Lawrence, 1996).  Other important processes which TGF-β isoforms are directly or 

indirectly involved in, include tissue repair and skin formation, apoptosis and tumorigenesis, 

atherosclerosis, bone metabolism and osteoporosis, and importantly, ECM production (Wahl, 

1994).  Various pathologies, such as inflammatory and fibrotic diseases, cancer, and tumour 

development (Roberts et al., 1990a; Taipale et al., 1998) have been linked to increases or 

decreases in the production of TGF-β, or is the result of mutations in the genes for TGF-β, its 

receptors or the molecules involved in its intracellular signalling pathway (Blobe et al., 2000).  

Importantly, the activities of TGF-β isoforms are influenced by the state of the target cell, the 

immediate circumstances of the cell’s environment and the presence of other growth factors 

(Massague, 1990).  

 

The bone morphogenetic proteins (isoforms 1-8) primarily act to induce adequate bone 

formation during embryogenesis, often in concert with other factors, but are also required for 

growth and repair of skeletal tissue after birth (Massague, 1990). 
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In contrast to the diverse effects of the TGF-β isoforms, myostatin functions mainly as an 

endogenous inhibitor of muscle growth, negatively regulating satellite cell activation and  

self-renewal (McCroskery et al., 2003; Wagner et al., 2005).  This is an important feature, 

since myostatin mutations can lead to unnatural, excessive growth, demonstrated by a 

hypertrophic (increased fiber size) and hyperplasic (increased fiber number) muscle 

phenotype (McPherron et al., 1997).  This inhibitory effect of myostatin could however 

potentially be used as a therapy for human diseases of muscle weakness and wasting. 

 

Activins and inhibins primarily modulate the production of follicle-stimulating hormone from 

pituitary cells, gonadal steroids and placental hormones, although their actions are not 

restricted to gonadal and pituitary cells (Massague, 1990).  

 

2.4.1 The TGF-β Isoforms 

Five isoforms of TGF-β have been isolated.  The main isoforms, TGF-β1, -β2 and -β3, exist in 

mammals, whereas TGF-β1.2, a heterodimer containing one TGF-β1 and one TGF-β2 chain, 

has also been isolated in porcine platelets (Cheifetz et al., 1987).   

 

TGF-β1, a non-glycosylated homodimer protein, was the first mammalian isoform to be 

purified and is the most prevalent form, found almost ubiquitously (Assoian et al., 1983; Frolik 

et al., 1983; Roberts et al., 1983).  TGF-β2 was isolated thereafter from bovine bone, human 

glioblastoma cells and porcine platelets (Seyedin et al., 1985; Wrann et al., 1987).  The third 

isoform, TGF-β3, was cloned in 1988 (Derynck et al., 1988; ten Dijke et al., 1988), although a 

similar homologue has been found in the chicken (Jakowlew et al., 1988).  TGF-β2 and -β3 are 

expressed in a more limited spectrum of cells and tissues than TGF-β1 (Lawrence, 1996).  

 

Each isoform is encoded by a unique gene on different chromosomes (Lawrence, 1996).  

However, at genomic level, the TGF-β sequences have been very well conserved between 

isoforms and species (Derynck et al., 1988), suggesting essential and specific roles for each 

isoform.  Despite this high sequence conservation, the variability in effects which the isoforms 

exert on target cells is made possible by differences in their expression pattern and ability to 

interact with diverse cell surface receptors (Massague, 1990).  
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2.4.2 TGF-β Sources, Biosynthesis and Activity 

TGF-β is synthesised and secreted, with only a few exceptions, by most cell types in the body 

(Lawrence, 1996).  Blood platelets are the richest source of TGF-β (Derynck and Feng, 1997) 

and yield milligram amounts TGF-β/kg, whereas other tissues yield microgram/kg.  These 

include predominantly spleen and bone tissues, with human milk also containing this factor.  

TGF-β is also synthesised and released by inflammatory (e.g. macrophages and lymphocytes) 

(Wahl, 1994), smooth muscle, endothelial, granulosa and leukaemia cells, as well as 

keratinocytes and chondrocytes (Lehnert and Akhurst, 1988; Wilcox and Derynck, 1988).  

High concentrations of TGF-β have also been found in the mitochondria of several cell types, 

suggesting the possibility that TGF-β could act as a linker between the energetics of the cell 

and its other activities (Heine et al., 1991).  Importantly, auto-induction of TGF-β has been 

demonstrated, providing a possible mechanism by which the biological effects of this growth 

factor might be amplified. 

 

The three TGF-β isoforms are all synthesised as homodimeric pro-proteins (proTGF-β) of  

75 kDa.  The dimeric TGF-β-propeptides [the latency-associated peptide (LAP)], are cleaved 

intracellularly from the mature ~24 kDa TGF-β homodimer by furin-type enzymes.  However, 

the TGF-β-propeptide remains non-covalently bound to the growth factor after the bonds 

between the propeptide and mature TGF-β have been cleaved.  This complex, consisting of 

mature TGF-β and TGF-β-propeptide/LAP, is known as the small latent complex (SLC).  Once 

the SLC has been targeted to the ECM (Figure 2.6 A), LAP forms disulfide bonds with the 

latent TGF-β binding protein (LTBP) to form the large latent complex (LLC), which subsequently 

gets covalently linked to ECM proteins by transglutaminase (Figure 2.6 B).  LTBP may facilitate 

secretion of the SLC to promote targeting of TGF-β to the ECM, aid its final activation and also 

possibly play an important function in controlling the action of TGF-β.  The TGF-β isoforms are 

primarily stored in this latent form (L-TGF-β) in the ECM and require activation before being 

able to bind to their cell surface receptors and exert a target function (Annes et al., 2003; 

Rifkin, 2005). 

 

As part of the LLC, TGF-β cannot bind with the TGF-β surface receptors because of the 

inhibitory function of LAP and therefore requires biological activation to release TGF-β from 

both the LAP and LTBP, a process termed latent-TGF-β activation or TGF-β formation.  In vitro, 

disruption of LAP can be achieved by heat, acidic environments, oxidation of free radicals or 

reactive oxygen species (ROS), or detergents (Barcellos-Hoff and Dix, 1996).  The nature of 

the activation mechanisms of L-TGF-β in vivo is unclear, however, possible mechanisms could 

include regulation by proteases, specifically plasmin, calpain, matrix-metaloprotein (MMP-9), 
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thrombospondin-1, transglutaminase, ROS produced after irradiation (Annes et al., 2003), 

glycosidases (Miyazono and Heldin, 1989), the mannose 6-phosphate receptor (M6PR), and 

integrins (Gleizes et al., 1997; Lawrence, 1996).  It has been proposed that these activation 

molecules function as signals in response to disturbances in the ECM (e.g. inflammation, 

wound repair, cell growth or angiogenesis) that changes the cell’s environment, thereby 

activating the release of TGF-β from LAP and LTBP to allow receptor binding and initiation of 

the desired signalling pathway and subsequent response.  These multiple, seemingly 

unrelated activators of TGF-β possibly explains why the three TGF-β isoforms, having similar 

effects in vitro, display distinct effects in vivo (Annes et al., 2003). 

 
Latency is an important mechanism to control this growth factor’s activity: by allowing TGF-β 

to circulate in an inactive form, it will prevent the isoform from eliciting a response until it 

reaches its target cell where it can then be converted into the active form.  Latency also 

regulates TGF-β-bioavailability and may limit diffusion from the secreting cell, thereby 

controlling the autocrine and paracrine actions of this growth factor.  Once released from the 

latent complex, active TGF-β can be bound by various ECM components and serum proteins 

such as decorin, which again allows it to be stored in a biologically inactive form.  This 

mechanism could either protect TGF-β from rapid degradation or function as a long-term 

reservoir for sustained release and clearance (Massague, 1990).   

 
Enhanced TGF-β expression therefore does not always correlate with increased levels of TGF-β 

activity (Theodorescu et al., 1991): tissues can contain significant quantities of L-TGF-β, 

however, activation of only a small fraction of this latent form is required to generate cellular 

responses.  It has also been shown that mature, active TGF-β can reversibly be dissociated 

from, and re-associated with its latency protein, LAP, resulting in gain and then loss of 

biological activity (Grainger et al., 1995; Wakefield et al., 1990).  In our studies, TGF-β was 

supplied in its active form, indicating that the protective function of the LAP was not available.  

 
Grainger et al. (1995) have developed assays to measure the active-, as well as the active 

plus latent ([a+l]TGF-β) forms of TGF-β in human serum and plasma, although results showed 

significant variability.  In addition, assays detected TGF-β1 and -β3 with similar sensitivity, but 

were more than 10-fold less sensitive to TGF-β2.  Their results indicated that the mean 

[a+l]TGF-β present in human serum was 330 pmol/ℓ, however, the range was very large  

(4-1400 pmol/ℓ).  Similarly, the mean active TGF-β present was 230 pmol/ℓ (range  

20-1400 pmol/ℓ) and the proportion of the active:total TGF-β present varied from <10% to 

100%.  This variability in TGF-β concentrations are also illustrated in Table 2.3 which indicates 

TGF-β levels in various conditions of disease (Grainger et al., 1995).    
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Table 2.3.  Average serum TGF-β concentrations in healthy individuals and diseased conditions. 

TGF-β ISOFORM  DISEASE CONTROL VALUES REFERENCE 

 
TGF-β1 autoimmune hepatitis:  

230 ± 95 ng/mℓ 

 

137 ± 81 ng/mℓ  

 

Sakaguchi et al., 2004 
 
 

- psoriasis:  

42.9 ± 9.9 ng/mℓ 

 

37.7 ± 6.0 ng/mℓ 

 

Nockowski et al., 2004 
 

TGF-β1 breast cancer: 

48.8 (18-82.4) pg/mℓ 

 

51.6 (30.9-65.1) pg/mℓ 

 

Lebrecht et al., 2004 
 

TGF-β1 invasive breast cancer:  

498.7 ± 249.7 pg/mℓ 

  

- 

 

Sheen-Chen et al., 

2001 
 

TGF-β1 haemodialysis patients:  

26.64 ± 7.0 ng/mℓ 

coronary heart disease:  

26.2 ± 4.9 ng/mℓ 

 

42.31 ± 6.0 ng/mℓ 

 

Stefoni et al., 2002 
 

TGF-β bioactive 

factor 

chronic fatigue syndrome:  

290 ± 46 pg/mℓ 

 

104 ± 18 pg/mℓ 

 

Chao et al., 1991 
 

TGF-β1 nephrotic syndrome: 

1 549 ± 580 pg/mℓ 

 

406 ± 424 pg/mℓ 

 

Buyan et al., 2003 

 

In vivo, the latent form of TGF-β has a half-life of ~90 minutes, whereas active TGF-β has a 

short half-life of only ~2 minutes.  In vitro, the TGF-β receptors have a longer turnover, as 

shown by their half-life of ~2 hours in cultured skeletal muscle cells (Ugarte and Brandan, 

2006), ~12 hours in lung epithelial cells (Koli and Arteaga, 1997) and 2-7 hours in 

osteoblasts (Centrella et al., 1996).  

 

2.4.3 TGF-β Receptors, Signalling Pathways and Regulation 

Most cells contain three main types of TGF-β surface receptors (type I, II and III) (Derynck and 

Feng, 1997).  The two smaller receptors, TGF-β RI (65-70 kDa) and TGF-β RII (85-110 kDa), 

are the signalling mediators and possess transmembrane serine/threonine kinase activity 

within their cytoplasmic domains (Padgett et al., 1998).  Bound to active TGF-β (free of LAP), 

TGF-β RII induces recruitment of TGF-β RI to initiate TGF-β signalling responses to the nucleus.  

The largest TGF-β binding protein, TGF-β RIII or betaglycan (280-330 kDa), which is often the 

most abundant, is a non-signalling receptor and required to specifically enable TGF-β2 to 

become associated with the TGF-β RI/TGF-β RII-complex to either promote or inhibit TGF-β2 

signal transduction (Lopez-Casillas et al., 1993).  This receptor is expressed in most foetal 

and adult tissues, although not in endothelial, primary epithelial, haematopoietic and 
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lymphoid cells, as well as certain types of myoblasts (Cheifetz et al., 1986; Massague, 1985; 

Wang et al., 1991).  A splice variant of TGF-β RII, TGF-β RII-B, has recently been characterised 

(Rotzer et al., 2001).  Unlike TGF-β RII, this receptor is able to bind TGF-β2 in the absence of 

betaglycan.  Although TGF-β RII-Β is able to bind with all three isoforms, it is expressed in 

tissues where the predominant isoform is TGF-β2.  More evidence is however required to 

determine whether TGF-β RII-Β is the principle receptor for the TGF-β2 isoform.  An additional 

TGF-β receptor, endoglin, is similar to TGF-β RIII and highly expressed in vascular endothelial 

cells.  This receptor also binds activin-A and BMP proteins and therefore possibly functions to 

recruit other proteins into the TGF-β signalling pathway. 

 

Following activation of the latent TGF-β complex, TGF-β either binds to TGF-β RIII which 

presents the active isoform to TGF-β RII, or the isoform directly binds to TGF-β RII.  TGF-β RII 

then recruits, binds and transphosphorylates TGF-β RI, thereby stimulating its protein kinase 

activity (Figure 2.6 C).  The TGF-β signal is then further propagated across the plasma 

membrane to the nucleus by its downstream signal-transducers, the Smad-family of tumour 

suppressors, specifically the receptor-regulated Smads (R-Smads), R-Smad2 or R-Smad3.  

Whereas R-Smad2 and -3 are activated by TGF-β, R-Smad1, -5 and -8 are BMP-activated (Lutz 

and Knaus, 2002).  Activated TGF-β RI phosphorylates R-Smad2 or R-Smad3 which is then 

released from TGF-β RI and binds to Co-Smad4 (Figure 2.6 D).  The resulting Smad complex 

can then translocate into the nucleus where it interacts in a cell-specific manner with other 

transcriptional co-activators, co-repressors and transcription factors at DNA sequence-specific 

binding sites to activate the expression of the target genes (Blobe et al., 2000; Shi and 

Massague, 2003).  The subsequent activation of these genes will manifest the multifunctional 

physiological behaviour of TGF-β (Figure 2.6 E).   

 

Additional control is made possible by the inhibitory Smads (I-Smads), I-Smad6 and I-Smad7, 

which prevent TGF-β signalling by associating with TGF-β RI.  Here, I-Smad6 or I-Smad7 

interferes with the phosphorylation of the R-Smads to down-regulate signal transduction to 

the nucleus (Heldin et al., 1997; Kawabata and Miyazono, 1999; Whitman, 1998).  Since the 

expression of I-Smads is also induced by other TGF-β-superfamily proteins, Smads constitute 

an auto-inhibitory signalling pathway (Miyazono et al., 2000).  
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Besides the Smad-mediated signalling pathway, TGF-β activates and cross-talks with other 

signalling cascades, including Wnt, Hedgehog and other tyrosine kinase-linked growth 

receptor-signalling pathways.  Furthermore, TGF-β isoforms also activate MAPK, p38, ERK1/2 

and JNK/SPAK signalling pathways, some of which regulate important cellular processes, 

including cardiac cell hypertrophy (Zhang et al., 2000).  

 

Figure 2.6.  Schematic presentation of TGF-β signal transduction at various stages of the signalling pathway.  

Regulation of TGF-β can occur at various levels, including bio-availability of the ligand in the extracellular 

compartment, activation of the latent complex, receptor binding, influences on the Smad signalling pathway and 

gene expression in the nucleus.  The final effect of a TGF-β response is therefore dependent on the balance 

between positive and negative influences and other interacting proteins which might be involved in the specific 

reaction.   

[A] Following expression, the small latent complex and LTBP are secreted from the cell and assemble to form the 

large latent complex which attaches to the extracellular matrix.   

[B] Almost all total plasma TGF-β is present in the latent (L-TGF-β complex) form.   

[C] In response to specific signals, TGF-β is activated, released from the latent complex in the extracellular  

space, and subsequently either binds to (i) type III receptor (TGF-β RIII or betaglycan) which presents (ii) TGF-β 

to the type II receptor (TGF-β RII), or it binds directly (iii) to TGF-β RII on the cell membrane.  The binding of  

TGF-β to TGF-β RII leads to phosphorylation of the type I receptor (TGF-β RI) (iv) and subsequent activation of 

the TGF-β RI-protein kinase.  TGF-β RIII is required to specifically enable TGF-β2 to become associated with the 

TGF-β RI/TGF-β RII-complex (i).   

[D] This active receptor complex then phosphorylates the transcription factor R-Smad2 or R-Smad3 which binds  

to Co-Smad4.  The inhibitory Smads, I-Smad6 and I- Smad7 lack the region normally phosphorylated by TGF-β RI 

and therefore these I-Smads interfere with the activation of R-Smad2 and R-Smad3 by TGF-β RI, repressing 

further Smad signalling.   

[E] The R-Smad2/3-Co-Smad4 complex translocates into the nucleus where it interacts in a cell-specific manner  

with various other transcription factors to regulate the transcription of TGF-β responsive genes and mediate  

the effects of TGF-β at cellular level.  Possible clearance organs for TGF-β include the liver (bile fluid) and  

kidney (urine).   

[Adapted with modifications from Blobe et al., 2000; Gleizes et al., 1997; O’Kane and Ferguson, 1997] 
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Because of the large diversity of processes in which the TGF-β isoforms are involved, their 

production, activation and signalling pathways are highly regulated and involve various levels 

of control mechanisms to enable the desired cellular response.  Such mechanisms could 

include: (A) regulation of TGF-β gene transcription and gene dosage; (B) production of TGF-β 

as a latent form and activation in the extracellular space; (C) binding of active TGF-β to 

extracellular matrix and circulating proteins; (D) cell and tissue specific interaction with 

receptors; (E) signal transduction through Smads and cross-talk of TGF-β signalling with other 

signalling pathways; and (F) modulation of transcriptional activation in the nucleus (Derynck 

and Zhang, 2003; Droguett et al., 2006; Massague and Wotton, 2000).    

 

2.4.4 Role of TGF-β in Cell Growth, Proliferation and Differentiation  

The TGF-β isoforms regulate three main activities: they control growth and development, exert 

immunosuppressive effects, and enhance the formation of extracellular matrix (Lawrence, 

1996).  Despite the similarity of their actions in vitro, each of the TGF-β isoforms appears to 

mediate distinct actions, and has a different distribution in vivo, with limited overlap (Schmid 

et al., 1991).   

 

The TGF-β isoforms have demonstrated multifunctional behaviour, even within the same cell-

lineage, and depending on the differential stage and type of the target cell, the local 

environment, and the identity and dosage of the ligand, isoforms can either promote and/or 

inhibit cell proliferation, differentiation, migration and apoptosis (Barnard et al., 1990; 

Lawrence, 1996; Roberts and Sporn, 1985).  This variable behaviour is further influenced  

by the presence of other growth factors such as PDGF and EGF, e.g. in the presence of  

PDGF, TGF-β stimulates the growth of reader cells (fibroblasts), whereas in the presence of 

EGF, TGF-β functions as growth inhibitor (Roberts et al., 1985).  A potential mechanism by  

which TGF-β exerts this variable behaviour, is via the affinity by which the isoforms bind to 

their receptors.  The order of relative receptor affinities between individual isoforms is  

TGF-β1~TGF-β3 > TGF-β1.2 > TGF-β2, with approximately a 10- to 20-fold difference in  

affinity between TGF-β1 and -β2 (Cheifetz et al., 1990; Segarini et al., 1987). 
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2.4.4.1 Effect of TGF-β on myogenesis 

TGF-β isoforms play an important role in myogenic development.  However, its role in skeletal 

muscle is unclear, since exogenous TGF-β has produced both positive and negative effects on 

muscle cell development.  Also, both the in vitro and in vivo cellular responses to the three 

isoforms differ significantly (Letterio and Bottinger, 1998). 

 

On the one hand, TGF-β isoforms have shown to depress proliferation and inhibit the 

progression of differentiation and fusion of skeletal muscle in neonatal myoblasts, primary 

satellite cells and myogenic cell-lines in vitro and in vivo (Allen and Boxhorn, 1987; Florini et 

al., 1986; Greene and Allen, 1991; Lefaucheur and Sebille, 1995).  Inhibition of growth by 

TGF-β is mainly the result of TGF-β lengthening or arresting the late G1 phase of the cell cycle 

(Shipley et al., 1985; Zhang et al., 2002), possibly through its direct effect on MyoD (Liu et al., 

2001) or myogenin (Brennan et al., 1991).  TGF-β isoforms might therefore negatively 

regulate myogenic differentiation by inhibition of muscle-specific gene expression and protein 

synthesis (Massague et al., 1986; Olson et al., 1986).  This inhibition of differentiation  

requires the continual presence of TGF-β and normal differentiation can therefore potentially 

resume once the TGF-β-stimulus have been eliminated.  

 

The growth inhibitory effect of TGF-β, however, seems to be reversible in mitogen-rich 

environments (Zentella and Massague, 1992).  TGF-β1 has shown to induce myogenic 

differentiation when added to L6E9 skeletal myoblasts in a mitogen-rich environment  

(20% foetal bovine serum, 10% bovine calf serum).  In this study, the initial growth inhibitory 

response, due to delayed progression through the G1-phase, was followed by elevated 

myogenin expression and cell commitment to terminal differentiation.  It should be noted  

that other myoblast cell-lines (C2C12 and P2) have not shown this response when treated 

similarly.  Furthermore, evidence have shown that TGF-β signalling, specifically through  

TGF-β RII, is required for distinct aspects of myogenic differentiation and that two effects of 

TGF-β, stimulation versus inhibition of myoblast differentiation, are mediated by different 

receptor systems and signalling pathways shown to be involved in muscle differentiation 

(Filvaroff et al., 1994).   
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In cardiac muscle, TGF-β has shown to increase the expression of cardiac-specific genes and 

induce cardiac differentiation in mouse ESC in vitro, as well as direct differentiation in vivo 

(Behfar et al., 2002; Boyer et al., 1999; Pelton et al., 1991).  Studies have shown TGF-β1  

and -β3 knock-out mice to have no major heart defects, whereas TGF-β2 knock-out mice 

suffer from cardiovascular abnormalities (Azhar et al., 2003; Sanford et al., 1997).  In cell 

cultures, TGF-β1 has indeed shown to stimulate hypertrophic growth (Villarreal and Dillmann, 

1992), but inhibit mitotic growth of cardiomyocytes (Kardami, 1990).  Depending on the 

environment, all TGF-β isoforms are therefore involved and essential in several aspects of 

cardiovascular physiology.  The contrasting results between TGF-β studies are mainly due to 

variable culture conditions in vitro and the influence of other regulatory factors in vivo, making 

the extrapolation from in vitro to in vivo myogenesis complex (McLennan and Koishi, 2002). 

 

2.4.4.2 Effect of TGF-β in other cell-lineages  

TGF-β induces strong growth inhibitory effects to variable degrees depending on the cell type, 

including most epithelial-, endothelial-, fibroblast-, neural-, lymphoid- and haematopoietic cell-

lineages (Cheifetz et al., 1987; Coffey et al., 1988; Graycar et al., 1989; Moses et al., 1987; 

Tucker et al., 1984).  Differentiation of chondrocyte cultures (Ferguson et al., 2004; Kato et 

al., 1988), late-stage osteoblasts (Rosen et al., 1988) and adipocytes (Torti et al., 1989) are 

also inhibited by TGF-β.  The effects of TGF-β on immune function are clearly demonstrated  

by its negative control of immune cell proliferation and differentiation in vitro and in vivo, as 

illustrated by its suppression of B- and T-lymphocytes (Kehrl et al., 1986a; Kehrl et al., 1986b) 

and the production of immunoglobulins.  At the same time, TGF-β has both activating and 

deactivating effects on macrophages and is also cytotoxic to natural killer cells (de Martin et 

al., 1987; Rook et al., 1986; Tsunawaki et al., 1988; Wrann et al., 1987).  

 

In contrast, TGF-β isoforms have shown proliferative effects on several other cell types, 

including various mesenchymal cells, connective tissue cells (Battegay et al., 1990; Centrella 

et al., 1987; Roelen and Dijke, 2003), and have also shown to promote differentiation in 

osteoblastic sarcoma cells (Pfeilschifter et al., 1987) and early-stage pre-chondroblasts 

(Seyedin et al., 1985).  Such growth stimulation may indirectly result from the autocrine-

induction as a secondary growth factor response.     

 

Importantly, as illustrated by its effect on chondrogenesis and osteogenesis, TGF-β has shown 

to exert both positive and inhibitory responses within cell-lineages.  The variable results could 

reflect real differences between cell types, or is a consequence of the timing of TGF-β addition 

and different culture conditions (cell-lines, species) used in vitro.  Such variable effects which 
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TGF-β isoforms exert on cell types depending on their stage of differentiation can be 

demonstrated in ESC.  As an example, during neural development of uncommitted ESC, once 

a precursor lineage is established, TGF-β signalling appears to accelerate the differentiation 

and lineage-commitment of the precursor cells.  However, once selected neural cells are fully 

differentiated, TGF-β again inhibits growth to prevent tumorigenesis (Gangemi et al., 2004).   

 

2.4.5 Role of TGF-β in Human Disease 

Normal homeostasis in human tissue is the result of continuous, highly controlled reactions 

between the cells, secreted proteins and the surrounding ECM.  These co-operative 

interactions involve numerous signalling molecules and cytokines which act through specific 

cell surface receptors.  The TGF-βs are of the most pleiotropic proteins involved in tissue 

homeostasis, mediating several physiological processes, including haematopoiesis, hormone 

secretion, immune function, angiogenesis, tissue morphogenesis and bone modulation.  It 

also acts as a switch of many biological responses: TGF-β will facilitate the activation of 

inactive processes, conversely, within the same cell, once the process is activated, TGF-β can 

function to stop the signal (Sporn and Roberts, 1990).  As such, the balance between the 

ECM, cells and increases or decreases in TGF-β production is highly regulated.  Failure or 

disruption of TGF-β signalling produce changes in the activation of downstream signalling 

pathways, resulting in the onset of several disease states such as impaired wound healing, 

neurodegenerative disorders and tumorigenesis due to suppression of the immune system 

(Blobe et al., 2000). 

 

2.4.5.1 Role of TGF-β in fibrosis, inflammation and wound healing  

All phases of wound healing are either directly or indirectly controlled by cytokines.   

Following injury, cytokines and other mediators are released, including TGF-β, PDGF and  

VEGF (vascular endothelial growth factor) to initiate the inflammatory response.  Here, TGF-β 

is required for the chemotactic attraction of inflammatory cells and fibroblasts.  The TGF-β 

isoforms are especially important in the regulation of this response: they promote tissue 

regeneration, however, since the isoforms induce differential effects on wound repair, fibrosis 

and scarring, their critical balance is required for optimal healing to take place.  Failure to 

resolve the inflammation can lead to chronic non-healing wounds, whereas uncontrolled 

matrix accumulation can lead to excess scarring and fibrosis (Sporn and Roberts, 1993).  
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The initial release of latent TGF-β by degranulating platelets and activation by proteolytic and 

non-proteolytic mechanisms elicits the rapid chemotaxis of neutrophils and monocytes to the 

wound site in a dose-dependent manner (Wahl et al., 1987).  The neutrophils are the first to 

appear and reach peak levels ~24 hours after injury.  Other sources releasing TGF-β include 

mast cells, monocytes, macrophages, fibroblasts, keratinocytes and endothelial cells.  In 

addition to the auto-induction of TGF-β production, autocrine release of TGF-β by leukocytes 

and fibroblasts stimulate these cells to generate additional chemokines and cytokines, 

including TNF-α, IL-1β and PDGF (Amento and Beck, 1991; McCartney-Francis et al., 1990).   

 

After initiating the inflammatory response, the inflammatory cells become susceptible to  

TGF-β-mediated suppression to reverse the inflammatory process (McCartney-Francis and 

Wahl, 1994; Tsunawaki et al., 1988).  TGF-β subsequently contributes to the healing- and 

fibrotic processes by recruiting fibroblasts and stimulating their production of collagens I,III 

and V, proteoglycans, fibronectin and other ECM components (Branton and Kopp, 1999).   

It therefore modifies the ECM and blocks matrix degradation by decreasing the synthesis of 

proteases and simultaneously increasing the levels of protease-inhibitors, thereby preventing 

the proteolytic action of the proteases and subsequent breakdown of the ECM (Ignotz and 

Massague, 1987).   

 

This apparent contradictory influence of TGF-β on cells of the immune system, both 

stimulatory and inhibitory, is party the result of the differential effects of TGF-β on resting  

and activated cells: in general, resting, immature cells are stimulated by TGF-β, whereas  

an activated population of the same cell group might be inhibited (Wahl, 1994). 

 

2.4.5.2 Lessons from wildtype and knock-out studies 

That TGF-β participates in wound healing was confirmed with in vivo studies which 

demonstrated that the administration of exogenous TGF-β could stimulate the formation of 

collagen and vascularised connective tissue found in healing wounds.  In these studies, 

wound chambers made of stainless steel wire mesh were implanted into the backs of rats, 

into which preparations of TGF-β isoforms were injected and left for a required period.  The 

contents of the chambers were then evaluated for collagen and histochemical expression 

(Roberts et al., 1986; Sporn et al., 1983).   
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Many in vivo studies followed using knock-out mice to further investigate the importance of 

TGF-β in wound healing and scar formation, especially since these processes occur in an 

isoform-specific manner.  During the first 10 days, wound healing proceeds relatively normal 

in TGF-β1 null mice, after which they display an increased inflammatory cell response, 

together with a decrease in percentage wound closure and re-epithelialisation, granulation 

tissue formation, collagen deposition and vasculogenesis (Brown et al., 1995).  On the other 

hand, TGF-β2 knock-out mice die during, shortly before or shortly after birth, mainly due to 

developmental defects affecting angiogenesis, cell growth and ECM production.  Wound 

healing studies are therefore difficult to perform on these animals (Sanford et al., 1997).  

Wound healing studies on TGF-β3 knock-out mice have revealed an important role for this 

isoform in scarless would repair: whereas TGF-β3 null embryos display a scar during healing, 

wildtype embryos, in contrast, show scarless foetal wound healing (Ferguson and O'Kane, 

2004). 

 

The diverse effects of the TGF-β isoforms on wound healing have also been illustrated in 

various rodent incisional wound studies.  Neutralisation of TGF-β1 and -β2 have shown to 

reduce the influx of inflammatory cells, deposition of fibronectin and collagen formation, while 

simultaneously increasing wound tensile strength and scar quality.  In contrast, the addition  

of TGF-β3 has a similar effect (Shah et al., 1995).  The progressive increase of TGF-β3 over 

time and its association with scarless foetal healing suggests this isoform’s involvement in the 

cessation of matrix deposition.  The addition of either TGF-β1 or -β2 results in excess scarring 

(Ernst et al., 1996), but the effect is less when compared to the combined addition of TGF-β1 

and -β2, indicating that these isoforms enhance each others’ action.  In rabbits, the addition 

of recombinant human anti-TGF-β2 monoclonal antibodies has shown to significantly improve 

conjunctival scarring (Cordeiro et al., 1999). 

 

Taken together, these animal studies indicate that TGF-β1 and -β2 are profibrotic and 

function to accelerate wound healing, whereas TGF-β3 improves the quality of the scar  

and is less important in regulating the speed of repair.  In fibrotic diseases, overproduction of 

especially TGF-β1 has shown to result in excessive deposition of scar tissue and subsequent 

fibrosis.  Results therefore suggest that TGF-β3 can be used as a potential therapy agent in 

the prevention of scarring in humans (Ferguson and O'Kane, 2004; Sporn and Roberts, 

1993).   
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2.4.5.3 Role of TGF-β in skeletal muscle repair and regeneration 

In skeletal muscle, TGF-β is known as an inhibitor of differentiation of cultured myoblasts, 

however, the physiological significance of TGF-β signalling in vivo and in disease pathogenesis 

is largely unknown.  This growth factor has been suggested to play a role in muscle 

regeneration, preventing advanced fusion of embryonic myoblasts, as well as satellite cell 

fusion into the main body of muscle tissue.  

 

In muscle strain injury and diseases such as muscular dystrophy and inflammatory myopathy, 

the inflammatory response results in overproduction of TGF-β.  In these conditions, TGF-β has 

been localised to the ECM and areas of inflammatory cell infiltration where increases in TGF-β 

production appears to be a major determinant of collagen synthesis, connective tissue 

proliferation and subsequent muscle fibrosis (Chan et al., 2005a).  This negatively affects the 

healing response by inducing scar tissue formation which also prevents possible incorporation 

of stem and progenitor cells for regeneration to occur, and as such propagates further 

skeletal muscle weakness.   

 

In addition to the effect of TGF-β on skeletal muscle injury and fibrotic disorders, specific 

muscle diseases have also been associated with TGF-β signalling.  In individuals with 

Marfan’s syndrome, which is caused by a deficiency in the supporting connective tissue  

of the body, individuals are unable to increase muscle mass despite stimuli such as physical 

exercise.  Evidence suggests that symptoms of the disease could be due to excessive 

signalling by TGF-β (Cohn et al., 2007).  Similarly, TGF-β-induced failure of muscle 

regeneration has been demonstrated in dystrophin-deficient mice and together with increased 

expression of TGF-β signalling in symptomatic patients, the involvement of TGF-β in muscular 

dystrophy has also been verified (Strober, 2006). 

 

2.4.5.4 Role of TGF-β in cardiac muscle 

TGF-β has proven to be involved in the maintenance and repair of cardiac muscle cells 

(Thompson et al., 1988).  Specifically, evidence suggests a function for TGF-β1: this  

isoform has been shown to be protective during the initial, acute phase of inflammation 

following myocardial infarction (Dean et al., 2005; Ikeuchi et al., 2004), it attenuates cardiac 

myocyte apoptosis (Chen et al., 2003), and limits the infarct size (Baxter et al., 2001).  Further 

research has demonstrated that TGF-β1 inhibits migration and proliferation of macrophages, 

induces apoptosis in numerous cells involved in vascular lesions, and reduces adhesiveness  



 56. 

of the endothelium for inflammatory cells, illustrating further cardio-protective effects of this 

isoform (Stefoni et al., 2002).  In addition, despite the growth inhibitory effect of TGF-β1 and 

-β3 on endothelial cell cultures (Cheifetz et al., 1990), TGF-β1 has shown to induce the 

formation of new blood vessels in vivo, either directly, or through other cells it attracts 

(Roberts et al., 1986) which is essential during cardiac repair processes.  Importantly, the 

beneficial effects of TGF-β1 might be lost when its expression is sustained and could 

potentially result in scar tissue formation and fibrosis (Ikeuchi et al., 2004).  

 

2.4.5.5 Role of TGF-β in immune cell regulation 

As mentioned, TGF-β isoforms suppress growth and differentiation of most immune cell-

lineages, including B- and T-cells and also inhibit immune cell activation by antigen 

presentation and/or interleukins.  Immuno-suppressive activities may underlie a beneficial 

effect of systemic TGF-β-administration (Brandes et al., 1991; Kuruvilla et al., 1991): the 

essential function of TGF-β in the immune system is suppression of lymphocyte proliferation 

and differentiation to prevent inappropriate auto-immune responses and balance the 

requirements of appropriate immune cell levels during pathological conditions.  This function 

has been demonstrated in TGF-β1 knock-out mice, where the lack of TGF-β resulted in a  

self-targeting inflammatory response, characterised by the overproduction of auto-immune 

antibodies which killed the animals in early life (Kulkarni et al., 1993; Yaswen et al., 1996).   

 

2.4.5.6 Bone and osteoporosis 

TGF-β plays a significant role in stimulating osteoblast proliferation and matrix synthesis  

both in vitro (Oreffo et al., 1989; Pfeilschifter et al., 1987) and in vivo (Marcelli et al., 1990).  

Osteoclasts can activate latent TGF-β during bone resorption and subsequently release it  

in an active form which would stimulate osteoblastic function and bone formation.   
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2.4.6 Clinical Applications of TGF-β in Disease 

Because TGF-β regulates such a diverse range of cellular processes, specifically with regards 

to injury and disease, this growth factor could potentially be used in multiple therapeutic 

interventions.  Indirectly, TGF-β can be used as a therapeutic agent by adjusting local cellular 

concentrations of the isoforms by use of pharmacological agents that would regulate its 

synthesis, secretion, activation or inhibition.  Clinical features in which modulation of TGF-β-

activity may be useful, include scar-free wound healing, treatment of skeletal and cardiac 

muscle diseases, control of cancer- and tumour development, prevention of bone loss in 

osteoporosis, stimulation of bone formation in fracture healing, and inducing cartilage 

formation in patients with arthritis.  

 

2.4.6.1 Inflammatory diseases 

By manipulating the actions of the TGF-β isoforms, it may be possible to accelerate or modify 

wound healing in a variety of tissues (Ferguson and O'Kane, 2004).  In cutaneous wound 

healing, possible mechanisms to reduce the effect of scarring could include combined 

neutralisation of TGF-β1 and -β2 by anti-fibrotic agents (Border and Noble, 1998; Wahl et al., 

1993), or alternatively, the local application and administration of exogenous TGF-β3 (Gorvy 

et al., 2005).  Similarly, antagonists of all TGF-β isoforms may be valuable in the treatment of 

fibrotic disorders which are associated with increased levels of TGF-β activity (Shah et al., 

1995; Wahl, 1992).   

 

A role for TGF-β in atherosclerosis has also been investigated, where TGF-β1 has been found 

to be anti-atherogenic (Stefoni et al., 2002).  Atherosclerosis is an inflammatory, proliferative 

disease in which various cells are involved, including macrophages, and smooth muscle and 

endothelial cells which result in narrowing of the arteries.  Studies by Grainger et al. have 

shown TGF-β1 serum levels to be depressed in patients with advanced atherosclerosis, 

suggesting this isoform as a possible inhibitor for this condition.  Given TGF-β1’s function as 

an inhibitor of smooth muscle and endothelial cell proliferation, it has been proposed that 

active TGF-β1 in the vascular wall is required to control the balance between inflammation 

and ECM deposition (Grainger, 2004; Grainger et al., 1995).
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2.4.6.2 Skeletal muscle diseases 

Both in vitro and in vivo studies have demonstrated the beneficial use of anti-fibrotic agents 

to block the stimulatory effect of TGF-β on connective tissue proliferation and fibrosis.  The 

administration of anti-fibrotic agents, such as decorin and suramin, has therefore been 

suggested to prevent scar formation and improve muscle regeneration due to the ability of 

these agents to antagonise the pro-fibrotic effects of TGF-β (Chan et al., 2005b; Fukushima et 

al., 2001).  ECM proteoglycans also modulate TGF-β signalling by binding to this growth factor 

during skeletal muscle differentiation, thereby diminishing its bio-availability and could 

represent a further potential regulatory mechanism for use in therapeutic intervention 

(Droguett et al., 2006).  

 

Clinical applications for conditions such as muscular dystrophy and Marfan’s syndrome could 

include the administration of a TGF-β-neutralising antibody which has shown to improve 

muscle repair and function in vivo (Cohn et al., 2007).   

 

2.4.6.3 Cardiovascular diseases 

In cardiac muscle, the addition of TGF-β before or immediately after ischaemic injury can 

possibly prevent severe cardiac injury.  Myocardial ischaemia is characterised by an increase 

in circulating TNF-α and production of superoxide anions, both of which TGF-β has shown to 

reduce after ischaemic injury.  TGF-β might therefore prevent severe cardiac injury by 

alleviating damage mediated by increases in circulating TNF-α (Lefer et al., 1990), as well as 

the generation of reactive oxygen species (Mehta et al., 2002). 

 

2.4.6.4 Immune response, cancer and tumour development 

As an immuno-suppressive agent, the systemic delivery of TGF-β could potentially be used  

as possible treatment therapy in auto-immune and chronic inflammatory diseases.  This 

inhibitory effect on immune cells also suggests an application for the use of TGF-β in the 

prevention of tissue rejection following organ-transplantation (Roberts and Sporn, 1993).  

Furthermore, the growth inhibitory response which exogenous TGF-β has on selected cell 

types may be a mechanism by which unregulated growth of transformed cells can be 

controlled.  Several TGF-β signalling components have shown to be bona fide tumor 

suppressors with the ability to constrain cell growth and inhibit cancer development during  

its early stages (Mishra et al., 2005). 
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Various studies therefore illustrate how increases or decreases in the production of TGF-β can 

be linked to numerous disease states.  By manipulating the mechanisms and isoform-specific 

effects by which TGF-β mediates cellular functions, possible therapeutic interventions can be 

introduced.  Furthermore, the timing, therapeutic dose and route of TGF-β administration in 

clinical settings are critical parameters that could play a role to either potentiate or suppress 

the response of TGF-β to enable a desired outcome. 

 

Therefore, to address the question of how progenitor cells can be used to improve growth  

and regeneration in skeletal and cardiac muscle, and specifically, determine whether TGF-β 

isoforms differentially affect muscle development, the effect of TGF-β1, -β2 and -β3 on 

proliferation (Chapter 5), differentiation (Chapter 6), migration (Chapter 7) and fusion 

(Chapter 8) of muscle progenitor cells (skeletal and cardiac) were investigated using the 

C2C12 cell-line and P19 embryonal carcinoma cell-lineage as model systems.  Markers and 

protocols were first established under control conditions (Chapter 4). 

 

These studies could provide valuable information related to the regulation of TGF-β isoforms 

on skeletal and cardiac myogenesis.  This knowledge could then be applied to improve 

treatments for diseases involving muscle degeneration and wasting such as muscular 

dystrophy, cancer, cardiovascular diseases and HIV. 
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CHAPTER 3 

GENERAL METHODS AND MATERIALS 

 

3.1 BUFFERS, STOCK REAGENTS AND GENERAL SOLUTIONS 

 

3.1.1 LYSIS-Buffer  

[RIPA++-buffer: +protein phosphatase inhibitors; +protease inhibitors] 

1x Hanks Balanced Salt Solution (HBSS): 2.5 mM tris-HCl pH 7.4 

 1 mM EDTA 

 1 mM EGTA 

 250 mM sucrose or mannitol 

 50 mM NaF 

 50 mM NaPPi 

 1 mM DTT 

add protease inhibitors: 0.1 mM PMSF 

 4 µg/mℓ SBTI 

 10 µg/mℓ leupeptin 

 1 mM benzamidine  

add detergents: 1% NP-40 

 0.1% SDS 

 0.5% Na deoxycholate 

make up: desired volume with dH20 

 

3.1.2 10x SDS Running Buffer 

mix: 60.6 g tris 

 288 g glysine 

 20 g SDS 

make up:  2 ℓ with dH2O 

 

3.1.3 Transfer Buffer 

mix:  10% 10x SDS running buffer  

 20% methanol 

make up: desired volume with dH2O 
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3.1.4 2x Sample Buffer 

mix:  10% glycerol (v/v) 

 5% β-mercaptoethanol (v/v) 

 2.3% SDS (w/v)  

dissolve in: 62.5 mM tris-HCL solution (pH 6.8) 

add: dH2O to desired volume 

add:  0.05% bromophenol blue 

 

3.1.5 SDS Polyacrylamide Gels 

 5% separating gel 4% stacking gel 

dH2O   5.7 mℓ 6.1 mℓ 

40% degassed acrylamide-bis solution 

(Promega, H-5171) 1.7 mℓ 1.3 mℓ 

1.5 M tris-HCl buffer (pH 8.8) 2.5 mℓ 2.5 mℓ 

10% SDS 100 µℓ 100 µℓ 

Temed 10 µℓ 10 µℓ 

10% APS 100 µℓ 100 µℓ 

 

3.1.6 Phosphate Buffered Saline (PBS) - pH 7.4 

mix: 0.01 M phosphate buffer 

 0.0027 M potassium chloride 

 0.137 M sodium chloride 

make up: desired volume with dH2O 

 

3.1.7 10x Tris-Buffered Saline (TBS) - pH 7.6 

mix: 48.4 g tris 

 160 g NaCl 

 500 mℓ dH2O  

set pH: with required volume HCl 

make up: 2 ℓ with dH2O 

0.05% TBS-T 0.5 mℓ Tween/ℓ TBS 
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3.1.8 Coomassie Blue  

Coomassie Blue (Brilliant Blue R250, Bio-Rad) binds non-specifically to most proteins and  

was used to determine relative amounts of protein left on the gels following SDS-page 

electrophoresis, as well as illustrate equal loading of protein samples.  

  

  
    

3.1.9 Ponceau-S 

Ponceau-S (Sigma-Aldrich, P-3504) is a sodium-salt dye which was used to allow rapid, 

reversible staining of protein bands on the PVDF membranes after protein transfer to  

facilitate immunological detection and illustrate equal loading of samples. 

 

mix: 1 g Ponceau-S 

 50 mℓ 100% acetic acid 

make up:  1 ℓ with dH2O 

 

  
 

3.1.10 α-Tubulin  

α-Tubulin is a structural, cytoskeletal component of microtubules.  It can be detected in all 

cells and was therefore also used to illustrate equal loading of protein samples following 

electrophoresis.  

 

Santa Cruz (B-7)  mouse monoclonal sc-5286; 55 kDa 

make up:  1/100 in 5% milk/TBS-T solution 
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3.2  GROWTH FACTORS, ANTIBODIES AND MARKERS 

 

3.2.1 Growth Factors and Antibiotics  

3.2.1.1 TGF-β 

Recombinant Human TGF-β1: 240-B; R&D Systems 

Recombinant Human TGF-β2: 302-B2; R&D Systems 

Recombinant Human TGF-β3: 243-B3; R&D Systems 

 
Reconstitution of TGF-β (2 µg/mℓ stock solution) 

prepare: 4 mM HCl add 39.7 µℓ HCl to 99.96 mℓ dH2O 

 0.1% BSA in 4 mM HCl add 50 µℓ 10% BSA to 5 mℓ 4 mM HCl - filter 

make up: 2 µg/mℓ TGF-β add 1 mℓ of 4 mM HCl containing 1 mg/mℓ 

BSA to 2 µg TGF-β stock 

 
3.2.1.2 IGF-1 

Recombinant Human IGF-1: 291-G1; R&D Systems 

 
Reconstitution of IGF-1 (50 µg/mℓ stock solution) 

prepare: 10 mℓ 10 mM ascetic acid add 5.7 µℓ acetic acid to 10 000 µℓ ddH2O 

add: 100 µℓ BSA (for long-term storage) 

make up: 50 µg/mℓ IGF use 1 mℓ per 50 µg IGF stock 

 

3.2.1.3 Cycloheximide 

Glutarimide antibiotic from microbial source: C-7698; Sigma 

 
Reconstitution of cycloheximide (5 mM stock solution) 

molecular weight: 281.4 

weigh off: 1.407 g 

add: 1 mℓ sterile PBS 

for 50 µM treatment concentration: use 20 µℓ per 5 mM stock solution 
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3.2.2 Antibodies and Markers  

 
Table 3.1.  Primary antibodies for western blot protein analysis. 

Antibody Company Clone Size (kDa) Dilution 

α-Actinin SIGMA 
EA-53 mouse ascites fluid 

product A-7811 
100 1/200 

γ3-AMPK 
Dr David Carling, MRC Cell Stress Unit, Hammersmith 

Hospital, Imperial College, London - developed in rabbit  
63 1/1000 

Connexin-43 SIGMA  
developed in rabbit  

product C-6219 
43 1/8000 

MHC 

*Developmental 

Studies Hybridoma 

Bank  

myosin A4-1025 

species: mouse 

origin: human - all fibers 

200 1/100 

MyoD 
Santa Cruz C-20 

Santa Cruz 1-318 

rabbit polyclonal sc-304 

sc-4080, positive control 
38-45 1/100 

Myogenin Santa Cruz F-5D 
mouse monoclonal IgG  

sc-12732 
36-43 1/200 

PCNA Santa Cruz PC-10 
mouse monoclonal IgG2a  

sc-56 
36 1/200 

p21 Santa Cruz F-5 
mouse monoclonal  

sc-6246  
21 1/100 

ROCK-I Santa Cruz H-85 
rabbit polyclonal IgG  

sc-5560 
160 1/1000 

*“The myosin heavy chain antibody (A4-1025) was obtained from the Developmental Studies 

Hybridoma Bank and developed under the auspices of the NICHD and maintained by The University of 

Iowa, Department of Biological Sciences, Iowa City, IA 52242.” 

 

Table 3.2.  Secondary antibodies for western blot protein analysis. 

Antibody Company Dilution 

Polyclonal Rabbit Anti-Mouse Immunoglobulins/HRP P-0260, DAKO 1/1000 

Polyclonal Goat Anti-Rabbit Immunoglobulins/HRP P-0448, DAKO 
1/1000 

1/5000  

 

Pre-stained Markers 

Kaleidoscope Prestained Standards Cat no. 161-0324; Bio-Rad 

peqGOLD Prestained protein marker IV Cat no. 27-2110; PeqLAB Biotechnologie 
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Table 3.3.  Antibodies for immunohistochemical analysis. 

Antibody Company Specificity Dilution 

M-cadherin H-71, Santa Cruz  
rabbit polyclonal IgG 

sc-10734 
1/50 

MyoD C-20, Santa Cruz 
rabbit polyclonal 

sc-304 
1/50 

PCNA PC-10, Santa Cruz  
mouse monoclonal IgG2a  

sc-56 
1/50 

Biotinylated donkey 

anti-rabbit IgG 

711-066-152, Jackson 

ImmunoResearch Laboratories, Inc. 

rabbit IgG and 

immunoglobulins 
1/200 

Fluorescein 

Streptavidin (FITC) 

711-096-152, Jackson 

ImmunoResearch Laboratories, Inc. 

rabbit IgG and 

immunoglobulins 

1/200 

1/500 

Texas Red 

Streptavidin 

SA-5006 

VECTOR Laboratories, Inc. 

mouse IgG and 

immunoglobulins 

1/200 

1/500 

Hoechst 33342 B2261, Sigma-Aldrich  1/200 

 

All antibody-dilutions for western blotting purposes were made up in TBS-T.  PBS was used to 

dilute antibodies for immunofluorescent staining to the required concentrations. 

 

3.3 GENERAL METHODS 

 

3.3.1 Tissue Culture  

3.3.1.1 Cells  

C2C12 cells are a satellite cell-line of murine origin, capable of proliferation, differentiation 

and fusion into myotubes.  These cells, donated by the Cape Heart Centre, University of Cape 

Town, were used to investigate the effect of TGF-β isoforms on the proliferation, 

differentiation, migration and fusion of skeletal muscle. 

 

Cells from the P19 cell-line are embryonal carcinoma cells which can change phenotype from 

malignant to non-malignant via cellular differentiation.  These cells, originally isolated from an 

experimental embryo-derived teratocarcinoma in mice, are multipotent and can differentiate 

into cell types from all three germ layers.  Retinoic acid (Edwards and McBurney, 1983), 

oxytocin (Paquin et al., 2002) and dimethyl sulfoxide (DMSO) (Smith et al., 1987) have been 

found to be inducers of P19 cardiomyocyte differentiation, possibly through the activation of 

essential cardiogenic transcription factors, such as GATA-4 and Nkx2.5 (Skerjanc, 1999; 

Srivastava and Olson, 2000).
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Efficient differentiation of P19 cells depend of the prior formation of non-adhering embryoid 

bodies which resemble the inner cell mass of the embryo.  In these embryoid bodies, initial 

differentiation occurs when the outer cells of the aggregates differentiate into endoderm-like 

cells that surround an undifferentiated core.  With this capacity to form cardiomyocytes, P19 

cells, obtained from M.W. McBurney, University of Ottawa, Canada, were used to study the 

effect of TGF-β isoforms on cardiac cell differentiation.  DMSO was used to induce cardiac 

differentiation.   

 

3.3.1.2 Medium 

C2C12 culture medium: 

  Dulbecco’s Modified Eagle’s Medium (DMEM; Highveld Biological (Pty) Ltd)   
 10% foetal bovine serum (FBS, CN-3107; Highveld Biological) 
 4% 2 mM L-glutamine (Sigma) 
 1% PenStrep (Highveld Biological) 

C2C12 differentiation medium: 

  DMEM 
 1% donor herd horse serum (CN-3089; Highveld Biological) 
 4% 2 mM L-glutamine 
 1% PenStrep  

P19 culture medium: 

  Alpha MEM with 1.5 g/ℓ NaHCO3 (CN-3098; Highveld Biological) 
 7.5% newborn calf serum (N-4637; Sigma) 
 2.5% FBS  
 1% PenStrep 

P19 differentiation medium: 

  Alpha MEM with 1.5 g/ℓ NaHCO3 (CN-3098; Highveld Biological) 
 7.5% newborn calf serum (N-4637; Sigma) 
 2.5% FBS  
 1% PenStrep 
 0.8% DMSO (D-5879, Sigma) 
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3.3.1.3 Passaging protocol 

 Discard old medium from T75 flask (tissue culture flask 658175, Greiner Bio-One). 

 Rinse cells with warm (~37oC), sterile PBS [to remove all traces of FBS] and decant.   

Use enough PBS to cover the monolayer of cells. 

 Add 3 mℓ warm 0.25% trypsin-EDTA (T-4049, Sigma) and return flask to incubator (~37oC) 

[to increase enzyme activity] until cells have detached from the surface. 

 Add 6 mℓ warm culture medium (or double trypsin-volume) [the serum in the culture 

medium inactivates the trypsin] to the cell-suspension and transfer the total volume to  

a 15 mℓ falcon tube - centrifuge 3 minutes at 1500 rpm. 

 Decant medium and re-suspend cell-pellet in fresh culture medium. 

 Return cell aliquots to new T75 flasks or plate desired amount as required. 

 Cells were maintained in a humidified incubator at 37oC, 5% CO2.   

 

3.3.2 Protein Analysis Methods 

3.3.2.1 Determination of protein concentrations 

To estimate protein concentrations, a BSA-standard curve (0-20 µg protein) was prepared 

from a stock solution of 1 µg/µℓ.  1-5 µℓ of each sample to be analysed was diluted with 

dH2O and 800 µℓ Bradford protein assay reagent (B6916, Sigma-Aldrich) added for a final 

volume of 1 mℓ.  The absorbance was measured at 595 nm (UV-Visible Spectrophotometer, 

Cary 50) using the computer software Simple Read (version 2, WinUV, Cary 50). 

 

3.3.2.2 Western blot analysis 

Protein expression was determined by standard Western blotting techniques.  Briefly, 50 μg 

whole cell homogenate of each sample was prepared with equal volume 2x sample buffer.  

Samples were boiled for 4-5 minutes, centrifuged and loaded onto 5% or 10% polyacrylamide 

gels for electrophoretic separation.  Molecular weights were estimated by comparison with 

pre-stained molecular weight markers and confirmed with positive control samples (skeletal 

muscle or cardiac tissue).  Mini-gels were run at 100 V for 90-120 minutes using the Mini-

Protean 3 Gel System (Bio-Rad). 

 

Following electrophoresis, proteins were transferred from SDS-page gels onto PVDF 

membranes (Immun-Blot 0.2 µm pore size, Bio-Rad; Immobilon-P, IPVH00010 Millipore) using 

the Mini Trans-Blot Cell (Bio-Rad) blotting apparatus.  The PVDF membranes, which had been 

rinsed in methanol, and 3 mm chromatography/filter paper (Chr 303 0917, Whatman) were 

cut to the size of the gel (10 x 7.5 cm) and soaked in transfer buffer.  
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One fiber pad and two sheets chromatography/filter papers were carefully placed on  

the anode tray of the gel holder cassette, followed by the gel and PVDF membrane.  Two 

additional sheets chromatography/filter paper and a fiber pad were placed on top and  

the cathode tray of the gel holder cassette placed over the stack and sealed, all the time 

taking care that no bubbles were introduced between the gel and PVDF membrane.   

Transfer of proteins was carried out by applying a current set at 100 V for 1 hour. 

 

Following electroblotting, the gels were put into Coomassie Blue stain to determine the 

effectiveness of the transfer process.  The PVDF membranes were incubated in TBS-T 

containing 5% skimmed milk powder for 60 minutes at room temperature to block non-

specific binding sites.  Thereafter, membranes were incubated in primary antibody for  

2-3 days at 4oC.  The PVDF membranes were routinely incubated in Ponceau-S to confirm 

equal loading, after which they were washed in TBS-T and re-probed in primary antibody.    

 

For protein detection, membranes were washed in TBS-T for a total of three times, 5 minutes 

each, after which they were incubated in compatible horseradish-peroxidase conjugated 

secondary antibody at room temperature for 60 minutes.  Secondary antibodies were diluted 
1/1000 in TBS-T containing 5% skimmed milk powder.  Membranes were again washed in  

TBS-T, twice for 8 minutes each, followed by TBS for 15-20 minutes.   

 

Antigen-antibody complexes were visualised by enhanced chemiluminescence (ECL Plus) 

according to the manufacturer’s instructions (Amersham Life Science Inc., Arlington Heights, 

IL, USA).  Detection reagents were mixed 1:40 (vol/vol) in a sufficient volume to cover the 

complete surface of the membrane, which was exposed to this solution for 5 minutes.  

Thereafter, the membrane was placed in a cassette, covered with transparency paper and 

developed using hyperfilm (RPN-2103K, Amersham BioSciences; Fixing- and Developing 

solutions from Axim, 9X23013 and 9X23018, respectively). 

 

3.3.2.3 Quantification of measurements 

Protein expression levels were quantified using Simple PCI, version 4.0 (Compix Inc., Imaging 

Systems, USA) for densitometry.  Each sample was evaluated in duplicate and all experiments 

were repeated a minimum of three times.  
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CHAPTER 4 

DEVELOPMENT OF MODELS AND METHODS 

 

4.1 INTRODUCTION 

 

Analysis of the progress of proliferation and differentiation in stem cell-systems is often reliant 

on the expression of proteins as markers of the developmental and growth status of the 

system.  Various in vitro molecular markers have been established to identify specific cell 

populations and/or the developmental stage of the cell which could provide information 

regarding the molecular regulation of the cell population during growth and regeneration 

(Table 4.1).   

 

However, although several stem and progenitor cell markers have been identified, very few 

are restricted to an individual stage of development such as quiescence, activation or 

proliferation.  Rather, they are expressed more broadly and not exclusive to one particular cell 

type or one developmental phase, which could lead to difficulties in the accurate 

characterisation of cell growth and differentiation stages.  Specifically in skeletal muscle, the 

expression of selected molecular markers, used in in vitro and in vivo studies, has been 

demonstrated and suggested to be typical of particular stages of satellite cell myogenesis.  

The profile of gene expression of these markers (Table 4.2) often extends through phases of 

quiescence, activation and/or proliferation, clearly illustrating that markers typical of a 

developmental stage are largely inconclusive (Hawke and Garry, 2001).   

 

Table 4.2 illustrates the expression-profiles of selected molecular markers typical of each 

stage during satellite cell myogenesis, as well as markers specific to cardiomyocyte 

differentiation (Charge and Rudnicki, 2004; Habets et al., 2003; Hawke and Garry, 2001).  
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Table 4.1.  Selected stem cell markers and expression for positive identification. 

MARKER FUNCTION EXPRESSION IN:  

CD34 gene, transmembrane glycoprotein  quiescent satellite cells 
 stem cells; endothelial/haematopoietic progenitor cells 

CD45 gene, tyrosine phosphatase  primitive haematopoietic stem cells 

CD56/N-CAM gene, cell adhesion glycoprotein 
 quiescent and activated satellite cells 
 neural tissue  
 various leukocytes (e.g. natural killer cells) 

CD133 
(AC133) 

gene, transmembrane glycoprotein 
(human cell surface marker) 

 haematopoietic stem cells 
 early endothelial progenitor cells 
 neuronal stem cells 

c-kit+ 
transmembrane glycoprotein, 
receptor for the haematopoietic 
growth factor, SCF  

 cardiac stem cells 
 haematopoietic stem cells 

c-met hepatocyte growth factor receptor  stem cells; quiescent and proliferating satellite cells 

CXCR4 cell surface chemokine receptor-4, 
specific for SDF-1 

 stem cells - haematopoietic-, neural-, liver-, TCSC, and 
satellite cells 

ETS1 transcription factor  cardiac stem cells - endothelial-committed progeny 

Lin- refers to “lineage negative”  bone marrow-derived cells that express no 
differentiation markers 

GATA-4 transcription factor  early cardiac stem cells - myocyte-committed progeny 
GATA-6 transcription factor  cardiac stem cells - smooth muscle-committed progeny 

MDR1  transporter gene  cardiac stem cells 
 haematopoietic-, other bone marrow-derived stem cells 

MEF-2C transcription factor  cardiac stem cells - myocyte-committed progeny 

MyoD skeletal muscle-specific 
transcription factor 

 proliferating satellite cells and early stages of myogenic 
determination 

Myogenin skeletal muscle-specific 
transcription factor  myogenic commitment of satellite cells 

Myf-5 skeletal muscle-specific 
transcription factor 

 quiescent, proliferating and early stages of satellite cell 
myogenic determination 

M-cadherin  adhesion molecule   quiescent and to a lesser extent activated satellite 
cells, all myogenic cells 

MHC skeletal muscle structural protein  satellite cell terminal differentiation  
 advanced cardiac differentiation 

MNF transcription factor  satellite cells; activated myogenic progenitor cells 
Nanog transcription factor  pluripotent ESC 
Nkx2.5 transcription factor  early cardiac marker expressed throughout myocardium 

Oct-3/4 transcription factor/germline 
specific gene 

 pluripotent (undifferentiated) ESC 
 cardiac stem cells 

Pax 3/7 transcription factors  quiescent and activated satellite cells 

Sca-1+ cell surface protein  multipotent stem and progenitor cells 
 cardiac and early haematopoietic stem cells  

SDF-1 1-α, 1-β cytokines, CXCR4 ligands  bone marrow stromal cells 
Sox-2/8 transcription factor  pluripotent ESC 
Six-1/4 homeoproteins  early skeletal myogenesis  
Syndecan 3/4 cell surface proteoglycan  satellite cells 
UTF1 transcriptional co-activator  pluripotent ESC 

 

ETS1, external transcribed spacer 1; Lin-, lineage commitment; MDR1, multi-drug resistance protein 1; MEF-2C, 

myocyte enhancer factor-2C; MHC, myocin heavy chain; MNF, myocyte nuclear factor; N-CAM, neural cell adhesion 

molecule; Sca-1, stem cell antigen-1; SCF, stem cell factor; SDF-1, stromal cell-derived factor-1; TCSCs, tissue-

committed stem cells; UTF1, undifferentiated embryonic cell transcription factor 1.  
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Table 4.2.  Expression of molecular markers for various stages of differentiation in skeletal and cardiac muscle. 

[Adapted with modifications from Chargé and Rudnicki, 2004; Hawke and Garry, 2001; Zammit et al., 2006] 
 

MOLECULAR 
MARKERS  

QUIESCENT  
CELLS 

ACTIVATED 
MYOCYTES 

PROLIFERATING 
MYOBLASTS 

PROGENITOR 
CELLS 

DIFFERENTIATED 
MYOTUBES 

CD34      

MNF      

N-CAM      

VCAM-1      

BrdU      

PCNA      

Pax3      

Pax7      

c-met      

M-cadherin      

Myf-5      

MyoD      

Myogenin      

Desmin      

MHC      

GATA-4      

Nkx2.5      

MEF-2C      

α- and β-MHC      
 

BrdU, 5-bromo2’-deoxy-uridine; MEF-2C, myocyte enhancer factor-2C; MHC, myosin heavy chain; MNF, myocyte 

nuclear factor; N-CAM, neural cell adhesion molecule; PCNA, proliferating cell nuclear antigen; VCAM-1, vascular cell 

adhesion molecule-1 (predominant phase of expression in red).  

 

C2C12 and P19 cell-lines express a variety of proteins which can be used to identify stages of 

their growth and development along the myogenic lineage.  These cell-lines have been used as 

model systems of myogenic development in many laboratories.  It needs to be kept in mind 

however that the expression of molecular markers by these cell-lines may differ from satellite 

cells and myoblasts in vivo.   
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Also, primary culture myoblasts isolated by tissue dissection may have a similar problem due to 

the rapidity with which molecular markers change during the process of isolation (Dhawan and 

Rando, 2005).  Due to the added difficulty of primary culture isolation and maintenance, the 

C2C12 and P19 cell-lines were chosen as experimental models of myogenesis.  In order to 

determine the effect which TGF-β isoforms have on the various phases of growth and 

development of these cell-lines, it was first required to identify and quantify the expression of 

markers under control conditions, as well as to establish reliable protocols for analysis.  This is 

described below. 

 
4.2 METHODS FOR ASSESSING PROLIFERATION AND DIFFERENTIATION 

 
To establish specific proteins as markers which would reflect stages of in vitro skeletal and 

cardiac muscle proliferation and differentiation, protein expression was analysed in C2C12 and 

P19 cell-lines by means of standard western blotting techniques and immunohistochemistry.  

These cell-lines and analysis techniques were not established in our laboratory at the start of this 

research project. 

 
4.2.1 Cell Culture 

C2C12 and P19 cells were cultured and differentiated as described in Chapter 3.  Profiles of 

protein expression were determined under control conditions, providing a baseline by which to 

measure the effect any treatment-condition would have on these culture systems. 

 
4.2.1.1 C2C12 differentiation 

C2C12 cells were maintained in culture medium and when ~40-50% confluent (in T75 flasks,  

day -1), all cells were pooled, counted and plated into six-well tissue culture-treated plates (3516, 

Corning Incorporated) in 2 mℓ culture medium at a density of 100 000 cells/well. When cells 

reached ~70% confluency (day 0), the medium was changed to mitogen-poor, differentiation-

promoting medium.  Thereafter, the cells were maintained in a humidified incubator at 37oC,  

20% O2, 5% CO2 and the differentiation medium changed every 48 hours.   

 
For western blotting analysis, the cells were harvested on days 0, 1, 3, 5, 7, 9 and 11.  To 

prepare cells, the medium was removed and cells washed with PBS.  While keeping the samples 

on ice, they were treated with lysis buffer, sonicated and stored at -20oC until later analysis.  

For immunofluorescent staining and determination of total nuclear count (TNC), C2C12 cells 

were differentiated, prepared and analysed as described in section 4.4.1 and 4.4.2. 
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P19 cells growing in monolayer are trypsinised 
and plated into bacterial-grade dishes in the 
presence of 0.8% DMSO as differentiation-
inducing agent until day 4.   
 
 
Cells are maintained as aggregates for 4 days, 
after which they are re-plated into tissue 
culture-treated dishes and grown in the 
absence DMSO.  Cardiac muscle cells appear 
by day 6 and beating of the myocytes may 
become visible by day 9.  
 

                    

4.2.1.2 P19 differentiation 

P19 cells were differentiated according to a modified version of the method of Skerjanc 

(McBurney, 1993; Skerjanc, 1999; Smith et al., 1987).  Briefly, differentiation was initiated by 

plating 500 000 P19 cells in 60 mm bacterial-grade dishes in the presence of 0.8% DMSO  

(D-5879, Sigma) and P19 culture medium (day 0).  After 24 hours (day 1), the aggregates were 

transferred to 100 mm bacterial-grade dishes and new media containing 0.8% DMSO added.  

Aggregates were maintained in 100 mm bacterial-grade dishes, but the medium changed and 

fresh medium containing 0.8% DMSO again added on days 2 and 3.  On day 4, the cells were  

re-plated into 100 mm tissue culture-treated dishes and differentiation of the cells continued in 

P19 culture medium which was changed every second day (Figure 4.1).  The cells were 

maintained in a humidified incubator at 37oC , 20% O2 and 5% CO2. 

 

Cells were harvested on days 6, 8, 10, 12 and 14 for western blotting purposes: after washing 

the cells with PBS, they were treated with lysis buffer, sonicated and whole cell-lysates stored at  

-20oC until later analysis. 

 

Figure 4.1.  Schematic representation of P19 cell differentiation into muscle.  Differentiation is initiated by allowing 

the cells to aggregate in suspension in the presence of DMSO.  Cells are plated into bacterial-grade dishes which 

prevent adherence of cells to the dish and promote aggregation.  Aggregates are re-plated into tissue culture-treated 

dishes after 4 days and allowed to differentiate into cardiac muscle cells.   

[Adapted with modifications from Skerjanc, 1999] 

 

 

day 1 

day 2 

day 3 day 4 

day 0 
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Following these cell culturing protocols, protein expression was determined by standard western 

blotting techniques as described in Chapter 3 (section 3.3.2).  Myoblast development in the 

C2C12 cell-line was assessed using PCNA as a marker of proliferation, whereas MyoD, myogenin, 

the γ3-isoform of AMP-activated protein kinase, Rho-associated protein kinase and MHC were 

used as potential markers of differentiation.  Cardiac development in differentiating P19 cells 

was assessed using connexin-43 and α-actinin.  Following electrophoresis, either Coomassie 

Blue, Ponceau-S or α-tubulin was used to verify equal loading of protein samples. 

 

In addition, the TNC was also used to assess proliferation in C2C12 cells by determining the 

number of nuclei in differentiating cells at various time-points.   

 

All brightfield images were taken with an Olympus microscope and camera (Olympus CKX 31) at 

10x or 20x magnification.  Data are expressed as mean ± SEM.   

 

4.2.2 Establishment of Markers for C2C12 Proliferation  

The in vitro pattern of PCNA expression in differentiating cells is described below.  Although MyoD 

is also expressed during proliferative stages of development, this protein plays an essential role 

committing cells to the myogenic lineage and is therefore discussed as marker of differentiation.  

 

4.2.2.1 PCNA 

The proliferating cell nuclear antigen (PCNA) is a 36 kDa nuclear protein also termed cyclin 

(Mathews et al., 1984) and is expressed during the proliferative phase of the cell cycle (Hall et 

al., 1990).  PCNA interacts with various other proteins to be involved in important metabolic and 

cellular processes, including cell cycle control, apoptosis, and DNA replication and repair (Daimon 

et al., 2002; Paunesku et al., 2001; Scovassi and Prosperi, 2006).  This protein acts as a co-

factor for DNA polymerase-δ and functions by tethering the DNA polymerases onto the DNA 

template to accomplish progressive DNA synthesis during replication. 

 

PCNA expression correlates directly with rates of cellular proliferation and DNA synthesis during 

the cell cycle: it appears in the nucleus during the late G1-phase, becomes maximal during the  

S-phase and declines again during G2- and M-phases (Celis et al., 1986; Szuts et al., 2005).  

Specifically, PCNA accumulates in the nucleolus during late G1-/early S-phases (Louis et al., 
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1991; Mathews et al., 1984; Takasaki et al., 1981) where it exhibits a granular distribution.  

Despite being mainly active during G1- and S-phases, the relatively long half-life (in excess of  

20 hours) leads to PCNA expression in cells which have left the cell cycle and are therefore not 

synthesising DNA (Bravo and Macdonald-Bravo, 1987).  

 

PCNA is commonly used as a marker to follow proliferation and progression of satellite cells in 

the cell cycle (Johnson and Allen, 1993).  The expression of this protein was determined in 

differentiating C2C12 cells, as illustrated in Figure 4.2. 

  

          Figure 4.2.  PCNA expression in differentiating C2C12 cells. 

         Data are expressed as mean ± SEM; n = 2. 
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After cells were induced to differentiate, increased PCNA expression was evident only by day 5 

and remained elevated until day 11.  This result could possibly be explained by the lack of using 

synchronised cells: in response to the differentiation signal on day 0, the immediate reaction for 

those cells that are ready to differentiate is that they start doing so, whereas cells preparing to 

divide continue through the cell cycle which results in increased proliferation at a later stage.  

Alternatively, differentiating cells may signal to other still undifferentiated cells to continue 

proliferation and increase in number for optimal differentiation to take place at a later stage.   

 



 76. 

4.2.2.2 Total nuclear count 

Terminal differentiation is characterised by the transition of hyperplastic growth (cell division and 

increased nuclear numbers) to hypertrophic growth (increase in cell size and fusion) (Poolman et 

al., 1999).  Nuclear staining provided a practical method for quantifying the total amount of 

nuclei (Figure 4.3) and possibly distinguishes between phases of proliferation (increased TNC 

and hyperplasia) and the onset of differentiation (cell growth through hypertrophy and limited 

changes in TNC) in a cell system. 

 

              Figure 4.3.  Total nuclear count in differentiating C2C12 cells. 

      Data are expressed as mean ± SEM; n = 1. 
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The TNC showed little change in the differentiating cells between day 3 and day 7.  The results 

suggests that if measured, an increase in PCNA would have been evident at day 3 in Figure 4.2, 

or that, had TNC been measured at day 1, there would have been an increase in TNC to day 3.  

This observation could also suggest that an increase in apoptosis accompanied the increased 

proliferation (seen in Figure 4.2) and therefore the total nuclear number did not change.  

Unfortunately, apoptosis was not measured as this was not within the scope of the study.   
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4.2.3 Establishment of Markers for C2C12 Differentiation 

C2C12 cells were differentiated in vitro to characterise the expression-profiles of selected cell 

cycle and myogenic regulatory factors.  MyoD, myogenin and MHC were assessed as established 

markers of differentiation, whereas the effectiveness of the γ3-isoform of AMP-activated protein 

kinase (γ3-AMPK) and Rho-associated protein kinase (ROCK) were evaluated as novel markers. 

 

The brightfield images in Figure 4.4 illustrate the progression of differentiation in C2C12 cells.  

Mononucleated myoblasts (A) rapidly proliferate, resulting in an increased number of myogenic 

precursor cells (B).  These myocytes can then either fuse together or with existing myofibers to 

form multinucleated myotubes (C), or continue to proliferate and maintain the supply of 

myocytes, or alternatively, remain in an undifferentiated state and return to quiescence.  

 

Figure 4.4.  Morphological characteristics of differentiating C2C12 cells.  Following initiation of differentiation, 

myoblasts (A) proliferate, allowing for expansion of the myocyte population (B).  The proliferative phase is followed 

by terminal differentiation and fusion of myogenic precursor cells into elongated, multinucleated myotubes (C). 

 

     A               B                       C 
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4.2.3.1 MyoD 

As discussed in Chapter 2, MyoD is a member of the family of basic helix-loop-helix (bHLH) 

transcription factors and plays an essential role in the regulation of muscle cell development.  

This protein is expressed in the nucleus of proliferating myoblasts, as well as in differentiating 

myotubes (Tapscott et al., 1988), though expression decreases once cells reach committed 

stages of differentiation (Cooper et al., 1999; Cornelison and Wold, 1997).  

 

In established muscle cell-lines and during development, only subsets of MRFs are active rather 

than all being expressed simultaneously.  In vitro, either MyoD or Myf5 are initially up-regulated 

and expressed in proliferating myoblasts with subsequent transcription of both these genes 

(Cornelison and Wold, 1997; Weintraub, 1993).  However, only MyoD expression continues 

during the committed stage of differentiation.   

 

MyoD expression is controlled by cellular factors, extrinsic signals and has also shown to activate 

its own transcription (Salminen et al., 1991; Thayer et al., 1989).  Together with myogenin, such 

auto-activation could either provide a positive feedback loop to keep cells committed to 

myogenesis, or function as a mechanism to increase its expression above a critical threshold 

which is required for activation of the myogenic program once the genes are activated by 

upstream factors.  MyoD levels fluctuate within the cell cycle, the highest levels observed during 

the G1-phase when differentiation can be initiated (Kitzmann et al., 1998).  If proliferative signals 

persist, MyoD expression eventually declines, whereas in response to cues for differentiation, the 

cells will exit the cell cycle, MyoD levels will increase and differentiation will be induced.   

 

Therefore, as a reliable in vivo marker of stages of development, MyoD was assessed to identify 

its expression-pattern in vitro, and as such the use of this MRF as a marker of commitment to 

differentiation, as indicated in Figure 4.5. 
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                  Figure 4.5.  MyoD expression in differentiating C2C12 cells. 

   Data are expressed as mean ± SEM; n = 2. 
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Following induction of differentiation, MyoD expression immediately increased and remained 

elevated during early stages of the differentiation programme.  Expression decreased from day 9 

after cells entered terminal differentiation phases. 

 

4.2.3.2 Myogenin 

Myogenin transcription in satellite cells or myoblasts is activated following expression of MyoD 

and/or Myf-5 in the committed stage once cells have been induced to differentiate (Olson, 1990; 

Weintraub et al., 1991).  In vivo, this would correspond to times of muscle repair and 

regeneration, whereas in vitro it occurs when serum is depleted from the culture medium.  

Therefore, this regulatory protein accumulates in differentiating myoblasts and myotubes 

(Salminen et al., 1991) and is largely responsible for subsequent transcription of most muscle-

specific structural genes. 

 

Myogenin can therefore be used to detect relatively early stages of skeletal muscle differentiation 

(Hollenberg et al., 1993; Miner and Wold, 1990), as shown in Figure 4.6.   
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            Figure 4.6.  Myogenin expression in differentiating C2C12 cells. 

   Data are expressed as mean ± SEM; n = 2. 
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Low levels of myogenin were seen as early as day 1 post-differentiation, after which it increased 

to day 5, remained elevated until day 9 and slowly decreased thereafter, although it remained 

detectable until day 11.  

 

4.2.3.3 AMP-activated protein kinase 

The γ3-isoform of AMP-activated protein kinase (γ3-AMPK) is an important energy-sensing 

enzyme that monitors the cellular energy status.  This protein plays an important role in 

stimulation of skeletal muscle fatty acid oxidation and muscle glucose uptake to regulate glucose 

and lipid metabolism in skeletal muscle (Barnes et al., 2002).  Specifically, activation of γ3-AMPK 

is required for insulin-independent stimulation of glucose uptake in resting skeletal muscle 

(Jessen et al., 2003).  Although γ3-AMPK is most abundant in skeletal muscle, it is expressed in 

most mammalian tissues (Ruderman et al., 2003).  

 

Initial results showed that although γ3-AMPK is expressed at a low level in C2C12 myoblasts  

(day 3), this expression increased with differentiation into myotubes (day 7), suggesting that  

γ3-AMPK could be used as a marker of terminal myogenic differentiation (Figure 4.7 A).  

However, subsequent repeat-analysis failed to show consistent measurable changes during 

differentiation of these cells (Figure 4.7 B) and therefore γ3-AMPK expression was not seen to be 

a reliable marker of differentiation in this cell-line.  



 81. 

Figure 4.7.  γ3-AMPK expression in differentiating C2C12 cells. 
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   A           B 

 

4.2.3.4 Rho-associated protein kinase 

Rho-GTPases and one of its downstream effectors, Rho-associated protein kinase (ROCK), are 

involved in many aspects of cell motility, cell adhesion and are important regulators of cell 

growth, migration and apoptosis via control of the actin-cytoskeletal assembly (Ridley, 2001).   

 

In the mammalian system, the serine-threonine kinase ROCK consists of two isoforms, ROCK1 

and ROCK2 which are ubiquitously expressed in various tissues (Amano et al., 2000).  In addition 

to the above-mentioned functions, Rho and ROCK also play a critical role in skeletal muscle 

differentiation: Rho signalling prevents myoblast fusion by activating ROCK, thereby negatively 

regulating differentiation (Nishiyama et al., 2004).  Therefore, at the late stage of differentiation 

when myoblasts are ready for terminal differentiation, Rho/ROCK signalling must be inactivated 

to initiate myoblast fusion and allow progression of the differentiation programme (Nishiyama et 

al., 2004). 

 

As such, the expression of ROCK was analysed as a possible measure of C2C12 terminal 

differentiation (Figure 4.8), with a decline in expression anticipated with progression of 

differentiation. 

 

Figure 4.8.  ROCK expression in differentiating C2C12 cells. 
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A           B 

 
Initial blots failed to show consistent measurable results (Figure 4.8 A).  As with γ3-AMPK, no 

differences in ROCK expression were observed in repeat trials (Figure 4.8 B) of differentiation 

and therefore this protein was also not included as a marker of differentiation in C2C12 cells. 
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4.2.3.5 Myosin heavy chain 

Once mononucleated myoblasts fuse to form multinucleated myotubes, the muscle 

differentiation programme can be completed with the formation of muscle fibers.  These highly 

organised cytoskeletal structures express various muscle-specific proteins, myosin heavy chain 

(MHC) being among the first of the sarcomeric proteins and thus has been used as a marker of 

muscle differentiation.  MHC is the major component and most abundant protein of the 

sarcomere which is the basic contractile unit of myofibrils in skeletal and cardiac muscle fibers 

and responsible for converting chemical energy into mechanical force (Lu et al., 1999). 

 

Therefore, to confirm terminal muscle differentiation of the treated cell cultures in subsequent 

protocols, the expression of MHC was determined, as indicated in Figure 4.9.   

 

     Figure 4.9.  MHC expression in differentiating C2C12 cells. 

     Data are expressed as mean ± SEM; n = 2. 
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As expected, MHC was not expressed during early stages of development, but became detectable 

from day 5, after which the protein was strongly expressed by day 9 and day 11.  MHC could 

therefore effectively be used as an indicator of terminal differentiation. 
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4.2.4 Establishment of Markers for P19 Differentiation 

To identify reliable markers which would confirm successful differentiation in P19 cells, the 

expression of α-actinin and connexin-43 was assessed in this cell-line after induction of 

differentiation with DMSO.  The brightfield images in Figure 4.10 illustrate the progression of 

differentiation in P19 cells.   

 
Figure 4.10.  Morphological changes in differentiating P19 cells.  Differentiating P19 cells aggregate as early as  

day 1.  After these aggregates are re-plated into tissue culture-treated dishes on day 4 of differentiation, they start 

forming embryoid bodies (A, day 5).  Once these embryoid bodies are grown to confluence (B, day 9), beating of 

myocytes might become visible. 

        A                     B 

                    
 

4.2.4.1 α-Actinin 

α-Actinin is a binding protein of ~100 kDa which is present in both muscle and non-muscle cells 

(Lazarides and Burridge, 1975).  Functions of this protein include the binding of actin by cross 

linking two filaments together, associating with a number of cytoskeletal proteins, linking actin 

structures to membrane complexes, as well as binding cytoplasmic signalling proteins to the 

cytoplasmic domains of transmembrane receptors.  Thus, α-actinin links signalling molecules to 

the cytoskeleton and participates in actin-organisation at the sites of signalling (Taylor et al., 

2000).  In both cardiac and skeletal muscle, α-actinin is associated with the z-discs of the muscle 

sarcomeres (Goncharova et al., 1992; Lazarides and Burridge, 1975).  As such, α-actinin was 

assessed as possible marker of differentiated cardiac myocytes (Figure 4.11).   
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  Figure 4.11.  α-Actinin expression in differentiating P19 cells. 

             d6             d8           d10         d12          d14       cardiac muscle 

    
 

The α-actinin antibody was capable of detecting the protein in cardiac muscle (solid arrow), but 

not reliably in differentiating P19 cells (dashed arrow), with expression seemingly maximal at  

day 8, but diminishing thereafter.  Multiple bands were also detected which were too vague to 

analyse and as such, this protein was not included as marker of differentiated P19 cells. 

 

4.2.4.2 Connexin-43 

A connexon, composed of six connexin proteins, forms intercellular channels known as gap 

junctions that connect the cytoplasm of adjacent cells.  Connexins, also known as gap junction 

proteins and classified depending on their molecular weight, are translated by ribosomes and 

inserted into the membrane of the endoplasmic reticulum where the connexons are constructed.  

These connexons are then carried to the cell membrane where they connect with another cell’s 

connexon to form the intercellular channel (Bennett and Zukin, 2004).  

 

Connexin-43, a phosphoprotein, is one of the major connexins of the mammalian heart, although 

it is expressed by all myocytes, as well as non-muscle cells (Doble and Kardami, 1995).  In the 

heart, these proteins are especially important for ensuring electrical and/or metabolic coupling 

between cells.   
 

       Figure 4.12.  Connexin-43 expression in differentiating P19 cells. 

                d6           d8          d10         d12          d14       cardiac muscle 

        
 
By immunoblotting, connexin-43 can be detected at 43 kDa in cardiac muscle and differentiating 

P19 cells (Figure 4.12).  Connexin-43 was clearly expressed from day 6 and remained relatively 

unchanged for the duration of the differentiation protocol until day 14, at which point it 

decreased.   
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4.2.4.3 Myosin heavy chain 

In addition to skeletal muscle MHC, two isoforms, consisting of either α- or β-homodimers of 

cardiac muscle-specific MHC, can also be distinguished in adult mammalian muscle (Hoh et al., 

1979).  With its transcription activated by GATA-4, the α-isoform constitutes the major MHC-

subunit of the adult heart (Molkentin et al., 1994).   

 

After probing the skeletal C2C12 cells with MHC which showed reliable expression (Figure 4.9), 

the antibody used which recognises all myofibers at all stages of development, was also applied 

to determine MHC expression in the P19 cell-line in the succeeding experimental protocols.  

 

4.2.5 Summary and Conclusions 

To determine the progress of proliferation and differentiation in cell culture systems, the 

expression patterns of cell cycle regulators, transcription factors and structural proteins were 

assessed in C2C12 and P19 cells to determine baseline profiles.  Using these results, the effects 

which the three TGF-β isoforms exert on growth and development in skeletal and cardiac culture 

systems can subsequently be analysed under standardised conditions. 

 

4.2.5.1 C2C12 cells 

Skeletal myogenesis was induced in culture by depriving cells of serum, which resulted in the 

growth of multinucleated myotubes.  During the differentiation programme, a co-ordinated 

induction of muscle-specific gene products occurs simultaneously with morphological changes of 

the cells (Olson, 1992).  These changes in gene expression begin with the activation of primary 

MRFs, MyoD and Myf-5 during the committed stage, followed by myogenin and MRF4 as early 

markers for the entry of myoblasts into the terminal differentiation programme (Olson and Klein, 

1994; Weintraub, 1993).  Final stages of differentiation can then be indicated by the expression 

of contractile proteins such as MHC (Andres and Walsh, 1996).  Figure 4.13 is a schematic 

representation of the cell cycle-related changes of the selected MRFs and proteins.  By 

demonstrating their association with processes of quiescence, activation, proliferation and/or 

differentiation during the course of development and/or regeneration, the effect of TGF-β 

isoforms on the expression of these protein markers, as determined in the subsequent studies, 

could provide possible mechanisms by which TGF-β exerts its function during growth and 

development.     
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Under standard conditions of differentiation, C2C12 cells displayed characteristic expression of 

PCNA, MyoD, myogenin and MHC.  C2C12 cells showed an increase in PCNA expression at day 5, 

after which levels were maintained until day 11, suggesting continued proliferation of 

undifferentiated C2C12 cells.  Similarly, the TNC indicated constant proliferation between day 3 

and day 7.  In response to the differentiation stimulus, C2C12 cells showed immediate 

determination towards the myogenic lineage as demonstrated by increases in MyoD and 

myogenin expression from day 1.  Myogenin increased to a maximum at day 5 and similarly to 

MyoD, remained elevated until decreasing at day 9.  At this stage, evidence of structural 

differentiation was demonstrated with the increase in MHC expression at day 9 and day 11, 

indicating terminal differentiation stages.  

 
In this preliminary analysis, γ3-AMPK and ROCK were also assessed as potential markers of 

differentiation.  However, results revealed that their expression did not display consistent 

measurable changes which could be used to determine the progression of differentiation.   

As such, these proteins are not included in further experimental studies. 

 
In the subsequent experimental procedures where the progress of differentiation in C2C12 

satellite cells were analysed under different TGF-β isoform treatment conditions, days 1, 5, 9 and 

12 were selected for determination of protein expression.  These time-points were chosen to 

coincide with stages of undifferentiated myoblasts (day 1), myoblast shift prior to differentiation 

(day 5) and myotube stages (days 9 and 12) to represent terminal differentiation.  

 
Figure 4.13.  Schematic representation of the cell cycle, related changes in MRF expression and their association 

with processes of (A) quiescence, self-renewal and activation, (B) differentiation, (C) proliferation and (D) apoptosis.   

For induction of differentiation, myogenic cells have to exit the cell cycle through the G0-phase when cell cycle arrest 

of muscle division takes place.  MyoD peaks mid-G1, falls to a minimum at the G1/S-phase transition and steadily 

increases again from the S- to M-phase to reach a lower peak on a second occasion, but is absent during G0.  As 

such, differentiation is prominent during the late G1-phase.  Signalling pathways driving proliferation, such as the 

expression of PCNA, must therefore be suppressed during the late G1-phase to allow induction of differentiation.  In 

addition, at the end of the G1-phase, p21 up-regulation has been associated with permanent cell cycle arrest, 

allowing cells to exit the cell cycle.  Since MyoD enhances p21 transcription, it is therefore possible that the decision 

for myoblasts to proliferate or differentiate relies on the effect of cell cycle signalling pathways influencing the level 

of MyoD expression.  In contrast, Myf-5 expression is high during the G0-phase decreases during the G1-phase, re-

appears at the end of G1 and remains stable until mitosis.  Therefore, cells in the G1-phase express high levels of 

MyoD and enter differentiation, whereas in the G0-phase, cells express high levels of Myf-5 and fail to differentiate.   

As an indicator of terminal differentiation and therefore the need of cell cycle withdrawal, myogenin is expressed 

during the G0- and G1-phases of the cell cycle. 
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Figure 4.13.  Schematic representation of the cell cycle. 
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4.2.5.2 P19 cells 

For the P19 cell-line, only terminal differentiated cells were analysed and as such, the 

structural proteins connexin-43 and α-actinin were assessed as markers for cardiomyocyte 

differentiation.   

 

These proteins were established as positive markers, however, the α-actinin antibody did not 

express consistent results and as such, this protein was not included in further studies.  

Connexin-43, as well as MHC which demonstrated reliable expression in the C2C12 cell-line, 

were therefore used as positive markers of cardiomyocyte differentiation in the subsequent 

experimental procedures.  Connexin-43 showed consistent expression from day 6 until day 14 

and therefore day 12 was chosen to confirm successful differentiation of the P19 cells in 

these procedures.   
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4.3 METHODS FOR ASSESSING MIGRATION 

 

Chemotaxis to the damaged area is promoted by factors released from the affected area.   

In order to establish the best method for cell migration analysis, various methods, treatment 

conditions and time-points were initially tested to set up a protocol for determining the effect 

of TGF-β on cell migration (Chapter 7).  Cytokines such as IGF-1 and VEGF have shown to be 

involved in the regulation of tissue repair and to stimulate myocyte migration (Duan, 2003; 

Fiedler et al., 2006; Germani et al., 2003; Gockerman et al., 1995; Grosskreutz et al., 1999).  

In our initial experiments, VEGF was not consistently able to induce migration, whereas IGF-1 

resulted in successful migration in all preliminary experiments and was therefore selected as 

growth factor to induce migration in all subsequent assays.  

 

4.3.1 Cell Culture 

Cells were allowed to migrate in a humidified incubator at 37oC, 20% O2, 5% CO2 and 80% 

humidity.  Preliminary time-periods used to allow migration to occur, included 1-4 hours 

(Bischoff, 1997; Germani et al., 2003; Grosskreutz et al., 1999; Suzuki et al., 2000) and  

6-24 hours (Corti et al., 2001; Kottler et al., 2005).   

 

For migration, cultured cells were trypsinised, washed with PBS, centrifuged and the pellet  

re-suspended in standard medium, consisting of DMEM with 0.1% BSA (Germani et al., 2003).  

The volume required to plate out 50 000 cells was determined using a haemocytometer.  

Chemotaxis experiments were carried out using 8 µm pore size Falcon cell culture inserts 

(Becton Dickinson Labware; 35-3182) together with tissue culture-treated 12-well companion 

plates (Becton Dickinson Labware; 35-3503).  After adding 2 mℓ of a treatment solution into 

each well of the plate, inserts were carefully placed inside the wells together with 50 000 cells 

suspended in 500 µℓ standard medium.   

 
 

  
  

 
After incubation, inserts were taken out of the companion plate.  The following protocols were 

evaluated to assess the number of migrated cells.   

500 μℓ standard medium  

         + 50 000 cells 

2 mℓ treatment solution 

  

  insert 
 

 

  well 

  membrane 

membrane 

 



 90. 

4.3.2 Evaluation of Migration Cell Counting Protocols 

A. Haemocytometer counting:  After allowing the cells to migrate, 40 μℓ samples 

containing migrated cells were taken from the well-solution and counted on a 

haemocytometer.   

Problem:  The majority of migrated cells which adhere to the insert-membrane were not taken 

into account and resulted in a low number of cells in the well- and therefore sample-solution.  

This high dilution resulted in limited cells being in the haemocytometer field of count and 

therefore an inaccurate estimation of cell migration number was achieved (cells outside the 

field were indeed clearly visible and had to be taken into consideration; drop-off of cells from 

the lower surface of the membrane appears to be negligible – Bischoff, 1997).   

 
B.  Grid counting (modified - Bischoff, 1997):  After allowing the cells to migrate, the 

total well-volume was pipetted onto a grid (drawn on 24-well plate) and the number of cells 

counted.  This counting method was used to try eliminate the effect that, while you see cells 

on the haemocytometer, they must be discounted when outside the field of count.  By drawing 

a bigger grid, all cells in the sample could be accounted for.   

Problem:  As above, the majority of migrated cells which adhere to the insert-membrane were 

not taken into account; not using a coverslip (as with haemocytometer) resulted in bubbles 

obstructing the view; the larger volume resulted in cells floating in different levels within the 

drop of media and all fields of focus could not be accounted for, resulting in unreliable counts. 

 
C.  Direct Hoechst staining:  After migration, 10 μℓ Hoechst was added directly onto 

the membrane, incubated for 10 minutes and photos taken immediately thereafter.   

Problem (Figure 4.14): Migrating cells formed aggregates which made it difficult to distinguish 

between individual cells; difficulty distinguishing between migrated versus non-migrated cells. 

 
Figure 4.14.  Typical image of nuclei stained with Hoechst, distinguishing migrated versus non-migrated cells. 

The arrow indicates migrated cells, the arrowhead non-migrated cells, and the triangle indicates the pore size.   
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D. Hoechst fixing and staining (modified - Corti et al., 2001; Germani et al., 2003; 

Grosskreutz et al., 1999; Suzuki et al., 2000):  After cell migration, all media was aspirated 

from the insert and the membrane rinsed 2-3 times with PBS.  After gently scraping the top 

side to remove any non-migrated cells still attached to membrane and again washing it with 

PBS, the membrane was cut loose from the insert (Kottler et al., 2005) and the top gently 

wiped to remove any additional non-migrated cells.  Thereafter, the membrane was placed on 

a slide, with the side to which cells were added, facing down.  Hoechst (1/200) was added and 

the membrane incubated for 10 minutes, after which it was again washed with PBS, fixed with 

a 1:1 acetone:methanol solution and mounted onto a coverslip with mounting media.  Slides 

were stored at -20oC until later analysis.  Photos were taken of six fields per membrane.   

Problem (Figure 4.15):  As in protocol C, difficulty distinguishing between migrated versus non-

migrated cells; migrated cells washed off when PBS and Hoechst were added (before fixing).  

 
Figure 4.15.  Typical images from the same field of view that illustrate the different levels at which the same 

group of cells can be viewed.  The arrow indicates migrated cells and the arrowhead non-migrated cells.   

 

              

 
E.  Grid counting and trypsin:  100 μℓ drops trypsin was placed on each grid (as 

described in protocol B).  After aspirating all media out of the insert, the insert was placed on 

top of the drop and incubated at 37oC for 10 minutes.  The insert was then taken off and the 

membrane rinsed with 200 μℓ media (containing FBS, to inactivate the trypsin), making sure 

the media and any additional cells mixed thoroughly with the cell-trypsin solution on the grid.  

Cells were counted using the grid to determine the migration number. 

Problem:   Difficulty counting higher migration numbers; bubbles; inconsistent results, grid not 

calibrated (compare with haemocytometer). 

 
F. Haemocytometer and trypsin 

This methodology was the most successful and is fully described in Chapter 7 (section 7.2.2).  

This was the chosen method for analysis of migrated cells.    
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4.3.3 Summary and Conclusions  

Table 4.3 summarises the described protocols which were evaluated and the results obtained 

from each.  IGF-1 successfully increased the number of migrated cells (E) and was therefore 

selected as growth factor to induce positive migration in subsequent migration assays.  

 

Short periods (less than 6 hours) did not allow sufficient time for migration, whereas longer 

periods (more than 12 hours) resulted in the proliferation of cells which made it difficult to 

accurately determine actual migration numbers.  Therefore, 7 hours was chosen as time-

period for cell migration in the final experimental protocol.   

 
Table 4.3.  Summary of initial methods used to assess migration in C2C12 cells. 

CELLS TREATMENT TIME (hr) NUMBER OF CELLS MIGRATED 
(cells/mℓ) AND METHOD OF COUNTING 

 
500 000  

 
insert solution: SFM + cells 
well solution: SFM 
 
 

 
0 
1 
4 
8 

 
0 
0  
0 
35 000 

 
A 

 
500 000  

 
insert solution: SFM + cells 
well solution: TGF-β1 at  100 pg/mℓ  
    300 pg/mℓ 
     1 ng/mℓ 
     3 ng/mℓ 
     10 ng/mℓ 

 
8 

 
 
40 000 
30 000 
30 000 
30 000 
50 000 

 
A 

 
50 000 

 
insert solution: 1% HS 
well solution: 10% HS 
 
insert solution: 1% FBS 
well solution: 10% FBS  

 
4 
6 

 
4 hr: 15 000 
6 hr: 35 000 
 
4 hr: 5 000 
6 hr: 15 000 

 
A 

 
100 000 

 
insert solution: 1% HS 
well solution: 2% HS 
 
 
 
 
insert solution: 1% FBS 
well solution: 2% FBS 

 
1 
2 
4 

22 
 
 

1 
2 
4 

22 

 
0 
0 
0 
90 000 (cells attach and start 
to proliferate) 
 
0  
0 
0 
60 000 (cells attach and start  
to proliferate) 

 
A 
 
 
B 
 
 
A 
 
 
B 

 
50 000 

 
insert solution: DMEM/0.1% BSA 
well solution: DMEM/0.1% BSA  
 
insert solution: DMEM/0.1% BSA 
well solution: DMEM/0.1% BSA/10 ng/mℓ IGF-1 

 
7 

 
control: 73 
 
 
IGF-1: 730  
  593 
  463 

 
0 
 
 
47 
130 
137 

 
E 

 
SFM, serum free medium; FBS, foetal bovine serum. 
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4.4 METHODS FOR ASSESSING FUSION 

 

Growth and regeneration of adult skeletal muscle requires activation, proliferation and 

differentiation of satellite cells.  Following cell cycle withdrawal and phenotypic differentiation, 

myoblast fusion is required for further terminal differentiation, resulting in the formation of 

post-mitotic, multinucleated myotubes (Andres and Walsh, 1996).  The increase in nuclei 

number within the myofiber is accompanied by a proportional increase in cytoplasm to allow 

myofiber size increases, indicating the importance of fusion for muscle growth (Horsley et al., 

2001; Mitchell and Pavlath, 2001).  Determining indices to quantify fusion would therefore 

make it possible to assess successful progression through the entire differentiation 

programme.   

 

4.4.1 Cell Culture  

C2C12 cells were plated onto glass coverslips in each well of six-well tissue culture-treated 

plates (day -1) at a density of 50 000 cells/well and allowed to differentiate as described 

above (section 4.2.1.1).  Cells were fixed and prepared for immunofluorescent staining on 

days 3, 4, 5, 6 and 7.  At these time-points, while working on ice, the coverslips were rinsed 

with PBS and fixed in an acetone:methanol solution (1:1) for ~5 minutes.  After removing the 

solution, the coverslips were left to dry and stored at -20oC until later analysis.  

 

4.4.2 Immunohistochemistry 

For immunofluorescent staining and analysis, cells grown on coverslips were allowed to 

defrost at room temperature, after which they were gently rinsed with 500 µℓ PBS (0.1 M,  

pH 7.4).  To block non-specific binding sites, each coverslip was first incubated with 100 µℓ 

5% donkey serum (Jackson ImmunoResearch Laboratories, Inc.) for 30 minutes at room 

temperature.  Thereafter, the serum was drained off and the primary antibody, rabbit 

polyclonal M-cadherin, added and cells incubated overnight at 4oC.  

 

Cells were then rinsed twice with PBS and further incubated with 100 µℓ biotinylated donkey 

anti-rabbit secondary antibody for 50 minutes at room temperature.  Cells were again washed 

twice with PBS and further incubated with 100 µℓ Texas Red Streptavidin tertiary antibody  

for 40-60 minutes at room temperature.  100 µℓ Hoechst dye was added during the last  

10 minutes of this step for nuclear staining.  The sections were thoroughly rinsed with PBS, 

mounted in Fluorescent Mounting Medium (S3023, DAKO) and stored at -20oC until further 

analysis.    
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Sections were viewed under a fluorescence Nikon microscope (ECLIPSE E400) at 20x 

enlargement and photos taken with a digital camera (Nikon DXM1200).  TNC and M-cadherin 

staining intensities were analysed using the computer software Simple PCI, version 4.0 

(Compix Inc., Imaging Systems, USA).   

 

4.4.3 Assessment of Fusion 

Cadherin-proteins, which are transmembrane proteins mediating cell-to-cell interactions, are 

thought to play an important function in cell fusion and the regulation of intracellular 

cytoskeletal structures (Kaufmann et al., 1999b).  Specifically, M-cadherin, a cell adhesion 

protein, has been postulated as an important molecule involved in myoblast differentiation 

and fusion during myogenesis and muscle regeneration (Zeschnigk et al., 1995).  Since this 

protein is expressed in quiescent cells, myoblasts and myotubes (Irintchev et al., 1994), cell 

fusion was studied by immunofluorescence using M-cadherin to identify all myocytes. 

 

To quantify cell fusion, M-cadherin images of the cells were merged with the Hoechst-stained 

image of the nuclei from the same area to determine myoblast and myotube stages of 

differentiation.  Total numbers of bi-nuclear myoblasts (two nuclei per cell) and myotubes 

(three or more nuclei per cell) were then counted (Figure 4.16).  In addition, the total number 

of nuclei in these bi-nuclear myoblasts and myotubes were added and divided by the TNC 

(section 4.2.2.2) of that image to calculate the fusion index (%) (Nishiyama et al., 2004; Park 

and Chen, 2005) (Figure 4.18).  A minimum of six photos were taken from different regions of 

each slide.  The experiment was performed in triplicate. 
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4.4.3.1 Total myoblast and myotube count  

The total number of bi-nuclear myoblasts and myotubes is a direct reflection of the progress 

of differentiation (Figure 4.16).   
 

  Figure 4.16.  Total number bi-nuclear myoblasts and myotubes in 

differentiating C2C12 cells. Data are expressed as mean ± SEM; n = 1. 
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At the beginning of the differentiation programme, when proliferation is still predominant, the 

total number of bi-nuclear myoblasts and myotubes were minimal (day 3 and day 4), after 

which they showed a gradual increase.  The maximum number of myoblasts and myotubes 

was observed at day 5 when myoblasts entered terminal differentiation phases and remained 

elevated until day 7.  Figure 4.17 illustrates the increase in myoblast and myotube formation. 
 

Figure 4.17.  Typical images of myoblast and myotube formation in differentiating C2C12 cells. 

    day 3                  day 4               day 5 

         
 

    day 6                  day 7 

         

 A
 B 

A: myoblasts (2 nuclei/cell) 

B: myotube (> 2 nuclei/cell) 
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Mostly single nuclei myoblasts could be distinguished at day 3, after which the number of  

bi-nuclear myoblasts and myotubes gradually increased from day 4 to day 7.  In addition, the 

number of nuclei per myotube also increased, and as such the amount of cytoplasm.  At  

day 7, the number of nuclei per myotube had increased further as illustrated by the greater 

myofiber sizes. 

 

4.4.3.2 Fusion index 

The number of myonuclei within a myofiber determines its size by regulating the cytoplasmic 

volume which increases with myoblast fusion.  The fusion index compares the proportion of 

nuclei within bi-nuclear myoblasts and myotubes to the TNC and enables a quantifiable and 

comparable measure of fusion.  Greater fusion indexes would therefore be indicative of 

successful fusion and consequently also differentiation (Figure 4.18).   

 

Figure 4.18.  Fusion index in differentiating C2C12 cells. 

      Data are expressed as mean ± SEM; n = 1. 
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Differentiation and the formation of multinucleated myotubes increased significantly from  

day 3 to day 5 (Figure 4.17), after which gradual myotube increases were observed to day 7.  

Analysis of the fusion index (Figure 4.18) demonstrated a similar increase from day 3 to  

day 5.  These results indicate an increase in the number of mononucleated myocytes entering 

phases of initial differentiation into bi-nuclear myoblasts and subsequently into myotubes.  

Consistent with this observation was the expression of the regulatory factor, myogenin (Figure 

4.6) which was seen from day 1, but increased significantly thereafter to day 5 and remained 

elevated until day 9. 
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4.4.4 Summary and Conclusions 

During the course of muscle development, myocytes are required to specifically fuse to each 

other to form bi-nuclear myoblasts and then multinucleated myotubes.  Fusion is therefore 

critical to induce terminal differentiation to form syncytial muscle fibers (Andres and Walsh, 

1996; Charge and Rudnicki, 2004; Nishiyama et al., 2004) which cannot re-enter the cell 

cycle (Florini et al., 1991; Olson, 1992).   

 

In this preliminary model, limited C2C12 cell fusion was observed at day 3, after which 

significant increases occurred to day 5.  Thereafter, the total number of bi-nuclear myoblasts 

and myotubes remained constant until day 7.  The fusion index increased from day 3 to reach 

a maximal level at day 7.  Days 3, 5 and 7 were therefore chosen for analysis of fusion in 

subsequent experimental protocols. 
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CHAPTER 5 

PROLIFERATION 

 

5.1 INTRODUCTION 

 

In adult skeletal muscle, satellite cells are the primary stem cell source which supply 

myonuclei to growing myofibers.  Although quiescent under normal conditions, they are 

activated and begin proliferating in response to extrinsic signals to fulfil their function in 

growth, hypertrophy and repair of adult skeletal muscle.  However, the extent of their 

contribution to processes of repair and regeneration is not always sufficient to restore 

functional integrity of the muscle. 

 

Virtually any disturbance in the micro-environment could lead to satellite cell activation, 

proving the importance of extrinsic signalling.  In this regard is the position of the satellite cell, 

where it is located beneath the basal lamina of the myofiber and in close proximity of 

interstitial cells, capillaries and the neuromuscular and myotendinous junctions, essential for 

communication between the cell and the adjacent myofibers.  The influence of signals that 

are transmitted from these myofibers and the surrounding matrix, as well as from soluble 

endocrine, paracrine and autocrine factors, needs to be identified to distinguish possible 

mechanisms regulating the capacity of satellite cells to become activated from their natural 

quiescent state and proliferate.  Such mechanisms would control the cell cycle of myogenic 

cells which is regulated by myogenic transcription factors (Weintraub, 1993), as discussed in 

Chapter 2 [section 2.2.1.1 (C)].   

 

Once activated in response to stimuli such as muscle injury, satellite cells undergo rapid 

proliferation to progress along the myogenic lineage.  The proliferative expansion of the 

progenitor cell population is required to provide sufficient myoblast numbers for subsequent 

cell cycle arrest, differentiation and fusion into myotubes, and importantly, also for satellite 

cells to self-renew and return to quiescence, assuring a sufficient reserve for future 

requirements.  Taking into consideration the many phases of development, control of the cell 

cycle is essential, since deregulation would lead to uncontrolled proliferation and prevent 

further development and/or regeneration.  Therefore, although myoblast proliferation is 

required to provide sufficient progenitor cells for terminal differentiation, proliferation and 

differentiation are mutual exclusive events and if the proliferative phase of development is 

not adequately controlled, effective myogenesis could be prevented. 
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Several growth factors have been identified which contribute to phases of myogenic 

development by inducing their specific signalling pathways at the appropriate stages.  

Hepatocyte growth factor (HGF) has shown both in vitro and in vivo to be essential for inducing 

the activation and early division of satellite cells (Allen et al., 1995; Cornelison and Wold, 

1997; Tatsumi et al., 1998).  Similarly, fibroblast growth factor (FGF) has also shown ability in 

recruiting satellite cells to break quiescence and enter the proliferative phase (Yablonka-

Reuveni et al., 1999), but in contrast, depress differentiation (Allen and Boxhorn, 1989; Spizz 

et al., 1986).  Insulin-like growth factor-1 (IGF-1) has demonstrated pronounced stimulation of 

both proliferation and differentiation (Allen and Boxhorn, 1989).  The role of TGF-β isoforms in 

skeletal muscle is unclear since this growth factor has shown to have both positive and 

negative effects on muscle cell development.  Depending on the individual responses of 

specific cells and the environmental conditions, the balance of such effects could lead to 

either the promotion or inhibition of proliferation.  Despite the ability of TGF-β to affect 

different cell types in opposing ways, this may not reflect actual differences of initial cellular 

responses to TGF-β.  Rather, variable cellular responses could be the end-result of TGF-β 

initiating a number of effects in all responsive cells, some of which may lead to proliferation 

and others to the inhibition thereof (Nilsen-Hamilton, 1990). 

 

Transplantation models have shown that grafted myogenic cells contribute myonuclei, as well 

as produce myogenic precursors that can be activated following muscle damage to proliferate 

and enhance further regeneration (Gross and Morgan, 1999; Watt et al., 1982).  By altering 

the concentrations of selected growth factors such as these described, satellite cells and 

other mpcs can be treated to increase their potential for proliferation and differentiation and 

therefore be applied to enhance the capacity of stem and/or progenitor cells to contribute to 

functional regeneration processes.  

 

The proliferating cell nuclear antigen (PCNA) is a protein essential for cellular DNA synthesis 

(Waseem and Lane, 1990).  PCNA participates in different pathways of DNA metabolism and 

cell division, including co-ordinating DNA repair synthesis, DNA replication and cell cycle 

progression (Scovassi and Prosperi, 2006).  It is suggested that PCNA influences proliferation 

by means of its association with the cell cycle regulator p21 (Maga and Hubscher, 2003; 

Paunesku et al., 2001).  Arrest of cell cycle progression by p21 and induction of terminal 

differentiation is dependent on the maintenance of high levels of p21, resulting in the 

inhibition or down-regulation of PCNA expression (Engel et al., 2003).  In contrast, 

proliferation requires increased expression of PCNA.  Therefore, the decision of a cell to either 

proliferate or differentiate is dependent on the interaction between these two proteins.  
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The cellular distribution of PCNA is important and depends on its synthesis and activity, and 

on the cell cycle phase.  This protein is produced in the cytoplasm and transported into the 

nucleus during the S-phase of the cell cycle.  As mentioned in Chapter 4 (section 4.2.2.1), 

localisation of PCNA correlates directly with rates of cellular proliferation during the cell cycle, 

with highest levels observed during the late G1- and S-phases in the nucleus and to a lesser 

extent during the G2- and M-phases (Thomas et al., 1993).  It also forms complexes with 

various CDK-cyclins and checkpoint proteins within the cell cycle.  This protein’s expression is 

therefore not limited to proliferating cells and PCNA can be detected at various stages 

throughout the cell cycle (Thomas et al., 1993).  

 

During the S-phase, three different nuclear PCNA populations can be distinguished (Toschi 

and Bravo, 1988): an insoluble granular form involved in ongoing DNA synthesis which 

localises specifically to the nucleus in a chromatin-bound form associated with replication 

structures, a second, freely soluble (easily extractable) nucleoplasmic form seen in quiescent 

cells (Bravo and Macdonald-Bravo, 1987; Scovassi and Prosperi, 2006), and a third that is 

possibly only loosely associated with nuclear components as pre-synthesis complexes (Toschi 

and Bravo, 1988).  The latter two are not involved in constant DNA synthesis, but might need 

to be additionally recruited for the initiation of DNA replication at a later stage (Szuts et al., 

2005).  A granular form and a soluble, inactive form of PCNA can also be detected in the 

cytoplasm (Grzanka et al., 2000; Scovassi and Prosperi, 2006).  

 

In this chapter, C2C12 myoblasts were cultured in low serum conditions and treated with  

TGF-β isoforms, TGF-β1, -β2 and -β3.  Thereafter, the expression and localisation of PCNA 

were assessed to determine the effect of TGF-β on myoblast proliferation and gain insight into 

the role of this growth factor during myogenic differentiation.   
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5.2 METHODS  

 

5.2.1 Cell Culture 

5.2.1.1 Assessment of total nuclear count 

C2C12 cells were maintained in culture medium until they reached a confluency of ~40-50% 

in T75 flasks (described in Chapter 3).  Thereafter, they were plated onto glass coverslips in 

each well of six-well tissue culture-treated plates (day -1) at a density of 50 000 cells/well in 

culture medium.  On the following day (day 0), the cells were rinsed with PBS and the medium 

changed to mitogen-poor, differentiation-promoting medium (Chapter 3, section 3.3.1.2) 

supplemented with either TGF-β1 or -β2 or -β3 (5 ng/mℓ), and compared to control conditions 

(differentiation medium only) (short-term treatment, 24 hours).  For long-term treatment (72 

hours), the cells were additionally treated with TGF-β isoforms (5 ng/mℓ) on day 1 and day 2.  

After both short- and long-term treatment, cells were maintained in a humidified incubator at 

37oC, 5% CO2 in differentiation medium which was changed every second day.   

 

In order to quantify the total nuclear number during stages of growth and differentiation, the 

cells were fixed and prepared for immunofluorescent staining on days 5 and 7, and 

additionally on day 3 following long-term treatment, as described in Chapter 4 (section 4.4.1).  

It should be noted that this method therefore does not take into account those cells which 

may have lifted off due to apoptosis.  However, analysis of apoptotic nuclei on the coverslips 

prior to rinsing suggested minimal highly condensed apoptotic cells at the time-points 

analysed. 

 

5.2.1.2 Protein analysis of proliferation 

To determine the long-term effect of TGF-β isoforms on PCNA protein levels, C2C12 cells were 

prepared and plated as described in Chapter 4 (section 4.2.1.1) and treated with TGF-β 

isoforms for 72 hours as described above.   

 

Cells were collected for immunoblotting purposes on days 0, 1, 5 and 9.  Day 0 samples were 

collected before addition of differentiation medium to determine baseline values of antibody 

expression.  To harvest the cells, the medium was removed and cells washed twice with PBS.  

While keeping the samples on ice, they were treated with 100-150 µℓ lysis buffer, sonicated, 

aliquoted and stored at -20oC until later analysis. 
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5.2.1.3 Immunofluorescent localisation of PCNA 

To determine the cytoplasmic and nuclear localisation of PCNA in control- and TGF-β1-treated 

differentiating cells, C2C12 cells were plated into 8-chambered, cell culture-treated, 

coverglass units (155411, Lab-Tek, USA) at a density of 20 000 cells/chamber in 300 μℓ 

culture medium (day -1).  After removing the medium and rinsing cells with PBS on the 

following day (day 0), differentiation medium was added and cells for TGF-β treatment were 

supplemented with 5 ng/mℓ TGF-β1 for comparison to control conditions.  Further addition of 

TGF-β1 to the appropriate cells was repeated on days 1 and 2 and cells maintained as 

described above.  For immunofluorescent staining, the medium was removed, cells rinsed 

with PBS and fixed in an acetone:methanol solution (1:1) on days 1 and 5.  The chambers 

were covered and stored at -20oC until later analysis.  

 

The concentration of the TGF-β used in these and subsequent protocols was taken from the 

literature.  Although it would have been preferred to analyse more than one concentration of 

the TGF-β isoforms, it was felt that the number of parameters within the study (incubation 

time, different isoforms, analysis of 5 time-points, analysis of proliferation, differentiation, 

migration and fusion and multiple markers thereof, and two cell-lineages) were sufficient.  

 

5.2.2 Proliferation Assays 

5.2.2.1 Determination of total nuclear count  

Quantification of the total nuclear count (TNC) in differentiating C2C12 cells was carried out 

by fluorescent nuclear staining.  At the relevant time-points, Hoechst dye (1/200) was added to 

the fixed cells for 10 minutes.  The sections were then washed and mounted with Fluorescent 

Mounting Medium (DAKO).  All incubation procedures were performed at room temperature.  

The complete assay has been described in Chapter 4 (section 4.4.2).   

 

Sections were viewed under a fluorescence Nikon microscope (ECLIPSE E400) and photos 

taken with a digital camera at 20x enlargement (Nikon DXM1200).  Photos were used to 

count the total number of nuclei per field of view using the computer programme Simple PCI,  

version 4.0 (Compix Inc., Imaging Systems, USA).  A minimum of six photos were taken from 

different regions of each slide.  The experiment was performed in triplicate.   
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5.2.2.2 Western blot analysis of PCNA protein level 

Protein analysis of C2C12 cells was carried out as described in Chapter 3.  Total protein was 

assessed by the Bradford method to ensure equal loading concentrations of samples per  

lane (section 3.3.2.1).  Western blot analysis (section 3.3.2.2) was used to evaluate PCNA 

levels following long-term incubation with TGF-β isoforms, whereas α-tubulin was used to 

assess consistency in loading of samples.  Protein expression levels were determined by 

densitometry (section 3.3.2.3).  Each sample was evaluated in duplicate and all experiments 

repeated a minimum of three times.   

 

5.2.3 PCNA Localisation 

Immunofluorescent localisation of PCNA in C2C12 cells was performed as follows.  After 

defrosting the 8-chambered units, they were gently rinsed with 300 µℓ PBS and incubated 

with 50 µℓ 5% donkey serum for 20 minutes at room temperature.  After the serum was 

drained off, the cells were stained with 50 µℓ anti-PCNA which was added as primary antibody 

(see Table 3.3 for dilutions and supplier) and PBS as control, and the cells left to incubate for 

90 minutes.  The cells were then rinsed twice with PBS, followed by incubation for 30 minutes 

with 50 µℓ Texas Red Streptavidin secondary antibody.  After thoroughly rinsing each 

chamber with PBS, a drop Fluorescent Mounting Medium (S3023, DAKO) was added, the 

units covered in a moist chamber and stored in a dark area.  

 

Sections were visualised using the Motorised Inverted System Microscope (Olympus IX 81, 

Imaging Software Cell®) using a 60x oil immersion objective.  Photos were taken with a 

monochromatic camera (F-View Soft Imaging Systems).  No cross-reactivity of the secondary 

antibody was observed in control experiments in which the primary antibody was omitted.  

 

5.2.4 Statistical Analysis 

Statistical evaluations were made by one-way analysis of variance (ANOVA) and Bonferroni’s 

multiple comparison test using STATISTICA.  Significant differences were taken at p < 0.05.  

All data are expressed as mean ± SEM.  
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5.3 RESULTS  

 

To determine the effect of TGF-β isoforms on C2C12 myoblast proliferation, the TNC was 

assessed in C2C12 cell cultures, as well as the expression of PCNA following western blot 

analysis.  In addition, the localisation of PCNA in differentiating C2C12 cells is demonstrated 

following treatment with TGF-β1. 

 

5.3.1 Assessment of Total Nuclear Count 

Analysis of the total nuclei number indicated that, after both 24 hour and 72 hour treatment, 

TGF-β1, -β2 and -β3 significantly increased the proliferation of C2C12 myoblasts at all time-

points analysed (Figure 5.1 and Figure 5.2) (p < 0.01).   

 

Following the 24 hour treatment, the increase in TNC was similar for the three isoforms at  

day 5.  At day 7, although no significant isoform-specific effects were demonstrated, TGF-β2 

showed the greatest response of the three isoforms (Figure 5.1).  Increases in TNC compared 

to control conditions ranged from 69% to 77% at day 5 and from 65% to 89% at day 7.  

Although a similar pattern was seen following 72 hour incubation with the isoforms, the effect 

of TGF-β was greater following 72 hour than 24 hour treatment for both day 5 and day 7 

(Figure 5.2).  Following 72 hour treatment, all three isoforms resulted in similar increases in 

TNC at day 3, ranging from 61% to 64%.  At day 5, TGF-β2 again showed the greatest effect 

(113% TNC increase).  Increases in TNC ranged from 88% to 104% at day 7.   

 

Taken together, these results suggest that long-term (72 hour) incubation with TGF-β isoforms 

has a greater effect on C2C12 cell proliferation; the continued presence of the isoforms 

maintains the proliferative stimulus.  Visual analysis of the cells confirmed that TGF-β1-

treated cells were more proliferative than untreated cells (Figure 5.3).  TGF-β2 and -β3 

displayed similar images. 
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Figure 5.1.  Incubation of C2C12 cells with TGF-β1, -β2 or -β3 for 24 hours results in an increase in proliferation.  

The total nuclear number was assessed by nuclear staining and image analysis in control- and TGF-β-treated 

differentiating C2C12 cells. #p < 0.01. Data are expressed as mean ± SEM; n = 3. 
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Figure 5.2.  Incubation of C2C12 cells with TGF-β1, -β2 or -β3 for 72 hours results in an increase in proliferation.  

The total nuclear number was assessed by nuclear staining and image analysis in control- and TGF-β-treated 

differentiating C2C12 cells. #p < 0.01. Data are expressed as mean ± SEM; n = 3.   
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Figure 5.3.  Typical images of nuclei (at 20x enlargement) in differentiating C2C12 cells at day 5 following  

72 hour incubation with TGF-β1.  (A) Control- and (B) TGF-β1-treated cells, stained with Hoechst to allow 

identification of the nuclei. TGF-β1-treated cells clearly illustrate an increase in total nuclei number at day 5. 
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5.3.2 Effect of TGF-β Isoforms on PCNA Expression in C2C12 Cells 

To determine a possible mechanism by which TGF-β isoforms increase proliferation, the 

expression of PCNA, a molecular marker of proliferation, was determined in C2C12 cells 

following 72 hour exposure to TGF-β isoforms.  Data are expressed as a % of control.   

 

Surprisingly, compared to control conditions, analysis of PCNA expression in TGF-β-treated 

cells displayed no significant differences on any day analysed (Figure 5.4).  Despite not being 

significant, TGF-β1 displayed the greatest effect, increasing PCNA expression at day 1 

compared to control conditions, as well as compared to TGF-β2 and -β3 treatment.  At day 9, 

all three isoforms resulted in higher PCNA expression, however, this was also not significant.   

 

Figure 5.4.  Incubation of C2C12 cells with TGF-β1, -β2 or -β3 for 72 hours displays no significant differences in 

PCNA expression.  PCNA protein levels were assessed by western blot analysis in control- and TGF-β-treated 

differentiating C2C12 cells. Data are expressed as mean ± SEM; n = 3.   
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5.3.3 Immunofluorescent Localisation of PCNA in TGF-β1-treated C2C12 Myoblasts  

As mentioned in section 5.1, PCNA is produced in the cytoplasm (an inactive soluble and 

granular form can be distinguished), but is transported to the nucleus to regulate proliferation 

during the S-phase of the cell cycle (both soluble and active granular form).  This infers that, 

although total PCNA expression levels may not change, the localisation of PCNA may change 

in such a way so as to alter proliferation.  As a result, the cellular distribution of PCNA was 

analysed between the cytoplasm and nucleoplasm by means of immunofluorescence in order 

to determine whether TGF-β isoforms could alter the distribution of PCNA within the cell 

without changing the total expression levels.  Whereas the active, insoluble form of PCNA is 

strongly associated with the nuclear regions where DNA synthesis is occurring, the soluble, 

nucleoplasmic form degrades in the presence of organic solvents, making it undetectable 

when using organic fixatives (such as methanol) in cell cultures.  This does however provide a 

method for only visualising the DNA synthesising form (Bravo and Macdonald-Bravo, 1987).  

Since an acetone:methanol fixing solution was used, only the synthesising form is visible in 

the images (Figure 5.5).  

 

Figure 5.5 illustrates the immunofluorescent localisation of PCNA in control- and TGF-β1-

treated C2C12 cells at day 1 and day 5 of differentiation.  At day 1, control cells display both 

cytoplasmic and, to a lesser extent, nuclear staining (Figure 5.5 A - i), whereas TGF-β1-treated 

cells display primarily granular cytoplasmic staining (Figure 5.5 B - i).  However, by day 5,  

TGF-β1-treated cells display increased PCNA expression throughout the cell, especially in the 

nucleus (Figure 5.5 B - ii), whereas control cells continue to express primarily cytoplasmic and 

limited nuclear PCNA (Figure 5.5 A - ii).  This change in distribution and increased expression 

of nuclear PCNA in TGF-β1-treated cells could be explained by Szuts et al. (2005) who 

demonstrated that PCNA from a soluble nuclear pool is required for initiation of DNA 

replication.  Although these images were not analysed, the increased nuclear localisation 

observed in TGF-β1-treated cells at day 5 (Figure 5.5 B - ii) illustrates a possible increase in 

proliferative capacity following TGF-β treatment, as demonstrated by the higher TNC in TGF-β-

treated C2C12 myoblasts (section 5.3.1). 
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Figure 5.5.  Immunofluorescent localisation of PCNA (at 60x enlargement) in differentiating C2C12 cells following 

72 hour incubation with TGF-β1.  Typical images of (A) Control- and (B) TGF-β1-treated cells at (i) day 1 and  

(ii) day 5 of differentiation. n = 1. 
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5.4 DISCUSSION 

 

The decision of a cell to proliferate, differentiate or migrate during development is closely 

connected to its environment.  Transplantation studies have shown the importance of cell-to-

cell interactions and the extracellular milieu in determining cell fate (Greenwald and Rubin, 

1992; Gurdon, 1992).  Specifically, during phases of growth and development, proliferation of 

the relevant cell type is essential to provide sufficient cell numbers for subsequent 

differentiation.  Similarly, during stages of regeneration following injury, proliferation of 

resident or transplanted stem or progenitor cells is necessary to aid in the repair process.  

 

A current limitation in stem cell therapy is the need for greater cell numbers to be functionally 

incorporated into the damaged tissue (Zammit et al., 2006a).  Possible means to increase the 

number of donor cells could either be achieved by extended culturing and proliferation of cells 

ex vivo before transplantation, or by manipulating the cellular conditions in vivo following 

transplantation to generate a stem cell-prone micro-environment which would favour the 

proliferation of donor cells.  Since it has been shown that extended in vitro culturing of stem 

or progenitor cells result in a loss of these cells’ differentiation potential (Price et al., 2007), 

an alternative would therefore be to control the immediate cellular environment to favour 

conditions for more efficient proliferation.  Such a strategy would be of benefit to both the 

local (resident) stem or progenitor cells of the host, as well as a transplanted population. 

 

Several growth factors have been shown to play a role in growth and regeneration processes 

(Allen and Boxhorn, 1989; Jessell and Melton, 1992).  TGF-β is one such factor which affects 

proliferation and differentiation of many cell types to various extents both in vitro and in vivo.  

The effect which this multi-functional growth factor has on cellular growth and repair varies 

greatly, being dependent on the cell type and its stage of development, the environmental 

conditions, the concentration and isoform released, and the presence of other (growth) 

factors.  Pleiotropic effects produced by TGF-β include induction of growth in mesenchymal 

cells (Roberts et al., 1985), inhibition of adipocyte and osteoblast differentiation (Ignotz and 

Massague, 1985), induction of collagen and fibronectin synthesis (Ignotz and Massague, 

1986), and inhibition of proliferation but stimulation of differentiation in epithelial cells (Masui 

et al., 1986).  In skeletal muscle, the role of TGF-β is unclear, having shown the ability to 

either inhibit (Massague et al., 1986) or induce (Zentella and Massague, 1992) myoblast 

differentiation in vitro.  Also, combined with either IGF-1 or FGF, TGF-β inhibits differentiation, 

whereas maximal stimulation is observed in the presence of both IGF-1 and FGF (Allen and 

Boxhorn, 1989).        
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The responsiveness of cell populations such as myoblasts to TGF-β, whether endogenously 

synthesised by the cells or added to the media, could have variable effects on their growth 

and differentiation.  To determine the effect of TGF-β isoforms on skeletal muscle proliferation 

in an in vitro system, C2C12 cells were cultured in the presence of TGF-β.  Despite being 

induced to differentiate, significant results from this chapter showed an increase in total 

nuclei number of the cell culture following both short- and long-term treatment with TGF-β 

isoforms which were interpreted as an increase in cell proliferation status.  No isoform-

specific effects were evident, although TGF-β2 showed a greater response at day 7 and day 5 

following short- and long-term treatment, respectively.  Similar conclusions were made by 

Filvaroff et al. (1994 and unpublished data) who suggested that TGF-β may be used to assist 

in myoblast proliferation; this group however analysed the general effect of TGF-β1 on C2C12 

cells without looking closely at isoform-subtype.  

 

Following tissue damage, such an increase in stem or satellite cell proliferation in response to 

TGF-β treatment could prove to be of benefit if regulated correctly to prevent uncontrolled 

proliferation and taking into consideration the possible detrimental effects which TGF-β exerts 

during wound healing processes.  Although animal models have indicated that TGF-β1 and -β2 

are profibrotic, often expressed at higher levels and function to accelerate wound healing, 

whereas TGF-β3 improves the quality of the scar and is less important in regulating the speed 

of repair (O'Kane and Ferguson, 1997), it is clear that excess TGF-β within a lesion will result 

in unresolved inflammation and fibrotic events (Border and Ruoslahti, 1992) and therefore 

any disturbance in TGF-β activity may result in pathological consequences (Wahl, 1994).   

 

As such, although TGF-β could increase proliferation and consequently satellite cell or 

myoblast numbers to produce more progenitors for subsequent differentiation which will aid 

in the repair process, excess TGF-β would result in fibrosis and scar formation.  Increases in 

scar tissue could further prevent these progenitor cells from being incorporated into the 

damaged area.  For therapeutic purposes, circulating and/or treatment levels of TGF-β would 

therefore need to be carefully modulated in order to result in any beneficial effect on repair 

and regeneration processes.  In the current study, all three isoforms promoted C2C12 

proliferation, implying a possible use of the less pro-fibrotic TGF-β3 isoform to increase cell 

numbers prior to transplantation.    
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Taking into consideration the TNC results, greater changes in PCNA expression levels were 

expected following treatment with TGF-β isoforms compared to control conditions.  However, 

despite the increase in total nuclear number, no significant changes were seen in total PCNA 

protein levels.  Possible explanations for this lack of significant differences between control- 

and TGF-β-treated cells could include the prolonged half-life of PCNA which results in PCNA 

expression of cells which have left the cell cycle, the involvement of PCNA in cellular 

processes other than proliferation, the fact that an unsynchronised cell culture was used, and 

finally that analysis of whole cell-lysates by western blotting does not distinguish between the 

active, nuclear form and the inactive cytoplasmic population (Celis and Celis, 1985a; Celis 

and Celis, 1985b; Hall et al., 1990; Toschi and Bravo, 1988).  The current study suggests 

that, despite the absence of change in total PCNA levels, translocation of PCNA from the 

cytoplasm to the nucleus in response to TGF-β1-incubation would favour proliferation, 

whereas in control cells, the prominent granular cytoplasmic expression would result in a 

lower rate of proliferation.  This agrees with Iyengar (Iyengar, 1994) who suggested the 

possibility that pools of PCNA in the cytoplasm, when transported into the nucleus, could 

result in rapid proliferation, similar to the effect observed in the TGF-β-treated cells. 

 

Possible ways through which the isoforms regulated proliferation, could involve the TGF-β-

receptor system.  Although TGF-β receptor expression was not analysed, the type I and type II 

TGF-β receptors have shown to mediate many of its biological effects (Geiser et al., 1992; 

Laiho et al., 1991).  Especially the type II receptor, which has been shown to be a functional 

kinase (Wrana et al., 1992) and required for activation of the type I receptor (Bassing et al., 

1994), could prove to be essential in mediating the effects of TGF-β during myogenesis.  

Although most cells in culture have both receptors, the type II receptor is expressed in vivo at 

higher levels in differentiated muscle tissue (Lawler et al., 1994) and as such, studies have 

suggested that signalling through the type II TGF-β receptor is essential for certain changes 

associated with myoblast growth and myotube formation (Filvaroff et al., 1994). 

 

As mentioned, the effects which TGF-β isoforms exert on muscle formation have shown 

conflicting inhibitory and stimulatory results (Brennan et al., 1991; Massague et al., 1986; 

Vaidya et al., 1989; Zentella and Massague, 1992).  Explanations can only be hypothesised.  

One possibility is that the effect of TGF-β could depend on the intrinsic developmental phase 

of the cell.  In this regard, TGF-β would promote the proliferation of myoblasts while 

maintaining them in an immature and activated state, still capable of differentiation (by 

means of MyoD expression), but preventing further development by means of the inhibitory 

effect of TGF-β until differentiation can be induced by an appropriate signal, or until cells have 
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migrated away from areas of TGF-β production.  This could explain the lack of significant MyoD 

results observed between control- and TGF-β-treated C2C12 cells (Chapter 6, section 6.3.1.1), 

as well as the inability of TGF-β to induce migration in both C2C12 and P19 cell-lines (Chapter 

7, section 7.3).  Thus, TGF-β could maintain proliferation of committed cells, ready for fusion 

into myotubes, while simultaneously preventing premature myoblast differentiation until 

sufficient myoblast numbers have been achieved (Massague et al., 1986; Olson et al., 1986).   

 

Two effects of TGF-β, stimulation and inhibition of myoblast differentiation, could be mediated 

by the different TGF-β receptor systems (briefly discussed in section 2.4.3) (Figure 5.6).  

Whereas the type II receptor (TGF-β RII) is believed to be required for growth inhibition 

induced by TGF-β, the type I receptor (TGF-β RI) may be involved in TGF-β-induced ECM 

production (Chen et al., 1993).  Since collagens inhibit myogenesis (Heino and Massague, 

1990) and TGF-β stimulates collagen production during stages of wound healing, signalling 

through TGF-β RI could indirectly prevent myoblast proliferation and differentiation by inducing 

expression of collagen and other inhibitory factors.  Any positive effect which TGF-β may exert 

on skeletal muscle growth could therefore preferentially involve signalling through TGF-β RII 

(Gu et al., 1993).  As such, the multiple effects which TGF-β isoforms exert on myoblasts 

might be mediated by at least two signalling pathways involving the two primary TGF-β 

receptor systems, TGF-β RI and TGF-β RII.  However, two additional receptors, TGF-β RIII or 

betaglycan, which is required for TGF-β2 signalling, and a splice-variant of TGF-β RII,  

TGF-β RII-B, could further add to the variable outcomes in TGF-β signalling and the isoform-

specific effects demonstrated by this growth factor.   

 

In this regard, whereas most cells in vitro respond equally to the three isoforms, some 

myogenic cell-lines respond to TGF-β1 and -β3 but not to TGF-β2.  The molecular basis for this 

specificity could be explained by the binding affinity of TGF-β2 to the receptors described:  

TGF-β RI and TGF-β RII must co-operate to transduce the TGF-β signal, with betaglycan only 

being required when the ligand is TGF-β2 (Lopez-Casillas et al., 1993).  TGF-β RII-B is able to 

bind TGF-β2 in the absence of betaglycan and is associated with tissues where TGF-β2 is the 

predominant isoform, although this receptor does also bind with the TGF-β1 and -β3 isoforms 

(Rotzer et al., 2001).  Under normal conditions, a balance may therefore exist between the 

receptor systems, signalling pathways and TGF-β isoform involved (Filvaroff et al., 1994).   
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Figure 5.6.  Schematic illustration of the specificity of TGF-β receptor binding. 

(A) The combination of TGF-β RI and TGF-β RII is responsive to TGF-β1 and TGF-β3 and must associate with each 

other to transduce the TGF-β signal to the cell nucleus.  (B) The addition of TGF-β RIII is required for TGF-β2 to 

associate with the TGF-β RI/TGF-β RII receptor complex.  (C) The combination of TGF-β RI and TGF-β RII-B, a 

splice-variant of TGF-β RII, binds all three TGF-β isoforms and therefore also TGF-β2 in the absence of 

betaglycan.  This receptor is associated with tissues where the predominant isoform is TGF-β2, although it still 

needs to be determined whether TGF-β RII-B is principally a receptor for TGF-β2. 

[Adapted with modifications from Derynck and Feng, 1997; McLennan and Koishi, 2002] 
 
 

 

 

 

 

 

 

 

 

 

 
 
In vitro results could also be influenced by the cell population: with regards to the C2C12 cell-

line, these cells in culture produce all three TGF-β isoforms (Lafyatis et al., 1991) which could 

add to the effect of the TGF-β treatment protocol, influencing the balance between signalling 

pathways, receptor expression within the cell, extracellular concentrations of the ligand, and 

as such, the final effect produced by TGF-β isoforms.   

 

5.5 SUMMARY 

 

In summary, results have shown that all three isoforms of TGF-β increase proliferation of 

C2C12 cells when stimulated to differentiate in culture.  Furthermore, the increase in 

proliferation shown in this chapter was not due to elevated total PCNA protein expression, but 

may rather be attributed to a change in cellular localisation of the proliferating cell nuclear 

antigen protein.  In the following chapter the effect of TGF-β on differentiation itself is 

analysed.   
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CHAPTER 6 

DIFFERENTIATION 

 

6.1 INTRODUCTION 

 

Stem cell therapy holds the potential to treat various conditions of muscular disease and 

injury.  In theory, only a small number of cells and a stimulatory signal for expansion are 

required to elicit a therapeutic effect.  To achieve clinical relevance, candidate stem or 

progenitor cell populations must be easily obtained, capable of efficient myogenic 

differentiation in vitro and in vivo, and, once transplanted, integrate into the musculature to 

improve function of the affected tissue.  Stem cell populations with myogenic potential can  

be isolated from multiple regions in the body and at different stages of development (Chapter 

2).  Also, the (apparent) ability of cells to transdifferentiate has added additional possible 

sources of progenitor cells with myogenic potential to those populations resident within the 

muscle.  However, despite such diverse stem cell populations which have shown the ability  

to contribute to muscle regeneration, the cell type best suited for therapeutic use remains to 

be established (Price et al., 2007). 

 

In skeletal muscle, the use of stem cells for therapeutic purposes, specifically satellite cells, 

has shown some degree of contributing to regeneration processes following myoblast 

transplantation into diseased muscle (Gussoni et al., 1999; Yao and Kurachi, 1993).  Greater 

efficiency of this treatment is however prevented by problems such as limited migration of 

donor cells into the damaged area, poor donor cell survival, immune-rejection and inefficient 

functional engraftment of transplanted cells.   

 

Cellular cardiomyoplasty has also shown the potential to contribute to improved perfusion and 

contractile function of injured cardiac regions following myocardial infarction.  Several stem 

and progenitor cell populations have been applied with varying degrees of success, including 

embryonic stem cells, and progenitor cells of skeletal muscle, bone marrow, cord blood and 

adipose tissue origin (Anversa et al., 2002; Ghostine et al., 2002; Min et al., 2002; Orlic et al., 

2001a; Orlic et al., 2001b; Toma et al., 2002).  Skeletal myoblasts and satellite cells have 

also proven to repair significant portions of the infarcted myocardium (Horackova et al., 2004; 

Murry et al., 2002; Taylor et al., 1998) and possess many advantages as cardiac donor cells 

which include their resistance to ischaemic conditions and high proliferative capacity within 
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the injured muscle (Partridge, 2000).  Furthermore, results from clinical trials using myoblast 

transplantation to treat ischaemic heart failure have thus far proven to be beneficial over the 

short-term (Hagege et al., 2006; Menasche et al., 2003).  However, to verify results and safety 

measurements, randomised, placebo-controlled studies need to be conducted over an 

extended period to further characterise the risk/benefit ratio of this approach. 

 

To improve clinical significance, further studies are required to characterise the pathways 

activated for homing and incorporation of stem and progenitor cells into the injured area.  The 

application of growth factor pre-treatment to myogenic stem cell populations may improve 

their potential for functional incorporation.  In addition, when these cells are transplanted into 

the damaged skeletal muscle or myocardium, it is essential that the micro-environmental 

conditions post-injury are suitable for appropriate differentiation of stem cells into the 

required cell type.  Factors that can induce such selective differentiation and increase the 

number of functional skeletal- or cardiomyocytes therefore need to be determined (Behfar et 

al., 2002; Torrente et al., 2003; Vandervelde et al., 2005). 

 

TGF-β is a growth factor which has shown to be involved in various aspects of growth and 

development.  In vitro, TGF-β inhibits differentiation of myoblasts (Lafyatis et al., 1991; Olson 

et al., 1986) depending on the environmental conditions and subsequently prevents activated 

satellite cells from leaving the proliferative stage of the cell cycle.  In contrast, TGF-β induces 

both cardiac differentiation and angiogenesis of embryonic stem cells (Roberts et al., 1986), 

and it is also known to regulate cell growth, differentiation and migration during embryonic 

development in an isoform-specific manner (Akhurst et al., 1990; Behfar et al., 2002; Pelton 

et al., 1991).  In addition, within a post-mitotic cardiomyocyte environment, stem cells have 

shown increased cardiac differentiation following treatment with TGF-β (Behfar et al., 2002).  

TGF-β expression has also been shown to increase during cardiac hypertrophy (Kuwahara et 

al., 2002), as well as in the post-infarct myocardium (Deten et al., 2001).   

 

Despite the regenerative potential shown by TGF-β in the myocardium, increased expression 

of the isoforms post-infarct could also adversely affect remodelling and result in progressive 

cardiac failure.  Damage to the muscle stimulates an influx of inflammatory cells to remove 

necrotic tissue and facilitate the synthesis of fibronectin, collagens and other extracellular 

matrix proteins (Ignotz and Massague, 1986; Roberts et al., 1990b).  TGF-β is released by 

inflammatory cells, fibroblasts and to a large extent by de-granulating platelets at the wound 

site.  Throughout the regeneration period, TGF-β is responsible for reconstruction of the 

basement membrane and extracellular matrix surrounding the damaged myofibers and 
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activated satellite cells (Streuli et al., 1993).  Excessive amounts of TGF-β produced at the site 

of injury would however result in progressive fibrosis and consequently, myocardial scarring.  

In addition, fibrosis could influence stem and progenitor cell mobility, whether recruited locally 

or transplanted, by preventing them from being incorporated into the damaged muscle 

(Frangogiannis et al., 2002; Nian et al., 2004; Vandervelde et al., 2005).  The inflammatory 

response could therefore negate the potential beneficial therapeutic effect demonstrated by 

TGF-β following myocardial infarction (Behfar et al., 2002; Lefer et al., 1990).   

 

It is clear that TGF-β is important in the muscle repair process and could contribute to the 

regulation of stem and progenitor cell responses post-injury.  However, most studies have 

analysed the role of TGF-β without distinguishing specifically between its three isoforms 

despite the fact that they may be able to elicit differential effects (see Chapter 2, section 

2.4.1; 2.4.5.1).  The aims of the experiments in this chapter were therefore to specifically 

determine the effects of the three isoforms, TGF-β1, -β2 and -β3, on the differentiation of 

muscle progenitor cells.  The C2C12 and P19 cell-lines were used as in vitro model systems 

and cells incubated for either 24 hours or 72 hours to determine how an acute increase of 

TGF-β, or its presence over a longer period would affect differentiation and the recovery of the 

cells once the stimulus had been removed.  The results presented from this chapter may give 

further insight into the selection of optimal candidates and micro-environmental conditions for 

repair by means of cell transplantation strategies.  
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6.2 METHODS 

 

6.2.1 Cell Culture   

6.2.1.1 C2C12 differentiation 

C2C12 cells were cultured, treated and cell lysates prepared as described in Chapter 5 

(section 5.2.1.2) to determine the short- (24 hour) and long-term (72 hour) effect of TGF-β 

isoforms on C2C12 differentiation.  For short-term analysis, cells were treated once with  

TGF-β (5 ng/mℓ) on day 0, and additionally on day 1 and day 2 for long-term analysis.  Cells 

were collected for immunoblotting purposes on days 0, 1, 5, 9 and 12 (day 12 long-term only). 

 

6.2.1.2 P19 differentiation 

 6.2.1.2 (A) Short- and long-term TGF-β treatment 

To compare the short- and long-term effect of TGF-β treatment between the C2C12 skeletal 

cell-line and that of cardiomyocyte differentiation, P19 cells were induced to differentiate as 

described in Chapter 4 (section 4.2.1.2) and treated with TGF-β isoforms. 

 
Briefly, differentiation was initiated by plating 500 000 cells in 60 mm bacterial-grade dishes 

in the presence of 0.8% DMSO (day 0).  On day 1, the media with aggregates were transferred 

to 100 mm bacterial-grade dishes and additional differentiation medium added.  

Differentiation medium was also added to the aggregates on day 2 and day 3.  In addition,  

5 ng/mℓ TGF-β1, -β2 or -β3 was added to the differentiation medium on either day 0 only 

(short-term) or days 0, 1 and 2 (long-term) and compared to control conditions (P19 

differentiation medium only).  On day 4, maximum supernatant was removed and the 

aggregates transferred to 100 mm tissue culture-treated dishes.  Differentiation of the cells 

continued in P19 culture medium which was changed every second day.  Cells were harvested 

on day 12 for western blotting purposes by washing them with PBS, after which they were 

treated with 240 μℓ lysis buffer, sonicated and stored at –20oC until analysis.  

 
 6.2.1.2 (B) Assessment of embryoid body formation 

Once P19 cells are induced to differentiate, they form aggregates which progressively 

increase in size.  After 4 days of differentiation, once these aggregates are re-plated into 

tissue culture-treated dishes, they adhere to the surface and grow further to form embryoid 

bodies which are essential for final differentiation into cardiomyocytes.  Under optimal 

conditions, these embryoid bodies can spontaneously start to contract.  Assessing the number 

of embryoid bodies (or aggregate number) therefore provides a useful measure of 

differentiation in P19 cell cultures.  
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On day 6 of differentiation following long-term incubation with TGF-β isoforms, aggregate 

numbers were determined by counting the amount of embryoid bodies in five fields of view 

and determining an average number.  The experiment was performed in triplicate.  

 

Brightfield images of C2C12 and P19 cells at various stages of differentiation were taken with 

an Olympus microscope and camera (Olympus CKX 31) at 10x or 20x magnification.   

 

6.2.1.3 Cycloheximide and TGF-β1 treatment 

C2C12 cells were plated in 2 mℓ culture medium at a density of 100 000 cells/well in six-well 

tissue culture-treated plates (day -1).  On the following day, the medium was removed, cells 

washed with PBS and 2 mℓ differentiation medium supplemented with TGF-β1 (5 ng/mℓ) 

added and compared to control conditions (differentiation medium only) (day 0).  After  

24 hours (day 1), cells were incubated with cycloheximide (CHX) (50 μM) to inhibit further 

protein synthesis.  

 

Following CHX incubation for 0 (prior to addition of CHX), 1, 2, 4 and 6 hours, cells were 

harvested as described in Chapter 5 (section 5.2.1.2) with 40 µℓ lysis buffer and stored at  

-20oC until later analysis (Langen et al., 2004).  

 

6.2.1.4 Immunofluorescent localisation of MyoD 

To determine the cytoplasmic and nuclear localisation of MyoD in control- and TGF-β1-treated 

differentiating cells and compare it to the distribution of PCNA, C2C12 cells were plated into  

8-chambered, cell culture-treated, coverglass units (155411, Lab-Tek, USA) (day -1) as 

described in Chapter 5 (section 5.2.1.3).   

 

After removing the culture medium and rinsing cells with PBS on the following day (day 0), 

differentiation medium, supplemented with TGF-β1 (5 ng/mℓ), was added to four wells,  

while the other four wells contained only differentiation medium for comparison to control 

conditions.  Further addition of TGF-β1 to the appropriate cells was repeated on days 1 and 2.  

Cells were maintained in a humidified incubator at 37oC, 5% CO2 and the medium changed 

every second day.  For immunofluorescent staining, the medium was removed, cells rinsed 

with PBS and fixed in an acetone:methanol solution (1:1) on day 1 and day 5.  The chambers 

were covered and stored at -20oC until later analysis.  
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6.2.2 Western Blot Analysis 

6.2.2.1 C2C12 and P19 differentiation 

Protein analysis of C2C12 and P19 cells were carried out as described in Chapter 3 (section 

3.3.2.2).  Total protein was assessed by the Bradford method to determine equal loading 

concentrations of protein per sample (section 3.3.2.1).  To evaluate the expression of cellular 

markers of differentiation, the C2C12 blots were probed with MyoD, myogenin and myosin 

heavy chain (MHC) and the P19 blots with connexin-43 and MHC (section 3.2.2).  Consistency 

in loading of samples was assessed by immunoblotting for α-tubulin.   

 

The resulting bands were quantified using densitometry (section 3.3.2.3).  Each sample  

was evaluated in duplicate and all experiments repeated a minimum of three times.   

 

6.2.2.2 Analysis of MyoD stability 

Whole cell lysates were prepared for immunoblotting as described above.  50 μg of protein 

was loaded and separated on a 10% polyacrylamide gel.  MyoD protein abundance was 

determined by densitometry, the band-intensities measured and normalised so that the 

absorbance at t=0 was 1.  The normalised values were then plotted versus time for each  

time-point to determine the difference in the rate of MyoD degradation between control-  

and TGF-β1-treated cells.  α-Tubulin was again used as loading control.  The data are 

representative of three experiments.   

 

6.2.3 Immunohistochemistry 

6.2.3.1 MyoD localisation 

Immunofluorescent localisation of MyoD was analysed as described in Chapter 5 (section 

5.2.3).  Briefly, after allowing cells in the 8-chambered units to thaw, they were gently rinsed 

with PBS and incubated in 5% donkey serum at room temperature.  After 20 minutes, the 

serum was drained off and the cells incubated with either 50 µℓ anti-MyoD (primary antibody) 

or PBS (control).  The cells were left to incubate for 90 minutes at room temperature, after 

which they were rinsed twice with PBS and incubated for a further 30 minutes in 50 µℓ 

FITC-conjugated secondary antibody.  100 µℓ Hoechst dye (1/200) was added during the last  

10 minutes for nuclear staining.  After thoroughly rinsing each chamber with PBS, one drop 

Fluorescent Mounting Medium (S3023, DAKO) was added, the units covered in a moist 

chamber and stored in a dark area.   
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Sections were visualised using the Motorized Inverted System Microscope (Olympus IX81, 

Imaging Software Cell®) using a 60x oil immersion objective.  Photos were taken with a 

monochromatic camera (F-View Soft Imaging Systems) and a colour overlay applied.  MyoD 

images of the cells were merged with the Hoechst-stained images of the nuclei from the  

same area.  In addition, these images were also merged with the PCNA images (produced in 

Chapter 5, section 5.2.3) of the exact area to distinguish co-localisation of these proteins.   

 

6.2.4 Statistical Analysis 

Statistical evaluations were made by one-way analysis of variance (ANOVA) and Bonferroni’s 

multiple comparison test using STATISTICA.  A student’s t-test was used to determine 

significance in the rate of MyoD degradation between control- and TGF-β1-treated C2C12 

cells, as well as in P19 embryoid body numbers between groups.  Significant differences were 

taken at p < 0.05.  Data are expressed as mean ± SEM.  
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6.3  RESULTS 

 

The effect of 24 hour and 72 hour exposure of TGF-β isoforms on differentiating myocytes was 

assessed in (A) skeletal (C2C12) and (B) cardiac (P19) cell-lineages.  MyoD, myogenin and 

MHC were used as molecular markers of differentiation in C2C12 cells, whereas connexin-43 

and MHC were used to assess differentiation of P19 cells.   

 

In C2C12 cells, additional analysis was performed to determine MyoD stability and 

localisation in control- and TGF-β1-treated differentiating myoblasts. 

 

In P19 cells, additional analysis of differentiation included assessment of aggregate number. 
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- A - 

6.3.1 Assessment of Differentiation in Skeletal Muscle Progenitor Cells under Control- 

 and TGF-β-treated Conditions 

Brightfield microscopy revealed that all three isoforms increased the number of myoblasts 

while decreasing the number of differentiated myotubes formed over 12 days of TGF-β 

incubation (Figure 6.1).  These images indicate a delay in differentiation of C2C12 myoblasts 

observed following 72 hour treatment with TGF-β isoforms.  

 

Figure 6.1.  Typical images of myoblasts (at 10x enlargement) in differentiating C2C12 cells following 72 hour 

incubation with TGF-β1 (5 ng/mℓ).  (A) Control- and (B) TGF-β1-treated C2C12 cells. Images of TGF-β1-treated 

cells clearly illustrate an increase in myocyte numbers from day 1, together with reduced myotube formation at 

day 9 and day 12. TGF-β2 and -β3-treated cells displayed similar images.   
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6.3.1.1 Effect of TGF-β isoforms on MyoD expression 

It is well known that the expression of MyoD is crucial in the determination of myoblasts to the 

muscle lineage.  Together with Myf-5, MyoD controls cell cycle arrest and withdrawal which is 

a prerequisite for induction of differentiation into skeletal muscle cells.  The expression of 

MyoD was therefore assessed in response to short- and long-term TGF-β-incubation.  Data are 

expressed as a % of control values.  

 

 6.3.1.1 (A) Short-term TGF-β treatment 

Analysis of MyoD expression in response to 24 hour treatment with TGF-β1, -β2 and -β3 

showed no differences between control- and TGF-β-treated cells at day 1 (Figure 6.2 - i).  All 

three TGF-β isoforms increased the expression of MyoD at day 5 when compared to control 

conditions, although this was not significant.  At day 9, there were again no significant 

differences between treatment conditions (Figure 6.2 - ii) and expression in the TGF-β-treated 

cells was reduced compared to day 5 for all isoforms.   

 

 6.3.1.1 (B) Long-term TGF-β treatment 

Following 72 hour incubation with TGF-β isoforms, there were no significant differences in 

MyoD expression at either days 5, 9 or 12.  By day 9 and day 12, the transcription factor 

levels tended to be increased in TGF-β-treated compared to control conditions, specifically 

TGF-β1, however, these increases were not significant (Figure 6.2 - iii).  

 

To identify a potential regulator by which TGF-β isoforms control cell cycle withdrawal and 

initiation of differentiation, the expression of p21, a protein inducing and maintaining terminal 

cell cycle withdrawal in muscle cells (Walsh and Perlman, 1997), is illustrated.  Failure to 

enter G0, which is regulated by p21, would result in cells not being able to exit the cell cycle 

for differentiation.  In response to 72 hour incubation with all three TGF-β isoforms, p21 

expression decreased in C2C12 cells, suggesting a reduced number of cells undergoing cell 

cycle withdrawal (Figure 6.2 - iv).     
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Figure 6.2.  Incubation of C2C12 cells with TGF-β isoforms for either 24 hours or 72 hours displays no significant 

differences in MyoD expression.  MyoD protein levels were assessed by western blot analysis in control- and  

TGF-β-treated differentiating C2C12 cells: expression after (i) one day; following (ii) 24 hour and (iii) 72 hour 

incubation with TGF-β1, -β2 and -β3; and (iv) p21 expression at day 9 and day 12 following 72 hour incubation 

with TGF-β isoforms, as indicated. Data are expressed as mean ± SEM; n = 3. 
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6.3.1.2 Effect of TGF-β isoforms on myogenin expression 

As shown in Chapter 4 (section 4.2.3.2), myogenin can be used to detect early stages of 

myogenic commitment.  To determine the influence of TGF-β on early stages of myogenesis, 

the effect of the three isoforms on myogenin expression was evaluated.  Data are expressed 

as a % of control values.  

 

 6.3.1.2 (A) Short-term TGF-β treatment 

Even though limited myogenin expression is expected following 24 hour induction of 

differentiation (Figure 6.3 - i), expression was evident and significantly increased in control 

cells compared to TGF-β-treated conditions which only showed minimal expression at this 

stage (day 1; p < 0.01).  However, once the TGF-β signal was eliminated, the cells responded 

by increasing myogenin expression.  By day 5 and day 9, the expression of myogenin was  

not significantly different between treatments (Figure 6.3 - ii), although of interest is the 

observation that expression levels in effect increased beyond that of control conditions in the 

TGF-β-treated cells, possibly compensating for the earlier inhibition. 

 

 6.3.1.2 (B) Long-term TGF-β treatment 

Following 72 hour incubation, all three TGF-β isoforms significantly decreased myogenin 

expression at day 5 (p < 0.05) when compared to control conditions.  However, by day 9 and 

day 12, expression had equalised with control and there were no significant differences 

(Figure 6.3 - iii).  These results suggest that an extended stimulus of this growth factor is 

required to delay myoblast differentiation: at day 5 following 24 hour incubation, 

differentiation had been initiated, whereas following long-term incubation, differentiation was 

still significantly inhibited.  Interestingly, myogenin expression in TGF-β-treated cells was 

increased to a greater extent at day 9 following short- compared to long-term incubation, 

which could suggest that the longer the incubation time, the more adversely cells are affected 

and the slower they are to recover. 
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Figure 6.3.  Incubation of C2C12 cells with TGF-β isoforms significantly delays early differentiation of C2C12 

myoblasts.  Myogenin protein levels were assessed by western blot analysis in control- and TGF-β-treated 

differentiating C2C12 cells: expression after (i) one day; following (ii) 24 hour and (iii) 72 hour incubation with  

TGF-β1, -β2 and -β3. #p < 0.01; *p < 0.05. Data are expressed as mean ± SEM; n = 3. 
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6.3.1.3 Effect of TGF-β isoforms on myosin heavy chain expression 

During the later stages of myogenesis, differentiating myoblasts will express the structural 

protein MHC (Andres and Walsh, 1996).  To assess whether the effect of TGF-β isoforms on 

regulatory myogenin translates into an effect on structural protein expression, MHC protein 

levels were analysed.  Data are expressed as a % of control conditions. 

 

 6.3.1.3 (A) Short-term TGF-β treatment 

MHC is not expressed in undifferentiated C2C12 cells (day 0, day 1).  Following 24 hour 

incubation with TGF-β isoforms, MHC was expressed at a low level only in control cells at 

differentiation day 5 (Figure 6.4 - i).  By day 9, MHC was strongly expressed in control- and 

TGF-β-treated cells and no significant differences were observed (Figure 6.4 - i).   

 

 6.3.1.3 (B) Long-term TGF-β treatment 

Following 72 hour incubation with TGF-β isoforms, the expression of MHC was significantly 

reduced in all treated cells at both day 9 and day 12 (Figure 6.4 - ii; p < 0.01).  In these cells, 

the effect of the isoforms was already evident at day 5, as illustrated on the western blot from 

this time-point (Figure 6.4 - ii).  At day 9, the effect of TGF-β2 (86.4 ± 4.3% lower MHC 

expression) and -β3 (84.4 ± 5.4%) was greater than that of TGF-β1 (79.1 ± 6.6%), suggesting 

possible isoform-specific effects, although this was not significant.  By day 12, there were no 

differences between the three isoforms (72.7-74.6% lower MHC expression) and expression 

tended to be increased compared to day 9. 

 

Taken together, following 72 hour incubation, myogenin expression was reduced in TGF-β-

treated cells at early time-points (day 1 and day 5), suggesting a delay in these cells to enter 

the differentiation pathway.  Despite this delay, cells recovered to enter initial stages of 

differentiation at the later time-points analysed (day 9 and day 12).  This effect of TGF-β 

isoforms on regulatory myogenin translated into an effect on structural protein levels and 

resulted in the subsequent expression of MHC being significantly reduced at day 9 and day 12 

with fewer progenitor cells entering final phases of differentiation.  Analysis of additional time-

points after day 12 could indicate whether progenitor cells delayed in entering the 

differentiation programme recover to finally express greater levels of MHC or whether the 

influence of TGF-β results in permanent inhibition of terminal differentiation.  
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Figure 6.4.  Incubation of differentiating C2C12 cells with TGF-β isoforms significantly decreases terminal 

differentiation of C2C12 myoblasts.  MHC was expressed at day 5 only in control cells, as indicated by western 

blot analysis following both short- and long-term incubation (this time-point was not analysed): expression 

following (i) 24 hour and (ii) 72 hour incubation with TGF-β1, -β2 and -β3. #p < 0.01. Data are expressed as  

mean ± SEM; n = 3. 
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6.3.1.4 Determination of MyoD stability in control- and TGF-β1-treated C2C12 cells 

For determination of the stability of endogenous MyoD, cycloheximide (CHX), a protein 

synthesis inhibitor, was used as described in section 6.2.1.3.  Compared to control conditions, 

MyoD degradation occurred much faster in C2C12 cultures differentiated in the presence of 

TGF-β1.  This is illustrated by the reduced intensity of MyoD expression from 60-360 minutes 

following CHX treatment in TGF-β1-treated cultures (Figure 6.5 A - i) and the corresponding 

graph (Figure 6.5 B) indicating the rate of MyoD degradation.  These results demonstrate an 

increased rate of MyoD degradation following treatment with TGF-β1 which was significant at 

360 minutes (p < 0.05).  α-Tubulin was used as loading control (Figure 6.5 A - ii).      

control 
 

TGF-β1 
 

TGF-β2 
 

TGF-β3 

(ii) 

(i) 

        #          #          # 

      day 5          day 9 

  day 5           day 9          day 12 

      #       #        # 

  control    TGF-β1     -β2     -β3 

    control    TGF-β1    -β2    -β3 



 129. 

Insufficient MyoD protein levels due to increased degradation could therefore provide a 

further possible mechanism by which TGF-β isoforms inhibit myogenic differentiation in 

skeletal myoblasts, as suggested by the early myogenin and MHC expression results.  By 

increasing MyoD stability, myogenic processes could possibly be restored. 

 

Figure 6.5.  MyoD protein stability following CHX treatment in control- and TGF-β1-treated C2C12 cells.   

(A) Expression of (i) MyoD and (ii) α-tubulin; and (B) TGF-β1 increases the rate of MyoD degradation in  

CHX-treated cells: band-intensity measured and normalised to t = 0. *p < 0.05. Data are expressed as 

mean ± SEM; n = 3.   
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6.3.1.5 Immunofluorescent localisation of MyoD in control- and TGF-β1-treated  

 C2C12 cells 

MyoD, a nuclear phosphoprotein localised to the cell nucleus of activated, proliferating 

myoblasts and differentiating myotubes (Tapscott et al., 1988), is synthesised in the 

cytoplasm and rapidly directed to the nucleus where it resides both free and complexed with 

DNA (Lingbeck et al., 2003; Lingbeck et al., 2005).  Similarly, MyoD is also degraded in both 

the cytoplasm and nucleus (Floyd et al., 2001) by the ubiquitin-proteasome system, its 

degradation occurring more rapidly in the nucleus than in the cytoplasm (Lingbeck et al., 

2003).  To determine whether TGF-β alters the localisation of MyoD, thereby influencing and 

possibly delaying the differentiation of myocytes, C2C12 cells were treated with TGF-β1 for  

72 hours and localisation analysed at day 1 and day 5 of differentiation.   

 

Immunofluorescent staining was used to examine changes in MyoD distribution between the 

cytoplasm and nucleus in control- and TGF-β1-treated C2C12 cells.  Control cells at day 1 

(Figure 6.6 A - i) displayed increased staining in the nucleus and cytoplasmic areas 

surrounding the nucleus compared to day 1 TGF-β1-treated cells where positive staining was 

mostly distributed throughout the cytoplasm (Figure 6.6 B - i).  At day 5 in control cells, highly 

dense, increased positive staining was visible in the nucleus and nuclear envelope (Figure 6.6 

A - ii).  Interestingly, TGF-β1-treated day 5 myocytes displayed smaller, elongated nuclei with 

speckled positive staining mainly in the nucleus, less than in control cells, and with limited 

positive staining also in the cytoplasm (Figure 6.6 B - ii).   

 

Data analysis was not performed on these images, although the features of the control cells 

suggest higher activity of MyoD in the nucleus of these cells at day 1 and day 5 compared to 

TGF-β1-treated cells.  For the same area of view, more nuclei can also be observed in TGF-β1-

treated cells at both days 1 and 5, confirming the increased proliferation of treated cells.   

The level of nuclear MyoD may contribute to the control of myoblasts to withdraw from the cell 

cycle and enter stages of differentiation.  It has been suggested that a certain level of MyoD 

must be reached before terminal differentiation can be initiated, and therefore, a reduced 

amount of MyoD translocated into the nucleus may be rate-limiting in the commitment of 

myoblasts to enter stages of terminal differentiation (Montarras et al., 1996; Vandromme et 

al., 1994).  Although only two early time-points were analysed, the decrease in nuclear 

staining of MyoD observed in TGF-β1-treated cells could provide a possible mechanism to 

explain the reduced terminal differentiation seen in these cells, as demonstrated by the 

significantly lower myogenin expression at day 1 and day 5 (section 6.3.1.2) and MHC 

expression at days 5 to 12 [section 6.3.1.3 (B)].   
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Although no significant effects on MyoD expression were observed following western blot 

analysis [section 6.3.1.1 (B)], this could be the result of highly variable levels of MyoD 

detected in asynchronous populations of growing myoblasts (Tapscott et al., 1988; 

Vandromme et al., 1994). 

 

To illustrate the combined staining of MyoD and PCNA (Chapter 5, section 5.3.3) and effect of 

TGF-β1 treatment on C2C12 cells, co-immunofluorescent staining for MyoD, PCNA and 

Hoechst is shown in Figure 6.7.  Although these images were not analysed, at both day 1 

(Figure 6.7 B - i) and day 5 (Figure 6.7 B - ii), TGF-β1-treated cells displayed greater PCNA (red) 

staining compared to control conditions.  Even though this might be the inactive form, PCNA 

can be extracted from a soluble pool when required for proliferation (Szuts et al., 2005).  

Nuclear MyoD expression (green) in control cells at day 5 (Figure 6.7 A - ii) is more significant 

than in TGF-β1-treated cells (Figure 6.7 B - ii).  At this stage of myogenesis, observations from 

these images suggest the possibility that in vitro signalling pathways driving proliferation are 

increased by TGF-β1 while differentiation signalling is suppressed. 
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Figure 6.6.  Immunofluorescent localisation of MyoD (at 60x enlargement) in differentiating C2C12 cells 

following 72 hour incubation with TGF-β1 (5 ng/mℓ).  Typical images of (A) Control- and (B) TGF-β1-treated cells 

at (i) day 1 and (ii) day 5 of differentiation. n = 1. 

 
(A - i) Control day 1 

     
 
(B - i) TGF-β1 day 1 

      
 

(A - ii) Control day 5 

     
 
(B - ii) TGF-β1 day 5 
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Figure 6.7.  Immunofluorescent localisation of MyoD and PCNA (at 60x enlargement) in differentiating C2C12 

cells following 72 hour incubation with TGF-β1 (5 ng/mℓ).  Merged images of MyoD (green), PCNA (red), and 

Hoechst (blue) in (A) Control- and (B) TGF-β1-treated cells at (i) day 1 and (ii) day 5 of differentiation. n = 1.   

 
(A - i) Control day 1 

     
 
(B - i) TGF-β1 day 1 

     
 

(A - ii) Control day 5 

     
 
(B - ii) TGF-β1 day 5 

     



 134. 

- B - 

6.3.2 Assessment of Differentiation in Cardiac Muscle Progenitor Cells under Control- 

 and TGF-β-treated Conditions 

To compare the effects of TGF-β1, -β2 and -β3 on a model of cardiac progenitor cells, P19 

embryonal carcinoma cells, a cell-line routinely used as an in vitro model for cardiomyocyte 

differentiation, were induced to differentiate and selected cardiac myocyte-specific protein 

expression levels analysed.  Embryoid body formation was also determined in differentiating 

P19 cells. 

 

6.3.2.1 Effect of TGF-β isoforms on connexin-43 expression 

The expression of connexin-43 was analysed on day 12 of differentiation following both  

24 hour and 72 hour TGF-β treatment.  Connexin-43 (which forms gap-junction channels in 

cardiac tissue) is the dominant connexin isoform expressed by cardiac myocytes.  Data are 

expressed as a % of control. 

 

No significant differences between control- and TGF-β-treated cells were found with respect to 

connexin-43 protein expression after either 24 hour- (Figure 6.8 - i) or 72 hour (Figure 6.8 - ii) 

incubation. 

 

Figure 6.8.  Incubation of P19 embryonal carcinoma cells with TGF-β isoforms for either 24 hours or 72 hours 

displays no significant differences in connexin-43 expression.  Connexin-43 protein levels were assessed by 

western blot analysis in control- and TGF-β-treated differentiating P19 cells: expression at day 12 following  

(i) 24 hour and (ii) 72 hour incubation with TGF-β1, -β2 and -β3. Data are expressed as mean ± SEM; n = 3. 
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6.3.2.2 Effect of TGF-β isoforms on MHC expression 

In addition to connexin-43, MHC was also analysed to determine the effect of TGF-β-isoforms 

on the differentiation of P19 cells following both short- and long-term incubation.  Similarly, no 

significant differences were seen in the expression of MHC at day 12 of differentiation in 

response to TGF-β treatment for either 24 hours (Figure 6.9 - i) or 72 hours (Figure 6.9 - ii), for 

any isoform, relative to control.  Even though not significant, TGF-β2 and -β3 did tend to 

decrease the expression of MHC following 72 hour incubation (Figure 6.9 - ii).  A greater 

sample size may yield significant results (current sample size n = 8). 

 

Figure 6.9.  Incubation of P19 embryonal carcinoma cells with TGF-β isoforms for either 24 hours or 72 hours 

displays no significant differences in MHC expression.  MHC protein levels were assessed by western blot 

analysis in control- and TGF-β-treated differentiating P19 cells: expression at day 12 following (i) 24 hour and  

(ii) 72 hour incubation with TGF-β1, -β2 and -β3. Data are expressed as mean ± SEM; n = 3. 
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6.3.2.3 Embryoid body formation 

The ability of P19 cells to aggregate and form embryoid bodies is required for these cells to 

undergo myogenesis.  Quantification of embryoid body formation is therefore also useful to 

assess the progress of differentiation in these cells.   

 

In response to 72 hour incubation with TGF-β isoforms, TGF-β1 significantly increased  

(p < 0.05) the number of embryoid bodies formed at day 6 compared to control conditions 

(77% increase), and to a lesser extent, also TGF-β2 (31%), although this was not significant 

(Figure 6.10 - i).  TGF-β3 had no effect on embryoid body formation, as illustrated by the 

images of P19 embryoid bodies at this stage (Figure 6.10 - ii).  No effect was observed 

following 24 hour incubation with the TGF-β isoforms (data not shown).     

control 
 

TGF-β1 
 

TGF-β2 
 

TGF-β3 
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Figure 6.10.  TGF-β1 increases embryoid body formation in differentiating P19 embryonal carcinoma cells 

relative to control.  (i) Embryoid body number at day 6 following 72 hour incubation with TGF-β isoforms; and 

(ii) typical images (at 20x enlargement) of P19 embryoid bodies at day 6 following 72 hour incubation in  

(A) Control- and (B-D) TGF-β-treated P19 cells. *p < 0.05. Data are expressed as mean ± SEM; n = 3. 
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6.4 DISCUSSION 

 

Advances in the use and manipulation of stem and progenitor cells, combined with the 

prospect of numerous potential clinical applications, have resulted in a rapid increase in 

research in this field.  Specifically, in myogenesis, multiple stem and progenitor cell 

populations display myogenic potential and have been evaluated for their ability to contribute 

to both skeletal and cardiac repair mechanisms.  The need to identify multiple growth factors 

which would improve differentiation, homing and migration of these donor populations to the 

damaged musculature is essential to promote further regeneration. 

 

As discussed (Chapter 2), satellite cells are the primary stem cell contributors to skeletal 

muscle growth, regeneration and repair.  Additional sources of myogenic progenitor cells 

within the muscle include muscle side-population cells, muscle-derived stem cells, somatic 

stem cells and post-mitotic nuclei.  Despite this capacity of skeletal muscle for self-renewal, in 

a state of disease (such as muscular dystrophy), these local sources is inefficient to 

contribute to regeneration processes.  Other sources of stem cells or muscle progenitors are 

therefore required from populations outside the muscle; such stem and progenitor cells which 

have shown the ability to differentiate into the muscle-lineage include embryonic, neural and 

mesenchymal stem cells, as well as various bone marrow-derived progenitors.  By means of 

cell-based therapies, including myoblast transfer therapy and satellite cell transplantation, as 

well as transplantation of whole muscle fibers, progenitor cells can be cultivated in vitro and 

delivered to the damaged muscle (Collins et al., 2005; Roberts et al., 1989).     

 

In contrast to skeletal muscle, the adult heart has, until recently, been regarded as a post-

mitotic organ where regeneration following injury seemed to be limited.  The existence of 

resident multipotent and primitive cardiac stem cells (Beltrami et al., 2003; Laflamme et al., 

2002; Messina et al., 2004; Urbanek et al., 2003), as well as adult heart-derived cardiac 

progenitor cells (Oh et al., 2004) and cardioblasts (Laugwitz et al., 2005), has changed this 

notion.  However, despite this apparent capacity for post-mitotic growth, the contribution of 

these cells to repair and renewal processes is limited and not sufficient to result in adequate 

functional regeneration or the prevention of scar tissue formation following myocardial 

infarction.  As such, progenitor cells from other sources have also been investigated as 

potential candidates for transplantation strategies and use in clinical trials.  These include 

bone marrow-derived cells, skeletal myoblasts or satellite cells (Drexler et al., 2006; Hagege 

et al., 2006; Menasche et al., 2006; Price et al., 2007; Schachinger et al., 2006a; 

Schachinger et al., 2006b; Strauer et al., 2002; Wollert and Drexler, 2005), and embryonic 
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stem cells (Barberi et al., 2005).  Importantly, the micro-environmental changes following 

injury and the growth factors released affect distinct progenitor cell populations to variable 

extents, indicating an important area of control and requirement for selection of the 

progenitor cell type which would result in the most beneficial effects. 

 

In this chapter, the three TGF-β isoforms, TGF-β1, -β2 and -β3, were analysed to determine 

their effects on differentiation of two progenitor cell types.  In the literature, TGF-β has shown 

to be both a positive and negative regulator of cellular proliferation and differentiation with its 

effects being cell type specific and dependent on other local factors, with variable effects 

even within the same cell population (Olson et al., 1986).  The in vivo expression-pattern of 

TGF-β during mouse development also indicates the importance of this growth factor in 

specific events of differentiation (Millan et al., 1991; Pelton et al., 1991), in particular during 

periods of morphogenesis and remodelling of the mesenchyme (Heine et al., 1987).  As 

mentioned in Chapter 5, the three TGF-β isoforms often exert distinct isoform-specific effects 

on tissues, however, their individual roles within myogenesis have not been fully established 

(Ignotz and Massague, 1985; Torti et al., 1989).   

 

In skeletal muscle, TGF-β has shown to both induce myoblast maturation in vitro, as well as 

inhibit differentiation in a dose-dependent manner depending on the serum conditions: 

treatment of skeletal myoblast cell-lines or primary cultures with TGF-β in low serum 

conditions inhibits terminal differentiation (Massague et al., 1986), whereas in normal serum 

conditions, TGF-β induces differentiation of myoblasts (Zentella and Massague, 1992).  In 

cardiac muscle, TGF-β participates in development by enhancing differentiation and 

hypertrophy in an isoform-specific way (Schultz Jel et al., 2002). 

 

In this chapter, the three TGF-β isoforms were analysed at a concentration (5 ng/mℓ) within 

the range (2-8 ng/mℓ) used by other investigators.  The C2C12 cell-line was used to analyse 

differentiation of skeletal muscle progenitor cells, whereas the P19 embryonal carcinoma cell-

line was used for analysis of cardiomyocyte differentiation. 
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6.4.1 Differentiation in Skeletal Muscle Progenitor Cells 

During early phases of skeletal muscle differentiation, myogenic factors are not only required 

for muscle-specific gene induction, but also for cell cycle control and regulation of the 

transition from the proliferative phase to cell cycle exit and differentiation.   

 

Early stages of myoblast differentiation are identified by MyoD and Myf-5 which are required 

for determination to the skeletal muscle lineage, whereas myogenin and MRF4 are expressed 

during late stages of differentiation (Weintraub, 1993).  It has been suggested that a minimal 

threshold of MyoD protein must be reached before differentiation can take place and as such, 

slight variations in MyoD expression would change the balance between either continued 

proliferation or induction of differentiation (Kitzmann et al., 1998; Tapscott et al., 1988).  

Therefore, MyoD may not be essential for the maintenance of the myoblast-stage of 

development, but rather act as an effector for terminal differentiation in already determined 

muscle cells (Montarras et al., 1989). 

 

Differentiation of skeletal myoblasts in culture is negatively controlled by serum levels which 

prevent entry into stages of differentiation until the serum concentration is reduced below a 

critical threshold.  It has been suggested that growth factors in the serum induce signalling 

pathways which facilitate either proliferation or differentiation.  Two such growth factors which 

have been identified as effective inhibitors of myoblast differentiation in culture include 

fibroblast growth factor and TGF-β (Olson et al., 1986).  Specifically, TGF-β has shown to 

inhibit the activity of MyoD and myogenin (Florini et al., 1991; Parker, 1995), suggesting a 

mechanism by which TGF-β could regulate differentiation.  TGF-β also induces the expression 

of cyclins, such as cyclin-D1, which is maximal during the cell cycle G1-phase and, when over-

expressed in proliferative myoblasts, leads to inhibition of MyoD and myogenin activities with 

subsequent inhibition of skeletal differentiation (Guo and Walsh, 1997), suggestion a further 

possible inhibitory mechanism of TGF-β. 

 

In the current study, the initial expression of myogenin was down-regulated at day 1 following 

TGF-β-incubation and also expression at day 5 following 72 hour treatment.  Thereafter, all 

treated cells recovered and showed increased myogenin expression at days 9 and 12.  Olson 

et al. (1986) suggested that cellular signals generated by TGF-β are short-lived and require 

continuous occupancy of the TGF-β-receptors; this is in agreement with observations in this 

study.  Despite these changes in myogenin expression, no accompanying changes in MyoD 

protein levels were observed after either 24 hour or 72 hour TGF-β treatment.  The lack of a 
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significant effect could however be the result of not using synchronised cells, since the level 

of MyoD nuclear staining has shown to be highly variable in asynchronous populations of 

growing myoblasts (Vandromme et al., 1994).  Although p21 expression was not analysed in 

detail, this cell cycle regulator showed decreased expression in response to TGF-β isoforms 

suggesting an increased presence of myoblasts in the proliferative cycle.  Since proliferation 

and differentiation are assumed to be mutually exclusive in myoblasts (Olson, 1992), TGF-β 

could be driving proliferation, thereby preventing myoblasts from exiting the cell cycle to enter 

stages of differentiation.    

 

TGF-β may, similar to TNF-α, exert its inhibitory effect on skeletal muscle differentiation by 

inducing destabilisation of MyoD protein (Langen et al., 2004).  TNF-α has been shown to 

inhibit myogenesis in C2 myoblasts by increasing proteolysis, possibly by means of a caspase-

mediated mechanism (Coletti et al., 2002; Szalay et al., 1997).  In the current study, CHX 

treatment resulted in a reduction of MyoD protein stability in the presence of TGF-β1.  As 

mentioned, it has been suggested that a minimal threshold of MyoD protein must be reached 

to induce differentiation (Kitzmann et al., 1998; Tapscott et al., 1988) and therefore 

insufficient MyoD protein levels due to increased degradation by TGF-β could provide a 

mechanism for the reduced differentiation demonstrated under TGF-β-treated conditions.  

Immunofluorescent analysis, especially at day 5, illustrated increased nuclear staining of 

MyoD in control- compared to TGF-β-treated cells.  Therefore, MyoD was abundant in the 

cytoplasm of treated cells as opposed to sufficient levels of functional MyoD in the nucleus 

under control conditions.  The data suggest that, together with the increased proliferation 

demonstrated in Chapter 5, by reducing MyoD protein stability, TGF-β sustains myoblast 

proliferation by preventing cell cycle exit and subsequent inhibition of myogenic 

differentiation. 

 

To determine whether the down-regulation of early myogenin expression and therefore 

suppression of initial stages of differentiation translates into a decrease in structural protein 

levels, MHC expression was evaluated.  Early (day 5) expression of MHC was reduced 

following 24 hour TGF-β treatment, after which myoblasts recovered and no further significant 

differences were observed.  Following long-term treatment, however, MHC expression was 

significantly influenced and limited expression observed as from day 5, indicating that TGF-β 

isoforms reduced the structural proteins required for functional muscle activity, and as such, 

also terminal differentiation.   
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6.4.2 Differentiation in Cardiac Muscle Progenitor Cells 

TGF-β has been shown to be involved in cardiac myogenesis by regulating cell growth, 

differentiation and migration during embryonic development, and inducing cardiac 

differentiation in embryonic stem cells (Akhurst et al., 1990; Pelton et al., 1991; Potts et al., 

1991; Potts and Runyan, 1989).  As mentioned (section 6.1), TGF-β expression is up-

regulated following myocardial infarction (Lefer et al., 1990; Thompson et al., 1988; Weber, 

1997) during which the effect of the TGF-β isoforms can be two-fold: whereas TGF-β has 

shown to induce cardiac differentiation and demonstrate increased expression during cardiac 

hypertrophy (Deten et al., 2001; Kuwahara et al., 2002), this growth factor also stimulates 

tissue fibrosis.  By increasing fibroblast proliferation and extracellular matrix deposition, while 

simultaneously reducing the degradation of these components, this structural remodelling 

could have a further negative effect by reducing stem cell incorporation into the myocardium.  

The myogenic (Behfar et al., 2002; Singla and Sun, 2005) and protective (Lefer et al., 1990) 

effects exerted by TGF-β during early phases following myocardial infarction could therefore 

be undone (Ikeuchi et al., 2004).   

 

The effect of the individual isoforms of TGF-β on cardiac function is unclear (Filvaroff et al., 

1994) with its expression being well characterised at the mRNA level in rodent, but not 

human cardiac tissue.  Deten et al. showed that the ratio of TGF-β1:β2:β3 changed 

significantly during the post-infarct repair process, illustrating possible isoform-specific 

biological effects.  TGF-β1 has shown to be the predominant isoform expressed at day 3 

following myocardial infarction, after which levels are maintained up to 8 weeks post-infarct 

(Deten et al., 2001; Sun et al., 2000).  This isoform is known to be involved in the initial, acute 

phase of inflammation, repair and induction of fibrosis following myocardial infarction (Dean 

et al., 2005) and is less important during the later remodeling phases.  It has been suggested 

that TGF-β1 has a potential role beyond scar-formation such as maintaining physiological 

functioning of the heart (Azhar et al., 2003).  Immediately following infarction (6-24 hours), 

TGF-β2 is the predominant isoform and is also suggested to play an important role in 

myocardial remodelling, induction of the foetal gene programme required for cardiac 

hypertrophy (Jakowlew et al., 1994), as well as stimulation of cardiomyocyte differentiation 

(Singla and Sun, 2005).  TGF-β3, which is involved in early myocardial development, is 

expressed from day 6 until day 82 post-infarct, with levels being between 2- and 14-fold 

greater than the other two isoforms during the later developmental stages (Deten et al., 

2001).  These authors suggested that TGF-β3 could be a target for intervention for the 

improved healing of myocardial wounds.  
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Selective knockout of the isoforms have further illustrated how they exert variable effects on 

the cardiovascular system.  Whereas disruption of TGF-β1 causes a diffuse inflammatory 

disease without cardiac malformations (Kulkarni et al., 1993; Shull et al., 1992), TGF-β2-

knockout mice have a range of cardiovascular abnormalities (Molin et al., 2002; Sanford et 

al., 1997).  Mice deficient for TGF-β3 have a defective cardiac phenotype (Kaartinen et al., 

1995).  It is important to remember, however, that expression of TGF-β isoforms, at mRNA 

and protein level, include both the latent and active forms and is therefore indicative only of a 

potential difference in function between the three isoforms.    

 

In accordance to the above mentioned studies, Singla and Sun (2005) compared the isoforms 

in their ability to induce embryoid body formation and subsequent beating of cardiomyocytes 

using embryonic stem cells.  They demonstrated enhanced differentiation following treatment 

with TGF-β2, confirming the importance of this isoform in cardiac development (Singla and 

Sun, 2005).  In the current chapter, the influence of the TGF-β isoforms on embryoid body 

formation demonstrated an enhanced effect by TGF-β1 and TGF-β2, with only TGF-β1 

numbers being significantly higher than controls.  Although it is in contrast to results from 

Singla and Sun, this could be due to the use of a different cell culture or agent used to induce 

differentiation.  In the above study, embryonic stem cells were used with leukaemia inhibitory 

factor as differentiating agent, compared to the P19 cells which were cultured and induced to 

differentiate with DMSO in the described protocol (section 6.2.1.2).  Also, it has been 

suggested that progenitor cells lose their differentiation potential with increasing time in 

culture.  Using cells at a high passage number could therefore result in more variable data.  

Cell cultures at a passage lower than 10 were used in experiments described in this chapter, 

however, it has been suggested that using cell cultures at a passage greater than 5 could 

already induce more variable results (Crisostomo et al., 2006). 

 

Both connexin-43 and MHC expression were not significantly affected by either short- or long-

term TGF-β treatment.  This lack of significant effects could be due to the late time-point 

analysed (day 12).  TGF-β was added for 24 hours or 72 hours and therefore by day 12, the 

cells may have had time to return to normal differentiation responses and a possible earlier 

effect overlooked, as demonstrated by the embryoid body formation results which were 

analysed at day 6.  In the C2C12 cell-line, both 24 hour and 72 hour incubation with TGF-β 

affected the initial stages of differentiation, indicated by the reduced myogenin expression 

(section 6.3.1.2), however, once the TGF-β stimulus was removed, the treated cells recovered 

and normal differentiation proceeded.  Such a delayed response could also have been 

possible in the differentiating P19 cell culture.  
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6.5 SUMMARY 

 

In this chapter, the effect of TGF-β on C2C12 myoblasts demonstrated decreased 

differentiation in an isoform-independent manner.  In the skeletal muscle cell-line, MyoD and 

myogenin induce a program leading to myogenic differentiation and therefore, their 

suppression by TGF-β isoforms could form the basis of a potential pathway (Figure 6.11) by 

which muscle cell differentiation is down-regulated by this growth factor.  Such a pathway 

would regulate the induction of MHC and other structural proteins, as demonstrated by the 

results showing reduced expression of MHC following TGF-β treatment.   

 

In the cardiac cell-line, except for TGF-β1 which increased embryoid body formation, no other 

significant isoform-specific effects were demonstrated on P19 embryonal carcinoma cells.   

 

Results from this chapter illustrate how two progenitor cell types demonstrate contrasting 

effects following treatment with TGF-β isoforms, thereby emphasising the need for more 

information regarding the cellular effect of cytokines and growth factors prior to the selection 

of suitable transplantation candidates.  In this regard, increased TGF-β levels post-infarct 

could tend to decrease differentiation of skeletal muscle progenitor cells in transplantation 

procedures.  However, the positive influence of selected isoforms on P19 embryoid body 

formation would suggest that embryonic stem cells, or embryonic-like adult stem cells, may 

make better candidates than satellite cells for cellular transplantation.  Also taking into 

consideration the effect of TGF-β on wound healing and fibrosis, levels of this growth factor 

should therefore be manipulated to result in the desired effect.  
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Figure 6.11.  Schematic overview of a suggested mechanism for the inhibitory effect induced by TGF-β isoforms 

on skeletal muscle differentiation: suppression of MyoD and myogenin expression by TGF-β isoforms down-

regulates expression of p21, thereby preventing myoblasts from exiting the cell cycle to enter stages of 

differentiation.  This pathway would also regulate the induction of MHC and other structural proteins, and 

therefore terminal differentiation processes would consequently be inhibited, as demonstrated by the results 

indicating reduced expression of MHC. 

[Adapted from Andrés and Walsh, 1996; Kitzmann et al., 1998 - with modifications from results generated in 

Chapter 5 and Chapter 6] 
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CHAPTER 7 

MIGRATION 

 

7.1 INTRODUCTION 

 

Cell migration occurs extensively during embryogenesis and is also essential during adult life 

in response to tissue damage and infection.  Following injury, chemotactic factors are 

released from the damaged myofibers and inflammatory cells which induce a strong migratory 

response of myogenic cells.  By distinguishing the factors involved in, and the molecular 

signals required for myoblast recruitment during muscle regeneration and repair processes, 

strategies can be developed towards improved cell-mediated therapies for muscle diseases.  

This could enhance the regeneration capacity of diseased or injured tissue by increasing the 

migration potential of stem and/or progenitor cells, whether within the host or transplanted, 

to the relevant tissue.  The importance of cell migration is also evident in the progression of 

chronic human illnesses such as cancer, atherosclerosis and inflammatory diseases, which 

might be restrained if the migration of specific cell types could be controlled.  

 

In both skeletal and cardiac muscle, stem and/or progenitor cells within the resident, injured 

myofiber, as well as potentially from external fibers migrate to the site of injury following 

damage.  Furthermore, it has been suggested that mobilisation and homing of stem and/or 

progenitor cells from distant niches to the injured area is also possible.  Two phases of cell 

migration can therefore be distinguished: (A) within the damaged area, factors are released 

which promote extracellular signalling, homing and migration of activated cells to the site of 

injury; and (B) intracellular activation and mobilisation of the cells to migrate and respond to 

external signals which includes changes in the cytoskeleton and in cell adhesions.   

 

The involvement of various intra- and extracellular signalling molecules allows for the careful 

control of the number of cellular responses that have to be co-ordinated during migration 

(Ridley, 2001).  With regards to intracellular signalling, transmembrane receptors are 

stimulated in response to chemotactic factors to initiate and activate effector molecules such 

as small GTPases, Ca2+-regulated proteins and various protein kinases, to dynamically 

polarise and activate the cells for migration processes.  As an example, during the wound 

healing response, fibroblasts rapidly develop a polarised morphology to allow migration to  

the damaged tissue (Fukata et al., 2003).  Interestingly, whereas some cell types, such as 

leukocytes, lymphocytes, fibroblasts and neuronal cells migrate individually, epithelial and 
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endothelial cells often move in groups or as sheets during stages of wound healing and 

angiogenesis (Ridley, 2001).  External signals or extracellular cues required for the activation 

of cell migration include diffusible factors, growth factors, signals on neighbouring cells, 

signals from the extracellular matrix and/or chemotactic factors released from the damaged 

myofibers.  In addition, macrophages play an important role in regeneration and repair by 

stimulating the migration process and serving as an additional source of cytokines which act 

on inflammatory cells, satellite cells or other muscle progenitor cells (Lescaudron et al., 1999; 

Tidball, 1995).      

   

The essential involvement of various cytokines and growth factors on myogenic migration has 

been demonstrated in a number of studies.  It should, however, be taken into consideration 

that the chemotactic responses induced by these factors are cell type specific, dependent on 

the concentration released and also influenced by the environmental conditions.  Results 

from in vitro studies should therefore be regarded as potential responses which these 

cytokines and growth factors could induce.  In this regard, hepatocyte growth factor (HGF) and 

selected isoforms of platelet-derived growth factor (PDGF) have displayed strong chemotactic 

activity on embryonic myoblasts and myogenic cell-lines (Bischoff, 1997; Corti et al., 2001).  

During stages of skeletal muscle regeneration, it has been shown that macrophages produce 

PDGF and fibroblast growth factor (FGF) as chemo-attractants to guide mpcs to the area 

requiring regeneration of old, or formation of new myofibers (Corti et al., 2001).  Both vascular 

endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) have also been shown 

to induce migration of myogenic cells (Germani et al., 2003; Suzuki et al., 2000).  In cardiac 

muscle, bone marrow-derived stem cells have shown the ability to be mobilised into the 

peripheral blood and subsequently migrate towards SDF-1, HGF and LIF gradients following 

myocardial infarction, suggesting the possibility of these cells to be expanded in vitro and be 

used for therapeutic myocardial regeneration in vivo (Jackson et al., 2001; Kucia et al., 2004).  

 

Comparable to its effects on proliferation and differentiation, TGF-β isoforms induce multiple 

migratory responses depending on the cell type and concentration released.  Although TGF-β 

has shown to be chemotactic for satellite cells and other mpcs (Bischoff, 1997; Robertson et 

al., 1993), migrating cells from uninjured areas may well reach a point at which the 

concentration of TGF-β inhibits further migration.  Concentrations of TGF-β that may inhibit 

chemotaxis are comparable to the maximum levels found in wound fluid (Cromack et al., 

1987).  As an indirect response, TGF-β has also been shown to promote the chemotaxis  

of macrophages and therefore the subsequent release and effect of additional cytokines 

(Robertson et al., 1993).  
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In other cell types, both TGF-β1 and -β2 have been shown to stimulate fibroblast migration in 

a concentration-dependent manner (Kottler et al., 2005); in carcinoma cells, TGF-β1 has 

demonstrated significant stimulation of cell migration (Xu et al., 2003).  When analysing the 

migratory effect of TGF-β on osteogenic and chondrogenic precursor cells, all three TGF-β 

isoforms have demonstrated a dose-dependent chemotactic stimulation of multipotent 

mesenchymal precursor cells in vitro.  However, once these cells were treated to express 

higher levels of osteoblastic gene markers, no significant chemotaxis was evident in response 

to TGF-β treatment.  Finally, TGF-β1, but not TGF-β2, has been shown to significantly inhibit 

cell migration of bovine endothelial cells (Merwin et al., 1991). 

 

The above mentioned studies clearly illustrate the capacity of this growth factor to exert 

multiple chemotactic effects depending on environmental conditions, cell type, TGF-β isoform 

and the concentration released.  Therefore, to clarify the migratory response of myogenic cells 

to TGF-β, the migration-potential of skeletal muscle precursors and embryonic cardiac stem 

cells was assessed in response to all three isoforms using the C2C12 and P19 cell-lines.   

IGF-1 was applied as positive control to induce migration. 
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7.2 METHODS  

 

7.2.1 Migration Assay  

To test the effect of TGF-β on cell migration, both C2C12 and P19 cells were cultured and 

prepared as described in Chapter 4 (section 4.3.1).  All chemotaxis experiments were carried 

out using the 8 µm pore size Falcon cell culture inserts together with tissue culture-treated  

12-well cell culture companion plates.  50 000 cells were used per well.  

 

7.2.1.1 Chemotactic factors 

IGF-1 was used to induce positive chemotactic activity (Suzuki et al., 2000) to which migration 

results of the three TGF-β isoforms could be compared.  The cells were exposed to one of the 

following treatment conditions:   
 

(i) standard medium (negative control): DMEM containing 0.1% bovine serum albumin  

(ii) IGF-1 (positive control): standard medium supplemented with 10 ng/mℓ IGF-1 

(iii) positive control medium supplemented with 0.5 ng/mℓ TGF-β1, -β2 or -β3  

(iv) positive control medium supplemented with 5 ng/mℓ TGF-β1, -β2 or -β3 

(v) 5 ng/mℓ TGF-β1, -β2 or -β3 

 

After adding 2 mℓ of one of the treatment solutions into the wells of a companion plate, 

inserts were carefully placed inside the wells.  500 µℓ standard medium containing the cells 

was then added into the insert and cells allowed to migrate for 7 hours at 37oC, 5% CO2. 

 

7.2.2 Evaluation of Migration 

After incubation, the inserts were taken out of the companion plate and the 500 µℓ media 

with non-migrated cells discarded.  Each insert was then carefully placed on top of a 100 µℓ  

drop of heated trypsin (37oC) and incubated for a further 10 minutes to allow maximum  

de-attachment of cells off the underside of the insert-membrane.  After this time, each 

insert was then taken off the trypsin and the underside of the membrane carefully rinsed  

with 200 µℓ C2C12 or P19 culture medium, allowing this medium with any additional 

migrated cells to drop back onto the trypsin-cell solution.  The C2C12 or P19 culture 

medium/trypsin solution was then carefully mixed, 30 µℓ samples taken and the required 

volume placed on a haemocytometer.  The number of migrated cells was then counted on  

the grid of the haemocytometer.  Cell counts of six fields were taken per treatment and each 

treatment run in triplicate.  The whole experiment was repeated a minimum of three times for 

each treatment condition.         
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7.2.3 Statistical Analysis 

Statistical evaluations were made by one-way analysis of variance (ANOVA) and Fisher’s 

multiple comparison test for post-hoc analysis using STATISTICA.  Significant differences were 

taken at p < 0.05.  All data are expressed as mean ± SEM. 
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7.3  RESULTS 

 

To study the chemotactic behaviour of skeletal and cardiac precursor cells in response to 

growth factors, an in vitro migration assay was performed using C2C12 and P19 cells which 

were exposed to solutions of TGF-β isoforms and/or IGF-1.  Using a 12-well chemotaxis 

system, cells in the insert-solution migrate through a membrane into the well to which 

chemotactic factors have been added.  In preliminary experiments (see Chapter 4, section 

4.3.2), IGF-1 resulted in successful migration of C2C12 cells and was therefore selected as 

growth factor to induce migration in subsequent migration assays.  Treatment solutions 

included a low and high dosage of TGF-β isoforms added to IGF-1 and a high TGF-β dosage 

without addition of IGF-1.  Results are displayed as the total number of migrated cells. 

 

7.3.1 C2C12 Migration 

As shown in Figure 7.1, IGF-1 significantly stimulated migration of C2C12 myoblasts 

compared to control conditions (p < 0.01) with an approximate 6-fold increase in cell 

migration number, confirming the use of this growth factor as a chemo-attractant for 

myoblasts.  Using IGF-1 as migration agent, ~34.4% of the cells migrated, compared to  

~7.1% determined under control conditions.  Myoblasts failed to show a significant response 

with the addition of any TGF-β isoform (5 ng/mℓ) as migration agent, with migration numbers 

(7.4-11.8% migration) being similar to those determined under control conditions.  IGF-1-

induced migration numbers were therefore also significantly higher compared to migration 

following TGF-β treatment (p < 0.01).   

  

Figure 7.1.  IGF-1 (10 ng/mℓ) significantly stimulates migration of C2C12 myoblasts when compared to control- 

and TGF-β-treated (5 ng/mℓ) conditions.  #p < 0.01. Data are expressed as mean ± SEM; n = 3. 
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In the presence of TGF-β isoforms, IGF-1-induced migration was reduced, with the largest 

effect seen in response to TGF-β3 (0.5 ng/mℓ; p < 0.01), followed by TGF-β2 (0.5 ng/mℓ;  

p < 0.05) (Figure 7.2).  At the higher TGF-β dosage (5 ng/mℓ), migration was also reduced, 

although not significantly compared to IGF-1-induced migration.  Despite the inhibitory effect 

which the addition of TGF-β isoforms display on IGF-1-induced migration, the number of 

migrated cells under these conditions was still significantly higher compared to control 

conditions at both the low (19-24% migrated cells) and high (~26.7% migrated cells) dosage 

of TGF-β (p < 0.01).     

 

Figure 7.2.  TGF-β1, -β2 and -β3 reduce IGF-1-induced (10 ng/mℓ) migration of C2C12 myoblasts at low  

(0.5 ng/mℓ) and high (5 ng/mℓ) dosages.  TGF-β2 (p < 0.05) and TGF-β3 (p < 0.01) at the low dosage were 

significantly lower than IGF-1-induced migration. Cell migration under control conditions was significantly lower  

(p < 0.01) compared to all treatment conditions. #p < 0.01; *p < 0.05. Data are expressed as mean ± SEM;    

n = 3. 
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7.3.2 P19 Migration 

In comparison with C2C12 cells, cardiac progenitor cells demonstrated limited migration 

under all treatment conditions.  Although IGF-1 induced a significant increase in migration of 

the P19 cells compared to control conditions (Figure 7.3; p < 0.01), the percentage of IGF-1-

induced migrated cells was still only ~6.4% of the total amount of seeded cells, compared to 

less than 1.0% determined under control conditions.  Similar to C2C12 cells, TGF-β isoforms 

(5 ng/mℓ) did not induce migration in the absence of IGF-1, with only 2.2-4.7% of the total 

amount of seeded cells migrating.  Despite the reduced capacity of TGF-β isoforms to 

stimulate migration, only TGF-β3 resulted in significantly reduced (p < 0.05) migration 

compared to IGF-1 treatment conditions (Figure 7.3).

    control   IGF-1               IGF-1 + 0.5 ng/mℓ        IGF-1 + 5 ng/mℓ 
                      TGF-β1     -β2      -β3              TGF-β1     -β2      -β3 

       *          #  

    #  
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Figure 7.3.  IGF-1 (10 ng/mℓ) significantly stimulates migration of P19 cardiac progenitor cells compared to 

control- (p < 0.01) and TGF-β3-treated (5 ng/mℓ) (p < 0.05) conditions.  #p < 0.01; *p < 0.05. Data are 

expressed as mean ± SEM; n = 3. 
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The addition of TGF-β isoforms at both the low and high dosage again reduced the number of 

IGF-1-induced migrated cells, although only the low dosage of TGF-β1 and -β3 was significant 

(p < 0.05) (Figure 7.4).  At the higher dosage, migration was also reduced, although not 

significantly.  At the low dosage of TGF-β, only 2.2-3% of the cells migrated, whereas 3.3-3.7% 

cells migrated at the high dosage of TGF-β when added to IGF-1 treatment.  

 

Figure 7.4.  TGF-β1, -β2 and -β3 reduce IGF-1-induced (10 ng/mℓ) migration of P19 cardiac progenitor cells at 

low (0.5 ng/mℓ) and high (5 ng/mℓ) dosages.  Only TGF-β1 and -β3 at the low dosage were significantly lower  

(p < 0.05) compared to IGF-1-induced migration. *p < 0.05. Data are expressed as mean ± SEM; n = 3. 
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Taken together, this data demonstrates that IGF-1 acts as a chemo-attractant for C2C12 

myoblasts, and to a lesser extent for P19 cardiac progenitor cells.  Figure 7.5 clearly 

illustrates the limited migration response of P19 cells to IGF-1 and TGF-β treatment.  TGF-β 

isoforms did not induce migration in either C2C12 or P19 cell-lineages.  In the presence of 

IGF-1-induced migration, TGF-β isoforms decreased C2C12 cell migration to variable degrees.  

In P19 cells, there was only a minimal increase in cell migration numbers in response to 

treatment with IGF-1 and therefore a further limited effect with the addition of either dosage 

of TGF-β isoforms to IGF-1.  Even though there were no clear isoform-specific effects for the 

most part, TGF-β1 and/or -β2 generally displayed greater responsiveness than TGF-β3 to the 

relevant treatment conditions.  

 

Figure 7.5.  Comparative chemotactic response of C2C12 versus P19 cells to IGF-1-induced migration and 

treatment with TGF-β isoforms relative to the total amount of seeded cells (%).   

Data are expressed as mean ± SEM; n = 3. 
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7.4 DISCUSSION 

 

It has been suggested that the migration of muscle stem or progenitor cells during 

regeneration is regulated by overlapping gradients of several effector molecules released at 

the site of injury.  Furthermore, these molecules may contribute to enhance the dispersion of 

muscle progenitor cells derived from the host bone marrow, muscle or other tissues which 

have shown the ability to contribute precursor cells to repair processes.  By establishing the 

signals involved in the recruitment of cells from the circulation, cellular transplantation 

therapy could be enhanced, which, up to now, has demonstrated low efficiency of muscle 

integration by the donor cells.      

 

The migration of stem and progenitor cells during embryogenesis is essential for human 

development.  With regards to myogenesis, skeletal muscle progenitor cells migrate from  

the somite into the developing limb buds where they proliferate and fuse to form primary 

myotubes (Chevallier et al., 1977).  This early migration is possibly induced by signals arising 

from the mesodermal tissues and is dependent upon attachment of the cells to fibronectin 

present in the ECM which forms the substratum for migration (Brand-Saberi et al., 1993).  It 

has been suggested that the transcription factor Pax3 is required at this stage for the 

migration of precursor cells from the somite to the muscle (Daston et al., 1996).  As 

mentioned, in addition to the migration required during early stages of development, in 

situations of disease or injury during adult life, migration of myogenic cells from nearby viable 

muscle, or from additional sources of myogenic cells beyond the muscle to the site of injury, is 

also required and provides an important means of augmenting the population of cells which 

can participate in regeneration.  During such regeneration or inflammatory processes, the 

damaged muscle produces factors that stimulate the chemotaxis of stem or progenitor cells 

either from within the muscle (close by or from a distant site within the damaged muscle), or 

from adjacent muscle fibers (Watt et al., 1994), the latter probably being more restricted 

(Moens et al., 1996).  Macrophages are also attracted to the site of injury, stimulating the 

release of additional cytokines and growth factors which further induce strong positive 

chemotactic responses to attract additional myogenic cells (Robertson et al., 1993). 

 

Growth factors which are highly expressed during stages of muscle regeneration include 

HGF, FGF, PDGF (AB and BB isoforms), EGF, VEGF and IGF-1.  In addition, inflammatory 

cytokines such as TGF-β, TNF-α and IFNγ are also produced by several cell types during the 

inflammatory response following injury.  The chemotactic abilities of these factors display 

differential effects: research by Corti et al. (2001) has shown that HGF significantly increases 
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migration of myogenic cells at lower rather than higher concentrations; the effect of HGF is 

greater than the chemotactic response displayed by both FGF and PDGF; EGF has not 

demonstrated significant effects on migration (Corti et al., 2001); VEGF has shown to induce 

migration of both skeletal and cardiac myocytes, as well as of smooth muscle and endothelial 

cells (Grosskreutz et al., 1999).  This positive chemotactic ability displayed by VEGF in various 

cell types, together with its production being enhanced by hypoxic conditions, supports a role 

for this growth factor in mediating important physiological responses during angiogenesis 

such as blood vessel formation, and therefore restoration of the vasculature (Zaccagnini et 

al., 2005).  In our initial experiments, VEGF was not consistently able to induce migration and  

as such, was not selected as growth factor to induce migration in subsequent assays, and 

therefore warrants further investigation.  IGF-1 has shown to significantly contribute to the 

development, regeneration and migration of skeletal muscle myoblasts and C2C12 cells 

(Suzuki et al., 2000), as well as cardiac resident stem and progenitor cells (Urbanek et al., 

2005; Urbich et al., 2005) and was therefore used as growth factor to induce migration. 

 

Of the cytokines, TNF-α has shown to induce the migration of leukocytes and fibroblasts, 

however, this cytokine has a limited effect on myoblast migration, similar to IFNγ.  Although 

TNF-α possibly induces migration in a dose-dependent manner, it exerts a toxic effect on 

myoblasts at higher concentrations, resulting in increased myoblast mortality (Corti et al., 

2001).  With regards to the TGF-β isoforms, as mentioned above (section 7.1), this growth 

factor exerts multiple effects on myogenic cell migration.  Whereas it has demonstrated no 

chemotactic activity towards C2C12 cells (Suzuki et al., 2002 - unpublished data), it has 

shown to induce migration of satellite cells (Bischoff, 1997) and other myogenic precursors 

(Robertson et al., 1993).  In cardiac muscle, although TGF-β expression is up-regulated 

following ischaemic injury, whether it has any significance towards chemotaxis of cardiac 

progenitor cells, remains to be established.  Instead, this increased expression of TGF-β which 

has been identified in the myocardium during both cardiac hypertrophy and heart failure, has 

been associated with the development of myocardial fibrosis (Border and Noble, 1994; Hao et 

al., 2000; Weber, 1997).  In this regard, TGF-β has shown to stimulate the migration of 

fibroblasts (Kottler et al., 2005) rather than cardiac progenitor cells. 
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The present study was undertaken to determine the in vitro chemotactic ability of skeletal and 

cardiac cells towards TGF-β isoforms with and without the addition of IGF-1.  As the positive 

control, IGF-1 induced migration in both cell-lines, although the potential of the P19 cells to 

migrate, in all treatment conditions, was greatly diminished.  As shown in Figure 7.5, 

maximum migration of P19 cells, which was under the influence of IGF-1, was only 5-10%.  

 

In the C2C12 cell-line, TGF-β isoforms displayed no effect on cell migration and migration 

numbers were similar to those under control conditions.  Although no significant isoform-

specific effects were displayed, TGF-β3 resulted in the least migratory response.  In 

combination with IGF-1, TGF-β reduced IGF-1-induced migration at both the low and high 

dosage, with TGF-β2 and -β3 at the low dosage demonstrating significant reductions.  Despite 

this inhibitory effect of TGF-β on cell migration, the influence of IGF-1 was still dominant to 

result in significantly increased migration numbers compared to control conditions.  

 

P19 cells demonstrated limited responses to all treatment conditions, including IGF-1.  Similar 

to C2C12 cells, treatment with TGF-β3 again showed the greatest inhibitory effect, also at the 

low dosage in combination with IGF-1.  The number of migrated P19 cells was comparable 

whether treated only with TGF-β isoforms, or TGF-β in combination with IGF-1.  Taking into 

consideration that treatment with IGF-1 also resulted in limited migration of the P19 cells, 

these results could suggest that the cell type had a greater influence on the migration 

response than the influence of the TGF-β treatment.  P19 cells form non-adhering aggregates 

in culture (van der Heyden and Defize, 2003) which could have influenced their movement.  

Also, undifferentiated P19 cells have electrophysiological properties such as inward currents, 

Na+/H+-exchangers and voltage-dependent sodium channels which could possibly interfere or 

override the action-potentials generated during migration.   

 

The P19 cell-line is often used to induce neurological differentiation when exposed to retinoic 

acid (Bain et al., 1994).  Following four days of differentiation, these neuron-like cells have 

shown the ability to migrate under the influence of glial-stimulation (Santiago et al., 2005).  

This response could suggest that P19 cell migration is dependent upon the cells first being 

induced to differentiate.  In the current study, P19 cells were not induced to differentiate into 

cardiomyocytes with DMSO prior to the migration protocol which could have influenced the 

outcome.  Furthermore, a differentiated mesodermal line also derived from P19 cells has 

demonstrated a high chemotactic response to PDGF (Liapi et al., 1990), suggesting that 

varying results could also be due to differences in chemotactic responsiveness of this cell-line 

to other growth factors.  
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Although the migration numbers in both the C2C12 and P19 cells were generally higher than 

control under TGF-β-treated conditions, whether at the concentration of 5 ng/mℓ TGF-β or in 

combination with IGF-1, it was only significantly higher than control when C2C12 cells were 

treated with the TGF-β/IGF-1 solutions.  These results suggest a general inhibitory effect of 

TGF-β on myogenic cells, with TGF-β3 having the greatest influence.  Although inhibitory 

effects on C2C12 migration have previously been reported (Suzuki et al., 2000 - unpublished 

data), others have demonstrated significant, dose-dependent, TGF-β-induced chemotactic 

activity on primary isolated satellite cells (Bischoff, 1997) and other myogenic precursor cells 

(Robertson et al., 1993).  Differences in results could therefore be due to the use of primary 

stem or progenitor cells rather than a cell-line, the contribution of other factors in the sample 

analysed, or the dose applied which varied between studies.  In this regard, it has been 

suggested that, following injury, satellite or myogenic precursor cells migrate from the 

uninjured area in response to TGF-β and other factors released, but may reach a point at 

which high concentrations of TGF-β could inhibit further migration (Bischoff, 1997).   

 

Although not analysed, the in vivo effect TGF-β exerts on cell migration could be related to the 

ECM.  Factors released from the ECM largely contribute to cellular responses, including 

migration.  One of the activities of TGF-β is control of ECM synthesis and degradation, of which 

regulation of production and turnover of ECM components is essential for tissue homeostasis 

and function.  Therefore, an indirect mechanism by which TGF-β exerts its effects on cell 

proliferation, differentiation and migration, is through its capacity to modulate the deposition 

of ECM components (Verrecchia and Mauviel, 2002), thereby either stimulating or inhibiting 

the relevant processes.  This area is being investigated in further studies in vitro. 

 

Growth factors can improve the in vivo migration of skeletal myoblasts by modulation of their 

endogenous proteolytic activity.  In this regard, co-injection of IGF-1 and FGF with myoblasts 

have shown to enhance the migratory capacity of these injected myoblasts (Lafreniere et al., 

2004).  It was suggested that co-injection of these growth factors increased their proteolytic 

activities and consequently resulted in breakdown of ECM components which facilitated the 

migration of transplanted cells through the ECM.  TGF-β has shown the opposite effect by 

stimulating the production of protease inhibitors and inhibiting production of ECM-degrading 

proteases, thereby preventing enzymatic degradation of the ECM (Laiho et al., 1986; Roberts 

et al., 1990b).  Also, in the myocardium, connective tissue growth factor is induced by TGF-β 

and has shown to be associated with processes underlying fibrosis, specifically fibroblast 

proliferation, cellular adhesion and ECM synthesis which would obstruct myocyte migration 

(Grotendorst et al., 1996; Ruperez et al., 2003).    
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It is therefore possible that pharmacological inhibition of TGF-β could be an effective 

therapeutic approach to a variety of undesirable fibrotic reactions following skeletal muscle 

injury or heart failure, as well as to improve the capacity of myocytes to migrate (Chen et al., 

2000; Kucich et al., 2001).  Several forms of anti-fibrotic therapies have emerged as possible 

treatment-mechanisms against tissue fibrosis, including anti-TGF-β1 neutralising antibody, 

endoglin antibody, soluble TGF-β type-II receptor, TGF-β antisense oligonucleotides and 

Pirfenidone (Lim and Zhu, 2006).  As an alternative intervention, attempts have been made to 

increase the efficiency of transplant therapy by injuring the host muscle before or during 

myoblast implantation, resulting in the release of the essential growth factors.  Although this 

intervention has increased cell migration in some instances (Vilquin et al., 1995a; Vilquin et 

al., 1995b), others have shown no effect (Fan et al., 1996b; Rando and Blau, 1994).  Whether 

any of these approaches will yield effective strategies to improve skeletal or cardiac muscle 

regeneration and repair following injury or disease, remains to be determined. 

 

7.5 SUMMARY 

 

Results in this chapter show that TGF-β itself, at the concentrations utilised, have no effect on 

the migration of C2C12 myoblasts or P19 embryonal carcinoma cells in their undifferentiated 

state.  In the presence of a migratory stimulus such as IGF-1, TGF-β isoforms decrease the 

induced migration.  Despite the limited migratory response demonstrated by the P19 cells, 

the role of TGF-β warrants further investigation using possibly primary cell cultures.  

Furthermore, differences in results shown in this chapter compared to other research might 

suggest re-evaluation of the migration-assay developed, as well as the use of alternative 

migratory-inducing agents.   
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CHAPTER 8 

FUSION 

 

8.1 INTRODUCTION 

 

The fusion of myoblasts into multinucleated myotubes represents the final stage of terminal 

differentiation.  Two phases of cell fusion can be distinguished (Schulze et al., 2005): 

induction of the contractile phenotype (such as MHC expression) which is followed by the final 

fusion process characterised by further steps of inter-myoblast recognition, adhesion, 

alignment and the actual membrane fusion of differentiated myocytes.  These processes are 

dependent on cell-to-cell and cell-to-extracellular matrix interactions and are regulated by a 

variety of cell adhesion molecules and growth factors (Cossu et al., 1995; Dickson et al., 

1990; Rosen et al., 1992).   

 

By means of this final phase of fusion during myogenesis, myofibers increase in size as a 

result of the proportional increase in the number of nuclei and cytoplasm within the growing 

fiber.  In the situation of muscle injury, by fusing with the damaged muscle fibers, satellite 

cells or other myogenic precursor cells provide an extra set of genes required for functional 

protein synthesis during the repair process (Hill et al., 2003).  Importantly, the fusion of 

myoblasts during development must be carefully controlled if the muscle fibers are to be 

patterned and sized correctly to result in the formation of a functional syncytium.  During 

stages of both muscle development and repair, formation of mature myofibers can involve 

either the fusion of myoblasts to form developing myotubes containing a limited number of 

myonuclei, or myoblast-myotube fusion which results in an increase in myotube size and 

muscle fiber formation, or finally, the fusion of myoblasts with resident myofibers to result in 

repair of the damaged tissue (Park and Chen, 2005).  Myotubes rarely fuse with one another 

in vivo, but rather continually absorb myoblasts until the mature state of the muscle is 

reached (Wigmore et al., 1992; Zhang and McLennan, 1995).  Also, the rate at which new 

nuclei are added to myotubes varies with the stage of muscle development, as does the site 

of addition of the new nuclei.  Whereas myoblasts preferentially fuse with the ends of 

myotubes or myofibers as they elongate (Aziz and Goldspink, 1974), they will fuse with the 

middle of the myofiber or myotube during muscle hypertrophy (Zhang and McLennan, 1995). 
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The formation of mature myofibers can also involve the fusion of host myoblasts with 

transplanted stem or progenitor cells.  This mechanism by which adult stem cells can 

enhance tissue repair has proven to be of benefit in that other cell populations can be applied 

to provide additional stem or progenitor cell sources to contribute to regeneration processes.  

The use of this repair strategy has been demonstrated by the successful transplantation of 

bone marrow-derived cells into skeletal (Ferrari et al., 1998) and cardiac muscle (Assmus et 

al., 2002; Strauer et al., 2002), as well as the transfer of skeletal myoblasts (satellite cells) 

into the infarcted myocardium (Menasche et al., 2001).  Interestingly, cell fusion has also 

been used as an explanation for transdifferentiation by research groups which have 

contradicted this apparent effect in various tissues (Murry et al., 2004): whereas some 

studies have proven that bone marrow-derived stem cells can transdifferentiate into 

cardiomyocytes following infarction and acquire a cardiac phenotype (Kajstura et al., 2005; 

Orlic et al., 2001b; Orlic et al., 2001c), others have provided evidence that such 

transdifferentiation does not occur, but is rather the consequence of the fusion of circulating 

bone marrow cells or bone marrow-derived stem cells with the host cardiomyocytes (Alvarez-

Dolado et al., 2003; Bittner et al., 1999; Kuramochi et al., 2003; Muller et al., 2002).  

 

During stages of development, injury or disease, stimuli such as neural innervation (Duxson, 

1992), growth factors and various effector molecules initiate and regulate the fusion process.  

Following activation of fusion, intercellular junction structures mediate intercellular adhesion, 

as well as regulate intracellular cytoskeletal design.  Transmembrane proteins such as 

cadherins, which mediate cell-to-cell interactions in a calcium-dependent manner, are thought 

to play an essential role in this process (Geiger and Ayalon, 1992).  Other factors suggested to 

be involved in myoblast fusion include members of the immunoglobulin-superfamily (Kang et 

al., 2002), neural and vascular cell adhesion molecules (Mege et al., 1992; Rosen et al., 

1992), β1-integrins and other extracellular matrix receptors (Menko and Boettiger, 1987).  

Signalling molecules suggested to promote myoblast fusion include growth hormone 

(Sotiropoulos et al., 2006), the transmembrane-4 superfamily (TM4SF) of proteins such as 

CD9, CD44 and CD81 (Mylona et al., 2006; Tachibana and Hemler, 1999), and mTOR 

signalling which specifically controls late-stage fusion (Park and Chen, 2005).  In contrast, 

Rho/ROCK signalling appears to have an inhibitory effect on myoblast fusion (Nishiyama et 

al., 2004).  Of the growth factors, IGF-1 has demonstrated a stimulatory effect on myoblast 

fusion by means of initial activation of satellite cells which is followed by the later expression 

of a different splice-variant of IGF-1 to maintain protein synthesis and complete fusion and 

repair processes (Czifra et al., 2006; Hill et al., 2003).  Unfortunately, although myoblast  
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fusion has extensively been analysed, a significant part of these studies has been performed 

on Drosophila and it still needs to be established to what extent the developmental strategies 

and essential molecules involved in myoblast fusion are conserved between species (Baylies 

et al., 1998; Frasch, 1999; Taylor, 2002). 

 

The effect of TGF-β isoforms on myoblast fusion has shown inconsistent results.  Although this 

growth factor has been shown to inhibit myoblast fusion in myogenic cell-lines (Olson et al., 

1986), it has also been suggested that the isoforms are essential promoters of myoblast 

fusion in vivo (Filvaroff et al., 1994).  In vitro results have led to the hypothesis that TGF-β1 

controls the onset of myotube formation by suppressing the proliferation and fusion of late-

stage myoblasts until primary myogenesis has been completed (Cusella-De Angelis et al., 

1994).  However, there is no in vivo evidence to support this hypothesis.  TGF-β2 expression in 

developing and regenerating muscle has shown to be principally associated with myoblasts 

and myotubes (McLennan and Koishi, 2002), leading to the suggestion that myotubes release 

TGF-β2 to stimulate adjacent myoblasts to fuse with them.  In addition, the effects exerted by 

TGF-β isoforms on fusion could also be specific to the skeletal muscle fiber type: whereas 

TGF-β1 has demonstrated favourable development of fast muscle fibers, this isoform has 

shown to reduce the fusion of slow muscle fibers (Noirez et al., 2006).  The lack of fusion 

studies comparing the effects of all three TGF-β isoforms could contribute to a suggested 

significant influence which one isoform induce on myocyte fusion only as a consequence of 

other isoforms not being analysed. 

 

Stages of proliferation and terminal differentiation in myoblasts are presumed to be mutually 

exclusive events.  As illustrated by the results in Chapter 5, the addition of TGF-β resulted in 

increased proliferation of C2C12 myoblasts, whereas differentiation of these cells was 

depressed following treatment with TGF-β (Chapter 6).  Although the proliferative expansion of 

the myoblast population is required to provide sufficient precursor cell numbers for final 

processes of fusion, phenotypic differentiation is also required and suggested to precede the 

fusion-stage of myogenesis.  To determine how these apparent opposing results would affect 

final stages of the differentiation programme, the fusion of C2C12 myoblasts was analysed 

following short- and long-term treatment with TGF-β isoforms.    
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8.2 METHODS  

 

8.2.1 Cell Culture 

To determine the effects of TGF-β isoforms on cell fusion, C2C12 cells were plated onto glass 

coverslips in six-well tissue culture-treated plates at a density of 50 000 cells/well and treated 

with TGF-β as described in Chapter 5 (section 5.2.1.1).  After maintaining C2C12 cells in 

culture medium, they were induced to differentiate on day 0 and treated with either TGF-β1  

or -β2 or -β3 (5 ng/mℓ) for 24 hours and compared to control conditions (differentiation 

medium only).  For long-term TGF-β treatment, cells received differentiation medium 

supplemented with either TGF-β1 or -β2 or -β3 on days 0, 1 and 2.  Cells were fixed and 

prepared for later immunofluorescent staining on day 5 and day 7.  Day 3 was additionally 

analysed to determine the early effect of TGF-β isoforms following long-term treatment.  

 

8.2.2 Immunohistochemistry 

Total nuclear counts were established and antibody staining intensities analysed as described 

in Chapter 5 (section 5.2.2.1).  Cells were incubated with anti-M-cadherin (see Chapter 3, 

section 3.2.2 for antibody details) as primary antibody and Hoechst dye was added for nuclear 

determination.   

 

The M-cadherin image of the cells was merged with the Hoechst-stained image of the nuclei 

from the same cell area to determine bi-nuclear myoblast (2 nuclei per cell) and myotube (3 or 

more nuclei per cell) stages of differentiation.  These myoblast and myotube numbers were 

added together to quantify cell fusion.  The fusion index (Nishiyama et al., 2004; Park and 

Chen, 2005) was calculated from the ratio (%) of nuclei number in myocytes with two or more 

nuclei versus the total number of nuclei in the field of count (TNC determined in Chapter 5, 

section 5.2.2.1).  A minimum of six photos were taken from different regions of each slide.  

The experiment was performed in triplicate. 

 

8.2.3 Statistical Analysis 

Statistical evaluations were made by one-way analysis of variance (ANOVA) and Bonferroni’s 

multiple comparison test using STATISTICA.  Significant differences were taken at p < 0.05.  

All data are expressed as mean ± SEM. 

 



 163. 

8.3  RESULTS  

 

To investigate the involvement of TGF-β isoforms on myoblast fusion in a skeletal muscle cell-

line, C2C12 cells were treated with this growth factor for either 24 hours or 72 hours and 

analysed on day 5 and day 7, and additionally on day 3 following long-term incubation.  To 

quantify the extent to which the cells were successfully stimulated to fuse, the total amount of 

bi-nuclear myoblasts and myotubes were determined, as well as the fusion index.   

 

8.3.1 Total Myoblast and Myotube Count 

8.3.1.1 Short-term TGF-β treatment 

TGF-β isoforms showed limited effects on the total number of bi-nuclear myoblasts plus 

myotubes following 24 hour incubation (Figure 8.1).  The total number of bi-nuclear myoblasts 

and myotubes was significantly lower at day 5 following treatment with TGF-β2 (p < 0.01) and 

-β3 (p < 0.05) compared to control conditions.  In addition, the effect of TGF-β2 was also 

significantly lower than TGF-β1 (p < 0.05), suggesting a possible isoform-specific effect.  At 

day 7 of differentiation, the total number of bi-nuclear myoblasts and myotubes was still lower 

compared to control conditions following TGF-β treatment, however, this effect was not 

significant for any isoform.  This result could be due to the cells recovering following the 

earlier inhibitory effect of TGF-β isoforms on myoblast and myotube formation which were now 

able to continue normal differentiation.     

 

8.3.1.2 Long-term TGF-β treatment 

Compared to control conditions, all TGF-β isoforms significantly reduced the total bi-nuclear 

myoblast plus myotube number following 72 hour incubation at all time-points analysed 

(Figure 8.2; p < 0.01).  This effect was more pronounced compared to 24 hour treatment.  

Additionally, the average totals were also lower and no recovery was evident at day 7 

compared with that seen after 24 hour incubation.  The increased presence of TGF-β isoforms 

during the initial stages of myocyte development therefore has a possible long-term negative 

influence on myocyte fusion.  No isoform-specific effects were significant, although TGF-β2 

and -β3 showed a greater inhibitory influence at day 7. 
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Figure 8.1.  Incubation of C2C12 cells with TGF-β1, -β2 or -β3 for 24 hours has minimal effect on bi-nuclear 

myoblast and myotube formation.  Total myoblast plus myotube numbers were assessed by immunofluorescent 

staining and image analysis in control- and TGF-β-treated (5 ng/mℓ) differentiating C2C12 cells. TGF-β2 (p < 0.01) 

and TGF-β3 (p < 0.05) were significantly lower compared to control conditions at day 5. In addition, the effect of 

TGF-β2 was also significantly lower compared to treatment with TGF-β1 (p < 0.05). *p < 0.05; #p < 0.01. Data are 

expressed as mean ± SEM; n = 3. 
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Figure 8.2.  Incubation of C2C12 cells with TGF-β1, -β2 or -β3 for 72 hours significantly decreases bi-nuclear 

myoblast and myotube formation.  Total myoblast plus myotube numbers were assessed by immunofluorescent 

staining and image analysis in control- and TGF-β-treated (5 ng/mℓ) differentiating C2C12 cells. All three TGF-β 

isoforms significantly decreased total myoblast and myotube numbers at all time-points analysed compared to 

control conditions. #p < 0.01. Data are expressed as mean ± SEM; n = 3. 
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8.3.2 Fusion Index 

8.3.2.1 Short-term TGF-β treatment 

Following 24 hour incubation, all three TGF-β isoforms resulted in a significantly lower fusion 

index compared to control conditions at both time-points analysed (Figure 8.3; p < 0.01).  

Although also significant, the effect of TGF-β1 was the least, especially at day 7 (p < 0.05).  

The fusion index under control conditions was 4.4 ± 0.7% and 3.9 ± 0.8% at day 5 and day 7, 

respectively.  In TGF-β-treated conditions, the fusion index ranged from 0.4 ± 0.1%  

to 1.9 ± 0.5% at day 5, and 1.2 ± 0.3% to 1.6 ± 0.2% at day 7. 

 

8.3.2.2 Long-term TGF-β treatment 

The fusion index is calculated from the total amount of nuclei in bi-nuclear myoblasts and 

myotubes relative to the total amount of nuclei from the same field of view.  Therefore, as 

shown in Chapter 5 (section 5.3.1), TGF-β isoforms resulted in significantly higher total 

nuclear counts, especially following long-term treatment but, as illustrated above, lower total 

bi-nuclear myoblast plus myotube numbers and therefore also lower nuclei totals in these 

myocytes.  Consequently, the resulting fusion index was greatly reduced (p < 0.01) by 6-9-fold 

in TGF-β-treated conditions at all time-points analysed (Figure 8.4).  No isoform-specific effect 

was seen.  In control conditions, the fusion index increased from 2.3 ± 0.4% at day 3 to  

6.6 ± 0.9% at day 7.  In TGF-β-treated conditions, the fusion index showed limited change, 

ranging from 0.3 ± 0.1% to 0.5 ± 0.2% at day 3 and increasing only to a range of 0.5 ± 0.1% 

to 0.9 ± 0.2% at day 7. 
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Figure 8.3.  Incubation of C2C12 cells with TGF-β1, -β2 or -β3 for 24 hours decreases the fusion index.  All three 

isoforms significantly decreased the fusion index (%) in TGF-β-treated (5 ng/mℓ) differentiating C2C12 cells at 

both time-points analysed compared to control conditions. *p < 0.05; #p < 0.01. Data are expressed as mean     

± SEM; n = 3. 
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Figure 8.4.  Incubation of C2C12 cells with TGF-β1, -β2 or -β3 for 72 hours decreases the fusion index.  All three 

isoforms significantly decreased the fusion index (%) in TGF-β-treated (5 ng/mℓ) differentiating C2C12 cells  

at all time-points analysed compared to control conditions. #p < 0.01. Data are expressed as mean ± SEM; n = 3. 
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As shown in Figure 8.5, 72 hour TGF-β treatment decreased the number of myotubes formed 

at day 7 of differentiation despite the significant increase in nuclei number.  Taken together, 

TGF-β isoforms appear to delay muscle cell fusion and the formation of myotubes.  As 

suggested by Andres and Walsh (1996), phenotypic differentiation, indicated by the induction 

of MHC, precedes cell fusion.  In Chapter 6 [section 6.3.1.3 (B)], MHC expression was 

significantly reduced in TGF-β-treated conditions and could therefore imply a mechanism for 

the subsequent decrease in cell fusion.  

 

Figure 8.5.  Effect of incubation with TGF-β isoforms on fusion in differentiating C2C12 cells.  Typical images 

(at 20x enlargement) of (A) Control- and (B) TGF-β-treated cells at day 7 following 72 hour incubation with  

TGF-β1. TGF-β-treated cells clearly illustrate an increase in total nuclei number but decrease in myotube 

formation. Treatment of C2C12 cells with TGF-β2 and -β3 displayed similar images. 

 
                     (A) Control                                          (B) TGF-β1 
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8.4 DISCUSSION 

 

Skeletal muscle development is a highly ordered process of events.  Following initial myocyte 

activation and proliferation, the expression of MyoD, one of the earliest markers of muscle 

differentiation, initiates the myogenic programme by activating the expression of various 

transcription factors and muscle-specific genes.  Subsequently, myogenin expression 

increases, followed by cell cycle withdrawal, and phenotypic differentiation characterised by 

the expression of contractile proteins such as MHC.  Finally, cell fusion takes place to form 

multinucleated, syncytial myotubes (Andres and Walsh, 1996; Chen and Goldhamer, 2003; 

Rosenblatt et al., 1996).  In response to muscle injury, quiescent satellite cells are activated 

to enter the cell cycle and regenerate a pool of proliferating myogenic precursors, similar to 

the embryonic myoblasts.  Therefore, embryonic myogenesis and adult muscle regeneration 

have been outlined as comparable events (Chen and Goldhamer, 2003).  The ability of two or 

more cells to fuse is an essential process throughout both development and repair and 

requires migration, myoblast recognition, alignment, adhesion between cells and finally fusion 

of the plasma membranes and re-arrangement of cytoplasmic contents.  In these series of 

events, myoblast fusion is required for myofiber growth and completion of terminal 

differentiation (Mitchell and Pavlath, 2001; Nishiyama et al., 2004).   

 

During myogenic development or regeneration following injury, the need for skeletal muscle 

growth is controlled by the regulation of myofiber size.  Being a syncytium, the myofiber size 

can be modulated by two distinct mechanisms.  In the first mechanism, the cytoplasmic 

volume associated with individual myonuclei is regulated.  This pathway appears to involve 

regulation of protein synthesis and degradation through PI3K signalling and ubiquitin-ligases, 

respectively (Schiaffino and Serrano, 2002).  Secondly, the number of myonuclei within a 

myofiber determines the myofiber size: a proportional increase in the number of nuclei and 

the cytoplasmic volume is required within the growing myofiber (Horsley et al., 2001).  By 

fusing with one another or with an adjacent muscle fiber, myoblasts provide these myonuclei, 

allowing each nucleus to regulate more cytoplasm for fiber growth and repair (Allen et al., 

1999).  Similarly, during illness or disease, the muscle atrophies, mostly due to myonuclei 

which are lost possibly through apoptotic mechanisms. 
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The fusion of myoblasts and subsequent myotube formation is especially controlled by the 

micro-environmental conditions and influence of circulating effector molecules, proteins and 

growth factors.  Therefore, to determine the in vitro effect of one such factor on skeletal 

myoblast fusion, C2C12 cells were treated with TGF-β isoforms for either 24 hours or  

72 hours and the extent of fusion compared to control conditions.     

 

Results following 24 hour treatment showed a lower total number of bi-nucleated myoblasts 

and myotubes at both day 5 and day 7, although only the effect of TGF-β2 and -β3 at day 5 

was significant.  This apparent inhibitory effect of TGF-β isoforms on cell fusion was confirmed 

following 72 hour treatment, which resulted in significantly reduced total numbers of bi-

nucleated myoblasts and myotubes at all time-points analysed.  Although no isoform-specific 

results were significant, treatment with TGF-β2 again resulted in the most inhibition at day 5 

and day 7.  As expected, the total number of bi-nucleated myoblasts and myotubes increased 

in all conditions from day 3 to day 7 as differentiation progressed, although this increase was 

less evident in TGF-β-treated cells.  Subsequent analysis of the fusion index clearly 

demonstrated the inhibitory effect of both 24 hour and 72 hour TGF-β treatment on fusion 

and also suggested a possible isoform-specific effect of TGF-β2.  The effect of TGF-β isoforms 

was most significant following 72 hour treatment, indicating that the constant presence of 

TGF-β is required for this growth factor to exert its effect and following initial phases of 

inhibition, the cells are unable to return to normal growth and development even after the 

signal has been removed. 

 

As mentioned, during embryonic differentiation, mononucleated myoblasts first proliferate 

then fuse to form myotubes that become innervated and develop into muscle fibers.  As 

shown by the results in Chapter 5, sufficient, increased proliferation of myoblasts resulted 

following treatment with the TGF-β isoforms.  The inhibitory effect which this growth factor 

exerts on fusion would therefore probably not be as a result of reduced myoblast numbers, 

but rather as a direct consequence of the inhibitory effect demonstrated by TGF-β isoforms on 

skeletal muscle differentiation (Chapter 6) and/or migration (Chapter 7).  Alternatively, TGF-β 

isoforms could influence the regulatory proteins or effector molecules signalling progression 

of fusion which would result in reduced myoblast activation or generation of a micro-

environment unfavourable to fusion processes. 
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Treatment of myoblasts with TGF-β1 in vitro has shown to reduce fusion by decreasing the 

Ca2+-influx required for myotube formation.  Fusion of myoblasts and myotubes involves 

Ca2+-influx through T-type channels and TGF-β1 has shown to down-regulate the number of 

these channels in the plasma membrane, resulting in a subsequent decrease in myotube 

formation.  It has been suggested that this T-channel down-regulation by TGF-β1 may be 

mediated by reduced transcription rather than post-transcriptional modifications of the 

channels (Avila et al., 2006).  It was speculated that by inhibiting myoblast fusion, TGF-β1 

might be functioning to ensure regeneration of the original satellite or progenitor cells by 

preventing irreversible commitment of these cells to myogenesis (Mejia-Luna and Avila, 

2004).  Such a hypothesis could then explain the increased proliferation demonstrated in 

Chapter 5.  In addition, TGF-β isoforms might be involved in regulating the timing of myoblast 

fusion during early embryonic development (Olson et al., 1986) which would support this 

hypothesis: by controlling fusion and commitment to myogenesis, adequate progenitor 

numbers will first be generated during embryogenesis before irreversible commitment is 

induced.  In this regard, it has been suggested that TGF-β2 regulates when and where 

myoblasts fuse into myotubes (McLennan and Koishi, 2002).  Increased expression of TGF-β3 

during stages of both skeletal and cardiac myogenesis also indicates the involvement of this 

isoform during specific stages of development (Lafyatis et al., 1991).  The differential 

expression of TGF-β isoforms during embryonic development suggests distinct isoform-

specific regulation of processes involving tissue development and cellular differentiation 

(Lafyatis et al., 1991) which remains to be clarified.  

 

In contrast to the well-documented regulatory effects of the MRFs on cell cycle control and 

differentiation, the molecular mechanisms known to regulate myoblast fusion are limited 

(Dworak and Sink, 2002; Horsley and Pavlath, 2004; Taylor, 2002).  In addition to the factors 

suggested to be involved in myoblast fusion mentioned above (section 8.1), the cytokine  

IL-4 has been identified as a molecular signal which control myoblast fusion with myotubes 

through activation of the signalling pathway involving the nuclear factor of activated T-cells 

(NFAT)-family of transcription factors (Crabtree and Olson, 2002; Horsley et al., 2001).  The 

transcription factor NFATc2 controls myoblast fusion at a specific stage of myogenesis after 

the initial formation of myotubes and is required for further cell growth.  NFAT proteins 

regulate the expression of many secreted cytokines, including IL-4.  Although muscle cells 

lacking IL-4 form normally, they are reduced in size and myonuclear numbers.  It has been 

suggested that following the initial fusion of myoblasts into myotubes, these newly formed 

myotubes secrete IL-4 to interact with IL-4α-receptors present on surrounding myoblasts, 

thereby activating further steps of cell fusion and acting as a myoblast-recruitment factor for 
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addition of more myonuclei and subsequent increases in myotube size (Schulze et al., 2005).  

This report of IL-4 release by a non-immune cell (myotube) (Horsley et al., 2001) suggests that 

cytokines secreted during the immune response immediately following muscle injury may 

contribute additional functions during the muscle regeneration process such as myoblast 

proliferation (Hawke and Garry, 2001) and myoblast fusion with subsequent muscle growth.  

However, this effect of IL-4, together with IL-13 and TNF-α, induces the release of TGF-β from 

macrophages, resulting in collagen deposition and fibrosis (Fichtner-Feigl et al., 2006).  

IL signalling therefore requires careful regulation to contribute to increased fusion without the 

detrimental effects of fibrosis during stages of repair.  These responses also suggest, together 

with the inhibitory results displayed by TGF-β on muscle differentiation and fusion, that when 

regeneration is required, the release of TGF-β is primarily directed towards modulation of 

wound healing and fibrosis, rather than contributing to the processes of muscle growth.  

 

A further possible mechanism by which TGF-β isoforms may influence cell fusion, could be by 

reducing the expression of the cell-adhesion protein, M-cadherin.  It has been suggested that 

M-cadherin mediates myoblast interaction to function as a molecular link between satellite 

cells, myoblasts and damaged muscle fibers (Irintchev et al., 1994; Zeschnigk et al., 1995), 

thereby playing an important role in terminal muscle differentiation and repair mechanisms.  

The preferential expression of M-cadherin during myogenesis and muscle regeneration has 

suggested that this protein may be involved in myoblast fusion and the regulation of skeletal 

muscle morphogenesis (Kaufmann et al., 1999b; Moore and Walsh, 1993), particularly 

regarding the alignment of myoblasts to form and expand developing myotubes (Cifuentes-

Diaz et al., 1995).  It has been suggested that M-cadherin interacts with microtubules to keep 

the myoblasts aligned during fusion processes (Kaufmann et al., 1999a).  It is possible that 

TGF-β exerts its effect by interfering with M-cadherin-mediated cell-to-cell interaction and 

adhesion and therefore is a mechanism of TGF-β-control to investigate in future research.   

 

8.5 SUMMARY 

 

The ability to influence the process of myoblast fusion with mature muscle fibers in response 

to trauma or injury during adult life could be of great therapeutic value.  Since engineered 

myoblasts can be induced to fuse with mature muscle, skeletal muscle has become a prime 

target for gene and transplantation therapy and as such has provided a model for clinical 

applications in other tissues and adult organs (Blau et al., 1993; Miller and Boyce, 1995).   

In this respect, results presented in this chapter provide some valuable insight into 

mechanisms that modulate this fusion process. 
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CHAPTER 9 

SUMMARY AND CONCLUSIONS 

 

9.1 STEM CELL RESEARCH 

 

Advances in the knowledge of both embryonic and adult stem cell systems have resulted in 

the successful use of these cells in transplantation therapeutics.  In order to be of clinical use, 

the relevant cells must be easily obtained, upon isolation remain capable of differentiating 

into the required cell-lineage and, once transplanted, engraft into the host-tissue to restore 

and/or improve function.  Despite the initial excitement regarding the potential use of these 

cells, several research studies and clinical trials have demonstrated variable results.  A 

greater understanding of stem and progenitor cell activation, signalling and involvement in 

growth and repair, as well as the profile of growth factor expression during these processes, is 

essential in establishing more effective cell-based therapies and transplantation strategies.  

Estimates of the amount of muscle formed from given numbers of transplanted stem cells 

indicate very low levels of efficiency: it is estimated that only 10-20 mg of muscle (containing 

3 x 105 myonuclei) can be obtained from a graft containing 5 x 105 myogenic cells, therefore 

less than the transplanted number (Partridge, 2002).  As such, it is essential to determine 

stimuli that would produce highly proliferative environments which will result in sufficient cell 

masses without risking tumour-like overgrowth (Murry et al., 2002).  Careful interaction 

between stem and progenitor cells and growth factors are therefore required to enable 

controlled proliferation and subsequent differentiation into the required tissue.     

 

Since engineered myoblasts have shown the ability to fuse with mature muscle, skeletal 

muscle has become a prime target for gene and transplantation therapy and as such has 

provided a model for clinical applications in other adult organs.  In cardiac tissue, the 

myocardium has always been regarded as a post-mitotic organ although a series of recent 

studies have indicated the existence of stem-like cells in the heart, as well as the contribution 

of extracardiac stem cells to promote at least partial reconstitution of the myocardium 

following an ischaemic insult.  Despite the success seen in research, as well as in clinical 

trials, further optimisation of stem cell incorporation into the damaged tissue is required. 
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A group of cytokines which has been shown to be involved in various cellular events is the  

TGF-β-superfamily.  Specifically, the isoforms of TGF-β are up-regulated post-injury and play an 

important role in regeneration processes, as well as during growth and development.  

Therefore, in the work discussed, the three TGF-β isoforms were analysed to determine their 

effect on myogenic growth processes in skeletal myoblasts and embryonic-like cardiac 

progenitor cells. 

 

At the start of this thesis, a significant amount of time was spent establishing protocols which 

would be most suitable to generate valid and reliable data, taking into consideration the 

laboratory techniques, equipment and skills available.  Although protocols were set up to best 

analyse the effect of a growth factor (TGF-β isoforms) on processes of myogenic development, 

there will always be other relevant growth factors, cell types, treatment-concentrations, time-

points and antibodies to analyse, together with different or new assays to apply.  As studies 

progressed, more questions became apparent, as well as the realisation that a protocol could 

be improved or an assay done differently.  These questions and limitations however remain to 

be included in future investigations.      

 

9.2 SUMMARY OF RESULTS 

 

Figure 9.1 is a schematic overview of the in vivo responses of TGF-β from which aims for this 

thesis were determined, and the subsequent in vitro results generated.   

 

(A)  In vivo, skeletal muscle damage, disease or myocardial infarction results in an 

inflammatory response and the release of inflammatory factors, cytokines, growth factors and 

several other mediators of wound healing, including TGF-β, PDGF, fibroblasts and 

macrophages which contribute to the subsequent repair process and produce a micro-

environment suitable for enhanced tissue regeneration.   

 

(B)  In vitro, experiments have demonstrated the influence of several growth factors, such as 

TGF-β, on myogenesis.  As such, the effect of the three isoforms of TGF-β was investigated on 

progenitor cell recruitment and differentiation into skeletal and cardiac cell-lineages.  To 

simulate in vivo conditions and induce differentiation, C2C12 cells were deprived of serum 

and P19 cells treated with DMSO, and either the TGF-β1, -β2 or -β3 isoform added.   
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(C)  Following the inflammatory response in vivo, changes in the environmental conditions 

produce signals for the activation and mobilisation of satellite and/or other stem cells within 

the damaged tissue, as well as non-resident stem cells, to aid in the regenerative process.  

With regards to TGF-β, its isoforms bind to cell membrane receptors and activate signal 

transduction to the nucleus via the Smad-pathway which subsequently regulates gene 

transcription to illicit desired responses depending on cell type and other environmental 

stimuli (see Figure 2.6 and Figure 6.11).   

 

(D)  Once activated, stem or progenitor cells migrate or home to the injured area and enter 

stages of the cell cycle, and, depending on the stimulus, either follow pathways of proliferation 

to form precursor cells and expand the myogenic cell population, or undergo myogenic 

differentiation.   

 

(E)  Alternatively, cells undergo self-renewal and return to quiescence to replenish the satellite 

or stem cell pool to contribute to future muscle repair processes.  Myogenic transcription 

factors are essential for optimal control of these processes.  Furthermore, specifically in the 

case of regeneration, proliferation will occur, followed by terminal differentiation and fusion of 

myoblasts to the damaged myofibers for repair, or to each other for new myofiber formation 

and muscle growth.   

 

(F)  Results described in this thesis suggest an inhibitory effect of TGF-β isoforms on C2C12 

cell differentiation and migration, but enhancement of proliferation.  In P19 cells, even though 

migration was strongly inhibited, differentiation could be improved depending on the selected 

TGF-β isoform. 
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 Figure 9.1.  Schematic overview of key processes involved in skeletal and cardiac muscle regeneration, the 

 contribution of stem cells and integration of the TGF-β signalling pathway, as incorporated into this thesis.   
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9.2.1 Research Limitations and Recommendations for Future Studies 

In Chapter 5, results have shown that, under conditions where differentiation would take 

place, all three isoforms of TGF-β increased proliferation of C2C12 cells in culture conditions.  

Although PCNA expression was not significantly different between treatments, changes in 

cellular localisation of this protein were evident and could have contributed to the decision of 

the cell to differentiate or continue proliferation.  Decreased differentiation of C2C12 

myoblasts was indeed demonstrated following treatment with TGF-β in an isoform-

independent manner (Chapter 6).  Suppression of the myogenic regulatory factor myogenin, 

as well as the structural protein MHC, could suggest a possible mechanism for the inhibitory 

effect of TGF-β on myogenic differentiation in skeletal myoblasts.  It would be of interest to 

analyse additional signalling proteins, myogenic regulatory factors or cell cycle regulators to 

more closely establish areas of TGF-β-control and gain insight into mechanisms by which this 

growth factor controls processes of proliferation and differentiation.  In addition, TGF-β 

receptor expression is an important area of control to investigate in future studies.  The TGF-β 

receptors could exert isoform-specific responses and as briefly mentioned in Chapter 5, two 

effects of TGF-β, stimulation or inhibition of myoblast proliferation and differentiation, could 

be mediated by the specificity of a TGF-β isoform binding to a selected receptor. 

 

In these chapters, the western blot assay and selected protein markers were used to 

distinguish between phases of cell growth towards terminal differentiation.  Whole cell lysates 

were used in these assays for protein determination.  It was clear from the localisation 

experiments, which were only performed at a later stage when new equipment became 

available, that nuclear extraction and analysis of nuclear proteins separate from the 

cytoplasmic fraction could have produced significant results, specifically with regards to 

analysis of MyoD and PCNA. 

 

In contrast to C2C12 differentiation, no inhibitory effects of TGF-β isoforms were evident from 

western blot results following differentiation of P19 embryonal carcinoma cells.  TGF-β1 

treatment did, however, significantly increase embryoid body formation during early (day 6) 

stages of differentiation.  Unfortunately, only one late time-point (day 12) was analysed by 

western blotting and therefore possible early effects of TGF-β treatment could have been 

overlooked in this assay, as suggested by the embryoid body formation results.  Future 

protocols should therefore include additional analysis of both early time-points by western blot 

analysis, as well as later time-points for embryoid body formation.   
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Myoblast fusion (Chapter 8) was significantly reduced in TGF-β-treated C2C12 cells which 

could have been the direct result of the inhibitory effects produced by the TGF-β isoforms on 

differentiation and migration (Chapter 7).  It is also possible that TGF-β exerts its effect on 

fusion by interfering with M-cadherin-mediated cell-to-cell interaction and adhesion.  Analysis 

of M-cadherin expression as a possible mechanism of TGF-β-control is an area to investigate 

in future research, possibly together with immunohistochemical analysis of TGF-β isoform 

expression in skeletal and cardiac muscle following injury or infarction.  Knowledge regarding 

the specific localisation and time of TGF-β isoform expression could give a clearer indication 

of isoform-specific contributions to processes of repair and regeneration.   

 
TGF-β isoforms also resulted in the inhibition of P19 cell migration, the effect being much 

greater than in the C2C12 cells.  Despite the limited migratory responses demonstrated by 

these cell-lineages, the role of TGF-β warrants further investigation using different cell 

populations, possibly including primary cell cultures, or inducing differentiation before 

implementing the migration assay.  Differences between results from this work compared to 

other research might also suggest re-evaluation of the migration protocol developed, together 

with the use of alternative migratory-inducing agents such as VEGF, HGF and PDGF.   

 
Given that cytokines exert very distinct effects depending on the cell type, environmental 

conditions and the active circulating concentration, it will be important to continue the current 

analysis to include other dosages of TGF-β and preferably primary cell cultures.  Research 

results have shown that due to the multi-functionality of this growth factor, the actions of  

TGF-β in isolated cell systems in vitro, compared to a similar environment in vivo, may still 

differ markedly.  Many such results indicate that the nature of the TGF-β-action is dependent 

on cell-to-cell contact, the presence or absence of other molecules found in the ECM, as well 

as the presence or absence of other cells and the factors which they secrete.  These 

influences may amplify or modify the actions of TGF-β and therefore the in vivo analysis of the 

TGF-β isoforms is essential to establish the actions of this growth factor with greater accuracy.  

 

9.2.2 Practical Significance of Results 

In vitro addition of TGF-β demonstrated greatly increased proliferation in the skeletal muscle 

cell-line.  This characteristic could be of use to expand myogenic cell populations for clinical 

application in vivo.  Long-term treatment did however result in detrimental effects on terminal 

differentiation and therefore, should such a strategy be employed, TGF-β application over the 

short-term, which did not show late-stage decreased differentiation, would rather be applied. 
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Both proliferation and migration of stem and progenitor cells are required for effective 

regeneration of the injured tissue.  It has been suggested that motility is suppressed in 

proliferating cells, consequently decreasing the efficiency of directed migration.  In the work 

described, TGF-β has been shown to promote proliferation with limited effect on migration.  

This growth factor therefore needs to be carefully co-ordinated to result in the desired 

response.  Under conditions where migration or homing of stem or progenitor cells to an 

injured area is required, inhibition of TGF-β could be of greater therapeutic benefit to enforce 

migration rather than proliferation.   

 
TGF-β has shown the potential to enhance differentiation in cardiac tissue.  Results in  

Chapter 6 indicated such a capacity particularly for TGF-β1 and to a lesser extent for TGF-β2, 

which has also been demonstrated by others (Lim and Zhu, 2006; Singla and Sun, 2005).  

TGF-β is up-regulated in response to myocardial overload and injury.  In this situation, 

although TGF-β contributes to cardiomyocyte hypertrophy, it also induces the synthesis and 

deposition of ECM proteins to contribute to structural cardiac remodelling.  As such, over-

expression of TGF-β would result in tissue fibrosis.  The application of natural TGF-β inhibitors 

such as decorin or neutralising antibodies could therefore be applied in combination with  

TGF-β-release to result in cardiac remodelling without the detrimental effects of fibrosis.   

 
An apparent contradictory influence of TGF-β on cells of the immune system, both stimulatory 

and inhibitory, is partly the result of the differential effects of TGF-β on resting and activated 

cells: in general, resting, immature cells are stimulated by TGF-β, whereas an activated 

population of the same cell group might be inhibited (Wahl, 1994).  If this is also true for 

resting stem cells (i.e. quiescent cells), the application of TGF-β could be a mechanism to 

prevent uncontrolled proliferation often seen in activated stem cells which results in tumour 

progression.  

 

9.3 STEM CELL OBSTACLES AND LIMITATIONS 

 

Despite the progress in the field of stem cell therapy, many questions still remain unanswered 

and clinical trials need to be designed to address these issues.  This will require integration of 

all biological disciplines involved, including the use of increasingly powerful molecular 

biological tools.  Advanced strategies already in use include cell replacement therapy, 

therapeutic cloning, tissue engineering and genetic manipulation (gene therapy). 
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In vitro research and the success of stem cell use in animal models have demonstrated the 

principle and capacity to which human embryonic and adult stem cells can potentially be 

applied as a regenerative source for transplantation therapies.  However, before human stem 

cells can be clinically applied, several concerns need to be overcome.  In brief, these include: 

(i) immunological incompatibility associated with the use of human embryonic stem cells 

for tissue regeneration results in rejection of mismatched grafts.  Possible solutions 

could include immunosuppressive drugs, genetic alteration of human embryonic stem 

cells to develop a “universal” donor, or therapeutic cloning; 

(ii) prolonged cultivation results in genetic and epigenetic modifications and therefore the 

degree to which these cells remain genetically stable during long-term culture needs to 

be determined; and 

(iii) it has been shown that undifferentiated, early embryonic stem cells commonly generate 

teratomas or teratocarcinomas following transplantation.  Although tumour formation 

might not be a problem over the short-term, strategies to eliminate tumorigenic cells are 

required to ensure safety during long-term stem cell therapy.   

 

In addition, besides the ethical issues involving embryonic stem cells, factors limiting progress 

in this research field which need to be addressed, include: 

(i) greater efficiency in adult and embryonic stem cell isolation; 

(ii) greater survival and subsequent migration from the site of injection; 

(iii) low rate of engraftment of cells in ischaemic tissue; 

(iv) establishment of human stem cell lines and the use of animal-free products in culturing 

methods to decrease the risk of contamination; and 

(v) the need for greater standardisation of techniques and procedures to allow accurate 

reproduction of studies. 

 

Therefore, important issues to consider for future research and therapeutic applications 

include (A) the type of cell for optimal results; (B) the number of cells required for effective 

transplantation; (C) the method of administration; (D) the need to keep cells where they are 

administered (cell retention); and (E) clinically relevant end-points (at which stage do results 

strongly predict improvements in symptoms or mortality?). 

 

Contrasting responses to treatment with TGF-β isoforms displayed by the two progenitor cell 

populations used in this thesis, emphasise the need for greater understanding regarding the 

cellular effects of cytokines and other factors to enable the selection of suitable candidates 

for cellular transplantation strategies.  
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APPENDIX 

 

Immunofluorescent localisation: negative control merged image of PCNA and MyoD (at 60x 

enlargement) in differentiating C2C12 cells following 72 hour incubation with TGF-β1.  This 

image illustrates the absence of non-specific antibody-binding for the immunofluorescent 

images of PCNA (Chapter 5) and MyoD (Chapter 6). 
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