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Abstract

The evolutionary history of the exclusively grapevine (Vitis spp.) infecting, grapevine leaf-
roll-associated virus 3 (GLRaV-3) has not been studied extensively, partly due to limited
available sequence data. In this study we trace the evolutionary history of GLRaV-3, focus-
sing on isolate GH24, a newly discovered variant. GH24 was discovered through the use of
next-generation sequencing (NGS) and the whole genome sequence determined and vali-
dated with Sanger sequencing. We assembled an alignment of all 13 available whole ge-
nomes of GLRaV-3 isolates and all other publicly available GLRaV-3 sequence data. Using
multiple recombination detection methods we identified a clear signal for recombination in
one whole genome sequence and further evidence for recombination in two more, including
GH24. We inferred phylogenetic trees and networks and estimated the ages of common an-
cestors of GLRaV-3 clades by means of relaxed clock models calibrated with asynchronous
sampling dates. Our results generally confirm previously identified variant groups as well as
two new groups (VIl and VIIl). Higher order groups were defined as supergroups designated
A to D. Supergroup A includes variant groups |-V and supergroup B group VI and its related
unclassified isolates. Supergroups C and D are less well known, including the newly identi-
fied groups VII (including isolate GH24) and VIII respectively. The inferred node ages sug-
gest that the origins of the major groups of GLRaV-3, including isolate GH24, may have
occurred prior to worldwide cultivation of grapevines, whilst the current diversity represents
closely related isolates that diverged from common ancestors within the last century.
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Introduction

The history of grapevines and viticulture is intertwined with that of early human civilisations.
Archaeological evidence of early viniculture can be traced back as far as the Chalcolithic and
mid-Bronze Ages with evidence of vinification found in clay jars from 7000 BCE and archeobio-
logical remains of pressed grapes from the 5th millennium BCE [1-3]. The cultivation of grapes
has historically denoted high social status, and grapevines were planted wherever humans trav-
elled and settled. Unfortunately, grapevine is susceptible to intracellular pathogens, of which
many cause disorders that reduce plant vigour and longevity, as well as yield and quality of the
harvest [4]. Infectious intracellular agents such as viruses, viroids, and phloem- or xylem-limited
prokaryotes, of which there are more than 70 known species, are some of the most important
pathogens affecting grapevine [4]. Worldwide, the most economically important viral disease is
Grapevine Leafroll Disease (GLD) with grapevine leafroll-associated virus 3 (GLRaV-3) being
the most prevalent associated virus [5]. GLRaV-3 only infects Vitis spp. and although it is trans-
mitted by soft scale insects, its worldwide distribution might be attributed to the commercial
trade of infected material. The origin of GLD remains vague, but it may have been in the “Old
World”, predating the widespread use of phylloxera-resistant rootstocks from the USA [5].

GLRaV-3 is a single-stranded RNA virus with a genome that is organised in 12 or 13 open
reading frames (ORFs). It is the type species of the genus Ampelovirus, family Closteroviridae.
GLRaV-3 isolates have been classified into six groups (I-VI) according to phylogenetic analyses
of the coat protein (CP) gene, of which groups I-V are more closely related and separate from
group VL. Group VI represents a more diverse assemblage, serving as a convenient label for
various more distantly related variants. From the limited data available for gene regions other
than the coat protein, isolates classified in this group seem to lack the ORF 2 known from
groups I-V and show very low levels of homology for ORFs 11 and 12 [5]. However, whether
the coat protein alone can adequately represent the evolutionary history of GLRaV-3, and
hence whether the current classification is likely to be predictive with regard the biological
properties of these pathogens, remains an open question.

Viruses present a number of challenges for phylogenetic inference, in particular due to their
high evolutionary rates (making assessment of homology more difficult) and their small ge-
nomes (restricting the total amount of potentially available data). These phenomena are also
apparent in GLRaV-3 with a complete genome size of approximately 18500 nucleotides (nt),
and troublesome homology assessment both within the group and in comparison to its closest
known relatives. No previous analyses have included outgroups to root the GLRaV-3 phyloge-
ny. These difficulties are compounded by the current lack of sequence information available
compared to that of other important virus pathogens. There is especially a paucity of published
whole genome sequences: at the time of writing, only 13. The current phylogenetic hypotheses
for GLRaV-3 are largely based on the Hsp70h and CP genes and no attempts have been made
to date the origin of GLRaV-3 clades.

In this paper, we set out to infer a maximally representative phylogenetic hypothesis for
GLRaV-3, using as much of the currently available data as can be meaningfully assessed using
phylogenetic methods, and for the first time using outgroup comparison to root the tree. We
follow the phylogenetic approach of Visser et al. [6] that involves a stringent test of phylogenet-
ic evidence for recombination and does not assume a strictly bifurcating species tree. We use
asynchronous sampling of isolates to calibrate relaxed clock phylogenetic analyses. The latter
allow us both to estimate the ages of internal nodes and to test the rooting of the tree. We use
the results to assess the relationships within the group as a whole and in particular of a novel
genetic variant of GLRaV-3, discovered using next-generation sequencing (NGS), the whole
genome sequence of which is presented for the first time here.
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Materials and Methods
Source material

Samples of Vitis vinifera cv. Cabernet Sauvignon vines displaying symptoms of GLD were
collected from privately owned farms in the Stellenbosch region of South Africa. Explicit per-
mission was gained from the relevant managers before sampling. Collected material was main-
tained in a greenhouse (Stellenbosch University, South Africa). Although vine GH24 displayed
typical GLD symptoms, it only tested positive for GLRaV-3 with ELISA and all attempts to am-
plify GLRaV-3 from this sample via RT-PCR proved unsuccessful. Phloem scrapings and peti-
ole material of isolate GH24 was sampled and stored at -80°C.

Next-generation Sequencing

The use of metagenomic NGS to establish the total viral complement of a sample has been
shown to circumvent the need for prior sequence information [7]. The extraction of double-
stranded RNA (dsRNA) is a strategy to enrich for the replication intermediate of RNA viruses,
which significantly increases the virus-specific reads in the dataset. Double-stranded RNA was
extracted from GH24 phloem material using an adapted cellulose affinity chromatography
method [8]. In brief: Two cycles of cellulose affinity chromatography was performed using a
batch method with washing and elution steps performed in a column. Twenty grams of phloem
scrapings and petioles were used for the extraction and the cellulose powder used was MN
2100 (Macherey-Nagel). The integrity and concentration of the dSRNA was assessed by gel
electrophoresis (1% Agarose TAE).

An NGS library (~300nt insert) was prepared using the TruSeq RNA Sample Preparation
Kit (Illumina) and sequenced in a paired-end (2x 100nt) run on an Illumina HiScanSQ at the
Agricultural Research Council’s Biotechnology Platform in Pretoria, South Africa.

Paired-end sequence data was used as single reads for the de novo assembly of a near-com-
plete draft sequence of GLRaV-3 isolate GH24 using CLC Genomics Workbench 6.0.2 (Qia-
gen). The trimmed and filtered sequence data was assembled into contigs using the following
parameters: word size of 20nt, bubble size of 50nt and minimum contig length of 500nt. The
quality trimmed and filtered data (5037331 reads) was submitted to the NCBI SRA database
(SRR1693181). GLRaV-3-related contigs were identified using the BLAST functions, BLASTn
and tBLASTx on the GenBank database. The read coverage and depth of the contigs were ex-
amined and the low coverage threshold set at 10-fold. The contigs were trimmed accordingly
and aligned against a reference sequence (GLRaV-3 isolate GH30) using the BioEdit 7.0.9.0
software [9]. A draft genome sequence was compiled and used as a reference for primer design
to construct the complete genome sequence of this novel variant.

Sanger sequencing of isolate GH24

Direct Sanger sequencing of amplicons was used to confirm the sequence of the new divergent
variant of GLRaV-3 and to fill the gaps in the genome sequence that were not covered by the
NGS data. Primers were designed to produce overlapping amplicons, spanning the entire draft
genome of the novel variant of GLRaV-3 using Oligo Explorer 1.1.0 (Gene Link), (SI Table).
Primers were also designed to amplify the 5’- and 3’-termini, in combination with an oligo(dT)
primer, of a poly-adenylated dsRNA template (poly(A)-tailing) [10].

Total RNA was extracted from 2g of petioles using a modified cetyltrimethylammonium
bromide (CTAB) method [11] and subjected to a two-step RT-PCR. Complementary DNA
(cDNA) was synthesized from 500ng of total RNA, primed with 0.25uM gene-specific reverse
primers in a reaction containing: 1X AMV Reverse Transcriptase Buffer; 10U AMV Reverse
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Transcriptase (Thermo Scientific) and 10mM dNTP’s in a final volume of 20uL. Individual
25uL PCR reactions were performed with 5uL cDNA containing 0.4uM of each gene-specific
primer; 1X KAPA Taq Buffer A; 0.05U KAPA Taq DNA polymerase (Kapa Biosystems);
10mM dNTP’s and 10% cresol red. PCR cycling conditions included an initial denaturation
step at 94°C for 5 minutes followed by 35 cycles of a denaturing step at 94°C for 30 seconds, an
annealing step at the appropriate annealing temperature for 30 seconds and an extension step
at 72°C for 70-105 seconds (depending on the amplicon size). The PCR was ended with a final
extension at 72°C for 7 minutes. Amplicons were separated on 1% Agarose-TAE gels and frag-
ments of expected sizes excised (Zymoclean Gel DNA Recovery Kit, Zymo Research) and di-
rectly sequenced with the designed primers.

To determine the 5’- and 3’ -termini of the genome, poly(A)-tailing was performed on
dsRNA with yeast poly(A) polymerase (Affymetrix) followed by cDNA synthesis using an
oligo(dT) primer [10]. Genome-specific reverse (for the 5’-terminus) and forward (for the 3’-
terminus) primers were designed (S1 Table) and used in combination with the oligo(dT)
primer during PCR amplification. Amplicons of expected sizes were cloned (pGEM-T Easy
Vector, Promega) and a minimum of five clones for each terminus, sequenced with T7 and SP6
primers.

All sequences were trimmed to remove low quality bases. The vector sequences were also re-
moved from the cloned amplicon data. Using BioEdit, the trimmed sequences were aligned to
the draft sequence and a complete genome sequence was compiled. To resolve ambiguities,
CLC Genomics Workbench was used to map the NGS data to the Sanger sequencing-generated
reference genome. All ambiguities were replaced with the nucleotide that was most abundant
at that position in the NGS data.

Open reading frames were predicted using NCBI ORF Finder (http://www.ncbinlm.nih.
gov/gorf/gorf.html), and domains were predicted by the Pfam 27.0 software [12]. The whole
genome sequence of GLRaV-3 isolate GH24 was deposited in GenBank (KM058745).

Sequence alignment and supermatrix construction

To infer the phylogeny of GLRaV-3, and in particular to assess the phylogenetic position of the
new variant of GLRaV-3, we constructed a supermatrix that included a total of 819 GLRaV-3
accessions, represented by sequences of differing lengths, obtained from GenBank. At the time
of the analysis, only 13 complete GLRaV-3 genome sequences were available. In our analysis
we regarded isolate NY-1 and CL-766 as complete since all ORFs of these isolates are complete
and the genomes only lack a portion of the 5> UTR. Genome regions that are more commonly
sequenced are ORF 4 (Hsp70h) with 135 sequences and ORF 6 (CP) with 576 sequences. The
3’region of the genome spanning ORF 6 to 12 is represented by 50 sequences contributed by a
single study [13]. All sequences were aligned using ClustalW followed by manual adjustment
using amino acid translation of codon positions as represented graphically in Mesquite [14] in
order to minimise apparent shifts in reading frame that would imply loss of function. The posi-
tions of ORFs in the alignment were defined as character sets, using isolate GP18 as a reference
[15]. A number of ORFs are known to overlap: ORFs 4 and 5 (8nt), ORFs 8 and 9 (4nt) and
ORFs 11 and 12 (4nt). The overlapping portions were treated as a separate (putatively highly
conserved) further character set. Grapevine leafroll-associated virus 1 (GLRaV-1) was selected
as the outgroup. Due to the differences in genome organization between GLRaV-1 and
GLRaV-3, only the GLRaV-1 ORFs corresponding to those of GLRaV-3 were included in the
alignment. The supermatrix with ORF partitions is available in nexus format (S1 File). Using
this alignment, pairwise comparisons of only the 13 complete GLRaV-3 genomes were per-
formed with CLC Main Workbench 6.8.3 to determine percentage nucleotide identities
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between isolate GH24 and the other genomes. Nucleotide and amino acid identities for all the
ORFs were also compared. Synonymous and non-synonymous substitutions were assessed
for each ORF individually with MEGAG6 [16] using the Kumar model [17] with whole ge-
nomes only, excluding the outgroup, and with all positions containing gaps and missing data
eliminated.

Recombination detection and phylogenetic analysis

Multiple recombination detection methods as implemented in RDP4 [18] were used to identify
putative recombination breakpoints. The methods included RDP [19], GENECONYV [20],
MaxChi [21], Bootscan/Recscan [22], SiScan [23] and 3Seq [24]. Default settings were used
and the threshold p-value set at 0.05, using Bonferroni correction. Following Visser et al. [6],
these potential breakpoints were tested using phylogenetic analyses of the corresponding puta-
tively non-recombinant regions under parsimony (using PAUP* [25], estimating clade support
using 1,000 replicates of bootstrap analysis, each replicate involving heuristic search settings of
100 random taxon additions with tree bisection and reconnection branch swapping, saving a
maximum of 100 trees each) and Maximum Likelihood (ML; using RAXML [26] on CiPRES
[27], with heuristic search followed by fast bootstrapping halted automatically by RAxML fol-
lowing the majority-rule ‘autoMRE’ criterion). The resulting sequence of trees represented a
first estimate of the stepwise changes in phylogenetic signal resulting from recombination. For
each accurately inferred breakpoint a single topological conflict was expected; when this was
apparent and subject to bootstrap support (BS) of >70% (under both methods), the corre-
sponding breakpoint was accepted; when not, it was rejected; and where multiple topological
differences between successive trees were supported (implying failure to identify additional
breakpoints), the breakpoints in this region of the alignment were reassessed and the process
repeated. The end result is a conservative estimate of recombination between sequences includ-
ing identification of recombinant isolates. It will fail to identify more recent recombination
events and/or those involving short sequence regions, but in these cases the corresponding
sequence variation is low and it is likely to have little influence on subsequent phylogenetic
analyses [6].

Having identified recombination breakpoints and the corresponding recombinant isolates,
it was possible to modify the supermatrix for phylogenetic analyses without violating the as-
sumption of an underlying bifurcating tree. This was achieved by constructing an alignment
using the ‘taxon duplication’ approach [28,29], whereby the recombinant sequences are split
into multiple taxa, each taxon representing one phylogenetically conflicting gene region with
the rest of the alignment re-coded as missing data. Multiple recombinants were treated follow-
ing Visser et al. [6], excluding non-contiguous recombinant regions of the genome where a
common phylogenetic signal could not be identified with confidence. This approach avoids the
pitfalls of combining conflicting phylogenetic signals, irrespective of the cause of such conflict.

PartitionFinder [30] was used to test the fit of combinations of data partitions (assuming
the GTR+G substitution model implemented in RAXML, i.e. without a parameter for the pro-
portion of invariant sites (I) and without removing such sites prior to analysis) given a matrix
of whole genome sequences only with recombinants excluded, thus avoiding potential influ-
ence of missing data. We applied a heuristic search strategy (‘greedy’) and comparison of fit by
means of the Bayesian information criteria. Potential data partitions were each of the codon
positions of each of the 13 ORFs individually (39 partitions), plus the regions of overlapping
OREFs (highly conserved), and non-coding regions (unconserved), making a total of 41. Follow-
ing these results, partitioned ML analyses were performed on a matrix of whole genome se-
quences only with putative recombinants treated as multiple taxa. The resulting multi-labelled
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tree was summarized as a rooted network using the HOLM 2006 algorithm in Dendroscope
[31,32].

In order to infer a phylogenetic hypothesis that was both maximally representative (in
terms of isolates) and resolved (in terms of supported nodes, particularly for the major group-
ings of GLRaV-3), analyses (RAXxML; PAUP*) were performed that included increasing num-
bers of isolates that were represented in the supermatrix with decreasing lengths of sequence
data. Of 819 GLRaV-3 accessions, 498 were represented by at least 504nt; 392 by >602nt, 374
by >942nt; 69 by >1658nt; 65 by >4761nt; and 14 (including the outgroup) by >19362nt.

To estimate node ages (i.e. the ages of common ancestors of different GLRaV-3 strains) and
to make an estimation of the rooting of the GLRaV-3 tree that is independent of comparison to
the (genetically rather distant) outgroup, we performed Bayesian phylogenetic inference and
molecular dating using BEAST with the outgroup removed [33]. The analyses were restricted
to include only isolates for which a meaningful isolation date could be obtained (either from
the literature or by personal communication with the authors). The spread of tip ages used for
age calibration was rather narrow (between 2003 and 2011), with many isolates originating
from the same year (2009). Following preliminary analyses that indicated that convergence was
problematic with missing data and more complex models, we included only the 64 ingroup
taxa represented by >4761nt and only the corresponding 4761nt of sequence alignment that
was complete for these taxa; the data were not partitioned: a single GTR+G with estimated base
frequencies substitution model was applied. A likelihood ratio test was performed using
PAUP* with this dataset and an arbitrary shortest tree, comparing the fit of GTR+G models
with and without enforcing a strict molecular clock. The strict clock model was rejected
(P>0.999), and two different relaxed clock models applied, assuming a) lognormal and b) ex-
ponential rate distributions. A coalescence demographic model was applied assuming constant
population size. Two independent runs of 200 million generations, sampling every 20000 were
performed for each relaxed clock model.

Results
Next-generation sequencing of isolate GH24

NGS data was bioinformatically analysed to determine the viral composition and the possible
cause of GLD in this plant. De novo assembly of NGS data yielded 316 contigs of which 33
were identified to be of viral origin similar to GLRaV-3, and marginally closer related to vari-
ants of group VI. On average these contigs shared 73.69% sequence identity with isolate GP18
(group II) and 74.26% with isolates GH11 and GH30. These contigs were trimmed and aligned
to isolate GH30 to compile a draft sequence of the novel variant, isolate GH24. The genome
was estimated to be 84.71% complete and consisted of 18647nt with the largest gap being
1319nt long.

Sanger sequencing of isolate GH24

Direct sequencing of RT-PCR amplicons was used to construct approximately 98% of the
GLRaV-3 isolate GH24 genome, spanning all of the gaps in the draft sequence and validating
the NGS de novo assembly. All sequences overlapped between 38-142nt and were aligned to
the draft sequence that was covered fully except for approximately 60nt on either terminus.
Twelve ambiguities were observed in the Sanger sequence data that were temporarily retained
and resolved later by mapping the NGS data to this new sequence. The identity of each base
was determined by the most frequent occurring nucleotide in the NGS read data. By resolving
the ambiguities, the in silico characterization of the complete genome, such as predicting ORFs
and conservative domains, was made possible.
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The 5’-terminal nucleotide was found to be a cytosine. This additional cytosine residue at
the start of the genome sequence is the complement of the additional guanine residue at the 3’-
terminus of the negative strand of the virus. The extra residue was first observed in citrus triste-
za virus (CTV) and is described as a non-template residue that may reflect the presence of a
cap structure at the 5’-terminus of the RNA virus [34]. Having amplified the negative strand of
the dsRNA to determine the 5’-terminal nucleotide, the residue was excluded when compiling
the consensus sequence.

The complete genome of GLRaV-3 isolate GH24 was found to be 18493nt long with average
sequence similarities to other GLRaV-3 whole genomes ranging between 63.39 and 65.11%.
These similarities are low compared to values of >85% observed between isolates of group I,
group II, and group III. The similarity to other whole genomes also varied across the genome.
Additionally, GH24 shows high sequence similarity (99%) to partial genome sequences of iso-
late CB19 collected in the USA (EF445655-702nt and EF445656-602nt), isolate Tempr collect-
ed in Italy (DQ314610-1807nt), and isolate GTG10 collected in South Africa (KC731553-
549nt and KC731554-517nt). Isolate GH24 was found to exhibit a typical GLRaV-3 ORF 1la
domain structure and genome organization, however, no ORF 2 could be identified.

Through multiple pairwise comparisons the nucleotide and amino acid identities of the var-
ious ORFs and UTRs were compared between isolate GH24 and the other GLRaV-3 isolates.
The 5’UTR of isolate GH24 was found to be 737nt in length, similar to those of isolates 621,
WA-MR, 3138-07, GP18, 623, GH11 and CA7246, but with low sequence similarity. The inter-
genic region between ORF 1b and 3 was observed to be 6nt shorter than that of isolate GP18
with low sequence similarity, ranging between 37.94 and 52.15% (S2 and S3 Tables). The
3’UTR is more conserved and consists of 259nt. Open reading frame 9 terminates one amino
acid earlier than ORFs 9 of other GLRaV-3 isolates. ORF 12 has a premature stop codon and is
four amino acids shorter than that of group I, IT and III isolates. Results indicate that ORFs 9 to
12 are less than 65% identical at amino acid level compared to other isolates of GLRaV-3. ORF
11 shares less than 30% amino acid identity to that of isolates of groups I to III, and approxi-
mately 46% to that of group VI isolates. Overall, the ORF nucleotide identities range between
39.64 and 78.75%, whereas the percentage identity at amino acid level is shown to range be-
tween 21.62 and 90.76%. Average overall synonymous (Ks) and non-synonymous (Ka) substi-
tutions and the Ka/Ks ratio for ORFs 1a and 1b, and ORFs 3-12 are presented in Table 1. Ka/
Ks ratios were <1 in all but ORF1b, 5, and 12. Comparisons within-groups was incalculable in:
ORES8 for group VI vs VII; ORF10 for group I vs VI; and ORF11 for group VII vs all other
groups and group VI vs I, IL

Phylogenetic analysis

Preliminary results from RDP4 analyses indicated eight isolates as putatively non-recombinant,
with seven putative recombination events detected amongst the other five isolates. Three of the
putative recombination events were not reflected in topological conflict given phylogenetic
analyses of non-recombinant regions. The corresponding breakpoints were therefore rejected.
Supported conflicts were limited to isolate NY-1 (NC_004667), which was a multiple recombi-
nant as indicated by multiple changes in phylogenetic signal across the genome (Fig 1). Evi-
dence for recombination breakpoints in isolate WA_MR (GU983863) at multiple positions
(3050, 7000, 13549 and 14382), representing topological conflict within the group I clade, re-
ceived significant but not high support under ML (BS up to c. 80%), but <70% BS under parsi-
mony (data not shown). Topological conflict in isolate GH24 was moderately supported under
both methods, but the results were inconsistent: GH24 is sister to group VI under both meth-
ods between positions 1 and c. 7000 (Fig 1a-1d), after which there is a shift to sister to groups

PLOS ONE | DOI:10.1371/journal.pone.0126819 May 18,2015 7/18



@’PLOS ‘ ONE

Phylogenomic Analysis of an Economically Important Grapevine Virus

Table 1. Synonymous (Ks) and non-synonymous (Ka) substitutions.

ORF Ks Ka Ka/Ks
1a 0.937 0.132 0.141
1b 0.042 0.214 5.095
2 0.506 0.418 0.826
3 0.658 0.083 0.126
4 0.815 0.06 0.074
B 0.1 0.312 3.12
6 0.885 0.036 0.041
7 0.84 0.106 0.126
8 0.696 0.089 0.128
9 0.69 0.237 0.343
10 0.857 0.184 0.215
11 0.317 0.213 0.672
12 0.299 0.434 1.452

Average overall Ks and Ka substitutions and the Ka/Ks ratio for each ORF as assessed with MEGAB6 using
the Kimura model. Values for Ka/Ks >1 indicated in bold type represent evidence for positive selection.

doi:10.1371/journal.pone.0126819.t001

I, IT and IIT supported under ML (80% BS; Fig 1e); but a shift to sister to the rest of GLRaV-3
was supported under parsimony (84% BS; not shown). In both cases the corresponding break-
points were rejected.

For downstream analysis the recombinant sequence was represented by two separate taxa,
one for each of the non-recombinant regions, excluding shorter recombinant regions. The best
fitting partitioning strategy inferred using PartitionFinder included 8 independent substitution
models. Across different ORFs, the same positions in the triplet code were frequently grouped
under the same linked substitution model. Phylogenetic analysis of the whole genomes using
the taxon duplication approach resulted in a multi-labelled ‘genome’ tree (Fig 2a). Resolution
and support were greater under parsimony than under ML, including bootstrap support (BS)
of 100% for monophyly of Group V1, and 85% BS for monophyly of groups I-III and VI to the
exclusion of GH24 (neither supported under ML). The ML tree is also presented as a rooted
network inferred using Dendroscope (Fig 2b).

Results of phylogenetic analysis of the supermatrix including 392 sequences of 602nt or
more in length are summarised in Fig 3, and presented in detail along with trees based on taxa
with minimum sequence length of 504nt, 602nt, 942nt, 1658nt and 4761nt in supporting infor-
mation S1-56 Figs Excluding isolates with sequences shorter than 602nt resulted in overall im-
proved clade support (particularly for the major groupings), compared to the >602nt tree.
Excluding isolates with sequences shorter than 942nt resulted in an apparent change in the
character polarisation compared to the >602nt tree, resulting in a basal grade of short or zero-
length branches. In Fig 3, currently recognised variants are indicated, as well as two clades rep-
resenting new variant groups VII and VIII. Four more inclusive clades are also indicated, de-
fined as supergroups A to D. Supergroup A includes variant groups I-V; supergroup B variant
group VI and isolate NZ2; supergroup C includes variant group VII (isolate GH24) and super-
group D, variant group VIII. Accession EF103904 is sister to the GLRaV-3 clade; it is treated as
an outgroup (see Discussion) and not represented in Fig 3. Pairwise comparison of EF103904
to the whole genome sequence of isolate 139 (GLRaV-3m, JX266782) revealed 99% similarity.
The basal nodes, representing the order of divergence between GLRaV-3 supergroups, and
hence the rooting of the tree, were not supported.
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Fig 1. Maximum likelihood phylogenetic analysis of six putatively non-recombinant gene regions. Alignment positions are indicated. Isolates are
coloured according to group, as indicated, and NY-1 (NC 004667), subject to topological conflicts between trees is indicated with larger font.

doi:10.1371/journal.pone.0126819.g001

Sixty-four isolates, for which sampling date and at least 4761nt of sequence data were avail-
able, were used to infer a time-calibrated tree using BEAST (Fig 4). The rooting of the tree, esti-
mated without the outgroup, is subject to uncertainty similar to that apparent in the results of
outgroup-rooted analyses based on the complete genomes. The topology is otherwise consis-
tent, albeit in the absence of representatives of groups V and VIII, for which sequences of com-

parable length were not available. Posterior probability distributions of molecular rates (in
mutations per site per year), given the two different relaxed clock models, were: LN: mean
7.4487E-4 (95% highest posterior density (HPD) = 8.5454E-8—1.8636E-3); EX: mean 9.4624E-
4 (95% HPD = 3.7556E-5—2-0539E-3). Posterior probability distributions of node ages indi-
cated low precision for deeper nodes in general and of the divergence of supergroup B in par-

ticular, but the latter appears to be relatively ancient, as is the divergence of isolate GH24.

Crown group ages for groups I-IV were rather more precise, with the 0.95 PP ranges falling

within the last century.
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Fig 2. Phylogenetic analysis of the whole genomes under partitioned ML. (a) Multi-labelled ‘genome’ tree and (b) the corresponding rooted network

inferred using Dendroscope.

doi:10.1371/journal.pone.0126819.9002

Discussion

In this study we assessed the evolutionary history of GLRaV-3, the type strain of the genus
Ampelovirus, and determined the phylogenetic placement of a new genetic variant, isolate
GH24 (KM058745).
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Fig 3. Summary of RAxML phylogenetic analysis. (a) 392 GLRaV-3 sequences of 602nt or more in length was used for the analysis. The tree is rooted,
but the outgroups have been removed for ease of presentation; the scale indicates branchlengths in substitutions per site. Values at nodes are ML bootstrap
support: first, given this tree, thereafter (within parentheses) support for the equivalent clade given the analysis including sequences of 4761nt or more in
length. Groups and supergroups proposed here are indicated. Further details, including support values and tip labels are presented in supporting information
S2 Fig. (b) A grapevine (Vitis vinifera cv. Cabernet Sauvignon) showing typical symptoms of Grapevine leafroll disease.

doi:10.1371/journal.pone.0126819.9003
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Fig 4. Bayesian phylogenetic inference and molecular dating analysis. BEAST was used for estimation of node ages and rooting of the GLRaV-3 tree,
independent of the outgroup. a. Exponential relaxed clock. b. Lognormal relaxed clock. Variant groups are indicated and colour coded following Figs 1-3. For
the major clades, posterior probability (PP) clade support is indicated above the branches; 0.95 PP age ranges at the nodes. The extent of 0.95 PP age
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doi:10.1371/journal.pone.0126819.g004

A first ‘genome tree’ of grapevine leafroll-associated virus 3

We included sequences of as many GLRaV-3 isolates as possible in our analyses. To this end,
we constructed a supermatrix of 819 accessions, including the 13 whole genomes, with the larg-
er part of the alignment comprising of missing data. It has been shown in both empirical and
simulation studies that the proportion of missing data in a matrix does not in itself significantly
impact phylogenetic analysis [35]. Instead, the important factor is the presence of informative
sites necessary to place particular taxa. Most previous studies of GLRaV-3 have concentrated
on the RNA-dependent RNA polymerase (RdRp), the coat protein (CP) and the heat shock
protein 70 homologue gene (Hsp70h) [5,36-42], which for most known isolates, are the only
sequence data currently available. The generally low clade support in the phylogenetic trees
that we inferred when including GLRaV-3 isolate sequences shorter than c. 600nt suggest that
more than half of the currently available sequences (427 of the 819) are insufficiently informa-
tive to be placed with precision in a phylogeny of the group. Nevertheless, relatively short se-
quences i.e. of c. 600-900nt, including ORF6, can be placed with confidence when analysed
within our supermatrix including full genome and other longer sequences.

Next-generation sequencing technologies should yield several increasing numbers of whole
genomes in the near future, which will enable more full-length sequence comparisons and
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necessitate a reassessment of recombination between them. Currently, only one of the 13 full
genomes analysed to date showed a clear mosaic of phylogenetic signals, while some evidence
for further such patterns exist in another two. Multiple infections could potentially lead to sim-
ilar results, but our analytical approach is not sensitive to the underlying cause of the phyloge-
netic conflict. Assuming that these sequences do indeed represent single infections, and not lab
artefacts, these results are indicative of past recombination. Such recombination has not been
detected in previous work, probably because the putative recombination breakpoints fall out-
side the largest body of available data, i.e. functionally more conserved CP and Hsp70h.

In the construction of our GLRaV-3 ‘genome tree’, GLRaV-1 was used as the outgroup,
even though it is genetically very distant. This presents a frequently encountered problem in
phylogenetic analyses: it is difficult to infer the polarisation of character state changes given a
highly divergent group with a long stem lineage. Uncertainty in the precise phylogenetic posi-
tion of GH24 and the somewhat inconsistent results comparing ML with parsimony analyses
of non-recombinant gene regions is probably symptomatic of this uncertainty in the rooting.
There are also apparent changes in character polarisation in the ML trees (S1-S6 Figs) and pre-
sumably spurious short or zero length terminal branches at the base of the ingroup, involving
either clone WC-HSP-10, isolates of supergroup D, or GH24, depending on the sampling but
irrespective of sampling dates. This uncertainty is further reflected in the BEAST analyses
which resulted in ultrametric trees that are, by definition, rooted, without the need to specify
an outgroup, but which differed between the two relaxed clock models that we applied (Fig 4).
The best way to address this issue in future work will be to add further sequences that are more
similar to GH24, and ideally to identify further, preferably less divergent, outgroups. Clone
WC-HSP-10 (EF103904), although representing a short and somewhat enigmatic sequence,
may be the most appropriate candidate for a less divergent outgroup for GLRaV-3. As a diver-
gent sister group to GLRaV-3 in these analyses, this isolate and the very similar GLRaV-3m iso-
late 139 (JX266782) require further investigation as potential further members of GLRaV-3.

A novel genetic variant and classification of grapevine leafroll-
associated virus 3

Our results validated the discovery of a new highly divergent variant of GLRaV-3, isolate
GH24. For the first time the complete genome of this variant was sequenced. As well as allow-
ing us to infer its distant phylogenetic relatedness to other known strains, the results showed
that isolate GH24 shares less than 66% sequence identity, at nucleotide level, with all GLRaV-3
isolates readily attributable to known strains. GH24 does show high sequence similarity to par-
tial genome sequences of isolates collected in the USA, Italy and South Africa. These isolates
are likely representatives of the same genetic variant, suggesting that this variant already occurs
across the world.

Comparison of the overall non-synonymous and synonymous substitution ratios indicated
that ORF1b, 5 and 12 are under positive selection while the rest of the genome appears to be
mostly under purifying selection. The within-group comparisons for ORF8, 10 and 11 were in-
calculable for some variants that might have influenced the ratio. The analysis will benefit from
the addition of more whole genome sequences to establish the overall trends.

Our phylogenetic analyses were performed under different methods with contrasting as-
sumptions, but delivered similar results. These results are generally consistent with trees
previously inferred on the basis of CP alone, and hence with the corresponding current classifi-
cation (groups I-VI). The putatively recombinant isolate that we identified, NC 004667 isol
NY-1, indicated recombination between strains of different groups (I and II), but these are
closely related. We consider it useful to recognise within GLRaV-3 two new variant groups
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designated group VII, including isolate GH24 and related isolates, and group VIII. These eight
GLRaV-3 variant groups can be grouped into four supergroups. Groups I to V together repre-
sent a clearly monophyletic group in our analyses (Fig 4) that we refer to as supergroup A.
Group VI variants show greater genetic diversity than those in supergroup A, but are also clear-
ly monophyletic and share genome organisation characteristics that differ from isolates in su-
pergroup A, including the lack of ORF 2 and high divergence in ORFs 11 and 12. We refer to
this as supergroup B. Supergroups C and D are currently represented by the least amount of
data, but even on the basis of partial genome sequences it is clear that they are both monophy-
letic and genetically distinct from the other supergroups to a comparable degree. Supergroup C
comprises variant group VII with partial sequences from across the world with isolate GH24
being the only whole genome known for this group. Supergoup D includes only variant group
VIII that consists of a collection of CP sequences that were directly submitted to GenBank, and
obtained from surveys of Portuguese vines conducted in 2007, 2009 and 2010.

The relationships between supergroups are sensitive to both the region of the genome ana-
lysed and the method used to infer relatedness (i.e., assuming parsimony, maximum likelihood,
or different likelihood-based relaxed-clock models). The absence of ORF 2 in isolate GH24 (su-
pergroup C) could be interpreted to suggest that it is more closely related to supergroup B iso-
lates, as also indicated in some of the trees of non-recombinant regions of the alignment (Fig
le). The sequence variation observed for ORFs 11 and 12 indicates that their function might
not be conserved in GLRaV-3, similar to isolate NZ2 [43], isolates GH11 and GH30 [36], as
well as isolate CA7246 (JQ796828) [44]. However, from the sequence variation it is apparent
that GH24 is not closely related to any other GLRaV-3 clade and on that basis can best be re-
garded as representing a separate supergroup.

The significant genetic distance between isolates in supergroup B and between GLRaV-3 su-
pergroups in general, as well as the position of accessions EF103904 (clone WC-HSP-10) and
JX266782 (GLRaV-3m) raises some questions about the taxonomic boundaries of GLRaV-3 as
a virus species. At the nucleotide level, it might be argued that a number of additional grape-
vine leafroll-associated virus species could be identified. However, we would suggest that group
VI, group VI-related isolates (such as isolate NZ2), and the newly defined groups VII and VIII
be referred to as GLRaV-3 viruses with the supergroup as the strain identifier. This is in line
with general trends in grapevine leafroll-associated virus taxonomy, in which related viral
strains tend to be regarded within more broadly defined species. For example, GLRaV-4 was
redefined to include GLRaV-5, GLRaV-6, GLRaV-9, GLRaV-Pr and GLRaV-Car [45]. Further-
more, little is known about the biological properties of different GLRaV-3 genetic variants. It
would be important to investigate whether there is significant variation in their pathogenicity
before considering delimiting further species, irrespective of the degree of sequence divergence
involved.

The age of diversification in grapevine leafroll-associated virus 3

A number of studies of viral pathogens of crop plants have shown diversification coinciding
with the spread of agriculture, i.e. on timescales measured in thousands or even just hundreds
of years [6,46]. The ease of spread of pathogens across the globe in the last century has also
been cited as a cause for recombination between viral strains, sometimes resulting in an escala-
tion of pathogenicity [6].

Molecular dating by means of serial sampling of virus isolates is a potentially powerful tool
for inferring the timing of recent evolutionary processes in the absence of a fossil record
[47,48]. The age estimations produced here were unavoidably imprecise given the small num-
ber of sequences and their recent ages that were included in the dating analyses. Nevertheless,
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the confidence intervals around diversifications within the major groups of GLRaV-3 were nar-
row and also recent. The dating analysis indicated that the lineage of supergroup C (including
isolate GH24) pre-dates diversifications of supergroups A and B. Supergroup D was not includ-
ed in the dating analysis due to a lack of data.

Our results would be consistent with a scenario in which the major groups of GLRaV-3
originated prior to worldwide cultivation of grapevines, whilst the current diversity represents
closely related isolates that diverged from common ancestors within the last century. If this is
true, we might expect the greatest genetic diversity of GLRaV-3 to be found in the native ranges
of the host plants. However, since the movement of grapevines, and presumably their associat-
ed pathogens, has been ongoing throughout recorded history, it is possible that much of the di-
versity of GLRaV-3, such as strains similar to GH24, is to be found worldwide.

Supporting Information

S1 Fig. RAXML phylogenetic analysis of the 498 GLRaV-3 sequences of >504nt. The best
scoring tree with branch lengths representing substitutions/site and bootstrap support for
nodes above the branches; presented using TRED http://www.reelab.net/tred/default/index.
(PDF)
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www.reelab.net/tred/default/index.
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