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Abstract 

 
The partial double bond character of the carbon-nitrogen bond of the (S)C-NRR’ moiety results in unsymmetrical 

dialkyl-substituted N-alkyl-N-alkyl(aryl)-N’-acylthioureas, R”C(O)NHC(S)NRR’ (HL) displaying E,Z 

configurational isomerism in solution. The isomerism manifests itself by the duplication of resonances of the N-alkyl 

groups in the 1H and 13C NMR spectra. In one class of these ligands where R and R’ groups are non-equivalent alkyl 

groups the isomerism is easily observable at 298 K in chloroform. In the other class where R’ is still an alkyl group 

and R is a para-substituted phenyl group the isomerism is only observable at much lower temperatures due to a lower 

barrier to rotation around the (S)C-N(alkyl)(para-X-Ph) bond (X = O-CH3, H and NO2). The electron-withdrawing 

nature of the nitro group in N-methyl-N-(4-nitro-phenyl)-N’-2,2-dimethylpropanoylthiourea, HL3A and N-pentyl-N-

(4-nitro-phenyl)-N’-2,2-dimethylpropanoylthiourea, HL3D result in the E,Z isomerism of these ligands not observable 

even at 198 K in dichloromethane. The distribution of E and Z isomers of the unbound ligands vary depending on 

these R and R’ groups. Several E isomers of these ligands have been isolated and structurally characterised and the 

(S)C-NRR’ bond falls in the range [1.343(3) – 1.329(3) Å] which shorter than the average C-N single bond of 

1.472(5) Å. 

 

The E,Z configurational isomerism in the unbound ligands is passed on to the Pt(II) chelates derived from these 

ligands. The presence of cis-[Pt(ZZ-L-S,O)2], cis-[Pt(EZ-L-S,O)2] and cis-[Pt(EE-L-S,O)2] is readily observable by 

means of 195Pt NMR spectroscopy which shows three well resolved resonances, and this can be confirmed by 1H and 
13C NMR spectra of these complexes. The 195Pt nuclei are spatially linked to the 13C nuclei, four bonds away 

resulting in 4J(195Pt-13C) couplings with N-CH2- or N-CH3 carbons in a W pathway. The 195Pt NMR spectra are also 

linked to N-CH2- or N-CH3 proton resonances by means of the ZZ, EZ and EE isomer distributions. Assignment of 

these configurational isomers was then achieved by means of a combination of low magnetic field 13C NMR spectra 

and high-resolution gHSQC (1H/13C) NMR experiments. 

 
1H NMR rotational dynamics study showed that the barrier to rotation, ΔG≠, around the (S)C-N(Me)(para-X-Ph) 

bond in cis-bis(N-methyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1A-

S,O)2]; cis-bis(N-methyl-N-phenyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L2A-S,O)2] and cis-

bis(N-methyl-N-(4-nitro-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L3A-S,O)2] complexes 

was observed to follow the order: (electron-withdrawing group) NO2 < H < (electron-donating group) O-CH3. The 

ZZ isomer was observed to be favoured over the EZ and EE isomers in this order of the para-substituent on the N-

phenyl group. The 1H dynamic NMR trends about the barrier to rotation, ΔG≠, around the (S)C-N(Me)(para-X-Ph) 

bond were also complemented by DFT linear transit calculations. The isomer distributions were also influenced by 

solvent polarity and the temperature at which the distributions are determined apart from the electronic influence of 

the para-substituent of the N-phenyl group. 

 

The ZZ, EZ and EE isomers of complexes derived from N-alkyl-N-(para-X-Ph)-N’-acylthioureas with varying N-

alkyl substituent (methyl, isopropyl, cyclohexyl and n-pentyl) were determined from the 195Pt NMR spectra which 
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were measured under identical conditions. The ZZ isomer was observed to be favoured over the EZ and EE isomers 

upon methyl group substitution with a bulkier alkyl group in the order: methyl < isopropyl < cyclohexyl < n-pentyl. 

Qualitatively it has been shown that a bulkier N-pentyl group increases the barrier to rotation around the (S)C-

N(alkyl)(para-X-Ph) bond over the N-methyl group and this leads to higher concentrations of the ZZ isomer over the 

EZ and EE isomers. The combined effects of the electron-donating substituent (X = O-CH3) on the N-(para-X-Ph) 

group and the bulkier N-alkyl group (n-pentyl) result in highest ZZ concentration (76 %) over EZ and EE isomers in 

the complex cis-bis(N-pentyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1D-

S,O)2]. The lowest concentration ZZ (27 %) is obtained in the complex cis-bis(N-methyl-N-(4-nitro-phenyl)-N’-2,2-

dimethylpropanoylthioureato)platinum(II), cis-[Pt(L3A-S,O)2] when the coordinated ligand has both N-methyl group 

and N-(4-nitro-Ph) group which both lower the barrier to rotation around the (S)C-N(alkyl)(para-X-Ph) bond. 

 

A crystal of the complex cis-bis(N-pentyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), 

cis-[Pt(L1D-S,O)2] has been isolated and structurally characterised and was shown to be in the ZZ configuration, 

which is the major component (76 %) in chloroform. This is the first example of Pt(II) chelates with asymmetrically 

disubstituted ligands to be reported. 
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Opsomming 

 

Die gedeeltelike dubbelbinding karakter van die koolstof-stikstof-binding van die (S)C-NRR’-moieteit lei tot 

onsimmetriese dialkiel-gesubstitueerde N,N-dialkiel-N’-asieltioureums, R”C(O)NHC(S)NRR’ (HL) wat E,Z-

konfigurasionele isomerie in oplossing besit. Die isomerie is sigbaar in die verdubbelling van die seine van die N-

alkielgroepe in die 1H- en 13C-KMR spektra. In een so klas ligande waar R- en R’-groepe nie-ekwivalente 

alkielgroepe is, is isomerie duidelik sigbaar by 298 K in chloroform. In die ander klas waar R’ steeds ’n alkielgroep 

is, en R ’n para-gesubstitueerde feniel groep, is die isomerie alleenlik sigbaar by baie laer temperature as gevolg van 

’n laer rotasieversperring om die (S)C-N(alkiel)(para-X-Ph)-binding (X = O-CH3, H and NO2). Die 

elektrononttrekkende aard van die nitrogroep in N-metiel-N-(4-nitrofeniel)-N’-(2,2-dimetielpropanoïel)tioüreum, 

HL3A en N-(4-nitrofenyl)-N-pentiel-N’-(2,2-dimetielpropanoïel)tioüreum, HL3D lei daartoe dat die E,Z-isomerie van 

die ligande nie eers by 198 K in dichlorometaan waargeneem word nie. Die verspreiding van die E en Z isomere 

verskil na gelang van die R en R’ groepe. Verskeie E-isomere van hierdie ligande is geïsoleer en struktureel 

gekarakteriseer en die (S)C-NRR’-bindingslengte is in ‘n gebied [1.343(3) – 1.329(3) Å] wat korter is as die 

gemiddelde C-N-enkelbindingslengte van 1.472(5) Å. 

 

Die Pt(II) chelate wat afgelei is van die ligande is blootgestel aan die E,Z-konfigurasie isomere van die ongebinde 

ligande. Die teenwoordigheid van cis-[Pt(ZZ-L-S,O)2], cis-[Pt(EZ-L-S,O)2] en cis-[Pt(EE-L-S,O)2] is maklik 

waarneembaar deur middel van 195Pt-KMR-spektroskopy wat drie goed geresolueerde seine toon, en dit kan bevestig 

word met 1H- en 13C-KMR spectra van hierdie komplekse. Die 195Pt kerne is ruimtelik geskakel met die 13C kerne 

deur vier bindings wat aanleiding gee tot 4J(195Pt-13C)-koppelings met N-CH2- of N-CH3-koolstofatome in ‘n W-

konformasie. Die 195Pt KMR spektra word geskakel met die N-CH2- of N-CH3-protonresonansies in al drie die 

moontlike ZZ, EZ en EE kompleksisomere. Toekenning van die konfigurasionele isomere is dan bewerkstellig deur 

middel van ‘n kombinasie van lae magneetveld 13C-KMR spectra en hoë resolusie gHSQC (1H/13C) KMR 

experimente. 

 
1H-KMR-rotasiedinamiek studie toon dat die rotasiegrens, ΔG≠, om die (S)C-N(Me)(para-X-Ph)-binding in cis-

bis(N-metiel-N-(4-metoksifeniel)-N’-2,2-dimetielpropanoïeltioureato)platinum(II), cis-[Pt(L1A-S,O)2]; cis-bis(N-

feniel-N-metiel-N’-2,2-dimetielpropanoïeltioureato)platinum(II), cis-[Pt(L2A-S,O)2] en cis-bis(N-metiel-N-(4-

nitrofeniel)-N’-2,2-dimetielpropanoïeltioureato)platinum(II), cis-[Pt(L3A-S,O)2] komplekse was met die volgende 

orde bepaal: (elektron-ontrekkende groep) NO2 < H < (elektron-skenkende groep) O-CH3. Die ZZ-isomeer blyk by 

voorkeur te vorm bo die EZ- en EE-isomere in dieselfde orde as hierbo wat betref para-substituent aan die N-

fenielgroep. Die 1H dinamiese KMR tendencies ten opsigte van die rotasiegrens, ΔG≠, om die (S)C-N(Me)(para-X-

Ph)-binding is gekomplimenteer met DFT-linêre organgs berekeninge. Die isomer verspreidings blyk ook beïnvloed 

te word deur die oplosmiddel polariteit en die temperatuur waarby die verspreidings bepaal is, buiten die elektroniese 

invloed van die para-substituent aan die N-fenielgroep. 
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Die ZZ, EZ en EE isomeer verspreiding van komplekse wat afgelei is van N-alkiel-N-(para-X-Ph)-N’-asieltioureums 

met veranderlike N-alkiel substituente (metiel, isopropyl, sikloheksiel, en n-pentiel) is vasgestel deur middel van die 
195Pt KMR wat opgeneem is onder identiese kondisies. Die ZZ-isomeer blyk die verkose isomeer te wees bo die EZ- 

en EE-isomere waar die metiel substituent vervang word met ‘n groter alkiel groep in die orde van: metiel < 

isopropiel < sikloheksiel < n-pentiel. Dit is kwalitatief getoon dat die groter N-pentielgroep die rotasiegrens verhoog 

vir rotasie om die (S)C-N(alkiel)(para-X-Ph)-binding bo dié van die N-metielgroep wat aanleiding gee tot hoër 

konsentrasies van die ZZ-isomeer relatief tot die EZ- en EE-isomere.  Die gekombineerde uitwerking van die 

electron-skenkende substituent (O-CH3) op die N-(para-X-Ph)-groep en die groter N-alkiel groep (n-pentiel) gee 

aanleiding tot die hoogste ZZ-konsentrasie (76%) bo EZ- en EE-isomere in die kompleks cis-bis(N-pentiel-N-(4-

metoksifeniel)-N’-2,2-dimetielpropanoïeltioureato)platinum(II), cis-[Pt(L1D-S,O)2]. Die laagste konsentrasie ZZ 

(27%) is verkry in die kompleks cis-bis(N-metiel-N-(4-nitrofeniel)-N’-2,2-dimetielpropanoïel)tioureato)platinum(II), 

cis-[Pt(L3A-S,O)2] waar die gekoördineerde ligand beide die N-metiel- sowel as die N-(4-nitro-Ph)-groep, wat albei 

die rotasiegrens van die (S)C-N(alkiel)(para-X-Ph)-binding verlaag. 

 

‘n Kristalstruktuur van die kompleks cis-bis(N-pentiel-N-(4-metoksifeniel)-N’-2,2-dimetielpropanoïeltio-

ureato)platinum(II), cis-[Pt(L1D-S,O)2] wat geïsoleer is, is struktureel gekarakteriseer en is in die ZZ-konfigurasie, 

wat die hoofkomponent (76%) is in chloroform. Hierdie is die eerste voorbeeld van Pt(II) chelate met asimmetriese 

digesubstitueerde ligande om geraporteer te word. 
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On the chessboard lies and hypocrisy do not survive long. 

The creative combination lays bare the presumption of a 

lie; the merciless fact, culminating in a checkmate, 

contradicts the hypocrite. 

 

 

Grandmaster Dr. Emanuel Lasker 
1868 – 1941 

 

 

 

 

 

 

http://scholar.sun.ac.za/



Acknowledgements 

 

 

 

I would like to thank Professor Klaus R. Koch for guidance and support throughout my studies. 

 

Thanks to  

 

 

Ms Marga Burger for the valuable contribution she made on the theoretical calculations and 

discussions. 

 

Dr. Jurjen Kramer for the never-ending enthusiasm, support and valuable comments (I don’t 

know where you get all the energy, man). 

 

The ever-patient duo from the NMR Laboratory: Jean McKenzie and Elsa Malhebe for my NMR 

training and keeping up with me. 

 

The PGM research group members, who helped in many ways for the success of my work. 

 

To parents and siblings for continued support and encouragement that has given me strength 

when energy reserves were low during my studies. 

 

For financial support I would like to thank Sasol, the National Research Foundation and the 

University of Stellenbosch. 

 

 

 

 

 

 

http://scholar.sun.ac.za/



The work presented in this thesis has been presented in various forms in local and international 

media: 

 

Paper: 

 

 D. Argyropoulos, E. Hoffmann, S. Mtongana, and K. R. Koch, Magn. Reson. Chem., 
2003, 41, 102. 

 

Locally: 

 

Oral: 

 South African Spectroscopic Society Meeting, IThemba Laboratories, Cape Town, 2003 

 Cape Organometallic Symposium I, Morgenoff Wine Estate, Stellenbosch, 2003 

 

Poster: 

 

 SACI Inorganic Conference, Pretoria, 2003 

 SACI Inorganic Conference, Pietermaritzburg, 2005 

 Cape Organometallic Symposium III, Waterfront, Cape Town, 2005 

 

Internationally: 

 

Poster: 

 

 Small Molecule NMR (SMASH) Conference, Verona, Italy, 2005 

 37th International Conference of Coordination Chemistry, Cape Town, 2006 

 

 

 

 

 

 

http://scholar.sun.ac.za/



CONTENTS 

 

Abstract 

 

Opsomming 

 

Acknowledgements 

 

Contents 

 

Chapter 1 General Introduction        1 

1.1 General coordination chemistry of N-alky- and N,N-dialkyl-N’-acyl(aroyl)thioureas towards 

transition metals          2 

1.2 Asymmetrically disubstituted ligands       4 

1.3 Restricted C-N bond rotation in carbonyl, thiocarbonyl amides and related compounds: 

A literature survey         7 

1.4 Methods of analysis         8 

1.4.1 Use of different multinuclear NMR spectroscopy in the study of E,Z configurational 

isomers          8 

1.4.2 Determination of C-N rotation barrier by means of coalescence temperature 

determination method        10 

1.5 Objectives and outline of this thesis        12 

References          13 

 

Chapter 2 Synthesis, characterisation and general properties of asymmetrically 

disubstituted N-alkyl-N-alkyl(aryl)-N’-acylthioureas    14 

2.1 Introduction          15 

2.2 Synthesis and characterisation of asymmetrically disubstituted 

N-alkyl-N-alkyl(aryl)-N’-acylthioureas       15 

2.3 Experimental details         18 

2.3.1 General remarks         18 

2.3.2 NMR spectroscopy        19 

2.3.3 Synthetic methods and characterisation of compounds    19 

2.3.4 Crystallography and structure refinement      23 

2.4 Results and Discussion         24 

2.4.1 Molecular structures of some isolated unsymmetrical N-alkyl-N-aryl-N’-acylthioureas 24 

2.4.2 E,Z configurational isomerism in asymmetrically disubstituted 

http://scholar.sun.ac.za/



N-alkyl-N-alkyl(aryl)-N’-acylthioureas: A solution NMR study    28 

2.4.2.1 E,Z isomerism observed at room temperature for symmetrically disubstituted  

N-alkyl-N-alkyl(aryl)-N’-acylthioureas ligands HL5, HL6, HL7 and HL8  28 

2.4.2.2 E,Z isomerism observed at low temperature for symmetrically disubstituted 

N-alkyl-N-aryl-N’-acylthioureas ligands: HL1A,1B,1C,1D and HL2A,2B,2C,2D  31 

2.4.3 Spontaneous decomposition of N-methyl-N-(4-nitro-phenyl)-N’-(2,2-dimethylpropanoyl) 

thiourea, HL3A in solution        34 

2.5 Concluding remarks         36 

References          36 

 

Chapter 3 Coordination chemistry of asymmetrically disubstituted N-alkyl-N-alkyl(aryl) 

-N’-acylthioureas to platinum(II): Part 1: A multinuclear NMR spectroscopic 

assignment of E,Z configurational isomers of platinum(II) complexes of 

N-alkyl-N-alkyl(aryl)-N’-acylthioureas      37 

3.1 Introduction          39 

3.2 Experimental          41 

3.2.1 General remarks         41 

3.2.2 NMR spectroscopy        41 

3.2.3 Synthesis of platinum complexes       41 

3.3 Results and Discussion         43 

3.3.1 E,Z configurational isomerism in uncoordinated asymmetrically disubstituted  

N-alkyl-N-alkyl(aryl)-N’-acylthioureas, ligands; HL5, HL6, HL7 and HL8  43 

3.3.3 Platinum(II) chelates derived from HL4,5,6,7,8     44 

3.3.3.1 cis-[Pt(L4-(S,O)2]        44 

3.3.3.2 Complexes derived from asymmetrically disubstituted N-alkyl-N-alkyl(aryl) 

-N’-acylthioureas, ligands; HL5, HL6, HL7 and HL8    46 

3.3.3.3 Assignment of E,Z configurational isomer of platinum(II) chelates by  

multinuclear magnetic resonance spectroscopy    48 

3.3.3.4 Comment on isomer distributions      55 

3.4 Concluding remarks         55 

References          56 

 

Chapter 4 Coordination chemistry of asymmetrically disubstituted N-alkyl-N-alkyl(aryl) 

-N’-acylthioureas to platinum(II): Part 2: The electronic influence of the 

 para-substituent, X (X = O-CH3, H and NO2) of the N-(para-X-Ph) group on the 

 isomer distribution of E,Z configurational isomers of platinum(II) complexes of  

N-methyl-N-(para-X-Ph)-N’-acylthioureas      57 

4.1 Introduction          59 

http://scholar.sun.ac.za/



4.2 Experimental          61 

4.2.1 General remarks         61 

4.2.2 NMR spectroscopy        61 

4.2.3 Density Functional Theory calculations: Computational details   62 

4.2.4 Synthesis of platinum complexes       63 

4.3 Results and Discussion         65 

4.3.1 E,Z configurational isomerism in asymmetrically disubstituted N-methyl-N-(para-X-phenyl) 

-N’-acylthiourea ligands, HL1A, HL2A and HL3A     65 

4.3.2 Platinum(II) chelates derived from ligands HL1A, HL2A and HL3A   67 

4.3.3 Solvent and temperature effects on the isomer distributions of unbound ligands and 

their complexes         71 

4.3.4 Rationalisation of the configurational isomer distributions in terms of the electronic 

effects          75 

4.3.5 Rotational dynamics: 1H NMR study of restricted rotation around the  

(S)C-N(Me)(para-X-Ph) bond (X = O-CH3, H and NO2) in unbound ligands HL1A and 

 HL2A and the Pt complexes, cis-[Pt(L1A,2A,3A-S,O)2]     77 

4.3.5.1 Rotational energy interpretation of the ligands    84 

4.3.5.1 Rotational energy interpretation of the Pt(II) chelates    85 

4.3.6 A gas phase study of the barrier to rotation around the C-N bond by means of Density  

Functional Theory (DFT) linear transit calculation: A complementary theoretical method 

 to the solution NMR experimental method.      86 

4.4 Concluding remarks         90 

References          91 

 

Chapter 5 Coordination chemistry of asymmetrically disubstituted N-alkyl-N-alkyl(aryl) 

-N’-acylthioureas to platinum(II): Part 3: The influence of the alkyl substituent on the 

 isomer distribution of E,Z configurational isomers of platinum(II) complexes of 

 N-alkyl-N-aryl-N’-acylthioureas       92 

5.1 Introduction          93 

5.2 Experimental          94 

5.2.1 General remarks         94 

5.2.2 NMR spectroscopy        95 

5.2.3 Synthesis of platinum complexes       95 

5.2.4 Crystallography and structure refinement of cis-bis(N-pentyl-N-(4-methoxy-phenyl) 

-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1D-S,O)2]   98 

5.3 Results and Discussion         98 

5.3.1 E,Z configurational isomerism in asymmetrically disubstituted N-alkyl-N- 

(para-X-phenyl)-N’-acylthiourea ligands, HL1B,1C,1D, HL2B,2C,2D and HL3D   98 

http://scholar.sun.ac.za/



5.3.2 Platinum(II) chelates derived from asymmetrically disubstituted N-alkyl-N-(phenyl) 

-N’-acylthioureas, HL2A,2B,2C,2D       101 

5.3.3 Platinum(II) chelates derived from asymmetrically disubstituted 

N-alkyl-N-(4-methoxy-phenyl)-N’-acylthioureas, HL1A,1B,1C,1D and  

N-alkyl-N-(4-nitro-phenyl)-N’-acylthioureas, HL3A,3D     104 

5.3.4 Evidence that the barrier to rotation around the (S)C-N(alkyl)(para-X-Ph) bond is higher 

with bulkier N-alkyl substituent       107 

5.3.5 Molecular structure of cis-bis(N-pentyl-N-(4-methoxy-phenyl) 

-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(ZZ-L1D-S,O)2]  110 

5.4 Concluding remarks         114 

References          115 

 

Chapter 6 Concluding remarks and recommendations     116 

6.1 Concluding remarks         116 

6.2 Recommendations         118 

6.2.1 A direct NMR assignment of the ZZ, EZ and EE isomers of the Pt(II) chelates derived 

from N-alkyl-N-(para-X-phenyl)-N’-acylthioureas using 13C NMR experiment  118 

6.2.2 The influence of the solvent polarity on the configurational isomer   119 

6.2.3 Preliminary Reverse Phase High Performance Liquid chromatography (RP-HPLC) 

results          120 

References          120 

http://scholar.sun.ac.za/



 1

Chapter 1: General Introduction 

 

In this thesis we report on the study of the coordination chemistry of chelating asymmetrically disubstituted N-alkyl-

N-alkyl(aryl)-N’-acylthiourea ligands towards Pt(II) metal ion. The double bond character of the C-N bond of the 

(S)C-N(R)(R’) moiety of these ligands leads to E,Z configurational isomers. This isomerism is then relayed to the 

resulting platinum(II) chelates derived from these ligands. Variations of R and R’ presents a wide variety of these 

ligands and their respective Pt(II) complexes. We explored these variations and their implications on the nature of 

ligands that were synthesised and their E,Z isomer distributions and how the nature of the ligand impacts on the 

isomer distribution of the complexes resulting from them. To a large extent the ligands with the general motif 

described in the thesis have been shown to have high affinity for a variety of transition metals and this has proved 

valuable to the platinum group metal (PGM) industry. 

 

In this study we briefly describe the synthesis of asymmetric secondary amines, which are important to ligand design 

followed by the actual ligand synthesis and subsequently the platinum(II) chelates derived from these ligands. We 

then used multinuclear magnetic resonance spectroscopic techniques for structural elucidation of these complexes in 

solution, then moved on and explored factors that may influence the isomer distributions of the platinum complexes, 

also by means of multinuclear magnetic resonance techniques. Besides multinuclear magnetic resonance techniques 

as means of analysing these mixtures, other techniques such as Reverse Phase High Performance Liquid 

Chromatography (RP-HPLC) were considered, however with limited success. Since the RP-HPLC results were not 

as encouraging and compounded with time limitation, this line of analysis was not pursued any further. In chapter 4, 

we have also used Density Function Theory linear transit calculations as a complementary tool to the 1H NMR 

spectroscopy Rotational Dynamics study. 
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Chapter 1                                                                                                                                          General Introduction 
 

 2

1.1 General coordination chemistry of N-alkyl- and N,N-dialkyl-N’-acyl(aroyl)thioureas 
towards transition metals 

 

Ligands of the type N-alkyl- and N,N-dialkyl-N’-acyl(aroyl)thiourea, (H2L and HL) are easily synthesised in high 

yield in a two-step procedure1 and are known to display rich coordination chemistry towards a wide variety of 

transition metals.2,3 The N,N-dialkyl-N’-acyl(aroyl)thiourea ligands readily form stable complexes with transition 

metals coordinating in a chelating or bidentate fashion through the oxygen and sulphur atoms, in the process the 

ligands loose their acidic -(O)CNHC(S)- thioamidic protons. It may well be the dual hard donor oxygen/soft donor 

sulphur property of these ligands that allow them to coordinate to a wide variety of transition metals in different 

modes. According to Pearson’s Hard Soft Acids Bases (HASB) principle,4,5 a hard donor like oxygen would prefer to 

bind with hard metal ions like Co(III) and Ni(II), while a soft donor like sulphur would prefer to bind to soft metal 

ions like Pd(II) and Pt(II). Predominantly, the mode of coordination for the HL towards transition metals is the cis 

chelating fashion and several examples of cis-[Pt(L-S,O)2] have been fully characterised in the literature6-8 and only 

one fully characterised example in which the ligands are in a trans chelating fashion.9 Recently is was discovered 

that cis-[M(L-S,O)2] complexes with M = Pd and Pt undergo photochemically induced cis to trans isomerisation, 

however this has not lead to isolation of other trans complexes since the isomerisation is thermally reversible in the 

absence of light.10 In the case of N-alkyl-N’-acyl(aroyl)thioureas, H2L, even though they are also known to 

coordinate to transition metals2 they usually form complexes with Pt(II) and Pd(II) through their sulphur atom only 

(e.g. with [PtX4]
2-, X = Cl, Br and I, resulting in mixtures of cis- and trans-[Pt(HL-S)2X2]).

11-13 The hydrogen of the 

thiourea -(S)CNHR’ moiety is usually involved in intra-molecular hydrogen bonding with the carbonyl oxygen atom 

and therefore rendering it unavailable for coordination. Scheme 1 illustrates the general modes of coordination for 

the HL and H2L type of ligands towards Pt(II) metal ion. 

 

The coordination chemistry, in particular that of N,N-dialkyl-N’-acyl(aroyl)thioureas towards transition metals has 

received much attention in view of their practical industrial applications.14 In pH controlled conditions, effectively, 

these ligands would coordinate to platinum group metals (PGMs) in the presence of other interfering metals.15 In this 

regard these ligands have been found to be industrially useful in liquid-liquid extractions, pre-concentration and 

separation of PGMs.15-17 Unterreitmaier and Schuster18 have also modified these ligands with a fluorescent tag for 

fluorometric detection of heavy metals. Functional polymeric materials such as N-benzoylthiourea modified 

dendrimers, which are also of practical use for selective and recovery of heavy metal ions have recently been 

reported by Rether and Schuster.19 In the on-going contribution to this field we have reported an inter-PGM {Pt(II), 

Pd(II) and Rh(III)} separation using hydrophilic N-acylthioureas by means of reverse phase high performance liquid 

chromatography (RP-HPLC).6 Efficient and selective liquid membrane transport of Ag(I) in the presence of Co(I), 

Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) metal ions is another example that illustrate the versatility and practical uses 

of these types of ligands.20 
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Scheme 1 Coordination modes for HL and H2L towards Pt(II) used as an example in the figure but in general 

these coordination modes are applicable to other transition metals.14 We have N-aroylthioureas if 
R” = aromatic group, N-acylthioureas if R” = alkyl group. In (A) R is usually an alkyl group and in 
(B) one of the alkyl groups, R, has been substituted by a hydrogen atom. 

Apart from the applications of these mixed metal-ligand complexes in heavy metal coordination chemistry which has 

dominated this field, are the biological activity and medicinal properties of such complexes. Sacht et al.7 and Rodger 

et al.21 reported chiral and achiral mixed platinum(II)-ligand complexes, which are based on thioureas to have 

encouraging results as potential anti-tumour agents. Egan et al.22 have worked on mixed platinum(II)-ligand 

complexes that show anti-malaria properties also based on thioureas. Recently we have also reported on intercalation 

into DNA double helix by water-soluble planar mixed platinum(II)-ligand complexes.23 

 

With regard to the coordination chemistry of these deceptively simple ligands, it seems that there is a wide scope of 

applications that could be explored. To shift the focus from the readily applicable nature of these ligands and their 

respective metal complexes in this study, the less explored variation on the theme where the R and R’ groups of the 

(S)C-NRR’ moiety are not equivalent and none of them is a hydrogen atom, are investigated. We have limited the 

study to Pt(II) coordination chemistry of these ligands largely because the metal complexes can easily be monitored 

by means of 195Pt NMR spectroscopy. 

 

1.2 Asymmetrically disubstituted ligands 

 

From the 1H and 13C NMR spectra of the symmetrically disubstituted N,N-dialkyl-N’-acyl(aroyl)thioureas and their 

respective metal complexes, it can be noted that the N-alkyl groups resonate in different chemical shifts. The 

principal reason behind this observation is the partial double bond character of the C-N bond of the (S)C-NRR’ 

moiety that results in the N-alkyl groups being either coplanar with the sulphur atom or point away from the sulphur 

atom of the (S)C-NRR’ moiety. The chemical and magnetic differences of these positions invariably make them to 

resonate at different chemical shifts. 

 

Of interest is when the two N-alkyl groups are not the same since the restricted rotation around this C-N bond results 

in E,Z configurational isomerism of these ligands. We define an E (entgegen) isomer (entgegen from German 

meaning opposite) as the isomer that has its N-alkyl group of highest priority pointing away from the sulphur atom. 

The Z (zusammen) isomer (zusammen from German meaning together) as the isomer that has its N-alkyl group of 

highest priority on the same side as the sulphur atom. The priority in the case of alkyl groups is determined by the 

size of the alkyl group, the larger taking highest priority as exemplified in Figure 1.1 below. 
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Figure 1.1 E and Z configurational isomers of N-ethyl-N-methyl-N’-2,2-dimethylpropanoylthiourea that result 

from the partial double bond character of the highlighted C-N bond. Since the ethyl group is larger 
than the methyl group it takes priority. 

The E,Z isomerism in the unbound ligand is carried through to the resultant platinum(II) chelates, resulting in cis-

[Pt(EE-L-S,O)2], cis-[Pt(EZ-L-S,O)2] and cis-[Pt(ZZ-L-S,O)2] configurational isomers, all of which are easily 

observable from their 195Pt NMR spectra. Clearly, the cis-[Pt(EE-L-S,O)2] configurational isomer will have both of 

its ligands orientated in the E configuration and the cis-[Pt(ZZ-L-S,O)2] configurational isomers would have its 

ligands orientated in the Z configuration. The cis-[Pt(EZ-L-S,O)2] configurational isomer will then have one ligand 

orientated in the E configuration while the other ligand is orientated in the Z configuration (see scheme 1). 

 

The coordination chemistry of these ligands is similar to that of symmetrically substituted ones in that it is dominated 

by cis coordination mode of the ligands and not even trace evidence of the trans coordination mode has been 

reported to date. This is evident from the 195Pt NMR chemical shift range in which these complexes resonate. 

Normally, the trans complexes appear about 300 ppm upfield relative to the cis complexes as observed by Miller.24 

As an example the N-morpholino-N’-naphthoylthioureatoplatinum(II) complex reported by Grimmbacher25 had the 

cis isomer appearing at -2708 ppm while the trans isomer appeared at -3027 ppm. Previously, the unambiguous 

assignment of the Pt(II) configurational isomers derived from such ligands was achieved by means of triple 

resonance 1H/13C/195Pt correlation NMR spectroscopy.26 This technique is not readily available to us and it requires a 

special NMR probe with three channels with which the correlated nuclei can be tuned. With courtesy of Varian 

Applications Laboratory in Darmstadt, Germany we were able to employ this technique with remarkable success, as 

illustrated for ZZ, EZ and EE isomers of cis-bis(N-ethyl-N-methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II) 

(Figures 1.2, 1.3 and 1.4). 
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Figure 1.2 EE, EZ and ZZ configurational isomers of the cis-bis(N-ethyl-N-methyl-N’-2,2-

dimethylpropanoylthioureato)platinum(II) showing a favourable W 4J(195Pt-13C) coupling pathway 
in bold. 

 

 

Only the N-CH3 and N-CH2- carbons in the favourable W pathway couple to the 195Pt isotope as illustrated by 13C 

NMR spectrum measured at low magnetic field (Figure 1.3). 

 
Figure 1.3 Low magnetic field (50 MHz 13C frequency) sections of the 13C NMR spectrum of cis-bis(N-ethyl-

N-methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II) showing ZZ, EZ and EE isomers 
4J(195Pt-13C) couplings to N-CH2- carbons and N-CH3 carbons via a W coupling pathway to the 
195Pt isotope. 

 

 

Due to the insensitivity of the carbon nucleus in NMR spectroscopy and the expected broadness of the 195Pt-13C 

satellites due to chemical anisotropy broadening at high field, the platinum nucleus could not be directly correlated to 

these carbons even though they are in a favourable pathway. Instead, the highly sensitive protons, attached to these 
195Pt-13C coupled carbons were correlated to platinum, achieving a 1H-(13C)-195Pt NMR correlation spectrum. 
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Figure 1.4 

1
H/

13
C/

195
Pt correlation spectrum of cis-bis(N-ethyl-N-methyl-N’-2,2-

dimethylpropanoylthioureato)platinum(II) in CDCl3 at 298 K, results in the assignment of the 
195

Pt 
peaks at -2739 ppm, -2735 and -2731 ppm to the EE, ZE and ZZ isomers, respectively. 

In the 1H/13C/195Pt correlation NMR spectrum a double magnetization transfer experiment is performed in which the 

magnetization is relayed from the sensitive 1H to 13C to 195Pt and back to 13C and 1H. For the cis-bis(N-ethyl-N-

methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II) complex, the correlation of the (fortuitously overlapping) 

1H resonance at ca 3.7 ppm of the N-CH2- moiety with the 
195

Pt peaks at -2739 ppm and -2735 ppm confirm the 

assignment to EE and EZ isomers, respectively. The 
195

Pt peak at -2735 ppm is correlated to both the N-CH3 and the 

N-CH2- resonances, which can only be for the EZ isomer, while the correlation between the 
195

Pt peak at -2731 ppm 

and the N-CH3 resonance at 3.17 ppm, confirms the assignment the ZZ isomer. Earlier work by Koch et al.27 had 

observed this kind of isomerism and gave valuable suggestions of how these could be assigned unambiguously by 

NMR spectroscopy and indeed this preliminary work was confirmed by the 1H/13C/195Pt correlation NMR experiment 

(Figure 1.4). Even though these isomers could be assigned the outstanding question that remained unanswered was 

regarding the isomer distributions of the complexes obtained. In the two cases previously investigated the statistically 

predicted distribution for the complexes was never mirrored by the experimentally observed distributions. For 

example, in the case of N-ethyl-N-methyl-N’-2,2-dimethylpropanoylthiourea ligand, the Z to E isomer distribution 

was determined to be 75 % to 25 %. The statistically expected isomer distribution of the resultant complexes was 

determined to be 62.5 %(ZZ) to 25 %(EZ) to 12.5 %(EE). [A one-to-one ratio of Z and E isomers is expected to result 

in a one-to-two-to-one ratio of ZZ : EZ : EE complexes and the excess Z isomers should react and form exclusively 

ZZ complex, which would then contribute to the overall ZZ concentration]. However, the experimentally determined 

integral ratios from the 195Pt NMR spectrum showed a 40 %(ZZ) to 47 %(EZ) to 13 %(EE) isomer distribution. 

 

In this thesis we shall be looking at new means of assigning these configurational isomers with NMR spectroscopic 

means that are readily available to us and there after attempt to tackle the question of factors that influence these 

isomer distributions. At first we take a look at the work done in the literature in related compounds. The nature of the 

literature survey is by no means comprehensive but only highlights aspects that will be applicable in our study. 

 

1.3 Restricted C-N bond rotation in carbonyl, thiocarbonyl amides and related 
compounds: A literature survey 

 

In the 1970’s Stewart and Siddall III28 gave an extensive review on the NMR studies of amides which is still very 

useful with regard to topics like the magnetic anisotropy of amide and thioamide groups; criteria used for making 

signal assignment; E,Z isomerism in unsymmetrical N,N-disubstituted amides and hindered rotations in these 

compounds. For most of the discussion these authors held the traditional view of resonance I and resonance II 

(Scheme 2) being operative in explaining the restricted rotation about the C-N bond. However, the theoretical study 

by Wiberg and Rablen29 challenged this view and claimed that it does not describe satisfactorily the nature of 

electronic interactions that determine the rotational barrier in amides. These authors find it necessary to include 
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resonance III (Scheme 2) as well, which involves a charge transfer between carbon and nitrogen as opposed to the 

charge transfer from the nitrogen atom to the chalcogen. 

 

 
 
Scheme 2 Possible resonance structures that result from the partial double bond character of the (X)C-N bond 
 

 

Their theoretical data showed that thioamides have higher rotation barrier than amides which is a view supported by 

independent studies by other workers.30-32 The difference is determined mostly by the charge transfer from nitrogen 

to sulphur in thioamides opposed to oxygen in amides. Therefore the traditional view is sufficient to explain the high 

rotation barriers in thioamides33 and selenoamides.34 The flow of charge from nitrogen to the chalcogen, X is in the 

increasing order (X = O < S < Se)35,36 with electronegativity not being a driving force for electron delocalisation into 

the π frame work of R”C(X)-NRR’. 

 

It is this traditional view that we will use to explain the observed differences in C-N rotation barriers in the system of 

compounds that we shall be studying since our ligands resemble the thioamides. Looking at structure II in Scheme 2 

the rotation barrier can either be increased or decreased by putting suitable R and R’ groups depending on the desired 

effect. An electron-donating R and R’ group should in principle result in higher C-N bond rotation barrier while an 

electron-withdrawing group should have the opposite effect. The C-N bond rotation barrier is also influenced by 

changes on the R” substituent32,37 but this will not form part of the discussion in our system of ligands and 

complexes. The interest in the factors that affect this C-N bond rotation barrier may be crucial in explaining the E,Z 

configurational isomer distributions we get. To meet the aims of our study we have largely used experimental 

techniques (NMR spectroscopy) and theoretical techniques were employed to strengthen the experimental 

observations. In the next section we take a look at the important elements of these tools in connection to the 

requirements of the study. 

 

1.4 Methods of analysis 

1.4.1 Use of different multinuclear NMR spectroscopy in the study of E,Z configurational isomers 
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As a means of obtaining most reliable information about the populations of E,Z isomers it is sometimes essential to 

use different nuclei for verification. In some cases it has been found that observing one nucleus may not necessarily 

be sufficient to show all the isomers that are present in solution while the other(s) show the presence of all the 

isomers. The cause for this discrepancy may be due to insensitivity of one nucleus towards the fast C-N bond rotation 

compared to the other(s). It was also observed that sometimes the temperature in which the isomerism is investigated 

is well above coalescence temperature and not all the isomers are observable. Illustrations of these two phenomena 

are shown in Figure 1.2 and Figure 1.3 for the ZZ, EZ and EE isomers of cis-bis(N-methyl-N-(4-nitro-phenyl)-N’-2,2-

dimethylpropanoylthioureato)platinum(II). In Figure 1.5 the EZ isomer is partitioned such that when the ligand is 

orientated in the E configuration it is labelled E(EZ) and labelled Z(EZ) when the ligand is in the Z orientation. 

 

 

 
 
Figure 1.5 Aromatic 13C NMR section of the isomers in the figure measured in deuterated dichloromethane at 

298 K shows only two peaks for C6 and C7, and at 198 K each peak C6 and C7 is resolved into 
four peaks for the three isomers. The EZ isomer has two sets of C6 and C7 carbons. 

 

 

It is easy to be misled at room temperature and assume that the compound exists as one isomer since the 13C NMR 

peaks are very sharp and not hinting any dynamic process. This is caused by a very low C-N bond rotation barrier in 
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this compound. It is only at extremely low temperature, can it be seen that in actual fact the compound displays E,Z 

isomerism and therefore exists in three isomeric forms. 

 
 
Figure 1.6 A temperature array of the 195Pt NMR spectrum of the same compound as in Figure 1.1. At 303 K a 

very sharp peak is observed while the temperature is progressively lowered the peak broadens 
hinting the anticipated dynamics. At 213 K and below only two peaks are observed instead of the 
three revealed by the 13C NMR spectrum (and 1H NMR spectrum not shown here). 

 

 

In the case of Figure 1.3 the 195Pt nucleus used as the probe for this E,Z isomerism does not reveal all the expected 

isomers. It is therefore necessary to guard against unsuitable conditions or insufficient information that could be 

gathered from one nucleus as illustrated in the two figures. The conditions at which the E,Z isomerism is investigated 

must always be optimal and this can be achieved by using multinuclear NMR spectra of the sample. The data that are 

presented in the thesis are therefore such that whenever one nucleus does not give the anticipated information then 

the other(s) will be used for maximum information. In most of the cases investigated though, the different nuclei 

were complementary. 

 

1.4.2 Determination of C-N rotation barrier by means of coalescence temperature determination method 

 

Nuclear magnetic resonance spectroscopy has been used extensively in the literature for the study of amides, 

thioamides and related compounds. The main subjects of interest in these types of compounds are signal assignment 

and carbon-nitrogen rotation barrier determination. Pioneering work by Gutowsky and Holm,38 using a 

symmetrically disubstituted N,N-dimethylformamide, carried out the early work on rotation barrier studies in the 

1950’s. Many other examples followed and appear in the review by Stewart and Sindall.28 Most of the restricted 

rotation studies have been carried out in symmetrically N,N-disubstituted amides and only a few examples of 

unsymmetrical compounds. It is simply an extension of this technique in analysing E,Z configurational isomers that 
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result from the restricted rotation about the C-N bond. NMR is a suitable technique for studying inter-conversion of 

one isomer to the other if the process is sufficiently slow on the NMR time scale. 

The general principle of studying rotation barrier involves observing the N-alkyl groups (for example by 1H NMR) at 

a particular temperature where these N-alkyl groups are distinguishable from each other and resonate in different 

chemical environments. By gradually increasing the temperature these N-alkyl resonances are superimposed on each 

other at a particular temperature called coalescence temperature, Tc. Beyond Tc these signals often sharpen further as 

a single resonance. It is therefore at a coalesce temperature that thermodynamic parameters can be calculated. 

Accurate thermodynamic parameters such as the activation energy, Ea, enthalpy of activation, ΔH≠ and entropy of 

activation, ΔS≠ are usually obtained by means of total line shape analysis.39-41 This technique involves the use of a 

computer program for an accurate determination of the value of τ, the lifetime of N-alkyl protons in a particular site 

as a function of temperature. The rate constant for exchange of the N-alkyl protons between the two sites is defined 

as: 

k = 1/τ           [1.1] 

A plot of the logarithm of this rate constant vs 1/T, where T is the absolute temperature, is linear. The slope gives the 

activation energy, Ea, for rotation about the C-N bond of interest, from the Arrhenius equation: 

k = Aexp(-Ea/RT)          [1.2] 

where A is frequency factor from the intercept of the Arrhenius plot and R is the gas constant. 

The enthalpy of activation, ΔH≠ can be obtained from the relationship: 

ΔH≠ = Ea – RT          [1.3] 

Both the enthalpy of activation and the entropy of activation, ΔS≠, can in turn be obtained from the Erying equation: 

k = 1/τ = κ(kBT/h)exp(-ΔH≠/RT + ΔS≠/R)       [1.4] 

where κ = transmission coefficient assumed to be equal to 1, kB = is the Boltzmann constant and h = is the Plank 

constant.41 

From linear plots of k vs 1/T thermodynamic parameters ΔH≠ and ΔS≠ are easily obtained from the slope and 

intercept, respectively. 

 

Apart from these heavily involved calculations it is also possible to use approximation methods that agree very well 

with total line shape analysis method.42,43 After determining the Tc, particularly in the case of unequal isomeric 

populations we can calculate the Gibbs energy of activation using the equation developed by Shanin-Atidi and Bar-

Eli,43 which take into account the effect of unequal populations of isomer A and isomer B (chapter 4). 

 

ΔG≠
(A-B) = 4.57Tc[10.62 + log(X/2π(1 - ΔP)) + logTc/Δυ]     [1.5] 

ΔG≠
(B-A) = 4.57Tc[10.62 + log(X/2π(1 + ΔP)) + logTc/Δυ]     [1.6] 

Where ΔG≠
(A-B) and ΔG≠

(B-A) are the Gibbs free energy of activation for the conversion of A to B and from B to A, Δυ 

is the frequency separation in Hertz between the B and A peaks, ΔP = difference in populations of B and A isomers 

and PB – PA = ΔP = [(X2 - 2)/3]3/2 · 1/X       [1.7] 
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We shall be employing these coalescence temperature techniques for the determination of the rotational barriers in 

the system of ligands and complexes presented in this thesis. Other workers have employed this method successfully 

where the isomer distributions of the interchanging systems are unequal.44,45 

 

The difference in energy of the two isomers can be evaluated by the equation: 

ΔG0 = -RTlnK          [1.8] 

Where K = [isomer 1]/[isomer 2] < 1, the molar concentration of the isomers could be taken from the deconvolution 

analysis (peak integrals) of the 1H NMR spectra and T = temperature at which the peaks are well separated. 

 

1.5 Objectives and outline of this thesis 

 

The aim of the research presented in this thesis is to account for the factors that affect the isomer distributions 

obtained when asymmetrically disubstituted N,N-dialkyl-N’-acylthioureas coordinate to a Pt(II) metal centre. The 

nature of this research is of academic interest and has no immediate applications. The interest brought about this 

research is the observation that the isomer distributions of the unbound ligands do not convert statistically to 

predicted isomers in the resultant Pt(II) chelates.26 This observation suggested that there must be some underlying 

driving principle(s) that govern these Pt(II) chelate isomer distributions and we were set to find these out. This meant 

that a careful ligand design was necessary to evaluate a particular principle that may be operative in steering the 

isomer distribution in a particular way. 

 

In this regard we have synthesised and fully characterised a series of asymmetrically disubstituted N,N-dialkyl-N’-

acylthioureas in chapter 2. In the same chapter we briefly describe their general chemistry in solid-state as well as in 

solution. Not all the secondary amines with which most of the ligands were synthesised are commercially available 

therefore we also synthesised these in our laboratories. 

 

In chapter 3, using a selected few of these ligand-metal complexes, we illustrate how the 195Pt NMR spectra of the 

configurational isomers are implicitly assigned unambiguously with a combination of low magnetic field 13C NMR 

spectra and gHSQC (1H/13C) NMR experiments with equipment readily available to us. 

 

In chapter 4, making systematic electronic variations on ligands with the same structural motif, we study the impact 

these changes have on the C-N rotation barrier and the implications thereof on isomer distributions. Complementary 

to the solution NMR techniques with which the electronic effects have on the C-N bond restricted rotation Density 

Functional Theory calculations were employed to verify the experimental methods. Temperature and solvent changes 

are also discussed here as they also have an influence on the C-N restricted rotation. 

 

The influence the alkyl group variations have on the ligands with the same structural motif is discussed in chapter 5. 
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Chapter 6 is a summary of the findings discussed in preceding chapters and ends with some recommendations for 

future work on this topic. 
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Chapter 2: Synthesis, characterisation and general 

properties of asymmetrically disubstituted N-alkyl-N-

alkyl(aryl)-N’-acylthioureas  

 

Summary 

Asymmetrically disubstituted ligands of the type N,-alkyl-N-alkyl(aryl)-N’-acylthioureas R”C(O)NHC(S)NRR’ 

were synthesised by a well established synthetic route. Systematic variations on these ligands were achieved by 

altering the R and R’ groups of the (S)C-NRR’ moiety. The double bond character of the C-N bond of the (S)C-

NRR’ moiety resulted in E,Z configurational isomerism in these ligands. This was easily observable by the 

doubling of the N-alkyl resonances in both 1H and 13C NMR spectra of these ligands. In some cases the isomerism 

was only observable at low temperature due to fast exchange at room temperature. In all the cases the distributions 

of the E,Z isomers were never equal. In one set of ligands the Z isomer was noted to be the major isomer while in 

the other the E was the major isomer. The E isomers of several of these ligands were isolated in solid state. 
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2.1 Introduction 

 

To meet the aims of this thesis, in this chapter the synthesis of a wide range of asymmetrically disubstituted N,N-

dialkyl-N’-acylthioureas is described, with systematic variations on the R and R’ groups. This would hopefully allow 

an evaluation of factors that influence the isomer distributions of the E,Z configurational isomers of the ligands and 

the Pt(II) chelates derived from these ligands and that forms part of chapters 4 and 5. For the design of certain 

ligands with systematic variation it was also necessary to synthesise secondary amines, which were not commercially 

available. It is shown that for all the ligands the C-N bond restricted rotation result in E,Z configurational isomers 

and these isomers can easily be assigned. Some of the ligands synthesised here were suitable for multinuclear NMR 

assignments of the complexes resulting from them and these ligands and their complexes are discussed in chapter 3. 

Lastly, some properties of these ligands in solid state as well as in solution are discussed. 

 

2.2 Synthesis and characterisation of asymmetrically disubstituted N-alkyl-N-
alkyl(aryl)-N’-acylthioureas 

 

Ligands of the type N-alkyl-N-alkyl(aryl)-N’-acyl(aroyl)thioureas are routinely synthesised via a two step, one pot 

synthesis using the Douglass and Dains method as shown in the reaction scheme 1 below.1 

 

 
 
Reaction scheme 1 General synthesis of asymmetrically disubstituted N-alkyl-N-alkyl(aryl)-N’-acylthioureas. 

The desired product is obtained in pure form when a pure secondary amine is used in the 
second step of the reaction. The by-product H2L is formed when primary amine is present 
in the second step. 

Cl

O

KSCN+
N

O

C S +   KCl

N

O

C S N
H

N
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O S
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Desired product

O

N
H

N
H

S
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H2NR  +  HNRR'  + NRR'2

+  NRR'2 does not take part in the reaction

1.

2.

HL

H2L
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All the reactions for the synthesis of the ligands were carried out under inert atmosphere (nitrogen gas). The acetone 

used as a solvent in the reactions was distilled over molecular sieves under inert atmosphere and the potassium 

thiocyanate was dried in a vacuum oven at 100 ºC. The typical method of synthesis was as follows: To an amount of 

about 0.03 moles of potassium thiocyanate dissolved in 75 ml of acetone an equimolar amount of acid chloride (also 

dissolved in anhydrous acetone) was added drop-wise while stirring. The mixture was refluxed for 45 minutes then 

allowed to cool to room temperature. An equimolar amount of secondary amine (also dissolved in 75 ml of 

anhydrous acetone) was added to the stirring mixture. This was heated to reflux for a further 45 minutes then the 

reaction mixture was allowed to cool to room temperature. The contents were then poured into about 100 ml of water 

and allowed to stand in the fume hood until all the acetone evaporated. The water has a dual purpose of dissolving 

the inorganic potassium chloride and precipitating out the desired organic product, which is the ligand. The product 

was then collected by filtration and washed several times with water. The crude product was then dried under 

vacuum before it was recrystallised from a water acetone mixture. 

 

All the reagents used in the synthesis of N,N-diethyl-N’-benzoylthiourea, HL4, N-benzyl-N-methyl-N’-2,2-

dimethylpropanoylthiourea, HL5, N-phenethyl-N-methyl-N’-2,2-dimethylpropanoylthiourea, HL6, N-anthrocen-9-

ylmethyl-N-methyl-N’-2,2-dimethylpropanoylthiourea, HL7, N-(2-methylpyrrolidine)-N’-2,2-

dimethylpropanoylthiourea, HL8 were commercially available and were used as such. 

 

Before the synthesis of the rest of the ligands (HL1A,1B,1C,1D, HL2A,2B,2C,2D and HL3A,3D), secondary amines were 

synthesised by direct alkylation of primary aromatic amine (aniline, 4-methoxyaniline and 4-nitroaniline) by an 

appropriate alkyl halide (R-X, R = Me, X = I; and R = isopropyl, cyclohexyl and n-butyl, X = Br). Out of the 

available synthetic routes for the synthesis of secondary amines shown in Scheme 1,2 the synthetic route shown in 

bold was chosen. 
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Scheme 1 Various synthetic routes that could be employed for synthesis of secondary amines. The alkylation 

of primary amines by an appropriate alkyl halide (marked in bold) is the chosen synthetic route. 
 

 

The method of Srivastava et al.,3 which was very successful for the direct alkylation of aniline and 4-flouroaniline 

with alkyl bromides of varying chain lengths was employed in our systems. The typical method of synthesis is as 

follows: To a stirred mixture of 0.04 moles of aniline in 1 ml dimethyl sulfoxide (DMSO) and equimolar amount of 

potassium carbonate, an equimolar amount of alkyl halide was added and stirred continuously at 80 ºC overnight. 

The filtrate was poured in water and extracted into chloroform. The extracts were washed with 10% brine solution 

and dried over sodium sulphate (Na2SO4). After evaporating the solvent, the crude product is filtered through a 

column (silica gel 70-230 mesh, 60 Å) with dichloromethane as an eluent. This proved to be rather inefficient due to 

formation of tertiary amines while leaving residual starting amines as well. This was particularly so for the 

methylation of 4-nitroaniline. The progress of the reaction was readily followed by means of TLC using 2% 

Ninhydrin in ethanol to visualise the developed plates. Ninhydrin is particularly suitable for the identification of 

primary, secondary and tertiary amines as they have distinct pink, yellow and orange colours, respectively. Due to 

the difficulty of separating the three amines viz: the residual primary amines, the desired secondary amines and the 

dialkylated tertiary amines, the syntheses of the ligands were carried out using the mixture of amines. With the 

tertiary amines not taking part in the reaction the primary amines leads to formation of N-monoalkyl-N’-

acylthioureas (H2L) and the secondary amines yield to the desired products (HL). The two types of ligands are easy 

to separate by means of column chromatography (silica gel 70-230 mesh, 60 Å) with dichloromethane as the eluent 

(Reaction scheme 1). The yields of these ligands were not reported since the composition of the primary, secondary 

R
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and tertiary amines was not determined and moreover due to losses incurred during the purification steps. However, 

the isolated amounts were sufficient for full characterisation as well as the synthesis of their platinum(II) complexes. 

 

2.3 Experimental details 

2.3.1 General remarks 

 

All the elemental analyses of the ligands, HL, as well as the by-products, H2L, were performed using a Carlo Erba 

EA 1108 elemental analyser from the University of Cape Town and showed sufficient purity of the compounds. 

Scheme 2 below shows the pictorial representation of the series of synthesised and fully characterised ligands and 

by-products with their abbreviations that are used throughout the thesis. 

 

 
 
Scheme 2 Naming scheme of all the synthesised and fully characterised ligands and by-products 
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2.3.2 NMR spectroscopy 

 

Conventional 1H and 13C NMR spectra of relatively high concentrations (ca 80 mg.cm-3) of the ligands and H2L 

using 5 mm diameter tubes were obtained at 298 K in deuterated chloroform using a Varian Inova 400 spectrometer 

operating at 400 and 101 MHz for 1H and 13C, respectively. For the set of ligands HL1A,1B,1C,1D and HL2A,2B,2C,2D their 
1H and 13C NMR spectra were obtained at various temperatures. All samples were carefully filtered before any 

spectroscopic measurement was undertaken. 1H chemical shifts are quoted relative to the residual CHCl3 solvent 

resonance at 7.26 ppm and the 13C chemical shifts are quoted relative to the CDCl3 middle resonance of the triplet at 

77.0 ppm. In the case where CD2Cl2 is used as the solvent, 1H chemical shifts are quoted relative to the solvent triplet 

resonance at 5.31 ppm and the 13C chemical shifts are quoted relative solvent quintet resonance at 55.8 ppm. 

 

2.3.3 Synthetic methods and characterisation of compounds 

 

N-Methyl-N-(4-methoxy-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL1A 

The desired product was isolated from the by-product H2L
1 by means of column chromatography (silica gel, 

CH2Cl2). Crystals of HL1A were obtained after recrystallisation from water-acetone solvent mixture and analysed. 

Found C, 60.04; H, 7.71; N, 10.06; S, 11.02. C14H20N2SO2 required C, 59.97; H, 7.19; N, 9.99; S, 11.44%. H(400 

MHz; solvent CDCl3): 8.22 (1H, s, N-H(Z)), 7.95 (1H, s, N-H(E)), 7.23 (2H, d, C6H4(Z)), 7.14 (2H, d, C6H4(E)), 6.96 

(2H, d, C6H4(Z)), 6.89 (2H, d, C6H4(E)), 3.81 (3H, s, O-CH3(Z)), 3.80 (3H, s, O-CH3(E)), 3.68 (3H, s, N-CH3(E)), 

3.40 (3H, s, N-CH3(Z)), 1.29 (9H, s, 3CH3(Z)), 0.88 (9H, s, 3CH3(E)). C(101 MHz, solvent CDCl3): 182.26 

(C(S))(Z), 179.35 (C(S))(E), 174.68 (C(O))(Z), 173.26 (C(O))(E), 158.55 – 114.14 (C6H4)(E and Z), 55.48 (O-

CH3)(E) 55.34 (O-CH3)(Z), 45.41 (N-CH3) (E and Z), 39.74 (C(CH3))(Z), 39.58 (C(CH3))(E), 26.94 (C(CH3))(Z), 

26.64 (C(CH3))(E). 

 

N-(4-Methoxy-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, H2L
1 

By-product separated from the synthesis of HL1A by means of column chromatography (silica gel, CH2Cl2) and 

analysed. Found C, 58.49; H, 6.54; N, 10.38; S, 12.40. C13H18N2SO2 required C, 58.62; H, 6.81; N, 10.52; S, 12.04%. 

H(400 MHz; solvent CDCl3):12.29 (1H, s, N-H), 8.52 (1H, s, N-H), 7.50 (2H, d, C6H4), 6.90 (2H, d, C6H4), 3.79 

(3H, s, O-CH3), 1.29 (9H, s, C(CH3)3). C(101 MHz, solvent CDCl3): 179.21 (C(S)), 178.62 (C(O)), 158.07 – 113.92 

(C6H4), 55.32 (O-CH3), 39.86 (C(CH3)3), 26.86 (C(CH3)3). 

 

N-Isopropyl-N-(4-methoxy-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL1B 

HL1B was recrystallised in water-acetone solvent mixture and analysed. Found C, 62.02; H, 7.47; N, 9.14; S, 10.83. 

C16H24N2SO2 required C, 62.30; H, 7.84; N, 9.08; S, 10.40%. H(400 MHz; solvent CDCl3): 8.88 (1H, s, N-H(Z)), 

7.78 (1H, s, N-H(E)), 7.10 (2H, d, C6H4(Z)), 7.02 (2H, d, C6H4(E)), 6.95 (2H, d, C6H4(E)), 5.74 (1H, septet, N-

CH(CH3)2, 3.83 (3H, s, O-CH3(E)), 1.10 (6H, d, N-CH(CH3)2(E)), 0.82 (9H, s, C(CH3)(E)). C(101 MHz, solvent 
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CDCl3): 177.96 (C(S))(E), 174.20 (C(O))(E), 129.8 – 114.36 (C6H4)(E), 55.52 (O-CH3)(E), 52.02 (N-CH(CH3)2)(E), 

39.87 (C(CH3))(E), 26.52 (C(CH3))(E), 20.26 (N-CH(CH3)2)(E). 

 

N-Cyclohexyl-N-(4-methoxy-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL1C 

Crystals of HL1C were obtained recrystallisation from water-acetone solvent mixture and analysed. Found C, 65.34; 

H, 10.55; N, 8.18; S, 11.56. C19H28N2SO2 required C, 65.48; H, 8.10; N, 8.04; S, 9.20%. H(400 MHz; solvent 

CDCl3): 7.87 (1H, s, N-H(Z)), 7.78 (1H, s, N-H(E)), 7.04 (2H, d, C6H4(Z)), 7.01 (2H, d, C6H4(E)), 6.95 (2H, d, 

C6H4(E)), 5.30 (1H, tt, N-CH(CH2)2(CH2)2CH2, 3.83 (3H, s, O-CH3(E)), 1.82 (4H, dd, N-CH(CH2)2(CH2)2CH2(E)), 

1.38 (4H, m, N-CH(CH2)2(CH2)2CH2(E)), 0.98 (2H, m, N-CH(CH2)2(CH2)2CH2(E)), 0.82 (9H, s, C(CH3)3. C(101 

MHz, solvent CDCl3): 177.72 (C(S))(E), 174.19 (C(O))(E), 159.43 – 114.34 (C6H4)(E), 59.69 N-

CH(CH2)2(CH2)2CH2(E), 55.52 (O-CH3)(E), 39.90 (C(CH3))(E), 30.50 (N-CH(CH2)2(CH2)2CH2)(E) 26.53 

(C(CH3))(E), 25.26 (N-CH(CH2)2(CH2)2CH2)(E), 24.96 (N-CH(CH2)2(CH2)2CH2)(E). 

 

N-Pentyl-N-(4-methoxy-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL1D 

Crystals of HL1D were obtained recrystallisation from water-acetone solvent mixture and analysed. Found C, 64.78; 

H, 9.12; N, 8.44; S, 9.27. C18H28N2SO2 required C, 64.25; H, 8.38; N, 8.33; S, 9.53%. H(400 MHz; solvent CDCl3): 

8.10 (1H, s, N-H(Z)), 7.86 (1H, s, N-H(E)), 7.20 (2H, d, C6H4(Z)), 7.10 (2H, d, C6H4(E)), 6.94 (2H, d, C6H4(Z)), 6.90 

(2H, d, C6H4(E)), 4.10 (2H, m, N-CH2CH2CH2CH2CH3)(E), 3.80 (3H, s, O-CH3(E)), 1.65 (2H, m, N-

CH2CH2CH2CH2CH3)(E), 1.23 (4H, m, N-CH2CH2CH2CH2CH3)(E), 0.85 (9H, s, C(CH3)3, 0.82 (3H, t, N-

CH2CH2CH2CH2CH3)(E), C(101 MHz, solvent CDCl3): 178.72 (C(S))(E), 173.30 (C(O))(E), 158.57 – 114.14 

(C6H4)(E), 56.57 N-CH2CH2CH2CH2CH3)(E), 55.48 (O-CH3) 39.58 (C(CH3))(E), 28.56 (N-

CH2CH2CH2CH2CH3)(E), 26.61 (C(CH3))(E), 25.55 (N-CH2CH2CH2CH2CH3)(E), 22.35 (N-

CH2CH2CH2CH2CH3)(E), 14.07 (N-CH2CH2CH2CH2CH3)(E). 

 

N-Methyl-N-phenyl-N’-(2,2-dimethylpropanoyl)thiourea, HL2A 

The desired product was isolated from the by-product H2L
2 by means of column chromatography (silica gel, 

CH2Cl2). Crystals of HL2A were obtained after recrystallisation from water-acetone solvent mixture and analysed. 

Found C, 62.81; H, 7.62; N, 11.33; S, 12.29. C13H18N2SO required C, 62.37; H, 7.25; N, 11.19; S, 12.81%. H(400 

MHz; solvent CDCl3): 8.27 (1H, s, N-H)(Z), 7.96 (1H, s, N-H)(E), 7.29 (1H, t, C6H5)(E), 7.36 (2H, t, C6H5)(E), 7.22 

(2H, d, C6H5)(E), 3.72 (3H, s, N-CH3)(E), 3.43 (3H, s, N-CH3)(Z), 1.30 (9H, s, C(CH3)3)(Z), 0.85 (9H, s, 

C(CH3)3)(E). C(101 MHz, solvent CDCl3): 182.07 (C(S))(Z), 179.68 (C(S))(E), 174.72 (C(O))(Z), 173.06 

(C(O))(E), 146.09 – 127.22 (C6H4)(E and Z), 45.47 (N-CH3)(E), 45.20 (N-CH3)(Z), 39.75 (C(CH3)3)(Z), 39.44 

(C(CH3)3)(E), 26.94 (C(CH3)3)(Z), 26.53 (C(CH3)3)(E). 

 

N-Phenyl-N’-(2,2-dimethylpropanoyl)thiourea, H2L
2 

By-product separated from the synthesis of HL2A by means of column chromatography (silica gel, CH2Cl2) and 

analysed. Found C, 61.10; H, 7.02; N, 11.92; S, 12.94. C12H16N2SO required C, 60.98; H, 6.82; N, 11.85; S, 13.57%. 
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H(400 MHz; solvent CDCl3):12.49 (1H, s, N-H), 8.54 (1H, s, N-H), 7.66 (2H, d, C6H5), 7.39 (2H, tt, C6H5), 7.26 

(1H, tt, C6H5) 1.31 (9H, s, C(CH3)3). C(101 MHz, solvent CDCl3): 179.28 (C(S)), 178.38 (C(O)), 137.51 – 123.89 

(C6H5), 39.31 (C(CH3)3), 26.88 (C(CH3)3). 

 

N-isoPropyl-N-phenyl-N’-(2,2-dimethylpropanoyl)thiourea, HL2B 

HL2B was recrystallised in water-acetone solvent mixture and analysed. Found C, 64.74; H, 8.57; N, 10.17; S, 11.10. 

C15H22N2SO required C, 64.71; H, 7.96; N, 10.06; S, 11.52%. H(400 MHz; solvent CDCl3): 7.89 (1H, s, N-H(Z)), 

7.68 (1H, s, N-H(E)), 7.45 (3H, m, C6H4(E and Z)), 7.12 (2H, d, C6H4(E)), 7.01 (2H, d, C6H4(Z)), 5.74 (1H, septet, 

N-CH(CH3)2, 1.12 (6H, d, N-CH(CH3)2(E)), 0.82 (9H, s, C(CH3)(Z)), 0.77 (9H, s, C(CH3)(E)). C(101 MHz, solvent 

CDCl3): 178.02 (C(S))(E), 174.12 (C(O))(E), 137.31 – 128.67 (C6H4)(E), 52.42 (N-CH(CH3)2)(E), 39.73 

(C(CH3))(E), 26.39 (C(CH3))(E), 20.30 (N-CH(CH3)2)(E). 

 

N-cycloHexyl-N-phenyl-N’-(2,2-dimethylpropanoyl)thiourea, HL2C 

HL2C was recrystallised in water-acetone solvent mixture and analysed. Found C, 68.35; H, 8.76; N, 8.91; S, 9.55. 

C18H26N2SO required C, 67.88; H, 8.23; N, 8.80; S, 10.07%. H(400 MHz; solvent CDCl3): 7.88 (1H, s, N-H(Z)), 

7.66 (1H, s, N-H(E)), 7.45 (3H, m, C6H4(E and Z)), 7.10 (2H, dd, C6H4(E)), 5.30 (1H, tt, N-CH(CH2)2(CH2)2CH2, 

1.84 (4H, dd, N-CH(CH2)2(CH2)2CH2(E)), 1.38 (4H, m, N-CH(CH2)2(CH2)2CH2(E)), 0.98 (2H, m, N-

CH(CH2)2(CH2)2CH2(E)), 0.77 (9H, s, C(CH3)3. C(101 MHz, solvent CDCl3): 177.74 (C(S))(E), 174.11 (C(O))(E), 

137.96 – 128.61 (C6H4)(E), 60.04 N-CH(CH2)2(CH2)2CH2(E), 39.77 (C(CH3))(E), 30.52 (N-CH(CH2)2(CH2)2CH2)(E) 

26.40 (C(CH3))(E), 25.28 (N-CH(CH2)2(CH2)2CH2)(E), 24.92 (N-CH(CH2)2(CH2)2CH2)(E). 

 

N-Pentyl-N-phenyl-N’-(2,2-dimethylpropanoyl)thiourea, HL2D 

HL2D was recrystallised in water-acetone solvent mixture and analysed. Found C, 66.37; H, 8.57; N, 9.07; S, 9.96. 

C17H26N2SO required C, 66.62; H, 8.53; N, 9.14; S, 10.42%. H(400 MHz; solvent CDCl3): 7.83 (1H, s, N-H(E)), 

7.39 (2H, t, C6H4(E)), 7.31 (1H, tt, C6H4(E)), 7.19 (2H, d, C6H4(E)), 4.14 (2H, m, N-CH2CH2CH2CH2CH3)(E), 1.67 

(2H, m, N-CH2CH2CH2CH2CH3)(E), 1.25 (4H, m, N-CH2CH2CH2CH2CH3)(E), 0.83 (9H, s, C(CH3)3, 0.81 (3H, t, N-

CH2CH2CH2CH2CH3)(E), C(101 MHz, solvent CDCl3): 179.01 (C(S))(E), 173.10 (C(O))(E), 142.57 – 126.19 

(C6H4)(E), 56.81 N-CH2CH2CH2CH2CH3)(E), 39.46 (C(CH3))(E), 28.57 (N-CH2CH2CH2CH2CH3)(E), 26.51 

(C(CH3))(E), 25.56 (N-CH2CH2CH2CH2CH3)(E), 22.34 (N-CH2CH2CH2CH2CH3)(E), 14.08 (N-

CH2CH2CH2CH2CH3)(E). 

 

N-Methyl-N-(4-nitro-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL3A 

The desired product was isolated from the by-product H2L
3 by means of column chromatography (silica gel, 

CH2Cl2). Found C, 53.13; H, 6.24; N, 14.24; S, 9.57. C13H17N3SO3 required C, 52.86; H, 5.80; N, 14.23; S, 10.86%. 

H(400 MHz; solvent CD2Cl2): 8.40 (1H, s, N-H(E)), 8.18 (2H, d, C6H4(E)), 7.40 (2H, d, C6H4(E)), 3.70 (3H, s, N-

CH3(E)), 0.80 (9H, s, 3CH3(E)). C(101 MHz, solvent CD2Cl2): 180.78 (C(S))(E), 172.44 (C(O))(E), 150.45 – 124.02 

(C6H4)(E), 46.09 (N-CH3) (E), 39.07 (C(CH3))(E), 26.09 (C(CH3))(E). 
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N-(4-Nitro-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, H2L
3 

By-product separated from the synthesis of HL3A by means of column chromatography (silica gel, CH2Cl2) and 

analysed. Found C, 51.41; H, 5.69; N, 14.90; S, 10.73. C12H15N3SO3 required C, 51.23; H, 5.37; N, 14.94; S, 11.40%. 

H(400 MHz; solvent CDCl3):12.98 (1H, s, N-H), 8.60 (1H, s, N-H), 8.24 (2H, d, C6H4), 7.99 (2H, d, C6H4), 1.32 

(9H, s, C(CH3)3). C(101 MHz, solvent CDCl3): 179.76 (C(S)), 178.26 (C(O)), 145.02 – 122.95 (C6H4), 40.08 

(C(CH3)3), 26.85 (C(CH3)3). 

 

N-Pentyl-N-(4-nitro-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL3D 

Found C, 58.16; H, 7.95; N, 11.92; S, 10.12. C17H25N3SO3 required C, 58.09; H, 7.17; N, 11.96; S, 9.12%. H(400 

MHz; solvent CDCl3): 8.20 (2H, d, C6H4(E)), 7.93 (1H, s, N-H(E)), 7.39 (2H, d, C6H4(E)), 4.17 (2H, m, N-

CH2CH2CH2CH2CH3)(E), 1.71 (2H, m, N-CH2CH2CH2CH2CH3)(E), 1.29 (4H, m, N-CH2CH2CH2CH2CH3)(E), 0.93 

(9H, s, C(CH3)3, 0.85 (3H, t, N-CH2CH2CH2CH2CH3)(E), C(101 MHz, solvent CDCl3): 181.28 (C(S))(E), 172.52 

(C(O))(E), 149.75 – 124.07 (C6H4)(E), 57.74 N-CH2CH2CH2CH2CH3)(E), 39.34 (C(CH3))(E), 28.70 (N-

CH2CH2CH2CH2CH3)(E), 26.62 (C(CH3))(E), 26.11 (N-CH2CH2CH2CH2CH3)(E), 22.16 (N-

CH2CH2CH2CH2CH3)(E), 13.84 (N-CH2CH2CH2CH2CH3)(E). 

 

N,N-Diethyl-N’-benzoylthiourea {ca 50% 13C enriched at C(S)}, HL4 

A yield of 73% was collected and analysed. Found C, 60.91; H, 6.81; N, 11.79; S, 13.34. C12H16N2SO required C, 

60.98; H, 6.82; N, 11.85; S, 13.57%. H(400 MHz; solvent CDCl3): 8.52 (1H, s, N-H), 7.81 (2H, d, C6H5), 7.54 (1H, 

tt, C6H5), 7.34 (2H, tt, C6H5), 3.99 (2H, s(br), N-CH2CH3), 3.58 (2H, s(br), N-CH2CH3), 1.34 (3H, t, N-CH2CH3), 

1.27 (3H, t, N-CH2CH3). C(101 MHz, solvent CDCl3): 179.27 (C(S)), 163.76 (C(O)), 132.74-127.77 (C6H5), 47.81 

(N-CH2CH3), 47.57 (N-CH2CH3), 13.15 (N-CH2CH3), 11.39 (N-CH2CH3). 

 

N-Benzyl-N-methyl-N’-2,2-dimethylpropanoylthiourea, HL5 

A yield of 74% was collected and analysed. Found C, 65.24; H, 8.38; N, 10.23; S, 11.17. C14H20N2SO required C, 

63.60; H, 7.62; N, 10.60; S, 12.13%. H(400 MHz; solvent CDCl3): 7.98 (1H, s, N-H(Z)), 7.94 (1H, s, N-H(E)), 7.39-

7.16 (5H, m, C6H5(E and Z)), 5.21 (2H, s, N-CH2(E)), 4.62 (2H, s, N-CH2(Z)), 3.23 (3H, s, N-CH3(Z)), 3.03 (3H, s, 

N-CH3(E)), 1.27 (9H, s, C(CH3)3(E and Z)). C(101 MHz, solvent CDCl3): 181.64 (C(S))(E), 180.76 (C(S)(Z), 

174.80 (C(CO))(Z), 174.48(C(CO))(E), 135.21-127.68 (C6H5)(E and Z), 59.57 (N-CH2(E)), 59.03 (N-CH2(Z)), 42.00 

(N-CH3(Z)),40.07 (N-CH3(E)), 39.68 (C(CH3)3(E and Z)), 27.05 (C(CH3)3(E and Z)). 

 

N-Phenethyl-N-methyl-N’-2,2-dimethylpropanoylthiourea, HL6 

A yield of 88% was collected and analysed. Found C, 64.23; H, 7.65; N, 10.74; S, 11.75. C15H22N2SO required C, 

64.71; H, 7.96; N, 10.06; S, 11.52%. H(400 MHz; solvent CDCl3): 7.85 (1H, s, N-H(Z)), 7.52 (1H, s, N-H(E)), 7.29-

7.13 (5H, m, C6H5(E and Z)), 4.06 (2H, t, N-CH2(E)), 3.65 (2H, t, N-CH2(Z)), 3.43 (3H, s, N-CH3(Z)), 3.09 (2H, t, 

N-CH2(E)), 3.08 (3H, s, N-CH3(E)), 2.93 (2H, t, N-CH2(E)), 1.26 (9H, s, C(CH3)3(E )), 1.19 (9H, s, C(CH3)3(Z)). 

C(101 MHz, solvent CDCl3): 180.49 (C(S))(Z), 180.17 (C(S)(E), 174.39 (C(CO))(E and Z), 138.15-126.49 (C6H5)(E 
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and Z), 57.96 (N-CH2CH2Ph(E)), 56.99 (N-CH2CH2Ph(Z)), 42.07 (N-CH3)(Z), 41.07 (N-CH3(E)), 39.60 

(C(CH3)3(E)), 39.45 (C(CH3)3(Z)), 34.10 (N-CH2CH2Ph(E)), 31.88 (N-CH2CH2Ph(Z)), 27.03 (C(CH3)3(E)), 26.94 

(C(CH3)3(Z)). 

 

N-Anthrocen-9-ylmethyl-N-methyl-N’-2,2-dimethylpropanoylthiourea, HL7 

A yield of 95% was collected and analysed. Found C, 72.34; H, 6.71; N, 7.48; S, 7.85. C22H24N2SO required C, 

72.49; H, 6.64; N, 7.69; S, 8.80%. H(400 MHz; solvent CDCl3): 8.81 (1H, s, N-H(E)), 8.40 (1H, s, N-H(Z)), 8.35-

7.35 (9H, (C14H9)(E and Z)) 6.09 (2H, s, N-CH2- (E)), 5.64 (2H, s, N-CH2- (Z)), 2.98 (3H, s, N-CH3 (Z)), 2.65 (3H, s, 

N-CH3 (E)), 1.38 (9H, s, C(CH3)3 (Z)), 1.25 (9H, s, C(CH3)3 (E)). C(101 MHz, solvent CDCl3): 181.00 (C(S))(E), 

180.85, (C(S))(Z), 175.55 (C(O))(Z), 174.52 (C(O))(E), 134.55-123.02 (C14H9)(E and Z), 51.98 (N-CH2-)(E), 50.55 

(N-CH2-)(Z), 40.02 (N-CH3)(Z), 39.97 (C(CH3)3)(E) and Z), 38.51 (N-CH3)(E), 27.22 (C(CH3)3) (Z), 27.20 

(C(CH3)3) (E). 

 

N-(2-Methylpyrrolidine)-N’-2,2-dimethylpropanoylthiourea, HL8 

A yield of 95% was collected and analysed. Found C, 58.45; H, 9.14; N, 12.30; S, 13.85. C11H20N2SO required C, 

57.86; H, 8.83; N, 12.27; S, 14.04%. H(400 MHz; solvent CDCl3): 7.82 (1H, s, N-H(E)), 4.61 (1H, ses, N-

CH(CH3)CH2-)(E)), 4.21 (1H, ses, N-CH(CH3)CH2-)(Z)), 3.83 (2H, m, N-CH2CH2-)(E), 3.49 (2H, m, N-CH2CH2-

)(Z), 2.16 (2H, m, N-CH2CH2-)(E), 1.90 (2H, m, N-CH2CH2-)(Z), 1.76 (2H, m, CH(CH3)CH2-)(E)), 1.62 (2H, m, 

CH(CH3)CH2-)(Z)), 1.34 (3H, d, CH(CH3)CH2-)(Z)), 1.13 (3H, d, CH(CH3)CH2-)(E)), 1.18 (9H, s, C(CH3)3)(Z and 

E). C(101 MHz, solvent CDCl3): 176.79 (C(S))(Z), 176.64, (C(S))(E), 174.72 (C(O))(Z), 174.60 (C(O))(E), 60.12 

(N-CH(CH3)CH2-)(E), 58.71 (N-CH(CH3)CH2-)(Z), 54.74 (N-CH2CH2-)(Z), 52.45 (N-CH2CH2-)(E), 39.42 

(C(CH3)3)(E and Z), 33.60 (N-CH(CH3)CH2-)(Z), 32.17 (N-CH(CH3)CH2-)(E), 26.87 (C(CH3)3)(E and Z), 24.11 (N-

CH2CH2-)(E), 21.98 (N-CH2CH2-)(Z), 19.02 (N-CH(CH3)CH2-)(Z), 17.91 (N-CH(CH3)CH2-)(Z). 

 

2.3.4 Crystallography and structure refinement 

 

Suitable crystals of ligands HL1A,1C,1D, HL2A, H2L and HL7 were obtained by recrystallisation of these compounds in 

a water/acetone mixed solvent system. Methyl-(4-nitro-phenyl)-amine is a decomposition fragment that crystallised 

in a recrystalisation vessel of HL3A. The data for crystal and molecular structure determination of HL2A were 

collected on a Nonius Kappa CCD diffractometer using 1.5 kW graphite-monochromater Mo-Kα radiation (λ = 

0.7107 Å) at 173(2) K. For all the other compounds the data were collected on a Brucker SMART Apex diffractomer 

also using a graphite-monochromater Mo-Kα radiation (λ = 0.7107 Å) at 100(2) K. The structure was solved using 

SHELX-97 and refined using SHELXL-974 with the aid of the interface program X-SEED.5 All non-hydrogen atoms 

were modelled anisotropically. Hydrogen atoms were placed in geometrically calculated positions, with C-H = 0.99 

(for -CH2-), 0.98 (for -CH3), or 0.95 Å (for phenyl). Hydrogen atoms were placed in geometrically calculated 

positions and the N-H hydrogen in HL1A was obtained from difference Fourier maps. The relevant crystallographic 

data is shown in Tables 2.1 and 2.2 and selected bond lengths are shown in Table 2.3. 
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2.4 Results and Discussion 

2.4.1 Molecular structures of isolated unsymmetrical N-alkyl-N-aryl-N’-acylthioureas. 

 

All the ligands shown here were crystallised from water/acetone solvent system. In an attempt to crystallise N-

methyl-N-(4-nitro-phenyl)-N’-2,2-dimethylpropanoylthiourea, HL3A in the same manner only a fragment of the 

starting methyl-(4-nitro-phenyl)-amine was isolated. This was as a result of decomposition of the HL3A ligand in 

solution. The 1H and 13C NMR spectra of a fresh solution of HL3A showed no presence of the isolated compound, 

however, after a few days peaks due to this amine appeared and increased in intensity at the expense of the peaks of 

HL3A. The crystallographic data of all the isolated compounds is shown in Tables 2.1 and 2.2 and Figures 2.1, 2.2 

and 2.3 show the molecular structures of the ligands, showing their atomic numbering system. Relevant bond lengths 

and angles are shown in Table 2.3. 

 

Table 2.1 Crystallographic data of the isolated ligands N-alkyl-N-aryl-N’-acylthioureas, HL1A, HL1C and 
HL1D. 

 
Compound HL1A HL1C HL1D 
Molecular formula C14H20N2O2S1 C19H27N2O2S1 C18H28N2O2S1 
Formula weight/g.mol-1 280.38 347.49 336.48 
Crystal system Monoclinic Monoclinic Monoclinic 
Space group C2/c P2(1)/c C2/c 
a/Å 26.146(4) 12.2859(12) 29.296(3) 
b/Å 7.5750(13) 9.3039(9) 9.6257(10) 
c/Å 17.819(3) 16.4290(15) 28.334(3) 
α/° 90.00 90.00 90.00 
β/° 123.495(3) 99.137(2) 102.784(2) 
γ/° 90.000 90.00 90.00 
V/Å3 2943.1(9) 1854.1(3) 7792.2(1) 
Z 8 4 16 
Calculated density/g.cm-3 1.266 1.245 1.147 
μ/mm-1 0.22 0.188 0.177 
F(000) 1200 748 2912 
θ Range scanned/° 1.87 – 28.31 1.68 – 28.28 1.81 – 28.28 
Reflections collected/unique 3404/2457 4292/3204 9010/5941 
Goodness of fit on F2 0.962 1.035 1.019 
Final R indices [I > 2σI] R1 = 0.0644 R1 = 0.0665 R1 = 0.0659 
R indices [all data] wR2 = 0.0941 wR2 = 0.0944 wR2 = 0.1053, 
Largest difference peak and 
hole/e Å-3 

0.40/-0.41 0.430/-0.309 0.397/-0.283 
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Table 2.2 Crystallographic data for the isolated ligands HL2A and HL7. The by-product, H2L
2, resulting from 

the synthesis of HL2A is also listed together with the decomposition fragment (methyl-(4-nitro-
phenyl)-amine) resulting from recrystallisation of HL3A. 

 

Compound HL2A H2L
2 HL7 Methyl-(4-nitro-

phenyl)-amine 
Molecular formula C13H18N2S1O1 C12H16N2O1S1 C22H24N2O1S1 C7H8N2O2 
Formula weight/g.mol-1 250.35 236.33 364.49 152.15 
Crystal system Orthorhombic Monoclinic Triclinic Monoclinic 
Space group P2(1)2(1)2(1) P2(1)/c P-1 P2(1)/n 
a/Å 16.4683(1) 10.8166(14) 12.3683(9) 9.9277(10) 
b/Å 9.5803(2) 6.3696(8) 17.1448(12) 6.8418(7) 
c/Å 17.4589(2) 18.397(2) 18.4128(13) 10.7476(11) 
α/° 90.00 90.00 94.124(1) 90.00 
β/° 90.00 104.375(2) 90.907(1) 103.732(2) 
γ/° 90.00 90.00 103.730(1) 90.00 
V/Å3 2754.51(7) 1227.8(3) 3708.9(5) 709.15(13) 
Z 9 4 8 4 
Calculated 
density/g.cm-3 

1.358 1.278 1.281 1.425 

μ/mm-1 0.25 0.245 0.184 0.107 
F(000) 1206 504 1552 320 
θ Range scanned/° 1.70 - 27.10 1.94 – 28.24 1.11 – 28.28 2.51 – 28.21 
Reflections 
collected/unique 

6058/5293 2837/2306 17338/10335 1664/1451 

Goodness of fit on F2 1.619 0.963 0.932 1.068 
Final R indices [I > 
2σI] 

R1 = 0.0627  R1 = 0.0455 R1 = 0.0561 R1 = 0.0472 

R indices [all data] wR2 = 0.0772 wR2 = 0.0584 wR2 = 0.0994 wR2 = 0.0547 
Largest difference peak 
and hole/e Å-3 

1.304/-0.214 0.429/-0.241 0.636/-0.625 0.429/-0.265 

 

 
 
Figure 2.1 The molecular structure of HL1A and HL1C with atomic numbering scheme. Displacement 

ellipsoids are drawn at the 50% probability level. The hydrogen atoms have been placed in 
geometrically calculated positions. 
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Figure 2.2 The molecular structure of HL1D and HL7 with atomic numbering scheme. Displacement ellipsoids 

are drawn at the 50% probability level. The hydrogen atoms have been placed in geometrically 
calculated positions. 

 

 

 
 
Figure 2.3 The molecular structure of HL2A in the E configuration and its by-product H2L

2 in the Z 
configuration, with atomic numbering scheme. Displacement ellipsoids are drawn at the 50% 
probability level. The hydrogen atoms have been placed in geometrically calculated positions 

 

 

All the ligands isolated have the E stereochemistry in that the large N-alkyl (for HL7) and N-aryl (HL1A,1C,1D and 

HL2A) are opposite the sulphur atom. The exception to this observation is H2L
2, which is slightly different from the 

other ligands and the reasons for this to be so will be clarified shortly. In the crystal structure this ligand adopts a 

conformation in which the carbonyl group and thiocarbonyl group do not lie in the same plane, but are approximately 
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opposite in direction. The hydrogen bonding between the carbonyl oxygen and the N-H hydrogen in the mono alkyl 

substituted ligand H2L
2 further enhances this conformation (see Reaction scheme 1). 

 

All the bonds in Table 3 are within the expected range and are similar to other thioureas.6-8 Of interest is when we 

compare the N2-C6 bond lengths it is noticed that this bond is the shortest of the C-N bonds and it is also 

significantly shorter than a carbon-nitrogen single bond of 1.472(5) Å (source: CRC Handbook of Chemistry and 

Physics 64th Ed, 1983, Lide D. R. Ed in Chief, CRC Press Inc. Boca Raton Florida 1983). The partial double bond 

character of this particular C-N bond in principle results in E,Z configurational isomers. In solid state however only 

the E isomers were isolated while in solution both the E and Z isomers exist in varying distributions depending on the 

ligand. In this chapter it is shown that both isomers exist in solution with the Z or the E being favoured depending on 

the type of ligand in question and that these isomers can systematically assigned. 

 

Table 2.3 Comparison of selected bond lengths (Å) for HL1A,1C,1D, HL2A, HL7 and H2L
2. 

 
Bond length HL1A HL1C HL1D HL2A HL7 H2L

2 

S1-C6 1.675(3) 1.674(3) 1.678(2) 1.661(3) 1.673(2) 1.6736(17) 

O1-C5 1.209(3) 1.210(3) 1.213(3) 1.229(4) 1.219(2) 1.219(2) 

N2-C6 1.343(3) 1.338(3) 1.332(3) 1.340(4) 1.329(3) 1.330(2) 

N1-C6 1.396(3) 1.407(3) 1.404(3) 1.413(4) 1.404(3) 1.394(2) 

N1-C5 1.395(3) 1.386(3) 1.367(3) 1.370(4) 1.383(3) 1.384(2) 

 

 

From Table 2.3 it is noted that in all the ligands the bond lengths of carbon-nitrogen bonds are in the order: N1-C6 > 

N1-C5 > N2-C6. As mentioned earlier the relative shortness of N2-C6 results in E,Z configurational isomers, which 

are manifested by magnetic inequivalence of the N-alkyl moieties in the 1H and 13C NMR spectra of these ligands. In 

the series of ligands that has been isolated it can be noted that HL7 (with only alkyl groups on the N-(alkyl)(alkyl) 

moiety) has the shortest of all the N2-C6 bonds with 1.329(3) Å. The ligands with N-(alkyl)(para-Ph) groups have 

the N2-C6 bond in the range [1.332(3) – 1.343(3) Å] which is much sorter than 1.329(3) Å. The differences in the 

N2-C6 bond lengths are a qualitative measure of the bond strength or ease of rotation around this bond. This has 

remarkable consequences with reference to the temperature at the E,Z isomerism is observable by 1H and 13C NMR 

of these ligands and this is discussed in the next section. 
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2.4.2 E,Z configurational isomerism in asymmetrically disubstituted N-alkyl-alkyl(aryl)-N’-acylthioureas: A 
solution NMR study. 

 

The ligands have been classified into two separate categories, those for which E,Z isomerism is observable at room 

temperature (298 K) in solution, and those that necessitate lowering the temperature of the sample to observe the 

isomerism. 

 

2.4.2.1 E,Z isomerism observed at room temperature for symmetrically disubstituted N-alkyl-N-alkyl(aryl)-N’-
acylthioureas ligands HL5, HL6, HL7 and HL8 

 

At room temperature (298 K) ligands HL5, HL6, HL7 and HL8 readily display E,Z configurational isomerism in 

solution and this is evident from both their 1H and 13C NMR spectra. In Figure 2.4 sections of their 1H NMR spectra 

illustrate the isomerism as for each ligand for the N-alkyl groups R and R’ appear in two distinct resonances for E 

and Z isomers. In all the cases the Z isomer (with larger N-alkyl group coplanar with the sulphur atom of the 

thiocarbonyl group) is favoured. This assignment of the peaks is based on the expected magnetic anisotropy of the 

adjacent thiocarbonyl group, which is likely to deshield the closest nuclei coplanar to it, as has been observed for 

compounds with a thione group as well as thioamides derivatives.9,10 As an example, in compounds HL5, HL6 and 

HL7 the singlet resonances due to the N-CH3 groups of the E isomers are relatively downfield (due to the above 

mentioned deshielding effect) to the N-CH3 groups of the Z isomers and are the minor component. This is consistent 

with the chemical shift trends of the respective resonances of the N-CH2- groups. The N-CH2- groups of the Z isomer 

are relatively deshielded with respect to the N-CH2- groups of the E isomer and in all the cases the relatively 

deshielded N-CH2- belong to the major isomer. The same argument holds for the determination of the major isomer 

for HL8 and is self-consistent with respect to the N-CH- and N-CH2- groups. In support of this argument the N-H 

protons that is coplanar to the oxygen atoms in H2L
1, H2L

2 and H2L
3 (see Figure 2.3 as an example) are deshielded 

and appear at 12.29 ppm, 12.49 ppm and 12.98 ppm respectively, while the N-H protons pointing away from the 

oxygen atoms appear at 8.52 ppm, 8.54 ppm and 8.60 ppm, respectively. 

 

Table 2.4 shows the results of the deconvolution analysis (digital integration) of the spectra and the relative 

populations of the E and Z isomers. 

 

Table 2.4 Relative distributions of the E,Z configurational isomers of asymmetrically disubstituted ligands 
determined from the 1H NMR spectra at room temperature. The reported percentage distributions 
are estimated to have an error of ± 1%. 

 
Ligand Z-isomer (%) E-isomer (%) 

HL5 71 29 

HL6 75 25 

HL7 70 30 

HL8 80 20 

http://scholar.sun.ac.za/



Chapter 2                                                Synthesis, characterisation and general properties of asymmetrical thioureas 
 

 29

 
 
Figure 2.4 The N-alkyl section of 1H NMR spectra of HL5, HL6, HL7 and HL8 showing the E,Z 

configurational isomers at 298 K in chloroform. In all the cases the Z isomer shown pictorially is 
the major component of the isomer. 

 

 

In an attempt to confirm this assignment a benzene titration method was under taken. The principle behind this 

method is that when the 1H NMR spectrum of N-alkyl groups (in amides and related compound) in benzene is 

compared with the spectrum of the N-alkyl groups in non-aromatic solvent, the resonances of the N-alkyl groups 

should appear upfield in benzene.11 However, one of the N-alkyl groups would be expected to exhibit a greater 

upfield shift than the other, since the benzene π electrons could be expected to interact with the ‘positively charged’ 

(thio)amide nitrogen atom, with the ‘negatively’ charged chalcogen being as “far away” from the centre of the 

benzene ring as possible. The N-alkyl group coplanar to the chalcogen should then exhibit this upfield shift to a 

lesser extent than the N-alkyl group which is pointing away from the chalcogen. Table 2.5 shows such a benzene 

titration experiment with HL6 as an example and Figure 2.5 is the actual 1H NMR spectrum. 

 

 

 

 

 

2.62.62.82.83.03.03.23.23.43.43.63.63.83.84.04.04.24.24.44.44.64.64.84.85.05.05.25.25.45.45.65.6

N-CH2- N-CH3

Z
Z

E E

1H-NMR/ppm

N

S

CH2

CH3

Ph

HL5

5.205.205.405.405.605.605.805.806.006.006.206.206.406.406.606.60

2.402.402.602.602.802.803.003.003.203.203.403.40

N-CH2-

N-CH3

Z

Z

E

E

1H-NMR/ppm

N

S

CH2

CH3

Antrocyl

HL7

4.204.204.404.404.604.604.804.805.005.00

N-CH-

Z

E

1H-NMR/ppm

N

S

CH

HL8

2.62.62.82.83.03.03.23.23.43.43.63.63.83.84.04.04.24.24.44.4

N-CH2-

N-CH3

Z
E

E

E

Z

-CH2Ph

1H-NMR/ppm

N

S
H2
C

CH3

C
H2

Ph
HL6

2.62.62.82.83.03.03.23.23.43.43.63.63.83.84.04.04.24.24.44.44.64.64.84.85.05.05.25.25.45.45.65.6

N-CH2- N-CH3

Z
Z

E E

1H-NMR/ppm

N

S

CH2

CH3

Ph

HL5

2.62.62.82.83.03.03.23.23.43.43.63.63.83.84.04.04.24.24.44.44.64.64.84.85.05.05.25.25.45.45.65.6

N-CH2- N-CH3

Z
Z

E E

1H-NMR/ppm

N

S

CH2

CH3

Ph

HL5

5.205.205.405.405.605.605.805.806.006.006.206.206.406.406.606.60

2.402.402.602.602.802.803.003.003.203.203.403.40

N-CH2-

N-CH3

Z

Z

E

E

1H-NMR/ppm

N

S

CH2

CH3

Antrocyl

HL7

5.205.205.405.405.605.605.805.806.006.006.206.206.406.406.606.60

2.402.402.602.602.802.803.003.003.203.203.403.40

5.205.205.405.405.605.605.805.806.006.006.206.206.406.406.606.60

2.402.402.602.602.802.803.003.003.203.203.403.40

N-CH2-

N-CH3

Z

Z

E

E

1H-NMR/ppm

N

S

CH2

CH3

Antrocyl

HL7

4.204.204.404.404.604.604.804.805.005.00

N-CH-

Z

E

1H-NMR/ppm

N

S

CH

HL8

4.204.204.404.404.604.604.804.805.005.00

N-CH-

Z

E

1H-NMR/ppm

N

S

CH

HL8

2.62.62.82.83.03.03.23.23.43.43.63.63.83.84.04.04.24.24.44.4

N-CH2-

N-CH3

Z
E

E

E

Z

-CH2Ph

1H-NMR/ppm

N

S
H2
C

CH3

C
H2

Ph
HL6

2.62.62.82.83.03.03.23.23.43.43.63.63.83.84.04.04.24.24.44.4

N-CH2-

N-CH3

Z
E

E

E

Z

-CH2Ph

1H-NMR/ppm

N

S
H2
C

CH3

C
H2

Ph
HL6

http://scholar.sun.ac.za/



Chapter 2                                                Synthesis, characterisation and general properties of asymmetrical thioureas 
 

 30

Table 2.5 298 K measurements of chemical shifts of N-CH2-CH2-Ph and N-CH3 proton resonances of E and 
Z isomers of HL6 in chloroform as the benzene concentration increases. In parentheses are 
downfield shifts of each resonance per indicated volume of benzene added to the sample. 

 
Amount of 

benzene 
added (μL) 

 δ(N-CH2-
CH2-Ph) 

ppm 

  δ(N-CH3) 
ppm 

 

 Z  E Z  E 

0 4.056  3.642 3.075  3.428 

60 4.114(0.058)  3.694(0.052) 3.114(0.039)  3.474(0.046) 

120 4.176(0.062)  3.749(0.055) 3.156(0.042)  3.522(0.048) 

240 4.284(0.108)  3.845(0.094) 3.228(0.072)  3.607(0.085) 

 

 

 
 
Figure 2.5 A section of 1H NMR spectrum of HL6 showing the N-CH3 and N-CH2CH2- proton resonances in 

chloroform as the benzene titration of the sample is carried out with indicated amounts. All the 
resonances experience a downfield shift as the concentration of benzene increases. 

 

 

From the data in Table 2.5 only the N-CH2-CH2-Ph and N-CH3 proton resonances are shown but consistent trends 

were also observed for the second N-CH2-CH2-Ph resonance. This experiment was also performed to other 

compounds with the same out come and here HL6 is used as an illustration of our results. From both Table 2.5 and 

Figure 2.5 it is clear that there is a downfield shift of all the peaks as the concentration of the benzene increases. This 

is contrary to the expected upfield shift reported in the literature11,12 for N-methyl-, N-ethyl-, N-iso-propyl- and N-

tert-butylformamide. This way of assigning could not be extended to the system ligands studied here, however there 

are positive aspects that could be drawn from this experiment. Firstly, all the N-alkyl resonances that belong to the Z 

isomer ‘recognise’ each other in that the N-CH2-CH2-Ph proton resonances coplanar to the sulphur atom exhibit a 

greater degree of downfield shift while the N-CH3 proton resonances in the same molecule have a lesser downfield 
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shift. The reverse holds for the N-alkyl groups that belong to the E isomer. This implies that a genuine benzene effect 

(deshielding in this case) on the N-alkyl groups is observed to be more pronounced on a particular side of the 

molecule as predicted by other workers. Secondly, what is particularly advantageous about this spectrum is that after 

titrating with 240 μL of benzene the triplet resonance due to N-CH2-CH2-Ph protons is well resolved from the N-CH3 

signal, while in pure chloroform it is overlapping with this N-CH3 single resonance. This is achievable again by the 

fact that these N-CH2-CH2-Ph protons of the Z isomer exhibit a greater degree of downfield shift than the N-CH3 

protons of the same molecule. 

 

2.4.2.2 E,Z isomerism observed at low temperature for symmetrically disubstituted N-alkyl-N-aryl-N’-acylthioureas 
ligands: HL1A,1B,1C,1D and HL2A,2B,2C,2D 

 

At room temperature the 1H and 13C NMR spectra of the ligands only show one set of N-alkyl and N-aryl resonances. 

Compounded by the fact that some of these were also isolated as crystals in one configuration only, which was the E 

configuration, one would falsely assume that these ligands are in one configuration. It became apparent later that 

these ligands also display the E,Z isomerism as well. However, due to the significantly lower barrier to rotation 

around the C-N bond of the (S)C-N(alkyl)(aryl) moiety the N-alkyl and N-aryl resonances are in fast exchange on the 

NMR time scale at room temperature, hence they are observed as one set instead of two. In the literature it has been 

known for some time that the N-aromatic groups lower the C-N rotation barrier.13 The reason being that the nitrogen 

lone pair of electron may either contribute to the C-N bond or be pulled towards the aromatic system. To observe the 

E,Z isomerism in the new set of ligands their 1H and 13C NMR spectra had to acquired at low temperature and Figure 

2.6 is an example of a temperature array of 1H NMR spectra of N-methyl-N-(4-methoxy-phenyl)-N’-(2,2-

dimethylpropanoyl)thiourea, HL1A in deuterated chloroform. 
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Figure 2.6 A section of a temperature array 1H NMR spectrum of HL1A in CDCl3, showing one set of 

resonances at room temperature (298 K), however as the temperature is lowered it is clear that the 
compound displays E,Z isomerism in chloroform. 

 

 

The way the assignment of the new set of ligands is done is similar to the set of ligands described above and the 

difference being that the E isomer in these ligands is the major isomer. Detailed assignments are shown in chapters 4 

and 5. This is consistent with numerous examples of related N-alkylacetanilides that exist predominantly as E.14-16 

Interestingly, as the temperature is lowered the N-H resonances experience a downfield shift. The observed 

deshielding effect of the N-H proton may be attributed to strengthening of intermolecular hydrogen bonding as the 

temperature is decreased. The hydrogen bonding of the N-H protons in the solid state is shown in Figure 2.7. In the 

literature it has been reported that breaking of intermolecular hydrogen bonding of hydroxy protons as temperature 

increases results in increasing shielding effect in enol tautomer of β-dicarbonyls.17 In solution (CDCl3), it is thought 

that these hydrogen bond interactions become favoured and as the temperature is systematically lowered hence 

explaining the downfield shift trends seen for these N-H resonances. 
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Figure 2.7 Hydrogen bonding of the N-H in HL1A,1C,1D and HL2A. In HL1A,1C,1D these form dimers with the 

adjacent molecule while in HL2A the hydrogen bonding network results in chains. 
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Table 3.2 Hydrogen-bonding geometry (Å, °) for N-methyl-N-(4-methoxy-phenyl)-N’-(2,2-
dimethylpropanoyl)thiourea, HL1A, N-cyclohexyl-N-(4-methoxy-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL1C, 
N-pentyl-N-(4-methoxy-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL1D and N-methyl-N-phenyl-N’-(2,2-
dimethylpropanoyl)thiourea, HL2A. 
 

Ligand Donor-
H···Acceptor 

Donor-H H···Acceptor Donor···Acceptor Donor-
H···Acceptor 

HL1A N(1)-H(1)···O(2)i 0.88 2.525 3.357 157.95 
HL1C N(1)-H(1)···O(2)ii 0.88 2.788 3.485 137.14 
HL1D N(1)-H(1)···O(2)iii 0.88 2.756 3.493 153 
HL2A N(1)-H(1)···S(2)iv 0.88 2.235 3.092 166.22 

Symmetry code: (i) -x, y, ½-z; (ii) 1-x, 1-y, -z; (iii) ½-x, ½-y, 1-z; (iv) x, y-1, z 

 

 

2.4.3 Spontaneous decomposition of N-methyl-N-(4-nitro-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL3A in 
solution 

 

Several attempts of growing suitable crystals of N-methyl-N-(4-nitro-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, 

HL3A failed and all the time the crystals that grew were solved to be N-methyl-(4-nitro-phenyl)-amine (Figure 2.8). 

We were interested in this particular crystal for comparing of relevant bond lengths with the other ligands, as the 

ligand with an electron-withdrawing group would complete the series. Decomposition took place even when the 

possibility of contamination was excluded since the 1H and 13C NMR spectra of a fresh sample of this ligand showed 

no residual peaks of the starting material. This suggested that decomposition of this ligand in solution is taking place. 

 

 
 
Figure 2.8 The molecular structure of N-methyl-(4-nitro-phenyl)-amine, which is a decomposition fragment 

of HL3A. 
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To investigate the spontaneous decomposition of this ligand in solution, 1H NMR spectrum of this compound was 

measured several days apart. It was noticed that in a few days extra peaks appear in the spectrum and these grow at 

the expense of the parent peaks over time. This observation was also noted with a similar ligand N-pentyl-N-(4-nitro-

phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL3D, however no attempts were made to isolate the N-pentyl-(4-nitro-

phenyl)-amine as we did with N-methyl-(4-nitro-phenyl)-amine. Figure 2.9 shows the 1H NMR spectrum of HL3A 

over time. 

 

 
 
Figure 2.9 Full 1H NMR spectrum and expansion of the phenyl region of HL3A. The peaks of N-methyl-(4-

nitro-phenyl)-amine grow at the expense of the HL3A parent peaks, over time. This illustrates the 
spontaneous decomposition of HL3A in solution. 

 

 

Formation of the amine from HL3A takes place via the cleaving of the C-N bond of the (S)C-N(methyl)(4-methyl-

phenyl) moiety. This means that the remote nitro-substituent has notable effect on the C-N bond, which is several 

bonds away. The weakening of this very bond is also verified by the fact that the E,Z isomers of HL3A and HL3D are 

not observable even at 198 K in dichloromethane. Even at this low temperature the two isomers are still in fast 

exchange and this can only be explained by the influence of the nitro-substituent. 
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2.5 Concluding remarks 

 

In conclusion we can say that the synthesis of the new series of ligands was successfully carried out using well-

established method. The magnetic anisotropy of the thiocarbonyl group was used to assign the configurational 

isomers of all the ligands. The ligands with N-aryl substituents showed no presence of two isomers at room 

temperature, however on lowering the temperature it was verified that these ligands also display E,Z isomerism as 

well. It is the barrier lowering nature of the aromatic substituent that has lead to fast exchange at room temperature. 

The low C-N rotation barrier proved to be particularly influenced by electron withdrawing group even if they are 

much remote from this C-N bond. In the next chapters we look at the coordination chemistry of these ligands on 

platinum(II) metal ion. 
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Chapter 3: Coordination chemistry of asymmetrically 

disubstituted N-alkyl-N-alkyl(aryl)-N’-acylthioureas to 

platinum(II) 

 

Part 1: A multinuclear NMR spectroscopic assignment of E,Z configurational 

isomers of platinum(II) complexes of N-alkyl-N-alkyl(aryl)-N’-acylthioureas 

 

Summary 

Unsymmetrically dialkyl-substituted N-alkyl-N-alkyl(aryl)-N’-acylthioureas display E,Z configurational isomerism at 

room temperature in chloroform, which is readily observable by means of 1H and 13C NMR spectroscopy. The Z 

isomer was found to be favourably formed in solution (CDCl3) for all investigated ligands of this type. The 

isomerism is relayed to the platinum(II) chelates derived from these ligands. The presence of the isomers cis-[Pt(ZZ-

L-S,O)2], cis-[Pt(EZ-L-S,O)2] and cis-[Pt(EE-L-S,O)2] is directly observed from the 195Pt NMR spectra of these 

complexes. These isomers were assigned by means of a combination of low magnetic field (7.05 T) 13C NMR spectra 

and high-resolution gradient Heteronuclear Single Quantum Correlation (gHSQC) (1H/13C) NMR experiments. The 

platinum nuclei are spatially linked to N-CH3 and N-CH2- carbons in a W coupling pathway with 4J(195Pt-13C) 

coupling constants of about 20 Hz observed with low magnetic field 13C NMR experiments. The gHSQC (1H/13C) 

NMR experiment indirectly links the platinum nuclei to the protons attached to the N-CH3 and N-CH2- carbons, 

achieving the assignment of the EE, EZ and ZZ platinum(II) chelates. A rotation of the N-C bond of the (S)C-NRR’ 

moiety during complexation results in isomer distributions which favour the ZZ isomer (53%, 57% and 65%) 

followed by the EZ isomer (39%, 35% and 30%) then the EE isomer (8%, 8% and 5%) for cis-bis(N-phenethyl-N-

methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L6-S,O)2], cis-bis(N-benzyl-N-methyl-N’-2,2-

dimethylpropanoylthioureato)platinum(II), cis-[Pt(L5-S,O)2] and cis-bis(N-anthrocen-9-ylmethyl-N-methyl- N’-2,2-

dimethylpropanoylthioureato)platinum(II), cis-[Pt(L7-S,O)2] complexes, respectively. The three 195Pt NMR 
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resonances for the EE, EZ and ZZ isomers of cis-bis(N-(2-methylpyrrolidine)-N’-2,2-

dimethylpropanoylthioureato)platinum(II) complex, cis-[Pt(L8-S,O)2] can only be observed at low temperature. 
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3.1 Introduction 

 

Ligands of the type N,N-dialkyl-N’-acyl(aroyl)thioureas (HL) display rich coordination chemistry towards the 

platinum group metal (PGM) ions and other transition metal ions as shown in general introduction.1,2 Of interest here 

is the configurational isomerism that arises in asymmetrically dialkyl-substituted N-alkyl-N-alkyl(aryl)-N’-

acylthioureas and corresponding N-alkyl-N-aryl-N’-acylthioureas. Similar to the well-documented double bond 

character of thioamides,3-5 the (S)C-NRR’ moiety shows restricted rotation around the C-N bond resulting in E,Z 

configurational isomers in solution when R and R’ differ. This is reflected in the appearance of two sets of N-alkyl 

resonances in both the 1H and 13C NMR spectra at room temperature (Chapter 3). This configurational isomerism is 

relayed to the corresponding platinum(II) complexes. Shown in Scheme 1 are the EE, EZ and ZZ isomers of some of 

these complexes with a similar structural motif. 
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Scheme 1: EE, EZ and ZZ configurational isomers of the platinum(II) chelates, cis-[Pt(L5-S,O)2], cis-[Pt(L6-

S,O)2] and cis-[Pt(L7-S,O)2] showing a favourable W 4J(195Pt-13C) coupling pathway in bold. 
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The 195Pt NMR spectra of cis-bis(N-benzyl-N-methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II); cis-[Pt(L5-

S,O)2], cis-bis(N-phenethyl-N-methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II); cis-[Pt(L6-S,O)2] and cis-

bis(N-anthrocen-9-ylmethyl-N-methyl- N’-2,2-dimethylpropanoylthioureato)platinum(II); cis-[Pt(L7-S,O)2] at room 

temperature clearly show well resolved peaks for the three isomers. However, to observe all the isomers for the cis-

bis(N-(2-methylpyrrolidine)-N’-2,2-dimethylpropanoylthioureato)platinum(II); cis-[Pt(L8-S,O)2] complex the 195Pt 

NMR spectrum had to be recorded at low temperature (228 K). Similarities between the N-CH(CH3)- and N-CH2- 

groups of the 2-methylperrilidyl moiety are thought to result the 195Pt NMR resonances of three isomers not being 

well resolved even at low temperature (Figure 3.3) 

 

Unambiguous assignment of the 195Pt NMR resonances directly from either the 1H NMR or 13C NMR spectra is not 

entirely straightforward. Certainly by determining the relative integrals of the complexes from the 1H NMR spectra, 

the central resonances in the 195Pt NMR spectra are easily assigned to the EZ isomers. However, the ambiguity is not 

resolved for the most downfield and the most upfield resonances. Moreover the chemical shift of the EZ isomer 

might intuitively be expected to resonate between the chemical shifts of the EE and ZZ isomers. This is indeed the 

case for all the complexes evaluated by comparing the relative integrals in the 195Pt NMR spectra with those in the 1H 

NMR spectra (as will be shown in the discussion). 

 

Previously, the assignment of similar complexes was achieved by means of 1H/13C/195Pt correlation NMR 

spectroscopy.6 This technique requires a triple resonance probe tunable for 1H, 13C and 195Pt nuclei and it was not 

readily available to us hence it was necessary to devise ‘in-house’ means of examining these types of complexes with 

the equipment at our disposal. In the 1H NMR spectra of the complexes the expected long range 5J(195Pt-1H) 

couplings between the platinum nuclei and the N-alkyl protons are not observed, due to the field-dependent chemical 

shift anisotropy (CSA) broadening characteristic of square planar Pt(II) complexes.7 Besides such long range 5J(195Pt-
1H) couplings would be expected to be very small. Therefore indirect detection techniques (1H-X, X being 195Pt in 

this particular case) could not be exploited for the unambiguous assignment of the 195Pt resonances. In the 1H NMR 

spectra of these complexes the EZ isomer is observed to have two resonances for its N-CH3 protons as well as for its 

N-CH2- protons. This is because one set of each N-alkyl group is coplanar with the sulphur atom while the other set 

is pointing away from the sulphur atom. The N-alkyl set pointing away from the sulphur atom is in a favourable W 

coupling pathway to the platinum atom (see Scheme 1), and is therefore expected to have a characteristic 5J(195Pt-1H) 

coupling satellites. Sequential irradiating of either the two N-CH3 proton resonances or the two N-CH2- proton 

resonances of the EZ complex with the 195Pt frequency of the EZ isomer as a decoupler (readily obtained from the 
195Pt NMR spectra) did not result in any of the resonances growing although this was expected to occur since the 

associated 5J(195Pt-1H) couplings should collapse leading to growth of the N-alkyl proton resonance in a favourable 

W coupling pathway. The success of this Heteronuclear Selective Population Transfer (SPT) experiment is entirely 

dependent on whether the particular N-CH2- protons or N-CH3 protons are spin-coupled to the 195Pt nucleus in 

question (in this case the EZ isomer). The failure of this experiment in this case may again be explained by the 

expected small 5J(195Pt-1H) coupling constant of the platinum nuclei to the N-alkyl protons. Ideally this technique 

should be adequate to unambiguously assign the platinum resonances, should the 5J(195Pt-1H) be sufficiently large. 
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In this chapter we primarily illustrate by means of a combination of low magnetic field 13C NMR and high-resolution 

2D gHSQC NMR spectroscopy how the 195Pt resonances of the (EE, EZ and ZZ) isomers can be unambiguously 

assigned. We also note that the statistically predicted (EE, EZ and ZZ) isomer distributions of the complexes are 

never mirrored with the observed populations determined either from the 1H or 195Pt NMR spectra, however we 

probe the factors affecting these distributions in chapters 4 and 5. 

 

3.2 Experimental 

3.2.1 General remarks 

 

The synthesis and characterisation of the asymmetrically dialkyl-substituted ligands has already been described in 

detail in chapter 2 and will not form part of the discussion here. It will only be where necessary comparisons to the 

complexes are made that the ligands will form part of the discussion. The complex cis-bis(N,N-diethyl-N’-

benzoylthioureato)platinum(II); cis-[Pt(L4-S,O)2] is not asymmetrically disubstituted, however it forms part of the 

discussion since it has some important structural features which are extrapolated to other complexes. 

 

3.2.2 NMR spectroscopy 

 

Conventional 1H and 13C NMR spectra of relatively high concentrations (ca 80 mg.cm-3) of the ligands and their 

respective platinum(II) complexes using 5 mm diameter tubes were obtained at 25 C in deuterated chloroform using 

a Varian Inova 400 spectrometer operating at 400 and 101 MHz for 1H and 13C, respectively. The gHSQC NMR 

experiments for selected complexes were also acquired on the Varian Inova 400 spectrometer. For selected 

complexes 13C NMR spectra were also recorded on a Varian VXR 300 spectrometer operating at 76 MHz for 13C. All 

samples were carefully filtered before any spectroscopic measurement was undertaken. 1H chemical shifts are quoted 

relative to the residual CDCl3 solvent resonance at 7.26 ppm and the 13C chemical shifts are quoted relative to the 

CDCl3 middle resonance of the triplet at 77.0 ppm. The 195Pt NMR spectra of the complexes were recorded at 30 C 

(cis-[Pt(L8-S,O)2] was also measured at various temperatures) using the Varian Inova 400 spectrometer operating at 

86 MHz for 195Pt [external reference material: 500 mg.cm-3 H2PtCl6 in 30% (v/v) D2O-1M HCl; δ(195Pt) = 0 ppm at 

30 °C]. 

 

3.2.3 Synthesis of platinum complexes 

 

Platinum(II) complexes were prepared and characterised according to a previously published method,1 which entails 

drop-wise addition of a K2PtCl4 solution (in a one to one volume of acetonitrile to water) to a solution of ligand and 

sodium acetate (also in a one to one volume of acetonitrile to water). All the reagents were commercially available 

and were used without any prior purification. The reactions were generally conducted at 50 ºC for two hours. After 

the reaction solutions had cooled to room temperature, excess water was added and the reaction mixtures were 
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refrigerated before the products were collected by means of centrifugation and dried under vacuum. Elemental 

analyses were performed using a Carlo Erba EA 1108 elemental analyser courtesy of the University of Cape Town. 

 

cis-bis(N,N-Diethyl-N’-benzoylthioureato)platinum(II), cis-[Pt(L4-S,O)2] 

A yield of 74% of the product was collected and analysed. Found: C, 43.27; H, 4.34; N, 8.35; S, 9.39 

PtC24H30N4S2O2 required C, 43.30; H, 4.54; N, 8.42; S, 9.63%. H(400 MHz; solvent CDCl3): 8.27 (2H, d, C6H5), 

7.52 (1H, tt, C6H5), 7.42 (2H, tt, C6H5), 3.78 (4H, broad, 2N-CH2CH3), 1.27 (6H, broad, 2N-CH2CH3). C(101 MHz, 

solvent CDCl3): 168.74 (C(O)), 167.31 (C(S)), 137.78-128.22 (C6H5), 46.87 (N-CH2CH3), 45.79 (N-CH2CH3), 12.89 

(N-CH2CH3), 12.21 (N-CH2CH3). 

 

cis-bis(N-Benzyl-N-methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L5-S,O)2] 

A yield of 73% of the product was collected and analysed. Found: C, 46.70; H, 5.18; N, 7.46; S, 8.47 

PtC28H38N4S2O2 required C, 46.59; H, 5.31; N, 7.76; S, 8.88%. H(400 MHz; solvent CDCl3): 7.36-7.15 (5H, m, 

C6H5)(ZZ, EZ and EE), 5.01 (2H, s, N-CH2-)(ZZ), 5.00 (2H, s, N-CH2-)(Z(EZ)), 4.98 (2H, s, N-CH2-)(E(EZ)), 4.94 

(2H, s, N-CH2-)(EE), 3.16 (3H, s, N-CH3)(ZZ), 3.14 (3H, s, N-CH3)(E(EZ)), 3.12 (3H, s, N-CH3)(Z(EZ)), 1.25 (9H, 

s, C(CH3)3)(EE and E(EZ)), 1.17 (9H, s, C(CH3)3)(ZZ and Z(EZ)). C(101 MHz, solvent CDCl3): 184.04 

(C(O))(E(EZ)), 183.92(C(O))(EE), 183.62 (C(O))(ZZ), 183.51 (C(O))(Z(EZ)), 168.56 (C(S))(ZZ, EZ and ZZ), 

136.44-127.31 (C6H5)(ZZ, EZ and ZZ), 57.02 (N-CH2-)(EE and E(EZ)), 55.17 (N-CH2-)(ZZ and Z(EZ)), 42.40 

(C(CH3)3)(EE and E(EZ)), 42.24 (C(CH3)3)(ZZ and Z(EZ)), 39.37 (N-CH3)(ZZ and Z(EZ)), 38.08 (N-CH3)(EE and 

E(EZ)), 28.34 (C(CH3)3)(EE and E(EZ)), 28.17 (C(CH3)3)(ZZ and Z(EZ)). 

 

cis-bis(N-Phenethyl-N-methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L6-S,O)2] 

A yield of 83% of the product was collected and analysed. Found: C, 48.17; H, 5.51; N, 7.23; S, 8.11 

PtC38H42N4S2O2 required C, 48.05; H, 5.65; N, 7.47; S, 8.55%. H(400 MHz; solvent CDCl3): 7.31-7.16 (5H, m, 

C6H5)(ZZ, EZ and EE), 3.92 (2H, t, N-CH2CH2Ph)(ZZ and Z(EZ)), 3.88 (2H, t, N-CH2CH2Ph)(EE and E(EZ)), 3.11 

(3H, s, N-CH3)(E(EZ)), 3.10 (3H, s, N-CH3)(EE), 3.09 (3H, s, N-CH3)(Z(EZ)), 3.08 (3H, s, N-CH3)(ZZ), 3.04 (2H, t, 

N-CH2CH2Ph)(EE and E(EZ)), 2.90 (2H, t, N-CH2CH2Ph)(ZZ and Z(EZ)), 1.26 (9H, s, C(CH3)3)(ZZ and Z(EZ)), 

1.23 (9H, s, C(CH3)3)(EE and E(EZ)). C(101 MHz, solvent CDCl3): 183.57 (C(O))(E(EZ)), 183.19 (C(O))(ZZ), 

183.12 (C(O))(Z(EZ)), 167.67 (C(S))(Z(EZ)), 167.61 (C(S))(ZZ), 167.35 (C(S))(EE), 167.25 (C(S))(E(EZ)), 138.64-

126.48 (C6H5)(ZZ, EZ and EE), 55.70 (N-CH2CH2Ph)(EE and E(EZ)), 54.94 (N-CH2CH2Ph)(ZZ and Z(EZ)), 42.29 

(C(CH3)3)(ZZ, EZ and EE), 40.78 (N-CH3)(ZZ and Z(EZ)), 39.38 (N-CH3)(EE and E(EZ)), 33.95 (N-

CH2CH2Ph)(ZZ and Z(EZ)), 33.07 (N-CH2CH2Ph)(EE and E(EZ)), 28.32 (C(CH3)3)(ZZ, EZ and EE). 

 

cis-bis(N-Anthrocen-9-ylmethyl-N-methyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L7-S,O)2] 

A yield of 91% of the product was collected and analysed. Found: C, 57.20; H, 4.57; N, 6.28; S, 6.93 

PtC44H46N4S2O2 required C, 57.31; H, 5.03; N, 6.08; S, 6.96%. H(400 MHz; solvent CDCl3): 8.49 – 7.47 (9H, 

(C14H9) EE, EZ and ZZ), 6.11 (2H, s, N-CH2-)(Z(EZ)), 6.07 (2H, s, N-CH2-)(ZZ)), 5.89 (2H, s, N-CH2-)(EE)), 5.82 
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(2H, s, N-CH2-)(E(EZ)), 2.85 (3H, s, N-CH3)(Z(EZ)), 2.79 (3H, s, N-CH3)(ZZ)), 2.76 (3H, s, N-CH3)(EE)), 2.73 

(3H, s, N-CH3)(E(EZ)), 1.45 (9H, s, C(CH3)3(ZZ and Z(EZ)), 1.26 (9H, s, C(CH3)3(EE and E(EZ)). C(101 MHz, 

solvent CDCl3): 183.80 (C(O))(ZZ and Z(EZ)), 183.11 (C(O))(EE and E(EZ), 167.95 (C(S))(EE and E(EZ)) 167.86 

(ZZ and Z(EZ)), 134.07-123.76 (C14H9), 48.42 (N-CH2-)(EE and E(EZ)), 45.98 (N-CH2-)(ZZ and Z(EZ)), 42.80 

(C(CH3)3)(ZZ and Z(EZ)), 42.49 (C(CH3)3)(EE and E(EZ)), 36.69 (N-CH3)(ZZ and Z(EZ)), 34.98 (N-CH3)(EE and 

E(EZ)), 28.57 (C(CH3)3)(ZZ and Z(EZ)), 28.38 (C(CH3)3)(EE and E(EZ)). 

 

cis-bis(N-(2-Methylpyrrolidine)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L8-S,O)2] 

A yield of 79% of the product was collected and analysed. Found: C, 40.06; H, 5.99; N, 8.48; S, 9.30 

PtC22H38N4S2O2 required C, 40.79; H, 5.66; N, 8.65; S, 9.90%. H(400 MHz; solvent CDCl3): 4.53-4.36 (1H, m, N-

CH(CH3)CH2-)(ZZ, EZ and EE), 3.64-3.44 (2H, m, N-CH2CH2-)(ZZ, EZ and EE), 1.98 (2H, m, N-CH(CH3)CH2-

)(ZZ, EZ and EE), 1.64 (2H, m, N-CH2CH2-)(ZZ, EZ and EE), 1.25 (3H, d, N-CH(CH3)CH2-)(ZZ, EZ and ZZ), 1.17-

1.15 (9H, s, C(CH3)3)(ZZ, EZ and EE). C(101 MHz; solvent CDCl3): 183.24-182.84 (C(O))(ZZ, EZ and EE), 

164.59-164.20 (C(S))(ZZ, EZ and EE), 56.88-56.44 (N-CH(CH3)CH2-)(ZZ, EZ and EE), 50.04-49.95 (N-CH2CH2-

)(ZZ, EZ and EE), 41.92 (C(CH3)3)(ZZ, EZ and EE), 32.09-31.54 (N-CH(CH3)CH2-)(ZZ, EZ and EE), 28.18-28.05 

(C(CH3)3)(ZZ, EZ and EE), 22.65-21.87 (N-CH2CH2-)(ZZ, EZ and EE), 18.97-18.21 (N-CH(CH3)CH2-)(ZZ, EZ and 

EE). 

 

3.3 Results and Discussion 

 

The series of asymmetrically disubstituted N-alkyl-N-alkyl(aryl)-N’-acylthioureas was synthesised and subsequently 

reacted with K2PtCl4 to form chelates that carry through the isomerism, with clear objective to assign the platinum(II) 

chelates that are derived from them by means of various NMR spectroscopic techniques. We have also synthesised a 

symmetrically substituted ligand N,N-diethyl-N’-benzoylthiourea and its corresponding Pt(II) chelate. The 

thiocarbonyl carbon of this ligand was ca 50% 13C isotopically enriched. The motivation for the inclusion of this 

ligand and its complex in the discussion is that there are certain parallels that we wish to infer with the other 

complexes without necessarily having to label them due to the high cost of isotopically enriched reagents 

 

3.3.1 E,Z configurational isomerism in uncoordinated asymmetrically disubstituted N-alkyl-N-alkyl(aryl)-N’-
acylthioureas, ligands; HL5, HL6, HL7 and HL8 

 

The E,Z configurational isomerism of the titled ligands has already been discussed in chapter 2, Section 2.4.2.1, 

however we bring them to a discussion here since the complexes discussed in this chapter are derived from them. It 

was clearly shown that all these ligands display E,Z configurational isomerism at room temperature in chloroform. In 

all the cases the major isomer was assigned to be the Z isomer. The relative distributions of the E,Z isomers were 

determined by digital integration of the N-CH3 and N-CH2- proton resonances are shown in Table 3.1. 
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Table 3.1 Relative distributions of the E,Z configurational isomers of asymmetrically disubstituted ligands 
determined from the 1H NMR spectra at room temperature. The reported percentage distributions 
are estimated to have an error of ± 1%. 

 
Ligand Z-isomer (%) E-isomer (%) 

HL5 71 29 

HL6 75 25 

HL7 70 30 

HL8 80 20 

 

 

3.3.2 Platinum(II) chelates derived from HL4,5,6,7,8 

3.3.2.1 cis-[Pt(L4-(S,O)2] 

 

Using 13C enriched sodium thiocyanate the synthesis resulted in symmetrically disubstituted N,N-diethyl-N’-

benzoylthiourea which was ca 50% 13C labelled at the thiocarbonyl carbon. The primary purpose of this was to 

unambiguously establish which of the two (thio)carbonyl peaks can be attributed to C=O and which to C=S. Figure 

3.1 shows that upon complexation the thiocarbonyl carbon shifts upfield while the carbonyl carbon does the opposite 

i.e. shifts downfield. Hereafter this is assumed to be the case for all the ligands as it would be too expensive to 

prepare enriched ligands for all the compounds presented in the thesis. Figure 3.1 together with Table 3.2 show 

where the carbonyl carbon and thiocarbonyl carbon resonate before and after complexation to the platinum(II) centre. 

 

 
 
Figure 3.1 Sections of 13C NMR spectra of thiocarbonyl 13C enriched N,N-diethyl-N’-benzoylthiourea, HL4 

and its corresponding Pt(II) complex, illustrating the upfield shift of the thiocarbonyl carbon and 
the downfield shift of the carbonyl carbon upon complexation. 
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Table 3.2 Comparisons of the 13C chemical shifts (ppm) of the carbonyl and thiocarbonyl resonances of 
unbound ligands HL4,5,6,7,8 and coordinated ligands in cis-[Pt(L4,5,6,7,8-(S,O)2] complexes 

 
Ligand Ligand 

δ13C: C(O) 

Complex 

δ13C: C(O) 

∆(δ13C) Ligand 

δ13C: C(S) 

Complex 

δ13C: C(S) 

∆(δ13C) 

HL4 163.76 168.74 +4.98 179.27 167.31 -11.96 

HL5 174.48 (E) 183.92 (EE) +9.44 181.64 (E) 168.56 (EE) -13.08 

 174.80 (Z) 183.62 (ZZ) +8.82 180.76 (Z) 168.56 (ZZ) -12.20 

HL6 174.39 (E) Not observed  180.17 (E) 167.35 (EE) -12.82 

 174.39 (Z) 183.19 (ZZ) +8.80 180.49 (Z) 167.61 (ZZ) -12.88 

HL7 174.52 (E) 183.11 (EE) +8.59 181.00 (E) 167.95 (EE) -13.39 

 175.55 (Z) 183.80 (ZZ) +8.25 180.85 (Z) 167.86 (ZZ) -12.90 

HL8 174.60 (E) 183.24 (EE) +8.67 176.64 (E) 164.59 (EE) -12.05 

 174.72 (Z) 182.84 (ZZ) +8.12 176.79 (Z) 164.26 (ZZ) -12.53 

 

 

The upfield shift of the thiocarbonyl carbons and the downfield shift of the carbonyl carbons are also tabulated in 

Table 3.2 and these observations are in accordance with previous work on similar ligands.8,9 From the table we see 

that there is nearly a ∆(δ13C) = δ13C(O)complex - δ
13C(O)ligand = 5 to 9 ppm downfield shift for the carbonyl carbons and 

nearly a ∆(δ13C) = δ13C(S)complex - δ13C(S)ligand = 12 to 13 ppm upfield shift for the thiocarbonyl carbons. The 

assignments for the carbonyl and thiocarbonyl peaks of all other ligands HL5,6,7,8 and the complexes, cis-[Pt(L5,6,7,8-

(S,O)2] derived from them are based on the illustration in Figure 3.1 for HL4 and its complex cis-[Pt(L4-(S,O)2] 

without necessarily confirming with 13C enrichment for each case. Since the thiocarbonyl carbon is 13C enriched it is 

also easy to see 2J(195Pt-13C) coupling satellites of about 44 Hz (Figure 3.1). 

 

Another important observation in the 13C NMR spectrum of the cis-[Pt(L4-(S,O)2] complex is that the downfield 

resonance (46.87 ppm) due to the N-CH2- carbons pointing away from the sulphur atom has lower intensity with 

respect to the upfield N-CH2- resonance at 45.79 ppm (on the same side as the sulphur atom) (Figure 3.2). The low 

intensity of this particular carbon is as a result of being in a favourable W coupling pathway (Pt-S-C-N-CH2-) to the 

platinum atom. The associated 4J(195Pt-13C) coupling satellites are marginally observed flanking the parent peak at 

46.87 ppm, with a value of about 20 Hz. No such phenomenon is observed in any of the N-CH2-CH3 resonances in 

the 13C NMR spectrum and they are of equal intensity. This is expected since they are much further away from the 

platinum atom so that the 5J(195Pt-13C) coupling is too small to see. Both the chemical shift of the N-alkyl group in 

this favourable W pathway to the platinum atom together with the associated 4J(195Pt-13C) coupling satellites are 

found to be most important for spectral analysis when the alkyl groups R and R’ of the (S)CN-NRR’ moiety are not 

equal. This forms a basis for assigning unambiguously the E,Z configurational isomers of platinum(II) chelates 

resulting from asymmetrically disubstituted ligands, as we shall see in the next section. 
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Figure 3.2 Low magnetic field (7 MHz on 13C) sections of 13C NMR spectrum of cis-bis(N,N-diethyl-N’-

benzoylthioureato)platinum(II), showing the N-CH2-CH3 resonances. One resonance (in a 
favourable W pathway to the Pt atom, shown in bold) couples to the platinum atom while the other 
does not. The N-CH2-CH3 resonances, since being much further away from the platinum atom do 
not show this difference and hence resonate with equal intensity. 

 

 

3.3.2.2 Complexes derived from asymmetrically disubstituted N-alkyl-N-alkyl(aryl)-N’-acylthioureas, ligands; HL5, 
HL6, HL7 and HL8 

 

On coordination to the platinum(II) centre the asymmetrically disubstituted ligands carry through their E,Z 

configurational isomerism resulting in ZZ, EZ and EE isomers of the platinum(II) chelates (Figure 3.3). The presence 

of such isomers is illustrated by well-resolved 195Pt NMR resonances at room temperature for cis-[Pt(L5,6,7-S,O)2]. 

However, for cis-[Pt(L8-S,O)2] it was necessary to lower the temperatures significantly to verify the presence of the 

three isomers. At room temperature the 195Pt NMR spectrum of this particular complex is rather deceptive as it shows 

only one peak (Figure 3.3(d)). Still from 1H and 13C NMR spectra it was concluded that there ought to be more than 

one isomer present. Moreover the ligand (HL8) with which the complex had been synthesised does clearly display 

E,Z isomerism at room temperature. Therefore, it would have been unexpected for the resultant complex to adopt 

only one configuration. Indeed, upon lowering of the temperature significantly the three isomers became visible, 

something which is beautifully displayed in Fig.3.3(d). Figure 3.3 together with Table 3.3 summarise where the 

isomers of all the complexes resonate and also show their various ZZ, EZ and EE isomer populations. In both Figure 

3.3 and Table 3.3 the ZZ, EZ and EE isomers have been assigned, however, the actual assignments of these isomers is 

discussed in the following Section 3.3.2.3. 
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Figure 3.3: The 86 MHz 195Pt NMR spectra of cis-[Pt(L5,6,7,8-S,O)2] showing their isomer distribution with the 

exception of cis-[Pt(L8-S,O)2] for which deconvolution analysis could not be performed. All the 
measurements were carried out in deuterated chloroform (at 303 K for cis-[Pt(L5,6,7,8-S,O)2] and at 
various temperatures for cis-[Pt(L8-S,O)2]) 
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Table 3.3 Assignments of δ(195Pt) (ppm) and the relative distributions (taken from 195Pt NMR deconvolution 
analysis) of configurational isomers of cis-[Pt(L5,6,7,8-S,O)2] complexes. 195Pt NMR measurements 
were carried out in CDCl3 at 298 K except for cis-[Pt(L8-S,O)2], which was at 228 K. In 
parenthesis are the 1H NMR integrals. 

 
Complex ZZ EZ EE 

δ(195Pt) cis-[Pt(L5-S,O)2] -2738 -2741 -2745 
[b]Statistical (%) 57 29 14 

[a] Relative integrals (%) 57 (56) 35 (38) 8 (6) 

δ(195Pt) cis-[Pt(L6-S,O)2] -2731 -2733 -2738 
[b]Statistical (%) 63 25 12 

[a] Relative integrals (%) 53 (54) 39 (39) 8 (7) 

δ(195Pt) cis-[Pt(L7-S,O)2] -2724 -2727 -2730 
[b]Statistical (%) 55 30 15 

[a] Relative integrals (%) 65 (65) 30 (31) 5 (4) 

δ(195Pt) cis-[Pt(L8-S,O)2] -2744 -2745 -2747 
[b]Statistical (%) 10 20 70 

[c]Relative integrals (%) - - - 

[a] The observed relative 195Pt NMR integrals are estimated to have an error of  1%. 
[b] Calculated from the E,Z distributions of the ligands assuming that they retain their configuration during and 

after complexation to the platinum(II) centre. 
[c] Could not be measured reliably since these peaks are not well resolved even at 228 K. 
 

 

3.3.2.3 Assignment of E,Z configurational isomer of platinum(II) chelates by multinuclear magnetic resonance 
spectroscopy 

 

Thus far, the 195Pt NMR spectra are presented such that the most downfield resonance is assigned to the ZZ isomer 

followed by the EZ isomer being further upfield, followed by the EE isomer. This assignment is not necessarily 

straightforward as the ambiguity being that the EE and ZZ assignments could be reversed. In the unbound ligands the 

argument of the magnetic anisotropy of the thiocarbonyl group deshielded the N-alkyl protons coplanar to it, was 

used. Due to an expected electronic delocalisation on the thiocarbonyl moiety upon ligand coordination to the Pt(II) 

metal centre it is uncertain that this thiocarbonyl group would display the same magnetic anisotropy. Since the 

deshielding effect of the thiocarbonyl moiety on the coplanar N-alkyl protons is in doubt, we cannot rely on this way 

of assigning the complexes. 

 

Hence an alternative multinuclear NMR spectroscopic technique has been used for the assignment of these 

complexes. Only cis-[Pt(L5,6,7-S,O)2] complexes will be used as an illustration as to how these complexes are 

assigned. With the cis-[Pt(L8-S,O)2] complex we were limited by severe overlapping of the resonances in both the 1H 

and 13C NMR spectra as well as the low temperature necessity to observe the 195Pt NMR resonances of the three 
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isomers (Figure 3.3), which are important for assigning of the isomers, however it is assumed that the assignments of 

its isomers follow the same trend as the other complexes. 

 

In this context it is not necessary to show the full 1H and 13C NMR spectra of these complexes; only key sections of 

the spectra that lead to the assignments of these isomers are discussed. At room temperature for cis-[Pt(L5-S,O)2] and 

cis-[Pt(L7-S,O)2] complexes the 1H NMR spectra show four singlet resonances for both N-CH3 and N-CH2- protons 

for the three isomers. Two resonances are of equal intensity within experimental error and are clearly due to the EZ 

isomer since this isomer has two slightly magnetically different ‘halves’ (on one side the ligand is orientated in the Z 

configuration and on the side the ligand is orientated in the E configuration). Having assigned the central resonance 

in the 195Pt NMR spectra to the EZ isomer by comparing its relative integrated peak intensity to the resonances of 

equal intensity in the 1H NMR spectra for both N-CH3 and N-CH2- regions, we are only left with the ZZ and EE 

isomers to assign. In the case of cis-[Pt(L6-S,O)2] only the N-CH3 resonances have the described feature (i.e. four 

resonances are observed for the three isomers) so the same arguments hold for the assignment of the EZ isomer. Only 

two sets of the N-CH2- triplet resonances are observed for the three isomers implying some overlapping of 

resonances. It is assumed that the ZZ and ‘Z half’ of the EZ isomer (alternatively labelled as Z(EZ)) N-CH2- protons 

overlap and contribute to one triplet resonance and that the EE and the ‘E half’ of the EZ isomer (alternatively 

labelled as E(EZ)) N-CH2- protons overlap and contribute to the second triplet resonance. This overlapping does not 

necessarily hamper the attempts of assigning the isomers of this particular complex, as the singlet N-CH3 proton 

resonances suffice for the purpose of assignment. Figure 3.4 shows the N-CH2- proton resonances of cis-[Pt(L5-

S,O)2] and cis-[Pt(L7-S,O)2] and N-CH3 proton resonances of cis-[Pt(L6-S,O)2]. 

 

 
 
Figure 3.4 Sections of 1H NMR spectra for (a) cis-[Pt(L5-S,O)2], (b) cis-[Pt(L7-S,O)2] and (c) cis-[Pt(L6-

S,O)2], respectively. Deconvolution analyses show the relative populations of each isomer. 
 

 

The relative populations of ZZ, EZ (combination of Z(EZ) and E(EZ)) and EE in the 1H NMR spectra mirror the 

observed integrals of these isomers in the 195Pt NMR spectra within experimental error. 
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In the 13C NMR spectra of all the complexes, cis-[Pt(L5,6,7-S,O)2], only two sets of N-CH3 carbons and N-CH2- 

carbons are observed, namely those in a favourable W coupling pathway. This implies that for N-CH3 and N-CH2- 

carbons the ZZ and Z(EZ) isomers overlap as one resonance while the EE and E(EZ) isomers overlap as the second 

resonance. Even though 2J(195Pt-13C) couplings are not observable for the C(O) and C(S) carbons in the chelate ring, 

relatively broad 4J(195Pt-13C) ca 20 Hz satellites are observed for only one set of N-CH3 carbons as well as to only one 

set of the N-CH2- carbons. These satellites were observed on an NMR spectrometer with a magnetic strength of 7.05 

T (300 MHz 1H frequency or 76 MHz 13C frequency). Ideally for well-resolved satellites to be attained, the spectra 

should be run at even lower magnetic field spectrometer, however this was unfortunately not available. At higher 

magnetic field the 4J(195Pt-13C) coupling satellites are lost due to field dependent chemical shift anisotropy 

broadening, which is characteristic of Pt(II) square planar complexes.7 The set of N-CH3 carbons and N-CH2- carbons 

that show these 4J(195Pt-13C) coupling satellites described above are orientated in a favourable W coupling pathway 

to the 195Pt isotope (depicted by the bold lines in Scheme 1 and exemplified for cis-[Pt(L5-S,O)2] in Figure 3.5). 

Secondly, the N-alkyl groups that couple to the 195Pt isotope appear relatively downfield relative to the N-alkyl 

groups that do not couple to the 195Pt isotope (Figure 3.5). These findings are consistent with our observations 

described in the case of cis-[Pt(L4-S,O)2] with a symmetrically disubstituted ligand (Figure 3.2). 

 

 
 
Figure 3.5 76 MHz 13C frequency sections of the 13C NMR spectrum of cis-[Pt(L5-S,O)2] showing ZZ, EZ and 

EE isomers 4J(195Pt-13C) couplings to N-CH2- carbons and N-CH3 carbons via a W coupling 
pathway to the 195Pt isotope. 
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In Figure 3.5 the cis-[Pt(L5-S,O)2] complex is used as an example to illustrate the 4J(195Pt-13C) couplings, which are 

observed only for one set of N-CH2- carbons and one set of N-CH3 carbons. The EZ isomer is used in the figure since 

it has both components i.e. where the ligand is orientated in both the E and Z configurations. 

 

The combined observations from the 1H NMR spectra and low magnetic field 13C NMR spectra allow for a 

combination of low magnetic field 13C NMR spectra and high-resolution gHSQC (1H/13C) correlation 2D NMR 

spectra which consequently assigned the three 195Pt NMR resonances of the resultant complexes. This should be 

possible since the platinum nuclei are linked spatially to specific N-alkyl carbons (via the W coupling pathway 

described above) and the gHSQC (1H/13C) experiment can in turn be used to link the N-alkyl carbons with the 

protons directly attached to them. The relative populations of the ZZ, EZ and EE isomers link the 1H resonances with 

the 195Pt resonances. The combination of the two techniques should in principle result in the same assignments as 

would be achieved by means of triple resonance 1H-(13C)-195Pt correlation NMR spectroscopy that was described by 

us6 for complexes with same structural motif. 

 

From the sections of the 13C NMR spectrum presented in Figure 3.5 for cis-[Pt(L5-S,O)2] it seems that the EE isomer 

is the minor isomer relative to the ZZ isomer since the EE and the E(EZ) isomers give rise to the lower intensity N-

CH2- and N-CH3 carbon resonances. By looking at the N-CH2- carbon resonance, for example, the EE isomer is 

thought to be the minor isomer, however, there are two opposing factors that contribute to the intensity of this 

resonance. First and far most the NMR active 33.8 % natural abundance 195Pt nuclei to which this N-CH2- carbon is 

coupled diminishes the intensity of this resonance. Secondly this resonance is a contribution of two isomers, the EE 

and E(EZ), which should intensify the N-CH2- carbon resonance. These two effects make it complicated to assign the 
195Pt resonance from 13C NMR spectrum alone. In order to draw unambiguous conclusions, a gHSQC (1H/13C) 

spectrum was recorded confirming that the EE isomer is indeed the minor isomer (with respect to the ZZ 

isomer).(Figure 3.6). 
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Figure 3.6 A section of a gHSQC (1H/13C) NMR spectrum for cis-[Pt(L5-S,O)2] complex, showing the 

connection between the N-CH2- protons and the N-CH2- carbons and the connection between the 
N-CH3 protons and the N-CH3 carbons to which they are attached. 

 

 

The 1H resonance of smallest intensity at 4.94 ppm shows a cross peak to the N-CH2- 
13C resonance in which the 

ligand is orientated in the E configuration. The 1H resonance of highest intensity at 5.01 ppm on the other hand has a 

cross peak with the N-CH2- carbon in which the ligand is orientated in the Z configuration. Clearly, this assignment 

should be the same in the EE, EZ and ZZ resonances observed in the 195Pt NMR spectrum (Figure 3.3), therefore 

assigning the most upfield 195Pt resonance to the ZZ isomer and the most downfield resonance to the EE isomer in the 
195Pt NMR spectrum. As a means of confirming the above assignments, the same analysis is done for the N-CH3 (

1H 

and 13C) resonances. From the 1H NMR spectrum, unfortunately, the resonance due to the minor isomer is not 

observable as a result of unexpected overlapping. However, it can be argued that if one N-CH3 proton resonance at 

3.16 ppm (the major isomer in this case) has a cross peak with the N-CH3 carbon in the W pathway to the 195Pt 

isotope then the other N-CH3 proton resonance due to the minor isomer should in principle have a cross peak with the 

other N-CH3 carbon. This should be the case since they lie in different orientations, one in the E orientation in the EE 

isomer and the other in the Z orientation in the ZZ isomer. This claim is well illustrated by the Z(EZ) and E(EZ) 1H 

resonances for both N-CH2- and N-CH3 in Figure 3.6. For example, the E(EZ) proton resonance at 4.97 ppm for the 

N-CH2- protons is correlated to the EE and E(EZ) N-CH2- carbon resonance. On the other had the Z(EZ) proton 

resonance at 4.99 ppm for N-CH2- protons is correlated to the ZZ and Z(EZ) N-CH2- carbon resonance. 

 

As already stated, in the cis-[Pt(L6-S,O)2] complex there is an overlap of the N-CH2- proton resonances and only the 

N-CH3 (
1H and 13C) resonances can be used in the gHSQC (1H/13C) NMR spectrum for the assignment of EE and ZZ 

isomers (Figure 3.7). The 1H N-CH3 resonance at 3.08 ppm (due to the major isomer) has a cross peak with the 
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downfield N-CH3 carbon, implying that it is in the Z configuration. Unfortunately, the cross peak for the 1H N-CH3 

resonance at 3.10 ppm is not clearly observable but is expected to be correlated with the upfield N-CH3 carbon. 

 

 
 
Figure 3.7 A section of a gHSQC (1H/13C) NMR spectrum for cis-[Pt(L6-S,O)2] complex, showing the 

connection between the N-CH3 protons and the N-CH3 carbons to which they are attached. 
 

 

In the case of the cis-[Pt(L7-S,O)2] complex which is very similar to the cis-[Pt(L5-S,O)2] complex results in a 

clearer assignment since all the expected cross peaks in the gHSQC (1H/13C) spectrum for both N-CH2- and N-CH3 

resonances are observed with no overlapping (Figure 3.8). Once again the ZZ isomer is the major component while 

the EE isomer is in the minor component for the same reasons presented for the cis-[Pt(L5-S,O)2] complex and 

therefore the downfield resonance at -2724 ppm in the 195Pt NMR spectrum must be due to the ZZ isomer while the 

most upfield resonance at -2730 ppm is due to the EE isomer. 
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Figure 3.8 A section of a gHSQC (1H/13C) NMR spectrum for cis-[Pt(L7-S,O)2] complex, showing the 

correlation between the N-CH2- protons and the N-CH2- carbons and the correlation between the N-
CH3 protons and the N-CH3 carbons to which they are attached. 

 

 

Since the ligands were assigned by arguing that the magnetic anisotropy of the thiocarbonyl group deshields the N-

alkyl groups coplanar to it, it is tempting to assign the isomers of the ZZ, EZ and EE Pt(II) configurational isomers in 

the same manner. This method seems to work if it is employed to the N-CH2- protons (in both Figure 3.6 and 3.8) 

since the most downfield resonance (as it would be deshielded by the thiocarbonyl group) belong to the major 

component. However this way of assigning should also be consistent in that the N-CH3 protons of the major 

component should be upfield relative to those of the minor component. That should be the case since the N-CH3 

protons are now coplanar to the thiocarbonyl group and therefore should be more deshielded and resonate downfield. 

This consistency was observed throughout when the unbound ligands were assigned by this method. In the case of 

the complexes particularly the much clearer gHSQC (1H/13C) NMR spectrum of cis-[Pt(L7-S,O)2] complex illustrates 
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discrepancy in the chemical shift positions of the N-CH3 protons. It is not so easy to show this discrepancy in the 

case of cis-[Pt(L5-S,O)2] since the N-CH3 proton resonance of the minor component is not observed due to 

overlapping. It seems therefore that the magnetic anisotropy of the thiocarbonyl group in the coordinated ligand is 

not entirely the same as that of the unbound ligand and cannot be used reliably for assigning the complexes. 

 

3.3.3.4 Comment on isomer distributions 

 

It only remains to make some comments about the isomer distributions observed for the resultant chelates. In Table 

3.3 the first thing to note is that the isomer distributions attained are not the same as the statistically predicted ones. 

The second observation is that deviations from the statistically predicted distributions also occur among ligands with 

nearly the same E,Z isomer distributions (e.g. HL5 and HL7). Comparing the distributions of the complexes derived 

from N-phenethyl-N-methyl-N’-2,2-dimethylpropanoylthiourea, HL6 with those obtained from a ligand with the same 

75% Z : 25% E isomer ratio, N-ethyl-N-methyl-N’-2,2-dimethylpropanoylthiourea,6 we find that the differences are 

even more pronounced. The isomer ratio for a complex derived from this particular ligand was such that the EZ 

isomer was favoured (47%) followed by the ZZ isomer (40%) then the EE isomer with (13%). It seems that the 

isomer ratio of the ligand itself may not be the factor that directs isomer distribution that is attained in the resultant 

complexes. In this chapter we do not attempt to resolve this question and that is left for the following two chapters. 

 

3.4 Concluding remarks 

 

In a series of unsymmetrical dialkyl-substituted ligands that display E,Z configurational isomerism at room 

temperature, it was easily illustrated from 1H and 195Pt NMR spectroscopy that these ligands carry through this 

isomerism to the resultant platinum(II) chelates derived from them; the ZZ configurational isomer is favoured in all 

the complexes described in this chapter. By means of a low magnetic field 13C NMR spectroscopy, long range 
4J(195Pt-13C) coupling could be observed between the 195Pt nucleus and N-alkyl carbons that are only orientated in a 

W pathway to the 195Pt nucleus itself. This factor together with the good dispersion of the N-alkyl protons allowed us 

to indirectly link the 195Pt resonances with the N-alkyl protons via 2D gHSQC (1H/13C) experiments, therefore 

assigning the cis-[Pt(ZZ-L5,6,7-S,O)2], cis-[Pt(EZ-L5,6,7-S,O)2] and cis-[Pt(EE-L5,6,7-S,O)2] configurational isomer in 

all of the 1H, 13C and 195Pt NMR spectra. This technique could not be employed in the case of cis-[Pt(ZZ-L8-S,O)2] 

due to severe overlapping in both 1H and 13C NMR spectra but it is assumed that the assignments of the 195Pt 

resonances (which were only observable at 228 K) of this complex are similar to the others i.e. the most downfield 

resonance is due to the ZZ isomer followed by the EZ isomer then by the EE isomer. We observed that the E,Z 

isomer distributions of the unbound ligands may not necessarily be the factor that determines the ZZ, EZ and EE 

isomer distributions of the resultant complexes. A detailed probe into the factors that affect these isomer distributions 

is evaluated in the next two chapters. 
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Chapter 4: Coordination chemistry of asymmetrically 

disubstituted N-alkyl-N-aryl-N’-acylthioureas to 

platinum(II) 

 

Part 2: The electronic influence of the para-substituent, X (X = O-CH3, H and 

NO2) of the N-(para-X-Ph) group on the isomer distribution of E,Z 

configurational isomers of platinum(II) complexes of N-methyl-N-(para-X-

Ph)-N’-acylthioureas 

 

Summary 

In a series of asymmetrically disubstituted ligands of the type N-alkyl-N-aryl-N’-2,2-dimethylpropanoylthiourea, 

the degree of double bond character observed for the thiourea (S)C-N(Me)(para-X-Ph) bond (X = O-CH3, H and 

NO2) results in the formation of two possible configurational (E and Z) isomers of the ligand, reflecting the relative 

orientation of the aryl moiety with respect to the thiocarbonyl moiety. In solid state, it appears that the E orientation 

is favoured for N-methyl-N-(4-methoxy-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL1A and N-methyl-N-

phenyl-N’-(2,2-dimethylpropanoyl)thiourea, HL2A while in solution at low temperature both of these ligands 

display E/Z configurational isomerism. The relative amounts of E and Z isomers are roughly 90% : 10% for both 

HL1A and HL2A based on deconvolution analysis of their respective 1H NMR spectra measured at 243 K. The E and 

Z isomers of a similar ligand N-methyl-N-(4-nitro-phenyl)-N’-(2,2-dimethylpropanoyl)thiourea, HL3A could not 

separate to individual resonances even at 198 K. The platinum chelates derived from these ligands adopt EE, EZ 

and ZZ orientations with varying isomer distributions depending on the para-substituent X of the N-(para-X-Ph) 

group. 
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Dynamic NMR complemented by DFT linear transit calculations reveal that the barrier to rotation around the (S)C-

N(Me)(para-X-Ph) bond of ligands and complexes follows the order: X = O-CH3 > H > NO2 with X being the 

para-substituent on the aromatic ring. The ZZ isomer was observed to be favoured over the EZ and EE isomers 

increasingly so in the same order. Importantly therefore, the predominantly configuration has consistently changed 

going from the ligands to the corresponding Pt(II) complexes. Calculations of the Gibbs free energies of activation, 

G≠
c, using the coalescence temperatures of these complexes appear to support our findings that the ZZ is the 

energetically favoured isomer, although the energy difference between the ZZ and EE complexes was found to be 

only small (ca 2 kcal/mol). 
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4.1 Introduction 

 

In the previous chapter it was shown by means of multinuclear NMR spectroscopy how the 195Pt NMR spectra of the 

ZZ, EZ and EE configurational isomers of platinum(II) chelates derived from asymmetrically disubstituted N,N-

dialkyl-N’-acylthioureas could be assigned. In turned out generally that the most downfield 195Pt resonance was due 

to the ZZ isomer followed by the EZ isomer while the most upfield 195Pt resonance was due to the EE isomer. The 

isomer distributions were also skewed towards the ZZ isomer and the EE isomer was the least favoured. Having 

managed to assign the isomers of the Pt(II) chelates discussed in chapter 3, the question of what determines these 

isomer distributions was next to be undertaken. 

 

This question arose since it was observed that the E,Z isomer distributions of the unbound ligands seemed to pay 

little role in distribution of the ZZ, EZ and EE of the resultant complexes. The question of factors that influence the 

isomer distributions has been dealt with in two chapters. In this chapter the primary focus was the effect of  

electronic factors of the R and R’ groups of the (S)C-NRR’ moiety. For this purpose a new range of ligands was 

synthesised in which one N-alkyl group was fixed while systematic ‘electronic’ variations on N-aryl group were 

made. In this new repertoire of unsymmetrical N-alkyl-N-aryl-N’-acylthioureas there is no alkyl spacer between the 

nitrogen atom and the aromatic ring in the -(S)C-N(R)(para-X-Ph) moiety with (X = O-CH3, H and NO2), as it was 

the case in some the ligands discussed in the previous chapter (Figure 4.1). 

 

 
 
Figure 4.1 Structural differences between the new range of ligands discussed in this chapter and those 

discussed in chapter 3. 
 

 

Removal of the alkyl spacer appears to reduce the barrier to rotational around the (S)C-N(Me)(Ar) bond significantly 

compared to the system of ligands with an alkyl spacer; on the basis that the two sets of N-CH3 resonances due to the 

E/Z configurational isomers are only observed at low temperatures unlike the ligands in the previous chapter where 

these resonances were clear at room temperature. Lowering of the rotational barrier due to aromatic substituents in 
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N-arylthiocarbamates and N-aryldithiocarbamates1 and vinyl substituents in N-vinyl substituted amides2 is a known 

phenomenon in the literature. It is generally thought that there is a ‘cross conjugation’ competition for the lone pair 

electrons on the nitrogen atom as they may either contribute towards the (S)C-N(R)(para-X-Ph) bond or be pulled 

towards the aromatic ring.1 If the lone pair is pulled towards the aromatic ring one can picture that electron 

donating/electron pulling substituents on the aromatic ring will have an effect on the rotation barrier of the (S)C-

N(R)(para-X-Ph) bond. In this regard we have synthesised ligands bearing three different para-substituents on the N-

aryl group of the ligands viz: a methoxy group (which is electron-donating), a nitro group (which is electron-

withdrawing) and no substituent (which is an intermediate of the two extremes). 

 

Low temperature (278 K to 243 K) 1H and 13C NMR spectra of the ligands in discussion (HL1A, HL2A and HL3A) 

clearly demonstrate the existence of two isomers while at room temperature (298 K) this is not as apparent. Not 

understanding the subtleties of the lowered (S)C-N(R)(para-X-Ph) bond rotation barrier present in HL1A, HL2A and 

HL3A at the time, their initial characterisation in solution, at room temperature, together with their crystal structures, 

initially suggested that the ligands are only oriented in the E conformation. It remained a puzzle as to why, on 

complexation to the platinum(II) centre all three isomers cis-[Pt(EE-L1A,2A-S,O)2], cis-[Pt(EZ-L1A,2A-S,O)2] and cis-

[Pt(ZZ-L1A,2A-S,O)2] were formed (see Scheme 1). 

 

 
 
Scheme1 On complexation to [PtCl4]

2- the E/Z isomerism in the uncoordinated ligands is relayed to their 
platinum chelates cis-[EE-Pt(L1A,2A,3A-S,O)2], cis-[EZ-Pt(L1A,2A,3A-S,O)2] and cis-[ZZ-Pt(L1A,2A,3A-
S,O)2]. 
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The presence of three isomers was evident from the distinct chemical environment the 195Pt nuclei of these 

configurational isomers which led to separate resonances in the 195Pt NMR spectra. However, the presence of two 

isomers as reflected by duplication peaks in 1H and 13C NMR spectra of the ligands (HL1A and HL2A) only to be 

revealed at low temperature logically explained this puzzle. Low temperature 1H NMR also assisted in the 

determination of the E/Z isomer ratios in the unbound ligands. However, under identical conditions HL3A displays no 

evidence of the second isomer, which presents an interesting conundrum since this ligand is structurally similar to the 

other two (HL1A and HL2A) the only difference being the nitro group at the para position of the N-aryl group. The 

two isomers could not be observed as separate signals despite the solvent change from chloroform to 

dichloromethane, a solvent with a lower freezing point. On complexation though, 1H and 13C NMR spectra of the 

complex reveal the characteristic ‘pattern’ when three isomers are present (i.e. two peaks due to two isomers, EE and 

ZZ and two other peaks due to the EZ isomer). The 195Pt NMR spectrum in dichloromethane was nevertheless not 

well resolved even at 198 K. 

 

In this chapter we primarily analyse electronic effects of remote substituents transferred through an aromatic ring on 

the rotational barrier of the (S)C-N(R)(para-X-Ph) bond and the effects thereof on the configurational isomer 

distributions of the platinum(II) chelates derived from the N-methyl-N-(para-X-phenyl)-N’-acylthiourea ligands. As 

it happened unintended for this chapter the role of solvent and temperature at which the configurational isomers are 

measured are also discussed for reasons that will be clear later. 

 

4.2 Experimental 

4.2.1 General remarks 

 

The synthesis and characterisation of ligands has already been described in detail in chapter 2, however, for 

comparison with the platinum(II) chelates derived from these ligands their NMR assignments will be discussed. 

 

4.2.2 NMR spectroscopy 

 

Conventional 1H and 13C NMR spectra of relatively high concentrations (ca 80 mg.cm-3) of the ligands and their 

respective platinum(II) complexes using 5 mm diameter tubes were obtained at various temperatures in deuterated 

chloroform using a Varian Inova 400 spectrometer operating at 400 and 101 MHz for 1H and 13C, respectively. 

Additionally, an alternative solvent (deuterated dichloromethane) was used to enable analysis to be carried out at 

even lower temperatures. This was necessary so since HL3A and the platinum complex derived from this ligand could 

not be adequately analysed at the temperatures at which other compounds were analysed. The coalescence 

temperature, Tc reported in this chapter is the minimum temperature at which the signals arising from N-CH3 proton 

signals of all the isomers are no longer distinguishable. The precision of the Tc determinations was estimated by 

recording the 1H NMR spectra in 1 °C increments over a 5 °C range around each of the Tc’s. All samples were 
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carefully filtered before any spectroscopic measurement was undertaken. 1H chemical shifts are quoted relative to the 

residual CDCl3 solvent resonance at 7.26 ppm and the 13C chemical shifts are quoted relative to the CDCl3 middle 

resonance of the triplet at 77.0 ppm. In the case where CD2Cl2 is used as the solvent, 1H chemical shifts are quoted 

relative to the solvent triplet resonance at 5.31 ppm and the 13C chemical shifts are quoted relative solvent quintet 

resonance at 55.8 ppm. The 195Pt NMR spectra of the complexes were also recorded at various temperatures using the 

Varian Inova 400 spectrometer operating at 86 MHz [reference material: 500 mg.cm-3 H2PtCl6 in 30% (v/v) D2O-1M 

HCl at δ(195Pt) = 0 ppm at 30 °C]. 

 

4.2.3 Density Functional Theory calculations: Computational details 

 

In order to model the influence of the para-substituents on the barrier to rotation around the C-N bond, model Pt(II) 

complexes were chosen over the ligands. The main reason is that the unbound ligands have many degrees of freedom 

with regard to C-N bond rotations and this would lead to a complex energy surface that is computationally time 

consuming to workout. For the determination of the relative barriers to rotation around the (S)C-N(Me)(para-X-Ph) 

bond of the Pt(II) complexes as the para-substituent is altered from a methoxy group to hydrogen atom to a nitro 

group, we chose two model systems. In model 1 the cis-bis Pt(II) complex is coordinated with two different ligands 

N,N-dimethyl-N’-methylthiourea and N-methyl-N-(para-X-phenyl)-N’-methylthiourea. Geometrical optimisation of 

this complex was performed before the rotation around the C-N bond of interest was done from where the ligand is 

initially orientated in an E position to a final Z position (Scheme 2(a)). In model 2 the cis-bis Pt(II) complex is 

coordinated with two identical ligands of the type N-methyl-N-(para-X-phenyl)-N’-methylthiourea. Again 

geometrical optimisation of this complex was performed with the both ligands in an E orientation (i.e. the complex is 

the EE configurational isomer). The rotation about the C-N bond of interest was done on one of the ligands such that 

after nearly 180-degree rotation an EZ complex is obtained. Continuing the increment rotations of this C-N bond for 

a further ca 180-degree rotation the complex is found in the initial EE configuration (Scheme 2(b)). 

 

All calculations were performed with the ADF (Amsterdam Density Functional) suite of programs,3 release 2004.01 

and 2005.01. For the restricted ground-state calculations, which included geometry optimisations, and linear 

conformational scans, we selected the following procedures. We made use of the local density approximation (LDA) 

functional of Vosko-Wilk-Nusair (VWN),4 augmented with the non-local gradient correction PW91 from Perdew et 

al.5 Relativistic effects have been taken into account using the scalar relativistic (SR) zero-order regular 

approximation (ZORA).6 The ZORA basis sets used were of triple ζ plus polarization Slater type function (STO) 

quality (basis TZP in ADF). 
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Scheme 2 (a) Model 1 allows the estimation of the barrier to rotation around the (S)C-N(Me)(para-X-Ph) 

bond of the Pt(II) complexes for para-substituent, X = O-CH3, H and NO2 as the ligand rotates 
through 180º angle from the E orientation to the Z orientation. (b) Model 2 achieves the same 
result and is much better model to the actual platinum(II) chelates in Scheme 1. 

 

 

4.2.4 Synthesis of platinum complexes 

 

Platinum(II) complexes were prepared and characterised according to our previously published method,7 which 

entails drop-wise addition a platinum(II) solution (in a one to one volume of acetonitrile to water) to a solution of 

ligand and sodium acetate (also in a one to one volume of acetonitrile to water). All the reagents were commercially 

available and were used without any prior purification. The reactions were generally conducted at 50 ºC for two 

hours. After the reaction solutions had cooled to room temperature, excess water was added and reaction mixtures 

were refrigerated before the products were collected by means of centrifugation and dried under vacuum. Elemental 

analyses were performed using a Carlo Erba EA 1108 elemental analyser courtesy of the University of Cape Town. 

Detailed 1H and 13C NMR spectroscopic data for the new complexes follows the numbering scheme indicated 

Scheme 3. For the 1H NMR assignments the carbon to which the protons are attached will be indicated. 
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Scheme 3 Numbering scheme for 1H and 13C NMR assignments of the new complexes. The coordinated 

ligand is only drawn in a Z orientation. 
 

 

cis-bis(N-Methyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1A-S,O)2]: 

A yield of 81% was collected and analysed. Found C 44.85, H 5.11, N 7.65 and S 8.54 C30H40N2O2PtS2 required C 

44.61, H 5.08, N 7.43 and S 8.51%. H(400 MHz; solvent CDCl3): 7.21 (2H, d, C6 EZ), 7.10 (2H, d, C6 ZZ), 7.03 

(2H, d, C6 EE), 6.92 (2H, d, C7 EZ), 6.84 (2H, d, C7 ZZ), 3.50 (1H, s, C9 EE), 3.43 (1H, s, C9 E(EZ)), 3.37 (1H, s, C9 

ZZ), 3.36 (1H, s, C9 Z(EZ)), 3.82 (3H, s, O-CH3 EE), 3.81 (3H, s, O-CH3 E(EZ)), 3.80 (3H, s, O-CH3 Z(EZ)), 3.76 

(3H, s, O-CH3 EE), 1.24 (9H, s, C1 Z(EZ)), 1.22 (9H, s, C1 ZZ), 0.87 (9H, s, C1 EE), 0.85 (9H, s, C1 E(EZ)). C(101 

MHz, solvent CDCl3): 183.89 C3 Z(EZ), 183.68 C3 ZZ, 182.79 C3 (EE), 182.65 C3 E(EZ), 168.08 C4 ZZ, 168.00 C4 

Z(EZ), 167.83 C4 E(EZ), 158.42 C8 Z(EZ), 158.24 C8 ZZ, 157.32 C8 EE, 157.23 C8 E(EZ), 138.74 C5 E(EZ), 137.94 

C5 Z(EZ), 137.90 C5 ZZ, 128.24 C6 Z(EZ), 128.15 C6 ZZ, 126.99 C6 E(EZ), 114.46 C7 Z(EZ), 114.36 C7 ZZ, 113.24 

C7 EE, 113.17 C7 E(EZ), 54.40 (O-CH3) ZZ, EZ and EE, 42.29 C9 Z(EZ), 42.23 C9 ZZ, 41.86 C9 EE, 41.79 C9 

E(EZ), 42.79 C2 EE, 42.61 C2 E(EZ), 42.42 C2 Z(EZ), 42.35 C2 ZZ, 28.13 C1 ZZ and Z(EZ), 27.50 C1 EE and E(EZ). 

 

cis-bis(N-Methyl-N-phenyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L2A-S,O)2]: A yield of 

91% was collected and analysed. Found C 45.20, H 4.94, N 8.00 and S 9.08 C28H36N2O2PtS2 required C 45.01, H 

4.94, N 8.08 and S 9.24%. H(400 MHz; solvent CDCl3): 7.45 (2H, t, C7 EE and E(EZ)), 7.38 (2H, t, C8 EE and 

E(EZ)), 7.35 (2H, m, C7 ZZ and Z(EZ)), 7.31 (2H, t, C8 ZZ and Z(EZ)), 7.24 (1H, d, C6 Z(EZ)), 7.19 (1H, d, C6 ZZ), 

7.04 (1H, d, C6 EE), 3.53 (1H, s, C9 EE), 3.46 (1H, s, C9 E(EZ)), 3.39 (1H, s, C9 ZZ), 3.38 (1H, s, C9 Z(EZ)), 1.26 

(9H, s, C1 Z(EZ)), 1.24 (9H, s, C1 ZZ), 0.85 (9H, s, C1 EE), 0.84 (9H, s, C1 E(EZ)). C(101 MHz, solvent CDCl3): 

184.12 C3 Z(EZ), 183.90 C3 (ZZ), 182.94 C3 (EE), 182.80 C3 E(EZ), 168.1 C4 ZZ, EZ and EE, 145.87 C5 E(EZ), 

145.13 C5 Z(EZ), 145.07 C5 ZZ, 129.58 C7 Z(EZ), 129.47 C7 ZZ, 128.49 C7 EE, 128.41 C7 E(EZ), 127.99 C8 EE and 

E(EZ), 127.80 C8 ZZ and Z(EZ), 127.17 C6 Z(EZ), 127.06 C6 ZZ, 126.51 C6 EE, 126.02 C6 E(EZ), 42.27 C9 Z(EZ), 

42.14 C9 ZZ, 41.87 C9 EE, 41.81 C9 E(EZ), 42.45 C2 EE and E(EZ), 42.39 C2 ZZ and Z(EZ), 28.17 C1 ZZ and 

Z(EZ), 27.44 C1 EE and E(EZ). 

 

cis-bis(N-Methyl-N-(4-nitro-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L3A-S,O)2]: A 

yield of 79% was collected and analysed. Found C 53.12, H 6.24, N 14.23 and S 9.57 C28H34N4O6PtS2 required C 

52.86, H 5.80, N 14.23 and S 10.86%. H(400 MHz; solvent CDCl3): 8.32 (2H, d, C7 Z(EZ)), 8.22 (2H, d, C7 ZZ and 

EE), 8.19 (2H, d, C7 E(EZ)), 7.56 (2H, d, C6 Z(EZ)), 7.43 (2H, d, C6 ZZ), 7.38 (2H, d, C6 EE), 7.32 (2H, d, C6 
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E(EZ)), 3.51 (1H, s, C9 EE), 3.44 (1H, s, C9 E(EZ)), 3.38 (1H, s, C9 ZZ), 3.36 (1H, s, C9 Z(EZ)), 1.19 (9H, s, C1 

Z(EZ)), 1.18 (9H, s, C1 ZZ), 0.81 (9H, s, C1 EE), 0.80 (9H, s, C1 E(EZ)). C(101 MHz, solvent CDCl3): 184.40 C3 

Z(EZ), 184.34 C3 (ZZ), 182.86 C3 (EE), 182.75 C3 E(EZ), 167.64 C4 Z(EZ), 167.55 C4 ZZ, 166.62 C4 EE, 166.43 C4 

E(EZ), 146.35 C8 Z(EZ), 146.24 C8 ZZ, 144.92 C8 EE, 144.85 C8 E(EZ), 151.9 C5 Z(EZ), 151.04 C5 ZZ, 150.36 C5 

EE, 150.20 C5 E(EZ), 125.11 C6 Z(EZ), 125.02 C6 ZZ, 123.90 C6 EE, 123.83 C6 E(EZ), 128.88 C7 Z(EZ), 128.79 C7 

ZZ, 127.48 C7 EE, 127.43 C7 E(EZ), 42.06 C9 Z(EZ), 42.01 C9 ZZ, 41.69 C9 EE, 41.34 C9 E(EZ), 42.50 C2 EE and 

E(EZ), 42.21 C2 ZZ and Z(EZ), 27.68 C1 ZZ and Z(EZ), 27.04 C1 EE and E(EZ). 

 

4.3 Results and Discussion 

 

Ligands with a general motif N-methyl-N-(para-X-phenyl)-N’-2,2-dimethylpropanoylthiourea (X = O-CH3, H and 

NO2) have been synthesised, and the electron donating and electron withdrawing properties of the para-substituent 

have been systematically altered. It was envisaged that these ligands would have different rotational barriers of the 

(S)C-N(Me)(para-X-Ph) bond and that would impact on their respective coordination properties towards 

platinum(II). The series of ligands investigated present a suitable model for examining the possible electronic effects 

since the altered substituents are six bonds away from the thiocarbonyl C-N bond of interest therefore excluding any 

possible steric interactions. 

 

4.3.1 E,Z configurational isomerism in asymmetrically disubstituted N-methyl-N-(para-X-phenyl)-N’-acylthiourea 
ligands, HL1A, HL2A and HL3A 

 

The restricted rotation about the carbon-nitrogen bond of the (S)C-N(Me)(para-X-Ph) moiety allows these ligands to 

adopt two possible configurational isomers but only at sufficiently low temperatures is this revealed by means of 1H 

and 13C NMR spectroscopy (Figure 4.2). Deconvolution analysis of the N-CH3 proton resonances in the 1H NMR 

spectra revealed nearly the same isomer ratio for both ligands; in the case of HL1A the isomer distribution is such that 

the E to Z isomer distribution is 87% to 13% and HL2A reveals a 90% to 10% ratio in favour of the E isomer. In 

CD2Cl2 the E to Z ratio is very similar to that determined in chloroform; HL1A being 87% to 13% and 88% to 12% 

for HL2A. It appears that the solvent does not play any role in the isomer distribution of these ligands. The observed 

ratios fall in a similar range to those determined by Bourn et al.8 for N-methyl and N-ethylformanilide with the exo 

(phenyl group pointing away from the oxygen) product favoured 95% to 5%. The observed ratios fall in the general 

literature survey of N-alkylacetanilides that appear to exist predominantly as the exo isomer.9-12 
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Figure 4.2 Sections of 1H NMR spectra of HL1A and HL2A showing the O-CH3 and N-CH3 regions in HL1A 

and only the N-CH3 region for HL2A measured (a) at 298 K seemingly displaying one isomer 
(present) and (b) at 243 K in CDCl3 clearly showing the presence of two isomers, the E isomer 
being the dominant species. 

 

 

At low temperature 243 K in chloroform (Figure 4.3) and at 198 K in dichloromethane the N-CH3 peaks for E and Z 

isomers of HL3A could not be observed as separate signals, hence it was not possible to assess the E/Z ratios for this 

ligand. 

 

 
 
Figure 4.3 A section of 1H NMR spectrum of freshly dissolved HL3A showing the N-CH3 measured (a) at 298 

K displaying one isomer and (b) at 243 K seemingly retaining the same stereochemistry. 
 

 

This could either mean this particular ligand exists exclusively as one isomer or at the low temperatures (243 K in 

chloroform down to 198 in dichloromethane) at which the E/Z isomers are investigated are well above the 

coalescence temperature, hence the second isomer is not observable. The first proposal does not seem likely because 

if the ligand is in one conformation then it would mean that the (S)C-N(Me)(para-X-Ph) bond is stronger as the nitro 

group is introduced in the para position. This would be contrary to the expected trend of the weakening of the (S)C-

N(Me)(para-X-Ph) bond with a para substituent change: OMe ~ OEt > Me ~H > Cl > COOH >> NO2.
13,14 Of the 

three ligands (HL1A, HL2A and HL3A), HL3A is expected to have the weakest (S)C-N(Me)(para-X-Ph) bond due to the 
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electron-withdrawing nitro substituent followed by HL2A with no substituent at the para position then HL1A with the 

electron-donating group having the strongest N-C bond. As been discussed in chapter 2 Section 2.4.3, attempts of 

growing crystals of HL3A, which would support the hypothesis, were not successful. The ligand HL3A unexpectedly 

decomposed in recrystallisation solvents and only the starting material methyl-(4-nitro-phenyl)-amine was isolated. 

The decomposition of this ligand was also followed by means of 1H and 13C NMR in chloroform and indeed the 

ligand decomposes in a few days and the peaks due to methyl-(4-nitro-phenyl)-amine grow at the expense of the 

ligand peaks (Figure 2.9). Although the decomposition prevented isolation of the desired compound which would 

have allowed for the appropriate bond length comparisons, it supports of the hypothesis that HL3A has such a weak 

(S)C-N(Me)(para-X-Ph) bond caused by the electron withdrawing properties of the nitro group attached at the para 

position. It is therefore a reasonable assumption that HL3A also displays E/Z isomerism. The temperature at which the 

E/Z isomers are investigated the compound is still in very fast exchange on the NMR time scale. In other words we 

are operating well above the coalescence temperature. This implies that the rotation barrier about the C-N bond of the 

(S)C-N(Me)(para-X-Ph) moiety in this ligand is low in comparison to the other two ligands (HL1A and HL2A). 

Looking carefully at the N-CH3 resonance it is observed that this peak is broader at 243 K compared to 298 K, 

instead of sharpening on lowering the temperature. This is an opposite trend to the one observed for the other two 

ligands. This could be an indication that in fact both isomers of the ligand are formed, but that they are still in fast 

exchange on an NMR time scale even at this temperature (243 K). 

 

4.3.2 Platinum(II) chelates derived from ligands HL1A, HL2A and HL3A 

 

The presence of three configurational isomers in the complexes cis-[Pt(L1A,2A-S,O)2] is clearly shown by 195Pt NMR 

spectra (see Figure 4.4). The 195Pt NMR spectra of the complexes derived from HL1A and HL2A were measured at low 

temperature (243 K) since at this temperature the peaks are sharper than the extremes of room temperature and lower 

temperatures. Moreover, the signal to noise is improved and for this reason give rise to more reliable deconvolution 

analysis of the peaks which could be compared to the proton spectra deconvolutions at this temperature. 
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Figure 4.4 The 86 MHz 195Pt NMR spectra of (a) cis-[ZZ-Pt(L1A-S,O)2] at δ(195Pt) = -2725 ppm, cis-[EZ-

Pt(L1A-S,O)2] at δ(195Pt) = -2742 ppm and cis-[EE-Pt(L1A-S,O)2] at δ(195Pt) = -2750 ppm and (b) 
cis-[ZZ-Pt(L2A-S,O)2] at δ(195Pt) = -2717 ppm, cis-[EZ-Pt(L2A-S,O)2] at δ(195Pt) = -2737 ppm and 
cis-[EE-Pt(L2A-S,O)2] at δ(195Pt) = -2746 ppm measured in deuterated chloroform at 243 K. 

 

 

In Figure 4.4 (a) and (b), the middle peak has been assigned to the EZ complex as this, intuitively, should be 

positioned between the ZZ and EE chemical shift extremes. This assignment is in agreement with both the 1H and the 
13C NMR spectra of these complexes in that the ratio of the EZ (both E(EZ) and Z(EZ)) component to EE or ZZ 

components reflects what is observed in the platinum spectra (see Figure 4.5). 

 

 
 
Figure 4.5 1H NMR spectra showing N-CH3 peaks for cis-[Pt(L1A-S,O)2], cis-[Pt(L2A-S,O)2] measured in 

CDCl3 at 228 K and 243 K, respectively and cis-[Pt(L3A-S,O)2] measured in CD2Cl2 at 198 K. The 
deconvolution analyses show percentages of each isomer. In all cases the two peaks of equal 
intensity undoubtedly belong (E of the (EZ) and Z of the (EZ) complexes), while the most 
downfield peaks (of lowest intensity in (a) and (b)) correspond to the EE complexes and the most 
intense peaks are then due to the ZZ complexes. 
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The assignment of EE and ZZ isomers here also follows from the arguments presented in the previous chapter, the 

most downfield resonance assigned to the ZZ isomer while the most upfield resonance is assigned to the EE isomer. 

Remarkably, although an E to Z relative distribution of 90:10 in the unbound ligands is observed, the ZZ isomer is 

the configuration that appears to be (strongly) favoured again upon complexation. Ideally these assignments should 

be confirmed by means of 1H/13C/195Pt correlation NMR spectroscopy at low temperature (243 K for cis-[Pt(L2A-

S,O)2] and at 228 K for cis-[Pt(L1A-S,O)2]) where the N-CH3 protons are no longer in fast exchange. The 195Pt 

resonance assignments were nevertheless assigned as in chapter 3, without being biased by the isomer distributions 

of the unbound ligands. We have already shown that the E/Z isomer distributions of the unbound ligands are not a 

determining factor of the isomer distributions of the resultant complexes. 

 

At room temperature it is rather misleading that the 195Pt NMR spectrum of the configurational isomers derived from 

HL3 shows only one peak, however on lowering the temperature to 228 K in chloroform it was observed that this 

peak was broadening (Figure 4.6). This might be an indication that this complex may well display E/Z 

configurational isomerism as well, however the minimum temperature attainable using chloroform is not low enough 

to explicitly demonstrate that. 

 

 
 
Figure 4.6 195Pt NMR spectrum of cis-[Pt(L3A-S,O)2] measured in CDCl3 as the temperature is lowered from 

303 K to 228 K. As the temperature is lowered there is a hint of existence of more than one peak, 
however 228 K is not sufficiently low to show all the three isomers. 

 

 

Due to the limitation of the freezing point of chloroform 209 K (-64 °C) a change of solvent of similar properties but 

with lower freezing point 176 K (-97 °C) had to be used. For this purpose dichloromethane was chosen and at low 

temperatures (down to 198 K) the 195Pt NMR spectrum did not reveal all the three isomers and only two peaks were 

observed (Figure 4.7). 
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Figure 4.7 195Pt NMR spectrum of cis-[Pt(L3A-S,O)2] measured in CD2Cl2 as the temperature is lowered from 

303 K to 198 K. At 303 K a very sharp peak is observed while the temperature is progressively 
lowered the peak broadens hinting the anticipated dynamics. From 213 K and below only two 
peaks are observed instead of the expected three according to 1H NMR spectrum of this compound. 

 

 

Thus, the 195Pt NMR spectra in dichloromethane could not be relied upon for the purpose of determining the isomer 

distributions because for all the cases cis-[Pt(L1A,2A,3A-S,O)2] as the temperature is lowered to 198 K, not all the 

peaks due to the three isomers could be observed and hence the isomer distributions were then taken from the 

deconvolution analysis of the 1H NMR signals of the N-CH3 groups (shown in Figure 4.5 (c)) which show all the 

peaks due to the three isomers. It is reasonable to rely on the 1H NMR as reflecting the distribution of the isomers 

since the 1H NMR and 195Pt NMR deconvolution analysis in chloroform were complementing each other very well in 

the case of cis-[Pt(L1A,2A-S,O)2]. 

 

Apart from the broadening of the peak in Figure 4.6 in CDCl3 and Figure 4.7 in CD2Cl2 as the temperature is lowered 

it is also evident that there is a linear upfield shift of the 195Pt peak. This effect was also observed for cis-[Pt(L1A-

S,O)2] and cis-[Pt(L2A-S,O)2] and a plot of (195Pt) versus temperature Figure 4.8 clearly shows the sensitivity of the 

(195Pt) chemical shift to the temperature change. Cohen and Brown15 studied various platinum(II) complexes at 

various temperatures and observed a similar (195Pt) chemical shift dependence on temperature. 
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Figure 4.8 Temperature dependence of (195Pt) chemical shifts of cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2] 

complexes with □ ZZ ■ EZ and ▲ EE configurational isomer respectively. 
 

 

4.3.3 Solvent and temperature effects on the isomer distributions of unbound ligands and their complexes 

 

As discussed in the previous section for cis-[Pt(L3A-S,O)2] it was necessary to change the solvent from chloroform to 

dichloromethane in order to reach lower temperatures without the sample freezing. It was necessary to determine 

what impact the change of solvent might have on the isomer distributions of the other two complexes, cis-[Pt(L1A,2A-

S,O)2]. This would allow a more accurate comparison of the isomer distributions if the conditions were identical for 

all the complexes. For completeness this study was carried out for the uncoordinated ligands as well. In deuterated 

dichloromethane at 243 K, the uncoordinated ligands displayed a similar E/Z isomer distribution as found in 
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chloroform, 87% E : 13% Z for HL1A and 88% E : 12% Z for HL2A. The isomer distribution in the complexes 

however showed a significant change upon moving from CDCl3 to CD2Cl2. Figure 4.9 shows the N-CH3 section of 

the 1H NMR spectra of all the complexes at 198 K. 

 

 
 
Figure 4.9 1H NMR spectra showing N-CH3 peaks for (a) cis-[Pt(L1A-S,O)2], (b) cis-[Pt(L2A-S,O)2] and (c) 

cis-[Pt(L3A-S,O)2], measured in CD2Cl2 at 198 K. The relative percentages of each isomer are 
indicated on top of the peaks. 

 

 

By comparison of spectra (a) and (b) pairs in Figure 4.5 and Figure 4.9 it is clear that there is a significant change in 

the distribution of isomers as the solvent is changed from chloroform to dichloromethane. Since the temperature is an 

additional variable for these spectra and their distribution comparisons, it was necessary to measure the distributions 

in the two solvents at the same temperature. Figure 4.10 illustrates the influence of the solvent on these distributions 

for cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2] complexes. This confirms that at the same temperature in the two 

solvents that the solvent has a significant effect on the isomer distributions. It is clear in both complexes cis-[Pt(L1A-

S,O)2] and cis-[Pt(L2A-S,O)2] that the ZZ isomer appears to grow at the expense of both the EZ and EE isomers. It 

has been reported in the literature that amide bond rotation is generally retarded by polar solvents as been shown in 

numerous experimental and computational studies.16-24 The dielectric constant of chloroform at 293.2 K is 4.81 while 

that of dichloromethane at 298.0 K is 8.93 (source: CRC Handbook of Chemistry and Physics 84th Ed, 2003 2004, 

Lide D. R. Ed in Chief, CRC Press Inc. Boca Raton Florida 2003). This difference in polarity of the two solvents 

may well account for different rotation barriers of the C-N bond of the (S)C-N(Me)(para-X-Ph) moiety and hence 

the observed differences in the isomer distributions but the solvent effect on isomer distributions needs further 

investigation to confirm this. Such a study was not undertaken. 
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Figure 4.10 1H NMR spectra measured in CDCl3 and CD2Cl2 measured at (A) 228 K for cis-[Pt(L1A-S,O)2] and 

at (B) 243 K for cis-[Pt(L1A-S,O)2]. The percentage distributions of the isomers illustrated on each 
peak are obtained after deconvolution analysis of the spectra in question. 

 

 

As the temperature is lowered there a systematic increase of the ZZ isomer at the expense of both the EZ and EE 

isomers for both cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2] regardless of the solvent used. In CD2Cl2 the data that 

demonstrate the temperature effect is readily available by merely comparing Figures 4.9 (a) and 4.10 A for cis-

[Pt(L1A-S,O)2] and Figures 4.9 (b) and 4.10 B for cis-[Pt(L2A-S,O)2]. The 1H NMR spectra for cis-[Pt(L1A-S,O)2] 

and cis-[Pt(L2A-S,O)2] in Figure 4.9 are both measured at 198 K while the 1H NMR spectra in Figure 4.10 are 

measured at 228 K and 243 K respectively. The effect of a systematic temperature decrease on the isomer 

distributions in CD2Cl2 is shown in Figure 4.11 for the complexes cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2]. Similar 

3.253.253.303.303.353.353.403.403.453.453.503.503.553.553.603.60 3.253.253.303.303.353.353.403.403.453.453.503.503.553.553.603.60

ZZ
= 86%

Z(EZ)
= 7%

E(EZ)
= 7%EE

<1%

ZZ
= 58%

Z(EZ)
= 19%

E(EZ)
= 18%

EE
=5%

1H-NMR/ppm 1H-NMR/ppm

cis-[Pt(L1A-S,O)2] in CDCl3 cis-[Pt(L1A-S,O)2] in CD2Cl2

A

3.253.253.303.303.353.353.403.403.453.453.503.503.553.553.603.60 3.253.253.303.303.353.353.403.403.453.453.503.503.553.553.603.60

ZZ
= 86%

Z(EZ)
= 7%

E(EZ)
= 7%EE

<1%

ZZ
= 86%

Z(EZ)
= 7%

E(EZ)
= 7%EE

<1%

ZZ
= 58%

Z(EZ)
= 19%

E(EZ)
= 18%

EE
=5%

1H-NMR/ppm 1H-NMR/ppm

cis-[Pt(L1A-S,O)2] in CDCl3 cis-[Pt(L1A-S,O)2] in CD2Cl2

A

3.253.253.303.303.353.353.403.403.453.453.503.503.553.553.603.603.253.253.303.303.353.353.403.403.453.453.503.503.553.553.603.60

ZZ
= 65%

Z(EZ)
= 16%

E(EZ)
= 15%

EE
=4%

ZZ
= 45%

Z(EZ)
= 22%

E(EZ)
= 22%

EE
=11%

1H-NMR/ppm 1H-NMR/ppm

cis-[Pt(L2A-S,O)2] in CDCl3 cis-[Pt(L2A-S,O)2] in CD2Cl2

B

3.253.253.303.303.353.353.403.403.453.453.503.503.553.553.603.603.253.253.303.303.353.353.403.403.453.453.503.503.553.553.603.60

ZZ
= 65%

Z(EZ)
= 16%

E(EZ)
= 15%

EE
=4%

ZZ
= 45%

Z(EZ)
= 22%

E(EZ)
= 22%

EE
=11%

1H-NMR/ppm 1H-NMR/ppm

cis-[Pt(L2A-S,O)2] in CDCl3 cis-[Pt(L2A-S,O)2] in CD2Cl2

B

http://scholar.sun.ac.za/



Chapter 4                                            Electronic influence on configurational isomer distributions of Pt(II) complexes 

 74

data for cis-[Pt(L3A-S,O)2] is not available since this complex only shows the existence of all the three isomers at 198 

K. 
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Figure 4.11 Isomer distribution as a function of temperature for cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2] in 

CD2Cl2 with □ ZZ ■ EZ and ▲ EE isomers. The data for the EE isomer of cis-[Pt(L1A-S,O)2] is not 
shown since the percentages are very small for this scale. 

 

 

These data indicate that the ZZ isomer is favoured over the EZ and EE isomers upon cooling in both complexes. 

Judging from the slopes it seems that cis-[Pt(L2A-S,O)2] is more temperature sensitive than cis-[Pt(L1A-S,O)2]. The 

conversion of the ZZ isomer to the other isomers (EZ and EE) as a function of temperature is more pronounced in the 

case of cis-[Pt(L2A-S,O)2] than for cis-[Pt(L1A-S,O)2]. It becomes clearer to account for the observed different 

sensitivities towards temperature change after discussing the barrier to rotation around the (S)C-N(Me)(para-X-Ph) 

bond of the two complexes. Hence we can conclude that temperature will have impact less on the distribution 

changes of the complex which has a higher barrier to rotation around the (S)C-N(Me)(para-X-Ph) bond. That 

happens to be the case for cis-[Pt(L1A-S,O)2] over cis-[Pt(L2A-S,O)2]. These findings also suggest a significant 

http://scholar.sun.ac.za/



Chapter 4                                            Electronic influence on configurational isomer distributions of Pt(II) complexes 

 75

temperature influence and when making comparisons of the isomer distribution, the temperature has to be fixed. 

Overall, what we can say now is that for any sensible comparison to be made on these complexes the temperature 

and the solvent should be fixed since the distributions are sensitive to both these parameters. 

 

4.3.4 Rationalisation of the configurational isomer distributions in terms of the electronic effects 

 

In our previous publication25 and in the previous chapter the following interesting phenomenon that the relative 

amounts of the resultant cis-[ZZ-Pt(L-S,O)2], cis-[ZE-Pt(L-S,O)2] and cis-[EE-Pt(L-S,O)2] complexes were 

significantly different to the amounts statistically predicted from the observed E/Z ratios of the ligands in solution as 

used in the reaction synthesis. In simple terms we can say that if the ligands in ZZ, EZ and EE isomer of one complex 

were to be removed from the metal centre while retaining the stereochemistry adopted in the complex, the ratio of the 

E to Z of the unbound ligands would not be the same as the one before coordination occurred. There would be an 

apparent increase in one of the configurational isomers (namely: the Z isomer in the cases discussed here) of the 

unbound ligand. In Table 4.2 below we show the relative amounts of these configurational isomers and the 

statistically predicted amounts. 

 

Table 4.2 Assignments of δ(195Pt) (ppm) and the relative distributions (taken from 1H NMR deconvolution 
analysis) of configurational isomers of cis-[Pt(L1A,2A-S,O)2] complexes. Measurements were done 
in CDCl3 at 243 K and all 1H NMR spectra were measured again in CD2Cl2 at 198 K for all the cis-
[Pt(L1A,2A,3A-S,O)2] complexes. 

 
Complex ZZ EZ EE 

δ(195Pt) cis-[Pt(L1A-S,O)2] -2725 -2742 -2750 

Statistical (%) 6 13 81 
[a] Relative integrals (%) (CDCl3) 59 35 6 
[a] Relative integrals (%) (CD2Cl2) 89 11 <1 

δ(195Pt) cis-[Pt(L2A-S,O)2] -2717 -2737 -2746 

Statistical (%) 5 10 85 
[a] Relative integrals (%) (CDCl3) 45 44 11 
[a] Relative intensity (%) (CD2Cl2) 74 24 2 

δ(195Pt) cis-[Pt(L3A-S,O)2] -2723 -2723 -2729 
[b]Statistical (%) - - - 

[c]Relative integrals (%) 27 46 27 

[a] The observed relative integrals are estimated to have an error of  1%. 
[b] Since E/Z isomers of HL3A could not observed as separate signals (i.e. their distribution is unknown) 

therefore the distribution of resultant complexes could not be predicted. 
[c] Based on the deconvolution analysis of the 1H NMR signals of N-CH3 measured at 198 K. 
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The relative integral values are based on deconvolution analysis of the observed 195Pt NMR spectra in CDCl3 at 243 

K for cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2], which is in good agreement with the 1H NMR spectra deconvolution 

analysis. The statistically predicted values shown are based on the assumption that the unbound ligands have a fixed 

E : Z ratio which does not change during complex formation process. Intuitively, starting with predominantly E 

isomer (90%) over the Z isomer (10%) to form the ZZ, EZ and EE chelate, the EE isomer is statistically favoured. 

The relative integral values reveal the direct opposite of what is statistically predicted in that it is the ZZ isomer that it 

most favoured and not the EE isomer for cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2]. The isomer distribution of cis-

[Pt(L3A-S,O)2] could not be statistically predicted since the estimate of E : Z isomers of the unbound ligand could not 

be determined even at 198 K and its isomer distributions were also measured at 198 K in CD2Cl2. As mentioned 

before, for any sensible comparisons to be made on the distributions identical solvent and temperature should be 

used. For this reason the 1H NMR spectra of all the complexes were measured in CD2Cl2 at 198 K, which also 

resulted in well-separated 1H NMR spectra in which the integrals of the isomers are determined. 

 

We have speculated on various factors such as solvent effects, steric factors and electronic factors that could make 

the isomer distribution deviate from the statistically predicted one. Even though solvent effects were not extensively 

studied, our initial approach was to use two different solvent systems in which the complexes are synthesised. 

Extracting the platinum salt (K2PtCl4) with HL2A from aqueous solution into chloroform, the isomer distribution is 

identical to the one attained by the normal synthetic route, which is carried out in an acetonitrile/water mixture. 

Initially we thought the solvent does not play any role in the isomer distributions, however, as we have just discussed 

in Section 4.3.3 dissolving the complexes in different solvents has a notable influence on the isomer distributions. 

Different alkyl groups of the (S)C-NRR’ moiety were shown previously to be playing some role in yielding different 

distributions, but this was not a systematic study in that changes were done not only on the alkyl groups of the (S)C-

NRR’ moiety but also on the R” group of the R”C(O)- moiety.25 We investigate the alkyl substituent influence on the 

isomer distributions in a much more thorough way in the next chapter. 

 

Chelating ligands with restricted rotation of carbon-nitrogen bond are not uncommon such as the EE, EZ, ZZ-N,N’-

dibenzyl-N,N’-diethyldithioxamides, Bz2Et2DTO reported by Lanza et al.26 These authors, having isolated any of the 

three configurationally isomer (EE or EZ or ZZ) of the unbound ligand, observed that these ligands isomerise readily 

in solution to produce an equimolar mixture of all the uncoordinated ligands before complexation to cis-

[Pt(Me2SO)2Cl2] took place. It is this E/Z isomerisation of the ligands in solution prior to complexation to the metal 

centre which allowed for the statistical prediction of the resulting [EE-, EZ-, ZZ-(Bz2Et2DTO)PtCl2] complexes. 

However, the ligands reported in this work seem to retain their E/Z distribution before complexation takes place 

evidently by retaining the same distribution even at any temperature from 258 K to 198 K. Hence it is thought that 

the observed distributions of the complexes differ from the statistically predicted one because the restricted rotation 

about the (S)C-NRAr bond is lifted during the complex formation process thereby leading to the observed 

distribution. In related compounds (N-arylthiocarbamates and N-aryldithiocarbamates), the aryl substituent is known 

to be C-N barrier lowering according to Lidén et al1 since the thiocarbonyl and the aryl substituent compete for 

conjugation with the lone pair on the nitrogen atom of the (S)C-NRAr moiety. This is also supported by the fact that 

http://scholar.sun.ac.za/



Chapter 4                                            Electronic influence on configurational isomer distributions of Pt(II) complexes 

 77

the coalescence temperatures of these complexes are very low. It may then be expected that ligands with low barrier 

to rotation may easily inter-isomerise during complex formation. 

 

4.3.5 Rotational dynamics: 1H NMR study of restricted rotation around the (S)C-N(Me)(para-X-Ph) bond (X = O-
CH3, H and NO2) in unbound ligands HL1A and HL2A and the Pt complexes, cis-[Pt(L1A,2A,3A-S,O)2] 

 

The 1H and 13C spectra of HL1A and HL2A as well as their respective complexes, cis-[Pt(L1A,2A-S,O)2] obtained at 

room temperature revealed broad peaks while at low temperatures (228 K for cis-[Pt(L1A-S,O)2] and 243 K for cis-

[Pt(L2A-S,O)2]) the spectra were well resolved. In order to gain more insight into the rotation dynamics of these 

compounds from the NMR spectra, a variable temperature NMR study was undertaken. 

 

 

 
 
Figure 4.12 In deuterated dichloromethane the coalescence temperature determinations of HL1A and HL2A 

around the (S)C-N(Me)(para-X-Ph) bond (X = O-CH3 for HL1A and H for HL2A) were found to be 
281  1 K and 298  1 K, respectively. The coalescence temperature for HL3A could not be 
determined even at 198 K due to fast rotation. 
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Figure 4.13 Coalescence temperature determinations of (a) cis-[Pt(L1A-S,O)2], (b) cis-[Pt(L2A-S,O)2] and (c) 

cis-[Pt(L3A-S,O)2] around the (S)C-N(Me)(para-X-Ph) bond were found to be 307  1 K, 291  1 
K and 234  1 K, respectively. 

 

 

The coalescence temperature, Tc determinations were evaluated for the unbound ligands HL1A and HL2A as well as 

the complexes cis-[Pt(L1A-S,O)2], cis-[Pt(L2A-S,O)2] and cis-[Pt(L3A-S,O)2] as shown in Figures 4.12 and 4.13, 
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respectively. Fig. 4.13 beautifully demonstrates the dramatic changes both in peaks shapes and chemical shifts of the 

complexes upon changing the temperature. In general more accurate Tc values were obtained for the complexes, as it 

was difficult to accurately measure the Tc’s for the ligands since the peaks due to the minor component (Z-isomer) 

broadens into the noise before coalescence is clearly observed. The values obtained for the ligands were measured in 

dichloromethane and were roughly 10 K lower in temperature than their respective complexes. This implies that the 

rotational barrier in the unbound ligands is significantly lower than when the ligands are in the metal chelates. 

Whatever conclusions we arrive at from studying the complexes we could still qualitatively extrapolate information 

into the respective unbound ligands since it is known in the literature in related N,N-diethyl-N'-benzoylthiourea 

complexes of Ni(II), Zn(II), Pb(II) and Pd(II) studied by Behrendt et al.27 that chelates have higher rotation barriers 

than the unbound ligands. In the current study moreover, the unstable of HL3A in solution (due to (S)C-N(Me)(4-

nitro-Ph) bond cleavage) remains intact upon coordination to the Pt(II) centre, which is further support for the 

increased strength of the C-N bond upon coordination to Pt(II). 

 

Having determined the approximate coalescence temperatures of the three complexes cis-[Pt(L1A-S,O)2], cis-

[Pt(L2A-S,O)2] and cis-[Pt(L3A-S,O)2] as well as the unbound ligands HL1A and HL2A, we are now in a position to 

estimate the Gibbs free energy of activation, ΔG≠
c derived from the Eyring equation [4.1]. However, it is more 

appropriate to calculate the ΔG≠
c value for cis-[Pt(L3A-S,O)2] since the ZZ and EE are of equal population in this 

case. 

 

k = (kBT/h)e-ΔG≠/RT         [4.1] 

ΔG≠
c = 4.58Tc (10.32 + log (Tc/Kc)) where Tc = coalescence temperature   [4.2] 

Kc = 2.22Δυ          [4.3] 

where Δυ = difference between the EE and the ZZ isomer peaks measured in Hertz taken at the temperature at which 

these peaks are well separated, which is 228 K for cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2] and 198 K for cis-

[Pt(L3A-S,O)2]. 

 

The determination of Kc is valid only if the following three conditions are fulfilled: 

 the dynamic process occurring is first order kinetically, 

 the two singlets have equal intensities, and 

 the exchanging nuclei are not coupling to each other. 

 

The first and the last conditions in our systems are satisfied, but the second is not. However, even though not all the 

conditions have been fulfilled exactly, equation [4.3] remains a good approximation for estimating Kc. For simplicity 

the calculations of the thermodynamic parameters for the complexes have been limited to those that relate the 

extreme ZZ and EE isomers only. The simplification results from the fact that from the 1H NMR perspective both the 

ZZ and the EE isomers are represented by a single peak while the EZ complex has two peaks. This in principle 

should give an estimate of the largest rotational barriers between the three isomers, i.e. the forward and the reverse 

reaction between EE and EZ isomers; EZ and ZZ isomers and EE and ZZ isomers. The actual rotational dynamics for 
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the complexes involves three distinct isomers ZZ, EZ and EE in different concentrations. This makes the application 

of the rotational dynamics analysis much more complicated since more than two NMR chemical shift environments 

are involved. The Kc values that are calculated are therefore only an approximation and represent an average of the 

various interchanges possible. 

 

For cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2] with unequal populations of EE and the ZZ isomers, the equilibrium 

constant K can be calculated from equation [4.4], the relative concentrations of ZZ and EE isomers are readily 

determined from the integrations or the corresponding NMR signals. One can then determine the difference between 

the energies of the two isomers, ΔG0, by using equation [4.5]. 

 

K = [Z]/[E] for HL1A and HL2A and K = [EE]/[ZZ] for the complexes cis-[Pt(L1A,2A,3A-S,O)2] [4.4] 

ΔG0 = -RTlnK          [4.5] 

The molar concentrations of the isomers for determination of K are taken from the deconvolution analysis (peak 

integrals) of the 1H NMR spectra. 

T = temperature at which the peaks are well separated. 

R = 1.9872 cal.K-1.mol-1 

 

Table 4.3 Thermodynamic data for the barrier to rotation around the (S)C-N(Me)(para-X-Ph) bond in the 
unbound ligands HL1A and HL2A and coordinated ligands in cis-[Pt(L1A,2A,3A-S,O)2] complexes. 
The values in parenthesis were obtained in chloroform and the rest in dichloromethane. 

 
Complex Tc/K Δυ/Hz K ΔG≠

c
[a]

kcal/mol 

ΔG0(ZZ-EZ) 

kcal/mol 

ΔG0(EZ-EE) 

kcal/mol 

ΔG0(ZZ-EE) 

kcal/mol 

HL1A 298 ± 1 141 0.11 14.1   0.75 

cis-[Pt(L1A)2] 

cis-[Pt(L1A)2] 

307 ± 1 

(307 ± 1) 

45.99 

(50.40) 

0.01 

(0.10) 

15.2 

(15.1) 

0.82 

(0.20) 

1.37 

(0.91) 

2.19 

(1.11) 

HL2A 281 ± 1 131 0.11 13.3   0.78 

cis-[Pt(L2A)2] 

cis-[Pt(L2A)2] 

291 ± 1 

(291 ± 1) 

47.19 

(51.50) 

0.03 

(0.24) 

14.4 

(14.3) 

0.45 

(0.01) 

0.96 

(0.63) 

1.41 

(0.64) 

cis-[Pt(L3A)2] 234 ± 1 52.03 1 11.4 -0.21 0.21 0 

[a] The standard deviations do not exceed 0.2 kcal/mol 
 

 

To facilitate understanding of the ΔG≠
c and ΔG0 values in Table 4.3 calculated from the equations [4.2] and [4.3] 

respectively, energy diagrams can been used. Figure 4.14 can be regarded as the general energy profile that describes 

the C-N barrier heights for cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2] with unequal populations of EE and ZZ isomers 

while Figure 4.15 is an energy profile specific to the case of cis-[Pt(L3A-S,O)2] with equal populations of EE and ZZ 

isomers. In Figure 4.14 cis-[ZZ-Pt(L1A,2A-S,O)2] isomers are lowest in energy followed by cis-[EZ-Pt(L1A,2A-S,O)2] 

isomers and cis-[EE-Pt(L1A,2A-S,O)2] isomers are highest in energy. The energy diagram in Figure 4.15 is slightly 
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different and symmetrical since the cis-[EE-Pt(L3A-S,O)2] isomer and the cis-[ZZ-Pt(L3A-S,O)2] isomer are at an 

equal energy level, which is slightly higher than that of the most favoured cis-[EZ-Pt(L3A-S,O)2] isomer. 

Furthermore, the G values are increased when going from the ligand to the complex. In both Figures 4.14 and 4.15, 

TS(ZZ-EZ) and TS(EZ-EE) are transition states from the ZZ isomer to EZ isomer and from the EZ isomer to the EE 

isomer, respectively. From Figure 4.14, it is easy to calculate the barrier height from EZ to EE, which is the same as 

energy height from EZ to TS(EZ-EE), by taking the difference between ΔG≠
c and ΔG0(ZZ-EZ). It was not possible to 

calculate the barrier height from ZZ to EZ since the energy height from ZZ to TS(ZZ-EZ) is unknown. This problem 

is not encountered in the symmetric energy profile since the heights from ZZ to TS(ZZ-EZ) and from EZ to TS(EZ-

EE) are equal. For general comparison of energy barriers we therefore focus on comparing the ΔG≠
c values, which 

are available for the two cases. 

 

 
 
Figure 4.14 General energy diagram showing the inter-conversion of EE, EZ and ZZ isomers for cis-[Pt(L1A-

S,O)2] with X = O-CH3 and cis-[Pt(L2A-S,O)2] with X = H with unequal populations of EE and ZZ 
isomers. 
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Figure 4.15 Energy diagram showing the inter-conversion of EE, EZ and ZZ isomers for cis-[Pt(L3A-S,O)2]. 
 

 

A rather convenient method for obtaining the free energies of activation ΔG≠
(EE-ZZ) and ΔG≠

(ZZ-EE) by means of 

coalescence temperature of unequal populations can be calculated from the Shanan-Atidi and Bar-Eli28 method; 

equations [4.6] and [4.7] respectively. These equations are specifically derived to take into account that the 

populations of the two isomers are not equal in concentration, which is exactly the case for cis-[Pt(L1A-S,O)2] and 

cis-[Pt(L2A-S,O)2]. Since these equations are for the general case, they are readily applicable for calculating the 

enthalpies of activation (ΔG≠
(EE-ZZ) and ΔG≠

(ZZ-EE)) for cis-[Pt(L3A-S,O)2] with equal populations of EE and ZZ 

isomer. 

 

ΔG≠
(ZZ-EE) = 4.57Tc[10.62 + log(X/2π(1 - ΔP)) + logTc/Δυ]     [4.6] 

 

ΔG≠
(EE-ZZ) = 4.57Tc[10.62 + log(X/2π(1 + ΔP)) + logTc/Δυ]     [4.7] 

 

Tc = Coalescence temperature 

Δυ = frequency separation in Hertz between the ZZ and EE peaks 

ΔP = difference in populations of ZZ and EE isomers and PZZ – PEE = ΔP = [(X2 - 2)/3]3/2 · 1/X 
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The equations [4.6] and [4.7] are readily applicable for their uncoordinated ligands since the E and Z isomers are of 

unequal populations. We can also calculate the parameters ΔG≠
(E-Z), ΔG≠

(Z-E) and ΔG0(E-Z)  instead of ΔG≠
(EE-ZZ), 

ΔG≠
(ZZ-EE) and ΔG0(ZZ-EE). 

 

Since the ΔG≠
(EE-ZZ) and ΔG≠

(ZZ-EE) for the complexes or the ΔG≠
(E-Z) and ΔG≠

(Z-E) for the unbound ligands are the 

differences between the ground-state energies and the energies of activation barrier of the isomer conversion, a 

comparison of these parameters for compounds with different isomer populations cannot indicate the relative heights 

of inter-conversion barrier. However, an indication of the relative barrier heights can be obtained by comparing the 

average barrier of rotation, ΔG≠
(ave) defined to be equal to the sum of ΔG≠

(EE-ZZ) and ΔG≠
(ZZ-EE) divided by 2 in the 

case of the complexes while this average, ΔG≠
(ave) = (ΔG≠

(E-Z) and ΔG≠
(Z-E))/2 for the unbound ligands. The use of 

such average barrier, ΔG≠
(ave) compensates for any raising or lowering of the ground state energies due to the unequal 

population of isomers, and thus presupposes all the barrier heights to a common ground state. 

 

Table 4.4 Thermodynamic data for the barrier to rotation around the (S)C-N(Me)(para-X-Ph) bond in 
unbound ligands HL1A and HL2A and coordinated ligands in cis-[Pt(L1A,2A,3A-S,O)2] complexes. 

 
Complex Tc/K Δυ/Hz ΔG≠

(ZZ-EE) 
[a] 

kcal/mol 

ΔG≠
(EE-ZZ)

 [a] 

kcal/mol 

ΔG≠
(ave)

[a]

kcal/mol 

HL1A 298 ± 1 141 14.1 15.4 14.7 

cis-[Pt(L1A)2] 

cis-[Pt(L1A)2] 

307 ± 1 

(307 ± 1) 

45.99 

(50.40) 

16.9 

(15.9) 

15.2 

(15.1) 

16.1 

(15.5) 

HL2A 281 ± 1 131 13.3 14.4 13.9 

cis-[Pt(L2A)2] 

cis-[Pt(L2A)2] 

291 ± 1 

(291 ± 1) 

47.19 

(51.50) 

15.4 

(14.7) 

14.3 

(14.3) 

14.9 

(14.5) 

cis-[Pt(L3A)2] 234 ± 1 52.03 11.4 11.4 11.4 

[a] The standard deviations of the G values do not exceed 0.2 kcal/mol 
 

 

Again for the sake of interpreting the thermodynamic data in Table 4.4 we make use of an energy diagram, Figure 

4.16. Here ΔG≠
(ZZ-EE) describes the energy barrier from ZZ to EE and ΔG≠

(EE-ZZ) describes the reverse process that is 

from EE to ZZ and TS is the transition state. It must be said that this is a simplification for the complexes since this 

does not take into account of the EZ isomer, which is also a stable compound and not a transition state. This energy 

profile is however, most suitable to describe the energy barriers of the unbound ligands. 
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Figure 4.16 A simplified energy diagram that follows from equations [4.6] and [4.7], showing the inter-

conversion of ZZ and EE isomers for cis-[Pt(L1A-S,O)2] when X = O-CH3 and cis-[Pt(L2A-S,O)2] 
when X = H. This is more suitable for describing the inter conversion of E and Z isomers of the 
unbound ligands but with the E isomer being the major component. 

 

 

4.3.5.1 Rotational energy interpretation of the ligands. 

 

From the estimations of the C-N bond rotation barriers, it can be observed that the ligand with the electron donating 

group i.e. with the methoxy substituent, HL1A, gives rise to the largest ΔG≠ values (14.1 kcal/mol in Table and 14.7 

kcal/mol in Table 4.4), followed by the unsubstituted ligand, HL2A (13.3 kcal/mol in Table 4.3 and 13.8 kcal.mol in 

Table 4.4). No data is available regarding HL3A (with the electron withdrawing nitro group) since the Z isomer could 

not be observed at low temperature; however it is reasonable to assume that this ligand would give rise to the lowest 

C-N bond rotation barrier. This assumption is well supported by the comparisons of the free energies of activation of 

the Pt(II) complexes derived from these ligands. This is indeed expected since an electron-withdrawing substituent, 

X = NO2, should in principle weaken the (S)C-N(Me)(para-X-Ph) bond the most in the series X = O-CH3, H and 

NO2 and the electronic donating group X = O-CH3 strengthens this C-N bond. The unsubstituted ligand, HL2A with 
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substituent X = H, lie between the electronic withdrawing and electronic donating extremes. This trend is seen in the 

coalescence temperatures of these ligands (Tc = 298 K for HL1A and 281 K for HL2A), again assuming that the 

coalescence temperature of HL3A is well below 198 K. These findings are contrary to Carter’s29 observations that in 

N,N-dimethyl-N’-phenylthioureas with the phenyl substituted in the para position, the electron-donating substituent 

lowered the barrier while the electron withdrawing substituent had the opposite effect. Density functional theory 

(DFT) calculations by Ilieva et al14 on para-substituted acetanilides with the substituent being H, CH3, OH, OCH3, 

OCH2CH3, NH2, Cl, COOH, NO2 and SO2NH2 (the substituents shown in bold were investigated in the series of 

ligands discussed in this thesis) showed that the electron donating groups increase the rotation barrier of the C-N 

bond while the electron withdrawing groups lower the C-N bond rotation barrier. The observations in the studied 

series HL1A and HL2A with X = O-CH3 and H, respectively, are in agreement with this study and the study of 

substituent effect on carbamate C-N bond rotation barrier done by Smith.30 Interestingly, the overall difference in 

thermodynamic stabilities between the E and the Z isomers regardless of the ligand is marginal, being less than 1 

kcal.mol-1. One might expect the E isomer to be much more stable than the Z isomer in CDCl3 or CD2Cl2 solution for 

both ligands, the 1H NMR spectra suggest an E : Z ratio of ca 9:1. 

 

4.3.5.2 Rotational energy interpretation of the Pt(II) chelates 

 

Regardless of the solvent, the enthalpies of activation of the chelates are larger than those of the uncoordinated 

ligands, but the difference is no more than 2 kcal.mol-1. Complex formation in principal increases the rotational 

barrier compared with the unbound ligand since the electrophilic metal centre pulls electrons from the thiocarbonyl 

C-N bond via the sulphur atom which has formed a dative bond with the metal, according to Behrendt et al.27 The 

trends observed in the unbound ligands are mirrored in the complexes with no exceptions. These data clearly 

demonstrate how significant the electronic contribution can be on the C-N rotation barrier no matter how remote (in 

this case six bonds away) the substituent is. 

 

In the complex, cis-[Pt(L1A-S,O)2], with the largest barrier to rotation around the (S)C-N(Me)(para-X-Ph) bond 

(ΔG≠
c in CD2Cl2 = 15.2 kcal/mol in Table 4.3 and 16.0 kcal./mol in Table 4.4) results in formation of the complexes 

in which the ZZ isomer is favoured regardless of the unbound ligand E/Z isomer distribution. In other words the ZZ 

isomer is stabilised by a high barrier to rotation around the (S)C-N(Me)(para-X-Ph) bond. Now it is clear to explain 

why more of the ZZ isomer is formed in a more polar solvent since a polar solvent increases the C-N bond rotation 

barrier (Section 4.3.3). On the other extreme for the cis-[Pt(L3A-S,O)2] case, when the barrier to rotation around the 

(S)C-N(Me)(para-X-Ph) bond is lowest (ΔG≠
c in CD2Cl2 = 11.4 kcal/mol in both Table 4.3 and Table 4.4), the 

driving force that stabilises the ZZ isomer is weaker and apparently the EE isomer is equally stabilised, hence equal 

populations are observed. As this happens the EZ isomer becomes dominant and this seems to be intuitively sound 

since this is similar to a 1 : 1 mixture of pure EE and ZZ isomers resulting in a roughly 1 : 2 : 1 statistical EE : EZ : 

ZZ isomer distribution. Between these two extremes lies the cis-[Pt(L2A-S,O)2] complex where it seems that the 

barrier to rotation around the (S)C-N(Me)(para-X-Ph) bond (ΔG≠
c in CD2Cl2 = 14.4 kcal/mol in Table 4.3 and 14.9 

kcal./mol in Table 4.4) is still sufficiently high for the ZZ isomer to be favoured over the EE isomer, and 
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approximately equally stable to the EZ isomer. For this hypothesis to be generally acceptable however, it needs 

further testing with a wider range of para-substituents. 

 

Again as it was noted for the ligands the energy differences between the individual configurational isomers of the 

complexes are very small, at most being about 2.2 kcal.mol-1. Still, the ZZ isomer has been calculated to have the 

lower energy, it is however remarkable and even surprising that this small energy difference could result in such a 

strong preference for the ZZ Pt-complex. Additionally, upon solvent change from chloroform to dichloromethane we 

observe a notable change in these energies and that may be an indication that a solvent may play significant role in 

stabilising a particular configurational isomer rather than a thermodynamic driving force towards one isomer. 

 

4.3.6 A gas phase study of the barrier to rotation around the C-N bond by means of Density Functional Theory 
(DFT) linear transit calculation: A complementary theoretical method to the solution NMR experimental 
method. 

 

Model 1 (Figure 4.17): Here unlike the complexes investigated in solution (with two equal ligands), the complex is 

coordinated with one symmetrically disubstituted ligand and one asymmetrically disubstituted ligand and the C-N 

bond rotation is performed on the latter. Model 2 (Figure 4.18): Both ligands on the complex are asymmetrically 

disubstituted much like the solution experiments. In both models, full geometrical optimisation of the complex in 

which the ligand(s) is orientated in the E position resulted in the N-(para-X-Ph) moiety nearly orthogonal to the 

chelate ring for all the coordinated para-substituted ligands. The same applies when the ligand is in the Z orientation 

the N-(para-X-Ph) moiety is once again nearly orthogonal to the chelate ring instead of being flat and collinear. The 

most structural parameter that can be linked to the stability of one configuration over the other is the (S)C-

N(Me)(para-X-Ph) bond length and these are all included in both Figures 4.17 and 4.18. In general, upon rotation 

from E to Z configuration there is a marginal but noticeable shortening of this C-N bond implying that the Z 

configuration is preferred over the E configuration. What is slightly divergent between the calculated trends and 

those obtained by solution NMR experiments is the relative energy of the Z configuration to that of the E 

configuration when the para-substituent is the nitro group. These small differences in gas phase may, however, 

drastically change in solution and cannot be relied on for predicting a favoured configuration. We have already 

shown how drastic the relative population (hence energies) can shift upon solvent change. 

 

Model 1: Figure 4.17 together with Table 4.5 clearly show the barrier heights as the para-substituent is changed and 

this trend is in accord with the experiment results that an electron-donating substituent (O-CH3) should give rise to a 

higher rotation barrier than an electron-withdrawing substituent (NO2). The electron-donating substituent facilitates 

resonance between the nitrogen lone pair and the thiocarbonyl sulphur, resulting in an increased barrier of rotation. 

The reverse holds when the electron-withdrawing substituent is in place since the nitrogen lone pair is drawn into the 

aromatic ring. The calculated barrier height when the para-substituent is the hydrogen atom lies between the two 

extremes as observed in solution. In support of this analysis when we take a look at the calculated C-N bond lengths 

whether it be comparing the E configurations or the Z configurations, there is a shortening of this bond in the order 

NO2 > H > O-CH3. Only a marginal difference is observed between the latter two para-substituents. 
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Figure 4.17 Energy diagram for the rotation around the C-N bond in Pt(II) coordinated para-substituted model 
N-methyl-N-(para-X-phenyl)-N’-methylthioureas. In (A) the para-substituent is a methoxy group, 
in (B) the para-substituent is a hydrogen atom and in (C) the para-substituent is a nitro group. 
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Table 4.5 Theoretical energy barriers to rotation around the (S)C-N(Me)(para-X-Ph) bond in Pt(II) 
coordinated para-substituted model N-methyl-N-(para-X-phenyl)-N’-methylthioureas as 
determined by DFT calculation. 

 
para-substituent ETS

rel [a]

kcal/mol 
EZ 

kcal/mol 
ΔE = ETS - EZ

 [b]

kcal/mol 
O-CH3 12.10 -0.59 12.69 

H 9.66 -0.23 9.89 

NO2 6.03 0.33 5.70 

[a] ETS
rel is the energy of the transition state relative to the E isomer (set at 0 kcal/mol). 

[b] ΔE is the energy barrier for the Z to E rotation through the TS transition state (Figure 4.17). 
 

 

Model 2: Figure 4.18 is a much closer model to the complexes investigated in solution the only difference being the 

methyl group attached to the carbonyl carbon instead of a tertiary butyl. This small difference, in principle should 

have no bearing on the aim of the study, which is to evaluate the barrier to rotation around the C-N bond of the (S)C-

N(Me)(para-X-Ph) moiety as the para-substituent is altered. This model thus far is incomplete in two ways: firstly, 

the energy diagram with the O-CH3 para-substituent did not converge but from model 1 we can predict where this 

should be relative to the others. Secondly, due to time constraints modelling of ZZ to EZ was not performed and the 

energy diagram only shows rotation of EE configuration to EZ configuration. In both energy diagrams in Figure 4.18 

there are two transition states through which the EZ configuration can be reached from the EE configuration. This is 

an indication that in the geometrically optimised EE complex, the topside is not identical to the bottom side. After a 

360-degree rotation from the EE configuration we arrive in the same configuration, which is at a slightly different 

energy level. For all practical purposes these are indistinguishable from each other. Important parameters that include 

dihedral angles (DH), C-N bond length and energies are included in the energy diagrams. Table 4.6 summarises the 

calculated energy barriers for the transition from EE to EZ configuration. The expected transition state through which 

the EZ configuration is attained is probably the one that is slightly lower in energy, which is TS2. The analysis of 

Figure 4.18 is no different to that of Figure 4.17 in terms of trends of energy barriers as the para-substituent is 

altered. Comparing the two models it seems that the nature of the ligand to which no rotation is performed is not 

really relevant for the calculations of the relative rotation barriers. ΔE = 9.89 kcal/mol (model 1) and ΔE2 = 9.53 

kcal/mol (model 2) when the para-substituent is a hydrogen atom while ΔE = 5.70 kcal/mol (model 1) and ΔE2 = 

5.73 kcal/mol (model 2) when the para-substituent is a nitro group. This may mean that the N-(para-X-Ph) group of 

the ligand that is not being rotated is far enough for steric factors not to play any significant role in the calculations of 

these relative energies. It should be interesting to see whether this would hold in ZZ to EZ modelling, although it 

could be that the one of the transition states would be forbidden due to possible steric factors. 
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Figure 4.18 Energy diagram for the rotation around the C-N bond in coordinated para-substituted N-methyl-N-

(para-X-phenyl)-N’-methylthioureas of model cis-bis Pt(II) chelates. In (A) the para-substituent is 
a hydrogen atom and in (B) the para-substituent is a nitro group. 
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Table 4.6 Theoretical energy barriers to rotation around the (S)C-N(Me)(para-X-Ph) bond in Pt(II) 
coordinated para-substituted model N-methyl-N-(para-X-phenyl)-N’-methylthioureas as 
determined by DFT calculation. 

 
para-substituent ETS1

rel [a] 

kcal/mol 
ETS2

rel [a]

kcal/mol 
ΔE1 = ETS1 - EEZ

[b] 

kcal/mol 
ΔE2 = ETS2 - EEZ

[b]

kcal/mol 
H 10.55 9.32 10.76 9.53 

NO2 6.86 6.26 6.33 5.73 

[a] ETS1
rel and ETS2

rel are the energies of the first and second transition state, respectively, relative to the EE 
isomer (set at 0 kcal/mol). 

[b] ΔE1 and ΔE2 are the energy barriers for the EZ to EE rotation through TS1 and TS2 transition states, 
respectively (Figure 4.18). 

 

 

4.4 Concluding remarks 

 

Low temperature NMR proved to be a valuable tool for full characterisation of the ligands as well as the complexes 

derived from them by slowing down the fast dynamics of these systems at ambient temperature. The remote 

substituent effect on N-methyl-N-(para-X-phenyl)-N’-acylthioureas has been shown to have significant 

consequences on the partial double C-N bond character of the (S)C-N(Me)(para-X-Ph) moiety and this impacts on 

the resultant EE/EZ/ZZ isomer distributions of the Pt(II) complexes. We arrive at this conclusion since it seems that 

the ZZ isomer is stabilised by a higher C-N bond rotation barrier and more of this isomer is observed the higher this 

barrier is. We can therefore conclude that electronic effects play an important role in the distribution of 

configurational isomers of platinum derived from these ligands. The calculations of the thermodynamic parameters 

followed the expected trend in the strengthening of the partial double (S)C-NR(para-X-Ph) bond; the nitro 

substituent resulting in the weakest bond followed by the unsubstituted moiety and the methoxy substituent resulting 

in the strongest C-N bond. In addition to electronic effects of the substituent, X, the influence of the solvent proved 

to be quite significant in the rotational barrier of thiocarbonyl C-N bond and subsequently the isomer distribution. 

Thus far it can be speculated that the different polarities of the solvent do lead to these differences, but two these 

solvents are by no means a comprehensive study to say this with more certainty, hence a thorough study needs to be 

undertaken with regard to solvent effect. Principally it has been shown that in as much as the electronic effects play a 

significant role in steering the isomer distributions, so does the solvent polarity in which the complexes are dissolved. 

In addition to these two factors it has also been shown that the temperature at which the NMR measurements are 

made are critical to the results obtained for these complexes. It was therefore essential to measure and quote the 

distributions in identical conditions. Complementary to the solution NMR results are the DFT theoretical calculations 

of the energy barriers as a function of the para-substituent in these complexes. The trends that are obtained 

theoretical in this study are rather qualitative in their manner and agree well with our experimental data (and 

theoretical studies of others), which lends confidence to our results. 
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Chapter 5: Coordination chemistry of asymmetrically 

disubstituted N-alkyl-N-aryl-N’-acylthioureas to 

platinum(II) 

 

Part 3: The influence of the alkyl substituent on the isomer distribution of E,Z 

configurational isomers of platinum(II) complexes of N-alkyl-N-aryl-N’-

acylthioureas 

 

Summary 

The influence of the alkyl substituent change has been investigated on the distributions of ZZ, EZ and EE 

configurational isomer of platinum(II) chelates derived from unsymmetrical N-alkyl-N-aryl-N’-acylthiourea ligands. 

The 195Pt NMR spectra of these complexes have been measured under identical conditions with N-alkyl groups 

changing from methyl, iso-propyl, cyclohexyl to n-pentyl and the N-aryl group is either substituted at the para-

position with a methoxy or nitro group or has no para-substituent at all. Parallel to the ligands described in the 

previous chapter, even though the E isomer is hugely favoured over the Z isomer in the unbound ligands, on 

complexation to the platinum(II) metal centre the ZZ isomer interestingly is most favoured over the EZ isomer and 

more so over the EE isomer. The ZZ isomer is observed to be increasingly favoured in the following sequence as the 

N-alkyl group is changed: n-pentyl > cyclohexyl > iso-propyl > methyl in the cases where the N-aryl group has been 

fixed as either 4-methoxy substituted or unsubstituted. Even the incomplete series of the case where the N-aryl group 

has a nitro substituent the ZZ isomer is favoured when the N-alkyl group is n-pentyl over the methyl. A few examples 

of these ligands in the E configuration in solid state have been isolated and for the very first time a platinum(II) 

chelate with unsymmetrical ligands of this type in a ZZ configuration has also been isolated. 
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5.1 Introduction 

 

In the previous chapter it was clearly demonstrated in detail that the relative increase or decrease of the double bond 

character of the C-N bond of the (S)C-N(R)(para-X-Ph) (X = O-CH3, H and NO2) moiety in N-methyl-N-(para-X-

phenyl)-N’-acylthioureas is dependent on the electron donating/electron withdrawing properties of the para-

substituent, more especially upon ligand complexation to platinum(II) metal ion. When the complexes are dissolved 

in chloroform the ZZ isomer is energetically favoured over both the EZ and the EE isomers for the complex with 

highest rotation barrier of the C-N bond of the (S)C-N(R)(para-X-Ph) moiety. It was also noted that in a more polar 

solvent, dichloromethane, the C-N bond rotation barrier increases slightly, favouring the ZZ isomer even more. In 

this regard a solvent in which these compounds are dissolved is an important factor in the determination of these 

configurational isomers. Another significant factor is the temperature at which the measurement of the distributions 

is carried out; the lower the temperature is, there more of the ZZ isomer is observed. Hence the overall factors which 

have remarkable consequences on the EE/EZ/ZZ distributions of the platinum(II) complexes derived from these 

ligands are electronic, solvent polarity and temperature. To arrive fairly to any conclusions about the nature of the N-

alkyl group influence on these isomer distributions, it is clearly necessary to keep the other factors unchanged. For 

comparisons of the isomer distributions of these complexes (listed in Scheme 1) all their 195Pt NMR spectra were 

carried out in deuterated chloroform at 243 K. The exception to these conditions is the determination of isomer 

populations of cis-[Pt(L3A-S,O)2], which were measured in deuterated dichloromethane at 198 K for the reasons 

already discussed in the previous chapter. 

 

In this chapter the influence that a change in the N-alkyl group, R, has on the rotational barrier of the (S)C-

N(R)(para-X-Ph) bond and the effects on the configurational isomer distributions of the platinum(II) chelates 

derived from two sets of N-alkyl-N-(para-X-phenyl)-N’-acylthiourea ligands is examined. For the purpose of 

achieving these aims a new series of ligands with the same structural motif as the ligands studied in the previous 

chapter was synthesised. The variation of the N-CH3 group by substituting with a variety of alkyl groups: isopropyl, 

cyclohexyl and pentyl groups were studied. For each series of N-alkyl groups, the N-(para-X-phenyl) moiety was 

kept unchanged with the para-substituent being either a hydrogen atom or a methoxy group or a nitro group (see 

Scheme 1). This would hopefully allow the determination of the influence the N-alkyl group has on the isomer 

distributions in three different systems. As observed in the previous chapter the N-(para-X-phenyl) group is barrier 

lowering on the (S)C-N(R)(para-X-Ph) bond most so when the para-substituent X is a nitro group, which is electron 

withdrawing. Low temperature 195Pt NMR experiments were employed to monitor qualitatively what effect a change 

in the N-alkyl group has on the C-N bond rotation barrier on two complexes with an N-(4-nitro-phenyl) group. Even 

though the low temperature experiments could only be carried out for two compounds, cis-[Pt(L3A-S,O)2] and cis-

[Pt(L3D-S,O)2] with methyl and pentyl groups, respectively, important inferences about the effect an N-alkyl group 

change has on the isomer distributions were drawn. 
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Scheme 1 A series of new ligands and their corresponding platinum(II) chelates with systematic electronic 

variations on the para-substituent, X and N-alkyl substituent, R. The nitro series has two sets of 
ligands, one with R = methyl and pentyl group. The methoxy and the H series are complete with all 
the N-alkyl substituents. 

 

 

Here it is also demonstrated that the general isomer distribution trends obtained in the previous chapter for the 

complexes derived from the N-methyl-N-(para-X-Ph)-N’-acylthioureas are retained for each of the three additional 

alkyl substituent changes. In the complexes studied here the population of the ZZ isomer, though dominant, as 

determined by 195Pt NMR spectroscopy progressively gets smaller for the para-substituent of the N-(para-X-phenyl) 

moiety in the order: O-CH3 > H > NO2. Therefore these observations support the findings of the previous chapter. 

 

5.2 Experimental 

5.2.1 General remarks 

 

The synthesis and characterisation of ligands has already been described in detail in chapter 2, however, for 

comparison with the platinum(II) chelates derived from these ligands their NMR assignments will be discussed. 
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5.2.2 NMR spectroscopy 

 

Conventional 1H and 13C NMR spectra of relatively high concentrations (ca 80 mg.cm-3) of the ligands and their 

respective platinum(II) complexes using 5 mm diameter tubes were obtained at various temperatures in deuterated 

chloroform using a Varian Inova 400 spectrometer operating at 400 and 101 MHz for 1H and 13C, respectively. The 

calibration curve for the broadband probe was defined as: Actual temperature (°C) = 0.9892 x Set temperature (°C) + 

0.0859 (°C). All samples were carefully filtered before any spectroscopic measurement was undertaken. The 195Pt 

NMR spectra of the complexes were also recorded at various temperatures using the Varian Inova 400 spectrometer 

operating at 86 MHz [reference material: 500 mg.cm-3 H2PtCl6 in 30% (v/v) D2O-1M HCl at δ(195Pt) = 0 ppm at 30 

°C]. 

 

5.2.3 Synthesis of platinum complexes 

 

The new series of Pt(II) complexes were prepared and characterised according to our previously published method,1 

which entails drop-wise addition a platinum(II) solution (in a one to one volume of acetonitrile to water) to a solution 

of ligand and sodium acetate (also in a one to one volume of acetonitrile to water). All the reagents were 

commercially available and were used without any prior purification. The reactions were generally conducted at 50 

ºC for two hours. After the reaction solutions had cooled to room temperature, excess water was added and reaction 

mixtures were refrigerated before the products were collected by means of centrifugation and dried under vacuum. 

Elemental analyses were performed using a Carlo Erba EA 1108 elemental analyser courtesy of the University of 

Cape Town. Detailed 1H and 13C NMR spectroscopic data for the new complexes follows the numbering scheme 

indicated Scheme 2. For the 1H NMR assignments the carbon to which the protons are attached will be indicated. 

 

 
 
Scheme 2 Numbering scheme for 1H and 13C NMR assignments of the new complexes. The coordinated 

ligand is only drawn in an E orientation. 
 

 

O

N

S
Pt

N

X

O

N

S
Pt

N

X

O

N

S
Pt

N

X

1
2 3

5

4

6

7

8

9

10

11

12

131

1

1

1

1

1

1

1

2 23 34 4

55

6 6666

77777

88

9 9
10

10

10

10

11

11
12

X = O-CH3 for cis-[Pt(L1B-S,O)2]
X = H for cis-[Pt(L2B-S,O)2]

X = O-CH3 for cis-[Pt(L1C-S,O)2]

X = H for cis-[Pt(L2C-S,O)2]

X = O-CH3 for cis-[Pt(L1D-S,O)2]

X = H for cis-[Pt(L2D-S,O)2]

X = NO2 for cis-[Pt(L3D-S,O)2]

http://scholar.sun.ac.za/



Chapter 5                                   Alkyl substituent influence on configurational isomer distribution of Pt(II) complexes 
 

 96

cis-bis(N-Isopropyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1B-

S,O)2]: A yield of 93% collected and analysed. Found C, 47.42; H, 5.66; N, 6.90; S, 7.60 C32H42N4O2PtS2 required C, 

47.45; H, 5.72; N, 6.92; S, 7.92%. H(400 MHz; solvent CDCl3): 7.05 (2H, d, C6 (EZ)), 6.93 (2H, d, C6 (ZZ)), 6.79 

(2H, d, C7 (ZZ)), 5.45 (1H, ses, C9 Z(EZ)), 5.40 (1H, ses, C9 ZZ), 5.18 (1H, ses, C9 EE), 5.00 (1H, ses, C9 E(EZ)), 

3.81 (3H, s, O-CH3 E(EZ)), 3.79 (3H, s, O-CH3 Z(EZ)), 3.72 (3H, s, O-CH3 ZZ), 1.23 (9H, s, C1 Z(EZ)), 1.22 (9H, s, 

C1 ZZ), 0.76 (9H, s, C1 EE), 0.75 (9H, s, C1 E(EZ)), 0.96 (6H, d C10 ZZ). C(101 MHz, solvent CDCl3): 183.47 C3 

Z(EZ), 183.31 C3 (ZZ), 182.65 C3 E(EZ), 168.54 C4 ZZ, EZ and EE, 158.78 C8 Z(EZ), 158.59 C8 ZZ, 157.82 C8 

E(EZ), 132.79 C5 E(EZ), 132.32 C5 Z(EZ), 132.16 C5 ZZ, 130.77 C6 Z(EZ), 130.61 C6 ZZ, 129.64 C6 E(EZ), 114.04 

C7 Z(EZ), 113.95 C7 ZZ, 114.04 C7 E(EZ), 55.33 (O-CH3) ZZ, EZ and EE, 50.26 C9 ZZ, EZ and EE, 42.31 C2 Z(EZ), 

42.28 C2 ZZ, 42.28 C2 E(EZ), 28.05 C1 ZZ and Z(EZ), 27.47 C1 EE and E(EZ), 21.03 C10 EE and E(EZ), 20.77 C10 

ZZ and E(EZ). 

 

cis-bis(N-Cyclohexyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1C-

S,O)2]: A yield 85% collected and analysed. Found C, 51.31; H, 6.46; N, 6.34; S, 7.25 PtC38H54N4S2O4 required C, 

51.28; H, 6.12; N, 6.29; S, 7.21%. H(400 MHz; solvent CDCl3): 7.06 (2H, d, C6 (EZ)), 6.93 (2H, d, C6 (ZZ)), 6.79 

(2H, d, C7 (ZZ)), 6.75 (2H, d, C6 (EZ)), 5.01 (1H, ses, C9 Z(EZ)), 4.95 (1H, ses, C9 ZZ), 4.54 (1H, ses, C9 E(EZ)), 

3.83 (3H, s, O-CH3 E(EZ)), 3.79 (3H, s, O-CH3 Z(EZ)), 3.76 (3H, s, O-CH3 ZZ), 1.74 (4H, br, C10 ZZ, EZ and EE) 

1.23 (9H, s, C1 Z(EZ)), 1.22 (9H, s, C1 ZZ), 0.76 (9H, s, C1 EE), 1.01 (4H, m, C11 ZZ, EZ and EE), 0.85 (2H, m, C12 

ZZ, EZ and EE), 0.75 (9H, s, C1 E(EZ)). C(101 MHz, solvent CDCl3): 183.28 C3 Z(EZ), 183.12 C3 (ZZ), 182.51 C3 

E(EZ), 168.45 C4 ZZ, EZ and EE, 158.72 C8 Z(EZ), 158.56 C8 ZZ, 157.76 C8 E(EZ), 133.69 C5 E(EZ), 133.10 C5 

Z(EZ), 132.29 C5 ZZ, 130.59 C6 Z(EZ), 130.44 C6 ZZ, 129.49 C6 E(EZ), 114.04 C7 Z(EZ), 113.89 C7 ZZ, 113.03 C7 

E(EZ), 55.73 (O-CH3) ZZ, EZ and EE, 55.45 C9 E(EZ), 55.39 C9 Z(EZ), 55.31 C9 ZZ, 42.36 C2 Z(EZ), 42.24 C2 ZZ, 

41.59 C2 E(EZ), 31.17 C10 ZZ, EZ and EE 28.22 C1 ZZ and Z(EZ), 27.47 C1 EE and E(EZ), 25.67 C11 ZZ, EZ and 

EE, 25.07 C12 ZZ, EZ and EE. 

 

cis-bis(N-Pentyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1D-S,O)2]: 

A yield of 81% was collected and analysed. Found C, 50.24; H, 6.64; N, 6.54; S, 7.24 C36H54N4O4PtS2 required C, 

49.93; H, 6.28; N, 6.47; S, 7.41%. H(400 MHz; solvent CDCl3): 7.18 (2H, d, C6 (EZ)), 7.05 (2H, d, C6 (ZZ)), 6.94 

(2H, d, C7 E(EZ)), 6.90 (2H, d, C7 E(EZ)), 6.82 (2H, d, C7 (ZZ)), 3.79 (2H, m, C9 ZZ, EZ and EE), 3.74 (3H, s, O-

CH3 ZZ, EZ and EE), 1.54 (4H, br, C10 and C11 ZZ, EZ and EE), 1.23 (9H, s, C1 Z(EZ)), 1.22 (9H, s, C1 ZZ), 0.81 

(9H, s, C1 E(EZ)),1.17 (2H, br, C12 ZZ, EZ and EE), 0.82 (3H, t, C13 ZZ, EZ and EE). C(101 MHz, solvent CDCl3): 

183.62 C3 Z(EZ), 183.47 C3 (ZZ), 182.72 C3 E(EZ), 168.27 C4 ZZ, EZ and EE, 158.55 C8 Z(EZ), 158.40 C8 ZZ, 

157.52 C8 E(EZ), 137.53 C5 E(EZ), 136.89 C5 Z(EZ), 136.77 C5 ZZ, 129.07 C6 Z(EZ), 128.93 C6 ZZ, 127.87 C6 

E(EZ), 114.51 C7 Z(EZ), 114.41 C7 ZZ, 113.44 C7 E(EZ), 55.24 (O-CH3) ZZ, EZ and EE, 55.39 C9 ZZ, EZ and EE, 

42.27 C2 Z(EZ), 42.21 C2 ZZ, 41.72 C2 E(EZ), 28.74 C10 ZZ, EZ and EE, 28.04 C1 ZZ and Z(EZ), 27.53 C1 EE and 

E(EZ), 26.96 C11 ZZ, EZ and EE, 22.45 C12 ZZ, EZ and EE, 14.13 C13 ZZ, EZ and EE. 
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cis-bis(N-Isopropyl-N-phenyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L2B-S,O)2]: A yield of 

91% was collected and analysed. Found C, 47.61; H, 5.61; N, 7.42; S, 8.40 C30H42N4O2PtS2 required C, 48.05; H, 

5.65; N, 7.47; S, 8.55%. H(400 MHz; solvent CDCl3): 7.43 (2H, dd, C7 EE and E(EZ)), 7.34 (2H, dd, C7 ZZ and 

Z(EZ)), 7.16 (2H, dd, C6 EE and E(EZ)), 7.03 (2H, dd, C6 ZZ and Z(EZ)), 6.94 (1H, dd, C8 EE and E(EZ)), 6.87 (1H, 

dd, C8 ZZ and Z(EZ)), 5.05 (1H, ses, C9 Z(EZ)), 5.44 (1H, ses, C9 ZZ), 5.20 (1H, ses, C9 EE), 5.01 (1H, ses, C9 

E(EZ)), 1.24 (9H, s, C1 Z(EZ)), 1.23 (9H, s, C1 ZZ), 0.73 (9H, s, C1 EE), 0.72 (9H, s, C1 E(EZ)), 1.05 (6H, d C10 

E(EZ)), 1.04 (6H, d C10 Z(EZ)), 0.97 (6H, d C10 ZZ). C(101 MHz, solvent CDCl3): 183.56 C3 Z(EZ), 183.39 C3 

(ZZ), 182.60 C3 E(EZ), 168.09 C4 ZZ, EZ and EE, 140.13 C5 EE and E(EZ), 139.41 C5 ZZ and Z(EZ), 129.85 C7 EE 

and E(EZ), 129.70 C7 ZZ and Z(EZ), 129.10 C6 Z(EZ), 129.01 C6 ZZ, 128.80 C6 E(EZ), 128.31 C8 E(EZ), 128.23 C8 

Z(EZ), 128.16 C8 E(EZ), 50.34 C9 ZZ, EZ and EE, 42.34 C2 Z(EZ), 42.26 C2 ZZ, 41.58 C2 E(EZ), 28.06 C1 ZZ and 

Z(EZ), 27.34 C1 EE and E(EZ), 21.06 C10 EE and E(EZ) 20.87 C10 E(EZ), 20.82 C10 ZZ. 

 

cis-bis(N-Cyclohexyl-N-phenyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L2C-S,O)2]: A yield of 

91% was collected and analysed. Found C, 51.10; H, 6.00; N, 6.68; S, 7.28 C36H50N4O2PtS2 required C, 52.09; H, 

6.07; N, 6.75; S, 7.73%. H(400 MHz; solvent CDCl3): 7.43 (2H, br, C7 EE and E(EZ)), 7.31 (2H, dd, C7 ZZ and 

Z(EZ)), 7.16 (2H, dd, C6 EE and E(EZ)), 7.03 (2H, dd, C6 ZZ and Z(EZ)), 6.92 (1H, br, C8 EE and E(EZ)), 6.85 (1H, 

br, C8 ZZ and Z(EZ)), 5.05 (1H, tt, C9 Z(EZ)), 4.99 (1H, tt, C9 ZZ), 4.72 (1H, tt, C9 EE), 4.54 (1H, tt, C9 E(EZ)), 1.79 

(4H, br, C10 ZZ, EZ and EE) 1.24 (9H, s, C1 Z(EZ)), 1.23 (9H, s, C1 ZZ), 0.73 (9H, s, C1 EE), 0.72 (9H, s, C1 E(EZ)), 

1.51 (4H, m, C11 ZZ, EZ and EE), 0.89 (2H, m, C12 ZZ, EZ and EE). C(101 MHz, solvent CDCl3): 183.43 C3 Z(EZ), 

183.29 C3 (ZZ), 182.54 C3 E(EZ), 168.06 C4 ZZ and Z(EZ), 167.90 C4 EE and E(EZ), 141.06 C5 E(EZ), 140.32 C5 

Z(EZ), 140.16 C5 ZZ, 129.76 C7 EE and E(EZ), 129.62 C7 ZZ and Z(EZ), 129.21 C6 Z(EZ), 129.06 C6 ZZ, 128.77 C6 

E(EZ), 128.27 C8 EE and E(EZ), 128.19 C8 ZZ and Z(EZ), 59.89 C9 EE and E(EZ), 58.85 C9 ZZ and Z(EZ), 42.47 

C2 Z(EZ), 42.34 C2 ZZ, 41.65 C2 E(EZ), 31.42 C10 E(EZ), 31.36 C10 Z(EZ), 31.30 C10 ZZ, 28.25 C1 ZZ and Z(EZ), 

27.44 C1 EE and E(EZ), 25.87 C11 ZZ and E(EZ), 25.37 C11 EE and E(EZ), 25.13 C12 ZZ, 25.05 C12 Z(EZ), 24.98 C12 

E(EZ). 

 

cis-bis(N-Pentyl-N-phenyl-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L2D-S,O)2]: A yield of 

91% was collected and analysed. Found C, 49.76; H, 6.90; N, 6.86; S, 8.79 C34H50N4O2PtS2 required C, 50.67; H, 

6.25; N, 6.95; S, 7.96%. H(400 MHz; solvent CDCl3): 7.47 (2H, t, C7 EE and E(EZ)), 7.43 (2H, t, C8 EE and 

E(EZ)), 7.34 (2H, m, C7 ZZ and Z(EZ)), 7.30 (2H, m, C8 ZZ and Z(EZ)), 7.14 (1H, d, C6 ZZ and Z(EZ)), 6.98 (1H, d, 

C6 EE and E(EZ)), 3.89 (2H, t, C9 E(EZ)), 3.82 (2H, t, C9 ZZ), 3.76 (2H, t, C9 Z(EZ)), 1.56 (4H, br, C10 and C11 ZZ, 

EZ and EE), 1.24 (9H, s, C1 Z(EZ)), 1.22 (9H, s, C1 ZZ), 0.78 (9H, s, C1 E(EZ)), 1.18 (2H, br, C12 ZZ, EZ and EE), 

0.81 (3H, t, C13 ZZ, EZ and EE). C(101 MHz, solvent CDCl3): 183.72 C3 Z(EZ), 183.56 C3 (ZZ), 182.76 C3 E(EZ), 

167.88 C4 ZZ, EZ and EE, 144.71 C5 E(EZ), 144.04 C5 Z(EZ), 143.92 C5 ZZ, 129.64 C7 EE and E(EZ), 129.53 C7 

ZZ and Z(EZ), 128.64 C6 E(EZ), 128.10 C6 Z(EZ), 127.93 C6 ZZ, 126.99 C8 ZZ and Z(EZ), 126.69 C8 EE and 

E(EZ), 55.69 C9 ZZ, EZ and EE, 42.29 C2 Z(EZ), 42.22 C2 ZZ, 41.70 C2 E(EZ), 28.77 C10 ZZ, EZ and EE, 28.13 C1 
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ZZ and Z(EZ), 27.41 C1 EE and E(EZ), 26.98 C11 ZZ, EZ and EE, 22.41 C12 ZZ, EZ and EE, 14.13 C13 ZZ, EZ and 

EE. 

 

cis-bis(N-Pentyl-N-(4-nitro-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(L3D-S,O)2]: A 

yield of 87% was collected and analysed. Found C, 45.34; H, 5.66; N, 9.27; S, 7.69 C34H48N6O6PtS2 required C, 

45.58; H, 5.40; N, 9.38; S, 7.16%. H(400 MHz; solvent CDCl3): 8.25 (2H, d, C7 ZZ, EZ and EE), 7.35 (2H, d, C6 

ZZ, EZ and EE), 3.89 (2H, t, C9 ZZ, EZ and EE), 1.55 (2H, br, C10 ZZ, EZ and EE), 1.21 (4H, br, C11 and C12 ZZ, EZ 

and EE) 1.07 (9H, s, C1 ZZ, EZ and EE), 0.80 (3H, t, C13 ZZ, EZ and EE). C(101 MHz, solvent CDCl3): 185.11 C3 

ZZ, EZ and EE, 169.29 C4 ZZ, EZ and EE, 150.40 C5 ZZ, EZ and EE, 146.88 C8 ZZ, EZ and EE 129.32 C7 ZZ, EZ 

and EE, 124.98 C6 ZZ, EZ and EE, 54.24 C9 ZZ, EZ and EE, 42.27 C2 ZZ, EZ and EE, 28.65 C10 ZZ, EZ and EE, 

27.71 C1 ZZ, EZ and EE, 27.06 C11 ZZ, EZ and EE, 22.11 C12 ZZ, EZ and EE, 13.68 C13 ZZ, EZ and EE. 

 

We have already reported on the synthesis and characterisation of cis-[Pt(L1A-S,O)2], cis-[Pt(L2A-S,O)2] and cis-

[Pt(L3A-S,O)2] in the previous chapter. These form part of the discussion here for the sake of comparison since all 

these complexes are similar to the new complexes. 

 

5.2.4 Crystallography and structure refinement of cis-bis(N-pentyl-N-(4-methoxy-phenyl)-N’-2,2-
dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1D-S,O)2] 

 

The cis-[Pt(L1D-S,O)2] complex crystallised in chloroform at low temperature to produce suitable single crystals for 

X-ray structure analysis. The crystals were first covered with paratone oil before they were mounted on a thin glass 

fibre and data were collected on a Bruker-Nonius SMART Apex diffractometer using monochromated Mo-Kα 

radiation (λ = 0.7107 Å). The structure was solved using SHELX-97 and refined using SHELXL-972 with the aid of 

the interface program X-SEED.3 All non-hydrogen atoms were modelled anisotropically. Hydrogen atoms were 

placed in geometrically calculated positions, with C-H = 0.99 (for -CH2-), 0.98 (for -CH3), or 0.95 Å (for phenyl). 

The relevant crystallographic data is shown in Table 5.5 and selected bond lengths and angles are shown in Table 

5.6. 

 

5.3 Results and Discussion 

5.3.1 E,Z configurational isomerism in asymmetrically disubstituted N-alkyl-N-(para-X-phenyl)-N’-acylthiourea 
ligands, HL1B,1C,1D, HL2B,2C,2D and HL3D 

 

All the unbound ligands with the general structure N-alkyl-N-(para-X-phenyl)-N’-acylthiourea of relevance in this 

chapter (listed in Scheme 1) display E,Z isomerism that is observed at sufficiently low temperatures. Again it is 

attributable to the barrier lowering nature of the aryl substituent4 that the E,Z isomerism is not observable at room 

temperature in chloroform. The ligands with a N-(4-nitro-phenyl) group have such a low C-N bond rotation barrier, 

that the E,Z isomers are in fast exchange on the NMR time scale and therefore appear as one signal even at much 
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lower temperatures (198 K) in dichloromethane. This is attributed to the electron withdrawing nitro group that can be 

assumed to draw the (S)C-N(alkyl)(para-X-phenyl) nitrogen lone pair electrons into the aromatic ring so lowering 

the rotation barrier of the C-N bond. For the other ligands the E,Z configurational isomers are readily observed by 

duplication of peaks in the 1H and 13C NMR spectra at 243 K. Here we shall not show the sections of either the 1H or 
13C NMR spectra for all the ligands as they are similar to those discussed in the previous two chapters. 

 

For quantitative determination of the relative populations of the E and the Z isomers in the new ligands the N-H 

proton singlet resonances were integrated. This region of the spectrum is less complicated than the N-CH-/N-CH2- 

proton region with 3J(1H-1H) couplings or the phenyl region. Even more complicated region is the rest of the N-alkyl 

group. Figure 5.1 illustrates the 3J(1H-1H) coupling involved in N-CH- protons of the N-isopropyl group of HL2B 

together with much simple N-H singlet resonances. 

 

 
 
Figure 5.1 Sections of 1H NMR spectrum showing the 3J(1H-1H) couplings on the N-CH- protons of the E,Z 

isomers of HL2B, the phenyl region and the N-H resonances. The spectrum was acquired at 243 K 
in deuterated chloroform. 

 

 

The assignment of E and Z isomers is similar to that discussed previously and will not again be discussed here. In 

Figure 5.1 the upfield resonance of the N-CH(CH3)2 proton at 5.62 ppm due to the Z isomer is suppose to be identical 

to the downfield septet resonance of the N-CH(CH3)2 proton at 5.75 ppm of the E isomer. Due to the relatively small 

population of the Z component the upfield resonance is not well resolved. Table 5.1 lists all the ligands with the E,Z 

isomer populations as determined by digital integration of the N-H singlet resonances. The table shows that the 

relative percentage of E is much higher than that of Z for all the ligands under investigation. What is more, the 

relative distribution of the E isomer is increased even further from methyl to isopropyl to cyclohexyl to pentyl and is 

almost the exclusive isomer present (98%) in the ligands with a cyclohexyl or pentyl group. 
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Table 5.1 Relative distributions of the E,Z configurational isomers of three different types of N-alkyl-N-
(para-X-phenyl)-N-2,2-dimethylpropanoylthioureas as determined from digital integration of the 
N-H singlet resonances in the 1H NMR spectra measured at 243 K. The reported percentage 
distributions are estimated to have an error of ± 1%. 

 
Ligand N-(para-X-phenyl) N-alkyl Z-isomer (%) E-isomer (%) 
[a]HL1A N-(4-Methoxy-Ph) N-CH3 13 87 

HL1B  N-CH(CH3)2 3 97 

HL1C  N-cyclo(C6H11) 2 98 

HL1D  N-(CH2)4CH3 2 98 
[a]HL2A  N-(Ph) N-CH3 10 90 

HL2B  N-CH(CH3)2 7 93 

HL2C  N-cyclo(C6H11) 2 98 

HL2D  N-(CH2)4CH3 2 98 
[a], [b]HL3A N-(4-Nitro-Ph) N-CH3 - - 

[b]HL3D  N-(CH2)4CH3 - - 

[a] These ligands were already discussed in the previous chapter and are included in this series for the sake of 
comparison and the E,Z isomer distributions of these were obtained by deconvolution analysis of the N-CH3 
proton resonances. These resonances were singlets and readily to integrated. 

[b] The E,Z isomer distribution of these ligands could not be determined since the C-N bond rotation is not 
sufficiently slow on the NMR time scale even at 198 K in dichloromethane. 

 

 

In Table 5.1 it can be seen that for bulkier N-alkyl groups the population is skewed even more towards the E isomer. 

Similarly to the ligands HL1A and HL2A, discussed in the previous chapter the observed E/Z ratios seem to fall in the 

same general range of N-alkylacetanilides, which exist predominantly as the exo isomer,5-8 for which the introduction 

of bulkier alkyl substituents, the E isomer is also found to dominate even further. 

 

In the new series of ligands discussed in this chapter two crystal structures were determined for both N-cyclohexyl- 

and N-pentyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthiourea, HL1C and HL1D. For both ligands only the E 

isomer was isolated in solid state, which is not surprising since the E components were in large excess over the Z 

components for both ligands in solution (Table 5.1). Both ligands have a C-N bond of the (S)C-N(alkyl)(para-X-Ph) 

moiety that is significantly shorter than a C-N single bond of 1.472(5) Å with HL1C C-N bond length being 1.338(3) 

Å and that of HL1D being 1.332(3) Å. These are comparable to bond lengths of HL1A [1.343(3) Å] and HL2A 

[1.340(4) Å] discussed in the previous chapter. It could therefore be anticipated that these ligands display E,Z 

isomerism due to the restricted rotation about this C-N bond. 
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5.3.2 Platinum(II) chelates derived from asymmetrically disubstituted N-alkyl-N-(phenyl)-N’-acylthioureas, 
HL2A,2B,2C,2D. 

 

On coordination to the Pt(II) metal centre, all the asymmetrically disubstituted ligands pass on their E,Z 

configurational isomerism and form ZZ, EZ and EE platinum(II) chelates similar to molecules previously shown in 

chapter 4. Again it is easy to see the presence of these isomers by observing the 195Pt NMR spectra of these 

complexes as they show three well-resolved resonances at 303 K in chloroform. Since some of the new complexes, 

which will be encountered later are in fast exchange at ambient temperature, all the spectra reported in Figure 5.2 and 

the data in Table 2 were recorded at a common temperature of 243 K. 

 
 
Figure 5.2 The 86 MHz 195Pt NMR spectra of cis-[Pt(L2A,2B,2C,2D-S,O)2] complexes showing their ZZ, EZ and 

EE isomer distributions. All the measurements were carried out in deuterated chloroform at 243 K. 
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Table 5.2 Assignments of δ(195Pt) (ppm) and the relative ZZ, EZ and EE isomer distributions (taken from 
195Pt NMR deconvolution analysis) of configurational isomers of cis-[Pt(L2A,2B,2C,2D-S,O)2] 
complexes. All the spectra were measured in CDCl3 at 243 K. 

 
N-alkyl substituent, R Complex ZZ EZ EE 

methyl δ(195Pt) cis-[Pt(L2A-S,O)2] -2717 -2737 -2746 
 [a] Statistical (%) 5 10 85 
 [b] Relative integrals (%) 45 44 11 

isopropyl δ(195Pt) cis-[Pt(L2B-S,O)2] -2708 -2743 -2765 
 [a]Statistical (%) 3.5 7 89.5 
 [b] Relative integrals (%) 53 40 7 

cyclohexyl δ(195Pt) cis-[Pt(L2C-S,O)2] -2718 -2748 -2770 
 [a]Statistical (%) 1 2 97 
 [b] Relative integrals (%) 57 38 5 

n-pentyl δ(195Pt) cis-[Pt(L2D-S,O)2] -2721 -2743 -2758 
 [a]Statistical (%) 1 2 97 
 [b] Relative integrals (%) 61 35 4 

[a] Based on the E,Z isomer distributions assuming no inter-conversion during and after complexation to the 
Pt(II) centre. 

[b] The observed relative integrals of the 195Pt NMR spectra measured at 243 K. These values are estimated to 
have an error of  1%. 

 

 

At 243 K both the 1H and the 13C NMR spectra of all the complexes studied can be used to confirm the presence of 

the three configurational isomers. Similar to the unbound ligands these spectra tend to be more complex and not so 

easy to integrate reliably as shown by the 1H NMR section of a complex resulting from HL2B, cis-[Pt(L2B-S,O)2] in 

Figure 5.3. The assignment of this spectrum is therefore based on the relative populations of the ZZ, EZ and EE 

isomers obtained from the 195Pt NMR spectra. 

 

 
 
Figure 5.3 Low temperature (243 K) 1H NMR spectrum section of cis-[Pt(L2B-S,O)2] showing the presence of 

three configurational isomers. The EZ isomer has two magnetically non-equivalent N-CH- protons 
hence there are four resonances for the three isomers. 
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Similar to the N-CH(CH3)2 proton region of the unbound ligand (Figure 5.1), the N-CH(CH3)2 proton region (Figure 

5.3) of the complex is a lot more complicated to integrate and determine the ZZ, EZ and EE configurational isomer 

than integrating singlet resonances in the 195Pt NMR spectrum. We demonstrated in the previous chapter that the 1H 

and 195Pt NMR spectra at the same temperature are complimentary within experimental error when comparing the 

isomer distributions. Therefore, it suffices to exclusively use the 195Pt NMR spectra deconvolution analysis for 

comparing the isomer distributions when we evaluate the influence of the change of the N-alkyl group has on the 

isomer distributions. 

 

It is clear from Figure 5.2 and Table 5.2 that the concentration of the ZZ isomer progressively grows at the expense 

of the EZ and EE isomers as the N-alkyl group is altered in the sequence: methyl < isopropyl < cyclohexyl < pentyl. 

As found in the previous chapter the ZZ isomer was observed to be favoured more if the energy of the C-N bond 

rotation barrier is increased. Even though the C-N rotation barriers in the set of complexes (cis-[Pt(L2B,2C,2D-S,O)2]) 

could not be quantitatively determined, it has been noted that the configurational isomers of the new complexes are 

observable at room temperature in the 1H NMR spectra. This is unlike the complexes cis-[Pt(L1A,2A,3A-S,O)2], studied 

in chapter 4, whose configurational isomers were only observable at low temperatures from their 1H NMR spectra. 

What this means in principle is that the complexes where the N-alkyl group is other than methyl, have a relatively 

higher rotation barrier than the N-methyl derivatives discussed in the previous chapter. It can be argued that in terms 

of the N-alkyl substituent sequence in which the ZZ isomer is favoured that the C-N bond rotational barrier in these 

complexes also follow this sequence i.e. ΔG≠ increases in the order of alkyl substituent: methyl < isopropyl < 

cyclohexyl < pentyl. It is not likely that the rise in rotation barrier is due to increasing steric factors since it has been 

shown crystal structures that bulkier groups produce increasing non-planar distortions in substituted amides (N-ethyl-

N-4-nitrophenylcarbamoyl chloride and N-phenylurethane) by twisting about the C-N bond.9 The overall effect of 

introducing bulkier alkyl substituent in these substituted amides gave rise to relatively longer C-N bond. This in turn 

should lead to a lower rotation barrier. In support of this observation Isbrandt et al.10 who studied unsymmetrically 

disubstituted N,N-disubstituted amides CH3C(O)N(CH3)R’ found that ΔG≠ (kcal/mol) decreases in the sequence 18.1 

R’ = methyl, 18.0 R’ = 18.0 ethyl, 17.9 R’ = n-butyl, 17.1 R’ = cyclohexyl and 17.0 R’ = isopropyl. 

 

Contrary to these two systems we have noted that on introducing bulkier N-alkyl substituents in our ligands has lead 

to a relatively shorter C-N bond length. Ligand HL1C with a cyclohexyl group has a C-N bond length of 1.338(3) Å 

and that of HL1D with a pentyl group has a C-N bond length of 1.332(3) Å while HL1A with a methyl group has a C-

N bond length of 1.343(3) Å. Intuitively, HL1C and HL1D should have a relatively higher C-N rotation barrier than 

HL1A and that seems to be the case when comparing the isomer distributions in Figure 5.4 which we shall discuss 

shortly. A possible explanation for the increase in the double bond character of the C-N bond upon bulkier N-alkyl 

substitution could be due to relatively higher inductive effect of bulkier alky groups. 
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5.3.3 Platinum(II) chelates derived from asymmetrically disubstituted N-alkyl-N-(4-methoxy-phenyl)-N’-
acylthioureas, HL1A,1B,1C,1D and N-alkyl-N-(4-nitro-phenyl)-N’-acylthioureas, HL3A,3D 

 

To establish the findings observed in the previous section regarding the influence of the bulkiness of the N-alkyl 

chain on the distribution of configurational isomers the same series of N-alkyl substituent (methyl, iso-propyl, 

cyclohexyl and n-pentyl) was used to make a new series of related ligands and Pt(II) complexes. In the first series the 

aryl group of the ligand is substituted at the para position with a methoxy substituent. In the second series the N-aryl 

group of the ligand is substituted at the para position with a nitro substituent (see Scheme 1). All ligands in the 

methoxy series display E,Z isomerism, and on coordination to Pt(II) metal centre, they pass on this configurational 

isomerism to result in ZZ, EZ and EE Pt(II) chelates. 

 

The summary of the results that show the N-alkyl influence on the Pt(II) chelates isomer distributions in the methoxy 

series are shown in Figure 5.4 and Table 5.3. As the N-alkyl group is altered the ZZ isomer progressively grows at 

the expense of the EZ and EE isomers as was found in the previous series of Pt complexes of the unsubstituted 

phenyl, HL2A,2B,2C,2D ligands: methyl < isopropyl < cyclohexyl < pentyl. The E,Z isomers of both the N-methyl- and 

N-pentyl-(4-nitro-phenyl)-N’-2,2-dimethylpropanoylthioureas, HL3A and HL3D are in fast exchange on the NMR time 

scale to be observed as separate resonances. However upon coordination to Pt(II) metal centre these ligands display 

E,Z isomerism upon. The summary of the results for the incomplete series of the nitro-substituted ligands is shown in 

Table 5.4., showing similar trends as for the 4-methoxy substituted phenyl series and the unsubstituted phenyl series 

ligands. The consistency of the effect of the N-alkyl substituent change in different electronic environments (X = H 

in Section 5.3.2, X = O-CH3 and X = NO2 in Section 5.3.3) means that we are indeed making accurate assessments of 

the effect of these alkyl groups on the isomer distributions we observe. 
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Figure 5.4 The 86 MHz 195Pt NMR spectra of cis-[Pt(L1A,1B,1C,1D-S,O)2] complexes showing their ZZ, EZ and 

EE isomer distributions. All the measurements were carried out in deuterated chloroform at 243 K. 
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Table 5.3 Assignments of δ(195Pt) (ppm) and the relative ZZ, EZ and EE isomer distributions (taken from 
195Pt NMR deconvolution analysis) of configurational isomers of cis-[Pt(L1A,1B,1C,1D-S,O)2] 
complexes. All the spectra were measured in CDCl3 at 243 K. 

 
N-alkyl substituent, R Complex ZZ EZ EE 

methyl δ(195Pt) cis-[Pt(L1A-S,O)2] -2725 -2742 -2750 
 [a] Statistical (%) 6.5 13 80.5 
 [b] Relative integrals (%) 59 35 6 

isopropyl δ(195Pt) cis-[Pt(L1B-S,O)2] -2717 -2748 -2767 
 [a] Statistical (%) 1.5 3 95.5 
 [b] Relative integrals (%) 72 28 < 1 

cyclohexyl δ(195Pt) cis-[Pt(L1C-S,O)2] -2726 -2756 -2773 
 [a] Statistical (%) 1 2 97 
 [b] Relative integrals (%) 75 25 < 1 

n-pentyl δ(195Pt) cis-[Pt(L1D-S,O)2] -2730 -2748 -2765 
 [a] Statistical (%) 1 2 97 
 [b] Relative integrals (%) 76 24 < 1 

[a] Based on the E,Z isomer distributions assuming no inter-conversion during and after complexation to the 
Pt(II) centre. 

[b] The observed relative integrals of the 195Pt NMR spectra measured at 243 K. These values are estimated to 
have an error of  1%. 

 

 

Table 5.4 Assignments of δ(195Pt) (ppm) and the relative ZZ, EZ and EE isomer distributions taken from 195Pt 
NMR deconvolution analysis of configurational isomers of cis-[Pt(L3D-S,O)2] complex were 
measured in CDCl3 at 243 K. The relative isomer distributions of cis-[Pt(L3A-S,O)2] complex were 
taken from 1H NMR deconvolution analysis which was measured in CD2Cl2 at 198 K. 

 
N-alkyl substituent, R Complex ZZ EZ EE 

methyl δ(195Pt) cis-[Pt(L3A-S,O)2] - - - 
 [a]Statistical  - - - 
 [b] Relative integrals (CD2Cl2) 27 46 27 

n-pentyl δ(195Pt) cis-[Pt(L3D-S,O)2] -2710 -2723 -2734 
 [a]Statistical - - - 
 [c] Relative integrals (CDCl3) 47 42 11 

[a] Since E,Z isomers of HL3A and HL3D could not be observed as separate signals (i.e. their distribution is 
unknown) therefore the distribution of resultant complexes could not be predicted. 

[b] The 1H NMR resonances in which the deconvolution analysis was carried out were very sharp and these 
values are estimated to have an error of no more than 1%. 

[c] The observed relative integrals of the 195Pt NMR spectra measured at 243 K. These values are estimated to 
have a much bigger error than complexes discussed above due to broad line widths of the 195Pt NMR peaks. 
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In the previous chapter it was argued that the ligand with the highest rotation barrier stabilises the ZZ isomer, and an 

electron-donating methoxy group on the N-aryl group should do this better than a hydrogen atom, which in turn is 

better than the nitro group. In this chapter we observed that bulkier alkyl groups lead to even higher C-N bond 

rotation barriers, so that the combined effect of electron donating group on the aryl moiety and bulkier N-alkyl 

substituent are expected lead to more stabilisation of the ZZ isomer and that is observed to be so. The highest ZZ 

population (76%) is observed is in complexes with N-pentyl-N-(4-methoxy-phenyl)- groups, complex cis-[Pt(L1D-

S,O)2], while the smallest ZZ population (27%) is when the ligands have N-methyl-(4-nitro-phenyl)- groups, complex 

cis-[Pt(L3A-S,O)2]. 

 

Another important observation is that when comparing all pairs of complexes with the same N-alkyl substituent the 

ZZ isomer is always present at higher concentration for complexes derived from methoxy-substituted phenyl ring 

type ligands and at lowest concentration complexes derived from nitro-substituted phenyl ring type ligands. The 

complexes derived from the unsubstituted phenyl ring type ligands always fall between these extremes. This is 

consistent with the conclusions that we arrived at regarding the trends of electronic effects discussed in the previous 

chapter. 

 

5.3.4 Evidence that the barrier to rotation around the (S)C-N(alkyl)(para-X-Ph) bond is higher with bulkier N-
alkyl substituent 

 

The 1H NMR spectra of both the nitro-substituted ligands HL3A and HL3D do not display E,Z isomerism even at 198 

K in deuterated dichloromethane. As mentioned before this is caused by the low rotation barrier of these compound, 

which is the direct consequence of the strongly electron-withdrawing nitro group. In solution both these ligands are 

cleaved exactly at this bond and this can be monitored by means of 1H or 13C NMR spectroscopy. Their respective 

complexes however, remain stable in solution. This is an indication that the C-N bond strengthens upon ligand 

complexation to the Pt(II) metal centre despite the contradictory lengthening of this bond in the solid-state structure 

reported for HL1D vs cis-[Pt(L1D-S,O)2] in Section 5.3.5. These two complexes were suitable candidates for 

monitoring their rotational barriers. Figure 5.5 shows the 195Pt NMR temperature array spectra of both complexes, 

cis-[Pt(L3A-S,O)2] and cis-[Pt(L3D-S,O)2]. This analysis unfortunately is not quantitative as in the manner with which 

the barrier to rotational around the (S)C-N(methyl)(para-X-Ph) bond for cis-[Pt(L1A-S,O)2], cis-[Pt(L2A-S,O)2] and 

cis-[Pt(L3A-S,O)2] was carried out with 1H NMR spectroscopy where coalescence temperatures were measured and 

ΔG≠
c values were estimated. From Figure 5.5 it is clear that at 243 K the complex with an N-pentyl group cis-

[Pt(L3D-S,O)2] all the three isomers are observable while for cis-[Pt(L3A-S,O)2], the complex with N-methyl group it 

would be necessary to lower the temperature even further to ‘freeze’ all the isomers. This means that the coalescence 

temperature for cis-[Pt(L3D-S,O)2] is higher than that of cis-[Pt(L3A-S,O)2] and therefore it should follow that its C-N 

bond rotation barrier is also higher. This higher C-N bond rotation barrier for cis-[Pt(L3D-S,O)2] over cis-[Pt(L3A-

S,O)2] can only be attributed to the change from N-methyl group to N-pentyl group. Comparison of the isomer 

distributions between these two complexes in Table 5.4 shows that the ZZ isomer is stabilised more with N-pentyl 
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group. This in a qualitative way allows us to rank the effect of the N-alkyl substituent on the C-N rotation barrier by 

simply observing the population of the ZZ isomer. 

 

Attempts of measuring higher coalescence temperatures and therefore determination of the rotational barriers 

quantitatively in other complexes were not possible. The reason being the lack of suitable solvent with a high boiling 

point in which the complexes are reasonably soluble. For example, in deuterated benzene (a solvent with a boiling 

point of 80 ºC) a 1H NMR temperature array spectrum of the complex cis-[Pt(L1C-S,O)2] was carried out without 

reaching the coalescence temperature at 70 ºC. Qualitatively it can be deduced that this complex with a cyclohexyl 

group has a much higher rotation barrier than cis-[Pt(L1A-S,O)2] with a methyl substituent. The coalescence 

temperature of cis-[Pt(L1A-S,O)2] was measured in chloroform and dichloromethane and was fond to be 34 ±1 ºC. 

 
 
Figure 5.5 195Pt NMR spectra of cis-[Pt(L3A-S,O)2] and cis-[Pt(L3D-S,O)2] measured in CDCl3 as the 

temperature is lowered from 303 K to 228 K. For both compounds at 303 K their ZZ, EZ and EE 
isomers have coalesced into one resonance. At 243 K cis-[Pt(L3D-S,O)2] is resolved into three 
resonances while cis-[Pt(L3A-S,O)2] is not even at lower temperature. 
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From both temperature arrays 195Pt NMR spectra displayed in Figure 5.5 an upfield shift as the temperature is 

lowered is observed. The temperature effect on the 195Pt chemical shift has already been observed in the Pt 

complexes cis-[Pt(L1A-S,O)2] and cis-[Pt(L2A-S,O)2] discussed in chapter 4. These observations are consistent with 

Cohen and Brown11 studies of various platinum(II) complexes at various temperatures who observed a similar 

(195Pt) chemical shift dependence on temperature. Since all the 195Pt NMR spectra of all the new complexes were 

ran at intervals of 30 degrees we also compared their (195Pt) chemical shift dependence as a function of temperature 

for the complexes that had well resolved isomer distributions at these temperatures. Again it was shown that for all 

these complexes the same chemical shift dependence with remarkable correlation coefficients, R2 = ranging from 

0.99 to 1.00 and all the plots are shown in Figure 5.6. 
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Figure 5.6 Temperature dependence of (195Pt) chemical shifts of cis-[Pt(L2B,2C,2D-S,O)2] and cis-

[Pt(L1B,1C,1D-S,O)2] complexes with □ ZZ ■ EZ and ▲ EE configurational isomer respectively. 
 

 

5.3.5 Molecular structure of cis-bis(N-pentyl-N-(4-methoxy-phenyl)-N’-2,2-
dimethylpropanoylthioureato)platinum(II), cis-[Pt(ZZ-L1D-S,O)2] 

 

This compound cis-bis(N-pentyl-N-(4-methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-

[Pt(ZZ-L1D-S,O)2] crystallised in chloroform at low temperature. All the relevant crystallographic data is shown in 

Table 5.5. The molecular structure of cis-[Pt(ZZ-L1D-S,O)2], showing the atomic numbering scheme, is given in 

Figure 5.7 and the relevant bond lengths and angles are summarised in Table 5.6 together with those of the unbound 

ligand and a related complex. 
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Table 5.5 Crystallographic data for cis-[Pt(ZZ-L1D-S,O)2]. 
 

Compound cis-[Pt(L1D-S,O)2] 
Molecular formula C36H54ClN4O4PtS2 

Formula weight/g.mol-1 901.49 
Crystal system Triclinic 
Space group P-1 

a/Å 11.223(2) 
b/Å 13.696(3) 
c/Å 14.452(3) 
α/° 90.00 
β/° 90.00 
γ/° 107.785(3) 

V/Å3 2115.2(8) 
Z 2 

T/K 100(2) 
Calculated density/g.cm-3 1.415 

μ/mm-1 3.517 
F(000) 914 

θ Range scanned/° 1.41 – 28.28 
No. Reflections collected/unique 13325/9299 

Goodness of fit on F2 1.596 
Final R indices [I > 2σI] R1 = 0.0746 

R indices [all data] wR2 = 0.0829 
Largest difference peak and hole/e Å-3 5.825/-1.930 
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Figure 5.7 The ZZ stereochemistry of the complex is clearly depicted by the molecular structure of cis-

[Pt(ZZ-L1D-S,O)2] with atomic numbering scheme. Displacement ellipsoids are drawn at the 50% 
probability level. One of the N-pentyl groups is highly disordered. For clarity the hydrogen atoms 
have been omitted 

 

 
 
Figure 5.8 Packing diagram of the cis-[Pt(ZZ-L1D-S,O)2] complex, specifically showing the interaction of the 

phenyl region. The hydrogen atoms have been omitted for clarity. 
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Table 5.6 Selected bond lengths (Å) and angles (°) for the unbound ligand, HL1D and the Pt(II) complex 
derived from this ligand, cis-[Pt(ZZ-L1D-S,O)2]. 

 
 Unbound 

ligand, HL1D 
Bound ligand 

without 
disorder  

Bound ligand 
with disorder 

Bound 
ligand 

average 

cis-[PtL2] 
average[lit][a] 

Pt1-O1/Pt1-O1’  2.032(6) 2.030(6) 2.031 2.021 

Pt1-S1/Pt1-S1’  2.233(2) 2.238(2) 2.236 2.232 

C5-O1/C5’-O1’ 1.213(3) 1.257(11) 1.272(12) 1.264 1.267 

C6-S1/C6’-S1’ 1.678(2) 1.714(9) 1.714(11) 1.714 1.727 

N1-C5/N1’-C5’ 1.367(3) 1.320(11) 1.324(14) 1.322 1.316 

N1-C6/N1’-C6’ 1.404(3) 1.365(12) 1.359(13) 1.362 1.346 

N2-C6/N2’-C6’ 1.332(3) 1.341(11) 1.350(15) 1.346 1.343 

      

O1-Pt1-S1/O1’-Pt1-S1’  95.34(18) 95.6(2) 95.47 94.6 

O1-Pt1-O1’  82.3(3)   82.7(2) 

S1-Pt1-S1’  86.87(8)   88.10(7) 

C6-N2-C7/C6’-N2’-C7’ 122.85(19) 122.2(7) 120.7(10) 121.5 123.3 

C6-N2-C13/C6’-N2’-C13’ 120.9(2) 122.1(8) 115.3(12) 118.7 121.7 

C7-N2-C13/C7’-N2’-C13’ 115.24(19) 115.6(7) 112.7(12) 114.2 115.1 

[a] Data from the molecular structure of cis-bis(N,N-diethyl-N’-benzoylthioureato)platinum(II), cis-[PtL2].
12 

 

 

The overall structure is consistent with many other related Pt(II) complexes of this type found in the literature12-14 in 

that the ligands are coordinated in a cis chelating fashion. This structure serves as the very first example of a Pt(II) 

chelate with asymmetrically disubstituted thioureas that we have managed to isolate to date. Even though one of the 

N-pentyl groups is highly disordered and could not be modelled sufficiently enough to be shown, the stereochemistry 

of this complex is clearly the ZZ configuration in that both the aromatic groups of the coordinated ligands are on the 

same side as the sulphur atom. This ZZ stereochemistry strongly supports the solution NMR assignments of the 

complexes. Moreover, this structure also supports the idea of inversion of the stereochemistry of the ligand (which 

was predominantly the E configuration) upon complexation to the metal centre, which consistently results in 

statistically unexpected isomer distribution of the complexes in these systems. We assume that the majority 76% ZZ 

isomer is more likely to crystallise over the less than 1% EE isomer. The aromatic groups lie nearly perpendicular to 

the chelate ring and are ‘face-to-face’ with each other such that in the packing diagram of the complex there is 

enough space to partially fit another aromatic group of an adjacent molecule. 

 

The bond lengths and angles of the coordinated ligand compare very well with those reported for cis-bis(N,N-diethyl-

N’-benzoylthioureato)platinum(II).12 In the complex the bond lengths of the carbonyl [C5-O1 = 1.257(11), C5’-O1’ = 

1.272(12) Å] and the thiocarbonyl [C6-S1 = 1.714(9), C6’-S1’ = 1.714(11) Å] bonds are longer than the carbonyl 

C=O = 1.213(3) Å bond and thiocarbonyl C=S = 1.678(2) Å bond of the unbound ligand. All the C-N bonds in the 
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chelate ring are in the range [1.320(11) to 1.369(12) Å] which is shorter than an average C-N single bond 1.472(5) Å. 

These features are indicative extensive delocalisation of electrons within the chelate ring of the complex, which is 

expected upon ligand complexation. The Pt-O and Pt-S bonds shown in Table 5.6 also compare very well with the 

literature.12-14 The C6-N2 bond of interest that gives rise to the configurational isomerism in discussion interestingly 

lengthens upon ligand complexation to the Pt(II) centre. This is interesting in the sense that this C-N bond length is 

suppose to be the most structural feature that can be linked to rotation barrier discussed in the previous chapter. In the 

previous chapter we have observed that complexes have a higher rotation barrier that unbound ligands and that is 

consistent with the work of Behrendt et al.,15 on Ni(II) complexes of various N,N-dialkyl-N’-benzoylthioureas. 

Intuitively it would be expected that this C-N bond shortens upon ligand complexation. Lengthening of this C-N 

bond upon ligand complexation has also been observed by Miller16 who worked with many examples of N,N-dialkyl-

N’-benzoylthioureas and their Pt(II) complexes. The bond angles around the nitrogen atom of the (S)C-

N(Pentyl)(OMe-Phenyl) moiety are comparable to those of the unbound ligand ca 120°. It seems that there are no 

major electronic changes on this nitrogen atom upon coordination as it adopts an sp2 hybridisation in both cases. 

 

5.4 Concluding remarks 

 

Low temperature NMR proved to be a very useful tool in establishing E,Z isomerism in the new set of ligands of the 

type R”C(O)NHC(S)N(alkyl)(para-X-phenyl), (X = O-CH3, H and NO2) which was not possible at room 

temperature 298 K. In the unbound ligands the E configuration was found to be dominant, ranging from 87% up to as 

high as 98%, which his consistent with the literature on related N-alkylacetanilides. The E isomer was found to be 

most dominant with bulkier N-alkyl substituents. On coordination to Pt(II) metal centre the E,Z isomerism in the 

unbound ligand was carried through resulting in ZZ, EZ and EE Pt(II) chelates, which is easily observable by means 

of 195Pt NMR spectroscopy. The 195Pt NMR spectra allowed us to compare these isomer distributions as the N-alkyl 

group is altered. The ZZ isomer is observed to be most favoured followed by the EZ isomer and the EE isomer being 

the least favoured isomer. As the N-alkyl groups are changed these isomer distributions are noticed to change. The 

established trend was that the ZZ isomer grows at the expense of both the EZ and EE isomers as the alkyl group is 

changed in the order: methyl < isopropyl < cyclohexyl < pentyl. This same trend was established in all three series of 

complexes viz: N-phenyl system, N-(4-methoxy-phenyl) system and N-(4-nitro-phenyl) system. The latter system 

was not complete and only two N-alkyl groups were compared, the N-methyl and N-pentyl group. In this N-(4-nitro-

phenyl) system we were able to establish by means of temperature array of 195Pt NMR spectra that a pentyl group 

give rise to higher C-N bond rotation barrier than the methyl group. The complex with a higher rotation barrier in 

turn is associated with more ZZ isomer. We can therefore use the ZZ population as a qualitative measure of the C-N 

bond rotation barriers and these follow the same trend of N-alkyl substitution as the ZZ isomer grows. 
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Chapter 6: Concluding remarks and recommendations 

 

6.1 Concluding remarks 

 

A series of unsymmetrically disubstituted N-alkyl-N-alkyl(aryl)-N’-acylthioureas of the type, R”C(O)NH(S)CNRR’ 

have been synthesised by a well established synthetic route. All these ligands display E/Z configurational isomerism 

in solution. This isomerism is displayed by duplication of peaks in the 1H and 13C NMR spectra of these ligands and 

it is the manifestation of the restricted rotation around the (S)C-NRR’ bond. In solid state all the isomers that have 

been isolated, were in an E configuration. The (S)C-NRR’ bond length fell in the range [1.343(3)-1.329(3) Å], which 

is significantly shorter than the average C-N single bond of 1.472(5) Å, hence resulting in configurational isomers. 

The magnetic anisotropy of the thiocarbonyl group is thought to deshield the N-alkyl group co-planar to it and 

thereby the proton resonances of this N-alkyl group appear at a relatively downfield chemical shift to those pointing 

away from the thiocarbonyl group. This was consistently used as a means of assigning all these E/Z configurational 

isomers. It has been demonstrated that low temperature NMR is a valuable tool in revealing the E/Z configurational 

isomers which are in fast exchange at ambient temperature. The E to Z isomer ratio has been shown to be dependent 

on the R and R’ substituents of the (S)C-NRR’ moiety. In one class the Z isomer was noted to be the favoured isomer 

while in the other class the E isomer was favoured. 

 

In both classes of ligands, it was easily illustrated by 1H and 195Pt NMR spectroscopy that the isomerism in the 

unbound ligands is passed on to the resultant platinum(II) chelates derived from them, resulting in cis-[Pt(ZZ-L-

S,O)2], cis-[Pt(EZ-L-S,O)2] and cis-[Pt(EE-L-S,O)2] configurational isomers. The ZZ configurational isomer was 

found to be favoured in all the complexes and even in those complexes that start with the E unbound ligand as a 

favoured isomer. The complexes cis-[Pt(L5,6,7-S,O)2] were used as examples for illustrating how these types of 

isomers could be assigned. Low magnetic field 13C NMR spectroscopy revealed long-range 4J(195Pt-13C) couplings 

only between the 195Pt nucleus and N-alkyl carbons that are orientated in a W pathway to the 195Pt nucleus. This 

spatial relation of the 195Pt nucleus with the N-CH3 and the N-CH2- carbons, together with the good dispersion of the 

N-CH3 and the N-CH2- protons in 1H NMR spectra of the complexes allowed for an indirect link of the 195Pt 

resonances with the N-alkyl protons via 2D gHSQC (1H/13C) experiments. This was sufficient for the assignment of 

the cis-[Pt(ZZ-L5,6,7-S,O)2], cis-[Pt(EZ-L5,6,7-S,O)2] and cis-[Pt(EE-L5,6,7-S,O)2] configurational isomers in all of the 
1H, 13C and 195Pt NMR spectra. Having achieved the assignment of these configurational isomers, it was observed 

http://scholar.sun.ac.za/



Chapter 6                                 Concluding remarks and recommendations 
 

 117

that the E,Z isomer distributions of the unbound ligands may not necessarily be the factor that determines the ZZ, EZ 

and EE isomer distributions of the resultant complexes. 

 

To determine the factors that influence the isomer distribution, a new series of ligands with a general motif N-

methyl-N-(para-X-phenyl)-N’-acylthioureas, (X = O-CH3, H and NO2) together with their Pt(II) chelates was 

synthesised. The influence that the remote substituent, X, has on the partial double bond character of the (S)C-

N(Me)(para-X-Ph) bond in the resultant Pt(II) complexes was shown to impact on the ZZ, EZ and EE 

configurational isomer distributions. The ZZ isomer was noted to be stabilised by a high barrier to rotation around 

this C-N bond, which was the case when X was the methoxy substituent which is electron releasing. In the case 

where X was the nitro subtituent, the least concentration of the ZZ isomer was observed. We therefore concluded that 

electronic effects play a crucial role in the distribution of configurational isomers of platinum complexes derived 

from these ligands. The solution 1H NMR calculations of the barrier to rotation around the (S)C-N(Me)(para-X-Ph) 

bond followed the order viz: NO2 < H < O-CH3, in the strengthening of this partial double (S)C-NR(para-X-Ph) 

bond. In addition to electronic effects of the substituent, X, the influence of the solvent polarity as well as the 

temperature at which the isomer distributions are determined proved to be quite significant in the rotational barrier of 

thiocarbonyl C-N bond and subsequently the isomer distribution. It is therefore essential to measure and quote the 

distributions in identical conditions. The solution 1H NMR results for the determination of the barrier to rotation 

around the (S)C-N(Me)(para-X-Ph) bond as a function of the para-substituent in these complexes were also 

complimented by DFT theoretical calculations. The trends that are obtained theoretically in this study were in good 

agreement with our experimental data as well as theoretical studies of other similar compounds by other workers. 

 

Lastly, how the change of the N-alkyl group in N-alkyl-N-(para-X-phenyl)-N’-acylthiourea ligands influences the 

isomer distribution in the complexes was investigated. The established trend was that the ZZ isomer grows at the 

expense of both the EZ and EE isomers as the alkyl group is changed in the order: methyl < isopropyl < cyclohexyl < 

pentyl. This same trend was established in all three series of complexes viz: N-phenyl system, N-(4-methoxy-phenyl) 

system and N-(4-nitro-phenyl) system. In the N-(4-nitro-phenyl) system was established by means of temperature 

array study of 195Pt NMR spectra that a pentyl group gives rise to higher barrier to rotation around the C-N bond than 

the methyl group. The complex with a higher C-N bond rotation barrier in turn is associated with more ZZ isomer. 

We can therefore use the ZZ population as a qualitative measure of the barriers to rotation around the C-N bond and 

these follow the same trend of N-alkyl substitution as the ZZ isomer grows. Isolation of the cis-bis(N-pentyl-N-(4-

methoxy-phenyl)-N’-2,2-dimethylpropanoylthioureato)platinum(II), cis-[Pt(ZZ-L1D-S,O)2] complex, which is 

present in solution as a 76% component (while the EZ and EE isomers are ca 24% and ca <1% components, 

respectively), strongly supports the NMR assignments. The complex cis-[Pt(ZZ-L1D-S,O)2] is the first example of a 

platinum(II) chelate with asymmetrically substituted ligands to be isolated to date. 
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6.2 Recommendations 

6.2.1 A direct NMR assignment of the ZZ, EZ and EE isomers of the Pt(II) chelates derived from N-alkyl-N-(para-
X-phenyl)-N’-acylthioureas using 13C NMR experiment 

 

Since the ZZ, EZ and EE isomers of the Pt(II) complexes 195Pt NMR spectra of in chapters 4 and 5 were not explicitly 

assigned but relied on the assignments of related complexes discussed in chapter 3, a simple 13C NMR spectrum of 

these complexes is proposed to resolve any uncertainty. This experiment requires 13C enrichment of the primary 

carbon of the N-alkyl group. For an example, the complexes cis-bis(N-methyl-N-(para-X-phenyl)-N’-2,2-

dimethylpropanoylthioureato)platinum(II), (X = O-CH3, H and NO2) could be 13C labelled at the N-methyl carbon. 

This means that this should be carried out during the synthesis of the secondary amine that is used for the synthesis 

of the unbound ligand. The motivation behind such an experiment is that the low temperature 13C NMR spectra of 

these complexes show well-resolved N-CH3 resonances for the four different environments in which they are (Figure 

6.1 and 6.2). 

 

 

 
 
Figure 6.1 ZZ, EZ and EE isomers of cis-bis(N-methyl-N-(4-methoxy-phenyl)-N’-2,2-

dimethylpropanoylthioureato)platinum(II), cis-[Pt(L1A-S,O)2], showing the four different 
environments of the N-CH3 groups. 

 

 

Choosing cis-[Pt(L1A-S,O)2] as an example here illustrates the different concentrations of ZZ and EE isomers much 

easier in the 13C NMR spectrum (Figure 6.2), otherwise this applies to all the three para-substituted complexes. 
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Figure 6.2 A low temperature (243 K) 13C NMR section of cis-[Pt(L1A-S,O)2], showing the N-CH3 resonances 

of all the different environments in which they appear. 
 

 

Now, if the N-CH3 carbons are labelled with 13C isotope then it will be easy to observe the 4J(195Pt-13C) coupling 

satellites. The key in resolving the assignment in this way is that only the ZZ and the Z(EZ) N-13CH3 carbon 

resonances are expected to have the associated 4J(195Pt-13C) coupling satellites since they are in a favourable W 

coupling pathway to the 195Pt isotope. Firstly, the 4J(195Pt-13C) coupling satellites establish the spatial relationship of 

the N-CH3 carbons with the 195Pt nucleus. Secondly the concentration of the ZZ, EZ and EE isomers from the 13C 

NMR spectrum can be directly correlated to the 195Pt NMR spectrum. This experiment will then settle any ambiguity 

of assigning the ZZ and EE isomers. 

 

Alternatively, if the 13C enrichment of the N-CH3 group is expensive, a similar experiment (31P NMR instead of 13C 

NMR experiment) can be conducted by substituting the -CH3 group with a phosphine, PR3 ligand with the view that 

phosphorus has 100% abundant nuclear active isotope 31P. But one would need to be careful in making any 

generalisation since this would be a different class of ligands. 

 

6.2.2 The influence of the solvent polarity on the configurational isomer 

 

In chapter 4, it was observed that dissolving the complexes in CDCl3 and CD2Cl2 gave rise to different isomer 

distributions. The slight difference in the polarity of these solvents was speculated to be the reason why they gave 

different isomer distributions. It is therefore worthwhile to study this phenomenon systematically with solvents of 

varying polarity. 
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6.2.3 Preliminary Reverse Phase High Performance Liquid chromatography(RP-HPLC) results 

 

The success of Mautjana1 in separating Pt(II), Pd(II) and Rh(III) chelates of hydrophilic N,N-dialkyl-N’-acylthioureas 

together with the recent separation of cis/trans-Pd(II) chelates of aroylthioureas2 by means of RP-HPLC encouraged 

us to attempt to separate the ZZ, EZ and EE configurational isomers by the same technique. The desired results were 

unfortunately unsuccessful using either 90% acetonitrile: 10% acetate buffer or pure acetonitrile. With the latter 

mobile phase a solitary peak with retention time of ca 21 minutes was detected while a solitary peak appeared after 

70 minutes with the 90% acetonitrile : 10% acetate buffer mobile phase. With less encouraging results and time 

limitations we could not explore other conditions. Clearly RP-HPLC separation of these configurational isomers as a 

second handle besides multinuclear NMR spectroscopy has desirable spin offs. RP-HPLC coupled to electron spray 

mass spectrometry could be used to confirm the configurational isomers as they would have the same m/z values. 

Using a preparative column would allow isolation of the individual isomers and it may be much easier to crystallise 

them if they are not in a mixture. For any progress to be made though using this line of analysis it would depend on 

whether the configurational isomerism is a dynamic or static phenomenon in solution. 
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