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ABSTRACT 
 

Lasers are commonly used in the industry for various applications such as laser cutting, laser 

drilling, lithography, medical applications, surface cleaning and a myriad of other applications. In 

any application of a laser the beam properties are significant. In the paint removal application 

discussed in this thesis, the beam properties of the laser beam can have a large impact on the 

efficiency of the paint removal process. The pulse energy or the average output power of the laser is 

normally an important parameter in laser materials processing applications. The spatial profile or 

intensity distribution of the beam also has an influence on the process. The propagation of the laser 

beam from the laser to the working point is also significant in applying the laser beam to the 

material. In the ideal scenario one would like to control all the parameters of the laser in terms of 

the output, in energy or output power, the propagation of the laser beam and the intensity 

distribution of the beam. 

 

The process of laser-based paint removal is no different to this. In this process a TEA CO2 laser is 

used for the ablation of paint from a substrate. In this application high pulse energy is required from 

the laser together with good beam propagation properties for delivery of the beam over a long 

distance. For this application the multimode beam of the TEA CO2 laser can be applied for the paint 

removal. The multimode beam has sufficiently high pulse energy for the paint removal process, but 

is not suitable for propagating over long distances through a beam path with a finite aperture. 

Furthermore the multimode beam does not have a uniform energy intensity distribution. It would 

therefore be ideal if the TEA CO2 laser could be designed with a custom beam that has a uniform 

intensity distribution, high pulse energy and good beam propagation. 

 

These requirements lead to the study of flattened irradiance profile laser beams. In this thesis 

flattened irradiance profile beams in the form of Flattened Gaussian beams are investigated. The 

theory of the Flattened Gaussian profile as well as the propagation of the beam is investigated. 

Furthermore the generation of such a beam internally to the laser resonator is studied. In succession 

to this a custom laser resonator was designed and implemented on the TEA CO2 laser. The resulting 

Flattened Gaussian Beam was characterised and applied to the application of laser paint removal. It 

was finally shown that the Flattened Gaussian Beam could be successfully generated and applied 

with equal success in the application of laser paint removal. 
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OPSOMMING 

 

Lasers word algemeen in die industrie gebruik vir toepassings soos laser snywerk, laser boorwerk, 

litografie, mediese toepassings, oppervlakreiniging en verskeie ander. In enige toepassing van „n 

laser is die eienskappe van die laserbundel van groot belang vir die proses. In die verf verwydering 

toepassing wat bespreek word in hierdie tesis het die bundel eienskappe „n groot invloed op die 

effektiwiteit van die verf stropings proses. Die pulsenergie of uitset drywing van die laser is 

gewoonlik „n belangrike parameter in „n materiaalverwerkings toepassing. Die ruimtelike profile of 

energie intensiteitprofiel van die bundel het ook „n invloed op die proses. Die voortplanting van die 

bundel vanaf die laser na die werkspunt het ook „n beduidende invloed op die toepassing van die 

laserbundel op die materiaal. In die ideale geval sal mens graag al die parameters van die 

laserbundel soos pulsenergie of drywing, die bundel voortplanting en energie intensiteitprofiel wil 

beheer. 

 

Die toepassing van die laser vir verfverwydering vereis ook die beheer van hierdie unieke 

parameters wat reeds genoem is. In hierdie proses is „n TEA CO2 laser gebruik vir die verwydering 

van verf van „n substraat. Die toepassing vereis hoë pulsenergie saam met goeie bundel 

voortplantingseienskappe vir lewering van die bundel oor lang afstande. Die multimode bundel van 

die laser kan gebruik word vir hierdie toepassing. Die multimode bundel bevat genoegsame energie 

vir die verfstropings proses maar is nie geskik vir voortplanting oor lang afstande deur „n bundelpad 

wat „n beperking op die bundel grootte het nie. Verder het die multimode bundel ook nie „n 

uniforme energie intensiteitprofiel nie. Dit sou ideal wees as die TEA CO2 laser toegerus kon word 

met „n toepassingsgerigte bundel wat hoë puls energie, goeie bundel voortplanting en „n uniforme 

intensiteitprofiel het. 

 

Hierdie vereiste het gelei tot die studie van laserbundels met „n uniforme plat energie 

intensiteitprofiel. In hierdie tesis word plat intensiteit bundels in die vorm van plat Gaussiese 

bundels ondersoek. Die teorie van plat Gaussiese bundels sowel as die voortplanting van hierdie 

bundels word hier ondersoek. Verder word die opwekking van hierdie bundels intern tot die 

laserresonator ook ondersoek. Na die ondersoek is daar oorgegaan in die ontwerp en 

implementering van „n doelgemaakte resonator op „n TEA CO2 laser. Die resonator het „n plat 

Gaussiese bundel as uitset gelewer. Die bundel was gevolglik gekarakteriseer en aangewend in „n 
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verfstropings toepassing. Ten einde is daar getoon dat „n plat Gaussiese bundel suksesvol opgewek 

en toegepas kon word. 
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1 INTRODUCTION 

1.1 Topic introduction 

Gaussian beams are frequently encountered in the study and the application of laser beams. 

Lasers are commonly configured to produce Gaussian beams as their output beam. The 

propagation and propagation parameters as well as the mathematical description of Gaussian 

beams are well known and covered in various textbooks regarding lasers. Gaussian beams are 

useful and applicable in a variety of applications. The most salient property of the Gaussian 

beam is the fact that it has a Gaussian intensity distribution. This intensity distribution causes 

the circular Gaussian beam to have a high energy intensity peak in the centre of the beam, 

with the energy intensity decreasing towards the outer edges of the beam. In some 

applications this distributed energy intensity is not ideal. 

 

Various laser applications require a laser beam that has a more uniform intensity distribution. 

This allows one to make better use of all the energy that is present in the laser beam or to 

make use of the entire volume of an amplifier module if the laser beam is passed through an 

amplifier. The desired uniform intensity distribution leads one to the study of Flattened 

Gaussian Beams (FGBs) or Super Gaussian Beams (SGBs). The FGB or SGB can take on 

various forms and is dependent on the optical system and the design that has been made. For 

applications where a uniform intensity distribution is required a SGB with a flat top intensity 

profile can be generated. 

 

The propagation and propagation parameters as well as the mathematics of defining the FGB 

or SGB are, however, not as straight forward as for the simple Gaussian case. These topics 

have, however, been covered in various research papers in the past. The method of generation 

of the FGB or SGB has also been dealt with in many research papers. FGBs or SGBs can be 

formed by placing beam shaping elements in the beam path to shape the Gaussian laser beam 

into an FGB or SGB. The resonator of the laser and in particular the optics of the resonator 

can be designed in such a way that the laser naturally yields an FGB or SGB as the output 

beam. 

1.2 Objectives 

The objective of this thesis is to implement a resonator on a Transversely Excited 

Atmospheric (TEA) CO2 laser that will make the laser to naturally yield an FGB. The FGB 
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beam will find its application in the field of coating removal from a substrate using the laser 

beam. To accomplish this task the theory on FGBs such as their mathematical representation 

and the modelling of the beam propagation will be studied. Furthermore the concept of laser 

beam shaping in the laser resonator with graded phase mirrors will be studied. Finally a 

mirror will be designed, manufactured and tested in the laser resonator and furthermore the 

beam will be characterised and used in a coating removal application. 

1.3 Research problem 

A variety of research work has been done in the past on the generation and propagation of the 

FGB. This includes theory on the generation of the FGB, theory on the propagation of the 

FGB through free space as well as modelling of the propagation of the FGB. The generation 

of the FGB within the laser resonator has also been studied. 

 

The research performed in this thesis attempts to study the relevant theory on the topic of 

FGBs. Furthermore a resonator will be designed and implemented on a TEA CO2 laser. The 

generated beam by the laser will be analysed and compared to the theoretical design and 

predictions. The aim of this thesis is to practically implement a Diffractive Optic Element 

(DOE) mirror on a laser, to characterise the output beam and to apply the output beam of the 

laser in a paint removal application where a flat top intensity profile for the beam would be 

ideal. 

1.4 Research questions 

The research in this thesis attempts to answer the following questions: 

 How will one go about to design a resonator and a graded phase mirror element for 

implementation in a TEA CO2 laser? 

 What will the beam propagation characteristics for the FGB be and how does this 

compare to design and modelling predictions? 

 How does the beam propagation parameters and pulse energy of the FGB compare to 

the multimode and Gaussian modes of the laser? 

 Is the use of a beam with a flat top intensity distribution better in the application of 

coating removal from a substrate? 

1.5 Restrictions 

In the previous paragraphs the desire has been expressed to shape the output beam of a laser 

using a graded phase mirror or otherwise called DOE mirror in the laser resonator. The profile 



3 

 

that would need to be cut on the mirror to realise this might be very complex. The end design 

of the DOE mirror must be checked that it is actually possible to manufacture the mirror at an 

optics manufacturer. The accuracy to which the mirror profile can be machined on the optic is 

also another possible restriction. The manufacturing capability of the optics manufacturer 

might pose a possible restriction on what can be done. 

1.6 Assumptions 

With reference to the already stated restrictions it is, however, assumed that the optics 

manufacturers will be able to manufacture DOE mirrors for the laser resonator. It is also 

assumed that the optics can be manufactured to the required accuracy. The manufacturing of 

graded phase mirrors or DOE mirrors have been attempted by various authors and the 

assumption is therefore made that these mirrors can be manufactured if the design is 

reasonable. 

1.7 Chapter outline 

The study in this thesis will start off by reviewing the current literature that is available on the 

subjects of FGBs, SGBs, laser beam shaping and laser resonators with internal beam shaping 

elements. 

 

Following the literature study the background theory will be studied and presented. The 

background theory will include the study of the mathematical representation of FGBs. This 

will include the cases of beams with a circular symmetry as well as beams with a rectangular 

symmetry. The theory of the propagation of these FGBs will also be presented. Furthermore 

the various techniques for laser beam shaping will be reviewed. Following this the theory on 

laser resonators and shaping of the laser beam internally in the resonator will also be studied 

and presented. 

 

The background theory section of the thesis is followed by a discussion of the methodology of 

the study in this thesis. In that discussion the design of the laser resonator and the graded 

phase mirror element for the resonator will be treated. The stability of the cavity will be 

analysed to produce the desired mode using a Fox and Li analysis. The resulting beam from 

the resonator will be modelled and presented. Subsequently the optic will be manufactured for 

testing in the laser resonator. Furthermore the methodology of making the beam profile and 

beam propagation characteristic measurements in the laboratory will be treated. 
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In succession to this the results of the study will be presented. This will include the practical 

results measured in the laboratory on the laser where the resonator with the graded phase 

mirror is implemented. The results will show the beam profile of the laser beam as well as the 

beam propagation characteristics. The outcome of the coating removal application using the 

flat top beam will also be presented. 

 

The thesis concludes with discussions on the FGB theory and implementation, the results of 

the modelled FGB compared with the laboratory measured results, the resonator design using 

the graded phase mirror element and the application of the flat top beam in laser paint 

removal. Finally some recommendations for future work are discussed. 
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2 LITERATURE REVIEW 

In this thesis various literature publications were studied and used to arrive at the ultimate 

goal of implementing an FGB for laser paint removal. Various aspects of lasers and laser 

beams must be studied to address each aspect that is relevant such as FGBs, the generation of 

FGBs in custom laser resonators and the measurement of laser beams. The existing literature 

that was used in this thesis will be reviewed in this section. 

 

Initially the concept of flattened irradiance beams was studied. This topic has been covered by 

many authors in the past. The most relevant references to this work have been studied and are 

summarised in Chapter 3. The work of Shealy and Hoffnagle (1) investigated and summarised 

the various mathematical methods that could be used to describe the profile and propagation 

of a flattened irradiance profile beam. They investigated the methods of the Super Gaussian 

(SG), Flattened Gaussian (FG), Fermi Dirac (FD) and Super Lorentzian (SL) for describing a 

flattened irradiance profile beam. The SG case was also studied by De Silvestri et al. (2). The 

instance of the FGB was initially studied by Gori (3). This study was also extended by 

Amarande in References (4) and (5). The work of Gori (3) and Amarande in References (4) 

and (5) was studied in great detail in the background theory of this thesis. Gori explored the 

mathematical description of the beam profile and propagation of FGBs for the case of circular 

symmetry in the beam. The case of rectangular symmetry in the beam was explored by 

Amarande. 

 

To be able to obtain a flattened irradiance profile beam a suitable beam shaping technique 

must be employed. The work of Dickey and Holswade (6) on laser beam shaping methods in 

general was studied. Furthermore the work of Zeitner et al. (7) with regards to laser being 

shaping internal and external to the laser resonator was reviewed. In succession to this method 

of shaping the laser beam internally in the laser resonator using a Graded Phase Mirror 

(GPM) was studied in great detail. This method was presented by Bélanger et al. in 

References (8), (9), (10) and also by Leger et al. (11). The physical implementation of GPM 

mirrors custom resonators was presented further by Bélanger et al. in References (12) and 

(13). The work of Fox and Li (14) on resonant modes in a maser interferometer was also 

studied. During the design of the custom laser resonator the work of Mathews (15) and Solms 

(16) was studied for numerical methods to solve the Kirchoff-Fresnel diffraction integral for 

the propagation of the beam. 
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The work of various authors was studied for the purposes of the laser beam characterisation. 

Rypma presented a general approach to characterising laser beams and making laser beam 

measurements in (17). The practicalities of measuring laser beam propagation were also 

presented by Roundy (18), Spiricon Inc. (19), (20), Forbes (21) and the International 

Organisation for Standardisation (22). 

 

Throughout the text general References such as Siegman (23) and Svelto (24) were also used 

as a required. The main significant References have been covered in this overview. There are, 

however, References that contributed to a lesser extent and they will be mentioned in the 

manuscript where necessary. 
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3 BACKGROUND THEORY 

3.1 Flattened irradiance profile beams 

In the application of a laser beam in real life it is often desired to have a laser beam with a 

flattened irradiance profile as opposed to the distributed irradiance profile in a Gaussian 

beam. Figure 3-1 shows the Gaussian profile and the desired flattened profile for a laser beam 

in a laser paint removal application. A flattened irradiance profile beam can be created by the 

technique of laser beam shaping. Laser beam shaping to produce a flattened irradiance profile 

can be used in applications such as isotope separation, materials processing, medical 

applications, lithography, laser printing and laboratory research. In many of these applications 

it is desired that the target area must be uniformly illuminated with the laser beam, hence the 

requirement of a flattened irradiance profile. A flattened irradiance profile laser beam is a 

laser beam of which the irradiance of the beam has a constant value over a fairly large 

variance in the beam radius. Figure 3-1 illustrates this property in the flattened beam. 

 

 

 

Figure 3-1 – Gaussian irradiance distribution and desired flattened irradiance distribution 

 

Various analytical functions to describe flattened irradiance laser beams have been studied in 

the past and reported by various authors according to Shealy and Hoffnagle (1). These 

functions describe a uniform central region in the beam that then makes a transition to a null 
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region at the outer edges of the laser beam. An SGB has been created by De Silvestri et al. (2) 

to create the flattened irradiance beam. Further Gori (3) has introduced the FGB with the 

desired flat top transverse shape. Hoffnagle and Jefferson (25) used the FD distributions for 

the definition of the flattened beam. The use of the SL was introduced by Li in References 

(26) and (27). All the above-mentioned functions contain parameters that define the shape and 

the width of the flattened irradiance beam. The width parameters will influence the beam 

diameter and the shape parameter has reference to the size of the uniform area and the 

transition to the null area. 

 

In the work of Shealy et al. (1) they performed a comparative study where a flattened beam 

was defined through the methods of SGB, FGB, FD and SL. In each case the beam 

parameters were chosen in such a way that the resulting flattened beam had the same flattened 

profile as the others. For each method of defining the flattened beam they calculated the effect 

of diffraction on the propagating beam using Kirchhoff diffraction theory and the Fresnel 

approximation using the chosen beam parameters. They also proceeded to calculate the M
2
 

parameter for each of the methods using the chosen beam parameters. 

 

The study of Shealy et al. (1) showed the various analytical methods of defining the flattened 

beam had little influence on the diffraction calculation. The differences between the results 

were negligible and if the beams were to be measured in an experimental set-up the 

differences would be smaller than the experimental error. The Fresnel-Kirchhoff diffraction 

theory study also showed that if there is a gradual roll-off from the uniform central region of 

the beam to the null region of the beam it increases the distance over which the beam can be 

propagated where there will be limited deviation in the uniform irradiance beam. 

 

In conclusion the beam parameters of the flattened irradiance beam must be chosen in such a 

way that one can get a sufficiently large area of uniform irradiance and still have a gradual 

transition to the null region to allow for good propagation parameters. The choice of 

analytical method to define the flattened beam does not make a significant impact on the 

beam and propagation of the beam. 

3.1.1 Flattened Gaussian beams with circular symmetry 

There are various analytical ways which were mentioned in the previous section to define a 

profile with a flattened irradiance profile for a laser beam. In the work of Gori (3), the 
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Flattened Gaussian (FG) profile is introduced for defining the profile of the flattened 

irradiance profile beam. 

 

Gori (3) states that the evaluation of the propagated beam that has been defined for example 

by an SG or other method can be problematic. For a transverse field distribution of a light 

beam shaped according to some profile, the evaluation of the propagated field in the paraxial 

approximation in general has to be performed by numerical integration. This results in a non-

trivial procedure to determine the effects of a given profile on the propagation. For this reason 

the FG profile is introduced which resembles a flattened Gaussian whose central region has 

been flattened. The flattened area of the FG profile is controlled by an integer parameter N. 

For increasing values of N the FG profile approaches the rectangle function. A laser beam that 

is axially symmetric of which the radial field profile is FG across a certain plane at z = 0 is 

said to be an FGB. A convenient way to obtain FGBs is by the use of N suitably weighted 

Laguerre-Gauss beams. This then allows that the field can be evaluated across any plane z ≠ 0 

in an exact and simplistic way using the well known propagation law for Laguerre-Gauss 

beams. 

 

The FG profile approach by Gori (3) starts from a circularly symmetric Gaussian function 

stated in Equation 3-1. 

                3-1 

The goal is to flatten the shape of the Gaussian profile through the multiplication of a suitable 

correction function. The limiting case is firstly considered. If the Gaussian profile was to be 

changed into a constant of one, the correcting factor would be exp(r
2
). This factor can be 

expanded into a series of powers of r
2
. Hence the formula can be written down as shown in 

Equation 3-2. 

                
   

  

 

   

   3-2 

Equation 3-2 expresses the function F∞(r) as a Gaussian factor multiplied by a power series 

expansion. If the series is truncated, an approximation of the original function can be 

obtained. The approximation can be fairly accurate near the origin but will become more 

inaccurate as one moves away from the origin. The approximating function can be defined as 
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a function of order N as shown in Equation 3-3. In the limit N→∞ we get the function defined 

in Equation 3-2. 

                
   

  

 

   

             3-3 

 

The behaviour of the function FN as a function of r can now be examined. The functions exp(-

r
2
)(r

2n
)/(n!) which are summed in the summation are non-negative and tend to zero as r→∞. It 

can therefore be expected that FN(r) will be close to one for a specific interval and with a 

smooth transition to zero with increasing r. This is shown in Figure 3-2 where a few curves of 

the function FN(r) are plotted for a few values of the parameter N. 

 

 

Figure 3-2 - FG profiles plotted versus r for various values of N 

 

The defined function FN can now be used to approximate the function rect(r-0.5). This can be 

achieved by rescaling the function FN(r) with another factor. To be able to find the scaling 

factor an estimate of the width of the function FN is required. It can be shown that the function 

exp(-r
2
) has a maximum value at the point     . Because of the fact that the outermost 

contribution to the sum in Equation 3-3 comes from the N
th

 term it can be estimated that the 

width of FN is   . The rescaled function can then be redefined as in Equation 3-4. 
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             3-4 

 

In Equation 3-4 the instance where N=0, which in the case of Equation 3-3 yields the pure 

Gaussian profile, has been excluded. The function GN(r) can now be plotted for a few values 

of N and this is shown in Figure 3-3. From the figure one can see that the function GN(r) 

approaches the rect(r-0.5) function for increasing N. Both Equation 3-3 and Equation 3-4 can 

be used to describe FG profiles. 

 

 

Figure 3-3 - Rescaled FG profiles plotted versus r for various values of N 

3.1.2 Propagation of Flattened Gaussian beams with circular symmetry 

Gori (3) continues to develop the concept by studying the FGB and the propagation of the 

FGB. This is done by assuming circular symmetry for the beam and introducing the Laguerre-

Gauss beams and viewing the FGB as a superposition of the Laguerre-Gauss beams. 

 

An FGB of order N is a beam of which the radial distribution at the plane z=0 is shaped 

according to the N
th

 FG profile as defined in Equation 3-3 and Equation 3-4. To be able to 

compare the FGB with the conventional Gaussian beam it would be useful to introduce the 

spot size parameter w0. The field distribution as written in Equation 3-3 can now be rewritten 

at z=0 to include the spot size parameter and is shown in Equation 3-5. 
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             3-5 

 

A constant, A, has also been introduced to the equation. In the special case of N=0 the 

equation yields the distribution of the conventional TEM00 beam with a spot size of w0. From 

paragraph 3.1.1 and Figure 3-2 it is evident that the effective width of the beam increases as 

the value of the N parameter increases. It would be more ideal if the width of a beam would 

remain almost constant with only the flatness of the profile changing as an appropriate 

parameter is varied. If Equation 3-4 is used and similarly the parameters for the spot size are 

introduced this goal could be achieved. Equation 3-6 then shows the introduction of the 

parameters into Equation 3-4. 

               
    

  
   

 

  
 
   

  
  

  

   

             3-6 

 

Both of the newly introduced Equation 3-5 and Equation 3-6 can now be used to describe an 

FGB. Equation 3-5 includes the special instance of N=0 for the ordinary Gaussian beam. 

Equation 3-6 excludes this case and only refers to N>0. For this thesis the interest is primarily 

in beams with a flattened irradiance profile and Equation 3-6 will be best suited for this. 

 

The representation of a laser beam with a flattened profile by the FGB method presents an 

important advantage. The propagation of the FGB can be studied in a simplistic manner 

tracing the FGB back to a finite superposition of Laguerre-Gauss beams. Due to the fact that 

Laguerre-Gauss functions depend on two polar coordinates and this section is concerned with 

circularly symmetric beams the Laguerre-Gauss functions can be applied here. 

 

To derive this, the formula from Gori (3) which is shown here in Equation 3-7 can be used. 

     
  

  
       

 
 
      

  

 

   

             3-7 

The term  
 
 
  denotes a binomial coefficient and Ln is the n

th
 Laguerre polynomial. Equation 

3-7 can now be inserted into Equation 3-6 which yields Equation 3-8. 
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3-8 

The terms in the double sum can be rearranged and written as in Equation 3-9 with the new 

variable cn defined in Equation 3-10. 

             

 

   

   
    

  
      

    

  
               3-9 

           
 
 
 

 

  

 

   
             3-10 

The circularly symmetric Laguerre-Gauss beam of order h,        , has the spatial 

distribution shown in Equation 3-11 according to Gori (3). 

 

         
 

 

 

    
                     

    
   

     
      

  

     
 

 

     
     

3-11 

In Equation 3-11 k is the wave number  
  

 
  with λ the wavelength. The Rayleigh distance is 

defined by Equation 3-12 where W0 denotes the spot size at the waist of the beam. The 

parameters W(z), R(z) and Φ(z) depend on z and are defined in Equation 3-13, Equation 3-14 

and Equation 3-15. 

       
    3-12 

            
 

  
 
 

 3-13 

        
  
 

 
 3-14 

            
 

  
  3-15 
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From Equation 3-11 the   ’s are orthonormal in the sense that for two typical indices n and m 

we obtain Equation 3-16 where the asterisk in the equation shows the complex conjugate and 

δnm is the Kronecker symbol where δnm=1 for n=m and otherwise δnm=0. 

          
 

 

  

 

  
                3-16 

 

By comparing Equation 3-9 and Equation 3-11 it can be seen that the field distribution 

produced at the plane z=0 by a FGB of order N is a superposition of N circularly symmetric 

Laguerre-Gauss beams taken at the waist of the beams which have a spot size as defined in 

Equation 3-17. 

     
  

  
 3-17 

 

In order to find the propagated field at any distance z, one has to replace the waist expression 

of the Laguerre-Gauss beams with their expression at     using the Equation 3-11. Doing 

this yields the Equation 3-18 where the parameters WN(z), RN(z) and ΦN(z) can be obtained 

from Equation 3-12, Equation 3-13, Equation 3-14 and Equation 3-15 once the parameter W0 

is replaced with the parameter W0N that is given by Equation 3-17. 

 

         
   

     
                      

  

      
 

 

  
    

    

       
   

  
    

 

 

   

               
3-18 

 

The results that have been obtained can now be used in an example. The following values are 

assumed for some of the parameters that characterise the FGB:       ;        . By 

using Equation 3-17 the waist spot size of the Laguerre-Gauss beam to be used can be 

calculated for any value of N. Equation 3-12, Equation 3-13, Equation 3-14 and Equation 

3-15 can then be used to calculate the parameters WN(z), RN(z) and ΦN(z), for a given value of 

z, that can then in turn be inserted into Equation 3-18. 
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For the example two arbitrary values of N are chosen to illustrate the behaviour of FGBs in 

free space propagation. The result of the case for N=4 is shown in Figure 3-4 and for N=25 in 

Figure 3-5. Figure 3-4 and Figure 3-5 show three dimensional plots of the intensity 

distribution across the diameter of the beam for each beam as the beam propagates through 

free space. The intensity distribution at various values of z was calculated to be able to plot 

the three dimensional propagation of the beam. 

 

 

Figure 3-4 - Three dimensional plots of the intensity distribution for N=4 

 

In Figure 3-4 and Figure 3-5 the diameter of the beams and the propagation distance is 

measured in metres. For each curve the maximum value has been normalised to one. For the 

case of the N=25 FGB one can see that the beam is more flattened than for N=4 case. By 

looking at the two plots one can see that there are diffraction rings in the near field of the 

propagation and that these diffraction rings are more pronounced in the N=25 case than in the 

N=4 case. Thus for a beam with a greater flatness the propagation of the beam is not ideal to 

maintain its shape over a long distance. 
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Figure 3-5 - Three dimensional plots of the intensity distribution for N=25 

3.1.3 Flattened Gaussian beams with rectangular symmetry 

Amarande extended the characterisation of the FGB in References (4) and (5), as defined by 

Gori (3) and shown in this thesis as Equation 3-3. The purpose of extending the 

characterisation is to introduce the definition of cartesian coordinates to describe the FGB as 

opposed to the cylindrical coordinates that were used by Gori (3). This is done because there 

are already existing results about beam characterisation that were performed using cartesian 

coordinates as opposed to cylindrical coordinates. To introduce the FGB Gori (3) used a super 

position of N suitably weighted Laguerre-Gauss beams as described in paragraph 3.1.2 of this 

thesis. Amarande further presented a procedure for approximating SGBs by FGBs in (5). 

 

In the characterisation of Amarande (4) the geometry was restricted to the bi-dimensional case 

of (x, z) to simplify matters. By multiplying the two distributions that are flattened 

independently along the x-axis and y-axis one can readily obtain the three dimensional FGB. 

The cross section of this FGB will then be a rectangle. 

 

The characterisation of the FGB is started by writing down the field distribution         at 

the point where     in the form as shown in Equation 3-19. In Equation 3-19 the parameter 

A is a constant and the parameter w0 is the spot size which allows for comparison of the beam 

with conventional Gaussian beams. 
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            3-19 

The term x
2k

 can then be expressed as shown in Equation 3-20 by starting from a 

decomposition relation in Hermite-Gauss functions as shown in Morse and Feshbach (28). 

     
     

   
 

 

           

 

   

         3-20 

From the equation one can observe that only even Hermite polynomials, H2n, are involved in 

the function as described in Equation 3-21. 

                
  

  
      

 

   

    
   

  
             3-21 

where     
 

     
 

 

   

 

   

     

        
 3-22 

 

According to Siegman (23) the Hermite-Gauss beam of order n, described by        , has 

the spatial distribution as defined in Equation 3-23. The Rayleigh distance is defined by 

Equation 3-27 where w0 denotes the spot size at the waist of the beam. The parameters w(z), 

R(z) and Φ(z) depend on z and are defined in Equation 3-24, Equation 3-25 and Equation 

3-26. 
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  3-26 

    
   

 

 
 3-27 

 

The amplitude at z=0 for the FGB represented in cartesian coordinates is shown in Equation 

3-28. The propagation formula is then further defined by Equation 3-29 where the term cn in 

Equation 3-29 is defined by Equation 3-30. 

            

 

   

                    3-28 

            

 

   

                    3-29 

      
 

 
 

 
   

       
 
 

 
 

     

 

   

     

      
 3-30 

 

The graph in Figure 3-6 shows various plots of the field distribution at z=0 for selected values 

of N. The graph in Figure 3-7 shows the propagation of the beam according to Equation 3-29 

for the instance where N=4 and the graph in Figure 3-8 shows the propagation for the instance 

of N=25. 
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Figure 3-6 – Transverse field distributions for N = 0, 1, 4 and 9 

 

 

Figure 3-7 – Three dimensional propagation plot for an N=4 FGB 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
m

p
li

tu
d

e 
(a

.u
.)

r (mm)

Transverse intensity profile of FGB

N = 0 N = 1 N = 4 N = 9

-0.004

-0.002

0

0.002

0.004

X

10

20

30

Z

0

500

1000
Y

-0.004

-0.002

0

0.002

0.004

X



20 

 

 

Figure 3-8 - Three dimensional propagation plot for an N=25 FGB 

3.2 Beam shaping methods 

In Section 3.1 the theory on FGBs has been extensively explored and developed. The practical 

question now remains of how one generates an FGB in a laser or changes the laser beam from 

a Gaussian beam to an FGB. The study in this thesis will therefore now enter the field of laser 

beam shaping. 

 

 

Figure 3-9 - Beam shaping system diagram 
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defines the beam shape. They further diagrammatically show a beam shaping system as 

shown in Figure 3-9. In this scenario the laser beam will enter an optical system and the 

optical system will transform the beam into another state to generate the desired output beam. 

 

Laser beam shaping techniques can be grouped into two basic types according to Dickey and 

Holswade (6). The two groups of techniques are field mappers and beam integrators. The 

technique of field mapping only works with beams for which the field distribution is known. 

Single mode beams are an example of such beams for which the field distribution is known. 

This technique is also very sensitive to the alignment of the beam as well as the dimensions of 

the beam. Beam integrators will work in the scenarios where the field distribution is not 

known such as multimode beams. Beam integrators will also work for coherent beams. Beam 

integrators are not as sensitive to the alignment of the beam or to the dimensions of the beam. 

Interference effects do, however, present problems in beam integrators and specifically for the 

case of coherent beams. The categorisation of the techniques into field mappers and beam 

integrators is not coupled to the method that is used to design the beam shaping optics. The 

methods of design for the beam shaping optics could be either diffraction theory or 

geometrical optics. 

 

Furthermore there exists various physical ways that beam shaping can be implemented in an 

optical system. These methods and some of their advantages and disadvantages are 

summarised by Hoffnagle et al. (25). These methods include: filters with radially varying 

absorption profiles, refractive methods, reflective methods and diffractive elements such as 

holograms and binary optics. The use of an absorptive method has the drawback that it has a 

relatively moderate efficiency, it is sensitive to manufacturing tolerances in the element and is 

only suitable for low laser power levels. Reflective optics have the drawback that the optics 

must be used off axis to prevent beam obscuration. This fact leads to complicated asymmetric 

surfaces that are difficult to manufacture. Reflective optics do, however, have the advantages 

that they have high efficiency values and can handle high laser power levels. Diffractive 

elements have the drawbacks that they are inherently wavelength sensitive. Furthermore 

holograms in general tend to have low efficiency values and paired holograms or phase plates 

are subject to tight alignment tolerances so that spatial frequency modulation can be avoided. 

Refractive optics on the other hand have relatively high efficiency and can be implemented in 

a coaxial optical arrangement which minimises alignment problems. 

 



22 

 

Laser beam shaping can be applied in two ways to the laser beam. The beam shaping can 

either be done externally to the laser resonator or done internally to the laser resonator. The 

topic of internal and external laser beam shaping is discussed by Zeitner et al. (7). In the case 

of external laser beam shaping, the Gaussian fundamental mode can be shaped by an external 

optic element to shape the beam to the required intensity profile. External beam shaping has 

the advantage that the laser can be used for various tasks by inserting different beam shaping 

optics in the beam path for the various applications. The beam shaping of the laser beam 

external to the laser resonator poses some distinct disadvantages. The beam shaping requires 

an optical system that introduces some amount of light outside the window of interest and 

therefore reduces the light efficiency. This is generally referred to as stray light. The optical 

losses in the system are caused by the inherent design requirements of the external beam 

shaping optic elements. These losses cannot be eliminated, even under ideal optic 

manufacturing conditions. As proposed by Zeitner et al. (7) the stray light can be eliminated 

by generating the desired beam profile inside the laser resonator. The beam shaping of the 

laser beam internal to the laser resonator is also ideal in situations where the laser will only be 

used in a single dedicated application. Another advantage to shaping the beam internally in 

the laser resonator is that one could expect the shaped beam to have a higher output power as 

opposed to shaping the beam externally. The adjustment of the beam shaping optics to the 

laser beam in the case of external beam shaping is also critical. This is just as critical inside 

the laser resonator but a good mechanical design for the resonator, for the optics positioning 

and the optics adjustment will greatly eliminate this problem. Beam shaping internal to the 

laser resonator has been treated by various authors and will be discussed in the next section. 

3.3 Laser beam shaping internal to the laser resonator 

Laser beam shaping internal to the laser resonator has been treated in depth by Bélanger and 

Paré (8) (9) as well as by Leger et al. (11). In these References diffractive optical elements or 

graded phase mirrors have been used to shape the laser beam internally to the resonator. 

 

Bélanger (10) analysed the propagation of a general optical beam in an optical system. The 

analysis was performed by generalising the ABCD propagation law for an optical system by 

introducing a generalised complex radius of curvature for the general optical beam. Bélanger 

proved in the paper that it was possible to define a generalised complex radius of curvature Q 

for a general optical beam. The generalised complex radius of curvature Q was found to obey 

the same propagation rule as the complex radius of curvature of a Gaussian beam that is 
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propagating in the same arbitrary ABCD optical system. Furthermore the real radius of 

curvature R is related to the mean radius of curvature of the phase front of the generalised 

optical beam. The real beam size W is further related to the second order moment of the 

intensity. This generalisation for a general optical beam can be applied to the study of laser 

beam shaping internal to the laser resonator. 

 

Bélanger and Paré (8) presented a geometrical analysis of resonators with graded-phase 

mirrors. The analysis used the generalised ABCD propagation law for an optical beam and the 

results that were obtained in (10). A geometrical analysis was performed on the resonator that 

is shown in Figure 3-10. The resonator is an empty symmetrical resonator formed by two 

identical graded phase mirrors. Φ0(x) is the difference between a reference plane and the 

actual reflection surface. The goal was to determine the real beam size and the macroscopic 

radius of curvature on the mirrors. The symmetry of the resonator implied that the beam waist 

is located in the middle of the resonator with a certain complex radius of curvature at this 

point. If the beam is propagated through free-space according to the free-space propagation 

law the complex radius of curvature in front of the mirror is obtained. The purpose of the 

graded-phase mirror Φ0(x) is then to transform the phase Φ1(x) of the incident beam to Φ2(x) 

without changing the amplitude Ψ2(x) of the reflected beam. This relationship is shown in 

Equation 3-31. 

                    3-31 

From the analysis it is evident that the real beam size is not changed. The analysis does, 

however, show that the real radius of curvature is changed during the reflection. This change 

depends on the phase of the mirror Φ0(x) and the incoming field distribution Ψ1
2
(x) if the 

phase mirror is not spherical. It is also shown (8) that in the case of a spherical mirror the real 

radius of curvature of the reflected beam is independent on the field distribution Ψ1
2
(x) of the 

incoming beam. Bélanger and Paré then postulated that the use of a graded phase mirror 

inside the resonator will favour the discrimination of the modes that do not have a field 

distribution that is similar to Ψ1(x). This will then potentially result into a resonator that is 

highly discriminating. 
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Figure 3-10 - Symmetrical resonator with Graded Phase Mirrors 

 

From Figure 3-10 it can be seen that after reflection from the mirror the complex radius of 

curvature Q2 is transformed to the complex radius of curvature Q3 in the middle of the 

resonator. For a mode to be an eigenmode of the resonator the beam must reproduce itself 

within the resonator. Therefore Q3 must be equal to Q0. Bélanger and Paré then further show 

that for a spherical resonator the spherical mirror matches the wave front of the eigenmode. It 

is also shown that for the case of the non-spherical mirror the non-spherical mirror matches 

the wave front of the eigenmode in the resonator. An important result from the paper is shown 

in Equation 3-32 where the relationship between the phase of the eigenmode Φ1(x) and the 

phase of the mirror Φ0(x) is given. 

    
   

  
 

 

  

  
          

   

  
 

 

  

  
       3-32 

From Equation 3-32 it is evident that the derivatives of the phase are the same or that the 

phase of the eigenmode is equal to the phase of the mirror apart from a constant, as shown in 

Equation 3-33. 

                   3-33 

According to Equation 3-31 and Equation 3-33 the incoming beam u1(x) and the reflected 

beam u2(x) are the phase conjugate replicas of each other [u2(x) = u1
*
(x)]. It is then postulated 

that an optical resonator formed with graded phase mirrors will have an eigenmode with a 

wave front that matches the phase of each graded phase mirror. The working of the resonator 
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appears to be similar to a phase conjugate resonator as described in (29). The mirror in the 

phase conjugate resonator can, however, only phase conjugate a specific beam distribution. 

The eigenmode that is phase conjugated will have a low loss and will be a stable mode of the 

resonator. The other eigenmodes of the resonator are potentially not phase conjugated and 

will be unstable with a high loss. This then gives an indication to the possible large mode 

discrimination that can be expected in graded phase mirror resonators. 

 

The analysis presented in (8) leads to a methodology to design the graded phase mirror. 

Firstly the desired eigenmode Ψ0 of the resonator is specified. For example as shown in 

Figure 3-11 the distribution at the output coupler is specified. The specified beam at the 

output coupler is then propagated over the distance L/2 to the graded phase mirror using the 

paraxial diffraction integral. At this point the phase Φ1(x) of the beam is extracted from the 

calculated beam and used to determine the phase of the graded phase mirror according to 

Equation 3-33. 

 

Figure 3-11 - Grade Phase Mirror resonator 

 

Bélanger and Paré further proceeded in (8) to test the concept of the graded phase mirror 

resonator by performing a Fox and Li (14) analysis on the resonator. This was done by 

specifying a super-Gaussian distribution at the output coupler and performing the design of 

the graded phase mirror as described above. The test was performed on a resonator similar to 

the one in Figure 3-11. The centre of the mirror approaches the profile of a spherical mirror 

while at some distance from the axis the shape of the mirror changes significantly from the 
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spherical mirror shape. From Figure 3-11 it can be seen that there is an aperture in front of the 

graded phase mirror in the resonator. If the Fresnel number of the aperture is small enough the 

resonator will approach the configuration of a semi-confocal resonator. A Fox and Li analysis 

was performed on the resonator for the first two eigenmodes of the graded phase mirror 

resonator. During this analysis the Fresnel number of the aperture in front of the graded phase 

mirror was varied. The analysis showed that for a small Fresnel number the resonator behaved 

similarly to a spherical mirror resonator. As the size of the aperture is increased the lowest 

order mode widens rapidly and is transformed to the expected super-Gaussian as the aperture 

size increases. The eigenvalue of the eigenmode is still similar to that of the semi-confocal 

resonator which indicates a low loss for the fundamental mode at the large Fresnel number for 

the aperture. The second mode has an eigenvalue that becomes significantly lower than the 

corresponding mode in a semi-confocal resonator when the aperture diameter is increased. 

This then indicates a large loss for this mode in comparison with the similar mode in the 

semi-confocal resonator case. These results indicate that there is a large discrimination factor 

for modes in the graded phase mirror resonator with the additional advantage of the larger 

size of the fundamental mode. This also shows that graded phase mirror resonators might 

significantly increase the monomode energy extraction of a laser system. 

 

Bélanger and Paré (8) in principle showed that the fundamental mode of a graded phase 

mirror resonator behaves similar to the eigenmode of a stable resonator. This implies that the 

wave front of the fundamental mode matches the mirror surface exactly. They proceeded to 

define a formal design procedure for the graded phase mirror where the integral equation for 

graded phase mirror resonators is solved (9). The symmetrical resonator as shown in Figure 

3-10 is once again used for the design. The function Φ0(x) gives the phase profile of the 

graded phase mirror where Φ0(x) is the difference between the reference plane and the graded 

phase mirror surface. For the purpose of the analysis only a one-dimensional strip resonator is 

considered. The results can, however, be extended to the two-dimensional case. The integral 

equation for the resonator is shown in Equation 3-34 

 

       
 

  
 

 
  

     
 

  

      
   

 
 
      

  
                 

3-34 
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In the equation Ψ is the field distribution over the surface of the mirror and γ is the eigenvalue 

containing information on the fractional loss and the resonance frequency of the cavity. In 

their preliminary analysis Bélanger and Paré (8) showed that under the condition that the real-

geometrical parameter G
2
>1, the resonator can have at least one eigenmode that behaves 

similar to the stable mode of a spherical resonator. They proceeded to show that such a mode 

is indeed an exact solution to the integral equation (9). At the waist of the beam the 

eigenmode has a planar wave front and is completely described by a real amplitude function 

Ψ0(x) where the complex conjugate for Ψ0(x) is given by Equation 3-35. 

         
     3-35 

As shown in Figure 3-10 the graded phase mirrors are located at a distance (L/2) from the 

beam waist. The complex beam distribution at the distance (L/2) resulting from the beam 

waist distribution can be calculated using the Kirchhoff-Fresnel diffraction integral as shown 

in Equation 3-36. 
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A solution to the diffraction integral (Equation 3-34) can be written as shown in Equation 

3-37 where C is a constant. The solution merely implies that the GPM must match the 

wavefront of the beam that is being propagated, Ψ0(x). 

           
  

 
                  3-37 

This can be demonstrated by inserting Equation 3-37 into Equation 3-34 as shown in Equation 

3-38. 
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By integrating over the variable “s” in the equation the result that is shown in Equation 3-39 

can be obtained. The result can also be written in the form as shown in Equation 3-40. 
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               3-40 

 

From the result in Equation 3-37 and the result of the integral equation in Equation 3-40 it is 

concluded that Ψ(x) is real and hence Ψ
*
(x) = Ψ(x). This implies that the wavefront of the 

eigenmode at this plane matches the GPM. It can also be concluded that γ = C/C
*
 and this can 

also be written as a pure phase factor γ = e
iα

 so that |γ| = 1. This all implies that the 

eigenmode is of a stable type and that it has no loss. From Equation 3-37 the mode 

distribution on the mirror is as shown in Equation 3-41. 

                     3-41 

Furthermore the phase profile of the mirror can be related to the phase of u
*
(x,L/2) as shown 

in Equation 3-42. 

 
  

 
                       3-42 

Equation 3-42 is the main result of Reference (9). The equation provides a direct method for 

the design of GPMs. For the practical design of a GPM the resonator as shown in Figure 3-11 

can be considered where the output coupler is a plane mirror. Firstly the desired output 

amplitude distribution Ψ0(x) is specified. Following this the distribution is propagated over the 

distance (L/2) using Equation 3-36. At this point the phase of the complex distribution is 

extracted and the phase profile of the GPM is determined according to Equation 3-42. 

 

In References (8) and (9) the analysis was limited to one transverse dimension only. Paré and 

Bélanger (30) proceeded to analyse the case for circular geometry as well. Here they present 

the mathematical model of the custom laser resonator in terms of coupled integral equations. 

The design is once again performed by specifying the desired output mode for the laser and 

propagating this over the length of the resonator to the position of the GPM. The profile of the 

GPM is then made according to the wavefront of the propagated field at that point. A specific 

super-Gaussian output was then selected and the accompanying resonator and GPM was 
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designed and analysed. Following this design a diffraction analysis was performed which 

showed the high modal selectivity of the resonator. The desired fundamental mode could be 

obtained with an acceptable mirror width and the diffraction losses in the resonator also 

discriminated against the higher order modes. Sensitivity to various perturbations in the 

resonator such as thermal lensing, gain saturation and perturbations to the mirror profile were 

also investigated. Intra-cavity medium perturbations such as thermal lensing and gain 

saturation will influence the propagation of the beam so that the incident wavefront on the 

GPM will not be perfectly reversed at reflection on the GPM if these perturbations were not 

taken into account during the GPM design. Furthermore the physical GPM cannot be 

manufactured exactly to specified design shape. Small defects in the mirror shape are 

unavoidable. From the simplistic analysis that was performed it was determined that the 

influence of these perturbations could be limited and controlled to minimise their impact on 

the working of the resonator. 

3.4 Implementations of laser beam shaping 

The theory and design method for custom resonators and GPMs that were developed by 

Bélanger et al. in References (8), (9) and (10) was taken further when the authors 

implemented this method on a TEA CO2 laser in Reference (12). For their TEA CO2 laser 

they designed three different resonators where the beams were super-Gaussian beams of 

orders 2, 4 and 6. For the conventional Gaussian beam the GPM for the super-Gaussian beam 

of order 2 was a spherical mirror. This resonator was used as the reference in their test and 

used for comparison to the other two super-Gaussian beam resonators. The test resonator that 

was used is shown in Figure 3-12. The resonator had an aperture at the GPM and an aperture 

at the output coupler. The size of the apertures could be varied to test the mode discrimination 

of the resonator. 
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Figure 3-12 - Resonator of test TEA CO2 laser by Bélanger et al. (12) 

 

Firstly the conventional Gaussian beam resonator was analysed and characterised. An analysis 

of the eigenvalues of the first eigenmodes of the spherical mirror resonator was performed for 

increasing values of the aperture d1 diameter. The results showed how the eigenvalues for 

each of the modes started at 0 and increased to 1 as the aperture diameter increased. 

Following this the output energy of the laser was measured for increasing values of the 

aperture diameter. The output energy showed an almost linear increase in energy as the 

aperture diameter was increased. This observation agreed well with the eigenmode analysis 

that showed how the various modes start to contribute to the output as the aperture diameter 

increases with no “suppression” of the higher order modes. Burn patterns of the laser beam 

were also taken for increasing values of the aperture diameter. The results show that the beam 

has a TEM00 distribution while the diameter is smaller than 9mm. At the diameter of 9mm the 

TEM01 mode is present and the beam has a doughnut shaped mode. As the aperture increases, 

higher order modes start to contribute towards the beam making it a multimode beam. At the 

large aperture diameters the higher order modes are of the Gaussian-Hermite type. This is due 

to the rectangular geometry of the gain volume and also due to the Brewster windows in their 

resonator. 

 

Secondly the resonators for the super-Gaussian beam orders of 4 and 6 were analysed and 

characterised similarly to the conventional Gaussian resonator. Analyses of the eigenvalues of 

the first eigenmodes of the resonators were performed for increasing values of the aperture d1 

diameter. For the super-Gaussian beams of order 4 and 6 the eigenvalue analysis yielded 

significantly different results as opposed to the conventional Gaussian beam. The lowest order 
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mode in the resonators for the super-Gaussian beams of order 4 and 6 behaved similarly to the 

lowest order mode of the resonator of the conventional Gaussian beam. The higher order 

eigenvalues were significantly different and exhibited mode crossing that is typical of an 

unstable resonator according to (23). The eigenvalues of the higher order modes did not 

converge to 1 for either of the resonators with the higher order super-Gaussian beam. The 

output energy of the laser was once again measured for increasing values of the aperture 

diameter. For both of the higher order super-Gaussian beams the laser output energy increased 

linearly. At an aperture diameter of 8mm the output energy reached a plateau. At this point 

the higher order super-Gaussian beams were still monomode according to the eigenvalue 

analysis. In the case of the conventional Gaussian beam the energy kept increasing at this 

point due to the resonator becoming multimode at this point. For the higher order super-

Gaussin beams the output energy reached the energy plateau between the aperture diameters 

of 8mm and 11mm. For diameters larger than 11mm the output energy increased again. This 

agreed with the eigenvalue analysis that showed that the next order mode in the resonator 

reaches a loss of 10% at the aperture diameter of 11mm. At the point of the aperture diameter 

of 11mm the resonator became multimode. The burn patterns for the higher order super-

Gaussian beams also showed monomode results below an aperture diameter of 11mm and 

multimode results beyond this. This implementation in Reference (12) proved the modal 

discrimination of the resonators using GPMs on a practical level. 

 

Practical implementations of GPMs in laser resonators were continued by Bélanger et al. in 

Reference (13). Graded Phase mirrors were implemented in the resonator of a low power 

Continuous Wave (CW)-CO2 laser. Due to gain saturation the CW-CO2 laser behaves 

differently in terms of modal behaviour and output power. A similar strategy was followed to 

test the GPM on this laser. GPMs for super-Gaussian beams of orders 2, 4 and 6 were 

developed for the laser. The first mirror was once again spherical and produced the 

conventional Gaussian beam which served as a basis for comparison. The output power of the 

laser was recorded for increasing aperture size for each GPM on the CW-CO2 laser. Output 

power for the conventional Gaussian beam increased almost linearly with increasing aperture 

diameter. In the case of the higher order super-Gaussian beams the output power increased 

and reached a plateau around an aperture diameter of 8mm and stayed constant for increasing 

aperture size until approximately 11mm. For aperture values larger than 11mm the output 

power of the laser increased again. The results showed that the GPMs in the resonator yielded 

good modal discrimination between fundamental and higher order modes. The results also 
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showed a significant increase in the monomode output power of the laser for the super-

Gaussian beams of order 4 and 6 versus the conventional Gaussian beam power output. The 

theoretical simulations for the implementation of the GPMs in the CW-CO2 laser also agreed 

very well with the measured results. 

3.5 Stability analysis 

In Reference (14) the authors Fox and Li theoretically investigated the diffraction of 

electromagnetic waves in Fabry-Perot interferometers while the interferometers were 

implemented as resonators in optical masers. They employed a numerical method to 

determine the electromagnetic field across the surface of the mirrors of the interferometer 

where an arbitrary wave was reflected back and forth between the mirrors. The results showed 

that after many reflections a steady state was reached where the relative field distribution did 

not vary from one pass to another through the interferometer. The amplitude of the field also 

decayed exponentially from the centre to the outer edges of the mirrors. The steady state field 

distribution that was obtained can be viewed as a normal mode of the interferometer. Within 

the interferometer there are various normal modes that could exist depending on the initial 

wave distribution. The lowest order mode in the interferometer has the lowest diffraction 

losses. This mode also has a high intensity in the middle of the mirror and low intensities at 

the edges of the mirror. This mode then has a diffraction loss that is much lower than the 

diffraction loss of a uniform plane wave. In the Reference the field distributions and 

diffraction losses for various mirror geometries and modes were analysed. 

 

In the instance of an oscillating maser or laser the lowest order mode should dominate in the 

resonator if the resonator design and mirror spacing is correct. This technique can be 

employed to theoretically test a resonator design to determine what the lowest order mode in 

the resonator will be. The following paragraphs will outline the theory behind this resonant 

mode analysis as outlined by Fox and Li (14). 

 

In a laser resonator a wave departing from one of the mirrors and travelling towards the other 

mirror will be amplified as it travels through the gain medium of the resonator. While 

propagating in the resonator the wave will be attenuated due to inhomogeneous regions in the 

gain medium. At the point where the wave arrives at the second mirror the wave will be 

further attenuated due to reflection losses and further losses will also occur around the edges 

of the mirror. For laser oscillation to exist the total attenuation due to density scattering, 
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diffractive spill over and reflection losses must be less than the amplification that was 

obtained while the wave propagated through the gain medium. Therefore diffraction losses 

are expected to be important when determining the start oscillation condition, and also in 

determining the distribution of energy in the resonator during oscillation. The study of Fox 

and Li (14) investigated the effects of diffraction on the electromagnetic field within a Fabry-

Perot interferometer. 

 

In the analysis the propagating wave which was reflected back and forth between two parallel 

plane mirrors was considered. An arbitrary initial field distribution at the first mirror was 

assumed. Following this the field that was produced at the second mirror due to the first pass 

through the resonator was calculated. The process was then repeated to produce the wave at 

the first mirror due to the reflection from the second mirror during the second pass in the 

resonator. This process of calculating the field was repeated for successive passes through the 

resonator. From performing this analysis it can be determined whether the relative field 

distribution converges to a steady state value, whether the steady state solution is unique and 

what losses are associated with these solutions. 

 

The scalar formulation of Huygens‟ principal was used to compute the electromagnetic field 

at the one mirror in terms of the integral of the field at the other mirror. The Fresnel field, up, 

caused by an illuminated aperture A is given by the surface integral shown in Equation 3-43. 

    
   

  
   

       

 

 

 

           3-43 

In Equation 3-43 ua is the aperture field, R is the distance between a point on the aperture and 

the observation point, θ is the angle which R makes with the unit normal to the aperture and k 

is the propagation constant of the medium. For the analysis it is assumed that a starting wave 

distribution of up is initiated at one of the mirrors of the resonator. This wave is then allowed 

to reflect back and forth inside the resonator. After a number of passes q through the resonator 

the field at a given mirror due to the reflection from the other mirror is given by Equation 

3-43 where up is replaced by uq+1, which is the field distribution at the mirror under 

consideration. The variable ua is replaced by uq which is the reflected field distribution from 

the opposite mirror that results into the field distribution uq+1. 
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It is plausible that after many passes in the resonator the field distribution at the mirrors will 

not change significantly from reflection to reflection and hence converge to a steady state 

solution. In the steady state the field distribution on the mirrors are identical apart from a 

complex constant as shown in Equation 3-44. In Equation 3-44 the variable v is a distribution 

function which does not change from reflection to reflection. The variable γ is a complex 

constant that is independent of the position coordinates. 

     
 

 
 
 

  3-44 

Equation 3-44 can now be inserted into the Equation 3-43 so that the integral equation can be 

simplified to the Equation 3-45 with the variable K defined in Equation 3-46. 
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The distribution function v, which satisfies Equation 3-45 can be viewed as a normal mode of 

the resonator defined at the surface of a mirror. The logarithm of the variable γ quantifies the 

losses and the phase shift that the wave experiences during each pass in the resonator. This 

value can be considered to be a propagation constant that is associated with the normal mode. 

The integral Equation 3-45 can now be solved using a numerical method that successively 

approximates the equation. This numerical method of solution is analogous to the real process 

of launching an initial field distribution and letting it propagate back and forth between the 

mirrors. 

 

In their study, Fox and Li calculated numerical solutions for various geometric configurations 

of the interferometer. They specifically studied the case of rectangular plane mirrors, circular 

plane mirrors and confocal spherical or paraboloidal mirrors. For the implementation of the 

GPM in a custom resonator, the resonator will consist of a circular plane mirror that will form 

the output coupler and the GPM that will contain the special surface. The custom resonator is 

therefore a combination of a plane mirror and a paraboloidal mirror. During the numerical 

implementation in (14), where the spherical or paraboloidal mirrors were discussed, a 

generalised approach for solving the problem was devised. A method to solve the problem for 
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implementations that involve mirrors with an arbitrary curvature was devised. In the adapted 

method the field at each mirror was computed using the equation for the circular plane 

mirrors. At each mirror a phase distribution matching the curvature of the mirror was added to 

the field before it was used in the following pass through the resonator. As mentioned in 

Section 3.3 and in Reference (9) a one dimensional strip resonator was considered in the 

design. Due to this fact the rectangular plane mirror solution for infinite strip mirrors as 

outlined in (14) was implemented. A similar approach can be taken to introduce a mirror with 

an arbitrary curvature. In the implementation, the field at each mirror can be computed using 

the equation for the rectangular plane mirrors. At each mirror a phase distribution matching 

the curvature of the mirror will be added to the field before it is used in the following pass. 

This method will be used to introduce the GPM in the resonator. 

 

 

Figure 3-13 - Geometry for rectangular plane mirrors 

 

The theory for the case of rectangular plane mirrors will be discussed here briefly. The 

geometry for the case of the rectangular plane mirrors is shown in Figure 3-13. It is shown in 

Reference (14) that the solutions to the integral equation for rectangular plane mirrors as 

shown in Figure 3-13 can be given by Equations 3-47 and 3-48. 
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4 METHODOLOGY 

4.1 Design of the laser resonator with internal beam shaping 

In Chapter 3 significant attention was given to studying the fundamentals of FGBs and the 

shaping of the laser beam internal to the laser resonator. The theory on FG profiles and the 

propagation as an FGB was studied and presented. The generation of SGBs in custom laser 

resonators was also studied and presented. In this section the background theory is used and 

implemented in a design for a custom laser resonator. It is desired to have a laser resonator 

that naturally yields an FGB. The FGB is desired for the previously mentioned application, 

laser based paint removal. 

 

The method to design a custom laser resonator implementing a DOE as presented by Bélanger 

and Paré in (8) and (9), and also presented in Section 3.3 will be used to design a custom 

resonator for the application in this section. The steps of designing a custom laser resonator 

according to (8) and (9) can be summarised as follows: 

1. Specify the profile of the laser beam that is desired at the output coupler of the 

resonator. This is also referred to as the eigenmode, Ψ0, of the resonator. 

2. The chosen profile is then propagated along the length of the resonator up to the 

position of the mirror using the Kirchhoff-Fresnel diffraction integral. 

3. At the position of the mirror the phase, Φ1(x), of the beam is extracted. 

4. The phase of the beam, Φ1(x), can then be related to the phase profile of the mirror 

through Equation 3-42. The phase profile of the mirror is then determined and the 

mirror can be manufactured according to this design. 

 

In the second step of the design procedure the beam is propagated using the Kirchhoff-Fresnel 

diffraction integral. In Section 4.1.1 the propagation of an FGB using an analytical method is 

studied and the results presented. Following this the resonator design and DOE design are 

performed in Section 4.1.2. The stability of the eigenmode in the resonator is analysed in 

Section 4.1.3. 

4.1.1 Propagating the FGB 

The propagation of the FGB with circular symmetry was presented in Section 3.1.2 as 

summarised from Reference (3). Gori (3) propagated the FGB by tracing the FGB back to a 

finite superposition of Laguerre-Gauss beams. This method of propagating the FGB can be 
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viewed as an analytical method to propagate the beam. The same principle was extended by 

Amarande (4), (5) for approximating the propagation of an FGB with rectangular symmetry. 

In the rectangular symmetry case the FGB was traced back to a finite superposition of 

Hermite-Gauss beams. For the purpose of this study the beam will be restricted to circular 

symmetry. 

 

The design procedure as outlined by Bélanger and Paré requires propagating the beam using 

the Kirchhoff-Fresnel diffraction integral as given in Equation 3-36. The field to be 

propagated, Ψ0(x0), must be specified and inserted into the equation. The beam can then be 

calculated at any given distance using the equation. To solve the Kirchhoff-Fresnel diffraction 

integral it will be necessary to use a numerical integration method. The Trapezium rule 

numerical integration method as outlined in References (15) and (16) was chosen for the 

numerical solution of the Kirchhoff-Fresnel diffraction integral. The numerical 

implementation was done using MATLAB
®
. 

 

To test the results of the numerical propagation method it was compared to the results of the 

analytical propagation method. The FGB of order N=25 as shown by Gori in (3) and also in 

Figure 3-5 was chosen as the basis for the comparison. The same FG was propagated using 

the numerical method. The results of the amplitude of the beam for the numerical and 

analytical methods are presented in Figure 4-1. The graphs in Figure 4-1 are plotted at various 

distances along the beam propagation path. For each instance the numerical and analytical 

results are plotted together for comparison. The result of the numerical method is plotted in a 

solid black line and the result of the analytical method in a solid grey line. 

 

From the results in Figure 4-1 it can be seen that there is a fair agreement between the 

numerical and analytical methods but that there are some differences in the beam amplitude. 

Decreasing the step size and increasing the accuracy in the numerical method to obtain more 

accurate results did not yield any improvements in the results. It is assumed that the analytical 

method makes an approximation of the beam propagation through the finite superposition of 

the Laguerre-Gauss beams. The solution of the numerical method is assumed to be more 

accurate and is the beam propagation method that will be used in Section 4.1.2 to design the 

custom resonator together with the DOE mirror. 
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Figure 4-1 – Amplitude of the numerical (black curve) and analytical (grey curve) beam propagation 

 

The results of the phase of the beam for the numerical and analytical methods were also 

analysed. Figure 4-2 shows the phase of the beam for the numerical and analytical methods. 

The graphs in Figure 4-2 plot the beam phase numerical and analytical results together at 

similar distances along the beam propagation path. The difference in phase between numerical 

and analytical beam propagation is also present as in the case of the amplitude of the beam. 

The beam phase of the numerical and analytical methods exhibit similar phase profiles, but 

appear to be inverted with an off set. 
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Figure 4-2 - Phase of the numerical (black curve) and analytical (grey curve) beam propagation 

 

4.1.2 Resonator design 

The resonator and DOE design for the TEA CO2 laser was done by Forbes and the design and 

preliminary results were reported by Du Preez, Forbes and Botha (31). For the 

implementation of the custom resonator an FGB was chosen as the output of the resonator. 

Equation 4-1 shows the intensity profile for an SGB. In the equation the parameter x is the 

radial position in the beam, the parameter w0 is the beam waist for the SGB and the parameter 

N is the order parameter of the SGB. The order parameter N adjusts the size of the flat part of 

the SGB and also the steepness of the edges of the beam. For high values of N the beam 

intensity profile will approach the flattened distribution as shown in Figure 3-1. For the 

special case where N=1 the intensity profile will be standard Gaussian beam profile. During 
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the design of the resonator a suitable value for N must be chosen. For a sufficiently large 

value of N, the SGB in Equation 4-1 approaches an FGB so that ΨSGB(x) = ΨFGB(x). It is 

reported by Forbes (31), (32), (33) that FGBs diverge very rapidly in their intensity during 

free space propagation. It is therefore imperative to choose the N parameter low enough that 

the FGB has a fairly good propagation over the length of the cavity with no dramatic change 

in the beam intensity while on the other hand choosing it high enough so that beam still is an 

FGB. 

                  
 

  
 
  

  4-1 

 

 

Figure 4-3 - FGB intensity at the output coupler 

 

As previously mentioned the custom resonator with the DOE was implemented on a TEA 

CO2 laser. The WH1500 laser used for the implementation of the custom resonator with the 

DOE was manufactured by SDI Lasers. The WH1500 laser has an average output pulse 

energy of 5J per pulse and an average output power of 1500W in the multimode beam 

configuration. The TEA CO2 laser operates at a wavelength of λ=10.6µm and the length of 

the resonator cavity was 1.772m. To obtain an FGB with a circular symmetry from the 

resonator the N parameter was chosen to have a value of 10 and the beam waist was specified 

as w0=10mm. The graph in Figure 4-3 shows the intensity profile of the FGB that will exit the 

laser resonator at the output coupler. The phase of the FGB at the output coupler is shown in 
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Figure 4-4. From the graphs it can be observed that the phase at the output coupler will be flat 

and the beam will have a flat top intensity profile. This concludes step 1 in the design of the 

DOE mirror for the custom resonator. 

 

 

Figure 4-4 - FGB phase at the output coupler 

 

Following this the second step in the design procedure was performed where the above 

specified FGB was propagated along the length of the resonator up to the position of the 

mirror. This propagation was performed with a numerical solution to the Kirchhoff-Fresnel 

diffraction integral as reported in Section 4.1.1. The numerical solution was once again 

obtained using MATLAB
®
. The graph in Figure 4-5 shows the intensity profile of the FGB 

and the graph in Figure 4-6 shows the phase of the FGB at the mirror position in the 

resonator. 
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Figure 4-5 - FGB intensity profile at the mirror position 

 

 

Figure 4-6 - FGB phase at the mirror position 

 

The result of the phase of the beam as shown in Figure 4-6 was then used in step 3 of the 

design procedure to determine the phase profile of the DOE mirror for the resonator. The 

profile of the DOE mirror is shown Figure 4-7. For the manufacturing process the surface 

height of the profile on the mirror was modulated every 10.6µm in height. This corresponds to 

one complete wavelength of 10.6µm or a 2π phase shift in the light. The modulated mirror 
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surface profile is shown in Figure 4-8. Figure 4-8 represents the surface profile of the actual 

mirror that was manufactured at an optics manufacturer using a diamond turning technique. 

 

 

Figure 4-7 - DOE mirror profile 

 

 

Figure 4-8 - Modulated surface profile of the DOE mirror 
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4.1.3 Stability analysis 

To verify the results of the design a resonator cavity stability analysis was performed using 

the method of Fox and Li (14) and as outlined in Section 3.5. The implementation was done 

in MATLAB
®
 together with the mirror design of the previous section. 

 

In the implementation a starting field was specified at the output coupler of the resonator. The 

start field was then propagated to the DOE mirror. At the position of the DOE mirror the 

phase of the DOE mirror was added to the phase of the beam to introduce the effect of the 

DOE mirror on to the beam. The beam with the added phase was then propagated back to the 

output coupler. This process of propagating the beam back and forth was then repeated to 

simulate the propagation of the beam through the resonator. The propagation of the beam 

from the output coupler to the mirror and back to the output coupler is defined as a round trip 

in the resonator. 

 

In the implementation of the simulation an aperture was introduced into the resonator to limit 

the area of calculation. In the physical implementation of the resonator a diameter 30mm 

aperture was inserted in the laser for reasons discussed elsewhere in this study. A diameter 

30mm aperture was therefore introduced into the simulation resonator. The beam was 

therefore calculated from -15mm to 15mm for the one dimensional strip resonator. A step size 

of 5µm was used in traversing the beam from -15mm to 15mm during the simulations. This 

step size was chosen to make the results as accurate as possible while still calculating the 

beam propagation in a realistic time. A smaller step size would have been more ideal but 

would have taken significantly longer to compute. 

 

As a first step to performing the stability analysis and to test the simulation program for the 

stability analysis an FGB was introduced at the output coupler and propagated for 5 round 

trips in the resonator. The FGB that was introduced was equivalent to the FGB that was used 

to design the resonator and the DOE mirror. This step was performed to determine whether 

the resonator will retain the FGB if an FGB was immediately introduced in the resonator. The 

introduced FGB and the output FGB after 5 round trips are shown in Figure 4-9. The figure 

shows that the shape of the FGB was changed to some extent in the resonator but is in essence 

still an FGB. The phase of the output beam is shown in Figure 4-10 
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Figure 4-9 – Beam profiles for the case of the introduced FGB and output beam after 5 round trips 

 

 

Figure 4-10 - Phase of the FGB after 5 round trips 

 

The density plot of the beam profile at the output coupler after each round trip in the resonator 

is shown in Figure 4-11. This shows how the input FGB changed shape to the output FGB 

during the 5 round trips. 
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Figure 4-11 - Density plot of the propagation for the introduced FGB and output beam after 5 round trips 

 

Following this the convergence of the custom resonator with the DOE mirror was tested. This 

was done by introducing a starting field of random noise at the output coupler for propagation 

through the resonator. The beam was propagated for 250 round trips through the resonator to 

test the convergence of the mode discrimination of the resonator. The starting field of random 

noise is shown in Figure 4-12. 

 

 

Figure 4-12 - Starting field of random noise 
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The output beam intensity profile at the output coupler after 250 round trips in the resonator is 

shown in Figure 4-13 and the phase is shown in Figure 4-14. 

 

 

Figure 4-13 - Output beam intensity profile after 250 round trips 

 

 

Figure 4-14 - Output beam phase after 250 round trips 

The resulting beam profile from the resonator after 250 round trips in the resonator shown in 

Figure 4-13 is very similar in shape to the beam profile shown in Figure 4-9 where an FGB 
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was inserted into the resonator and completed 5 round trips. It would be useful to know 

whether the resonator output has converged to this profile sooner than the 250
th

 round trip in 

the resonator. According to (31) the losses of the i-th round trip can be calculated through 

Equation 4-2 where γ is the energy contained in the field. 

        
  

    
 4-2 

A loss analysis for the resonator was performed using Equation 4-2 and the results are plotted 

in Figure 4-15. It can be seen from the figure that the loss per round trip has decreased 

significantly by the time that 100 round trips are reached. From approximately 175 round trips 

the loss per round trip is virtually zero. 

 

 

Figure 4-15 - Round trip loss plot for the resonator 

 

Furthermore a density plot of the output beam profile for each round trip was created and is 

shown in Figure 4-16. In the figure it can clearly be seen how the output beam starts at the 

noise input field as indicated in Figure 4-12. For the increasing value of the round trips on the 

y-axis one can see how the output beam converges to a flattened irradiance profile beam. This 

figure also suggests that a fairly stable condition in the resonator is reached after 100 round 

trips and that the output is very stable after approximately 175 round trips. 
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Figure 4-16 - Density plot of the output beam 

 

 

Figure 4-17 - Output intensity profiles after 100, 150, 175 and 200 round trips 

 

Following the loss analysis and the output beam profile contour plot, the output beam shape at 

various round trip numbers beyond 100 round trips were investigated. The plot in Figure 4-17 

shows the beam profile after 100, 150, 175 and 200 round trips in the resonator. From the 
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figure it can be seen that the profiles are consistent. Only the overall amplitude is decreasing 

as the round trips increase as there is no gain term in the beam propagation calculation taking 

the laser gain into account. 

4.2 Laser beam characterisation 

When the DOE mirror is implemented on the laser resonator there are various laser beam 

parameters that must be measured to verify the operation of the beam and to correlate the 

reality with the design. To properly comprehend the implications of the FGB one would have 

to know the beam parameters of the multimode and TEM00 beams as well. This will allow one 

to compare the beams and relate them to each other. 

 

The specific beam parameters that are of interest here for the application of the laser in 

materials processing application is the beam power or energy, the profile of the beam and the 

propagation parameters such as the M
2
 parameter and the divergence of the beam. The 

following paragraphs will cover the detail of the beam characterisation measurements as they 

will be performed during the experimental work in the laboratory on the laser. 

4.2.1 Pulse energy measurements 

The laser pulse energy will simply be determined by measuring the output power of the laser 

with a suitable power head for the output wavelength of 10.6µm. The measured power value 

will be divided by the repetition rate of the laser to arrive at the energy per pulse. During the 

measurement the laser will be operated at a given repetition rate and time will be allowed for 

the output power of the laser to stabilise. At this stabilised output point the laser resonator 

alignment will be optimised for maximum output power. The stabilised output power value 

will be used to calculate the laser pulse energy. 

4.2.2 Beam profile measurements 

The characterisation of laser beams is presented in a summarised method by Rypma (17). 

According to Rypma (17) the analysis of the laser beam profile can be defined as the 

measurement, numerical analysis and visual display of the laser beam‟s spatial energy density 

distribution or intensity profile. The analysis of the laser beam profile can provide various 

properties regarding the laser beam. By performing a numerical analysis on the laser beam 

one can determine the size, shape and position of the beam. One can furthermore determine 

the mode structure and the uniformity of the beam as well as the beam stability. The beam 

propagation can also be found by performing the numerical analysis and this will be covered 
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in the next paragraph. Analysis of the laser beam also provides qualitative properties of the 

beam. By visually inspecting the beam profile one can assess the alignment of the beam. 

Viewing the alignment of the beam will allow one to assess the cavity tuning and clipping of 

the beam etc. Visual inspection will also allow the assessment of the mode structure with the 

ability to identify hot spots, interference and diffraction effects. 

 

The place on the z-axis that is chosen for the beam profile measurement is very important. In 

general there are two regions in the propagation of the laser beam and they are called the near 

field and the far field. The near field part of the beam is the part of the beam immediately 

after the laser. In the near field region the beam is dominated by a disordered wave front and 

the characteristics of the beam are not very stable in this region. At some distance from the 

laser the far field part of the beam begins. In the far field region the wave front of the beam 

becomes ordered and the characteristics of the laser beam are stable in this region. For 

example in the far field region the divergence of the laser beam will be constant. The start of 

the far field region can be estimated as the point on the z-axis calculated by the formula in 

Equation 4-3. In the equation the parameter d is the beam width or diameter and λ is the 

wavelength of the laser beam. For the FGB with a diameter of 20mm the far field will start at 

approximately 38m from the output coupler and for the multimode beam with a width of 

30mm the far field will be beyond 9m in the propagation path. 

      

   4-3 

 

To measure the laser beam profile in the far field would be the ideal region to do so. To 

measure the beam profile in the far field will, however, be impractical and sometimes 

impossible to do as the suitable position in far field might be very far away from the output 

coupler of the laser. An optical sampling technique can be employed to transform the beam 

into the far field in a short distance for the laser beam profile measurement in the far field. 

This is commonly done by using a focussing lens or mirror to create the far field at the optical 

focal plane of the element. A suitable method to measure the laser beam profile can then be 

introduced at the focal plane of the optical element. 

 

The beam profile can be measured using a variety of different methods. Qualitative profile 

measurement methods such as mode burns on film, paper and Plexiglass can be employed. 
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Imaging fluorescence or phosphorescent conversion techniques will also yield qualitative 

beam profile measurements. The beam profile can also be measured using quantitative 

measurement techniques. The method of a mechanically scanned aperture such as a knife-

edge, slit, circular and pinhole apertures could be employed to determine the laser beam 

profile. One can also utilize two dimensional linear detector arrays for measuring the beam. 

Finally a camera based device could be used to measure the laser beam profile. 

 

During the execution of the experimental work in this study two methods will be used to view 

the laser beam profile. Firstly qualitative measurements of the beam during the alignment and 

set up will be made with thermal paper. Finally a pyroelectric camera will be employed for 

quantitative beam measurements. The beam measurements in this study will be obtained with 

a LBA-PC-PIII pyroelectric Pyrocam III camera from Spiricon Laser Beam Diagnostics. 

Further on in this text the camera will simply be referred to as the Pyrocam III. A picture of 

the Pyrocam III is shown in Figure 4-18. 

 

 

Figure 4-18 - Spiricon Pyrocam III 

 

The pyroelectric camera has the advantage that it can measure a two-dimensional mapping of 

the energy distribution that provides the data that can be used for quantitative analysis of the 

beam. The camera also has the advantage that it can capture single laser pulses and short term 

events. The camera does, however, have some drawbacks to it. The camera has a high 

sensitivity and a low damage threshold. The beam must therefore be properly attenuated 

during the beam measurements. The camera also has a low optical dynamic range which 

requires special treatment of optical and electronics sources of background noise. The camera 
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sensor array also usually differs in size from the laser beam that it is to be measured. The 

beam must therefore be optically manipulated through a telescope or another imaging 

technique to match the laser beam size to the detector size. 

 

For the purpose of this thesis it is required to measure the far field image of the beam as well 

as the image of the beam at the output coupler of the laser. For the TEA CO2 laser that will be 

used for the experimental work the multimode beam will be rectangular and will be in the 

order of 30mm by 30mm in size at the output coupler The FGB beam is expected to be 30mm 

in diameter at the output coupler. Due to the divergence of each beam it will grow in size as it 

propagates along the z-axis. The detector array of the Pyrocam III contains 15,376 elements in 

a 124 x 124 element array. The pixel size of each element is 85µm x 85µm and the elements 

are spaced in a grid of 100µm x 100µm. The active area of the detector array is therefore 

12.4mm x 12.4mm in size. One therefore has to employ a suitable technique to manipulate the 

beam so that it fits onto the detector array. 

 

The beam can be imaged onto the detector array of the Pyrocam III by inserting a lens in the 

beam path between the laser and the camera. The far field image of the beam can then be 

measured at the focal plane of the lens and the image at the output coupler at a calculated 

specific distance from the lens. Figure 4-19 shows the imaging of the laser beam onto the 

array detector. The object height is designated by yo and in this case the image of the laser 

beam at the output coupler of the laser will be the object. The image height is designated by yi 

and in this case the image will be the projection of the beam onto the array detector. The lens 

must then be placed at the distance So from the output coupler. The array detector must then 

be either placed at the focal plane of the lens or at the distance Si from the lens for the 

measurements that must be made with the Pyrocam III. Equation 4-4 and Equation 4-5 must 

be used to calculate the distances based on the choice of a suitable lens for the measurements. 
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Figure 4-19 - Imaging of the beam 

4.2.3 Beam propagation measurements 

Apart from measuring the laser beam profile for analysis of the energy density distribution 

etc, it will also be useful to get other information from the measurements. Specifically the 

beam propagation factor also known as the M
2
 parameter and the divergence of the beam 

would be useful in designing the optical beam delivery system for a materials processing 

application. 

 

According to Roundy (18) the beam propagation factor or M
2
 parameter is the parameter that 

quantitatively compares the propagation characteristics of the real beam being measured to 

characteristics of a pure TEM00 Gaussian beam. This comparison allows one to predict the 

focused spot size, the irradiance of the focused spot, the Raleigh range of the beam and the far 

field divergence of the beam for a given input beam width and lens focal length. Knowing 

these parameters of the multimode beam allows one to predict its propagation and to design a 

beam delivery system for the beam. 

 

The practical implications of the M
2
 parameter are worth mentioning and will be briefly 

described here. According to (18) and (19) the M
2
 parameter is commonly used to determine 

the size of a focused spot when a focussing lens is inserted into the beam. Figure 4-20 shows 

the focused spot size for two beams with input beam waists D00 and D0 to the lens. The beam 

with the D00 input waist has a M
2
 value of 1 and the beam with the D0 input waist has a M

2
 

value that is larger than one. The focal spot diameter can be determined through Equation 4-6 

where λ is the wavelength, f is the focal length of the lens and D0 is the width of the waist of 

the input multimode beam at the focal length of the lens. 

y0 

yi 

S0 Si 

Focal plane 

f 

Lens 
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 4-6 

 

Equation 4-6 shows that the focused spot size of the beam d0 is M
2
 times larger than the spot 

size for a TEM00 Gaussian beam with the same input diameter D0. For example if M
2
 = 2 for a 

beam, the focused spot size of the beam is twice as large as the focused spot size that could be 

obtained with a TEM00 beam. The irradiance of the beam which is proportional to the square 

of the beam width will only be one fourth for the multimode beam of the achieved irradiance 

for the TEM00 Gaussian beam. 

 

 

Figure 4-20 - Focus of two beams with different M2 values 

 

The method of measuring the M
2
 parameter is quite cumbersome and must be executed with 

great accuracy to get accurate and meaningful results. The measurement can unfortunately not 

be done through a single measurement or calculation. In the ISO standard ISO 11146 (22) a 

methodology for measuring the M
2
 has been defined that provides reliable measurement of 

the M
2
 parameter. The method is also described by Roundy (18). To perform the measurement 

one must use a lens with a known focal length and insert it in the path of the laser beam. A 

series of beam width measurements must then be made through the focused waist of the laser 

beam as shown in Figure 4-21. It is important to make sure that the beam width is measured 

in the focus at the smallest beam position and also at the focal plane of the lens. These are not 

necessarily the same places in the beam path. It is also important to measure the beam width 

beyond the focus to obtain the divergence. The accuracy of the measurement is increased if 

Lens 

Beam 

D00 or D0 
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one takes a series of beam width measurements at various positions and then performs a curve 

fit to the measured data to be able to calculate the M
2
 parameter. It is also important to note 

that the Second Moment (D4σ-width) method of obtaining the beam size must be used to 

ensure the accuracy of the measurements. According to Rypma (17) the D4σ-width of the 

laser beam is the beam size determined on the Second Order Spatial Moment of the beam 

Energy Intensity Density distribution. The D4σ-width can only be determined directly from 

data from a camera or pin-hole based beam intensity profile measurement. In the case of a 

Gaussian beam the D4σ-width will yield similar beam width results as the other 1/e
2
 methods. 

 

 

Figure 4-21 - Beam width measurements in focus area 

 

The mathematics for the curve fit to the measured data can be done as follow. Consider 

Equation 4-7 which describes the spot size ω for propagation of a Gaussian beam along the z-

axis. Through some manipulation Equation 4-8 can be rewritten into a second order 

polynomial form as shown in Equation 4-8. 
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  4-8 

The coefficients of Equation 4-8 can be equated to the generic coefficients of the second order 

polynomial equation as shown in Equation 4-9, Equation 4-10 and Equation 4-11. 
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  4-10 

   
  
   

 

  
    

  4-11 

Through further manipulation of the above mentioned equations, equations for the Rayleigh 

range, beam waist position and beam waist size can be readily obtained. This is shown in 

Equation 4-12, Equation 4-13 and Equation 4-14. 

    
  

  
 4-12 

     
 

  
 4-13 

       
  

  
 4-14 

 

If the square of the measured beam radius data for the focus region is plotted against the z-

axis, a graph is obtained on which a second order polynomial fit can be done. An example of 

the curve is shown in Figure 4-22. The equation of the polynomial fit will be of the form 

y=ax
2
+bx+c. The values of the coefficients a, b and c can then be read from the fitted 

polynomial equation. The Rayleigh range, beam waist position and beam waist size can then 

be determined by inserting the obtained coefficient values into Equation 4-12, Equation 4-13 

and Equation 4-14 respectively. The M
2
 parameter is defined through Equation 4-15 and can 

hence be calculated from the results of Equation 4-12, Equation 4-13 and Equation 4-14. This 

method has been suggested and used by Forbes (21) to calculate these parameters. 

    
   

 

   
 4-15 

 



58 

 

 

Figure 4-22 - Beam size measurement results 

 

Finally the beam divergence θ must be determined. This can be done by calculating it from 

the M
2
 parameter according to Equation 4-16 as defined by Svelto (24). The beam divergence 

can also be calculated by using the beam diameter size in the focal plane of the lens and the 

focal length of the lens according to Equation 4-17. This method is also described by the 

Pyrocam III manual (20). The method of determining the beam divergence by using equation 

4-16 yields the half angle divergence of the laser beam radians. The focal plane method 

according to Equation 4-17 yields the full angle divergence of the laser beam in radians. 

 

    
   

   
 4-16 

    
            

 
 4-17 

 

The focal plane method yields the best results for the beam divergence value if the input beam 

to the lens is collimated. Since the M
2
 parameter has been determined as described above by 

y = 0.0002145525x2 - 0.0004331284x + 0.0002231106
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using many measurements through the focus area of the lens, it is assumed that a more 

accurate value for the divergence will be obtained if it is calculated using Equation 4-16. 

 

In conclusion Siegman et al. also discussed the subjects of the M
2
 parameter and beam width 

measurement methods such as the Second Moment method as mentioned above in Reference 

(34). The Reference also explores the topic of other methods of specifying the beam quality 

apart from the M
2
 parameter. 
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5 RESULTS 

The previous chapters explored the topics of FGBs and the design of the laser resonator and 

the appropriate DOE for the resonator so that the resonator can yield an FGB. The DOE in 

question was then manufactured according to the design in Chapter 4 by an optics 

manufacturer using the diamond turning technique. The DOE was received from the 

manufacturer and installed on the TEA CO2 laser. This chapter presents the experimental 

results that were measured in the laboratory for the TEA CO2 laser. The TEA CO2 laser was 

first characterised in terms of its multimode and TEM00 beam propagation properties. 

Following this the DOE was installed on the resonator and the laser was further characterised 

for the DOE. The results of the multimode, TEM00 and FGB beam characteristics are 

summarised and discussed in Section 6.1.3. 

 

The laser with the custom DOE resonator was finally used in a practical paint removal 

application. The laser based paint removal system and results that were obtained with the 

system are also presented in this chapter. 

5.1 Laser characterisation 

The multimode and TEM00 beam propagation properties of the TEA CO2 laser were first 

characterised in the laboratory experimental work. This was done to form a basis of 

comparison for the FGB propagation properties that were to be measured later on. During the 

characterisation of the beam propagation the beam profile measurements as described in 

paragraph 4.2.2 and the beam propagation measurements as described in paragraph 4.2.3 were 

performed. Following the measurements the results were analysed and processed and are 

finally presented in the following paragraphs of this thesis. 

5.1.1 Multimode beam results 

The multimode beam was generated by configuring the resonator as shown in Figure 5-1. In 

this configuration a flat ZnSe output coupler and a concave gold coated copper mirror was 

used to form a stable long radius hemispherical optical resonator. For this implementation the 

laser yields a rectangular shaped beam where the higher order modes are present in the beam. 
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Figure 5-1 – Multimode laser resonator 

 

Figure 5-2 shows the results of the beam propagation measurement that was performed 

according to paragraph 4.2.3. The figure shows the squared beam radius as measured for each 

axis vs. the distance from the focussing lens. The fitted curves to the data with the 

accompanying equations were used to calculate the M
2
 parameter and beam divergence. 

 

 

Figure 5-2 – Focused multimode beam size measurements 

 

Table 5-1 summarises the parameters of the beam for the multimode beam. The table presents 

the calculated M
2
 parameters and the beam divergence as well as the pulse energy. 
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Parameter X-Axis Y-Axis 

M
2
 Parameter 21.3 28.7 

Divergence 35.3mrad 41.8mrad 

Pulse energy 6.3J 

Table 5-1 – Multimode beam results 

Figure 5-3 shows the far field image of the multimode beam. This image was taken with the 

Pyrocam III at a distance from the lens equal to the focal length of the lens for the beam 

propagation measurements. These measurements were performed according to the procedure 

that was outlined in paragraph 4.2.2. 

 

 

Figure 5-3 - Multimode beam far field image 

 

Figure 5-4 shows the image of the multimode beam as it is at the output coupler of the 

resonator. This image was taken with the Pyrocam III at a calculated distance from the lens 

that was used to focus the beam for the beam propagation measurements. At this distance the 

set-up creates an exact scaled-down image of the beam at the output coupler projected onto 

the detector. These measurements were performed according to the procedure that was 

outlined in paragraph 4.2.2. Both of the images in Figure 5-3 and Figure 5-4 represent the 

image as captured on the detector of the Pyrocam III. With reference to Section 4.2.2 the 

detector size is 12.4mm x 12.4mm and the images in the figures therefore represent a 12.4mm 
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x 12.4mm size. As previously mentioned the beam was focused with a lens to fit the beam 

onto the detector. It should be noted that the image of the beam in Figure 5-4 is inverted if 

compared to the image in Figure 5-3 due to the fact that the image was taken beyond the focal 

plane of the lens. 

 

 

Figure 5-4 - Multimode beam image at the output coupler 

 

5.1.2 TEM00 beam results 

The TEM00 beam was generated by configuring the resonator as shown in Figure 5-5. In this 

configuration a flat output coupler and a concave gold coated copper mirror was used to form 

a stable long radius hemispherical optical resonator. An aperture was inserted into the 

resonator at the concave mirror side to select the TEM00 mode. In this configuration the laser 

yields a circular shaped beam with a Gaussian intensity profile. 

 

Figure 5-6 shows the results of the beam propagation measurement that was performed 

according to paragraph 4.2.3. The figure shows the squared beam radius as measured for each 

axis vs. the distance from the focussing lens. The fitted curves to the data with the 

accompanying equations were used to calculate the M
2
 parameter and beam divergence. 
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Figure 5-5 – TEM00 mode laser resonator 

 

 

 

Figure 5-6 - Focused TEM00 beam size measurements 

 

The Table 5-2 summarises the parameters of the beam for the TEM00 beam. The table 

presents the calculated M
2
 parameters and the beam divergence as well as the pulse energy. 
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Parameter X-Axis Y-Axis 

M
2
 Parameter 1.06 1.08 

Divergence 7.7mrad 7.8mrad 

Pulse energy 250mJ 

Table 5-2 – TEM00 beam results 

 

Figure 5-7 shows the far field image of the TEM00 beam. This image was taken with the 

Pyrocam III at a distance from the lens equal to the focal length of the lens for the beam 

propagation measurements. These measurements were performed according to the procedure 

that was outlined in paragraph 4.2.2. Figure 5-8 shows the image of the TEM00 beam as it is at 

the output coupler of the resonator. This image was taken with the Pyrocam III at a calculated 

distance from the lens that was used to focus the beam for the beam propagation 

measurements. At this distance the set-up creates an exact scaled-down image of the beam at 

the output coupler projected onto the detector. These measurements were performed 

according to the procedure that was outlined in paragraph 4.2.2. The images in Figure 5-7 and 

Figure 5-8 once again represent a 12.4mm x 12.4mm area. It should be noted that the image 

of the beam in Figure 5-8 is inverted if compared to the image in Figure 5-7 due to the fact 

that the image was taken beyond the focal plane of the lens. 

 

 

Figure 5-7 – TEM00 beam far field image 
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Figure 5-8 - TEM00 beam image at the output coupler 

5.2 Installation of DOE in the laser resonator and FGB results 

Following the laser characterisation for the multimode and TEM00 cases the DOE was 

installed onto the laser resonator for the generation of the FGB. The FGB was then 

characterised similarly to the other beam modes of the laser. Initial experiments with the DOE 

were performed with an open gain volume in the laser resonator. Due to the results that were 

obtained in this configuration a decision was made to install a suitable aperture in the laser 

resonator to limit the available gain volume for the generation of the FGB. The results for 

both of these cases are presented in the following paragraphs. 

5.2.1 FGB results – open gain volume 

The FGB was generated by configuring the resonator as shown in Figure 5-9. In this 

configuration a flat output coupler and DOE gold coated copper mirror were used to form a 

stable long radius hemispherical optical resonator. In this configuration the laser yields the 

FGB. 
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Figure 5-9 – FGB mode laser resonator 

 

Figure 5-10 shows the results of the beam propagation measurement that was performed 

according to paragraph 4.2.3. The figure shows the squared beam radius as measured for each 

axis vs. the distance from the focussing lens. The fitted curves to the data with the 

accompanying equations were used to calculate the M
2
 parameter and beam divergence. 

 

 

Figure 5-10 – Focused FGB beam size measurements 

 

The Table 5-3 summarises the parameters of the beam for the FGB. The table presents the 

calculated M
2
 parameters and the beam divergence as well as the pulse energy. 
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Parameter X-Axis Y-Axis 

M
2
 Parameter 22 16.8 

Divergence 38.2mrad 35.9mrad 

Pulse energy 5.3J 

Table 5-3 – FGB beam results 

 

Figure 5-11 shows the far field image of the FGB beam. The image in Figure 5-12 represents 

the image of the FGB beam as it is at the output coupler of the laser. The far field image of 

the beam and the image of the beam as it is at the output coupler were once again obtained by 

following the procedure as outlined in Section 4.2.2. Once again the image of the beam in 

Figure 5-12 is inverted if compared to the image in Figure 5-11 due to the fact that the image 

was taken beyond the focal plane of the lens. 

 

 

Figure 5-11 – FGB far field image 
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Figure 5-12 – FGB image at the output coupler 

5.2.2 FGB results – aperture in gain volume 

Following the previous measurements with the FGB an aperture was inserted into the laser 

resonator. The FGB was now generated by configuring the resonator as shown in Figure 5-13. 

In this configuration a flat output coupler and DOE gold coated copper mirror was used to 

form a stable long radius hemispherical optical resonator. A 30mm diameter aperture was 

inserted into the resonator at the DOE mirror side. In this configuration the laser yields an 

FGB. The insertion of the aperture in the resonator is similar to the work performed by 

Bélanger et al. (12), (13). 

 

 

Figure 5-13 – FGB mode laser resonator with aperture 
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Figure 5-14 - Focused FGB beam size measurements 

The beam propagation measurement as outlined in Section 4.2.3 was once again performed 

and the result is shown in Figure 5-14. From the data the M
2
 parameter and beam divergence 

were determined. The Table 5-4 summarises the parameters of the beam for the aperture FGB. 

The table shows the determined M
2
 parameters and the beam divergence for each axis as well 

as the laser pulse energy. The M
2
 and divergence values for the FGB with an aperture in the 

gain volume are significantly lower than for the FGB with the open gain volume. This 

difference will be discussed in Section 6.1.3 where all the results are summarised and 

discussed. 

 

Parameter X-Axis Y-Axis 

M
2
 Parameter 9.2 9.4 

Divergence 7.3mrad 7.4mrad 

Pulse energy 4.3J 

Table 5-4 - FGB beam results 
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Figure 5-15 – FGB far field image 

 

The image in Figure 5-15 shows the far field image of the FGB beam. The image was 

acquired using the method described in Section 4.2.2. 

 

The reader is referred to Section 6.1.3 where the various beam characteristics will be 

summarised and discussed. 

5.3 Paint removal results 

Following the implementation of the DOE mirror in the laser resonator and the 

characterisation of the laser beam, the laser was used in a material processing application to 

test the properties of the beam. The material processing application for the laser is laser based 

paint removal from an aluminium substrate. 

 

In the application of a TEA CO2 laser for laser based paint removal it is desirable for the laser 

to have high pulse energy with good beam propagation properties and a uniform energy 

distribution profile for the beam. The high pulse energy and uniform energy distribution allow 

for maximum efficiency in the ablation process whereby the paint is removed from the 

substrate. The good beam propagation properties allow easy delivery and manipulation of the 

laser beam to get it to the paint removal target. 
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The laser beam characterisation that was performed in the previous paragraphs outline the 

characteristics for each beam of the TEA CO2 laser. The TEM00 beam has very good beam 

propagation characteristics which makes it excellent for propagation over long distances. 

Unfortunately it has low pulse energy and also has a Gaussian distribution in the energy 

distribution of the beam making it not ideal for uniform ablation. The reader is referred to 

Section 3.1 and Figure 3-1 where the disadvantages of the TEM00 beam are illustrated. The 

multimode beam on the other hand has high pulse energy. The multimode beam energy 

distribution does approach a flat top type profile which is ideal for uniform ablation but the 

profile is, however, not uniform enough in the region where the flat energy distribution is 

required. Furthermore the beam propagation of the multimode beam is not ideal at all. The 

beam has very high divergence and is not suitable for propagation over long distances. 

 

The FGB appears to be the best of both worlds. The FGB has good beam propagation 

properties making it ideal for propagation over long distances. The FGB furthermore has 

relatively high pulse energy and a uniform energy distribution in the beam profile. The FGB 

thus has all round good properties for uniform paint ablation form a substrate. The only down 

side of the FGB is the fact that the energy distribution of the beam changes shape as the beam 

propagates. The FGB must therefore be delivered and propagated via an image relay system 

to deliver it at the target in the desired flat top energy distribution profile. 

 

Figure 5-16 and Figure 5-17 show the practical results of paint removal from an aluminium 

substrate using the TEA CO2 laser. Both of the images show aluminium panels that were 

painted with two layers of primer and a final top coat. The first primer is yellow in colour and 

is barely visible in the paint removal results. The second primer has a green colour and is 

visible in the results. The top coat is white and is predominantly visible in the images. 

 

The images shown in Figure 5-16 and Figure 5-17 were generated by holding the aluminium 

sample plate stationary and applying a given number of laser pulses at each point. The sample 

plate was then moved to a new position and the applied number of pulses was increased in the 

new application position. The process was repeated until enough pulses were applied to the 

substrate to remove all the paint. By looking at the irradiation spots on the aluminium samples 

the number of laser pulses was increased as the laser beam was moved from the left hand side 

of the sample to the right hand side. The irradiated areas on the left hand side of the sample 

show results where some of the top coat has been partially or completely removed. On these 
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areas the green primer is mostly still intact where the top coat has been completely removed. 

The irradiation areas in the centre of the sample show how the remnants of the top coat and 

the green primer are progressively removed. The irradiation areas on the right hand show the 

results where enough laser pulses have been applied so that all the paint is removed all the 

way down to the aluminium substrate. 

 

From Figure 5-16 one can see that the multimode beam is effective in removing the paint 

from the substrate. From the figure it is visible that there are various regions in the multimode 

beam where the energy varies in intensity. The variation in energy intensity yields non-

uniform paint ablation in the region where the beam is applied. The various modes that 

constitute the multimode beam are also visible in the ablation of the paint from the substrate 

as horizontal lines across the beam by looking at the figure. Looking at the vertical dimension 

of the beam there are also another two regions where the energy appears to vary. The vertical 

regions of higher energy intensity are believed to be due to the profile of the electrodes of the 

TEA CO2 laser that enhances the field and hence the energy in these regions. 

 

 

 

 

 

 

 

Figure 5-16 – Multimode paint removal results 
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The results shown in Figure 5-17 were generated in a similar fashion as those in Figure 5-16. 

In this case the FGB was, however, applied to the painted aluminium substrate. One can see 

from the figure that the FGB is also effective in removing paint from the substrate. The FGB 

shows better uniformity than the multimode beam which is evident through the more uniform 

ablation of the paint. There are still some small non-uniformities but they are not as 

significant in the multimode case. 

 

 

 

 

 

 

 

Figure 5-17 – FGB paint removal results 
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removal head over the target surface. The WH1500 laser and the first part of the beam 

delivery system are shown in Figure 5-18. 

 

 

Figure 5-18 - WH1500 TEA CO2 laser and beam delivery system 

 

 

Figure 5-19 - The beam delivery system with the industrial robot arm 
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The images Figure 5-20 show the paint removal system in operation where paint is being 

removed from a large aluminium plate that is placed in front of the paint removal head. 

 

 

Figure 5-20 - Paint removal system in operation 
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6 CONCLUSIONS, SUMMARY AND RECOMMENDATIONS 

6.1 Conclusion 

This thesis started off by discussing the application of Gaussian beams in laser materials 

processing applications. The Gaussian intensity distribution of the beam was identified to be 

non-ideal in applications where a homogenous energy distribution in the beam is required. 

The topic of SGBs and FGBs was introduced as these laser beams have more uniform 

intensity distributions than the Gaussian beam. The purpose of this thesis was to investigate 

the concept of FGBs and how an FGB could be practically implemented on a TEA CO2 laser 

for the purpose of laser-based paint removal. Conclusions will be drawn in the following 

sections about the theory of FGBs as investigated in this thesis and the methodology for 

implementing an FGB. The resulting FGB and its properties as implemented on the TEA CO2 

laser will be discussed. Finally the laser based paint removal application will be discussed and 

a conclusion drawn on the application of flattened irradiance profile beams in materials 

processing applications. 

6.1.1 FGB theory 

In Section 3.1 the concept of flattened irradiance profile beams was presented. The flattened 

irradiance profile beam can be treated mathematically in various ways as described by the 

referenced authors. For the purpose of this study the FG profile for defining the profile of the 

flattened irradiance profile beam as introduced by Gori (3) was chosen. The mathematical 

description of the FG profile as presented in (3) was studied. Furthermore the propagation of 

the FGB with circular symmetry was analysed using an analytical method. Following this, the 

work of Amarande (4), (5) was studied where FGBs with rectangular symmetry was 

mathematically described and propagated using an analytical method. This study of the 

background theory of FGBs laid the fundamentals for proceeding in designing a laser 

resonator that naturally yields an FGB. 

 

The topic of laser beam shaping was then introduced. Laser beam shaping techniques can be 

applied to laser beams externally or internally to the laser resonator. The method of internal 

beam shaping is preferred in this application. The high envisaged average output power of the 

laser and elegance of shaping the beam internally to the resonator makes this the only viable 

option for implementing an FGB. For this purpose the work of Bélanger et al. (8), (9), and 

(10) involving custom laser resonators with GPM mirrors was studied. The design procedure 
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for a custom resonator implementing a DOE or GPM as outlined by Bélanger et al. was 

studied. Finally the method of Fox and Li (14) for determining the steady-state condition in a 

resonator was studied. 

6.1.2 FGB implementation 

Following the study of the background theory, the theoretical concepts were put into practice. 

Section 4.1 outlines the custom laser resonator with the design of the DOE mirror for the 

resonator. The solution of the Kirchhoff-Fresnel diffraction integral for the numerical 

propagation of the beam was performed in Section 4.1.1. The numerical solution for the beam 

propagation was compared to the analytical solution. From the results it can be seen that there 

is a difference between the numerical and analytical results. It is assumed that the analytical 

method makes an approximation of the beam propagation through the analytical technique 

that was used. The results of the numerical propagation are believed to be more accurate and 

this method was used in propagating the beam during the design of the custom resonator. 

 

The design of the resonator and DOE mirror was performed in Section 4.1.2. This section 

shows the specified output FGB as well as the beam profile and phase at the DOE mirror. The 

beam profile and phase at the DOE mirror was used to determine and design the DOE mirror 

profile. Finally the resulting mirror profile was shown in Figure 4-8. A stability analysis was 

performed in Section 4.1.3 to determine the steady-state condition of the laser resonator. The 

stability analysis was performed as a check to confirm that the resonator does produce an 

FGB. For the analysis of the resonator a starting field of background noise was introduced 

into the resonator and propagated back and forth between the output coupler and the DOE 

mirror. The results of the stability analysis showed that the resonator did converge to a steady-

state solution were an FGB was formed in the resonator. From the stability analysis it could 

be seen that a stable mode had formed after approximately 100 round trips. From the results it 

can be seen that the resulting beam does not look exactly like the beam that was used to 

design the resonator. This can be attributed to the finite calculation accuracy of the design and 

simulation. The resulting beam profile from the resonator starting from the noise input field 

showed good agreement with the profile of the case where the starting field was an FGB. It is 

therefore concluded that the resonator will converge to a stable mode as determined by the 

profile of the DOE mirror in the resonator. Experimental testing showed that the laser gain 

life time for the TEA CO2 laser is in the order of 4µs. This allows for approximately 338 

round trips in this laser which will be sufficient time for the stable mode to form. 



79 

 

 

The methodology of characterising a laser beam was investigated and discussed in Section 

4.2. The practicalities of measuring the laser beam profile with an IR camera were treated in 

Section 4.2.2. The measuring and determining of the laser beam propagation parameters were 

discussed in Section 4.2.3. In the characterisation of the beam the IR camera was used to 

measure the beam size at various positions in the beam to determine the propagation 

parameters such as the M
2
 parameter and beam divergence value. 

6.1.3 FGB results 

The experimental results as obtained from the SDI Lasers WH1500 TEA CO2 laser was 

presented in Chapter 5. For the purpose of contrasting the FGB to the multimode and TEM00 

beams of the laser, the propagation parameters of the multimode and TEM00 beams were 

determined first. Following this the FGB results for the scenario of the open gain volume 

were measured. The result for the FGB in a scenario where an aperture was installed in the 

gain volume was finally measured. 

 

Parameter: Multimode TEM00 FGB Aperture FGB 

Axis: X Y X Y X Y X Y 

M
2
 Parameter 21.3 28.7 1.06 1.08 22 16.8 9.2 9.4 

Divergence (mrad) 35.3 41.8 7.7 7.8 38.2 35.9 7.3 7.4 

Pulse energy (J) 6.3 0.25 5.3 4.3 

Table 6-1 - Summary of laser beam parameters 

 

The measured beam propagation results for the various beams of the WH1500 laser are 

summarised in Table 6-1. The multimode beam yields the highest pulse energy and also has 

the highest M
2
 parameter and beam divergence of all the beams. The high M

2
 parameter and 

beam divergence values do not make the multimode beam suitable for propagation over long 

distances. The TEM00 beam gave the lowest pulse energy but had the best beam propagation 

parameters. Both the M
2
 parameter and beam divergence values are very low and make the 

beam excellent for propagation over long distances. The open aperture FGB yielded 

comparatively high pulse energy but has M
2
 parameter and beam divergence values that are 

only marginally better than those of the multimode beam. The FGB with the aperture gave 

somewhat lower pulse energy than the open aperture FGB, but on the other hand exhibited 

vastly improved propagation parameters. 
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The M
2
 parameter and beam divergence values of the multimode and open aperture FGB are 

virtually the same. This is due to the fact that the DOE mirror is exposed to the entire gain 

volume of the resonator. The gain volume is larger than the FGB and this gives way to the 

fact that the DOE mirror partially functions as a phase selective mirror and partially as a 

conventional spherical mirror in the resonator. Due to the unrestricted gain volume, higher 

order modes also contribute towards the FGB. The higher order modes result in the 

unrestricted FGB also having similar propagation parameters to the multimode beam. 

Therefore the M
2
 and beam divergence parameters are very similar. 

 

In the instance where the aperture is installed in the resonator together with the DOE mirror, 

the DOE mirror is not exposed to the entire gain volume. In this instance the FGB truly has a 

single mode. The absence of the higher order modes in the beam bring about the improvement 

in M
2
 parameter and beam divergence values that are visible in the results of the FGB with the 

aperture in the resonator. 

 

Laser beams with high pulse energy and good propagation parameters are desired for 

materials processing applications. The FGB with the aperture installed in the resonator 

exhibits these desired properties. The beam has sufficient energy for the materials processing 

application and has good beam propagation parameters that are suitable for propagation of the 

beam over long distances. 

 

From Table 6-1 the conclusion can be drawn that the monomode FGB extracted significantly 

more energy from the cavity than the monomode TEM00 beam. In the case where the DOE 

mirror was exposed to the entire gain volume the output pulse energy was approximately 85% 

of the multimode pulse energy. For the instance where an aperture was placed between the 

gain volume and the DOE mirror the output pulse energy was approximately 68% of the 

multimode pulse energy. In contrast the pulse energy of the TEM00 beam was only 4% of the 

energy of the multimode beam. The high energy extraction and the good beam propagation 

properties of the monomode FGB make it a lucrative beam option for materials processing. 
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Figure 6-1 - Far field images of the multimode beam (left) and TEM00 beam (right) 

 

For the sake of the discussion here the far field images of the various beams of Section 5.2 are 

repeated in Figure 6-1 and Figure 6-2. In Figure 6-1 the multimode beam is shown on the left 

hand side and the TEM00 beam is shown on the right hand side. The WH1500 TEA CO2 laser 

has a rectangular gain area. From the image of the multimode beam it can be seen that the 

multimode beam fills the gain area completely and hence the rectangular shape of the 

multimode beam. In the horizontal axis of the beam there are various features visible (Figure 

6-1). This can mainly be attributed to the diffraction effects of the electrodes in the laser. To 

obtain the TEM00 beam an aperture was installed in the resonator. The aperture restricted the 

resonator to use only the amount of gain area that is visible through the opening of the 

aperture. In order to obtain the monomode TEM00 beam a small aperture must be installed. 

Most of the gain area is therefore not used in this configuration. This then yields the small 

beam and low pulse energy. With reference to Figure 6-1 the beam has a Gaussian intensity 

distribution which is visible despite the fact that the beam was quite small on the detector. 

 

 

Figure 6-2 - Far field images of the open aperture FGB (left) and apertured FGB (right) 
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In Figure 6-2 the far field image of the open aperture FGB is shown on the left hand side and 

the far field image of the FGB with the aperture is shown on the right hand side. In the case of 

the open aperture FGB the beam tends towards a flattened irradiance profile but some 

imperfections are visible in the beam. The imperfections can be attributed to the fact that the 

DOE mirror is exposed to the entire gain area and that higher order modes can also be 

generated through this. As in the case of the multimode beam there are also some diffraction 

effects of the electrodes visible in this beam. Furthermore the beam is also not completely 

circular. The FGB that was generated by inserting an aperture in front of the DOE mirror on 

the other hand appears to yield a truly monomode beam. The intensity profile truly 

approximates a flattened irradiance profile. The beam is also circular with no major 

diffraction effects in the beam. 

6.1.4 Paint removal results 

The WH1500 laser was finally applied in a materials processing application where paint was 

removed from an aluminium substrate. For the basis of comparison the laser was applied in 

the multimode beam case to the substrate and following this in the FGB case to the substrate. 

The images of the paint removal results are repeated here in Figure 6-3 for the reader‟s 

convenience. The multimode beam paint removal is shown on the left-hand side and the FGB 

paint removal is shown on the right-hand side. The details of the results and how they were 

obtained were discussed in Section 5.3 and will not be repeated here. 

 

    

Figure 6-3 - Multimode beam (left) and FGB (right) paint removal results 

 

In conclusion both the multimode and FGB beams are suitable for removing paint from a 

substrate. The multimode beam varies in energy intensity across the profile of the beam due to 

the multimode content of the beam. The vertical higher intensity regions which are believed 

to be due to the profile of the electrodes also contribute towards the energy intensity 

variations. The variation in energy intensity across the profile of the beam is evident in the 
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paint removal results that are shown in Figure 6-3. The uneven ablation of the paint from the 

substrate can clearly be seen. The FGB shows improved uniformity in the energy intensity 

across the profile of the beam. The improved uniformity of ablation of the paint is evident in 

the results shown in Figure 6-3. The improved beam propagation of the FGB facilitated that 

the beam could be propagated over a long distance through the complete beam delivery 

system to the paint removal head assembly as shown in Figure 5-18 and Figure 5-19. With the 

multimode beam it would not have been possible to deliver the beam through the envisaged 

beam delivery system. 

 

The results in Figure 5-16, Figure 5-17 and Figure 6-3 show the paint removal results with the 

multimode beam and the open aperture FGB beam. The aperture FGB results were not 

available for inclusion in this thesis. Paint removal tests with the aperture FGB did, however, 

exhibit further improvements in the uniformity of the energy intensity across the beam profile. 

Improved uniform paint ablation could be seen as a result of this and the aperture FGB is 

currently implemented in the paint removal system. 

6.2 Summary 

This thesis studied the theory of FGBs and the custom laser resonators that are required to 

shape the beam internally to be an FGB. A custom laser resonator for a TEA CO2 laser was 

designed for the purpose of generating an FGB from the laser. The custom resonator was 

implemented on the laser and the resulting FGB was analysed and compared to the 

conventional multimode and TEM00 beam scenarios. The resulting FGB was finally 

implemented in a materials processing application where the application of the FGB was 

successfully demonstrated. Compared to the multimode beam, the FGB yielded the desired 

improvements in the beam propagation parameters and also in the uniformity of the energy 

intensity across the beam. The theory, design and application of FGBs were therefore 

successfully demonstrated in a real-life industrial application. 

6.3 Recommendations 

In the application of laser-based paint removal it is generally required that large surface areas 

must be stripped of paint in a realistic timeframe to make the process economically viable. 

The paint removal process can be improved by increasing the energy per pulse of the laser 

and by increasing the repetition rate of the laser. In the implementation of the FGB it is 

evident that some of the energy that is present in the multimode beam is lost due to the fact 

that the FGB has a circular profile. Approximately 25% to 32% of the energy of the 
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multimode beam is lost due to this fact. In the science and engineering of lasers a great deal of 

effort is expended to generate the laser output energy. The capital cost of the laser almost 

scales quadratic in terms of the output power of the laser. It is therefore counterproductive to 

not utilise the complete gain area. The output efficiency of the system is decreased if the 

entire gain area of the laser is not used as in the case of the circular FGB implementation. 

 

It is therefore recommended that the possibility of implementing a rectangular FGB in the 

TEA CO2 laser should be investigated. In the implementation of the DOE mirror to generate a 

rectangular FGB it is envisaged that almost the entire gain area of the laser will be utilised. It 

might be necessary to add a rectangular aperture to the resonator but in essence most of the 

gain area will be utilised. If the rectangular FGB could be realised it would still have the 

improved propagation properties that are also desired. The manufacturing and the alignment 

of the DOE mirror for the rectangular FGB might pose some technical challenges that need to 

be addressed in the implementation. It will be required to properly align the DOE mirror with 

the vertical axis and horizontal axis of the resonator with reference to the placement of the 

electrodes in the resonator. 

 

If the technical challenges of implementing the rectangular FGB could be overcome it would 

be a viable option for improving the pulse energy of the laser. The pulse energy can also be 

improved by staying with the circular FGB but increasing the size of the beam and hence the 

gain area of the laser. 
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8 APPENDICES 

8.1 MATLAB program 

 

%%%% CLEAR THE VARIABLES 
clear all; 
clear function; 

 
%%%% INITIALISE THE VARIABLES 
A = -0.015;         % initialise lower integration limit 
B = 0.015;          % initialise upper integration limit 
wo = 0.01;          % beam waist 
wave  = 0.0000106;  % wavelength 
kk = 2*pi/wave;     % propagation constant 
L = 1.772;          % resonator length 
b = L; 
s = A;              % initialise the s variable for the integration over 

the beam 
steps = 5e-6;       % step size of s 
sind = 1;           % index of s 
resultvar = 0; 
ss = 0;              
Io = 1;             % super-Gaussian amplitude scale factor 
N = 10;             % super-Gaussian order parameter 
numofpasses = 500;  % number of passes for the stability analysis must be 

an EVEN number! 
sarr(1) = double(0); 

 
sindmax = (B-A)/steps + 1; 
for sind = 1:sindmax, sarr(sind) = A + steps*(sind-1); end 
csvwrite('s-array.csv',sarr); 

 
%%%% GENERATE THE FGB FUNCTION FOR PROPAGATION 
for sind = 1:sindmax, fgbfield(sind) = fgbfunc(Io,sarr(sind),wo,N,wave); 

end 
csvwrite('fgbfield amp.csv',abs(fgbfield)); 
csvwrite('fgbfield angle.csv',angle(fgbfield)); 

 
%%%% CALCULATE THE MIRROR PHASE AND SURFACE PROFILE 
for sind = 1:sindmax 
    h = steps; 
    sum = 0; 
    for k = 2:(sindmax-1) 
        sum = sum + sqrt(j/(wave*L))*fgbfield(k)*exp(((-

j*pi)/(wave*L))*power((A+(k-1)*h)-sarr(sind),2)); 
    end 
    fa = sqrt(j/(wave*L))*fgbfield(1)*exp(((-j*pi)/(wave*L))*power(A-

sarr(sind),2)); 
    tempmax = cast(sindmax,'int16'); 
    fb = sqrt(j/(wave*L))*fgbfield(tempmax-1)*exp(((-

j*pi)/(wave*L))*power(B-sarr(sind),2)); 
    resultvar(sind) = h*((fa+fb)/2 + sum); 
end 
csvwrite('fieldatmirror.csv',abs(resultvar)); 
csvwrite('phaseatmirror.csv',angle(resultvar)); 
sprintf('%s','Mirror surface and phase determined') 
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%%%% DETERMINE THE MIRROR PHASE FOR THE RESONATOR ANALYSIS TEST 
tfunc = conj(resultvar)./resultvar; 

 
%%%% GENERATE AN ARBITRARY FIELD FOR THE START OF THE RESONATOR STABILITY 
%%%% ANALYSIS 
%for sind = 1:sindmax, startfield(sind) = 

fgbfunc(0.1,sarr(sind),0.005,1,wave); end 
for sind = 1:sindmax, startfield(sind) = rand; end  % create random start 

field 
csvwrite('startfield amp.csv',abs(startfield));     % output the start 

field amplitude to a *.csv file 
csvwrite('startfield angle.csv',angle(startfield)); % output the start 

field phase to a *.csv file 

 
%%%% PROPAGATE THE BEAM BACK AND FORTH THROUGH THE RESONATOR FOR THE 
%%%% SPECIFIED NUMBER OF PASSES 
for passind = 1:numofpasses 
    % Select the right field to be propagated for the next round trip 
    if passind == 1 
        propfield = startfield; 
    else 
        propfield = nextfield; 
    end 

     
    for sind = 1:sindmax 
        h = steps; 
        sum = 0; 
        for k = 2:(sindmax-1) 
            p = sqrt(b*b+power((A+(k-1)*h)-sarr(sind),2)); 
            sum = sum + 

((exp(j*(pi/4)))/(2*sqrt(wave)))*propfield(k)*((exp(-

j*kk*p))/sqrt(p))*(1+b/p); 
        end 
        p = sqrt(b*b+power(sarr(1)-sarr(1),2)); 
        fa = ((exp(j*(pi/4)))/(2*sqrt(wave)))*propfield(1)*((exp(-

j*kk*p))/sqrt(p))*(1+b/p); 
        p = sqrt(b*b+power(sarr(tempmax-1)-sarr(tempmax-1),2)); 
        fb = ((exp(j*(pi/4)))/(2*sqrt(wave)))*propfield(tempmax-1)*((exp(-

j*kk*p))/sqrt(p))*(1+b/p); 
        nextfield(sind) = h*((fa+fb)/2 + sum); 
    end 

     
    %if rem(passind,2) == 0 
        filename1 = strcat('amplitude',int2str(passind), '.csv'); 
        csvwrite(filename1,abs(nextfield)); 
    %end 

     
    % Add the phase of the doe mirror for reflections from the DOE mirror 
    if rem(passind,2) ~= 0 
        amplitude = abs(nextfield); 
        theta = angle(nextfield); 
        nextfield = nextfield.*tfunc; 
    end 

         
    sprintf('%s %d','Resonator pass number',passind) 
end 

 
%%%% PLOT THE FGB AT THE OUTPUT COUPLER 
intensity1a = abs(fgbfield); 
phase1 = angle(fgbfield); 
figure(1); 
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plot(sarr,intensity1a); 
xlabel('x (m)'); 
ylabel('Amplitude (a.u.)'); 
title('Beam amplitude at OC'); 
figure(2); 
plot(sarr,abs(phase1)); 
xlabel('x (m)'); 
ylabel('phase (rad)'); 
title('Beam phase at OC'); 

 
%%%% PLOT THE BEAM AT THE DOE MIRROR 
figure(3); 
intensity2a = abs(resultvar); 
phase2 = angle(resultvar); 
plot(sarr,intensity2a); 
xlabel('x (m)'); 
ylabel('Amplitude (a.u.)'); 
title('Beam amplitude at the DOE mirror'); 
figure(4); 
plot(sarr,phase2); 
xlabel('x (m)'); 
ylabel('phase (rad)'); 
title('Beam phase at the DOE mirror'); 

 
%%%% PLOT THE MIRROR SURFACE 
phase3 = (((angle(conj(resultvar))+pi)*wave)/(2*pi))*1e+006; 
figure(5); 
plot(sarr,phase3); 
xlabel('x (m)'); 
ylabel('Mirror surface (µm)'); 
title('Mirror surface'); 
mirrorphase = angle(conj(resultvar)); 
figure(6); 
plot(sarr,mirrorphase); 
xlabel('x (m)'); 
ylabel('Mirror phase'); 
title('Mirror phase'); 

 
%%%% PLOT THE BEAM AT THE DOE MIRROR 
figure(7); 
intensity3a = abs(nextfield); 
phase4 = angle(nextfield); 
plot(sarr,intensity3a); 
xlabel('x (m)'); 
ylabel('Amplitude (a.u.)'); 
title('Beam amplitude at stop'); 
figure(8); 
plot(sarr,phase4); 
xlabel('x (m)'); 
ylabel('phase (rad)'); 
title('Beam phase at stop'); 

 


