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SUMMARY 

 

A lack of defects is required for successful table grape marketing, which pre-suppose 

optimal vine performance, berry development and post-harvest quality. The supply of 

mineral nutrients affects vine development, physiology and berry quality. Despite a vast 

amount of research conducted over decades, there remain many unresolved issues 

regarding table grape vine nutrition to ensure optimal table grape quality and shelve-life. 

Unjustified fertilisation practices often include excessive applications of nitrogen (N), 

potassium (K) and calcium (Ca).  

 

A four-year field trial was therefore conducted on a sandy soil in the Paarl district of South 

Africa, using grafted on Ramsey, and trained to a gable trellis system. Nitrogen, potassium 

and calcium were applied, singular or in combination, at rates up to 300% the calculated 

annual nutritional requirement. The effect of these excessive applications on table grape 

performance under typical South African cultivation conditions was investigated for Vitis 

vinifera L. cv. Prime Seedless, a very early seedless table cultivar that is produced with 

minimum berry diameter of 18mm, with special reference to 1) vegetative growth, 2) 

expression of grapevine nutrient availability through foliar analyses, 3) berry nutrient 

accumulation patterns of this early cultivar, 4) manipulation of berry nutrient content through 

soil and bunch directed applications and 5) the effect of berry nutrient content on its quality.  

 

No definite vegetative growth responses (expressed as shoot length, leaf surface area and 

shoot mass) and leaf chlorophyll content differences were obtained for all the treatments. 

These results were obtained in a vineyard on a sandy soil where excessive N fertilisation 

caused a reduction of soil pH to detrimentally low levels and where the excessive N, K and 

Ca applications reduced mutual concentrations and that of Mg, in the soil. A lack of 

stimulation in vegetative growth may therefore be ascribed to the combined negative effect 

of these excessive applications on soil pH and vine nutrition. 

 

Although the N content of petioles was higher for treatments where N was applied, 

consistent significant increases in petiole N with N fertilisation were not observed. Petiole N 

concentration showed a decreasing trend throughout the season. Petiole K concentrations 

were significantly increased by the K fertilisation at all phenological stages. None of the K 

fertilisation treatments, however, succeeded to raise petiole K concentrations above the 

accepted maximum norms and petiole K concentration at a specific sampling stage varied 

significantly between the four seasons.  A general decrease in petiole K concentration was 
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found for all seasons. Calcium fertilisation did not increase soil Ca content, resulting in a 

lack of differences in petiole Ca concentrations between treatments. An increase in petiole 

Ca concentration towards harvest was obtained. Correlations between petiole nutrient 

concentration and berry mineral content at harvest were poor. The only way of knowing the 

mineral content of berries would seem to be by measuring it directly instead of deducing it 

from the results of leaf or petiole analyses.  

 

The dynamics of berry growth impacted on berry nutrient concentration. Early rapid berry 

growth, predominantly due to cell division and cell growth, was associated with the most 

rapid decreases in N, P and Ca concentration. Due to mobility of K and Mg in the plant, that 

exceeds other nutrients, the decrease in concentration of these two mineral elements was 

not as pronounced as that of the others. Nutrient accumulation was most rapid during the 

pre-véraison period, but only Ca showed a definite termination during the early ripening 

period. The continued inflow of N, P, K and Mg, albeit at slower rates immediately after 

véraison, should be taken into consideration when fertilisation is applied. As a table grape, 

total accumulation of each nutrient in Prime Seedless berries also far exceeded that of 

other cultivars studied thus far. A particular difference is that the berry flesh:skin ratio is 

much higher than that of previously studied cultivars, leading to higher levels of nutrient 

accumulation in the flesh.   

 

Slightly larger berry size was obtained for N applications and is ascribed to slight increases 

in early vegetative growth, allowing a better response to GA3 treatments. The use of GA3 for 

berry enlargement is also considered the reason why K fertilisation, resulting in increased 

berry K levels, did not affect berry size, as is often found for wine grapes. 

 

Higher available NO3
- in the soil on account of excessive N applications resulted in higher 

levels of berry N, despite sub-optimal soil pH regimes that were created by these 

treatments. 

 

Berry K concentration and content were increased by K fertilisation. Rapid vine K uptake 

and translocation to the berries seem to negate the reduced vine nutritional status as 

observed in petioles for situations of over-fertilisation with N. Berry Ca levels were not 

increased by Ca fertilisation or by bunch applied Ca. The rapid rates of berry growth, 

together with low rates of berry Ca uptake and Ca uptake that terminates at the onset of 

ripening, are assumed to be the main reasons for this result. 
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Low levels of decay as well as a lack of consistently increased decay were obtained for N 

containing treatments. Nitrogen levels in the berries above which their susceptibility to 

fungal infection is increased, should be established. Information on specific N compounds 

that may lead to more susceptibility is required. Potentially increased berry browning on 

account of high rates of K fertilisation needs to be further investigated; indications that this 

may occur were observed. Neither soil applied Ca nor bunch applied Ca improved berry 

quality, although Ca treatments seemed to reduce decay during the only season that 

significant differences were obtained. 

 

The negative effect of excessive fertilisation on soil chemistry of sandy soils has again been 

highlighted by this study. This annuls the fertilisation, leading to inefficient fertilisation and a 

lack of the desired responses.  

 

As indicator of vine nutrient availability, petiole analysis, was proven unreliable and should 

be evaluated in parallel with soil analyses, taking seasonal variation into consideration. The 

danger of being only guided by published norms for leaf nutrient concentrations when 

establishing fertilisation practices has again been highlighted by this study. 

 

This research indicated that for a very early cultivar like Prime Seedless, nutrient 

accumulation dynamics can already start to change during the pre-véraison period in some 

seasons. This is due to different edaphic and climatic conditions as well as berry size, 

which leads to much higher flesh:skin ratios. Future research on table grapes would need to 

develop an understanding of the various factors and dynamics that determine berry nutrient 

concentration and accumulation of early ripening, large berry sized, seedless table grape 

cultivars. 
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OPSOMMING 

 

Suksesvolle bemarking van tafeldruiwe is ten nouste afhanklik van die beskikbaarheid van 

druiwe sonder defekte, wat ‘n direkte verband met optimale wingerdprestasie, 

korrelontwikkeling en na-oes kwaliteit inhou. Voorsiening van minerale voedingstowwe 

beïnvloed die stok se groei, fisiologie en korrelgehalte. Ten spyte van ‘n oorweldigende 

hoeveelheid navorsing wat oor dekades reeds gedoen is, is daar steeds onopgeloste 

kwessies aangaande bemesting van tafeldruiwe vir optimale druifgehalte en houvermoë.  

Die gevolg is onoordeelkundige bemestingspraktyke wat o.a. aanleiding gee tot 

oorbemesting met stikstof (N), kalium (K) en kalsium (Ca). 

 

‘n Vier-jaar-lange veldproef is gevolglik op ‘n sandgrond in die Paarl distrik (Suid-Afrika) 

onderneem deur gebruik te maak van Vitis vinifera L. cv. Prime Seedless geënt op Ramsey 

en op ‘n dubbel-gewel prieelstelsel opgelei is.  Stikstof, K en Ca is alleen, of in kombinasie, 

toegedien teen hoeveelhede gelykstaande aan 300% van die wingerd se jaarlikse behoefte. 

Die effek van hierdie oormatige toedienings op tafeldruif prestasie onder Suid-Afrikaanse 

verbouingstoestande is ondersoek, met spesiale verwysing na 1) vegetatiewe groei, 2) 

uitdrukking van voedingstofbeskikbaarheid deur blaarontledings, 3) die voedingstof 

akkumulasie patrone van korrels van hierdie vroeë kultivar, 4) manipulasie van korrel 

voedingstofinhoud deur grond en trosgerigte toedienings en 5) die effek van korrel 

voedingstofinhoud op kwaliteit. 

 

Die doel van die proef was om bemestinspraktyke van Prime Seedless, ‘n baie vroeë 

pitlose tafeldruifkultivar met ‘n minimum korrelgrootte van 18 mm, te verfyn. Deur die 

akkumulasie patrone van die druiwe uit te klaar is daar ook ondersoek ingestel of oestyd en 

na-oes gehalte deur oormatige toediening van voedingstowwe affekteer word. 

 

Geen duidelike verskille betreffende vegetatiewe groeireaksies (uitgedruk as lootlengte, 

blaaroppervlaktes en lootmassas) asook verskille in blaar chlorofilinhoud is vir die 

behandelings verkry nie. Hierdie resultate is verkry in ‘n wingerd op ‘n sandgrond, waar 

oormatige N-bemesting aanleiding gegee het tot grond pH verlagings tot die peil van 

nadelige vlakke. Verder het die oormatige N, K en Ca toedienings wederkerige verlagings 

in konsentrasies, asook op dié van Mg, in die grond teweeggebring. Die tekort aan 

vegetatiewe groeiresponse op die behandelings kon dus toegeskryf word aan ‘n 

gekombineerde effek van die oormatige toedienings op grond pH en voedingstofbalanse. 
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Hoewel die N-inhoud van bladstele hoër was vir behandelings wat N toediening ingesluit 

het, was daar nie konstante toenames in die vlakke verkry nie. Bladskyf N-konsentrasie het 

afgeneem deur die loop van die groeiseisoen. Vir alle fenologiese stadiums was bladskyf K- 

konsentrasies betekenisvol verhoog deur K-bemesting. Nie een van die K-

bemestingsbehandelings het egter daarin geslaag om bladskyf K inhoud vir enige 

monstertyd bo die algemeen aanvaarde maksimum norms te lig nie. Verder het bladskyf K 

inhoud by ‘n spesifieke fenologiese stadium ook betekenisvol tussen seisoene verskil.  Die 

K-inhoud van bladskywe het afgeneem met verloop van die seisoen.  Kalsiumbemesting 

het nie die grond se Ca inhoud deurgans verhoog nie, wat dus die tekort aan verskille in Ca 

konsentrasies tussen die behandelings verklaar. ‘n Toename in Ca konsentrasie en korrel 

Ca inhoud is vanaf set tot oes waargeneem. Swak korrelasies tussen bladskywe se 

voedingstofinhoude en korrels se voedingstofinhoude is verkry. Die enigste manier waarop 

korrels se voedingstofinhoude dus afgelei kan word, blyk te wees deur direkte bepaling 

daarvan. 

 

Voedingstofinhoude van korrels is deur groeipatrone daarvan beïnvloed. Vroeë korrelgroei, 

hoofsaaklik a.g.v. seldeling en selgroei, het met die vinnigste afnametempo van N, P en Ca 

gepaard gegaan. As gevolg van die hoër beweeglikheid van K en Mg in die plant in 

vergelyking met ander voedingstowwe, was die afname in konsentrasie van hierdie twee 

elemente nie so groot soos vir die ander nie. Voedingstofakkumulasie was die vinnigste in 

die periode voor deurslaan. Slegs Ca het ‘n beeïndiging van opname aan die einde van 

hierdie periode getoon. Die voortgesette opname van N, P, K en Mg, alhoewel stadiger kort 

na deurslaan, moet in ag geneem word wanneer bemesting toegedien word. Vir hierdie 

kultivar het die totale opname van elke bemestingstof dié van die ander kultivars wat tot 

hede bestudeer is, ver oorskry. ‘n Spesifieke verskil is ‘n baie hoër vleis:dop verhouding as 

wat vir ander kultivars verkry is. Dit gee aanleiding tot baie hoër vlakke van 

voedingstofakkumulasie in die vleis. 

 

Effens groter korrelgroottes is verkry waar N toedienings gemaak is. Dit word toegeskryf 

aan klein toenames in vroeë vegetatiewe groei, wat dus beter reaksie op GA3 behandelings 

tot gevolg gehad het. Die gebruik van GA3 vir korrelvergroting word ook beskou as die rede 

waarom K-bemesting, wat tot hoër vlakke van K in die korrels aanleiding gegee het, nie 

korrelgrootte, soos by wyndruiwe, bevorder het nie. 

 

Hoër NO3
- in die grond (water), na aanleiding van N toedienings, het aanleiding gegee tot 

hoer vlakke van N in die korrels. Dit het plaasgevind ten spyte van sub-optimale grond pH 

wat deur die oormatige N toedienings veroorsaak is. 

Stellenbosch University   http://scholar.sun.ac.za



 
 

Korrel K konsentrasie en -inhoud is deur K-bemesting verhoog. Vinnige opname en 

translokasie van K na die korrels het ook geblyk die rede te wees waarom die verlaagde 

voedingstatus van die stokke a.g.v. oorbemesting met N nie die korrels se K inhoud 

geaffekteer het nie. Die vinnige groeitempo van die korrels, tesame met lae vlakke van Ca 

opname, asook korrels se Ca opname wat tydens rypwording ophou, word as die redes vir 

die tekorte aan behandelingseffekte beskou. 

 

Lae vlakke van bederf, asook ‘n tekort aan betroubare tendense dat bederf deur N-

bemesting verhoog word, is verkry. Daar moet vasgestel word of daar N vlakke in die 

korrels is waarbo hul vatbaarheid vir swaminfeksies verhoog word, en of daar spesifieke N 

verbindings is wat die korrels meer vatbaar maak vir bederf. Indikasies dat K-bemesting 

interne verbruiningsvlakke verhoog het, regverdig verdere ondersoek. Korrelkwaliteit is nie 

deur grond- of trosgerigte toedienings bevoordeel nie. 

 

Die negatiewe effek van oormatige bemesting op die chemiese samestelling van 

sandgronde is weer deur hierdie navorsing uitgelig. Dit lei tot oneffektiewe bemesting en ‘n 

tekort aan die verlangde effekte. 

 

Blaarontledings blyk onbetroubaar te wees as aanduiding van voedingstof beskikbaarheid.  

Dit moet evalueer word saam met grondontledings en ook seisoenale variasie in ag neem.  

Die gevaar om slegs deur gepubliseerde norme gelei te word wanneer bemestingspraktyke 

bepaal word, is weer deur hierdie navorsing uitgelig. 

 

Voorst is daar in hierdie navorsing gevind dat voedingstof akkumulasiepatrone van ‘n baie 

vroeë kultivar soos Prime Seedless alreeds voor deurslaan begin verander a.g.v. 

omgewingstoestande en korrelgroei wat tot ‘n veel hoër vleis:dop verhouding aanleiding 

gee. Toekomstige navorsing op tafeldruiwe behoort die faktore en dinamika wat 

voedingstofkonsentrasie en -akkumulasie in korrels van vroeë, groot korrel, pitlose 

tafeldruifkultivars beïnvloed verder te ondersoek. 
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PREFACE 

 

This dissertation is presented as a compilation of six chapters.  Each chapter is introduced 

separately and is written according to the style of the South African Journal of Enology. 

 

 

Chapter I Literature review 

 

Chapter II Research results 

Excessive N, K and Ca fertilisation effects on vine growth and leaf 

chlorophyll content of an early ripening table grape cultivar (Vitis vinifera L. 

cv. Prime Seedless), grafted onto Ramsey on a sandy soil. 

 

Chapter III Research results 

Excessive N, K and Ca fertilisation effects on leaf and fruit nutrient status of 

an early ripening table grape cultivar (Vitis vinifera L. cv. Prime Seedless), 

grafted onto Ramsey on a sandy soil. 

 

Chapter IV Research results 

Accumulation of macro-nutrients (N, P, K, Ca and Mg) in berries by an early 

ripening table grape cultivar (Vitis vinifera L. cv. Prime Seedless) on a sandy 

soil. 

 

Chapter V Research results 

Excessive N, K and Ca fertilisation effects on ripening, berry nutrient content 

and post-harvest quality of an early ripening table grape cultivar (Vitis vinifera 

L. cv. Prime Seedless), grafted onto Ramsey on a sandy  soil. 

 

Chapter VI Research results 

General conclusions 
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CHAPTER I 

 

Introduction 

 

The table grape (Vitis vinifera L.) is a non-climacteric fruit for which consumer acceptance is 

attained by high soluble sugar contents and berry appearance. A lack of defects, such as 

decay, cracked berries, browning, soft and shrivelled berries is required after transport and 

cold storage. Optimal vine performance, berry development and ripening as well as accurate 

harvest time are therefore prerequisites for successful table grape production and marketing. 

The supply of mineral nutrients affects plant growth and physiology, requiring a balanced 

mineral nutrient supply to ensure vine performance and to avoid excessive vigour or mineral 

deficiencies. 

 

In the apple industry it has been established that fruit quality is dependent on its mineral 

composition. Fertilisation therefore started to take into account the mineral composition of the 

fruit and an optimal balance between different minerals, particularly potassium (K) and 

calcium (Ca) is sought. For grapes it is generally accepted that some aspects of fruit quality, 

such as solid concentration, are positively correlated to fruit K, while during storage fruit 

quality is favoured by low N and high Ca levels. This is why K and Ca fertilisation has 

become common practices in South Africa for table grapes, even where soil K and Ca are 

sufficient. In order to manipulate mineral content and balance in grapes, it is important to 

know the dynamics of nutrient accumulation in developing berries. Due to its many ascribed 

functions, potassium (K) is regarded by many producers as a most critical nutrient ensuring 

successful sugar accumulation and colour development. The growth in consumption of 

calcium (Ca) containing fertilisers and Ca foliar applications is furthermore evidence of the 

popular believe that, due to the fact that it is found in high concentrations in plant cell walls, a 

luxurious supply of Ca is required to ensure post-harvest berry quality.  

 

Nitrogen, potassium and calcium in the soil 

Various fertilisers are used in grapevine nutrition, of which limestone ammonia nitrate, 

potassium chloride and calcium nitrate are typical N, K and Ca sources (Conradie, 1994).  

According to Follet et al. (1981) LAN has no effect on soil pH, while KCl are feared by some 

producers to enhance salinity symptoms in soils containing high concentrations of salts.   
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Nitrogen, potassium and calcium in the grapevine 

Mineral nutrients can be divided into two broad categories, based on their accumulation 

patterns: (1) those elements that continue to accumulate throughout berry growth, and (2) 

those elements that accumulate mostly prior to vèraison. Among the first group are N, K, 

phosphorus (P) and magnesium (Mg), while the second group includes Ca (Rogiers et al., 

2006). 

 

Nitrogen (N): Nitrogen is one of the most important nutrients as far as growth (Keller et al., 

1998; Roubelakis-Angelakis & Kliewer, 1992), production and fruit quality of grapevines are 

concerned (Conradie, 1980; Keller et al., 1998; Porro et al., 1995). It alters plant composition 

much more than any other mineral nutrient (Wermelinger, 1991; Roubelakis-Angelakis & 

Kliewer, 1992; Marschner, 1995) and a good N supply can relieve some plant stress 

symptoms (Miklós et al., 2000), e.g. N applied at berry set was found to lead to lower levels 

of phenolic compounds in white grapes and tannins in Merlot, but higher glutathione levels 

(Choné et al., 2006). Since about 50% of N is located in the proteins that form the light 

harvesting complex, there also is a high correlation between leaf N allocated in chloroplasts 

and the functioning of the photosynthetic system (Porro et al., 1995). 

 

Since it is the plant nutrient most likely to be deficient in grapevines, N is most commonly 

applied to vineyards to ensure sufficient growth (Conradie, 1994; Roubelakis-Angelakis & 

Kliewer, 1992). The response obtained from N applications, however, depends largely on the 

cultivar (Neilsen et al., 2010). Grapevines have a high ability to take up N from the soil after 

bloom (Conradie, 1980; Keller et al., 1998; Zapata et al., 2004; Choné et al., 2006). Most 

NO3
- taken up from the soil is reduced to a useable (ammoniacal) form by nitrate reductase 

and nitrite reductase before it is incorporated into organic forms, which are mostly amino 

acids. Arginine is one of the most abundant amino acids and is of special importance in Vitis 

spp. because it is a major N-storage compound and also participates in the biosynthesis of 

other amino acids (Roubelakis-Angelakis & Kliewer, 1992; Zapata et al., 2004). Accumulation 

of N-reserves in the grapevine during the later part of the growing season occurs in all 

climatic conditions (Conradie, 1992a). Remobilisation of these N-reserves, accumulated by 

the grapevine during the previous season, play an important role in sustaining new growth at 

the start of the next season (Conradie, 1980; 1986b, Peacock et al., 1989; Conradie, 1992a; 

Millard, 1995). Partitioning of N in the grapevine has been discussed in detail by Conradie 

(1991), who also found that translocation and distribution of N are affected by the nutrient 

status of the vine. Over-application of N increases the N-content of grapes, and is also 

associated with increased N contents of vegetative organs and possibly excessive vigour. 

Furthermore, it was found that with insufficient soil N supply during the phases bud break to 
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bloom and end of bloom to véraison, the permanent structure will have to supply a larger 

fraction of the N demand of the new growth (Conradie, 1991). Conradie (1992a) established 

that roots, permanent wood, leaves and shoots all play an important part in satisfying the N 

demand of bunches, even with an adequate supply of soil N being available. This highlights 

the fact that N-fertilisation will only indirectly affect the N-status of bunches. 

 

Potassium (K): Potassium is an essential nutrient (Mpelasoka et al., 2003) and is required for 

crop yield (Conradie & De Wet, 1985; Hunter et al., 2000) and vine growth (Conradie & De 

Wet, 1985), especially when applied on soil low in available K (Kasimatis & Christensen, 

1976).  According to Clarkson & Hanson (1980), K has four physiological-biochemical roles, 

namely: (1) enzyme activation; (2) cellular membrane transport processes and translocation 

of assimilates; (3) anion neutralisation which is essential in maintenance of membrane 

potential; and (4) osmotic potential regulation, which is one of the most important 

mechanisms in the control of plant water relations, turgor maintenance and growth.  

 

Active uptake, defined as ion transport against an electrochemical gradient where the 

concentration in the inner cell is higher than in the outer solution, is the process by which 

only K can be taken up (Kirkby, 1979).  

 

Bravdo & Hepner (1987) are of the opinion that grapevines have a better ability to utilize soil 

K than most other plants. Saayman (1981) and also Conradie & De Wet (1985) found that 

the South African approach to K fertilisation on soil with more than 10% clay, i.e. to strive for 

4% of CEC, is realistic and any K added in excess of this amount is unlikely to have any 

significant effect. The guideline of applying 3 kg of K for every ton of grapes produced is also 

sufficient to maintain existing K levels in soils. The impact of K fertiliser on the level of 

available soil K and uptake is influenced by various factors, such as the amount of fertiliser 

applied, the timing and frequency of application, soil characteristics (Conradie, 1994), the 

amount and frequency of irrigation (Mpelasoka et al., 2003), plant root activity (Mengel & 

Kirkby, 1982) and rootstock-scion combination (Wolpert et al., 2005). At low soil pH, 

however, the high H+ inhibits K+ uptake (Kirkby, 1979). In situations of adequate to high soil 

K, a growth response to K fertilisation is not clear (Iland, 1988), while in other cases K 

fertilisation led to stronger vegetative growth (Conradie & de Wet, 1985; Hunter et al., 2000). 

 

The accumulation of K in permanent structures of the vine can take place throughout the 

growing season, including the post-harvest period (Conradie, 1981a). Potassium in these 

pools may be mobilised to support the new roots, stems, leaves and clusters when the 

uptake from the soil is insufficient to meet the demand (Conradie, 1981a; Mpelasoka et al., 
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2003). During their development, berries appear to be the strongest sink for K, especially 

between vèraison and harvest (Conradie, 1981a). This may be due to the high demand of 

the berry for K during rapid cell expansion (Storey, 1987).  

 

Despite potential differences in root K uptake capacity between different rootstocks due to 

differences in rooting morphology and density in the profile, there also appear to be 

differences in xylem loading and translocation from roots to shoots among different 

rootstocks (Mpelasoka et al., 2003). Rühl (2000) found that xylem sap K content varied 

between rootstocks at high K supply levels, but not at low K supply. They assumed that at 

high levels of K supply active transport is not required and that K uptake is passive, possibly 

using K-channels, which vary in effectiveness between rootstock varieties. 

 

Calcium (Ca): In terms of its requirements in plants, Ca is classified as a secondary nutrient 

(Millaway & Wiersholm, 1979) and also the most immobile macronutrient (Ferguson & 

Bollard, 1976; Hanger, 1979). Although growth is benefitted by Ca (Saxton 2002; Domingos 

et al., 2004), grapevines have small requirements for this nutrient (Conradie, 1981a; Follet et 

al. 1981). Calcium deficiencies are therefore rarely observed in vineyards (Conradie, 1981a; 

Rorison & Robinson, 1984). 

 

Calcium uptake is passive and follows the influx of water. It, however, is concentration 

dependent, with diffusion being the main process responsible for uptake at higher 

concentrations (Kirkby, 1979). Soil pH plays an important role in Ca-uptake (Follet et 

al.,1981; Clarkson et al., 1984; Storey et al., 2003). At low soil pH (pHKCl<4), aluminium (Al3+) 

is usually the dominant cation at the soil cation exchange sites. It interferes with Ca-uptake 

by reducing Ca binding to cell walls of root cells (Storey et al., 2003). Under these conditions, 

plants may be very susceptible to Ca deficiency (Clarkson, 1984). On the other hand, in non-

acid soils (pHKCl>4) the dominant cation at the soil cation exchange sites usually is Ca (Follet 

et al.,1981). If the [Ca2+] of the soil solution is sufficient or high, there is a correlation between 

water flow and Ca movement to the shoot. However, at low [Ca2+] in the soil, the low [Ca2+] 

becomes the rate limiting factor in uptake because Ca2+ needs to compete with other cations 

at the exchange complex of the apoplast (Clarkson, 1984).  

 

Kirkby & Pilbeam (1984) stated that the soil solution usually provides an adequate supply of 

Ca to plants. Calcium uptake can, however, be influenced by the uptake of other ions, e.g 

NH4
+, K+, and Mg2+ (Kirkby, 1979) and since Ca moves with water, its rate of translocation, 

and subsequent tissue content, is subject to the rate of transpiration (Millaway & Wiersholm, 

1979; Demarty et al., 1984). Rapid transpiration conditions lead to decreased Ca being 
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received by the fruit (Wiersum, 1979; Donèche & Chardonnet, 1992; Sen et al., 2009). 

Avoidance of dense foliage and too much vigour therefore result in higher fruit Ca contents 

(Drake et al., 1979). The favourable effect of summer pruning to diminish leaf surface area of 

apples was found to reduce bitter pit and may be an expression of this (Wiersum, 1979).      

 

The highest amount of Ca in the plant is located apoplastic, where it has an important 

structural and functional role in plant cell walls (Zocchi & Mignani, 1995). About 60% of Ca in 

plant tissues is associated with the cell walls, while 7% with the membranes and 33% with 

the soluble fraction (Christiansen & Foy, 1979). Calcium is particularly located in the cell 

walls of xylem vessels (Demarty et al., 1984), because it moves through the apoplast and 

because of the continuous influx via the xylem (Zocchi & Mignani, 1995). Failure to re-export 

Ca via the phloem leads to its accumulation in high-rate transpiring tissues (such as 

expanding leaves), while deficiencies in low-rate transpiring tissues (such as fruit) commonly 

develops (Kirkby, 1979; Millaway & Wiersholm, 1979; Kirkby & Pilbeam, 1984; Zocchi & 

Mignani, 1995; Bonomelli & Ruiz, 2010). Calcium movement to growing tips and fruit often 

decreases as the season progresses due to an increase in the exchange positions in the 

xylem that bind Ca (Ferguson & Bollard, 1976; Hanger, 1979); hence a continuous supply of 

Ca is essential (Mengel & Kirkby, 1982). Redistribution of stored Ca does, however, occur. 

This stored Ca is mainly found in winter canes and roots of vines (Conradie, 1981a). For 

trees, this stored Ca is released into the xylem sap (Wiersum, 1979). Shoots and fruit 

compete for available plant Ca. Because shoots have a higher demand, N stimulated shoot 

growth diverts the Ca sink from the fruit to the shoot. This happens in response to high N 

applications (Kirkby, 1979). 

 

Easterwood (2002) is of the opinion that the role of Ca in plant nutrition is often eclipsed by 

interest in macro-nutrients or specific micro-nutrients. However, there is an increasing 

incidence of a number of physiological disorders associated with inadequate Ca nutrition in 

various crops grown under intensive horticulture conditions.  

 

Use of foliar N, K and Ca concentration analyses 

According to Montañés et al. (1995) plant analyses was first applied in France by Lagatu & 

Maume in 1929 as a diagnostic technique to determine the crop nutrient status. Since then, 

leaf analyses are commonly used as indication of the availability of nutrient elements in the 

soil, with the possibility to identify visually non-detectable deficiencies and to compensate for 

these in the fertilisation programme (Domingos et al., 2004). However, meaningful 

correlations between nutrients in the soil and leaves or fruit could not be found for apples 

(Marcelle, 1990a; Montañés et al., 1995) or grapevines (Morris et al., 2003; Mpelasoka et al., 
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2003). Montañés et al. (1995) stated that interpretation of foliar analyses was found to be of 

little value in research evaluating crop response to fertiliser applications. Furthermore, there 

often is little difference in the leaf composition of high- and low-yielding vineyards, leading to 

the conclusion that leaf analyses cannot replace soil analyses (Conradie, 1986c). This was 

ascribed to the fact that nutrient availability in the soil is only one factor affecting nutrient 

uptake and plant growth. The biggest problem, experienced world-wide, however, is a lack of 

reliable norms for the interpretation of analyses figures (Conradie, 1986c; Montañés et al., 

1995). The other drawback of leaf analyses as a diagnostic tool is that, apart from the 

seasonal variation, it is also influenced by soil physical and chemical properties (Conradie, 

1981b; Roubelakis-Angelakis & Kliewer, 1992), rootstock and scion cultivars, climate 

(Conradie, 1986c), the type of tissue sample, leaf age and position on the shoot (Conradie, 

1981b; Roubelakis-Angelakis & Kliewer, 1992) as well as diseases and cultural practices 

(Conradie, 1986c). According to Conradie (1992b), the use of leaf analyses is of little 

practical use in healthy, good performing vineyards, while Roubelakis-Angelakis & Kliewer 

(1992) and Conradie & Van Huyssteen (1996) stated that the range between norms for total 

N that indicate deficiency and sufficiency is too small to reliably estimate the nitrogen status 

of grapevines. Seasonal effects also influence the nutrient content in the leaves, with the 

highest level of susceptibility to variation obtained for N when sampled at fruit set and for P, 

K, Ca & Mg when analysed at harvest time (Porro et al., 1995). 

 

Considering the seasonal variations in leaf concentrations of N, P, K, Ca and Mg it appears 

that the most suitable organ to analyse is petiole tissue (Conradie, 1981b; Christensen, 

1984; Bravdo & Hepner, 1987) and the most stable time for sampling is during the month 

following bloom (Conradie, 1981b). Porro et al. (1995) stated that low variability in nutrient 

levels is obtained for P, K and Mg when the leaves are analysed at fruit set. The same is true 

for N, Ca and B when analysed at vèraison.   

 

The usefulness of grapevine petiole analyses for NO3-N as a guideline for N fertilisation was 

investigated by Conradie & van Huyssteen (1996) because total N often shows a very narrow 

range between deficiently and adequately supplied vineyards.  It was found that the NO3-N 

content of petioles, analysed at full-bloom, could be used more effectively as a guideline for 

N-fertilisation, but only for specific cultivars. Christensen (1984) ascribed the wide seasonal 

and cultivar differences of NO3-N levels in petioles, compared to total N, to the fact that 

assimilation of NO3 and NH4 is influenced by light, temperature and nitrate reductase activity. 

Nitrate in petioles is inversely related to light availability (Perez & Kliewer, 1982). Several 

factors influence nitrate levels in petioles. These include cultivar and rootstock, the 

phenological stage of the vine, irrigation and rainfall as well as temperature. This led to the 
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conclusion that when the climate is variable, especially during bloom, petiole nitrate may not 

reflect the true nitrogen status of vineyards (Perez & Kliewer, 1982). 

 

Hunter et al. (2000) succeeded in raising the total N content of Sauvignon blanc/110 Richter 

vine leaves at harvest time on a 10% clay content soil through N applications alone.  When K 

was applied, alone or in combination with N, leaf N content remained unaffected or 

decreased.  Porro et al. (1995) found a high correlation between N levels of leaves at set and 

vineyard performance (i.e. yield and vigour). Conradie (1981b) and Porro et al. (1995) found 

that leaf N decreased throughout the season. 

 

Adding potassium to the soil resulted in higher K concentration in leaf blades of both main 

and lateral shoots and berries at harvest for Cabernet Sauvignon grapevines (Poni et al., 

2003). No relationship could be found between level of petiole K and vegetative growth of 

Concord vines (Morris et al., 1980). 

 

Potassium is the major cation in the leaf and shoot xylem sap with leaf xylem sap flow being 

the highest in the middle leaves and lowest in the old and young leaves (Peuke, 2000). This 

might be a reason for differences in assimilation and transpirational activities among different 

leaf ages. 

 

Morris et al. (1980) found that K fertilisation at increasing levels leads to a marked increase 

in K content of petioles and a positive correlation between petiole K and berry juice K 

content. The type of correlation (either linear or curvilinear), however, differed from region to 

region. Other authors found that a poor correlation between petiole K and berry K seem to 

exist (Morris et al., 2003; Mpelasoka et al., 2003). The relationship between petiole K and 

berry K is likely to change over the season due to changes in sink strength (Mpelasoka et al., 

2003) as well as seasonal climatic conditions (Etchebarne et al., 2009). The K content of 

grapevine leaf blades and shoots was found to be higher where grapevines experience 

shading, compared to shoots fully exposed to sunlight (Porro et al., 1995). Bogoni et al. 

(1995) found that leaf K content showed a negative correlation with soil temperature.  

 

Both petiole and leaf laminae K levels are higher at bloom and vèraison than at harvest 

(Wolpert et al., 2005), indicating a translocation of K from the leaves to the berries from 

vèraison onwards (Conradie, 1981a; Conradie, 1981b). The practice of comparing petiole (or 

laminae) analyses at bloom time with critical levels might be insufficient indicators of vine K 

nutritional status without taking into account the rootstock-scion combination (Wolpert et al., 

2005) or soil analyses (Conradie, 1986c) and vineyard canopy (Iland, 1988). 
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Green & Smith (1979) and Bogoni et al. (1995) found a positive correlation between soil Ca 

carbonate content and Ca in the leaves. Green & Smith (1979), Sen et al. (2010) and Wójcik 

et al. (2010), however, stated that soils rich in Ca, or Ca applications to soils, do not 

guarantee a sufficient supply of Ca to the fruit itself. Attempts to increase apple fruit Ca 

concentration through soil applications of CaCO3 or CaSO4 (Schlegel & Schönherr, 2002; 

Wójcik et al. 2010) and table grape Ca concentration through soil and foliar applications of 

CaCl2 have been ineffective (Bonomelli & Ruiz, 2010). Kirkby & Pilbeam (1984) quoted 

previous research which showed that for 18 different plant species it was found that 

regardless whether they were grown in nutrient solutions or in the field, the Ca concentration 

for a given plant species did not vary greatly. However, Bogoni et al. (1995) found that Ca 

and Mg content in the leaves were positively correlated with soil temperature, whereas 

Green & Smith (1979) as well as Bogoni et al. (1995) found a positive correlation between 

soil Ca carbonate content and Ca in the leaves. Calcium content of grapevine leaf blades, 

petioles and shoots was also found to be higher where grapevines shoots are in direct 

sunlight compared to being shaded (Porro et al., 1995). 

 

Calcium from the soil moves readily into the metabolically active tissues of expanding young 

leaves. When Ca supply to the roots is limited, the young leaves are unable to compete for 

Ca with the lignified tissues of the older leaves. Therefore, the young leaves are the first to 

show symptoms of Ca deficiency (Shear & Faust, 1970), while Ca concentration of mature 

leaves increases throughout the season (Conradie, 1981b; Porro et al., 1995). The affinity of 

lignin for Ca may be responsible for the accumulation of Ca in mature leaves in proportion to 

their age (Shear & Faust, 1970). 

 

Nitrogen, potassium and calcium in the berry 

In the apple industry it has been established that fruit quality is dependent on the fruit mineral 

composition with an optimal balance between different minerals, and in particular K/Ca, that 

is sought (Marcelle, 1990a; Marcelle 1990b). For grapevines conflicting results have been 

obtained, where in some cases no relationship between soil nutrient status and must nutrient 

concentration could be found (Morris et al., 1982b), while Iland (1988) stated that there is a 

significant correlation between petiole K concentration and the K content of berry juice. It is 

generally accepted that some aspects of fruit quality, such as solid concentration, are 

positively correlated to fruit K (Rogiers et al., 2006), while during storage fruit quality is 

favoured by low N and high Ca levels (Marcelle, 1995; Bonomelli & Ruiz, 2010). This is why 

K and Ca fertilisation has become common practices in South African table grape production 

systems, even if the soil K and Ca are sufficient. 
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Nitrogen: Nitrogen fixed in grapes originates directly from the uptake of nitrate from the soil 

solution or indirectly from mobilization of storage compounds, which means that nitrogen 

concentration (both total N and amino acid concentration) in the berry depends on the nitrate 

supply in the soil as well as the reserve N of the vine (Löhnertz et al., 2000). In the grape 

berry, N mainly occurs as the free amino acids proline and arginine (Kliewer, 1968; Ough & 

Stashak, 1974). The latter is atypical of other fruit (Tagliavini, 2000). Increased application of 

N fertilisers to grapevines is mirrored by higher concentrations of free amino acids in berries 

(Ough & Stashak, 1974; Kliewer, 1977; Löhnertz et al., 2000; Frank, et al., 2005). Conradie 

(1986a) is, however, of the opinion that the time of N application determines whether the N is 

translocated to the crop as amino acid N (soluble N) or incorporated in proteins, while both 

Roubelakis-Angelakis & Kliewer (1992) and Löhnertz et al. (2000) found that berries contain 

higher amounts of proteins during warm dry years, resulting in reduced amounts of amino 

acids. Soluble protein content also increases with maturity. Linsenmeier et al. (2008) 

indicated that higher must N concentrations were obtained from N applications at fruit set 

than at budbreak, while Neilsen et al. (2010), on the other hand, found inconsistent changes 

in berry N concentrations. 

 

Vine nitrogen status has a strong influence on vine vigour, resulting in higher must acidity 

and sensitivity to Botrytis infection (Conradie, 1986; Choné et al., 2006). Low vine N status 

also limits Sauvignon blanc berry mass and titratable acidity, mainly malic acid (Choné et al., 

2006). An abundant N supply decreases mass of grape skins and reduces sugar and acid 

levels of the pulp (Keller et al., 1998). Ruiz et al. (2004) found some sort of correlation 

between amino acid N content of berry skin and pulp of soft Thompson Seedless berries and 

arginine, as well as with putrescine levels in berries. The higher the contents, the softer were 

the berries. This can be ascribed to the fact that the amino acid concentration in berries, and 

in particular arginine, increases dramatically at the termination of ripening (Löhnertz et al., 

2000).  

 

Potassium: The fruit is a large sink for K (Conradie, 1981a; Mpelasoka et al., 2003) and it is 

the major cation occurring in both the pulp and skin of the grape berry (Storey, 1987; Rogiers 

et al., 2006). Berry K content generally increases over the season (Conradie, 1981a; Iland, 

1988; Donèche & Chardonnet, 1992; Rogiers et al., 2006) with a sharp escalation at the 

onset of ripening (Creasy et al., 1993). At harvest, clusters account for 66% of the total K 

content of the above-ground organs (Conradie, 1981a). From vèraison to harvest the K 

content accumulated in the berries exceeds the total amount taken up by the vine, while the 

K content in the trunk, roots, shoots and leaves decreases. This suggests that a significant 
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amount of K is translocated from other organs to the berries during this period (Conradie, 

1981a). This remobilisation of K from other organs to the berries after vèraison is also 

reported in other studies (Conradie & De Wet, 1985; Williams & Biscay, 1991). 

  

Potassium movement occurs in both xylem and phloem (Mengel & Kirkby, 1982). In grape 

berries the xylem is a minor route of K entry because xylem flow into the berry is low due to 

the low transpiration rate thereof. This especially decreases during berry growth and 

development due to degeneration of stomata to lenticels as well as the deposit of epicuticular 

wax (Blanke et al., 1999). Variation in K accumulation in the berry after véraison is 

associated with a change in berry water supply from the peripheral to the axial xylem system, 

and from the xylem system to the phloem system (Lang & Thorpe, 1989; Cabanne & 

Donèche, 2003). It has important implications for the ultimate mineral composition of the fruit, 

i.e. the increase in K and decrease in Ca concentration (Cabanne & Donèche, 2003). 

Potassium is the major cation in the leaf xylem sap and shoot xylem sap with leaf xylem sap 

flow being the highest in the middle leaves and lowest in the old and young leaves (Peuke, 

2000). According to Iland (1988) and Conradie (1981b), potassium concentration in petioles 

and leaf laminae decreases as the season progresses, while it increases in the fruit. 

Furthermore, due to a link between leaf photosynthetic activity and K transport, any 

conditions that reduce leaf photosynthetic activity could contribute to increased K levels in 

the phloem and subsequently in the berries (Freeman et al., 1982; Iland, 1988; Archer & 

Strauss, 1989, Esteban et al., 1999). Mpelasoka et al. (2003), however, are of the opinion 

that berry K concentration need not increase in dense canopies, especially in conditions 

where berry growth and berry K accumulation are maintained at similar rates. This implies 

that factors such as cultivar (berry size), crop load, climatic conditions and cultural practices 

that affect the rate of berry growth, would affect berry K concentration. Furthermore, 

increased irrigation increases berry K accumulation (Hepner & Bravdo, 1987; Iland, 1988; 

Esteban et al., 1999; Etchebarne et al., 2009). Variation in berry K is also caused by 

differences in root K uptake capacity between rootstocks as well as differences in xylem 

loading of K and translocation from roots to the shoots (Mpelasoka et al., 2003).   

 

Related to berry growth, Mpelasoka et al. (2003) highlighted the role of K in cellular growth 

when they suggested that the cell walls in the berry skin loosens at the onset of stage III 

(rapid cell expansion) of berry growth. This loosening of the cell walls involves acidification of 

the apoplast and the activation of cell wall loosening enzymes. Kirkby & Pilbeam (1984) also 

showed that fast growing fruit, which are more dependent on phloem than xylem, have a 

higher K/Ca ratio than slower growing fruit. 
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Marcelle (1990b) found a positive correlation between apple fruit sugar content and the K/Ca 

ratio of fruit flesh. Rogiers et al. (2006) and Etchebarne et al. (2009) indicated that due to a 

strong correlation found between K accumulation and berry fresh mass, K plays a key role in 

cell expansion, and therefore berry growth. These authors as well as Mpelasoka et al. (2003) 

also found a strong relationship between berry K content and both sugar and dry mass 

accumulation. Shaded leaves transported more K to the berries than exposed leaves (Iland, 

1988). Conradie & de Wet (1985), however, found no significant increase in berry sugar 

where up to 90 kg K per ha was applied on soil with a K saturation close to 4 percent. 

Furthermore, under conditions of low sugar production, K also accumulated in the berries. 

More studies were suggested to determine the relationship between berry sugar 

accumulation and berry K accumulation. 

 

Donèche & Chardonnet (1992) found that both flesh and skin cells accumulate K during 

ripening with the flesh containing large quantities of K. Deficiency in K results in unevenly 

ripened berries (Mullins et al., 1996). According to Iland (1988), Coombe (1992) and 

Mpelasoka et al. (2003), K concentration in the berry skin is higher than in the flesh. A high 

degree of difference in K concentration among berry tissues is observed (Storey, 1987; 

Mpelasoka et al., 2003; Rogiers et al., 2006), which is ascribed to wide variation among 

varieties and among rootstock/scion combinations and seed number (Mpelasoka et al., 

2003). The latter generally influences berry size, affecting K partitioning in the berry 

(Mpelasoka et al., 2003). For example, Storey (1987) found that skin K concentration was 

higher for smaller berries compared to larger berries. 

 

Morris et al. (1980) and Morris et al. (1982a) found that K fertilisation above the adequate 

levels had no positive effect on total pigment content of grape juice and no improvement in 

colour was observed. Furthermore, Morris et al. (1982a) and Mpelasoka et al. (2003) were of 

the opinion that the detrimental effect that excessive K fertilisation had on colour quality and 

acidity of grape juice, can also be expected in intact grapes. They speculated that a 

substitution of K+ cations for H+ in the grape tissue would increase the pH despite high 

acidity. This high pH would then reduce the colour of the berries. Furthermore, high juice K 

precipitates tartaric acid, which is a significantly stronger acid than malic acid (Rühl, 2000), in 

salt form so that the free tartrate decreases, leading to reduced tartaric acid:malic acid ratios 

(Mpelasoka et al., 2003). This can affect the taste of the berries significantly, because 

tartrate has a more fresh crisp acid taste than malate (Rühl, 2000). 

 

Adding potassium to the soil resulted in higher K concentration in berries at harvest of 

Cabernet Sauvignon grapevines (Poni et al., 2003). Potassium fertilisation on soil containing 
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sufficient K (4 percent of the CEC) significantly increased berry titratable acidity content, 

increased berry size, suppressed the N content of grape juice and appeared to increase 

resistance against Botrytis rot, which was ascribed to the fact that K suppressed the uptake 

of N (Conradie & De Wet, 1985).   

Calcium: In all fruits there is a decline in Ca influx during growth. This results not only from 

an increase in solute influx via the phloem during fruit ripening, but also from a decline in cell 

division rate, reduced formation of new binding sites for Ca, and a increase in 

volume/surface area, with a reduction in transpiration per unit weight of fruit (Kirkby & 

Pilbeam, 1984). 

 

Neither liming nor CaCl2 soil application successfully increases apple fruit Ca concentration 

(Green & Smith, 1979; Sen et al., 2010). This was ascribed to the fact that xylem Ca 

transport is mainly directed to leaf tissues with only 5-10% of absorbed Ca being transported 

to fruit tissues (Wójcik et al., 2010). Mason (1979) and Terblanche et al. (1979), however, 

reported that CaNO3 applications to a heavy soil with high K and Mg saturation controlled 

bitter pit. 

 

Although the most active uptake of Ca by the grapevine is between the period bud burst to 

vèraison, the grapes have a very narrow window for calcium uptake (bloom to véraison) 

(Conradie, 1981a), which is a six to seven week period. Various other studies (Donèche & 

Chardonnet, 1992; Schaller et al., 1992; Ollat & Gaudillère, 1996; Rogiers et al., 2001; 

Cabanne & Donèche, 2002) showed that grape berries accumulate Ca throughout their 

development. This increase was found to be the fastest during the first stage of berry growth, 

while an increase post-vèraison was exclusively due to Ca accumulation in the seeds 

(Cabanne & Donèche, 2003; Etcherbane et al., 2009). On the other hand, other research 

indicated that calcium accumulation stops when green berries start to soften, often even 

before vèraison, which is also related to a decrease in xylem flow (Possner & Kliewer, 1985; 

Creasy et al., 1993).  Donèche & Chardonnet (1992) ascribed the decrease in Ca and Mg 

concentration after vèraison in grape berries to dilution that occurs as a result of volume 

increase brought about by cell growth. In apples, fruit size was also found to affect the Ca 

concentration, with larger fruit having lower Ca concentrations (Drake et al., 1979; Perring, 

1979). 

 

Calcium content of the pericarp increases until vèraison, and then decreases (Cabanne & 

Donèche, 2003). Etchebarne et al. (2009) found that Ca transport to skin cells occurs during 

ripening and, because of this, a dramatic reduction in the concentration of Ca in cells of the 

flesh occurs. The Ca content in the seed increases throughout the development of the 
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berries, including ripening (During et al., 1987). Calcium is the second most abundant cation 

in the skin, occurring mainly as crystalline needle-shaped deposits, in contrast to K, which 

does not exist as crystalline deposits, but rather in a soluble form in the vacuoles of 

hypodermal cells (Storey, 1987). 

 

The level of Ca increase in the berry during the active uptake period depends on the weather 

conditions before vèraison. Cool dry weather between flowering and vèraison reduces 

calcium uptake (Saxton, 2002, Etchebarne et al., 2009). The average Ca concentration of 

young apples was found to be much higher than mature apples and the amount of Ca 

retained by the young fruits is often too small (Schlegel & Schönherr, 2002). Moreover, the 

Ca content of grape berries depends on biological (cultivar & rootstock), edaphic (available 

soil cations and water content) and climatic (Boselli et al., 1998; Esteban et al., 1999) factors. 

Consequently, the evolution of the Ca content in the various berry compartments can vary 

from year to year or with gapevine cultivar (Cabanne & Donèche, 2003; Rogiers et al., 2006; 

Etchebarne et al., 2009).  

 

Calcium has a major effect on membrane integrity (Fuller, 1976; Poovaiah, 1979) and the 

activity of membrane-bound enzymes (Poovaiah et al., 1988), in that it mediates membrane 

continuity with regards to cell organic constituents (Christiansen & Foy, 1979). It also 

activates membrane-bound ATPase that mediates K movement (Christiansen & Foy, 1979). 

A loss of membrane bound Ca, either by replacement with K+ or through chelation, increases 

membrane permeability. Calcium binds anionic groups of the membrane structure to form 

bridges between structural components, thereby maintaining a selective permeability by pore 

radius or surface charge relations as well as membrane structural integrity. Ripening is 

caused by an increase in membrane permeability and dissolving of the middle lamella, both 

processes favoured by low levels of Ca (Kirkby & Pilbeam, 1984). Calcium also maintains 

mitochondrial integrity, the endoplasmic reticulum and other cytoplasmic membranes 

(Christiansen & Foy, 1979).   

 

Ripening (and senescence) is a prerequisite to softening in fruit. Ripening is caused by 

changes in the permeability properties of cell membranes. In the case of climacteric fruit, 

membrane leakage increases prior to climacteric rise in respiration. Calcium decreases the 

hydraulic permeability in apple fruit (Poovaiah et al., 1988; Casero et al., 2010). Therefore, 

maintenance of relatively high Ca concentrations, associated with relatively low K 

concentrations in fruit tissue, reduces rates of respiration, reduces ethylene production and 

slows down softening of fruit flesh (Marcelle, 1990a). Because various Ca-deficient plants 

showed extensive disintegration of mitochondria, ER and cytoplasmic membranes, it was 
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suggested that Ca has a major role in maintaining membrane integrity (Poovaiah et al., 

1988). 

 

Cell and cell wall structure are affected by Ca, K and P nutrition (Yang et al., 1997; Cabanne 

& Donèche, 2001; Saxton, 2002). With rapid growth (which includes berry expansion after 

véraison) the structural integrity of plant tissues is strongly coupled with Ca availability 

(Easterwood, 2002). If there is a deficiency of Ca, intracellular Ca takes precedence, so the 

amounts of Ca in the cell walls decrease (Saxton, 2002) and cell wall integrity reduces. Since 

it renders the substrate less accessible to polygalacturonase due to the intermolecular cross-

links within the pectic polysaccharide matrix, Ca reduces cell wall breakdown (Poovaiah et 

al., 1988). Tagliavini et al. (2000), however, stated that all tissues subjected to fast volume 

expansion showed a low Ca requirement and that Ca has an inhibitory effect on cell growth.  

 

Donèche & Chardonnet (1992) referred to the profound modifications that occur in cell 

structure of berry flesh during ripening, stating that it is due to the solubilisation of pectins 

brought about by migration of Ca from the flesh. The result is a net degradation of the cell 

wall takes place during ripening (Poovaiah et al., 1988). Cell cohesion seems to play an 

important role in the textural quality of fruit (Poovaiah et al., 1988). This is obtained by cell-to-

cell contact especially with regard to the middle lamella, which is rich in pectinaceous 

materials and which contributes to cell cohesiveness. This area is an important site for Ca 

interaction. So, with pectic polysaccharides being particularly abundant in the middle lamellar 

region, the bridges that form with Ca between these polymers, ensure flesh firmness. Pectic 

substances, cross-linked inter- and intra-molecular by Ca, are thought to be largely 

responsible for tissue rigidity (Cabanne & Donèche, 2001). This correlates with Casero et al. 

(2010) who ascribed to Ca a key role in the retention of apple fruit firmness. 

 

Foliar application of Ca, for whatever reason, has been practiced in agriculture for more than 

100 years. Today, foliar application of Ca as Ca(NO3) or CaCl2 or other products, is a well-

established practice to prevent bitter pit, cork spot and storage softening in apple fruit 

(Schlegel & Schönherr, 2002). Foliar applied Ca, however, is relatively immobile (Hanger, 

1979) and under South African conditions it has been found that these sprays have on 

average only 16% effectiveness on apples (Terblanche et al., 1975). Using a chelated Ca-

product, Wójcik et al. (2010) found that although the Ca concentration of the fruit was 

increased slightly, they only found increases in fruit firmness and titratable acidity where 

continuous high application rates were applied from fruit set to harvest. Not one of the 

various types of foliar Ca treatments increased grape berry firmness after cold storage (Del 

Solar et al., 2000). Likewise, Schlegel & Schönherr (2002) as well as Bonomelli & Ruiz 

Stellenbosch University   http://scholar.sun.ac.za



15 
 

(2010) stated that even numerous spray applications of Ca did not achieve the desired effect. 

On the other hand, reports that Ca as foliar applications can increase yield and berry size of 

Italia grapes (Colapietra & Alexander, 2006) and also enhance sugar berry accumulation 

(Sen et al., 2009) have been found. Post-harvest dips of apples and pears in Ca solutions to 

prevent storage losses are also common (Millaway & Wiersholm, 1979) and the most widely 

used control method for bitter pit and cork spot in apples remains to be foliar applications of 

CaCl2 or Ca(NO3)2 (Drake et al., 1979; Gallerani et al., 1990). Drake & Spayd (1983) and Sen 

et al. (2009) also published data showing that through CaCl2 foliar applications firmness of 

apples is better retained. 

 

The many studies about the effects of Ca applications on fruit quality, especially for apples, 

include different ways of delivery (soil vs. foliar), different chemical forms, and timing. The 

results are contradictory, and for table grapes, very limited.   

 

Conclusions and objectives 

Optimal vine performance and berry development are required for production of table grapes 

without defects. As the world-wide volumes of table grapes escalate, increased levels of 

production and larger berry size are being sought, early ripening cultivars are incorporated, 

and more rigorous fruit quality assessments are done. The potential of manipulated vine 

nutrition to maintain and extend the market value of South African grapes must therefore be 

elucidated. Although research, conducted over decades, has provided various insights 

regarding vine response to the nutrients discussed above, various unresolved issues remain. 

A project was therefore proposed to address a few of them, namely:  

 To establish the nutrient accumulation patterns of Prime Seedless (Vitis vinifera L.), 

a very early seedless table grape cultivar that is produced with a minimum berry 

diameter of 18mm. 

 To establish whether it would be beneficial to berry quality to apply K or Ca in 

addition to the established nutritional requirements. 

 To establish whether berry Ca levels could be elevated and whether it benefits fruit 

quality. 

 To understand the interaction of N, K and Ca in uptake and translocation to the 

berries as well as other potential negative outcomes from excessive applications of 

any of these nutrients.  
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CHAPTER II 

 

Excessive N, K and Ca fertilisation effects on vine growth and leaf 

chlorophyll content of an early ripening table grape cultivar (Vitis 

vinifera L. cv. Prime Seedless), grafted onto Ramsey on a sandy soil 

 

 

 

 

ABSTRACT 

A four-year field trial was conducted on a sandy soil in the Paarl district of South Africa, using 
cv. Prime Seedless (Vitis vinifera L.) grapevines, grafted onto rootstock Ramsey, and trained 
to a gable trellis system. The effect of excessive applications of N, K and Ca on table grape 
performance under typical South African cultivation conditions, with special reference to 
vegetative growth, was investigated. Nitrogen, potassium and calcium were applied, singular 
or in combination, at rates equal to 300% the calculated annual nutritional requirement, with 
the Control treatment having received 70 kg N/ha/year, 60 kg K/ha/year and 10 kg 
Ca/ha/year. Vine shoot length, leaf surface area and chlorophyll content were determined 
and are discussed in parallel to the impact of the treatments on soil chemical composition 
and leaf nutrient content. Neither shoot growth nor leaf chlorophyll content was affected 
according to a clear pattern by the treatments. Excessive N fertilisation caused a reduction of 
soil pH to detrimental levels. The excessive N, K and Ca applications also reduced mutual 
concentrations, and that of Mg, in the soil. The lack of vegetative growth responses and 
chlorophyll content differences is therefore ascribed to the combined negative effect that 
these excessive applications had on soil pH and soil nutrient content, thereby causing 
imbalanced vine nutrition. 
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INTRODUCTION 

 

Nitrogen (N), potassium (K) and calcium (Ca) are essential elements for plant nutrition that 

are commonly applied on an annual basis to table grape vineyards.  Nitrogen is described as 

the most essential element of plant growth, with chlorophyll content that is approximately 

proportional to leaf N content (Shaahan et al., 1999). Quoting various authors, Conradie 

(2001) pointed out that although a magnitude of responses to N fertilisation, depending on 

soil, cultivar, cultivation practices and climatic conditions, can be obtained, many studies 

found no positive responses to high N fertilisation rates. He concluded, however, that in low-

vigour vineyards fairly heavy applications of N at budbreak, should be beneficial. 

 

Potassium affects vine growth through its involvement in enzyme activation, cellular 

membrane transport and osmotic potential regulation (Clarkson & Hanson, 1980). According 

to Kasimatis & Christensen (1976) crop yield and vine growth increases when K fertilisation 

is applied to soil that is low in available K. On the other hand, Poni et al. (2003) found that 

although K fertilisation increased soil exchangeable K significantly, vegetative growth was 

not affected. Excessive K fertilisation of apples resulted in decreased Mg contents in the 

trees resulting in reduced vegetative growth and yields (Sadowski et al., 1988). 

 

Calcium deficiencies are rarely observed in the vineyard (Conradie, 1981) and Ca 

applications are therefore intended to utilise the positive effect of Ca on membrane integrity 

(Fuller, 1976; Poovaiah, 1979) and cell wall structure (Poovaiah, 1979; Demarty et al., 1984) 

to enhance fruit quality. However, translocation of Ca within the plant is slow and favours 

tissues with the highest transpiration rate (Mengel & Kirkby, 1982). Although Ca is required 

for plant growth due to its role in mitoses (Takagi et al., 1990), various enzyme systems in 

plants are also inhibited by Ca; low cellular levels of Ca is thus maintained (Kirkby & 

Pilbeam, 1984; Macklon, 1984; Trewavas, 1999) by active transport across the 

plasmalemma by a Ca transporting ATPase or by a Ca2+/H+ anti-port across the tonoplast 

into the vacuole, where it is precipitated (Macklon, 1984; Trewavas, 1999).  The addition of 

Ca as fertiliser or foliar applications, in addition to already sufficient levels, therefore seems 

superfluous. 

 

In view of the above considerations a study was undertaken under typical South African table 

grape cultivation conditions on a nutrient poor sandy soil to investigate whether excessive 

applications of N, K and Ca might benefit grapevine performance, with special reference to 

vegetative growth, leaf chlorophyll content, grapevine nutrient status, berry nutrient 
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accumulation and increased fruit quality.  This article (the first in a series of four) deals with 

the effect of high rates of fertilisation on vegetative growth and leaf chlorohyll content. 

 

MATERIALS AND METHODS 

 

Vineyard site, experimental design and treatments 

The trial was conducted over four seasons (2006/07 to 2009/10) in a micro-irrigated Prime 

Seedless (Vitis vinifera L.)/Ramsey commercial vineyard at De Hoop Farm in Paarl (33o45’S, 

18o58’E). The soil in question was a Clovelly soil (Soil Classification Working Group, 1991) 

with a fine sandy texture containing less than 5% clay (Table 1). Soil topography was almost 

level. The vineyard was planted in 2002. The grapevines were trained to a gable system, 

spaced 1.8 m x 3 m apart, head trained and cane pruned to eight buds. Standard cultural 

practices for the cultivar and region were followed as described in Anonymous (2007). It 

entailed shoot tipping and crop control after set, combined with removal of leaves that are in 

close proximity of the retained bunches. Bunch preparation entailed an application of 1 mg/L 

gibberellic acid (GA3) at bloom for bunch (flower cluster) thinning, shortening of bunches to 

8 cm length at set, dipping bunches in 20 mg/L GA3 for berry enlargement when they were 8 

- 10 mm in diameter and again at 10 - 12 mm diameter. Finally, hand-thinning of bunches 

was done just before véraison. Irrigation scheduling was based on soil water content 

measurements done with tensiometers at 30 cm and 60 cm depth. Mid-season irrigation 

averaged two applications of 20mm per week. Long-term annual winter rainfall is 630 mm 

and summer rainfall is 130 mm. 

 

The experiment was laid out as a completely randomised block design. Each experimental 

unit consisted of four grapevines in four rows (16 grapevines), with only the central two 

grapevines in the middle rows being used for experimental purposes. Each treatment was 

replicated five times. The treatments consisted of combinations of different levels of soil 

applied nitrogen (N), potassium (K) and calcium (Ca), up to 300% of the annual nutritional 

requirement of the vineyard, while the control treatment represented the standard fertilisation 

practices applied by the producer for commercial production purposes (70 kg N/ha/year, 60 

kg K/ha/year, 10 kg Ca/ha/year) (Table 2). An additional treatment, i.e. bunch applied Ca, 

was also included. Except for the control (where N was applied in two instalments, before set 

and post-harvest, while all the K was applied after set), fertiliser was applied by hand in six 

instalments throughout the growing season, two times prior to flowering, three times from set 

to véraison and once after harvest. Instalment size was calculated from the total intended 

seasonal application of each nutrient, divided as a percentage of the seasonal requirement 

during each phenological period (Conradie,1980; Conradie, 1981). Treatments were applied 
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each year to the same plants. Due to a lack of clear treatment effects, only the extreme 

treatments, i.e. treatments 1 (Control), 2 (Ca(Bunch)), 5 (N), 8 (K), 11 (Ca), and 14 (KCa) 

were repeated in the fourth year. Furthermore, only these treatments and treatment 17 (NCa) 

are discussed with respect to the first three years, when it was applied and sampled. 

 

Plant measurements and tissue analyses 

A uniform vine canopy for all treatments was maintained as far as possible to eliminate 

variation in vine canopy density as an additional factor affecting nutrient balances and 

translocation in the vine. It was assumed that this could be achieved through proper canopy 

management (tipping, topping, and removal of leaves and lateral shoots), typical of table 

grape management strategies. However, vegetative growth responses that may have 

occurred on account of the different fertilisation levels received (Table 2) were monitored 

throughout the growing season by means of shoot growth, leaf surface area, the 

determination of dry mass of the plant material removed, and cane mass (in winter). 

 

Vine shoot length, leaf surface area and topped material 

One bearer shoot (shoot with a bunch) was removed from each of the four experimental 

grapevines per plot at early flowering [37 days after budbreak (DAB)], 15 - 16 mm berry size 

(82 DAB), véraison (96 DAB) and first harvest (114 DAB) during the 2006/07 season; at 15 -

16 mm berry size (78 DAB), véraison (94 DAB) and first harvest (114 DAB) during the 

2007/08 season; and at véraison (96 DAB), two weeks before harvest (106 DAB) and first 

harvest (119 DAB) during the 2008/09 season. Primary and lateral shoot lengths were 

recorded. All primary and lateral leaves were removed, the leaf surface area measured 

immediately after removal (for only the 2006/07 and 2007/08 seasons), and the leaves put in 

separate paper bags according to shoot type. It was kept in the dark at 4oC and 90% relative 

humidity until chlorophyll analyses could be done (not more than 7 days after sampling). A 

Delta-T area meter (Delta-T devices, Cambridge, England) was used for leaf area 

determinations. Leaf area was expressed as the amount of leaf area (m2) per vine, 

determined by multiplying the mean total leaf area per shoot by the mean number of shoots 

per grapevine. The average number of shoots per vine, as recorded at berry set, was 45. 

 

In the 2009/2010 season all the plant material removed through canopy management, mainly 

the topped part of the shoots, were collected, dried in an oven at 80oC and weighed.   
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Table 1. Analyses of the fine sandy soil, determined before the treatments commenced (sampled on 8 September 2006 at De Hoop, 
Paarl). 

Soil depth 

(mm) 

Clay 

( %) 

Silt 

(%) 

Sand 

(%) 

pH 

(KCl) 

Resistance 

(ohm) 

P 

(mg/kg) 

K 

(mg/kg) 

Exchangeable cations 

(cmol (+)/kg) 

Organic 

C 

(%) Na K Ca Mg 

0 -300 2 12 86 5.5 4 680 126 45 0.03 0.115 1.54 0.26 0.34 

300-600 3 15 82 5.6 5 727 131 45 0.03 0.115 1.47 0.22 0.22 

600-900 4 18 78 5.5 8 329 90 37 0.02 0.095 1.23 0.20 0.18 
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Table 2. Fertilisation treatments applied to the Prime Seedless/Ramsey (Vitis 
vinifera L.) micro-irrigated commercial vineyard, De Hoop, Paarl. 

Treatment1 
Total annual nutrient application (kg/ha) 

N K Ca 

1 (Control) 70 60 10 

2 (Control-Bunch)2 70 60 10 

3 140 60 10 

4 175 60 10 

5 (N)3 210 60 10 

6 70 120 10 

7 70 150 10 

8 (K)4 70 180 10 

9 70 60 100 

10 70 60 125 

11 (Ca)5 70 60 150 

12 70 120 100 

13 70 150 125 

14 (KCa)6 70 180 150 

15 140 60 100 

16 175 60 125 

17 (NCa)7 210 60 150 
1Legends used for the different treatments are indicated in brackets. 
2 A mixture of 8L/ha Stopit plus 5 L/ha Caltrac, applied directly to bunches every two weeks from berry set to 

vèraison (three applications). A total of 10 kg Ca/ha was therefore applied. 
3 LAN (28%) was used as nitrogen source. 
4 KCl was used as K source. 
5 Gypsum (CaSO4) was used as Ca source for the 2006/07, 2007/08 and 2008/09 seasons.  In the 2009/10 

season, CaCl2 was used. 
6 A combination of KCl and CaSO4 was used as K and Ca sources in the 2006/07, 2007/08 and 2008/09 seasons, 

while CaCl2 was used instead of CaSO4 in the 2009/10 season. 
7 A combination of CaNO3, LAN and CaSO4 was used as N and Ca source in the 2006/07, 2007/08 and 2008/09 

seasons, while CaCl2 was used instead of CaSO4 in the 2009/10 season. 
 

Leaf chlorophyll content 

Chlorophyll determinations were done according to the method described by Hunter & Visser 

(1989). A representative fresh leaf sample of 5 g was cut into pieces of 1 cm2. The leaf 

material was added to 100 cm3 80% aqueous acetone containing 0.1 g CaCO3 and 

macerated with a Junke & Kunkel IKA Ultra-Turrax T-25 macerator at room temperature for 

60 s at 10 000 rpm. The homogenate was left to settle in the dark at 4oC for 24 h, after which 

the sediment was completely discoloured. The final volume was adjusted to 100 cm3. The 

density of the extracts was measured in a 10 mm cell with a LKB Ultrospec 

spectrophotometer at 663 nm and 645 nm. The equations used for determination of 

chlorophyll concentration were as follows (Arnon, 1949): 
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Chlorophyll a (mg/dm3) = 12.7A663 – 2,69A645 

Chlorophyll b (mg/dm3) = 22.9A645 – 4.68A663 

 

Leaf petiole analyses 

Leaf petiole samples were taken at various phenological stages for chemical analyses by 

sampling 30 mature leaves randomly from bearing shoots of the experimental vines at close 

proximity to the bunches. In this article only the sample taken at 15 mm berry size [78 - 82 

days after budbreak (DAB)], that coincides with the leaf chlorophyll samples, are discussed. 

After sampling, leaf blades and petioles were separated immediately. The petioles were 

ashed at 480oC, shaken up in a 50:50 HCl (32%) solution and the cation content measured 

with a Varian ICP-OES optical emission spectrometer. Total N content in the ash was 

determined through total combustion in a Leco N-analyser. 

 

Shoot mass 

The mass of winter pruned canes was measured in the 2007/08 and 2008/09 seasons in the 

vineyard, using a spring balance. 

 

Soil and soil water extract analyses 

Soil samples for chemical analyses were taken from the 0-30 cm layer with an auger, mixing 

soil sampled from between the two central experimental vines of both experimental vine rows 

in each plot. The soil was air dried, sieved through a 2 mm sieve and analysed for pH (1.0 M 

KCl), P (Bray II) and total extractable cations, namely K, Ca, Mg and Na (extracted at pH = 7 

with 0.2 M ammonium acetate) and organic matter by means of the Walkley-Black method 

(The Non-affiliated Soil Analyses Work Committee, 1990). The extracted solutions was 

analysed with a Varian ICP-OES optical emission spectrometer. 

 

Soil water samples were taken from wetting front detectors (Stirzaker, 2005), whenever 

sufficient water accumulated therein to make an extraction possible (normally after an 

irrigation event exceeding the soil water holding capacity and leading to free water draining 

from the soil). Soil water was extracted from the wetting front detector using a tube and 

syringe. The sample was then diluted 10 times to obtain a large enough sample for analyses. 

Calcium and K concentrations were determined on a Varian ICP-OES optical emission 

spectrometer, while NH4
+ and NO3

- concentrations were determined colorimetrically with a 

Seal Technicon III auto-analyser as described by The Non-affiliated Soil Analyses Work 

Committee (1990). 
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Statistical procedures 

Standard analyses of variance were performed for each season separately, using Genstat 5 

release 1.2 and SAS (SAS, 1990). Student’s t-test was used to test for significant differences 

between treatment means. The Shapiro-Wilk test was performed to test for normality 

(Shapiro & Wilk, 1965).   

 

RESULTS AND DISCUSSION 

 

Vine growth 

Vine total shoot length, measured during the first three trial years, is reported in Figure 1. 

Although Prime Seedless is not a vigorous cultivar (Anonymous, 2007), the goal is that 

primary shoots reach the top (third) wire of the trellis by flowering. Growing shoot tips of the 

primary shoots are then typically removed after set (± 43 DAB), stimulating some 

development of lateral shoots. Thereafter, primary shoot length was kept constant by cutting 

it back at intervals which was determined by vigour of the vineyard. Lateral shoots were 

removed to maintain canopy density at levels that allow 20% direct sunlight penetration to 

the vineyard floor. This foliage management approach resulted in a stabilisation of primary 

shoot length, apical lateral shoot length as well as basal lateral shoot length after 90 DAB 

(Figure 1). With the exception of the N treatment that showed significantly longer apical 

lateral shoots in the 2006/07 season at harvest, the fertilisation treatments had no effect on 

the length of any of the shoot types. The longer primary shoot length obtained for the Ca 

treatment in the 2006/07 season is ascribed to variance in application of topping practices 

between labourers. In general, as demonstrated in Figure 1, foliage management effectively 

maintained total vine shoot length at the required norm for all the treatments. 

 

The average effect of each element on vine growth was therefore expected to be expressed 

in the amount of removed plant material. This is indicated for the 2009/10 season in Figure 2. 

Again, when compared to the control treatment, no vine growth response to fertilisation 

treatments was obtained. The lack of a vegetative growth response to the N treatment was 

unexpected. This can partly be ascribed to the fact that Prime Seedless is not a vigorous 

cultivar and therefore do not react strongly to N fertilisation. More vigorous cultivars might 

have reacted more strongly to the excessive levels of N fertilisation. The reason for reduced 

amount of removed shoot material obtained for the Ca treatment, indicating reduced shoot 

growth, is also not clear. It cannot be ascribed to a reduction in N utilisation since data 

discussed in following chapters indicate otherwise. A contributing factor might be that the 

bunches become strong sinks already from an early stage and because of that a large part of 

their development occurs in the cool early summer, thereby suppressing shoot growth. 
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2006/07 

 

2007/08 

 
2008/09 

 
Figure 1. Shoot length of commercially cultivated Prime Seedless/Ramsey vines as affected by varying levels of N, K and Ca on a sandy soil in Paarl, 
over three consecutive seasons. Vertical bars indicate the standard deviation (p ≤ 0.05) for each sampling time. 

Primary shoots Lateral shoots Basal shoots Total shoots 

Stellenbosch University   http://scholar.sun.ac.za



35 
 

 

Figure 2.  Treatment average dry mass of topped shoots and removed lateral shoots of 
differently fertilised Prime Seedless/Ramsey vines on a sandy soil in Paarl during the 
2009/10 season. Vertical bars show the standard error (p ≤ 0.05).  NCa was not applied 
in 2009/10. 
 

The average mass of winter pruned shoots (cane mass) for each treatment was also 

measured for the 2007/08 and 2008/09 seasons, i.e. during the winters of 2008 and 2009 

(Figure 3). Compared to the control, none of the treatments showed any significant difference 

in pruning mass. Although not significant, the NCa treatment had a heavier average pruning 

mass for the 2007/08 season than the control. For the 2008/09 season NCa was also the 

only treatment that did not have a lower average pruning mass than the control. Although not 

significant, it also showed the longest average basal lateral and total shoot length over the 

whole season. The combination of N and Ca therefore seems to benefit shoot thickness 

compared to the other treatments of over-fertilisation. Keller et al. (1998) also found that an 

increased N supply at bloom led to increased vine vigour. The lower average pruning mass 

obtained for the K treatment in the 2008/09 season also indicate possible effects obtained 

from lower chlorophyll levels in the leaves (discussed below), resulting in less growth.   

 

Stellenbosch University   http://scholar.sun.ac.za



36 
 

 

Figure 3. Treatment average mass of winter pruned shoots, expressed per vine, 
measured after each of the 2007/08 and 2008/09 seasons. Vertical bars show the 
standard error (p ≤ 0.05). 
 

Total vine leaf surface area, as measured in the 2006/07 and 2007/08 seasons is presented 

in Figure 4. The slightly higher vigour obtained for the Ca treatment in the 2006/07 season is 

also reflected in the larger leaf surface area by harvest on the primary shoots, while the N 

treatment shows a larger leaf surface area at harvest on the apical lateral shoots. Similar to 

shoot length, this tendency was not retained during the next season, and neither did the leaf 

surface area expand from véraison onwards. This is due to vine foliage management. In fact, 

vine leaf surface area actually decreased from véraison to harvest during the 2008/09 

season. The reduction was most prominent in the apical lateral shoot positions, where more 

shoots are normally suckered before harvest than in other positions to ensure proper sunlight 

penetration. This was also observed in the reduced total apical lateral shoot length of 

2008/09 for this period (Figure 1). The leaf surface area results again demonstrate that, due 

to foliage management, the treatments had no significant effect on the vine canopy. 
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2006/07 
Primary shoots Apical lateral shoots 

Basal lateral shoots Total shoots 

2007/08 
Primary shoots Apical lateral shoots 

Basal lateral shoots Total shoots 

Figure 4. Leaf surface area of commercially cultivated Prime Seedless/Ramsey vines 
as affected by varying levels of N, K and Ca on a sandy soil in Paarl, as measured 
during the 2006/07 and 2007/08 seasons. Vertical bars indicate the standard deviation 
(p ≤ 0.05) for each sampling time. 
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The effect of the treatments on the soil chemical composition is presented in Table 3. From 

the first season (sampled in winter 2007) the K content of the soil was significantly increased, 

while the Ca (mainly free Ca due to the low clay content) only started increasing from the 

second season (sampled winter 2008); it, however, never increased to levels significantly 

higher than the control soil. Furthermore, the N concentration of soil water extracts of 

treatments N and NCa reflected higher N availability (Table 4). The lack of response in 

vegetative growth by the vines on account of the fertilisation treatments, especially N, can 

therefore not be explained by a lack of (increased) availability of the applied nutrients. 

 

However, a high rate of leaching-loss of K and Ca from the soil seems to have been 

stimulated by the application of excessive amounts of N (treatments N & NCa). This is 

illustrated by the excessively low K content in the soil of treatments N and NCa in winter 

2008 and for treatment N by the end of the trial (winter 2010). Significantly lower Ca was also 

found in the soil of treatment N from winter 2008 onwards (Table 3). Barak (1997), Cakmak 

et al. (2010) and Ring et al. (2011) also found that an increase in exchangeable acidity 

associated with N fertilization was accompanied by a decline in exchangeable base cations.  

Mineral weathering, including weathering of the clay minerals themselves and formation of 

nonexchangeable hydroxy-Al complexes, leads to a reduction in cation exchange capacity 

(CEC), which are given as a possible explanation for reduction of base cation content due to 

soil acidification.  

 

Furthermore, the Mg content of the soil was also reduced significantly for all the treatments, 

except Ca-Bunch, and especially for the treatments containing K. Sadowski et al. (1988) 

reported that excessive fertilisation of apple trees with K resulted in reduced leaf Mg contents 

which caused reduced vegetative growth and yields. Poni et al. (2003) also found that 

although K fertilisation increased soil exchangeable K significantly, vegetative growth was 

not affected. The reduction in the availability of essential nutrients like K, Ca and Mg to 

deficient levels, as well as a reciprocal suppression in their uptake (data presented in 

Chapters III and IV) therefore seems to explain the lack of significant responses in vegetative 

growth to the excessive applications of N, K and Ca.   

 

The reduced soil pH of the soil over time, but especially of treatment N and NCa, to levels 

detrimental to vine root growth and plant performance, i.e. pHKCl < 5.6  (Conradie, 1994), 

were obtained. This is also considered as a contributing factor for the lack in vegetative 

growth response obtained to excessive N applications. Bates et al. (2002) found that 

‘Concord’ (Vitis labruscana L.) showed a reduction in root and shoot biomass below soil 

pHwater of 4.5 (pHKCl ≈ 3.5).    

Stellenbosch University   http://scholar.sun.ac.za



39 
 

Table 3. The effect of varying levels of N, K and Ca fertilisation on the chemical composition of the 0-30 cm fine sandy soil layer of the 
trial vineyard in Paarl over the four experimental seasons. Values designated by the same letter do not differ significantly (p ≤ 0.05) for 
each season. 

Year of 
sampling 

Treatment 
pH 

(KCl) 
P 

(mg/kg) 
K 

(mg/kg) 

Extractable cations 
(cmol (+)/kg) Organic C 

(%) 
Na K Ca Mg 

2007 

Control 5.6a 112b 72b 0.020a 0.185b 1.400a 0.175ab 0.33ab 
Ca-Bunch 5.3ab 140a 59c 0.020a 0.150c 1.850a 0.260a 0.43a 

N 4.6c 128ab 48cd 0.013ab 0.120cd 1.400a 0.117b 0.34ab 
K 5.1bc 123ab 93a 0.015ab 0.240a 1.445a 0.170ab 0.28ab 

Ca 5.3ab 83c 43d 0.010b 0.108d 1.492a 0.142b 0.22b 
KCa 5.3ab 86c 76b 0.013ab 0.193b 1.747a 0.163ab 0.37ab 
NCa 4.8bc 130ab 47cd 0.010b 0.123cd 1.423a 0.113b 0.26ab 

LSD (≤ 0.05) 0.50 21 14 0.007 0.038 0.465 0.109 0.19 

2008 

Control 5.4a 110c 44cd 0.016ab 0.112cd 1.762ab 0.304a 0.29ab 
Ca-Bunch 5.8a 149bc 52c 0.020ab 0.130c 1.895ab 0.255a 0.27ab 

N 4.3b 135c 20d 0.022a 0.052d 0.942c 0.182b 0.28ab 
K 5.6a 168ab 160a 0.018ab 0.408a 1.574abc 0.184b 0.27ab 

Ca 5.7a 169ab 26d 0.012ab 0.068d 2.168a 0.134b 0.34a 
KCa 5.6a 150b 79b 0.016ab 0.198b 1.868ab 0.140b 0.21b 
NCa 4.2b 177a 19d 0.010b 0.048d 1.074bc 0.088b 0.18b 

LSD (≤ 0.05) 0.44 21 17 0.010 0.044 0.856 0.054 0.12 

2010 

Control 5.0a 119 32c 0.038b 0.084c 2.150a 0.224a 0.39a 
Ca-Bunch 5.0a 146 37c 0.042ab 0.096c 1.098ab 0.184ab 0.28bc 

N 3.8b 158 13c 0.022c 0.034c 0.380b 0.116bc 0.31ab 
K 5.5a 142 357a 0.040b 0.914a 1.126ab 0.134abc 0.33ab 

Ca 5.6a 172 37c 0.046ab 0.094c 2.618a 0.104bc 0.28bc 
KCa 4.7a 114 249b 0.053a 0.637b 1.153ab 0.080c 0.20c 
NCa - - - - - - - - 

LSD (≤ 0.05) 0.93 681 65 0.013 0.166 1.651 0.095 0.10 
1 Not significant at p ≤ 0.05.
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Table 4.  Average soil water chemical composition of a sandy vineyard soil in Paarl, as 
affected by N, K and Ca fertilisation treatments over four production seasons (2006/07 
to 2009/10). 
Treatment Sampling 

depth 
(cm) 

Nutrient concentration (mg/L) 

K+ Ca2+ NH4
+ NO3

- 

Control 
30 3.5 8.7 0.9 11.1 
60 5.1 13.0 0.9 19.2 

N 
30 4.6 13.2 3.9 49.2 
60 3.3 14.7 1.0 15.8 

K 
30 15.5 16.9 0.6 5.8 
60 10.6 8.7 1.0 1.7 

Ca 
30 3.5 68.5 0.5 10.6 
60 4.3 47.4 0.3 3.5 

KCa 
30 20.8 75.1 0.7 8.0 
60 28.5 70.6 1.0 4.0 

NCa 
30 2.5 31.0 0.2 20.9 
60 2.0 16.5 0.1 14.0 

 

Furthermore, the lower the pH the higher the solubility of Al3+ in the soil, reaching toxic levels 

at pHKCl < 4.2 (Follet et al., 1981), which is the case for treatments N and NCa in 2008 and N 

in 2010. Increased soluble Al3+ also retards Ca-movement from the root to the shoots 

(Hanger, 1979), with Ca required for plant growth because it is essential to various cellular 

processes such as mitosis, cytoplasmic streaming and stomatal functioning (Storey et al., 

2003). The results are in accordance with work done by Sadowski et al. (1988) who reported 

that excessive N fertilisation (with ammonia nitrate) of apple trees led to soil pH being 

drastically reduced and ascribed the lack of vegetative growth obtained for the N fertilised 

plots to toxic levels of Al3+ and Mn2+ in the soil. Conradie (1983) also found that vegetative 

growth of Chenin blanc grapevines increased by 27% and 87% when limed to pHKCl 5.0 and 

6.0 respectively from pHKCl 4.1. Mainly LAN and CaNO3 were used as fertilisers, which is the 

least acidifying N source. Despite this, the N containing treatments resulted in the largest 

decrease in soil pH.  This is ascribed to NO3- having been leached rapidly from the sandy 

soil due to winter rain, while the NH4
+ remained, resulting in the pH reduction 

 

Leaf chlorophyll content 

The effect of the N, K and Ca fertilisation treatments on leaf chlorophyll is shown in Figure 5.  

The pattern of treatment effects was dissimilar for the three consecutive years when 

chlorophyll analyses were done. During 2006/07, the leaves of treatments KCa and NCa had 

significantly more chlorophyll a and b than the control treatment and these treatments also 

had the highest total chlorophyll content.  The N content of the petioles sampled at the same 

stage (Table 5) showed that treatment NCa contained higher N than the control, but not 

higher than KCa.  For 2007/08, treatment Ca leaves contained the lowest chlorophyll b and 

lowest total chlorophyll contents, albeit not significantly lower than that of the control or any 
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of the fertilisation treatments. Petioles of the same treatment contained the lowest N and K.  

During the 2008/09 season, none of the treatments affected the chlorophyll content of leaves 

when compared to the control.  However, both the chlorophyll a and b contents of treatment 

K were significantly lower than those of treatment N, although petiole N content of the two 

treatments was very similar. According to Shaahan et al. (1999) chlorophyll density in plant 

leaves can theoretically be used as a tool to determine the nutritional status of N, Ca and Mg. 

They however found that Mg appears to accumulate in leaves of plants with low N-levels, 

which complicates the correlations. 

 

Figure 5. The effect of varying levels of N, K and Ca fertilisation on leaf chlorophyll 
content at 15 mm berry size (± 82 days after budbreak). Vertical bar values designated 
by the same letter do not differ significantly (p ≤ 0.05) for each season. 
 

Data of the 2008/09 season also indicate that K content of the leaves does not affect 

chlorophyll content. Petioles of treatments K and KCa contained significantly higher K than 

treatments N, Ca-Bunch, Ca and NCa but their total chlorophyll contents were lower than (in 

the case of treatment K vs. N), or comparable to, the other treatments. The lack of response 

to K fertilisation treatments is indirectly in agreement with work done by Poni et al. (2003), 

who found that the rate of leaf photosynthesis was only increased when leaf K was raised 

from levels where deficiency occurred. 

 
Although fertilisation treatments affected petiole nutrient composition (discussed in 

Chapter III), and that about 50% of plant N is located in the proteins that form the 

chloroplasts (Porro et al., 1995), no clear relation between petiole N and leaf chlorophyll 
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content could be found. Tam & Magistad (1935) found that in the context of N deficiency, 

there is an increase in the chlorophyll a and b content of pineapple plants with increasing 

amounts of N fertilisation. However, a lack of this correlation was found where deficiency of 

other nutrients, such as magnesium and iron, existed or where sufficient N was supplied to 

the control treatments. The lack of an increase in chlorophyll with the N fertilisation 

treatments therefore seemed to have resulted from the fact that the vine N nutritional status 

of the control treatment was sufficient, as indicated by the petiole analyses (Table 5).   

 

Table 5. The effect of varying levels of N, K and Ca fertilisation on the chemical 
composition of the leaf petioles in the trial vineyard at 15 mm berry size over the four 
experimental seasons. Values designated by the same letter do not differ significantly 
(p ≤ 0.05) for each season. 

Season Treatments

2006/07 Control 
Ca 

(Bunch) 
N K Ca KCa NCa 

LSD
(p≤ 0.05) 

N
u

tr
ie

n
t 

co
n

te
n

t 
 

(%
 d

ry
 m

as
s)

 

N 0.97b 0.93bc 0.94bc 0.95ab 0.84c 0.91bc 1.04a 0.105 

K 1.59ab 1.62ab 1.70ab 1.73ab 1.25b 1.97a 1.77a 0.483 

Ca 1.45 1.53 1.50 1.36 1.52 1.33 1.48 0.2291 

Mg 0.57a 0.44ab 0.44ab 0.34b 0.42ab 0.35b 0.47ab 0.16 

2007/08 Control 
Ca 

(Bunch) 
N K Ca KCa NCa 

LSD

(p≤ 0.05) 

N
u

tr
ie

n
t 

co
n

te
n

t 

(%
 d

ry
 m

as
s)

 

N 0.79ab 0.82a 0.86a 0.73b 0.72b 0.89a 0.92a 0.087 

K 1.50b 1.55b 1.40bc 1.67ab 1.24c 1.99a 1.28c 0.346 

Ca 1.20 1.33 1.22 1.24 1.42 1.28 1.39 0.2201 

Mg 0.39b 0.44ab 0.42ab 0.35b 0.43ab 0.38b 0.50a 0.108 

2008/09 Control 
Ca 

(Bunch) 
N K Ca KCa NCa 

LSD

(p≤ 0.05) 

N
u

tr
ie

n
t 

co
n

te
n

t 

(%
 d

ry
 m

as
s)

 

N 0.84ab 0.79ab 0.83ab 0.81ab 0.70b 0.83ab 0.88a 0.176 

K 2.15ab 1.78bc 1.70bc 2.57a 1.14c 2.75a 1.50bc 0.701 

Ca 0.68 0.73 0.69 0.77 0.75 0.75 0.72 0.0981 

Mg 0.24 0.28 0.26 0.20 0.20 0.22 0.24 0.1301 

1 Not significant at p ≤ 0.05. 

 

It is also known that Ca reduces the rate of chlorophyll breakdown and protein degradation 

(Ferguson, 1984), but again, no clear relationship between vine petiole Ca content and the 

chlorophyll content of the same leaves was found. Furthermore, potassium fertilisation 

treatments (K and KCa) reduced petiole Mg contents significantly during the 2006/07 season, 

whereas in the 2007/08 season it was decreased compared to treatments Ca-Bunch, N, Ca 

and NCa. Since Mg is bound as the central atom of the porphyrin ring of chlorophyll a and b 
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(Bohn, 2004), a reduction in leaf Mg content was expected to lead to marked reductions in 

leaf chlorophyll content.  This, however, was not observed for either of the two seasons. The 

absence of a reduction of leaf chlorophyll content when the N, Ca or Mg content of petioles 

of a particular treatment was reduced in comparison to other treatments, is ascribed to the 

complex manner in which the treatments affected vine nutrition.  

 

Although the concentration of a particular nutrient was increased by elevated application, it 

affected the concentration of other nutrients in the soil. A comparative nutritional status of the 

vines could therefore not be generated, since an increased concentration in the soil leads to 

a reduced concentration of another nutrient in both the soil and vine. This may have 

contributed to the lack of treatment effects on vine vegetative growth and leaf chlorophyll 

content obtained in this trial. 

 

CONCLUSIONS 

 

In this study, N, K and Ca fertilisation, at rates of 300% in excess of the vine nutritional 

requirement, did not affect shoot growth within the context of standard canopy management 

practices. Likewise, leaf chlorophyll content was also not affected according to a clear 

pattern. However, these results were obtained in a vineyard with a sandy soil where 

excessive N fertilisation caused a reduction of soil pH to detrimental levels and where the 

excessive N, K and Ca applications reduced mutual concentrations and that of Mg, in the 

soil. A lack of stimulation in vegetative growth may therefore be ascribed to the combined 

negative effect that these excessive applications had on soil pH and balanced vine nutrition. 
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CHAPTER III 

 

Excessive N, K and Ca fertilisation effects on leaf and fruit nutrient 
status of an early ripening table grape cultivar (Vitis vinifera L. cv. 

Prime Seedless), grafted onto Ramsey on a sandy soil 

 

 

 

 

ABSTRACT 

A four-year field trial was conducted on a sandy soil in the Paarl district of South Africa, using 
cv. Prime Seedless (Vitis vinifera L.) grapevines, grafted onto Ramsey, and trained to a 
gable trellis system.  The effect of excessive applications of N, K and Ca on table grape 
performance under typical South African cultivation conditions, with special reference to leaf 
and fruit nutrient status, was investigated. Nitrogen, potassium and calcium were applied, 
singular or in combination, at rates equal to 300% the calculated annual nutritional 
requirement. The control treatment entailed annual applications of 70 kg N/ha, 60 kg K/ha 
and 10 kg Ca/ha). Excessive N fertilisation caused reduction of soil pH to detrimental levels. 
A lack of consistently significant increases in petiole N with N fertilisation occurred. Petiole N 
concentration showed a decreasing trend throughout the season. 
  
At all phenological stages petiole K concentration increased significantly due to the K 
fertilisation. None of the K fertilisation treatments, however, succeeded to raise petiole K 
concentrations above the accepted maximum norms. Petiole K concentration at a specific 
sampling stage varied significantly between the four seasons. A general decrease in petiole 
K concentration was however found for all seasons, which correlated with the decreased soil 
K levels. Calcium fertilisation did not increase soil Ca content, resulting in a lack of 
differences in petiole Ca concentrations between treatments. An increase in petiole Ca 
concentration towards harvest was, however, obtained.   
 
Reliable correlations between petiole nutrient concentration and berry mineral content at 
harvest could not be established. It is concluded that the only way of knowing the mineral 
content of berries would be by measuring it directly instead of deducing it from the results of 
leaf or petiole analyses. As indicator of vine nutrient availability, petiole analysis must be 
evaluated in parallel with soil analyses, taking seasonal variation into consideration. The 
danger of being only guided by published norms for leaf nutrient concentrations when 
establishing fertilisation practices, has again been highlighted by this study.  
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INTRODUCTION 

 

For grapevines, the value of foliar analyses as indicator of vine nutrient status is complex.  

Under comparable conditions there is usually very little difference in the leaf composition of 

high and low-yielding vineyards (Conradie, 1986; Domingos et al., 2004). Apart from the 

nutrient level in the soil (Bogoni et al., 1995; Hunter et al., 2000), cultivar and rootstock, 

stage of vine growth, cultural practices and seasonal variation are important factors that 

affect foliar nutrient concentrations (Christensen, 1984; Conradie, 1986; Christensen et al., 

1990; Porro et al. 1995; Conradie & van Huyssteen, 1996). Since results of one year may be 

misleading, wide year-to-year nutrient concentration fluctuations require repetitive annual 

sampling (Christensen, 1984; Marcelle 1990). Porro et al. (1995) stated that low variability in 

nutrient levels is obtained for P, K and Mg when the leaves are analysed at fruit set and for 

N, Ca and B when analysed at vèraison. High variation was obtained for P, K, Ca & Mg when 

analysed at harvest time. Considering the seasonal variations in leaf nutrient concentrations, 

Conradie (1981b) suggested that the most suitable tissue to analyse would be the petiole, 

and the most stable time for sampling is during the month following bloom. Furthermore, 

Conradie (1986) also argued that older leaves picked at véraison are often badly damaged 

and it is then too late to make adjustments to fertilisation practices during the same season. 

Many table grape producers also remove leaves in the bunch zone, which are the 

appropriate position for sampling (Conradie 1986), leaving too few for representative 

sampling. 

 

This study was conducted to determine how petiole nutrient concentration of an early table 

grape cultivar, like Prime Seedless, changes in response to high rates of N, K and Ca 

fertilisation, applied singular and in combination. In view of the uncertainties raised above, 

the intention was also to establish the value of petiole analyses as diagnostic tool for 

evaluation of the effect of fertiliser applications on grapevine nutrition. 

 

MATERIALS AND METHODS 

 

Vineyard site, experimental design and treatments 

A detailed description of the experiment vineyard, treatments and trial layout was given in 

Chapter II. The trial was conducted over four seasons (2006/07 to 2009/10) on Prime 

Seedless/Ramsey (Vitis vinifera L.) grapevines in a micro-irrigated commercial vineyard of 

De Hoop Farm in Paarl (33o45’S, 18o58’E), planted in 2002. Vines were grown in a Clovelly 

soil (Soil Classification Working Group, 1991) with a fine sandy texture containing less than 
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5% clay, optimal pH (pHKCl = ±5.6), low K (<45 mg/kg), low Mg (<0.3 cmol/kg) and low 

organic C content (<0.4%) (see Table 1 in Chapter II).  

The experiment was laid out as a completely randomised block design where each treatment 

was replicated five times. The treatments consisted of combinations of different levels of soil 

applied nitrogen (N), potassium (K) and calcium (Ca), up to 300% of the annual nutritional 

requirement of the vineyard (Table 1). Fertiliser was applied in six instalments throughout the 

growing season, two times prior to flowering, three times from set to véraison and once after 

harvest. The control treatment received fertilisation as required for commercial production 

and applied by the producer, i.e. 70 kg N/ha/year & 10 kg Ca/ha/year, both split in two 

instalments before set and post-harvest and 60 kg K/ha/year applied after set. 

 

Table 1.  Fertilisation treatments applied to a Prime Seedless/Ramsey (Vitis vinifera L.) 
micro-irrigated commercial vineyard. 

Treatment1 
Total annual nutrient application (kg/ha) 

N K Ca 
Control 70 60 10 

N1 210 60 10 
K2 70 180 10 

Ca3 70 60 150 
KCa4 70 180 150 
NCa5 210 60 150 

1. LAN (28%) was used as nitrogen source. 
2. KCl was used as K source. 
3. Gypsum (CaSO4) was used as Ca source for the 2006/07, 2007/08 and 2008/09 seasons.  In the 2009/10 

season, CaCl2 was used. 
4. A combination of KCl and CaSO4 was used as K and Ca sources in the 2006/07, 2007/08 and 2008/09 

seasons, while CaCl2 was used instead of CaSO4 in the 2009/10 season. 
5. A combination of CaNO3, LAN and CaSO4 was used as N and Ca source in the 2006/07, 2007/08 and 2008/09 

seasons, while CaCl2 was used instead of CaSO4 in the 2009/10 season. 
 

Instalment size was calculated from the total intended seasonal application of each nutrient, 

divided as a percentage of the seasonal requirement during each phenological period 

(Conradie,1980; Conradie, 1981a). Treatments (Control, N, K, Ca, KCa, NCa) were applied 

each year to the same plants with respect to the first three years, while NCa was not applied 

in the final (fourth) year. 

 

Measurements 

Leaf petiole analyses 

Leaf samples were taken at various phenological stages (Table 2) for chemical analyses 

during the four seasons by removing 30 leaves from randomly selected bearing shoots of the 

experimental vines at close proximity to bunches.  Leave blades and petioles were separated 

immediately after sampling and petioles were mostly used for experimental purposes.  

Petiole sampling times included fruit-set, 15 mm berry size, véraison and first harvest for all 

seasons. Petioles were ashed at 480oC, mixed in a 50:50 HCl (32%) solution, and the 
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phosphorus (P), cation [K, Ca, magnesium (Mg)], sodium (Na) and micro nutrient [iron (Fe), 

sink (Zn), manganese (Mn), boron (B)] concentration measured with a Varian ICP-OES 

optical emission spectrometer. Total N content in the ash was determined using total 

combustion with a Leco N-analyser (CNS-2000 Macro Elemental Analyzer; Leco Corp, St. 

Joseph, MI, USA). 

 

Table 2.  Petiole sampling times, indicated as days after budbreak (DAB), of a 
fertilisation trial conducted in a Prime Seedless/Ramsey (Vitis vinifera L.) micro-
irrigated commercial vineyard. 

Phenological stage 
Season 

2006/07 2007/08 2008/09 2009/10 

Shoots at top wire (>80cm) - 43 DAB - - 

Bloom - 51 DAB 52 DAB - 

Fruit-set to pea-size berries 63 DAB 71 DAB 73 DAB 66 DAB 

15 mm berry size 83 DAB 85 DAB 87 DAB 87 DAB 

Véraison 96 DAB 100 DAB 100 DAB 102 DAB 

First Harvest 114 DAB 121 DAB 120 DAB 121 DAB 

Two weeks after harvest - 131 DAB - - 

 

Berry analyses 

Berry samples were taken (cut at the pedicel base) for chemical analyses at various 

phenological stages during the four seasons by removing three berries, respectively at the 

top, middle and bottom of four randomly selected bunches per experimental vine, giving a 

sample of at least 48 berries. Berries were rinsed with distilled water, peeled and the skin 

and flesh separately frozen at -20oC until analysis for N, P, cations and micro-nutrients. For 

this purpose, the fresh and dry mass was determined. The latter were obtained after oven-

drying of two 10 g duplicate samples at 80oC to constant mass. Total N content was then 

determined on one of the samples, using total combustion on a Leco N-analyser (CNS-2000 

Macro Elemental Analyzer; Leco Corp, St. Joseph, MI, USA), whereas the other sample was 

used to determine the mineral elements (K, Ca, Mg, Fe, Mn, Cu, Zn) as well as P and B by 

means of ICP-OES, after extraction with 0.5 M HCl (Isaac & Johnson, 1998). Results of only 

the harvest sampling time are reported. 

 

Soil and soil water extract analyses 

Soil samples for chemical analyses were taken from the 0-30 cm layer with an auger, mixing 

soil sampled between the two central experimental vines on both experimental vine rows in 

each plot. The soil was air dried, sieved through a 2 mm sieve and analysed for pH (1.0 M 
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KCl), P (Bray II) and total extractable cations, namely K, Ca, Mg and Na (extracted at pH = 7 

with 0.2 M ammonium acetate) and organic matter by means of the Walkley-Black method 

(The Non-affiliated Soil Analyses Work Committee, 1990). The extracted solutions were 

analysed with a Varian ICP-OES optical emission spectrometer. 

 

Soil water samples were taken from wetting front detectors (Stirzaker, 2005), whenever 

sufficient water accumulated to make an extraction (normally after an irrigation event 

exceeding the soil water holding capacity and leading to free water draining through the soil). 

Extraction of soil water from the wetting front detector was done using a tube and syringe.  

The sample was diluted 10 times to obtain a large enough volume for analyses. Calcium and 

K concentrations were determined with a Varian ICP-OES optical emission spectrometer. A 

Seal auto-analyser (AA3) was used to colorimetrically determine NH4
+ and NO3

- 

concentrations with the Na-salisilate and Cd-reduction methods respectively as described in 

The Non-affiliated Soil Analyses Work Committee (1990). 

 

Statistical procedures 

Standard analyses of variance were performed for each season and over all seasons, using 

Genstat 5 release 1.2 and SAS (SAS, 1990). Student’s t-test was used to test for significant 

differences between treatment means and seasons. The Shapiro-Wilk test was performed to 

test for normality (Shapiro & Wilk, 1965). 

 

RESULTS AND DISCUSSION 

 

Soil and Soil Water 

Interpretation of foliar analyses cannot be conducted in isolation of soil analyses (Conradie, 

1994). The effect of fertilisation treatments on soil chemical composition and nutrient 

availability should be taken into account when foliar analyses are interpreted. The impact of 

the fertilisation treatments on soil chemical as well as soil water extract composition was 

discussed in detail in Chapter II. Treatments containing K significantly increased the soil K 

content, while Ca fertilisation did not have a significant effect on the soil Ca concentration.  

The N concentration of soil water extracts of treatments N and NCa reflected higher N 

availability (Chapter II). High rates of N applications (treatments N & NCa) stimulated 

leaching-losses of K and Ca from the soil. Furthermore, the Mg content of the soil was also 

reduced significantly for all the treatments. These shifts, however were not clearly reflected in 

the soil water extract composition. Soil pH of treatment N and NCa decreased to levels 

detrimental to vine root growth and plant performance, i.e. pHKCl < 5.6  (Conradie, 1994).  
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Nitrogen 

The effect of the N, K and Ca fertilisation treatments on the N concentration of petioles over 

the four consecutive seasons is illustrated in Figures 1 a & b.  Average petiole N content was 

generally increased by N fertilisation. There is, however, not a consistent trend in the extent 

of the response to the N treatment, with only the berry set and harvest sampling time of 

2006/07 and véraison samples of 2007/08 that showed significant (p ≤ 0.05) increases. In 

view of the fact that a total of 210 kg N per ha was applied annually for treatments N and 

NCa, as well as the increased NO3
--N content of the soil water, the lack of significant 

increases in petiole N is difficult to explain. Similar results were, however, obtained by 

Conradie (2005) who applied up to 120 kgN/ha N to a Barlinka vineyard in sandy soil with 

low organic C content before obtaining response in vigour and production.  The low uptake of 

soil applied N also explains why vegetative growth was not significantly increased by the high 

rate of N applications, as discussed in Chapter II. The decreasing effect of N fertilisation on 

the soil pH might have reduced root activity progressively, explaining the lack of treatment 

effects in the latter two seasons. However, Conradie & Saayman (1989) also found that 

fertilisation of up to 96 kg N per ha per year resulted in only marginal increases in the N 

contents of both blades and petioles of Chenin blanc vines.  Similarly, Porro et al. (1995) 

found that véraison was the only sampling time when levels of N in leaves might correlate 

with soil fertility. 

 

Figure 1.  Petiole N concentrations of Prime Seedless vines on a sandy soil in Paarl as 
(a) affected by excessive fertilisation with N containing fertilisers and (b) excessive 
fertilisation with Ca and K respectively, or in combination. 
 

Excessive Ca, K and a combination thereof did not affect petiole N concentration significantly 

or in a consistent manner (Figure 1 b). Hunter et al. (2000) succeeded in raising the N 

content of Sauvignon blanc/110 Richter vine leaves on a 10% clay content soil through N 

applications alone.  However, when K was applied, singular or in combination with N, leaf N 

content remained unaffected or decreased.  

2006/07 2007/08 2008/09 2009/10

a b 

2006/07 2007/08 2008/09 2009/10
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At set the petiole N concentration was highest, except for the 2006/07 season. Throughout 

the season a decreasing trend, that became more pertinent in the latter two experimental 

seasons, was obtained (Figure 1). The norms used for fruit-set and véraison petiole samples, 

as published by Conradie (1986), range between 0.60 and 0.98 % and 0.50 and 0.95 % of 

dry mass respectively. For both the 2007/08 and 2008/09 seasons all the treatments 

exceeded the fruit-set norms (Figure 1). At véraison of 2007/08 both treatments that received 

N fertilisation exceeded the norms. In comparison to the norms published for fruit-set and 

véraison, this trial showed only once (véraison 2007/08) in four years a response to 

excessive N fertilisation. This is in accordance with Bravdo & Hepner (1987) who found a 

poor correlation between total N content in grapevine leaf blades and petioles at harvest and 

the total amount of N applied to the soil for Cabernet Sauvignon on a very clayey soil. 

 

Compared to the control, the significant increase in petiole N of both N fertilisation treatments 

at harvest of 2006/07 and of treatment N in 2007/08, points to a possibility to use this time for 

setting of N nutritional norms. This notion is supported by the consistent trend of the N 

fertilisation treatments to increase petiole N concentration at harvest. Harvest is not regarded 

as a reliable sampling time for foliar analyses (Conradie, 1981b). However, in the light of the 

rapid development of Prime Seedless (harvest is 120 days after budbreak), harvest petiole 

sampling of this variety might indeed have value. The latter phenological stage may have to 

be determined by a specific berry maturity level, otherwise it will be difficult to set comparable 

norms, even for a specific block from year to year.  

 

Changes in petiole N concentration over the season, calculated as average of all the 

treatments, are indicated in Figure 2 for each of the four experimental seasons. Although the 

first two seasons showed fluctuating values between consecutive sampling times, a generally 

declining concentration for all the seasons is observed towards harvest. This observation 

was also made by Conradie (1981b), Christensen (1984), Porro et al. (1995) & Romero et al. 

(2010). Although petiole N concentration at set and véraison in 2007/08 is statistically higher 

than in the other seasons, no clear pattern in vine N nutritional status can be distinguished 

between the seasons. This is mainly due to the opposing fluctuating patterns of 2006/07 and 

2007/08 seasons. Christensen (1984) investigated the N levels of petioles of 26 grape 

cultivars at various phenological stages over three consecutive seasons up to véraison. He 

found no statistical differences in total N concentration of the petioles between the seasons, 

but the trend between the seasons also differed, as found in this study. Considering petiole 

NO3 concentrations of individual cultivars, Christensen (1984) also found a fluctuating pattern 

that differed extensively between the seasons and per cultivar. 
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Figure 2. Seasonal changes in petiole N concentration of a Prime Seedless vineyard 
on a sandy soil in Paarl during four experimental years. Means of all the fertilisation 
treatments are indicated. Vertical bars represent least significant differences between 
years at p ≤ 0.05.  
 

The opposing patterns of change in seasonal petiole N concentrations of 2006/07 and 

2007/08, whilst they seemed similar in 2008/09 and 2009/10, indicate that conclusions 

regarding the N nutritional status of the vines cannot be made during the first two seasons 

after changes in fertilisation were made. This is ascribed to the carry-over effect of vine N 

nutrition from one season to another which is connected to vine carbohydrate and N reserve 

accumulation (Walker & Winter, 2006). 

 

Potassium 

The effect of the N, K and Ca fertilisation treatments on the K concentration of petioles over 

the four consecutive seasons is illustrated in Figures 3 a & b. Petiole K concentration was 

increased by K fertilisation at all phenological stages. This increase was significant for all the 

sampling times from véraison in 2007/08 and onwards, except for the K treatment at 15mm 

in 2008/09 and for KCa at 15 mm in 2009/10. In contrast to N, the 180 kg K per ha applied 

annually, therefore led to significant increases in petiole K. This is ascribed to the significant 

increases in soil K content obtained for treatments K and KCa (Table 3 in Chapter II) as well 

as the higher levels of K concentration in the soil water extracts (Table 4 in Chapter II), the 

preferential uptake of K from the soil (Kirkby, 1979) and its rapid translocation within the plant 

(Conradie & de Wet, 1985). 

Excessive N and Ca did not suppress petiole K concentration significantly, but a consistent 

trend to lower K levels in the petioles was observed (Figure 3 b). This indicates a reduction in 

K uptake caused by N fertilisation, which is partially explained by the stimulated leaching-

Set 

Véraison

First  
harvest 
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losses of K from the soil under conditions of high rates of N applications (treatments N & 

NCa) (Table 3 in Chapter II). Last mentioned is caused by a loss of basic cations when soil 

pH reduces and K+ that is displaced by NH4
+ on the exchange complex. The shifts in K 

availability were, however, not clearly demonstrated in the soil water extract composition 

(Table 4 in Chapter II), which may explain the lack of statistically significant results. In 

support of abovementioned results, Conradie (1992) also stated that K deficiency can be 

induced by excessive N availability. The reduced petiole K due to Ca fertilisation is explained 

by competition that exists between K and Ca for uptake by the roots (Geraldson, 1979), but 

the lack of significant results are due to K uptake being more efficient than Ca uptake (Kirkby 

& Pilbeam, 1984).  In the 2009/10 season, the suppression of K uptake by both N and Ca led 

to petiole K concentrations declining to levels where it became deficient (< 0.9%) (Figure 3b).  

It is therefore important to note that despite K fertilisation being applied in accordance to 

nutritional requirements, excessive N and Ca applications can progressively induce K 

deficiencies on a sandy soil. 

 

Figure 3. Petiole K concentrations of Prime Seedless vines grown on a sandy soil in 
Paarl as (a) affected by excessive fertilisation with K containing fertilisers and (b) 
excessive fertilisation with N and Ca respectively. 
 

Over the four seasons, petiole K concentration of Control treatments varied between 1.01% 

and 1.98% (Figure 3), being within the acceptable ranges published by Conradie (1986) for 

fruit set, i.e. 1.00 – 2.90%, and exceeded the véraison norm, which is 0.90 - 1.80%. None of 

the K fertilisation treatments succeeded to raise petiole K concentrations above the 

maximum norms as provided by Conradie (1986). From these data it seems that by 

comparing petiole K analyses to our existing norms will not necessarily reflect an excessive 

K nutritional status or at least conditions of excessive K supply. A true reflection of the uptake 

and effectiveness of K fertilisation might therefore only be obtained through seasonal, 

parallel analyses of petioles from K fertilised vines and those that were not fertilised. 

 

Changes in petiole K concentration over the season, calculated as average of all the 

treatments, are indicated in Figure 4 for each of the four experimental seasons. Varying 

2006/07 2007/08 2008/09 2009/10 2006/07 2007/08 2008/09 2009/10
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patterns in the change of petiole K concentration between phenological stages occurred for 

the four experimental seasons. Christensen (1984) also found that petiole K concentration 

varied significantly between three seasons for a specific sampling stage. This was, however, 

not true for leaf blade analyses (data not shown).  The varying pattern obtained for petioles in 

this trial cannot be ascribed to the applications of fertiliser shortly before sampling, since all 

treatments showed similar trends, although their levels varied (as can be seen in Figure 3). 

The different patterns are therefore ascribed to seasonal differences in climate and possibly 

soil water contents. 

 

 
Figure 4. Seasonal changes in petiole K concentration of a Prime Seedless vineyard 
grown on a sandy soil in Paarl during four experimental years. Means of all the 
fertilisation treatments are indicated. Vertical bars represent least significant 
differences between years at p ≤ 0.05. 
 

Calcium 

The effect of the N, K and Ca fertilisation treatments on the Ca concentration of petioles over 

the four consecutive seasons is illustrated in Figures 5 a & b.  Fertilisation with Ca at rates of 

150 kg per ha per year increased the petiole Ca concentration slightly only in 2007/08 and 

2009/10, but it was not significant (Figure 5 a). Chiu & Bould (1976) found that leaf total-Ca is 

not a reliable index for predicting fruit-Ca deficiency of tomatoes. Likewise, Kirkby & Pilbeam 

(1984) quotes previous research which shows that for 18 different plant species the Ca 

concentration for a given plant species did not vary greatly, regardless whether they were 

grown in nutrient solutions or in the field. 

 

Set Véraison

First  
harvest 
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Figure 5. Petiole Ca concentrations of Prime Seedless vines grown on a sandy soil in 
Paarl as (a) affected by excessive fertilisation with Ca containing fertilisers and (b) 
excessive fertilisation with N and K respectively. 
 

Excessive levels of N and K fertilisation also did not reduce Ca uptake significantly, with the 

exception of the samples taken at 15 mm berry size in 2008/09 when the petiole Ca 

concentration of treatments K and N was significantly lower (Figure 5b). On the one hand, Ca 

fertilisation (treatments Ca, KCa and NaCa) did not significantly increase soil Ca content (see 

Table 3 in Chapter II) (explaining the lack of significant increases in petiole Ca concentration 

on account of Ca applications), while on the other hand, significantly lower Ca was found in 

the soil of treatment N from winter 2008 onwards, which explains the reduced petiole Ca of 

treatment N in 2008/09 (Figure 5b). The sub-optimal low soil pH that resulted from treatment 

N might also have resulted in higher soluble Al3+, which is toxic to vine roots. Hanger (1979) 

found that high concentrations of Al3+ in the soil retard Ca-movement from roots to shoots.  

Furthermore, the previously mentioned competition for uptake that exists between Ca and K 

explains the slightly reduced petiole Ca concentrations of treatment K from 2008/09 onwards, 

despite the fact that the Ca of soil water extracts was not lower than that of the Control.   

 

Over the four seasons, petiole Ca concentration of Control treatments varied between 1.00% 

and 1.80% (Figure 5). This was within, or exceeded, the acceptable ranges published by 

Conradie (1986) for fruit set, i.e. 0.60 – 1.40% as well as for véraison, which is 1.10 - 1.90%. 

Even petiole concentrations of the K and N treatments, sampled at 15 mm berry size in 

2008/09, that were significantly lower than the control, remained above the minimum norms 

(Figure 5b). The reduced Ca concentrations of these treatments, together with low soil pH in 

the case of treatment N (Table 3 of Chapter II) on the one hand, and the fact that petiole Ca 

remained above the minimum Ca norms published by Conradie (1986), on the other hand, 

indicate to the grapevine having very low Ca nutritional requirements. From the data of this 

trial it seems that a comparison of petiole Ca analyses and our present norms, would not 

necessarily reflect a low Ca nutritional status or at least conditions of low Ca supply. A true 

reflection of the uptake and effectiveness of Ca fertilisation can also not be obtained through 

seasonal, parallel analyses of petioles from Ca fertilised vines and those that were not 

2006/07 2007/08 2008/09 2009/10 2008/09 2006/07 2007/08 2009/10
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fertilised.  According to Follet et al. (1981), Ca deficiency in field crops is seldom 

encountered, yet it leads to reduced growth, especially of young leaves and growing tissues.  

Using young leaves, of which the best sampling time would probably be before tipping or 

topping (before set), as indicator of Ca nutritional status, should be investigated.   

 

Changes in petiole Ca concentration over the season, calculated as average of all the 

treatments, are indicated in Figure 6 for each the four experimental seasons. Also for Ca, 

varying patterns in petiole Ca concentration between phenological stages occurred for the 

four experimental seasons. An increasing trend in petiole Ca concentration from 15 mm berry 

size (± 83 DAB), however, occurred towards harvest for three (2006/07, 2007/08 & 2008/09) 

of the four seasons. Conradie (1981b), Porro et al. (1995) & Romero et al. (2010) also 

showed found that leaf Ca concentration increased throughout the season.  

 

 
Figure 6. Seasonal changes in petiole Ca concentration of a Prime Seedless vineyard 
grown on a sandy soil in Paarl during four experimental years. Means of all the 
fertilisation treatments are indicated. Vertical bars represent least significant 
differences between years at p ≤ 0.05. 
 

Magnesium 

Due to the known effect of especially K and Ca to suppress Mg uptake, when applied at high 

rates (Kirkby & Pilbeam, 1984), the effect of the treatments on petiole Mg concentration was 

also investigated, and is presented in Figure 7. Both K and Ca fertilisation indeed 

suppressed Mg concentration in petioles, being significant from véraison 2007/08 onwards. 

This is in accordance with Sadowski et al. (1988) who reported that excessive fertilisation of 

apple trees with K resulted in reduced leaf Mg contents and is explained by the significant 

reduction of Mg content of the soil for all the treatments (Table 3 in Chapter II).  Potassium 
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fertilisation actually increased soil water Mg content, probably due to exchange reactions, but 

the high K concentrations in the soil water suppressed uptake of the Mg, as stated by 

Conradie (1992).   

 

Excessive applications of N had no effect on petiole Mg concentration (Figure 7).   

 

Except for the 2009/10 season, Mg concentration in vine petioles increased from véraison to 

harvest. In contrast to petiole K concentration that decreases during this period due to 

translocation to the berries (Iland, 1988), Mg seems to accumulate.  

 

 
Figure 7. Petiole Mg concentrations of Prime Seedless vines grown on a sandy soil in 
Paarl as affected by excessive fertilisation with N, K and Ca containing fertilisers. 
Vertical bars represent least significant differences between years at p ≤ 0.05. 
 

Ratio of petiole nutrient concentrations 

Another approach to evaluate nutritional status of plants is to consider the ratios of nutrient 

concentrations in leaf petioles. According to Fregoni (1984) nutrient ratios are better 

indicators of the nutritional status of a plant than normal concentrations based on dry matter, 

and they are better correlated with yield than absolute contents. In view of the lack of 

significant responses in petiole nutrients to excessive N and Ca fertilisation, and the 

insignificant suppression of K uptake by excessive N and Ca uptake, treatment effects on the 

four year average ratios of K and N (K:N ratio), Ca (K:Ca ratio), and Mg (K:Mg ratio) as well 

as Ca:N and Ca:Mg ratios of the different treatments were calculated for four phenological 

stages.  The results are presented in Table 3.  
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Table 3.  The four year average K:N, K:Ca, K:Mg, Ca:N and Ca:Mg ratio of petioles of 
Prime Seedless in Paarl at different phenological stages as affected by various 
fertilisation treatments. 

Treatment Set 15 mm berry size Véraison Harvest 

 K:N ratio 
Control 1.79 b 2.02 b 2.10 b 2.39 b 
N 1.35 c 1.55 c 1.51c 1.73 c 
K 2.11 a 2.46 a 2.67 a 3.62 a 
Ca 1.55 bc 1.53 c 1.67 c 2.34 b 
KCa 2.17 a 2.49 a 2.65 a 3.39 a 
NCa 1.50 c 1.59 c 1.57 c 1.58 c 
LSD (p ≤  0.05) 0.27 0.29 0.32 0.59 
 K:Ca ratio 
Control 1.19 bc 1.64 ab 1.09 b 0.85 b 
N 0.94 d 0.98 d 0.88 bc 0.66 b 
K 1.37 ab 1.84 a 1.38 a 1.15 a 
Ca 0.97 cd 1.20 cd 0.83 c 0.69 b 
KCa 1.51 a 1.98 a 1.35 a 1.09 a 
NCa 1.08 cd 1.43 bc 0.88 bc 0.63 c 
LSD (p ≤  0.05) 0.24 0.39 0.24 0.23 
 K:Mg ratio 
Control 4.27 b 5.22 b 4.08 b 2.41b 
N 3.13 c 3.25 c 2.94 c 1.74 b 
K 5.96 a 7.28 a 6.39 a 4.15 a 
Ca 3.89 bc 4.03 bc 3.61bc 2.18 b 
KCa 6.47 a 7.25 a 6.39 a 3.66 a 
NCa 3.78 bc 4.45 bc 3.55 bc 1.86 b 
LSD (p ≤  0.05) 1.11 1.46 1.13 1.11 

 Ca:N ratio 
Control 1.57 ab  1.48 c  1.96 ab  2.95 ab 

N 1.49 b  1.69 ab  1.80 b  2.69 b 

K 1.65 a  1.54 abc  2.03 ab  3.10 ab 

Ca 1.69 a  1.71 a  2.14 a  3.44 a 

KCa 1.49 b  1.52 c  2.05 ab  3.15 ab 

NCa 1.45 b  1.24 d  1.83 b  2.64 b 

LSD (p ≤  0.05) 0.14  0.16  0.25   0.52 
 Ca:Mg ratio 
Control 3.56 b  3.17 d  3.68 cd  2.77 a 

N 3.25 b  3.29 dc  3.38 d  2.56 d 

K 4.08 a  4.06 a  4.68 a  3.46 8a 

Ca 4.00 a  3.62 bc  4.29 ab  3.11 abc 

KCa 4.19 a  3.95 ab  4.70 a  3.36 ab 

NCa 3.41 b  3.04 d  3.92 bc  2.91 bcd 

LSD (p ≤  0.05) 0.35  0.41  0.54  0.46 

 

Compared to the Control, the K:N ratio was significantly reduced by N applications for all the 

phenological stages. This illustrates a definite response in the vine’s nutritional balance of K 

relative to N with N fertilisation. Treatments containing N did not significantly affect the Ca:N 

ratio, although this ratio was consistently reduced. The lack of significant changes is ascribed 

to the mutually synergistic effect of these two nutrients on the uptake of each other (Kirkby, 

1979). 
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The dramatic increase of the K:N ratio due to K fertilisation above the ratio of the control 

treatment, illustrates how K fertilisation leads to a reduction of the N to K nutritional balance 

of the vine (Table 3). The impact that K fertilisation has on Ca and Mg uptake is also 

illustrated in the significantly increased K:Ca and K:Mg ratios obtained for treatments K and 

even KCa. Morris et al. (1980) also found that petiole Ca and Mg showed a negative 

correlation with K under conditions of high rates of K fertilisation.  

 

Fertilisation with Ca did not significantly change the Ca:N ratio, while it increased the Ca:Mg 

ratio significantly.  The effect of K, but not of Ca, on the Mg status of the plant is also evident 

from the significantly increased Ca:Mg ratios of K containing treatments. 

 

If the ratios are compared to norms published by Fregoni (1984) for K:N (0.42 – 0.53), K:Ca 

(2.20-2.22) and K:Mg (3.0-7.0) for wine grapes in Italy, the following is observed: (a) much 

higher K:N ratios were found in this trial, (b) lower K:Ca ratios were found in this trial (which 

are again ascribed to much less K fertilisation applied to wine grape vineyards), and (c) 

similar K:Mg ratios were found, despite the fairly low Mg contents in the soil of the trial 

vineyard.  All three ratios, being used as norms, which were published by Fregoni (1984) 

were probably set in a context of low rates of K fertilisation in wine grape vineyards, 

rendering these ratios irrelevant to table grapes. 

 

Correlation between petiole and fruit nutrient content 

The correlations between vine petiole N, K, Ca and Mg concentration at véraison and their 

concentration in the grape berry at first harvest are presented in Table 4. Correlations 

between petiole samples taken at first harvest and berry analyses are also indicated in 

Table 5. From the four seasons, a significant correlation between petiole N at véraison was 

found for both berry skins and flesh only in the 2008/09 season. 

 

Potassium in the petioles at véraison correlated only with berry skin K concentration for both 

2008/09 and 2009/10 seasons, but not 2006/07 and 2007/08. Table 4 also shows that only in 

2008/09 a correlation between leaf blade N at harvest and either skin or berry flesh could be 

obtained.  In both 2008/09 and 2009/10 a correlation between leaf blade K at harvest and 

berry skin K concentration was obtained. 
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Table 4.  Correlation between N, K, Ca and Mg concentrations in petioles of Prime 
Seedless grapevines in Paarl, sampled at véraison, and their berries at first harvest. 
Season 2006/07 2007/08 2008/09 2009/10 

Berry tissue Skin Flesh Skin Flesh Skin Flesh Skin Flesh 

N NS1 NS NS NS 0.052 0.01 NS NS 

K NS NS NS NS 0.05 NS 0.01 NS 

Ca NS NS NS NS NS NS NS NS 

Mg NS NS NS NS NS NS NS NS 
1  NS: not significant 
2 The two-tailed significance level of the correlation coefficient (r2) for df = 83, except 2009/10 

where df=28. 
 

Table 5.  Correlation between N, K, Ca and Mg concentrations in petioles of Prime 
Seedless grapevines in Paarl, sampled at first harvest, and their berries. 
Season 2006/07 2007/08 2008/09 2009/10 

Berry tissue Skin Flesh Skin Flesh Skin Flesh Skin Flesh 

N NS1 NS NS NS 0.012 0.01 NS NS 

K NS NS 0.05 0.02 NS NS 0.05 0.05 

Ca NS NS NS NS NS NS NS NS 

Mg NS NS NS NS NS NS NS NS 
1 NS: not significant 
2 The two-tailed significance level of the correlation coefficient (r2) for df = 83, except 2009/10 

where df=28. 
 

Comparisons of the mineral composition of leaves and fruit for apple and pear cultivars, done 

over 12 years by Marcelle (1990), also indicated that the correlations are rare and weak. 

Iland (1988) also mentioned that a response in vine growth and berry K content to K 

fertilisation would only be observed in vineyards with a K deficiency. It is therefore evident 

that reliable correlations cannot be established and the only way of knowing the mineral 

content of berries is by measuring it directly instead of deducing it from the results of leaf or 

petiole analyses.   

 

CONCLUSIONS 

 

Excessive N fertilisation caused reduction of soil pH to detrimental/unacceptably low levels. 

The lack of consistently significant increases in petiole N on account of N fertilisation 

indicated that the applied N could not be effectively utilised by the grapevines. Given the fact 

that accumulation of reserves, including N reserve compounds, takes place throughout the 

season from flowering onwards, the decreasing trend of petiole N concentration throughout 
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the season may have been evidence of a progressive translocation of N to reserve 

compartments in the permanent wood as the leaves age. 

  

Significant increases in soil K content were obtained for the K fertilisation treatments. In 

response, petiole K concentrations were significantly increased by the K fertilisation at all 

phenological stages. This illustrates how readily, and preferentially, K is taken up and might 

also be effectively translocated to perennial parts. None of the K fertilisation treatments, 

however, succeeded to raise petiole K concentrations above the presently acceptable 

maximum norms, which indicates that maximum norms used for K nutrition that may 

probably be too high, or that it is difficult to reach the maximum norms on sandy soils. On the 

other hand, the variation of petiole K concentration between the four seasons, for a specific 

sampling stage, might indicate that petiole K concentration norms are difficult to define, 

hence the wide range.   

 

With Ca that typically ranges between 60-80% of the cations in most vineyard soils in South 

Africa, it is not unexpected that Ca fertilisation had little effect on the soil’s total Ca content.  

The lack of increased Ca concentration in the petioles, on account of Ca fertilisation, is 

therefore not surprising. The continuously increasing trend in petiole Ca concentration up to 

harvest is in agreement with the fact that Ca is mainly transported via the xylem, which would 

occur as long as the leaves transpires.  

 

Reliable correlations between petiole nutrient concentration and berry mineral content could 

not be established. It is therefore concluded that the only way of knowing the mineral content 

of berries would be by measuring it directly instead of deducing it from the results of leaf or 

petiole analyses. 

 

This study highlights the fact that petiole nutrient concentrations must be interpreted with 

much caution. It should only be used as indicator of vine nutrient availability if it is evaluated 

in parallel with soil analyses and by taking seasonal variation into consideration. If foliar 

analyses are to be used as a diagnostic tool, annual sampling times would have to be fixed 

and an individual set of norms would have to be developed per vineyard block. For Prime 

Seedless in Paarl, véraison and harvest seem to be the most suitable times for analyses to 

evaluate the grapevine N nutritional status achieved form past fertilisation practices.  Most 

sampling times seem to be suitable for K, but 15 mm berry size and véraison were found to 

be the most sensitive. 
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CHAPTER IV 

 

Accumulation of macro-nutrients (N, P, K, Ca and Mg) in berries by 

an early ripening table grape cultivar (Vitis vinifera L. cv. Prime 

Seedless) on a sandy soil 

 

 

 

 

ABSTRACT 

A four-year field trial was conducted on a sandy soil in the Paarl district of South Africa, using 
cv. Prime Seedless (Vitis vinifera L.) grapevines, grafted onto Ramsey, and trained to a 
gable trellis system. Nitrogen, potassium and calcium were applied, singular or in 
combination, at rates up to 300% the calculated annual nutritional requirement. The Control 
treatment received an annual application of 70 kg N/ha, 60 kg K/ha and 10 kg Ca/ha. Berry 
growth as well as average N, P, K, Ca and Mg concentration in the flesh and skin of all 
treatments was determined at various development stages for four growing seasons. Nutrient 
accumulation patterns per berry were also established.  
 
Although rapid berry growth was maintained up to the first harvest, the decrease in nutrient 
concentrations was most rapid up to véraison, thereafter different patterns of change in berry 
nutrient concentration occurred between the nutrients. Accumulation of the nutrients, 
particularly K and Ca, occurred independent of one another. Calcium accumulation in the 
berry finished before véraison, while the other nutrients continued to accumulate, albeit at an 
increasingly slower rate towards first harvest for P, K and Mg.      
 
For all the nutrients, the berry flesh contained the larger part of the total accumulated 
nutrients in the berry, although the skin concentration exceeded that of the flesh as the berry 
increased in size. Due to the role of the nutrient concentration, rather than total content, 
impact on berry quality, a better understanding of other dynamics that determine berry 
nutrient concentration is required. Furthermore, the rapid development of this early seedless 
variety, with berry size that far exceeds wine grapes, is accepted as an important factor 
influencing berry nutrient accumulation patterns to divert slightly from the generally 
established ones.  
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INTRODUCTION 

 

Successful table grape production presumes fruit of good eating quality and post-harvest 

storage capacity. It is generally accepted that some aspects of grape quality, such as solid 

concentration, are positively correlated to fruit potassium (K) (Rogiers et al., 2006). During 

storage, fruit quality is favoured by low nitrogen (N) and high calcium (Ca) levels (Marcelle, 

1995; Bonomelli & Ruiz, 2010). Bunch rot is assumed to be enhanced when there is a higher 

soluble N fraction in the berries due to poor timing (after véraison) and excessive N 

fertilisation (Conradie, 1986). Ruiz et al. (2004) also found that the higher the N content of 

berries, the softer they were.  

 

Grape berries are a large sink for K (Conradie 1981a).  It is known that high juice K 

decreases free acids and increases overall pH (Morris et al., 1982). Tartaric acid, a 

significantly stronger acid than malic acid (Rühl, 2000), precipitates with high K in salt form 

so that the free tartrate decreases. High K will therefore lead to reduced tartrate:malate ratios 

(Mpelasoka et al., 2003), probably affecting the taste of the berries significantly because of 

the much more crisp, fresh acid taste of tartaric acid (Rühl, 2000). Ripeness levels may be 

promoted because an acid titration would indicate less acidity. The colour quality and acidity 

of fresh grape juice were reduced by excessive K fertilisation (Morris et al., 1982). They, 

however, did not consider whether the excessive amounts of K affected the pH of intact 

cytoplasm. 

 

In all fruits there is a decline in Ca influx during growth. This not only results from an increase 

in solute influx via the phloem during fruit ripening, but also from a decline in cell division rate 

and thus the formation of new binding sites for Ca, as well as an increase in volume/surface 

area, reducing the transpiration per unit weight of fruit (Kirkby & Pilbeam, 1984). Tagliavini et 

al. (2000) stated that the more tissues are subject to rapid expansion, like berry flesh, the 

lower is the Ca requirement. Polygalacturonase (PG), an enzyme that breaks down the 

pectin structure of cell walls during berry ripening and that is also used by Botrytis cinerea to 

gain access to cells, is inhibited by the presence of Ca (Poovaiah et al., 1988).   

 

In the apple industry fruit quality was found to be dependent on its mineral composition. 

Fertilization therefore started to take into account the mineral composition of the fruit so that 

an optimal balance between different minerals, particularly potassium (K) and calcium (Ca) is 

now being sought (Marcelle, 1990).  
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In order to manipulate mineral content and balance in grapes, it is important to know the 

dynamics of nutrient accumulation in developing berries. Numerous studies have dealt with 

the nutrient accumulation patterns of grape berries, mainly with a focus on wine production 

(Conradie, 1980; Conradie, 1981a; Possner & Kliewer, 1985; Coombe, 1987; Donèche & 

Chardonnet, 1992; Schaller et al., 1992; Creasy et al., 1993; Chardonnet & Donèche, 1995; 

Ollat & Gaudillère, 1996; Cabanne & Donèche, 2003; Rogiers et al., 2006; Etchebarne et al., 

2009). However, no information is available to confirm that nutrient accumulation patterns of 

very early maturing, seedless varieties with large berry size and therefore much smaller skin 

to flesh ratios than wine grapes, are similar to the models that have been proposed.  

 

The objective of this study was to aid table grape nutrition practices as well as harvest timing 

and post-harvest quality prediction by investigating the nutrient accumulation patterns of 

Prime Seedless (Vitis vinifera L.), a very early seedless table grape variety that are produced 

with minimum berry diameter of 18mm. Furthermore, for fresh consumption, table grapes are 

harvested at lower total soluble solid concentrations than wine grapes. The study was 

therefore focused on nutrient accumulation up to early maturity, which is about 120 days 

after budbreak. 

 

MATERIALS AND METHODS 

 

Vineyard site, experimental design and treatments 

A detailed description of the experiment vineyard, treatments and trial layout was given in 

Chapter II. The trial was conducted over four seasons (2006/07 to 2009/10) on Prime 

Seedless/Ramsey (Vitis vinifera L.) grapevines in a micro-irrigated commercial vineyard of 

De Hoop Farm in Paarl (33o45’S, 18o58’E), planted in 2002.  Vines were grown in a Clovelly 

soil (Soil Classification Working Group, 1991) with a fine sandy texture containing less than 

5% clay. Detail of the soil chemical composition was also provided in Chapter II. The 

grapevines were trained to a gable system, spaced 1.8 m x 3 m apart, head trained and cane 

pruned to eight buds. Standard cultural practices for the cultivar and region were followed as 

described in Anonymous (2007). It entailed shoot tipping and crop control after set, combined 

with removal of leaves that are in close proximity of the retained bunches. Bunch preparation 

entailed an application of 1 mg/L gibberellic acid (GA3) at bloom for bunch thinning, 

shortening of bunches to 8 cm length at set, dipping bunches in 20 mg/L GA3 when they 

were 8 to 10 mm in diameter, and again at 10-12 mm diameter, for berry enlargement and 

finally doing final hand-thinning of bunches just before véraison. 
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An experiment was laid out as a completely randomised block design where each treatment 

was replicated five times. Treatments consisted of combinations of different levels of soil 

applied nitrogen (N), potassium (K) and calcium (Ca), up to 300% of the annual nutritional 

requirement of the vineyard. An additional treatment, i.e. bunch applied Ca, was also 

included. Details of treatments are provided in Chapter II. Fertiliser was applied in six 

instalments throughout the growing season, two times prior to flowering, three times from set 

to véraison and once after harvest.  

 

Instalment size was calculated from the total intended seasonal application of each nutrient, 

divided as a percentage of the seasonal requirement during each phenological period 

(Conradie,1980; Conradie, 1981a). Treatments (Control, Ca-Bunch, N, K, Ca and KCa as per 

Table 2 in Chapter II) were applied each year to the same plants. Since the percentage 

distribution at each application time corresponds to each nutrient’s seasonal uptake pattern, 

the averages over all the treatments grouped together were calculated and are reported on. 

The effects of the treatments on berry nutrient content are discussed in the following chapter 

(Chapter V). 

 

Measurements 

Berry analyses 

Berry samples were taken (cut at the pedicel base) for chemical analyses at various 

phenological stages (Table 1). Prime Seedless commonly show variance in berry 

development between bunches. Sampling times were therefore based on the development 

stage of the bulk of bunches, with the first harvest sample corresponding with the first cutting 

date of the producer. Chemical analyses were conducted on the berries during all four 

seasons. To address variation within bunches, sampling was done by removing three berries 

at the top, middle and bottom, respectively, of four randomly selected bunches per 

experimental vine, giving a sample of at least 48 berries. Berries were rinsed with distilled 

water, peeled and the skin and flesh separately frozen at -20oC until analysis for N, P, 

cations and micro-nutrients. For this purpose, the fresh and dry mass was determined. The 

latter was obtained after oven-drying of two 10 g duplicate samples at 80oC to constant 

mass. One sample was then used for total N content determination by total combustion on a 

Leco N-analyser (CNS-2000 Macro Elemental Analyzer; Leco Corp, St. Joseph, MI, USA), 

whereas the other sample was used to determine the mineral elements (K, Ca, Mg, Fe, Mn, 

Cu, Zn) as well as P and B by means of ICP-OES, after extraction with 0.5 M HCl (Isaac & 

Johnson, 1998).   
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Statistical procedures 

Standard analyses of variance were performed for each sampling time and season, using 

Genstat 5 release 1.2 and SAS (SAS, 1990).  Student’s t-test was used to test for significant 

differences between treatment means and seasons. The Shapiro-Wilk test was performed to 

test for normality (Shapiro & Wilk, 1965). Analyses of all the treatments were pooled for 

establishment of the seasonal nutrient accumulation pattern, calculating the average for each 

sampling date for each season, i.e. n = 85 samples for seasons 2006/07 to 2008/09 and n = 

30 for 2009/10.   

 

Table 1.  Berry sampling times, indicated as days after anthesis (DAA), of a Prime 
Seedless/Ramsey (Vitis vinifera L.) micro-irrigated commercial vineyard in Paarl. 

 
Season 

2006/07 2007/08 2008/09 2009/10 

Set - 9 -  

Pea-size berries1 20 20 21 21 

 25 - 27 - 

15 mm Berry size 40 34 35 37 

 - 37 42 43 

 - 45 - - 

Véraison 53 51 49 51 

  - 55 - 

 60 - 61  

First Harvest 71 70 69 72 

10 days after First Harvest - 80 76 - 

 - - 83 - 

 - - 90 - 
1.  Berry enlargement treatments, i.e. 20 mg/L gibberellic acid, were applied twice at 8 – 10 mm and 

10 – 12 mm diameter. 
  

RESULTS AND DISCUSSION 

 

Berry growth 

Berry growth is indicated as increase in fresh and dry mass, respectively, for seasons 

2006/07 to 2009/10 in Figure 1. Fresh mass increased from pea berry size at a rapid rate, 

averaging 0.146 g/day over the four seasons and did not subside before first harvest.  Berry 

dry mass increase showed a similar pattern, although the rapid increase was delayed until 

after 15 mm berry size (Table 2). This is ascribed to sugar accumulation (not measured), 

which commenced later than the berry fresh mass increase (Hrazdina et al., 1984) because 
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initial berry growth is mainly due to cell division while later growth is due to cell enlargement 

(Ollat et al., 2002). 

 

Figure 1.  Berry fresh mass (a) and dry mass (b) during development and ripening of 
Prime Seedless/Ramsey berries in Paarl during seasons 2006/07 to 2009/10.  Bars 
indicate the ± standard error of the means (p ≤ 0.05).  Solid arrows indicate véraison, 
broken arrows indicate first harvest. 
 
Table 2.  Average fresh and dry mass accumulation rates (g/day) of Prime Seedless 
berries, cultivated in Paarl, between pea berry size and first harvest as calculated for 
four consecutive growing seasons.  

Season 2006/07 2007/08 2008/09 2009/10 Average 

Fresh mass (pea-size berries - first harvest) 0.130 0.174 0.144 0.137 0.146 

Dry mass (pea-size berries - 15 mm berry size) 0.009 0.011 0.012 0.008 0.010 

Dry mass (15 mm berry size - first harvest) 0.023 0.022 0.034 0.040 0.030 

Dry mass (pea-size berries - first harvest) 0.018 0.019 0.028 0.030 0.024 

 

2006/07 

2007/08 2008/09 2009/10 

(a)

(b) 

2006/07 

2007/08

2008/09
2009/10 
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Between seasons, berry fresh mass at harvest did not correspond with dry mass obtained, 

i.e. the fresh mass of berries at first harvest in 2008/09 and 2009/10 was lower (7.53g & 

7.58 g) than in 2007/08 (9.30 g), while their dry mass was higher (1.401 g & 1.661 g vs. 

0.971 g). This is partially ascribed to variance in total soluble solid concentration at first 

harvest (oBrix), which was 14.8 oB, 14.1 oB, 15.2 oB and15.5 oB for the consecutive seasons. 

 

The four season average flesh mass:skin mass ratio increased from pea-size berry stage up 

to harvest. Calculated for fresh mass, it increased from 6.2 to 10.1 and for dry mass from 3.0 

to 7.6. The flesh mass:skin mass ratio therefore increased by 61% from pea-size berries to 

harvest when calculated from fresh mass, while tissue dry mass increased 145%. This is 

ascribed to accumulation of total soluble solids (including minerals) in the flesh, as also 

stated by Ollat et al. (2002). 

 

The lag phase often observed just prior to véraison (Coombe, 1973; Ollat et al., 2002; 

Etchebarne et al., 2009) was not observed (Figure 1). It may be ascribed to the fact that 

Prime Seedless is a very early ripening variety, where berry growth does not decrease during 

the transition phase from pre- to post-véraison because of its brevity. The GA3 applied as 

enlargement treatment at 8 to 12 mm berry size would further compact and boost this growth 

rate, most likely further masking the well-known double sigmoid curve. This vineyard showed 

a budbreak to first harvest period that varied between 114 days and 121 days for the 

experimental seasons.   

 

Berry nitrogen 

Berry flesh N concentration, of which 60 - 90 % of total N in grape berries is accounted for by 

amino acid fraction nitrogen (Kliewer, 1968; Tagliavini, 2000), decreased rapidly during all 

four seasons from set to shortly before véraison, thereafter the decrease slowed down 

(Figure 2a). Berry skin N concentration showed a similar trend. The initial rapid decrease in 

berry N concentration is ascribed to berry growth between set and véraison that exceeded N 

accumulation rates, probably due to cell growth demands. After véraison, the rate of 

decrease in N concentration slowed down. This is ascribed to the commencement of sugar 

accumulation which is also associated with arginine (Kliewer, 1968; Kliewer & Cook, 1974) 

and proline (Kliewer, 1968) accumulation in the berry. These are the two dominant amino 

acids, making up the bulk of total N in grape berries (Kliewer, 1968). Up to véraison, N 

concentration of the flesh is higher than that of the skin, but from the start of ripening skin N 

concentration exceeds the flesh N concentration (Figure 2a).  This seems to indicate that N 

is partitioned mainly to the skin during ripening. 
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Figure 2. Concentration (a) and accumulation (b) of N in Prime Seedless berries 
throughout berry development, as determined for 2006/07 to 2009/10 seasons. Bars 
indicate the ± standard error of the means (p ≤ 0.05).  Solid arrows indicate véraison, 
broken arrows indicate first harvest.   
 

Total berry N accumulation is also indicated in Figure 2b. Accumulation of N was rapid during 

the pre-véraison period, being associated with cell division and growth requiring N for 

chlorophyll, nucleotides, nucleic acids and proteins (Follet et al., 1981).  After véraison, 

accumulation slowed down. In the 2008/09 season, the only season during which berry 

analyses was conducted at TSS that exceeded 16oB, rapid N accumulation, however, 

commenced again at later maturity. This is in accordance with Kliewer (1968), Kliewer & 

Cook (1974) and Stines et al. (2000) who found that proline concentration very rapidly 

increases after fruit maturity in various varieties. If the N compound is indeed proline, it 

indicates to some form of ageing or other stress (Davies & Robinson, 2000), with the 

implication that from a post-harvest storage point of view, N accumulation can be used as 

(b)

(a) 

2006/07 

2007/08 2008/09 2009/10 

2006/07 

2007/08 2008/09 2009/10 
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indicator of optimal harvest time. This probably explains the increase in both flesh and skin N 

concentration during the last three sampling times of season 2008/09. 

 

The bulk of N in the berry accumulates in the flesh, containing 88% of total berry N in 

2006/07 at first harvest, 83% in 2007/08, 86% in 2008/09 and 82% in 2009/10.    

 

Seasonal berry N accumulation up to the first harvest seems to follow a sigmoidal pattern 

(Figure 3). Data for late maturity (>16oB), however, are not sufficient to make definite 

conclusions.  

 

Figure 3. Prime Seedless berry dry mass correlated with berry N content (a) and 
seasonal accumulation pattern of N in Prime Seedless berries throughout berry 
development (b), using data of all four seasons (2006/07 to 2009/10). Values obtained 
as average of n = 85 for each data point.  Solid arrows indicate period of véraison, 
broken arrows indicate first harvest. 
 

Berry phosphorus 

Similar to N, berry flesh and skin P concentration decreased rapidly during all four seasons 

from set to shortly before véraison, after which the decrease slowed down (Figure 4a).  The 

initial rapid decrease in berry P concentration is ascribed to berry growth between set and 

véraison that exceeds P accumulation rates, i.e. cell expansion. Although berry growth did 

not stop, P skin concentration stabilised after véraison and, likewise, flesh P concentration 

for two of the four seasons (2006/07 & 2008/09). Since P concentration is expressed in mg P 

per 100 g dry mass, it is not expected to decrease dramatically after véraison because most 

of berry growth is due to water and sugar accumulation in the vacuoles (Ollat et al., 2002).  

 

Initially skin P concentration was lower than berry flesh concentration, but the concentrations 

coincided after véraison as the berries matured (Figure 2a). This is also ascribed to cell 

enlargement of the flesh, when vacuoles expand during ripening on account of water, sugar 

and K+ accumulation (Ollat et al., 2002). Since most of the P is found in proteins in the 

cytoplasm (DNA, RNA, ATP, etc.) (Follet et al., 1981), which break down with berry flesh cell 

(a) (b) 
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expansion, while the cytoplasm of the skin cells remains more intact (Chardonnet & 

Donèche, 1995), skin P concentration seems to be better maintained. 

 

Figure 4. Concentration (a) and accumulation (b) of P in Prime Seedless berries 
throughout berry development, as determined for 2006/07 to 2009/10 seasons. Bars 
indicate the ± standard error of the means (p ≤ 0.05).  Solid arrows indicate véraison, 
broken arrows indicate first harvest.  
 

Berry P accumulation was most rapid up to véraison, after which it increased at a slower 

rate, except 2006/07 (Figure 4b). Using all data obtained in the four seasons, the general 

trend in berry P accumulation also support the notion that cell growth of the flesh after 

véraison occurs mainly due to vacuole expansion driven by water and solute (sugar and K+) 

accumulation (Ollat et al., 2002), explaining the decrease in P accumulation rate in berry 

flesh during ripening and when the berry dry mass accumulation subsides (Figure 5). 

 

(b) 

(a) 

2006/07 

2007/08 2008/09 2009/10 

2006/07 

2007/08 2008/09 2009/10 
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Figure 5. Prime Seedless berry dry mass correlated with berry P content (a) and 
seasonal accumulation pattern of P in Prime Seedless berries throughout berry 
development (b), using data of all four seasons (2006/07 to 2009/10). Values obtained 
as average of n = 85 for each data point.  Solid arrows indicate period of véraison, 
broken arrows indicate first harvest. 
 

Berry potassium 

Although a general decrease in K concentration of berry flesh is observed, varying changes 

in the patterns of K concentration was obtained over the four seasons (Figure 6a).  Berry skin 

K concentration showed an increase from 15 mm berry size onwards, but also with varying 

patterns between the seasons. The seasonal variance in K concentrations correspond with 

previous work (Etchebarne et al., 2009) where a marked difference in post-véraison K 

accumulation in grape berries was found between years and also on account of vine water 

status (not measured in this study).     

 

Rogiers et al. (2006), who did not distinguish between berry tissues, found that berry K 

concentration, expressed as mg per kg fresh mass, increased from set throughout berry 

development.  The data obtained in this experiment shows increased skin K concentration 

from 15 mm berry size onwards. Potassium concentration in both tissues however decreased 

during the early stages of berry development. Given the fact that the cv. Shiraz was used by 

Rogiers et al. (2006), of which berry size never exceeded 1.8 g fesh mass, compared to the  

8 - 10 g obtained for Prime Seedless in this experiment, the initial decrease in K 

concentration during early stages of rapid berry growth in this study is not unexpected.  

Likewise Mpelasoka et al. (2003) are of the opinion that berry K concentration need not 

increase, especially in conditions where berry growth and berry K accumulation are 

maintained at similar rates. This implies that factors such as cultivar (berry size), crop load, 

and climatic conditions that determine berry growth and cultural practices that affect rate of 

berry growth and/or K accumulation in the berry will affect berry K concentration. It may also 

be stressed again that Prime Seedless is a very early ripening variety and berry growth does 

not decrease during the transition phase from pre- to post-véraison. Furthermore, the 

enlargement GA3 treatments at 8 to 12 mm berry size boost berry growth rate, most likely 

(a) (b) 
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further masking the well-known double sigmoid curve. Despite this, there is a very definite 

point of change in berry flesh K concentration dynamics before or around véraison, probably 

indicating a change in it ripening physiology. 

 

Figure 6. Concentration (a) and accumulation (b) of K in Prime Seedless berries 
throughout berry development, as determined for 2006/07 to 2009/10 seasons. Bars 
indicate the ± standard error of the means (p ≤ 0.05).  Solid arrows indicate véraison, 
broken arrows indicate first harvest. 
 

During early berry development, K concentration in berry flesh was higher than in skins. 

However, increased skin K concentration exceeded flesh K concentration at different stages 

between the seasons and in different magnitudes (Figure 6a). According to Iland (1988), 

Coombe (1992) and Ollat et al. (2002) K concentration in grape berry skin cells is higher than 

in the flesh. Storey (1987) found the K concentration of mature Tarrango and Shiraz grape 

skins to be four to five times higher than that of the pulp, while Rogiers et al. (2006) indicated 

it to be only 50% higher for Shiraz. The latter might explain why data in this experiment show 

(b) 

(a) 

2006/07 

2007/08 2008/09 2009/10 

2006/07

2007/08 2008/09 2009/10 
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differences in K concentration at first harvest between the tissues, i.e. the first two seasons 

were at 14.8oB and 14.1oB, respectivey, compared to 15.2oB and 15.5oB for 2008/09 and 

2009/10. Storey (1987), however, found that skin K concentration was higher for smaller 

berries compared to larger berries. 

 

Total K content in the berries continued to increase throughout the season (Figure 6b), 

confirming previous work that K is the principal cation accumulated by the berry over the 

entire growth period (Conradie, 1981b; Rogiers et al., 2006; Etchebarne et al., 2009). The 

most rapid rate of accumulation was in the pre-véraison period, after which it slowed down 

during ripening, except for the 2006/07 season. Given the fact that berry dry mass 

accumulation was maintained after véraison at the same rate than pre-véraison for all the 

seasons, except for 2006/07 (Figure 1b), this work seems to indicate that dry mass 

accumulation was not associated with K accumulation. This is contrary to results obtained by 

both Rogiers et al. (2006) and Etchebarne et al. (2009) who found that rate of K 

accumulation of wine grape berries was the highest after véraison and that a strong 

relationship between K and berry dry mass accumulation exists. The difference results might 

be due to the fact that K translocation and partitioning in the vine is affected by plant water 

status (Esteban et al., 1999; Etchebarne et al., 2009; Etchebarne et al., 2010), presence of 

seed (Mpelasoka et al., 2003; Rogiers et al., 2006; Etchebarne et al., 2009); rate of berry 

growth (Mpelasoka et al., 2003) with final size affecting the skin:flesh ratio (Mpelasoka et al., 

2003; Rogiers et al., 2006).  

 

Compared to various wine grape cultivars, for which between 32% and 50% of K 

accumulated in the berry is directed towards the skin (Iland, 1988; Rogiers et al., 2006), the 

fraction of K in the skin of Prime Seedless grapes was found to be much less (Table 4).  This 

is ascribed to the higher ratio of pulp to skin obtained for the larger berries typical of table 

grape varieties. 

 

Table 4.  Proportion (%) of total K accumulated in the berry that is located in the skin 
of Prime Seedless cultivated in Paarl.  
 Proportion (%) of total K accumulated in the berry 

Season 2006/07 2007/08 2008/09 2009/10 

Pea-size berry 15 ± 0.04 14 ± 0.47 12 ± 0.46 13 ± 0.46 

Véraison 9 ± 0.23 11 ± 0.31 8 ± 0.26 17 ± 0.76 

First harvest 8 ± 0.23 10 ± 0.83 11 ± 0.24 19 ± 0.67 

 

Up to véraison, the berries accumulated 52%, 67%, 63% and 80% of total K measured at 

first harvest during the consecutive seasons, which respectively were at 14.8oB, 14.1oB, 
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15.5oB and 15.8oB. According to Etchebarne et al. (2009), approximately 50% of total K 

measured for Grenache noir at maturity is accumulated before véraison. The high 

percentage of accumulation at véraison for Prime Seedless can be ascribed to it being 

harvested at a less mature stage, given the fact that K continue to accumulate during 

ripening. However, in this trial total K accumulated in Prime Seedless by first harvest was 

19.0  mg/berry, 22.7 mg/berry, 17.5 mg/berry and 18.0 mg/berry for each year, which 

demonstrate that K content is not necessarily related to TSS, although there is a strong 

correlation between berry dry mass accumulation (r2 = 0.95, p ≤ 0.01) and berry K content as 

shown in Figure 7. 

 

Figure 7.  Prime Seedless berry dry mass correlated with berry K content (a) and 
seasonal accumulation pattern of K in Prime Seedless berries throughout berry 
development (b), using data of all four seasons (2006/07 to 2009/10). Values obtained 
as average of n = 85 for each data point.  Solid arrows indicate period of véraison, 
broken arrows indicate first harvest. 
 

Furthermore, correlation of berry dry mass with berry K content also shows that K 

accumulation was fastest during the pre-véraison period and smaller berry sizes, with its rate 

decreasing progressively from véraison onwards as berry size increased (Figure 7a). This is 

also illustrated by K accumulation over time as indicated in Figure 7b. In 2006/07 the pre-

véraison rate of K accumulation was 0.28 mg/berry/day, 0.50 mg/berry/day in 2007/08, 0.34 

mg/berry/day in 2008/09 and 0.44 mg/berry/day in 2009/10. This is about 10 times faster 

than the 0.03 – 0.04 mg/berry/day obtained by Etchebarne et al. (2009) for var. Grenache 

noir. 

 

Berry calcium 

Calcium concentration showed a decreasing pattern throughout berry development 

(Figure 8a). Donèche & Chardonnet (1992) also found that Ca concentration in Cabernet 

Sauvignon decreased throughout berry development, while in Shiraz berries Rogiers et al. 

(2006) observed a decline in concentration only from after véraison. The rate of decrease 

seems to be related to progressively reduced influx rates assosciated with berry growth since 

(a) (b) 
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it reduced most rapidly during the pre-véraison period for Prime Seedless, which coincided 

with rapid berry growth (Figure 1). In the case of wine grapes, berry growth predominently 

occur after véraison, as was the case with the Shiraz berries studied by Rogiers et al. (2006).  

Furtermore, decrease in xylem flow after véraison reduces Ca movement into the berry 

(Creasy et al., 1993). 

 

In three (2007/08, 2008/09 and 2009/10) of the four seasons a similar pattern of Ca 

accumulation in the berries was found to that reported by various authors (Conradie, 1981b; 

Creasy et al., 1993; Rogiers et al., 2006; Bonomelli & Ruiz, 2010), i.e. Ca uptake by the berry 

terminates, or reduces dramatically (Figure 8b), after véraison. In 2008/09, when sampling 

was done up to three weeks after first harvest, however, Ca accumulation resumed after first 

harvest. Cabanne & Donèche (2003); Etchebarne et al. (2009) & Etchebarne et al. (2010) 

stated that Ca that continues to accumulate after véraison points to maintenance of partial 

functioning of the berry xylem in the post-véraison period. Resumption of Ca uptake in this 

study however only occurred about three weeks after véraison (Figure 8), which points to a 

definite interruption of xylem flow, albeit temporary, and is probably connected to rapid berry 

growth as postulated by Creasy et al. (1993). 

 

As found by Possner & Kliewer (1985), Ca is accumulated at its most rapid rate between 

pea-size berries and 15 mm berry size. Calculated as an average for all four seasons, 

including 2008/09 when ca uptake resumed after first harvest, there accumulated 0.52 mg 

Ca (69 % of total at first harvest) per berry up to 15 mm berry size, and at véraison 0.64 mg 

Ca (85 % of total at first harvest).  This is in accordance with the fact that Ca is phloem 

immobile, which means that it cannot be transported into the berry as the transpirational 

water loss of the berry starts to decline (Saxton, 2002). 

 

Possner & Kliewer (1985) found that the berry skin contains the highest Ca content during 

the whole of berry development. For Prime Seedless in this study, however, the flesh 

contained the most Ca throughout development (Figure 8b). This may be ascribed to the 

berries being much larger than wine grape berries, with much lower skin mass in comparison 

to flesh mass (Figure 1). 

 

Various authors found that Ca continues to accumulate throughout the ripening phase 

(Rogiers et al., 2001;  Cabanne & Donèche, 2003; Etchebarne et al., 2009). Since the 

resuming of Ca accumulation after the first harvest (from 69 DAA at 15.5oB) was found only 

during the 2008/09 season in this study, it is not possible to conclude whether this is typical 
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of Ca accumulation. Evolution of Ca content of berries is known to vary from year to year due 

to edaphic and climatic factors (Cabanne & Donèche, 2003; Etchebarne et al., 2009).   

 

 

Figure 8. Concentration (a) and accumulation (b) of Ca in Prime Seedless berries 
throughout berry development, as determined for 2006/07 to 2009/10 seasons. Bars 
indicate the ± standard error of the means (p ≤ 0.05).  Solid arrows indicate véraison, 
broken arrows indicate first harvest.
 

In support of the data discussed above, and in accordance with previous research (Creasy et 

al., 1993; Cabanne & Donèche, 2003; Rogiers et al., 2006; Bonomelli & Ruiz, 2010), 

correlation of berry dry mass with berry Ca content shows that Ca accumulation was most 

rapid during the pre-véraison period of vegetative growth, with the rate decreasing 

dramatically from véraison onwards (Figure 9a). In 2006/07, 2007/08 and 2009/10, Ca 

accumulation peaked before véraison with 100% of total Ca accumulated in the berry before 

ripening starts. In 2008/09 it peaked at véraison. The combined data of all four seasons 

(b) 

(a) 
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illustrate that all the Ca in the berry by first harvest already accumulated at véraison 

(Figure 9b).  Etchebarne et al. (2009) found that 83% of total Ca was present in berries of the 

cv. Grenache noir by véraison, which is similar to the accumulation obtained in this study 

when the resumed accumulation in 2008/09 in included in the calculation of the final berry Ca 

content.  

 

Figure 9.  Prime Seedless berry dry mass correlated with berry Ca content (a) and 
seasonal accumulation pattern of Ca in Prime Seedless berries throughout berry 
development (b), using data of all four seasons (2006/07 to 2009/10). Values obtained 
as average of n = 85 for each data point.  Solid arrows indicate period of véraison, 
broken arrows indicate first harvest. 
 

Cabanne & Donèche (2001) found that mature Sauvignon blanc and Sémillon berries 

contained 69% and 60%, respectively, of total berry Ca in the skin. In later work, Cabanne & 

Donèche (2003) ascribed the high percentage of total berry Ca that occurs in the skin to Ca 

migration from the flesh to the skin.  Data obtained in this trial for Prime Seedless over four 

experimental seasons, however, showed that the skin contained much lower fractions of the 

total berry Ca, ranging between 9% and 27% only.   

 

Berry magnesium 

The pattern of change in berry Mg concentration was similar to that of K, i.e. Mg 

concentration of berry flesh decreased throughout the season, while skin Mg concentration 

showed an increase from as early as 15 mm berry size onwards (Figure 10a). Furthermore, 

similar to K, skin Mg concentration exceeded flesh Mg concentration, albeit at different 

stages of berry development between seasons (Figure 10a).  

 

   

(a) (b) 
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Figure 10. Concentration (a) and accumulation (b) of Mg in Prime Seedless berries 
throughout berry development, as determined for 2006/07 to 2009/10 seasons. Bars 
indicate the ± standard error of the means (p ≤ 0.05).  Solid arrows indicate véraison, 
broken arrows indicate first harvest.
 

Although Rogiers et al. (2006) grouped Mg with K as elements that are highly mobile in the 

phloem, they found that berry Mg concentration, expressed as mg per kg fresh berry tissue, 

decreased from véraison onwards. This was in contrast to that found for K, which showed a 

renewed rate of concentration increase after véraison. Data obtained in this experiment, 

however, seem to indicate that berry Mg concentration stabilised from véraison onwards, 

since the rate of decrease in Mg concentration in the flesh subsided, while skin Mg 

concentration increased. 

 

Like Rogiers et al. (2006), Mg accumulation in the berry was found to occur throughout berry 

development (Figure 10b) and in a similar pattern than that of K. When correlated to berry 

growth, the rate of accumulation also subsided after véraison (Figure 11a), although over 

(a) 

(b) 

2006/07 

2007/08 2008/09 2009/10

2006/07 

2007/08 2008/09 2009/10
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time it seems to be more linear (Figure 11b). In contrast, Rogiers et al. (2006) found that rate 

of Mg accumulation of Shiraz berries was highest after véraison.  Total K accumulated in the 

Prime Seedless berries was 30 times more than the Mg that accumulated. This ratio is 

similar in magnitude to what Rogiers et al. (2006) reported for Shiraz, although the total Mg 

accumulated per berry in this study ranged between 0.57 and 0.93 mg, whereas in the Shiraz 

berries it reached only 0.18 mg per berry. 

 

 

Figure 11. Prime Seedless berry dry mass correlated with berry Mg content (a) and 
seasonal accumulation pattern of Mg in Prime Seedless berries throughout berry 
development (b), using data of all four seasons (2006/07 to 2009/10). Values obtained 
as average of n = 85 for each data point.  Solid arrows indicate period of véraison, 
broken arrows indicate first harvest. 
 

CONCLUSIONS 

 

Depending on the development stage, the dynamics of berry growth also impact on berry 

nutrient concentration. Early rapid berry growth, predominantly due to cell division and cell 

growth, is associated with the most rapid decreases in N, P and Ca concentration. Due to 

mobility of K and Mg in the plant that exceeds other nutrients, the decrease in concentration 

of these two mineral elements was not as pronounced as that of the others.   

 

Nutrient accumulation was most rapid during the pre-véraison period, but only Ca showed a 

definite termination during the early ripening period.  The continued inflow of N, P, K and Mg, 

albeit at slower rates immediately after véraison, should be taken into consideration when 

fertilisation is applied.   

 

Potassium and Ca seemed to have uptake patterns which are strongly connected to véraison 

and the changes in berry physiology, with corresponding switch from both xylem and phloem 

influx to only phloem mobile products and nutrients entering the berry. This research, 

however, indicated that for a very early variety like Prime Seedless, nutrient accumulation 

(a) (b) 
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dynamics can already start to change during the pre-véraison period in some seasons due to 

different edaphic and climatic conditions.    

 

As a table grape, total accumulation of each nutrient in Prime Seedless berries also far 

exceeded that of most cultivars studied this far. A particular difference is that the flesh:skin 

ratio of these berries is much higher, leading to higher levels of nutrient accumulation in the 

flesh. 

 

Nutrient concentration is expected to impact berry quality more than total berry nutrient 

content. Berry nutrient accumulation patterns, however, did not correspond to their 

concentration changes due to dilution effects of water influx, sugar accumulation and cell 

expansion. This can be ascribed to seasonal differences which lead to variance in berry 

growth and size, as well as TSS accumulation. In the next chapter the effect of high rates of 

N, K and Ca fertilisation on berry nutrient concentration and accumulation is discussed.  

Future research on table grapes would need to develop a better understanding of the other 

factors and dynamics that determine berry nutrient concentration and accumulation.    
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CHAPTER V 

 

Excessive N, K and Ca fertilisation effects on ripening, berry 

nutrient content and post-harvest quality of an early ripening table 

grape cultivar (Vitis vinifera L. cv. Prime Seedless), grafted onto 

Ramsey on a sandy  soil 

 

 

 

 

ABSTRACT 

A four-year field trial was conducted on a sandy soil in the Paarl district of South Africa, using 
cv. Prime Seedless (Vitis vinifera L.) grapevines, grafted onto Ramsey, and trained onto a 
gable trellis system. Nitrogen, potassium and calcium were applied, singular or in 
combination, at rates equal to 300% the calculated annual nutritional requirement. The 
Control treatment received an annual application of 70 kg N/ha, 60 kg K/ha and 10 kg Ca/ha. 
The effect of fertilisation on berry fresh mass, total soluble solids, titratable acidity, as well as 
N, P, K, Ca and Mg concentration and content in the flesh and skin was determined for four 
growing seasons. Larger berries were obtained for treatments that received excessive 
applications of N, but not for those with excessive K applications. The first mentioned is 
ascribed to better response obtained from GA3 applications to N fertilised vines. Nitrogen and 
K levels in the berries were increased by N and K fertilisation treatments, respectively, while 
K fertilisation reduced berry N. Neither soil nor bunch applied Ca had any effect on berry Ca 
concentration or content. Occurrence of decay was not affected by either N, K, Ca 
fertilisation or bunch applied Ca. Indications of increased internal browning as a result of 
excessive K applications were obtained. The value of soil or bunch applied Ca applications to 
increase berry Ca levels, reduce decay and prevent berry browning, is questioned by this 
research.  Furthermore, the role of berry N in susceptibility to decay as well as berry K on the 
occurrence of berry browning, needs to be validated.  
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INTRODUCTION 

 

It is generally accepted that some aspects of fruit quality, such as solid concentration, are 

positively correlated to fruit K (Rogiers et al., 2006), while during storage fruit quality is 

favoured by low N and high Ca levels (Marcelle, 1995; Bonomelli & Ruiz, 2010). This is why 

K and Ca fertilisation have become standard practices in South Africa for table grapes, even 

if the soil K and Ca are sufficient.   

 

Nitrogen in grapes originates directly from the uptake of nitrate from the soil solution or 

indirectly from mobilization of storage compounds (Conradie, 1980). Löhnertz (2000) found a 

strong correlation between nitrate supply of the soil solution and the amino acid 

concentration or arginine content of grapes. Many researchers have reported increases in 

the concentration of various nitrogenous compounds with application of N fertilizer (Kliewer, 

1977; Conradie, 1986; Löhnertz et al., 2000; Frank et al., 2005; Choné et al., 2006; Mundy & 

Beresford, 2007). However, N obtained from organic matter, cultural practices, climatic 

factors, and the ability of the plant to take up N from the soil, may override the effectiveness 

of N fertilizer (Conradie, 2005). According to Mundy & Beresford (2007) berries with low 

yeast assimilable nitrogen (YAN) seem to have a lower incidence of Botrytis bunch rot. Ruiz 

et al. (2004) found a positive correlation between N content of berry skin and pulp of soft 

Thompson Seedless berries and arginine as well as putrescine levels in berries. The higher 

the contents, the softer were the berries.   

 

Potassium is the principal osmotically active cation in the berry’s phloem and appears to 

contribute to phloem flow and loading of soluble sugars, thus helping to establish an osmotic 

gradient between leaves (source) and the berries (sink) (Rogiers et al., 2006; Etchebarne et 

al., 2009). According to Conradie (1981b) and Iland (1988), potassium concentration in 

petioles decreases as the season progresses, while it increases in the fruit. Furthermore, due 

to a link between leaf photosynthetic activity and K transport, any conditions that reduce leaf 

photosynthetic activity could contribute to increased K levels in the phloem and subsequently 

in the berries (Iland, 1988). Rogiers et al. (2006) also indicated that due to a strong 

correlation found between K accumulation and berry fresh mass, K plays a key role in cell 

expansion, and therefore berry growth. Last mentioned was supported by the strong 

relationship between berry K content and both sugar and dry mass accumulation. 

 

The addition of K fertiliser reduced the N content of grape juice (Conradie & De Wet, 1985).  

They also found that K appeared to increase resistance against Botrytis rot and ascribed it to 

the fact that K suppressed the uptake of N. In apples, it was found that K and Mg are lower in 
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concentration in both the pedicels and flesh of healthy fruit as compared with fruit showing 

bitter pit (Terblanche et al., 1979). 

 

There are many studies about the effects of Ca applications of fruit quality, especially for 

apples (Terblanche et al., 1979; Drake & Spayd, 1983; Wójcik et al., 2010; Schlegel & 

Schönherr, 2002; Casero et al., 2010). These include different ways of delivery (soil vs. 

foliar), different chemical forms and timing. The results are, however, contradictory and very 

limited for table grapes. Christensen & Boggero (1985) found that the incidence or severity of 

waterberry in Thompson Seedless could not be related to Ca or Mg levels in the rachis tissue 

or to elevated K:(Ca+Mg) ratios. Bonomelli & Ruiz (2010) found that both soil and foliar 

applied CaCl2 did not affect berry Ca content nor berry quality. 

 

The objectives of this research were to study the effects of high application rates of N, K and 

Ca, as well as bunch applied Ca, on berry nutrient composition and quality of the early 

ripening table grape cultivar Prime Seedless. 

 

MATERIALS AND METHODS 

 

Vineyard site, experimental design and treatments 

A detailed description of the experiment vineyard, treatments and trial layout was given in 

Chapter II. The trial was conducted over four seasons (2006/07 to 2009/10) on Prime 

Seedless/Ramsey (Vitis vinifera L.) grapevines in a micro-irrigated commercial vineyard of 

De Hoop Farm in Paarl (33o45’S, 18o58’E), planted in 2002. Vines were grown in a Clovelly 

soil (Soil Classification Working Group, 1991) with a fine sandy texture containing less than 

5% clay, optimal pH (pHKCl = ±5.6), low K (<45 mg/kg), low Mg (<0.3 cmol/kg) and low 

organic C content (<0.4%) (see Table 1 in Chapter II).  

 

The grapevines were trained to a gable system, spaced 1.8 m x 3 m apart, head trained and 

cane pruned to eight buds. Standard cultural practices for the cultivar and region were 

followed as described in Anonymous (2007). It entailed shoot tipping and crop control after 

set, combined with removal of leaves that are in close proximity of the retained bunches. On 

this planting width, the number of bunches per vine were reduced to 24, while each bunch 

was trimmed to retain 90-100 berries. Bunch preparation furthermore entailed an application 

of 1 mg/L gibberellic acid (GA3) at bloom for bunch thinning, shortening of bunches to 8 cm 

length at set, dipping bunches in 20 mg/L GA3 when they were 8 to 10 mm in diameter, and 

again at 10-12 mm diameter, for berry enlargement and finally doing final hand-thinning of 

bunches just before véraison. 
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The experiment was laid out as a completely randomised block design where each treatment 

was replicated five times. The treatments consisted of combinations of different levels of soil 

applied nitrogen (N), potassium (K) and calcium (Ca), up to 300% of the annual nutritional 

requirement of the vineyard (Table 1). An additional treatment, i.e. bunch applied Ca 

(Table 1), was also included. Fertiliser was applied in six instalments throughout the growing 

season, two times prior to flowering, three times from set to véraison and once after harvest. 

The control treatment received fertilisation as required for commercial production and applied 

by the producer, i.e. 70 kg N/ha/year & 10 kg Ca/ha/year, both split in two instalments before 

set and post-harvest and 60 kg K/ha/year applied after set. 

 

Table 1.  Fertilisation treatments applied to a Prime Seedless/Ramsey (Vitis vinifera L.) 
micro-irrigated commercial vineyard in Paarl. 

Treatment 
Total annual nutrient application (kg/ha) 

N K Ca 
Control 70 60 10 

Ca-Bunch1 70 60 10 
N2 210 60 10 
K3 70 180 10 

Ca4 70 60 150 
KCa5 70 180 150 
NCa6 210 60 150 

1 A mixture of 8L/ha Stopit plus 5 L/ha Caltrac, applied directly to bunches every two weeks from berry set to 
vèraison (three applications). A total of 10 kg Ca/ha was therefore applied. 

2 LAN (28%) was used as nitrogen source. 
3 KCl was used as K source. 
4 Gypsum (CaSO4) was used as Ca source for the 2006/07, 2007/08 and 2008/09 seasons.  In the 2009/10 

season, CaCl2 was used. 
5 A combination of KCl and CaSO4 was used as K and Ca sources in the 2006/07, 2007/08 and 2008/09 seasons, 

while CaCl2 was used instead of CaSO4 in the 2009/10 season. 
6 A combination of CaNO3, LAN and CaSO4 was used as N and Ca source in the 2006/07, 2007/08 and 2008/09 

seasons, while CaCl2 was used instead of CaSO4 in the 2009/10 season. 
 

Instalment size was calculated from the total intended seasonal application of each nutrient, 

divided as a percentage of the seasonal requirement during each phenological period 

(Conradie,1980; Conradie, 1981a). Treatments (Control, N, K, Ca, KCa, NCa) were applied 

each year to the same plants with respect to the first three years, while NCa was not applied 

in the final (fourth) year. 

 

Analyses 

Soil samples for chemical analyses were taken in June 2007, 2008 and 2010 from the 0-

30 cm layer with an auger, combining soil from between the two central experimental vines of 

both experimental vine rows in each plot. The soil was analysed for pH (1.0 M KCl), P 

(Bray II) and total extractable cations, namely K, Ca, Mg and Na (extracted at pH = 7 with 
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0.2 M ammonium acetate) and organic matter as described in Chapter II.  Soil water from 

wetting front detectors was analysed for NH4
+, NO3

-, K+ and Ca2+ as described in Chapter II. 

 

Leaf petiole samples were taken at various phenological stages (see Chapter II) for chemical 

analyses during the four seasons. Berries were sampled (cut at the pedicel base) for 

titratable acidity (TA) and total soluble sugars (TSS), as well as chemical analyses, at various 

phenological stages during the four seasons. Three berries were removed, respectively at 

the top, middle and bottom of four randomly selected bunches per experimental vine, giving 

a sample of at least 48 berries. Titratable acidity, expressed as g/L (tartaric acid), was 

determined by 0.1N NaOH titration (Crison Compact Titrator). Total soluble solid content, 

expressed as oBrix, was measured using a temperature compensated refractometer (Atago 

model ATC-1). Berry chemical analyses were done as discussed in Chapter III. The sampling 

times for which the chemical analyses are reported in this chapter are listed in Table 2 with 

TSS at first harvest that was 14.8oB, 15.6oB, 15.5oB and 15.8oB for the consecutive seasons.  

 

Table 2. Berry sampling times, indicated as days after anthesis (DAA), of a Prime 
Seedless/Ramsey (Vitis vinifera L.) micro-irrigated commercial vineyard in Paarl.   
Berry development 

stage 
Season 

2006/07 2007/08 2008/09 2009/10 
Pea-size berries 20 20 21 21 

15 mm berry size 40 34 35 37 

Véraison 53 49 49 51 

First harvest 75 70 69 72 

 

Berry quality 

For post-harvest quality evaluation, two bunches per experimental vine were picked and field 

packed in a 4.5 kg corrugated carton at first harvest (2006/07, 2007/08 and 2008/09), second 

harvest (20087/08) and third harvest (2008/09 and 2009/10). Individual bunches were placed 

in plastic carry bags and the carton content was enclosed in a 54 x 2 mm perforated LDPE 

liner. In each of the liners, an Uvasys® SO2 generator sheet was positioned on top of the 

grapes, with a MAM sheet enclosed between the SO2 sheet and the grapes. The liners were 

then closed and sealed. The grapes were transported to the Infruitec-Nietvoorbij Research 

Institute for Fruit, Vine & Wine where it was cooled to -0.5oC and stored for 5 weeks, 

thereafter it was kept for an additional 10 days at 7oC. After cold storage the extent of loose 

and split berries, decay, internal-, external- and total browning, soft tissue decay and 

waterberry was determined and expressed as percentage of total weight of grapes in the 

carton. 
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Sensory evaluation of the grapes was done at first harvest in 2006/07 and 2007/08 by a 

panel of thirty persons using a Hedonic scale (where 1 = extremely dislike, 5 = neither like 

nor dislike and 9 = extremely like). Evaluated parameters were: 1) general impression of the 

grapes, 2) berry colour, 3) taste, 4) berry firmness and 5) skin consistency. 

 

Statistical procedures 

Standard analyses of variance were performed for each season and over all seasons, using 

Genstat 5 release 1.2 and SAS (SAS, 1990).  Student’s t-test was used to test for significant 

differences between treatment means and seasons. The Shapiro-Wilk test was performed to 

test for normality (Shapiro & Wilk, 1965). 

 

RESULTS AND DISCUSSION 

 

Soil and soil water analyses 

Berry nutrient composition cannot be discussed in isolation of soil analyses. The effect of 

fertilisation treatments on soil chemical composition and nutrient availability should be taken 

into account. The impact of the fertilisation treatments on soil chemical as well as soil water 

extract composition was discussed in detail in Chapter II. Treatments containing K 

significantly increased the soil K content, while Ca fertilisation did not have a significant effect 

on the soil Ca concentration. The N concentration of soil water extracts of treatments N and 

NCa reflected higher N availability (Chapter II). High rates of N applications (treatments N & 

NCa) stimulated leaching-losses of K and Ca from the soil. Furthermore, the Mg content of 

the soil was also reduced significantly for all the treatments. These shifts, however were not 

clearly reflected in the soil water extract composition. Soil pH of treatment N and NCa 

decreased to levels detrimental to vine root growth and plant performance, i.e. pHKCl < 5.6. 

 

Berry size, total soluble solids (sugar) and titratable acidity 

The effect of excessive N, K and Ca fertilisation on berry growth is shown in Table 3. Only in 

2006/07 a significant larger berry size than the control was obtained; in this case for 

treatment N. However, for five of the nine sampling times over the seasons, berries of N 

containing treatments (N or NCa) showed the largest berry size. This is ascribed to an earlier 

response in vegetative growth obtained, albeit slightly, for N containing treatments in 

especially 2006/07 (Chapter II), giving a slightly better response to GA3 treatments applied 

shortly after set (Anonymous, 2007).  
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Table 3. Berry fresh mass (g) as affected by excessive nitrogen, potassium and calcium fertilisation of Prime Seedless grown in Paarl. 

Treatment 
Berry fresh mass (g) 

2006/07 2007/08 2008/09 2009/10 
75 DAA1 70 DAA 80 DAA 69 DAA 76 DAA 83 DAA 90 DAA 72 DAA 79 DAA 

Control 6.68b 9.22 8.79ab 7.25ab 7.73ab 7.74ab 7.40 7.84 8.49 

Ca(Bunch) 6.72b 9.21 8.91ab 7.30ab 7.50b 7.34b 7.92 7.83 7.98 

N 7.42a 9.26 9.87a 7.84ab 8.49a 8.42a 7.97 7.75 8.23 

K 6.84ab 9.28 8.50b 7.70ab 8.03ab 7.70ab 8.18 7.44 8.28 

Ca 7.02ab 9.37 8.82ab 6.97b 8.03ab 7.34b 7.76 7.25 8.03 

KCa 6.37b 9.57 8.45b 7.67ab 8.18ab 7.83ab 8.56 7.39 8.32 

NCa 6.60b 9.13 8.56b 8.04a 8.32ab 8.27a 8.52 - - 

LSD (p ≤ 0.05) 0.68 NS2 1.17 0.80 0.84 0.80 NS NS NS 
1 DAA = days after anthesis 
2 NS = not significant 
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The results furthermore did not correspond to that obtained by Conradie & De Wet (1985) 

and Rogiers et al. (2006) who indicated that a strong correlation exists between K 

accumulation and berry fresh mass on wine grape varieties.  The difference in results may be 

ascribed to the effect of plant growth regulators (GA3), utilised to obtain berry size in the 

production of seedless table grapes. This probably negated potential effects of K on berry 

size, since berry growth was strongly enhanced in these conditions by active vegetative 

growth, as obtained by N fertilisation. 

 

Table 4 shows that the effect of the treatments on berry TSS was not constant. Both the 

control and treatment K, however, showed a tendency to have the highest TSS. The slightly 

positive effect of K fertilisation on berry sugar content is in accordance with Conradie & De 

Wet (1985) who found that K fertilisation up to 90 kg/ha slightly increased sugar content 

compared to the control. Rogiers et al. (2006) stated that K, being the main osmotically 

active cation in the phloem sap and grape berries, contributes to phloem sap flow (sugar 

import) by helping to establish an osmotic potential gradient between the  leaves (source) 

and the berries (sink). This was supported by a strong relationship found between berry K 

content and both sugar and dry mass accumulation. On the other hand, Morris et al. (1980) 

found that even with K applications of 450 kg/ha, TSS was not affected in Concord grape 

juice. Nitrogen fertilisation had no definite effect on TSS of the berries (Table 4). This is 

contrary to results obtained by Christensen et al. (1994), Spayd et al. (1994) and Keller et al. 

(1998), who found that N fertilization delayed fruit maturity of various wine grape cultivars, as 

indicated by lower TSS concentrations, as levels of N fertilisation increased. The lack of 

response in vegetative growth obtained in this trial for high rates of N applications 

(Chapter II) might therefore explain why N did not affect berry TSS accumulation. 

 

Titratable acidity decreased between consecutive sampling times for both of the seasons in 

which it was determined (Table 5). As found by Conradie & De Wet (1985), treatment K 

showed the highest TA content for the first and second sampling time during 2009/10 and 

also, together with KCa, for the third sampling time. It was, however, not significantly higher 

than the control. In Concord grapes Morris et al. (1980), however, obtained reduced TA in 

response to excessive K applications. No consistent effect from either N or Ca applications 

on TA was obtained. Keller et al. (1998) found that abundant N reduces TA levels of 

Cabernet sauvignon by the beginning of ripening. On the other hand, Bell et al. (1979) found 

that berry total acidity increased significantly with increasing nitrogen fertilization. They 

ascribed it to increased acidity obtained on account of denser canopy that accompanies 

nitrogen fertilization, resulting in more shading of fruit and lower fruit temperature than on 

unfertilized vines. On the other hand, excessive vigour that might lead to suboptimal condi- 
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Table 4. Berry total soluble solids (oBrix) as affected by excessive nitrogen, potassium and calcium fertilisation of Prime Seedless 
grown in Paarl. 

Treatment 
Berry total soluble solids (oBrix) 

2006/07 2007/08 2008/09 2009/10 
75 DAA1 70 DAA 80 DAA 76 DAA 83 DAA 90 DAA 72 DAA 79 DAA 86DAA 

Control 15.3a 14.1ab 16.3a 18.6a 19.1 19.7 16.4 16.6 18.1ab 

(Control-Bunch) 14.3ab 14.1ab 15.7ab 17.1ab 17.7 18.5 15.9 17.2 18.4ab 

N 14.3ab 13.7b 15.6ab 16.3ab 18.0 18.3 15.8 17.2 18.0ab 

K 15.2a 14.6a 15.8ab 16.3ab 19.2 19.5 15.9 17.5 19.3a 

Ca 15.0a 14.2ab 15.5ab 17.2ab 18.3 19.5 16.6 17.3 18.6ab 

KCa 15.2a 14.1ab 15.6ab 16.0b 17.0 19.4 14.2 17.5 15.9b 

NCa 13.5b 13.4b 14.6b 17.2ab 17.8 18.8    

LSD (p ≤ 0.05) 1.1 0.8 1.2 2.5 NS NS NS2 NS 2.7 
1 DAA = days after anthesis 
2 NS = not significant
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tions for photosynthesis, stimulate translocation of K to the berries resulting in reduced 

titratable acidity (Iland, 1988). The lack of response in vegetative growth, resulting in 

bunches that were well-exposed to sunlight (not measured), that was obtained for Prime 

Seedless in this trial (Chapter II) might therefore explain the reason why excessive N 

fertilisation did not result in increased acidity. 

 

Table 5. Berry titratable acidity (g/L) as affected by excessive nitrogen, potassium and 
calcium fertilisation of Prime Seedless grown in Paarl. 

Treatment 
Berry titratable acidity (g/L) 

2007/08 2009/10 
70 DAA1 80 DAA 72 DAA 79 DAA 86DAA 

Control 3.51 3.05a 3.58ab 3.00ab 2.98abc 

(Control-Bunch) 3.51 2.94ab 3.36abc 2.90ab 2.90bc 

N 3.81 2.71ab 3.34abc 2.72b 2.78cd 

K 3.67 2.69ab 3.82a 3.28a 3.10ab 

Ca 3.48 3.00ab 3.12bc 2.78ab 2.62d 

KCa 3.72 3.02ab 3.06c 2.98ab 3.16a 

NCa 3.60 2.59c    

LSD (p ≤ 0.05) NS2 0.36 0.48 0.55 0.25 
1 DAA = days after anthesis 
2 NS = not significant 
 

Berry nitrogen 

Nitrogen concentration and content in the berries were increased for most of the sampling 

times by treatments that contain N (N & NCa) although not always significantly (Table 6).  

Likewise, Löhnertz et al. (2000) found a correlation between soil nitrate supply and arginine 

content of Riesling berries, but not with proline. Treatments K and KCa furthermore reduced 

berry N concentration and content compared to treatment N and, in some cases, also 

compared to Control. This is ascribed to the reducing effect that K has on N uptake, as 

discussed in Chapter III, and also found by Conradie & De Wet (1985) where N content of 

must of Chenin blanc was reduced when fertilised with 90kg K per ha. In the previous 

chapters a lack of vegetative growth responses and petiole N content increases on account 

of excessive N fertilisation was ascribed to the impact that high rates of N fertilisation had on 

soil pH and cation content. However, the increased berry N content obtained points to the 

mobility of N in the vine and that it is readily translocated to the berries, as also indicated by 

Wermelinger (1991).     
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Table 6.  Effect of excessive nitrogen, potassium and calcium fertilisation on nitrogen concentration and total nitrogen content of Prime 
Seedless berries, cultivated in Paarl. 

Season Treatment 

Véraison First harvest 
Concentration 

(mg/100g dry mass) 
Total content 

(mg/berry) 
Concentration 

(mg/100 g dry mass) 
Total content 

(mg/berry) 
Skin Flesh Skin Flesh Total Skin Flesh Skin Flesh Total 

2006/07 

Control 1019a 729d 0.65ab 3.93bcd 4.58c 1876a 985ab 1.33 8.2abc 9.5abc 
Ca-Bunch 894b 734d 0.65ab 4.47bc 5.12bc 1916a 1278a 1.35 10.6ab 12.0abc 

N 1054a 829bc 0.70a 4.60bc 5.30b 1681ab 1240ab 1.31 11.5a 12.8a 
K 1046a 647e 0.70a 3.66d 4.37c 1852a 1274a 1.32 10.8ab 12.2ab 

Ca 873b 776c 0.59b 4.41b 5.00bc 1289b 820ab 0.95 7.2bc 8.2bc 
KCa 820b 871b 0.57b 5.13b 5.71b 1413ab 776b 0.95 6.2c 7.2c 
NCa 1003a 1056 a 0.72a 6.43a 7.15a 1599ab 1003ab 1.12 8.3abc 9.4abc 

LSD (p ≤ 0.05) 113 80 0.11 0.75 0.83 538 475 NS2 3.9 4.1 

2007/08 

Control 1451b 1626 1.29 7.34 8.64 1035c 852b 1.53bc 6.9bc 8.4bc 
Ca-Bunch 1449b 1659 1.33 7.11 7.69 1093bc 687b 1.80ab 5.5c 6.2c 

N 1855a 1809 1.67 8.41 10.07 1298a 1184a 1.87ab 9.7a 11.6a 
K 1756ab 1778 1.58 8.39 9.97 1200abc 837b 1.43c 6.9bc 8.4bc 

Ca 1591ab 1381 1.37 6.39 7.76 1241ab 955ab 2.10a 7.8ab 9.9ab 
KCa 1620ab 1259 1.36 5.66 7.03 1193abc 960ab 1.59ab 8.2a 9.8ab 
NCa 1844ab 1913 1.48 8.92 10.38 1270ab 1163a 2.01a 9.3a 11.3a 

LSD (p ≤ 0.05) 306 NS NS NS NS 178 293 0.52 2.3 2.6 

2008/09 

Control 920 888c 0.59b 3.62b 4.21c 672bc 677bc 1.30ab 7.9 9.2 
Ca-Bunch 1015 2096a 0.96a 8.59a 9.55a 590c 620bcd 1.14ab 7.2 8.4 

N 1034 1695a 0.85a 7.14a 7.99ab 726ab 714b 1.42a 9.0 10.4 
K 918 954c 0.73ab 3.78b 4.51c 558d 549d 1.11b 6.7 7.8 

Ca 1030 1364bc 0.75ab 5.09b 5.84bc 675bc 586cd 1.30ab 6.5 7.8 
KCa 922 1034bc 0.73ab 3.88b 4.61bc 562d 559cd 1.15ab 6.8 8.0 
NCa 1060 1325bc 0.80ab 5.73ab 6.53abc 778a 834a 1.41a 10.9 12.3 

LSD (p ≤ 0.05) NS 731 0.24 3.35 3.44 88 113 0.29 1.5 1.7 

2009/101 

Control 1417ab 894 1.57 7.36 8.93 1369b 677 2.27b 10.5 12.8ab 
Ca-Bunch 1370ab 846 1.66 6.72 8.38 1423ab 693 2.38ab 10.8 13.2ab 

N 1515a 959 1.63 7.87 9.51 1560ab 780 2.67a 11.9 14.6a 
K 1405ab 942 1.44 7.65 9.09 1413ab 714 2.07b 10.5 12.5ab 

Ca 1403ab 812 1.54 6.91 8.14 1643a 731 2.10b 10.5 12.6ab 
KCa 1238b 825 1.71 7.19 9.07 1450ab 668 2.18b 9.7 11.8b 

LSD (p ≤ 0.05) 221 NS NS NS NS 238 NS 0.37 NS 2.6 
1 Treatment NCa was not applied or sampled during this growing season. 
2 NS = not significant. 
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Berry potassium 

Potassium fertilisation significantly increased berry K concentration and content, both at 

véraison and harvest, in all four seasons (Table 7). Conradie & de Wet (1985) also found that 

application of K fertiliser to a soil with 4% K saturation led to a marked increase in K 

concentration of Chenin blanc grapes. According to Etchebarne et al. (2009) berries of 

irrigated Grenache noir vines contained more K at harvest than non-irrigated vines, but total 

berry K never exceeded 5.6 mg/berry. In this trial berry K content ranged from 

11.33 mg/berry to 31.20 mg/berry at first harvest (Table 7). 

 

Contrary to what was found for petioles (Chapter III), no definite trend that high rates of N or 

Ca fertilisation reduce berry K below that of the Control was found. This is ascribed to K 

translocation that occurs readily in the vine, especially towards the berries, even in conditions 

of reduced K nutritional status (Mpelasoka et al., 2003).   

 

The generally accepted large increases in berry K after véraison (Mpelasoka et al., 2003) 

was also observed, especially in 2006/07 (Table 8). Inconsistent trends in K increase from 

véraison to first harvest were however obtained for the treatments and between seasons.  

The treatment with the highest K concentration or content at véraison therefore did not 

necessarily have the highest value at harvest. This indicates that various factors other than 

only K availability affects K translocation to the berries, e.g. irrigation, canopy conditions and 

factors that affect leaf photosynthetic activity (Iland, 1988). 

 

Except for 2006/07, the percentage increase in skin K content was generally higher than the 

flesh (Table 8), in accordance with Etchebarne et al. (2009). Consistently higher K 

concentrations in the skins were however not obtained over all the seasons or between 

treatments. This is contrary to Storey (1987), Iland (1988), Mpelasoka et al. (2003) and 

Rogiers et al. (2006) who stated that K concentration in the berry skins is higher than in flesh.  

The difference in results is ascribed to the effect of large berry size on skin K. Compared to 

varieties where the flesh:skin ratio is much smaller, the skin of large berries is probably less 

of a sink for K. The difference in results is ascribed to the effect of large berry size on skin K. 

Compared to varieties where the flesh:skin ratio is much smaller, the skin of large berries is 

probably less of a sink for K. 
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Table 7. Effect of excessive nitrogen, potassium and calcium fertilisation on potassium concentration and total potassium content of 
Prime Seedless berries, cultivated in Paarl. 

Season Treatment 

Véraison First harvest 
Concentration 

(mg/100g dry mass) 
Total content 

(mg/berry) 
Concentration 

(mg/100 g dry mass) 
Total content 

(mg/berry) 
Skin Flesh Skin Flesh Total Skin Flesh Skin Flesh Total 

2006/07 

Control 1627b 1188c 1.05b 6.35c 7.40c 2297a 2024b 1.61a 16.95b 18.56b 
Ca-Bunch 1075c 1674b 0.78c 10.19a 10.97ab 2398a 2570ab 1.69a 21.32ab 23.02ab 

N 1128c 1563c 0.75c 8.73b 9.48bc 1942ab 2140b 1.52ab 19.84b 21.36b 
K 1968a 1165c 1.33a 6.61bc 7.94c 2139ab 3477a 1.52ab 29.67a 31.20a 

Ca 1182c 1287c 0.79c 7.25bc 8.05c 2139ab 1772b 1.56ab 15.61b 17.17b 
KCa 1184c 2089a 0.82c 12.30a 13.12a 2306a 1645b 1.54ab 13.16b 14.71b 
NCa 1031c 1387bc 0.74c 8.31bc 9.05bc 1638b 1748b 1.14b 14.43b 15.57b 

LSD (p ≤ 0.05) 242 366 0.18 2.31 2.34 590 1124 0.45 9.38 9.50 

2007/08 

Control 1868b 3436 1.68b 15.40 17.08 1280c 2103 1.90 16.99b 18.89b 
Ca-Bunch 2070b 3151 1.87a 13.62 13.72 1477bc 2186 2.51 17.66ab 16.64b 

N 1907b 3145 1.68b 14.64 16.33 1556abc 2250 2.25 18.39ab 20.64ab 
K 2543a 4141 2.31a 19.55 21.86 1794ab 2156 2.13 18.13ab 20.25ab 

Ca 1860b 3336 1.62b 15.56 17.18 1608abc 2253 2.70 18.49ab 21.19ab 
KCa 2043b 3120 1.71b 14.07 15.79 2041a 2808 2.71 24.00a 26.70a 
NCa 1683b 3382 1.35b 15.76 17.06 1473bc 2462 2.34 19.53ab 21.88ab 

LSD (p ≤ 0.05) 413 NS 0.55 NS NS 492 NS NS 6.54 7.18 

2008/09 

Control 1141ab 1776b 0.74ab 7.27b 8.01b 670d 1125a 1.29c 13.00a 14.29a 
Ca-Bunch 1116ab 3564a 1.06a 14.17a 15.23a 940bc 1196a 1.82ab 14.03a 15.85a 

N 919bc 2823ab 0.75ab 11.89ab 12.64ab 874c 1172a 1.71b 14.69a 16.40a 
K 1213a 2296ab 0.99ab 9.12ab 10.12ab 1059a 1070a 2.12a 13.16a 15.29a 

Ca 998abc 2508ab 0.74ab 9.55ab 10.28ab 998ab 857b 1.92ab 9.40b 11.33b 
KCa 1221a 2465ab 0.99ab 9.33ab 10.32ab 1057a 1056ab 2.15a 12.88a 15.03a 
NCa 843c 1814b 0.65b 7.68b 8.33b 887c 994ab 1.61bc 12.92a 14.54a 

LSD (p ≤ 0.05) 249 1423 0.32 6.34 6.48 82 210 0.39 2.55 2.69 

2009/101 

Control 2109b 1486 2.34 12.24 14.58 2006b 985ab 3.33bc 15.25ab 18.58ab 
Ca-Bunch 2097b 1395 2.55 11.18 13.73 2030b 839b 3.39bc 12.99ab 16.38ab 

N 2040b 1442 2.27 11.78 14.05 2015b 791c 3.47abc 12.19b 15.66b 
K 2549a 1596 2.63 13.06 15.69 2618a 1058ab 3.87ab 15.48ab 19.35ab 

Ca 1882b 1349 2.09 11.39 13.06 2250b 1077ab 2.88c 15.58ab 18.46ab 
KCa 2096b 1441 2.91 12.58 15.45 2748a 1122a 4.14a 16.22a 20.36a 

LSD (p ≤ 0.05) 396 NS NS NS NS 324 240 0.68 3.94 4.09 
1 Treatment NCa was not applied or sampled during this growing season. 
2 NS = not significant. 
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Table 8.  Percentage increase in Prime Seedless total berry K content from véraison to 
first harvest, as affected by excessive nitrogen, potassium and calcium fertilisation. 

Season Treatment 
Increase in K content from véraison to first harvest (%) 

Skin Flesh Total berry 

2006/07 

Control 53 166 151 
Ca-Bunch 117 109 109 

N 126 127 125 
K 114 348 292 

Ca 97 115 113 
KCa 87 7 12 
NCa 54 74 72 

2007/08 

Control 13 10 11 
Ca-Bunch 34 30 29 

N 34 26 26 
K 0 0 0 

Ca 67 19 23 
KCa 58 71 69 
NCa 73 24 29 

2008/09 

Control 74 79 78 
Ca-Bunch 72 0 4 

N 128 24 30 
K 114 44 51 

Ca 159 0 10 
KCa 117 38 46 
NCa 148 68 75 

2009/10 

Control 42 25 27 
Ca-Bunch 33 16 19 

N 152 3 11 
K 47 19 23 

Ca 38 37 41 
KCa 42 29 32 

 

Berry calcium 

No indication that soil applied Ca or bunch applied Ca has a consistently positive effect on 

berry Ca concentration or content could be obtained. Only in the 2008/09 season berry Ca 

concentration and Ca content of berry flesh were significantly increased, leading to 

significantly higher berry Ca at both véraison and first harvest (Table 9). From these results it 

can be concluded that the rapid rates of berry growth, that continued through véraison 

(Chapter IV), may have led to the decreasing Ca concentrations observed in Table 9 from 

véraison to harvest (discussed for the whole period of berry development in Chapter IV).  

The extent of this decrease in berry concentration therefore negates the effect of soil Ca 

treatments. Furthermore, berry Ca accumulation terminates around véraison (Chapter IV), 

with no Ca flowing into the berry during ripening (Creasy et al. 1993).   
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Table 9. Effect of excessive nitrogen, potassium and calcium fertilisation on calcium concentration and total calcium content of Prime 
Seedless berries, cultivated in Paarl.  

Season Treatment 

Véraison First harvest 
Concentration 

(mg/100g dry mass) 
Total content 

(mg/berry) 
Concentration 

(mg/100 g dry mass) 
Total content 

(mg/berry) 
Skin Flesh Skin Flesh Total Skin Flesh Skin Flesh Total 

2006/07 

Control 142a 55.8c 0.092a 0.298c 0.390c 113b 72bc 0.090ab 0.608bc 0.716bc 
Ca-Bunch 106bc 75.4ab 0.076ab 0.458ab 0.534ab 127ab 106ab 0.113a 0.880ab 0.698bc 

N 113bc 77.8a 0.074ab 0.428ab 0.502ab 160a 88abc 0.088ab 0.811ab 0.993ab 
K 128ab 61.4bc 0.086ab 0.340bc 0.427bc 113b 118a 0.093ab 1.014a 0.899ab 

Ca 104b 61.4bc 0.070b 0.348bc 0.418bc 130ab 73bc 0.084ab 0.633bc 1.107a 
KCa 100c 88.4a 0.069b 0.523a 0.593a 113b 56c 0.075b 0.446c 0.521c 
NCa 115bc 66.6bc 0.084ab 0.400bc 0.483abc 131ab 74bc 0.092ab 0.611bc 0.703bc 

LSD (p ≤ 0.05) 24 19.8 0.018 0.117 0.126 37 39 0.029 0.326 0.339 

2007/08 

Control 255a 138 0.211a 0.625 0.836 94 58.6 0.137 0.519 0.613 
Ca-Bunch 180ab 121 0.163ab 0.521 0.680 131 60.5 0.222 0.475 0.612 

N 178ab 161 0.160ab 0.755 0.915 125 71.0 0.183 0.487 0.765 
K 184ab 146 0.164ab 0.694 0.858 112 51.0 0.133 0.582 0.560 

Ca 171ab 140 0.149ab 0.652 0.801 114 63.6 0.193 0.427 0.713 
KCa 154b 118 0.129b 0.537 0.666 130 67.4 0.176 0.578 0.754 
NCa 175ab 162 0.140b 0.751 0.889 110 75.8 0.175 0.602 0.776 

LSD (p ≤ 0.05) 88 NS 0.069 NS NS NS NS NS NS NS 

2008/09 

Control 178 106bc 0.114 0.427b 0.541b 51.4c 48.0ab 0.099c 0.555b 0.654b 
Ca-Bunch 159 172a 0.148 0.674a 0.822a 68.4abc 56.8a 0.132ab 0.668a 0.799a 

N 153 112 0.125 0.482b 0.607b 59.2bc 53.8a 0.114bc 0.672a 0.785a 
K 171 99c 0.136 0.395b 0.531b 57.0c 40.2bc 0.115bc 0.494b 0.609b 

Ca 193 141ab 0.139 0.531ab 0.669ab 62.6abc 41.0bc 0.120ab 0.451b 0.571b 
KCa 170 95c 0.133 0.361b 0.494b 73.8a 37.6c 0.148a 0.460b 0.608b 
NCa 195 121b 0.145 0.509ab 0.654ab 70.6ab 53.0a 0.128ab 0.686a 0.814a 

LSD (p ≤ 0.05) NS 40 NS 0.185 0.209 12.7 8.9 0.030 0.107 0.124 

2009/101 

Control 244 56.4 0.258a 0.461 0.720 109b 30.0ab 0.180ab 0.466ab 0.646ab 
Ca-Bunch 214 59.0 0.262a 0.464 0.726 117ab 30.0ab 0.195a 0.461ab 0.657ab 

N 188 56.4 0.206a 0.462 0.668 105b 29.4ab 0.179ab 0.452ab 0.631ab 
K 194 59.4 0.195b 0.488 0.683 107ab 30.5ab 0.157bc 0.449ab 0.606ab 

Ca 212 59.8 0.235a 0.508 0.696 139a 35.6a 0.177ab 0.517a 0.695a 
KCa 226 59.0 0.309a 0.521 0.829 96b 26.5b 0.143c 0.388b 0.531b 

LSD (p ≤ 0.05) NS NS 0.105 NS NS 25 7.5 0.031 0.127 0.149 
1 Treatment NCa was not applied or sampled during this growing season. 
2 NS = not significant.

Stellenbosch University   http://scholar.sun.ac.za



107 
 

The lack of response obtained to bunch applied Ca (Ca-Bunch), on the other hand, is 

ascribed to the fact that Ca2+ is not effectively taken up by the berry. The annual amount of 

Ca that can be applied to the crop by this means is not too little since the total Ca in the crop 

at harvest ranges from 1.5 kg to 4.0 kg per ha, while about 8 kg Ca per ha is applied to the 

crop with every spray. 

 

Wojcik (2001) found that Ca applied directly to the fruit can have low penetration, depending 

on the epidermis characteristics, and the cuticle presence and composition, which affects its 

permeability. All of these parameters vary throughout the growing season. Gallerani et al. 

(1990) found that CaCl2 foliar applications did not increase the Ca concentration of apple 

fruit. Likewise, Bonomelli & Ruiz (2010) were not able to increase berry Ca concentration 

through CaCl2 foliar applications nor soil applicated CaCl2. According to Hanger (1979), foliar 

applied Ca is normally immobile, but chelation and increased Ca-concentrations apparently 

induced some translocation in apples. Obtaining increased translocation of applied Ca, 

however, does not seem to be the issue. Instead, the data from this trial seems to indicate 

that the reduction in Ca concentration due to berry growth, as well as a termination of Ca 

influx to the berries at véraison as discussed in Chapter IV, is the reason why increased 

berry Ca levels are not obtained from soil applied Ca. Furthermore, bunch applied Ca did not 

raise berry Ca concentration or Ca content, probably because its uptake reduces to 

negligible amounts throughout berry development as the number of stomata per surface area 

decrease. The epidermis and cuticle of apples was also found to thicken (Wojcik, 2001) and 

fruit applied Ca stays in the epidermis or cuticle as found for litchis by Huang et al. (2005).   

 

Berry magnesium 

In contrast to petiole Mg levels, berry Mg concentration and content were not affected by any 

particular treatment (data not shown). This is ascribed to the combination of mobility of Mg 

and low Mg content of berries, leading to berry Mg requirements being easily met even in 

situations of low vine Mg nutritional status. 

 

Post-harvest quality 

The only season that decay was of any significant extent, was in 2006/07, during which the 

control had the highest occurrence of decay. In this season, treatments containing Ca had 

the lowest decay, except where K was also applied (Table 10). After 2006/07 the extent of 

decay obtained for following seasons was too low to make any decisive conclusions 

regarding the effect of the treatment. Furthermore, none of the treatments seemed to 

increase the susceptibility of the grapes to decay, e.g. increased berry N content obtained for 

treatments containing N did not lead to increased decay. Since bunch rot (Botrytis cinerea) is 
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expected to be enhanced by higher N in the berries (Conradie,1986; Mundy & Beresford, 

2007), the lack of increased decay for treatments N and NCa (Table 10) is somewhat 

unexpected, albeit that the increase in berry N was not dramatic. It might, furthermore, also 

be explained by the study of Christensen et al. (1994). They found that high vigour due to 

excessive N fertilisation, increasing shade and decreasing the efficiency of spraying, was the 

reason for increased disease incidence, rather than high N levels in berries. In this study 

(see previous chapters), a lack of vegetative growth responses and petiole N content 

increases on account of excessive N fertilisation occurred; an impact on disease occurrence 

was therefore unlikely.  

 

Conradie (1986) is, however, of the opinion that the time of N application affects whether N is 

translocated to the crop as amino acid N (soluble N) or incorporated in proteins. According to 

Conradie (1986) bunch rot is assumed to be enhanced more when there is a higher soluble 

N fraction in the berries, especially if N is applied during the latter part of the season (from 

four weeks before vèraison up to harvest) instead of during the earlier part (up to four weeks 

before vèraison). Furthermore, lower decay obtained for the Ca treatments, including Ca-

Bunch, in only one season is too little to ascribe any value to Ca in controlling decay, 

especially in the light of the fact that increased berry Ca concentrations were not obtained for 

the treatments with the lowest level of decay (Table 10).   

 

For all the sampling times, the levels of occurrence of internal browning were far below the 

commercially significant level of 1% and significant differences were only obtained for the 

first harvest sampling in 2007/08 (Table 11). During the latter sampling time, the most 

internal browning occurred for KCa and K. Although not significant, internal browning of 

these two treatments was also highest for the third harvest in 2009/10, whereas KCa was 

highest for the second harvest in 2008/09 and K for the third harvest of the same season 

(Table 11). There therefore seems to be some indication that internal browning might be 

enhanced by excessive K in the berries. Similar results were obtained by Conradie (1999) 

who found that browning was increased by elevated levels of K fertilisation. According to 

Saxton (2002), permeability of cell membranes increases as the Ca:K ratio in berry flesh is 

reduced, potentially leading to the polyphenoloxidase enzyme coming increasingly into 

contact with phenols in the vacuoles. 
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Table 10.  Effect of excessive nitrogen, potassium and calcium fertilisation on the development of decay (% of fresh mass affected) of 
Prime Seedless during post-harvest storage. 

Treatment 
2006/07 2007/08 2008/09 2009/10 

First Harvest 
(14.8oB) 

First Harvest 
(14.1oB) 

Second Harvest
(15.6oB) 

First Harvest 
(15.5oB) 

Second Harvest 
(16.9oB) 

Third Harvest 
(18.2oB) 

Third Harvest 
(18.1oB) 

Control 44.2a 0 0.15 0.05b 0 0 2.93 
(Control-Bunch) 8.6b 0 0.00 0.05b 0.03 0 3.07 
N 17.0b 0 0.07 0.00b 0 0.056 4.39 
K 22.0ab 0.09 0.00 0.00b 0 0 5.52 
Ca 11.6b 0.18 0.00 0.00b 0 0 3.21 
KCa 28.6ab 0 0.07 0.12b 0 0 6.34 
NCa 8.4b 0 0.63 0.45a 0 0.06  
LSD (p ≤ 0.05) 23.3 NS NS 0.28 NS NS NS 
 

Table 11.  Effect of excessive nitrogen, potassium and calcium fertilisation on the development of internal browning (% of fresh mass 
affected) of Prime Seedless during post-harvest storage. 

Treatment 
2006/07 2007/08 2008/09 2009/10 

First Harvest 
(14.8oB) 

First Harvest 
(14.1oB) 

Second Harvest
(15.6oB) 

First Harvest 
(15.5oB) 

Second Harvest 
(16.9oB) 

Third Harvest 
(18.2oB) 

Third Harvest 
(18.1oB) 

Control 0 0.01b 0.00 0.05 0.63 0.41 0.04 
(Control-Bunch) 0 0.17ab 0.10 1.13 0.29 0.06 0.16 
N 0 0.06ab 0.07 0.00 0.49 0.51 0.07 
K 0 0.29ab 0.04 0.85 0.37 0.83 0.26 
Ca 0 0.16ab 0.05 0.08 0.22 0.86 0.17 
KCa 0 0.31a 0.19 0.07 0.99 0.78 0.22 
NCa 0 0.18ab 0.16 0.29 0.17 0.71  
LSD (p ≤ 0.05) 0 0.28 NS NS NS NS NS 
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Although the occurrence of external browning was higher than internal browning, it was also 

very low, occurring at levels that might have commercial relevance only for first harvest 

2008/09 and third harvest 2009/10 (Table 12). Progressively decreasing levels of external 

browning when berries mature, as found for 2008/09, are not uncommon (DFPT Research, 

2010).  The significantly higher levels of external browning that were obtained in 2008/09 for 

all three sampling times for Ca-Bunch are contrary to popular believe that bunch applications 

of Ca reduce browning (Strydom et al., 1999).  In general, the data in Tables 11 and 12 seem 

to indicate that neither Ca fertilisation nor bunch Ca applications have the potential to reduce 

berry browning.   

 

Soft tissue breakdown, often limited to one or two berries per bunch, was also found to be of 

very low levels during all four seasons and no consistent treatment effect to promote or 

reduce soft tissue breakdown was observed (Table 13). Furthermore, no significant 

differences between the treatments in the occurrence of berry split, loose berries or 

waterberry were obtained (data not shown). 

 

Sensory evaluation 

Since no differences in fruit eating quality were obtained for 2006/07, data of only the 

2007/08 season are presented in Figure 1. The data indicate that treatments N and NCa 

were perceived to make a poorer general impression, having lower acceptable colour, being 

less crunchy (firm) and having tougher skins.  Ruiz et al. (2004) furthermore found that the 

berries of Thompson Seedless became softer the higher the N content of both skins and pulp 

were. Furthermore, berry crunchiness (firmness) was enhanced by Ca-Bunch and K, 

compared to the control. Overall, Ca-Bunch and KCa were apparently found to be most 

acceptable, although it generally lacked significance compared to the control (Figure 1). 
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Table 12.  Effect of excessive nitrogen, potassium and calcium fertilisation on the development of external browning (% of fresh mass 
affected) of Prime Seedless during post-harvest storage. 

Treatment 
2006/07 2007/08 2008/09 2009/10 

First Harvest 
(14.8oB) 

First Harvest 
(14.1oB) 

Second Harvest
(15.6oB) 

First Harvest 
(15.5oB) 

Second Harvest 
(16.9oB) 

Third Harvest 
(18.2oB) 

Third Harvest 
(18.1oB) 

Control 0 0 0.18 0.00b 0.00b 0b 0.23b 
(Control-Bunch) 0 0 0.16 1.21a 0.71a 0.22a 1.27b 
N 0 0 0.48 0.39ab 0.07ab 0.05b 0.88b 
K 0 0 0.53 0.72ab 0.36ab 0b 1.91ab 
Ca 0 0 0.69 1.10ab 0.07ab 0b 3.74a 
KCa 0 0.07 1.52 1.06ab 0.17ab 0b 0.55b 
NCa 0 0 0.13 0.06ab 0.00b 0b  
LSD (p ≤ 0.05) NS NS NS 1.19 0.70 0.16 2.26 
 

Table 13.  Effect of excessive nitrogen, potassium and calcium fertilisation on the development of soft tissue breakdown (% of fresh 
mass affected) of Prime Seedless during post-harvest storage. 

Treatment 
2006/07 2007/08 2008/09 2009/10 

First Harvest 
(14.8oB) 

First Harvest 
(14.1oB) 

Second Harvest
(15.6oB) 

First Harvest 
(15.5oB) 

Second Harvest 
(16.9oB) 

Third Harvest 
(18.2oB) 

Third Harvest 
(18.1oB) 

Control 0 0.27 0.06b 0.20b 0.08 0.16b 0.18b 
(Control-Bunch) 0 0.19 0.26ab 0.50b 0.09 0.12b 0.32ab 
N 0 0.17 0.00b 1.68a 0.39 0.89a 0b 
K 0 0.40 0.26ab 0.49b 0.28 0b 0b 
Ca 0 0.23 0.18ab 0.08b 0.26 0.35ab 0.08b 
KCa 0 0.29 0.19ab 0.38b 0.56 0.27ab 0.69a 
NCa 0 0.13 0.55a 0.05b 0.57 0.23ab  
LSD (p ≤ 0.05) NS NS 0.40 0.80 NS 0.71 0.47 
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Figure 1. Evaluation results of a tasting panel of first harvest Prime Seedless grapes 
from a fertilisation trial conducted in Paarl during the 2007/08 season.  The deviation 
factor indicates variance from the average scoring of the panel for a specific 
parameter, positive values indicate acceptability, while negative values indicate 
unacceptability. Bars indicate the ± standard error of the means. 

 

CONCLUSIONS 

 

Larger berry size obtained for N applications is ascribed to slight increases in early 

vegetative growth, allowing support and a better response to GA3 treatments. The growth 

response was, however, not dramatic, leading to a lack of consistently significant increases 

in berry size. The use of GA3 for berry enlargement is also considered the reason why K 

fertilisation, resulting in increased berry K levels, did not affect berry size as is often found for 

wine grapes. 

 

Both treatments K and KCa had a slightly positive effect on TSS of berries, but given that fact 

that totally excessive levels of K were applied, there seems to be no value in applying high 

rates of K fertilisation on sandy soils to enhance ripening of Prime Seedless grapes. 

However, no K was applied after véraison, and giving the mobility of K in the vine, the effect 

of late K applications on sandy soil is still not clear. 

 

Higher available NO3
- in the soil on account of excessive N applications (treatments N & 

NCa) resulted in higher levels of berry N, despite sub-optimal soil pH regimes that were 

created by these treatments (Chapter II). High rates of K applications (treatments K & KCa) 

reduced berry N levels. Decay was, however, not affected by these shifts in berry N 

concentration. The results seem to indicate that berry N does not play a role in berry 

susceptibility to decay.  On the other hand, a strong case for investigating the effect of late N 

applications (after véraison) on berry susceptibility to develop decay may be made.  In 

General 
impression 

Berry colour Taste Berry firmness Skin 
consistency 
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addition to this, elucidation whether there are N levels in the berries above which their 

susceptibility to fungal infection is increased, or specific N compounds that make berries 

more susceptible to decay, is required.  

 

Berry K concentration and content were increased by K fertilisation. Rapid vine K uptake and 

translocation to the berries seem to negate the reduced vine nutritional status as observed in 

petioles for situations of over-fertilisation with N. Berry size seems to play a more important 

role in skin K concentration and berry skin K:flesh K content than inherent berry physiology. 

 

Despite higher soil and soil water Ca levels, berry Ca levels were not increased by Ca 

fertilisation or by bunch applied Ca (Ca-Bunch). The rapid rates of berry growth, together 

with low rates of berry Ca uptake and Ca uptake that terminates at the onset of ripening, are 

assumed to be the main reasons for this result. 

 

Low levels of decay as well as a lack of consistently increased decay were obtained for N 

containing treatments (N & NCa). Although the study was not focused on treatment effects 

on development of decay, the results pointed to a lack of enhanced post-harvest decay with 

high berry N levels. Validation of the role of berry N in enhancing Botrytis cinerea infections 

or other forms of decay, is required. Furthermore, potentially increased berry browning on 

account of high rates of K fertilisation needs to be further investigated. 
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CHAPTER VI 

 

CONCLUSIONS 

 

A lack of defects is required for successful table grape marketing, which pre-suppose optimal 

vine performance, berry development and post-harvest quality. The supply of mineral 

nutrients affects vine growth, physiology and berry quality. Despite a vast amount of research 

conducted over decades, various unresolved issues regarding table grape vine nutrition to 

ensure optimal grape quality and shelve-life, remain. The result being unjustified fertilisation 

practices which include excessive applications of nitrogen (N), potassium (K) and calcium 

(Ca). 

 

A four-year field trial was therefore conducted on a sandy soil in the Paarl district of South 

Africa, using cv. Prime Seedless (Vitis vinifera L.) grapevines, grafted onto Ramsey, and 

trained onto a gable trellis system. Nitrogen (N), potassium (K) and calcium (Ca) were 

applied, singular or in combination, at rates equal to 300% the calculated annual nutritional 

requirement, while the Control treatment received an annual application of 70 kg N/ha, 60 kg 

K/ha and 10 kg Ca/ha. The effect of these excessive applications on table grape 

performance under typical South African cultivation conditions was investigated, with special 

reference to 1) vegetative growth, 2) expression of grapevine nutrient availability through 

foliar analyses, 3) berry nutrient accumulation patterns of this early variety, 4) manipulation of 

berry nutrient content through soil and bunch directed applications and 5) the effect of berry 

nutrient content on its quality.  

 

The objectives of this study were as follows: 1) To aid table grape nutrition practices as well 

as harvest timing and post-harvest quality prediction by investigating the nutrient 

accumulation patterns of Prime Seedless, a very early seedless table grape variety that are 

produced with minimum berry diameter of 18mm; 2) To establish if there is benefit for berry 

quality in applying K or Ca, in addition to the established nutritional requirements; 3) To 

establish whether berry Ca levels can be elevated and whether it benefits fruit quality; 4) To 

understand the interaction of N, K and Ca on uptake and translocation to the berries.  

 

The N concentration of soil water extracts of treatments N and NCa reflected higher N 

availability. From the first season the K content of the soil was significantly increased where 

K was applied. While soil Ca of the treatments receiving Ca only started increasing from the 

second season, it never increased to levels significantly higher than the control soil. A high 
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rate of leaching-loss of K and Ca from the soil seems to have been stimulated by the 

application of excessive amounts of N, illustrated by the deficient levels of K in soil of 

treatments N and NCa. Significantly lower Ca was also found in the soil of treatments with N 

from the winter of 2008 onwards. Parallel to this, excessive N fertilisation caused a reduction 

of soil pH to detrimental levels. The lack of response in vegetative growth by the vines on 

account of the fertilisation treatments, especially N, can therefore not be explained by a lack 

of (increased) availability of the applied nutrients. It, however, is rather ascribed to the fact 

that the vineyard has a sandy soil where the lack of stimulation in vegetative growth may be 

due to the combined negative effect of these excessive applications on soil pH and soil 

nutrient composition. Foliage management also resulted in a stabilisation of primary shoot 

length, apical lateral shoot length as well as basal lateral shoot length. The leaf surface area 

results again demonstrated that, due to foliage management, the treatments had no 

significant effect on the vine canopy.  

 

No clear relation between petiole N and leaf chlorophyll content could be found. The lack of 

an increase in chlorophyll with the N fertilisation treatments therefore seemed to have 

resulted from the fact that the vine N nutritional status of the control treatment was sufficient, 

as indicated by the petiole analyses. Although Ca reduces the rate of chlorophyll breakdown 

and protein degradation, no clear relationship between vine petiole Ca content and the 

chlorophyll content of the same leaves was found. This is ascribed to a lack of significant 

differences in petiole Ca content. 

 

Average petiole N content was generally increased by N fertilisation but a lack of significant 

differences in the latter two seasons is difficult to explain. The low uptake of excessively 

applied N also explains why vegetative growth was not significantly increased by the high 

rate of N applications. The decreasing effect of N fertilisation on soil pH might have reduced 

root activity progressively, also explaining the lack of treatment effects in the latter two 

seasons. Excessive Ca or K and in combination did not affect petiole N concentration 

significantly or in a consistent manner. Petiole N concentration showed a decreasing trend 

throughout the season, meaning that the norms used to evaluate N nutritional status should 

also decrease. Comparing the norms published for fruit-set and véraison, excessive N 

fertilisation showed only once in four years an elevated N concentration in the petioles – a 

poor correlation between N concentration in petioles at harvest and the total amount of N 

applied to the soil was therefore obtained. This questions the value of using leaf nutrient 

concentrations to establish N fertilisation requirements. However, although harvest is not 

regarded as a reliable sampling time for foliar analyses, a significant increase in petiole N of 

both N fertilisation treatments that was obtained at harvest of 2006/07 and 2007/08, points to 
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the possibility to use this sampling time for setting of N nutritional norms. In the light of the 

rapid seasonal development of Prime Seedless (harvest is 120 days after budbreak), harvest 

petiole sampling of this variety might indeed have value. The exact time of sampling for the 

latter phenological stage may have to be determined by berry maturity level, otherwise it 

would be difficult to set comparable norms, even for a specific block from year to year. 

 

Parallel to the significant increases in soil K content obtained for treatments K and KCa, 

petiole K concentration was increased by K fertilisation at all phenological stages. This also 

illustrates the preferential uptake of K from the soil and its rapid translocation within the plant. 

Excessive N and Ca did not suppress petiole K concentration significantly, although a 

consistent trend to lower K levels in the petioles was observed. The latter is explained by the 

stimulated leaching-losses of K from the soil under conditions of high rates of N application. 

The reduced petiole K due to Ca fertilisation is explained by competition that exists between 

K and Ca for uptake by the roots, but the lack of significant results are due to K uptake being 

more efficient than Ca uptake. It is therefore important to note that despite K fertilisation 

being applied in accordance to nutritional requirements, excessive N and Ca applications can 

progressively induce K deficiencies on a sandy soil. None of the K fertilisation treatments 

succeeded to raise petiole K concentrations above the maximum published norms. From 

these data it seems that by comparing petiole K analyses to existing norms will not 

necessarily reflect an excessive K supply. A true reflection of the uptake and effectiveness of 

K fertilisation might therefore only be obtained by comparing seasonal, parallel analyses of 

petioles from K fertilised vines and those that were not fertilised. A general decrease in 

petiole K concentration during the course of the growing season was also found. 

 

Calcium fertilisation did not increase soil Ca content, resulting in a lack of differences in 

petiole Ca concentrations between treatments. Petiole Ca remained above the minimum Ca 

norms published for all treatments (even those with low pH and Ca in the soil). This indicates 

that the grapevine has low Ca nutritional requirements. From the data of this trial it seems 

that a comparison of petiole Ca analyses with our present norms, would not necessarily 

reflect conditions of low Ca supply. Low levels of Ca availability often lead to reduced growth, 

especially of young leaves and growing tissues. Analyses of young leaves, of which the best 

sampling time would probably be before tipping or topping, as indicator of Ca nutritional 

status, should therefore be investigated. An increase in petiole Ca concentration towards 

harvest was obtained. Interpretation of petiole analyses should therefore take the sampling 

time into account. Nutrient ratios in petioles were found to illustrate differences in nutrient 

supply only as far as it entails K, i.e. K:N ratios, K:Mg ratios and K:Ca ratios of treatments 
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containing K were increased significantly. The value of using such ratios is, however, 

doubtful since petiole K was anyway elevated by the same treatments. 

 

Fresh mass increased at a rapid rate from pea berry size, averaging 0.146 g/day, and did not 

subside before first harvest.  Berry dry mass increase showed a similar pattern, although the 

rapid increase was delayed until after 15 mm berry size. This is ascribed to sugar 

accumulation (not measured), which commenced later than the berry fresh mass increase. 

Initial berry growth is mainly due to cell division, while later growth is due to cell enlargement. 

From pea size to harvest, berry tissue dry mass increased 145%. This is ascribed to 

accumulation of total soluble solids (including minerals) in the flesh (pulp), since flesh 

mass:skin mass ratio, calculated from dry mass, increased by 61% from pea-sized berry to 

harvest. The lag phase often observed just prior to véraison was not observed. It is ascribed 

both to the absence of seed and the fact that Prime Seedless is a very early ripening variety 

and berry growth does not decrease during the transition phase from pre- to post-véraison 

because of its brevity. The GA3 applied as enlargement treatment at 8 to 12 mm berry size 

would further compact and boost this growth rate, most likely further masking the well-known 

double sigmoid curve. 

   

The dynamics of berry growth impacted on berry nutrient concentration. Early rapid berry 

growth, predominantly due to cell division and growth, was associated with the most rapid 

decreases in N, P and Ca concentration. Due to mobility of K and Mg in the plant that 

exceeds that of other nutrients, decrease in concentration of these two mineral elements was 

not as pronounced as that of the others. Nutrient accumulation was most rapid during the 

pre-véraison period, but only Ca showed definite termination during early ripening. The 

continued inflow of N, P, K and Mg, albeit at slower rates immediately after véraison, should 

be taken into consideration when fertilisation is applied. As a table grape, total accumulation 

of each nutrient in Prime Seedless berries also far exceeded that of other varieties studied 

this far. A particular difference is that the berry flesh:skin ratio is much higher than previously 

studied varieties, leading to higher levels of nutrient accumulation in the flesh.   

 

For all the nutrients, the berry flesh contained the larger part of the total accumulated 

nutrients in the berry, although the skin concentration exceeded that of the flesh as the berry 

enlarged. Due to the role of the nutrient concentration, rather than total content, in berry 

quality, a better understanding of other dynamics that determine berry nutrient concentration 

is required. Furthermore, the rapid development of this early seedless variety, with berry size 

that far exceeds that of wine grapes, is accepted as an important factor influencing berry 

nutrient accumulation patterns to divert slightly from the generally established ones. 
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Berry flesh N concentration decreased rapidly from set to shortly before véraison, thereafter 

the decrease slowed down. Berry skin N concentration showed a similar trend. The initial 

rapid decrease in berry N concentration is ascribed to berry growth between set and véraison 

that exceeded N accumulation rates, probably due to cell growth demands. After véraison, 

the rate of decrease in N concentration slowed down. This is ascribed to the commencement 

of sugar accumulation, which is also associated with arginine accumulation. Up to véraison, 

N concentration of the flesh was higher than that of the skin, but from the start of ripening 

skin N concentration exceeded the flesh N concentration. This seems to indicate that N is 

partitioned mainly to the skin during ripening. If amino acid concentration increased mainly in 

the skin, then increased sensitivity to Botrytis is expected. Total berry N accumulation was 

rapid during the pre-véraison period, being associated with cell division and growth requiring 

N for chlorophyll, nucleotides, nucleic acids and proteins. After véraison, N accumulation 

slowed down, except in the 2008/09 season during which berry analyses were conducted at 

TSS that exceeded 16oB. Rapid N accumulation commenced again at later maturity. If the 

latter N is indeed mainly in the form of proline, as speculated, it points to some form of 

ageing or other stress.  The implication is that from a post-harvest storage point of view, N 

accumulation can be used as indicator of optimal harvest time. 

 

Although a general decrease in K concentration of berry flesh was observed, varying 

changes in the patterns of K concentration were obtained over the four seasons. Potassium 

concentration in both tissues decreased during the early stages of berry development. Given 

the fact that berry size obtained for Prime in this experiment ranged between 8 g and 10 g, 

the initial decrease in K concentration during early stages of rapid berry growth in this study 

is not unexpected. Compared to small berry varieties, berry K concentration did not increase, 

especially in conditions where berry growth and berry K accumulation were maintained at 

similar rates. This implies that factors such as cultivar (berry size), crop load, and climatic 

conditions that determine berry growth and cultural practices that affect rate of berry growth 

and/or K accumulation in the berry would affect berry K concentration. It may also be 

stressed again that Prime Seedless is a very early ripening variety and berry growth does not 

decrease during the transition phase from pre- to post-véraison. Furthermore, the 

enlargement GA3 treatments at 8 to 12 mm berry size boost berry growth rate, most likely 

further masking the well-known double sigmoid curve. Despite this, there is a very definite 

point of change in berry flesh K concentration dynamics before or around véraison, probably 

indicating a change in it ripening physiology. Total K content in the berries continued to 

increase throughout the season, with the most rapid rate of accumulation in the pre-véraison 

period, after which it slowed down during ripening. Given the fact that berry dry mass 
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accumulation was maintained after véraison at the same rate than pre-véraison, this work 

seems to indicate that dry mass accumulation was not associated with K accumulation. The 

difference of results to the accepted pattern might be due to the fact that K translocation and 

partitioning in the vine is affected by plant water status, presence of seed, and rate of berry 

growth with final size affecting the skin:flesh ratio extensively. 

 

Berry Ca concentration showed a decreasing pattern throughout berry development.  The 

rate of decrease seemed to be related to progressively reduced influx rates assosciated with 

berry growth, since it reduced most rapidly during the pre-véraison period for Prime 

Seedless, which coincided with rapid berry growth. Decrease in xylem flow after véraison 

reduces Ca movement into the berry. Calcium is accumulated at its most rapid rate between 

pea-size berry and 15 mm berry size. Furthermore, Ca uptake by the berry terminates, or 

reduces dramatically, after véraison. However, when sampling was done up to three weeks 

after first harvest, Ca accumulation was found to resume. This resumption points to a definite 

interruption of xylem flow, albeit temporary, and is probably related to rapid berry growth. 

 

Slightly larger berry size was obtained for N applications and is ascribed to slight increases in 

early vegetative growth, allowing a better response to GA3 treatments. The use of GA3 for 

berry enlargement is also considered the reason why K fertilisation, resulting in increased 

berry K levels, did not affect berry size as is often found for wine grapes. The effect of the 

treatments on berry TSS was not constant. Both the control and treatment K, however, 

showed a tendency to have the highest TSS. Potassium as an osmotically active cation in 

the phloem sap and grape berries, contributes to phloem sap flow (sugar import) by helping 

to establish an osmotic potential gradient between the leaves (source) and the berries (sink). 

This was supported by a strong relationship found between berry K content and both sugar 

and dry mass accumulation. No consistent effect from either N, K or Ca applications on TA 

was obtained. 

 

Higher available NO3
- in the soil on account of excessive N applications resulted in higher 

levels of berry N, despite sub-optimal soil pH regimes that were created by these treatments. 

The increased berry N content obtained points to the mobility of N in the vine and that it is 

readily translocated to the berries. Treatments K and KCa furthermore reduced berry N 

concentration and content compared to treatment N and, in some cases, also compared to 

the control.  This is ascribed to the reducing effect that K has on N uptake.  

 

Berry K concentration and content were increased by K fertilisation. Rapid vine K uptake and 

translocation to the berries seem to negate the reduced vine nutritional status as observed in 
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petioles for situations of over-fertilisation with N. The generally accepted large increases in 

berry K after véraison were also observed. Inconsistent trends in K increase from véraison to 

first harvest were, however, obtained for the treatments and between seasons. The 

treatment with the highest K concentration or content at véraison therefore did not 

necessarily have the highest value at harvest. This indicates that various factors other than 

only K availability affects K translocation to the berries, e.g. irrigation, canopy conditions and 

factors that affect leaf photosynthetic activity. The many factors that affect nutrient uptake 

and distribution makes it difficult to predict the effect of fertilisation on berry mineral 

composition, even for a mobile nutrient like K. Berry Ca levels were not increased by Ca 

fertilisation or by bunch applied Ca. The rapid rates of berry growth, together with low rates 

of berry Ca uptake and Ca uptake that terminates at the onset of ripening, are assumed to be 

the main reasons for this result. Furthermore, uptake of bunch applied Ca is poor due to the 

epidermis and cuticle that thickens Ca that probably is caught up in the epidermis or cuticle. 

 

Low levels of decay as well as a lack of consistently increased decay were obtained for N 

containing treatments. It must be established whether there are N levels in the berries above 

which their susceptibility to fungal infection is increased, or specific N compounds that make 

berries more susceptible to decay should be identified. Neither soil applied Ca nor bunch 

applied Ca improved berry quality, although Ca treatments seemed to reduce decay during 

the only season that it was at commercially significant levels. The latter, however, was too 

little evidence to ascribe to Ca any value in controlling decay, especially in the light of the fact 

that increased berry Ca concentrations were not obtained for the treatments with the lowest 

level of decay. For all the sampling times, the levels of occurrence of internal browning were 

far below the commercially significant level of 1% and significant differences were only 

obtained for the first harvest sampling in 2007/08, during which time the most internal 

browning occurred for KCa and K. It was also the highest level for these two treatments in 

various other sampling times. There therefore seems to be some indication that internal 

browning might be enhanced by excessive K in the berries. Treatments N and NCa made a 

poorer general impression with consumers, having lower acceptable colour, being less 

crunchy (firm) and having tougher skins. Furthermore, berry crunchiness (firmness) was 

enhanced by Ca(Bunch) and K, compared to the control (during one season only). 

 

From this study it became clear that: 

 Excessive N and K fertilisation has a detrimental effect on chemistry of sandy soils, 

which leads to inefficient fertilisation and a lack of the desired responses.  A lack in 

vegetative growth responses and vine performance would be the result of reduced soil 

pH on account of excessive N fertilisation or due to imbalanced soil nutrient contents. 
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 Even on a sandy soil with low CEC, Ca levels were not raised significantly by annual 

fertilisation of up to three times the vine requirement.  Soil applications to raise the Ca 

uptake of the vine are therefore ineffective. Likewise, in addition to foliar applications 

that have been proven useless in other research, bunch directed applications of Ca 

also do not affect berry Ca content. 

 Reliable correlations between petiole nutrient concentration and berry mineral content 

at harvest could not be established. The only way of knowing the mineral content of 

berries is by measuring it directly instead of deducing it from the results of leaf or 

petiole analyses. 

 As indicator of vine nutrient availability, petiole analysis must be evaluated in parallel 

with soil analyses, taking seasonal variation into consideration. The danger of being 

only guided by published norms for leaf nutrient concentrations when establishing 

fertilisation practices, has again been highlighted by this study.  It was also reiterated 

that during interpretation of foliar analyses the phenological stage must be taken into 

consideration, since the concentrations of nutrients change during the course of the 

season.  

 For a very early variety like Prime Seedless, nutrient accumulation dynamics can 

already start to change during the pre-véraison period in some seasons. This is due to 

different edaphic and climatic conditions as well as the dynamics of berry growth and 

eventual berry size, which leads to much higher flesh:skin ratios. Future research on 

table grapes would need to further develop an understanding of the various factors that 

determine berry nutrient concentration and accumulation of early ripeningseedless 

table grape cultivars with large berry size. 

 

It is therefore recommended that: 

 The use of analyses of young leaves as indicator of Ca nutritional status is 

investigated. 

 Due to the role of the nutrient concentration on berry quality, an understanding of all 

the dynamics that determine berry nutrient concentration is acquired in the context of 

large berry cultivars. 

 The forms in which N occur in the berries at different ripening stages are established. 

 Whether there are different forms of N that would impact on the susceptibility of the 

berries to fungal infection. 

 Potentially increased berry browning on account of high rates of K fertilisation is further 

investigated, since some indications thereof were observed. 

 The role of berry growth to cause an interruption in xylem flow after onset of ripening is 

further investigated.  
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