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Abstract 

The beam quality factor (M2) of a laser is important because it describes both the quality of a laser 

beam as well as its propagation. Particular applications require that the beam radii (from which the 

M2 factor is determined) be defined in a specific way. The International Standards Organisation 

(ISO) recently standardised the theoretically correct, but practically difficult second moment 

definition of the beam radius.  

 

This thesis aims to establish correlations between the second moment definition and other more 

practical definitions. Chapter 2 presents a systematic introduction of moment theory for general 

beams. Beam centre and radius definitions as well as beam classification are derived by means of 

second and mixed moments. In Chapter 3 simple laser beams are modelled by means of a resonator 

approach. The infinite number of solutions of this model is called Gaussian solutions, which are 

found to be different for rectangular and cylindrical symmetric resonators. The zero order solution 

for both symmetries is identified as the ideal solution to which all others can be compared to for 

quality determinations. Chapter 4 presents different beam scanning devices, beam radius definitions 

and correlations between these definitions. The theoretical basis for a new correlation theory is also 

given. Chapter 5 describes programs and computations used to verify existing correlation methods 

and to calculate correlation factors for a newly proposed theory. Chapter 6 presents the results of the 

computations for both circular and rectangular symmetric beams. The ISO’s correlation theories are 

tested first. Newly proposed correlation functions between the second moment and alternative 

definitions as well as theoretical error graphs are given for various beams. A novel method to 

correlate several important beam subclasses is also presented. Chapter 7 describes the experimental 

setup, automation software and post processing techniques that were used to characterise a modified 

CO2 TEA laser. It is further shown how the theory developed in previous chapters could be applied 

to the experimental data. Chapter 8 presents the experimental results of the beam characterisation 

measurements performed on two different beams that emanated from the CO2 TEA laser. Existing 

and newly developed correlation theories are applied to the experimental data and the corresponding 

results are compared. In Chapter 9, conclusions and suggestions with respect to the initial aims 

identified in the first chapter are made. Several suggestions for future work are also made. 



 
Samevatting 

Die bundel kwalitietsfaktor (M2) is baie belangrik omdat dit beide die kwaliteit en 

voortplanting van ‘n laser bundel beskryf. Bundel radiusse (waarvan die M2 faktor bepaal 

word) word verskillend gedefinieer vir spesifike toepassings. Die teoreties korrekte, maar 

minder praktiese tweede moment definisie is onlangs deur die Internasionale Standaard 

Organisasie (ISO) gestandariseer.  

 

Hierdie tesis se hoofdoel is om die tweede moment definisie en ander meer praktiese 

definisies te korreleer. Hoofstuk 2 stel die moment teorie van bundels sistematies bekend. 

Dit word gewys hoe die senter en radius van ‘n bundel deur tweede en gemengde 

momente gedefinieer kan word. In Hoofstuk 3 word laser bundels gemodeleer deur 

middel van resonator aanslag. Die oneindige aantal oplossings wat verkry word heet 

Gaussiese oplossings en is verskillend vir reghoekige en silindriese simmetriese 

resonators. Dit word gewys dat die ideale bundel, waarmee alle ander bundels vergelyk 

word, die zero orde oplossing van beide simmetrieë is. Hoofstuk 4 stel verskillende 

bundel skanderings apparaat, bundel radius definisies en korrelasies tussen die definisies 

bekend. Die teoretiese basis vir ‘n nuwe korrelasie teorie word ook gegee. Hoofstuk 5 

beskryf die rekenaarprogramme en berekeninge wat gebruik word om huidige korrelasie 

teorie mee te toets asook om nuwes mee te skep. Hooftuk 6 gee die resultate van die 

berekeninge van die rekenaarprogramme vir beide reghoekig en silindriese simmetrie. 

Die ISO se korrelasies word eerste getoets voordat nuwe teorieë bekend gestel word. In 

Hoofstuk 7 word die eksperimentele opstelling, outomisasie sagteware en post-

prosessering tegnieke gewys wat gebruik was om ‘n aangepaste CO2 TEA laser te 

karakteriseer. Verder word dit gewys hoe die teorie wat in voorafgaande hoofstukke 

ontwikkel is op eksperimentele data toegepas kan word. Hoofstuk 8 gee die 

eksperimentele resultate van die bundel karakterisering van twee verskillende bundels 

vanaf die CO2 TEA laser. Bestaande en nuwe korrelasie metodes word gebruik om die 

bundels te korreleer en die resultate van elke metode word dan met mekaar vergelyk. In 

Hoostuk 9 word afleidings gemaak. Daar word ook voorstelle gemaak vir potensiële 

toekomstige werk. 
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Chapter 1  

Problem statement and overview 

1.1 Introduction and problem statement 
Laser researchers have sought ways to measure the spatial properties of beams since T. H. 

Maiman first demonstrated the laser in 1960. The first simplistic methods used for the spatial 

evaluation of laser beams were burn-paper marks, acrylic mode burns and direct viewing of 

diffuse reflected beams [10]. These methods did not, however, provide reproducible results.  

 

In answer to this problem, mechanical scanning devices such as knife-edges, slits and variable 

apertures were developed to obtain accurate beam profiles. Charged coupled device cameras 

(CCD cameras) currently dominate the laser characterisation market, but still employ virtual 

slits or knife-edges in their post-analysis programs [9], [49].  

 

The definition of the beam radius, rather than its accurate measurement, has been the main 

point of contention over the years. It is extremely important to use correct and accurate beam 

radii since they determine the energy density, divergence and quality of laser beams. Good 

quality lasers can be focussed to smaller spot sizes, their depth of focus is longer, they can be 

collimated for longer distances and their energy density distribution has a Gaussian 

distribution. The beam quality therefore needs to be determined accurately and reliably by 

using a standard definition of the beam radius. Several attempts have been made over the 

years to agree on such a standard definition [7], [8],[24], [27], [46], [56]. 

 

Different groups contended for years about which definition is best because different 

definitions are best suited for specific applications. The second moment definition is excellent 

for assessment of the beam quality and provides a sound theoretical base for all types of 

beams, but gives beam radii that have no connection with the beam energy that they contain. 
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An extensive introduction to this powerful theory is given later in this thesis because it can 

describe an immense variety of beams. Energy density definitions accurately track nodes and 

other features in beams’ energy density profiles, but give inconsistent radii when the energy is 

concentrated in the wings of the beam. Energy content definitions are the only definitions 

from which the important energy flux parameter can be calculated, but give inconsistent 

values for the theoretical beam quality or 2M  factor. The definition of the beam radius must 

therefore be chosen according to the information that is required. Because of this controversy 

laser beam radii were only standardized in 1999 (almost forty years after Maiman) by the 

International Standards Organisation (ISO) using only the theoretical second moment 

definition (ISO 11146). The organisation largely ignored the other more practical definitions 

stating only that “[o]ther definitions of beam widths and divergence angles may be helpful for 

other applications, but must be shown to be equivalent to the second moment definition” [24].  

 

In many instances, the second moment radii cannot be obtained directly. Siegman [46] 

showed that there is an unavoidable uncertainty when the second moment definition radius is 

determined from a knife-edge energy level radius. People have tried for years to minimise this 

correlation error. The ISO provided experimentally obtained correlation functions between the 

second moment and alternative definitions (the slit, knife-edge and variable aperture 

definitions) without stating that each must be used for different applications. These correlation 

functions were obtained by Johnston [27] from only a few measurements and were hardly 

shown to be representative of most lasers. The ISO also failed to mention the inevitable 

correlation error and in fact abandoned the goal of finding a general correlation method with 

little or no errors when they adopted Johnston’s correlation method. 

 

Siegman took the correlation error into account [46] when he used a graphical approach to 

determine the optimum knife-edge clip-level and factor for correlating the second moment 

and knife-edge definitions. His method was more general than the ISO’s because his approach 

was theoretical. Due to the large number of beams he used it was also valid for a larger range 

of quality values. However, Siegman’s graphical method largely ignored practical beams, 

opting rather for theoretically pure “unmixed“ beams. The ISO specifically took this mixing 

into account even though it was only for a few beams.  
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1.2 Aims 
This thesis aims to develop a comprehensive beam correlation theory that incorporates 

previous methods and provides a better understanding of the relations between different beam 

radius definitions for a broad range of laser systems.  

 

Secondly this thesis aims to modify and characterise an experimental CO2 transverse excited 

atmospheric (TEA) laser [40] for material processing using a knife-edge method. This part of 

the project therefore had a dual focus. The beam quality of a laser source had to be accurately 

known in order to evaluate the modified resonator. Accurate values of the beam’s energy 

distribution were also needed for material processing applications. A newly developed 

correlation theory can be used to obtain both these goals.  

 

No beam scanner was available to characterise the laser, necessitating the development of 

one. The mechanical knife-edge scanning method that was chosen, made the scanner 

wavelength and power independent so that it could potentially be used for other pulsed laser 

systems in the department. The successful development and demonstration of this beam 

scanner became another aim of this thesis.  

1.3 Terms of Reference 
Terminology used in this thesis relates to pulses since CO2 TEA lasers operate in a pulsed 

mode. Terms that will be used a lot are energy density and energy. This is because the 

integrated energy per pulse is usually measured when characterising a beam. The power of a 

laser beam is the amount of energy in J per s that it transfers to a power meter. Power and 

power density (intensity) are therefore more commonly used to describe continuous wave 

(CW) laser characteristics.  

 

Many articles and books use beam diameters instead of radii. This thesis will use beam radii 

and beam diameters will only be used when material specific to a particular reference is 

presented.  
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Chapter 2  

General beam theory 

Equation Chapter 2 Section 1  

The objective of this chapter is to give a systematic introduction to a comprehensive beam 

theory, called moment theory. This theory is so widely applicable that it can describe both 

coherent and non-coherent beams. 

2.1 Moment theory 

2.1.1 First order moments 
The first order spatial energy density moment for a two-dimensional slice in the x  and y  

transverse directions of a beam somewhere along its propagation direction is given by the 

following integral [24, [23]: 

 1 ( , , )x x I x y z dxdy
P

+∞ +∞

−∞ −∞

= ⋅∫ ∫  (2.1) 

with P the total energy of the beam  

 ( , )P I x y dxdy
+∞ +∞

−∞ −∞

= ∫ ∫  (2.2) 

x an arbitrary transverse direction and ( , , )I x y z  the energy density distribution. 
 

The first angular energy density moment is given by the following integral: 

 1 ( , )x x Fourier x y x yI d d
P

θ θ θ θ θ θ
∞ ∞

−∞ −∞

= ∫ ∫  (2.3) 

with ( , )Fourier x yI θ θ  the Fourier transform of the energy density distribution, λ  the wavelength 

and xθ  the direction of the wave front from an arbitrary x direction. 
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1stx  is defined as the centre of mass of a slice of a beam profile. This is identical to the 

definition of the centroid of an area [36]. xθ  is defined as the propagation direction of this 

centre of mass in the x-z plane. A beam can be simplified to a ray, which obeys the ABCD 

law of geometrical optics, by using the centre of mass and propagation direction of several 

slices in the propagation direction [23]. This reduction can be seen in Figure 2-1, which 

illustrates the direction xθ  of a typical beam and the centre of mass 1stx  of one slice. 

 

 

Figure 2-1: Illustration of first and second order beam moments of a three-dimensional beam.  

2.1.2 Second order moments  
The second order spatial intensity moment is defined in rectangular symmetry as [23], [24] 

 
( )2

2

( , )
( )

x x I x y dxdy
x z

P

+∞ +∞

−∞ −∞

− ⋅
=

∫ ∫
 (2.4) 

and in cylindrical symmetry* as [24]: 

 
2

2
( )

( )
r I r rdrd

r z
P

ϕ⋅
= ∫∫  (2.5) 

                                                   
* In this thesis rectangular symmetry will mostly be used to define quantities. Quantities are also defined in 
circular symmetry if they are required in future chapters. The arbitrary x direction will also be used to present 
most definitions.  
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2x  can be equated with the moment of inertia of an area with the same shape as the beam 

profile [36]. A beam radius can be defined as  
22 nd

x xω = ×  or 22 nd
r rω = × . (2.6) 

Beam radii can be determined at any position along the beam propagation direction by 

integrating Equation (2.4) or (2.5) over the two-dimensional energy density profiles. 

 

The second order angular intensity moment is defined as  

 
( )21 2

2

( , )st
x x Fourier x y x y

x

I d d

P

θ θ λ θ θ θ θ
θ

∞ ∞

−∞ −∞

− ⋅
=

∫ ∫
. (2.7) 

The far field divergence angle of the beam in the x  direction is defined as twice this value 

[24]: 
22x xθΘ = × . (2.8) 

This divergence in one of the principle axes can be practically determined with the following 

equation  

 
( )

lim x
x z

z
z

ω
→∞

Θ = . (2.9) 

Figure 2-1 also illustrates a general beam’s second moment radius and divergence. 

2.1.3 Mixed Moments 
Mixed moments arise because the electric field distributions ( , )E x y  are described by 

complex functions. The exact mathematical definitions of the mixed moments can be found 

on page 100 of reference 23.  

The physical attributes of the mixed moment are as follows [18], [23].  

• xx θ  is related to the radius of curvature 

• yx θ  describes the rotation of the beam while propagating 

• x y  characterises the orientation of the near field energy density ellipse with respect 

to the reference frame 

• x yθ θ  characterises the orientation of the far field energy density ellipse with respect to 

the reference frame. 

The last three attributes are illustrated in Figure 2-2. 
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Only xx θ , which is related to the radius of curvature, is found in beams originating from 

simple laser resonators. 

 

Figure 2-2 :Illustration of the mixed moments. (a) shows a non-rotating beam, (b) a rotating 
beam and (c) the near field ellipse orientation to the reference frame. 

2.1.4 The general ABCD law 
The three moment types of Sections 2.1.1 to 2.1.3 can now be combined to fully describe 

beams in three dimensions using the general ABCD law. The general ABCD law for one-

dimensional optics is only valid for beams when the moment definition is used to define their 

beam properties. This is mainly because beams defined by moment theory can be simplified 

to rays (Section 2.1.1) and can also be proved by applying the Collins integral to the 

definitions of the beam radii and divergence angles [23], (Section 2.1.2).  

 

b 

c 

a 
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A few properties following from the ABCD law are defined in Table 2-1. All these properties 

can be determined by carefully measuring the beam radius at various positions (slices) along 

the beam propagation.  
 

Minimum beam radius 
(minimum spot size) 0ω  (2.10) 

Rayleigh Range 0
0z

ω
θ

=  (2.11) 

Propagation Equation (beam radius) 
à for divergence angles less than 0.8 

radians. 

2

0
0

( ) 1 zz
z

ω ω
  
 = +      

 (2.12) 

Real radius of curvature 

2

1 1
( ) ( ) ( )

i
q z R z z

λ
πω

= +  

2

genR
ω

ωθ
=  (2.13) 

Complex radius of curvature 22 ( )
genq i

z
ωθ λ
ω π ω

= +  (2.14) 

Divergence angle 0

0z
ω

Θ =  (2.15) 

The generalized ABCD law with 
2 2

1 01  the beam waist andω ω=  

1 1 0ω θ =  

1
,2

1

gen
gen

gen

Aq B
q

Cq D
+

=
+

 

With ABCD the elements of any 
geometrical ray matrix. 

(2.16) 

Table 2-1: Properties derived from the moment definitions using the general ABCD law. 

The principle planes of propagation, defined as  and YZXZ , are the planes containing the 

major and minor axes of the beam profile ellipse (see Figure 2-2). The azimuth angle ϕ  is 

defined as the angle between one of these two planes and the laboratory-measuring plane. 

Only one angle is required because the two planes are orthogonal. In most cases, this angle is 

unknown due to the unknown symmetry within the laser cavity and can be calculated using 

the following mixed moment equation on the two-dimensional beam profile, 

 
2

2 22 2

21 arctan
2

x y

x y

ω ω
ϕ

 
 =
 − 

 (2.17) 

This equation is only valid for two-dimensional energy density distributions. There are also 

other manual methods for one-dimensional profiles, which will be given in a later chapter 

(Section 4.4.6). 
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2.2 Second moment matrices 

2.2.1 General structure 
The second order moments (pure and mixed) can be arranged in a 4 4×  matrix called the 

second order moment matrix V [23], [18], [43]. 

  

2

2

2

2

x y

x y

x x x x y

y y x y y

x x y x x

x y y y y
V

x y

x y

θ θ

θ θ

θ θ θ θ θ

θ θ θ θ θ

 
 
 
 =
 
 
 
 

 (2.18) 

For clarity the symbols are replaced with their physical meanings in the following 

representation of the second moment matrix [18]: 
 

orientation near radius of propagation 
width-x

field ellipse curvature-x rotation

orientation near propagation radius of 
width-y

field ellipse rotation curvature-y

V
radius of propagation 

d
curvature-x rotation

=
orientation far 

ivergence-x
field ellipse

propagation radius of orientation far 
divergence-y

rotation curvature-y field ellipse

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Beams can be completely classified according to the structure of their second moment 

matrices. This will be done in the following sections for a few simple beam types.  
 

2.2.2 Stigmatic beams 
All circular symmetric beams are classified as stigmatic and have the following second 

moment matrix structure [23], 

 

2

2

Simple stigmatic 2

2

0 0

0 0
V

0 0

0 0

x x

x x

x

x

θ

θ

θ θ

θ θ

 
 
 
 =
 
 
 
 

. (2.19) 
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These beams are naturally unchanged by rotation due to their circular symmetry. All the terms 

of the second moment matrix that are related to rotation are therefore zero. Before classifying 

a beam as stigmatic, it must first be determined whether the beam indeed has circular 

symmetry. A simple test to do this is to determine the ratio between the radii on the principle 

directions. If this ratio does not exceed 1:1.15 the beam can be considered stigmatic [24].  

 

The most elemental example of stigmatic beams is simple stigmatic beams, which are 

commonly referred to as Gaussian, or TEM00 beams. Simple stigmatic beams can be fully 

characterised by only two parameters, namely the waist radius 0ω  and the radius of 

curvature R . Their beam radii and the divergence angles are indirectly proportional to each 

other [33]: 

 0 0[ ] λ
ω ω

π
Θ = Θ =  (2.20) 

This product of the beam radius and divergence is called the beam parameter product.  

 

General stigmatic beams are also circular symmetric but do not have a specific relationship 

between ω  and θ . Their beam parameter product ( stigk ) is not necessarily a constant ( \λ π ) 

[23]. The beam parameter product is now defined as: 

 0 stig[ ] kω Θ = . (2.21) 

Their beam parameter product ( stigk ) has to be measured and is always equal to or larger than 

the value for simple stigmatic beams ( \λ π ). A closely related, but extremely useful 

parameter, called the beam quality factor ( 2M  factor), can now be defined by rewriting stigk  

to compare it with simple stigmatic beams, which are the ideal beam type. The beam 

parameter product can be rewritten by using Equation (2.20), 

 2
0 M λ

ω
π

 Θ  =   (2.22) 

or using Equation (2.11) 

 
2

02

0

M
z

ωπ
λ

=  (2.23) 

The 2M  factor is always larger or equal to one, with one indicating a perfect simple stigmatic 

beam. General stigmatic beams are therefore characterised by three parameters. These are the 

waist radius 0ω , the radius of curvature R  and the beam quality factor 2M .  
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2.2.3 Astigmatic beams  
Astigmatic beams are defined as noncircular, implying that they have two principle directions 

with no set relationship between ω , R  and 2M  in each direction. The most elementary of 

these are the simple astigmatic beams, which are non-rotating and do not change their energy 

density profile during propagation. Their beam parameter product (in one of the two principle 

directions) is defined as [23] 

 2
0,x x xM λ

ω
π

 Θ =   (2.24) 

Simple astigmatic beams need seven parameters to characterise them. These are the waist 

radii 0, 0, and  x yω ω , the radii of curvature  and x yR R , the beam quality factors 2 2 and x yM M  

and the azimuth angle ϕ  between the x-axis of the beam coordinate system and the x-axis of 

the laboratory coordinate system (See Figure 2-2). General astigmatic beams can rotate or 

change their energy density profile function or shape as they propagate. Only their second 

moment radii changes as the beam propagates o that the profile scale with propagation 

distance. All the elements of their second moment matrices (Equation (2.18)) are non-zero 

[23]. 

2.2.4 The scope of this thesis 
Laser beams that originate from simple stable resonators, and that have not been changed by 

special optics, fall into the simple astigmatic category. Most of the theory on beam 

characterisation has been developed for this type of beam [34], [8], [44], [24]. Any more 

complex beam falls outside the scope of this thesis. A test is given in the next section to 

determine if a beam is part of this subset, as beams that fall outside it are regularly 

encountered in practise.  

2.3 The Kurtosis parameter 
In many cases, confirmation is needed that a beam is simple astigmatic. The Kurtosis 

parameter can be very useful to determine this and is defined as follows [38], [28], [2]: 

 
( )

( )

( )

41
4

2 22 21

( ) ( )

( )

st
th

nd
st

x x I x dx I x dxx
K

x x x I x dx

∞ ∞

−∞ −∞

∞

−∞

− ⋅
= =

 
− ⋅ 

 

∫ ∫

∫

g
. (2.25) 
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This Kurtosis parameter is a measure of how “sharp” a beam’s energy density profile is. The 

following three types of beam profiles can be identified. Simple astigmatic beams that have an 

exact Gaussian profile are called mesokurtic and have a Kurtosis parameter (K) of 3. Beams 

that have sharper profiles than a stigmatic beam, have K values that are higher than 3 and are 

called leptokurtic. Beams that have flatter profiles than simple stigmatic beams have K values 

that are smaller than 3 and are called platikurtic [38]. Beams that change their K value in 

either of the two principle directions as they propagate either rotate or change their beam 

profile and can therefore not be simple astigmatic. To determine whether there is a change in 

K, profile measurements must be done in the near and the far field. Measuring errors must be 

taken into account when comparing the two K values as well as the fact that there is a small 

chance that the beam could have rotated with an angle that was a multiple of π . If the beam 

rotated by π  most beam profiles appears identical because they are usually symmetrical 

around the centre of mass x .  

2.4 Summary 
The framework from which to approach beam analysis was laid down by means of the second 

moment theory. Different types of beams have been classified by means of a mathematically 

elegant second moment matrix. The scope of this thesis has been identified and a test for 

rotational moments and non-orthogonality has been given. This chapter was intended to be 

sufficiently general to apply to all kinds of beams, not necessarily only to laser beams. The 

next chapter will focus specifically on the development of a theory for laser beams that 

originate from simple resonators. 
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Chapter 3  

Modelling of simple laser beams 

Equation Chapter 3 Section 1 
 

Many ways have been found to model energy density distributions of laser beams since they 

were first observed. These models can be divided into two different methods according to 

their approach. The first focused on the generalisation of the two classical spherical and plane 

wave models [33], [45]. Another method focused on the laser resonator and tried to find stable 

energy density distributions or eigen-values for it [33], [23]. Not surprisingly, the solutions to 

both approaches (after some simplifications) consist of the same basis functions. The 

resonator approach and its solutions will be summarised in this chapter because it provides 

additional information specific to laser beams. 

3.1 The resonator approach to model laser beams 
Electromagnetic field distributions in stable resonators can be accurately calculated with the 

well-known Huygens Fresnel summation [23]. 

 

An electric field distribution at a point A ( )E A
ur

 propagates into space in such a way that each 

point on the wave front is considered a source of a small spherical wavelet. At another point B 

in space, the resulting electric field is a superposition of all these spherical wavelets and can 

be found by the following equation.  
 

 
1

( ) ( , ) cos
jikrN

i t
j j j

j j

eE B Ce E x y x y
r

ω θ−

=

= ∆ ∆∑
ur

 (3.1) 

With ω  the angular frequency, k  the wavenumber, jr  the distance between the two points 

and jθ  the angle between the points and a reference direction. Resonator outputs can be 

numerically simulated by starting off with an arbitrary beam profile and then applying this 
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summation for a large finite number of round trips to obtain stable electric field distributions 

within the resonator. This has first been calculated on a digital computer by Fox and Li in the 

1960s [19]. Their calculations showed that after about 300 round trips a wave front profile 

that appeared cosine remained stable. This was later established to be the energy density 

distribution of the fundamental mode. A more sophisticated procedure called the Prony 

method [45] also yielded mixtures of higher order modes. The numerical profiles are, 

however, impractical because they cannot be used in analytical calculations even though they 

were generated in the same way a real laser resonator would generate laser beams.  

 

Some approximations have to be made to obtain analytical results, which can be used in 

further calculations. The Huygens Fresnel summation (Equation (3.1)) reduces to the Kirchoff 

integral (Equation (3.2)) when the paraxial approximation* is used [45], [23]:  

 
( )

1( )( )
ikr

i t
a

E Q eiE B dA
e rωλ

= − ∫
g  (3.2) 

Instead of using a point source an area source of size Q is used in the integral. 

 

When ray transfer matrices [23], [45] are incorporated into the Kirchoff integral 

(Equation (3.2)), it becomes the Collins integral (this is valid because ray transfer matrices are 

also based on the paraxial approximation). 

 
2 2 2 2

1 2 1 2 1 2 1 2( 2 2
( )

2 2 2 1 1 1 1 1( , ) / ( , )
i Ax Dx x x Ay Dy y y

ikL BE x y i Be E x y e dx dy
π
λλ

 + − + + −  = − ∫∫  (3.3) 

A, B, D are the matrix elements of the ray transfer matrix
A B

M
C D

 
=  

 
. 

The ray transfer matrix for one round trip in the simple resonator pictured in Figure 3-1 is 

[23], [45]: 

 2
simple resonator 2

2

2
( 1) / 2

G Lg
M

G Lg G
 

=  − 
 (3.4) 

with 
 1 22 1G g g= −  (3.5) 
and 
 1 /i ig L ρ= −  (3.6) 
where iρ  is the curvature of mirror i  ( i  =1 or 2).  

                                                   
* This approximation is usually valid for most laser beams and only breaks down when a laser beam is focused 
too tightly (i.e. where sinθ  can no longer be approximated as θ ) 
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Figure 3-1: Simple resonator of length L and g parameters g1 and g2 with 1 /i ig L ρ= − . 

Inserting the elements of matrix (3.4) into Equation (3.3) it is found that 
 

 
( )2 2 2 2

1 1 2 2 1 2 1 2( ) ( ) 2( )
2

2 2 2 1 1 1 1 1( , ) ( , )
2

j
ikL i G x y x y x x y y

Lg

j

ieE x y E x y e dx dy
Lg

π
λ

λ

 
+ + + − + 

  −
= ∫∫  (3.7) 

 
This integral is an eigen-value problem with the following restrictions [23], [45]. 

1. The electric field profile must remain unchanged after a full round trip 

  2( , ,2 ) ( , ,0)ikL
mnE x y L e E x yσ −=  (3.8) 

where mnσ  is the complex eigen-value of order m and n. 

  mni
mn mn e φσ σ=  (3.9) 

The real part of the eigen-value ( mnσ ) is smaller than one and is indicative of the 

losses in the system. An extra phase shift of mnφ  is introduced to the normal free space 

propagation over the 2L distance because the eigen-value ( mnσ ) is complex [45]. The 

total single period phase shift therefore becomes 

  2mn mnkLφ φ∆ = +  (3.10) 

2. This total round-trip phase must undergo a phase change of 2π . This  is in accordance 

with normal theory on standing waves, which states that for any standing wave an 

integer number of half wavelengths must fit into the distance L it is contained in.  

 2 2mn mnq kLπ φ φ= ∆ = +  (3.11) 
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If 2 / cπυ  is substituted for k (the wave number), the resonator eigen, or resonance 

frequencies are obtained  

  
2 2

mn
qmn

c q
L

φ
υ

π
 = +  

. (3.12) 

These frequencies produce longitudinal and transverse mode beating in laser outputs. 

3. The resonator symmetry must be taken into account when the integral (3.7) is solved.  

3.2 Solutions to the Collins integral 
The standard and elegant Gaussian functions are solutions when the Collins integral is solved 

with the restrictions respectively [5] of the previous section. These solutions consist of two 

distinct parts, namely a defining function f and a Gaussian function part, G, 

 iGE fe−=  (3.13) 

The elegant functions have a complex argument for both the Gaussian function part where the 

standard solutions only have a real function part. This thesis will focus mainly on the standard 

solutions since beams originating from simple stable resonators can usually be described by 

them [45]. Whenever the term Gaussian is used, it will refer to all the standard solutions. 

3.2.1 The standard Gaussian solutions 
The standard Hermite (Equation (3.14)) and Laguerre Gaussian (Equation (3.15)) solutions 

are obtained when rectangular and cylindrical symmetry are respectively used in the base 

functions [23], [29]: 

( )

2 2

2 2 2 1
00 0

( )
( ) / ( 1) tan ( / )2 ( )0

2
00 000

2 2( , , )
( ) ( )1 /

x yikx y i kz m n z zR z
m n

E x yE x y z e H H e e
z zz z

ω

ω ω

−
 +

−     − + − + + +      
   

=    
   +

 (3.14) 

and 

( )

2

2 12 000

2
/ 2 ( ) (2 1) tan ( / )( )0

22
00 000

cos( )2 2( , , )
sin( )( ) ( )1 /

r
ikr R z i kz p z zz

p
E r rE r z e L e e

z zz z
ω

ω ω

−
 

−     − − + + +      
  Φ  

Φ =     Φ  +

l
l

l
l
l

 (3.15) 

with 0z the Rayleigh Range, 00ω  the Gaussian beam radius, ( )R z  the Radius of curvature, k 

the wave number of a plane wave, nH  the Hermite polynomial of order n  and plL  the 

Laguerre polynomials of order p  and l .  

 

The Hermitian polynomials are [52]: 
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0

1
2

2

1
( ) 2
( ) 4 2...

H
H x x
H x x

=

=

= −

 

They obey the recursion rule 

 1 1( ) 2 ( ) 2 ( )n n nH x xH x nH x+ −= − . (3.16) 

 
The Laguerre polynomials are [53]: 

0

1
2

2

( ) 1
( ) 1
( ) 0.5( 4 2)...

L x
L x x
L x x x

=

= − +

= − +

 

They obey the recursion rule 

 1 1( 1) ( ) (2 1 ) ( ) ( )n n nn L x n x L x nL x+ −+ = + − − . (3.17) 

 
Resonators that have small defects on windows and mirrors automatically have rectangular 

symmetry. The majority of lasers have small defects and are therefore best-described using 

Hermitian polynomials. However, high quality CW CO2, HeNe and several other sealed off 

laser systems often display cylindrical symmetry.  

 

The energy density is a much more practical quantity than the electric field. It is proportional 

to the square of the amplitude of the electric field. 

 [ ]20( ) Re( )
2

cI r Eε
= . (3.18) 

The energy density distribution for rectangular symmetry can be found by inserting 

Equation (3.14) into Equation (3.18).  
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c x yx y z E H H e
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ωε
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 +
−   

 
      =         + 

 (3.19) 

and for cylindrical symmetry using Equation (3.15) it is similarly found that  

[ ]
( )

2

2
00

2
2 ( ) 22 2

2 ( )20
0 ,2 2 22

00 000

cos ( )1 2 ( ) 2 ( ), ,
2 ( ) ( ) sin ( )1 /

l r z
z

pl p l
lc r z r zI r z E L e

z z lz z
ω φε

φ
ω ω φ

−      =          + 

. (3.20) 

 
Multiple solutions can be found by inserting integers into m  and n  of Equation (3.19) or into 

p  and l  of Equation (3.20). These solutions are referred to as Transverse Electromagnetic 

modes (TEM) of lasers because they describe the variation of the optical fields in the cross-
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sectional planes perpendicular to the propagation axis. The electric field of any arbitrary 

paraxial beam can be expanded using the Hermitian or Laguerre functions which are 

orthogonal to each other. The intensity of this electric field will therefore not have cross terms 

because of the orthonormality condition.  

 
~

* ( , ) ( , )nn nmu x z u x z dx δ
∞

−∞

=∫  (3.21) 

Where  
~

nu  is the either the Hermitian or Laguerre functions [45].  

 

Real laser beams therefore consist of a linear combination of these solutions in either of the 

symmetries [45]. The next few sections will discuss these solutions in more detail. 

3.2.1.1 The fundamental TEM00 mode 

Figure 3-2 shows the energy density distributions of the first or fundamental TEM00 mode for 

both the Hermite and Laguerre Gaussian solutions. This solution is found when setting 

0m n= =  for rectangular symmetry or 0p l= =  for cylindrical symmetry. 

 
 

A  

 

radialdistance

intensity

B  

Figure 3-2: TEM00 energy density distribution in two (A) and one (B) spatial dimension(s). 

The radial distribution of the TEM00 mode is called a Gaussian distribution. The TEM00 mode 

is therefore commonly referred to as the Gaussian mode. It is classified as simple stigmatic 

and is considered the ideal to which all other beams are compared (Section 2.2.2).  

A TEM00 beam is preferred in many high precision applications since 

• it has the lowest divergence, 

Energy density 

Radial distance 
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• it can be focused the tightest, 

• it has no local points of high energy density (hot spots), 

• its circular profile is sought after in many applications (to drill holes for example) and 

• it couples well into waveguides. 

The Gaussian beam radius 00 ( )zω  is defined as the lateral distance from the z-axis where the 

energy density is 21/ e  (~13.5%) of the maximum M -value on the axis. It is found by 

integration that the energy that is contained within a circle with this radius centred on the z -

axis is 86.5%. This beam radius also corresponds exactly to the second moment radius ω  of 

the TEM00 mode. 00 ( )zω  is a logical definition for the beam radius since it occurs naturally in 

the exponent of both solutions of Equations (3.14) and (3.15).  

 

The following properties follow naturally from the Gaussian solutions and are illustrated in 

Figure 3-3 [33], [23], [45].  

• The TEM00 beam radius 00 ( )zω  varies hyperbolically in the propagation direction z  

according to the following relation: 

 ( )2 2
00 00,0 0( ) 1 /z z zω ω= +  (3.22) 

where the minimum beam radius is 00,0ω . 

• The Rayleigh Range ( 0z ) is a measure of the extent of the waist region and is defined 

as the length where the beam area has doubled from that at the waist: 

 00 0 00,0( ) 2zω ω=  (3.23) 

or 

 
2
00,0

0z
πω

λ
=  (3.24) 

• ( )q z  is the termed the beam parameter or complex radius of curvature. Its amplitude 

changes as the beam propagates. 

 2
00

1 1
( ) ( ) ( )

i
q z R z z

λ
πω

= +  (3.25) 

• ( )R z  is the real part of ( )q z  and is commonly referred to as the radius of curvature. It 

is infinitively large at the waist position. 

 
2
0( ) zR z z
z

= +  (3.26) 
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• The angle of divergence Θ  is defined as the half angle between the propagation 

direction and one of the asymptotes to the beam radius hyperbole: 

 00 ( )lim
z

z
z

ω
→∞

Θ =  (3.27) 

The TEM00 mode is simple stigmatic so that 0 /ω λ πΘ =  [54] or  

 00,0

00,0 0z
ωλ

πω
Θ = = . (3.28) 

• It can be proved that the ABCD law of geometrical optics can be used to change the 

complex radius of curvature q(z) as the beam propagates [23]. 

 i
f

i

Aq Bq
Cq D

+
=

+
 (3.29) 

 where A, B, C and D are the elements of any geometrical ray matrix. 
 

 

Figure 3-3: Hyperbolic variation of the beam radius of a TEM00 beam and the illustration of 
other beam properties. 

 

3.2.1.2 Rectangular symmetric higher order modes 

All the pure rectangular TEMxy modes with the exception of the fundamental mode are 

referred to as higher order rectangular or Hermitian modes. Equation (3.19) is plotted in one 

and two spatial dimensions for fixed m  and n  values in Figure 3-4 and Figure 3-5. It can be 

seen that that there is a direct relationship between the higher order mode number and the 

number of nodes or zero points of the energy density distribution. 
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The energy density profiles of the TEMxy X0 and TEMxy 0Y modes are completely separable 

in Cartesian coordinates due to their rectangular symmetry. This implies that the normalised 

profile obtained by setting 0y =  in Equation (3.19) (Figure 3-4 B) and that obtained by 

integrating in the y direction are identical. The graphical proof of this can be seen in 

Appendix C. Whenever these solutions are used in further calculations (like integrals), 

rectangular coordinates must be used. 

A  B
distance transverse

Intensity

 

Figure 3-4: The energy density distribution of the TEMxy 03 mode in two (A) and one (B) 
spatial Cartesian dimension(s). 

The rectangular nature of the Hermitian functions is more apparent in mode structures 

consisting of the same higher order mode number in both the transverse directions. This can 

be seen in Figure 3-5 B. The rectangular shape also becomes more noticeable as the mode 

number is increased.  

A  B  

Figure 3-5: The energy density distribution of the TEMxy 22 mode in two spatial dimensions 
(A) and a contour graph (B) of it in two spatial dimensions. 
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3.2.1.3 Cylindrical symmetric higher order modes 

All the pure cylindrical symmetric TEMpl PL modes with the exception of the fundamental 

are referred to as higher order cylindrical symmetric or Laguerrian modes. The energy density 

distributions for a few cylindrical symmetric TEMpl PL modes are shown in Figure 3-6. Plots 

of the full two-dimensional energy density distributions of Equation (3.20) can be seen to the 

left and their respective contour plots to the right. These contour plots will also be the 

patterns, which are observed on a carbon block or thermal paper when a high power laser 

beam impinges on it.  

 

For cylindrical symmetric modes the differences between pure modes in the two principle 

directions are more apparent than in rectangular symmetry. The higher order mode number is 

again related to the number of nodes. The first mode number p , gives the number of node 

rings in the azimuthal direction (See Figure 3-6 A and B). Because of these ring patterns the 

pure azimuthal TEMpl P0 modes have the appearance of a droplet hitting a liquid surface.  

 

The second mode number l is related to the number of node lines in the radial direction, which 

gives the pure radial TEMpl 0L modes a star-like appearance (see Figure 3-6 E). An asterisk 

after this mode number indicates that the sine instead of the cosine is used in the generating 

function Equation (3.20) the difference between using the cosine and the sine being that the 

position of the peaks and nodes are interchanged for even mode numbers because of the / 2π  

phase difference between sine and cosine functions. This difference is purely artificial since 

any radial mode that permanently remains in any one azimuthal position would favour a 

Cartesian direction. The modes could therefore only temporarily form in one azimuthal 

direction since there should be no restriction on them to form in any other azimuthal direction. 

A mixture of radial and azimuthal mode structures gives the temporary energy density pattern 

a flower like appearance (See Figure 3-6 G and H).  

 

These cylindrical symmetric solutions are not separable in the Cartesian coordinates in 

contrast to the Hermitian modes. Whenever these solutions are used in further calculations 

(like integrals), cylindrical coordinates must be used.  
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Figure 3-6: Three-dimensional energy density distributions (left) and carbon block patterns 
(right) of various pure cylindrical symmetric modes. A and B are TEMpl 20, C and 
D are is TEMpl 01, E and F are TEMpl 03 and G and H are TEMpl 33. 
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3.2.2 Classification of Gaussian beams according to the second 
moment matrix 

The fundamental or TEM00 mode of both symmetries qualifies as simple stigmatic. All 

cylindrical symmetric beams are stigmatic by definition (Section 2.2.2). Any rectangular 

higher order mode combination that passes the circularity test is naturally general stigmatic. 

An example of this is pure double rectangular modes where m n= . All the other rectangular 

higher order modes are simple astigmatic. 

 

It is commonly thought that simple astigmatic beams are the most undesirable kind of beams 

that can emanate from simple resonators. Large defects on the optics can, however, cause 

phase instabilities so that the standard Gaussian solutions are no longer valid. The test for 

simple astigmatic beams (Section 2.2.2) should always be applied if the optics are degraded, 

of low quality or if other diffractive elements are present. 

3.3 Application of second moment theory to Gaussian 
modes 

The moment integral and definitions were derived to describe beams in general. The eigen-

functions for the standard Gaussian beams were derived from the Huygens Fresnel equation. 

Relations for the radii, divergence and 2M  values of the pure higher order modes can be 

determined by substituting their energy density eigen-functions into the integral definitions of 

Chapter 2.  

3.3.1 The general second moment radius 
The rectangular energy density distribution (Equation (3.19)), substituted into the equation for 

the second moment radius (Equation (2.4) and (2.6) with 1stx  set to zero), gives a relation 

for the second moment beam radius for rectangular symmetric modes: 
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 (3.30) 

The two integrals in Equation (3.30) are standard solutions for the quantum mechanical one-

dimensional harmonic oscillator (Equations 7.15 and 7.17 of [22]). Inserting the solutions for 
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these integrals into Equation (3.30) provides the relationship between the radius of a 

rectangular higher order mode and that of the TEM00 mode, 

 002 1x mω ω= + . (3.31) 

Similarly, when inserting the cylindrical energy density distribution (Equation (3.20)) into 

Equation (2.5) it is found that  

 002 1pl p lω ω= + +  (3.32) 

 
The second moment radii of the rectangular TEMxy 01 and cylindrical TEMpl 01 modes differ 

substantially even though in text books their two-dimensional energy density profiles are 

given as identical [23] , (Figure 3-6 C and D). The reason for this is that cylindrical symmetric 

modes are not allowed a preferential azimuthal direction, which makes cylindrical integration 

different from rectangular integration. The practical implications of this will be discussed in 

more detail Section 5.1.2.2. 

3.3.2 The general second moment divergence 
The general second moment divergence for pure rectangular symmetric modes is found by 

inserting Equation (3.31) into Equation (3.22) and using the result in the equation for the 

angle of divergence (Equation (2.9)), yielding 

 
00,0
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m

m λ
ω π

+
Θ = . (3.33) 

Similarly for cylindrical symmetry, inserting Equation (3.32) into Equation (3.22) gives  

 ,
00,0

2 1
p l

p l λ
ω π

+ +
Θ = . (3.34) 

3.3.3 The beam quality factor (M2) for Gaussian laser beams 
General beam theory states that according to Equation (2.22) 

 02 x x
xM

π ω

λ

 Θ  =
g

 (3.35) 

Inserting Equations (3.31) and (3.33) into Equation (3.35) it is found that  
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g  (3.36) 

so that 
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 2 2 1mM m= + . (3.37) 

Similarly, for cylindrical symmetry it is found that 

 2
, 2 1p lM p l= + + . (3.38) 

2M  is called the beam quality factor, which is always larger or equal to one (Section 2.2.3). 
2 1M =  indicates a perfect TEM00 beam. It can also be proven when inserting Equations  

(3.37) and (3.38) into Equations (3.31) and (3.32) respectively that 

 00x Mω ω= . (3.39) 

The M -value therefore indicates how much larger than the ideal TEM00 beam a measured 

beam is. Note that Equation (2.12) has to be used when the 2M  factor is determined by 

measurement of the beam propagation. 

3.4 Summary 
Beams originating from simple resonators with cylindrical and rectangular symmetry were 

modelled from basic diffractive principles. A theoretical framework is now in place to 

evaluate real laser beams. In the next chapter, various methods to measure the beam quantities 

discussed in this and the previous chapter are presented.  
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Chapter 4  

Measurement, definition and correlation of 
laser beam radii 

Equation Chapter 4 Section 1 

The spatial properties of a beam can be determined by measuring its radius at several 

positions along the beam propagation axis. It is therefore very important to measure the radii 

carefully and to use a consistent definition of the beam radius. This chapter will give an 

overview of different beam measuring techniques, which are closely related to different beam 

radius definitions. It will also present correlations between the different beam radius 

definitions and their resulting beam quality ( 2M ) values.  
 

4.1 General measuring technique 
The term “beam characterisation” refers to the measurement of the beam propagation as 

defined in Equation (2.12). The beam radius at any other z position (along the propagation 

axis), the beam quality factor (Equation (3.35)) and the divergence (Equation (2.9)) can be 

calculated from the measured beam propagation.  

 

The beam propagation is obtained by measuring the beam radius at several z positions. 

Usually the waist is not accessible so that an artificial one needs to be created with a focusing 

lens [23]. Johnston proposed that measurements at only four positions along the beam 

propagation direction are necessary [25]. The ISO [24] specifies that at least ten are necessary 

and that at least half the measuring points should be within the estimated waist region and the 

other half should be distributed beyond two Rayleigh range lengths (Equation (2.11)) from the 

beam waist position. The frequency of the measuring points should also be doubled in the 

waist region [24]. This ratio and frequency has not been proven and can possibly be the 
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subject of future study. Figure 4-1 illustrates the generation of an artificial waist of a beam 

propagating from a laser source as well as the ISO recommended measuring points. 
 

 

Figure 4-1: The artificial waist method. The arrows indicate the suggested measuring 
positions according to the ISO standard. 

The ISO further specifies that at least five measurements should be performed at each 

measuring position along the propagation direction and the mean taken as the beam radius. 

This is not always possible with slow, low frequency measurements. The hyperbola of 

Equation (2.12) is then fitted onto the measured radii, which should be weighed inversely 

proportional to their magnitude, by means of a least squares method. The beam propagation 

properties are then obtained from the fitted functions. In the next section, several methods are 

discussed to measure the beam energy and energy density profiles at the different locations 

from which the beam radii can be determined. 

4.2 Detection of beam profiles 
Different beam profiles are closely related to different beam radius definitions. The profiles 

and ways to measure them are therefore discussed before the beam radius definitions are 

presented.  

4.2.1 CCD cameras  
Most modern beam analysers make use of cameras containing charge coupled device (CCD) 

detector arrays. The images are read into a computer where they are post-processed by 

software so that they can be viewed in one or two spatial dimensions (See Figure 4-2). The 
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beam radii are then calculated directly from these one or two-dimensional energy density 

distributions. The working range of these cameras typically extends from 100 nm in the ultra 

violet to 10 mµ  in the far-infrared when broadband coatings are applied [50]. Most 

broadband cameras are, however, not linear at 10 mµ  so that specialised pyro-electric 

cameras have to be used in this range.  
 

 

Figure 4-2: CCD camera and a two-dimensional energy density profile on a personal 
computer screen [50].  

CCD camera profilers have the following advantages: 

• They provide almost instantaneous two-dimensional information. 

• They can perform single shot measurements in pulsed lasers. 

• They are a relatively low cost solution for lasers emitting in the visible and UV 

wavelengths. 

• They are available in different models and software packages. 

 

CCD camera profilers also have the following disadvantages: 

• Their resolution is limited by the pixel size (15-20 µm). 

• Measurements from CCD cameras in focus positions can be inaccurate. 

• Methods to attenuate high-power laser beams to protect CCD cameras can distort the 

beam. 

• CCD cameras are expensive when designed for far-infrared wavelengths. 
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4.2.2 Moving pinhole method 
A pinhole is used to scan across a beam in front of a large area detector to obtain either one or 

two-dimensional energy density profiles. This is the time consuming mechanical equivalent of 

a camera or linear diode array.  

 
The pinhole method has the following advantages: 

• The pinhole method is a cheap way to obtain a two-dimensional profile of a beam. 

• The method can be applied for a wide range of lasers. 

• Pinhole profilers can be used for high power lasers. 

• The method can measure beam profiles very accurately.  

 

The pinhole method also has the following disadvantages: 

• The method usually has a very low signal to noise ratio. 

• Pinhole profile scans can miss anomalies when performing one-dimensional scans. 

• The method is slow when compared to cameras. 
 

 

Figure 4-3: A pinhole that is mounted on two translation stages allowing only a fraction of the 
beam to fall onto large area detector. 
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4.2.3 Moving slit method 
The moving slit method is the most widely used and straightforward technique to measure 

beam radii. A slit that is no wider than approximately 1/20th (5%) of the beam diameter cuts 

the beam laterally by means of a mounted translation stage in front of a large area detector. 

The transmitted energy is then measured as a function of the position of the slit (See 

Figure 4-4. The length of the slit must at least cover the diameter of the detector and be no 

less than twice the beam diameter. The energy density is integrated in the direction 

perpendicular to the movement of the translation stage. The resulting profile can therefore be 

referred to as the slit integrated profile in the direction of the movement of the translation 

stage. For conciseness, these profiles will only be referred to as slit profiles.  

 

 

Figure 4-4: A slit that is mounted on a translation stage allowing only a fraction of the beam 
to fall onto large area detector. 

The energy transmitted by a slit can be mathematically modelled. 

When a slit of length 2L and width 2W is scanned in the x direction across a beam with a two-

dimensional energy density distribution ( , )F x y , the transmitted energy at an arbitrary 

position px  is 

 slit ( ) ( , )
p

p

x WL

L x W

E x F x y dxdy
++

− −

= ∫ ∫ . (4.1) 

The implications of varying the slit width are now demonstrated by inserting a two-

dimensional TEM00 energy density distribution (Equation (3.19) with the mode indices 

0m n= = ) into Equation (4.1). It is found that for a specific z  position  
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and after integration it is found that [56] 
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with 
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where k  is the constant arising from the definite integral in the y direction. 

Figure 4-5 A depicts the slit profiles of a TEM00 beam with a Gaussian radius of 1mm 

calculated with Equation (4.3) using various slit widths. It can be seen that at a slit width of 

25% of the beam diameter, it becomes difficult to distinguish the slit profile from the 

theoretical TEM00 profile (dashed).  

 

A  B  

Figure 4-5:  (A) shows slit profiles of a TEM00 beam calculated with varying degrees of slit 
widths. (B) shows an expansion of A indicating the difference in profiles using slit 
widths less than 5% of the beam diameter. 

The error made by using a finite slit width is called a convolution error. Figure 4-5 (B) shows 

an expanded section of Figure 4-5 (A), indicating that that there is still a difference between 

the TEM00 profile and the transmitted energy profiles for slit widths smaller than 5%  of the 

beam diameter. This difference is usually much smaller than the measurement error for these 

narrow slit widths. The signal to noise ratio increases dramatically as the slit width is 

decreased so that it is often necessary to compromise between the signal to noise ratio and the 

convolution error when choosing a slit width. When the signal is already low, the slit width 



 39

needs to be changed at several positions along a focused beam. Under these circumstances, 

slit scanning can become a very difficult technique to automate. It is often necessary to reduce 

the laser power or energy in order to avoid this. The signal to noise ratio can then become so 

low that the slit method becomes extremely inaccurate.  

 

The slit method has the following advantages: 

• Moving slits can be used to scan high-power lasers. 

• Slits can vary the transmitted energy density without having to adjust the level of 

attenuation simply by varying their width. 

• Slits can measure over a wider area than cameras. 

• The method provides high accuracy over a wide range of wavelengths and test 

conditions. 

 

The slit method also has a few disadvantages: 

• The method can perform beam analysis in only one dimension at a time. 

• Results from this method are susceptible to mechanical vibrations due to the slow 

speed. This forces the instrument to be large and bulky. 

• The signal to noise ratio of this method is too low in many cases to be able to use a 

single slit width for all the profile measurements along the beam propagation 

direction. 

• In many cases, the method cannot be used at all because the signal to noise ratio is too 

low.  

4.2.4 Moving knife-edge method 
This method employs a knife-edge, which cuts the laser beam laterally by means of a 

translation stage in front of a large area detector. The energy density is integrated over the 

uncovered area and the transmitted energy is measured as a function of the position of the 

knife-edge.  
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Figure 4-6: A knife-edge mounted on a translation stage allowing only part of the inflowing 
energy to fall on a large area detector. 

The energy transmitted by the knife-edge can be mathematically modelled. 

A knife-edge of length 2L scans a beam with energy density distribution ( , )F x y  in the 

arbitrary transverse direction x . The beam is initially fully blocked off by the knife-edge, 

which then opens up the beam from a position that is approximated as infinite far away to a 

general position X .  

The transmitted energy profile will then be  

 knife ( ) ( , )
L X

L

E x F x y dxdy
− −∞

= ∫ ∫  (4.5) 

The knife-edge length is usually approximated as infinite wide so that L can be replaced by∞ .  

 

The transmitted knife-edge energy of a TEM00 mode is 
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After integrating, normalising and using of the error function (Equation (4.4)), it is found that 

the knife-edge energy function for the TEM00 mode is  

 knife gauss 2
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xE x erf
w z
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 (4.7) 

Plotted, the TEM00 knife-edge profile appears sigmoidal. The formation of this sigmoidal 

distribution can be conceptualised from Figure 4-7.  
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Figure 4-7: The energy density and energy profiles of a TEM00 beam with 00, 1xω = . 

The transmitted knife-edge energy of the first Hermitian higher order mode (TEMxy 01) is 

given by the following normalised energy function: 
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The formation of its knife-edge energy profile can be conceptualised from Figure 4-8. 
 

 

Figure 4-8: The energy density and energy profiles of a Gaussian TEMxy 01 beam with 
00, 1xω = . 

The energy functions, energy density distributions and energy distributions of pure 

rectangular higher order modes up to xyTEM  05 can be found in Appendix A. The energy 

profile of a beam can also be obtained by integrating its slit energy density profile. 
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The knife-edge method has the following advantages: 

• Knife-edge scans provide the total energy at every scanning position in the 

propagation direction so that the energy stability of the laser can be monitored. 

• It is the preferred method when the signal to noise ratio is low. 

• Knife-edges can measure over a wider area than cameras.  

• The method provides high accuracy and submicron resolution over a wide range of 

wavelengths and test conditions [55]. 

 

The knife-edge method also has a few disadvantages: 

• Knife-edges cannot analyse very high-power lasers (the detector would be destroyed). 

• The method can perform beam analysis in only one dimension per scan. 

• The methods cause it to be susceptible to mechanical vibrations, forcing the measuring 

instrument to be large and bulky.  

• The method is also limited because not all beam radius definitions (discussed in 

Section 4.3) can be applied to its profile due to feature loss in the integration process. 

4.2.5 Variable-aperture method 
High quality irises, or apertures of different sizes, are used to cut the beam circularly. The 

transmitted energy is then recorded as a function of the aperture radius. This method can be 

thought of as the knife-edge method for cylindrical symmetric beams. This is because the 

aperture cuts the beam between the cylindrical radial axis limits of 0 and ∞  while integrating 

between the azimuthal limits of 0 and 2π . The knife-edge, on the other hand, makes use of 

rectangular symmetry to cut the beam between any two Cartesian coordinate axis limits of 

−∞  to ∞  while integrating in the other direction. There is no practical equivalent to the slit 

method using physical cylindrical symmetric scanning devices.  

 

The variable aperture method requires automatic centering, the development of a motorised 

calibrated iris and can only be used to measure stigmatic beams. In order to evaluate if the 

beam is sufficiently circular, the ratio between the radii on the two principle axes must be 

determined with a different scanning method. The variable-aperture method is therefore the 

least versatile [24] of all the methods discussed so far and will be omitted from future sections 

concerning beam characterisation. It does, however, have other practical applications as will 

be seen in Section 5.1.1.  
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Figure 4-9: Variable-aperture method illustrated from the front and the top. 

4.3 Beam radius definitions 
Several definitions of the beam radius were made over the years based on these different 

profiles. Each definition is particularly suited for a specific application [4]. The moment 

definition of Chapter 2, which applies to energy density profiles, is theoretically the most 

complete definition. It also provides simple relations for calculating the radii and 2M  values 

for pure simple Gaussian modes (Section 3.3). It is for these reasons that the ISO recently 

made this definition the standard one. Other definitions are, however, better suited for 

practical applications.  

4.3.1 Second moment radii 
The second moment approach, as described in Chapter 2, was first formulated in 1979 by 

Carter for Hermitian beams [8]. The beam radii are obtained by using either two-dimensional 

(measured with a camera or pinhole) or one-dimensional (measured with a slit or pinhole) 

energy density profiles in Equations (2.4) or (2.5). Very precise scans of the beam profiles 

coupled with very good noise deducting algorithms are necessary to obtain the correct second 

moment radii.  

 

This definition of the beam radius is well suited for beam quality measurements and for 

classifying non-conventional beams such as general astigmatic beams. It was made standard 
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by the ISO [24], as was already mentioned, and will be termed the standard beam radius 

definition. All other definitions are termed alternative beam radius definitions.  

 

There are, however, a few complications with the second moment definition: 

• The second moment method is a theoretically elegant way of defining the beam radius, 

but it is not very practical. There is for instance no straightforward relation between 

the second moment radius and the energy content radius, which is more suitable for 

energy flux calculations used in material processing. 

• For some applications, it is necessary to trace a feature on the beam profile like a node 

or a local-maximum. There is also no common relation between these features and the 

second moment radius. 

• Second moment radii are extremely sensitive to noise in the wings of the energy 

density profiles.  

• It is sometimes not possible to measure the energy density profiles, which are used to 

calculate the second moment radii, due to low signal to noise ratios. 

Another definition is usually employed when it is difficult to accurately measure entire energy 

density profiles. If any alternative definition is used for beam quality considerations it has to 

be shown that its beam radii are equivalent to those measured with the second moment 

definition [24]. 

4.3.2 Energy density radii  
An energy density radius is usually defined as half the distance between a specific feature on 

either side of the centre of a beam’s energy density profile. Numerous attempts have been 

made in the past to standardise laser beam radii by using some version of this definition.  

 

Bridges [7] proposed two features in 1975, the first of which was the largest radius between 

the centre of the beam and a point where the energy density is 21/ e  or 13,5% of the 

maximum. This percentage is referred to as the 21/ e  energy density clip-level and reduces to 

the Gaussian radius 00ω  for the fundamental mode. The second feature he proposed was the 

radius of the largest node of the highest higher order mode.  
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Zheng [56] et al proposed to fit a TEM00 profile to the data and then to use the Gaussian beam 

radius 00ω  (defined in Section 3.2.1.1) of the fitted profile. This technique is an option in 

many of the commercial camera software presently available on the market, but only works 

for beams which have almost an TEM00 profile. 

4.3.3 Energy content radii 
This definition of the beam radius originates from the moving knife-edge method. An energy 

content beam radius ECr  is defined as the distance between the transverse location of a lower 

energy point KEε  and that of an upper energy point (1- Kε ) E , where E  is the total beam 

energy. These energy points (arrows in Figure 4-10) are referred to as clip-levels. Siegman 

[46] chose the clip-levels ( Kε ) of 10% and 90%, whereas the ISO chose clip-levels of 16% 

and 84%. Siegman’s choice was based on correlating the knife-edge with the second moment 

method whereas the ISO’s was chosen to match the fundamental mode radius.  
 

 

Figure 4-10: Illustration of how the energy content radii are defined. 

A beam radius obtained by this method can be directly used to calculate the fluence, which is 

not possible with other methods unless the relationship between the beam radius and the 

energy content is known. Radii originating from the variable aperture method are also 

classified as energy content radii. The variable aperture radius of a beam is defined as the 

radius of the circular variable aperture (Section 4.2.5) which transmits a certain percentage Vε  

(the variable aperture clip-level) of the total beam energy. The radius of a variable aperture 
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that is reduced around a TEM00 beam will be identical to the Gaussian radius 00ω  if 86.5% of 

the total energy is transmitted [24].  

4.4 Determining the beam radii from measured profiles 

4.4.1 Manual acquisition 
Siegman [46] proposed to manually scan the beam with a knife-edge and read off the distance 

between two knife-edge clip-levels. He did, however, suggest that more information could be 

obtained by measuring the entire knife-edge energy profile. The ISO [24] also proposed this 

method when alternative beam radius definitions are used (Section 4.5.3). A disadvantage of 

this method is that it is prone to human errors. The second moment radii can also not be 

directly obtained by this method.  

4.4.2 Low frequency acquisition* 
The beam is scanned in set intervals with a mechanical scanner. This method is usually 

employed to scan the beams from low frequency pulsed laser systems. The scanning edges are 

moved to set positions and the average over a certain number of shots of the transmitted 

energy is recorded. This method is best suited for knife-edge scanning. It can also be used for 

slit scanning using lots of very small intervals to obtain full energy density profiles from 

which the second moment radii can be calculated. Knife-edge radii can only be accurately 

determined from large interval scans by fitting appropriate functions to the data. (Such 

functions will be discussed in more detail in Section 4.4.4). Energy profile fitting is typically 

performed inside a mathematical program such as Matlab or Mathematica. The functions are 

then solved at predetermined clip-levels to obtain the alternative beam radii. Fitting of low 

frequency acquisition slit profiles with functions can be very unreliable as will be seen in 

Section 4.4.5.  

4.4.3 High frequency acquisition 
This type of scan is used predominantly for very high frequency pulsed or CW laser beams. A 

mechanical scanner is moved with a constant velocity across the beam and a fast large area 

detector records the average transmitted power [4]. The position of the scanner for a 

                                                   
* This technique was employed in this thesis to obtain the beam radii of a CO2 TEA laser. 



 47

transmitted power level is accurately known if the speed and starting position of the 

mechanical device are also accurately known and the detector is fast enough. The resolution 

of the beam profile is therefore only dependent on the spatial and temporal resolution of the 

photo detector. This method can therefore be very accurate and affordable, making it highly 

attractive. The large number of data points can be directly inserted into integral (2.4) to obtain 

the second moment radius. Pixel counting techniques are used to obtain knife-edge or slit 

beam radii. These techniques are also used for camera profilers that have a large number of 

pixels in their CCD arrays [48].  

4.4.4 Fitting of the energy profile  
Diso et al [14] measured the entire knife-edge energy profile with the low frequency 

technique and fitted the TEM00 energy function (Equation (4.7)) to the data with the least 

squares method. They then used the Gaussian beam radius 00ω  (which they directly obtained 

from the fitted function) in subsequent quality calculations. This technique can lead to large 

errors for beams containing large percentages of higher order modes, because the TEM00 

energy fitting function will not necessarily follow the measured data points. It is especially 

important to obtain good fits in the crucial 16% clip-level region. Figure 4-11 shows how a 

TEM00 function misfits data from a beam with large higher order mode content. This error can 

be minimized by adding the last term of the first higher order mode energy distribution 

(Equation (4.8)) to the fitting function.  
 

 

Figure 4-11:A TEM00 energy distribution mis-fitting the energy profile of a real higher order 
laser beam. 
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The TEM00 fitting function is directly found from Equation (4.7) by substituting 1P  and 2P  as 

the two fitting parameters for 0x  and ( )zω  respectively. 
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It can be seen from a comparison between Equations (4.7) and (4.8) that there are many 

similarities between the knife-edge energy functions of the fundamental and first higher order 

mode. An extra higher order component is just added to the function of the fundamental mode 

to obtain the first higher order mode function. Accurate fittings can be obtained by adding a 

weight 3P  to control how much of this higher order component is added.  
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The improvement is visually verified in Figure 4-12 by fitting the new function (4.10) using 

the same large higher order mode content beam of Figure 4-11. The chi-squared value (gives 

an indication of the fitting error from the least square method) decreased an order of 

magnitude from 0.00034 to 0.00009. Other higher order mode terms can also be added with 

ease since the first TEM00 parts for all the higher order mode distributions remain unchanged 

and only terms with uneven powers of x  are found in the higher order functions (Appendix 

A). One does not deduce anything from the relative fitting parameters but only use the fitted 

function to obtain beam radii using clip levels. One could therefore also use other functions 

like polynomial fits.  

 
Figure 4-12:A TEMx,y 00+01 energy function fitting the energy profile of a higher order beam. 

TEM00 
component 

Higher order 
component 
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4.4.5 Comparing energy and energy density profile fitting 
The errors made when fitting a TEM00 energy density profile (Equation (3.20) with 

0m n= = ) to the slit profile of a beam that contains a percentage of a higher order mode is 

much larger than the errors made when fitting the TEM00 energy profile (Equation (4.7)) to 

the same beam’s knife-edge profile. This can be observed by comparing the TEM00 energy 

density fit on the slit profile to the TEM00 energy fit on the knife-edge energy profile of the 

same beam with a higher order component in Figure 4-13. The errors made in the energy 

density fit are enormous compared to those of the energy fit. It is therefore not recommended 

to use fit techniques on energy density profiles.  
 

A  B  

Figure 4-13: In A the fitting of the TEM00 energy density profile on the slit profile of a beam 
with a higher component can be seen. B shows the fitting of the TEM00 energy 
profile on the knife-edge energy profile of the same beam. 

4.4.6 Determination of the principle axis for one-dimensional 
scans 

The orthogonal Cartesian measuring edges (slit or knife-edges) are rotated until roughly equal 

beam widths are obtained in both directions. Beam measurements at each azimuthal angle can 

consist of only a few measuring points or be done manually. The edges are then rotated by 

45o  to yield the principle axis. Equation (2.17) can only be used if the entire two-dimensional 

beam energy density profile was measured with a camera or pinhole [24].  

4.5 Correlations between the second moment and 
alternative radii 

The second moment definition of the beam radius (Section 2.1.2) was standardised by the ISO 

and is best suited for quality considerations. The energy and energy density definitions are, 
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however, better suited for practical applications such as flux calculations and feature tracing. 

It is necessary to find correlations between the standard and different alternative definitions to 

fully characterise a laser beam spatially. Researchers have attempted to do this for years, but 

correlations proved elusive since it was found that there is not a general one-to-one 

relationship between the second moment and alternative methods [44]. The second moment 

radii can also only be determined directly from a large number of measuring points which are 

inserted into the noise sensitive second moment integral (Equation (2.4)). For some 

applications, this large amount of data points is impractical (especially for manual scans). For 

other set-ups, the entire beam cannot be accurately slit or pinhole scanned at all due to a low 

signal to noise ratio. Correlating the second moment definition with alternative ones is 

therefore still very relevant. In the next few sections, methods are described to correlate 

between the second moment and alternative methods. 

4.5.1 Measurement of correlation factors: the SPSM method 
Simple astigmatic beams do not rotate or change their energy density profile during 

propagation (Section 2.2.3) so that the relationship between the second moment radii and 

alternative radii remains invariant. It is therefore only necessary to determine this relationship 

at one position along the beam propagation direction. This can be done by carefully 

measuring the energy density profile at this position and then determining the second moment 

and alternative radii from it. The energy profile that is needed to determine the knife-edge 

radius is not physically measured, but rather obtained by mathematically integrating a slit 

profile (Section 4.2.4). The entire beam is then characterised by means of an alternative 

method and the correlation applied to each radius to determine the second moment 

propagation and M -value. This method is termed the single position slit measured (SPSM) 

correlation method. 

 

This method is probably the most straightforward and simple to implement, but it does have 

some disadvantages. Plasma formation [1], [11] is sometimes encountered on scanning edges 

at the artificial waist. The beam needs to be attenuated to eliminate this, which in turn reduces 

the signal to noise ratio. If the signal has to be reduced by a large amount only the knife-edge 

method can be used to scan the beam. To measure the correlation factor the attenuator has to 

be removed to perform a single slit energy density scan some distance from the waist. The 

knife–edges also have to be removed and replaced with slits. These two extra operations have 



 51

to be done very carefully to ensure that the beam does not shift and that the two scanning 

devices have the same azimuthal angle. It is also very difficult to implement this in 

commercial systems. To avoid this, mathematical correlations have been developed and are 

discussed in the following sections.  

4.5.2 Siegman’s knife-edge correlation for rectangular Gaussian 
beams 

Siegman investigated the effect that clip-levels value ( Kε ) have on the relationship between 

the energy content radius ECr , and the second moment radius ω  [46]. He used a graphical 

approach by plotting the knife-edge transmitted (fractional) energy versus the clip width Dc 

(knife-edge radius) normalised to the standard deviation 2ndx  as defined in Equation (2.4). 

He did this for several commonly found beams overlaying each other. The fractional energy 

was used as the clip-level ε  because it was normalised to one. Siegman mostly examined 

lower and higher order Hermite Gaussian beams. He also included a few peculiar beams such 

as diamond, picture frame, top hat, slit and doughnut shaped beams. His aim was to find a 

common relationship between a wide range of energy-content and the second moment beam 

diameters at an optimum knife-edge clip-level.  
 

 

Figure 4-14:Siegman’s clip-level plot for higher order rectangular Hermitian modes. 



 52

Siegman’s approach was to find a clip-level where the correlation factor /c xD σ  is, within 

certain error limits, roughly the same for all the commonly investigated beams. This implies 

that he sought a converging point when plotting these moment-normalised graphs overlaying 

each other. In one of his graphs, he plots the fractional energy of the first seven higher order 

modes versus /c xD σ  (Figure 2 of [46]). A Similar composition up to mode xyTEM  05 is 

shown in Figure 4-14. In an expanded view shown in Figure 4-15, it can be seen how he 

found that there was indeed almost a converging point at a clip-level of around 8%. For all 

practical purposes all the modes converge to a point at this clip-level, with the exception of 

the TEM00 mode. The TEM00 mode cuts the other modes at significantly higher clip-levels. 

His eventual finding was to use a clip-level of 10% and a resulting correlation factor of 2.563 

as a compromise. The energy content radius is then related to the second moment radius with 

the following function at a clip-level of 10%: 

 0.7805 cω ω= . (4.11) 

One drawback of this approach is that most laser beams do not consist of pure modes, but 

rather of a superposition of them [45]. Siegman tried to address this problem by adding an 

error graph for mixtures of two adjacent higher order Laguerre modes (Fig 8 of [46]). 

Siegman also identified pedestal beams as being problematic. These beams consist of a good 

quality central beam with a surrounding bad quality pedestal. He listed these beams as 

extreme, implying that their parameters fall outside the ones he suggested. A new correlation 

between the energy and second moment radii should attempt to describe these beams as well.  

 

Figure 4-15:Expanded View of Siegman’s clip-level plot for higher order modes. 
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4.5.3 Correlations from ISO standard 11146  
The ISO in a normative Annex to the standard provided the following correlation functions 

between the beam quality factor determined with the second moment and three alternative 

definitions [24]: 

 ( 1) 1i iM c Mσ = − +  (4.12) 

where 

• iM  is the square root of the “times diffraction limit” or beam quality factor 2
iM  

according to an alternative method i and  

• ic  is the correlation factor between the alternative method i and the second moment 

method. 

The correlation constants ci for the three methods are listed in Table 4-1 [24]. 

Alternative Method ci Clip-level 

Variable-aperture 1.14 86,5% 

Moving Knife-edge 0.81 16% 

Moving Slit 0.95 13,5% 

Table 4-1:ISO correlation constants between the second moment and alternative definitions of 
the beam radius.  

The ISO also provided a relation to determine the second moment beam diameters cd  from 

the alternative diameters id  [24]: 

 [ ]( 1) 1i
i i

i

dd c M
Mσ = − + . (4.13) 

Johnston et al. [27] measured these correlations experimentally with the help of an ion gas 

laser. The results were confirmed for high power CO2 lasers up to 1kW, with 2M  factors up 

to 4 and with radially symmetric beams [24]. Johnston measured the pin-hole profiles of six 

beams that were created by adjusting a variable-aperture within the ion gas laser resonator. 

These one-dimensional pinhole profiles were then fitted with linear combinations of the pure 

Laguerre modes to give six realistic, but theoretical mode profiles. The second moment, 

knife-edge, slit and variable-aperture diameters were then calculated from these fitted profiles. 

Graphs with 00/ 1id d −  versus 2nd mom 00/ 1d d −  were then fitted to obtain the correlation 

factors ic .  
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The reason why the relationship between these two parameters was fitted was so that the 2M  

determined with the alternative beam radius definitions, are real 2M  values. This implies that 

for a TEM00 beam, Equation (4.12) must reduce to one, which is a very basic prerequisite for 

a beam quality factor. The clip-levels for each of these methods had to be chosen correctly to 

guarantee this (See Table 4-1). These clip-levels are actually rounded off values with the 

result that the 2M  value does not reduce exactly to one for TEM00 beams.  

 

These correlations were determined experimentally from only six profiles from an uncommon 

laser resonator with a specific symmetry making the applicability of this method very limited. 

In the next section, a theory to test old correlation methods and to develop new ones is 

presented. 

4.5.4 Novel comprehensive correlation method 
The second moment propagation equation (Equation (2.12)) can be rewritten in terms of the 

second moment 2M  factor using Equation (2.23) 
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This equation is used to determine the second moment beam quality by measuring second 

moment radii at several positions along the beam propagation direction. When an alternative 

definition is used to obtain the beam radii of simple astigmatic beams the measured radii 

deviate by a constant factor k  from the second moment radii. This is because the shape of the 

beam profile of simple astigmatic beams does not change when the beam propagates. Only the 

second moment radius change. (Section 2.2.2).  

 

There is a constant scale factor k  between alternative beam radii are and the second moment 

radius of a specific beam.  

 ( )alt k zω ω= . (4.16) 
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This k  factor is a constant for both intensity-based radii (slit) and energy base radii (knife) of 

a specific beam. It is easily proven in Appendix H.  

 

The new or alternative 2M -value determined by measuring the beam radii with an alternative 

method at several positions along the beam propagation would then be according to 

Equation (4.15)  
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 2 2 2
2alt ndM k M=  (4.19) 

so that  

 2alt ndM kM= . (4.20) 

Please note that k ’s value can vary for different beams and is different from Equation (4.12) 

which are claimed to be valid for a large subset of beams.  

 

From Equations (3.19) and (3.20) it can be deduced that all energy density functions of higher 

order modes are scaled with the fundamental mode with radius 00 ( )zω  (the Gaussian radius).  

At any position along the beam propagation direction according to Equation (3.39): 

 2
00

( )
 

( )nd
z

M
z

ω
ω

=  (4.21) 

To compare the different beam radii we choose for convenience the Gaussian radius 00ω  as 

one. The same technique was employed by Johnston [27]. Equation (4.21) then becomes 

 2 ( )nd sM zω= . (4.22) 

From Equations  (4.16), (4.20) and (4.22) it is now found 

 ( ) ( )
( )

alt s
alt s

s

zM z
z

ω
ω

ω
=  (4.23) 

so that  

 ( )alt alt sM zω=  (4.24) 

and finally 
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Using these relations, the proportionality factors c  can be plotted as a function of their 

alternative M -values using only single energy density profiles for a large number of different 

beams. If enough beams are evaluated, functions can be fitted through the proportionality 

factors to obtain correlation functions.  

 

Note that no specific clip-level was used for the derivation. Any suitable clip-level can 

therefore be employed in the calculations. This is very similar to the technique Johnston [27] 

used to obtain a correlation. The main difference is that it is not assumed that there is a 

general linear relationship between the different methods. If a linear relationship exists 

between the second moment and alternative definitions, all the proportionality factors will 

remain constant for all the knife-edge M -values smaller than two [24]. A graph of the 

proportionality factors versus M-values is therefore a direct measure of the deviation from a 

linear relationship between the standard and alternative definitions.  

 

Note also that because of Equations (4.22) and (4.24) either M or ω  can be used during 

discussions on correlation methods. It is for this reason that this thesis rather aims to correlate 

the different definitions of M  rather than 2M . The ISO Annex also followed this approach.  

4.6 Summary 
Different methods and apparatus to measure beam profiles of laser beams have been 

reviewed. Different definitions of the beam radius closely related to these beam profiles have 

also been given. Attempts to find a relation between the standard and alternative beam radius 

definitions have been examined and a new proportionality factor was proposed. In the next 

chapter, programs are presented with which to calculate the newly proposed proportionality 

factors and to evaluate existing correlation functions.  
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Chapter 5  

Computational techniques to calculate the 
proportionality factors 

Equation Chapter 5 Section 1 

In this chapter, various programs to calculate the second moment, knife-edge and slit M -

values of a very large group of beams will be presented. These values can be used to 

determine the accuracy of existing correlation functions and to develop new correlation 

methods.  

5.1 Generation of representative beams  

5.1.1 Linear mode combinations 
Sufficiently large numbers of sample laser beams should be used to determine the accuracy of 

the existing correlation techniques (Section 4.5) and to develop new methods. Two good types 

of commonly found beams to use are the rectangular and cylindrical symmetric Gaussian 

modes and their respective linear combinations (discussed in Chapter 3). Siegman used 

mainly pure rectangular modes, while Johnston and the ISO used measurements and models 

of cylindrical symmetric beams.  

 

It can be expected that real lasers divide the available energy from the gain medium between 

different modes in some sort of distribution. One can typically expect the TEM00 mode to 

receive the most and the highest order mode the least amount of total available energy. It has, 

however, been shown that for a CO2 TEA laser the relative amount of energy that is allocated 

to the different modes can be changed by changing the gas mixture [31], [15], [16]. It is 

therefore not possible to use an energy allocating distribution for different modes. One way to 

include all possible mode combinations in a general theory is to multiply the pure mode-

distributions with random weights in a linear combination. Such a theory would therefore 



 58

describe a laser resonator in which all the modes have equal probability to lase. Such a 

resonator is now defined as an equal probability resonator. If any energy allocating 

distribution is multiplied with such a random linear combination, the result would again be a 

random linear combination. The only deviation from real laser resonators, with energy 

allocating distributions, would be that statistically more beams with a set number of modes 

will be found at lower beam quality values. Any conclusions from statistical variations 

therefore have to take into account the fact that energy-allocating distributions do occur in 

practise. The equal probability resonator has the further advantage of being able to describe 

beams consisting of pure, or very close to pure, higher order modes as would be found when 

there are irregularities within a resonator.  

 

To obtain an arbitrary energy density profile for a sample beam, two-dimensional energy 

density profiles of pure modes (each with a 00ω  equal to one (Section 3.2.1)) are multiplied 

with random weights and then added in a linear superposition: 
 
 rand 1 rand 1 rand 2 rand 2 rand n rand n.......c c cψ ψ ψ ψ= + +  (5.1) 

 
Equation (5.1) does not have any cross terms because the electric field functions, from which 

the energy density distributions are calculated, are orthogonal to each other for simple laser 

systems [45], (Section 3.2.1). It must be noted that in reality non-orthogonal components can 

potentially be introduced by elements within resonators [39].  

 

The second moment radii are usually calculated from this two-dimensional energy 

distribution. The slit profile is obtained by integrating this two-dimensional energy density 

profile either numerically or analytically according to Equation (4.1). The knife-edge profile 

is obtained by integrating the slit profile in turn either numerically or analytically according to 

Equation (4.5). The slit and knife-edge radii can then be calculated from the two profiles. All 

these radii values are equal to their respective M -values of the sample beam according to 

Equations (4.22) and (4.24) because 00ω  was chosen as one. 

 

Practical laser resonators contain a finite number of modes due to design apertures and finite 

gain medium cross sections. It is therefore logical to limit the number of pure modes used to 

calculate the energy density profile of a sample beam. Attention should be given to how real 

resonators select the maximum number of modes it can contain when deciding which modes 
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should be used in a practical linear combination [23],[26], [37], [35]. Consider for example a 

simple cylindrical symmetric resonator with a single circular mode-restricting aperture [23] 

(Figure 3-1). As the mode restricting circular aperture is opened up, higher order modes start 

to lase in succession inversely proportional to the percentage of their energy that is cut off by 

the aperture. Modes with smaller radii therefore start to oscillate before larger ones. This 

selection for cylindrical symmetric beams is not at all trivial to determine from theory since 

there are various definitions of beam radii (Section 4.3). Both the second moment and 

variable aperture radii make use of a cylindrical integral. Table 5-1 lists the second moment 

and variable aperture radii (normalised to the fundamental) of the first few cylindrical 

symmetric modes according to Johnston [27]. It can be observed that there are modes that 

have the same second moment radii, but whose variable aperture radii vary significantly. For 

such beams it would be logical to rather evaluate their respective variable aperture radii to 

determine which will lase first due to the fact that the shape of the mode restricting aperture is 

circular. This illustrates once again that the second moment definition cannot stand on its own 

as the only available definition of beam radii. The variable aperture radius definition therefore 

has applications outside laser characterisation and is still relevant.  
 

 

Cylindrical mode 
Second moment radius 

Normalised to TEM00 

Variable aperture radius 

Normalised to TEM00 

TEM00 1.00 1.00 

TEMpl01 1.41 1.32 

TEMpl10 1.73 1.64 

TEMpl02 1.73 1.56 

TEMpl11 2.00 1.88 

TEMpl03 2.00 1.76 

Table 5-1: Second moment and variable aperture radii (normalised to the fundamental) of the 
first few cylindrical symmetric modes according to Johnston [25]. 

The phenomenon that different modes have identical second moment radii is not encountered 

in rectangular symmetry. The only possible similarity is where modes have the same radius in 

the two different Cartesian coordinates. These two modes will both start to lase at the same 

minimum circular aperture radius if the laser has perfect alignment, perfect optics and a 
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uniform gain profile. Under these conditions, it is also more likely that cylindrical symmetric 

modes will lase instead. 

5.1.2 Cylindrical symmetric beams and rectangular scanning 
devices 

The knife-edge and slit both are rectangular symmetric scanning devices and are best suited to 

scan rectangular symmetric beams consisting of superpositions of Hermitian modes. 

However, complications do arise when they are used to scan cylindrical symmetric beams 

consisting of superpositions of pure Laguerre modes. The general equation for two-

dimensional cylindrical energy density distributions (Equation (3.15)) can be converted to 

Cartesian coordinates as follows: 
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When Equation (5.2) is inserted into either the mathematical approximations of the slit 

(Equation (4.1)) or knife-edge (Equation (4.5)) the following integral is encountered which is 

not analytically solvable.  
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∫∫ . (5.3) 

This integral leads to several complications when the different radii are calculated for 

cylindrical symmetric beams as will be seen in the next few sections.  

5.1.2.1 Separability and the TEMplP0 modes  

One of the effects of the non-separability can be seen by comparing the slit profile of the pure 

TEMpl20 mode (Figure 3-6 A, B) with its one-dimensional pinhole profile in Figure 5-1.  
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radial distance

energy density

Figure 5-1: The difference between a slit profile (A) and a radial pinhole profile (B) of the 
cylindrical 20plTEM  mode. 

The two profiles are clearly very different which implies that their second moment, slit and 

knife-edge radii will also be different. The slit profile is the logical choice from which to 

calculate the slit and knife-edge radii. The second moment radius is usually calculated by 

inserting the full two-dimensional energy density distribution into the cylindrical second 

moment integral (Equation (2.5)). It would be simpler to rather use either the one-dimensional 

slit or pinhole profiles in the calculation of the second moment radius since it requires vast 

computer memory resources or very long calculation times to use the full two-dimensional 

energy density distributions. The second moment radii of the slit and one-dimensional pinhole 

profiles of the TEMpl20 mode were calculated with the rectangular symmetric second moment 

formula (Equation (2.4)) as 1.732 and 2.237 respectively. Only the slit profile’s second 

moment M -value corresponds to the theoretically correct two-dimensionally calculated value 

given by Equation (3.38). The value calculated from the one-dimensional pinhole profile 

differed significantly from the theoretical value. It can be seen in Table 5-2 that the slit 

profiles also provided the correct second moment radii for other pure TEMplP0 cylindrical 

symmetric modes. It is also verified using the cylindrical TEMpl10 mode that the slit profiles 

provide the correct values for the knife-edge and slit radii of the TEMplP0 cylindrical 

symmetric modes (according to Johnston [27]). Note that the one-dimensional pinhole 

profiles provided incorrect radii for these values. The correct slit, knife-edge and second 

moment radii can therefore be calculated by using the slit profiles in one-dimensional 

integrals. 
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 Theory Slit profile Pin-hole profile 

Circ 
mode 

2nd 
mom 
radii 

Knife-
edge 
radii 

Slit 
radius 

2nd 
mom 
radii 

Knife-
edge 
radii 

Slit  
radii 

2nd 
mom 
radii 

Knife
-edge 
radii 

Slit 
radii 

TEM00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.03 0.99 
TEMpl10 1.73 1.99 1.66 1.73 1.99 1.67 1.53 1.37 1.48 
TEMpl11 2.24   2.24 2.51 2.15 1.88 1.59 1.77 
TEMpl30 2.65   2.64 2.95 2.55 2.16 1.59 0.786 

 

Table 5-2: The left column contains theoretical published radii of a few cylindrical 
symmetric modes [27]. The middle column contains the corresponding radii 
calculated from slit profiles. The right column contains the corresponding radii 
calculated from one-dimensional pinhole profiles.  

5.1.2.2 The TEMpl0l modes  

The focus so far has only been on the TEMplP0 modes. Additional complications arise when 

the TEMpl0L modes are investigated. For example, it was seen that that the two-dimensional 

energy density profile of the cylindrical symmetric TEMpl01 mode is identical to that of the 

rectangular symmetric TEMmn01 mode but that their properties are not (Section 3.3.1). The 

rectangular second moment radius of TEMmn01 calculated with Equation (2.4) equals 3  and 

the cylindrical second moment radius of TEMpl01 calculated with Equation (2.5) equals 2 . 

This is due to the fact that in the second moment radii calculations, cylindrical integration 

(Equation (2.5)) was performed on TEMpl01 and rectangular integration with Equation (2.4) 

on TEMmn01. The two integrals differ and therefore the second moment radii differ as well. 

Rectangular integration requires that the azimuthal angle between a mode and the beam 

reference frame be defined and remain static in time. Cylindrical symmetric beams are not 

allowed to have one preferential Cartesian direction. All azimuthal directions should therefore 

have equal probability to contain a zero intensity node, or any other specific feature. This is 

automatically imposed by using cylindrical symmetric integration.  

 

The cylindrical symmetry has to be maintained when cylindrical symmetric modes are used in 

numerical calculations involving rectangular scanning devices. The TEMplP0 modes are 

automatically cylindrical symmetric, but the TEMpl0L modes are not. It should be just as 

likely to find a minimum at the azimuthal position of a maximum and vice versa. When two 
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identical, two-dimensional mode structures which are each shifted so that the maxima of the 

one coincides with the minima of the other are combined, perfect cylindrical symmetric or 

doughnut modes are formed. Further additions are unnecessary because the resulting structure 

already has perfect cylindrical symmetry. The formation of the first three cylindrical 

symmetric two-dimensional TEMpl0L profiles can be seen in Figure 5-1 and is identical to 

time integrating these pure cylindrical mode profiles. 

 
01plTEM  

 
02plTEM  

 
03plTEM  

Figure 5-2: Formation of the correct two-dimensional cylindrical symmetric 0plTEM L  

profiles to be used in numerical calculations. 

It can be seen from Table 5-3 that the second moment radii determined from the slit profiles 

of the cylindrical symmetric doughnut mode profiles are found to correspond exactly with 

theory [23], (Equation (3.32)). The second moment values determined with the slit profiles of 

the non-rotated mode profiles correspond only occasionally when one preferential axis is 

chosen. It can furthermore be seen from Table 5-3 that the knife-edge and slit radii of only the 

doughnut modes also correspond with the theoretical values provided by Johnston [27]. Very 

few of the knife-edge and slit values calculated from the non-rotated profiles correspond to 
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these values. The cylindrical symmetric doughnut profiles of the TEMpl0L modes are 

therefore the correct ones to use in cylindrical symmetric calculations.  
 
 

 Theory 
Choose preferential 

direction 
Doughnut profile 

Circ 

mode 

2nd 

mom 

radii 

Knife-

edge 

radii 

Slit 

radii 

2nd 

mom 

radii 

Knife-

edge 

radii 

Slit  

radii 

2nd 

mom 

radii 

Knife-

edge 

radii 

Slit 

radii 

00TEM  1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 

01plTEM  1.41 1.53 1.42 1.73 1.87 1.50 1.41 1.53 1.41 

02plTEM  1.73 1.92 1.68 1.73 1.99 1.67 1.73 1.91 1.68 

03plTEM  2.00 2.26 1.88 2.00 2.32 1.80 2.00 2.25 1.89 

Table 5-3: The left light shaded area contains published radii of a few cylindrical symmetric 
modes [27]. The middle slightly darker shaded area contains the corresponding 
radii calculated from slit profiles of the non-rotated profiles. The right darkest 
shaded area contains the corresponding radii calculated from slit profiles of the 
cylindrical symmetric doughnut modes. 

5.1.2.3 Generation of cylindrical sample beam profiles 

Equation (5.1) is the two-dimensional energy density distribution of a sample beam consisting 

of n  number of modes. Adding the two-dimensional distributions together for each sample 

beam would either require enormous amounts of computer memory or very long calculation 

times. A simpler solution is therefore needed. It was already established that the slit profiles 

could be used to determine the second moment radii of beams by means of one-dimensional 

integration. According to Equation (4.1) the slit profile of a sample beam (Equation (5.1)) is  
 

 rand 1 rand 1 rand 2 rand 2 rand n rand n.......
p p

p p

x W x WL L

L x W L x W

dxdy c c c dxdyψ ψ ψ ψ
+ ++ +

− − − −

= + +∫ ∫ ∫ ∫  (5.4) 

So that 

rand 1 rand 1 rand 2 rand 2 rand n rand n.......
p p p p

p p p p

x W x W x W x WL L L L

L x W L x W L x W L x W

dxdy c dxdy c c dxdyψ ψ ψ ψ
+ + + ++ + + +

− − − − − − − −

= + +∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫  (5.5) 

The slit profile of a sample beam can therefore be obtained from the randomised sum of the 

correct slit profiles of the pure modes. These one-dimensional profiles reduce the memory 
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requirements of a program to manageable levels so that large amounts of computations can be 

done in a relatively short time. Both the second moment and slit radii are calculated from this 

slit profile. The knife-edge energy profile can be obtained by numerically integrating 

Equation (5.5). The knife-edge energy radius is then obtained from this knife-edge profile.  

5.2 Calculation of the different beam radii 
Programs can be written to obtain the differently defined beam radii (Section 4.3) of the 

random sample beams. Proportionality factors between the different radii from a large number 

of sample beams can then be used to find general correlations between different definitions of 

M  (Section 4.5.4). Such programs should have the structure seen in Figure 5-3.  
 

 

Figure 5-3: General structure of a program that calculates the different radii of randomised 
sample beams. 

 

5.2.1 Numerical Programming 
The widely available Microsoft program Excel was used to numerically calculate the second 

moment, slit energy density and knife-edge energy radii. The cellular nature of the numerical 

program made it similar to the separate pixels of a CCD camera. Results obtained from this 

program should therefore reflect real mathematical challenges faced in camera profilers. The 
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program could, however, not be included in this thesis because it was written over several 

sheets making it physically too large. 

5.2.1.1 Two-dimensional cylindrical energy density distributions 

A 255 by 255-cell matrix with variable grid size was used to generate two-dimensional energy 

density distributions of the normal pure cylindrical symmetric modes. Each cell was assigned 

a unique x and y position. The energy density value of each cell was obtained by substituting 

these x and y values into Equation (5.2). Both the pure TEMplP0 and TEMpl0L modes had to 

be used in the linear combinations since they have different slit profiles. This was not 

necessary for rectangular symmetric beams since they are separable in Cartesian coordinates. 

The matrices for the doughnut profiles were obtained as described in Section 5.1.2.2. In 

Appendix B the two-dimensional value matrices can be seen for the normal and doughnut 

TEMpl01 modes. The energy density contour profile is visible due the fact that equi-energy 

density lines have identical values and therefore identical recognisable shapes.  

5.2.1.2 The slit energy density profile 

A slit integrates the two-dimensional energy density distribution only in one Cartesian 

direction. Slit integration was simulated for cylindrical symmetric beams by adding up each 

column of the two-dimensional energy density cell grid. The resulting row of values then 

represents the slit energy density profile. This process is illustrated in Figure 5-4. The 

numerical integration is much like the actual slit scanning process where the beam is scanned 

in discrete steps. This is also done in post-processing programs of CCD cameras which have a 

finite number of pixels. For rectangular symmetric beams, only the one-dimensional energy 

density profiles were needed because the one-dimensional pinhole profiles are identical to the 

slit profiles due to the separability of the rectangular modes in the Cartesian coordinates 

(Appendix C). An arbitrary linear combination for a particular sample beam was generated by 

multiplying slit integrated rows of all the participating modes by random numbers between 

zero and one and adding them all together to obtain a linear superposition according to 

Equation(5.5). 
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Figure 5-4: Generation of the slit energy density profiles by means adding rows in the two-
dimensional energy density grid. 

The randomised slit energy density profiles were normalised to the highest value. These slit 

energy density profiles were the sample beams that were used to calculate the second moment 

and slit radii. The energy density profiles of one hundred sample beams were generated in this 

way. A sheet was also created where weights for all the modes could be entered manually to 

get a visual perception of how the modes added up. A normalised two-dimensional energy 

density graph and a one-dimensional slit profile of this manually created beam were then 

automatically generated.  

5.2.1.3 The knife-edge energy profile 

The knife-edge profiles were obtained by adding the average of adjacent cell values of the slit 

profile in a cumulative summation. The resulting energy profiles from which the knife-edge 

energy radii can be calculated are similar to real scans in which steps or pixels are used to 

obtain the knife-edge radii. If integration was performed by adding up the full values of the 

slit profile cells, an extra energy density of half the difference between two adjacent values 

would be added per summation. The accumulative effect shifts the energy profile to 

noticeably higher incorrect values. The error is made because the index values of the cell 

positions are discrete and are in fact only precisely correct for the centre of the cell. This is 

illustrated in Figure 5-5.  
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Figure 5-5: The origin of erroneous knife-edge profiles by erroneous addition of slit energy 
density cell values. 

5.2.1.4 The calculation of the second moment radii 

The second moment radii were calculated by means of Equation (2.4) with 1 0stx =  because 

all the modes were centred on zero 

 2 22 ( ) 2 ( ) / ( )ndx z y I y dy I y dy
+∞ +∞

−∞ −∞

= ⋅∫ ∫ . (5.6) 

The cell values of the sample beams slit profiles were used for ( )I y . The cell positions were 

used as the y value and the positional step size was employed as dy . The integration was 

performed by cumulative addition. It was not necessary to add the average values as was done 

for knife-edge integration since the extra values cancel out in the division of the two integrals 

(this was confirmed with calculations). The resulting numerical formula in each cell of a 

calculation sheet appeared as follows. 

 
2

2 [cell y position] [cell value] [stepsize] [previous cell value]2 ( ) 2
[cell value] [stepsize] [previous cell value]

ndx z +
=

+
g g

g
 (5.7) 

5.2.1.5 The calculation of the knife-edge radii 

The knife-edge radii were more difficult to calculate than the second moment radii because 

exact clip-levels had to be used instead of an overall integration. A simple search in the 

normalised knife-edge profile for a cell with the exact value of the clip-level percentage could 

not be made since it was highly improbable that a cell would have had this exact value. A 
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positional range within which to search had to be specified. Double the average of the 

qualifying cells position values was then taken as the knife-edge radius (Section 4.3.3) 

because the beam was centred at zero. If no cells were found that matched the criteria, an 

error showed up. The search range could then be adjusted until all the knife-edge radii of the 

100 sample beams had no errors.  

5.2.1.6 The calculation of the slit radii 

The slit radii were even more difficult to determine than the knife-edge radii. This is because 

a normalised slit profile could possess multiple positions on the same side of the beam centre 

with the specified energy density clip-level value. This is illustrated in Figure 5-6, where the 

arrows indicate the multiple positions.  
 

 

Figure 5-6: Multiple points on the same side of the centre fulfilling the energy density clip-
level value condition. 

Only the distance between the beam centre and the outermost value should be taken as the 

correct slit radius. This was achieved by firstly determining the minimum position value of all 

the cells whose energy density values met the clip-level range criteria. The mean of the 

position values of the adjacent cells that also met the criteria (including the original value) 

was then taken as the slit radius because the beam was centred at zero.  

5.2.1.7 Generation of a large enough sample 

Every time an action was performed in Excel, new random M -values were generated. A 

macro was written that copied and pasted all three radii of one hundred sample beams two 

hundred times to a separate sheet. This generated beam radii values for twenty thousand 

(a.u.) 
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sample beams. If the sample size was still too small, the macro was repeated to generate forty 

thousand values and so forth. 

5.2.1.8 The numerical error 

The calculation techniques of both the knife-edge and slit radii selected the mean of a certain 

number of discrete qualifying cells. These two alternative radii were therefore discrete. The 

second moment calculation utilised all the cell values of the one-dimensional energy density 

profiles and was much more accurate. The discrete alternative radii will therefore have a 

spread in second moment radii values. This spread is referred to as the numerical error, which 

is in fact a very real error in modern camera systems employing pixel-counting techniques 

[48]. 

5.2.1.9 Numerical program for rectangular symmetric beams 

The Hermitian functions that characterise rectangular symmetric beams are separable in the 

two Cartesian directions (Section 3.2.1.2). Since the slit and knife-edge scanners are also 

rectangular symmetric, the practical implication is that the normalised slit intensity in one 

direction is equivalent to the profile obtained by setting the other directions values equal to 

zero which is the same as the one-dimensional pinhole profile. This was already used in the 

derivation of Equation (4.2) and is graphically illustrated in Appendix C. The generation of 

two-dimensional energy density distributions is therefore unnecessary due to the Cartesian 

separability of the Hermitian functions. Unlike cylindrical symmetric modes the same 

functions describe the energy density distributions in both principle Cartesian directions. 

More pure mode energy density combinations (up to mode TEMxy0 10 or TEMxy10 0) could 

therefore be included in the calculations. Beams with relatively high 2M -values could 

therefore be modelled. Apart from these changes, the rest of the rectangular numerical 

program was similar to that of the cylindrical symmetric case (Section 5.2.1). 

5.2.2 Analytical Programming 
The rectangular separability in the Cartesian directions of the Hermitian modes also provided 

the possibility of analytically solving the second moment, slit and knife-edge radii integrals. 

These integrals are solvable in mathematical programs such as Matlab and Mathematica. The 

latter was chosen due to previous experience with it.  
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The analytical program had the same structure as described in Figure 5-3 and can be found in 

Appendix G. There were only a few perceptible differences between it and the numerical 

programs.  

• Only energy density functions up to mode xyTEM 0 5  were used (Appendix A). 

• Each of the functions was energy normalised, meaning the profiles they generated 

were normalised with the total area underneath them, which also had to be analytically 

calculated.  

• The second moment radius was calculated analytically using Equation (5.6).  

• The energy function of the sample beam was calculated by analytically integrating the 

energy density function according to Equation (4.5) and was then normalised to the 

maximum energy value.  

• The knife-edge radius was found by applying a root finding function (FindRoot) to the 

normalised beam energy function added to the required energy clip-level.  

• The slit radius was then obtained by applying the root finding function to the sum of 

the normalised energy density distribution and the required energy density clip-level.  

 

Even though the root finding functions are numerical, their accuracy far exceeded that of the 

Excel program. The analytical program performed all these calculations for one sample beam 

at a time, which took some time to solve (especially for linear combinations containing a high 

number of pure mode functions). The program therefore took a very long time to run: it could 

typically run overnight or even over a weekend to produce enough sample results.  

5.3 Application of the computed radii 
The second moment, slit and knife-edge radii of the resulting beam profile or beam profile 

function (depending on the calculation approach) were calculated with any one of the three 

programs. Values obtained with one of these programs will henceforth be referred to as the 

computed values. The computed values were used directly as the different beam quality 

values according to Equations (4.22) and (4.24), because the Gaussian radii of the pure modes 

were chosen as one (This was also done by Johnston [27]). The relationship between the 

second moment and the alternative M -values could therefore be plotted and compared to 

existing functions of correlation theories to obtain their accuracy. The newly proposed theory 

plotted the proportionality factors of Equation (4.26) as a function of their respective 
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alternative M -values. Correlations between the different methods could be directly obtained 

from these graphs. These accuracies and new methods are presented in the next chapter. 

5.4 Summary 
Three programs, two numerical and one analytical were described which were used to test the 

ISO’s correlations as well as to develop a new theory. The numerical programs perform 

numerical calculations to determine the three different beam radii for both cylindrical and 

rectangular symmetric beams. The analytical integration program can only be used for 

rectangular symmetric beams. In the next chapter, the results of these programs are presented.  
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Chapter 6  

Computational results 

Equation Chapter 6 Section 1 

In the previous chapter, three programs were presented with which to calculate beam radii 

from different definitions of a large number of sample beams. Two of these programs were 

numerical and could calculate beam radii for cylindrical and rectangular symmetric beams. 

The third program was analytical and could only calculate beam radii for rectangular 

symmetric beams. In this chapter, the numerical results of the programs will be used to 

evaluate the accuracy of the ISO knife-edge and slit correlation functions and to develop new 

correlation methods.  

6.1 Relationships between second moment and knife-
edge M-values 

Rectangular and cylindrical beams consisting of a set number of modes were investigated 

respectively. Beams with the same number of modes of a particular symmetry are classified as 

belonging to a certain beam subclass. For instance, all beams consisting of the first three 

rectangular modes fall into the rectangular three-mode subclass. In Figure 6-1 (see page 76) 

the second moment M -values were plotted versus their respective knife-edge M -values 

(calculated with a 16% clip-level) for different subclasses. Graphs for rectangular beams 

ranging from the rectangular two-mode (top) to the five-mode (bottom) subclasses are given 

in the left column of Figure 6-1. Their cylindrical symmetric cousins are given in the right 

column.  

 

All the graphs were drawn on the same scale so that direct comparisons between them could 

easily be made. Unfortunately, it meant sacrificing some detail for the lower mode subclass 

graphs. Their structure will, however, be investigated in more detail in later sections.  
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6.1.1 General observations 
The relationship between the second moment and knife-edge M definitions of the rectangular 

subclasses shows a linear trend, which gradually deteriorates as the number of modes is 

increased. The ISO knife-edge correlation function (Section 4.5.3) was superimposed as a 

linear reference function to highlight this deviation. Any deviations from the ISO functions 

will be thoroughly investigated in Section 6.3.1. The pure cylindrical symmetric modes 

generally have lower second moment and knife-edge M -values than their rectangular 

cousins. Cylindrical symmetric resonators therefore produce higher quality beams. However, 

it is very difficult to obtain perfect cylindrical symmetry within a resonator and is usually only 

found in high quality sealed off CW systems.  

 

The proportionality graphs of all the lower beam subclasses are part of those of all the higher 

subclasses. This is because the lower subclasses represent the linear combinations in which 

the higher modes have an almost zero weight. A theory that accurately describes a beam 

subclass containing N modes therefore also describes all the other lower N subclasses.  

6.1.2 Separate evaluation of subclasses 
The top two graphs (Figure 6-1 A and E, page 76) show that, for all practical purposes, there 

is a one-to-one relationship between the two M -value definitions for both two-mode 

subclasses. This implies that if it is established that a laser beam contains only the first two 

modes (as most high quality commercial systems do), its second moment M -value can be 

determined exactly by means of knife-edge characterisation. It can be observed from the 

inserts that the overall relationship between the second moment M-values and the knife-edge 

M-values is linear with a slight curling deviation. The discrete structure of the numerical 

results will be discussed in future sections (Section 6.3.1 and Section 6.4.2.1). 

 

It was observed that both three-mode subclasses can have more than one second moment M -

value for a measured knife-edge M -value or vice versa. This is especially pronounced for the 

rectangular symmetric case (Figure 6-1 B), which consists of two lobes. There will therefore 

always be a theoretical error when converting a knife-edge M -value to a second moment M -

value by means of any correlation function for subclasses consisting of more than two modes.  
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The second moment radius can be thought of as a wave function specific property since it is 

strongly dependent on the beam energy density profile. A general Hermitian energy density 

profile is equivalent to mixtures of the probability curves of the quantum harmonic oscillator. 

The knife-edge radius, on the other hand, is associated with the energy flux of beams. The 

multiple second moment radii are therefore reminiscent of quantum degeneracy, where 

different states (having different wave functions) have the same eigen energy values under 

certain conditions. This theoretical error when using correlation functions will therefore be 

referred to as the degenerate error. A knife-edge M -value does in fact exist for both three-

mode subclasses where the degenerate error is zero. This point can clearly be seen near the 

centre of the rectangular computed values (the connection point between the two lobes in 

Figure 6-1 B) at a knife-edge M -value of 1.732. This implies that the second moment M -

value is known to be exactly 1.591 if a knife-edge M -value of 1.732 was measured with 16% 

clip-level for this subclass. The zero error point is not as visible for the cylindrical 

symmetrical case due the numerical error described in Section 5.2.1.8, and because its 

degenerate errors are smaller. It will be shown in a later section how this interesting feature is 

central to a new correlation method. 

 

The rectangular four-mode subclass (Figure 6-1 C) has no zero degenerate error points like 

the rectangular three-mode subclass. The degenerate error is also substantially larger so that 

large correlation errors can be expected when any correlation function is used. The cylindrical 

four-mode subclass (Figure 6-1 G) does not show the same behaviour. The degenerate error of 

this subclass increased only marginally at lower knife-edge M -values from the previous 

subclass and the range of the knife-edge M -values increased only slightly to terminate at the 

value of the pure TEMpl 10 mode. The 1.732 zero error point is still present in the graph of the 

cylindrical four-mode subclass and is in fact more perceptible due to increased degenerate 

errors elsewhere in the graph.  

 

The rectangular five-mode subclass (Figure 6-1 D) can be seen to have very large degenerate 

errors. The general relation between the M -values from the two definitions no longer follows 

the linear trend of the previous subclasses. It does therefore not appear wise to expect too 

accurate correlations for rectangular beam subclasses containing such a large number of 

higher order modes.  
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Figure 6-1: Second moment M -values as a function of their respective knife-edge M -values 
for the first four rectangular (left) and cylindrical (right) subclasses. 
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It is still acceptable to use a correlation function for the cylindrical five-mode subclass 

(Figure 6-1 H) even though its proportionality graph does deviate slightly from the linear 

trend set by the previous beam subclasses and contains no zero error knife-edge 

proportionality points. The degenerate error also increased only slightly when the fifth mode 

was added.  

 

For high mode content beams it was found that the computed second moment and knife-edge 

M -values do not reach those of the pure modes, especially the modes having lowest and 

highest mode numbers. This is because there is a very small chance of finding a beam 

consisting of only a single pure mode in a resonator where many other pure modes have an 

equal probability to lase. 

 

It was apparent that the knife-edge and second moment M -values differ greatly for the two 

symmetries. In practise, it is not always clear whether a laser has rectangular or cylindrical 

symmetry, especially when it only contains a few modes. It would therefore be very useful to 

find a single theory that can describe subclasses from both theories with low mode content. 

6.2 Relationships between second moment and slit M-
values 

6.2.1 General observations 
In Figure 6-2 (see page 78) the second moment M -values are plotted versus their respective 

slit M -values (calculated with a 13.5% clip-level) for different subclasses. It is immediately 

apparent that there is no general linear relationship between the second moment and slit M -

values for the rectangular subclasses. The second moment values deviate sharply from the 

linear ISO slit correlation function, which was used as a reference. Only at low slit M -values 

does there seem to be linear behaviour. The second moment values of the cylindrical 

subclasses behave much more linearly and correspond very well to the ISO reference 

function.  
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Figure 6-2: Second moment M -values as a function of their respective slit M-values for the 
first four rectangular (left) and cylindrical (right) subclasses. 
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6.2.2 Separate evaluation of subclasses 
The layout of Figure 6-2 (page 78) is identical to that of Figure 6-1 (page 76), described in 

Section 6.1.2. A one-to-one relationship is found between the second moment and slit M -

values of the two, two-mode subclasses (Figure 6-2 A). This one-to-one relationship is similar 

to the knife-edge case. After an initial linear relationship, the second moment M -values of 

the rectangular two-mode subclass curve sharply away to higher values ending at the value of 

the pure TEMxy02 mode. A linear correlation function would therefore be expected to give 

large errors for the rectangular two-mode subclass. The proportionality graph of the 

cylindrical two-mode subclass does not exhibit such a trend. It remains almost linear and 

corresponds well with the ISO reference function.  

 

Both three-mode subclasses do not have a one-to-one relationship between the second 

moment and slit M -values (similarly to the knife-edge case). This is, however, much more 

apparent for the rectangular subclass (Figure 6-2 B) which resembles a slipper. There is a 

nonlinear relationship between the second moment and slit M -values for the rectangular 

three-mode subclass for slit M -values higher than approximately 1.4 where any correlation 

function will have large degenerate errors. No slit zero error point was found for the 

rectangular three-mode subclass as was the case for the knife-edge method. The cylindrical 

three-mode subclass remains largely linear and corresponds well with the ISO reference 

function, exhibiting only minimal degenerate errors (Figure 6-2 F). As the number of modes 

is increased, the general shape of the rectangular subclasses resembles upturned umbrellas 

with the pure mode values at the spoke ends (Figure 6-2 C, D). The degenerate errors become 

so severe that it was doubtful whether any general correlation could be found for rectangular 

beams. The cylindrical symmetric graphs remained almost linear with only minimal 

degenerate errors (Figure 6-2 G, H).  

6.3 Determining the accuracy of the ISO correlation 
functions 

The correlation functions for the knife-edge and slit alternative methods were already 

evaluated by superimposing them on the second moment graphs of Figure 6-1 and Figure 6-2. 

Error graphs are, however, more useful to get a quantitative measure of how well the ISO’s 

functions correlate with the alternative (knife-edge or slit) and second moment M -values. 
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Such error graphs were obtained by subtracting the calculated second moment values from 

those obtained from the ISO function and dividing again by the computed values to obtain an 

error percentage. The layout of the error graphs for the knife-edge (Figure 6-3 page 81) and 

slit (Figure 6-4 page 83) is identical to that of Figure 6-1 (page 76) and Figure 6-2 (page 78). 

6.3.1 The ISO knife-edge correlation function 
From Figure 6-3 A it can easily be observed how the second moment M -values of the 

rectangular two-mode subclass curl around the ISO correlation function. The error varies 

almost sinusoidally between the maximum approximate values of -1.5 and +0.5%, which is 

close to a typical measuring error. The average of the computed values of the proportionality 

graph for the cylindrical two-mode subclass is identical to the rectangular case up to a knife-

edge M -value of 1.53 (see the insert in Figure 6-3 E). The slight offset was probably due to a 

numerical calculation error. The numerical error described in Section 5.2.1.8 could be 

assessed because there is a one-to-one proportionality for this beam subclass as seen from 

analytical calculations. The analytical calculations also give exact values for all practical 

purposes. The maximum numerical error was subsequently found to be approximately 

0.94%±  from the average values. Notice that the correlated second moment M -value for the 

pure TEM00 beam does not have a zero error because the ISO used a rounded off clip-level of 

16%. A clip-level of 15.866% leads to a knife-edge radius, which corresponds much better to 

the 21/ e  Gaussian radius. 

 

Errors arising from using the ISO correlation function on beams belonging to the rectangular 

three-mode subclass are substantial. From Figure 6-3 B it could be observed that negative 

errors of up to 9% and positive errors up to 4.6% can unknowingly be made when one blindly 

uses the ISO Annex. This is unacceptable when considering that these errors are roughly 

double for 2M  values. The total error might be even larger if measuring errors are also taken 

into account. It must, however, be mentioned that it is unlikely that such beams would occur 

in practise. This is due to the low density of points close to the maximum negative error 

indicating a general low probability to find such beams in practice.  
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Figure 6-3: Potential errors that can be made when using the ISO knife-edge correlation 
function (Equation (4.12)) for the first four rectangular (left) and cylindrical 
(right) subclasses. 
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For the cylindrical three-mode subclass the maximum error of 4.6% is roughly half that of 

their rectangular cousins. It is therefore clear why the ISO chose to only correlate cylindrical 

symmetric beams. Figure 6-3 C shows that up to -18% and +8% maximum errors are possible 

for the rectangular four-mode subclass. It is, however, very unlikely that such high negative 

errors will ever be made since it is statistically unlikely to find beams with low knife-edge 

M -values close to one for the rectangular four-mode subclass. More realistic errors of 8%±  

can therefore be expected. It became clear from the error graphs of beam subclasses 

consisting of more than three modes that the ISO correlation is only suited for cylindrical 

symmetric beams. The error for rectangular symmetric beams is unacceptably high, while it 

remains constant or even decreases for cylindrical symmetric beams as the number of modes 

is increased.  

6.3.2 The ISO slit correlation function 
The second moment values for the rectangular two-mode subclass (Figure 6-4 A page 83) do 

not correspond to those from the ISO function. This can lead to large errors of up to almost 

15% for higher slit M -values. It can be seen from the insert in Figure 6-4 E that the average 

of the numerical values for the cylindrical two-mode subclass are identical to those of their 

rectangular cousins up to slit M -values of 1.42. The large errors are only made at higher slit 

M -values and are therefore avoided for cylindrical symmetric beams.  

 

From Figure 6-4 B it can be observed that the ISO slit correlation errors are very large for the 

rectangular three-mode subclass. The rectangular slit M -values also have no zero error point 

like their knife-edge counterparts. A minimum error point can, however, be observed at a slit 

M -value of approximately 1.4. A band of higher density points is also observable. This 

implies that beams in this subclass are more probable to have second moment values in this 

band. The ISO correlation function does not follow this high-density band. It is found that the 

degenerate error becomes even more severe for subclasses consisting of more modes. As the 

number of rectangular modes is increased, the high-density band vanishes and the maximum 

errors remain consistently high at values of around 22%.  
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Figure 6-4: Potential errors that can be made when using the ISO slit correlation function 
(Equation (4.12)) for the first four rectangular (left) and cylindrical (right) 
subclasses. 
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It can be observed from Figure 6-4 F that the ISO errors for the cylindrical three-mode 

subclass are far less severe and actually seem to intersect the average of the computed values. 

This trend is also observed for the cylindrical four-mode subclass (Figure 6-4 G). Significant 

negative errors at higher M -values become apparent in the cylindrical four-mode subclass, 

which seem to be even worse for the five-mode subclass (Figure 6-4 H). A further unusual 

finding is that the ISO correlation function does not follow the general trend of the pure 

cylindrical second moment values.  

6.4 Novel comprehensive correlations 
It was shown in the previous sections that the ISO functions have large unacceptable errors. 

The aim of this section is to minimise these errors by developing novel correlation functions 

and methods. The newly proposed graphs that are used to correlate between the second 

moment and alternative definitions consist of the computed proportionality factors (defined in 

Section 4.5.4 Equation (4.26)) plotted as a function of their respective alternative M -values. 

This means that the proportionality factors are the second moment values divided by their 

respective alternative M -values of Figure 6-1 (page 76) and Figure 6-2 (page 78). The 

resulting proportionality graphs are fitted with appropriate functions by means of a least 

squares method. Proportionality factors are used since it was found that the small variations in 

the relation between the second moment and alternative values could better be incorporated 

into the fitting functions. The graphs also illustrate that proportionality factors do not remain 

constant as Johnston [27] proposed. The measured alternative M -values should be inserted 

into the fitted functions to obtain the correlation factor. The resulting correlation factor needs 

to be multiplied again by this measured alternative M -value to obtain the second moment 

M -value. This is already done for all the fitted functions for the convenience of a potential 

user. The second moment values can therefore be directly obtained by inserting the alternative 

M -values into these multiplied functions. If the original fitting functions are required, they 

can be obtained by simply dividing by the alternative M -value.  

6.4.1 Knife-edge correlation for rectangular Gaussian beams 
The knife-edge proportionality graphs of the first four rectangular subclasses can be seen in 

Figure 6-5 A-D (the left column on page 86). They were obtained by simply dividing the 

second moment M -values of Figure 6-1 A-D (page 76) by their respective knife-edge M -
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values. The solid curves are the best least squares fits of a fifth order polynomial that was 

forced through the knife-edge M -value and proportionality factor of the TEM00 mode. The 

forcing ensured that the functions always produce a second moment M -value of 1 for the 

fundamental mode. The high order of the polynomial produces sufficient local extrema in the 

function so that it is able to accurately follow the computed proportionality values. Even 

though this produced long correlation functions, the extra accuracy justifies the extra 

calculation time, which is anyway short compared to the time it takes to measure the entire 

beam propagation. The polynomial functions are given in Table 6-1 (see page 87) for the first 

four rectangular beam subclasses. The error made using one of the correlation functions can 

be determined by subtracting the computed values from the function and dividing again by the 

computed values to obtain an error percentage as was done for the ISO correlation functions 

in Sections 6.1 and 6.2. The graphs of these error values can be seen in Figure 6-5 E-H (the 

left column) for their corresponding proportionality graphs (in the right column).  

 

The rectangular two-mode subclass correlation function followed the computed values almost 

exactly. The error, seen in the insert in Figure 6-5 E, varied between -0.025% and +0.025% 

which is far below any possible measuring error. The proportionality graph for the rectangular 

three-mode subclass can be seen in Figure 6-5 B. The two lobes and zero error point are much 

more apparent than they were in the direct second moment graphs of Figure 6-1 B (page 76). 

This was one of the reasons why the proportionality factors graphs were used instead of the 

direct second moment graphs. The fitted polynomial passes through the lobe connecting zero 

error point and then almost through the value of the pure xyTEM 02  mode. The left lobe was 

found to have the largest errors varying between -5.5% and +3.2%. The right lobe’s 

maximum errors only vary between +2.7% and -2.9%. From the low density of points at low 

knife-edge M -values it can be deduced that it is improbable for beams in the rectangular 

three-mode subclass to have knife-edge M -values close to one. Realistically the error for the 

left lobe can therefore be much lower. The error made by using this function is roughly half 

that of the ISO’s linear function. The rectangular two-mode subclass delineates the lower 

proportionality values of the first lobe of the proportionality graph of the rectangular three-

mode subclass. The maximum error that is made using the three-mode function for beams 

belonging to the rectangular two-mode subclass was found to 3.2%.  
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Proportionality Graphs Error Graphs 

A  E  

B  F  

C  G  

D  H  

Figure 6-5:Novel comprehensive knife-edge proportionality graphs for the first four 
rectangular subclasses (left) and the errors that can be made when the fitted 
polynomials are used (right). 
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The error of the newly proposed correlation function of the rectangular four-mode subclass is 

initially very high for low knife-edge M -values (Figure 6-5 G). For higher knife-edge M -

values the positive and negative errors are shifted so that no zero or minimum error points are 

formed. The positive errors vary between 4.7% and 2.7% and the negative errors between -5% 

and -2.3%. These values are quite high but are still much lower than those of the ISO function 

(Figure 6-3 C). The maximum correlation error of the rectangular five-mode subclass is 

initially very high at approximately 9%±  but then gradually reduces to approximately 3%± .  

 

 
2 3

4 5

( 1.00557 - a( - 0.994458) b( - 0.994458) c( - 0.994458)

d( - 0.994458) e( - 0.994458) )
knife knife knife knife

knife knife

M M M M

M M

× + + +

+ +
 (6.1) 

 

Beam 

subclass 
a b c d e 

Range 

Knife-edge 

M 

equation 

xyTEM  00+01 -0.01312 -0.7997 +1.6389 -1.357 +0.4695 
M>0.9946 

M<1.8724 
(6.2) 

xyTEM 00+01+

02
 +0.1004 -0.6456 +0.6230 0.2143 +0.0212 

M>0.9946 

M<2.5211 
(6.3) 

xyTEM 00+01+

02+03
 +0.4849 -1.6091 1.6448 0.7467 +0.1286 

M>0.9946 

M<3.0600 
(6.4) 

xyTEM 00+01+

02+03+04
 +0.3074 -0.6721 +0.4129 0.1074 +0.0102 

M>0.9946 

M<3.5310 
(6.5) 

 

 

Table 6-1:Newly proposed correlation functions for the first four rectangular mode subclasses 

(the correlation factors in the table is to be inserted into Equation (6.1)). 
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The major drawback of using different functions for different subclasses is that knowledge of 

the mode content is required to use the best correlation function. The degenerate error also 

becomes unacceptably high for beam subclasses containing more than three modes. Most 

laser resonators are designed to emit beams consisting only of a low number of modes. A 

correlation method that has low errors and is mode independent for low mode content beams 

would therefore be more than sufficient for most applications.  
 

6.4.2 Knife-edge correlation for cylindrical Gaussian beams 

6.4.2.1 Separate fitting of subclasses 

The same method that was used for the rectangular subclasses can now be applied to establish 

correlation functions for the first four cylindrical subclasses. The proportionality graphs can 

be seen in Figure 6-6 A-D (the left column). The solid curve overlaying the computed values 

is the fifth order polynomial that is forced through the fundamental mode values. These fitted 

polynomial functions multiplied by the knife-edge M -value can be found in Appendix D. 

The error graphs were calculated in a fashion that is identical to that used for the rectangular 

correlation functions. They can be seen in Figure 6-6 E-H (the right column).  

 

It was established in Section 6.1.2 that the rectangular two-mode subclass had zero degenerate 

errors. This was done by using analytical calculations. The maximum numerical error was 

confirmed to be 0.94%±  from the comparison between the two, two-mode subclasses. The 

numerical error can also be directly observed in Figure 6-6 E.  

 

It can be observed that both the three and four cylindrical mode subclasses have ranges in 

which the error is equal to or less than the numerical error. The cylindrical three-mode 

subclass has errors below 0.88%±  (which are below the numerical error) for knife-edge M -

values above 1.65. The cylindrical four-mode subclass has an error of 0.87% at the knife-edge 

M -value of 1.732 (which is also below the numerical error). No error ranges or points could 

be found for the cylindrical five-mode subclass where the error was below the numerical 

error. It is therefore a reasonable assumption that only the two, three and four cylindrical 

mode subclasses have zero degenerate error points or regions.  
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Proportionality graph Error graph 

A  E  

B  F  

C  G  

D  H  
Figure 6-6: Newly proposed knife-edge proportionality graphs for the first four rectangular 

subclasses (left) and the errors that can be made when the fitted polynomials are 
used (right). 
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6.4.2.2 Single cylindrical correlation function 

It was seen in Figure 6-1 (page 76) that the relationship between the second moment and 

knife-edge M -values is more linear for cylindrical symmetric beams than it is for their 

rectangular cousins. The degenerate error was also found to be far less severe when 

correlating cylindrical symmetric beams. It was therefore investigated whether a single simple 

function could be found for cylindrical symmetric beams. All the proportionality graphs for 

the first six cylindrical mode subclasses were therefore combined and fitted with a simple 

linear function forced through the values of the fundamental TEM00 mode (Figure 6-7). The 

linear correlation function was used for simplicity. This linear function multiplied by the 

knife-edge M -value was found to be 
 
 second knife knifeM (-0.1153(M -0.994458)+1.00557)M = × . (6.6) 
 
The error was calculated in an identical manner as was done for the correlation functions in 

the previous sections. This can be seen in Figure 6-7 B. Even though the error was found to be 

quite high (up to almost –7%) for low knife-edge M -values it can be deduced from the low 

density of points that most practical beams will probably have much lower errors in this 

range. A more realistic total error assessment would be approximately +1.5 and -2.5%, which 

is much lower than the ISO correlation function, which has realistic errors as high as -5% 

(Figure 6-3 G page 81). This single linear function is more practical than the previous 

functions in Section 6.4.2.1 since for a minimal increase in error the function is more simple 

and is also independent of number of modes in a beam (up to the TEMpl11. This could not be 

attempted for rectangular subclasses due to the increased degenerate error and non-linear 

behaviour that accompanies an increase in mode content.  

A  B  

Figure 6-7: Newly proposed single knife-edge correlation for the first five cylindrical 
subclasses (left) and the errors that can be made when the function is used (right). 
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6.4.3 Comparison between the rectangular and cylindrical 
proportionality graphs 

6.4.3.1 The 1.732 zero error value 

The rectangular three-mode and cylindrical four-mode proportionality graphs are 

superimposed in Figure 6-8. The combined proportionality graphs for the two symmetries 

correspond exactly for knife-edge M -values lower than 1.732, taking into account the 

numerical error. The cylindrical proportionality factors deviate from that of their rectangular 

cousins for higher knife-edge M -values. After the value for the TEMpl 02 mode is reached, 

the cylindrical proportionality factors drop off sharply to the value of the pure TEMpl 10 

mode. The rectangular proportionality factors continue to form a right lobe, which terminates 

at the value of the pure xyTEM 02  mode. The knife-edge M -value of 1.732 is therefore very 

important for both symmetries in that the cylindrical four-mode subclass (which contains the 

values of previous subclasses) can be described by the rectangular three-mode subclass at 

knife-edge M -values lower than 1.732 (with a 16% clip-level). One-to-one proportionalities 

for the rectangular three-mode and cylindrical three and four-mode subclasses were also 

previously found at this knife-edge M -value (Section 6.4.2.1).  
 

 

Figure 6-8: Comparison of the knife-edge proportionality graphs of the rectangular three-
mode (magenta) and cylindrical four-mode (green) subclasses.  
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6.4.3.2 Additional applications of the proportionality graphs 

The rectangular three-mode proportionality graph can be used not only for correlation 

purposes, but also to evaluate laser beams when both the second moment and knife-edge radii 

are easily accessible. Note from the previous section that three-mode proportionality graph 

also describes the cylindrical two, three and four-mode subclasses. It can be assessed how 

close to the fundamental a beam is by plotting the proportionality factor of a measured beam 

(Equation (4.26)) versus its knife-edge M -value (Equation (4.24)) on the proportionality 

graph of the rectangular three mode subclass.  

 

The proportionality factors and graphs can also potentially be utilised in camera software to 

accurately align and to select only the TEM00 mode in laser resonators. This can also be done 

by monitoring the transverse mode beating [45], [21], but this method is not suited to pick up 

diffractive effects from an aperture that is too small. The new camera technique would 

monitor whether the knife-edge proportionality factors determined by only one two-

dimensional energy density profile correspond to the computed proportionality factors of the 

rectangular two-mode subclass at knife-edge M -values close to one. The resonator could 

then be adjusted until the proportionality factors in both transverse directions are equally 

shifted to their maximum M -values (see Figure 6-5 A). If these values correspond to the 

values of the knife-edge two-mode proportionality graph the best possible near TEM00 beam 

profile for the particular resonator is obtained. The knife-edge and second moment M -values 

of such beams should also be accessible from this proportionality factor without the 

measurement of the entire beam propagation due to the one-to-one nature of the 

proportionality graph of the rectangular two-mode subclass. 

 

The proportionality graph can be used to determine whether the resonator contains two or 

three modes. Any deviation from the rectangular two-mode subclass line would indicate a 

third mode. The proportionality graph can also be employed to determine whether a beam 

from a simple resonator shows general Gaussian behaviour and measuring errors. If a 

measured proportionality factor does not correspond to expected values on a proportionality 

graph, the beam is either non-Gaussian or serious measuring errors are made. The user must 

determine which one is applicable. Small deviations from Gaussian behaviour can be more 
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easily picked up in the proportionality graphs than in the second moment graphs. The 

proportionality graphs therefore serve as a new tool for the evaluation of laser beams.  

6.4.3.3 A symmetry unified correlation method 

In the earlier sections, a large number of functions were presented with which to correlate the 

knife-edge and second moment M -values. These functions depend on the symmetry of a 

resonator and the number of modes it contains. Figure 6-8 does suggest that there are some 

similarities between the rectangular and cylindrical symmetric correlations factor graphs for 

beam subclasses containing up to certain number of modes. 

 

A point was also found where there is a one-to-one proportionality for the first two and three 

rectangular and cylindrical subclasses respectively. Beams consisting only of the first few 

modes are the most desired and therefore commonly found in practical systems. A unified 

method that accurately describes such beams of both symmetries should be highly relevant 

and sought after. In the following section the effect of changing the clip-level will be 

investigated as well as the implications it has for such a unified method that correlates the first 

few mode subclasses in both symmetries.  
 

6.4.4 The effect of the knife-edge clip-level on the proportionality 
graphs 

6.4.4.1 Rectangular symmetry 

Figure 6-9 shows a few knife-edge proportionality graphs for the rectangular three-mode 

subclass calculated with various energy clip-levels. The 16% clip-level graph of Figure 6-5 B 

(page 86) is indicated as a reference graph. It was observed that all the different clip-levels 

retain the zero error point that was seen in the 16% clip-level proportionality graphs in 

Section 6.4.1. The two lobes play an important part now. The number of proportionality factor 

points in the left lobes increases with clip-level and vice versa for the right lobe. The zero 

error point, however, remains stationary at the 16% value of 1.732, which is likely to be the 

square root of three ( 3 ).  
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Figure 6-9: Knife-edge proportionality factor graphs for the rectangular three-mode subclass 
calculated using different clip-levels. 

The black lines trace specific mode combinations as the clip-levels are changed. It can be seen 

that the proportionality factors of individual sample beams shift in arcs from lower to higher 

knife-edge M -values as the clip-level is lowered. All the proportionality factor values shift 

from the left lobe at higher clip-levels to the right lobe at lower clip-levels crossing the 1.732 

zero error line. The two extreme mode traces are for the TEM00 mode at the bottom which 

crosses only at a clip-level of 4.16 % and the xyTEM  02  mode at the top which only crosses 

at a clip-level of 35.00%. All of the mode combinations therefore cross the zero error line at 

some clip-level between these two extremes. This can be seen more clearly in the more 

complete 34.6% to 4.5% rectangular combination proportionality graph shown in Appendix E 

Figure 10-6. It is therefore possible to obtain a zero error proportionality factor for any linear 

combination of the first three rectangular modes by simply changing the clip-level. 

 

It has not been determined why the zero error point has the apparent knife-edge M -value of 

the 3 . This may become the subject of a future more mathematical study of this particular 

problem. It is only necessary at this stage to validate the value graphically since the analytical 

accuracy is far above any measuring error. This graphical proof is shown in Figure 6-10, 

which focuses in on the 1.732 line and consists of more proportionality graphs than Figure 6-

9. 
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Figure 6-10:Expanded view of Figure 6-9 around the knife-edge M -value of 1.732.  

6.4.4.2 Cylindrical Symmetry 

Figure 6-11 and Figure 6-12 (see page 96) show the effect of clip-level changes on the knife-

edge proportionality graphs for the three and four cylindrical mode subclasses respectively. 

The enlarged version of these graphs are given in Appendix E. It was observed that the 

cylindrical symmetric graphs show the same behaviour as the rectangular ones. The zero error 

point, which is hidden by the numerical error, remains stationary for both subclasses. The 

number of proportionality factor points in the left lobes increases with clip-level and vice 

versa for the right lobes. The total error, however, remains consistently below the numerical 

error at knife-edge M -values of 1.732. The proportionality graph of the cylindrical three-

mode subclass does not have large degenerate errors for most of the clip-levels. The 

degenerate errors for the whole range of knife-edge M -values are seen to be lowest for an 

11% clip-level.  

 

The proportionality graphs of the cylindrical four-mode subclass are less defined because a 

very large number of calculations have to be done to obtain all possible linear superpositions. 

Due to the larger degenerate error in the left lobe, the stationary nature of the zero error point 

at 1.732 was much more apparent than for the cylindrical three-mode subclass.  

 

4.5% 

34.6% 
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Figure 6-11:Knife-edge proportionality factor graphs for the cylindrical four-mode subclass 
using different clip-levels. 

 

Figure 6-12:Knife-edge proportionality factor graphs for the cylindrical four-mode subclass 
using different clip-levels. 

The major difference between the clip-level dependence of the cylindrical and rectangular 

graphs is that the cylindrical plTEM  02  and plTEM  10  modes cross 1.732 knife-edge M -

value at the much lower clip-level of roughly 20%. This is because cylindrical symmetric 

resonators have a smaller range of possible knife-edge M -values for subclasses with the 

same number of modes as their rectangular cousins.  
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6.4.4.3 Zero error correlation → the clip-level optimisation method 

The single proportionality factors at knife-edge M -values of 1.732 for the above mentioned 

subclasses are now defined as the zero error proportionality factors for specific clip-levels. 

The zero error proportionality values are plotted versus clip-level in Figure 6-13 for the 

examined cylindrical and rectangular symmetric subclasses overlaying each other. It is 

remarkable that they seem to correspond exactly when one takes into account the large 

numerical error and large difference in the slit intensity profiles of the numerical method. The 

rectangular analytical proportionality factors were calculated much more accurately and they 

were therefore fitted with a second order polynomial function  
 
 4 2

0 error 0.45106 0.03378 - 2.86149 10   l lC C C−= + × . (6.7) 

 

lC  is the zero error clip-level where the knife-edge M -values are 1.732. The function that 

would give the zero error second moment M -values is therefore 1.732 times this function 
 
 4 2

sec,zero error 0.7813 0.05851 - 4.95624 10   l lM C C−= + × . (6.8) 

 
This remarkable result provides techniques to measure the exact second moment M -value for 

a large number of relatively good quality beams of both symmetries without measuring the 

energy density profile of the beams. This is especially useful for high energy pulsed lasers, 

whose characterisation is difficult to automate due to commonly found low signal to noise 

ratios. 
 
 

 

 Figure 6-13:Zero error proportionality factors versus clip-level for Gaussian rectangular (red) 
and cylindrical symmetric (blue) modes. 
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One such technique is to measure the entire beam energy profile with a knife-edge at several 

positions along the beam propagation direction as described in Section 4.4.3. If relatively few 

measuring points are used per radius measurement, the normalised profiles have to be fitted 

with suitable functions (Section 4.4.4). The beam radii are then obtained by solving the 

functions using a 16% clip-level (Section 4.4.4). If enough measuring points are used as in 

constant velocity scans (Section 4.4.3) no fitting functions need to be used and the beam radii 

can be determined by pixel counting techniques. These beam radii are then to be used in 

energy and energy flux calculations. The knife-edge M -value is obtained through fitting the 

beam propagation equation as was explained in Section 4.4.4. The exact second moment M -

value is then obtained as follows. If the knife-edge M -value is less than 1.732, the clip-level 

is lowered in steps to 4.16% and the knife-edge M -value is calculated at each of these clip-

levels, the same way as the for the 16% clip-level. If M is higher than 1.732 the clip-level is 

similarly increased in steps to 35%. The relationship between knife-edge M -values and clip-

levels is then fitted with a third order polynomial. The clip-level, which produces the knife-

edge M -value of 1.732, is calculated and inserted into Equation (6.8) to determine the exact 

second moment M -value.  

 

This method can also be used when the knife-edge radius is measured by hand. Larger clip-

level intervals must, however, be used because of the large amount of time each knife-edge 

hand scan takes. A quicker method for hand scanning rectangular symmetric beams is also 

given in Appendix F. 

6.4.5 Numerical calculations for rectangular Gaussian beams 

6.4.5.1 Theoretical verification of the analytical proportionality graphs 

The numerical program that calculated the rectangular second moment, knife-edge and slit 

M -values was primarily written to verify the results from the analytical programs. The 

programming method of this rectangular numerical program was similar to that of the 

cylindrical numerical program (Section 5.2.1), but completely different to that of the 

rectangular analytical program. Good correspondence between the outputs of the two 

rectangular programs implied that only the basic assumptions, which were identical to the two 

rectangular programs, need to be verified.  
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Figure 6-14 A and B show the numerically calculated knife-edge and slit second moment 

graphs overlaying the analytically calculated second moment graphs for the rectangular three-

mode subclass respectively. Except for the small numerical error the correspondence between 

the two different outputs was so good that it was difficult to distinguish between the analytical 

(magenta) and numerical (blue) outputs. Another good indication of the correctness of the 

calculations is that the computed second moment, knife-edge and slit M -values of all the 

pure rectangular and cylindrical modes correspond to that given in theory (Section 3.3.3) as 

well as to published values [25].  
 

A  B  

Figure 6-14:Analytical (magenta) and numerical (blue) second moment graphs as a function 
of the knife-edge (A) and slit (B) M -values of the rectangular three-mode 
subclass. 

6.4.5.2 Evaluation of the numerical sample size 

Beam subclasses consisting of a large number of modes need a very large sample number 

(number of individual calculations or points) to obtain proportionality graphs that describe 

them completely. For higher mode content subclasses the edges of the proportionality graphs 

become blurred and the computed values do not extend to the pure modes. This is because 

some linear superpositions are more likely to occur than others. Not all possible combinations 

were therefore covered by the amount of computations. This is usually not a problem for 

subclasses containing a low number of modes.  

 

A mayor drawback of the analytical program is that it takes a very long time (up to a few days 

on a 1.6 GHz pc) to do even a modest number of calculations. The calculation speed is even 

further decreased by the addition of more pure modes. In contrast, the numerical Excel 

program can produce an immense number of calculations in a relatively short time. It can 
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therefore be tested whether the analytical sample size was large enough for subclasses 

consisting of a relatively high number of modes. This has been done graphically in Figure 6-

15 for the rectangular six-mode subclass (up to TEMxy05). This subclass was the most prone 

to under sampling since it consisted of the largest number of modes used in analytical 

calculations.  

 

Figure 6-15:Testing of the sample size. The magenta points are the analytical values and 
number 1 x 104 in total. The green points are the numerical values and number 
1 x 105 in total.  

The magenta points were calculated by means of the analytical Mathematica program and 

numbered 10 000 in total. The green points were calculated with the numerical Excel program 

and totalled an order of magnitude more than the analytical points. The only large difference 

between the two is the higher concentration of sample points at lower knife-edge M -values. 

The rest of the knife-edge M -values and edges correspond remarkably well. The sample size 

was therefore deemed adequate for all the lower subclasses.  

6.4.5.3 Investigation of beams containing a high number of modes  

Another aspect of the numerical program was that its speed was relatively independent of the 

number of pure modes it used in its calculations. Beams containing a large number of modes 

(up to TEMxy0 10) could therefore be investigated without straining the memory capabilities 

of the personal computer. The second moment M -values were plotted versus knife-edge M -

values (calculated with a 16% clip-level) for the rectangular two, three, six and eleven-mode 
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subclasses overlaying each other in Figure 6-16. The linear ISO knife-edge correlation 

function was superimposed on the computed values to give an estimation of the relative linear 

behaviour of the rectangular proportionality graphs. 
 

 

Figure 6-16:The second moment M -values versus their respective knife-edge M-values (16% 
clip-level) for the rectangular two, three, six and eleven-mode subclasses 
overlaying each other. 

It can be observed that the computed second moment M-values clearly deviate from the linear 

ISO reference correlation function for subclasses containing a large number of modes. The 

detachment of the computed second moment values from the pure mode values (seen in 

Figure 6-1) becomes progressively worse as the mode number of a subclass is increased.  

 

The newly proposed proportionality factor graphs for the four subclasses are shown in 

Figure 6-17. The proportionality graphs for the six and eleven-mode subclasses appear 

remarkably similar in that they have approximately the same degenerate error and relative 

range. The knife-edge values of the rectangular eleven-mode subclass are just shifted to 

higher knife-edge M -values. It was therefore impossible to fit one function that describes all 

rectangular subclasses due to this shift. This could already be observed in the deviation of the 

second moment graphs from the linear reference function. Closer inspection also reveals if 

linear functions are fitted through the second moment graphs their slope would gradually 

become smaller (flatter). Even though the degenerate error seemed to remain constant as the 

number of modes increased, it was still too high for any meaningful accurate correlation. It is 
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therefore recommended that only rectangular symmetric beams that contain less than three be 

correlated. The very large degenerate error seen in Figure 6-17 for high mode content beams, 

demonstrates the extreme importance of measuring the energy content radius rather than the 

second moment radius to obtain repeatable energy flux values when beams with visibly bad 

beam quality are used.  
 

 

Figure 6-17: The knife-edge proportionality graphs (16% clip-level) for the rectangular two, 
three, six and eleven-mode subclasses overlaying each other. 

6.4.6 Slit correlation for rectangular Gaussian beams  
The same procedure that was used to find correlation functions for the knife-edge method is 

also applied to the slit method. The second moment graphs of Figure 6-2 are divided by the 

slit M -values to produce the proportionality factor graphs defined in Equation (4.26). These 

graphs are then also fitted by fifth order polynomials, which are forced through the two 

TEM00 M -values. These fitted functions can be found in Appendix D for rectangular and 

cylindrical symmetric beams.  
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Proportionality graph Error graph 

A  E  

B  F  

C  G  

D  H  

Figure 6-18:Novel slit proportionality graphs for the first four rectangular subclasses (left) 
and the errors that can be made when the fitted polynomials are used (right).  
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Figure 6-18 (see page 103) has the same layout as the knife-edge proportionality graphs of 

Figure 6-5. It can be seen in Figure 6-2 (page 78) that the second moment values do not 

display the same linearity for the slit M -values and have a larger degenerate error than their 

knife-edge M counterparts (Figure 6-1). It could therefore be expected that the slit method 

would be less suited for correlation purposes than the knife-edge method. 

 

The slit proportionality graphs of the rectangular two-mode subclass can be seen in Figure 6-

18 A. The fitted polynomial follows the computed values almost exactly for this subclass, just 

as it did for the knife-edge method. The correlation error is therefore also negligible, as can be 

seen in the insert of Figure 6-18 E. 

 

The slit proportionality graph of the rectangular three-mode subclass has a very interesting 

structure. A high density band, which was already mentioned in Section 6.3.2, can be 

observed at lower proportionality values. Most real beams belonging to the rectangular three-

mode subclass will therefore have values in this band, but it cannot be assumed from these 

calculations that proportionality values of a beam are always part of this band. The fifth order 

polynomial fitting function follows this high-density band, something the ISO correlation 

function did not do (Figure 6-4 B page 83). Errors as high as -14% are possible, but unlikely, 

for the fifth order polynomial fitted through the slit proportionality graph of the rectangular 

three mode subclass. When the number of rectangular modes is increased beyond three, large 

positive and negative errors are made. It could be observed that correlation errors as high as 

17% are possible, but again unlikely. More realistic errors for these subclasses would be in the 

region of +7% and -10%. 

6.4.7 Slit correlation for cylindrical symmetric beams  

6.4.7.1 Separate fitting of subclasses 

Figure 6-19 (see page 105) has the same layout as the cylindrical knife-edge graphs in 

Figure 6-6. It is seen from Figure 6-2 that the second moment M -values of beams containing 

only cylindrical symmetric modes exhibit much more linear behaviour with respect to the slit 

M -values than their rectangular cousins. They also have much lower degenerate errors. Fifth 

order polynomials were also fitted through the proportionality graphs and forced through the 

values of the fundamental mode as was done for the rectangular subclasses. These can be 

found in Appendix D.  



 105

 
 
 
 

Proportionality graph Error graph 
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Figure 6-19:Newly proposed slit proportionality graphs for the first four rectangular 
subclasses (left) and the errors that can be made when the fitted polynomials are 
used (right). 
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For the cylindrical two-mode subclass the fifth order polynomial follows the average of its 

proportionality graph almost exactly (Figure 6-19 A). The maximum numerical error was 

determined to be 0.9± % in a similar fashion as was done for the knife-edge proportionality 

graphs in Section 6.3.1. When the number of cylindrical symmetric modes is increased 

beyond two, the maximum errors can become as high as -5.5% (Figure 6-19 H). The most 

probable errors do, however, stay fairly constant at +2% and -3%, which includes the 

numerical error. The individual correlation functions for the slit M -values therefore have 

minimal errors for cylindrical symmetric beams.  

6.4.7.2 Single cylindrical correlation function 

A single function that is able to correlate the slit M -values of the first five cylindrical 

subclasses fairly accurately should be possible due to the linearity and low degenerate error of 

the cylindrical proportionality graphs. A linear function was used to do this for the knife-edge 

method (Section 6.4.2.2), but from Figure 6-19 it is clear that a higher order polynomial is 

needed for the slit method. The existing fifth order polynomial was therefore fitted through 

the combination proportionality graph of the first five cylindrical subclasses (Figure 6-20 A). 

This polynomial can be found by dividing Equation (6.9) by the slit M -value. The error made 

when using this function can be seen in Figure 6-20 B. The error is small for low slit M -

values and gradually increases for higher values. Maximum error values of +3% and -4% are 

made when this correlation function is used:  

 

 
2

second slit slit slit
3 4 5

slit slit slit

M = M (+0.999381+0.02585(M -1.000619)-1.35911(M -1.000619)

+5.4392(M -1.000619) -7.97633(M -1.000619) +4.06871(M -1.000619) )

×
. (6.9) 

 

A  B  

Figure 6-20:Novel slit single correlation function for the first five cylindrical subclasses (left) 
and its possible errors (right). 
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6.4.8 The effect of the slit clip-level on the proportionality graphs 
The 13.5% clip-level proportionality graph for the rectangular three-mode subclass contains a 

minimum error point close to a slit M -value of 1.4, which resembled the knife-edge zero 

error point discussed in Section 6.4.3.1. The clip-level was therefore changed in large steps to 

investigate whether this minimum error point could also potentially be used as was done for 

the knife-edge method. Figure 6-21 shows that as the clip-level is changed, only the left lobe 

(at lower slit M -values) is dramatically affected. Its degenerate error increased with clip-

level and vice versa. The minimum error points degenerate error also increases until it 

becomes almost invisible at higher clip-levels. The degenerate error of the right lobe (at 

higher slit M -values) remains almost constant. The minimum error point could therefore not 

be exploited. 
 

 

Figure 6-21:Effect of a clip-level change on the slit proportionality graphs of beams 
containing the first three rectangular modes. 

The slit clip-level was also changed in large intervals for the cylindrical three and four-mode 

subclasses. The results can be seen in Figure 6-20 A and B respectively. The same behaviour 

as was seen for the rectangular three-mode subclass (Figure 6-21) was also observed for both 

subclasses. There is therefore no slit correlation technique that encompasses both cylindrical 

and rectangular symmetric modes.  
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Figure 6-22:Effect of a clip-level change on the slit proportionality graphs of beams 
containing the first three (left) and four (right) cylindrical modes. 

6.5 Comparison between the knife-edge and slit methods 
The knife-edge rectangular graphs exhibit more linear behaviour and have much lower 

degenerate errors than the slit method in general. The knife-edge method also has a zero error 

point that can be exploited by a symmetry unified zero correlation error method. The slit 

method is also subject to the same signal to noise limitations as the second moment method. 

This makes it impossible to use in some set-ups. Because of these qualities, the knife-edge 

method is judged superior to the slit method for correlation purposes.  

6.6 Verification of proportionality graphs by means of 
published experimental results 

In order to experimentally verify the proportionality graphs, complete second moment, knife-

edge and slit measurements of a large number of different beams need to be performed. This 

can either be done separately by means of different beam scanners, or combined by means of 

accurate slit scans or camera measurements. The slit energy density profiles can be 

determined by mathematically integrating two-dimensional energy density profiles as was 

done in Section 5.2.1.2. Knife-edge energy profiles can in turn be obtained by mathematically 

integrating these slit energy density profiles as was done in Section 5.2.1.3.  

 

It was not possible to do a complete camera or slit characterization to verify the computational 

results because such a system was not available. An assessment of whether the computational 

results describe real laser beams could, however, be made by using published results. 

Johnston et al. [27] proposed the correlation functions that the ISO adopted in their 1999 
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standard ISO 11146 [24]. Johnston provided the modelled second moment, knife-edge (16% 

clip-level) and slit (13.5% clip-level) M -values of the beams they used to determine the ISO 

correlation functions (Section 4.5.3). They also provided the measured second moment and 

knife-edge (16% clip-level) M -values of seven beams from different laser systems to test 

their knife-edge correlation function. They used a Coherent Mode Master mechanical scanner 

to measure the knife-edge M -values and to obtain one-dimensional pinhole profiles from 

which the second moment radii were calculated. The average noise was subtracted from the 

pinhole profile and it was truncated in the calculation of the second moment radii. No 

additional noise deduction techniques were therefore used. 

6.6.1 Knife-edge verification 
The clip-level optimisation method could not be verified with Johnston’s data since complete 

data sets were not given. Only the knife-edge and slit M -values calculated with 16% and 

13.5% clip-levels respectively were given. The knife-edge results from the test beams, as well 

as those from the modelled beams that were used to obtain the correlation functions, are 

superimposed on some of the knife-edge proportionality graphs of Sections 6.4.1 and 6.4.2.1 

(Figure 6-23 and Figure 6-24). Only the rectangular graphs need to be used since they 

incorporate the cylindrical symmetric graphs (Section 6.4.3.1). Figure 6-23 shows the 

superposition of these values on the proportionality graphs of the rectangular three (A) and 

four-mode (B) subclasses.  
 

A  B  

Figure 6-23:Superposition of published values on the knife-edge proportionality graphs of the 
rectangular three (left) and four (right) mode subclasses. 

1 

2 
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The values of the modelled beams all correspond to those of the proportionality graphs. This 

is not surprising since they, like the computed results, were also mathematical constructs of 

laser beams. The experimental measurement technique Johnston used is almost identical to 

the theoretical one used in the programs of Chapter 5. There are differences however. 

Johnston employed one-dimensional pinhole profiles and not slit profiles. Section 5.1.2.1 

shows that the latter method is incorrect when evaluating cylindrical symmetric beams. 

Johnston also manually selected a few profiles, whereas the programs of Chapter 5 considered 

large subsets of Gaussian profiles.  

 

Only one of the measured beam M -values differs substantially from the computed values. 

All the other values correspond within error limits ( 2%± ), but most are lower than the 

average of the computed values for the rectangular three-mode subclass. The most probable 

explanation of this is that Johnston used truncation limits that were too small in the 

calculation of the second moment radii. This demonstrates how difficult it is to accurately 

determine the second moment M -values. This truncation is most likely also the explanation 

for the very low second moment value of the beam indicated by the number 1. 

 

Johnston’s modelled beam with the highest knife-edge M -value (indicated by the number 2) 

had a higher proportionality value than the average of the computed values of the rectangular 

three-mode subclass. It is suspected that the beam belongs to the rectangular four-mode 

subclass due to the trend of the others to have lower values than the average of the computed 

values. This was confirmed by the observation of three minima in the one-dimensional 

pinhole profile of this beam [27].  

 

The cylindrical proportionality graphs would be expected to correspond better to the beams 

that were used to obtain Johnston’s correlation functions since cylindrical symmetric 

functions were used in their modelling. This could indeed be observed in Figure 6-24 A. The 

M -values of beam 2 did not correspond to the computed values even for the cylindrical six-

mode subclass (up to TEMpl03) as can be seen in Figure 6-24 B. It therefore fell outside the 

cylindrical symmetric range investigated in this thesis.  
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Figure 6-24:Superposition of published values for modelled beams on the knife-edge 
proportionality graphs of the cylindrical four (left) and six (right) mode 
subclasses. 

6.6.2 Slit verification 
The report by Johnston provided only the slit M -values of the modelled beams that were 

used to determine the correlation functions. The slit M and proportionality values of these 

beams were superimposed on the rectangular three and four-mode proportionality graphs of 

Sections 6.4.6 and 6.4.7.1 in Figure 6-25. Once again, the values of the modelled beams 

(except 2) correspond with the rectangular three-mode proportionality graphs.  

 

In Figure 6-23 A the knife-edge proportionality values of beam 2 with the highest slit M -

value coincides with the computed values for the rectangular three-mode subclass, but from 

its pin-hole profile it was found that it rather belongs to the rectangular four-mode subclass. In 

Figure 6-25 A it can be seen that the slit proportionality factor for this beam does not 

correspond to the computed proportionality values for the rectangular three-mode subclass. It 

is therefore an elegant confirmation that this beam does not fall within the rectangular three-

mode subclass as it appears in the knife-edge proportionality graph.  

 

2 
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Figure 6-25 Superpositions of published modelled beam M -values on the slit proportionality 
graphs of the rectangular three (left) and four (right) mode subclasses.  

It can be seen in Figure 6-26 A that the proportionality values of the modelled beams 

correspond better to the cylindrical computed values for the same reason mentioned in the 

previous section. The slit proportionality values of the beam 2 also do not correspond to any 

of the computed values even for the cylindrical six-mode subclass shown in Figure 6-26 B.  
 

A  B  

Figure 6-26:Superposition of published modelled beams values on the slit proportionality 
graphs of the cylindrical four (left) and six (right) mode subclasses.  

This sample is too small to evaluate the proportionality graphs and functions. It also contains 

possible calculation errors due to noise deduction errors and wrong profiles. It is proposed 

that new verification experiments be performed with accurate camera profilers, new noise 

elimination algorithms and stable laser systems.  

2 

2 
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6.7 Summary 
The ISO correlation functions were evaluated using computed values, calculated with three 

programs, using both rectangular cylindrical symmetric base functions. Various new 

correlation functions and techniques have been proposed for both the knife-edge and slit 

methods. An attempt was also made to verify the proportionality graphs that were used to 

obtain the new correlation functions by using published results. In the next two chapters, the 

proportionality graphs will serve as a tool to evaluate two experimentally characterised 

beams.  
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Chapter 7  

Experimental set-up and techniques 

Equation Chapter 7 Section 1 

The initial aim of this project was to modify and characterise a CO2 TEA laser for material 

processing purposes. The theory developed in the previous chapters will be applied to 

evaluate and correlate beams emanating from this laser. The data from this characterisation 

will be used to illustrate the newly proposed clip-level optimisation method. This chapter will 

examine the laser, measurement equipment (hardware), set-up, methods, software and post 

processing techniques to achieve these objectives. 

7.1 The laser source 
The type of laser that was characterised was a mini CO2 TEA laser provided by the company 

Scientific Development and Integration (SDI) located in Pretoria, South Africa [42]. The laser 

resonator consisted of a flat molybdenum back reflector, internal mode restricting aperture 

and curved ZnSe output coupler (15m radius, 70% reflecting). The distance between the back 

reflector and output coupler was 0.5m. Figure 7-1 illustrates this in an outline sketch of the 

laser.  

 

The discharge is generated between two profiled discharge electrodes (see Figure 7-1). Beam 

directions will be defined as parallel (vertical) and perpendicular (horizontal) to the discharge. 

 

A rich gas mixture consisting of 20% CO2 and 20% N2 in 60% He (mixed by means of 

percentages of the total pressure) was used. This provided high energy, long tailed laser 

pulses that favoured the formation of beams that consisted of a large percentage of higher 

order modes [30].  
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Figure 7-1: Outline sketch of the mini CO2 TEA laser. 

Repeated optics failures were encountered during the initial experiments using the laser. This 

was due to layer formation on the inside of the resonator optics, which was in contact with the 

laser gas. Because of this, it was impossible to obtain repeatable beam quality measurements. 

Further investigation revealed that the stainless steel pre-ionisation pins were responsible for a 

red iron oxide layer residue on all the internal parts of the resonator causing optical 

degeneration. To prevent this, the pins were replaced by machined titanium welding rods. The 

pin holders also had to be redesigned, which led to the extra improvement of the pins being 

spring loaded to make them easily adjustable. An internal aperture had to be developed at this 

stage since no good quality undamaged windows were available. The internal aperture 

eliminated the need for a window, externally mounted aperture and external mirror holder. 

The aperture was designed so that it fitted exactly into the optical mount of the laser. Figure 

7-2 shows a drawing of the position and shape of the internal aperture and Figure 7-3 shows 

two photos of the internal aperture. The optimal size of the internal aperture was 

experimentally determined by observing the output profiles of beams formed when the 

resonator contained different apertures which differed by 0.5mm in width. The optimum 

diameter of 6.5mm was very near to that of the theoretically calculated fundamental TEM00 

mode so that all other modes were suppressed. A drawback of this design was the extreme 

alignment sensitivity of the resonator because the optical axis needed to coincide precisely 

with the centres of all the optical mounts. Accurate alignment was achieved by means of 

precision-machined alignment aids, long alignment distances and lots of patience.  
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Figure 7-2: Design drawing of the position and shape of the internal aperture. 

 
 
 
 

Figure 7-3: Photos of the internal aperture. The side shown in A faces towards the discharge 
and the side shown in B fits onto the back reflector by means of an O-ring.  

A  B  
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This internal aperture had several benefits: 

• The sealed resonator eradicated dust on the internal optics. Since the energy density 

was extremely high inside the resonator impurities were burned onto the optics. This 

possibly led to higher mode selection or, in the worst case, to beam distortion (if the 

beam is distorted the Hermitian and Laguerre functions can no longer be used to 

describe the laser energy density function, invalidating the theory developed earlier).  

• The molybdenum mirror was more burn damage resistant than a ZnSe window, even 

with impurities in the resonator. It could also easily be cleaned.  

• For externally mounted optics, the danger existed that the laser could be misaligned by 

accidental impact to the protruding mirror mount. This danger was therefore reduced 

because the extra mounting plates for the external mirror and aperture holders were 

eliminated.  

• The internal aperture was also cost effective since the high quality expensive window 

was eliminated. This window also needed replacement from time to time, as all optics 

of frequently used lasers do. The mirrors can be cleaned so that the overall cost of the 

laser was reduced and the lifetime was increased.  

7.2 Beam propagation 
Two beams from the CO2 laser were analysed. The first beam emanated from the laser 

resonator when it contained no deliberate internal aperture. This beam will be referred to as 

the multimode beam. The second beam emanated from the laser resonator when it contained 

the 6.5mm aperture discussed in Section 7.1. This beam will be referred to as the near TEM00 

beam. A third beam emanating from the resonator when it contained an 11mm aperture was 

also used to find the optimal measuring parameters. It will be clearly stated when results from 

this beam are used. 
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Figure 7-4: Schematic of the beam propagation, measurement and control set-up. 

 

Figure 7-5: Photo of the laser, measurement equipment as well as of the beam attenuating, 
steering and focussing optics.  

Direction 
photo 
was 

taken 
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The experimental set-up for characterising the CO2 laser is shown in Figure 7-4. The beam 

exited the laser at the output coupler and was then split with a 70% Germanium partial 

reflector M3. Thirty percent of the beam was transmitted while the remainder was reflected 

into an integrating sphere. Two molybdenum mirrors M4 and M5 was used to steer the beam 

through a ZnSe lens with a 0.5m focal length, positioning the beam parallel to the movement 

of the long axis of a beam scanner. The beam was scanned with either a knife-edge or a slit 

and the transmitted energy fell onto an energy meter (Gentec joule meter Model ED-500). The 

transmitted beam energy was reduced to 30% by M3 to prevent plasma formation on the 

scanning surfaces at the focus of lens L1. M3 was also used to superimpose a red HeNe guide 

beam (635.8nm) onto the invisible infrared beam (10.6 mµ ). A photo of the set-up can be 

seen in Figure 7-5.  

7.3 Measurement and control equipment 

7.3.1 Overall set-up  
Most of the beam scanning procedure was computer automated. A Pentium 3 personal 

computer (PC) interfaced by means of a serial port with a motion controller (Newport 

Universal Motion Controller ESP 7000). The motion controller in turn powered three 

translation stages in the x, y and z Cartesian directions of the laboratory system.  

 

The laser energy that was transmitted by either the slit or knife-edge was measured with a 

large area energy meter. (Gentec Model ED-500). The signal from this meter was fed into a 

digital oscilloscope. The Tektronix TDS 220 oscilloscope was also interfaced by means of its 

serial port to the PC, from which its settings could be adjusted and its output waveforms 

analysed. 

 

The part of the beam that terminated in the integrating sphere was measured with a fast Pyro 

Electric, or PEM detector (Vigo systems PEM.L.2). This detector could detect rise times of 

down to 1ns and could therefore resolve the shape of the laser pulse as well as the transverse 

and longitudinal mode beat frequencies. The signal from the detector was also fed into the 

TDS 220 digital oscilloscope. Measurements made with this detector are, however, not 

included in this thesis due to conciseness. 
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Figure 7-6: Photo of the beam scanner with knife-edges mounted illustrating the three 
Cartesian directions. 

 

Figure 7-7: Photo of the beam scanner with the slits mounted.  

X 

Y 

Z 
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7.3.2 Scanning hardware 
 The beam scanner consisted of the following components: 

• An 850mm long z  stage and carriage whose direction coincided with the beam 

propagation direction.  

• State of the art 100mm range Newport translation stages, accurate to 5 µ m, were used 

to move the scanning edges in the two transverse directions.  

• Two knife-edges were positioned perpendicular to each other in order to perform 

knife-edge scans in the horizontal (x) and vertical (y) directions. 

• Two slits were also mounted perpendicular to each other. Due to the large size of the 

slits and knife-edges, only one set-up (knife-edge or slit) could be mounted at a time.  

• A height adjustable rack mount was used to attach the two different scanning devices 

onto the vertical Y stage.  

• The entire beam scanner was fastened to an optical table using foam rubber to 

minimize vibrations. 

Two photos of the automatic beam scanner that was used to characterise the beam are 

provided in Figure 7-6 and Figure 7-7 and shows the knife-edges two slits mounted on the 

beam scanner, respectively.  

7.4 Automation software 
The entire automation process was run by a program written using the software package 

LabView, from National Instruments. The structure of this program can be summarised as 

follows: 

• Communication was first established between the computer and the motion controller 

via a serial port (a GPIB communication option was also available).  

• The two transverse stages were compatible with the motion controller and merely had 

to be allocated a drive number because they were automatically recognised by the 

motion controller. The motion controller had to be specially configured to initialize the 

existing long stage every time the program was run.  

• After communication was established with the TDS 220 oscilloscope, the 

oscilloscope’s functions could be set with a special visual interface (VI) provided by 

LabView. The scanning devices were then manually positioned and the optimised 

settings were chosen by the user. 
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• A prewritten text program was read in. This instructed LabView (and in turn the 

motion controller) to move the translation stages to specifically required three-

dimensional positions. This program was first written in Excel after which it was 

copied into a text editor (Notepad).  

• The computer then instructed the motion controller to move the stages to their initial 

starting positions.  

• The oscilloscope was set so that the waveform was already averaged over sixteen 

shots when it was read in by the PC. This waveform was then fitted with a standard 

forth order polynomial by LabView (provided in the VI for the oscilloscope), after 

which the peak to peak value was calculated and recorded with the specific three-

dimensional x, y and z positions of the scanner.  

• The computer, after recording the energy and position values, instructed the motion 

controller to move the stages to the next scanning position that was provided by the 

prewritten text program.  

 

Figure 7-8: Structure of the automated beam-scanning program.  
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7.5 Slit scanning 
Two slit scans were performed in each of the two principle directions. The first scan was a 

pre-scan to obtain a first assessment of the beam and consisted of only 20 measuring points. 

The second scan, which consisted of 200 measuring points, was done to measure accurate 

beam profiles from which the second moment radius and SPSM proportionality factors 

(Section 4.5.1) could be calculated. It was found that, with the beam energy reduced to 30% 

by the partial reflector (Section 7.2), the signal to noise ratio was very small, making slit 

profiles unreliable. The Germanium partial reflector therefore had to be removed before any 

slit scans could be performed, making complete slit scans through the focus of the lens 

impossible due to plasma formation on the slit edges [1], [11].  

7.5.1 Noise subtraction 
Noise subtraction is extremely important when calculating the second moment radius. Even 

minute noise levels in the wings of the beam can lead to large errors. This is due to the fact 

that values in the wings are further away from the centre so that they have a large moment. 

Noise errors are a major drawback of the second moment method and various companies have 

developed and patented methods to reduce noise. Spiricon holds a patent in which algorithms 

essentially calculate the noise and then deduct it. A theoretical TEM00 beam is created to 

which noise is added with a Gaussian distribution similar to that found in cameras. The beam 

width accuracy can be precisely calculated in this way [48]. 

 

A different noise deduction technique was employed in this thesis because the precise method 

Spiricon used is patented. The average of the noise was deducted from all the slit measured 

energy values. The positive and negative parts of the noise then cancel each other out in the 

second moment calculations. A large amount of noise measuring points is needed for this 

method to give accurate results. The average of the fifteen noise devoted points was found not 

to be statistically representative and more had to be located in the wings of the measurement. 

It is therefore recommended that the number of noise measurement points be increased to at 

least 30. A typical average noise deduction can be seen in Figure 7-9. Figure 7-9 A shows part 

of the wings of the beam in which no noise has been subtracted. In Figure 7-9 B in which the 

average noise has been subtracted it can be seen that almost half the points are positive and 

the other half negative, resulting in an almost zero noise moment.  
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Figure 7-9:  Effect of the noise subtraction in the wings of a typical energy density 
measurement. In A no noise was subtracted. In B the average of the noise was 
subtracted.  

7.5.2 Determination of the optimal slit width 
A beam originating from the resonator containing an intermediate aperture diameter 

( 11mm: ) was used to obtain the optimal slit width for both full slit scans. The slit profile was 

measured using the set-up described in Section 7.3. The slit width was first increased until an 

adequate maximum signal was obtained. After comparing this slit width to a very rough 

approximation of the measured beam diameter, it was found that the slit diameter did not 

fulfil the ISO specification of being 1/20th of the beam diameter [24]. Regardless of this, a slit 

scan was performed in the vertical direction consisting of 500 steps. The slit width was then 

further decreased until it was approximately 1/20th of the approximated beam diameter. 

Another scan in the vertical direction consisting of 500 steps was then performed using this 

slit width. The maximum slit transmitted energy was found to be very small at this slit width.  

 

The normalised slit profiles, with average background noise deducted from both 

measurements, can be seen in Figure 7-10. It can be observed that the scan using the wide slit 

width did not have nearly as much noise superimposed on its profile as the one from the 

narrower slit width. The profile from the narrower slit, however, had a significantly smaller 

beam radius and also indicated that the beam had more structure closer to its energy density 

maximum. The wide slit therefore did not measure the beam adequately, generating a second 

moment radius that was too large. This error is well known and is classified as a convolution 

error (Section 4.2.3). On the other side, the signal to noise ratio of the profile from the 

narrower slit is so low that its second moment radius could not be adequately determined due 

to the large noise sensitivity of this method.  
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Figure 7-10:Vertical profiles using different slit widths of a beam originating from a resonator 
containing an 11mm aperture. 

The set-up had to be adjusted to increase the signal to noise ratio by removing the partial 

reflector M3. The increased energy, however, caused plasma formation on the scanning 

surfaces at measuring positions close to the beam waist. Through more experimentation it was 

found that there was no energy setting or set-up configuration where a small signal to noise 

ratio and plasma formation could simultaneously be avoided for slit scanning. The beam 

characteristics could only be measured with the knife-edge method, which utilised the entire 

beam energy, using the available detector (which was a standard energy meter). The second 

moment and slit M -values could therefore not be directly measured since the entire beam 

propagation could not be determined using the slit method.  

 

In subsequent slit scanning experiments, without the partial reflector, good slit signal to noise 

ratios were obtained and one or two slit scans were performed outside the troublesome waist 

region. The beam energy density profile could therefore be assessed before the time-

consuming complete knife-edge characterisation commenced. Slit scans were carefully done 

in both principle directions of both beams using five hundred steps for each slit profile.  

 

The angle between the laboratory and the beam system was also adjusted to zero using the 

intermediate 11mm aperture beam and the method described in Section 4.4.6. The kurtosis 

parameter remained reasonably constant at a value of close to 1.8 at two beam positions in the 



 126

vertical direction (close to and far from the laser) for the 11mm aperture beam. This beam 

could therefore be classified as simple astigmatic. The slit profile was not, however, measured 

in more than one z  position for the near TEM00 and multimode beams. It was therefore 

assumed that these beams could also be classified as simple astigmatic. This assumption was 

incorrect as will later be seen in Chapter 8.  

 

It was quite possible that the beam shifted between the two measurement techniques because 

the attenuator (which was wedged) had to be inserted each time for knife-edge scanning. The 

extra steps could be a source of additional errors making this method of determining the 

correlation factor very precarious, even though great pains were taken to minimise this 

shifting of the beam.  

7.6 Knife-edge scanning  
A complete automated knife-edge pre-scan was not feasible since it would have taken too 

long. Two knife-edge pre-scans, one manual, and the other semi-automated, were therefore 

done before the main detailed scan.  

 

Quick manual pre-scans in both the transverse directions at every z position were first 

performed to determine preliminary scan ranges. These preliminary scan ranges were in fact a 

rough estimation of the beam radii and therefore of the beam propagation. An estimation of 

the waist position (0)z , and Rayleigh range 0z , could be made by plotting the preliminary 

pre-scan ranges versus propagation position z in an Excel graph. This is especially important 

since half the measuring points should fall within the waist region [24]. The measuring point 

distribution could therefore be adjusted after the first manual pre-scan.  

 

The second pre-scans were semi-automated. The text program that instructed the computer 

and motion controller to move the translation stages (Section 7.4) were automatically 

generated by Excel using the range values of first manual pre-scans. The function of these 

pre-scans was to calculate relatively accurate ranges for the next detailed scans. They 

consisted of only 10 steps per transverse direction per z  position and were therefore 

relatively quick. A Matlab fitting program was then used to fit the normalised second pre-

scans with the knife-edge TEM00 energy function (Equation (4.9)). The final ranges were 

automatically determined by doubling the Gaussian radii from the fitting function and then 
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adding and subtracting these doubled values to the approximate centre positions of the beam 

at the various z positions.  

 

A text program for accurate scans (using a large number of steps) was generated in Excel 

using the final calculated ranges. The program had the following steps in each transverse 

direction at each position: 

• The first three measuring points were dedicated to measure the noise. The 

measurements were made one scanning distance from the minimum energy range 

value so that the beam was completely blocked off.  

• The knife-edge was then moved to the minimum energy range position from where it 

traversed to the maximum energy range position in thirty-five steps recording the 

transmitted energy at every position. 

• After the maximum energy range value was read in, the knife-edge was moved a 

further scanning range distance, ensuring that the whole beam was transmitted. The 

maximum energy was then accurately measured using fifteen measuring points. This 

large number of points was necessary because the beam radii were found to be 

sensitive to the normalising maximum energy. The degree of sensitivity was 

determined and is given in the next chapter in Section 8.2.6. 

 

After a successful scan the data was copied into an Excel sheet where graphs were 

automatically generated for evaluation. Any erroneous point due to arcing in the laser could 

be deleted at this stage.  

7.7 Matlab post processing 
The output data in text files created by LabView and modified in Excel were read into the 

mathematical program Matlab.  

 

The data sets for each one-dimensional knife-edge profile scan were made descending in 

energy values from low to high transverse distance values. This was necessary due to the 

physical orientation of the translation stages that made the data descending in energy values in 

the horizontal ( x ) direction and ascending in energy values in the vertical ( y ) direction. The 

same post-processing program could then be applied to data from both directions. The 

following actions were then performed on the data set of each one-dimensional scan. 
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The mean of the fifteen maximum energy (unobstructed beam) data points as well as the mean 

of the three noise data points (beam is completely obstructed by the scanning edges) were 

obtained. The mean noise was then subtracted from the data point values after which they 

were normalised by the mean (noise subtracted) maximum energy. The data points that were 

used to calculate the maximum energy and the noise were then discarded. The rest of the data 

points were fitted with TEM00 (Equation (4.9)) and the TEMx,y 00+01 (Equation (4.10)) 

functions. The data points were then plotted overlaying the fitted TEM00 function for final 

post-accuracy evaluation. 

 

The three fitted parameters 1P , 2P  and 3P  had to be inserted back into the fitting function 

Equation (4.10), which was then solved for the minimum and maximum energy clip-levels 

(normally 16% and 84%, see 24). The difference between the two solutions was then taken as 

the beam energy radius (Section 4.4.4), which is used in all further calculations. Note that the 

beam radius was not immediately obtained from the fitting parameters as would be the case 

when the normal TEM00 knife-edge energy distribution (Equation (4.9)) is fitted. 

 

The beam radii for all the z  positions were calculated in this way to produce the beam 

propagation in both transverse directions. The 2M  parameters in any one of the transverse 

directions were then calculated as follows. The propagation hyperbola of Equation (2.12), 

with an extra parameter 2C  for the waist position, was used as a fitting function to obtain the 

beam parameters: 

 ( )2
1 2 31 ( ) /y C z C C= + −  (7.1) 

with 1C  the beam waist radius, 2C  the position of the beam waist and 3C  the Rayleigh range. 

 

Each beam radius data point was weighed inversely proportional to its value in order to ensure 

that the important smaller waist values were not neglected in the least squares calculations. It 

was further ensured that the waist values govern the least squares method by measuring 

approximately half of the beam radii within the waist region as advised and stated by the ISO 

[24]. The waist radius 0ω  and Rayleigh range 0z  obtained from the fitted values of fitting 

function (7.1) were then inserted into Equation (2.23) to obtain the knife-edge 2M -value. 

Equation (2.23) with the fitted values substituted into it, appears as follows:  
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7.8 Application of the theoretical calculations 

7.8.1 The proportionality graphs 
The knife-edge proportionality graphs of Chapter 6 could serve as a tool to evaluate the 

measured beams if both the knife-edge and specific proportionality factors of the beams are 

known (Section 6.4.3.2). Technically, only a complete camera or slit scan is able to determine 

both. A third alternative is to use the SPSM proportionality factors (Section 4.5.1). The slit 

profiles described in Section 7.5 were used to obtain the SPSM proportionality factors, which 

were then plotted versus their respective measured knife-edge M -values, overlaying some of 

the proportionality graphs of Chapter 6. The results are discussed in the next chapter.  

7.8.2 Application of the newly proposed clip-level optimisation 
method 

The clip-level optimisation method of Chapter 6 was applied to the data sets of the measured 

beams to evaluate the new theory’s viability and to demonstrate the technical aspects of 

implementing it. This was possible because the entire beam energy profile was measured at 

each z position in both transverse directions. A program was written which incorporated the 

previous Matlab program that was described in Section 7.7. The knife-edge M -value was 

first calculated with a 16% clip-level. The clip-level was then changed in small steps until the 

maximum (35%) or minimum (4.16%) clip-levels defined in Section 6.4.4.1 were reached, 

thereby obtaining the relationship between knife-edge M -values and the clip-values. A 

polynomial function was then fitted through the data points to determine the 1.732 clip-level. 

This clip-level was then inserted into Equation (6.8) to obtain a degenerate error free second 

moment 2M  value. A flowchart for the program is shown in Figure 7-11.  

7.9 Summary 
The experimental set-up and conditions to characterise an experimental CO2 TEA laser were 

examined. This included the laser, scanning hardware, scanning software as well as post-

processing and analysing techniques. Methods to employ and evaluate the theory of Chapter 6 
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were also given. In the next chapter, the data obtained from the measurements will be 

presented and discussed.  

 

 
Figure 7-11:Flow chart illustrating the program for the implementation of the clip-level 

optimisation method.  
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Chapter 8  

Experimental Results 

Equation Chapter 1 Section 1 

In this chapter, results are presented from slit profiles and knife-edge characterisations of two 

beams from the CO2 laser that was described in the Chapter 7. The beams will also be 

evaluated and correlated with the new and existing correlation theories. An attempt will be 

made to illustrate that the newly proposed clip-level optimisation method is viable. Results 

from the various correlation methods will be compared using the SPSM proportionality 

factors (Section 4.5.1) as reference.  

8.1 Slit scan measurements 

8.1.1 The multimode beam 
The results from the slit scans of the multimode beam in the horizontal and vertical directions 

(see Section 7.1) can be seen in Figure 8-1 and Figure 8-2 respectively.  

 

The horizontal slit profile has an almost TEM00 distribution. This is evident from the good 

correspondence between the scanned data profile and the fitted TEM00 function which only 

deviates significantly in the wings of the profile. This deviation, in conjunction with two 

small bulges on the side, reveals that a low percentage of the TEM 10xy  rectangular mode is 

present in the beam. The uneven top part of the beam is not due to noise, but is rather the 

result of slight imperfections on the output coupler.  
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Figure 8-1: Slit profile of the multimode beam in the horizontal direction. 

 
 

 

Figure 8-2: Slit profile of the multimode beam in the vertical direction. 

Gaussian fit 
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The vertical slit profile reveals that the higher order modes dominate in this principle 

direction so that a relatively high 2M  factor can be expected. This is possibly due to higher 

gain closer to the electrodes. The vertical slit profile is asymmetrical and contains two local 

minima and an inflection point. The minima indicate the presence of the TEM 02xy  

rectangular mode while the inflection point either indicates the possible presence of the 

TEM 03xy  mode or it can be the result of a slight shift in the centre of the higher order modes 

to better accommodate defects on the optics. The last is the most probable due to the 

asymmetrical shape of the vertical slit profile. The number of modes can also be 

approximated by determining the effective Fresnel number ( 2 2
00[ / ] [1/ 1 ]N a Gω π= − ) of 

the resonator and then using it in loss factor graphs as given in Reference 23. It is however 

easier to guess the number of modes from the beam energy density distribution due to the 

damage on the optics.  

 

The two profiles differ considerably, implying that the beam is rectangular symmetric and 

astigmatic. This rectangular symmetry can be attributed to the flat shape of the electrodes, a 

non-uniformed gain profile due to pitting on the electrodes as well as defects on the resonator 

optics. 

8.1.2 The near TEM00 beam 
The slit profiles in the horizontal (transverse to discharge) and vertical directions (in direction 

of discharge) of the near TEM00 beam are given in Figure 8-3 and in Figure 8-4 respectively.  

 

The horizontal slit profile data correspond well with a TEM00 fit, except for an inflection 

point on the left, at low positional values. The aperture radius does not, however, allow for 

significant oscillation of any higher modes. It was therefore expected that an almost perfect 

TEM00 beam should emanate from the laser, making the inflection point an anomaly. The 

measured flanks of the data are also significantly lower than those of the fitted TEM00 profile 

so that it would probably have a smaller than theoretically calculated second moment radius. 

 

It is evident from the two elevated flanks of the vertical slit profile that the vertical part of the 

beam did not have a TEM00 distribution as expected, even though the TEM00 fit correspond 

well with the higher data values (energy values transmitted by the slit). The second moment 
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radius in the vertical direction is expected to be larger than that of the theoretically calculated 

TEM00 beam due to larger than expected energy values in the flanks.  

 

 

Figure 8-3: Slit profile of the near TEM00 in the horizontal direction. 

 

 

Figure 8-4: Slit profile of the near TEM00 in the vertical direction. 

Gaussian fit 

Vertical position (mm) 
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The horizontal inflection points and the deviation in the flanks of the two slit profiles suggest 

that the aperture is causing diffractive effects inside the resonator. Diffractive effects change 

the basis functions of a resonator so that its electric field distributions can no longer be 

described by the Hermitian or Laguerre functions. Diffractive effects can usually be avoided 

by careful adjustment of an iris. This is, however, not possible with the pre-manufactured 

aperture. This deviation in the flanks is significant and not the cause of a pointing instability 

which usually only occur in lasers that does not have a hard aperture. The use of a hard 

aperture is in fact the most common way to get rid of a pointing instability.  

 

The 13.5% energy density radius of both beam profiles correspond well with their respected 

fitted TEM00 Gaussian functions. If the energy density definition of the beam radius is used to 

determine the M -value (Section 4.3.2) it would not reveal the diffractive effects caused by 

the internal aperture. For practical purposes, it is therefore judged to be a very good beam to 

use since it appeared TEM00, except for small deviations in the flanks, which will not have 

any significant effects in most applications.  

 

The second moment method is extremely sensitive to features in the flanks of the energy 

density profile. The second moment radius and M-values should therefore differ substantially 

from those determined by the alternative methods. Theoretically, this beam should therefore 

be of extremely poor quality 

 

The use of a fixed mounted internal aperture is still an experimental technique. The lack of 

adjustability and the fact that extremely accurate alignment is crucial makes its beam not the 

ideal choice to evaluate the theory of Chapter 6. This might also be the case for the multimode 

beam due to its asymmetrical profile. 

8.1.3 Single position slit measured (SPSM) proportionality 
factors 

The vertical part of the multimode beam is used as an example of how a SPSM 

proportionality factor is obtained from a single slit scan measurement as described in 

Section 4.5.1 and Section 7.8.1. The vertical slit profile of the multimode beam in Figure 8-

5 A was mathematically integrated to produce the knife-edge energy profile seen in Figure 8-

5 B. The knife-edge energy profile was fitted with the higher order energy fitting function 
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(Equation (4.10)). This function was then solved using the 16% and 84% clip-levels to 

produce the knife-edge radius, which was found to be 4.57. It must once again be stressed that 

the beam radius is found by solving the fitted function for two clip-levels and not from fitted 

parameters. The better the functions fits the data the more accurate the beam radius is even 

though the fit is similar for different beams. The second moment radius was determined to be 

4.19 from the slit profile, using Equation (2.4) and the method described in Section 5.2.1.4. 

The proportionality factor according to Equation (4.26) was therefore just the second moment 

radius divided by the knife–edge radius resulting in a value of 0.92. Table 8-1 lists the second 

moment and knife-edge radii as well as the proportionality factors of the two evaluated beams 

in both principle directions. 
 

A  B  

Figure 8-5: The multimode beam’s vertical slit profile on the left (A) and its mathematically 
integrated knife-edge energy profile on the right (B). 

Beam 
Second moment 

radius 
Knife-edge radius 

Proportionality factor 
16% 

(measured) 

6.5 mm Aperture 
Horizontal 

2.31 2.40 0.96 

6.5 mm Aperture 
Vertical 

4.06 3.74 1.09 

No aperture 
Horizontal 

3.94 4.14 0.95 

No aperture 
Vertical 

4.19 4.57 0.92 

Table 8-1: The second moment and knife-edge radii as well as proportionality factors of the 
two evaluated beams in both principle directions. 
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8.2 Knife-edge Measurements 

8.2.1 Fitting of the energy functions 
Figure 8-6 shows the Matlab output of a typical knife-edge scan data set. The TEM00 energy 

profile that best fitted these data values is also superimposed on the data set. The data points 

that were used to fit either the TEM00 or TEMx,y 00+01 energy fit functions (Section (4.10)) 

are encircled. The three data points that were used to determine the average noise can be seen 

to the right at higher position values. The fifteen unused data points that were recorded to 

calculate the average maximum energy can be seen to the left at lower position values. Such 

outputs were generated by the Matlab post-processing program described in Section 7.7 to 

determine if the correct data points were used and if they were correctly fitted with the TEM00 

functions. If the TEMx,y 00+01 fitting functions produced comparable beam centres and radii, 

their fits were also deemed satisfactory.  

 

Figure 8-6: Typical output of a Matlab post-processed knife-edge scan fitted with a TEM00 
function. 

Figure 8-7 shows an inflated view of a knife-edge scan fitted with both the TEM00 and 

TEMx,y00+01 energy functions. It can be seen that the latter fits the measured knife-edge data 

significantly better than the plain TEM00 function. Errors for low clip levels can typically be 

in order of 10 to 20% when the TEM00 function is fitted. This reduces an order of magnitude 

to approximately 1 to 2% when the TEMxy00+01 function is fitted. For clip-level optimisation 

purposes, it is very important that the functions fit the measured data very well. It is therefore 

essential to use the TEMx,y00+01 fitting functions for the clip-level optimisation method.  

Noise points 
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Knife-edge scans were done in both transverse directions at fifteen positions along the beam 

propagation direction. The beam radii in both principle directions for each measuring position 

were then calculated using a 16% clip-level. The propagation of the beams in each transverse 

direction can be observed by plotting the knife-edge radii versus their respective z positions. 

Figure 8-8 and Figure 8-9 show the beam propagation profiles (using the knife-edge radii) as 

well as the slit measured profiles in both principle directions for the two measured beams.  

 

Figure 8-7: Inflated view of a typical knife-edge measured energy profile fitted with both 
TEM00 and a TEMx,y 00+01 fitting functions. 

8.2.2 Beam propagation of the multimode beam 
It can be seen from Figure 8-8 that the multimode beam is clearly asymmetric in the two 

principle directions. The vertical scan is only slightly less diverging than the horizontal, but 

has a significantly larger waist radius indicating that it has a larger M-value. This corresponds 

well with results from the slit scans which indicated that the vertical energy density profile 

had more structure due to a larger higher order mode content in that direction.  
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Figure 8-8: Beam propagation and slit profiles of the multimode beam. The vertical energy 
density profile can be seen to the left and the horizontal to the right. 

8.2.3 Beam propagation of the near TEM00 beam 
From Figure 8-9 it can be seen that the near TEM00 beam clearly is symmetrical at the waist. 

The circularity ratio was measured as 1.13:1 with the knife-edges positioned at a z position of 

830 mm. At this position, differences in the radii were found to be more pronounced due to 

larger divergence of the beam in the vertical direction. The ISO specifies that the ratio should 

be less than 1.15:1 for a beam to be classified as circular [24]. The beam can therefore be 

classified as stigmatic.  

 
From the perspective of the practical energy definition, this beam is ideally suited for 

applications where circular symmetry is required. The large Rayleigh range, circular 

symmetry and almost TEM00 profile makes it suitable for material processing applications 

such as drilling and cutting of Aluminium and plastics .  

 

Figure 8-9: Beam propagation and slit scan of the near TEM00 beam. The vertical energy 
density profile can be seen to the left and the horizontal to the right. 
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8.2.4 Comparison between the propagation of the two beams 
The knife-edge (16% clip-level ) beam propagation graphs for both beams in the two principle 

directions are superimposed in  

Figure 8-10. The near TEM00 beam is clearly less divergent, more symmetrical and focuses to 

smaller radii than the multimode beam. The two beams also have noticeably different waist 

positions (0)z . Spherical aberration of the focusing lens could be possible explanation for this 

[32]. This would imply that the multimode beam, which had a larger radius on the lens, 

focused closer to the lens than the near TEM00 beam. It is, however, likely that the effect is 

caused by aberation effects at the internal aperture.  
 

 

Figure 8-10:Combination graph of the propagation as measured by the knife-edge technique 

of the near TEM00 and multimode beams.  

8.2.5 Fitting of the beam propagation equation 
The radii of each beam in both principle directions were fitted with the hyperbolic beam 

propagation function (Equation (2.12)) to determine the knife-edge beam propagation. A 

typical output from such a fit can be seen in Figure 8-11. The beam radius 0ω , Rayleigh 

Range 0z  and focal position (0)z  were then determined as described in Section 7.7. The 2M  

values were determined from 0ω  and 0z  by means of Equation (7.2).  
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The Matlab-computed values of these properties, the SPSM proportionality factors and 

correlated second moment M -value are listed in Table 8-2. As expected the M -value s in the 

two principle directions of the multimode beam differs substantially. No unexpected 

non-Gaussian behaviour could be noticed from the SPSM proportionality factors of the 

multimode beam.  
 

 

Figure 8-11:Typical fitting of the propagation equation on knife-edge radii versus Z position. 

The knife-edge M -values in the two principle directions for the near TEM00 beam are almost 

identical and very close to one. According to the energy definition, the near TEM00 beam 

therefore had very good beam quality. A completely different picture emerges after 

multiplying these knife-edge M -values with the SPSM proportionality factors. The correlated 

second moment M -values of the near TEM00 beam are found to be much higher in the 

vertical direction than in the horizontal direction (Table 8-2). In fact, by multiplying with the 

SPSM proportionality factor, the second moment M -value in the horizontal direction 

decreases to a value that is less than one. This implies that its 2M - value also decreases to less 

than one. 

 

According to Gao and Weber [20] there are three possible explanations that would account for 

an M -value smaller than one. These are: 

• errors in measurement, 

• violation of the paraxial approximation, 

• errors in calculating 2M .  
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Beam 0ω  0z  (0)z  Mknife-

edge16% 

Proportion
ality factor 

16% 
(measured) 

M second 

6.5 mm Aperture 
Horizontal 

0.70 142 415 1.01 0.96 0.97 

6.5 mm Aperture 
Vertical 

0.66 124 406 1.02 1.09 1.11 

No aperture 
Horizontal 

0.78 89.4 359 1.43 0.95 1.36 

No aperture 
Vertical 

1.06 114 362 1.70 0.92 1.56 

Table 8-2: The propagation properties of the near TEM00 and multimode beams. The SPSM 
correlated factor and its resulting second moment M- M -value is also given. 

 
The last error is determined to be the cause in this particular case. The SPSM proportionality 

factor was determined very accurately from a single slit scan. The error on would typically be 

in order of 1% so that it does not account for this smaller than one value. The laser also had an 

insignificantly small pointing error (another source for the smaller than one 2M ) due to the 

presence of the hard aperture. The most likely explanation would be that the beam rotated 

during propagation due to phase changes that are caused by the aperture that was too small 

(making it general astigmatic). The kurtosis parameter was not measured at different positions 

along the beam propagation direction (as was already mentioned in Section 7.5.2) so that it 

could not be verified if this was indeed the case. Using a single proportionality factor from 

one profile measurement can therefore lead to incorrect results. The only way such beams can 

be measured correctly is by the complete second moment method ([18] and Section 2.1). It is 

therefore crucial to establish the kurtosis parameter by measuring the slit profiles at several 

positions along the beam propagation direction before a scan is performed. For practical 

energy flux purposes, this rotation is inconsequential since the beam profiles are so similar in 

both directions. This beam therefore illustrates the limitations of all the correlation theories 

discussed and developed in the earlier chapters.   
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8.2.6 The influence of the normalizing energy on the beam radius 
The sensitivity of the energy radii to changes in the normalising energy density was calculated 

using values from the measured horizontal multimode beam. The 100% transmitted 

normalizing energy was determined using the fifteen allotted maximum energy measuring 

points as described in Section 7.6. The maximum energy was then changed in fixed 

percentages while the other measured data values remained unchanged. The beam radius was 

calculated for each normalisation energy, using the TEM00 energy function (Equation (4.9)). 

The percentage change in radius was calculated and plotted in Figure 8-12 versus the 

normalisation energy, which is given in a percentage of the original normalising energy. It can 

be observed that the beam radius is inversely proportional to the full energy. The dependence 

of the change in beam radius brε  on a change of the full energy feε  was measured to be 

 1 1
1.89 2br

fe fe

ε
ε ε

= ≈ .  

Changing the full energy by set percentages therefore changes the beam radius by roughly 

double that percentage. It was therefore justified to allot fifteen points to the measurement of 

the full energy value. 

 

Figure 8-12:The effect a change in the normalizing maximum energy has on the calculated 
beam radius. 
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8.3 Evaluation of the beams using the proportionality 
graphs 

It is demonstrated in this section how the proportionality graphs of Chapter 6 can be used as a 

tool to evaluate laser beams. The proportionality factors of Table 8-2 are plotted as a function 

of their respective knife-edge M -values and are superimposed on a few of the proportionality 

graphs. This can be seen in Figure 8-13 for the rectangular two and three-mode subclasses.  

 

It is evident from the graph that the proportionality factor values of the near TEM00 beam do 

not correspond to any of the computed rectangular values. It can be seen from Figure 8-14, 

which also contains the proportionality graph of the rectangular four-mode subclass, that the 

vertical proportionality factor for the near TEM00 beams is only possible for other high mode 

content beams (that contain at least four modes). The horizontal proportionality factor for the 

near TEM00 beam is only possible for other beams that contain at least two modes, but having 

larger knife-edge M -values. Neither of these two conditions applies to the near TEM00 beam. 

The proportionality factors differ widely in the two directions because of the diffraction 

effects when one expects them to be almost identical. This beam can therefore not be 

described by Hermitian or Laguerrian functions and cannot be classified as Gaussian (the 

rectangular three-mode subclass proportionality graph’s left lobe contains the proportionality 

values of the first four cylindrical subclasses (Section 6.4.3.3)). The graphs can therefore be 

used to assert whether a beam is indeed Gaussian or at the very least, behaves like a Gaussian 

beam. It is deemed quite possible that the two proportionality factors could have oscillated 

due to beam rotation as the beam propagated. This possible oscillating behaviour of the 

proportionality factors can potentially be verified in future.  
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Figure 8-13:SPSM proportionality factors plotted as a function of their respective knife-edge 
M -values are superimposed on the two and rectangular three-mode subclasses’ 
proportionality graphs. 

The proportionality factors of the multimode beam correspond well with the computed values 

of the proportionality graphs of Figure 8-13. The horizontal proportionality factor indicates 

that the horizontal part of the beam consists of the fundamental, TEMxy10, and a very small 

percentage of the TEMxy20 horizontal modes. It is impossible to make any such assessment 

for the vertical measurement at this knife-edge clip-level, due to its close proximity to the 

zero error point. If it is vital to make such an assessment: the clip-level can be changed to 

move the beam sufficiently far away from the zero error point (Section 6.4.4.1). The high 

knife-edge M -value in the vertical direction indicates large percentages of the first, second 

and third rectangular higher order modes. Figure 8-14 shows that it is unlikely that the beam 

contains any substantial percentage of the fourth higher order mode in both principle 

directions.  
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Figure 8-14:Proportionality factors (calculated from slit profiles) plotted versus Knife-edge 
M -value s superimposed on the cylindrical proportionality graphs (up to the 
fourth mode)  of Chapter 6. 

8.4 Application of the clip-level optimisation theory 
The clip-level optimisation method is non-intuitive when it is considered that it was 

developed purely from proportionality graphs, which originated from theoretical energy 

density profiles. It will be a strong confirmation of the entire proportionality graph theory if 

the clip-level optimisation method provides good results. This is because the practical clip-

level optimisation method utilizes energy (Section 4.4.4) and beam propagation (Section 7.7) 

fitting functions. Even an indication that this theory corresponds only reasonably with 

measurements will already indicate that it can be validated in future by additional careful and 

representative experiments.  

 

The clip-level optimisation method was applied to the two beams in both directions. The 

knife-edge radii were calculated from the fitted TEMx,y 00+01 functions used previously in 

the 16% clip-level calculations of the knife-edge M -values. The clip-level was varied in 

fixed steps and the M -values were calculated as described in Section 7.8.2 by fitting the 

propagation equation. Figure 8-15 shows the knife-edge M -values as a function of clip-level 

of the two measured beams. The cross-marked values indicate the 16% clip-level M -values. 

The clip-levels clearly had to be decreased for all the beams to obtain the zero error knife-

edge M -value of 1.732. The graphs in Figure 8-15 were fitted with a third order polynomial 



 148

to obtain the exact clip-level that produced a knife-edge M of 1.732 (indicated by the straight 

line).  

 

The difference between knife-edge M -values in the two transverse directions of the near 

TEM00 beam remains almost constant for all clip-levels. This indicates that the knife-edge 

method is insensitive to changes or noise in the flanks of laser beams. It is therefore, once 

again, shown that this beam is very well suited for applications where circular symmetry is 

required.  

 

Figure 8-15:Knife-edge M -value as a function of clip-level for the two measured CO2 laser 
beams in both principle directions.  

A large difference is found in the M -values in the two principle directions of the multimode 

beam. This difference also remains relatively constant for all clip-levels. This beam is 

therefore highly asymmetric.  

 

The clip-levels at which each of the graphs cross the 1.732 line are summarized in Table 8-3. 

The corresponding second moment M -values calculated from Equation (6.8) are also listed. 

The deviation of the near TEM00 clip-level optimisation M -values from the SPSM ones in 

Table 8-3 indicates that the clip-level theory also does not hold for beams that are affected by 

diffractive effects. This is because the measuring error of the M -values is typically in the 

order of 1 to 2 % which do not account for this large differences. The SPSM proportionality 

values were also very accurately measured.  
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Beam 1.732 clip-level Second moment M 
(1.732) 

Second moment M 
(measured) 

Near TEM00X 4.47 1.03 0.97 

Near TEM00Y 4.64 1.04 1.11 

Multimode X 11.36 1.38 1.36 

Multimode Y 15.55 1.57 1.56 

Table 8-3: The 1.732 clip-levels, zero error point correlated second moment M -values and 
the measured M -value s of the two measured CO2 laser beams in both principle 
directions 

The M -values determined with the clip-level optimisation method of the multimode beam 

correspond very well to those of the measured M -values. This indicates that the clip-level 

optimisation method is viable as an accurate method to correlate the knife-edge and second 

moment definitions. It is recommended, however, that the method undergo extensive 

experimental verification by using a wide range of different laser systems. 

8.5 Comparison between different knife-edge 
correlations  

Table 8-4 lists the second moment M -values calculated by different knife-edge correlation 

methods. The SPSM proportionality values are taken as a reference even though they may be 

susceptible to measuring errors. Deviations from the SPSM-values are therefore taken as 

errors. Table 8-5 lists the percentage difference (error) between the different correlated M -

values and the SPSM correlated values. These errors are also presented graphically in 

Figure 8-16. The knife-edge correlation methods that are compared are: 

• the knife-edge function of the ISO standard (Section 4.5.3), 

• the rectangular two-mode fit (Equation (6.2)), 

• the rectangular three-mode fit (Equation (6.3)), 

• the rectangular four-mode fit (Equation (6.4)), 

• the single cylindrical fit (Equation (6.6)), and the  

• the clip-level optimisation method described in Section 6.4.4.  

 

The near TEM00 beam is deemed non-Gaussian because its SPSM proportionality values do 

not correspond to those of the computed proportionality values. None of the methods 
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developed in Chapter 6 could therefore be used to find appropriate proportionality factors for 

the near TEM00 beam. This could also have been anticipated from the extra energy density in 

flanks of the vertical energy density profile. The theory has nevertheless been applied for the 

sake of completeness. Large, but expected, errors are therefore found for this beam when all 

the correlation methods are applied to it.  
 

 

Beam M sec 
(measured) 

M 
knife-

edge16
% clip 

2mode 3mode 4mode circ all ISO 
Clip-level 

optimi- 
sation 

Near 
TEM00X 0.97 1.01 1.02 1.02 1.02 1.01 1.01 1.03 

Near 
TEM00Y 1.11 1.02 1.03 1.03 1.04 1.02 1.02 1.04 

Multimode X 1.36 1.43 1.35 1.39 1.46 1.37 1.35 1.38 

Multimode Y 1.56 1.70 1.56 1.57 1.64 1.57 1.57 1.57 

Table 8-4:The second moment M -values calculated by different knife-edge correlation 
methods. 

 

Beam 2mode 3mode 4mode circ all ISO 
Clip-level 

optimi- 
sation 

Near TEM00X 4.66 4.85 5.45 4.52 3.93 6.47 

Near TEM00Y -7.67 -7.40 -6.55 -7.87 -8.45 -6.11 

Multimode X -0.94 2.09 7.52 0.45 -0.86 1.63 

Multimode Y 0.21 0.75 4.81 0.72 0.45 0.71 

Table 8-5:The percentage difference between these correlated M -value s and the SPSM 
second moment M -value s.  

The rectangular two-mode, single cylindrical and the ISO correlation functions all correspond 

very well with measured values. It can therefore not be experimentally shown that the ISO 
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method produces less accurate correlations than the newly proposed methods. An extensive 

test is needed to prove or disprove this, involving a large number of diverse beams.  

 

It was already proven in Section 8.3 that none of the beams are part of the rectangular four-

mode subclass. The errors using its correlation function are therefore quite high for the beams 

in both principle directions. A graphical comparison of the remaining correlation methods can 

therefore be made by expanding the error graph only around the values of the multimode 

beam and omitting the values for the rectangular four-mode subclass. This can be seen in the 

insert of Figure 8-16.  

 

The ISO method produces good results because the two knife-edge M -values fall in a region 

where this method is accurate. At other knife-edge M -values, the ISO method will probably 

become far less accurate. In the vertical direction, all the remaining methods produce more 

accurate proportionality factors than in the horizontal direction. This is surprising, given the 

fact that the energy density profile has visibly poorer quality and is more asymmetrical in this 

direction. The reason for the overall good correlation of the vertical part is due to its close 

proximity to the 16% clip-level zero error point.  
 

 

Figure 8-16:A graphical comparison of the correlation methods. 

The newly proposed clip-level optimisation method produces results that are consistently 

accurate in error ranges that are comparable and in some cases even better than those of other 
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methods. This method, therefore, shows great promise. As mentioned before, these 

measurements are too small a sample from which to draw conclusions on the relative 

accuracy of each correlation method.  

8.6 Summary 
By evaluating a general astigmatic beam, the limits of the theory were shown. The near 

TEM00 beam and the resonator that produced it, although they produced a non-Gaussian 

diffracted beam, were shown to have practical value for material processing applications. 

Although the presented results did not indicate a significant improvement over the ISO 

method, they did indicate that the new theories are viable. The proposed clip-level 

optimisation theory, in particular, was shown to be practical.  
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Chapter 9  

Summary and future work 

 

 

In this chapter, conclusions are drawn concerning the three aims set out in Chapter 1. These 

aims were:  

• the development of new correlation theory, 

• the modification of a CO2 TEA laser resonator,  

• the design and use of a low frequency beam scanner.  

Possible future experimental work and directions to be investigated are also presented. 

9.1 Computational results 
The computational results provided a means to: 

• verify the accuracy of existing methods,  

• develop new correlation methods,  

• provide a better understanding of energy density of beams,  

• evaluate if a beam is Gaussian (not TEM00), 

• determine the mode content of a laser beam, 

• select the TEM00 mode and to 

• determine the 2M  factor for certain beams from a single energy density measurement. 

 

It could be seen from the computational results that the ISO correlations are fairly accurate for 

cylindrical symmetric beams in the alternative M ranges they specify (Section 6.3). The ISO 

knife-edge correlation functions were found to agree for rectangular symmetric beams at low 

knife-edge M -values, but deviated substantially for higher M -values (Section 6.3.1).  
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It was also found that a general one-to-one linear relationship between the second moment 

and alternative M definitions as assumed by Johnston and the ISO [27], [24] does not exist. 

Instead, it was illustrated that multiple second moment M -values could exist for a single 

alternative M -value (Sections 6.1 and 6.2), a fact that was already well documented by 

Siegman [46]. This degeneracy was found to be larger for rectangular symmetric beams and 

grew progressively worse as the number of modes in the beams was increased.   

 

The theoretical knife-edge degenerate errors reach unacceptably high values for rectangular 

symmetric beams containing more than three modes (Section 6.4.1). Correlating them with 

any function was found to produce highly inaccurate results. These large degenerate errors 

can also seriously affect the reproducibility of experiments in which high mode-content 

beams are used (Section 6.4.5.3).  

 

New correlation methods were developed, taking into account the degeneracy as well as the 

deviation of the second moment values from a single linear function for both the knife-edge 

and slit methods (Section 6.4). These correlation methods are comprehensive since they 

incorporate techniques of both the ISO and Siegman. The ISO’s method only uses a few 

modelled cylindrical energy density profiles based on real laser beams [27]. The new methods 

incorporate much larger numbers of practical beams. Siegman [46] used pure Hermitian 

modes and an optimum clip-level in his correlation method. The new methods incorporate 

pure modes and in one case employ a clip-level optimisation method to obtain an optimal 

proportionality factor (Section 6.4.3.3). The new methods are therefore improvements on both 

the ISO’s and Siegman’s methods. 

 

A problem with most of the new knife-edge correlation methods, when used for rectangular 

symmetric beams, is that the number of modes in the laser had to be known to give accurate 

results. Knife-edge correlation was also found to be accurate only for rectangular symmetric 

beams containing three modes or less, due to large degenerate errors (as shown in 

Section 6.4.5.3).  

 

A new clip-level optimisation method is proposed that correlates the knife-edge with the 

second moment definitions theoretically without introducing any degenerate errors 

(Section 6.4.3.3). This theory is valid for beams belonging to subclasses consisting of up to 

three rectangular and four cylindrical symmetric modes. This new clip-level optimisation 
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theory was shown to be best suited for high frequency scanners because they measure 

accurate energy profiles. It was demonstrated that the clip-level optimisation method can also 

be used for low frequency pulsed laser systems, but requires longer measurements and more 

post-processing to give accurate results (also see Appendix F).  

 

A comparison between the knife-edge and slit proportionality graphs demonstrated that the 

knife-edge method is better suited for correlation purposes (Section 6.5). This is due to lower 

degenerate errors for both rectangular and cylindrical symmetric beams, a more linear 

relationship between the second moment and the knife-edge M -values and the existence of a 

useable zero error point for a few important subclasses. 

9.2 The laser 
Optical degradation and discharge instability were encountered during the operation of the 

experimental CO2 TEA laser. The single cause of both of these problems was eventually 

found to be the steel pre-ionisation pins, which left an iron oxide residue within the laser 

(Section 7.1). The investigative work, which led to this discovery and the measures that were 

taken to fix it, provided valuable experience in the field of gas lasers and resonators. The most 

notable was the development of an experimental fixed internal aperture.  

 

The near TEM00 laser beam from the fixed internal aperture was shown to be highly suitable 

for use in material processing since it provided excellent beam quality from an energy content 

perspective (Section 8.1.2 and 8.2.3). This indicates that internal aperture resonators can be 

used to make gas lasers less expensive and more rugged. However, a quality assessment of the 

near TEM00 beam indicated that it was far from ideal due to diffractive effects (Section 8.3). 

More development work will therefore be necessary. This type of internal aperture resonator 

is, therefore, not yet marketable. The near TEM00 beam was later used in preliminary laser 

generated plasma experiments [1], [11] due to its good energy qualities.  

9.3 Beam scanner 
The beam scanner developed during the project performed sufficiently accurate knife-edge 

scans of the experimental laser beams (Section 8.2). These scans could be used in practical 

experiments and for a feasibility study of the clip-level optimisation method. This scanner can 



 156

be used on other low frequency pulsed laser systems in the department like Nd:YAG, eximer 

and dye lasers. Valuable experience was gained in the development of the scanner and 

accompanying automation and post-processing software (Sections 7.3 and 7.4). The only real 

drawback of the scanner is its slow scanning speed.  

9.4 Proposed future work 
The ISO specified that at least half the radii measuring points in the beam propagation 

direction should be within the waist area and the other half should be distributed beyond two 

Rayleigh range lengths from the beam waist position (0)z  [24]. This ratio has not been 

proven (Section 4.1). Calculations to determine the optimal ratio of measuring points in these 

two regions for maximum accuracy remain to be done.  

 

The validity of the proportionality graphs over a wide range of laser systems remains 

unproven (Section 6.6). It is especially important to test this for solid-state lasers, which are 

currently at the forefront of laser development. It is suggested that this be proven using a fast 

CCD camera where the second moment, slit and knife-edge radii can easily be obtained from 

the two-dimensional energy density distributions (Section 4.2.1). New noise deduction 

techniques make it possible to determine the second moment radii much more accurately than 

in the past [48]. Large numbers of sample beams can easily be obtained if a pulsed CO2 TEA 

laser (Section 7.1) and a fast camera or linear diode array (rise time <1ns) are used for initial 

measurements since different temporal parts of the pulses can have different mode 

combinations [15], [16], [17], [31]. Different parts of the pulse can then be analysed as 

independent beams. The superiority of the new correlation methods over the ISO correlation 

functions also awaits further testing and approval (Section 8.5).  

 

The possible oscillating behaviour of the proportionality factors of general astigmatic beams 

could also be examined in camera verification experiments (Section 8.3). It still needs to be 

investigated whether the proportionality factors can be incorporated into camera software 

(Section 6.4.3.2) to test for Gaussian behaviour and to select the TEM00 mode.  

 

The applicability of the computational results in other parts of physics are open to 

investigation since the Laguerre basis functions for cylindrical symmetric beams are also 

found in the electron probability distributions of atomic physics. The rectangular Hermitian 
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functions are found in the probability distributions of the simple quantum harmonic oscillator 

[22]. It is therefore quite possible that these results will be useful to describe other phenomena 

as well.  

 

A new position and diameter adjustable internal aperture for the CO2 TEA laser is already in 

the design phase. It is currently being investigated whether this aperture unit can be combined 

with a SF6 cell to make the laser wavelength interchangeable between 10.6 and 9.6 mµ  [51] 

and to possibly mode lock the laser [47]. The slit profiles of beams emanating from this 

resonator will be measured at several positions to ensure that no diffractive effects occur 

inside the resonator. To further prevent this possibility, the setup of this resonator will be done 

with the rectangular two-mode proportionality graph described earlier (Section 6.4.1). The 

resulting beam (or beams) can then be used to complete the laser generated plasma 

experiments. 
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Chapter 10  

Appendices 

10.1 Appendix A  

Knife–edge analytically integrated functions of the rectangular 

Hermitian modes up to TEMxy05 

All the knife-edge energy functions of the pure modes that are listed below were obtained by 

integrating the energy density functions of Equation (3.19) with Equation (4.5) in the 

mathematical program Mathematica.  
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xyTEM 03  
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The preceding energy functions were plotted (right) versus their source energy density 

profiles (left). 
 

  

  

  

Figure 10-1:Energy density graphs of pure rectangular modes TEM00 to TEMxy02 (A-C) 
plotted alongside their respective knife-edge integrated energy graphs (D-F). 
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Figure 10-2:Energy density graphs of pure rectangular modes TEMxy03 to TEMxy05 (left 
from top to bottom) plotted alongside their respective knife-edge integrated 
energy graphs (right). 
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10.2 Appendix B  

Example of two-dimensional value matrices in Excel 

 

Figure 10-3:The two-dimensional value matrix of the normal TEMpl01 mode.  

 

Figure 10-4:The two-dimensional value matrix of the doughnut (B) TEMpl01 mode.  
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10.3 Appendix C 

Graphical proof of the separability of the rectangular modes 
In Figure 10-5 two different rectangular modes TEMxy11 and TEMxy12 are both slit scanned 

in the direction of the arrow ( x  direction). Both slit profiles are normalised and plotted 

overlaying the profiles obtained by setting the other directions values equal to zero (a one-

dimensional pinhole profile). All the graphs in the bottom figure are clearly indistinguishable 

from each other. They are also indistinguishable from the one-dimensional pinhole profile of 

TEMxy10. The generation of two-dimensional energy density distributions is therefore 

unnecessary due to the Cartesian separability of the Hermitian functions. 
 

 

 

Figure 10-5:Slit addition of two different two-dimensional rectangular modes (TEMxy11 and 
TEMxy12) in the direction of the arrow ( x ) producing the exact same slit profile 
which is identical to the one-dimensional pinhole profile of TEMxy10 illustrating 
the Hermitian separability in the Cartesian directions.  
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10.4 Appendix D 

Newly proposed correlation functions  
The general fifth order polynomial that was fitted through the knife-edge proportionality 

graphs was: 
2 3

4 5

( 1.00557 - a( - 0.994458) b( - 0.994458) c( - 0.994458)

d( - 0.994458) e( - 0.994458) )
knife knife knife knife

knife knife

M M M M

M M

× + + +

+ +
. (D.1) 

 
The general fifth order polynomial that was fitted through the slit  proportionality graphs was: 

 
2 3

4 5

( 0.9994 - a( -1.000619) b( -1.000619) c( -1.000619)

d( -1.000619) e( -1.000619) )
knife knife knife knife

knife knife

M M M M

M M

× + + +

+ +
 (D.2) 

 
The following correlation factors should be inserted into the corresponding functions D1 and 

D2 to obtain the correlation functions.  

 
Beam 

subclass 
a b c d e 

Range 

Knife-edge M 

xyTEM  00+01 -0.01312 -0.79973 +1.63888 -1.3571 +0.46948 
M>0.9946 

M<1.8724 

xyTEM 00+01+

02
 +0.1004 -0.64557 +0.62304 -0.21434 +0.02117 

M>0.9946 

M<2.5211 

xyTEM 00+01+

02+03
 +0.48487 -1.60911 1.64479 -0.74665 +0.12859 

M>0.9946 

M<3.0600 

xyTEM 00+01+

02+03+04
 +0.30742 -0.67211 +0.41293 -0.10735 +0.01023 

M>0.9946 

M<3.5310 
 

Table 10-1: Newly proposed knife-edge correlation factors (which must be inserted into 
Equation (D.1) for the first four rectangular mode subclasses. 
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Beam 

subclass 
a b c d e 

Range 

Knife-edge M 

plTEM  00+01  -0.12712 +0.40283 -3.27354 +7.45889 -5.36761 
M>0.9946 

M<1.53 

plTEM 00+01
+02

 +0.21395 -2.21383 +5.28299 -5.4693 +2.09481 
M>0.9946 

M<1.92 

plTEM 00+01+

02+10
 0.39839 -2.6454 +5.1731 -4.56367 +1.52275 

M>0.9946 

M<1.99 

plTEM 00+01+

02+10+03
 +0.47011 -2.75246 +4.89901 -3.86241 +1.13883 

M>0.9946 

M<2.26 
 

Table 10-2: Newly proposed knife-edge correlation factors (which must be inserted into 
Equation (D.1) for the first four cylindrical mode subclasses. 

Beam 

subclass 
a b c d e 

Range 

Knife-edge M 

xyTEM  00+01 +0.1441 -4.2175 28.122 -80.3660 84.388 
M>1.00062 

M<1.50140 

xyTEM 00+01+

02
 +0.543 -5.9171 +20.296 -28.3914 +14.351 

M>1.00062 

M<1.84337 

xyTEM 00+01+

02+03
 +1.20063 -7.958 +18.296 -17.776 +6.291 

M>1.00062 

M<2.12269 

xyTEM 00+01+

02+03+04
 2.023 -9.410 +15.941 -11.754 +3.214 

M>1.00062 

M<2.3652 

Table 10-3: Newly proposed slit correlation factors (which must be inserted into Equation 
(D.2) for the first four rectangular mode subclasses. 
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Beam 

subclass 
a b c d e 

Range 

Knife-edge M 

plTEM  00+01  0.03260 -2.3346 +17.110 -54.0110 +62.210 
M>0.9946 

M<1.42 

plTEM 00+01
+02

 +0.2560 -3.295 +11.766 -17.766 +10.099 
M>0.9946 

M<1.68 

plTEM 00+01+

02+10
 0.3175 -3.0343 +8.8195 -11.1603 +5.5281 

M>0.9946 

M<1.68 

plTEM 00+01+

02+10+03
 +0.2285 -2.1249 +5.6743 -6.4392 +2.7952 

M>0.9946 

M<1.88 

Table 10-4: Newly proposed slit correlation factors (which must be inserted into Equation 
(D.2) for the first four cylindrical mode subclasses. 
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10.5 Appendix E 

Clip-level optimisation graphs 
 
 
 

 

Figure 10-6:Knife-edge proportionality factor graphs for the rectangular three-mode subclass 
calculated using different clip-levels. 
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Figure 10-7:Knife-edge proportionality factor graphs for the cylindrical three-mode subclass 
( plTEM 00 01 02+ + ) calculated using different clip-levels. 

 

Figure 10-8:Knife-edge proportionality factor graphs for the cylindrical four-mode subclass 
( plTEM 00 01 02 10+ + + ) calculated using different clip-levels. 

1.732 
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10.6 Appendix F 

Below measuring error correlation functions 
This clip-level optimisation method can be used for rectangular symmetric pulsed lasers and 

for hand scanning techniques involving rectangular symmetric lasers. 

 

The proportionality factors with knife-edge M -values close to 1.732 can also be used since 

their degenerate errors are much lower than the measuring error. Set given clip-levels with 

known correlation functions, which were fitted only close to the zero error point, are used to 

determine the second moment 2M  value. Such a fitting is illustrated in Figure 10-9. 
 

 

Figure 10-9:Fitting of the correlation function close to the zero error point of the rectangular 
three-mode subclass using a 25% clip-level. 

The “below measuring error” proportionality factor can be determined as follows.  

• The 16% knife-edge M -value is measured. 

• The user choose a certain given clip-level value that will give knife-edge M -value 

closer to 1.732.  

• This process is repeated until the clip-level is determined that gives a knife-edge M -

value that is the closest to 1.732.  
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• The correlation function given in Table 10-5 for that specific clip-level is used to 

obtain the “below measuring error“ second moment M -value.  
 

 

4.5 sec,4.5% 0.58983knifeM M= ×  

5 sec,5% 0.60899knifeM M= ×  

6.5 sec,6.5% (0.69777 -0.02236 )knife knifeM M M= ×  

8.5 2
sec,8.5% (0.90067 - 0.15875 0.03201 )knife knife knifeM M M M= × +  

11 2
sec,11% (1.39809 -  0.63865   0.16707 )knife knife knifeM M M M= × +  

13.5 2
sec,13.5% (1.03149 -  0.11663   0.00971 )knife knife knifeM M M M= × +  

16 2
sec,16% (1.3607 -  0.38634   0.07593 )knife knife knifeM M M M= × +  

18 2
sec,18% (1.39281 -  0.31758   0.04453 )knife knife knifeM M M M= × +  

21 2
sec,21% (1.85884 -  0.75621   0.16039 )knife knife knifeM M M M= × +  

25 2
sec,25% (2.14775 -  0.94243   0.19853 )knife knife knifeM M M M= × +  

28 2
sec,28% (2.243 -  0.93123   0.17921 )knife knife knifeM M M M= × +  

31.5 2
sec,31.5% (2.44201 -  1.01501   0.18244 )knife knife knifeM M M M= × +  

34.6 2
sec,34.6% (2.9026 -  1.40115    0.26923 )knife knife knifeM M M M= × +  

Table 10-5: Correlation functions close to the zero error points of the rectangular three-mode 
subclass using various clip-levels. 
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10.7 Appendix G 

Analytical Mathematica Program  
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Typical output 

 

10.8 Appendix H 

k factor intensity based radii 
In Equations (3.19) and (3.20) both the Hermitian and Laguerre polynomials are functions of 

00 ( )x zω . Consider for instance now a node or zero intensity point of an arbitrary higher 

order mode. The position of this node can be found by setting the appropriate polynomial 

equal to zero. One could therefore find a solution for position x of this node that depends 

directly on 00 ( )zω . The beam profile also scales with 00 ( )zω  as it propagates. But according 

to Equations (3.31) and (3.32) the second moment radii are also directly dependent or scale 

with 00 ( )zω . The relationship between the position of the node and the second moment radius 

is therefore also constant for the specific beam as it propagates. Because the shape of the 
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beam profile is constant and scales with 00 ( )zω  it will also be true for all other intensity 

points.  

k factor energy based radii 
It is even simpler to prove that a constant factor k exists between energy based and second 

moment radii. Appendix A gives the normalised energy or knife-edge distributions of the 

rectangular modes, which are all functions of 00x ω . One would solve each of these for a 

specific value between 0 and 0.5 (the clip level) to obtain half the beam energy radius. (this is 

because they are centred on zero). Any beam energy radius therefore scales with 00 ( )zω  

which in turn scales with the second moment radius. The value of k is therefore also constant 

for energy radii as the beam propagates.  
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