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Abstract
The beam quality factor (M?) of alaser is important because it describes both the quality of alaser
beam as well as its propagation. Particular applications require that the beam radii (from which the
M? factor is determined) be defined in a specific way. The International Standards Organisation
(ISO) recently standardised the theoretically correct, but practically difficult second moment

definition of the beam radius.

This thesis aims to establish correlations between the second moment definition and other more
practical definitions. Chapter 2 presents a systematic introduction of moment theory for genera
beams. Beam centre and radius definitions as well as beam classification are derived by means of
second and mixed moments. In Chapter 3 simple laser beams are modelled by means of a resonator
approach. The infinite number of solutions of this model is called Gaussian solutions, which are
found to be different for rectangular and cylindrical symmetric resonators. The zero order solution
for both symmetries is identified as the ideal solution to which all others can be compared to for
guality determinations. Chapter 4 presents different beam scanning devices, beam radius definitions
and correlations between these definitions. The theoretical basis for anew correlation theory isaso
given. Chapter 5 describes programs and computations used to verify existing correlation methods
and to calculate correlation factors for anewly proposed theory. Chapter 6 presents the results of the
computations for both circular and rectangular symmetric beams. The ISO’s correlation theories are
tested first. Newly proposed correlation functions between the second moment and aternative
definitions as well as theoretical error graphs are given for various beams. A novel method to
correlate several important beam subclasses is a so presented. Chapter 7 describes the experimental
setup, automation software and post processing techniques that were used to characterise amodified
CO; TEA laser. It is further shown how the theory developed in previous chapters could be applied
to the experimental data. Chapter 8 presents the experimental results of the beam characterisation
measurements performed on two different beams that emanated from the CO, TEA laser. Existing
and newly developed correlation theories are applied to the experimenta data and the corresponding
results are compared. In Chapter 9, conclusions and suggestions with respect to the initia ams
identified in the first chapter are made. Severa suggestions for future work are also made.



Samevatting
Die bundel kwalitietsfaktor (M?) is baie belangrik omdat dit beide die kwaliteit en
voortplanting van ‘n laser bundel beskryf. Bundel radiusse (waarvan die M? faktor bepaal
word) word verskillend gedefinieer vir spesifike toepassings. Die teoreties korrekte, maar
minder praktiese tweede moment definisie is onlangs deur die Internasionale Standaard

Organisasie (1SO) gestandari seer.

Hierdie tesis se hoofdoel is om die tweede moment definisie en ander meer praktiese
definisieste korreleer. Hoofstuk 2 stel die moment teorie van bundels sistematies bekend.
Dit word gewys hoe die senter en radius van ‘n bundel deur tweede en gemengde
momente gedefinieer kan word. In Hoofstuk 3 word laser bundels gemodeleer deur
middel van resonator aanslag. Die oneindige aantal oplossings wat verkry word heet
Gaussiese oplossings en is verskillend vir reghoekige en silindriese simmetriese
resonators. Dit word gewys dat die ideae bundel, waarmee ale ander bundels vergelyk
word, die zero orde oplossing van beide simmetrieé is. Hoofstuk 4 stel verskillende
bundel skanderings apparaat, bundel radius definisies en korrel asies tussen die definisies
bekend. Die teoretiese basis vir ‘n nuwe korrelasie teorie word ook gegee. Hoofstuk 5
beskryf die rekenaarprogramme en berekeninge wat gebruik word om huidige korrelasie
teorie mee te toets asook om nuwes mee te skep. Hooftuk 6 gee die resultate van die
berekeninge van die rekenaarprogramme vir beide reghoekig en silindriese smmetrie.
Die 1SO se korrelasies word eerste getoets voordat nuwe teorieé bekend gestel word. In
Hoofstuk 7 word die eksperimentele opstelling, outomisasie sagteware en post-
prosessering tegnieke gewys wat gebruik was om ‘n aangepaste CO, TEA laser te
karakteriseer. Verder word dit gewys hoe die teorie wat in voorafgaande hoofstukke
ontwikkel is op eksperimentele data toegepas kan word. Hoofstuk 8 gee die
eksperimentele resultate van die bundel karakterisering van twee verskillende bundels
vanaf die CO, TEA laser. Bestaande en nuwe korrelasie metodes word gebruik om die
bundels te korreleer en die resultate van elke metode word dan met mekaar vergelyk. In
Hoostuk 9 word afleidings gemaak. Daar word ook voorstelle gemaak vir potensiéle

toekomstige werk.
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Chapter 1

Problem statement and overview

1.1 Introduction and problem statement

Laser researchers have sought ways to measure the spatial properties of beams since T. H.
Maiman first demonstrated the laser in 1960. The first simplistic methods used for the spatial
evaluation of laser beams were burn-paper marks, acrylic mode burns and direct viewing of
diffuse reflected beams [10]. These methods did not, however, provide reproducible results.

In answer to this problem, mechanical scanning devices such as knife-edges, slitsand variable
apertures were developed to obtain accurate beam profiles. Charged coupled device cameras
(CCD cameras) currently dominate the laser characterisation market, but still employ virtual
glits or knife-edges in their post-analysis programs [9], [49].

The definition of the beam radius, rather than its accurate measurement, has been the main
point of contention over the years. It is extremely important to use correct and accurate beam
radii since they determine the energy density, divergence and quality of laser beams. Good
quality lasers can be focussed to smaller spot sizes, their depth of focusislonger, they can be
collimated for longer distances and their energy density distribution has a Gaussian
distribution. The beam quality therefore needs to be determined accurately and reliably by
using a standard definition of the beam radius. Several attempts have been made over the
years to agree on such a standard definition [7], [8],[24], [27], [46], [56].

Different groups contended for years about which definition is best because different
definitions are best suited for specific applications. The second moment definition is excellent
for assessment of the beam quality and provides a sound theoretical base for all types of

beams, but gives beam radii that have no connection with the beam energy that they contain.



An extensive introduction to this powerful theory is given later in this thesis because it can
describe an immense variety of beams. Energy density definitions accurately track nodes and
other featuresin beams’' energy density profiles, but give inconsistent radii when the energy is
concentrated in the wings of the beam. Energy content definitions are the only definitions
from which the important energy flux parameter can be calculated, but give inconsistent
values for the theoretical beam quality or M ? factor. The definition of the beam radius must
therefore be chosen according to the information that is required. Because of this controversy
laser beam radii were only standardized in 1999 (almost forty years after Maiman) by the
International Standards Organisation (ISO) using only the theoretical second moment
definition (1SO 11146). The organisation largely ignored the other more practical definitions
stating only that “[o]ther definitions of beam widths and divergence angles may be helpful for
other applications, but must be shown to be equivalent to the second moment definition” [24].

In many instances, the second moment radii cannot be obtained directly. Siegman [46]
showed that there is an unavoidable uncertainty when the second moment definition radiusis
determined from a knife-edge energy level radius. People have tried for years to minimise this
correlation error. The 1SO provided experimentally obtained correlation functions between the
second moment and alternative definitions (the dlit, knife-edge and variable aperture
definitions) without stating that each must be used for different applications. These correlation
functions were obtained by Johnston [27] from only a few measurements and were hardly
shown to be representative of most lasers. The 1SO aso failed to mention the inevitable
correlation error and in fact abandoned the goal of finding a general correlation method with
little or no errors when they adopted Johnston’s correlation method.

Siegman took the correlation error into account [46] when he used a graphical approach to
determine the optimum knife-edge clip-level and factor for correlating the second moment
and knife-edge definitions. His method was more general than the 1SO’ s because his approach
was theoretical. Due to the large number of beams he used it was aso valid for alarger range
of quality values. However, Siegman’s graphical method largely ignored practical beams,
opting rather for theoretically pure “unmixed* beams. The 1SO specifically took this mixing
into account even though it was only for afew beams.



1.2 Aims

This thesis aims to develop a comprehensive beam correlation theory that incorporates
previous methods and provides a better understanding of the relations between different beam

radius definitions for a broad range of laser systems.

Secondly this thesis aims to modify and characterise an experimental CO, transverse excited
atmospheric (TEA) laser [40] for material processing using a knife-edge method. This part of
the project therefore had adual focus. The beam quality of alaser source had to be accurately
known in order to evaluate the modified resonator. Accurate vaues of the beam’s energy
distribution were aso needed for material processing applications. A newly developed
correlation theory can be used to obtain both these goals.

No beam scanner was available to characterise the laser, necessitating the development of
one. The mechanical knife-edge scanning method that was chosen, made the scanner
wavelength and power independent so that it could potentialy be used for other pulsed laser
systems in the department. The successful development and demonstration of this beam
scanner became another aim of thisthesis.

1.3 Termsof Reference

Terminology used in this thesis relates to pulses since CO, TEA lasers operate in a pulsed
mode. Terms that will be used a lot are energy density and energy. This is because the
integrated energy per pulse is usualy measured when characterising a beam. The power of a
laser beam is the amount of energy in J per s that it transfers to a power meter. Power and
power density (intensity) are therefore more commonly used to describe continuous wave
(CW) laser characteristics.

Many articles and books use beam diameters instead of radii. This thesis will use beam radii
and beam diameters will only be used when material specific to a particular reference is
presented.



Chapter 2

General beam theory

The objective of this chapter is to give a systematic introduction to a comprehensive beam
theory, called moment theory. This theory is so widely applicable that it can describe both

coherent and non-coherent beams.

2.1 Moment theory

2.1.1 First order moments

The first order spatial energy density moment for a two-dimensiona slice in the x and y

transverse directions of a beam somewhere along its propagation direction is given by the
following integral [24, [23]:

+¥ +¥

1 Y Y
(x) =5 O OX¥ (%, Y, 2)dxdy (2.1)
-¥ ¥
with P the total energy of the beam

+E +¥

P= 00! (x,y)dxdy (2.2
BYARY

x an arbitrary transverse direction and 1 (X, Yy, z) the energy density distribution.

Thefirst angular energy density moment is given by the following integral:

¥ ¥

1 NN\
<qx> :E OmxlFourier (qx’qy)dqxdqy (23)
¥ ¥

with 1, (@,.d,) the Fourier transform of the energy density distribution, | the wavelength

and q, thedirection of the wave front from an arbitrary x direction.
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<xls‘> is defined as the centre of mass of a slice of a beam profile. This is identical to the

definition of the centroid of an area [36]. <qx> is defined as the propagation direction of this

centre of mass in the x-z plane. A beam can be simplified to aray, which obeys the ABCD
law of geometrical optics, by using the centre of mass and propagation direction of several
glices in the propagation direction [23]. This reduction can be seen in Figure 2-1, which

illustrates the direction (g, ) of atypical beam and the centre of mass (x'*) of one slice.

laboratory x

laboratory z
Figure 2-1: lllustration of first and second order beam moments of a three-dimensional beam.

2.1.2 Second order moments

The second order spatial intensity moment is defined in rectangular symmetry as [23], [24]

c‘)c‘)(x- <x >)2><I (x, y)dxdy
(x*)(2) =\ 5 (2.4)

and in cylindrical symmetry” as[24]:

oy > ¥ (r)rdrdi

(r’) (2 =\/ 5 (2.5)

" In this thesis rectangular symmetry will mostly be used to define quantities. Quantities are also defined in
circular symmetry if they are required in future chapters. The arbitrary x direction will also be used to present
most definitions.
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(x*) can be equated with the moment of inertia of an area with the same shape as the beam
profile [36]. A beam radius can be defined as

(w)=2" (x*) or (w,)=2" (r*™). (2.6)
Beam radii can be determined at any position aong the beam propagation direction by
integrating Equation (2.4) or (2.5) over the two-dimensional energy density profiles.

The second order angular intensity moment is defined as

¥ ¥
C)c‘;(qx - <Qi§>)2 X %l i (@,,0,)da,dq,

(ag) == 5 . (27)

The far field divergence angle of the beam in the x direction is defined as twice this value
[24]:

(Q)=2"(a?). 2.8)
This divergence in one of the principle axes can be practically determined with the following
equation
i (W,(2))
Q)= L{@TT (2.9)

Figure 2-1 also illustrates agenera beam’s second moment radius and divergence.

2.1.3 Mixed Moments

Mixed moments arise because the electric field distributions E(X,y) are described by

complex functions. The exact mathematical definitions of the mixed moments can be found
on page 100 of reference 23.
The physical attributes of the mixed moment are as follows [18], [23].

(x q,) isrelated to the radius of curvature

(x q,) describes the rotation of the beam while propagating

(x y) characterises the orientation of the near field energy density ellipse with respect
to the reference frame

<qqu> characterises the orientation of the far field energy density ellipse with respect to

the reference frame.
The last three attributes are illustrated in Figure 2-2.
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Only (xaq,), which is related to the radius of curvature, is found in beams originating from

simple laser resonators.

a

A non rotating beam

< (0 \

b

A rotating beain

wxe},?“
y-lab

Cc

Figure 2-2 :lllustration of the mixed moments. (&) shows a non-rotating beam, (b) a rotating
beam and (c) the near field ellipse orientation to the reference frame.

2.1.4 Thegeneral ABCD law

The three moment types of Sections2.1.1 to 2.1.3 can now be combined to fully describe
beams in three dimensions using the general ABCD law. The general ABCD law for one-
dimensional opticsisonly valid for beams when the moment definition is used to define their
beam properties. This is mainly because beams defined by moment theory can be simplified
to rays (Section2.1.1) and can also be proved by applying the Collins integral to the
definitions of the beam radii and divergence angles [23], (Section 2.1.2).
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A few properties following from the ABCD law are defined in Table 2-1. All these properties
can be determined by carefully measuring the beam radius at various positions (slices) along

the beam propagation.
Minimum beam radius
(minimum spot size) (2.10)
Rayleigh Range (2.11)
Propagation Equation (beam radius)
a for divergence angles less than 0.8 (2.12)
radians.
Real radius of curvature
1 _1., II2 (2.13)
a2 R(@ pw(2
Complex radius of curvature (2.14)
Divergence angle (2.15)
The generalized ABCD law with o= Alger, + B
(w,)* = (wy, )" the beam waist and 2 Clg + D (2.16)
-0 With ABCD the elements of any
<W1q1> - . .
geometrical ray matrix.

Table 2-1: Properties derived from the moment definitions using the general ABCD law.

The principle planes of propagation, defined as XZ and YZ, are the planes containing the

major and minor axes of the beam profile ellipse (see Figure 2-2). The azimuth angle j is

defined as the angle between one of these two planes and the laboratory-measuring plane.

Only one angle is required because the two planes are orthogonal. In most cases, thisangleis

unknown due to the unknown symmetry within the laser cavity and can be calculated using
the following mixed moment equation on the two-dimensional beam profile,

2 olww, ) 0

i =

e 2

This equation is only valid for two-dimensiona energy density distributions. There are aso

(2.17)

other manual methods for one-dimensional profiles, which will be given in a later chapter
(Section 4.4.6).
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2.2 Second moment matrices

2.2.1 General structure

The second order moments (pure and mixed) can be arranged in a 4° 4 matrix called the
second order moment matrix V [23], [18], [43].

() (xy) (xa) {xq,)S
Vzg(xy) ) ya) (va,)z (2.18)
Sxa) (va) (@) (@a,)7

&xa,) (yay) (aay,) (o)) 3

For clarity the symbols are replaced with their physicad meanings in the following

representation of the second moment matrix [18]:

% widthx orientation near radius of propagation ¢
g field ellipse curvature-x rotation z
Q -
gori entation near s propagation radius of :
gfield ellipse rotation curvature-y :
v=% , o N
¢ radiusof propagation i orientation far ~
¢ i divergencex . ) -
¢ curvature-x rotation fiddellipse =+
Q -
Q -
G propagation radius of orientation far diverqence *
é rotation curvature-y field elipse g y :
o

Beams can be completely classified according to the structure of their second moment
matrices. Thiswill be done in the following sections for afew simple beam types.

2.2.2 Stigmatic beams

All circular symmetric beams are classified as stigmatic and have the following second

moment matrix structure [23],

géx2> 0 () 06

¢ o0 <x2> 0 (xq):
VSim le tigmatic — Q (219)
T dha) 0 (9f) o

¢

§0 (a) 0 (a);
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These beams are naturally unchanged by rotation due to their circular symmetry. All the terms
of the second moment matrix that are related to rotation are therefore zero. Before classifying
a beam as stigmatic, it must first be determined whether the beam indeed has circular
symmetry. A simple test to do thisis to determine the ratio between the radii on the principle
directions. If thisratio does not exceed 1:1.15 the beam can be considered stigmatic [24].

The most elemental example of stigmatic beams is simple stigmatic beams, which are
commonly referred to as Gaussian, or TEMy beams. Simple stigmatic beams can be fully
characterised by only two parameters, namely the waist radius w, and the radius of
curvatureR. Their beam radii and the divergence angles are indirectly proportional to each
other [33]:

Q) (w,)] = Qw, ='5 (2.20)

This product of the beam radius and divergence is called the beam parameter product.

General stigmatic beams are also circular symmetric but do not have a specific relationship

between w and q . Their beam parameter product (k) is not necessarily aconstant (1 \p)
[23]. The beam parameter product is now defined as:

[(W, )(Q)] = Ky, - (2.21)
Their beam parameter product (kg ) has to be measured and is always equal to or larger than

the value for simple stigmatic beams (I \p). A closely related, but extremely useful
parameter, called the beam quality factor (M ? factor), can now be defined by rewriting Kyig

to compare it with simple stigmatic beams, which are the ideal beam type. The beam
parameter product can be rewritten by using Equation (2.20),

) Q=M @222)

or using Equation (2.11)

2

P {w,)

I (z)

The M? factor is always larger or equal to one, with one indicating a perfect simple stigmatic

M2 (2.23)

beam. General stigmatic beams are therefore characterised by three parameters. These are the

waist radiusw,, the radius of curvature R and the beam quality factor M?.
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2.2.3 Astigmatic beams

Astigmatic beams are defined as noncircular, implying that they have two principle directions

with no set relationship between w, R and M? in each direction. The most elementary of
these are the simple astigmatic beams, which are non-rotating and do not change their energy
density profile during propagation. Their beam parameter product (in one of the two principle
directions) is defined as [23]

I

gwo, ) (Q)H= MXZE (2.24)

Simple astigmatic beams need seven parameters to characterise them. These are the waist

redii w,, and w,, the radii of curvatureR _and R , the beam quality factors M and M}

Y
and the azimuth angle | between the x-axis of the beam coordinate system and the x-axis of
the laboratory coordinate system (See Figure 2-2). General astigmatic beams can rotate or
change their energy density profile function or shape as they propagate. Only their second
moment radii changes as the beam propagates o that the profile scale with propagation
distance. All the elements of their second moment matrices (Equation (2.18)) are non-zero
[23].

2.2.4 The scope of thisthesis

Laser beams that originate from simple stable resonators, and that have not been changed by
special optics, fall into the simple astigmatic category. Most of the theory on beam
characterisation has been developed for this type of beam [34], [8], [44], [24]. Any more
complex beam falls outside the scope of this thesis. A test is given in the next section to
determine if a beam is part of this subset, as beams that fall outside it are regularly

encountered in practise.

2.3 TheKurtosis parameter

In many cases, confirmation is needed that a beam is simple astigmatic. The Kurtosis
parameter can be very useful to determine this and is defined as follows [38], [28], [2]:

¥

() o(x- (x%)) 1 (x)dxy ) (x)clx
K = ¥ |

-¥

= = (2.25)

(<X2nd>)2 g A X - <x15t>)2><l (x)dxg2

v %]

&
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This Kurtosis parameter is a measure of how “sharp” abeam’s energy density profileis. The
following three types of beam profiles can be identified. Simple astigmatic beams that have an
exact Gaussian profile are called mesokurtic and have a Kurtosis parameter (K) of 3. Beams
that have sharper profiles than a stigmatic beam, have K values that are higher than 3 and are
called leptokurtic. Beams that have flatter profiles than simple stigmatic beams have K values
that are smaller than 3 and are called platikurtic [38]. Beams that change their K value in
either of the two principle directions as they propagate either rotate or change their beam
profile and can therefore not be simple astigmatic. To determine whether thereisachangein
K, profile measurements must be done in the near and the far field. Measuring errors must be
taken into account when comparing the two K values as well as the fact that there is a small
chance that the beam could have rotated with an angle that was a multiple of p . If the beam

rotated by p most beam profiles appears identical because they are usualy symmetrical

around the centre of mass (x) .

24 Summary

The framework from which to approach beam analysis was laid down by means of the second
moment theory. Different types of beams have been classified by means of a mathematically
elegant second moment matrix. The scope of this thesis has been identified and a test for
rotational moments and non-orthogonality has been given. This chapter was intended to be
sufficiently general to apply to al kinds of beams, not necessarily only to laser beams. The
next chapter will focus specifically on the development of a theory for laser beams that

originate from simple resonators.
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Chapter 3

Modelling of ssimple laser beams

Many ways have been found to model energy density distributions of laser beams since they
were first observed. These models can be divided into two different methods according to
their approach. The first focused on the generalisation of the two classical spherical and plane
wave models [33], [45]. Another method focused on the laser resonator and tried to find stable
energy density distributions or eigen-values for it [33], [23]. Not surprisingly, the solutions to
both approaches (after some simplifications) consist of the same basis functions. The
resonator approach and its solutions will be summarised in this chapter because it provides
additional information specific to laser beams.

3.1 Theresonator approach to model laser beams

Electromagnetic field distributions in stable resonators can be accurately calculated with the
well-known Huygens Fresnel summation [23].

An electric field distribution at a point A E(A) propagates into space in such away that each

point on the wave front is considered a source of asmall spherical wavelet. At another point B
in space, the resulting electric field is a superposition of al these spherical wavelets and can

be found by the following equation.

u o O g
E(B)=Ce™g E(xj,yj)r—cosquny (3.1

=1 i
With w the angular frequency, k the wavenumber, r; the distance between the two points
and q; the angle between the points and a reference direction. Resonator outputs can be

numerically simulated by starting off with an arbitrary beam profile and then applying this
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summation for alarge finite number of round trips to obtain stable electric field distributions
within the resonator. This hasfirst been calculated on adigital computer by Fox and Li in the
1960s [19]. Their calculations showed that after about 300 round trips a wave front profile
that appeared cosine remained stable. This was later established to be the energy density
distribution of the fundamental mode. A more sophisticated procedure called the Prony
method [45] also yielded mixtures of higher order modes. The numerical profiles are,
however, impractical because they cannot be used in analytical calculations even though they

were generated in the same way areal laser resonator would generate laser beams.

Some approximations have to be made to obtain anaytical results, which can be used in
further calculations. The Huygens Fresnel summation (Equation (3.1)) reducesto the Kirchoff
integral (Equation (3.2)) when the paraxial approximation’ is used [45], [23]:

EB)=- O A 32)
I e™ > r

Instead of using a point source an area source of size Q isused in the integral.

When ray transfer matrices [23], [45] are incorporated into the Kirchoff integra
(Equation (3.2)), it becomes the Collinsintegral (thisisvalid because ray transfer matrices are
also based on the paraxia approximation).

é u
P (Ax2 +Dx%- 25, + Ay + Dys2 - 22y

E, (%, Y,) =-i/l Be"Y @ (x, y;)e*'® dx,dy,; (3.3)

_ Bé
A, B, D are the matrix elements of the ray transfer matrixM = ?2 DS.
@

The ray transfer matrix for one round trip in the simple resonator pictured in Figure 3-1 is
[23], [45]:
e G 2Lg,06

Msimpleraonator = g(GZ _1)/2Lg, G B (3.9

with
G= 29192 -1 (3.5)

and
g =1-L/r, (3.6)

where r, isthe curvature of mirror i (i =1 or 2).

" This approximation is usually valid for most laser beams and only breaks down when alaser beam is focused
too tightly (i.e. wheresinq can no longer be approximated as (] )
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|E,|=0|E; | mirror 1 mirror 2

A ™~
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N

Figure 3-1: Simple resonator of length L and g parameters g; and g, with g, =1- L/r,.

=

Inserting the elements of matrix (3.4) into Equation (3.3) it isfound that

) e(lkL) 2 (G(x1+y1+xz+yz) 2(x1><z+y1yz))

@El(xl yl)eéz“"

E, (X, Y,) = “ax,dy, (3.7)

Thisintegra is an eigen-value problem with the following restrictions [23], [45].
1. Theelectric field profile must remain unchanged after afull round trip

E(x,y,2L) =s  €7“E(x,Y,0) (3.8)

where s = isthe complex eigen-value of order m and n.

S m =[S /€™ (3.9)
The real part of the eigen-value (|s ,,|) is smaller than one and is indicative of the
losses in the system. An extra phase shift of f _ isintroduced to the normal free space
propagation over the 2L distance because the eigen-value (s ,,) is complex [45]. The

total single period phase shift therefore becomes
Df ., =2kL +f (3.10)
2. Thistota round-trip phase must undergo aphase change of 2p . This isin accordance

with normal theory on standing waves, which states that for any standing wave an
integer number of half wavelengths must fit into the distance L it is contained in.

20q=Df _ =2kL+f (3.11)
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If 2pu/c is substituted for k (the wave number), the resonator eigen, or resonance
frequencies are obtained

cé f.u
u, =—a0+—20. 3.12
These frequencies produce longitudinal and transverse mode beating in laser outputs.

3. Theresonator symmetry must be taken into account when the integral (3.7) is solved.

3.2 Solutionstothe Collinsintegral

The standard and elegant Gaussian functions are solutions when the Collinsintegral is solved
with the restrictions respectively [5] of the previous section. These solutions consist of two
distinct parts, namely a defining function f and a Gaussian function part, G,
E=fe'® (3.13)

The elegant functions have acomplex argument for both the Gaussian function part where the
standard solutions only have area function part. Thisthesiswill focus mainly on the standard
solutions since beams originating from simple stable resonators can usually be described by
them [45]. Whenever the term Gaussian is used, it will refer to all the standard solutions.

3.2.1 The standard Gaussian solutions

The standard Hermite (Equation (3.14)) and Laguerre Gaussian (Equation (3.15)) solutions
are obtained when rectangular and cylindrical symmetry are respectively used in the base
functions [23], [29]:

, e(X2+ 2)u
- §C+y? Wzoo 2x u € U -k z |& +(m+n+1)tan”*(z

E(x,y,z): Eo - eg( y2)! e X ane\fy gZR()ge kz+( 1ten(2/ 7))} (314)

«[l+(Z/ZO) e oo(z)u e Woo )u
and

i o 4 2 cos(IF 2 i& ker(2p+1+ 2/2)Y

E(r,F,2) = 5 ee/vm(z) i Jor ;i p.g 2 23: SIF) | g 2R 8 erizptyan i)} (3.15)

1+(z/z,)° Weo(2 g EWe(2” i SN(IF)

with z,the Rayleigh Range, w,, the Gaussian beam radius, R(z) the Radius of curvature, k
the wave number of a plane wave, H, the Hermite polynomial of order n and L, the

Laguerre polynomials of order p and |.

The Hermitian polynomials are [52]:
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H, =1
H,(x) =2x
H,(X) =4x*- 2...
They obey the recursion rule
H,.,(xX)=2xH (X)- 2nH,_,(X). (3.16)

The Laguerre polynomials are [53]:
L,(x) =1
L(¥) =-x+1
L,(X) =0.5(x* - 4x+2)...
They obey the recursion rule
(n+L,,,(¥) =(2n+1- X)L (X)- nL,_,(X) . (3.17)

Resonators that have small defects on windows and mirrors automatically have rectangular
symmetry. The mgority of lasers have small defects and are therefore best-described using
Hermitian polynomials. However, high quality CW CO,, HeNe and severa other sealed off
laser systems often display cylindrical symmetry.

The energy density is amuch more practical quantity than the electric field. It is proportional
to the square of the amplitude of the electric field.

|@)=2?{RdEﬂ? (3.18)

The energy density distribution for rectangular symmetry can be found by inserting
Equation (3.14) into Equation (3.18).

é 2 2,2
u z < a’\‘x +y )0
Imn[X Y, Z] |E0| e;u H 2 ? 2X l:IHZ e \/_y u - W B (319)

efir(ziz)l @b S0

and for cylindrical symmetry using Equation (3.15) it is similarly found that

z 2
é u J
_ 08 2a 1 €2r’( U , €2r’(2) U -, (Z) cos’(If )
I [r.f,z|=—=2 € l,J ’ & —~(e (3.20)
o2 2 5 g\/1+(z/2023 @0 " e’ (D Tsin’(if)’

Multiple solutions can be found by inserting integersinto m and n of Equation (3.19) or into
p and | of Equation (3.20). These solutions are referred to as Transverse Electromagnetic

modes (TEM) of lasers because they describe the variation of the optical fields in the cross-
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sectional planes perpendicular to the propagation axis. The electric field of any arbitrary
paraxial beam can be expanded using the Hermitian or Laguerre functions which are
orthogonal to each other. Theintensity of this electric field will therefore not have cross terms

because of the orthonormality condition.
¥ -
Ol (X, 2 Un(x, 2)dx =d,, (3.21)
-y

Where

Un isthe either the Hermitian or Laguerre functions [45].

Real laser beams therefore consist of alinear combination of these solutions in either of the
symmetries [45]. The next few sections will discuss these solutions in more detail.

3.2.1.1 Thefundamental TEM oo mode

Figure 3-2 shows the energy density distributions of the first or fundamental TEM o mode for
both the Hermite and Laguerre Gaussian solutions. This solution is found when setting

m=n =0 for rectangular symmetry or p =1 =0 for cylindrical symmetry.

intensitv
Energy densty

Radial distance

Figure 3-2: TEM energy density distribution in two (A) and one (B) spatial dimension(s).

Theradia distribution of the TEM modeis called a Gaussian distribution. The TEM mode
is therefore commonly referred to as the Gaussian mode. It is classified as simple stigmatic
and is considered the ideal to which all other beams are compared (Section 2.2.2).

A TEMq beam is preferred in many high precision applications since

it has the lowest divergence,
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it can be focused the tightest,

it has no local points of high energy density (hot spots),

itscircular profile is sought after in many applications (to drill holes for example) and
it couples well into waveguides.

The Gaussian beam radius w,,(z) is defined as the lateral distance from the z-axis where the

energy density is 1/€” (~13.5%) of the maximum M -value on the axis. It is found by
integration that the energy that is contained within a circle with this radius centred on the z-
axisis 86.5%. This beam radius also corresponds exactly to the second moment radius (w) of
the TEM g mode. w,,(z) isalogica definition for the beam radius since it occurs naturally in

the exponent of both solutions of Equations (3.14) and (3.15).

The following properties follow naturally from the Gaussian solutions and are illustrated in
Figure 3-3[33], [23], [45].
The TEMqo beam radius w,,,(z) varies hyperbolically in the propagation direction z

according to the following relation:
Woo (2) =W 01[1+(2 1 2,7) (3.22)
where the minimum beam radiusis Wy, , -

The Rayleigh Range ( z,) is a measure of the extent of the waist region and is defined

as the length where the beam area has doubled from that at the waist:

W (Z) :WOO,O‘/E (3.23)
or
2
z,= PWooo (3.24)

I
g(2) isthe termed the beam parameter or complex radius of curvature. Its amplitude
changes as the beam propagates.
1 _ 1, il
a2 R@ pwe(2)

R(z) istherea part of q(z) and is commonly referred to as the radius of curvature. It

(3.25)

isinfinitively large at the waist position.

2

R(z) = z+% (3.26)
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The angle of divergence Q is defined as the half angle between the propagation

direction and one of the asymptotes to the beam radius hyperbole:

Q=lim"e(? (3.27)

® ¥ Z
The TEMg mode is simple stigmatic so that Qw, =1 /p [54] or

Q - I - WOO,O .
pWOO,O ZO

It can be proved that the ABCD law of geometrical optics can be used to change the

(3.28)

complex radius of curvature q(z) as the beam propagates [23].
_Aq+B

=1 3.29
% = g 1D (3:29)

where A, B, C and D are the elements of any geometrical ray matrix.

i

-
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beam waist
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Figure 3-3: Hyperbolic variation of the beam radius of a TEMy beam and the illustration of
other beam properties.

3.2.1.2 Rectangular symmetric higher order modes

All the pure rectangular TEM,y, modes with the exception of the fundamental mode are
referred to as higher order rectangular or Hermitian modes. Equation (3.19) is plotted in one
and two spatia dimensions for fixed m and n valuesin Figure 3-4 and Figure 3-5. It can be
seen that that there is a direct relationship between the higher order mode number and the
number of nodes or zero points of the energy density distribution.
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The energy density profiles of the TEM,y, X0 and TEM,, OY modes are completely separable
in Cartesian coordinates due to their rectangular symmetry. This implies that the normalised
profile obtained by setting y=0 in Equation (3.19) (Figure 3-4 B) and that obtained by
integrating in the y direction are identical. The graphical proof of this can be seen in
Appendix C. Whenever these solutions are used in further calculations (like integrals),
rectangular coordinates must be used.

Intensity

/\/\ di stance transverse
B

Figure 3-4: The energy density distribution of the TEM,, 03 mode in two (A) and one (B)
gpatial Cartesian dimension(s).

The rectangular nature of the Hermitian functions is more apparent in mode structures
consisting of the same higher order mode number in both the transverse directions. This can
be seen in Figure 3-5 B. The rectangular shape also becomes more noticeable as the mode
number isincreased.

T

Ny

A B

Figure 3-5: The energy density distribution of the TEM,, 22 mode in two spatia dimensions
(A) and acontour graph (B) of it in two spatial dimensions.
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3.2.1.3 Cylindrical symmetric higher order modes

All the pure cylindrical symmetric TEMp PL modes with the exception of the fundamental
are referred to as higher order cylindrical symmetric or Laguerrian modes. The energy density
distributions for afew cylindrical symmetric TEMy PL modes are shown in Figure 3-6. Plots
of the full two-dimensional energy density distributions of Equation (3.20) can be seen to the
left and their respective contour plots to the right. These contour plots will also be the
patterns, which are observed on a carbon block or thermal paper when a high power laser

beam impinges on it.

For cylindrical symmetric modes the differences between pure modes in the two principle
directions are more apparent than in rectangular symmetry. The higher order mode number is
again related to the number of nodes. The first mode number p, gives the number of node
rings in the azimuthal direction (See Figure 3-6 A and B). Because of these ring patterns the
pure azimuthal TEM PO modes have the appearance of adroplet hitting aliquid surface.

The second mode number | isrelated to the number of node linesin theradial direction, which
gives the pure radial TEMp OL modes a star-like appearance (see Figure 3-6 E). An asterisk
after this mode number indicates that the sine instead of the cosine is used in the generating
function Equation (3.20) the difference between using the cosine and the sine being that the
position of the peaks and nodes are interchanged for even mode numbers because of the p /2

phase difference between sine and cosine functions. This difference is purely artificial since
any radial mode that permanently remains in any one azimuthal position would favour a
Cartesian direction. The modes could therefore only temporarily form in one azimuthal

direction since there should be no restriction on them to form in any other azimuthal direction.
A mixture of radial and azimuthal mode structures gives the temporary energy density pattern
aflower like appearance (See Figure 3-6 G and H).

These cylindrical symmetric solutions are not separable in the Cartesian coordinates in

contrast to the Hermitian modes. Whenever these solutions are used in further calculations

(like integrals), cylindrical coordinates must be used.
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Figure 3-6: Three-dimensional energy density distributions (left) and carbon block patterns
(right) of various pure cylindrical symmetric modes. A and B are TEM, 20, C and
D areisTEMy 01, E and F are TEM 03 and G and H are TEMy 33.
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3.2.2 Classification of Gaussian beams according to the second
moment matrix

The fundamental or TEMg, mode of both symmetries qualifies as simple stigmatic. All
cylindrical symmetric beams are stigmatic by definition (Section 2.2.2). Any rectangular
higher order mode combination that passes the circularity test is naturally general stigmatic.
An example of thisis pure double rectangular modes where m=n. All the other rectangular
higher order modes are simple astigmatic.

It is commonly thought that simple astigmatic beams are the most undesirable kind of beams
that can emanate from simple resonators. Large defects on the optics can, however, cause
phase instabilities so that the standard Gaussian solutions are no longer valid. The test for
simple astigmatic beams (Section 2.2.2) should always be applied if the optics are degraded,
of low quality or if other diffractive elements are present.

3.3 Application of second moment theory to Gaussian
modes

The moment integral and definitions were derived to describe beams in general. The eigen-
functions for the standard Gaussian beams were derived from the Huygens Fresnel equation.

Relations for the radii, divergence and M? values of the pure higher order modes can be
determined by substituting their energy density eigen-functionsinto the integral definitions of
Chapter 2.

3.3.1 Thegeneral second moment radius

Therectangular energy density distribution (Equation (3.19)), substituted into the equation for
the second moment radius (Equation (2.4) and (2.6) with (x'*) set to zero), gives arelation

for the second moment beam radius for rectangular symmetric modes:

+¥

OX°Hz gx/ixlwoo Ue
-¥

+¥

OH? g\/EX/ Weo e 240 g
¥

2(x2 /WSO)

dx
(w,)=2

(3.30)

The two integrals in Equation (3.30) are standard solutions for the quantum mechanical one-
dimensional harmonic oscillator (Equations 7.15 and 7.17 of [22]). Inserting the solutions for
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these integrals into Equation (3.30) provides the relationship between the radius of a
rectangular higher order mode and that of the TEM o mode,

(W, ) =v2m+1wy, . (3.31)

Similarly, when inserting the cylindrical energy density distribution (Equation (3.20)) into
Equation (2.5) it is found that

(W ) =~2p+1+1w, (3.32)

The second moment radii of the rectangular TEM,, 01 and cylindrical TEM 01 modes differ
substantially even though in text books their two-dimensional energy density profiles are
given asidentica [23] , (Figure 3-6 C and D). The reason for thisisthat cylindrical symmetric
modes are not allowed a preferential azimuthal direction, which makes cylindrical integration
different from rectangular integration. The practical implications of this will be discussed in
more detail Section 5.1.2.2.

3.3.2 Thegeneral second moment divergence

The general second moment divergence for pure rectangular symmetric modes is found by
inserting Equation (3.31) into Equation (3.22) and using the result in the equation for the
angle of divergence (Equation (2.9)), yielding
_~2m+1]
Qe
W00,0 p

Similarly for cylindrical symmetry, inserting Equation (3.32) into Equation (3.22) gives

(3.33)

<Qp,| > _N2pHiHLl (3.34)
WOO,O p

3.3.3 Thebeam quality factor (M?) for Gaussian laser beams

General beam theory states that according to Equation (2.22)

o .
Inserting Equations (3.31) and (3.33) into Equation (3.35) it is found that
é N u
M2 =p ev2meiw, 2Ll (3.36)
e Weoo P@

so that
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M2 =2m+1. (3.37)
Similarly, for cylindrical symmetry it is found that
M, 2 =2p+l+1. (3.38)
M? is called the beam quality factor, which is always larger or equal to one (Section 2.2.3).
M? =1 indicates a perfect TEMg beam. It can also be proven when inserting Equations
(3.37) and (3.38) into Equations (3.31) and (3.32) respectively that
(W, ) = Mw, . (3.39)
The M -vaue therefore indicates how much larger than the ideal TEMy, beam a measured

beam is. Note that Equation (2.12) has to be used when the M? factor is determined by
measurement of the beam propagation.

3.4 Summary

Beams originating from simple resonators with cylindrical and rectangular symmetry were
modelled from basic diffractive principles. A theoretical framework is now in place to
evauate real |aser beams. In the next chapter, various methods to measure the beam quantities
discussed in this and the previous chapter are presented.
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Chapter 4

M easur ement, definition and correlation of
laser beam radii

The spatial properties of a beam can be determined by measuring its radius at severd
positions along the beam propagation axis. It is therefore very important to measure the radii
carefully and to use a consistent definition of the beam radius. This chapter will give an
overview of different beam measuring techniques, which are closely related to different beam

radius definitions. It will also present correlations between the different beam radius

definitions and their resulting beam quality (M ?) values.

4.1 General measuringtechnique

The term “beam characterisation” refers to the measurement of the beam propagation as
defined in Equation (2.12). The beam radius at any other z position (along the propagation
axis), the beam quality factor (Equation (3.35)) and the divergence (Equation (2.9)) can be
calculated from the measured beam propagation.

The beam propagation is obtained by measuring the beam radius at severa z positions.
Usually the waist is not accessible so that an artificial one needsto be created with afocusing
lens [23]. Johnston proposed that measurements at only four positions along the beam
propagation direction are necessary [25]. The ISO [24] specifies that at | east ten are necessary
and that at least half the measuring points should be within the estimated waist region and the
other half should be distributed beyond two Rayleigh range lengths (Equation (2.11)) from the
beam waist position. The frequency of the measuring points should aso be doubled in the

waist region [24]. This ratio and frequency has not been proven and can possibly be the
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subject of future study. Figure 4-1 illustrates the generation of an artificial waist of a beam
propagating from alaser source as well as the 1ISO recommended measuring points.

Focusing Lens Ealdgh Eange

Lazer

hMeasmring positions

Figure4-1: The artificial waist method. The arrows indicate the suggested measuring
positions according to the 1SO standard.

The 1SO further specifies that at least five measurements should be performed at each
measuring position along the propagation direction and the mean taken as the beam radius.
This is not aways possible with slow, low frequency measurements. The hyperbola of
Equation (2.12) is then fitted onto the measured radii, which should be weighed inversely
proportional to their magnitude, by means of aleast squares method. The beam propagation
properties are then obtained from the fitted functions. In the next section, several methods are
discussed to measure the beam energy and energy density profiles at the different locations
from which the beam radii can be determined.

4.2 Detection of beam profiles

Different beam profiles are closely related to different beam radius definitions. The profiles
and ways to measure them are therefore discussed before the beam radius definitions are
presented.

421 CCD cameras

Most modern beam analysers make use of cameras containing charge coupled device (CCD)
detector arrays. The images are read into a computer where they are post-processed by
software so that they can be viewed in one or two spatial dimensions (See Figure 4-2). The



beam radii are then calculated directly from these one or two-dimensional energy density
distributions. The working range of these cameras typically extends from 100 nm in the ultra
violet to 10 mm in the far-infrared when broadband coatings are applied [50]. Most
broadband cameras are, however, not linear at 10 nm so that specialised pyro-electric

cameras have to be used in thisrange.

Figure4-2: CCD camera and a two-dimensional energy density profile on a personal
computer screen [50].

CCD camera profilers have the following advantages:
They provide almost instantaneous two-dimensional information.
They can perform single shot measurements in pulsed lasers.
They are a relatively low cost solution for lasers emitting in the visible and UV
wavelengths.

They are available in different models and software packages.

CCD camera profilers also have the following disadvantages:
Their resolution islimited by the pixel size (15-20 pm).
M easurements from CCD cameras in focus positions can be inaccurate.
Methods to attenuate high-power laser beams to protect CCD cameras can distort the
beam.

CCD cameras are expensive when designed for far-infrared wavelengths.
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4.2.2 Moving pinhole method

A pinhole is used to scan across abeam in front of alarge area detector to obtain either one or
two-dimensional energy density profiles. Thisisthe time consuming mechanical equivalent of
acameraor linear diode array.

The pinhole method has the following advantages:
The pinhole method is a cheap way to obtain atwo-dimensional profile of abeam.
The method can be applied for awide range of lasers.
Pinhole profilers can be used for high power lasers.

The method can measure beam profiles very accurately.

The pinhole method a so has the following disadvantages:
The method usually has avery low signal to noise ratio.
Pinhole profile scans can miss anomalies when performing one-dimensional scans.

The method is slow when compared to cameras.

Transmitted beam

Large area
detector

Blocked
beam

Translation stage

Translation stage

Figure 4-3: A pinhole that is mounted on two translation stages allowing only afraction of the
beam to fall onto large area detector.
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4.2.3 Moving dlit method

The moving dlit method is the most widely used and straightforward technique to measure
beam radii. A slit that is no wider than approximately 1/20™ (5%) of the beam diameter cuts
the beam laterally by means of a mounted translation stage in front of a large area detector.
The transmitted energy is then measured as a function of the position of the dlit (See
Figure 4-4. The length of the slit must at least cover the diameter of the detector and be no
less than twice the beam diameter. The energy density is integrated in the direction
perpendicular to the movement of the translation stage. The resulting profile can therefore be
referred to as the dlit integrated profile in the direction of the movement of the translation

stage. For conciseness, these profiles will only be referred to as slit profiles.

Large area detector Hocked heam
Transmitted
beamn

Moving slit

Translation
stage

Figure 4-4: A dlit that is mounted on atranslation stage allowing only a fraction of the beam
to fall onto large area detector.

The energy transmitted by a slit can be mathematically modelled.

When adlit of length 2L and width 2W is scanned in the x direction across a beam with atwo-
dimensional energy density distribution F(X,y), the transmitted energy at an arbitrary
position x, is

+L Xp+W

E.(0= O O F(x y)ixy. (4.1)

-Lx,-W
The implications of varying the dlit width are now demonstrated by inserting a two-
dimensiona TEMq, energy density distribution (Equation (3.19) with the mode indices
m=n=0) into Equation (4.1). It isfound that for aspecific z position
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and after integration it is found that [56]
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where k isthe constant arising from the definite integral in the y direction.

Figure 4-5 A depicts the dlit profiles of a TEMy beam with a Gaussian radius of 1mm
calculated with Equation (4.3) using various slit widths. It can be seen that at a slit width of
25% of the beam diameter, it becomes difficult to distinguish the dlit profile from the
theoretical TEM profile (dashed).
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Figure 4-5: (A) shows dlit profiles of a TEMq, beam calculated with varying degrees of slit
widths. (B) shows an expansion of A indicating the difference in profilesusing slit
widths less than 5% of the beam diameter.

The error made by using afinite slit width is called a convolution error. Figure 4-5 (B) shows
an expanded section of Figure 4-5 (A), indicating that that there is still a difference between
the TEM profile and the transmitted energy profiles for slit widths smaller than 5% of the
beam diameter. This difference is usually much smaller than the measurement error for these
narrow slit widths. The signal to noise ratio increases dramatically as the dlit width is
decreased so that it is often necessary to compromise between the signal to noiseratio and the

convolution error when choosing a slit width. When the signal is aready low, the slit width
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needs to be changed at severa positions along a focused beam. Under these circumstances,
slit scanning can become avery difficult technique to automate. It is often necessary to reduce
the laser power or energy in order to avoid this. The signal to noise ratio can then become so

low that the slit method becomes extremely inaccurate.

The slit method has the following advantages:
Moving slits can be used to scan high-power lasers.
Slits can vary the transmitted energy density without having to adjust the level of
attenuation simply by varying their width.
Slits can measure over awider area than cameras.
The method provides high accuracy over a wide range of wavelengths and test

conditions.

The slit method also has afew disadvantages:
The method can perform beam analysis in only one dimension at atime.
Results from this method are susceptible to mechanical vibrations due to the slow
speed. This forces the instrument to be large and bulky.
The signal to noise ratio of this method is too low in many cases to be able to use a
single glit width for al the profile measurements along the beam propagation
direction.
In many cases, the method cannot be used at all because the signal to noiseratio istoo

low.

4.2.4 Moving knife-edge method

This method employs a knife-edge, which cuts the laser beam lateraly by means of a
translation stage in front of a large area detector. The energy density is integrated over the
uncovered area and the transmitted energy is measured as a function of the position of the

knife-edge.
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Transmitted
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Hocked beam

Translation
Stage

Figure 4-6: A knife-edge mounted on a translation stage allowing only part of the inflowing
energy to fall on alarge area detector.

The energy transmitted by the knife-edge can be mathematically modelled.

A knife-edge of length 2L scans a beam with energy density distribution F(X,y) in the
arbitrary transverse direction x. The beam is initialy fully blocked off by the knife-edge,
which then opens up the beam from a position that is approximated as infinite far away to a
genera position X .

The transmitted energy profile will then be

L X

Eire(X) = Q QF (X, y)dxdy (4.5)

The knife-edge length is usually approximated asinfinite wide so that L can bereplaced by ¥ .

The transmitted knife-edge energy of aTEMy modeis

¥

-2x2
O @ dx (4.6)
X

ce 2 ¥ \,:,22y2
Evnire (X) :70|E0| C\)e 00(Z)dy
¥

After integrating, normalising and using of the error function (Equation (4.4)), it is found that
the knife-edge energy function for the TEMy modeis

1é & J2x6 U
Eknifegauss(x) == éerf g\NZL :+ 11;' (47)
28 @Dy g
Plotted, the TEMy, knife-edge profile appears sigmoidal. The formation of this sigmoidal
distribution can be conceptualised from Figure 4-7.
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Figure 4-7: The energy density and energy profiles of a TEMq beam with wy,,  =1.

The transmitted knife-edge energy of the first Hermitian higher order mode (TEM,y 01) is
given by the following normalised energy function:

128 -2(x- 6 [2ex- x,0 -2%%d
Fumrana(X) = gl (7 2 s1r [T Ko s 8)

WOO,x Q p WOO,x 4]

The formation of its knife-edge energy profile can be conceptualised from Figure 4-8.
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Figure 4-8: The energy density and energy profiles of a Gaussian TEM,y, 01 beam with
W, =1.

The energy functions, energy density distributions and energy distributions of pure

rectangular higher order modes up to TEM,, 05 can be found in Appendix A. The energy

profile of abeam can also be obtained by integrating its slit energy density profile.
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The knife-edge method has the following advantages:
Knife-edge scans provide the tota energy at every scanning position in the
propagation direction so that the energy stability of the laser can be monitored.
It is the preferred method when the signal to noiseratio islow.
Knife-edges can measure over awider areathan cameras.
The method provides high accuracy and submicron resolution over a wide range of

wavelengths and test conditions [55].

The knife-edge method aso has afew disadvantages:
Knife-edges cannot analyse very high-power lasers (the detector would be destroyed).
The method can perform beam analysisin only one dimension per scan.
The methods cause it to be susceptible to mechanical vibrations, forcing the measuring
instrument to be large and bulky.
The method is also limited because not al beam radius definitions (discussed in

Section 4.3) can be applied to its profile due to feature loss in the integration process.

4.2.5 Variable-aperture method

High quality irises, or apertures of different sizes, are used to cut the beam circularly. The
transmitted energy is then recorded as a function of the aperture radius. This method can be
thought of as the knife-edge method for cylindrical symmetric beams. This is because the
aperture cuts the beam between the cylindrical radial axislimitsof O and ¥ while integrating
between the azimuthal limits of 0 and 2p . The knife-edge, on the other hand, makes use of
rectangular symmetry to cut the beam between any two Cartesian coordinate axis limits of
-¥ to¥ while integrating in the other direction. There is no practical equivalent to the dlit

method using physical cylindrical symmetric scanning devices.

The variable aperture method requires automatic centering, the development of a motorised
calibrated iris and can only be used to measure stigmatic beams. In order to evaluate if the
beam is sufficiently circular, the ratio between the radii on the two principle axes must be
determined with a different scanning method. The variable-aperture method is therefore the
least versatile [24] of all the methods discussed so far and will be omitted from future sections
concerning beam characterisation. It does, however, have other practical applications as will
be seen in Section 5.1.1.
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Figure 4-9: Variable-aperture method illustrated from the front and the top.

4.3 Beam radiusdefinitions

Several definitions of the beam radius were made over the years based on these different
profiles. Each definition is particularly suited for a specific application [4]. The moment
definition of Chapter 2, which applies to energy density profiles, is theoreticaly the most
complete definition. It also provides simple relations for calculating the radii and M ? values
for pure simple Gaussian modes (Section 3.3). It is for these reasons that the 1SO recently
made this definition the standard one. Other definitions are, however, better suited for

practical applications.

4.3.1 Second moment radii

The second moment approach, as described in Chapter 2, was first formulated in 1979 by
Carter for Hermitian beams [8]. The beam radii are obtained by using either two-dimensional
(measured with a camera or pinhole) or one-dimensional (measured with a slit or pinhole)
energy density profiles in Equations (2.4) or (2.5). Very precise scans of the beam profiles
coupled with very good noise deducting algorithms are necessary to obtain the correct second

moment radii.

This definition of the beam radius is well suited for beam quality measurements and for

classifying non-conventional beams such as general astigmatic beams. It was made standard
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by the 1SO [24], as was already mentioned, and will be termed the standard beam radius
definition. All other definitions are termed alternative beam radius definitions.

There are, however, afew complications with the second moment definition:
The second moment method is atheoretically elegant way of defining the beam radius,
but it is not very practical. There is for instance no straightforward relation between
the second moment radius and the energy content radius, which is more suitable for
energy flux calculations used in material processing.
For some applications, it is necessary to trace afeature on the beam profile like anode
or alocal-maximum. Thereis also no common relation between these features and the
second moment radius.
Second moment radii are extremely sensitive to noise in the wings of the energy
density profiles.
It is sometimes not possible to measure the energy density profiles, which are used to
calculate the second moment radii, due to low signal to noise ratios.
Another definition isusually employed when it is difficult to accurately measure entire energy
density profiles. If any alternative definition is used for beam quality considerations it has to
be shown that its beam radii are equivalent to those measured with the second moment
definition [24].

4.3.2 Energy density radii

An energy density radius is usually defined as half the distance between a specific feature on
either side of the centre of a beam’s energy density profile. Numerous attempts have been
made in the past to standardise laser beam radii by using some version of this definition.

Bridges [7] proposed two features in 1975, the first of which was the largest radius between
the centre of the beam and a point where the energy density is 1/e€* or 13,5% of the
maximum. This percentage is referred to asthe 1/e” energy density clip-level and reducesto
the Gaussian radius w,, for the fundamental mode. The second feature he proposed was the

radius of the largest node of the highest higher order mode.



Zheng [56] et a proposed to fit a TEMq profile to the dataand then to use the Gaussian beam
radius w,, (defined in Section 3.2.1.1) of the fitted profile. This technique is an option in

many of the commercial camera software presently available on the market, but only works

for beams which have amost an TEM g profile.

4.3.3 Energy content radii

This definition of the beam radius originates from the moving knife-edge method. An energy
content beam radius r. is defined as the distance between the transverse location of alower
energy point e .E and that of an upper energy point (1-e,) E, where E is the total beam
energy. These energy points (arrows in Figure 4-10) are referred to as clip-levels. Siegman
[46] chose the clip-levels (e,) of 10% and 90%, whereas the 1SO chose clip-levels of 16%

and 84%. Siegman’s choice was based on correlating the knife-edge with the second moment

method whereas the |SO’ s was chosen to match the fundamental mode radius.
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Figure 4-10: Illustration of how the energy content radii are defined.

A beam radius obtained by this method can be directly used to calculate the fluence, which is
not possible with other methods unless the relationship between the beam radius and the
energy content is known. Radii originating from the variable aperture method are also
classified as energy content radii. The variable aperture radius of a beam is defined as the

radius of the circular variable aperture (Section 4.2.5) which transmits a certain percentage e,

(the variable aperture clip-level) of the total beam energy. The radius of a variable aperture
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that is reduced around a TEMgy beam will be identical to the Gaussian radius w,, if 86.5% of

the total energy is transmitted [24].

4.4 Determining the beam radii from measured profiles

4.4.1 Manual acquisition

Siegman [46] proposed to manually scan the beam with aknife-edge and read off the distance
between two knife-edge clip-levels. He did, however, suggest that more information could be
obtained by measuring the entire knife-edge energy profile. The 1SO [24] also proposed this
method when alternative beam radius definitions are used (Section 4.5.3). A disadvantage of
this method is that it is prone to human errors. The second moment radii can also not be
directly obtained by this method.

4.4.2 Low frequency acquisition’

The beam is scanned in set intervals with a mechanical scanner. This method is usually
employed to scan the beams from low frequency pulsed |aser systems. The scanning edges are
moved to set positions and the average over a certain number of shots of the transmitted
energy isrecorded. This method is best suited for knife-edge scanning. It can aso be used for
glit scanning using lots of very small intervals to obtain full energy density profiles from
which the second moment radii can be calculated. Knife-edge radii can only be accurately
determined from large interval scans by fitting appropriate functions to the data. (Such
functions will be discussed in more detail in Section 4.4.4). Energy profile fitting is typically
performed inside a mathematical program such as Matlab or Mathematica. The functions are
then solved at predetermined clip-levels to obtain the alternative beam radii. Fitting of low
frequency acquisition slit profiles with functions can be very unreliable as will be seen in
Section 4.4.5.

4.4.3 High frequency acquisition

Thistype of scan is used predominantly for very high frequency pulsed or CW laser beams. A
mechanical scanner is moved with a constant velocity across the beam and a fast large area
detector records the average transmitted power [4]. The position of the scanner for a

" This technique was employed in this thesis to obtain the beam radii of a CO, TEA laser.
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transmitted power level is accurately known if the speed and starting position of the
mechanical device are also accurately known and the detector is fast enough. The resolution
of the beam profile is therefore only dependent on the spatial and temporal resolution of the
photo detector. This method can therefore be very accurate and affordable, making it highly
attractive. The large number of data points can be directly inserted into integral (2.4) to obtain
the second moment radius. Pixel counting techniques are used to obtain knife-edge or dlit
beam radii. These techniques are aso used for camera profilers that have a large number of
pixelsin their CCD arrays[48].

4.4.4 Fitting of the energy profile

Diso et a [14] measured the entire knife-edge energy profile with the low frequency
technique and fitted the TEMg, energy function (Equation (4.7)) to the data with the least

squares method. They then used the Gaussian beam radius w,, (which they directly obtained

from the fitted function) in subsequent quality calculations. This technique can lead to large
errors for beams containing large percentages of higher order modes, because the TEMg
energy fitting function will not necessarily follow the measured data points. It is especialy
important to obtain good fits in the crucial 16% clip-level region. Figure 4-11 shows how a
TEM function misfits datafrom abeam with large higher order mode content. This error can
be minimized by adding the last term of the first higher order mode energy distribution
(Equation (4.8)) to the fitting function.
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Figure 4-11:A TEM energy distribution mis-fitting the energy profile of areal higher order
laser beam.
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The TEMy fitting function is directly found from Equation (4.7) by substituting P, and P, as

the two fitting parameters for x, and w(z) respectively.

Y—— Ee\/_(;( P)O u 4.9

28 2 o u
It can be seen from a comparison between Equations (4.7) and (4.8) that there are many
similarities between the knife-edge energy functions of the fundamental and first higher order
mode. An extrahigher order component isjust added to the function of the fundamental mode
to obtain the first higher order mode function. Accurate fittings can be obtained by adding a

weight P, to control how much of this higher order component is added.

ax- B '22 i
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The improvement is visually verified in Figure 4-12 by fitting the new function (4.10) using
the same large higher order mode content beam of Figure 4-11. The chi-squared value (gives
an indication of the fitting error from the least square method) decreased an order of
magnitude from 0.00034 to 0.00009. Other higher order mode terms can also be added with
ease since the first TEMqo parts for al the higher order mode distributions remain unchanged
and only terms with uneven powers of x are found in the higher order functions (Appendix
A). One does not deduce anything from the relative fitting parameters but only use the fitted
function to obtain beam radii using clip levels. One could therefore aso use other functions

like polynomial fits.
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Figure 4-12:A TEMyy oo+01 €nergy function fitting the energy profile of a higher order beam.
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4.45 Comparing energy and energy density profilefitting

The errors made when fitting a TEMq energy density profile (Equation (3.20) with
m=n=0) to the dlit profile of a beam that contains a percentage of a higher order mode is
much larger than the errors made when fitting the TEMq, energy profile (Equation (4.7)) to
the same beam’s knife-edge profile. This can be observed by comparing the TEMq, energy
density fit on the dlit profile to the TEMgo energy fit on the knife-edge energy profile of the
same beam with a higher order component in Figure 4-13. The errors made in the energy
density fit are enormous compared to those of the energy fit. It is therefore not recommended

to use fit techniques on energy density profiles.
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Figure 4-13: In A the fitting of the TEMy, energy density profile on the slit profile of a beam
with a higher component can be seen. B shows the fitting of the TEMy, energy
profile on the knife-edge energy profile of the same beam.

4.4.6 Determination of the principle axisfor one-dimensional
ScCans

The orthogonal Cartesian measuring edges (slit or knife-edges) are rotated until roughly equal

beam widths are obtained in both directions. Beam measurements at each azimuthal angle can

consist of only a few measuring points or be done manually. The edges are then rotated by

45’ toyield the principle axis. Equation (2.17) can only be used if the entire two-dimensional

beam energy density profile was measured with acameraor pinhole [24].

4.5 Corrdations between the second moment and
alternative radii

The second moment definition of the beam radius (Section 2.1.2) was standardised by the ISO

and is best suited for quality considerations. The energy and energy density definitions are,
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however, better suited for practical applications such as flux calculations and feature tracing.
It is necessary to find correlations between the standard and different aternative definitionsto
fully characterise alaser beam spatially. Researchers have attempted to do this for years, but
correlations proved elusive since it was found that there is not a general one-to-one
relationship between the second moment and alternative methods [44]. The second moment
radii can also only be determined directly from alarge number of measuring points which are
inserted into the noise sensitive second moment integra (Equation (2.4)). For some
applications, this large amount of data pointsisimpractical (especialy for manua scans). For
other set-ups, the entire beam cannot be accurately slit or pinhole scanned at al due to alow
signa to noise ratio. Correlating the second moment definition with aternative ones is
therefore still very relevant. In the next few sections, methods are described to correlate

between the second moment and alternative methods.

45.1 Measurement of correlation factors: the SPSM method

Simple astigmatic beams do not rotate or change their energy density profile during
propagation (Section 2.2.3) so that the relationship between the second moment radii and
alternative radii remains invariant. It is therefore only necessary to determine this relationship
a one position along the beam propagation direction. This can be done by carefully
measuring the energy density profile at this position and then determining the second moment
and alternative radii from it. The energy profile that is needed to determine the knife-edge
radius is not physically measured, but rather obtained by mathematically integrating a slit
profile (Section 4.2.4). The entire beam is then characterised by means of an alternative
method and the correlation applied to each radius to determine the second moment
propagation and M -value. This method is termed the single position slit measured (SPSM)
correlation method.

This method is probably the most straightforward and simple to implement, but it does have
some disadvantages. Plasmaformation [1], [11] is sometimes encountered on scanning edges
at the artificial waist. The beam needs to be attenuated to eliminate this, which in turn reduces
the signal to noise ratio. If the signal has to be reduced by alarge amount only the knife-edge
method can be used to scan the beam. To measure the correlation factor the attenuator has to
be removed to perform a single slit energy density scan some distance from the waist. The
knife—edges also have to be removed and replaced with slits. These two extra operations have
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to be done very carefully to ensure that the beam does not shift and that the two scanning
devices have the same azimuthal angle. It is aso very difficult to implement this in
commercial systems. To avoid this, mathematical correlations have been developed and are

discussed in the following sections.

45.2 Siegman’sknife-edge correlation for rectangular Gaussian
beams

Siegman investigated the effect that clip-levels value (e, ) have on the relationship between

the energy content radius r.., and the second moment radius (w) [46]. He used a graphical
approach by plotting the knife-edge transmitted (fractional) energy versus the clip width D,
(knife-edge radius) normalised to the standard deviation (™) as defined in Equation (2.4).

He did this for several commonly found beams overlaying each other. The fractional energy
was used as the clip-level e because it was normalised to one. Siegman mostly examined
lower and higher order Hermite Gaussian beams. He also included afew peculiar beams such
as diamond, picture frame, top hat, slit and doughnut shaped beams. His am was to find a
common relationship between a wide range of energy-content and the second moment beam

diameters at an optimum knife-edge clip-level.

Fractional energy

Figure 4-14:Siegman’s clip-level plot for higher order rectangular Hermitian modes.

51



Siegman’s approach was to find a clip-level where the correlation factor D, /s, is, within

certain error limits, roughly the same for al the commonly investigated beams. This implies
that he sought a converging point when plotting these moment-normalised graphs overlaying
each other. In one of his graphs, he plots the fractional energy of the first seven higher order

modes versus D /s, (Figure2 of [46]). A Similar composition up to mode TEM, 05 is

shown in Figure 4-14. In an expanded view shown in Figure 4-15, it can be seen how he
found that there was indeed amost a converging point at a clip-level of around 8%. For all
practical purposes al the modes converge to a point at this clip-level, with the exception of
the TEMy mode. The TEMg, mode cuts the other modes at significantly higher clip-levels.
His eventual finding was to use aclip-level of 10% and aresulting correlation factor of 2.563
as acompromise. The energy content radius is then related to the second moment radius with
the following function at a clip-level of 10%:
(w) =0.7805w, . (4.11)

One drawback of this approach is that most laser beams do not consist of pure modes, but
rather of a superposition of them [45]. Siegman tried to address this problem by adding an
error graph for mixtures of two adjacent higher order Laguerre modes (Fig 8 of [46]).
Siegman also identified pedestal beams as being problematic. These beams consist of agood
quality central beam with a surrounding bad quality pedestal. He listed these beams as
extreme, implying that their parameters fall outside the ones he suggested. A new correlation

between the energy and second moment radii should attempt to describe these beams as well.

Fractional energy

T y Y T T —T —
22 23 24 25 26 27 28 \279\3.0

D /s

Cc X

Figure 4-15:Expanded View of Siegman’s clip-level plot for higher order modes.
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45.3 Correationsfrom SO standard 11146

The ISO in a normative Annex to the standard provided the following correlation functions
between the beam quality factor determined with the second moment and three aternative
definitions [24]:

M, =c(M, -] +1 (4.12)
where

M, is the square root of the “times diffraction limit” or beam qudlity factor M?

according to an alternative method i and

¢ isthe correlation factor between the aternative method i and the second moment

method.
The correlation constants ¢; for the three methods are listed in Table 4-1 [24].

Alter native M ethod Ci Clip-level
Variable-aperture 1.14 86,5%
Moving Knife-edge 0.81 16%
Moving Slit 0.95 13,5%

Table 4-1:1S0 correl ation constants between the second moment and aternative definitions of
the beam radius.

The ISO also provided arelation to determine the second moment beam diameters d. from

the alternative diameters d. [24]:
d
d, =V'[c,(Mi - 1)+1]. (4.13)

Johnston et al. [27] measured these correlations experimentally with the help of an ion gas
laser. The results were confirmed for high power CO; lasers up to 1kW, with M? factors up
to 4 and with radially symmetric beams [24]. Johnston measured the pin-hole profiles of six
beams that were created by adjusting a variable-aperture within the ion gas laser resonator.
These one-dimensional pinhole profiles were then fitted with linear combinations of the pure
Laguerre modes to give six realistic, but theoretical mode profiles. The second moment,
knife-edge, slit and variable-aperture diameters were then cal culated from these fitted profiles.

Graphs with d /d, -1 versus d /dy - 1 were then fitted to obtain the correlation

2nd mom

factorsc, .
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The reason why the relationship between these two parameters was fitted was so that the M 2

determined with the alternative beam radius definitions, are real M * values. Thisimplies that
for a TEMy beam, Equation (4.12) must reduce to one, which is a very basic prerequisite for
abeam quality factor. The clip-levels for each of these methods had to be chosen correctly to
guarantee this (See Table 4-1). These clip-levels are actualy rounded off values with the

result that the M ? value does not reduce exactly to one for TEM g beams.

These correlations were determined experimentally from only six profiles from an uncommon
laser resonator with a specific symmetry making the applicability of this method very limited.
In the next section, a theory to test old correlation methods and to develop new ones is
presented.

4.5.4 Novel comprehensive correlation method

The second moment propagation equation (Equation (2.12)) can be rewritten in terms of the

second moment M? factor using Equation (2.23)

(4.14)

so that

(4.15)

This equation is used to determine the second moment beam quality by measuring second
moment radii at severa positions along the beam propagation direction. When an aternative
definition is used to obtain the beam radii of simple astigmatic beams the measured radii
deviate by a constant factor k from the second moment radii. Thisis because the shape of the
beam profile of simple astigmatic beams does not change when the beam propagates. Only the
second moment radius change. (Section 2.2.2).

Thereis aconstant scale factor k between alternative beam radii are and the second moment
radius of a specific beam.

Wy, =k(w(2)). (4.16)



This k factor is aconstant for both intensity-based radii (slit) and energy base radii (knife) of
aspecific beam. It iseasily proven in Appendix H.

The new or aternative M *-value determined by measuring the beam radii with an alternative
method at several positions along the beam propagation would then be according to
Equation (4.15)

(4.17)

(4.18)

(4.19)
so that

M, =kM,,, . (4.20)
Please note that k's value can vary for different beams and is different from Equation (4.12)

which are claimed to be valid for alarge subset of beams.

From Equations (3.19) and (3.20) it can be deduced that all energy density functions of higher
order modes are scaled with the fundamental mode with radius w,(z) (the Gaussian radius).

At any position along the beam propagation direction according to Equation (3.39):
_(w(@)

 Weo(2)

To compare the different beam radii we choose for convenience the Gaussian radius w,, as

(4.21)

2nd

one. The same technique was employed by Johnston [27]. Equation (4.21) then becomes

M =(W(Z)). (4.22)
From Equations (4.16), (4.20) and (4.22) it is now found

at = Z\\:V“((Zszi (w(z)) (4.23)
so that
M., =W, (Z) (4.24)
and finally



M, = aéLEgM at=CM 4, (4.25)
@
with
uICY) (4.26)
w, (z)

Using these relations, the proportionality factors ¢ can be plotted as a function of their
aternative M -values using only single energy density profiles for alarge number of different
beams. If enough beams are evaluated, functions can be fitted through the proportionality

factors to obtain correlation functions.

Note that no specific clip-level was used for the derivation. Any suitable clip-level can
therefore be employed in the calculations. Thisis very similar to the technique Johnston [27]
used to obtain a correlation. The main difference is that it is not assumed that there is a
genera linear relationship between the different methods. If a linear relationship exists
between the second moment and aternative definitions, al the proportionality factors will
remain constant for all the knife-edge M -values smaller than two [24]. A graph of the
proportionality factors versus M-values is therefore a direct measure of the deviation from a
linear relationship between the standard and alternative definitions.

Note aso that because of Equations (4.22) and (4.24) either M or w can be used during

discussions on correlation methods. It is for this reason that thisthesis rather aimsto correl ate

the different definitions of M rather than M *. The ISO Annex also followed this approach.

46 Summary

Different methods and apparatus to measure beam profiles of laser beams have been
reviewed. Different definitions of the beam radius closely related to these beam profiles have
also been given. Attempts to find arelation between the standard and aternative beam radius
definitions have been examined and a new proportionality factor was proposed. In the next
chapter, programs are presented with which to calculate the newly proposed proportionality
factors and to evaluate existing correlation functions.
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Chapter 5

Computational techniques to calculate the
proportionality factors

In this chapter, various programs to calculate the second moment, knife-edge and slit M -
values of a very large group of beams will be presented. These values can be used to
determine the accuracy of existing correlation functions and to develop new correlation
methods.

5.1 Generation of representative beams

5.1.1 Linear mode combinations

Sufficiently large numbers of sample laser beams should be used to determine the accuracy of
the existing correlation techniques (Section 4.5) and to devel op new methods. Two good types
of commonly found beams to use are the rectangular and cylindrical symmetric Gaussian
modes and their respective linear combinations (discussed in Chapter 3). Siegman used
mainly pure rectangular modes, while Johnston and the 1SO used measurements and models

of cylindrical symmetric beams.

It can be expected that real lasers divide the available energy from the gain medium between
different modes in some sort of distribution. One can typically expect the TEMg mode to
receive the most and the highest order mode the least amount of total available energy. It has,
however, been shown that for a CO, TEA laser the relative amount of energy that is allocated
to the different modes can be changed by changing the gas mixture [31], [15], [16]. It is
therefore not possible to use an energy allocating distribution for different modes. One way to
include all possible mode combinations in a general theory is to multiply the pure mode-
distributions with random weights in a linear combination. Such a theory would therefore
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describe a laser resonator in which all the modes have equal probability to lase. Such a
resonator is now defined as an equal probability resonator. If any energy allocating
distribution is multiplied with such arandom linear combination, the result would again be a
random linear combination. The only deviation from rea laser resonators, with energy
allocating distributions, would be that statistically more beams with a set number of modes
will be found at lower beam quality values. Any conclusions from statistical variations
therefore have to take into account the fact that energy-allocating distributions do occur in
practise. The equal probability resonator has the further advantage of being able to describe
beams consisting of pure, or very close to pure, higher order modes as would be found when

there are irregularities within aresonator.

To obtain an arbitrary energy density profile for a sample beam, two-dimensional energy

density profiles of pure modes (each with a w,,, equal to one (Section 3.2.1)) are multiplied

with random weights and then added in alinear superposition:

y = Crand ]y rand 1 * Crand 2y rand 2 T Crand ry rand n (51)

Equation (5.1) does not have any cross terms because the electric field functions, from which
the energy density distributions are calculated, are orthogonal to each other for simple laser
systems [45], (Section 3.2.1). It must be noted that in reality non-orthogonal components can
potentially be introduced by elements within resonators [39].

The second moment radii are usualy calculated from this two-dimensional energy
distribution. The dlit profile is obtained by integrating this two-dimensiona energy density
profile either numerically or anaytically according to Equation (4.1). The knife-edge profile
is obtained by integrating the slit profile in turn either numerically or analytically according to
Equation (4.5). The slit and knife-edge radii can then be calculated from the two profiles. All
these radii values are equal to their respective M -values of the sample beam according to

Equations (4.22) and (4.24) because w,, was chosen as one.

Practical laser resonators contain afinite number of modes due to design apertures and finite
gain medium cross sections. It is therefore logical to limit the number of pure modes used to
calculate the energy density profile of a sample beam. Attention should be given to how real
resonators select the maximum number of modes it can contain when deciding which modes
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should be used in apractical linear combination [23],[26], [37], [35]. Consider for example a
simple cylindrical symmetric resonator with a single circular mode-restricting aperture [23]
(Figure 3-1). As the mode restricting circular aperture is opened up, higher order modes start
to lase in succession inversely proportional to the percentage of their energy that is cut off by
the aperture. Modes with smaller radii therefore start to oscillate before larger ones. This
selection for cylindrical symmetric beamsis not at al trivial to determine from theory since
there are various definitions of beam radii (Section 4.3). Both the second moment and
variable aperture radii make use of a cylindrical integral. Table 5-1 lists the second moment
and variable aperture radii (normalised to the fundamental) of the first few cylindrical
symmetric modes according to Johnston [27]. It can be observed that there are modes that
have the same second moment radii, but whose variable aperture radii vary significantly. For
such beams it would be logica to rather evaluate their respective variable aperture radii to
determine which will lase first due to the fact that the shape of the mode restricting apertureis
circular. Thisillustrates once again that the second moment definition cannot stand on itsown
asthe only available definition of beam radii. The variable aperture radius definition therefore

has applications outside |aser characterisation and is still relevant.

Cylindrical mode Second -moment radius Variabl e-aperture radius
Normalised to TEM Normalised to TEM

TEMw 1.00 1.00
TEM,01 141 1.32
TEMp10 1.73 1.64
TEM02 1.73 1.56
TEMy11 2.00 1.88
TEM,03 2.00 1.76

Table 5-1: Second moment and variable aperture radii (normalised to the fundamental) of the
first few cylindrical symmetric modes according to Johnston [25].

The phenomenon that different modes have identical second moment radii is not encountered
in rectangular symmetry. The only possible similarity is where modes have the sameradiusin
the two different Cartesian coordinates. These two modes will both start to lase at the same

minimum circular aperture radius if the laser has perfect alignment, perfect optics and a
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uniform gain profile. Under these conditions, it is also more likely that cylindrical symmetric

modes will lase instead.

5.1.2 Cylindrical symmetric beams and rectangular scanning
devices

The knife-edge and dlit both are rectangular symmetric scanning devices and are best suited to
scan rectangular symmetric beams consisting of superpositions of Hermitian modes.
However, complications do arise when they are used to scan cylindrical symmetric beams
consisting of superpositions of pure Laguerre modes. The general equation for two-
dimensiona cylindrical energy density distributions (Equation (3.15)) can be converted to

Cartesian coordinates as follows:

i a? . x ©
i cos’¢l cos ' ———+
kaez(x +y)(z)oeL, 20¢ +y)@D) {Z;‘Z)I $ v -
Xy(X y’Z) _e p( u .. ( . )
& w2 & wi(2) q :.: L' .y 0
i Sn glsm —x2+ =
T Y o

When Equation (5.2) is inserted into either the mathematical approximations of the dlit
(Equation (4.1)) or knife-edge (Equation (4.5)) the following integral is encountered which is
not analytically solvable.
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This integral leads to several complications when the different radii are calculated for

cylindrical symmetric beams as will be seen in the next few sections.

5.1.2.1 Separability and the TEM PO modes

One of the effects of the non-separability can be seen by comparing the dlit profile of the pure
TEMp20 mode (Figure 3-6 A, B) with its one-dimensional pinhole profilein Figure 5-1.
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A B energy density
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radia distance

radial diatnce

Figure 5-1: The difference between a dlit profile (A) and a radial pinhole profile (B) of the
cylindrical TEM ;20 mode.

The two profiles are clearly very different which implies that their sscond moment, slit and
knife-edge radii will aso be different. The slit profile is the logica choice from which to
calculate the dlit and knife-edge radii. The second moment radius is usually calculated by
inserting the full two-dimensiona energy density distribution into the cylindrical second
moment integral (Equation (2.5)). It would be simpler to rather use either the one-dimensional
glit or pinhole profiles in the calculation of the second moment radius since it requires vast
computer memory resources or very long calculation times to use the full two-dimensional
energy density distributions. The second moment radii of the slit and one-dimensional pinhole
profiles of the TEM ;20 mode were calcul ated with the rectangular symmetric second moment
formula (Equation (2.4)) as 1.732 and 2.237 respectively. Only the dlit profile’s second
moment M -value correspondsto the theoretically correct two-dimensionally calculated value
given by Equation (3.38). The value calculated from the one-dimensiona pinhole profile
differed significantly from the theoretical value. It can be seen in Table 5-2 that the dlit
profiles aso provided the correct second moment radii for other pure TEMyPO cylindrical
symmetric modes. It is also verified using the cylindrical TEM10 mode that the slit profiles
provide the correct values for the knife-edge and dlit radii of the TEMyPO cylindrical
symmetric modes (according to Johnston [27]). Note that the one-dimensiona pinhole
profiles provided incorrect radii for these values. The correct dlit, knife-edge and second
moment radii can therefore be caculated by using the dlit profiles in one-dimensional
integrals.

61



Theory Slit profile Pin-hole profile

nd E nd E nd 8

2 Knife- it 2 Knife- it 2 Knife it
mom | edge radius | MOM edge cadii mom | -edge radli
radii | radii radii | radii radii | radii
TEMw | 1200 | 200 | 200 | 1.00 | 1.00 | 12.01 | 1.00 | 1.03 | 0.99
TEMp10| 173 | 1299 | 166 | 1.73 | 199 | 167 | 153 | 1.37 | 1.48
TEMpll] 224 224 | 251 | 215 188 | 159 | 1.77

TEMu30| 2.65 264 | 295 | 255 | 2.16 | 1.59 | 0.786

Circ
mode

Table5-2: The left column contains theoretical published radii of a few cylindrica
symmetric modes [27]. The middle column contains the corresponding radii
calculated from dlit profiles. The right column contains the corresponding radii
calculated from one-dimensional pinhole profiles.

5.1.2.2 The TEMp 0l modes

The focus so far has only been on the TEM ;PO modes. Additional complications arise when
the TEM,0L modes are investigated. For example, it was seen that that the two-dimensional
energy density profile of the cylindrical symmetric TEM01 mode is identical to that of the
rectangular symmetric TEM,;01 mode but that their properties are not (Section 3.3.1). The

rectangular second moment radius of TEM 01 calculated with Equation (2.4) equals V3 and

the cylindrical second moment radius of TEM 01 calculated with Equation (2.5) equals J2.
This is due to the fact that in the second moment radii calculations, cylindrical integration
(Equation (2.5)) was performed on TEM01 and rectangular integration with Equation (2.4)
on TEM01. The two integrals differ and therefore the second moment radii differ as well.
Rectangular integration requires that the azimuthal angle between a mode and the beam
reference frame be defined and remain static in time. Cylindrical symmetric beams are not
allowed to have one preferential Cartesian direction. All azimuthal directions should therefore
have equal probability to contain a zero intensity node, or any other specific feature. Thisis
automatically imposed by using cylindrical symmetric integration.

The cylindrical symmetry has to be maintained when cylindrical symmetric modes are used in
numerical calculations involving rectangular scanning devices. The TEMyPO modes are
automatically cylindrical symmetric, but the TEMp0L modes are not. It should be just as

likely to find a minimum at the azimuthal position of a maximum and vice versa. When two
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identical, two-dimensional mode structures which are each shifted so that the maxima of the
one coincides with the minima of the other are combined, perfect cylindrical symmetric or
doughnut modes are formed. Further additions are unnecessary because the resulting structure
aready has perfect cylindrical symmetry. The formation of the first three cylindrical
symmetric two-dimensional TEM 0L profiles can be seen in Figure 5-1 and is identical to

time integrating these pure cylindrical mode profiles.

y 4

\ 4 ) ﬁ‘»

b & b
TEM 01 TEM 02 TEM , 03

Figure 5-2: Formation of the correct two-dimensiona cylindrica symmetric TEM ;0L
profiles to be used in numerical calculations.

It can be seen from Table 5-3 that the second moment radii determined from the dlit profiles
of the cylindrical symmetric doughnut mode profiles are found to correspond exactly with
theory [23], (Equation (3.32)). The second moment values determined with the slit profiles of
the non-rotated mode profiles correspond only occasionaly when one preferentia axis is
chosen. It can furthermore be seen from Table 5-3 that the knife-edge and slit radii of only the
doughnut modes aso correspond with the theoretical values provided by Johnston [27]. Very
few of the knife-edge and dslit values calculated from the non-rotated profiles correspond to
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these values. The cylindrical symmetric doughnut profiles of the TEMyOL modes are
therefore the correct onesto use in cylindrical symmetric calculations.

Choose preferential

Theory o Doughnut profile
direction
_ 2™ | Knife- _ 2™ | Knife- _ 2™ | Knife- _
Circ Slit Slit Slit
mom | edge | mom | edge | mom | edge .
mode . - radii . ~ radii . - radii
radii | radii radii radii radii radii

TEMOO | 1.00 | 1.00 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.00 | 1.01

TEM 01| 141 | 153 142 | 1.73 | 1.87 | 150 | 1.41 | 153 | 1.41

TEM,02 | 1.73 | 1.92 168 | 1.73 | 199 | 167 | 1.73 | 1.91 | 1.68

TEM,03 | 2.00 | 2.26 188 | 200 | 232 | 1.80 | 200 | 225 | 1.89

Table 5-3: The left light shaded area contains published radii of afew cylindrical symmetric
modes [27]. The middle slightly darker shaded area contains the corresponding
radii calculated from dlit profiles of the non-rotated profiles. The right darkest
shaded area contains the corresponding radii calculated from dlit profiles of the
cylindrical symmetric doughnut modes.

5.1.2.3 Generation of cylindrical sample beam profiles

Equation (5.1) isthe two-dimensiona energy density distribution of asample beam consisting
of n number of modes. Adding the two-dimensional distributions together for each sample
beam would either require enormous amounts of computer memory or very long calculation
times. A simpler solution is therefore needed. It was already established that the dslit profiles
could be used to determine the second moment radii of beams by means of one-dimensional
integration. According to Equation (4.1) the dlit profile of a sample beam (Equation (5.1)) is

+L XptW +L XptW
c\) c\)y dXdy: c\) c\) Crand]y rahdl+crand2y rand 2 o Crandry rand ndXdy (54)
-l Xp-W -Lxp-W
So that
+L Xp+W +L Xp+W +L Xp+W +L Xp+W
c\) c\)y dXdy = Crandl c\) c\)y rand 1dXdy+Crand2 c\) c\)y rand 2 o Crandn c\) c\)y rand ndXdy (55)
-Lx,-W -Lx,-W -Lx,-W -Lx,-W

The dlit profile of a sample beam can therefore be obtained from the randomised sum of the

correct glit profiles of the pure modes. These one-dimensional profiles reduce the memory
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requirements of a program to manageable levels so that large amounts of computations can be
done in arelatively short time. Both the second moment and dlit radii are calculated from this
dit profile. The knife-edge energy profile can be obtained by numerically integrating
Equation (5.5). The knife-edge energy radius is then obtained from this knife-edge profile.

5.2 Calculation of the different beam radii

Programs can be written to obtain the differently defined beam radii (Section 4.3) of the
random sample beams. Proportionality factors between the different radii from alarge number
of sample beams can then be used to find general correlations between different definitions of
M (Section 4.5.4). Such programs should have the structure seen in Figure 5-3.

Calculate 2D
energy density distributions
of the pure circular modes

Or for rectangular symmetry

u

A v ¢
Calculate the one-dimensional
slit profiles of the Calculate the 1D
pure circular modes by integrating slit profiles of the pure
the correct 2D profiles rectangular modes
.
h
(Calculate slit profile of the sample bean| (
t},}.- mu‘ltlpl},-'llngl:l}e‘slltl pruf?lc:s th calculate the second moment radius|
1€ pure modes by Landonn w eights from the sample slit profile
and adding them together ¢

calculate the slit radius

ormalise the slit profile
I L | irom the sample slit profile

Integrate the slit profile _ -
lto obtain the knife-edge profile| calculate the knife-edge radius
from the sample knife-edge profile|

I;Nurmnlise the knife-edge 1)1‘0file|

Figure 5-3: General structure of a program that calculates the different radii of randomised
sample beams.

5.2.1 Numerical Programming

The widely available Microsoft program Excel was used to numerically calculate the second
moment, slit energy density and knife-edge energy radii. The cellular nature of the numerical
program made it similar to the separate pixels of a CCD camera. Results obtained from this
program should therefore reflect real mathematical challenges faced in camera profilers. The
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program could, however, not be included in this thesis because it was written over several
sheets making it physically too large.

5.2.1.1 Two-dimensional cylindrical energy density distributions

A 255 by 255-cell matrix with variable grid size was used to generate two-dimensional energy
density distributions of the normal pure cylindrical symmetric modes. Each cell was assigned
aunigue x and y position. The energy density value of each cell was obtained by substituting
these x and y values into Equation (5.2). Both the pure TEM PO and TEM ;0L modes had to
be used in the linear combinations since they have different dlit profiles. This was not
necessary for rectangular symmetric beams since they are separable in Cartesian coordinates.
The matrices for the doughnut profiles were obtained as described in Section 5.1.2.2. In
Appendix B the two-dimensional value matrices can be seen for the norma and doughnut
TEM01 modes. The energy density contour profile is visible due the fact that equi-energy
density lines have identical values and therefore identical recognisable shapes.

5.2.1.2 Thedlit energy density profile

A dlit integrates the two-dimensional energy density distribution only in one Cartesian
direction. Slit integration was simulated for cylindrical symmetric beams by adding up each
column of the two-dimensional energy density cell grid. The resulting row of values then
represents the dlit energy density profile. This process is illustrated in Figure 5-4. The
numerical integration is much like the actual slit scanning process where the beam is scanned
in discrete steps. Thisisaso donein post-processing programs of CCD cameras which have a
finite number of pixels. For rectangular symmetric beams, only the one-dimensional energy
density profiles were needed because the one-dimensional pinhole profilesareidentical to the
dlit profiles due to the separability of the rectangular modes in the Cartesian coordinates
(Appendix C). An arbitrary linear combination for a particular sample beam was generated by
multiplying slit integrated rows of al the participating modes by random numbers between
zero and one and adding them all together to obtain a linear superposition according to
Equation(5.5).

Y direction

uonZeIIp X




Y direction

Figure 5-4: Generation of the dlit energy density profiles by means adding rows in the two-
dimensional energy density grid.

The randomised dlit energy density profiles were normalised to the highest value. These dlit
energy density profiles were the sample beams that were used to cal culate the second moment
and dlit radii. The energy density profiles of one hundred sample beams were generated in this
way. A sheet was also created where weights for all the modes could be entered manually to
get a visua perception of how the modes added up. A normalised two-dimensiona energy
density graph and a one-dimensiona dlit profile of this manually created beam were then
automatically generated.

5.2.1.3 The knife-edge ener gy profile

The knife-edge profiles were obtained by adding the average of adjacent cell values of the dlit
profile in a cumulative summation. The resulting energy profiles from which the knife-edge
energy radii can be calculated are similar to real scans in which steps or pixels are used to
obtain the knife-edge radii. If integration was performed by adding up the full values of the
glit profile cells, an extra energy density of half the difference between two adjacent values
would be added per summation. The accumulative effect shifts the energy profile to
noticeably higher incorrect values. The error is made because the index values of the cell
positions are discrete and are in fact only precisely correct for the centre of the cell. Thisis
illustrated in Figure 5-5.
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Figure 5-5: The origin of erroneous knife-edge profiles by erroneous addition of slit energy
density cell values.

5.2.1.4 The calculation of the second moment radii

The second moment radii were calcul ated by means of Equation (2.4) with (x'*) =0 because

al the modes were centred on zero

+¥ +¥

2(xX")(2) = 2J oY’ ¥ (Y)dy/ Ol ()dy . (5.6)
¥ -¥
The cell vaues of the sample beams slit profiles were used for | (y) . The cell positions were

used as the y value and the positional step size was employed as dy . The integration was

performed by cumulative addition. It was not necessary to add the average values as was done
for knife-edge integration since the extra values cancel out in the division of the two integrals
(this was confirmed with calculations). The resulting numerical formula in each cell of a
calculation sheet appeared as follows.

— : :
5 <x2”d> (2)=2 \/[cell y position]“g cell value]g[stepsize] +[previous cell value] (5.7)

[cell value]( stepsize] +[previous cell value]

5.2.1.5 The calculation of the knife-edge radii

The knife-edge radii were more difficult to calculate than the second moment radii because
exact clip-levels had to be used instead of an overal integration. A simple search in the
normalised knife-edge profile for a cell with the exact value of the clip-level percentage could
not be made since it was highly improbable that a cell would have had this exact value. A
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positional range within which to search had to be specified. Double the average of the
qualifying cells position values was then taken as the knife-edge radius (Section 4.3.3)
because the beam was centred at zero. If no cells were found that matched the criteria, an
error showed up. The search range could then be adjusted until all the knife-edge radii of the

100 sample beams had no errors.

5.2.1.6 The calculation of the dlit radii

The dlit radii were even more difficult to determine than the knife-edge radii. Thisis because
anormalised dlit profile could possess multiple positions on the same side of the beam centre
with the specified energy density clip-level value. Thisisillustrated in Figure 5-6, where the

arrows indicate the multiple positions.

0.8 4
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Figure 5-6: Multiple points on the same side of the centre fulfilling the energy density clip-
level value condition.

Only the distance between the beam centre and the outermost value should be taken as the
correct slit radius. This was achieved by firstly determining the minimum position value of al
the cells whose energy density values met the clip-level range criteria. The mean of the
position values of the adjacent cells that also met the criteria (including the origina value)

was then taken as the dlit radius because the beam was centred at zero.

5.2.1.7 Gener ation of a large enough sample

Every time an action was performed in Excel, new random M -values were generated. A
macro was written that copied and pasted all three radii of one hundred sample beams two
hundred times to a separate sheet. This generated beam radii values for twenty thousand
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sample beams. If the sample size was still too small, the macro was repeated to generate forty
thousand values and so forth.

5.2.1.8 Thenumerical error

The calculation techniques of both the knife-edge and dlit radii selected the mean of acertain
number of discrete qualifying cells. These two aternative radii were therefore discrete. The
second moment calculation utilised al the cell values of the one-dimensional energy density
profiles and was much more accurate. The discrete alternative radii will therefore have a
spread in second moment radii values. This spread is referred to as the numerical error, which
is in fact a very rea error in modern camera systems employing pixel-counting techniques
[48].

5.2.1.9 Numerical program for rectangular symmetric beams

The Hermitian functions that characterise rectangular symmetric beams are separable in the
two Cartesian directions (Section 3.2.1.2). Since the dlit and knife-edge scanners are aso
rectangular symmetric, the practical implication is that the normalised dlit intensity in one
direction is equivaent to the profile obtained by setting the other directions values equal to
zero which is the same as the one-dimensional pinhole profile. This was already used in the
derivation of Equation (4.2) and is graphically illustrated in Appendix C. The generation of
two-dimensional energy density distributions is therefore unnecessary due to the Cartesian
separability of the Hermitian functions. Unlike cylindrical symmetric modes the same
functions describe the energy density distributions in both principle Cartesian directions.
More pure mode energy density combinations (up to mode TEM,,0 10 or TEM,,10 0) could
therefore be included in the calculations. Beams with relatively high M?*-values could
therefore be modelled. Apart from these changes, the rest of the rectangular numerical
program was similar to that of the cylindrical symmetric case (Section 5.2.1).

5.2.2 Analytical Programming

The rectangular separability in the Cartesian directions of the Hermitian modes also provided
the possibility of analytically solving the second moment, slit and knife-edge radii integrals.
These integrals are solvable in mathematical programs such as Matlab and Mathematica. The

latter was chosen due to previous experience with it.
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The anaytical program had the same structure as described in Figure 5-3 and can be found in
Appendix G. There were only a few perceptible differences between it and the numerical
programs.

Only energy density functions up to mode TEM 05 were used (Appendix A).

Each of the functions was energy normalised, meaning the profiles they generated
were normalised with the total area underneath them, which also had to be analytically
calculated.

The second moment radius was calculated analytically using Equation (5.6).

The energy function of the sample beam was calculated by anaytically integrating the
energy density function according to Equation (4.5) and was then normalised to the
maximum energy value.

The knife-edge radius was found by applying aroot finding function (FindRoot) to the
normalised beam energy function added to the required energy clip-level.

The dlit radius was then obtained by applying the root finding function to the sum of
the normalised energy density distribution and the required energy density clip-level.

Even though the root finding functions are numerical, their accuracy far exceeded that of the
Excel program. The analytical program performed al these calculations for one sample beam
at atime, which took some time to solve (especially for linear combinations containing ahigh
number of pure mode functions). The program therefore took avery long time to run: it could

typicaly run overnight or even over aweekend to produce enough sample results.

5.3 Application of the computed radii

The second moment, slit and knife-edge radii of the resulting beam profile or beam profile
function (depending on the calculation approach) were calculated with any one of the three
programs. Values obtained with one of these programs will henceforth be referred to as the
computed values. The computed values were used directly as the different beam quality
values according to Equations (4.22) and (4.24), because the Gaussian radii of the pure modes
were chosen as one (This was aso done by Johnston [27]). The relationship between the
second moment and the alternative M -values could therefore be plotted and compared to
existing functions of correlation theories to obtain their accuracy. The newly proposed theory
plotted the proportionality factors of Equation (4.26) as a function of their respective
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aternative M -values. Correlations between the different methods could be directly obtained

from these graphs. These accuracies and new methods are presented in the next chapter.

5.4 Summary

Three programs, two numerical and one analytical were described which were used to test the
ISO’s correlations as well as to develop a new theory. The numerical programs perform
numerical calculations to determine the three different beam radii for both cylindrical and
rectangular symmetric beams. The analytica integration program can only be used for

rectangular symmetric beams. In the next chapter, the results of these programs are presented.
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Chapter 6

Computational results

In the previous chapter, three programs were presented with which to calculate beam radii
from different definitions of a large number of sample beams. Two of these programs were
numerical and could calculate beam radii for cylindrical and rectangular symmetric beams.
The third program was analytica and could only caculate beam radii for rectangular
symmetric beams. In this chapter, the numerical results of the programs will be used to
evaluate the accuracy of the ISO knife-edge and slit correlation functions and to develop new
correlation methods.

6.1 Relationshipsbetween second moment and knife-
edge M -values

Rectangular and cylindrical beams consisting of a set number of modes were investigated
respectively. Beams with the same number of modes of aparticular symmetry are classified as
belonging to a certain beam subclass. For instance, all beams consisting of the first three
rectangular modes fall into the rectangular three-mode subclass. In Figure 6-1 (see page 76)
the second moment M -values were plotted versus their respective knife-edge M -values
(calculated with a 16% clip-level) for different subclasses. Graphs for rectangular beams
ranging from the rectangular two-mode (top) to the five-mode (bottom) subclasses are given
in the left column of Figure 6-1. Their cylindrical symmetric cousins are given in the right

column.
All the graphs were drawn on the same scale so that direct comparisons between them could

easily be made. Unfortunately, it meant sacrificing some detail for the lower mode subclass

graphs. Their structure will, however, be investigated in more detail in later sections.
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6.1.1 General observations

The relationship between the second moment and knife-edge M definitions of the rectangular
subclasses shows a linear trend, which gradually deteriorates as the number of modes is
increased. The 1SO knife-edge correlation function (Section 4.5.3) was superimposed as a
linear reference function to highlight this deviation. Any deviations from the SO functions
will be thoroughly investigated in Section 6.3.1. The pure cylindrical symmetric modes
generally have lower second moment and knife-edge M -values than their rectangular
cousins. Cylindrical symmetric resonators therefore produce higher quality beams. However,
itisvery difficult to obtain perfect cylindrical symmetry within aresonator and is usually only
found in high quality sealed off CW systems.

The proportionality graphs of all the lower beam subclasses are part of those of all the higher
subclasses. This is because the lower subclasses represent the linear combinations in which
the higher modes have an amost zero weight. A theory that accurately describes a beam
subclass containing N modes therefore also describes all the other lower N subclasses.

6.1.2 Separate evaluation of subclasses

The top two graphs (Figure 6-1 A and E, page 76) show that, for all practical purposes, there
iS a one-to-one relationship between the two M -value definitions for both two-mode
subclasses. This implies that if it is established that a laser beam contains only the first two
modes (as most high quality commercia systems do), its second moment M -value can be
determined exactly by means of knife-edge characterisation. It can be observed from the
inserts that the overall relationship between the second moment M-values and the knife-edge
M-values is linear with a slight curling deviation. The discrete structure of the numerical
results will be discussed in future sections (Section 6.3.1 and Section 6.4.2.1).

It was observed that both three-mode subclasses can have more than one second moment M -
value for ameasured knife-edge M -value or vice versa. Thisis especially pronounced for the
rectangular symmetric case (Figure 6-1 B), which consists of two lobes. There will therefore
always be atheoretical error when converting aknife-edge M -value to asecond moment M -

value by means of any correlation function for subclasses consisting of more than two modes.
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The second moment radius can be thought of as a wave function specific property sinceit is
strongly dependent on the beam energy density profile. A general Hermitian energy density
profile is equivalent to mixtures of the probability curves of the quantum harmonic oscillator.
The knife-edge radius, on the other hand, is associated with the energy flux of beams. The
multiple second moment radii are therefore reminiscent of quantum degeneracy, where
different states (having different wave functions) have the same eigen energy vaues under
certain conditions. This theoretical error when using correlation functions will therefore be
referred to as the degenerate error. A knife-edge M -value does in fact exist for both three-
mode subclasses where the degenerate error is zero. This point can clearly be seen near the
centre of the rectangular computed values (the connection point between the two lobes in
Figure 6-1 B) at a knife-edge M -value of 1.732. This implies that the second moment M -
valueis known to be exactly 1.591 if aknife-edge M -value of 1.732 was measured with 16%
clip-level for this subclass. The zero error point is not as visible for the cylindrical
symmetrical case due the numerical error described in Section 5.2.1.8, and because its
degenerate errors are smaller. It will be shown in alater section how thisinteresting feature is

central to anew correlation method.

The rectangular four-mode subclass (Figure 6-1 C) has no zero degenerate error points like
the rectangular three-mode subclass. The degenerate error is aso substantially larger so that
large correlation errors can be expected when any correlation function isused. The cylindrical
four-mode subclass (Figure 6-1 G) does not show the same behaviour. The degenerate error of
this subclass increased only marginaly at lower knife-edge M -vaues from the previous
subclass and the range of the knife-edge M -valuesincreased only slightly to terminate at the
value of the pure TEM 10 mode. The 1.732 zero error point is still present in the graph of the
cylindrical four-mode subclass and is in fact more perceptible due to increased degenerate
errors elsewhere in the graph.

The rectangular five-mode subclass (Figure 6-1 D) can be seen to have very large degenerate
errors. The general relation between the M -values from the two definitions no longer follows
the linear trend of the previous subclasses. It does therefore not appear wise to expect too
accurate correlations for rectangular beam subclasses containing such a large number of

higher order modes.
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Figure 6-1: Second moment M -values as afunction of their respective knife-edge M -values
for thefirst four rectangular (left) and cylindrical (right) subclasses.
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It is still acceptable to use a correlation function for the cylindrical five-mode subclass
(Figure 6-1 H) even though its proportionality graph does deviate slightly from the linear
trend set by the previous beam subclasses and contains no zero error knife-edge
proportionality points. The degenerate error also increased only slightly when the fifth mode
was added.

For high mode content beams it was found that the computed second moment and knife-edge
M -values do not reach those of the pure modes, especialy the modes having lowest and
highest mode numbers. This is because there is a very small chance of finding a beam
consisting of only a single pure mode in a resonator where many other pure modes have an

equal probability to lase.

It was apparent that the knife-edge and second moment M -values differ greatly for the two
symmetries. In practise, it is not aways clear whether a laser has rectangular or cylindrical
symmetry, especialy when it only contains afew modes. It would therefore be very useful to

find asingle theory that can describe subclasses from both theories with low mode content.

6.2 Relationships between second moment and dit M-
values

6.2.1 General observations

In Figure 6-2 (see page 78) the second moment M -values are plotted versus their respective
slit M -values (calculated with a 13.5% clip-level) for different subclasses. It isimmediately
apparent that there is no genera linear relationship between the second moment and slit M -
values for the rectangular subclasses. The second moment values deviate sharply from the
linear 1SO dlit correlation function, which was used as areference. Only at low slit M -values
does there seem to be linear behaviour. The second moment values of the cylindrical
subclasses behave much more linearly and correspond very well to the ISO reference

function.
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Figure 6-2: Second moment M -values as a function of their respective slit M-values for the
first four rectangular (left) and cylindrical (right) subclasses.
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6.2.2 Separate evaluation of subclasses

The layout of Figure 6-2 (page 78) is identical to that of Figure 6-1 (page 76), described in
Section 6.1.2. A one-to-one relationship is found between the second moment and slit M -
values of the two, two-mode subclasses (Figure 6-2 A). This one-to-onerelationship issimilar
to the knife-edge case. After an initial linear relationship, the second moment M -values of
the rectangular two-mode subclass curve sharply away to higher values ending at the value of
the pure TEM,,02 mode. A linear correlation function would therefore be expected to give
large errors for the rectangular two-mode subclass. The proportionality graph of the
cylindrical two-mode subclass does not exhibit such a trend. It remains almost linear and

corresponds well with the 1SO reference function.

Both three-mode subclasses do not have a one-to-one relationship between the second
moment and slit M -values (similarly to the knife-edge case). This is, however, much more
apparent for the rectangular subclass (Figure 6-2 B) which resembles a slipper. There is a
nonlinear relationship between the second moment and slit M -values for the rectangular
three-mode subclass for slit M -values higher than approximately 1.4 where any correlation
function will have large degenerate errors. No slit zero error point was found for the
rectangular three-mode subclass as was the case for the knife-edge method. The cylindrical
three-mode subclass remains largely linear and corresponds well with the I1SO reference
function, exhibiting only minimal degenerate errors (Figure 6-2 F). As the number of modes
is increased, the general shape of the rectangular subclasses resembles upturned umbrellas
with the pure mode values at the spoke ends (Figure 6-2 C, D). The degenerate errors become
so severe that it was doubtful whether any general correlation could be found for rectangular
beams. The cylindrica symmetric graphs remained amost linear with only minimal
degenerate errors (Figure 6-2 G, H).

6.3 Determining the accuracy of the SO correlation
functions

The correlation functions for the knife-edge and dlit alternative methods were aready
evaluated by superimposing them on the second moment graphs of Figure 6-1 and Figure 6-2.
Error graphs are, however, more useful to get a quantitative measure of how well the ISO’s

functions correlate with the alternative (knife-edge or slit) and second moment M -values.
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Such error graphs were obtained by subtracting the calculated second moment values from
those obtained from the 1SO function and dividing again by the computed values to obtain an
error percentage. The layout of the error graphs for the knife-edge (Figure 6-3 page 81) and
glit (Figure 6-4 page 83) isidentical to that of Figure 6-1 (page 76) and Figure 6-2 (page 78).

6.3.1 ThelSO knife-edge correlation function

From Figure 6-3 A it can easily be observed how the second moment M -values of the
rectangular two-mode subclass curl around the ISO correlation function. The error varies
amost sinusoidally between the maximum approximate values of -1.5 and +0.5%, which is
close to atypical measuring error. The average of the computed values of the proportionality
graph for the cylindrical two-mode subclass isidentical to the rectangular case up to aknife-
edge M -value of 1.53 (seetheinsert in Figure 6-3 E). The slight offset was probably dueto a
numerical calculation error. The numerical error described in Section 5.2.1.8 could be
assessed because there is a one-to-one proportionality for this beam subclass as seen from
analytical calculations. The analytical calculations also give exact values for all practical
purposes. The maximum numerical error was subsequently found to be approximately
+0.94% from the average values. Notice that the correlated second moment M -value for the
pure TEM g, beam does not have a zero error because the 1SO used arounded off clip-level of
16%. A clip-level of 15.866% |leads to a knife-edge radius, which corresponds much better to

the 1/ €* Gaussian radius.

Errors arising from using the ISO correlation function on beams belonging to the rectangular
three-mode subclass are substantial. From Figure 6-3 B it could be observed that negative
errors of up to 9% and positive errors up to 4.6% can unknowingly be made when one blindly
uses the 1SO Annex. This is unacceptable when considering that these errors are roughly
double for M? values. The total error might be even larger if measuring errors are also taken
into account. It must, however, be mentioned that it is unlikely that such beams would occur
in practise. This is due to the low density of points close to the maximum negative error
indicating ageneral low probability to find such beams in practice.
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Figure 6-3: Potentia errors that can be made when using the 1SO knife-edge correlation

function (Equation (4.12)) for the first four rectangular (left) and cylindrical
(right) subclasses.
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For the cylindrical three-mode subclass the maximum error of 4.6% is roughly half that of
their rectangular cousins. It is therefore clear why the ISO chose to only correlate cylindrical
symmetric beams. Figure 6-3 C shows that up to -18% and +8% maximum errors are possible
for the rectangular four-mode subclass. It is, however, very unlikely that such high negative
errors will ever be made since it is statistically unlikely to find beams with low knife-edge
M -values close to one for the rectangular four-mode subclass. More redistic errors of +8%
can therefore be expected. It became clear from the error graphs of beam subclasses
consisting of more than three modes that the 1SO correlation is only suited for cylindrical
symmetric beams. The error for rectangular symmetric beams is unacceptably high, while it
remains constant or even decreases for cylindrical symmetric beams as the number of modes
isincreased.

6.3.2 ThelSO dit correlation function

The second moment values for the rectangular two-mode subclass (Figure 6-4 A page 83) do
not correspond to those from the 1SO function. This can lead to large errors of up to amost
15% for higher slit M -values. It can be seen from the insert in Figure 6-4 E that the average
of the numerical values for the cylindrical two-mode subclass are identical to those of their
rectangular cousins up to slit M -values of 1.42. The large errors are only made at higher slit
M -values and are therefore avoided for cylindrical symmetric beams.

From Figure 6-4 B it can be observed that the ISO dlit correlation errors are very large for the
rectangular three-mode subclass. The rectangular slit M -values also have no zero error point
like their knife-edge counterparts. A minimum error point can, however, be observed at a slit
M -value of approximately 1.4. A band of higher density points is also observable. This
implies that beams in this subclass are more probable to have second moment values in this
band. The ISO correlation function does not follow this high-density band. It isfound that the
degenerate error becomes even more severe for subclasses consisting of more modes. As the
number of rectangular modes is increased, the high-density band vanishes and the maximum

errors remain consistently high at values of around 22%.
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Figure 6-4: Potential errors that can be made when using the ISO dlit correlation function

(Equation (4.12)) for the first four rectangular (left) and cylindrical (right)
subclasses.
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It can be observed from Figure 6-4 F that the 1SO errors for the cylindrical three-mode
subclass are far less severe and actually seem to intersect the average of the computed values.
This trend is aso observed for the cylindrical four-mode subclass (Figure 6-4 G). Significant
negative errors at higher M -values become apparent in the cylindrical four-mode subclass,
which seem to be even worse for the five-mode subclass (Figure 6-4 H). A further unusual
finding is that the ISO correlation function does not follow the general trend of the pure

cylindrical second moment values.

6.4 Novel comprehensive correlations

It was shown in the previous sections that the ISO functions have large unacceptable errors.
The aim of this section is to minimise these errors by developing novel correlation functions
and methods. The newly proposed graphs that are used to correlate between the second
moment and alternative definitions consist of the computed proportionality factors (defined in
Section 4.5.4 Equation (4.26)) plotted as a function of their respective alternative M -values.
This means that the proportionality factors are the second moment values divided by their
respective alternative M -values of Figure 6-1 (page 76) and Figure 6-2 (page 78). The
resulting proportionality graphs are fitted with appropriate functions by means of a least
squares method. Proportionality factors are used since it was found that the small variationsin
the relation between the second moment and alternative values could better be incorporated
into the fitting functions. The graphs also illustrate that proportionality factors do not remain
constant as Johnston [27] proposed. The measured aternative M -values should be inserted
into the fitted functions to obtain the correlation factor. The resulting correlation factor needs
to be multiplied again by this measured alternative M -value to obtain the second moment
M -value. Thisis already done for all the fitted functions for the convenience of a potential
user. The second moment values can therefore be directly obtained by inserting the aternative
M -values into these multiplied functions. If the original fitting functions are required, they
can be obtained by simply dividing by the alternative M -value.

6.4.1 Knife-edge correlation for rectangular Gaussian beams

The knife-edge proportionality graphs of the first four rectangular subclasses can be seen in
Figure 6-5 A-D (the left column on page 86). They were obtained by simply dividing the
second moment M -values of Figure 6-1 A-D (page 76) by their respective knife-edge M -



values. The solid curves are the best least squares fits of a fifth order polynomial that was
forced through the knife-edge M -value and proportionality factor of the TEMy mode. The
forcing ensured that the functions always produce a second moment M -value of 1 for the
fundamental mode. The high order of the polynomia produces sufficient local extremain the
function so that it is able to accurately follow the computed proportionality values. Even
though this produced long correlation functions, the extra accuracy justifies the extra
calculation time, which is anyway short compared to the time it takes to measure the entire
beam propagation. The polynomial functions are given in Table 6-1 (see page 87) for the first
four rectangular beam subclasses. The error made using one of the correlation functions can
be determined by subtracting the computed values from the function and dividing again by the
computed values to obtain an error percentage as was done for the 1SO correlation functions
in Sections 6.1 and 6.2. The graphs of these error values can be seen in Figure 6-5 E-H (the
left column) for their corresponding proportionality graphs (in the right column).

The rectangular two-mode subclass correlation function followed the computed values almost
exactly. The error, seen in the insert in Figure 6-5 E, varied between -0.025% and +0.025%
which is far below any possible measuring error. The proportionality graph for the rectangular
three-mode subclass can be seen in Figure 6-5 B. The two lobes and zero error point are much
more apparent than they were in the direct second moment graphs of Figure 6-1 B (page 76).
This was one of the reasons why the proportionality factors graphs were used instead of the
direct second moment graphs. The fitted polynomial passes through the lobe connecting zero

error point and then almost through the value of the pure TEM, 02 mode. The Ieft lobe was

found to have the largest errors varying between -5.5% and +3.2%. The right lobe's
maximum errors only vary between +2.7% and -2.9%. From the low density of points at low
knife-edge M -values it can be deduced that it is improbable for beams in the rectangular
three-mode subclass to have knife-edge M -values close to one. Redlistically the error for the
left lobe can therefore be much lower. The error made by using this function is roughly half
that of the ISO’s linear function. The rectangular two-mode subclass delineates the lower
proportionality values of the first lobe of the proportionality graph of the rectangular three-
mode subclass. The maximum error that is made using the three-mode function for beams
belonging to the rectangular two-mode subclass was found to 3.2%.
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Figure 6-5:Novel comprehensive knife-edge proportionality graphs for the first four
rectangular subclasses (left) and the errors that can be made when the fitted
polynomials are used (right).
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The error of the newly proposed correlation function of the rectangular four-mode subclassis

initially very high for low knife-edge M -values (Figure 6-5 G). For higher knife-edge M -

values the positive and negative errors are shifted so that no zero or minimum error points are

formed. The positive errors vary between 4.7% and 2.7% and the negative errors between -5%

and -2.3%. These values are quite high but are still much lower than those of the ISO function

(Figure 6-3 C). The maximum correlation error of the rectangular five-mode subclass is

initialy very high at approximately +9% but then gradually reduces to approximately +3%.

M,y (+1.00557-a(M

knife

-0.994458) +b(M . -0.994458)° +¢(M ., - 0.994458)°

(6.1)
+d(M e - 0.994458)* +e(M ife ™ 0.994458)°)
Range
Beam . .
a b C d e Knife-edge | equation
subclass
M

M>0.9946
TEM,, 00+01 | -0.01312 | -0.7997 | +1.6389 | -1.357 | +0.4695 (6.2)

M<1.8724

TEM . 00+01+ M>0.9946
Y +0.1004 | -0.6456 | +0.6230 | 0.2143 | +0.0212 (6.3)

02 M<2.5211

TEM . 00+01+ M>0.9946
i +0.4849 | -1.6091 | 1.6448 | 0.7467 | +0.1286 (6.4)

02+03 M<3.0600

TEM . 00+01+ M>0.9946
i +0.3074 | -0.6721 | +0.4129 | 0.1074 | +0.0102 (6.5)

02+03+04 M<3.5310

Table 6-1:Newly proposed correlation functions for the first four rectangular mode subclasses

(the correlation factorsin the table is to be inserted into Equation (6.1)).
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The major drawback of using different functions for different subclassesis that knowledge of
the mode content is required to use the best correlation function. The degenerate error aso
becomes unacceptably high for beam subclasses containing more than three modes. Most
laser resonators are designed to emit beams consisting only of a low number of modes. A
correlation method that has low errors and is mode independent for low mode content beams
would therefore be more than sufficient for most applications.

6.4.2 Knife-edge correlation for cylindrical Gaussian beams

6.4.2.1 Separatefitting of subclasses

The same method that was used for the rectangular subclasses can now be applied to establish
correlation functions for the first four cylindrical subclasses. The proportionality graphs can
be seen in Figure 6-6 A-D (the left column). The solid curve overlaying the computed values
is the fifth order polynomial that is forced through the fundamenta mode values. These fitted
polynomial functions multiplied by the knife-edge M -value can be found in Appendix D.
The error graphs were calculated in afashion that is identical to that used for the rectangular
correlation functions. They can be seen in Figure 6-6 E-H (the right column).

It was established in Section 6.1.2 that the rectangular two-mode subclass had zero degenerate
errors. This was done by using analytical calculations. The maximum numerical error was
confirmed to be +0.94% from the comparison between the two, two-mode subclasses. The

numerical error can also be directly observed in Figure 6-6 E.

It can be observed that both the three and four cylindrical mode subclasses have ranges in
which the error is equal to or less than the numerical error. The cylindrical three-mode
subclass has errors below +0.88% (which are below the numerical error) for knife-edge M -
values above 1.65. The cylindrical four-mode subclass has an error of 0.87% at the knife-edge
M -value of 1.732 (which is aso below the numerical error). No error ranges or points could
be found for the cylindrical five-mode subclass where the error was below the numerical
error. It is therefore a reasonable assumption that only the two, three and four cylindrical
mode subclasses have zero degenerate error points or regions.
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Figure 6-6: Newly proposed knife-edge proportionality graphs for the first four rectangular
subclasses (left) and the errors that can be made when the fitted polynomials are
used (right).
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6.4.2.2 Single cylindrical correlation function

It was seen in Figure 6-1 (page 76) that the relationship between the second moment and
knife-edge M -values is more linear for cylindrical symmetric beams than it is for their
rectangular cousins. The degenerate error was also found to be far less severe when
correlating cylindrical symmetric beams. It was therefore investigated whether asingle simple
function could be found for cylindrical symmetric beams. All the proportionality graphs for
the first six cylindrical mode subclasses were therefore combined and fitted with a simple
linear function forced through the values of the fundamental TEMq mode (Figure 6-7). The
linear correlation function was used for simplicity. This linear function multiplied by the
knife-edge M -value was found to be

Moy =My (-0.1153(M,,,.-0.994458)+1.00557) . (6.6)

knife

The error was calculated in an identical manner as was done for the correlation functions in
the previous sections. This can be seen in Figure 6-7 B. Even though the error was found to be
quite high (up to almost —7%) for low knife-edge M -values it can be deduced from the low
density of points that most practical beams will probably have much lower errors in this
range. A more realistic total error assessment would be approximately +1.5 and -2.5%, which
is much lower than the 1SO correlation function, which has redlistic errors as high as -5%
(Figure 6-3 G page 81). This single linear function is more practical than the previous
functions in Section 6.4.2.1 since for aminimal increase in error the function is more simple
and is aso independent of number of modes in abeam (up to the TEM11. This could not be
attempted for rectangular subclasses due to the increased degenerate error and non-linear

behaviour that accompanies an increase in mode content.
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Figure 6-7: Newly proposed single knife-edge correlation for the first five cylindrical
subclasses (left) and the errors that can be made when the function is used (right).
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6.4.3 Comparison between therectangular and cylindrical
proportionality graphs

6.4.3.1 Thel.732 zero error value

The rectangular three-mode and cylindrica four-mode proportionality graphs are
superimposed in Figure 6-8. The combined proportionality graphs for the two symmetries
correspond exactly for knife-edge M -values lower than 1.732, taking into account the
numerical error. The cylindrical proportionality factors deviate from that of their rectangular
cousins for higher knife-edge M -values. After the value for the TEM 02 mode is reached,
the cylindrical proportionality factors drop off sharply to the value of the pure TEMy 10
mode. The rectangular proportionality factors continue to form aright lobe, which terminates

at the vaue of the pure TEM, 02 mode. The knife-edge M -value of 1.732 is therefore very

important for both symmetries in that the cylindrical four-mode subclass (which contains the
values of previous subclasses) can be described by the rectangular three-mode subclass at
knife-edge M -values lower than 1.732 (with a 16% clip-level). One-to-one proportionalities
for the rectangular three-mode and cylindrical three and four-mode subclasses were aso
previously found at this knife-edge M -value (Section 6.4.2.1).
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Figure 6-8: Comparison of the knife-edge proportionality graphs of the rectangular three-
mode (magenta) and cylindrica four-mode (green) subclasses.
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6.4.3.2 Additional applications of the proportionality graphs

The rectangular three-mode proportionality graph can be used not only for correlation
purposes, but also to evaluate laser beams when both the second moment and knife-edge radii
are easily accessible. Note from the previous section that three-mode proportionality graph
also describes the cylindrical two, three and four-mode subclasses. It can be assessed how
close to the fundamental a beam is by plotting the proportionality factor of a measured beam
(Equation (4.26)) versus its knife-edge M -vaue (Equation (4.24)) on the proportionality
graph of the rectangular three mode subclass.

The proportionality factors and graphs can aso potentially be utilised in camera software to
accurately align and to select only the TEM g mode in laser resonators. This can aso be done
by monitoring the transverse mode beating [45], [21], but this method is not suited to pick up
diffractive effects from an aperture that is too small. The new camera technique would
monitor whether the knife-edge proportionality factors determined by only one two-
dimensiona energy density profile correspond to the computed proportionality factors of the
rectangular two-mode subclass at knife-edge M -values close to one. The resonator could
then be adjusted until the proportionality factors in both transverse directions are equally
shifted to their maximum M -values (see Figure 6-5 A). If these values correspond to the
values of the knife-edge two-mode proportionality graph the best possible near TEM o beam
profile for the particul ar resonator is obtained. The knife-edge and second moment M -values
of such beams should also be accessible from this proportionality factor without the
measurement of the entire beam propagation due to the one-to-one nature of the

proportionality graph of the rectangular two-mode subclass.

The proportionality graph can be used to determine whether the resonator contains two or
three modes. Any deviation from the rectangular two-mode subclass line would indicate a
third mode. The proportionality graph can also be employed to determine whether a beam
from a simple resonator shows general Gaussian behaviour and measuring errors. If a
measured proportionality factor does not correspond to expected values on a proportionality
graph, the beam is either non-Gaussian or serious measuring errors are made. The user must

determine which one is applicable. Small deviations from Gaussian behaviour can be more
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easily picked up in the proportionality graphs than in the second moment graphs. The
proportionality graphs therefore serve as a new tool for the evaluation of laser beams.

6.4.3.3 A symmetry unified correlation method

In the earlier sections, alarge number of functions were presented with which to correlate the
knife-edge and second moment M -values. These functions depend on the symmetry of a
resonator and the number of modes it contains. Figure 6-8 does suggest that there are some
similarities between the rectangular and cylindrical symmetric correlations factor graphs for

beam subclasses containing up to certain number of modes.

A point was also found where there is a one-to-one proportionality for the first two and three
rectangular and cylindrical subclasses respectively. Beams consisting only of the first few
modes are the most desired and therefore commonly found in practical systems. A unified
method that accurately describes such beams of both symmetries should be highly relevant
and sought after. In the following section the effect of changing the clip-level will be
investigated as well asthe implicationsit has for such aunified method that correlates the first

few mode subclasses in both symmetries.

6.4.4 The effect of the knife-edge clip-level on the proportionality
graphs

6.4.4.1 Rectangular symmetry

Figure 6-9 shows a few knife-edge proportionality graphs for the rectangular three-mode
subclass calculated with various energy clip-levels. The 16% clip-level graph of Figure 6-5 B
(page 86) is indicated as a reference graph. It was observed that all the different clip-levels
retain the zero error point that was seen in the 16% clip-level proportionality graphs in
Section 6.4.1. The two lobes play an important part now. The number of proportionality factor
points in the left lobes increases with clip-level and vice versa for the right lobe. The zero
error point, however, remains stationary at the 16% value of 1.732, which islikely to be the

square root of three (+/3).
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Figure 6-9: Knife-edge proportionality factor graphs for the rectangular three-mode subclass
calculated using different clip-levels.

The black lines trace specific mode combinations asthe clip-levels are changed. It can be seen
that the proportionality factors of individual sample beams shift in arcs from lower to higher
knife-edge M -values as the clip-level is lowered. All the proportionality factor values shift
from the left lobe at higher clip-levels to the right lobe at lower clip-levels crossing the 1.732
zero error line. The two extreme mode traces are for the TEMy mode at the bottom which

crosses only at aclip-level of 4.16% and the TEM, 02 mode at the top which only crosses

at aclip-level of 35.00%. All of the mode combinations therefore cross the zero error line at
some clip-level between these two extremes. This can be seen more clearly in the more
complete 34.6% to 4.5% rectangular combination proportionality graph shown in Appendix E
Figure 10-6. It is therefore possible to obtain a zero error proportionality factor for any linear

combination of the first three rectangular modes by simply changing the clip-level.

It has not been determined why the zero error point has the apparent knife-edge M -value of

the +/3. This may become the subject of a future more mathematical study of this particular
problem. It is only necessary at this stage to validate the value graphically since the analytical
accuracy is far above any measuring error. This graphica proof is shown in Figure 6-10,
which focusesin on the 1.732 line and consists of more proportionality graphs than Figure 6-
9.
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Figure 6-10:Expanded view of Figure 6-9 around the knife-edge M -value of 1.732.

6.4.4.2 Cylindrical Symmetry

Figure 6-11 and Figure 6-12 (see page 96) show the effect of clip-level changes on the knife-
edge proportionality graphs for the three and four cylindrical mode subclasses respectively.
The enlarged version of these graphs are given in Appendix E. It was observed that the
cylindrical symmetric graphs show the same behaviour as the rectangular ones. The zero error
point, which is hidden by the numerical error, remains stationary for both subclasses. The
number of proportionality factor points in the left lobes increases with clip-level and vice
versa for the right lobes. The total error, however, remains consistently below the numerical
error at knife-edge M -values of 1.732. The proportionality graph of the cylindrical three-
mode subclass does not have large degenerate errors for most of the clip-levels. The
degenerate errors for the whole range of knife-edge M -values are seen to be lowest for an
11% clip-level.

The proportionality graphs of the cylindrical four-mode subclass are less defined because a
very large number of calculations have to be done to obtain al possible linear superpositions.
Due to the larger degenerate error in the left lobe, the stationary nature of the zero error point
at 1.732 was much more apparent than for the cylindrical three-mode subclass.
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Figure 6-11:Knife-edge proportionality factor graphs for the cylindrical four-mode subclass
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Figure 6-12:Knife-edge proportionality factor graphs for the cylindrical four-mode subclass
using different clip-levels.

The major difference between the clip-level dependence of the cylindrical and rectangular
graphs s that the cylindricadl TEM ; 02 and TEM; 10 modes cross 1.732 knife-edge M -

value at the much lower clip-level of roughly 20%. This is because cylindrical symmetric
resonators have a smaller range of possible knife-edge M -values for subclasses with the

same number of modes as their rectangular cousins.
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6.4.4.3 Zeroerror correlation ® the clip-level optimisation method

The single proportionality factors at knife-edge M -values of 1.732 for the above mentioned
subclasses are now defined as the zero error proportionality factors for specific clip-levels.
The zero error proportionality values are plotted versus clip-level in Figure 6-13 for the
examined cylindrical and rectangular symmetric subclasses overlaying each other. It is
remarkable that they seem to correspond exactly when one takes into account the large
numerica error and large difference in the dlit intensity profiles of the numerical method. The
rectangular analytical proportionality factors were calculated much more accurately and they

were therefore fitted with a second order polynomial function

C

O error

=0.45106+0.03378 C, - 2.86149" 10 C?°. (6.7)

C, isthe zero error clip-level where the knife-edge M -values are 1.732. The function that

would give the zero error second moment M -valuesistherefore 1.732 times this function

M =0.7813+0.05851 C, -4.95624" 10* C>. (6.8)

SEC,zero error

This remarkable result provides techniques to measure the exact second moment M -value for
a large number of relatively good quality beams of both symmetries without measuring the
energy density profile of the beams. This is especially useful for high energy pulsed lasers,
whose characterisation is difficult to automate due to commonly found low signal to noise

ratios.
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Figure 6-13:Zero error proportionality factors versus clip-level for Gaussian rectangular (red)
and cylindrical symmetric (blue) modes.
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One such technique is to measure the entire beam energy profile with a knife-edge at several
positions along the beam propagation direction as described in Section 4.4.3. If relatively few
measuring points are used per radius measurement, the normalised profiles have to be fitted
with suitable functions (Section 4.4.4). The beam radii are then obtained by solving the
functions using a 16% clip-level (Section 4.4.4). If enough measuring points are used as in
constant velocity scans (Section 4.4.3) no fitting functions need to be used and the beam radii
can be determined by pixel counting techniques. These beam radii are then to be used in
energy and energy flux calculations. The knife-edge M -value is obtained through fitting the
beam propagation equation as was explained in Section 4.4.4. The exact second moment M -
value is then obtained as follows. If the knife-edge M -valueis lessthan 1.732, the clip-level
is lowered in steps to 4.16% and the knife-edge M -value is calculated at each of these clip-
levels, the same way as the for the 16% clip-level. If M is higher than 1.732 the clip-level is
similarly increased in steps to 35%. The relationship between knife-edge M -values and clip-
levelsis then fitted with athird order polynomial. The clip-level, which produces the knife-
edge M -value of 1.732, is calculated and inserted into Equation (6.8) to determine the exact

second moment M -vaue.

This method can aso be used when the knife-edge radius is measured by hand. Larger clip-
level intervals must, however, be used because of the large amount of time each knife-edge
hand scan takes. A quicker method for hand scanning rectangular symmetric beams is also
given in Appendix F.

6.4.5 Numerical calculationsfor rectangular Gaussian beams

6.4.5.1 Theoretical verification of the analytical proportionality graphs

The numerical program that calculated the rectangular second moment, knife-edge and dlit
M -values was primarily written to verify the results from the analytical programs. The
programming method of this rectangular numerical program was similar to that of the
cylindrical numerical program (Section 5.2.1), but completely different to that of the
rectangular analytical program. Good correspondence between the outputs of the two
rectangular programs implied that only the basic assumptions, which were identical to the two
rectangular programs, need to be verified.
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Figure 6-14 A and B show the numerically calculated knife-edge and slit second moment
graphs overlaying the analytically calculated second moment graphs for the rectangular three-
mode subclass respectively. Except for the small numerical error the correspondence between
the two different outputs was so good that it was difficult to distinguish between the analytical
(magenta) and numerical (blue) outputs. Another good indication of the correctness of the
calculations is that the computed second moment, knife-edge and slit M -values of al the
pure rectangular and cylindrical modes correspond to that given in theory (Section 3.3.3) as
well as to published values[25].
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Figure 6-14:Analytical (magenta) and numerical (blue) second moment graphs as a function
of the knife-edge (A) and dlit (B) M -values of the rectangular three-mode
subclass.

6.4.5.2 Evaluation of the numerical sample size

Beam subclasses consisting of a large number of modes need a very large sample number
(number of individua calculations or points) to obtain proportionality graphs that describe
them completely. For higher mode content subclasses the edges of the proportionality graphs
become blurred and the computed values do not extend to the pure modes. This is because
some linear superpositions are more likely to occur than others. Not al possible combinations
were therefore covered by the amount of computations. This is usualy not a problem for

subclasses containing alow number of modes.

A mayor drawback of the analytical program isthat it takes avery long time (up to afew days
on a 1.6 GHz pc) to do even amodest number of calculations. The calculation speed is even
further decreased by the addition of more pure modes. In contrast, the numerical Excel
program can produce an immense number of calculations in a relatively short time. It can
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therefore be tested whether the analytica sample size was large enough for subclasses
consisting of arelatively high number of modes. This has been done graphically in Figure 6-
15 for the rectangular six-mode subclass (up to TEM,,05). This subclass was the most prone
to under sampling since it consisted of the largest number of modes used in anaytica
calculations.
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Figure 6-15:Testing of the sample size. The magenta points are the analytical values and
number 1 x 10* in total. The green points are the numerical values and number
1x 10°in total.

The magenta points were calculated by means of the analytical Mathematica program and
numbered 10 000 in total. The green points were calcul ated with the numerical Excel program
and totalled an order of magnitude more than the analytical points. The only large difference
between the two is the higher concentration of sample points at lower knife-edge M -values.
Therest of the knife-edge M -values and edges correspond remarkably well. The sample size

was therefore deemed adequate for all the lower subclasses.

6.4.5.3 I nvestigation of beams containing a high number of modes

Another aspect of the numerical program was that its speed was rel atively independent of the
number of pure modes it used in its calculations. Beams containing a large number of modes
(up to TEM,0 10) could therefore be investigated without straining the memory capabilities
of the personal computer. The second moment M -values were plotted versus knife-edge M -

values (calculated with a 16% clip-level) for the rectangular two, three, six and eleven-mode
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subclasses overlaying each other in Figure 6-16. The linear ISO knife-edge correlation
function was superimposed on the computed values to give an estimation of therelative linear
behaviour of the rectangular proportionality graphs.
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Figure 6-16:The second moment M -valuesversustheir respective knife-edge M-values (16%
clip-level) for the rectangular two, three, six and eleven-mode subclasses
overlaying each other.

It can be observed that the computed second moment M-values clearly deviate from the linear
ISO reference correlation function for subclasses containing a large number of modes. The
detachment of the computed second moment values from the pure mode values (seen in
Figure 6-1) becomes progressively worse as the mode number of asubclassisincreased.

The newly proposed proportionality factor graphs for the four subclasses are shown in
Figure 6-17. The proportionality graphs for the six and eleven-mode subclasses appear
remarkably similar in that they have approximately the same degenerate error and relative
range. The knife-edge values of the rectangular eleven-mode subclass are just shifted to
higher knife-edge M -values. It was therefore impossible to fit one function that describes all
rectangular subclasses due to this shift. This could already be observed in the deviation of the
second moment graphs from the linear reference function. Closer inspection also reveas if
linear functions are fitted through the second moment graphs their slope would gradually
become smaller (flatter). Even though the degenerate error seemed to remain constant as the
number of modes increased, it was still too high for any meaningful accurate correlation. Itis
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therefore recommended that only rectangular symmetric beams that contain less than three be
correlated. The very large degenerate error seen in Figure 6-17 for high mode content beams,
demonstrates the extreme importance of measuring the energy content radius rather than the
second moment radius to obtain repeatable energy flux values when beams with visibly bad

beam quality are used.
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Figure 6-17: The knife-edge proportionality graphs (16% clip-level) for the rectangular two,
three, six and eleven-mode subclasses overlaying each other.

6.4.6 Slit correlation for rectangular Gaussian beams

The same procedure that was used to find correlation functions for the knife-edge method is
also applied to the slit method. The second moment graphs of Figure 6-2 are divided by the
slit M -vaues to produce the proportionality factor graphs defined in Equation (4.26). These
graphs are then also fitted by fifth order polynomials, which are forced through the two
TEMy M -vaues. These fitted functions can be found in Appendix D for rectangular and

cylindrical symmetric beams.
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and the errors that can be made when the fitted polynomials are used (right).
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Figure 6-18 (see page 103) has the same layout as the knife-edge proportionality graphs of
Figure 6-5. It can be seen in Figure 6-2 (page 78) that the second moment values do not
display the same linearity for the slit M -values and have a larger degenerate error than their
knife-edge M counterparts (Figure 6-1). It could therefore be expected that the slit method
would be less suited for correlation purposes than the knife-edge method.

The slit proportionality graphs of the rectangular two-mode subclass can be seen in Figure 6-
18 A. Thefitted polynomial follows the computed values almost exactly for this subclass, just
asit did for the knife-edge method. The correlation error is therefore also negligible, as can be
seen in theinsert of Figure 6-18 E.

The dlit proportionality graph of the rectangular three-mode subclass has a very interesting
structure. A high density band, which was aready mentioned in Section 6.3.2, can be
observed at lower proportionality values. Most real beams belonging to the rectangular three-
mode subclass will therefore have values in this band, but it cannot be assumed from these
calculations that proportionality values of a beam are always part of this band. The fifth order
polynomial fitting function follows this high-density band, something the ISO correlation
function did not do (Figure 6-4 B page 83). Errors as high as-14% are possible, but unlikely,
for the fifth order polynomia fitted through the slit proportionality graph of the rectangular
three mode subclass. When the number of rectangular modes isincreased beyond three, large
positive and negative errors are made. It could be observed that correlation errors as high as
17% are possible, but again unlikely. More redlistic errors for these subclasseswould bein the
region of +7% and -10%.

6.4.7 Slit correlation for cylindrical symmetric beams

6.4.7.1 Separatefitting of subclasses

Figure 6-19 (see page 105) has the same layout as the cylindrical knife-edge graphs in
Figure 6-6. It is seen from Figure 6-2 that the second moment M -values of beams containing
only cylindrical symmetric modes exhibit much more linear behaviour with respect to the slit
M -values than their rectangular cousins. They also have much lower degenerate errors. Fifth
order polynomials were aso fitted through the proportionality graphs and forced through the
values of the fundamental mode as was done for the rectangular subclasses. These can be
found in Appendix D.
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Figure 6-19:Newly proposed slit proportionality graphs for the first four rectangular
subclasses (left) and the errors that can be made when the fitted polynomials are
used (right).
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For the cylindrical two-mode subclass the fifth order polynomial follows the average of its
proportionality graph amost exactly (Figure 6-19 A). The maximum numerical error was
determined to be +0.9% in a similar fashion as was done for the knife-edge proportionality
graphs in Section 6.3.1. When the number of cylindrical symmetric modes is increased
beyond two, the maximum errors can become as high as -5.5% (Figure 6-19 H). The most
probable errors do, however, stay fairly constant at +2% and -3%, which includes the
numerical error. The individua correlation functions for the slit M -values therefore have

minimal errors for cylindrical symmetric beams.

6.4.7.2 Single cylindrical correlation function

A single function that is able to correlate the slit M -values of the first five cylindrical
subclasses fairly accurately should be possible due to the linearity and low degenerate error of
the cylindrical proportionality graphs. A linear function was used to do thisfor the knife-edge
method (Section 6.4.2.2), but from Figure 6-19 it is clear that a higher order polynomial is
needed for the slit method. The existing fifth order polynomial was therefore fitted through
the combination proportionality graph of the first five cylindrical subclasses (Figure 6-20 A).
Thispolynomia can be found by dividing Equation (6.9) by the slit M -value. The error made
when using this function can be seen in Figure 6-20 B. The error is small for low slit M -
values and gradually increases for higher values. Maximum error values of +3% and -4% are
made when this correlation function is used:

M =My, (+0.999381+0.02585(M , -1.000619)-1.35911(M ,,-1.000619)?

second —

. (6.9)
+5.4392(M ,-1.000619)3-7.97633(M y;, -1.000619)* +4.06871(M , -1.000619)°)
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Figure 6-20:Novel dlit single correlation function for the first five cylindrical subclasses (left)
and its possible errors (right).
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6.4.8 The effect of the dit clip-level on the proportionality graphs

The 13.5% clip-level proportionality graph for the rectangular three-mode subclass contains a
minimum error point close to a slit M -value of 1.4, which resembled the knife-edge zero
error point discussed in Section 6.4.3.1. The clip-level was therefore changed in large stepsto
investigate whether this minimum error point could also potentially be used as was done for
the knife-edge method. Figure 6-21 shows that as the clip-level is changed, only the left lobe
(at lower dlit M -values) is dramatically affected. Its degenerate error increased with clip-
level and vice versa. The minimum error points degenerate error also increases until it
becomes amost invisible a higher clip-levels. The degenerate error of the right lobe (at
higher slit M -values) remains almost constant. The minimum error point could therefore not
be exploited.
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Figure 6-21:Effect of a clip-level change on the dglit proportionality graphs of beams
containing the first three rectangular modes.

The dlit clip-level was also changed in large intervals for the cylindrical three and four-mode
subclasses. The results can be seen in Figure 6-20 A and B respectively. The same behaviour
as was seen for the rectangular three-mode subclass (Figure 6-21) was a so observed for both
subclasses. There is therefore no dlit correlation technique that encompasses both cylindrical

and rectangular symmetric modes.
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Figure 6-22:Effect of a clip-level change on the dglit proportionality graphs of beams
containing the first three (left) and four (right) cylindrical modes.

6.5 Comparison between the knife-edge and dlit methods

The knife-edge rectangular graphs exhibit more linear behaviour and have much lower
degenerate errors than the slit method in general. The knife-edge method also has azero error
point that can be exploited by a symmetry unified zero correlation error method. The dlit
method is also subject to the same signal to noise limitations as the second moment method.
This makes it impossible to use in some set-ups. Because of these qualities, the knife-edge

method is judged superior to the slit method for correlation purposes.

6.6 Verification of proportionality graphs by means of
published experimental results

In order to experimentally verify the proportionality graphs, complete second moment, knife-
edge and slit measurements of alarge number of different beams need to be performed. This
can either be done separately by means of different beam scanners, or combined by means of
accurate dlit scans or camera measurements. The dlit energy density profiles can be
determined by mathematically integrating two-dimensional energy density profiles as was
donein Section 5.2.1.2. Knife-edge energy profiles can in turn be obtained by mathematically
integrating these slit energy density profiles aswas donein Section 5.2.1.3.

It was not possible to do acomplete cameraor slit characterization to verify the computational
results because such a system was not available. An assessment of whether the computational
results describe real laser beams could, however, be made by using published results.
Johnston et a. [27] proposed the correlation functions that the 1SO adopted in their 1999
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standard 1SO 11146 [24]. Johnston provided the modelled second moment, knife-edge (16%
clip-level) and dlit (13.5% clip-level) M -values of the beams they used to determine the 1ISO
correlation functions (Section 4.5.3). They also provided the measured second moment and
knife-edge (16% clip-level) M -values of seven beams from different laser systems to test
their knife-edge correlation function. They used a Coherent Mode Master mechanical scanner
to measure the knife-edge M -values and to obtain one-dimensional pinhole profiles from
which the second moment radii were calculated. The average noise was subtracted from the
pinhole profile and it was truncated in the calculation of the second moment radii. No

additiona noise deduction techniques were therefore used.

6.6.1 Knife-edge verification

The clip-level optimisation method could not be verified with Johnston’ s data since complete
data sets were not given. Only the knife-edge and slit M -values calculated with 16% and
13.5% clip-levels respectively were given. The knife-edge results from the test beams, as well
as those from the modelled beams that were used to obtain the correlation functions, are
superimposed on some of the knife-edge proportionality graphs of Sections6.4.1 and 6.4.2.1
(Figure 6-23 and Figure 6-24). Only the rectangular graphs need to be used since they
incorporate the cylindrical symmetric graphs (Section 6.4.3.1). Figure 6-23 shows the
superposition of these values on the proportionality graphs of the rectangular three (A) and

four-mode (B) subclasses.
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Figure 6-23:Superposition of published values on the knife-edge proportionality graphs of the
rectangular three (left) and four (right) mode subclasses.
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The values of the modelled beams all correspond to those of the proportionality graphs. This
is not surprising since they, like the computed results, were also mathematical constructs of
laser beams. The experimental measurement technique Johnston used is aimost identical to
the theoretical one used in the programs of Chapter 5. There are differences however.
Johnston employed one-dimensiona pinhole profiles and not dlit profiles. Section 5.1.2.1
shows that the latter method is incorrect when evaluating cylindrical symmetric beams.
Johnston also manually selected afew profiles, whereas the programs of Chapter 5 considered

large subsets of Gaussian profiles.

Only one of the measured beam M -values differs substantially from the computed values.
All the other values correspond within error limits (+2%), but most are lower than the
average of the computed values for the rectangular three-mode subclass. The most probable
explanation of this is that Johnston used truncation limits that were too small in the
calculation of the second moment radii. This demonstrates how difficult it is to accurately
determine the second moment M -values. This truncation is most likely also the explanation
for the very low second moment val ue of the beam indicated by the number 1.

Johnston’s modelled beam with the highest knife-edge M -value (indicated by the number 2)
had a higher proportionality value than the average of the computed values of the rectangular
three-mode subclass. It is suspected that the beam belongs to the rectangular four-mode
subclass due to the trend of the others to have lower values than the average of the computed
values. This was confirmed by the observation of three minima in the one-dimensional
pinhole profile of this beam [27].

The cylindrical proportionality graphs would be expected to correspond better to the beams
that were used to obtain Johnston’s correlation functions since cylindrical symmetric
functions were used in their modelling. This could indeed be observed in Figure 6-24 A. The
M -values of beam 2 did not correspond to the computed values even for the cylindrical six-
mode subclass (up to TEM03) as can be seen in Figure 6-24 B. It therefore fell outside the

cylindrical symmetric range investigated in this thesis.
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Figure 6-24:Superposition of published values for modelled beams on the knife-edge
proportionality graphs of the cylindrical four (left) and six (right) mode
subclasses.

6.6.2 Slit verification

The report by Johnston provided only the slit M -values of the modelled beams that were
used to determine the correlation functions. The slit M and proportionality values of these
beams were superimposed on the rectangular three and four-mode proportionality graphs of
Sections 6.4.6 and 6.4.7.1 in Figure 6-25. Once again, the values of the modelled beams
(except 2) correspond with the rectangular three-mode proportionality graphs.

In Figure 6-23 A the knife-edge proportionality values of beam 2 with the highest slit M -
value coincides with the computed values for the rectangular three-mode subclass, but from
its pin-hole profileit was found that it rather belongs to the rectangul ar four-mode subclass. In
Figure 6-25 A it can be seen that the slit proportionality factor for this beam does not
correspond to the computed proportionality values for the rectangular three-mode subclass. It
is therefore an elegant confirmation that this beam does not fall within the rectangular three-

mode subclass as it appears in the knife-edge proportionality graph.
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Figure 6-25 Superpositions of published modelled beam M -values on the slit proportionality
graphs of the rectangular three (left) and four (right) mode subclasses.

It can be seen in Figure 6-26 A that the proportionality values of the modelled beams
correspond better to the cylindrica computed values for the same reason mentioned in the
previous section. The slit proportionality values of the beam 2 also do not correspond to any
of the computed values even for the cylindrical six-mode subclass shown in Figure 6-26 B.
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Figure 6-26:Superposition of published modelled beams values on the slit proportionality
graphs of the cylindrical four (left) and six (right) mode subclasses.

This sample istoo small to evaluate the proportionality graphs and functions. It also contains
possible calculation errors due to noise deduction errors and wrong profiles. It is proposed
that new verification experiments be performed with accurate camera profilers, new noise
elimination algorithms and stable laser systems.
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6.7 Summary

The ISO correlation functions were evaluated using computed values, calculated with three
programs, using both rectangular cylindrical symmetric base functions. Various new
correlation functions and techniques have been proposed for both the knife-edge and slit
methods. An attempt was also made to verify the proportionality graphs that were used to
obtain the new correlation functions by using published results. In the next two chapters, the
proportionality graphs will serve as a tool to evaluate two experimentally characterised

beams.

113



Chapter 7

Experimental set-up and techniques

The initial aim of this project was to modify and characterise a CO, TEA laser for material
processing purposes. The theory developed in the previous chapters will be applied to
evaluate and correlate beams emanating from this laser. The data from this characterisation
will be used to illustrate the newly proposed clip-level optimisation method. This chapter will
examine the laser, measurement equipment (hardware), set-up, methods, software and post
processing techniques to achieve these objectives.

7.1 Thelaser source

The type of laser that was characterised was amini CO, TEA laser provided by the company
Scientific Development and Integration (SDI) located in Pretoria, South Africa[42]. The laser
resonator consisted of a flat molybdenum back reflector, internal mode restricting aperture
and curved ZnSe output coupler (15m radius, 70% reflecting). The distance between the back
reflector and output coupler was 0.5m. Figure 7-1 illustrates this in an outline sketch of the
laser.

The discharge is generated between two profiled discharge electrodes (see Figure 7-1). Beam
directionswill be defined as parallel (vertical) and perpendicular (horizontal) to the discharge.

A rich gas mixture consisting of 20% CO, and 20% N in 60% He (mixed by means of
percentages of the total pressure) was used. This provided high energy, long tailed laser
pulses that favoured the formation of beams that consisted of a large percentage of higher
order modes [30].
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Figure 7-1: Outline sketch of the mini CO, TEA laser.

Repeated optics failures were encountered during the initial experiments using the laser. This
was due to layer formation on the inside of the resonator optics, which was in contact with the
laser gas. Because of this, it was impossible to obtain repeatable beam quality measurements.
Further investigation reveal ed that the stainless steel pre-ionisation pinswere responsible for a
red iron oxide layer residue on al the interna parts of the resonator causing optical
degeneration. To prevent this, the pinswere replaced by machined titanium welding rods. The
pin holders aso had to be redesigned, which led to the extraimprovement of the pins being
spring loaded to make them easily adjustable. An internal aperture had to be developed at this
stage since no good quality undamaged windows were available. The internal aperture
eliminated the need for a window, externally mounted aperture and external mirror holder.
The aperture was designed so that it fitted exactly into the optical mount of the laser. Figure
7-2 shows a drawing of the position and shape of the internal aperture and Figure 7-3 shows
two photos of the internal aperture. The optimal size of the interna aperture was
experimentally determined by observing the output profiles of beams formed when the
resonator contained different apertures which differed by 0.5mm in width. The optimum
diameter of 6.5mm was very near to that of the theoretically calculated fundamental TEM
mode so that all other modes were suppressed. A drawback of this design was the extreme
alignment sensitivity of the resonator because the optical axis needed to coincide precisely
with the centres of all the optical mounts. Accurate alignment was achieved by means of
precision-machined alignment aids, long alignment distances and lots of patience.
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Figure 7-2: Design drawing of the position and shape of the internal aperture.

A

Figure 7-3: Photos of the internal aperture. The side shown in A faces towards the discharge
and the side shown in B fits onto the back reflector by means of an O-ring.

116



Thisinternal aperture had several benefits:
The sealed resonator eradicated dust on the internal optics. Since the energy density
was extremely high inside the resonator impurities were burned onto the optics. This
possibly led to higher mode selection or, in the worst case, to beam distortion (if the
beam is distorted the Hermitian and Laguerre functions can no longer be used to
describe the laser energy density function, invalidating the theory developed earlier).
The molybdenum mirror was more burn damage resistant than a ZnSe window, even
with impuritiesin the resonator. It could also easily be cleaned.
For externally mounted optics, the danger existed that the laser could be misaligned by
accidental impact to the protruding mirror mount. This danger was therefore reduced
because the extra mounting plates for the external mirror and aperture holders were
eliminated.
The internal aperture was also cost effective since the high quality expensive window
was eliminated. Thiswindow also needed replacement from time to time, as al optics
of frequently used lasers do. The mirrors can be cleaned so that the overall cost of the
laser was reduced and the lifetime was increased.

7.2 Beam propagation

Two beams from the CO, laser were analysed. The first beam emanated from the laser
resonator when it contained no deliberate internal aperture. This beam will be referred to as
the multimode beam. The second beam emanated from the laser resonator when it contained
the 6.5mm aperture discussed in Section 7.1. This beam will be referred to as the near TEM
beam. A third beam emanating from the resonator when it contained an 11mm aperture was
also used to find the optimal measuring parameters. It will be clearly stated when results from
this beam are used.
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The experimental set-up for characterising the CO; laser is shown in Figure 7-4. The beam
exited the laser at the output coupler and was then split with a 70% Germanium partial
reflector M3. Thirty percent of the beam was transmitted while the remainder was reflected
into an integrating sphere. Two molybdenum mirrors M4 and M5 was used to steer the beam
through aZnSe lens with a 0.5m focal length, positioning the beam parallel to the movement
of the long axis of a beam scanner. The beam was scanned with either a knife-edge or a slit
and the transmitted energy fell onto an energy meter (Gentec joule meter Model ED-500). The
transmitted beam energy was reduced to 30% by M3 to prevent plasma formation on the
scanning surfaces at the focus of lens L1. M3 was al so used to superimpose ared HeNe guide
beam (635.8nm) onto the invisible infrared beam (10.6 mm). A photo of the set-up can be

seen in Figure 7-5.

7.3 Measurement and control equipment

7.3.1 Overall set-up

Most of the beam scanning procedure was computer automated. A Pentium 3 personal
computer (PC) interfaced by means of a serial port with a motion controller (Newport
Universal Motion Controller ESP7000). The motion controller in turn powered three
translation stages in the x, y and z Cartesian directions of the laboratory system.

The laser energy that was transmitted by either the slit or knife-edge was measured with a
large area energy meter. (Gentec Model ED-500). The signal from this meter was fed into a
digital oscilloscope. The Tektronix TDS 220 oscilloscope was also interfaced by means of its
serial port to the PC, from which its settings could be adjusted and its output waveforms
analysed.

The part of the beam that terminated in the integrating sphere was measured with afast Pyro
Electric, or PEM detector (Vigo systems PEM.L.2). This detector could detect rise times of
down to 1ns and could therefore resolve the shape of the laser pulse as well as the transverse
and longitudina mode beat frequencies. The signal from the detector was aso fed into the
TDS 220 digital oscilloscope. Measurements made with this detector are, however, not
included in this thesis due to conciseness.
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Figure 7-7: Photo of the beam scanner with the slits mounted.
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7.3.2 Scanning hardware

The beam scanner consisted of the following components:
An 850mm long z stage and carriage whose direction coincided with the beam
propagation direction.
State of the art 2700mm range Newport translation stages, accurate to 5 mm, were used
to move the scanning edges in the two transverse directions.
Two knife-edges were positioned perpendicular to each other in order to perform
knife-edge scans in the horizontal (x) and vertical (y) directions.
Two slits were also mounted perpendicular to each other. Due to the large size of the
glits and knife-edges, only one set-up (knife-edge or glit) could be mounted at atime.
A height adjustable rack mount was used to attach the two different scanning devices
onto the vertical Y stage.
The entire beam scanner was fastened to an optical table using foam rubber to
minimize vibrations.
Two photos of the automatic beam scanner that was used to characterise the beam are
provided in Figure 7-6 and Figure 7-7 and shows the knife-edges two slits mounted on the
beam scanner, respectively.

7.4 Automation software

The entire automation process was run by a program written using the software package
LabView, from Nationa Instruments. The structure of this program can be summarised as
follows:
Communication was first established between the computer and the motion controller
viaaseria port (a GPIB communication option was also available).
The two transverse stages were compatible with the motion controller and merely had
to be allocated a drive number because they were automatically recognised by the
motion controller. The motion controller had to be specially configured toinitialize the
existing long stage every time the program was run.
After communication was established with the TDS 220 oscilloscope, the
oscilloscope’s functions could be set with a special visual interface (V1) provided by
LabView. The scanning devices were then manually positioned and the optimised
settings were chosen by the user.
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A prewritten text program was read in. This instructed LabView (and in turn the
motion controller) to move the translation stages to specifically required three-
dimensiona positions. This program was first written in Excel after which it was
copied into atext editor (Notepad).

The computer then instructed the motion controller to move the stages to their initial
starting positions.

The oscilloscope was set so that the waveform was aready averaged over sixteen
shots when it was read in by the PC. This waveform was then fitted with a standard
forth order polynomia by LabView (provided in the VI for the oscilloscope), after
which the peak to peak value was calculated and recorded with the specific three-
dimensional x, y and z positions of the scanner.

The computer, after recording the energy and position values, instructed the motion
controller to move the stages to the next scanning position that was provided by the

prewritten text program.
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Figure 7-8: Structure of the automated beam-scanning program.

122



7.5 Slit scanning

Two dlit scans were performed in each of the two principle directions. The first scan was a
pre-scan to obtain afirst assessment of the beam and consisted of only 20 measuring points.
The second scan, which consisted of 200 measuring points, was done to measure accurate
beam profiles from which the second moment radius and SPSM proportionality factors
(Section 4.5.1) could be caculated. 1t was found that, with the beam energy reduced to 30%
by the partia reflector (Section 7.2), the signal to noise ratio was very small, making slit
profiles unreliable. The Germanium partial reflector therefore had to be removed before any
glit scans could be performed, making complete slit scans through the focus of the lens

impossible due to plasmaformation on the slit edges[1], [11].

7.5.1 Noise subtraction

Noise subtraction is extremely important when calculating the second moment radius. Even
minute noise levels in the wings of the beam can lead to large errors. Thisis due to the fact
that values in the wings are further away from the centre so that they have a large moment.
Noise errors are amajor drawback of the second moment method and various companies have
developed and patented methods to reduce noise. Spiricon holds apatent in which agorithms
essentially calculate the noise and then deduct it. A theoretical TEMy, beam is created to
which noise is added with a Gaussian distribution similar to that found in cameras. The beam

width accuracy can be precisely calculated in this way [48].

A different noise deduction technique was employed in this thesis because the precise method
Spiricon used is patented. The average of the noise was deducted from all the slit measured
energy values. The positive and negative parts of the noise then cancel each other out in the
second moment calculations. A large amount of noise measuring points is needed for this
method to give accurate results. The average of the fifteen noise devoted points was found not
to be statistically representative and more had to be located in the wings of the measurement.
It is therefore recommended that the number of noise measurement points be increased to at
least 30. A typical average noise deduction can be seen in Figure 7-9. Figure 7-9 A shows part
of the wings of the beam in which no noise has been subtracted. In Figure 7-9 B in which the
average noise has been subtracted it can be seen that almost half the points are positive and

the other half negative, resulting in an almost zero noise moment.
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measurement. In A no noise was subtracted. In B the average of the noise was
subtracted.

7.5.2 Determination of the optimal dit width

A beam originating from the resonator containing an intermediate aperture diameter
(- 11mm) was used to obtain the optimal slit width for both full slit scans. The dlit profile was
measured using the set-up described in Section 7.3. The slit width was first increased until an
adequate maximum signal was obtained. After comparing this slit width to a very rough
approximation of the measured beam diameter, it was found that the dlit diameter did not
fulfil the 1SO specification of being 1/20™ of the beam diameter [24]. Regardless of this, aslit
scan was performed in the vertical direction consisting of 500 steps. The slit width was then
further decreased until it was approximately 1/20™ of the approximated beam diameter.
Another scan in the vertical direction consisting of 500 steps was then performed using this
glit width. The maximum dlit transmitted energy was found to be very small at this slit width.

The normalised dlit profiles, with average background noise deducted from both
measurements, can be seen in Figure 7-10. It can be observed that the scan using the wide slit
width did not have nearly as much noise superimposed on its profile as the one from the
narrower slit width. The profile from the narrower slit, however, had a significantly smaller
beam radius and also indicated that the beam had more structure closer to its energy density
maximum. The wide slit therefore did not measure the beam adequately, generating a second
moment radius that was too large. This error is well known and is classified as a convolution
error (Section 4.2.3). On the other side, the signa to noise ratio of the profile from the
narrower slit is so low that its second moment radius could not be adequately determined due

to the large noise sensitivity of this method.
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Figure 7-10:Vertical profiles using different slit widths of a beam originating from aresonator
containing an 11mm aperture.

The set-up had to be adjusted to increase the signal to noise ratio by removing the partia
reflector M3. The increased energy, however, caused plasma formation on the scanning
surfaces at measuring positions close to the beam waist. Through more experimentation it was
found that there was no energy setting or set-up configuration where a small signal to noise
ratio and plasma formation could simultaneously be avoided for slit scanning. The beam
characteristics could only be measured with the knife-edge method, which utilised the entire
beam energy, using the available detector (which was a standard energy meter). The second
moment and slit M -values could therefore not be directly measured since the entire beam

propagation could not be determined using the slit method.

In subsequent slit scanning experiments, without the partial reflector, good dlit signal to noise
ratios were obtained and one or two slit scans were performed outside the troublesome waist
region. The beam energy density profile could therefore be assessed before the time-
consuming complete knife-edge characterisation commenced. Slit scans were carefully done
in both principle directions of both beams using five hundred steps for each dlit profile.

The angle between the laboratory and the beam system was also adjusted to zero using the
intermediate 11mm aperture beam and the method described in Section 4.4.6. The kurtosis
parameter remained reasonably constant at avalue of close to 1.8 at two beam positionsin the
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vertical direction (close to and far from the laser) for the 11mm aperture beam. This beam
could therefore be classified as simple astigmatic. The slit profile was not, however, measured
in more than one z position for the near TEMy and multimode beams. It was therefore
assumed that these beams could also be classified as simple astigmatic. This assumption was
incorrect as will later be seen in Chapter 8.

It was quite possible that the beam shifted between the two measurement techniques because
the attenuator (which was wedged) had to be inserted each time for knife-edge scanning. The
extra steps could be a source of additiona errors making this method of determining the
correlation factor very precarious, even though great pains were taken to minimise this
shifting of the beam.

7.6 Knife-edge scanning

A complete automated knife-edge pre-scan was not feasible since it would have taken too
long. Two knife-edge pre-scans, one manual, and the other semi-automated, were therefore
done before the main detailed scan.

Quick manual pre-scans in both the transverse directions at every z position were first
performed to determine preliminary scan ranges. These preliminary scan rangeswerein fact a
rough estimation of the beam radii and therefore of the beam propagation. An estimation of
the waist position z(0), and Rayleigh range z,, could be made by plotting the preliminary
pre-scan ranges versus propagation position z in an Excel graph. Thisis especially important
since half the measuring points should fall within the waist region [24]. The measuring point
distribution could therefore be adjusted after the first manual pre-scan.

The second pre-scans were semi-automated. The text program that instructed the computer
and motion controller to move the translation stages (Section 7.4) were automatically
generated by Excel using the range values of first manua pre-scans. The function of these
pre-scans was to calculate relatively accurate ranges for the next detailed scans. They
consisted of only 10 steps per transverse direction per z position and were therefore
relatively quick. A Matlab fitting program was then used to fit the normalised second pre-
scans with the knife-edge TEMy energy function (Equation (4.9)). The final ranges were
automatically determined by doubling the Gaussian radii from the fitting function and then
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adding and subtracting these doubled values to the approximate centre positions of the beam
at the various z positions.

A text program for accurate scans (using a large number of steps) was generated in Excel
using the final calculated ranges. The program had the following steps in each transverse
direction at each position:
The first three measuring points were dedicated to measure the noise. The
measurements were made one scanning distance from the minimum energy range
value so that the beam was completely blocked off.
The knife-edge was then moved to the minimum energy range position from where it
traversed to the maximum energy range position in thirty-five steps recording the
transmitted energy at every position.
After the maximum energy range value was read in, the knife-edge was moved a
further scanning range distance, ensuring that the whole beam was transmitted. The
maximum energy was then accurately measured using fifteen measuring points. This
large number of points was necessary because the beam radii were found to be
sensitive to the normalising maximum energy. The degree of sensitivity was
determined and is given in the next chapter in Section 8.2.6.

After a successful scan the data was copied into an Excel sheet where graphs were
automatically generated for evaluation. Any erroneous point due to arcing in the laser could
be deleted at this stage.

7.7 Matlab post processing

The output data in text files created by LabView and modified in Excel were read into the
mathematical program Matlab.

The data sets for each one-dimensional knife-edge profile scan were made descending in
energy values from low to high transverse distance values. This was necessary due to the
physical orientation of the translation stages that made the data descending in energy valuesin
the horizontal (x) direction and ascending in energy valuesin the vertical (y) direction. The
same post-processing program could then be applied to data from both directions. The
following actions were then performed on the data set of each one-dimensional scan.
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The mean of the fifteen maximum energy (unobstructed beam) data points as well asthe mean
of the three noise data points (beam is completely obstructed by the scanning edges) were
obtained. The mean noise was then subtracted from the data point values after which they
were normalised by the mean (noise subtracted) maximum energy. The data points that were
used to calculate the maximum energy and the noise were then discarded. The rest of the data
points were fitted with TEMq (Equation (4.9)) and the TEMyy 00+01 (Equation (4.10))
functions. The data points were then plotted overlaying the fitted TEMg, function for final

post-accuracy evauation.

The three fitted parameters B, P, and P, had to be inserted back into the fitting function

Equation (4.10), which was then solved for the minimum and maximum energy clip-levels
(normally 16% and 84%, see 24). T he difference between the two solutions was then taken as
the beam energy radius (Section 4.4.4), which is used in al further calculations. Note that the
beam radius was not immediately obtained from the fitting parameters as would be the case
when the normal TEM g knife-edge energy distribution (Equation (4.9)) isfitted.

The beam radii for al the z positions were calculated in this way to produce the beam

propagation in both transverse directions. The M?* parameters in any one of the transverse
directions were then calculated as follows. The propagation hyperbola of Equation (2.12),

with an extra parameter C, for the waist position, was used as afitting function to obtain the

beam parameters:

y=Cy1+((z- C,)IC,) (7.0)

with C, the beam waist radius, C, the position of the beam waist and C, the Rayleigh range.

Each beam radius data point was weighed inversely proportional to itsvaluein order to ensure
that the important smaller waist values were not neglected in the least squares calculations. It
was further ensured that the waist values govern the least squares method by measuring
approximately half of the beam radii within the waist region as advised and stated by the 1ISO
[24]. The waist radius w, and Rayleigh range z, obtained from the fitted values of fitting

function (7.1) were then inserted into Equation (2.23) to obtain the knife-edge M ?-value.
Equation (2.23) with the fitted values substituted into it, appears as follows:
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7.8 Application of the theoretical calculations

7.8.1 The proportionality graphs

The knife-edge proportionality graphs of Chapter 6 could serve as a tool to evauate the
measured beams if both the knife-edge and specific proportionality factors of the beams are
known (Section 6.4.3.2). Technically, only acomplete cameraor slit scan is able to determine
both. A third alternative is to use the SPSM proportionality factors (Section 4.5.1). The dlit
profiles described in Section 7.5 were used to obtain the SPSM proportionality factors, which
were then plotted versus their respective measured knife-edge M -values, overlaying some of
the proportionality graphs of Chapter 6. The results are discussed in the next chapter.

7.8.2 Application of the newly proposed clip-level optimisation
method

The clip-level optimisation method of Chapter 6 was applied to the data sets of the measured
beams to evaluate the new theory’s viability and to demonstrate the technical aspects of
implementing it. This was possible because the entire beam energy profile was measured at
each z position in both transverse directions. A program was written which incorporated the
previous Matlab program that was described in Section 7.7. The knife-edge M -value was
first calculated with a 16% clip-level. The clip-level was then changed in small steps until the
maximum (35%) or minimum (4.16%) clip-levels defined in Section 6.4.4.1 were reached,
thereby obtaining the relationship between knife-edge M -values and the clip-values. A
polynomial function was then fitted through the data points to determine the 1.732 clip-level.
This clip-level was then inserted into Equation (6.8) to obtain a degenerate error free second

moment M? value. A flowchart for the program is shown in Figure 7-11.

7.9 Summary

The experimental set-up and conditions to characterise an experimental CO, TEA laser were
examined. This included the laser, scanning hardware, scanning software as well as post-
processing and analysing techniques. Methods to employ and evaluate the theory of Chapter 6
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were also given. In the next chapter, the data obtained from the measurements will be
presented and discussed.
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Chapter 8

Experimental Results

In this chapter, results are presented from dlit profiles and knife-edge characterisations of two
beams from the CO, laser that was described in the Chapter 7. The beams will also be
evaluated and correlated with the new and existing correlation theories. An attempt will be
made to illustrate that the newly proposed clip-level optimisation method is viable. Results
from the various correlation methods will be compared using the SPSM proportionality
factors (Section 4.5.1) as reference.

8.1 Slit scan measur ements

8.1.1 The multimode beam

The results from the slit scans of the multimode beam in the horizonta and vertical directions
(see Section 7.1) can be seen in Figure 8-1 and Figure 8-2 respectively.

The horizonta dlit profile has an almost TEM g distribution. This is evident from the good
correspondence between the scanned data profile and the fitted TEM, function which only
deviates significantly in the wings of the profile. This deviation, in conjunction with two

small bulges on the side, reveals that alow percentage of the TEM, 10 rectangular mode is

present in the beam. The uneven top part of the beam is not due to noise, but is rather the

result of slight imperfections on the output coupler.
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Figure 8-1: Slit profile of the multimode beam in the horizontal direction.
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Figure 8-2: Slit profile of the multimode beam in the vertical direction.
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The vertical dlit profile reveals that the higher order modes dominate in this principle
direction so that a relatively high M? factor can be expected. This is possibly due to higher
gain closer to the electrodes. The vertical dlit profile is asymmetrical and contains two local

minima and an inflection point. The minima indicate the presence of the TEM 02

rectangular mode while the inflection point either indicates the possible presence of the

TEM, 03 mode or it can be the result of aslight shift in the centre of the higher order modes

to better accommodate defects on the optics. The last is the most probable due to the

asymmetrical shape of the vertical dlit profile. The number of modes can also be

approximated by determining the effective Fresnel number (N =[a/w,]’[1/p~1- G*]) of

the resonator and then using it in loss factor graphs as given in Reference 23. It is however
easier to guess the number of modes from the beam energy density distribution due to the

damage on the optics.

The two profiles differ considerably, implying that the beam is rectangular symmetric and
astigmatic. This rectangular symmetry can be attributed to the flat shape of the electrodes, a
non-uniformed gain profile due to pitting on the electrodes as well as defects on the resonator

optics.

8.1.2 Thenear TEMy beam

The dlit profilesin the horizontal (transverse to discharge) and vertical directions (in direction
of discharge) of the near TEM, beam are given in Figure 8-3 and in Figure 8-4 respectively.

The horizontal dlit profile data correspond well with a TEMq fit, except for an inflection
point on the left, at low positiona values. The aperture radius does not, however, allow for
significant oscillation of any higher modes. It was therefore expected that an almost perfect
TEMgo beam should emanate from the laser, making the inflection point an anomaly. The
measured flanks of the data are also significantly lower than those of the fitted TEMy profile
so that it would probably have a smaller than theoretically calculated second moment radius.

It is evident from the two elevated flanks of the vertical slit profile that the vertical part of the

beam did not have a TEMq distribution as expected, even though the TEMy fit correspond
well with the higher data values (energy values transmitted by the dlit). The second moment
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radiusin the vertical direction is expected to be larger than that of the theoretically calculated
TEMy beam due to larger than expected energy valuesin the flanks.
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Figure 8-3: Slit profile of the near TEMy, in the horizontal direction.
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Figure 8-4: Slit profile of the near TEM, in the vertical direction.
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The horizontal inflection points and the deviation in the flanks of the two slit profiles suggest
that the aperture is causing diffractive effects inside the resonator. Diffractive effects change
the basis functions of a resonator so that its electric field distributions can no longer be
described by the Hermitian or Laguerre functions. Diffractive effects can usually be avoided
by careful adjustment of an iris. This is, however, not possible with the pre-manufactured
aperture. This deviation in the flanks is significant and not the cause of a pointing instability
which usually only occur in lasers that does not have a hard aperture. The use of a hard

aperture isin fact the most common way to get rid of a pointing instability.

The 13.5% energy density radius of both beam profiles correspond well with their respected
fitted TEMy Gaussian functions. If the energy density definition of the beam radiusis used to
determine the M -value (Section 4.3.2) it would not revea the diffractive effects caused by
the internal aperture. For practical purposes, it is therefore judged to be a very good beam to
use since it appeared TEM (o, except for small deviations in the flanks, which will not have
any significant effects in most applications.

The second moment method is extremely sensitive to features in the flanks of the energy
density profile. The second moment radius and M-values should therefore differ substantially
from those determined by the alternative methods. Theoreticaly, this beam should therefore

be of extremely poor quality

The use of afixed mounted internal aperture is still an experimental technique. The lack of
adjustability and the fact that extremely accurate alignment is crucial makes its beam not the
ideal choiceto evauate the theory of Chapter 6. This might also be the case for the multimode
beam due to its asymmetrical profile.

8.1.3 Single position dlit measured (SPSM) proportionality
factors

The vertical part of the multimode beam is used as an example of how a SPSM
proportionality factor is obtained from a single slit scan measurement as described in
Section 4.5.1 and Section 7.8.1. The vertica dlit profile of the multimode beam in Figure 8-
5 A was mathematically integrated to produce the knife-edge energy profile seen in Figure 8-
5 B. The knife-edge energy profile was fitted with the higher order energy fitting function
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(Equation (4.10)). This function was then solved using the 16% and 84% clip-levels to
produce the knife-edge radius, which was found to be 4.57. It must once again be stressed that

the beam radius is found by solving the fitted function for two clip-levels and not from fitted

parameters. The better the functions fits the data the more accurate the beam radius is even

though the fit is similar for different beams. The second moment radius was determined to be

4.19 from the dlit profile, using Equation (2.4) and the method described in Section 5.2.1.4.

The proportionality factor according to Equation (4.26) was therefore just the second moment
radius divided by the knife—edge radius resulting in avalue of 0.92. Table 8-1 lists the second
moment and knife-edge radii as well as the proportionality factors of the two evaluated beams

in both principle directions.
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Figure 8-5: The multimode beam’s vertical slit profile on the left (A) and its mathematically
integrated knife-edge energy profile on the right (B).

Proportionality factor
Second moment )
Beam ) Knife-edge radius 16%
radius
(measured)
6.5 mm Aperture
_ 2.31 2.40 0.96
Horizontal
6.5 mm Aperture
_ 4.06 3.74 1.09
Vertical
No aperture
. 3.94 4.14 0.95
Horizontal
No aperture
. 4.19 4.57 0.92
Vertical

Table 8-1: The second moment and knife-edge radii as well as proportionality factors of the
two evaluated beams in both principle directions.
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8.2 Knife-edge M easurements

8.2.1 Fitting of the energy functions

Figure 8-6 shows the Matlab output of atypical knife-edge scan data set. The TEMy, energy
profile that best fitted these data values is also superimposed on the data set. The data points
that were used to fit either the TEMq or TEMy, 00+01 energy fit functions (Section (4.10))
are encircled. The three data points that were used to determine the average noise can be seen
to the right at higher position values. The fifteen unused data points that were recorded to
calculate the average maximum energy can be seen to the left at lower position values. Such
outputs were generated by the Matlab post-processing program described in Section 7.7 to
determine if the correct data points were used and if they were correctly fitted with the TEM o
functions. If the TEMy, 00+01 fitting functions produced comparable beam centres and radlii,
their fits were also deemed satisfactory.
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Figure 8-6: Typical output of a Matlab post-processed knife-edge scan fitted with a TEM,
function.

Figure 8-7 shows an inflated view of a knife-edge scan fitted with both the TEMg, and
TEMy,00+01 energy functions. It can be seen that the | atter fits the measured knife-edge data
significantly better than the plain TEM, function. Errors for low clip levels can typically be
in order of 10 to 20% when the TEM function isfitted. This reduces an order of magnitude
to approximately 1 to 2% when the TEM,y00+01 function isfitted. For clip-level optimisation
purposes, it is very important that the functions fit the measured data very well. It is therefore
essential to use the TEM,,00+01 fitting functions for the clip-level optimisation method.
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Knife-edge scans were done in both transverse directions at fifteen positions along the beam
propagation direction. The beam radii in both principle directions for each measuring position
were then calculated using a 16% clip-level. The propagation of the beamsin each transverse
direction can be observed by plotting the knife-edge radii versus their respective z positions.
Figure 8-8 and Figure 8-9 show the beam propagation profiles (using the knife-edge radii) as
well asthe slit measured profilesin both principle directions for the two measured beams.
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Figure 8-7: Inflated view of a typical knife-edge measured energy profile fitted with both
TEM and a TEMy, 00+01 fitting functions.

8.2.2 Beam propagation of the multimode beam

It can be seen from Figure 8-8 that the multimode beam is clearly asymmetric in the two
principle directions. The vertical scan is only slightly less diverging than the horizontal, but
has a significantly larger waist radius indicating that it has alarger M-value. This corresponds
well with results from the slit scans which indicated that the vertical energy density profile

had more structure due to alarger higher order mode content in that direction.
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Figure 8-8: Beam propagation and dlit profiles of the multimode beam. The vertical energy
density profile can be seen to the left and the horizontal to the right.

8.2.3 Beam propagation of the near TEMy beam

From Figure 8-9 it can be seen that the near TEM beam clearly is symmetrical at the waist.
The circularity ratio was measured as 1.13:1 with the knife-edges positioned at az position of
830 mm. At this position, differences in the radii were found to be more pronounced due to
larger divergence of the beam in the vertical direction. The 1SO specifies that the ratio should
be less than 1.15:1 for a beam to be classified as circular [24]. The beam can therefore be

classified as stigmatic.

From the perspective of the practical energy definition, this beam is idealy suited for
applications where circular symmetry is required. The large Rayleigh range, circular
symmetry and almost TEMy, profile makes it suitable for material processing applications

such as drilling and cutting of Aluminium and plastics .
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Figure 8-9: Beam propagation and slit scan of the near TEMy beam. The vertica energy
density profile can be seen to the left and the horizontal to the right.
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8.2.4 Comparison between the propagation of the two beams

The knife-edge (16% clip-level ) beam propagation graphs for both beamsin the two principle
directions are superimposed in

Figure 8-10. The near TEM g, beam is clearly less divergent, more symmetrical and focusesto
smaller radii than the multimode beam. The two beams aso have noticeably different waist
positions z(0) . Spherical aberration of the focusing lens could be possible explanation for this
[32]. This would imply that the multimode beam, which had a larger radius on the lens,
focused closer to the lens than the near TEMgo beam. It is, however, likely that the effect is
caused by aberation effects at the internal aperture.

Sy *— Vertical beams
8 454 |—4— Horizontal beams
w 4
= 4.0
g ]
= 3.5
% |
21 \\
®
o 2.5 AN
o e
B201 N \.
2 5] \‘o °
IE - ] N ‘. .‘
W .,
4 1.0 4 ‘\Q‘...:A"
1 $4054000
0.5 : . - : : : , . ;
0 200 400 600 800
Z position

Figure 8-10:Combination graph of the propagation as measured by the knife-edge technique
of the near TEM , and multimode beams.

8.2.5 Fitting of the beam propagation equation

The radii of each beam in both principle directions were fitted with the hyperbolic beam
propagation function (Equation (2.12)) to determine the knife-edge beam propagation. A

typical output from such a fit can be seen in Figure 8-11. The beam radius w,, Rayleigh
Range z, and focal position z(0) were then determined as described in Section 7.7. The M ?

values were determined fromw, and z, by means of Equation (7.2).
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The Matlab-computed values of these properties, the SPSM proportionality factors and
correlated second moment M -value arelisted in Table 8-2. Asexpected the M -valuesinthe
two principle directions of the multimode beam differs substantially. No unexpected
non-Gaussian behaviour could be noticed from the SPSM proportionality factors of the

multimode beam.

Beam radius

| . | | | . | |
0 100 200 300 400 500 600 700 800 900
Z position

Figure 8-11:Typical fitting of the propagation equation on knife-edge radii versus Z position.

The knife-edge M -values in the two principle directions for the near TEM o, beam are almost
identical and very close to one. According to the energy definition, the near TEMg beam
therefore had very good beam quality. A completely different picture emerges after
multiplying these knife-edge M -values with the SPSM proportionality factors. The correlated
second moment M -values of the near TEMq, beam are found to be much higher in the
vertical direction than in the horizontal direction (Table 8-2). In fact, by multiplying with the
SPSM proportionality factor, the second moment M -value in the horizontal direction
decreasesto avaluethat isless than one. Thisimpliesthat its M *-value also decreasesto less
than one.

According to Gao and Weber [20] there are three possible explanations that would account for
an M -value smaller than one. These are:

errors in measurement,

violation of the paraxia approximation,

errorsin calculating M 2.
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Proportion
0 Mknife- ality factor
Beam WO ZO Z( ) M second
edge16% 16%
(measured)
6.5 mm Aperture
) 0.70 142 415 1.01 0.96 0.97
Horizontal
6.5 mm Aperture
. 0.66 124 406 1.02 1.09 1.11
Vertical
No aperture
) 0.78 89.4 359 1.43 0.95 1.36
Horizontal
No aperture
) 1.06 114 362 1.70 0.92 1.56
Vertical

Table 8-2: The propagation properties of the near TEMy, and multimode beams. The SPSM
correlated factor and its resulting second moment M- M -value is also given.

The last error is determined to be the cause in this particular case. The SPSM proportionality
factor was determined very accurately from asingle slit scan. The error on would typically be
in order of 1% so that it does not account for this smaller than one value. The laser also had an

insignificantly small pointing error (another source for the smaller than one M ?) due to the
presence of the hard aperture. The mast likely explanation would be that the beam rotated
during propagation due to phase changes that are caused by the aperture that was too small
(making it general astigmatic). The kurtosis parameter was not measured at different positions
along the beam propagation direction (as was aready mentioned in Section 7.5.2) so that it
could not be verified if this was indeed the case. Using a single proportionality factor from
one profile measurement can therefore lead to incorrect results. The only way such beams can
be measured correctly is by the complete second moment method ([18] and Section 2.1). Itis
therefore crucia to establish the kurtosis parameter by measuring the dlit profiles at severa
positions along the beam propagation direction before a scan is performed. For practical
energy flux purposes, thisrotation isinconsequentia since the beam profiles are so similar in
both directions. This beam therefore illustrates the limitations of all the correlation theories
discussed and developed in the earlier chapters.
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8.2.6 Theinfluence of the nor malizing ener gy on the beam radius

The sensitivity of the energy radii to changes in the normalising energy density was calculated
using values from the measured horizontal multimode beam. The 100% transmitted
normalizing energy was determined using the fifteen allotted maximum energy measuring
points as described in Section 7.6. The maximum energy was then changed in fixed
percentages while the other measured data values remained unchanged. The beam radius was
calculated for each normalisation energy, using the TEMq energy function (Equation (4.9)).
The percentage change in radius was calculated and plotted in Figure 8-12 versus the
normalisation energy, which isgiven in a percentage of the origina normalising energy. It can
be observed that the beam radiusisinversely proportional to the full energy. The dependence

of the change in beam radius e,, on achange of the full energy e, was measured to be

1 1

»

e, = :
1.8%, 2e,

Changing the full energy by set percentages therefore changes the beam radius by roughly
double that percentage. It was therefore justified to alot fifteen points to the measurement of

the full energy value.
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Figure 8-12:The effect a change in the normalizing maximum energy has on the calculated
beam radius.
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8.3 Evaluation of the beams using the proportionality
graphs

It is demonstrated in this section how the proportionality graphs of Chapter 6 can be used asa

tool to evaluate laser beams. The proportionality factors of Table 8-2 are plotted as afunction

of their respective knife-edge M -values and are superimposed on afew of the proportionality

graphs. This can be seen in Figure 8-13 for the rectangular two and three-mode subclasses.

It is evident from the graph that the proportionality factor values of the near TEMy, beam do
not correspond to any of the computed rectangular values. It can be seen from Figure 8-14,
which aso contains the proportionality graph of the rectangular four-mode subclass, that the
vertical proportionality factor for the near TEMy beams is only possible for other high mode
content beams (that contain at least four modes). The horizontal proportionality factor for the
near TEMy beam is only possible for other beams that contain at |east two modes, but having
larger knife-edge M -values. Neither of these two conditions applies to the near TEM o beam.
The proportionality factors differ widely in the two directions because of the diffraction
effects when one expects them to be almost identical. This beam can therefore not be
described by Hermitian or Laguerrian functions and cannot be classified as Gaussian (the
rectangular three-mode subclass proportionality graph’s left |obe contains the proportionality
values of the first four cylindrical subclasses (Section 6.4.3.3)). The graphs can therefore be
used to assert whether abeam isindeed Gaussian or at the very least, behaves like a Gaussian
beam. It is deemed quite possible that the two proportionality factors could have oscillated
due to beam rotation as the beam propagated. This possible oscillating behaviour of the

proportionality factors can potentialy be verified in future.
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Figure 8-13:SPSM proportionality factors plotted as a function of their respective knife-edge
M -values are superimposed on the two and rectangular three-mode subclasses
proportionality graphs.

The proportionality factors of the multimode beam correspond well with the computed values
of the proportionality graphs of Figure 8-13. The horizontal proportionality factor indicates
that the horizontal part of the beam consists of the fundamental, TEM,,10, and a very small
percentage of the TEM,,20 horizontal modes. It is impossible to make any such assessment
for the vertical measurement at this knife-edge clip-level, due to its close proximity to the
zero error point. If it is vital to make such an assessment: the clip-level can be changed to
move the beam sufficiently far away from the zero error point (Section 6.4.4.1). The high
knife-edge M -value in the vertical direction indicates large percentages of the first, second
and third rectangular higher order modes. Figure 8-14 shows that it is unlikely that the beam
contains any substantial percentage of the fourth higher order mode in both principle

directions.
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Figure 8-14:Proportionality factors (calculated from dlit profiles) plotted versus Knife-edge
M -value s superimposed on the cylindrical proportionality graphs (up to the
fourth mode) of Chapter 6.

8.4 Application of the clip-level optimisation theory

The clip-level optimisation method is non-intuitive when it is considered that it was
developed purely from proportionality graphs, which originated from theoretical energy
density profiles. It will be a strong confirmation of the entire proportionality graph theory if
the clip-level optimisation method provides good results. This is because the practical clip-
level optimisation method utilizes energy (Section 4.4.4) and beam propagation (Section 7.7)
fitting functions. Even an indication that this theory corresponds only reasonably with
measurements will already indicate that it can be validated in future by additional careful and

representative experiments.

The clip-level optimisation method was applied to the two beams in both directions. The
knife-edge radii were calculated from the fitted TEMyy 00+01 functions used previously in
the 16% clip-level calculations of the knife-edge M -values. The clip-level was varied in
fixed steps and the M -values were calculated as described in Section 7.8.2 by fitting the
propagation equation. Figure 8-15 shows the knife-edge M -values as afunction of clip-level
of the two measured beams. The cross-marked values indicate the 16% clip-level M -values.
The clip-levels clearly had to be decreased for all the beams to obtain the zero error knife-

edge M -value of 1.732. The graphs in Figure 8-15 were fitted with athird order polynomial
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to obtain the exact clip-level that produced aknife-edge M of 1.732 (indicated by the straight

line).

The difference between knife-edge M -values in the two transverse directions of the near
TEMgo beam remains almost constant for all clip-levels. This indicates that the knife-edge
method is insensitive to changes or noise in the flanks of laser beams. It is therefore, once
again, shown that this beam is very well suited for applications where circular symmetry is
required.
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Figure 8-15:Knife-edge M -value as a function of clip-level for the two measured CO; laser
beams in both principle directions.

A large difference isfound in the M -vaues in the two principle directions of the multimode
beam. This difference also remains relatively constant for all clip-levels. This beam is

therefore highly asymmetric.

The clip-levels at which each of the graphs cross the 1.732 line are summarized in Table 8-3.
The corresponding second moment M -values calculated from Equation (6.8) are also listed.
The deviation of the near TEM clip-level optimisation M -values from the SPSM ones in
Table 8-3 indicates that the clip-level theory also does not hold for beams that are affected by
diffractive effects. This is because the measuring error of the M -values is typically in the
order of 1 to 2 % which do not account for this large differences. The SPSM proportionality

values were also very accurately measured.
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Beam 1.732 clip-level Secona.r;lgg)lent M Secc(’rr:%a”s‘lcjgde?t M
Near TEM goX 4.47 1.03 0.97
Near TEM oY 4.64 1.04 1.11
Multimode X 11.36 1.38 1.36
Multimode Y 15.55 1.57 1.56

Table 8-3: The 1.732 clip-levels, zero error point correlated second moment M -values and
the measured M -value s of the two measured CO, laser beams in both principle
directions

The M -values determined with the clip-level optimisation method of the multimode beam
correspond very well to those of the measured M -values. This indicates that the clip-level
optimisation method is viable as an accurate method to correlate the knife-edge and second
moment definitions. It is recommended, however, that the method undergo extensive
experimental verification by using awide range of different laser systems.

8.5 Comparison between different knife-edge
correlations

Table 8-4 lists the second moment M -values calculated by different knife-edge correlation
methods. The SPSM proportionality values are taken as areference even though they may be
susceptible to measuring errors. Deviations from the SPSM-values are therefore taken as
errors. Table 8-5 lists the percentage difference (error) between the different correlated M -
values and the SPSM correlated values. These errors are aso presented graphicaly in
Figure 8-16. The knife-edge correlation methods that are compared are:

the knife-edge function of the ISO standard (Section 4.5.3),

the rectangular two-mode fit (Equation (6.2)),

the rectangular three-mode fit (Equation (6.3)),

the rectangular four-mode fit (Equation (6.4)),

the single cylindrica fit (Equation (6.6)), and the

the clip-level optimisation method described in Section 6.4.4.

The near TEMy beam is deemed non-Gaussian because its SPSM proportionality values do

not correspond to those of the computed proportionality values. None of the methods
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developed in Chapter 6 could therefore be used to find appropriate proportionality factors for
the near TEM g, beam. This could also have been anticipated from the extra energy density in
flanks of the vertical energy density profile. The theory has nevertheless been applied for the
sake of completeness. Large, but expected, errors are therefore found for this beam when all

the correlation methods are applied to it.

M .
. Clip-level
Beam M sec knife- 2mode | 3mode | 4mode | circ all ISO optimi-
(measured) | edgel6 .
i sation
% clip
Near
TEMgoX 0.97 1.01 1.02 1.02 1.02 1.01 1.01 1.03
Near 1.11 102 | 103 | 103 | 104 | 102 | 102 1.04
TEMooY . . . . . . . .
Multimode X 1.36 1.43 1.35 1.39 1.46 1.37 1.35 1.38
Multimode Y 1.56 1.70 1.56 1.57 1.64 1.57 1.57 1.57

Table 8-4:The second moment M -values calculated by different knife-edge correlation

methods.
Clip-level

Beam 2mode 3mode | 4mode circ all ISO optimi-
sation

Near TEM goX 4.66 4.85 5.45 4.52 3.93 6.47
Near TEM oY -7.67 -7.40 -6.55 -7.87 -8.45 -6.11
Multimode X -0.94 2.09 7.52 0.45 -0.86 1.63
Multimode Y 0.21 0.75 4.81 0.72 0.45 0.71

Table 8-5:The percentage difference between these correlated M -value s and the SPSM
second moment M -values.

The rectangular two-mode, single cylindrical and the ISO correlation functions all correspond

very well with measured values. It can therefore not be experimentally shown that the ISO
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method produces less accurate correlations than the newly proposed methods. An extensive

test is needed to prove or disprove this, involving alarge number of diverse beams.

It was already proven in Section 8.3 that none of the beams are part of the rectangular four-
mode subclass. The errors using its correlation function are therefore quite high for the beams
in both principle directions. A graphical comparison of the remaining correlation methods can
therefore be made by expanding the error graph only around the values of the multimode
beam and omitting the values for the rectangular four-mode subclass. This can be seen in the
insert of Figure 8-16.

The 1SO method produces good results because the two knife-edge M -valuesfall in aregion
where this method is accurate. At other knife-edge M -values, the ISO method will probably
become far less accurate. In the vertical direction, al the remaining methods produce more
accurate proportionality factors than in the horizontal direction. Thisis surprising, given the
fact that the energy density profile has visibly poorer quality and is more asymmetrical in this
direction. The reason for the overall good correlation of the vertical part is due to its close
proximity to the 16% clip-level zero error point.
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Figure 8-16:A graphical comparison of the correlation methods.

The newly proposed clip-level optimisation method produces results that are consistently

accurate in error ranges that are comparable and in some cases even better than those of other
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methods. This method, therefore, shows great promise. As mentioned before, these
measurements are too small a sample from which to draw conclusions on the relative

accuracy of each correlation method.

8.6 Summary

By evaluating a general astigmatic beam, the limits of the theory were shown. The near
TEMy beam and the resonator that produced it, although they produced a non-Gaussian
diffracted beam, were shown to have practical value for material processing applications.
Although the presented results did not indicate a significant improvement over the 1SO
method, they did indicate that the new theories are viable. The proposed clip-level

optimisation theory, in particular, was shown to be practical.
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Chapter 9

Summary and futurework

In this chapter, conclusions are drawn concerning the three aims set out in Chapter 1. These
ams were:

the development of new correlation theory,

the modification of a CO, TEA laser resonator,

the design and use of alow frequency beam scanner.
Possible future experimental work and directions to be investigated are also presented.

9.1 Computational results

The computational results provided a means to:
verify the accuracy of existing methods,
develop new correlation methods,
provide a better understanding of energy density of beams,
evaluate if abeam is Gaussian (not TEM ),
determine the mode content of alaser beam,
select the TEM o mode and to

determine the M ? factor for certain beams from asingle energy density measurement.

It could be seen from the computational resultsthat the SO correlations are fairly accurate for
cylindrical symmetric beams in the aternative M ranges they specify (Section 6.3). The ISO
knife-edge correlation functions were found to agree for rectangular symmetric beams at low
knife-edge M -values, but deviated substantially for higher M -values (Section 6.3.1).
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It was also found that a general one-to-one linear relationship between the second moment
and alternative M definitions as assumed by Johnston and the 1SO [27], [24] does not exist.
Instead, it was illustrated that multiple second moment M -values could exist for a single
aternative M -value (Sections6.1 and 6.2), a fact that was already well documented by
Siegman [46]. This degeneracy was found to be larger for rectangular symmetric beams and
grew progressively worse as the number of modes in the beams was increased.

The theoretical knife-edge degenerate errors reach unacceptably high values for rectangular
symmetric beams containing more than three modes (Section 6.4.1). Correlating them with
any function was found to produce highly inaccurate results. These large degenerate errors
can aso seriously affect the reproducibility of experiments in which high mode-content
beams are used (Section 6.4.5.3).

New correlation methods were developed, taking into account the degeneracy as well as the
deviation of the second moment values from a single linear function for both the knife-edge
and dlit methods (Section 6.4). These correlation methods are comprehensive since they
incorporate techniques of both the ISO and Siegman. The 1SO’'s method only uses a few
modelled cylindrical energy density profiles based on real |aser beams [27]. The new methods
incorporate much larger numbers of practical beams. Siegman [46] used pure Hermitian
modes and an optimum clip-level in his correlation method. The new methods incorporate
pure modes and in one case employ a clip-level optimisation method to obtain an optimal
proportionality factor (Section 6.4.3.3). The new methods are therefore improvements on both

the ISO’s and Siegman’s methods.

A problem with most of the new knife-edge correlation methods, when used for rectangular
symmetric beams, is that the number of modes in the laser had to be known to give accurate
results. Knife-edge correlation was also found to be accurate only for rectangular symmetric
beams containing three modes or less, due to large degenerate errors (as shown in
Section 6.4.5.3).

A new clip-level optimisation method is proposed that correlates the knife-edge with the
second moment definitions theoretically without introducing any degenerate errors
(Section 6.4.3.3). This theory is valid for beams belonging to subclasses consisting of up to
three rectangular and four cylindrical symmetric modes. This new clip-level optimisation
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theory was shown to be best suited for high frequency scanners because they measure
accurate energy profiles. It was demonstrated that the clip-level optimisation method can also
be used for low frequency pulsed laser systems, but requires longer measurements and more

post-processing to give accurate results (also see Appendix F).

A comparison between the knife-edge and slit proportionality graphs demonstrated that the
knife-edge method is better suited for correlation purposes (Section 6.5). Thisis due to lower
degenerate errors for both rectangular and cylindrical symmetric beams, a more linear
relationship between the second moment and the knife-edge M -values and the existence of a
useable zero error point for afew important subclasses.

9.2 Thelaser

Optica degradation and discharge instability were encountered during the operation of the
experimental CO, TEA laser. The single cause of both of these problems was eventualy
found to be the steel pre-ionisation pins, which left an iron oxide residue within the laser
(Section 7.1). The investigative work, which led to this discovery and the measures that were
taken to fix it, provided valuable experience in the field of gas lasers and resonators. The most
notable was the development of an experimental fixed internal aperture.

The near TEM laser beam from the fixed internal aperture was shown to be highly suitable
for use in material processing since it provided excellent beam quality from an energy content
perspective (Section 8.1.2 and 8.2.3). This indicates that internal aperture resonators can be
used to make gas lasers less expensive and more rugged. However, aquality assessment of the
near TEMy beam indicated that it was far from idea due to diffractive effects (Section 8.3).
More development work will therefore be necessary. This type of internal aperture resonator
is, therefore, not yet marketable. The near TEMy beam was later used in preliminary laser

generated plasma experiments [1], [11] due to its good energy qualities.

9.3 Beam scanner

The beam scanner developed during the project performed sufficiently accurate knife-edge
scans of the experimental laser beams (Section 8.2). These scans could be used in practical
experiments and for afeasibility study of the clip-level optimisation method. This scanner can
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be used on other low frequency pulsed laser systems in the department like Nd:Y AG, eximer
and dye lasers. Vauable experience was gained in the development of the scanner and
accompanying automation and post-processing software (Sections 7.3 and 7.4). The only real

drawback of the scanner isits slow scanning speed.

9.4 Proposed futurework

The 1SO specified that at least half the radii measuring points in the beam propagation
direction should be within the waist area and the other half should be distributed beyond two
Rayleigh range lengths from the beam waist position z(0) [24]. This ratio has not been
proven (Section 4.1). Calculations to determine the optimal ratio of measuring pointsin these

two regions for maximum accuracy remain to be done.

The validity of the proportionality graphs over a wide range of laser systems remains
unproven (Section 6.6). It is especially important to test this for solid-state lasers, which are
currently at the forefront of laser development. It is suggested that this be proven using afast
CCD camera where the second moment, slit and knife-edge radii can easily be obtained from
the two-dimensional energy density distributions (Section 4.2.1). New noise deduction
techniques make it possible to determine the second moment radii much more accurately than
in the past [48]. Large numbers of sample beams can easily be obtained if a pulsed CO, TEA
laser (Section 7.1) and a fast camera or linear diode array (rise time <1ns) are used for initial
measurements since different temporal parts of the pulses can have different mode
combinations [15], [16], [17], [31]. Different parts of the pulse can then be analysed as
independent beams. The superiority of the new correlation methods over the 1SO correlation
functions also awaits further testing and approva (Section 8.5).

The possible oscillating behaviour of the proportionality factors of general astigmatic beams
could also be examined in camera verification experiments (Section 8.3). It still needs to be
investigated whether the proportionality factors can be incorporated into camera software
(Section 6.4.3.2) to test for Gaussian behaviour and to select the TEM g mode.

The applicability of the computational results in other parts of physics are open to
investigation since the Laguerre basis functions for cylindrical symmetric beams are also

found in the electron probability distributions of atomic physics. The rectangular Hermitian
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functions are found in the probability distributions of the simple quantum harmonic oscillator
[22]. It istherefore quite possible that these resultswill be useful to describe other phenomena
aswell.

A new position and diameter adjustable internal aperture for the CO, TEA laser isaready in
the design phase. It is currently being investigated whether this aperture unit can be combined

with a SFg cell to make the laser wavelength interchangeable between 10.6 and 9.6 mm [51]

and to possibly mode lock the laser [47]. The dlit profiles of beams emanating from this
resonator will be measured at severa positions to ensure that no diffractive effects occur
inside the resonator. To further prevent this possibility, the setup of thisresonator will be done
with the rectangular two-mode proportionality graph described earlier (Section 6.4.1). The
resulting beam (or beams) can then be used to complete the laser generated plasma
experiments.
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Chapter 10

Appendices

10.1 Appendix A
Knife—edge analytically integrated functions of the rectangular
Hermitian modes up to TEM,,05

All the knife-edge energy functions of the pure modes that are listed below were obtained by
integrating the energy density functions of Equation (3.19) with Equation (4.5) in the
mathematical program M athematica.
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The preceding energy functions were plotted (right) versus their source energy density

profiles (left).
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Figure 10-1:Energy density graphs of pure rectangular modes TEMy to TEM,,02 (A-C)
plotted alongside their respective knife-edge integrated energy graphs (D-F).
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Figure 10-2:Energy density graphs of pure rectangular modes TEM,,03 to TEM,,05 (left
from top to bottom) plotted alongside their respective knife-edge integrated

energy graphs (right).
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10.2 Appendix B

Example of two-dimensional value matricesin Excel
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Figure 10-3:The two-dimensional value matrix of the normal TEM01 mode.
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Figure 10-4:The two-dimensional value matrix of the doughnut (B) TEM ;01 mode.
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10.3 Appendix C
Graphical proof of the separability of the rectangular modes

In Figure 10-5 two different rectangular modes TEM,y11 and TEM,y12 are both slit scanned
in the direction of the arrow (x direction). Both dlit profiles are normalised and plotted
overlaying the profiles obtained by setting the other directions values equal to zero (a one-
dimensional pinhole profile). All the graphsin the bottom figure are clearly indistinguishable
from each other. They are also indistinguishable from the one-dimensional pinhole profile of
TEM,10. The generation of two-dimensiona energy density distributions is therefore

unnecessary due to the Cartesian separability of the Hermitian functions.

+ Profilewith Y =0
TEM22

TEM 32

Normalised Energy Density

slit translation direction

Figure 10-5:Slit addition of two different two-dimensional rectangular modes (TEM,y11 and
TEMx12) in the direction of the arrow (x) producing the exact same slit profile
which isidentical to the one-dimensional pinhole profile of TEM,y10 illustrating
the Hermitian separability in the Cartesian directions.
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10.4 Appendix D

Newly proposed correlation functions
The generd fifth order polynomial that was fitted through the knife-edge proportionality

graphs was:

M,y (+1.00557-a(M

+d(M

knife

knife

-0.994458)* +&(M . - 0.994458)°)

-0.994458) +b(M . -0.994458)° +¢(M ., - 0.994458)° 01

The general fifth order polynomial that was fitted through the slit proportionality graphs was:

M,y (+0.9994-a(M

+d(M

knife

knife

-1.000619) + b(M . -1.000619)* + c(M
-1.000619)* +&(M . -1.000619)°)

knife

-1.000619)*
(D.2

The following correlation factors should be inserted into the corresponding functions D1 and

D2 to obtain the correlation functions.

Beam Range
a b C d e )
subclass Knife-edge M
M>0.9946
TEM,, 00+01 | -0.01312 | -0.79973 | +1.63888 | -1.3571 | +0.46948
M<1.8724
TEM A 00+01+ M>0.9946
Y +0.1004 | -0.64557 | +0.62304 | -0.21434 | +0.02117
02 M<2.5211
TEM A 00+01+ M>0.9946
i +0.48487 | -1.60911 | 1.64479 | -0.74665 | +0.12859
02+03 M<3.0600
TEM A 00+01+ M>0.9946
& +0.30742 | -0.67211 | +0.41293 | -0.10735 | +0.01023
02+03+04 M<3.5310

Table 10-1:Newly proposed knife-edge correlation factors (which must be inserted into
Equation (D.1) for the first four rectangular mode subclasses.
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Beam Range
a b c d e )
subclass Knife-edge M
M>0.9946
TEM,, 00+01 | -0.12712 | +0.40283 | -3.27354 | +7.45889 | -5.36761
M<1.53
TEM_, 00+01 M>0.9946
p +0.21395 | -2.21383 | +5.28299 | -5.4693 | +2.09481
+02 M<1.92
M>0.9946
TEM,00+01+ | 439839 | -2.6454 | +5.1731 | -4.56367 | +1.52275
02+10 M<1.99
M>0.9946
TEM,00+01+ | 1547011 | -2.75246 | +4.89901 | -3.86241 | +1.13883
02+10+03 M<2.26

Table 10-2:Newly proposed knife-edge correlation factors (which must be inserted into
Equation (D.1) for the first four cylindrical mode subclasses.

Beam Range
a b C d e )
subclass Knife-edge M
M>1.00062
TEM,, 00+01 | +0.1441 | -4.2175 28.122 | -80.3660 | 84.388
M<1.50140
TEM. 00+01+ M>1.00062
Y +0.543 -5.9171 | +20.296 | -28.3914 | +14.351
02 M<1.84337
TEM ,00+01+ M>1.00062
. +1.20063 | -7.958 +18.296 | -17.776 +6.291
02+03 M<2.12269
TEM ,00+01+ M>1.00062
Y 2.023 -9.410 +15.941 | -11.754 +3.214
02+03+04 M<2.3652

Table 10-3:Newly proposed slit correlation factors (which must be inserted into Equation
(D.2) for the first four rectangular mode subclasses.
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Beam Range
a b c d e )
subclass Knife-edge M
M>0.0946
TEM,, 00+01 | 0.03260 | -2.3346 | +17.110 | -54.0110 | +62.210
M<1.42
TEM , 00+01 M>0.0946
P +0.2560 | -3.295 | +11.766 | -17.766 | +10.099
+02 M<1.68
M>0.9946
TEM,00+01+ | 3175 | .30343 | +8.8195 | -11.1603 | +5.5281
02+10 M<1.68
M>0.9946
TEM,00+01+ | 192085 | -2.1249 | +5.6743 | -6.4392 | +2.7952
02+10+03 M<1.88

Table 10-4:Newly proposed dlit correlation factors (which must be inserted into Equation
(D.2) for the first four cylindrical mode subclasses.
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10.5 Appendix E
Clip-level optimisation graphs

Correlation Factor

| I
04 08 12 16 20 24 28 32
M knife

Figure 10-6:Knife-edge proportionality factor graphs for the rectangular three-mode subclass
calculated using different clip-levels.
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Figure 10-7:Knife-edge proportionality factor graphs for the cylindrical three-mode subclass
(TEM,00+01+02) calculated using different clip-levels.

1.3 - o 1.732
1.2 - '
1.1 - '
- ] 20% clip level
O 1.0 - I
(9] 1)
L 0. N ||||||
S %° .“Wlili:'
e i
S o A
S f"ffﬁf'f',"'lu||ll|||| l
0.7 - B
&) _ ey "'|'|!|I'MIH’|H H|I 4% clip level
1itl
0.6 —
_ . "' il ||m|“||| |
0.5 T T T '
1.0 1.5 2.0 25 3.0
M knife

Figure 10-8:Knife-edge proportionality factor graphs for the cylindrical four-mode subclass
(TEM,00+01+02+10) calculated using different clip-levels.
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10.6 Appendix F

Below measuring error correlation functions

This clip-level optimisation method can be used for rectangular symmetric pulsed lasers and

for hand scanning techniques involving rectangular symmetric lasers.

The proportionality factors with knife-edge M -values close to 1.732 can also be used since
their degenerate errors are much lower than the measuring error. Set given clip-levels with
known correlation functions, which were fitted only close to the zero error point, are used to

determine the second moment M ? value. Such afitting isillustrated in Figure 10-9.

1.13 4

C =2.27901-1.09366 M
+0.24207 M,

knite

1.12 4

1.11 4

Correlation Factor

1.10 4

1.09 B

. . . .
1.65 1.70 1.75 1.80
M knife 25% clip level

Figure 10-9:Fitting of the correlation function close to the zero error point of the rectangular
three-mode subclass using a 25% clip-level.

The “below measuring error” proportionality factor can be determined as follows.
The 16% knife-edge M -value is measured.
The user choose a certain given clip-level value that will give knife-edge M -value
closerto 1.732.
This process is repeated until the clip-level is determined that gives a knife-edge M -
valuethat isthe closest to 1.732.
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The correlation function given in Table 10-5 for that specific clip-level is used to
obtain the “below measuring error* second moment M -value.

45 | My im =M 0.58983

5 M o6 = My~ 0.60899

6.5 | My gm =M (0.69777-0.02236 M)

8.5 | My gss =M (0.90067-0.15875 M, ;. +0.03201 M 2,,.)

11| Mg =My~ (139809 - 0.63865 M, + 0.16707 M2,..)
135 | Mirasn =My (1.03149 - 0.11663 M, + 0.00971M2,.)
16 | Mg =M (1.3607 - 0.38634 M, + 0.07593M2,;.)
18 | Myuige =M (1.39281 - 0.31758 M, + 0.04453 M 7,.)
21 | Mo =M (1.85884 - 0.75621 M, + 0.16039 M/,.)
25 | My ome =M (214775 - 0.94243 M, + 0.19853M7..)
28 | M ogs =M (2243 - 0.93123 M, + 0.17921M7 )
315 | My s =My (244201 - 1.01501 M, ;. + 0.18244 M)
346 | My =Mpie” (29026 - 140115 M, + 0.26923 M7,.)

Table 10-5:Correlation functions close to the zero error points of the rectangular three-mode
subclass using various clip-levels.
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10.7 Appendix G
Analytical Mathematica Program

cls =13.5 («clip—level of slitx)

clk =16 (sclip—level of knife—edgex)
drs =0.2 («lower range for slit searchs)
urs = 2.5 (xupper range for slit searchx)
sk=3 (xposition for knife searchx)
steps =1 (xnumber of full calculationsx)
For[i =0, i< steps, («for loopx)

Clear[aa, bb, cc, dd, ee, ff, tt, ss, uu, vv, ww, xx, kk,
sa, sb, sc, sd, se, sf, ned, pp, smr, sr, temp, kp, hh, ii, jj, kw, kr];

(xclears variabless)

tt = Random[]; (*Random weights of pure modessx)
ss = Random|[];

uu = 0;

vv=0;

ww=0;

xx =0;

2
(HermiteH[O, V2 x] ) *xe 2%
aa=ttx ; (*muliplies random weight by

jm (HermiteH[O, V2 x])2 *e-2¥ dx

energy normailsed pure Hermitian modesx)

(HermiteH[l, V2 x] ) ? *xe 2%
bb = ss * ;

J@ (HermiteH[l, V2 x])2 *e-2¥ dx

(HermiteH[Z, V2 x])2 *xe 2%
cc =uu* 7

r (HermiteH[Z, V2 x])2 *e-2¥ dx

(HermiteH[S, A2 x] ) : xe 2%
dd = vv* 7

Jm (HermiteH[3, V2 x])2 *e 2% dx

HermiteH|4 2 x 2~kte‘2"2
( [4, V2 x])

J’w (HermiteH[4, V2 x])2 *e 2% dx

(HermiteH[S, '\/Ex])zvue'z"2
ff = xx+ i

J@ (HermiteH[S, A2 x] )2 *e2x* dx

kk = Simplify[aa +bb+cc +dd + ee + £f]; (xAdd the randomised modes together in a linear superposition

and simplies the function - this is th enrav densitv functionx)
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sa = FindMinimum[-kk, {x, 3}]; («Finds the local maximum values of the
energy density function )
sa = -sa[[1]];
sb = FindMinimum[-kk, {x, 2.5}];
sb=-sb[[1]];
sc = FindMinimum[-kk, {x, 2}];
sc = -sc[[1]];
sd = FindMinimum[-kk, {x, 1.5}];
sd = -sd[[1]];
se = FindMinimum[-kk, {x, 0.5}];
se = -se[[1]];
sf = FindMinimum[-kk, {x, 0.1}];
sf=-sf[[1]];

ned = Max[sa, sb, sc, sd, se, sf]; («finds the overall maximum valuex)

Pp = (ned) -1 xkk; (xnormalises the energy density function x)

g

smr=\/(4*(jw(aa+bb+cc+dd+ee+ff)*xzdlx)/(j

-

(aa +bb + cc +dd + ee + £f) dlx));

(+finds the second moment radiusx)

Print[smr]; (sprintsthe second moment radiusx)

cls
sr = FindRoot [pp - —— =0, {x, 1.4, drs, urs}, MaxIterations - 50];

100
(+finds the slit radiusx)
temp = x/. sr[[1]]; (xextracts the value from the Mathematica outputx)
If[temp < 0, sr = -temp, sr = temp]; (xensures that the slit radius is positives)
Plot[pp, {x, -urs, urs}]; (+plots the normalised energy density functions)
Print[sr]; («prints the slit radiusx)
P
kp = j (aa+bb+cc+dd+ee+ £f) dx; («knife—edge integrates the energy density functionx)
-0
hh = ReplaceAll[kp, p-» 1000]; (+finds the maximum normalising valuex)
ii = ReplaceAll[kp, p - -P]; (sreverse the orientation of the knife—edge integrated energy functions)
jj= hh™!axii; (snormalises the knife—edge integrated energy functionsx)
clk
kw = FindRoot [jj - m =0, {p, sk} ] ; («find the position where the knife-edge clip—level which

intersects the knife—edge integrated energy graphx)
kr=2xp /. kw[[1]]; (extracts the value from the Mathematica output
and multiplies it by two to obtain the knife—edge radiusx)
Plot[3jj, {p, -urs, urs}]; (splots the normalised knife—edge energy distributions)

Print[kr]; («prints the knife-edge radiusx)

Print[i]; (+prints the iteration number calculationx)

PutAppend[smr, "filesecondmoment"]; (+Appends the second moment radius to a filex)
PutAppend[sr, "fileslit"]; («Appends the slit radius to a filex)

PutAppend[kr, "fileknife"]; (+Appends the knife—edge radius to a filex)

, 1++ +Closes for loopx)
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Typical output

1.43036

-2 -1 1 2

1.42343

-2 -1 1 2

1.53969

1

10.8 Appendix H

k factor intensity based radii
In Equations (3.19) and (3.20) both the Hermitian and L aguerre polynomials are functions of
X/Wy,(2) . Consider for instance now a node or zero intensity point of an arbitrary higher

order mode. The position of this node can be found by setting the appropriate polynomial
equal to zero. One could therefore find a solution for position x of this node that depends

directly on w,,(2) . The beam profile aso scales with w,,(z) asit propagates. But according

to Equations (3.31) and (3.32) the second moment radii are also directly dependent or scale

with wy, (2) . The relationship between the position of the node and the second moment radius

is therefore also constant for the specific beam as it propagates. Because the shape of the
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beam profile is constant and scales with w,,(z) it will aso be true for all other intensity

points.

k factor energy based radii

It is even simpler to prove that a constant factor k exists between energy based and second
moment radii. Appendix A gives the normalised energy or knife-edge distributions of the
rectangular modes, which are al functions of x/w,, . One would solve each of these for a
specific value between 0 and 0.5 (the clip level) to obtain half the beam energy radius. (thisis
because they are centred on zero). Any beam energy radius therefore scales with w,(z)

which in turn scales with the second moment radius. The value of k is therefore also constant

for energy radii as the beam propagates.
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