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OPSOMMING

Hierdie studie ondersoek ŉ Suid-Afrikaanse kleurling-familie wat presenteer het met progressiewe 
dementia en bewegingswanfunksie in ‘n aantal individue binne drie generasies. Aanvanklike 
simptome sluit in persoonlikheidsveranderings en tremors, wat progressief verander het na ernstige 
dementia en totale immobiliteit. Die gemiddelde aanvangsouderdom van persone met die simptome 
was in die dertigjare en mortaliteit het binne 10 -15 jaar ingetree. Die doel van die studie was om die 
genetiese oorsaak van die siektetoestand te bepaal en die patologie te ondersoek.

‘n Mutasie-soektog wat moontlik na die fenotipe kon lei, is in die familie gedoen. Dit het mutasies 
in Huntington-siekte, Parkinson-siekte, Dentatorubral-Pallidoluysian-atrofie, spinoserebrale-ataksie 
(tipe 1, 2, 3, 6, en 7), Huntington Tipe-2-siekte (HDL2) en verskeie mitokondriale siektes ingesluit. 
Enkelstring konformasie-polimorfisme analise en direkte DNA-volgorde-bepaling is gebruik om 
nukleotied-veranderinge te bepaal. Genotipering op ŉ ABI genetiese-analiseerder is gebruik om 
herhalingsvolgorde-verlengings se grootte te bepaal. Deur gebruik te maak van haplogroep- en Kort-
Tandem-Herhalings-analise (STRs) van die Y-chromosoom en mitokondriale DNA van ‘n aangetaste 
individu, is die familie se etniese oorsprong bepaal. Ten einde die geen-uitdrukking te bestudeer is 
Omgekeerde Transkriptasie Polimerase Kettingreaksie (RT-PCR) en komplementêre DNA-analise 
(cDNA) van die Junctophilin-3 (JPH3)-geen gedoen.

Na uitsluiting van verskeie bekende mutasies is ‘n herhalingsvolgorde-verlenging in die HDL2-geen 
in die familie aangetoon. Huntington Tipe-2 siekte is seldsaam en word veroorsaak deur ŉ CAG/
CTG-herhalingsverlenging in ŉ alternatief-uitgedrukte transkripsie van die JPH3-geen. HDL2 kom 
meestal by swartmense van Afrika-oorsprong voor. Die familie in hierdie ondersoek se etniese 
oorsprong-bepaling het aangedui dat hulle van kleurling-afkoms is. Hierdie is die eerste beskryfde 
Suid-Afrikaanse kleurling-familie met ’n herhalingsvolgorde-verlenging in die HDL2-geen. ŉ Loods-
studie het die voorkoms van die herhalingsvolgorde-verlenging onder drie Suid-Afrikaanse sub-
populasies ondersoek, ten einde te bepaal of swart Afrikane meer geneig is om die siekte te ontwikkel. 
ŉ Statisties beduidende verskil (P=0.0014) in die voorkoms van die herhalingsvolgorde-verlenging 
is onder die swart en kaukasiese Afrikane gevind. Geen gevolgtrekking kon egter gemaak word dat 
swart Afrikane ‘n groter herhalingsvolgorde-verlenging het nie.  

Die herhalingsvolgorde-verlenings is geleë in ŉ alternatief-uitgedrukte transkripsie van die JPH3-
boodskapper RNA (mRNA). Ten spyte van die feit dat die JPH3 geen-omgewing hoogs behoue 
gebly het tussen mens-, muis-, en sjimpansee-genome, kom die herhalingsvolgorde nie in die 
muis-homoloog van die geen voor nie. Deur gebruik te maak van fetale brein “cDNA” en PCR met 
voorvoerders wat spesifiek is vir die twee transkripsie-produkte, het hierdie studie onafhanklik bevestig 
dat verskillende JPH3-“mRNA” transkripsie produkte (die vollengte en ‘n korter alternatief) voorkom. 
As gevolg van die afwesigheid van breinweefsel van HDL2-geaffekteerdes, is die transkripsie-
produkte in twee aangetaste individue se limfosiete ondersoek. “Real-time” PCR is gedoen met RNA 
wat uit limfosiete geïsoleer is van twee HDL2-aangetasdes. Hierdie eksperimente was onvoldoende 
en vereis verdere optimisering. “Real-time” PCR eksperimente in verskillende weefsels (brein en 
ander) van HDL2-geaffekteerdes behoort meer inligting te verskaf oor die JPH3-geen. 

In hierdie studie is die eerste kleurling-familie met ‘n CAG/CTG herhalingsvolgorde-verlenging in 
die HDL2-geen identifiseer. Genetiese raadgewing en pre-simptomatiese toetse in onaangetaste 
individue binne die familie is nou moontlik. Hierdie studie het sekere eienskappe van die geen 
onafhanklik bevestig. Verdere navorsing op HDL2 is noodsaaklik om die siekte beter te verstaan. 
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ABSTRACT

A South African family of Mixed Ancestry presented with a rapidly progressive dementia and a 
movement disorder which affected a number of individuals across three generations. The initial 
symptoms included personality changes and tremors that escalated to severe dementia and 
eventually a completely bedridden state. It was determined that the mean age at onset was in the 
third decade of life and affected individuals died within 10-15 years after the onset of symptoms. 
The aim of the present study was to elucidate the genetic cause of the disorder in this family and to 
further investigate the patho-biology of the disease. 

Mutations that could possibly cause the observed phenotype in this family were screened for. These 
included loci implicated in Huntington’s disease, Parkinson’s disease, Dentatorubral-Pallidoluysian 
Atrophy, Spinocerebellar ataxias (types 1, 2, 3, 6, and 7), Huntington’s disease-like 2 (HDL2) and 
several mitochondrial disorders. Single-strand Conformation Polymorphism (SSCP) analysis and 
direct sequencing were used to detect possible mutations while genotyping on an ABI genetic 
analyser was used to detect disorders caused by repeat expansions. Haplogroup and Short Tandem 
Repeats (STRs) analyses of the Y-chromosome and mitochondrial DNA of one affected family 
member was used to determine the family’s genetic ancestry. Reverse transcriptase polymerase 
chain reaction (RT- PCR) and complementary DNA (cDNA) analyses of the Junctophlin-3 (JPH3) 
gene was performed to provide information on the expression profile of this gene.
 
After the exclusion of several genetic loci it was shown that this family had HDL2. This is a rare 
disease caused by a CAG/CTG repeat expansion in an alternatively spliced version of the JPH3 
gene. HDL2 occurs almost exclusively in individuals of Black African ancestry. The genetic ancestry 
data suggested that the family member was most likely of South African Mixed Ancestry making this 
the first reported family of South African Mixed Ancestry with HDL2. A pilot study investigated the 
repeat distribution amongst three South African sub-populations in order to determine whether there 
was a bias in the repeat distribution that possibly predisposes Black Africans to develop the disease. 
The results showed a statistically significant difference (P= 0.0014) in the distribution of the repeats 
between the Black African and Caucasian cohorts. However, no conclusions could be drawn as to 
whether Black Africans harboured larger repeats that predisposes them to developing HDL2.

The expanded repeat is located in an alternatively spliced version of the JPH3 mRNA. Interestingly, 
this repeat is not present in the mouse homologue of the gene although the rest of the genomic 
sequence is highly conserved across the human, mouse and chimpanzee genomes. Using foetal 
brain cDNA and PCR primers designed to be specific for different JPH3 isoforms, independent 
confirmation of the presence of two JPH3 mRNA transcripts (the full length and a shorter alternatively 
spliced version) was provided. In the absence of brain tissue from an HDL2-affected individual, it was 
investigated whether both JPH3 mRNA transcripts could be detected in lymphocytes. Using RNA 
isolated from the transformed lymphocytes of two HDL2-affected family members, real-time PCR  
was attempted. These experiments produced inconclusive results and required further optimisation. 
Further RT-PCR experiments for JHP3 expression in different tissues (brain and other) obtained 
from HDL2-affected individuals would be of interest.

The present study identified the first Mixed Ancestry family with HDL2. This family will now be able 
to request genetic counselling and pre-symptomatic testing for all at-risk family members. Aspects of 
this study provided independent confirmation of characteristics of the mutated gene. More research 
on HDL2 will be crucial in understanding the pathogenesis of this disease.
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CHAPTER ONE: INTRODUCTION 

 

As this thesis deals with a disorder that manifests with dementia and movement 

abnormalities, a brief introduction to the physiology of the brain is provided. This 

introduction will focus on a description of components of the brain that are commonly 

affected in neurodegenerative and movement disorders. In addition, it also focuses on 

disorders that manifest with the specific symptoms present in this family. 

 

1.1  The physiology of the brain 

  

The central nervous system (CNS) is the centre for the integration and reception of all 

nerve impulses generated in the body. It consists of two main components, the brain and 

the spinal cord and contains two types of cells, namely neurons and neuroglia (glial 

cells) [Tortora and Grabowski, 1996]. 

 

Neurons transmit impulses and are in contact with each other at synapses or junctions. It 

is through this network of neurons that a stimulus, occurring in any body part, is relayed 

and processed in the brain.  

 

 Unlike neurons, glial cells can multiply and divide. Essentially, the purpose of glial cells 

is to protect, nurture and repair damaged cells in the CNS. There are four types of glial 

cells (Figure 1.1). Astrocytes are star shaped and their main functions are relaying 

impulses and metabolising neurotransmitters. Microglia has a protective function in that 

they engulf and phagocytosise foreign particles. Ependymal cells provide structural 

support while oligodendrocytes produce a myelin sheath which is a fibrous layer that 

protects parts of the neuron. The myelinated portions of the neurons form the white 

matter of the brain and spinal cord. The grey matter is unmyelinated and contains the 

cell bodies of neurons [Tortora and Grabowski, 1996].   
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Figure 1.1: A diagram of the four types of glial cells that occur in the brain [Taken from McGraw-
Hill online learning centre].  
 

The brain can further be sub-divided into four regional components namely, cerebrum, 

cerebellum, diencephalon and the brainstem (Figure 1.2). 

 

 

 

 

Figure 1.2: A schematic diagram of the four main components of the brain [Adapted from  

McGraw-Hill online learning centre].  

 

1.1.1 The cerebrum  

 

The cerebrum makes up the bulk of the brain and has highly convoluted grey matter on 

the surface which is known as the cerebral cortex. The cerebrum is known as the “seat 

of intelligence” as it regulates and produces almost all processes associated with the 

brain. The cerebrum is separated into the left and right hemispheres by a central groove 

called the longitudinal fissure. Each hemisphere further consists of four lobes namely the 

frontal, occipital, parietal and temporal lobes (Figure 1.3).  

Diencephalon 

Brainstem

Cerebellum 

Cerebrum
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Figure 1.3: A model of the brain depicting the cerebral lobes [Taken from Bear et al., 1996].  

 

Beneath the cortex of the cerebrum lies a dense mass of white matter, the corpus 

collosum, which connects the left and right halves of the brain. The white matter relays 

impulses within a hemisphere, between the two hemispheres and from the cerebrum to 

other parts of the brain or spinal cord [Tortora and Grabowski, 1996]. The cerebrum also 

contains three functional areas (Figure 1.4). The sensory area receives and interprets 

sensory information such as touch, pain, temperature, sight and taste. The motor areas 

control movement of a specific group of muscles. The association areas are concerned 

with the integration and further processing of sensory information [Silverthorn, 2001].  

 

  
Figure 1.4: A figure of the human brain depicting various functional lobes 

[Taken from http://www.gazzaro.it/g/Language%20in%20the%20brain_file/sensory_motor.gif ].  

 

The cerebrum contains several clusters of neurons termed the basal ganglia which are 

connected to each other. The nuclei (clusters of nerve cells) of the basal ganglia consist 

 
 

 

 
 

http://www.gazzaro.it/g/Language in the brain_file/sensory_motor.gif
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of the striatum (caudate and putamen) and the globus pallidus (Figure 1.5). The basal 

ganglia are involved in the timing and amplitude of movement.  

 
Figure 1.5: A representation of the location and components of the striatum [Taken from Bear et 

al., 1996]. 

 

The limbic system is a group of structures in the cerebrum that includes the 

hippocampus and amygdala and is involved in emotion and memory. Maintaining the 

physiological and anatomical structure of the cerebrum is essential for normal 

functioning. Abnormalities in development or trauma to the cerebrum or structures in the 

cerebrum cause abnormal or impaired movement, cognitive and sensory dysfunction. 

Disease of the basal ganglia is associated with movement disorders which are 

characterised by increased or reduced movements.  

 

1.1.2 The cerebellum 

 

The cerebellum is the second largest part of the brain. Much like the cerebrum, the 

surface consists of highly convoluted grey matter with deeper white matter arranged like 

branches of a tree [Van De Graaff, 2001]. The cerebellum has afferent and efferent 

connections to the pons, medulla, spinal cord and midbrain. The primary function of the 

cerebellum is to co-ordinate movements by comparing the intended movement with the 

actual movement being made. It is also an essential contributor to the maintenance of 

posture and balance. Action tremor in limbs is a common feature in a dysfunctional 

cerebellum [Watts and Koller, 1997].  
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1.1.3 The diencephalon  

 

The diencephalon consists predominantly of the thalamus and hypothalamus. The 

thalamus consists of grey matter organized in clusters and is the principle relaying 

station for sensory impulses from the efferent regions [Tortora and Grabowski, 1996]. 

The hypothalamus is located below the thalamus and contains four regions which serve 

specific functions, thereby contributing to the overall homeostasis of the body. It is 

essential for homeostasis because it secretes hormones that control the release of other 

hormones from the pituitary gland [Tortora and Grabowski, 1996]. The hypothalamus 

plays a role in the integration of the autonomic nervous system such as controlling blood 

flow and breathing. It also regulates body temperature, thirst, food intake and maintains 

sleeping patterns.  

 

1.1.4 The brainstem  

 

The brainstem consists of the medulla oblongata, pons and midbrain (mescencephalon). 

The brainstem relays sensory information to the thalamus and cerebral cortex. It 

contains nuclei of cranial nerves and therefore receives stimuli for balance, hearing, 

swallowing, head/shoulder and tongue movements.  

 

All these structures play an important role in the normal functioning of the CNS. Damage 

or disease in these components may lead to movement and cognitive impairment. 

 

1.2  Dementia 

Dementia refers to the progressive decline in cognitive ability that occurs due to loss or 

impairment of brain cell function. It is not a specific disease but rather a term used to 

describe a group of symptoms caused by disorders or trauma to the brain.  Individuals 

suffering from dementia have diminished or impaired brain functions beyond what is 

normally expected in the natural aging process.  It has been estimated that when 

maturity is reached, individuals lose 0.5% of their brain volume per year and this 

percentage increases every year from the onset. However, there are cases when 

dementia is severe, rapidly progressive and occurs early in life. In these cases dementia 
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is normally due to a disease or disorder and is of interest in the present study [Watts and 

Koller, 1997]. 

Dementia manifests in affected people as a loss of memory and difficulty with speech 

and understanding. Other brain functions that are impaired are problem solving, 

perception of time and place and other cognitive abilities. Dementia occurs 

predominantly in individuals over 65 years of age. In the year 2000, it was estimated that 

dementia afflicted some 25 million people worldwide, mostly in the developing countries 

[Wimo et al., 2006]. The estimated number of people affected by dementia globally is 

shown in Table 1.1 [Wimo et al., 2006]. 

 

Table 1.1: Estimated number of people with dementia worldwide [Wimo et al., 2006]. 

 

Dementia is predominantly observed in cases of Alzheimer’s disease (AD), vascular 

dementia, dementia with Lewy Bodies, alcohol/drug related dementia and 

Frontotemporal Dementia (FTD). Less common causes of dementia are Creutzfeld-

Jakob disease (CJD), Parkinson’s disease (PD), Huntington’s disease (HD) and head 

trauma [Harvey et al., 2003]. In a majority of cases, there are no effective treatments for 

the dementia, although drugs blocking acetyl cholinesterase have been shown to 

improve cognitive function in Alzheimer’s disease and Dementia with Lewy Bodies 

[Flicker, 1999]. 

 

Inherited disorders in which dementia is a prominent symptom are of importance in the 

present study. Furthermore, many of these inherited dementias also manifest with 

abnormal movements. A summary of a few of these disorders are discussed in the 

subsequent sections. 

 

Continent  Number of cases ( million)  % of total  

Asia  11.87 46.5 

Europe 7.43 29.1 

North America 3.08 12.1 

Latin America 1.69 6.6 

Africa 1.25 4.9 

Oceania  0.21 0.8 
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1.3 Movement disorders 

 

A movement disorder can refer to two situations, the first being an involuntary or 

abnormal movement that occurs while an individual is conscious. Secondly, it can also 

be used to describe a syndrome that has abnormal movements as a prominent 

symptom. Abnormal movements can be distinguished according to their clinical 

presentation, i.e. the amplitude of the movement, velocity, posture, rhythm and the ability 

to suppress the movement. Movement disorders fall into two broad categories namely 

Hyperkinesias which refer to the excessive movement of body parts and Hypokinesias 

which is a decrease in voluntary or autonomic movements [Watts and Koller, 1997]. 

 

1.3.1 Hyperkinesias  

 

 Dystonia refers to an abnormal movement characterised by continuous muscle 

contraction. It presents as repetitive movements or abnormal posture and can be 

present in different areas of the body simultaneously but commonly involves a particular 

body part [Pulst, 2003].  

 

Tremor is defined as involuntary oscillations of a body part. It can occur at different 

frequencies and is either prominent when the body is at rest or when maintaining a 

posture. Intention tremor is the most common form of tremor and is characterised by 

oscillations which increase as the hand or foot reaches a particular target [Pulst, 2003]. 

 

Myoclonus is described as a sudden shock-like movement. It is often a sign of cerebral 

dysfunction and is associated with abnormalities in the cortex of the cerebrum. Cortical 

myoclonus is associated with epileptic seizures. Action myoclonus refers to myoclonic 

movements while performing a precise movement [Watts and Koller, 1997]. 

 

Chorea manifests as arrhythmic, jerky movements of low amplitude that usually occur in 

the limbs. It may also present in the face as awkward grimaces and in children, as 

fidgety movements. It is a prominent symptom in Huntington’s disease [Watts and Koller, 

1997]. 
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1.3.2 Hypokinesias  

 

Bradykinesia is generally described as a reduction in speed during repetitive movements 

or general slowness in performing voluntary actions. Other signs include reduced facial 

expression and blinking [Pulst, 2003].  

 

Rigidity is stiffness in muscles during passive movements. It often occurs in joints, 

especially in the lower limbs. This is commonly a symptom of Parkinson’s disease [Watts 

and Koller, 1997]. Parkinsonism is a broad term that refers to a range of movement 

disorders including tremor, rigidity, bradykinesia and loss of postural reflexes [Watts and 

Koller, 1997]. 

 

Movement disorders can occur as the sole symptom in a disease or in conjunction with 

other symptoms. The latter is usually the case in neurodegenerative diseases where 

dementia and other neurological signs frequently accompany the movement disorder. 

There are a number of inherited diseases that manifest with dementia and movements 

disorders which are relevant to this study and will be discussed in the following sections.  

 

1.4 Mitochondrial DNA and disease 

 

Mitochondria are the powerhouse of the cell, generating energy in the form of adenosine 

triphosphate (ATP) to drive cellular processes. Mitochondrial DNA (mtDNA) is 

extrachromosomal DNA that plays an important role in the physiology of the cell and in 

many different human diseases.  

 

The mitochondrial genome is 16569bp in size and comprised of approximately 93% 

coding DNA. This genome codes for 37 genes (Figure 1.6) which consists of 13 

polypeptides which constitute the mitochondrial respiratory chain (OXPHOS) system as 

well as the necessary RNA for the translation of these polypeptides (two ribosomal 

RNAs and 22 transfer RNAs) [Strachan and Read, 1996]. There are hundreds of copies 

of mitochondria in each cell (polyploidy) and this feature plays an important role in the 

pathogenicity of mitochondrial diseases. 
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Figure 1.6: A circular representation of the mitochondrial genome indicating the 37 genes [Taken 

from www.mitomap.org].  

 

Although mtDNA polymerase has a proof-reading mechanism, random polymorphisms 

occur frequently due to a high rate of replication and the absence of protective histones 

in the replication process. Furthermore, reactive oxygen molecules that are generated 

during ATP production causes oxidative damage that result in sequence variants. These 

variations can be disease-causing mutations or result in predisposition to disease in four 

ways. Typical mitochondrial syndromes may occur where mutations in mtDNA result in a 

specific disease. Secondly, a high load of mutated mtDNA in the mother can result in a 

clinical syndrome in subsequent generations. Thirdly, the natural aging process 

incorporates mutations into the mtDNA and thereby predisposes aged individuals to 

disease. Finally, chromosomal mutations that affect mitochondrial ribosomal proteins 

can result in translational defects in mitochondria [Strachan and Read, 1996]. 

 

http://www.mitomap.org/
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Mitochondrial mutations can either be homoplasmic (in which all copies of the 

mitochondria will have the mutation) or heteroplasmic (in which only some copies of the 

mitochondria will be affected). In most cases of heteroplasmic mutations, the number of 

mutant copies must exceed a certain threshold before the disease manifests 

phenotypically [Strachan and Read, 1996]. Due to heteroplasmy, some mutations will 

only be expressed in certain tissues or systems where the mutational load is highest. 

Similarly, the disease may only be present in some of the progeny and absent in others. 

Homoplasmic mutations, however, will be transmitted to all progeny although they may 

not all display exactly the same phenotypic features of the disease [Strachan and Read, 

1996]. 

 

Mitochondrial DNA is uniparental and passed through generations via the maternal line. 

During oocyte development, only some of the mitochondria from the mother are 

transferred to the egg cells and the progeny will therefore have a limited selection of the 

mitochondrial load that the mother had. Consequently, a pattern of maternal inheritance 

of the disorder is essential in recognizing and diagnosing mitochondrial diseases [Taylor 

and Turnbull, 2005]. 

 

1.5 The influence of non-genetic factors in neurodegenerative disorders 

 

The aetiology of many neurodegenerative disorders is multifactorial in that it involves 

both genetic susceptibility and environmental interactions, which influence the course of 

the disease. While the genetic mutation may cause the susceptibility to a certain 

disorder, it is only with the exposure to other risk factors that the disease manifests.  

Common environmental risk-factors in neurodegenerative diseases include chemical 

exposure, oxidative stress, vitamin deficiency and exposure to heavy metals. Other risk-

factors include age, gender, lifestyle habits such as smoking and drug abuse as well as 

the presence of metabolic disorders. For example, the increased exposure to heavy 

metals such as organic aluminium in water was associated with the occurrence of AD 

[Gauthier et al., 2000]. In addition, Parkinson’s disease (PD) has been associated with 

the exposure to pesticides in rural areas [Abbott et al., 2003]. Another study found an 

association between PD and rural populations, proposing that the increased incidence of 

PD may be due to neurotoxins in the water [Priyadarshi et al., 2001]. 
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It is important to recognise these risk factors as avoiding them may reduce or delay the 

onset of symptoms. Furthermore, these risk factors may alter the clinical phenotype of 

the disease.  

 

 1.6  Inherited disorders displaying dementia and movement disorders 

 

Cases of familial dementia and movement disorders have been found to be due to 

mutations in both mitochondrial and nuclear genes. The pedigree of the family in the 

present study showed a tendency for maternal transmission of the disorder.  Whether 

this was a chance occurrence or not was unknown at the time of this study and it was 

therefore assumed that mutations in either mitochondrial or nuclear genes could be 

responsible for these symptoms. Given this, both mitochondrial and nuclear 

neurodegenerative disorders are discussed in the following sections.  

 

1.6.1 Mitochondrial diseases associated with movement abnormalities and 

dementia 

 

1.6.1.1 Myoclonic Epilepsy with Ragged-Red Fibres (MERRF; MIM 545000)  

 

MERRF is commonly caused by mutations in the transfer RNA (tRNA) genes of the 

mitochondria resulting in ragged- red fibres in muscle tissue and abnormally shaped 

mitochondria. The clinical symptoms are myoclonus, seizures, ataxia, and myopathy. 

The severity and rate of progression of the disease varies amongst different cases but 

myoclonus is normally the initial symptom [Berkovic et al., 1989]. The age at onset 

(AAO) ranges from 7-50 years with most cases occurring in childhood after a normal 

early development [Hirano and DiMauro, 1992]. 

 

The prevalence rate is quite low with estimations of 0-1.5/100 000 in Finland [Remes et 

al., 2005] and 0.25/100 000 in Northern Europe [Chinnery et al., 2000]. However, the 

disease is clinically heterogeneous, making it difficult to diagnose and these estimates 

might be biased.  
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 Four point mutations (A8344G, T8356C, G8363A and G8361A) in the MTTK gene, 

encoding tRNA lysine, collectively account for 90% of MERRF cases with the A8344G 

mutation accounting for approximately 80% of those cases [Shoffner et al., 1990].  The 

remaining 10% of reported cases is due to other MTTK point mutations or single base 

and larger deletions. Some of the reported mutations may result in additional symptoms 

not found in typical MERRF. For example in two families, affected individuals harbouring 

the T8356C mutation showed symptoms of MELAS, another mitochondrial disorder 

[Zeviani et al., 1993]. 

 

Although the mechanism of pathogenesis has not been determined, analysis of cells 

containing the A8344G mutation showed decreased tRNA lysine production [Enriquez et 

al., 1995]. It is not clear whether there is a correlation between the amount of mutant 

mitochondria and the severity of the disease [Berkovic et al., 1989]. 

 

1.6.1.2 Mitochondrial myopathy, Encephalopathy, Lactic acidosis and 

Stroke-like episodes (MELAS; MIM 540000)  

 

MELAS is a well characterised multisystem disorder that manifests phenotypically with 

subacute-stroke-like episodes, encephalopathy with seizures and dementia. Additional 

symptoms include short stature, recurrent headaches and vomiting. The initial symptoms 

may include exercise intolerance and limb weakness that usually presents in early 

childhood [Hirano et al., 1992]. However, there are rare cases where the AAO is in the 

fourth decade of life. 

 

Although MELAS is predominantly associated with mutations in the mitochondrial 

tRNAs, there are several causative mutations in other mitochondrial genes such as the 

genes encoding the Complex I subunit [Goto et al., 1992] and MT-ND5 gene [Crimi et 

al., 2003]. However, it has been estimated that 80% of reported cases of MELAS are 

due to an A-G transition at position 3243 in the MTTL1 gene on the mitochondrial 

genome. A study in Finland found the prevalence of MELAS due to the A3243G 

mutation to be 16.3 /100 000 [Majamaa et al., 1997].  
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As with MERRF the symptoms vary in different cases and there are some cases in 

which the symptoms of MELAS and MERRF overlap, making it difficult to make a distinct 

diagnosis [Zeviani et al., 1993].  

 

1.6.1.3 Familial multisystem degeneration associated with parkinsonism 

(LHON-variant) (MIM 516003) 

 

Lebers’ hereditary optic neuropathy (LHON) presents in teenagers and adults as acute 

or subacute loss of vision or complete blindness. The disease is caused by mutations in 

mtDNA and there are currently 18 allelic variants. However, the most common cause of 

LHON is the G11778A mutation in the MT-ND4 gene. In Asia, more than 90% of LHON 

patients harbour this mutation [Mashima et al., 1993].  

 

The 11778G>A mutation, previously only associated with LHON families, was identified 

as the cause of a maternally inherited multisystem degeneration disease characterised 

by parkinsonism in one family [Simon et al., 1999]. The symptoms varied dramatically 

between affected individuals. In addition to prominent parkinsonism, affected members 

also displayed akinesia, rigidity, dysarthria, dystonia and dementia. 

 

1.6.2  Non-mitochondrial inherited diseases manifesting with dementia and 

movement disorders 

 

1.6.2.1 Prion diseases (MIM 1766540) 

 

Prion diseases can occur in both human and animals. Furthermore, the disease can be 

acquired from animals or may appear sporadically or be inherited. Most cases are 

sporadic or acquired but about 10-15% of prion diseases are inherited [Windl et al., 

1999]. More than 30 point mutations and insertions in the prion protein gene (PRPN) 

have been implicated as the cause of inherited prion diseases [Mead, 2006]. A study of 

four genes associated with early onset (EO) dementia  showed that mutations in the 

PRPN  gene were the most frequent cause of EO dementia for those four genes [Finckh 

et al., 2000]. 
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There are three clinically distinct inherited phenotypes of prion diseases, namely 

Creutzfeldt-Jakob disease (CJD) [Brown et al., 1994], Gerstmann-Straussler-Scheinker 

syndrome (GSS) [Hainfellner et al., 1995] and Fatal Familial Insomnia (FFI) [Lugaresi et 

al., 1986]. Although the symptoms may be markedly heterogeneous, the disease is 

typically characterised by slowly progressive ataxia, hallucinations, and myoclonus. In 

the case of CJD, rapidly progressive dementia occurs while in cases of GSS dementia 

occurs in the later stages of the disease. There are only four frequently occurring 

mutations in the PRPN gene that leads to inherited prion disease, namely E200K, 

D178N, P102L and OPRI. In a report on 492 cases of prion disease, 350 of the cases 

were due to these four mutations [Mead, 2006]. 

 

The E200K mutation is by far the most commonly occurring mutation for inherited prion 

disease. Clinically it manifests as typical CJD with muscular rigidity and myoclonus being 

prominent features [Brown et al., 1986]. The mean AAO is 58 years although this differs 

in various studies [Brown et al., 1994]. 

 

The phenotype of prion disease caused by the D178N mutation has been described as 

CJD-like. In addition to CJD symptoms, affected individuals also suffer from insomnia 

and severe myoclonus. In 72 reported cases the AAO ranged from 20-71 years with a 

median AAO of 50 years [Pocchiari et al., 1998]. 

 

The insertion of three octapeptide repeats (OPRI mutation) in the N-terminal of the 

PRPN is also a common cause of inherited prion disease. The AAO is in the fourth 

decade and the condition presents clinically as myoclonus, ataxia and chorea with 

cortical dementia as the main feature [Mead, 2006].  

 

The P102L mutation follows a GSS pattern of disease, with slowly progressive ataxia 

and dementia in later stages of the disease. In 52 reported cases the AAO ranged 

between 25-70 yrs [Young et al., 1997]. 
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1.6.2.2 Early onset Parkinson’s disease (PD; MIM 168600) 

 

Idiopathic Parkinson’s disease (PD) is defined as a slowly progressive 

neurodegenerative disease characterised by loss of dopaminergic neurons and the 

presence of Lewy bodies (eosinophilic inclusion bodies containing ubiquitin and α 

synuclein aggregations). The degeneration of dopaminergic neurons causes a decrease 

of dopaminergic input to the striatum resulting in movement abnormalities [Marras and 

Tanner, 2003]. The initial symptoms are bradykinesia, tremor and rigidity while 

symptoms that appear as the disease progresses include dementia and dysarthria. PD is 

largely a disorder of the aged so the incidence and prevalence of the disease increases 

dramatically in individuals over 50 years of age. PD that occurs in individuals in which 

the AAO is younger than 50 years is considered to be early onset PD and is of interest in 

the present study. PD can occur sporadically or follow a Mendelian or non-Mendelian 

pattern of inheritance.  

 

PD has been noted to be the second most common neurodegenerative disease globally 

[Okubadejo et al., 2006]. The prevalence of PD has been estimated in various 

population groups but to date has not yet been established in South Africa. The 

prevalence differs in different population groups. A higher prevalence rate was reported 

in Caucasians compared to the Asian or African populations [Wood et al., 2005]. A 

gender bias has also been implicated with males having a slightly higher burden than 

females. However, all these estimates can be biased as there is no diagnostic test for 

PD during life and clinical diagnoses could be inaccurate [Marras and Tanner, 2003].    

 

Although inherited PD may only contribute to about 5% of PD cases worldwide [Oliveri et 

al., 2001], great strides have been made in understanding the genetics of PD and has 

resulted in the identification of a number of mutations in at least five genes that have 

shown to cause PD while many other genes have been implicated by association studies 

[Tan and Jankovic, 2006]. To date three genes, namely DJ1, PINK1 and PARK2, have 

been found to be responsible for autosomal recessive early onset (AAO<40years) PD 

[Gasser, 2005]. Mutations in the PARK2 (Parkin) gene account for 50% of familial and 

70% of sporadic cases of early onset PD [Lucking et al., 2000 and Mata et al., 2004]. 

Similarly, in a study of 73 families which had at least one member with early onset PD, 

49% were shown to have mutations in the PARK2 gene [Lucking et al., 2000].  
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Clinically, PD caused by mutations in PARK2 differs from typical idiopathic PD in that 

dystonia is more common, the progression of the disease may be slower and the AAO 

can be very young (<20years) but may also be older. Unlike other cases of PD, the 

presence of Lewy bodies is rare [Takahashi, 1994]. PARK2 is located at the 

chromosomal position 6q25.2-q27 and codes for an E3 ubiquitin ligase. Its function is to 

tag proteins for degradation via the ubiquitin pathway [Wood et al., 2005]. There are 

currently more than 100 mutations in PARK2 that cause PD. Of these, more than 50 are 

point mutations while deletions, duplications and exon rearrangements account for the 

remainder [Tan and Skipper, 2007].  

 

1.6.2.3 Familial Encephalopathy with Neuroserpin Inclusion Bodies 

 (FENIB; MIM 604218) 

 

Serine proteases are enzymes that catalyse the hydrolysis of peptide bonds and play a 

role in intestinal digestion and blood coagulation. During neurogenesis they assist with 

cell migration and axon development. In adulthood they assist in neuropeptide 

processing, neural survival, neural structural processing and also play a role in learning 

and memory processes [Molinari et al., 2003].  

 

Serpins are a family of serine protease inhibitors and neuroserpins form part of this 

family but are expressed solely in neurons. Neuroserpins are normally expressed in the 

late stages of neurogenesis where they are postulated to assist with synaptogenesis 

[Osterwalde et al., 1996].  

 

Mutations in neuroserpins have been identified as the cause of an autosomal dominantly 

inherited neurodegenerative disease termed Familial Encephalopathy with Neuroserpin 

Inclusion Bodies (FENIB) [Davis et al., 2002]. The disease is characterised by dementia, 

myoclonus and the presence of eosinophilic inclusion bodies (Collin’s Bodies) in the 

cerebral cortex [Molinari et al., 2003]. Biochemical analysis of inclusions that were 

purified from post-mortem brains showed that they were periodic acid Schiff (PAS) 

positive but ubiquitin and α-synuclein negative and that the major constituent was the 

neuroserpin protein, SERPINI1. 
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Several point mutations have been identified in the SERPINI1 gene although only two, 

S49P and S52R, are common [Davis et al., 2002]. The phenotype of the S49P mutation 

was first described in a Caucasian family in the United States (US). The affected 

members presented in the fifth decade of life with initial symptoms of cognitive decline, 

response regulation difficulties, memory and visio-spatial abnormalities. The later stages 

were characterised by severe progressive dementia and action myoclonus [Molinari et 

al., 2003]. The S52R mutation was also reported in a Caucasian family in the US. In 

addition to the above mentioned symptoms, affected family members also suffered from 

epilepsy but the AAO in this family was in the third decade of life.  

 

There have been a number of proposed mechanisms of pathogenesis. Thus far, all the 

point mutations causing FENIB have been found in the “shutter” region of the functional 

site of the inhibitor. Molecular models of these point mutations show a distinct 

conformational change in the overall shape of the protein which makes the protein more 

prone to aggregation. In addition, the degree to which the mutated form tends to 

aggregate correlated with severity of the disease [Molinari et al., 2003]. As with other 

neurodegenerative diseases, it is generally accepted that the presence of aggregations 

plays a detrimental role in neuronal dysfunction. The pathogenesis of FENIB is likely to 

be due to the precipitation of mutant neuroserpin [Davis et al., 2002].  

 

1.6.3  Repeat expansion disorders 

 

Repeat expansion mutations are known to cause a number of neurodegenerative and 

neuropsychiatric disorders. Trinucleotide repeat expansions, in particular, are 

responsible for a vast amount of neurodegenerative diseases with motor disco-

ordination. Triplet repeat expansions can be classified as type I or type II depending on 

where the repeat expansion occurs in the DNA sequence. Type I disorders refers to 

those conditions in which the repeat lies in a coding region of a gene and therefore 

codes for functional amino acids. Type II disorders refer to conditions in which the repeat 

occurs in a non-coding region [Margolis et al., 1997].  

 

Polyglutamine diseases refers to a group of diseases caused by CAG or CAA repeat 

expansions associated with the production of long polyglutamine (polyQ) tracts. 

Although there are many proposed mechanisms of pathogenicity for diseases caused by 
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these mutations, the generally accepted mechanism of pathogenesis is that mutated 

transcripts containing polyQ tracts aggregate and form inclusions in the cell leading to 

cellular degradation. These intranuclear inclusions, which are usually immuno-positive 

for the mutated protein, have become hallmarks for polyglutamine disease [Neri, 2001]. 

Other theories propose that the mutant protein containing polyQ tracts has a 

conformational change that leads to abnormal cellular distribution of the protein which is 

toxic to the cell [Neri, 2001]. Another theory suggests that the mutant polyQ tracts 

interact with short polyQ tracts that normally occur in transcription factors, thereby 

affecting transcriptional regulation.  

 

Features of repeat expansion disorders include anticipation and repeat instability 

[Stevanin et al., 2000]. Anticipation refers to the ability of larger repeats to expand even 

further in successive generations. Repeat instability is the phenomenon whereby larger 

numbers of repeats have an unstable transmission in subsequent generations thereby 

causing repeats to be expanded into the pathogenic range in offspring of parents with 

large repeats [McInnis, 1996].  

 

In the following sections a number of different neurodegenerative disorders caused by 

repeat expansions will be discussed.  

 

1.6.3.1 Spinocerebellar Ataxias  

 

Spinocerebellar Ataxias (SCAs) are inherited neurodegenerative diseases characterised 

by limb or gait ataxia and dysarthria. The majority of SCAs are autosomal dominantly 

inherited. Over the past 14 years more than 28 genetically distinct types have been 

identified and there are still many cases of SCA for which a genetic cause or the affected 

gene has not been identified [Pulst, 2003]. 

 

In general, the prevalence rate of SCAs has been estimated to be three cases in every 

100 000 people but this is a tentative estimation based on studies in isolated regions 

[Michalik et al., 2004]. A true reflection of the prevalence rate is affected by rare 

subtypes not being included in many of the population studies. Furthermore, the 

subtypes in which a chromosomal region was implicated but the exact genetic mutation 

is unknown, makes it difficult to identify these subtypes [Watts and Koller, 1997]. A direct 
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comparison between regional occurrences of subtypes is hindered due to founder 

effects which creates a genetic bias. The presence of founding individuals in a 

population has a profound effect on the geographic occurrence of a particular subtype, 

for example SCA type 2 (SCA 2) in Cuba [Estrada et al., 1999]. From a global 

perspective, SCAs 1, 2, 3, 6 and 7 seem to be the most common types, representing 50-

80% of the known cases. In South Africa the most common type is SCA 1 [Ramesar et 

al., 1997], although cases of SCA types 2, 3, 6, and 7 have been reported [Bryer et al., 

2003].  

 

In addition to ataxia and dysarthria, affected persons may also display symptoms such 

as dementia, oculomotor disturbances, epilepsy, myoclonus and cognitive impairment 

[Pulst, 2003]. The neuropathological effects of SCAs vary amongst subtypes with a few 

morphological features that are present in most, if not all, types. These features typically 

include atrophy and loss of neurons in brain regions involved in movement and co-

ordination such as the cerebral cortex, purkinje cells, cerebellum and the striatum. 

Immunohistochemistry of neurons may show intranuclear aggregations containing 

polyglutamine tracts in many of the subtypes, while in others cytoplasmic inclusions are 

present [Schöls et al., 2004]. The clinical overlap between different subtypes makes it 

difficult to classify the subtypes clinically so generally they are classified using molecular 

methods. 

 

SCAs are caused by a variety of mutations, predominantly repeat expansions but point 

mutations have also been implicated in some subtypes [van Swieten et al., 2003]. Six of 

the characterised types of SCAs (types SCA1, SCA2, SCA3, SCA6, SCA7 and SCA17) 

are caused by CAG repeat expansions in coding regions of the respective genes and the 

number of repeats that lead to pathogenesis varies between subtypes [Schöls et al., 

2004]. In these cases the CAG repeats are generally thought to form polyglutamine 

tracts which bind with other proteins to form aggregates that are toxic to the cell thereby 

causing cellular dysfunction or death.  Another sub-type (SCA12) is due to a CAG repeat 

expansion in the 5’ non-coding region of the PPP2RB gene. A penta-nucleotide repeat 

expansion of (ATTCT) has been implicated in SCA 10 whereas point mutations in 

FGF14 and C γPKCγ have been shown to be causal in two cases of familial SCA.  
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1.6.3.2 Dentatorubral-Pallidoluysian Atrophy (DRPLA; MIM 125370) 

 

Dentatorubral-Pallidoluysian Atrophy (DRPLA) is a rare neurodegenerative disease 

characterised by cerebellar ataxia, choreo-athetosis, myoclonic epilepsy and dementia. 

DRPLA is distinguished from SCAs by the significant neuronal loss in the dentatorubral 

and pallidoluysian systems [Naito and Oyanagi, 1982]. In addition to the general 

symptoms, individuals with early onset DRPLA (<20years) also present with signs of 

progressive myoclonus epilepsy (PME). Late onset cases are clinically different, with 

most patients displaying choreo-athetosis and psychiatric disturbances [Ikeuchi et al., 

1995].  

 

DRPLA is caused by an unstable CAG repeat in the ATN1 gene located on chromosome 

12p13. Unaffected individuals have 3 to 36 repeats whereas in affected individuals the 

repeats range from 49-88 [Schöls et al., 2004]. The number of repeats is directly 

associated with the severity and AAO of the disease. Furthermore, anticipation has been 

observed in several cases [Komure et al., 1995].  

 

DRPLA occurs predominantly in Japan with a prevalence rate of two to four per million 

although cases in other ethnic groups have been noted [Lee et al., 2001]. The genetic 

mutation in an African American family affected with a neurodegenerative disorder, 

termed Haw River Syndrome, was later found to be the CAG expansion in Atrophin1 

(ATN1) gene and is thus considered the same disorder. However, the Haw River 

Syndrome cases showed a slightly different phenotype in that they had calcification of 

globus palladius and no myoclonic seizures [Burke et al., 1994]. 

 

The pathogenic mechanism of the disease is unknown and there are many theories 

surrounding it. Mutant ATN1 is expressed at similar levels to the wild type protein 

indicating that transcription efficiency is not altered. This concurs with the theory that 

polyglutamine tracts produced by CAG repeat expansions in the ATN1 gene are 

pathogenic to the cell and result in cell death [Onodera et al., 1995].  
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1.6.3.3 Huntington’s disease (HD; MIM 143100) 

 

 Huntington’s disease (HD) is an autosomal dominantly inherited disease caused by a 

CAG repeat expansion in the IT15 gene on chromosome 4p16.3. HD manifests as a 

progressive neurodegenerative disorder involving chorea, impaired cognitive ability and 

psychiatric disturbances. Affected individuals have an average of 20 years survival 

following the onset of clinical symptoms. HD accounts for approximately 90% of cases of 

chorea with a genetic aetiology [Schneider et al., 2007].  

 

HD is a late onset disease where the AAO is usually in the fourth decade of life, more 

specifically between 35-44 years of age. The early stages of disease are characterised 

by neurological disturbances, impaired voluntary movements and motor disco-ordination 

which progresses to a final stage of profound dementia and prominent chorea ultimately 

leading to death [Schneider et al., 2007]. Neuropathological examination of the brains of 

deceased HD patients showed severe degeneration of selective neurons in the striatum 

[Cowan and Raymond, 2006]. Intracellular inclusions containing mutant IT15 protein 

were also present.  

 

The prevalence rates varies in different population studies with estimates of four to eight 

per 100 000 cases in North America and Europe. However, the prevalence rates of HD 

in Japan, Norway and Finland are much lower [Schneider et al., 2007].  

 

The CAG repeat occurs in Exon 1 of the IT15 gene. The repeat codes for polyglutamine 

and HD therefore, falls into the category of Type I polyglutamine disorders. Unaffected 

individuals may have up to 26 repeats while the effect of 27-35 repeats are considered 

intermediate in that individuals with this range of repeats are not expected to exhibit the 

Huntington’s phenotype but their mutant allele is prone to expand in to the pathogenic 

range in subsequent generations [Semaka et al., 2006]. Reduced penetrance was 

demonstrated for cases in which the repeats were between 36 and 39 while repeats of 

greater than 40 are considered pathogenic. As with other repeat expansion disorders, 

the phenomenon of anticipation has been observed in many cases of HD. 
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1.6.3.4 Huntington’s disease-like 2 (HDL2; MIM 606438) 

 

Huntington’s disease-like 2 (HDL2) is a rare neurodegenerative disease characterised 

by movement abnormalities, selective neuronal degeneration and severe, progressive 

dementia. A hallmark of this disease is the presence of intranuclear inclusion bodies and 

selective atrophy in the cerebrum, while the cerebellum remains relatively unaffected. 

Clinically, the disease appears similar to HD but unlike HD it is caused by a repeat 

expansion in an alternatively spliced exon of the Junctophilin-3 (JPH3) gene [Walker et 

al., 2003].  

          

The discovery of HDL2 

 

 About 1% of HD-like cases are not due to the HD mutation. It has been proposed that 

the study of diseases that have a HD phenotype but are negative for the HD expansion 

may provide clues to the pathogenic mechanism of HD. 

 

Given this, in 2001, Margolis et al., described a family (pedigree W) with an HD-like 

phenotype who were negative for HD, SCA (types 1-3, 6-8 and 12), DRPLA, 

Huntington’s disease-like 1 and mutations in the TBP gene [Margolis et al., 2001]. The 

family was of African American descent and resided in South Eastern United States. The 

proband, a female, presented at 26 years of age with weight loss and disco-ordination 

which steadily progressed. After 10 years of disease the proband was severely 

demented and completely bedridden. The presentation of this disease was similar for all 

the cases in this family [Margolis et al., 2001].  

 

The MRI scans of the proband showed severe atrophy of the striatum and the cerebral 

cortex while the cerebellum was relatively unaffected. Microscopical analysis of brain 

tissue showed selective neuronal degeneration particularly of medium spiny neurons in 

the striatum. Furthermore, intranuclear inclusions were detected that stained with IC2 

antibodies which are proposed to be selective for long polyglutamine tracts but may also 

stain any form of aggregated protein. A positive reaction was also observed for staining 

with anti-ubiquitin antibodies but not with α-synuclein and anti-Huntington antibodies. 

The inclusions were predominantly present in the cortex. 
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It was suspected that the disease may be due to a repeat expansion because most 

repeat expansion disorders result in neuropsychiatric disorders [Margolis et al., 1997]. 

To ascertain the identity of the causative mutation the genomic DNA of several family 

members was analysed using the repeat expansion detection (RED) assay which 

detects any CTG/CAG repeats longer than 40 in an individual’s genome [Holmes et al., 

2001]. The flowchart (Figure1.7) displays the process that led to the identification of the 

HDL2 mutation.  

 

The RED assay detected a CTG/CAG repeat expansion of 50-60 repeats in all affected 

family members. Furthermore, this expanded tract was absent in all unaffected family 

members. In order to characterise this repeat the genomic DNA of one affected family 

member was subjected to digestion with EcoRI and the resulting DNA fragments were 

separated on a gel and the gel was then cut into 50 slices. The DNA fragments was 

extracted from the slices and a RED assay was performed on the extracted DNA in 

order to isolate fragments in which long CAG/CTG repeats were present.  

 

The fragments that were positive for the RED assay were cloned and the resulting library 

was probed with oligos that were specific for long CAG tracts. Clones that contained 

long repeats were subjected to direct sequencing. A 6kb clone that contained this 55-60 

repeats was identified and the regions flanking the repeat were used to design primers 

that would amplify the repeats in order to determine the repeat sizes in other family 

members. 
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Pedigree W was described with symptoms similar to HD but 

HD negative. 

It was suspected that the family had a repeat expansion 

disorder like SCAs or HD so genomic DNA (gDNA) was 

collected from family members and a RED Assay, which 

detects CAG/CTG repeat expansions, was performed. 

An unexplained (not due to SCA, DRPLA etc.) CAG/CTG tract 

of 50-60 repeats was found in all affected and no unaffected 

family members. 

gDNA of an affected family member was digested with EcoR1, 

the fragments were electrophoresed, the gel was sliced into 

50 pieces and DNA was extracted. RED ASSAY was 

performed on DNA from each slice. RED positive slices were 

cloned and the library was screened with (CAG)15 probes. 

Plasmids with long repeats were extracted and sequenced. 

 

 A 6kb region containing 55 CAG/CTG repeats was cloned. 

The sequences flanking the repeats were used to design 

primers to determine repeat length. 
The sequence was BLASTed against 

GenBank database.   

The sequence was mapped to JPH3 

gene on chromosome 16q23-24. Repeats ranged from 51-57 in 

affected Pedigree W 

members. Complete 

segregation of repeat 

expansion and disease in the 

family was shown. 

The repeat length was 

determined in 98 unaffected, 

unrelated individuals as well as in 

175 HD individuals and 330 

individuals with movement 

disorders.  

When two (CTG)8  primers anneal 
adjacent to each other along the 
template DNA, they ligate to each other. 

After 500 PCR cycles the longest oligo 
corresponded to the longest CAG/CTG in 
the genome of the individual.  
 

PCR products underwent electrophoresis 
and were probed with (CTG) 8 probes. 

Bands produced corresponded to long 
CAG/CTG tracts. The presence of 30-40 
repeats was expected as controls.  
 

gDNA was incubated with (CAG) 10 

primers, underwent electrophoresis and 
were probed with (CTG)8 primers. 

Figure 1.7: Schematic diagram of the process leading to the identification of the HDL2 mutation.  

METHOD OF REPEAT EXPANSION 

DETECTION (RED)  
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The repeat length of 13 individuals from the family (pedigree W) was determined. The range 

of pathogenic repeats in affected family members was 51-57 triplet repeats. The diversity of 

repeat length in three sibships indicated that the repeat was most likely unstable during 

vertical transmission [Holmes et al., 2001]. To further support the pathogenic aetiology of 

the repeat, the repeat length was determined in 175 individuals with HD, 98 unaffected and 

unrelated individuals as well as in 330 individuals with unknown movement disorders.  In 

this study [Holmes et al., 2001] the unexpanded alleles for all the individuals ranged from 6 

to 27 triplet repeats with a mode of 13 repeats (Figure 1.8).  

 

 
Figure 1.8: Graph representing the repeat length in JPH3 gene for 603 individuals (Black bars 

represents individuals with movement disorders of unknown aetiology, grey bars represents the 

control individuals) [Taken from Holmes et al., 2001].  

 

Expanded alleles, ranging from 44 to 50 repeats, were detected in four individuals of 

African American descent (unrelated to pedigree W), with a family history of an HD-like 

disorder but were negative for the HD mutation. In addition, an allele of 49 repeats was 

found in a Moroccan woman and a repeat expansion of 35 triplets was identified in an 

individual with a sudden onset of cerebellar signs [Holmes et al., 2001].  
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Complementary DNA (cDNA) containing this repeat had previously been mapped to 

chromosome 16 [Margolis et al., 1997]. To further characterise the repeat a 125kb contig 

containing the repeat was created from DNA of an affected pedigree W member. The 

contig was compared to the dbEST database and analysed using GENSCAN. The 

contig, with the repeat in the CAG orientation, did not match any ESTs in the database 

nor did GENSCAN predict any transcripts for this orientation of the repeat. However, in 

the CTG orientation the repeat was localised to the JPH3 gene, between Exons 1 and 2 

[Nishi et al., 2000]. The 125 kb contig included Exon 1 which allowed for the localisation 

of the repeat to 760 nucleotides 3’ to the end of Exon 1.  

 

Four factors lend support to the fact that the repeat lies in a variably spliced exon in the 

JPH3 gene. Firstly, a polyadenylation signal was identified 281 nucleotides 3’ to the 

repeat. Secondly, GENSCAN predictions displayed a transcript where Exon 1 is spliced 

to a terminal exon containing the repeat. Thirdly, two Expressed Sequence Tags (EST’s) 

from retinoblastoma and lung carcinoid tissue (BE042890 and BE779067) were 

identified which show Exon 1 spliced to the terminal exon containing the repeat. Lastly, 

the authors used RT-PCR on normal brain mRNA and found that this alternatively 

spliced transcript could exist in different forms due to the orientation of the splice 

acceptor sites. In these three forms the repeat can either code for polyalanine, 

polyleucine or lie in the 3’ untranslated region (Figure 1.9). 
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Figure 1.9: (a) Graphical structure of full length JPH3. The exons are indicated by grey blocks, 

location of the polyadenylation signal (AATAA) and the repeat are indicated. (b) Published JPH3 

mRNA transcript. (c-e)  Depicts the alternatively spliced versions of the JPH3 transcripts with 

exon 1 spliced to exon 2A and the different splice acceptor sites which causes the repeat to code 

for polyalanine, polyleucine or fall into the 3’ UTR [Taken from Holmes et al., 2001].  

 
Population studies of HDL2 

 

Since the discovery of HDL2 a steady increase in cases has been identified worldwide. 

Thus far, most of the reported cases are in individuals of Black African ancestry 

[Margolis et al., 2006]. An exception to these cases was a HDL2 positive individual from 

Morocco [Holmes et al., 2001] and a family from Mexico [Stevanin et al., 2003]. 

However, these individuals were later found to originate from areas in their respective 

countries that was colonised by Black Africans [Margolis et al., 2006]. Furthermore, a 

preliminary report had indicated 7 of 20 Black patients from South Africa had tested 

positive for HDL2 [Krause et al., 2002].  

 

No patients with an HDL2 repeat expansion were found in a study done on 1600 

Caucasian patients with HD-like symptoms from Austria and Germany [Bauer et al., 

2002]. Of this cohort 147 patients had a family history of HD-like symptoms. The repeats 

in this cohort ranged from 10 -27 triplets with modes of 14 and 16 repeats (Figure 1.10) 
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Figure 1.10: Determination of JPH3 repeat length in 1600 Caucasian individuals from Germany 

and Austria [Adapted from Bauer et al., 2002]. 

 

 A study done on individuals from Japan and North America with HD-like symptoms was 

also carried out. Out of 538 of the North American cases, six were positive for HDL2 but 

none of the 44 Japanese cases were positive for HDL2 [Margolis et al., 2004].  

 

Characterisation of the HDL2 repeat 

 

In order to determine the risk for developing HDL2, the repeat sizes were determined in 

a healthy population of Serbia and Montenegro. In this study, a cohort of 198 unrelated 

“healthy” controls was typed [Keckarevic et al., 2005]. No pathogenic repeat expansions 

were found and the alleles ranged from 11-18 repeats with a bimodal pattern of 

distribution with peaks at 14 and 16 repeats, results which were similar to those obtained 

by Bauer et al. [2002].  

 

The repeat length and age of onset is correlated in HDL2 as in other repeat expansion 

disorders [Margolis et al., 2004]. For example, in 24 HDL2 cases an increase in repeat 

length resulted in a younger age of onset (Figure 1.11). 
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Figure 1.11: The JPH3 repeat length is correlated with the age of onset [Taken from Margolis et 

al., 2004]. 

 

A repeat expansion of more than 43 repeats has been determined to be pathogenic, 

whereas repeats of between 40 and 43 are considered to be incompletely penetrant 

[Margolis et al., 2004]. Moreover, repeats of 33-35 have been reported to be unstable in 

vertical transmission. The phenotypic effects of repeats in this range have however not 

been established as an individual with 35 repeats developed Cogan’s Syndrome, which 

is an auto immune disease [Margolis et al., 2004]. 

 

Neuropathology of HDL2 

 

From a neuropathological perspective the disease mimics HD in that the caudate and 

putamen are severely atrophied in the late stages of the disease (Figure 1.12 A and D) 

[Margolis et al., 2006]. As in HD (Figure 1.12 B and E) the cerebrum was severely 

atrophied while the cerebellum remained relatively unaffected. The examination of four 

HDL2 brains showed severe atrophy of the striatum, particularly the caudate and the 

putamen while mild atrophy of the globus pallidus was observed [Margolis et al., 2006].  
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Figure 1.12: (A) and (D) MRI scans of an HDL2 case after 10 years disease duration. (B) and (E) 

MRI scans of HD brain after 12 years disease duration. (C) and (F) normal control at 43 years old 

[Taken from Margolis et al., 2003]. 

 

 As in HD, a hallmark of this disease is the presence of intranuclear inclusions. However 

these inclusions did not stain with anti-Huntington antibodies but were positive for 

staining with IC2 antibodies [Rudnicki et al., 2007]. 

 

Summary of the clinical presentation of HDL2 

 

Early clinical signs of the disease include weight loss, personality changes, imbalance 

and poor motor co-ordination. In later stages of the disease the patients exhibit 

choreiform movements, rapidly progressive dementia, rigidity and dystonia which 

culminate in a completely bedridden state within 10 -15 years of onset [Margolis et al., 

2004]. The age of onset has been estimated to be in the third to fourth decade of life with 

the earliest age of onset in a boy of the Mexican pedigree who reported to display 

choreiform movements and psychiatric disturbances at the age of 12 [Margolis et al., 

2004]. An HDL2 family with acanthocytosis has also been reported [Walker et al., 2002]. 

Although affected family members followed the general disease course, 30- 35% 

acanthocytosis was detected on peripheral blood smears of the three affected family 

members.  
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The Junctophilin-3 gene 

 

The Junctophilin-3 gene is a member of a conserved family of proteins called 

Junctophilins. The Junctophilins play a role in the structure of junctional membrane 

complexes by regulating the Ca2+ influx [Takeshima et al., 2000]. Junctional complexes 

are structures that form between the sarcaoplasmic /endoplasmic reticulum and the 

plasma membrane in all excitable cells. The complexes are thought to provide functional 

cross talk between the plasma membrane and Ca2+ dependent ion channels.  

 

Four human Junctophilin subtypes have been identified. Blot hybridisation techniques 

were used to localise the mouse orthologues of the subtypes to their respective 

expression tissues. Junctophilin-1 (JP1) was localised to skeletal tissue and knock-out 

mouse models exhibited neonatal death [Nishi et al., 2003]. Junctophilin-2 (JP2) was 

expressed in both heart and skeletal muscle in mice [Nishi et al., 2003] and also lung 

and stomach tissue that indicates expression in smooth muscle [Takeshima et al., 2000]. 

Knock out mouse models showed disruption in normal Ca2+ transients in cardiac 

myocytes which ultimately resulted in embryonic lethality [Nishi et al., 2000].  

 

Junctophilin-3 (JPH3) is predominantly expressed in the brain and possibly the testis 

(Figure 1.13). A northern blot analysis of JP3 (the mouse ortholgue of JPH3) detected a 

4.4Kb fragment in mouse brain tissue and a smaller fragment in the testis [Nishi et al., 

2003]. The JP3 probes did not hybridize to any other tissues in this study.  

 

 
Figure 1.13: Northern Blot of JP3 in mouse tissues [Taken from Nishi et al., 2003]. 

 

Knockout mouse models of JP3 showed impaired motor co-ordination but no other 

morphological abnormalities. In addition, normal hearing, emotional and learning abilities 

were observed [Nishi et al., 2003].  It was noted that the phenotype seen in these mice 

was, surprisingly, not as severe as the presentation of HDL2 in humans. Junctophilin-4 
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(JP4) may have similar functions as JP3 because JP4 was also shown to be expressed 

solely in the brain (Figure 1.14 G) and displayed co-localized expression with JP3 in 

mouse brains (Figure 1.14 A–F) [Nishi et al., 2003]. It has been proposed that JP4 may 

assist in carrying out JP3 functions in the knockout mouse models and that may be the 

reason for the phenotype in the knockout mice being less severe than that observed in 

HDL2 cases [Margolis et al., 2006].  

 

 
Figure 1.14: (A-F) Dark-field photographs showing similar expression patterns of JP3 and JP4 in 

adult mouse brains. (G) Northern blot of JP4 in mouse tissues [Taken from Nishi et al., 2003]. 

 

The mechanism of pathogenesis for HDL2 is unknown although a number of theories 

have been postulated. One theory explores the possibility that RNA foci are formed in 

the brains of HDL2 patients as in myotonic dystrophy type 1 (DM1) [Brook et al., 1992]. 

As in DM1, RNA containing repeat expansions form aggregations which are toxic to the 

cell.  In HDL2, it was proposed that an RNA gain of function mechanism contributes to 

the pathogenesis of the disease because no mutant protein was found in the 

intranuclear inclusion bodies. In addition, the pathogenic repeat may fall into an 

untranslated region possibly explaining why the aggregation of mutant protein is not 

solely responsible for the disease [Rudnicki et al., 2007].  

 

To investigate the possibility of RNA–gain of function mutation the authors first 

attempted to identify the JPH3 transcript in post-mortem brain using the Fluorescent in 

situ hybridisation (FISH) technique with probes specific to Exon 2A [Rudnicki et al., 
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2007]. Once the foci were identified, the composition of the foci was determined and was 

shown to contain RNA transcripts in which Exon 1 was present. Both these results 

showed negative reactions in post mortem HD brains. Further analysis showed that the 

foci may contain other splice variants. Secondly, all inclusions were in neurons with the 

inclusion in the striatum having a brighter appearance in dark-field microscopy than 

those in the frontal cortex indicating that the striatum may be more severely affected 

than the frontal cortex [Rudnicki et al., 2007].  

 

Another proposed mechanism suggests that the disease may be due to a loss of 

function. This theory is based on the fact that the phenotypes of knockout mouse models 

are not as severe as the disease in humans. Furthermore, it was hypothesised that an 

increase of alternative spliced transcript expression in affected individuals could 

decrease the expression of full length JPH3 thereby causing a more severe phenotype.   

 

1.7 Aims and objectives of the present study   

 

The primary aim of the present study was to identify the pathogenic mutation underlying 

dementia and movement disorders in a South African family of Mixed Ancestry. The 

investigation involved a clinical and molecular analysis of affected and unaffected, at-risk 

family members.  

 

Ultimately the identification of the disease-causing mutation in this family would provide 

the option of informed genetic counselling and pre-symptomatic genetic testing for at-risk 

family members. In the long term, the identification of this mutation may contribute to the 

understanding of the patho-physiology involved in this neurological disorder.  
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CHAPTER TWO: MATERIALS AND METHODS 

 

2.1 Study participants 

 

In the present study, a self-reported Mixed Ancestry family presenting with dementia and  

movement disorders of unknown aetiology was investigated. The proband (5657) 

presented at Tygerberg Hospital with severe dementia and a movement disorder. A 

subsequent review of his family history revealed that several family members spanning 

three generations had also displayed similar symptoms and had died of the disorder. 

Figure 2.1 depicts the pedigree of the family investigated (hereafter referred to as  

Family R). The pedigree was constructed based on data obtained from other unaffected 

family members, a close family friend as well as hospital records. 

  

Figure 2.1: Pedigree of the affected family, Family R. Genomic DNA was available for individuals 

5760, 5555, 5657, 6341,and 6188. The solid arrow indicates the proband, 5657 and the 

diamonds symbolise unknown gender. 
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Later, another family member (5760) was also identified with dementia and a movement 

disorder. A study was undertaken to identify the disease-causing mutation segregating in 

this family. In addition, two family members who had affected parents but were clinically 

unaffected at the time of this study (individuals 6341 and 6188, aged 35 and 36 years 

respectively) were also recruited. As indicated, most of the affected individuals are 

deceased hence no DNA was available for them. Due to the late age of onset of the 

symptoms, many of the fourth generation family members could not partake in this 

study, as they were too young and asymptomatic. For these reasons, DNA of only five 

family members was available (5555, 5657, 5760, 6188, and 6341). 

 

In 2006, a complete neurological examination was performed on the proband (5657) and 

his uncle (5760) (Table 2.1). This examination included a Mini-Mental State Examination  

(MMSE) which detects and measures the extent of dementia [Folstein et al., 1975]. 

Once corrected for age and the level of schooling, a MMSE score ranging from 20-26 

(out of 30) is indicative of mild dementia while scores between 10-19 indicates moderate 

dementia. An MMSE score of less than 10 signifies severe dementia [Crum et al., 1993]. 

An electroencephalogram (EEG) to detect problems in the electrical activity of the brain 

was also performed. Somatosensory evoked potentials (SEP) measured the electrical 

activity of the sensory cortex in response to peripheral sensory stimuli. Jerk-locked 

averaging (JLA) was performed, which measured the brain activity preceding brisk 

involuntary movements such as those observed in patients with myoclonus.  JLA in 

conjunction with SEP was used to classify this family’s movement disorder [Barrett, 

1992] Magnetic Resonance Imaging (MRI) was employed to detect any structural 

alterations in their brains. 

 

 According to Tygerberg Hospital’s medical records, another affected member (5555) 

had reported with similar symptoms in the period during 1993-1995 and had then been 

clinically examined. Unfortunately the examination was not as thorough as that of 

individuals 5657 or 5760. A summary of the clinical examination is reported (Table 2.1).  
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       Table 2.1: Summary of the neurological examination of affected individuals. 

Symptoms 5760  5555 5657 

Age of onset 48 years 25 years 39 years 

Year of examination 2006 1993-1995 2006 

Dementia 

 

Present Present Present 

MMSE1 14 ND 13 

Psychiatric symptoms 

 

Dementia only Echolalia 

Disinhibited 

Aggressive 

Hallucinations, 

paranoid 

delusions 

Reduced facial expression Yes No Yes 

Hyperreflexia No No Yes 

Increased tone 

 

Yes No Yes 

Bradykinesia Yes No Yes 

Postural tremor Yes (low 

amplitude) 

No Yes (prominent) 

Rest tremor No No Intermittent 

Cerebellar signs 

 

Within normal 

limits 

No Probably normal 

Abnormal posture Yes No Yes 

Chorea 

 

No Yes No 

EEG2 Normal ND Normal 

SEP3 Normal ND Enlarged 

JLA4 No cortical spike ND ND 

 

1) Mini-Mental State Examination (MMSE)  

2) Electroencephalogram (EEG)  

3) Somatosensory evoked potentials (SEP)  
4) Jerk-locked averaging ( JLA) 

        Not determined (ND) 
 

Ethical approval for this study was provided by the University of Stellenbosch, 

Committee for Human Research (reference number: N06/05/089). For Family R, 

informed consent (Appendix 1) was obtained to collect blood samples for the genetic 
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analysis. These samples were collected during the time in which the family members 

were examined at Tygerberg Hospital. 

 

Blood was also collected from a number of control individuals, representing the Mixed 

Ancestry, Caucasian and Black South African sub-populations. Samples from 60 

Caucasian individuals and 51 from each of the Black and Mixed Ancestry populations 

were obtained. 

 

2.2  Exclusion of known loci by the National Health Laboratory Service   

 

Prior to this study, the DNA of one affected individual had been analysed by the National 

Health Laboratory Service (NHLS -Groote Schuur Inherited Metabolic Diseases). This 

laboratory screened for mutations on the mitochondrial genome, which commonly cause 

MELAS, MERRF and Leigh’s Disease (Table 2.2). In addition, other known loci were 

screened by NHLS/University of Cape Town (UCT) Human Genetics Research Unit, 

(Institute of Infectious Disease and Molecular Medicine, University of Cape Town). 

These included the loci for Huntington’s disease (HD) and Spinocerebellar Ataxia (SCA) 

types 1, 2, 3, 6 and 7.   

 

Table 2.2: Known mutations causing neurodegenerative disorders.  

Disorder  Mutation 

Myoclonus Epilepsy and Ragged-Red Fibres (MERRF) A8344G 

Deletion 8356-8851 

Mitochondrial myopathy ,Encephalopathy, Lactic acidosis and 

Stroke-like episodes (MELAS) 

A3243G 

T3271C 

Leigh’s disease  G13513A 

G14459A 

T8993C 

T9176C 

Huntington’s disease (HD) Repeat expansion in the IT15 

gene 

Spinocerebellar Ataxia (SCA) Repeat expansions at the SCA 

types 1, 2, 3, 6 and 7 loci 
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These loci were all negative for mutations and hence excluded as the cause of the 

disorder in this family. 

 

2.3  Selection of candidate genes 

  

Several disorders are known to cause the symptoms that Family R presented with 

(Introduction: Section 1.6). These disorders were therefore likely candidates to screen 

for and are listed below (Table 2.3).  

  

Table 2.3: Candidate disorders selected to be screened and the symptoms involved in each 

disease. 

(1) Myoclonus Epilepsy and Ragged-Red Fibres (2) Mitochondrial myopathy, Encephalopathy, Lactic acidosis and Stroke-

like episodes (3) Ragged red fibres (4) Familial multisystem degeneration associated with parkinsonism (5) Gerstmann-

Straussler-Scheinker syndrome (6) Parkinson’s disease (7) Familial  Encephalopathy with Neuroserpin Inclusion Bodies 

(8) Spinocerebellar ataxias (9) Dentatorubral-Pallidoluysian Atrophy (10) Huntington’s disease (11) Huntington’s disease-

like 2  (*) symptom present 

 

As mentioned in Section 2.2 the common mutations associated with MELAS, MERRF, 

Leigh’s disease and five loci for SCA and HD were already excluded as being the 
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MERRF(1) 
 

* * * * * *  * * *   *  Lipomas; RRF(3) 

MELAS(2) 
 

*  * *  *  * * *  *   Lactic acidosis, 
stroke-like episodes 
;vomiting 

LHON 
VARIANT (4) 

 * * *       * *  * Ptosis 

PRION 
DISEASE 
(GSS)(5) 
 

* *  *           Hemiparesis; 
babinskis’sign; 
hallucinations  

PD(6)  * *  *          Parkinsonism 

 FENIB(7)  * *     *   * *   * Inclusion bodies in 
neurons  

DRPLA(9) 
 

* *  *       *  * *  
 

HDL2(11) * * * * *      *  *   
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mutations underlying the disorder in this family. Candidate genes were selected to be 

screened for pathogenic mutations on the likelihood of these genes being implicated in 

neurological diseases (Tables 2.4 A and B). The selected candidate genes were divided 

into mitochondrial (Table 2.4 A) and nuclear (Table 2.4 B) genes.  

 

Table 2.4 A: List of all mitochondrial genes selected as candidate genes to be screened. 

DM, Diabetes Mellitus; MECM, Mitochondrial Encephalocardiomyopthy; ME, Mitochondrial Encephalopathy; MM, 

MERRF/MELAS overlap 

Table 2.4 B: List of nuclear genes selected to be screened and associated diseases.   

Mitochondrial 

gene 

Coding for  Position on 

mitochondria 

 Associated Diseases 

MTTF  tRNA phenyl alanine 577-647 MM; MELAS; MERRF: Nephritis   

 

MTTL1  tRNA leucine 1 3230-3304 MM, MELAS, MERRF, Deafness, DM 

MTTI tRNA isoleucine 4263-4331 MM, MECM, 

MTTQ tRNA glutamine 4329-4400 MELAS 

MTTM tRNA methionine 4402-4469 MM, 

MTTK tRNA lysine 8295-8364 MERRF, ME 

MT-ATP8 ATP synthase 

subunit 

8366-8572  

MT-ND4  NADH de-

hydrogenase subunit  

10760-12137 Familial multisystem degeneration with 

Parkinsonism (LHON variant) 

MTTH tRNA histidine 12138-12206 MERRF, MELAS, cerebral oedema 

MTTS2  tRNA serine 2 12207-12265  

MTTL2 tRNA leucine 2 12266-12336 MM 

Gene  Chromosomal 

location  

Type of mutation Associated 

disorder  

Serpini1  

(PI12)  

3q26.1 S49P and S52R point mutations FENIB 

Atrophin1 

(ATN1) 

12p13 CAG repeat expansion in exon  DRPLA  

Parkin  

(PARK2)  

6q25.2-q27 Point mutations /deletions / 

exon rearrangements/ 

duplications/insertions 

Early onset PD 

Junctophilin-3 

(JPH3 )  

16q24.3 CTG/CAG repeat expansion in exon2 A  HDL2  
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2.4  DNA extraction  

 

All blood samples were collected in EDTA tubes and stored at 4ºC until further use. DNA 

was extracted from whole blood using a modified phenol/chloroform method by Mrs Ina 

Le Roux (MAGIC Lab, Tygerberg Campus, Stellenbosch University) [Corfield et al., 

1993] (Appendix 3). The method involves the separation of genomic DNA from cellular 

debris by a phenol/chloroform solution. All DNA samples were diluted to approximately 

200ng/µl and this was the working concentration for all subsequent reactions.  

 

2.5  Primer design 

 

The Human Mitochondrial DNA Revised Cambridge Reference Sequence (rCRS) 

[www.mitomap.org] was used as a reference sequence to design the six primer sets 

used to amplify the mitochondrial candidate genes (Table 2.5). In some cases, more 

than one gene could be screened with one set of PCR primers, for example, the MTTI; 

MTTQ and MTTM genes were amplified with one primer set. 

 

Primers were designed to amplify nine genes encoding mitochondrial tRNAs, the 

ATP8ase gene and a region of the MT-ND4 gene. These genes were selected for 

screening because they had all been previously noted to harbour mutations causing 

movement disorders and/or dementia. In some cases the primers amplified genes that 

were in close proximity to the selected regions. For this reason the MT- ATP8, MTTS2 

as well as regions of the MT-ND1 and MT-ND2 genes were also screened. Table 2.5 

summarises the details of the primer sets designed to amplify candidate genes, including 

their positions on the genome, the genes that were screened and the PCR conditions. 

 

Primers to amplify nuclear regions were designed based on the reference sequences in 

the NCBI database [www.ncbi.nlm.nih.gov]. The primers used in the PARK2 study were 

designed for another study in our laboratory. All 12 exons, including the promoter region, 

of the PARK2 gene were amplified using PCR primers that are listed in Table 2.6. Exon 

12 was too large to PCR-amplify with one set of primers so two primer sets (12 A and B) 

were designed to amplify this exon. The primers designed for the JPH3 study (Table 2.7) 

were based on reference sequences from ensembl database [www.ensembl.org]. 

 

http://www.mitomap.org/
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All primers (except those used in the PARK2 investigation) were designed using Primer3 

programme V.02 [http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi]. The primers 

were designed at least 30bp upstream and downstream to the 5’ and 3’ ends of target 

regions respectively.  

The only settings that were changed in Primer3 for the primer designing were:  

• Primer melting temperature (Tm):  

     Minimum 50ºC, Optimum 55ºC, Maximum 60ºC  

• Maximum Tm difference =10ºC 

• Primer GC%:  Minimum = 40ºC , Optimum = 50ºC, Maximum = 60ºC 

• Minimum primer length was set as 18bp and the maximum was 22bp 

 All the other parameters were used at the default settings.  

 

The melting point temperature of the primers (Tm) was manually calculated using the 

following formula:  

Tm = 4ºC (G+C) + 2ºC (A+T) 

The primer annealing temperature (Ta) of each primer set was calculated as 2ºC-5ºC 

less than the primer with the lower Tm. Primers were synthesized by Inqaba Biotechnical 

Industries (Pty) Ltd. Fluorescently-labelled primers were synthesized at the Synthetic 

DNA Laboratory (Department of Cellular and Molecular Biology, University of Cape 

Town, South Africa) using standard phosoramidite techniques with an Oligo 1000M DNA 

Synthesizer (Beckman Instruments Inc.). The fluorescent label, FAM-6, was covalently 

attached to the non-reactive 5’ end of the primers.

http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi
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Table 2.5: List of the primers designed for this study including PCR conditions. Mitochondrial primers are listed in blue and primers for nuclear 
genes are in black.   
 

Primer Set Sequence  Expected 
fragment size 

Gene Position  
on the gene 

Annealing 
Temperature (ºC) 

Additives  Labelled  

MTTF 
Forward 

 
Reverse 

 
AATACAACCCCCGCCCATC 

 
GGGGATGCTTGCATGTGTA 

 
222bp 

MTTF 486-505 
690-708 

 
55 

None  None  

MTTL1 
Forward 

 
Reverse 

 
GCCTTCCCCCGTAAATGATA 

 
CGTTCGGTAAGCATTAGG 

 
218bp 

Mt-ND1 
partially 

3163-3182 
3363-3381 

 

 
52 

None  None  

MTTI, Q, M 
Forward 

 
Reverse 

 
GATTCCGCTACGACCAACTC 

 
GCTTAGCGCTGTGATGAGTG 

 
397bp 

MTTI,MTTQ 
MTTM Q 

MT-ND2 ( partially) 

4142-4161 
4519-4538 

 
60 

None  None  

MT-ND4 
Forward 

 
Reverse 

 
CACGGGCTTACATCCTCATT 

 
GGAGAACGTGGTTACTAGCACA 

 
207bp 

MT-ND4 
(partially) 

11714-11733 
11898-11920 

 
60 

None  None  

MTTH, S2, L2 
Forward 

 
Reverse 

 
ACACCTATCCCCCATTCTCC 

 
AACGAGGGTGGTAAGGATGG 

 
333bp 

MTTH, 
MTTS2, 
MTTL2 

12076-12095 
12389-12408 

 
58 

None  None  

MTTK, MT-ATP8 
Forward 

 
Reverse 

 
ATGCCCATCGTCCTAGAATC 

 
TTTGGAGGTGGGGATCAATA 

 
428bp 

MT-Atp8 ase 8204-8222 
8612-8631 

 
55 

None  None  

PI 12 
Forward 

 
Reverse 

 
CCTCCCAACATATCCTTCCA 

 
GGGTTTCCTAATCCTTCTAGCC 

 
 

491bp 

SERPINI1 53301-53320 
 
 

53770-53791 

 
58 

None  None  

DRPLA rpt 

Forward 

Reverse 

 

CCTCTTAGCCAACAGCAATG 

AGACATGGCGTAAGGGTGTG 

 
~250 bp- 350bp 

CAG repeat in  
Atrophin1  

 

1586-1606 
 

1817-1836 

 
58 

None  6-FAM 

HDL2 

Forward 

 

Reverse 

 

 
GGAATCTCGTCTTTCAGTGG 

 
TGAGGAGTGGATATCGGAGAG 

 
~250-300bp  

CTG/CAG repeat in 
Junctophilin-3  

1274-1294 
 
 
 

1496-1516 

 
58 

DMSO 6-FAM 

42 
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Table 2.6: Primers and PCR conditions for the screening of the PARK2 gene.  
 
 
Region   Forward primer  Reverse primer   Annealing 

temp (ºC) 
Product size 
(bp)  

Additives  

PROMOTER 
 

ATCCAGATGTTTGGCAGCTC CGGCTCTCCTGGGTTAAATC 55 351 Formamide 

EXON 1 
 

GAACTACGACTCCCAGCAG CCCGTCATTGACAGTTGG 55 300 Formamide  

EXON 2  
 

CACCATTTAAGGGCTTCGAG TCAGGCATGAATGTCAGATTG 55 313 None  

EXON 3  
 

TCTCGCATTTCATGTTTGACA GCAGACTGCACTAAACAAACA 55 364 None  

EXON 4 
 

GCTTTAAAGAGTTTCTTGTC TTTCTTTTCAAAGACGGGTGA 55 299 None 

EXON 5  
 

GGAAACATGTCTTAAGGAGT TTCCTGGCAAACAGTGAAGA 55 223 None 

EXON 6  
 

CCAAAGAGATTGTTTACTGTG GGGGGAGTGATGCTATTTTT 55 280 None 

EXON 7  
 

CCTCCAGGATTACAGAAATTG GTTCTTCTGTTCTTCATTAGC 55 232 None 

EXON 8  
 

GGCAACACTGGCAGTTGATA GGGGAGCCCAAACTGTCT 55 232 None 

EXON 9  
 

TCCCATGCACTGTAGCTCCT CCAGCCCATGTGCAAAAGC 55 297 None 

EXON 10  
 

CAAGCCAGAGGAATGAATAT GGAACTCTCCATGACCTCCA 55 272 None 

EXON 11 
 

CCGACGTACAGGGAACATAAA GGCACCTTCAGACAGCATCT 55 300 None 

EXON 12A 
 

TCTAGGCTAGCGTGCTGGTT GCGTGTGTGTGTGTGTTTGA 55 296 Formamide  

EXON 12B 
 

ACATCCTGGGGGAGCATAC GCTCTGCTGTCTTGTGTGGA 55 237 None  

 
 

43 
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Table 2.7: Primers and PCR conditions used in the analysis of mRNA. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

*ND: Not determined 
gDNA: Genomic DNA  

Primer Set Sequence  Expected 
fragment size 

Gene Annealing 
Temperature 

(ºC) 

Additives  

HBB  

Forward  

Reverse 

 

ACACAACTGTGTTCACTAGC 

ACCGAGCACTTTCTTGCCAT 
 

 
(mRNA) 248bp 
(gDNA) 377bp 

 
β-Haemoglobin 

 
 

55 

 
 

None 

JPH3 Full length set A 

Forward 

Reverse 

 
TACTCGGACGGAGGGACC 
 
GGTACTCCAGCCCGTTTTC 

 
928bp 

 
Exon 2-3 JPH3  

 
 

ND* 

 
None 

JPH3 Full length set B 

Forward 

Reverse 

 
AAGTCCAGTACGGGCTCAG 
 
CCACTTTCTAAGCTCGTGTC 

 
530bp 

 
Exon 4-5 

JPH3 
(partially) 

 
 

56 

 
None 

JPH3 Alternatively spliced 

Forward 

Reverse 

 
CTACTCGGACGGAGATGC 
 
AGGAGTGGATATCGGAGAGT 
 

 
181bp 

 
Alternatively 
spliced JPH3 

mRNA 

 
 

56 

 
None 

44 
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2.6  DNA quantification 

 

DNA and primers were quantified and analysed using the NanoDrop® ND 1000 –UV-Vis 

Spectrophotometer (NanoDrop Technologies, Inc. USA) according to manufacturer’s 

instructions. The NanoDrop® employed UV/VIS spectrophotometry to accurately 

determine nucleic acid concentration in a sample which is recorded in ng/ul. It also 

measured the purity and quality of a nucleic acid sample by measuring the ratio of 

absorbance at 260nm and 280nm. The 260/280 ratio for good quality, purified DNA is 

~1.8. A deviation in this ratio is normally indicative of contaminants, such as salts or 

phenol, in a sample.    

[www.nanodrop.com/techsupport/nd-1000-users-manual.pdf] 

 

2.7  Polymerase chain reaction  

 

PCR amplification was performed in a standard reaction mixture of 50µl on a 

GeneAmp® PCR system 2720 Thermal (Applied Biosystems). Each PCR reaction 

contained 0.1µg template DNA; 20pmol of each primer; 2.5mM (0.05mM of each) dNTP 

(dATP; dTTP; dCTP; dGTP) (Bioline  Ltd, London, UK), 0.1 Units (U) BIOTAQ™ DNA 

Polymerase (Bioline Ltd, UK); 1XNH4 Buffer (Bioline Ltd, London, UK);1.5mM MgCl2 and  

Sterile Injection water (Fresenius Kabi) to a final volume of 50µl.  

 

In some cases (Tables 2.5, 2.6 and 2.7), additives such as Dimethyl sulphoxide (DMSO) 

or formamide were used to facilitate the amplification process. In such cases 5% of the 

final volume contained the respective additive. 

 

The PCR cycling regime was as follows:  

An initial denaturing step of 94°C for five minutes followed by 35 cycles of denaturation 

at 94°C for 30 seconds, varying annealing temperature (Table 2.5, 2.6 and 2.7) for 30 

seconds and extension at 72°C for 45 seconds. The 35 cycles was followed by a final 

extension step of 72°C for 5 minutes. 

 

For colony PCR, sterile techniques were used to pick single colonies as template DNA. 

The initial denaturing step was extended to ten minutes to ensure that the colonies 
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would burst and release the DNA. Thereafter, PCR amplification was performed as 

described above. All PCR products were stored at 4°C until further use. 

 

2.8  Gel electrophoresis 

 

All PCR products and DNA was visualised using agarose gel electrophoresis. Gels were 

made up to 2% (w/v) by dissolving 1g of agarose (Whitehead Scientific, South Africa) in 

50ml of 1X Sodium Borate (SB) buffer (Appendix 2) at a high temperature. Once the 

solution had cooled down, 5µl of 1µg/µl Ethidium Bromide was added to the solution. 

Ethidium bromide binds to DNA molecules and allows the DNA to be visualised under 

ultra violet (UV) light. Ethidium bromide is a carcinogen and should be used with caution. 

Later in the study, SYBR Green I Nucleic Acid Gel Stain® (Roche Applied Sciences) 

was used according to manufacturer’s specifications, to replace the use of Ethidium 

bromide. SYBR Green I Nucleic Acid Gel Stain® serves the same purpose as Ethidium 

bromide but is not thought to be carcinogenic and thus minimised the risk of danger to 

the user.  

 

Prior to loading a sample onto a gel, 1µl of Bromophenol Blue (Appendix 2) loading dye 

was added to 8µl of each sample. In all cases 2µl of 100bp DNA ladder (Promega, USA) 

was co-electrophoresed with the samples on the gel as a size standard. 

  

The samples were resolved by electrophoresis at 250 volts (V) for 10-20 minutes in 

1XSB running buffer. The samples were viewed under UV illumination (Transilluminator 

model LMS-26E, USA) and photographed using a Sony graphic system UP-860CE 

(Sony Corporation, Japan).  

 

2.9  Purification of PCR products 

 

In some cases PCR products were purified for downstream processes. For sequencing, 

DNA was purified using Exonuclease I (USB Corporation, USA) and Shrimp Alkaline 

Phosphatase (Roche Applied biosciences) according to manufacturer’s instructions. 5U 

of Shrimp Alkaline Phosphatase and 5U of Exonuclease I was added to 8µl of PCR 
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product. The mixture was then incubated at 37ºC for 15 minutes followed by 80ºC for 15 

minutes to deactivate the enzymes.  

 

The concentration and purity of the PCR products were checked using the Nanodrop® 

according to manufacturer’s specifications. The samples were then diluted down to the 

desired concentration using sterile distilled water. 

 

For cloning purposes the appropriate DNA fragment was excised from an agarose gel 

using a sterile scalpel and placed in a sterile Eppendorf tube. The fragment was then 

purified using the GFX™ PCR DNA and gel band purification kit (Amersham Pharmacia 

Biotech, New Jersey, USA) according to manufacturer’s instructions.    

 

2.10  Direct sequencing 

 

Automated direct sequencing [Mattocks et al., 2000] was performed using the BigDye 

Terminator Sequence Ready Reaction kit version3.1 (Applied Biosystems, USA) and 

resolved on an ABI 3130X ® Genetic Analyzer (Applied Biosystems, USA). The primers 

used for sequencing were diluted to 1.1µM and the PCR products were diluted to 

20ng/µl. The sequencing data was analysed using BioEdit version 7.0.5 software 

[www.mbio.ncsu.edu/BioEdit/page2.html].  

 
2.11  Genotyping on an ABI 3130xl® Genetic Analyzer  

 

For parts of this study, fluorescently labelled primers were used for automated 

genotyping of samples on the ABI Prism 3130XF® Genetic Analyzer (Applied 

Biosystems, USA). GeneScan-500 LIZ size standard was used as a size marker, which 

can determine fragments of 75- 500bp in size. The data was analysed using 

GeneMapper ® V3.7 software (Applied Biosystems, USA). The software sizes the peaks 

based on the internal size standard and analyses the peaks based on user-defined 

parameters.  

 

 

 

 

http://www.mbio.ncsu.edu/BioEdit/page2.html
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2.12  Single Strand Conformational Polymorphism (SSCP) Analysis  

 

Single Strand Conformational Polymorphism (SSCP) Analysis [Orita et al., 1989] was 

used as a mutation detection method for screening the PARK2 gene. The method 

involves separating double stranded DNA and then rapidly cooling it so that the single 

stranded DNA form secondary structures to create a unique banding pattern when 

subjected to electrophoresis on a polyacrylamide gel (Appendix 4). The gel is then silver 

stained [Gottlieb and Chavko, 1987] (Appendix 5) in order to detect the bands formed by 

DNA. Changes in the DNA sequence will then be seen as a shift in the banding pattern. 

 

Certain conditions may be altered in order to obtain optimal results. In this study, one 

such optimisation was employed by varying the percentage of polyacrylamide and urea 

in the gel (Appendix 4). The samples were run on both 8% and 10% polyacrylamide gels 

at 4ºC, 70 Watts overnight on an ‘in-house” manufactured electrophoresis system. 

Samples in which a shift was observed were sequenced to determine the exact 

sequence variation.  

 

2.13  Genetic ancestry testing  

 

Genetic Ancestry testing was performed by the MRC/NHLS/WITS Human Genomic 

Diversity and Disease Research Unit (HGDDRU) Johannesburg, South Africa. The 

method uses Y–chromosome analysis to determine the paternal lineage and sequencing 

of regions in the mitochondrial genome to resolve the maternal lineage of the individual.  

 

Family R member, 5760, was used in this study as a representative of the family. The 

detection of various single nucleotide polymorphisms (SNPs) and short tandem repeats 

(STRs) on the Y-chromosome created a haplogroup for the individual. The resolved 

haplogroup was compared against a database containing 42000 males worldwide 

[www.yhrd.org/index.html].  

 

Sequencing of regions of the mitochondrial genome resolved the maternal haplotype for 

5760. This profile was compared to 33 haplogroups recognized world wide and then 

grouped to a particular sub-haplogroup.   
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2.14  Cloning and transformation 

 

Following DNA quantification, purified PCR products were cloned into the pGEM®-T 

Easy cloning vector using the pGEM®-T Easy Vector Systems cloning kit (Promega, 

USA) as specified by the manufacturer’s instructions. Three ligation reactions were set 

up in which 1:1, 1:3 and 1:5 vector to PCR product ratios were used.  

 

Competent E. coli DH5α cells were prepared using the method described by Sambrook 

and Russell (Appendix 6) [Sambrook and Russell, 2001]. 3µl-5µl Of the respective 

ligation reactions were used to transform 200µl of thawed competent cells via heat 

shocking. This process entailed incubating tubes containing the cells and the ligation 

mixture on ice for 20-30 minutes. The mixtures were then placed at 42ºC for 45 seconds 

only, followed by incubation at room temperature for 2 minutes. 2ml Luria Bertani Broth 

(Appendix 2) was added to the cells and the cells were incubated on a shaker at 37ºC 

for 60 minutes. Thereafter, 200µl of this mixture was plated onto Luria Bertani (LB)agar 

(Appendix 2) containing 15mM Isopropyl-beta-D-thiogalactopyranoside (ITPG), 100µg/ml 

ampicillin and 5mg/ml 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-GAL). 

The plates were then incubated overnight at 37°C. 

 

The following day, a number of blue and white single colonies were picked and placed 

into separate sterile 15ml Falcon tubes containing 5ml LB broth. These tubes were 

incubated at 37ºC on a shaker overnight to allow cells to express the vector. The 

following day the tubes were spun down at 15000rpm and the supernatant was 

removed. The isolation of plasmid DNA from the cells was attained using GeneJET™ 

Plasmid Miniprep Kit (Fermentas Life Sciences, UK) according to manufacturer’s 

instructions. The plasmids were subjected to colony PCR, with insert specific primers 

followed by direct sequencing to determine whether they contained the correct insert. 

 

2.15  Lymphocyte separation and transformation  

 

Lymphocytes were cultured by Mrs Ina Le Roux using an “in-house” method. Blood of 

two affected family members were collected in heparin tubes. Heparin tubes prevent the 

coagulation of blood by inhibiting thrombin in the coagulation cascade. Lymphocytes 

were isolated from the whole blood and transformed (immortalised) to provide a 
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permanent source of DNA and RNA of the patients. This was achieved by initiating 

transformations of lymphocytes, with Epstein-Barr virus infection using an optimised 

protocol (Appendix 7). The cell pellet was then spun down and stored at -20ºC until 

further use.  

 

2.16 RNA isolation and cDNA synthesis  

 

RNA was isolated from the patients’ transformed lymphocytes using TRIzol ® reagent 

(Invitrogen Life Technologies) in a modified protocol (Appendix 8) [Chomczynski and 

Sacchi,  1987]. In addition, RNA from 21 pooled foetal brains was purchased (Clonetech, 

USA). The foetuses had spontaneously aborted at 26-40 weeks and the RNA was 

extracted from fresh brain tissue. The purity of foetal brain RNA was analysed and both 

the 260/280 and the 28S/18S ratios showed that the RNA was of good standard (Figure 

2.2). Generally a ratio of 1.8 is considered good quality.   

 

 
Figure 2.2: Electropherogram indicating the qualitative analysis of the purchased foetal brain 

RNA.  

The quality and quantity of the lymphocyte RNA was appraised by automated 

electrophoresis on the Experion™ Automated Electrophoresis System using RNA 

StdSens Analysis Kit (Bio-Rad Laboratories Inc) according to manufacturer’s 

instructions. The kit employs the use of LabChip microfluidic technology to detect, 

quantify and analyse the quality of RNA. To ensure that the isolated RNA was free of 

genomic DNA, the samples were treated with TURBO DNA-Free ™ kit (Ambion) 

according to manufacturer’s instructions. Furthermore, the QuantiTect® Reverse 

18S 
28S 
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Transcription Kit (Qiagen) also contained a genomic DNA removal buffer which was 

used according to manufacturer’s instructions.  

 

After the successful removal of the majority of genomic DNA contaminants, cDNA 

synthesis of lymphocyte and foetal brain RNA was carried out as using the QuantiTect® 

Reverse Transcription Kit according to manufacturer’s instructions. The kit provides a 

mixture of polyA and random oligos that anneals to a number of places on the RNA. The 

RNA –dependent polymerase then transcribes the first strand of cDNA which is an exact 

copy of the RNA (Figure 2.3). 

 
 

Figure 2.3 Steps of 1st strand cDNA synthesis using polyA oligos [Adapted from 

www.qiagen.com].  

 

The viability and purity of cDNA was evaluated by PCR with mRNA specific primers 

designed to amplify the Beta Haemoglobin gene (HBB). The HBB gene was used as a 

housekeeping gene for subsequent reactions. The primers were designed to amplify 

both genomic and mRNA HBB transcripts. However, in genomic DNA the primers 

produced a fragment of 377bp whereas in cDNA an amplicon of 248bp was produced 

(Figure 2.4). This further allowed isolated cDNA to be checked for genomic DNA 

contamination. 
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1 ACATTTGCTT CTG ACACAAC TGTGTTCACT AGC AACCTCA AACAGACACC ATGGTGCATC 

       61 TGACTCCTGA GGAGAAGTCT GCCGTTACTG CCCTGTGGGG CAAGGTGAAC GTGGATGAAG 
      121 TTGGTGGTGA GGCCCTGGGC AGGCTGCTGG TGGTCTACCC TTGGACCCAG AGGTTCTTTG 
      181 AGTCCTTTGG GGATCTGTCC ACTCCTGATG CTGTTATGGG CAACCCTAAG GTGAAGGCTC 
      241 ATGGCAAGAA AGTGCTCGGT GCCTTTAGTG ATGGCCTGGC TCACCTGGAC AACCTCAAGG 
      301 GCACCTTTGC CACACTGAGT GAGCTGCACT GTGACAAGCT GCACGTGGAT CCTGAGAACT 
      361 TCAGGCTCCT GGGCAACGTG CTGGTCTGTG TGCTGGCCCA TCACTTTGGC AAAGAATTCA 
      421 CCCCACCAGT GCAGGCTGCC TATCAGAAAG TGGTGGCTGG TGTGGCTAAT GCCCTGGCCC 
      481 ACAAGTATCA CTAAGCTCGC TTTCTTGCTG TCCAATTTCT ATTAAAGGTT CCTTTGTTCC 
      541 CTAAGTCCAA CTACTAAACT GGGGGATATT ATGAAGGGCC TTGAGCATCT GGATTCTGCC 
      601 TAATAAAAAA CATTTATTTT CATTGC 
 
       1  ACATTTGCTT CTGACACAAC TGTGTTCACT AGCAACCTCA AACAGACACC ATGGTGCATC 
       61 TGACTCCTGA GGAGAAGTCT GCCGTTACTG CCCTGTGGGG CAAGGTGAAC GTGGATGAAG 
      121 TTGGTGGTGA GGCCCTGGGC AGgttggtat caaggttaca agacaggttt aaggagacca 
      181 atagaaactg ggcatgtgga gacagagaag actcttgggt ttctgatagg cactgactct 
      241 ctctgcctat tggtctattt tcccaccctt agGCTGCTGG TGGTCTACCC TTGGACCCAG 
      301 AGGTTCTTTG AGTCCTTTGG GGATCTGTCC ACTCCTGATG CTGTTATGGG CAACCCTAAG 
      361 GTGAAGGCTC ATGGCAAGAA AGTGCTCGGT GCCTTTAGTG ATGGCCTGGC TCACCTGGAC 
      421 AACCTCAAGG GCACCTTTGC CACACTGAGT GAGCTGCACT GTGACAAGCT GCACGTGGAT 
      481 CCTGAGAACT TCAGGgtgag tctatgggac gcttgatgtt ttctttcccc ttcttttcta 
      541 tggttaagtt catgtcatag gaaggggata agtaacaggg tacagtttag aatgggaaac 
      601 agacgaatga ttgcatcagt gtggaagtct caggatcgtt ttagtttctt ttatttgctg 
      661 ttcataacaa ttgttttctt ttgtttaatt cttgctttct ttttttttct tctccgcaat 
      721 ttttactatt atacttaatg ccttaacatt gtgtataaca aaaggaaata tctctgagat 
      781 acattaagta acttaaaaaa aaactttaca cagtctgcct agtacattac tatttggaat 
      841 atatgtgtgc ttatttgcat attcataatc tccctacttt attttctttt atttttaatt 
      901 gatacataat cattatacat atttatgggt taaagtgtaa tgttttaata tgtgtacaca 
      961 tattgaccaa atcagggtaa ttttgcattt gtaattttaa aaaatgcttt cttcttttaa 
     1021 tatacttttt tgtttatctt atttctaata ctttccctaa tctctttctt tcagggcaat 
     1081 aatgatacaa tgtatcatgc ctctttgcac cattctaaag aataacagtg ataatttctg 
     1141 ggttaaggca atagcaatat ctctgcatat aaatatttct gcatataaat tgtaactgat 
     1201 gtaagaggtt tcatattgct aatagcagct acaatccagc taccattctg cttttatttt 
     1261 atggttggga taaggctgga ttattctgag tccaagctag gcccttttgc taatcatgtt 
     1321 catacctctt atcttcctcc cacagCTCCT GGGCAACGTG CTGGTCTGTG TGCTGGCCCA 
     1381 TCACTTTGGC AAAGAATTCA CCCCACCAGT GCAGGCTGCC TATCAGAAAG TGGTGGCTGG 
     1441 TGTGGCTAAT GCCCTGGCCC ACAAGTATCA CTAAGCTCGC TTTCTTGCTG TCCAATTTCT 
     1501 ATTAAAGGTT CCTTTGTTCC CTAAGTCCAA CTACTAAACT GGGGGATATT ATGAAGGGCC 
     1561 TTGAGCATCT GGATTCTGCC TAATAAAAAA CATTTATTTT CATTGC 
 

 Figure 2.4: Position of HBB primers on mRNA (A) and on genomic DNA (B) producing 

differently sized products (Black arrows indicate the positions and orientation of the primers). (A) 

Each exon is in a different colour. (B) Exons are in uppercase, while introns are in black 

lowercase.  

 

2.17  Sequence alignments  

 

Alignments were carried out using the Multiple Sequence Alignment programme by 

ClustalW [http://align.genome.jp] under the default settings. Alignments between two 

sequences were also performed using the BLAST (bl2seq) tool on the NCBI database 

[http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi] with the “filter” tool disabled which 

allows for repeats to be aligned. Input sequences were obtained from either the 

NCBI GenBank [http://www.ncbi.nlm.nih.gov/Genbank/] or Ensembl databases 

[http://www.ensembl.org/index.html] and are listed in Table 2.8. 

(A)  

(B) 

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi
http://www.ncbi.nlm.nih.gov/Genbank/
http://www.ensembl.org/index.html
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Table 2.8: List of all sequences and accession numbers used in the analysis of the JPH3 gene. 

Description Sequence ID Accession number Database 

Contig from foetal brain cDNA U80757.1 GI: 2565083 
 

dbEST 

Contig from retinoblastoma BE779067.1 GI: 10200265 
 

dbEST 

Contig from lung carcinoid BE042890.1 GI:8359943 
 

dbEST 

Genomic DNA sequence of human 

JPH3 gene  

NC_000016.8   GI:51511732 
 

GenBank 

mRNA of full length JPH3  in 

humans 

NM_020655.2   GI:21704282), GenBank 

Protein of full length JPH3 

transcript in humans 

 

 

ENSP00000284262   ensembl 

mRNA of alternatively spliced  
JPH3 gene in human  
 

 ENST00000301008 ensembl 

Protein sequence of alternatively 

spliced  JPH3 in humans 

ENSP00000301008 ENSP00000301008 ensembl 

Genomic sequence of Mus 

musculus  

Junctophilin-3 gene (mouse JP3) 

NC_000074.5    
GI:149361523 
 

GenBank 

Junctophilin-3 (JP3), mRNA 

sequence of mouse JP3 gene  

NM_020605.2   GI:118130503 

 

GenBank  

Protein sequence of mouse JP3  NP_065630.1   GI:10181142 GenBank 

Genomic sequence of JPH3 in Pan 

troglodytes (Chimpanzee) 

 ENSPTRG00000008447 ensembl 

mRNA sequence of the full length 

JPH3 gene of Chimpanzee   

 ENSPTRT00000015560 ensembl 

Protein sequence of the full length 

JPH3 gene of Chimpanzee   

 ENSPTRP00000053372 ensembl 

mRNA sequence of alternative 

spliced JPH3 in chimpanzee  

 ENSPTRT00000060083  ensembl 

Protein sequence of alternative 

spliced JPH3 in chimpanzee 

 ENSPTRP00000053371 ensembl 
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2 .18  Statistical analysis  

 

Statistical analysis was performed in consultation with Dr. Lize van der Merwe 

(Biostatistics Unit, Medical Research Council of South Africa). Statistical tests from 

packages of the open-source programming environment R (R development core team) 

were used. The non-parametric Kolmogorov-Smirnov test [www.R-project.org] and 

Fishers’ test was used to analyse the repeat distributions in the population studies. 

Furthermore, the binomial distribution test was used to appraise the probability of 

maternal inheritance in the analysis of the pedigree. The observed heterozygosity was 

calculated as:                              Number of heterozygotes 

Number of individuals  
 

2.19  Real-time PCR on LightCycler® 1.5 Instrument   

 

In conjunction with conventional PCR, real-time PCR on the LightCycler® 1.5 Instrument 

(Roche Applied Sciences, Germany) was used to amplify regions of the HBB and JPH3 

genes from foetal brain and lymphocyte cDNA. Real-time PCR is recognised as a much 

more sensitive and rapid PCR process than conventional PCR and Ethidium Bromide 

staining. It produces results in real time (as the amplification process is happening). The 

method uses a fluorescent dye, in this case SYBR Green I, which integrates into double 

stranded DNA as the amplicons are formed and gives off a fluorescent signal that is 

detected by the instrument during the extension step of each cycle. The 

LightCycler®FastStart DNA Master PLUS SYBR Green I kit (Roche Applied Sciences) was 

used to prepare the PCR reactions according to manufacturer’s instructions. Real-time 

PCR was attempted for the amplification of foetal and lymphocyte cDNA and was used 

as a qualitative and quantative means to determine whether the transcript could be 

detected in both tissues. LightCycler Software 4.0 was used for the analysis of the 

results.  A melt curve analysis was also performed on the samples. For melt curve 

analysis the reaction is slowly heated to 95ºC which causes double stranded amplicons 

to separate and the dye to be released. A rapid decrease in fluorescence is recorded by 

the software which then creates a characteristic curve for a particular sequence. The 

melt curve analysis is used to detect any non-specific products in the reaction as each 

product has a unique curve. 
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CHAPTER THREE: RESULTS 

 

This section is divided into two sub-sections. The first part deals with identifying the 

genetic cause of the disease in the family. The second section reports the results of the 

analysis of the HDL2 locus. 

 

Section A: Investigation of the causative mutation 

 

3.1 Pedigree analysis  

 

Statistical analysis of the pedigree (Figure 2.1) indicated that there was a strong 

possibility that this disease could have a maternal pattern of inheritance. It was therefore 

hypothesised that the disease might be due to a mutation on the mitochondrial genome. 

A statistical analysis using a binomial distribution calculation showed that there was a 

1:400 probability that this disorder was maternally linked. 

 

Generally the symptoms displayed by affected family members were severe, progressive 

dementia and movement disorders. A neurological examination of 5657, 5760 and 5555 

was performed. It was determined that 5657 and 5760 shared similar mental states but 

their respective movement disorders differed. The proband, 5657, had cortical 

myoclonus while his uncle, 5760, had predominantly parkinsonian features. Individual 

5555 had prominent chorea on examination but none of the other features were 

reported.  

 

3.2  Investigation of mitochondrial candidate genes  

 

Due the potentially maternal bias of the disease segregation in Family R, several 

mitochondrial genes were selected as candidate genes to screen. A literature search on 

the mitochondrial genome showed that there were many mutations in this genome that 

could be the cause of dementia and a movement disorder. Most of the mitochondrial 

mutations associated with dementia occur in genes that encode transfer RNAs (tRNA). 

For this reason several mitochondrial genes were selected (Table 2.4 A, page 39) to be 

screened for known or novel mutations. 
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The amplification of selected regions of the mitochondrial genome was successful for all 

study participants. A fragment of the expected size was produced for each primer set 

(Figure 3.1). 

 

 
Figure 3.1: A 2% agarose gel representing the electrophoresis of PCR products yielded from the 

6 sets of primers used to amplify selected regions of the mitochondrial genome. In many cases 

more than one gene was amplified with one set of primers. (Lane 1: MTTK and MT-ATP8ase, 

lane 2:  MTTI; MTTQ and MTTM, lane 3:  MTTH; MTTS2 and MTTL2, lane 4: MTTF, lane 5:  

MTTL1 and lane 6: MT-ND4) .The lane marked M contains a 100bp ladder with the sizes 

indicated by the red arrows. The lane marked C represents a 450bp fragment as an additional 

sizing control.  

 

Initially, the PCR products of two affected individuals namely, 5657 and 5760 were 

sequenced to screen for possible pathogenic mutations. The mitochondrial genome is 

highly polymorphic and the sequence varies widely between different ethnic groups. For 

this reason DNA of an ethnically matched unaffected individual was sequenced as a wild 

type (WT control). The Human Mitochondrial DNA Revised Cambridge Reference 

Sequence (rCRS) [www.mitomap.org] was used as the reference sequence.   

 

When performing the sequence analysis of these family members, the WT control and 

the rCRS , five sequence variants in the MTTF, MT-ND1, MTTI and MT-ND2 genes were 

identified. To confirm whether these variants were indeed disease-causing they would 

have to segregate in all affected individuals and be absent in unaffected family 

members. For this reason the PCR products produced by primer sets MTTF and MTTI 

500bp 
400bp 
300bp 
200bp 

M        C             1            2        3         4          5           6    

http://www.mitomap.org/
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were sequenced in additional family members. Figures 3.2-3.6 represents the 

sequencing of the variants found in the PCR products. 

 

(A) Wild type control 

  
 

(B) 5657 

  
 

Figure 3.2: Represents a section of the chromatograph produced by the sequencing of the MTTI, 

MTTQ, MTTM and MT-ND1 genes. The solid red arrow indicates a homoplasmic G to A change 

in the sequence. This position corresponds to the position 4206 in the MT-ND1 gene on the 

mitochondrial genome. (A) WT control and (B) an affected family member (5657) of Family R. 

 

(A) Wild type control 

 

(B) 5657 

 

 

Figure 3.3: Chromatographs depicting the homoplasmic T to C change in the sequence 

(indicated by the solid red arrows). This corresponds to the position 4232 on the mitochondrial 

genome, which is in the MT-ND1 gene. (A) WT control and (B) member 5657 of Family R. 
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(A) Wild type control  

 
(B) 5657 

 

 

Figure 3.4: Chromatographs depicting the homoplasmic C to T change in the sequence 

(indicated by the solid red arrows). This corresponds to the position 4312 on the mitochondrial 

genome which is in the MT-TI gene. (A) WT control and (B) member 5657 of Family R. 

 

 

(A) Wild type control 

  

(B) 5657 

 

 

 Figure 3.5: Chromatographs depicting the homoplasmic C to T change in the sequence 

(indicated by the solid red arrows). This change corresponds to the position 4505 on the 

mitochondrial genome which is in the MT-ND2 gene. (A) WT control and (B) member 5657 of 

Family R.  
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(A) Wild type control  

 

(B) 5657: Forward primer sequence  

 

 

(C) 5657: Reverse primer sequence 

 

 

Figure 3.6: Results obtained from automated sequencing displaying the heteroplasmic polyC 

tract at position 568 which is in the control region on the mitochondrial genome (indicated by the 

solid red arrows). (A) The polyC tract in the WT control consisting of 6C’s. (B) The polyC tract in 

member 5657 of Family R where the polyC tract had expanded and was heteroplasmic. (C) The 

same polyC tract of 5657 sequenced with the reverse primer and reverse complemented using 

the programme BioEdit. 

 

From this investigation three novel variants were determined at positions 4206, 4232 

and 4505 on the mitochondrial genome.  These variants were deposited in the Mitomap 

database [www.mitomap.org] under the reference numbers listed in Table 3.1. The other 

two variants were known variants and have not been associated with disease. All the 

sequence variants are unlikely to be pathogenic because these variants have not 
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previously been associated with the symptoms observed in this family. Furthermore, 

mitochondrial DNA is highly variable and prone to polymorphisms due to the high rate of 

replication, the absence of protective histones and exposure to reactive oxygen 

molecules that cause oxidative damage. It would therefore be difficult to prove the 

pathogenicity of the novel variants. The variant observed at position 4206 occurred only 

in the WT control. No sequence variants were determined for any of the other candidate 

genes investigated. Furthermore the G11778A mutation in the MT-ND4 gene, causing 

Leber’s Hereditary Optic Neuropathy (LHON) was not found in any of the affected family 

members. 

 

In summary, this investigation indicated that it was unlikely that these mitochondrial 

genes were the cause for disease in this family.   
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Table 3.1:  A list of sequence variants observed in comparison with the rCRS and WT control sequence. 

 
*rCRS: the Human Mitochondrial DNA Revised Cambridge Reference Sequence.  
** The variant at position 568 is an expanded polycytosine tract in a non-coding region. The polyC tract is unstable and can therefore not be accurately counted. 
***The accession numbers of the variants as provided by the Mitomap database.  
ND, not determined. 
4206 Change in the control. 
4312 Change was in a non-coding region. 

 

 

 

Position on 
mitochondrial 

genome 

Gene 
symbol 

rCRS* WT 
control 

5657 5760 5555  6188 6341 Homoplasmic Synonymous/ 
Non-

synonymous 

Amino acid 
changes 

Known/ 
Novel 

Reference: 

568** MT-TF 6C’s 6C’s ND ND ND ND ND No NA NA Known Sternberg et al., 
2001 

4206 MT-
ND1 

A G A A A A A Yes Synonymous L300L 
TTA-TTG 

Novel 20061030001*** 

4232 MT-
ND1 

T T C C C C C Yes Non-
synonymous 

I 309T 
ACT-ATT 

Novel 20061030002*** 

4312 MT-TI C C T T T T T Yes NA NA Known Moraes et al., 
1993 

4505 MT-
ND2 

C C T T T T T Yes Synonymous T12T 
ACC-ACT 

Novel 20061030003*** 

61 
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3.3   Investigation of the PARK2 gene 

 

Mutations in the PARK2 gene have previously been associated with early onset 

parkinsonism [Tan and Skipper, 2007]. As members of Family R exhibited parkinsonian 

features, the PARK2 gene was screened for any known or novel mutations. The PCR 

amplification was successful for all the exons as well as the promoter region (Figure 3.7). 

 

       

    

 

    

 

Figure 3.7: Representative 2% agarose gel showing the PCR amplification of the promoter and 

all the exons of the PARK2 gene. The lane marked M contains a 100bp ladder with 

corresponding sizes indicated by the red arrows. The lane marked P contains the promoter region 

while lanes marked X1-X12B represent Exons 1-12.  

 

SSCP analysis was performed on the PCR-amplified products to screen for sequence 

variations in the PARK2 gene. Any shifts in the banding pattern (compared to the 

controls) were indicative of a variation in the DNA sequence. Two affected family 

members (5657 and 5760) were screened in conjunction with two control samples (WT1 

and WT2) of individuals of Mixed Ancestry. Four mobility shifts were identified and direct 

sequencing was performed to identify the sequence variants. 

 

  P      X1     X2     X3     X4     X5     X6      M 

  X7      X8      X9    X10  X11   X12A  X12B   M 

 
400bp 
300bp 
200bp 
100bp 

 
400bp 
300bp 
200bp 
100bp 



 

 

63

 

Figure 3.8 shows a shift in banding pattern in Exon 8 and subsequent direct sequencing 

results (Figure 3.9). 

 

  

Figure 3.8: SSCP gel representing a shift in the banding pattern in Exon 8. The black arrow 

indicates a shift in banding pattern in sample 5657.  
(A) 

 
(B) 

 
Figure 3.9: A chromatograph depicting the heterozygous C>T polymorphism in Exon 8 of the PARK2 gene. 

(A) Represents a WT control while (B) represents member 5657 of Family R.  

 

Figures 3.9(A) and (B) depicts the chromatographs produced by sequencing of the Exon 

8 from proband 5657 as well as a WT control. In Figure 3.9(B) the solid red arrow 

indicates the position of the C>T change in individual 5657. In the figure it is clearly 

shown that both thymine (T) and cytosine (C) are present which was indicative of a 

heterozygous change. Furthermore, the C>T change has been identified as IVS8 + 

48C>T, a known polymorphism in Exon 8 [Kay et al., 2007]. 

 

A mobility shift was observed in Exon 10 for individual 5657 (data not shown). The 

subsequent sequencing result is shown (Figure 3.10).  

 

 

5657       5760        WT1      WT2 
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(A) 

 
           (B)  

 
Figure 3.10: A chromatograph depicting the heterozygous G>C polymorphism in Exon 10 of the 

PARK2 gene. (A) Represents a WT control while (B) represents member 5657 of Family R.  

 

Figure 3.10 depicts the chromatographs produced by sequencing of Exon 10 from 

sample 5657 as well as a WT control. In Figure 3.10(B), the solid red arrow indicates the 

position of the G>C change in 5657. Both guanine (G) and cytosine were present which 

was indicative of a heterozygous change. Furthermore, this G>C change also altered the 

amino acid sequence by substituting a valine for leucine at position 380 and is a known 

polymorphism in the PARK2 gene [Kay et al., 2007]. 

 

Furthermore, a band shift was observed for individual 5657 in the SSCP analysis of 

Exon 11 (data not shown) and the PCR product was therefore sequenced (Figure 3.11).   

 (A) 

 
(B) 

 
Figure 3.11: A chromatograph depicting the heterozygous G-A polymorphism in Exon 11 of the 

PARK2 gene. (A) Represents a WT control while (B) represents member 5657 of Family R.  
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In Figure 3.11(B), the solid red arrow indicates a G>A polymorphism. As in the case of 

the V380L polymorphism, mentioned above, this change was also heterozygous due to 

the presence of both guanine and adenosine (A) residues at this position. This produced 

a non-synonymous change in the amino acid sequence, substituting aspartic acid for an 

asparagine at position 394 (D394N). This has previously been reported as a known 

polymorphism [Lincoln et al., 2003].  

  

A band shift was also observed for individual 5657 in the SSCP analysis of the promoter 

region of PARK2 (data not shown) and the PCR product was analysed by direct 

sequencing (Figure 3.12).   

(A) 

 

(B) 

 
Figure 3.12: A chromatograph depicting the heterozygous A-G polymorphism in the promoter of 

the PARK2 gene. (A) Represents a WT control while (B) represents member 5657 of Family R. 

  

In Figure 3.12 (B), the solid red arrow indicates an A>G polymorphism. This change was 

heterozygous due to the presence of both guanine and adenosine residues at this 

position. This polymorphism is in the 5’ UTR and is a known polymorphism [West et al., 

2002]. 

 

Table 3.2 summarizes all the changes observed in PARK2 gene for family member 5657 

by both SSCP analysis and automated sequencing. 
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Table 3.2: A summary of all the variations observed in PARK2 gene for individual 5657. 

Exon/Region Sample number  Change in 

sequence  

Known 

polymorphism  

Reference: 

Exon 8  5657 C>T  IVS8+48 C>T Kay et al., 2007 

Exon 10 5657 G>C V380L Kay et al., 2007 

Exon 11  5657 G>A D394N Lincoln et al., 2003 

Promoter  5657 A>G -227A>G  West et al., 2002 

 

No other changes in SSCP or sequencing were observed for the other affected family 

member. Furthermore, the variants found in this investigation were excluded as 

pathogenic because they are known polymorphisms. In addition, SSCP was proven to 

be a successful mutation detection method as it enabled the detection of four known 

polymorphisms. From this investigation it was determined that no pathogenic point 

mutations or small insertions or deletions were identified in the PARK2 gene for affected 

Family R members.   

 

3.4  Investigation of the locus for Familial Encephalopathy with 

Neuroserpin Inclusion Bodies (FENIB) 

 

Two point mutations in the SERPINI1 (also known as PI12) gene, located at position 

3q26.1 have been implicated in FENIB. Patients harboring either of these mutations 

manifest with dementia and myoclonus, similar to the clinical features observed in Family 

R. For this reason, two mutations associated with FENIB (S49P and S52R) were 

screened in affected Family R members.  

 

After successful PCR amplification of the template DNA, automated sequencing of the 

PCR product was performed in order to detect the presence of two point mutations. The 

sequencing results of 5657 (Figure 3.13) show the positions at which these mutations 

occur (indicated by red arrows).   
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Figure 3.13: Sequencing results of 5657 obtained from automated sequencing with PI12 forward 

primer. The solid red arrows indicate the positions of the mutations. 

 

For the S49P mutation the T at position 239 on the chromatograph changes to C while 

the A at position 248 changes to a C for the S52R mutation (Figure 3.13, indicated by 

solid red arrows). From the sequencing results it could be determined that neither the 

S49P nor the S52R mutations were present. Therefore, the disorder in this family is not 

due to these two mutations in the PI12 gene.  

 

3.5  Investigation of the locus for Dentatorubral-Pallidoluysian Atrophy 

(DRPLA)  

 

DRPLA is caused by an unstable expansion of a CAG repeat in the Atrophin1 (ATN1) 

gene located at the chromosomal position 12p13. The number of repeats in unaffected 

individuals ranges from 3 to 36 and affected individuals are reported to have repeats 

ranging from 49 to 88 [Schöls et al., 2004].   

  

Patients harbouring the mutation causing DRPLA and affected Family R members 

display similar symptoms such as dementia and myoclonus. For this reason Family R 

members were tested for the DRPLA disease-causing expansion. In addition, an 

unaffected individual was typed as a negative control. No positive control for DRPLA was 

available at the time for analysis and comparison.  

 

The DRPLA repeat expansion was screened using fluorescently labelled primers and 

electrophoresis on the ABI. The primers were designed to amplify the CAG repeat and 

produce a fragment of approximately 247bp (which corresponds to 14 repeats) in 

unaffected individuals. In the case of affected individuals, the fragment would be greater 
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than 356 bp, which corresponds to 49 or more repeats.  The genotyping results of the 

control and 5657 are displayed (Figure 3.14). 

 

 

 

 

 

Figure 3.14: (A) The electropherogram of genotyping results of an affected Family R member 

(5657) and (B) represents the results of an unaffected individual.  
 

Initially, DNA of only the proband (5657) of Family R was available for study and 

genotyping of the DRPLA CAG repeat produced a single peak in the normal range for 

this individual (Figure 3.14 A) . The unaffected control produced two peaks within the 

normal range (Figure 3.14 B). It could not be determined whether 5657 was homozygous 

at this locus or whether 5657 was heterozygous and the repeat expansion was possibly 

too large to be PCR- amplified. Later, when DNA of another family member (5760) 

became available, this sample was also genotyped and this showed two alleles in the 

unaffected range (Figure 3.15).    

 

Figure 3.15: The electropherogram of genotyping results of an affected Family R member (5760). 

  

By sizing the PCR fragments on the ABI Genetic Analyzer, the number of repeats could 

be calculated by applying the following formula:   

 Number of repeats = (size of fragment) bp - 205bp* 
3 

(B) 
 

(A) 
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*where 205bp is the length of the PCR fragment excluding the CAG repeat      

E.g.: number of repeats = 248bp – 205bp  
3 

                                             = 14.3 (rounded off to 14 repeats)  

Table 3.3 summarizes the size of the fragments found in two of the affected individuals 

and an unaffected control. 

 

Table 3.3: The size of the fragments and number of repeats for each of the individuals typed at 

the DRPLA locus.  

Sample              Allele 1 Allele 2 

5657 248bp   14 repeats  248bp  14 repeats 

5760 248bp  14 repeats 259bp 18 repeats 

Unaffected control 227bp 7 repeats 250bp 15 repeats 

 

As the number of repeats at the DRPLA locus was in the normal range for both affected 

individuals it was concluded that this family did not have DRPLA 

 

3.6 Investigation of the locus for Huntington’s disease-like 2 (HDL2)  

 

Huntington’s disease-like 2 (HDL2) is caused by a triplet repeat expansion in the 

Junctophilin-3 (JPH3) gene. This CTG/CAG repeat occurs in an alternatively spliced 

exon in the JPH3 gene on chromosome 16q24.3. In the case of affected individuals the 

repeat is more than 40 repeats. In the case of unaffected individuals a mean of 14-16 

repeats has been reported [Holmes et al., 2001]. 

 

HDL2 is characterised by severe progressive dementia, motor disco-ordination, 

psychiatric symptoms and chorea. As many of these symptoms were present in the 

affected members of Family R, the locus for HDL2 was investigated.  

 

 Fluorescently- labelled primers were designed to amplify the CAG/CTG repeat which 

produced an amplicon of approximately 242bp (14 repeats) in unaffected individuals and 

more than 320bp (more than 40 repeats) in affected individuals (Figure 3.16). 
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1261 tcagtgagag ccca ggaatc tcgtctttca gtggctgcat cgttttcacc attagttgag 
 
1321 ggaatcgatc tgtgccttca ttctaagatg ccaccgcatt cggggcagag ccggggccgg 
 
1381 aagccaggga gctgcctgct gctgctgctg ctgctgctgc tgctgctgct gctgctgtaa 
 
1441 gatggtttct gtgcagggaa ccttggccgg ctctgcagct gcccgcctgc ctggactctc 
 
1501 cgatatccac tcctcagtgc acctgacacg catggagccg gtcctttcct ggaagccaga 
 
Figure 3.16: The positions and orientation of the primers for amplification of the CTG/CAG repeat 

on the JPH3 gene. The sequence in yellow represents the forward primer while the sequence in 

grey is the sequence on which the reverse primer is based. The pink region is the CTG triplet 

repeat sequence. 

 

 
Figure 3.17: An agarose gel representing the amplification of a wild type control (unrelated Mixed 

Ancestry individual) (WT), a Family R member (5657) and a HDL2 positive control sample 

(HDL+). Lane M contains 100bp size marker and the sizes are indicated by red arrows. 

 

DNA from an HDL2 positive individual was obtained from the National Health Laboratory 

Service (NHLS) Molecular Diagnostic Laboratory and used as a positive control in this 

investigation (Figure 3.17). The PCR product of an affected Family R member as well as 

an unrelated negative control is also shown (Figure 3.17). 

 

For the HDL2 positive sample, two bands are visible indicating two different sized alleles. 

The bigger fragment would indicate an expanded allele and the smaller fragment would 

be indicative of an allele in the normal range. The same pattern is observed for the 

affected family member (5657), which would be indicative of a possible repeat 

expansion. Whether this expansion is in the disease-causing range could only be 

confirmed by accurately sizing the repeats by genotyping on an automated genetic 

analyser. The fluorescently labelled primers, designed to amplify the repeat, were used 

   WT     5657        HDL+      M  

400bp 
 
300bp 
 
200bp 
 
 
 
100bp 
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to amplify the DNA of Family R members and genotyped on an ABI 3130xl to determine 

the number of repeats for each individual (Figure 3.18).  

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Electropherograms indicating the size of the repeats in the JPH3 gene. (A) 

Unaffected WT control of Mixed Ancestry, (B) HDL2 positive individual, (C), (D) and (E) are 

affected members of Family R (5657, 5760 and 5555 respectively). 

(D) 5760 

(B) HDL2  
Positive  
control  

(E) 5555 

(A) Wild  
type 

356bp 

344bp 241bp 

241bp 

247bp 

241/241bp 

344bp 247bp 

(C) 5657 

377bp 
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From the sizing of the PCR fragments the amount of repeats was calculated using the 

following formula:   

 Number of repeats = (size of PCR fragment) bp - 200bp* 
      3 

*Where 200bp is the length of the PCR product excluding the CTG repeat 

 

Example: Number of repeats = 241 - 200bp 
  3 

= 13.6 repeats 

 = 14 repeats (rounded up)   

 

The triplet repeat ranges for Family R members was determined and has been 

summarised (Table 3.4).The results indicate that three Family R members, namely 5657, 

5760 and 5555 had repeats within the pathogenic range. The two unaffected family 

members (6188 and 6341) had repeats in the normal range. It was therefore concluded 

that the disease segregating in this family is HDL2. 

 

Table 3.4: A summary of repeat sizes for Family R members.  

* Values are rounded up 

In the case of repeat expansion diseases such as HDL2, the causative repeat is usually 

unstable and prone to expand. Due to this the repeat length may vary between various 

cells in an individual. Furthermore, the electropherograms produced by the ABI were not 

very intense for the expanded repeats producing small peaks (Figure 3.18). This may 

leave room for error in determining the exact length of repeats. It is vital to establish the 

exact number of repeats in an individual as a difference of one repeat can determine 

whether an individual is in the pathogenic or intermediate range.    

Sample number  Allele 1 Allele 2 Pathogenic (Y/N) 

 Size of 

PCR 

fragments* 

Number of 

repeats 

Size of 

PCR 

fragments* 

Number of 

repeats 

 

5657 242                         14 356                         52 Yes  

5760 242                         14 344                         49 Yes 

6188 242                         14 242                         14 No 

6341 242                         14  245                         15 No 

5555  248                         16 377                         59 Yes 
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In order to accurately determine the number of CTG repeats, the expanded allele was 

cloned and sequenced. This was performed by PCR-amplification of sample 5760 and 

electrophoresing the PCR product on an agarose gel to separate the fragments. The 

larger fragment (representing the expanded allele) was excised from the gel and purified. 

The purified fragment was then ligated into a pGem® - T Easy vector. Three different 

vectors: insert ratios were tested, 1:1; 1:3 and 1:5. These ligations were used to 

transform competent E coli DH5α cells which were grown until blue and white colonies 

could be clearly observed (Figure 3.19).  

 

 

Figure 3.19: A representative LB-agar plate indicating blue and white colonies. 

 

Table 3.5 summarises the amount of colonies produced by 200µl of transformed cells. It 

was noted that a vector: insert ratio of 1:1 produced no colonies. A vector: insert ratio of 

1:3 produced the most colonies but was ineffective as single colonies could not be 

picked. The 1:5 ratio, however, produced single colonies. Individual colonies were 

therefore, picked from the 1:5 ratio plates and were subjected to colony PCR.  

 

Table 3.5: Number of colonies produced per 200µl of transformed cells. 

Ratio vector : insert 

DNA 

Number of blue 

colonies/200µl 

Number of white 

colonies/200µl 

1:1  None 4  

1:3 116 TNTC* 

1:5 18 54 

*TNTC: too numerous to count. 

 



 

 

74

 

In order to determine whether the correct insert was taken up by the clone, colony PCR 

was performed with the HDL2 primers. Colony -PCR of several white colonies, using the 

HDL2 primers, did not reveal a colony with an appropriately-sized insert. As numerous 

blue colonies were observed on the plates, (and as the protocol recommends) colony- 

PCR with HDL2 primers was performed on a few of these blue colonies to determine 

whether any of these colonies contained the insert (Figure 3.20).  

 

 

        
Figure 3.20: Agarose gel representing colony-PCR with HDL2 primers. The lane marked M 

contains a 100bp ladder with sizes indicated by red arrows. Lane W: random white colony, lane 

B2: blue colony 2 and lane B1: blue colony 1. 

 

Figure 3.20 is a representative gel of the colony- PCR results for two blue colonies and a 

randomly selected white colony. One blue colony (B2) produced a fragment of 

approximately 400bp, which is the expected fragment size and another blue colony (B1) 

contained a fragment of roughly 250bp while the white colony did not amplify. This 

indicates that the blue colonies contained the insert which is possible because the 

pGem® - T Easy vector contains a multiple cloning site with a α-peptide coding region of 

the β-galactosidase gene. This region is disrupted when the insert is taken up by the 

plasmid. This process usually results in the formation of white colonies for clones that 

contain the insert and blue colonies for clones that do not have the insert. However, 

cases have been reported where blue colonies could also contain insert DNA 

[www.promega.com]. This occurs when the insert DNA is a multiple of 3bp and is then 

cloned in-frame to the Lac-Z gene thereby not disrupting its function and resulting in blue 

colonies containing the insert.  Moreover, the 250bp fragment found in colony B1 is the 

smaller allele. When excising DNA from the gel, the 250bp fragment usually moves  

 

 
 
400 bp  
300bp 
200bp 

 M              W          B2       B1    
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faster through the gel but there may be traces of this fragment in the part of the gel that 

was excised which was expected to only contain the expanded allele.  

 

The colony plasmid containing the 400bp fragment (which roughly corresponds to the 

expanded allele of 5760) was purified and subjected to direct sequencing using the 

HDL2 forward primer. Sequencing analysis revealed that the correct fragment was 

inserted into the pGem® - T Easy at the expected position, and that individual 5760’s 

expanded allele was confirmed to be 49 CTG repeats (Figure 3.21). 

 

 

 

Figure 3.21: Sequencing results of the blue colony (B2) containing ~400bp insert, which 

corresponds to 49 CTG repeats. The beginning and end of the expanded repeat is indicated by 

solid red arrows. 

 

These cloning results confirmed that the CTG repeats (Table 3.4) were correctly sized. 

The irregular peaks observed at positions 110-120 and 180-190 (Figure 3.21) on the 

chromatograph are a result of dye terminators from the sequencing kit that were not 

completely removed during the post-sequencing step.  

 

 

 

 

 

 

 

 



 

 

76

 

3.7  Genetic ancestry testing  

 

HDL2 has previously only been found in individuals of Black African Ancestry. In order to 

confirm the families’ self-reported ancestry a partial genetic ancestry test was performed 

on one of the family members. DNA of an affected male Family R member (5760) was 

analysed by the MRC/NHLS/WITS Human Genomic Diversity and Disease Research 

Unit (HGDDRU) to determine his lineage.  

 

The genetic analysis of the mitochondrial genome was used to determine the maternal 

lineage for individual 5760. The resolved haplogroup, L1d1, is associated with the 

Khoisan population but is also present in the Bantu speaking population. This 

haplogroup implies an origin in Khoisan population before the arrival of Bantu speakers 

in South Africa. In addition, this haplogroup was observed at a frequency of 12% in 

Coloured individuals, 8% in Whites and 6% in Jews of South Africa. 

 

From Y-chromosome analysis to determine the paternal lineage, it was shown that 5760 

belonged to the Y-chromosome Haplogroup FG-M213. This haplogroup is mainly found 

in European and Asian populations [Semino et al., 2000]. Upon further analysis of the y-

chromosome it was shown that the genetic profile produced for 5760 exactly matched 40 

other individuals from a world wide survey of 42000 males [www.yhrd.org]. Furthermore, 

one of the 40 individuals was also of South African Mixed Ancestry [Soodyall, personal 

communication].  This gives us a strong indication that 5760 and other members of 

Family R can be considered as Mixed Ancestry individuals as this profile is typical of 

what can be found in the lineage of a South African Mixed Ancestry individual which is a 

maternal lineage from indigenous Africans and a partial European paternal lineage 

[Bardien et al., 2007]. This indicates that for clinicians in South Africa, HDL2 should not 

only be considered in HD-like phenotype patients of Black African ancestry but in cases 

of Mixed Ancestry as well.  

 

 

 

 

 

http://www.yhrd.org/
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Section B:  Analysis of the Junctophilin-3 (JPH3) gene 

 

3.8 Distribution of the CTG/CAG repeat lengths in South African sub-

populations.  

 

As previously mentioned HDL2 has thus far only been found in individuals classified as 

having African ancestry. This led to the question of whether individuals of African 

ancestry could possibly have larger alleles that are prone to expand into the pathogenic 

range, thereby predisposing them to develop HDL2.  

 

In this part of the study, the distribution of JPH3 CTG/CAG repeat length in the Black, 

Mixed Ancestry and Caucasian South African sub-population groups was investigated.  

A total of 51 individuals (representing 102 alleles) of each of the Mixed Ancestry and 

Black groups and 60 (representing 120 alleles) of the Caucasian group was genotyped.  

 

The repeat was in Hardy Weinberg equilibrium for all three subgroups (p=1, Permutation 

test). However, the distribution of alleles differed amongst the three groups. 11 Different 

alleles were observed in the Black cohort and they ranged from 8 to 19 repeats. The 

Mixed Ancestry group had 9 different alleles, ranging from 8 to 21 repeats while the 

Caucasian cohort had only 7 different alleles ranging from 13 to 27 repeats (Figure 3.22 

A and B). This indicates less diversity at this locus in the Caucasian group in comparison 

to the other sub-populations.  
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Figure 3.22: Bar graph (A) and line graph (B) displaying the frequency of alleles in South African 

sub-populations.  

A 
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The observed heterozygosity was calculated as 88.4% for Black population, 76.4% for 

the Mixed Ancestry population and 62.4% for Caucasian. This further establishes that 

less diversity is observed in the Caucasian cohort compared to the other two groups. 

 

Furthermore, the difference in repeat distribution in this study was statistically significant 

between the Caucasian and Black group (P= 0.0014) but not significant between the 

Black and Mixed Ancestry (P=0.3788, two-sided) nor between the Mixed Ancestry and 

the Caucasian groups (P=0.3186).   

 

The most common allele (mode) for all three groups was the allele containing 14 

repeats, as has been shown for other population studies in Germany, France, 

Montenegro and Scandinavia [Bauer et al., 2002; Keckarevic et al.,2005; Stevanin et al., 

2003]. The allele containing 16 repeats was also fairly common for all three sub-

populations as had been noted in previous population studies. However, the frequency 

of alleles containing 14 repeats differs dramatically between subgroups. Considering the 

distribution of the 14 repeats allele in the different population groups can provide a 

measure of whether this difference is significant. 

 

Figure 3.23 depicts the distribution of alleles containing 14 repeats amongst the different 

population groups. This graph groups the alleles as 14/14 (homozygous pair of alleles 

with 14 repeats); 14/other (one allele of 14 repeats) and other/other (alleles that does not 

contain 14 repeats). 
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Figure 3.23: Bar graph displaying the frequency of alleles containing 14 repeats.  
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For the 14 repeat allele, the Caucasian cohort has the highest homozygosity (32%) and 

also has the highest frequency (55% from Figure: 3.22). The Black cohort, however 

shows the opposite with the least homozygosity (4%) and least overall frequency (25% 

from Figure: 3.22) of this allele. The Mixed Ancestry group falls in the middle with a 

frequency of  12 %  for 14/14 genotype  and 33% frequency in general (from Figure: 

3.22). By applying the Fishers’ test it was found that the distribution of the 14 repeat 

allele differed significantly (P-value=0.0001788) between the three different groups.   

 

3.9 Sequence alignments of the Junctophilin-3 gene 

 

For many genes, similar gene organisation is observed across species [Guryev et al., 

2006]. This implies a functional importance for the regions of the gene that are 

conserved. In order to determine whether a gene or part of a gene is vital for the survival 

of a cell it has to further be conserved throughout species. The JPH3 gene exists in 

variably spliced forms and the HDL2 pathogenic repeat is thought to be present in an 

alternatively spliced exon termed Exon 2A. To determine the degree of conservation 

between the alternatively spliced and full length transcripts around the repeat, the mRNA 

and protein sequences of the full length and alternatively spliced version were aligned 

(Figure 3.24). For the alignments “*” indicates a single conserved residue. A “: “indicates 

a “strongly” conserved group (according to ClustalW  score test) while a “.” indicates that 

a “weak” group is conserved. 
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Full length mRNA       AGAGCAAGGGGAAGTGGGTGTACAAGGGCGAGTGGACGCACGGATTCAAGGGGCGCTACG 
Alternatively spliced  AGAGCAAGGGGAAGTGGGTGTACAAGGGCGAGTGGACGCACGGATTCAAGGGGCGCTACG 
                       ************************************************************ 
 
Full length mRNA       GGGTGCGGGAGTGCGCGGGCAACGGGGCCAAATACGAAGGGACCTGGAGCAACGGGCTGC 
Alternatively spliced  GGGTGCGGGAGTGCGCGGGCAACGGGGCCAAATACGAAGGGACCTGGAGCAACGGGCTGC 
                       ************************************************************ 
 
Full length mRNA       AGGACGGCTACGGGACCGAGACCTACTCGGACGGAGGGACCTACCAGGGCCAGTGGGTCG 
Alternatively spliced  AGGACGGCTACGGGACCGAGACCTACTCGGACGGAGAT----------GCCACCGCATTC 
                       ************************************            ****  *  *   
 
Full length mRNA       GTGGCATGCGCCAGGGCTACGGCGTCCGGCAGAGCGTCCCGTATGGCATGGCCGCGGTCA 
Alternatively spliced  GGGGCA-GAGCCGGGGC--CGGAAGCCAG-GGAGCTGCCTGC-TGCTGCTGCTGCTGCTG 
                       * **** * *** ****  ***   ** *  ****  ** *  **     ** ** *    
 
Full length mRNA       TC-CGCTCACCCCTGAGGACGTCCATCAACTCCCTGCGCAGCGAGCACACCAACGGCACG 
Alternatively spliced  CTGCTGCTGCTGCTGCTGCTGTAAGATGG-TTTCTGTGCAGGGAACCT-----TGGC-CG 
                          *     *  ***  *  **        *  *** **** ** *        *** ** 
 
Full length mRNA       GCGCTGCATCCCGACGCCTCTCCGGCGGTGGCCGGCAGCCCGGCCGTGTCCCGCGGGGGC 
Alternatively spliced  GCTCTGCAGCTGCCCGCCTGCCTGG-ACTCTCCGATATCCACTCCTCAGTGCACCTGA-- 
                       ** ***** *    *****  * **   *  ***  * **   **      * *  *    
 
Full length mRNA       TTCGTGCTCGTGGCCCACAGTGACTCCGAGATCCTCAAGAGCAAGAAGAAGGGGCTGTTT 

              Alternatively spliced   ------------------------------------------------------------ 

 

 
Full length protein      MSSGGRFNFDDGGSYCGGWEDGKAHGHGVCTGPKGQGEYTGSWSHGFEVLGVYTWPSGNT 
Alt spliced protein      MSSGGRFNFDDGGSYCGGWEDGKAHGHGVCTGPKGQGEYTGSWSHGFEVLGVYTWPSGNT 
                         ************************************************************ 
 
Full length protein      YQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECAGNGAKYEGTWSNGLQDGYG 
Alt spliced protein      YQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECAGNGAKYEGTWSNGLQDGYG 
                         ************************************************************ 
 
Full length protein      TETYSDGGTYQGQWVGGMRQGYGVRQSVPYGMAAVIRSPLRTSINSLRSEHTNGTALHPD 
Alt spliced protein      TETYSDG---------------------------------------------DATAFGAE 
                         *******                                             :.**: .: 
 
Full length protein     ASPAVAGSPAVSRGGFVLVAHSDSEILKSKKKGLFRRSLLSGLKLRKSESKSSLASQRSK 
Alt spliced protein     PGPEARELPAAAAAAAAAAAAAVRWFLCREPWPALQLPACLDSPISTPQCT--------- 
                        ..* .   **.: .. . .* :   :*  :    :: .   .  : ..:..          
 
Full length protein     QSSFRSEAGMSTVSSTASDIHSTISLGEAEAELAVIEDDIDATTTETYVGEWKNDKRSGF 
Alt spliced protein     ------------------------------------------------------------ 

 
Figure3.24:  Alignment of human alternatively spliced and full length mRNA (A) and protein (B) around  

the CTG repeat (highlighted in yellow). 

 

(B) 

(A) 
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It was observed that the protein and mRNA sequences of the full length and alternatively 

spliced transcript are fully conserved for the first exon (blue sequences, Figure 3.24 A 

and B). As expected, the second exons (red sequences, Figure 3.24 A and B) were 

completely different. The second exon of the alternatively spliced transcript (Exon 2A) is 

a terminal exon which contains the CTG repeats coding for a polyalanine tract 

(highlighted in yellow). The alternatively spliced version is also much shorter and 

consists of only 186 amino acids (AA) while the full length transcript is 748 AA in length. 

As expected this data verifies that the CTG/CAG repeat is not present in the mRNA or 

protein sequence of the full length JPH3 but exists in an alternatively spliced version of 

the gene.  

 

The conservation of a region of a gene across species indicates the importance of that 

region. For instance the MORN domains of the JPH3 gene are highly conserved in 

mouse and nematode [Nishi et al., 2000]. The genomic sequences of human and mouse 

is highly conserved until the CTG repeat (Figure 3.25 A) because the repeats are 

interestingly not present in the mouse JP3 gene. However, the genomic sequence of the 

Pan troglodytes (Chimpanzee) contained the repeats (Figure 3.25 B, highlighted in 

yellow). 

 

In addition, the chimpanzee genomic sequence in the Ensembl [www.ensembl.org] 

database has a larger number of repeats repeat (23 repeats) at this position compared 

to the human consensus sequence (14 repeats). Despite this, the sequences upstream 

and downstream of the repeat are highly conserved between humans and chimpanzees 

(Figure.3.25 B). 
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Human GI:51511732   CCCAGGAATCTCGTCTTTCAGTGGCTGCATCGTTTTCACCATTAGTTGAG 
Mouse GI:94471605   CCCAGGAATCTGGCCATTCAGTGGCTGAATCATTTTCACCTTTAGTTTAG 
                    *********** * * *********** *** ******** ****** ** 
 
Human GI:51511732_> GGAATCGATCTGTGCCTTCATTCTAAGATGCCACCGCATTCGGGGCAGAG 
Mouse GI:94471605   GGAATCGCTCTGCGCCTCCAGTGTAAGATGCCACCACAGTCAGGGCAGAG 
                    ******* **** **** ** * ************ ** ** ******** 
 
Human_ GI:51511732> CCGGGGCCGGAAGCCAGGGAGCTGCCTGCTGCTGCTGCTGCTGCTGCTGC 
Mouse GI:94471605   CCGGTGCCGGAAGCCAGGCAACTACCAG---------------------- 
                    **** ************* * ** ** *                       
 
Human_ GI:51511732> TGCTGCTGCTGCTGCTGTAAGATGGTTTCTGTGCAGGGAACCTTGGCCGG 
Mouse GI:94471605   -----------------TGTGATGGTTTCTGTTCAGA-AGTCCCGGTTGG 
                                     *  ************ ***  *  *  **  ** 
 
Human GI:51511732_> CTCTGCAGCTGCCCGCCTGCCTGGACTCTCCGATATCCACTCCTCAGTGC 
Mouse GI:94471605   CTTGGCAGCCTTC-----------ACTCCAATGTCACCACTCCTCAGCAG 
                    *************           ****     *  ***********  
 

    Human genomic JPH3   CGTTTTCACCATTAGTTGAGGGAATCGATCTGTGCCTTCATTCTAAGATG 
    Chimp genomic JPH3   CGTTTTCACCATTAGTTGAGGGAATCGATCTGTGCCTTCATTCTAAGATG 
                          ************************************************** 
 
    Human genomic JPH3  CCACCGCATTCGGGGCAGAGCCGGGGCCGGAAGCCAGGGAGCTGCCTGCT 
    Chimp genomic JPH3  CCACCACATTCGGGGCAGAGCCGGGGCCGGAAGCCAGGGAGCTGCCTGCT 
                         ***** ******************************************** 
 
    Human genomic JPH3  GCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG------------- 
    Chimp genomic JPH3  GCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGC 
                        *************************************              
 
    Human genomic JPH3  --------------TAAGATGGTTTCTGTGCAGGGAACCTTGGCCGGCTC 
    Chimp genomic JPH3  TGCTGCTGCTGCTGTAAGATGGTTTCTGTGCAGGGAGCCTTGGCCGGCTC 
                                       ************************************                 
 
    Human genomic JPH3  TGCAGCTGCCCGCCTGCCTGGACTCTCCGATATCCACTCCTCAGTGC 
    Chimp genomic JPH3  TGCAGCTGCCCGCCTGCCCGGACTCTCCGATATCCACTCCTCAGTGC 
                         ***********************************************                    
 

                                                                                       
Figure 3.25: (A) An alignment of human and mouse genomic sequence of the JPH3 gene 

around the CTG/CAG repeat. (B) Alignment of human and chimpanzee genomic DNA around 

the repeat. The CTG repeat is highlighted in yellow.  

 
As in humans, an alternatively spliced version of the JPH3 gene which contained the 

repeat was identified in the chimpanzee but not in mice. This sequence was aligned 

to the alternatively spliced human sequence to determine whether the transcripts 

were similar (Figure 3.26 A and B). 

  

(A) 

(B) 
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 (A) 

 
chimp_alt mRNA      GGGTGCGGGAGTGCGCGGGCAACGGGGCCAAATACGAAGGGACCTGGAGCAACGGGCTGC 
Hum_alt mRNA        GGGTGCGGGAGTGCGCGGGCAACGGGGCCAAATACGAAGGGACCTGGAGCAACGGGCTGC 
                    ************************************************************ 
 
 
chimp_alt mRNA      AGGACGGCTACGGGACCGAGACCTACTCGGACGGAGATGCCACCACATTCGGGGCAGAGC 
Hum_alt mRNA        AGGACGGCTACGGGACCGAGACCTACTCGGACGGAGATGCCACCGCATTCGGGGCAGAGC 
                    ******************************************** *************** 
 
chimp_alt mRNA      CGGGGCCGGAAGCCAGGGAGCTGCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG 
Hum_alt mRNA        CGGGGCCGGAAGCCAGGGAGCTGCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG 
                    ************************************************************ 
 
chimp_alt mRNA      CTGCTGTAAGATGGTTTCTGTGCAGGGAGCCTTGGCCGGCTCTGCAGCTGCCCGCCTGCC 
Hum_alt mRNA        CTGCTGTAAGATGGTTTCTGTGCAGGGAACCTTGGCCGGCTCTGCAGCTGCCCGCCTGCC 
                    **************************** ******************************* 
 
chimp_alt mRNA      CGGACTCTCCGATATCCACTCCTCAGTGCACCTGACACGCACGGAGCCGGTCCTTTCCTG 
Hum_alt  mRNA       TGGACTCTCCGATATCCACTCCTCAGTGCACCTGA------------------------- 
                    **********************************  

         
  (B)      

 
human_alt_prot      MSSGGRFNFDDGGSYCGGWEDGKAHGHGVCTGPKGQGEYTGSWSHGFEVLGVYTWPSGNT 
chimp_alt_prot      -------------------------------------------SHGFEVLGVYTWPSGNT 
                                                               ***************** 
 
human_alt_prot      YQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECAGNGAKYEGTWSNGLQDGYG 
chimp_alt_prot      YQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECAGNGAKYEGTWSNGLQDGYG 
                    ************************************************************ 
 
human_alt_prot      TETYSDGDATAFGAEPGPEARELPAAAAAAAAAAAAAVRWFLCREPWPALQLPACLDSPI 
chimp_alt_prot      TETYSDGDATTFGAEPGPEARELPAAAAAAAAAAAAAVRWFLCREPWPALQLPACPDSPI 
                    **********:******************************************** **** 
 
human_alt_prot      STPQCT 
chimp_alt_prot      STPQCT 
                    ****** 

 
 
 
Figure 3.26: (A) Alignment of human and chimpanzee alternatively spliced JPH3 mRNA and (B) protein.  
The repeat is highlighted in yellow. 
 

 
Figure 3.26 confirms that the human and chimpanzee alternatively spliced versions 

of JPH3 are well conserved across these two species. In addition the CTG repeats in 

the mRNA and protein are of equal lengths as opposed to the genomic sequence 

where the chimpanzee gene had more repeats. Furthermore, Exon1 (blue sequence, 

Figure 3.26 B) of the human protein is slightly longer than that of the chimpanzee.  
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Finally, an analysis of the protein sequence for the full length transcripts was needed 

to show whether the Junctophilin-3 was conserved across species. This indicates the 

importance of the gene to the functioning of these organisms. The protein sequences 

used were the full length transcripts of human, chimpanzee and mouse Junctophilin-

3 gene (Figure 3.27).  The protein sequence similarity between the human and 

chimpanzee sequences were 89%. The human and mouse sequences displayed 

90% similarity while the mouse and chimpanzee sequences displayed 99% 

similarity. From these alignments it was concluded that JPH3 full length transcript, 

which does not contain the pathogenic repeat is highly conserved between human, 

mouse and chimpanzee implying that the full length protein has an important function 

across diverse species. 

 

Chimp_Prot      -------------------------------------------SHGFEVLGVYTWPSGNT 
Human_prot      MSSGGRFNFDDGGSYCGGWEDGKAHGHGVCTGPKGQGEYTGSWSHGFEVLGVYTWPSGNT 
Mouse_prot      MSSGGRFNFDDGGSYCGGWEDGKAHGHGVCTGPKGQGEYTGSWSHGFEVLGVYTWPSGNT 
                                                           ***************** 
 
 
Chimp_Prot      YQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECAGNGAKYEGTWSNGLQDGYG 
Human_prot      YQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECAGNGAKYEGTWSNGLQDGYG 
Mouse_prot      YQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECTGNGAKYEGTWSNGLQDGYG 
                ****************************************:******************* 
 
 
Chimp_Prot      TETYSDGGTYQGQWVGGMRQGYGVRQSVPYGMAAVIRSPLRTSINSLRSEHTNGTALHPD 
Human_prot      TETYSDGGTYQGQWVGGMRQGYGVRQSVPYGMAAVIRSPLRTSINSLRSEHTNGTALHPD 
Mouse_prot      TETYSDGGTYQGQWVGGMRQGYGVRQSVPYGMAAVIRSPLRTSINSLRSEHTNGAALHPD 
                ******************************************************:***** 
 
 
Chimp_Prot      ASPAVAGSPAVSRGGFVLVAHSDSEILKSKKKGLFRRSLLSGLKLRKSESKSSLASQRSK 
Human_prot      ASPAVAGSPAVSRGGFVLVAHSDSEILKSKKKGLFRRSLLSGLKLRKSESKSSLASQRSK 
Mouse_prot      ASPAVAGSPAVSRGGFVLVAHSDSEILKSKKKGLFRRSLLSGLKLRKSESKSSLASQRSK 
                ************************************************************ 
 
 
Chimp_Prot      QSSFRSEAGMSTVSSTASDIHSTISLGEAEAELAVIEDDIDATTTETYVGEWKNDKRSGF 
Human_prot      QSSFRSEAGMSTVSSTASDIHSTISLGEAEAELAVIEDDIDATTTETYVGEWKNDKRSGF 
Mouse_prot      QSSFRSEAGMSTVSSTASDIHSTISLGEAEAELAVIEDDIDATTTETYVGEWKNDKRSGF 
                ************************************************************ 
 
 
Chimp_Prot      GVSQRSDGLKYEGEWASNRRHGYGCMTFPDGTKEEGKYKQNILVSGKRKNLIPLRASKIR 
Human_prot      GVSQRSDGLKYEGEWASNRRHGYGCMTFPDGTKEEGKYKQNILVGGKRKNLIPLRASKIR 
Mouse_prot      GVSQRSDGLKYEGEWVSNRRHGYGCMTFPDGTKEEGKYKQNVLVSGKRKNLIPLRASKIR 
                ***************.*************************:**.*************** 
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Chimp_Prot      EKVDRAVEAAERAATIAKQKAEIAASRTSHSRAKAEAALTAAQKAQEEARIARITAKEFS 
Human_prot      EKVDRAVEAAERAATIAKQKAEIAASRTSHSRAKAEAALTAAQKAQEEARIARITAKEFS 
Mouse_prot      EKVDRAVEAAERAATIAKQKAEIAASRTSHSRAKAEAALTAAQKAQEEARIARITAKEFS 
                ************************************************************ 
 
Chimp_Prot      PSFQHRENGLEYQRPKRQTSCDDIEVLSTGTPLQQESPELYRKGTTPSDLTPDDSPLQSF 
Human_prot      PSFQHRENGLEYQRPKRQTSCDDIEVLSTGTPLQQESPELYRKGTTPSDLTPDDSPLQSF 
Mouse_prot      PSFQHRENGLEYQRPKHQMSCDDIEVLSTGTPLQQESPELYRKGTTPSDLTPDDSPLQSF 
                ****************:* ***************************************** 
 
 
Chimp_Prot      PTSPTATPPPAPATRNKVAHFSRQVSVDEERGGDIQMLLEGRAGDCARSSWGEEQTGGSR 
Human_prot      PTSPAATPPPAPAARNKVAHFSRQVSVDEERGGDIQMLLEGRAGDCARSSWGEEQAGGSR 
Mouse_prot      PASPTSTPPPAPASRTKMAHFSRQVSVDEERSGDIQMLLEGRGGDYARNSWGEEKAGASR 
                *:**::*******:*.*:*************.**********.** **.*****::*.** 
 
Chimp_Prot      GVRSGALRGGLLVDDFRTRGSGRKQPGNPKPRERRTESPPVFTWTSHHRASNHSPGGSRL 
Human_prot      GVRSGALRGGLLVDDFRTRGSGRKQPGNPKPRERRTESPPVFTWTSHHRASNHSPGGSRL 
Mouse_prot      GIRSGALRSGQPTEDFRTRGSGHKQPGNPKPRERRTESPTTFSWTSHHRAGNPCSGGPKL 
                *:******.*  .:********:****************..*:*******.* ..**.:* 
 
Chimp_Prot      LELQEEKLSNYRMEMKPLLRMETHPQKRRYSKGGACRGLGDDHRPEDRGFGVQRLRSKAQ 
Human_prot      LELQEEKLSNYRMEMKPLLRMETHPQKRRYSKGGACRGLGDDHRPEDRGFGVQRLRSKAQ 
Mouse_prot      LEPDEEQLSNYKLEMKPLLRMDACPQDTHPQRRRHSRGAGGDR-----GFGLQRLRSKSQ 
                ** :**:****::********:: **. : .:   .** *.*:     ***:******:* 
 
Chimp_Prot      NKENFRPASSAEPAVQKLASLRLGG-AEPRLLRWDLTFSPPQKSLPVALESDEENGDELK 
Human_prot      NKENFRPASSAEPAVQKLASLRLGG-AEPRLLRWDLTFSPPQKSLPVALESDEENGDELK 
Mouse_prot      NKENLRPASSAEPTVQKLESLRLGDRPEPRLLRWDLTFSPPQKSLPVALESDEETGDELK 
                ****:********:**** *****. .***************************.***** 
 
Chimp_Prot      SSTGSAPILVVMVILLNIGVAILFINFFI 
Human_prot      SSTGSAPILVVMVILLNIGVAILFINFFI 
Mouse_prot      SSTGSAPILVVMVILLNIGVAILFINFFI 
                ***************************** 
 

            Figure 3.27: An alignment of the full length protein transcripts of chimpanzee, human and mouse 
           Junctophilin-3. 
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3.10  Investigation of JPH3 mRNA isoforms 

 

JPH3 messenger RNA (mRNA) exists in multiple transcripts due to alternative splicing. 

The pathogenic repeat which causes HDL2 is expressed in an alternatively spliced 

mRNA transcript which consists of two exons. To validate the presence of this mRNA 

transcript, primers were design to specifically amplify the alternatively spliced transcript. 

In addition, primers to amplify the full length predominant transcript were also designed 

(Figure 3.28 A and B).  

 

GTCTCCAGCGGGAGCGCGAGACGCTGGTCAGGCTCCGCGGCGCAGCTCGAAAAGGAATAA 
TCGCCCCCGATTGACTGAAATTCCTCCGGAGCCGGCGCCGCGGCCGCCCGCGCCCGAGAC 
CGCGCTCCGGGGCCGCGTCCTCCTCTCCTCCGGAAAACGCTCGCGACCCAGGGCCGCCGG 
CGGCCGCGACTCTGCTGTGTCGATCGCCTGAGTCCGTTTTCACCGTTTGCGGGATCTGGA 
ACCGAGTTACATGCATGTCCAGTGGGGGCAGGTTTAATTTTGACGACGGAGGGTCCTACT 
GTGGAGGCTGGGAGGACGGCAAGGCGCACGGCCATGGCGTCTGCACCGGCCCCAAGGGCC 
AAGGCGAATACACCGGCTCGTGGAGCCACGGCTTCGAGGTGCTGGGCGTCTACACCTGGC 
CCAGCGGCAACACGTACCAGGGCACCTGGGCGCAGGGCAAGCGCCACGGCATCGGCCTGG 
AGAGCAAGGGGAAGTGGGTGTACAAGGGCGAGTGGACGCACGGATTCAAGGGGCGCTACG 
GGGTGCGGGAGTGCGCGGGCAACGGGGCCAAATACGAAGGGACCTGGAGCAACGGGCTGC 
AGGACGGCTACGGGACCGAGACCTACTCGGACGGAGGGACCTACCAGGGCCAGTGGGTCG 
GTGGCATGCGCCAGGGCTACGGCGTCCGGCAGAGCGTCCCGTATGGCATGGCCGCGGTCA 
TCCGCTCACCCCTGAGGACGTCCATCAACTCCCTGCGCAGCGAGCACACCAACGGCACGG 
CGCTGCATCCCGACGCCTCTCCGGCGGTGGCCGGCAGCCCGGCCGTGTCCCGCGGGGGCT 
TCGTGCTCGTGGCCCACAGTGACTCCGAGATCCTCAAGAGCAAGAAGAAGGGGCTGTTTC 
GGCGCTCGCTGCTGAGTGGGCTGAAGCTGCGCAAGTCGGAGTCCAAGAGCAGCCTGGCCA 
GCCAACGCAGCAAGCAGAGCTCCTTTCGCAGCGAGGCGGGCATGAGCACCGTCAGCTCCA 
CGGCCAGCGACATCCACTCCACCATCAGCCTGGGCGAGGCTGAGGCCGAGCTGGCGGTCA 
TCGAGGACGACATCGACGCCACCACCACCGAGACCTACGTGGGCGAGTGGAAGAACGACA 
AACGCTCCGGCTTCGGCGTGAGCCAGCGCTCGGACGGGCTCAAGTACGAGGGCGAGTGGG 
CCAGCAACCGGCGCCATGGCTACGGCTGCATGACCTTCCCGGACGGCACCAAGGAGGAGG 
GCAAGTACAAGCAGAACATCCTCGTCGGCGGCAAGCGCAAGAACCTCATCCCCCTGCGGG 
CCAGCAAGATCCGCGAGAAGGTGGACCGCGCCGTTGAGGCCGCTGAGCGGGCCGCCACCA 
TCGCCAAGCAGAAGGCTGAGATCGCGGCTTCCAGGACCTCCCACTCTCGGGCAAAGGCCG 
AGGCAGCCCTCACAGCAGCTCAGAAAGCCCAGGAGGAGGCGCGGATCGCCAGGATCACTG 
CCAAAGAGTTCTCCCCTTCCTTCCAGCACCGGGAAAACGGGCTGGAGTACCAGAGGCCGA 
AGCGTCAGACCTCCTGTGACGACATCGAGGTGCTGTCCACCGGGACACCCCTGCAGCAGG 
AGAGCCCCGAGCTGTACCGCAAGGGCACCACTCCCTCCGACCTGACCCCCGACGACAGCC 
CCCTGCAGAGCTTCCCCACCAGCCCCGCGGCCACCCCGCCGCCCGCGCCCGCCGCCAGGA 
ACAAGGTCGCCCACTTCTCGAGGCAGGTGTCGGTGGACGAGGAGCGGGGCGGGGACATCC 
AGATGCTCCTGGAGGGCCGGGCCGGGGACTGCGCCCGCAGCAGCTGGGGCGAGGAGCAGG 
CCGGGGGCTCCAGGGGTGTCCGCAGCGGTGCCCTGCGCGGCGGCCTGCTCGTGGATGACT 
TCCGCACCCGAGGTTCGGGCCGCAAGCAGCCCGGGAACCCCAAGCCGCGGGAGCGGCGGA 
CGGAGTCACCCCCCGTGTTCACGTGGACTTCCCACCACCGGGCCAGCAACCACAGCCCCG 
GAGGCTCCAGGCTGCTGGAGCTGCAGGAGGAGAAGCTGAGCAACTACCGGATGGAGATGA 
AACCCTTGCTGAGGATGGAGACGCATCCCCAGAAAAGACGCTACAGCAAGGGCGGCGCCT 
GCCGGGGCTTGGGGGACGACCACCGCCCCGAGGACCGGGGCTTCGGGGTGCAGAGACTGC 
GGTCCAAGGCCCAGAACAAGGAGAACTTCAGGCCGGCCTCCTCCGCGGAGCCCGCCGTGC 
AGAAACTGGCGAGCCTGCGGCTGGGCGGGGCCGAGCCCCGGTTGCTGCGTTGGGACTTGA 
CCTTCTCCCCGCCCCAGAAATCCTTGCCTGTCGCTCTAGAGTCCGACGAGGAGAATGGGG 
ATGAGCTCAAGTCCAGTACGGGCTCAGCGCCTATCCTGGTGGTCATGGTGATCTTGCTCA 
ACATCGGAGTCGCCATTCTGTTTATTAACTTTTTCATCTGATGAGATGTCGCGGTAGCAA 
AAATAGAGAAAGGGTAGAAAAAAGGGACATTAAAATTAAAAGCAAAACCACAAGAAGGGA 
AAGACCGCAACTCGGACAGCCCAGCGACTTCCAAGTCCTCTCACAGAAGAACCACACGAT 
TGGGTATCACTCACAGTTTGCCTTTTTTTCTGGGTAATGTTTTTTGGATTTTAGCCAAAA 
TTCTTTGCTTGTATAACACTCTGCTGTGTGGCATGGCAGAAGGAGGCCAGCACGCAGCCC 
CTCCAGCTCCACGTGGAGACAGAAGGGATCCCGGCACATCAGTGGTAACAGCGGACGTTG 
TCCTCGTGGTCACACGTCCCGTCTTGGGTGTGGATGGAGGGCAGCCCGGGGCAGAGCCTC 
AGCCCCGCGGCCCCTGAGTGGCAGGGCTGACTCCCGTCGACACGAGCTTAGAAAGTGGAT 
TCACTGCTTTCTCTGTCTAGAACAGACGGGTGACAAGTATGGGCAGGAGGCATGGGGCAG 
GGTGGCCCACCCCAGTGGGCAGTAGCCTGGCCTTTTTCTGTGTGAGATCTGTGCTGCACA 
CCTGAGGGAGGGGGAGGGATCGGCCACCTCCTCCCTGTGAGACGGATGCAGGTCCTTCCC 

(A) 
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TCTTCTCGGCACTGCCCCCGGCCTTCCATGAGAAGCCGACTCCCCACACCGAGTTTTAAA 
GCAAAGCCCTTTTCTTCTGCTGCCCACTCACTGTGGGTCCCATTCGGCTGTTTCCCCCAC 
CAGACCCCAGGGAAGCCGGGGCCCACTCCGATCCGCCTGGGCTCAGCTAAGCACGGAAGC 
CAAGGGGGCTGTGCCGTGGAGCTGGGCTCGCGCCGGGGCTCTGGGTGTGTGCGCTTGGCG 
TGCAGGGTGGACGCGTGGGGTTCCGTGTCCCCAGCAGTGAGGGCCCTAGAGGACGCCTTC 
TCCCATGGTTACTGATCTCCACGGGTTTTCACATCTCTGTACTGTGCCTGCCTCAACTTC 
CCCTAACAGATATGCATATTCCTTCCAGATGCCTCAGTGCTACACCACAGTGGGCCTGGT 
CCCAGGACAGGAATGCGGTTCAAACCCAGTGGCTTGAAACTTCCTGAGAAACTGTAGCAT 
ATCCAGCCCCCTAAAATGTACAATGTAACTTGTTCAGTCCAACAAAAACAGGTTCCTTAT 
GTTTCTGCCTTCTCCACCAGGGTCGCTCCATCACCCAAACAAAAGAACAAGGTTTGCCAG 
GATGTCCGAGTGCCCCCTGGCCCTGGCTCTCGTGTGCATGGACGTGCCTGAGGGGTCCGG 
GCACGGCCATACGCAGGACCCCTGTGCCCGGGGAGGCGCTGCAGGGATTCCCCATCCGGT 
CGTCTTGGGGCCAGCCCGTCTTATGGACTCTGCCTTGCTTTGCTTATGTTTAGCTGTTTC 
TCTGCTACCTTTCGAGCAGACTTCTTTACTACACTGCACTGGATTGCTATATTTTTAACC 

      AGAAATAAACTAAAGATTAGAGCATGTTCCAGTTAAA 
 

 
GTCTCCAGCGGGAGCGCGAGACGCTGGTCAGGCTCCGCGGCGCAGCTCGAAAAGGAATAA 
TCGCCCCCGATTGACTGAAATTCCTCCGGAGCCGGCGCCGCGGCCGCCCGCGCCCGAGAC 
CGCGCTCCGGGGCCGCGTCCTCCTCTCCTCCGGAAAACGCTCGCGACCCAGGGCCGCCGG 
CGGCCGCGACTCTGCTGTGTCGATCGCCTGAGTCCGTTTTCACCGTTTGCGGGATCTGGA 
ACCGAGTTACATGCATGTCCAGTGGGGGCAGGTTTAATTTTGACGACGGAGGGTCCTACT 
GTGGAGGCTGGGAGGACGGCAAGGCGCACGGCCATGGCGTCTGCACCGGCCCCAAGGGCC 
AAGGCGAATACACCGGCTCGTGGAGCCACGGCTTCGAGGTGCTGGGCGTCTACACCTGGC 
CCAGCGGCAACACGTACCAGGGCACCTGGGCGCAGGGCAAGCGCCACGGCATCGGCCTGG 
AGAGCAAGGGGAAGTGGGTGTACAAGGGCGAGTGGACGCACGGATTCAAGGGGCGCTACG 
GGGTGCGGGAGTGCGCGGGCAACGGGGCCAAATACGAAGGGACCTGGAGCAACGGGCTGC 
AGGACGGCTACGGGACCGAGACCTACTCGGACGGAG ATGCCACCGCATTCGGGGCAGAGC 
CGGGGCCGGAAGCCAGGGAGCTGCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG 
CTGCTGTAAGATGGTTTCTGTGCAGGGAACCTTGGCCGGCTCTGCAGCTGCCCGCCTGCC 

      TGGACTCTCCGATATCCACTCCTCAGTGCACCTGA 
 
 

Figure 3.28: The positions of the primers designed to amplify the full length (A) and alternatively 

spliced (B) JPH3 transcripts are indicated by highlighted regions. Grey: full length set A, pink: full 

length set B and yellow: alternatively spliced. The different exons are indicated by the alternating 

colours. 

 

As a control a third set of primes were designed to amplify a housekeeping gene, namely 

β-Haemoglobin (HBB) gene, which was used to test the viability and quality of cDNA. 

The HBB gene is expressed in many tissues at relatively similar rates and is highly 

conserved, thereby making it a suitable housekeeping gene [Shmueli et al., 2003]. The 

primers were designed spanning a small intron thereby producing differently sized 

fragments on genomic DNA and on cDNA, which was useful in controlling for genomic 

contamination which is a major source of contamination in cDNA (Section 2, Figure 2.4). 

The primers for HBB produced a product of 377bp in genomic DNA and 248bp in cDNA 

(Figure 3.29).  

 

 

 

 

(B) 
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Figure 3.29: Agarose gel depicting the size difference in fragments produced by HBB primers for 

genomic DNA (gDNA) and cDNA. 

 

The HBB primers were used in all subsequent PCR reactions as a control to firstly 

indicate that there was no genomic DNA contaminants in the cDNA samples and 

secondly that the cDNA was of good quality. 

 

 3.10.1 Purchased foetal brain cDNA as template  

 

The HBB, JPH3 full length and alternatively spliced JPH3 primers were tested on cDNA 

generated from foetal brain RNA which was used as a template because JPH3 is 

expressed almost exclusively in the brain. The subsequent PCR reactions of foetal brain 

cDNA using primers for the HBB gene are shown (Figure 3.30).   

 

     

Figure 3.30: Agarose gel depicting PCR products using foetal brain cDNA as template. Lane M 

contains 100bp marker. Lane 1: amplification with HBB primers, lane 2: amplification with JPH3  

full length primers (set A), lane 3: amplification with JPH3  full length primers (set B), lane 4: 

amplification with JPH3  alternatively spliced primers. 

 

 M      gDNA    cDNA  

400bp 
300bp 
200bp 
 
 
100bp 

M        1           2            3           4  

500bp 
400bp 
300bp 
200bp 
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Several attempts to optimise the JPH3 full length set A primers PCR were unsuccessful. 

Interestingly, the PCR product obtained using primers for the alternatively spliced 

isoform was correct and verified by sequencing even though, according to Margolis et 

al., [2006], the alternatively spliced version of the transcript is expressed at lower levels 

than the full length transcript (Lane 4, Figure 3.30). The full length primers were then 

redesigned across Exons 4 and 5 of the JPH3 gene which is closer to the 3’ end of the 

transcript because it was possible that the cDNA did not extend all the way to the 5’ end 

during the generation of the cDNA. The amplification with the redesigned primers (Set B, 

Lane 3), HBB primers (Lane 1) as well as the alternatively spliced primers (Lane 4) was 

successful for foetal brain cDNA (Lane 3) whereas the full length (Set A) primers were 

not (Lane 2, Figure 3.30). 

 

These PCR products were subjected to direct sequencing to confirm that the correct 

fragments were amplified and also to determine the number of repeats in the 

alternatively spliced product. 

(A) 

 
(B) 

 
Figure 3.31: (A) Chromatographs produced from the direct sequencing of foetal brain cDNA with 

JPH3 alternatively spliced reverse and (B) JPH3 full length set B primers. 

 

The foetal brain RNA was isolated from a pooled sample of foetuses and produced more 

than one transcript. Due to this the CTG repeat sizes of the different foetuses would 

differ and cause “messy” sequencing (Figure 3.31 A). The sequencing products were 

searched against the NCBI database using the BLAST search tool and were shown to 
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match the reference sequences for JPH3 full length and alternatively spliced mRNA 

transcripts.    

 

3.10.2  Patient lymphocyte cDNA as template 

  

An exploratory study to analyse the JPH3 isoforms in the affected family members was 

attempted. In this investigation RNA was isolated from transformed lymphocytes of two 

affected family members. The lymphocytes served as a substitute for brain tissue which 

was not available at the time of this study. Lymphocytes were used as a surrogate for 

brain tissue since, due to the process of illegitimate transcription, all forms of transcripts 

of every gene is expressed as mRNA at a basal level [Chelly et al., 1989].  

 

The Experion™ RNA StdSens Analysis Kit was used to determine the quality and 

quantity of the extracted RNA. Samples of the RNA from lymphocytes of family members 

5657 and 5760 were run on Experion™ automated electrophoresis system which 

separated and analysed the sample. Figure 3.32 represents the gel matrix with the 

samples that were applied to it.  

 

 
Figure 3.32: Electrophoresis of RNA isolates using the Experion™ automated electrophoresis 

system. 

 

The lane marked L contains an RNA ladder with the sizes (in bp) along the Y axis. Lane 

3 contains RNA-free water as a negative control. Lanes 1 and 2 contain the RNA 

isolated from 5657 and 5760 respectively. The red arrows indicate the 18S and 28S 

28S rRNA  
 
 
 
18S rRNA 
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ribosomal RNA (rRNA) of sample 5760. Figure 3.33 shows the graphical output of lane 2 

as generated by the Experion™ system.  

 
Figure 3.33:  Experion™ graphical output of lane 2. 

 

The graph (Figure 3.33) showed that RNA was isolated from 5760 and the peak for 28s 

was clearly defined. cDNA was generated from the isolated RNA of 5760 and used as 

template for amplification using the HBB primers as a control to determine whether the 

cDNA was viable and could be amplified. A fragment of the appropriate size was 

observed for the HBB primers (lane 2), which indicated that the cDNA was 

uncontaminated and was of good enough quality to be used in a PCR reaction. The 

cDNA was then used as template for amplification with the primers listed in Table 2.7 

(Page 44). Subsequent PCR reactions with either full length JPH3 (Lane 3 and 4) or 

alternatively spliced primers (Lane 5) were unsuccessful even after extensive attempts at 

optimising the reaction (Figure 3.34).  

 

     
Figure 3.34: Gel electrophoresis of PCR products using lymphocyte cDNA of affected HDL2 

patients. Lane M contains 100bp marker, lane 1: HBB primers on genomic DNA (control), lane 2: 

HBB primers on lymphocyte cDNA, lane 3: full length primers (set A), lane 4: full length primers 

(set B) and lane 5: alternatively spliced primers. 

18s         28s 

M    1     2      3     4    5  

400bp 
300bp 
200bp 
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3.10.3 Real-time PCR 

 

To determine whether the patient’s lymphocyte cDNA did not amplify with the JPH3  

primers because the transcripts are not being illegitimately transcribed or was just at too 

low levels to be detected, real-time PCR on a LightCycler® was attempted. Real-time 

PCR is a more sensitive PCR method which allows one to detect extremely low levels of 

template in a PCR reaction. Real-time PCR measures the amount of fluorescence 

generated by SYBR green as it is incorporated into the amplified PCR product.  

 

HBB primers 

Initially the LightCycler® reactions were performed using serial dilutions of the genomic 

DNA (1:1, 1:10 and 1:100) of the genomic DNA, using HBB primers.  

 

The genomic DNA amplification was successful with the crossing point (CP) of the 

reactions between 20-28 cycles. The optimal reaction occurred with the 1:1 template 

DNA. The melt point analysis produced peaks at 87ºC for all three dilutions indicating 

that a single product was produced (Figure 3.35). The negative control produced a CP 

value of 33 and had a different melt-curve to the genomic DNA. The agarose gel (Figure 

3.35 C) shows the respective sizes of the bands. The faint, small fragments visible in all 

the lanes are likely due to the formation of primer dimers.   

 

 



 

 

94

 

 

 

 
 Figure 3.35: (A) The crossing point curve and (B) melt curve of genomic DNA (1:1 blue, 1:10 

green, 1:100 red and negative control black) amplified with HBB primers.(C) Agarose gel 

indicating the size of the PCR products. Lane M contains 100bp marker, lane 1: HBB primers on 

genomic DNA (1:1), lane 2: HBB primers on genomic DNA (1:10), lane 3: HBB primers on 

genomic DNA (1:100) and lane N: negative control. 

 

Real-time PCR using HBB primers with foetal brain and lymphocyte cDNA as template 

also produced the correct product which was verified by sequencing (Figure 3.36 A and 

B).     

 

 
Figure 3.36: Chromatograph depicting the partial sequence obtained from the direct sequencing 

of (A) lymphocyte cDNA and (B) foetal brain cDNA amplified with primers for the HBB gene. 

 

Based on these promising results, real-time PCR was attempted using primers for the 

JPH3 full length and alternatively spliced isoforms.  

 

 

 

      M            1           2           3         N   

400bp 
300bp 
200bp 
 

(A) 

(B) 
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Full-length and alternatively spliced primers 

 

Using the optimal dilutions from the HBB amplification, the amplification of foetal brain 

and lymphocyte cDNA was attempted. The crossing points of many of the runs were 

more than 30 cycles and are therefore not optimal. However some runs have been 

analysed (Figures 3.37 and 3.38).  

 

 

 
Figure 3.37: Amplification with JPH3 full length set B (A) crossing point curve and (B) melt curve 

analysis of lymphocyte cDNA, foetal brain cDNA and a negative control. 

 

(A) 

(B) 

Foetal brain cDNA 

 Foetal brain cDNA 
 

Negative control 

Lymphocyte cDNA 

Lymphocyte  cDNA 
 

Negative control 
 



 

 

96

 

 

 
Figure 3.38: Amplification with JPH3 alternatively spliced primers (A) crossing point curve and 

(B) melt curve analysis of lymphocyte cDNA, foetal brain cDNA and a negative control.  

 

 From the graphs (Figures 3.37 and 3.38) it appeared that the negative controls and the 

cDNA templates have similar CP values. In addition, the melt curve analysis for the 

negative control does not differ from the cDNA templates. These results indicate that the 

exploratory real-time PCR reactions were unsuccessful and require further optimisation. 

At this stage we are unable to determine whether the JPH3 transcripts are present in 

lymphocytes. 
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 3. 11  Expressed Sequence Tags alignments 
 

 
To provide independent confirmation of the existence of the alternatively spliced 

transcript primers were designed to specifically amplify this repeat in lymphocyte 

RNA of the affected family and from commercial foetal brain cDNA.  Amplification 

from lymphocyte cDNA was unsuccessful. However, the foetal brain cDNA produced 

strong fragments of the expected size. This product was then sequenced and 

searched against ESTs in the dbEST database.   

 

Significant alignment was shown for 17 ESTs (Figure 3.39) however, only three 

(highlighted in green) of these ESTs contained Exon 1 spliced to an Exon 2A which 

contains the repeat.  

 

Sequences producing significant alignments:                       (Bits)  E Value 
 
gb|BI553267.1|  603193587F1 NIH_MGC_95 Homo sapiens cDNA clone...  1175    0.0 
gb|BI550632.1|  603195805F1 NIH_MGC_95 Homo sapiens cDNA clone...  1138    0.0 
gb|BM548387.1|  AGENCOURT_6573271 NIH_MGC_124 Homo sapiens cDN...   717    0.0 
gb|AA912459.1|  om52c01.s1 NCI_CGAP_GC4 Homo sapiens cDNA clon...   560    5e-157 
gb|BE042890.1|  ho30c07.x1 NCI_CGAP_Lu24 Homo sapiens cDNA clo...   527    5e-147 
dbj|DA404387.1|  DA404387 BRTHA3 Homo sapiens cDNA clone BRTHA...   523    7e-146 
dbj|DA189798.1|  DA189798 BRAMY3 Homo sapiens cDNA clone BRAMY...   361    6e-97 
gb|AI680727.1|  tx40f05.x1 NCI_CGAP_Lu24 Homo sapiens cDNA clo...   335    3e-89 
gb|U80757.1|  U80757 Human fetal brain (R.L.Margolis) Homo sap...   320    1e-84 
gb|AI299726.1|  qm97d09.x1 NCI_CGAP_Lu5 Homo sapiens cDNA clon...   292    2e-76 
gb|CN309838.1|  17000600179634 GRN_PRENEU Homo sapiens cDNA 5', m   267    1e-68 
gb|BE779067.1|  601464841F1 NIH_MGC_67 Homo sapiens cDNA clone...   241    8e-61 
gb|AW205682.1|  UI-H-BI1-adu-b-03-0-UI.s1 NCI_CGAP_Sub3 Homo s...   231    5e-58 
gb|BI547995.1|  603189433F1 NIH_MGC_95 Homo sapiens cDNA clone...   172    3e-40 
dbj|DA414512.1|  DA414512 BRTHA3 Homo sapiens cDNA clone BRTHA...   159    2e-36 
dbj|DA123472.1|  DA123472 BRACE3 Homo sapiens cDNA clone BRACE...   141    8e-31 
dbj|DA193144.1|  DA193144 BRAMY3 Homo sapiens cDNA clone BRAMY...  84.2    1e-13 
 
 

 Figure 3.39: Sequences producing significant alignments in the EST database. 
 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=15440579&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#15440579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=15437944&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#15437944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=18782891&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#18782891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=3051851&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#3051851
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#8359943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=8359943&dopt=GenBank
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=80897361&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#80897361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=78247120&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#78247120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=4890909&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#4890909
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#2565083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=2565083&dopt=GenBank
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=3957640&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#3957640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=47326252&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#47326252
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#10200265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=10200265&dopt=GenBank
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=6505156&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#6505156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=15435411&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#15435411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=81113757&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#81113757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=78250294&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#78250294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=79285852&dopt=GenBank
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#79285852
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These three ESTs were from different sources. The BE042890.1 EST (Figure 3.40 

A) was generated from lung tissue and contains the Exon 1-Exon 2A boundary. The 

U80757.1 EST (Figure 3.40 B) had been detected in foetal brain cDNA during a 

study that involved using a RED assay to detect any repeat expansions in brain 

tissue [Margolis et al., 1997]. The third EST, BE779067 (Figure 3.40 C), was isolated 

from human retinoblastoma tissue and contained 2 base pairs of Exon1 and the 

entire Exon 2A. 

 
gb|BE042890.1| ho30c07.x1 NCI_CGAP_Lu24 Homo sapiens cDNA clone IMAGE:3038892  
mRNA sequence. 
Length=457 
CONTAINS EXON 1 /2A BOUNDARY Lung  
Score =  527 bits (285),  Expect = 5e-147 
Identities = 300/306 (98%), Gaps = 6/306 (1%) 
Strand=Plus/Plus 
 
Query  516  ACGCACGGATTCAAGGGGCGCTACGGGGTGCGGGAGTGCGCGGGCAACGGGGCCAAATAC  575 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  2    ACGCACGGATTCAAGGGGCGCTACGGGGTGCGGGAGTGCGCGGGCAACGGGGCCAAATAC  61 
 
Query  576  GAAGGGACCTGGAGCAACGGGCTGCAGGACGGCTACGGGACCGAGACCTACTCGGACGGA  635 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  62   GAAGGGACCTGGAGCAACGGGCTGCAGGACGGCTACGGGACCGAGACCTACTCGGACGGA  121 
 
Query  636  GATGCCACCGCATTCGGGGCAGAGCCGGGGCCGGAAGccagggagctgcctgctgctgct  695 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  122  GATGCCACCGCATTCGGGGCAGAGCCGGGGCCGGAAGCCAGGGAGCTGCCTGCTGCTGCT  181 
 
Query  696  gctgctgctgctgctgctgctgctgctgctg-t-----aagatggtttctgtgcagggAA  749 
            ||||||||||||||||||||||||||||||| |     |||||||||||||||||||||| 
Sbjct  182  GCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGTAAGATGGTTTCTGTGCAGGGAA  241 
 
Query  750  CCTTGGCCGGCTCTGCAGCTGCCCGCCTGCCTGGACTCTCCGATATCCACTCCTCAGTGC  809 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  242  CCTTGGCCGGCTCTGCAGCTGCCCGCCTGCCTGGACTCTCCGATATCCACTCCTCAGTGC  301 
 
Query  810  ACCTGA  815 
            |||||| 
Sbjct  302  ACCTGA  307 
 
 
 
gb|U80757.1| U80757 Human fetal brain (R.L.Margolis) Homo sapiens cDNA, mRNA  
Length=2107 
2 BP OF EXON 1 AND ENTIRE EXON 2A  

      Score =  320 bits (173),  Expect = 1e-84 
Identities = 181/184 (98%), Gaps = 3/184 (1%) 
Strand=Plus/Minus 
 
Query  635   AGATGCCACCGCATTCGGGGCAGAGCCGGGGCCGGAAGccagggagctg-c--ctgctgc  691 
             ||||||||||||||||||||||||||||||||||||||||||||||||| |  ||||||| 
Sbjct  2009  AGATGCCACCGCATTCGGGGCAGAGCCGGGGCCGGAAGCCAGGGAGCTGCCTGCTGCTGC  1950 
 
Query  692   tgctgctgctgctgctgctgctgctgctgctgctgtaagatggtttctgtgcagggAACC  751 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1949  TGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGTAAGATGGTTTCTGTGCAGGGAACC  1890 

(A) 

(B) 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=8359943&dopt=GenBank
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=2565083&dopt=GenBank
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Query  752   TTGGCCGGCTCTGCAGCTGCCCGCCTGCCTGGACTCTCCGATATCCACTCCTCAGTGCAC  811 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1889  TTGGCCGGCTCTGCAGCTGCCCGCCTGCCTGGACTCTCCGATATCCACTCCTCAGTGCAC  1830 
 
Query  812   CTGA  815 
             |||| 
Sbjct  1829  CTGA  1826 
 
 
gb|BE779067.1| 601464841F1 NIH_MGC_67 Homo sapiens cDNA clone IMAGE:3867947  
5', mRNA sequence. 
Length=902 

      Score =  241 bits (130),  Expect = 8e-61 
Identities = 179/199 (89%), Gaps = 18/199 (9%) 
Strand=Plus/Plus 
2BP OF EXON 1 AND EXON 2A retinoblastoma 
 
Query  635  AGATGCCACCGCATTCGGGGCAGAGCCGGGGCCGGAAGccagggagctgcctgctgctgc  694 
            ||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  188  AGATGCCACCGGATTCGGGGCAGAGCCGGGGCCGGAAGCCAGGGAGCTGCCTGCTGCTGC  247 
 
Query  695  tgctgctgctgctgctgctgct-gctgc-tgctg-t--aag-atggtttct-gtgcaggg  747 
            |||||||||||||||||||||| ||||| ||||| |  ||| ||||||||| |||||||| 
Sbjct  248  TGCTGCTGCTGCTGCTGCTGCTAGCTGCATGCTGCTGTAAGCATGGTTTCTAGTGCAGGG  307 
 
Query  748  -AACC-TTGGC-CGGCTCTGC-AGCTGCCC-GCCTGCC-TGG-ACTCTCCG-ATATCC-A  798 
             |||| ||||| ||||||||| |||||||| | ||||| ||| |||||||| |||||| | 
Sbjct  308  CAACCATTGGCACGGCTCTGCCAGCTGCCCAGACTGCCATGGCACTCTCCGCATATCCCA  367 
 
Query  799  CTCCTCAG-TGCACC-TGA  815 
            |||||||| |||||| ||| 
Sbjct  368  CTCCTCAGATGCACCGTGA  386 
 
 

   Figure 3.40: ESTs that contain Exon 1 and Exon 2A of JPH3 alternatively spliced mRNA.  
 

This investigation showed that a transcript wherein Exon 1 is spliced to a terminal 

exon containing the repeat does exist. Furthermore, this provides independent 

confirmation of the results of a study done by Holmes et al., [2001] which used RT-

PCR and gene prediction programmes to show that the repeat expansion which 

causes HDL2 occurs in an alternatively spliced version of the JPH3 gene.

(C) 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=10200265&dopt=GenBank
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Chapter Four: Discussion 

 

The primary objective of the present study was to ascertain the molecular cause of 

dementia and movement disorders in a South African family of Mixed Ancestry. After 

screening several novel loci and eliminating several potential disorders, it was 

determined that this family had Huntington’s disease-like 2 (HDL2) [Bardien et al., 2007]. 

The expanded repeats ranged from 42-59 repeats in three affected family members. 

HDL2 is a rare, autosomal dominant disease that occurs predominantly, if not 

exclusively, in individuals of Black African ancestry [Santos et al., 2008]. A possible 

reason for this may be that the distribution of the CTG repeats in the JPH3 gene within 

the Black African population is larger in comparison to other population groups which 

would potentially predispose this group to repeat expansions in the pathogenic range. 

This was investigated in a pilot study by determining the repeat distribution amongst 

three South African sub-populations. The results showed a statistically significant 

difference in the distribution of the repeats between the Black African and the Caucasian 

ethnic groups.   

 

Although it is known that HDL2 is caused by a triplet repeat expansion in the JPH3 gene, 

the mechanism of pathogenesis is as yet unclear. Therefore any research done on this 

topic may provide important insights in terms of managing the disease and developing 

suitable therapies. Given this, the present study also investigated factors that could 

possibly contribute to understanding the pathogenesis of this disease.  

 

The JPH3 expanded repeat is located in an alternatively spliced version of the gene. In 

the present study, it was determined whether the JPH3 mRNA transcripts could be 

detected in RNA derived from foetal brain. In addition, even though JPH3 is thought to 

be almost exclusively expressed in brain tissue, it was investigated whether the 

alternatively spliced transcript could be detected in the blood of HDL2 affected 

individuals due to the process of illegitimate transcription. Neither of the transcripts could 

be detected in transformed lymphocytes, however both transcripts were detected in 

foetal brain RNA.  
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4.1  Exclusion of loci  

 

Inherited dementias are caused by neurodegenerative diseases such as HD or 

Alzheimer’s disease. In studies of families with severe dementia of unknown genetic 

origin, several diseases need to be excluded before novel loci are screened. HD, SCAs, 

DRPLA, FENIB and PD are common candidate diseases to exclude in cases of familial 

dementia where a pathogenic mutation needs to be determined [Filla et al., 2002]. In the 

present study several of these candidate disorders were excluded. The loci for HD, 

FENIB, DRPLA, SCAs (types 1, 2, 3, 6 and 7) and the PARK2 gene were screened. In 

addition, loci implicated in MELAS, MERRF, Leighs’ disease and other novel 

mitochondrial loci were also screened. All of these loci were excluded as being the 

disease-causing mutation. 

 

For all the candidate loci, the proband was screened initially and any possible mutation 

was then assessed in other family members and ethnically matched controls. In the 

cases where a novel variant was identified, the variant was assessed for possible 

pathogenicity according to three criteria. Firstly, the sequence variant had to segregate 

in all affected family members and be absent in clinically unaffected family members and 

ethnically matched controls. Secondly, if the variant causes a non-synonymous change 

in the amino acid sequence of the protein, it had a greater potential of being pathogenic. 

Thirdly, if the variant occurs in a region of the gene which is evolutionarily conserved 

across species, it has an increased possibility of being pathogenic.  

 

In this study three novel sequence variants were identified in the MT-ND1 and MT-ND2 

genes in the mitochondrial genome. These three variants occurred in both affected and 

clinically unaffected members of Family R. These novel variants were deposited into the 

Mitomap database under the accession numbers 20061030001, 20061030002 and 

2006103003. Because mitochondrial DNA is essential in determining lineages of 

individuals, the reporting of novel variants may be useful in forensics and population 

genetics studies. Mitochondrial DNA is highly variable and prone to mutations. In fact, it 

is estimated that the mutation rate in mitochondrial DNA is 10-20 times higher than that 

of nuclear genes [Strachan and Read, 1996]. It is therefore difficult to prove the 

pathogenicity of any novel mitochondrial sequence variant.  
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Several sequence variants were identified in the PARK2 gene but were excluded as 

being the causative mutation because they are known polymorphisms and were 

previously shown to be present at similar frequencies in individuals with Parkinson’s 

disease and “healthy” controls [West et al., 2002, Lincoln et al., 2003 and Kay et al., 

2007]. Kay et al. [2007] argued that some of the so-called “mutations” in the PARK2 

gene are found in equal distribution among PD patients and healthy controls. The first 

stage of their study found that the frequency of the IVS8+48 C>T variant was reduced in 

PD patients compared to the unaffected control group. However, on analysis of a larger 

sample size this tentative bias fell away and the presence of this polymorphism did not 

differ significantly between the PD and control groups. In the same study the V380L 

polymorphism was also assessed and occurred at the same frequency in both PD 

patients and controls. Similarly, Lincoln et al. [2003] considered both the V380L and 

D394N to be normal variants as both of them occurred at equal frequencies in PD 

patients and controls. The -227A>G variant is found in the promoter region and was 

initially thought to influence the transcription of the gene. However, there was no protein 

binding sight in close proximity to this SNP and it was therefore concluded that this SNP 

had no effect on the functionality of the gene [West et al., 2002]. This group showed that 

the distribution of this variant did not differ significantly between 196 control individuals 

and 319 PD patients.  

 

While many common diseases are not caused by SNPs, the interaction of SNPs in 

multiple genes, coupled with non-genetic risk factors all contributes to the phenotype of 

the disease. Furthermore, SNPs may also affect drug therapy and influence the 

manifestation of the disease [Pirmohamed and Park, 2001]. It is therefore important to 

identify SNPs in candidate disease genes as it may explain clinical heterogeneity, drug 

resistance and why certain populations are more susceptible to a particular disease than 

others. 
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4.2  Clinical analysis of affected family members 

 

It was determined that Family R had HDL2, however, the clinical presentation of the 

disease in this family presented differently to other reported HDL2 cases. Firstly, the 

pedigree showed a strong trend towards a maternal pattern of inheritance as opposed to 

the HDL2 index family (Pedigree W) which displayed a strictly male-to-male transmission 

across three generations [Margolis et al., 2001]. Due to this potential bias for maternal 

inheritance, several candidate loci on the mitochondrial genome were screened. As the 

disorder was in fact autosomal dominantly inherited, it was concluded that this potential 

bias was most likely a chance occurrence just as Pedigree W’s potential paternal bias 

was later determined to be a chance event. However, this bias should not be completely 

disregarded as it is still unknown whether the sex of the transmitting parent plays a role 

in the aetiology of the disease. More families will need to be studied in order to 

determine this. Patients should therefore be screened for HDL2 regardless of family 

history and pattern of inheritance.  

 

Secondly, several groups emphatically state that HDL2 is indistinguishable from HD 

[Margolis et al., 2004 and Stevanin et al., 2003]. The clinical examination of two of the 

three affected Family R members showed that they presented with a phenotype atypical 

to HD. One of the family members had cortical myoclonus while the other had 

parkinsonism [Bardien et al., 2007]. Moreover, one case showed marked cerebral 

atrophy and normal caudate nuclei whereas in the advanced stages of HD, the caudate 

nuclei are usually severely atrophied and are affected to a greater degree than the 

cerebral cortex [Margolis et al., 2006].  

 

In addition, several features of the disease in Family R differ from those reported in the 

index pedigree. The autopsy examination of the first available case of Pedigree W 

showed that the caudate was severely atrophied and the white matter of the cerebral 

cortex was well myelinated after 15 years of disease duration. Since then four other 

brains have been examined and all these findings were similar to the first case. In 

contrast, the proband of Family R showed relative sparing of the caudate nucleus after 

15 years of the disease and extensive white matter changes. Furthermore, no 

acanthocytosis were observed in peripheral blood smears as had been reported in some 
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cases of HDL2 [Walker et al., 2003]. This finding lends support to the proposition that 

acanthocytosis might display reduced penetrance in HDL2 cases.  

 

A key point to note from the clinical analysis is that HDL2 appears to be a disease that 

has a highly variable clinical phenotype and differs considerably even amongst family 

members. For example, in Family R, (as stated previously) one affected family member 

had parkinsonism while the other had features of cortical myoclonus, which are two 

distinct movement disorders. This variability demonstrates that HDL2 is phenotypically 

heterogeneous. Whether the SNPs identified in the MT-ND1, MT-ND2 and PARK2 

genes are accountable for the clinical heterogeneity observed in this family could not be 

determined. A larger number of affected family members would be needed to determine 

whether a correlation between a particular SNP and the clinical features exists.  

 

The analysis of 26 HDL2 cases, in which the age of onset and repeat length was known, 

showed that a longer repeat length correlated with an earlier age of onset (anticipation) 

[Margolis et al., 2004]. This is a common feature of repeat expansion disorders and 

lends support to the fact that the repeat expansion is the causal mutation. It also 

suggests that a longer repeat length leads to more severe phenotype [Margolis et al., 

2004]. Although the recorded age at onset was estimated and based on verbal accounts 

from other family members, a similar correlation between age at onset (AAO) and repeat 

length was observed in affected Family R members. On examination of three affected 

family members it was found that the individual with 59 repeats had an AAO of 25 years 

while the individuals with 52 repeats and 49 repeats corresponded to an AAO of 39 and 

48 years, respectively. In addition each repeat is roughly equivalent to a 0.4 year earlier 

AAO. This differs greatly compared to the estimate of 1.24 year earlier AAO per repeat 

that was observed in the 26 cases described by Margolis et al. [2004]. 

 

4.3  Genetic ancestry testing 

  

To date, nearly all reported cases of HDL2 have been in individuals of definite or 

probable Black African ancestry. This tendency has further been supported by the 

absence of JPH3 repeat expansions in a large cohort of Caucasians from Germany and 

Austria as well as France and North America [Bauer et al., 2002 and Stevanin et al., 

2003]. Furthermore, individuals from Japan, with an HD-like phenotype, were also 
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negative for HDL2 expansions. Even two HDL2 cases, initially considered to be of non-

African origin, were later found to have possible African origins. One of these cases, an 

individual from Morocco, was shown to originate from an area in Morocco predominantly 

occupied by Africans. The other case, a Mexican family, came from an area in Mexico 

that was colonised by Africans [Margolis et al., 2004].   

 

The ancestry of Family R was determined by genetic testing of one of the family 

members. The resolved mitochondrial haplogroup, L1d1, represents the maternal 

lineage, which occurs almost exclusively in populations of sub-Saharan Africa. This 

haplogroup is usually associated with the Khoikhoi and San clans of early Africa 

[Barkhan and Soodyall, 2006]. The Y-chromosome haplogroup, representing the 

paternal lineage, FG-M213, occurs predominantly in populations of Asia and Europe 

[Semino et al., 2000]. Upon further analysis it was determined that the paternal 

haplogroup was found in 40 other males from a worldwide survey of 42 000 males. 

Moreover, this haplogroup exactly matched a male of South African Mixed Ancestry in 

the survey [Soodyall H, personal communication].  

 

The ancestry testing performed in this study only reveals the partial ancestry of the 

individual as it does not determine all the possible ancestries that contribute to the 

lineage of this individual, for example the paternal grandmother. However, these results 

strongly suggest that this family member is more likely of Mixed Ancestry as opposed to 

South African Black or Caucasian ancestry. Furthermore, an indigenous African 

maternal lineage and European paternal lineage is typically found in individuals of Mixed 

Ancestry in South Africa [Nurse et al., 1985]. 

 

This is the first published cases of HDL2 in a South African Mixed Ancestry family 

[Bardien et al., 2007] although a preliminary report had indicated 7/20 Black patients 

from South Africa had tested positive for HDL2 [Krause et al., 2002]. A recent report 

described a Brazilian Mixed Ancestry family with HDL2 that has no apparent African 

origins [Santos et al., 2008]. As more knowledge about this disease increases there will 

surely be more reports from different ethnicities. Given this, it is suggested that all 

patients of Mixed Ancestry, that present with an HD-like phenotype but are negative for 

the HD mutation, be screened for HDL2, not only Black individuals. Moreover, it will be 

useful to set up a genetic diagnostic test that will screen for both HD and HDL2 
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simultaneously in cases where an individual of Black African Ancestry presents with an 

HD-like phenotype. Thus far no studies have been done to ascertain whether a genetic 

founder effect in the African population predisposes Africans to developing HDL2.  

 

4.4  Distribution of the JPH3 CTG repeats in the unaffected South   

African population 

 

In the previous population studies that determined the distribution of the repeats in the 

JPH3 gene, the repeat sizes varied between 8 and 28 consecutive repeats in unaffected 

individuals [Bauer et al., 2002 and Stevanin et al., 2003]. It is reasonable to assume that 

larger alleles are prone to expand into the pathogenic range once it reaches a certain 

threshold as reported for HD and SCA [Gomes-Pereira et al., 2004]. To date, this 

threshold has not been established in HDL2, although repeats as short as 33 were 

shown to be unstable in vertical transmission when it expanded to 35 repeats during 

maternal transmission [Margolis et al., 2004]. This implies that a population with a larger 

than average number of repeats could be predisposed to developing HDL2. Since the 

disease only occurred in individuals of Black African ancestry it was hypothesised that 

individuals of Black African ancestry may have larger repeats than other population 

groups. Of relevance, a study done in Serbia assessed the repeat distribution in 198 

healthy individuals from Serbia and Montenegro to determine the risk of this population 

developing HDL2. The repeats ranged from 11 to 18 with 14 repeats being the most 

common. The authors suggested that HDL2 is rare in these populations because the 

repeat distribution was narrow compared to the range of repeats in the North African 

population (8-28 repeats) which consequently had a higher incidence of HDL2 

[Keckarevic et al., 2005]. Similarly, in the present study, the repeat distribution in three 

South African sub-populations was assessed to determine which sub-group had a higher 

risk for developing HDL2. 

 

The pilot study showed a greater diversity in the alleles of Black African individuals (11 

alleles ranging from 8 to 19 repeats) than in either the Mixed Ancestry or Caucasian 

cohorts. Moreover, the diversity in the Mixed Ancestry group (9 alleles ranging from 8 to 

21 repeats) exceeded that of the Caucasian group which had only 7 different alleles 

ranging from 13 to 27 repeats. This can be expected as the Black African population is 
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an older population than both Caucasian and Mixed Ancestry groups and would 

therefore have a greater genetic diversity than either.  

 

The repeats were in Hardy-Weinberg equilibrium for all three groups. However, a 

significant difference in the distribution of the repeats between the Black and Caucasian 

cohorts was observed. A difference was also observed between the Caucasian and 

Mixed Ancestry groups but it was not statistically significant.  

 

The mode for all three groups was 14 repeats as observed in all other population studies 

[Bauer et al., 2002; Keckarevic et al., 2005 and Stevanin et al., 2003]. However, the 

frequency of the 14 repeat allele differs significantly between the South African sub-

populations. The 14 repeat allele was present in 55% of the Caucasian cohort, 33% of 

the Mixed Ancestry cohort and 25% of the Black African group. Again, this infers 

decreased allele diversity in the Caucasian group compared to the Black African and 

Mixed Ancestry groups.  

 

In general, the results of this South African pilot study concurs with other population 

studies in that the mode is 14 repeats, with 16 repeats being the next most common 

allele. Although a significant difference in the distribution of the CTG repeat was 

observed between the Black and Caucasian cohorts, this study did not detect larger 

repeats in the Black African group. A follow-up study with a larger sample size is needed 

to determine whether the Black sub-population has the largest number of repeats and 

are subsequently at a higher risk for developing the disease.  

 

4.5   Independent confirmation of the alternatively spliced JPH3 mRNA 

transcript 

 

The expanded repeat in HDL2 patients occurs in an alternatively spliced version of the 

JPH3 mRNA transcript and due to variable splice acceptor sites the repeat can code for 

polyalanine, polyleucine or fall into the 3’UTR [Holmes et al., 2001]. This was confirmed 

by GENSCAN predictions, the presence of a polyadenylation signal upstream to the 

repeat, as well as the existence of ESTs which are composed of a similar transcript and 

finally, by RT-PCR with primers specific for the repeat [Holmes et al., 2001]. This 

transcript was only detected by one group, so in the present study the occurrence of this 
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transcript was tested for in commercially available foetal brain RNA as well as 

transformed lymphocytes of HDL2 affected family members in order to provide 

independent confirmation of the existence of this alternatively spliced transcript.  

 

Due to the process of illegitimate transcription every mRNA transcript that exists should 

be present in blood at extremely low levels [Chelly et al., 1989]. Chelly et al. [1989] 

showed that variably spliced transcripts of tissue specific genes could be detected in 

non-specific cells such as fibroblasts and lymphocytes. JPH3 is tissue specific and is 

only expressed in the brain [Takeshima et al., 2000]. In the absence of brain tissue from 

affected family members, an attempt was made to detect the transcript in lymphocytes 

because all transcripts should be expressed in blood due to illegitimate transcription. In 

addition, commercially available foetal brain RNA was used as a positive control 

because of JPH3’s brain-specific expression profile.  

 

Both the full length and alternatively spliced versions of JPH3 mRNA were detected in 

foetal brain cDNA but not in lymphocytes. This could be due to the extremely low levels 

at which JPH3 mRNA is expressed in tissues other than the brain. The possibility that 

the quality of the lymphocyte cDNA was at fault was excluded because primers designed 

to amplify a ”housekeeping” gene (HBB) produced the correct product (verified by 

sequencing) in a standard PCR reaction in both tissue types. A housekeeping gene is 

defined as a gene that is expressed in all tissues at relatively similar levels. The HBB 

gene was selected because it is expressed in relatively similar levels in all tissues 

[Shmueli et al., 2003]. Furthermore, HBB is highly conserved throughout different 

species and contains a relatively small intron which makes it easy to amplify in a PCR 

reaction. The primers were designed across exons so that differently sized products 

would be generated for genomic DNA and cDNA. This provided an important control for 

detecting genomic DNA contamination in the cDNA samples.  

 

The initial set of primers designed to amplify the full length JPH3 script was designed to 

amplify across the Exon 2–Exon 3 boundaries. However, the PCR reaction was 

unsuccessful for both lymphocyte and foetal brain cDNA. After extensive attempts at 

optimising the reaction, the PCR still failed. It was suspected that this may be because 

during the cDNA synthesis, the reaction was unable to extend all the way to the 5’ end of 

the mRNA. A second set of primers, closer to the 3’ end of the gene, was designed and 



 

 

109

 

amplified the foetal brain cDNA on the first attempt. This implies that fragments closer to 

the 3’ end of the mRNA may be a better target region to amplify when using cDNA as a 

template. However, the amplification using lymphocyte cDNA was still unsuccessful.  

 

To replicate the results obtained by Holmes et al. [2001] the products generated from the 

PCR fragments with foetal brain cDNA were compared to sequences in the NCBI dbEST 

database. The database contains ESTs which are short randomly sequenced segments 

of cDNA. The database provides parts of gene sequences that are expressed in certain 

tissues, cells or disease states and is useful to confirm the existence of variably spliced 

mRNA isoforms.  

 

The alternatively spliced transcripts generated in the present study showed significant 

alignment with 17 ESTs. However, only three of these ESTs contained a sequence 

wherein Exon 1 was spliced to Exon 2A. These three transcripts were the same as those 

identified by Holmes et al. [2001]. The findings in the present study confirm the existence 

of an alternatively spliced transcript in foetal brain RNA that contains a CTG/CAG repeat 

as proposed by Holmes et al. [2001]. 

 

To further investigate whether JPH3 transcripts were detectable in lymphocytes, an 

exploratory study using real-time PCR was attempted. Real-time PCR is a more 

sensitive method than conventional PCR in that it measures the increase of fluorescence 

produced by the formation of PCR products in real time. In addition, real-time PCR 

enables the amplification of very low levels of template DNA. The melt curve analysis 

helps to determine whether contamination is present as the melt profiles are sequence-

specific. The HBB primers were used initially to determine the optimal concentration of 

the cDNA being used. The PCR using primers for the HBB gene was successful for 

genomic DNA, lymphocyte and foetal brain cDNA and this was confirmed with direct 

sequencing.  

 

Once the optimal cDNA concentrations were attained, PCR with the mRNA specific 

primers for the alternatively spliced and full length JPH3 transcripts were attempted. The 

crossing point (CP) values for most of the reactions were very high (30-35 cycles) and it 

was therefore concluded that these experiments were not optimised. Selected products 

were, however, analysed because JPH3’s expression, especially in the lymphocyte 
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cDNA, was expected to be at very low levels, and would therefore take a larger number 

of PCR cycles in order to produce a PCR product. 

 

No conclusions could be drawn about the detection of either the full length or 

alternatively spliced products in lymphocyte cDNA or whether it is present in blood due 

to illegitimate transcription. These reactions need to be optimised further as most of the 

melt curves still showed non-specific peaks. This section of the study was an exploratory 

endeavour to set up an experimental basis for future real-time assays of HDL2 brain 

tissue. 

 

4.6  Disease mechanisms of HDL2 

 

Several hypotheses describing the pathogenic mechanisms of unstable repeat 

expansion disorders exist although none have been conclusively proven. Expansions 

may occur in non-coding or coding regions and the proposed mechanism of 

pathogenesis depends on where these expansions occur [Gatchel and Zoghbi, 2005]. 

 

 Expansions in the non-coding, regulatory regions generally incur a loss of function 

mechanism in which the gene undergoes transcriptional silencing and the protein is not 

expressed. A well-known disease caused by a loss of function mechanism is Fragile X 

syndrome in which a triplet repeat expansion occurs in the 5’ UTR of the gene and 

inhibits transcription of the gene [Li et al., 2001]. JP3 knock-out mice showed motor 

abnormalities but no developmental impairment. Furthermore, the symptoms of HDL2 is 

much more severe than the phenotype in these mice [Nishi et al., 2002] suggesting that 

a loss of function is not the likely pathogenic mechanism. However, it is possible that 

reduced JPH3 expression may contribute to the pathogenic mechanism because 

untranslated full length JPH3 transcripts were present in the aggregations found in HDL2 

brains thereby insinuating that less transcript was available for translation [Rudnicki et 

al., 2007].  

  

Expansions in the coding region of a gene, often resulting in long polypeptide tracts, 

commonly polyglutamine tracts, have been associated with a gain of function 

mechanism of pathogenesis. A polyglutamine disease usually affects a specific cell type 

resulting in a disease phenotype that has selective neurodegeneration [Zoghbi and Orr, 
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2000]. Another feature of polyglutamine diseases is the presence of aggregations of 

mutant protein and other components of the ubiquitin-proteasome system in the nucleus 

[Ciechanover and Brundin, 2003]. Thus far there has been no evidence to suggest that 

HDL2 is a polyglutamine disease, although clinically, it has features of a polyglutamine 

disease such as the presence of nuclear aggregations and selective neuronal 

degeneration.   

 

A third proposed mechanism of pathogenesis describes expanded repeats in non-coding 

regions of the gene resulting in altered function due to mutant RNA and protein 

interactions. It has been suggested that in this mechanism the RNA containing the 

expanded repeat binds to RNA-binding proteins which are involved splicing, thereby 

disturbing normal mRNA splicing and forming aggregations [Gatchel and Zoghbi, 2005]. 

Increasing evidence suggest that HDL2 is due to a RNA-toxicity. CAG probes detected 

RNA foci in 30% of neurons in HDL2 brains. Probes specific for the alternatively spliced 

JPH3 mRNA co-localized with the CAG probes in specific regions of the brain [Rudnicki 

et al., 2007]. In addition, the cellular expression JPH3 mRNA containing expanded CUG 

repeats produced RNA foci which were toxic to the cell.   

 

Currently it is unknown how the repeat affects the mechanism of pathogenesis but 

further molecular studies may provide insight into this and may eventually lead to 

therapeutic intervention. The use of animal models to determine which pathogenic 

mechanism is involved in HDL2 is crucial.   

 

4.7.   Conclusions 

Limitations of this study 

 

More information about Family R would have been useful to assess the features of the 

disease in this family. Recruiting and examining more family members would have 

increased the significance of the differences in the clinical phenotype between family 

members. Screening more family members would have been valuable in determining 

whether the variants found in the MT-ND1, MT-ND2 and PARK2 genes were responsible 

for the clinical heterogeneity observed in this family. Unfortunately many of the affected 

family members were deceased and the individuals in the fourth generation were too 
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young and may have been pre-symptomatic. As the disease was a ‘sensitive topic’ to 

this family, it was difficult to recruit other family members.  

 

A study using a larger sample size may answer the question of whether Black Africans 

are predisposed to developing HDL2 due to the repeat size in this population group. 

 

With regards to the mRNA section of this study, precautions were taken to avoid RNA 

degradation but it may still have occurred because RNA is unstable and easily 

degraded. Due to time constraints, the real-time PCR reactions were not optimised and 

therefore these results are equivocal. They could be optimised by varying the PCR 

cycling parameters and template cDNA concentration or by the addition of PCR 

additives.  

 

Due to time constraints, the possible significance of the novel polymorphisms identified 

in the MT-ND1 and MT-ND2 genes could not be evaluated. It would have been 

advantageous to determine the frequency of the observed polymorphisms in a healthy 

control group, which could have ascertained whether the polymorphisms were significant 

in the manifestation of the disease. 

 

Future work 

  

It would be interesting to determine whether all HDL2 families worldwide share a 

common haplotype as the disease may have a genetic founder effect. The analysis of 

the Y-chromosomes and mitochondrial haplogroups for common SNPs or STRs to trace 

founder effects has previously been useful [Wise et al., 2005]. The information gathered 

would be useful in tracing other family members and offering genetic counselling, genetic 

testing and improved clinical management of the affected family members.  

 

The frequency of HDL2 cases in South Africa should be assessed in order to determine 

the burden of this disease in South Africa as it has been proposed that HDL2 might be 

as common as HD amongst Black South African individuals. This could be done by 

recruiting samples from all the major movement disorder clinics and diagnostic 

laboratories as was done in the study by Bauer et al., [2002].   
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Investigating common pathways affected by HD, HDL2 and other neurodegenerative 

diseases may provide target proteins to which therapeutic drugs could be designed.    

 

At the time of this study, brain tissue of the HDL2 affected Family R members was not 

available. Recently brain tissue from a deceased affected family member has been 

acquired and several studies on the tissues from the various brain regions could be 

proposed: 

 

Although a commercial antibody for the mouse orthologue of JPH3 is available, it is not 

known whether it would be effective for detection of the human protein and therefore it is 

proposed that antibodies against the human JPH3 full length and alternatively spliced 

forms be raised. If a successful human antibody can be created, immunohistochemical 

studies can be used to determine if the expression levels of both forms differ in different 

regions of the brain. In addition, one would be able to determine which version of the 

mRNA transcripts is predominantly expressed in those areas of the brain which are more 

severely affected in HDL2 patients.  

 

In all neurodegenerative diseases, the composition of the aggregates or inclusions have 

provided evidence of which gene may harbour the disease-causing mutation. The 

composition, morphology and histology of the intra-nuclear inclusions of the HDL2 brain 

should be investigated as it may provide vital information about the mechanism of   

pathogenesis of this disease. Recent studies proposed that the cellular toxicity observed 

in HDL2 is due to RNA transcripts as has been reported in myotonic dystrophy Type 1 

[Rudnicki et al., 2007]. The authors suggest that other transcripts of JPH3 may also be 

present and what those transcripts are remains to be determined.  

 

It would be interesting to determine the frequency of the inclusions in different regions of 

the HDL2 brain as one would expect the number of inclusions to increase in areas of the 

brain which are more severely affected. In diseases exhibiting anticipation, a larger 

repeat size may lead to a more severe phenotype. It would be expected that the number 

of these inclusions will differ between individuals with different repeat sizes and it will 

therefore be useful to document the number of inclusions as this can be used later in a 

comparative study once more cases become available. 
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A question that has thus far been unanswered is whether the repeat expansion disrupts 

the properties of the junctional complexes. The proposed function of JPH3 is to facilitate 

cross-talk across the junctional membranes. It can therefore be assumed that this 

function will be disrupted in the HDL2 cases. By using electron microscopy, it would be 

possible to compare the morphology and functionality of the junctional complexes 

between affected and unaffected regions of the brain. This could shed some light on why 

the JPH3-knockout mice do not exhibit such severe neuronal dysfunction as is seen in 

HDL2 [Nishi et al., 2002].  

 

Conclusive statements 

 

In summary, the disease-causing mutation underlying the disease phenotype in this 

Mixed Ancestry family was identified as a repeat expansion in the JPH3 gene. A genetic 

pre-symptomatic predictive test with informed counselling can now be made available to 

at-risk family members. In this regard, the wife of one of the affected family members 

has approached the genetic counsellor, Prof Greetje de Jong, and requested predictive 

testing for her 17-year old daughter. She was advised to wait until her daughter is over 

18 years.  

 

This molecular diagnosis is of great significance as it may provide insight to the course 

of the disease thus enabling the affected individuals and their families to make informed 

decisions on life or family planning. Identifying the genetic cause for a disease can assist 

the family of affected individuals to prepare themselves financially as medical costs can 

be exhaustive. Also, knowing the underlying genetic mutation enables clinicians to make 

informed choices about the treatment and clinical management of the individual instead 

of spending unnecessary resources on different therapies that are unsuitable. This is 

especially true for movement disorders and dementias, which are symptoms for a large 

number of different disorders.  

 

Identifying a family with HDL2 is significant because this is a very rare disorder. By 

studying this disease in different families, the clinical phenotype can be expanded on 

and finer description of this heterogenous disease can be formulated. Furthermore, 

studying HD-like disorders may provide insight into the pathogenic mechanisms of other 

common neurodegenerative disorders.   
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 Molecular investigations of this kind may provide insight into the disease which may 

identify disease modifiers or predisposing alleles. It may also lead to the development of 

disease models and novel therapies. The allele frequency of the HDL2 repeat was 

determined in order to provide an indication of the risk for developing HDL2 among 

South Africans. This study showed that the repeat sizes in the South African population 

was the same as the distribution of repeat sizes worldwide, inferring that individuals from 

South Africa are not at a higher risk for developing the disease than other nationalities. 

Furthermore, this study strongly suggests that South African patients presenting with an 

HD-like disorder, that are negative for the HD mutation, be tested for HDL2 regardless of 

their family history and ancestry.  

 

It is hoped that some aspects of this study may contribute to a better understanding of 

this rare and devastating disease and that it will provide data that may contribute 

towards the design of a possible cure. However, it is acknowledged that a lot more 

intensive research is needed to shed some light on the enigma of neurodegenerative 

diseases that appear to affect only certain brain cells. 
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 APPENDIX 1: Consent forms  
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APPENDIX 2: Solutions, media and buffers  

 

Sodium Borate (SB) buffer (20Xstock) 

38.137g of Na2B4O7 was dissolved in sterile distilled water to make up 1L. For 1XSB 

running buffer, a 100ml of the 20Xstock was made up to 2L with sterile distilled water 

(H2O).  

 

 TBE buffer (10Xstock) 

0.89M Tris-HCl, 0.89M boric acid and 20mM NaEDTA (at pH 8) was added to sterile 

distilled water to make up a 10XTBE stock solution. 

 

Bromophenol Blue Loading Dye  

0.2%(w/v) bromophenol blue; 50% glycerol and 10mM TRIS was added together and 

stirred gradually until all the ingredients were properly mixed.  

 

Luria-Bertani Medium  

5g of Bacto tryptone; 2.5g of Yeast extract and 5g of NaCl were added to a final volume 

of 500ml distilled H2O. The solution was autoclaved at 121ºC and left to cool before 

antibiotics were added where necessary. For Luria-Bertani Agar, 8g of agar was added 

to the solution. After autoclaving the solution was cooled to 55ºC before IPTG and X-

GAL were added. Approximately 15ml of this solution was poured into Petri dishes and 

allowed to solidify under sterile conditions.   

 

CAP Buffer  

10mM PIPES; 60mM CaCl2 and15% glycerol was made up to a final volume of 250ml 

with sterile Millipore H2O. The solution was pH to 7.0 with NaOH and stored at 4ºC. 
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APPENDIX 3: Phenol Chloroform method for DNA Extraction  

[Corfield et al., 1993] 

Reagents:  

• Cell lysis buffer (4ºC): 

 109.5g sucrose; 10ml 100% Triton X; 5ml 1M MgCl2 and 10ml 1M TRIS-HCl were 

mixed together and stored at 4ºC. 

• Phenol:  

pH to 8 with buffer. The buffer, phenol and equal volume Chloroform were mixed and 

stored at 4ºC overnight before use.   

• Na-EDTA: 

 18.75ml 4M NaCl was added to 250ml 100mM EDTA.  This was made up to 1L with 

sterile distilled H2O, pH to 8 and autoclaved. 

• Octonol-Chloroform: 

480ml Chloroform was added to 20ml octonol, mixed well and stored in a dark area.  

• 10%SDS:  

10g SDS was added to a 100ml of sterile distilled H2O and incubated at 37ºC to 

dissolve SDS. 

• 3M Sodium-acetate, pH to 6 with acetic acid.  

• 10mg/ml Proteinase K (Roche’) 

• 96% ice cold Ethanol  

• 1XTE solution 

• 70% Ethanol 

 

Method:  

 

1. 5ml EDTA blood samples were transferred to 45ml sterile tubes, cold Lysis buffer was 

added to the 45ml mark and vigorously shaken. The tubes were incubated on ice for 10 

minutes. The cells were then vortexed and pelleted at 3000rpm for 10 minutes after 

which the supernatant was poured off.  

 

2. The pellet was rinsed with cold lysis buffer a few times until the pellet was light pink. 
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3.  900µl Na-EDTA and 100µl 10% SDS was added to each pellet. At this point the 

pellets were either stored at -80ºC or used for DNA extraction as follows.  

 

4. 100µl 10mg/ml Proteinase K was added to each tube and the tubes were incubated at 

37ºC, overnight.  

 

5. 2ml Distilled H2O and 500µl 3M Sodium-acetate was added to each tube and the 

contents were mixed by inverting the tube.  

 

6. 2.5ml Phenol-chloroform was added to each tube. The tubes were placed on a shaker 

(at a 40º angle to the platform of the shaker) at the speed of 1400rpm for 10 minutes. 

   

7. The contents were then transferred to a 10ml Corex glass tubes and spun at 7000rpm 

for 12 minutes at 4-10ºC. 

 

8. A 3ml Pasteur pipette was used to transfer the supernatant to a clean Corex tube 

without disturbing the interphase. 

 

9. 2.5ml Octonol–chloroform was added to the tube containing the supernatant. The tube 

was sealed with a leak proof top and slowly mixed by inversion until the solution turned 

milky. 

 

10. The tops were removed from the tubes and the tubes were spun at 7000rpm for 10 

minutes at 4ºC. 

 

11. The supernatant was transferred to a 12ml falcon tube.  5-7ml ice cold 96% Ethanol 

was added to the tube and slowly mixed until the DNA precipitated.  

 

12. Once the DNA precipitate was visible a pipette was used to transfer the DNA to a 

1.5ml Eppendorf tube.  

 

13. The tube was filled with 70% Ethanol and spun for 3 minutes at 14 000rpm.  The 

Ethanol was slowly poured off so as not to loose the pellet. This step was repeated 

once.  
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14. The pellet was air dried at room temperature.  

 

15. 500µl 1XTE solution was added to each tube and the tubes were incubated at 37ºC 

overnight or for 10 minutes at 65ºC. 

 

16. The tubes were placed on a rotating wheel at 30rpm for 3 days after which the 

optical density and the purity of the DNA was checked with the NanoDrop®. 

 

APPENDIX 4: SSCP Gel preparation  

Reagents:  

Table A. Components for 8% and 10% SSCP gels 

 8% Gel 10% Gel 

Urea  24g 24g 

Sterile distilled H2O 91.8ml 84ml 

10XTBE 8ml 8ml 

Glycerol 8ml 8ml 

10% APS 1.6ml 1.6ml 

TEMED 160µl 160µl 

 

SSCP Loading Dye Reagents:  

SSCP Loading Dye contained 95% formamide; 20mM EDTA; 0.01% Bromophenol Blue 

and 0.05% of Xylene cyanol. 

 

Method:       

Glass plates and tanks were cleaned and prepared. A sheet of Gelbond® PAG film 

(Cambrex Bio science, Rockland, USA), was placed between the glass plates where it 

covalently bonded to the acrylamide gel during polymerization, thus providing support. 

Urea, sterile distilled H2O, 10XTBE and glycerol was added to a sterile beaker while 

stirring continuously.  10% APS and TEMED were added last (Table A). The solution 

was then immediately poured into the cast that had previously been prepared. The gels 

were kept in the cast until set. Meanwhile, 0.5XTBE running buffer was poured into the 

tank. The samples were prepared by combining equal volumes of SSCP loading dye to 

the samples and placing them on a heating block at 94.5ºC for 5 minutes. The samples 
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were incubated on ice for 5 minutes or until just before loading.  The gels were run at 23 

Watts at 4ºC overnight.  

 

APPENDIX 5: Silver staining of SSCP gels  

 

Reagents:  

• 1% AgNO3 (Solution B) :  

          1g AgNO3 was dissolved in distilled sterile H2O to make up 1L. 

• Developing Solution (Solution C): 

15g NaOH; 0.1g of NaBH4 and 4ml of Formaldehyde was dissolved in sterile 

distilled H2O to make up 1L. 

 

Method:  

500ml Solution B was added to a tray containing the SSCP gel .This tray was placed on 

a shaker at 3000rmp for 10 minutes. Solution B was then poured off and the gel was 

rinsed with sterile H2O. 500ml Solution C was then added to the tray containing the gel 

and this was placed on a shaker for a further 15 minutes or until the bands could be 

clearly seen. The solution was than poured off and the gel was once again rinsed with 

sterile H2O. The gels were then left to dry and sealed in plastic.  

 

APPENDIX 6: Preparation of E.coli DH5α competent cells for 

transformations 

 

Reagents and materials: 

• Sterile inoculation loop 

• LB media (Appendix 2)    

• 2L Elenmeyer flask 

• CAP Buffer 

 

Method:  

1. A loop of E.coli DH5α was scraped from a frozen stock and was inoculated into a 

sterile Falcon tube containing 10ml LB media (Appendix 2). 
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2. The media was incubated overnight at 37ºC with constant shaking at 200rpm. The 

following day 1ml of this culture was added to 200ml of LB in a 2L Erlenmeyer flask with 

a cotton wool plug.  

 

3. The flask was then further incubated at 37ºC with gentle shaking at 85rpm until the 

cells were grown to mid log phase  (Optical Density= 0.4-0.6nm).  

 

4. The media containing the cells were aliqouted into 4 X 50ml sterile Falcon tubes and 

centrifuged for 15 minutes at 4ºC. All the steps thereafter were carried out in a 4ºC cold 

room. 

 

5. The supernatant was removed and the cells were resuspended in one third the 

volume of ice cold CAP buffer (Appendix 2). 

 

6. The cells were once again centrifuged at 3000rpm for 15 minutes to pellet the cells 

and the supernatant was discarded.  

 

7. 5ml Cold CAP buffer was added to the pellet and the pellet was gently resuspended 

by pippeting. 200µl Aliqouts of the suspension was stored at -70ºC until further use.  

 

APPENDIX 7: Lymphocyte separation and transformation 

 

Materials:  

• RPMI medium:  RPMI 1640 with 15% foetal calf serum and 1% penicillin or 

streptomycin.  

• EBV medium : Epstein Barr Virus Medium  

• Histopaque: Histopaque 1077 

 

Method:  

1. RPMI and EBV medium were heated to 37ºC and Histopaque to 22ºC. 

2. 3ml Histopaque was syringed into a sterile tube and 4-5ml blood collected in 

Heparin tubes were slowly added so that it formed a separate layer. 

3. The tube was centrifuged at 1800rpm for 20 minutes to further separate the 

phases.  
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4. The white blood cell layer was removed using a sterile Pasteur pipette and 

placed into a clean, sterile tube to which 3ml RPMI was added. The tube was 

spun for a further 30 seconds at 1000rpm.  

5. The cell pellet was resuspended in 0.3ml RPMI medium and poured into a 25cm3 

flask containing 1.5ml EBV media.  

6. The flask was incubated in an upright position for a week at 37ºC, with 5% 

Carbon Dioxide and 90% humidity. 

7.  0.5ml RPMI media was added to the solution twice weekly until a final volume of 

5ml was reached. At various intervals the solution was viewed under a 

microscope to monitor cell growth.  

8. After a week the cell culture was spun at 1000rpm for 30 seconds. The 

supernatant was poured off and the cells were regrown to 5ml again in order to 

concentrate the cells. 

9. The cells were transferred to a 75 cm3  culture flask and 10ml RPMI medium was 

added twice weekly or until a final volume of 50ml was reached.  

10. The cells was frozen in liquid nitrogen by adding with 10% DMSO and RPMI 

medium in cryovials and stored at -70ºC.  

 

APPENDIX 8: RNA isolation using TRIzol  

. 

Reagents and materials:  

• 2ml Screw cap containing Hybaid ribolyser blue beads (Qiagen) 

• 2ml Tube containing Phase-Lock gel heavy (Eppendorf) pelleted at max 

speed for 20-30s 

• Chloroform:isoamyl alcohol (24:1)  

• Isopropanol  

• TRIzol® Reagent  (Invitrogen)  

• RNAse free water or 1ml DPEC was dissolved in IL water. This was 

incubated at 37ºC over night and autoclaved twice.  

 

Method: 

1. 200µl Transformed lymphocytes (Appendix 7) were pelleted at 3000rmp for 15 

minutes and the supernatant was poured off. 
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2. The cells were resuspended in 1ml of TRIzol and the suspension was transferred to a 

2ml screw cap tube containing ribolysing beads. This process was performed on ice. 

 

4. The cells were mechanically disrupted by vortexing for 20 seconds at a speed of 6 for 

3 cycles. The samples were cooled down after each cycle by placing it on ice for 2 

minutes between pulses.   

 

5. Thereafter the samples were centrifuged at 13000rpm for 45 seconds. 

 

6. The TRIzol solution above the beads was transferred into a 2ml tube containing 

phase-lock gel and 300µl Chloroform:isoamyl alcohol. 

  

7. The tubes were inverted gently but rapidly for 15 seconds and incubated at room 

temperature for 2 minutes.  

 

8. The tubes were centrifuged at 13000rpm for 5-10 minutes after which the top aqueous 

layer was transferred to a clean sterile tube.  

 

9. An equal volume of isopropanol was added to the tube containing the aqueous layer 

and mixed by inverting. This solution was stored at -20ºC overnight to precipitate the 

nucleic acid.  

 

10. The precipitate was collected by centrifugation at 12000rmp for 20 minutes in a 4ºC 

cold room and the supernatant was discarded.  

 

13. The pellet was washed once with 1ml 70% ethanol and centrifuged at 12000rpm for 

5 minutes at 4ºC. The ethanol was removed by aspiration and the pellet was air-dried. 

  

15. The RNA was dissolved in 20-40µl RNAse-free water. The sample was treated with 

Ambiance Turbo DNAse ™ Free as specified by the manufacturer.  
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• BioEdit: http://www.mbio.ncsu.edu/BioEdit/page2.html 

• ClustalW sequence alignment programme: http://align.genome.jp 

• Ensembl database: http://www.ensembl.org 

• Ensemble sequences: http://www.ensembl.org/index.html 

• McGraw-Hill Online Learning Centre: 
http://highered.mcgrawhill.com/sites/0072495855/student_view0/index.html 

• Mitomap: http://www.mitomap.org 
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manual.pdf 

 
• NCBI: http://www.ncbi.nlm.nih.gov 

 
• NCBI Blast N: http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi 
 
• NCBI GenBank: http://www.ncbi.nlm.nih.gov/Genbank/ 
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• Qiagen website: www.qiagen.com 
 
• R- Project for statistical computing: http://www.R-project.org 
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