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In audio-visual automatic speech recognition (AVASR) both acoustic and vi-
sual modalities of speech are used for speech recognition. The use of the visual
speech modality for speech recognition is motivation by the ability of hearing-
impaired listener to understand speech from visual cues only through so-called
lip-reading. Perceptual phenomena such as the McGurk e�ect (McGurk and
MacDonald, 1976) also suggests that there is indeed information in visual
speech that is useful for recognition purposes. AVASR is in particular expected
to perform better than traditional audio-only speech recognition systems as the
visual channel is not a�ected by acoustic noise.

The components comprising an AVASR system are acoustic and visual
feature extraction, feature stream weighting, feature stream integration, model
learning, and classi�cation. In this thesis we mainly focus on the feature
stream weighting, feature stream integration, model learning, and classi�cation
problems. The topics of acoustic and visual feature extraction are brie�y
discussed for completeness.

Feature stream weighting is the process of weighting the in�uence that the
acoustic and visual feature streams have on the recognition decision according
to some measure of the reliability of each stream. Typically, we would expect
the acoustic stream to contain more information than the visual stream and
as such we would give the acoustic stream more weight. However, acoustic
noise may render the acoustic stream less reliable. Thus, in noisy acoustic
environments we would like to weight the visual stream more as it is not
a�ected by acoustic noise.

Feature stream integration is the strategy that is used when integrating
speech information extracted from acoustic and visual speech samples. A
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particularly interesting problem in AVASR is that of audio-visual asynchrony.
When speaking the motion of visible articulators such a lips, tongue and jaw
occurs prior to the actual sound being uttered. Thus, there is a slight delay
between the acoustic and visual feature streams. This delay is not constant,
but depends on the particular sound that is being uttered as well as on the
speaker. We propose several di�erent audio-visual models that model audio-
visual asynchrony di�erently.

Probability theory, with its inherent notions of uncertainty and con�dence,
is a natural approach to solving these problems. We have chosen to focus on
the speci�c class of probabilistic models that can be formulated as Bayesian
networks (BNs) (Pearl, 1988). This model class is particularly well-suited
to modelling the causalities inherent to audio-visual speech (Ne�an et al.,
2002). In particular we discuss dynamic Bayesian networks (DBNs). The DBN
is an extension to BNs which allow for modelling variable-length sequences
of observed and unobserved random variables such as sequences of features
extracted from speech samples. We show that the hidden Markov model,
which is the most popular model in the speech recognition literature, is a
special case of the DBN framework. We discuss general learning and inference
methods for BNs and DBNs in detail, giving a complete and self-contained
presentation of literature that is otherwise only available in di�erent works.

Learning DBNs in the context of AVASR is performed through estimating
parameters of audio-visual DBN models from sample data. We discuss max-
imum likelihood learning in the form of the expectation maximisation (EM)
algorithm, and variational learning in the form of the variational Bayes (VB)
algorithm. Given a set of learned models, for instance representing di�erent
words or phonemes, we wish to determine which model a previously unobserved
audio-visual sample is most similar to (in some appropriate sense). The latter
is known as the classi�cation problem. We show that learning and classi�ca-
tion can be performed using e�cient general algorithms in the BN and DBN
frameworks. In particular we discuss the junction tree algorithm for BNs and
the interface junction tree algorithm for DBNs. The interface junction tree
algorithm is a generalisation of the classic forward-backwards algorithm used
in HMMs.

As a part of the research we propose and implement a full-featured AVASR
system. The system is used to perform a set of experiments where we evaluate
and compare the performance of the di�erent models and learning algorithms
that we have proposed for AVASR. In the experiments we use the Clemson
University audio-visual experiments (CUAVE) data corpus for learning and
testing the models and algorithms. The CUAVE data corpus consists of mul-
tiple speakers uttering the digits from zero to nine. As a result the experiments
conducted are multiple-speaker digit recognition experiments. As we are par-
ticularly interested in the performance of AVASR at di�erent levels of acoustic
noise we add arti�cial Gaussian noise to the acoustic feature stream and eval-
uate performance at di�erent signal-to-noise (SNR) levels. The level of noise
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ranges from −6 to 18 dB SNR in steps of 4 dB.
The results of the experiments show that there is indeed information in the

visual speech modality useful for speech recognition. In particular we �nd that
for the digit recognition experiment using only the visual speech information
we achieve a 25.6% misclassi�cation rate. In comparison, the misclassi�cation
rate when using only the audio features at the most severe noise level (−6 dB)
is 84.2%. We also �nd that models that combine acoustic and visual features
in general perform better than models that only use the acoustic features.
The performance increase is more pronounced for smaller SNR levels as in this
region the visual observations compensate for the acoustic noise. However,
even at large SNR levels we are able to show a statistically signi�cant di�erence
between the audio-visual and audio-only classi�ers. At 18 dB SNR the error
rate of the audio-visual classi�er is 1.1% versus 2.7% for audio-only, which is
more than a halving of the error rate when using the audio-visual classi�er.

We are able to reproduce the results presented in Glotin et al. (2001) which
shows that stream weighting is bene�cial to AVASR. We are also able to re-
produce the results in Liu et al. (2002) which show that the feature stream
integration scheme modelled by the audio-visual coupled HMM (AV-CHMM)
is superior to less sophisticated integration schemes modelled by the audio-
visual product HMM (AV-PHMM) and audio-visual independent HMM (AV-
IHMM). The AV-CHMM, AV-PHMM and AV-IHMM are all DBN models and
as such the general learning and inference framework applies.

The novel contribution of the research is the application of variational
Bayesian (VB) learning to audio-visual DBNs. The VB learning method is an
alternative to the classic expectation maximisation (EM) algorithm. Varia-
tional learning leads to automatic model complexity selection and avoids the
singularities and over�tting problems associated with EM. In the experiments
we �nd that audio-visual DBN models trained using VB are more robust to
noise, likely due to its more compact form. However, there is not su�cient ev-
idence to support that VB in general performs better than EM when learning
audio-visual DBN models. In particular, for certain levels of acoustic noise VB
performs worse than EM illustrating the possibility of over-smoothing when
using variational learning. We do, however, �nd that models trained using
variational learning appears to perform equally well as models trained using
maximum likelihood estimation at the smallest levels of acoustic noise while
the automatic model selection property yields a more sparse representation.
Thus, by using variational methods we are able to do �just as well with less�.
This is always a desirable property, in particular in resource-critical applica-
tions such as in handheld devices.
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In oudio-visuele outomatiese spraakherkenning (OVOSR) word sowel akoestiese
en visuele modusse van spraak gebruik vir spraakherkenning. Die gebruik
van die visuele spraak modaliteit vir spraakherkenning word gemotiveer deur
gehoorgestremde luisteraars se vermoë om spraak te verstaan deur slegs van vi-
suele leidrade gebruik te maak (sogenaamde liplesing). Perseptuele verskynsels
soos die McGurk e�ek (McGurk en MacDonald, 1976) impliseer ook dat daar
inderdaad inligting vervat is in die visuele spraak wat nuttig is vir die herken-
ning van spraak. Daar word verwag dat OVOSR beter sal presteer as tradi-
sionele spraakherkenningsstelsels gebaseer op klank aleen, omdat die visuele
kanaal nie gea�ekteer word deur akoestiese ruis nie.

Die komponente waaruit 'n OVOSR stelsel bestaan is akoestiese en visuele
kenmerkontrekking, kenmerkstroomweging, kenmerkstroomintegrasie, mode-
lafrigting, en klassi�kasie. Ons fokus in hierdie tesis hoofsaaklik op die prob-
leme van kenmerkstroomweging, kenmerkstroomintegrasie, modelafrigting en
klassi�kasie. Die onderwerp van akoestiese en visuele kenmerkonttrekking word
kortliks bespreek vir volledigheid.

Kenmerkstroomweging is die weging van die invloed wat die onderskeie
akoestiese en visuele kenmerkstrome het op die herkenningsbesluit volgens 'n
maatstaf van die betroubaarheid van die onderskeie kenmerkstroom. Ons sou
tipies verwag dat die akoestiese kenmerkstroom meer inligting bevat as die
visuele kenmerkstroom, en sou dus die akoestiese kenmerkstroom 'n swaarder
gewig toeken. Akoestiese ruis mag egter veroorsaak dat die akoestiese ken-
merkstroom minder betroubaar is en dus in raserige omgewing wil ons graag
die visuele kenmerkstroom swaarder wil laat weeg, siende dat dit nie gea�ek-
teer word deur akoestiese ruis nie.

v



UITTREKSEL vi

Kenmerkstroomintegrasie is die strategie wat gevolg word vir die kombiner-
ing van die inligting onttrek uit die akoestiese en visuele spraakmonsters. 'n
Besondere interessante probleem in OVOSR is dié van oudio-visuele asinkro-
nisasie. Wanneer daar gepraat word vind die beweging van sigbare artikulators
soos die lippe, tong en kaak plaas voordat die werklike klank geuiter word.
Daar is dus 'n e�ense vertraging tussen die akoestiese en visuele kenmerk-
strome. Hierdie vertraging is egter nie konstant nie, maar is afhanklik van die
spesi�eke klank wat geuiter word, sowel as die spesi�eke spreker. Ons stel ver-
skillende oudiovisuele modelle voor wat oudio-visuele asinkronisasie verskillend
modelleer.

Waarskynlikheidsleer, met sy inherente begrippe van onsekerheid en vertroue,
is 'n natuurlike benadering tot die oplossing van hierdie probleme. Ons fokus
op die spesi�eke klas van probabilistiese modelle wat formuleer kan word as
Bayesiaanse netwerke (BNe) (Pearl, 1988). Hierdie klas model is besonder
goed geskik vir die modellering van die kousaliteite inherent tot oudio-visuele
spraak (Ne�an et al., 2002). In die besonder bespreek ons dinamiese Bayesi-
aanse netwerke (DBNe). Die DBN is 'n uitbreiding van BNe wat voorsiening
maak vir die modellering van veranderlike lengte sekwensies van waargeneemde
en onwaargeneemde toevalsveranderlikes soos sekwensies van kenmerke onttrek
uit spraakmonsters. Ons bespreek dat die verskuilde Markov model, wat tot op
hede die mees gewilde model in die spraakherkenningsliteratuur is, 'n spesiale
geval van die DBN raamwerk is. Ons bespreek algemene afrigting en inferensie
metodes vir BNe en DBNe in detail, en gee 'n volledige en selfstandige aanbied-
ing van die literatuur wat andersins slegs beskikbaar is in verskeie publikasies.

In die konteks van OVOSR word die afrigting van DBNe uitgevoer d.m.v. die
afskatting van parameters van oudio-visuele DBN modelle vanaf gemonsterde
data. Ons bespreek maksimum waarskynlikheid afskatting in die vorm van die
verwagting maksimering (VM) algoritme, en variasie-leer in die vorm van die
variasie Bayes (VB) algoritme. Gegee 'n versameling van afgerigte modelle,
wat byvoorbeeld verteenwoordigend is van verskillende woorde en foneme, wil
ons bepaal watter model is mees verteenwoordigend van 'n onbekende oudio-
visuele spraakmonster. Hierdie staan bekend as die klassi�kasie probleem. Ons
toon aan dat afrigting en klassi�kasie uitgevoer kan word m.b.v. doeltre�ende
algemene algoritmes in die BN en DBN raamwerk. In die besonder bespreek
ons die aansluiting boom (�junction tree�) algoritme vir die BNe en die kop-
pelvlak aansluiting boom (�interface junction tree�) algoritme vir DBNe. Die
koppelvlak aansluiting boom algoritme is 'n veralgemening van die klassieke
vorentoe-agtertoe algoritme wat gebruik word in HMMs.

Ons implementeer 'n volledig funksionele OVOSR stelsels as deel van die
navorsing. Die stelsel word gebruik om 'n stel eksperimente uit te voer waar
ons die prestasie van 'n aantal voorgestelde modelle en afrigtingsalgoritmes vir
OVOSR evalueer en vergelyk. In die eksperimente gebruik ons die Clemson
Universiteit oudio-visuele eksperimente (CUAVE) data korpus vir die afrig en
evaluasie van die modelle en algoritmes. Die CUAVE data korpus bestaan
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uit opnames van verskeie sprekers wat die syfers nul tot nege uitspreek. Die
eksperimente is dus multispreker syferherkenningseksperimente. Ons is veral
geïnteresseerd in die werking van die OVOSR by verskillende vlakke van ruisop
verskillende vlakke van ruis en voeg dus kunsmatig Gaussiese ruis tot die
akoestiese kenmerkstroom. Ons evalueer dan die prestasie van die stelsel by
verskillende sein-tot-ruis (SNR) vlakke. Die vlak van ruis wissel vanaf -6 tot
18 dB SNR in stappe van 4 dB.

Die resultate van die eksperimente toon dat daar inderdaad inligting is in
die visuele spraak modaliteit wat nuttig is vir spraakherkenning. Ons vind spe-
si�ek vir die syferherkenningseksperiment wat slegs die visuele spraakinligting
gebruik 'n misklassi�kasie tempo van 25, 6%. Wanneer slegs die akoestiese
spraakinligting gebruik word, is die misklassi�kasie tempo 84, 2% by die erg-
ste ruisvlak van -6 dB. Ons vind ook dat modelle wat akoestiese en visuele
kenmerke kombineer in die algemeen beter presteer as modelle wat net die
akoestiese eienskappe gebruik. Die verbetering is duideliker by kleiner SNR
vlakke, siende dat in hierdie gebied die visuele inligting kompenseer vir die
akoestiese ruis. Selfs by groot SNR vlakke vind ons nogsteeds 'n statistiese
beduidende verskil tussen die oudio-visuele klassi�seerder en die slegs-oudio
klassi�seerder. Die persentasie fout verkry teen 18dB SNR met die oudio-
visuele klassi�seerder is 1.1% teenoor die 2.7% verkry met oudio alleenlik. Die
persentasie fout verkry deur die oudio-visuele klassi�seerder is dus meer as
helfde minder as die van audio alleenlik.

Ons is in staat om die resultate van Glotin et al. Glotin et al. (2001)
te herproduseer wat aangetoon het dat kenmerkstroomweging voordelig is
vir OVOSR. Ons is ook in staat om die resultate van Liu et al. Liu et al.
(2002) te herproduseer wat wys dat die kenmerkstroomintegrasie tegniek wat
gemodeleer word deur die oudio-visueelgekoppelde VMM (OV-KVMM) beter
is as die minder geso�stikeerde integrasie tegniek wat gemodeler word deur
die oudio-visueelproduk VMM (OV-PVMM) en die oudio-visueelonafhanklike
HMM (OV-OVMM). Die OV-KVMM, OV-PVMM en OV-OVMM is almal
DBN modelle;dus is die algemene afrigting en inferense raamwerk van toepass-
ing.

Die unieke bydrae van die navorsing is die toepassing van variasie Bayesi-
aanse (VB) leer tot oudio-visuele DBNe. Die VB leer metode is 'n alter-
natief vir die klassieke verwagting maksimering (VM) algoritme. Variasie leer
lei tot outomatiese modelkompleksiteitseleksie en vermy die singulariteite en
oorafrigtingsprobleme wat met EM met gepaard gaan. In die eksperimente
vind ons dat oudio-visuele DBN modelle afgerig met VB is meer robuust tot
ruis, waarskynlik a.g.v. hul meer kompakte vorm. Daar is egter nie voldoende
bewyse om bewyse om aan te toon dat VB algoritme in die algemeen beter
presteer beter as die VM wanneer oudio-visuele DBN modelle afgerig word
nie. Inteendeel, vir seker ruisvlakke vaar die VB algoritme slegter as die VM
algoritme wat die moontlikheid van oorgladde afrigting van die modelle met
VB afrigting uitbeeld. Ons vind egter dat modelle wat afgerig is met VB
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afskatting ewe goed presteer as modelle wat afgerig is met VM afskatting wan-
neer die ruisvlakke laag is. Die outomatiese modelseleksie eienskap van die
VB algoritme lei dan tot 'n meer kompakte model. So, deur die gebruik van
variasionele metodes is ons in staat om net so goed te doen met minder. Dit
is altyd 'n kosbare eienskap, veral in hulpbron-kritiese toepassings vir bywoor-
beeld draagbare toestelle soos selfone.
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Chapter 1

Introduction

Dave : Hello, HAL. Do you read me, HAL?

HAL: A�rmative, Dave. I read you.

Dave : Open the pod bay doors, HAL.

HAL: I'm sorry, Dave. I'm afraid I can't do that.

Dave : What's the problem?

HAL: I think you know what the problem is just as well as I do.

Dave : What are you talking about, HAL?

HAL: This mission is too important for me to allow you to jeopar-
dize it.

Dave : I don't know what you're talking about, HAL.

HAL: I know that you and Frank were planning to disconnect me,
and I'm afraid that's something I cannot allow to happen.

Dave : Where the hell'd you get that idea, HAL?

HAL: Dave, although you took very thorough precautions in the
pod against my hearing you, I could see your lips move.

From the movie �2001: A Space Odyssey�

1.1 Background

It has been documented since the 17th century that there is useful information
conveyed about speech in the facial movements of a speaker (?). This is in
particular manifested in the ability of hearing-impaired listeners to be able
to understand speech from visual cues only. This ability is known as lip-
reading or speech-reading. However, even for listeners with normal hearing,
being able to see the face of the speaker is known to signi�cantly improve
speech intelligibility, especially under noisy conditions. Taylor (1987) shows

1
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that some speech sounds which are easily confused in the audio domain (for
instance /b/ and /v/,/m/ and /n/) are distinct in the visual domain. In
addition, there is evidence that visual information is used to compensate for
elements in the audio signal that are vulnerable to acoustic noise.

Motivated by this multi-modal manner in which humans perceive their en-
vironment, research in audio-visual automatic speech recognition (AVASR) is
focused on the integration of the acoustic and visual speech modalities with
the purpose of improving accuracy and robustness of automatic speech recog-
nition systems. The objective of AVASR is to combine acoustic and visual
speech cues such that recognition performance is better than what is possible
using either modality alone.

Early evidence that vision can improve automatic speech recognition was
presented by Petajan (1984), who used the then current technology of dynamic
time-warping with visual features derived from mouth opening and showed
that the audio-visual system was better than either speech or vision alone. In
the 1980s, the development of hidden Markov models (HMMs) (Rabiner, 1989)
improved speech recognition accuracy and made possible large-vocabulary con-
tinuous speech recognition (LVCSR). HMMs were �rst applied to visual speech
recognition by Goldschen (1993) using an extension of Petajan's mouth blob
extraction method. Various approaches have since been tried with visual and
audio-visual speech recognition. Some notable reviews may be found in Chen
and Rao (1998), Neti et al. (2000), Potamianos et al. (2003) and Potamianos
et al. (2004).

Acoustic speech recognition is now �solved� to the extent that we have
speech recognition systems that run on personal computers, mobile phones
and in vehicles, to name a few. However, there is much room for improve-
ment regarding robustness to such factors as di�erent speakers, accents, mi-
crophones, and environmental noise. The fundamental requirements for any
acoustic speech recognition system is feature extraction, model learning, and
classi�cation (Rabiner and Juang, 1993). In addition to these requirements
that are inherited from classic acoustic speech recognition, the following prob-
lems need to be addressed in AVASR.

� Identi�cation and extraction of informative visual features;

� Optimal integration of the acoustic and visual features.

The �rst problem, that of extracting visual speech features, has naturally
received much less attention than its acoustic counterpart. A major problem of
extracting visual features is the enormous amount of data in video sequences,
a problem that is common to most computer vision systems. Each video frame
contains thousands of pixels whereas in most application we are only able to
handle feature vectors of sizes between 10 and 100 elements. Additionally,
these features should be robust to such variables as di�erent speakers, head
poses and lighting conditions.
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There are many possible approaches to reducing speech image data to
lower-dimensional feature vectors. At one end of the spectrum are approaches
where features are estimated directly from the image, for example statisti-
cal analysis of pixel intensities such as the eigenlips technique (Bregler and
Konig, 1994). At the other end are approaches where a priori information,
assumptions and expert knowledge are encapsulated by a model and the fea-
tures extracted by �tting the model parameters to images (Matthews et al.,
2002). We would expect the �rst approach to avoid systematic model errors
and the second approach to be more resistant to noise. However, between these
extremes lie many possibilities. State-of-the art solutions are based on active
appearance models (Cootes et al., 2001), where there has recently been much
work on optimising the models for visual speech (Papandreou et al., 2009).

The second problem, integration of audio and visual features, is the main
focus of the research presented in this thesis. By optimal stream integration we
mean that we are looking for the best strategy for combining the two feature
streams so that the resulting system is superior to any system that could be
built from any one of the feature streams by itself. Probability theory, with its
inherent notions of uncertainty and con�dence, is a natural approach to this
problem.

We have chosen to focus on the speci�c class of probabilistic models that
can be formulated as Bayesian networks (BNs) (Pearl, 1988). Bayesian net-
works are particularly well-suited to modelling the causalities inherent to
audio-visual speech (Ne�an et al., 2002) and allows for the development of
general and e�cient inference and learning algorithms to be developed. We
shall in particular see that an extension to Bayesian networks called dynamic
Bayesian networks (DBNs) (Murphy, 2002) allows us to model variable-length
sequences of observations. This is a fundamental requirement for speech recog-
nition applications where recorded speech samples (audio and video) typically
are of variable length. A classical example of a DBN is the hidden Markov
model (HMM) (Rabiner, 1989) which is used in many state-of-the-art speech
recognition systems.

The DBN models that we propose for solving the stream integration prob-
lem of AVASR are essentially extensions of the classic HMM model. One such
extension is the audio-visual product HMM (AV-PHMM). The AV-PHMM al-
lows for weighting individual feature streams according to some measure of
the reliability in each stream. Stream weighting is necessary as the acoustic
and visual modalities typically di�er in information content and noise. How-
ever, the classic HMM formulation requires us to concatenate acoustic and
visual features into a single feature vector, therefore giving little opportunity
of weighting the individual streams. The classic forwards-backwards HMM
(Rabiner, 1989) applied to AVASR using feature vector concatenation is re-
ferred to as the audio-visual HMM (AV-HMM). The AV-PHMM, however,
treats the two observations streams as separate observation models that can
be weighted independently. In the AV-PHMM the two observation models
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share the same HMM state space.
In addition to stream weighting, DBNs allow for modelling asynchrony

between acoustic and visual feature streams. This is necessary since, when
speaking, the motion of visible articulators such lips, tongue and jaw precedes
the actual sound being uttered. Thus, there is a slight delay between the
visual and acoustic speech modalities. This delay is referred to as audio-visual
synchrony. The delay is not constant, but depends on the particular sound that
is being uttered as well as the speaker. In part this o�set is caused by di�erent
channel delays, but is also a�ected by forward-articulation as described in
Benoit (1992). In Bregler and Konig (1994) this delay is estimated to be
approximately 120 ms on average.

In order to allow asynchrony between the two feature streams we can con-
sider using two separate HMMs for the acoustic and visual feature streams.
We can then weight the outputs of each model separately, according to mea-
sured stream reliability. This method of stream integration is referred to as
decision fusion (Ne�an et al., 2002) and the resulting model as the audio-visual
independent HMM (AV-IHMM)

The decision fusion approach may fail to capture the natural correlation
that exists between the acoustic and visual observations as the modalities are
considered independent by the model. However, in the DBN framework it is
possible to model the acoustic and visual feature streams independently using
two separate HMMs but couple the two HMMs at the state-level. In this way,
we are able to allow audio-visual asynchrony in the model while controlling the
level of asynchrony and maintaining the natural correlation between the two
feature streams. The resulting model is called the audio-visual coupled HMM
(AV-CHMM).

1.2 Speech recognition fundamentals

We shall brie�y review some of the fundamental concepts in speech recognition.
Most large-vocabulary continuous speech recognition (LVCSR) systems

consist of a language model, a pronunciation model, and an acoustic model.
Language models capture regularities in spoken language and are used in
speech recognition to estimate the probability of isolated words or word se-
quences. The most popular statistical method in use is the n-gram model,
which attempts to capture the syntactic and semantic constraints of the lan-
guage by estimating the frequencies of sequences of n words. Language models
are usually trained from manually transcribed speech corpora and general text
corpora. The required size and domain of such a corpus depends on the actual
speech recognition task, for instance small-vocabulary or large-vocabulary or
application domain.

For large vocabularies, many of the possible words seldom or never occur in
the transcribed training corpus. As a result, there is not enough training data
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describing a large portion of words. As such, most speech recognition systems
do not learn acoustic models for every word in the vocabulary. Instead, words
are divided into smaller linguistic units such as phonemes or phones (Rabiner
and Juang, 1993). A phoneme is de�ned as the smallest segmental unit of
sound that can change the meaning of a utterance. For example, the /t/ and
/d/ sounds in the words tip and dip are di�erent phonemes, as substituting one
with the other alters the meaning of the word. Phones also represent di�erent
sounds, but may not necessarily alter the meaning of the word. For example,
the /k/ sound in kit and skill are di�erent sounds. However, substituting one
for the other would not alter how a listener would perceive the meaning of the
word although the pronouncing might sound strange. There is no standard
phoneme or phone set size as it varies depending on the threshold set for what
constitutes a separate phoneme or phone. Common phoneme set sizes used
for English range from 40 to 48 phonemes.

Modern speech recognition systems typically use HMMs as acoustic models
of sub-word units such as phonemes. Each sub-word unit has a separate HMM
with its own set of parameters. There are many variations on this concept. For
instance, it is common to model phoneme context instead of isolated phonemes
as certain phonemes sound di�erent depending on the context in which the
phoneme appears (Rabiner and Juang, 1993). It also common to tie parameters
between models to reduce the total number of parameters required by the
system.

In most LVCSR systems, the recognised sub-word units are used by the
pronunciation model to determine which words are spoken. The recognised
words are in turn used by the language model to determine the most likely
word sequence given the individual words. Thus, LVCSR systems are typically
hierarchical in nature. In small-vocabulary speech recognition systems it is
common to model each word in the vocabulary directly as an acoustic model
instead of using a pronunciation model. In an isolated word recognition system
the n-gram model is replaced with a single discrete probability distribution
p(wi) over the words in the vocabulary. If all words are equally likely to occur,
for instance in the case of digit recognition, the language model can be ignored
all together.

1.3 Visual speech

The �eld of visual speech has naturally received signi�cantly less attention than
its acoustic counterpart. Nevertheless, some studies have been performed in
order to discover the characteristics of visual speech (McGurk and MacDonald,
1976), (Taylor, 1987), (Benoit, 1992), (Liew and Wang, 2009).

Just as phonemes are said to represent the smallest unit of sound that
can be said to change the meaning of an utterance, a similar concept exists
for visual speech. These smallest units of visual speech are referred to as
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Table 1.1: Phoneme to viseme mapping (Lucey et al., 2004).

Phoneme Viseme Phoneme Viseme
P

/p/

K

/k/

B G
M N
EM L
F

/f/
NX

V HH
T

/t/

Y
D EL
S EN
Z IY

/iy/
TH IH
DH AA /aa/
DX AH

/ah/W
/w/

AX
WH AY
R ER /er/
CH

/ch

AO

/ao/
JH OY
SH IX
ZH OW
EH

/ey

UH

/uh/
EY UW
AE SIL
AW SP

visemes. Table 1.1 shows an example phoneme set of 48 phonemes grouped by
their respective viseme classes, taken from Lucey et al. (2004). As we might
have expected, there are far fewer visemes than phonemes. This many-to-one
relationship between phonemes and visemes re�ects the fact that visual speech
in general contains less information than acoustic speech. Interestingly we also
note that phonemes that are easily confusable acoustically such as �D� and �B�
belong to separate viseme classes and therefore should be more distinguishable
in the visual domain. This is also the case for other confusable sets of phonemes
(Chen, 2001) and provides an additional motivation for AVASR research.

The multimodal nature of speech is also illustrated by the McGurk e�ect
(McGurk and MacDonald, 1976). The McGurk e�ect refers to a perceptual
phenomenon where a person who is hearing the sound /ba/, but watching
the sound /ga/, instead perceives the sound /da/. The McGurk e�ect clearly
demonstrates that human speech perception is indeed multimodal and thus
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justi�es the pursuit of developing automatic audio-visual speech recognition
systems.

1.4 Applications

Application areas for AVASR include those of traditional automatic speech
recognition (ASR) some of which are:

Speech-to-text processing. Speech-to-text processing is a classic applica-
tion of speech recognition. With the ability to transcribe speech directly into
text, computer users can for instance perform word processing or send emails
without using a keyboard. As many modern PCs are equipped with a user-
facing camera, speech-to-text is a natural application of AVASR, in particular
in noisy work environments where traditional acoustic-only ASR systems may
fail.

Accessibility. Speech recognition is a popular human-computer interface for
people with disabilities who often �nd traditional computer interfaces such as
a keyboard and a mouse di�cult or impossible to use. AVASR can improve
existing human-computer speech recognition interfaces, in particular in noisy
acoustic environments.

Automatic captioning. An interesting application of AVASR is to auto-
matically generate captions of video content where the speaker's face is visible.
Applications include video blogs, news broadcasts and YouTube clips. Using
automatic translation technologies the transcriptions may also be translated
into di�erent languages.

Data mining and search. With the exponential growth of multimedia con-
tent on the Internet, searching and organising this content becomes increas-
ingly important. AVASR is well-suited for digital content that combines speech
and video such as video blogs, online news broadcasts, and YouTube clips.

Mobile and handheld devices. With the increased popularity and capa-
bility of advanced mobile handsets and handheld devices, overcoming the user
interface limitation of such small devices is an crucial problem. As most high-
end devices come equipped with camera and microphone, speech and visual-
speech is an interesting way of interfacing with such a device. For instance,
Google Voice Search allows the user to perform searches in Google's search
engine through voice only. For AVASR to be used with such devices it would
be desirable for the device to have a camera that is facing the user. In mo-
bile applications there is typically little control over the acoustic environment,
justifying the application of AVASR.
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Vehicles The advent of intelligent transportation systems has brought new
technologies inside vehicles. Vehicle operators in the future will be able to
access greater information than is provided by current instrument panel dis-
plays and controls. Navigation, route guidance, tra�c management informa-
tion, collision avoidance, communication systems, and alternative methods for
displaying and controlling vehicle information (speed, audio, climate control,
engine status, and warning tell-tales) are just some examples of the new tech-
nologies proposed to improve driving performance, comfort, and convenience.
However, conventional system interfaces are impractical as the driver's arms
are required for operating the vehicle. As such, there is a great interest in in-
vehicular voice interfaces. Automotive cockpit environment are often severely
contaminated by acoustic noise from the surrounding environment, rendering
AVASR a particularly interesting option.

1.5 Objectives of the study

The objectives of the research are as follows:

� Provide a comprehensive review of the theory of Bayesian networks and
dynamic Bayesian networks and inference and learning algorithms in
such networks. Integrate theory from multiple sources in the literature
and providing additional detail as necessary.

� Provide enough details such that an implementation is straightforward.

� Apply the theory of Bayesian networks to solving the stream integration,
learning, and classi�cation problems in AVASR. In particular derive mod-
els that allows modelling stream weighting and audio-visual asynchrony.

� Provide a conceptual overview of the components comprising an AVASR
system, and outline how such a system is implemented in practice.

� Implement a full-featured AVASR system.

� Use the AVASR system to perform the following experiments:

� Compare the performance of an AVASR model where there is no
stream weighting (AV-HMM) versus a model that features stream
weighting (AV-PHMM).

� Compare the performance of AVASR models with di�erent asyn-
chrony properties (AV-PHMM, AV-IHMM and AV-CHMM).

� Evaluate the performance of AVASR compared to (a) classic audio-
only speech recognition and (b) visual-only speech recognition (au-
tomatic lip-reading)
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� Compare the performance of AVASR models learned using maxi-
mum likelihood estimation versus models learned using variational
learning.

1.6 Contribution

The main contributions of the research is a comprehensive treatment of Bayesian
network theory in Chapter 3, that covers literature otherwise only available
from multiple di�erent sources, and the experimental results presented in
Chapter 5.

The treatment of Bayesian network theory in Chapter 3 provides a coherent
presentation of theory found in Murphy (2002), Jordan (2003) and Bishop
(2007). These references focus on the general theory of machine learning and
Bayesian networks and as such leaves much for the reader to ��gure out�.
Most of the examples given in literature are provided for illustration purposes
only, and as such do not typically provide su�cient detail for solving complex
real-life problems. In this thesis we focus on the particular application of
AVASR and thus we are able to provide more detail in the derivation of the
theoretical results while maintaining a coherent relationship between theory
and a non-trivial real-life application. In particular the details provided in the
derivation of the expectation maximisation (EM) algorithm and VB algorithm
for Bayesian networks of latent multinomial variables and observed Gaussian
variables in Section 3.3 and 3.5, respectively, is to the best of our knowledge
not available from other resources.

The Bayesian network framework allows us to develop general inference
and learning algorithms. Thus, when we later propose several audio-visual
DBN models for solving problems in AVASR we do not have to derive learning
and inference algorithms for each model; it is all taken care of by the general
framework.

In the experiment chapter (Chapter 5) we reproduce the results presented in
Neti et al. (2000) that shows that the visual channel indeed contains valuable
speech information and that by combining acoustic and visual speech it is
possible to build speech recognition systems that perform better than classical
audio-only ASR systems in noisy acoustic environments.

We are also able to reproduce the results presented in Glotin et al. (2001)
which shows that weighting the acoustic and visual feature streams according
to measured stream reliability is essential to AVASR.

Finally, we are able to reproduce the results presented in Ne�an et al. (2002)
which show that the AV-CHMM performs better than the AV-PHMM and AV-
IHMM models con�rming our intuition that audio-visual asynchrony should
be allowed while restricting the amount of asynchrony in order to exploit the
natural correlation between the acoustic and visual feature streams.

The novel contribution of the research is the application of variational
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learning to AVASR models. Variational learning has been shown to avoid
problems associated with maximum likelihood learning such as over�tting and
singularities and also leads to automatic model complexity selection by giving
preference to models with fewer parameters that equally well approximates the
training data. As such variational learning adheres to the principle of Occam's
razor (Sober, 1996).

Variational learning has been successfully applied to speech recognition in
Somervuo (2002), Valente and Wellekens (2003) and Watanabe et al. (2003).
However, these studies are limited to the application of variational learning
to acoustic speech modelled as Gaussian Mixture Models (GMMs) (Bishop,
2007). GMMs assume that the observed features are independent and identi-
cally distributed (i.i.d.) which in general is not the case for speech data where
features are typically highly context-dependent. This context dependency is
modelled in HMMs while still allowing e�cient inference algorithms to be used,
which has made HMMs so popular for speech recognition applications where
performance is often crucial. Attias (2000) shows that, in theory, variational
learning can be performed e�ciently in general Bayesian networks. McGrory
and Titterington (2006) applies variational learning in HMMs and observe
the same model complexity selection properties that is observed in GMMs.
However, McGrory and Titterington (2006) only consider arti�cial data and
one-dimensional real-world time-series data. The high dimensionality of speech
features may yield entirely di�erent results.

This research provides the �rst application of variational learning to speech
recognition with more sophisticated models than GMMs. In particular we per-
form variational learning in the AV-CHMM model. The results show that we
are not able to reproduce the superior performance of variational learning as
reported by Valente and Wellekens (2003) and Watanabe et al. (2003) when ap-
plying variational learning to the more sophisticated AV-CHMMmodel used in
AVASR. However, we did �nd the AV-CHMM model learned using variational
methods appear to be more robust to noise than the same model learned using
maximum likelihood learning. This is possibly a result of the more compact
form of the variational AV-CHMM model. We also �nd that the model learned
using variational learning perform equally well as models learning using max-
imum likelihood estimation for the smallest levels of acoustic noise while the
automatic model selection property yields a more sparse representation. Thus,
by using variational methods we are able to do �just as well with less�. This is
always a desirable property, in particular in resource critical applications such
as in handheld devices.

As part of the research a complete AVASR system was implemented. The
tools needed to perform visual feature extraction was implemented by us from
scratch (Reikeras et al., 2010a) and is available at

https://bitbucket.org/helger/pyaam

under the GPL license. The remaining main components of the system are
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DBN inference and learning and acoustic feature extraction. The audio-visual
DBNs are implemented using the Bayesian network toolbox (Murphy, 2001)
by Kevin Murphy. MFCCs are calculated using Talkbox (Cournapeau, 2008)
by David Cournapeau.

The research for this thesis resulted in the submission of two peer-reviewed
papers. Reikeras et al. (2010b) passed the review and has been published.
Reikeras et al. (2010a) is still under review at the time of writing.

1.7 Overview of the rest of the thesis

In Chapter 2 we review existing literature in the �eld of AVASR and set the
context for our research within the research �eld.

In Chapter 3 we present the theoretical framework of Bayesian networks
and dynamic Bayesian networks. We discuss representation, inference and
learning, and give several examples of Bayesian networks including Gaussian
mixture models and hidden Markov models.

In Chapter 4 we describe the various components comprising the proposed
AVASR system including feature extraction, feature stream integration, learn-
ing and classi�cation. The system is used to conduct the experiments pre-
sented in Chapter 5. In the experiments the performance of several audio-
visual probabilistic models are evaluated and compared. We also compare
the performance of models learned using maximum likelihood and variational
learning methods. Performance is tested using the Clemson University audio-
visual experiments (CUAVE) database which consists of 36 speakers uttering
the digits from zero to nine. Thus the experiments are multi-speaker digit
recognition experiments.

Finally, in Chapter 6 we summarise the main contributions of the research,
present our conclusions, and propose interesting directions for future research
in AVASR. In addition to the main chapters there are three appendices. Ap-
pendix A lists important results from probability theory and the probability
distributions that we have used. In Appendix B we list tables of results from
signi�cance tests performed on the data from our experimental results. In
Appendix C we brie�y present the software that was developed as a part of
the research.



Chapter 2

Literature review

The idea of using visual information in speech recognition has been around
for a long time. It has been documented since the 17th century (?) that
there is useful information conveyed about speech in the facial movements of
a speaker. McGurk and MacDonald (1976) �rst described the McGurk e�ect.
The McGurk e�ect is a perceptual phenomenon whereby a listener who is
hearing the sound /ba/ but watching the sound /ga/ instead perceives the
sound as /da/. The McGurk e�ect is a core motivational factor for AVASR
research as it clearly demonstrates that human speech perception is indeed
multimodal. The emergence of AVASR as an active research �eld is relatively
recent and has to a large extent been enabled by the signi�cant increase in
computational resources available to researchers and industry.

Petajan (1984) and Petajan et al. (1988) present an automatic lip-reading
method that uses vector quantisation, dynamic time warping, and a heuristic
distance measure. The system uses a codebook of prior images that are used
to translate novel images into corresponding symbols. The symbol strings are
then compared to stored sequences representing di�erent words in the vocab-
ulary. Results from combined acoustic and visual speech recognition are also
presented that show improved performance compared to an acoustic recog-
nition system alone on a small-vocabulary speech recognition task. Others
mapped power spectra from static images (Yuhas et al., 1989), or used optic
�ow (Mase and Pentland, 1991) as visual features and achieved similar results.

Yuhas et al. (1989) use arti�cial neural networks (ANNs) as an improve-
ment to the early encoding scheme used by Petajan et al. (1988). The proposed
system is evaluated on a vowel recognition task. Results of integrating the vi-
sual and auditory signals for vowel recognition in the presence of acoustic noise
is presented. The results show that the proposed system performs signi�cantly
better in noisy acoustic environments than a corresponding audio-only system.
The performance increase in clean acoustic environments is marginal. In the
1980's, the development of hidden Markov models (HMMs) (Rabiner, 1989)
improved speech recognition accuracy and enabled large-vocabulary contin-
uous speech recognition (LVCSR). HMMs are �rst applied to visual speech

12
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recognition by Goldschen (1993) using an extension of the mouth blob extrac-
tion method of Petajan (1984).

Another ANN based system proposed by Bregler and Konig (1994) uses
active contour models or �snakes� (Kass et al., 1988) to perform automatic
lip-tracking. PCA models trained from manually annotated images are used
to constrain the contour search space, improving the robustness of the tracker.
A technique named eigenlips, which is similar to eigenfaces (?) used in facial
recognition, is used to model image texture over the region of interest. A hybrid
multilayer perceptron (MLP) and hidden Markov model (HMM) method is
used to integrate visual and acoustic speech modalities. The proposed model
accounts for asynchrony between the acoustic and visual modalities. Maximum
mutual information is used to measure the average delay between the two
modalities. The delay is found to be approximately 120ms. The performance
of the system is evaluated on a German multi-speaker database consisting
of connected letters. Experiments are performed in clean and nosy acoustic
environments. The system showed no performance increase over audio-only
speech recognition in the clean acoustic environment. However, in the noisy
environment the audio-visual system performed signi�cantly better than the
audio-only one.

Neti et al. (2000) contains the most comprehensive review of AVASR to
date. The report is a result of a workshop held at the Center for Language and
Speech Processing at the John Hopkins University. It demonstrates for the �rst
time that LVCSR performance can be improved by use of visual information
in the case of non-noisy audio. The report discusses state-synchronous and
phone-synchronous decision fusion using the multi-stream and product HMM,
respectively. The report also shows that for speech contaminated by �babble�
noise at 10 dB SNR, the recognition performance can be improved by 27%
in relative word error rate reduction compared to an equivalent audio-only
recogniser subject to the same noise model.

There is an extensive amount of literature available on the theory of Bayesian
networks and graphical models. An introduction can be found in Jordan
(2003). The most comprehensive reference to date regarding DBNs in par-
ticular is available in Murphy (2002).

DBNs for AVASR is introduced in Ne�an et al. (2002). Several DBN mod-
els are proposed including both synchronous and asynchronous models. Some
of the models are used in earlier AVASR applications although independent
from the framework of DBNs. Ne�an et al. (2002) uni�es these models in the
DBN framework and proposes several novel models inspired by the framework.
Experimental results are presented comparing audio-visual to audio-only and
video-only models on a small-vocabulary recognition task with di�erent lev-
els of acoustic noise. Stream exponents are used to weight the acoustic and
visual modalities according to the level of acoustic noise. The stream expo-
nents are estimated discriminatively. It is found that overall the audio-visual
model performs better than audio-only and visual-only models with a signif-
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icant performance increase in the presence of acoustic noise. However, even
in reasonably clean audio the audio-visual model performs marginally better
than the audio-only. As the visual-only model is not a�ected by acoustic noise
its performance is �xed at 33.1% misclassi�cation rate on the small-vocabulary
task. At a 10dB SNR level the audio-visual model has 34.3% and the audio-
only model 85% misclassi�cation rate. In clean audio the audio-visual model
has 1.9% and the audio-only 3.1% misclassi�cation rate. A second experiment
compares the performance of di�erent audio-visual DBNs. It is found that the
AV-CHMM performs best amongst the audio-visual DBN models considered
(including AV-HMM, AV-IHMM and AV-PHMM).

An updated review of the state of AVASR is presented in Potamianos et al.
(2004). The DBN framework has continued to attract the interest of AVASR
researchers Gowdy et al. (2004), Hershey et al. (2004), Saenko and Livescu
(2006), Lv et al. (2007), and Chu and Huang (2007).

Variational learning for Bayesian networks is �rst introduced in Attias
(2000) who discusses the variational Gaussian mixture model (VB-GMM) as
an example. A comprehensive treatment of variational methods in general is
given in Wainwright and Jordan (2008). Somervuo (2002) and Valente and
Wellekens (2003) applies variational learning to Gaussian mixture models for
acoustic speech recognition. In their experiments VB-GMM is shown to per-
form better than the standard EM algorithm, its convergence is faster, and
it avoids the problem of over�tting associated with standard EM. Watanabe
et al. (2003) applies variational learning to construct shared-state triphones
used in LVCSR. McGrory and Titterington (2006) applies variational learn-
ing in HMMs and observe the same model complexity selection properties
that is observed in GMMs. However, McGrory and Titterington (2006) only
consider arti�cial data and one-dimensional real-world time-series data. The
high dimensionality of speech features may yield entirely di�erent results. To
date, no one has applied variational learning to HMMs with application to
speech recognition or any of the models that are used in AVASR. Thus the
performance of variational learning in more complex models than the GMM
for high-dimensional speech data remains unknown.

AVASR still remains an active area of research with many challenging prob-
lems yet to be solved. Some issues that have been addressed recently are as
follows. Marcheret and Libal (2007) introduces dynamic stream weighting and
shows that their dynamic weighting scheme is superior to a static weighting
scheme. This idea is further developed in Gurban et al. (2008). Terry and
Katsaggelos (2008) proposes a hierarchical DBN that models every aspect of
speech recognition including language, words, phonemes, visemes, acoustics
and vision. The book of Liew and Wang (2009) present a collection of selected
papers on visual-only speech recognition. Most of this material is also highly
relevant in the context of audio-visual speech recognition.

An interesting area of research is visual feature extraction. There are many
ways of reducing speech image data to feature vectors. At one end of the spec-



CHAPTER 2. LITERATURE REVIEW 15

trum is the approach where features are estimated directly from the image, for
example the statistical analysis of pixel intensities such as eigenlips (Bregler
and Konig, 1994). At the other end of the spectrum is the analytical approach
where a priori information, assumptions and expert knowledge are encapsu-
lated into a model and features are extracted by �tting model parameters to
images. We would expect the �rst approach to avoid systematic model errors
and the second approach to be more resistant to noise. However, between these
extremes lie many possibilities. Based on their work on AAMs Matthews et al.
(2002) proposes to use AAMs for extracting visual speech features. The ex-
periments yield encouraging results and establish the validity of using AAMs
as a method of visual speech feature extraction.

Papandreou et al. (2009) make several novel improvements to existing
AVASR techniques. A dynamic adaptation method for multimodal fusion
schemes in changing environmental conditions is presented. The adaptive fu-
sion method is based on measuring the reliability of individual feature streams.
The method can be integrated with any of the common DBN models found in
AVASR. The paper also introduce the visemic AAM that addresses the prob-
lem of non-speech related information and speaker dependency associated with
traditional AAMs.

Due to the lack of a standard and publicly available AVASR data corpus,
open source software, and benchmarking results, it is di�cult to compare the
performance of di�erent approaches to AVASR found in the literature. As
a result there is also no extensive comparison of di�erent methods available.
However, the results presented in Papandreou et al. (2009) suggests that their
system based on visemic AAMs, DBNs and dynamic stream weighting repre-
sents the state of the art in AVASR research.



Chapter 3

Theoretical framework

3.1 Introduction

The main focus of our research is the investigation of how the framework of
Bayesian networks can be used to solve problems in AVASR. In particular,
we are interested in the stream weighting, stream integration, learning, and
classi�cation problems. In this chapter we discuss how Bayesian networks
are represented using graph theory and probability theory and how we can
estimate model parameters of Bayesian networks from data. In Chapter 4
we use the results from this chapter to solve the stream weighting, stream
integration, and classi�cation problems.

We �rst discuss Bayesian networks and then we describe dynamic Bayesian
networks (DBNs). A DBN is an extension to Bayesian networks (static Bayesian
networks) that models dynamic systems such as speech. We �rst focus on the
theory of static Bayesian networks. Once we have the theoretical foundation
and intuition from static Bayesian networks in place we shall move on to dis-
cussing DBNs. We shall see that many of the results from the analysis of static
Bayesian networks are transferable to DBNs.

3.2 Bayesian networks

3.2.1 Representation

We now discuss how to represent a Bayesian network, following the approach
in Bishop (2007, Chapter 8).

A Bayesian network (Pearl, 1988) consists of a set of nodes together with
a set of directed edges connecting the nodes. The direction of an edge is
indicated by an arrowhead when drawing the graph. This situation is shown
in Figure 3.1.

A Bayesian network must constitute a directed acyclic graph (DAG) mean-
ing that, in addition to arcs having direction, there must be no cycles within

16
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Figure 3.1: A simple Bayesian network consisting of two nodes. The direction of

the arrow is from A to B representing the statement that A and B are dependent.

Figure 3.2: This graph is cyclic and therefore does not constitute a Bayesian

network.

Figure 3.3: This graph is an acyclic directed graph and thus represents a Bayesian

network.

the graph. For instance, the graph in Figure 3.2 is not a DAG and therefore not
a Bayesian network. The graph shown in Figure 3.3, however, is both acyclic
and directed, and therefore satis�es the conditions for a Bayesian network.

More formally, we represent a Bayesian network as a DAG denoted by
G(V,E), where V is a set of nodes and E is the set of edges connecting the
nodes, with an associated probability distribution. Let xV = {xv : v ∈ V } be
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a set of random variables indexed by the nodes on the graph. Then p(xV ) is
the joint probability distribution over these random variables. For instance,
for the Bayesian network in Figure 3.3 we have

p(x) = p(xA,xB,xC) (3.2.1)

where V = {A,B,C}.
We denote the set of parents of a node v as πv and we shall allow sets of

indices to be used wherever a single index is used. Thus, xπv denotes the set
of random variables indexed by the parents of v. For each random variable
xv we associate a conditional probability distribution (CPD). The conditioning
set of a CPD associated with xv, i.e. the set of variables on which the CPD is
conditioned, is de�ned as the set of parents xπv of xv.

The joint probability distribution over all variables p(xV ) is de�ned as

p(xV ) =
∏
v∈V

p(xv|xπv). (3.2.2)

That is, the joint probability distribution over all random variables in the
Bayesian network is the product of CPDs. For instance, the joint distribution
for the Bayesian network in Figure 3.3 is

p(xA,xB,xC) = p(xC |xA,xB)p(xB|xA)p(xA). (3.2.3)

We often make explicit reference to the dependency of the model on a set
of model parameters θ. We then write the joint probability distribution as
p(xV |θ). Assuming that each CPD has an individual set of parameters (3.2.2)
becomes

p(xV |θ) =
∏
v∈V

p(xv|xπv ,θv) (3.2.4)

where θv are the parameters associated with the conditional probability dis-
tribution p(xv). In many applications we are interested in models with CPDs
that share the same parameters. We shall see examples of this situation later
in the chapter.

3.2.2 Conditional independence

Central to the theory of graphical models and Bayesian networks is the concept
of conditional independence. The discussion follows that of Bishop (2007). We
say that a variable xA is conditionally independent of xB given xC if

p(xA,xB|xC) = p(xA|xC)p(xB|xC). (3.2.5)

Consider the simple Bayesian network shown in Figure 3.4. From (3.2.2)
we have that

p(xA,xB,xC) = p(xA|xC)p(xB|xC)p(xC). (3.2.6)
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Figure 3.4: Example of conditional independence in a simple Bayesian network.

From the product rule of probability (A.1.2),

p(xA,xB|xC) =
p(xA,xB,xC)

p(xC)
(3.2.7)

which, using (3.2.6), gives

p(xA,xB|xC) = p(xA|xC)p(xB|xC). (3.2.8)

That is, xA and xB are conditionally independent given xC .
Conditional independence is denoted by the ⊥⊥ symbol. For the above

example we have
xA ⊥⊥ xB | xC . (3.2.9)

We are often interested in the posterior distribution of the variables in
a Bayesian network given that the values of a subset of variables have been
observed. The posterior distribution is obtained by conditioning the joint
distribution on the observed variables. For instance, if xC is observed in Figure
3.4 the posterior distribution is given by (3.2.8). We often indicate the observed
variable when drawing the graph by shading the conditioned variables as shown
in Figure 3.5 for the case when xC is observed.

3.2.2.1 D-separation

Conditional independence plays an important role when using probabilistic
models for machine learning as it often signi�cantly simpli�es the structure
of the model and allows e�cient inference algorithms to be used. An elegant
and important feature of Bayesian networks is that conditional independence
properties can be read directly from the graph. To describe how, we �rst need
to understand the concept of d-separation.

The concept of d-separation is most easily understood from a few examples.
In the �rst example we again consider the graph in Figure 3.4. Recall that the
joint probability distribution represented by this graph is given by

p(xA,xB,xC) = p(xA|xC)p(xB|xC)p(xC). (3.2.10)
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Figure 3.5: In this graph xA is conditionally independent of xB once xC is observed.

First we consider the case where the conditioning set is the empty set ∅.
Using the above expression we investigate whether xA and xB are independent
given the empty set by marginalising both sides of (3.2.10) with respect to xC
to give

p(xA,xB) =
∑
xC

p(xA|xC)p(xB|xC)p(xC). (3.2.11)

In general, this expression does not factorise into a product of the form
p(xA)p(xB) hence

xA 6⊥⊥ xB | ∅ (3.2.12)

where 6⊥⊥ means that the conditional independence property does not hold.
Next we consider the case where we condition on the variable xC . The

corresponding distribution is

p(xA,xB|xC) =
p(xA,xB,xC)

p(xC)

= p(xA|xC)p(xB|xC) (3.2.13)

from which we get
xA ⊥⊥ xB | xC , (3.2.14)

and hence xA is conditionally independent of xB given xC .
It is possible to give a graphical interpretation of these results by con-

sidering the path from A to B via C. The node C is said to be tail-to-tail
with respect to this path because the node is connected to the tails of the
two connecting arrows. When we condition on xC as in Figure 3.5 the node
corresponding to the conditioned variable blocks the path from A to B causing
xA and xB to become (conditionally) independent. When we do not condition
on xC the path is unblocked causing xA and xB to become dependent.

In the next example we consider the graph shown in Figure 3.6. The
corresponding joint distribution is

p(xA,xB,xC) = p(xA)p(xC |xA)p(xB|xC). (3.2.15)
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Figure 3.6: In this graph xA depends on xB since xC is unknown.

Figure 3.7: In this graph xA is conditionally independent of xB once xC is observed.

Again, we start by considering the case where none of the variables are
observed. Marginalising over xC gives

p(xA,xB) = p(xA)
∑
xC

p(xC |xA)p(xB|xC) = p(xA)p(xB|xA) (3.2.16)

which in general does not factorise into p(xA)p(xB). Hence, again we have

xA 6⊥⊥ xB | ∅ (3.2.17)

which we recognise as the same result we found in our previous example.
Next we condition on node xC as shown in Figure 3.7. Using Bayes' theorem

(A.1.3), together with (3.2.15), we have

p(xA,xB|xC) =
p(xA,xB,xC)

p(xC)

=
p(xA)p(xC |xA)p(xB|xC)

p(xC)

=
p(xC)p(xA|xC)p(xB|xC)

p(xC)

= p(xA|xC)p(xB|xC). (3.2.18)

Hence, we have
xA ⊥⊥ xB | xC . (3.2.19)

Again, we can interpret these results graphically. The node C is said to be
head-to-tail with respect to the path from A to B. This path connects A and B
and renders the nodes dependent. If we now observe xC , then this observation
blocks the path from A to B and we obtain the conditional independence
statement xA ⊥⊥ xB | xC .

The �nal example is shown in Figure 3.8. The joint distribution is given
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Figure 3.8: In this graph xA is independent of xB as long as xC remain unobserved.

Figure 3.9: In this graph xA depends on xB through the observed variable xC .

by
p(xA,xB,xC) = p(xA)p(xB)p(xC |xA,xB). (3.2.20)

Consider �rst the case where none of the variables are observed. Marginalising
both sides of (3.2.20) with respect to xC we get

p(xA,xB) = p(xA)p(xB) (3.2.21)

and thus xA and xB are independent when no variables are observed.

xA ⊥⊥ xB | ∅. (3.2.22)

Note that this is the opposite behaviour of what we observed in our �rst two
examples.

Now suppose we condition on xC as shown in Figure 3.9. The conditional
distribution of xA and xB is given by

p(xA,xB|xC) =
p(xA,xB,xC)

p(xC)

=
p(xA)p(xB)p(xC |xA,xC)

p(xB)
(3.2.23)



CHAPTER 3. THEORETICAL FRAMEWORK 23

which in general does not factorise into the product p(xA)p(xB), and so

xA 6⊥⊥ xB | xC . (3.2.24)

As we can see, the �nal example has the exact opposite behaviour of the
�rst two. Graphically, we say that the node C is head-to-head with respect to
the path from A to B as it connect the heads of the two arrows. When node c
is unobserved, it blocks the path, and the variables xA and xB are independent.
When conditioning on xC the path is unblocked which results in xA and xB
becoming dependent.

There is one more subtlety associated with the �nal example that needs to
be addressed. First we introduce some more terminology. We say that node
N is a descendant of a node M if there is a path from N to M in which each
step of the path follows the direction of the arrows. It can be shown that
a head-to-head path will become unblocked if either the node, or any of its
descendants, is observed.

In summary, a tail-to-tail node or a head-to-tail node leaves a path un-
blocked unless it is observed in which case the path becomes blocked. A
head-to-head node blocks a path if it is unobserved, but once the node, and/or
at least one its descendants, is observed the path becomes unblocked.

We now summarise the concept of d-separation in more general terms.
Consider a general DAG in which A, B and C are arbitrary non-intersecting
subsets of V such that A ∪ B ∪ C ⊆ V . We wish to ascertain whether a
particular conditional independence statement A ⊥⊥ B | C holds. We can
achieve this by considering all paths from any node in A to any node in B.
Any such path is said to be blocked if it includes a node where

� the arrows on the path meet either head-to-tail or tail-to-tail at the node,
and the node is in the set C, or

� the arrows meet head-to-head at the node and neither the node, nor any
of its descendants, is in the set C.

If all paths from A to B are blocked, then A is said to be d-separated from
B by C and the joint distribution over all the variables in the graph will satisfy
A ⊥⊥ B | C.

The concept of d-separation is illustrated further in Figure 3.10. In a) the
path from A to B is not blocked by node F because it is a tail-to-tail node
for this path and is unobserved. It is also not blocked by node E because,
although the latter is a head-to-head node, it has a descendant C that is in
the conditioning set. As such, we have that A is not d-separated from B and
the conditional independence statement xA ⊥⊥ xB | xC does not follow from
this graph. In b) the path from A to B is blocked by node F because this is
a tail-to-tail node that is observed, and so A is d-separated from B and the
conditional independence property xA ⊥⊥ xB | xC is satis�ed by this graph.
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Figure 3.10: In graph a) xA depends of xB even though xB is observed. In graph

b) the observations of xF causes A and B to be d-separated.

Figure 3.11: The Markov blanket of a node xr.

Note that this path is also blocked by node E because E is head-to-head and
neither it nor any of its descendants is in the conditioning set.

The Markov blanket of a variable xr is illustrated in Figure 3.11. The
Markov blanket of a node xv comprises the set of parents, children and co-
parents (parents of children) of the node. It has the property that the con-
ditional distribution of xv, conditioned on all the remaining variables in the
graph, dependents only on the variables in the Markov blanket.

Consider a joint distribution p(xV ) represented by a Bayesian network.
Now consider the conditional distribution of a particular node xr conditioned
on all of the remaining variables xS where S = V \{r}. Using (3.2.2) we get
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p(xr|xS) =
p(xV )∫
p(xV )dxr

=

∏
v p(xv|xπv)∫ ∏
v p(xv|xπv)dxr

(3.2.25)

in which the integral is replaced by a summation where necessary if the vari-
ables are discrete. We observe that the CPD of any variable xv that does
not have a functional dependence on xr can be taken outside the integral and
as a result will cancel between the numerator and denominator. The only
factors that remain are the conditional distribution p(xr|xπr) for the node xr
itself and any conditional distributions for child nodes s ∈ S with random
variables xs for which xr is in the conditioning set of p(xs|xπs), that is for
which r ∈ πs. The conditional distribution p(xr|xπr) depends on the parents
of node xr whereas the conditionals p(xs|xπs) depend on the children of xr as
well as the co-parents of xr. The co-parents of xr are the parents of the nodes
in xS other than xr. The set of nodes comprising the parents, children, and
co-parents is called the Markov blanket of node xr. From (3.2.25) we see that
the Markov blanket d-separates xr from the rest of the nodes in the network.
Intuitively, the Markov blanket is the minimum set of nodes that �isolates� xr
from the rest of the network.

3.3 Maximum likelihood estimation

In maximum likelihood estimation (MLE) model parameters are estimated by
maximising the likelihood function with respect to the parameters given a set
of observations. Suppose we have a Bayesian network consisting of a set of
nodes V and a set of corresponding random variables xV . Now suppose we
have N independent and identically distributed (i.i.d.) observations of each
variable denoted by X = {X1,X2, . . . ,XN} where Xn is a single observation
of all xv for v ∈ V . Then the likelihood of the data as a function of model
parameters is given by

p(X|θ) =
N∏
n=1

p(Xn|θ) (3.3.1)

where θ is the set of model parameters. It is common to work with the
log likelihood function instead of the likelihood function directly. Using the
log likelihood function simpli�es the analysis and during computations avoids
issues with numerical under�ow as a result of taking the product of small
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probabilities. The log likelihood function is de�ned as

ln p(X|θ) = ln
N∏
n=1

p(Xn|θ)

=
N∑
n=1

ln p(Xn|θ). (3.3.2)

Note carefully that the i.i.d. assumption is made for the observations, i.e. that
Xn ⊥⊥ Xm for n 6= m where ⊥⊥ denotes that the two variables are statistically
independent. This does not mean that observations for separate nodes within
the network are independent. Thus, in general we have that xv 6⊥⊥ xw for
v 6= w.

Equation (3.3.2) is referred to as the complete-data log likelihood as the
assumption is that we have a complete set of observations for all the nodes in
the network. Letting xnv denote the n-th observation for the node v and using
(3.2.4) we get

ln p(X|θ) =
N∑
n=1

ln
∏
v∈V

p(xnv |xnπv ,θv)

=
N∑
n=1

∑
v∈V

ln p(xnv |xnπv ,θv). (3.3.3)

We see that the likelihood decouples into local terms involving a node v and its
parents πv only, thereby signi�cantly simplifying the MLE problem as we can
optimise with respect to each θv independently. In particular, for node xv in
the Bayesian network we can estimate the model parameters θv by only con-
sidering observations of xnv for n = 1, . . . N and the corresponding observations
of the parent nodes xnπv .

The maximum likelihood estimation of the parameters is typically calcu-
lated by setting the derivative with respect to θv equal to zero while taking
parameter constraints into consideration for instance by using Lagrange mul-
tipliers (Bishop, 2007). The exact form of the optimal parameters depends on
the nature of the individual CPDs. In the complete-data case we are in most
instances able to �nd a closed-form solution to the MLE problem.

Until now we have assumed that we have observations for all variables in
the Bayesian network. However, in many applications there are unobserved
variables, for instance the nodes representing phonemes in speech recognition.
We therefore separate the set of random variables xV into hidden and observed
variables. We denote hidden variables as xH and observed variables as xE such
that V = H ∪ E. We often use the terms latent and evidence for the hidden
and observed variables, respectively.

The corresponding set of variables in the case of N observations are XH =
{Z1, . . . ,ZN} and XE = {X1, . . . ,XN}. That is, for each observed set of
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variables Xn in the network there will be a corresponding set of latent variables
Zn.

We now form the incomplete-data likelihood

p(XE|θ) =
N∏
n=1

∑
Zn

p(Zn,Xn|θ) (3.3.4)

where
∑

Zn
means that we marginalise over all variables in Zn. The motivation

for this marginalisation shall become apparent in the next section when we
discuss the EM algorithm. The corresponding incomplete-data log likelihood
becomes

ln p(XE|θ) =
N∑
n=1

ln
∑
Zn

p(Zn,Xn|θ) (3.3.5)

and using (3.2.4) we obtain

ln p(XE|θ) =
N∑
n=1

ln
∑
Zn

∏
v∈V

p(xnv |xnπv ,θv)

where xnv ,x
n
πv ∈ Zn ∪Xn. We see that, due to the presence of the marginal-

isation over Zn, this time the likelihood function does not decouple over the
CPDs thereby substantially complicating the MLE of the model parameters.
In general, we are not able to �nd a closed-form solution to the MLE problem
in the case of an incomplete-data log likelihood. Instead, we turn to the EM
algorithm.

3.3.1 The EM algorithm

The expectation maximisation (EM) algorithm is an iterative method for �nd-
ing maximum likelihood estimates of model parameters from observed data in
the case of incomplete-data. We start by introducing a probability distribu-
tion q(XH) over the latent variables XH . We can then show that the following
decomposition holds

ln p(XE|θ) = L(q,θ) + KL(q||p) (3.3.6)

where

L(q,θ) =
∑
XH

q(XH) ln

{
p(XE,XH |θ)

q(XH)

}
(3.3.7)

KL(q||p) = −
∑
XH

q(XH) ln

{
p(XH |XE,θ)

q(XH)

}
. (3.3.8)

We can verify (3.3.6) using the product rule of probability which gives

ln p(XE,XH |θ) = ln p(XH |XE,θ) + ln p(XE|θ) (3.3.9)
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which we substitute into L(q,θ). This results in two terms, one of which
cancels KL(q||p) and another that gives the required log likelihood ln p(XE|θ)
since q(XH) is a normalised distribution that sums to 1.

Equation (3.3.8) is the Kullbach-Leibler (KL) divergence (Bishop, 2007,
page 55) between q(XH) and the posterior distribution p(XH |XE,θ). The KL
divergence satis�es

KL(q||p) ≥ 0, (3.3.10)

with equality if, and only if,

q(XH) = p(XH |XE,θ). (3.3.11)

It therefore follows from (3.3.6) that

L(q,θ) ≤ ln p(XE|θ). (3.3.12)

That is, L(q,θ) is a lower bound of ln p(XE|θ). Note that L(q, θ) is a functional
of the distribution q(XH) and a function of the parameters θ (Bishop, 2007,
Chapter 9).

The EM algorithm proceeds as follows. Suppose that the current value of
the parameter vector is θ. In the E step, the lower bound L(q,θ) is maximised
with respect to q(XH) while holding θ �xed to give

q∗(XH) = argmax
q(XH)

L(q,θ). (3.3.13)

Equation (3.3.13) is solved by noting that the value of ln p(XE|θ) does not
depend on q(XH) and hence from (3.3.6) and (3.3.12) we get that the largest
value of L(q,θ) will occur when the KL divergence vanishes. This happens
when q(XH) is equal to the posterior distribution p(XH |XE,θ). In this case,
the KL divergence vanishes and the lower bound equals the log likelihood.

In the subsequent M step, the distribution q(XH) is held �xed and the
lower bound L(q,θ) is maximised with respect to θ to give some new value

θ∗ = argmax
θ

L(q,θ). (3.3.14)

From (3.3.7) we see that this step will cause the lower bound to increase in the
next E-step, except for the case where it is already at its maximum, which will
necessarily cause the corresponding log likelihood function to increase since
with q(XH) = p(XH |XE) the lower bound is equal to the likelihood

Note that the distribution q(XH) is determined using the old parameter
values rather than the new ones and is held �xed during the M step. As
such, q(XH) will not equal the new posterior distribution p(XH |XE,θ

∗) and
hence there will be a non-zero KL divergence. Thus, again the log likelihood
can be increased by �xing the new set of parameters (which now become the
old parameters), and maximising with respect to q(XH) by setting q(XH) =



CHAPTER 3. THEORETICAL FRAMEWORK 29

p(XH |XE,θ). The EM algorithm continues iterating between the E step and
the M step until convergence.

In the E step we calculate q(XH) = p(XH |XE,θ). Substituting into (3.3.7)
we get

L(q,θ) =
∑
XH

p(XH |XE,θ) ln p(XE,XH |θ∗)−
∑
XH

p(XH ,XE,θ)

= Q(θ∗,θ) + const. (3.3.15)

We see that the second term on the right-hand side is independent of θ∗ and
thus a constant when maximising the lower bound in the M step.

Note that the quantity that is being maximised is actually the expectation
of ln p(XE,XH |θ∗) with respect to the posterior distribution over the latent
variables given the previous parameters, q(XE) = p(XH |XE,θ). That is, we
have

Q(θ∗,θ) = E[ln p(XE,XH |θ∗)]. (3.3.16)

where the expectation is taken with respect to the posterior p(XH |XE,θ).
The intuition behind the EM algorithm is thus as follows. If we had the

complete data we could estimate θ directly by maximising the complete-data
log likelihood in (3.3.2) using (3.3.3). However, since we only have incomplete
data we instead maximise the expectation of the complete-data log likelihood
given the observed data and the current estimate of θ. Consequently, the quan-
tities required for the M step are the expected values of the same quantities
required to estimate the parameters the complete-data case. In the complete-
data case these quantities are called su�cient statistics whose precise form
depends on the type of CPDs used. Thus, in the case of incomplete-data these
quantities are referred to as the expected su�cient statistics.

In this research we only consider random variables whose CPDs are either
multinomial (A.2.6) or Gaussian (A.2.1). We further assume that all multi-
nomial variables are latent, all Gaussian variables are observed, and that all
parent nodes of any variable are latent-multinomial. We shall denote a vari-
able xnv as zn if the variable is latent-multinomial and simply xn if the variable
is observed-Gaussian. For the multinomial variables we use the 1−of−K rep-
resentation (Bishop, 2007) in which a particular element zk is equal to 1 and
all other elements equal 0. The values of zk satisfy zk ∈ {0, 1} and

∑
k zk = 1.

Thus, there are K possible states the vector z can assume according to which
element is non-zero. Note that we omit the dependencies of the variables on the
node v in order to keep the notation uncluttered. The CPD parameters θv are
ρ if the variable is multinomial and the pair (µ,Σ) if the variable is Gaussian.
Each node has a separate set of parameters for each possible con�guration of
parent nodes.



CHAPTER 3. THEORETICAL FRAMEWORK 30

Figure 3.12: In the case that all parent nodes are multinomial we may treat the

parents as a single multinomial variable with entries for all possible con�gurations

of the parent nodes.

In the case that we have N observations XE = (X1, . . . ,XN) and corre-
sponding latent variables XH = (Z1, . . . ,ZN) we get that Q(θ∗,θ) becomes

Q(θ∗,θ) =
N∑
n=1

∑
Zn

q(Zn) ln
∏
v∈V

ln p(xnv |xnπv ,θv)

=
N∑
n=1

∑
Zn

∑
v∈V

q(Zn) ln p(xnv |xnπv ,θv), (3.3.17)

where again xnv ,x
n
πv ∈ Zn ∪XN . Recalling that q(Zn) = p(Zn|Xn) from the E

step we wish to optimise Q(θ∗,θ) with respect to θv ∈ θ∗.
We note that the sum over the indices v in Equation (3.3.17) decouples

over the parameters θv. Thus, taking the derivative with respect to θv causes
all other terms not dependent on v to disappear and as such we can optimise
with respect to each θv individually.

Since the set of parent variables are discrete it is possible to treat these
variable as a single parent zπ with elements zπk corresponding to the di�erent
con�gurations of the parent variables. For instance, consider the graph in
Figure 3.8. Suppose zA is a multinomial variable that can assume one of two
possible values zA1 and zA2 and similarly zB can assume one of two possible
values zB1 and zB2. Then jointly the variables zA and zB can assume one of four
possible combinations of values (zA1, zB1), (zA1, zB2), (zA2, zB1),and (zA2, zB2).
From the four con�gurations we can create a single multinomial parent �mega-
variable� zπ that can assume one of four possible states. This idea generalises
to any number of parents of potentially di�erent dimensionality. Thus, in
practice we shall treat the parent nodes xπv of a variable xv as a single parent
variable.

We now consider how to perform parameter updates in the case xv is a
multinomial variable and subsequently in the case that xv is a Gaussian vari-
able.
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Multinomial. In the case the variable is a multinomial variable zn with
elements znl ∈ {0, 1} such that

∑L
l=1 znl = 1 the CPD is given by

p(zn|zπn ,ρ) =
K∏
k=1

[
L∏
l=1

ρznlkl

]zπnk

=
K∏
k=1

L∏
l=1

ρ
znlzπnk
kl (3.3.18)

where ρ are the model parameters with 0 ≤ ρkl ≤ 1,
∑L

l=1 ρkl = 1 and ρkl =
p(zl = 1|zπk = 1).

Taking the derivative of Q(θ∗,θ) with respect to ρ we get

∂

∂ρ
Q(θ∗,θ) =

N∑
i=1

∑
Zn

q(Zn)
∂

∂ρ
ln

{
K∏
k=1

L∏
l=1

ρ
znlzπnk
kl

}

=
N∑
i=1

∑
Zn

q(Zn)
∂

∂ρ

K∑
k=1

L∑
l=1

znlzπnk ln ρkl. (3.3.19)

We recall that from the E step q(Zn) = p(Zn|Xn,θ) where θ is the old pa-
rameter set. Thus, the e�ect of taking the sum over Zn is to marginalise out
all variables from p(Zn|Xn,θ) except zn and zπn that also appear outside the
posterior on the right-hand side of (3.3.19). Thus, (3.3.19) can be rewritten
as

∂

∂ρ
Q(θ∗,θ) =

N∑
i=1

∑
zn,zπn

p(zn, zπn|Xn,θ)
∂

∂ρ

K∑
k=1

L∑
l=1

znlzπnk ln ρkl. (3.3.20)

where we see that we only need to calculate the local posterior p(zn, zπn|Xn,θ).
We shall discuss in detail how to e�ciently calculate this posterior in the next
section when we discuss the junction tree algorithm.

We note from (3.3.20) that the sums on the right-hand side decouple over
the parameters ρkl. Thus, we can take partial derivatives with respect to ρkl
giving

∂

∂ρkl
Q(θ∗,θ) =

N∑
n=1

∑
zn,zπn

p(zn, zπn|Xn,θ)znlzπnk
∂

∂ρkl
ln ρk

=
N∑
n=1

rnkl

(
1

ρkl

)
(3.3.21)

where we have de�ned the quantity

rnkl =
∑

zn,zπn

p(zn, zπn|Xn,θ)znlzπnk

= E[znlzπnk ] (3.3.22)
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where the expectation is taken with respect to the distribution p(zn, zπn|Xn,θ).
The quantity rnkl represents the responsibility that the parent con�guration
zπnk takes for the explaining the value of znl given the parameters θ.

De�ning Nkl as

Nkl =
N∑
n=1

rnkl (3.3.23)

and setting the derivative equal to zero we get

Nkl

ρkl
+ λ = 0 (3.3.24)

where λ is a Lagrange multiplier whose role is to ensure he constraint
∑L

l=1 ρkl =
1. The quantity Nkl is the expected su�cient statistics for the multinomial
variable z and represents the expected number of times z is in state k while
its parents are in state l where the expectation is taken with respect to the
variational distribution q(zn) over the latent variables.

Upon rearranging equation (3.3.24)

ρklλk +Nkl = 0. (3.3.25)

and using the constraint
∑L

l=1 ρkl = 1 we get

λk = −
L∑
l=1

Nkl. (3.3.26)

Finally, this gives us

ρkl =
Nkl∑L
l=1Nkl

, (3.3.27)

which is the maximum likelihood estimate of ρkl for a latent multinomial vari-
able with latent multinomial parents in a Bayesian network. In the case that zn
or any of the parents zπn are observed the analysis carries through unchanged
with the observed values replacing expected values as necessary.

Gaussian. In the case that xn is a Gaussian variable with latent multinomial
parents zπn the CPD is given by

p(xn|zπn) =
K∏
k=1

[N (xn|µk,Σk)]
zπnk . (3.3.28)

We maximise the lower bound with respect to the parameters by setting the
partial derivative of the log likelihood function with respect to the parameters
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(µ,Σ) equal to zero. Taking partial derivatives and following a similar line of
reasoning as for the multinomial we get

∂

∂(µ,Σ)
Q(θ∗,θ) =

∂

∂(µ,Σ)

N∑
n=1

∑
Zn

q(Zn) ln

{
K∏
k=1

N (xn|µk,Σk)
zπnk

}

=
N∑
n=1

K∑
k=1

∑
zπn

p(zπn|Xn,θ)zπnk
∂

∂(µ,Σ)
lnN (xn|µk,Σk)

=
N∑
n=1

K∑
k=1

rnk
∂

∂(µ,Σ)
lnN (xn|µk,Σk) (3.3.29)

where we have used the fact that xn is observed. In (3.3.29) rnk is again the
responsibility that parent con�guration k takes for the observations xn

rnk =
∑
zπn

p(zπn|Xn,θ)zπnk

= E[zπnk ] (3.3.30)

where the expectation is taken with respect to p(zπn|Xn,θ).
Note that the derivative with respect to the parameters decomposes with

respect to k. Thus, we can take the derivative with respect to the parameter
pair µk and Σk. Setting the derivative with respect to µk equal to zero we
obtain

N∑
n=1

rnk
∂

∂µk

(
−1

2
ln |Σk| −

1

2
(xn − µk)TΣ−1

k (xn − µk)
)

= 0. (3.3.31)

Using standard vector calculus we get

−
N∑
n=1

rnkΣk(xn − µk) = 0 (3.3.32)

which after multiplying by Σ−1
k and rearranging gives

µk =
1

Nk

N∑
n=1

rnkxn (3.3.33)

where

Nk =
N∑
n=1

rnk. (3.3.34)

Setting the derivative ofQ(θ∗,θ) with respect to Σk equal to zero and following
a similar line of reasoning we get

Σk =
1

Nk

N∑
n=1

γ(πnk)(xn − µk)(xn − µk)T. (3.3.35)
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In speech recognition applications it is common to use diagonal covari-
ance matrices. That is, o�-diagonal elements of Σk are set to zero. Diagonal
covariance matrices reduces computational cost when evaluating the Gaus-
sian probability density function and reduces the number of parameters in the
model. In the case of diagonal covariance matrices (3.3.35) remains the same
but with any o�-diagonal elements set to zero and hence these elements do not
need to be calculated.

3.4 Inference in Bayesian networks

This section follows Jordan (2003, Chapter 17).

3.4.1 The junction tree algorithm

In order to �nd the expected su�cient statistics needed to update the param-
eters θv of the CPD p(xv|xπv ,θv) in the EM algorithm, we saw in the previous
section that we need to �nd the joint posterior probability of p(xv,xπv |xE,θv)
in the E step in the E step. That is the joint posterior over a node and its
parents given the evidence for all the nodes in the network. Calculating this
joint posterior is an example of an inference problem.

We shall give inference in Bayesian networks a slightly more general treat-
ment and at the same time develop the machinery necessary to solve the clas-
si�cation problem in AVASR. As the set of model parameters are held �xed
during the E step, we omit the explicit dependence on θ in our notation. For
example, we shall write p(xH |xE) instead of p(xH |xE).

Formally, the inference problem is de�ned as follows:

De�nition 1. Let G(V,E) be a Bayesian network with hidden nodes H and
observed nodes E such that V = H ∪ E. Let F ⊆ H be an arbitrary subset
of the hidden nodes with corresponding random variables xF . We then wish to
evaluate p(xF |xE) for arbitrary F .

This problem can in principle be solved by evaluating the joint posterior
p(xH |xE,θ) explicitly and obtain p(xF |xE) by marginalisation as

p(xF |xE) =
∑
xH\F

p(xH |xE). (3.4.1)

Unfortunately this approach is intractable in most applications as the com-
putational cost of taking the sum grows exponentially with the number of
nodes in the network (Jordan, 2003). However, by exploiting sparse structures
in Bayesian networks it is possible to derive an e�cient inference algorithm
that calculates the posterior distribution over smaller cliques of nodes while
maintaining the joint distribution as a product of clique potentials. This al-
gorithm is called the junction tree algorithm. The junction tree algorithm
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exploits conditional independence properties in Bayesian networks to perform
computationally e�cient inference.

3.4.2 Potentials

A clique C ∈ V is de�ned as a completely connected subset of V . A completely
connected subset is a subset of nodes where every two nodes are connected by
an edge. The set of all possible cliques of V is denoted by C. Corresponding
to each clique C ∈ C we have a set of random variables xC . For each clique
C we de�ne a potential φC(xC) over the clique. A potential is a non-negative
function on the realisations of xC . Note that we do allow the clique sets C ∈ C
to overlap.

We now de�ne the joint probability distribution over xV as the normalised
product of potential functions

p(xV ) =
1

Z

∏
C∈C

ψC(xC). (3.4.2)

The clique data structure is called a hypergraph; a set of subsets of the
underlying graph. Equation (3.4.2) de�nes the joint probability distribution
associated with the hypergraph.

We wish to keep the probability distribution over the hypergraph consistent
with the joint probability (3.2.2) of the underlying graph. We can achieve
this by initialising the potential functions from the underlying CPDs. One
possibility is to initialise each clique potential from the CPDs of the nodes
included in the clique. However, the local conditional probabilities need not
necessarily be de�ned on cliques. For example, if the parents of node xv are
not connected then p(xv|xπv) is not a function on a clique. The solution to
this problem lies in moralising the underlying graph.

A moral graph Gm corresponding to a directed graph G is obtained by
�marrying� (connecting) the parents of each node in the graph and dropping
the direction of all edges. Figure 3.13 illustrates the process of moralisation in
the Bayesian network shown in a) where b) shows the resulting moral graph.
Note that we have �married� the parents of node 6. We note that in the
moral graph the local conditional probabilities are indeed potential functions
on cliques.

We associate each CPD in the underlying graph with one, and only one,
potential function in the hypergraph. That is, a CPD can not be assigned to
multiple potential functions. In the case that a node is an element of multiple
cliques we choose one potential for which the CPD becomes a factor. We then
have the desired result

1

Z

∏
C∈C

φC(xC) =
∏
v

p(xv|xπv). (3.4.3)
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Figure 3.13: An example Bayesian network and its corresponding moral graph b).

Note that the CPD p(x6|x2,x5) has as arguments a subset of nodes that are not

contained in any clique in the graph. By connecting x2 and x5 the arguments in the

potential p(x6|x2,x5) are contained in the clique {x2,x5,x6}.

That is, the product of potentials on the hypergraph is equivalent to the joint
probability distribution of the underlying directed graph. Note that, if the
potentials are initialised as CPDs, they are already normalised in which case
the normalisation factor Z is implicitly one.

3.4.3 Introducing evidence

We now return to the problem where some of the nodes in the network are
observed and we wish to �nd the posterior distribution over subsets of latent
variables (De�nition 1).

Whenever some of the variables are observed, these variables are �xed at
their observed values. We refer to this as introducing evidence. Introducing
evidence will in general change the local distribution of all latent variables
throughout the network.

For each clique C ∈ C we consider the intersections C∩E and C∩H where
C = (C ∩ H) ∪ (C ∩ E) by the assumption that H and E partition V . The
evidence nodes C ∩ E have been �xed to speci�c values and as a result the
potential over C now only ranges over the realisations of C ∩H. Thus, for a
particular observed con�guration x̄E of xE we have

p(xH , x̄E) =
1

Z

∏
C∈C

ψC(xC∩H , x̄C∩E). (3.4.4)

In the case of discrete CPDs, probabilities and potentials are represented as
multidimensional tables, and thus conditionals are obtained by taking slices at
the observed values of the potentials de�ning the joint probability distribution.
Equation (3.4.4) then becomes a product of slices of potential functions.
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A slice of a potential function is itself a potential function. Thus, we can
also view (3.4.4) as a product of potential functions on subsets xC∩H . We shall
write

ψ̃C∩H(xC∩H) = ψC(xC∩H , x̄C∩E) (3.4.5)

to express the explicit reference to the �xed con�guration x̄E. Thus, we have

p(xH , x̃E) =
1

Z

∏
C∈C

ψ̃C∩H(xC∩H). (3.4.6)

However, note that the normalisation factor Z in (3.4.6) is obtained by
summing over both xH and xE, whereas the product is de�ned only over xH .
In fact, Z is not the normalisation factor for the product of potentials ψ̃C∩H ;
indeed this product is not in general normalised due to the introduction of
evidence. The normalisation constant can be obtained by summing Z over xH

Z̃ =
∑
xH

p(xH , x̄E)

=
∑
xH

1

Z

∏
C∈C

ψ̃C∩H(xC∩H). (3.4.7)

We know that
∑

xH
p(xH , x̄E) = p(x̄E) by de�nition, thus we get

p(xH , x̄E)

p(x̄E)
=

∏
C∈C ψ̃C∪H(xC∪H)∑

xH

∏
C∈C ψ̃C∩H(xC∩H)

. (3.4.8)

From the above equation we see that the sliced potentials ψ̃C∩H provide a
representation of the conditional probability p(xH |x̄E) in terms of the potential
functions. The normalisation factor for this representation is the marginal
probability Z̃ = p(x̄E).

Note that the original normalisation constant Z cancels on the right-hand-
side of (3.4.8). Thus, when calculating normalisation constants we do not
need the normalisation constant associated with the original set of potentials.
It su�ces to compute the normalisation constant of the sliced potentials.

In order to illustrate the concept of slicing potentials we consider the exam-
ple graph shown in Figure 3.14. Suppose the nodes represent two-dimensional
binary random variables xA and xB with probabilities p(xA = 1) = 0.8,
p(xB = 1|xA = 1) = 0.6 and p(xB = 1|xA = 0) = 0.4. These probabili-
ties are su�cient for constructing the joint probability distribution p(xA,xB).

Constructing the hypergraph by moralising we obtain a single clique C =
{A,B} with clique potential initialised as the product

ψA,B = p(xA,xB) = p(xA)p(xB|xA) (3.4.9)
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Figure 3.14: Example of moralising a simple two-node Bayesian network.

where we have used the short-hand notation ψA,B = ψA,B(xA,xB). Substitut-
ing numerical values we get

ψA,B =

[
0.12 0.32
0.08 0.48

]
(3.4.10)

where ψA,B(j, i) = p(xA = i,xB = j).
Note that the clique potential is normalised as a consequence of being

initialised from the CPDs of the underlying graph. Suppose we now have
observed evidence x̄B = 1. We thus �x xB at this value and obtain the slice

ψA =

[
0.08
0.48

]
. (3.4.11)

As expected, the new potential is not normalised. Normalising yields Z̃ =
0.56 which we recognise as p(x̄B) = p(xB = 1). The normalised potential is

obtained by dividing ψ̃A by Z̃ = 0.56.

1

Z̃
ψ̃A,B =

[
0.1428
0.8571

]
(3.4.12)

which is the conditional distribution p(xA|x̄B) where x̄B = 1.

3.4.4 Clique trees

A fundamental assumption of the junction tree algorithm is that the cliques
are arranged in a tree structure. We refer to this structure as a clique tree.
We de�ne a clique tree as a singly-connected graph whose nodes represent
members of the clique set C. Edges in this graph represent information �ow
between cliques. Intuitively, the junction tree algorithm is an algorithm that
uses these information �ows to manipulate the clique potentials to yield the
desired marginal probabilities. In particular, after the junction tree algorithm
has completed the potential ψC will be equal to the marginal probabilities

p(xC∩H , x̄C∩E). (3.4.13)

This probability is a non-normalised version of the conditional probability
p(xC∩H |x̄C∩E), where the normalisation constant is obtained by summing or
integrating ψC over xC∩H . Consequently, we get the important result that the
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Figure 3.15: The cliques in this three-node Markov chain are {A,B} and {B,C}.

desired marginal probabilities can be obtained via a local operation. From the
clique marginals the desired marginals can be obtained at low computational
cost.

In the previous section we showed how to initialise the clique potentials so
as to obtain a representation of the joint probability of the underlying graph.
This is a global representation, however, and the individual potentials do not
necessarily correspond to local probabilities. Consider theMarkov chain shown
in Figure 3.15. The cliques of this graph are {A,B} and {B,C}. The joint
probability distribution is given by

p(xA,xB,xC) = p(xA)p(xB|xA)p(xC |xB). (3.4.14)

We �nd that p(xA) and p(xB|xA) can be grouped together to initialise the
potential ψAB as the marginal p(xA,xB). However, the remaining factor ψBC =
p(xC |xB) is not a marginal. To convert this potential into a marginal, we
marginalise ψAB to obtain p(xB) and multiply ψBC by this factor

ψ∗BC = p(xB)ψBC = p(xB)p(xC |xB) = p(xB,xC). (3.4.15)

This �transfer of information� from the clique {A,B} to the clique {B,C} is
an instance of the information �ow between cliques mentioned above.

After adjusting ψBC we have achieved the goal of obtaining marginal prob-
abilities over both cliques. However, the joint probability on p(xA,xB,xC) is
no longer equal to the product of clique marginals since

ψABψ
∗
BC = p(xA,xB)p(xB,xC). (3.4.16)

This problem is addressed in the junction tree algorithm by using separator
sets. With each edge in the clique tree we associate a set of nodes. This set
contains the intersection of the two cliques that it connects, i.e. the set of
nodes that �separates� the two sets. For example, in Figure 3.15 both edges
will have {xB} as a separator set. For a general clique tree of N nodes, we
have N − 1 separator sets. We shall often refer to a separator set as simply a
separator.

With each separator there is also an associated potential function. Letting
S denote the set of all separator sets, we introduce a potential function φS(xS)
for each S ∈ S. Then, given a clique tree with cliques C and separators S the
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joint probability is given by

p(x) =

∏
C ψC(xC)∏
S φS(xS)

. (3.4.17)

For convenience we have omitted the normalising constant Z. Instead we use
the convention of including the empty set ∅ as one of the separators and letting
the potential on this empty set be Z.

Continuing with the example in Figure 3.15 we expand the joint probability
distribution as

p(xA,xB,xC) = p(xA,xB)p(xC |xB)

=
p(xA,xB)p(xB,xC)

p(xB)
. (3.4.18)

Note that this expression is of the same form as (3.4.17) where we de�ne
ψAB = p(xA,xB), ψBC = p(xB,xC) and φB = p(xB). Thus, making use
of the separator potential, we are able to achieve a representation that is
a product of marginals, and at the same time a representation of the joint
probability distribution. It is possible to show that we can always �nd this
kind of representation for a given probability distribution (Jordan, 2003).

The separator potentials are initialised to unity and the clique potentials
are initialised from CPDs of the underlying Bayesian network as before. Thus,
initially the product of clique potentials and separator potentials constitute a
global representation of the joint probability distribution.

3.4.5 Local consistency

From the discussion of clique trees we note that it is possible for cliques to over-
lap. That is, the same node may appear in multiple cliques. If the potentials
are to represent marginal probabilities, it is necessary that they are consistent
across cliques. That is, we require potentials to give the same marginals for
nodes that they have in common. However, it is not necessary to compare
all pairs of cliques that intersect to ensure that this consistency holds. It will
su�ce to arrange the cliques into a constrained clique tree called a junction
tree. In the junction tree we only require that the marginals of neighbouring
cliques in the tree are consistent with respect to the nodes that they have in
common.

We �rst consider how to achieve consistency between a pair of cliques.
Suppose we have two cliques V and W and suppose that V and W have a
non-empty intersection set S as shown in Figure 3.16. The cliques V and W
have associated potentials ψV and ψW and the separator S has potential φS.
The separator potential is initialised to unity.

We now want to ensure that ψW and ψV are locally consistent. That is, we
want the marginal distribution

∑
W\S ψW to equal the marginal

∑
V \S ψV such
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Figure 3.16: The basic data structures underlying the �ow of information between

cliques V and W .

that the marginals over the shared nodes are the same with respect to both
clique potentials. We can achieve this consistency through a message passing
procedure. The message passing procedure consists of updating the potentials
ψW , ψV and φS in a way that achieves the desired local consistency. We �rst
update W from V through

φ∗S =
∑
V \S

ψV (3.4.19)

ψ∗W =
φ∗S
φS
ψW . (3.4.20)

In (3.4.19) the potential ψV is marginalised with respect to S. The result
is an updated value of the separator potential φ∗S. In (3.4.20) we rescale the
clique potential over W through multiplying by the ratio of the new and old
separator potentials.

This update has as important invariant property. Noting that ψV is un-
changed during the update and de�ning ψ∗V = ψV we get

ψ∗V ψ
∗
W

φ∗S
=

ψV ψWφ
∗
S

φSφ∗S

=
ψV ψW
φS

(3.4.21)

from which we conclude that the joint distribution de�ned by (3.4.17) remains
unchanged.

Next we consider the case where we pass information from W back to V
in which case we get

ψ∗∗S =
∑
W\S

ψ∗W (3.4.22)

ψ∗∗V =
φ∗∗S
φ∗S

ψ∗V . (3.4.23)

Note that ψ∗W is unchanged during this update. De�ning ψ∗∗W = ψ∗W we get

ψ∗∗V ψ
∗∗
W

φ∗∗S
=

ψ∗V φ
∗∗
S ψ

∗
W

φ∗Sφ
∗∗
S

=
ψ∗V ψ

∗
W

φ∗S

=
ψV ψW
φS

. (3.4.24)
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Again we see that the joint distribution (3.4.17) remains unchanged after the
update.

What have we achieved with this forward-backward message passing? Con-
sider the marginal of ψ∗∗W over S∑

V \S

ψ∗∗V =
∑
V \S

φ∗∗S
φ∗S

ψ∗V

=
φ∗∗S
φ∗S

∑
V \S

ψ∗V

=
φ∗∗S
φ∗S

φ∗S

= φ∗∗S

=
∑
W\S

φ∗∗W . (3.4.25)

We see that ψ∗∗V and ψ∗∗W are consistent with respect to their intersection S.
Thus, we have indeed achieved local consistency while at the same time main-
taining the underlying joint probability distribution after the updates.

In the forward pass, from V to W , the algorithm stores the marginal of
the V potential in the separator potential. In the backward pass, from W to
V , the algorithm divides the V potential by its stored marginal and multiplies
the result by the new marginal φ∗∗S . This latter marginal is the marginal of the
W potential. The rescaling equation essentially substitutes one marginal for
another, thus making the two clique potentials consistent. This is achieved by
a symmetric algorithm that passes information in both directions, and leaves
the joint probability distribution invariant.

As an example consider the Markov chain in Figure 3.15. Initially, the
clique potential over V = {A,B} is p(xA,xB) and the clique potential over
W = {B,C} is p(xC |xB). The �rst pair of update equations gives

φ∗B =
∑
xA

p(xA,xB) = p(xB) (3.4.26)

ψ∗B,C =
p(xB)

1
p(xC |xB) = p(xB,xC). (3.4.27)

We see that the clique potentials are now marginal probabilities. The backward
phase in this case involves marginalising over p(xB,xC) with respect to xC
which again yields φ∗B = p(xB). Updating ψA,B we get

ψ∗∗A,B =
p(xB)

p(xB)
p(xA,xB) = p(xA,xB). (3.4.28)
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We now consider the case in which evidence is observed. Suppose for
simplicity that the nodes in Figure 3.15 are two-dimensional binary random
variables and that the evidence is x̄A = 1. The �rst set of updates now gives

φ∗B = p(x̄A,xB) (3.4.29)

ψ∗BC = p(x̄A,xB)p(xC |xB) = p(x̄A,xB,xC). (3.4.30)

Note that it is not possible to marginalise over xA in the �rst step as this
variable is observed. The second set of updates become

φ∗∗B =
∑
xC

p(x̄A,xB,xC) = p(x̄A,xB) (3.4.31)

ψ∗∗AB =
p(x̄A,xB)

p(x̄A,xB)
p(x̄A,xB) = p(x̄A,xB). (3.4.32)

Thus we have

ψ∗AB = p(x̄A,xB) (3.4.33)

φ∗B = p(x̄A,xB) (3.4.34)

ψ∗BC = p(x̄A,xB,xC) (3.4.35)

from which we see that we have obtained non-normalised marginals. By nor-
malising these marginals, we eventually get the posterior distributions condi-
tioned on the observed evidence p(xB|x̄A), p(xC |x̄A) and p(xB,xC |x̄A).

3.4.6 Propagation in a clique tree

We now discuss how to perform local updates in a clique tree when we have
multiple overlapping cliques. Consider the clique tree in Figure 3.17. Each
edge in this tree is associated with a separator. Cliques that are neighbours
in this tree are subject to the updating procedure described in the previous
section.

We wish to �nd a set of update rules that ensures that any local con-
sistencies that have been established between neighbouring cliques are not
broken by subsequent updates between the clique and its other neighbours.
Suppose that we have achieved local consistency between V and W using the
pair of updates discussed in the previous section, and subsequently we update
W from its other neighbours. The latter would in general break the consis-
tency we have achieved between V and W . We can solve this problem using
a message-passing protocol that ensures existing consistencies are not broken
by subsequent updates.

We think of the update of one clique based on another as passing a message.
That is, we pass a message from V to W by evaluating (3.4.19) and (3.4.20).
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Figure 3.17: Example of a clique tree with separators represented as square nodes.

In general, as we saw in the previous section, we require a message in both
directions in order to render a pair of cliques consistent with each other.

In the junction tree algorithm the desired consistency is obtained by con-
straining the order in which the updates are performed.

Message-Passing Protocol. A clique can send a message to a neighbouring
clique only when it has received messages from all of its other neighbours.

For example, in Figure 3.17, we can only send a message fromW to V when
W has received messages from its other neighbours D1 and D2. The following
argument veri�es the correctness of the protocol. Assume that W has received
all of the messages from its other neighbours, and is sending a message to
V . There are two possible scenarios; either V has not yet sent its message
to W , or V has already sent its message to W . In the latter case, we know
that V has already received messages from all of its other neighbours. The
message from W to V renders the cliques consistent. Neither clique receives
any additional messages, thus consistency is maintained. In the former case,
W sends a message to V , storing its marginal on S, and waits. At some
later stage, V will have received all of the messages from its other neighbours
and will send a message to W . This message will utilise the stored marginal
and render W consistent with V . Neither clique will undergo any additional
updates and consistency is maintained.

One way of implementing the message-passing protocol is using a recursive
algorithm on a tree data structure. In a general clique tree we choose one of
the cliques as the root. Once a root of the clique tree has been designated,
the tree becomes an oriented tree with each leaf having a unique path to the
root. Each leaf can send a message inward at any time. Interior nodes send
a message toward the root once they have received messages from all their



CHAPTER 3. THEORETICAL FRAMEWORK 45

children. Once all messages have arrived at the root, we propagate messages
outward to the leaves. This procedure is formalised in Algorithms 1 and 2.

Algorithm 1 CollectEvidence(node)

for each child of node do
Update(node, CollectEvidence(child))

end for
return node

Algorithm 2 DistributeEvidence(node)

for each child of node do
Update(child, node)
DistributeEvidence(child)

end for
return node

In algorithms 1 and 2 the routine Update(V,W) invokes the pair of update
equations (3.4.19) and (3.4.20). Calling CollectEvidence(root) followed by
DistributeEvidence(root) causes the messages to propagate inward to the
root and outward to the leaves. In order to see that the CollectEvidence and
DistributeEvidence recursions respect the message-passing protocol consider
the following argument.

When CollectEvidence is called at a node, the node calls all of its other
neighbours and waits on return messages from those nodes before returning a
message back to its caller. Thus, CollectEvidence obeys the protocol. After
CollectEvidence has run, each node has received a message from all of its
neighbours except its parent. Once it receives a message from its parents it
is free to send messages to any other node. DistributeEvidence sends a
message from its parent to its child before calling itself on that child. Thus,
DistributeEvidence also respects the message-passing protocol.

3.4.7 The junction tree property

The �nal issue that needs to be addressed for the junction tree algorithm is il-
lustrated by Figure 3.18. In particular, we note that the node C appears in two
di�erent cliques that are not neighbours. Since our algorithm only guarantees
local consistency, there is no guarantee that the two cliques containing C will
be consistent. In general, local consistency does not imply global consistency.

Note that the lack of global consistency does not imply that we have an
incorrect representation of the joint probability distribution of the underlying
graph. In fact, the junction tree algorithm does not alter the joint probability,
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Figure 3.18: Example of a clique tree where the junction tree property does not

hold.

and thus we maintain a correct representation of the joint throughout. How-
ever, we may still fail to achieve a global consistency. The solution to this
problem is to impose the junction tree property.

De�nition 2. A clique tree possesses the junction tree property if for every
pair of cliques V and W , all cliques on the (unique) path between V and W
contain V ∩W .

A clique tree that possesses the junction tree property is referred to as a
junction tree. It should be clear that the graph in Figure 3.18 is not a junction
tree.

An intuitive interpretation of the junction tree property from the viewpoint
of inference is as follows. If a node A appears in two cliques in a junction tree,
the A is necessarily contained in every clique along the path between these
two cliques. If the cliques along the path are pairwise consistent with respect
to A then they will be jointly consistent with respect to A. We therefore
have that in a junction tree, local consistency implies global consistency. As
a consequence, if we have a clique tree that is also a junction tree, and if we
run the message-passing procedure as described in the previous section, we
achieve not only local consistency but also global consistency; we can get the
same answer for node A from any potential that contains A.

However, recall that our goal is to obtain a set of potentials that are not
only consistent, but that are also marginals. That is, each clique potential
represents the marginal probability of the nodes in the clique. In fact, in a
junction tree the message-passing algorithm not only achieves global consis-
tency, but also yields the marginal distribution over cliques. Before we prove
this result we need the following lemma.

Lemma 3.4.1. Let G = (V,E) be a Bayesian network with nodes V . Let C
be a leaf in the junction tree of the graph. Let S be the (unique) separator
associated with C . Let R = C\S be the set of nodes in C but not in the
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separator set, and let U = V \C be the set of nodes in V but not in C. Then
we have

R ⊥⊥ U | S. (3.4.36)

Proof. Proof by contradiction. Suppose that A ∈ R has a neighbour N ∈ U .
Consider the maximal complete subset containing both A and N . This clique
is not in C because N 6∈ C. However, A cannot be contained in any clique
other than C because A would have to belong to S as well, by the junction
tree property, and nodes in R are not in S by de�nition. Thus, no such N
exists and S therefore d-separates A from U . Since A is arbitrary we have that
the separator set S d-separates R from U .

We can now prove the main result of the analysis of the junction tree
algorithm.

Theorem 3.4.2. Let the joint probability p(xH , x̄E) be represented by the
clique potentials ψC and separator potentials φS of a junction tree. When
the junction tree algorithm terminates, the clique potentials and separator po-
tentials are proportional to local marginal probabilities. In particular,

φC = p(xC , x̄E) (3.4.37)

φS = p(xS, x̄E). (3.4.38)

Proof. The separators are subsets of the cliques. That the separator potentials
are proportional to marginals therefore follows from the fact that they are
consistent with the clique potentials. Thus we need only prove the results for
the clique potentials.

The proof is a proof by induction. The result holds for the base case of a
BN consisting of a single clique by de�nition. Let us suppose that the result
holds for junction trees of N or fewer cliques and consider a junction tree with
N + 1 cliques.

We choose a clique C̃ that is a leaf of the junction tree. Let S̃ be the
corresponding separator, let R̃ = C̃\S̃ and let T̃ = V \C̃. We also de�ne
analogous quantities in which the evidence variables are omitted. In particular,
let C = C̃\E, R = R̃\E and T = T̃\E. From Lemma 3.4.1 we have that

p(xH , x̄E) = p(xR,xS,xT , x̄E) = p(xR|xS, x̄E)p(xS,xT , x̄E). (3.4.39)
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Marginalising both sides over xR we get

p(xS,xT , x̄E) =
∑
xR

p(xH , x̄E)

=
∑
xR

∏
C ψC(xC)∏
S φS(xS)

=
∑
xR

ψC
φS

∏
C′ 6=C ψC′(xC′)∏
S 6=S′ φS′(xS′)

=

∑
xR
ψC

φS

∏
C′ 6=C ψC′(xC′)∏
S 6=S′ φS′(xS′)

=

∏
C′ 6=C φC′(xC′)∏
S 6=S′ φS′(xS′)

(3.4.40)

where the last step follows from the fact that C and S are consistent and thus∑
R ψC = φS.
Equation (3.4.40) shows that p(xS,xT , x̄E) is represented by the clique

potentials and separator potentials on the junction tree over S ∪ T . By the
induction hypothesis, after a full round of message passing the clique potentials
on this junction tree are equal to marginals.

It remains to show that the clique potential on C is a marginal. Let D
be the neighbour clique of C in the junction tree. By consistency we have
φS(xS) =

∑
D\S ψD(xD). We have ψD = p(xD, x̄E) and thus ψS(xS) =

p(xS, x̄E). Thus

p(xR|xS, x̄E) =
ψC(xC)

φS(xS)

=
ψC(xC)

p(xS, x̄E)
(3.4.41)

which implies that ψC(xC) = p(xC , x̄E).

3.4.8 Summary of the junction tree algorithm

We now have most of the pieces that comprises the junction tree algorithm in
place. There is still the issues of triangulation and how to construct a junction
tree from a Bayesian network.

Triangulation is a necessary condition for a graph to have a junction tree.
If the graph is not triangular it must triangulated using one of several possible
algorithms (Jordan, 2003) before we run the junction tree algorithm.

Constructing a junction tree is an instance of the maximal spanning tree
problem (Jordan, 2003). This problem can be solved using any one of a number
of greedy algorithms, for instance Kruskal's algorithm (Kruskal, 1956).
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We shall not discuss these two problems in any further detail. In summary,
the steps involved in the junction tree algorithm are as follows.

Moralisation The moralisation step converts a directed graph into an undi-
rected graph. Nodes that have a common child are linked, and directed edges
are converted to undirected edges. The local probability of each node is mul-
tiplied onto the potential of a clique that contains the node and its parents.

Introduction of evidence Evidence is introduced by taking slices of the
potentials.

Triangulation The graph is triangulated. The potential of each clique of
the original graph is multiplied onto the potential of a clique that contains the
clique.

Construction of junction tree A junction tree is constructed by forming a
maximal spanning tree from the cliques of the triangulated graph. Separators
are introduced and their potentials are initialised to unity.

Propagation of probabilities Computation proceeds in the junction tree
using the pair of update equations

φ∗S =
∑
V \S

ψV (3.4.42)

ψ∗V =
φ∗S
φS
ψV . (3.4.43)

The updates must respect the Message-Passing Protocol. This is achieved
by designating a root node in the clique graph and calling CollectEvidence

and DistributeEvidence from the root node. Once the algorithm terminates,
the clique potentials and separator potentials are proportional to marginal
probabilities. Further marginalisation can be performed to obtain the proba-
bilities of single nodes or subsets of nodes.

The junction tree inference algorithm is the most e�cient method of per-
forming exact inference in Bayesian networks. See Jordan (2003) for an anal-
ysis of the computational complexity of the junction tree algorithm.

3.4.9 Maximum probability con�gurations

We are often interested in �nding the most likely con�guration of the hidden
nodes in the Bayesian network given the observed evidence, that is, the set of
values of the hidden variables that maximises the joint probability over all the
nodes in the network.
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It turns out that we can simply replace the �sum� operators with �max�
operators in the junction tree algorithm and all the results are still valid. In
fact, the only step of the algorithm that explicitly refers to summation is the
marginalisation step (3.4.42). This equation becomes

φ∗S = max
V \S

ψV . (3.4.44)

The key result of the junction tree algorithm is that each clique potential
is equal to its marginal probability. In that case �marginal� means that the
variables not contained in the clique have been summed out. If we replace sum-
mation by maximisation, we obtain a similar notion. The �marginal� means
that the variables not contained in the clique have been maxed out. That is

ψC(xC) = max
V \C

p(xC). (3.4.45)

We can interpret the resulting entries in the clique potential as the values of
maximal probability attainable for each possible con�guration of the random
variables xC . Maximising over these values, we obtain the actual con�guration.
This result is useful for classi�cation where we are typically looking for the
model which has the largest probability of having generated the observations.

3.5 Variational learning

We have yet to address how to choose a suitable model complexity. By model
complexity we typically mean the number of model parameters that need to
be estimated from data. Given an in�nite amount of training data and assum-
ing that the complexity of the model is greater than that of the underlying
problem, the EM algorithm can be shown to converge to the correct model.
However, the complexity of the problem is rarely known and the availability
of data is in most cases not only �nite, but severely limited. It is therefore
essential to choose a model complexity that re�ects the amount of available
training data (see Bishop, 2007, Chapter 10). If the model complexity is too
high there will not be enough data to accurately estimate the large number
of parameters in complex models. The model tends to describe the training
data exactly, but does not generalise well to new data. This phenomenon is
referred to as over�tting and leads to decreased system performance.

Until now we have treated model parameters as deterministic variables.
However, it is also possible to treat the model parameters themselves as random
variables. In this case, the parameters become nodes in the Bayesian network
similar to the latent and observed variables we have seen so far. We shall see
how this approach in fact leads to automatic model complexity selection by
choosing regularising priors and to an algorithm that is similar to EM and has
the same computational complexity.
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As before let XH denote the set of latent variables, XE the set of observed
variables, and θ the model parameters. We now choose a prior distribution
p(θ) over the parameters. Following (3.3.6) the log marginal likelihood then
decomposes as

ln p(XE) = L(q) + KL(q||p) (3.5.1)

where we have de�ned

L(q) =

∫ ∑
XH

q(XH ,θ) ln

{
p(XE,XH ,θ)

q(xH ,θ)

}
dθ (3.5.2)

KL(q||p) = −
∫ ∑

XH

q(XH ,θ) ln

{
p(XH ,θ|XE)

q(XH ,θ)

}
dθ. (3.5.3)

The above decomposition is veri�ed using a similar approach as for (3.3.6).
Note that L(q) is a functional of q(XH ,θ). We have assumed that latent
variables are discrete and therefore summed over, and that the parameters are
continuous and therefore integrated over as this is the typical case. However,
sums can easily be replaced with integrals or integrals with sums and the
analysis will be unchanged.

We recognise the two equations (3.5.2) and (3.5.3) as (3.3.7) and (3.3.8)
from the discussion of EM in Section 3.3.1. However, there is an important
di�erence. The parameter vector θ is no longer a deterministic variable, but
forms part of the set of hidden random variables. Thus, there are no deter-
ministic parameters to optimise with respect to. As we saw with EM, we can
maximise the lower bound L(q) by optimising with respect to the distribution
q(XH ,θ), which is equivalent to minimising the KL divergence. If we allow
any possible choice for q(XH ,θ), then the maximum of the lower bound oc-
curs when q(XH ,θ) equals the posterior distribution p(XH ,θ|XE). Finding
p(XH ,θ|XE) is intractable (Beal and Ghahramani, 2004), however, but we can
approximate the posterior using variational calculus (Wainwright and Jordan,
2008).

The basic idea of variational learning is to simultaneously approximate the
intractable joint distribution over both hidden states and parameters with a
simpler distribution by assuming that the hidden states and parameters are
independent given the observed data. Thus we constrain the posterior to have
the form

q(XH ,θ) = q(XH)q(θ) (3.5.4)

which is called a variational approximation.
Note that we are omitting the subscripts on the q distributions in the

same way that we normally do with p distributions. That is, di�erent q(·)
are in general di�erent distributions and we are relying on the arguments to
distinguish them. As in EM we omit the dependency of q(·) on XE in our
notation. It is understood that q(·) is always conditioned on the observed
evidence.
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It should be emphasised that we are making no further assumptions about
the distributions other than the factorisation (3.5.4). In particular, we place
no restriction on the functional forms of the individual q(·) factors. This
approximation framework corresponds to a framework developed in physics
called mean �eld theory (Parisi, 1988).

Amongst all distributions q(XH ,θ) having the form (3.5.4) we seek the
distribution for which the lower bound L(q) is largest. We therefore wish to
make a free form (variational) optimisation of L(q) with respect to q(XH) and
q(θ) which we do by optimising with respect to each of the factors in turn in
a procedure similar to EM.

Suppose we consider q(XH) as �xed and optimise with respect to q(θ).
Substituting (3.5.4) into (3.5.2), using the fact the q(θ) integrates to 1, and
isolating the dependence on q(XH) give

L(q) =

∫ ∑
XH

q(XH)q(θ) {ln p(XE,XH ,θ)− ln q(XH)− ln q(θ)} dθ

=

∫
q(θ)

{∑
XH

q(XH) ln p(XE,XH ,θ)

}
dθ −

∫
q(θ) ln q(θ)dθ + const

=

∫
q(θ) ln p̃(XE,XH ,θ)dθ −

∫
q(θ) ln q(θ)dθ + const (3.5.5)

where we have de�ned

ln p̃(XE,XH ,θ) =
∑
XH

q(XH) ln p(XE,XH ,θ)

= EH [ln p(XE,XH ,θ)] (3.5.6)

where the expectation is with respect to q(XH).
The functional L(q) is optimised with respect to q(θ) by recognising that

(3.5.5) is the negative Kullback-Liebler divergence between q(θ) and p̃(XE,XH)
(Bishop, 2007). Thus maximising (3.5.5) is equivalent to minimising the KL
divergence and the minimum occurs when q(θ) = p̃(XE,XH ,θ). Thus we
obtain a general expression for the optimal solution q∗(θ) given by

ln q∗(θ) = EH [ln p(XE,XH ,θ)] + const (3.5.7)

where the expectation is with respect to q(XH). The additive constant is
determined by normalising the distribution

q∗(θ) =
exp{EH [ln p(XE,XH ,θ)]}∫
exp{EH [ln p(XE,XH ,θ)]}dθ

. (3.5.8)

Following a similar line of argument we can also show that

q∗(XH) =
exp{Eθ[ln p(XE,XH ,θ)]}∑
XH

exp{Eθ[ln p(XE,XH ,θ)]}
. (3.5.9)
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where the expectations are taken with respect to q(θ).
Attias (2000) shows that if the complete data likelihood is in the exponen-

tial family and the prior distribution over the parameters is conjugate to the
complete data likelihood, variational learning can be performed using an EM
like algorithm which can be considered as a coordinate ascent in the function
space of variational distributions. This algorithm is often called Variational
Bayes (VB) in the literature.

In the VB algorithm we alternate between maximising L(q) with respect to
the free distributions q(θ) and q(XH) using (3.5.8) and (3.5.9), respectively.
Taking the expectation with respect to q(θ) and optimising with respect to
q(XH) is analogous to the E step of the EM algorithm where the parameters
are �xed and we optimise with respect to the latent variables. Taking the
expectation with respect to q(XH) and optimising with respect to q(θ) is
analogous to the M step. In each case the optimal variational posterior has
the same functional form as the prior due to our choice of conjugate priors
(Beal and Ghahramani, 2004).

We next show how to perform the variational updates in the case that the
node is a multinomial variable or a Gaussian variable. We again assume that
parent variables are multinomial and can be represented as a single parent.
The variables Zn,xn, zn, zπn and parameters ρk, µk and Σk are de�ned as in
the discussion of EM. In addition we de�ne the precision matrix, which is the
inverse of the covariance matrix, as Λk = Σ−1

k .

Multinomial. In the case that zn is a multinomial variable the conjugate
prior of the parameters ρkl is the Dirichlet distribution (A.2.11) given by

p(ρk) = Dir(ρk|α(0)
k ) = C(α

(0)
k )

L∏
l=1

ρ
α
(0)
kl −1

kl (3.5.10)

where we as usual ignore the dependencies of the parameters on the node v in
our notation. The factor C(·) is the normalisation constant for the Dirichlet

distribution. The parameter α
(0)
kl can be interpreted as the e�ective prior

number of observations associated with each component l of the distribution
associated with parent con�guration k. If the value of α

(0)
kl is small, then the

posterior distribution will be in�uenced primarily by the data rather than
the prior. If the value of α

(0)
kl is large the posterior distribution will be more

in�uenced by the prior. Thus, α
(0)
kl can e�ectively be used to adjust the level

of regularisation in the learning algorithm.
Assuming that parameters ρk are independent we can optimise with respect

to each ρk independently (Beal and Ghahramani, 2004). Then, from (3.5.6)
and (3.5.10) we it follows that
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ln q(ρk) = ln

{
K∏
k=1

L∏
l=1

ρ
α
(0)
kl
kl

}
+

N∑
n=1

∑
Zn

q(Zn) ln

{
K∏
k=1

L∏
l=1

ρ
znlzπnk
kl

}
+ const

=
K∑
k=1

L∑
l=1

α
(0)
kl ln ρkl +

K∑
k=1

L∑
l=1

N∑
n=1

∑
Zn

q(Zn)znlzπnk ln ρkl + const

=
K∑
k=1

L∑
l=1

α
(0)
kl ln ρkl +

K∑
k=1

L∑
l=1

N∑
n=1

rnkl ln ρkl + const

=
K∑
k=1

L∑
l=1

α
(0)
kl ln ρkl +

K∑
k=1

L∑
l=1

Nkl ln ρkl + const (3.5.11)

where we have de�ned

rnkl =
N∑
n=1

∑
Zn

q(Zn)znkzπnk

=
N∑
n=1

E[znkzπnk ] (3.5.12)

Nkl =
N∑
n=1

rnkl. (3.5.13)

where the expectation is with respect to q(Zn). Taking the exponential of both
sides in (3.5.11) we get

q∗(ρk) = Dir(ρk|αk). (3.5.14)

We see that posterior has the same distribution as the prior. The updated
hyperparamter αk has components

αkl = α
(0)
kl +Nkl (3.5.15)

where we see that the αkl parameters are indeed the e�ective number of ob-
servations of component l for parent con�guration k.

Gaussian. Instead of working with the covariance matrix as in the case of
EM we shall �nd that the analysis is simpler if we work with the precision
matrix Λk = Σ−1

k . The conjugate prior for the joint distribution over µk and
Λk is the Gaussian-Wishart distribution (A.2.24) given by

p(µk,Λk) = p(µk|Λk)p(Λk) = N (µk|mk, (β
(0)
k Λ−1

k ))W(Λk|W(0)
k , ν

(0)
k ).

(3.5.16)
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Following a similar line of reasoning as in the case of a multinomial we get the
posterior ln q∗(µk,Σk)

ln q∗(µk,Λ)k = ln p(µk,Λk) +
N∑
n=1

rnk lnN (xn|µk,Λ−1
k ) + const (3.5.17)

from which we again see that the posterior has the same form as the prior.

q∗(µk,Λk) = N (µk|mk, (βkΛ)−1)W(Λk|Wk, νk) (3.5.18)

where the updated set of hyperparamter are given by

βk = β0 +Nk (3.5.19)

mk =
1

βk
(β0m0 +Nkx̄k) (3.5.20)

W−1
k = W−1

0 +NkSk +
β0Nk

β0 +Nk

(x̄k −m0)(x̄k −m0)T (3.5.21)

νk = ν0 +Nk (3.5.22)

where

Nk =
N∑
n=1

rnk (3.5.23)

x̄k =
1

Nk

N∑
n=1

rnkxn (3.5.24)

Sk =
1

Nk

N∑
n=1

rnk(xn − x̄k)(xn − x̄k)
T. (3.5.25)

See (Bishop, 2007) for a detailed derivation of these results. Note that the
quantities are analogous to quantities evaluated in the EM algorithm. In the
case of diagonal covariance matrices the results are the same with o�-diagonal
elements set to zero.

3.5.1 Inference for variational learning

In order to calculate the responsibilities rnk = E[znkzπnk ] in the latent multino-
mial case and rnk = E[zπnk ] in the observed Gaussian case we need to posterior
distributions q(Zn). Again, we only require the local posterior probabilities
p(zv, zπv). Beal and Ghahramani (2004) shows that these probabilities can be
obtained from clique potentials using the junction tree algorithm with param-
eters θ̃ implicitly de�ned as

φ(θ̃) = E[φ(θ)] (3.5.26)
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where the expectation is taken with respect to q(θ), and φ(θ) is the natural
parameters of the exponential family form (A.2.25) of the distribution (Beal
and Ghahramani, 2004). Thus, the analogous quantities in VB to the expected
su�cient statistics in EM are calculated by running the junction tree algorithm
with model parameters given by the expected values of the natural parameters
in the exponential family form of the distribution.

In the case of a multinomial variable the natural parameters are lnρk given
by

ln ρ̃kl = E[ln ρkl] = ψ(αkl)− ψ(α̂k) (3.5.27)

where ψ(·) is the digamma function and α̂ =
∑K

k=1 αk (see A.2.17). For a
Gaussian variable we get that

E[(xn − µT)(xn − µk)] = Dβ−1
k + νk(xn −mk)

TWk(xn −mk)

E[|Λk|] =
D∑
i=1

ψ

(
ηk + 1− i

2

)
+D ln 2 + ln |Wk|

. (3.5.28)

where D is the dimensionality of the observed Gaussian variable. In practice
when evaluating the multinomial and Gaussian distributions we use these ex-
pectation instead of the quantities ρk in (A.2.6) and |Λk| and (xn−µk)T(xn−
µk) in (A.2.1) with Σk = Λ−1.

When classifying new data with models learned using VB equations (3.5.13),
(3.5.23), (3.5.24) and (3.5.23) may be used instead of (3.3.23), (3.3.34), (3.3.33)
and (3.3.35) respectively. Standard Bayesian network classi�cation techniques
such as the maximum likelihood probability con�gurations in Section 3.4.9
may then be applied. This approach was shown to give good results in Valente
and Wellekens (2003).

3.5.2 Variational lower bound

In the EM algorithm we used the log likelihood as a measure of convergence
as this quantity is guaranteed to be strictly increasing at each step of the EM
algorithm. The analogous quantity for the VB algorithm is the lower bound
L(q,θ)

L(q,θ) =
∑
XH

∫
q(XH ,θ) ln

{
p(XE,XH ,θ)

q(XH ,θ)

}
dθ. (3.5.29)

Bishop (2007, Chapter 10) describes how to evaluate the lower bound for mod-
els consisting of latent multinomial variables and observed Gaussian variables.
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3.5.3 Penalising complex models

An important property of variational learning is automatic model complexity
selection. To develop some intuition of the origin of this complexity selection
property we consider the lower bound L(q). We rewrite (3.5.2) as

L(q) =

∫ ∑
XH

q(XH)q(θ) ln
p(XE,XH |θ)

q(XH)
dθ −

∫
q(θ) ln

p(θ)

q(θ)
dθ

= E
[
ln
p(XE,XH |θ)

q(XH)

]
−KL(q(θ)||p(θ)). (3.5.30)

where the expectation is with respect to both q(XH) and q(θ). The �rst term
on the right-hand side is the expected log likelihood. The second term is the KL
distance between the prior and posterior over the parameters. As the number
of parameters increases, the KL distance increases and thus the lower bound
is decreased (Attias, 2000). This is the reason why the VB learning algorithm
tends to give preference to less complex models with fewer parameters.

The penalised likelihood becomes transparent in the large sample limit
N → ∞ where the parameter posterior is sharply peaked about the most
probable value θ = θ0. It can be shown that the KL penalty reduces to
(|θ0|/2) lnN which is linear in the number of parameters |θ0|. L(q) then
corresponds precisely to the Bayesian information criterion (BIC) (Bishop,
2007) . Thus, the BIC model selection criterion follows as a limiting case of
the VB framework.

3.6 Example: Gaussian mixture models

3.6.1 Representation

The Gaussian mixture model (GMM) is a popular model for density estimation
and is represented by a simple two-node Bayesian network. A GMM is de�ned
as a weighted sum of Gaussian distributions (see Section A.2.1)

p(x) =
K∑
k=1

ρkN (x|µk,Σk) (3.6.1)

where ρk, µk and Σk is the weight, mean and covariance matrix of the k-th
Gaussian mixture component, respectively, satisfying the condition

∑K
k=1 ρk =

1.
In order to represent a Gaussian mixture model as a Bayesian network

we introduce a K-dimensional binary random variable z. We de�ne the joint
distribution p(x, z) in terms of the marginal distribution p(z) and a conditional
distribution p(x|z). This model corresponds to the Bayesian network in Figure
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Figure 3.19: Bayesian network representation of a Gaussian mixture model.

3.19. The distribution over z is a multinomial distribution (A.2.6) with the
GMM mixing coe�cients as distribution parameters

p(z) =
K∏
k=1

ρzkk (3.6.2)

where 0 ≤ ρk ≤ 1 and
∑K

k=1 ρk = 1. The conditional distribution of x given z
is the Gaussian distribution

p(x|zk = 1) = N (x|µk,Σk). (3.6.3)

The joint distribution can thus also be written as

p(x|z) =
K∏
k=1

N (x|µk,Σk)zk , (3.6.4)

since at any given time only one zk can have the value 1 in which case the
remaining elements are 0. The joint distribution over z and x is given by
p(z)p(x|z) from which we get that the marginal distribution of x is obtained
by summing the joint distribution over all possible states of z to give

p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

ρkN (x|µk,Σk). (3.6.5)

In the GMM the variable z is a latent variable and x is an evidence variable.
Therefore, for the GMMs we have that XH = {z} and XE = {x}.

3.6.2 Maximum likelihood learning for GMMs

Suppose we have a set of observations XE = {x1, . . . ,xN}. We obtain a latent
variable zn for every observation variable xn such that XH = (z1, . . . , zN).
This situation is shown in Figure 3.20 where we have used plate notation to
indicate that we have N pairs of latent and observed variables. Note that we
have also explicitly indicated that xn is observed by shading the corresponding
node in the graph.
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Figure 3.20: Gaussian mixture model with N observations represented as a

Bayesian network using plate notation.

In order to learn a GMM from data using maximum likelihood we apply
the EM algorithm from Section 3.3.1. We have two nodes for which we need
to iteratively update expected su�cient statistics and parameters. The latent
variable zn is a multinomial variable with no parents where we can use the
result (3.3.27) to update the parameters. The observed Gaussian variable xn
has one parent zn and the results (3.3.33) and (3.3.35) applies. Figure 3.21
shows a GMM with six components �tted to the Old Faithful dataset (Bishop,
2007, Appendix A) using the EM algorithm. The scattered circles represent
the observed data. The circles in the center of the ellipses are the means of
the GMM components and the ellipses are standard deviation contours scaled
for visualisation purposes.

3.6.3 Variational learning for GMMs

We next consider variational learning for GMMs. As we are now treating the
model parameters as random variables we explicitly represent the variables as
hidden nodes in the Bayesian network as shown in Figure 3.22.

From Equation (3.5.4) we get the variational approximation

q(Z,ρ,µ,Λ) = q(Z)q(ρ,µ,Λ). (3.6.6)

We then iteratively update the variational distributions q∗(Z) and q∗(ρ,µ,Λ)
using (3.5.8) and (3.5.9). In Figure 3.23 - 3.26 we see snapshots from a few
iterations of the VB algorithm while �tting a GMM with K = 6 to the Old
Faithful dataset. The algorithm was initialised using the EM algorithm. We
see that the EM algorithm keeps all six components after convergence but using
the VB algorithm only two components remains. The remaining components
have all converged to their prior distributions indicating that these components
take no responsibility for explaining the data. These components correspond
to the smallest ellipse in Figure 3.26, which in fact consists of four overlapping
distributions. This is an instance of the model complexity selection property
discussed in Section 3.5.3.
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Figure 3.21: A GMM with six mixture components �tted to the �Old Faithful�

dataset using the EM algorithm.

Figure 3.22: Bayesian network representation of a GMM where model parameters

are represented as random variables in the graph. The plate notation is used to

represent N i.i.d. observations.
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Figure 3.23: Iteration 0 : Example of variational learning in GMMs using the old

faithful dataset.

3.7 Dynamic Bayesian networks

3.7.1 De�nition

A dynamic Bayesian network (DBN) is an extension of Bayesian networks that
allows for modelling variable-length (and potentially semi-in�nite) sequences
of hidden and observed random variables and their dependencies. As is the
case for static Bayesian networks, a dynamic Bayesian network must constitute
a directed acyclic graph (DAG).

A DBN consists of a set of slices. When modelling temporal dynamic
systems each slice represents a discrete time step. The DBN is de�ned in
terms of two Bayesian networks. The �rst network is the prior whose joint
distribution is de�ned as

p(x1
V ) =

∏
v∈V

p(x1
v|x1

πv) (3.7.1)

where x1
v denotes those variables indexed by the node v ∈ V in the �rst slice of

the Bayesian network. This distribution can be thought of as the initial state
of the system.
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Figure 3.24: Iteration 15 : Example of variational learning in GMMs using the old

faithful dataset.

The joint distribution associated with the second Bayesian network is de-
�ned by

p(xtV |xt−1
V ) =

∏
v∈V

p(xtv|xtπv) (3.7.2)

for t > 1 where xtv denotes the random variable indexed by node v in time slice
t and xtπv is the set of parent variables of xv in the BN. Equation (3.7.2) can be
interpreted as the transition model from one slice to the next. The essential
di�erence between (3.7.1) and (3.7.2) is that in (3.7.2) we allow parents of
nodes to lie in the previous time slice in addition to the same slice. Apart
from this inter-slice dependency the networks are identical. Thus, the network
topology is invariant in time. It is the underlying system being modelled that is
dynamic. We also assume that the parameters of the model are time-invariant.

The direction of edges between slices are always from left to right, rep-
resenting the forward �ow of time. The arcs within a slice are arbitrary as
long as the overall DBN remains a DAG. Intuitively, directed edges within a
slice represent instantaneous correlation while edges between slices represent
a time-delayed correlation. Figure 3.27 shows an example of DBN with three
slices and two nodes in each slice.
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Figure 3.25: Iteration 30 : Example of variational learning in GMMs using the old

faithful dataset.

As with static BNs we shall often explicitly represent the dependency of
the model on its parameters. Equations (3.7.1) and (3.7.2) then become

p(x1
V |θ) =

∏
v∈V

p(x1
v|x1

πv ,πv,θv) (3.7.3)

and
p(xtV |xt−1

V ,θ) =
∏
v∈V

p(xtv|xtπv ,θv) (3.7.4)

where θ are the transition model parameters and πv are the initial parameters
of the nodes in the prior BN that has outgoing arcs to the next time slice in
which case θv = ∅. Nodes in the prior BN that do not have outgoing arcs to
the next time slice share parameters with the transition model in which case
πv = ∅. Note in particular that θ does not depend on t the model parameters
are time-invariant.

The semantics of the DBN is obtained by unrolling the transition model
(3.7.2) for T time-slices. This distribution is given by
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Figure 3.26: Iteration 42 : Example of variational learning in GMMs using the old

faithful dataset.

Figure 3.27: A DBN consists of multiple slices each containing a BN with additional

arcs between slices representing the forward �ow of time.
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p(xV ) =
∏
v∈V

{
p(x1

v|x1
πv ,πv,θv)

T∏
t=2

p(xtv|xtπv ,θv)

}
(3.7.5)

where again we note that θv does not depend on t.

3.7.2 Learning and inference in DBNs

Maximum likelihood and variational learning in DBNs are straightforward ex-
tensions of the analysis already done for static Bayesian networks. Recall that
in DBNs model parameters are tied across time slices. That is, with the ex-
ception of the nodes that have outgoing arcs in the initial slice, corresponding
nodes share the same parameter set. As a result, when re-estimating the model
parameters in DBNs, the expected su�cient statistics for all nodes that share
parameters are pooled together as if they were expected su�cient statistics
from one node. Thus, the M step remains essentially the same.

It remains to describe how to e�ciently obtain the expected su�cient statis-
tics in the case of dynamic Bayesian networks. Recall from Section 3.3 that
for learning we need to evaluate the marginals

p(xtv,x
t
πv |xE,θ) (3.7.6)

which is an inference problem. The most straightforward way to perform exact
inference in a DBN is to unroll the DBN for T time slices. The DBN is then
no di�erent from a static BN and the junction tree algorithm from Section
3.4 applies without further analysis. However, when learning with sequences
that have variable lengths, as is the case in speech recognition applications, it
becomes too expensive to repeatedly unroll the DBN and convert it to a junc-
tion tree for each observation sequence. Murphy (2002) proposes the interface
junction tree algorithm as a solution to this problem.

3.7.3 The interface junction tree algorithm

The interface junction tree algorithm works by �sweeping� a Markov blanket
across the length of the DBN, �rst forward and then backward. Murphy (2002)
shows that the set of nodes within a time slice with outgoing edges to the next
slice is su�cient to d-separate the past from the future. This set is referred to
as the interface set.

Let G = (V,E) be the DAG obtained by unrolling the DBN according to
(3.7.5) and let Vt denote the set of node indices in time-slice t. Let the set of

all edges from a time slice t− 1 to t be denoted by ~Et. This set is de�ned as
all edges (u, v) ∈ E such that u ∈ Vt−1 and v ∈ Vt. The interface set It is then
de�ned as all nodes u ∈ Vt such that (u, v) ∈ ~Et+1 for v ∈ Vt+1. That is, the
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interface set is the set of nodes that have children in the next slice. The set of
non-interface nodes is Nt = Vt\It. We refer to Nt and all earlier nodes as the
past and Vt+1 and all later nodes as the future.

Theorem 3.7.1. The interface set d-separates the past from the future.

Proof. We need to show that

xP ⊥⊥ xF | xIt (3.7.7)

where P = {V1, . . . , Vt−1, Nt} is the past and F = {Vt+1, . . . , VT} is the future.
Let i be a node in the interface set that is connected to a node p in the past

and a node f in the future. If p is a parent the graph looks like p → i → f .
If p is a child the graph looks like p ← i → f . In both cases we have that
xp ⊥⊥ xf | xv since v is never head-to-head (see discussion of Figure 3.9). The
result then follows since all paths between any node in the past and any node
in the future are blocked by some node in the interface.

Consider the subgraph H t of the unrolled DBN that consists of all nodes
in the slice t and t − 1 minus the non-interface nodes in t − 1. That is, the
set of nodes in H t are It−1 ∪ Vt. For the special case t = 1 the nodes are V1.
We now construct a junction tree from each subgraph H t as in Section 3.4.
Additionally, we require the interface sets It−1 and It to each form a clique.
This is done by adding edges in the moral graph between all nodes in It−1

and similarly for It. We �nally glue all the junction trees together via their
interfaces as shown in Figure 3.28.

Figure 3.29 illustrates the construction of interface junction trees in the
case of an HMM with Gaussian mixture observation model. Note that we
have used z and y to denote the latent variables representing HMM states
and GMM components, respectively. We can then perform standard junction
tree inference in each tree separately and pass messages between the junction
trees via the interface nodes. We perform the message passing in a forward-
backward procedure along the length of the DBN.

Denoting latent variables in slice t as xHt and observed variables as xEt the
details of the forward-backward passes are then as follows.

Forward pass In the forward pass we are given the prior belief state

p(xIt−1|xE1 , . . . ,xEt−1) (3.7.8)

which is passed from Ct−1 to Dt where Ct−1 is the clique in Jt−1 containing
It−1 and Dt is the clique in Jt containing It−1. We then call CollectEvidence
(Algorithm 1) on Jt with Ct as root node. Finally, we marginalise the distri-
bution over Ct onto It to compute p(xIt|xE1 , . . . ,xEt) and pass this marginal
to the next slice. In more detail, the steps are:
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Figure 3.28: Illustration of how junction trees are joined in the interface junction

tree algorithm. It are the interface nodes for slice t, Nt are the non-interface nodes.

Dt is the clique in Jt containing It−1 and Ct is the clique in Jt containing It. The

square boxes are the separator sets whose domain by de�nition is It.

Figure 3.29: The DBN for a three-node HMM and mixture of Gaussian observation

model with junction trees glued together by the interface nodes zt. The non-interface
nodes are Nt = {yt,xt}.
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� Construct Jt where all clique and separator potentials are initialised to
unity. In the case that all potentials are discrete this means we initialise
all elements of the arrays to 1.

� From Jt−1 extract the potential over Ct−1 and marginalise onto It−1 to
give p(xIt−1|xE1 , . . . ,xEt−1). Multiply this marginal onto the potential
Dt.

� Multiply the CPDs for each node in slice t onto the appropriate potential
in Jt taking slices of observed variables xEt as necessary.

� Run CollectEvidence in Jt using Ct as the root.

� Return all clique and separator potentials in Jt.

In the �rst slice we skip the second step as there is no previous slice to pass
a message from. After collecting evidence to Ct, not all nodes in Jt will have
seen all the evidence xE. For example, in Figure 3.29 if we collect evidence to
x2, then the posterior distribution over y2 calculated from the clique potential
will be p(y2|x2) rather then p(y2|x1, . . . ,xN) since y2 will only have received
a message from x2 below and not z2 above. Hence, we must also perform
DistributionEvidence on Ct to compute the correct posterior distribution
over all nodes in Jt. This operation will be performed in the backward-pass
whose details are as follows.

Backward pass In the backward pass we run DistributeEvidence (Algo-
rithm 2) using Ct as the root and then pass a message from Dt to Ct−1. The
details are as follows.

� The input is the clique and separator potentials over all nodes in Jt.

� From Jt extract the potentialDt+1 and marginalise onto It to get p(xIt |xE).

� Update the potential on Ct in Jt by absorbing from the potential on Dt+1

in Jt+1 using

φ∗C = φC

∑
D\C φD∑
C\D φC

(3.7.9)

where C = Ct and D = Dt+1.

� Distribute evidence from the root Ct.

� Return all clique and separator potentials.

To start the recursion from the �nal slice T we distribute evidence from
the clique CT . See Murphy (2002) for an analysis of the complexity of the
interface junction tree algorithm.
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Figure 3.30: Hidden Markov Model represented as a dynamic Bayesian network.

3.8 Example: Hidden Markov models

A well-known example of a DBN is the hidden Markov Model (HMM). An
HMM is a probabilistic model de�ned by

p(X,Z|θ) = p(x1|α)

[
T∏
t=2

p(zt|zt−1,A)

]
T∏
t=1

p(xt|zt,φ) (3.8.1)

where α is the prior over HMM states, A is the transition matrix and φ is
the observation model parameters. From (3.7.1), (3.7.2), and (3.8.1) we see
that an HMM has the graphical representation shown in Figure 3.30 which we
recognise as a DBN.

In the HMM we do not make the i.i.d. assumption for individual observa-
tions as in the GMM. In particular, from Figure 3.30 we see that any obser-
vation xt is conditionally independent of the previous observation xt−1 given
state variables zt and zt−1. In the case that we have multiple observations
sequences we assume that the sequences are i.i.d.

The observation model can in principle have any distribution. In speech
recognition applications it is common to model observations as a GMM.

3.8.1 Maximum likelihood learning for HMMs

Given observed data X = {x1, . . . ,xT}, the likelihood function is obtained
from the joint distribution by marginalising over latent variables which gives

p(X|θ) =
∑
Z

p(X,Z|θ). (3.8.2)

Recall that the function Q(θ,θ∗) in the M step is given by

Q(θ,θ∗) =
∑
Z

p(Z|X,θ) ln p(X,Z|θ∗). (3.8.3)

We shall use γ(zt) to denote the marginal posterior distribution of a latent
variable zt, and ξ(zt−1, zt) to denote the joint distribution of two successive
latent variables. We then get
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γ(zt) = p(zt|X,θ) (3.8.4)

ξ(zt−1, zt) = p(zt−1, zt|X,θ). (3.8.5)

Since zt is a discrete variable we can store γ(zt) using a set of K non-
negative numbers that sum to one, and ξ(zt−1, zt) as a K ×K matrix of non-
negative numbers that again sum to one. We shall use γ(ztk) to denote the
conditional probability of ztk = 1, with an analogous notation being used for
ξ(z(t−1),j, ztk). Note that the expectation of a binary random variable equals
the probability that it takes the value 1. This gives us

γ(ztk) = E[ztk] =
∑
z

γ(z)ztk (3.8.6)

ξ(z(t−1)j, ztk) = E[z(t−1)j, ztk] =
∑
z

ξ(z(t−1)j, ztk). (3.8.7)

The quantities γ(ztk) and ξ(z(t−1)j, ztk) are in fact the rntk quantities from
Section 3.3.1 for the n-th observation. In the case that we have multiple
observation sequences these quantities indeed become rntk for their respective
nodes. In this case the expected su�cient statistics from each sequence is
pooled when re-estimating parameters.

Substituting the joint distribution p(X,Z|θ) given by (3.8.1) into (3.8.3)
and using the de�nitions of γ and ξ, we obtain

Q(θ∗,θ) =
K∑
k=1

γ(z1k) lnαk +
T∑
t=1

K∑
j=1

K∑
k=1

ξ(z(t−1)j, ztk) lnAjk

+
T∑
t=1

K∑
k=1

γ(ztk) ln p(xt|φk). (3.8.8)

Evaluating this expression is the E step of the EM algorithm for HMMs.
The marginals γ(zt) = p(zt|X,θ) and ξ(zt−1, zt) = p(zt−1, zt|X,θ) can be
found using the interface junction tree algorithm which, in the special case
of HMMs, is equivalent to the classic forward-backward algorithm (Rabiner,
1989).

In the M step, we maximise Q(θ,θ∗) with respect to the parameters θ =
{α,A,φ} while treating γ(zt) and ξ(zt−1, zt) as constant. Using the results
from Section 3.3.1 we get

αk =
γ(z1k)∑K
j=1 γ(z1j)

(3.8.9)

Ajk =

∑T
t=2 ξ(z(t−1)j, ztk)∑K

l=1

∑T
t=2 ξ(z(t−1)j, ztl)

. (3.8.10)
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Note that each node in the time-slices t = 2, . . . , T shares the same parame-
ters, and the expected su�cient statistics are pooled when re-estimating the
transition model A as discussed in Section 3.7.2. This pooling of expected
su�cient statistics gives rise to the sum

∑T
t=2 in the (3.8.10).

Any element of A that is initially set to zero, remains zero throughout the
algorithm. Thus, no particular modi�cation of the EM equations are required
for the case of left-to-right models beyond choosing appropriate initial values
for the elements of Ajk.

Assuming that the observation model is a GMM, and noting that only
the �nal term of (3.8.8) depend on φk and that this term has the form of a
GMM, we see that to maximise Q(θ∗,θ) with respect to φk we can use the
standard GMM parameter update equations with γ(ztk) playing the role of
responsibilities. This gives us

µk =

∑T
t=1 γ(ztk)xt∑T
t=1 γ(ztk)

(3.8.11)

Σk =

∑T
t=1 γ(ztk)(xt − µk)(xt − µk)T∑T

t=1 γ(ztk)
(3.8.12)

which should be compared to the results given in Section 3.3.1. Note that in
this case the pooling sum

∑T
t=1 starts at t = 1 since the node representing the

Gaussian variable xt in Figure 3.30 does not have any outgoing arcs and thus
the parameters in the initial slice are also shared.

The EM algorithm in general �nds a local optimum. It is therefore im-
portant to have good initial guesses for the model parameters. In the case of
left-to-right HMMs it is common to divide the training data into K equally
sized bins, one for each state, and �t a GMM to the data within each bin as if
the data is i.i.d. It is common to initialise the GMM means and weights using
the K-means algorithm and letting the covariance matrices be the identity
matrix.

3.8.2 Variational learning for HMMs

The variational approximation in the case of the HMM with a GMM observa-
tion model is

q(Z,α,A,µ,Σ) = q(Z)q(α,A,µ,Σ). (3.8.13)

The variational learning method proceed as usual by updating q∗(Z) and
q∗(α,A,µ,Σ) while pooling the expected quantities for nodes that share pa-
rameters as in maximum likelihood learning. McGrory and Titterington (2006)
shows that variational learning in HMMs have the same model complexity
selection properties as the GMM, thus demonstrating that this is a general
property of variational learning in mixture models.
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3.9 Summary

In this chapter we have derived the general framework of Bayesian networks.
We presented dynamic Bayesian networks as an extension to the basic frame-
work that allows for modelling variable-length sequences of variables. We
presented general learning and inference algorithms for both BNs and DBNs.

We have also showed how variational learning leads to automatic model
complexity selection and thus avoids singularities and over�tting problems
associated with maximum likelihood learning. The junction tree algorithms
for BNs and interface junction tree algorithm for DBNs were derived for the
respective models which yield e�cient exact inference general in BNs and
DBNs.

In the next chapter the purpose of deriving such a general framework shall
become apparent as we present several audio-visual DBN models that address
the stream weighting and stream integration problems of AVASR. In all the
models learning and inference are handled by the general framework without
any further analysis necessary.



Chapter 4

System Design

4.1 Introduction

In this chapter we describe our proposed AVASR system which will be used
in the experiments presented in Chapter 5. The system comprises feature
extraction, feature stream integration, and classi�cation.

The data corpus we use in the experiments is a small-vocabulary corpus
consisting of 36 speakers pronouncing the digits from zero to nine. Thus, our
system is an isolated-digit audio-visual speech recognition system. In this case
we can ignore the language model as we are only recognising isolated digits.
We can also ignore the pronunciation model as, due to the small vocabulary,
we model each digit directly using a separate DBN. Thus, the system will
consist of ten audio-visual DBN (AV-DBN) models, one for each digit class
M0, . . . ,M9. As the model is conditioned on the class we denote the set of
models as p(xV |M0), . . . , p(xV |M9).

We �rst describe how acoustic and visual speech features are extracted
from audio and video samples of digit utterances. In particular, we discuss
mel-frequency cepstrum coe�cients (MFCCs) and active appearance models
(AAMs). Next we describe how to integrate the acoustic and visual informa-
tion contained in the feature streams using audio-visual DBN models. This
problem is referred to as the feature stream integration problem. We then
describe the observation model used by the system. The observation model
is a stream weighted Gaussian mixture model which allows each observation
stream (acoustic or visual) to be weighted independently according to some
appropriate measure of the reliability of the stream. We then describe how
novel observations are classi�ed by the system. Classi�cation is the problem of
determining to which class an observation belongs. We discuss implementation
issues as appropriate where necessary.

In addition to audio-visual speech recognition, the system may also use only
acoustic features or only visual features. We then obtain either an acoustic-
only (audio-only) speech recognition system or an automatic lip-reading (visual-

73
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only) system.

4.2 Audio-visual feature extraction

A fundamental component of any speech recognition system is feature extrac-
tion. The raw audio and video data is typically extremely high-dimensional
and contains much redundant information. Redundant information is char-
acterised as any information that is not relevant to recognising speech. For
instance, a single image of size 720×480 pixels results in a 345600-dimensional
feature vector. If we want to use video sequences to capture dynamic infor-
mation the situation becomes even worse. In such high-dimensional models
the amount of data necessary for training accurate models grows exponen-
tially with the dimensionality of the feature spaces, rendering these models
intractable. This is known as the curse of dimensionality (see Bishop, 2007,
page 33).

Moreover, much of the information contained in audio or video samples is
redundant. For instance, in video most of the information relevant to speech
is contained in the motion of visible articulators such as the lips, the tongue
and jaw. It seems likely that this motion can be expressed using a variable of
much lower dimension than for instance the number of pixels in each frame.
The process of extracting lower-dimensional and informative features is called
feature extraction.

We have chosen feature extraction methods that has been shown to yield
good results in other studies. In particular, we have chosen MFCCs (Rabiner
and Juang, 1993) as acoustic features and AAM coe�cients (Matthews et al.,
2002) as visual features. In the next section we give an overview of each of
these feature extraction methods.

Note that acoustic, and in particular visual, feature extraction is in itself
a topic where there is much scope for improvement. However, in this research
the main focus has been on modelling, inference and learning. A thorough
investigation of feature extraction is beyond the scope of the research and as
such we only brie�y review each of the feature extraction techniques.

4.2.1 Mel-frequency cepstrum coe�cients

MFCCs are the standard features used in most modern speech recognition
systems. In short, MFCC coe�cients are calculated as the cosine transform of
the logarithm of the short-term energy spectrum of a signal expressed on the
mel-frequency scale. The result is a set of coe�cients that approximates the
way the human auditory system perceives sound. In Davis and Mermelstein
(1980) MFCCs are shown experimentally to give better recognition accuracy
than alternative parametric representations for the speech recognition task.
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Figure 4.1: Acoustic feature extraction from an audio sample of the spoken word

�zero�. Mel-cepstrum (top) and original audio sample (bottom).

For the analysis and intuition behind MFCCs and a description of how to
calculate the coe�cients see Rabiner and Juang (1993).

Figure 4.1 shows an example of an original audio sample of the spoken
word �zero� and the corresponding mel-frequency cepstrum. A typical number
of MFCCs used in speech recognition systems is 13 coe�cients. Note that
the �rst of these coe�cients represents the power of the speech signal. We
also use the �rst-order and second-order di�erences (i.e. velocity and accelera-
tion) of these feature vectors to capture dynamic information. As the feature
vectors are typically noisy, calculating these di�erences directly is numerically
unstable. We have used the Savitzky-Golay smoothing �lter (Savitzky and
Golay, 1964) in which numerically stable �rst-order and second-order di�er-
ences are calculated. As a result our feature vectors have a dimension of
13 + 13 + 13 = 39. Again, the high-dimensional feature vectors are likely to
lead to problems due to the curse of dimensionality. Thus, we apply dimen-
sionality reduction through principal component analysis (Smith, 2005) to the
feature data. The number of principal components to keep was determined by
visual inspection of the singular value spectrum. We found that the �rst 12
singular components contained the majority of the information in the feature
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data. Thus, the proposed AVASR system uses 12-dimensional acoustic feature
vectors which we shall denote as x̄A, i.e. the observed value of the evidence
variable xA.

4.2.2 Active appearance models

While acoustic speech features can be extracted directly through a sequence
of transformations applied to the input audio signal, extracting visual speech
features is in general more complicated. The visual information relevant to
speech is mostly contained in the motion of visible articulators such as lips,
tongue and jaw. In order to extract visual information from a video sequence
it is advantageous to track the complete motion of the speaker's face and
particular facial features.

Active Appearance Model (AAM) �tting is an e�cient method for tracking
the motion of deformable objects (Edwards et al., 1998; Cootes et al., 2001;
Matthews and Baker, 2003). An AAM is a statistical model of variations in
shape and texture of an object of interest. Tracking of an object of interest in
a video sequence is done by �tting the AAM to each frame of the sequence. To
build an AAM it is necessary to provide sample images with the shape of the
object annotated. Hence, in contrast to MFCCs, AAMs require prior training
before being used for tracking and feature extraction.

The shape of an AAM is de�ned by a mesh given by a set of (x, y) coordi-
nates, represented here in the form of a column vector

s = (x1, y1, x2, y2, . . . , xn, yn)T. (4.2.1)

Shape variation is restricted to a base shape s0 plus a linear combination
of N shape vectors si

s = s0 +
N∑
i=1

pisi. (4.2.2)

The shape vectors si determine the directions in which the shape is allowed to
vary from the base shape. The amount of variation in each direction is given
by the shape parameters pi.

The base shape and shape vectors are normally computed by applying PCA
to a set of manually annotated training images. Given a set of training shapes
X = {xi}, the base shape s0 is computed as the mean of the training shapes

s0 = x̄ where x̄ =
1

N

N∑
i=1

xi. (4.2.3)

The shape vectors are computed in terms of the eigenvectors of the covari-
ance matrix. The covariance matrix is given by

Σx =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T. (4.2.4)



CHAPTER 4. SYSTEM DESIGN 77

which can also be expressed in terms of its eigenvectors

Σx =
D∑
k=1

λiuiu
T
i . (4.2.5)

The shape vectors si are then given by the eigenvectors ui sorted according
to the corresponding eigenvalues such that λi ≥ λi+1. However, not all the
eigenvectors are retained. The smallest eigenvalues mostly contain noise and
are therefore discarded. The thresholds for which eigenvalues to discard may be
chosen manually by visual inspection of the eigenvalue spectrum. In practice,
the eigenvectors and eigenvalues are computed using the SVD due to numerical
stability issues.

The training shapes typically di�er in translation, rotation and scale. This
is information that is not relevant to speech and which we would like to remove
from the training set before constructing the AAM. This can be achieved by
aligning the training shapes prior to performing PCA. A common approach to
perform the shape alignment is Procrustes analysis (Cootes et al., 2000). By
aligning the shapes we ensure that PCA only capture local, non-rigid deforma-
tions, and that translation, rotation, and scale, which do not contain speech
relevant information, are ignored. See Cootes et al. (1998) for more details on
how to perform shape normalisation using Procrustes analysis when training
AAMs.

Figure 4.2 shows an example of a shape model with three shape vectors.

4.2.2.1 Appearance

The appearance models texture, i.e. the actual pixel values, over the region de-
�ned by the base shape s0. Similar to shape, appearance variation is restricted
to a base appearance A0 plus a linear combination of M appearance vectors Ai

A(x) = A0 +
M∑
i=1

λiAi(x). (4.2.6)

Note that x is only de�ned for the pixel coordinates that fall within the base
shape s0. I.e., we shall assume x ∈ hull(s0).

The mean appearance and appearance vectors are computed from anno-
tated training images. The training images are �rst shape-normalised by warp-
ing each image onto s0 using a piecewise a�ne transformation. To this extent,
the shape vertices are �rst triangulated. The collection of corresponding trian-
gles in two shape meshes then de�nes a piecewise a�ne transformation between
the two shapes. The pixel values within each triangle in the training shape
s are warped onto the corresponding triangle in the base shape s0 using the
a�ne transformation as de�ned by the two corresponding triangles.

The appearance model is then computed from the shape-normalised images
using PCA. Figure 4.3 shows an example of a base appearance and the �rst
three appearance images.
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Figure 4.2: Triangulated base shape s0 (top left), and �rst three shape vectors p1

(top right), p2 (bottom left) and p3 (bottom right) represented by arrows superim-

posed onto the triangulated base shape.

Figure 4.3: Mean appearance A0 (top left) and �rst three appearance images A1

(top right), A2 (bottom left) and A3 (bottom right).
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4.2.3 Tracking motion using AAM �tting

Tracking of an appearance in a sequence of images is performed by minimising
the di�erence between the base model appearance, and the input image warped
onto the coordinate frame of the AAM. For a given image I we determine the
optimum parameters.

argmin
λ,p

∑
x

[
A0(x) +

M∑
i=1

λiAi(X)− I(W(x; p))

]2

. (4.2.7)

where x ∈ s0, p are the shape parameters describing mesh deformation, andλ
are the appearance parameters describing texture. In the above equation we
seek to minimise the distance between the appearance model and an input
image I warped onto the frame of the base appearance of the appearance
model.

With the purpose of simplifying the presentation, we shall only consider
variation in shape and ignore variation in texture. The derivation for the
case including texture variation is available in Matthews and Baker (2003).
Consequently (4.2.7) reduces to

argmin
p

∑
x

[A0(x)− I(W(x; p))]2. (4.2.8)

Solving (4.2.8) for p is a non-linear optimisation problem.
The quantity that is minimised in (4.2.8) is the same quantity that is min-

imised in the classic Lucas-Kanade image alignment algorithm (Lucas and
Kanade, 1981). In the Lukas-Kanade algorithm the problem is �rst reformu-
lated as

argmin
∆p

∑
x

[A0(X)− I(W(x; p + ∆p))]2. (4.2.9)

This equation di�ers from (4.2.8) in that we are now optimising with respect
to ∆p while assuming p is known. Given an initial estimate of p we update
with the value of ∆p that minimises (4.2.9). The new p∗ is given by

p∗ = p + ∆p. (4.2.10)

The updated value p∗ will necessarily decrease the value of (4.2.8). Replacing
p with the updated value for p∗, this procedure is iterated until convergence
at which point p yields the (locally) optimal shape parameters for the input
image I.

To solve (4.2.9) Taylor expansion is used giving

argmin
∆p

∑
x

[
A0(W(x; p))− I(W(x; p))−∇I ∂W

∂p
∆p

]2

(4.2.11)
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where ∇I is the gradient of the input image and ∂W/∂p is the Jacobian of
the warp evaluated at p.

The optimal solution to (4.2.11) is found by setting the partial derivative
with respect to ∆p equal to zero, which gives

2
∑
x

[
∇I

∂W

∂p

]T [
A0(x)− I(W(x))−∇I ∂W

∂p
∆p

]
= 0. (4.2.12)

Solving for ∆p we get

∆p = H−1
∑
x

[
∇I ∂W

∂p

]T

[A0(x)− I(W(x; p))] (4.2.13)

where H is the Gauss-Newton approximation to the Hessian matrix given by

H =
∑
x

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
. (4.2.14)

When tracking motion in a video sequence a proper initialisation of the
shape parameters p is essential for the �rst frame. For subsequent frames p
may be initialised as the optimal parameters from the previous frame. Figure
4.4 shows an example of an AAM �tted to an input image.

For further details on how to compute the piecewise linear a�ne warp and
the Jacobian as well as an extension of the method that includes appearance
variation and a global shape normalising transform see Matthews and Baker
(2003).

The AAM �tting method described above is referred to as forwards-additive
(Baker and Matthews, 2001). In AVASR applications with real-time per-
formance constraints we are often willing to sacri�ce accuracy slightly for
increased e�ciency. In (Matthews and Baker, 2003) several variations of
the Lucas-Kanade method is evaluated and it is concluded that the inverse-
compositional method gives the best trade-o� between performance and ac-
curacy. We have used the inverse compositional method for our research and
in particular in the experiments presented in Chapter 5. The derivation of
the inverse-compositional algorithm is analogous to the forwards-additive one,
with some key di�erences that increase performance. Details can be found in
Matthews and Baker (2003).

4.2.4 Extracting visual speech features

We would like the visual features to be as independent of the individual speak-
ers in the training data as possible. The standard AAM feature extraction
method described so far is insu�cient in this regard as the resulting AAM will
contain a large amount of information about local variability across di�erent
speakers instead of global variations caused by speech. In order to address this
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Figure 4.4: Example of an AAM �tted to an image. We can think of AAM �tting

as moving the vertices of the mesh such that the vertex con�guration and image

intensity values within each triangle optimally �ts the model.

issue we subtract the mean shape and mean appearance of a speci�c speaker
from the feature data from that speaker.

The form of the AAMs discussed so far has been motivated by our need
for tracking the motion of a speaker's face and facial features. However, the
resulting AAM coe�cients may not necessarily be appropriate as features for
audio-visual speech recognition. Visual speech information is mostly contained
in the motion of visible articulators such as the lips, tongue and jaw. In order
to address this issue Papandreou et al. (2009) make use of a second region
of interest AAM (ROI-AAM). The ROI-AAM is con�ned to the lower face
region around the speaker's mouth as shown in Fig 4.5. We observe that the
shape vertices of the ROI-AAM form a subset of the vertices in the original
AAM. We shall refer to the original AAM as the facial AAM. The ROI-AAM
is generated from the shapes that result when performing AAM tracking using
the facial AAM. The principal components of the ROI-AAM will capture locale
information in the region of interest. As a result the principal components
contain information that is more relevant to speech than the corresponding
principal components of the facial AAM.

By plotting the eigenvalue spectrum we found it su�cient to use the �rst
10 principal components of the ROI-AAM shape model and the �rst 16 prin-
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Figure 4.5: The ROI-AAM is used to capture the parts of the AAM that contains

relevant speech information.

cipal components of the ROI-AAM appearance model as visual feature in the
AVASR system. Thus, we obtain a 26-dimensional visual speech feature vector
x̄V as observed evidence of the visual evidence variable xV .

4.3 Integrating acoustic and visual features

An important problem in AVASR is how to integrate the acoustic and visual
observation sequences. Let x̄A and x̄V denote the acoustic and visual observa-
tions associated with the acoustic and visual variables xA and xV , respectively.
A simple integration scheme would be to concatenate the two observation vec-
tors into a single vector. Assuming column vectors we get

x̄E =

(
x̄A
x̄V

)
. (4.3.1)

Using the concatenated feature vectors we can apply standard acoustic-only
speech recognition methods such as HMMs. This method is often referred to
as feature fusion or early integration.

Alternatively, we can learn two separate HMMs using the acoustic and
visual features, respectively. We will then essentially have two separate speech
recognition systems from which an audio-visual speech recognition system can
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be built by combining the outputs of the two individual systems. This method
is called decision fusion or late integration.

In an HMM the states typically correspond to a notion of �meaning� that
represents the cause of the observed data. Feature fusion assumes that the
acoustic and visual observation are perfectly synchronous. That is, for a given
t it assumes that xtA and xtV correspond to the same state at the same time,
i.e. the same �meaning�. In decision fusion, however, we have two completely
independent state spaces for each observation sequence. Thus, decision fusion
assumes that the observation xtA is completely independent from xtV .

None of these two assumptions are necessarily appropriate for AVASR.
Speech production is a complex physical process. In particular, speakers form
the facial expression and the shape of the lips prior to a sound being pro-
nounced, resulting in the motion of visible articulators occurring before the
actual sound is uttered. Thus, there is a slight delay between the visual and
acoustic speech modalities. This delay is referred to as audio-visual speech
asynchrony and is not constant, but depends on the particular sound that is
being uttered as well as the speaker (Benoit, 1992). In part this o�set is caused
by di�erent channel delays, but is also a�ected by forward-articulation as de-
scribed in Benoit (1992). In Bregler and Konig (1994) this delay is estimated
to be approximately 120 ms on average.

There is an additional problem with the feature fusion method. As the
acoustic and visual modalities typically di�er substantially in terms of in-
formation content and noise, we would like to weight each of the modalities
accordingly. This is straightforward in decision fusion as we can weight the
outputs of the two independent HMMs as we wish. However, in feature fusion
there is no immediate way to perform such a weighting.

Based on the DBN framework we now propose solutions to these problems
as extensions to the basic HMM model described in Section 3.7.1. Note that
for all models the mathematical formulation is implicit through (3.7.1) and
(3.7.2) and that the general inference and learning framework described in
Chapter 3 applies with no further re�nement necessary. Note that all the
AV-DBN models we consider have a left-to-right HMM topology.

Audio-Visual HMM The audio-visual HMM shown in Figure 4.6 corre-
sponds to early integration where the acoustic and visual features have been
concatenated using (4.3.1). It is the equivalent to standard HMM model used
in most HMM-based speech recognition systems with acoustic and visual fea-
tures vectors concatenated into a single DA + DV dimensional audio-visual
feature vector. The disadvantage of the AV-HMM model is the lack of �exibil-
ity in modelling audio-visual asynchrony and weighting the individual feature
streams.
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Figure 4.6: Audio-visual HMM (AV-HMM)

Figure 4.7: Audio-visual product HMM (AV-PHMM)

Audio-Visual Product HMM. The audio-visual product HMM (AV-PHMM)
shown in Figure 4.7 is an intermediate integration DBN model. It is a minor
modi�cation of the early integration AV-HMMmodel in which we have two dif-
ferent observation models (corresponding to acoustic and visual observations)
represented by separate nodes in the graph. This factored observation model
allows us to independently weight each observation stream. In the AV-PHMM
the two streams share a single state space and as such the model assumes syn-
chronous acoustic and visual observations. As a result the AV-PHMM might
not adequately capture the natural asynchrony between the acoustic and visual
observation streams.

Audio-Visual Independent HMM. Another possibility is to use two sep-
arate HMMs for the acoustic and visual observation sequences independently.
Each observations stream will then have a separate state space independent
from each other. The resulting DBN is the audio-visual independent HMM
(AV-IHMM) shown in Figure 4.8. Although this model will allow stream
weighting and state asynchrony between the acoustic and visual observation
streams, it may fail to capture the natural correlation that exists between the
acoustic and visual observation streams.
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Figure 4.8: Audio-visual independent HMM (AV-IHMM)

Audio-Visual Coupled HMM. The audio-visual coupled HMM (AV-CHMM)
shown in Figure 4.9 is a compromise between the AV-PHMM and the AV-
IHMM in terms of asynchrony modelling. The AV-CHMM consists of two
HMMs similar to the AV-IHMM. However, note that the state spaces of the
two models are connected. In particular, each latent state variable in each
stream is conditioned on the state variable in the previous time slice of the
complementary stream in addition to the state variables in the same stream.
Thus, the current state of a stream is dependent on the previous state of both
streams. We can constrain the maximum number of states that the two streams
are allowed to desynchronise by setting elements of the transition matrices that
correspond to �illegal� levels of desynchrony to zero.

Consider the transition model p(zts, z
t−1
s , zt−1

s′ |As) where s ∈ {A, V } indi-
cates the acoustic (A) or visual stream (V) and s′ is the complementary stream.
Assuming each stream can be in one of K possible states, the transition ma-
trix As is a three-dimensional probability table of size K3 with elements asijk
where i is the current state and j is the previous state of the stream s, and k
is the previous state of the complementary stream. In the proposed AVASR
system we use a left-to-right model where the two stream are at most allowed
to desynchronise by one state. This can be achieved by de�ning the transition
matrix elements as

asijk = 0 if

{
i 6∈ j, j + 1
|i− k| ≥ 2

. (4.3.2)

where the top condition represents the left-to-right structure within a stream,
and the bottom the synchronisation between streams.
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Figure 4.9: Audio-visual coupled HMM (AV-CHMM)

We observe that for all the models that we have considered we assume
that there is an observation xtV for every xtA. However, in most applications
the audio sample rate is much higher than the video frame rate. Even after
MFCCs have been calculated the number of AAM coe�cients are likely to be
signi�cantly less than the number of MFCC vectors. We solve this problem by
re-sampling the visual observation stream to the same number of samples as
the acoustic feature stream using the Fourier method (Gasquet and Witomski,
1999).

In the early and intermediate integration models we align the visual and
acoustic feature streams by shifting the video stream by 120 ms into the past
relative to the audio stream. This is done to compensate for the average delay
of acoustic speech relative to visual speech.

4.4 Observation model

We use the same state-conditional observation model for all the AV-DBN mod-
els. The observation model is the conditional probability distribution associ-
ated with the shaded nodes in the graphs. The observation model used in our
system is a stream weighted mixture of Gaussians (Ne�an et al., 2002) de�ned
as

bs(xt|zit = 1) =

[
M∑
j=1

wijN (xt|µij,Σij)

]λs
(4.4.1)
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where wij, µij and Σij are the weight, mean and covariance matrix of the j-th
mixture component and i-th HMM state, respectively. Note that we omit the
dependence of these parameters on the particular stream s ∈ {A, V } in our
notation. In the case of the AV-HMM there is only one observation stream
and thus there are no stream weights associated with the AV-HMM.

We use diagonal covariance matrices as it signi�cantly reduces the number
of parameters in the high-dimensional model without degrading accuracy per-
formance. In fact, in most cases where the amount of available training data
is limited, diagonal covariance matrices improve accuracy as it reduces the
number of parameters thus reducing the e�ects of the curse of dimensionality.

The stream exponent λs is used to weight the acoustic and visual observa-
tion streams independently according to some measure of reliability and the
noise in the respective streams. The stream weights are subject to the condi-
tions λs ≥ 0 and

∑
s λs = 2. During the training phase both stream weights

and �xed at λs = 1 in which case we have a standard Gaussian mixture model.

4.5 Classi�cation

In speech recognition applications we need to classify novel observations (sam-
ples) as belonging to a particular model class such as a word or a phoneme.
In our application the classes are the digits from zero to nine. In general the
likelihood of an observation belonging to a model class is context-dependent.
For instance, for words the context is given by the language model and for
phonemes by the pronunciation model. In fact, it is possible to model all lev-
els of speech from the top-level language model down to the observation model
using a single hierarchical DBN (Terry and Katsaggelos, 2008). However, as
we only perform isolated digit recognition there is no language model. Also,
due to the small vocabulary we can ignore the pronunciation model and learn
separate AV-DBN models for each digit directly.

Suppose we have a set of trained DBN models for each digit p(xV |Mi)
where we have conditioned the model on the particular model class Mi ∈
{M0, . . . ,M9} representing the digits from zero to nine. Also suppose we have
observed evidence in the form of corresponding audio and video observation
sequences x̄E = (x̄A, x̄V ). We classify this observation as belonging to the
model with largest posterior probability given the observations,

argmax
M0,...,M9

{
max
xH

p(xH ,Mi|x̄E)

}
= argmax

M0,...,M9

{
max
xH

p(xH , x̄E,Mi)

p(x̄E)

}
= argmax

M0,...,M9

{
p(Mi)

p(x̄E)
max
xH

p(xH , x̄E|Mi)

}
,

(4.5.1)

where p(Mi) is the prior probability distribution over model class i for i =
0, . . . , 9. Recall that xH is the set of latent variables and x̄E is the observed
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variables �xed at their observed values. Typically p(Mi) is the language model.
However, as each digit is equally likely to occur in the data corpus we can drop
this factor and perform classi�cation using

argmax
M0,...,M9

{
max
xH

p(xH , x̄E|Mi)

}
. (4.5.2)

Note that we have used the maximum probability interpretation of the
marginal when evaluating the marginal of p(xH |xE,Mi). The intuition is as
follows. We classify the observation to the model class that, given the observed
data, has the maximum posterior probability, That is, the model that is most
likely to have generated the observation sequences. The maximum probability
can be evaluated e�ciently for any of the proposed AV-DBN models using the
interface junction tree algorithm in �max mode� (see Section 3.4.9).

When classifying a novel observation sequence the stream weights λs are
set according to some measure of reliability and noise in the acoustic and visual
observations. In particular, in our experiments we use synthetic noise added
to the observations and hence the noise level is assumed known. This is not an
unrealistic model as several methods exist for measuring the reliability of the
acoustic and visual streams (Papandreou et al., 2009). However, investigating
such methods is beyond the scope of this research.

4.6 Learning

In general, we consider learning as a separate system whose output are the
models used by the AVASR system. However, many of the components de-
scribed in this chapter are also required for the learning system. In particular,
feature extraction and feature stream integration remain precisely the same.
Features that are extracted for learning form part of the training data. The
training data is entered as evidence into any of the learning algorithms de-
scribed in Chapter 3 from which model parameters are estimated.

In Chapter 5 we shall compare the performance of models learned using
maximum likelihood and variational learning. Variational learning is in general
expected to perform better than maximum likelihood as it reduces the e�ects
of over�tting.

The learning algorithms are determined to have converged when the change
during one iteration of the algorithm is less than a prede�ned threshold. In
maximum likelihood learning the log likelihood in Equation (3.3.5) is used to
measure change with each iteration, and for variational learning we use the
lower bound in Equation (3.5.2). We consider a learning algorithm to have
converged when the change is less than 0.2% relative error rate during an
iteration.
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4.7 Summary

In summary, our proposed AVASR system is a small-vocabulary isolated digit
audio-visual speech recognition system. The system comprises acoustic and
visual feature extraction, early, intermediate, and late feature stream integra-
tion, and classi�cation. Figure 4.10 shows a diagrammatic overview of the
proposed AVASR system.

Early integration corresponds to the use of the AV-HMM model and inter-
mediate integration to the use of AV-PHMM or AV-CHMM. In late integration
the AV-IHMM model is used. Given a raw audio sample and a correspond-
ing video sample the system will extract acoustic and visual features from the
respective samples. The acoustic features are MFCCs and visual features are
AAM coe�cients. In early and intermediate integration the two streams are
aligned by shifting the video observation stream 120 ms into the past relative to
the audio stream. This is done to compensate for the average delay of acoustic
speech relative to visual speech. In late integration this step is not necessary
as the two streams are independent. The resulting features are introduced
as observed evidence to the system. It will then evaluate the likelihood that
the observation was generated by any of the previously trained digit models.
The observation is classi�ed as the model (digit) that is most likely to have
generated the observation.

An AVASR system as described in this chapter was implemented as a part
of the research and used in the experiments presented in the next chapter. See
Appendix C for more details on the software.
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Figure 4.10: Schematic overview of the design of an AVASR system



Chapter 5

Experiments

5.1 Introduction

In this chapter we evaluate the performance of the DBN models and learning
algorithms that we have proposed for AVASR. Performance is evaluated based
on classi�cation accuracy. In the case of digit recognition this means that
we classify multiple examples of each digit and report the performance as the
number of digit samples classi�ed incorrectly divided by the total number of
digit samples classi�ed. This metric is called the misclassi�cation rate.

AVASR is in particular expected to perform better than audio-only speech
recognition in noisy acoustic environments as the visual modality is not af-
fected by acoustic noise. Thus, we are particularly interested in comparing the
performance of the AVASR models and learning algorithms in various levels
of acoustic noise. For each experiment we have added white Gaussian noise
(AWGN) ranging in signal-to-noise ratio (SNR) from −6 to 18 dB in steps of 4
dB to the acoustic feature stream. We then evaluate the performance of each
model or algorithm at each SNR level. The optimal stream weights are dis-
criminatively determined for each SNR level. We expect to weight the visual
stream more as the amount of acoustic noise increases (SNR level decreases).

Learning the models consists of two phases. First we estimate model pa-
rameters using maximum likelihood or variational learning. Next we discrim-
inatively estimate optimal stream weights for each SNR level. We then use
the model parameters and stream weights during classi�cation. Note that by
doing so we are assuming that the level of acoustic noise, and hence which
pair of stream weights to use, is known during classi�cation. In practice this is
not the case. Several methods exist for measuring the reliability on both the
audio and visual modality (Papandreou et al., 2009), however, but we shall
not consider such methods here.

The following AVASR experiments are considered:

� Experiment 1. In the �rst experiment we investigate the e�ect of
stream weighting in AVASR. In order to evaluate the e�ects of stream
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weighting we compare the performance of the AV-HMM model, which
does not feature stream weighting, and the AV-PHMM that does.

� Experiment 2. In the second experiment we evaluate the performance
of the various feature stream integration strategies (early, intermediate,
late). In particular, we compare the performance of AV-PHMM, AV-
IHMM and AV-CHMM audio-visual DBN models.

� Experiment 3. In the third experiment we evaluate the performance
of AVASR compared with audio-only and visual-only speech recognition.
The comparison is performed by evaluating the misclassi�cation rate of
the audio-visual AV-CHMM model to HMM models where we have only
used acoustic feature or visual features respectively.

� Experiment 4. In the �nal experiment we evaluate the performance of
audio-visual DBN models learned using maximum likelihood estimation
(EM) versus variational learning (VB). We compare the performance of
the AV-CHMM model learned using each of these algorithms. We refer
to the model learned using VB as AV-VBCHMM.

We use a left-to-right transition matrix with no skips for all models, mean-
ing that only the diagonal and super-diagonal elements of the transition matrix
are non-zero. This transition matrix means that we can only move from one
state to its direct successor, for instance from state three to four. In the case
of the AV-CHMM the transition model as de�ned by (4.3.2) is used. For all
models we use eight HMM states and eight mixtures in the GMM observation
model. The dimensionality of the acoustic feature vector is 12 and of the vi-
sual feature vector is 16. We use diagonal covariance matrices for the Gaussian
distributions.

In order to initialise the models we divide each observation sequence in the
training set into eight consecutive equal-sized bins and use the data in each bin
to initialise the state conditional GMMs for the respective state. The reason for
this approach is that in a left-to-right no-skip model we expect the data in bin
k to roughly belong to the HMM state k. The transition matrices are initialised
by setting diagonal elements equal to 0.9 and super-diagonal elements equal
to 0.1. The remaining elements in the matrix are 0 as a consequence of the
left-to-right no-skip topology. Thus, the probability of remaining in the same
state is initially set to 0.9 and the probability of transitioning is initially 0.1.

The means and weights of the GMMs are initialised using the K-means
algorithm (Bishop, 2007, Chapter, 9). The means of the eight GMM compo-
nents of the corresponding HMM state k are initialised, using the K-means
(with K = 8) on the data from bin k. The weights of each GMM component
is initialised as the relative proportion of training data points in bin k that
are closer to the corresponding mean value than any other mean values for



CHAPTER 5. EXPERIMENTS 93

any other component corresponding to state k. The covariance matrices are
initialised as the identity matrix.

After the models have been initialised learning is performed using the EM
algorithm as described for general Bayesian networks in Section 3.3.1. In
Experiment 4 when we do variational learning the models are �rst initialised
using both the above procedure involving K-means and EM before running
the VB algorithm.

As is pointed out by Alpaydin (2004) we should always keep in mind that
whatever conclusion we draw from the analysis is conditioned on the dataset
given. Thus, we are not comparing models and learning algorithms in a domain
independent manner. Any result we present is only valid for the particular
application of AVASR and for the dataset used. As stated in the No Free
Lunch Theorem (Wolpert and Macready, 1997) there is no such thing as the
�best� learning algorithm in general. For any learning algorithm, there will be
a dataset where it is very accurate and another were it is very poor. Thus, our
results are only valid for the particular application of AVASR and in particular
for the digit data corpus we have chosen. This data corpus is discussed next.

5.2 Data

Unfortunately, there is no large publicly available annotated data corpus such
as TIMIT (Garofolo et al., 1993) available for audio-visual speech recognition.
The scarcity of large audio-visual speech corpora for use in AVASR is a known
problem in AVASR research (Lucey et al., 2004). The only data corpus in
existence suitable for large-vocabulary continuous audio-visual speech recog-
nition (LV-AVCSR) is the IBM ViaVoiceTM audio-visual database (Neti et al.,
2000). Unfortunately, this database is not publicly available. We did contact
IBM during the course of the research regarding acquisition of the dataset.
The request was unfortunately denied. The amount of resources necessary for
collecting and transcribing such a dataset is substantial. Therefore, we have
based our experiments on one of the small-vocabulary data corpora that are
publicly available.

We have chosen the Clemson University audio-visual experiments data cor-
pus (CUAVE) (E.K. Patterson et al., 2002). CUAVE is a small-vocabulary
multi-speaker data corpus consisting of 36 speakers, 19 male and 17 female,
uttering isolated and connected digits (0-9) under various conditions. Video
of the speakers is recorded in frontal, pro�le and while moving. In our experi-
ments we only use the portion of the corpus where the speakers are stationary
and facing the camera while uttering isolated digits. This part is referred to
as the �Normal� section in the CUAVE documentation. A sample frame from
each individual in the CUAVE data corpus is shown in Figure 5.1.

The audio sample rate in CUAVE is 16000 samples per second. From
these samples we calculate 13 MFCC coe�cients using overlapping windows
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Figure 5.1: Sample frames from the CUAVE database

of 256 samples. Delta and delta-delta coe�cients are calculated and PCA
is performed on the resulting high-dimensional feature vector as described in
Section 4.2.1. In order to compensate for the average delay of the acoustic
feature stream, the stream is shifted 120 ms into the past relative to the video
stream as explained in Section 4.3.

The video frame rate in CUAVE is 30 frames per second. From the video
samples we train a separate AAM for each speaker in the data corpus. This
AAM is only used for extracting visual features from that particular speaker.
The AAMs are trained through a procedure whereby the shape of the object
of interest is manually annotated in the training data. The annotation itself is
performed using a bootstrapping procedure where initially only a few frames
are annotated. The AAM is trained from these initial annotated frames and
subsequently �tted to the remaining set of frames. As the initial AAM is
trained using only a few frames, the �t to the remaining frames are poor in
general. Thus, we manually correct the �t for a subset of the remaining frames
(preferably frames where the �t is worst) and, using the augmented set of
manually annotated frames, we re-train the AAMs. This procedure is repeated
until the �t to new frames appeared to have converged in the sense that no
correction is necessary. We found it su�cient to annotate approximately every
50th frame of each video. Finally, the AAM is �tted to all the frames in the
video sequence. Visual speech features are extracted using the techniques of
ROI-AAMs and speaker-mean subtraction described in Section 4.2.4.
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5.3 Experimental protocol

Training the audio-visual speech recognition system consists of two phases;
learning audio-visual DBNs for each digit and estimating optimal stream weights
for each SNR level. We shall refer to the �rst phase as the training phase and
the second as the validation phase. In addition to these two phases we have
the actual classi�cation phase where the system is tested on data that ideally
has not been used during training and validation. We refer to this phase as
the test phase. Thus, each experiment will consist of three phases; training,
validation and testing.

Ideally, we would use separate datasets for all three phases. However, due
to the limited availability of data we will have to reuse portions of our dataset
across phases. As the dataset consists of �ve utterances of each digit by each
speaker, we divide the data into �ve subsets D1, . . . , D5 where each subset has
one sample from each speaker of each digit. As we have 36 speakers the result
is �ve subsets each containing 36 audio and video samples of each word. In
the experiments we choose one of the subsets for testing. The remaining four
subsets are used for training and validation. From the four subsets we use three
for training the DBN models and the remaining subset for validation. The
performance of the model or algorithm subject of the experiment is measured
as the misclassi�cation rate on the test dataset.

In order to increase the accuracy of the experimental results, we iteratively
train, validate and test on di�erent subsets. That is, we run �ve di�erent
experiments where we sequentially use D1 then D2 until D5 as the test dataset
and in each case the remaining subsets for training and validation. Each
iteration will give a misclassi�cation rate. We report the average of the �ve
misclassi�cation rates as the performance of the model or algorithm subject
to the experiment. In this way we will eventually have utilised all the data
for testing. Thus, in total we have 36 speakers× 10 digits× 5 samples = 1800
classi�cations to evaluate the performance of the model or algorithm subject.
This technique is known as (�ve-fold) cross-validation.

The optimal stream exponents are determined discriminatively from the
misclassi�cation rates when classifying samples in the validation set using a
brute-force grid search. For each SNR level we calculate the misclassi�cation
rate while varying λA from 0.0 to 2.0 in steps of 0.2 resulting in 11 di�erent
possible values for λA. Since λV = 2− λA we immediately get the correspond-
ing weights for the visual feature stream for each λA. The optimal stream
weight pair for a given SNR level is chosen as the weight parameters λA and
λV that results in the smallest misclassi�cation rate for that SNR level. Fi-
nally, we use the estimated model parameters and optimal stream weights to
evaluate the performance of the model or algorithm subject to experiment as
the misclassi�cation rate on the as of yet unseen test dataset.

Note that the speakers in the training and validation sets are the same as
in the test set. Thus, the experiments will not tell us how well the models and
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algorithms generalise to speakers not in the training and validation sets. As
a consequence, the results reported here are applicable to speech recognition
systems with closed-speaker sets. We have chosen the closed-speaker set ap-
proach as there was not su�cient data available to train a speaker-independent
system.

In all experiments learning is performed using the EM algorithm with no-
table exception of Experiment 4 where the VB algorithm is used for one of the
models with the purpose of comparing the performance of maximum likelihood
and variational learning on audio-visual DBN models.

In each experiment AWGN ranging from -6dB to 18dB in steps of 4 dB SNR
is added to the acoustic feature stream in the validation data when estimating
stream weights and the test data when evaluating system performance. Note
that noise is never added to the training data. During the training phase the
stream weights are set to λA = 1 and λV = 1 in which case the observation
models become standard GMMs in which the parameter update results from
Section 3.3 and 3.5 applies.

5.4 McNemar's test

We wish to make sure that di�erences in the experimental results that we re-
port are not caused by random experimental noise, but are indeed true �ndings
by showing statistical signi�cance (Alpaydin, 2004). In a statistical signi�cance
test we show that the likelihood of the result having occurred by chance is for
instance less than 5% likely.

McNemar's test is a non-parametric method used to determine if there
is enough evidence to claim that two experimental subjects, for instance two
di�erent models or algorithms, di�er by a certain signi�cance level, that is, that
any observed di�erences are less than for instance 5% likely to have occurred
by chance. McNemar's test is applied to 2× 2 contingency tables. In the case
of classi�cation the �rst subject C1 is represented by the rows and the second
subject C2 by the columns. Table 5.1 shows an example of a 2×2 contingency
table where we have de�ned

N00 = Number of utterances which C1 classi�es correctly

and C2 classi�es correctly

N01 = Number of utterances which C1 classi�es

correctly and C2 classi�es incorrectly

N10 = Number of utterances which C1 classi�es incorrectly

and C2 classi�es correctly

N11 = Number of utterances which C1 classi�es incorrectly

and C2 classi�es incorrectly.
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C1

C2

Correct Incorrect
Correct N00 N01

Incorrect N10 N11

Table 5.1: Contingency table of errors made by C1 and C2.

Note that N = N00 +N01 +N10 +N11 is the total number of test samples being
classi�ed. For each Nij we also de�ne a probability qij, such that for a given
utterance ui we have for instance

q01 = p(C1 classi�es ui correctly, C2 classi�es ui incorrectly) (5.4.1)

and q00, q10 and q11 are de�ned similarly. Note that we have E[Nij] = Nqij.
The null hypothesis H0 in McNemar's test is that

q00 + q01 = q00 + q10 (5.4.2)

and
q10 + q11 = q01 + q11. (5.4.3)

That is, the marginal probabilities for each outcome are the same. From (5.4.2)
and (5.4.3) we get the null hypothesis

H0 : q01 = q10. (5.4.4)

De�ning

q =
q10

q01 + q10

(5.4.5)

we get the equivalent null hypothesis

H0 : q =
1

2
(5.4.6)

which follows from
2q =

q10

q01 + q1

+
q01

q01 + q10

= 1 (5.4.7)

since the null hypothesis is that q01 = q10.
The parameter q represents the conditional probability that C1 will make

an error on an utterance given that only one of the two algorithms makes an
error. The null hypothesis q = 1/2 represents the assertion that, given that
only one of the algorithms makes an error, it is equally likely to be either one.

In order to test H0 it is only necessary to examine the utterances on which
only one of the algorithms made an error. No information about the relative
performance of C1 and C2 is available from utterances where C1 and C2 were
both right or both wrong. Intuitively, this makes sense, if we want to say
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C1

C2

Correct Incorrect
Correct 1325 3
Incorrect 13 59

Table 5.2: Example of contingency table of errors made by C1 and C2

whether two models or algorithms are di�erent we should look at where they
disagree, not where they agree.

If we condition on the number of utterances K = N10 +N01 on which only
one algorithm made an error, then for the observed K = k N10 has a binomial
distribution Bin(k, q) (A.2.4). Furthermore, under H0 we have that N10 has
a binomial distribution Bin(k, 1/2). The null hypothesis is tested by applying
a two tailed test to the observation of a random variable M drawn from a
Bin(k, 1/2) distribution

p =


2p(n10 ≤M ≤ k) when n10 > k/2
2p(0 ≤M ≤ n10) when n10 < k/2

1.0 when n10 = k/2.
(5.4.8)

H0 is rejected when p is less than some signi�cance level α. If k is large
enough (k > 50) and n10 is not too close to k or 0 a normal approximation to
the exact binomial probability (A.2.4) may be used. Under H0 and conditional
on K = k we have that E[n10] = k/2 and var[N10] = k/4. Then, the random
variable

k =
|N10 − k/2| − 1/2√

k/4
(5.4.9)

is approximately N (0, 1) under H0. We can then compute the p-value

p = 2p(Z ≥ w) (5.4.10)

where Z is a random variable with distribution N (0, 1) and w is the realised
value of W . We reject H0 if p < α where α is the chosen signi�cance level. We
shall set this level to 5%. The −1/2 in the numerator of (5.4.9) is the Yates'
correction factor for continuity (Yates, 1934).

As an example consider the contingency table shown in Table 5.2. Here
k = 16, N10 = 13 and n01 = 3. Calculating the p-value using the normal
approximation (5.4.9) we get that p = 0.0244. This means that the observed
di�erence would arise by chance on about 2% of occasions and hence we can
conclude that in this case there is evidence of a genuine di�erence given a 5%
signi�cance level.
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5.5 Results

We here present the experimental results from the four experiments discussed
in Section 5.1. We only show graphical plots of misclassi�cation rates for
di�erent models and algorithms at di�erent SNR levels. The actual numerical
values are available in Appendix B. In Appendix B we also report the optimal
stream weights used in each experiment. The stream weights may vary slightly
when using di�erent validation sets. Thus, we have reported the average of
the stream weights found from the �ve di�erent validations sets used for each
experiment. We perform McNemar's tests for all of the results which are also
presented in Appendix B. We shall refer to the appendix where appropriate.

Experiment 1. In Figure 5.2 we show the performance results of the AV-
HMM and AV-PHMM audio-visual DBN models. Recall that the AV-PHMM
allows for weighting individual streams while the AV-HMM does not. We ob-
serve that for small SNR levels from -2 dB to 2 dB the AV-PHMM performs
signi�cantly better than AV-HMM. This is because the AV-PHMM allows for
weighting the visual stream more in this region, thereby diminishing the e�ect
of the acoustic noise. This is not possible with the AV-HMM and results in
the acoustic noise having a particularly negative e�ect on classi�cation per-
formance. In the region from 6 dB to 10 dB the two models appear to have
similar performance. For the SNR levels 14 dB and 18dB the advantage of the
weighting scheme is apparent again as the AV-PHMM model appears to be
performing better the AV-HMM model.

The signi�cance tests for Experiment 1 are shown in Table B.2. We see
that for SNR levels -6 dB, -2 dB, 2 dB, and 18 dB there is su�cient evidence to
reject the null hypothesis that the performance of the two models is the same
and accept the alternative hypothesis that there is indeed a genuine di�erence
at a 5% signi�cance level. For SNR levels 6 dB, 10 dB and 14 dB there is not
su�cient evidence to reject the null hypothesis that the two models perform
the same.

Experiment 2. Figure 5.3 shows the misclassi�cation rate at di�erent SNR
levels for the AV-PHMM, AV-IHMM and AV-CHMM models. We observe
that, in severe acoustic noise, the AV-IHMM and AV-PHMM models perform
better than the AV-CHMMmodel. The reason for this behaviour is likely that,
due to the dependency between the two streams in the AV-CHMM model,
when one stream is contaminated by noise the other stream is also negatively
a�ected. In this case it would appear that the presence of stream exponents
does not su�ciently compensate for the noise in the acoustic feature stream.

As the amount of acoustic noise decreases, however, the AV-CHMM ap-
pears to be performing better than the AV-PHMM and AV-IHMM. This is
likely due to the asynchrony model of the AV-CHMM model which, as opposed
to the AV-PHMM, allows for audio-visual asynchrony and, as opposed to the
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Figure 5.2: Performance comparison between AV-HMM and AV-PHMM. The use

of stream weights in the AV-PHMM yields superior results to the AV-HMM where

both streams are considered equally reliable.

AV-IHMM, restricts the level of asynchrony to one state thereby maintaining
the natural correlation between the acoustic and visual speech modalities. The
AV-PHMM model appears to be most robust to noise while having the worst
performance at low noise levels.

Table B.4 shows the McNemar's test results for AV-CHMM versus AV-
PHMM. We observe that there is su�cient evidence of a genuine di�erence
everywhere except for the 2 dB SNR level. The McNemar's test for AV-CHMM
versus AV-IHMM in Table B.5 shows the same results.

Experiment 3. Figure 5.4 shows the performance results of the audio-only,
visual-only, and audio-visual classi�ers. We have chosen the AV-CHMM as the
audio-visual classi�er as it has the best performance in the moderate to high
SNR levels which is typically of most interest. The audio-only and visual-only
classi�ers use standard HMMs.

We see that the performance of the visual-only classi�er is �xed at 25.6%
misclassi�cation rate for all noise levels. This is because the visual channel is
not a�ected by acoustic noise. At the lowest SNR level (-6 dB) we observe that
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Figure 5.3: Performance comparison between AV-PHMM, AV-IHMM and AV-

CHMM classi�ers. The sophisticated feature stream integration stream in the AV-

CHMM yields better results.

the audio-only classi�er performs very poorly at approximately 84.2% misclas-
si�cation rate. Recall that for a digit recognition experiment the expected
misclassi�cation rate from random assignment or �guessing� is 90%. Thus,
the audio-only classi�er only performs marginally better than this in the most
severe noise case. As expected, as the noise level decreases the accuracy of the
audio-only classi�er increases to near 0% misclassi�cation rate (actual 2.7%)
in the least noisy environment.

We observe that the audio-visual classi�er performs signi�cantly better
than audio-only in severe noise conditions. The corresponding performance
increase under less noisy acoustic conditions is less substantial, but as shown
in Table B.7, signi�cant with 1.1% misclassi�cation rate in the least noisy
case for audio-visual classi�er and 2.7% for the audio-only classi�er. Thus,
we achieve more than a halving of the misclassi�cation rate when using the
audio-visual classi�er. The p-value is p = 0.000181 indicating the performance
di�erence is indeed signi�cant at signi�cance level α = 0.05.

We also observe that under noisy conditions the visual-only classi�er per-
forms better than the audio-visual classi�er. We can again attribute this ob-
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Figure 5.4: Performance comparison of audio-visual, audio-only, and visual-only

speech recognition classi�ers. Note that the video-only classi�er is not a�ected by

acoustic noise. We see that even for large SNR levels the audio-visual classi�er

performs better than audio-only.

servation to the coupling in the AV-CHMMmodel causing noise in the acoustic
stream to a�ect the visual stream negatively.

The McNemar's test results for Experiment 3 is shown in Table B.7 and
B.8. Table B.7 shows audio-visual versus audio-only classi�ers. We see that
for all SNR levels there is enough evidence to reject the null hypothesis and
claim that the audio-visual classi�er performs better than audio-only.

Experiment 4. In Experiment 4 we compare performance between an audio-
visual DBN model learned using variational learning and the same model
learned using maximum likelihood estimation. We have chosen the AV-CHMM
audio-visual DBN as the subject of the experiment as this model has the largest
number of parameters that needs to be estimated and as such should be most
prone to over�tting. In the case of eight HMM states and eight GMM com-
ponents the observation model of the AV-CHMM will have 8 × 8 × 8 = 512
weight parameters, means and covariance matrices; one for each combination
of audio and video HMM states and GMM component. We might expect the
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relatively limited 36× 3 = 108 observation sequences in the training data for
each digit to result in over�tting problems for this model in which case the
performance of variational learning should be superior due to its automatic
model complexity selection property.

Recall that variational learning requires us to choose parameter values for
the parameter priors. We use the value α0 = 10−3 for the initial parameters
of the Dirichlet priors over both HMM state variables and mixing coe�cients.
For the Gaussian distributions of the observation model we have used the
parameters β0 = 1, µ0 = ~0, v0 = 20, W0 = I where ~0 is the zero vector and I
the identity matrix.

Figure 5.5 shows the performance of AV-CHMM models that have been
learned using maximum likelihood (EM) and variational learning (VB). We
shall refer to the AV-CHMM model learned using VB as AV-VBCHMM and
the AV-CHMM model learned using EM as simply AV-CHMM.

In the experiment we observed similar model complexity selection proper-
ties for the AV-VBCHMM as in the VB-GMM case in Section 3.6. We found
that the number of GMM components remaining in the observation model af-
ter convergence of the VB algorithm (components with parameters that have
not converged to their prior distributions) di�ers depending on the digit class
and to a lesser extent on which portion of the data was used for learning.
Intuitively, this is caused by the di�erent complexities of the distribution of
observations from the di�erent digit classes. We found that the number of
GMM components remaining in the observation model ranges from �ve to
eight out of the initial eight. For the transition model we found that all eight
HMM components remain. The latter is likely due to the relatively smaller
number of parameters in the left-to-right no-skip one-state-only-asynchronous
transition model used in the AV-VBCHMM which only has 3+6×2×3+3 = 42
non-zero entries in the 8 × 8 × 8 transition matrix. This is a much smaller
number of parameters than the 512 weights, means and covariance matrices of
the observation model and thus explains why the model complexity selection
property is only observed for the observation model.

From Figure 5.5 we see that AV-VBCHMM appears to be more robust to
noise than AV-CHMM. This is likely due to its more compact form. How-
ever, as the amount of acoustic noise decreases, the AV-CHMM appears to be
performing better than AV-VBCHMM. It is likely that the AV-VBCHMM be-
comes subject to over-smoothing in this SNR region. That is, due to the model
complexity selection property, the resulting model may not be su�ciently com-
plex in this region resulting in decreased performance. However, as the noise
level approaches clean audio we observe that the two models appear to con-
verge to the same accuracy which seems to contradict that over-smoothing is
an issue. We are unsure of the reasons for this apparent contradiction.

The results of McNemar's test for Example 4 is shown in Table B.10. The
results con�rm that there is indeed a signi�cant di�erence between the two
algorithms with AV-VBCHMM being superior to AV-CHMM for SNR levels
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Figure 5.5: Comparison of AV-CHMM models learned using EM and VB learning.

There is not evidence to support a signi�cant di�erence between the AV-VBCHMM

and AV-CHMM for large values of SNR.

−6 dB and −2 dB and AV-CHMM being superior to AV-CHMM in the region
from 2 dB to 10 dB. We note that for SNR levels 14 dB and 18 dB the mis-
classi�cation rate of AV-VBCHMM is slightly lower than that of AV-CHMM,
but that the data is not su�cient to claim within a 5% signi�cance level that
AV-VBCHMM performs better than AV-CHMM for high SNR levels.

5.6 Discussion

The results show that the visual speech modality indeed contains information
relevant to speech recognition. The di�erence between audio-visual and audio-
only speech recognition even at large SNR levels is signi�cant. At 18 dB SNR
the performance of the audio-visual classi�er is 1.1% versus 2.7% for the audio-
only classi�er which is more than a halving of the error rate when using the
audio-visual classi�er.

We found that the misclassi�cation rate of our visual-only classi�er is
25.6%. Papandreou et al. (2009) reported misclassi�cation rates below 20% for
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visual-only speech recognition using the same data corpus and experimental
protocol. The audio-visual speech recognition results presented in Papandreou
et al. (2009) are also in general better than ours. However, their system uses
a sophisticated adaptive uncertainty compensation instead of our relatively
simple stream weighting scheme. In light of this observation, our results seem
reasonable.

At the lowest and highest SNR levels, the results also appear to conform
to results presented in Valente and Wellekens (2003) and Somervuo (2002),
which show that speech GMM models learned using VB perform better than
the same models learned using EM. However, in the case of high SNR we
did not have enough experimental data to signi�cantly support the claim that
variational learning is better than maximum likelihood for AVASR. For SNR
levels between 6 dB and 10 dB the models learned using variational learning
performs worse than the model learned using maximum likelihood estimation.
The reason for the decrease in performance in this region is unknown, but may
be related to over-smoothing problems. Thus, the question whether VB is the
preferred learning algorithm for audio-visual DBN models remains unanswered
and is an interesting problem for future studies. Further investigation is also
necessary on how to optimally choose hyper-parameters for the parameter pri-
ors such as to avoid over-smoothing while maintaining the desirable automatic
model complexity selection property of variational learning.

We found that the AV-PHMM model performs better than the AV-HMM
from which we conclude that the stream weighting scheme is advantageous
to AVASR. Finally, we observed that the AV-CHMM model performed better
than the AV-PHMM and AV-IHMM from which conclude that the stream
integration scheme of the AV-CHMM model is superior to the synchronous
AV-PHMM model and the independent AV-IHMM model integration schemes.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we have presented audio-visual automatic speech recognition
(AVASR) and showed how the framework of dynamic Bayesian networks (DBNs)
can be used to solve the feature stream integration, learning and classi�cation
problems in AVASR. In AVASR, video of a speaker is used as a complementary
source of information to audio for speech recognition purposes. The use of the
visual modality has been shown to enhance speech recognition performance,
especially in noisy acoustic environments as the visual modality is not a�ected
by acoustic noise.

We have proposed and implemented a full-featured AVASR system. We
have in particular focused on the problems of feature stream weighting, asyn-
chrony modelling, learning and classi�cation. We have shown how each of the
problems can be addressed in the framework of dynamic Bayesian networks.
The additional requirement of an AVASR system is acoustic and visual fea-
ture extraction. The proposed AVASR system uses MFCCs as acoustic feature
and visemic AAM coe�cients as visual features which we brie�y reviewed in
Chapter 4.

The theory of Bayesian networks and dynamic Bayesian networks was pre-
sented in Chapter 3. We showed that inference and learning can be performed
in general in such networks and we gave the details for networks that consist of
latent multinomial variables and observed Gaussian variables. We presented
maximum likelihood learning and variational learning resulting in the EM and
VB algorithms. Variational learning has the advantage of leading to auto-
matic model complexity selection thereby reducing the problem of over�tting
for models with a large number of parameters for which there is not su�cient
training data to accurately estimate parameters.

We proposed four DBN models that provide di�erent approaches to solving
problems in AVASR. The audio-visual HMM (AV-HMM) is an early integration
model where the acoustic and visual features are concatenated before being
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entered as evidence into a standard left-to-right HMM. The AV-HMM assumes
that the acoustic and visual feature streams are synchronous and does not allow
weighting individual feature streams. The audio-visual product HMM (AV-
PHMM) is similar to the AV-HMM, but with the observation model factored
over the acoustic and visual observation variables allowing us to weight each
stream independently.

The AV-PHMM still assumes that the acoustic and visual features are syn-
chronous. This is in general not the case for audio-visual speech as, when
speaking, the motion of visible articulator such as lips, tongue and jaw comes
prior the actual sound being uttered. Hence, there is a slight delay between
the acoustic and visual feature streams. This delay is not constant, but de-
pends on the particular sound that is being uttered as well as the speaker. The
audio-visual independent HMM (AV-IHMM) uses two separate HMM models
with independent state spaces and as such allows desynchrony between the
two streams. However, the AV-IHMM may fail to capture the natural correla-
tion between the acoustic and visual feature stream due to the independence
assumption. In order to solve this problem, the audio-visual coupled HMM
(AV-CHMM) uses two separate HMM models for each stream, but couples
the streams at the state level. This coupling allows us to control the level of
asynchrony without assuming that the streams are synchronous. In our ex-
periments we have allowed the two streams to desynchronise by at most one
HMM state.

The experiments were performed using the CUAVE data corpus. CUAVE
consists of 36 di�erent speakers uttering the digits from zero to nine, thereby
rendering the experiments as multi-speaker digit recognition experiments. The
results show that visual speech indeed contains information valuable to speech
recognition. The performance of visual-only speech recognition is in general, as
we might have expected, lower than audio-only speech recognition. However,
by integrating acoustic and visual speech information in audio-visual DBNs
we are able to increase speech recognition performance above that of audio-
only speech recognition. This is because the combination of acoustic and
visual speech information is superior to any of the two modalities alone. The
performance increased is most pronounced in noisy acoustic environments as
the visual modality is not a�ected by acoustic noise.

We also found that the AV-PHMM model performs better than AV-HMM,
indicating that stream weighting is bene�cial to AVASR. Further we found that
from the AV-PHMM, AV-IHMM and AV-CHMM models, the AV-CHMM per-
forms best on the audio-visual digit recognition task from which we conclude
that allowing the acoustic and visual feature streams to desynchronise while
restricting the level of asynchrony most accurately models the dynamics of
audio-visual speech.

Finally, we found that learning audio-visual DBNs and in particular the
AV-CHMM using variational learning results in a model that appear to be
more robust to noise than the same model learned using maximum likelihood
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estimation. This is likely due to the more compact form of the model re-
sulting from variational learning. However, at small levels of acoustic noise
we were not able to shown any signi�cant di�erence between models learned
using the two di�erent algorithms. At intermediate levels of noise maximum
likelihood learning gave better results than variational learning illustrating the
risk of over-smoothing using variational learning. Further investigation into
variational learning is necessary to determine how to appropriately choose pa-
rameter priors in order to avoid such issues while taking advantage of the
automatic model complexity selection property of variational learning.

6.2 Future work

There are interesting problems yet to be solved in AVASR with many aspects
where there is room for signi�cant improvement to existing systems.

Further investigation into visual feature extraction would be a valuable
contribution. As mentioned in Section 4.2.2 the standard AAM coe�cients are
not necessarily the most appropriate for use in AVASR, as they will contain
much information about the variability across speakers when trained on a
multi-speaker dataset, while we are more interested in speech information only.
In our research we have partly solved this problem by building individual
AAMs for each speaker. However, general AVASR system must be able to
handle speakers that are not featured in the training set. Although the visemic
AAM proposed by Papandreou et al. (2009) is an improvement to the standard
HMM, we believe that it is possible to develop methods that separates speech
even better from non-speech related information.

The AAM-based method used in this research (Section 4.2.2) use PCA
as a technique for dimensionality reduction. PCA reduces dimensionality by
�nding the smaller dimensional subspace that captures most of the informa-
tion contained in the data. This subspace is found by considering similarities
within a particular class. However, in speech recognition applications we are
in general more interested in the subspace that optimises the di�erence be-
tween the classes. A dimensionality reduction technique that optimises the
di�erence between classes is linear discriminant analysis (LDA). It would be
interesting to evaluate the performance of an AVASR system using LDA as a
dimensionality reduction technique for acoustic and visual feature extraction.

When learning model parameters using maximum likelihood or variational
learning we are also only optimising for a speci�c class such as a digit. That
is, we are �nding the model parameters that best models features that the
samples from a particular class has in common. However, again we are more
interested in the parameters that model features that separates the particular
class from other classes. Estimating model parameters by maximising the dif-
ference between classes is referred to as discriminative learning (Jebara, 2002).
Discriminative learning has been successful in audio-only speech recognition
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systems (Jiang, 2010). It is therefore likely that this will also be the case in
AVASR. Thus, the application of discriminative learning to AVASR will be
an interesting research topic. The objective function to be maximised in dis-
criminative learning is typically signi�cantly more complicated and sensitive
to initial conditions than in the case of maximum likelihood and variational
learning.

We have proposed several audio-visual DBNs that solve problems asso-
ciated with AVASR. However, the DBN framework is a comprehensive one.
There may be models that we have not considered and that model di�erent
aspects of AVASR that we have not considered. These models may perform
even better than the models proposed here. Using the framework of Bayesian
networks that we presented in Chapter 3 and the software described in Ap-
pendix C it is trivial to propose new AVASR models and evaluate their perfor-
mance. It should be emphasised that a thorough understanding of the theory
presented in Chapter 3 is essential when modelling Bayesian networks. How-
ever, the software may be treated as a �black box� as the interpretation of the
output is immediate from the theory.

Further study is needed regarding the performance of variational learning
for speech recognition applications. In particular, it is necessary to investigate
further how to optimally choose hyperparameters for the parameter priors so
as to avoid over-smoothing while maintaining the automatic model complexity
selection property of variational learning. As variational learning is in partic-
ular expected to address the problem of over�tting, which becomes a problem
in models with a large number of parameters and not enough training data, it
would be interesting to investigate the e�ect of variational learning while vary-
ing the amounts of training data, and the number of parameters that needs to
be estimated in the model.

We have on several occasions mentioned the lack of a publicly available
large-vocabulary multi-speaker AVASR data corpus. The collection of such a
data corpus would be of immense value to the research �eld. A collaborative
initiative by multiple universities and researchers is a cost-e�ective way to solve
the problem. See Voxforge (2006) for an example of how such a collaborative
data acquisition project may be carried out. Alternatively, video sharing sites
such as YouTube contain enormous amounts of suitable data. However, the
ownership and right-of-use of such content is often problematic.

Speech will undoubtedly be one of the primary forms of communicating
with information systems in the future. Increasingly more computing is hap-
pening away from the traditional desktop setting. Video cameras and micro-
phones in handheld devices form a second pair of �eyes and ears� and the In-
ternet allows us to share our experiences with the results of the world. There
is no doubt that there is great advantage in having computer systems that
can analyse and interpret this data. Such technologies will improve human-
computer interaction and assist when searching and organising content, while
at the same time giving rise to interesting scienti�c and technological problems
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to be solved.
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Appendix A

Probability theory and densities

In this appendix we list a selection of results from probability theory and
probability distributions that we have made use of in the thesis.

A.1 Probability theory

A.1.1 Rules of probability

The fundamental results from probability theory are the sum rule and the
product rule. Let xA and xB be two random variables. The sum rule and
product rule is then as follows

The sum rule
p(xA) =

∑
xB

p(xA,xB). (A.1.1)

The product rule
p(xA,xB) = p(xB|xA)p(xA). (A.1.2)

These rules also generalise to the case where A and B are arbitrary subsets
of variables. Using the product rule twice it is possible to prove the following
result

Bayes' theorem

p(xB|xA) =
p(xA|xB)p(xB)

p(xA)
. (A.1.3)

In Bayes' theorem the denominator p(xA) can be calculated using the sum rule

p(xA) =
∑
xB

p(xA|xB)p(xB). (A.1.4)
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A.2 Probability densities

A.2.1 Gaussian

The Gaussian distribution, also known as the normal distribution, is the most
commonly used distribution for a continuous random variable. In this thesis
we are mostly interested in the multivariate Gaussian over a D-dimensional
real random vector variable x. The multivariate Gaussian has as parameters
a D-dimensional mean vector µ and a D×D covariance matrix Σ. Note that
we require the covariance matrix to be symmetric and positive-de�nite. The
multivariate Gaussian is de�ned by

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
. (A.2.1)

From the above we can show that the following results hold

E[x] = µ (A.2.2)

cov[x] = Σ. (A.2.3)

The inverse of the covariance matrix Λ = Σ−1 is referred to as the precision
matrix, which is also symmetric and positive de�nite. The conjugate prior for
the mean vector µ is again a Gaussian. The conjugate prior for the precision
matrix Λ is the Wishart distribution (A.2.19), and the conjugate prior for the
parameter pair (µ,Λ) is the Gaussian-Wishart distribution (A.2.24).

Note that in the case D = 1 the multivariate Gaussian reduces to the
standard univariate Gaussian distribution with mean µ and variance σ2.

A.2.2 Binomial

The binomial distribution is a distribution over a binary variable x de�ned as

Bin(m|N,µ) =

(
N

m

)
µm(1− µ)N−m (A.2.4)

where µ ∈ [0, 1] is the probability that x = 1. The binomial distribution gives
the probability of observing m occurrences of x = 1 in a set of N samples. For
the binomial distribution we have that

E[m] = Nµ

var[m] = Nµ(1− µ). (A.2.5)

A.2.3 Multinomial

The multinomial distribution is a discrete distribution over a K-dimensional
binary variable z with components zk ∈ {0, 1} such that

∑
k zk = 1. It is

de�ned by
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p(z) =
K∏
k=1

µzkk . (A.2.6)

From the above de�nition we can show that

E[zk] = µk (A.2.7)

var[zk] = µk(1− µk) (A.2.8)

cov[zjzk] = Ijkµk (A.2.9)

where Ijk is the j, k element of the identity matrix. The value of µk gives the
probability of zk = 1 and so these parameters are subject to the constraints
0 ≤ µk ≤ 1 and

∑
k µk = 1. The conjugate prior for the parameter vector

µ = (µ1, . . . , µk)
T is the Dirichlet distribution (A.2.11).

A.2.4 Dirichlet

The Dirichlet distribution is a multivariate distribution over K random vari-
ables µk for k = 1, . . . , K subject to

0 ≤ µk ≤ 1,
K∑
k=1

µk = 1. (A.2.10)

Let µ = (µ1, . . . , µk)
T denote the vector of random variables and α =

(α1, . . . , αK)T the vector of distribution parameters. The Dirichlet distribution
is then de�ned by

Dir(µ|α) = C(α)
K∏
k=1

µαk−1
k (A.2.11)

where

C(α) =
Γ(α̂)

Γ(α1), . . . ,Γ(αK)
(A.2.12)

and

α̂ =
K∑
k=1

αk. (A.2.13)

The following results can be shown from the de�nition of the Dirichlet
distribution
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E[µk] =
αk
α̂

(A.2.14)

var[µk] =
αk(α̂− αk)
α̂2(α̂ + 1)

(A.2.15)

cov[µjµk] = − αjαk
α̂2(α̂ + 1)

(A.2.16)

E[lnµk] = ψ(αk)− ψ(α̂) (A.2.17)

where ψ(·) is the digamma function de�ned by

ψ(a) =
d

da
ln Γ(a). (A.2.18)

The parameters αk are subject to the constraint αk > 0 in order to ensure
that the distribution can be normalised.

The Dirichlet distribution is the conjugate prior to the multinomial distri-
bution (A.2.3). In this case, the parameters αk can be interpreted as the ef-
fective number of observations of the corresponding values of a K-dimensional
binary vector z. The Dirichlet distribution has �nite density everywhere pro-
vided αk ≥ 1 for all k.

A.2.5 Wishart

The Wishart distribution is the conjugate prior for the precision matrix of the
multivariate Gaussian. It is de�ned by

W(Λ|W, ν) = B(W, ν)|Λ|(ν−D−1)/2 exp

(
−1

2
trace(W−1Λ)

)
(A.2.19)

where W is a D ×D symmetric, positive de�nite matrix and

B(W, ν) = |W|−ν/2
(

2νD/2πD(D−1)/4)

D∏
i=1

Γ

(
ν + 1− i

2

))
(A.2.20)

where Γ(·) is gamma function. The parameter ν is called the number of degrees
of freedom of the distribution constrained by

ν > D − 1 (A.2.21)

to ensure that the Gamma function in the normalisation factor is well-de�ned.
The following results hold for the Wishart distribution:

E[Λ] = νW (A.2.22)

E[ln |Λ|] =
D∑
i=1

ψ

(
ν + 1− i

2

)
+D ln 2 + ln |W|. (A.2.23)

where ψ(·) is the digamma function de�ned by (A.2.18).
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A.2.6 Gaussian-Wishart

The Gaussian-Wishart distribution is the conjugate distribution for both the
mean and precision matrix of the multivariate Gaussian. It is the product
of a Gaussian distribution for µ, whose precision is proportional to Λ, and a
Wishart distribution over Λ. The Gaussian-Wishart distribution is de�ned by

p(µ,Λ|m, β,W , ν) = N (µ|m, (βΛ)−1)W(Λ|W, ν). (A.2.24)

A.2.7 The Exponential Family

All the models that have been presented in this appendix are part of the
exponential family of probability distributions (Wainwright and Jordan, 2008).
The exponential family of distributions over x, given parameters η, is de�ned
as

p(x|η) = h(x)g(η) exp{ηTu(x)} (A.2.25)

where x may be a scalar or vector, and may be discrete of continuous. Here η
are called the natural parameters and u(x) is some function of x. The function
g(η) can be interpreted as the coe�cient that ensures that the distribution is
normalised and therefore satis�es

g(η)

∫
h(x) exp{ηTu(x)}dx = 1. (A.2.26)
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Appendix C

Software

As part of the research, an AVASR system as described in Chapter 4 was
implemented in Python (Reikeras et al., 2010a) and using the Matlab Bayesian
Network Toolbox (BNT) (Murphy, 2001). We used mlabwrap (Schmolck and
Rathod, 2010) to interface with the Matlab toolbox from Python. The future
plan is to port the Matlab part of the system to Python and as such make
it a pure Python project. Such a port is already in progress (Gouws, 2010).
However, it does not yet support Gaussian distributions and the inference
junction tree algorithm needed for DBNs.

In summary, the following software was used in the research:

� BNT. The Bayesian networks toolbox (Murphy, 2001) is a Matlab toolbox
for inference and learning of Bayesian networks and dynamic Bayesian
networks. It supports a wide range of conditional probability distribu-
tions including multinomial, Gaussian, multi-layer percepton and soft-
max densities. BNT is available at http://bnt.googlecode.com.

� PyAAM. The Python AAM toolkit (Reikeras et al., 2010a) is a Python
toolkit for building, evaluating, and tracking AAMs. PyAAM is available
at https://bitbucket.org/helger/pyaam.

� Talkbox. Talkbox (Cournapeau, 2008) is a set of python functions for
audio signal processing. It includes the calculation of MFCCs. Talkbox
is available at http://scikits.appspot.com/talkbox.

In addition to the above software we modi�ed BNT to perform variational
learning by using results from Section 3.5. Recall that the only part of the
EM algorithm that is necessary to modify is how the model parameters are
updated from the expected su�cient statistics during the M step. The interface
junction tree algorithm remains unchanged.
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